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Abstract 
 

This dissertation is a compilation of four studies that were conducted in the 

laboratory of Dr. C. Neal Stewart, Jr. at the University of Tennessee, Knoxville.  The first 

study describes an investigation into arsenate metabolism in Arabidopsis thaliana using 

microarray technology.  The second study summarizes progress made to date towards the 

development of an As-specific phytosensor, or a plant genetically engineered to detect 

the presence of As in the environment.  The third study describes efforts towards genetic 

transformation of Pteris cretica and Pteris vittata, both As-hyperaccumulating ferns that 

have been recently demonstrated as effective in the removal of As from contaminated 

areas.  This paper demonstrates the development of a modified tissue culture protocol that 

was effective in callus generation from both Pteris vittata and Pteris cretica 

gametophytes as well as regeneration of plantlets from that callus.  Attempts towards 

genetic transformation were made via biolistic bombardment and Agrobacterium-

mediated transient expression using leaf infiltration.  Optimization of the Pteris tissue 

culture protocol will facilitate continued efforts towards the genetic transformation of this 

unique plant, thereby enabling means of more effectively exploring the underlying 

mechanisms of As hyperaccumulation.  The final study reports a field-scale investigation 

of plant metal uptake at a local contaminated site in Knoxville, TN. The Smokey 

Mountain Smelters Site is an abandoned secondary aluminum smelter where waste 

product from the smelting process (slag) was illegally dumped in large piles over much of 

the property.  Interestingly, wild vegetation was found growing on the slag piles without 

any obvious symptoms of toxicity.  Therefore, a study was conducted to quantify the 
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metal uptake of these plants, characterize the metal profile of the slag material, and 

investigate the capacity of Pteris cretica in extracting arsenic from slag on-site.  As a 

result, these studies have provided new insights into arsenate metabolism in plants, and 

generated many testable hypotheses to enhance our understanding of plant genetic 

responses to metal stress.  The following introduction serves to provide a background on 

phytoremediation, arsenic, and plant responses to the toxic metalloid. 
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Introduction 
 

Phytoremediation, or the use of plants to clean up contaminated sites, has 

provided an opportunity to employ transgenic plants as tools for environmental benefit. 

Because plants are solar powered and aesthetically pleasing, they present a cost-efficient, 

non-invasive alternative to expensive and destructive remediation methods (i.e. 

excavation).  Each contaminated site presents a unique set of challenges due to the 

variation in pollutant type, soil characteristics, hydrologic factors, climate and other 

environmental factors specific to that location.  Plants have evolved a broad range of 

novel remediation traits from uptake, accumulation, and sequestration or volatilization of 

toxic metals to degradation of organic contaminants.  Therefore, WEcan not only exploit 

the existing natural variation for these traits among plant genera, but also introduce novel 

traits into a customized plant designed to fit a particular niche.  Recent advances in our 

understanding of gene function have facilitated improved phytoremediation strategies 

using transgenic plants.  

The field of phytoremediation research is generally divided into categories that 

reflect specific mechanisms by which plants facilitate either degradation or detoxification 

of contaminants. These are phytoextraction, phytostabilization, rhizodegradation / 

rhizostimulation, phytodegradation, and phytovolatilization (Figure 1).  Phytoextraction 

refers to the process whereby contaminants are taken up by plant roots and stored in the 

above-ground biomass for subsequent removal.  Phytostabilization is the process of 

detoxification and/or immobilization of contaminants in the plant tissue via sequestration 

of these toxic substances (i.e. cell wall or tonoplast), thereby preventing disruption of 
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critical metabolic processes. During phytodegradation, organic contaminants are either 

metabolized in the plant to a less toxic compound or in some cases, completely 

mineralized.  Rhizodegradation involves contaminant degradation by the associated 

microbes in the rhizosphere, which is often enhanced by the plant root exudates 

(rhizostimulation).  Phytovolatilization is a process by which the contaminant is taken up 

by the plant and then released into the atmosphere via leaf stomata (Salt et al., 1998; 

Burken et al., 2000).  As we continue to explore and understand the genetic mechanisms 

associated with these processes, innovative approaches for more effective and efficient 

phytoremediation strategies via plant genetic engineering are enabled.   

The model system Arabidopsis thaliana has provided an invaluable platform for 

basic plant research due to its small size, short generation time, large number of 

offspring, and small nuclear genome size (AGI 2000), however phytoremediation 

projects require plants that display desirable traits for field-scale application. For 

example, an ideal plant for phytoremediation would be a fast-growing perennial species 

that tolerates a wide range of toxic elements, produces high biomass, and has the capacity 

for hyperaccumulation in the above-ground tissues for subsequent harvest and disposal 

(Yang 2005).  Therefore, a common strategy has become studying gene function in 

Arabidopsis to discover candidates for engineering high-biomass species (e.g. Brassica 

juncea) for use in the field.  Understanding the molecular mechanisms involved in metal 

hyperaccumulation has become a primary objective to enable transgenic plants with 

optimal capacity for metal extraction.  Hyperaccumulation is typically defined as the 

capacity of a plant to accumulate metals at levels that are toxic to most organisms and 

will be discussed in greater detail in the following text.  Over 400 metal 
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hyperaccumulators have been reported and show great promise for revealing the genetic 

and physiological basis for this phenomenon.   

