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ABSTRACT 

 
Studies were conducted to investigate the prevalence and potential for transfer of 

class 1 integrons and antimicrobial resistance in bacteria of broiler chickens and swine 

from the US and Thailand. Antibiograms were characterized and integron sequences were 

detected using standard methods.  To determine if transfer of integrons occurred between 

bacterial species the location of the integrons (plasmid versus chromosome) was 

determined, and when integron-positive E. coli and Salmonella isolates possessed 

identical amplicon patterns, PCR products were sequenced to determine homology. Class 

1 integrons were detected in 1,732 of 3,824 isolates from broiler chickens and 1,782 of 

4,253 isolates from swine. Simultaneous presence of three conserved class 1 integron 

genes was found in 1,044 and 215 of isolates from chickens and swine, respectively. A 

high proportion of bacterial isolates from chickens demonstrated resistance to 

tetracycline, sulfamethoxazole, cephalothin, and ampicillin. A high proportion of isolates 

from swine demonstrated resistance to tetracycline, sulfamethoxazole, streptomycin, and 

ampicillin. Nine integron amplicons, with sizes ranging from 0.5 to 2.5 kb, were found, 

and we discovered a single swine farm on which similar integrons were observed in both 

E. coli and Salmonella. Sequence analysis revealed that a 1.0 kb amplicon found in both 

bacterial species contained an aadA1 gene cassette encoding aminoglycosides 3’-

adenyltransferase, confering resistance to streptomycin and spectinomycin. A 2.0 kb 

amplicon was also found in both types of bacteria containing the aadA5 gene encoding 

aminoglycosides 3’-adenyltransferase, an additional reading frame with unknown 

function, orfD, as well as a dfrA17 gene encoding dihydrofolate reductase, conferring 
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resistance to trimethoprim. Our results indicate that class 1 integrons are common in 

commensal and foodborne bacteria in broiler chickens and swine, and that some, but not 

all antibiotic resistances are associated with the presence of class 1 integrons. Identical 

integrons found in Salmonella and E. coli from a single farm likely indicate transfer 

between these two organisms occurs via exchange of plasmids.  This work provides 

additional knowledge regarding the complex nature of antibiotic resistance gene 

acquisition, reservoirs, and transfer that should aid in development of courses of action 

and strategies for control of these potential foodborne and zoonotic hazards. 
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Since their discovery early in the 20th century, antibiotics have remained in 

extensive use for human and animal therapies. Subsequently, in the 1950s, antimicrobial 

compounds were found to produce consistent benefits in livestock production and have 

thus been used extensively to enhance growth and efficiency of animals, and thus 

profitability of production systems.  However, significant evidence exists indicating that 

continued and extensive use of antibiotics for human medicine and animal production has 

led to an increased prevalence of drug-resistant bacteria, possibly affecting the long term 

usefulness of these important compounds (1). Of primary concern is a loss of efficacy of 

antibiotics that may offer a last line of defense against multi-resistant bacteria (3, 7). 

Thus, the use of some antimicrobial compounds, such as vancomycin and 

fluoroquinolones, has come under great scrutiny. While a number of studies have been 

conducted to characterize factors affecting resistance to derive strategies for control, a 

common consensus remains that too little information is available to guide appropriate 

agencies in formulation of regulations for agricultural use of antimicrobials (4).  

A number of factors appear to affect the dissemination of resistance genes and 

thus prevalence of antimicrobial resistance in bacteria associated with livestock. These 

factors may include animal age, stress, husbandry practices, and on-farm use of 

antimicrobials (4, 10-13). The majority of methods by which bacteria become resistant 

involve the acquisition of exogenous DNA that confers the ability to resist an 

antimicrobial drug.  Such acquisition typically takes the form of transduction by phage, 

appropriation of transposable DNA, and/or the reception of plasmid DNA.   

In recent years, many resistance genes isolated from bacteria have been mapped 

to specific genome sites known as integrons.  Integrons have been found in plasmids, 
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transposons, and as independent units on bacterial chromosomes (2, 5, 8).  By definition, 

integrons contain three elements that allow the site-specific recombination of antibiotic 

resistance genes.  These elements include: 1) a recombination or attachment site; 2) an 

integrase, which recognizes specific sequences on the extra-integron gene cassette and 

the recombination site; and 3) a strong promoter that allows the integron to act as an 

expression vector in the event of the incorporation of promoterless cassettes (9, 14). As 

such, bacteria that harbor integrons may have an enhanced ability to rapidly develop 

resistance to multiple antibiotics, and to promote the transfer of highly stable and self-

promoting resistance factors across their own and other bacterial species. Thus, bacteria 

containing integrons pose a particularly insidious threat to the efficacies of current as 

well as future antimicrobials.  And while it is proposed that the primary vehicle for 

transfer of bacterial resistance genes from animal hosts to human hosts is through food 

borne bacteria, the large pool of naturally occurring nonpathogenic bacteria in the gut, 

including E. coli, has been proposed to act as a reservoir of and/or vector for transferable 

resistance genes.  These commensal bacteria, by their residence in the GI tract, are 

subject to exposure from antibiotics included in feeds and water, and they have been 

shown to acquire resistance following such exposure (10-12) demonstrating a higher 

prevalence of resistance genes and genetic resistance elements, including integrons (6). It 

is widely accepted that these genes are transferable across species of bacteria, and thus 

the potential exists for transfer from resident E. coli and other naturally occurring bacteria 

to transient animal and human pathogens, including Salmonella.  However, to date, little 

evidence has been presented to clearly show that such transfer is common in vivo. 
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Understandably, representatives from consumer groups, the livestock industry, 

and government agencies continue to call for more information in order that sensible and 

effective recommendations to reduce antimicrobial resistance can be formulated. Through 

this proposed work, we hope to further the understanding of factors that promote 

antibiotic resistance and the prevalence of integrons and other resistance elements in 

bacteria associated with livestock.  

The U.S. and Thailand, while occupying very diverse geographic regions, share 

many commonalities in livestock production practices. Both swine and poultry 

production tends to be intensive, with closed confinement, high biosecurity and similar 

high production genetic lines. Feed-based antibiotics are commonly used in both 

countries, although some differences occur in drugs of choice and/or availability.  A 

comparison of antibiotic resistance genes and resistance prevalence between these two 

countries may provide information regarding global implications of agricultural use of 

antibiotics with regard to antibiotic resistance. 

The hypothesis of this study is that antimicrobial resistance genes and transferable 

genetic units are common in bacteria associated with livestock, and prevalence may be 

affected by antibiotic use practices, livestock species, and geographic region.  This study 

further proposes that resistance genes may be shared among non-pathogenic bacteria and 

foodborne pathogens that may concurrently reside within production animals. Therefore, 

this study was designed to investigate resistance patterns and prevalence of specific 

antimicrobial resistance genes and class 1 integrons in E. coli and Salmonella among 

swine and poultry in the US and Thailand.  As a possible indication of gene transfer, we 

determined the degree of homology of resistance genes and integron sequences between 
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those two groups of bacteria within animals and farms. Data generated from the US and 

Thailand was compared to determine if similar patterns exist across these diverse 

geographic regions. 
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I. ANTIBIOTICS 

Definition and Classification of Antibiotics 
 

The term antibiotic, from the Greek anti, meaning “against” and biotikos, 

meaning “concerning life”, first appeared in a scientific letter in 1942 by Waksman (224, 

225) to describe a newly discovered compound that specifically inhibited the growth of 

other microorganisms. The term antibiotic originally described only those compounds 

derived from microbial origin; however, it now extends to include any low-molecular 

weight compound, whether from microbial or other living organisms or even of semi-

synthetic or synthetic origin, that can inhibit the growth or kill other microorganisms. The 

majority of antibiotics used in human and veterinary medicine are natural products 

produced by three main groups of microorganisms: actinomycetes, eubacteria, and 

filamentous fungi. The actinomycetes produce the largest number and greatest variety of 

antibiotics, with more than six thousand substances isolated from that group of microbes 

(114).    

Antibiotic agents can be classified according to various criteria. Based on target 

microorganism, antibiotics are classified as antibacterial, antiviral, antifungal and 

antiparasitic. Although some drugs can target both bacteria and protozoa (e.g.  

ionophores used for control coccidiosis can also kill some Gram-positive bacteria), all 

antibacterials are inactive against viruses and fungi at normal therapeutic concentrations 

(84). On the basis of the spectrum of drugs, antibacterial agents can be classified as 

broad- or narrow-spectrum drugs (84, 122) . Broad-spectrum drugs are generally active 

against a wide variety of bacterial species, including Gram-positive, Gram-negative, 
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aerobic, and anaerobic microorganisms. Tetracycline, phenical, fluoroquinolones, third- 

and fourth-generation cephalosporins, and carbapenem are examples of broad-spectrum 

antibiotics. Drugs with narrower-spectra are mainly active against specific bacterial 

groups such as Gram-negative bacteria (polymyxins), Gram-positive bacteria 

(glycopeptide, natural penicillin), aerobes (aminoglycosides and sulfonamide), or 

anaerobe (nitroimidazoles) (84). Based on antibacterial activity of the drug, antibacterials 

are classified as bacteriolytic, bactericidal, and bacteriostatic. Bacteriolytic and 

bactericidal antibiotics both kill bacterial cells; however, bacteriolytic antibiotics induce 

killing by cell lysis and include those antibiotics that inhibit cell wall synthesis and those 

that damage cell membranes. In contrast, bactericidal antibiotics kill the organism but do 

not always rupture or lyse the cell.  Antibiotics that inhibit the growth but do not kill are 

known as bacteriostatic. Bacteriostatic antibiotics often inhibit protein synthesis and act 

by binding to ribosomes. The type of antibacterial activity of a drug depends on how the 

drug binds to its target. Usually, drugs that kill bacterial cells bind to their target 

irreversibly or with high affinity and are not removed by dilution, whereas bacteriostatic 

drugs form unstable bonds, therefore when concentration is lowered, it becomes free 

from the target and the bacterium resumes growth. Sometimes, bactericidal and 

bacteriolytic drugs can appear as bacteriostatic if effective killing concentrations in blood 

and tissue are not achieved (155).  

Antibiotics Use in Livestock Production 
 

Antibiotics are used in food animals for four main purposes: therapeutic use to 

treat diseased animals, metaphylaxis or short term medication to treat diseased animals 
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and prevent infection in other animals, prophylactic use to prevent infections at times of 

risk, such as transport or weaning, and growth promotion to improve feed utilization and 

production (Table 1)  (140, 219).  

 

Benefits of Antibiotic Use in Agriculture 
 

Potential benefits associated with using antibiotics in food animals include the 

treatment of disease, improvement of carcass quality, and improvement of feed efficiency 

(10). The use of feed-based antibiotics has consistently been shown to benefit livestock 

production, increasing the ability of farms to maintain profitable margins (52, 155, 165), 

lowering manure output and thus reducing effects of animal wastes on the environment 

(180), and lowering animal pathogen loads and carriage of foodborne pathogens in 

livestock (68, 87, 123). Many foodborne pathogens are not easily controlled in livestock 

by vaccines, and as these organisms have a commensal association with their food animal 

hosts, making eradication difficult, if not impossible. However, limiting their numbers in 

the gut with feed based antibiotics or water additives may be a practical approach to 

limiting foodborne transfer of these organisms (165).   Given the above, it appears 

prudent that such benefits be included in risk assessment models evaluating antibiotic use 

in food animals, so that more realistic evaluations result and a balance is achieved that 

provides the greatest protection from inherent risks while maximizing the overall benefits 

to society. 
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Table 1. Types of antimicrobials use in food animals. 1,2

 
Type of 

antimicrobial use Purpose Route or vehicle of 
administration 

Administration to 
individual or groupa Diseased animals 

 
Therapeutic 

 
Therapy 

 
Injection, feed, water 

 
Individual or group Diseased individuals; in 

   groups, may include   
   some animals that are  
   not diseased or are  
   subclinical 

Metaphylactic Disease prophylaxis, therapy Injection, feed, water Group Some 
Prophylactic Disease prevention  Feed Group None evident, although 

  some animals may be  
  subclinical 

Subtherapeutic Growth promotion Feed Group None 
 Feed efficiency Feed Group None 
 Disease prophylaxis Feed Group None 

 
1 Adapted from McEwen and Cray. (140) 
2 Food animals are usually grouped by pen, flock, pond, barn, or other aggregate. 

 

 

 

 



1. Antibiotic Use and Resistance Associated with Swine  

USDA NAHMS data provide some indication of the prevalence of antibiotic use 

in US swine production (214). It was found that 92% percent of farms surveyed had used 

antibiotics in the six-month period prior to the survey, with most being delivered through 

the feed. More than 85% of sites used in-feed antibiotics in the grower/finish phase. Most 

commonly used were tylosin, chlortetracycline, and bacitracin, with 56%, 43%, and 35% 

of sites using each, respectively.  However, recent changes in the swine industry, a 

growing awareness of issues surrounding nontherapeutic uses of antibiotic products, and 

changing trends in therapeutic and nontherapeutic regimens may have caused a change in 

the overall use of antibiotics in more recent times, particularly in grower/finisher units 

and in high health herds where advantages of extended antibiotic use are less easily 

demonstrated (51, 64) 

Through applied studies, a link between antibiotic use in swine and increased 

prevalence of resistant bacteria can be clearly demonstrated (133, 134).  While such 

studies have shown significant increases of antibiotic resistance in the gut flora following 

use of antibiotics, it has also been shown that rapid reversion to susceptibility in 

commensal microflora following drug withdrawal may also occur, depending upon drug 

type.  Studies with the aminoglycoside drug apramycin have shown that the general 

population of fecal E. coli demonstrate an increase in apramycin resistance soon after 

initiating the use of that antibiotic; however, this increase was followed by a return to 

more normal susceptibility when the drug was withdrawn (134, 135). As such, and as this 

 14



antibiotic was used exclusively in young pigs, the impact of apramycin use would appear 

to be minimal with regard to resistance of E. coli in market animals. 

A study conducted by Gellin et al. (81) examined antibiotic resistance in 

experimental swine herds and found that 36.4%, 74.3% and 99.6% of E. coli isolates 

obtained from a herd regularly exposed to antibiotics were resistant to ampicillin, 

streptomycin and tetracycline, respectively.  The same study examined resistance levels 

in E. coli isolated from a different herd that had not been exposed to antibiotics in over 50 

weeks and found that only 0.5%, 12.4% and 26.7% of isolates were resistant to those 

same antibiotics, respectively. Another study by Mathew et al. (136) showed that 98%, 

64.4%, 86%, and 29% of E. coli isolated from commercial swine farms where antibiotics 

were used extensively were resistant to tetracycline, neomycin, gentamicin, and 

apramycin, respectively, by the time pigs reached 63 days of age.  

2. Antibiotic Use and Resistance Associated with Poultry 

Antibiotics are used in the poultry industry for therapeutic, nontherapeutic and 

growth promotion (55, 129). Growth promoting antibiotics used in US poultry production 

include chlortetracycline, bacitracin, bambermycin, tylosin, and virginiamycin (55). 

Bacterial diseases, including colibacillosis, enteritis caused by Clostridium spp., 

mycoplasmosis, and several forms of salmonellosis, cause significant economic loss to 

the poultry industry (20, 88) and are a primary reason for treatment with antibiotics (196). 

Common antibiotics used for control of these organisms include sulfonamides, 

amoxicillin, tetracyclines, tylosin, virginiamycin, neomycin, and penicillin. Until 

recently, enrofloxacin, a fluoroquinolone drug, was approved for control of colibacillosis; 
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however, concerns that fluoroquinolone use in poultry may be linked to antibiotic-

resistant Campylobacter infections in humans (39, 148, 166) caused the FDA to ban the 

use of that drug in poultry in 2005 (75). 

 NARMS data indicate that Salmonella from chickens have demonstrated 

increased resistance to amoxicillin/clavulanic acid, ceftiofur, cefoxitin and tetracycline 

since the NARMS program was initiated (151). In 1997, 0.5% of slaughter isolates were 

resistant to amoxicillin/clavulanic acid, 0.5% were resistant to ceftiofur, 0% were 

resistant to cefoxitin, and 20.6% were resistant to tetracycline.  Preliminary data from 

2005 indicate that 12.1%, 12.2%, 12.0% and 28.3% of Salmonella isolates from poultry 

at slaughter were resistant to those same antibiotics, respectively.  A slight increase in 

resistance to ampicillin was noted over that same time period, whereas little or no change 

was noted for resistance to chloramphenicol, ciprofloxacin, kanamycin, and 

streptomycin. Marked decreases have occurred for resistance to gentamicin and sulfa 

drugs over that same time period. In 1997, 17.8% and 24.8% of isolates were resistant to 

gentamicin and sulfamethoxazole; whereas in 2005, 4.3% and 8.5% were resistant to 

those same drugs, respectively.   

Cui et al. (54) conducted a study comparing prevalence and resistance of bacteria 

from conventionally raised chickens to organically raised chickens in Maryland. In that 

study, all Salmonella isolates derived from conventionally raised birds were resistant to 5 

or more antibiotics, whereas 79% of isolates from organically raised birds were sensitive 

to all 17 antibiotics tested. However, as isolates were derived from poultry products of 

retail markets, it is unknown what effects, if any, were the result of processing location or 

methods.  Harwood et al. (97) observed vancomycin resistant Enterococcus (VRE) from 
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chicken feces, and from hospital waste water, but not from dogs, cattle, pigs, wild birds, 

raccoons feces, or surface water from 3 main waterways in Florida; however, the sources 

of chickens and other animals were not described.   In that study, Enterococcus spp. 

resistant to “low” concentrations of vancomycin (3 µg/ml) and harboring the vanC gene 

were isolated from chickens.  By comparison, VRE (E. faecium and E. avium) resistant to 

“high” levels of vancomycin (10 µg/ml) and harboring the vanA gene were readily 

isolated from hospital waste water.  Two Enterococcus isolates from chicken feces that 

were resistant to high levels of vancomycin were identified as E. gallinarum. 

Fairchild et al. (74) investigated effects of tetracycline administration on cecal 

commensal bacteria, Enterococcus spp., E. coli and Campylobacter spp. They observed 

that Enterococcus spp. and E. coli, resistant to tetracycline and harboring a number of 

different tetracycline resistance genes were readily isolated in chickens, regardless of 

exposure or non-exposure to that drug.  Tetracycline treatment in test birds did not 

produce tetracycline resistance in Campylobacter spp. in their study; however, 

tetracycline-resistant Campylobacter spp. were readily isolated from flocks that received 

and did not receive that antibiotic.  The investigators concluded that complex population 

dynamics and genetics in enteric bacterial populations contributed to the antibiotic 

resistance observed in commercial flocks. 

Risks Posed to Humans by Antibiotic Use in Livestock 
 

It has been well established that agricultural use of antibiotics results in increased 

prevalence of antibiotic-resistant bacteria in farm environments, thus contributing to the 

global pool of antibiotic resistant organisms.  However, what risks this poses to human 
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health has not been clearly established. Foodborne transfer of bacteria carrying resistance 

genes is the most likely route through which agricultural use of antibiotics could affect 

human health. However, some evidence for direct animal to human transmission of 

antibiotic resistant bacteria has been reported (27, 102, 103, 111). 

Beyond selection for antibiotic resistant bacteria, there have been some concerns 

that on-farm use of antibiotics may also increase pathogen load in animals by selecting 

for pathogens that are known to possess antibiotic resistant genes, integrons, or genetic 

islands containing resistance genes.  These organisms may have an advantage under the 

selective pressure of antibiotic use, aiding in their colonization, which could then result in 

a greater pathogen load.  A frequently cited study supporting this hypothesis is that of 

Williams et al. (231). Using swine infected with a chlortetracycline-resistant strain of  S. 

Typhimurium, they showed that subsequent treatment of infected pigs with 

chlortetracycline increased both the quantity and duration of shedding of that challenge 

organism. However, several subsequent studies have failed to show that antibiotic use 

caused increased pathogen loads, and following an extensive review of the literature the 

US Food and Drug Administration determined that no evidence existed to support the 

need for pathogen load analysis as a part of their Guidance Document # 152 FDA-CVM 

(76). In fact, some studies have shown that antibiotic use in livestock reduced shedding of 

foodborne pathogens (68, 87, 123). 

There are several confounding factors that make the assessment of the risks posed 

by agricultural use of antibiotics difficult.  A primary difficulty is that a large number of 

the antibiotics used in livestock production are also used in human and pet medicines, 

thus presenting difficulties in determining the initial sources or reservoirs for the resistant 
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populations.  For example, it would be difficult to assign blame for the increase in 

sulfonamide resistance to use of sulfa drugs in livestock when sulfonamides have been 

used extensively in humans for prevention of acne, urinary tract infections, and diarrhea, 

among other common uses (95, 215).  Cross resistance within and across families of 

antibiotics is also a confounding factor, as some antibiotics used solely in human 

medicine can select for resistance to other drugs which may be used primarily in 

livestock, and vice versa. As indicated earlier, broad mechanisms of resistance, such as 

efflux pumps, may be increased by use of a single antibiotic, but may subsequently 

confer resistance to unrelated antibiotics, making it difficult to determine the initial agent 

of selection. The fact that antibiotic resistance develops from both therapeutic and 

nontherapeutic use (81, 119) presents some additional difficulty in establishing a point 

from which to consider risks.  Risk assessments focusing on nontherapeutic uses, the 

primary concern of agricultural use, would likely be confounded by resistance selection 

caused by therapeutic uses commonly applied for chronic diseases. It follows then that 

elimination of veterinary use of some antibiotic products may not translate into 

reductions of some antibiotic resistance patterns in bacteria of concern.  

Some efforts have been undertaken to model antibiotic resistance and determine 

quantitative or semi-quantitative risks associated with agricultural use of antibiotics (19, 

222).  Such efforts have been conducted using defined risk assessment approaches, as 

opposed to precautionary principle approaches, for assessment and development of 

control strategies (223).  However, the current lack of numerical or empirical data in key 

areas has hampered those efforts and/or caused some to doubt the validity of such risk 

assessments.  Still, these attempts have indicated that direct risks of on-farm antibiotic 
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use may not be as significant as originally projected, primarily due to low risk elements 

in the steps between the movement of resistant organisms off of farms and the projected 

failure of a human therapy as a result of the agricultural use (50, 105).  As an example, 

Hurd et al. (105) conducted a semi-quantitative risk assessment of the potential impact of 

using the macrolide antibiotics tylosin and tilmicosin in the various livestock 

commodities.  The analysis was conducted based on guidelines outlined in the Guidance 

for the Industry Document #152 (76).  In that analysis, it was conservatively assumed that 

all occasions of tylosin and tilmicosin use in pigs or poultry would lead to macrolide-

resistant bacteria, including S. enterica serovars, Campylobacter spp. and E. faecium; and 

that those bacteria would contaminate meat and poultry products, causing foodborne 

illness at rates cited by CDC FoodNet data.  However, as human foodborne illnesses 

caused by those organisms are seldom, if ever, treated with macrolide antibiotics, the risk 

of failure of a macrolide-mediated antibiotic therapy was negligible. In the analysis, the 

overall risks for consumption of poultry, swine and beef were estimated to be 1 in 14 

million, 1 in 53 million, and 1 in 236 million cases per year in the US, respectively, for 

Campylobacter (combined risk C. coli and C. jejuni), and 1 in 3 billion, 1 in 21 billion, 

and 1 in 29 billion cases per year in the US, respectively, for E. faecium.  As a 

comparison, the FDA, in their risk assessment of fluoroquinolone-resistant 

Campylobacter attributed to the consumption of chicken, estimated the risk at 1 in 32,900 

cases, and determined this level of risk to be “low” (77).  Using similar techniques, Cox 

and Ricci (49) estimated that a ban on enrofloxacin use in poultry would prevent less than 

1 severe incident per year in the US, while causing approximately 6,600 additional cases 

of campylobacteriosis and more than 40,000 excess illness days. 
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The Origin of Antibiotic Resistance 
 

It well known that a number of bacterial and fungal species possess the ability to 

produce antibiotic compounds, typically to gain a competitive advantage in 

microorganism-rich environments, including soils and biofilms (8). It is likely then that 

naturally-occurring antibiotics were present in the environment long before the first 

antibiotic agents were introduced into clinical use (189). Many antibiotic products used in 

human and animal medicine today have their origins in antibacterial compounds 

produced by organisms such as Streptomyces, Bacillus, Penicillium, Cephalosporium and 

Pleurotus.  As researchers have been able to identify those compounds and their active 

components, development of more potent analogs has been possible (190).  

