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Abstract 

 

Metal oxides (MO) and their surfaces play a vital role in numerous phenomena, 

including metal surface passivation, catalysis, integrated optoelectronic technology, and 

pollution monitoring via solid-state gas sensing. This experimental study seeks to aid in 

the development of accurate and predictive theoretical models of the potential energy 

surfaces described in the interaction of these small molecules with the magnesium oxide 

(MgO) substrate.  MgO, with its structural simplicity and capacity to be fabricated with a 

predominantly (100) exposed face, is an ideal representative of the MO family popular 

for both experimental and theoretical studies.  Using high-resolution volumetric 

adsorption isotherms, a thermodynamic investigation of n-butane and 1-butene on MgO 

systems resulted in the accurate determination of the two dimensional compressibility, 

differential enthalpy and entropy, heat of adsorption and isosteric heat of adsorption in 

the temperature range between 158 K and 198 K for n-butane and between 160 K and 

195 K for 1-butene. 

The synthesis of mesoporous silica spheres with hollow interiors has attracted much 

attention due to their potential application in drug delivery, encapsulation, catalysis, 

separation, gas adsorption, sensors, and nanodevices.  Various methods have been 

attempted in order to develop procedures for making reproducible and dependable 

methods of hollow mesoporous silica particles; these include sol-gel, emulsion, and 

organic polymer.  However, despite reports of mesoporous silica being synthesized using 

different templates and under various reaction conditions, there is no single mechanism, 
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which can be used to universally explain the microscopic details of formation and growth 

of the uniform pore and ordered pore structure. This work seeks to investigate the role 

played by concentrations and ratios of the reactants and experimental conditions (such as 

pH temperature, and stirring speed) on the formation of mesoporous silica spheres. By 

using several different characterization techniques such as small angle x-ray scattering, 

volumetric adsorption/desorption isotherms, scanning electron microscopy, and Fourier 

transform infrared spectroscopy insight into the formation mechanism and the ability to 

produce specific and tailored mesoporous silica particles is gained. 
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Overview 

 

This dissertation is divided into two parts. The first part is the thermodynamic study 

of n-butane and 1-butene on magnesium oxide (100) surface, which is described in 

Chapters 1-3.   The second part of the dissertation is the synthesis and characterization of 

mesoporous silica sphere with possible hollow interior, which is described in         

Chapters 4-5. 

 Chapter 1:  Describes the types of adsorptions along with the interactions and 

energetics of physisorption, and provides an explanation of adsorption isotherms 

and adsorption models. 

 Chapter 2:  Describes the experimental setup including the adsorbate-substrate 

system, the high-resolution volumetric adsorption isotherm, which is the primary 

tool of investigation, and the derivation of the thermodynamic quantities that can 

be calculated from adsorption isotherms.  

 Chapter 3:  Provides the results from the thermodynamic study of n-butane and 

1-butenen on MgO (100) such as differential enthalpy, and entropy, heats of 

adsorption, isosteric heats, and two-dimensional compressibility in the 

temperature range between 158 K and 198 K for n-butane and between 160 K and 

195 K for 1-butene. 

 Chapter 4:  Describes the instrumentation and calculation used to determine 

important values in the characterization of mesoporous silica particles.  

 Chapter 5:  Presents results of the synthesis and characterization of mesoporous 

silica spheres along with the effects of concentrations and ratios of reactants and 

experimental condition such as pH, temperature, stirring speed.   It also provides 

preliminary results of potential application. 
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PART I: Thermodynamic Study of n-

Butane and 1-Butene on 

Magnesium Oxide 
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Chapter 1: Introduction and Background 

 

1.1 Importance of Adsorption 

Adsorption has been traced back to ancient Egyptians, Greeks and Romans where 

they utilized adsorbent properties of such materials as clay, sand, and wood charcoal to 

treat diseases, desalinate water, and clarify fat and oil.   Over the years, science has 

evolved and the need to develop a better understanding of concepts such as adsorption 

has become evident.   

The earliest studies of adsorption were in 1773 by Scheele and then independently by 

Fontanna with reported experiments on the uptake of gasses by charcoal and clays1. 

Lowitz in 1785, de Saussure in 1814, and Farve in 1854, were some scientists who 

studied adsorption with charcoal.  However, it was not until 1881 that the terms 

“adsorption”, “isotherm”, and isothermal curve” were first introduced in the literature by 

Kayser2.  The adsorption phenomenon was first proposed by Polayni, and independently 

in 1918 where Langmuir described the concept of a monomolecular layer (monolayer).  

Langmuir’s work on gas adsorption led to formulation of the Langmuir equation 

illustrating the adsorption on solid surface adsorption sites3.  In 1932, Langmuir won the 

Noble Prize in chemistry for his discoveries in surface science.  Another important 

historical discovering involving of gas adsorption was from work done by Brunauer, 
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Emmett and Teller who proposed the idea of multilayer adsorption isotherms, later 

becoming the BET theory in 1938. The BET theory was an extension of the Langmuir 

equation with the assumption that the Langmuir equation is applied to each layer.  

Although the BET model has some limitations, it is still used to determine specific 

surface area of powders and porous materials.   

Adsorption plays a role in many areas such as catalysis, separation of gasses, 

purification of liquids, and sensors.  It also plays an important role in many solid-state 

reactions and biological mechanisms. Chromatography, a technique widely used in 

separation science is derived from adsorption.  

 

1.2 Types of Adsorption 

Adsorption phenomenon describes the interaction between molecules of fluid phases 

i.e. gases, vapors, and liquids, (adsorbate) and a surface of solids or other liquid phases 

(substrate).  These interactions can be different types giving rise to two categories: 

Physisorption and chemisorption.   

1.2.1 Chemisorption 

Chemisorption systems consist of strong interactions involving the formation of a 

chemical bond between the adsorbate molecule and the surface. Since an electron is 

transferred and/or shared, the adsorbate is strongly bound to the surface.  The 

chemisorbed molecules are linked to a specific site of the substrate limiting the total 

adsorption to a monolayer.  An important distinction for chemical adsorption is that the 
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chemical nature of the adsorbate is different in the adsorbed state.  Thus, the process is 

irreversible and the substrate and/or adsorbate is altered and cannot be returned to its 

original state. In chemisorption, the energy is in the same magnitude as the energy of a 

chemical reaction.  Figure 1.1 is a schematic of a chemisorption process.  

The subjects of chemisorption and catalysis are closely intertwined.  These systems 

have great industrial importance, where the majority of chemicals and materials 

manufactured go through the process of catalysis. 

1.2.2 Physisorption 

   Physisorption systems consist of weak interactions such as van der Waals forces, 

which no electron is transferred or shared between the adsorbed molecules and the 

surface. In physisorption, the adsorbate and substrate are independent of each other to a 

certain extent; all sites can be covered below the critical temperature, as far as the 

geometry of the structure of the substrate permits4. The forces involved in physisorption 

act over a greater distance, which gives rise to multilayer adsorption.  During desorption, 

physisorbed molecules return to their original fluid phase leaving no damage to the 

substrate.  Physisorption is always exothermic, but the energies involved are much less 

than the condensation energy of adsorbate2.  Physisorption systems obtain a fairly rapid 

equilibrium.  A schematic of the physisorption process is shown in Figure 1.2 

Not only can physisorption be a characterization tool to determine quantities such as 

surface area, pore size and pore volume, but it is also an investigation tool to determine 

thermodynamic quantities and phase diagrams, where adsorption isotherms came into 

play.    
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Figure 1-1 A Schematic of Chemisorption Process.  
A) Adsorption. B) Desorption. 
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Figure 1-2 A Schematic of Physisorption Process.  
A) Adsorption. B) Desorption
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1.3 Physisorption Interactions 

The interaction between a molecule and a solid surface in a physisorbed system are 

due to Van der Waal’s forces.  Once the molecule approaches the surface, the 

intermolecular attractive and repulsive forces compete, especially if there are other 

molecules already on the surface, with adsorbate-adsorbate and adsorbate-substrate 

interaction playing a role.  To begin to understand multicomponent systems, especially 

extremely complicated liquid-solid interface, a single component at the gas-solid 

interface will be discussed. 

The first part of the system is the adsorbate-adsorbate interaction, which always 

includes dispersion attractive forces and short-range repulsion.  The existence of 

dispersion forces was first recognized by London5 in 1930 where he discovered that, in 

the ground state of an atom, rapid fluctuations in electron density would induce an 

electric moment in a neighboring atom.  By the use of perturbation theory, London 

derived the potential energy, εDI, of a pair of single atoms in the form: 

 
  

! 

"
D
(r) = #

C

r
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#
C'
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C' '

r
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where r is the distance between two atoms and C, C′,C′′, etc., are the constants associated 

with dipole-dipole, dipole-quadruple, quadruple-quadruple, etc. interactions 

respectively6.  In most cases of adsorption, C′ and C′′ contribute very little to the total 

dispersion interaction compared to C.  Therefore, C′ and C′′ cab be neglected reducing 

Equation (1.1) to the form: 
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From Pauli’s exclusion principle, which prohibits the overlapping of electron orbitals, 

repulsion forces come into play when two atoms approach each other.  The nuclear-

nuclear repulsion, εDI, between two atoms can be expressed in the form: 
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where B and m are empirical constants, and it has been shown that m is usually given the 

value 12.  Combining the dispersion and repulsion interaction gives the total potential 

energy, εI, is designated as the Lennard-Jones (12-6) potential 
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A more common form of Equation (1.4) is 

 

! 

U(r) = 4"
#

r

$ 

% 
& 

' 

( 
) 

12

*
#

r

$ 

% 
& 

' 

( 
) 

6+ 

, 
- 
- 

. 

/ 
0 
0 
 (1.5) 

where σ is the equilibrium distance corresponding to the minimum potential energy  ε.  

The second part of the system is the adsorbate-substrate interaction, which will allow 

for a more complete understanding of gas-solid interfaces.  The total potential adsorbate-

substrate energy Φ(z) is equal to the summation of pairwise interactions εi(ri) represented 

as, 
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In Equation (1.6), I refers to the ith atom in a substrate, and ri is the distance from the 

adsorbate atom to the ith atom in the substrate.  The individual εI are then approximated 

by the Lennard-Jones potentials, and according to W. A. Steele, the Lennard-Jones (10-4) 

potential is a good starting approximation of gas-solid interactions7.   

 

1.4 Energetics of Physisorption 

Adsorption experiments can provide valuable information about the mechanisms of 

physisorption systems, especially when are carefully controlled conditions and the 

adsorption system is very well defined.  In 1966, Barrer derived a useful expression for 

the adsorption energy, E0, calculated at very low coverage in the form of the sum8 
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where ED and ER are dispersion and repulsion terms and represent the non-specific 

contributions. Alternatively, EP, EFµ, and EFQ refer to specific contributions, representing 

polarization, field-dipole and field gradient-quadruple energies. Equation (1.7) can be 

simplified to: 
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The nature of the adsorption system, which includes adsorbate and substrate control 

the magnitude of the adsorption energy.  Studying only adsorbate-substrate interactions 

requires the analysis of adsorption data at low coverage to eliminate or minimize any 

adsorbate-adsorbate interactions. At high coverage, adsorbate-adsorbate interaction, Eaa, 

are added to Equation (1.7). 

  

1.5 Adsorption Isotherm 

Adsorption isotherms are normally presented in a graphical form, with a wide variety 

of physical adsorption isotherm having been measured and reported in the literature for 

gas-solid systems.  These isotherm forms are grouped into six classes in the IUPAC 

classification shown in Figure 1-3, with the first five types (I-V) originally proposed by 

S. Brunauer, L.S. Deming, W.S. Deming, and E. Teller as BDDT classification (1940)9.  

In 1985, The IUPAC classification of physisorption isotherms expanded to I Type VI, 

which has been observed for stepwise multilayer adsorptions10.  

Type I isotherm is concave to the relative pressure (p/p0) axis and the amount 

adsorbed plateaus as p/p0 reaches 1.  The horizontal plateau is characteristic of monolayer 

completion and this form follows the Langmuir isotherm model11, which will be 

discussed later. 

Type II is the most common form of physisorption isotherm and follows the BET 

model, which allows for multilayer formation.  The curve is concave to the p/p0 axis, then 
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Figure 1-3 The IUPAC Classification of Isotherms. 
The six main types of physisorption isotherms according to the IUPAC classification10.
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becomes almost linear, and finally convex to p/p0 axis.  At the knee of curve, point B is 

usually considered to be the monolayer completion as illustrated in Figure 1-3.  This 

shape is representative of when the equilibrium pressure is equal to the saturated vapor 

pressure of the adsorbed layer, here the adsorbate-adsorbate interactions become 

dominant compared to the adsorbate-substrate interactions. 

