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Abstract 

 

Exploiting the exponentially growing genomics and proteomics data requires high 

quality, automated analysis. Protein domain modeling is a key area of molecular 

biology as it unravels the mysteries of evolution, protein structures, and protein 

functions. A plethora of sequences exist in protein databases with incomplete 

domain knowledge. Hence this research explores automated bioinformatics tools 

for faster protein domain analysis. Automated tool chains described in this 

dissertation generate new protein domain models thus enabling more effective 

genome-wide protein domain analysis. To validate the new tool chains, the 

Shewanella oneidensis and Escherichia coli genomes were processed, resulting 

in a new peptide domain database, detection of poor domain models, and 

identification of likely new domains. The automated tool chains will require 

months or years to model a small genome when executing on a single 

workstation. Therefore the dissertation investigates approaches with grid 

computing and parallel processing to significantly accelerate these bioinformatics 

tool chains. 
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Chapter One 
 

1.1 Introduction 
 

The fields of computational biology and bioinformatics are growing in popularity 

and demand. Research in bioinformatics and computational biology promises to 

improve techniques for the prevention, treatment, and cure of diseases [7]. Life 

sciences research increases the spectrum, demand, and the amount of 

information generated every year [5]. The best example is the human genome 

project. There are around 3.2 billion base pairs and 30,000-40,000 protein-coding 

genes in the human genome alone [54, 55]. There are 401 prokaryotic genomes 

in Comprehensive Microbial Resource (CMR) database [78] and European 

Bioinformatics Institute has 53 eukaryotic genomes. This indicates the vast 

amount of data associated with all genomes that are currently sequenced. The 

cost and time of sequencing genomes is decreasing with techniques such as 

shotgun sequencing [56, 57]. This led to sequencing organisms from different 

phyla. The sequences put in the databases around the world are doubling every 

six months [40]. The growth of the NCBI (National Center for Biotechnology 

Information) database sequences is shown in Figure 1.1 [79,80,81]. 

 

 Many areas in life sciences use the information generated by the genomes for 

research [4]. There is an information revolution, and the data gathering of  
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Figure 1.1:  Growth of NCBI database sequences [79,80,81] over past few 

decades. 
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genomic sequences is increasing at an exponential rate [5, 26], surpassing the 

data analysis algorithms, architectures, and per-node core memory to handle 

such a vast amount of data [26, 40]. Some of the major areas of life sciences 

where an enormous amount of time and money are allocated include 

sequencing, discovery of new genes, gene ontologies, pathway analysis, 

regulatory networks of cells, and microarrays. There is a massive amount of data 

in various databases but there are not enough automated knowledge discovery 

algorithms or dedicated architectures to mine this data [5]. The major challenge 

of bioinformatics is to design computer algorithms and architectures to analyze, 

interpret, and understand all the data within a feasible amount of time. 

 

 

1.2 Biology Overview 
 

This chapter introduces both engineers and biologists to some basics of biology 

and engineering to better understand the problem this dissertation addresses. 

The entire biological and hereditary information of an organism is possessed in 

the genome. The genomes are made of DNA (deoxyribonucleic acid), but for 

some viruses the genome is made of RNA (ribonucleic acid) [82].  The DNA in a 

nuclear genome is made up of chromosomes. DNA is a double stranded nucleic 

acid that is made up of nucleotides that carry genetic information. These 

nucleotides are classified into two groups, the pyrimidines including cytosine (C), 

thymine (T) and uracil (U), and the purines including adenine (A) and guanine 
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(G). The DNA is made of AGCT and in RNA uracil (U) takes place of thymine 

hence RNA is made of AGCU.  

 

The process of transferring genetic information from DNA to RNA is called 

transcription. RNA polymerases are the enzymes which enzymatically transcribe 

DNA into messenger RNA called mRNA. mRNA is used as a template to 

generate the Amino Acid (AA) sequence of proteins. The process of translating 

mRNA to proteins is known as translation. The study of an entire organism’s 

genome and its genes is known as genomics. On the other hand the study of 

proteins and their structure and function is known as proteomics. There are 20 

amino acids in total and each amino acid is made up of three nucleotides known 

as a codon. In eukaryotes, complex organisms including animals, plants, fungi, 

and protozoa, the transcription occurs inside the nucleus and translation occurs 

in cytoplasm outside the nucleus.  The ribosome in the cytoplasm of the cell 

serves as a factory that generates the AA sequences using the mRNA.  

 

This dissertation focuses on proteomics. To better understand the problem, a 

brief introduction of proteins, their structures and folding is introduced here. 

There are 20 different kinds of AAs but they all have in common a central carbon 

atom to which a hydrogen atom, an amino group, and a carboxyl group are 

attached. Amino acids are distinguished by how the side chains attached to the 

central carbon atom through its fourth valence. The biological function of the 

protein can be deduced by the prediction of the three dimensional structure from 
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the amino acid sequence. A chain of amino acids is called a peptide and 

peptides are the building blocks of protein structures. Protein structures can be 

classified into primary, secondary, tertiary, and quaternary shown in Figure 1.2 

[84, 85]. The primary structure is a simple amino acid peptide chain. The 

secondary structures consist of alpha helices and beta sheets that are highly 

regular, locally defined substructures. The tertiary structures are three-

dimensional structures that are spatial arrangements of the secondary structures. 

The quaternary structure is a complex of two or more polypeptide subunit chains. 

 

Proteins are organized further into smaller units such as motifs and domains. 

Motifs are common arrangements or combinations of the secondary structural 

elements. Domains are characterized as semi-independent three-dimensional 

functional and evolutionary units of proteins [13,14,15]. Protein folding is the 

process by which a protein acquires its three dimensional structure to achieve 

the biologically active native state. Protein folding is a major intellectual challenge 

in life sciences and biology that is yet to be solved [83]. The study of protein 

folding is very important as misfolding can lead to various diseases. As there are 

20 different amino acids that can be combined in many possible combinations, 

protein folding prediction remains a huge problem. Hence the protein structures 

are determined experimentally using various techniques such as x-ray 

crystallography, electron crystallography, or nuclear magnetic resonance 

techniques.  



 
 
 
 
 
 
Figure 1.2:  Different stages of protein structures [84, 85], Figure is courtesy of 

National Human Genome Research (NHGRI), by artist Darryl Leja 
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Figure 1.3: Domains of sensory box protein of Shewanella genome from SMART 

database for potential domains  

 

Protein domain discovery is another very important part of life sciences used for 

protein classification, predicting protein structure, function, evolution, and 

modeling [13,14,15].  Figure 1.3 shows the domain information of a sensory box 

protein of the Shewanella oneidensis genome (referred to as Shewanella in the 

rest of the dissertation). Shewanella belongs to the bacteria phylum and the 3D 

structure of a sensory box protein is shown in Figure 1.4. Protein domains have 

limits on their sizes, ranging from around 40 amino acids (AAs) to around 700 

AAs, averaging approximately 100 AAs, although the sizes vary [16,17,18].  

 

Different labs around the world are exploring various types of genetic information; 

one popular field is microarray analysis and another is computational genomics. 

Microarray analysis is expected to produce a peta-byte of data per year [40]. 

Microarrays can house the genes of an entire genome on a single glass slide. 

The microarray technology allows researchers to follow the expression of an 

organism’s entire complement of genes simultaneously in a single experiment 

[74,75,76,77]. There are different types of microarrays such as gene arrays, 

protein arrays, transcription factor arrays, and also DNA microarrays, thus  
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Figure 1.4: 3D structure of sensory box protein of Shewanella genome from 

MODBASE database [61]. 
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populating the databases with a plethora of data [5]. Computational genomics is 

used to study the evolution, diversity, and molecular mechanisms of functions 

such as signal transduction. 

 

The microbiology research group with which we are collaborating is interested in 

solving the problems related to signal transduction in prokaryotes. The group is 

interested in prokaryotic organisms, as they are simpler than eukaryotes but 

sophisticated enough to adjust to environmental changes using detectors and 

transmitters. One of the challenges in genomics is to derive relevant information 

for complete sequenced genomes and this dissertation addresses one such 

problem. This dissertation addresses the problem of protein domain discovery on 

a genome-wide scale using various computing architectures. 

 

 

1.3 Problem Overview and Motivation 
 

1.3.1 Problem 

 

There is a vast amount of knowledge that is yet to be discovered in the field of 

proteomics to better understand evolution, structure and function of the proteins. 

Domains are the key elements of the proteins that aid in understanding 

structures, functions, and evolution of proteins. Currently there are around 1200 

bacterial and archaeal genomes in the MiST (Microbial Signal Transduction)  



 

 
 
 
 
 
 
 
 
Figure 1.5: The regions with arrows represent possible query unknown 

sequences for potential domains 

 

database [51]. There are roughly 5000-proteins in each genome; these proteins 

have one or more known domains. The domains are identified using both the 

Pfam (protein families) [64] and SMART (simple modular architecture research 

tool) [32] databases by the HMMER tool. There are peptide regions in these 

proteins that are greater than 80 AAs and for which no domains are identified by 

the HMMER tools, known as unknown regions. These unknown regions lie 

between two known domains, or between the start of the protein sequence and 

the domain, or after the domain to the end of protein sequence as shown in 

Figure 1.5.  These unknown regions have a potential of being a new domain or 

the result of a poor domain model and hence not identified by HMMER tool. 

 

Discovery of new domains is a tedious and manual procedure. For example the 

FIST domain [87] was discovered after months of research including hundreds of 

profile searches, multiple sequence alignments, structure prediction, and domain 

architecture analysis by one student. At this rate, it will take years of effort to 
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model all the unknown domain regions of a single genome. Hence the need of 

bioinformatics tools and computer architectures arises to increase the rate of 

domain discovery. 

 

 

1.3.2 Algorithm 

 

One practical way to find the domains for these unknown regions is to perform a 

PSI-BLAST search on the unknown region to find the relatives or similar 

sequences for this region. On all the matching regions from the PSI-BLAST 

search, a domain identification check is performed using the HMMER tool 

against the Pfam and SMART databases. PSI-BLAST and HMMER are robust 

and sensitive searching tools that use principles of full probabilistic modeling to 

build models from multiple sequence alignments [36]. PSI-BLAST is sensitive 

and discovers new and interesting protein sequence alignments because of its 

iterative functionality. The HMMER tool is a widely used and important tool for 

protein domain identification. PSI-BLAST and HMMER are run on the query 

unknown region simultaneously for protein domain identification.  

 

Further analysis is performed on all the query sequences for which no domains 

are identified in the above process. The MUSCLE tool is used to build multiple 

sequence alignments and the HMMER tool is used to build the HMMs (Hidden 

Markov Models). These newly built HMMs are searched against the non-
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redundant (nr) database, until all the protein regions that match this HMM model 

are retrieved. Then a final check is performed for known domain models in the 

protein regions resulting from the previous search. If no known domains are 

identified, this implies a potential new domain model is built. Now structure 

predictions and domain architecture analysis are performed to define this new 

domain model. All the above processes PSI-BLAST, HMMER, and MUSCLE are 

performed manually right now, which is tedious and time consuming.  

 

 

1.3.3 Challenge 

 

The problem size is enormous, for 1200 genomes in the MiST database alone 

and assuming there are around 2000 peptide regions per genome with no 

domain information, one would have to run 1200*2000 PSI-BLAST searches and 

perform HMMER searches on the protein regions that resulted from the PSI-

BLAST searches to identify domains. Apart from that, for all the unknown regions 

for which no domains are found, multiple sequence alignments and HMM models 

need to be built and searched against the nr database. The same approach can 

be extended to the entire collection of known proteins available in different 

databases around the world to construct a peptide domain database for all the 

peptides along with discovering new and interesting domains. 
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This dissertation deals with combining the PSI-BLAST, HMMER, and MUSCLE 

tools for protein domain identification and discovery. New bioinformatics 

automated tool chains are proposed for domain identification and discovery to 

enable millions of searches. The embarrassingly parallel nature of this automated 

tool chain is exploited. This led to using cluster-computing techniques to increase 

the rate of domain discovery.  A brief introduction about computers for biologists 

is introduced in next section to better understand the approach used to solve the 

problem later in this dissertation. 

 

 

1.4 Hardware Architectures Overview 
 

The sequences in the databases are growing at an exponential rate [26], and 

doubling their size every six months [40]. According to Moore’s law [27] the 

number of transistors on a chip double every 18 months. Hence the growth of 

single processor speeds (hardware growth) is not able to keep up with the rate of 

sequence growth. The latest trend in processors is the multicore technology, 

where one or more cores are fabricated on the same chip. The success of the 

dual-core technology led to the development of quad-core or more number of 

cores on a single chip [89].  The magnitude of the biological data is so abundant 

that a single processor cannot solve it. This led to the use of clusters of 

computers and supercomputers for sequence analysis along with hardware 

accelerators such as Field Programmable Gate Arrays (FPGAs) and Application 



 14

Specific Integrated Circuits (ASICs). Many biological problems are 

embarrassingly parallel in nature, thus the use of a parallel cluster of 

workstations is an effective solution [90]. One good example is the 

Folding@Home project dedicated to understand protein folding to cure diseases 

by using the processor cycles of the participants’ workstations around the world. 

Addressing problems on a genome-wide scale is a grand challenge that can be 

solved using High Performance Computing (HPC). Two such challenges, 

understanding evolution and discovering protein structure and functions can be 

solved only through use of high-performance computing [91, 92]. 

 

Traditional computers with a single CPU exploit serial computation. Serial 

computing involves executing one instruction after the other in order, to complete 

the problem. In the modern world of computers the size of the applications is 

increasing at a much higher rate than the resources can accommodate 

individually and the speed with which the applications should be executed is 

becoming higher. These fast growing requirements of the life sciences, 

engineering, database, commercial, and business applications and lower time to 

market led to the development of many techniques of computing.  One option is 

to update all the systems available, which increases the cost. The second is to 

use the already existing systems intelligently, where the need for parallel 

computing arises. There is an immense necessity for parallel computing in the 

latest world of computing technology and it is becoming the dominant technique 

in achieving high performance. As the demand of the processing power 
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increased due to the advent of challenging sized problems such as weather and 

climate, chemical or nuclear reactions, biology etc, necessity to reduce the 

computation time arises. Parallel computing has emerged to compete with the 

existing supercomputers [90, 92].  

 

Parallel computing in a simple sense is to simultaneously use multiple 

processors in a computer or multiple computers connected on a network or both, 

to solve a computational problem in lesser time. There are two types of 

parallelism: data parallelism and functional parallelism. Data parallelism is 

concurrently running the same operations on different sets of data. In contrast, 

functional parallelism consists of concurrently executing different operations on a 

single stream of data [94, 95]. Some basic terms involved with parallel computing 

are efficiency, speedups, bandwidth, latency, and task or job. 

 

Memory architectures play a major role in parallel computers. Two major 

approaches are shared memory architectures where all the processors use one 

global memory and distributed memory architectures where each processor has 

its own local memory as shown in Figure 1.6 and 1.7. The largest and fastest 

computers now use combination of both shared and distributed memory 

architectures. For example the cluster used for running automated tools is built 

with Intel Xeon dual core processor with 4GB of RAM, as in Figure 1.8. There are 

several parallel programming models such as shared memory, threading, data 

parallel, and message passing. This dissertation also explores the computation  
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Figure 1.6: Shared memory architecture 
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Figure 1.7: Distributed memory architecture  
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Figure 1.8: Cluster architecture  

 

time taken by the tools used for sequence analysis on single core versus multiple 

core processors along with various memory architectures for performance 

evaluation that are discussed in later chapters.  

 

Traditional computing can be further divided into general purpose computing and 

application-specific computing. Microprocessors are used for the general 

purpose computing. Microprocessors perform a wide range of applications and 

they are flexible. On the contrary they are slow for few applications that require 

huge data processing. This is because of the architecture of the microprocessor 

is fixed. Which means they include the hardware that can perform a limited and 

predefined set of instructions present in the memory and execute them. This 

results in high execution overhead in each operation, thus making it slow.  In the 
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microprocessors, the software programs determine the computation, as the 

hardware is fixed. 

