
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2007

Automated Genome-Wide Protein Domain
Exploration
Bhanu Prasad Rekepalli
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Rekepalli, Bhanu Prasad, "Automated Genome-Wide Protein Domain Exploration. " PhD diss., University of Tennessee, 2007.
https://trace.tennessee.edu/utk_graddiss/273

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268770545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Bhanu Prasad Rekepalli entitled "Automated
Genome-Wide Protein Domain Exploration." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering.

Gregory D. Peterson, Major Professor

We have read this dissertation and recommend its acceptance:

Igor Jouline, Michael Berry, Ethan Farquhar

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Bhanu Prasad Rekepalli
entitled “Automated Genome-Wide Protein Domain Exploration.” I have
examined the final electronic copy of this dissertation for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, with a major in Computer Engineering.

 Gregory D. Peterson, Major Professor

We have read this dissertation
and recommend its acceptance:

Igor Jouline

Michael Berry

Ethan Farquhar

 Accepted for the Council:

 Carolyn R. Hodges
 Vice Provost and Dean of

the Graduate School

(Original signatures are on file with official student records.)

Automated Genome-Wide Protein
Domain Exploration

A Dissertation
Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Bhanu Prasad Rekapalli
December 2007

 ii

Copyright © 2007

Bhanu Rekapalli

 iii

Dedicated to my mother Lakshmi Sulochana Vemuri and
my father Subba Rao Rekapalli

 iv

Acknowledgements

I would like to sincerely acknowledge my advisor Dr. Gregory Peterson for his

kind, encouraging, and helpful supervision throughout the course of my research

and studies in The University of Tennessee, Knoxville. I would like to thank my

dissertation committee members, Dr. Ethan Farquhar, Dr. Michael Berry, and Dr.

Igor Jouline for reviewing and directing my dissertation.

I sincerely thank Dr. Igor Jouline for guidance and support for picking my topic of

interest. Working in Igor’s Lab generated this idea of dissertation without which

the dissertation would not have been existed. I am indebted to my nice and

awesome boss John Rose of Office of information Technology, for support and

encouragement provided by him for this dissertation. I would like to thank Dr.

Luke Ulrich, postdoc in Igor’s lab for guiding me during the course of my

research.

I am grateful to all my friends who helped in preparation of this dissertation.

Special thanks to my best friends Vamsi Nellore, Dr. Vivek Rudrapatna and John

Roelofs for giving moral and great support in hard times. Special thanks to my

lab members and friends Davi Ortega, Kirill Borziak, Harold Shanafield, and

Brian Cantwell for helping me with the biology part of my research.

 v

I would like to thank The University of Tennessee for giving me the opportunity

for the Ph.D. program. It’s my pleasure to thank my graduate and undergraduate

professors who laid a good foundation for my dissertation work.

Last but most important, I would like to thank whole heartedly, my parents

Lakshmi Sulochana Vemuri and Subba Rao Rekapalli and my sister Dr. Deepthi

Rekapalli who supported, loved, helped and cared for me throughout my life. I

am dedicating this dissertation to them.

 vi

Abstract

Exploiting the exponentially growing genomics and proteomics data requires high

quality, automated analysis. Protein domain modeling is a key area of molecular

biology as it unravels the mysteries of evolution, protein structures, and protein

functions. A plethora of sequences exist in protein databases with incomplete

domain knowledge. Hence this research explores automated bioinformatics tools

for faster protein domain analysis. Automated tool chains described in this

dissertation generate new protein domain models thus enabling more effective

genome-wide protein domain analysis. To validate the new tool chains, the

Shewanella oneidensis and Escherichia coli genomes were processed, resulting

in a new peptide domain database, detection of poor domain models, and

identification of likely new domains. The automated tool chains will require

months or years to model a small genome when executing on a single

workstation. Therefore the dissertation investigates approaches with grid

computing and parallel processing to significantly accelerate these bioinformatics

tool chains.

 vii

Table of Contents

Chapter One..ii
1.1 Introduction ... 1
1.2 Biology Overview .. 3
1.3 Problem Overview and Motivation .. 9

1.3.1 Problem .. 9
1.3.2 Algorithm .. 11
1.3.3 Challenge ... 12

1.4 Hardware Architectures Overview... 13
1.5 Scope of Dissertation.. 19

Chapter Two... 21
Literature Review .. 21
2.1 Biological Background .. 21

2.1.1 Sequence Alignments... 22
2.2 Pair-Wise Sequence Alignment Algorithms and Tools 26

2.2.1 BLAST Algorithm.. 27
2.2.2 BLAST Suite... 28
2.2.3 PSI-BLAST ... 31

2.3 Multiple Sequence Alignment Algorithms.. 32
2.3.1 CLUSTALW and MUSCLE ... 34

2.4 Profile Hidden Markov Models and Protein Domain Identification............. 36
2.4.1 HMMER Suite... 37
2.4.2 Domain Identification Tools .. 38

2.5 Secondary Protein Structure Predictions .. 42
2.6 Algorithmic and Architectural Accelerators of BLAST and HMMER.......... 44

2.6.1 Algorithmic Speedups... 45
2.6.2 Architectural Speedups .. 47

Chapter Three .. 50
Automated Tool Chain Design .. 50
3.1 Domain Identification Automated Tool chain (DIAT) 52
3.2 Domain Verification Automated Tool chain (DVAT) 63
3.3 Domain Discovery Automated Tool chain (DDAT) 67
3.4 PepDomDB Database... 73
3.5 Domain Model Verification .. 73

Chapter Four .. 75
New Domain Model Results.. 75
4.1 Test-bench Files ... 78
4.2 DIAT Results... 79
4.3 DVAT Results ... 83
4.4 DDAT Results ... 93
4.5 Domain Model Verification Results ... 96

Chapter Five... 99
Computational Results.. 99
5.1 Architectural Assessment.. 101

 viii

5.2 Computation Times for Shewanella and E.coli Genome-Wide Domain
Modeling ... 104
5.2 Multicore Architectures and Threading.. 108
5.3 Validation of DIAT ... 110
5.4 Solved Programming Challenges.. 111
5.5 Job Mapping and Distribution.. 112

5.5.1 PSI-BLAST Job Scheduler ... 114
5.5.2 HMMER Job Scheduler .. 116

Chapter Six... 123
Conclusions and Future work.. 123

References ... 128
References.. 129

Vita ... 136

 ix

List of Tables

Table 2.1: BLAST programs………………………………………………………….30

Table 4.1: DIAT domain statistics for Shewanella genome……………………….85

Table 4.2: DIAT domain statistics for Ecoli genome……………………………….86

Table 4.3: DVAT domain statistics for Shewanella genome………………………92

Table 4.4: DVAT domain statistics for Ecoli genome………………………………92

Table 5.1: BLAST and HMMER suite statistics…………………..……………….100

Table 5.3: Comparison of DIAT on GENWIDEshew and MANGEN files………105

Table 5.4: Computation times of DVAT and DDAT for GENWIDEshew file...…105

Table 5.5: Computation times of DIAT, DVAT, and DDAT for GENWIDEecoli
file………………………………………………………………………………………108

Table 5.6: Statistics for Domains identified for MANGEN file of Shewanella
genome using DIAT………………………………………………………………….111

Table 5.7: Protein statistics in three different ranges…………………………….120

Table 5.8: The estimated and computed times for some sample files…………122

 x

List of Figures

Figure 1.1: Growth of NCBI database sequences over past few decades……….2

Figure 1.2: Different stages of protein structures, Figure is courtesy of National
Human Genome Research (NHGRI), by artist Darryl Leja…………………………6

Figure 1.3: Domains of sensory box protein of Shewanella genome from SMART
database…………………………………………………………………………………7

Figure 1.4: 3D structure of sensory box protein of Shewanella genome from
MODBASE database ………………………………………………………………….8

Figure 1.5: The regions with arrows represent possible query peptide
sequences………………………………………………………………………………10

Figure 1.6: Shared memory architecture……………………………………………16

Figure 1.7: Distributed memory architecture………………………………………..16

Figure 1.8: Cluster architecture………………………………………………………17

Figure 2.1: Distinction between global and local alignments of protein
sequences………………………………………………………………………………23

Figure 2.2: Dot plot of a human zinc finger transcription factor…………………..24

Figure 2.3: The BLOSUM62 matrix………………………………………………….26

Figure 2.4: Scoring diagonal in BLAST algorithm………………………………….29

Figure 2.5: Working of PSI-BLAST…………………………………………………..33

Figure 2.6: Multiple sequence alignment of MCP domain against NR
database………………………………………………………………………………..35

Figure 2.7: Working of HMMER tool…………………………………………………39

Figure 3.1: BLAST input generator…………………………………………………..54

Figure 3.2: Input query (unknown region) to PSI-BLAST………………………….54

Figure 3.3: The core modules of the DIAT………………………………………….55

Figure 3.4: Screenshot of section of nr protein database…………………………56

 xi

Figure 3.5: Tab-delimited PSI-BLAST output file (PSIOUT) ……………………..57

Figure 3.6: HMMER input generator…………………………………………………59

Figure 3.7: Screenshot of section of Pfam Database……………………………...61

Figure 3.8:Typical HMMER output file (HMMOUT)………………………………..62

Figure 3.9: The Domain Identification Automated Tool chain flow……………….64

Figure 3.10: The Domain Verification Automated Tool chain flow……………….66

Figure 3.11: The core modules of the Domain Discovery Automated Tool
chain…………………………………………………………………………………….68

Figure 3.12: The multiple sequence alignment (MSA) input generator………….70

Figure 3.13: The Domain Discovery Automated Tool chain flow…………………72

Figure 4.1: Sequence lengths distribution of Shewanella genome………………76

Figure 4.2: Sequence lengths distribution of Ecoli genome………………………77

Figure 4.3: Domain Identification Automated Tool chain results flow……………81
Figure 4.4: Resulted DIAT domain distribution of Shewanella genome…………82

Figure 4.5: Resulted DIAT domain distribution of Ecoli genome…………………84

Figure 4.6: Domain Verification Automated Tool chain results flow……………...89

Figure 4.6: Resulted DVAT domain distribution of Shewanella genome………..90

Figure 4.7: Resulted DVAT domain distribution of Ecoli genome………………..91

Figure 4.8: Automated tool chain flow using Shewanella genome……………….95

Figure 4.9: Shewanella domain model with 100% precision with EF-G C-terminal
domain from PHYRE search. The red areas indicate alpha helixes, blue areas
indicate beta sheets, and gray areas indicate coil regions………………………..97

Figure 4.10: Ecoli domain model with 0% precision with PDZ domain from
PHYRE search. The red areas indicate alpha helixes, blue areas indicate beta
sheets, and gray areas indicate coil regions………………………………………..98

 xii

Figure: 5.1: Comparison plot of PSI-BLAST computation times between Sun
Sparc, Intel Xeon, and AMD Opteron………………………………………………102

Figure: 5.2: Comparison plot of HMMER computation times between Sun Sparc,
Intel Xeon, and AMD Opteron………………………………………………………103

Figure 5.3: Domain Identification Automated Tool chain computation time results
flow…………………………………………………………………………………….106

Figure 5.4: Domain Verification Automated Tool chain computation time results
flow…………………………………………………………………………………….107

Figure 5.5: The distribution of protein sequence lengths of 12.8 million protein
sequences currently available (Image added with the permission of Luke
Ulrich)………………………………………………………………………………….113

Figure: 5.6: Comparison plot between hmmpfam computation times and amino
acid lengths for 16 different protein sequences of varying lengths from 100 amino
acids to 24000 amino acids…………………………………………………………117

Figure: 5.7: Three dimensional comparison plot between protein sequence
lengths, number of sequences in a file and their respective computation times for
hmmpfam jobs………………………………………………………………………..118

 1

Chapter One

1.1 Introduction

The fields of computational biology and bioinformatics are growing in popularity

and demand. Research in bioinformatics and computational biology promises to

improve techniques for the prevention, treatment, and cure of diseases [7]. Life

sciences research increases the spectrum, demand, and the amount of

information generated every year [5]. The best example is the human genome

project. There are around 3.2 billion base pairs and 30,000-40,000 protein-coding

genes in the human genome alone [54, 55]. There are 401 prokaryotic genomes

in Comprehensive Microbial Resource (CMR) database [78] and European

Bioinformatics Institute has 53 eukaryotic genomes. This indicates the vast

amount of data associated with all genomes that are currently sequenced. The

cost and time of sequencing genomes is decreasing with techniques such as

shotgun sequencing [56, 57]. This led to sequencing organisms from different

phyla. The sequences put in the databases around the world are doubling every

six months [40]. The growth of the NCBI (National Center for Biotechnology

Information) database sequences is shown in Figure 1.1 [79,80,81].

 Many areas in life sciences use the information generated by the genomes for

research [4]. There is an information revolution, and the data gathering of

Y e a r ly g r o w th o f s e q u e n c e s

0

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

1 9 8 0 1 9 8 5 1 9 9 0 1 9 9 5 2 0 0 0 2 0 0 5 2 0 1 0

Y e a r s

N
um

be
r o

f s
eq

ue
nc

es

Figure 1.1: Growth of NCBI database sequences [79,80,81] over past few

decades.

 2

 3

genomic sequences is increasing at an exponential rate [5, 26], surpassing the

data analysis algorithms, architectures, and per-node core memory to handle

such a vast amount of data [26, 40]. Some of the major areas of life sciences

where an enormous amount of time and money are allocated include

sequencing, discovery of new genes, gene ontologies, pathway analysis,

regulatory networks of cells, and microarrays. There is a massive amount of data

in various databases but there are not enough automated knowledge discovery

algorithms or dedicated architectures to mine this data [5]. The major challenge

of bioinformatics is to design computer algorithms and architectures to analyze,

interpret, and understand all the data within a feasible amount of time.

1.2 Biology Overview

This chapter introduces both engineers and biologists to some basics of biology

and engineering to better understand the problem this dissertation addresses.

The entire biological and hereditary information of an organism is possessed in

the genome. The genomes are made of DNA (deoxyribonucleic acid), but for

some viruses the genome is made of RNA (ribonucleic acid) [82]. The DNA in a

nuclear genome is made up of chromosomes. DNA is a double stranded nucleic

acid that is made up of nucleotides that carry genetic information. These

nucleotides are classified into two groups, the pyrimidines including cytosine (C),

thymine (T) and uracil (U), and the purines including adenine (A) and guanine

 4

(G). The DNA is made of AGCT and in RNA uracil (U) takes place of thymine

hence RNA is made of AGCU.

The process of transferring genetic information from DNA to RNA is called

transcription. RNA polymerases are the enzymes which enzymatically transcribe

DNA into messenger RNA called mRNA. mRNA is used as a template to

generate the Amino Acid (AA) sequence of proteins. The process of translating

mRNA to proteins is known as translation. The study of an entire organism’s

genome and its genes is known as genomics. On the other hand the study of

proteins and their structure and function is known as proteomics. There are 20

amino acids in total and each amino acid is made up of three nucleotides known

as a codon. In eukaryotes, complex organisms including animals, plants, fungi,

and protozoa, the transcription occurs inside the nucleus and translation occurs

in cytoplasm outside the nucleus. The ribosome in the cytoplasm of the cell

serves as a factory that generates the AA sequences using the mRNA.

This dissertation focuses on proteomics. To better understand the problem, a

brief introduction of proteins, their structures and folding is introduced here.

There are 20 different kinds of AAs but they all have in common a central carbon

atom to which a hydrogen atom, an amino group, and a carboxyl group are

attached. Amino acids are distinguished by how the side chains attached to the

central carbon atom through its fourth valence. The biological function of the

protein can be deduced by the prediction of the three dimensional structure from

 5

the amino acid sequence. A chain of amino acids is called a peptide and

peptides are the building blocks of protein structures. Protein structures can be

classified into primary, secondary, tertiary, and quaternary shown in Figure 1.2

[84, 85]. The primary structure is a simple amino acid peptide chain. The

secondary structures consist of alpha helices and beta sheets that are highly

regular, locally defined substructures. The tertiary structures are three-

dimensional structures that are spatial arrangements of the secondary structures.

The quaternary structure is a complex of two or more polypeptide subunit chains.

Proteins are organized further into smaller units such as motifs and domains.

Motifs are common arrangements or combinations of the secondary structural

elements. Domains are characterized as semi-independent three-dimensional

functional and evolutionary units of proteins [13,14,15]. Protein folding is the

process by which a protein acquires its three dimensional structure to achieve

the biologically active native state. Protein folding is a major intellectual challenge

in life sciences and biology that is yet to be solved [83]. The study of protein

folding is very important as misfolding can lead to various diseases. As there are

20 different amino acids that can be combined in many possible combinations,

protein folding prediction remains a huge problem. Hence the protein structures

are determined experimentally using various techniques such as x-ray

crystallography, electron crystallography, or nuclear magnetic resonance

techniques.

Figure 1.2: Different stages of protein structures [84, 85], Figure is courtesy of

National Human Genome Research (NHGRI), by artist Darryl Leja

 6

Figure 1.3: Domains of sensory box protein of Shewanella genome from SMART

database for potential domains

Protein domain discovery is another very important part of life sciences used for

protein classification, predicting protein structure, function, evolution, and

modeling [13,14,15]. Figure 1.3 shows the domain information of a sensory box

protein of the Shewanella oneidensis genome (referred to as Shewanella in the

rest of the dissertation). Shewanella belongs to the bacteria phylum and the 3D

structure of a sensory box protein is shown in Figure 1.4. Protein domains have

limits on their sizes, ranging from around 40 amino acids (AAs) to around 700

AAs, averaging approximately 100 AAs, although the sizes vary [16,17,18].

