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ABSTRACT 
 

The mammalian Nell1 gene encodes a PKC-β1 binding protein that belongs to a 

new class of cell-signaling molecules controlling cell growth and differentiation. 

Overexpression of NELL1/Nell1 in the developing cranial sutures in both human and 

mouse induces craniosynostosis, the premature fusion of cranial sutures. This study 

describes the characterization of Nell16R (102DSJ), a recessive, neonatal-lethal point 

mutation in the mouse Nell1 gene, induced by N-ethyl-N-nitrosourea (ENU). The 

generation and sequencing of the mouse full-length cDNA (2862 bp) revealed that the 

Nell1 gene has an open reading frame of 2433 bp and encodes an 810 amino acid protein 

which is highly homologous to human and rat NELL1.  Nell16R has a T→A base change 

that converts a codon for cysteine into a premature stop codon, resulting in severe 

truncation of the predicted protein product and marked reduction in steady state levels of 

the transcript. Immuno-histochemical analysis indicates that Nell1 is expressed in the 

vertebral column and is involved in osteoblast and chondrocyte differentiation. In 

addition to the expected alteration of cranial morphology, Nell16R mutants manifest 

skeletal defects in the vertebral column and ribcage, revealing a hitherto undefined role 

for Nell1 in signal transduction in endochondral ossification. Real-time quantitative RT-

PCR assays of 219 genes showed an association between the loss of Nell1 function and 

reduced expression of genes for extracellular matrix proteins critical for chondrogenesis 

and osteogenesis. Several affected genes are involved in the human cartilage disorder 

known as Ehlers-Danlos Syndrome (EDS) and other disorders associated with spinal 

curvature anomalies. Nell16R mutant mice are a new tool for elucidating basic 

mechanisms in osteoblast and chondrocyte differentiation in the developing skull and 

vertebral column and understanding how perturbations in the production of extracellular 

matrix proteins can lead to anomalies in these structures. The characterization of Nell1 

functions using the Nell16R mouse model may further provide insights into the pathology 

of craniofacial defects like CS, cartilage diseases such as EDS as well as other bone and 

cartilage diseases. 



 vi

TABLE OF CONTENTS 

 
Chapter            Page 
 

Chapter 1 ……………………………………………………………………………….. 1 

Introduction ……………………………………………………………………………… 1 

Chapter 2 ……………………………………………………………………………….. 5 

Literature review ………………………………………………………………………… 5 

     Vertebrate skeleton …………………………………………………………………... 5 

          Bone ………………………………………………………………………………. 5 

          Cartilage …………………………………………………………………………... 7 

     Skeletogenesis ………………………………………………………………………... 8 

          Intramembranous ossification …………………………………………………… 11 

          Endochondral ossification ……………………………………………………….. 13 

               Development of axial skeleton ..……………………………………………… 15 

     Molecular basis for bone and cartilage formation ………………………………….. 16 

          Transcription factors …………………………………………………………….. 17 

               Osteoblast specific factor (Osf-2) ……………………………………………. 17 

               Msx-2 ………………………………………………………………………… 19 

          Extracellular matrix (ECM) proteins ……………………………………………. 20 

               Collagens …………………………………………………………………….. 20 

               Non-Collagenous extracellular matrix proteins ……………………………… 24 

          Bone morphogenetic proteins (BMP) and BMP receptors ……………………… 34 

     NELL1: a novel cell differentiation signaling protein in bone and cartilage 

     development ……………………………………………………………………….... 36 

          Gene and protein structure ………………………………………………………. 36 

          Expression profile in humans and mouse ……………………………………….. 37 

          Gene regulation and associated pathway(s) ……………………………………... 38 

          Functions ………………………………………………………………………… 39 



 vii

Chapter            Page 
 

          Protein kinase C signaling pathways and its relationship to NELL1 ……………. 41 

               Protein kinase C (PKC) ………………………………………………………. 41 

     Bone and cartilage disorders associated with NELL1-mediated pathways …………. 44 

          Craniosynostosis (CS) …………………………………………………………… 44 

          Ehlers-Danlos syndrome (EDS) …………………………………………………. 47 

     N-ethyl-N-nitrosourea (ENU) mutagenesis ………………………………………… 48 

Chapter 3 ……………………………………………………………………………… 50 

Materials and methods …………………………………………………………………. 50 

     Mouse breeding and maintenance …………………………………………………... 50 

          Generation of mutant hemizygotes and homozygotes for DSJ line ……………... 50 

     Collection mouse embryos ………………………………………………………….. 51 

     Genotyping of wild-type and l7R6R mutants ………………………………………... 54 

     Isolation of total and mRNA ………………………………………………………... 54 

     Nell1 gene profiling by northern blot and RT-PCR ………………………………… 55 

     Generation and sequencing of Nell1 cDNA ………………………………………… 57 

     Identification of mutation in Nell16R ………………………………………………... 58 

     Body and head measurements ………………………………………………………. 59 

     Skeletal analysis …………………………………………………………………….. 59 

     Histological analysis ………………………………………………………………... 62 

     Immunohistochemistry ……………………………………………………………... 63 

     High-throughput Real-Time qRT-PCR assays ……………………………………... 63 

          Multiplex pre-amplification of cDNA targets …………………………………… 64 

          Real-time PCR reactions ………………………………………………………… 64 

          Data analysis …………………………………………………………………….. 65 

Chapter 4 ……………………………………………………………………………… 66 

Results ………………………………………………………………………………….. 66 

     Characterization of molecular basis of Nell16R mutations ………………………….. 66 

          Expression analysis of mouse Nell1 gene ……………………………………….. 66 



 viii

Chapter             Page 

 

          Sequencing of mouse Nell1 cDNA ……………………………………………… 71 

          Identification of Nell1 mutation in Nell16R mice ………………………………... 71 

     Determination of the gross morphological and skeletal defects in Nell16R mutant 

     mice …………………………………………………………………………………. 74 

          Gross phenotypes ………………………………………………………………... 75 

          Morphometric analysis ………………………………………………………….. 75 

          Nell16R mutant mice have skeletal defects in the skull and vertebral column .….. 75 

     Examination of the role of Nell in osteoblast and chondrocyte differentiation in the 

     vertebral column ……………………………………………………………………. 84 

          Localization of Nell1 expression in wild-type and mutant Nell16R fetal vertebral 

          column …………………………………………………………………………... 84 

          Effect of Nell16R mutation on differentiation of osteoblasts and chondrocytes in 

          the developing vertebral column ……………………………………………….. 89 

     Determination of the biological pathway(s) perturbed by the Nell16R mutation …… 91 

          High-throughput qRT-PCR ……………………………………………………… 91 

Chapter 5 ……………………………………………………………………………… 95 

Conclusion and future directions for elucidating the role of Nell1 in craniofacial and 

vertebral column development …………………………………………………………. 95 

     Summary of results and conclusion ………………………………………………… 95 

          Nell1 gene structure, wild-type Vs Nell16R ……………………………………… 96 

          Nell1 RNA and protein expression ……………………………………………… 96 

          Phenotypic consequences of Nell1 loss of function ……………………………... 97 

          Nell1 in cell differentiation pathways …………………………………………… 98 

          Nell1 controls cell differentiation via ECM pathways …………………………... 99 

          Regulators of Nell1 …………………………………………………………….. 100 

          Model for Nell1-mediated pathways …………………………………………… 101 

Future directions and recommendations ………………………………………….…... 105 

List of references …………………………………………………………………….. 109 



 ix

Chapter             Page 

 
Vita …………………………………………………………………………………… 127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

LIST OF TABLES 

 
Table             Page 
 

Table. 2.1. Tissue-specific expression of Protein kinase C (PKC) isoforms …………... 43 

Table. 3.1. Primers used to synthesize and sequence mouse Nell1 cDNA …………….. 58 

Table. 3.2. Primers used to amplify mouse Nell1 genomic DNA ……………………… 60 

Table. 4.1. Quantitative analysis of changes in body length and head size of Nell16R  

homogygous mutants compared to wild-type littermates (in mm) at E18 

days of gestation ……………………………………………………………. 77 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

LIST OF FIGURES 

 
Figure            Page 

 
Figure. 2.1.  Embryonic cell lineages and early steps in the development of vertebrate 

skeleton ……………………………………………………………………. 6 

Figure. 2.2.  Intramembranous and endochondral ossification ………………………….. 9 

Figure. 2.3.  Regulation of osteoblast proliferation and differentiation by growth factors 

and transcription factors ………………………………………………….. 12 

Figure. 2.4.  Regulation of chondrocyte proliferation and differentiation by growth 

factors and transcription factors ………………………………………….. 14 

Figure. 2.5.  Calvarial bones and sutures ………………………………………………. 45 

Figure. 2.6.  Human craniosynostosis ………………………………………………….. 46 

Figure. 3.1.  Breeding protocol used to generate hemizygous and homozygous l7R66R 

(102DSJ) mice ……………………………………………………………. 52 

Figure. 4.1.  Complementation analysis ………………………………………………... 67 

Figure. 4.2.  Expression of the mouse Nell1 gene ……………………………………... 69 

Figure. 4.3.  Aberrant expression of Nell1 in l7R6 mutants …………………………… 70 

Figure. 4.4.  Identification of the Nell1
6R 

mutation ……………………………………. 72 

Figure. 4.5.  Phenotypes of l7R6 mutants ……………………………………………… 76 

Figure. 4.6.  Skeletal analysis of l7R6 neonates ……………………………………….. 79 

Figure. 4.7.  Skeletal phenotype of Nell16R homozygote mutant mouse ………………. 80 

Figure. 4.8.  Cranial defects in Nell16R homozygote mutant mouse …………….……... 81 

Figure. 4.9.  Skeletal defects in Nell16R homozygote mutant mouse …………………... 83 

Figure. 4.10.  Histological analysis of fetal vertebral column …………………………. 85 

Figure. 4.11.  Expression of Nell1 in fetal vertebral column …………………………... 87 

Figure. 4.12.  Expression of Nell1 in fetal skin ………………………………………... 88 

Figure. 4.13.  Expression of col X in fetal vertebral column …………………………... 90 

Figure. 4.14.  van Kossa staining of vertebral column and parietal bone …………….... 92 



 xii

Figure             Page 

 
Figure. 4.15.  Gene expression profile of Nell16R mutants compared with wild-type 

                      fetuses (E18.5) …………………………………………………………... 94 

Figure. 5.1.  The hypothetical model of Nell1 signaling pathway ……………………. 102 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1

CHAPTER 1 

 INTRODUCTION 

 

Bone and cartilage constitute the primary structural support of the vertebrate 

organism. The formation of bone (osteogenesis) and cartilage (chondrogenesis) are 

complex processes involving several stages: a) commitment of the precursor cells, b) the 

proliferation of the osteoprogenitor/chondroprogenitor cells, c) differentiation of 

osteoblasts and chondrocytes and d) the formation of cartilage or a calcified bone matrix. 

In the developing skull, calvarial bones are formed by intramembranous ossification, in 

which mesenchymal cells differentiate into osteoblasts and the production of bone matrix 

occurs directly without previous cartilage formation. Other bones in the body are formed 

by endochondral ossification, in which mesenchymal cells differentiate into chondrocytes 

and the formation of cartilage models occurs first, followed by replacement of the models 

by bone. (Erlebacher et al. 1995; Hall et al. 2000). Normal bone formation involves a 

delicate balance between proliferation, differentiation and apoptosis in osteoblasts and 

chondrocytes. Disruption of this balance leads to many serious human birth defects and 

diseases like craniosynostosis, osteochondrodysplasias, epiphyseal dysplasia, arthritis, 

and osteoarthritis etc.  

Understanding of the mechanisms underlying osteogenesis and chondrogenesis 

has progressed considerably by studying mutations in humans and mice. Some of the 

craniofacial and other bone diseases are due to known mutations in growth factors, 

transcription factors and other proteins which are known to regulate osteoblast and 

chondrocyte proliferation, differentiation and survival. However, the genetic and 

molecular bases of many bone and cartilage diseases are still unknown, thus it is possible 

that perturbations in other genes may be responsible for these disease processes. 

In this dissertation research, a new mouse mutation generated at Oak Ridge 

National Laboratory (ORNL) was characterized. This loss of function mutation was 

associated with bone and cartilage defects. The characterization of genetic and functional 

bases of this mutation will further contribute to the current understanding of the 

mechanisms underlying osteogenesis and chondrogenesis. 
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Large-scale mouse mutagenesis, conducted at ORNL, using the chemical 

mutagen, N-ethyl-N-nitrosourea (ENU) has generated the mutations mapping to a small 

segment of mouse chromosome 7, proximal to the pink-eyed gene (p) (Rinchik et al. 

2002). One locus mutated in these experiments was designated as l7R6 and has yielded 

eight recessive neonatally- lethal alleles. Homozygotes manifested abnormal head-shape 

and body curvature of late gestation fetuses and neonates. High-resolution genetic and 

molecular mapping indicated that l7R6 maps to a ~ 1 Mb interval homologous to a 

segment of human 11p15 where the NELL1 gene is located. Initially six genes were 

tested as candidates for the l7R6 locus. However, none of these genes were associated 

with the skeletal defects and the gross and skeletal phenotypes observed in l7R6 mutant 

mice. The preliminary molecular and phenotype analysis of four mutant alleles of l7R6 

done in this study, along with the previously published data, further supported the 

hypothesis that l7R6 is the Nell1 gene. 

Earlier studies have demonstrated that Nell1 is a gene whose overexpression in 

human and mouse leads to craniosynostosis (CS), premature closure of the cranial sutures 

in the developing skull (Ting et al. 1999; Zhang et al. 2002). CS affects 1 in 3000 infants 

and is one of the most common human congenital craniofacial deformities (Wilkie 1997; 

Cohen 2000). In CS, constrained brain growth due to the cessation of skull growth leads 

to a severe cranial dysmorphism, often resulting in increased intracranial pressure, 

impaired cerebral flow, airway obstruction and impaired vision and hearing. A series of 

major cranial surgeries in infants or young children are necessary to correct CS. (Wilkie 

1997; Carver et al. 2002). Additionally, certain types of CS are associated with defects in 

the limb and spine development (Anderson et al. 1996; Anderson et al. 1997). Zhang et al 

(Zhang et al. 2002) further characterized the role of Nell1 in suture fusion by creating an 

overexpressing transgenic mouse model. The transgenic mice exhibited CS and no 

apparent defects in other organ systems. The results of their study suggest that 

overexpression of Nell1 stimulates osteoblast differentiation at the growing fronts of the 

calvarial bones leading to rapid mineralization and premature fusion of the sutures. 

Another study by Zhang et al (Zhang et al. 2003) indicates that Nell1 modulates calvarial 

osteoblast differentiation and apoptosis pathways during intramembranous ossification of 
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the developing skull. Moreover, both in vitro and in vivo studies showed that this gene 

plays a role in osteoblast differentiation (Zhang et al. 2002; Zhang et al. 2003). 

Additionally, Cowan et al (Cowan et al. 2006) reported that Nell1 accelerates 

chondrocyte hypertrophy and endochondral bone formation within the distracted 

maxillary suture. It also induced premature hypertrophy and increased apoptosis of 

chondrocytes, which in turn leads to distortion of chondrocranium and subsequent cranial 

deformity during mouse development (Zhang et al. 2006). The present study further 

corroborates these reports; Nell1 is expressed in vertebral column and is involved in both 

osteoblast and chondrocyte differentiation.  

The preliminary molecular and phenotype analysis of four mutant alleles of l7R6 

locus revealed that loss of function mutation at this locus leads to varying degrees of 

skeletal defects in mutant mice ranging from mild to severe. In one of these l7R6 alleles, 

designated as the 102DSJ stock, homozygote mutants exhibited marked cranial and 

vertebral column defects and had severely reduced levels of Nell1 gene expression. As 

such this severely affected allele became a focus of this dissertation research and the 

Nell16R mutant allele was further characterized to study the consequences of Nell1 

mutation in cranial and vertebral column development in mouse. The main goal of this 

project is to determine the molecular/cellular and functional basis of the craniofacial and 

axial skeleton (vertebral column) defects found in Nell16R allele.  

Mutation in Nell16R was evaluated by examining gross morphological traits, 

conducting detailed skeletal analysis and by using chemical stains specific for bone and 

cartilage, and morphometric analysis of formalin fixed embryos. To characterize the 

molecular basis of Nell16R mutation, expression profile of Nell1 gene during the mouse 

development and impact of its mutation on the expression of Nell1 gene was investigated 

by Northern blot, RT-PCR and immunohistochemistry. Additionally, the complete coding 

sequence of the gene was sequenced along with identification of the Nell16R mutation. In 

order to determine cellular functions of Nell16R, the expression of Nell1 in mutant fetal 

vertebral columns and effects of its loss of function mutation on both chondrocyte and 

osteoblast differentiation was examined by histochemical staining as well as 

immunohistochemistry. In order to define the genes and pathways that are perturbed by 
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the Nell16R mutation, expression profile of 219 genes, which are associated with 

craniosynostosis, osteogenesis/chondrogenesis and, growth and differentiation was 

examined by Real-Time qRT-PCR analysis. 

The results of this study suggested an association between the loss of Nell1 

function and defects in the development of the skull and vertebral column. The Nell16R 

mutants exhibit skeletal defects in the vertebral column and ribcage in addition to the 

expected alteration in cranial morphology. These observations indicate that Nell1 may 

play a yet undetermined role in endochondral ossification.  

The impact of Nell1 on the formation of the vertebral column was a novel finding 

and unexpected based on observations on the overexpressing transgenic mouse model. 

This study also demonstrated that in the Nell16R mutation, there is a reduced expression 

of numerous extracellular matrix proteins that are critical for chondrogenesis and 

osteogenesis. Several affected genes are implicated in the pathophysiology of human 

cartilage/connective tissue disorder, Ehlers-Danlos Syndrome (EDS) and other disorders 

associated with skeletal defects in the vertebral column. EDS, a severe cartilage defect, 

which affects 1 in 5000 individuals, is characterized by hyperextensibility of the skin and 

extreme flexibility of joints (Beighton et al. 1998; Mao et al. 2001). Individuals with EDS 

do not have the ability to make certain components of the connective tissue, particularly 

fibrillar collagens, or they have defective regulation of collagen synthesis and deposition 

(Mao et al. 2001; Mao et al. 2002). One particular form of EDS, EDS-type VI is 

characterized by abnormal curvature of the spine, hypotonia, joint laxity and ocular 

fragility (Beighton et al. 1998; Mao et al. 2001). The data generated from this study 

suggests that, in addition to its role in intramembranous ossification in the skull, Nell1 

plays a critical role in endochondral ossification and chondrogenesis in the developing 

vertebral skeleton. The characterization of Nell1 functions using the Nell16R mutation is a 

unique opportunity to further elucidate the basic mechanisms of osteogenesis and 

chondrogenesis. It will provide insights into the pathology of craniofacial defects like CS, 

as well as other bone and cartilage diseases such as EDS.  
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CHAPTER 2 

LITERATURE REVIEW 
 

VERTEBRATE SKELETON 

 

Forget the great human heart and the brain, the eyes that see sweeping vistas, the lips 

that declare, “I am”. The real thing standing between us and the primordial ooze is the 

human skeleton. Built of 206 bones, the skeleton is a living cathedral of ivory vaults, ribs 

and buttresses- a structure at once light and strong, flexible and firm. (Angier 1994). 

 

The vertebrate skeleton, which is composed of cartilage and bone, develops from 

cells from three embryonic lineages: neural crest, paraxial mesoderm and lateral plate 

mesoderm. Neural crest cells give rise to most of the craniofacial skeleton. The axial 

skeleton consisting of the vertebrae and ribs is derived from the paraxial mesoderm 

(somites) and the appendicular (limb) skeleton originates from the lateral plate 

mesodermal cells. Cells from these lineages migrate to the sites in the developing embryo 

where future skeletal elements will emerge and form mesenchymal 

osteogenic/chondrogenic condensations and differentiate into specialized cells called the 

osteoblasts and chondrocytes (Hall et al. 1995) (Fig.2.1). 

 

BONE: Bone is a highly complex and specialized tissue that forms a supporting 

framework for the vertebrate body. It supports and protects many delicate organs in the 

body, supports hematopoiesis in the bone marrow and participates in calcium 

homeostasis (Cohen 2006). Bone is made up of osteoblasts, which are responsible for 

secreting the matrix. Once these cells fully differentiate and are surrounded by calcified 

matrix, they become quiescent and are known as osteocytes. Bone is composed of an 

organic matrix (95% COL-1, 5% proteoglycans and non-collagenous proteins) that is 

strengthened by inorganic salts (mainly calcium phosphate in the form of hydroxyapatite) 

(Anderson, 1995). There are two varieties of bone tissue, cortical and cancellous. Cortical  

or compact bone is dense and extremely hard due to the densely packed collagen fibrils 
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Figure. 2.1: Embryonic Cell Lineages and Early Steps in the Development of 

Vertebrate Skeleton. Osteoblasts deposit bone matrix while chondrocytes form cartilage. A third cell 

type of the skeletal system, called osteoclasts resorb bone. Osteoblasts and chondrocytes originate from 

mesenchymal cells whereas osteoclasts arise from the hematopoietic system (Cohen 2006).  
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that form concentric lamellae. The blood vessels in the cortical bone occupy small tube 

like spaces called Haversian canals. Each canal is surrounded by several lamellae, and 

forms a cylindrical block of bone called a Haversian system. The diaphysis (shaft) of 

typical long bones such as femur and humerus consists of a thick walled hollow cylinder 

of compact bone and a central marrow cavity. Cortical bone provides protection and 

mechanical support. Cancellous bone is light and spongy and consists of a three 

dimensional lattice of bony spicules or trabeculae that create many large 

intercommunicating spaces that are filled by bone marrow. It lies deep within the cortical 

bone and provides metabolic functions. The two forms of bone merge (abrupt transition) 

into one another without a sharp boundary. (Gillison 1962; Fawcett 1994). 

 

CARTILAGE: Cartilage is a unique connective tissue found in the structures of certain 

organs that forms a close association with the bone and plays numerous important roles 

during vertebrate prenatal and postnatal development. Cartilage provides a template for 

the developing bones, a structural support for the developing embryo, factors for 

postnatal growth of the skeleton, cushion for the joints, flexibility to facial structure, and 

repair mechanisms for fractured bones. Furthermore, cartilage in airways, joints and ears 

are crucial for breathing, locomotion and hearing because it allows for movements 

without interfering with function. (Shum et al. 2002; Lefebvre et al. 2005).  

Cartilage is made up of chondrocytes, which occupy small cavities called lacunae 

within the extracellular matrix they secrete. There are three types of cartilage: hyaline, 

elastic and fibrocartilage. Hyaline cartilage forms the temporary cartilage of the skeletal 

system and is gradually replaced by bone. In fully developed bones, hyaline cartilage 

persists as a covering for the articular surfaces. This articular cartilage allows for the 

smooth movements of joints and acts as a shock absorber. Ribs are attached to the 

sternum by hyaline cartilage and the cartilage increases the mobility and the flexibility of 

the thorax, which is crucial for respiration. Hyaline cartilage is also found in the 

respiratory passages such as trachea, bronchi, larynx and tip of the nose. Elastic cartilage 

is more flexible and resilient than the other cartilages. It is only found in a few parts of 

the body where flexibility is required, as in the pinna of the ear, auditory tube, epiglottis 
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and parts of the larynx. Fibrocartilage is always found in conjunction with hyaline 

cartilage or other fibrous tissue. It is much less flexible and resilient than hyaline 

cartilage but is very dense, tough and resistant to stretching. It is associated with the 

capsules and ligaments of joints such as tempro-mandibular, sterno-clavicular, shoulder, 

hip and knee joints. Intervertebral discs are made up of fibrocartilage and the cartilage 

allows limited compression or torsion and allows limited movement between adjacent 

vertebrae. The discs also act as shock absorbers preventing excessive jarring of the spine 

and head. (Gillison 1962; Fawcett 1994). 

 

SKELETOGENESIS 

 
The formation of bone (osteogenesis) and cartilage (chondrogenesis) are complex 

processes involving several stages: a) commitment of precursor cells, b) proliferation of 

the osteoprogenitor/chondroprogenitor cells, c) differentiation of osteoblasts and 

chondrocytes, and d) the formation of cartilage or a calcified bone matrix. The earliest 

event in skeletal morphogenesis is the migration of mesenchymal cells to the locations of 

future skeletal elements, where they form dense condensation at the sites of future bones. 