Antibiotic resistance likely also emerged in nature prior to human use of drugs as 

organisms producing antibiotic compounds required the means to survive in the presence 

of their own products, and competing species also found ways to counteract effects of 

those compounds (59).  Thus, some antibiotic resistance genes likely originated long 

before the advent of man, modern medicine, and agricultural use of antibiotics. Trieu-

Cuot et al. (212) have shown that resistance to kanamycin due to aminoglycoside-

phosphotransferase-3’ developed in antibiotic-producing bacteria Bacillus  circulans and 

Streptomyces fradiae as a mechanism of self-protection. The ancestor gene of erm genes, 

responsible for macrolide antibiotic resistance, was implicated in erythromycin resistance 

in antibiotic–producing strains of Streptomyces erythreus and Arthrobacter as well as in 

Gram-positive cocci and bacilli bacteria (15). Some aminoglycoside–inactivating 

enzymes, responsible for aminoglycoside resistance, appear to have originated from 

aminoglycoside-producing bacteria, such as Streptomyces, Micromonospora, and 
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Bacillus (58, 117, 194).  The genes, encoding ribosomal protection proteins mediating 

tetracycline resistance and found in pathogenic and saprophytic organisms, show high 

similarity to genes found in tetracycline-producing strains. (9). As indicated by many 

researchers, sensitive microorganisms can gain resistance to antibiotic agents by directly 

or indirectly acquiring these resistance genes from antibiotic-producing organisms. For 

example, D’Costa et al., (56) suggest that soil microbes provide a large reservoir of 

antibiotic resistance genes that can be quickly mobilized into other microbial 

communities, including enteric bacteria and pathogens, under the selection of antibiotic 

use. Benveniste and Davies (23) suggested that dissemination of antibiotic resistance 

genes has been accelerated due to the presence of bacterial DNA, carrying resistance 

genes in antibiotic preparations. Other research using PCR amplification of known 

resistance genes, demonstrated that contaminating DNA from Streptomyces spp. used in 

industrial production of antibiotics, resulted in a source of antibiotic resistance genes in 

commercial antibiotic preparations (226). When the resistance genes are transferred 

across species or genus of bacteria, they may undergo mutation in their new host 

resulting in a wide variety of differences in structural but similar functional resistance 

determinants (189). The evolution of efflux proteins associated with tetracycline 

resistance in both Gram-negative and Gram-positive bacteria is frequently cited as an 

example of such divergent mutation (177). The stepwise mutation of genes whose 

product plays a role in physiological cell metabolism is another way for the bacteria to 

develop resistance properties.  The substrate spectrum of the gene products will change 

from metabolite of biosynthesis or biodegradative pathways to certain antibiotic agents 

only (189). The enzymes exhibiting acetyl-, adenyl- or phosphotransferase activities that 
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inactivate aminoglycosides or chloramphenicol are believe to have evolved through this 

mechanism (108).   Modification of target structure is also a way that bacteria become 

resistant to antibiotic agents. This modification can occur either by single-step, e.g. in 

streptomycin resistance, or multiple-step, e.g. in fluoroquinolone resistance (7). As 

antibiotic use became commonplace in human medicine and food animal production, 

selection pressure increased the advantage of maintaining resistance genes in diverse 

groups of bacteria, and bacterial evolutionary progress eventually included mechanisms 

to retain, accumulate and disperse resistance genes among bacterial populations (1) 

(Figure 1).    

Among the first reports to suggest that antibiotic use in livestock promoted 

resistance was that of Starr and Reynolds (200) who noted streptomycin resistance in 

coliform bacteria from turkeys that had been fed that antibiotic.  Other researchers 

reported the association of resistance to antibiotics in fecal streptococci when growth-

promoting levels of tetracycline were fed to chickens (70). Since that time, numerous 

studies have demonstrated a link between antibiotic use in livestock and increased 

prevalence of antibiotic resistant organisms associated with those animals, the farm 

environment, and in some cases agricultural products (140, 232, 233). 

The Debate over Antibiotic Use in Livestock 
 

With concern over antibiotic resistance growing, a number of organized 

deliberations on the issue began to occur, including that of the Netherthorpe Committee 

(47) and the Swann Committee (204).  Both groups focused specifically on antibiotic use 

in food animals, and came to different conclusions regarding the risk of such to human  
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Figure 1. The emergence of antimicrobial resistance. Possible pathway depicting the 
emergence and transfer of antimicrobial resistance and/or antimicrobial resistant bacteria.  
Adapted from McDermott et al. (139). 
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Health. The Netherthorpe report concluded there was no evidence that agricultural use 

posed a risk to humans, whereas the Swann Committee concluded otherwise and 

indicated that the administration of antibiotics to livestock, particularly at nontherapeutic 

levels, posed a significant hazard to human and animal health.  Among the 

recommendations of the Swann Committee were that antibiotics used for livestock 

production be available by prescription only and in-feed antibiotics should be limited to 

100 ppm.  Additionally, the Committee recommended that surveillance programs be 

established to monitor antibiotic resistance in bacteria of concern. The Swann report 

spawned much debate among the scientific community, as some noted the findings were 

partly based on anecdotal evidence and/or studies with little scientific rigor, and in some 

cases were more presumptive than substantive.  This debate resulted in an increase in 

studies to investigate the issue of antibiotic use in livestock and risks associated with such 

use.   

Over subsequent decades, other organizations became active in the debate.  

Among some of the most notable was the American Society of Microbiology (ASM) 

which formed the Task Force on Antibiotic Resistance, consisting of scientists from 

academia, the government and industry.  Their initial report focused on critical issues and 

risks posed by the widespread and growing use of antibiotics in human medicine and 

agricultural production.  That report provided a comprehensive set of recommendations 

for surveillance programs, as well as recommendations to address emerging resistant 

organisms and the development of new drugs and non-antibiotic therapies (16).  In 1997, 

the World Health Organization (WHO) released  a report that provided a strong statement 

against  the  use  of  antibiotics  for  growth  enhancement,  indicating  that such  use is 
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particularly conducive to selection for resistant bacteria (229).  Later reports included the 

WHO Global Principals for the Containment of Antibiotic Resistance in Animals 

Intended for Food, which was formulated jointly with the Office of International des 

Epizooties (OIE) and the United Nations Food and Agricultural Organization (FAO) 

(230). That document, which was intended to provide a framework of recommendations 

to reduce the overuse and misuse of antibiotics for the protection of human health, 

outlined recommendations for pre-approval, manufacturing, distribution, sales, and 

prudent use of drugs, surveillance of resistance, and education of veterinarians and 

producers regarding use and hazards of food animal antibiotics.  The report also 

recommended that in the absence of risks assessments, growth promoting antibiotics that 

are also used in human medicine should be rapidly phased out, preferably through 

voluntarily programs, but if necessary, by legislation.  In 2002, the American Academy 

of Microbiology, representing the highest leadership within ASM, issued a report titled 

The Role of Antibiotics in Agriculture (106).  Among the recommendations of that report 

were a call for better estimates of antibiotic use in livestock and aquaculture production, 

the need for research into the economics of growth promoting antibiotics, a call for wider 

dissemination and education of judicious use principles among veterinarians and 

producers, and more research into reservoirs of resistance, resistance transfer, and 

quantitative risks assessments.  

During the same period, US agencies also addressed the issue of antibiotic 

resistance. In 1997, surveillance, educational and research initiatives to address antibiotic 

resistance in foodborne pathogens were expanded through funds provided by the 

President’s Food Safety Initiative (210).  In 1999, an interagency Task Force on 
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Antibiotic Resistance was formed, headed by the Centers for Disease Control (CDC), the 

National Institutes of Health (NIH), and the FDA.  In 2001, the Task Force released the 

Public Health Action Plan to Combat Antibiotic Resistance, with the main aspects to 

include surveillance, prevention and control, research, and product development related 

to antibiotic resistance (37). Since its initiation, the Task Force continues to expand in 

scope, and partner with other national and international agencies, addressing high priority 

issues relevant to antibiotic resistance (36).   Soon after establishment of the Task Force, 

the FDA directly addressed the issue of risks caused by use of antibiotics in food animals 

with the release of the Guidance for Industry #152, which outlined steps for risk 

assessments for the evaluation of new animal drugs in terms of microbial food safety 

(FDA, 2003). While not mandated, the steps suggested by Guidance #152 have provided 

clear direction for pharmaceutical companies to assess the potential for emergence and 

selection of antibiotic resistant foodborne pathogens as a result of the drug use. Table 2 

shows reports addressing the association of antibiotic use in food animal and public 

health. 
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Table 2. Report on the use of antibiotics in animals and associated public health 
implication. 1  
 

Year Report (Source) 

1969 Swann Committee Report (Joint Committee on the Use of Antibiotics in  
   Animal Husbandry and Veterinary Medicine) 

1969 The Use of Drug in Feed animals (National academy of Sciences) 
1972 The Use of Antibiotic in Animal Feeds (FDA task force) 
1977 Need to Establish Safety and Effectiveness of Antibiotic Used in Animal  

   Feeds (U.S. General Accounting Office Report) 
1979 Drugs in Livestock Feed (Office of Technology Assessment) 
1980 The Effects on Human Health of Subtherapeutic Use of Antibiotic in  

   Animal Feed (Institute of Medicine Report) 
1981 Antibiotic in Animal Feeds (Council for Agricultural Science and  

   Technology) 
1989 Human Health Risks with the Subtherapeutic Use of Pennicillin or  

   Tetracyclines in Animal Feed (Institute of Medicine Report) 
1995 Impacts of Antibiotic-Resistant Bacteria (Office of Technology  

   Assessment) 
1997 The Medical Impact of the Use of Antibiotic in Food Animals (World 

   Health Organization) 
1997 Antibiotic Feed Additives (Ministry of Agriculture, Commission on  

   Antibiotic Feed Additive) 
1998 Fluoroquinolone Use in Food Animals (World Health Organization) 
1998 A Review of Antibiotic Resistance in the Food Chain (Ministry of  

   Agriculture, Fisheries, and Food) 
1998 Use of Drug in Food Animals: Benefits and Risks (National Research  

   Council)  
1999 The Agricultural Use of Antibiotics and its Implications for Human Health  

   (U.S. General Accounting Office Report) 
2000 The Use of Antibiotics in Food-Producing Animals: Antibiotic-Resistant  

   Bacteria in Animal and Humans (Joint Expert Advisory Committee on  
   Antibiotic Resistance) 

2001 Opinion of the Scientific Committee on Animal Nutrition on the Criteria 
   for Assessing the Safety of Microorganism Resistant to Antibiotics of  
   Human Clinical and Veterinary Importance (EU SCAN Report) 

2001 Risk Assessment on The Human Health Impact of Fluoroquinolone  
   Resistant Campylobacter Associated with the Consumption of Chicken  
   (Center for Veterinary Medicine) 

2002 The Need to Improve Antibiotic Use in Agriculture: Ecological and  
   Human Health Consequences (The FAAIR Report) 

 

 28



Table 2. (continued)  Report on the use of antibiotics in animals and associated public 
health implication. 
 

Year Report (Source) 

 
2002 Uses of Antibiotic in Food Animal in Canada: Impact on Resistance  

   and Human Health (Health Canada Advisory Committee on Animal Uses 
   of Antibiotics and Impact on Resistance and Human Health)  

2002 Food Safety and Pig Production in Denmark: controls on Antibiotics, 
   Veterinary Medicines and Salmonella (Verner Wheelock Associates 
   Limited; Danish Bacon and Meat Council)  

2003 Joint FAO/OIE/WHO Expert Workshop on Non-Human Antibiotic 
  Usage and Antibiotic Resistance: Scientific Assessment (World 
  Health Organization) 

2003 Impact of Antibiotic Growth Promotion Termination in Denmark  
   (World Health Organization) 

 

1 Compiled from Prescott (171), and McDermott et al. (228). 
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II. ANTIBIOTIC ACTIVITIES AND MECHANISMS OF 
ANTIBIOTIC RESISTANCE DEVELOPMENT AND TRANSFER 

 

Antibiotic Targets and Mechanisms of Action 
 

Most antibiotics target bacterial structures and metabolic pathways that are 

essential for bacterial growth, survival, or both, while causing little or no effect to 

eukaryotic hosts harboring the bacteria. Antibiotics interfere or block the growth of 

bacteria by binding to specific target sites in or on bacteria forming a complex structure 

that no longer displays the original functions.  The four principle targets for the main 

classes of antibiotic are: 1) bacterial cell-wall biosysnthesis; 2) bacterial protein 

synthesis; 3) bacterial DNA replication; and 4) folic acid synthesis.   

1. Inhibition of Cell Wall Synthesis  

The cell wall is an essential structure of bacteria because it confers mechanical 

protection and provides a solid surface for protein and appendages necessary for cell 

adhesion, motility, host infection, and horizontal gene transfer (84). The bacterial cell 

wall differs from that of all other organisms by the presence of peptidoglycan (poly-N-

acetylglucosamine and N-acetylmuramic acid), which is located immediately outside of 

the cytoplasmic membrane. There are two main types of bacteria, Gram-positive and 

Gram-negative, according to their cell walls components. Gram-positive organisms are 

characterized by the presence of a thick peptidoglycan layer, while Gram-negative 

organisms contain a thin peptidoglycan but have an additional outer membrane composed 

by phospholipids and lipopolysaccharides. Multiple enzymes are required for 
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peptidoglycan synthesis and attachment to the cell wall. Enzymes involved in the final 

stage of cell wall synthesis are called transpeptidases. Beta-lactam antibiotics (penicillins, 

cephalosporins, and other classes used in human medicine, such as carbapenems and 

monobactams) bind to transpeptidases and inhibit peptidoglycan formation, thus 

interfering with cell wall synthesis. Glycopeptide antibiotics, including vancomycin, 

teicoplanin, and the growth promoter avoparcin, inhibit cell wall synthesis by forming a 

complex with residues of peptidoglycan precursors, making it inaccessible to 

transpeptidase. (24, 84, 153, 175).  

2. Inhibition of DNA Replication 

 DNA replication is a vital function of the bacterial cell. DNA gyrase and DNA 

topoisomerase IV are enzymes that control the folding or supercoiling of the DNA during 

DNA replication. They are essential for preventing the DNA molecule from becoming 

entangled during replication of circular chromosomes in bacteria. Quinolone antibiotics 

irreversibly bind to the DNA molecule-gyrase complex, thereby preventing DNA 

replication and leading to bacterial cell death. The original quinolone was naladixic acid, 

which only acts on aerobic Gram-negative species. The newer fluoroquinolones, such as 

ciprofloxicin, norfloxacin, and ofloxacin, have a much broader spectrum of activity (84, 

153). 

3. Inhibition of Protein Synthesis  

Proteins play an essential role in bacterial cells since enzymes and most cellular 

structures are composed of protein. Protein synthesis consists of two biological processes 

starting with transcription of DNA to mRNA and translation of mRNA into protein.  

 31



Several classes of antibiotics inhibit protein synthesis by acting on the ribosome during 

the translation process. Bacterial ribosomes contain two subunits, the 50S and 30S 

subunits. Antibiotics bind to one or both subunits, and cause misreading of the genetic 

code or formation of abnormal, nonfunctional protein complexes. Aminoglycosides 

(gentamicin, tobramycin, amikacin, streptomycin) and tetracyclines are antibiotic classes 

that act primarily by binding to the 30S subunit. Tetracyclines are bacteriostatic rather 

than bactericidal because their binding to the ribosome is transient. Several other classes 

of antibiotics inhibit the 50S ribosomal subunit. Macrolides (erythromycin, tylosin, 

tilmicosin), chloramphenicol and clindamycin are primarily bacteriostatic and attach 

reversibly to the 50S subunit and interfere with the linking of amino acids (84, 153).  

4. Inhibition of Folic Acid Synthesis 

 Folic acid is an essential precursor of pyrimidine rings in nucleic acids; therefore 

inhibition of folic acid synthesis will result in indirect inhibition of nucleic acid formation 

and function. Unlike humans and animals, bacteria usually lack the ability to take up folic 

acid from the environment and must synthesize it internally. Sulfonamides and 

diaminopyrimidine (trimethoprim and similar compounds) interfere with folate 

metabolism by competitively and irreversibly binding to dihydrofolate synthase or 

dihydrofolate reductase, two enzymes necessary for production of tetrahydrofolate. 

Trimethoprim and sulfonamides are usually administered together because they display a 

synergic therapeutic effect (84, 153).  
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Mechanisms of Antibiotic Resistance Development and Transfer 
 

The two most commonly used criteria to describe antibiotic resistance are based 

on microbiological (in vitro resistance) and clinical (in vivo resistance) factors (84). For 

the microbiological definition, a strain is defined as resistant if it is no longer inhibited by 

the minimal concentration of the antibiotic that inhibits growth of typical strains of that 

species (83). However, for clinical definitions, a strain can be defined as resistant when it 

survives under chemical therapy. Under these conditions, a strain may be either sensitive 

or resistant depending on its location, the dosage and the mode of drug administration, 

tissue distribution of the drug, and the immune status of the patient (84).    

Antibiotic susceptibility can be tested under laboratory conditions by exposing a 

known concentration of bacterial culture to increasing concentrations of a select 

antibiotic drug. These testing methods can be performed based on one of the three 

approaches: broth microdilution, agar dilution, and agar diffusion (228). The endpoint 

measurement based on inhibition of bacterial growth, is reported either qualitatively 

(sensitive, intermediate, resistant) or quantitatively as minimum inhibitory concentration 

(MIC), which is the lowest drug concentration that completely inhibits growth of the 

bacterial isolate under test (114, 228). 

Two aspects are typically discussed regarding antibiotic resistance. One is the 

mechanism(s) by which the bacteria become resistant. The other is the development and 

spread of antibacterial resistance genes. The following will discuss these two aspects in 

detail. 
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Mechanisms of Bacterial Antibiotic Resistance 
 

Bacterial cells use several mechanisms to resist the effects of antibiotics. The 

most widespread mechanisms are modification or replacement of the drug targets, 

enzymatic drug inactivation, active drug efflux and reduced drug uptake. Other 

mechanisms, including drug protection and overproduction of the drug’s targets, are less 

common (Figure 2) (84, 153, 206).  

1. Modification or Replacement of Drug Targets 

By modification or replacement of the target receptor, the antibiotic no longer 

binds and therefore does not have the intended effect. Target modification can be linked 

to resistance mechanisms for almost all classes of antibiotics. This mechanism has been 

known to be of importance for resistance to penicillin, glycopeptides, and macrolides 

lincosamides and streptogramins (MLS) in Gram-positive bacteria, and for resistance to 

quinolones in both Gram-positive and Gram-negative bacteria. Methylation of the drug’s 

target, the ribosome (MLS and aminoglycoside resistance) and gene mutation of the 

drug’s targeted bacterial enzyme in quinolone resistance are examples of target 

modification. Glycopeptide resistance in enterococci and methicillin resistance in 

Staphylococcus aureus are examples of replacement of drug target with a compound of 

lower affinity (84). 

2. Enzymatic Drug Inactivation 

Enzymatic inactivation is the main mechanism that bacteria use to escape the 

effect of β-lactams, aminoglycosides, and phenicols. Although not prevalent, these  
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Figure 2. Mechanisms of antibiotic resistance development. 
A) Target modification. B) Target protection. C) Drug trapping. D) Enzymatic drug 
inactivation. E) Reduced permeability. F) Active efflux. Adapted from Guardabassi and 
Courvalin (84). 
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mechanisms are also known to be involved in resistance to tetracycline, MLS, and 

fosfomycin. Enzymes can modify the active site of the drug by cleaving the molecule or 

adding chemical groups that prevent the drug from binding to its target site, resulting in 

the loss of antibacterial ability. The most important drug-inactivating enzymes are β-

lactamase and aminoglycoside-modifying enzyme. β-lactamase destroys beta-lactam 

antibiotics before they reach the bacterial target, preventing it from binding to its target. 

Aminoglycside-modifying enzymes function by catalyzing transfer of the acetyl group to 

amino groups or phosphoryl groups or nucleotides to amino or hydroxyl groups in the 

aminoglycoside molecule, resulting in poor binding of this drug to ribosome. (17, 84, 

186) 

3. Drug Efflux Pumps 

 By actively pumping out antibiotic molecules, drug efflux systems prevent the 

intracellular accumulation necessary for antibiotics to exert their lethal activity. Drug 

efflux pumps are energy-dependent mechanisms. These pumps may be specific for one 

substrate (drug specific resistance pumps) or may transport a range of structurally 

dissimilar compounds, including antibiotics of multiple classes, imparting multiple drug 

resistance (multiple drug resistance pumps). Drug specific resistance pumps are the most 

important mechanism of resistance to tetracycline. These pumps generally confer a high 

level of resistance and are mostly associated with mobile genetic elements. Multiple drug 

resistance pumps may have several substrates, however these pumps generally confer 

low-level resistance and are usually encoded on the chromosome (84, 120, 227). 
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4. Reduced Drug Uptake 

 Reduced drug uptake is another mechanism the bacteria use to reduce 

concentrations of drugs accumulating in the cell. This may occur through several 

mechanisms such as reduced outer membrane permeability, as in Pseudomonas 

aeruginosa and E. coli O157:H7, porin mutation that leads to loss, reduced size, or 

decreased expression of porin proteins, as in reduction of OmpF porin expression, which 

has been shown to increase resistance of E.coli to quinolones, β-lactams, tetracyclines 

and chloramphenicol. Lack of an electrical potential gradient, which is required to drive 

the drug across the bacterial membrane, as in the case of aminoglycoside resistance, is 

also a way that reduced drug uptake by bacteria can result (69, 84, 132) 

5. Target Protection 

 Target protection has been reported to be involved in resistance to tetracyclines 

and quinolones. Resistance to tetracyclines by this mechanism results from the presence 

of ribosomal protection proteins. At least eight ribosomal protection proteins have been 

found to be associated with tetracycline resistance. Among them, Tet(M) and Tet(O) are 

the most prevalent and well-studied. The presence of a DNA gyrase protection protein 

has been reported in quinolone resistant Enterobacteriaceae (48, 84, 85, 118, 211). 

6. Drug Trapping  

 Bacteria can trap the drug by over production of the drug target or other molecule 

with high affinity for the drug. Over production of targets for sulfonamides and 

diaminopyrimidine have been reported in several bacterial species. A mutation resulting 

in the thicker cell wall with many binding sites for vancomycin has been shown to trap  
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antibiotic molecules, thereby reducing the number of vancomycin molecules that reach 

the cytoplasmic membrane where the transglycosylase targets are located (18, 53).   

 

Families of Antibiotics  
 

Antibiotics can be grouped based on mechanisms of action but more often by 

chemical structure. Antibiotics of the same chemical structure usually share many 

biological properties making this classification of antibiotics useful in practice. Below are 

descriptions of major antibiotic families, their modes of action, and mechanisms bacteria 

employ to resist them.  

1. β–Lactams 

β-lactams comprise a family of bactericidal antibiotics that contain a β-lactam 

ring in their structure. The principle antibiotics of this family include penicillins, 

cephalosporins, carbapenems and monobactams. The β-lactam ring inhibits bacterial cell 

wall synthesis by disruption of peptidoglycan cross-linkage; therefore these antibiotics 

tend to be more active against Gram-positive bacteria which have a high concentration of 

peptidoglycan in their cell wall. The spectrum of the penicillin family varies. Some 

penicillins, such as Benzyl penicillin (Penicillin G) and phenoxymethyl penicillin 

(Penicillin V), have a narrow spectrum, with activity against aerobic and most anaerobic 

Gram-positive bacteria. Others, such as ampicillin and amoxycillin, have a broader 

spectrum of activity against a range of Gram-positive and Gram-negative bacteria. 

Cephalosporins are usually classified as generations, according to their antibiotic 

properties. First-generation cephalosporins are predominantly active against Gram-
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positive bacteria, and successive generations have increased activity against Gram-

negative bacteria. Fourth generation cephalosporins, have true broad spectrum activity 

active against Gram-positive and Gram-negative bacteria. Carbapenems have the 

broadest antibacterial spectrum compared to penicillins and cephalosporins (25, 32, 88) 

Bacteria can become resistant to β-lactam antibiotics by expressing beta-

lactamase enzymes that degrade the β-lactam ring. Resistance to β-lactam drugs is not 

only found in food-associated pathogens but also in commensal bacteria and it occurs in 

bacteria of both animals and man. The widespread occurrence of bacteria carrying β-

lactamases is well documented around the world (13, 40, 98, 121, 145, 176, 179).  

2. Aminoglycosides 

Aminoglycosides are bactericidal antibiotics that include amikacin, gentamicin, 

kanamycin, neomycin, netilmicin, paromomycin, streptomycin, spectinomycin, 

tobramycin and apramycin. These antibiotics usually contain a cyclic nucleus with one or 

two amino acids attached by glycosidic linkages. The aminoglycosides interfere with 

protein synthesis by binding to the 30S ribosomal subunit.  Aminoglycosides are 

primarily active against aerobic bacteria, especially Gram-negative organisms such as 

Salmonella, E. coli, and Pasteurella. They are also active against Pseudomonas and 

Staphylococci. In addition, some mycoplasma, and some spirochetes are susceptible to 

aminoglycosides (30, 88, 172).  

