
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

5-2009

A New Generation of Mixture-Model Cluster
Analysis with Information Complexity and the
Genetic EM Algorithm
John Andrew Howe
University of Tennessee - Knoxville

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Howe, John Andrew, "A New Generation of Mixture-Model Cluster Analysis with Information Complexity and the Genetic EM
Algorithm. " PhD diss., University of Tennessee, 2009.
https://trace.tennessee.edu/utk_graddiss/863

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a dissertation written by John Andrew Howe entitled "A New Generation of
Mixture-Model Cluster Analysis with Information Complexity and the Genetic EM Algorithm." I have
examined the final electronic copy of this dissertation for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in
Business Administration.

Hamparsum Bozdogan, Major Professor

We have read this dissertation and recommend its acceptance:

Mohammed Mohsin, Adam Petrie, Michael Vose

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

I am submitting herewith a dissertation written by John A. Howe entitled “A New Generation of
Mixture-Model Cluster Analysis with Information Complexity and the Genetic EM Algorithm.” I
have examined the final electronic copy of this dissertation for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy,
with a major in Business Administration.

Hamparsum Bozdogan, Major Professor

We have read this dissertation
and recommend its acceptance:

Mohammed Mohsin

Adam Petrie

Michael Vose

Accepted for the Council:

Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



A New Generation of Mixture-Model Cluster

Analysis with Information Complexity and

the Genetic EM Algorithm

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

John A. Howe

May 2009



Copyright c© 2009 by John A. Howe.

All rights reserved.

ii



Dedication

This dissertation is dedicated to my grandfather Denzil Smith, after whom my son John Dennis

is named. From him I have learned much about life, and he has given me his curiosity and love

of music. As I’m sure he would agree, curiosity and music go with mathematics and logic like

spaghetti and meatballs. Thus this dedication seems perfectly reasonable ⌣̈.

iii



Acknowledgments

I would like to thank all the people who have encouraged and pushed me in my lifelong quest of

knowledge and achievement, and specifically those who supported and helped me complete this

dissertation.

I want to extend grateful thanks to Paul Castagna, who was instrumental in my meeting Dr. Boz-

dogan and matriculating with the University of Tennessee. I am deeply indebted to my advisor,

Dr. Hamparsum Bozdogan, for expertly guiding my professional development, and imbuing me

with his enthusiasm for research.

I would like to thank my doctoral committee members Dr. Mohammed Mohsin, Dr. Adam Petrie,

and Dr. Michael Vose for their time and support and useful comments.

Especially, I would like to express my gratitude to my wife and children Karen, John, and Amanda.

Without their sacrifice and support, this work would have not been completed.

iv



Abstract

In this dissertation, we extend several relatively new developments in statistical model selection

and data mining in order to improve one of the workhorse statistical tools - mixture modeling

(Pearson, 1894). The traditional mixture model assumes data comes from several populations of

Gaussian distributions. Thus, what remains is to determine how many distributions, their popula-

tion parameters, and the mixing proportions. However, real data often do not fit the restrictions of

normality very well. It is likely that data from a single population exhibiting either asymmetrical or

nonnormal tail behavior could be erroneously modeled as two populations, resulting in suboptimal

decisions. To avoid these pitfalls, we develop the mixture model under a broader distributional as-

sumption by fitting a group of multivariate elliptically-contoured distributions (Anderson and Fang,

1990; Fang et al., 1990). Special cases include the multivariate Gaussian and power exponential

distributions, as well as the multivariate generalization of the Student’s T. This gives us the flex-

ibility to model nonnormal tail and peak behavior, though the symmetry restriction still exists.

The literature has many examples of research generalizing the Gaussian mixture model to other

distributions (Farrell and Mersereau, 2004; Hasselblad, 1966; John, 1970a), but our effort is more

general. Further, we generalize the mixture model to be non-parametric, by developing two types

of kernel mixture model. First, we generalize the mixture model to use the truly multivariate

kernel density estimators (Wand and Jones, 1995). Additionally, we develop the power exponential

product kernel mixture model, which allows the density to adjust to the shape of each dimension

independently. Because kernel density estimators enforce no functional form, both of these methods

can adapt to nonnormal asymmetric, kurtotic, and tail characteristics.

Over the past two decades or so, evolutionary algorithms have grown in popularity, as they
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have provided encouraging results in a variety of optimization problems. Several authors have

applied the genetic algorithm - a subset of evolutionary algorithms - to mixture modeling, in-

cluding Bhuyan et al. (1991), Krishna and Murty (1999), and Wicker (2006). These procedures

have the benefit that they bypass computational issues that plague the traditional methods. We

extend these initialization and optimization methods by combining them with our updated mix-

ture models. Additionally, we “borrow” results from robust estimation theory (Ledoit and Wolf,

2003; Shurygin, 1983; Thomaz, 2004) in order to data-adaptively regularize population covariance

matrices. Numerical instability of the covariance matrix can be a significant problem for mixture

modeling, since estimation is typically done on a relatively small subset of the observations. We

likewise extend various information criteria (Akaike, 1973; Bozdogan, 1994b; Schwarz, 1978) to the

elliptically-contoured and kernel mixture models. Information criteria guide model selection and

estimation based on various approximations to the Kullback-Liebler divergence.

Following Bozdogan (1994a), we use these tools to sequentially select the best mixture model,

select the best subset of variables, and detect influential observations - all without making any

subjective decisions. Over the course of this research, we developed a full-featured Matlab toolbox

(M3) which implements all the new developments in mixture modeling presented in this dissertation.

We show results on both simulated and real world datasets.

Keywords: mixture modeling, nonparametric estimation, subset selection, influence detection,
evidence-based medical diagnostics, unsupervised classification, robust estimation.
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Chapter 1
Introduction

“Oh, [introduction]. Jellyman, offspring, offspring jellyman.” - Crush, Finding Nemo

1.1 What is Mixture Modeling?

Mixture modeling is a very useful statistical tool - especially when multivariate data is concerned.

Consider n observations on p measurements from some physical process. A good example is the

Fisher iris data - 150 observations of 4 flower characteristics: petal length, petal width, sepal length,

and sepal width. As any statistician worth his salt could tell you, the iris data contains K = 3 groups;

50 observations each from the varieties Iris Setosa, Iris Versicolor, and Iris Virginica. The problem

at hand is to determine that there are three populations from the data itself. The ubiquitous bell

curve distribution is usually used in mixture modeling - the researcher fits K̂ distributions to the

data. Algorithmically and conceptually, mixture modeling is quite simple:

1. Determine how many populations to fit.

2. Determine initial estimates for group centroids.

3. Utilize the an initialization algorithm to iteratively assign each observation into the closest

cluster until convergence.

4. Utilize a second algorithm to further optimize those cluster assignments.

Things, however, are rarely quite that simple.
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1.2 Current Issues in Mixture Modeling

There are several challenges that confront the researcher wishing to use multivariate mixture mod-

eling. Foremost is the distributional assumption. The distribution of errors discovered by Carl

Freidrich Gauss forms the basis for much of statistics. However, this distributional assumption can

be too restrictive, and will lead to suboptimal classification of the data in many cases. Perhaps the

data exhibit light or heavy tails, is highly peaked, skewed, or some of each.

The requirement of initial centroid estimates by the K-Means algorithm can be someone oner-

ous. For overlapping data, or data of p > 2 dimensions, making a priori centroid determinations

is no trivial matter. Secondly, it has been demonstrated that the algorithm is not robust to the

selection of centroids, leading to different ways to partition the same dataset.

Despite its ubiquity, the typical EM algorithm also has several arguments against its use. It has

been characterized as slow to converge (first-order linear convergence), and highly dependant upon

initial conditions (which can vary widely from the k-means algorithm). Thirdly, we have observed

that the EM algorithm can have difficulty converging to a solution when data exhibit a substantial

amount of overlap, or when minimum group sizes are not arbitrarily set. Finally, we claim that

maximizing just the likelihood, as the EM algorithm does, is suboptimal.

1.3 Review of Literature

The Gaussian mixture model (GMM), one of the most mature statistical clustering methods, was

first introduced by Pearson (1894). Pearson suggested solving the mixture problem using the

method of moments (MoM), requiring nonlinear optimization in high dimensions. Only simple

problems were considered until the introduction of computers in the 1960’s. Much progress has

been made in the last several decades.

The well-known sequential K-Means was first introduced by MacQueen (1967) as a simple

and efficient class label initialization scheme. A technical report by Bozdogan (1983) from the

University of Illinois at Chicago proposed an intelligent scheme for selecting the center of each

hypothesized cluster. In response to accusations regarding the robustness of K-Means solutions,

Krishna and Murty (1999) developed a specialized variant of the genetic algorithm (Holland, 1975)
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for optimizing the initial group structure - Genetic K-Means (GKM). The Genetic Algorithm with

Regularized Mahalanobis distance (GARM), a more general initialization scheme, was developed

and extended by Mao and Jain (1996), Song and Shaowei (1997), and Song et al. (1997). For other

extensions to the cluster initialization problem, Chen et al. (2004) is an excellent source.

Working with Pearson’s MoM equations, several researchers made simplifying assumptions in

order to make the estimation problem more tractable, see Day (1969) and John (1970b). Kabir

(1968) introduced and applied a generalized method of moments to the mixture problem; John

(1970a) and Rider (1961) relaxed the symmetric distributional assumptions by developing MoM

estimators for gamma and exponential univariate mixture models, respectively.

Peters and Walker (1978) introduced a “general iterative procedure” for computing the maxi-

mum likelihood estimates for the GMM. Based on the idea of hidden information (the group labels),

this came to be called the Expectation-Maximization algorithm. Theoretical considerations of the

EM algorithm have been explored by Xu and Jordan (1996) and Ma and Xu (2005), among others.

Both Hasselblad (1966) and Redner and Walker (1984) considered the EM algorithm for a mixture

of exponential family distributions. In his PhD thesis, Wicker (2006) presented the Genetic EM

algorithm (GEM). Finally, Klein and Dubes (1989) and Bandyopadhyay (2005) applied simulated

annealing to clustering and fuzzy clustering, respectively.

Bayesian methods for simple mixture problems were considered by Bernardo and Girón (1988).

Using the Bayesian framework, model selection considering measurement error was discussed in

Pérez and Berger (2002); Diebolt and Robert (1994) used Bayesian sampling methods to estimate

mixture parameters. The problem of choosing the number of clusters in a dataset has been discussed

in Hartigan (1975) and Marriott (1971). As is well-known, the likelihood ratio test statistic (LRT)

does not follow a chi-squared distribution in this context. This problem of model selection was fur-

ther considered when Bozdogan (1981) derived information criteria AIC and SBC for the Gaussian

mixture model. He derived ICOMP for the GMM under various covariance structures in Bozdogan

(1994b). In the same year, Bozdogan (1994a) utilized information criteria to simultaneously se-

lect the number of clusters, subset the variables, and identify influential observations. From the

LRT standpoint, several authors including Wolfe (1971); McLachlan (1987); Feng and McCulloch

(1994) proposed modifications and / or empirical methods. From the Bayesian framework, re-
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cent model selection contributors have been Stephens (2000) and Rechardson and Green (1997).

Woo and Sriram (2006) suggested using a density-based minimum Hellinger distance to estimate

the number of components. Finally, Wang et al. (2003a,b) considered application of the Gaussian

mixture model after translating the data into feature space using reproducing Hilbert-space kernels.

1.4 Expected Contributions

In this dissertation, we extend mixture modeling in two primary directions. The first is to relax

the distributional assumptions. Whereas previous research in this arena has primarily focused

on the Gaussian mixture model, or allowed for other univariate distributions, we extend mix-

ture modeling by allowing for more general multivariate distributions. Multivariate symmetric

elliptically-contoured (EC) distributions can be used to model varying levels of peakedness or tail

behavior. The Gaussian and Laplace distributions are both well-known special cases of the power

exponential distribution, which is a special case of Kotz’s type of EC distribution. By varying

the probability density generator, the EC class of distributions can be generalized to a host of

symmetric probability distributions. Furthermore, we relax all distributional assumptions by intro-

ducing the mixture of kernel density estimators (KMM & PEKMM), in which the entire dataset

is utilized to compute density estimates. While it is true that kernel density estimation relies on

picking an appropriate bandwidth matrix (of which there are many options), we show how to use

information criteria to do this without making any subjective decisions. Finally, we augment the

mixture model by implementing robust covariance estimators that allow us to partially overcome

the “curse of dimensionality”. Using said covariance estimators, we provide an updated regularized

Mahalanobis (RM) distance with a more intelligent regularization function. Our RM distance also

uses more information about the data dependency structure to scale itself.

1.5 Overview of Thesis

The remainder of this dissertation is divided into 8 chapters. In Chapter 2, we present details of

the traditional multivariate Gaussian mixture model, including computational algorithms. From

here, we move on to justifications of information criteria (IC) and derive various IC for the GMM

in Chapter 3. We also show how to using information criteria to identify influential observations

in a dataset. Chapter 4 begins with background of the genetic algorithm (GA), then shows how

it can be extended to the problem of assigning observations to groups. After presenting details of
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GKM, GARM, and GEM, Chapter 4 shows how the GA can be used for the problem of dimension

reduction through variable subsetting.

In Chapter 5, we discuss the class of elliptically-contoured distributions and the problem of

parameter estimation. We then show the modified EM algorithm and derive various information

criteria under these relaxed distributional assumptions. The same topics are presented for the

KDE mixture models in Chapters 6 and 7. Numerical results from all these methods are shown in

Chapter 8. Finally, Chapter 9 consists of conclusions and suggestions for further future research.

All simulated and real datasets are described, with appropriate visualizations, in the appendix.
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Chapter 2
The Gaussian Mixture Model (GMM)

“Holds two NCAA division one records; one for most points in a season the other for

distance. Former Nick-name: The Mule. The only pro-athlete ever to come out of

Collier County and one hell of a model American” - Ace Ventura, Ace Ventura, Pet

Detective

2.1 Motivation

In the late 1800’s, Karl Pearson (1894) was analyzing a dataset consisting of the ratio of “forehead”

breadth to body length for 1000 crabs sampled at Naples by Professor W.F.R. Weldon. He found

a mixture of two normal distributions fit the data very well, and concluded that the measurements

were made on two separate species of crabs; thus was born mixture modeling. Mixture modeling

is a method of partitional cluster analysis (as opposed to hierarchical) in which the researcher pre-

tends to not know the actual group labels for a given dataset. Of course, in real applications, we

might not know them, as with Pearson’s crabs. This is in a class of statistical modeling methods

called unsupervised learning, as opposed to supervised learning such as discriminant analysis.

In general, we are given X ∈ R
(n×p) (n observations and p measurements), and we want to

estimate the number of mixtures (also called clusters/groups/classes/populations) in the data (K)

and the class identifier for each observation (ŷi | X, i = 1 . . . n, ŷi ∈ 1 . . . K). A perfect example of

this sometimes daunting task is displayed in Figure 2.1. Here we have some bivariate data, and

we have created a scatter plot of the first dimension on the x-axis versus the second dimension on

the y-axis. Traditionally, mixture modeling, like most of statistics, is based on an assumption of
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Figure 2.1: How Many Groups are There?

normality.

gk(xi | µ̂k, Σ̂k) = (2π)−
p

2 |Σ̂k|
− 1

2 exp

(

−
1

2
(xi − µ̂k)

′ Σ̂−1
k (xi − µ̂k)

)

(2.1)

log L(θ̂ | X) =

n∑

i=1

log





K̂∑

k=1

π̂kgk(xi | µ̂k, Σ̂k)



 (2.2)

For a given datapoint and mixture, the multivariate Gaussian probability density gk(xi | µ̂k, Σ̂k) is

displayed in (2.1), followed by the log-likelihood function for the entire mixture model. For the kth

population, the mixing proportion, mean vector, and covariance matrix are estimated as shown in

(2.4) through (2.6), where

Ik (ŷi) =







1

0

∣
∣
∣
∣
∣
∣

ŷi = k

ŷi 6= k
. (2.3)

π̂k =
1

n

n∑

i=1

Ik (ŷi) (2.4)

µ̂k =
1

π̂kn

n∑

i=1

xiIk (ŷi) (2.5)

Σ̂k =
1

π̂kn

n∑

i=1

[
(xi − µ̂k)

′ (xi − µ̂k)
]
Ik (ŷi) (2.6)
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Figure 2.2: Demonstration of Mixture of K = 2 Gaussians.

So as to decrease the computational burden, a “common” covariance matrix is sometimes estimated

and applied to all populations, rather than the group-specific (2.6) estimate. We feel this unneces-

sarily simplifies the problem, and the gain in computation time is probably no longer worth it. A

very good visualization of the problem of decomposing a dataset into two distributions can be seen

in Figure 2.2. We generated a total of n = 1000 random samples from N
(
µ = −1, σ2 = 2

)
and

N
(
µ = 5, σ2 = 2

)
, using mixing proportions of π1 = 0.3 and π2 = 0.7. The green △ curve shows

the density estimate computed by fitting a single distribution to the entire dataset. However, the

red ∗ curves, modeling the true mixture, clearly provide a much better fit to the data.

The first step in fitting a GMM is to determine the appropriate number of mixtures K̂ to fit

to a dataset, a problem often ignored in much of the literature. Typically, a range is evaluated:

K̂ = 1 . . . Kmax; there are several heuristic guidelines for determining Kmax (see Bozdogan, 1994b)

including:

• Kmax < ceil
(

2n
(p+1)(p+2)

)

• Kmax
∼= ceil

(√
n
2

)

• Kmax = ceil (log2 n)

Once this first step is complete, we have Kmax different arrangements of the data - we need a

method to arbitrate among the results and help us choose the best grouped structure for the data.
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A logical choice of criterion is the maximized log-likelihood. Whichever K̂ maximizes the likelihood

must fit the data best. In Chapter 3, we’ll see a class of model selection criteria that extend and

improve upon this.

For each model, K̂ = 1 . . . Kmax, the researcher must perform high-dimensional nonlinear opti-

mization of the likelihood function. This is unfortunately due to the complex nature of the mixture

problem; there are no closed-form solutions to ∂
∂θ log L(θ̂ | X) = 0. This is similar to determining

MLEs for certain distributions, such as the Weibull, for which the likelihood must be numerically

maximized. The Newton-Ralphson algorithm could be used for this case, but we need starting

values for the shape and scale parameters. As a direct analogue, for numerically optimizing (2.2),

we need initial estimates of (2.4) through (2.3); the K-Means algorithm provides these. The nu-

merical optimization of the likelihood is performed by the Expectation Maximization algorithm,

first introduced to mixture modeling by Peters and Walker (1978).

2.2 Initialization - K-Means

Ironically, the K-Means algorithm, popularized by MacQueen (1967), with the purpose of com-

puting initial parameter values for the EM algorithm requires its own starting values. For the

purpose of computing parameter estimates for a mixture of K̂ distributions, K̂ group means are

necessary. This a priori requirement is one shortcoming of this method. For overlapping data, or

data of p > 2 dimensions, appropriate initialization may not be a trivial matter. One approach to

centroid selection is the data-adaptive scheme proposed by Bozdogan (1983). This scheme begins

by computing the lowest and highest order statistics x(1) and x(n), then follows this procedure:

1. Compute x11 =
x(1)+x(n)

2 ; x11 is used as the initial centroid estimate in the case that K̂ = 1.

2. If the researcher is fitting K̂ = 2 mixtures, the centroids are µ̂1 = x21 =
x(1)+x11

2 , µ̂2 = x22 =

x11+x(n)

2 .

3. For K̂ = 3, compute x31 =
x(1)+x21

2 , x32 = x21+x22
2 , x33 =

x22+x(n)

2 , centroid assignments are

µ̂1 = x31, µ̂2 = x32, µ̂3 = x33.

This algorithm continues similarly for higher K̂. As can be seen in the right pane Figure 2.3, the

centroid estimates are evenly spaced along a hyperplane through the center of the data. The black

*# # markers indicate their placements. For example, *3 2 shows where the 2nd group is estimated
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Figure 2.3: Demonstration of Centroid Selection Algorithm.

to be centered, if there are three clusters. The red *# indicate the actual centroids used to generate

the data. While some of them estimates clearly have some distance over which to migrate, consider

the left pane. Where would you center K̂ = 3 distributions? Once the initial centroid estimates

are computed, the K-Means algorithm alternates assigning datapoints to the nearest cluster, using

the Euclidian distance measure (2.7), and recomputing the centroid estimates.

ei (k) = (xi − µ̂k) (xi − µ̂k)
′ . (2.7)

At the tth iteration, the new cluster assignments are first computed, then the centroids are re-

estimated:

1. ŷ
(t+1)
i = k such that ei (k) = min

k=1...K̂
ei (k)

2. µ̂
(t+1)
k =

∑n
i=1 xiIk(ŷ

(t+1)
i )/

∑n
i=1 Ik(ŷ

(t+1)
i ), k = 1, . . . K̂

At the conclusion of each iteration, the total within-cluster Euclidian distance,

E(t+1) =

n∑

i=1





K̂∑

k=1

Ik(ŷ
(t+1)
i )ei (k)



 , (2.8)

is computed; iteration is continued until the absolute difference
∣
∣E(t+1) − E(t)

∣
∣meets some criterion.

Hence, the algorithm is a hill-climber. Figure 2.4 graphically represents how this migration improves

(2.8). In the left pane, we see 25 circled datapoints in the wrong groups. At some future time step,

we suppose these datapoints have migrated into the correct clusters, with a substantial improvement
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Figure 2.4: Demonstration of K-Means.

in the total distance measure: moving 8.3% of the observations resulted in a 40.2% improvement.

As mentioned in Krishna and Murty (1999), the K-Means algorithm exhibits a strong tendency

to converge to suboptimal local minima, and is not robust to the selection of centroids, leading

to different ways to partition the same dataset. Other methods for cluster initialization, such as

integer programming, dynamic programming, and branch-and-bound methods are known to be

computationally intensive, even for a moderate number of observations or mixtures. For further

background information regarding clustering algorithms, Jain and Dubes (1989) is a good reference.

2.3 Optimization - EM

The expectation maximization algorithm is a fairly general iterative hill-climbing approach for

numerical likelihood maximization. The EM algorithm has been derived for a variety of statistical

modeling problems as arising from the forms taken by the partial derivatives (Redner and Walker,

1984). However, it seems the most common pedagogical explanation is to approach the problem

as did Dempster et al. (1977) - that of considering the data to be incomplete, with the group

assignments yi missing.

After the estimated mixture assignments are initialized, they are passed on to the EM algorithm,

which iterates through alternating Expectation and Maximization steps. At the tth iteration, the

algorithm estimates the posterior probabilities of group membership for datapoint i and mixture k
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using (2.9).

p̂i (k) =
π̂

(t−1)
k gk(xi | µ̂

(t−1)
k , Σ̂

(t−1)
k )

∑K̂
k=1 π̂

(t−1)
k gk(xi | µ̂

(t−1)
k , Σ̂

(t−1)
k )

(2.9)

In the subsequent maximization step, estimates for the parameters πk, µk, and Σk are recomputed

for all populations as shown here:

π̂
(t)
k =

1

n

n∑

i=1

p̂i (k) , (2.10)

µ̂
(t)
k =

1

nπ̂
(t)
k

n∑

i=1

xip̂i (k) , (2.11)

Σ̂
(t)
k =

1

nπ̂
(t)
k

n∑

i=1

p̂i (k) (xi − µ̂
(t)
k )′(xi − µ̂

(t)
k ). (2.12)

These steps are iterated until convergence of the log-likelihood,

∣
∣
∣log L(θ̂ | X)(t) − log L(θ̂ | X)(t−1)

∣
∣
∣ ≤ C. (2.13)

When the algorithm terminates due to convergence, each observation is assigned to the cluster

associated with the highest posterior probability:

ŷi = k where π̂kgk(xi | µ̂k, Σ̂k) = max
k=1...K̂

π̂kgk(xi | µ̂k, Σ̂k). (2.14)

This is called the maximum a posterior (MAP) rule. The parameter estimates from the final iter-

ation are taken as the maximum likelihood estimators for the Gaussian mixture model.

Despite its popularity and simplicity, the typical EM algorithm has several arguments against

its use. The least troublesome is that it has been characterized as having slow convergence rates.

Redner and Walker (1984), argue that Newton and quasi-Newton methods should be preferred,

considering the slow first-order convergence of the EM. As computation speed increases, and cost

decreases, this is less of a problem. More worrisome is the fact that the resultant solution is highly

dependent upon the initial estimates. The log-likelihood parameter space is very rugged, especially

for large p, and it is easy for any hill-climber to get stuck in local maxima (Xu and Jordan, 1996)

without robust starting values. Of course, we know that the K-Means algorithm is generally

incapable of providing robust initialization. Additionally, the traditional EM algorithm can suffer

from numerical estimation problems for Σk. Without artificially restricting nk, a group can become
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inestimable when Σk becomes ill-conditioned, singular, or non-positive definite. Besides these issues,

we have observed that, for mixture modeling, the EM algorithm can get stuck in an oscillating state

which will never converge. This can occur when the posterior probability of group membership p̂i (k)

evolves such that certain datapoints trade back and forth between clusters, or when a mixture has

too few datapoints (nπ̂
(t)
k ≤ p) such that Σ̂

(t)
k becomes incomputable. As suggested in Ma and Xu

(2005), guaranteed convergence requires that clusters not be allowed to have an arbitrary

size, and also restricts the amount of overlap allowed. We find these restrictions severely limit

the practical ability of the EM algorithm. After all, the really interesting and challenging (not to

mention real) datasets often exhibit substantial cluster overlap.

2.4 Predictive Modeling Using Mixtures

Mixture models provide predictive information through the posterior probability of group member-

ship (2.9). If a practitioner wants to classify a new datapoint into one of K clusters, it should be

assigned to the cluster associated with the highest posterior probability. As an example, consider

a simple univariate data set which we generated from a mixture of two Gaussian distributions:

k Pi Mu Stdev (Actual Parameters)

-------------------

1 0.38 -3.00 2.00

2 0.63 3.00 1.00

-------------------

k Pi Mu Stdev (Estimated Parameters)

-------------------

1 0.37 -3.06 1.87

2 0.63 2.96 1.04

-------------------

We see that the final parameters are quite close to the true values, and the two distributions

clearly fit the data well. Using the estimated parameters, we computed the probability of group

membership in each distribution for the datapoints

X = [−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6].

Comparing Table 2.1 to Figure 2.5 suggests the classification rule works well.
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Figure 2.5: Mixture of Two Overlapping Gaussians.

Table 2.1: New Datapoints and their Group Classifications.

x π1 π2 Group

−4 100.0 0.0 1
−3 100.0 0.0 1
−2 100.0 0.0 1
−1 99.8 0.2 1
0 89.8 10.2 1
1 23.1 76.9 2
2 2.1 97.9 2
3 0.3 99.7 2
4 0.1 99.9 2
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Chapter 3
Robust Information Complexity Model

Selection Criteria

“You’re a complex Freudian hallucination having something to do with my mother,

and I don’t know why you have wings, but you have very lovely legs, and you’re a very

nice tiny person. . . .” - Adult Peter Pan, Hook

3.1 Definition of Complexity

A reasonable definition of complexity of a p-variate Gaussian distribution, through the covariance

matrix Σ, came from Van Emden (1971). Using H (xj) to indicate the marginal entropy for the jth

variable and H (X) to indicate the joint entropy for all variables, we have:

C0 (Σ) =

p
∑

j=1

H (xj)−H (X)

=
1

2

p
∑

j=1

(log (2π) + log (σjj) + 1)−
1

2
(p log (2π) + log |Σ|+ p)

=
1

2

p
∑

j=1

log (σjj)−
1

2
log |Σ| , (3.1)

where σjj = σ2
j indicates the variance of the jth variable. We use tr (·) and | · | to indicate the trace

and determinant of a matrix. Some characteristics of C0 are shown here.

• C0 (Σ) = 0 iff Σ is a diagonal matrix
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• C0 (Σ) =∞ iif |Σ| = 0

• the first term of (3.1) is not invariant under orthonormal transformations

As a result of this last observation, the first order maximal information theoretic measure of com-

plexity of Bozdogan (1988) is generally preferred, shown in (3.2). The maximization is performed

over all orthonormal transformations of the coordinate systems x1, x2, . . . , xp.

C1 (Σ) = max
T

C0 (Σ) =
p

2
log

tr (Σ)

p
−

1

2
|Σ| =

p

2
log

λarith

λgeom

(3.2)

Since the covariance matrix measured by C1 isn’t always guaranteed to be of full rank, we would

typically replace p with s = rank (Σ) in (3.2). Some observations:

• C1 (Σ) is the log ratio between the arithmetic and geometric mean of the eigenvalues

• C1 (Σ) incorporates the two most basic scalar measures of multivariate scatter - trace and

determinant

• C1 (Σ)→ 0 as Σ→ Ip

• as interaction between variables increases, so does C1 (Σ)

For more details regarding entropic complexity, see Bozdogan (1988).

3.2 Information Criteria Derived from Kullback-Liebler Diver-

gence

As previously stated, the first step in mixture modeling is to determine the maximum number of

mixtures, Kmax to fit to a dataset. After fitting models K̂ = 1 . . . Kmax, we have Kmax different

arrangements of the data. Now we need a method to arbitrate among the results and help us choose

the best number of groups represented in the data. This is where information criteria come into the

picture - the best model for the data is that which minimizes the information criterion (IC) function.