 

Understanding the problem of arsenic 
 

Arsenic (As) is a toxic metalloid found ubiquitously in the environment (Moore et 

al., 1977) that has been classified as a human carcinogen (IARC, 1987). Naturally high 

levels of arsenic in drinking water have caused major human health problems in the 

United States, China, Argentina, Taiwan, and most notably in Bangladesh and India 

where millions of people have been harmed (Chakraborti et al., 2003; Mukhopadhyay et 

al., 2002; Nriagu, 2001). Arsenic is the 20th most abundant element in the earth’s crust, 

and natural processes such as volcanic activities and weathering of As-bound minerals 

result in elevated levels in soils and groundwater (Nriagu, 1994). In terrestrial 

environments, redox conditions typically result in the inorganic forms of arsenate [As(V); 

H2AsO4
-] or arsenite [As (III); H3AsO3], however environmental conditions ultimately 

dictate As speciation, thereby influencing its mobility, bioavailability, and toxicity 

(Mukhopadhyay et al., 2002). Arsenate predominates under aerobic conditions, whereas 

arsenite may be the dominant form in anoxic environments such as flooded soils (Rosen, 

1999). Arsenite, exhibiting more metal-like behavior, easily permeates biological 

membranes and forms strong metal-thiol bonds with cysteines, thus inhibiting critical 

metabolic enzymes such as pyruvate dehydrogenase (Rosen, 1999).  

The toxicity of arsenic has been exploited for applications in agriculture 

(pesticides, herbicides, sheep and cattle dips, etc.), treatments of infectious diseases, and 



 4

common wood preservatives such as chromated copper arsenate (CCA), most of which 

have contributed to elevated As levels in soils and groundwater globally (Fitz and 

Wenzel, 2002). Major anthropogenic sources also include industrial smelting and fossil 

fuel combustion which have led to thousands of tons of As emission into the atmosphere 

(Nriagu and Pacyna, 1988). As-rich ores released during mining operations result in the 

accumulation of As via redox conditions found in acidic mine waste (Mukhopadhyay et 

al., 2002). Additionally, the U.S. Environmental Protection Agency (EPA) has declared 

arsenic to be one of the five most toxic substances found at Superfund (the most polluted 

in the country) sites (Johnson and Derosa, 1995).  In the wake of the aforementioned 

evidence, the U.S. National Research Council (NRC, 1999) and the EPA (Pontius et al., 

1994) have prompted the reduction of arsenic levels in U.S. drinking water to a safety 

threshold of 10 µg L-1.   

 

Plant responses to arsenic     
 

A thorough understanding of arsenic toxicity in plants is a prerequisite to 

developing transgenic plants for remediation applications.  Plants typically encounter 

arsenic in the anionic forms of As (V) and As (III), both of which have different 

cytotoxic effects (Quahebeur and Rengel, 2003). As (III) reacts with the sulfhydryl 

groups of enzymes and proteins, thereby inhibiting cellular function and resulting in 

death (Ullrich-Eberius et al., 1989).   Alternatively, As (V) is a phosphate analog, so it 

competes with phosphate for uptake in the roots, as well as in the cytoplasm where it may 

disrupt metabolism by replacing phosphate in ATP to form unstable ADP-As (Ullrich-
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Eberius et al., 1989).  It is well known that As(V) is readily taken up in the plasma 

membrane of root cells via phosphate transporters (Asher and Reay, 1979; Clark et al., 

2000; Meharg and Macnair, 1992; Otte and Ernst, 1994), but little is known about the 

mechanisms of translocation from root to shoot (Quahebeur and Rengel, 2003).   

Plants that have evolved mechanisms of tolerance to high levels of As or other 

metals (i.e., Cd, Cu, Ni, Pb, etc.) generally avoid cellular incorporation of these metals by 

means of detoxification and/or sequestration for storage in the vacuole or cell wall (Salt 

et al., 1998; Baker et al., 2000). A common response in plants that are challenged with 

toxic concentrations of metals is the production of phytochelatins (PCs) (Cobbett et al., 

2000). PCs are low molecular weight thiolate peptides of the general structure (γ-Glu-

Cys)n-Gly (n = 2-11) that are synthesized from glutathione by the constitutively present 

phytochelatin synthase (PCS) (Grill et al., 1989).  Both As (V) and As (III) efficiently 

induce the production of PCs in plants (Schmoger et al., 2000), however it is believed 

since As (V) has no affinity for the sulfhydryl groups in PCs, As (V) is reduced in the 

cytoplasm, resulting in As (III)-PC complexes (Quahebeur and Rengel, 2003).  Pickerling 

et al. (2000) reported that glutathione and PCs form As (III)-tris-thiolate complexes in 

Indian mustard (Brassica juncea) upon exposure to As (V).  These authors also 

demonstrated that addition of a chemical chelator (dimercaptosuccinate) to the 

hydroponic solution increased translocation of arsenic to the shoot, and suggested the 

chelator as a potentially useful soil amendment to facilitate As phytoremediation.  Li et 

al. (2004) showed that overexpression of PCS in Arabidopsis lead to enhanced As 

tolerance and hypersensitivity to Cd.  Plants overexpressing this transgene exhibited high 

tolerance to arsenic and accumulated 20-100 times more biomass on 250 and 300 µM 
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arsenate compared with nontransgenic plants. Despite these results, the plants did not 

accumulate more aboveground arsenic, therefore the authors suggested that 

complementary genetic amendments may be required to enhance hyperaccumulation.   

Lee et al. (2003) isolated an Arabidopsis thaliana mutant (ars1) with increased 

tolerance to arsenate and increased phosphate uptake, but showed As-tolerance was 

neither attributed to phytochelatins nor glutathione. Exploring the genetic mechanisms 

responsible for this uncharacterized phenotype may bring to light how this particular 

mutant tolerates higher levels of arsenate without production of PCs, thus providing 

novel genes for engineering arsenic tolerance (Lee et al., 2003). Natural 

hyperaccumulators of arsenic have recently been discovered in the fern genus Pteris (Ma 

et al., 2001; Zhao et al., 2002).  Chinese brake fern (Pteris vittata), the most studied As 

hyperaccumulator, can accumulate over 1% of its dry mass shoots (Wang et al., 2002).  