Resistance to aminoglycosides usually occurs via enzymatic modification. The 

majority of the enzymes that promote such are acylases or acetylases which modify the 

conformation of the aminoglycosides thereby preventing them from binding to 

 39



ribosomes. Resistance to some aminoglycosides, such as streptomycin and 

spectinomycin, is widespread and the genes responsible for resistance to these antibiotics 

are often found as gene cassettes carried in integrons (38, 82, 115, 147, 157). 

3. Tetracyclines 

Tetracyclines are a large family of broad spectrum antibiotics including 

tetracycline, oxytetracycline, chlortetracycline and doxycycline. Tetracyclines are named 

for their four hydrocarbon rings. More specifically, they are defined as a subclass of 

polyketides having an octahydrotetracene-2-carboxamide skeleton. Tetracyclines are 

bacteriostatic. They work by binding to the 30S ribosome and inhibit the function of such 

by blocking the binding steps of molecules needed to initiate the process of protein 

synthesis (translation). They are active against wide variety of bacteria such as Gram-

positive Gram-negative aerobes and anaerobes, and show activity against mycoplasmas, 

chlamydia, protozoa and ricketsia. The various tetracyclines have a similar spectrum of 

activity; however, they are different in degree of lipid solubility and therefore absorption 

and ability to cross membrane (14, 78, 88, 152). 

Resistance to tetracyclines can occur by at least three mechanisms, including 

enzymatic inactivation, efflux pumps, and ribosomal protection. Resistance to these 

antibiotics is widespread in both animals and humans and is well documented (2, 5, 6, 31, 

35, 99, 107, 128, 130, 191). 

4. Sulfonamides 

Sulfonamides are groups of antibiotics that contain sulfonamide in their structure. 

They include sulfaodiazine, sulfamethazine, sulfadimidine, sulfadimethoxine, 
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sulfadoxine, sulfachloropyridazine, and sulfamethoxazone. Sulfonamides are often used 

together with trimethoprim, or one of the other diaminopyrimidines, known as 

potentiated sulfonamides. While both compounds on their own are bacteriostatic, the 

combination of these two compounds provides a synergistic effect resulting in 

bactericidal action. Sulfonamides interfere with the folic acid synthesis in bacteria 

preventing multiplication of the bacterial cell. Sulfonamides are broad spectrum 

antibiotics inhibiting both Gram-positive and Gram-negative bacteria, as well as some 

protozoa such as coccidia; however, they are ineffective against obligate anaerobes (11, 

88, 172). 

As with tetracycline, resistance to sulfonamides is widespread in bacteria 

associated with humans and animals (26, 71, 86, 207). Several studies have shown the 

presence of sulfonamide resistance genes in class 1 integrons as part of the integron’s 

conserved sequence, and these elements are known to be responsible for widespread 

dissemination of this sulfonamide resistance (86, 125, 197, 209).  

5. Quinolones and Fluoroquinolone 

Nalidixic acid was the first quinolone developed in 1962. Second generation 4-

quinolones are a group of compounds that include as oxolinic acid, pipemidic acid and 

cinoxacin. The quinolones have narrow spectrum activity, affecting only Gram-positive 

bacteria. Third generation constructs of these compounds are classified as 

fluoroquinolones, which are broad spectrum bactericidal drugs. The newer 

fluoroquinolones, such as enrofloxacin and danofloxacin, are highly active against Gram-

positive and Gram-negative bacteria, including Salmonella, Pseudomonas and 

 41



mycoplasmas. The quinolones and fluoroquinolones inhibit bacterial growth by binding 

to DNA gyrase and DNA topoisomerase IV, thereby inhibiting DNA replication and 

transcription (88, 162). 

Bacterial resistance to this group of antibiotics is most commonly due to alteration 

of DNA-gyrase via mutation (gyr-A). Less common but perhaps more important for 

Gram-positive bacteria, mutation occurs to topoisomerase IV (parC). Other mechanisms 

of resistance occur via decreased drug entry or increased active transport out of cell (29, 

101, 142). 

6. Phenicols 

Phenicols include chloramphenicol, florfernicol and thiamphenicol. They are 

bacteriostatic; however may be bactericidal in high concentrations or when used against 

highly susceptible organisms. Chloramphenicols inhibit protein synthesis by binding to 

50S ribosomal subunit. They are broad spectrum antibiotics, active against a wide range 

of Gram-negative and Gram-positive bacteria and also some chlamydia spirochetes, and 

ricketsia (88).  

Bacteria become resistant to chloramphenicol by becoming impermeable to the 

drug or by producing an inactivating enzyme, chloramphenicol acetyltransferase (195, 

218). 

Antimicrobial resistance mechanisms for each antibiotic drug group are shown in 

Table 3. Table 4 provides a list of drugs licensed by USDA for animal use. A listing of  

antibiotics licensed in Thailand is not available (149). 
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Table 3. Antimicrobial Resistance Mechanisms.1

 

Antimicrobial Group Anitimicrobial Resistance Mechanism 

Aminoglycosides Modifying enzymes 
     Gentamicin Decrease permeability 
     Streptomicin Target resistance (ribosome) 
     Kanamycin Efflux 
B-lactams Reduce permeability 
     Cephalothin Altered penicillin-binding proteins 
     Cefoxitin B-lactamase, cephalosporinases 
     Ceftiofur Efflux 
     Cefquinome  
Folate pathway inhibitors Decrease permeability 
     Sulfonamides Production of drug-insensitive enzymes 
Macrolide-lincosamide-streptgramin  Decrease ribosomal binding 
     Erythromycin Decrease permeability 
     Lincomycin Modifying enzymes 
     Virginiamycin Efflux 
Phenicols Decrease ribosomal binding 
     Chloramphenicol Decrease permeability 
     Florfenicol Modifying enzymes 
 Efflux 
Quinolones and fluoroquinolones Target resistance(DNA gyrase, Topoisomerase IV) 
    Nalidixic acid Decreased permeability 
    Ciprofloxacin Efflux 
    Enrofloxacin  
Tetracyclines Target resistance (ribosome) 
    Chlortetracycline  Drug detoxification 
    Tetracycline Efflux 
    Doxycycline   

 
1Adapted from McDermott et al. (139). 
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Table 4. Antibiotic drugs licensed for avian and porcine use in the US and of human 
health importance. 1  

 

Antibacterial class Licensed drugs Animal used Human health 
importance 

Aminoglycosides Gentamicin Avian and Porcine High  
 Streptomycin Avian and Porcine Low 
 Kanamycin Avian and Porcine Medium 
 Neomycin Avian and Porcine Rarely used 
 Apramycin Porcine Not used 
Aminocyclitols Spectinomycin Avian and Porcine Low 
Cephalosporins Narrow spectrum   
    Cefalexin Porcine Medium 
 Expanded spectrum   
    Ceftiofur Avian and Porcine Very high  
Lincosamides Lincomycin Avian and Porcine High 
Macrolides Erythromycin Avian and Porcine High  
 Tylocin Avian and Porcine Not used 
 Tilmicosin Avian and Porcine Not used 
Penicillins Penicillin G and V Avian and Porcine Low 
 Ampicillin2 Avian and Porcine Medium 
 Amoxicillin2 Avian and Porcine Medium 
Phenicols Florfenicol Porcine Not used 
Pleuromutilins Tiamulin Avian and Porcine Not used 
 Valnemulin Avian and Porcine Not used 
Polypeptides Bacitracin Avian and Porcine Very low 
 Colistin Avian  Low 
Quinoxalines Carbadox Avian and Porcine Not used 
 Second generation   
    Enrofloxacin Avian and Porcine Very high 
Streptogramins Virginiamycin Avian and Porcine High 
Sulfonamides Many compound Avian and Porcine Medium 
Tetracyclines Oxytetracycline, Avian and Porcine Medium 
    chlortetracyclines,   
    tetracycline   
Miscellaneous Avilanycin Porcine Not used 
 Bambermycin Porcine Not used 
 

1 Adapted from Guardabassi and Courvalin (84). 
2 With or without the beta-lactamase inhibitor clavulanic acid. 
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Resistance to Antibiotic Agents 
 

Resistance to antibiotic agents can be subdivided into two groups, intrinsic 

resistance and acquired resistance (190).  Intrinsic resistance is a genus- or species- 

specific property of bacteria which describes the status of bacteria with regard to inherent 

insensitivity to a particular antibiotic agent or class of agents (84, 190). Such may be due 

to the lack of target for certain antibiotic agents (e.g. resistance to  β-lactam  by bacteria 

that lack a cell wall), their inaccessibility in specific bacteria (e.g. impermeability to 

glycopeptides by the outer membrane of Gram-negative bacteria), extrusion of the 

antibiotic by chromosomally encoded active exporters (e.g. resistance to tetracyclines, 

chloramphenicol, and quinolones in Psuedomonas aeruginosa), or innate production of 

enzymes inactivating the drug (e.g. AmpC β-lactamase in some Enterobacteriaceae) (84). 

Unlike intrinsic resistance, acquired resistance is a strain-specific property of a 

particular bacterial genus or species. Acquired resistance is a major threat to human and 

animal health because it results in the emergence and spread of resistance in normally 

susceptible bacteria populations, and can consequently result in therapeutic failure (84, 

190).  Acquired resistance is the result of genetic change in the bacterial genome which 

can occur by mutation of chromosomal target genes, or by horizontal acquisition of 

foreign resistance genes (34). Mutations can occur spontaneously in any gene of the 

bacterial genome during the replication of bacteria. The frequency of mutation and the 

expression of an antibiotic resistance phenotype will depend on environmental factors, 

cell physiology, bacterial genetics, and population dynamics (131). Although the rate of 

mutation is low (in vitro rates of 10-6 to 10-12), it may be relatively common in the 
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ubiquitous and vast bacterial population.  The resistance caused by mutations plays an 

essential role in bacteria that are not known to acquire foreign DNA under natural 

conditions (such as Mycobacterium spp.). This is the major mechanism of acquiring 

resistance when a high level resistance is not conferred by mobile genetic elements, as in 

the case with fluoroquinolone resistance. (84). In many cases, different species or genera 

of bacteria are found to contain closely related or even the same antibiotic resistance 

genes, indicating the exchange of resistance genes by horizontal transfer. Such resistance 

gene transfer events occur not only in pathogenic bacteria but also in harmless 

commensal normal flora (190). Many antibiotic resistance genes are located on mobile 

genetic elements, such as plasmids, transposons, and integrons, which can act as vectors 

which promote gene transfer between bacteria (158). 

Horizontal Gene Transfer Mechanisms 
 

Antibiotic resistance genes located on plasmids, transposons, gene cassettes in 

integrons, or genomic islands are spread vertically during division of host cells. However, 

they can also transfer horizontally between the same or different species or genera of 

bacteria through three main mechanisms: transformation, transduction, and conjugation 

(Figure 3). Transformation occurs via uptake of exogenous DNA from the immediate 

surrounding environments, which can be incorporated into naturally transformable 

bacteria, and by bacteria which become competent for transformation under special 

physical or chemical conditions (21, 178).  Conjugation results from the transfer of 

plasmids, which are typically exchanged between donor and recipient cells through 

physical contact (234).   Transduction is facilitated by bacteriophages, which inject their  
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Figure 3. Three main mechanisms by which antibiotic resistance genes are 
transferred horizontally among bacteria.    
A) Transduction; bacteriophage containing bacterial genes transduce bacteria though 
phage lytic cycle; B) Transformation: free DNA is taken up by bacterial cell and 
incorporated into the genome through recombination; C) Conjugation: plasmid 
containing antibiotic resistance genes is passed from donor to recipient bacteria through 
pilus. 
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DNA into the genome of a host bacterium, after which replication and re-packaging of 

the bacteriophage DNA occurs.  In that process, bacterial DNA may be incorporated into 

the viral DNA and upon dispersion of new bacteriophages and injection of repackaged 

DNA into new hosts, resistance genes from the original host may be disseminated into a 

new population (66).   

Transduction and transformation do not require viability of the donor cell nor the 

simultaneous presence of donor and the recipient cell in a given environment  (158). 

However, since both mechanisms require homology between donor and recipient DNA 

for recombination to occur, and the host range of transduction is limited by the high host 

specificity of bacteriophage (60), the spread of antibiotic resistance via transduction and 

transformation is limited to closely related bacteria belonging to the same species or 

genus (184). As antibiotic resistance genes are often located on conjugative genetic 

elements such as plasmids or transposons and these elements can maintain themselves in 

the new hosts without requiring large regions of sequence similarity to integrate into the 

new host’s genome, conjugation likely plays a more important role in dissemination of 

antibiotic resistance genes across species and genus barriers (184, 185). 

Elements Involved in Horizontal Transfer of Resistance Genes 
 

Plasmids, transposons, integrons/gene cassettes, and chromosomal genomic 

islands play major roles in horizontal transfer of antibiotic resistance genes (189). These 

four types of elements are composed of double-stranded DNA, but differ distinctly in 

their sizes, structures, biological properties as well as mechanisms of spreading (190). 
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1. Plasmids 

 Plasmids are autonomously replicating extra-chromosomal elements that vary in 

size from less than 2 kilobase pairs (kb) to more than 100 kb.  Plasmids have been 

detected not only in nearly all bacterial genera of clinical importance but also in normal 

flora of the skin and various mucosal tissues in humans and animals.  Plasmids code for 

resistance to antibiotic agents, disinfectants, heavy metal cations, anions, nucleic acid-

binding substances, or bacteriocins, providing mechanisms for the bacteria to survive 

under environmental stress (190). Plasmids can also code for metabolic (22, 61) or 

virulence properties (150, 170, 188, 235), allowing recipient bacteria to exist in new 

environments or gain novel virulence properties. Resistance plasmids are known to carry 

one or more resistance genes, sometimes in addition to genes for other traits. Large 

plasmids can carry a tra gene complex that enables them to move from one host cell to 

another by conjugation. Such plasmids are called conjugative plasmids.  In most 

instances, the genes necessary for transfer are located together with resistance 

determinants on the same plasmid, creating a highly efficient mechanism for antibiotic 

dissemination among bacteria (113). The broad host-range, conjugative plasmids are 

possibly the most active vehicle for a potential horizontal gene pool of antibiotic 

resistance genes that are available to many bacteria of many species and families (158, 

208). It is important to note that not every plasmid can replicate in every bacterium. 

Therefore, when transferred into a new host cell, plasmids may stably replicate, co-

integrate with other plasmids; or integrate, either in part or completely, into the 

chromosomal DNA (190).  Plasmids usually act as vectors for transposons and 
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integrons/gene cassettes, thus promoting rapid spread of multiple antibiotic resistance 

genes (114). 

2. Transposons 

 Since transposons do not possess replication systems, they must integrate into 

chromosomes or plasmids to maintain their stability. Transposons also vary in their 

structures and sizes ranging from less than 1 kb to 60 kb. The smallest type of transposon 

is insertion sequence (IS), which usually carries only the transposase genes whose 

products mediate transposition of the elements. The insertion of additional genes, such as 

toxin genes, and more often antibiotic resistance genes, creates larger transposons (114). 

Composite transposons, such as Tn9, Tn10, and Tn5706, usually have one or more 

central antibiotic resistance genes and insertion sequences at the termini. Complex 

transposons, such as Tn1721, are commonly characterized by terminal inverted repeats 

and occasionally also internal repeats that separate the part carrying resistance gene(s) 

from the part carrying transposase genes. Some transposons integrate site specifically, 

whereas others can insert at various positions in the chromosomal or plasmid DNA. 

Similar to the situation among plasmids, there are also non-conjugative and conjugative 

transposons. Conjugative transposons, for instance Tn916, transfer not only among 

species within the Gram-positive or Gram-negative bacteria, but also between both 

groups. The tetracycline resistance gene, (tetM), located on  a conjugative transposon, can 

transfer across several genera of bacteria such as Enterococcus spp., Staphylococcus spp., 

Streptococcus spp., Actinomyces spp., Bifidobacterium spp., Clostridia spp., 
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Campylobacter spp., Fusarium nucleatum, Gardenella vaginalis, Haemophilus spp., 

Neisseria spp., and  Veillonella spp (184). 

3. Gene Cassettes/ Integrons 

Gene cassettes represent small mobile elements of less than 2 kb and were 

previously detected only in Gram-negative bacteria (174), but recently have been found 

in both Gram-negative and Gram-positive bacteria. They commonly consist of only a 

specific recombination site and a single gene, which most often is an antibiotic resistance 

gene (45). Gene cassettes do not have replication systems or transposition systems, but 

move by site-specific recombination. Gene cassettes can occur as a free circular DNA 

molecule, but they are usually found integrated into an integron (45). In recent years 

many different and diverse genes responsible for antibiotic resistance have been found in 

integrons.  

4. Mobile Genomic Islands 

 Since the 1990s, several mobile genomic islands carrying antibiotic resistance 

genes have been reported. These genomic islands integrate site-specifically into the 

chromosome. The most well-studied is the Salmonella genomic island 1 (SGI1). This 43-

kb SGI1 was first identified in epidemic multidrug-resistant strains of S. enterica serovar 

Typhimurium DT104. Several studies have shown a high prevalence of SGI1 in S. 

Typhimurium DT104. SGI1 has also been identified in other S. enterica serovars, such as 

Agona, Albany, Derby, Newport, Meleagridis, and Paratyphi B (28, 67, 144, 220). 

Recently, SGI1 has been identified as an integrative mobilizable element. The 13-kb 

antibiotic resistance gene cluster within SGI1 consists of a complex integron related to 
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the In4 group of integrons. In most known cases, it mediates resistance to a pentadrug  

pattern (ACSSuT), including ampicillin (blaPSE-1), chloramphenicol and florfenicol 

(floR), streptomycin and spectinomycin (aadA2), sulfonamide (sul1), and tetracycline 

(tetG). However, variant clusters have been identified containing additional or other 

resistance genes, such as dfrA1 and dfrA10, conferring resistance to trimethoprim; aadA7, 

conferring resistance to streptomycin, and aac(3)-ID, conferring resistance to gentamicin 

(63, 144, 221). 
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III. INTEGRONS AND GENE CASSETTES 

 
Plasmids and transposons are genetic elements that have been found to carry 

antibiotic resistance genes.  However, numerous studies have shown that many antibiotic 

resistance genes found on plasmids and transposons in Gram-negative bacteria are 

located at a unique site within the conserved DNA sequence, leading to the discovery of a 

new genetic element called an integron.  Integrons are natural genetic engineering 

systems that capture and incorporate open reading frames and convert them into 

functional genes (1). Aside from antibiotic resistance genes, integrons have been 

implicated in the acquisition of virulence determinants by V. cholerae  (138) and E. coli 

(198). 

Classification of Integrons 
 
Integrons are believed to play a major role in the rapid dissemination of multi-drug 

resistance (MDR) among bacteria (158).  Two major groups of integrons exist. Super-

integrons (SI) are chromosomally located and may contain hundreds of gene cassettes 

encoding for a variety of functions, and there is a high degree of identity (> 80%) 

observed between the attC sites of these cassettes (137, 181). Resistance integrons (RI) 

typically carry gene cassettes encoding resistance to antibiotics and disinfectants and are 

currently divided into three classes, based on variations in sequence of primary elements, 

gene cassettes, and associations with transposons (4, 12, 44, 79, 80, 173, 192).  RI can 

occur on bacterial chromosomes, transposons, or plasmids. The most common and widely 

distributed of RI are class 1 integrons (33, 79, 164, 217). Table 5 provides examples of  
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Table 5.  Bacteria found to carry integrons.1  

 

Integrons Bacteria 

 
Resistance integrons 

 
Class 1 
 
 
 
 
 

Acinetobacter, Aeromonas, Alcaligenes, 
Burkholderia, Campylobacter, Citrobacter, 
Enterobacter, Escherichia, Klebsiella, 
Pseudomonas, Salmonella, Serratia, Shigella,  
Vibrio, Corynebacterium glutamicum, and 
Mycobacterium fortuitum 

 Class 2 Acinetobacter, Shigella, and  Salmonella 
 Class 3 Pseudomonas aeruginosa, Serratia marcescens, 

Alcaligenes xylosoxidans, Pseudomonas putida, and 
Krebsiella pneumoniae 

Super integrons  Geobacter sulfurreducens, Listonella pelagia, 
Nitrosomonas eurapaea, Pseudomonas alcaligenes, 
Pseudomonas mendocina, Pseudomonas stutzeri, 
Shewanella oneidensis, Shewanella putrefaciens, 
Treponema denticola, Vibrio anguillarum, Vibrio 
cholerae, Vibrio fischerii, Vibrio metschnikovii, 
Vibrio mimicus, Vibrio parahaemolyticus, and 
Xanthomonas campestris 

 
1 Adapted from Fluit and Schmitz (80). 
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bacteria that have been reported to carry integrons. Class 1 integrons are widespread and 

have been found on all continents (65, 109, 112, 124, 193). Class 1 integrons possess two 

conserved segments separated by a variable region that often includes antibiotic 

resistance genes.  The construct of class 1 integrons includes a conserved intI (integrase) 

gene and a complimentary strand containing a common promoter region that is directed 

toward the site of integration (127, 159). Site-specific recombination events occur within 

integrons enabling promotorless cassettes encoding for a wide range of antibiotic 

resistance genes to be inserted downstream of the integron promoter region, thereby 

providing for simultaneous resistance to multiple antibiotics (80).  Integrons can be 

exchanged indiscriminately between similar bacteria as well as among bacteria of 

different taxa (110, 236), thus causing concern for wide dissemination  

of these genetic resistance elements. 

The Structure of Integrons 
 

Class 1 integrons consist of two conserved segments, 5’ and 3’ conserved 

sequences, separated by a variable region, which includes one or more genes (Figure 4). 

The most common genes inserted into variable regions as cassettes are antibiotic 

resistance genes. (43, 127).  Gene cassettes are not necessarily part of integrons, but once 

incorporated, they become part of that integron (79). Integrons can carry several different 

gene cassettes and therefore play an important role in the dissemination of multiple 

antibiotic resistance genes. 
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1. 5’Conserved Sequences 

The 5’ conserved sequence of integrons consists of three elements necessary for 

the capture of gene cassettes; a gene encoding a site specific recombinase integrase 

enzyme (intI); an attachment site where horizontally acquired sequences are integrated 

(attI); and a promoter that drives expression of the incorporated sequence (P) (89, 137, 

158, 182).  

Integrase   

The IntI gene encoding for the integrase enzyme belongs to the tyrosine-recombinase 

family, which is the same as a well known λ-integrase (72, 156). The integron integrase 

is similar in length; however, it shares only 40-60% homology of amino acid identity. 

The IntI2 and IntI3 are 46% and 59% identical to IntI1,  respectively (46). It is important 

to note that despite the differences in the integrase, gene cassettes are thought to be 

acquired by all integron classes, as identical genes cassette have been found in different 

classes of integron (12, 174, 203). 

Integron Attachment Sites  

Integrase enzymes catalyze the excision and integration of antibiotic resistance 

genes in integrons by a site-specific recombination system. These reactions occur by the 

integrase interacting with the two different recombination sites, the integron attachment 

site (attI) in the 5' conserved segment of the integron and the cassette attachment site 

(attC) or 59 base element (59-be) of the gene cassettes (45, 143, 163). The integrase 

cleaves double stranded DNA in both attI and attC sites between G and the first T within 

a 7-bp sequence (GTTRRRY,  where R is a purine and Y is a pyrimidine),   known as a  
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core site (201)  creating a cross-over  recombination point (91, 163). A diagram of  the 

gene cassette capture and expression mechanism of class 1 integrons is show in Figure 5. 

Promoters 
 
Most antibiotic resistance gene cassettes are inserted into integrons as promoterless 

elements, therefore the expression of the genes located in the cassettes depend on the 

promoter located downstream of attI site. In class 1 integrons the 5’-CS contains 2 

potential promoters, P1 (also called PANT) and P2. These promoters vary in strength to up 

to 20 times with P1 generally being a strong promoter and P2 being a weaker Promoter, 

or frequently, inactive because only 14 nucleotides are present between the -35 and -10 

boxes of this promoter, instead of the optimal 17 nucleotides. At least five different P1 

and two different P2 sequences have been described, which may occur in varying 

combinations (42, 94, 126, 167, 201). 

2. Gene Cassettes 

Gene cassettes are discrete genetic elements that may exist as free, circular, non-

replicating DNA molecules when moving from one genetic site to another (43); but they 

are normally found as linear sequences that constitute part of a larger DNA molecule, 

such as a plasmid or bacterial chromosome. Gene cassettes normally contain only a single 

gene and an additional short sequence, attC, that functions as a specific recombination 

site (90). Accordingly, the cassettes are small, normally of the order of 500–1000 bp.  

Most gene cassettes lack the promoter in front of the coding sequence, therefore 

the expression of the genes located in the cassettes depends on the promoter of the 

integron (79).   The  number  of  identifie d resistance  gene  cassettes associated with RI 
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increased dramatically from 40 different genes cassettes in 1998 (92) to 60 in 1999 (79), 

and over 80 have been reported to be associated with class 1 integrons in 2006 (137). 

Incorporation of gene cassettes into integrons occurs by IntI-mediated site-specific 

recombination between a 59-base element site in the cassette and an integron attachment 

site (attI) site in the integron (41). The following are details of attC and varying types of 

gene cassettes. 