Of all the advances in statistics in the past 50 years, one of the most valuable has been the

introduction of elements of information theory. When Akaike (1973) introduced his well-known

Akaike’s Information Criteria (AIC), the subsequent movement introduced a fundamental change

in statistical model evaluation problems. Acknowledging the fact that any statistical model is
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merely an approximate representation of the data generating process (dgp), information criteria

attempt to guide model selection according to Occam’s Razor. One restatement of this is

“Of all possible solutions to a problem, all else equal, the simplest solution is probably

the best.” - William of Occam

This mind-set is perhaps the greatest reason for the importance of this advance: for a given dataset,

the best model is one which balances a good fit to the data and the desire for parsimony. As model

complexity increases, the goodness-of-fit must increase at least as much; otherwise, the additional

complexity is not worth the cost. Cost could refer to the actual cost of gathering additional data

(variables), but here we mostly refer to the cost of additional estimation uncertainty. Virtually

all information criteria penalize a poorly-fitting model with negative twice the maximized log-

likelihood, as an asymptotic estimate of the Kullback-Liebler Information (KL).

The fundamental basis for all information criteria is the KL divergence (KL distance, KL

information,. . . ), first introduced by Kullback and Leibler (1951). The KL distance measures the

difference between two probability distributions. Let us denote θ∗ to be vector of parameters of

the true dgp, and θ to be any other value of the parameter vector. Let f (X | θ) denote the joint

density function of X given θ, and let f (X | θ∗) indicate the true model. Further, let I (θ∗ | θ)

denote the KL distance between the true model. Then, since xi, i = 1, 2, . . . , n are independent, we

have:

KL (θ∗, θ) =

∫

Rn

f (X | θ∗) log

[
f (X | θ∗)

f (X | θ)

]

dx =

n∑

i=1

∫

fi (xi | θ
∗) log [fi (xi | θ

∗)] dxi −

n∑

i=1

∫

fi (xi | θ
∗) log [fi (xi | θ)] dxi, (3.3)

where fi, i = 1, 2, . . . , n are the marginal densities of the xi. Note that the first term in (3.3) is the

usual negative entropy H (θ∗, θ∗) = H (θ∗), which is constant for a given fi (xi | θ
∗). The second

term is equal to:

−
n∑

i=1

Eθ∗ [log fi (xi | θ)] , (3.4)

which can be estimated by

−
n∑

i=1

log fi (xi | θ) = − log L (θ | X) (3.5)
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without bias. Note how the true parameter θ∗ has dropped out of this. Of course, log L (θ | X) is

the log likelihood of the observations evaluated at θ. In practice, we would estimate the parameter

vector, typically using the MLE θ̂, and so we use the maximized log likelihood to approximate

(3.4).

−

n∑

i=1

log fi(xi | θ̂) = − log L(θ̂ | X) (3.6)

Thus, when there are competing models for a dataset, selecting the model with the highest maxi-

mized likelihood (or lowest negative maximized likelihood) should provide a model nearest to the

true data generating process. All true information criteria use this approximation for the KL dis-

tance from the true model to penalize a poorly-fitting model. The difference then, is in the penalty

for model complexity.

3.2.1 Model is Correctly Specified

The simplest information criterion is AIC, which penalizes model complexity with twice the number

of estimated parameters, m = cardinality (θ). Similar to AIC is Schwarz’s Bayesian Criteria

(SBC), which penalizes overly-complex models with m log (n) (Schwarz, 1978).

AIC = −2 log L(θ̂ | X) + 2m (3.7)

SBC = −2 log L(θ̂ | X) + m log (n) (3.8)

ICOMP , originally introduced in Bozdogan (1988), is a logical extension of AIC. The general

form of ICOMP

ICOMP = −2 log L(θ̂ | X) + 2C1(F̂
−1), (3.9)

is derived as an approximation to the sum of two KL distances. F̂−1 indicates the inverse Fisher

information matrix (IFIM). We’ve already seen how the first KL distance is incorporated into

ICOMP - the maximized likelihood. For the second KL distance, consider that fitting a specific

model to a dataset gives rise to an asymptotic covariance matrix

Cov(θ̂) = Σ(θ̂) (3.10)

for the MLE θ̂. That is,

θ̂ ∼ N(θ∗,Σ(θ̂) = F̂−1). (3.11)
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The estimated Fisher information matrix is computed as the expectation matrix of the second-

and cross- partial derivatives of the maximized log likelihood, as shown in (3.12). Of course, we

typically operationalize this in practice by replacing the expected values with the observed values.

In fact, there is an extensive body of theory, started by Efron and Hinkley (1978), suggesting that

the observed information is a better approximation to the true model covariance matrix.

F̂
(

θ̂
)

= −EX

[
∂2

∂θ∂θ′
log
(

f(X | θ̂)
)]

= −EX












∂2

∂θ2
1

∂2

∂θ1θ2
· · · ∂2

∂θ1θm

∂2

∂θ2θ1

∂2

∂θ2
2

...
. . .

∂2

∂θmθ1

∂2

∂θmθ2
· · · ∂2

∂θ2
m












(3.12)

Now invoking the C1 (·) complexity (3.2) on Σ(θ̂) can be seen as the KL distance between the joint

density and the product of marginal densities for a normal random vector with covariance matrix

Σ(θ̂), maximized over all orthonormal transformations of that Gaussian random vector. Hence,

using the estimated covariance matrix, we define ICOMP as the sum of two Kullback-Liebler

distances given by:

ICOMP (F̂−1) = −2 log L(θ̂ | X) + 2C1(F̂
−1). (3.13)

For more details, see Bozdogan (1990).

A very useful form of ICOMP can also be derived as a Bayesian criterion close to maximizing

a posterior expected utility (PEU), as shown in Bozdogan and Haughton (1998). Here we provide a

few highlights of the proof. For a given model M of dimension m, we can consider the KL distance

between the posterior and prior densities:

KL (fPost (θ | X) , fPrior (θ |M)) = −
m

2
log (2π)−

m

2
−

1

2
log |F̂−1| − log fPrior (θ |M) . (3.14)

We can define U1 = KL (fPost (θ | X) , fPrior (θ |M)) to be a utility function (Lindley, 1956;

Poskitt, 1987). Let us define the second utility shown in (3.15).

U2 = exp
[

−a×C1(F̂
−1)
]

(3.15)

For a = 1, our composite utility is U = U1 × U2. Applying Poskitt’s Corollary 2.2, and employing

some regularity conditions, if θ lies in our model, the posterior expected utility can be approximated
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by

log (PEU) ∼= log f(X | θ̂) +
m

2
log (2π) +

1

2
log |F̂−1|+ log (U) + log fPrior

(

θ̂ |M
)

, (3.16)

up to order O( 1
n) and up to some terms which do not depend on the model M . Simplifying (3.16)

we thus obtain a criterion, to be maximized to choose a model:

log f(X | θ̂)−
m

2
− C1(F̂

−1) + log f (M) . (3.17)

Of course, with no specific a priori information, the prior probability for all models should be equal,

so f (M) can be taken to be a constant term. This gives us ICOMPPEU which we can minimize

to select a best model:

ICOMPPEU = −2 log L(θ̂ | X) + m + 2C1(F̂
−1). (3.18)

Note that when we defined the utility

U2 = exp
[

−a× C1(F̂
−1)
]

, (3.19)

we considered the constant multiplier a to be 1 in obtaining the result shown above. Indeed other

choices of a are possible and equally justifiable, giving rise to different penalty functionals. For

example, a choice of a = log n would yield

ICOMPPEU = −2 log L(θ̂ | X) + m + log (n)C1(F̂
−1). (3.20)

which clearly enforces a stricter penalty. This is the form of ICOMPPEU we use in this research.

Selecting the appropriate penalty for ICOMP is important to the model selection process. Clearly,

the penalty could be arbitrarily set so high so as to force the criteria to always select the simplest

model considered.

3.2.2 Bias and Model Misspecification

“Model misspecification is a major, if it is not the dominant, source of error in the

quantification of most scientific analysis“ - Chatfield (1995).
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Figure 3.1: Example of Grouped non-Gaussian Data.

“All models are wrong, but some are useful” - Box (1979)

In most statistical modeling problems, we can’t assume that the true model is one of those being

evaluated; consider assuming a mixture of normals model when the data looks as shown in Figure

3.1, for example. Here we’ve generated surface and contour plots for a mixture of three Laplace

distributions, showing heavier non-Gaussian tails. Modeling data like this with a mixture of Gaus-

sian distributions will either lead to lower tail probabilities and/or inflated variance estimates for

each group - this can introduce bias into the model. Additionally, it is possible the non-Gaussian

tails may be modeled with superfluous groups. When we assume that the true distribution does

not belong to the evaluated parametric family of pdfs, that is, if the parameter vector θ∗ of the

distribution is unknown and is estimated by maximizing the likelihood, then it is not any longer

true that the average of the maximized log likelihood converges to the expected value of the log

likelihood. That is,

1

n
log L(θ̂ | X) =

1

n

n∑

i=1

log f(xi | θ̂) 9 EX

[

log f(X | θ̂)
]

(3.21)

In this case, the bias b between these two terms is given by

b = EG

[

1

n

n∑

i=1

log f(xi | θ̂)−

∫

R

log f(X | θ̂)dG (X)

]

=
1

n
tr
(
F−1R

)
+ O

(
n−2

)
, (3.22)

where the expectation is taken over the true distribution G =
∏n

i=1 G (xi). We note that tr
(
F−1R

)
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is the well known Lagrange-multiplier test statistic. Whereas F−1 is the inner-product form of the

IFIM, R is the outer-product form, shown in (3.23).

R
(

θ̂
)

= E

[(
∂2

∂θ∂θ′
log
(

f(X | θ̂)
))( ∂2

∂θ∂θ′
log
(

f(X | θ̂)
))]

(3.23)

When the model is correctly specified the bias reduces to:

b =
1

n
tr
(
F−1R

)
+ O

(
n−2

)
=

1

n
tr (Im) + O(n−2) =

1

n
m + O

(
n−2

)
≈

m

n
. (3.24)

Using this approximation, we see how AIC is a special case of Takeuchi’s information criterion

(TIC) (see Takeuchi, 1976):

TIC = −2 log L(θ̂ | X) + 2tr
(
F−1R

)
−→

1
n

tr(F−1R)≈m
n

AIC = −2 log L(θ̂ | X) + 2m.

Hence, we see explicitly the assumption underlying the penalty employed by AIC. See Bozdogan

(2000) for more on this.

Using the estimated bias in (3.24), we can further generalize the composite utility shown U =

U1 × U2 by

UMISP = U1 × exp[2b̂]× exp
[

− log (n)× C1(F̂
−1)
]

, (3.25)

giving us a form of ICOMP that considers the estimated model bias in the penalty:

ICOMPPEU MISP (F̂−1) = −2 log L(θ̂ | X) + m +
2

n
tr(F̂−1R̂) + log (n)C1(F̂

−1). (3.26)

When the true model is not in the model set considered, which is often the case in practice,

simple criteria such as AIC will have difficulties identifying the best fitting model, as it does not

penalize the presence of skewness and kurtosis. ICOMPPEU MISP , however, should not suffer

these shortcomings.

To summarize: In ICOMP , a combination of lack-of-parsimony and profusion-of-complexity

are both penalized by the complexity of the estimated model covariance matrix. C1(F̂
−1) gives us

a scalar measure of the Cramér-Rao lower bound matrix (see Cramér, 1946; Rao, 1945, 1947, 1948),

taking into account the accuracy of, and relationships between, the parameter estimates. It also
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implicitly adjusts for the number of free parameters included in the model, as size of the matrix

scales m. This gives ICOMP more power than criteria like AIC, which only uses the number of

free parameters.

A common question / criticism regarding information criteria relates to the varied penalty

functionals. When the criteria identify different models as most appropriate for a dataset, which

happens very often, how do we know which criteria to “believe ”? However, this criticism should

not only be directed towards model selection criteria derived from information-theoretic bases.

For example, consider stepwise regression. When considering regressing subsets of independent

variables against a dependent variable, criteria such as Mallows Cp (Mallows, 1973), R2, and AIC

are often used. Of course, if all three always agreed, we would not need all three. Hence the same

question can be directed against non-information-theoretic model selection criteria. At least in the

case of information criteria, we could suggest some heuristics:

• only rely upon AIC or SBC when it is guaranteed that the best approximation to the true

model is in the set considered

• use stronger penalties in situations characterized by high-dimensionality and/or highly-parameterized

models

• use misspecification-resistant criteria when there is substantial evidence that model assump-

tions are not met

3.3 Information Criteria for the GMM

If we fit the Gaussian mixture model with K̂ groups to a p-dimensional dataset, the number of

parameters is

m = K̂p + K̂
p (p + 1)

2
+ (K̂ − 1): (3.27)

p means, p (p + 1) /2 unique variances and covariances, and 1 mixing proportion for each cluster.

Note that the mixing proportion for the last mixture, π̂K̂ is not counted as a parameter to estimate,

since the proportions are completely exhaustive. Recall the log-likelihood for the Gaussian mixture

model, repeated in (3.28)

log L(θ̂ | X) =

n∑

i=1

log





K̂∑

k=1

π̂kgk(xi | µ̂k, Σ̂k)



 , (3.28)
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thus, we have AIC and SBC for the GMM in (3.29) and (3.30).

AIC = −2 log L(θ̂ | X) + 3m (3.29)

SBC = −2 log L(θ̂ | X) + log (n)m (3.30)

Note that the penalty for a mixture model is more severe than the usual AIC (see Bozdogan, 1981).

To compute ICOMP , we need the form of the IFIM for the GMM. Derived in Bozdogan (1994b),

we only show the results here. The overall IFIM is

F̂−1 =











F̂−1
π 0

F̂−1
1

. . .

0 F̂−1

K̂











. (3.31)

The first block of size (K̂ × K̂) (3.32) groups all the mixing proportion estimation variances. The

other blocks represent the IFIM for each group.

F̂−1
π =








1
π̂1

0

. . .

0 1
π̂

K̂








(3.32)

Once the parameters for group k are recovered, they are independent of the subsequent groups,

thus we have a block diagonal structure. For the kth group, the model covariance matrix is shown

in (3.33)

F̂−1
k =




Σ̂k 0

0
(

2
nk

)

D+
p (Σ̂k ⊗ Σ̂k)D

+′
p



 (3.33)

Here, ⊗ is the Kronecker product, which multiplies all elements of two matrices. The matrix Dp

is a unique
(

p2 × p(p+1)
2

)

duplication matrix which transforms a square matrix. For example, if

p = 2,

D =











1 0 0

0 1 0

0 1 0

0 0 1











.
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D+
p is its Moore-Penrose Inverse:

D+
p =

(
D′

pDp

)−1
D′

p.

Obviously, the 2nd orthant is of size (p× p), and the 4th orthant is of size
(

p(p+1)
2 × p(p+1)

2

)

. Thus,

F̂−1
k is a square matrix with dimension of p(p+3)

2 . After some matrix calculus and algebra, ICOMP

for the mixture of multivariate Gaussians is given in (3.34). Notice that this computation does not

require building the entire IFIM, using only traces and determinants of the population covariance

matrices.

ICOMP (F̂−1) = −2 log L(θ̂ | X)

+m(log





K̂∑

k=1







tr(Σ̂k)

π̂k
+

1

2



tr(Σ̂2
k) + tr(Σ̂k)

2 + 2

p
∑

j=1

(σ̂2
kjj)

2















− log m)−






(p + 2)

K̂∑

k=1

log |Σ̂k| − p

K̂∑

k=1

log (π̂kn)






− K̂p log (2n) (3.34)

(σ̂2
kjj)

2 indicates the square of the jth diagonal element of Σ̂k, and m is the number of distribution

parameters - (3.27) without the (K̂ − 1) term.

For modeling situations characterized by overparameterization, ICOMPPEU for the GMM is

shown in (3.35).

ICOMPPEU(F̂−1) = −2 log L(θ̂ | X) + m + log (n)C1(F̂
−1) (3.35)

As a practical matter, to compute (3.35), we could simply multiply the ICOMP penalty by

(log n) /2, then add m.

Finally, in order to correct for bias due to model misspecification, ICOMPPEU MISP uses twice

the estimated bias in the penalty term. The limitation here is that analytical computation of R̂

in the mixture modeling context is currently an intractable problem, so we can’t compute b̂ from

(3.22). However, it can be shown that the bias can be approximated by (nm)/ (n−m− 2) when

the model is in fact misspecified (Bozdogan, 2000). Thus, ICOMPPEU MISP can drive effective

model selection with a heavy penalty that directly considers misspecification bias, as shown in
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(3.36)

ICOMPPEU MISP (F̂−1) = −2 log L(θ̂ | X) + m +
2nm

n−m− 2
+ log (n)C1(F̂

−1) (3.36)

As with ICOMPPEU , (3.34) is easily adjusted for this different penalty.

3.4 Information Criteria for Outlier Detection

As with any statistical modeling procedure the existence of “outliers” can have a substantial impact

on results. The typical method for detecting outliers, or influential observations, is to jackknife the

dataset. If the dataset in question has n observations, the modeling process is completed n times,

each time leaving out a single observation (hence with n−1 observations in each jackknife replicate).

Jackknife is sometimes called the leave-one-out method, and is also frequently referred to as cross-

validation. For each replicate, some metric is computed and compared to the same metric from

the entire dataset. By itself, this method is computationally time consuming; when combined with

the entire mixture modeling process, it would be take a prohibitive amount of time. Thus, in our

implementation, we use the entire dataset (with no cross-validation) to simultaneously identify the

number of mixtures and the optimum class assignments. Then, we use the jackknife to fit the best

identified mixture model to all n incomplete datasets. The comparison metric is a ratio based on

the information criterion used to identify the optimal mixture model

Ii =
SCOREi

SCORE
. (3.37)

SCOREi is the value for the dataset missing the ith datapoint, and SCORE is the value for the

entire dataset. This ratio should, of course, hover near 1 if there are no influential observations.

Finally, to identify observations that seem to have undue influence, we measure the empirical 95%

interval of all the ratios, then identify the observations corresponding to ratios outside this range.

If the IC score is positive, a value of Ii greater than this range leads to a higher IC value for the

given mixture model when the ith observation is removed. We would interpret this as suggesting

the mixture model is positively influenced by this datapoint. Similarly, if Ii is less than this range,

we could possibly improve our mixture model by removing this observation. If the IC score is

negative, the opposite conclusions could be made about the Ii ratios. Figure 3.2 demonstrates this
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Figure 3.2: Demonstrating Influence Detection.

procedure. Here we’ve generated a dataset with two groups and two clear outliers - observations

n1 and n102. We assume a mixture model has been fit to the data that correctly identified the

two mixtures, and put each outlier in its own group (this happens). Technically, then, this is the

correct structure for this dataset. The output from our procedure shows it identified observations

1, 18, and 102 as being influential and potentially outliers.

Full Dataset Score: 766.674

95% Interval of Ratios: [0.982,0.994]

Possible Influential Observation - 1(ICOMP = 733.437, ratio = 0.957)

Possible Influential Observation - 18(ICOMP = 752.475, ratio = 0.981)

Possible Influential Observation - 102(ICOMP = 733.131, ratio = 0.956)

Since the ICOMP score for each jackknife replicate is lower than that of the entire dataset, we

would claim that the mixture model could be improved by removing them (individually, at least).

Clearly, removing the two real outliers would dramatically simplify the mixture model - from K̂ = 4

to K̂ = 2 groups. Note that the 18th observation is right on the lower interval limit, suggesting it

is not nearly as influential, and probably not an outlier. On the left pane, it is identified by the red +.

This jackknife procedure suffers from two shortcomings. The first is that only the influence of

singleton observations is evaluated. Perhaps when taken in triplets, some observations would not

be deemed outliers? Of course, this is an issue in any use of the jackknife. The second shortfall,

specific to our application, is based on the sequential process. We could probably better evaluate
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the influence of the ith observation by leaving it out and then fitting the entire modeling process

from K̂ = 1 . . . Kmax. We have judged that the prohibitive computation time this would require is

not justified by the increased accuracy, especially given the subjective nature of outlier detection.

3.5 Robust Covariance Estimation

Many fields of research, such as medical imaging and genome science, generate data in which

p −→ n. This can especially be a problem in mixture modeling. While the entire dataset may

have many more observations than measurements, it may not be the case that nk ≫ p for some

theorized population. It has long been known that the typical covariance matrix estimate runs into

problems for datasets where it is not the case that n≫ p. First of all, the MLE

Σ̂ =
1

n

n∑

i=1

(xi − µ̂)′ (xi − µ̂) (3.38)

is no longer a good estimate of the true parameter Σ. Secondly, the maximum likelihood estimate

becomes ill-conditioned (and not positive definite for n ≤ p), leading to numerical difficulties in

performing the matrix inversion for which Σ̂ is usually needed. The traditional response is ridge

regularization,

Σ̂∗ = [Σ̂ + αIp], (3.39)

which works to counteract the instability by adjusting the eigenvalues of Σ̂. The ridge parameter

α is typically chosen to be very small. Of course, this begs the questions

• “How large should α be?”, and

• “How small can α be?”.

Now, we can always adjust a matrix to make the inversion numerically stable by adding very large

perturbations. However, the information from the data available in the resulting inverted matrix

would likely be “washed out”by the perturbations - this is why we must consider the second ques-

tion here. The answer to ridge regularization questions is to use robust covariance estimators.

Many different robust, or stoyki, covariance estimators have been developed as a way to data-

adaptively improve ill-conditioned and/or singular covariance matrix estimates. Several of them

work by the same mechanism as ridge regularization - perturb the diagonals, and hence, the eigen-

values. Here we’ve only listed the robust covariance estimators we’ve investigated and found to
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be useful for mixture modeling. Others performed inconsistently under certain situations involving

a relatively high number of groups (Fiebig, 1982; Theil and Fiebig, 1984; Ledoit and Wolf, 2003;

Shurygin, 1983).

Maximum Likelihood / Empirical Bayes

Σ̂MLE/EB = Σ̂ +
p− 1

(n) tr(Σ̂)
Ip (3.40)

Stipulated Ridge (Shurygin, 1983)

Σ̂SRE = Σ̂ + p (p− 1)
[

(2n) tr(Σ̂)
]−1

Ip (3.41)

Convex Sum (Press, 1975; Chen, 1976)

Σ̂CSE =
n

n + m
Σ̂ +

(

1−
n

n + m

)[

tr(Σ̂)

p

]

Ip, m =

[

p
(

1 + tr(Σ̂)2

tr(Σ̂2)

)

− 2
]

p− tr(Σ̂)2

tr(Σ̂2)

(3.42)

Thomaz Stabilization (Thomaz, 2004)

Σ̂Thomaz = V











max
(
λ1, λ

)
0 . . . 0

0 max
(
λ2, λ

)
. . . 0

...
...

. . .
...

0 0 . . . max
(
λp, λ

)











V ,

V is the matrix formed by the eigenvectors of Σ̂ (3.43)

In keeping with the theme of parsimony, we prefer to “monkey around” with the estimated

group covariance matrices as little as possible. When a small amount of perturbation is all that

is required, Σ̂MLE/EB has a certain appeal. As is clear in (3.40), this is of the same form as

the naive ridge regularization, where α = (p− 1) /
(

(n) tr(Σ̂)
)

is determined by the data. In our

implementation, the usual covariance estimator is not replaced with one of the robust estimators

every time it is computed. Within the optimization methods, the covariance matrix Σ̂k is only

smoothed if two measures of matrix condition indicate it to be necessary. The first is the reciprocal

of the condition number: if κ(Σ̂k)
−1 < 1e−10, the matrix is deemed ill-conditioned, which can cause

numerical instabilities when it is inverted. The second flag is if Σ̂k is not positive definite. In
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either of these cases, the robust estimator is computed. Sometimes, however, even this approach is

unable to compute a usable (invertible) estimator for the true variance-covariance matrix. In these

cases, we consider the matrix to be inestimable - this usually causes data points in the kth group to

migrate out. Note the we are referring explicitly to issues of numerical instability in the inversion

process. Mathematically, computation of the scatter matrix can be represented as W = M ′M . If

W has the spectral decomposition noted as above, we have

V ′WV = V ′λV = λ‖V ‖2 ≥ 0,

i.e., W should be semi-positive definite. Now, for some small value ε, and Ip indicating the

appropriately-sized identity matrix, we would have

V ′ (W + εIp)V = (λ + ε) ‖V ‖2 > 0.

Hence, ridge regularization in a perfect implementation of linear algebra would result in a semi-

definite matrix being transformed to a positive definite invertible matrix. However, the floating-

point arithmetic implemented in computers can make this ideal unattainable. Matrix inversion can

still suffer numerical instabilities.

Of course, a very good question is “Which smoothed covariance estimator do I utilize?”. In

order to select the best robust covariance estimator, one which will provide just the necessary

regularization (not too much), we use information criteria. We begin by fitting a mixture model of

exactly Kmax groups to a given dataset - once for each Σ̂∗ in consideration. Whichever covariance

estimator produces the minimum score is selected for use with that dataset in the subsequent

complete analysis.
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Chapter 4
The Genetic Algorithm (GA)

“Don’t you see the danger, uh, John, inherent in what you’re doing here? Genetic

power’s the most awesome force the planet’s ever seen, but you wield it like a kid that

found his dad’s gun.” - Dr. Malcolm, Jurassic Park

4.1 Structure of the Genetic Algorithm

Evolutionary algorithms were studied in the early 1970’s as an alternative to gradient-based op-

timizers. A typical optimization routine, such as Newton’s method, evolves a single solution to a

problem. The evolutionary approach, on the other hand, simulates a large population of potential

solutions. These solutions are allowed to interact over time; random mutations and fitness-based

selection allow the population to improve, eventually iterating to an optimal solution. Genetic al-

gorithms, a class of evolutionary algorithms, were popularized by Holland (1975) and his students.

An article in Scientific American (Holland, 1992) probably contributed to their popularity. Vose

(1999) is a good reference for rigorous mathematical bases of the GA.

The genetic algorithm is a stochastic search algorithm that borrows concepts from biological

evolution. Biological chromosomes, which determine so much about organisms, are typically repre-

sented as binary words - these determine the composition of possible solutions to an optimization

problem. For example, consider the problem of selecting the best probability distribution to fit to a

given dataset. Say we want to entertain the Students’ t distribution, and maximize the likelihood.
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We can use some kind of MoM estimator with the fact that

V ar [X] =
ν

ν − 2
−→ ν̂ =

2S2

S2 − 1

to create a search range, perhaps [2, 2ν̂]. The GA would operate on binary strings that, based

on the search range, would represent possible values of ν̂. To convert real values into binary, we

discretize the real range by

S =
max−min

2B − 1
, (4.1)

where B is the number of bits used to encode that value. The number of steps required for the

actual value R are then computed as

N =
R−min

S
. (4.2)

We then encode the value of N into B bits. For example, using the [2, 2ν̂] range where ν̂ = 5, 2

would be encoded as a string entirely composed of zeros, and the string of all ones would encode

10. If we used B = 32, example encodings would be (count right to left)

2.05 = [00000001100110011001100110011001] ,

5 = [01011111111111111111111111111111] .

For a simple demonstration of numerical optimization using the GA, we simulated M = 10 sets of

random chi-squared data with ν = 12. For each set, we used the GA to maximize the likelihood

for the eleven distributions shown in Table 4.1. We set the number of generations and populations

size both to 50, and the crossover and mutation probabilities 0.75 and 0.10, respectively. Each pa-

rameter to estimate was encoded into 32 bits. SBC was used to pick the best fitting model across

all simulations. Figure 4.1 shows the histogram of the data from the final simulation with the best

fitting distribution overlaid. Clearly, 11.47 is not a bad estimate for 12. In fact, the chi-squared

distribution was selected in all simulations. For the problem of assigning datapoints to K̂ clusters,

each solution is an n-length vector of class assignments such that each element can take on any

integer in the [1, K̂] interval. An example with x1, x4 ∈ 1, and x3, x5, x7 ∈ 3, and x2, x6,X8 ∈ 3 is

shown here.

ŷi = 1 3 2 1 2 3 2 3
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Table 4.1: Some Univariate Probability Distributions and their Log-likelihoods.

Distribution log-likelihood / Parameter(s) search range

Cauchy −n log (π)−
∑n

i=1 log
(

1 + (xi − θ)2
)

θ ∈
(

X̄ ± 2 S√
n

)

Chi-Squared −n log
(

Γ
(

ν
2

)
2

ν
2

)

+
(

ν
2 − 1

)∑n
i=1 log (xi)−

1
2

∑n
i=1 xi

ν ∈
(

0, 2 2X̄√
n

)

Exponential −n log (b)− 1
b

∑n
i=1 xi

b ∈
(

X̄ ± 2 X̄2
√

n

)

Gamma −n log (baΓ (a)) + (a− 1)
∑n

i=1 log (xi)−
1
b

∑n
i=1 xi

a ∈ [0.5, 1.5] â, b ∈ [0.5, 1.5] b̂
Laplace Power Exponential with β = 1

2

µ ∈
(

X̄ ± 2 S√
n

)

, σ ∈ (0.0001, 1.5S)

LogNormal −n
2 log

(
2πσ2

)
−
∑n

i=1 log (xi)−
1

2σ2

∑n
i=1 (log (xi)− µ)2

µ ∈
(

X̄log ± 2
Slog√

n

)

, σ ∈ (0.0001, 1.5Slog)

Normal −n
2 log

(
2πσ2

)
− 1

2σ2

∑n
i=1 (xi − µ)2

µ ∈
(

X̄ ± 2 S√
n

)

, σ ∈ (0.0001, 1.5S)

Pareto n log (c)− (c + 1)
∑n

i=1 log (1 + xi)

c ∈
(

0, 1.5 n∑n
i=1 log(1+xi)

)

Power Exponential −n log
(

σΓ
(

1 + 1
2β

)

2
1+ 1

2β

)

− 1
2

∑n
i=1

∣
∣xi−µ

σ

∣
∣
2β

µ ∈
(

X̄ ± 2 S√
n

)

, σ ∈ (0.0001, 1.5S) , β ∈ (0.1, 5)

Student’s t n log

(
Γ( ν+1

2 )
√

πνΓ( ν
2 )

)

− ν+1
2

∑n
i=1 log

(

1 +
x2

i

ν

)

ν ∈
(

0,
∣
∣
∣1.5−2S2

1−S2

∣
∣
∣

)

Weibull n log
(
ba−b

)
+ (b− 1)

∑n
i=1 log (xi)− a−b

∑n
i=1 xb

i

a ∈
(
0.5 1

X̄
, 1.5 1

X̄

)
, b ∈

(
0.0001, 1.5 1

S

)
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Figure 4.1: Final Simulation with Best Fitting Distribution.