Type III isotherm is convex to the p/p0 axis over the complete range.  This type is not 

common and is usually indicative of weak adsorbate-substrate interactions. An example 

of such system is the adsorption of nitrogen on ice, where it was discovered that the heat 

of adsorption is equal to or less than the heat of liquifacation12.  

Types IV and V are similar to Types II and III, respectively, but are associated with 

adsorption in porous materials. The two arrows in each type represent adsorption and 

desorption as shown in Figure 1-3.  In porous materials, a hysteresis loop is commonly 

observed due to capillary condensation phenomena.  

Finally, Type VI isotherm is representative of stepwise multilayer adsorption where 

the molecules adsorb onto the surface in a layer-by-layer process. Normally, the layering 

steps become sharper as the temperature decreases.  Such isotherms are found in systems 

of simple non-polar molecules (argon, krypton, and small alkanes) on highly uniform 

surfaces such as graphite.  

It must be kept in mind that the nature of the gas-solid system determines the overall 

shape of an isotherm. The adsorption models described below are a good starting point to 

understand isotherm shapes and adsorbate/substrate interactions. 
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1.5.1 Gibbs Model 

Gibbs description of adsorption concerned the correlation changes in surface tension 

with amount adsorbed6.  The fundamental equation of thermodynamics for Gibbs free 

energy, 

 

! 

G =U "TS + PV  (1.9) 

with the total differential as, 

 

! 

dG = dU "TdS " SdT + PdV +VdP  (1.10) 

In the differential internal energy of the surface, dU, the work expansion (-PdV) is 

replaced by the work of changing the surface area (+γdA) in this form11, 

 

! 

dU = TdS + "dA µ
i
dn

i#  (1.11) 

For a two-dimensional system of Equation (1.10), the volume is equal to zero, and by 

substituting in Equation (1.11), the Gibbs free energy becomes, 

 

! 

dG = "SdT + #dA µ
i
dn

i$  (1.12) 

By rearranging Equation (1.12) and keeping the temperature constant yields the Gibbs 

isotherm equation7. 

 

! 

d" = # $
i
dµ

i%  (1.13)  

where Γ is surface excess concentration and the chemical potential, µ, is 
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1.5.2 Henry’s Model 

Henry’s model is the simplest interpretation of adsorbed phase where the focus lies at 

very low coverage.  The adsorbate-adsorbate interactions are neglected at low coverage 

leaving the adsorbate-substrate interactions dominant. By assuming that the adsorbed 

phase behaves as a two-dimensional ideal gas, the amount adsorbed, n, and pressure, p, 

can be related linearly given Henry’s law constant, k, in the following form2, 

 

! 

n = kp  (1.15) 

Differential enthalpy of adsorption at ‘zero’ coverage, Δadsho, can be obtained from the 

variation of Henry’s law constant with temperature with the form, 
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 (1.16) 

By plotting ln(k) versus 1/T, Δadsho can be evaluated.  The linear relation between the 

henry’s law constant and coverage is a good indicator of the substrate uniformity as to a 

heterogeneous surface will have non-linear form11.  

1.5.3 Langmuir Isotherm 

The relationship between the amount of gas adsorbed and the equilibrium pressure of 

the gas at constant temperature was first described by Langmuir in 1918.  The original 

derivation of the Langmuir equation was a kinetic one, limited to the formation of a 
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single adsorbed layer on the solid surface13.  The kinetic derivation assumes that 

adsorption occurs on a fixed number of sites, each site can only accommodate one 

admolecule, and the adsorbate-adsorbate interactions are neglected as they are assumed to 

be small in comparison the adsorbate-substrate interactions. One of the best attempts 

made to modify the original Langmuir model was by Fowler and Guggenheim in 1949.  

Their derivation was based on statistical thermodynamics, allowing for adsorbate-

adsorbate interactions in a localized monolayer on a uniform surface.  Although both 

derivations are different, they yield the same result and, therefore, only the kinetic 

approach will be discussed. 

The kinetic approach assumes that, in equilibrium, the rate of adsorption is equal to 

the rate of desorption given a certain number of sites on the surface S, of which S1 are 

occupied and S0 are free  and can be expressed as, 

 

! 

S0 = S " S1 (1.17) 

with 

 

! 

k1S1 = k 2PS0 = k 2P(S " S1)  (1.18) 

where k1 and k2 are rate constants of adsorption and desorption, and P is gas pressure.  

The fraction of surface covered by adsorbate is defined as, 

 

! 

" =
S1

S
=

bP

1+ bP
 (1.19)  

where 
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! 

b =
k2

k1
 (1.20) 

As shown in Figure 1-4, Equation (1.19) has a hyperbolic function, which reduces to 

Henry’s Law at low coverage and at high surface coverage reaches a plateau is reached as 

θ reaches 1.  A linear form of Equation (1.19) is obtained by rearranging and substituting 

n/nm for θ, where nm is moles per gram at monolayer completion.  

 

! 

P

n
=
1

bnm
+
P

nm
 (1.21) 

A plot of P/n against P produces a straight line where nm can be calculated and is related 

to the specific surface area, Σ, in the following form: 

 

! 

" = nm # N 0 #$   (1.22) 

where N0 is Avogadro’s number, and σ is the molecular area of an adsorbate on a 

substrate11.  

1.5.4 Brunauer-Emmett-Teller (BET) Isotherm 

Building from the Langmuir model, Brunauer, Emmett, and Teller (1938) were able 

to extend the Langmuir kinetic theory of monolayer adsorption to multilayer adsorption 

by simplifying number of assumptions to obtain the BET isotherm model.  They made 

the assumption that the Langmuir equation applies to each layer, and that evaporation and 

condensation can only occur on the exposed surfaces11. Similar to the Langmuir equation, 

the BET equation can be derived from both kinetic and statistical mechanics approaches.   
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Figure 1-4 A Plot of Langmuir Isotherm.  
Langmuir isotherm from Equation (1.19) with various values of b.  
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Again, the kinetic approach will be discussed while the statistical mechanics approach 

can be found in multiple books7. 

 In the BET model, the adsorbed molecules on the surface act as adsorption sites for 

molecules in the next layer, but this does not indicate that the surface is uniformly 

covered.  Instead, the molecules are randomly stacked on the surface. Given that S0 is the 

fraction of the surface unoccupied, and that S1, S2, S3, ...Si,… are the fraction occupied by 

1, 2, 3, …i, … layers of adsorbed molecules, in equilibrium, the rate of condensation of 

S0 is equal to the rate of evaporation of S1: 

 

! 

a
1
pS

0
= b

1
S
1
e
"E

1
RT( )  (1.23) 

where a1 and b1 are the adsorption and desorption constants for the first layer, E1 is heat 

of adsorption for the first layer, and p is the pressure. Similarly, the expression for the S2, 

S3, … Si, …follow as, 
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a
3
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2
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e
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3
RT( )  (1.25) 

   

! 

M    

! 

M 

 

! 

ai pSi"1 = biSie
"Ei RT( )  (1.26) 

The BET isotherm equation is derived using two main assumptions. First, the heat of 

adsorption, Ei, is equal to the heat of liquefaction of the vapor, EL, in the second and all 
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higher layers (i.e. E2 = Ei = EL). Second, that the multilayer has infinite thickness at     

p/p0 = 1 (i.e. I = ∞).  A lengthy derivation of the assumptions can be found in a number of 

text books2,6,11, which results in the following equation: 

 

! 

n

n
m

=
cx

1" x( ) 1+ c "1( )x[ ]
 (1.27) 

where x is (p/p0), and c is defined as, 
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c " exp
E1 # EL
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Equation (1.27) can be rearranged to fit a linear form, 

 

! 

x

n 1" x( )
=
1

cn
m

+
c "1( )x

cn
m

 (1.29) 

where by plotting x/n(1-x) versus x, nm and c can be determined from the slope and y-

intercept. Then, the surface area can be obtained from Equation (1.22).   

There are problems with the BET model, which include the assumption that all layers 

above the first layer have the same energy and have liquid-like properties and, similar to 

the Langmuir model, there is no consideration of the lateral adsorbate-adsorbate 

interactions6.   

1.5.5 Frenkel Halsey Hill (FHH) Isotherm 

One of the limitations of the BET model is at high coverages where the existence of 

the lateral adsorbate-adsorbate interactions have been not considered7.    Frenkel was first 
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to propose the assumption of the slab approximation followed by Halsey and Hill, which 

entails that the adsorbed film has the same properties as the bulk fluid14.  More precisely, 

the molar entropy of the adsorbed film is the same as the bulk fluid2.  The FHH 

expression for considering the adsorbate-adsorbate interactions is, 

 

! 

ln
p

p
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' =

k

( s
 (1.30) 

where k is constant for a given gas-solid system, θ is n/nm, (surface coverage), and s is an 

empirical parameter associated with dispersion forces r-6 term.  The FHH equation, as 

well, has a setback in that it does not account for the first two layers. The equation is only 

applicable to layers three and above in a multilayer system11. 
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Chapter 2: Experimental Setup 

 

As introduced in the first chapter, adsorption isotherms can be utilized as a tool to 

better understand adsorbate-adsorbate and adsorbate-substrate interactions in 

physisorption gas-solid systems.  This technique allows for the derivation of a variety of 

thermodynamic quantities, facilitating a more complete understanding of adsorption in 

gas-solid systems.    

 This chapter will begin with a description of the gas-solid systems investigated along 

with the synthesis of the substrate used in the experiments. The volumetric adsorption 

isotherm system, which was the primary tool of investigation, will then be detailed. The 

chapter will conclude by identifying the thermodynamic quantities derived from the 

volumetric adsorption isotherms. 

 

2.1 Adsorbate-Substrate System 

There are two gas-solid systems that were investigated: n-butane on magnesium oxide 

and 1-butene on magnesium oxide.  Both systems were treated similarly, meaning they 

followed the same experimental setup and procedure, and the same thermodynamic 

quantities were derived from adsorption isotherm data.  The results are discussed in the 

next chapter, which includes a comparison of both systems. 
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2.1.1 n-Butane and 1-Butene 

The first adsorbate used in this study was n-butane, C4H10, a member of the alkane 

family. It is a colorless and highly flammable gas.  Typically used in manufacturing of 

aviation fuels and organic chemicals, as a calibration gas for pressure and temperature 

gauges, and also as a heating fuel.  It was purchased from Matheson at ultra high purity 

(99.99%) in a lecture bottle and used with a flammable regulator connected to the system 

without any further purification. 

In the second system, 1-butene, C4H8, an alkene member of the hydrocarbon group 

was employed as the adsorbate.  Similar to n-butane, 1-butene is a colorless and highly 

flammable gas that is in the gas phase at room temperature.   It was also purchased from 

Matheson at ultra high purity (99.98%) with minimal butene isomers present in the 

lecture bottle and used as purchased without further purification. In industry, 1-butene is 

utilized in the production of octanes, important constituents of gasoline, and butadiene, 

the principal starting material for synthetic rubber. It is also used in the manufacturing of 

plastics and production of commercial solvents. 

The primary difference between the structures of the two adsorbates is that 1-butene 

has a double bond on the first carbon resulting in two fewer hydrogens as shown in 

Figure 2-1.  Table 2.1 summarizes the important properties of n-butane and 1-butene used 

in the adsorption studies.   
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Figure 2-1 The Structures of Adsorbates. 
A) n-butane and B) 1-butene. 
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Table 2.1 Summary of the properties of n-butane and 1-butene used in the adsorption 
studies.  Data provided by NIST webbook. 
 n-butane 1-butene 

Mol. Weight [mol/g] 58.122 56.106 

Tboil [K] 273±1 266.8±0.5 

Tfus [K] 136±3 - 

Ttriple [K] 134.6±0.7 87.82 

ΔvapH [kJ/mol] 22.44 21.866 

A 4.70812 8.1706 

B 1200.475 1601.52 

C -13.013 -7.059 

 

2.1.2  Magnesium Oxide 

The magnesium oxide, MgO, powders used in this study were prepared using a 

method patented by the Larese group15 where the reaction of magnesium metal,  graphite, 

and oxygen gas is performed in an induction furnace to produce high purity MgO with a 

narrow size distribution. 

 Magnesium metal, purchased from Alfa Aesar at high purity (99.9%) with 

manganese and chromium as the predominant impurities present at 4 ppm, is cut into 

small pieces (1 cm) and dipped into a solution of dilute hydrochloric acid to remove any 

other surface impurities.  High purity graphite used in this reaction is cut into smaller 

pieces (5mm) and placed into a graphite crucible along with the magnesium pieces.  The 

crucible is placed into the induction furnace coil and a quartz chimney is positioned 

around it to collect the magnesium oxide powders and seal the reaction.  Before running 
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the reaction, the chimney is purged with ultra high purity argon gas displacing the air 

present inside the chimney, thus allowing control of the source of oxygen in the reaction.  