Cassette Attachment Site 
 

The attC sites present at the 3’-end of a cassette are a diverse family of nucleotide 

sequences that function as recognition sites for the site-specific integrase. They vary in 

length from 57 bp to 141 bp; however, they share a region of about 25 bp at each end 

which conforms to consensus sequences (43, 90, 202). The consensus sequences are 

imperfect inverted repeats of one another, which begin with an inverted core site 

(RYYYAAC) separated by spacer of 7 or 8 bp and end with a core site (GTTRRRY) 

(202).  Although they have similar DNA sequences at their extremities, each gene 

cassette has its own version of attC (90, 202). However attC can be recognized by the 

same integrase, as the same gene cassettes have been found located within different 

classes of integrons, indicating that the pool of cassettes is shared.  

Type of Gene Cassettes 
 

More than 70 gene cassettes with nucleotide sequences that differ by more than 

5% have been found associated with class 1 integrons. Among them they confer 

resistance to all known β-lactams, all aminoglycosides, chloramphenicol, trimethoprim, 

streptothricin, rifampin, erythromycin, fosfomycin, and lincomycin and are also found to 
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carry genes coding for resistance to antiseptics of the quaternary-ammonium-compound 

family (80, 137, 183). Following are descriptions of four major resistance gene cassettes. 

1. β-Lactams Resistance Gene Cassettes: Recently twenty-five gene cassettes 

conferring resistance to β-lactam antibiotics were characterized (80). Resistance to this 

group of antibiotics is not only caused by classical β-lactamase but also by extended 

spectrum β-lactamases. Carbapenamases, β-lactamases that have zinc at their active 

centers instead of serine, as in most β-lactamases, and have the ability to hydrolyze most 

beta-lactams including carbapenems (79), have also been described. Among four classes 

of carbapenamases, the metallo-beta-lactamases (mostly of the IMP and the VIM series) 

are the most clinically-significant and have been reported worldwide (154, 160, 168, 

205). 

2. Aminoglycoside Resistance Gene Cassettes: A large number of gene 

cassettes confer resistance to aminoglycosides. Twenty-six aminoglycoside resistance 

gene cassettes have been reported (79, 80). Aminoglycoside adenyltransferase (aad) 

conferring resistance to streptomycin and spectinomycin is the most common gene 

cassette found in this group. The second common aminoglycoside resistance gene 

cassette is aminoglycoside acetyltransferase (aac). Its products confer resistance to 

neomycin, gentamicin, tobramycin, and kanamycin (79).  

3. Trimethoprim Resistance Gene Cassettes:  Two main families of 

dihydrofolate reductase (dfr) comprise gene cassettes that confer resistance to the drug 

trimethoprim. They are grouped into two main families, A and B. At least 20 different 

dfrA sequences and 5 dfrb have been reported so far. Trimethoprim resistance in 

clinically significant Gram-negative bacteria is usually caused by horizontally 
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transferable resistance genes (dfr genes) coding for alternative resistant dihydrofolate 

reductases (104, 172).  

4. Chloramphenicol Resistance Gene cassettes: This gene cassette’s product 

confers resistance to chloramphenicol either via acetylation or efflux pump. Two main 

families of gene cassettes are responsible for chloramphenicol resistance, cat and cml. 

The former families are involved in drug modification, whereas the latter families 

produce products that promote activity of a chloramphenicol efflux pump (79, 183). 

3. 3’Conserved Sequence 

Most class 1 integrons have a 3’ conserved sequence (3’CS). The 3’CS carries 

qacEΔ1 gene, a semi functional derivative of the quaternary ammonium compounds 

resistance gene, qacE, the sulfonamide resistance gene (sul1), and an open reading frame 

of unknown function called ORF5. Similar 3’CS are not found in other classes of 

integrons. (91, 93, 183) 
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IV. THE BACTERIA  

 
The population of resistant microorganisms in a host organ depends upon the 

ability of the system to harbour a large commensal flora (57). The digestive tract is the 

largest reservoir of commensal bacteria within the host and has been found to be the 

largest reservoir of resistance genes (216). This has been ascribed to the fact that the huge 

intestinal microflora forms an ideal environment for horizontal gene transfer (34). Three 

types of bacteria were included in this study, Escherichia coli, Salmonella spp. and 

Proteus mirabilis, and thus a discussion of those organisms follows.  

Escherichia coli 
 
 Although normally commensal, some strains of E. coli are associated with 

infections in humans and animals. In swine, pathogenic E. coli can cause enteric 

colibacillosis, edema disease or mastitis metritis agalactia syndrome (MMA). Enteric 

colibacillosis, or piglet scours, causes diarrhea and dehydration in first few days of life 

and in piglets 1-2 weeks of age. This diarrhea is responsible for significant economic 

losses due to mortality, morbidity, decreased growth rate, and cost of medication (62, 73, 

88). Edema disease, or E. coli enterotoxaemia, affects growing pigs several weeks after 

weaning. It is often rapidly fatal (73). MMA occurs in sows just after farrowing and 

results in a lack of milk which causes high piglet mortality. In chickens, E. coli may 

cause infections of the respiratory tract and soft tissues, resulting in colibacillosis, air 

sacculitis, and cellulitis. E. coli can also cause yolk sac infections, which is a common 

cause of chick mortality in the first week of life.  
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Salmonella spp. 
 
 Salmonella is a genus of rod-shaped Gram-negative enteric bacteria. There are 

currently 2,463 known Salmonella serotypes (169). This genus of bacteria can be divided 

into 3 groups according to clinical syndrome in humans: typhoid fever, bacteremia, and 

enterocolitis (187). Among those syndromes only bacteremia and enterocolitis, caused by 

non typhoidal S. enterica serotypes, are associated with animal reservoirs and human 

disease outbreaks caused by this bacterium, commonly resulting from animal to human 

transmission. In contrast, typhoid fever, caused by typhoidal S. enterica serotypes, do not 

have animal reservoirs and are maintained in human populations by person to person 

transmission (146). Salmonellosis is a major cause of bacterial enteric illness in both 

humans and animals. On the global scale, it has been estimated that each year about 1.3 

billion cases of gastroenteritis due to nontyphoidal salmonellosis occur, resulting in 3 

million deaths (161). Among humans in the United States, an estimated 1.4 million cases 

of salmonellosis occur annually (141). Furthermore, Salmonella-induced enterocolitis is 

the single most common cause of death from foodborne illness associated with viruses, 

parasites or bacteria in the United State (141). Transmission of Salmonella in food 

animals typically occurs through fecal-oral or aerogenous transmission. Rodents, insects, 

cats, birds, humans, contaminated feed, and transportation vehicles can act as vectors for 

dissemination of Salmonella. Although animal to human transmission may occur through 

direct contact, the most important source of human infection is contaminated food 

products of animal origin (100). In the United States, chicken, beef, turkey and eggs are 

the most common food vehicles for transfer of Salmonella to humans. Salmonella 
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contamination of food and food products may occur either because animals are infected 

or because fecal contamination occurs during food processing.   

Proteus mirabilis 
 

Proteus mirabilis is a rod-shaped Gram-negative, facultative anaerobic bacterium 

belonging to family Enterobacteriaceae. This bacterium is part of the normal gut flora of 

a healthy individual, but is also an opportunistic pathogen.  P. mirabilis is an important 

opportunistic uropathogen that is frequently isolated from patients with complications 

from urinary tract infections (199, 237). Recently, several research groups have reported 

the presence of mobile genetic elements involved in antibiotic resistance dissemination in 

P. mirabilis. For example, clinical P. mirabilis isolates harboring Salmonella genomic 

island 1 containing the multiple antibiotic resistance regions have been reported in Japan 

(3). Using PCR targeting conserved sequences of integrons, Tsakris et al. (213) noted that 

the blaVIM-1
 allele in P. mirabilis strains that were phenotypically metallo-ß-lactamase 

(MBL)-positive, was located in a common integron structure. Class 1 integrons were also 

detected as common carriers of antibiotic resistance genes, such as aadA1, aadB, and 

aadA2, in multidrug-resistant isolates of P. mirabilis collected from retail meat in 

Oklahoma, Japan (116). 
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ABSTRACT 

 
The objective of this study was to investigate the prevalence of class1 integrons 

and antimicrobial resistance patterns in E. coli, P. mirabilis, and Salmonella isolates of 

commercial chickens from the US and Thailand. Class 1 integrons, as indicated by the 

presence of intI1, were detected in 1,732 isolates (45.4%) of the total 3,824 isolates. 

Simultaneous presence of all three conserved genes (intI1, qacEΔ1, and sul1) was found 

in 1,044 (27.3%) isolates.  The prevalence of class 1 integrons in E. coli and Salmonella 

spp. isolates was found to differ with isolate origin (P<0.001). In both types of bacteria, 

class 1 integrons were more prevalent in isolates from Thailand compared with the US 

(70.3% and 44.6% of E. coli isolates and 48.1% and 0.5% of Salmonella spp. isolates 

from Thailand and the US, respectively). Among P. mirabilis, 29.9% of isolates from the 

US carried integrons; however, this prevalence was not different (P=0.81) from that of 

isolates from Thailand (38.2%). Most isolates were found to be multi-antibiotic resistant. 

A high proportion of isolates demonstrated resistance to tetracycline (80.2%), 

sulfonamides (67.7%), cephalothin (62.5%), and ampicillin (57.8%), whereas no isolates 

were resistant to amikacin. Integron-positive isolates were more likely to be resistant to 

sulfamethoxazole than integron-negative isolates. Thailand isolates had a greater 

occurence of resistance (P<0.01) to chloramphenicol, nalidixic acid, and 

trimethoprim/sulfamethoxazole than isolates from the US. Whereas, both E. coli and 

Salmonella isolates from the US demonstrated a greater prevalence of resistance (P<0.01) 

to amoxicillin/clavulanic acid, cefoxitin, and ceftiofur than those from Thailand. 

Salmonella and P. mirabilis isolates from the US were also more frequently resistant 
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(P<0.01) to cephalothin than isolates from Thailand. Among 85 antibiotic resistance 

patterns found in antibiotic susceptibility tests, 11 patterns were found in both integron-

positive and integron-negative isolates, and only one pattern, resistance to tetracycline, 

was found among isolates from both countries. These results indicate that class 1 

integrons are common in commensal and foodborne bacteria in chickens, and that some, 

but not all, antibiotic resistances in those isolates were found in the presence of class 1 

integrons. 
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I. INTRODUCTION 

 
Food animals are often exposed to antimicrobials to treat and prevent infectious 

diseases or to promote growth (37). Antimicrobial usage in food animals provides 

selection pressure that favors an increase of antimicrobial resistance in bacteria (23, 29, 

32, 34). Antimicrobial resistance has emerged not only in commensal bacteria and 

bacterial pathogens of animals but also in zoonotic enteropathogens (37). Resistant 

bacteria from animals can infect humans by direct contact and also via consumption of 

food products of animal origin (60, 63). These resistant bacteria can colonize humans 

and/or transfer their resistance genes to other bacteria of humans, which can result in 

treatment failure as a consequence of that antimicrobial resistance (61).  

Integrons are genetic elements that mediate integration of antibiotic resistance 

genes through site specific recombination and convert them into functional genes (14, 20, 

27, 35, 49). More than 70 different genes imparting resistance to most classes of 

antibiotics have been found as gene cassettes in the central region of different integrons 

from diverse bacteria (51). Moreover, these genetic elements can incorporate several 

resistance genes, allowing them to transfer as a single gene.  As many as seven gene 

cassettes have been found within an integron (58). Integrons are often found to be carried 

on mobile elements such as plasmids and transposons; therefore integrons are believed to 

play a major role in the rapid dissemination of multi-drug resistance among bacteria (43). 

Four different classes of integrons have been identified based on variations in sequence 

of primary elements, gene cassettes, and associations with transposons (3, 5, 15, 19, 20, 
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47, 52). Class 1 integrons are the most common and widely distributed type (10, 19, 45, 

55). 

The U.S. and Thailand, while occupying very diverse geographic regions, share 

many commonalities in livestock production practices. Broiler chicken production tends 

to be intensive, with closed confinement, high biosecurity and similar high production 

genetic lines. Feed-based antibiotics are commonly used in both countries, although some 

differences occur in drugs of choice and/or availability. A comparison of class 1 integron 

prevalence and antibiotic resistance gene patterns of Escherichia coli, Salmonella spp., 

and Proteus mirabilis between these two countries may provide information regarding 

global implications of agricultural use of antibiotics with regard to antibiotic resistance. 
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II. MATERIALS AND METHODS 

Bacterial Isolates   
 

A total of 2,137 E. coli, P. mirabilis and Salmonella spp. isolates were collected 

via fecal swab from 1,270 broiler chickens from 7 farms at abattoirs in the US, and 1,050 

isolates were collected from 427 broiler chickens from 2 farms in Thailand. All bacterial 

collections from Thailand took place in southern Thailand during the period of May 2003 

to August 2004, whereas bacterial collections from the US took place in Tennessee 

during the period of January to May 2005. All isolates were recovered from fecal swabs 

by standard microbiological procedures. The primary isolation method for E. coli has 

been described previously (36). For Salmonella and P. mirabilis isolation, fecal swabs 

were first enriched in selective tetrathionate broth (Difco, Sparks, MD) and incubated at 

41.5+1ºC for 18-24 h. Enriched broth cultures were then plated on Xylose Lysine 

Tergitol 4 agar (XLT4; Difco) for selective culture. Plates were incubated at 37+1ºC and 

examined after 18-24 h. Presumptive Salmonella and P. mirabilis colonies were 

subcultured and then plated again, and identity was confirmed with API 20E strips 

according to the manufacture’s specification (bioMérieux Vitek, Inc., Hazelwood, MO). 

Up to 6 colonies of each bacterial type were selected for analysis. Bacterial cultures were 

maintained at -80°C in 10% glycerol until analysis.  

Multiplex PCR (MP-PCR)  
 

Integron harboring isolates were detected using a MP-PCR targeting three 

conserved sequences of class 1 integrons, intI1, qacEΔ1, and sul1 (18). Primer pairs were 
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manufactured by Operon, Inc. (Alameda, CA) (Table 1). Total DNA was prepared by 

boiling overnight cultures in 2YT broth (Difco) in an equal volume of 0.2% (wt/vol) 

Triton X-100 (Mallinckrodt, Paris, KY) for 5 min (30).  Boiled cultures were cooled on 

ice for 5 min and used immediately for PCR.  PCR reagents, excluding template DNA, 

were combined in a master mix prior to aliquoting.  The final reaction volumes for each 

aliquot included:  1) 1 μL of each primer pair (50 pmol (each primer) μL-1); 2) 1 μL of 

Taq DNA polymerase (0.5U μL–1; Promega, Madison, WI); 3) 10 μL reaction buffer 

(12.5mM MgCl2, pH 8.5; Invitrogen, Carlsbad, CA); 4) 5 μL dNTPs solution (2.5mM of 

each dNTP, pH 8.0; Invitrogen); and 5) 32 μL sterile H2O. Sample DNA (1 μL) was then 

added to each aliquot. Reactions were conducted in a Mastercyler Gradient thermocycler 

(Eppendorf, Westbury, NJ) with the following conditions:  1) 1 cycle of 94°C for 4 min; 

2) 10 "touchdown" cycles of 94°C for 1 min, 65°C for 30s (decreasing 1°C/cycle), 70°C 

for 2 min; 3) 24 cycles of 94°C for 1 min, 55°C for 30s, 70°C for 2 min; and 4) 1 final 

cycle of 70°C for 5 min.  Salmonella Typhimurium DT104 known to contain two class 1 

integrons (23) was used as a positive control.  A blank containing only PCR reagents and 

Triton X-100 was used as a negative control. Reaction products were separated by 

conventional electrophoresis in 1.5 % agarose and stained with ethidium bromide for 

visualization (Figure 1). Prevalence of class 1 integrons was based on the presence of the 

IntI1 gene. 

The integron prevalence in each bacterial species was compared between 

Thailand and the US using the freq procedure of SAS (SAS 8.2, SAS Institute Inc, Cary,  
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Table 1. Primer pairs used in MP-PCR. 
 

Target Sequence (5’ to 3’) PCR Product 
(bp) 

int1       (F)     GGTTCGAATGTCGTAACCGC 248 
       (R)     ACGCCCTTGAGCGGAAGTATC  
sul1       (F)     ATCAGACGTCGTGGATGTCG 346 
 (R)     CGAAGAACCGCACAATCTCG  
qacEΔ1       (F)    GAGGGCTTTACTAAGCTTGC 200 
                 (R)    ATACCTACAAAGCCCCACGC  
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1 2 3 

qacEΔ1 (200bp)

IntI1 (248bp)

sul1 (346bp) 

1 2 3 4 5 6 7 8 9 10 
10 9 8 7 6 5 4 

 
 
Figure 1. Multiplex PCR detecting class 1 integrons gene sequence.  
Lane 1 and 10; 100 bp DNA ladders; Lane 2-7 wild type isolates; lane 8; negative 
control; and lane 9; Salmonella enterica Typhimurium DT104 (positive control) 
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NC) Comparisons were made using the Fisher's two-sided exact tests.  Differences were 

considered significant at P < 0.05.  

Antibiotic Susceptibility Testing   
 
 Antibiotic MICs were determined for subsets of each bacterial type using the 

National Antimicrobial Resistance Monitoring System (NARMS) microdilution sensititre 

plates, CMV7CNCD, (Sentititre, Trek Diagnostic System Inc., Cleveland, Ohio) 

according to Clinical and Laboratory Standards Institute (CLSI), (formerly National 

Committee on Clinical Laboratory Standards, NCCLS) broth microdilution guidelines. 

E.coli ATCC 25922 was used as a reference strain. The isolates were tested for resistance 

to 16 antibacterials or antibacterial combinations that included: amoxicillin/clavulanic 

acid (Aug), ampicillin (Amp), ciprofloxacin (Cip), cefoxitin (Fox), ceftiofur (Tio), 

ceftriaxone (Axo), cephalothin (Cpl), chloramphenicol (Chl), amikacin (Ami),  

gentamicin (Gen),  kanamycin (Kan), nalidixic acid (Nal), streptomycin (Str), 

sulfamethoxazole (Sul), tetracycline (Tet),  and trimethoprim/sulfamethoxazole (Sxt).  

The CMV7CNCD plate layout is shown in Figure 2. Results were interpreted using CLSI 

guidelines for broth microdilution methods for veterinary E. coli (Table 2). In the 

phenotypic analysis, isolates with intermediate MICs were not considered as resistant.  

The frequency of antibiotic resistance in integron-positive isolates was compared 

to that of integron-negative isolates and frequency of antibiotic resistance in isolates from 

Thailand was compared to the US using the Analysis and Statcalc programs of the Epi 

InfoTM version 3.4.1 software package from the Centers for Disease Control and 
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Prevention (11). Comparisons were made using Fisher's two-sided exact tests.  

Differences were considered significant at P<0.05. 
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Figure 2. Sensititre non-fastidious Gram negative plate (CMV7CNCD) format. 
Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline; 
Pos, growth control wells. 
 
 

 99



Table 2. Minimum Inhibitory Concentration (MIC) breakpoint. 1
 

Drugs Susceptible 
(μg/ml) 

Intermediate 
(μg/ml) 

Resistant 
(μg/ml) 

Aminoglycoside    
     Amikacin (Ami)   ≤ 16 32 ≥ 64 
     Gentamicin (Gen) ≤ 4 8 ≥ 16 
     Kanamycin (Kan)   ≤ 16 32 ≥ 64 
     Streptomycin (Str)   ≤ 32  ≥ 64 
β-Lactams    
     Ampicillin (Amp) ≤ 8 16 ≥ 32 
     Amoxicillin/Clavulanic acid (Aug)   ≤ 8/4 16/8      ≥ 32/16 
     Cephalothin (Cpl) ≤ 8      16 ≥ 32 
     Cefoxitin (Fox) ≤ 8 16 ≥ 32 
     Ceftiofur (Tio) ≤ 2 4        ≥ 8 
     Ceftriaxone (Axo)         ≤ 8      16,32 ≥ 64 
Chloramphenicol (Chl) ≤ 8 16 ≥ 32  
Quinolone    
     Ciprofloxacin (Cip) ≤ 1 2        ≥ 4 
     Nalidixic Acid (Nal)   ≤ 16  ≥ 32 
Sulfonamides    
     Sulfamethoxazole (Sul)     ≤ 256   ≥ 512 
     Trimethoprim/Sulfamethoxazole (Sxt)      ≤ 2/38     ≥ 4/76 
Tetracycline (Tet) ≤ 4 8 ≥ 16 
 

1 MICs determined via microdilution broth methods in accordance with CLSI standards 
(12, 13).  
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III. RESULTS 

Prevalence of Bacterial Isolates 
 
 The frequency of E. coli isolates from chickens was high in both countries with 

97.4% and 95.8 % of chickens from Thailand and the US, respectively, carrying E. coli. 

However, the prevalence of Salmonella spp. and P. mirabilis in chickens was 

considerably lower than E. coli. The prevalence of Salmonella was higher in the US, with 

that organism being detected in 21.2% of chickens, whereas only 3% of chickens in 

Thailand were found to carry Salmonella.  A similar prevalence of P. mirabilis was found 

in Thailand and the US with 12.2 and 11.8% of chickens from Thailand and the US, 

respectively, were found to carry these bacteria. However, the prevalence of both bacteria 

varied between farms ranging from 0 to 66% and 0 to 5.2% for Salmonella isolates and 

1.3 to 24.3% and 7.0 to 20.6% for P. mirabilis isolates from the US and Thailand, 

respectively. Table 3 shows the number of positive samples for each type of bacteria and 

their distribution by country and farm. 

 101



Table 3. Prevalence of E. coli, Salmonella, and P. mirabilis of chickens in the US and 
Thailand. 
 

# of animals carrying bacteria (%) 
Countries Farm 

# of 
animals 
sampled E. coli Salmonella P. mirabilis 

US US 1 70  67 (95.7)   8 (11.4)  4 (5.7) 
 US 2 150 145 (96.7)  99 (66.0)  2 (1.3) 
 US 3 150 147 (98.0) 24 (16.0) 12 (8.0) 
 US 4 150 142 (94.5) 27 (18.0) 14 (9.3) 
 US 5 150 139 (92.7)   9 (6.0)   23 (15.3) 
 US 6 300 287 (95.7) 102 (34.0) 22 (7.3) 
 US 7 300 290 (96.7)   0 (0)   73 (24.3) 
 Total 1,270 1,217(95.8) 269 (21.2) 150 (11.8) 

Thailand TH 1 267 267 (100) 14 (5.2)  19 (7.0) 
 TH 2 160 149 (93.0) 0 (0)   33 (20.6) 
 Total 427 416 (97.4) 14 (3.3) 52 (12.2) 
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Prevalence of Class 1 Integrons 
 
 Prevalence of class 1 integrons in E. coli, Salmonella spp., and P. mirabilis in 

chickens from the US and Thailand is shown in Table 4.  Class 1 integrons, as indicated 

by the presence of intI1, were detected in 1,732 isolates (45.4%). Simultaneous presence 

of all three conserved genes (intI1, qacEΔ1, and sul1) was found in 1,044 (27.3%) of the 

total of 3,824 isolates.  The prevalence of class 1 integrons in E. coli and Salmonella spp. 

was found to differ with isolate origin (P<0.001). In both types of bacteria, class 1 

integrons were more prevalent in isolates from Thailand when compared with the US. 

(70.3 and 44.6% for E.coli isolates, 48.1 and 0.5% for Salmonella spp. isolates from 

Thailand and the US, respectively). Among P. mirabilis, 29.9% of isolates from US 

carried integrons; however this was not different from Thailand (38.2%) (P=0.81). There 

were no differences in prevalence of class 1 integrons across farms among Salmonella 

spp. (P=0.99). In contrast, the prevalence of integrons across farms in both E. coli and P. 

mirabilis isolates differed (P<0.001) (data not shown)  
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Table 4. Prevalence of integrons and integron component genes in bacteria of chickens 
from the US and Thailand. 1 

 

E. coli P. mirabilis Salmonella   
The US Thailand The US Thailand The US Thailand 

No. of isolates 1161 1341 279 334 576 133 
No.(%) carrying       
- IntI1 (I) 518 

(44.6)b
942 

(70.3)a
83 

(29.9)a
127 

(38.2)a
3 

(0.5)b
64 

(48.1)a

- All 3 conserved 
  genes (I, Q, S) 

502 
(43.2)a

307 
(22.9)b

83 
(29.9)a

96 
(28.8)a

3 
(0.5)b

53 
(39.9)a

 
1 Results are reported as numbers and percentage of bacteria carrying integrons and genes 
associated with integrons, as determined by multiplex PCR. I, intI1; Q, qacEΔ1; S,  sul1. 
a,b Values within the same bacteria and row not sharing like superscripts differ (P<0.05). 
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Antibiotic Susceptibility 
 

E. coli isolates 

 A comparison of antibiotic resistance patterns between integron-positive and 

integron-negative E. coli isolates is shown in Figure 3. The highest percentage of 

resistance in integron-positive E. coli was found to tetracycline (100%), followed by 

sulfamethoxazone (97.8%), cephalothin (75.6%), streptomycin (71.1%) and gentamicin 

(62.2%); whereas 100, 82.2, 68.9, 55.6, and 51.1 % of integron-negative isolates showed 

resistance to tetracycline, cephalothin, ampicillin and sulfamethoxazone, respectively. All 

integron-negative isolates were susceptible to chloramphenicol and amikacin, whereas all 

integron-positive isolates were only susceptible to amikacin. Integron-negative isolates 

demonstrated a low percentage of resistance (2.2–20%) to ceftriaxone, gentamicin, 

kanamycin, ciprofloxacin, trimetroprim/sulfamethoxazole and nalidixic acid. Among 

integron-positive isolates, 2.2 to 28% of isolates were resistant to ceftriaxone, 

chloramphenicol, ciprofloxacin, kanamycin and nalidixic acid. Resistance to gentamicin, 

kanamycin, chloramphenicol, and sulfamethoxazole was more common in integron–

positive isolates (P<0.05).  