The general procedure in the GA is simple and straightforward:

1. Generate initial population of solutions

2. Score all members of current population

3. Determine how current population interacts to evolve the next generation

4. Mate solutions: perform chromosomal crossover and genetic mutation

5. Pass on offspring to new generation

6. Loop back to step 2 until termination criteria met

There are 8 main operational parameters for the genetic algorithm; sample values used are shown in

Table 4.2. What follows is a general description of GA parameters and operators. After providing

a good foundation of the fundamental parameters and operators of the genetic algorithm, we will

discuss the specific mixture modeling departures. We detail three modified genetic algorithms: two

for mixture initialization (GARM and GKM) and one for optimization (GEM).
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Table 4.2: GA Operational Parameters.

Parameter Setting

Number Generations 60
Premature Termination Threshold 40

Population Size 30
Generation Seeding Ranking

Crossover Probability 0.75
Mutation Probability 0.10

Elitism On
Objective Function information criteria

Number Generations

In the GA, an iteration is typically called a generation, due to the biological conceptualization.

Thus, this parameter is fairly self explanatory. There is an important trade-off to note, when

selecting the number of generations through which the genetic algorithm will run. More generations

mean more computation time; however, not allowing the process to go through enough iterations

can mean termination with a suboptimal result.

Premature Termination Threshold

This parameter is a convergence criteria of the genetic algorithm. If the algorithm has executed

a certain number of generations with no improvement in the objective function, we assume that

it has converged to an optimal or near-optimal solution. At this point, there’s probably not much

value in allowing it to continue (though the only cost is computation time, which is cheap). A

higher value is better than lower, though the obvious question is “What is high?”.

Population Size

This parameter P determines how many solutions are evaluated and allowed to interact in each

generation. In general, one would expect convergence times to decrease as population size increases,

up to a point. After that point, the convergence time increases due to the heavier computation

burden per generation. It is difficult to know how large to set this parameter; in fact, there are

only heuristic guidelines. For example, in a subsetting problem with p variables, each generation

should evaluate P > p solutions.
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Figure 4.2: Biased Ranking Bins.

Generation Seeding

From a given population, how do we seed the members of the next generation in preparation

for mating? There are three commonly used methods. The simplest would be to randomly pair

solutions and mate. In Tournament Selection, a set of K ≪ P solutions are uniformly selected and

their fitness scores are evaluated. The two best are allowed to mate; this process continues until the

next generation is full. Note that a possible benefit of tournament selection is that the objective

function is not computed on the entire population. For computationally expensive functions, this

can save much time. Conversely, since solutions are randomly selected for evaluation, it would be

possible that the best solutions would never be evaluated. The method we use is called ranking

selection. This would be akin to using a biased roulette wheel, in which the individual bins are of

varied size as in Figure 4.2. Bin widths are computed as b = (2) / (P (P + 1)) | b ∈ [0, 1], then a

cumulative sum of these bins is computed. As an example, consider the sorted list of 4 chromosomes

- the bin widths are

b = 0.40 0.30 0.20 0.10 ,

so the bin limits are

1 2 3 4

Blow 0.00 0.40 0.70 0.90

Bupp 0.40 0.70 0.90 1.00

.

Clearly, the larger bins are at the beginning, corresponding to the most fit solutions. At this point,

P random numbers are generated uniformly from U ∼ [0, 1] and placed in the bin such that Blow ≤

U < Bupp. For each random variate in the ith bin, the ith solution gets represented in the next

generation. In this way, chromosomes with a better objective function value are overrepresented

in the mating pool. Finally, the ordering of the solutions is randomly permuted, and solutions are

mated sequentially.

Crossover Probability

There are several ways in which crossover can be implemented. Typical options are
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• Single-point (fixed or random)

• Multiple-point (fixed or random)

• Uniform (fixed or random)

We’ve chosen to use the simplest - randomized single-point crossover. Actually, fixed single-point is

arguably simpler, but we have no a priori information about where to crossover. For each amorous

pair (each of length L), a random uniform integer is selected from the range [2, L− 1]. This range

is used, rather than [1, L], to protect against probably useless endpoint crossovers - we would prefer

to trade the estimated group labels for more than a single observation between two solutions. Their

right-most portions are traded starting after this point. For example, if the crossover point is 2, we

have

3 2 1 3 3

1 2 3 1 2
−→

3 2 3 1 2

1 2 1 3 3
.

For each mating pair, a random variate from U (0, 1) is generated; the mating pair undergo the

crossover operation if it is less than the crossover probability. Typically, the crossover probability is

selected so as to induce frequent crossovers (≥ 50%). If the solutions are not crossed, this procedure

just duplicates the original solutions.

Genetic Mutation

After mating produces offspring, those offspring are then mutated. In a typical GA with binary

strings, mutation is simple. One method is to uniformly select solutions from the current population,

with probability equal to the mutation rate, to undergo mutation. The probability of mutation

must be subjectively chosen; heuristics suggest a small probability (≤ 10%) is generally more

appropriate. For each chromosome chosen, elements are then randomly selected (with the same

mutation probability) and their bits are switched: 1 ←→ 0 (a not operation). A slightly different

approach would be to take all solution vectors in the population as an ensemble, then randomly

mutate in a single step. Mutation for mixture modeling is implemented by randomly select elements

on the ŷi chromosome then reassigning them randomly to different groups. However, we can also

utilize problem-specific biased mutation operations that act more intelligently. Mutation is one of

the strong points in favor of the GA. Without it, a population of solutions could quickly become

homogenous, and get stuck in a local optimum. However, the mutation operator, by inserting

different genetic code, can widen the search by allowing a jump to another area of the fitness

landscape. To a degree, simulated annealing shares this characteristic.
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Objective Function

All optimization or search procedures need some objective function to either maximize or minimize.

Newton’s method, for example, maximizes a 2nd order Taylor series expansion of the likelihood;

simulated annealing optimizes the likelihood function itself. The objective function that is best for

any GA implementation will depend upon the problem. In our work, we use information criteria

to guide the evolution of a solution population.

Elitism

To protect against the loss of good genetic material (and ensure monotonic improvement in the

objective function), the elitism rule is used. After all reproduction operations are complete, this

rule copies the most fit chromosome without modification into the next generation. In real life,

it can occasionally happen that an especially fit individual will remain a desirable partner for

more than one generation; think Sean Connery, Harrison Ford, or Charlton Heston. In the GA,

members of a current generation generally die after procreation, leaving the next generation all

offspring. However, if the elitism rule is on, the most fit solution from the current generation does

not die, but remains to mate with the ensuing generation. Using the elitism rule typically means

that population size increases with each generation, which can increase computation time. Other

implementations would have the worse population member in the next generation replaced by the

current best. We have observed that when roulette selection is used, elitism seems to be of less

value.

4.2 Genetic K-Means

The genetic algorithm seems to have first been applied to the clustering problem by Bhuyan et al.

(1991). Citing concerns that the current efforts were suboptimal, Krishna and Murty (1999) com-

bined the GA and K-Means algorithm. Using finite Markov chain theory, they claimed that GKM

(they called it GKA) converges to the global optimum. Like K-Means, GKM seeks to minimize

the within-cluster Euclidian distance (2.7) across the entire model. According to the authors, the

crossover operator is very expensive, so they did not use one. We find this claim unsupportable,

and feel crossover broadens the search, so we use it. Krishna and Murty designed GKA to maximize
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a fitness function based on a sigma truncation of the total within-cluster Euclidian distance E:

F (E) = max
(
f (E)−

(
E − cσE

)
, 0
)
, c ∈ {1, 2, 3} . (4.3)

E and σE indicate the sample average and standard deviation of the values of E in the current

population. They seem to provide little justification for this convoluted mechanism, but admit that

“There are many ways of defining such a fitness function.” Thus, we take the liberty of directly

minimizing the total within-cluster Euclidian distance. Not only is this simpler to understand, it

works very well. As such, our GKM is slightly different from the original formulation.

For this GA variant, the mutation operator is slightly more complex than the standard mutation

operator. The first step is the same - randomly select ceil (mutation probability× P ) offspring

solutions to mutate. For each chromosome selected, we uniformly select elements to mutate using

the mutation probability. Looping through the selected datapoints, the Euclidian distance from

each group is computed and stored. Mutation chances are then computed as

Ei (k) =

max
k=1...K̂

(ei (k))− ei (k)

∑K̂
k=1

[

max
k=1...K̂

(ei (k))− ei (k)

] , (4.4)

such that the chance for mutating into a given cluster is proportional to the distance from it -

the nearer the group, the higher the chances of mutating into it. Though rather obtuse, this

formulation is directly from the authors, and we have no explicit reason to use something different.

To determine into which cluster, if any, the given datapoint mutates, K̂ uniform random variates

are generated, then each is subtracted from Ei (k), and the index of the largest positive resulting

number is the new value for that datapoint. Along with the mutation and crossover operators,

GKM employs a third reproduction operator that can be used to speed convergence. The GKM

operation is similar to biased mutation, in that solutions are selected to be modified using the same

methodology. By the GKM operator, all elements on selected chromosomes are assigned to the

closest group. One characteristic of all three operators (crossover, mutation, GKM) is that they

are capable of creating illegal strings where all groups are not represented. For example, we could

have

1 3 2 1 2 3 2 3 1 −→ 1 1 2 1 2 2 2 1 1 .
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This substantially restricts the search of the fitness space. Thus, GKM employs a repair mechanism

in which, for each unrepresented cluster, p datapoints are psuedorandomly assigned into it. Krishna

and Murty’s repair operator randomly created a singleton cluster for each missing group. As

explicitly defined, this is problematic for two reasons:

• In the case of multiple missing clusters, pure random assignment would allow an observation

to be assigned into a missing cluster, then randomly reassigned into a different missing cluster.

• For multivariate data of dimension p, a singleton group will suffer from n < p, and the

covariance matrix will not be invertible.

Thus, our repair mechanism first divides an illegal string into K̂ disjoint sections. Subsequently, for

the kth missing group, p observations in the kth section are assigned into it. For example, consider

fitting K̂ = 3 groups to a bivariate dataset. We could have

1 1 2
︸ ︷︷ ︸

k=1

1 2 2
︸ ︷︷ ︸

k=2

2 1 1
︸ ︷︷ ︸

k=3

−→ 1 1 2 1 2 2 3 1 3 .

4.3 Genetic Algorithm for Regularized Mahalanobis Distance

Like GKM, GARM is an intelligent mixture model initialization scheme. One potential short-

coming with both K-Means and GKM is their reliance upon the Euclidian distance. Clustering

algorithms based upon the Euclidian distance have an undesirable tendency to split large and

elongated clusters; minimizing the Euclidian distance will tend to produce hyperspherical clusters

(Mao and Jain, 1996). In general, we can’t assume that data are hyperspherical. Additionally,

geometrically speaking, spheres are clearly a subset of ellipsoids - a special case of

(x1 − c1)
2

a2
1

+
(x2 − c2)

2

a2
2

+ . . . +
(xp − cp)

2

a2
p

= r2, (4.5)

in which a1 = a2 = . . . = ap = 1. Therefore, a procedure that is based on an ellipsoidal assumption

should be more flexible while still retaining the ability to identify spherical clusters. Mao and Jain

(1996) proposed a neural network using the Mahalanobis distance in (4.6) so as to fit hyperellipsoidal

clusters.

mi (k) = (xi − µ̂k) Σ̂−1
k (xi − µ̂k)

′ (4.6)
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Actually, they proposed a regularized Mahalanobis (RM) distance so their network could at least

partially recover from numerical problems with estimating the within-cluster covariance matrices.

Thus, the fitness function for their network was

mi (k) = (xi − µ̂k) Σ̂∗
k (xi − µ̂k)

′ , (4.7)

where

Σ̂∗
k =

[

(1− λ) (Σ̂k + εI)−1 + λI
]

. (4.8)

When λ = 1, (4.7) reduces to the Euclidian distance. For 0 < λ < 1, however, (4.7) is a convex

combination of the Euclidian and regularized Mahalanobis distances; this allows the clustering

procedure to identify differently shaped and oriented clusters. While they argued that λ and ε

“play a very important role in stabilizing the learning process”, there seems to be no mention of

how to select ε. They determined that a high value of λ was more important at the beginning of

learning then at the end, so it was computed as a decreasing function of the number of iterations

in their network

λ(t) = max
{

λmin, λ
(t−1)−∆λ

}

. (4.9)

The starting value of λ is set to 1.0, but λmin and ∆λ are user parameters. Thus, effective covari-

ance regularization depends upon three values which must be subjectively set. Though using the

regularized Mahalanobis distance is clearly an improvement in generality, it’s not quite the answer.

In a critique of the 1996 paper, Song and Shaowei (1997) claimed that the clustering cost function

in (4.7) is a constant: p (n− 1). They proved that the Mao and Jain (1996) results were not actu-

ally caused by their new formulations. Instead, Song et al. (1997) proposed a scaled Mahalanobis

Distance given by (4.10).

mi (k) = |Σ̂k|
c (xi − µ̂k) (Σ̂k)

−1 (xi − µ̂k)
′ (4.10)

Interestingly, their proposal dropped the regularization of the covariance matrix in computing the

Mahalanobis distance. The scale parameter c is constrained to be positive, and they suggest that

c = 1 is typically sufficient. Taking cues from Krishna and Murty (1999), they combined their new

distance measure with the GA to form what would be called GARM. Whereas GKM minimizes

the total within cluster Euclidian distance, GARM minimizes the total within cluster Mahalanobis

distance. Like the 1999 paper, they convolute their fitness function with no written justification.
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If Pp is the pth member of the current population, its fitness f (Pp) is computed as

f (Pp) =
a (Pp)

∑P
p=1 a (Pp)

, (4.11)

where

a (Pp) =
1

1 + s (Pp)
,

s (Pp) = M (Pp)− min
1≤p≤P

M (Pp) ,

M (Pp) =

n∑

i=1





K̂∑

k=1

mi (k)



 .

Whereas Song et al. (1997) only used typical GA operators, Wicker (2006) extended GARM to the

same level of sophistication as GKM by implementing a biased mutation operator and a special

operator called the Mahalanobis operator. The biased mutation operator works just like for GKM,

except that mutation chances are computed based on (surprise, surprise), the Mahalanobis distance:

Mi (k) =
max (mi (k))−mi (k)

∑K̂
k=1 [max (mi (k))−mi (k)]

. (4.12)

The Mahalanobis operator similarly uses the Mahalanobis distances to move each datapoint into

the closest population, for randomly selected solutions. Additionally, he pointed out that an ap-

pealing value for the scale parameter is c = 1
2 , since |Σ̂k|

1
2 is the square root of the generalized

variance for mixture k.

We propose two further modifications to the regularized Mahalanobis distance.

mi (k) = C1(Σ̂
∗
k) (xi − µ̂k) (Σ̂∗

k)
−1 (xi − µ̂k)

′ (4.13)

The first is to regularize the estimated covariance matrix using one of the robust covariance esti-

mators shown in (3.40) through (3.43). Besides the fact that there are datasets for which ridge

regularization is insufficient, it prevents us from having to subjectively choose values for λ and ε.

Secondly, we scale the RM distance by the first order complexity measure of the covariance matrix,

42



repeated in (4.14).

C1(Σ̂
∗
k) =

s

2
log

(

tr(Σ̂∗
k)

s

)

−
1

2
log |Σ̂∗

k|, s = rank(Σ̂∗
k) (4.14)

This is advantageous because we no longer have to choose a value of c. Even more valuable is the

fact that the C1 measure considers both the trace and the determinant.

4.4 Genetic EM Algorithm

The final specialized GA to be discussed is the genetic expectation maximization algorithm GEM,

introduced by Wicker (2006). As already discussed, the EM algorithm operates directly on the log-

likelihood with the goal of finding a maximum. Due to the ruggedness of the parameter landscape, it

has a tendency to get stuck at local maxima that may be suboptimal, when it converges at all. The

GEM algorithm uses a modified GA to search the parameter space more intelligently while operating

on chromosomes representing the estimated class labels ŷi. While Wicker introduced GEM to search

the likelihood space, we extend it further by allowing GEM to optimize the information criteria

functions already discussed. Analogous to GARM and GKM, GEM uses a biased mutation operator.

The implementation is exactly the same as the others with the exception that probability of group

membership p̂i (k) (see (2.9), for example) for each cluster is utilized. Mutation chances are then

computed as

P̂i (k) =

max
k=1...K̂

(p̂i (k))− p̂i (k)

∑K̂
k=1

[

max
k=1...K̂

(p̂i (k))− p̂i (k)

] , (4.15)

such that the chance for mutating into the ith cluster is directly proportional to the probability.

Likewise, GEM has its own operator called the posterior operator in which all datapoints in selected

chromosomes are mutated into the mixture to which they’re most likely to belong.

4.5 GA for Subset Selection

A common theme in statistical modeling is dimension reduction. For example, in analyzing a

designed experiment, we like to identify a subset of the tested factors that has an effect on the

response. When variables in a dataset share some information (are colinear), the data are often

mapped into a smaller set of orthogonal variables called principle components (PCs). Each se-
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Table 4.3: Complete Enumerative Subset Analysis.

p 2p − 1

5 31
10 1, 023
20 1, 048, 575
50 1, 125, 899, 906, 842, 623

quential PC is designed to account for less of the variability in the original data. However, this

process can make prediction and/or interpretation of the results difficult, especially for classifica-

tion procedures. In addition, PC analysis is based on the total variability in a dataset, but cluster

analysis is concerned with total within group variability. Thus, translating the original data into

orthogonal PCs erases the group structure. Consider a dataset with p = 15 variables; there is

probably some cost associated with making each measurement. Perhaps we would like to identify

a model that fits the data well and/or makes good predictions while only using p = 5 variables, for

example. Similarly, in mixture model cluster analysis, we would like to determine which variables

in the data give the best separation among the clusters; Bozdogan (1994a) introduced this concept

using complete enumeration. Since there are 2p− 1 nontrivial subsets of the variables in a dataset,

this scales very poorly, as demonstrated in Table 4.3. After an optimal mixture model is found

for a dataset, we use the GA to identify a subset of the original variables that improves upon the

information criterion score of the saturated (all variables) mixture model. For this application, the

GA is a p-length binary vector where each entry identifies whether a specific variable is included

(1) or excluded (0). For example, consider a dataset with p = 7 dimensions. The chromosome

shown below would exclude the second, third, and sixth variables.

[1001101] −→ X∗ = {x1, x4, x5, x7} .

For each subset X∗ evaluated, the identified mixture model is fit to X∗ and the appropriate infor-

mation criterion is scored. Subsets corresponding to lower scores potentially discriminate between

the groups in the data better than the full dataset.
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4.6 Why the Genetic Algorithm?

Most of the likelihood optimization methods developed for mixture modeling are gradient followers.

The two primary reasons for not using these methods are as already mentioned:

• extreme sensitivity to initial values

• high tendency to converge to local, not global, optima

Additionally, many algorithms exhibit slow convergence rates unless started very near the global

optima. Specifically for the traditional EM algorithm, guaranteed convergence requires unrealistic

restrictions regarding cluster overlap and size. One feature of gradient following algorithms is that

they are not allowed to make a “bad” move. However, depending upon the function to optimize and

the initial values, a certain number of apparently bad moves may be required to get the algorithm

heading in the correct direction. Conjugate gradient methods could be used, but they typically

require the first and/or second derivatives of the likelihood to be available analytically. This can

be quite costly, even when the derivatives are actually available. These derivatives are not, in fact,

analytically calculable for the mixture model - recall in Chapter 3 that we used the observed Fisher

information matrix because of this. Additionally, conjugate gradient methods are also constrained

to only move in the optimal direction. Simulated annealing (SA), a stochastic gradient follower

that allows bad moves, was first applied to the clustering problem by Klein and Dubes (1989).

Biology gave us the GA, and metallurgy gave us SA. The way simulated annealing optimizes a

function is similar to the way the cooling of a molten metal is controlled so as to increase the size

and homogeneity of its crystals while decreasing the energy in the lattice. The latent heat liberates

the atoms from their local minima and allows them to wander randomly through states of higher

energy; the controlled cooling gives the material more chances of finding configurations with lower

internal energy. The function to minimize represents the internal energy. The general algorithm is:

1. Set initial state and temperature, compute initial energy.

2. Update temperature, find neighboring state to consider, and compute its energy.

3. If energy is lower, move current state. If energy is higher, move current state with some

probability, dependent upon the cost and current temperature.

4. Update time step, then loop back to step 2 until termination criteria met.
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Table 4.4: Various Simulated Annealing Cooling Schedules.

Type Cooling Schedule

Adaptive Tt = exp
(

−ct
1
p

)

Cauchy Tt = T0
t

Boltzman Tt = T0
log(t)

Just like Linux or Baskin RobbinsTM, there are various “flavors” of simulated annealing, shown in

Table 4.4, as determined by the cooling schedule. For our problem, SA would optimize the mixture

likelihood function ((2.2) for example). Selection of T0 is crucial to success of the procedure, as it is

used in computing the probability with which the current state is moved to one with higher energy.

The way SA is designed, as the temperature decreases, the probability of making a bad move goes

to 0. The idea is that when the temperature is high, we want to search enough of the state space

so that as cooling occurs, we end up near a global optimum. Figure 4.3 demonstrates how states

evolve for a maximization problem. If the neighbor function selects the point θgt+1 (gt indicating

good), SA is guaranteed to move there. However, if the neighbor is θbt+1 (bt indicating bad), SA

will move there with a certain probability that is a function of how long the algorithm has been

running. Simulated annealing is highly dependent upon three subjective decisions for which there

seem to be few guidelines in the literature.

• the value of T0

• the cooling schedule (adaptive, Cauchy, Boltzman, etc. . . )

• the neighbor function

It is undeniably true that there are also several parameters to be subjectively set when using the

GA, with heuristics available only for some of them. However, in two designed experiments, we

evaluated the sensitivity of the GA’s performance to parameter values. Both experiments suggest

the algorithm is fairly robust.

For the first experiment, we varied the parameters shown in Table 4.5. The context for

this experiment was multivariate subsetting using cable television market segmentation data of

Anderson and Steen (1994), with p = 7 and n = 101. There are only 27 − 1 = 127 nontrivial sub-

sets, so we could perform complete enumerative analysis on this dataset to determine the optimal

subset of variables for comparison. For this experiment, the response was the frequency, across

all generations, with which the procedure selected the known optimal subset. Clearly, a higher
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Table 4.5: GA Parameters Varied in First GA Experiment.

Parameter Low High

Number Generations 50 100
Population Size 10 30

Crossover Probability 0.60 0.90
Mutation Probability 0.025 0.10

Elitism Off On

Table 4.6: GA Parameters Varied in Second GA Experiment.

Parameter Low High

Number Generations 50 100
Premature Termination Threshold 15 45

Population Size 25 100
Generation Seeding Random Ranking

Crossover Probability 0.45 0.75
Mutation Probability 0.05 0.25

Mahalanobis Operation Off On

frequency indicates superior performance of the GA. We used a resolution IV design model as an

exploratory step. Analysis of the results suggested possible confounding between certain higher-

order effects and population size, so we folded the design. Numerical analysis of the final results

showed population size was the only significant effect, though it only explained half of the variation

in the response: R2
adj = 0.5057.

In a second designed experiment - a full factorial design model - the performance of GARM, as

measured by a function of ŷi = yi, was evaluated as parameters were varied, shown in Table 4.6. Of

course, having more estimated class labels matching the actual class labels would indicate superior

performance. For this experiment, our data was generated using a simulation protocol similar to

S1, with nk = 85 observations in each group. Figure 4.4 demonstrates a clear bimodal shape in the

response values - thus our parameter ranges were wide enough to induce some difference. In this

experiment, the most significant factor was whether or not the Mahalanobis operator was used,

accounting for almost 70% of the variability in the response. Six other factors were shown to have

a statistically significant but unsubstantial effect on the performance of the GA, as shown in Figure

4.5. In fact, the other six factors only explained 15% of the variability in the response, collectively.
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Of course, as the Mahalanobis operation is an integral part of GARM, there’d be no reason not to

use it. Thus, in reality we see that this experiment found no substantial sensitivity to parameter

values chosen. In summary, these two experiments suggest that the genetic algorithm, as used here,

is relatively robust to the actual parameter values chosen. Of course, this assumes intelligent values

are chosen.

Genetic algorithms have been used for statistical modeling problems such as Bayesian sampling

(Liang and Wong, 2001), robust regression (Burns, 1992), and experimental design (Hamada et al.,

2001). Meyer (2003) developed a GA for maximization with linear equality constraints and bounded

solutions, then applied it to robust regression and density estimation. Successful application of

the GA has been reported in fields such as finance (Neely et al., 1997), econometrics (Routledge,

1999), gaming (West and Linster, 2003), and image processing (Bhandarkar et al., 1994). However,

evolutionary algorithms are in a class called deterministic non-repeating black box search algorithms

(DNBBSA); by the “No Free Lunch” theorem (Wolpert and Macready, 1997) it is true that all

DNBBSAs perform equally well on average. However, the superior performance of the GA for

difficult mixture modeling cluster analysis and variable subsetting problems is well established (and

extended here). Additionally, according to personal correspondence with Dr. Micheal Vose,

“Nothing beats enumeration on average, *unless* domain specific knowledge is used.

That is roughly the message of the ”No Free Lunch” theorem.”

We suggest that GKM, GARM, and GEM all combine the GA with domain knowledge, which is

why they work so well.

Finally, there are incontrovertibly other stochastic or automata-based algorithms that could be

considered. Examples include Artificial Neural Networks (ANN), the Artificial Bee Colony (ABC)

optimization algorithm, or the Touring Ant Colony Optimization (TACO) algorithm.

48



*θ
t

*θ
bt+1

*θ
gt+1

P(θt → θgt+1) = 1

P(θt → θbt+1) ∝ T

Figure 4.3: Demonstrating Stochastic Evolution in Simulated Annealing.
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Figure 4.4: Distribution of Response Values from Second GA Experiment.

Figure 4.5: Factor Profiler from Second GA Experiment.
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Chapter 5
The Symmetric Elliptically-Contoured Mixture

Model (ECMM)

“[Symmetric] book stacking, just like the Philadelphia mass turbulence of 1945.” -

Ray Stantz, Ghostbusters

5.1 Multivariate Symmetric Elliptically-Contoured Distributions

From Anderson and Fang (1990), if the characteristic function of a random vector x ∈ R
1×p is of

the form

eitµφ
(
t′Σt

)
, (5.1)

µ and Σ are of size 1 × p and p × p, respectively, Σ is symmetric and positive definite, and φ is

a proper scalar function, we say x is drawn from a multivariate elliptically-contoured distribution

(EC). The probability density function for x is

x ∼ ECp (µΣφ) = Cp |Σ|
− 1

2 g
(
tiΣ

−1t′i
)
, ti = (xi − µ) , (5.2)

where g is the density generating function, and Cp is a normalizing constant that is specific to g.

From Fang et al. (1990), we can compute Cp by

Cp =
Γ
(p

2

)

2π
p

2

∫∞
0 rp−1g (r2) dr

. (5.3)

Three major subclasses of EC distributions for which we go into more detail are:
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Pearson Type II: f (x)PII =
Γ( p

2
+ν+1)

π
p
2 Γ(ν+1)

|Σ|−
1
2
(
1− tΣ−1t′

)ν

Pearson Type VII: f (x)PV II = Γ(N)

(πν)
p
2 Γ(N− p

2)
|Σ|−

1
2

(

1 + tΣ−1t′

ν

)−N

Kotz’s Type: f (x)KT =
βΓ( p

2)
π

p
2 Γ
(

2N+p−2
2β

) r
2N+p−2

2β |Σ|−
1
2
(
tΣ−1t′

)N−1
e−r(tΣ−1t′)

β

As will soon be seen, we can model data with a variety of symmetric shapes using these densities.

5.2 Parameter Estimation & Inference

5.2.1 Parameter Estimation

For the EC class of distributions, the maximum likelihood estimator for the centroid µ is

µ̂ = X =
1

n

n∑

i=1

xi. (5.4)

We can determine the maximum likelihood estimators for Σ by the procedure outlined in Anderson and Fang

(1990), but we need to assume the density generator g (·) is a decreasing and differentiable function.

Consider maximizing the function

h (λ) = λ−np

2 g
( p

λ

)

, (5.5)

for positive values of λ. The value λmax that satisfies the requirements

∂

∂λ
h (λmax) = 0, and

∂2

∂λ2
h (λmax) < 0, (5.6)

maximizes the likelihood, and gives us the MLE

Σ̂EC = λmaxW , (5.7)

where W is the p×p sum of squared errors matrix. The maximized log-likelihood for n observations,

adopted from Anderson and Fang (1990) is shown in (5.8) without proof.

l(θ̂ | X) = n log Cp −
np

2
log λmax −

n

2
log |W |+ log g

(
p

λmax

)

(5.8)

While they did not include the Cp term, we have to, since we need the maximized log-likelihood

for model selection using the information criteria. Without it, the comparison would be unfair.
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We now have the parameters of the specific pdf generators to estimate. This is a tricky problem

requiring (thus far) intractable matrix calculus. One approach is to perform a numerical search.