The argon is also used as a carrier gas delivering the magnesium complex vapors upward 

to react with oxygen gas. 

Once the chimney is purged for 8 hours, the induction furnace is turned on, by 

controlling the heating rate, furnace temperature, flow rate of oxygen and argon, and the 

amount of starting materials, the reaction produces high purity magnesium oxide powders 

with narrow size distribution of 300 nm and, exclusively, the (100) face exposure. Figure 

2-2 is a TEM image of the powders. The reaction pathway is as follows: 

 

! 

Mg(s)+ C(s)" MgxCy(g ) (2.1) 

 

! 

MgxCy(g )" Mg(g )+ C(s) (2.2) 

 

! 

Mg(g )+O2(g )" MgO(s) (2.3) 

Once the reaction is complete, the magnesium oxide powders are collected from the 

quartz chimney and stored in desiccators until used.    The magnesium oxide powders are 

very sensitive to moisture and, therefore, prolonged exposure to air introduces defects, 

primarily oxygen vacancy.  
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Figure 2-2 TEM Image of MgO Cubes. 
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2.2 Volumetric Adsorption Isotherm System 

The high-resolution volumetric adsorption isotherm (HRVAI) used in this study is 

composed of multiple components, including a gas handling system, sample cell, displex, 

temperature controller, helium compressor, control box, and computer interface. The 

HRVAI is designed and assembled by our group.  The only limitation to our instrument is 

the ability to accurately measure very low pressures. A schematic of the HRVAI is shown 

in Figure 2-3.  The basic process of the adsorption isotherm is as follows; while keeping 

the sample cell at a fixed temperature, a known amount of gas (measured by a pressure 

transducer) is introduced into the sample.  The “dosed” amount is allowed to equilibrate, 

and then recorded.  This process is continued until an adsorption curve is constructed and 

the saturated vapor pressure of the gas adsorbed is reached. 

2.2.1 Gas Handling System 

The gas handling system (GHS) is the main component of the HRVAI and is 

assembled with ¼’’ stainless steel tubing linked by Swagelok® valves.  The Swagelok® 

valves can be automated by pneumatic actuators.  The GHS contains a pressure 

transducers, calibrated volume, and connections to other components as illustrated in the 

schematic in Figure 2-3.  A MKS 120A High Accuracy Pressure Transducer measures the 

pressure, ranging from 1 to 1000 torr maximum pressure.  The pressure transducer range 

determined by the saturated vapor pressure of the adsorbate being studied. 

The calibrated volume is where the gas is introduced before entering the sample cell. 

It is determined by using gas expansions from a calibrated glass bulb.  The gas
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Figure 2-3 A Schematic of High Resolution Adsorption Isotherm System.   
A) Gas handling system. B) Pressure transducer. C) Turbo pump. D) Gas source. E) 
Sample Cell. F) Displex. G) Temperature controller. H) Helium compressor. I) Control 
box. J) Computer.  Thick black line represents the calibrated volume.  Red circles are 
automated Swagelok® valves and green circles are non-automated Swagelok® valves.  
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expansions are performed with ultra high purity helium and, since helium behaves as an 

ideal gas at room temperature, Boyle’s law is applied to calculate the unknown volume.   

Several other components are connected to the GHS, including a turbo pump, 

adsorbate source, control box, and displex. A turbo pump is used to evacuate the GHS 

and sample cell, ensuring that the system does not contain a measurable amount of gas by 

reaching a base pressure of (∼1 x 10-7 torr) before beginning any experiment.  The 

adsorbate source is a reservoir of the investigated gas; in this case a lecture bottle of n-

butane or 1-butene. The sample cell resides in the displex where a helium compressor and 

a resistance heater control the temperature. A control box is built to allow interfacing 

between the instrumentation and a computer, which converts analog to digital signal. 

2.2.2 Sample Cell 

The sample cells that are used in the HRVAI are made from oxygen free high 

conductivity (OFHC) copper supported by an aluminum stage. The copper cells have low 

thermal conductivity and are non-reactive to most samples.  A small capillary connects 

the copper cell to a Swagelok® valve outside of the displex.  The capillary is wrapped 

with a resistive wire that has been treated by GE varnish to prevent any gas condensation 

in the capillary.  Quartz wool is placed in the capillary from inside the copper cell to keep 

the sample powder from flowing through the capillary and into the GHS.  This ensures 

that for only the adsorbate molecules can pass through into the sample cell.  To seal the 

sample cell, an indium wire is compressed between a copper lid and the copper cell and 

tightened with eight small screws.  A photograph of a sample cell is shown in Figure 2-4. 
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Figure 2-4 A Photograph of a Sample Cell Used In HRVAI. 
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2.2.3 Temperature Control 

Once the sample cell has been filled and mounted in the displex, the displex is evacuated 

for at least 12 hours by an external vacuum pump. A helium compressor is connected to 

the displex, allowing for the sample cell to reach temperatures as low as 10 K.  A 

Neocera LTC-21 temperature controller is used to monitor and control the temperature of 

the sample by reading the temperature from platinum and silicon diode resistance 

thermometers.  For an accurate estimate of the actual temperature of the sample, the 

resistance thermometers are mounted above and below the sample cell.  A resistance 

heater mounted at the bottom of the sample cell applies different outputs (0.5W, 5W, and 

50W) depending on the cooling power of the helium compressor.  By combining the 

helium compressor and the resistance heater, the temperature of the sample can be 

controlled from 10 K to 300 K ± 0.004 K.  Regardless of the temperature stability, there 

is a small offset between the actual sample temperature and the controller set point.  This 

offset is determined using the semi-empirical Antoine’s equation via the saturated vapor 

pressure (SVP) of each isotherm:  

 

! 

log10 p( ) = B "
A

T + C

# 

$ 
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' 
(  (2.4) 

where p is pressure, T is temperature, and coefficients A, B, and C for n-butane and        

1-butene are listed in Table 2.1. 
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2.2.4 Computer control 

The HRVAI relies on a control box assembled to collect and transfer the signal from 

the pressure transducer and temperature controller to a LabVIEW program16.  The 

program, graphical based, monitors and controls the adsorption isotherm process. 

The program is user-friendly, with many options and functions.  The user has the 

option to alter the amount of gas in the sample at the start of the experiment, the dose 

size, the maximum number of dosage points, and the method of equilibration.  There are 

basically two options for defining the method of equilibration; by time, which is usually 

set to get a quick map of the adsorption curve for an unknown substrate, and by change of 

average pressure over 1 min intervals. The latter is the most common option, and more 

accurate in defining when equilibrium is reached.   

During the adsorption process, the program tracks, for each dosage of gas, the initial 

and final pressure and the summation of change of initial and final pressure, ΣΔp.  The 

amount adsorbed on the substrate is calculated from ΣΔp and will be discussed in the 

next section.   The program records several variables in a spreadsheet for each point, such 

as initial pressure, final pressure, ΣΔp, and temperature for both sensors.  The program 

also allows the user to change the temperature set point and heating power.   

 

2.3 Quantities from Adsorption Isotherm 

Using the HRVAI as the primary investigative tool in the study of gas adsorption onto 

solid surfaces, there are a number of quantities that can be derived from isotherm data, 
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such as amount adsorbed, surface area of substrate, layering steps, two-dimensional 

compressibility, phase transitions, differential entropy and enthalpy, and heats of 

adsorption.  The derivation of each quantity will be discussed in this section.  

2.3.1 Amount Adsorbed 

From the isotherm data, the amount of adsorbate adsorbed onto the substrate can be 

calculated by understanding the adsorption process utilized by the HRVAI and by 

applying the ideal gas law.  Before introducing the adsorbate into the sample, the 

adsorbate is held in the calibrated volume, Vcal, where the initial amount of moles of 

adsorbate, nical, is 

 

! 

ni =
piVcal

RTroom
 (2.5) 

where pi is the initial pressure in the calibrated volume, and Troom is room temperature. 

Once the pi is measured by the pressure transducer and recorded by the LabVIEW 

program, the adsorbate is introduced to the sample.  The pressure transducer measures the 

pressure after equilibration and it is recorded in the program as final pressure.  The initial 

number of moles, ni, can be rewritten as,  

 

! 

ni = nf = nfcal + nads+ nds  (2.6) 

where nfcal is the number of moles in the calibrated volume after equilibration, nads is the 

amount adsorbed onto the substrate, and nds is the number of moles of adsorbate in the 

dead space.  The dead space is defined as the volume between the substrate (or the 

adsorbed layer) and where the calibrated volume is held (i.e. the volume in the sample 
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cell above the substrate). The dead space is determined by helium expansion similar to 

the calibrated volume. By substituting and rearranging Equation (2.5), nads for each point 

or dosage is 

 

! 

nads =
piVcal

RTroom
"
pfVcal

RTroom
"
pfVds

RTroom
 (2.7) 

where pf is the final pressure and can be simplified as, 

 

! 

nads =
Vcal pi " pf( )
RTroom

"
pfVds

RTroom
 (2.8) 

Taking into account all the points in the isotherm curve from the HRVAI, the amount 

adsorbed onto the substrate is 

 

! 

nads =
"p#( )Vcal $ pfVds

RTroom
 (2.9) 

2.3.2 Layering Steps 

From an adsorption isotherm plot shown in Figure 2-5, there are distinct steps, 

becoming less distinct as the pressure reaches saturation.  The isotherm steps correspond 

to layer formation and by taking the derivative (Δn/Δp), the layering steps can be located 

by the peaks of the derivate. 

2.3.3 Surface Area 

Most investigators utilize adsorption isotherm to determine the specific surface area 

of materials, but they can also be used to determine the relative surface area of a single
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Figure 2-5 A plot amount adsorbed and 1st derivative versus p/po of methane 
adsorbed on MgO at 78 K.   
Five visible steps are observed from the amount adsorbed and six using the derivative.  
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molecule on the substrate. The BET method and the point B method are the most 

common approaches used to determine the specific surface area. Both methods consist of 

two steps.  The first is to derive the monolayer coverage, nm, and the second is to 

calculate the specific surface area, which requires the knowledge of the molecular area of 

an adsorbate on the surface.  

From the BET method, a plot of x/n(1-x) versus x from Equation (1.29) produces a 

linear region between p/p0 of 0.05 and 0.3.  From the linear fit, nm and c can be calculated 

from the slope and y-intercept, and the specific surface area can then be derived from 

Equation (1.22)11.   

The point B method is the approach used in this study as it is simpler than and as 

accurate as the BET method.  From the isotherm plot, a horizontal line is extrapolated 

from a point that defines the completion of the layering step, which is indicated by the 

plot of the numerical first derivative (Δn/Δp) versus pressure.  Then, a vertical line is 

extrapolated from the vertical riser region of an isotherm (see Figure 2-6).  Solving for 

the intersect (point B) of the two line gives the amount adsorbed at monolayer 

completion1.  The specific surface area is then derived from Equation (1.22).   

To determine the specific surface area of MgO, methane was used as the adsorbate 

instead of nitrogen.  A detailed study showed that methane forms √2 x √2 R45° with a 

molecular area of 17.74Å2 when adsorbed on magnesium oxide17.   
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Figure 2-6 A Plot Illustrating the Determination Using the Point B Method.  
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2.3.4 2D-Compressiblity 

As a molecule travels from the three-dimensional vapor onto the two-dimensional 

surface, the change of the spreading pressure of the admolecule onto the surface can be 

derived using adsorption isotherms. The change in spreading pressure is defined as the 

two-dimensional compressibility, K2D.  Deriving from the three-dimensional 

compressibility, 
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measuring the change in pressure (p) as change in volume (V) and going to the two-

dimensional compressibility, the pressure and volume are replaced by spreading pressure 

(φ) and molecular area of an admolecule, σ as shown below 
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The spreading pressure is defined as the pressure to sustain a liquid vapor on a solid 

surface. In equilibrium, the chemical potential, µ, of the three-dimensional vapor and the 

adsorbed molecules have the following relationship  

 

! 

µ3D = µ2D = "SdT +#d$  (2.12) 

Solving for σ at constant temperature,  
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From the kinetic molecular theory of gases, chemical potential can be defined as, 
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where kB is boltzmann constant, λ is De Broglie wavelength and taking the derivative 

yields, 
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Combining, and rearranging Equations (2.12-12.15) gives  
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where NA is Avogadro’s number, and n is the number of moles adsorbed.  The two-

dimensional compressibility can aid in determining possible phase transitions that occur 

within the adsorbed layers. 