 

On the other hand, for application specific computing, ASICs or FPGAs are used, 

which are used to perform the operations in hardware. The ASICs are designed 

specifically to perform the operations in hardware. The ASICs are fabricated to a 

particular digital design to perform an application and the design cannot be 

altered.  So the ASICs are very fast and efficient in performing specific 

operations for which they are designed but with limited flexibility.  The other 

disadvantages of ASICs are high design and fabrication time, along with high 

cost.  However, they are used in the application in which the speed is an 

important design consideration and economies of scale. 

 

The flexibility of the microprocessor and the speed of the ASICs can be achieved 

with Reconfigurable Computing (RC) architectures.  The main components of the 

RC systems currently used are FPGAs.  The advancements in the design of the 

FPGAs lead to a drastic improvement in the RC systems.  The FPGA basically 

consists of the programmable logic blocks and programmable interconnects. The 

currents FPGAs have static random access memory (SRAM) cells for 

configurations, which improves the flexibility in the design.  The SRAM FPGAs 

are easily re-programmable when compared to one-time programmable devices 

like ASICs or antifuse FPGAs.  Thus, the bug fixes or upgrades are easily 

possible, hence providing an ideal prototyping medium.  
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The automated tool chain designed to solve the domain-modeling problem can 

deal with multiple sequences at a time, allotting one sequence to a node or 

processor. The embarrassingly parallel nature of this biology problem is exploited 

to discover new domains for thousands of proteins found every year in less time. 

When addressing a problem on genome-wide scale there are thousands of 

sequences to manipulate. Thus allotting jobs to available nodes on a cluster can 

become very important part of the research, especially when allotting jobs on a 

very large scale on a supercomputer. The jobs are divided efficiently so that the 

load on the computers are balanced so that no one computer will become a 

bottleneck for analyzing data that is described in more detail in later chapters. 

The next section presents the scope of this dissertation.  

 

 

1.5 Scope of Dissertation 
 

Chapter one introduces the reader to basic concepts of biology and computers 

along with the problem overview and challenge. Chapter two discussed the 

background, literature review, and some related work. Chapter two also 

describes the algorithms of the tools used to build the automated tool chain to 

solve the domain-modeling problem. The automated tool chain designs for 

domain identification, verification, and discovery are described in chapter three 

along with the various databases designed to reduce the computation time. 
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Chapter four illustrates the biological results obtained for Shewanella and 

Escherichia coli (referred to as E.coli from here on) genomes. Chapter five 

describes some performance metrics, threading issues, job mapping algorithms, 

and computation times. Finally chapter six concludes with contributions, 

conclusions, and proposed future work to further enhance the automated tool 

chains that was beyond the scope of this dissertation. 
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Chapter Two 
 

Literature Review 
 

This chapter describes the basic concepts of biology required for protein domain 

modeling, such as sequence alignments, profile searches, multiple alignments, 

and secondary structure predictions. This chapter explains the essential steps 

involved in understanding the biological problem of interest. The key concepts of 

algorithmic and architectural advancements of the bioinformatics tools such as 

BLAST and HMMER used to design the automated tool chains for protein 

domain modeling are explored further. 

 

 

2.1 Biological Background 
 

This dissertation deals with important areas of proteomics such as sequence 

alignments, multiple sequence alignments, HMMs, and domain identification that 

are the key elements for protein domain modeling along with secondary protein 

structure prediction for verification. The rest of the section explains the key 

elements, algorithms, and tools used to build the automated tool chain for protein 

domain modeling. 
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2.1.1 Sequence Alignments 

 

Sequence similarities may be the consequence of structural, functional, and 

evolutionary relationships between the sequences. From the alignment of two 

sequences one can infer the evolutionary relationship, functional domains shared 

between proteins, and transcription-factor binding sites for DNA sequences. The 

functional and evolutionary diversity can be recognized from distant sequence 

relationships. 

 

There are two types of sequence alignments, 

a. Pair-wise sequence alignment: two DNA or protein sequences are 

compared by searching for series of individual characters or character 

patterns that are common. 

b. Multiple sequence alignment: a nucleotide or protein sequence is 

compared with two or more sequences to identify regions of similarity.  

 

The pair-wise sequence alignments are further classified into global alignments 

and local alignments. In global alignment, the full length of the sequence is 

aligned using all sequence characters. On the other hand, local alignment is 

concentrated on the stretches of sequences with the highest density of matches. 

Figure 2.1 illustrates global and local alignments. Three principle methods of 

pair-wise sequence alignments used in common are dot matrix analysis, dynamic 

programming, and word or k-tuple methods.  
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Figure 2.1: Distinction between global and local alignments of protein sequences 

 

The dot matrix method is considered to be the first choice for pairwise alignments 

unless two sequences are known to be similar, because for its graphical display 

as in Figure 2.2. This method is time consuming to analyze large sequences, but 

good for revealing the presence of insertions, deletions, and repeats. The dot 

matrix plot is constructed using two sequences that are to be matched. The top 

most row and the left most column of the matrix are populated using the two 

sequences. A dot is placed at a point where the characters in the appropriate 

column match. Very closely related sequences will appear as a single line along 

the matrix’s diagonal in the dot matrix plot as shown in Figure 2.2.  



 
 
 
Figure 2.2: Dot plot of a human zinc finger transcription factor [120] 
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Needleman and Wunch [11] were first to use dynamic programming algorithm for 

global alignment of protein sequences. Smith and Waterman [10] were first to 

use dynamic programming algorithm for local alignment [7]. Matching all possible 

pairs of characters between the sequences by using a scoring scheme for 

matches, mismatches, and gaps generate the alignment. This procedure 

generates a matrix of numbers and the highest set of sequential scores in the 

matrix defines the optimal alignment. This matrix looks like a normal matrix of 

numbers but aligning two sequences one along the vertical axis and other along 

the horizontal axis as shown in Figure 2.3. For DNA and RNA alignments, a 

positive match score, a negative mismatch score, and a negative gap penalty are 

used for building the matrix. For proteins, a substitution matrix such as the 

percent accepted mutation matrix 250 (PAM250) [59] or the blosum substitution 

matrix 62 (BLOSUM62) [58], are used to score matches and mismatches to build 

the matrix. The dynamic programming algorithm generates optimal alignments at 

the cost of more time due to the large number of computational steps.  

 

The word or k-tuple method is heuristic [7]. First, a search is performed to identify 

short stretches of nonoverlapping subsequences known as word or k-tuple 

between sequences. These words are used to join into alignment using the 

dynamic programming method. This method is not guaranteed to find an optimal 

solution but is significantly faster, efficient, and statistically reliable to provide the 

best scoring alignment possible. The fast nature of this method has made it  

 



 

Figure 2.3: The BLOSUM62 matrix [58]. 

 

suitable to search an entire database of sequences for similarities. The following 

section discusses various tools available for finding sequence similarities. 

 

 

2.2 Pair-Wise Sequence Alignment Algorithms and Tools 
 

Sequence alignment algorithms are one of the most widely used algorithms in 

bioinformatics for finding functional, structural, or evolutionary relationships 

between sequences [21]. Some popular sequence alignment algorithms include 

dot matrix [9], Smith Waterman [10], Needleman and Wunch [11], FASTA [12], 

and BLAST (Basic Local Alignment Search Tool) [1,2]. These sequence 

alignment algorithms use optimized methods such as dynamic programming, 
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heuristic, and probabilistic as a backbone to search huge genomic databases [7]. 

The sequence alignment tools such as Smith Waterman, Needleman and Wunch 

use dynamic programming, BLAST use heuristic methods, and HMMER use 

probabilistic methods. The most popular and widely used sequence-searching 

algorithm is the BLAST algorithm because of its speed, efficiency, and sensitivity 

[2,7]. This dissertation uses the BLAST suite for generating the protein sequence 

similarities that are described in the following section. 

 

 

2.2.1 BLAST Algorithm 

 

The BLAST algorithm is a heuristic method used for sequence similarity search. 

BLAST [1] is faster than dynamic programming methods and FASTA [70], while 

at the same time is also considered to be as sensitive [7]. The BLAST tool is 

publicly available through the NCBI (National Center for Biotechnology 

Information) website and also available through a number of other websites, thus 

making it more popular than other sequence alignment search algorithms [1,2]. 

The BLAST algorithm first generates the common words or k-tuples in the query 

sequence and each database sequence. The length of each word is 3 amino 

acids (e.g. LEA) for proteins and 11 nucleotides (e.g. ATTCGGATCGA) for DNA 

sequences. The alignment score is calculated using substitution matrices such 

as Blosum62 [58] or PAM250 [59], for the match between the words of the query 

sequence and database sequences [7]. This score should be high enough for 



 28

significant matches but not too high to miss short but significant patterns [1]. The 

BLAST algorithm can be used for both gapped and ungapped sequence 

alignment searches. The newer gapped alignment searches are more popular, 

as it runs at approximately three times the speed of the original BLAST [2]. Once 

the significant words are detected, the query sequence is expanded. A cut-off 

score is used as a threshold to pick the most significant matches. Then the 

alignments are extended on either direction of the matching words along the 

sequence as long as the score increases; the extension process is stopped once 

the score is decreasing thus forming a high scoring segment pair (HSP). In the 

recent gapped BLAST [2], the threshold was decreased and sequence alignment 

was only extended if two significant words are lying on the same diagonal (see 

Figure 2.4) and within a specified distance, thus increasing efficiency of BLAST. 

Then based on the statistical significance and expected value ‘E’ (“the E value is 

the chance that a score as high as the one observed between two sequences will 

be found by chance in a search of a database of size D” [7]) the final alignments 

matches are outputted to the results file. 

 

 

2.2.2 BLAST Suite 

The BLAST suite provided by NCBI has different types of BLAST searching 

programs for different types of protein and nucleotide databases as shown in 

Table 2.1.  
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Figure 2.4: Scoring diagonal in BLAST algorithm  
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Table 2.1: BLAST programs. 

Program  Query sequence Database 

BLASTP Protein Protein 

BLASTN Nucleotide Nucleotide 

BLASTX Translated nucleotide Protein  

BLASTN Protein Translated nucleotide 

TBLASTX Translated nucleotide Translated nucleotide 

 

The NCBI databases consist of protein sequences and nucleotide sequences for 

different organism and genomes from various public and independent resources 

in the world. Some popular sequence databases other than NCBI are SwissProt 

[71], European Molecular Biology Laboratory (EMBL) [72], and the DNA 

Databank of Japan (DDBJ) [73]. The NCBI databases also consist of conserved 

domain databases (CDD). The exponential growth of sequences in the NCBI 

database is shown in Figure 1.1. 

 

DNA sequences have only four bases, whereas protein sequences consists of 20 

amino acids (AAs), thus resulting in a larger variety of sequence characters in 

proteins. This increased complexity makes it easier to detect patterns of 

sequence similarity between protein sequences when compared to DNA 

sequences [7]. Thus protein sequence database searches yield more significant 

matches when compared to DNA sequence databases for a specific protein 

sequence [8].  
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2.2.3 PSI-BLAST 

 

Protein search significance shows the importance of PSI-BLAST (Position 

Specific Iterative BLAST), which uses iterative BLASTP. Iterative BLASTP 

searches are more sensitive to locate conserved domains in query protein 

sequences, which is the main focus of this dissertation.  

 

The first iteration of PSI-BLAST is BLASTP with the standard substitution matrix, 

a matrix containing values proportional to the probability that one amino acid is 

replaced by another amino acid for all pairs of amino acids. PSI-BLAST uses the 

gapped BLASTP program for searching the query protein sequence against the 

protein database. Once proteins similar to the query sequence (known as 

relatives) are found, PSI-BLAST constructs a profile and multiple alignments 

based on these relatives. This profile is then compared to the protein database to 

seek local alignments using the BLASTP program. In the second iteration once 

the local alignments are constructed, PSI-BLAST estimates their statistical 

significance to find new relatives.  Now a new profile is generated and PSI-

BLAST iterates using this new profile. The process is repeated for a given 

number of iterations or until no new relatives or protein sequence matches are 

found thus reaching convergence [2, 60]. In this research we used four iterations 

as they are sufficient for sensitive homology searching, and any more iterations  
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may lead to profile wander [29, 52]. Figure 2.5 illustrates PSI-BLAST. 

 

 

2.3 Multiple Sequence Alignment Algorithms 
 

Sequences of different organism are often related. Based on the evolutionary 

process genes are conserved across widely divergent species. These genes 

sometimes perform the same functions and sometime mutate to perform different 

functions through the application of natural selection [7]. Hence multiple 

sequence alignments play a major role in assessing the sequence conservation 

of structural and functional properties among the family of sequences. Multiple 

alignments of proteins are used for applications such as phylogenetic tree 

estimation, secondary structure prediction, and critical residue identification 

[103]. In this dissertation the multiple sequence alignments of protein sequences 

are used to build HMMs and for secondary structure prediction. Multiple 

sequence alignments are more difficult than pairwise alignments, thus MSAs 

require sophisticated methodologies such as heuristic methods. Some popular 

MSA tools are CLUSTALW [99], T-COFFEE [100], MAFFT [101], PRALINE 

[102], MUSCLE [103], and DIALIGN-T [104]. This dissertation uses CLUSTALW 

and MUSCLE for building MSAs as described in the following section. The  



 
 
Figure 2.5: Working of PSI-BLAST [2, 98]. 
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multiple sequence alignment of the MCP domain against the NR database is 

shown in Figure 2.6. 

 

 

2.3.1 CLUSTALW and MUSCLE 

 

CLUSTALW is a popular multiple sequence alignment program available since 

1988, where W represents the weights allocated to the sequences. CLUSTALW 

first performs pair-wise alignments of the sequences. Then the phylogenetic tree 

is built based on the alignment scores of genetic distance between the 

sequences. Finally dynamic programming is used to align the sequences 

sequentially [99]. This implies most closely related sequences are aligned first 

and other sequences are added to this alignment. 

 

MUSCLE has three stages: draft progressive, improved progressive, and 

refinement. At each stage a MSA is generated and improved in the succeeding 

stage. In stage one, a draft MSA is generated first from the similarity measure 

using the k-mer counting or global alignments. The triangular distance matrix is 

built from the pairwise similarities and a tree is constructed from the matrix. An 

alignment is built by following the tree to the root. In stage two, a similarity 

measure is computed using the fractional identity computed in the previous 

multiple alignments. A tree is constructed using a Kimura distance matrix 

(defined below) and this tree is compared with the previous one. Stage two  



 
 
 
Figure 2.6. Multiple sequence alignment of MCP domain against NR database. 
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iterates until the tree converges when a new progressive alignment is built. In 

stage three, the multiple alignment is further refined and the process iterates a 

user specified number of times unless it converges.  

 

Kimura distance: This is a rough-and-ready distance formula for 

approximating PAM distance by simply measuring the fraction of amino 

acids, p, that differs between two sequences and computing the distance 

as [115,116] 

D e= log ( 1 -  p -  0.2 p   )2

 

MUSCLE is used because of its speed and accuracy; MUSCLE is as accurate as 

CLUSTALW [99] and takes two to three orders of magnitude less time than 

CLUSTALW [103]. On the other hand CLUSTALW is also used in this 

dissertation as some of the secondary structure prediction tools take the 

alignment only from the CLUSTALW program. 