Cai et al. (2003) confirmed that low molecular weight thiols were formed in Pteris vittata 

upon exposure to As and other metals (Cd, Cu, Cr, Zn, Pb, Hg, and Se), but found an 

unidentified thiol was specifically induced in response to arsenic.  

Considering the current gaps in our knowledge of the molecular mechanisms 

involved in As tolerance and accumulation, studies of Arabidopsis thaliana, and the As-

hyperaccumulators Pteris vittata and Pteris cretica have been the focus of this 

dissertation research.  The research presented here demonstrates both the utility and the 

shortcomings of global scale transcriptional profiling in Arabidopsis in the context of 

arsenate stress.  Additionally, the other studies in this dissertation highlight the potential 

of developing a transgenic plant that for detection of As in the environment, the utility of 

wild vegetation and Pteris cretica in phytoremediation of a local contaminated site, and 
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novel approaches toward developing an efficient genetic transformation sytem for the 

hyperaccumulating ferns Pteris cretica and Pteris vittata.  The lessons learned throughout 

this process have helped to construct a solid foundation for my development as a 

scientist.        
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Transcriptional profiling of Arabidopsis thaliana grown under 
arsenate stress reveals antioxidant activity and repression of 
the phosphate starvation response1 
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Abstract 
 

Whole genome oligonucleotide microarrays were employed to investigate the 

transcriptional responses of Arabidopsis thaliana plants to arsenate [As (V)] stress.  Non-

parametric rank product statistics were used to detect differentially expressed genes.  

Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play 

prominent role in response to arsenate. The microarray experiment revealed induction of 

chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as 

well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were 

strongly repressed in response to As (V) stress.  These observations were confirmed with 

RT-PCR and SOD activity assays.  Additionally, microarray data suggest that As (V) 

represses transcription of genes induced by phosphate starvation.  Our results also 

suggest that As (V) stress affects the transcription of a wide range of genes including 

peroxidases, glutathione S-transferases, transporters, and genes involved in cell wall 

growth, thus providing new putative targets for future research.     
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Introduction 
 
 Arsenic (As) is a toxic metalloid found ubiquitously in the environment (Moore et 

al., 1977) and is classified as a human carcinogen (IARC, 1987). Currently, the US 

Environmental Protection Agency declares arsenic as the highest priority hazardous 

substance found at contaminated sites in the United States 

(http://www.atsdr.cdc.gov/cercla/05list.html).  Naturally high levels of arsenic in 

drinking water have caused major human health problems in the United States, China, 

Argentina, Taiwan, and most notably in Bangladesh and India where tens of millions of 

people have been affected (Chakraborti et al., 2003; Mukhopadhyay et al., 2002).  

Arsenic is highly toxic at low concentrations, therefore drinking water safety standards 

were lowered from 50 to 10 µg/ L in the U.S. (National Research Council, 1999).   

 Plants typically encounter arsenic in the anionic forms of arsenate [As (V)] and 

arsenite [As (III)], both of which have different cytotoxic effects (Quaghebeur and 

Rengel, 2003).  As (III) reacts with the sulfhydryl groups of enzymes and proteins, 

thereby inhibiting cellular function and resulting in death (Ullrich-Eberius et al., 1989).   

Alternatively, As (V) is an analog of the macronutrient phosphate, so it competes with 

phosphate for uptake in the roots, as well as in the cytoplasm where it may disrupt 

metabolism by replacing phosphate in ATP to form unstable ADP-As (Meharg and 

McNair, 1992).  Once taken up by the roots, arsenate is reduced to a more highly toxic 

species, arsenite, which is subsequently detoxified via soluble thiols such as glutathione 

and/or phytochelatins (PCs) and transported for vacuolar sequestration (Pickering et al., 

2000).   PCs are low molecular weight thiolate peptides of the general structure (γ-Glu-
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Cys)n-Gly (n = 2-11) and are synthesized from glutathione by the constitutively present 

phytochelatin synthase (Grill et al., 1989).  Both arsenate and arsenite efficiently induce 

the production of PCs in plants (Schmoger et al., 2000), however it is believed since 

arsenate has no affinity for the sulfhydryl groups in PCs, As (V) is reduced in the 

cytoplasm, resulting in As(III)-PC complexes (Quahebeur and Rengel, 2003).  Pickerling 

et al. (2000) reported that glutathione and PCs form As(III)-tris-thiolate complexes in 

Brassica juncea upon exposure to As(V). Therefore, PC synthesis causes a depletion of 

cellular glutathione, resulting in a decreased capacity to quench reactive oxygen species 

(ROS) (Hartley-Whitaker et al., 2001).    

 Phytoremediation has emerged as a promising, cost-efficient technology for 

removing toxic metals from contaminated soils and groundwater.  The potential for 

phytoremediation to be an effective means of removing arsenic from contaminated sites 

has been demonstrated in hyperaccumulators of the Pteris genus (Kertulis-Tartar et al., 

2006; Tu et al. 2002; Wei and Chen, 2006) and may be enhanced by a better 

understanding of plant transcriptional responses to arsenic.  Many plant studies have 

demonstrated the direct involvement of thiol-containing molecules (glutathione, 

phytochelatins, etc.) in arsenic detoxification, however more robust approaches (i.e. 

microarrays) should help to clarify how arsenic affects plant physiological processes on a 

global scale.  The goals of this study were to test the hypothesis that many genes would 

be differentially expressed in response to arsenate stress and to identify genes previously 

unidentified as significant players in As (V) detoxification using Arabidopsis as a model.  