2.3.5 Phase Transition 

According to Larher18, the two-dimensional compressibility can be utilized to locate 

possible phase transition over the range of temperature in the study.  Figure 2-7 shows a 

representative plot of K2D versus chemical potential of multilayer adsorption in a gas- 
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Figure 2-7  A Representative of K2D Plot with Two Peaks each Represents a 
Monolayer. 
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solid system.   The plot, in this case, has two peaks each representing a monolayer 

completion.   By recording the Full Width at Half Maximum (FWHM) of the peaks and 

plotting it against temperature for a range of isotherms, a break from linearity in each 

monolayer would indicate a phase transition.  The temperature at which this change 

occurs is called the critical temperature. 

2.3.6 Clausius Clapeyron 

Thermodynamic quantities such as differential enthalpy and entropy, and heats of 

adsorption can be calculated from adsorption isotherms.  In equilibrium, a relationship 

between pressure, temperature, and molar enthalpy, ΔtrsH, are related the Clausius-

Clapeyron equation 
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by plotting the log pressure corresponding to the location of the layering steps against the 

inverse temperature, a linear form of Clausius-Clapeyron equation is derived18.  
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ln(pf ) = B
(n )
"
A
(n )

T
 (2.18) 

Where A(n) and B(n) are constants for (n) layering step.  From the slope and y-intercept, 

A(n) and B(n) can be calculated and used to determine differential enthalpy, ΔH(n), and 

differential entropy, ΔS(n) for each layer18  
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where A(∞) and B(∞) are constants determined at the saturated vapor pressure.  

Furthermore, the heat of adsorption, Qads, can be determined from the linear fit of the 

Clausius-Clapeyron plot, 

 

! 

Qads

(n )
= A

(n )
" R  (2.21) 

The heat of adsorption is calculated for each layer. 

2.3.7 Isosteric Heat of Adsorption 

Another thermodynamic quantity that can be derived from desorption isotherms is the 

Isosteric heat of adsorption, Qst, which represents the amount of energy required to 

remove a adsorbed molecule from the surface into the bulk vapor.  The isosteric heat can 

be calculated at constant coverage19 
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Qst = RT 2
" ln p( )
"T
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$ RT
2
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The partial derivative of ln p is approximated by measuring the difference in ln p of two 

isotherms with the same coverage and a small difference in temperature. The accuracy of 

this approximation is dependent on the coverage consistency and the size of the 

temperature difference of two isotherms.  The isosteric heat converges to the bulk 

enthalpy (vaporization, fusion, ...etc) at high coverages due to the very weak substrate-

adsorbate interactions where the adsorbate-adsorbate interactions become dominant thus 

becoming bulk-like.   



 44 

Chapter 3: Thermodynamics 

 

3.1 Introduction 

Metal oxides (MO), and their surfaces in particular, play a vital role in numerous 

phenomena, including metal surface passivation, catalysis, integrated optoelectronic 

technology, and pollution monitoring via solid-state gas sensing20.  Over the past couple 

of decades, the study of metal oxide surface properties, both experimentally and 

theoretically, has become necessary in order to better understand their basic physics and 

chemistry.  Furthermore, as hydrocarbons are technologically important fuel sources and 

building blocks in the production of value-added chemicals, their adsorption and reaction 

on metal oxide surfaces is of scientific interest.  This chapter details the comprehensive 

study of the adsorption and structural and dynamic properties of short-chain alkane and 

alkene thin films on magnesium oxide (MgO) surfaces.  This research seeks to aid in the 

development of accurate and predictive theoretical models of the potential energy 

surfaces described in the interaction of these small molecules with the MgO substrate.  

MgO, with its structural simplicity and capacity to be fabricated with a predominantly 

(100) exposed face, is an ideal representative of the MO family popular for both 

experimental and theoretical studies.  Using high-resolution volumetric adsorption 

isotherms, a thermodynamic investigation of n-butane and 1-butene on MgO systems 

resulted in the accurate determination of two dimensional compressibility, differential 
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enthalpy and entropy, heat of adsorption and isosteric heat of adsorption in the 

temperature range between 158 K and 198 K for n- butane and between 160 K and 195K 

for 1-butene.   

This work partially succeeds a previous study, which characterized the solid phase n-

butane monolayer structure on MgO (100) surface using neutron diffraction21.  The study 

concluded that a monolayer of n-butane adsorbed on MgO at 4 K forms a commensurate 

7√2 X √2R45° herringbone structure with P2gg symmetry, and four molecules per unit 

cell.  Numerous experimental techniques, including heat capacity measurements22-24, 

neutron diffraction21,25-31, scanning tunneling microscopy32, adsorption isotherms33-35, 

desorption kinetics36,37, and theoretical calculations38-40 have been used to study the 

properties of n-butane and 1-butene on various solid surfaces, although exploration 

involving MO surfaces are far more limited. 

 

3.2 Experimental Procedure 

The MgO powders used in this study were prepared using a novel method15 

producing high quality MgO nano-cubes with a relatively narrow size distribution (250 ± 

30 nm), large surface area(5-10 m2/g), and predominantly (100) surface exposure, as 

determined by transmission electron microscopy (TEM)41 shown in the Figure 2-2.  

Furthermore, this method facilitates production of large quantities (~20 g) of MgO 

powders.  In comparison to commercially available MgO powders, which comprise ~10 

ppm of various transition metals such as nickel, iron, copper, manganese and chromium, 
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this method permits production of MgO powders with 4ppm Manganese and 1 ppm other 

impurities as determined by electron spin resonance (ESR) and atomic adsorption (AA) 

spectroscopy42.  Initially, the MgO powder was heat treated at 950 ºC under high vacuum 

(~ 10-7 torr) for 36 hours which not only removes any molecules physisorbed from the 

atmosphere onto the surface, but also homogenizes the MgO (100) surface exposure20. 

Exposure of the powder to atmospheric moisture leads, over an extended period of time, 

to the dissolution of low coordination sites (corners of the cubes), and may also 

hydroxylate the MgO surface. The MgO powder was carefully loaded into an oxygen-

free high-conductivity copper (OFHC) cell and sealed with an indium wire inside of a 

glovebox filled with argon  (< 1 ppm water vapors).  The MgO loaded sample cell was 

then mounted in a displex and evacuated before each experiment to a base pressure of   

(10-8 torr) at room temperature for a minimum of 12 h.   

The temperature of the sample cell was recorded using a temperature controller 

connected to platinum and silicon diode thermometers to within 4 mK of the set point, 

and regulated with a He compressor and resistance heater connected to the bottom of the 

sample. Once the sample reached the assigned temperature, a period of one hour was 

given for the temperature to stabilize and ensure that the sample is at set point 

temperature. The adsorption isotherms measurements were monitored and controlled by a 

LabVIEW program, which it recorded the data in a spreadsheet.  Regardless of the 

temperature stability, there is a small offset between the actual sample temperature and 

controller set point.  The offset was determined using the semi-empirical Antoine’s 

equation (Equation 2.4) via the SVP of each isotherm. 
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A methane isotherm was performed for each sample to check the quality of MgO 

powders and to determine monolayer capacity so that a cross calibration of the various 

samples could be performed.  Previous studies of methane adsorption on MgO 

established that methane forms √2 x √2 R45° with a molecular area of 17.74Å2 when 

adsorbed on MgO17.   

 

3.3 Results and Discussion 

This section is divided into two parts; n-butane on MgO and 1-butene on MgO. In 

both cases, the raw data were used in the calculations without data treatment or fittings.  

The results for the two systems will be presented in this section. 

3.3.1 n-butane on MgO 

3.3.1.1 Isotherms 

More than 40 butane isotherms were collected and analyzed using HRVAI from 

temperature range 158 ≤ T (K) ≤ 198, since below 158 K the saturated vapor pressure of 

n-butane was too small to accurately measure using the available pressure transducer.  

From the raw data, ΣΔp versus pf was obtained with the amount of n-butane adsorbed 

onto the surface calculated from Equation (2.10). A plot of number of moles adsorbed 

versus log(p) is generated, and a series of representative isotherms is shown in  

Figure 3-1. 
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Figure 3-1 A series of n-butane adsorption isotherm on MgO in temperature range of 
170 K to 188 K.  



 49 

A couple of general comments can be made about the n-butane isotherms before 

discussing the thermodynamic analysis in detail.  First, at low temperatures there are two 

distinct adsorption steps observed before the saturated vapor pressure is reached. At 

higher temperatures, the second step begins to disappear but can be observed by plotting 

the numerical first derivative as illustrated in Figure 3-2.  As the temperature is increased, 

the steps become less vertical and broader.  This indicates that the adsorbate-substrate 

interactions are greater at lower temperatures, and adsorbate-adsorbate interactions are 

stronger at higher temperatures. Second, n-butane isotherms display incomplete wetting 

similar to other linear alkanes such as n-pentane43, n-hexane42, n-heptane, and n-octane.  

This phenomenon is due to the fact that as the distance between the substrate and 

adsorbate increases, the adsorbate-adsorbate interactions become more dominant than 

adsorbate-substrate interactions.  In this case, the layer-by-layer growth of n-butane is not 

favored due to strong interactions between n-butane molecules after the second layering 

step. 

The monolayer capacity of n-butane on MgO was determined using the point B 

method described in section 2.3.3.  By comparing the monolayer capacity of methane to 

n-butane on the same sample of MgO as illustrated in Figure 3-3, the molecular cross-

section of n-butane on MgO was determined.  The monolayer capacity of methane is 2.25 

times greater than n-butane on MgO and, provided that molecular cross-section of 

methane on MgO is 17.74 Å2, the molecular cross-section of n-butane was estimated to 

be around 40 Å2.  From current studies of small alkane Adsorption on MgO, such as



 50 

  

Figure 3-2 An adsorption isotherm of n-butane adsorbed on MgO at 185 K. 
An adsorption isotherm of n-butane adsorbed on MgO at 185 K and its numerical 
derivative showing two adsorption steps.  
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Figure 3-3 Monolayer Capacity of Butane Compared to Methane. 
A) Comparing n-butane isotherm at 173 K and methane isotherm at 78 K on the same 
MgO sample.  B) Applying the point B method to determine the molecular cross section 
of n-butane on MgO.

17.74 Å 

40 Å 
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ethane, n-pentane, n-hexane, n-heptane, and n-octane, the numbers calculated for            

n-butane fit in the trend. 

3.3.1.2 2-D Compressibility 

To gain an insight on possible phase transitions, the two-dimensional compressibility, 

K2D, was derived from adsorption isotherms as discussed in section 2.3.4.  K2D is a 

measure of the spreading pressure of individual layers of n-butane, and was calculated 

from Equation (2.16).  Figure 3-4 is a plot of K2D as a function of chemical potential for a 

series of n-butane isotherm in the temperature range of 162 K to 188 K.  The two peaks 

observed correspond to the two layering steps in the isotherm, with the first layering step 

being the largest.  This is due to a decrease in strength of the adsorbate-substrate 

interaction as film thickness increases, i.e. more n-butane molecules adsorb onto the 

MgO surface.  In a series of n-butane isotherms, the K2D peaks decrease in intensity, and 

become broader as the temperature increases.  Since the adsorbate-substrate interactions 

are unique for each system, the K2D values cannot identify the phase of the adsorbate 

adsorbed onto the surface. 

Larher18 demonstrated that by monitoring the change in peak height and width, 

valuable information concerning phase transitions in the adsorbed layer can be obtained. 

Taking a closer look at the change in magnitude and width of the K2D as a function of 

temperature, a plot of the full-width at half maximum (FWHM) of the compressibility as 

a function of temperature was constructed and illustrated in Figure 3-5. 

Using Larher’s logic, we employ the intersection of the linear fits shown to identify 

where the potential phase transitions occur for both first and second layers.  This method 
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Figure 3-4 K2D versus chemical potential for a representative subset of n-butane on 
MgO in the temperature range of 162 K to 188 K.  A) first layer. B) second layer. 
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Figure 3-5 FWHM of the K2D for the first and second peaks versus temperature of n-
butane.   
The 2D layering transition temperature for the first and second layers are 177 ± 2K and 
178 ± 2K, respectively. 
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yields a transition temperature for the first layer, T1t, and second layer, T2t, to be 177 ±  

2K and 178 ±  2K, respectively 

3.3.1.3 Clausius-Clapeyron 

Several thermodynamic values can be derived from adsorption isotherm by applying 

the Clausius Clapeyron  (CC) equation. The numerical first derivative (Δn/Δp) was used 

to precisely locate the positions of adsorption steps, and by plotting these pressure steps 

as a function of inverse temperature, a linear fit to the CC equation, Equation (2.18), was 

made and illustrated in Figure 3-6.  From the CC plot, coefficients A, and B were derived 

and utilized in Equations (2.17) and (2.18) to calculate differential enthalpy, ΔH(n), 

differential entropy, ΔS(n), and heat of adsorption, Qads, for each layering step.  The 

thermodynamic quantities derived from the CC equation are summarized in Table 3.1.   