 

 

2.4 Profile Hidden Markov Models and Protein Domain Identification 
 

A multiple sequence alignment of homologous sequences is generated using a 

Hidden Markov Model (HMM) considering different possible combinations of 

matches, mismatches, and gaps. A profile HMM represents a multiple sequence 

alignment profile. The profile HMMs are used for gene finding, sequence 
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composition and pattern analysis, phylogenetic analysis, and protein secondary 

structure prediction [36]. Sequence Alignment and Modeling Software System 

(SAM) [37, 38] and HMMER are commonly used HMM tools. HMMER operations 

rely on accurate construction of the profile HMMs. These HMMs are applied to 

protein sequence databases for homology determinations used for extending the 

protein families that are used for finding functional annotations of query 

sequence. HMMER functions are based upon a profile HMM architecture which 

is constructed using a plan-7 model [39]. The plan-7 architecture is constructed 

using the Viterbi algorithm [37, 39]. The HMMER tool package is used to search 

the protein sequences against the protein domain databases of HMM models 

and identifies the protein domains in the query protein sequence [36]. 

 

 

2.4.1 HMMER Suite 

 

The HMMER package is widely used for the detection of protein sequence 

homology, functional annotation, and protein family classification. It uses profile 

Hidden Markov Model (HMM) methods for sensitive database searches. Multiple 

sequence alignments are used as search queries to build statistical models for 

database searches. The HMMER package has different programs for use [28].  

• Hmmbuild: builds profile HMMs using multiple sequence alignments 

• Hmmcalibrate: calculates accurate expectation values for sensitive 

database searches 
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• Hmmsearch: searches for new homologies using the profile HMMs 

• Hmmpfam: identifies protein domains 

• Hmmalign: aligns multiple sequences to an existing model 

• Hmmindex: indexes the HMM database 

• Hmmfetch: extracts a model from HMM database 

• Hmmconvert: converts file formats  

• Hmmemit: emits sequences from the HMM database 

Hmmpfam is used for detecting known domains in a query sequence by 

searching against the library of profile HMMs such as the Pfam and SMART 

databases. The input to the HMMER tool is the file with the query sequence or a 

batch file with multiple sequences, which is searched against the database of 

HMMs.  Query sequences are searched one at a time and each search is 

independent of the other. Thus, HMMER searches can be easily made 

concurrent by exploiting embarrassing parallelism similar to BLAST searches. 

Figure 2.7 shows the working of the HMMER programs [105]. 

 

 

2.4.2 Domain Identification Tools 

 

Different domain resources such as Interpro [62], PROSITE [63], Pfam [64], 

PRINTS [65], ProDom [66], SMART [34], and CDD [67] are available [58]. Many  



 
 
Figure 2.7: Working of HMMER tool [105]. 

 

 

 

 

 

 

 

 39



 40

techniques and algorithms are proposed for protein domain identification and 

discovery; this dissertation surveys them.  DOMAINATION, a web-based tool, 

recognizes domain insertions and permutations [29].  DOMAINATION uses PSI-

BLAST along with methods to cut the query sequence into domains.  Once the 

query sequence is cut into domains, PSI-BLAST is run on each domain to 

generate a Multiple Sequence Alignment (MSA) and the results from PSI-BLAST 

are then used for further database searches.  The process is repeated until no 

more new sequences are found by PSI-BLAST or domain cutting finishes. 

 

MyHits is an interactive web server with resources for protein annotations and 

domain identification [30].  There are two different types of MyHits users. One is 

a guest user who can access searches only for publicly available databases and 

another is a requested user who has access to both private and public 

databases. MyHits includes standard bioinformatics tools for use along with 

protein motif databases. These databases contain pre-computed lists of matches 

between the sequences and motif databases [30]. 

 

THOR is another web-based tool for domain discovery [31]. THOR compares the 

HSPs (High Scoring Pairs) generated by all significant hmmsearch searches of 

the HMMER tool.  New alignments and HMMs are built using hmmalign, 

hmmbuild, and hmmcalibrate. This iterative procedure is repeated until no new 

entries are added to the alignment to generate a final alignment, which is used 

for domain discovery [31]. 



 41

 

SMART (Simple Modular Architecture Research Tool) [32] is another web-based 

tool for protein domain identification and analysis of domain architectures with an 

emphasis on eukaryotic mobile and signal transduction domains. Later SMART 

included extracellular GPS and PSI domains, intracellular signaling domains, and 

splicing factor domains with all the members of a domain family having complete 

taxonomic information. SMART uses HMMER2 to search their HMMs [32, 33]. 

 

Lachlan et al [35] used the HMMER tool to search the Pfam database. They 

included the knowledge of the taxonomic distribution of protein domains for 

searching the Pfam database to enhance protein domain recognition, which was 

validated using PSI-BLAST.  They found 4447 new instances of Pfam domains in 

the SP-TREMBL database by including the taxonomic distribution [34].  

 

DOMPRO employs machine learning in the form of recursive neural networks for 

domain identification [35]. The neural networks are a combination of profile 

derived from evolutionary information using PSI-BLAST predicted secondary 

structures and predicted relative solvent accessibility in a 1D-recursive neural 

network.  

 

These are commonly used tools and algorithms for protein domain identification. 

Various algorithmic and architectural improvements for the BLAST and HMMER 

tools are described in section 2.6.  
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2.5 Secondary Protein Structure Predictions 
 

Secondary structure predictions help in deriving protein structures and functions. 

The secondary structure prediction applications assist in classifying proteins, 

separating domains, and identifying functional motifs [106]. The secondary 

structure predictions can be particularly helpful in determining tertiary structures 

via fold recognition methods [107, 108]. New concepts and approaches are 

proposed for secondary structure predictions and improvements. Some of the 

popular approaches that claimed to have higher accuracy are the combination of 

neural networks and the position-specific scoring matrix generated from PSI-

BLAST, a support vector machines approach, and a simple statistical model 

approach [106].  

 

Various tools used for secondary structure predictions are PSIPRED [109], Sspro 

[110], PROF [111], Jpred2 [112], PHD [113], and SVMpsi [107]. According to 

Burkhard Rost [108] 88% is the limit of prediction accuracy; according to his 

review PROF and PSIPRED are the two tools best attaining 77% and 76.6% of 

accuracy. The SVMpsi claims to have attained 78.5% accuracy, the highest 

reported.  

 

The prediction method in PSIPRED is divided into three stages. In the first stage 

PSI-BLAST is used to build profiles using the custom sequence database instead 

of the nr database. In the second stage a neural network architecture is used to 
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build the initial secondary structures. Finally the predicted structures are filtered 

in the third stage to produce accurate secondary structures. The new release of 

PSIPRED2 achieved 78% accuracy on average. 

 

VISSA (Visualization of Secondary Structure elements of Improving multiple 

Alignments) provides a good color-oriented visualization of predicted secondary 

structures to check for the consistency between multiple sequence alignment 

features and the secondary structures [114]. The VISSA technique consists of 

data processing and visualization. In data processing CLUSTALW is used for 

generating the MSAs and the secondary structures are predicted for each 

sequence using PSIPRED. An XML file is generated with the alignments, 

predicted secondary structures, metadata, and confidence values. This 

dissertation uses PSIPRED and VISSA [114] for secondary structure predictions 

and visualization to verify the new domain models generated by the automated 

tool chains that are described in the third chapter.  

 

All the above sections describe the background relating to the problem 

addressed in the dissertation. The next few sections describe the algorithmic and 

architectural advancements to reduce the computation time. 
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2.6 Algorithmic and Architectural Accelerators of BLAST and HMMER  
 

Different algorithmic and architectural approaches were used to speedup the 

BLAST and HMMER tools; these are described in the following sections.  Three 

levels of parallelism exist for large batch BLAST processing: fine grained, 

medium grained, and coarse grained. In fine-grained parallelism, the 

comparisons of alignments are done in parallel. One input query sequence is 

aligned with one target sequence of the database, and the alignments of the 

comparison are done concurrently. In medium grained parallelism the database 

is partitioned into fragments, and one input query sequence is aligned with 

multiple target sequences of each database fragment in parallel. In coarse-

grained parallelism, the database is replicated and multiple input query 

sequences are independently processed using this replicated database [19,20]. 

 

The nucleotide and protein sequences in various databases are growing at an 

exponential rate [26], and doubling their size every six months [40], but according 

to Moore’s law [27] the number of transistors on a chip double every 18 months. 

Processor performance improvements are not keeping up with the growth of 

sequence databases. This led to porting of the BLAST and HMMER algorithms 

onto supercomputers, clusters of computers, shared memory architectures, and 

also network of workstations. Parallel virtual machine (PVM) libraries [19] along 

with message passing interface (MPI) [23] libraries and Linda [19, 20] were used 

to speed up both BLAST and HMM searches.  
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2.6.1 Algorithmic Speedups  

 

The past decade, many parallel approaches of BLAST were developed such as 

TurboBLAST [21], Hyper-BLAST [22], mpiBLAST [23], BLAST services on 

OBIGrid [25], and ScalaBLAST [26]. There are advantages and limitations with 

each of these different parallel BLAST algorithms. NCBI has developed their own 

multithreaded version of BLAST on shared-memory multiprocessor architectures 

[21]. This multithreaded version does not scale up very well because of the 

bandwidth limitations of the number of processors on a bus in shared-memory 

multiprocessor. TurboBLAST addresses the problem of multithreaded BLAST by 

coordinating the use of multiple copies of serial BLAST applications. 

TurboBLAST uses networked clusters of heterogeneous personal computers or 

workstations for multiple copies of serial BLAST to provide results similar to NCBI 

BLAST. TurboBLAST is also portable to parallel supercomputers and worldwide 

computing grids [21]. The developers of TurboBLAST claim a speedup of 16X 

with 11 nodes and a speedup of 14X on 8 nodes for two different data sets [21]. 

On the other hand Hyper-BLAST claims to overcome the limitations of inter-node 

parallelism by logically partitioning the database, proper initiation, and the 

coordination of communication protocols of BLAST used on the remote node. 

The developers of Hyper-BLAST claim to achieve a speedup of 12X on a 2-way 

8-node cluster [22]. 
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Since BLAST is both computationally intensive and embarrassingly parallel for 

independent BLAST sequence searches, MPI is used by mpiBLAST to parallelize 

BLAST [23]. In mpiBLAST the database is divided into fragments. Each node 

searches a smaller portion of the database, as the communication demands are 

not heavy. This database segmentation reduces the overhead of disk I/O and 

intercommunication between nodes achieving good speedups [23]. The authors 

of mpiBLAST [23] claim achieving near linear speedups of BLAST in most cases 

and super-linear speedups in low memory cases for hundreds of nodes. The 

pioBLAST is an optimized version of mpiBLAST, which allows flexible database 

partitioning using caching techniques, enabling parallel I/O on shared files and 

performing scalable result processing protocols [24]. 

 

 High-throughput GRIDBLAST services are provided by OBIGrid [25]. The 

GRIDBLAST system consists of a query splitter, job dispatcher, task manager, 

results collector, and formatter. It uses servers and heterogeneous remote 

worker nodes, with different BLAST implementations and job schedulers for 

massive batch processing. 

 

The parallel approaches described above are scalable from tens to hundreds of 

nodes but cannot handle thousands of nodes [26]. Hence the developers of a 

new parallel approach called ScalaBLAST [26] claims it scales linearly to 

thousands of processors on both distributed memory and shared memory 

architectures. ScalaBLAST adopted the features of previously implemented 
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parallel BLAST algorithms such as distributing the target databases across 

available memory, multi-level parallelism, parallel I/O, and latency hiding 

techniques through data pre-fetching, and effective task scheduling, for huge 

batch processing inputs [26]. 

 

 

2.6.2 Architectural Speedups  

 

To speed up sequence analysis and protein domain identification, different types 

of computer architectures and custom-built hardware architectures are used. This 

dissertation targets job level parallelism for PSI-BLAST. Since there is no 

dependency between two PSI-BLAST sequence searches, and cluster 

computing is a cost effective solution to speedup such applications  [41]. 

Supercomputers such as Blue Gene/L are needed for applications that require 

millions of BLAST searches per day.  A Blue Gene/L system comprised of 4096 

nodes with dual 700 MHz PowerPC 440d processors is capable of performing 2 

million BLAST searches a day against the nr (non-redundant) database that had 

2.5 million-protein sequences at that time, achieving good speedups and 

efficiency [42]. BLAST searches are memory, bandwidth, and I/O intensive 

programs [43, 44]. On shared memory processor systems, BLAST uses threads 

to achieve parallelism [43]. In shared memory processor architectures bus 

bandwidth can be a problem if all the processors share the same memory bus. 

Specialized hardware architectures used to speedup BLAST include Processor 
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In Memory (PIM) [44], and Field Programmable Gate Arrays (FPGAs) [45, 121, 

122, 123]. 

 

Both coarse-grained and fine-grained parallelism is exploited to design 

specialized hardware architectures to accelerate HMMER algorithms. HMMER is 

a computationally intensive algorithm, so higher the processor speed the faster 

the execution [46]. Hyper-threading and load balancing play significant roles in 

increasing speedups of HMMER [46]. JackHMMER exploits the coarse-grained 

parallelism to accelerate the profile-HMM searches [47]. JackHMMER [47] is a 

version of HMMER designed to run on an Intel IXP 2850 network processor that 

consists of heterogeneous multi-core processors. It uses a high degree of thread 

level parallelism on network processors, which outperforms the hyper-threaded 

HMMER version on Pentium 4. ClawHMMER, a streaming algorithm written in 

the Brook language, is a version of HMMER designed to run on graphics 

processors outperforms CPU implementations by many folds shown in table 2 of 

the paper [48].  FPGAs are used to design an accelerator for HMM search that 

exploits both coarse-grained and fine-grained parallelism [49]. FPGA-based 

hardware accelerator of HMM search achieved 100-fold speedup over the 

software HMM search implementation [49].  Opteron processors are also used to 

accelerate HMMER searches with minimally invasive recoding, and the authors 

claim to achieve better performances than Intel architectures [50]. This 

dissertation will take advantage of available accelerated algorithms and 

architectures and use them to accelerate our automated tool chain for protein 
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domain modeling. The next chapter describes the automated tool chain design 

for addressing the protein domain-modeling problem. 
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Chapter Three 
 

Automated Tool Chain Design 
 

There are three different aspects of protein domain modeling: domain 

identification, domain verification, and domain discovery. Hence for the domain 

identification process we used PSI-BLAST to get all the immediate relatives of 

the query unknown region, and then performed a HMMER search on the 

resultant similarity matched sequences. The HMMER tool identified the domain 

models for some immediate relatives of the query unknown regions. This shows 

the domain models in Pfam database are not sensitive enough to consider all 

plausible relatives of an unknown region. Hence tools currently in use such as 

HMMER are not sensitive enough by themselves to identify all plausible domains 

for a specific unknown region from the given Pfam domain models.  

 

Thus the combination of the PSI-BLAST and HMMER tools are explored to 

search deeper and get all probable relatives, even more distant ones, of the 

query unknown region and check whether HMMER identifies any domains for 

these sequences. For domain verification process one has to perform exhaustive 

PSI-BLAST searches on every matching unknown region till no new matching 

proteins are acquired. The exhaustive PSI-blast process is an attempt to define 

the entire space of related sequences in the nr database, which is tedious and 

time consuming. Hence we took ten matched peptide sequences from the PSI-

BLAST resultant file, picked five from the middle and five from the bottom of the 
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resultant proteins. These ten sequences are the matching regions of the resultant 

proteins that are similar to our query unknown region but not the entire protein 

sequence. Now PSI-BLAST is run on these 10 sequences individually that will 

result in most of the related sequence space. HMMER tool is used to identify the 

domains for these resultant proteins from the PSI-BLAST searches and check 

any domains existed in these similarity regions. Again some domains were 

identified in these distant relatives that were missed before. Thus concluding the 

domain models in the Pfam database are not good enough to identify domains 

for these distant relatives. By domain verification process, we make sure that no 

domain knowledge is currently present for the query unknown regions for which 

no domains are found. These peptide regions are used for discovering new 

protein domain models. 