Condensations are either osteogenic or chondrogenic, depending on the skeletal elements 

they initiate (Erlebacher et al. 1995; Hall et al. 2000). This event is followed by 

differentiation to chondrocytes or osteoblasts within the condensation. The subsequent 

growth during the organogenesis phase generates cartilage models (anlagen) of future 

bones as in limb bones or membranous bones as in the cranial vault. The craniofacial 

skeleton is constructed by membranous ossification, wherein differentiation of 

mesenchymal cells to osteoblasts and the production of bone matrix occurs directly 

without cartilage formation (Erlebacher et al. 1995; Hall et al. 2000) (Fig. 2.2A). The 

axial and limb skeletal systems are developed by endochondral ossification, where 

differentiation of mesenchymal cells to chondrocytes, and formation of cartilage model 

occurs first, followed by the replacement of the models by bone (Fig. 2.2B).  
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Figure 2.2: Intramembranous and Endochondral Ossification. (A). Mesenchymal cells 

from neural crest differentiate into osteoblast and production of bone matrix occurs directly without 

formation of cartilage. (B). Mesenchymal cells from somites differentiate into chondrocytes to form a 

cartilage model (anlagen). In the center of the anlage chondrocytes mature, hypertrophy and begin to 

express high levels of Vascular Endothelial Factor (VEGF), which facilitates invasion of capillaries into the 

anlage with subsequent recruitment of osteoblasts. Osteoblasts produce bone matrix to generate the collar 

of bone and growth plates (green area). Hypertrophic cartilage is subsequently degraded and eventually 

replaced by cancellous bone and bone marrow. [Modified from ((Zelzer et al. 2003)]. 
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INTRAMEMBRANOUS OSSIFICATION: In the developing skull, calvarial bones, 

mandibles, and clavicles are formed by intramembranous ossification (Zelzer et al. 2003). 

Formation of these bones involve the migration of undifferentiated mesenchymal cells 

from the neural crest into areas destined to become bone, where they condense and 

proliferate in response to the signals from the underlying neural tissue. Molecular signals 

from growth factors like Bone Morphogenetic Proteins (BMPs), Fibroblast Growth 

Factors (FGFs), Epidermal Growth Factor (EGF), Insulin like growth factors (IGFs) and 

transcription factors trigger differentiation into osteoprogenitor cells and subsequently 

into osteoblasts. Osteoblasts secrete a mineralized matrix in the ossification centers. At 

the end of the formation period, osteoblasts die by apoptosis or are embedded in the 

matrix, becoming osteocytes, which then undergo apoptosis at the end of their life. The 

flat calvarial bones of the skull grow towards each other from the primary ossification 

centers and meet at sutures. Then the calvarial bones grow at the sutures in concert with 

the expanding brain. The center of the suture contains proliferatory pre-osteoblast 

population, which eventually differentiates and moves toward adjacent bone surfaces, 

becoming osteoblasts. (Wilkie 1997; Zelzer et al. 2003). 

Based on morphological and histological studies, osteoblastic cells in vivo are 

believed to follow a linear developmental progression from proliferating osteoprogenitors 

to proliferating pre-osteoblasts to mature osteoblasts to osteocytes (Stein et al. 1993) (Fig. 

2.3). As the osteoblasts progress through these stages, there is a sequential expression of 

cell growth, tissue and stage specific genes. During the proliferative stage, the 

prominently expressed genes are FGF, EGF, Platelet Derived Growth Factor (PDGF) and 

IGFs. During the differentiation process, specific genes and extracellular matrix (ECM) 

biosynthesis associated factors, like BMPs, Transforming growth factor-β (TGF-β), FGF-

3 and type I collagen (COL-1) are expressed (Stein et al. 1993). Alkaline phosphatase 

(AP) and Bone Sialoprotein (BSP) expression are relatively high during the matrix 

modulation stage. These differentiation-specific genes that are associated with maturation 

and organization of the bone ECM are essential for preparing the matrix for 

mineralization. During bone mineralization, osteopontin (OPN) and osteocalcin (OCN) 

are maximally expressed (Stein et al. 1993). Mineralization of ECM marks the final 
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Figure 2.3: Regulation of Osteoblast Proliferation and Differentiation by Growth 

Factors and Transcription Factors. See text for details. [Modified from (Komori 2002)].  
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phase of osteoblast phenotype development. 

 

ENDOCHONDRAL OSSIFICATION: Embryonic cartilage can either remain as 

permanent cartilage such as hyaline cartilage on the articular surfaces of bones, elastic 

cartilage in the ear, or fibrocartilage in intervertebral discs or it can provide a template for 

the bones through the process of endochondral ossification. Majority of the bones (axial 

and appendicular skeleton) in the body except calvarial bones, clavicles and mandible are 

formed by endochondral ossification in which mesenchymal cells differentiate into 

chondrocytes and the formation of cartilage models (anlagen) occur first, followed by 

replacement of the models by bone (see Fig.2.2B). (Komori 2002; Cohen 2006). 

It is a multi-step process that involves two successive cell-differentiation 

processes (Fig. 2.4). Undifferentiated mesenchymal cells from somites and lateral plate 

mesoderm migrate to the sites of future bones and form chondrogenic condensations, and 

under the control of SOX family of transcription factors, these mesenchymal cells 

differentiate first in to COL-2A producing pre-chondrocytes and then into immature 

chondrocytes that proliferate until the general shape of the future bone is established. 

This cartilage template (anlagen) is eventually replaced by bone. The type of skeletal 

elements that form from the immature chondrocytes depends on several transcription 

factors. OSF-2/RUNX2 (and possibly OSX) induces the formation of replacement 

cartilage while continued action of SOX9 (and possibly SOX5/SOX6) produces persistent 

cartilage. These COL-2B producing (chondrocyte specific collagen) immature 

chondrocytes further proliferate under the influence of FGF-3, mature and then arrest in 

their cell cycle. The mature chondrocytes undergo morphological and gene expression 

changes. COL-1 is turned off and COL-10 is turned on as cells differentiate further into 

hypertrophic chondrocytes. The latter express predominantly COL-10 and synthesize a 

cartilaginous matrix that eventually calcifies. At the same time these terminally 

differentiated hypertrophic chondrocytes start expressing a high level of vascular 

endothelial growth factor (VEGF), a growth factor needed for the invasion of blood 

vessels into the cartilage and undergo apoptosis. The invading blood vessels bring 

chondroclasts (which degrade mineralized chondrocyte matrix), osteoblasts and  
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Figure 2.4: Regulation of Chondrocyte Proliferation and Differentiation by Growth 

Factors and Transcription Factors.  See text for details. [Modified from (Komori 2002)]. 
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osteoclasts into the ossification center. The cartilaginous matrix is then degraded and 

eventually replaced by a bone synthesized by the osteoblasts. In the developing long 

bones, the primary ossification centers split into opposite growth plates in which the 

maturation of cartilage and subsequent bone formation continues. The growth plate 

cartilage is responsible for the longitudinal bone growth during postnatal life and as the 

bones grow, the increasing space between the growth plates becomes filled with bone 

marrow (see Fig.2.2B). (Ducy et al. 1998; Shum et al. 2002; Zelzer et al. 2003). 

 

Development of Axial Skeleton: The vertebrate axial skeleton consists of the skull base, 

vertebral column and ribcage. The vertebral column is the primary and most important 

component of the axial skeleton that arises via endochondral ossification. This skeletal 

structure not only supports and stabilizes the vertebrate organism but also permits various 

types of mobility. The vertebral column is comprised of a series of anatomical structures 

called the vertebrae, which are arranged in craniocaudal pattern. There are seven cervical, 

twelve thoracic and five lumbar vertebrae in humans (Sofaer 1985). There are at least 

twenty-five intervertebral discs between the adjacent vertebrae, which are made up of 

three integrated tissues: the gelatinous nucleus pulposus, fibrous annulus fibrosus, and the 

cartilage end plate. Intervertebral discs provide stability and flexibility to the spine and 

protect it by absorbing and distributing physical and mechanical loads (Humzah et al. 

1988). 

Axial skeleton morphogenesis requires a coordinated series of cellular and 

molecular events, which are regulated by transcription factors like MSX-1 and -2, PAX1, 

3, and 9 and growth factors like FGF-8, BMP-4 and -2 (Watanabe et al. 1998; Peters et 

al. 1999; Pourquie 2003). Vertebral column development starts with the formation of 

somites from the unsegmented paraxial mesoderm on both sides of the neural tube. The 

somites then compartmentalize, differentiate and de-epithelialize to generate 

dermomyotomes and sclerotomes. Dermomyotomes give rise to appendicular and axial 

musculature while sclerotomes form the skeletal elements of the vertebral column and 

ribs. The densely packed cells at the anterior sclerotomal region give rise to intervertebral 

discs while less dense areas between intervertebral disc regions form the cartilage model 
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(anlage) for vertebral bodies. The sclerotome cells then migrate ventrally and medially, 

ultimately surrounding the notochord to form the perichondral tube. This tube eventually 

becomes segmented and gives rise to vertebral bodies and intervertebral discs. During the 

6th week of gestation pre-vertebrae are converted to cartilage and the endochondral 

ossification begins at the 8th week. (Christ et al. 1998; Peters et al. 1999; Giampietro et al. 

2003). During the vertebral column development, somitogenesis is regulated by a 

segmentation clock, a timing mechanism responsible for the periodic production of 

somites by periodic expression of ‘cyclic’ genes (related to Notch pathway) and FGF 

signaling wave front, which in turn are regulated by Wnt and Notch signaling (Pourquie, 

2003). Abnormalities in the genes controlled by segmentation clock are known to cause 

severe defects during vertebral column development and are similar to pathological 

conditions like scoliosis (Giampietro et al. 2003; Sparrow et al. 2006). Currently there is 

a wealth of information available on early patterning process (embryonic segmentation of 

vertebral column), in terms of patterning genes, growth factors and transcription factors 

that are involved in the vertebral column development. However, the events, which occur 

later during the development of vertebral column like chondrogenesis and osteogenesis 

and the factors and pathways that regulate these processes, are not clearly understood. 

 

MOLECULAR BASIS FOR BONE AND CARTILAGE FORMATION 

 

Skeletogenesis is a very complex process, which is regulated by a series of 

molecular events involving many transcription factors, growth factors and ECM proteins. 

Importance of transcription factors like OSF-2/RUNX2, MSX2 and growth factors like 

FGFs, BMPs, TGF-β along with ECM proteins like collagens, matrilins, tenascins, 

thrombospondins and signal transducers like PKC, in both osteogenesis and 

chondrogenesis has been demonstrated by studies conducted in both human and mouse 

(Pacifici et al. 1993; Prockop et al. 1995; Jena et al. 1997; Komori et al. 1997; Wilkie 

1997; Liu et al. 1999; Chapman et al. 2001; Hay et al. 2001; Komori 2002; Rosado et al. 

2002; Marie 2003; Hankenson et al. 2005; Bandyopadhyay 2006; Desai et al. 2006). 

NELL1 is a relatively new gene with osteoinductive properties that is rapidly emerging as 
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a new player in the field of osteogenesis and chondrogenesis. All the proteins mentioned 

above along with NELL1 are involved in the signaling pathways that are utilized in 

osteogenesis/chondrogenesis and NELL1 is known to be regulated (directly or indirectly) 

by these transcription and growth factors and it in turn regulates some of these proteins. 

 

TRANSCRIPTION FACTORS: There are several transcription factors (TFs) that play 

central regulatory roles during bone and cartilage development.  The expression of these 

factors in osteoblasts and chondrocytes coincides with the sequential development of 

these cells. Proliferation-specific TFs like MSX-2 and TWIST are expressed in pre-

osteoblasts; and MSX-2, SOX-5, -6, and -9 in pre-chondrocytes, while RUNX-2 and 

Osterix (OSX), which are associated with terminal differentiation, are expressed in 

mature osteoblst. 

 

Osteoblast specific factor (Osf-2): OSF-2, also known as AML-3 or core-binding 

factor-1 (CBFA-1) or RUNX2, is a transcription factor that belongs to the Runt family of 

transcription factors that is essential for bone formation during embryogenesis. It is a 

master transcription factor that is necessary for all stages of bone formation (Ducy 2000). 

Osf-2/Runx2 is expressed in mesenchymal condensations (osteochondroprogenitor cells) 

during the early development on embryonic day 12 (E12). From mid-gestation (E14) Osf-

2/Runx2 expression becomes progressively stronger in the cells of osteoblast lineage 

(Karsenty 2001). OSF-2/RUNX2 is crucial for osteoblast development from mesenchymal 

stem cells and maturation into osteoblasts by regulating the transcription of several target 

genes. Multiple OSF-2/RUNX2 binding sites were found in promoter regions of all the 

major genes expressed by osteoblasts, such as COL-1 and 2, BSP, OPN and OCN (Ducy 

2000) and also craniosynostosis-associated gene, NELL1 (Truong et al. 2007). All these 

bone matrix proteins are sequentially expressed during osteoblast differentiation and bone 

matrix mineralization.  

Although the level and pattern of OSF-2/RUNX2 transcriptional indicated its 

involvement in osteoblast differentiation, human genetic and Osf-2/Runx2 knockout 

mouse studies confirmed that it is an essential factor for osteoblast differentiation. Osf-
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2/Runx2-/- mice die at birth and lack both endochondral and intramembranous 

ossification. These mice completely lack osteoblasts, are devoid of mineralized bone and 

the entire skeleton consists of only cartilage. The skeletal structures like calvarial bones 

and clavicles are missing. Additionally, the mice do not express certain ECM proteins 

like Bsp, Opn, and Ocn, which are known biomarkers for osteoblast differentiation 

(Komori et al. 1997; Otto et al. 1997). Human mutations in OSF-2/RUNX2 cause 

cleidocranial dysplasia (CCD), an autosomal dominant disease characterized by the 

defects in both endochondral and intramembranous bone formation, such as absence of 

clavicles, persistent open fontanelles, supernumerary teeth, and short stature (Lee et al. 

1997). Mice with heterozygous mutation in Osf-2/Runx2 showed a phenotype similar to 

CCD in humans (Mundlos et al. 1996).   

As mentioned above Osf-2/Runx2 is expressed early during the development 

(E12.5) in osteochondroprogenitor cells in mice. However, from E12 to birth, its 

expression in cartilage is restricted to prehypertrophic and hypertrophic chondrocytes 

(Karsenty 2001). This spatio-temporal pattern of OSF-2/RUNX2 expression along with its 

transcriptional control of COL-10 gene (chondrocyte differentiation marker) suggests that 

it may be involved in chondrocyte terminal differentiation. These findings were further 

confirmed by the observation that in Osf-2/Runx2-/- mice, the entire skeleton is composed 

of cartilage, chondrocyte differentiation is severely affected in most of the skeleton and 

no Col-10 expression and vascular invasion of the cartilage is detected (Inada et al. 

1999). Forced expression of Osf-2/Runx2 driven by Col-2 or Col-10 promoter which 

target chondrocytes in these mice, partially rescued Osf-2/Runx2 deficient mice by 

inducing hypertrophic chondrocyte differentiation (Takeda et al. 2001).  

OSF-2/ RUNX2 also plays a role in postnatal bone formation. It is expressed in 

mature postnatal osteoblasts and over-expression of dominant negative Osf-2/Runx2 in 

these cells results in osteopenia, with decreased expression of Col-1 and -2, Bsp, Opn, 

and Ocn (Ducy et al. 1999). Furthermore, over-expression of Osf-2/ Runx2 in adult aging 

mice resulted in severe osteopenia due to impaired osteoblast maturation and increased 

bone formation as well as bone resorption (Geoffroy et al. 2002).  Transcription of 

OSF2/RUNX2 is regulated by many growth factors and transcription factors that are 
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known to play a critical role in skeletogenesis. It is positively regulated by BMPs, FGFs, 

retinoic acid and down-regulated by1, 25(OH2) D3 and TNF and OSF-2/RUNX2 itself 

(Lee et al. 2000; Komori 2002). Depending on the cell type it is positively or negatively 

regulated by TGF. RUNX2 forms a heterodimer with transcription cofactor CBF-β (core 

binding factor β) and interacts with many other transcription factors (Smad, C/EBP and 

Ets) and cofactors (Rb). Additionally it is positively regulated by the transcription factor, 

MSX2. (Komori 2002). 

 

Msx-2: MSX-2 is a member of a small family of homeobox containing genes related to 

the muscle-segment (msh) gene in Drosophila (Liu et al. 1999). In the developing 

vertebrate, it is expressed in several tissues and is known to mediate craniofacial and limb 

morphogenesis (Bendall et al. 2000). In mice, Msx-2 is expressed during critical stages of 

neural tube, neural crest, teeth and skull and facial bone development (Foerst-Potts et al. 

1997). It is expressed in the developing calvaria and is involved in osteoblast 

proliferation, differentiation and function. Several studies show that MSX-2 down-

regulates the differentiation in calvarial osteogenic cells and maintains them in a 

proliferative state. This in turn increases the pool of proliferative osteogenic cells and 

ultimately increases calvarial bone growth (Dodig et al. 1999).  Forced expression or 

over-expression of Msx-2 in mouse calvarial osteoblast enhanced calvarial bone growth. 

(Dodig et al. 1999; Liu et al. 1999). Gain-of-function mutation in the human MSX-2 gene 

causes an autosomal dominant disorder, Boston type craniosynostosis. Liu et al (1999) 

postulated that MSX-2-mediated craniosynostosis arose by transient retardation of 

osteogenic cell differentiation in developing cranial suture. Msx-2-deficient mice exhibit 

a marked delay in the ossification in calvarial bones, calvarial foramen and overall 

decrease in bone volume (Satokata et al. 2000). This phenotype results from decreased 

proliferation of osteoprogenitors at the osteogenic front in cranial sutures and closely 

resembles the phenotype associated with human haploinsufficiency in parietal foramina 

(Wilkie et al. 2000). Additionally, Msx-2-/- mice also have defects in cartilage and 

endochondral bone formation. Axial and appendicular skeletal lengths were reduced; 

mutants had reduced number of osteoblasts and chondrocytes at the epiphysis. In mutant 
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long bones, postnatal expression of bone differentiation marker genes like Bsp, Osf-

2/Runx2 and Ocn were also reduced (Satokata et al. 2000). These reports demonstrate 

that MSX-2 is required for both chondrogenesis and osteogenesis and acts upstream of 

OSF-2/RUNX-2. 

 

EXTRACELLULAR MATRIX  (ECM) PROTEINS: Most of the cells in multicellular 

organisms are surrounded by a complex network of macromolecules that make up the 

extracellular matrix. The ECM provides structural support for the cells, tissues and 

organs, facilitates cell communication and acts as a physical barrier or selective filter to 

soluble molecules. In addition, macromolecules in the ECM regulate the behavior of the 

cells that contact them and thereby influence their development, survival, migration, 

proliferation, differentiation, shape and size. Although cells in connective tissue are 

surrounded by ECM, its composition and spatial relationship with cells differ between 

tissues (Alberts 1994). ECM is a complex network of macromolecules like 

glycosaminoglycans (hyaluronan, heparin sulfate, keratin sulfate, chondrotin sulfate and 

dermatan sulfate), proteoglycans (aggrecan, decorin, dyndecans, chad, proteoglycan 4), 

glycoproteins (thrombospondin, tenascin), fibrous proteins (collagen, elastin, fibronectin 

and laminin), and non-collagenous proteins and polysaccharides. These macromolecules 

are mainly produced by fibroblasts in the matrix. However, in certain types of connective 

tissues, such as cartilage and bone, they are secreted by chondrocytes and osteoblasts. 

Aggregates of collagen fibers and proteoglycans provide the structural base for ECM 

architecture. (Alberts 1994). 

 

Collagens: The collagens are a family of fibrous ECM proteins that play a role in 

maintaining the structural integrity of various tissues. They are the most abundant 

proteins in animals, consisting of 25% of the total protein mass in these organisms. 

Collagens also play a role in the early development and organogenesis, chemotaxis, cell 

attachment and platelet aggregation (Kivirikko 1993). They are secreted by both 

connective tissue cells and other cell types and are present in most tissues and especially 

abundant in cartilage, bone, skin, tendons and ligaments. So far, at least 27 genetically 
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distinct collagen proteins have been identified (Kivirikko 1993; Myllyharju et al. 2004). 

Collagens can be classified into subgroups on the basis of their particular structural 

features. These groups are: 1. Fibrillar collagens (fibril forming collagens) such as COL I, 

II, III, V and XI. These are the main collagens found in connective tissue. COL I is the 

principal collagen of skin and bone. 2. Collagens that form network-like structures such 

as COL IV, VIII and X. 3. Fibril-associated collagens with Interrupted Triple-Helices 

(FACIT) such as COL IX, XII, XIV, XVI and XIX. These collagen types are known to 

associate with the fibrous collagen. 4. Collagens with transmembrane domains, types XIII 

and XVII. 5. Collagens that form anchoring fibrils for basement membrane, type VII. 6. 

Beaded filament forming collagen. Type VI. (Kuivaniemi et al. 1997). 

Mutations in collagen genes cause a variety of human diseases such as 

Osteogenesis imperfecta, some types of Ehlers-Danlos syndrome, Chondrodysplasias, 

some forms of osteoporosis and osteoarthritis, arterial and intracranial aneurisms and 

epidermolysis bullosa (Prockop et al. 1995).   

 
Collagen ii (col-2): COL-2 is the major fibrous collagen found in cartilage and 

constitutes 80-90% of the collagen content of the cartilage matrix. It is also found in 

related tissues such as the intervertebral disc, vitreous humor of the eye and the inner ear. 

It is preferentially expressed in the perichondrium, in pre-cartilage limb mesenchyme in 

chicks and in non-cartilage tissues. It is expressed in spatio-temporal pattern during the 

development of craniofacial, heart, brain, skin, skeletal muscle and nucleous pulposus of 

the intervertebral disc. (Thorogood et al. 1986; Nah et al. 1991; Sandell et al. 1991; 

Helminen et al. 1993). Several studies indicate that mutations in COL-2A cause a number 

of diseases of joints and skeleton. These include several chondrodysplasias, a 

heterogeneous group of disorders that are characterized by malformations of cartilaginous 

structures and degenerative changes of joints. Mutation in human COL-2A1 gene caused 

osteochondroplasia in transgenic mice and they exhibited flattened vertebral bodies, 

dysplastic changes in long bones, osteoarthritis in their joints, degenerated intervertebral 

discs with altered histological structures, and these changes were more severe in mice 

with no murine Col-2A1 allele (Sahlman et al. 2004). Thus it is an important component 
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of the cartilage matrix that is formed during skeletogenesis and it especially plays a 

critical role in endochondral ossification (Helminen et al. 1993). 

Collagen v (col-5): COL-5 is a minor fibrillar collagen, which participates in the 

formation of fibrillar collagen network and the regulation of fibrillogenesis. It is 

expressed in a variety of tissues such as bone, cornea, placenta and fetal membranes 

(Malfait et al. 2005). It occurs as a heterotrimer of three different polypeptide chains, α1 

(Col-5A1), α2 (Col- 5A2) and α3 (Col-5A3). It can form two forms of heterotrimers 

(α1)2α2 and α1α2α3 or as (α1)3 homotrimers. It regulates fibrillogenesis by co-

assembling with COL-1 (Malfait et al. 2005). 

Collagen-5a1 (col-5a1): It is expressed in adult skin, tendon and in 

calvaria and long bones but not in the cartilage of the developing mouse embryo. 

Mutations in the COL-5A1 and COL-5A2 genes result in classic EDS (type I and II) and 

in one third of patients, the disease is caused by mutant non-functional COL-5A1 allele 

(Schwarze et al. 2000; Malfait et al. 2005). Hence the mutation in COL-5A1 leads to 

classical EDS, which is caused by aberrant fibrillogenesis.  

Collagen-5a3 (col-5a3): It is highly expressed in mammary gland, 

placenta, uterus, fetal, heart and lung, moderately in adult heart and brain. In addition, it 

is primarily expressed in epimysial (connective tissue) sheaths of developing muscles and 

within nascent ligaments adjacent to forming bone and joints during the development. 

Due to its expression in epimycium, it has been speculated that altered expression of 

COL-5A3 might result in some muscle myopathies. (Imamura et al. 2000). Based on its 

expression in developing tendons and joints and its ability to form heterotrimers with 

COL-5A1 and -A2 chains, it has been suggested that altered expression of COL-5A3 may 

account for at least some cases of classical EDS in which COL-5A1 and -A2 have been 

excluded (Imamura et al. 2000). Defects in COL-5A3 may also contribute to at least 

some cases of hypermobility type of EDS, which is characterized by chronic diffuse 

muscle pain along with classical EDS symptoms (Imamura et al. 2000). 

Collagen vi  (col-6): COL-6 belongs to a subtype of bead forming collagens and 

assembles into beaded microfibrils in cartilage and in other tissues such as aorta, 

placenta, uterus, intervertebral disc, tendon, cornea, muscle, liver and kidney (Thomas et 
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al. 1994). These microfibrils localize close to cells, nerve, blood vessels, and large 

collagen fibrils and may be involved in the anchoring process. It is known to bind cells 

via COL-1, decorin and hyaluronan (which in turn binds to cartilage proteoglycan). This 

binding activity suggests that COL-6 may be involved in cell migration, differentiation, 

growth, remodeling process of connective tissue and embryonic development. (Bidanset 

et al. 1992; Kielty et al. 1992). It is expressed in a spatio-temporal manner during mouse 

embryogenesis; expression was detected in 10.5 day embryos, in branchial arches, large 

blood vessels and cephalic mesenchyme. By 16.5 days Col-6A expression increased in 

joints, intervertebral discs, perichondrium, periostium, dermis skeletal muscle and heart 

valves (Marvulli et al. 1996).  