There are several comments that can be made about the thermodynamic quantities.  

First, The values ΔS(n) and ΔH(n) converge to zero as the layers become more “bulk-like”, 

i.e. reach saturation.  Second, The values of ΔS(n) are all positive indicating that the 

formation of bulk crystal is entropically favored.  Third, the for values A(n), B(n) and Qads 

are similar to current studies of small alkanes on MgO42-45. 

Table 3.1  Summary of the thermodynamic quantities for n-butane on MgO derived from 
the Clausius-Clapeyron equation. 

(n)  

layers 

A(n) B(n) Qads
(n)  

[kJ/mol] 
ΔH(n)  

[kJ/mol] 
ΔS(n)  

[J/K·mol] 
 

1 3390.2 16.51 28.18 -1.61 17.92 

2 3309.6 18.67 27.52 -0.94 0.99 
∞ 3196.3 18.78 26.58   
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Figure 3-6 Claussius-Clapeyron plot  of n-butane. 
Claussius-Clapeyron plot  of the adsorbed first layer (circles), second layer (squares), and 
saturated vapor pressure (crosses).  The parameters derived from the fit of the CC 
equation (solid line) to the data are summarized in Table 3.1. 
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3.3.1.4 Isosteric Heats of Adsorption 

The isosteric heat of adsorption, Qst, is another thermodynamic quantity that was 

derived from adsorption isotherm data.  The Qst is defined as the energy required to bring 

one molecule from the three-dimensional vapor into the two-dimensional surface.  A plot 

of the isosteric heat as a function of amount adsorbed at 183 K is shown in Figure 3-7.  In 

the figure, the completion of the first and second layers ia identified using dashed lines.  

Large peaks at layer completion indicate that as the adsorbed n-butane condenses at the 

interface and the number of molecules on the surface increases, it becomes more difficult 

to bring a molecule into the surface film.  For coverage of more than two layers, the 

isosteric heat value converges to 23.2 ± 1.5 KJ/mol which is comparable to the enthalpy 

of vaporization (22.44 kJ/mol)46. 

3.3.2 1-butene on MgO 

3.3.2.1 Isotherms  

In the same manner as previously discussed for n-butane, more than 30 1-butene 

isotherms were collected and analyzed from a temperature range of 160 K ≤ T ≤ 195 K.  

The saturated vapor pressure of 1-butene below 160 K was too small to accurately 

measure using the HRVAI. A plot of number of moles adsorbed versus log(p) is 

generated and a series of representative isotherms is shown in Figure 3-8.   

Similar to the observations made on n-butane isotherms, 1-butene isotherms have two 

distinct adsorption steps with the second layer beginning to weaken as the temperature 

increases. A plot of numerical first derivative as a function of pressure provides a less  
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Figure 3-7 Isosteric Heat of Adsorption of n-butane at 183 K.   
The completion of the first and second layers are noted as dashed lines.   
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Figure 3-8 A representative subset of 1-butene adsorption isotherms on MgO in 
temperature range 162 K to 184 K. 
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subjective method to determine the positions of the steps as illustrated in Figure 3-9. The 

adsorbate-substrate interactions are greater at lower temperatures, while at higher 

temperatures, the interaction becomes weaker similar to n-butane and other short linear 

alkanes. 

The monolayer capacity of 1-butene on MgO was determined using the point B 

method.  By comparing the monolayer capacity of methane to 1-butene on the same 

sample of MgO as illustrated in Figure 3-10, the molecular cross-section of 1-butene on 

MgO was determined.  The monolayer capacity of methane was 1.97 times greater than 

1-butene on MgO, and using the molecular cross-section 17.74 Å2 for methane on MgO, 

the molecular cross-section of 1-butene is estimated to be  35 Å2.   

3.3.2.2 2D Compressibility 

The two-dimensional compressibility was calculated from the adsorption isotherm 

data using Equation (2.16).  Figure 3-11 is a plot of K2D as a function of chemical 

potential at 175.5 K.  Similar to n-butane, the first K2D peak corresponding to the first 

layering step is the largest, and as the temperature increases the K2D peaks become wider 

and shorter indicating a possible phase transition.   

 By plotting FWHM of K2D for each layering step as a function of temperature as shown 

in Figure 3-12, the transition temperatures for the first layer T1t, and second layer, T2t, 

were determined to be 175± 2K and 176 ± 2K. 
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Figure 3-9 An adsorption isotherm of 1-butene adsorbed on MgO at 184 K. 
 An adsorption isotherm of 1-butene adsorbed on MgO at 184 K and its numerical 
derivative showing two layering steps. 
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Figure 3-10 Monolayer Capacity of 1-Butene Compared to Methane.  
A) Comparing 1-butene isotherm at 168 K and methane isotherm at 78 K on the same 
MgO sample.  B) Comparing the monolayer capacity to determine the molecular cross 
section of 1-butene on MgO.  
 

17.74 Å 

35 Å 
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Figure 3-11 K2D versus chemical potential from 1-butene isotherm at 175.5 K. 
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Figure 3-12 FWHM of the K2D for the first and second peaks versus temperature of 1-
butene on MgO.   
The 2D layering transition temperature for the first and second layers are 175 ± 2K and 
176 ± 2K, respectively.  
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3.3.2.3 Clausius-Clapeyron 

Thermodynamic values were determined from adsorption isotherm data using the CC 

equation.  Figure 3-13 shows the first and second layers of CC fit compared to the 

saturated vapor pressure.  The thermodynamic values derived from the CC plot are 

summarized in Table 3.2.    

Similar to the n-butane system, the differential enthalpy and entropy values approach 

zero as the layers increase. The ΔS(n) values are all positive indicating that the formation 

of bulk crystal is entropically favored. The coefficients A and B follow similar trends as 

seen in other small linear alkanes. 

3.3.2.4 Isosteric Heats of Adsorption 

The isosteric heat of adsorption was calculated from Equation (2.22) and a plot of the 

isosteric heat as a function of number of moles adsorbed at 173.5 K is shown in Figure 3-

14.  In the figure, the completion of the first and second layers is identified using dashed 

lines. For coverage of more than two layers, the isosteric heat value converges to 21.3 ± 

1.5 KJ/mol, which is comparable to the enthalpy of vaporization (21.87 kJ/mol)46. 

Table 3.2  Summary of the thermodynamic quantities for 1-butene on MgO derived from 
the Clausius-Clapeyron equation 

(n)  

layers 

A(n) B(n) Qads
(n)  

[kJ/mol] 

ΔH(n)  

[kJ/mol] 

ΔS(n)  

[J/K·mol] 

1 3585 17.31 29.81 -1.48 22.73 

2 3415 19.61 28.39 -0.07 3.66 
∞ 3407 20.05 28.33   
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Figure 3-13 Claussius-Clapeyron plot of 1-butene on MgO. 
Claussius-Clapeyron plot of 1-butene on MgO adsorbed first (circles), second (squares) 
layers, and saturated vapor pressure (crosses).  The parameters for the fit of the 
Clapeyron equation (solid line) to the data are summarized in Table 3.2. 
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Figure 3-14 A typical plot of the isosteric heat of adsorption of 1-butene at 174 K.   
The completion of the first and second layers are noted as dashed lines. 
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3.4 Conclusion  

HRVAI were utilized to deduce several thermodynamic quantities for the adsorption 

of n-butane and 1-butene on MgO (100) surface in the temperature range of 158K to 

198K, and 160 K to 195 K, respectively.   For both studies, two distinct layering steps 

were observed.  By monitoring the peak height and width of the K2D, a  phase transition 

is identified for the first and second layer at 177.5K and 178.6 K for n-butane, and 174.1 

K and 175.5K for 1-butene 

In the case of n-butane on MgO, by combining the thermodynamic and neutron 

diffraction results previously published21 on this system, a better understanding of the 

observed phase transition is obtained..  The neutron study was able to determine the 

monolayer structure of n-butane on MgO (100) surface where the molecular cross-section 

of n-butane on the MgO surface in the solid phase was determined to be 31 A2.  

However, using the volumetric adsorption isotherm study, a molecular cross-section of 

40 A2 was calculated.  The significant difference suggests that the adsorbed n-butane is 

less dense in the temperature range of this study indicating a liquid phase.  Furthermore, 

the phase transition identified by the FWHM of the K2D is possibly a transition from 

liquid phase to gas phase/hypercritical fluid.  The isosteric heat of adsorption as a 

function of coverage approaches the bulk heat of vaporization as the film thickness 

increases due to the strong adsorbate-adsorbate interactions at high converges becoming 

more bulk-like.  
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Comparing the results, both systems show two layering steps at low temperatures 

with the second layering step gradually disappearing as the temperature is increased.  

They display incomplete wetting similar to other alkanes adsorbed on MgO, which is due 

to the weak adsorbate-substrate interaction beyond the first layer.  The molecular cross-

section of n-butane and 1-butene on MgO are 40 Å2 and 35 Å2, respectively.  Due to the 

double bond in 1-butene, it is expected to have a smaller molecular cross-section than n-

butane.  The thermodynamic quantities derived from the adsorption isotherm for n-butane 

and 1-butene are close in value, and follow similar trends.  The transition temperature 

deduced from the FWHM of K2D for both systems is within     3 K with 1-butene having 

the lower transition temperature.  This can be explained by comparing the boiling point, 

triple point and critical temperatures for n-butane and 1-butene, which show that 1-butene 

has a lower phase change temperatures than n-butane. 
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PART II: Factors Effecting the Synthesis 

Mesoporous Silica Spheres with 

possible hollow interior 
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Chapter 4: Introduction and Background 

 

4.1 Porous Materials  

Over the past decades, advances in various fields, such as adsorption, separation, 

catalysis, drug delivery, sensors, photonics, and nanodevices, have been driven by the 

development of the ordered porous materials with controllable structures and systematic 

tailoring pore structure. According to IUPAC definition, porous materials can be divided 

into three classification: microporous (<2 nm), mesoporous (2–50 nm), and macroporous 

(>50 nm)47.  

Starting with microporous materials such as zeolites, which have become extremely 

successful as catalysts and catalyst support for oil refining, petrochemistry, and organic 

synthesis in the production of specialty chemicals.  Their success in catalysis was due to 

their large surface area and adsorption capacity, ability to be diverse from hydrophobic to 

hydrophilic type materials, ability for the surface to be modified and generate active sites, 

and their small pore channels (0.5-1.2 nm) allow for selective guest molecules48.  Despite 

their success in catalysis, their ability to expand to other applications are limited by the 

relatively small pore size.   

Difficulties in synthesizing larger pores zeolites, a group of ultra-large  pore materials 

consisting of layered structures with pillars in the interlamellar region called  pillard-

layered structures (PLS)49.  The layered compounds contain smectities, metal (Zr, Ti, 
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etc.) phosphates, double hydroxides, silicas, and metal oxides.  PLS has also had limited 

success due to the lack of order in the pore size and pore structure.  

In the early 1990, Japanese researchers50 (synthesized mesoporous silicate from a 

layered silicate, karnemite, consisting of single layers of SiO4 tetrahedral, FSM-16 

(Folded Sheet Mesoporous Materials) as well as research scientist from Mobil51 reported 

the first successful synthesis of novel periodic mesostructured materials. Mobil scientists 

employed a new concept in the synthesis of mesoporous materials with the use of a (self-

assembly) of surfactant molecules such as cetyltrimethylammonium (CTA) cation as the 

structure directing agent, rather than the conventional single amine molecule to template 

microporous materials such as zeolites.   This work led to the discovery of a family of 

materials, M41S, where they had pore channels from 1.5-10 nm in size and ordered pore 

structure in hexagonal (MCM-41), cubic (MCM-48), and laminar (MCM-50) array.  

These materials posses long range order and large surface areas.  

Beck et al.51, after the discovery of MCM-41, proposed a liquid-crystal templating 

(LCT) mechanism, which they defined as the organization of surfactant molecules into 

liquid crystals that served as templates driving the synthesis.  A schematic of the 

mechanism is shown in Figure 4-1.  Their proposal had two main pathways. The first 

pathway began with a long chain surfactant such as cetyltrimethylammonium cation 

forming into a micelle where the hydrophilic head groups were pointed outwards and 

then forming into micellar rods.  A group of the rods come together in hexagonal 

arrangement at which a liquid-crystal phase was intact before the silicate species were 

added. Second was the addition of the silicate results in the ordering of the subsequent  
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Figure 4-1 A schematic of the Liquid Crystal Templating method fro MCM-4151. 
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silicate-encased surfactant micelles.  The reason for the different reaction pathways 

results from the changes in surfactant concentration in water and the presence of other 

ions52.  Monnier el al.53 investigated the formation mechanism of MCM-41 with very low 

surfactant concentrations (1 wt%) in which they suggested three steps in the formation of 

the surfactant silica composites.  First, the oligomeric silicate polyanions act as 

multidentate ligands for the cationic surfactant head group, leading to a strongly 

interacting surfactant-silica interface with lamellar phase.  Second, the occurrence of 

preferential polymerization of the silicate in the region of the interface leads to the 

reduction of the negative charge at the interface.  Finally, the formation of the hexagonal 

surfactant-silicate composites was by the charge density matching between the surfactant 

and the silicate, which leads to a phase transformation. 