Compared to Thailand, US isolates showed a higher percentage of resistance to 

tetracycline, cephalothin, streptomycin, sulfamethoxazole, ampicillin, 

amoxicillin/clavulanic acid, ceftiofur and cefoxitin (100, 81.4, 77.1, 70, 61.4, 58.6, 57.1 

and 54.3%, respectively). All US isolates were susceptible to amikacin, chloramphenicol, 

and ciprofloxacin and showed a high level of susceptibility (85.7-97.3%) to kanamycin, 

trimethoprim/sulfamethoxazole, nalidixic acid, and ceftriaxone.   
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Figure 3. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative E. coli from chickens. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within the same antibiotic with * differ (P<0.05) 
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All Thailand isolates were resistant to tetracycline and showed a high resistance to 

nalidixic acid, sulfamethoxazole, cephalothin, ciprofloxacin  nalidixic acid, 

sulfamethoxazole, cephalothin, ciprofoxacin, trimethoprim/sulfamethoxazone and 

ampicillin (95, 90, 70, 65, 65 and 60%, respectively). All E. coli isolates from Thailand 

were susceptible to amikacin, gentamicin, cefoxitin, and ceftriaxone.  Only 5, 10, 25 and 

35 % of E. coli isolates from Thailand were resistant to ceftiofur, amoxicillin/clavulanic 

acid, chloramphenicol, and kanamycin.   Resistance to gentamicin, streptomycin, 

amoxicillin/clavulanic acid, cefoxitin and cetriofur was more common in US isolates 

(P<0.05); whereas isolates from Thailand showed a higher percentage of resistance to 

kanamycin, chloramphenicol, ciprofloxacin, trimethoprim/sulfamethoxazole, and 

nalidixic acid than isolates from the US (P<0.0001) (Figure 4). 

Overall, all E. coli isolates from chickens were resistant to at least one antibiotic. 

Integron-positive and -negative isolates were resistant to 2 to 10 and 1 to 10 

antimicrobials, respectively. The highest proportion of integron–positive isolates was 

resistant to 9 antimicrobials, whereas the highest proportion of integron-negative isolates 

was resistant to 6 antimicrobials. E. coli isolates from the US and Thailand were resistant 

to 2 to 10 and 1 to 9 antimicrobials, respectively. Whereas 90% of E. coli isolates from 

Thailand were resistant to more than 5 antimicrobials, only 62% of isolates from the US 

showed resistance to that number of antimicrobials (Figure 5). 
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Figure 4. Frequency of resistance to 16 antimicrobials in E. coli of chickens from the 
US and Thailand. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within the same antibiotic with * differ (P<0.05) 
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Figure 5. Multiple antimicrobial resistance of E. coli from chickens. 

A. Integron-positive and integron-negative isolates. 
B. Isolates from the US and Thailand. 
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A total of 47 patterns were observed among 90 E. coli isolates. The most frequent 

pattern was resistance to 9 antimicrobials, Aug-Amp-Fox-Tio-Cpl-Gen-Str-Sul-Tet, 

which was found in 11.1% of isolates.  Seven isolates (7.8%) exhibited resistance to the 

highest number of antimicrobials (10) with those being Aug-Amp-Fox-Tio-Cpl-Kan-

Gen-Str-Sul-Tet and Aug-Amp-Fox-Tio-Cpl-Gen-Str-Sul-Tet-Sxt. Among the 47 

patterns, eight patterns were found in both integron-positive and integron-negative 

isolates. However, no common pattern was found among isolates from Thailand and the 

US (Table 5). 
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Table 5. Antibiograms of E. coli isolates of chickens from the US and Thailand. 
 

No. of isolate(s) 

Integron Location Total Pattern 
No. Antibiogram1

+ 
(n=45) 

- 
(n=45)

US 
(n=70) 

Thailand
(n=20) 

 
(n=90) 

1 Aug-Amp-Fox-Tio-Axo-Cpl-Str-
Sul-Tet 

0 1 1 0 1 

2 Aug-Amp-Fox-Tio-Axo-Cpl-
Sul-Tet-Sxt 

1 0 1 0 1 

3 Aug-Amp-Fox-Tio-Cpl-Kan-
Gen-Str-Sul-Tet 2

4 1 5 0 5 

4 Aug-Amp-Fox-Tio-Cpl-Kan-Str-
Sul-Tet 

0 1 1 0 1 

5 Aug-Amp-Fox-Tio-Cpl-Gen-
Nal-Sul-Tet 

1 0 1 0 1 

6 Aug-Amp-Fox-Tio-Cpl-Gen-Str-
Sul-Tet-Sxt 

2 0 2 0 2 

7 Aug-Amp-Fox-Tio-Cpl-Gen-Str-
Sul-Tet 2

9 1 10 0 10 

8 Aug-Amp-Fox-Tio-Cpl-Str-Sul-
Tet-Sxt 2

1 1 2 0 2 

9 Aug-Amp-Fox-Tio-Cpl-Str-Sul-
Tet 

0 3 3 0 3 

10 Aug-Amp-Fox-Tio-Cpl-Str-Tet 0 2 2 0 2 
11 Aug-Amp-Fox-Tio-Cpl-Sul-Tet-

Sxt 
0 1 1 0 1 

12 Aug-Amp-Fox-Tio-Cpl-Sul-Tet2 3 1 4 0 4 
13 Aug-Amp-Fox-Tio-Cpl-Tet 0 3 3 0 3 
14 Aug-Amp-Fox-Cpl-Str-Sul-Tet 0 1 1 0 1 
15 Aug-Amp-Tio-Cpl-Cip-Nal-Sul-

Tet 
0 1 0 1 1 

16 Aug-Amp-Tio-Cpl-Gen-Str-Sul-
Tet 

0 1 1 0 1 

17 Aug-Amp-Tio-Cpl-Str-Sul-Tet 0 1 1 0 1 
18 Aug-Amp-Tio-Cpl-Str-Tet 0 1 1 0 1 
19 Aug-Amp-Cpl-Cip-Nal-Sul-Tet-

Sxt 
0 1 0 1 1 

20 Aug-Amp-Cpl-Str-Tet 0 1 1 0 1 
21 Amp-Fox-Tio-Cpl-Tet 0 1 1 0 1 
22 Amp-Cpl-Chl-Cip-Kan-Nal-Sul-

Tet-Sxt 
2 0 0 2 2 
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Table 5. (continued) Antibiograms of E. coli isolates of chickens from the US and 
Thailand. 
  

 No. of isolate(s) 
Pattern Antibiogram1 Integron Total Location 

No. 
+ - US Thailand  

(n=70) (n=20) (n=90) (n=45) (n=45)

23 Amp-Cpl-Cip-Nal-Sul-Tet-Sxt 2 2 1 0 3 3 
24 Amp-Cpl-Nal-Sul-Tet-Sxt 1 0 0 1 1 
25 Amp-Chl-Cip-Kan-Nal-Str-Sul-

Tet 
1 0 0 1 1 

26 Amp-Chl-Cip-Nal-Str-Sul-Tet-
Sxt 

1 0 0 1 1 

27 Amp-Cip-Nal-Sul-Tet-Sxt 1 0 0 1 1 
28 Amp-Gen-Str-Sul-Tet 1 0 1 0 1 
29 Amp-Nal-Tet 0 1 0 1 1 
30 Cpl-Chl-Cip-Kan-Nal-Str-Sul-

Tet-Sxt 
1 0 0 1 1 

31 Cpl-Cip-Nal-Str-Sul-Tet 0 1 0 1 1 
32 Cpl-Kan-Gen-Nal-Str-Sul-Tet 1 0 1 0 1 
33 Cpl-Kan-Gen-Str-Sul-Tet 2 1 1 2 0 2 
34 Cpl-Kan-Nal-Str-Sul-Tet-Sxt 0 1 0 1 1 
35 Cpl-Kan-Nal-Str-Sul-Tet 1 0 0 1 1 
36 Cpl-Gen-Str-Sul-Tet-Sxt 1 0 1 0 1 
37 Cpl-Gen-Str-Sul-Tet 2 1 1 2 0 2 
38 Cpl-Gen-Sul-Tet 1 0 1 0 1 
39 Cpl-Na-Str-Sul-Tet-Sxt 0 2 0 2 2 
40 Cpl-Str-Tet 0 4 4 0 4 
41 Cpl-Tet 2 1 3 4 0 4 
42 Cip-Kan-Nal-Str-Sul-Tet 0 1 0 1 1 
43 Kan-Str-Sul-Tet-Sxt 1 0 1 0 1 
44 Gen-Nal-Str-Sul-Tet 1 0 1 0 1 
45 Gen-Str-Sul-Tet 5 0 5 0 5 
46 Str-Tet 0 5 5 0 5 
47 Tet 0 1 0 1 1 

 
1 Aug, Amoxicillin/Clavulanic Acid; Amp, Ampicillin; Fox, Cefoxitin; Tio, Ceftiofur; 
Axo, Ceftriaxone; Cpl, Cephalothin; Chl, Chloramphenicol; Cip, Ciprofloxacin; Gen, 
Gentamicin; Kan, Kanamycin; Nal, Nalidixic Acid; Str, Streptomycin; Sul, 
Sulfamethoxazole; Tet, Tetracycline; Sxt,   Trimethoprim/Sulfamethoxazole. 
2  Resistance pattern found in both integron-positive and integron-negative isolates. 
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Salmonella isolates 

 A comparison of antibiotic resistance patterns between integron-positive and 

integron-negative Salmonella spp. isolates is provided in Figure 6. All Salmonella 

isolates were susceptible to amikacin, gentamicin, kanamycin, streptomycin, ceftriaxone 

and ciprofloxacin. In addition, all integron-negative isolates were also susceptible to 

chloramphenicol. All integron-positive isolates were resistant to sulfamethoxazole. 

Integron-positive isolates also showed a high percentage (55.6-66.7%) of resistance to 

ampicillin, chloramphenicol, nalidixic acid, trimethoprim/sulfamethoxazone and 

tetracycline, whereas only 11.5% of those isolates were resistant to amoxicillin/clavulanic 

acid, cephalothin, cefoxitin and ceftiofur. While a high percentage of resistance (51.5-

60.6%) to ampicillin, sulfamethoxazole, amoxicillin/clavulanic acid, cephalothin, 

cefoxitin, and ceftiofur was found in integron-negative isolates, less than 10% of those 

isolates were resistant to nalidixic acid, trimetroprim/sulfamethoxazole and tetracycline. 

Resistance to sulfamethoxazone, chloramphenicol, nalidixic acid, tetracycline, and 

trimethoprim/sulfamethoxazole was more common in integron-positive isolates. In 

contrast, resistance to amoxicillin/clavulanic acid, cephalothin, cefoxitin, and ceftiofur 

was more frequent in integron-negative isolates (P<0.05).  

 A comparison between resistance frequencies of Salmonella isolates from 

Thailand and the US is shown in Figure 7. Resistance to ampicillin and sulfamethoxazole 

was found in Salmonella isolates from both countries, although no significant differences 

were noted (P>0.05). There were significant differences in resistances to 

amoxicillin/clavulanic acid, cephalothin, cefoxitin, ceftiofur, chloramphenicol, nalidixic
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Figure 6. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative Salmonella spp. from chickens. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within the same antibiotic with * differ (P<0.05). 
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Figure 7. Frequency of resistance to 16 antimicrobials in Salmonella spp. of chicken 
isolates from the US and Thailand. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within the same antibiotic with * differ (P<0.05). 
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acid, trimethoprim/sulfamethoxazole and tetracycline between Salmonella isolates from 

Thailand and the US (P<0.01). Resistance to amoxicillin/clavulanic acid, cephalothin, 

cefoxitin, and ceftiofur was found only in isolates from the US; in contrast, resistance to 

chloramphenicol, nalidixic acid, trimethoprim/sulfamethoxazone and tetracycline was 

found only in Thailand.  

 All Salmonella isolates were resistant to 1 to 6 antibiotics (Figure 8). Among 41 

Salmonella isolates investigated, 8 resistance patterns were observed. Fifteen isolates 

(36.6%) were found to have resistance to only sulfamethoxazole and appeared to be the 

most common resistance pattern in Salmonella isolates. Thirteen isolates (31.0%) 

demonstrated resistance to 6 antimicrobials with those being Aug-Amp-Fox-Tio-Cpl-Sul 

and Amp-Chl-Nal-Sul-Tet-Sxt. Two patterns were found in both integron–negative and 

integron-positive isolates with those being Aug-Amp-Fox-Tio-Cpl-Sul and Sul. Similar 

to E. coli isolates, no common patterns were found among Salmonella isolates from 

Thailand and the US (Table 6).  
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Figure 8. Multiple antimicrobial resistance of Salmonella spp. isolates from chickens 

A. Integron-positive and integron-negative isolates. 
B. Isolates from the US and Thailand. 
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Table 6. Antibiograms of Salmonella spp. isolates of chickens from the US and Thailand. 
 

 No. of isolate(s) 

Integron Location Total Pattern 
No. Antibiogram1

+ 
(n=9) 

- 
(n=33)

US 
(n=33) 

Thailand 
(n=9) 

 
(n=42) 

1 Aug-Amp-Fox-Tio-Cpl-Sul 2 1 7 8 0 8 
2 Aug-Amp-Fox-Tio-Cpl 0 10 10 0 10 
3 Amp-Chl-Nal-Sul-Tet-Sxt  5 0 0 5 5 
4 Amp-Nal-Sul-Tet-Sxt 0 1 0 1 1 
5 Amp-Nal 0 1 0 1 1 
6 Amp 0 1 0 1 1 
7 Nal  0 1 0 1 1 
8 Sul 2 3 12 15 0 15 

 
1 Aug, Amoxicillin/Clavulanic Acid; Amp, Ampicillin; Fox, Cefoxitin; Tio, Ceftiofur; 
Cpl, Cephalothin; Chl, Chloramphenicol; Nal,  Nalidixic Acid; Sul, Sulfamethoxazole; 
Tet, Tetracycline; Sxt,  Trimethoprim/Sulfamethoxazole. 
2  Resistance pattern found in both integron-positive and integron-negative isolates. 
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P. mirabilis isolates 

 All 60 P. mirabilis isolates were susceptible to 4 of the test antibiotics, amikacin, 

cefoxitin, ceftiofur and ceftriazone. In addition, all integron-negative isolates were also 

susceptible to ciprofloxacin. All integron-positive isolates were resistant to 

sulfamethoxazole, which was higher than the 21.2% noted for integron-negative isolates 

(P<0.001). A high percentage (45.5-97%) of resistance to tetracycline, ampicillin and 

cephalothin was also found in both integron-negative and integron-positive isolates. In 

contrast, less than 35% of integron-negative and integron-positive isolates were resistant 

to gentamicin, kanamycin, streptomycin, amoxicillin/clavulanic acid, chloramphenicol, 

nalidixic acid and trimethoprim/sulfamethoxazole (Figure 9). 

 A comparison between Thailand and the US is shown in Figure 10. All Thailand 

and US isolates were susceptible to amikacin, cefoxitin, ceftiofur and ceftriazole, and all 

US isolates were also susceptible to chloramphenicol and ciprofloxacin. Resistance to 

nalidixic acid, trimethoprim/sulfamethoxazole, chloramphenicol, and streptomycin was 

more common in Thailand compared to the US (P<0.05); whereas isolates from the US 

showed a higher percentage of resistance to cephalothin (P<0.05). 

The distribution of multiresistance among P. mirabilis isolates is shown in Figure 

11. Overall, all P. mirabilis isolates from chickens were resistant to at least one antibiotic. 

Integron-positive and -negative isolates were resistant to 2 to 8 and 1 to 8 antimicrobials, 

respectively. Eighty-one percent of integron-positive isolates were resistant to at least 

four antimicrobials; whereas, a lower percentage was found in integron-negative isolates 

with 45% of those isolates  demonstrated  resistance  to that number of antimicrobials. 

 119



 
 

 

 

 

 

 

 

 

 

 

 

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

Am
i

G
en

K
an St
r

Am
p

Au
g

Cp
l

Fo
x

Ti
o

Ax
o

Ch
l

Ci
p

Na
l

Su
l

Sx
t

Te
t

Int +
Int -

     Antibiotics1,2

   
   

%
 o

f r
es

is
ta

nt
 is

ol
at

es
  

* 

 

Figure 9. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative P. mirabilis from chickens. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within the same antibiotic with * differ (P<0.05). 
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Figure 10. Frequency of resistance to 16 antimicrobials in P. mirabilis of chicken 
isolates from the US and Thailand. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid; Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within the same antibiotic with * differ (P<0.05). 
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Figure 11. Multiple antimicrobial resistance of P. mirabilis isolates from chickens. 

A. Integron-positive and integron-negative isolates. 
B. Isolates from the US and Thailand. 
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Proteus mirabilis isolates from both the US and Thailand were resistant to 1 to 8 

antimicrobials. A large portion of P. mirabilis from Thailand tended to be resistant to a 

higher number of antimicrobials than isolates from the US with over 50% of isolates from 

Thailand demonstrating resistance to more than 5 antimicrobials; whereas only 17% of 

isolates from the US were resistant to that number of antibiotics.  

 A total of 29 resistance patterns were noted among 60 P. mirabilis isolates. 

Thirteen patterns were found in integron-positive and 17 patterns were found in integron-

negative isolates. Four isolates were resistant to 8 antimicrobials with those being Aug-

Amp-Cpl-Kan Gen-Str-Sul-Tet, Aug-Amp-Cpl-Nal-Str-Sul-Tet-Sxt, Amp-Chl-Kan-Nal-

Str-Sul-Tet-Sxt, and Amp-Chl-Gen-Nal-Str-Sul-Tet-Sxt. Among 29 patterns, only one 

antibiogram, Sul-Tet, was found in both integron-positive and integron-negative isolates. 

In contrast to E. coli and Salmonella isolates, one pattern, resistance to tetracycline, was 

found among isolates from Thailand and the US (Table 7). 
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Table 7. Antibiograms of P. mirabilis isolates of chickens from the US and Thailand. 
 

No. of isolate(s) 

Integron Location Total Pattern 
No. Antibiogram1

+ 
(n=27) 

- 
(n=33)

US 
(n=46) 

Thailand 
(n=14) 

 
(n=60) 

1 Aug-Amp-Cpl-Kan Gen-Str-Sul-Tet 1 0 1 0 1 
2 Aug-Amp-Cpl-Nal-Str-Sul-Tet-Sxt 0 1 0 1 1 
3 Aug-Amp-Cpl-Nal-Tet  0 2 2 0 2 
4 Aug-Amp-Cpl-Sul-Tet 1 0 1 0 1 
5 Aug-Amp-Cpl-Tet 0 4 4 0 4 
6 Amp-Cpl-Nal-Tet 0 1 1 0 1 
7 Amp-Cpl-Sul-Tet-Sxt 3 0 3 0 3 
8 Amp-Cpl-Sul-Tet 7 0 7 0 7 
9 Amp-Cpl-Sul-Sxt 1 0 1 0 1 
10 Amp-Cpl-Tet 0 6 6 0 6 
11 Amp-Chl-Kan-Nal-Str-Sul-Tet-Sxt 1 0 0 1 1 
12 Amp-Chl-Gen-Nal-Str-Sul-Tet-Sxt 0 1 0 1 1 
13 Amp-Nal-Sul-Tet-Sxt 1 0 0 1 1 
14 Cpl-Nal-Tet 0 1 1 0 1 
15 Cpl-Sul-Tet-Sxt 0 1 1 0 1 
16 Cpl-Tet 0 1 1 0 1 
17 Cpl 0 1 1 0 1 
18 Chl-Cip-Nal-Sul-Tet-Sxt 2 0 0 2 2 
19 Chl-Kan-Nal_Str-Sul-Tet-Sxt 0 1 0 1 1 
20 Chl-Kan-Nal-Tet 0 1 0 1 1 
21 Kan-Gen-Str-Sul-Tet 1 0 1 0 1 
22 Kan-Gen-Sul-Tet 1 0 1 0 1 
23 Gen-Nal-Str-Sul-Tet-Sxt 0 1 0 1 1 
24 Gen-Str-Sul-Tet 2 0 2 0 2 
25 Nal-Sul-Tet-Sxt 0 1 0 1 1 
26 Nal-Sul-Tet 2 0 0 2 2 
27 Nal-Tet 0 1 0 1 1 
28 Sul-Tet 2 4 1 5 0 5 
29 Tet 3 0 8 7 1 8 

 
1 Aug, Amoxicillin/Clavulanic Acid; Amp, Ampicillin; Cpl, Cephalothin; Chl, 
Chloramphenicol; Cip, Ciprofloxacin; Gen, Gentamicin; Kan, Kanamycin; Nal, Nalidixic 
Acid; Str, Streptomycin; Sul, Sulfamethoxazole; Tet, Tetracycline; Sxt,   
Trimethoprim/Sulfamethoxazole. 
2  Resistance pattern found in both integron-positive and integron-negative isolates. 
3  Resistance pattern found in both Thailand and US isolates. 
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IV. DISCUSSION 

Prevalence of Bacterial isolates   
 

In this study, we determined the prevalence of three bacteria: E. coli, Salmonella 

spp., and P. mirabilis, in chickens from the US and Thailand. It was expected that the 

prevalence of E. coli in fecal samples would be high, and our results showed that more 

than 95% of chickens from both countries were found to carry E. coli. The prevalence of 

E. coli in our results compares with that reported by Bywater et al. (9) who noted the 

isolation rate for E. coli approached 100% in chickens from France, Netherlands, 

Sweden, and the UK. In contrast to E. coli, we found a much lower prevalence of 

Salmonella spp. in chickens, with only 3.3% of chickens from Thailand and 21.2% of 

chickens in the US being positive for Salmonella. The difference in Salmonella 

prevalence between countries may be due to differences in the methods of isolate 

collection.  While Salmonella isolates in the US were collected from killed chickens at a 

slaughterhouse, Salmonella isolates from Thailand were isolated from live chickens on 

farms. The stress caused by transportation of animals from farm to slaughterhouse has 

been reported to result in increased Salmonella shedding (8, 44, 48). However, our results 

from the US show a higher prevalence compared to that found in studies conducted in 

Brazil and Europe. The study conducted in Brazil detected Salmonella in only 6.7% of 

carcasses prior to evisceration (50). Similarly the European study noted that 7.1% of 

chickens contained Salmonella (9). The prevalence of Salmonella in chickens from 

southern Thailand in our study was comparable to that found by another study conducted 
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in the northern part of Thailand, with that report indicating 4% of chickens carried 

Salmonella (44).  

P. mirabilis is a bacteria often found in farm environments and intestinal tracts of 

both animals and humans. Although lacking the ability to cause disease in poultry, it can 

cause opportunistic urinary tract infections in humans (56, 66). Although less studied 

than E. coli and Salmonella, several recent studies have reported the presence of mobile 

genetic elements involved in antibiotic resistance dissemination in P. mirabilis (2, 31, 

59). We therefore included P. mirabilis in our study.  

Prevalence of Class 1 Integrons 
 
 It is well known that class 1 integrons play an important role in dissemination of 

antibiotic resistance in the Enterobacteriaceae. Our results show that class 1 integrons, as 

indicated by the presence of intI1 gene, are widespread in enteric bacteria of broiler 

chickens. More than 70% and 40% of E. coli isolated from Thailand and the US, 

respectively, carried class 1 integrons. Bass et al. (7) noted that 63% of pathogenic E. coli 

isolates obtained from diseased poultry were positive for the class 1 integron markers 

intI1 and qacEΔ1.  The prevalence of class 1 integrons in Salmonella isolates was lower 

than that of E. coli in our study. Our results showed that only 48.1% and 0.5% of 

Salmonella isolates from Thailand and the US, respectively, carried class 1 integrons. 