Farrell and Mersereau (2004) developed the EM algorithm for the multivariate Student’s T distri-

bution in which they iteratively estimated πk, µk, and Σk (k = 1, . . . , K̂) for a T mixture model.

At each iteration, the bisection method was used to compute MLEs for each of the νk. This “brute

force” method was justified by the high probability that the early EM algorithm estimates were

incorrect. Of course, this is a fairly simple case of the EC class. We know that the degrees of

freedom must be positive, and that the T distribution approximates the Gaussian as the shape

parameter gets large (say, ν > 40). Thus, the initial range could be set to [3, 40]; it would only

take 12 iterations to bracket the maximum within ±0.01.

However, when fitting the Pearson Type VII distribution, we actually have to estimate both N

and ν. For the Kotz subclass, we need N , r, and β. Thus, a numerical bracketing search would

have to partition a 2-dimensional and 3-dimensional surface, respectively. This would substantially

increase the computational burden required to estimate the pdf generator-specific parameters. Like

Farrell and Mersereau (2004), our response is to fix some parameters and let others be estimated.

For the Pearson Type VII distribution, we set N = (p + ν) /2 and estimate the degrees of

freedom ν for the multivariate T using a method of moments procedure. Sutradhar and Ali (1986)

considered multivariate regression under the assumption that the error terms, εi, were drawn from

a multivariate T distribution. Using the 4th moment (related to kurtosis), they found

ν̂ = 2

3
p∑

i=1

(
σ̂2

ii

)2
− 2

n

p∑

i=1

n∑

j=1
ε̂4
ij

3
p∑

i=1

(
σ̂2

ii

)2
− 1

n

p∑

i=1

n∑

j=1
ε̂4
ij

, (5.9)

where σ̂2
ii indicates the variance in the ith dimension. Now, rather than error terms, we have

the observations xi drawn from a Pearson Type VII distribution with the assumption that N =
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(p + ν) /2. In partially vectorized notation, we rewrite (5.9) as

ν̂ = 2

3
n2

p∑

i=1
w2

ii −
2
n

np∑

i=1
V ec (x)4i

3
n2

p∑

i=1
w2

ii −
1
n

np∑

i=1
V ec (x)4i

. (5.10)

We use wii to indicate the ith diagonal element of W . V ec (·) is the vector operator, that takes the

columns of a matrix and vertically catenates them. For example:

V ec








1 2

3 4







 −→











1

3

2

4











.

Clearly, this estimator can return an invalid negative value. When this happens, we resort to a

numerical search, like Farrell and Mersereau (2004). We maximize the profile likelihood of the PVII

distribution w.r.t. ν in the interval [3, 100]. The actual function we maximize is

log L (ν | X) = n log
Γ
(p+ν

2

)

(πν)
p

2 Γ
(

ν
2

) −
n

2
log |Σ̂PV II | −

p + ν

2

n∑

i=1

log

(

1 +
tiΣ̂PV IIt

′
i

ν

)

. (5.11)

There seems to be little point in searching beyond ν̂ = 100, since at this point the PVII distribution

approximates the Gaussian very closely.

For Kotz’s type, we set r = 1
2 and N = 1 - thus it is reduced to the multivariate power

exponential distribution. Several methods have been proposed for estimating the shape parameter

β of the PE distribution. If we define

d2
i =

[

(xi − µ̂) Σ̂−1 (xi − µ̂)′
]2

, (5.12)

where d2 and σ2
d are the mean and variance of the squared Mahalanobis distances, we have

Bozdogan (1995): β̂ = p

4d2

Bozdogan (1995): β̂ = d2

σ2
d

using results of Seo and Toyama (1996): β̂ = d2

p(p+2) − 1 (p + 2)− 1
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Finally, based on MoM estimators, we can get β̂ as the root of the equations

2
1

β̂ Γ
(

p+2

2β̂

)

Γ
(

p

2β̂

) − d2 = 0, (5.13)

or
p2Γ

(
p

2β̂

)

Γ
(

p+4

2β̂

)

Γ2
(

p+2

2β̂

) − d2 = 0. (5.14)

For these estimators, see Bozdogan (1995) and Liu (2006), respectively. In simulation studies, we

have found the last method consistently produces more accurate estimates of the true shape pa-

rameter than the others - our numerical results use this method.

Before going on, we feel the need to provide some justification for reducing the EC class of

distributions to just the T or PE. On the surface, this may seem overly restrictive. However,

flipping ahead to Figures 5.3 through 5.6, we see that these two distributions allow us to fit both

spherically- and elliptically-contoured data. Additionally, between the Pearson Type VII and Kotz

type subclasses, we can simultaneously or separably model both tail and peak behavior.

5.2.2 Inference

If we want to compute interval estimates, rather than just point estimates for µ or ΣEC , we need

the Fisher information matrix. Of course, this is also required for ICOMP . Here we make use

of the results of Liu (2002), in which the Fisher information matrix was derived in the context of

multivariate regression with EC error terms. First, however, we need some preliminary definitions.

Let

G (t) =
∂

∂t
log g (t) =

g′ (t)

g (t)
, (5.15)

and

J (t) =
∂

∂t
G (t) . (5.16)

The observed inverse information matrix is then

F̂−1 =




− 1

2nĜ
Σ̂EC 0

0 H−1



 , (5.17)
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where Ĝ = G
(

p
λmax

)

. Using the general result that Ĝ = −nλmax/2, the 4th orthant is

H = D′
p

(

n

2
Σ̂−1

EC ⊗ Σ̂−1
EC −

Ĵ

λ2
max

V ec(Σ̂−1
EC)V ec′(Σ̂−1

EC)

)

Dp, (5.18)

we define Ĵ to be J
(

p
λmax

)

.

The published research regarding estimation of the model covariance matrix for the EC distri-

bution seems to be limited to the regression context. As such, we have had to generalize the Liu’s

results. Recall that the multivariate regression model can be expressed in two ways:

Y
n×p

= X
n×q

B
q×p

+ E
n×p

or Yi ∼ Dist (XiB | θ) .

Here, we use ∼ Dist (·) to indicate some arbitrary distribution. Generalizing this to the situation

where the values of Y are identically distributed, we have

Y ∼ Dist (XB∗ | θ) , (5.19)

where X is a matrix of 1′s. Hence, we see that for a sample of size n and q = 1, X ′X = n. This

justifies the way we replaced Liu’s (X ′X)−1 with 1/n in the second orthant of (5.17). Finally, we

would note that we compute the FIM solely based on µ and ΣEC - the shape parameters that we

estimate are not counted as parameters. Hence, any measure of EC model complexity based on

this simplified FIM will likely underestimate estimation uncertainty and complexity.

5.3 Details for EC Subclasses

Here we take the general results presented thus far, and derive details for Pearson Type II, Pearson

Type VII, and Kotz’s Type distributions. Some estimation details shown here were taken from Liu

(2006).

5.3.1 Pearson Type II

When the probability density generating function looks like

g (u) = (1− u)ν , ν > −1, (5.20)
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Figure 5.1: Pearson Type II Subclass for ν = 0.

we say X follows a symmetric Pearson Type II distribution. The normalizing constant is shown in

(5.21).

Cp =
Γ
(p

2 + ν + 1
)

π
p
2 Γ (ν + 1)

(5.21)

If X ∼ PIIp (µ,Σ, ν), we have the pdf

f (x)PII =
Γ
(p

2 + ν + 1
)

π
p

2 Γ (ν + 1)
|Σ|−

1
2
(
1− tΣ−1t′

)ν
. (5.22)

For this to be a true density, we require that 0 ≤
(
tΣ−1t′

)
≤ 1, which restricts its usefulness

somewhat. In fact, though we show it here for completeness, we won’t use it in our numerical results.

Figures 5.1 and 5.2 show the density surface and contours for the Pearson Type II distribution with

µ = 0 and Σ = Ip and ν = 0, 1.

For the Pearson Type II subclass, the solution for (5.6) is

λmax =
2ν + np

n
, (5.23)

so the MLE for the Pearson Type II covariance matrix is shown in (5.24).

Σ̂PII =
2ν + np

n
W (5.24)

For computing the estimated model variance-covariance matrix, we need Ĝ and Ĵ . From (5.15)
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Figure 5.2: Pearson Type II Subclass for ν = 1.

and (5.16), we derive

G =
∂

∂t
log g (t) =

g′ (t)

g (t)
= −

ν

1− t
−→ Ĝ = −

2ν + np

2
, (5.25)

and

J (t) =
∂

∂t
G (t) = −

ν

(1− t)2
−→ Ĵ = −

(2ν + np)2

4ν
. (5.26)

The estimated IFIM is then

F̂−1
PII =





1
2ν+np

1
n Σ̂PII 0

0 H−1



 . (5.27)

For computing H, we see that

Ĵ

λ2
max

=
− (2ν+np)2

4ν

(2ν+np)2

n2

= −
n2

4ν
.

Therefore, H is

H = D′
p

(
n

2
Σ̂−1

PII ⊗ Σ̂−1
PII +

n2

4ν
V ec(Σ̂−1

PII)V ec′(Σ̂−1
PII)

)

Dp. (5.28)

Finally, the maximized log-likelihood is

log L(θ̂ | X) = n log
Γ
(p

2 + ν + 1
)

π
p

2 Γ (ν + 1)
−

np

2
log

2ν + np

n
−

n

2
log |W |+ ν log

2ν

2ν + np
. (5.29)
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Figure 5.3: Pearson Type VII Subclass for ν = 3.

5.3.2 Pearson Type VII

Next, we have the Pearson Type VII distribution with pdf generator and normalizing constant

shown in (5.30) and (5.31).

g (u) =
(

1 +
u

ν

)−N
, N >

p

2
, ν > 0 (5.30)

Cp =
Γ (N)

(πν)
p

2 Γ
(
N − p

2

) (5.31)

When N = (p + ν) /2 and ν > 2, we recognize the multivariate Student’s T distribution, as

previously mentioned; if ν = 1 and N = (p + 1) /2, the Pearson Type VII reduces to the multivariate

Cauchy distribution. If we have X ∼ PV IIp (µ,Σ, ν,N), the pdf is given by

f (x)PV II =
Γ (N)

(πν)
p

2 Γ
(
N − p

2

) |Σ|
− 1

2

(

1 +
tΣ−1t′

ν

)−N

. (5.32)

Figure 5.3 plots the density surface and contours for the PVII distribution using N = 1, ν = 3,

µ = 0, and Σ = Ip. Figure 5.4 shows the same plots for ν = 20.

The maximum likelihood estimator for the Pearson Type VII covariance matrix is

Σ̂PV II = λmaxW =
2N − p

nν
W . (5.33)
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Figure 5.4: Pearson Type VII Subclass for ν = 20.

For computing the IFIM, we have

G (t) = −
N

ν

(
1 + t

ν

)−N−1

(
1 + t

ν

)−N
= −

N

ν + t
−→ Ĝ = G

(
p

λmax

)

= −
N (2N − p)2

(2N − p + np) ν
, (5.34)

and

J (t) =
N

(ν + t)2
−→ Ĵ =

N (2N − p)2

(2N − p + np) ν2
. (5.35)

We also have

H = D′
p

(
n

2
Σ̂−1

PV II ⊗ Σ̂−1
PV II −

Nn2

(2N − p + np)2
V ec(Σ̂−1

PV II)V ec′(Σ̂−1
PV II)

)

Dp, (5.36)

since Ĵ
λ2
max

=
(
Nn2

)
/ (2N − p + np)2. The estimated IFIM is shown in (5.37)

F̂−1
PV II =





ν
2N−np

1
n Σ̂PV II 0

0 H−1



 . (5.37)

We also have the maximized likelihood

log L(θ̂ | X) = n log
Γ (N)

(πν)
p
2 Γ
(
N − p

2

) −
np

2
log

2N − p

nν
−

n

2
log |W | −N log

2N

2N − p
. (5.38)
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Figure 5.5: Kotz Subclass Reduced to PE Reduced to the Laplace.

5.3.3 Kotz’s Type

If X ∼ ECp (µ,Σ, φ), and the pdf generator is of the form

g (u) = uN−1e−ruβ

, (5.39)

we say X is drawn from a symmetric Kotz type distribution. We require r, β > 0, and 2N + p > 2.

The normalizing constant for this subclass, from (5.3), is shown in (5.40).

Cp =
βΓ
(p

2

)

π
p

2 Γ
(

2N+p−2
2β

)r
2N+p−2

2β (5.40)

Thus, the entire pdf is

f (x)KT =
βΓ
(p

2

)

π
p

2 Γ
(

2N+p−2
2β

)r
2N+p−2

2β |Σ|−
1
2
(
tΣ−1t′

)N−1
e−r(tΣ−1t′)

β

. (5.41)

If we set N = 1 and r = 1
2 , this reduces to the PE distribution. If we further set β = 1, we get the

multivariate Gaussian; β = 1
2 gives us the multivariate Laplace distribution. As β −→∞, the Kotz

distribution (for N = 1 and r = 1
2) approximates the multivariate uniform distribution. In Figures

5.5 and 5.6, we have the surface and contour plots for two special cases of the Kotz distribution.

The black dotted contours are for the multivariate Gaussian distribution with the same mean and

covariance matrix.
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Figure 5.6: Kotz Subclass Reduced to PE Approximating the Uniform.

Using the pdf generator in (5.39), we have

h (λ) = λ−np

2

( p

λ

)N−1
e−r( p

λ)
β

(5.42)

from (5.5). The multiplier for estimating ΣKT , λmax, solves

∂2

∂λ2
h (λ) = λ−N−np

2 e−r( p

λ)
β
(

rs
(p

λ

)β
−N −

np

2
+ 1

)

= 0. (5.43)

The root for this is shown in (5.44).

λmax = p

(
N + np

2 − 1

rβ

)− 1
β

(5.44)

Thus, the EC covariance matrix estimate is

Σ̂KT = p

(
N + np

2 − 1

rβ

)− 1
β

W . (5.45)

For the inverse observed information matrix, we have

G (t) =
N − 1− rβt2

t
−→ Ĝ = −

np

2

(
N + np

2 − 1

rβ

)− 1
β

, and

J (t) =
1−N − r

(
β2 − β

)
tβ

t2
−→ Ĵ =

[

1−N − (β − 1)
(

N +
np

2
− 1
)](N + np

2 − 1

rβ

)− 2
β

.
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The model covariance matrix for the Kotz subclass of distributions is then shown in (5.46)

F̂−1
KT =






1
np

(
N+ np

2
−1

rβ

) 1
β 1

n Σ̂KT 0

0 H−1




 , (5.46)

with H defined as shown here.

H = D′
p

(

n

2
Σ̂−1

KT ⊗ Σ̂−1
KT −

[
1−N − (β − 1)

(
N + np

2 − 1
)]

p2
V ec(Σ̂−1

KT )V ec′(Σ̂−1
KT )

)

Dp. (5.47)

Finally, we have the maximized log likelihood for this EC subclass from (5.8):

log L(θ̂ | X) = n log
βΓ
(p

2

)

π
p

2 Γ
(

2N+p−2
2β

) +
2N + p− 2

2β
log r −

np

2
log

[

p

(
N + np

2 − 1

rβ

)− 1
β

]

− . . .

−
n

2
log |W |+

N − 1

β
log

N + np
2 − 1

rβ
−

N + np
2 − 1

β
(5.48)

For the special case of the Gaussian distribution, if we fill in the values N = β = 1 and r = 1
2 ,

we have the following quantities.

Σ̂ = λmaxW = p

(
N + np

2 − 1

rβ

)− 1
β

W =
1

n

n∑

i=1

(
xi −X

)′ (
xi −X

)
(5.49)

F̂−1 =





1
n Σ̂ 0

0 2
nD+

p (Σ̂⊗ Σ̂)D+′
p



 (5.50)

log L(θ̂ | X)−
np

2
log (2π)−

n

2
log |Σ̂| −

np

2
(5.51)

It is easily verified that (5.49) through (5.51) are the correct quantities for the multivariate Gaussian

distribution, as expected.

5.4 Hybrid EM Algorithm for the ECMM

Here we extend the EM algorithm from the GMM case to include other special cases of the

elliptically-contoured distributions by using method-of-moments and/or numerical search to es-

timate the shape parameter. Hence we call it a “Hybrid EM”. The E-step is conceptually no

different than already shown for the GMM. At the tth iteration, the algorithm estimates the pos-
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terior probabilities of group membership for datapoint i and mixture k using (5.52).

p̂i (k) =
π̂

(t−1)
k fECk(xi | θ̂

(t−1)
k )

∑K̂
k=1 π̂

(t−1)
k fECk(xi | θ̂

(t−1)
k )

(5.52)

For the M-step, we extend the results of Farrell and Mersereau (2004) to re-estimate πk, µk, and

Σk for k = 1, 2, . . . K̂. Their EM implementation for these parameters was identical to that of the

Gaussian mixture model:

π̂
(t)
k =

1

n

n∑

i=1

p̂i (k) , (5.53)

µ̂
(t)
k =

1

nπ̂
(t)
k

n∑

i=1

xip̂i (k) , (5.54)

Σ̂
(t)
k =

1

nπ̂
(t)
k

n∑

i=1

p̂i (k) (xi − µ̂
(t)
k )′(xi − µ̂

(t)
k ). (5.55)

The problem here is with Σ̂
(t)
i - as already shown in this chapter, (5.55) won’t generally maximize

the likelihood for the EC class of distributions (except in the special case of the Kotz with N =

β = 1, r = 1
2). Thus, we can define

W
(t)
k =

n∑

i=1

p̂i (k) (xi − µ̂
(t)
k )′(xi − µ̂

(t)
k ), (5.56)

and estimate the covariance matrix in the tth iteration as

Σ̂
(t)
PV IIk =

p + ν
(t)
k − p

ν
(t)
k nπ̂

(t)
k

W
(t)
k , or (5.57)

Σ̂
(t)
KTk = p

(

nπ̂
(t)
k p

β
(t)
k

)− 1

β
(t)
k

W
(t)
k , (5.58)

rather then (5.55).

If we are fitting mixtures of the Pearson Type VII subclass, at each iteration of the EM algo-

rithm, we modify the already shown MoM estimator due to Sutradhar and Ali (1986) to compute
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ν
(t)
k , as shown in (5.59).

ν̂
(t)
k = 2

3
n2∗

p∑

i=1
(w

(t)∗
kii )2 − 2

n∗

n∗p∑

i=1
(V ec (x)∗i )

4

3
n2∗

p∑

i=1
(w

(t)∗
kii )2 − 1

n∗

n∗p∑

i=1
(V ec (x)∗i )

4

(5.59)

Here, w
(t)
kii indicates the ith diagonal entry of W

(t)
k , and the ∗ indicates that the MAP rule is used to

identify datapoints most likely to belong to the current group. For cases when the MoM estimator

is negative, we adopt and maximize (5.11) for the hybrid EM algorithm, using the MAP rule.

log L(ν
(t)
k | Xk) = nπ̂

(t)
k log

Γ

(

p+ν
(t)
k

2

)

(π̂
(t)
k ν

(t)
k )

p

2 Γ

(

ν
(t)
k

2

) −
nπ̂

(t)
k

2
log |Σ̂

(t)
PV IIk|

−
p + ν

(t)
k

2
log

(

1 +
u

(t)
k

ν
(t)
k

)

. (5.60)

For the Kotz type distribution, we estimate β
(t)
k using the MoM estimator of Liu (2006) already

shown. In the mixture EM context, we define the Mahalanobis distance as

d
2(t)∗
i =

[

(xi − µ̂
(t)
k )S

2(t)∗
k (xi − µ̂

(t)
k )′
]2

, (5.61)

where S
2(t)∗
k is computed based on the MAP rule. For d2(t)∗ in the following equation, the MAP

rule is also used, so the Mahalanobis distance is only computed for datapoints that are likely to be

in the kth group. Rather than finding the root of (5.14) directly, we use a potentially more stable

implementation. Since log (·) is a monotonic function, finding a root of

p2Γ

(

p

2β̂
(t)
k

)

Γ

(

p+4

2β̂
(t)
k

)

Γ2

(

p+2

2β̂
(t)
k

) − d2(t)∗ = 0

is the same as minimizing

log

p2Γ

(

p

2β̂
(t)
k

)

Γ

(

p+4

2β̂
(t)
k

)

Γ2

(

p+2

2β̂
(t)
k

) − log d2(t)∗. (5.62)
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We set practical limits on the Kotz shape parameter β
(t)
k = [0.1, 10]; for β > 10, the shape of the

distribution does not change much. Thus, we actually use a nonlinear bounded search (golden

search) to minimize (5.62).

5.5 Information Criteria for the ECMM

When we fit the ECMM with K̂ groups to a p-dimensional dataset, the number of parameters is

as shown here:

m = K̂p + K̂
p (p + 1)

2
+ K̂ + (K̂ − 1). (5.63)

As with the GMM, we have p elements of the location vector, p (p + 1) /2 unique elements of the

scatter matrix, and a single mixing parameter for each cluster. However, we also have a shape

parameter (ν or β) to estimate for each group. The ECMM log-likelihood, based on (5.32) and

(5.41), is shown here.

log L(θ̂ | X) =

n∑

i=1

log





K̂∑

k=1

π̂kfEC,k(xi | θ̂k)



 (5.64)

Thus, we have AIC and SBC for the ECMM in (5.65) and (5.66) - of course, these don’t look any

different than previously shown.

AIC = −2 log L(θ̂ | X) + 3m (5.65)

SBC = −2 log L(θ̂ | X) + log (n)m (5.66)

For computing ICOMP , the inverse Fisher information matrix is of the same form as for the GMM

model:

F̂−1 =











F̂−1
π 0

F̂−1
1

. . .

0 F̂−1

K̂











. (5.67)

The first block is no different than what was already shown in (3.32). Block k + 1 is the IFIM

computed from the kth group, based on the specific EC subclass used ((5.37) or (5.46)). We then
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have ICOMP and ICOMPPEU for the EC mixture model:

ICOMP (F̂−1) = −2 log L(θ̂ | X) + 2C1(F̂
−1), (5.68)

ICOMPPEU(F̂−1) = −2 log L(θ̂ | X) + m + log (n)C1(F̂
−1). (5.69)

In both cases, we save a potentially significant amount of computational resources (time & storage)

by not actually building the individual matrixes. Recall from Chapter 3 that the complexity of

F̂−1 is computed entirely from traces and determinants. For a block diagonal matrix

B =











B1 0

B2

. . .

0 Bb











,

the trace and determinant are simply

tr (B) =

b∑

i=1

tr (Bi) and, |B| =
b∏

i=1
|Bi| . (5.70)

Thus, when computing either form of ICOMP , we compute the trace and determinant for F̂−1
π

and each mixing distribution, then sum or multiply them as appropriate.

Now we are in a position to determine which of the two EC subclasses might fit a certain

dataset the best. As in Section 3.5, we first fit a mixture model of exactly Kmax groups to a given

dataset for both the Kotz Type and Pearson Type VII. Whichever model produces the minimum

information criterion score is selected for use with that dataset in the subsequent complete analysis.
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Chapter 6
The Kernel Density Estimator Mixture Model

(KMM)

“Lorraine, my density has popped me to you.” - George McFLy, Back to the Future

6.1 Kernel Density Estimators

For many datasets, enforcing any functional form may not provide a very good fit to the data,

leading to suboptimal class assignments. Figure 6.1 is an example of data that does not fit any

of the distributions already shown. The right pane shows the density contours, with those for the

multivariate Gaussian density in black dots. Clearly, fitting a symmetrical distribution to data from

this density will lead to a bad fit. An obvious solution would be to fit a skew-elliptical distribution

to data that exhibit asymmetry. Multivariate asymmetrical distributions are a relatively new

phenomenon in statistics; an excellent source on this is Ed. M Genton (2004). However, in this

chapter, we propose to utilize an even more general nonparametric technique called kernel density

estimation (KDE). Though it didn’t see much use for a long time, nonparametric density estimation

of this form was first published by Rosenblatt (1956). Kernel density estimation relies on every

datapoint to compute the probability density for a given dataset. Hence, we see why kernel methods

languished, they require a heavy computational effort. The density estimate for xi is computed as

a weighted sum that is a function of the distance from xi to all other datapoints, such that closer
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Figure 6.1: Example of Skewed Bivariate Data.

datapoints have a stronger influence on the density.

g (xi) =
1

nh

n∑

l=1

K

(
xl − xi

h

)

. (6.1)

Figure 6.2 is a good example of how kernel density estimation works - near the mode, the den-

sity contributions are more dense than at the tails. The parameter h (ok, so this is not entirely

nonparametric) is called a bandwidth or window width. We will come back to this in the ensuing

section. As long as K (t) is defined such that it integrates to 1, g is a proper probability density

function. In Table 6.1, we see a list of five common kernel functions, where t = (xl − xi) /h; their

shapes are also shown in shown in Figure 6.3. In the right pane, we see the Gaussian kernel with

support of the entire real number line, while the other five have support −1 ≤ t ≤ 1. Note that

the major difference between these kernel functions is the tail / peak behavior. It would seem that

with KDE, selecting the best kernel function is critical; after all, this is the case when fitting a

distribution to data. However, as shown by Scott (1992), the actual kernel function used has little

effect on the density estimates. The tail and peak variations are smoothed out by the averaging

process.

Thus far, we have looked at univariate KDE, but for it to be really useful, we need the ability

to compute kernel density estimates for multivariate data. The simplest approach is the product
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Figure 6.2: Demonstrating Kernel Density Estimate Computation.

Table 6.1: Sample Univariate Kernel Functions.

Kernel K (t)

Biweight 15
16

(
1− t2

)2

Epanechnikov 3
4

(
1− t2

)

Gaussian 1√
2π

exp
(

− t2

2

)

Triangle 1− |t|

Triweight 35
32

(
1− t2

)3
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Figure 6.3: Kernel Functions from Table 6.1.
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kernel, described by Silverman (1986) and Scott (1992):

g (xi) =
1

n
∏p

j=1 hj

n∑

l=1





p
∏

j=1

K

(
xlj − xij

hj

)


 , (6.2)

where xlj is the jth measurement on the lth observation. Clearly, (6.2) is nothing more than

the product of p univariate kernels, where each dimension has its own, possibly different, window

width (hence the name). Note that the product kernel assumes all dimensions are independent;

this major simplification can often be overly restrictive (more later). Thus, our results are based

on a multivariate kernel density estimator using the Gaussian kernel function, shown in (6.3).

g (xi) =
1

n (2π)
p

2

n∑

l=1

|H|−
1
2 exp

(

−
1

2
(xl − xi) H−1 (xl − xi)

′
)

(6.3)

The main requirement here is that the bandwidth matrix H be symmetric p× p, positive definite,

and non-singular. If H is diagonal, (6.2) and (6.3) should return identical density estimates.

To demonstrate the flexibility of multivariate kernel density estimation, we generated n = 100

random samples from two skewed univariate PE distributions. If g (x) is a univariate symmetric

distribution centered on µ, Fernandez and Steel (1998) suggested the distribution could be skewed

by creating a new distribution

f (x) =
2

κ + 1
κ

[

g

(
x− µ

κ

)

I (x ≥ µ) + g ((x− µ)κ) I (x < µ)

]

, (6.4)

where κ controls the amount of skewness. For κ = 1, g (x) = f (x) in (6.4). Figure 6.4 demonstrates

the skewed PE distribution with β = 0.5 using κ = [−2, 1, 2]. For our simulation, both variables

were skewed in a different direction and at a different magnitude (κ = −2, 4), then we used a

copula with covariance of σ12 = 0.5 to induce some dependence. In Figure 6.5, we see that the

kernel density estimation adapted to the shape of the data quite nicely.

6.2 Bandwidth Estimation

Although using kernels frees us from enforcing a functional form, there is no free lunch. While

optimizing the kernel function may not provide much value, selecting the right bandwidth matrix

does. This can best be demonstrated by considering a simple histogram. In creating a histogram
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Figure 6.4: Histograms of 3 Examples of the Skewed PE Distribution.
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Figure 6.5: Bivariate KDE Surface and Contours of Skewed Data.
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Figure 6.6: Demonstrating the Importance of Appropriate Bandwidth Selection.

of some data, we usually select the number of bands, B, into which the data will be placed (or we

let the computer do so). What’s really occurring, however, is that a bandwidth is being computed

as

h =
max (X)−min (X)

B
. (6.5)

The choice of h can have a huge impact upon how we view the data analyzed. Figure 6.6 is an

excellent demonstration of this fact. We generated a total of n = 1000 random samples from a

mixture of Gaussians:

X ∼ 0.3N
(
−1, σ2 = 2

)
+ 0.7N

(
5, σ2 = 2

)
.

The two separate densities can be seen superimposed on the histogram in the right panel. In the

left panel, the density histogram is computed using B = 5 bins, while B = 15 bins are used in

the second. Of course, using B = 5 bins is merely a pedagogical extreme. It is clear that using

H = 3.98 “smooths out” the bimodality of the data, while using H = 1.33 helps the researcher

identify this characterization. The situation translates directly from histogram density estimation

to kernel density estimation - using an inappropriate bandwidth matrix can either conceal too many

features in the data, or be overly influenced by them. The obvious solution is to use a data-adaptive

computation for H.