Different labs around the world are exploring various types of genetic information;

one popular field is microarray analysis and another is computational genomics.

Microarray analysis is expected to produce a peta-byte of data per year [40].

Microarrays can house the genes of an entire genome on a single glass slide.

The microarray technology allows researchers to follow the expression of an

organism’s entire complement of genes simultaneously in a single experiment

[74,75,76,77]. There are different types of microarrays such as gene arrays,

protein arrays, transcription factor arrays, and also DNA microarrays, thus

 7

Figure 1.4: 3D structure of sensory box protein of Shewanella genome from

MODBASE database [61].

 8

 9

populating the databases with a plethora of data [5]. Computational genomics is

used to study the evolution, diversity, and molecular mechanisms of functions

such as signal transduction.

The microbiology research group with which we are collaborating is interested in

solving the problems related to signal transduction in prokaryotes. The group is

interested in prokaryotic organisms, as they are simpler than eukaryotes but

sophisticated enough to adjust to environmental changes using detectors and

transmitters. One of the challenges in genomics is to derive relevant information

for complete sequenced genomes and this dissertation addresses one such

problem. This dissertation addresses the problem of protein domain discovery on

a genome-wide scale using various computing architectures.

1.3 Problem Overview and Motivation

1.3.1 Problem

There is a vast amount of knowledge that is yet to be discovered in the field of

proteomics to better understand evolution, structure and function of the proteins.

Domains are the key elements of the proteins that aid in understanding

structures, functions, and evolution of proteins. Currently there are around 1200

bacterial and archaeal genomes in the MiST (Microbial Signal Transduction)

Figure 1.5: The regions with arrows represent possible query unknown

sequences for potential domains

database [51]. There are roughly 5000-proteins in each genome; these proteins

have one or more known domains. The domains are identified using both the

Pfam (protein families) [64] and SMART (simple modular architecture research

tool) [32] databases by the HMMER tool. There are peptide regions in these

proteins that are greater than 80 AAs and for which no domains are identified by

the HMMER tools, known as unknown regions. These unknown regions lie

between two known domains, or between the start of the protein sequence and

the domain, or after the domain to the end of protein sequence as shown in

Figure 1.5. These unknown regions have a potential of being a new domain or

the result of a poor domain model and hence not identified by HMMER tool.

Discovery of new domains is a tedious and manual procedure. For example the

FIST domain [87] was discovered after months of research including hundreds of

profile searches, multiple sequence alignments, structure prediction, and domain

architecture analysis by one student. At this rate, it will take years of effort to

 10

 11

model all the unknown domain regions of a single genome. Hence the need of

bioinformatics tools and computer architectures arises to increase the rate of

domain discovery.

1.3.2 Algorithm

One practical way to find the domains for these unknown regions is to perform a

PSI-BLAST search on the unknown region to find the relatives or similar

sequences for this region. On all the matching regions from the PSI-BLAST

search, a domain identification check is performed using the HMMER tool

against the Pfam and SMART databases. PSI-BLAST and HMMER are robust

and sensitive searching tools that use principles of full probabilistic modeling to

build models from multiple sequence alignments [36]. PSI-BLAST is sensitive

and discovers new and interesting protein sequence alignments because of its

iterative functionality. The HMMER tool is a widely used and important tool for

protein domain identification. PSI-BLAST and HMMER are run on the query

unknown region simultaneously for protein domain identification.

Further analysis is performed on all the query sequences for which no domains

are identified in the above process. The MUSCLE tool is used to build multiple

sequence alignments and the HMMER tool is used to build the HMMs (Hidden

Markov Models). These newly built HMMs are searched against the non-

 12

redundant (nr) database, until all the protein regions that match this HMM model

are retrieved. Then a final check is performed for known domain models in the

protein regions resulting from the previous search. If no known domains are

identified, this implies a potential new domain model is built. Now structure

predictions and domain architecture analysis are performed to define this new

domain model. All the above processes PSI-BLAST, HMMER, and MUSCLE are

performed manually right now, which is tedious and time consuming.

1.3.3 Challenge

The problem size is enormous, for 1200 genomes in the MiST database alone

and assuming there are around 2000 peptide regions per genome with no

domain information, one would have to run 1200*2000 PSI-BLAST searches and

perform HMMER searches on the protein regions that resulted from the PSI-

BLAST searches to identify domains. Apart from that, for all the unknown regions

for which no domains are found, multiple sequence alignments and HMM models

need to be built and searched against the nr database. The same approach can

be extended to the entire collection of known proteins available in different

databases around the world to construct a peptide domain database for all the

peptides along with discovering new and interesting domains.

 13

This dissertation deals with combining the PSI-BLAST, HMMER, and MUSCLE

tools for protein domain identification and discovery. New bioinformatics

automated tool chains are proposed for domain identification and discovery to

enable millions of searches. The embarrassingly parallel nature of this automated

tool chain is exploited. This led to using cluster-computing techniques to increase

the rate of domain discovery. A brief introduction about computers for biologists

is introduced in next section to better understand the approach used to solve the

problem later in this dissertation.

1.4 Hardware Architectures Overview

The sequences in the databases are growing at an exponential rate [26], and

doubling their size every six months [40]. According to Moore’s law [27] the

number of transistors on a chip double every 18 months. Hence the growth of

single processor speeds (hardware growth) is not able to keep up with the rate of

sequence growth. The latest trend in processors is the multicore technology,

where one or more cores are fabricated on the same chip. The success of the

dual-core technology led to the development of quad-core or more number of

cores on a single chip [89]. The magnitude of the biological data is so abundant

that a single processor cannot solve it. This led to the use of clusters of

computers and supercomputers for sequence analysis along with hardware

accelerators such as Field Programmable Gate Arrays (FPGAs) and Application

 14

Specific Integrated Circuits (ASICs). Many biological problems are

embarrassingly parallel in nature, thus the use of a parallel cluster of

workstations is an effective solution [90]. One good example is the

Folding@Home project dedicated to understand protein folding to cure diseases

by using the processor cycles of the participants’ workstations around the world.

Addressing problems on a genome-wide scale is a grand challenge that can be

solved using High Performance Computing (HPC). Two such challenges,

understanding evolution and discovering protein structure and functions can be

solved only through use of high-performance computing [91, 92].

Traditional computers with a single CPU exploit serial computation. Serial

computing involves executing one instruction after the other in order, to complete

the problem. In the modern world of computers the size of the applications is

increasing at a much higher rate than the resources can accommodate

individually and the speed with which the applications should be executed is

becoming higher. These fast growing requirements of the life sciences,

engineering, database, commercial, and business applications and lower time to

market led to the development of many techniques of computing. One option is

to update all the systems available, which increases the cost. The second is to

use the already existing systems intelligently, where the need for parallel

computing arises. There is an immense necessity for parallel computing in the

latest world of computing technology and it is becoming the dominant technique

in achieving high performance. As the demand of the processing power

 15

increased due to the advent of challenging sized problems such as weather and

climate, chemical or nuclear reactions, biology etc, necessity to reduce the

computation time arises. Parallel computing has emerged to compete with the

existing supercomputers [90, 92].

Parallel computing in a simple sense is to simultaneously use multiple

processors in a computer or multiple computers connected on a network or both,

to solve a computational problem in lesser time. There are two types of

parallelism: data parallelism and functional parallelism. Data parallelism is

concurrently running the same operations on different sets of data. In contrast,

functional parallelism consists of concurrently executing different operations on a

single stream of data [94, 95]. Some basic terms involved with parallel computing

are efficiency, speedups, bandwidth, latency, and task or job.

Memory architectures play a major role in parallel computers. Two major

approaches are shared memory architectures where all the processors use one

global memory and distributed memory architectures where each processor has

its own local memory as shown in Figure 1.6 and 1.7. The largest and fastest

computers now use combination of both shared and distributed memory

architectures. For example the cluster used for running automated tools is built

with Intel Xeon dual core processor with 4GB of RAM, as in Figure 1.8. There are

several parallel programming models such as shared memory, threading, data

parallel, and message passing. This dissertation also explores the computation

Memory

CPU1 CPU2 CPU3 CPU4

Figure 1.6: Shared memory architecture

 Memory

CPU2

Memory

CPU1

CPU4

Memory

CPU3

Memory

Network

Figure 1.7: Distributed memory architecture

 16

Network

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Memory

CPU CPU

CPU CPU

Figure 1.8: Cluster architecture

time taken by the tools used for sequence analysis on single core versus multiple

core processors along with various memory architectures for performance

evaluation that are discussed in later chapters.

Traditional computing can be further divided into general purpose computing and

application-specific computing. Microprocessors are used for the general

purpose computing. Microprocessors perform a wide range of applications and

they are flexible. On the contrary they are slow for few applications that require

huge data processing. This is because of the architecture of the microprocessor

is fixed. Which means they include the hardware that can perform a limited and

predefined set of instructions present in the memory and execute them. This

results in high execution overhead in each operation, thus making it slow. In the

 17

 18

microprocessors, the software programs determine the computation, as the

hardware is fixed.

On the other hand, for application specific computing, ASICs or FPGAs are used,

which are used to perform the operations in hardware. The ASICs are designed

specifically to perform the operations in hardware. The ASICs are fabricated to a

particular digital design to perform an application and the design cannot be

altered. So the ASICs are very fast and efficient in performing specific

operations for which they are designed but with limited flexibility. The other

disadvantages of ASICs are high design and fabrication time, along with high

cost. However, they are used in the application in which the speed is an

important design consideration and economies of scale.

The flexibility of the microprocessor and the speed of the ASICs can be achieved

with Reconfigurable Computing (RC) architectures. The main components of the

RC systems currently used are FPGAs. The advancements in the design of the

FPGAs lead to a drastic improvement in the RC systems. The FPGA basically

consists of the programmable logic blocks and programmable interconnects. The

currents FPGAs have static random access memory (SRAM) cells for

configurations, which improves the flexibility in the design. The SRAM FPGAs

are easily re-programmable when compared to one-time programmable devices

like ASICs or antifuse FPGAs. Thus, the bug fixes or upgrades are easily

possible, hence providing an ideal prototyping medium.

 19

The automated tool chain designed to solve the domain-modeling problem can

deal with multiple sequences at a time, allotting one sequence to a node or

processor. The embarrassingly parallel nature of this biology problem is exploited

to discover new domains for thousands of proteins found every year in less time.

When addressing a problem on genome-wide scale there are thousands of

sequences to manipulate. Thus allotting jobs to available nodes on a cluster can

become very important part of the research, especially when allotting jobs on a

very large scale on a supercomputer. The jobs are divided efficiently so that the

load on the computers are balanced so that no one computer will become a

bottleneck for analyzing data that is described in more detail in later chapters.

The next section presents the scope of this dissertation.

1.5 Scope of Dissertation

Chapter one introduces the reader to basic concepts of biology and computers

along with the problem overview and challenge. Chapter two discussed the

background, literature review, and some related work. Chapter two also

describes the algorithms of the tools used to build the automated tool chain to

solve the domain-modeling problem. The automated tool chain designs for

domain identification, verification, and discovery are described in chapter three

along with the various databases designed to reduce the computation time.

 20

Chapter four illustrates the biological results obtained for Shewanella and

Escherichia coli (referred to as E.coli from here on) genomes. Chapter five

describes some performance metrics, threading issues, job mapping algorithms,

and computation times. Finally chapter six concludes with contributions,

conclusions, and proposed future work to further enhance the automated tool

chains that was beyond the scope of this dissertation.

 21

Chapter Two

Literature Review

This chapter describes the basic concepts of biology required for protein domain

modeling, such as sequence alignments, profile searches, multiple alignments,

and secondary structure predictions. This chapter explains the essential steps

involved in understanding the biological problem of interest. The key concepts of

algorithmic and architectural advancements of the bioinformatics tools such as

BLAST and HMMER used to design the automated tool chains for protein

domain modeling are explored further.

2.1 Biological Background

This dissertation deals with important areas of proteomics such as sequence

alignments, multiple sequence alignments, HMMs, and domain identification that

are the key elements for protein domain modeling along with secondary protein

structure prediction for verification. The rest of the section explains the key

elements, algorithms, and tools used to build the automated tool chain for protein

domain modeling.

 22

2.1.1 Sequence Alignments

Sequence similarities may be the consequence of structural, functional, and

evolutionary relationships between the sequences. From the alignment of two

sequences one can infer the evolutionary relationship, functional domains shared

between proteins, and transcription-factor binding sites for DNA sequences. The

functional and evolutionary diversity can be recognized from distant sequence

relationships.

There are two types of sequence alignments,

a. Pair-wise sequence alignment: two DNA or protein sequences are

compared by searching for series of individual characters or character

patterns that are common.

b. Multiple sequence alignment: a nucleotide or protein sequence is

compared with two or more sequences to identify regions of similarity.

The pair-wise sequence alignments are further classified into global alignments

and local alignments. In global alignment, the full length of the sequence is

aligned using all sequence characters. On the other hand, local alignment is

concentrated on the stretches of sequences with the highest density of matches.

Figure 2.1 illustrates global and local alignments. Three principle methods of

pair-wise sequence alignments used in common are dot matrix analysis, dynamic

programming, and word or k-tuple methods.

S E Q N V E L S H Q V Q E T L Q A E T H D K L

 23

S D Q -- T E A -- N Q V Q E T L A T E A R D A I

 Global alignment

-- -- -- -- -- -- -- -- -- Q V Q E T L -- -- -- -- -- -- -- --

-- -- -- -- -- -- -- -- -- Q V Q E T L -- -- -- -- -- -- -- --

 Local Alignment

Figure 2.1: Distinction between global and local alignments of protein sequences

The dot matrix method is considered to be the first choice for pairwise alignments

unless two sequences are known to be similar, because for its graphical display

as in Figure 2.2. This method is time consuming to analyze large sequences, but

good for revealing the presence of insertions, deletions, and repeats. The dot

matrix plot is constructed using two sequences that are to be matched. The top

most row and the left most column of the matrix are populated using the two

sequences. A dot is placed at a point where the characters in the appropriate

column match. Very closely related sequences will appear as a single line along

the matrix’s diagonal in the dot matrix plot as shown in Figure 2.2.

Figure 2.2: Dot plot of a human zinc finger transcription factor [120]

 24

 25

Needleman and Wunch [11] were first to use dynamic programming algorithm for

global alignment of protein sequences. Smith and Waterman [10] were first to

use dynamic programming algorithm for local alignment [7]. Matching all possible

pairs of characters between the sequences by using a scoring scheme for

matches, mismatches, and gaps generate the alignment. This procedure

generates a matrix of numbers and the highest set of sequential scores in the

matrix defines the optimal alignment. This matrix looks like a normal matrix of

numbers but aligning two sequences one along the vertical axis and other along

the horizontal axis as shown in Figure 2.3. For DNA and RNA alignments, a

positive match score, a negative mismatch score, and a negative gap penalty are

used for building the matrix. For proteins, a substitution matrix such as the

percent accepted mutation matrix 250 (PAM250) [59] or the blosum substitution

matrix 62 (BLOSUM62) [58], are used to score matches and mismatches to build

the matrix. The dynamic programming algorithm generates optimal alignments at

the cost of more time due to the large number of computational steps.

The word or k-tuple method is heuristic [7]. First, a search is performed to identify

short stretches of nonoverlapping subsequences known as word or k-tuple

between sequences. These words are used to join into alignment using the

dynamic programming method. This method is not guaranteed to find an optimal

solution but is significantly faster, efficient, and statistically reliable to provide the

best scoring alignment possible. The fast nature of this method has made it

Figure 2.3: The BLOSUM62 matrix [58].

suitable to search an entire database of sequences for similarities. The following

section discusses various tools available for finding sequence similarities.

2.2 Pair-Wise Sequence Alignment Algorithms and Tools

Sequence alignment algorithms are one of the most widely used algorithms in

bioinformatics for finding functional, structural, or evolutionary relationships

between sequences [21]. Some popular sequence alignment algorithms include

dot matrix [9], Smith Waterman [10], Needleman and Wunch [11], FASTA [12],

and BLAST (Basic Local Alignment Search Tool) [1,2]. These sequence

alignment algorithms use optimized methods such as dynamic programming,

 26

 27

heuristic, and probabilistic as a backbone to search huge genomic databases [7].

The sequence alignment tools such as Smith Waterman, Needleman and Wunch

use dynamic programming, BLAST use heuristic methods, and HMMER use

probabilistic methods. The most popular and widely used sequence-searching

algorithm is the BLAST algorithm because of its speed, efficiency, and sensitivity

[2,7]. This dissertation uses the BLAST suite for generating the protein sequence

similarities that are described in the following section.

2.2.1 BLAST Algorithm

The BLAST algorithm is a heuristic method used for sequence similarity search.

BLAST [1] is faster than dynamic programming methods and FASTA [70], while

at the same time is also considered to be as sensitive [7]. The BLAST tool is

publicly available through the NCBI (National Center for Biotechnology

Information) website and also available through a number of other websites, thus

making it more popular than other sequence alignment search algorithms [1,2].