In this paper, we investigate the transcriptional responses to As (V) in Arabidopsis 

thaliana using oligonucleotide microarrays.  The results demonstrate that As (V) stress 
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strongly induces Cu/Zn superoxide dismutase (SOD) activity, but represses the 

production of Fe SODs.  This data also suggests the involvement of other antioxidant 

genes, various transcription factors, tonoplast proteins, and proteins associated with cell 

wall growth.  Of particular interest is the observation that As (V) stress represses a wide 

range of genes induced by phosphate starvation. The physiological implications of these 

findings are discussed and we suggest new and exciting avenues for research of arsenic 

metabolism in plants.      

 

 

Results 
 

Gene ontology for genes affected by As (V) 
 
 Forty-six genes were induced by As (V) treatment.  The largest functional 

categories affected included unknown function, hydrolase, and antioxidant activity.  

Other functional categories affected by As (V) included genes with transferase, kinase, 

lyase, transporter, and binding activity (Fig. 1.4; Table 1.1).  Alternatively, 113 genes 

were repressed by As (V), with unknown function, hydrolase, and binding activity 

representing the largest categories.  Genes with transporter, kinase, transferase, and 

transcriptional regulator activity were also repressed by As (V). (Fig. 1.4; Table 1.2).  

Differentially expressed As (V)-induced and –repressed genes are listed below (Table 1.1 

and Table 1.2, respectively).  Most interestingly, it was discovered that As (V) stress 

repressed transcription of many genes involved the phosphate starvation response (Table 

1.4), and also repressed several transcriptional factors.   
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Superoxide dismutases  
 

SODs represented the highest ranked of both significantly induced as well as 

repressed genes in response to As (V) stress (Tables 1.1 and 2.1), therefore these genes 

presented logical primary targets for the validation of our microarray data.  Results 

demonstrated 4.57-fold induction of a chloroplast Cu/Zn SOD (at2g28190), 2.38-fold 

induction of a Cu/Zn SOD (at1g08830), as well as a 3.16-fold induction of an SOD 

copper chaperone (at1g12520). Alternatively, Fe SOD (at4g25100) transcripts were 

downregulated in response to arsenic stress (-5.17-fold change). These findings were 

confirmed with RT-PCR (Table 3).     

 Based upon the observations of transcript-level changes in SOD gene expression, 

we predicted that As (V)-mediated induction of Cu/Zn SOD activity and repression of 

FeSOD activity would be reflected by nondenaturing PAGE enzyme activity assays 

(Beauchamp and Fridovich, 1971).  This method enables the distinction between the three 

SOD isoenzymes found in Arabidopsis (CuZnSOD, FeSOD, and MnSOD) by using 

inhibitors of specific SODs.  Gels were preincubated with KCN, which inhibits CuZn 

SOD, as well as H2O2, which inhibits both CuZn SOD and Fe SOD.  MnSOD is resistant 

to both inhibitors (Fig. 1.2).  Plants were harvested from control plates containing no 

arsenate and treated plates containing 100 µM arsenate at seven-, ten-, and thirteen days 

post-germination.  Irrespective of harvest date, CuZnSOD activity was strongly induced 

by arsenate treatment, whereas FeSOD activity was repressed, and MnSOD showed no 

change in activity, therefore providing sufficient evidence to confirm our microarray 

results.   
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 As (V)-treated plants demonstrated lower concentrations of superoxide in leaves 

as revealed by nitroblue tetrazolium (NBT) staining (Fig. 1.3), suggesting that superoxide 

is being consumed by elevated levels of SODs following 10 days of As (V) stress.  Lower 

levels of superoxide anions in As (V)-stressed plants cannot be attributed to a change in 

expression of univalent oxidases (i.e. xanthine oxidase, NAD(P)H oxidase, aldehyde 

oxidase) which generate superoxide, as differential expression of this gene was not 

detected by our microarray analysis. 

 

Other antioxidant genes 
 

Other genes with antioxidant activity were induced at lower levels.  A 

peroxiredoxin Q (at3g26060) was induced 1.53-fold.  Peroxiredoxin Q is a soluble 

thioredoxin-dependent reductase located in the thylakoid lumen that reduces 

hydroperoxides .  Unlike peroxidases, which contain a heme group in their active site, 

peroxiredoxins utilize redox-active thiol groups for their catalytic activity (Petersson et 

al., 2006).  The functional role of this protein has not been clearly defined, however 

studies of peroxiredoxin Q suggest both its involvement in antioxidant defense and 

possibly redox-regulated signaling (Horling et al., 2003; Petersson et al., 2006).        

Four peroxidases were induced by As (V) treatment (Table 1.1).  The following 

peroxidases exhibited increased levels of transcription (in order of descending transcript 

abundance): at5g64100 (2.50-fold) > at1g02540 (2.05-fold) > at1g05250 (1.90-fold) > 

at5g17820 (1.68-fold).  Glutathione S-transferases, which are known to respond to 

oxidative stress, were also affected by As (V) stress.  
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Transcription factors 
 

The microarray experiment indicated that eight different genes encoding proteins 

with known transcription factor activity all displayed lower expression levels in As (V)-

stressed plants (Table 1.2).  One of these transcription factors (at1g12610) encodes a 

member of the DREB subfamily A-1 of the ERF/AP2 transcription factor family (DDF1).  

One other AP2-domain-containing transcription factor (at4g34410) that encodes a 

member of the ERF (ethylene response factor) subfamily B-3 of the ERF/AP2 

transcription factor family was also repressed in response to As (V).  Two zinc finger 

(C2H2 type) genes (at3g46090, at3g46080) encoded a ZAT7 and a protein similar to 

ZAT7, respectively.  Also exhibiting lower expression in As (V)-treated plants were three 

members of the WRKY family of transcription factors (at2g38470, at4g23810, 

at1g80840), WRKY33, WRKY53, and WRKY40, respectively as well as one gene encoding 

NAC domain containing protein 81. 