Similar to our study, Diarrassouba et al. (16) noted a higher prevalence of class 1 

integrons in E. coli isolates. That group studied the prevalence of class 1 integrons 

(qacEΔ1-sul1) in 74 sorbitol negative E. coli and 62 Salmonella isolates from nine broiler 

chicken farms in Canada and detected class 1 integron genes in 40% of sorbitol negative 
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E. coli, however they were not detected in any Salmonella isolates. A low prevalence of 

class 1 integrons was also noted in Salmonella isolates in other poultry varieties. Only 2 

of 80 (2.5%) Salmonella isolates from turkeys at processing plants in the US carried class 

1 integrons (42). Zhao et al. (65) noted a higher prevalence of class 1 integrons, with 43% 

of 380 Salmonella isolates recovered from animal diagnostic samples (swine, turkeys, 

cattle, chickens, and horses ) obtained from four state veterinary diagnostic laboratories 

(AZ, NC, MO, and TN) between 2002 and 2003 carrying class 1 integrons. However, the 

prevalence of class 1 integrons was not reported for each animal group. The higher 

prevalence of class 1 integrons in these Salmonella may be due to their being isolated 

from diseased animals, which may have been exposed to antimicrobial treatments more 

frequently than healthy animals.  

Our results show that 38.2% of P. mirabilis isolates from Thailand contained class 

1 integrons and this was not different from the 29.9% of US isolates. Because of their 

ability to harbor class 1 integrons, P. mirabilis may provide a reservoir for these 

determinants and may account to some degree for rapid dissemination of antibiotic 

resistance genes.   

It is important to note, however, that while only 32.5, 75.4, and 82.9% of intI1-

positive E. coli, P. mirabilis, and Salmonella isolates from Thailand were found to carry 

qacEΔ1 and sul1, almost all of the E. coli (96.8%), all P. mirabilis, and Salmonella intI1-

positive isolates from the US carried qacEΔ1 and sul1. In agreement with that found in 

Thailand isolates in our study, van Essen-Zandbergen noted that only a subset of 

Salmonella and E. coli isolates carrying intI1 are also carried the 3’ conserved sequence 

(62). Sunde (57) reported that a high proportion of class 1 integrons found in E. coli 
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lacked the sul1 gene. Additionally, Guerra et al. (24) found defective integrons which 

lacked both qacEΔ1 and sul1, or only sul1, in some E. coli isolates from Germany, 

suggesting that use of specific primers to detect conserved segments alone can produce 

false negatives when those specific gene components are not present in otherwise 

functional integrons.

Antibiotic Susceptibility 
 
 Antibiotic resistance was found in all bacterial isolates tested in this study. A high 

proportion (86-100%) of tetracycline resistance was found in E. coli and P. mirabilis 

from Thailand and the US and Salmonella spp. from Thailand. In agreement with our 

study, several research groups from different countries also found a high level of 

tetracycline resistance in broiler chickens. For example, Smith et al. (55) noted 97% of E. 

coli isolated from farms that used antibiotics in northeast Georgia were resistant to 

tetracycline. Mile et al. (41) found tetracycline resistance at a frequency of 82.4% in E. 

coli isolates from Jamaica, Geornaras et al. (22) reported 90% of E. coli isolates from 

South Africa were resistant to tetracycline,  and Yang et al. (64) noted all E. coli isolated 

from diseased chickens in China were also resistant to tetracycline.  Asai et al. (6) 

reported that resistance to both oxytetracycline and dihydrostreptomycin accounted for 

94.0% of the resistance patterns in Salmonella enterica serotype Infantis isolates from 

meat and broilers in Japan, and Diarrasouba et al. reported 75.8% of combined E. coli 

and Salmonella isolates from Canada were resistant to tetracycline (16). The high 

percentage of resistance to tetracycline may reflect the selection pressure caused by wide 

use of these drugs in farm animals (26, 53). A high percentage of tetracycline resistance 
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may also result from an ability of animals to serve as a reservoirs of tetracycline resistant 

bacteria for a long periods of time, as indicated by the survey conducted in United 

Kingdom in 1980, which found tetracycline-resistant E. coli in chickens and pigs 9 years 

following a ban on tetracycline use as a feed additive (54). 

 When comparing the frequency of antibiotic resistance between integron-positive 

and integron negative isolates, we found that integron-positive isolates were more likely 

to be resistant to sulfamethoxazole than integron-negative isolates in all three types of 

bacteria tested. This likely occurred because all integron-positive isolates contained sul1 

as an integral part of the integron. Similar to our study, Shahada et al. (53) reported all of 

the intI1-positive S. enterica serovar Infantis isolates collected were resistant to 

sulfamethoxazole. In addition, integron-positive E. coli and Salmonella isolates were also 

statistically more likely to be resistant to chloramphenicol compared to integron-negative 

isolates. While this study did not aim to characterize specific gene cassettes incorporated 

in the integrons, several research groups have reported cat and cml genes, responsible for 

chloramphenicol resistance, as a gene cassette within the integron (17, 25, 28, 33, 39, 40, 

46). This might explain the high prevalence of chloramphenicol resistance in integron-

positive bacteria.  

It should, however, be noted that the resistance phenotypes in our study were only 

partially explained by the presence of integrons. In agreement with our study, a study of 

the occurrence of integrons and antimicrobial resistance genes among Salmonella 

enterica in Brazil revealed that integron-mediated resistance genes contributed to the 

multiresistance phenotypes observed in the isolates; however, most resistance genes were 
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located outside the integron structure as independent genes. Another researcher also 

suggested that the genes might also be located on the same conjugative plasmid (46). 

When comparing isolates from Thailand and the US, we found that resistance 

patterns differed, with no common patterns occurring between each type of bacteria from 

those two countries. All three types of bacteria from Thailand had a higher prevalence of 

resistance to chloramphenicol, nalidixic acid, and trimethoprim/sulfamethoxazole than 

isolates from the US. E. coli and Salmonella isolates from the US showed a statistically 

greater prevalence of resistance to amoxicillin/clavulanic acid, cefoxitin, and ceftiofur 

than those from Thailand. Salmonella and P. mirabilis isolates from the US demonstrated 

a more frequent occurrence of resistance to cephalothin than isolates from Thailand. The 

distribution of antimicrobial resistance phenotypes can be expected to reflect different 

use patterns of antimicrobial agents (1, 21, 38). 

 Chloramphenicol was a popular veterinary product and was used particularly in 

difficult disease cases. However, due to concerns over transfer of antibacterial resistance 

in zoonotic pathogens, particularly in Salmonella, its use in animals has been restricted or 

banned in many countries. Chloramphenicol cannot be used in food animals in the US 

and Canada and can only be used as an eye ointment for small animals in the UK (26). In 

Thailand, chloramphenicol has been banned from animal feeds since 1999 (4). Thus, the 

prevalence of resistance to this antibiotic was noteworthy.  
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V. CONCLUSIONS 

 
Antimicrobial resistance genes and class 1 integrons are common in bacteria 

associated with chickens in both Thailand and the US.  While multi-antibiotic resistance 

is associated with integrons, and specific multi-resistance patterns were often 

characteristic of integron carriage, many multi-resistant isolates with a variety of 

antibiograms also lacked class 1 integrons. Our work indicates that integrons and multi-

antibiotic resistant bacteria appear to be a significant aspect of microbial communities 

associated with chickens.  
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ABSTRACT 

 
The objective of this study was to investigate the prevalence of class1 integrons 

and antimicrobial resistance patterns in E. coli and Salmonella isolates of commercial 

swine from the US and Thailand. In market pigs, class 1 integrons, as indicated by the 

presence of intI1, were detected in 1,130 isolates (39.9%). Simultaneous presence of all 

three conserved genes (intI1, qacEΔ1, and sul1) was found in 184 (6.5%) of the total of 

2,833 isolates.  The prevalence of class 1 integrons in E. coli and Salmonella spp. was 

found to differ with isolate origin (P<0.001). In both types of bacteria, class 1 integrons 

were more prevalent in isolates from Thailand compared with the US (68.8 and 25.9% for 

E. coli isolates, 37.8 and 10.3% for Salmonella spp. isolates from Thailand and the US, 

respectively). In sows, 46% of 1,420 bacterial isolates were found to carry the intI1 gene; 

however only 4.8% of these bacteria carried all three conserved genes. Similarly, for 

market pigs the prevalence of class 1 integrons in Salmonella isolates was found to differ 

with isolate origin (P<0.001). Approximately 72% of Salmonella isolates from sows in 

Thailand contained class 1 integrons, which was higher than the 29.8% of the isolates 

from US. Among E. coli isolates, 64.8% of isolates from Thailand carried integrons; 

however this was not different from the US (56.6%) (P=0.08) Most isolates were multi-

antibiotic resistant. A high proportion of isolates demonstrated resistance to tetracycline 

(95.8%), sulfamethoxazole (70.8%), streptomycin (55.7%), and ampicillin (52.6%). 

Integron-positive-isolates tended to be resistant to a higher number of antibiotics than 

integron-negative isolates. In addition, resistance to streptomycin, sulfamethoxazole, and 

trimethoprim/sulfamethoxazole is more common in integron-positive isolates than 
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integron-negative isolates.  Among 113 antibiotic resistance patterns found in antibiotic 

susceptibility tests in integron-positive and integron-negative, 11 patterns (9.7%) were 

found in both integron positive and integron negative isolates. Among 39 antibiotic 

resistance patterns found in Thailand and the US, only 2 patterns (5.1%) were found in 

both countries. These results indicate that class 1 integrons are common in commensal 

and foodborne bacteria in swine, and that some, but not all, antibiotic resistances in those 

isolates are associated with the presence of class 1 integrons. 
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I. INTRODUCTION 
 
Food animals are often exposed to antimicrobials to treat and prevent infectious 

disease or to promote growth (33). Antimicrobial usage in food animals provides 

selection pressure that favors an increase of antimicrobial resistant bacteria (17, 23, 28, 

29). Antimicrobial resistance has emerged not only in commensal bacteria and bacterial 

pathogens of animals but also in zoonotic enteropathogens (33). Resistant bacteria from 

animals can infect humans by direct contact and also via consumption of food products of 

animal origin (53, 56). These resistant bacteria can colonize humans and/or transfer their 

resistance genes to other bacteria of humans, which can result in treatment failure as a 

consequence of antimicrobial resistance (54).  

Integrons are genetic elements that mediate integration of antibiotic resistance 

genes through site specific recombination and convert them into functional genes (9, 15, 

19, 30, 43). More than 70 different genes imparting resistance to most classes of 

antimicrobials have been found as gene cassettes in the central region of different 

integrons from diverse bacteria (44). Moreover, these genetic elements can incorporate 

several resistance genes, allowing them to transfer as a single gene.  As many as seven 

gene cassettes have been found within an integron (51). Integrons are often found to be 

carried on mobile elements such as plasmids and transposons; therefore, integrons are 

believed to play a major role in the rapid dissemination of multi-drug resistance among 

bacteria (36). Four different classes of integrons have been identified based on variations 

in sequence of primary elements, gene cassettes, and associations with transposons (2, 3, 

10, 14, 15, 41, 46). Class 1 integrons are the most common and widely distributed type 

(5, 14, 38). 
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The U.S. and Thailand, while occupying very diverse geographic regions, share 

many commonalities in livestock production practices. Swine production tends to be 

intensive, with closed confinement, high biosecurity and similar high production genetic 

lines. Feed-based antibiotics are commonly used in both countries, although some 

differences occur in drugs of choice and/or availability. A comparison of class 1 integron 

prevalence and antibiotic resistance gene patterns of E. coli and  Salmonella spp. between 

these two countries may provide information regarding global implications of agricultural 

use of antibiotics with relevance to antibiotic resistance. 
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II. MATERIALS AND METHODS 

Bacterial Isolates   
 

A total of 2,820 E. coli and Salmonella spp. isolates were collected via fecal swab 

from 524 market pigs from 3 farms; and 120 sows from 3 farms at abattoirs in the US. In 

addition, 1,433 E. coli and Salmonella spp. isolates were collected from 436 market pigs 

from 6 farms and 130 sows from 2 farms in southern Thailand. All bacterial collections in 

Thailand took place in the southern Thailand during the period of May 2003 to August 

2004, whereas bacterial collections from the US took place in Tennessee during the 

period of November 2004 to October 2005. All isolates were recovered from fecal swabs 

by standard microbiological procedures. The primary isolation method for E. coli has 

been described previously (31). For Salmonella isolation, fecal swabs were first enriched 

in selective tetrathionate broth (Difco, Sparks, MD) and incubated at 41.5+1ºC for 18-24 

h. Enriched broth cultures were then plated on Xylose Lysine Tergitol 4 agar (XLT4; 

Difco) for selective culture. Plates were incubated at 37+1ºC and examined after 18-24 h. 

Presumptive Salmonella colonies were subcultured and then plated again, and identity 

was confirmed with API 20E strips according to the manufacturer’s specification 

(bioMérieux Vitek, Inc., Hazelwood, MO). Up to 6 colonies of each bacterial type were 

selected for analysis. Bacterial cultures were maintained at -80°C in 10% glycerol until 

analysis.  
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Multiplex PCR (MP-PCR)  
 

Integron harboring isolates were detected using a MP-PCR targeting three 

conserved sequences of class 1 integrons, intI1, qacEΔ1, and sul1 (13). Primer pairs were 

manufactured by Operon, Inc. (Alameda, CA) (Table 1). Total DNA was prepared by 

boiling overnight cultures in 2YT broth (Difco) in an equal volume of 0.2% (wt/vol) 

Triton X-100 (Mallinckrodt, Paris, KY) for 5 min (24).  Boiled cultures were cooled on 

ice for 5 min and used immediately for PCR.  PCR reagents, excluding template DNA, 

were combined in a master mix prior to aliquoting.  The final reaction volumes for each 

aliquot included:  1) 1 μL of each primer pair (50 pmol (each primer) μL-1); 2) 1 μL of 

Taq DNA polymerase (0.5U μL–1; Promega, Madison, WI); 3) 10 μL reaction buffer 

(12.5mM MgCl2, pH 8.5; Invitrogen, Carlsbad, CA); 4) 5 μL dNTPs solution (2.5mM of 

each dNTP, pH 8.0; Invitrogen); and 5) 32 μL sterile H2O. Sample DNA (1 μL) was then 

added to each aliquot. Reactions were conducted in a Mastercyler Gradient thermocycler 

(Eppendorf, Westbury, NJ) with the following conditions:  1) 1 cycle of 94°C for 4 min; 

2) 10 "touchdown" cycles of 94°C for 1 min, 65°C for 30s (decreasing 1°C/cycle), 70°C 

for 2 min; 3) 24 cycles of 94°C for 1 min, 55°C for 30s, 70°C for 2 min; and 4) 1 final 

cycle of 70°C for 5 min.  Salmonella Typhimurium DT104 known to contain two class 1 

integrons (23) was used as a positive control.  A blank containing only PCR reagents and 

Triton X-100 was used as a negative control. Reaction products were separated by 

conventional electrophoresis in 1.5% agarose and stained with ethidium bromide for 

visualization (Figure 1). Prevalence of class 1 integrons was based on the presence of the 

IntI1 gene. 
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The integron prevalence in each bacterial species was compared between 

Thailand and the US using the freq procedure of SAS (SAS 8.2, SAS Institute Inc, Cary, 

NC) Comparisons were made using the Fisher's two-sided exact tests.  Differences were 

considered significant at P < 0.05.  
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Table 1. Primer pairs used in MP-PCR. 
 

Target Sequence (5’ to 3’) PCR product 
(bp) 

intI1       (F)     GGTTCGAATGTCGTAACCGC 248 
       (R)     ACGCCCTTGAGCGGAAGTATC  
sul1       (F)     ATCAGACGTCGTGGATGTCG 346 
 (R)     CGAAGAACCGCACAATCTCG  
qacEΔ1       (F)     GAGGGCTTTACTAAGCTTGC 200 
                 (R)     ATACCTACAAAGCCCCACGC  
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1 4 2 3 5 6 7 8 9 10 

sul1 (346bp) 

IntI1 (248bp)

qacEΔ1 (200bp)

 
 
Figure 1. Multiplex PCR detecting class 1 integrons gene sequence.  
Lane 1; 100 bp DNA ladders; Lane 2 -7 wild type isolates; lane 8; negative control; and 
lane 9; Salmonella enterica Typhimurium DT104 (positive control). 
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Antibiotic Susceptibility Testing   
 
 Antibiotic MICs were determined for subsets of each bacterial type using the 

National Antimicrobial Resistance Monitoring System (NARMS) microdilution sensititre 

plates, CMV7CNCD, (Sentititre, Trek Diagnostic System Inc., Cleveland, Ohio) 

according to Clinical and Laboratory Standards Institute (CLSI), (formerly National 

Committee on Clinical Laboratory Standards, NCCLS) broth microdilution guidelines. 

Escherichia coli ATCC 25922 was used as a reference strain. The isolates were tested for 

resistance to 16 antibacterials or antibacterial combinations that included 

amoxicillin/clavulanic acid (Aug), ampicillin (Amp), ciprofloxacin (Cip), cefoxitin (Fox), 

ceftiofur (Tio), ceftriaxone (Axo), cephalothin (Cpl), chloramphenicol (Chl), amikacin 

(Ami),  gentamicin (Gen),  kanamycin (Kan), nalidixic acid (Nal), streptomycin (Str), 

sulfamethoxazole (Sul), tetracycline (Tet),  and trimethoprim/sulfamethoxazole (Sxt).  

The CMV7CNCD plate layout is shown in Figure 2. Results were interpreted using CLSI 

guidelines for broth microdilution methods for veterinary E. coli (Table 2). In the 

phenotypic analysis, isolates with intermediate MICs were not considered as resistant.  

The frequency of antibiotic resistance in integron-positive isolates was compared 

to that of integron-negative isolates and frequency of antibiotic resistance in isolates from 

Thailand was compared to the US using the Analysis and Statcalc programs of the Epi 

InfoTM version 3.4.1 software package from the Center for Disease Control and 

Prevention (6). Comparisons were made using the Fisher's two-sided exact tests.  

Differences were considered significant at P<0.05. 
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Figure 2. Sensititre non-fastidious Gram negative plate (CMV7CNCD) format. 
Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline; 
Pos, growth control wells. 
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Table 2. Minimum Inhibitory Concentration (MIC) breakpoint. 1
 

Drugs Susceptible 
(μg/ml) 

Intermediate 
(μg/ml) 

Resistant 
(μg/ml) 

Aminoglycoside    
     Amikacin (Ami)   ≤ 16 32 ≥ 64 
     Gentamicin (Gen) ≤ 4 8 ≥ 16 
     Kanamycin (Kan)   ≤ 16 32 ≥ 64 
     Streptomycin (Str) 2   ≤ 32  ≥ 64 
β-Lactams    
     Ampicillin (Amp) ≤ 8 16 ≥ 32 
     Amoxicillin/Clavulanic acid (Aug)   ≤ 8/4 16/8      ≥ 32/16 
     Cephalothin (Cpl) ≤ 8      16 ≥ 32 
     Cefoxitin (Fox) ≤ 8 16 ≥ 32 
     Ceftiofur (Tio) ≤ 2 4        ≥ 8 
     Ceftriaxone (Axo)         ≤ 8      16,32 ≥ 64 
Chloramphenicol (Chl) ≤ 8 16 ≥ 32  
Quinolone    
     Ciprofloxacin (Cip) ≤ 1 2        ≥ 4 
     Nalidixic Acid (Nal)   ≤ 16  ≥ 32 
Sulfonamides    
     Sulfamethoxazole (Sul)     ≤ 256   ≥ 512 
     Trimethoprim/Sulfamethoxazole (Sxt)      ≤ 2/38     ≥ 4/76 
Tetracycline (Tet) ≤ 4 8 ≥ 16 
 

1 MICs determined via microdilution broth methods in accordance with CLSI standards 
(7, 8).  
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III. RESULTS 

Prevalence of Bacterial Isolates 
 
 The prevalence of E. coli isolates from swine was high in both countries and both 

types of swine with all of market pigs and sows from the US and 82.3% and 97.4% of 

market pigs and sows, respectively from Thailand were found to carry E. coli (Table 3). 

However, the prevalence of Salmonella spp. in swine was considerably lower than that of 

E. coli. The prevalence of Salmonella was higher in sows from the US, with 60.9% of 

sows found to carry Salmonella, whereas that organism was detected in only 8.5% of 

sows in Thailand.  A similar prevalence of Salmonella was found in market pigs from 

Thailand and the US with 3.4% and 5.7% of market pigs from Thailand and the US, 

respectively, carrying these bacteria. 
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Table 3. Prevalence of E. coli and Salmonella from market pigs in the US and Thailand. 
 

# of animals carrying bacteria (%) Type of 
swine Countries Farm 

# of 
animals 
sampled E. coli Salmonella  

Market pig US US-A 124 124 (100) 7 (5.6) 
  US-B 200 200 (100) 4 (2.0) 
  US-C 200 200 (100) 19 (9.5) 
  Total 524 524 (100) 30 (5.7) 
 Thailand TH-A 110 94 (85.5) 8 (7.3) 
  TH-B 176 151 (85.8) 4 (2.6) 
  TH-C  10 10 (100) 0 (0) 
  TH-D  10 10 (100) 2 (20.0) 
  TH-E  10 10 (100) 0 (0) 
  TH-F 120 84 (100) 1 (1.2)  
  Total 436 359 (82.3) 15 (3.4) 

Sow US US-D  60 60 (100) 35 (58.3) 
  US-E  48 48 (100) 32 (66.7) 
  US-F  12 12 (100)   6 (50.0) 
  Total 120 120 (100) 73 (60.9) 
 Thailand TH-C 100 100 (100) 10 (10.0) 
  TH-F  30 25 (83.3) 1 (3.3) 
  Total 130 125 (97.4) 11 (8.5) 
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Prevalence of Class 1 Integrons 
 
 Prevalence of class 1 integrons in E. coli and Salmonella spp. in market pigs and 

sows from Thailand and the US is shown in Table 4.  In market pigs, class 1 integrons, as 

indicated by the presence of intI1, were detected in 1,130 isolates (39.9%). Simultaneous 

presence of all three conserved genes (intI1, qacEΔ1, and sulI1) was found in 184 (6.5%) 

of the total of 2,833 isolates.  The prevalence of class 1 integrons in E. coli and 

Salmonella spp. was found to be associated with isolate origin (P<0.001). In both types of 

bacteria, class 1 integrons were more prevalent in isolates from Thailand compared with 

the US (68.8% and 25.9% for E. coli isolates, 37.8% and 10.3% for Salmonella spp. 

isolates from Thailand and the US, respectively). The prevalence of integrons across 

farms in both E. coli and Salmonella spp. isolates differed (P<0.001) (data not shown)  

In sows, forty-six percent of 1,420 bacterial isolates were found to carry intI1 

gene; however only 4.8% of these bacteria carried all three conserved genes. Similarly, 

for market pigs the prevalence of class 1 integrons in Salmonella isolates was found to be 

associated with isolate origin (P<0.001). Approximately 72% of Salmonella isolates from 

Thailand contained class 1 integrons, which was higher than the 29.8% of the isolates 

from US. Among E. coli isolates, 64.8% of isolates from Thailand carried integrons; 

however, this was not different from the US (56.6%) (P=0.08). The prevalence of 

integrons across farms in both E. coli and Salmonella isolates also differed (P<0.01) (data 

not shown)  
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Table 4. Prevalence of integrons and integron component genes in bacteria of pigs from 
the US and Thailand. 1 

 

E. coli Salmonella spp. 
Type of swine No. of isolates 

The US Thailand The US Thailand 

Market Pigs No. of isolates 1,569 963 193 108 
 No.(%) carrying     
   - IntI1 (I) 406 

(25.9)b
663 

(68.8)a
20 

(10.3)b
41 

(37.8)a

   - All 3 conserved genes 
    (I,Q,S) 

102 
(6.5)a

49 
(5.1)a

0 
(0.0)b

33 
(30.6)a

Sows No. of isolates 360 279 698 83 
 No.(%) carrying     
   - IntI1 (I) 204 

(56.6)a
181 

(64.8)a
208 

(29.8)b
59 

(71.7)a

   - All 3 conserved genes  
    (I,Q,S) 

11 
(3.2)a

0 
(0.0)b

15 
(2.2)a

5 
(6.4)a

 
1 Results are reported as numbers and percentage of bacteria carrying integrons and genes 
associated with integrons, as determined by multiplex PCR. I, intI1; Q, qacEΔ1; S, sul1. 
a,b Values within the same bacteria and row not sharing like superscripts differ (P<0.05.) 
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Antibiotic Susceptibility 

E. coli isolates 

A comparison of antibiotic resistance prevalence between integron-positive and 

integron-negative E. coli isolates from market pigs is provided in Figure 3. All integron-

negative E. coli were susceptible to amikacin, ceftiofur, amoxicillin/clavulanic acid, 

cefoxitin, ceftriaxone, and ciprofloxacin. In contrast, the only drug to which all integron-

positive isolates were susceptible was cefoxitin. All integron-positive isolates were 

resistant to tetracycline. Integron-positive isolates also showed a high percentage (45-

90%) of resistance to kanamycin, ampicillin, streptomycin, and sulfamethoxazole; 

whereas less than 30% of these isolates were resistant to the rest of antibiotics. Similar to 

integron-positive isolates, a high proportion (97.5%) of integron-negative isolates were 

resistant to tetracycline.  Resistance to gentamicin, kanamycin, ampicillin ciprofloxacin, 

streptomycin, sulfamethoxazone, trimethoprim/sulfamethoxazone, and tetracycline was 

more common in integron-positive isolates (P<0.05).  