 

This led to the development of a tool chain that is sensitive enough to find all the 

domains that are likely for a protein, also considering related proteins to that 

specific query protein. PSI-BLAST is a sensitive searching tool that identifies all 

probable related proteins or relatives that matched the specific query protein. 

Then hmmpfam is run on all the related proteins from PSI-BLAST to identify the 

domains. This process is performed manually, which takes a considerable 

amount of time per query sequence, and currently there are no publicly available 

tools to automate this process. This led to the development of the automated tool 

chains that combine the PSI-BLAST and HMMER tools for domain identification 

and domain verification that are described in the sections 3.1 and 3.2.  
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Once the domains of all proteins of a specific genome are identified using 

hmmpfam search using the Pfam database by the automated tool chain. There 

are many peptide regions in these proteins for which no domains are identified 

but have potential regions for new domains. This resulted in the development of 

a new automated tool chain that can be used for domain discovery. We retrieve 

all the peptide regions for which no domains are identified based on the existing 

domain model databases using the domain identification and domain verification 

tool chains. This new automated tool chain uses a combination of the MUSCLE 

and HMMER tools to discover new domain models. First all the sequence 

similarity regions resulting from the PSI-BLAST search are retrieved. Then the 

MUSCLE tool is used to generate the multiple sequence alignments. The 

HMMER tools are used to generate the new domain models and are also used 

for verification of  these newly generated models. The automated tool chain used 

for domain discovery is explained in the section 3.3. 

 

 

3.1 Domain Identification Automated Tool chain (DIAT) 
 

This section describes different tools used in this automated tool chain along with 

improvements implemented to reduce the computation time. Two different tools 

of the NCBI BLAST suite, one tool of the HMMER package, and resultant data 

file manipulation tools are used to design this automated tool chain. First, all the 
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unknown regions for which there are no domains identified by HMMER tool for a 

specific genome are extracted. Shewanella and E.coli genomes were used as 

the test bench genomes for this dissertation. All the unknown regions that do not 

have any domains are extracted from the MIST database. Only the unknown 

regions greater than 80 AA are considered for further analysis, as the smaller 

domains averages around 100 AA in size. For these peptides, the BLAST input 

generator tool (as shown in Figure 3.1) generates a fasta format file known as 

PSIIN as shown in Figure 3.2. These fasta files are inputs to the automated tool 

chain. Now the blastpgp tool is used to get all the closest relatives of the query 

unknown region from the protein database as shown in Figure 3.3. The various 

parameters used for running the blastpgp tool are described below. 

 

The database used for searching is the nr (non-redundant) protein database 

(Figure 3.4). Four PSI-BLAST iterations are sufficient for sensitive homology 

searching, and any more iterations may lead to profile wander [29, 52]. The 

output file can be generated in different file formats such as text, XML, and 

ASCII. Two parsing tools are written one for parsing the tab delimited BLAST 

output and another for XML BLAST output. 

 

The PSI-BLAST tool generates an output file known as PSIOUT as shown in 

Figure 3.5. PSIOUT is parsed using the BLAST results parsing tool and all the 

proteins that pass the threshold of 0.001 are extracted to reduce the false  
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Figure 3.1: BLAST input generator  
 
 
 
 
>24371603_342-457 
LTGENLEMTEEKGYSVYRISAKTGLGVDELKQHLKSLMGYQSNLEGGFIARRR
HLEALEIAASHLQLGKEQLEVYLAGELLAEELRMAQLALSEITGRFTSDDLLGKIF
SSFCIGK 
 
Figure 3.2: Input query (unknown region) to PSI-BLAST. 
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Figure 3.3: The core modules of the DIAT 
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Figure 3.4: Screenshot of section of nr protein database 
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Figure 3.5: Tab-delimited PSI-BLAST output file (PSIOUT)  
 
 
 
 
 
 
 
 
 
 

 

 57



 58

positives [2, 29]. The resulting PROTOUT file from the parsing tool consists of 

the protein identification number in the GenBank Identification number along with 

the starting and ending AA sequence numbers representing the region of the 

similarity match with the query sequence. The entries in the PROTOUT file are 

sorted in assending order based on e-value. 

 

Based on prior knowledge and the design of the automated tool chain, a 

database was created to save computation time. A reference database known as 

refDB with two tables, refProteins and refDomains, is created. The refProteins 

table consists of the ID and name for each new protein resulting from PSI-BLAST 

searches. The refDomains table consists of all the domain information resulted 

from hmmpfam searches, such as domain name, the starting and ending AA 

sequence numbers representing the domain region and protein name that 

resulted in the above domain. These two tables are used as a database to house 

the information of every new protein hit from the DIAT tool chain. 

 

Once the results from PSI-BLAST are obtained, the Hmmer input generator tool 

checks the protein IDs against the refDB database to see whether there are any 

hits in the database as shown in Figure 3.6. Only the new protein hits that are not 

present in refProteins table are used to generate the input file for the HMMER 

tool. For the proteins that are found in the refDB, domain information is retrieved 

from the refDomains table for further analysis. 
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Figure 3.6: HMMER input generator  
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Next db2fasta is used to extract the fasta sequences for all the proteins from the 

nr database and populate a fasta file known as HMMIN by the Hmmer input 

generator tool. This file is used as the input file for the HMMER tool. The 

hmmpfam  of HMMER tool is used for the domain identification, which outputs all 

the domains possible for the proteins in HMMIN using the Pfam database shown 

in Figure 3.3. The hmmpfam tool evaluates whether a match is significant or not 

and outputs the domains with significant matches using the Pfam database 

(Figure 3.7). 

 

The hmmpfam output is a huge text file known as HMMOUT with all the proteins 

and their significant domains as shown in Figure 3.8. The HMMER results parser 

tool is used to parse HMMOUT and output the results into a file known as 

DOMOUT1 with protein name, domain names, and the starting and ending AA 

sequence numbers representing the domain region. The data from the 

DOMOUT1 file is used to populate the refDomains table of the refDB database. 

Once the results from the HMMER tool are generated, the new domain 

information for the new protein hits along with the domain information of the 

repeated proteins from the refDomains table is used to generate the DOMOUT2 

file. DOMOUT2 file consists of the entire domain information for all the proteins in 

the PROTOUT file for the respective query unknown region. As the number of 

proteins in the refDB database increases, the chances of finding protein hits from 

the database tables increases, thus reducing the computational time drastically 

by eliminating the need for HMMER reevaluations. 



 

 
 
Figure 3.7: Screenshot of section of Pfam Database  
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Figure 3.8:Typical HMMER output file (HMMOUT) 
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Finally, the final results parser tool compares the outputs generated by the PSI-

BLAST results parser tool (PROTOUT) and the HMMER results parser tool 

(DOMOUT2) to check whether there are any domains present in the similarity 

regions of the matching proteins and populates the FINALOUT file. The 

FINALOUT consists of the entire protein and domain information. If the tool chain 

identifies no domains, FINALOUT reflects this result.  The flow diagram of the 

DIAT is shown in Figure 3.9. Once all FINALOUT files of all the unknown regions 

are generated, these files are parsed and the domains identified for the unknown 

regions of the entire genome are used to populate the PepDomDB database that 

is describe in the section 3.4. 

 
 

3.2 Domain Verification Automated Tool chain (DVAT) 
 

The same tool set used for DIAT is used in DVAT but is slightly modified for 

speculative domain discovery and this process is called domain verification. Two 

different tools of the NCBI BLAST suite, one tool of the HMMER package, and 

data file manipulation tools are used to design this automated tool chain. The 

input to DVAT is all the unknown regions for which no domains are identified by 

DIAT along with the PSIOUT files from DIAT of the respective query unknown 

region. In DIAT only the close relatives for the specific query unknown region are 

found but in DVAT all the possible relatives for the specific unknown region are 

found by repeating the PSI-BLAST on various protein hits obtained from the PSI-

BLAST results of the DIAT tool chain. 
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The flow diagram of DVAT is shown in Figure 3.10. The DVAT tool chain 

incorporates the DIAT approaches to save time. First ten proteins are picked 

from the PSI-BLAST resultant file of a specific unknown region. Five of these ten 

proteins are picked from the middle of the PROTOUT file and five from the end of 

the PROTOUT file. Then the similarity matching AA regions to the query 

unknown region are extracted for all these ten proteins from the fasta sequence 

file generated by the db2fasta tool from the nr database. Finally these ten 

matching sequence regions are used as the input to the PSI-BLAST searches 

instead of the entire fasta sequence of these similar proteins. 

 

PSI-BLAST is run on all these ten matching sequence regions for four iterations. 

The PSIOUT files from the PSI-BLAST search are parsed and PROTOUT files 

are generated. The proteins from the PROTOUT files are first searched against 

the refDB database to check the repeated proteins. Only new proteins hits are 

used to generate the fasta sequence file that is used as the input to the HMMER 

tool. For all the repeated proteins, domain information is retrieved from the 

refDomains table of the refDB and the DOMOUT1 file is populated for further 

analysis. Next hmmpfam is run on all the new protein hits for domain verification, 

and the domain regions are compared to the matching peptide sequences to see 

whether there are any domains present in these regions similar to the DIAT 

results. Also the refDB is updated from the results generated from the HMMER 

process similar as in DIAT tool chain. A careful check is performed to match the 

results from hmmpfam to the correct peptide sequences, as there are ten  
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Figure 3.10: The Domain Verification Automated Tool chain flow 
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matching sequence regions here instead of one unknown region as in the DIAT 

tool for a query sequence. This process is repeated on all unknown regions of 

the input genome data file for which no domains were identified by the DIAT 

process. 

 

If any domains are identified for either of these 10 matching peptide sequences, 

the DVAT tool chain will disregard this unknown region for speculative domain 

discovery. This means there are domains for the distant relative of the specific 

query sequence, and hence these unknown regions are not used for new domain 

discovery modeling. The rest of the unknown regions for which no domains are 

identified in any of the ten matching regions are the templates for speculative 

domains; these are used for the domain discovery process as described in the 

following section. 

 

 

3.3 Domain Discovery Automated Tool chain (DDAT) 
 

The domain discovery automated tool chain uses a different set of tools when 

compared to DIAT and DVAT for domain discovery process. We use the 

MUSCLE and HMMER tools along with resultant data file manipulation tools for 

domain discovery. The core modules used for building DDAT are shown in 

Figure 3.11. All sequences for which no domains are found in either the domain 

identification or domain verification processes, are used as inputs to the DDAT  
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tool chain. First the MSA (Multiple Sequence Alignment) input generator retrieves 

all the resultant protein matches from the PSI-BLAST search for the specific 

query sequence. The input to this tool is the PROTOUT file generated by the 

DIAT tool chain. Then retrieving the amino acids sequence of the matched 

regions of the resultant similar proteins generates the MSAIN file. The flow 

diagram of the MSA input generator is shown in Figure 3.12.  

 
 
As shown in Figure 3.11 the MSAIN file is fed to the MUSCLE tool for generating 

the multiple sequence alignments. The input to MUSCLE is either the amino acid 

or nucleotide sequences. The multiple sequence alignment file generated by 

MUSCLE is known as MSAOUT as shown in Figure 3.11. The MSAOUT file is 

inputted to the HMMER tool and hmmbuild is run on the multiple sequence 

alignments to build a HMM. This HMM is calibrated using hmmcalibrate. The 

HMM file is known as HMMOUT. HMMOUT is then fed into hmmsearch to search 

against the nr database for matching proteins. The resultant file from hmmsearch 

has proteins and matching regions similar to the PROTOUT file from the DIAT 

tool chain, hence it is called PROTOUT1 as shown in Figure 3.11. 

 

A comparison of the protein results from hmmsearch and the proteins used to 

generate the MSAIN file is performed to check whether there are any additional 

proteins resulted from the hmmsearch. If no new proteins are found this indicates 

that the HMM model generated by the DDAT tool chain is a potential new domain 

model. If new proteins resulted from the hmmsearch are not in MSAIN proteins, 
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Figure 3.12: The multiple sequence alignment (MSA) input generator 
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this will result in further analysis of these new proteins. These additional proteins 

are then fed into HMMER tool and the hmmpfam along with the refDB is used to 

get the domains for these additional proteins. Then all the domain information is 

retrieved to build a DOMOUT2 file either by running hmmpfam on the new 

proteins or checking the refDB for existing proteins as shown in Figure 3.13. If 

the matching regions of these proteins correspond to an already existing domain 

model, this will imply that these are poor domain models in the Pfam database 

and need to be improved. And if the matching regions of these proteins do not 

result in any known domains, this implies that this HMM is a potential new 

domain model.   

 

The Figure 3.13 shows the flow of the DDAT tool chain. The FINALOUT resulted 

from the tool chain will reflect whether the HMM model generated by the DDAT 

tool chain is either a new domain model or a poor existing model. These models 

are further analyzed by checking whether there are any secondary structures for 

these domain models. This output of the tool chain will give biologist a starting 

point to work on new domains rather than wasting time exploring the huge 

sequence space. 
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3.4 PepDomDB Database 
 

 
The PepDomDB database consists of the unknown regions for which domains 

were identified in the DIAT and DVAT tool chains. The database consists of the 

peptide id along with sequence information in PepInfo table. Domain information 

in DomInfo table consists of the respective peptide id to which this domain 

belongs, along with the domain name and domain sequence from and domain 

sequence to. This PepDomDB database can be used to further reduce the total 

computation time with a modified approach as follows. Whenever a new peptide 

sequence is sequenced. If the researcher wants to know the possible domains. 

One can search against the PepDomDB if the sequence matches 100 percent, 

then the domain information can be retrieved from the database. The 

computation time to retrieve information from the PepDomDB will be much 

smaller than the computation time required to run the DIAT and DVAT process 

on the peptide sequence. This PepDomDB database will be useful when it is 

made publicly available. 

 

 

3.5 Domain Model Verification 
 

The new domain models of Shewanella and E.coli genomes resulted from the 

unknown regions that are greater than 80 amino acids long and are between two 

known domains are used for further analysis. The secondary structures were 
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developed for these new domain models using VISSA [114] to check for the 

alpha helixes and beta sheets. Further these sequences were uploaded to 

PHYRE [117] (Protein Homology/analogY Recognition Engine) to check for the 

resemblance with the existing known domains or protein structures. 

  

The next chapter describes the protein domain modeling results obtained by 

using Shewanella and E.coli genomes.  
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Chapter Four 
 

New Domain Model Results 
 

In this chapter we discuss the results obtained from the three phases of the 

genome-wide protein domain exploration using automated tool chains. 

Shewanella and E.coli genome sequences are used and the domain models for 

these two genomes are constructed. Figure 4.1 and 4.2 shows the different 

length distributions of the unknown sequences obtained from the Shewanella and 

E.coli genomes respectively. The automated tool chain generated new domain 

models for both the Shewanella and E.coli genomes, proving the robustness of 

the design.  

 

The input sequences for the automated tool are unknown regions that pass the 

following filters: 

a. The unknown regions are greater than or equal to 80 amino acids. This 

sequence length is small enough to identify smaller domains and long 

enough to avoid noise. 

b. The unknown regions should not have any known domains, or coiled coil 

regions, or segments of low compositional complexity to reduce the 

computational time. 

c. The unknown regions are extracted from the start of the protein sequence 

to the start of a domain, between domains, or between the end of a 

domain and to the end of the protein sequence as shown in the Figure 1.5. 
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Figure 4.1: Sequence lengths distribution of Shewanella genome 
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Sequence lengths distributions of Ecoli
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Figure 4.2: Sequence lengths distribution of E.coli genome 
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These sequences are then fed into the automated tool chains and new domain 

models are constructed at the end. The results obtained by individual phases of 

the domain exploration tool chain are discussed in the following sections. 