One approach for choosing the value for a univariate h is to minimize the asymptotic mean
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integrated squared error (AMISE); for a nonnegative univariate kernel, we have

AMISE =
R (K)

nh
+

1

4
σ4

Kh4R
(
f ′′) , (6.6)

where R (·) is a function that measures “roughness”, and K is continuous, centered on 0 with

positive variance σ2
K . Thus, for the Gaussian kernel, we get the Normal Reference Rule:

h =

(
R (K)

nσ4
KR (f ′′)

)1
5

=

(
4

3n

) 1
5

σ. (6.7)

If it provides a smaller value for h, Silverman (1986) recommends replacing σ with IQR
1.348 , as a robust

estimator of the standard deviation. If one wishes to use the Gaussian product kernel for density

estimation, the Normal Reference Rule (Scott, 1992) is shown in (6.8).

hj =

(
4

n (p + 2)

) 1
p+4

σj , j = 1, . . . , p (6.8)

Of course, things get a lot more complicated when we consider multivariate KDE. If we denote µ2
2

to be the second moment of the kernel function, HK to be its Hessian matrix, and let ‖K‖22 be the

squared L2 norm of K, the AMISE is

AMISE =
µ2

2

4

∫
[
tr
(
H ′HgH

)]2
dx +

‖K‖22
n |H|

, (6.9)

see Wand and Jones (1995). For bivariate data with the Gaussian kernel, Wand and Jones (1993)

derive

H =
3

8π
|Σ|−

1
2 n− 2

3 , (6.10)

which they find appealing, since

“It simply says, that to optimally estimate a bivariate normal density, one should have

kernel mass with the same covariance structure as the density itself.”

This is a logical basis for multivariate extensions of the Normal Reference Rule, in which H is

computed based on the estimated sums-of-squares or covariance matrix.

W =

n∑

i=1

(xi − µ̂)′ (xi − µ̂) , Σ̂ =
1

n− 1
W (6.11)
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Table 6.2: Bandwidth Matrix Estimation Methods.

Method H Formula Description Parameters Estimated

1 1
nptr (W ) Ip spherical diagonal 1

2 1
ndiag(W ) ellipsoidal diagonal p

3 1
nW general p(p+1)

2

4
(

4
n(p+2)

) 2
p+4

Σ̂ general p(p+1)
2

5
(

4
n(p+2)

) 1
p+4

diag
(

Σ̂
)

ellipsoidal diagonal p

6
(

4
n(p+2)

) 1
p+4

C1

(

Σ̂
)

spherical diagonal 1

General shapes for H include spherical diagonal (identical bandwidth for each dimension), ellip-

soidal diagonal (different bandwidth for each dimension), or completely general (different band-

widths with interaction). Six common methods for computing H are shown in Table 6.2, partially

adopted from Bensmail and Bozdogan (2002). Method five reduces to the normal reference rule

in (6.7) and (6.8). As the normal reference rule does not consider the correlational structure of

the data, method 6 is more general, utilizing the maximal entropic complexity of the entire covari-

ance matrix. In cases of an ill-conditioned or even singular W , the bandwidth matrix may not be

invertible, depending upon the computation method used. When this occurs, we use one of the

robust covariance estimators from Chapter 3. However, on occasion, H could be beyond repair.

If the bandwidth matrix for the kth becomes uncomputable, the posterior probability of group

membership for all datapoints in that group are set to zero, so the datapoints migrate into other

populations. With so many ways to estimate the bandwidth matrices Hk, we need a way to choose

which method to use. As with the robust covariance estimators, we suggest to use information

criteria for this. We begin by fitting a mixture model of exactly Kmax groups to a given dataset -

once for each estimation method in consideration. Whichever method produces the minimum score

is selected for use with that dataset in the subsequent complete analysis.

A completely different approach for estimating H empirically (not for mixture distributions)

has been suggested by Zhang et al. (2004). In this research, they suggest an MCMC approach to

maximize the cross-validation likelihood criteria; it is claimed to be the “. . . first practical method

for estimating the optimal bandwidth matrix.” Though the Markov Chain apparently scales with p

very well, nothing concrete was stated regarding timing. KDE methods are already computationally
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intensive; computing kernel density estimates thousands of times (they used a burn-in period of

5000 iterations) and using cross-validation seems mind-bogglingly so. Now consider doing this when

trying to fit a mixture model with K̂ = 1 . . . 6! Our Hk selection approach is intuitive, reasonable,

and practical.

6.3 Hybrid EM Algorithm for the KMM

When fitting a KDE mixture model, the researcher can choose between estimating a common

bandwidth matrix (same H across all groups), or estimating group-specific bandwidth matrices.

In general, we feel that it is best to make as few restrictive decisions in the modeling process as

possible - the data should guide us. Therefore, we prefer to employ mixture-specific bandwidth

matrices. Thus, for the kth group, the density function is

gk (xi | Hk) =
1

n (2π)
p

2

n∑

l=1

|Hk|
− 1

2 exp

(

−
1

2
(xl − xi) H−1

K (xl − xi)
′
)

, (6.12)

and the log-likelihood for the KMM is shown in (6.13).

log L(θ̂ | X) =

n∑

i=1

log





K̂∑

k=1

π̂kgk (xi | Hk)



 (6.13)

Fitting a mixture of kernel density estimators to data follows the same general process as the

mixture of Gaussians. The tth iteration of the EM algorithm computes the posterior probability of

group membership given by

p̂i (k) =
π̂

(t−1)
k gk(xi | H

(t−1)
k )

∑K̂
k=1 π̂

(t−1)
k gk(xi | H

(t−1)
k )

. (6.14)

The primary difference here is that the MAP rule must be used for computing the density gk(xi |

H
(t−1)
k ). The datapoints having the highest probability in group k are used for estimating H

(t−1)
k .

Hence, this is another hybrid EM algorithm. Following these computations in the E-step, the

M-step entails re-estimating the mixing proportion (2.10) and covariance matrix (2.12) for each

group; the latter is then used to re-estimate the group-specific bandwidth matrices.

As already mentioned, KDE allows us to compute density estimates for some data empirically,
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without imposing any form. Thus, we can model characteristics that don’t fit any distributions.

Another benefit is the smoothing effect of the kernels; the averaging that occurs helps smooth the

likelihood surface in fewer iterations than the other mixture models. This has the effect of reducing

the overall gradient of the surface and the number of local maxima. Figures 6.7a through 6.7d

demonstrate the value of this smoothing very well (Reddy and Chiang, 2007).

(a) The Original Log-likelihood Surface Which
is Very Rugged.

(b) The Intermediate Smoothed Surface.

(c) The Intermediate Smoothed Surface. (d) Final Smoothed Surface with Only Two Lo-
cal Maxima.

Figure 6.7: Evolution of Likelihood Surface Using KDE Smoothing.
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6.4 Information Criteria for the KMM

For the KMM, the number of parameters m is a function of how Hk is estimated. For example,

using method 5, m = K̂p + (K̂ − 1); K̂ − 1 mixing proportions, and the diagonal elements of each

mixture-specific bandwidth matrix. There are no changes to the forms of either AIC or SBC.

When employing a mixture of kernels model, the IFIM in (3.31) remains virtually unchanged, with

the exception that Σ̂k is replaced with Hk:

F̂−1
k =




Hk 0

0
(

2
nk

)

D+
p (Hk ⊗Hk)D+′

p



 . (6.15)

The situation is identical for ICOMP ; in (6.16), hkjj indicates the bandwidth for dimension j in

the kth cluster.

ICOMP (F̂−1) = −2 log L(θ̂ | X)

+m(log





K̂∑

k=1







tr (Hk)

π̂k
+

1

2



tr
(
H2

k

)
+ tr (Hk)

2 + 2

p
∑

j=1

h2
kjj















− log m)−






(p + 2)

K̂∑

k=1

log |Hk| − p
K̂∑

k=1

log (π̂kn)






− K̂p log (2n) (6.16)

As before, the modification required to compute ICOMPPEU instead is straightforward.
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Chapter 7
The Power Exponential Kernel Mixture Model

(PEKMM)

“Welcome everyone, I’m your dam tour guide Arnie. I’m about to take you through a

fully functional power plant. So please no one wander off the dam tour, and feel free

to take all the dam pictures you want. Now, are there any dam questions?”- Arnie,

National Lampoon’s Vegas Vacation

7.1 Power Exponential Product Kernel

As we saw in Chapter 5, the multivariate power exponential distribution is a special case of the

Kotz Type elliptically-contoured class of distributions. In the PE density function, shown in (7.1)

f (xi | µ,Σ, β) =
pΓ
(p

2

)
|Σ|−

1
2

2π
p
2 Γ
(

1 + p
2β

)

21+ p

2β

exp

(

−
1

2

[
(xi − µ)Σ−1 (xi − µ)′

]β
)

, (7.1)

note that the shape parameter β is used for the entire dataset - all dimensions are forced to con-

form to the same tail behavior. In real datasets, however, it can be valuable to allow for different

tail/peak behavior by variable. For example, we simulated a dataset with n = 500 observations

of p = 3 variables independently generated from the univariate PE, with β1 = 0.5, β2 = 1.0, and

β3 = 10.0. Using the estimation protocol given in Chapter 5 for the Kotz subclass, we compute

β̂ = 0.280; interestingly, this approach was unable to even provide a result that was near the average

of the true values. When computed the MoM estimator using (5.14) on a dimension-by-dimension
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Table 7.1: Maximized Log-likelihoods.

PE Distribution −175265.77
Multivariate Gaussian Kernel −1538.30

PE Product Kernel −1444.75

basis, however, we get β̂1 = 0.471, β̂2 = 0.928, and β̂3 = 10.0 - all very accurate. By estimating a

shape parameter for each variable, we may get a much better fit to the data. For this simulated

dataset, we fit three models and computed the maximized likelihoods, with the results shown here

in Table 7.1. We see that the PE distribution, assuming all dimensions had the same shape, did

not provide the best fit, according to the likelihood. The multivariate Gaussian kernel (using the

normal reference rule for H) fit the data dramatically better, but the power exponential product

kernel (PEPK) fit the best.

Thus, we introduce the PE product kernel, as it allows us to model the tail/peak behavior in

each dimension individually and independently. For the ith observation, the estimated density is

computed using (6.2), repeated here.

g (xi) =
1

n
∏p

j=1 hj

n∑

l=1





p
∏

j=1

K

(
xlj − xij

hj

)


 (7.2)

Combining (7.1) with (7.2), we define the power exponential kernel for the jth variable as

K (ti) =

[

Γ

(

1 +
1

2βl

)

2
1+ 1

2βl

]−1

exp

(

−
1

2
t2βl

i

)

, (7.3)

where t = (xlj − xij) /hj . The bandwidth values are computed using method 5 in Table 6.2:

hj =

(
4

n (p + 2)

) 1
p+4

σ̂2
j . (7.4)

From the already mentioned simulation, we have the histograms and density estimates in Figure

7.1. This allows us to visualize why the PEPK model fit the data so much better than the others

- the shape of each dimension is fit individually.

Of course, there are always trade-offs to make in any modeling procedure. In fitting the PE
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β = 0.50 β = 1.00 β = 10.00

(a) Histograms of 3 Examples of Univariate PE Data.

(b) Estimated Densities of 3 Examples of Univariate PE Data.

Figure 7.1: Fitting PE Univariate Kernel to Each Dimension of Simulation.
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product kernel to a dataset, we lose the ability to correctly model the information in the dependency

between the variables. To demonstrate this, we went back to our simulation protocol and induced

moderate correlation using a copula with the covariance matrix

Σ =








1.0 0.5 −0.5

0.5 0.75 0.0

−0.5 0.0 2.0








.

When the PE product kernel was used on this correlated dataset, it performed very poorly at

recovering the true β parameters - it got [0.471, 0.555, 0.276]. Additionally, the log-likelihood scores

indicated that the multivariate Gaussian kernel fit the data better (−2127.43 vs. −3257.78). One

solution would be to replace σ̂j in the computation for hj with some scalar measure which makes use

of the entire covariance matrix - c1(Σ̂), for example. Of course, this would then enforce a common

bandwidth for all dimensions, which may not be desirable. In summary, it seems important to

decide whether we prefer to better fit the distributional shape or dependency structure in a given

dataset.

7.2 Hybrid EM Algorithm for the PEKMM

For the PEPK mixture model, the E-step of the EM algorithm computes the posterior probability

of group membership shown in (7.5)

p̂i (k) =
π̂

(t−1)
k gk(xi | h

(t−1)
k , β̂

(t−1)
k )

∑K̂
k=1 π̂

(t−1)
k gk(xi | h

(t−1)
k , β̂

(t−1)
k )

, (7.5)

where hk = [h1, . . . , hp] and β̂k =
[

β̂1, . . . , β̂p

]

. The probability density g (x)k for the ith observation

in the kth group is shown in (7.6).

gk (xi) =
1

n
∏p

j=1 hjk

n∑

i=1





p
∏

j=1

{

Γ

(

1 +
1

2β̂jk

)

2
1+ 1

2β̂jk

}−1

exp

(

−
1

2

(
Xj − xij

hjk

)2β̂jk

)

 (7.6)

81



At the tth iteration, the M-step entails computing the following quantities:

π̂
(t)
k =

1

n

n∑

i=1

p̂i (k) , (7.7)

µ̂
(t)
k =

1

nπ̂
(t)
k

n∑

i=1

xip̂i (k) , (7.8)

Σ̂
(t)
k =

1

nπ̂
(t)
k

n∑

i=1

p̂i (k) (xi − µ̂
(t)
k )′(xi − µ̂

(t)
k ), (7.9)

h
(t)
k =

(

4

nπ̂
(t)
k (p + 2)

) 1
p+4

diag(Σ̂k). (7.10)

For estimating the kurtosis parameter of the jth variable in the kth mixture, the average squared

Mahalanobis distance is

d2
jk =

1

nπ̂
(t)
k σ̂

4(t)
jk

n∑

i=1

p̂i (k) (xij − µ̂
(t)
jk )4, (7.11)

where µ̂
(t)
jk indicates the mean of the jth variable, and σ̂

4(t)
jk the square of its variance. Finally,

the root (using the implementation method from Chapter 5) of (7.12) is the estimated kurtosis

parameter.

Γ

(

1

2β̂
(t)
jk

)

Γ

(

5

2β̂
(t)
jk

)

Γ2

(

3

2β̂
(t)
jk

) − d2
jk (7.12)

7.3 Information Criteria for the PEKMM

Recall that the product kernel is a simplistic way to compute a multivariate kernel density estimate

by considering each dimension independently. In each dimension, we must estimate µ, h, and β.

Thus, the number of parameters estimated for the PEPK mixture model is

m = K̂ (3p + 1)− 1. (7.13)

AIC and SBC are computed as shown in (7.14) and (7.15).

AIC = −2
n∑

i=1

log g (xi) + 3m (7.14)

SBC = −2
n∑

i=1

log g (xi) + log (n)m (7.15)
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For this mixture model, ICOMP is even easier to compute than for the others. In Chapter 6,

(6.16) showed how to compute ICOMP for the KMM, requiring only traces and determinants.

The trace and determinant of a diagonal matrix

D =











d11 0

d22

. . .

0 dpp











,

is simply the sum and product, respectively, of the diagonal elements. Thus, ICOMP and

ICOMPPEU for this mixture model are shown in (7.16) and (7.17).

ICOMP (F̂−1) = −2

n∑

i=1

log g (xi) + m log




1

m

K̂∑

k=1

{
tr (hk)

π̂k
+

1

2

(

3tr
(
h2

k

)
+ tr (hk)

2
)}




−






(p + 2)

K̂∑

k=1

log |hk| − p
K̂∑

k=1

log (π̂kn)






− K̂p log (2n) (7.16)

ICOMP (F̂−1)PEU = −2

n∑

i=1

log g (xi) + {m log




1

m

K̂∑

k=1

{
tr (hk)

π̂k
+

1

2

(

3tr
(
h2

k

)
+ tr (hk)

2
)}




−






(p + 2)

K̂∑

k=1

log |hk| − p
K̂∑

k=1

log (π̂kn)






− K̂p log (2n)}

log n

2
+ m (7.17)
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Chapter 8
Numerical Results

“IT. . .COULD. . .WORK!” - Dr. Frankenstein, Young Frankenstein

All results in this chapter were obtained using our M3 toolbox, described in the appendix. In

the following studies, we used the GA parameters shown below, fitting K̂ = 1 . . . 6 for all datasets.

Recall from Chapter 4 that heuristic guidelines for GA parameters settings are few and far between.

Thus, the selection of specific values must include a level of arbitrariness. Most of the settings chosen

here were selected by observing convergence behavior of the GA with a variety of datasets, and

in a variety of settings. We opted not to use Elitisim, because of the way it increases the time

required for each generation. Finally, recall the population size heuristic for variable subsetting -

P > p. Logical generalization of this to the mixture problem would suggest that population size

should scale with n. A single generation could take a very long time for a large dataset, and risk

losing important results, in the event of a software / hardware crash in the middle of a generation.

Rather than set the population size very high, we prefer to use a moderate value, and possibly

perform several replications of the GA. This should allow us to still search the parameter space

well (possibly even better) without risking too much computation time on a single replication.

• Number Generations - 60

• Premature Termination Threshold - 40

• Population Size - 30

• Generation Seeding - Roulette

• Crossover Probability - 0.75

• Mutation Probability - 0.10

• Elitism - Off
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Where the EM or K-Means algorithms were used, the convergence criteria was set to C = 10−6,

and a maximum of 1000 iterations were allowed. All datasets are described in more detail in the

appendix. Finally, in tables recording model selection frequencies, we indicate the true structure

with bold typeface, and the models selected by each criteria are indicated by an ∗ next to the score.

As we present and discuss model selection results, we judge models based on the known true

class labels. For example, we may have a dataset from a medical study in which patients are

classified as either sick or healthy. A criteria that selects a model with four populations is said

to overfit; a model with a single population is said to be underfit. Any observations that are

placed in an incorrect or spurious population are counted as misclassified. While this is consistent

with the concept of classification, it can be considered somewhat unnatural. Underlying this way of

measuring a model is the assumption that the class labels accurately reflect all relevant information.

Using our medical example, it could be that a more accurate grouping structure would be sick male,

sick female, healthy male, and healthy female. If a procedure selected the K̂ = 4 model correctly

identifying this structure, we would say it overfit and that half (assuming equally-sized groups)

of the observations were misclassified. We could, in fact, justify the use of mixture modeling to

characterize inhomogeneities within known grouping structures. However, we are limited by the

fact that we would have no easily-interpretable, justifiable, and objective measure of model

performance. In fact, we would have no certain measure of model performance, since we could

argue any given model was identifying some ethereal characteristic the others weren’t (and that

we ourselves couldn’t). While we briefly make observations along these lines for a few upcoming

datasets, we rely upon correct classification as an objective measure of model performance.

8.1 Traditional GMM

We begin by showing some numerical results without (mostly) using any of the newer techniques,

for the purpose of comparison. These same datasets will be reanalyzed in Sections 8.2 through 8.5

with much better results than what is shown here.

8.1.1 Simulation S1 - Mixed Overlapping

Our first simulation study is using the dataset previously shown in Figure 2.1. This data was

generated using simulation protocol S1, shown in the appendix, with n = 300 observations - 100
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Figure 8.1: Simulation S1 - Results from Best Model as Selected by Log-likelihood.

from each of K = 3 groups. For this moderately overlapped dataset, these methods were unable to

produce consistent results. The EM algorithm was able to converge for K̂ = 2 in 34 of the M = 100

simulations; the number was even worse when trying to fit a model with K̂ = 3 mixtures - 23. In

fact the EM(KM) produced results for K̂ = 1 . . . 6 in only 1 simulation! The modeling results from

this single simulation are presented in Table 8.1. Throughout this section, we use ∗ in the model

selection frequency tables to indicate the model structure at which criteria are minimized. Note

the fifth row - when the EM algorithm attempted to fit K̂ = 5 mixtures, one of them dropped out,

and it replicated the results when attempting to fit K̂ = 4 Gaussians to the data. We see that the

likelihood was maximized for K̂ = 5 groups, even though it is on a boundary. Perhaps the best

model would have more groups, but given the convergence problems with this highly overlapped

dataset, the chances of getting an answer for higher Kmax seem slim. In the right pane of Figure

8.1, we see how the K = 3 actual groups were split into five.

Table 8.1: Simulation S1 - Results from Sole Completed Simulation.

K̂ attempted,fit log L(θ̂ | X) Correct Classification Rate

1, 1 −1602.87 33.33
2, 2 −1496.06 66.67
3,3 −1455.73 88.33
4, 4 −1448.35 69.00
5, 4 −1448.35 69.00
6, 5∗ −1439.32 66.33
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8.1.2 Simulation S3 - Spherical Overlapping

Next we have a simulation protocol with n = 150 observations created from K = 3 evenly-sized

spherical mixtures in which the third population is almost entirely contained in the second. Visual

inspection of the left panel in Figure 8.2 (without different colors/markers per group) shows that

K̂ = 2 is a likely candidate for the number of populations. Only the higher density in part of

the upper cluster suggests there are actually three. As humans, we can identify this discrepancy

- the question is “Can the computer do so?”. We performed M = 100 simulations from this

protocol, attempting to fit the six possible mixture models to this data with EM(KM). In only 17

simulations did the EM algorithm converge to a solution for all six attempted models. For all of

these, the single-population model was chosen as the best. In Table 8.2, we show the results from

the simulation with the best overall results. For the model with the correct structure, we see that

only 6 observations were misclassified - not too shabby.
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Figure 8.2: Simulation S3 - Sample Scatter Plot of X1 Against X2.

Table 8.2: Simulation S3 - Model Selection Results from Best Simulation With Complete Conver-
gence.

K̂ log L(θ̂ | X) Correct Classification Rate

1∗ 763.71 33.33
2 681.24 66.67
3 635.32 96.00
4 630.03 90.00
5 621.55 90.00
6 615.92 79.33
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Table 8.3: Iris data - Gaussian Mixture Model Selection Results.

K̂ log L(θ̂ | X) Correct Classification Rate

1∗ 379.91 33.33
2 214.35 66.67
3 180.35 96.67
4 − −
5 − −
6 − −

8.1.3 Real data - Iris

The next dataset is Fisher’s iris data. This dataset consists of p = 4 flower characteristics: petal

length, petal width, sepal length, and sepal width. There are K = 3 groups: 50 observations each

from the varieties Iris Setosa, Iris Versicolor, and Iris Virginica. For K̂ = 1 . . . 6, we executed the

EM algorithm, initialized by K-Means. Model likelihood scores and classification rates are shown

in Table 8.3. The EM algorithm was only able to converge to a solution when fitting a bi-group

or tri-group structure. Considering just the models for which results were obtained, we see that

maximizing the likelihood would lead to the conclusion that the data represent a single population.

That said, when fitting the K̂ = 3 model, only 5 observations were misclassified.

8.1.4 Real data - Aorta

The second real dataset used in this section is medical imaging data from a study of heart tissue.

Hardening of the arteries is the leading cause of death and debility in the industrial world. In the

U.S. alone 13 million Americans suffer from heart attacks, and 90, 000 people die from heart disease

annually. Nuclear magnetic resonance (NMR) imaging has been used to identify fatty tissues in

the arteries to aid in early detection of heart attacks. We have data on n = 418 patients, and

p = 20 image variables. There are two classes - patients exhibiting early atheroma, and those who

were healthy. As can be seen in the appendix, this dataset shows a lot of overlap and has extreme

nonnormal characteristics.

Once again, we used the K-Means algorithm to initialize the EM; each replication required

just 4 seconds to fit all K̂ = 1 . . . 6 models. Unlike the simulated example just shown, the EM

algorithm consistently converged. In all replications, maximizing the log-likelihood led to putting

all datapoints in four groups - a correct classification rate of 77.03%. Table 8.4 shows the output
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Table 8.4: Aorta data - Results from a Typical Replication.

K̂ attempted,fit log L(θ̂ | X) Correct Classification Rate

1, 1 −25994.83 53.59
2,2 −22786.47 54.07
3, 3 −19951.93 65.55
4, 3 −19551.93 65.55
5, 4∗ −16551.66 77.03
6, 3 −19951.93 65.55

from a typical replication. Note that even for the correct structure with two groups, just over half

of the datapoints were correctly classified.

8.1.5 Real data - Diabetic

For our penultimate example using the traditional methods, we have a dataset that is composed

of K = 3 types of patients from a diabetes study. Five medical measurements relating to insulin

usage were taken on n1 = 33 overt diabetic n2 = 36 chemical diabetic, and n3 = 76 non-diabetic

patients. Due to the clinical similarity between the latter two groups, finding either K̂ = 2 or

K̂ = 3 is acceptable for this dataset. A model with K̂ = 4 distinct populations was chosen as best,

with a correct classification rate of 77.24%. It is interesting to note that the EM algorithm was

consistently unable to converge to a solution for K̂ = 2 - one of the two acceptable models. We

end with a summary of the results from a single replication in Table 8.5.

Table 8.5: Diabetic data - Results from a Typical Replication.

K̂ attempted,fit log L(θ̂ | X) Correct Classification Rate

1, 1 −3219.81 52.41
2 unable to converge

3,3 −2970.26 66.21
4, 3 −2937.17 86.21
5, 4∗ −2906.35 77.24
6, 4 −2909.11 76.55
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Figure 8.3: Cancer data - Scatter Plot Matrix of Variables a) Through e).

8.1.6 Real data - Cancer

Finally, we have a 3rd medical dataset first used in Street et al. (1993). Features are computed

from a digitized image of a fine needle aspirate of a breast mass from n = 569 patients. They

describe characteristics of the cell nuclei present in the image, with p = 30 features. This data

is composed of K = 2 groups; n1 = 212 patients had malignant tumors, while the masses of the

other n2 = 357 were benign (noncancerous). Figure A.10 from the appendix is repeated in Figure

8.3, without showing the actual groups. These scatter plots show no clear separation between

the two populations. We applied the EM algorithm to this dataset, initialized by K-Means. The

EM algorithm failed to produce any results, due to covariance singularity, so we allowed the EM

to use the convex sum estimator to regularize the estimated covariance matrices when required.

This allowed the procedure to consistently converge to a solution for K̂ = 2. For K̂ = 3 . . . 6,

however, the algorithm still was unable to converge. For the mixture model with two groups, the

algorithm correctly classified 63.1% of the observations, with the resulting confusion matrix shown

90



Table 8.6: Cancer data - Confusion Matrix from Best Mixture of Normals Model.

Predicted
k 1 2 Total
1 2 210 212

Actual 2 0 357 357

Total 2 567 569

in Table 8.6. Note that these results aren’t exactly useful, since we can’t identify a best fitting

model structure - we used the a priori information that the correct structure was K = 2 groups;

hence, this result kind of relied upon supervised learning. More important is the fact that this

model resulted in a 99% false negative rate; all but two malignant tumors were classified as benign.
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8.2 Updated GMM

In this section, we apply the updated Gaussian mixture model to various simulated and real-world

datasets. We introduce GKM, GARM, GEM, and robust covariance estimation.

8.2.1 Simulation S1 - Mixed Overlapping

Our first simulation study is using the dataset shown as a demonstration in Chapter 2. We ran

M = 50 simulations with n = 300 using the mixture of Gaussians with GARM to initialize GEM,

and using the Empirical Bayes robust covariance estimator. Because of the overlap, there was a

lot of variability in the results; Table 8.7 shows the model hit rates. In these results, we make two

interesting observations. First of all, note that the consistent criteria were more accurate than the

others - they both picked the true structure as the best. However, note that both AIC and ICOMP

were more precise. They both picked the correct structure with the highest frequency. In Table

8.8 we show the confusion matrix for the best model picked by ICOMPPEU , which misclassified

28 of the observations. We also show a scatter plot of the true structure (left pane) and estimated

structure (right pane) from the best simulation, in Figure 8.4.

Table 8.7: Simulation S1 - Model Selection Frequencies and Results for GEM(GARM).

K̂ AIC SBC ICOMP ICOMPPEU

1 0 0 0 0
2 8 32 0 24
3 68 62∗ 68 52∗

4 22∗ 6 24∗ 22
5 2 0 6 2
6 0 0 2 0

Correct Classification Rate 85.00% 90.33% 84.33% 90.67%

Table 8.8: Simulation S1 - Confusion Matrix from Best Simulation.

Predicted
k 1 2 3 Total
1 98 1 1 100

Actual 2 17 83 0 100
3 9 0 91 100

Total 124 84 92 300
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Figure 8.4: Simulation S1 - Scatter Plot of Best Model Structure.

SUMMARY: For the GMM using GEM(GARM), we ran 50 simulations using 300 obser-

vations. ICOMPPEU was minimized at a model correctly identifying the true structure

of three populations, with a correct classification rate of 90.67%.

8.2.2 Simulation S2 - Ellipsoidal Overlapping

Next, we have a dataset created with K = 3 overlapping highly-ellipsoidal bivariate Gaussian

mixtures. A small scale Monte-Carlo simulation was performed using this data and n = 150

observations, evaluating the fit of up to Kmax = 6 mixtures. The Empirical Bayes covariance

smoother (3.40) was utilized for this dataset. No matter which of the three initialization methods

in the toolbox where used, the EM algorithm did not consistently converge within 1000 iterations for

K̂ = 1 . . . Kmax. In fact, it was frequently unable to converge for K̂ > 3. In two of the simulations

(initialized by GKM), however, we were able to obtain convergence and estimates for all models up

to K̂ = 4, shown in Table 8.9. Note that these results include the turning point of ICOMP , which

justifies their inclusion here. Figure 8.5 demonstrates the dramatic decrease in the ICOMP scores

(and rise in classification rates) from the two-cluster to the three-cluster models. Finally, Figure

8.6 compares the actual and estimated group structures.
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Table 8.9: Simulation S2 - Results for Mixture of Gaussians Using EM(GKM).