The self-assembly of surfactant rods was the result of increasing surfactant 

concentrations54.  Chen et al. studied the formation of surfactant rods and determined that  

the randomly ordered rod-like micelles interact with the silicate species to yield tubular 

silica arranged around the external surface of the micelles, which form a long range order 

indicative of MCM-4154. 

By taking advantage of the LCT method, new porous materials can be achieved by 

following different synthesis pathways.  Similar to the concept of LCT where the 

organization of cationic quaternary ammonium surfactants and anion silicate species  

(S+I-) produces three dimensional periodic arrays, reverse charge matching can be 

achieved by exploiting the interactions of inorganic and organic species (S-I+)55.  

Furthermore, by selecting combinations of cationic and anionic surfactants and 
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corresponding inorganic species (S+X-I+) or (S-M+I-) where X- is a halide and M+ is an 

alkali metal ion56 the synthetic landscape can be broadened significantly. Furthermore, 

there are interactions other than ionic ones that can lead to the formation of 

mesostructures including neutral (S0) or non-ionic surfactants (N0) where the driving 

force in the formation of mesostructured materials was considered to be hydrogen 

bonding57.  

 Since mesoporous silica has been synthesized using a wide range of different 

templates and reaction conditions, it is fair say that there is no single mechanism which 

can universally explain the formation, growth, and development of these uniform pore 

and ordered pore structures making each system unique. 

 

4.2 Instrumentation 

Several techniques were used to characterize the synthesis products, including 

adsorption/desorption isotherms, Small Angle X-ray Scattering (SAXS), Fourier 

Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy (SEM) 

4.2.1 Nitrogen Adsorption/Desorption Isotherm 

Nitrogen Adsorption/desorption isotherms are a proven method for characterization 

of  porous materials, providing valuable information such as the specific surface area, 

pore size and pore size distribution.  The use of adsorption isotherms to determine the 

specific surface area of a material was discussed in detail in Part I.  In this section, their 

use to determining the pore size and pore size distribution will be discussed. 
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Adsorption measurements leading to pore size and pore size distribution 

determination generally makes use of the Kelvin equation58.  For a cylindrical pore, the 

Kelvin equation is given by,  
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where γ is the surface tension of the liquid, V is the molar volume of the condensed 

liquid contained in a narrow pore of radius r, R is the gas constant and T is the 

temperature.  The Kelvin equation describes the correlation between pore diameter and 

pore condensation pressure, which suggests that the smaller the pore radius, the lower is 

the p/p0 value at which condensation occurs.  In the case of nitrogen 

adsorption/desorption at 77K, the Kelvin equation can be simplified and written as 
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where rk is the Kelvin radius or the critical radius, which is not the actual pore radius.  

Since the Kelvin equation ignores fluid-wall interactions and there is no possibility that 

an adsorbed multilayer film exists prior to pore condensation.  The modified Kelvin 

equation takes that into account59, which is 
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Where rp is the actual pore size, θ is the contact angle of the liquid against the pore wall, 

Δρ is the difference of the orthobaric liquid density (ρl) and the gas density (ρg), and tc is 

statistical thickness prior to condensation.  The pore size distribution is determined by 

taking the first derivative (dV/dr) as a fuction of r. 

 

4.2.2 Small-Angle X-ray Scattering (SAXS) 

SAXS is well-established technique to probe the nanoscale structure and fluctuations 

in soft matter.  The amount of structural information obtained from a scattering 

experiment depends upon the molecular order within the sample.  SAXS is a non-

invasive structural technique.   The basic principle of SAXS is similar to X-rays, neutron 

and light scattering but some important differences is involve interactions of the radiation 

with the sample60. 

A brief explanation of the experimental setup will be given; A two dimensional 

detector records the scattered intensity when a highly collimated and monochromatic X-

ray beam of wavelength ( λ) strikes the sample.   The transmitted primary beam is fully 

absorbed by the beam-stop placed directly in front of the detector; the path before and 

after the sample is evacuated to avoid absorption and air scattering.   The number of 

photons scattered as a function of the scattering angle (θ) is measured during an 

experiment.  For a given sample, the number of recorded photons varies with (the number 

of incident photons per second per unit area) and the distance between the sample and the 

detector.  Scattering at small angles is assumed to be fully elastic because of the high 

energy of the radiation as compared to typical excitations in the sample.  With this 
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assumption in mind the magnitude of the incident (ki) and scattered (ks) wave vectors are 

equal and given by, 
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The wave vector transfer (q) is, 
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and its magnitude is, 
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the inter-lattice plane spacing(d) is related to q by 
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In the case of a 2D-hexagonal packed structure, the diffracted intensity associated with 

lines of indexes (h, k) is given by61, 
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The unit cell parameter (a) can be determined from a hexagonal arrangement, 
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where d10 is the dhk –spacing at (10) (h,k). 

4.2.3 Scanning Electron Microscopy (SEM) 

The scanning electron microscope is a powerful characterization tool for imaging 

surface and small-scale morphology of different materials.  It has been widely used to 

qualitative investigations of materials, in particular silica, prepared under different 

conditions.   SEM allows for the determination of particle morphologies, particle size, 

and size distribution.  Current SEM instrument operate with accelerating voltages 

between 100 – 3 kV and 1 – 3 nm for the electron probe with the use of field emission 

source62.   The resolution of a particular instrument depends on the properties of the 

electron probe and its interactions with the sample.  Secondary electrons are produced 

when the incident electron beam hits the sample and the emission efficiency depends on 

surface chemical composition and geometry63.   

Radiation damage is one of the main disadvantages concerning of SEM imaging, 

which may occur because of the following processes.  First, a collision from an electron 

to an atom on a solid results in atom displacement and/or broken bonds.  The increase in 

kinetic energy with accelerating voltage exacerbates this effect.  Second, the repulsion of 

ionized atoms induces damage to the local structure is caused by the energy transfer of 

the incident electron to the atomic electrons owing to inelastic interaction. Last, radiation 
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damage occurs when the electron beam initiates local heating64.  Low-voltage SEM is 

used for materials that are sensitive to the beam radiation, such as biological, and 

polymeric materials. 
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Chapter 5: Synthesis and Characterization of 

Mesoporous Silica Spheres 
 

5.1 Introduction 

Over the past two decades, there have been significant breakthroughs in the synthesis 

of porous inorganic materials with well-defined geometries.  Zeolites are well known 

members of the microporous47 (< 2 nm) class of inorganic materials.  Composed of 

aluminosilicates with 3D framework structures, zeolites provided great catalytic activity 

but found limited application due to their small pore size65.  Materials with larger pore 

such as mesoporous47 (2 – 50 nm) glasses and  gels, were studied and displayed 

disordered pore structure with broad pore-size distribution66.  Other mesoporous solids, 

pillared layered structures (PLS), for instance were synthesized via intercalation of 

layered materials such as double hydroxides, metal phosphates, metal oxides and clays; 

however, they also have very broad pore size distribution66.   

In 1992, scientists developed the first mesoporous material, MCM (Mobil 

Composition of Matter) 41, with ordered pore arrangement and narrow pore-size 

distribution67.  A liquid-crystal templating method was used to synthesize MCM-41. This 

method employs a long chain surfactant molecule, such as cetyltrimethylammonium 

bromide (CTAB), to form micellar rods, which are surrounded by an inorganic oxide, 

such as tetraethyl orthosilicate (TEOS), in solution to form a framework.  This 
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framework ultimately leads to the creation of mesoporous silica belonging to the M41S.  

This group of materials has ordered hexagonal (MCM-41), lamellar (MCM-50) and cubic 

(MCM-48) pore structures with channels that range from 1.5 to 10 nm.  Synthesis of 

these mesoporous materials led to the “templating” concept.   Recent advancement focus 

on understanding the mechanism of formation52,68,69, controlling the morphology and 

pore structure70-74, characterization75-79, and the development and synthesis of new 

materials based on the M41S concept80,81. 

More recently, the synthesis of mesoporous silica spheres with hollow interiors has 

attracted much attention due to their potential application in drug delivery, encapsulation, 

catalysis, separation, gas adsorption, sensors, and nanodevices.  Various methods have 

been attempted in order to develop procedures for making reproducible and dependable 

methods of hollow mesoporous silica particles; these include sol-gel82, emulsion83, and 

organic polymer84-86 routes. However, despite reports of mesoporous silica being 

synthesized using different templates and under various reaction conditions, there is no 

single mechanism, which can be used to universally explain the microscopic details of 

formation and growth of the uniform pore and ordered pore structure. This work seeks to 

investigate the role played by concentrations and ratios of the reactants and experimental 

conditions (such as pH temperature, and stirring speed) on the formation of mesoporous 

silica spheres. By using several different characterization techniques, insight into the 

formation mechanism and the ability to produce specific and tailored mesoporous silica 

particles is gained. 
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5.2 Experimental Procedure 

5.2.1 Materials 

The following materials, purchased from Sigma Aldrich, were used in the synthesis of 

silica particles; ammonium hydroxide (28 wt %), absolute ethanol (200 proof), 

poly(vinylpyrrolidone)  (PVP, K30), n-cetyltrimethylammonium bromide (CTAB, 99%), 

and tetraethyl orthosilicate (TEOS, 99%).  Ultra-pure water (> 20 MΩ cm-1) from a Milli-

Q water system was used throughout the experiments. All chemicals were used as 

obtained without further purification. The starting material structures are shown in   

Figure 5-1 

5.2.2 Synthesis 

Porous silica spheres with possibly hollow interiors were synthesized using PVP and 

CTAB as templates. PVP was used in previous studies as a template to create hollow 

structures87-90.  In a typical synthesis procedure, the reaction takes place at room 

temperature beginning with the dissolution of approximately one gram of PVP via 

stirring in a round bottom flask containing 225 mL of water.  The solution pH was 

adjusted to approximately 11.5 by adding 12 mL of ammonium hydroxide.  The desired 

amount of CTAB (1.4 g, 3.45 x 10-3 M) was then added to the mixture and stirred until 

completely dissolved.  TEOS was used as the silica source, with 5.6 mL (2.8 x 10-2 M) 

added to the solution while continually stirring.  The concentrations of TEOS and CTAB 

were altered, along with the CTAB:TEOS ratio, in order to gain a better understanding of 

the impact of these alterations on the synthesis.  The formation of silica particles was  
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Figure 5-1 The Structure for Starting Materials 
a) Poly(vinylpyrrolidone) (PVP).  B) n-cetyltrimethylammonium bromide (CTAB).         
C) Tetraethyl orthosilicate (TEOS).
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Indicated by the solution becoming cloudy, usually within 10-20 minutes of the addition 

of TEOS.  After stirring for 12 hr, the white precipitate was vacuum filtered and washed 

with water and ethanol.  The as-synthesized powder (sample) was dried at 100 °C and 

then calcined at 550 °C for 6 hours (after ramping at a rate of 1 K min-1) in order to 

remove the templates.  

5.2.3 Characterization 

Several techniques were used to characterize the synthesis products, including 

scanning electron microscopy (SEM), Small Angle X-ray Scattering (SAXS), 

adsorption/desorption isotherms, and Fourier Transform Infrared Spectroscopy (FTIR). 

SEM (Hitachi S-4700; Center of Nanophase Materials Sciences, Oak Ridge National 

Laboratory) was used to observe the morphologies and size of the synthesized particles. 

In order to avoid any solvent interference, the powder samples were placed on double-

sided, carbon tape mounted on the sample holder.   