 

 

4.1 Test-bench Files 
 

Two test-bench organisms are used as inputs for the automated tool chains. Both 

Shewanella and E.coli are metabolically versatile bacteria [118, 119]. Shewanella 

has the ability to convert uranium dissolved in contaminated ground water to a 

non-soluble bi-product, preventing uranium contamination [119]. This ability of 

Shewanella makes it an important factor in cleaning up uranium when nuclear 

weapons are manufactured. Hence lot of effort is put into understanding 

Shewanella organism. The Shewanella genome has two input files, the first test 

bench has a total of 2867 unknown regions that passed the filters, denoted as 

the GENWIDEshew file used for protein domain modeling. The second test 

bench of 100 unknown regions of Shewanella genome for which the results were 

obtained manually, denoted as the MANGEN file. MANGEN is used to 

authenticate the working of the automated tool chains. 

 

E.coli is able to grow in the presence and absence of oxygen thus making this 

organism important. E.coli is present in the lower intestines of mammals. E.coli 

assists with waste processing, vitamin K production and food absorption. E.coli 
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also causes diseases such as urinary tract infection, meningitis and pneumonia. 

Hence E.coli is one of the extensively studied organisms. There are 235 

unknown regions that passed the filters for the E.coli genome denoted as the 

GENWIDEecoli used for protein domain modeling. Thus these two bacteria’s 

make excellent test bench organisms. 

 

 

4.2 DIAT Results 
 

DIAT was run on 2867 unknown regions of the Shewanella genome and 235 

unknown regions from the E.coli genome. E.coli is one of the most studied 

organisms and was sequenced much earlier than Shewanella; hence it resulted 

in fewer sequences with unknown domain regions than Shewanella even though 

both have around 5000 proteins in their genome. For the Shewanella genome 

PSI-BLAST was run for four iterations on the 2867 sequences, resulting in 

576,010 total protein matches, out of which only 342,233 were unique proteins. 

This means that some proteins were found in more than one of the PSI-BLAST 

result files. These unique proteins are used to build the refProteins table of the 

refDB. Only these unique proteins are inputted into the HMMER tool. Hmmpfam 

is run on these unique proteins with all the significant domain results documented 

in the refDomains table of the refDB database. A total of 798,914 domains were 

identified for these 342,233 unique proteins, averaging a little more than 2 

domains per protein.  
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The PSI-BLAST searches for the input sequences for E.coli genome resulted in a 

total of 61,921 protein matchs out of which 47,498 were unique proteins. Out of 

these 47,498 unique proteins there was no information in the refDB for only 

10,436 proteins, hence only these new proteins were inputted to HMMER tool to 

get their domain information. Having the refDB database saved almost four fifths 

of the search time. These 10,436 proteins resulted in 32,729 domains, averaging 

around 3 domains per protein. The new proteins and domain information are 

added to the refDB database. 

 

The domain information for all the matching regions of the protein sequences is 

retrieved from the refDB database. A check is performed to see whether there 

are any sequences for which domains are identified by the DIAT tool chain and 

the results are populated in the FINALOUTs. For the Shewanella genome out of 

2867 input sequences domains were identified for 1664 sequences by DIAT tool 

chain. For the E.coli genome out of 235 input sequences domains were identified 

for 171 sequences by DIAT tool chain. The rest of the sequences 1203 for 

Shewanella and 64 for E.coli are used as inputs to the DVAT tool chain for 

further analysis. Figure 4.3 illustrates the DIAT results flow. 

 

For the 1664 unknown regions of the Shewanella genome, a total of 3295 

domains were identified including 1016 unique domains and their distribution is 

shown in Figure 4.4.  
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Figure 4.4: Resulted DIAT domain distribution of Shewanella genome 
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For some peptides more than one domain was found. For 171 unknown regions 

of the E.coli genome, a total of 420 domains were identified including 248 unique 

domains and their distribution is shown in Figure 4.5. For some unknown regions 

more than one domain was found.  

 

Tables 4.1 and 4.2 show domains that were identified by DIAT tool chain in 

unknown regions of the Shewanella and E.coli genomes respectively. Table 4.1 

shows all the domain models that were identified by DIAT tool chain in 20 or 

more unknown regions of the Shewanella genome. For E.coli genome top 20 

identified domain models were retrieved based on the frequency of occurrence in 

unknown regions as shown in Table 4.2. For example from Tables 4.1 and 4.2 it 

is clear that the PAS domain models were identified in unknown regions of both 

Shewanella and E.coli genomes, hence these domain models need to be 

modified so that HMMER identifies these unknown regions.  This statistics of the 

identified domains will help us with genome wide domain modeling of the 

Shewanella and E.coli genomes. 

 

 

4.3 DVAT Results 
 

All the unknown regions for which no domains are identified in the DIAT tool 

chain are used as input sequences for the DVAT tool chain. For the Shewanella  



DIAT domain distribution of Ecoli genome

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

Domains

Id
en

tif
ie

d 
Fr

eq
ue

nc
y

 
 
Figure 4.5: Resulted DIAT domain distribution of E.coli genome 
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Table 4.1: DIAT domain statistics for Shewanella genome 

Domain Name 
 Frequency of 
occurrence 

PD40 20
HisKA 21
TPR_1 31
TPR_2 37
TPR_4 31
TPR_3 24
Sel1 28
SBP_bac_3 20
Fer4 28
PKD 30
Big_2 22
LacI 24
Epimerase 22
Rve 27
HAMP 37
GGDEF 26
PAS_4 32
PAS 36
PAS_3 30
TonB_dep_Rec 30
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Table 4.2: DIAT domain statistics for E.coli genome 

Domain Name 
Frequency of 
occurrence 

Fil_haemagg 4
Pertactin 4
Big_1 4
TonB_dep_Rec 9
Plug 7
DEAD 4
Helicase_C 10
ResIII 7
HisKA 8
PAS 8
PAS_3 6
PAS_4 10
HAMP 7
GAF 8
HATPase_c 4
GGDEF 7
HisKA_3 4
SMC_N 5
ABC_tran 4
Molydop_binding 5
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and E.coli genomes a total of 1203 and 64 unknown regions were submitted to 

the DVAT tool chain.  The DVAT tool chain is similar to the DIAT tool chain 

except now for each query sequence we have ten input sequences as explained 

in chapter 3. For query sequences that resulted in ten or less PSI-BLAST protein 

matches in DIAT, all the matching protein regions are used as inputs. Hence the 

problem size and PSI-BLAST computation time increases for the DVAT tool 

chain when compared to the DIAT tool chain. On the other hand, as most of 

these input sequences are similar they resulted in many repeated proteins that 

reduced the problem size and hmmpfam computation time for the DVAT tool 

chain. 

 

For the Shewanella genome, the total number of input sequences for the DVAT 

tool chain are 9,770. The PSI-BLAST searches for these query sequences 

resulted in a total of 994,960 proteins including only 100,978 unique proteins. 

Because 833,932 of the proteins are repeated, the search time for HMMER tool 

is significantly reduced for the DVAT tool chain. For the E.coli genome, 734 input 

query sequences resulted in 112,431 significant protein matches from PSI-

BLAST searches, including only 14735 unique proteins. This classification of 

proteins resulted in saving significant amount of computation time. A database 

check is performed to verify how many of these proteins already existed in the 

refDB to further save HMMER computation time. For the Shewanella genome out 

of 100,978 unique proteins, 75,648 had information in the refDB database, so 

hmmpfam was run on only 25,330 proteins. 
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And for E.coli out of 14,735, hmmpfam was run on only 2264 proteins with the 

information for the rest of the proteins retrieved from the refDB database. The 

FINALOUT files for all these query sequences were built using the PROTOUT 

files and domain information from the updated refDB database. For the 

Shewanella and E.coli genomes, out of 1203 and 64 query unknown regions, 

domains were identified for 340 and 26 sequences, hence these are not 

submitted to the DDAT tool chain. The remaining sequences, 863 from 

Shewanella and 38 from E.coli, are potential sequences for domain discovery 

that are sent to the DDAT tool chain. Figure 4.6 illustrates the DVAT results flow. 

 

Statistics were taken for Shewanella genome for 340 unknown regions for which 

domains were identified in at least one of the ten query sequences used in DVAT 

tool chain. A total of 1347 domains were identified, out of which 312 domains 

were unique and their distribution is shown in Figure 4.7. A total of 98 domains 

were identified for 26 unknown regions of the E.coli genome, out of which 33 

domains were unique and their distribution is shown in Figure 4.8. For some 

peptides more than one domain was found. Tables 4.3 and 4.4 show domains 

that were identified by DVAT tool chain in unknown regions of the Shewanella 

and E.coli genomes respectively. From Tables 4.1, 4.2, 4.3, and 4.4 it is clear 

some of these domain models in Pfam database are not complete to detect all 

unknown regions that match those domains. Hence with the use of DVAT tool 

chain Pfam domain models can be modified even considering the distant 

relatives. For example ‘rve’ domain from Table 4.3 is identified by DVAT tool 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.6: Domain Verification Automated Tool chain results flow  
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DVAT domain distribution of Shewanella genome
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Figure 4.7: Resulted DVAT domain distribution of Shewanella genome 
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DVAT domain distribution of Ecoli genome
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Figure 4.8: Resulted DVAT domain distribution of E.coli genome 
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Table 4.3: DVAT domain statistics for Shewanella genome 

Domain Name 
Frequency of 
occurrence 

MMR_HSR1 11
AT_hook 15
MTS 10
Methyltransf_12 10
Methyltransf_11 10
rve 257
PAS_3 14
Abhydrolase_1 12
HisKA 10
GAF 11
HAMP 18
PAS 10
PAS_4 14
Involucrin 10
PT 14
ABC_tran 14
Molybdopterin 12
GXGXG 10
DnaJ_CXXCXGXG 11
Cytochrom_C552 12
Helicase_C 20
UPF0020 10
CMAS 10
Radical_SAM 11
YfaZ 10

 

 

Table 4.4: DVAT domain statistics for E.coli genome 

Domain Name 
Frequency of 
occurrence 

Exonuc_VII_L  7
tRNA_anti    7
DHH  5
CCG  5
DnaG_DnaB_bind  5
Sigma70_r4_2  7
Molydop_binding 12
Molybdopterin   5

 



 93

chain in 257 different unknown regions that were missed by HMMER search 

using this domain model. Thus ‘rve’ domain model need to be revised to identify 

these missing sequences. 

 

 

4.4 DDAT Results 
 

All the unknown regions for which no domains are identified in either the DIAT or 

the DVAT tool chains are used as input sequences to the DDAT tool chain. For 

the Shewanella and E.coli genomes, a total of 863 and 38 unknown regions were 

inputted to the DDAT tool chain.  The PSI-BLAST protein matches for these 

sequences are retrieved from the PROTOUT files and the matching regions of 

these similar proteins are used to construct the multiple sequence alignments. 

The multiple sequence alignments are used to build the HMMs.  These new 

domain models are used to search against the nr database using hmmsearch 

and the matching proteins are retrieved from the nr database. A final check is 

performed to retrieve known domains as explained in section 3.3. All the 

sequences for which no known domains are identified are plausible regions for 

new domains.  

 
 

 For the Shewanella genome DDAT is run on 863 unknown regions. The HMMs 

are built and these domain models are used to search against the nr database. 

The resulting proteins from the search are matched to the protein list generated 
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by the DIAT and DVAT tools. The search resulted in 22,690 unique proteins of 

these only 16,420 had no information in refDB. For these 16,420 proteins 

hmmpfam was run and the results were stored in refDB. For the E.coli genome 

DDAT is run on 38 unknown regions. The HMMs are built and searched against 

the nr database resulting in 4201 proteins that were not found in PROTOUTs of 

the DIAT and DVAT tools, of these proteins only 989 had no information in refDB. 

For these 989 proteins hmmpfam was run and the results were stored in refDB.   

 

FINALOUT files are constructed comparing the matching regions of the protein 

matches resulted from the hmmsearch and the domains identified for these 

regions by hmmpfam.  A final check is performed to see whether there are any 

known domains in these proteins matching regions. For the Shewanella genome, 

13 out of the 863 unknown regions have known domains in the similar protein 

regions. None were found for the E.coli genome. So a total of 850 new domain 

models were discovered for the Shewanella genome and 38 new domain models 

for the E.coli genome. These new domain models will be further investigated 

individually and could be added to Pfam database. 

 

Figure 4.9 shows the pictorial representation of the genome-wide protein domain 

modeling of Shewanella using the automated tool chains. 
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Figure 4.9: Automated tool chain flow using Shewanella genome 
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4.5 Domain Model Verification Results 
 

Using PHYRE [117] search secondary structures of some newly discovered 

domain models are retrieved. The new domain models were matched from 100% 

to 0% to the existing secondary structures. The domains that matched 100% will 

have the properties of the matched domains. The domains with 0% match are 

completely new domains for which no knowledge is found in the current 

databases. A total of 20 models for Shewanella and 30 models for E.coli were 

constructed using PHYRE. Out of these 50 models only 15 models had 

estimated precision match greater than 50% with the know domain models or 

proteins. This shows the percentage of novel domain models yet to be 

discovered is higher than already existing models, which indicates a huge scope 

of discovering new domain knowledge. This shows the robustness and efficiency 

of the automated tool chain in discovering new knowledge. Figure 4.10 and 4.11 

shows secondary structure matches of one Shewanella and one E.coli domain 

models generated by PHYRE search.  

 
The next chapter describes the computation times for running the automated 

tools, a study of performance metrics for better resource utilization, and some job 

distribution techniques. 

 



 

 
 
Figure 4.10: Shewanella domain model with 100% precision with EF-G C-
terminal domain from PHYRE search. The red areas indicate alpha helixes, blue 
areas indicate beta sheets, and gray areas indicate coil regions. 
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Figure 4.11: E.coli domain model with 0% precision with PDZ domain from 
PHYRE search. The red areas indicate alpha helixes, blue areas indicate beta 
sheets, and gray areas indicate coil regions. 
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Chapter Five 
 

Computational Results 
 

One has to perform thousands of PSI-BLAST searches, tens of thousands of 

HMMER searches, and hundreds of multiple sequence alignments per genome 

for domain modeling. There are hundreds of sequenced genomes with millions 

yet to be sequenced. Thus scaling and performance evaluation play a major role 

in speeding up this process, efficiently using the resources, and managing the 

results. This chapter discusses the computation time required to model 

Shewanella and E.coli genomes. This chapter also investigates architectural 

assessments of different processor architecture such as Opteron, Sparc, and 

Xeon, along with multicore and threading assessments. Finally concludes with 

the job mapping and distribution algorithms for cluster computing.  
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The characteristics of BLAST and HMMER algorithms are shown in Table 5.1. 

The MUSCLE tool space complexity is , and time complexity is 

 where L is the typical sequence length and N is the number of 

sequences. MUSCLE takes comparatively less time to execute. MUSCLE is the 

fastest multiple sequence alignment tool, faster than the most commonly used 

CLUSTALW [99]. Most of the computation time is spent for hmmpfam searches 

of HMMER tool when compared to any other tool used by the automated tool 

chains. Thus this chapter focuses more on characterizing the hmmpfam 

searches. 

O N L( 2 2+

O N NL( 4 +
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Table: 5.1: BLAST and HMMER suite statistics. 
 

BLAST suite HMMER suite 
Algorithms 

blastpgp hmmpfam 
 

Computational Complexities 
O(MN) where M is length query 
sequence, 
N is the number of protein sequences 
in database 

O(QT) where Q is the length of the 
query sequence, T is the number of 
Domain models. O(mQT) m is 
number of proteins 

 
Databases 

nr protein database (Jan 2007) Pfam_ls (PFAM21  domain 
database) 

 
Database size 

~3 GB with around 3 million proteins ~700MB with around 9000 families 
 

Operations 
Integer intensive Integer intensive 
 

Multi-threaded 
Yes Yes 
 

Output file types 
TXT and XML TXT 
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5.1 Architectural Assessment  
 

The various test bench architectures used to run the PSIBLAST, and HMMER 

tools are Sun 1350 MHz SparcV9 dual core processors with 4GB RAM, Dell 

3.20GHz Intel(R) Xeon(TM) dual core processors with 4GB RAM, and AMD 

2.60GHz Opteron(tm) Y255 dual core processors with 4GB RAM. Various protein 

sequences of lengths varying from 100 amino acids to 20,000 amino acids are 

used for generating computation times on all these architectures. The 

computation times for PSI-BLAST and hmmpfam on these three architectures 

are shown in Figures 5.1 and 5.2 respectively. 