K̂ ICOMP Correct Classification Rate

1 613.87 50.00
2 614.91 69.33
3∗ 489.43 95.33
4 516.71 83.33
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Figure 8.5: Simulation S2 - ICOMP and Correct Classification Rate Measurements per Model.
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94



SUMMARY: We fit the GMM using EM(GKM) to 150 observations. Most simulations

exhibited severe convergence limitations. In one simulation where EM converged for

K̂ = 1 . . . 4, ICOMP was minimized with a model correctly identifying the true structure

of three populations, with a correct classification rate of 95.33%.

8.2.3 Simulation S3 - Spherical Overlapping

Here we consider the simulation protocol already analyzed, composed of K = 3 spherical popula-

tions. We used this simulation protocol (parameters shown in the appendix) to perform simulation

experiments with n = 150 observations. Using GKM to provide initial estimates to the EM algo-

rithm for the mixture of Gaussians (again using Σ̂∗ = Σ̂MLE/EB), we executed many Monte-Carlo

simulations to obtain one in which convergence was obtained for K̂ = 1 . . . 6. Summary results

are shown in Table 8.10. All four information criteria either selected K̂ = 3 or K̂ = 4; none of

them were fooled by the “supermixture” even though cluster 3 appears to be part of the second

mixture. Note that for this dataset, the heavier penalty enforced by the consistent criteria, SBC

and ICOMPPEU was beneficial. That said, no matter which of the two models were selected, the

results are phenomenal; the confusion matrix for each model selected is shown in Table 8.11. For

the K̂ = 3 model, two datapoints were traded between mixtures 2 and 3; considering the level of

overlap between them, this 98.67% level of accuracy is remarkable.

Table 8.10: Simulation S3 - Mixtures of Gaussians with EM(GKM) Results.

K̂ Correct Classification Rate AIC SBC ICOMP ICOMPPEU

1 33.33 1541.94 1552.00 1535.20 1552.62
2 66.67 1389.95 1412.07 1360.77 1377.53
3 98.67 1335.75 1369.93∗ 1295.81 1329.47∗

4 93.33 1334.28∗ 1380.52 1283.43∗ 1333.77
5 82.00 1336.99 1395.30 1284.89 1366.44
6 74.67 1340.41 1410.78 1289.34 1405.53
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Table 8.11: Simulation S3 - Confusion Matrices.

K̂ = 3 Predicted
k 1 2 3 Total
1 50 0 0 50

Actual 2 0 49 1 50
3 0 1 49 50

Total 50 50 50 150

K̂ = 4 Predicted
k 1 2 3 4 Total
1 50 0 0 0 50

Actual 2 0 41 1 8 50
3 0 1 49 0 50

Total 50 42 50 8 150

The model with 4 mixtures had the same trade, and also classified 8 datapoints from mixture 3

into a 4th mixture. It is instructive to consider the scatter plot from this model, displayed in Figure

8.7. Note that the eight datapoints in mixture 4 have a substantial degree of separation from the

main body of the second mixture, in which they belong. Using the identified mixture model and

ICOMPPEU , we performed influential detection analysis on the data from this simulation. Three

observations from group two were flagged as influential, as was one observation from group one.

As shown in Figure 8.8, these four observations are clearly separated from the rest. Finally, Table

8.12 has the estimated and actual parameters from this simulation. Results from the “incorrect”

model are shown, in order to demonstrate how similar the estimates are, despite the spurious 4th

group.
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Table 8.12: Simulation S3 - Actual and Estimated Parameters Using Best Model.

Actual Parameters Estimated Parameters K̂ = 4

πk µk Σk π̂k µ̂k Σ̂∗
k

0.33

[
0.00
0.00

] [
2.00 0.00
0.00 2.00

]

0.33

[
0.00
0.11

] [
1.85 0.27
0.27 2.25

]

0.33

[
8.30
8.10

] [
4.00 0.00
0.00 4.00

]

0.28

[
8.25
7.74

] [
1.91 1.02
1.02 3.87

]

0.33

[
5.00
8.00

] [
0.50 0.00
0.00 0.50

]

0.33

[
5.04
7.91

] [
0.41 −0.10
−0.10 0.54

]

- - - 0.053

[
11.61
5.90

] [
0.24 0.11
0.11 0.97

]
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SUMMARY: We fit the GMM using EM(GKM) to 150 observations, with the EM

converging for all models in only one simulation. AIC and ICOMP picked a model with

four groups misclassifying 10 observations; SBC and ICOMPPEU picked a model with

three groups misclassifying only 2 observations. Several clearly separated observations

were flagged as potential outliers.

8.2.4 Real data - Iris

Now we show the application of these new methods to Fisher’s iris data. As mentioned previously,

the trick is to have the data tell us that there are three groups, when all it knows is what’s shown

in Figure 8.9. In all dimensions, measurements on the Versicolor and Virginica varieties overlap

substantially, which seems to restrict the ability of the EM algorithm to converge as already shown.

To determine the appropriate covariance regularization function for the regularized Mahalanobis

distance, we fit Kmax mixtures to the data using each of the 4 robust covariance smoothers, and

identified which was associated with the minimum of score for each IC. As shown in Table 8.13, the

data suggests we should use the Convex Sum Estimator. The modeling results are summarized in

Table 8.14. Note the similarity between the models selected by SBC and ICOMPPEU , with the

consistent penalties. For this dataset, it is clear that the heavier penalty was not needed. Table

8.15 presents the results from the best model selected by both AIC and ICOMP . This model only

misclassified 5
150 = 3.33% of the observations; all 5 were really Iris Versicolor, but were classified

as Iris Virginica. Since the confusion is so simple, we don’t show the confusion matrix. Given the

amount of overlap exhibited by these groups, this performance is remarkable. Using ICOMP and

the best mixture model it identified, we performed the complete enumerative subset analysis, with

the results shown in Table 8.16. For each group of equally-sized subsets, the ∗ identifies the best.

According to this table, we could fit the univariate mixture model to just the 2nd (petal width)

or 4th (sepal width) variables and get a better mixture model, at least in terms of the IC score.

Visual inspection of Figure A.14 in the appendix seems to confirm this. The next best subset model

would use the {2, 4} subset. In Figure A.14, this is the lower middle plot; again we see very good

class separation here. Due to the overlap that remains in these three subset models, we would not

expect to see any improvement in the accuracy of the mixture model, however. Further analysis

confirmed this expectation. Visual inspection of the plots in Figure A.14 suggest there is at least

one outlier value in the Iris Setosa group, and possibly two outliers in the Iris Virginica group.

Influence detection identifies three observations that fall substantially short of the [0.970, 1.002]
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Figure 8.9: Iris data - Pairwise Scatter Plots.

Table 8.13: Iris data - Covariance Estimator Selection.

Smoother AIC SBC ICOMP ICOMPPEU

ΣMLE/EB 765.04 709.91 738.91 823.35

ΣSRE 802.93 806.47 859.07 837.68
ΣCSE 586.42∗ 554.81∗ 630.13∗ 717.43∗

ΣTHOMAZ 745.53 980.01 728.38 860.59

Table 8.14: Iris data - Mixture of Gaussian Models Selected by GEM(GARM).

Output AIC SBC ICOMP ICOMPPEU

K̂ fit 3 2 3 2
Score 511.01 626.79 469.27 583.36

Correct Classification Rate 96.67% 66.67% 96.67% 66.67%

Table 8.15: Iris data - Results from Best Replication Using ICOMP .

K̂ attempted K̂ fit ICOMP Correct Classification Rate

1 1 820.01 33.33
2 2 501.81 66.67
3∗ 3 469.27 96.67
4 3 469.27 96.67
5 5 525.87 80.00
6 5 545.05 73.33
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interval for Ii, confirming the visual suggestion. The ratios (0.958, 0.956, 0.963) all suggest that the

mixture model could be improved if they were removed. Figure 8.10 has the influence detection

plot. These four observations are marked in Figure 8.9 with the red +. Of course, it is difficult to

visually evaluate these as outliers in the pairwise plots, though it does seem that at least two are

justifiably flagged.

Table 8.16: Iris data - Subset Analysis Using Best K̂ = 3 Mixture Model.

Subset ICOMP

{1, 2, 3, 4} 469.27∗

{2, 3, 4} 373.88∗

{1, 3, 4} 433.16
{1, 2, 4} 442.75
{1, 2, 3} 581.09

{3, 4} 307.37
{2, 4} 279.38∗

{2, 3} 493.39
{1, 4} 412.03
{1, 3} 533.31
{1, 2} 469.88

{4} 212.96
{3} 411.63
{2} 177.91∗

{1} 359.03
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Figure 8.10: Iris data - Influence Detection Plot for {2, 4} Subset Model.

SUMMARY: We fit the GMM using GEM(GARM), with the Convex Sum covariance

regularization. Both AIC and ICOMP identified a model with the correct structure,

misclassifying only five (3.3%) observations. Using ICOMP , a subset model including

only variables {x2, x4} was identified that did not allow for an improvement in classifica-

tion error, but did allow for empirical identification of potential outliers.

8.2.5 Real data - Diabetic

Next we come back to the diabetic dataset reported in Andrews and Herzberg (1985). Five medical

measurements relating to insulin usage were taken on n1 = 33 overt diabetic n2 = 36 chemical

diabetic, and n3 = 76 non-diabetic patients. There is clear overlap among the groups, especially for

x4 and x5, and nice separation in the Glucose Area measurements, as can be seen in Figure A.12

in the appendix. Using the information criteria minimization for K̂ = 6 to select the appropriate

robust covariance estimator, we selected the Empirical Bayes estimator. We first evaluated this

dataset using GEM initialized by GARM for the GMM. Table 8.17 shows the model selection results

for the Gaussian mixture model. ICOMP provided the best performance - it only selected models

with K̂ = 2 or K̂ = 3 groups. The simpler criteria, AIC and SBC, exhibited much less precision

than either form of ICOMP . In Table 8.18, we show the top 5 models selected by ICOMP . The

scores of the best 4 models are so close as to be indistinguishable.
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Table 8.17: Diabetic data - Model Selection Frequencies out of 25 Replications.

K̂ AIC SBC ICOMP ICOMPPEU

1 0 0 0 100∗

2 0 5 60∗ 0
3 0 20 40 0
4 10 30∗ 0 0
5 45 35 0 0
6 45∗ 10 0 0

Table 8.18: Diabetic data - Summary of Best 5 Replications from the Gaussian Mixture Model.

K̂ ICOMP Correct Classification Rate

2 6418.82 71.03
2 6421.95 71.72
2 6423.28 73.10
2 6425.34 72.41
3 6452.23 86.21

SUMMARY: We fit the GMM using GEM(GARM), running 25 replications. AIC and

SBC both overfit, while ICOMPPEU selected K̂ = 1 in all replications. ICOMP only

chose models with K̂ = 2 or K̂ = 3. The model with the best ICOMP score correctly

classified 71% of the patients, though one of the top five models got 86.2% correct.

8.2.6 Real data - Cancer

Next, we revisit the breast cancer dataset already analyzed. Recall that there are n = 569 observa-

tions, p = 30 variables, and K = 2 groups; n1 = 212 patients with malignant tumors and n2 = 357

with benign tumors. For a different way to look at the data, we used Multi-dimensional scaling to

project the data into two and three dimensions, with the scatter plots shown in Figure 8.11. The

two populations are identified with different markers. While they look linearly separable from this

perspective, there is a clear appearance of a merged boundary. Next, we considered the distribu-

tion of the data using the tests for multivariate Gaussian skewness and kurtosis of Mardia (1974).

For data following a multivariate Gaussian distribution, the theoretical population skewness and

kurtosis parameters are β1 = 0 and β2 = p (p + 2). Mardia’s sample values can be computed as in

(8.1) and (8.3).

β̂1 =
1

n2

n∑

i=1

n∑

j=1

[

(xi − x) Σ̂−1 (xj − x)′
]3

(8.1)
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Figure 8.11: Cancer data - MDS Scatter Plots.

χ2∗ =
n

6
β̂1 ∼ χ2

(
p (p + 1) (p + 2)

6

)

(8.2)

β̂2 =
1

n

n∑

i=1

[

(xi − x) Σ̂−1 (xi − x)′
]2

(8.3)

Z∗ =

(

β̂2 − β2

)

√
8p(p+2)

n

∼ N (0, 1) (8.4)

To test the null hypothesis H0 : X ∼ Np (µ,Σ) versus the alternative Ha : X ≁ Np (µ,Σ), we

form the test statistics shown here; the test is one-sided for skewness, while the kurtosis test is two

sided. For the this dataset, results clearly indicate nonnormal skewness and kurtosis, as shown in

Table 8.19. The fact that the Gaussian mixture model will clearly be misspecified indicates the

need for a robust criterion; the high dimensionality also indicates the need for a stronger penalty.

As such, focus on ICOMPPEU MISP . We fit the mixture of normals model for K̂ = 6 to determine

which covariance estimator should be used. Only the convex sum and Thomaz algorithms provided

solutions. The others were unable to solve all numerical issues with the covariance matrix. Out of

these two, the IC scores were all lower when ΣCSE was utilized. With these determinations made,

we used GARM to initialize GEM for the mixture of Gaussians model and executed 25 replications

of the modeling process. AIC overshot the K̂ = 2 model in 68% of the runs while SBC did so

in 52%. The regular ICOMP performed quite well - while the model it identified as best used

K̂ = 3 mixtures, it correctly classified the breast masses of 519
569 = 91.39% of the patients. Only two

observations were placed in the extraneous class. While this result is gratifying, ICOMP had a
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difficult time choosing between two populations and three. ICOMPPEU MISP , however, selected

a model with two mixtures in all 25 replications. The best five models are shown in Table 8.20.

Note that the best model, as measured by the criterion, also had the best classification perfor-

mance. In Table 8.21, we show the scores for K̂ = 1 . . . 6 from this replication. It is interesting how

the algorithms were able to realize the data was best represented by two groups, no matter how

many were attempted. Table 8.22 has the confusion matrix; all misclassified tumors were malignant

masses incorrectly identified as benign. From a diagnostic point of view, there is clearly room for

improvement.

For this dataset, there are 1,073,741,823 possible nontrivial subsets. Using the mixture model

identified by ICOMPPEU MISP , we performed 10 runs of using the GA to do subset selection.

Allowing it to run up to 60 generations with a population size of 30, the GA evaluated at most

18,000 unique subsets - a mere 0.0017% of the subset space. The top five subsets are shown in

Table 8.23. Using this best subset, we then used GARM to initialize GEM for fitting the K̂ = 2

mixture of Gaussians model, with 10 replications. ICOMPPEU MISP identified two models that

correctly classified over 93% of the patients - almost a 6% improvement in error. Table 8.24

shows the confusion matrix from this model. The false negatives (malignant masses incorrectly

identified as benign) have dropped by a full 2/3, and the number of misclassified datapoints is

half as was obtained when all p = 30 variables where used! From this subset, we also see a

dramatic improvement in the work required for classification. There is no need to measure the

radius, texture, or concave points. Medical staff also need not worry about computing the mean

or standard error of smoothness, nor anything but the mean of concavity. If any of these required

a manual measurement process, this removes a lot of chance for error. Interestingly, according to

the data source, the previous best classification results with this data, 97.5%, were obtained via

an exhaustive search using a supervised learning procedure. Our results came close to this

level of accuracy while neither requiring exhaustive search nor using the information about the true

group structure. Finally, we used the subset model to identify influential observations, of which

there were many, as can be seen in Figure 8.12. Note that since the ICOMPPEU MISP scores are

all negative, the observations above the line all indicate that they may be degrading the model

performance. In fact, 9 of these 14 observations were misclassified in the original mixture model

using all variables. These observations were flagged with no knowledge of the true group structure.

Perhaps the procedure is discovering which points have a high probability of being misclassified?

104



Table 8.19: Cancer data - Normality Test Results.

Skewness Kurtosis

β1 0 β2 960

β̂1 938.65 β̂2 2370.06
χ2∗ 89015.53 Z∗ 383.81

95% Region [0, 5124.96] 95% Region [−1.96, 1.96]
p-value 0.00000 p-value 0.00000

Conclusion X ≁ N (µ,Σ) Conclusion X ≁ N (µ,Σ)

Table 8.20: Cancer data - Summary of Best 5 Replications from Mixture of Normals Model.

K̂ ICOMPPEU MISP Correct Classification Rate

2∗ 126310.57 88.23
2 127928.78 74.34
2 128497.96 63.27
2 128574.15 63.45
2 128950.44 69.07

Table 8.21: Cancer data - Results from Best Replication.

K̂ attempted(fit) ICOMPPEU MISP Correct Classification Rate

1, 1 137741.77 62.74%
2, 2 129427.79 63.09%
3, 2∗ 126310.57 88.23%
4, 2 129427.79 63.09%
5, 2 129427.79 63.09%
6, 2 129427.79 63.09%

Table 8.22: Cancer data - Confusion Matrix from Best Mixture of Normals Model.

Predicted
k 1 2 Total
1 145 67 212

Actual 2 0 357 357

Total 145 424 569

105



Table 8.23: Cancer data - Best Five Subset Models Chosen by ICOMPPEU .

Subset Score

{8, 9, 11, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29} −29447.318
{5, 9, 10, 16, 17, 19, 20, 27, 28, 30} −28489.414
{5, 7, 8, 9, 10, 15, 18, 26, 27, 28} −26158.904

{8, 9, 11, 15, 16, 17, 18, 19, 26, 27, 28} −25433.283
{5, 6, 8, 9, 17, 19, 20, 26, 27, 29} −24204.027

Table 8.24: Cancer data - Confusion Matrix from Best Subset GMM.

Predicted
k 1 2 Total
1 191 21 212

Actual 2 16 341 357

Total 207 362 569
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Figure 8.12: Cancer data - Detecting Influential Observations.
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SUMMARY: We fit the GMM using GEM(GARM), running 25 replications with

ICOMPPEU MISP . The criterion identified a model with the correct structure of two

populations, classifying 88% of the observations correctly. ICOMP was then used to

identify a subset mixture model with 13 variables. GEM(GARM) was then run on the

subset ten times, attempting to fit K̂ = 2 populations to the data; two replications

correctly classified 93% of the observations, in a more clinically useful manner. Several

observations that had been misclassified in the original model were flagged as outliers.

8.2.7 Real data - Aorta

Our final example is with the aorta dataset already evaluated by the traditional GMM. The NMR

aorta data analyzed here was collected by Pearlman (1986) at the Medical School of the University

of Virginia. There are observations from n = 418 patients on 16 different image acquisition vari-

ables. Including direction and orientation variables, we have p = 20. The first n1 = 194 patients

exhibited early atheroma, and the remaining n2 = 224 patients were healthy. As can be seen in

the appendix (Figures A.8 and A.9), the data exhibit distinct patterns of good and poor class

separation, as well as marked non-normality. Preliminary analysis of this data suggested that the

Empirical Bayes estimator was the best to use for this data. Using GEM initialized by GARM to

fit a mixture of Gaussians clearly indicated the need for a strong misspecification-robust penalty.

AIC, SBC, ICOMP , and ICOMPPEU all performed rather poorly with this data - the first three

tended to select K̂ = 4, and ICOMPPEU selected K̂ = 1. We then ran 10 replications of the GMM

using ICOMPPEU MISP to drive model selection. In 100% of the runs, the criterion selected K̂ = 2

mixtures. There was quite a bit of variation in correct classification rates, though, as can be seen

in Table 8.25. Models selected in the three replications with the lowest scores, indicated by ∗,

correctly identified over 90% of the patients’ heart tissue condition; the model with the minimum

score only misclassified 32
418 = 7.66% of the observations. The confusion matrix from this model is

shown in Table 8.26. It is interesting to note that none of the patients exhibiting early atheroma

(group 1) were mistakenly identified as being healthy. This is positive; in medical diagnosis, it’s

better to err on the side of caution and have some patients undergo further tests, than to have

sick patients be classified as healthy. Though not clinically verified, it is reasonable to conjecture

that the 32 misclassified patients were at some pre-arteriosclerosis stage. This would explain why

their heart tissues were identified as being diseased. It would be interesting to have their records

reevaluated, to determine if they developed atheroma of the aorta shortly after the imaging study.
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Table 8.25: Aorta data - Models Selected by ICOMPPEU MISP in All Replications.

Replication K̂ fit ICOMPPEU MISP Correct Classification Rate

1 2∗ 48104.91 92.34
2 2 50073.46 68.90
3 2 50470.33 63.88
4 2∗ 48828.91 90.91
5 2 52226.73 54.07
6 2∗ 48108.91 92.34
7 2 49011.94 85.65
8 2 50117.90 67.46
9 2 49011.94 85.65
10 2 49233.72 79.43

Table 8.26: Aorta data - Confusion Matrix from Best Gaussian Mixture Model.

Predicted
k 1 2 Total
1 194 0 194

Actual 2 32 192 224

Total 226 192 418

After identifying the mixture model that correctly classified 92.34% of the patients into K̂ = 2

mixtures, we proceeded to use ICOMPPEU MISP for the post subset and influence analysis. We

executed 5 runs of the GA for subset modeling, which took less than a minute and a half. Table

8.27 shows some of the subsets identified by the GA. Thus, the process identified a single-variable

model as needing only the 1st variable to give the optimum mixture model. Visual inspection of the

2-d scatter plot using the estimated class labels identified the {1, 17} subset as having very good

estimated class separation. With these results, we fit a univariate and bivariate mixture model to

the appropriate subsets. In both cases, this sequential process allowed us to increase our correct

classification rate from 92.34% to 100%! The two plots in Figure 8.13 demonstrate the excellent

separation between the two classes of patients Finally, we considered the detection of influential

variables using the {1, 17} subset model. With a baseline score of ICOMPPEU MISP = 6842.025,

the 95% interval for all IC ratios was [0.997, 0.998]. 10 observations were identified as falling below

this range; and thus potentially influential observations. As can be seen in Figure 8.14, several of

these observations are clearly separated. Try to identify this visually using the entire dataset !
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Figure 8.13: Aorta data - Subset Mixture Models with 0% Misclassification.
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Table 8.27: Aorta data - Partial Post-subset Analysis Results Summary.

Subset ICOMPPEU MISP

{1} 3304.745∗

{18} 3442.323

{3, 12} 5368.950∗

{3, 18} 5514.481
{3, 19} 5925.296
{13, 18} 6200.085
{10, 12} 6398.004
{1, 17} 6842.025

{3, 11, 12} 7899.519∗

{3, 9, 11} 8236.589
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Figure 8.14: Aorta data - Influence Detection for Best Bivariate Subset Model.

SUMMARY: We fit the GMM using GEM(GARM), running 10 replications with

ICOMPPEU MISP . All runs resulted with the correct structure of K̂ = 2 being se-

lected, with the lowest score associated with a model correctly classifying 92.34% of the

patients - with no false negatives. We then fit the identified mixture model to subsets of

the variables using the GA, and identified several subsets which, when further analyzed,

allowed for 100% classification. Using one of these subsets, 10 observations were flagged

as being probable outliers.
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8.3 ECMM

Here we apply the ECMM to three simulated and two real datasets. For the datasets evaluated,

the Pearson Type VII model was picked as best most often. This result was unexpected, since this

subclass doesn’t adapt to peak behavior as well as the Kotz subclass. We also note the poorer

performance of the ICOMP criteria with some of these datasets. It seems likely that this is due

to how the IFIM was simplified to make the problem tractable. Finally, though our hybrid EM

algorithm is an improvement in generality over the GMM EM, it is not a panacea for convergence

issues. Here we take the opportunity to remind the reader that in tables recording model selection

frequencies, we indicate the true structure with bold typeface, and the models selected by each

criteria are indicated by an ∗ next to the score.

8.3.1 Simulation S3 - Spherical Overlapping

For our first simulation study with n = 201 (due to rounding) samples, we ran both the Kotz type

and Pearson type VII mixture models on the simulation which featured spherical clusters with one

group wholly contained in another. Information criteria scores indicated that the Pearson type

VII model was more appropriate for this dataset, as shown in Table 8.28, and it also resulted in

typically lower error rates. Model selection frequencies out of M = 50 simulations are shown in

Table 8.29. The first three criteria formulated for the Pearson type VII mixture model picked the

correct structure most often. As with the Gaussian mixture model, the simpler structure in which

the hidden group was not identified was never selected. Table 8.30 shows the model scores and

classification rates for K̂ = 1 . . . 6 from the Pearson type VII simulation with the lowest ICOMP

score. Note how the algorithm identified the correct structure even when fitting K̂ = 4, 5, 6 groups

to the simulated data. Table 8.31 shows the confusion matrices from the Kotz type and Pearson

type VII mixture models, as identified by ICOMP . The best Pearson type VII model used shape

parameters ν̂1 = 40.40 and ν̂2 = ν̂3 = 4.00; the best Kotz type model came up with β̂1 = 1.07,

Table 8.28: Simulation S3 - ECMM Subclass Selection Results.

IC Kotz Pearson Type VII

AIC 1889.61 1783.76∗

SBC 2081.62 1832.44∗

ICOMP 1659.71 1519.88∗

ICOMPPEU 1338.15 1183.60∗
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Table 8.29: Simulation S3 - Model Selection Frequencies using ECMM with GEM(GARM).

K̂ Kotz Type Pearson Type VII

AIC SBC ICOMP ICOMPPEU AIC SBC ICOMP ICOMPPEU

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 36∗ 60∗ 54∗ 10 96∗ 100∗ 96∗ 14
4 40 34 40 58 4 0 4 36
5 22 6 4 16∗ 0 0 0 30∗

6 2 0 2 16 0 0 0 20

Table 8.30: Simulation S3 - Model Scores from Best Pearson type VII Mixture Model Selected by
ICOMP .

K̂ attempted,fit ICOMP Correct Classification Rate

1, 1 2116.69 33.33
2, 2 1592.50 66.67
3,3∗ 1425.90 98.01
4, 3 1425.90 98.01
5, 3 1425.90 98.01
6, 3 1429.04 96.52

Table 8.31: Simulation S3 - Confusion Matrices for Best Kotz Type and Pearson Type VII Mixture
Models.

PV II Predicted
k 1 2 3 Total
1 67 0 0 67

Actual 2 0 63 4 67
3 0 0 67 67

Total 67 63 71 201

KT Predicted
k 1 2 3 Total
1 67 0 0 67

Actual 2 0 52 15 67
3 0 1 66 67

Total 67 53 81 201
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Figure 8.15: Simulation S3 - Actual Grouping Structure and Structure Estimated by Pearson Type
VII Mixture Model.

β̂2 = 0.99, and β̂3 = 1.18. From the first model, we see slightly heavier tails in the two overlapped

groups, and in the second model, we see heavier tails and a higher peak in only one of the groups.

The variance estimates differed from the true variances in the manner that would be expected -

increase the tails and decrease the variance. In Figure 8.15, we show the actual and estimated

structure from the best model which only misclassified 4 datapoints.

SUMMARY: IC scores identified the Pearson Type VII model and the empirical Bayes

covariance estimator as more appropriate for this dataset. We ran fifty simulations with

the ECMM for both EC mixture models, with the Pearson Type VII model picking the

correct structure with high frequency. The best Pearson Type VII model identified by

ICOMP only misclassified four of the 201 samples. The two overlapping populations

were both modeled with heavy tails: ν̂ = 4.00. Using the EM initialized by K-Means for

the GMM, the likelihood selected a group structure with a single population; EM rarely

converged. Still with convergence issues, the information criteria using EM(GKM) for the

Gaussian mixture model either selected the true model with 99% correct classification,

or a model with an extra population (93%). With this dataset, the classification rate was

similar, but we gained in generality and lost the convergence issues.

8.3.2 Simulation S2 - Ellipsoidal Overlapping

The second simulated dataset for which results are reported here is that already analyzed by the

GMM in Section 8.2.2. Our first step is to determine which EC subclass fits the data better, as a
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Table 8.32: Simulation S2 - EC Subclass Selection Results.

Criteria Kotz Score Pearson VII Score

AIC 1314.07 1026.78∗

SBC 1186.66 1075.91∗

ICOMP 962.76 813.09∗

ICOMPPEU 250.34∗ 539.31

Table 8.33: Simulation S2 - Pearson type VII Mixture Model Selection Frequencies.

K̂ AIC SBC ICOMP ICOMPPEU

1 0 0 0 0
2 0 0 0 0
3 76∗ 90∗ 52 0
4 22 10 30∗ 16
5 2 0 16 58∗

6 0 0 0 26

Best 93.17% 93.17% 67.17% 68.67%

mixture model. Table 8.32 shows information criteria scores for both the Kotz type and Pearson

type VII subclass, when used in a mixture model with K̂ = 6 groups. Using a majority voting

rule, we would determine that we should fit a mixture of Pearson type VII distributions to this

simulation. Subsequently, we ran M = 50 simulations from this protocol with n = 600 observations,

fitting Pearson type VII ECMMs. Table 8.33 summarizes the results. It is interesting that, for this

example, neither of the ICOMP criteria performed as well as AIC and SBC. SBC both picked

the correct structure as the best model overall and picked it with the highest frequency. The same

simulation resulted in the overall best for both AIC and SBC; in fact, GEM converged to the same

solution for each. In Tables 8.34 and 8.35, we show the estimated parameters from the best model

identified by SBC, along with the confusion matrix showing only 41 misclassified observations. A

quick foray back into the appendix shows us that the estimated parameters are actually very similar

to those actually used to generate the data - especially for the covariance matrix. Even though

the data were generated from a multivariate Gaussian distribution, a high amount of accuracy was

obtained by using slightly heavier tails - note the low values for the shape (degrees of freedom)

parameter. Finally, we can see in Figure 8.16 how quickly GEM found the final solution - it was

identified by the 15th generation.
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Table 8.34: Simulation S2 - Pearson type VII Mixture Model Parameter Estimates.