A comparison between resistance frequencies of E. coli isolates from market pigs 

of Thailand and the US is shown in Figure 4. While resistance to amikacin, ceftiofur, 

ceftriaxone, and ciprofloxacin was found only in isolates from Thailand, resistance to 

amoxicillin/clavulanic acid was found only in the US. Resistance to kanamycin, 

streptomycin, sulfamethoxazole, and tetracycline was found in E. coli isolates in both 

countries, however no significant differences were noted (P>0.05). There were significant 

differences in resistance to gentamicin, ampicillin, cephalothin, chloramphenicol, 
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Figure 3. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative E. coli from market pigs.  
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
 2 Bars within antibiotic with * differ (P<0.05). 
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Figure 4. Frequency of resistance to 16 antimicrobials in E. coli of market pigs from 
the US and Thailand.  
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within antibiotic with * differ (P<0.05). 
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ciprofloxacin, nalidixic acid, and sulfamethoxazole with resistance being generally more 

common in isolates from Thailand (P<0.01).  

 The distribution of multiresistance among E. coli isolates from market pigs is 

shown in Figure 5. While integron-positive isolates were resistant to 1 to 10 antibiotics, 

four out of sixty integron-negative isolates (6.7%) were susceptible to all 16 antibiotics 

tested and the rest were resistant to 1 to 7 antibiotics. Ninety percent of integron-positive 

isolates were resistant to at least three antibiotics; whereas, a lower percentage was found 

in integron-negative isolates, with 51.7% of those isolates demonstrating resistance to 

that number of antimicrobials. A large proportion of E. coli isolates from Thailand tended 

to be resistant to a higher number of antimicrobials than isolates from the US, with over 

75% of isolates from Thailand demonstrating resistance to 4 to 10 antibiotics; whereas 

only 27.5% of isolates from the US were resistant to 4 to 7 antibiotics.  

 A total of 58 patterns were observed among 120 E. coli isolates from market pigs. 

The most frequent pattern was resistance to 3 antimicrobials, Str-Sul-Tet, which was 

found in 35% of isolates. Three isolates (5.0%) exhibited resistance to the highest number 

of antimicrobials (10) with those being Ami-Amp-Chl-Kan-Gen-Nal-Str-Sul-Tet-Sxt and 

Amp-Cpl-Chl-Kan-Gen-Nal-Str-Sul-Tet-Sxt. Among the 58 patterns, seven were found 

in both integron-positive and integron-negative isolates. Furthermore, two resistance 

patterns (Amp-Str-Tet and Amp-Tet) were found in both countries (Table 5). 
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Figure 5. Multiple antimicrobial resistance of E. coli from market pigs. 

A. Integron-positive and integron-negative isolates. 
B. Isolates from the US and Thailand. 
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Table 5. Antibiograms of E. coli isolates of market pigs from the US and Thailand. 

No. of isolate(s) 

Integron Location Total Pattern 
No. Antibiogram1

+ 
(n=60) 

- 
(n=60)

US 
(n=80) 

Thailand
(n=40) 

 
(n=120) 

1 Ami-Amp-Cpl-Chl-Kan-Str-Sul-
Tet-Sxt 

1 0 0 1 1 

2 Ami-Amp-Chl-Kan-Gen-Nal-Str-
Sul-Tet-Sxt 

1 0 0 1 1 

3 Aug-Amp-Cpl-Kan-Str-Sul-Tet 1 0 1 0 1 
4 Amp-Tio-Cip-Str-Sul-Tet-Sxt 1 0 0 1 1 
5 Amp-Axo-Cip-Nal-Sul-Tet-Sxt 1 0 0 1 1 
6 Amp-Cpl-Chl-Kan-Gen-Nal-Str-

Sul-Tet-Sxt 
2 0 0 2 2 

7 Amp-Cpl-Chl-Kan-Gen-Str-Sul-
Tet-Sxt 

1 0 0 1 1 

8 Amp-Cpl-Chl-Kan-Str-Sul-Tet-Sxt 1 0 0 1 1 
9 Amp-Cpl-Chl-Sul-Tet 0 1 1 0 1 
10 Amp-Cpl-Nal-Str-Sul-Tet 1 0 0 1 1 
11 Amp-Cpl-Tet 1 0 1 0 1 
12 Amp-Chl-Cip-Nal-Str-Sul-Tet-Sxt 3 0 0 3 3 
13 Amp-Chl-Kan-Gen-Nal-Str-Sul-

Tet-Sxt 
1 0 0 1 1 

14 Amp-Chl-Kan-Gen-Str-Sul-Tet-
Sxt 

2 0 0 2 2 

15 Amp-Chl-Kan-Sul-Tet 2 1 1 2 0 2 
16 Amp-Chl-Gen-Nal-Sul-Tet-Sxt 0 1 0 1 1 
17 Amp-Chl-Gen-Str-Sul-Tet-Sxt 1 0 0 1 1 
18 Amp-Chl-Str-Sul-Tet-Sxt 1 0 0 1 1 
19 Amp-Chl-Str-Sul-Tet 1 0 1 0 1 
20 Amp-Chl-Str-Tet-Sxt 0 1 0 1 1 
21 Amp-Chl-Sul-Tet 0 3 3 0 3 
22 Amp-Chl-Tet 0 1 0 1 1 
23 Amp-Cip-Nal-Str-Sul-Tet-Sxt 1 0 0 1 1 
24 Amp-Kan-Gen-Nal-Str-Sul-Tet-

Sxt 
2 0 0 2 2 

25 Amp-Kan-Gen-Str-Sul-Tet 3 0 3 0 3 
26 Amp-Kan-Str-Sul-Tet 1 0 1 0 1 
27 Amp-Kan-Sul-Tet 0 1 1 0 1 
28 Amp-Nal-Sul-Tet 0 1 0 1 1 
29 Amp-Str-Sul-Tet-Sxt 0 1 1 0 1 
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Table 5. (continued) Antibiograms of E. coli isolates of market pigs from the US and 
Thailand. 
 

 No. of isolate(s) 

Integron Location Total Pattern 
No. Antibiogram1

+ 
(n=45) 

- 
(n=45)

US 
(n=70) 

Thailand 
(n=20) 

 
(n=90) 

30 Amp-Str-Tet 3 0 6 5 1 6 
31 Amp-Sul-Tet 2 0 2 0 2 
32 Amp-Tet 3 0 3 1 2 3 
33 Cph-Chl-Tet 0 1 0 1 1 
34 Cpl-Gen-Nal-Tet 0 1 0 1 1 
35 Cpl-Tet 0 1 0 1 1 
36 Chl-Kan-Sul-Tet-Sxt 2 0 2 0 2 
37 Chl-Nal 0 1 0 1 1 
38 Chl-Str-Sul-Tet 0 1 0 1 1 
39 Chl-Sul-Tet-Sxt 0 1 0 1 1 
40 Chl-Tet 0 1 0 1 1 
41 Kan-Nal-Str-Sul-Tet-Sxt 1 0 1 0 1 
42 Kan-Nal-Sul-Tet 0 1 1 0 1 
43 Kan-Str-Sul-Tet-Sxt 1 0 1 0 1 
44 Kan-Str-Sul-Tet 2 1 1 2 0 2 
45 Kan-Str-Tet 2 2 2 4 0 4 
46 Kan-Sul-Tet 2 0 2 0 2 
47 Kan-Tet 2 1 3 4 0 4 
48 Gen-Nal-Sul-Tet 0 1 0 1 1 
49 Gen-Str-Sul-Tet 1 0 1 0 1 
50 Gen-Str-Tet 0 1 0 1 1 
51 Nal-Sul-Tet-Sxt 0 1 0 1 1 
52 Nal-Sul-Tet  0 1 0 1 1 
53 Str-Sul-Tet-Sxt 0 2 0 2 2 
54 Str-Sul-Tet 14 0 14 0 14 
55 Str-Tet 2 1 2 3 0 3 
56 Sul-Tet 2 3 3 6 0 6 
57 Tet 2 1 11 12 0 12 
58 None 0 4 4 0 4 

1 Ami, Amikacin; Aug, Amoxicillin/Clavulanic Acid; Amp, Ampicillin; Tio, Ceftiofur; 
Axo, Ceftriaxone; Cpl, Cephalothin; Chl, Chloramphenicol; Cip, Ciprofloxacin; Gen, 
Gentamicin; Kan, Kanamycin; Nal, Nalidixic Acid; Str, Streptomycin; Sul, 
Sulfamethoxazole; Tet, Tetracycline; Sxt,   Trimethoprim/Sulfamethoxazole. 
2  Resistance pattern found in both integron-positive and integron-negative isolates. 
3  Resistance pattern found in both Thailand and the US. 
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 No E. coli isolates from sows in Thailand carried all three genes, which 

prohibited a comparison between Thailand and the US. As a result, only integron-positive 

and –negative isolates from the US were used for the comparison. 

All E. coli isolates from sows in the US were susceptible to at least half of the 

antibiotics tested in this study, with those being amikacin, amoxicillin/clavulanic acid, 

cephalothin, cefoxitin, ceftiofur, ceftriaxone, ciprofloxacin, and nalidixic acid. In 

contrast, all E. coli isolates were resistant to tetracycline. All integron-positive isolates 

were resistant to streptomycin, ampicillin, sulfamethoxazole, and tetracycline. Integron-

positive isolates also demonstrated a high percentage of resistance to gentamicin (90.9%), 

kanamycin (90.9%), trimethoprim/sulfamethoxazole (72.7%), and chloramphenicol 

(54.5%). Integron-negative isolates demonstrated a high percentage of resistance to 

sulfamethoxazole (72.7%), ampicillin (63.6%), and streptomycin (54.5%). Resistance to 

gentamicin, kanamycin, streptomycin, ampicillin, trimethoprim/sulfamethoxazole and 

chloramphenicol was more common in integron–positive isolates (P<0.05) (Figure 6).  

There was similarity between isolates from market pigs and isolates from sows, 

with integron-positive E. coli isolates from sows tending to be more resistant to a higher 

number of antimicrobials than integron-negative isolates. Integron-positive isolates 

demonstrated resistance to 5 to 8 antibiotics; whereas integron-negative isolates 

demonstrated resistance to 1 to 7 antibiotics (Figure 7).  

Among 22 E. coli isolates investigated from sows in the US, 13 resistance 

patterns were observed. The pattern, Amp-Chl-Kan-Gen-Str-Sul-Tet-Sxt, was found in 

five isolates (4.5%). This pattern not only represented resistance to the highest number of 

antibiotics but it was also the most common resistance pattern in E. coli isolates.   
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Figure 6. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative E. coli of sows from the US. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within antibiotic with * differ (P<0.05). 
 
 
 
 
 
 
 
 
 

 164



 
 
 
 

0

10

20

30

40

50

1 2 3 4 5 6 7 8

Int +
Int -

        No. of Antibiotics

%
 o

f r
es

is
ta

nt
 is

ol
at

es
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Percentage of integron-positive and integron-negative E. coli isolates from 
sows in the US demonstrating resistance to various numbers of antibiotics.  
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Only one pattern, Amp-Chl-Kan-Gen-Str-Sul-Tet, was found in both integron-positive 

and integron-negative isolates (Table 6). 

Salmonella isolates 

In contrast to E. coli isolates from sows, Salmonella isolates which carried all 3 

class 1 integron conserved genes were only found in market pigs from Thailand. 

Therefore, only Thailand isolates were used for the comparison of antibiotic 

susceptibility tests between integron-positive and –negative isolates. 

A comparison of the prevalence of antibiotic resistance between integron-positive 

and integron-negative Salmonella spp. isolates of market pigs from Thailand is given in 

Figure 8. All integron-positive and -negative isolates were susceptible to amikacin, 

amoxicillin/clavulanic acid, cephalothin, cefoxitin, ceftiofur, ceftriaxone and 

ciprofloxacin. The highest percentage of resistance in integron-positive Salmonella 

isolates was found to sulfamethoxazole (100%), followed by tetracycline (93.3%), 

streptomycin (80.0%), nalidixic acid (73.3%), trimethoprim/sulfamethoxazole (73.3%) 

ampicillin (66.7%), kanamycin (53.3%) and gentamicin (40.0%); whereas 86.7, 66.7, 

53.3, 40.0, 33.3, 26.7, 26.7, and 20.0% of integron-negative isolates showed resistance to 

tetracycline, sulfamethoxazole, nalidixic acid, ampicillin, kanamycin, gentamicin, 

chloramphenicol, trimethoprim/sulfamethoxazole and streptomycin, respectively.  

Resistance to streptomycin, chloramphenicol, sulfamethoxazole and combination of 

trimethoprim and sulfamethoxazole was more common in integron–positive isolates 

(P<0.05).  

 166



Table 6. Antibiograms of E. coli isolates of sows from the US.  
 

 No. of isolate(s) 

Integron Total Pattern 
No. Antibiogram1

+ 
(n=11) 

- 
(n=11) 

 
(n=22) 

1 Amp-Chl-Kan-Gen-Str-Sul-Tet-Sxt 5 0 5 
2 Amp-Chl-Kan-Gen-Str-Sul-Tet 2 1 1 2 
3 Amp-Kan-Gen-Str-Sul-Tet-Sxt 3 0 3 
4 Amp-Kan-Gen-Str-Sul-Tet 0 2 2 
5 Amp-Kan-Str-Sul-Tet 1 0 1 
6 Amp-Kan-Tet 0 1 1 
7 Amp-Gen-Str-Sul-Tet 1 0 1 
8 Amp-Str-Sul-Tet-Sxt 0 1 1 
9 Amp-Str-Sul-Tet 0 1 1 
10 Amp-Sul-Tet 0 1 1 
11 Str-Sul-Tet 0 1 1 
12 Sul-Tet 0 1 1 
13 Tet 0 2 2 

 
1 Amp, Ampicillin; Chl, Chloramphenicol; Kan, Kanamycin; Gen, Gentamycin; Str, 
Streptomycin; Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, 
Tetracycline. 
2 Resistance pattern found in both integron-positive and integron-negative isolates. 
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Figure 8. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative Salmonella spp. of market pigs from Thailand. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within antibiotic with * differ (P<0.05). 
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In agreement with E. coli isolates, integron-positive Salmonella isolates from 

market pigs from Thailand tended to be more resistant to a higher number of antibiotics 

than integron-negative isolates, with integron-positive isolates showing resistance to 3 to 

9 antibiotics; whereas integron-negative isolates demonstrated resistance to 1 to 8 

antibiotics (Figure 9).  

There was a wide variety of resistance patterns found in Salmonella isolates from 

market pigs, with a total of 26 patterns being observed among 30 Salmonella isolates. 

Only 4 patterns were found in more than one isolate, with those being Amp-Chl-Kan-

Gen-Nal-Str-Sul-Tet-Sxt, Amp-Kan-Gen-Nal-Sul-Tet, Chl-Kan-Nal-Str-Sul-Tet-Sxt, and 

Tet. There was no common pattern found in both integron-positive and –negative 

Salmonella isolates from market pigs in Thailand (Table 7).  

All 20 integron-positive and integron-negative Salmonella isolates from sows 

were susceptible to the same 7 antibiotics, with those being amikacin, 

amoxicillin/clavulanic acid, cephalothin, cefoxitin, ceftiofur, ceftriazole and 

ciprofloxacin. All integron-positive isolates were resistant to 6 antibiotics, kanamycin, 

streptomycin, ampicillin, trimethoprim/sulfamethoxazole, tetracycline, and 

sulfamethoxazole, whereas the only drug to which all integron-negative isolates were 

only resistant was tetracycline. A high percentage of resistance to gentamicin (80.0%), 

nalidixic acid (70.0%), and chloramphenicol (60.0%) was also noted in integron-positive 

isolates. Seventy percent of integron-negative isolates were resistant to ampicillin and 

sulfamethoxazole. Up to 30% of integron-negative isolates were resistant to gentamicin, 

kanamycin, streptomycin, chloramphenicol, trimethoprim/sulfamethoxazole and nalidixic  

acid.   Resistance  to  gentamicin,  kanamycin,  streptomycin,  nalidixic  acid,  and  
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Figure 9. Multiple antimicrobial resistance of integron-positive and integron-
negative Salmonella isolates of market pigs from Thailand. 
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Table 7. Antibiograms of Salmonella spp. isolates of market pigs from Thailand. 
 

 No. of isolate(s) 

Integron Total Pattern 
No. Antibiogram1

+ 
(n=15) 

- 
(n=15) 

 
(n=30) 

1 Amp-Chl-Kan-Gen-Nal-Str-Sul-Tet-Sxt 2 0 2 
2 Amp-Chl-Kan-Gen-Nal-Str-Sul-Tet 0 1 1 
3 Amp-Chl-Kan-Gen-Str-Sul-Tet-Sxt 1 0 1 
4 Amp-Chl-Kan-Nal-Str-Sul 1 0 1 
5 Amp-Chl-Gen-Nal-Sul-Tet-Sxt 1 0 1 
6 Amp-Chl-Nal-Str-Sul-Tet-Sxt 1 0 1 
7 Amp-Chl-Nal-Sul-Sxt 1 0 1 
8 Amp-Kan-Gen-Nal-Str-Sul-Tet-Sxt 1 0 1 
9 Amp-Kan-Gen-Nal-Sul-Tet 0 2 2 
10 Amp-Kan-Sul-Tet 1 0 1 
11 Amp-Gen-Str-Sul-Tet-Sxt 1 0 1 
12 Amp-Nal-Tet 0 1 1 
13 Amp-Str-Sul-Tet 0 1 1 
14 Amp-Sul 0 1 1 
15 Chl-Kan-Gen-Nal-Tet-Sxt 0 1 1 
16 Chl-Kan-Nal-Str-Sul-Tet-Sxt 2 0 2 
17 Chl-Kan-Nal-Sul-Tet 0 1 1 
18 Chl-Nal-Str-Sul-Tet-Sxt 1 0 1 
19 Chl-Sul-Tet-Sxt 0 1 1 
20 Nal-Str-Sul-Tet-Sxt 1 0 1 
21 Nal-Str-Sul-Tet 0 1 1 
22 Nal-Sul-Tet-Sxt 0 1 1 
23 Str-Sul-Tet 1 0 1 
24 Sul-Tet 0 1 1 
25 Tet 0 2 2 
26 Sxt 0 1 1 

 
1 Amp, Ampicillin; Chl, Chloramphenicol; Kan, Kanamycin; Gen, Gentamycin; Nal,  
Nalidixic Acid; Str, Streptomycin; Sul, Sulfamethoxazole; Tet, Tetracycline; Sxt,  
Trimethoprim/Sulfamethoxazole. 
 
 
 

 171



trimethoprim/sulfamethoxazole was more common in integron-positive isolates 

compared with integron-negative isolates (P<0.05) (Figure 10).  

A comparison between Salmonella isolates of sows from Thailand and the US is 

shown in Figure 11. Resistance to gentamicin, kanamycin, streptomycin, ampiciilin, 

chloramphenicol, nalidixic acid, sulfamethoxazole, trimetroprim/sulfamethoxazole and 

tetracycline was found in E. coli isolates in both countries. In addition, only resistance to 

nalidixic acid was found to be significantly higher in Thailand isolates (P>0.05). 

In agreement with E. coli isolates and Salmonella isolates from market pigs, 

integron-positive isolates from sows tended to be resistant to a higher number of 

antibiotics than integron-negative isolates, with integron-positive isolates from sows 

demonstrating resistance to 7 to 9 antibiotics; whereas integron-negative isolates were 

resistant to 1 to 6 antibiotics. A comparison of isolates from the US and Thailand showed 

that US isolates were resistant to 1 to 8 antibiotics, whereas Thailand isolates were 

resistant to 2 to 9 antibiotics (Figure 12). 

A total of 16 patterns were observed among 20 Salmonella isolates from sows. 

The most frequent pattern was resistance to 9 antimicrobials, Amp-Chl-Kan-Gen-Nal-Str-

Sul-Tet-Sxt, which was found in 15% of isolates. No common pattern was found between 

both integron-positive and integron-negative isolates in both countries (Table 8). 
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Figure 10. Frequency of resistance to 16 antimicrobials in integron-positive and 
integron-negative Salmonella spp. from sows. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline. 
2 Bars within antibiotic with * differ (P<0.05). 
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Figure 11. Frequency of resistance to 16 antimicrobials in Salmonella spp. of sow 
isolates from the US and Thailand. 
1Ami, Amikacin; Gen, Gentamicin; Kan, Kanamycin; Str, Streptomycin; Amp, 
Ampicillin; Aug, Amoxicillin/Clavulanic Acid; Cpl, Cephalothin; Fox, Cefoxitin; Tio, 
Ceftiofur; Axo, Ceftriaxone; Chl, Chloramphenicol; Cip, Ciprofloxacin; Nal, Nalidixic 
Acid;  Sul, Sulfamethoxazole; Sxt, Trimethoprim/Sulfamethoxazole; Tet, Tetracycline 
2 Bars within antibiotic with * differ (P<0.05). 
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Figure 12. Multiple antimicrobial resistance of Salmonella spp. isolates from sows. 

A. Integron-positive and integron-negative isolates. 
B. Isolates from the US and Thailand. 
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Table 8. Antibiograms of Salmonella spp. isolates of sows from the US and Thailand. 
 

 No. of isolate(s) 

Integron Location Total Pattern 
No. Antibiogram1

+ 
(n=10) 

- 
(n=10)

US 
(n=10) 

Thailand 
(n=10) 

 
(n=20) 

1 Amp-Chl-Kan-Gen-Nal-Str-
Sul-Tet-Sxt 

3 0 0 3 3 

2 Amp-Chl-Kan-Gen-Str-Sul-
Tet-Sxt 

2 0 2 0 2 

3 Amp-Chl-Kan-Nal-Str-Sul-
Tet-Sxt 

1 0 0 1 1 

4 Amp-Chl-Str-Sul-Tet-Sxt 0 1 0 1 1 
5 Amp-Chl-Str-Sul-Tet 0 1 0 1 1 
6 Amp-Kan-Gen-Nal-Str-Sul-

Tet-Sxt 
2 0 2 0 2 

7 Amp-Kan-Gen-Nal-Sul-Tet 0 1 0 1 1 
8 Amp-Kan-Gen-Str-Sul-Tet-Sxt 1 0 1 0 1 
9 Amp-Kan-Gen-Sul-Tet 0 1 1 0 1 
10 Amp-Kan-Nal-Str-Sul-Tet-Sxt 1 0 0 1 1 
11 Amp-Kan-Sul-Tet-Sxt 0 1 1 0 1 
12 Amp-Nal-Tet 0 1 0 1 1 
13 Amp-Sul-Tet 0 1 1 0 1 
14 Chl-Gen-Tet 0 1 1 0 1 
15 Sul-Tet 0 1 0 1 1 
16 Tet 0 1 1 0 1 

 
1Amp, Ampicillin; Chl, Chloramphenicol; Kan, Kanamycin; Gen, Gentamycin;  Nal,  
Nalidixic Acid; Str, Streptomycin;  Sul, Sulfamethoxazole; Tet, Tetracycline; Sxt,  
Trimethoprim/Sulfamethoxazole. 
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IV. DISCUSSION 

Prevalence of Bacterial Isolates   
 
The prevalences of E. coli and Salmonella spp. in market pigs and sows from the 

US and Thailand were determined in this study. Our results show that the prevalence of 

E. coli is high in both types of swine and both countries with over 80% of animals were 

found to carry this bacterium, as was our expectation. The prevalence of Salmonella in 

market pigs was much lower than that of E. coli but was not different between the 2 

countries with only 3.4% and 5.7% of market pigs from Thailand and the US respectively 

found to carry Salmonella. In sows, however, the prevalence of Salmonella was higher in 

the US when compared with Thailand, with 60.9% of sows from the US found to carry 

Salmonella isolates whereas only 8.5% of sows from Thailand were found to be positive 

for that organism. The differences in Salmonella prevalence in sows may be due to the 

differences of culture collection. While Salmonella isolates from sows in Thailand were 

collected from live animals on farm, Salmonella isolates from the US were collected from 

killed sows at the slaughterhouse. The stress caused by transportation of animals from 

farm to slaughterhouse has been reported to result in increased Salmonella shedding (4, 

37, 42). Hurd et al. (21, 22) noted that a serotype of Salmonella not found in fecal 

samples from pigs on farms was isolated from intestinal contents at slaughter, suggesting 

infection occurred during transport or at the slaughterhouse.  Davies et al. (11, 12) 

reported that although breeding herds may be a minor source of infection for finisher 

pigs, they can play an important role in the maintenance of Salmonella on farms and in its 

transmission to other farms. 
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Prevalence of Class 1 Integrons 
 

It is well known that class 1 integrons play an important role in dissemination of 

antibiotic resistance in the enteric bacteria. Our results show that class 1 integrons, as 

indicated by the presence of IntI1 gene, are widespread among E. coli and Salmonella 

isolates of swine. More than 60 and 30% of E. coli isolates, and more than 50 and 25% of 

Salmonella isolates from swine in Thailand and the US, respectively, carried class 1 

integron.  