 

From the Figures 5.1 and 5.2 it is clear that the Opteron out performed the Xeon 

and Sparc, and Xeon had a better performance than Sparc. We had access to 

Sun Sparc clusters and Intel Xeon cluster. The choice is obvious we picked a 

cluster of Intel Xeon processors for generating the protein domain modeling 

results. The cluster has 12 nodes and each node have two dual core 3.20GHz 

Intel Xeon processors with 4GB RAM. Hence the cluster had a total of 24 dual 

core processors. This cluster is used to generate protein domain models for 

Shewanella and E.coli genomes. 
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Figure: 5.1: Comparison plot of PSI-BLAST computation times between Sun 

Sparc, Intel Xeon, and AMD Opteron. 
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Architectural assessment of Hmmpfam
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Figure: 5.2: Comparison plot of HMMER computation times between Sun Sparc, 

Intel Xeon, and AMD Opteron. 
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5.2 Computation Times for Shewanella and E.coli Genome-Wide Domain 
Modeling 

 

The MANGEN and GENWIDEshew files have a total of 100 and 2867 input 

unknown regions. The MANGEN file is used to validate the DIAT tool that is 

described in the section 5.4. The computation time for both test bench files for 

the Shewanella genome using DIAT tool chain is shown in Table 5.3.  

 

These are initial time measurements recorded for running the DIAT tool chain on 

the Shewanella genome. There are no initial refDB entries, so refDB was built 

using the results from first DIAT run on GENWIDEshew file. Later this refDB was 

used to generate DOMOUT files and for the proteins with no domain information 

in refDB, hmmpfam was used to get domain information and the refDB is 

updated. This saved significant amount of time for DVAT and DDAT tool chain 

runs. The total time taken to run DVAT and DDAT on Shewanella is shown in the 

Table 5.4. Both DVAT and DDAT tool chains were run using same cluster as 

DIAT. The significant decrease in the computation time using refDB will be 

clearer from the Figures 5.3 and 5.4.  

 

The GENWIDEecoli test bench file has only 235 input unknown regions resulting 

in smaller computation times. The PSIBLAST of DIAT and DVAT tool chain for 

GENWIDEecoli test bench file resulted in 47498 and 14735 proteins respectively. 

Only 30% of DIAT resultant proteins and 15% of DVAT resultant proteins did not  
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Table 5.3: Comparison of DIAT on GENWIDEshew and MANGEN files  
 

Test bench files DIAT 
MANGEN ~20 hrs 
GENWIDEshew ~9 days 

 
 

 

Table 5.4: Computation times of DVAT and DDAT for GENWIDEshew file  

 
Tools GENWIDEshew
DVAT ~95 hrs 
DDAT ~74 hrs 

 

 

 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3: Domain Identification Automated Tool chain computation time results 
flow 
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Figure 5.4: Domain Verification Automated Tool chain computation time results 
flow 
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have any information in refDB database. Hence hmmpfam was run only on these 

proteins thus saving significant amount of time. The Table 5.5 shows the 

computation times for DIAT, DVAT, and DDAT tools for GENWIDEecoli test 

bench file. The reduction in the computation time from days to hours is because 

of the intelligent use of the existing domain information from refDB. 

 
 
 

5.2 Multicore Architectures and Threading 
 

The popularity of multicore processors is increasing, as their performance is 

better than single core processors. The multicore processor has more than one 

CPU (Central Processing Unit) on the chip and respective caches. An Intel dual 

core processor has two CPUs and both the CPUs share a single coherent cache 

on the other hand AMD dual cores have individual caches. This is the reason 

why AMD Opteron outperformed Intel Xeon in the previous section. The goal of 

this study is to utilize the multicore architecture in the clusters for optimum work 

distribution. 

 

Table 5.5: Computation times of DIAT, DVAT, and DDAT for GENWIDEecoli file  

 
Tools GENWIDEecoli 
DIAT ~8 hrs 
DVAT ~3 hrs 
DDAT ~3 hrs 
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The threading capability of both the PSI-BLAST and HMMER tools are explored 

to test number of core utilization versus computation time. The HMMER tool 

allocates two threads by default and PSI-BLAST tool allocate only one thread by 

default. Since PSI-BLAST and HMMER are the two most extensively used tools 

in the automated tool chains, studies were conducted to optimize resource usage 

for the faster completion of these tasks. A dual-core (2 CPUs) Intel Xeon 

processors is picked for the study. One other study was performed using Intel 

Xeon single core processor on which hyper-threading was enabled. The 

operating system sees two processors instead of one if hyper-threading 

technology is enabled.  

 

The threading functionality of both BLAST and HMMER tools are explored to 

derive optimized number of threads for a query sequence of particular length. 

Three sets of data are collected for blastpgp and hmmpfam runs. The first set of 

data is generated using only one of the two cores of the Xeon processor, always 

with a load on the second core. The second set of data is generated using both 

cores of the processor. And the single core Xeon processor generates the third 

set. 

 

Neither PSIBLAST nor HMMER uses the dual core functionality of the processor 

to cut down the computation time to half. The performance obtained using 

threads is not greatly affected by the dual core architecture even though using 

one core of dual core processor outperformed single core architecture. One more 
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interesting discovery, as the sequence length increases the number of threads 

required for optimum performance increases. For PSIBLAST runs using one core 

3-4 threads give good performance. For PSIBLAST using both cores of dual core 

processor runs using 3-4 threads give good performance for sequences less than 

5000 amino acids and 4-5 threads for sequences greater than 5000 amino acids. 

For best performance of time and cost, PSIBLAST should be run on one core 

using 4 threads. 

 

HMMER does not take advantage of threading for sequence lengths smaller than 

200-300 amino acids using one core of the dual core processor. For sequences 

of length 400 or above 3-4 threads gives good performance. Using both cores of 

the dual core processor for sequences smaller than 500 AAs 2 threads gives 

good performance. For best performance of time and cost, HMMER should be 

run on one core using 3 threads. 

 

 

5.3 Validation of DIAT  
 

First, two PSI-BLAST iterations are run in the DIAT tool chain, hmmpfam is run 

on the proteins resulted from the PSI-BLAST searches for domain identification. 

Out of 97 unknown regions for 70 different proteins in the MANGEN file, the DIAT 

tool chain identified domains for 61 unknown regions; DIAT missed only 3 protein 

hits. The reason for this is the domains for a protein were identified in iteration 5  
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Table 5.6: Statistics for Domains identified for MANGEN file of Shewanella 

genome using DIAT. 

 
Test bench file Unknown regions with 

domain hits 
Missed domains 
by DIAT 

MANGEN (2-iterations) 61 3 
MANGEN (4-iterations) 70 0 

 
 

and the standard practice is to perform only 4 iterations. The other two proteins 

domains were identified in iteration 3 and DIAT performed only 2 iterations. DIAT 

identified domains for 16 proteins that were not found manually, as DIAT used 

the latest Pfam database (PFAM21). Next the DIAT tool chain was run with four 

PSI-BLAST iterations, this time there were no missed protein hits. The DIAT tool 

chain identified domains for all the proteins similar to manual search along with 

hits for an additional 25 proteins. The results in Table 5.6 show the robustness of 

the tool chain and its contribution to new knowledge.  

 

 

5.4 Solved Programming Challenges 
 

The automated tool chain was designed using the PHP (Hypertext Preprocessor) 

scripting language. PHP is a server-side HTML (Hypertext Markup Language) 

embedded scripting language. PHP is helpful to make the results web accessible 

very easily and it is simple to parse the resultant files in different formats to 

populate various databases. The results form PROTOUT and DOMOUT files are 
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used to populate the refDB database. The refDB database was generated using 

SQLite and also a text file of the entire refDB database was generated. The 

refDB was used to generate the domain information and from which the final 

resultant files are derived. Two programs were generated one to retrieve 

information from the SQLite database and another from the text file database. 

The program written to retrieve the data from text file used hashing technique 

and was three times faster than retrieving data from SQLite database. Hence the 

text file refDB was used to retrieve the domain information. Hashing technique 

was also used to compare PROTOUT and DOMOUT files to generate 

FINALOUT files faster thus saving lot of parsing time.  

 

5.5 Job Mapping and Distribution 
 

The problem size is huge; currently we have 12.9 million proteins in our 

database. The distribution of sequence lengths of these 12.9 million proteins is 

shown in the Figure 5.5. Statistics were derived from protein length distributions  

that shows 98.2% of all proteins have lengths less than 1000 amino acids. The 

average protein length is 269 amino acids with a standard deviation of 265 amino 

acids. The minimum and maximum lengths are 2 and 36,800 amino acids with 75 

% of all proteins sequences have lengths less than 320 amino acids. Hence we 

need an efficient job-mapping algorithm for optimum performance to evenly 

distribute these proteins of varying lengths across computing clusters that is the 

primary goal of this research. 



 

 

  

Figure: 5.5: The distribution of protein sequence lengths of 12.9 million protein 

sequences currently available (Image added with the permission of Luke Ulrich). 
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Two different approaches for scheduling the jobs on the cluster are discussed in 

this section. One is the algorithmic approach for PSI-BLAST jobs and the other is 

based on equations or mathematical approach for HMMER jobs.  The goal of the 

job scheduling on the clusters is to finish the computation on all nodes at the 

same time so that there is no wait for one processor to finish. So based on the 

unknown region length and the number of sequences, each node is allocated 

with certain amount of work so that all nodes finish at the same time. 

 

 

5.5.1 PSI-BLAST Job Scheduler 

 

The PSI-BLAST run times are random and do not depend on amino acid lengths 

or number of sequences in a file. Based on number of relatives present for a 

proteins sequence and the number of iterations to reach convergence varies thus 

varying the computation time. Which means some protein sequences converge 

in 2 iterations and some can run for 10 iterations and still not converge. One 

more interesting discovery was running individual PSI-BLAST was faster than 

combining sequences together in a file. This led to the development of the 

algorithmic approach to distribute the PSI-BLAST runs individually using bins.  
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There are ‘P’ processing nodes in the cluster and the number of bins is ‘B’.  One 

bin is allocated to each processing node. The jobs are distributed across the 

cluster using the following algorithm. 

 Job allocation algorithm steps for PSI-BLAST 

1. Generate B=P bins  

2. Populate an array with the input sequences  

3. Sort the array in descending order based on sequence lengths 

4. Traverse the array one by one by allotting each sequence to a 

bin in the order 

binCounter=0; 

foreach( array as sequence){ 

binCounter++; 

Allot sequence to Bin( binCounter); 

if(binCounter==B){ 

  binCounter=0; 

   } 

} 

 

Once the jobs are distributed across the bins, each bin is allocated to a 

processor. Next all the jobs are put into queue for each processor with biggest 

jobs first. The smallest sequence length of job is 80 amino acids as this was the 

cutoff used for input query sequences.  A jobCheck program was created to 

identify unfinished or failed jobs and allot these failed jobs to the processor 
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queues with least number of jobs left. This program also checks for the empty 

queues and allocates the unfinished jobs for other queues to the empty queue 

thus keeping the balance. Using the job allocation algorithm and the jobCheck 

program all the processors finish the execution almost at the same time. 

 

 

5.5.2 HMMER Job Scheduler 

 

The hmmpfam run times using 16 different proteins is shown in Figure 5.6. These 

16 proteins used are around 25000 AAs in length. The run times are recorded by 

varying the lengths of these sequences by 200 AAs starting from 80 AAs. From 

the Figure 5.6 it is clear that there are two linear regimes, connected by a smooth 

transition curve between these two regimes. The hmmpfam runs take advantage 

of number of sequences in a file that means the time taken to run N sequences in 

a file is less than the sum of time taken to run N sequences individually. Now we 

added one more dimension to our curve that is number of sequences in a file. 

We plotted a curve using three variables, length of protein sequences, number of 

sequences in a file, and the time taken for the runs. Figure 5.7 show the three-

dimensional curve plotted using GNUPLOT. Logarithmic scale is used to plot this 

curve. We see the same characteristics in this plot similar to two-dimensional plot 

in Figure 5.6. There are two linear regimes connected by a smooth transitional 

region.  
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Figure: 5.6: Comparison plot between hmmpfam computation times and amino 

acid lengths for 16 different protein sequences of varying lengths from 100 amino 

acids to 24000 amino acids. 
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Figure: 5.7: Three dimensional comparison plot between protein sequence 

lengths, number of sequences in a file and their respective computation times for 

hmmpfam jobs 
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We used the least square fitting algorithm to generate a surface that connects all 

the points to derive equation to define our model. There are two regimes and the 

transition takes place ~8000 amino acids length for this architecture. We derived 

a surface formula that represents the time predicted to run hmmpfam on a cluster 

for jobs of varying lengths and number of sequences. Here AA is the total 

number of amino acids of all the sequences in the job and N is the number of 

sequences in the job. T is the time taken for the job to finish. 

 

 The a’s and b‘s coefficients tells information about the computational power of 

the architectures on which the hmmpfam is run. We applied inverse tangent 

curve to connect these two linear regimes. The Time T  that define entire model 

is as follows 
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The coefficients c1,0 are related to the edges between these two regimes. The 

equation ( )01 cNc +  when evaluated for N=1 shows the maximum number of 

amino-acid in one sequence that it would run the program in a efficient way, in 

our case this number is 7800 AA. Also there is the coefficient ‘s’ that defines how 

smooth the transition between the two regimes is. Therefore the function tan-1 is 

related to the connection between these two regimes. The two linear regions are  
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Table 5.7: Protein statistics in three different ranges. 
 

Ranges Sequence % AA % Computation 
time (hours) 

Range1 (<150 AAs) 32.9 12.1 61277 
Range2 (>=150 <=1500) 66.5 82.8 163303 
Range3 (>1500) 0.6 5.1 4767 

 
 

an efficient regime that means the error generated by the equation is negligible 

and the non-linear region of the curve is inefficient regime as the error in this 

region is higher. The jobs are distributed in the cluster considering this 

inefficiency.  

 

Based on the sequence lengths the jobs are classified into three different groups. 

Jobs with sequence lengths less than 150(range1), the jobs in between 150 and 

1500(range2), and the jobs with sequence lengths greater than 1500(range3). 

These numbers are picked considering the inefficiency of the equations and the 

statistics of sequence lengths. Out of 12.9 million sequences the percentages of 

number of sequences and number of amino acids, and estimated computation 

times in hours using equation 1 for each range is shown in the Table 5.7. 

 

To efficiently distribute the work and to easily identify the failed or unfinished 

jobs, the sequences were divided into bins. The computation time for each bin is 

multiple of 2 hours. A program is designed to distribute the sequences in each 

range into bins of four hours each.  The total numbers of 4-hour bins for range1, 

range2, and range3 are 15338, 40708, and 1145 respectively. Sample bins were 
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taken from each range and tested on the cluster. The estimated time and the 

computation time for some random sample sizes and the sample sizes of 4-hour 

bins and 8-hour bins are shown in Table 5.8. The samples from range 2 and 

range 1 are more efficient than range 3, which means the estimated time is close 

to the computation time. Hence the bins are allocated to the job queue in the 

order of range3, range1, and range2 respectively so that all the compute nodes 

finish the computation almost at the same time.  

 

The next chapter put forth the achievements and contributions of this research 

along with conclusions and future work. 
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Table 5.8: The estimated and computed times for some sample files. 
 