Group π̂ µ̂ Σ̂PV II ν̂

1 25.67
[

0.55 0.93
]

[
1.43 0.44
0.44 0.16

]

7.05

2 54.50
[

0.94 0.65
]

[
0.30 −0.21
−0.21 0.16

]

4.23

3 19.83
[

0.34 −0.49
]

[
0.15 0.06
0.06 0.04

]

4.54

Table 8.35: Simulation S2 - Confusion Matrix from Best ECMM.

Predicted
k 1 2 3 Total
1 147 33 0 180

Actual 2 7 293 0 300
3 0 1 119 120

Total 154 327 119 600
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Figure 8.16: Simulation S2 - Progress Plot for GEM Showing Quick Solution Identification.
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SUMMARY: IC scores identified the Pearson Type VII model as better than the Kotz

type distribution for n = 600 observations from this dataset. SBC identified a model with

the correct structure in 90% of the simulations, and was minimized with a model correctly

identifying 93% of the observations into three populations. The shape parameters were

estimated a ν̂1 = 7.0, ν̂2 = 4.2, and ν̂1 = 4.5 - heavier than Gaussian. The EM for the

Gaussian mixture model was unable to converge consistently, but in two simulations, it

converged for K̂ = 1 . . . 4. ICOMP was minimized for a model with three groups, for a

slightly better classification rate of 95%.

8.3.3 Simulation S5 - Mixed Overlapping

This simulation was designed purposefully with the Kotz distribution in mind. Recall that the PE

distribution is a special case of the Kotz subclass. This simulation protocol generates three groups

from the PE with different shapes - bell-curved, heavily peaked, and flat. One of the groups is

generated so as it could overlap both the others. We would hope that fitting a mixture of Kotz

type distributions would allow us to model each of these shapes simultaneously. We fit K̂ = 1 . . . 6

to M = 100 simulations with n = 300 observations. Using GEM initialized by GARM, AIC

only picked the true structure of K = 3 groups in eight simulations; all criteria either picked the

true structure, or overfit. SBC selected three groups 17% of the time, and ICOMP did so at

20%. Finally, ICOMPPEU had the worst performance, picking the correct structure in only six

simulations. Table 8.36 shows the top five models selected by each criteria - the first number is in

each row K̂, and the second is the percent of observations correctly classified. At the bottom, we

also indicate the IC scores for the best two models. It is interesting to note the high accuracy of

some of the models, even though all the top five models had at least one extra group. In Table 8.37,

Table 8.36: Simulation S5 - Top Five EC Mixture Models from GEM(GARM) by Criteria.

AIC SBC ICOMP ICOMPPEU

4 86.00% 4 84.67% 4 90.00% 5 568.00%
4 87.33% 3 94.33% 4 90.33% 5 82.33%
4 94.67% 4 92.67% 5 69.67% 6 81.00%
4 84.67% 4 94.67% 3 93.67% 6 76.00%
5 84.67% 4 92.33% 4 83.67% 5 66.67%

2271.99 2385.42 1739.38 1553.29
2309.11 2396.38 1809.77 1587.17
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Table 8.37: Simulation S5 - Confusion Matrices from Best EC Mixture Models Identified by SBC
and ICOMP .

SBC Predicted
k 1 2 3 4 Total
1 46 2 4 38 90

Actual 2 0 120 0 0 120
3 2 0 88 0 90

Total 48 124 92 38 300

ICOMP Predicted
k 1 2 3 4 Total
1 61 2 7 20 90

Actual 2 0 120 0 0 120
3 0 0 89 1 90

Total 61 122 96 21 300
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Figure 8.17: Simulation S5 - Actual and Estimated Grouping Structure.

we have the confusion matrices from the best models selected by SBC and ICOMP - with one

extra group in each. The first model placed 46 observations in incorrect groups, while the second

only missed 30. Finally, Figure 8.17 shows the actual and estimated group structure identified as

the overall best by ICOMP . Datapoints from the first population which surrounded the rest of

the other data at a distance were placed in their own group, centered relatively close to the overall

center.

SUMMARY: We fit the Kotz mixture model to 100 simulations from this protocol using

300 observations. The top two models identified by ICOMP fit a spurious population,

but correctly classified at least 90% of the samples. Regarding selection frequencies SBC

and ICOMP performed the best, selecting the true structure of three groups in 17 and

20 of the simulations, respectively.
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Figure 8.18: Demonstrating Slightly Heavier Tails for Bivariate PVII with ν = 4.

8.3.4 Real data - Iris

For the iris dataset, we applied the EC mixture model, using GARM to initialize the hybrid EM

algorithm. When the Kotz subclass was used, the algorithm was unable to converge except for the

K̂ = 4 model. Using the Pearson type VII, however, the EM algorithm converged for K̂ = 1 . . . 4

- enough to identify a turning point for all information criteria scores. SBC and ICOMP were

both minimized for the model with two groups for a correct classification rate of 66.67%. AIC and

ICOMPPEU , however, both homed in on the correct structure, and only misclassified 7
150 = 95.33%

of the observations. As noted before, the confusion was between the Versicolor and Virginica

species. The confusion matrix from this model is shown in Table 8.38. The best model used a

shape parameter of νk = 4 for all three groups. To visualize the slightly different tail behavior

this imparts, Figure 8.18 shows the bivariate Gaussian pdf surface (left pane). In the right pane,

we have the Pearson type VII (reduced to Student’s t) density surface computed for four degrees

of freedom. The center plot contrasts the contours, with the dashed black lines coming from the

Gaussian density.

Table 8.38: Iris data - Confusion Matrix from Best Pearson Type VII Mixture Model.

Predicted
k 1 2 3 Total
1 50 0 0 50

Actual 2 0 48 2 50
3 0 5 45 50

Total 50 45 55 150
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SUMMARY: We used the hybrid EM algorithm initialized by GARM for the Pearson

type VII ECMM for the iris data. SBC and ICOMP picked models with only two

populations, confounding Versicolor and Virginica. AIC and ICOMP , however, picked

the correct structure and only misclassified seven of the 150 flowers. For the Gaussian

mixture model, using GEM initialized by GARM, AIC and ICOMP were minimized for

K̂ = 3, with an error of five flowers. When EM was used to fit the GMM, however, it

was only able to converge when fitting two or three groups.

8.3.5 Real data - Diabetic

Finally, we have results from GEM(GARM) on the diabetic dataset. As with the Gaussian mixture

model, we use the MLE/EB covariance estimator. Preliminary analysis seemed to give no preference

to either the Kotz type or Pearson type VII distribution, so here we report results from fitting

mixtures of Kotz’s distributions. In Figure 8.19, we have the bivariate and trivariate scatter plots

for the MDS dimensionally-reduced data. These plots bolster the claim of similarity between the

chemical diabetic and non-diabetic patients. We performed M = 25 replications of the modeling

process, with model selection frequencies shown in Table 8.39. Keeping in mind that both a model

with two groups or a model with three groups is considered “correct”, both ICOMP s did very

well - selecting K̂ = 2, 3 in 100% and 96% of the replications, respectively. Using ICOMPPEU , we

show the scores and classification rates for the best five models in Table 8.40.
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Figure 8.19: Diabetic data - MDS Scatter Plots.
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Correctly classifying all but 12 of the patients, the EC mixture model performed the best out

of all three mixture models fit to the diabetic data. Recall that, with the GMM, a misclassification

rate of approximately 14% was achieved for this dataset, though this was for the 5th lowest score.

The shape parameters identified by this model only indicated a slight departure from normality:

β̂1 = 0.98, β̂2 = 0.97, and β̂3 = 1.02. Finally, Table 8.41 has the confusion matrix from this model.

Note that most of the confusion - eight of the 12 misclassified patients - was between the chemical

diabetic and non-diabetic groups. Four of the patients were traded between overt diabetic and

chemical diabetic. These small “trading” errors are not surprising, given the gradual manner in

which this disease progresses.

Table 8.39: Diabetic data - Kotz type Mixture Model Selection Frequencies.

K̂ AIC SBC ICOMP ICOMPPEU

1 0 0 0 0
2 0 0 88∗ 60
3 0 8 12 36∗

4 16 40 0 0
5 44 28 0 0
6 40∗ 24∗ 0 4

Best 82.76% 84.14% 74.48% 91.72%
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Table 8.40: Diabetic data - Best Five Kotz ECMMs Determined by ICOMPPEU .

K̂ ICOMPPEU Score Correct Classification Rate

3 6265.35 91.72%
3 6265.99 91.03%
3 6271.67 91.03%
3 6280.74 89.65%
2 6287.82 74.48%

Table 8.41: Diabetic data - Confusion Matrix from Best EC Mixture Model.

Predicted
k 1 2 3 Total
1 31 2 0 33

Actual 2 2 31 3 36
3 0 5 71 76

Total 33 38 74 145

SUMMARY: With no preference for either ECMM exhibited by the information criteria,

we fit the mixtures of Kotz distributions to the diabetic data. AIC and SBC overfit very

heavily, while ICOMP and ICOMPPEU fit either of the correct models in 100% and 96%

of the 25 replications. While only using slight departures from normality, the best model

selected by ICOMPPEU correctly classified 92% of the patients. The misclassifications

could be characterized as small trading errors, which would be expected given the nature

of the disease. Fitting the traditional GMM, we would choose a model with four groups,

classifying 77% of the patients correctly. The updated Gaussian mixture model fared

better at picking the correct structure, with ICOMP only choosing either of the correct

models. The lowest ICOMP score was for a model with a classification rate of 71%.
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8.4 KMM

In this section, we show results from fitting the mixture of kernel density estimators to simulated

and real data. We tended to use fewer simulations or replication in this section, due to the higher

computational burden associated with kernel density estimation.

8.4.1 Simulation S2 - Ellipsoidal Overlapping

We now revisit the dataset analyzed by both mixture models based on distributional assumptions.

Stepping past the issues of non-convergence, we performed M = 20 Monte-Carlo simulations (with

n = 150), fitting the mixture of kernel density estimators model. For these simulations, the

bandwidth matrices were estimated using Hk = 1
nWk. Initialization was performed by GARM, and

GEM was used for optimization. Table 8.42 demonstrates how well all four information criteria

performed. All four criteria honed in on the correct structure of K = 3 in at least 90% of the

simulations. Using ICOMP , M = 18 of the simulations selected a model with K = 3 mixtures; a

95% confidence interval of the correct classification rate is given by [87.22%, 99.97%]. The minimum

score across all simulations produced a model in which only 12 datapoints were misclassified, leading

to a correct classification rate of 1 − 12
150 = 92%. However, looking across all simulations, two

produced a model with a 96.67% correct classification rate. Results from one of these simulations

are shown in Tables 8.43 through 8.45. The estimated parameters are computed based on the

estimated class labels. In this best model, only 5 datapoints were misclassified. Figure 8.20

displays the scatter plots of the data with the true (left pane) and estimated (right pane) labels.

The datapoints that were placed in the wrong mixture are identified with the black diamonds with

black centers. It is clear from visual inspection of this plot that these observations would seem

appropriate in either cluster 1 or cluster 2.

Table 8.42: Simulation S2 - Model Selection Frequencies for the Kernel Mixture Model.

K̂ AIC SBC ICOMP ICOMPPEU

1 0 0 0 0
2 0 0 0 0
3 90∗ 95∗ 90∗ 95∗

4 10 0 5 0
5 0 5 5 5
6 0 0 0 0
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Table 8.43: Simulation S2 - Results from Best Simulation Using the Kernel Mixture Model.

K̂ attempted K̂ fit ICOMP Correct Classification Rate

1 1 673.42 50.00
2 2 630.41 68.00
3∗ 3 536.88 96.67
4 4 561.46 84.00
5 3 536.88 96.67
6 6 601.48 76.67

Table 8.44: Simulation S2 - Confusion Matrix from Best Simulation Using the KMM.

Actual Parameters Estimated Parameters

πk µk Σk π̂k µ̂k Σ̂∗
k

0.3

[
0.6
1.0

] [
1.2 0.3
0.3 0.1

]

0.3

[
0.6
1.0

] [
1.0 0.3
0.3 0.2

]

0.5

[
1.0
0.6

] [
0.3 −0.2
−0.2 0.2

]

0.5

[
1.0
0.6

] [
0.4 −0.2
−0.2 0.2

]
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] [
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Figure 8.20: Simulation S2 - Scatter Plot of Best Model Using the Mixture of Kernels.
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Table 8.45: Simulation S2 - Parameter Estimates from Best Simulation Using the Kernel Mixture
Model.

Estimated Parameters Actual Parameters

π̂k µ̂k Σ̂∗
k πk µk Σk

0.27

[
0.59
0.95

] [
1.04 0.32
0.32 0.15

]

0.30

[
0.63
0.97

] [
1.17 0.33
0.33 0.12

]

0.53

[
0.98
0.61

] [
0.35 −0.22
−0.22 0.18

]

0.50

[
1.01
0.59

] [
0.34 −0.24
−0.24 0.18

]

0.20

[
0.26
−0.49

] [
0.36 0.10
0.10 0.16

]

0.20

[
0.32
−0.51

] [
0.14 0.05
0.05 0.03

]

SUMMARY: Out of 20 simulations, all four criteria selected the true structure with a

frequency of at least 90%. The minimum ICOMP score was associated with a model

using K̂ = 3 groups, misclassifying 12 observations; in two simulations, ICOMP selected

a model with the correct structure correctly classifying 97% of the observations. The

recovered mean vectors and covariance matrices from this model were very close to the

actual values. The EM for the Gaussian mixture model was unable to converge consis-

tently, but in two simulations, it converged for K̂ = 1 . . . 4. ICOMP was minimized for

a model with three groups, for a classification rate of 95%.

8.4.2 Real data - Diabetic

After fitting both the GMM and ECMM to the diabetic data, we evaluated this dataset using GEM

initialized by GARM for the mixture of kernels model. We used the general bandwidth estimator

(method 3 in Table 6.2). ICOMP provided the best performance, as shown in Table 8.46 - it only

selected models with K̂ = 2 or K̂ = 3 groups. The simpler criteria, AIC and SBC, exhibited

much less precision than either form of ICOMP . It is not surprising that ICOMPPEU selected

the simpler model in which the clinically similar patients are grouped together. In Table 8.47, we

show the top 5 models selected by ICOMP . The scores of the best 3 models are so close as to be

indistinguishable, so we report the summary and confusion matrix from the replication with the

highest correct classification rate, 85.5%, in Tables 8.48 and 8.49. In the confusion matrix, we
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Table 8.46: Diabetic data - Model Selection Frequencies out of Five Replications.

K̂ AIC SBC ICOMP ICOMPPEU

1 0 0 0 0
2 0 0 0 100∗

3 20∗ 80∗ 100 0
4 80∗ 20 0 0
5 0 0 0 0
6 0 0 0 0

Table 8.47: Diabetic data - Summary of All Replications from the Kernel Mixture Model.

K̂ ICOMP Correct Classification Rate

3 6217.18 84.83
3 6218.08 85.52
3 6218.81 84.14
3 6230.86 84.83
3 6254.66 82.76

Table 8.48: Diabetic data - Results from Best Mixture of Kernels Replication.

K̂ attempted K̂ fit ICOMP Correct Classification Rate

1 1 6532.92 52.41
2 2 6319.96 71.72
3 3∗ 6218.08 85.52
4 3 6244.14 71.38
5 4 6297.05 68.97
6 4 6339.67 74.48

Table 8.49: Diabetic data - Confusion Matrix from Best Replication.

Predicted
k 1 2 3 Total
1 26 7 0 33

Actual 2 0 26 10 36
3 0 4 72 76

Total 26 37 82 145
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see that two thirds of the misclassified observations were either chemical diabetic or non-diabetic

patients. It would be interesting to do a follow-up study to determine if any of these patients

progressed to overt diabetes shortly after this data was gathered. We finish up this example with

the best 10 subsets; fitting the mixture of kernels model to all 31 nontrivial subsets of the original

variables required almost exactly 10 seconds. The results are shown in Table 8.50. All models

listed here include either Relative Weight or Fasting Plasma Glucose, both of which are known

to be important to diabetes. Based on the best subset identified, {1, 2}, we then evaluated the

influence of all n = 145 datapoints. Four were identified as being potentially influential, as shown

in Figure 8.21. None of the influential observations were misclassified - all were patients in the

overt diabetic group. Finally, we fit the KMM to the subset, but observed no improvement in

classification accuracy.

Table 8.50: Diabetic data - Best 10 Subsets from Mixture of Three Kernel Density Estimators
Model.

Subset ICOMP Subset ICOMP

{1, 2} 1284.07 {2, 5} 2972.18
{1, 5} 1640.46 {1, 2, 3} 2988.40
{1, 4} 1690.87 {2, 3} 3000.16
{1, 3} 1825.87 {1, 2, 4} 3000.44
{1, 2, 5} 2899.39 {2, 4} 3017.10
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Figure 8.21: Diabetic data - Detecting Influential Observations.

SUMMARY: The best model chosen by ICOMP out of five replications correctly

classified 85% of the patients into three populations. ICOMP settled on K̂ = 3 in all

replications; ICOMPPEU chose K̂ = 2 in all. Using the best ICOMP model, we were

able to reduce the dimensionality to p = 2, but with no improvement in classification

accuracy. With this subset model, four observations were flagged as possible outliers.

Fitting the traditional GMM, we would choose a model with four groups, classifying 77%

of the patients correctly. The updated Gaussian mixture model fared better at picking

the correct structure, with ICOMP only choosing either of the correct models. The

lowest ICOMP score was for a model with a classification rate of 71%.

8.4.3 Real data - Aorta

We also fit the kernel mixture model to the aorta dataset already analyzed by the GMM. Using

ICOMPPEU , we obtained the results shown in Table 8.51. Recall that with the GMM, we used

ICOMPPEU MISP , due to the clear misspecification and high dimensionality. Since it is impossible

to misspecify the kernel density, we just used ICOMPPEU . We estimated the bandwidth matrices

with Hk =
(

4
p+2

) 1
n(p+4)

diag(Σ̂k), and used GARM to initialize GEM. As can be seen in Table

8.51, the minimum ICOMP value occurred when the algorithm attempted to fit K̂ = 3 mixtures,

and it obtained a better fit by dropping down to K̂ = 2. We were, of course, very pleased with

the 100.00% rate of correct classification with this method. Even then, considering the next two
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Table 8.51: Aorta data - Results from Fitting Mixtures of Kernels.

K̂ attempted K̂ fit ICOMPPEU Correct Classification Rate

1 1 59235.65 53.59
2 2 52674.87 55.98
3 2∗ 49061.42 100.00
4 2 49746.08 97.13
5 3 49532.27 99.76
6 3 49525.54 99.28

lowest scores, the classification rates were 99.28% (3 misclassified) and 99.76% (1 misclassified),

respectively. Even though these models were obtained by fitting an extra population, they could

still be very useful for image-based diagnosis. We would end with the confusion matrix for the best

ICOMPPEU model, but with 0% error, there seems to be no real point.

SUMMARY: We first used the EM algorithm with K-Means to apply the GMM to this

dataset; it chose a model with four populations classifying 77% of the observations. We

then used GEM(GARM) with the Gaussian mixture model; ICOMPPEU MISP selected

K̂ = 2 in all ten runs. The best score was associated with a model misclassifying 8% of

the patients. Using this model, we then used the GA to identify several subsets in which

perfect separation of the classes was evident. With the kernel mixture model, the best

three models identified by ICOMPPEU correctly classified 100% (K̂ = 2), 99% (K̂ = 3),

and 99.8% (K̂ = 3).
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8.5 PEKMM

Finally, we show results from fitting the power exponential kernel mixture model to various simu-

lated and real-world datasets.

8.5.1 Simulation S4 - Nonoverlapping

The first dataset to which we applied the PE kernel mixture model is the only easy simulation

presented in this research. There are K = 3 nonoverlapping spherical clusters. We choose this

dataset for our hybrid EM algorithm (initialized by GARM), to demonstrate its performance in the

environment in which we would expect the traditional EM algorithm to do relatively well. Using the

S4 protocol, we ran M = 25 Monte Carlo simulations with a sample size of n = 200 observations.

Figure 8.22 shows the best model as identified by both SBC and ICOMPPEU - only a single

observation was misclassified. Regarding model selection frequencies, all four criteria (AIC, SBC,

ICOMP , and ICOMPPEU) performed very similarly. AIC and ICOMP both selected models

that correctly classified approximately 89% of the observations, but overfit the group structure. In

Table 8.52, we show the estimated and actual parameters for all three populations. Especially for

the first two groups, it is easy to see the tradeoff between estimating variance and kurtosis - one can

increase at the expense of the other. Consider, for example, the second dimension of the first group.

The estimated variance is much higher than that used to generate the data which would indicate a

wider distribution, but the kurtosis parameter is also higher, which squished the distribution back

into a smaller range.
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Figure 8.22: Simulation S4 - PE kernel Mixture Model Identified by SBC and ICOMPPEU .
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Table 8.52: Simulation S4 - Estimated and Actual Shape and Scale Parameters.

Estimated Parameters Actual Parameters

Hk β̂k Σ̂k Σk

[
0.76
2.10

] [
1.00
1.50

] [
1.56 −0.58
−0.58 4.32

] [
2.00 0.00
0.00 0.50

]

[
1.80
2.60

] [
1.50
0.83

] [
3.58 1.74
1.74 5.19

] [
4.44 2.17
2.17 6.18

]

[
1.30
2.10

] [
0.85
1.20

] [
2.73 1.45
1.45 4.19

] [
3.10 2.00
2.00 4.45

]

In the third group, we note that Σ̂ is much more similar to Σ. It is no surprise, then, that both

of the β’s are closer to 1.0, since the sample was randomly drawn from a Gaussian distribution.

SUMMARY: Using the hybrid EM algorithm, the best model selected by SBC and

ICOMPPEU only misclassified a single observation out of 200. The recovered covariance

matrix parameters from this model are similar to the true values, with the expected

tradeoff between estimating variances and kurtosis parameters.

8.5.2 Real data - Wine

The first real dataset to which we applied the PE kernel mixture model is the wine dataset of

Fiorina et el, with p = 13 variables and K = 3 groups. We used GARM to initialize GEM for

this dataset. From fifty replications, AIC picked the correct structure 42% of the time, while SBC

did better - it picked K̂ = 3 in 30 of the 50 simulations. Surprisingly, neither form of ICOMP

performed well at all: ICOMP was minimized with a model correctly classifying 71.9% of the

wines into only two groups. The heavier penalty of ICOMPPEU , hurt the results for this dataset -

it always picked a model with no group structure. While SBC picked the correct structure in most

replications, it was minimized (as was AIC) at a model with a single spurious group. The confusion

matrix is shown in Table 8.53. With the exception of almost half the first cultivar, the majority of

wines were placed in the correct groups; 82.58% of the observations were correctly classified.
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Table 8.53: Wine data - Confusion Matrix for Best Model Selected by SBC.

Predicted
k 1 2 3 4 Total
1 37 0 0 22 59

Actual 2 3 65 0 3 71
3 0 3 45 0 48

Total 40 68 45 25 178
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Figure 8.23: Wine data - Andrews Curves Plot.

This result suggests that some of the wines from the first cultivar were somehow quantitatively

different than the others. In fact, Figure 8.23 shows the Andrews plot of the data - there seems

to be a degree of separation in this group that is not exhibited by the other two cultivars. Table

8.54 shows the shape parameter β, independently estimated in each dimension for each group. It

is clear that the different shapes in each dimension, as shown in Figures A.15 and A.16 are being

modeled. Even though the model identified as best includes an extra group, we used it to perform

outlier detection, using SBC. This procedure identified four observations as decreasing the fit of

the model: one from the 3rd group, and two each from the 1st and 2nd groups. For p = 13 variables,

there are 213− 1 = 8, 191 possible subsets, and we performed several runs of the GA, applying this

mixture model to subsets of the original variables. The five subsets with the best SBC scores are

shown in Table 8.55; there are several variables that show up in all five subsets. In fact, the subset

with the worst top five score is included in them all. These obviously important variables are:
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Table 8.54: Wine data - Estimated PE Shape Parameters for Each Dimension in Each Group.

k β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10 β̂11 β̂12 β̂13

1 0.66 0.74 0.63 0.82 1.20 2.20 1.20 0.84 1.00 1.20 1.60 1.20 1.40
2 0.77 0.68 0.79 0.74 0.46 1.20 0.52 1.50 0.67 0.50 0.95 1.20 0.80
3 1.40 1.20 1.80 2.60 1.50 0.64 1.10 1.60 0.48 2.10 1.50 0.85 1.40
4 0.92 0.60 1.80 0.79 0.49 1.00 7.00 0.67 0.59 1.50 0.95 0.97 0.66

Table 8.55: Wine data - Partial Post-subset Analysis Results Summary.

Subset SBC

{3, 6, 7, 8, 9, 11, 12} −3063.62
{1, 3, 6, 7, 8, 9, 11, 12} −3037.14
{3, 6, 7, 8, 11, 12} −2942.55
{1, 3, 6, 7, 8, 11, 12} −2909.27
{3, 6, 8, 11, 12} −2787.12

x3 Ash,

x6 Total Phenols,

x8 Non-flavonoid Phenols,

x11 Hue,

x12 OD280/OD315 of Diluted Wines.

We consulted with the gentleman mostly responsible for some of the best “natural” wines to come

from California, about these five variables. Unfortunately, he had no specific knowledge about why

they would be so important. The substantial decrease in dimensionality is especially interesting,

considering the low correlations in the data (most < 0.5). Finally, we took the top two subsets and

fit the K̂ = 4 mixture model to each. Table 8.56 shows the classification rates for the best model

chosen by information criteria. Using the 2nd best subset model, all criteria selected models that

correctly classified more wines than the model fit to the entire dataset. ICOMP chose a model

that only misidentified 19 observations - 39% fewer mistakes. We show in Table 8.57 the confusion

matrix for this model. Only one observation is included in the spurious group in this model, which

correctly classified 89.33% of the wines. This wine is shown in the Andrews plot in Figure 8.24 as

the heavier black line. It is clear that, depending upon dimension, it could fit in either group, or

none. In fact, this observation was flagged as a potential outlier; it had the lowest SBC ratio.
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Table 8.56: Wine data - Classification Rates from Best Subset PE Kernel Mixture models.

{3, 6, 7, 8, 9, 11, 12} {1, 3, 6, 7, 8, 9, 11, 12}

AIC 70.79% 83.15%
SBC 74.72% 84.83%

ICOMP 75.28% 89.33%
ICOMPPEU 74.16% 85.96%

Table 8.57: Wine data - Confusion Matrix from Best Subset Mixture Model.

Predicted
k 1 2 3 4 Total
1 59 0 0 0 59

Actual 2 10 52 8 1 71
3 0 0 48 0 48

Total 69 52 56 1 178

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

t

f(
t)

1
2
3
4

Figure 8.24: Wine data - Andrews Curves Plot from Best Subset Mixture Model.
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SUMMARY: We ran the 50 replications of the PEK mixture model on this dataset;

SBC selected a model with K̂ = 4 population correctly classifying 83% of the wines.

This mixture model was then used by the GA to evaluate subsets of the original variables.

Despite low correlations, a subset composed of eight of the original variables, for which all

criteria picked models classifying more wines than the original model. The model chosen

by ICOMP only classified a single wine in the extra group, and put 89% of the wines in

the correct groups. This observation was also flagged as an outlier, and seems to exhibit

some unique cross-cultivar characteristics.

8.5.3 Real Data - Colon

Our final dataset is perhaps the most interesting. There is a paltry n = 65 observations of p = 5

measurements from K = 5 groups. Figure 8.25 shows the results from Mardia’s test for multivari-

ate normality on this dataset. Both the kurtosis and skewness tests reject the null hypothesis of

Gaussianity. Of course, the sample size is small, but the scatter plot matrix in the appendix, Figure

A.11, seems to visually support the conclusion. Figure 8.26, created by computing the Sammon’s

mapping for Multi-dimensional Scaling based on the Euclidian distances of the (0, 1) normalized

data, shows how confounded these groups really are. Table 8.58 shows model selection frequen-

cies and results from this dataset, using GEM(GARM). As would be expected, AIC exhibited the

highest tendency to overfit, with ICOMPPEU exhibiting the opposite behavior.
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Figure 8.25: Colon data - Results from Normality Test.
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Figure 8.26: Colon data - Two- and Three- Dimensional Scatter Plots of MDS-Reduced Data.

Table 8.58: Colon data - PE Kernel Mixture Model Selection Frequencies from 10 GEM(GARM)
replications.

K̂ AIC SBC ICOMP ICOMPPEU

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 20.0
3 0.0 0.0 0.0 50.0
4 0.0 20.0 20.0 0.0
5 60.0 60.0∗ 70.0∗ 30.0∗

6 40.0∗ 20.0 10.0 0.0

Best 38.46% 36.92% 35.39% 43.08%

While a probability of correct classification less than 50% seems very poor, and a far cry

from all other results shown here, consider there are five completely confounded groups. Random

classification (guessing) would not be expected to do any better than 20%. Now recall how small

the sample was - perhaps this performance is not so bad after all. The smallest true population, in

fact, had a mere seven observations. In Figure A.11 in the appendix, we see no dimensions showing

a high peak. The estimated β parameters in Table 8.59 show the same characteristics. Using

the best ICOMPPEU model, we detected two possible influential observations in this dataset, as

shown in Figure 8.27. We then fit this same mixture model to all nontrivial 31 subset models,

and identified two subsets for further analysis - {x1, x5} (−325.62) and {x1, x2, x5} (−168.53); the

ICOMPPEU scores (in parentheses) are much lower than that for the saturated model - 129.92.