Increased COL-6 collagen synthesis and disposition has been detected in several 

fibrotic diseases, osteoarthritis and patients with cutis laxa, which is characterized by loss 

of elasticity in the skin (van der Rest et al. 1991). A recent study indicates COL-6A1 on 

chromosome 21 as the locus of ossification of the posterior longitudinal ligament 

(OPLL). OPLL is a subset of disease, characterized by ectopic ossification in the spinal 

ligaments, is a common disorder that affects elderly population in eastern Asia and is a 

leading cause of spinal stenosis in Japan (Tanaka et al. 2003). 

Collagen x (col-10): COL-10 belongs to a subtype of network-forming collagens. 

This homotrimeric, developmentally regulated collagen has a very restricted pattern of 

distribution. It is expressed only by the hypertrophic chondrocytes transiently during 

endochondral bone formation, and such as a tissue specific expression makes COL-10 an 

only known molecular marker specific for chondrocyte differentiation (Thomas et al. 

1994). Transcription factor OSF-2/RUNX-2 is required for differentiation of the 

mesenchymal stem cells into osteoblast lineage (Komori et al. 1997) and for chondrocyte 

differentiation during endochondral ossification (Enomoto et al. 2000), and multiple Osf-

2/Runx-2 binding sites have been identified within the promoter region of the human, 

mouse, and chick Col-10 (Zheng et al. 2003). Decreased Col-10 expression and altered 

chondrocyte hypertrophy was detected in Osf-2-2/Runx-2 heterozygous mice and no Col-

10 expression was detected in Osf-2/Runx-2 null mice (Zheng et al. 2003), suggesting 

Col-10 is a direct transcriptional target of Osf-2/Runx-2 during chondrogenesis. Mutation 
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in human COL-10 is associated with a cartilage disorder, Schmid metaphyseal 

chondroplasia (SMCD) (Warman et al. 1993). The Col-10-null mice exhibit growth plate 

compressions partially resembling SMCD (Kwan et al. 1997). 

Collagen xii (col-12a1): COL-12A1 belongs to subgroup FACIT collagens. It is 

expressed in embryonic tendon and skin, periodontal ligament, and perichondrium at the 

articular surface and around cartilage canals. Its functions are not clear but evidence 

suggests that COL-12A1 interacts with COL-1 (van der Rest et al. 1991; Thomas et al. 

1994). 

Collagen xvi (col-15a1) and collagen xviii (col-18a1): COL-15A1 and COL-

18A1 together form a distinct not yet named subgroup of non-fibril forming collagens. 

COL-18A1 is the precursor of endostatin (anti-angiogenic factor) and the corresponding 

fragment in COL-15A1 has also been shown to have anti-angiogenic activity 

(Ramchandran et al. 1999; Sasaki et al. 2000). COL-15A1 is expressed in many tissues 

including kidney, lungs, most capillaries, heart and skeletal muscle (Hagg et al. 1997). 

COL-18A1 is expressed in several tissues including liver, lung, kidney, and eye (Oh et al. 

1994). Col15A1 provides mechanical stability to skeletal muscle cells and micro vessels 

(Eklund et al. 2001). COL-18A1 functions as an endogenous inhibitor of angiogenesis 

and tumor growth and also known to play a critical role in maintenance of the retinal 

structure and in neural tube closure (Sertie et al. 2000). 

Collagen xvii (col-17a1): COL-17A1 belongs to a subclass of collagens with a 

transmembrane domain, and is a structural component of hemidesmodomes (multiprotein 

complexes that mediate the adhesion of epidermal keratinocytes to the underlying 

basement membrane) and is expressed in stratified squamous epithelium (Diaz et al. 

1990; Li et al. 1993). Mutations in COL-17A1 cause generalized atrophic epidermolysis 

bulbosa, a condition characterized by universal alopecia and atrophy of skin (Gatalica et 

al. 1997). 

 

Non-Collagenous Extracellular Matrix Proteins: The non-collagenous proteins like 

glycosominoglycans and proteoglycans together form hydrated gel-like substance and 

occupy a large volume of extracellular space. This fibrous protein embedded gel-like 
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substance not only helps to resist the comprehensive force on the matrix but it also 

permits the diffusion of nutrients, metabolites and hormones. While fibrous proteins like 

collagens and elastin provide tensile strength and elasticity to the tissues, non-

collagenous proteins help cells in the tissue to carry out many of their biological 

functions. They facilitate cell adhesion, migration, differentiation and signaling. Several 

cell surface proteoglycans act as co-receptors for collagens, growth factors and other 

ECM proteins. (Alberts 1994). Some of the following non-collagenous proteins are 

associated with bone and cartilage development, cell growth and differentiation, cell 

adhesion and communication. 

 
Matrilins: Matrilins belong to the superfamily of proteins with von Willebrand 

factor type A-like (vWF- A) modules. Matrilins are adapter proteins that form both 

collagen-dependent and collagen-independent filamentous networks (Mates et al. 2004). 

The matrilin family has four members, each containing one or two vWF-A domains, a 

variable number of EGF-like domains and a coiled coil c-terminal domain. vWF-A 

domains are known to mediate interactions with other proteins and are implicated in 

oligomerization, formation of macromolecular networks, cell adhesion and spreading 

(Jackson et al. 2004). Matrilins interact with collagens and proteoglycans. Matn-1 binds 

to aggrecan (Hauser et al. 1996) as well as to Col-2 in vivo (Winterbottom et al. 1992) 

and is also known to bind integrin α1β1, suggesting its involvement in cell adhesion and 

spreading (Makihira et al. 1999). Matrilin (MATN) -1 associates with cartilage 

proteoglycans in addition to being a component of both collagen- dependent and –

independent fibrils (Deak et al. 1999). Furthermore, MATN-1, -3, and -4 are associated 

with COL-6 microfibrils in rat chondrosarcoma tissue and connect these fibrils to 

aggrecan and COL-2 (Wiberg et al. 2003). While MATN -1, -2, -3, and -4 are expressed 

in cartilaginous tissue; only MATN-2 and -4 are expressed in a variety of ECMs 

including non-skeletal tissues (Deak et al. 1999). 

MATN-3 is a monomeric protein with only one vWFA domain followed by four 

EGF-like domains and a C-terminal coiled -coil domain. MATN-3 is known to form 

homotrimers via coiled-coil domain and mixed trimers and tetramers of MATN-3 and -1 
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have been detected in humans (Kleemann-Ficher, 2001) but not in mice (Klatt et al. 

2000). Mouse Matn-3 is highly homologous to human and chicken (Klatt et al. 2000). In 

mouse, earliest expression of Matn-3 could be detected at E12.5 in cartilage anlagen of 

developing bones and in newborn mice; it is expressed in developing occipital bones and 

bones of nasal cavity. At E14.5 it was detected in the cartilage primodium of the vertebral 

bodies, the ribs, sternum, trachea, as well as the long bones (Klatt et al. 2000; Klatt et al. 

2002). In six week-old mice, its expression was restricted to the growth plates of the long 

bones, sternum and vertebrae (Klatt et al. 2002). In addition to cartilaginous tissues, 

Matn-3 is expressed in the osteoid around the osteoblasts attached to bone trabecula in 

the subchondral bone and around the osteocytes inside the cancellous bone (Klatt et al. 

2000). In limbs, Matn-3 is highly expressed in proliferating chondrocytes, weakly in 

resting cartilage, while no expression was detected in the hypertrophic zone (Klatt et al. 

2000). Matn-3 is also expressed in and secreted by osteoblasts (Klatt et al. 2000). All four 

members of the matrilins are expressed during mouse development (Klatt et al. 2000), 

suggesting that they may play an important role in endochondral bone formation. 

Although MATN-1 and -3 co-localize due to their ability to form heterodimers, they differ 

in their spatial and temporal expression. Only MATN-3 but not MATN-1 is detected in a 

region adjacent to the resting cartilage of the developing joint. Furthermore, Matn-3 

expression gradually ceases after birth, while Matn-1 is continuously expressed in 

cartilage throughout life (Klatt et al. 2002). 

Mutation in vWF-A domain of human MATN-3 gene leads to autosomal dominant 

skeletal disorder, such as multiple osteochondroplasia (MED), a form of 

osteochondrodysplasia that is characterized by short stature, delayed and irregular 

ossification of the epiphyses and early onset of osteoarthritis (Chapman et al. 2001). In 

addition, MATN-3 was reported to be highly upregulated in human osteoarthritic cartilage 

and a missense mutation in MATN-3 was implicated in hand arthritis in a group of 

patients in Iceland (Stefansson et al. 2003). Another study by Ko et al (Ko et al. 2004) 

showed that absence of Matn-3 had no obvious effects on mouse skeletal development. 

However, they suggest that other members of the Matrilin family may compensate for 

Matn-3. 
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Tenascins: Tenascins are a family of large oligomeric glycoproteins primarily 

found in the ECM of vertebrates. To date, five members of the family have been 

identified in mammals: tenascin-X (TNX or TNXB), tenascin-C (TNC or cytotactin), 

tenascin-R (TNR), tenascin-W (TNW), and tenascin-N (TNN) (Hsia et al. 2005). All 

members of the tenascin family have common motifs and are characterized by N-terminal 

globular domain and heptad repeats, which facilitate multimerization, followed by one or 

more EGF-like repeats, several fibronectin (FN) type III domain repeats, and a C-

terminal fibrinogen-like globular domain (Weber et al. 1999). All vertebrates express 

more than one tenascin gene and each member has a distinctive expression pattern, and 

their expression is regulated during development and throughout the organism’s life span. 

Different connective cells secrete different types of tenascins and they contribute to ECM 

structure and influence the function and behavior of the cells in contact with them. 

Several studies suggest that tenascins play an important role in regulating cell-

extracellular matrix interaction, thus promoting cell rounding, migration and 

differentiation (Chiquet et al. 1994; Matsumoto et al. 1994). This protein family plays an 

important role during embryogenesis as well as during pathological states in adults such 

as inflammatory disease, tissue injury, tumorigenesis and wound healing (Tucker et al. 

2006). 

Tenascin-x (Tnx, Tnxb): TNX is the largest known member of the 

tenascin family. TNX gene lies in the major histocompatibility complex (MHC) class 

region in both human and mouse and it overlaps the gene encoding 21-hydroxylase and a 

gene encoding an untranslated adrenal specific RNA on human chromosome 6 (Bristow 

et al. 1993). Although TNX is capable of forming trimers, it differs from other family 

members in that it is unable to form hexamers because it lacks the N-terminal cysteine 

residues that are required for hexamer formation. It has 18.5 EGF-like repeats and 29 

(mouse) or 32 (human) FN type III repeats domains. Furthermore, unlike TNC and TNR, 

TNX is not heavily glycosylated and does not contain the RGD sequence, and hence 

cannot bind to RGD-dependent receptors (Bristow et al. 1993). 
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TNX is known to interact with several ECM proteins. C-terminal domains of TNX 

bind to major fibrillar collagens like COL-1, -3, -5, -6 and topoelastin (Minamitani et al. 

2004; Egging et al. 2007). Bovine and murine Tnx bind heparin (Matsumoto et al. 1994; 

Lethias et al. 2001) and since this heparin-binding site is also involved in the binding of 

TNX to decorin, a proteoglycan, it is suggested that TNX interacts with collagen fibrils 

through decorin and this association contributes greatly to the integrity of ECM 

(Elefteriou et al. 2001). TNX is also involved in cell-matrix and cell-cell adhesion. TNX-

null fibroblasts exhibit adhesive defect in ECM (Minamitani et al. 2004). TNX is also 

known to modulate fibrillogenesis and expression of COL-6. TNX increases the rate of 

collagen deposition while COL -6 accelerates the rate of collagen formation (Minamitani 

et al. 2004).  

TNX is widely expressed during human fetal development, with high levels of 

expression in testis, skeletal, cardiac, and smooth muscle. In adults expression is limited 

to musculoskeletal, dermis, and cardiac tissues (Hsia et al. 2005). TNX expression is also 

detected in adult peripheral nerves. Investigations into the mechanisms of Tnx activity in 

the cardiac and skeletal muscle suggest that the protein exerts functions during 

morphogenesis and cell migration in connective tissues (Burch et al. 1997). Tnx 

expression is complementary to Tnc during mouse heart development, (Elefteriou et al. 

2001), but its expression is often reciprocal to Tnc in several adult and fetal tissues 

(Matsumoto et al. 1994; Geffrotin et al. 1995; Imanaka-Yoshida et al. 2003). In pigs, it is 

significantly expressed in two thirds of the 28 tissues examined while Tnc is expressed in 

50% of them. Tnx is highly expressed in adult and fetal nerves, dermis, skin, heart, 

uterus, placenta, and aorta, lung, mammary gland, stomach, skeletal and adrenal gland of 

fetuses. In contrast, Tnc is highly expressed in fetal brain and adult spinal cord, ligament, 

tendon, and colon (Geffrotin et al. 1995). TNX is also expressed in human intervertebral 

discs throughout the annulus (Gruber et al. 2002). 

TNX deficiency in humans is associated with a clinically distinct, autosomal 

recessive form of Ehlers-Danlos Syndrome (EDS), which is characterized, by 

hyperextensible skin, hypermobile joints, and tissue fragility (Schalkwijk et al. 2001). 

Even though haploinsufficiency of TNX is associated with EDS, it is distinguished from 
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the classic autosomal dominant EDS by its mode of inheritance, lack of atrophic scars 

and an etiology due to a mutation in a gene that does not encode a fibrillar collagen or 

collagen-modifying enzyme (Zweers et al. 2005). Tnx null mice were viable and normal 

at birth. The skin of these mutant mice was histologically normal, but was noticeably 

hyperextensible. Collagen content was significantly reduced although Tnx skin fibroblasts 

synthesized near normal amount of Col-1. This discrepancy was attributed to a significant 

reduction in collagen deposition thus confirming the hypothesis that TNX deficiency 

causes EDS through regulation of collagen fibril deposition into the matrix and not by 

interfering with collagen synthesis or processing as observed in other forms of EDS. 

(Mao et al. 2002; Bristow et al. 2005).  

The mechanism by which TNX regulates fibrillogenesis is not clear but a recent 

report suggests that TNX can affect the rate of collagen fibril formation either by directly 

binding to collagen or through regulating the synthesis of COL-6, which is known to 

affect fibril formation (Minamitani et al. 2004). Moreover, Letias et al. (Lethias et al. 

2001) reported that TNX is capable of binding decorin, which is known to bind collagen 

and regulate fibrillogenesis (Elefteriou et al. 2001). TNX also seems to regulate 

elastogenesis and matrix remodeling. Patients deficient in TNX have abnormal elastic 

fibers characterized by fragmented clumped elastic fibers (Zweers et al. 2005). 

Furthermore, fibrilin-2 and stromelysin, a protease and regulator of α-1 proteinase 

inhibitor that binds and inhibits elastase were significantly upregulated in Tnx null mice 

fibroblasts (Bristow et al. 2005). These studies indicate that TNX plays an important role 

in maturation and/or maintenance of higher order collagen structures in the ECM and the 

elastic network. 

Tenascin c (tnc): TNC (haxabrachion or cytotactin) is a hexameric, 

multidomain ECM glycoprotein with a spatially and temporally restricted tissue 

distribution. Each subunit of hexameric protein consists of N-terminal tenascin assembly 

domain (TA), followed by 14.5 EGF-like repeats, and 8 FN type III repeats (Gulcher et 

al. 1991). TNC is known to interact with cell surface proteoglycans, fibronectin, and 

various collagens (Hoffman et al. 1988; Chiquet-Ehrismann 1991; Salmivirta et al. 1991). 

In the developing embryo, TNC is expressed in the skeletal and nervous system (Tucker 
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et al. 1994; Hsia et al. 2005), particularly in myotendenous joints and at insertions of 

ligaments and tendons (Thesleff et al. 1988; Chiquet et al. 1994). It is selectively 

expressed in mesenchymal condensation sites prior to intramembranous ossification and 

chondrogenesis (Mackie et al. 1987). During endochondral ossification it is expressed in 

periosteal cells and in osteoblasts that are invading the primary center of ossification. 

Transcript levels diminish during chondrocyte differentiation and expression is 

undetectable in the matrix surrounding the hypertrophic chondrocytes (Mackie et al. 

1987; Mackie et al. 1992). In adult cartilage, it is not expressed or expression becomes 

restricted (Pacifici et al. 1993). Although TNC is secreted by osteoblasts, it remains on 

the bone surfaces and is rarely incorporated into mineralized matrix (Mackie et al. 1987). 

TNC is detectable in small amounts in normal adult tissues such as smooth muscle cells, 

endothelial cells, myotendinous tissue, spinal cord, kidney and lung (Soini et al. 1993; 

Roth-Kleiner et al. 2004). However, its expression is upregulated sharply in the tissues 

undergoing remodeling process as in wound repair, and neovasularization or in 

pathological states like tumorigenesis and inflammation (Natali et al. 1991).   

Exogenous TNC is known to stimulate chondrogenesis in limb-bud mesenchymal 

cells (Mackie et al. 1987). TNC has multiple functions during embryonic development 

and postnatal growth, and some of its roles include participation in regulation of cell 

proliferation, migration, differentiation, survival, cell adhesion and epithelial 

mesenchymal interface formation during organogenesis, tissue repair, and somatic 

growth regulation (Saga et al. 1991; Roth-Kleiner et al. 2004). Additionally, TNC 

participates in chondrogenesis and cartilage development (Pacifici et al. 1993). Pacifici et 

al. (Pacifici et al. 1993) showed that TNC is involved in the genesis and function of 

articular chondrocytes. TNC not only regulates chondrocyte development at the epiphysis 

of long bone models, but it also assists in maintaining chondrocyte function throughout 

postnatal life. The latter involves inhibiting the endochondral ossification process that is 

undertaken by the chondrocytes at the metaphysis and diaphysis of skeletal models 

(Pacifici 1995). Tnc knockout mice are viable, fertile and phenotypically normal, thus 

questioning the critical role of Tnc in embryonic as well as postnatal development (Saga 

et al. 1992). However, several reports suggest that lack of phenotype in knockout mice 
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may be due to redundant mechanisms, namely the ability of other tenascin family 

members, especially Tnx to compensate for Tnc. Additionally, although Tnc knockout 

mice were initially reported to be phenotypically normal, several studies have reported 

abnormal tissue restoration after injury to skin, cornea, or after glomerulonephritis 

(Nakao et al. 1998; Matsuda et al. 1999) and abnormal behavior due to reduced 

production of certain neurotransmitters (Tamaoki et al. 2005). 

  

Proteoglycan 4 (Prg4): PRG4, also known as Lubricin or Megakaryocyte-

stimulating factor (MSF) or superficial zone protein (SZP), is a large multifaceted, 

cytoprotective proteoglycan. It is a major component of synovial fluid that acts as a major 

lubricant in articular cartilage; protecting the cartilage surface from friction-induced 

wear, protein deposition and cell adhesion and also preventing synovial outgrowth. PRG4 

is produced and secreted by synovial cells and superficial zone chondrocytes and is 

expressed in superficial zone of both adult and fetal articular cartilage, synovial cells, 

bone, liver, heart, and lung. (Rhee et al. 2005). 

PRG4 is a paralog of vitronectin and contains multiple domains that are likely to 

contribute its diverse biological functions (Rhee et al. 2005). It contains somatomedian B 

(SMB) and O-linked glycosylated homopenin-like (PEX) and mucin- like domains. In 

vitronectin, both SMB and PEX domains have been known to mediate extracellular 

matrix attachment, promote cell attachment and proliferation, and regulate the 

complement and coagulation system (Deng et al. 2001). The negatively charged sugars in 

mucin-like domains enable the PRG4 to act as a lubricant due to strong repulsive 

hydration forces (Jay 1992). Additionally, diverse biological functions have been 

attributed to other mucin-containing proteins such as proteins of epithelial surfaces, 

which control cell growth and regulate cell differentiation (Van Klinken et al. 1995; 

Simmons et al. 2001). Furthermore, its increased expression during ectopic ossification in 

mouse also suggests that Prg4 may be involved in the regulation of ossification (Ikegawa 

et al. 2000). Loss-of-function mutation in PRG4 causes the rare, autosomal recessive 

disease Comtodactyly-arthropathy-coxavara-pericarditis syndrome (CACP), which is 

characterized by precocious joint failure (Marcelino et al. 1999). Prg4 knockout mice 
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exhibit similar defects as CACP patients and have severe joint pathology due to abnormal 

protein deposits on cartilage surface, articular cartilage destruction and marked synovial 

cell outgrowth (Rhee et al. 2005). Early loss of PRG 4 from cartilage surface in 

association with a decrease in its expression in chondrocytes implicates PRG 4 in the 

pathogenesis of osteoarthrits (Young et al. 2006). 

 

Thombospondin III (Thbs3, Tsp-3): TSP-3 is a member of a family of modular, 

multifunctional glycoproteins that mediate interactions between cells and ECM (Adams 

et al. 1993).  The thrombospondin family consists of five structurally related genes 

designated as TSP-1, -2, -3, -4 and COMP (cartilage oligomeric matrix protein). TSP-3 is 

an oligomeric heparin binding protein that resembles TSP-1 and -2 in its C-terminal 

domain, which includes seven type III (Ca2+ binding repeats) and carboxy terminal 

region. TSP-3 contains a distinct N terminus and four type II EGF like repeats but it lacks 

procollagen homology and type I repeats that are found in TSP-1, -2 and -4 (Bornstein 

1992). TSPs are known to interact and bind to cell surface molecules like heparin sulfate 

proteoglycans, αγβ3 integrins, glycoprotein IV, sulfated glycolipids and to ECM proteins 

like COL-1 and COLl-5, fibronectin and laminin (Frazier 1991).  

TSP-1, -2 and -3 are expressed in a unique spatio-temporal manner during murine 

embryogenesis, especially in the nervous system, gut, cartilage and lung. In general TSP-

3 is highly expressed in endocrine, muscle and fetal tissue (Qabar et al. 1994). Several 

studies show that TSP-3 is expressed in the early articular cartilage while TSP-1 is 

expressed in early or immature chondrocytes (Tucker et al. 1997). On day 19, Tsp-3 

expression was also high in the sternum and vertebral bodies, especially in perichondrium 

and hypertrophic chondrocytes, and it was expressed in moderate levels in the spinal cord 

and brain (Qabar et al. 1994). In addition, in postnatal bovine tissues, Tsp-3 is almost 

exclusively expressed in chondrocytes (Qabar et al. 1994) and in four week old mice, it is 

highly expressed in lungs, bone, tail, skin, skeletal muscle and heart (Vos et al. 1992). 

Gruber et al (Gruber et al. 2006) recently reported the presence of TSP in the outer 

annulus of both human and sand rat intervertebral discs, indicating a role for TSP in 
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maintenance of disc health (maintenance of avascular status) in adult human and sand 

rats. 

In general, TSP family members have been implicated in a large number of 

cellular processes such as embryonic development, tissue differentiation, blood 

coagulation, tumor growth and metastasis, angiogenesis, nerve development, wound 

healing and inflammation (Frazier 1991; Adams et al. 1993; Bornstein et al. 1994).  They 

have been known to regulate cell-matrix interaction (may increase or decrease these 

interactions), inhibit endothelial cell growth but stimulate neutrite outgrowth and smooth 

muscle cells, stimulate chemotaxis and inhibit angiogenesis (reviewed in (Vos et al. 

1992). Even though both human and mouse TSP-3’s have been characterized, their 

functions remain unclear. However, based on several studies mentioned above, it may 

play a role in chondrogenesis, and in the development of lung and central nervous system 

during embryogenesis. Since TSP-3 and other members of TSP family are sometimes 

expressed in complementary pattern and also due to its structural similarity with other 

family members, TSP-3 may have some similar functions or its functions could overlap 

with other members of the family. Tsp-3 null mice are viable, fertile and show normal 

prenatal skeletal development. However, developing postnatal skeleton showed subtle 

and transient abnormalities. Tsp-knockout mice exhibit more mature skeleton and 

accelerated the rate of endochondral ossification in the cartilage of femoral head 

(Hankenson et al. 2005). These results along with the presence of TSP-3 in cartilage and 

bone suggest that TSP-3 plays an important role in the regulation of postnatal bone 

modeling, maturation and endochondral ossification. 

 

Chondroadherin (chad): CHAD is a noncollagenous ECM protein and is a 

unique member of the small leucine rich repeat (LRR) proteoglycan family. Unlike other 

LRR proteins CHAD shows restricted tissue distribution. Under normal conditions its 

expression is mainly confined to tendons and cartilage (femoral head and rib cartilage), 

bone marrow and is also expressed during chondrogenic differentiation of mesenchymal 

stem cells. (Shen et al. 1998; Barry et al. 2001). It is known to bind to COL-2. Both COL-

2 and Chad bind to chondrocytes partly via α2β integrin but elicit different cellular 
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responses. It has been suggested that sharing one of the receptors on chondrocytes and by 

interacting with each other, both COL-2 and CHAD may facilitate cell communication 

with their surrounding matrix and/or regulate collagen fibril assembly. (Mansson et al. 