SeqLength_number
Computed time 
(seconds) 

Estimated time 
(seconds) 

61_292 14633 14423 
106_274 14580 14401 
124_268 14472 14425 
151_259 14436 14432 
172_252 14372 14414 
272_225 14309 14451 
875_135 13971 14403 
987_126 13961 14438 
1411_100 13948 14453 
1645_90 13945 14498 
3236_53 14851 14558 
4974_36 16329 14559 
7241_15 11373 15093 
7718_13 10799 15924 
16953_6 15329 15924 
1342_207 27990 28829 
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Chapter Six 
 

Conclusions and Future work 
 

 

This dissertation enables genome-wide protein domain modeling, one of the 

most important problems in biology, using high throughput and high-resolution 

automation techniques with better quality, speed, and cost effectiveness than 

manual procedures. 

 

This dissertation describes a new automated tool chain for protein domain 

modeling. This new bioinformatics application generates protein domain models 

much faster, which enables biologist to use their valuable time in the labs rather 

in front of computers. With the use of cluster computing, genome-wide protein 

domain modeling is made easier. With the help of supercomputing the protein 

domain modeling can address entire protein databases. The rate at which new 

protein domain knowledge can now be generated will revolutionize the science 

and encourage the use and design of automated bioinformatics tools.  

 

During the course of design of the automated tool chains for protein domain 

modeling, many other tools were generated that are beyond the scope of this 

dissertation. This dissertation lead to important contributions such as: 
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1. Protein domain modeling automated tool chain design 

Three automated tool chains are developed, for protein domain 

identification (DIAT), verification (DVAT), and discovery (DDAT). These 

tool chains are new additions to bioinformatics tools and will be made 

publicly available. The knowledge from the domain discovery model will 

help in detecting speculative regions for possible new domain discovery. 

 

2. Feedback on the effectiveness of Pfam HMMs 

The domain hit/miss statistics from domain identification models and 

domain verification models will assist us in evaluating the effectiveness of 

Pfam HMMs. This will assist us in suggesting the modifications for 

changing the HMMs based on the statistics generated for the various 

domains in genome-wide analysis, so that no domains are missed based 

on the evolutionary relatives.  

 

3. Architectural and algorithmic assessment of automated tool chain 

Performance evaluation of multicore architectures, and clusters of 

computers is explored in this dissertation for better-automated job 

allocation. Threading functionality of BLAST and HMMER tools is explored 

to reduce the computation time.  

 

4. Job mapping, task management and results management 



 125

Since there are millions of sequences to model, an effective job-mapping 

algorithm is designed to distribute the jobs evenly across available nodes 

in a cluster.  A task manager script is designed to check on unfinished 

jobs or blocked jobs, and these unfinished jobs will be allotted to other 

processors so that valuable information is not lost. Finally, all results 

generated by the automated tool chains are uploaded into the PepDomDB 

database for storage and future reference. 

 

5. Protein domain database generation 

A PepDomDB database for peptides and their respective domain 

information is generated. This database is ready to be public once the 

domain information for all genomes is populated. One major challenge is 

to keep this database schema scalable and up to date as new domains 

are discovered. The design of this database will lead to faster domain 

modeling of newly sequenced genomes. 

 

6. New protein domain knowledge generation 

New protein domain models are generated for Shewanella and E.coli 

genomes for the peptides for which no domains are currently present in 

the MiST database. The statistics of various domains identified for 

Shewanella and E.coli genomes are documented for genome wide domain 

modeling. The work is in progress to generate the protein domain 

knowledge for all the genomes in MiST database. 
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This dissertation resulted in new knowledge about protein domain modeling. This 

dissertation also generated statistics for missed domain models using existing 

Pfam database to give feedback to improve domain models. This efficient 

domain modeling on a genome-wide scale will help biologists to solve problems 

like protein functions, structures and folding. The design of an automated tool 

chain will be greatly helpful for biologists who now perform sequence similarity 

analysis manually, thus saving tremendous effort that can be directed towards 

laboratory experimentation.  The primary contribution of this dissertation is a set 

of automated tool chains for protein domain modeling to explore the problem of 

genome-wide analysis, including a good foundation for using the most 

appropriate architectures for huge problem sizes. 

 

From the results it is clear that the DIAT tool chain identified all the domains that 

were manually generated along with some new domains for the query unknown 

regions, thus demonstrating its robustness and effective design. The time taken 

to generate the results was a few hours using cluster computing when compared 

to months of work done manually for 100 sequences. Using a small cluster of 

computers, domain models were generated for thousands of unknown regions of 

the Shewanella genome in few days, and hundreds of unknown regions of the 

E.coli genome in few hours. This showed the tool chains ability to help in the 

process of deriving important biologically relevant information from completely 

sequenced genomes.  
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Web access to automated tool chains for protein domain modeling needs to be 

designed and implemented on a dedicated cluster for public use. Publicly 

available PepDomDB database should be created in such a way that registered 

users can upload new domains and peptides after the verification process is 

completed.  Implementing the automated tool chains on supercomputing 

architecture to solve bigger problems remains to be explored.  Work is in 

progress to design an automatic job-mapping algorithm for different 

architectures. Finally, secondary structure predicting tools could be added to the 

automated tool chain for further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 128

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 129

References 
 

1. Altschul, SF, W Gish, W Miller, EW Myers, and DJ Lipman. Basic local 
alignment search tool. Journal of Molecular Biology 215(3):403-10, 1990 

2. Altschul, SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, and 
DJ Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein 
database search programs. Nucleic acid research, 1997,Vol 25, No 17, 
3389-3402. 

3. Ross, PE. The making of 24 Billion gene machine. Forbes, February 
2000,21:98-104. 

4. Friend, SH.  How DNA microarrays and expression profiling will effect 
clinical practice. British Medical Journal, 319:1-2, 1999. 

5. Draghici, S. Data analysis tools for DNA microarrays. 2003. 
6. D. Eisenberg, E. M. Marcotte, L. Xenarios, and T. O. Yeates. Protein 

function in the post-genomic era. Nature, 405:823-826, 2000. 
7. Mount, DW. Bioinformatics: Sequence and Genome analysis. Second 

edition 2004. 
8. Pearson, WR. Comparison of methods for searching protein sequence 

databases. Protein science 4:1150-1160, 1995. 
9. Gibbs, AJ, McIntyre, GA. The diagram, a method for comparing 

sequences. It use with amino acid and nucleotide sequences.  European 
Journal of Biochemistry 16:1-11, 1970. 

10. Smith, TF, and Waterman, MS. Identification of common molecular 
subsequences. J. of Molecular Biology 147:195-97, 1981 

11. Needleman, SB, and Wunch, CD. A general method applicable to the 
search for similarities in amino acid sequences of two proteins. J. of 
Molecular Biology 48:443-453, 1970. 

12. Pearson, WR, and Lipman, DJ. Improved tools for biological sequence 
comparison. Proc, Natl. Acad. Sci. 85:2444-2448, 1988. 

13. Richardson, JS. The anatomy and taxonomy of protein structure. Adv 
Protein Chem, 34:167-339, 1981. 

14. Bork, P. Shuffled domains in extracellular proteins. FEBS Lett, 286:47-54, 
1991 

15. Wetlaufer, DB. Nucleation, rapid folding, and globular intrachain regions in 
proteins. Proc Natl Acad Sci U S A, 70:697-701, 1973. 

16. Savageau, MA. Proteins of Escherichia coli come in sizes that are 
multiples of 14 kDa: domain concepts and evolutionary implications. Proc 
Natl Acad Sci U S A, 83:1198-1202, 1986. 

17. Jones, S, Stewart, M, Michie, A, Swindells, MB, Orengo, C, and Thornton, 
JM. Domain assignment for protein structures using a consensus 
approach: characterization and analysis. Protein Sci, 7:233-242, 1998. 

18. Siddiqui, AS, and Barton, GJ. Continuous and discontinuous domains - an 
algorithm for the automatic generation of reliable protein domain 
definitions. Protein Sci, 4:872-884, 1995. 



 130

19. Pedretti, KT, Casavant, TL, Braun, RC, Scheetz, TE, Birkett, CL, and 
Roberts CA. Three complementary approaches to parallelization of local 
BLAST Service on Workstation clusters. PacT-99, LNCS 1662, 271-82, 
1999. 

20. Braun, RC, Pedretti, KT, Casavant, TL, Scheetz, TE, Birkett, CL, and 
Roberts CA. Parallelization of local BLAST Service on Workstation 
clusters. Future generation computer systems 17, 745-754, 2001. 

21. Bjornson, RD, Sherman, AH, SB Weston, Willard,N, and Wing, J. 
TurboBLAST : A Parallel Implementation of BLAST Built on the TurboHub. 
TurboGenomics, Inc. 

22. Hong-Soog Kim, Hae-Jin Kim, and Dong-Soo Han. Hyper-Blast: A 
parallelized BLAST on cluster system. ICCS, LNCS 2659, 213-222, 2003. 

23. Darling, AE, Carey,L, and Wu-chun Feng. The design , Implementation 
and Evaluation of mpiBLAST.  

24. Lin, H, Ma, X, Chandramohan, P, Geist, A, Samatova, Nagiza. Efficient 
Data access for Parallel BLAST. IPDPS, Volume 01,page 72.2, 2005. 

25. Konishi, F and Konagaya A. The architectural design of high throughput 
BLAST services on OBIGrid. LSGRID 2004, LNBI 3370, pp.32-42, 2005. 

26. Oehmen, C, and Nieplocha, J. ScalaBLAST: A scalable implementation of 
BLAST for high-performance data-intensive bioinformatics analysis. 

27. Moore, G. Cramming more components onto integrated circuits. 
Electronics Magazine 1965.  

28. Eddy, S. HMMer User’s Guide. 1998. 
29. George, RA, and Heringa, Jaap. Protein domain identification and 

Improved similarity searching using PSI-BLAST. Proteins: Structure, 
Function and Genetics 48:672-681, 2002. 

30. Pagni, M, Ioannidis, V, Cerutti, l, Zahn-Zabal, M, Jongeneel, CV, and 
Falquet L. MyHits: a new interactive resource for protein annotation and 
domain identification. Nucleic Acids Research, Vol. 32, 332-335, 2004. 

31. Dickens, NJ and Ponting CP. ThoR:a tool for domain discovery and 
curation of multiple alignments. Genome Biology, 2003, 4:R52. 

32. Schultz, J, Milpetz, F, Bork, P, and Pointing, CP. SMART, a simple 
modular architecture research tool: Identification of signaling domains. 
Proc. Natl. Acad. Sci., Vol. 95, 5897-5864, 1998. 

33. Schultz, J, Copley, RR, Doerks, T, Pointing, CP and Bork, P. SMART: a 
web-based tool for the study of genetically mobile domains. 

34. Coin, L, Bateman, A, and Durbin, R. Enhanced protein domain discovery 
using taxonomy. BMC Bioinformatics, 5:56, 2004. 

35. Cheng, J, Sweredoski, MJ, Baldi, P. DOMpro: protein domain prediction 
using profiles, secondary structure, relative solvent accessibility and 
recursive neural networks.  

36. Eddy, SR. Profile hidden Markov models. Bioinformatics, 14:755-763, 
1998. 



 131

37. Krogh, A, Brown, M, Mian, IS, Sjolande, K, and Haussler D. Hidden 
Markov models in computational biology. Application to protein modeling. 
Journal of Molecular Biology 235:1501-31, 1994 

38. Hughey, R, and Krogh A. Hidden Markov models for sequence analysis: 
extension and analysis of basic method. Comput. Appl. Biosci. 12:95-107, 
1996. 

39. Landman, J, Ray, J, Walters, JP. Accelerating HMMer searches on 
Opteron processors with minimally invasive recoding. IEEE AINA, 2006. 

40. Costa, RLC, and Lifschitz, S. Database allocation strategies for parallel 
BLAST evaluation on clusters. Distributed and Parallel Databases, 13, 99-
127, 2003. 

41. Braun, RC, Pedretti, KT, Casavant, TL, Scheetz, TE, Birkett, CL and 
Roberts, CA. Parallelization of local BLAST service on workstation 
clusters. Future Generation Computer Systems, 17, 745-754, 2001. 

42. Rangwala, H, Lantz, E, Musselman, R, Pinnow, K, Smith, B and 
Wallenfelt, B. Massive parallel BLAST for the Blue Gene/L.  

43. Tan, G, Xu,L, Feng, S, and Sun, N. An experimental study of optimizing 
Bioinformatics Applications. IEEE, 2006. 

44. Kang, JY, Gupta, S, and Gaudiot, JL. An efficient PIM (Processor-In-
Memory) architecture for BLAST. IEEE, 2004. 

45. Lancaster, JM. Design and evaluation of a BLAST ungapped extension 
accelerator. Master’s thesis, Washington University, Saint Louis, 2006. 

46. Srinivasan, U, Che, PS, Diao, Q, Lim CC, Li, E, Chen, Y, Ju, R, and 
Zhang Y. Characterization and analysis of HMMER and SVM-RFE parallel 
bioinformatics applications. IEEE 2005. 

47. Wun, B, Buhler, J, and Crowley, P. Exploiting coarse-grained parallelism 
to accelerate protein motif finding with a network processor. Parallel 
Architecure and compilation Techniques, 173-184, IEEE, 2005. 

48. Horn, DR, Houston, M, and Hanrahan, Pat. ClawHMMER: A streaming 
HMMer-Search implementation. Proc. IEEE Supercomputing 2005. 

49. Maddimsetty, RP, Buhler J, Chamberlian, RD, Franklin, MA, and Harris, B. 
Accelerator design for protein sequence HMM search. ICS, 2006. 

50. Landman, J, Ray, J, and Walters, JP. Accelerating HMMer searches on 
Opteron processors with minimally invasive recoding. Proc. Or the 20th 
International Conference on Advanced Information Networking and 
Applications, IEEE, 2006. 

51. Ulrich, L, and Jouline, IB. MiST: a microbial signal transduction database. 
Nucleic Acids Research, Vol. 35, 386-390, 2007. 

52. Park, J, Karplus, K, Barrett, C, Hughey, R, Haussler D,Hubbard, T, and 
Chothia, C. Sequence comparisons using multiple sequence detect three 
times as many remote homologues as pairwise methods. Journal of 
Molecular Biology, 184:1201-1210, 1998. 

53. SQLite database speed comparison. http://www.sqlite.org/speed.html 
54. Initial sequencing and analysis of human genome. Nature Vol. 409, 860-

921, 2001 

http://www.sqlite.org/speed.html


 132

55. Ross, PE. The making of a 24 billion gene machine. Forbes, February 
21:98-104, 2000. 

56. Venter, JC, Smith, HO, and Hood, l. A new strategy for genome 
sequencing. Nature 381(6581):364-6, 1996. 

57. Venter, JC, Adams, MD, Sutton, GG, Kerlavage, AR,  Smith, HO. And 
Hunkapiller M. Shotgun sequencing of the human genome. Science, Vol. 
280, no. 5369, 1540-1542, 1998. 

58. National Center for Biotechnology Information. 
http://www.ncbi.nlm.nih.gov/ 

59. http://bioweb.pasteur.fr/seqanal/blast/#psiblast 
60. PSI-BLAST tutorials. http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-

2.html 
61. Pieper, U, Eswar, N, Davis FP, Braberg H, Madhusudhan, MS, Rossi, A, 

Marti-Renom, M, Karchin R, Webb, BM, Eramian, D, Shen, MY, Kelly, L, 
Melo, F, and Sali, A. MODBASE: a database of annotated comparitive 
protein structure models and associated resources. Nucleic Acids 
Research, Vol.34, database issue, 291-295, 2006. 

62. Mulder, NJ, Fleischmann W., and Apweiler R. InterPro as a new tool for 
whole genome analysis. A comparative analysis of Mycobacterium 
tuberculosis, Bacillus substilis and Echerichia coli as a case study. 
Regulation and Structure. Vol. 2, 35-37, 2000. 