The BLAST algorithm first generates the common words or k-tuples in the query

sequence and each database sequence. The length of each word is 3 amino

acids (e.g. LEA) for proteins and 11 nucleotides (e.g. ATTCGGATCGA) for DNA

sequences. The alignment score is calculated using substitution matrices such

as Blosum62 [58] or PAM250 [59], for the match between the words of the query

sequence and database sequences [7]. This score should be high enough for

 28

significant matches but not too high to miss short but significant patterns [1]. The

BLAST algorithm can be used for both gapped and ungapped sequence

alignment searches. The newer gapped alignment searches are more popular,

as it runs at approximately three times the speed of the original BLAST [2]. Once

the significant words are detected, the query sequence is expanded. A cut-off

score is used as a threshold to pick the most significant matches. Then the

alignments are extended on either direction of the matching words along the

sequence as long as the score increases; the extension process is stopped once

the score is decreasing thus forming a high scoring segment pair (HSP). In the

recent gapped BLAST [2], the threshold was decreased and sequence alignment

was only extended if two significant words are lying on the same diagonal (see

Figure 2.4) and within a specified distance, thus increasing efficiency of BLAST.

Then based on the statistical significance and expected value ‘E’ (“the E value is

the chance that a score as high as the one observed between two sequences will

be found by chance in a search of a database of size D” [7]) the final alignments

matches are outputted to the results file.

2.2.2 BLAST Suite

The BLAST suite provided by NCBI has different types of BLAST searching

programs for different types of protein and nucleotide databases as shown in

Table 2.1.

Database sequence

Q
ue

ry
 s

eq
ue

nc
e

 29

Figure 2.4: Scoring diagonal in BLAST algorithm

 30

Table 2.1: BLAST programs.

Program Query sequence Database

BLASTP Protein Protein

BLASTN Nucleotide Nucleotide

BLASTX Translated nucleotide Protein

BLASTN Protein Translated nucleotide

TBLASTX Translated nucleotide Translated nucleotide

The NCBI databases consist of protein sequences and nucleotide sequences for

different organism and genomes from various public and independent resources

in the world. Some popular sequence databases other than NCBI are SwissProt

[71], European Molecular Biology Laboratory (EMBL) [72], and the DNA

Databank of Japan (DDBJ) [73]. The NCBI databases also consist of conserved

domain databases (CDD). The exponential growth of sequences in the NCBI

database is shown in Figure 1.1.

DNA sequences have only four bases, whereas protein sequences consists of 20

amino acids (AAs), thus resulting in a larger variety of sequence characters in

proteins. This increased complexity makes it easier to detect patterns of

sequence similarity between protein sequences when compared to DNA

sequences [7]. Thus protein sequence database searches yield more significant

matches when compared to DNA sequence databases for a specific protein

sequence [8].

 31

2.2.3 PSI-BLAST

Protein search significance shows the importance of PSI-BLAST (Position

Specific Iterative BLAST), which uses iterative BLASTP. Iterative BLASTP

searches are more sensitive to locate conserved domains in query protein

sequences, which is the main focus of this dissertation.

The first iteration of PSI-BLAST is BLASTP with the standard substitution matrix,

a matrix containing values proportional to the probability that one amino acid is

replaced by another amino acid for all pairs of amino acids. PSI-BLAST uses the

gapped BLASTP program for searching the query protein sequence against the

protein database. Once proteins similar to the query sequence (known as

relatives) are found, PSI-BLAST constructs a profile and multiple alignments

based on these relatives. This profile is then compared to the protein database to

seek local alignments using the BLASTP program. In the second iteration once

the local alignments are constructed, PSI-BLAST estimates their statistical

significance to find new relatives. Now a new profile is generated and PSI-

BLAST iterates using this new profile. The process is repeated for a given

number of iterations or until no new relatives or protein sequence matches are

found thus reaching convergence [2, 60]. In this research we used four iterations

as they are sufficient for sensitive homology searching, and any more iterations

 32

may lead to profile wander [29, 52]. Figure 2.5 illustrates PSI-BLAST.

2.3 Multiple Sequence Alignment Algorithms

Sequences of different organism are often related. Based on the evolutionary

process genes are conserved across widely divergent species. These genes

sometimes perform the same functions and sometime mutate to perform different

functions through the application of natural selection [7]. Hence multiple

sequence alignments play a major role in assessing the sequence conservation

of structural and functional properties among the family of sequences. Multiple

alignments of proteins are used for applications such as phylogenetic tree

estimation, secondary structure prediction, and critical residue identification

[103]. In this dissertation the multiple sequence alignments of protein sequences

are used to build HMMs and for secondary structure prediction. Multiple

sequence alignments are more difficult than pairwise alignments, thus MSAs

require sophisticated methodologies such as heuristic methods. Some popular

MSA tools are CLUSTALW [99], T-COFFEE [100], MAFFT [101], PRALINE

[102], MUSCLE [103], and DIALIGN-T [104]. This dissertation uses CLUSTALW

and MUSCLE for building MSAs as described in the following section. The

Figure 2.5: Working of PSI-BLAST [2, 98].

 33

 34

multiple sequence alignment of the MCP domain against the NR database is

shown in Figure 2.6.

2.3.1 CLUSTALW and MUSCLE

CLUSTALW is a popular multiple sequence alignment program available since

1988, where W represents the weights allocated to the sequences. CLUSTALW

first performs pair-wise alignments of the sequences. Then the phylogenetic tree

is built based on the alignment scores of genetic distance between the

sequences. Finally dynamic programming is used to align the sequences

sequentially [99]. This implies most closely related sequences are aligned first

and other sequences are added to this alignment.

MUSCLE has three stages: draft progressive, improved progressive, and

refinement. At each stage a MSA is generated and improved in the succeeding

stage. In stage one, a draft MSA is generated first from the similarity measure

using the k-mer counting or global alignments. The triangular distance matrix is

built from the pairwise similarities and a tree is constructed from the matrix. An

alignment is built by following the tree to the root. In stage two, a similarity

measure is computed using the fractional identity computed in the previous

multiple alignments. A tree is constructed using a Kimura distance matrix

(defined below) and this tree is compared with the previous one. Stage two

Figure 2.6. Multiple sequence alignment of MCP domain against NR database.

 35

iterates until the tree converges when a new progressive alignment is built. In

stage three, the multiple alignment is further refined and the process iterates a

user specified number of times unless it converges.

Kimura distance: This is a rough-and-ready distance formula for

approximating PAM distance by simply measuring the fraction of amino

acids, p, that differs between two sequences and computing the distance

as [115,116]

D e= log (1 - p - 0.2 p)2

MUSCLE is used because of its speed and accuracy; MUSCLE is as accurate as

CLUSTALW [99] and takes two to three orders of magnitude less time than

CLUSTALW [103]. On the other hand CLUSTALW is also used in this

dissertation as some of the secondary structure prediction tools take the

alignment only from the CLUSTALW program.

2.4 Profile Hidden Markov Models and Protein Domain Identification

A multiple sequence alignment of homologous sequences is generated using a

Hidden Markov Model (HMM) considering different possible combinations of

matches, mismatches, and gaps. A profile HMM represents a multiple sequence

alignment profile. The profile HMMs are used for gene finding, sequence

 36

 37

composition and pattern analysis, phylogenetic analysis, and protein secondary

structure prediction [36]. Sequence Alignment and Modeling Software System

(SAM) [37, 38] and HMMER are commonly used HMM tools. HMMER operations

rely on accurate construction of the profile HMMs. These HMMs are applied to

protein sequence databases for homology determinations used for extending the

protein families that are used for finding functional annotations of query

sequence. HMMER functions are based upon a profile HMM architecture which

is constructed using a plan-7 model [39]. The plan-7 architecture is constructed

using the Viterbi algorithm [37, 39]. The HMMER tool package is used to search

the protein sequences against the protein domain databases of HMM models

and identifies the protein domains in the query protein sequence [36].

2.4.1 HMMER Suite

The HMMER package is widely used for the detection of protein sequence

homology, functional annotation, and protein family classification. It uses profile

Hidden Markov Model (HMM) methods for sensitive database searches. Multiple

sequence alignments are used as search queries to build statistical models for

database searches. The HMMER package has different programs for use [28].

• Hmmbuild: builds profile HMMs using multiple sequence alignments

• Hmmcalibrate: calculates accurate expectation values for sensitive

database searches

 38

• Hmmsearch: searches for new homologies using the profile HMMs

• Hmmpfam: identifies protein domains

• Hmmalign: aligns multiple sequences to an existing model

• Hmmindex: indexes the HMM database

• Hmmfetch: extracts a model from HMM database

• Hmmconvert: converts file formats

• Hmmemit: emits sequences from the HMM database

Hmmpfam is used for detecting known domains in a query sequence by

searching against the library of profile HMMs such as the Pfam and SMART

databases. The input to the HMMER tool is the file with the query sequence or a

batch file with multiple sequences, which is searched against the database of

HMMs. Query sequences are searched one at a time and each search is

independent of the other. Thus, HMMER searches can be easily made

concurrent by exploiting embarrassing parallelism similar to BLAST searches.

Figure 2.7 shows the working of the HMMER programs [105].

2.4.2 Domain Identification Tools

Different domain resources such as Interpro [62], PROSITE [63], Pfam [64],

PRINTS [65], ProDom [66], SMART [34], and CDD [67] are available [58]. Many

Figure 2.7: Working of HMMER tool [105].

 39

 40

techniques and algorithms are proposed for protein domain identification and

discovery; this dissertation surveys them. DOMAINATION, a web-based tool,

recognizes domain insertions and permutations [29]. DOMAINATION uses PSI-

BLAST along with methods to cut the query sequence into domains. Once the

query sequence is cut into domains, PSI-BLAST is run on each domain to

generate a Multiple Sequence Alignment (MSA) and the results from PSI-BLAST

are then used for further database searches. The process is repeated until no

more new sequences are found by PSI-BLAST or domain cutting finishes.

MyHits is an interactive web server with resources for protein annotations and

domain identification [30]. There are two different types of MyHits users. One is

a guest user who can access searches only for publicly available databases and

another is a requested user who has access to both private and public

databases. MyHits includes standard bioinformatics tools for use along with

protein motif databases. These databases contain pre-computed lists of matches

between the sequences and motif databases [30].

THOR is another web-based tool for domain discovery [31]. THOR compares the

HSPs (High Scoring Pairs) generated by all significant hmmsearch searches of

the HMMER tool. New alignments and HMMs are built using hmmalign,

hmmbuild, and hmmcalibrate. This iterative procedure is repeated until no new

entries are added to the alignment to generate a final alignment, which is used

for domain discovery [31].

 41

SMART (Simple Modular Architecture Research Tool) [32] is another web-based

tool for protein domain identification and analysis of domain architectures with an

emphasis on eukaryotic mobile and signal transduction domains. Later SMART

included extracellular GPS and PSI domains, intracellular signaling domains, and

splicing factor domains with all the members of a domain family having complete

taxonomic information. SMART uses HMMER2 to search their HMMs [32, 33].

Lachlan et al [35] used the HMMER tool to search the Pfam database. They

included the knowledge of the taxonomic distribution of protein domains for

searching the Pfam database to enhance protein domain recognition, which was

validated using PSI-BLAST. They found 4447 new instances of Pfam domains in

the SP-TREMBL database by including the taxonomic distribution [34].

DOMPRO employs machine learning in the form of recursive neural networks for

domain identification [35]. The neural networks are a combination of profile

derived from evolutionary information using PSI-BLAST predicted secondary

structures and predicted relative solvent accessibility in a 1D-recursive neural

network.

These are commonly used tools and algorithms for protein domain identification.

Various algorithmic and architectural improvements for the BLAST and HMMER

tools are described in section 2.6.

 42

2.5 Secondary Protein Structure Predictions

Secondary structure predictions help in deriving protein structures and functions.

The secondary structure prediction applications assist in classifying proteins,

separating domains, and identifying functional motifs [106]. The secondary

structure predictions can be particularly helpful in determining tertiary structures

via fold recognition methods [107, 108]. New concepts and approaches are

proposed for secondary structure predictions and improvements. Some of the

popular approaches that claimed to have higher accuracy are the combination of

neural networks and the position-specific scoring matrix generated from PSI-

BLAST, a support vector machines approach, and a simple statistical model

approach [106].

Various tools used for secondary structure predictions are PSIPRED [109], Sspro

[110], PROF [111], Jpred2 [112], PHD [113], and SVMpsi [107]. According to

Burkhard Rost [108] 88% is the limit of prediction accuracy; according to his

review PROF and PSIPRED are the two tools best attaining 77% and 76.6% of

accuracy. The SVMpsi claims to have attained 78.5% accuracy, the highest

reported.

The prediction method in PSIPRED is divided into three stages. In the first stage

PSI-BLAST is used to build profiles using the custom sequence database instead

of the nr database. In the second stage a neural network architecture is used to

 43

build the initial secondary structures. Finally the predicted structures are filtered

in the third stage to produce accurate secondary structures. The new release of

PSIPRED2 achieved 78% accuracy on average.

VISSA (Visualization of Secondary Structure elements of Improving multiple

Alignments) provides a good color-oriented visualization of predicted secondary

structures to check for the consistency between multiple sequence alignment

features and the secondary structures [114]. The VISSA technique consists of

data processing and visualization. In data processing CLUSTALW is used for

generating the MSAs and the secondary structures are predicted for each

sequence using PSIPRED. An XML file is generated with the alignments,

predicted secondary structures, metadata, and confidence values. This

dissertation uses PSIPRED and VISSA [114] for secondary structure predictions

and visualization to verify the new domain models generated by the automated

tool chains that are described in the third chapter.

All the above sections describe the background relating to the problem

addressed in the dissertation. The next few sections describe the algorithmic and

architectural advancements to reduce the computation time.

 44

2.6 Algorithmic and Architectural Accelerators of BLAST and HMMER

Different algorithmic and architectural approaches were used to speedup the

BLAST and HMMER tools; these are described in the following sections. Three

levels of parallelism exist for large batch BLAST processing: fine grained,

medium grained, and coarse grained. In fine-grained parallelism, the

comparisons of alignments are done in parallel. One input query sequence is

aligned with one target sequence of the database, and the alignments of the

comparison are done concurrently. In medium grained parallelism the database

is partitioned into fragments, and one input query sequence is aligned with

multiple target sequences of each database fragment in parallel. In coarse-

grained parallelism, the database is replicated and multiple input query

sequences are independently processed using this replicated database [19,20].

The nucleotide and protein sequences in various databases are growing at an

exponential rate [26], and doubling their size every six months [40], but according

to Moore’s law [27] the number of transistors on a chip double every 18 months.

Processor performance improvements are not keeping up with the growth of

sequence databases. This led to porting of the BLAST and HMMER algorithms

onto supercomputers, clusters of computers, shared memory architectures, and

also network of workstations. Parallel virtual machine (PVM) libraries [19] along

with message passing interface (MPI) [23] libraries and Linda [19, 20] were used

to speed up both BLAST and HMM searches.

 45

2.6.1 Algorithmic Speedups

The past decade, many parallel approaches of BLAST were developed such as

TurboBLAST [21], Hyper-BLAST [22], mpiBLAST [23], BLAST services on

OBIGrid [25], and ScalaBLAST [26]. There are advantages and limitations with

each of these different parallel BLAST algorithms. NCBI has developed their own

multithreaded version of BLAST on shared-memory multiprocessor architectures

[21]. This multithreaded version does not scale up very well because of the

bandwidth limitations of the number of processors on a bus in shared-memory

multiprocessor. TurboBLAST addresses the problem of multithreaded BLAST by

coordinating the use of multiple copies of serial BLAST applications.

TurboBLAST uses networked clusters of heterogeneous personal computers or

workstations for multiple copies of serial BLAST to provide results similar to NCBI

BLAST. TurboBLAST is also portable to parallel supercomputers and worldwide

computing grids [21]. The developers of TurboBLAST claim a speedup of 16X

with 11 nodes and a speedup of 14X on 8 nodes for two different data sets [21].

On the other hand Hyper-BLAST claims to overcome the limitations of inter-node

parallelism by logically partitioning the database, proper initiation, and the

coordination of communication protocols of BLAST used on the remote node.

The developers of Hyper-BLAST claim to achieve a speedup of 12X on a 2-way

8-node cluster [22].

 46

Since BLAST is both computationally intensive and embarrassingly parallel for

independent BLAST sequence searches, MPI is used by mpiBLAST to parallelize

BLAST [23]. In mpiBLAST the database is divided into fragments. Each node

searches a smaller portion of the database, as the communication demands are

not heavy. This database segmentation reduces the overhead of disk I/O and

intercommunication between nodes achieving good speedups [23]. The authors

of mpiBLAST [23] claim achieving near linear speedups of BLAST in most cases

and super-linear speedups in low memory cases for hundreds of nodes. The

pioBLAST is an optimized version of mpiBLAST, which allows flexible database

partitioning using caching techniques, enabling parallel I/O on shared files and

performing scalable result processing protocols [24].

 High-throughput GRIDBLAST services are provided by OBIGrid [25]. The

GRIDBLAST system consists of a query splitter, job dispatcher, task manager,

results collector, and formatter. It uses servers and heterogeneous remote

worker nodes, with different BLAST implementations and job schedulers for

massive batch processing.