2001). CHAD may mediate attachment and/or cell signaling by interacting with α2β on 

cells.  Temporal expression of CHAD during skeletal development suggests that it plays 

an important role in the regulation of chondrocyte growth and proliferation (Mansson et 

al. 2001). Additionally, CHAD promotes attachment of osteoblasts to solid-state 

substrates and binds collagen, suggesting that Chad is important in maintaining 

osteoblasts on the collagen matrices of bone (Mizuno et al. 1996). 

 

BONE MORPHOGENETIC PROTEINS  (BMP) AND BMP RECEPTORS 

(BMPRs): BMPs are members of the Transforming growth factor (TGF-β) superfamily 

that regulate cell proliferation, differentiation and apoptosis in many cell types including, 

bone and cartilage cells, monocytes, neural cells, and epithelial cells (Sakou 1998). These 

proteins were first identified by their ability to promote ectopic cartilage and bone 

development.  BMPs induce differentiation of mesenchymal cells into osteoblast and 

chondrocyte lineage cells in vitro (Ahrens et al. 1993). BMP-2, -4, -7 (osteogenic protein) 

mediate bone and cartilage formation in vivo (Wozney et al. 1988), while GDF-5 

(cartilage derived morphogenetic protein 1) and GDF-6 induce formation of cartilage and 

tendon-like structures in vivo (Hotten et al. 1996; Wolfman et al. 1997). Several studies 

show that induction of mesenchymal cell differentiation toward cells of osteogenic 

lineage, promotion of osteoblastic maturation and function by BMPS are mediated by 

Smad1/5 and OSF-2/RUNX2 (Gori et al. 1999; Lee et al. 2000). OSF-2/ RUNX2 is 

upregulated by BMP-2, -4, and -7 via MSX-2 in multipotential, osteoblastic and 

chondroprogenitor cell lines (Tsuji et al. 1998; Gori et al. 1999). BMPs stimulated 

chondrocyte maturation and the enhancement of the function of chondrocytes is mediated 

by SOX9, a gene critical for chondrogenesis (Semba et al. 2000). BMP-2, -4, and –6 

induce SOX9 and over-expression of BMP-2 and -4 results in increase in chondrocyte 

number and cartilage formation (Duprez et al. 1996). Additionally, interaction between 
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BMPs, Smads and OSF-2/RUNX2 is required for chondrogenesis and COL-10 

transcription during chondrogenesis (Leboy et al. 2001). 

The importance of BMPs in bone development has been demonstrated by mouse 

gene knockout studies. Mice deficient in Bmp-2 and -4 are not viable. In conditional 

Bmp-2 and -4 knockout mice, chondrogenic condensations fail to form and osteogenesis 

was severely impaired (Bandyopadhyay 2006). The Bmp-6 null mice are viable and 

fertile and exhibited a delay in the ossification of the sternum (Solloway et al. 1998). 

Bmp-7 mice die after birth because of poor kidney development. In addition, these mice 

have eye defects and modest defects in skeleton such as fused ribs and skull, hind limb 

defects and vertebral defects such as lack of fusion of the neural spines of the atlas, 

twelfth thoracic and first sacral vertebrae, and opening on the sides of the neural arches of 

the third and fourth thoracic vertebrae and the absence of lumbar vertebrae. Intervertebral 

discs have unequal thickness and mutants have small or no ossification centers (Jena et 

al. 1997). 

BMPs exert their biological effects by binding to heterotrimeric complexes of 

type I (BMPR-1A) and type II (BMPR-1B) serine/threonine kinase receptors. Upon BMP 

binding, constitutively active BMPR-1B transphosphorylates BMPR-1A. Activated 

BMPR-1A then phosphorylates/activates intracellular Smads, which then translocate to 

nucleus and regulate the transcription of target genes (ten Dijke et al. 1994). Both 

receptors can bind to BMP-2, -4, -7 and GDF-5. In the chick, Bmpr-1a is expressed in 

joint interzones, perichondrium, periarticular cartilage, and hypertrophic chondrocytes 

while Bmpr-1b is expressed primarily in condensing precartilaginous mesenchymal cells, 

perichondrium and periarticular cartilage (Dewulf et al. 1995; Yoon et al. 2005). In mice, 

both of these receptors are expressed in pre-cartilaginous mesenchymal cells (Yoon et al. 

2005). Several reports show that BMP signaling via Bmpr-1a and -1b are essential for 

multiple aspects of early chondrogenesis and both BMP receptors have some overlapping 

functions (Yoon et al. 2005). The constitutively active forms of Bmpr-1a or Bmpr-1b 

promote chondrogenesis. A null mutation in the Bmpr-1b gene produce viable mice with 

defects confined to phalangeal elements while Bmpr-1a deficient mice die during 

gastrulation (Mishina et al. 1995; Baur et al. 2000). Bmpr-1a conditional knockout mice 
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(Bmpr-1acko) have similar and few skeletal defects like Bmpr-1b null mice, and both 

Bmpr-1acko and Bmpr-1b-/- double mutants develop severe and generalized chondroplasia 

(Yoon et al. 2005). Additionally, over-expression of Bmpr-1a rescued the differentiation 

defect of pre-chondrogenic cells in Bmpr-1b null mice (Kobayashi et al. 2005). These 

reports show that Bmpr-1a and -1b have overlapping functions in chondrogenesis. In 

Bmpr-1a cko mice, ossification of long bones is delayed, bone sizes are reduced and 

ribcage is smaller and flattened, leading to respiratory distress and subsequent death. In 

both Bmpr-1a and -1b double conditional null mice, majority of skeletal elements that 

form through endochondral ossification are absent or malformed presumably due to 

impaired differentiation of prechondrocytes into chondrocytes. Moreover, the expression 

of cartilage specific ECM proteins (Col-2, Col-10 and aggrecan) is severely reduced in 

mutants. In contrast, development of clavicles and craniofacial bones, which form 

through intramembranous ossification, is not affected in these mutant mice. (Yoon et al. 

2005).  

 

NELL1: A NOVEL CELL DIFFERENTIATION SIGNALING PROTEIN IN 

BONE AND CARTILAGE DEVELOPMENT 

 

Several specific growth factors and transcription factors are known to regulate 

both osteoblast and chondrocyte proliferation and differentiation. As discussed in the 

previous section, many growth factors like FGF-3, TGF-β, BMPs and transcription factor 

like OSF-2/RUNX2 are already known to regulate osteoblast/chondrocyte differentiation. 

In the past decade, increasing evidence from several studies, including the work 

presented in this dissertation, have identified a novel signaling protein, designated as 

Nell1/NELL1 that controls cell differentiation in bone, cartilage and muscle (Kuroda et al. 

1999; Zhang et al. 2002; Desai et al. 2006). 

 

GENE AND PROTEIN STRUCTURE: In 1995, Matsuhashi et al. (Matsuhashi et al. 

1995) cloned the gene encoding a novel protein from a chicken embryonic cDNA and 

designated this protein as nel (neural epidermal growth factor-like) because it was 
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strongly expressed in neural tissues and contained six EGF-like domains. In the following 

year, Watanabe et al. (Watanabe et al. 1996) cloned two novel genes from a human fetal 

brain cDNA library that were homologues of nel like type 1 (NELL1) and nel like type 2 

(NELL2). Kuroda et al. (Kuroda et al. 1999) then used a yeast two-hybrid system to clone 

closely related genes coding for Nell1 proteins from a rat brain cDNA library, which 

were mapped to human chromosomal bands 11p15.1-p15.2 and 112q13.11-q13.12 

respectively. Human NELL1 is highly homologous to rat (87%) and mouse (87%) at the 

nucleotide level. NELL1 is a large gene, ~ 1mb (907311 bp) in length, with a transcript of 

3245 bp, which encodes an 810 amino acid protein. Mouse Nell1 is 889138 bp long with 

a transcript of 2812 bp, which encodes an 810 amino acid protein.  Both human and 

mouse NELL1/Nell1 have 20 exons while rat has 24 exons. [http://www.ensembl.org, 

(Desai et al. 2006)]. 

The NELL1 gene encodes a 90 Kda polypeptide that is glycosylated and then 

processed into a 130 Kda cytoplasmic protein and is secreted as a 400 Kda trimeric form 

(Kuroda et al. 1999). NELL1 is a complex multidomain protein. Human NELL1 has a 

thrombospondin (TSP)-like domain, Laminin G (LAM G)-like domain, five van 

Willbrand factor C (vWC)-like domains and six epidermal growth factor (EGF)-like 

domains, while mouse Nell1 has one TSP like domain overlapping the LAM G domain, 

one EGF like domain and two vWC like domains (Desai et al. 2006). It is known to bind 

to specific forms of PKC (PKC-β1, -δ, -τ) through EGF-like domains and heparin 

through its TSP-1 like domain and its vWC domains are involved in oligomerization of 

the protein (Kuroda, 1999). Human NELL1 protein shares high homology with mouse 

(93%) and rat (92%) Nell1 proteins (Kuroda et al. 1999; Desai et al. 2006). 

 

EXPRESSION PROFILE IN HUMANS AND MOUSE: In mouse, Nell1 expression 

was detected as early as embryonic days 11-14 (Ting et al. 1999) and is preferentially 

expressed in the craniofacial region (calvarial bones and mandible), during both 

embryogenesis and after birth (Zhang et al. 2002). In rat, Nell1 is expressed in neuronal 

cell (Kuroda et al. 1999) and calvarial osteoprogenitor cells, but it was largely absent in 

rat long bones (Ting et al. 1999). It is expressed in human fetal brain but not in other fetal 

http://www.ensembl.org/
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organs like kidney, liver and lung (Ting et al. 1999). In humans, NELL1 is specifically 

expressed in osteoblasts and mesenchymal cells around the newly formed bones along the 

parasutural bone margins and within the abnormally fusing and recently fused sutures. 

Additionally, it was markedly upregulated in prematurely fusing and fused coronal 

sutures. Conversely, it was absent or down regulated in patent normal sutures (Zhang et 

al. 2002). NELL1 is also expressed in several embryonal neuroepithelial tumors 

(neuroblastoma, neurocytoma, and meduloblastoma) (Maeda et al. 2001), leukemic cell 

lines (Luce et al. 1999), and Burkitt’s lymphoma Raji cells (Kuroda et al. 1999). 

 

GENE REGULATION AND ASSOCIATED PATHWAY(S): NELL1 is regulated by 

several growth factors and transcription factors. Osteoinductive growth factors like FGF-

2 and TGF-β1 stimulate NELL1 expression while BMP-2 had no direct effect on it 

(Aghaloo et al. 2006). Nell1 seems to operate downstream of these growth factors 

because there is no change in the expression of Tgf-β1, -β2, -β3 or Tgf-β/Bmp receptor 

and Fgfr/Fgfr2 in Nell1 infected MC3T3 cells (mouse calvarial osteoblast cell line) 

(Zhang et al. 2002). Furthermore, NELL1 expression is also modulated by transcription 

factors such as MSX-2 and OSF-2/RUNX2. NELL1 promoter contains multiple conserved 

MSX-2 and OSF-2/RUNX2 binding sites. Fetal rat calvarial cells (FRCCs) transfected 

with Osf-2/Runx2 upregulated NELL1 expression, while Nell1 did not upregulate Osf-

2/Runx2 expression (Lu et al. 2007; Truong et al. 2007). This shows that Nell1 functions 

downstream of Osf-2/Runx2 and is directly regulated by it. In contrast, Msx-2 transfection 

and Osf-2/Runx2/Msx-2 co-transfection of FRCCs downregulated Nell1 expression 

(Zhang, 2002). MSX-2 functions upstream of OSF-2/RUNX2 and suppresses its 

transcription (Shirakabe et al. 2001; Yoshizawa et al. 2004).  

NELLl is known to regulate the expression of several genes, which are involved in 

bone development. It is known to upregulate osteoblastic differentiation marker genes 

like OPN, OCN, BSP and chondrocyte differentiation marker COL-10 (Zhang et al. 2002; 

Cowan et al. 2006). 
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FUNCTIONS: NELL1 is a newly characterized gene and its functions in the mammalian 

system are just beginning to be elucidated. After the identification of the human gene 

sequence, the NELL1 protein was predicted to facilitate cell growth and differentiation 

based on the presence of EGF-like domains. The capability to bind heparin through TSP-

like domains, further suggested that it signals osteogenic differentiation. (Kuroda et al. 

1999).  Several recent studies using in vitro systems and in vivo mutant mouse models 

(including the work described herein) have revealed significant insights into the nature 

and mechanisms of NELL1/Nell1 function.  

Overexpression of human NELL1 in the cranial sutures is associated with 

unilateral coronal craniosynostosis (UCS), the premature closure of cranial sutures in 

newborns (Ting et al. 1999). Zhang et al (Zhang et al. 2002) further characterized the role 

of Nell1 in suture fusion by creating an overexpressing transgenic mouse model. Since 

the complete gene sequence of the mouse Nell1 was not available unlike the rat and 

human genes at the time of this study, the rat gene was used to create transgenic mice 

overexpressing Nell1 protein. Despite generalized, non tissue-specific overexpression of 

Nell1, the skeletal defects in these mice were restricted to the calvarial bones. The 

transgenic mice exhibited CS and no apparent defects in other organs. As in human CS, 

transgenic mice exhibited prematurely closing/closed sutures and the osteogenic fronts of 

these abnormally closing/closed sutures exhibited calvarial outgrowth and overlap along 

with reduced proliferation and increased osteoblast differentiation. In vitro studies were 

consistent with the transgenic mouse data since Nell1 overexpression in FRCCs and 

MC3T3 accelerated osteoblast differentiation and mineralization along with upregulation 

of late osteoblast differentiation markers like Opn, Ocn and Bmp-7. Conversely, 

downregulation of Nell1 in vitro, reduced Ocn and Opn expression and delayed 

osteoblast differentiation (Zhang et al. 2002).  

Several reports show that Nell1 also has a profound effect on osteoblast and 

chondrocyte apoptosis. A study by Zhang et al (Zhang et al. 2003) indicated that Nell1 

modulates calvarial osteoblast differentiation and apoptosis pathways during 

intramembranous ossification in the developing skull. The Nell1 overexpression 

transgenic mouse model exhibited various degrees of CS and showed increased apoptosis 
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in calvarial osteoblast. Also, overexpression of Nell1 in FRCCs and MC3T3 cells induced 

apoptosis. These studies suggest that dysregulation of proliferation, differentiation and 

apoptosis along with imbalance between osteogenic inducers and inhibitors at osteogenic 

fronts in calvarial bones leads to premature suture closure. They further suggested that 

the overexpression of NELL1 disrupts the delicate balance between proliferation, 

differentiation and apoptotic pathways and this in turn leads to craniofacial anomalies 

such as CS.  

A recent study by Zhang et al (Zhang et al. 2006) shows that overexpression of 

Nell1 induces acrania-like cranioskeletal deformities. Acrania is a craniofacial 

developmental deformity characterized by partial or complete absence of flat bones of 

skull with complete, but abnormal development of the brain. Overexpression of Nell1 

induced acrania at E15.5 day in mouse embryos, through massive Fas-mediated apoptosis 

in osteoblast and neural cells. In the previous Nell1 transgenic model, apoptosis was 

induced in differentiated osteoblast but not in undifferentiated mesenchymal cells. In this 

new mouse model Nell1 was discovered to regulate cranial neural crest cell 

migration/differentiation (Zhang et al. 2006) and to induce apoptosis in these cells with 

subsequent acrania.  This study further suggests that moderate upregulation of Nell1 leads 

to increased osteoblast differentiation and CS, while exaggerated overexpression of Nell1 

like in Nell1 transgenic mice model induces massive apoptosis in osteoblast and cranial 

neural crest cells and subsequently neural tube defect like acrania (Zhang et al. 2002; 

Zhang et al. 2006).  

The earlier reports have demonstrated unequivocally that Nell1 plays a critical 

role during intramembranous bone formation. The focus of these studies was on the effect 

of Nell1 on calvarial osteoblast biology and craniofacial development. However, several 

recent studies show that Nell1 regulates intramembranous as well as endochondral bone 

development. The work described here represents the first report on the involvement of 

Nell1 in chondrogenesis and endochondral ossification (Desai et al. 2006). Recently, 

Cowan et al (Cowan et al. 2006) reported that Nell1 accelerates chondrocyte hypertrophy 

and endochondral bone formation within the distracted maxillary suture. When 

overexpressed, it also induced premature hypertrophy and increased apoptosis of 
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chondrocytes, which in turn leads to distortion of chondrocranium and subsequent 

acrania-like cranial deformity during mouse development (Zhang et al. 2006). 

Furthermore, several recent reports show that NELL1 frequently undergoes loss of 

heterozygosity (LOH) in human cancers (Dolan et al. 1998; Jin et al. 2007). LOH and 

promoter hypermethylation are few of the mechanisms that lead to gene inactivation 

(Knudson 2001). NELL1 promoter is hypermethylated in esophageal adenocarcinoma and 

squamous cell carcinoma (Jin et al. 2007), colon cancer (Mori et al. 2006), and lung 

carcinoma (Shiraishi et al. 2002). The promoter hypermethylation has been shown to be 

involved in silencing of tumor suppressor genes (Herman et al. 2003). All these studies 

suggest that NELL1may function as a tumor suppressor gene in certain human cancers. 

 

PROTEIN KINASE C SIGNALING PATWHAYS AND ITS RELATIONSHIP TO 

NELL1: Several previously published reports show that PKC and NELL1 are involved in 

the signal transduction pathways that are utilized in osteogenesis and chondrogenesis, 

Additionally, NELL1 is known to bind and become phosphorylated by specific isoforms 

of PKC (Kuroda et al. 1999; Hay et al. 2001; Rosado et al. 2002; Marie 2003). 

 

Protein kinase C (PKC): PKC comprises a family of serine/threonine kinases that 

control a vast variety of cellular functions in various cell types. The PKC family consists 

of at least twelve isoforms with different tissue expressions, subcellular localization, and 

substrate specificity. These PKC isoforms are involved in signal transduction pathways 

that regulate cell proliferation, differentiation, development and apoptosis (Nishizuka 

1988). Based on their structure and cofactor requirements, PKC family members are 

classified into the following categories: a) classical PKCs (PKC-α, PKC-βII and PKC-γ) 

which bind phorbol esters and are Ca2+ dependent, b) novel PKCs (PKC-δ, PKC-ε, PKC-

η and PKC-θ) that bind phorbol esters but are not Ca2+ dependent, and c) atypical PKCs 

(PKC-ι, PKC-ζ, PKC-λ and PKC-μ) which do not bind to either phorbol or Ca2+. (Hug et 

al. 1993). Different isoenzymes may have unique or sometimes similar or even opposite 

effects on cell growth (Svensson et al. 2000). Most cell types contain more than one 

subspecies of PKC. 
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The PKC isoenzymes are expressed in a tissue-specific manner (Table. 2.1), and 

the amount and number of PKC isoenzymes varies within a given tissue depending on its 

developmental stage. PKC-α, -β, -ε and -δ are expressed in osteoblasts (Yang et al. 

2002)). Differential expression of PKC isoenzymes was detected during the development 

of human fetal vertebral column. PKC-α and -βI were highly expressed and PKC-δ, -βII 

and -ζ in moderate amounts in chondrocytes of vertebral bodies, whereas PKC-α, -ζ and 

-θ were expressed more in intervertebral space (Bareggi et al. 1995). PKC was expressed 

highly in mature cells that are close to ossification centers as well as near vertebral discs 

and especially PKC-β and -ε were highly expressed in proliferating chondrocytes and 

hypertrophic chondrocytes. The presence and differential expression of PKC isoforms 

was detected during the 8th week of developmental age in human fetal vertebral column 

when most of the chondrogenic and osteogenic events occur (Bareggi et al. 1995). 

PKC is regulated by several growth factors including FGFs, BMPs and TGFs and 

parathyroid hormone (Opperman et al. 2000; Marie 2003). These growth factors along 

with the transcription factor OSF-2/RUNX2 and NELL1 play a major role in bone and 

cartilage development. Members of the FGF family are known to play important roles in 

skeletal development and postnatal development and activating mutations of human 

FGFR-1, -2, and -3 genes cause craniosynostosis and other skeletal defects (Wilkie 

1997). FGFs controls bone formation by regulating the expression of various genes 

involved in osteoprogenitor cell proliferation, osteoblast differentiation and apoptosis via 

PKC and MAP kinases (ERK and p38 MAP kinases) which in turn regulate transcription 

factor like OSF-2/RunX2 and regulate the expression of target genes like COL-1, IL-6, 

OCN, OPN, VEGF, alkaline phosphatase and NELL1 (Marie 2003; Aghaloo et al. 2006). 

BMPs play a critical role in bone and cartilage development and postnatal bone 

formation. They are known to regulate the genes involved in the differentiation of 

osteoprogenitor cells, endochondral ossification, chondrogenesis and apoptosis (Hay et 

al. 2001; Marie et al. 2002). BMPs are known to mediate their action through PKC and  

OSF-2/RUNX2 development pathways (Hay et al. 2001; Lee et al. 2002). TGF-β is a 

potent regulator of osteo-chondroprogenitor cell migration and proliferation and 

differentiation of osteoblasts and chondrocytes (Mehrara et al. 2002; Rosado et al. 2002). 
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Table. 2.1: Tissue Specific Expression of Protein Kinase C (PKC) Isoforms. 

 
PKC Isoforms Expression 

PKC-α, -βI/II, -δ, -ε and -ζ brain, lung, spleen, thymus, skin and liver 
(Hug, 1993) 

PKC-θ skeletal muscle (+ +), lung, spleen, skin, and 
brain (+) (Hug, 1993) 

PKC-η skin and lung (+ +), brain and spleen (+) 
(Hug, 1993) 

PKC-ε hematopoietic cells and skeletal muscles   
(Hug, 1993) 

PKC-α, -β, -ε and -δ osteoblasts 
 

KC-α, -βI, -δ, -βII and -ζ chondrocytes and vertebral bodies 
 

PKC-α, -ζ and -θ intervertebral space 
 

 

+ + Indicates predominant/ strong expression, + indicates moderate expression. 

 

TGF-β is known to upregulate PKC and OSF-2/RUNX2 in both osteoblast and 

chondrocytes and mediates some of its biological functions through activating MAP 

kinases via PKC and thereby regulates OSF-2/RUNX2 and transcription of target genes 

(Lee et al. 2002; Mehrara et al. 2002; Rosado et al. 2002).  

As mentioned previously, osteogenic protein NELL1 plays an important role in 

bone development. Its overexpression is associated with human craniosynostosis and 

regulates osteoblast differentiation and apoptosis during craniofacial development (Zhang 

et al. 2002; Zhang et al. 2003). Loss of function mutations in Nell1 results in cranial and 

vertebral defects in mouse (Desai et al. 2006). NELL1 interacts and is phosphorylated by 

specific isoforms of PKC such as PKC-βI, δ, and -ζ (Kuroda et al. 1999).  

Based on findings that FGFs, TGF-β, and BMP upregulate PKC and signal 

through PKC via OSF-2/RUNX2 and regulate the genes involved in osteogenesis and 

chondrogenesis and the association of NELL1 with certain PKC isoforms and its 

regulation by OSF-2/RUNX2, it is very clear that PKC plays a major role in both 

intramembranous and endochondral ossification. 
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BONE AND CARTILAGE DISORDERS ASSOCIATED WITH NELL1-

MEDIATED PATHWAYS 

 

Osteogenesis and chondrogenesis are complex processes involving a series of 

several coordinated cellular events. Normal bone formation involves a delicate balance 

between proliferation, differentiation and apoptosis in osteoblasts and chondrocytes. 

Disruption of this balance causes many serious human birth defects and diseases like 

craniosynostosis, osteochondrodysplasias, epiphyseal dysplasia, arthritis, and 

osteoarthritis etc. Additionally, several osteoblast and chondrocyte ECM proteins like 

collagens and number of non-collagenous proteins have crucial roles in both osteogenesis 

and chondrogenesis. Mutations or aberrant expression of collagen genes underlie human 

diseases such as Osteogenesis imperfecta, some types of Ehlers-Danlos syndrome, 

Chondrodysplasias, some forms of osteoporosis and osteoarthritis, arterial and 

intracranial aneurisms and epidermolysis bullosa (Prockop et al. 1995). 

 As previously noted, overexpression of Nell1 is associated with both human and 

mouse craniosynostois and acrania-like cranial defects (Ting et al. 1999; Zhang et al. 

2002; Zhang et al. 2006) while reduced expression leads to both craniofacial as well as 

vertebral column defects. The specific ECM proteins (Col-10), transcription factors (Osf-

2/Runx2), BMP receptor etc. that are downregulated by aberrant expression of Nell1 are 

known to play important roles in both intramembranous and endochondral bone 

formation and are also associated with certain form of Ehlers -Danlos syndrome (finding 

of the current study) (Desai et al. 2006). 