The prevalence of class 1 integrons in both types of bacteria and both types of 

swine were associated with the isolate origin. Class 1 integrons were more prevalent in 

Thailand compared to the US.  

With the exception of E. coli isolates from Thailand, we also noted a higher 

prevalence of integrons in isolates collected from sows. It may be that as sows spend a 

longer time on farm (3 to 5 years, compared with approximately 6 months for market 

pigs), they have more opportunity for exposure to antibiotics and thus present a greater 

opportunity for a resistant microflora to develop.  

It is important to note that only 11.1% and 16.2% of intI1-positive E. coli and 

Salmonella isolates from swine were found to carry qacEΔ1 and sul1; whereas almost all 

of the E. coli (96.8%) carried qacEΔ1 and sul1. In agreement with this study, our earlier 

study in chickens showed that 32.5%, 75.4%, and 82.9% of intI1-positive E. coli, P. 

mirabilis, and Salmonella isolates from Thailand were carried qacEΔ1 and sul1. van 

Essen-Zandbergen noted that only a subset of Salmonella and E. coli isolates carrying 

intI1 also carry the 3’ conserved sequence (55). Sunde (50) reported that a high 
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proportion of class 1 integrons found in E. coli lacked the sul1 gene. Additionally, Guerra 

et al. (18) found defective integrons which lacked both qacEΔ1 and sul1, or only sul1, in 

some E. coli isolates from Germany, suggesting that use of specific primers to detect 

conserved segments alone can produce false negatives when those specific gene 

components are not present in otherwise functional integrons.

 

Antibioticl susceptibility 
 

Antibiotic resistance to at least 1 antibiotic was found in 97% of combined E. coli 

and Salmonella isolates from swine in this study. Resistance to tetracycline, 

sulfamethoxazole, streptomycin, and ampicillin was most common in swine, in 

agreement with other studies (18, 25, 27, 32, 45, 48, 52, 54) 

When comparing the frequency of antibiotic resistance between integron-positive 

and integron-negative isolates, we found that integron-positive isolates were more likely 

to be resistant to streptomycin than integron-negative isolates in both bacteria tested and 

in both types of swine. A higher prevalence of resistance to sulfamethoxazole and 

trimetroprim/sulfamethoxazone was also noted in integron-positive E. coli isolates. This 

likely occurred because all integron-positive isolates contained sul1 as an integral part of 

the integron. Similar to our study, Shahada et al. (47) reported all of the intI1-positive S. 

enterica serovar Infantis isolates were resistant to sulfamethoxazole. Streptomycin and 

trimethoprim are not only frequently found as a single gene cassette in integrons but also 

these two genes were often found in combination within the same integron, as  reported 

by several research groups (20, 23, 26, 35, 49, 55). This co-selection may explain the 

high prevalence of resistance to these antibiotics in integron-positive bacteria. 
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It should, however, be noted that the resistance phenotypes were only partially 

explained by the presence of integrons. In agreement with our study, a study of 

occurrence of integrons and antimicrobial resistance genes among Salmonella enterica in 

Brazil revealed that integron-mediated resistance genes contributed to the multiresistance 

phenotypes observed in the isolates; however, most resistance genes were located outside 

the integron structure as independent genes. It was suggested that multiple resistance 

genes might also be located on a single conjugative plasmid (39). In addition, a study of 

antimicrobial resistance patterns and class 1 integrons among E. coli and S. enterica 

serovar Choleraesuis strains isolated from humans and swine in Taiwan discovered that 

class 1 integrons examined did not support the total resistance phenotypes observed 

among both bacterial isolates. The investigators suggested that this may be due to 

chromosomal mutation or the presence of other undetected integron classes (20). 

There were no E. coli isolates from sows in Thailand or Salmonella isolates from 

market pig in the US which carried all three class 1 integron conserved genes. This 

prohibited a comparison of antibiotic resistance prevalence of those bacteria in Thailand 

and the US. Nevertheless, our results from E. coli from market pigs showed that 

resistance to gentamicin, ampicillin, cephalothin, chloramphenicol, ciprofloxacin, 

nalidixic acid, trimethoprim/sulfamethoxazole of E. coli isolates from market pigs and 

nalidixic acid of Salmonella isolates from sows were higher in Thailand isolates. Our 

earlier study of chickens indicated that E. coli, P. mirabilis, and Salmonella isolates from 

Thailand demonstrated a higher prevalence of chloramphenicol, nalidixic acid, and 

trimethoprim/sulfamethoxazole than isolates from the US. Whereas, both E. coli and 

Salmonella isolates from the US were statistically more likely to be resistant to 
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amoxicillin/clavulanic acid, cefoxitin, and ceftiofur than those from Thailand. Salmonella 

and P. mirabilis isolates from the US also demonstrated a higher prevalence of resistance 

to cephalothin than isolates from Thailand. It is interesting to note that all E. coli and 

Salmonella isolates from swine in the US and Thailand were susceptible to 

amoxicillin/clavulanic acid, cefoxitin, ceftiofur, ceftriazole, and less than 2% of bacterial 

isolates from swine were resistant to amikacin,  which may be due to the limited use of 

this antibiotic in swine production. Low levels of ceftriaxone and ceftiofur resistance 

were also observed from previous studies conducted in Thailand (37, 40). The 

distribution of antimicrobial resistance phenotypes are expected to reflect different use 

patterns of antimicrobial agents in each type of animal and each countries (1, 16, 34) 
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V. CONCLUSIONS 

Antimicrobial resistance genes and class 1 integrons are common in bacteria 

associated with swine in both Thailand and the US.  While multi-antibiotic resistance is 

associated with integrons, and specific multi-resistance patterns were often characteristic 

of integron carriage, many multi-resistant isolates with a variety of antibiograms also 

lacked class 1 integrons. Our work indicates that integrons and multi-antibiotic resistant 

bacteria appear to be a significant aspect of microbial communities associated with 

swine.  
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ABSTRACT 
 

A study was conducted to determine if homologous integrons could be detected in 

E. coli and Salmonella derived from the same animal or farm, from among swine or 

poultry farms in the US and Thailand.  Class 1 integron variable regions were detected 

using a PCR targeting conserved integron sequences. When integron-positive E. coli and 

Salmonella isolates had identical amplicon patterns, the PCR product was sequenced to 

determine homology. Nine different amplicons with sizes ranging from 0.5 to 2.5 kb were 

observed in bacterial isolates, and we found a single farm on which similar integrons 

were found in both E. coli and Salmonella. Sequence analysis revealed that a 1.0 kb 

amplicon found in both E. coli and Salmonella isolated from the farm contained an 

aadA1 gene cassette encoding aminoglycosides 3’-adenyltransferase, which confers 

resistance to streptomycin and spectinomycin. A 2.0 kb amplicon also found in both 

types of bacteria containing the aadA5 gene encoding aminoglycosides 3’-

adenyltransferase, an additional reading frame with unknown function, orfD, as well as a 

dfrA17 gene encoding dihydrofolate reductase, conferring resistance to trimethoprim. Our 

results indicate that identical integrons were found in Salmonella and E. coli from a 

single farm, likely indicating transfer between these two organisms occurs in vivo via 

exchange of plasmids.  Ours may be among the first studies to detect such transfer of 

integrons and resistance genes between commensal bacteria and a foodborne pathogen 

within a single farm. 
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I. INTRODUCTION 
 
When antibiotics are used in animals, selection for resistance to those drugs may 

occur, not only in transient pathogenic bacteria, but also in commensal bacteria which 

continually live in intestinal tract. The result may be increased reservoirs of resistant 

organisms (32). In recent years, many resistance genes isolated from bacteria have been 

mapped to specific genome sites known as integrons.  Integrons have been found in 

plasmids, transposons, and as independent units on bacterial chromosomes (4, 5, 17). 

Integrons contain three elements that allow site-specific recombination of antibiotic 

resistance genes.  These elements include: 1) a recombination or attachment site; 2) an 

integrase, that recognizes specific sequences on the extra-integron gene cassette and the 

recombination site; and 3) a strong promoter that allows the integron to act as an 

expression vector in the event of the incorporation of promoterless cassettes (9, 14). As 

such, bacteria that harbor integrons may have an enhanced ability to rapidly acquire 

resistance to multiple antibiotics and to promote the transfer of highly stable and self-

promoting resistance factors across their own and other bacterial species. Thus, bacteria 

containing integrons pose a particularly insidious threat to the efficacies of current as 

well as future antimicrobials.  And while it is proposed that the primary vehicle for 

transfer of bacterial resistance genes from animal hosts to human hosts is through food 

borne bacteria, the large pool of naturally occurring nonpathogenic bacteria in the gut, 

including E. coli, have been proposed to act as a reservoir of and/or vector for 

transferable resistance genes.  These commensal bacteria, by their residence in the GI 

tract, are subject to exposure from antibiotics included in feeds and water, and they have 

been shown to acquire resistance following such exposure (25, 26, 28) demonstrating a 
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higher prevalence of resistance genes and genetic resistance elements, including 

integrons (13). 

It is widely accepted that resistance genes are transferable across species of 

bacteria, and thus the potential exists for transfer from resident E. coli and other naturally 

occurring bacteria to transient animal and human pathogens, including Salmonella.  

However, to date, little evidence has been presented to clearly show that such transfer is 

common in vivo. As a possible indication of gene transfer, we therefore determined the 

degree of homology of resistance genes and integron sequences between those two 

groups of bacteria within animals and farms. 
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II. MATERIALS AND METHODS 

Bacterial Isolates   
 
  In this study E. coli and Salmonella spp. derived from a previous study were 

analyzed.  We selected isolates for which both bacterial species within a farm were found 

to contain all three conserved sequences of class 1 integrons, intI1, qacEΔ1, and sul1. 

This criteria resulted in inclusion of 571 E. coli and 98 Salmonella spp. isolates from 

chickens from Thailand and the US, sows from the US, and market pigs from Thailand 

(Table 1). 

Detection of Class 1 Integrons Variable Region by PCR 
 

Class 1 integron variable regions were detected using a PCR targeting 5’ and 3 

conserved  sequences  of  class 1  integrons (21). Primer  pairs  were  manufactured  by  

Integrated DNA Technologies, Inc. (San Diego, CA) (Table 2). Total DNA was prepared 

by boiling overnight cultures in 2YT broth (Difco, Spark, MD) in an equal volume of 

0.2% (wt/vol) Triton X-100 (Mallinckrodt, Paris, KY) for 5 min (20). Boiled cultures 

were cooled on ice for 5 min and used immediately for PCR. The PCR solution was 

composed of 12.5 μl 2X PCR Master Mix (Promega, Medison, WI), 1.5 μl each primer 

(10 pmol/μl), 8.5 μl nuclease free water, and 1 μl DNA template. Reactions were 

conducted in a Mastercyler Gradient thermocycler (Eppendorf, Westbury, NJ) with the 

following conditions: 1) initial denaturation at 94°C for 3 min;  2) 35 cycles of 

denaturation  at  94°C for 3 min,  annealing at 60°C for 30 s; extension at 72°C  for  2 

min 30 s;  and   3) final  extension  at  72°C  for 5  min.  Amplicons  were  analyzed  via  
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Table 1. Source and number of bacteria possessing all three conserved sequence genes. 

 
Bacteria 

Animal Countries Farms 
E. coli Salmonella  

Chickens Thailand TH1 353 53 
 US US3  58  1 
  US6 146  2 
Sows US USE    1 11 
Market Pigs Thailand THA  12 25 
  THD    1  6 
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Table 2. Primer pairs used for PCR.  

 

Primer Sequence (5’ to 3’) Amplicon 
size (bp) 

Class 1 integrons   
     5’CS-F GGCATCCAAGCACAAGC Variable 
     3’CS-R AAGCAGACTTGACTGAT  
E. coli housekeeping genes   
     aspc-F GTTTCGTGCCGATGAACGTC 594 
     aspc-R AAACCCTGGTAAGCGAAGTC  
     icdA-F CTGCGCCAGGAACTGGATCT 669 
     icdA-R ACCGTGGGTGGCTTCAAACA  
Salmonella housekeeping genes   
     fhuA-F AGAAGAAACCATTACCGTAACCG 402 
     fhuA-R TGCTAACCATCGAAATGATACCG  
     glnA-F GTTATCGACCCGTTCTTCGC 579 
     glnA-R                 GTTGGTGCCGTTCTTCGCC  
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electrophoresis on a 1.0% agarose gel, and a 1 kb ladder (Promega, Medison, WI), was 

used as a molecular size marker. Gels were stained with ethidium bromide for 

visualization. 

Location of Class 1 Integrons 
 

When integron-positive E. coli and Salmonella isolates had identical amplicon 

patterns, further analysis was conducted to detect the location of the integron. To 

determine if class 1 integrons were carried on plasmids, plasmid DNA was extracted 

from bacteria cells using QIAprep Spin Miniprep kit (Qiagen, Maryland). Resulting DNA 

was subjected to a PCR analysis for detection of aspc and icdA chromosomal 

housekeeping genes for E. coli (27), and fhuA and glnA chromosomal housekeeping 

genes for Salmonella (35), using primers presented in Table 1, with PCR conditions used 

to detect class 1 integron variable regions. A positive control consisting of total DNA 

from each isolate was included to confirm efficiency of the PCR procedure. Absence of  

amplified products in the plasmid DNA prep and presence of appropriate amplified 

products (aspc and icdA for E. coli isolates, and fhuA and glnA for Salmonella isolates) in 

the control sample provided assurance that the plasmid solution was free of chromosomal 

contaminants. Plasmid DNA was then subjected to a PCR analysis for detection of class 1 

integron variable regions, using the same primers and conditions as above. Successful 

amplification of the variable region gene products was considered proof that the gene was 

associated with the plasmid. 
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Cloning and Sequencing 
 

When integron-positive E. coli and Salmonella isolates were found to possess 

identical amplicon patterns, randomly chosen CS-PCR products were sequenced. The 

CS-PCR amplicon product was purified from 1% agarose gel using QIAquick Gel 

Extraction Kit (Qiagen, Maryland) and cloned in the pGEM-T Vector (Promega, USA). 

Colonies carrying the target fragment were picked by blue-white screening from Luria-

Bertani plates containing ampicillin 100 μg/ml, 40 μl 100 mM IPTG per plate and 40 μl 

2% X-Gal per plate. Plasmid DNA from white colonies was checked for the presence of 

the target fragment by purification with a QIAprep Spin Miniprep kit (Qiagen, Germany).  

The CS-fragment was sequenced using SP6 and T7 primers (Promega, USA) at 

the University of Tennessee Molecular Biology Resource Facility (Knoxville, TN). 

Sequences obtained were compared to those in the GenBank database using the BLAST 

algorithm available at the National Center for Biotechnology Information website 

(www.ncbi.nlm.nih.gov) 
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III. RESULTS  

Six different variable region amplicon sizes ranging from 0.7 to 2.0 kb were 

found among 353 E. coli isolates from chicken farm in Thailand. Thus, class 1 integrons 

carrying gene cassettes were classified into 6 groups according to amplicon pattern. The 

most frequent pattern was a 0.7 kb amplicon which was found in 123 isolates (35%). 

Salmonella spp. isolates from chicken farms in Thailand possessed 2 sizes of amplicons, 

1.0 and 1.25 kb, with the 1.0 kb amplicon being the most common (89% of isolates). E. 

coli isolates from one farm in the US produced three different sizes of amplicons, 0.9, 

1.6, and 2.5 kb, and 1.0, 1.6, and 2.5 kb whereas the other produced 4 different sizes, 1.0, 

1.6, 2.0, and 2.5 kb. The combination of 1.6 and 2.5 kb was the most common pattern in 

both farms. Only one amplicon, the 1.0 kb, was found in Salmonella from both chickens 

farms in the US. Only one E. coli isolate from US sows was analyzed for variable regions 

and those were found to carry integron patterns with combinations of 1.0 and 1.6 kb 

amplicons.  All 11 Salmonella isolates from sows carried the 1.0 kb amplicon. Among 

two market pig farms in Thailand, all E. coli isolates from one farm carried the 1.6 kb 

amplicon, whereas Salmonella isolated from the same farm carried the 1.0 kb amplicon. 

Four different sizes of amplicons were found in E. coli isolates from another farm, with 

those being 0.5, 1.0, 1.6, and 2.0 kb in size. The presence of class 1 integrons carrying 

gene cassettes resulted in classification into 4 groups with the 2.0 kb, and co-existence of 

1.0 and 2.0 kb, being the most common patterns found in this group. The same 2 patterns 

of gene cassettes were found in Salmonella isolates from this farm (Table 3). 
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Table 3. Gene cassette arrays of class 1 integrons among E. coli and Salmonella from 
chickens, sows, and market pigs. 

 
No. (%) of strain 

carrying gene cassettes Animal Countries Farms Integron 
group 

Approximate 
size of 

amplicon (kb) E. coli Salmonella 

Chickens Thailand TH1 TH1-1 0.7 123 (35) 0 (0)
   TH1-2 0.7, 0.9 47 (13) 0 (0)
   TH1-3 0.7, 1.0 112 (32) 0 (0)
   TH1-4 0.9,1.6 13 (4) 0 (0)
   TH1-5 1.0, 1.75 47 (13) 0 (0)
   TH1-6 0.9, 1.25, 2.0 11 (3) 0 (0)
   TH1-7 1.0 0 (0) 47 (89)
   TH1-8 1.25 0 (0) 6 (11)
 US US3 US3-1 1.6, 2.5 45 (78) 0 (0)
   US3-2 0.9, 1.6, 2.5 13 (22) 0 (0)
   US3-2 1.0 0 (0) 1 (100)
  US6 US6-1 1.6, 2.5 86 (59) 0 (0)
   US6-2 1.0, 1.6, 2.0 37 (25) 0 (0)
   US6-3 1.0, 1.6, 2.5 23 (16) 0 (0)
   US6-4 1.0 0 (0) 2 (100)
Sows US USE USE-1 1.0,1.6 1 (100) 0 (100)
   USE-2 1.0 0 (0) 11 (100)
Market pigs Thailand THA THA-1 1.6 1 (8) 0 (0)
   THA-21 2.0 4 (33) 8 (32)
   THA-31 1.0, 2.0 4 (33) 17 (68)
   THA-4 0.5, 1.0, 2.0 3 (25) 0 (0)
  THD THD-1 1.6 1 (100) 0 (0)
   THD-2 1.0 0 (0) 6 (100)
 

1 Integron group found in both E. coli and Salmonella spp. 
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Patterns of class 1 integrons carrying gene cassette in market pigs from Thailand 

are shown in Figure 1. Overall, among E. coli and Salmonella from 6 farms in this study 

only one market pig farm from Thailand possessed both integron-positive E. coli and 

Salmonella isolates with identical amplicon patterns; we therefore used isolates from that 

farm, and demonstrating that pattern, for further study. 

E. coli and Salmonella housekeeping genes were detected in total DNA of each 

isolate; and were not detected in plasmid solutions. This provides assurance that the 

plasmid solution was free of chromosomal DNA, and suggests that integron sequences 

were associated with plasmids.  

Sequence analysis revealed that the 1.0 kb amplicon from both E. coli and 

Salmonella contained the aadA1 gene cassette encoding aminoglycoside 3’-

adenyltransferase, which confers resistance to streptomycin and spectinomycin. In 

contrast to the 1.0 kb amplicon, the 2.0 kb amplicon found in both types of bacteria had 

an additional unknown reading frame, orfD, as well as a dfrA17 gene cassette which 

encodes dihydrofolate reductase, conferring resistance to trimethoprim. 
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Figure 1. PCR detecting class 1 integron variable regions in bacterial isolates from 
market pigs.  

Lane 1, 6, and 11; 1 kb DNA ladders; Lane 2-5; E. coli isolates; and Lane 7-10; 
Salmonella isolates. 
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IV. DISCUSSION 

Antibiotic use in food animals targets pathogenic bacteria; however, when used, 

such compounds not only affect pathogenic bacteria, but also the commensal organisms 

that make up the major part of the gastrointestinal flora. These bacteria may function as a 

reservoir of resistance genes that can be transferred to pathogenic bacteria (25). It is now 

well established that many antibiotic resistance genes found in the Enterobacteriaceae 

are located on integrons (6). Integrons provide an efficient mechanism for capturing and 

exchanging a wide range of resistance genes. Four classes of integrons have been 

identified, and among them, class 1 integrons are the most prevalent (32). 

Characterization of gene transfer DNA elements has mainly been conducted in 

vitro. However, the situation in vivo might be quite different, where a multitude of 

heterogeneous bacterial communities might facilitate, or dilute, the spread of resistance 

genes (1). We therefore investigated the potential for class 1 integrons transfer between 

commensal E. coli and pathogenic Salmonella in the farm environment. 

The location of integrons within bacterial genetic structures has an effect on the 

stability and rate of dissemination of resistance genes. Integrons located on the 

chromosome can persist in bacteria for long periods of time; however transfer of such 

would typically be vertical. On the other hand, integrons located on plasmids are more 

easily transferred horizontally, as well as vertically. Our results show that class 1 

integrons in this study were associated with plasmids. In agreement with our study, 

several researchers reported the presence of class 1 integrons on plasmids. For instance, a 

recent study of variable gene cassette patterns of class 1 integron-associated drug 

resistant E. coli in Taiwan revealed that class 1 integrons and dfrA17-aadA5 gene 
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cassettes were located on the same transferable plasmids and were capable of 

transmission (5, 30). Vo et al. (29) investigated antimicrobial resistance, class 1 integrons 

and a novel variant of genomic island 1 in Salmonella isolates from Vietnam and found 

most integrons were associated with conjugative plasmids. They further suggested that 

those genes could transfer their antimicrobial resistance determinants to E. coli or S. 

Enteritidis; or to Salmonella Genomic Island 1 or variants of that genetic element. 

Our sequencing results revealed that the 1.0 kb amplicon from both E. coli and 

Salmonella contained an aadA1 gene cassette encoding for aminoglycoside 3’-

adenyltransferase, conferring resistance to streptomycin and spectinomycin. A 2.0 kb 

amplicon also found in both types of bacteria containing the aadA5 gene encoding 

aminoglycosides 3’-adenyltransferase, an additional reading frame with unknown 

function, orfD, as well as a dfrA17 gene encoding dihydrofolate reductase, conferring 

resistance to trimethoprim. Those 2 types of amplicons were reported to be widespread in 

different hosts at several locations around the world (5, 12, 13, 18-20, 24, 26-31).  

Because E. coli and Salmonella isolates isolated from the same farms had similar 

amplicon patterns and identical gene cassettes in the amplicon, and the integron was 

found to be located on the plasmid in both species, this may indicate that transfer of class 

1 integrons between these two bacteria occurred in the farm environment. It is important 

to note; however, that the direction of transfer, whether from Salmonella to E. coli or E. 

coli to Salmonella, is unknown, as our current molecular techniques do not distinguish 

the direction of transmission (4).  
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 While this study did not focus on E. coli and Salmonella which did not share 

similarity of class 1 integron patterns, a large proportion of bacterial isolates carried up to 

3 amplicons in their integrons. This should be worrisome due to the fact that most 

amplicons in class 1 integrons carry antibiotic resistant gene cassettes. Thus, it could be 

suggested that a greater number of amplicons present in integrons would increase the 

number of resistance genes that could be disseminated.  
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V. CONCLUSIONS 

Our study suggests that transfer of integrons between E. coli and Salmonella spp. 

can occur in vivo within hosts or in farm environments. While such has been theorized by 

experts, we may be among the first group to find evidence in that regard.  Given the 

numerous samples, animals, and farms sampled in the companion study that produced the 

testable isolates for this study, as well as the number of integrons isolated, it appears that 

transfer of integrons between these species may not occur at a high rate.  Additionally, it 

will be critical to determine the direction of transfer, as a primary concern is that 

commensal bacteria, such as E. coli, that may be continuously exposed to feed based or 

other antibiotic use in animal production, could acquire resistance and pass such to 

transient pathogens, such as Salmonella.  That would appear to present a greater 

immediate risk than the reverse transfer. 

In all, our work provides additional knowledge regarding the complex nature of 

antibiotic resistance gene acquisition, reservoirs and transfer, thus hopefully providing 

additional information from which to determine courses of action and strategies for 

control of this potential foodborne and/or zoonotic hazard. 
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