The parallel approaches described above are scalable from tens to hundreds of

nodes but cannot handle thousands of nodes [26]. Hence the developers of a

new parallel approach called ScalaBLAST [26] claims it scales linearly to

thousands of processors on both distributed memory and shared memory

architectures. ScalaBLAST adopted the features of previously implemented

 47

parallel BLAST algorithms such as distributing the target databases across

available memory, multi-level parallelism, parallel I/O, and latency hiding

techniques through data pre-fetching, and effective task scheduling, for huge

batch processing inputs [26].

2.6.2 Architectural Speedups

To speed up sequence analysis and protein domain identification, different types

of computer architectures and custom-built hardware architectures are used. This

dissertation targets job level parallelism for PSI-BLAST. Since there is no

dependency between two PSI-BLAST sequence searches, and cluster

computing is a cost effective solution to speedup such applications [41].

Supercomputers such as Blue Gene/L are needed for applications that require

millions of BLAST searches per day. A Blue Gene/L system comprised of 4096

nodes with dual 700 MHz PowerPC 440d processors is capable of performing 2

million BLAST searches a day against the nr (non-redundant) database that had

2.5 million-protein sequences at that time, achieving good speedups and

efficiency [42]. BLAST searches are memory, bandwidth, and I/O intensive

programs [43, 44]. On shared memory processor systems, BLAST uses threads

to achieve parallelism [43]. In shared memory processor architectures bus

bandwidth can be a problem if all the processors share the same memory bus.

Specialized hardware architectures used to speedup BLAST include Processor

 48

In Memory (PIM) [44], and Field Programmable Gate Arrays (FPGAs) [45, 121,

122, 123].

Both coarse-grained and fine-grained parallelism is exploited to design

specialized hardware architectures to accelerate HMMER algorithms. HMMER is

a computationally intensive algorithm, so higher the processor speed the faster

the execution [46]. Hyper-threading and load balancing play significant roles in

increasing speedups of HMMER [46]. JackHMMER exploits the coarse-grained

parallelism to accelerate the profile-HMM searches [47]. JackHMMER [47] is a

version of HMMER designed to run on an Intel IXP 2850 network processor that

consists of heterogeneous multi-core processors. It uses a high degree of thread

level parallelism on network processors, which outperforms the hyper-threaded

HMMER version on Pentium 4. ClawHMMER, a streaming algorithm written in

the Brook language, is a version of HMMER designed to run on graphics

processors outperforms CPU implementations by many folds shown in table 2 of

the paper [48]. FPGAs are used to design an accelerator for HMM search that

exploits both coarse-grained and fine-grained parallelism [49]. FPGA-based

hardware accelerator of HMM search achieved 100-fold speedup over the

software HMM search implementation [49]. Opteron processors are also used to

accelerate HMMER searches with minimally invasive recoding, and the authors

claim to achieve better performances than Intel architectures [50]. This

dissertation will take advantage of available accelerated algorithms and

architectures and use them to accelerate our automated tool chain for protein

 49

domain modeling. The next chapter describes the automated tool chain design

for addressing the protein domain-modeling problem.

 50

Chapter Three

Automated Tool Chain Design

There are three different aspects of protein domain modeling: domain

identification, domain verification, and domain discovery. Hence for the domain

identification process we used PSI-BLAST to get all the immediate relatives of

the query unknown region, and then performed a HMMER search on the

resultant similarity matched sequences. The HMMER tool identified the domain

models for some immediate relatives of the query unknown regions. This shows

the domain models in Pfam database are not sensitive enough to consider all

plausible relatives of an unknown region. Hence tools currently in use such as

HMMER are not sensitive enough by themselves to identify all plausible domains

for a specific unknown region from the given Pfam domain models.

Thus the combination of the PSI-BLAST and HMMER tools are explored to

search deeper and get all probable relatives, even more distant ones, of the

query unknown region and check whether HMMER identifies any domains for

these sequences. For domain verification process one has to perform exhaustive

PSI-BLAST searches on every matching unknown region till no new matching

proteins are acquired. The exhaustive PSI-blast process is an attempt to define

the entire space of related sequences in the nr database, which is tedious and

time consuming. Hence we took ten matched peptide sequences from the PSI-

BLAST resultant file, picked five from the middle and five from the bottom of the

 51

resultant proteins. These ten sequences are the matching regions of the resultant

proteins that are similar to our query unknown region but not the entire protein

sequence. Now PSI-BLAST is run on these 10 sequences individually that will

result in most of the related sequence space. HMMER tool is used to identify the

domains for these resultant proteins from the PSI-BLAST searches and check

any domains existed in these similarity regions. Again some domains were

identified in these distant relatives that were missed before. Thus concluding the

domain models in the Pfam database are not good enough to identify domains

for these distant relatives. By domain verification process, we make sure that no

domain knowledge is currently present for the query unknown regions for which

no domains are found. These peptide regions are used for discovering new

protein domain models.

This led to the development of a tool chain that is sensitive enough to find all the

domains that are likely for a protein, also considering related proteins to that

specific query protein. PSI-BLAST is a sensitive searching tool that identifies all

probable related proteins or relatives that matched the specific query protein.

Then hmmpfam is run on all the related proteins from PSI-BLAST to identify the

domains. This process is performed manually, which takes a considerable

amount of time per query sequence, and currently there are no publicly available

tools to automate this process. This led to the development of the automated tool

chains that combine the PSI-BLAST and HMMER tools for domain identification

and domain verification that are described in the sections 3.1 and 3.2.

 52

Once the domains of all proteins of a specific genome are identified using

hmmpfam search using the Pfam database by the automated tool chain. There

are many peptide regions in these proteins for which no domains are identified

but have potential regions for new domains. This resulted in the development of

a new automated tool chain that can be used for domain discovery. We retrieve

all the peptide regions for which no domains are identified based on the existing

domain model databases using the domain identification and domain verification

tool chains. This new automated tool chain uses a combination of the MUSCLE

and HMMER tools to discover new domain models. First all the sequence

similarity regions resulting from the PSI-BLAST search are retrieved. Then the

MUSCLE tool is used to generate the multiple sequence alignments. The

HMMER tools are used to generate the new domain models and are also used

for verification of these newly generated models. The automated tool chain used

for domain discovery is explained in the section 3.3.

3.1 Domain Identification Automated Tool chain (DIAT)

This section describes different tools used in this automated tool chain along with

improvements implemented to reduce the computation time. Two different tools

of the NCBI BLAST suite, one tool of the HMMER package, and resultant data

file manipulation tools are used to design this automated tool chain. First, all the

 53

unknown regions for which there are no domains identified by HMMER tool for a

specific genome are extracted. Shewanella and E.coli genomes were used as

the test bench genomes for this dissertation. All the unknown regions that do not

have any domains are extracted from the MIST database. Only the unknown

regions greater than 80 AA are considered for further analysis, as the smaller

domains averages around 100 AA in size. For these peptides, the BLAST input

generator tool (as shown in Figure 3.1) generates a fasta format file known as

PSIIN as shown in Figure 3.2. These fasta files are inputs to the automated tool

chain. Now the blastpgp tool is used to get all the closest relatives of the query

unknown region from the protein database as shown in Figure 3.3. The various

parameters used for running the blastpgp tool are described below.

The database used for searching is the nr (non-redundant) protein database

(Figure 3.4). Four PSI-BLAST iterations are sufficient for sensitive homology

searching, and any more iterations may lead to profile wander [29, 52]. The

output file can be generated in different file formats such as text, XML, and

ASCII. Two parsing tools are written one for parsing the tab delimited BLAST

output and another for XML BLAST output.

The PSI-BLAST tool generates an output file known as PSIOUT as shown in

Figure 3.5. PSIOUT is parsed using the BLAST results parsing tool and all the

proteins that pass the threshold of 0.001 are extracted to reduce the false

Fasta format
generator

MiST Database Peptide sequences

BLAST input file

Figure 3.1: BLAST input generator

>24371603_342-457
LTGENLEMTEEKGYSVYRISAKTGLGVDELKQHLKSLMGYQSNLEGGFIARRR
HLEALEIAASHLQLGKEQLEVYLAGELLAEELRMAQLALSEITGRFTSDDLLGKIF
SSFCIGK

Figure 3.2: Input query (unknown region) to PSI-BLAST.

 54

Run blastpgp

BLAST output file

BLAST input file

BLAST Tool

HMMer output file

HMMER input file

Run hmmpfam

HMMER Tool

Figure 3.3: The core modules of the DIAT

 55

Figure 3.4: Screenshot of section of nr protein database

 56

Figure 3.5: Tab-delimited PSI-BLAST output file (PSIOUT)

 57

 58

positives [2, 29]. The resulting PROTOUT file from the parsing tool consists of

the protein identification number in the GenBank Identification number along with

the starting and ending AA sequence numbers representing the region of the

similarity match with the query sequence. The entries in the PROTOUT file are

sorted in assending order based on e-value.

Based on prior knowledge and the design of the automated tool chain, a

database was created to save computation time. A reference database known as

refDB with two tables, refProteins and refDomains, is created. The refProteins

table consists of the ID and name for each new protein resulting from PSI-BLAST

searches. The refDomains table consists of all the domain information resulted

from hmmpfam searches, such as domain name, the starting and ending AA

sequence numbers representing the domain region and protein name that

resulted in the above domain. These two tables are used as a database to house

the information of every new protein hit from the DIAT tool chain.

Once the results from PSI-BLAST are obtained, the Hmmer input generator tool

checks the protein IDs against the refDB database to see whether there are any

hits in the database as shown in Figure 3.6. Only the new protein hits that are not

present in refProteins table are used to generate the input file for the HMMER

tool. For the proteins that are found in the refDB, domain information is retrieved

from the refDomains table for further analysis.

Repeated
proteins

refProteins and
refDomains

PROTOUT

Extract domain
information from
refDB

Update refProteins
table and generate
HMMer input file

No

Yes

HMMIN

refDB

Figure 3.6: HMMER input generator

 59

 60

Next db2fasta is used to extract the fasta sequences for all the proteins from the

nr database and populate a fasta file known as HMMIN by the Hmmer input

generator tool. This file is used as the input file for the HMMER tool. The

hmmpfam of HMMER tool is used for the domain identification, which outputs all

the domains possible for the proteins in HMMIN using the Pfam database shown

in Figure 3.3. The hmmpfam tool evaluates whether a match is significant or not

and outputs the domains with significant matches using the Pfam database

(Figure 3.7).

The hmmpfam output is a huge text file known as HMMOUT with all the proteins

and their significant domains as shown in Figure 3.8. The HMMER results parser

tool is used to parse HMMOUT and output the results into a file known as

DOMOUT1 with protein name, domain names, and the starting and ending AA

sequence numbers representing the domain region. The data from the

DOMOUT1 file is used to populate the refDomains table of the refDB database.

Once the results from the HMMER tool are generated, the new domain

information for the new protein hits along with the domain information of the

repeated proteins from the refDomains table is used to generate the DOMOUT2

file. DOMOUT2 file consists of the entire domain information for all the proteins in

the PROTOUT file for the respective query unknown region. As the number of

proteins in the refDB database increases, the chances of finding protein hits from

the database tables increases, thus reducing the computational time drastically

by eliminating the need for HMMER reevaluations.

Figure 3.7: Screenshot of section of Pfam Database

 61

Figure 3.8:Typical HMMER output file (HMMOUT)

 62

 63

Finally, the final results parser tool compares the outputs generated by the PSI-

BLAST results parser tool (PROTOUT) and the HMMER results parser tool

(DOMOUT2) to check whether there are any domains present in the similarity

regions of the matching proteins and populates the FINALOUT file. The

FINALOUT consists of the entire protein and domain information. If the tool chain

identifies no domains, FINALOUT reflects this result. The flow diagram of the

DIAT is shown in Figure 3.9. Once all FINALOUT files of all the unknown regions

are generated, these files are parsed and the domains identified for the unknown

regions of the entire genome are used to populate the PepDomDB database that

is describe in the section 3.4.

3.2 Domain Verification Automated Tool chain (DVAT)

The same tool set used for DIAT is used in DVAT but is slightly modified for

speculative domain discovery and this process is called domain verification. Two

different tools of the NCBI BLAST suite, one tool of the HMMER package, and

data file manipulation tools are used to design this automated tool chain. The

input to DVAT is all the unknown regions for which no domains are identified by

DIAT along with the PSIOUT files from DIAT of the respective query unknown

region. In DIAT only the close relatives for the specific query unknown region are

found but in DVAT all the possible relatives for the specific unknown region are

found by repeating the PSI-BLAST on various protein hits obtained from the PSI-

BLAST results of the DIAT tool chain.

BLAST input
Generator

PROTOUT

BLAST
Tool

BLAST
results
parser

PSIIN

HMMER
input
Generator

HMMER
Tool

HMMER
results
parser

DOMOUT1

HMMIN

refProteins
and

refDomains

refDB

FINALOUT

Final
results
generator

DOMOUT2

DOMOUT
generator

refDB
Updater

Figure 3.9: The Domain Identification Automated Tool chain flow

 64

 65

The flow diagram of DVAT is shown in Figure 3.10. The DVAT tool chain

incorporates the DIAT approaches to save time. First ten proteins are picked

from the PSI-BLAST resultant file of a specific unknown region. Five of these ten

proteins are picked from the middle of the PROTOUT file and five from the end of

the PROTOUT file. Then the similarity matching AA regions to the query

unknown region are extracted for all these ten proteins from the fasta sequence

file generated by the db2fasta tool from the nr database. Finally these ten

matching sequence regions are used as the input to the PSI-BLAST searches

instead of the entire fasta sequence of these similar proteins.

PSI-BLAST is run on all these ten matching sequence regions for four iterations.

The PSIOUT files from the PSI-BLAST search are parsed and PROTOUT files

are generated. The proteins from the PROTOUT files are first searched against

the refDB database to check the repeated proteins. Only new proteins hits are

used to generate the fasta sequence file that is used as the input to the HMMER

tool. For all the repeated proteins, domain information is retrieved from the

refDomains table of the refDB and the DOMOUT1 file is populated for further

analysis. Next hmmpfam is run on all the new protein hits for domain verification,

and the domain regions are compared to the matching peptide sequences to see

whether there are any domains present in these regions similar to the DIAT

results. Also the refDB is updated from the results generated from the HMMER

process similar as in DIAT tool chain. A careful check is performed to match the

results from hmmpfam to the correct peptide sequences, as there are ten

DIAT

PSIIN 1
PSIIN 2

.

.

.
PSIIN N

FINALOUT1
FINALOUT 2

.

.

.
FINALOUT N

FINAL
results

generator

PROTOUT

DVAT
input

generator

Figure 3.10: The Domain Verification Automated Tool chain flow

 66

 67

matching sequence regions here instead of one unknown region as in the DIAT

tool for a query sequence. This process is repeated on all unknown regions of

the input genome data file for which no domains were identified by the DIAT

process.

If any domains are identified for either of these 10 matching peptide sequences,

the DVAT tool chain will disregard this unknown region for speculative domain

discovery. This means there are domains for the distant relative of the specific

query sequence, and hence these unknown regions are not used for new domain

discovery modeling. The rest of the unknown regions for which no domains are

identified in any of the ten matching regions are the templates for speculative

domains; these are used for the domain discovery process as described in the

following section.

3.3 Domain Discovery Automated Tool chain (DDAT)

The domain discovery automated tool chain uses a different set of tools when

compared to DIAT and DVAT for domain discovery process. We use the

MUSCLE and HMMER tools along with resultant data file manipulation tools for

domain discovery. The core modules used for building DDAT are shown in

Figure 3.11. All sequences for which no domains are found in either the domain

identification or domain verification processes, are used as inputs to the DDAT

HMMER Tool1

Run muscle

MSAOUT

MSAIN

MUSCLE Tool

HMMOUT

MSAOUT

Run hmmbuild

HMMOUT

Run
hmmcalibarate

HMMER Tool2

Run
hmmsearch

PROTOUT1

HMMOUT

Figure 3.11: The core modules of the Domain Discovery Automated Tool chain

 68

 69

tool chain. First the MSA (Multiple Sequence Alignment) input generator retrieves

all the resultant protein matches from the PSI-BLAST search for the specific

query sequence. The input to this tool is the PROTOUT file generated by the

DIAT tool chain. Then retrieving the amino acids sequence of the matched

regions of the resultant similar proteins generates the MSAIN file. The flow

diagram of the MSA input generator is shown in Figure 3.12.

As shown in Figure 3.11 the MSAIN file is fed to the MUSCLE tool for generating

the multiple sequence alignments. The input to MUSCLE is either the amino acid

or nucleotide sequences. The multiple sequence alignment file generated by

MUSCLE is known as MSAOUT as shown in Figure 3.11. The MSAOUT file is

inputted to the HMMER tool and hmmbuild is run on the multiple sequence

alignments to build a HMM. This HMM is calibrated using hmmcalibrate. The

HMM file is known as HMMOUT. HMMOUT is then fed into hmmsearch to search

against the nr database for matching proteins. The resultant file from hmmsearch

has proteins and matching regions similar to the PROTOUT file from the DIAT

tool chain, hence it is called PROTOUT1 as shown in Figure 3.11.