 

As (V) represses genes involved in phosphate starvation response  
 
  The transcriptional trends that we report from this study suggest that As (V) stress 

results in repression of the Pi starvation response.  This phenomenon suggests that high 

concentrations of As (V) are “perceived” by the plant as high Pi, thereby repressing genes 

upregulated in response to Pi deprivation.  In Table 1.4 we present those genes from our 

microarray experiment that were affected by As (V) and have also been shown to be 

induced upon Pi starvation in Arabidopsis by Mission et al. (2005) and Morcuende et al., 

(2007).  Surprisingly, only 6 genes that were induced upon As (V) stress are known to be 
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induced by Pi starvation, whereas 22 As (V)-repressed genes have been shown to be 

induced by Pi starvation (Table 1.4).  However, 3 genes that were repressed by As (V) 

were also reported to be repressed by Pi starvation by Mission et al. (2005). 

 Table 1.4 elucidates some interesting genes for further investigation, particularly 

in the cases where genes were induced by As (V) as well as shown by Mission et al., 

(2005) as induced by Pi starvation.  These included genes encoding a CuZnSOD, a P-type 

cyclin (CYCP4;2; at5g61650), myrosinase-associated proteins (at1g54010; at1g54000), a 

glycine-rich protein (at2g05510), and a C2-domain-containing protein (at4g15740). Of 

particular interest, a P-type cyclin (at5g61650) that was induced by As (V) shares 

significant homology to the PHO80 gene from yeast.   

 

Sulfate assimilation  
 
 The role that thiol groups play in arsenic detoxification has been well 

characterized, therefore we expected to see induction of genes involved in sulfate 

assimilation and metabolism in response to arsenic stress.  Ferredoxin (at1g10960), a key 

redox protein found in the chloroplast was As (V)-induced.  Expression levels for another 

gene involved in the sulfate reduction pathway, 5’-adenylylsulfate reductase (APR3) 

(at4g21190) were also elevated in response to As (V) stress.  This enzyme catalyzes the 

reduction of 5’-adenylylsulfate to sulfite using glutathione as an electron donor.  

Although not involved in sulfate assimilation, the cysteine-rich metal-binding protein, 

metallothionein (MT) 1A (at1g07600) was also induced.  Zimeri et al. (2005) showed 

that Arabidopsis knockout mutants for class 1 MTs accumulated significantly less 



 17

aboveground As, Cd, and Zn, suggesting that class 1 MTs may play a role in metal and 

metalloid ion translocation.   

 

Genes involved in cell wall assembly, architecture, and growth 
 

A wide range of genes encoding proteins involved in cell wall activities exhibit 

altered expression levels in response to As (V) (Table 1.1; Table 1.2).  Peroxidases, 

which were indeed affected by As (V) stress, are known to strengthen the cell wall in 

response to biotic stress via formation of lignin, extension cross-links, and dityrosine 

bonds (Passardi et al. 2005).  Several glycine-rich proteins, which are well-defined 

structural proteins of the plant cell wall (Mousavi and Hotta, 2005), displayed differential 

expression in response to As (V).  Transcription of glycine-rich protein (at2g05510) was 

among the most strongly induced genes in As (V)-treated plants, whereas four genes 

encoding glycine-rich genes (Table 1.2) exhibited lower expression compared to control 

plants.  Additionally, As (V) affected transcription of a multitude of xyloglucan 

endotransglucosylase / hydrolases (XTHs) and glycosyl hydrolase genes (Table 1.1; 

Table 1.2), with the majority of these exhibiting lower expression in the presence of As 

(V).   

 

Transporters and proteins of the tonoplast 
 

Our microarray data suggests the involvement of specific genes with transporter 

activities in response to As (V) stress in Arabidopsis (Table 1.1; Table 1.2).  Genes 

encoding a plasma membrane intrinsic protein 2 (PIP2;2) (at2g37170) and a tonoplast 
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intrinsic protein (TIP) gamma (at2g36830) were both induced by As (V) treatment (Table 

1.1).  Both of these genes belong to the aquaporin gene family, which in Arabidopsis 

consists of 35 members (Alexandersson et al., 2005).  Both TIPs and PIPs are membrane 

proteins that facilitate passive transport across membrane.  Alternatively, a gene encoding 

a multidrug and toxic compound extrusion (MATE) efflux protein (at1g61890) was 

repressed by As (V) (Table 1.2).  The functions of MATE family proteins are not defined, 

and only inferred based on their sequence homology to genes that encode bacterial efflux 

pumps (Diener et al., 2001).  Although the function of this protein is also unclear, it has 

recently been reported to have 12 transmembrane domains and shown to be associated 

with the tonoplast (Shimaoka et al., 2004).    

Shimaoka et al. (2004) has reported the association of 163 proteins from purified 

tonoplasts of Arabidopsis, and several of their respective genes were differentially 

expressed in the current study.  Of the As (V)-induced genes, both myrosinase-associated 

proteins (at1g54010; at1g54000), alcohol dehydrogenase (at1g77120), and the meprin 

and TRAF domain-containing protein (at5g26280) were all found by these authors to be 

associated with Arabidopsis vacuoles.  There were also genes repressed by As (V) 

represented among the 163 tonoplast proteins; these included a glycosyl hydrolase family 

17 protein (at4g31140), a MATE efflux protein (at1g61890), and a band 7 family protein 

that is involved in N-terminal protein myristoylation.    
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Discussion 
 

Arsenic and oxidative stress 
 

Superoxide dismutases 
 

 Increasing evidence from mammalian studies demonstrates that ROS are 

generated in response to exposure to inorganic forms of arsenic (Hei et al., 1998; Liu et 

al., 2001; Qian et al., 2003).  The reduction of arsenic is linked with in vivo and in vitro 

ROS production in mammalian cells (Hei et al., 1998), but little is known about the 

mechanisms by which arsenic-induced ROS generation occurs in plants.  It is believed 

that the reduction of As (V) to As (III), which is well documented in plants, results in the 

production of ROS (Meharg and Hartley-Whitaker, 2002; Mylona et al, 1998). However, 

this increase in ROS may also be due to either depletion of glutathione or inhibition of 

antioxidant enzymes.  Plants have evolved both nonenzymatic antioxidants (i.e. 

glutathione, ascorbate, and carotenoids), as well as antioxidant enzymes (i.e. superoxide 

dismutases, catalases, and peroxidases) to manage the balance of ROS in the cell .   