 

CRANIOSYNOSTOSIS (CS): The mammalian cranial vault consists of five bones: the 

pair of frontal and parietal, and the unpaired interparietal bones (Fig.2.5). Interactions 

between the developing brain, the growing calvarial bones and the sutures (fibrous joints) 

are essential for the coordinated growth of brain and skull (Wilkie 1997). Most calvarial 

bones are formed by intramembranous ossification in which mesenchymal cells 

differentiate into osteoblast that deposit mineralized bone matrix. Growth of the calvarial 

bones occurs in two phases:1) outward growth from the centers of ossification, eventually 
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Figure. 2.5: Calvarial Bones and Sutures.  (Top View of the Skull) 

 

uniting in fibrous sutures; and 2) growth at the sutures in concert with the expanding 

calvarium and brain. These cranial sutures serve as the growth centers of the skull and 

allow the skull to enlarge by the appositional growth in concert with the brain. The 

sutures also allow calvarial bones to expand without fusing. Continued growth of the 

skull vault depends on maintenance of a balance between recruitment of the osteogenic 

stem cells, proliferation, differentiation and apoptosis and disruption of this balance leads 

to premature or delayed fusion of the sutures and formation of abnormal calvarial bones. 

(Cohen 1993; Jiang et al. 2002). 

Craniofacial abnormalities are very common birth defects in humans caused by 

genetic mutations, exposure to environmental agents and physical stresses (De Pollack et 

al. 1996). Craniosynostosis is a heterogeneous disorder characterized by the premature 

fusion of one or multiple cranial sutures in newborns. CS affects 1 in 3000 infants and is 

one of the most common human congenital craniofacial deformities (Cohen 1993; Wilkie 

1997). In CS, constrained brain growth due to cessation of skull growth leads to a severe 

cranial dysmorphism, often leading to increased intracranial pressure, impaired cerebral 

flow, airway obstruction, impaired vision and hearing, and mental retardation requiring 

series of major cranial surgeries in infants or young children (Fig.2.6). 
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Figure. 2.6: Human Craniosynostosis. An infant with a unilateral coronalsynostosis. Arrow 

indicates prematurely fused left coronal suture resulting in a disproportionate growth of the brain into the 

right side of the cranium. 
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(Wilkie 1997; Carver et al. 2002). Additionally, certain types of CS are associated with 

defects in the limb and spine development (Anderson et al. 1996; Anderson et al. 1997) 

suggesting craniofacial, rib and spine development utilize common molecular pathways. 

Mutations in several genes are known to cause CS. Gain of function mutations in FGFR-

1, -2, and -3 are linked to several syndromes involving CS, such as Apert Syndrome, 

Pfeiffer Syndrome, and Jackson-Weiss Syndrome (Reardon et al. 1994; Lajeunie et al. 

1995; Muenke et al. 1997). Furthermore, mutations in transcription factors that regulate 

osteoblast proliferation and differentiation have been implicated in CS. Gain-of-function 

mutations in MSX-2 results in Boston-type CS while, loss-of-function mutations in Twist 

are associated with Saethere-Chotzen CS (Howard et al. 1997; Liu et al. 1999). 

 

EHLERS- DANLOS SYNDROME (EDS): EDS is a heterogeneous group of heritable 

connective disorders that affect one in five thousand individuals (Mao et al. 2001). There 

are six major subtypes of EDS, each with slightly different symptoms and causes. 

Complexity of symptoms and lack of specific genetic tests makes diagnosis of  

EDS often difficult. The main characteristics of EDS are skin hyperextensibility, tissue 

fragility, and joint hypermobility. Additionally, EDS patients also exhibit easy bruising, 

prolonged bleeding, delayed wound healing, mitral valve prolapse, and chronic joint pain 

(Beighton et al. 1998). 

The six major types of EDS are: 1. Classical type (EDS type I and II). It is an 

autosomal dominant disorder caused by mutations in COL-5A1 and COL-5A2. 2. 

Hypermobility type (EDS type III). It is an autosomal dominant disorder with unknown 

genetic defect. 3. Vascular type (EDS IV). It is an autosomal dominant disorder due to 

mutation in COL-3A1. 4. Arthrochalasia type (EDS type VII A and B). This autosomal 

dominant disorder is due to mutation in COL-A1 and -A2. 5. Dermatosparaxis (EDS type 

VII C). Autosomal dominant EDS VII C is due to mutation in Procollagen N-peptidase. 

6. Kyphoscoliosis type (EDS VI). This autosomal recessive disorder is due to mutation in 

Lysyl hydroxylase 1 (procollagen posttranscriptional modifying enzyme) gene and is 

characterized by neonatal onset of kyphoscoliosis, ocular fragility, and joint laxity, 
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muscle hypotonia, skin fragility and hyperextensibility. (Beighton et al. 1998; Yeowell et 

al. 2000). 

Most types of EDS have been attributed to mutations in collagens and collagen-

modifying enzymes. However, identification of clinically distinct, recessive type of EDS 

caused by mutation in TNX shows that EDS is not solely a disease of collagens. Unlike 

other forms of EDS, which are due to aberrant collagen synthesis or processing, TNX 

deficiency causes EDS through regulation of collagen fibril deposition and which in turn 

leads to a reduction in the amount of collagen and due to elastic fiber abnormalities.  

(Bristow et al. 2005; Zweers et al. 2005). 

 
N-ETHYL- N- NITROSOUREA (ENU) MUTAGENESIS 

 
The Nell16R mutant mouse that was characterized in this work was recovered as 

part of a large series of recessive lethal mutations in the l7R6 locus generated from a 

large-scale ENU mutagenesis experiments conducted at ORNL (Rinchik et al. 1999; 

Rinchik 2000; Rinchik et al. 2002). ENU is the most potent germline mutagen of the 

mouse genome. In spermatogonial stem cells, ENU induces mutations at a frequency of  

~6-1.5 x10-3 i.e. one mutation /gene/175-655 gametes screened (Justice et al. 1999). It is 

an alkylating agent that induces random point mutations by transferring its ethyl groups 

to oxygen or nitrogen radicals in nucleic acids causing inaccurate DNA replication. 

Subsequent mispairing leads to single base-pair substitution preferentially in AT base 

pairs. In mouse, it predominantly modifies A/T base pairs (44% A/T → T/A/ 

transversions) and also induces A/T → G/C transitions (38%). These changes result in 

64% missense mutation, 26% abnormal splicing, and 10% nonsense mutations. (Justice et 

al. 1999; Noveroske et al. 2000). Large scale phenotype-driven ENU mutagenesis 

experiments can be used to identify dominant as well as recessive traits and is useful for 

creating a series of mutant alleles for a single gene to uncover multiple gene functions. 

This mutagenesis strategy does not require any prior knowledge of specific gene or its 

function (Herron et al. 2002). ENU can be used to generate a large number of mutants 

with specific phenotypes of interest and obtain mutants that display a various degree of 
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mutation, from complete to partial loss of function, as well as exaggerated function 

(Justice et al. 1999). 
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CHAPTER 3 

MATERIALS AND METHODS 
 

MOUSE BREEDING AND MAINTENANCE 

 

All the animals were bred at the Mammalian Genetic Research Facility at ORNL. 

Large-scale N-ethyl- N- nitrosourea (ENU) mouse mutagenesis experiments conducted at 

ORNL have yielded several recessive lethal mutant alleles for the l7R6 locus on mouse 

chromosome 7 (Chr 7) proximal to p  (Pink-eyed dilution) gene. The identification and 

fine structure mapping of the l7R6 locus in mouse Chr 7 was conducted by Rinchik et al. 

(Rinchik et al. 2002). One of the mutated alleles of l7R6 locus, 102DSJ (Nell16R) was 

induced in the p chromosome from non-inbred, closed-colony 21A strain. 

 

GENERATION OF MUTANT HEMIZYGOTES AND HOMOZYGOTES FOR 

DSJ LINE: The ENU mutagenesis strategy used by Rinchik et al. (Rinchik et al. 2002) 

to generate the DSJ line was conducted by treating non-inbred Go males 21A (a/a; p/p) 

mice with four weekly intraperitoneal injections (85mg/kg each) of ENU. Treated males 

were mated with wild-type females [F1 (C57BL/10R1 X C3H/R1) or F1 (C57BL/6JRn X 

C3H/R1) or C3H/R1]. All the G1 animals from this cross that carry a mutation (m) 

induced in parental genome in Chr 7 were recovered by linkage to the pink-eyed dilution 

locus (p). The p gene is tightly linked to l7R6 locus/mutation. The p locus is one of the 

coat color mutations in mouse chromosome 7. It is one of the loci used as markers for 

experimental mutagenesis at ORNL. Animals carrying wild-type allele exhibit intense 

pigmentation in both skin and eye while animals with recessive alleles (p/p) exhibit 

reduced or no pigmentation (Lyon et al. 1992; Johnson et al. 1995). The px is an 

intermediate allele of p. Animals homozygous for px have a darker eye/coat color and 

lighter eye/coat color when heterozygous with most null p mutations (Rinchik 2000). The 

G1 females were then crossed with a/a; px/ Del (ru2p) 46DfioD males. In G2 progeny ENU-

induced recessive mutations closely linked to p and included within the deleted segment 

in Del (ru2p) 46DFioD were recovered in the pink-eyed dilute class (m p/ Del (ru2p) 46DfioD. 
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In G2 progeny, three different eye pigment phenotypes were generated to correspond with 

the genotype at the mutant locus: wild-type (dark pigment, +/px or +/ Del (ru2p) 46DfioD), 

Heterozygote (light pigment, m p/+ px), and hemizygote (no pigment, m p/ Del (ru2p) 

46DFioD) (Fig. 3.1A). [(Rinchik 2000) http://bio.lsd.ornl.gov/mgd/index.html].  

To generate fetuses hemizygous for 102DSJ, progeny-tested males + px / l7R66R 

were mated with + px/ Del (Hps5ru2 p) 46DFiOD females. The 102DSJ lethal mutation was 

recognized when G1 female #102 failed to yield any pink-eyed-dilute G2 progeny when 

she was crossed to a  + px/Del (Hps5ru2 p) G1 male. The deletion mapping was done as 

described in Rinchik et al (2002), which also revealed that the 102DSJ lethal allele 

mapped to the same deletion interval as the other l7R6 alleles. To confirm the allelism, 

88SJ (Hps5ru2 l7R61R p/Hps5ru2 + +) and 102DSJ (+ 102DSJ p/++px) were crossed. It was 

confirmed that l7R66R (102DSJ) was a new allele of l7R6 locus, when the cross failed to 

produce more than 30 pink-eyed dilute heterozygote progeny, when 25% were expected 

(p<0.001) (Desai et al. 2006) 

To generate homozygous l7R66R (102DSJ) mutant mice, the heterozygote carriers 

(l7R66R p/+ px X l7R66R p/+ px) were crossed, which produced pink-eyed homozygotes 

(l7R66R p/ l7R66R p, no eye pigment), dark-eyed wild-type mice (+ px/+ px), and medium 

pigmented heterozygote carriers (l7R66R p/+ px or px/ l7R66R) (Fig.3.1 B). 

 

COLLECTION OF MOUSE EMBRYOS 

 

Mouse matings were done for 1 hour early in the morning, and the females were 

examined for the presence of vaginal plugs (gestation day 0). The embryos/fetuses were 

collected at 10, 12, 14, 16, 18.5/19 days of gestation. The pregnant females were 

euthanized by cervical dislocation and embryos were collected by caesarean section. The 

embryos were then examined for eye-pigmentation and associated gross morphological 

abnormalities (head shape and size, body length, overall pallor, positioning of 

appendages, reflexes and breathing). About 2-3 mm tail tips were snipped for genotyping 

by microsatellite analysis. The embryos were sorted based on their eye pigmentation:  

Non-pigmented (Nell16R homozygote or hemizygote mutants), light pigmented (Nell16R  

http://bio.lsd.ornl.gov/mgd/index.html
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A. 

               

 
 

Figure. 3.1: Breeding Protocol Used to Generate Hemizygous and Homozygous 

l7R66R (102DSJ) Mice. See text for details. (A). The hemizygous pink-eyed dilute test class (heavily 

out lined box) G2 progeny carries the mutant l7R66R allele. Darker “pink” G2 progeny (lightly boxed) carry 

mutation, from which mutations can be propagated. (B). Homozygous l7R66R (102DSJ) mutant animals 

were obtained from mating darker “pink” carriers (heterozygous for mutation) from G2 generation. Pink-

eyed (heavily outlined box) G3 progeny are homozygous for mutation and medium pink-eyed (lightly 

outlined box) animals are heterozygous for mutation. The “wild-type” animals are wild-type for l7R66R, but 

not for eye pigmentation. m is the mutation induced by ENU; p pink-eyed dilution; px another allele 

(intermediate allele) of p gene. [Modified from (http://bio.lsd.ornl.gov/mgd/index.html)]. 

 

 

http://bio.lsd.ornl.gov/mgd/index.html
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B. 

 
Figure. 3.1: Breeding Protocol Used to Generate Hemizygous and Homozygous 

l7R66R (102DSJ) Mice. Continued. 

 

 

 

.
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heterozygote), and dark pigmented (Nell1 wild-type). Mutants were also easily 

distinguished by their slightly enlarged heads, curled position, and weak responses to 

touching. Embryos or parts of the embryos (head, body, dissected vertebral column etc) 

were collected and fixed as necessary: Frozen in liquid nitrogen for RNA and DNA 

extraction or fixed in 10% Formalin for histology. 

 

GENOTYPING OF WILD-TYPE AND l7R6R MUTANTS 

 

Mutant fetuses were distinguished from wild-type by molecular genotyping for 

size polymorphisms using D7Mit315 microsatellite, which is tightly linked to p gene, 

which in turn is tightly linked to l7R6 locus. The snipped tails were digested in digestion 

buffer [200 μl of 1X PCR buffer (Invitrogen) and 20 μl of 10mg/ml Proteinase K] for 2 

hours or overnight at 60°C. Proteinase K was deactivated by incubating digests at 95°C 

for 20 minutes. Digested DNA from tail snips was amplified by PCR using standard 

techniques using 3 μl of DNA from tail snips and primers for microsatellite markers, 

D7Mit 315 for DSJ lines (D7Mit315 F: TGATAACAAAACAGFCAGTAATGAAGC 

and D7Mit315 R: CTGATCCATC TGT ATGATGTTACTTG). PCR products were 

resolved on 3.5% metaphor gel with 0.5 X TBE buffer (Tris, boric acid and EDTA). 

Nell16R homozygotes were distinguished by a single 146 bp band, wild-type animals by a 

single 166 bp band and heterozygotes, which have two bands, 146 bp and 166 bp.  

 

ISOLATION OF TOTAL AND mRNA 

 

Total RNA was extracted from E10 embryos, head and bodies of E12-E19 

fetuses, and adult tissues such as liver, spleen, kidney, thymus, heart, lung and muscle 

and also from the heads of E15 17R6 fetuses using standard guanidine isothiocyanate 

procedure based on and modified protocol from 5’- 3’ Rapid Total RNA Isolation Kit (5’ 

Prime → 3’ Prime, Inc, Boulder, CO). RNA was isolated from subsequent phenol-

chloroform extractions using Phase Lock GelsTM (Eppendorf, Hamburg, Germany) and 

precipitated with isopropanol followed by centrifugation and re-suspension of the pellets 
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in RNase-free water. The total RNA was further purified by using RNAeasy Mini Kit 

(Qiagen, Valencia, CA) including DNase I treatment step according to the manufacturer’s 

protocol to eliminate the contaminating genomic DNA. RNA quality was assessed by 

visualization in denaturing agarose gel electrophoresis and spectrophotometrically by the 

260nm/280nm ratio of absorbance. For some experiments, mRNA was isolated from the 

total RNA using QIAGEN Oligotex mRNA isolation kit (Qiagen) according to 

manufacturer’s protocol. 500 μg to 1mg of total RNA per sample was used to isolate the 

mRNA by Oligotex mRNA spin-columns. 

The cDNA probe for Nell1 was generated from the mouse brain mRNA by RT-

PCR using primers designed from the mouse EST sequences matching 5’ and 3’ ends of 

human NELL1 (Primers: ctc55: TGCAGCAGAAGCCTCCA; ctc59: 

CAAACTAGGGCAAGCTAGAG). The First-Strand cDNA templates were generated 

from mRNA extracted from wild-type E18.5 fetal brain using RETROscript (Ambion, 

Austin, TX). A 1920 bp cDNA probe was generated by Long Range PCR using 

ExpandTM Long Template PCR System kit (Roche Diagnostics, Switzerland) according to 

manufacturer’s instructions and using primers ctc55 and ctc59. The PCR products were 

gel purified by using QIAquick Gel Extraction Kit (Qiagen). The cDNA probe spans the 

last half of the exon 3 (~55 bp) to first 20 bases of exon 19 of the Nell1 transcript. 

 

Nell1 GENE PROFILING BY NORTHERN BLOT AND RT-PCR 

 

One to three μg of mRNA in a volume of 4.5μl was mixed with 15.5μl of RNA 

loading buffer [Formamide 720 μl, Foramaldehyde 260 μl, 10X MOPS (3-N-

Morpholino-propane-sulfonic acid) 160 μl, 80% Glycerol 100 μl and RNase-free water 

80 μl]. The 10X MOPS buffer contains 200 mM MOPS, 50 mM NaOAC, 5 mM EDTA, 

and was adjusted to pH 7.0. Samples were denatured at 65°C for 10 minutes, chilled on 

ice and loaded onto an RNA gel (1% agrose, 1X MOPS, 24.6% Formaldehyde, 1ng/ml 

Ethidium bromide), electrophoresed at 80 volts for 4-5 hours and photographed under 

UV light. The gel was incubated in NaOH solution (5ml 10 N NaOH/liter of double 

distilled water) for 10 minutes. Nylon membrane (Duralon-UVTM, Stratagene, La Jolla, 
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CA) and Whatman filter paper that were cut according to the gel size were equilibrated in 

20X SSC buffer (3 M NaCl, 0.3 M sodium citrate). The gel was then transferred to the 

Nylon membrane overnight according to the Northern Blot set-up in Sambrook et al. 

(Sambrook 1989). The nylon membrane was rinsed in 2X SSC, baked at 80°C in vacuum 

oven for 2.5 hours and immediately cross-linked at 250 LED in UV cross-linker. The blot 

was then prehybridized by incubating in 1X prehybridization buffer (20X SSC, 0.5 M 

NaPO4, pH 7.0, 50X Denhardt’s solution, 10% SDS and 10 mg/ml sonicated salmon 

sperm DNA) for at least 2-3 hours at 42°C. Denhardt’s solution contains 1% Ficoll (type 

400), 1% polyvinylpyrrolidone (PVP-360), and 1% BSA (bovine serum albumin). 20-40 

ng of cDNA probe was labeled with [α-32P]-CTP overnight and precipitated [in ethanol, 

3M NaOAc pH 5.2, 10mg/ml yeast tRNA and TE buffer (10 mM Tris, 1 mM EDTA)] 

and re-suspended in TE buffer, boiled for 5min at 100°C and hybridized to the blot in 

hybridization buffer (50% 2X-prehybridization buffer, 50% formaldehyde) overnight at 

42°C. The membrane was washed in 2X SSC containing 0.1% SDS for 30 minutes twice, 

in 1X SSC containing 0.1% SDS for 30 minutes at room temperature and then in 0.2X 

SSC containing 0.1% SDS for 30-45 minutes at 68°C and exposed to X-ray film at − 

80°C. 

Expression of Nell1 was further confirmed by RT-PCR analysis. About 500ng of 

mRNA from wild-type and mutant fetal heads was reverse transcribed using 

RETROscript Kit (Ambion). The two fragments of cDNA were amplified by standard 

and long range PCR. The smaller fragment (~ 557 bp) at the 5’ end was generated by 

standard PCR techniques using primers ctc138: CTGAAGCATTGGTTTCTTGC and 

ctc149: TCGACATGGAGTAGGAGGTGAGAGG and the longer fragment (1465 bp) 

spanning the middle and 3’ end of the gene was generated by Long Range PCR 

(ExpandTM Long Template PCR System kit, Roche Diagnostics) using primers ctc150: 

GCAGAGACGAGACTTGGTCAACTGG and ctc59: 

CAAACTAGGGCAAGCTAGAG. The PCR products were resolved on 1% agarose gel 

and stained with ethidium bromide and visualized under UV light. The 5’end of the Nell1 

amplicon (~557 bp) covers the exons 1 to most of the exon 8 while the amplicon 
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spanning the mid and 3’ end of the Nell1 transcript covers the exons 13 to the first ~ 42 

bp of exon 19. 

 

GENERATION AND SEQUENCING OF Nell1 cDNA 

 

To generate a full-length mouse Nell1 cDNA sequence, direct sequencing was 

performed with the PCR products amplified from cDNA template. Total RNA was 

extracted from BJR E18.5 fetuses and then mRNA was isolated from the total RNA. The 

cDNA was obtained by generating short 300-400 bp overlapping PCR fragments. To 

synthesize the Nell1 cDNA, 500ng of mRNA was reverse transcribed using the 

RETROscript kit (Ambion). Eleven overlapping segments covering the entire coding 

region plus 5’ and 3’ untranslated regions were generated using the eleven sets of primers 

(listed in Table. 3.1) by standard PCR techniques. Primers to produce overlapping 

amplicons were designed (based on mouse EST sequences matching human NELL1 

cDNA) using Primer3 database (Rozen et al. 2000). The PCR products were 

electrophoresed on 1% agarose gel to confirm amplicon size and checked for non-specific 

products. The PCR products were purified using QIAquick PCR purification kit (Qiagen) 

and the purified amplicons were sequenced (using the primers that generated the 

products) bi-directionally using Big Dye version 3.1 dye terminator kit (ABI, Foster City, 

CA) and analyzer on an ABI 3100 Genetic Analyzer. The sequenced overlapping cDNA 

segments were edited to remove overlaps and assembled into one contiguous segment of 

2862 bp. This 2862 bp mouse Nell1 cDNA covers the entire coding region (20 exons) 

plus the 58 bp of 5’end and 250 bp of untranslated regions. 

To determine the identity and homology of the new mouse sequence to other 

mammalian species BLAST analysis was conducted against human, rat and existing 

partial sequences from the mouse Celera database [(Altschul et al. 1990); 

(http://www.ncbi.nlm.nih.gov/BLAST)]. The coding region for the full-length Nell1 

cDNA as well as translated protein sequences was obtained by using NCBI’s ORF finder 

http://www.ncbi.nlm.nih.gov/gorf/gorf.html. Additionally, Nell1 protein domains were 

predicted using NCBI’s Conserved Domain database  

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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Table. 3.1: Primers Used to Synthesize and Sequence Mouse Nell1 cDNA. 

 

Primer 
Pairs Sequence of Forward Primers Sequence of Reverse Primers 

Frag
ment 
Size 

ctc138/Jaya1R CTGAAGCATTGGTTTCTTGC TGGATGGTTTCTGCTGCA 356 bp 

Jaya 2F/2R GATGTACAGAGAGAGATCCA TGCTTCCTGGAGGAAGGTG 355 bp 

Jaya 3F/3R GGCAGACGGACAATGGCACA AGTTGACCAAGTCTCGTCTC 375 bp 

Jaya 4F/4R CCAACATGCAGTGACTTCCT AGACTCCACCTCGACATTCC 400 bp 

Jaya 5F/5R CACTTCCTGTGCACATTTCC GGTGTTGGCATGACAATAGTG 394 bp 

 Jaya 6F/6R ACCTGTGAGTGCAAGAATGG CAGACACACTTGTTAGGAGC 367 bp 

Jaya 7F/7R CATCTGTACCAACACAGTCC GATGCAGGCAGAGTCATTCC 370 bp 

Jaya 8F/8R ACCACTGTGAGTGCAGAAGC CTAAACATTGGCTGGTGACC 369 bp 

Jaya 9F/9R CAGTCTGTTCCTGCAAG CAGCCTCGAAACACCAAAGC 368 bp 

Jaya 10F/10R GCTGTGAATACACAGCCATG GCAATCCAAACGCCTTCCTC 370 bp 

Jaya 11F/ctc174 CTCGTCACGTGAGAAAATGG GGTGCCAAGTCTCTATTATGTCAG 326 bp 

  
 

 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The 2862 bp full-length mouse 

Nell1 cDNA sequence with open reading frame of 2433 bp, which encodes 810 amino 

acid protein, was submitted to the NCBI’s Gene Bank as accession number (AY622226). 