A comparison of the protein results from hmmsearch and the proteins used to

generate the MSAIN file is performed to check whether there are any additional

proteins resulted from the hmmsearch. If no new proteins are found this indicates

that the HMM model generated by the DDAT tool chain is a potential new domain

model. If new proteins resulted from the hmmsearch are not in MSAIN proteins,

MSA Input
Generator

MSAIN

PROTOUT

Figure 3.12: The multiple sequence alignment (MSA) input generator

 70

 71

this will result in further analysis of these new proteins. These additional proteins

are then fed into HMMER tool and the hmmpfam along with the refDB is used to

get the domains for these additional proteins. Then all the domain information is

retrieved to build a DOMOUT2 file either by running hmmpfam on the new

proteins or checking the refDB for existing proteins as shown in Figure 3.13. If

the matching regions of these proteins correspond to an already existing domain

model, this will imply that these are poor domain models in the Pfam database

and need to be improved. And if the matching regions of these proteins do not

result in any known domains, this implies that this HMM is a potential new

domain model.

The Figure 3.13 shows the flow of the DDAT tool chain. The FINALOUT resulted

from the tool chain will reflect whether the HMM model generated by the DDAT

tool chain is either a new domain model or a poor existing model. These models

are further analyzed by checking whether there are any secondary structures for

these domain models. This output of the tool chain will give biologist a starting

point to work on new domains rather than wasting time exploring the huge

sequence space.

MSA input
Generator

HMMOUT

MSAIN

HMMER
Tool2

PROTOUT1

MUSCLE
Tool

HMMER
Tool1

DOMOUT2

DOMOUT
generator

HMMER Tool

HMMER
results parser

DOMOUT1
refProteins

and
refDomains

refDB

refDB
Updater

HMMER
Input
Generator

PROTOUT
resulted in
additional

proteins than
MSAIN proteins

FINALOUT

Final results
generator

YES
NO

Figure 3.13: The Domain Discovery Automated Tool chain flow

 72

 73

3.4 PepDomDB Database

The PepDomDB database consists of the unknown regions for which domains

were identified in the DIAT and DVAT tool chains. The database consists of the

peptide id along with sequence information in PepInfo table. Domain information

in DomInfo table consists of the respective peptide id to which this domain

belongs, along with the domain name and domain sequence from and domain

sequence to. This PepDomDB database can be used to further reduce the total

computation time with a modified approach as follows. Whenever a new peptide

sequence is sequenced. If the researcher wants to know the possible domains.

One can search against the PepDomDB if the sequence matches 100 percent,

then the domain information can be retrieved from the database. The

computation time to retrieve information from the PepDomDB will be much

smaller than the computation time required to run the DIAT and DVAT process

on the peptide sequence. This PepDomDB database will be useful when it is

made publicly available.

3.5 Domain Model Verification

The new domain models of Shewanella and E.coli genomes resulted from the

unknown regions that are greater than 80 amino acids long and are between two

known domains are used for further analysis. The secondary structures were

 74

developed for these new domain models using VISSA [114] to check for the

alpha helixes and beta sheets. Further these sequences were uploaded to

PHYRE [117] (Protein Homology/analogY Recognition Engine) to check for the

resemblance with the existing known domains or protein structures.

The next chapter describes the protein domain modeling results obtained by

using Shewanella and E.coli genomes.

 75

Chapter Four

New Domain Model Results

In this chapter we discuss the results obtained from the three phases of the

genome-wide protein domain exploration using automated tool chains.

Shewanella and E.coli genome sequences are used and the domain models for

these two genomes are constructed. Figure 4.1 and 4.2 shows the different

length distributions of the unknown sequences obtained from the Shewanella and

E.coli genomes respectively. The automated tool chain generated new domain

models for both the Shewanella and E.coli genomes, proving the robustness of

the design.

The input sequences for the automated tool are unknown regions that pass the

following filters:

a. The unknown regions are greater than or equal to 80 amino acids. This

sequence length is small enough to identify smaller domains and long

enough to avoid noise.

b. The unknown regions should not have any known domains, or coiled coil

regions, or segments of low compositional complexity to reduce the

computational time.

c. The unknown regions are extracted from the start of the protein sequence

to the start of a domain, between domains, or between the end of a

domain and to the end of the protein sequence as shown in the Figure 1.5.

Sequence lengths distribution of Shewanella genome

0

1000

2000

3000

4000

5000

6000
1

10
7

21
3

31
9

42
5

53
1

63
7

74
3

84
9

95
5

10
61

11
67

12
73

13
79

14
85

15
91

16
97

18
03

19
09

20
15

21
21

22
27

23
33

24
39

25
45

26
51

27
57

28
63

Number of sequences

A
A

 s
eq

ue
nc

e
Le

ng
th

Figure 4.1: Sequence lengths distribution of Shewanella genome

 76

Sequence lengths distributions of Ecoli

0

200

400

600

800

1000

1200

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

Number of sequences

A
A

 s
eq

ue
nc

e
le

ng
th

Figure 4.2: Sequence lengths distribution of E.coli genome

 77

 78

These sequences are then fed into the automated tool chains and new domain

models are constructed at the end. The results obtained by individual phases of

the domain exploration tool chain are discussed in the following sections.

4.1 Test-bench Files

Two test-bench organisms are used as inputs for the automated tool chains. Both

Shewanella and E.coli are metabolically versatile bacteria [118, 119]. Shewanella

has the ability to convert uranium dissolved in contaminated ground water to a

non-soluble bi-product, preventing uranium contamination [119]. This ability of

Shewanella makes it an important factor in cleaning up uranium when nuclear

weapons are manufactured. Hence lot of effort is put into understanding

Shewanella organism. The Shewanella genome has two input files, the first test

bench has a total of 2867 unknown regions that passed the filters, denoted as

the GENWIDEshew file used for protein domain modeling. The second test

bench of 100 unknown regions of Shewanella genome for which the results were

obtained manually, denoted as the MANGEN file. MANGEN is used to

authenticate the working of the automated tool chains.

E.coli is able to grow in the presence and absence of oxygen thus making this

organism important. E.coli is present in the lower intestines of mammals. E.coli

assists with waste processing, vitamin K production and food absorption. E.coli

 79

also causes diseases such as urinary tract infection, meningitis and pneumonia.

Hence E.coli is one of the extensively studied organisms. There are 235

unknown regions that passed the filters for the E.coli genome denoted as the

GENWIDEecoli used for protein domain modeling. Thus these two bacteria’s

make excellent test bench organisms.

4.2 DIAT Results

DIAT was run on 2867 unknown regions of the Shewanella genome and 235

unknown regions from the E.coli genome. E.coli is one of the most studied

organisms and was sequenced much earlier than Shewanella; hence it resulted

in fewer sequences with unknown domain regions than Shewanella even though

both have around 5000 proteins in their genome. For the Shewanella genome

PSI-BLAST was run for four iterations on the 2867 sequences, resulting in

576,010 total protein matches, out of which only 342,233 were unique proteins.

This means that some proteins were found in more than one of the PSI-BLAST

result files. These unique proteins are used to build the refProteins table of the

refDB. Only these unique proteins are inputted into the HMMER tool. Hmmpfam

is run on these unique proteins with all the significant domain results documented

in the refDomains table of the refDB database. A total of 798,914 domains were

identified for these 342,233 unique proteins, averaging a little more than 2

domains per protein.

 80

The PSI-BLAST searches for the input sequences for E.coli genome resulted in a

total of 61,921 protein matchs out of which 47,498 were unique proteins. Out of

these 47,498 unique proteins there was no information in the refDB for only

10,436 proteins, hence only these new proteins were inputted to HMMER tool to

get their domain information. Having the refDB database saved almost four fifths

of the search time. These 10,436 proteins resulted in 32,729 domains, averaging

around 3 domains per protein. The new proteins and domain information are

added to the refDB database.

The domain information for all the matching regions of the protein sequences is

retrieved from the refDB database. A check is performed to see whether there

are any sequences for which domains are identified by the DIAT tool chain and

the results are populated in the FINALOUTs. For the Shewanella genome out of

2867 input sequences domains were identified for 1664 sequences by DIAT tool

chain. For the E.coli genome out of 235 input sequences domains were identified

for 171 sequences by DIAT tool chain. The rest of the sequences 1203 for

Shewanella and 64 for E.coli are used as inputs to the DVAT tool chain for

further analysis. Figure 4.3 illustrates the DIAT results flow.

For the 1664 unknown regions of the Shewanella genome, a total of 3295

domains were identified including 1016 unique domains and their distribution is

shown in Figure 4.4.

BLAST
Tool

2867 Shewanella
and

235 E.coli
sequences

Unique
proteins
Generator

refDB
check

Final
results
generator

576,010 and 61,921
proteins for

Shewanella and
E.coli

342,233 and 47,498
unique proteins for

Shewanella and
E.coli

342,233 and 10,436
proteins for

Shewanella and
E.coli

HMMER
Tool

789,914 and 32,729
domains for

Shewanella and
E.coli

Domains were identified
for 1664 and 171

sequences of Shewanella
and E.coli genomes

respectively

Figure 4.3: Domain Identification Automated Tool chain results flow

 81

DIAT domain distribution of Shewanella genome

0

5

10

15

20

25

30

35

40
1 39 77 11
5

15
3

19
1

22
9

26
7

30
5

34
3

38
1

41
9

45
7

49
5

53
3

57
1

60
9

64
7

68
5

72
3

76
1

79
9

83
7

87
5

91
3

95
1

98
9

Domains

Id
en

tif
ie

d
fr

eq
ue

nc
y

Figure 4.4: Resulted DIAT domain distribution of Shewanella genome

 82

 83

For some peptides more than one domain was found. For 171 unknown regions

of the E.coli genome, a total of 420 domains were identified including 248 unique

domains and their distribution is shown in Figure 4.5. For some unknown regions

more than one domain was found.

Tables 4.1 and 4.2 show domains that were identified by DIAT tool chain in

unknown regions of the Shewanella and E.coli genomes respectively. Table 4.1

shows all the domain models that were identified by DIAT tool chain in 20 or

more unknown regions of the Shewanella genome. For E.coli genome top 20

identified domain models were retrieved based on the frequency of occurrence in

unknown regions as shown in Table 4.2. For example from Tables 4.1 and 4.2 it

is clear that the PAS domain models were identified in unknown regions of both

Shewanella and E.coli genomes, hence these domain models need to be

modified so that HMMER identifies these unknown regions. This statistics of the

identified domains will help us with genome wide domain modeling of the

Shewanella and E.coli genomes.

4.3 DVAT Results

All the unknown regions for which no domains are identified in the DIAT tool

chain are used as input sequences for the DVAT tool chain. For the Shewanella

DIAT domain distribution of Ecoli genome

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

Domains

Id
en

tif
ie

d
Fr

eq
ue

nc
y

Figure 4.5: Resulted DIAT domain distribution of E.coli genome

 84

 85

Table 4.1: DIAT domain statistics for Shewanella genome

Domain Name
 Frequency of
occurrence

PD40 20
HisKA 21
TPR_1 31
TPR_2 37
TPR_4 31
TPR_3 24
Sel1 28
SBP_bac_3 20
Fer4 28
PKD 30
Big_2 22
LacI 24
Epimerase 22
Rve 27
HAMP 37
GGDEF 26
PAS_4 32
PAS 36
PAS_3 30
TonB_dep_Rec 30

 86

Table 4.2: DIAT domain statistics for E.coli genome

Domain Name
Frequency of
occurrence

Fil_haemagg 4
Pertactin 4
Big_1 4
TonB_dep_Rec 9
Plug 7
DEAD 4
Helicase_C 10
ResIII 7
HisKA 8
PAS 8
PAS_3 6
PAS_4 10
HAMP 7
GAF 8
HATPase_c 4
GGDEF 7
HisKA_3 4
SMC_N 5
ABC_tran 4
Molydop_binding 5

 87

and E.coli genomes a total of 1203 and 64 unknown regions were submitted to

the DVAT tool chain. The DVAT tool chain is similar to the DIAT tool chain

except now for each query sequence we have ten input sequences as explained

in chapter 3. For query sequences that resulted in ten or less PSI-BLAST protein

matches in DIAT, all the matching protein regions are used as inputs. Hence the

problem size and PSI-BLAST computation time increases for the DVAT tool

chain when compared to the DIAT tool chain. On the other hand, as most of

these input sequences are similar they resulted in many repeated proteins that

reduced the problem size and hmmpfam computation time for the DVAT tool

chain.

For the Shewanella genome, the total number of input sequences for the DVAT

tool chain are 9,770. The PSI-BLAST searches for these query sequences

resulted in a total of 994,960 proteins including only 100,978 unique proteins.

Because 833,932 of the proteins are repeated, the search time for HMMER tool

is significantly reduced for the DVAT tool chain. For the E.coli genome, 734 input

query sequences resulted in 112,431 significant protein matches from PSI-

BLAST searches, including only 14735 unique proteins. This classification of

proteins resulted in saving significant amount of computation time. A database

check is performed to verify how many of these proteins already existed in the

refDB to further save HMMER computation time. For the Shewanella genome out

of 100,978 unique proteins, 75,648 had information in the refDB database, so

hmmpfam was run on only 25,330 proteins.

 88

And for E.coli out of 14,735, hmmpfam was run on only 2264 proteins with the

information for the rest of the proteins retrieved from the refDB database. The

FINALOUT files for all these query sequences were built using the PROTOUT

files and domain information from the updated refDB database. For the

Shewanella and E.coli genomes, out of 1203 and 64 query unknown regions,

domains were identified for 340 and 26 sequences, hence these are not

submitted to the DDAT tool chain. The remaining sequences, 863 from

Shewanella and 38 from E.coli, are potential sequences for domain discovery

that are sent to the DDAT tool chain. Figure 4.6 illustrates the DVAT results flow.

Statistics were taken for Shewanella genome for 340 unknown regions for which

domains were identified in at least one of the ten query sequences used in DVAT

tool chain. A total of 1347 domains were identified, out of which 312 domains

were unique and their distribution is shown in Figure 4.7. A total of 98 domains

were identified for 26 unknown regions of the E.coli genome, out of which 33

domains were unique and their distribution is shown in Figure 4.8. For some

peptides more than one domain was found. Tables 4.3 and 4.4 show domains

that were identified by DVAT tool chain in unknown regions of the Shewanella

and E.coli genomes respectively. From Tables 4.1, 4.2, 4.3, and 4.4 it is clear

some of these domain models in Pfam database are not complete to detect all

unknown regions that match those domains. Hence with the use of DVAT tool

chain Pfam domain models can be modified even considering the distant

relatives. For example ‘rve’ domain from Table 4.3 is identified by DVAT tool

Figure 4.6: Domain Verification Automated Tool chain results flow

BLAST
Tool

9770 Shewanella
and

734 E.coli
sequences

Unique
proteins
Generator

refDB
check

Final
results
generator

994,960 and
112,431 proteins

for Shewanella and
E.coli

100,978 and 14,735
unique proteins for

Shewanella and
E.coli

25,330 and 2264
proteins for

Shewanella and
E.coli

HMMER
Tool

~2M and 331,872
domains for

Shewanella and
E.coli

Domains were
identified for 340 and

26 sequences of
Shewanella and E.coli
genomes respectively

 89

DVAT domain distribution of Shewanella genome

0

5

10

15

20

25

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1

25
3

26
5

27
7

28
9

30
1

Domains

Id
en

tif
ie

d
fr

eq
ue

nc
y

Figure 4.7: Resulted DVAT domain distribution of Shewanella genome

 90

DVAT domain distribution of Ecoli genome

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Domains

Id
ne

tif
ie

d
Fr

eq
ue

nc
y

Figure 4.8: Resulted DVAT domain distribution of E.coli genome

 91

 92

Table 4.3: DVAT domain statistics for Shewanella genome

Domain Name
Frequency of
occurrence

MMR_HSR1 11
AT_hook 15
MTS 10
Methyltransf_12 10
Methyltransf_11 10
rve 257
PAS_3 14
Abhydrolase_1 12
HisKA 10
GAF 11
HAMP 18
PAS 10
PAS_4 14
Involucrin 10
PT 14
ABC_tran 14
Molybdopterin 12
GXGXG 10
DnaJ_CXXCXGXG 11
Cytochrom_C552 12
Helicase_C 20
UPF0020 10
CMAS 10
Radical_SAM 11
YfaZ 10

Table 4.4: DVAT domain statistics for E.coli genome

Domain Name
Frequency of
occurrence

Exonuc_VII_L 7
tRNA_anti 7
DHH 5
CCG 5
DnaG_DnaB_bind 5
Sigma70_r4_2 7
Molydop_binding 12
Molybdopterin 5

 93

chain in 257 different unknown regions that were missed by HMMER search

using this domain model. Thus ‘rve’ domain model need to be revised to identify

these missing sequences.

4.4 DDAT Results

All the unknown regions for which no domains are identified in either the DIAT or

the DVAT tool chains are used as input sequences to the DDAT tool chain. For

the Shewanella and E.coli genomes, a total of 863 and 38 unknown regions were

inputted to the DDAT tool chain. The PSI-BLAST protein matches for these

sequences are retrieved from the PROTOUT files and the matching regions of

these similar proteins are used to construct the multiple sequence alignments.

The multiple sequence alignments are used to build the HMMs. These new

domain models are used to search against the nr database using hmmsearch

and the matching proteins are retrieved from the nr database. A final check is

performed to retrieve known domains as explained in section 3.3. All the

sequences for which no known domains are identified are plausible regions for

new domains.

 For the Shewanella genome DDAT is run on 863 unknown regions. The HMMs

are built and these domain models are used to search against the nr database.