SODs represent a first line of defense by converting superoxide radicals to H202, 

whereas catalases and peroxidases remove H202.  Three classes of SODs have been 

identified according to the active site metal cofactor: FeSOD, MnSOD, and Cu/ZnSOD.  

Mylona et al. (2001) showed that both As (V)- and As (III)-induced expression of 

glutathione-s-transerases (GSTs), catalases, and SODs in Zea mays.  An increase in SOD 

activity was correlated with an increase in As (V) treatment in Holcus lanatus (Hartley-
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Whitaker et al., 2001).  Srivastava et al. (2005) observed higher levels of SOD, catalase, 

and ascorbate peroxidase in Pteris vittata, an arsenic hyperaccumulator, than in arsenic-

sensitive fern species Pteris ensiformis and Nephrolepsis exaltata. These researchers 

concluded that arsenic-induced increases in antioxidant enzymes levels may represent a 

secondary defensive mechanism against oxidative stress in Pteris vitatta and correspond 

with its arsenic accumulation and lack of toxicity symptoms. Cao et al. (2004) showed 

that Pteris vittata SOD, catalase, and peroxidase levels rose sharply in response to low 

levels of As (V), but leveled off at As (V) levels that rose above 20 mg kg-1, which was 

consistent with changes in biomass in the arsenic hyperaccumulator.   

Lower levels of superoxide anions in As (V)-stressed plants (Figure 3) cannot be 

attributed to a change in expression of univalent oxidases (i.e. xanthine oxidase, 

NAD(P)H oxidase, aldehyde oxidase) which generate superoxide, as differential 

expression of this gene was not detected by our microarray analysis.  However, an 

alternative hypothesis may be that reduction of extracellular ATP due to arsenolysis or 

As (V) substitution for phosphate in ATP synthesis causes a reduction of superoxide 

accumulation.  Song et al. (2006) showed that extracellular ATP and ADP induce the 

accumulation of superoxide via NADPH oxidases in Arabidopsis.  Based on the reports 

of these researchers, it is likely that our NBT staining results may also be a reflection of 

As (V)-induced ATP depletion.       

Although the strong induction of SODs in response to As (V) stress was not 

surprising, the dramatically lower levels of FeSODs were unexpected.   We suggest the 

involvement of an NAC domain-containing transcription factor to explain the observed 

decrease in FeSOD transcription based on our microarray results (Table 1.2).  Tran et al. 
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(2004) generated transgenic plants to overexpress three different Arabidopsis NAC 

transcription factors and identified NAC-dependent genes using microarrays.  Not only 

was at4g25100 (FeSOD) expression found to be NAC-dependent, but transcription of 

other genes we have observed to be repressed by As (V) stress also appear to be 

dependent on NAC-domain containing transcription factors.   

 

Peroxidases 
 

Peroxidases are functionally diverse and participate in two major cycles: the 

hydroxylic cycle where peroxidases regulate H202 levels and release ROS (·OH, HOO·) 

and the peroxidative cycle where various substrates (e.g. phenolic compounds) are 

oxidized or polymerized.  Their involvement in a broad range of physiological processes 

allows peroxidase expression in all plant organs from germination to early senescence, 

however they are predominantly expressed in the roots (Passardi et al. 2005).    

Despite the involvement of peroxidases in response to arsenic-induced oxidative 

stress, these enzymes may also play a detoxifying role via their capacity for production of 

phenolic polymers.  Phenolic substrates are often polymerized by peroxidases to 

strengthen the cell wall in response to biotic stress (formation of lignin, extension cross-

links, dityrosine bonds) (Passardi et al. 2005), however it is also believed that these 

phenolic polymers may protect the cell from toxic metals.  An interesting example comes 

from a report by Lavid et al. (2001) that demonstrated polyphenols and high constitutive 

levels of peroxidases in Nymphaeae epidermal glands played a major role in cadmium 
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accumulation and tolerance.  It would be appropriate to investigate the potential role of 

peroxidase-generated phenolic polymers in arsenic-stressed Arabidopsis plants.  

It is possible that arsenic detoxification may occur via oxidation of the As (III) to 

the less toxic As (V) by increased levels of H2O2, which is suggested by our data.  For 

example, superoxide dismutases generate H2O2 as a result of the dismutation of 

superoxide radicals, whereas peroxidases may either consume or generate H2O2.  

Aposhian et al. (2003) demonstrated in vitro evidence that As (III) is oxidized to As (V) 

by H2O2 in the absence of enzyme.  We would expect an accumulation of H2O2 due to a 

decrease of glutathione peroxidase-mediated H2O2 consumption by considering depletion 

of the glutathione pool by glutathione and phytochelatin detoxification of As (III).  