 

IDENTIFICATION OF MUTATION IN Nell16R 

 

For identifying the Nell16R mutation, direct sequencing was performed with the 

PCR products amplified from the genomic DNA templates. DNA was extracted from 

Nell16R hemizygous mutant mice and control strains (BJR and 21A). Briefly, tails of 

mutant and wild type E18.5 fetuses were snipped and digested in a buffer containing 1M 

Tris pH 7.6, 5M NaCl, 0.5M EDTA pH 8.0, 10% SDS and 10mg/ml Proteinase K in SST 

tubes (serum separation tubes, Becton Dickinson) overnight at 45°C. DNA was extracted 

http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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by phenol and precipitated with 95% ethanol. Precipitated DNA was collected by a glass 

loop and solubilized in TE pH 7.6 buffer. Twenty primer sets were designed to amplify 

each exon of Nell1 from flanking intron sequences and two additional primer sets to 

amplify conserved upstream elements (listed in Table.3.2). Each amplicon was amplified 

from the genomic DNA by standard PCR techniques. The corresponding wild-type and 

mutant PCR products were mixed in equal volumes in 96-well plates, heteroduplexed and 

scanned for point mutations using Temperature Gradient Capillary Electrophoresis (Li et 

al. 2002). Three overlapping temperature gradients were used: 50-60°C, 55-62°C and 60-

68°C. The heteroduplex formed by the mismatch of the ENU-induced point mutation and 

the wild-type segment was detected in exon 14.  The 421 bp amplicon containing the 

mutation in the l7R66R allele was PCR-amplified using the primer pairs designed from the 

intron sequences flanking the 131 bp exon 14 of Nell1: Nell E14 (F): 

ATAGACCAGGGGCAGAAACC and Nell E14(R): TTGCTCAACCTCAATATCC. 

The PCR products were purified using QIAquick PCR Purification Kit (Qiagen) and 

directly sequenced using the same primer set as above. 

 

BODY AND HEAD MEASUREMENTS 

 

E18.5 fetuses were recovered by caesarean section from nine pregnant females. A 

total of 16 wild-type and 19 homozygous mutant fetuses were measured for body length, 

head height, head length, and head width. These morphometric measurements were 

obtained using a Fisher Scientific Digital Caliper. Two-tailed Student T-test with a P-

value cutoff of 0.005 was used to analyze the data and determine statistically significant 

differences between mutant and wild-type fetuses. 

 

SKELETAL ANALYSIS 

 

Skeletal defects in Nell16R homozygotes were evaluated using standard protocols 

for Alizarin Red-Alcian blue staining of intact fetuses (Hogan 1994).  Briefly, 13 wild- 

type and 13 homozygous mutant fetuses were recovered by caesarean section at E18.5  
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Table. 3.2: Primers Used to Amplify Mouse Nell1 Genomic DNA. 

   

Primer     
Pairs Sequence of Right Primer Sequence of Right Primer Fragmen

t Size 

Nell E1AF/ 
E1AR GCCCGTCAGAGATA CTGCCGCCCCGTAG 575 bp 

Nell E2AF/ 
E2AR TAACTGCCTGGCTGAATCC GCCTCTGCTCACTCTCAGAAC 519 bp 

Nell E3AF/ 
E3AR GGCAATCTGGGCTCTTAAATG GAACAGAAGGCAAAGGCAAG 415 bp 

Nell E4AF/ 
E4AR GAGTCACGGAAGGTCAAAGC TCCATGTCAGAAGCTCAAGG 403 bp 

Nell E4BF/ 
E4BR  GCCAAACATACCTATTGCAGTC TAGTGGGTTTTCCCTCATCG 436 bp 

Nell E5AF/ 
E5AR  GGCTGCTATGAACATAGTGGAG ATGTGGGAGAGGCTGAAGAG 410 bp 

Nell E6AF/ 
E6AR 

TTGTCTGACACTAGGAACAAGT
CAC GAATGCAGATATCCCCTACTGC 385 bp 

Nell E6BF/ 
E6BR 

TTTTGTCTGACACTAGGAACAA
GTC TTATTTCCCCCTCCAAAAGC 504 bp 

Nell E7AF/ 
E7AR ACGGGCAGTCTCATTTCAAG TGAGGGAAACAGTGTTAGGAAC 392 bp 

Nell E8AF/ 
E8AR GGCTTACTTTGCATGTG CACACGCTGTCATGGATACC 449 bp 

Nell E8BF/ 
E8BR ATGTGCAGTTCCTGCAGTTG CACACGCTGTCATGGATACC 438 bp 

Nell E9AF/ 
E9AF  CAGGTGGATGAAGCCAGTG TTAGTTGGGTCCCGAACAG 399 bp 

Nell E9BF/ 
E9BF CAGGTGGATGAAGCCAGTG GATCACTGTGACCCTTGGTG 449 bp 

NellE11AF
/ E11AR CTTTGCATGCTCCTCTTTCC CTCCAGCCGATTAACTCTGC 349 bp 

NellE12AF
/ E12AR CCTGATTTCTCTCCCTGGAC GATGGAGTGAGCAAGACAAGC 399 bp 

NellE13AF
/ E13AR GCACATCAGGAAACATGCTC GACAGTGGGGAGACGGTATG 492 bp 

NellE14AF
/ E14AR AGCAGGCAAAGAATGCTAGGG AGTGCACCAACTGGCTTTG 404 bp 

NellE15AF
/ E15AR ATAGACCAGGGGCAGAAACC TTGCCTCAACCTCAATATCC 421 bp 
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Table. 3.2: Continued. 
 
 

Primer     
Pairs Sequence of Right Primer Sequence of Right Primer Fragmen

t Size 

NellE16AF
/ E16AR 

ATTCTGTGTCCAGAAAGAAAAG
G TCCCTGGGATGGATACACAC 434 bp 

NellE17AF
/ E17AR ATTTGAAGGGCAGAGTCACG ATGAGGATGTGGGGCTAATG 278 bp 

NellE17BF
/ E17BR TTCCTCGGTTTCAAGGTTTG GCCCACATCTTTGGTCTCC 409 bp 

NellE18AF
/ E18AR GCACTGGGCACTTACACTCC CCAGTCAGCTTACCTTACAGGAA

C 406 bp 

NellE18BF
/ E18BR ACTGGGCACTTAACCTCC TCAGCTTACCTTACAGGAACAGA

C 402 bp 

NellE19AF
/ E19AR  GGTCCAGTTGTCTCCAC ACAAGGCAGCACAGTTAGGG 464 bp 

NellE19BF
/ E19AR 

TGTCTCCACTTCGATAGAGCTT
C ACACTGGCAACCGAGTCAG 470 bp 

NellE20AF
/ E20AR 

TGGATCATACACATTAGGGTTC
C TGTCCTCCTGTGAGAACATACAC 464 bp 

NellE21AF 
/ E21AR GGAGCTGACCCCTGTGTTC GTGTGCAGCGGATGAGATAG 507 bp 

NellE21BF
/ E21BR CTGGAATTAAAGGCGTGTGC  CACATCTCCATCAACACGTC 687 bp 

Nell CONB 
F /CONBR AGCTCGGTACCGCTGGTG AGCTTGGTACAAGGCCAATC 450 bp 

Nell CONC 
F/ CONCR CACCCTCAACTCTCCCTCAG TCCACTGGGCCTATTCTCTG 419 bp 

NellCOND 
F /CONDR ACCATGTCCCACCCTCAAC CTGGACCAACAGGTCTACCG 408 bp 
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days of gestation from seven pregnant females. The fetuses were soaked in tap water for 

2-5 hours, and then briefly in 70°C water and the skin and the internal organs were 

removed. The fetuses were fixed in 95% ethanol, stained in Alcian blue (in 95% ethanol 

and glacial acetic acid (Sigma-Aldrich, St Louis, MO) for 1-2 days and rinsed in 95% 

ethanol. They were then cleaned in 1% KOH for 2-6 hours, counterstained subsequently 

in Alizarin Red solution (Sigma-Aldrich) for 2-3 hours and cleared further by placing in 

2% KOH overnight. To complete the clearing of the fetuses in order to visualize the 

internally stained skeleton, fetuses were incubated further for at least a day in each of the 

following series of solutions: 2% KOH/glycerol: Solution I (80:20), Solution II (60:40), 

Solution III (40:60), and Solution IV (20:80). Skeletal preps were then stored indefinitely 

in the final solution. Skeletal defects of fetuses were further analyzed by using the small 

animal Micro Cat system developed at ORNL in collaboration with Dr. Mike Paulus. 

 

HISTOLOGICAL ANALYSIS 

 

Histological analysis was done on 10% Formalin-fixed, paraffin-embedded 

sections of E18.5 fetuses (6 mutants and 6 wild-type specimens) recovered by caesarean 

section. Haematoxylin and Eosin (H and E), Masson, Periodic Acid Schiff (PAS) was 

done according to standard protocol (Carson 1990). Haematoxylin stains nucleic acids 

blue while Eosin stains basic proteins in the cytoplasm red. Masson stains cytoplasm, 

keratin and muscle fibers red and collagen and mucins blue while PAS stains glycogen, 

mucopolysaccarides, glycolipids, and glycoproteins purple. The van Kossa staining was 

used to assess the extent of mineralization of vertebral and calvarial bones. Briefly, 

sections were dewaxed, rinsed in alcohol and distilled water and treated with 5% silver 

nitrate and exposed to a bright lamp for 1-2 hours. Sections were first rinsed in distilled 

water and then in 5% sodium thiosulphate for 2-3 minutes and counterstained with eosin 

for 1-2 minutes. Sections were then rinsed in distilled water, dehydrated and mounted. 

The van Kossa staining stains calcium salts black. Sectioning of the embryos and paraffin 

embedding of the sections was done by a commercial histology service, Ridge 

Microtome.  
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IMMUNOHISTOCHEMISTRY 

 
Expression of Nell1 and Col-10 was detected by a standard avidin-biotin 

complex/immunoperoxidase protocol using VECTASTAIN® Elite ABC kit (Vector 

laboratories Inc, Burlingame, Ca) according to manufacturer’s protocol with a few 

modifications. Briefly, paraffin-embedded sections were incubated at 60°C for few 

minutes, dewaxed in xylenes and rehydrated in graded ethanol baths. Sections were 

rinsed in tap water for 5 minutes and enzyme-treated for antigen retrieval with 20 μg/ml 

Proteinase K (Roche Diagnostics) at 37°C for 10 min, washed in 1X PBS (phosphate 

buffered saline, Sigma-Aldrich) and blocked for 20-30 minutes in Blocking buffer (1.5-

5% rabbit serum (Vectastain kit) in 1X PBS). The sections were incubated with anti-

Nell1 (1:100, a kind gift from Dr. Kang Ting, UCLA, California) or anti-type X collagen 

(1:30-1:60, Fitzgerald industries, Concord, MA) primary antibodies for 30 minutes at 

room temperature or overnight at 4°C and then incubated with biotinylated anti-rabbit 

secondary antibody (Vectastain kit) for 30 –60 minutes at room temperature. The sections 

were washed in PBS buffer and positive immunoreactivity was detected using Vectastain 

ABC reagents and AEC (3-amino-9-ethylcarbazole) substrate (both from Vector 

Laboratories) according to manufacturer’s instructions. The sections were then washed in 

PBS buffer, rinsed in water and counterstained with hematoxylin QS (Vector 

laboratories) for 5-45 seconds. The sections were again rinsed in tap water and mounted 

in aqueous mounting medium (Vectamount, Vector laboratories). The Nell1 antibody was 

raised against the specific COOH-terminal region of rat Nell1 protein (Kuroda et al. 

1999). 

 

HIGH-THROUGHPUT REAL-TIME qRT-PCR ASSAYS 

 

These assays were done in collaboration with Dr. Mark Shannon at Applied 

Biosystems as described in Desai et al (Desai et al. 2006). Total RNA from the heads and 

bodies of four Nell6R mutant and four wild-type E18.5 fetuses were extracted individually 
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(16 RNA samples). DNase1-treated RNA was ethanol precipitated and resuspended in 

nuclease-free water. 2.5µg of total RNA was reverse transcribed to cDNA using the 

random-priming High-Capacity cDNA Archive Kit (Applied Biosystems, Foster City, 

CA). 

 

MULTIPLEX PRE-AMPLIFICATION OF cDNA TARGETS: To enable maximum 

sensitivity and detection of hundreds of gene expression targets from a small amount of 

cDNA, a novel multiplex PCR pre-amplification strategy was used prior to conventional 

quantitative PCR. 225 (219 experimental and 6 endogenous control genes) TaqMan® 

Gene Expression Assays (PCR primer/FAM-probe stock solutions) were pooled together 

and used in a single PCR to amplify all targets equally from the same cDNA template. 

The FAM-probe is a component of the final configuration of the manufactured TaqMan® 

Gene Expression Assays and does not interfere with the preamplification process. To 

prepare the multiplex pre-amplification primer pool, equal volumes of the 225 TaqMan® 

Gene Expression Assays were mixed together, dried under vacuum, and resuspended 

with water to generate a multiplex-pooled primer set with a concentration of 180 nM for 

each primer. The pre-amplification reaction was set up as follows: A 250 µl volume of 

500 ng of cDNA was combined with 250 µl of the multiplex-pooled primers. Then, 500 

µl of 2X Multiplex Pre-amplification Master Mix was added to generate the final 1000 µl  

of reaction volume (Applied Biosystems). The reaction mix was divided into 50 µl 

aliquots in a 96-well PCR tray and cycled on an ABI 9700 thermalcycler under the 

following conditions: 95o C for 10 minutes; then 10 cycles at 95o C for 15 seconds; and 

60o C anneal/extension for 4 minutes. 

 

REAL-TIME PCR REACTIONS: Pre-amplification products were recombined into 

one tube and diluted 1:5 with water. Individual singleplex TaqMan® Gene Expression 

Assays for each of the 225 pre-amplified markers, along with 18S rRNA (which was not 

included in the pre-amplification reaction due to its high level of expression) were 

prepared as follows: 5.0 µl of 2X TaqMan® Universal PCR Master Mix, 0.5 µl of 

TaqMan® Gene Expression Assay 20X primer/FAM-probe solution and 2.0 µl of water, 
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and 2.5 µl of preamplified cDNA product. For all samples, each assay was carried out in 

quadruplicate wells of 384-well plates and run in the ABI PRISM® 7900HT Sequence 

Detection System under two-temperature cycling: 95o C for 10 minutes, then 40 cycles of 

95o C for 15 seconds and 60o C for 1 minute. CT (threshold cycle) values, the cycle 

number at which the PCR amplification fluorescence signal crosses a fluorescence 

threshold, were generated using the FAM dye layer setting at a threshold of 0.2 and a 

baseline of 3-13. 

DATA ANALYSIS: The relative levels of transcripts for each gene in wild-type and 

mutant samples were compared following normalization to endogenous control targets.  

GeNORM software (Vandesompele et al. 2002) was used to select the two best targets 

with the least variation across samples from a collection of 6 potential endogenous 

controls (Hprt, Tfrc, Tbp, Gus, Pgk1 and 18s rRNA). Gus and Hprt were selected for 

heads, while Gus and Pgk1 were selected for bodies. The geometric mean of the selected 

targets was then used as the reference for determining ΔCT values. For each sample, 

ΔΔCT values were determined by the following equation: ΔCT Marker = CT Marker – CT 

Reference. Statistically significant differences between ΔCT values of wild-type and 

mutant groups were determined by a two-tailed t test without assuming equal variances 

and with a p value cutoff of 0.005. ΔΔ CTs were also calculated between wild-type and 

mutant groups based upon average ΔCT values for each group, and relative fold 

differences between them were determined by 2^-ΔΔC
T (Applied 2001). 
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CHAPTER 4 

 RESULTS 
 

CHARACTERIZATION OF MOLECULAR BASIS OF THE Nell16R MUTATION 

 

To accomplish this task, the following experiments were conducted: a) 

identification of the Nell1 mutation in 102DSJ, b) expression profiling of the Nell1 gene 

during mouse development, c) investigation of the impact of the mutation on the 

expression of Nell1 gene. Since the mouse Nell1 sequence was not available during the 

start of this project, sequencing of the complete coding region of the gene was necessary 

to accomplish this task. Characterizing the molecular basis of the 102DSJ was essential in 

understanding the gross morphological aberrations and cellular phenotypes that were 

observed in the latter part of this study. 

 
In the past two decades ORNL has pioneered and conducted large-scale ENU 

mutagenesis experiments to recover ENU-induced mutations at specific segments of 

mouse chromosome 7 (Rinchik et al. 1999; Rinchik et al. 2002). One of these experiment 

generated mutations mapping to a small segment of mouse chromosome 7 proximal to p 

gene and homologous to human chromosome 11p15. One of the loci mutated in this 

experiment was l7R6 and it yielded eight recessive neonatal lethal alleles: 88SJ, 335SJ, 

2038SJ, 102DSJ, 45DSJ, 11DSJ, 244DSJ, and 141SJ. Trans complementation analysis 

with a number of p deletions mapped l7R66R to the same <1 cM segment of chromosome 

7 (Fig. 4.1 and materials and Methods) as other l7R6 alleles, with homology to a region 

of human 11p15. 

 

EXPRESSION ANALYSIS OF MOUSE Nell1 GENE: Gene content analysis of the 

human chromosomal region suggested at least six candidate genes for l7R6 

(http://genome.ucsc.edu), including NELL1, which was particularly provocative because 

of its overexpression in the prematurely fused sutures of patients manifesting unilateral 

coronal synostosis. The pronounced enlarged head phenotype (see fig.4.5), high mutation  

http://genome.ucsc.edu/
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Figure. 4.1: Complementation Analysis.  Showing the mapping of the l7R6 locus into an interval 

in mouse chromosome 7 (red box) that is homologous to a segment of human chromosome 11p15 where 

the Nell1 gene is located. Mouse chromosome 7 is represented by the line with a filled circle at the left 

(indicating the centromere) and relative positions of genes and markers are indicated above the line. The 3 

crossed circles (88SJ, 335SJ, and 2038SJ) and the 5 filled circles (102DSJ, 11DSJ, 45DSJ, 142DSJ, and 

244DSJ) represent 8 alleles of l7R6 including l7R6R6R.  Five mutant mouse lines carrying deletions of 

varying lengths and surrounding the pink-eyed dilution gene (p) are shown as 46DFiOD, 47DTD, 

2MNURF, 8R20 M and 3R30M.  Among these mutations, only the 3R30M deletion can complement the 

ENU-induced mutations at l7R6 indicating that this deletion does not extend to the position where the l7R6 

gene is located.  The interval is therefore defined by the proximal deletion breakpoints of the 8R250M and 

3R30M mutant mouse lines. 
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rate, along with the high-resolution deletion-map position, suggested that recessive 

l7R66R mutation might be a loss-of-function allele in the Nell1 gene. To test this 

hypothesis, Nell1 gene expression in wild-type and mutant embryos and in wild-type 

adult tissues was assayed by Northern blot analysis. The cDNA probe detected a 3.5 kb 

transcript in wild-type embryos from E10-18 days of gestation (Fig. 4.2). During 

gestation, expression was first detected as early as E10 and from E 14-18 it steadily 

increased in the head region and slightly decreased in the body. In adult tissues, normal 

expression was observed primarily in adult brain (Fig.4.2). In contrast to wild-type 

embryos, the Nell1 expression was barely detectable in 102DSJ mutant embryos (Fig. 

4.3A). 

 The expression analysis of wild-type and mutant alleles were also confirmed by 

RT-PCR analysis (Fig. 4.3B). The two cDNA fragments, one short fragment (~ 557 bp) 

covering the 5’ end and one long fragment (1465 bp) covering the middle and 3’ end of 

the gene were generated by standard PCR (short fragment) and Long Range PCR (bigger 

fragment). The expression analysis revealed that only the 5’ end (~ 557 bp) of Nell6R 

(102DSJ) was expressed and rest of the gene segment looked degraded (~ 1465 bp) i.e. 

drastically reduced band representing the middle and 3’ end of the gene was detected, 

while in wild-type and other mutant animals carrying other alleles of Nell1, both of the 

bands representing the whole gene were detected. This finding is consistent with the 

mutation scanning data (see Fig. 4.4). The point mutation in Nell1 at 1547th bp introduces 

a premature stop codon that truncates the protein and the products of such nonsense 

mutations are detected and degraded by the cell via a pathway known as nonsense-

mediated mRNA decay (NMD) (Nagy et al. 1998; Hillman et al. 2004). The degradation 

of the nonsense mutation induced transcripts is known to occur from both the 5’ and 3’ 

end of the transcript. The degradation from 5’ end occurs through decapping and 5’→ 3’ 

exonucleolytic decay while the degradation from 3’ end occurs through accelerated 

deadenylation and exosome-mediated 3’→ 5’ decay. (Chen et al. 2003; Lejeune et al. 

2003; Gatfield et al. 2004). In case of nonsense mutation in Nell6R mice, the degradation 

of the Nell1 transcript seems to occur from the 3’ end because, 3’ end of the transcript 

looks completely degraded (lane 12) while 5’ end of the Nell1 transcripts looks slightly  
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Figure. 4.2: Expression of the Mouse Nell1 Gene.  Northern blot showing expression profiles 

in heads (H) and bodies (B) of wild-type embryos/fetuses (samples 1-8) and adult mouse tissues (samples 

9-16).  The lane positions, developmental stages and adult tissues are as follows: 1, E10; 2, E12; 3, E14 H; 

4, E14 B; 5, E16 H; 6, E16 B; 7, E18 H; 8, E18 B; 9, brain; 10, liver; 11, spleen; 12, kidney; 13, thymus; 

14, heart; 15, lung; 16, muscle.  The Nell1 cDNA probe detects a 3.5-kb transcript as early as E10 days.  

From E14-E18 days, the Nell1 message is abundant in both fetal heads and bodies, increasing dramatically 

in the head as development proceeds. Hybridization of the blot with an actin probe serves as control to 

compare levels of samples loaded in each lane. 
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Figure. 4.3: Aberrant Expression of Nell1 in l7R6 Mutants. (A). Northern blot showing 

expression of Nell1 profiles in heads of E15 l7R6 embryos/fetuses. There is severe reduction in the 

expression of Nell1 gene in the l7R6R6  (102DSJ) allele compared to normal levels of expression detected in 

wild-type and other three mutant alleles [88SJ (Nell11R), 335SJ (Nell12R), 2038SJ (Nell13R)] at the l7R6 

locus. (B). RT-PCR showing expression of Nell1 in E18.5 wild-type and mutant embryos/fetuses. Lane1, 

2.5 Kb ladder, lanes 2-6 represent 5’ end (~ 557 bp) and lanes 8-12 represent middle and 3’ end (~ 1465 

bp) of Nell1 gene. The slightly reduced expression of the 5’end of the Nell1 was detected in 102DSJ (lane  

6) compared to wild-type and other mutants while the expression of rest of the gene (middle and 3’ end) 

was drastically reduced (lane 12). See text for details.  

 

 1     2    3    4     5     6    7      8   9   10   11   12     
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reduced (lane 6). 

 

SEQUENCING OF MOUSE Nell1 cDNA: Even though Nell1 functions are not clearly 

understood, the human and rat Nell1 genes have been well characterized in terms of gene 

location and sequence analysis. However, at the start of this study there was no mouse 

full-length cDNA available. Therefore mouse Nell1 cDNA was generated and sequenced 

from BJR strain. Eleven sets of primers were designed based on mouse EST’s 

homologous to human Nell1. The full-length cDNA covering the entire coding region 

plus 5’ and 3’ untranslated regions was obtained by generating short 300-350 bp 

overlapping PCR fragments. A full-length 2862 bp cDNA was generated (GeneBank 

Accession #. AY62226) (Fig. 4.4A) with an open reading frame of 2433 bp, which 

encodes an 810 amino acid protein. Determination of opening reading frame and 

sequence of translated protein was obtained by using NCBI’s ORF finder. The domain 

prediction for Nell1 protein was also done by using NCBI’s Conserved Domain database. 

The mouse Nell1 is a multi-domain protein with one thrombospondin (TSP)-like domain, 

one Laminin G (LamG)-like domain, one EGF-like domain and two van Willbrand factor 

C (vWC)-like domains (Fig. 4.4A). The mouse full-length Nell1 cDNA is highly 

homologous to human (87% at nucleotide level and 93% at protein level) and rat (98% at 

nucleotide level and 97% at protein level) NELL1.  

 

IDENTIFICATION OF Nell1 MUTATION IN Nell16R MICE: To identify the 

mutation in Nell16R (l7R66R or 102DSJ) allele, each exon along with the flanking intron 

sequences was amplified from genomic DNA and analyzed for point mutation by 

heteroduplex analysis using temperature gradient capillary electrophoresis (Li et al, 

2002). Heteroduplexes were detected in exon 14. Sequencing of exon 14 for both wild-

type and mutants was done directly from PCR products. The sequence analysis showed 

that single base pair substitution of T → A that converts a codon for cysteine in to a 

premature stop codon (TGT → TGA i.e. Cys → Stop) (Fig. 4.4B). This point mutation at 

Cys truncates the 810 amino acid protein at 502nd amino acid and eliminates EGF like  
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Figure. 4.4: Identification of the Nell1
6R 

Mutation. (A). Mouse Nell1 cDNA sequence 

(GenBank Accession No. AY622226) and position of predicted protein domains. Thrombospondin-like 

(yellow); Laminin G-like (underlined); van Willbrand factor type C like (blue); calcium binding EGF-like 

(grey). The location of the ENU-induced mutation at bp #1546 in the cysteine codon (amino acid #502) are 

both highlighted in red text. The premature termination codon introduced at this site will truncate the 

protein and remove the EGF-like domains that are essential for the binding to PKC β1. One van Will brand 

factor type C like domain will also be missing from the putative mutant protein product. (B). Sequence 

electropherograms showing the T to A base change (red arrows) in the wild-type (left) and the mutant 

sequence (right) of the Nell1 gene. 
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TGT→TGA; Cys→Stop 



 74

B. 
 