The resulting proteins from the search are matched to the protein list generated

 94

by the DIAT and DVAT tools. The search resulted in 22,690 unique proteins of

these only 16,420 had no information in refDB. For these 16,420 proteins

hmmpfam was run and the results were stored in refDB. For the E.coli genome

DDAT is run on 38 unknown regions. The HMMs are built and searched against

the nr database resulting in 4201 proteins that were not found in PROTOUTs of

the DIAT and DVAT tools, of these proteins only 989 had no information in refDB.

For these 989 proteins hmmpfam was run and the results were stored in refDB.

FINALOUT files are constructed comparing the matching regions of the protein

matches resulted from the hmmsearch and the domains identified for these

regions by hmmpfam. A final check is performed to see whether there are any

known domains in these proteins matching regions. For the Shewanella genome,

13 out of the 863 unknown regions have known domains in the similar protein

regions. None were found for the E.coli genome. So a total of 850 new domain

models were discovered for the Shewanella genome and 38 new domain models

for the E.coli genome. These new domain models will be further investigated

individually and could be added to Pfam database.

Figure 4.9 shows the pictorial representation of the genome-wide protein domain

modeling of Shewanella using the automated tool chains.

 95

DIAT

DVAT

DDAT

2867 1203

13 863 850

Genome wide peptide sequences of
Shewanella

Sequences with no domains
identified in DIAT

New domain models for
Shewanella genome

Sequences with no domains
identified in DVAT

2867

1203 863

Figure 4.9: Automated tool chain flow using Shewanella genome

 96

4.5 Domain Model Verification Results

Using PHYRE [117] search secondary structures of some newly discovered

domain models are retrieved. The new domain models were matched from 100%

to 0% to the existing secondary structures. The domains that matched 100% will

have the properties of the matched domains. The domains with 0% match are

completely new domains for which no knowledge is found in the current

databases. A total of 20 models for Shewanella and 30 models for E.coli were

constructed using PHYRE. Out of these 50 models only 15 models had

estimated precision match greater than 50% with the know domain models or

proteins. This shows the percentage of novel domain models yet to be

discovered is higher than already existing models, which indicates a huge scope

of discovering new domain knowledge. This shows the robustness and efficiency

of the automated tool chain in discovering new knowledge. Figure 4.10 and 4.11

shows secondary structure matches of one Shewanella and one E.coli domain

models generated by PHYRE search.

The next chapter describes the computation times for running the automated

tools, a study of performance metrics for better resource utilization, and some job

distribution techniques.

Figure 4.10: Shewanella domain model with 100% precision with EF-G C-
terminal domain from PHYRE search. The red areas indicate alpha helixes, blue
areas indicate beta sheets, and gray areas indicate coil regions.

 97

Figure 4.11: E.coli domain model with 0% precision with PDZ domain from
PHYRE search. The red areas indicate alpha helixes, blue areas indicate beta
sheets, and gray areas indicate coil regions.

 98

Chapter Five

Computational Results

One has to perform thousands of PSI-BLAST searches, tens of thousands of

HMMER searches, and hundreds of multiple sequence alignments per genome

for domain modeling. There are hundreds of sequenced genomes with millions

yet to be sequenced. Thus scaling and performance evaluation play a major role

in speeding up this process, efficiently using the resources, and managing the

results. This chapter discusses the computation time required to model

Shewanella and E.coli genomes. This chapter also investigates architectural

assessments of different processor architecture such as Opteron, Sparc, and

Xeon, along with multicore and threading assessments. Finally concludes with

the job mapping and distribution algorithms for cluster computing.

 99

)

)2

The characteristics of BLAST and HMMER algorithms are shown in Table 5.1.

The MUSCLE tool space complexity is , and time complexity is

 where L is the typical sequence length and N is the number of

sequences. MUSCLE takes comparatively less time to execute. MUSCLE is the

fastest multiple sequence alignment tool, faster than the most commonly used

CLUSTALW [99]. Most of the computation time is spent for hmmpfam searches

of HMMER tool when compared to any other tool used by the automated tool

chains. Thus this chapter focuses more on characterizing the hmmpfam

searches.

O N L(2 2+

O N NL(4 +

 100

Table: 5.1: BLAST and HMMER suite statistics.

BLAST suite HMMER suite
Algorithms

blastpgp hmmpfam

Computational Complexities
O(MN) where M is length query
sequence,
N is the number of protein sequences
in database

O(QT) where Q is the length of the
query sequence, T is the number of
Domain models. O(mQT) m is
number of proteins

Databases

nr protein database (Jan 2007) Pfam_ls (PFAM21 domain
database)

Database size

~3 GB with around 3 million proteins ~700MB with around 9000 families

Operations
Integer intensive Integer intensive

Multi-threaded
Yes Yes

Output file types
TXT and XML TXT

 101

5.1 Architectural Assessment

The various test bench architectures used to run the PSIBLAST, and HMMER

tools are Sun 1350 MHz SparcV9 dual core processors with 4GB RAM, Dell

3.20GHz Intel(R) Xeon(TM) dual core processors with 4GB RAM, and AMD

2.60GHz Opteron(tm) Y255 dual core processors with 4GB RAM. Various protein

sequences of lengths varying from 100 amino acids to 20,000 amino acids are

used for generating computation times on all these architectures. The

computation times for PSI-BLAST and hmmpfam on these three architectures

are shown in Figures 5.1 and 5.2 respectively.

From the Figures 5.1 and 5.2 it is clear that the Opteron out performed the Xeon

and Sparc, and Xeon had a better performance than Sparc. We had access to

Sun Sparc clusters and Intel Xeon cluster. The choice is obvious we picked a

cluster of Intel Xeon processors for generating the protein domain modeling

results. The cluster has 12 nodes and each node have two dual core 3.20GHz

Intel Xeon processors with 4GB RAM. Hence the cluster had a total of 24 dual

core processors. This cluster is used to generate protein domain models for

Shewanella and E.coli genomes.

Architectural assessment of PSI-BLAST

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000 25000

Sequence lengths

W
al

l-c
lo

ck
 c

om
pu

ta
tio

n
tim

e
in

 s
ec

on
ds

Sparc
Xeon
Opteron

Figure: 5.1: Comparison plot of PSI-BLAST computation times between Sun

Sparc, Intel Xeon, and AMD Opteron.

 102

Architectural assessment of Hmmpfam

0

500

1000

1500

2000

2500

3000

3500

0 5000 10000 15000 20000 25000

Sequence lengths

W
al

l-c
lo

ck
 c

om
pu

ta
tio

n
tim

e
in

 s
ec

on
ds

Sparc
Xeon
Opteron

Figure: 5.2: Comparison plot of HMMER computation times between Sun Sparc,

Intel Xeon, and AMD Opteron.

 103

 104

5.2 Computation Times for Shewanella and E.coli Genome-Wide Domain
Modeling

The MANGEN and GENWIDEshew files have a total of 100 and 2867 input

unknown regions. The MANGEN file is used to validate the DIAT tool that is

described in the section 5.4. The computation time for both test bench files for

the Shewanella genome using DIAT tool chain is shown in Table 5.3.

These are initial time measurements recorded for running the DIAT tool chain on

the Shewanella genome. There are no initial refDB entries, so refDB was built

using the results from first DIAT run on GENWIDEshew file. Later this refDB was

used to generate DOMOUT files and for the proteins with no domain information

in refDB, hmmpfam was used to get domain information and the refDB is

updated. This saved significant amount of time for DVAT and DDAT tool chain

runs. The total time taken to run DVAT and DDAT on Shewanella is shown in the

Table 5.4. Both DVAT and DDAT tool chains were run using same cluster as

DIAT. The significant decrease in the computation time using refDB will be

clearer from the Figures 5.3 and 5.4.

The GENWIDEecoli test bench file has only 235 input unknown regions resulting

in smaller computation times. The PSIBLAST of DIAT and DVAT tool chain for

GENWIDEecoli test bench file resulted in 47498 and 14735 proteins respectively.

Only 30% of DIAT resultant proteins and 15% of DVAT resultant proteins did not

 105

Table 5.3: Comparison of DIAT on GENWIDEshew and MANGEN files

Test bench files DIAT
MANGEN ~20 hrs
GENWIDEshew ~9 days

Table 5.4: Computation times of DVAT and DDAT for GENWIDEshew file

Tools GENWIDEshew
DVAT ~95 hrs
DDAT ~74 hrs

Figure 5.3: Domain Identification Automated Tool chain computation time results
flow

BLAST
Tool

2867 Shewanella
and

235 E.coli
sequences

Unique
proteins
Generator

refDB
check

Final
results
generator

576,010 and 61,921
proteins for

Shewanella and
E.coli

342,233 and 47,498
unique proteins for

Shewanella and
E.coli

342,233 and 10,436
proteins for

Shewanella and
E.coli

HMMER
Tool

789,914 and 32,729
domains for

Shewanella and
E.coli

Domains were
identified for 1664 and

171 sequences of
Shewanella and E.coli
genomes respectively

Shewanella
~17hours
E.coli ~26 minutes

Shewanella ~8 days
E.coli ~ 7 hours

Couple of
minutes

Shewanella ~ 2 hours,
E.coli 10 minutes

 106

 107

Figure 5.4: Domain Verification Automated Tool chain computation time results
flow

BLAST
Tool

9770 Shewanella
and

734 E.coli
sequences

Unique
proteins
Generator

refDB
check

Final
results
generator

994,960 and
112,431 proteins

for Shewanella and
E.coli

100,978 and 14,735
unique proteins for

Shewanella and
E.coli

25,330 and 2264
proteins for

Shewanella and
E.coli

HMMER
Tool

~2M and 331,872
domains for

Shewanella and
E.coli

Domains were
identified for 340 and

26 sequences of
Shewanella and E.coli
genomes respectively

Shewanella ~44
hours
E.coli ~35 minutes

Shewanella ~47.5
hours
E.coli ~69 minutes

Couple of minutes

Shewanella ~ 1 hours,
E.coli 15 minutes

 108

have any information in refDB database. Hence hmmpfam was run only on these

proteins thus saving significant amount of time. The Table 5.5 shows the

computation times for DIAT, DVAT, and DDAT tools for GENWIDEecoli test

bench file. The reduction in the computation time from days to hours is because

of the intelligent use of the existing domain information from refDB.

5.2 Multicore Architectures and Threading

The popularity of multicore processors is increasing, as their performance is

better than single core processors. The multicore processor has more than one

CPU (Central Processing Unit) on the chip and respective caches. An Intel dual

core processor has two CPUs and both the CPUs share a single coherent cache

on the other hand AMD dual cores have individual caches. This is the reason

why AMD Opteron outperformed Intel Xeon in the previous section. The goal of

this study is to utilize the multicore architecture in the clusters for optimum work

distribution.

Table 5.5: Computation times of DIAT, DVAT, and DDAT for GENWIDEecoli file

Tools GENWIDEecoli
DIAT ~8 hrs
DVAT ~3 hrs
DDAT ~3 hrs

 109

The threading capability of both the PSI-BLAST and HMMER tools are explored

to test number of core utilization versus computation time. The HMMER tool

allocates two threads by default and PSI-BLAST tool allocate only one thread by

default. Since PSI-BLAST and HMMER are the two most extensively used tools

in the automated tool chains, studies were conducted to optimize resource usage

for the faster completion of these tasks. A dual-core (2 CPUs) Intel Xeon

processors is picked for the study. One other study was performed using Intel

Xeon single core processor on which hyper-threading was enabled. The

operating system sees two processors instead of one if hyper-threading

technology is enabled.

The threading functionality of both BLAST and HMMER tools are explored to

derive optimized number of threads for a query sequence of particular length.

Three sets of data are collected for blastpgp and hmmpfam runs. The first set of

data is generated using only one of the two cores of the Xeon processor, always

with a load on the second core. The second set of data is generated using both

cores of the processor. And the single core Xeon processor generates the third

set.

Neither PSIBLAST nor HMMER uses the dual core functionality of the processor

to cut down the computation time to half. The performance obtained using

threads is not greatly affected by the dual core architecture even though using

one core of dual core processor outperformed single core architecture. One more

 110

interesting discovery, as the sequence length increases the number of threads

required for optimum performance increases. For PSIBLAST runs using one core

3-4 threads give good performance. For PSIBLAST using both cores of dual core

processor runs using 3-4 threads give good performance for sequences less than

5000 amino acids and 4-5 threads for sequences greater than 5000 amino acids.

For best performance of time and cost, PSIBLAST should be run on one core

using 4 threads.

HMMER does not take advantage of threading for sequence lengths smaller than

200-300 amino acids using one core of the dual core processor. For sequences

of length 400 or above 3-4 threads gives good performance. Using both cores of

the dual core processor for sequences smaller than 500 AAs 2 threads gives

good performance. For best performance of time and cost, HMMER should be

run on one core using 3 threads.

5.3 Validation of DIAT

First, two PSI-BLAST iterations are run in the DIAT tool chain, hmmpfam is run

on the proteins resulted from the PSI-BLAST searches for domain identification.

Out of 97 unknown regions for 70 different proteins in the MANGEN file, the DIAT

tool chain identified domains for 61 unknown regions; DIAT missed only 3 protein

hits. The reason for this is the domains for a protein were identified in iteration 5

 111

Table 5.6: Statistics for Domains identified for MANGEN file of Shewanella

genome using DIAT.

Test bench file Unknown regions with

domain hits
Missed domains
by DIAT

MANGEN (2-iterations) 61 3
MANGEN (4-iterations) 70 0

and the standard practice is to perform only 4 iterations. The other two proteins

domains were identified in iteration 3 and DIAT performed only 2 iterations. DIAT

identified domains for 16 proteins that were not found manually, as DIAT used

the latest Pfam database (PFAM21). Next the DIAT tool chain was run with four

PSI-BLAST iterations, this time there were no missed protein hits. The DIAT tool

chain identified domains for all the proteins similar to manual search along with

hits for an additional 25 proteins. The results in Table 5.6 show the robustness of

the tool chain and its contribution to new knowledge.

5.4 Solved Programming Challenges

The automated tool chain was designed using the PHP (Hypertext Preprocessor)

scripting language. PHP is a server-side HTML (Hypertext Markup Language)

embedded scripting language. PHP is helpful to make the results web accessible

very easily and it is simple to parse the resultant files in different formats to

populate various databases. The results form PROTOUT and DOMOUT files are

 112

used to populate the refDB database. The refDB database was generated using

SQLite and also a text file of the entire refDB database was generated. The

refDB was used to generate the domain information and from which the final

resultant files are derived. Two programs were generated one to retrieve

information from the SQLite database and another from the text file database.

The program written to retrieve the data from text file used hashing technique

and was three times faster than retrieving data from SQLite database. Hence the

text file refDB was used to retrieve the domain information. Hashing technique

was also used to compare PROTOUT and DOMOUT files to generate

FINALOUT files faster thus saving lot of parsing time.

5.5 Job Mapping and Distribution

The problem size is huge; currently we have 12.9 million proteins in our

database. The distribution of sequence lengths of these 12.9 million proteins is

shown in the Figure 5.5. Statistics were derived from protein length distributions

that shows 98.2% of all proteins have lengths less than 1000 amino acids. The

average protein length is 269 amino acids with a standard deviation of 265 amino

acids. The minimum and maximum lengths are 2 and 36,800 amino acids with 75

% of all proteins sequences have lengths less than 320 amino acids. Hence we

need an efficient job-mapping algorithm for optimum performance to evenly

distribute these proteins of varying lengths across computing clusters that is the

primary goal of this research.

Figure: 5.5: The distribution of protein sequence lengths of 12.9 million protein

sequences currently available (Image added with the permission of Luke Ulrich).

 113

 114

Two different approaches for scheduling the jobs on the cluster are discussed in

this section. One is the algorithmic approach for PSI-BLAST jobs and the other is

based on equations or mathematical approach for HMMER jobs. The goal of the

job scheduling on the clusters is to finish the computation on all nodes at the

same time so that there is no wait for one processor to finish. So based on the

unknown region length and the number of sequences, each node is allocated

with certain amount of work so that all nodes finish at the same time.

5.5.1 PSI-BLAST Job Scheduler

The PSI-BLAST run times are random and do not depend on amino acid lengths

or number of sequences in a file. Based on number of relatives present for a

proteins sequence and the number of iterations to reach convergence varies thus

varying the computation time. Which means some protein sequences converge

in 2 iterations and some can run for 10 iterations and still not converge. One

more interesting discovery was running individual PSI-BLAST was faster than

combining sequences together in a file. This led to the development of the

algorithmic approach to distribute the PSI-BLAST runs individually using bins.

 115

There are ‘P’ processing nodes in the cluster and the number of bins is ‘B’. One

bin is allocated to each processing node. The jobs are distributed across the

cluster using the following algorithm.

 Job allocation algorithm steps for PSI-BLAST

1. Generate B=P bins

2. Populate an array with the input sequences

3. Sort the array in descending order based on sequence lengths

4. Traverse the array one by one by allotting each sequence to a

bin in the order

binCounter=0;

foreach(array as sequence){

binCounter++;

Allot sequence to Bin(binCounter);

if(binCounter==B){

 binCounter=0;

 }

}

Once the jobs are distributed across the bins, each bin is allocated to a

processor. Next all the jobs are put into queue for each processor with biggest

jobs first. The smallest sequence length of job is 80 amino acids as this was the

cutoff used for input query sequences. A jobCheck program was created to

identify unfinished or failed jobs and allot these failed jobs to the processor

 116

queues with least number of jobs left. This program also checks for the empty

queues and allocates the unfinished jobs for other queues to the empty queue

thus keeping the balance. Using the job allocation algorithm and the jobCheck

program all the processors finish the execution almost at the same time.