Additionally, catalase mRNA (at1g20620) levels were lower in As (V)-treated plants as 

indicated by microarrays (Table 1.2.), which would also contribute to increased 

abundance of H2O2.  Strong induction of CuZnSOD enzymes also results in elevated 

levels of H2O2, as this metabolite is produced by SOD dismutation of superoxide.  Based 

on our data, We propose H2O2 oxidation as a potential arsenic detoxification mechanism 

in plants, however, further experimentation is required to test this hypothesis.   

 

GSTs 
 
 Glutathione S-transferases (GSTs) are a functionally diverse group of proteins that 

catalyze the conjugation of glutathione to a wide range of xenobiotic compounds (Marrs 

et al., 1996).  GSTs are induced by various biotic and abiotic stresses (Marrs et al. 1996) 

and seem to play a significant role in antioxidant defense (Frova, 2003).  Therefore, it is 
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likely that As (V)-mediated induction of GST transcription (GST20; Table 1.1) results 

from oxidative stress.  However, it is interesting to note that our data show differential 

expression between a GST member of the Tau GST class (GST20; Table 1.1) and 

repression of two members of the phi GST class (GST6 and GST7; Table 1.2).  These 

results corroborate the work of others that have demonstrated differential transcriptional 

response to salicylic acid treatments between GST19 (tandem duplicate of As (V)-

induced GST20) and GST6 and GST7 (Sappl et al., 2004).  Additionally, these authors 

present evidence that GST6 and GST7 basal protein levels differ drastically (3-fold vs. 

90-fold induction) in response to SA treatment, and suggest possible sub-

functionalization (Force et al., 1999) of genes that seemingly arise from tandem 

duplication.   

 Based on the work of Wagner et al. (2002), We are hopeful that GST20 

(at1g78370) exhibits some specificity to an arsenic species, thus playing some defined 

role in arsenic detoxification.  These authors performed substrate specificity experiments 

that suggests tau-class GSTs display only transferase activities and have narrow substrate 

specificity, whereas phi-class GSTs demonstrate both transferase and peroxidase 

activities with more promiscuous specificities.  Based on these data, we are performing 

additional experiments to elucidate the putative role of Arabidopsis GST20 in As (V) 

metabolism.         
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Transcription factors 
 

Most interestingly, our data corroborates those of Tran et al. (2004), suggesting 

the involvement of a different NAC domain-containing transcription factor (at5g08790) 

in expression of FeSOD, as well as several other genes known to exhibit NAC-dependent 

expression.  NAC proteins comprises a large gene family (>100 members in Arabidopsis) 

of plant-specific transcription factors that have roles in wide-ranging processes such as 

development, defense, and abiotic stress response (Olsen et al., 2005).  Tran et al. (2004) 

employed microarray analysis of NAC-overexpression Arabidopsis mutants to discover 

genes exhibiting dependence on NAC transcription factors for transcription.  Therefore, 

we speculate that repression of NAC81 (at5g08790) in As (V)-stressed Arabidopsis may 

be responsible for the observed repression of FeSOD (at4g25100), ferritin 1 (FER 1) 

(at5g01600), XTH15 (at4g14130), XTH24 (at4g30270), erd1 ATP-dependent Clp 

protease ATP-binding subunit (at5g51070), and a branched-chain amino acid amino 

transferase 2 (at1g10070), as these genes were reported by Tran et al. (2004) as 

exhibiting NAC-dependent expression.  We are currently investigating the putative role 

of NAC81 in As (V)-mediated stress responses in Arabidopsis.      

The WRKY gene family represents a large group of plant-specific transcription 

factors.  These transcription factors are characterized by their conserved WRKYGQK 

DNA-binding sequence followed by a Cys2His2 or Cys2HisCys zinc finger binding motif 

(Ulker and Somssich, 2004) and have been implicated to play regulatory roles in plant 

defense response, senescence, and trichome development (Eulgem et al., 2000).  WRKY 

proteins bind preferentially to the TTGAC(C/T) W-box, which is found in the promoter 
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region of a wide range of defense-related genes (Dong et al., 2003).  There are 74 genes 

in Arabidopsis that encode for WRKY transcription factors and they have been divided 

into three classification groups based on the number and type of zinc finger motif 

(Eulgem et al., 2000).  

 Interestingly, one member from each of the three WRKY classification groups 

was represented as repressed by As (V) in our microarray data (Table 1.2), which may 

infer some sort of co-regulatory relationship.  WRKY33 (at2g38470), WRKY53 

(at4g23810), and WRKY40 (at1g80840) all displayed lower expression levels in As (V)-

stressed plants and belong to group 1, group 3, and group 2, respectively.  Recent work 

has shown that activation of WRKY33 and WRKY53 involved a MAP kinase pathway 

(Wan et al., 2004).  Although one study reported that WRKY33 was localized in the 

chloroplast (Mahalingam et al., 2005), more recent evidence from transient expression 

assays demonstrates that WRKY33 is localized to the nucleus (Zheng et al., 2006; Lippok 

et al., 2007).  WRKY33 exhibits strong and rapid induction upon pathogen associated 

molecular patterns (PAMPs), a wide range of pathogens, chitin, and oxidative stress 

(Lippok et al., 2007).  Like many other Arabidopsis WRKY genes, WRKY33 contains 

three W-box motifs within its promoter, which suggests that this gene is under positive or 

negative feedback regulation (Lippok et al., 2007).  Perhaps arsenic-mediated disruption 

of disulfide bonds within the zinc finger DNA binding domain could explain decreased 

WRKY transcript abundance.   

 The involvement of WRKY40 in response to pathogenic infection has also been 

well established (Dong et al., 2003; Xu et al., 2006).  Additionally, nuclear localization 

of WRKY40 has been demonstrated, which suggests it acts as a transcriptional regulator 
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(Xu et al., 2006).  Interestingly, transgenic Arabidopsis plants that constitutively 

expressed WRKY40 displayed a phenotype with more serrated leaves than wild type, 

suggesting a role in growth regulation (Xu et al., 2006).  Investigating the Arabidopsis 

WRKY40 overexpression, as well as knockout mutants generated by Xu et al. (2006) may 

elucidate the significance that this protein plays in As (V) stress response.       