SAXS patterns were obtained from an instrument built and marketed by Molecular 

Metrology (Department of Material Science, University of Tennessee) with a CuKα 

radiation source of 0.15405 nm at 45 kV and 66 mA. The instrument has two sample 

holder chambers with different distances to the detector.  Varying the distance from the 

sample to the detector changes the range of d spacing that the detector can collect. The 

samples were sandwiched between two pieces of transparent tape and loaded onto the 

sample holder.  SAXS experiments included background measurements for the tape, 

which were subtracted from the pattern of the sample.  Sample collection time was set at 

3600 s per sample. 
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Nitrogen adsorption/desorption isotherms were acquired utilizing the HRVAI system 

described in Section 2.2.  The samples were analyzed by two methods. In the first 

method, the sample was loaded in a quartz tube and placed in a liquid nitrogen dewar. For 

the second method, the sample was loaded in a sample cell (described in section 2.2.2) 

and was cooled to 77K using the temperature controller system (described in section 

2.2.3).  There are advantages and disadvantages for each method.  Using the quartz tube 

allows for a quick setup (∼ 15 minutes), but, because of the difficulty in maintaining a 

uniform temperature for the 12 hour duration of the experiment, the results are less 

accurate.  On the other hand, using a sample cell results in better accuracy, but the setup 

is very time consuming (∼ 24 hr).   Surface area calculations were made using the point B 

method (described in section 2.3.3) and the pore size distribution was calculated using the 

modified Kelvin equation, Equation (4.3). 

FTIR experiments were performed on a Varian 4100 FTIR Excalibur series 

(Department of Chemistry, University of Tennessee). This was used as a diagnostic tool 

for affirmation of removal of the template. The spectra were recorded between 4000 and 

600 cm-1.   Both the as-synthesized and calcined samples were measured.   

 

5.3 Results and Discussion 

Following the synthesis method described, SEM was used to determine the particle 

morphology, size, and particle size distribution.  The silica particles ranged in size from 

600 – 1000 nm with an average size of 850 nm.   It was clearly visible that under certain 
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conditions the morphology of the silica particles exhibited a perfectly spherical 

morphology as shown in Figure 5-2.   

The specific surface area and pore size were determined by analyzing nitrogen 

adsorption/desorption isotherms using HRVAI.  Figure 5-3 is a representative plot of 

amount adsorbed as a function of p/po from a nitrogen adsorption/desorption isotherm.  

The plot is identified as a type IV isotherm, according to IUPAC47 classification, 

featuring a capillary condensation step at p/po between 0.24 to 0.30.  The isotherm shape 

resembles that of the nitrogen adsorption/desorption isotherm of MCM-4170,71,91, which 

could indicate that a similar pore structure exists.  The specific surface area of the silica 

spheres was determined by the point B method to be 1430 m2/g.  Using Equation (4.4), 

the pore size distribution was calculated and indicated an average pore size of 3.0 nm (as 

shown in the inset of Figure 5-3) indicating it was in the mesoporous range by IUPAC 

classifications47. 

The SAXS pattern revealed one large peak at d = 33 Å and a small broad peak at d = 

19 Å, similar to patterns obtained from studies of MCM-4151,67,70,71,91, where three well-

defined peaks are observed with the largest at d = 40 Å, and two smaller peaks at d = 23 

Å, and 20 Å.  Figure 5-4 shows the SAXS pattern for the mesoporous silica spheres.  As 

illustrated in the Figure 5-4, the broad peak observed from the silica spheres could be an 

overlap of two peaks indicating that the silica spheres have less ordered pore structure or 

greater variation in pore size. Given the evidence of similar nitrogen 

adsorption/desorption isotherms and SAXS patterns for the silica spheres and MCM-41, 

it is safe to assume that the mesoporous silica spheres exhibit a hexagonal packed pore 
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Figure 5-2 SEM images of spherical silica particles. 
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Figure 5-3 A representative plot of nitrogen adsorption/desorption on the MSS. 
 A representative plot of nitrogen adsorption/desorption on the MSS.with an inset 
illustrating the pore size distribution.  Blue and red lines represent the 
adsorption/desorption process. 
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Figure 5-4 SAXS patterns of mesoporous silica sphere and MCM-41. 
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 structure.  By indexing the first peak as (100), the unit cell parameter (a; which is 

distance from pore- center to pore-center) was determined to be 38 Å using Equation 

(4.11). One way to determine the wall thickness was by subtraction of the pore size 

(previously determined from nitrogen adsorption isotherms) from the unit cell parameter, 

yielding a wall thickness value of 8 Å.  Table 5-1 summarizes the results obtained from 

the SAXS pattern.  The order of the hexagonally packed pores can be improved and will 

be discussed later in this chapter. 

As mentioned in the synthesis procedure, the silica particles were calcined at 550°C 

in air for 6 hr to remove the templates, i.e. PVP and CTAB.  FTIR was employed as a 

diagnostic tool for affirmation of removal of the template by observing the appearance 

and disappearance of vibrational modes corresponding to the templates.  Figure 5-5 

displays FTIR spectra of both as-synthesized and calcined samples, with obvious features 

that correspond to each sample.  In the as- synthesized sample spectrum, the main 

vibrational bands at 2930, 2857, and 1488 cm-1 corresponded to CH and CH2 modes from 

the cyclic alkane in PVP.  In the case of the calcined sample, the CH and CH2 modes 

disappear and vibrational bands at 3745 and 3556 cm-1 correspond to silanol groups (Si-

OH) at the surface and hydrogen bonded silanol groups (Si-OH---OH), respectively.  

Furthermore, different vibrational modes for (Si-O-Si) at 1866, 1640, and 1053 cm-1 were 

identified for the calcined sample. 
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Figure 5-5 FTIR spectra of as-synthesized and calcined silica particles. 
Red line and blue line represents the calcined and as-synthesized samples, respectively.  
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Table 5.1 Suumary of the parameters obtained from SAXS pattern of spherical 
mesoporous silica. 

Hkl Q [Å-1] d [Å] 2θ a [Å] 

(100) 0.192 32.7 2.7 37.7 

(110-200) 0.331 19.0 4.6  

 

Due to limited accessibility to high-resolution TEM, the structure of the pores have not 

directly been verified, but can be inferred from the SAXS pattern.  Furthermore, the 

hollow interior cannot be confirmed for the same reason.  While keeping the amount of 

PVP constant, there were several factors that affected the synthesis of the silica spheres, 

including the pH of the reaction, concentration of TEOS and CTAB, ratio of CTAB to 

TEOS, stirring speed of the mixture, and reaction temperature.  These factors will be 

discussed below. 

5.3.1 Effect of pH 

The pH of the reaction played a role in the formation of mesoporous silica spheres.  

In this study, ammonium hydroxide was used solely to assess the effect of pH on the 

reaction.  In a typical silica sphere synthesis procedure, a precipitate was formed 

(indicating the formation of silica particles) within 10-20 minutes of addition of TEOS 

into the solution while maintaining the solution pH between 10.5-12.5. When the pH was 

< 10.5, a precipitate was never formed (the solution remained clear) during the entire 12 

hr reaction time.  Conversely, for pH > 12.5, the precipitate was formed instantly upon 
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the addition of TEOS.  As observed from SEM images in Figure 5-6, these silica particles 

had different sizes and random morphologies, predominately agglomerated silica.   

 Once the silica source is added to the reaction, two steps occur for the formation of a 

silica particle: hydrolysis and condensation92.  
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Equations (5.1 and 5.2) are the hydrolysis and condensation of TEOS, respectively, 

where R represents an alkoxy group and OH- is the catalyst.  In the case of pH < 10.5, the 

concentration of OH- was low enough that neither the hydrolysis or condensation reaction 

proceeded. However, at pH > 12.5, the hydrolysis and condensation reactions occurred 

instantly, before TEOS had the ability to surround the template, causing agglomeration of 

silica.   

5.3.2 Effect of TEOS and CTAB concentration 

Concentrations of TEOS and CTAB, while keeping a constant ratio between the two, 

was an important factor in preparing mesoporous silica spheres.  In a typical synthesis, 

the concentration of TEOS and CTAB were 2.8 x 10-2 M and 3.45 x 10-3 M, respectively.  

The concentrations were increased to double and triple the values used in a typical 

synthesis.  SEM images revealed that as the concentrations increased the morphology of 

the silica spheres became more irregular.  Figure 5-7 compares the SEM images obtained 

from the three samples.  Doubling the concentration of TEOS and CTAB formed an egg-  
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Figure 5-6 SEM images of silica particles synthesized at pH > 12.5. 
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Figure 5-7 SEM images of mesoporous silica particle with different concentrations of 
TEOS and CTAB. 
While keeping the ration of TEOS:CTAB constant the concentrations were increased 
from a) initial concentration b) double and c) triple the amount. 
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shaped silica, while tripling the concentration resulted in irregular silica particles.   The 

pore structure was examined using SAXS, with the patterns revealing that the increase in 

concentration increased the number of peaks.  This suggests a more ordered pore 

structure as shown in Figure 5-8.  As mentioned earlier, SAXS pattern of spherical 

shaped silica, revealed one large peak at d = 33 Å and a broad peak at d = 19 Å.  While 

there were two peaks for egg-shaped silica, the second peak was more pronounced than 

in the spherical case.  The SAXS pattern for the irregular shaped silica revealed three 

pronounced peaks with the first two peaks at the same position as other two samples.  

The positions of the peaks confirm that the distance from the center of the pores remained 

the same while the number of peaks indicates a more long ranged ordered pore structure. 

Table 5-2 provides a summary of the parameters obtained by SAXS patterns. 

5.3.3 Effect of the ratio of the amount of TEOS to CTAB 

The ratio of TEOS to CTAB used to produce spherical silica particles was 8:1.  

Altering the ratio to 6:1 resulted in hexagonal silica particle morphology as shown in 

Figure 5-9. Furthermore, the SAXS pattern revealed that in the case of 6:1 TEOS:CTAB, 

there were three peaks at d = 35, 20, and 18 Å.  This indicates a more ordered pore 

structure.  Figure 5-10 provides the SAXS patterns of spherical and hexagonal shaped 

silica particles. Comparing the patterns, the positions of the peaks for the hexagonal 

particles have shifted to lower values of Q, signifying a larger pore-center to pore-center 

distance than in the case of spherical particles.   Table 5-3 provides a summary of the 

parameters obtained by the SAXS patterns. 
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Figure 5-8 SAXS patterns of mesoporous silica particle with different concentrations 
of TEOS and CTAB. 
a) initial concentration (spheres),  b) double concentration (egg-shaped), and  c) triple 
(irregular). 
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Table 5.2 Summary of the parameters obtained from SAXS pattern of mesoporous 
silica for different concentration of TEOS and CTAB.  
Concentration of TEOS and CTAB for (x1) 2.8 x 10-2 M and 3.45 x 10-3 M, respectively. 
 

Concentration Morphology hkl Q [Å-1] d [Å] 2θ a [Å] 

x1 Spherical (100) 0.192 32.7 2.7 37.7 

  (110-200) 0.331 19.0 4.6  

x2 Egg-shaped (100) 0.192 32.7 2.7 37.7 

  (110-200) 0.331 19.0 4.6  

x3 Irregular (100) 0.192 32.7 2.7 37.7 

  (110) 0.331 19.0 4.7  

  (200) 0.382 16.4 5.4  
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Figure 5-9 SEM images of mesoporous silica particle with different TEOS : CTAB. 
a) 6:1 forms hexagonal morphologies.  b) 8:1 forms spherical morphologies. 
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Figure 5-10 SAXS patterns of mesoporous silica particle with 8:1 and 6:1TEOS:CTAB 
Red is 6:1 producing hexagonal morphology and blue is 8:1 producing spherical 
morphology. 
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Table 5.3 Summary of the parameters obtained from SAXS pattern of mesoporous 
silica for different TEOS : CTAB ratios. 
 

Ratio Morphology Hkl Q [Å-1] d [Å] 2θ a [Å] 

8:1 Spherical (100) 0.192 32.7 2.7 37.7 

  (110-200) 0.331 19.0 4.6  

6:1 Hexagonal (100) 0.180 34.8 2.5 40.2 

  (110) 0.307 20.5 4.31  

  (200) 0.354 17.7 5.0  
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5.3.4 Effect of Stirring the Solution 

The size and uniformity of the silica particles are governed by the stirring speed and 

stirring consistency.  The size of the silica particles can be dramatically adjusted, to a 

certain extent, by the stirring speed of the solution. Using a non-digital stirring plate, the 

stirring speed was measured by three settings: low, medium, and high.  The results 

demonstrated that the faster the stirring speed the smaller the silica particles.  Figure 5-11 

demonstrates SEM images of silica particles as small as 100 nm achieved by high stirring 

speeds.  On the other hand, high stirring speeds increased the size distribution of the 

particles, probably due to inconsistency of stirring.  In order to obtain narrow size 

distribution for the silica particles, the reaction had to be stirred at a consistent speed 

throughout the reaction.  Therefore, achieving a particle size of 100 nm with a narrow 

size distribution is difficult.   