63. Hulo, N, Bairoch, A, Bulliard, V, Cerutti, L, Castro, ED, Langendijk-
Genevaux, PS, Pagni, M, and Sigrist, CJA. The PROSITE database. 
Nucleic Acids Research. Database issue 34, 227-230, 2006. 

64. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller l, Eddy SR, Griffiths-
Jones S, Howe KL, Marshall M, Sonnhammer ELL. The Pfam protein 
families database. Nucleic acids Research, 30:276-280, 2002. 

65. Attwood TK, Bradley P, Flower DR, Gaulton A, Maudling N, Mitchell AL, 
Mpulton G, Nordle A, Paine K, Taylor P et al. . PRINTS and its automatic 
supplement, prePRINTS. Nucleic acids Research, 31:400-402, 2003. 

66. Corpet F, Servant F, Gouzy J, Kahn D. ProDom and ProDom-CG: tools for 
protein domain analysis and whole genome comparisons. Nucleic acids 
Research 28:267-69, 2000. 

67. Marchler-Bauer, A, et al. CDD: a conserved domain database for 
interactive domain family analysis. Nucleic acids Research 35, 237-240, 
2007. 

68. Henikoff S, and Henikiff J, G. Amino acid substitution matrices from 
protein blocks. Proc. Natl. Acad. Sci. 89:10915-10919, 1992. 

69. Dayhoff, MO. Survey of new data and computer methods of analysis. In 
Atlas of protein sequence and structure, vo. 5, suppl. 3. National 
Biomedical Research Foundation, Georgetown University, Washington, 
D.C. 1978. 

70. Wilbur WJ, and Lipman, DJ. Rapid similarity searches of nucleic acid and 
protein data banks. Proc. Natl. Acad. Sci. 80:726-730, 1983 

http://www.ncbi.nlm.nih.gov/
http://bioweb.pasteur.fr/seqanal/blast/#psiblast
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-2.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-2.html


 133

71. Bairoch, A., and Apweiler, R. The SWISS-PROT protein sequence data 
bank and its supplement TrEMBL. Nucl. Acids Res. 24, 21-25, 1995. 

72. Kulikova T., Akhtar R., Aldebert P., Althorpe N., Andersson M., Baldwin 
A., Bates K., Bhattacharyya S., Bower L., Browne P., Castro M., Cochrane 
G., Duggan K., Eberhardt R., Faruque N., Hoad G., Kanz C., Lee C., 
Leinonen R., Lin Q., Lombard V., Lopez R., Lorenc D., McWilliam H., 
Mukherjee G., Nardone F., Garcia-Pastor M.P., Plaister S., Sobhany S., 
Stoehr P., Vaughan R., Wu D., Zhu W., Apweiler R. EMBL Nucleotide 
Sequence Database in 2006. Nucleic Acids Research 35: D16-D20, 2007. 

73. Tateno, Y, and Gojobori, T. DNA Databank of Japan in the age of 
information biology. Nucl. Acids Res. 24, 14-17, 1996. 

74. Gavin Sherlock, et al. “The Stanford Microarray Database”, Nucleic Acids 
Research, 29(1). 2001. 

75.  Schena,M., Shalon,D., Davis,R.W. and Brown,P.O. Quantitative 
monitoring of gene expression patterns with a complementary DNA 
microarray. Science, 270, 467–470. 1995. 

76.  Pollack JR, et al, Genome-wide analysis of DNA copy-number changes 
using cDNA microarrays. Nature Genet., 23, 41–46. 1999. 

77. Rekapalli, B, Peterson, G, Rose, J and Hillhouse B. Parallel algorithm for 
genetic KNN-impute algorithm. Parallel and Distributed Computing 
Systems Conference, 19, 171-178, 2006. 

78. Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O. The 
Comprehensive Microbial Resource. Nucleic Acids Res. Jan 1;29(1):123-
5, 2001 

79. Wheeler,D.L., Church,D.M., Edgar,R., Federhen,S., Helmberg,W., 
Madden,T.L., Pontius,J.U., Schuler,G.D., Schriml,L.M., Sequeira,E., et al. 
Database resources of the National Center for Biotechnology Information: 
update. Nucleic Acids Res, 32, , D39–D45, 2005. 

80. Kim D. Pruitt , Tatiana Tatusova and Donna R. Maglott. NCBI*  Reference 
Sequence (RefSeq): a curated non-redundant sequence database of 
genomes, transcripts and proteins. Nucleic Acids Research,  33(Database 
Issue):D501-D504, 2005. 

81. http://www.ncbi.nlm.nih.gov/ 
82. Brown, TA. Genomes, Second Edition 2002. 
83. Branden, C and Tooze, J. Introduction to protein structure, second edition, 

1999. 
84. World Wide Web 
85. National Human Genome Research (NHGRI), by artist Darryl Leja.  
86. Bader, J. S., Chaudhuri, A., Rothberg, J. M. & Chant, J. Gaining 

confidence in high-throughput protein interaction networks (2004) Nat. 
Biotechnol. 

87. Borziak, K and Zhulin IB. FIST: a sensory domain for diverse signal 
transduction pathways in prokaryotes and ubiquitin signaling in 
eukaryotes. Bioinformatics, page 1-4, 2007. 

http://www.ncbi.nlm.nih.gov/


 134

88. Strohmaier, E, Dongarra, JJ, Meuer, HW, Simon, HD. Recent trends in the 
marketplace of high performance computing. Parallel Computing, volume 
31, p261-273, 2005. 

89. Eadline, D. Preparing for the revolution maximizing dual core technology. 
Basement Supercomputing, 2006. 

90. Augen, J. In silico biology and clustered supercomputing shaping the 
future of the IT industry. Biosilico., 1, 47-49, 2003. 

91. Bader, DA. Computational biology and high-performance computing. 
Communications of the ACM, vol. 47, no. 11, p34-41. 

92. Akhurst, TJ. The role of parallel computing in bioinformatics. Thesis, 2005. 
93. Zomaya, AY. Parallel Computing for bioinformatics and computational 

biology. 2006 
94. Rekapalli, B. Genomic data analysis using grid-based computing. MS 

thesis, 2003. 
95. Cheung,KH, Miller, P, Sherman, A, Stratmann, SWE, and Schultz, M. 

Graphically-enabled integration of bioinformatics tools allowing parallel 
execution. Journal of the American Medical Informatics Association, Suppl 
S, 141-145, 2000. 

96. Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE 
Trans. Comput., Vol. C-21, pp. 948, 1972. 

97. Wikipedia article. http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy 
98. http://bioweb.pasteur.fr/seqanal/blast/ 
99. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence 
weighting, positions-specific gap penalties and weight matrix choice. 
Nucleic Acids Res 22:4673-4680, 1994 

100. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast   
and accurate multiple sequence alignment. J Mol Biol 302(1):205-17, 
2000. 

101. Katoh K, Misawa K, Kuma K, and Miyata T. MAFFT: a novel method for 
rapid multiple sequence alignment based on fast Fourier transform. 
Nucleic Acids Res, 30:3059-3066, 2002. 

102. Simossis A and Heringa J. PRALINE: a multiple sequence alignment 
toolbox that integrates homology-extended and secondary structure 
information. Nucleic Acids Res. W289–W294, 2005. 

103. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and 
high throughput. Nucleic Acids Research 32(5), 1792-97, 2004. 

104. Subramanian AR, Weyer-Menkhoff J, Kaufmann M,  and Morgenstern B. 
DIALIGN-T: An improved algorithm for segment-based multiple sequence 
alignment. Bioinformatics, 6:66, 2005. 

105. HMMER documentation. http://hmmer.janelia.org/ 
106. Rost B. Review: Protein secondary structure prediction continues to rise. 

Journal of structural biology, 2001 

http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy
http://bioweb.pasteur.fr/seqanal/blast/
http://hmmer.janelia.org/


 135

107. Kim H. and Park H. Protein secondary structure prediction based on an 
improved vector machine approach. Protein Engineering vol. 16 no. 8 pp. 
553-560, 2003 

108. Doong SH and Yeh CY. Secondary structure prediction using SVM and 
clustering. Proceedings of the Fourth International Conference on Hybrid 
Intelligent Systems (HIS'04) - Volume 00, P297-302, 2004 

109. Jones DT. Protein secondary structure prediction based on position-
specific scoring matrices. J. Mol. Biol. 292: 195-202,1999. 

110. J. Cheng, A. Randall, M. Sweredoski, P. Baldi, SCRATCH: a Protein 
Structure and Structural Feature Prediction Server, Nucleic Acids 
Research, Web Server Issue vol. 33, 72-76, 2005. 

111. B Rost, G Yachdav and J Liu. The PredictProtein Server. Nucleic Acids 
Research 32(Web Server issue):W321-W326, 2004. 

112. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. and Barton, G. J. 
Jpred: A Consensus Secondary Structure Prediction Server, 
Bioinformatics 14:892-893, 1998. 

113. Rost B. PHD: predicting one-dimensional protein structure by profile-
based neural networks. Methods Enzymol, 266:525-39, 1996. 

114. Ulrich LE and Zhulin IB. Four-helix bundle: a ubiquitous sensory module in 
prokaryotic signal transduction. Bioinformatics, Vol. 21, piii45-iii48, 2005. 

115. Kimura, M. A simple model for estimating evolutionary rates of base 
substitutions through comparative studies of nucleotide sequences. 
Journal of Molecular Evolution 16: 111-120, 1980. 

116. PROTDIST. 
http://evolution.genetics.washington.edu/phylip/doc/protdist.html 

117. LA Kelley, RM MacCallum, MJ Sternberg. Enhanced genome annotation 
using structural profiles in the program 3D-PSSM. J. Mol. Biol, vol 299, pg 
499-520, 2000 

118. Jonathan D. Partridge, Colin Scott, Yue Tang, Robert K. Poole, and 
Jeffrey Green. Escherichia coli Transcriptome Dynamics during the 
Transition from Anaerobic to Aerobic Conditions. J. Biol. Chem., Vol. 281, 
Issue 38, 27806-27815, September 22, 2006 

119. http://www.shewanella.org/whyShewanella.html 
120. http://en.wikipedia.org/wiki/Image:Zinc-finger-dot-plot.png 
121. Herbordt MC, Model J, Gu Y, Sukhwani B and VanCourt T. Single Pass, 

BLAST-Like, Approximate String Matching on FPGAs. IEEE Symposium 
on Field-Programmable Custom Computing Machines, FCCM, 2006. 

122. Muriki K, Underwood KD, and Sass R. RC-BLAST: towards a portable, 
cost-effective open source hardware implementation. Parallel and 
Distributed Processing Symposium, proceedings, 19th IEEE international, 
2005. 

123. Sotiriades E, and Dollas A. Design space exploration for the BLAST 
algorithm implementation. 15th annual IEEE symposium on Field-
Programmable Custon Computing Machines, pp. 323-326, 2007 

http://evolution.genetics.washington.edu/phylip/doc/protdist.html
http://www.shewanella.org/whyShewanella.html
http://en.wikipedia.org/wiki/Image:Zinc-finger-dot-plot.png


 136

Vita 

 

Bhanu Prasad Rekapalli was born in Hyderabad, a city of great historic 

importance in Andrapradesh, India in 1978, son of Lakshmi Sulochana, and 

Subba Rao Rekapalli. He attended Siva Sivani public school, which has high 

standards of education that laid a strong foundation for the higher studies. After 

performing brilliantly in a highly competitive exam, toughest of its kind in the 

country, he joined Jawaharlal Nehru Technological University in electrical and 

electronics engineering. During his undergraduate education, he got good 

foundation in mathematics and basic sciences that broadened his horizon of 

knowledge. He was an executive member of the electrical engineering 

department that enhanced his leadership skills. He did his practical training 

during the final year of undergraduate program in VLSI division of Electronics 

Corporation India Limited, and the research project helped him to delve deeper 

into challenging fields of microelectronics systems and VLSI design. He received 

a B.Tech. degree in Electrical and Electronics Engineering, in June 1999 from 

Jawaharlal Nehru Technological University.  

 

He came to United States of America for his graduate education, he joined 

University of Tennessee, Knoxville. During his stay in UTK he gained experience 

in different kinds of jobs. He tutored mathematics to sophomores and juniors. He 

was also both teaching assistant and research assistant in ECE department. The 

teaching experience endowed him to gain proficiency in teaching.          



 137

            

 After that he joined WebServices group of Office of Information Technology 

(OIT), UTK as a Graduate assistant. His job at WebServices helped him a lot 

with his M.S. thesis and Ph.D. dissertation. At the same time he enhanced his 

computer skills in database management, design and development of website 

applications. He became one of the UT experts in microarray analysis working as 

scientific programmer for UT Microarray Database. Which resulted in good 

publications and knowledge in the field of microarray analysis. He also designed 

and taught a graduate level class in “Microarray Technology and UT Microarray 

Database Application”. After receiving the M.S. degree in Electrical Engineering 

from UT, he enrolled into Ph.D. at UT.  

 

During the course of his Ph.D. he gained knowledge in the fields of genomics 

and proteomics. While working in Dr. Jouline’s lab he became proficient in 

designing automated bioinformatics tools for proteomics applications that later 

became his dissertation topic. His current research interests are in the fields of 

bioinformatics, high performance computing, and computer architecture design 

along with microarray analysis. This knowledge of various fields gave him an 

opportunity to work as a Postdoc in Oakridge National Labs. His hobbies and 

interests include playing golf, working out in gym, water sports, traveling around 

the world and dancing. 

 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2007

	Automated Genome-Wide Protein Domain Exploration
	Bhanu Prasad Rekepalli
	Recommended Citation


	Copyright © 2007
	Bhanu Rekapalli 
	Dedicated to my mother Lakshmi Sulochana Vemuri and my father Subba Rao Rekapalli
	 Acknowledgements
	 Abstract
	 Table of Contents
	 List of Tables
	 List of Figures
	 
	Chapter One
	1.1 Introduction
	1.2 Biology Overview
	1.3 Problem Overview and Motivation
	1.3.1 Problem
	1.3.2 Algorithm
	1.3.3 Challenge

	1.4 Hardware Architectures Overview
	1.5 Scope of Dissertation

	 Chapter Two
	Literature Review
	2.1 Biological Background
	2.1.1 Sequence Alignments

	2.2 Pair-Wise Sequence Alignment Algorithms and Tools
	2.2.1 BLAST Algorithm
	2.2.2 BLAST Suite
	2.2.3 PSI-BLAST

	2.3 Multiple Sequence Alignment Algorithms
	2.3.1 CLUSTALW and MUSCLE

	2.4 Profile Hidden Markov Models and Protein Domain Identification
	2.4.1 HMMER Suite
	2.4.2 Domain Identification Tools

	2.5 Secondary Protein Structure Predictions
	 2.6 Algorithmic and Architectural Accelerators of BLAST and HMMER 
	2.6.1 Algorithmic Speedups 
	2.6.2 Architectural Speedups 


	 Chapter Three
	Automated Tool Chain Design
	3.1 Domain Identification Automated Tool chain (DIAT)
	3.2 Domain Verification Automated Tool chain (DVAT)
	3.3 Domain Discovery Automated Tool chain (DDAT)
	3.4 PepDomDB Database
	3.5 Domain Model Verification

	Chapter Four
	New Domain Model Results
	4.1 Test-bench Files
	4.2 DIAT Results
	4.3 DVAT Results
	4.4 DDAT Results
	4.5 Domain Model Verification Results

	Chapter Five
	Computational Results
	5.1 Architectural Assessment 
	5.2 Computation Times for Shewanella and E.coli Genome-Wide Domain Modeling
	5.2 Multicore Architectures and Threading
	5.3 Validation of DIAT 
	5.4 Solved Programming Challenges
	5.5 Job Mapping and Distribution
	5.5.1 PSI-BLAST Job Scheduler
	5.5.2 HMMER Job Scheduler


	Chapter Six
	Conclusions and Future work

	References
	 References

	 Vita