5.5.2 HMMER Job Scheduler

The hmmpfam run times using 16 different proteins is shown in Figure 5.6. These

16 proteins used are around 25000 AAs in length. The run times are recorded by

varying the lengths of these sequences by 200 AAs starting from 80 AAs. From

the Figure 5.6 it is clear that there are two linear regimes, connected by a smooth

transition curve between these two regimes. The hmmpfam runs take advantage

of number of sequences in a file that means the time taken to run N sequences in

a file is less than the sum of time taken to run N sequences individually. Now we

added one more dimension to our curve that is number of sequences in a file.

We plotted a curve using three variables, length of protein sequences, number of

sequences in a file, and the time taken for the runs. Figure 5.7 show the three-

dimensional curve plotted using GNUPLOT. Logarithmic scale is used to plot this

curve. We see the same characteristics in this plot similar to two-dimensional plot

in Figure 5.6. There are two linear regimes connected by a smooth transitional

region.

Hmmpfam computational complexity

0

200

400

600

800

1000

1200

1400

1600

1800

0 5000 10000 15000 20000 25000

AA sequence lengths

Ti
m

e
in

 s
ec

on
ds

Figure: 5.6: Comparison plot between hmmpfam computation times and amino

acid lengths for 16 different protein sequences of varying lengths from 100 amino

acids to 24000 amino acids.

 117

T
I
M
E

Number of seqs. Sequence lengths

Figure: 5.7: Three dimensional comparison plot between protein sequence

lengths, number of sequences in a file and their respective computation times for

hmmpfam jobs

 118

 119

We used the least square fitting algorithm to generate a surface that connects all

the points to derive equation to define our model. There are two regimes and the

transition takes place ~8000 amino acids length for this architecture. We derived

a surface formula that represents the time predicted to run hmmpfam on a cluster

for jobs of varying lengths and number of sequences. Here AA is the total

number of amino acids of all the sequences in the job and N is the number of

sequences in the job. T is the time taken for the job to finish.

 The a’s and b‘s coefficients tells information about the computational power of

the architectures on which the hmmpfam is run. We applied inverse tangent

curve to connect these two linear regimes. The Time T that define entire model

is as follows

()()

()
()()

()NbbAAb

scNcAA

NaaAAa

scNcAA

NAAT yxyx ++×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

+
+++×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−

−
=

−−

0

011

0

011

2
57.1

tan1

2
57.1

tan1
),(

-- equation 1

The coefficients c1,0 are related to the edges between these two regimes. The

equation ()01 cNc + when evaluated for N=1 shows the maximum number of

amino-acid in one sequence that it would run the program in a efficient way, in

our case this number is 7800 AA. Also there is the coefficient ‘s’ that defines how

smooth the transition between the two regimes is. Therefore the function tan-1 is

related to the connection between these two regimes. The two linear regions are

 120

Table 5.7: Protein statistics in three different ranges.

Ranges Sequence % AA % Computation
time (hours)

Range1 (<150 AAs) 32.9 12.1 61277
Range2 (>=150 <=1500) 66.5 82.8 163303
Range3 (>1500) 0.6 5.1 4767

an efficient regime that means the error generated by the equation is negligible

and the non-linear region of the curve is inefficient regime as the error in this

region is higher. The jobs are distributed in the cluster considering this

inefficiency.

Based on the sequence lengths the jobs are classified into three different groups.

Jobs with sequence lengths less than 150(range1), the jobs in between 150 and

1500(range2), and the jobs with sequence lengths greater than 1500(range3).

These numbers are picked considering the inefficiency of the equations and the

statistics of sequence lengths. Out of 12.9 million sequences the percentages of

number of sequences and number of amino acids, and estimated computation

times in hours using equation 1 for each range is shown in the Table 5.7.

To efficiently distribute the work and to easily identify the failed or unfinished

jobs, the sequences were divided into bins. The computation time for each bin is

multiple of 2 hours. A program is designed to distribute the sequences in each

range into bins of four hours each. The total numbers of 4-hour bins for range1,

range2, and range3 are 15338, 40708, and 1145 respectively. Sample bins were

 121

taken from each range and tested on the cluster. The estimated time and the

computation time for some random sample sizes and the sample sizes of 4-hour

bins and 8-hour bins are shown in Table 5.8. The samples from range 2 and

range 1 are more efficient than range 3, which means the estimated time is close

to the computation time. Hence the bins are allocated to the job queue in the

order of range3, range1, and range2 respectively so that all the compute nodes

finish the computation almost at the same time.

The next chapter put forth the achievements and contributions of this research

along with conclusions and future work.

 122

Table 5.8: The estimated and computed times for some sample files.

SeqLength_number
Computed time
(seconds)

Estimated time
(seconds)

61_292 14633 14423
106_274 14580 14401
124_268 14472 14425
151_259 14436 14432
172_252 14372 14414
272_225 14309 14451
875_135 13971 14403
987_126 13961 14438
1411_100 13948 14453
1645_90 13945 14498
3236_53 14851 14558
4974_36 16329 14559
7241_15 11373 15093
7718_13 10799 15924
16953_6 15329 15924
1342_207 27990 28829

 123

Chapter Six

Conclusions and Future work

This dissertation enables genome-wide protein domain modeling, one of the

most important problems in biology, using high throughput and high-resolution

automation techniques with better quality, speed, and cost effectiveness than

manual procedures.

This dissertation describes a new automated tool chain for protein domain

modeling. This new bioinformatics application generates protein domain models

much faster, which enables biologist to use their valuable time in the labs rather

in front of computers. With the use of cluster computing, genome-wide protein

domain modeling is made easier. With the help of supercomputing the protein

domain modeling can address entire protein databases. The rate at which new

protein domain knowledge can now be generated will revolutionize the science

and encourage the use and design of automated bioinformatics tools.

During the course of design of the automated tool chains for protein domain

modeling, many other tools were generated that are beyond the scope of this

dissertation. This dissertation lead to important contributions such as:

 124

1. Protein domain modeling automated tool chain design

Three automated tool chains are developed, for protein domain

identification (DIAT), verification (DVAT), and discovery (DDAT). These

tool chains are new additions to bioinformatics tools and will be made

publicly available. The knowledge from the domain discovery model will

help in detecting speculative regions for possible new domain discovery.

2. Feedback on the effectiveness of Pfam HMMs

The domain hit/miss statistics from domain identification models and

domain verification models will assist us in evaluating the effectiveness of

Pfam HMMs. This will assist us in suggesting the modifications for

changing the HMMs based on the statistics generated for the various

domains in genome-wide analysis, so that no domains are missed based

on the evolutionary relatives.

3. Architectural and algorithmic assessment of automated tool chain

Performance evaluation of multicore architectures, and clusters of

computers is explored in this dissertation for better-automated job

allocation. Threading functionality of BLAST and HMMER tools is explored

to reduce the computation time.

4. Job mapping, task management and results management

 125

Since there are millions of sequences to model, an effective job-mapping

algorithm is designed to distribute the jobs evenly across available nodes

in a cluster. A task manager script is designed to check on unfinished

jobs or blocked jobs, and these unfinished jobs will be allotted to other

processors so that valuable information is not lost. Finally, all results

generated by the automated tool chains are uploaded into the PepDomDB

database for storage and future reference.

5. Protein domain database generation

A PepDomDB database for peptides and their respective domain

information is generated. This database is ready to be public once the

domain information for all genomes is populated. One major challenge is

to keep this database schema scalable and up to date as new domains

are discovered. The design of this database will lead to faster domain

modeling of newly sequenced genomes.

6. New protein domain knowledge generation

New protein domain models are generated for Shewanella and E.coli

genomes for the peptides for which no domains are currently present in

the MiST database. The statistics of various domains identified for

Shewanella and E.coli genomes are documented for genome wide domain

modeling. The work is in progress to generate the protein domain

knowledge for all the genomes in MiST database.

 126

This dissertation resulted in new knowledge about protein domain modeling. This

dissertation also generated statistics for missed domain models using existing

Pfam database to give feedback to improve domain models. This efficient

domain modeling on a genome-wide scale will help biologists to solve problems

like protein functions, structures and folding. The design of an automated tool

chain will be greatly helpful for biologists who now perform sequence similarity

analysis manually, thus saving tremendous effort that can be directed towards

laboratory experimentation. The primary contribution of this dissertation is a set

of automated tool chains for protein domain modeling to explore the problem of

genome-wide analysis, including a good foundation for using the most

appropriate architectures for huge problem sizes.

From the results it is clear that the DIAT tool chain identified all the domains that

were manually generated along with some new domains for the query unknown

regions, thus demonstrating its robustness and effective design. The time taken

to generate the results was a few hours using cluster computing when compared

to months of work done manually for 100 sequences. Using a small cluster of

computers, domain models were generated for thousands of unknown regions of

the Shewanella genome in few days, and hundreds of unknown regions of the

E.coli genome in few hours. This showed the tool chains ability to help in the

process of deriving important biologically relevant information from completely

sequenced genomes.

 127

Web access to automated tool chains for protein domain modeling needs to be

designed and implemented on a dedicated cluster for public use. Publicly

available PepDomDB database should be created in such a way that registered

users can upload new domains and peptides after the verification process is

completed. Implementing the automated tool chains on supercomputing

architecture to solve bigger problems remains to be explored. Work is in

progress to design an automatic job-mapping algorithm for different

architectures. Finally, secondary structure predicting tools could be added to the

automated tool chain for further analysis.

 128

References

 129

References

1. Altschul, SF, W Gish, W Miller, EW Myers, and DJ Lipman. Basic local
alignment search tool. Journal of Molecular Biology 215(3):403-10, 1990

2. Altschul, SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, and
DJ Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic acid research, 1997,Vol 25, No 17,
3389-3402.

3. Ross, PE. The making of 24 Billion gene machine. Forbes, February
2000,21:98-104.

4. Friend, SH. How DNA microarrays and expression profiling will effect
clinical practice. British Medical Journal, 319:1-2, 1999.

5. Draghici, S. Data analysis tools for DNA microarrays. 2003.
6. D. Eisenberg, E. M. Marcotte, L. Xenarios, and T. O. Yeates. Protein

function in the post-genomic era. Nature, 405:823-826, 2000.
7. Mount, DW. Bioinformatics: Sequence and Genome analysis. Second

edition 2004.
8. Pearson, WR. Comparison of methods for searching protein sequence

databases. Protein science 4:1150-1160, 1995.
9. Gibbs, AJ, McIntyre, GA. The diagram, a method for comparing

sequences. It use with amino acid and nucleotide sequences. European
Journal of Biochemistry 16:1-11, 1970.

10. Smith, TF, and Waterman, MS. Identification of common molecular
subsequences. J. of Molecular Biology 147:195-97, 1981

11. Needleman, SB, and Wunch, CD. A general method applicable to the
search for similarities in amino acid sequences of two proteins. J. of
Molecular Biology 48:443-453, 1970.

12. Pearson, WR, and Lipman, DJ. Improved tools for biological sequence
comparison. Proc, Natl. Acad. Sci. 85:2444-2448, 1988.

13. Richardson, JS. The anatomy and taxonomy of protein structure. Adv
Protein Chem, 34:167-339, 1981.

14. Bork, P. Shuffled domains in extracellular proteins. FEBS Lett, 286:47-54,
1991

15. Wetlaufer, DB. Nucleation, rapid folding, and globular intrachain regions in
proteins. Proc Natl Acad Sci U S A, 70:697-701, 1973.

16. Savageau, MA. Proteins of Escherichia coli come in sizes that are
multiples of 14 kDa: domain concepts and evolutionary implications. Proc
Natl Acad Sci U S A, 83:1198-1202, 1986.

17. Jones, S, Stewart, M, Michie, A, Swindells, MB, Orengo, C, and Thornton,
JM. Domain assignment for protein structures using a consensus
approach: characterization and analysis. Protein Sci, 7:233-242, 1998.

18. Siddiqui, AS, and Barton, GJ. Continuous and discontinuous domains - an
algorithm for the automatic generation of reliable protein domain
definitions. Protein Sci, 4:872-884, 1995.

 130

19. Pedretti, KT, Casavant, TL, Braun, RC, Scheetz, TE, Birkett, CL, and
Roberts CA. Three complementary approaches to parallelization of local
BLAST Service on Workstation clusters. PacT-99, LNCS 1662, 271-82,
1999.

20. Braun, RC, Pedretti, KT, Casavant, TL, Scheetz, TE, Birkett, CL, and
Roberts CA. Parallelization of local BLAST Service on Workstation
clusters. Future generation computer systems 17, 745-754, 2001.

21. Bjornson, RD, Sherman, AH, SB Weston, Willard,N, and Wing, J.
TurboBLAST : A Parallel Implementation of BLAST Built on the TurboHub.
TurboGenomics, Inc.

22. Hong-Soog Kim, Hae-Jin Kim, and Dong-Soo Han. Hyper-Blast: A
parallelized BLAST on cluster system. ICCS, LNCS 2659, 213-222, 2003.

23. Darling, AE, Carey,L, and Wu-chun Feng. The design , Implementation
and Evaluation of mpiBLAST.

24. Lin, H, Ma, X, Chandramohan, P, Geist, A, Samatova, Nagiza. Efficient
Data access for Parallel BLAST. IPDPS, Volume 01,page 72.2, 2005.

25. Konishi, F and Konagaya A. The architectural design of high throughput
BLAST services on OBIGrid. LSGRID 2004, LNBI 3370, pp.32-42, 2005.

26. Oehmen, C, and Nieplocha, J. ScalaBLAST: A scalable implementation of
BLAST for high-performance data-intensive bioinformatics analysis.

27. Moore, G. Cramming more components onto integrated circuits.
Electronics Magazine 1965.

28. Eddy, S. HMMer User’s Guide. 1998.
29. George, RA, and Heringa, Jaap. Protein domain identification and

Improved similarity searching using PSI-BLAST. Proteins: Structure,
Function and Genetics 48:672-681, 2002.

30. Pagni, M, Ioannidis, V, Cerutti, l, Zahn-Zabal, M, Jongeneel, CV, and
Falquet L. MyHits: a new interactive resource for protein annotation and
domain identification. Nucleic Acids Research, Vol. 32, 332-335, 2004.

31. Dickens, NJ and Ponting CP. ThoR:a tool for domain discovery and
curation of multiple alignments. Genome Biology, 2003, 4:R52.

32. Schultz, J, Milpetz, F, Bork, P, and Pointing, CP. SMART, a simple
modular architecture research tool: Identification of signaling domains.
Proc. Natl. Acad. Sci., Vol. 95, 5897-5864, 1998.

33. Schultz, J, Copley, RR, Doerks, T, Pointing, CP and Bork, P. SMART: a
web-based tool for the study of genetically mobile domains.

34. Coin, L, Bateman, A, and Durbin, R. Enhanced protein domain discovery
using taxonomy. BMC Bioinformatics, 5:56, 2004.

35. Cheng, J, Sweredoski, MJ, Baldi, P. DOMpro: protein domain prediction
using profiles, secondary structure, relative solvent accessibility and
recursive neural networks.

36. Eddy, SR. Profile hidden Markov models. Bioinformatics, 14:755-763,
1998.

 131

37. Krogh, A, Brown, M, Mian, IS, Sjolande, K, and Haussler D. Hidden
Markov models in computational biology. Application to protein modeling.
Journal of Molecular Biology 235:1501-31, 1994

38. Hughey, R, and Krogh A. Hidden Markov models for sequence analysis:
extension and analysis of basic method. Comput. Appl. Biosci. 12:95-107,
1996.

39. Landman, J, Ray, J, Walters, JP. Accelerating HMMer searches on
Opteron processors with minimally invasive recoding. IEEE AINA, 2006.

40. Costa, RLC, and Lifschitz, S. Database allocation strategies for parallel
BLAST evaluation on clusters. Distributed and Parallel Databases, 13, 99-
127, 2003.

41. Braun, RC, Pedretti, KT, Casavant, TL, Scheetz, TE, Birkett, CL and
Roberts, CA. Parallelization of local BLAST service on workstation
clusters. Future Generation Computer Systems, 17, 745-754, 2001.

42. Rangwala, H, Lantz, E, Musselman, R, Pinnow, K, Smith, B and
Wallenfelt, B. Massive parallel BLAST for the Blue Gene/L.

43. Tan, G, Xu,L, Feng, S, and Sun, N. An experimental study of optimizing
Bioinformatics Applications. IEEE, 2006.

44. Kang, JY, Gupta, S, and Gaudiot, JL. An efficient PIM (Processor-In-
Memory) architecture for BLAST. IEEE, 2004.

45. Lancaster, JM. Design and evaluation of a BLAST ungapped extension
accelerator. Master’s thesis, Washington University, Saint Louis, 2006.

46. Srinivasan, U, Che, PS, Diao, Q, Lim CC, Li, E, Chen, Y, Ju, R, and
Zhang Y. Characterization and analysis of HMMER and SVM-RFE parallel
bioinformatics applications. IEEE 2005.

47. Wun, B, Buhler, J, and Crowley, P. Exploiting coarse-grained parallelism
to accelerate protein motif finding with a network processor. Parallel
Architecure and compilation Techniques, 173-184, IEEE, 2005.

48. Horn, DR, Houston, M, and Hanrahan, Pat. ClawHMMER: A streaming
HMMer-Search implementation. Proc. IEEE Supercomputing 2005.