 
 
 
 
 
 
 

 

 

Figure. 4.4: Identification of the Nell1
6R 

Mutation. Continued. 

 

domains that bind PKC-β1 protein. One von Willbrand factor type C like domain will 

also be missing from the mutant protein product and this may interfere with trimerization 

of Nell1 protein. In eukaryotes, nonsense mutations like the one observed in Nell1 

102DSJ allele are detected and degraded by the cell via a pathway known as nonsense-

mediated mRNA decay (NMD) (Nagy et al. 1998; Hillman et al. 2004). Therefore 

mutation-scanning data is consistent with the observation of severely decreased Nell1 

mRNA levels in the mutants. This observation was further confirmed by RT-PCR (see 

fig. 4.3B). 

 

DETERMINATION OF THE GROSS MORPHOLOGICAL AND SKELETAL 

DEFECTS IN Nell16R MUTANT MICE 

 

Since several previous studies indicate that Nell1 plays a role in cranial 

development and osteoblast differentiation, the impact of Nell16R mutation was evaluated 

for skull as well as other skeletal defects by comparing wild-type and mutant mice. 

Morphometric analysis was conducted on the head and overall body. Detailed skeletal 

analysis was also performed using standard chemical stains specific for bone and 

cartilage. 
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GROSS PHENOTYPES: All of the eight 17R6 alleles were recessive lethal mutations. 

All mutant mice including 17R66R hemi- and homozygotes develop till late gestation but 

do not survive the physical trauma of birth. Observations on females during delivery 

showed that all the hemi- and homozygous 17R66R mutant neonates were born dead, 

while remaining mutant fetuses that were retrieved by caesarian section were alive. 

However, the mutant mice rescued by caesarian section quickly died because they were 

unable to breathe and foster mothers usually cannibalized them. Moreover, additional 

defects in the heart and vasculature may also contribute to the death of these mutants (Liu 

and Culiat, unpublished data). Mutant hemi-or homozygote fetuses are easily 

distinguished from wild-type littermates by their pronounced curled position, enlarged 

head region (Fig. 4.5), inability to open their mouth and weak reflexes in extremities. All 

the hemi and homoygote mutant l7R6 mice were phenotypically identical and exhibited 

enlarged head region and pronounced curled position (data not shown).  Heterozygotes 

survive to adulthood and breed normally, with no readily visible phenotypic differences 

when compared to wild-type mice. 

 

MORPHOMETRIC ANALYSIS: Of all the ENU-induced mutant 17R6 alleles, 17R66R 

(102DSJ) is the most severe in terms of abnormal head and body morphology. A total of 

16 wild-type and 19 homozygote l7R66r mutant mice were measured for body length, 

head height, head length, and head width. Gross anatomical measurements indicated that 

compared to their wild-type littermates, homozygous mutant fetuses manifested a 

decreased body length due to the pronounced altered curvature of the spine and an 

enlarged altered head shape brought about by increased head length (Table. 4.1). No 

significant changes in head height and width were detected. 

 

Nell16R MUTANT MICE HAVE SKELETAL DEFECTS IN THE SKULL AND 

VERTEBRAL COLUMN: The skeletal phenotype of Nell1 mutants were examined by 

Alizarin red - Alcian blue staining of fetuses at E 18.5 days of gestation. Alizarin Red 

stains bone while Alcian blue stains cartilage. The skeletal phenotype of l7R66R was 

compared with skeletal phenotypes other mutant alleles. All mutants show changes in  
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Figure4.5: Phenotypes of l76R Mutants. Phenotype of l7R66R homozygote mutants at 18.5 days 

of gestation. On the right is a fetus homozygous for the l7R66R allele (from stock 102DSJ) showing a very 

curled position, enlarged head size and a more spherical head shape, compared to the control littermate 

(left). l7R66R mouse fetuses were recovered alive by caesarean rescue because they do not survive delivery 

through the birth canal perhaps due to the physical trauma in the neck and spine region brought about by 

the abnormal spinal curvature. The phenotypes of the other alleles of l7R6 not shown; they are similar to 

l7R66R  

 
 

 

 

102DSJ Homozygote Normal Littermate 
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Table. 4.1: Quantitative analysis of changes in body length and head size of Nell16R 

homozygous mutants compared to wild-type littermates, measured (in mm) at E18 

days of gestation. 
 

 

The body length of mutant fetuses were significantly decreased and the head length increased in 

comparison with wild-type mice. 

Litter 
No. Genotype 

No. 
Embry
os per 
litter 

Body 
Length 

±  
SEM 

Head 
Length  ± SEM Head 

Height 
± 

SEM 

 
Head 
Width 

 

 
±  

SEM 
 

Wild 
Type 2 21.49 ± 0.28 10.23 ± 0.17 5.95 ± 0.01 6.37 ± 

0.35 1 
Mutant 2 19.28 ± 0.05 11.5 ±  0.70 6.96 ± 0.41 6.88 ± 

0.54 
           

Wild 
Type 2 17.15 ± 0.06 9.72 ± 0.20 9.06 ± 0.69 6.42 ± 

0.78 2 
Mutant 4 16.90 ± 0.50 10.37 ± 0.75 8.50 ± 0.54 6.14 ± 

0.33 
           

Wild 
Type 1 21.3 ± 0.0 10.1 ± 0.0 8.0 ± 0.0 6.4 ± 0.0 3 

Mutant 1 18.5 ± 0.0 11.0 ± 0.0 8.7 ± 0.0 6.8 ± 0.0 
           

Wild 
Type 1 19.9 ± 0.0 11.0 ± 0.0 8.1 ± 0.0 6.5 ± 0.0 4 

Mutant 2 17.8 ± 0.4 11.2 ± 0.4 8.65 ± 0.3 6.95 ± 0.5 
           

Wild 
Type 1 23.24 ± 0.0 9.77 ± 0.0 6.01 ± 0.0 6.49 ± 0.0 5 

Mutant 1 20.30 ± 0.0 11.15 ± 0.0 5.53 ± 0.0 6.19 ± 0.0 
           

Wild 
Type 4 22.69 ± 1.64 10.32 ± 0.93 5.17 ± 0.41 6.42 ± 

0.37 6 
Mutant 2 18.50 ± 0.37 11.44 ± 0.32 4.55 ± 0.14 6.75 ± 

0.21 
           

Wild 
Type 2 23.86 ± 0.37 10.71 ± 0.43 5.44 ± 0.52 6.66 ± 

0.61 7 
Mutant 3 19.11 ± 0.63 11.2 ± 1.45 5.39 ± 0.68 6.67 ± 

0.06 
           

Wild 
Type 1 22.77 ± 0.0 9.47 ± 0.0 5.31 ± 0.0 6.53 ± 0.0 8 

Mutant 2 18.33 ± 0.65 9.94 ± 0.88 6.28 ± 0.39 6.85 ± 0.3 
           

Wild 
Type 2 22.32 ± 1.4 10.22 ±0.88 5.66 ± 0.46 6.86 ± 0.6 

9 
Mutant 2 17.98 ± 0.55 10.45 ± 1.32 7.19 ± 0.41 6.91 ± 

0.14 
Wild 
Type 16   21.72    10.21    6.27  6.51  

TOTAL 
Mutant 19 *18.25  *10.86  *6.98  6.64  
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head shape, spinal curvature and morphology of the ribcage area. Skeletal defects were 

very severe in both l7R66R (102DSJ) (Fig. 4.6A) and l7R61R (88SJ) (Fig. 4.6B), while 

they were relatively milder in l7R62R (335SJ) (Fig. 4.6C) and l7R63R (2038SJ) (Fig. 

4.6D). In the spines of mutants from l7R66R and l7R61R, there is a sharp bend between the 

cervical and thoracic vertebrae (arrows). The spinal phenotype is visible as early as E16 

(data not shown) and remarkably consistent in severity among mutants of the same line. 

The severe phenotype associated with l7R66R fetuses is due to drastically reduced 

expression of Nell1 as a result of nonsense mutation and degradation of the Nell1 

transcript (see Figure. 4.3). Figure. 4.7 shows skeletal phenotype of l7R66R fetus in detail. 

The skeletal analysis clearly showed larger rounder heads, compression of intervertebral 

spaces and alteration of spinal curvature, and anomalies in the shape and volume of the 

ribcage (Fig. 4.7A and B). The cervical region of the vertebral column displayed the most 

dramatic reduction in the intervertebral disc matrix and a pronounced change in spinal 

curvature was observed at the juncture of the cervical and thoracic vertebral bones (Fig. 

4.7A and B). The enlargement and thinning of the parietal, frontal and interparietal bones 

in the skull were readily apparent (Fig. 4.8A-D). The nasal bones were also enlarged but 

thinning was not clearly observed in these structures. The consistently decreased staining 

by Alizarin Red in the Nell16R calvarial bones indicated decreased ossification in the 

mutant. These Nell16R skeletal defects were confirmed by microcomputerized 

tomography scanning (Fig. 4.9 and B). The radiographs showed the sharp curvature 

change between the cervical thoracic vertebrae (Fig. 4.9A). Moreover, the MicroCat 

scanning data suggested lesser and bone density (Fig. 4.9A) and areas of ossification 

(Fig. 4.9B) in the Nell16R mutant homozygotes. Although the effect of Nell16R mutation 

in the head region was expected, its profound impact on the development of the vertebral 

and thoracic skeleton was not anticipated since the deleterious effects of Nell1 

overexpression were confined to the growth and differentiation of the calvarial bones 

(Zhang et al. 2002). 

The gene expression profile resulting from the Nell16R mutation (see Fig. 4.15) is 

further supported by standard histological analysis. Histological analysis was done on 

both wild-type and mutant E18.5 embryos. The Formalin fixed embryo sections of  
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Figure. 4.6: Skeletal Analysis of l7R6 Neonates. l7R66R (102DSJ) (A), l7R61R (88SJ) (B), 

l7R62R (335SJ) (C) and l7R63R (2038SJ) (D). Mutants manifest changes in head shape, spinal curvature and 

morphology of the ribcage area. Both l7R66R and l7R61R show very severe defects in all these three 

categories of defects, while l7R62R and l7R63R are relatively milder. In the spines of mutants from l7R66R 

and l7R61R, there is a sharp bend between the cervical and thoracic vertebrae (arrows).  

 
 
 
 
 
 

A. B.

C. D.

l7R66R (102DSJ) l7R61R (88SJ) 

l7R62R (335SJ) l7R63R (2038SJ) 
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Figure. 4.7: Skeletal Phenotype of Nell16R Homozygote Mutant Mouse. At 18.5 days of 

gestation. (A). There is alteration of spinal curvature, decrease in intervertebral disc spaces, reduced 

thoracic volume, protruding sternum and a slight enlargement of the skull. (B). Close-up of the cervical 

region where the most pronounced vertebral compression is located. 
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Figure. 4.8: Cranial Defects in Nell16R Homozygote Mutant Mouse. (A) Top view of the 

skull showing the increased size of the nasal (Ns), frontal (Fr), and parietal (Pr) bones in Nell6R mutant 

mice. (B) Side view of the skull showing enlargement of parietal bones (Pr) in mutant fetal heads. (C). 

Enlargement of the interparietal and (D) Frontal bones. (A-D) The calvarial bones of Nell6R mutant mice are 

thinner than those of the wild-type and consistently have less Alizarin Red staining, suggesting a lesser 

degree of ossification. 
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Figure. 4.9: Skeletal Defects in Nell16R Homozygote Mutant Mouse. (A) Radiographs of a 

wild-type fetus compared to Nell6R mutant littermate. A pronounced alteration in the spinal curvature occurs 

at the cervical vertebrae in the mutant fetuses (arrow). The lesser intensity of signals in the craniofacial and 

vertebral skeleton of the mutant suggests lesser bone density.  (B) Images of 3D re-construction of 

MicroCat scans for wild-type and mutant fetuses show lesser areas of ossification in the mutant fetal head 

(arrow). The observation in earlier skeletal analysis that the mutant calvarial bones are thinner is consistent 

with MicroCat scan data showing larger areas of dense bone in the wild-type fetus. These MicroCat sans 

again confirm the alteration of spinal curvature and compression of cervical vertebrae observed in Nell16R 

mutants. 

 

A. 

 B. 
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vertebral columns were stained with Haematoxylin and Eosin (H and E), Masson and 

Periodic acid Schiff (PAS) stains. In the mutant (Fig. 4.10B) vertebral columns, 

intervertebral spaces were markedly decreased compared to their wild-type controls (Fig. 

4.10A). This observed reduction in intervertebral spaces in mutants may be due to the 

decreased ECM production due to mutation in Nell1, which downregulates expression of 

specific collagens and non-collagenous proteins due decreased chondrocyte 

differentiation (see Real-time qRT-PCR results, page 92 and Fig.4.15). H and E staining 

of vertebral bodies shows that in wild-type, cells look well defined and more 

differentiated (Fig. 4.10C) while in mutants, cells look less organized and developed 

(Fig.4.10D). Compared to their wild-type littermates (Fig. 4.10C), Nell16R homozygous 

mice displayed considerable reduction in the amount of extracellular material 

surrounding the cells in the developing vertebral body and intervertebral discs (Fig. 

4.10D). 

 

EXAMINATION OF THE ROLE OF NELL1 IN OSTEOBLAST AND 

CHONDROCYTE DIFFERENTIATION IN THE VERTEBRAL COLUMN 

 

 To test the hypothesis that the reduced expression of Nell1 in Nell16R mutant 

impairs chondrogenesis and endochondral ossification by decreasing differentiation in 

both osteoblast and chondrocytes in the vertebral column, expression of specific 

differentiation markers for both osteoblast and chondrocytes was investigated. 

 

LOCALIZATION OF NELL1 EXPRESSION IN WILD-TYPE AND MUTANT 

Nell16R FETAL VERTEBRAL COLUMNS: The cell-specific expression of Nell1 in 

both wild-type and mutant E18.5 fetal vertebral columns was determined by 

immunohistochemistry using anti-rabbit Nell1 antibody. This Nell1 antibody has been 

successfully used for immunohistochemistry studies (Zhang et al. 2002). Vertebral 

column develops by endochondral ossification. Formation of vertebrae is initiated at the 

center of the vertebral bodies and the growth occurs in a radial fashion with chondrocyte 

proliferation and differentiation occurring at the central area of vertebrae and the mature  
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Figure. 4.10: Histological Analysis of Fetal Vertebral Column. (A) The normal 

architecture of the cervical vertebral column in wild-type E18.5 fetus (sagittal section, Masson staining) 

compared with the mutant Nell16R homozygote, (B), showing the reduction of intervertebral spaces between 

the vertebral bodies (arrows). See text for details. (C) and (D). Haematoxylin and Eosin staining of sagittal 

sections of vertebral bodies (higher magnification) of wild-type (C) and mutant (D) showing lesser amount 

of ECM and cellular development of chondrocytes in the mutants.  

Wild-type Mutant 

Wild-type Mutant 
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bone formation by osteoblasts at the periphery. Decreased expression of Nell1 was 

detected in mutant (Nell16R) vertebral columns (Fig. 4.11C and D) compared to wild-type  

fetuses (Fig. 4.11A and B). In wild-type vertebral bodies, the expression was restricted to 

osteoblasts, which are present at the surface of the vertebral body away from center of 

ossification and there was no staining detected in chondrocytes, which are present at the  

center of the vertebral bodies, near the site of initial ossification (Fig. 4.11A and B). 

There was no staining detected in the intervertebral discs (Fig. 4.11A and B) again 

suggesting, expression of Nell1 is restricted to osteoblasts at this stage in fetal  

development. In mutants Nell1 expression was restricted to osteoblasts at the surface of 

the vertebral bodies and no staining was observed in intervertebral discs. The dark lines 

observed in the mutant intervertebral spaces do not represent the staining for Nell1 

protein. They are the artifacts introduced during the sectioning and paraffin embedding of 

the vertebral column sections. It is possible that chondrocytes in the vertebrae and 

intervertebral discs do express Nell1 but at lower levels and is beyond the detection limit 

of this assay. Alternatively, chondrocytes may express Nell1 at earlier stages of 

ossification i.e. earlier in the development when there is more active cartilage and bone 

formation in the embryo. Even though here (Fig. 4.11) the expression of Nell1 in the 

spinal cord is not conclusive, the EST data shows that it is expressed in the mouse spinal 

cord. The initial phase of chondrocyte proliferation and differentiation in vertebral bodies 

and chondrocyte proliferation in intervertebral discs may be regulated by Nell1 secreted 

by cells in the spinal cord and in later stages by Nell1 secreted by osteoblasts in the 

vertebral bodies. 

 The Nell1 expression was also detected in wild-type fetal skin. The staining for 

Nell1 protein was intense in the epidermal layer of wild-type skin but there was no 

staining detected in the dermal or hypodermal layer (subcutaneous layer)(Fig. 4.12A and 

B). The staining looks uniform throughout all the five layers of epidermis. In addition to 

the epidermis Nell1 expression was also detected in the wild-type skeletal muscle beneath 

the skin. In contrast to wild-type fetal skin, Nell1 expression was markedly decreased in 

mutant (Nell16R) skin (Fig. 4.12C and D). The staining for Nell1 was barely detectable in 

the epidermal layer of mutant skin while no staining was detected in other layers of the 



 87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.11: Expression of Nell1 in Fetal Vertebral Column.  Immunohistochemical 

staining of sagittal sections through the vertebral columns of wild-type (A) and (B) and mutant (Nell16R)  

(C) and (D) E18.5 fetuses showing expression of Nell1. Positive immunoreactivity (coppery brown 

staining) for Nell1 was detected in wild-type fetal vertebral bodies, (A) and (B) (higher magnification) but 

not in intervertebral discs and its expression was restricted to osteoblasts at the surface of the vertebral 

bodies. There is less or no staining detected in the chondrocytes at the center of the vertebral bodies and 

chondrocytes in the intervertebral discs. Expression of Nell1 was less in mutant vertebral columns (C) and 

(D) [higher magnification]). 
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C. D.

Wild-type (10X) Wild-type (20X) 
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Figure. 4.12: Expression of Nell1 in Fetal Skin. Immunohistochemical staining of sections 

through the skins of wild-type (A) and (B) and mutant (Nell16R)  (C) and (D) E18.5 fetuses showing 

expression of Nell1.  Intense positive immunoreactivity (coppery brown staining) was detected in the 

epidermal layer of the wild type fetal skin and in the skeletal muscle beneath the skin, (A) and (B) (higher 

magnification) while Nell1 expression was markedly decreased in mutant skin, (C) and (D) (higher 

magnification). 

A. C. 

B. D.

Wild-type (10X) Mutant (10X) 

Wild-type (20X) Mutant (20X) 
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skin including the muscle beneath the skin. This was an unexpected finding but rather an 

important one because mutation in Nell1 affects specific collagens and ECM proteins 

(revived in chapter 2) that are also affected in Ehlers-Danlos syndrome, which is also 

associated with cartilage and skin defects. These results suggest that the hyper-elastic 

skin observed in the patients with certain type (s) EDS with unknown etiology/genetic 

defect may be partially due to the mutation in Nel1l gene. 

 

EFFECT OF Nell16R MUTATION ON DIFFERENTIATION OF OSTEOBLASTS 

AND CHONDROCYTES IN THE DEVELOPING VERTEBRAL COLUMN: 

The skeletal, histological and expression analysis of mutant Nell1 alleles revealed 

alterations of head shape and deformities in the vertebral column and suggested 

dysregulation of cell proliferation, differentiation and apoptosis. The previous in vitro 

studies have demonstrated (Zhang et al. 2002) that downregulation of Nell1 results in 

reduced osteoblast differentiation. Both osteoblasts and chondrocytes produce specific 

collagens and ECM proteins during the differentiation process. The Real-Time qRT-PCR 

analysis (see Fig. 4.15) showed that ECM proteins like tenascins, matrilins, Osf-2, Col X 

and Chad are downregulated in Nell16R mutant mice. Therefore, the status of chondrocyte 

and osteoblast differentiation in Nell16R homozygotes was investigated for expression of 

known markers of osteoblast and chondrocyte (Col X) differentiation and assessed for the 

extent of bone mineralization, a measure of differentiation status of osteoblasts. The 

expression of Col X in both wild-type and mutant (Nell16R) fetal vertebral column was 

examined by immunohistochemistry using anti-Col X antibody (Fig. 4.13). Reduced Col 

X staining was detected in mutant vertebral bodies (Fig. 4.13 A and B) compared to wild-

type (Fig. 4.13C and D), suggesting decreased differentiation of chondrocyte. The Col X 

staining was restricted to chondrocytes in both wild-type and mutant vertebral bodies. 

The light blue areas around the rim of the vertebral bodies represent the developing bone, 

which contain osteoblast, do not show any staining for Col X. The Col X staining was 

observed more in vertebral bodies than in intervertebral discs. The staining observed in 

the intervertebral discs may not be due to Col X immunoreactivity, but may be due to Col 

II because this particular anti-rabbit Col X antibody is known to exhibit slight cross- 
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Figure. 4.13: Expression of Col X in Fetal Vertebral Column. Immunohistochemical 

staining of sagittal sections through the vertebral columns of wild-type (A) and (B) and mutant (Nell16R)  

(C) and (D) E18.5 fetuses showing expression of Col X. Intense positive immunoreactivity (Dark coppery 

brown staining) was detected in wild type fetal vertebral bodies as well as intervertebral discs, (A) and (B) 

(higher magnification). Staining for Col X was less in both mutant (Nell16R) vertebral bodies and 

intervertebral discs, suggesting decreased differentiation of chondrocytes. 

 

A. 

B
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D

Wild-type (10X) Mutant (10X) 

Wild-type (20X) Wild-type (20X) 
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reactivity to Col II. 

The degree of bone mineralization (extent of osteoblast differentiation) was 

measured by von Kossa staining of both wild-type and mutant (Nell16R) E18.5 fetal 

parietal bones and vertebral columns. The results from von Kossa staining of sagittal 

sections through the vertebral column and parietal bones (Fig. 4.14A-D) showed 

decreased bone mineralization in Nell16R. The cranial (Fig. 4.14 B and D) and vertebral 

bones of mutant homozygotes have a lesser number of mineralized areas and exhibit a 

highly irregular pattern when compared to wild-type bones (Fig. 4.14 A and C) The 

frontal bones display the same defects in bone mineralization as the parietal bones (data 

not shown). 

 

DETERMINATION OF THE BIOLOGICAL PATHWAY (S) PERTURBED BY 

THE Nell16R MUTATION  

 

 A large number of genes and pathways have already been defined in osteogenesis 

and chondrogenesis in the skull and vertebral column. The information acquired from 

these experiments will aid in placing Nell1 in a particular biological pathway(s) and 

relating this to the phenotyping and immunohistochemistry data. 

 

HIGH-THROUGHPUT qRT-PCR: In order to define the genes and pathways that 

were perturbed by the Nell16R mutation, qRT-PCR analysis of 219 experimental and 6 

control genes was carried out in RNA samples extracted from individual heads and 

bodies of four Nell16R
 mutants and four wild-type E18.5 fetuses. The 219 genes were 

carefully selected based on the observed mutant phenotype and the putative domains and 

functions of the Nell1 gene. Genes associated with CS (e.g. Runx2, Msx2, Fgfr3), bone 

and cartilage development, cell growth and differentiation, neural development and signal 

transduction pathways were also included.  

 This expression analysis showed an association between the loss of Nell1 

function and reduced expression of genes for extracellular matrix proteins critical for 

chondrogenesis and osteogenesis. The Real-Time qRT-PCR analysis revealed reduced  
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Figure. 4.14: van Kossa Staining of Vertebral Column and Parietal Bone. van Kossa 

staining of sagittal sections through the vertebral columns of wild-type (A) and mutant (B) E18.5 fetuses 

showing decreased bone mineralization in the vertebral bodies of (Nell16R) homozygotes. The intensity and 

distribution of stained areas (black) are lesser and exhibit an irregular pattern in the mutant fetuses. van 

Kossa analysis of sagittal sections through the parietal bones of wild-type (C) and mutant (D) fetuses also 

revealed decreased mineralization. In mutant parietal bone (D), the intensity of van Kossa staining is less 

and in contrast to the wild-type Nell16R calvarial bones have thinner and more ‘patchy’ pattern of 

mineralization. There are larger and more frequent gaps between mineralized regions, similar to the pattern 

seen in vertebral bodies (B). 
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expression of 13 genes in the head and 28 genes in the body due to Nell16R mutation (Fig.  