5.3.5 Effect of Reaction Temperature 

Another factor affecting the synthesis of silica particles is the temperature of the 

reaction.  Following the typical procedure (with the exception of using TEOS:CTAB 6:1 

instead of 8:1), one sample was synthesized at room temperature and the other at 50 ºC 

similar to the temperature used to synthesize SBA-1580.  SEM images revealed that 

morphology differences exist between the two samples as illustrated in Figure 5-12.  The 

silica particle transformed from hexagonal to a noodle-like shape with hexagonal faces 

when the temperature of the reaction was increased to 50 ºC.  There were three peaks in 
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Figure 5-11 SEM images of small silica particles. 
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Figure 5-12 SEM images of mesoporous silica particle synthesized at different 
temperatures. 
Using 6:1 of TEOS:CTAB, mesoporous silica particles were synthesized a) at 50 ºC and 
b) at room temperature. 
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the SAXS patterns indicating similar pore structure, but the positions were different as 

seen in Figure 5-13.  For the noodle-like morphology, the positions of the peaks shifted to 

lower values of Q indicating larger pore-center to pore-center distance. Table 5-4 

provides a summary of the parameters obtained from the SAXS patterns. 

Comparing the as-synthesized samples of silica particles to calcined samples, there 

was no difference in morphologies, but there was some difference in the distance between 

pore centers.  Figure 5-14 shows SAXS patterns of as-synthesized hexagonal silica 

particles and calcined particles. For example, pore-center to pore-center distance for the 

calcined sample is smaller than the as-synthesized samples, suggesting a smaller pore 

size.  This contraction is typical for materials with ordered pore structure and confirm 

that the silica framework is thermally stable93. This was observed in all the samples.  

Table 5-5 provides a summary of the parameters obtained by the SAXS patterns. 

5.3.6 Addition of n-Hexane 

An alternative route to synthesizing mesoporous silica spheres with hollow interiors 

was attempted by adding n-hexane to the synthesis procedure described above to create 

an oil-in-water emulsion. The oil-in-water emulsion technique was previously employed 

to produce hollow silica spheres by using alkanes under acidic conditions resulting in the 

production of micrometer sized particles83.  Alternatively, the current work investigated 

using basic conditions (as previously described) and different CTAB:TEOS ratios.  SEM 

images for particles created under these conditions revealed spherical silica particles with 

hollow interiors ranging in size from 2 to 7 µm as shown in Figure 5-15.  The micrometer 
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Figure 5-13 SAXS patterns of of mesoporous silica particle synthesized at different 
temperatures. 
Using the 6:1 TEOS:CTAB, red line synthesized at 50 ºC and blue line at room 
temperature. 
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Table 5.4 Summary of the SAXS pattern obtained from mesoporous silica particles 
with same TEOS:CTAB ratio but different reaction temperature. 

Temperature Morphology Hkl Q [Å-1] d [Å] 2θ a [Å] 

50 ºC Noodle-like (100) 0.165 38.2 2.3 44.1 

  (110) 0.283 22.2 4.0  

  (200) 0.331 19.0 4.6  

Room temp Hexagonal (100) 0.180 34.8 2.5 40.2 

  (110) 0.307 20.5 4.31  

  (200) 0.354 17.7 5.0  
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Figure 5-14 SAXS patterns of calcined and as-synthesized sample. 
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Table 5.5 Summary of the parameters obtained from SAXS patterns of calcined and 
as-synthesized sample. 

Sample Hkl Q [Å-1] d [Å] 2θ a [Å] 

Calcined (100) 0.165 38.2 2.3 44.1 

 (110) 0.283 22.2 4.0  

 (200) 0.331 19.0 4.6  

As-synthesized (100) 0.149 42.2 2.1 48.7 

 (110) 0.260 24.2 3.6  

 (200) 0.303 20.7 4.3  
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Figure 5-15 SEM images of hollow silica spheres using n-hexane. 
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sized hollow silica particles were surrounded by smaller silica spheres, possibly formed 

by excess TEOS and CTAB in solution.  Several attempts were made to decrease the size 

Of the silica spheres by reducing the amount of n-hexane (creating smaller oil droplets) 

but were not successful.   

 

5.4 Application 

Catalytic activity in mesoporous materials has been extensively investigated in recent 

years, where mesoporous silica was not used as a catalyst but as a support for catalytic 

functions by introducing active sites on the walls or active species in the pores.   The 

advantages of using mesoporous materials in catalysis are the high surface area, allowing 

for high concentration of active sites and relatively large pores making it possible for 

active species to transport through the pores.  

 In this section, preliminary results will be presented for the loading of palladium and 

gold nanoparticles into the mesoporous silica spheres (MSS).  The catalytic activity was 

examined by measuring the conversion of hydrogen and oxygen gas into hydrogen 

peroxide. The palladium and gold nanoparticles were loaded into MSS using incipient 

wetness method, whereby the metal precursors (simple salts) are dissolved in organic 

solution and loaded (mixed) with the mesoporous materials, followed by reduction with 

hydrogen gas to form metal nanoparticles94-96.  The method used to convert H2 and O2 to 

H2O2 with palladium metal as a catalyst was adopted from Lunsford el al97 and will be 

briefly described below.  
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5.4.1 Loading Pd and Au into Msoporous Silica Spheres 

The procedure for loading both Pd and Au nanoparticles into the MSS was the same; 

the Pd source was PdCl2 and the Au was HAuCl4.  In a typical two step procedure, 

approximately 1.5 wt% Pd was dissolved in a mixture of 5 mL of acetone and the desired 

amount of mesoporous silica spheres (250 mg).  The mixture was ultra-sonicated for 30 

minutes followed by evaporation of acetone from the mixture by using a rotary 

evaporator apparatus (rotovap) under reduced pressure.  The second step involved the 

reduction of Pd ion to Pd metal by flowing 4% H2 in argon gas for 2 hours while the 

sample was heated at 300 °C.  

The white powder of MSS turned to light brown for Pd-MSS and pink for Au-MSS as 

shown in Figure 5-16, possibly indicating the metal nanoparticles are loaded onto the 

MSS.   Although high-resolution TEM images are not available at this time due to limited 

availability and SEM images would not be able to indicate whether the particles were 

actually on the surface of MSS or in the pores, Energy Dispersive X-Ray Spectroscopy 

(EDS, part of the SEM instrument) was used to determine the presence of Pd 

nanoparticles in the MSS by qualitative analysis.  Figure 5-17 provides EDS patterns for 

MSS, PdCl2-MSS, and Pd-MSS.  From the EDS patterns several peaks were observed in 

all three samples including Si, and O from the MSS and C and Al from the carbon tape 

and aluminum sample holder (the powder sample were placed on carbon tape mounted 

onto an aluminum sample holder).  In the case of PdCl2-MSS, both Pd and Cl peaks were 

observed, while in the case of Pd-MSS only the desired Pd peak was observed.  We note 
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Figure 5-16 Photograph of powder samples loaded with Pd and Au. 
The white, pink and light brown powder samples are MSS, Au-MSS and Pd-MSS, 
respectively.
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Figure 5-17 EDS spectra of MSS, PdCl2-MSS, and Pd-MSS. 
Bottom spectrum is MSS, middle is PdCl2-MSS, and top is Pd-MSS 
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that the quantity of either Au or Pd deposited onto the external and/or within the MSS  

has not been precisely determined because we have made the assumption that the metal 

solution (PdCl or HAuCl) can penetrate through the pore easier once the template is 

removed.   We assume that in the case of calcined sample that the Pd nanoparticles are 

distributed on the external surface of the sphere and within the pores unlike the in the 

case of as-synthesized sample where the pores are blocked by the template and majority 

of the metal nanoparticles are deposited on the external surface.  In the next section, we 

will compare the catalytic activity of both calcined and as-synthesized samples giving an 

insight on whether there are more metal nanoparticles in either sample.  

5.4.2 Production of H2O2 Assisted by Pd-MSS 

Lunsford el al reported a detailed study in the formation of H2O2 from H2 and O2 

catalyzed by Pd supported on a mesoporous silica material (M5) in an aqueous medium97.  

The study included a formation mechanism for and impact of several parameters in the 

reaction.  A detailed explanation of the study is not possible because only the preliminary 

results will be presented.   

Following the method described in the investigation above, the desired amount of Pd-

MSS (100 mg) was mixed with 100 mL of  HCl (0.1M) in ethanol solution and placed in 

a reaction vessel with constant stirring.  The reaction vessel was assembled from Pyrex 

glass and contained a fine glass frit through which the gasses (H2 and O2) pass through 

from the bottom toward the solution at 4:1 O2:H2 flow ratio.  A refrigerated recirculator 

was used to cool the vessel to 3 °C.  Aliquots of the solution (0.4 mL) were collected 
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from the reaction vessel and added to a H2O2 indicator reagent  (4.6 mL of 

TiOSO4/H2SO4).  The indicator turns yellow in the presence of H2O2.   

The absorbance (A) of the sample is determined using UV/Vis spectroscopy at 470 

nm. The concentration (c) was calculated using beer’s law (A=εbc) where the molar 

absorbtivity (ε) was determined to be 447 Lmol-1cm-1 at 470nm.  Preliminary results were 

obtained from calcined and as-synthesized MSS where the same weight percent of Pd 

was loaded in each sample.  Figure 5-17 shows a plot of the percent by weight of H2O2 

produced (i.e. concentration of H2O2 in the reaction mixture) as a function of time and 

another plot of the moles of H2 gas converted per mole of Pd metal used as a function of 

time.  Several comments can be made from the preliminary results keeping in mind that 

although the same amount of Pd was loaded on the two samples it does not necessarily 

mean the same number of Pd nanoparticles on the surface.  The amount of H2O2 

produced in the calcined sample is greater than in the as-synthesized sample, which could 

indicate more Pd nanoparticles due to increased accessibility to the pores with the 

template removed.   For the calcined sample, experimentally attained value of 0.14 wt % 

H2O2 after 4 hours without reaching the upper limit indicates that the MSS has potential 

to compete against other mesoporous materials.  Comparing our preliminary results with 

Lunsford et. al., they were able to obtain 0.24 wt % H2O2 after 4 hours after optimizing 

the experimental conditions.  Our preliminary results show promise in becoming a 

competitive material in the production of H2O2. 
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Figure 5-18 Preliminary results from H2O2 production via Pd-MSS. 
Blue and red lines represent calcined and as-synthesized Pd-MSS. 
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5.5 Conclusion 

Mesoporous silica spheres were synthesized using PVP and CTAB as templates at 

room temperature while maintaining pH values between 10.5 and 12.5.  The specific 

surface area of the silica spheres was determined to be as large as 1430 m2g-1 with a pore 

size of 3.0 nm and a wall thickness of 0.8 nm.  SAXS patterns obtained were similar to 

patterns from MCM-41 indicating a hexagonal packed pore structure.  SAXS patterns 

confirmed that the silica pore structure was thermally stable after heat treatment at 550 C° 

and FTIR results confirmed the removal of template when the sample was calcined.  The 

silica spheres ranged in size from 100 to 1200 nm, depending upon the stirring speed of 

the reaction, while the uniformity was governed by the consistency of stirring.  Increasing 

the concentration of TEOS and CTAB above 2.8 x 10-2 M and 3.45 x 10-3 M, 

respectively, while keeping the ratio constant, converted the silica particles from a 

spherical to irregular shape but increased the order of the pore structure.  Furthermore, 

changing the ratio of TEOS to CTAB from 8:1 to 6:1 transformed the spherical particle to 

a hexagonal shape with more ordered hexagonal pore structure.  It is apparent that the 

amount of CTAB plays an important role in determining the morphology and pore 

structure of the mesoporous silica particles. 

Further investigation is needed to better understand the mechanism of silica particle 

formation and to investigate other factors that could affect the production of mesoporous 

silica spheres using PVP and CTAB as templates.  High-resolution TEM is needed to 

confirm the creation of a hollow interior and to confirm the hexagonal packed pore 

structure.  Solid state NMR can also be used as a tool to investigate the composition of 
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the surface of the silica particles. The preliminary results from loading palladium and 

gold into the MSS and the results from the hydrogen peroxide production provide 

evidence for potential application in catalysis. 

Future work could take advantage of the large surface area of the mesoporous silica 

spheres to deposit different metals such as iron, cobalt, and copper and design catalytic 

reactions that play a role in various industries including environmental, energy and 

chemical.   

Future work could also take advantage of high storage capacity, biocompatibility, the 

ability to avoid immune system detection as a result of their hydrophilic nature, and the 

ability to be functionalized due to surface hydroxyl group which becomes a great 

candidate for a drug delivery vessel.  A drug molecule such as ibuprofen could be loaded 

into the silica spheres where the magnetic nanoparticles are used to block the pores thus 

prohibiting the drug molecule from escaping. The mesoporous silica spheres can then be 

delivered to a specific site using an external magnet and by introducing a reducing agent 

the magnetic nanoparticles are released therefore releasing the drug molecule.  
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