49. Maddimsetty, RP, Buhler J, Chamberlian, RD, Franklin, MA, and Harris, B.
Accelerator design for protein sequence HMM search. ICS, 2006.

50. Landman, J, Ray, J, and Walters, JP. Accelerating HMMer searches on
Opteron processors with minimally invasive recoding. Proc. Or the 20th
International Conference on Advanced Information Networking and
Applications, IEEE, 2006.

51. Ulrich, L, and Jouline, IB. MiST: a microbial signal transduction database.
Nucleic Acids Research, Vol. 35, 386-390, 2007.

52. Park, J, Karplus, K, Barrett, C, Hughey, R, Haussler D,Hubbard, T, and
Chothia, C. Sequence comparisons using multiple sequence detect three
times as many remote homologues as pairwise methods. Journal of
Molecular Biology, 184:1201-1210, 1998.

53. SQLite database speed comparison. http://www.sqlite.org/speed.html
54. Initial sequencing and analysis of human genome. Nature Vol. 409, 860-

921, 2001

http://www.sqlite.org/speed.html

 132

55. Ross, PE. The making of a 24 billion gene machine. Forbes, February
21:98-104, 2000.

56. Venter, JC, Smith, HO, and Hood, l. A new strategy for genome
sequencing. Nature 381(6581):364-6, 1996.

57. Venter, JC, Adams, MD, Sutton, GG, Kerlavage, AR, Smith, HO. And
Hunkapiller M. Shotgun sequencing of the human genome. Science, Vol.
280, no. 5369, 1540-1542, 1998.

58. National Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov/

59. http://bioweb.pasteur.fr/seqanal/blast/#psiblast
60. PSI-BLAST tutorials. http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-

2.html
61. Pieper, U, Eswar, N, Davis FP, Braberg H, Madhusudhan, MS, Rossi, A,

Marti-Renom, M, Karchin R, Webb, BM, Eramian, D, Shen, MY, Kelly, L,
Melo, F, and Sali, A. MODBASE: a database of annotated comparitive
protein structure models and associated resources. Nucleic Acids
Research, Vol.34, database issue, 291-295, 2006.

62. Mulder, NJ, Fleischmann W., and Apweiler R. InterPro as a new tool for
whole genome analysis. A comparative analysis of Mycobacterium
tuberculosis, Bacillus substilis and Echerichia coli as a case study.
Regulation and Structure. Vol. 2, 35-37, 2000.

63. Hulo, N, Bairoch, A, Bulliard, V, Cerutti, L, Castro, ED, Langendijk-
Genevaux, PS, Pagni, M, and Sigrist, CJA. The PROSITE database.
Nucleic Acids Research. Database issue 34, 227-230, 2006.

64. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller l, Eddy SR, Griffiths-
Jones S, Howe KL, Marshall M, Sonnhammer ELL. The Pfam protein
families database. Nucleic acids Research, 30:276-280, 2002.

65. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell AL,
Mpulton G, Nordle A, Paine K, Taylor P et al. . PRINTS and its automatic
supplement, prePRINTS. Nucleic acids Research, 31:400-402, 2003.

66. Corpet F, Servant F, Gouzy J, Kahn D. ProDom and ProDom-CG: tools for
protein domain analysis and whole genome comparisons. Nucleic acids
Research 28:267-69, 2000.

67. Marchler-Bauer, A, et al. CDD: a conserved domain database for
interactive domain family analysis. Nucleic acids Research 35, 237-240,
2007.

68. Henikoff S, and Henikiff J, G. Amino acid substitution matrices from
protein blocks. Proc. Natl. Acad. Sci. 89:10915-10919, 1992.

69. Dayhoff, MO. Survey of new data and computer methods of analysis. In
Atlas of protein sequence and structure, vo. 5, suppl. 3. National
Biomedical Research Foundation, Georgetown University, Washington,
D.C. 1978.

70. Wilbur WJ, and Lipman, DJ. Rapid similarity searches of nucleic acid and
protein data banks. Proc. Natl. Acad. Sci. 80:726-730, 1983

http://www.ncbi.nlm.nih.gov/
http://bioweb.pasteur.fr/seqanal/blast/#psiblast
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-2.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-2.html

 133

71. Bairoch, A., and Apweiler, R. The SWISS-PROT protein sequence data
bank and its supplement TrEMBL. Nucl. Acids Res. 24, 21-25, 1995.

72. Kulikova T., Akhtar R., Aldebert P., Althorpe N., Andersson M., Baldwin
A., Bates K., Bhattacharyya S., Bower L., Browne P., Castro M., Cochrane
G., Duggan K., Eberhardt R., Faruque N., Hoad G., Kanz C., Lee C.,
Leinonen R., Lin Q., Lombard V., Lopez R., Lorenc D., McWilliam H.,
Mukherjee G., Nardone F., Garcia-Pastor M.P., Plaister S., Sobhany S.,
Stoehr P., Vaughan R., Wu D., Zhu W., Apweiler R. EMBL Nucleotide
Sequence Database in 2006. Nucleic Acids Research 35: D16-D20, 2007.

73. Tateno, Y, and Gojobori, T. DNA Databank of Japan in the age of
information biology. Nucl. Acids Res. 24, 14-17, 1996.

74. Gavin Sherlock, et al. “The Stanford Microarray Database”, Nucleic Acids
Research, 29(1). 2001.

75. Schena,M., Shalon,D., Davis,R.W. and Brown,P.O. Quantitative
monitoring of gene expression patterns with a complementary DNA
microarray. Science, 270, 467–470. 1995.

76. Pollack JR, et al, Genome-wide analysis of DNA copy-number changes
using cDNA microarrays. Nature Genet., 23, 41–46. 1999.

77. Rekapalli, B, Peterson, G, Rose, J and Hillhouse B. Parallel algorithm for
genetic KNN-impute algorithm. Parallel and Distributed Computing
Systems Conference, 19, 171-178, 2006.

78. Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O. The
Comprehensive Microbial Resource. Nucleic Acids Res. Jan 1;29(1):123-
5, 2001

79. Wheeler,D.L., Church,D.M., Edgar,R., Federhen,S., Helmberg,W.,
Madden,T.L., Pontius,J.U., Schuler,G.D., Schriml,L.M., Sequeira,E., et al.
Database resources of the National Center for Biotechnology Information:
update. Nucleic Acids Res, 32, , D39–D45, 2005.

80. Kim D. Pruitt , Tatiana Tatusova and Donna R. Maglott. NCBI* Reference
Sequence (RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Research, 33(Database
Issue):D501-D504, 2005.

81. http://www.ncbi.nlm.nih.gov/
82. Brown, TA. Genomes, Second Edition 2002.
83. Branden, C and Tooze, J. Introduction to protein structure, second edition,

1999.
84. World Wide Web
85. National Human Genome Research (NHGRI), by artist Darryl Leja.
86. Bader, J. S., Chaudhuri, A., Rothberg, J. M. & Chant, J. Gaining

confidence in high-throughput protein interaction networks (2004) Nat.
Biotechnol.

87. Borziak, K and Zhulin IB. FIST: a sensory domain for diverse signal
transduction pathways in prokaryotes and ubiquitin signaling in
eukaryotes. Bioinformatics, page 1-4, 2007.

http://www.ncbi.nlm.nih.gov/

 134

88. Strohmaier, E, Dongarra, JJ, Meuer, HW, Simon, HD. Recent trends in the
marketplace of high performance computing. Parallel Computing, volume
31, p261-273, 2005.

89. Eadline, D. Preparing for the revolution maximizing dual core technology.
Basement Supercomputing, 2006.

90. Augen, J. In silico biology and clustered supercomputing shaping the
future of the IT industry. Biosilico., 1, 47-49, 2003.

91. Bader, DA. Computational biology and high-performance computing.
Communications of the ACM, vol. 47, no. 11, p34-41.

92. Akhurst, TJ. The role of parallel computing in bioinformatics. Thesis, 2005.
93. Zomaya, AY. Parallel Computing for bioinformatics and computational

biology. 2006
94. Rekapalli, B. Genomic data analysis using grid-based computing. MS

thesis, 2003.
95. Cheung,KH, Miller, P, Sherman, A, Stratmann, SWE, and Schultz, M.

Graphically-enabled integration of bioinformatics tools allowing parallel
execution. Journal of the American Medical Informatics Association, Suppl
S, 141-145, 2000.

96. Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE
Trans. Comput., Vol. C-21, pp. 948, 1972.

97. Wikipedia article. http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy
98. http://bioweb.pasteur.fr/seqanal/blast/
99. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence
weighting, positions-specific gap penalties and weight matrix choice.
Nucleic Acids Res 22:4673-4680, 1994

100. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast
and accurate multiple sequence alignment. J Mol Biol 302(1):205-17,
2000.

101. Katoh K, Misawa K, Kuma K, and Miyata T. MAFFT: a novel method for
rapid multiple sequence alignment based on fast Fourier transform.
Nucleic Acids Res, 30:3059-3066, 2002.

102. Simossis A and Heringa J. PRALINE: a multiple sequence alignment
toolbox that integrates homology-extended and secondary structure
information. Nucleic Acids Res. W289–W294, 2005.

103. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Research 32(5), 1792-97, 2004.

104. Subramanian AR, Weyer-Menkhoff J, Kaufmann M, and Morgenstern B.
DIALIGN-T: An improved algorithm for segment-based multiple sequence
alignment. Bioinformatics, 6:66, 2005.

105. HMMER documentation. http://hmmer.janelia.org/
106. Rost B. Review: Protein secondary structure prediction continues to rise.

Journal of structural biology, 2001

http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy
http://bioweb.pasteur.fr/seqanal/blast/
http://hmmer.janelia.org/

 135

107. Kim H. and Park H. Protein secondary structure prediction based on an
improved vector machine approach. Protein Engineering vol. 16 no. 8 pp.
553-560, 2003

108. Doong SH and Yeh CY. Secondary structure prediction using SVM and
clustering. Proceedings of the Fourth International Conference on Hybrid
Intelligent Systems (HIS'04) - Volume 00, P297-302, 2004

109. Jones DT. Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292: 195-202,1999.

110. J. Cheng, A. Randall, M. Sweredoski, P. Baldi, SCRATCH: a Protein
Structure and Structural Feature Prediction Server, Nucleic Acids
Research, Web Server Issue vol. 33, 72-76, 2005.

111. B Rost, G Yachdav and J Liu. The PredictProtein Server. Nucleic Acids
Research 32(Web Server issue):W321-W326, 2004.

112. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. and Barton, G. J.
Jpred: A Consensus Secondary Structure Prediction Server,
Bioinformatics 14:892-893, 1998.

113. Rost B. PHD: predicting one-dimensional protein structure by profile-
based neural networks. Methods Enzymol, 266:525-39, 1996.

114. Ulrich LE and Zhulin IB. Four-helix bundle: a ubiquitous sensory module in
prokaryotic signal transduction. Bioinformatics, Vol. 21, piii45-iii48, 2005.

115. Kimura, M. A simple model for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences.
Journal of Molecular Evolution 16: 111-120, 1980.

116. PROTDIST.
http://evolution.genetics.washington.edu/phylip/doc/protdist.html

117. LA Kelley, RM MacCallum, MJ Sternberg. Enhanced genome annotation
using structural profiles in the program 3D-PSSM. J. Mol. Biol, vol 299, pg
499-520, 2000

118. Jonathan D. Partridge, Colin Scott, Yue Tang, Robert K. Poole, and
Jeffrey Green. Escherichia coli Transcriptome Dynamics during the
Transition from Anaerobic to Aerobic Conditions. J. Biol. Chem., Vol. 281,
Issue 38, 27806-27815, September 22, 2006

119. http://www.shewanella.org/whyShewanella.html
120. http://en.wikipedia.org/wiki/Image:Zinc-finger-dot-plot.png
121. Herbordt MC, Model J, Gu Y, Sukhwani B and VanCourt T. Single Pass,

BLAST-Like, Approximate String Matching on FPGAs. IEEE Symposium
on Field-Programmable Custom Computing Machines, FCCM, 2006.

122. Muriki K, Underwood KD, and Sass R. RC-BLAST: towards a portable,
cost-effective open source hardware implementation. Parallel and
Distributed Processing Symposium, proceedings, 19th IEEE international,
2005.

123. Sotiriades E, and Dollas A. Design space exploration for the BLAST
algorithm implementation. 15th annual IEEE symposium on Field-
Programmable Custon Computing Machines, pp. 323-326, 2007

http://evolution.genetics.washington.edu/phylip/doc/protdist.html
http://www.shewanella.org/whyShewanella.html
http://en.wikipedia.org/wiki/Image:Zinc-finger-dot-plot.png

 136

Vita

Bhanu Prasad Rekapalli was born in Hyderabad, a city of great historic

importance in Andrapradesh, India in 1978, son of Lakshmi Sulochana, and

Subba Rao Rekapalli. He attended Siva Sivani public school, which has high

standards of education that laid a strong foundation for the higher studies. After

performing brilliantly in a highly competitive exam, toughest of its kind in the

country, he joined Jawaharlal Nehru Technological University in electrical and

electronics engineering. During his undergraduate education, he got good

foundation in mathematics and basic sciences that broadened his horizon of

knowledge. He was an executive member of the electrical engineering

department that enhanced his leadership skills. He did his practical training

during the final year of undergraduate program in VLSI division of Electronics

Corporation India Limited, and the research project helped him to delve deeper

into challenging fields of microelectronics systems and VLSI design. He received

a B.Tech. degree in Electrical and Electronics Engineering, in June 1999 from

Jawaharlal Nehru Technological University.

He came to United States of America for his graduate education, he joined

University of Tennessee, Knoxville. During his stay in UTK he gained experience

in different kinds of jobs. He tutored mathematics to sophomores and juniors. He

was also both teaching assistant and research assistant in ECE department. The

teaching experience endowed him to gain proficiency in teaching.

 137

 After that he joined WebServices group of Office of Information Technology

(OIT), UTK as a Graduate assistant. His job at WebServices helped him a lot

with his M.S. thesis and Ph.D. dissertation. At the same time he enhanced his

computer skills in database management, design and development of website

applications. He became one of the UT experts in microarray analysis working as

scientific programmer for UT Microarray Database. Which resulted in good

publications and knowledge in the field of microarray analysis. He also designed

and taught a graduate level class in “Microarray Technology and UT Microarray

Database Application”. After receiving the M.S. degree in Electrical Engineering

from UT, he enrolled into Ph.D. at UT.

During the course of his Ph.D. he gained knowledge in the fields of genomics

and proteomics. While working in Dr. Jouline’s lab he became proficient in

designing automated bioinformatics tools for proteomics applications that later

became his dissertation topic. His current research interests are in the fields of

bioinformatics, high performance computing, and computer architecture design

along with microarray analysis. This knowledge of various fields gave him an

opportunity to work as a Postdoc in Oakridge National Labs. His hobbies and

interests include playing golf, working out in gym, water sports, traveling around

the world and dancing.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2007

	Automated Genome-Wide Protein Domain Exploration
	Bhanu Prasad Rekepalli
	Recommended Citation

	Copyright © 2007
	Bhanu Rekapalli
	Dedicated to my mother Lakshmi Sulochana Vemuri and my father Subba Rao Rekapalli
	 Acknowledgements
	 Abstract
	 Table of Contents
	 List of Tables
	 List of Figures
	
	Chapter One
	1.1 Introduction
	1.2 Biology Overview
	1.3 Problem Overview and Motivation
	1.3.1 Problem
	1.3.2 Algorithm
	1.3.3 Challenge

	1.4 Hardware Architectures Overview
	1.5 Scope of Dissertation

	 Chapter Two
	Literature Review
	2.1 Biological Background
	2.1.1 Sequence Alignments

	2.2 Pair-Wise Sequence Alignment Algorithms and Tools
	2.2.1 BLAST Algorithm
	2.2.2 BLAST Suite
	2.2.3 PSI-BLAST

	2.3 Multiple Sequence Alignment Algorithms
	2.3.1 CLUSTALW and MUSCLE

	2.4 Profile Hidden Markov Models and Protein Domain Identification
	2.4.1 HMMER Suite
	2.4.2 Domain Identification Tools

	2.5 Secondary Protein Structure Predictions
	 2.6 Algorithmic and Architectural Accelerators of BLAST and HMMER
	2.6.1 Algorithmic Speedups
	2.6.2 Architectural Speedups

	 Chapter Three
	Automated Tool Chain Design
	3.1 Domain Identification Automated Tool chain (DIAT)
	3.2 Domain Verification Automated Tool chain (DVAT)
	3.3 Domain Discovery Automated Tool chain (DDAT)
	3.4 PepDomDB Database
	3.5 Domain Model Verification

	Chapter Four
	New Domain Model Results
	4.1 Test-bench Files
	4.2 DIAT Results
	4.3 DVAT Results
	4.4 DDAT Results
	4.5 Domain Model Verification Results

	Chapter Five
	Computational Results
	5.1 Architectural Assessment
	5.2 Computation Times for Shewanella and E.coli Genome-Wide Domain Modeling
	5.2 Multicore Architectures and Threading
	5.3 Validation of DIAT
	5.4 Solved Programming Challenges
	5.5 Job Mapping and Distribution
	5.5.1 PSI-BLAST Job Scheduler
	5.5.2 HMMER Job Scheduler

	Chapter Six
	Conclusions and Future work

	References
	 References

	 Vita