4.15). Expression of the following 9 genes were affected in both heads and bodies: 

Col5a3, Col5a1 Col15a1, Tnxb, Matn2, Osf-2, Chad, and Tnfrsf11b.  These affected 

proteins are involved in cell adhesion, communication and provide strength and 

flexibility to tissues. The most severely affected genes in the head were Tnxb and Col5a3; 

in body were Tnxb, Prg4, Thbs3 and Col5a3. The other genes in the body that are 

affected by Nell16R mutation such as Tnc, Tnx, Matn3, Chad, Tnrsf11b and Bmpr1a are 

known to play a critical role in the development of vertebral column on both human and 

mouse (Mansson et al. 2001; Cundy et al. 2002; Gruber et al. 2002; Jackson et al. 2004; 

Yoon et al. 2005). The eight out of 21 collagen genes assayed showed significant changes 

in expression indicating that the loss of Nell1 influences only a specific set of collagen 

subunits. Several affected genes are involved in Ehlers-Danlos Syndrome and other 

disorders associated with vertebral column defects. It is rather important to note that 

severely affected genes like Tnxb and Col5a3 cause EDS, a severe cartilage defect 

(Beighton et al. 1998; Mao et al. 2001). The EDS patients have genetic defects that result 

in defective fibrillar collagen synthesis and deposition. Additionally, it has been 

suggested that mutation in Col5a3, another gene, which was affected by the Nell1 

mutation may account for at least some types EDS in which COL-5A1 and -A2 have 

been excluded (Imamura, 2000). Furthermore, one of the six major EDS syndromes, an 

autosomal recessive EDS-type VI is characterized by abnormal curvature of the spine, 

hypotonia, joint laxity and ocular fragility (Beighton et al. 1998; Mao et al. 2001). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



 94

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure. 4.15: Gene Expression Profile of Nell16R Mutants Compared with Wild-type 

Fetuses (E18.5). Genes with significantly reduced expression in mutant mice are listed from highest to 

lowest fold change. Nine genes (in red text) are affected in both heads and bodies. Majority of the genes 

that affected by Nell16R mutations encode proteins for the ECM, cell adhesion (Adhn) and cell 

communication (Comm) during bone and cartilage development.    
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CHAPTER: 5 

 CONCLUSION AND FUTURE DIRECTIONS FOR ELUCIDATING 

THE ROLE OF NELL1 IN CRANIOFACIAL AND VERTEBRAL 

COLUMN DEVELOPMENT  

 

SUMMARY OF RESULTS AND CONCLUSIONS 

 

A unique neonatal lethal allelic series of mutations for l7R6 locus in mouse 

chromosome 7 was recovered from large-scale ENU mutagenesis experiments conducted 

at Oak Ridge National Laboratory. Transcomplementation analysis with a number of p 

deletions initially mapped l7R6 to a < 1 cM segment homologous to a region of human 

chromosome 11p15 (Rinchik et al. 2002). Based on high-resolution mapping, estimation 

of mutation rate, phenotyping and molecular analysis done in this study, and also based 

on previously published reports, Nell1 was tested as a candidate gene for l7R6 locus. 

High-throughput mutation scanning and sequencing identified a single base change 

mutation in the coding region of the Nell1 gene in the102DSJ allele (now designated as 

Nell16R). This ENU-induced nonsense mutation in the Nell1 gene truncates an 810 amino-

acid polypeptide at residue # 510. This is the first Nell1 loss-of-function mutation 

reported to date and thus provided for the first time an in vivo system to study the 

consequences of loss-of-function of Nell1. The severe reduction of Nell1 transcripts in 

Nell16R homozygotes (presumably due to nonsense-mediated decay) results in neonatal 

lethality, an enlarged skull with thinning at the calvarial bone edges, reduced 

intervertebral disc spaces, alteration in the vertebral column curvature, abnormal shape 

and size of the ribcage. The aberrant expression of Nell1 also leads to decreased 

expression of specific extracellular matrix proteins that are known to play crucial roles in 

osteogenesis/chondrogenesis and vertebral column development. The range of skeletal 

anomalies manifested by Nell16R mutants indicate that the Nell1 gene plays a key role in 

both intramembranous and endochondral ossification during early mammalian 

development. This study demonstrated that Nell1 is involved in both intramembranous 
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and endochondral ossification and regulates both osteoblast and chondrocyte 

differentiation in calvarial bones and vertebral column. 

 

Nell1 GENE STRUCTURE, WILD-TYPE Vs Nell16R: Even though the human and rat 

NELL1 genes have been well characterized in terms of location and sequence analysis, 

there was no full-length mouse Nell1 cDNA available. The only available source was the 

Celera database but it contained only a partial sequence. Therefore a full-length (2862 bp) 

cDNA (coding region plus both 5’ and 3’ untranslated regions) was synthesized and 

sequenced. The mouse Nell1 has an open reading frame of 2433 bp, which encodes an 

810 amino acid protein, which is highly homologous to human (92%) and rat (97%) 

Nell1 protein. The mutation scanning of genomic DNA of Nell16R and sequencing 

revealed a point mutation in the gene that converts a cysteine codon to a premature 

termination codon, thereby truncating an 810 amino acid protein at 502nd residue. The 

mutation at this residue eliminates EGF-like and vWC-like domains. A loss of EGF-like 

domain may have a profound effect on Nell1 function. Nell1 is known to interact and 

become phosphorylated by specific isoforms of PKC such as PKC-β1, -δ, and -ζ through 

EGF-like domains (Kuroda et al. 1999). PKC-β1 is known to be a key component of cell 

proliferation and differentiation pathways in many cells including osteoblasts and 

chondrocytes (Nishizuka 1988; Marie et al. 2002; Rosado et al. 2002; Marie 2003). 

Additionally, differential expression of PKC isoforms was detected during the 8th week of 

developmental age in human fetal vertebral column when most of the chondrogenic 

events are occurring. Thus, mutation in exon 14 may disrupt Nell1 interaction with PKC-

β1 and interfere with its functions and undermine its role in osteogenesis and 

chondrogenesis. Furthermore, loss of one of the vWC-like domains due to a mutation 

may also interfere with trimerization of Nell1 protein and hence its function.  

 

Nell1 RNA And Protein Expression: Expression of the gene in wild-type 

embryo/fetuses and various adult tissues was assayed by Northern blot. The Nell1 

expression was detected as early as embryonic day 10 and from E14-E18 Nell1 

expression steadily increased in the head and slightly decreased in the bodies of the 
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fetuses. The increasing expression of Nell1 coincides with the time when both 

intramembranous and endochondral ossification occur during mouse embryogenesis. In 

the skull, the primary ossification centers appear around E13.5 and ossification continues 

until birth while the endochondral ossification in vertebral column begins around E14.5 

and continues till E18 (Kaufman 1999). In contrast to wild-type, due to point mutation in 

the gene, Nell1 expression was barely detectable in Nell16R mutant embryos. The severe 

reduction in the Nell1 transcript in Nell16R fetuses may be due to nonsense-mediated 

decay (NMD) of the transcript. In eukaryotes, nonsense mutations like the one observed 

in Nell16R mice are detected and degraded by the cell via a pathway known as NMD 

(Nagy et al. 1998; Hillman et al. 2004).  

The cell-specific expression of Nell1 protein was analyzed by 

immunohistochemistry. The expression of Nell1 was reduced in mutant fetal vertebral 

columns compared to wild-type fetuses. In wild-type, Nell1 was expressed in vertebral 

bodies but its expression was restricted to the osteoblasts at the surface of the bone. There 

was no expression detected in the chondrocytes in the vertebral bodies or in the 

chondrocytes of intervertebral discs. However, one cannot rule out the possibility that it 

may be expressed by chondrocytes in both vertebral bodies and intervertebral discs but it 

may be below the detection limit of the assay or it may be expressed during the earlier 

stages of the development when there is more active cartilage and bone formation taking 

place in the embryo. The severe reduction in the Nell1 transcript in Nell16R homozygotes 

results in neonatal lethality.  

 

PHENOTYPIC CONSEQUENCES OF Nell1 LOSS OF FUNCTION: The gross 

morphological analysis revealed decreased body length and enlarged heads in mutants. 

The skeletal analysis along with MicroCat scans showed overall reduction in the density 

of the bones, particularly thinning at the edges of the calvarial bones, reduced 

intervertebral spaces, alteration in the vertebral column curvature and abnormal shape 

and size of the rib cage in the mutant fetuses. The range of the skeletal anomalies 

manifested by Nell16R mutation indicate that Nell1 gene plays a key role in both 

intramembranous and endochondral ossification during early mammalian development. 
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In contrast, overexpression of Nell1 in both human and mouse leads to craniosynostosis 

(Ting et al. 1999; Zhang et al. 2002). Certain types of CS are associated with limb and 

spinal defects (Anderson et al. 1996; Anderson et al. 1997). The transgenic mouse 

overexpressing Nell1 exhibits CS but no vertebral defects (Zhang et al. 2002). However, 

reduced expression of Nell1 in Nell16R mouse is associated with both skull and vertebral 

column defects. This was the first study to report the involvement of Nell1 in the 

development of the vertebral column. It was a novel and an unexpected finding. 

 

Nell1 IN CELL DIFFERENTIATION PATHWAYS: The Nell1 overexpression 

experiments conducted in both in vivo and in vitro have clearly shown that Nell1 

promotes differentiation and plays a critical role in osteoblast development (Zhang et al. 

2003). The Nell1 expression accelerated osteoblast differentiation and mineralization 

along with upregulation of differentiation marker genes like Opn, Ocn, and Bmp-7. 

Conversely, downregulation of Nell1 in vitro reduced Ocn and Opn expression and 

delayed osteoblast differentiation (Zhang et al. 2002) and suggested that reduced levels of 

Nell1 would promote osteoblast proliferation in calvarial bones. Additionally, other 

studies have reported that Nell1 is involved in endochondral bone formation. Nell1 

accelerates chondrocyte hypertrophy and endochondral bone formation within the 

distracted maxillary sutures (Cowan et al. 2006) and it also induced premature 

hypertrophy and increased apoptosis of chondrocytes with subsequent acrania-like 

deformity (Zhang et al. 2006). The results of this study are consistent with these reports. 

The reduced expression of Nell1 in Nell16R leads to decreased differentiation of 

chondrocytes in the vertebral column and decreased mineralization (as a result of 

decreased osteoblast differentiation) in both cranial and vertebral bones. The 

immunohistochemical analysis showed decreased Col10 expression, a marker for 

chondrocyte differentiation in vertebral bodies and decreased mineralization in both 

calvarial and vertebral bones indicating decreased osteoblast differentiation. The 

histological analysis done on fetal vertebral bodies was consistent with these results. The 

Masson staining of the vertebral bodies showed that in mutants, cells looked less 

differentiated and developed compared to wild-type cells. Additionally, the enlarged and 
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immature bone formation in the cranial vault along with decreased ossification in the 

vertebral column also demonstrates that the aberrant expression of Nell1 increases 

proliferation and decreases differentiation in both osteoblasts and chondrocytes. The 

Nell1-deficient mice exhibit immature and thinner bones compared to wild type. 

Increased proliferation and decreased differentiation of osteoblasts due to reduced 

expression Nell1 accounts for the thinner, less mineralized and enlarged calvarial bones.  

Only the differentiated osteoblast and chondrocytes secrete ECM proteins (collagen-

proteoglycan matrix) that bind calcium salts and become mineralized to produce new 

bone. However, due to the aberrant expression of Nell1, differentiation along with the 

secretion of ECM and subsequent mineralization process is affected. All the previous in 

vitro studies and transgenic models of Nell1 have confirmed the role of Nell1 in 

craniofacial development and osteoblast biology. However, the broader role of Nell1 in 

skeletal development is revealed by the new and the first loss-of-function mouse model 

Nell16R. In particular, the alteration of spinal curvature, reduction in the intervertebral 

spaces and decreased bone mineralization in these mutants indicate involvement of Nell1 

in endochondral ossification and differentiation of chondrocytes. 

 

Nell1 CONTROLS CELL DIFFERENTIATION VIA ECM PATHWAYS: The gene 

expression analysis by Real-Time qRT-PCR showed an association between the loss of 

Nell1 function and reduced expression of genes for extracellular matrix proteins that are 

critical for chondrogenesis and osteogenesis. The majority of the genes with reduced 

expression encode ECM proteins such as specific collagens, thrombospondins, tenascins 

and matrilins. These proteins provide cell adhesion and communication, and impart 

strength and flexibility to tissues. This finding was further supported by the histological 

analysis of the fetal vertebral columns. H and E staining of mutant vertebral bodies 

showed lesser amount of ECM compared to wild-type. The decreased bone 

mineralization resulting from the loss of function of Nell1 gene is also consistent with 

reduced levels of ECM detected in these mutant mice. The finding that Nell1 directly or 

indirectly affects the expression of at least eight genes (Tnxb, Tnc, Col12a1, Col6a1, 

Matn3, Bmpr1a, Thbs3) that are necessary for the development of and/or are specific 
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constituents of the intervertebral disc matrix and vertebrae (Miller et al. 1991; Roberts et 

al. 1991; Nerlich et al. 1998; Gruber et al. 2002; Jackson et al. 2004; Yoon et al. 2005) 

provides additional support for a role for Nell1 in early vertebral column development. 

This finding along with the spatio-temporal expression of PKC in vertebral bodies and 

intervertebral discs in both human and mice at a time when chondrogenesis and 

osteogenesis are initiated provides additional support for the Nell1’s role in the early 

vertebral column development. It is interesting to note that EDS-associated genes, Tnxb, 

Col5a1 and Col5a3 are severely reduced by the Nell16R mutation and one of the EDS 

subtype syndromes, EDS types V1, manifests spinal curvature. Based on these findings, it 

can be speculated that Nell1 mutant mice may model certain forms of EDS. 

 

REGULATORS OF Nell1: NELL1 is regulated by several growth factors and 

transcription factors. The osteoinductive growth factors like FGF-2, BMPs and TGF-β1 

stimulate NELL1 (Zhang et al. 2002). The FGFs control bone formation by regulating the 

expression of various genes involved in osteoprogenitor cell proliferation, osteoblast 

differentiation and apoptosis via PKC and MAP kinases (ERK and p38 MAP kinases), 

which in turn regulate transcription factor like OSF-2/RUNX2 and regulate the expression 

of target genes like COL-1, IL-6, OCN, OPN, VEGF, alkaline phosphatase and NELL1 

(Marie 2003; Aghaloo et al. 2006). The BMPs are known to regulate the genes involved 

in the differentiation of osteoprogenitor cells, endochondral ossification, chondrogenesis 

and apoptosis (Hay et al. 2001; Marie et al. 2002) and they are known to mediate their 

action through PKC and OSF-2/RUNX2 development pathways (Hay et al. 2001; Lee et 

al. 2002). TGF-β, a potent regulator of osteochondroprogenitor cell migration and 

proliferation and differentiation of osteoblasts and chondrocytes (Mehrara et al. 2002; 

Rosado et al. 2002), is known to up regulate PKC and OSF-2/RUNX2 in both osteoblasts 

and chondrocytes and mediate some of its biological function through activating MAP 

kinases via PKC and thereby regulate OSF-2/RUNX2 and transcription of target genes 

(Mehrara et al. 2002; Rosado et al. 2002).  

Furthermore, the NELL1 expression is also modulated by transcription factors 

such as MSX-2 and OSF-2/RUNX2. The NELL1 promoter contains multiple conserved 
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MSX-2 and OSF-2/RUNX2 binding sites (Lu et al. 2007; Truong et al. 2007). NELL1 is 

known to bind with and become phosphorylated by specific isoforms of PKC (Kuroda et 

al. 1999). NELLl is also known to regulate the expression of several genes, which are 

involved in bone development. It is known to up regulate osteoblastic differentiation 

marker genes like OPN, OCN, BSP and chondrocyte differentiation marker COL-10 

(Zhang et al. 2002; Cowan et al. 2006). 

This study indicates that Nell1 may regulate transcription of several collagenous 

and non-collagenous ECM proteins. Matrillins are adopter proteins and form collagenous 

and non-collagenous filamentous networks(Mates et al. 2004). They are known to be 

involved in cell adhesion, and spreading (Makihira et al. 1999) They interact with COL-

2, -6, and proteoglycans and several studies suggest that they are involved in both 

intramembranous and endochondral ossification (Winterbottom et al. 1992; Klatt et al. 

2000; Wiberg et al. 2003). Tenascins are known to regulate cell migration, differentiation 

and cell and ECM interactions. TNX binds COL-6 and regulate collagen synthesis 

(Minamitani et al. 2004). OPN and OCN are associated with maturation and organization 

of the bone and cartilage ECM and prepare the matrix for mineralization(Stein et al. 

1993). 

Based on findings that the FGFs, BMPs, and TGF-β upregulate PKC and signal 

through PKC via OSF-2/RUNX2 and regulate the genes involved in osteogenesis and 

chondrogenesis and the association of NELL1 with certain PKC isoforms and its 

regulation by OSF-2/RUNX2, it is very clear that these growth factors along with the 

transcription factor OSF-2/RUNX2 and NELL, and its down stream targets like specific 

collagenous (Col12a1, Col6a1, Col5a1 and Col5a3, Col X) and non-collagenous 

(matrillins, tenascins, PRG 4, BMPR-1A, OPN, OCN and BSP) proteins play a major 

role in both intramembranous and endochondral ossification. 

 

MODEL FOR Nell1-MEDIATED PATHWAYS. The Figure.5.1 shows the 

hypothetical model of Nell1 signaling and function in both craniofacial and vertebral 

column development and this was based on the previously published reports and data  

gathered from this study. Mutation in Nell1 might disrupt signaling by growth factors via  
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Figure. 5.1: The Hypothetical Model of Nell1 Signaling Pathway.  In vertebral column 

(A) and craniofacial (B) development. See text for details. ↓ - Decreased expression, ↑ - Increased, ↓ - 

Decreased. 
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PKC during osteogenesis and chondrogenesis (Fig.5.1). During the vertebral column 

development, reduced expression of Nell1 may directly or indirectly decrease the 

expression of ECM proteins like tenascins and matrillins and this in turn may affect the 

synthesis and deposition of certain collagens (Col5a1, Col5a3, Col6, Col12a1, Col15a1, 

and Col17a1). The decreased expression of matrillins may disrupt their interaction with 

collagens and proteoglycans and this in turn may lead to decreased osteoblast / 

chondrocyte adhesion, spreading, and irregular ossification. Downregulation of tenascins 

and Col X may interfere with collagen synthesis, deposition and chondrocyte 

differentiation. The decreased expression of matrillins, tenascins and collagens may also 

lead to decreased ECM production and vertebral defects. Additionally, aberrant 

expression of Nell1 may downregulate the differentiation of specific genes like Chad, 

Prg4, Thsb3, Opn, and Ocn and this in turn leads to decreased chondrogenesis and 

osteogenesis in the thoracic region and subsequent vertebral column defects (Fig. 5.1A). 

During the craniofacial development, mutation in Nell1 might lead to reduced 

expression of matrillins and tenascins and this in turn may lead to reduced synthesis and 

deposition of specific collagens (Col5a1, Col5a3, Col10a1, and Col18a1) which may 

subsequently lead to decreased ECM production, thinning of the bones and immature 

bone formation. Furthermore, reduced expression of Nell1 may downregulate the 

differentiation of specific genes like Opn and Ocn with subsequent reduction in 

osteoblast differentiation and this may in turn also increase the proliferation and decrease 

apoptosis in osteoblasts. This in turn may lead to reduced ECM deposition by osteoblasts. 

Thus, the disrupted balance between proliferation, differentiation, and apoptosis along 

with reduction in ECM may increase skull growth and thinning of the skull bones (Fig. 

5.1B). 

 

FUTURE DIRECTIONS AND RECOMMENDATIONS 

 

Despite the fact that understanding of Nell1 mediated pathways is still in its 

infancy, the dramatic effect of the protein in bone formation has already led to promising 

studies that are paving the way for treating human bone disorders. NELL1 is currently 
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being tested as a therapeutic agent for bone regeneration. Many craniofacial defects can 

be corrected with bone grafts or bone regeneration after orthopedic or surgical expansion. 

Although autografts have been used for a long time, they are limited by availability and 

injury to the donor site (Sawin et al. 1998). Therefore there is a great demand for 

osteoinductive therapies that will eliminate the use of autografts. Currently BMP-2 and -7 

have been approved for human use and have been used successfully to induce bone 

formation in craniofacial areas of sheep (Abu-Serriah et al. 2003), mice (Matsumoto et al. 

2001), and humans (van den Bergh et al. 2000). However, the BMP therapy is associated 

with adverse effects like ectopic bone formation, local inflammatory reaction and various 

non-bone specific effects (Valentin-Opran et al. 2002). 

NELL1’s osteoinductive properties along with its osteo-chondroprogenitor and 

osteoblast cell specificity and its preferential expression in skeletal tissues makes it a 

potential candidate for bone regeneration in craniofacial and other skeletal defects. 

Currently several researchers are using Nell1 as a therapeutic agent to regenerate bone in 

animal models. Nell1 was able to induce bone formation in calvarial defects in a mouse 

model (Aghaloo et al. 2006) and in distracted intermaxillary suture in a rat model (Cowan 

et al. 2006). Additionally, Nell1 was successfully used to induce spinal fusion in rats (Lu 

et al. 2007). In all these animal models, Nell1’s osteoinductive effects were compared to 

Bmp-2 and -7 and data gathered from these studies show that Nell1 is as potent as BMPs 

in inducing bone formation and exerts its effects more specifically in skeletal tissues than 

BMPs. 

Even though in the past few years great progress has been made in delineating 

Nell1 function and its mode of action, the pathway(s) utilized by Nell1 and the other 

players involved in osteogenesis and chondrogenesis still largely remain unclear. The 

immediate upstream regulators as well as downstream targets of Nell1 still need to be 

identified. In this study, impact of the loss-of-function of Nell1 on the selected genes was 

examined. However, only 219 genes were assayed and there may be other genes 

(involved in osteoblast proliferation/differentiation, survival and signaling) that are 

involved in vertebral column development and are affected by aberrant expression of 
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Nell1. With whole genome microarray analysis many new genes, which play critical roles 

in endochondral ossification can be identified. 

During the vertebral skeleton development, Nell1 may mediate its actions through 

interacting with and regulating other genes which are critical for osteogenesis and 

chondrogenesis including growth factors, cytokines, extracellular matrix proteins, 

transcriptions factors, and genes that are involved in proliferation, differentiation and 

death /survival in osteoblasts and chondrocytes. 

In recent years, DNA microarrays have enabled researchers to examine the 

consequences of loss of function of a particular gene on other genes in the entire genome. 

Data gathered from these experiments may aid in finding novel interactions of Nell1 with 

other genes or its association with certain biological pathway (s). By identifying the 

genes, which are differentially regulated by loss of function of Nell1, we may be able to 

determine if Nell1 operates upstream or downstream of these genes or which genes in 

osteoblast/chondrocyte growth, differentiation and death are affected. By finding the 

genes that are associated with, co-regulated with or regulated by Nell1, we may be able to 

better understand its role in both intramembranous and endochondral ossification. Taken 

as a whole, the data generated by these experiments will lead to a better understanding of 

the role of Nell1 in general, consequences of its mutation and its underlying mechanisms 

of action in the developing vertebral skeleton. This information may also help make Nell1 

a better therapeutic agent in terms of specificity and efficacy in treating skeletal defects. 

This study began with the characterization of the five mutant alleles (88SJ, 335SJ, 

2038SJ and 11DSJ) of Nell1 along with Nell16R (102DSJ). However, after initial 

phenotyping, expression and skeletal analysis, only Nell16R was chosen for further 

characterization, because Nell16R mice exhibited severe skeletal defects and dramatically 

reduced Nell expression levels compared to other mutant alleles. One of the other alleles, 

Nell11R (88SJ) also showed severe skeletal defects and attempts to find a mutation in that 

allele as well as other mutant alleles was not met with success. Mutation scanning was 

done on all the 20 exons and only on their flanking intron sequences (~ 40 bp upstream 

and downstream of each exons, where ENU is likely to induce point mutations). The 

mutation 88SJ and other alleles may be deep inside the intron sequences. By fully 
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sequencing Nell1 genomic DNA (all the exons along with intron sequences) we may be 

able to identify mutation in these other alleles and see the other functional consequences 

of Nell1 mutation and this may lead to a better understanding of the Nell1 function in 

osteogenesis / chondrogenesis and possibly its role in other organ systems. By 

characterizing other alleles, we may be able to elucidate the full range of Nell1 functions 

in skeletal as well as in other systems and identify other yet unknown functions of Nell1 

or defects in other organs/systems due to its mutation during the mouse development.  

Mutation in Nell1 leads to neonatal lethality, making it difficult to study its 

functions in the skeletal as wells other systems. To understand the role of Nel1 in 

vertebral column development, conditional knockout mice can be created by using lox P 

and by tissue specific expression of Cre recobinase. By selectively knocking out Nell1 in 

vertebral column, deleterious effects of Nell mutation on survival of mice can be avoided. 

Mice will be born alive and are allowed to develop and thus the effect of Nell1 in 

vertebral column can be studied. 

Nell1 mediated signaling pathway(s) in both intramembranous and endochondral 

ossification can be further elucidated by conducting in vitro studies. The osteoblasts 

/chondrocytes can be isolated from the calvarial bones and vertebral column and treated 

with osteogenic factors like FGFs and BMPs. Upregulation of Nell1 and activation of 

MAP kinases (ERK/p38/JNK) pathways can detected by Western blot analysis. 
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