Using the 2nd subset model, SBC identified a mixture model that misclassified an additional single
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Table 8.59: Colon data - Estimated PE Shape Parameters from Best ICOMPPEU Model.

k β1 β2 β3 β4 β5

1 1.30 10.0 7.70 4.20 4.30
2 1.00 1.30 1.40 1.00 10.0
3 1.20 10.0 3.50 1.30 3.70
4 10.0 10.0 10.0 10.0 10.0
5 1.10 2.10 1.30 1.00 10.0

0 10 20 30 40 50 60 70
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Observation

S
C

O
R

E
i

S
C

O
R

E

55

60

Figure 8.27: Colon data - Identifying Two Possible Influential Observations.

observation, though we reduced the dimensionality of the dataset by two variables the classification

rates for these two subset models are shown in Table 8.60. In Table 8.61, we see that the highest

correlation was between x2 (kept) and x4, which was dropped. The next highest correlation was

between x5, which was kept, and x3 (dropped). The remainder of the correlations are basically

negligible.
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Table 8.60: Colon data - Classification Rates from Best Subset PE Kernel Mixture models.

{1, 5} {1, 2, 5}

AIC 36.92% 29.23%
SBC 35.38% 41.54%

ICOMP 29.23% 29.23%
ICOMPPEU 32.31% 32.31%

Table 8.61: Colon data - Correlation Matrix.

x1 x2 x3 x4 x5

x1 1.00 −0.162 −0.338 −0.120 −0.361
x2 1.00 0.303 0.799 0.076
x3 1.00 0.148 0.538
x4 1.00 0.060
x5 1.00

SUMMARY: For this very small and complex dataset, ICOMP selected a model with

the true grouping structure in seven of the ten replications of fitting the PEK mixture

model. The best ICOMPPEU model correctly classified 43% of the observations - twice

as good as random classification (guessing). Given how confounded the groups are, this is

very good performance. We then evaluated the 31 subset models, and identified one with

three variables, for which SBC identified a K̂ = 5 mixture model which only classified a

single additional observation.
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Chapter 9
Conclusions

“It’s a mat, with conclusions, that you can . . . jump to.” - Tom Smykowski, Office

Space

9.1 Summary of Dissertation

In this dissertation, we have developed and merged several newer and cutting-edge statistical tech-

niques to modernize mixture modeling and expand the power and usefulness of this method of

unsupervised classification. Problems we simultaneously address include:

• Misspecified functional form,

• High dependence upon initial values,

• Numerical instability of the covariance matrix,

• Intelligent selection of a most appropriate model, and

• Simultaneous outlier detection and dimension reduction.

Chapters 1 and 2 introduced mixture modeling and reviewed its history all the way back to the

19th century. Chapter 3 began with some background and derivation of information criteria, first

introduced to the mixture problem by Bozdogan (1983). We finished Chapter 3 with the problem

of covariance singularity, and our proposed solution - the use of newer robust covariance estimators

that augment the MLEs for each population independently. The last of the “background” chap-

ters, Chapter 4, was dedicated to the genetic algorithm, and detailed several specialized variants.

Alternative optimization algorithms were also discussed.
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Chapters 5, 6, and 7 constitute the bulk of the new research. In 5, we discuss symmetric

elliptically-contoured distributions and some of the literature results. We then provided details of a

hybrid EM algorithm for the EC mixture model, and how to compute various information criteria

under this distributional specification. Chapter 6 similarly reviews existing research and presents

our new details regarding fitting a mixture of multivariate kernel density estimators. Finally we

introduced our power exponential product kernel in Chapter 7, as a way to fit peak and tail behav-

ior in each dimension and for each group independently. Chapter 8 showed results from the EC,

kernel, and PEK mixture models on a variety of challenging simulated and real datasets. With

many of the datasets, we compared our results to the traditional Gaussian mixture model and / or

the updated GMM (with GARM, GEM, information criteria, robust covariance estimators). For

all datasets, our methods exhibited either similar or superior performance to the more restrictive

Gaussian mixture model.

The traditional methods are undeniably faster than the new methods. However, what good is

the ability to evaluate, if the methods used are unable to consistently produce results for all models

tested? What about fitting mixtures to real data in which we don’t actually have any a priori

information about the group structure, against which to judge the importance of non-convergence?

9.2 Future work

There are several directions in which future research along these lines could be performed. For

researchers in computer science and statistical computing, we use methods that could undeniably

be made more efficient. For example, relatively little is known about the genetic algorithm - its

convergence rates are not analytically estimable, and little is known of its general robustness against

specific parameter values. Empirical studies on these characteristics, and others, of this stochastic

search algorithm would probably be of value. Additionally, other stochastic or automata-based

algorithms could be considered in the context of mixture modeling. Examples include Artificial

Neural Networks (ANN), the Artificial Bee Colony (ABC) optimization algorithm, or the Touring

Ant Colony Optimization (TACO) algorithm.

A second avenue of further research that would be profitable would be that of even further gen-

eralizing the EC mixture model. With the ECMM, we use a functional form to adapt to the peak
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and tail behavior of datasets, but still require symmetry. There are many real datasets that exhibit

asymmetry - financial data as an example. Much research has been done in the area of skewing

distributions, with several papers included in Ed. M Genton (2004). The ability to simultaneously

fit peak, tail, and skew behavior with a distribution could hold much promise. Additionally, recall

how we simplified the IFIM for the EC distribution. Deriving the fully-specified model covariance

matrix including the pdf generator-specific shape parameters would undoubtedly be invaluable. In

a similar vein, we could develop a skew PE product kernel mixture model, in which the peak, tail,

and skew behavior can be tailored to each dimension of a dataset independently, using the modified

bandwidth as mentioned, without imposing any functional form.

Finally, we would go back to a comment made at the beginning of Chapter 9. We commented

on how rather unnatural it was, from a certain perspective, to measure models in relation to class

labels that were defined based on probably partial information. For example, with the Aorta data,

patients were classified as either sick or healthy - no transition group as in the diabetic data.

Perhaps there truly were four groups to the aorta data - sick male, sick female, healthy male,

healthy female - all with significant quantitative differences. However, since the original researcher

chose not to classify the data this way, we only have two groups. Recall that, when we fit the PEK

mixture model to the entire wine dataset, the wine from the first cultivar was split into two groups.

Perhaps the vintners were unaware that this first group was composed of two genetically distinct

grapes? Thus, we would suggest the need for easily-interpretable, justifiable, and objective

criteria for comparing different clustering models independent of stated class labels which may

understate the true underlying heterogeneity.

9.3 Expected Publications

Howe, A. and Bozdogan, H. (2009). Simultaneous Model Selection in Multivariate Mixture-Model

Cluster Analysis Using Information Complexity and Genetic Algorithm: M3. In Bozdogan, H.,

editor, HDM 2008 Conference Book. Chapman & Hall / CRC. (not yet published).

Howe, A. and Bozdogan, H. (2009). Multivariate Mixture Modeling on the Edge - Way Beyond

Normalcy. tbd. (not yet published).
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Appendix 1: MATLAB Toolbox - M3

The M3 Matlab toolbox is a flexible platform for performing statistical mixture modeling and

model selection with information criteria. The toolbox, currently at version 4.20, is fully equipped

to handle everything demonstrated in this dissertation. Additionally, it was designed with the

flexibility to be easily extended to handle other types of mixture problems. The remainder of this

short introduction to M3 will be divided into three sections: Data Input, M3 User Interface, and

Result Output.

Data Input

M3 can model three types of data – simulated data sampled from a mixture of known distributions,

real data with a known class structure, and data with no known structure. All simulated data sam-

ples are generated from the multivariate power exponential distribution (7.1). To model simulated

data, point M3 to a tab-delimited file matching the format shown in Figure A.1.

Figure A.1: Simulated Data Format.

In this format, the first row identifies the number of mixtures which should be simulated. After

that, four entries per group are required. For cluster k, the first row should identify the kurtosis

parameter βk, then the mixing proportion πk (separated by a tab). The second row should contain

the p− dimensional mean vector µk, while the next p rows are the variance-covariance matrix Σk.

If p = 2, M3 creates and saves nice bivariate scatter plots comparing the actual and estimated

structures, as already seen.
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If the researcher desires to model data with a known class structure, M3 will expect a tab-

delimited file with mixture identifiers (k = 1 . . . K) in the first column, and the actual measurements

(one observation per row) in the remaining columns. Note that, in the case of data with two groups,

observations must be identified as belonging to cluster 1 or 2, not 0 or 1. For real data with no

identified structure, all is required is a (yet again) tab-delimited file with basically the same structure

as the known data. Of course, the first column will be data, and not identifiers. In all cases, the

data file must be completely numeric and human-readable; nonnumeric and/or binary data will not

be handled. The decision to use ta-delimited files was driven by ease of use and portability.

M3 User Interface

As can be seen in Figure A.2, the user interface for the Multivariate Mixture Modeler is organized

into several sections. Each will be discussed in what follows; %M3% indicates the root directory in

which the M3 files are installed.

Figure A.2: M3 Toolbox GUI.

• DATA PARAMETERS

Input File: This is the filename for the data to be modeled. The file must be located in

%M3%\data\. The simplest way to fill this is to click the “. . . ” button, which will open

the familiar Windows open file dialog box.

Data Structure: Select from the dropdown box what type of data will be used for modeling:

Simulated, Known, or Unknown.

Number Observations: If the Data Structure is Simulated, this parameter will be displayed.
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Here the researcher can define the total number of observations in the dataset. Each

mixture simulated will contain nk = (Number Observations) × πk samples, possibly

rounded.

View: If the %M3%\data\folder holds an image file related the current Input File named

identically, but with an .eps extension, clicking this button will cause Windows to open

the file using whatever is the default program for .eps files.

• EXPERIMENT PARAMETERS

Number Replications: The number input here determines how many times the entire mod-

eling process is performed. At the end, M3 will create and save a summary table of

all the replications. If the Data Structure is Simulated, the data will be regenerated

from the provided parameters with each replication, so Monte-Carlo simulations can be

performed.

Augment: After each replication, M3 saves a Matlab workspace (binary) file named according

to the mask “MIXTMR ”%Input File%%Timestamp%.mat. This file stores all the pa-

rameters used, as well as results from the replications. When it is finished, the filename

is placed in this box for convenience. The Augment feature is very convenient. Consider

a case in which the researcher executes 10 Monte-Carlo simulations as an exploratory

step, then decides he wants to perform a larger experiment. He doesn’t need to start

over from 0. All that is required is to click the “. . . ” button and locate the specific exper-

iment .mat file from the run to augment, then type 100 (or however many he wants) in

the Number Replications box and hit “GO”. M3 will perform the modeling ninety more

times, combine them with the previous ten, and summarize all 100 as if they were run

sequentially. Note that, no matter what parameters the researcher may have set in the

interim, loading a experiment to augment will set everything to the same parameters

previously used. Changing parameters after loading an experiment for augmentation

will likewise have no effect. If an experiment is loaded to augment, and the user changes

his mind, there’s no need to quit the toolbox just to clear the memory - select Reset in

the Multivariate Mixture Model menu, or hit CTRL+R.

• TYPICAL GA PARAMETERS

Population Size: This determines the number of chromosomes per generation for GARM,

GKM, and GEM.
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Generation Count: Except in cases of early termination, all genetic algorithm procedures will

iterate through this many generations.

Termination Threshold: This identifies the minimum number of generations each GA pro-

cedure must perform. If the GA iterates through this many generations with no im-

provement in the objective function, it is deemed to have converged on a solution, and

terminates prematurely.

Crossover Rate: This is the probability that determines which percentage of mating pairs

actually produce crossed offspring, as opposed to genetic replication.

Mutation Rate: This percentage is used to determine both the rate at which chromosomes

mutate after mating and the probability of individual loci mutating. This same rate

applies to all GA procedures.

Elitism Rule: If the Elitism Rule is on, at the end of each GA generation, the most fit

chromosome is copied directly into the new generation with no modification.

• MIXTURE PARAMETERS

Maximum K to Fit: The default behavior of M3 is to attempt to fit 1 . . . K̂ mixtures to the

data; If the Just box is checked, it will attempt to fit exactly K̂ mixtures. Note that,

while GARM and GKM are required to prevent any clusters from dropping out, the EM

and GEM algorithms are not. Thus, the researcher could try to fit K̂ = 5 mixtures to

some dataset, and have the final result really be K̂ = 3 groups, as already seen.

Initialization Method: Choose between the traditional K-Means algorithm, GARM, or GKM.

RM Scaling Amount: The regularized Mahalanobis distance is computed as in (4.13); the

value of the exponent c is taken from this box. A logical scaling value is c = 0.5, since

|Σ̂k|
1
2 is the square root of the generalized variance. The researcher can also scale mi (k)

by the complexity of the estimated covariance matrix C1(Σk). To do so, set the RM

Scaling Amount to “Inf”.

Optimization Method: The M3 toolbox allows the researcher to choose between two opti-

mization procedures - EM or GEM.

Convergence Criteria: If the Optimization Method is set to EM, this option is available. It

determines the maximum difference in the log-likelihood between successive iterations

allowed for convergence. This, along with Maximum Iterations, also applies to the K-

Means initialization.
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Maximum Iterations: Also only for EM algorithm, this identifies how many expectation-

maximization iterations through which the algorithm is allowed to proceed. If Maxi-

mum Iterations are performed with no convergence, the algorithm terminates, signaling

non-convergence.

Optimization Function: This is where the researcher can identify the function used to im-

plement the Optimization Method. If Optimization Method is changed, don’t forget to

change Optimization Function, and visa versa.

Update Plot On-the-Fly: The functions that implement the EM and GEM algorithms each

produce a progress plot. They should show convergence of their respective objective

functions. It is typical for GA implementations to show a progress plot of the average

and optimum objective values per generation. If this box is checked, these plots will be

updated and displayed iteration-by-iteration. Otherwise, the plots are not created until

the end of the procedure. Having this on will slow down M3. Note that at the end of the

EM and GEM functions, the progress plot is redrawn, saved, then closed immediately.

With this box unchecked, the researcher will not be able to view the progress plots

except by opening the saved file.

Covariance Regularization: M3 needs to know which smoothed covariance estimator to use;

this is where the researcher can make a selection.

EC Subclass: If the elliptically-contoured mixture model is to be used, this box will appear.

Choices are “KT” or “PVII” for Kotz or Pearson type VII, respectively. If however, the

kernel problem-specific parameters are loaded, this box will be labeled as shown next.

Bandwidth Estimator Type: What is required is the numeric code which defines how the

bandwidth matrices Hk are estimated. See Table 6.2 for details about the numeric

codes.

• INFORMATION CRITERIA FUNCTIONS

– After executing the Initialization Method for a specific k, the Optimization Function

will be run, and results tabulated, using each information criterion (IC) function listed

here (unless it’s set to EM). All functions must be available in the Matlab path, or in

the %M3% directory. Of course, the function can return any number of outputs, but

the first is assumed to be the IC score and is the only one taken.

• PROBLEM-SPECIFIC PARAMETERS
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M3 is a flexible mixture modeling platform that can readily be extended to perform under

different distributional assumptions. Each of the four types of mixture modeling demonstrated

in this dissertation have a file listing parameter values specific to the method. Logically, the

Gaussian parameters are loaded by default. To load something else, click on this button,

and navigate to a pre-defined .mat file that has the parameter values specific to the type of

mixture modeling performed. M3 will expect at least three variables in this file:

PStype: string with the problem-specific type name

InfCrit: (10× 1) cell array with entries specifying the name(s) of up to ten information

criteria functions

em func: string specifying the name of the optimization function

As well as these three parameters, there could be others depending upon what is specific

to that problem. For example, the KernelParams.mat file also stores the variable htype

which fills in Bandwidth Estimator Type. The string in PStype from the currently loaded

problem-specific parameter file is displayed immediately below the selection button.

• POST SUBSET AND INFLUENCE ANALYSIS

After running M3 on some data, the researcher can come to this section to identify the best

subset of the data or to perform influential observation detection. Clicking the “GO” button

will perform the requested analysis after selections have been made.

Best Run: Click on the “. . . ” button to get the familiar Windows open file dialog box to

find the .mat file from the replication you want to analyze. For each IC function, the

experiment summary lists the name of the output file for the replication with the best

score. An example would be GKM+GEM 20070225 204142.mat - this file would hold

the information used for this analysis.

Best IC: This dropdown box is populated with the specific IC functions used in the selected

results. The idea is to select the IC function that gave the best results (i.e., picked the

best model). The function that is selected will be used for all post analysis.

Subset Analysis Type This dropdown box provides three options:

Complete Enumeration: This procedure fits the best identified mixture model to all pos-

sible subsets of the original data variables. The Best IC scores for all are computed

and used to identify the best subset.

Genetic Algorithm: When the Best Run file is selected, M3 will default to this option
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if the data used has more than p = 6 variables (63 subsets). This uses the GA to

apply the identified best mixture model to all possible subsets of the original data

variables, scoring with the Best IC. The GA parameters used in the initial modeling

will be used here, though the researcher will be given a chance to change them.

None: Don’t perform the subset analysis, this will skip right to influence detection.

A summary file is saved in the same directory as the Best Run file, with either “ ASUB”

(complete enumeration) or “ GSUB” (genetic algorithm) appended prior to the exten-

sion. If the GA is used to perform the subset analysis, the output file is not overwritten

if it already exists.

Influence Detection: Check this box to perform the influential observation analysis. If subset

analysis was performed, this procedure will use the best subset identified. However, the

option is given to use any subset of variables desired. The procedure creates a summary

file and saves it in the same folder as the Best Run file. This file uses the same name

with “ OUTDET” appended before the extension. A plot is created, but not saved, that

shows the IC score for all observations, the group structure from the best model, and

identifies influential observations. Lines are drawn to identify the 95% interval.

After all post analysis has been performed, the researcher could load the original data into

Matlab, extract the identified best subset (and possibly remove influential observations) and

save this new data in the M3 format. M3 can then be used to fit just the number of mixtures

previously identified in the full dataset, to the subset data.

• PROGRESS

As M3 progresses, it will print a lot of output and progress indicators to the Matlab Command

Window. Along with this, the bottom panel of the user interface displays several useful

progress indicators:

– Current replication - # of Number Replications (or Done),

– Current k - # of Maximum K to Fit,

– Current Information Criterion (or None),

– Minutes required for execution of last: replication (Replic: 0), number of clusters (k: 0),

Initialization Method (GARM: 0), Optimization Method / IC (IC: 0),

– Total minutes required - updated before and after each Optimization function call.
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Result Output

There are several files which will be created and saved by M3 as it progresses; all will go in

the %M3%\“output”\%PStype%\%Input File% %Maximum K to Fit% directory. The first file

is a Matlab workspace file that stores all the parameters used, the data, and summary results

from all replications performed. This file is named following the pattern “MIXTMR ”%Input

File%%Timestamp%.mat; there are several tables stored in this file worth mentioning:

GAfil: This is a character table listing the file saving path and prefix (starting after the %M3%)

for each replication of the modeling process, for example:

“\output\Kernel\diabetic data 6\GKM+GEM 20070225 204142”

GAchroms: This (Number Replications× [n + 2]) table holds the best chromosome resulting from

each run of the Optimization Function (IC) per replication, by row. The first column records

the replication, and the second records the index of the information criterion used. The

remainder is, obviously, the chromosome.

GAscores: Having one row per IC per replication, the structure of this table is

replication # IC # k attempted best score percent correct actual k fit .

The results from the entire process (basically, what’s in this file) are summarized with nice tables

and output in a file having the same filename, but ending with “ SMRY.out”. For each replication

of the modeling process, M3 will create a human-readable diary of its progress. This is basically

what is printed into the Matlab Command Window. All files generated by the same replication

will have a filename prefix of

%Initialization Method%“+”%Optimization Method%%Timestamp%;

this is part of what is stored in the GAfil character matrix.

As previously mentioned, the EM and GEM algorithms produce progress plots that will be

saved as Matlab figure files with the suffix k %IC used% EM.fig or k %IC used% GEM.fig (where

k is the number of clusters attempted). M3 saves many files per replication. For example, if

Maximum K to Fit = 6 and there are 5 information criteria to use with GEM, there will be (6− 1)×

5 = 25 GEM progress plots (no optimization needed for k = 1). If the Optimization Method is EM,

there will be 1 plot per number of mixtures greater than 1 attempted. If the data modeled is of

known or simulated bivariate structure, M3 will generate and save plots showing the actual structure

in the left pane and the estimated structure in the right pane for each k and each information
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criterion used. The filename will have a k %IC used%.fig suffix. The heading of the right pane

identifies the Initialization Method, Optimization Method, information criterion used and its score,

percent correct, and the actual number of clusters fit. Finally, for each replication, a workspace file

is saved, storing all parameters and data used, along with some results. It will be named

%Initialization Method%“+”%Optimization Method%%Timestamp%.mat;

the two most important matrices in this workspace are:

best clustassigns: This is a 3-dimensional matrix that is equivalent to 10

(Number Observations×max K to Fit)

matrices – one per possible IC function. This stores the ŷi vectors for each k and IC. For

example, best clustassigns(:,3,2) will hold the class assignments resulting from attempting

to fit k = 3 using the second information criterion. If the EM algorithm is used, only

best clustassigns(:,:,1) will contain data (since it doesn’t use the IC to optimize).

SCORES CERRS: This (max K to Fit × 4× 10) matrix is structured such that, for each IC and

k, it contains:

final score percent correct number clusters fit number clusters attempted

In the case that the EM algorithm was used, SCORES CERRS(max K to Fit×4×number IC)

will all be duplicates of SCORES CERRS(max K to Fit × 4× 1).

Along with these two matrices, the variable rnd stat stores the initial state used for the randomizer

(generated at the beginning of each replication, based on the current system time), and tottim

has the total number of minutes that the replication required.

The M3 toolbox will be incorporated into the Information Complexity Toolbox for MATLAB cur-

rently under development by Andrew and Dr. Bozdogan. Upon email request (ahowe42@gmail.com

or bozdogan@utk.edu), the software may be made available for noncommercial use.
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Appendix 2: Datasets

All simulated datasets are generated using the multivariate power exponential distribution.

Simulation S1 - Mixed Overlapping

Table A.1: Simulation S1 - Data Generation Parameters.

k πk βk µk Σk

1 0.33 1.5

[
0.00
−1.00

] [
10.00 0.50
0.50 2.00

]

2 0.33 1

[
−3.00
3.00

] [
2.00 2.00
2.00 10.00

]

3 0.33 1

[
6.00
3.00

] [
3.10 2.00
2.00 4.45

]
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Figure A.3: Simulation S1 - Surface and Contour Plots.
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Simulation S2 - Ellipsoidal Overlapping

Table A.2: Simulation S2 - Data Generation Parameters.

k πk βk µk Σk

1 0.30 1

[
0.63
0.97

] [
1.17 0.33
0.33 0.12

]

2 0.50 1

[
1.01
0.59

] [
0.34 −0.24
−0.24 0.18

]

3 0.20 1

[
0.32
−0.51

] [
0.14 0.05
0.05 0.03

]
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Figure A.4: Simulation S2 - Surface and Contour Plots.
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Simulation S3 - Spherical Overlapping

Table A.3: Simulation S3 - Data Generation Parameters.

k πk βk µk Σk

1 0.33 1

[
0.00
0.00

] [
2.00 0.00
0.00 2.00

]

2 0.33 1

[
8.30
8.10

] [
4.00 0.00
0.00 4.00

]

3 0.33 1

[
5.00
8.00

] [
0.50 0.00
0.00 0.50

]
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Figure A.5: Simulation S3 - Sample Scatter Plot of X1 Against X2.
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Simulation S4 - Nonoverlapping

Table A.4: Simulation S4 - Data Generation Parameters.

k πk βk µk Σk

1 0.33 1

[
0.00
0.00

] [
2.00 0.00
0.00 0.50

]

2 0.33 1

[
8.30
8.10

] [
4.44 2.17
2.17 6.18

]

3 0.33 1

[
−5.00
10.00

] [
3.10 2.00
2.00 4.45

]
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Figure A.6: Simulation S4 - Sample Scatter Plot of X1 Against X2.
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Simulation S5 - Spherical Overlapping

Table A.5: Simulation S5 - Data Generation Parameters.

k πk βk µk Σk

1 0.30 0.50

[
−2.00
−2.00

] [
0.50 −0.10
−0.10 0.50

]

2 0.40 2.00

[
3.00
3.00

] [
2.00 0.50
0.50 0.25

]

3 0.30 1.00

[
−5.00
3.00

] [
0.50 0.00
0.00 3.00

]
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Figure A.7: Simulation S5 - Sample Scatter Plot of X1 Against X2.
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Real Data - Aorta

The Nuclear Magnetic Resonance aorta data analyzed here was collected by Pearlman (1986) at

the Medical School of the University of Virginia. There are observations from n = 418 patients

on 16 different image acquisition variables. Including direction and orientation variables, we have

p = 20 variables. The first n1 = 194 patients exhibited early atheroma, and the remaining n2 = 224

patients were healthy. In Figures A.8 and A.9, we see market nonnormality as well as distinct

patterns of good and poor class separation.
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Figure A.8: Aorta Data - Demonstrating Nonnormal Characteristics.
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Figure A.9: Aorta Data Bivariate Scatter Plots.
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Real Data - Cancer

Next, we have a medical dataset first used in Street et al. (1993), from the UCI data repository.

Features are computed from a digitized image of a fine needle aspirate (biopsy) of a breast mass

from n = 569 patients. They describe characteristics of the cell nuclei present in the image. Ten

real-valued features are computed for each cell nucleus, with the plotmatrix of the first five shown

in Figure A.10.

a) radius (mean of distances from center to points on the perimeter) - [x1, x11, x21]

b) texture (σ of gray-scale values) - [x2, x12, x22]

c) perimeter - [x3, x13, x23]

d) area - [x4, x14, x24]

e) smoothness (local variation in radius lengths) - [x5, x15, x25]

f) compactness (perimeter2

area − 1.0) - [x6, x16, x26]

g) concavity (severity of concave portions of the contour) - [x7, x17, x27]

h) concave points (number of concave portions of the contour) - [x8, x18, x28]

i) symmetry - [x9, x19, x29]

j) fractal dimension (“coastline approximation” - 1.0) - [x10, x20, x30]

The mean, standard error, and mean of the three largest values of these features “worst” were

computed for each image, resulting in p = 30 features. Thus, variables 1 − 3 relate to the radius,

4 − 6 relate to the texture, . . .. This data is composed of K = 2 groups; n1 = 212 patients had

malignant tumors, while the masses of the other n2 = 357 were benign (noncancerous).
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Figure A.10: Cancer data - Scatter Plot Matrix of Variables a) Through e).
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Real data - Colon

This dataset, provided by Dr. Bozdogan, is composed of n = 65 observations from K = 5 groups.

The 2nd and 3rd groups have 17 observations each. The first group has 13, the fourth has 7, and

the 5th has the remaining 11. Most of the p = 5 variables have very low correlations with each

other. Figure A.11 demonstrates the nonnormality and extreme overlap exhibited in this data.

Figure A.11: Colon data - Grouped Scatterplot Matrix.
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Real Data - Diabetic

This dataset is composed of K = 3 types of patients from a diabetes study of Andrews and Herzberg

(1985). Five medical measurements relating to insulin usage were taken on n1 = 33 overt diabetic

n2 = 36 chemical diabetic, and n3 = 76 non-diabetic patients:

x1 = Relative Weight

x2 = Fasting Plasma Glucose

x3 = Glucose Area

x4 = Insulin Area

x5 = SSPG

The parallel coordinates plot (Wegman, 1986) in Figure A.12 shows the clear overlap among the

groups, especially for x4 and x5, as well as the nice separation in the Glucose Area measurements.

In fact, due to the clinical similarity between non-diabetic and chemical diabetic patients, finding

either K̂ = 2 or K̂ = 3 is acceptable for this dataset. Please see Figure A.13 for the scatter plot

matrix of this data.
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Figure A.12: Diabetic Data - Parallel Coordinates Plot.
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Figure A.13: Diabetic Data - Scatter Plot Matrix.
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Real Data - Iris

This dataset consists of n = 150 observations of p = 4 flower characteristics: petal length, petal

width, sepal length, and sepal width. The iris data contains K = 3 groups; 50 observations each

from the varieties Iris Setosa, Iris Versicolor, and Iris Virginica.
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Figure A.14: Iris Data - Pairwise Scatter Plots.
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Real data - Wine

This is the wine recognition dataset of Fiorina, M. et al, used in Aeberhard et al. (1992). These

data are the results of a chemical analysis of n = 178 wines grown in the same region in Italy but

derived from K = 3 different cultivars (n1 = 59,n2 = 71,n3 = 48. The analysis determined the

quantities of p = 13 constituents found in each of the three types of wines. The variables are shown

in Table A.6. The mixing proportions for the three groups are 33.15%, 39.89%, 26.97%.

Table A.6: Wine data - Variables.

Variable Variable

x1 Alcohol x8 Non-flavonoid Phenols
x2 Malic Acid x9 Proanthocyanins
x3 Ash x10 Color Intensity
x4 Alcalinity of Ash x11 Hue
x5 Magnesium x12 OD280/OD315 of Diluted Wines
x6 Total Phenols x13 Proline
x7 Total Flavonoids

Figure A.15 and A.16 show scatter plot matrices for this dataset, displaying substantial overlap

of the three groups, and nonnormal shapes in many dimensions.

Figure A.15: Wine data - Grouped Scatterplot Matrix for x1 . . . x7.
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Figure A.16: Wine data - Grouped Scatterplot Matrix for x8 . . . x13.
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Vita

“I live to learn so I can learn to live.” - J. Andrew Howe

J. Andrew Howe was born in California in 1975, a year that will long be remembered for the the-

atrical release of Mel Brook’s Young Frankenstein. In 1993, Andrew matriculated to California

Baptist College. Four years later, he graduated Cum Laude, having obtained his Bachelor’s degree

in Pure and Applied Mathematics, along with a minor in physics. While working full time, he
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