It is unclear why WRKY transcription factor expression levels were lower in As 

(V)-treated plants, however it may be the result of arsenic-mediated disruption of 

disulfide bonds within the active site of the zinc finger binding motifs.  Due to the 

presence of multiple W-box motifs within the promoters of WRKY genes, it is likely that 

expression of these genes is under negative or positive feedback control (Lippok et al., 

2007), therefore disruption of the DNA binding domain would indeed affect 

transcription.  This may also explain the decreased abundance of Cys2His2-type zinc 

finger gene transcripts (at3g46090; at3g46080) in As (V)-stressed plants.  

An alternative explanation for the observed suppression of these transcription 

factors comes from the chemical similarity of As (V) and Pi.  Devaiah et al. (2007) 

elucidated the involvement of a WRKY transcription factor in phosphate acquisition.  

These authors demonstrated that expression of several genes including phosphatases and 

high-affinity phosphate transporters was decreased when WRKY75 was suppressed.  As a 

result of WRKY75 suppression, phosphate uptake was also reduced.  In light of our 

microarray results, perhaps lower levels of WRKY proteins indicate an As (V)-specific 

perception by the plant.  Interestingly, Mission et al. (2005) reported that WRKY53 was 

induced by phosphate starvation in Arabidopsis leaves, which suggests it may play an 

important role in As (V)-mediated repression of transcription.  It would be interesting to 
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further investigate the involvement of WRKY33, WRKY40, and WRKY53 transcription 

factors in response to various As (V) and/or phosphate treatments.  

 

As (V) stress represses genes induced by Pi deprivation 
 

Our microarray data show that many genes repressed by As (V) stress have been 

reported by others (Morcuende et al., 2007; Mission et al., 2005) to be induced in 

response to Pi deprivation in Arabidopsis thaliana.  Our results are also in agreement 

with the recently proposed ideas of Catarecha et al., (2007) who studied an Arabidopsis 

mutant that displayed enhanced arsenic accumulation.  These authors identified a Pi 

transporter mutant with a decreased rate of As (V) uptake and increased As (V) 

accumulation.  By comparing gene expression of the mutant with wild-type plants, it was 

shown that in Arabidopsis, As (V) rapidly repressed genes involved in the Pi starvation 

response and induced the expression of other As (V)-responsive genes.  Interestingly, the 

repression of Pi starvation genes was shown to be specific for As (V), whereas the As 

(V)-induced genes were also induced by As (III).  This led Catarecha et al. (2007) to 

propose a model that suggests arsenic acts via two separate signaling pathways.  Due to 

the chemical similarity of As (V) and Pi, As (V) fools the Pi sensor, thus initiating the 

repression of the Pi starvation response.  Although this study did not show differential 

expression of the high-affinity Pi transporter, which may be due to differences in 

experimental approach, Catarecha et al. (2007) illustrated the high sensitivity of the Pi 

transporter to As (V) and suggested that plants have evolved an As (V) sensing system 
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whereby As (V) and Pi signaling pathways oppose each other to protect the plant from 

arsenic toxicity. 

Although not reported as responsive to Pi deprivation, an interesting gene 

candidate that caught our attention was the RSH 2 (rela-spot homolog; at3g14050), which 

participates in guanosine tetraphosphate metabolism.  In bacteria, this protein is known 

for its role in the “stringent response” to nutrient deprivation, pathogen attack, and other 

stresses, whereas in plants, its role is unclear (van der Biezen et al., 2000; Givens et al., 

2004).  It is of particular interest with respect to As (V) stress in plants because it 

synthesizes the unique nucleotide guanosine-3’,5’-(bis) pyrophosphate (ppGpp), thus 

leading us to suspect that As (V) affects its suggested role (Givens et al., 2004) in 

regulation of chloroplast gene expression in response to stress signals.  The unusual 

nature of this poorly understood phosphorylated nucleotide may uncover a new, putative 

gene target for discovering mechanisms of As (V) signaling in plants. 

We are particularly interested in uncovering new pathways involved in As (V) 

signaling in plants.  The P-type cyclin (at5g61650) that was induced by As (V) shares 

significant homology to the PHO80 gene from yeast. Cyclins bind and activate cyclin-

dependent kinases, which play key roles in cell division via phosphorylation of critical 

substrates, such as the retinoblastoma protein, transcription factors, nuclear laminar 

proteins, and histones (Morgan, 1997).  Interestingly, Torres Acosta et al. (2004) 

demonstrated that expression of this cyclin from Arabidopsis restored the phosphate 

signaling pathway in a PHO80-deficient yeast mutant, suggesting a putative key Pi 

signaling role.  
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Recent investigations into the global-scale transcriptional changes to phosphate 

deprivation in Arabidopsis have elucidated a broad range of genes involved in phosphate 

metabolism (Morcuende et al., 2007; Mission et al., 2005).  Here we report that many of 

these genes are also affected by As (V) (Table 1.4).  It is likely that this observation can 

be explained by a saturation effect of the phosphate analog, As (V), thereby misleading 

metabolic and regulatory perception of the toxic metalloid to be a plentiful supply of Pi.  

Interestingly, the three highest ranking differentially expressed genes found by 

Morcuende et al. (2007) to be strongly induced by Pi starvation (at1g73010 > at5g20790 

> at1g17710, respectively), were also repressed by As (V) in our study.  Table 1.4 

illustrates the overlap of differentially expressed genes found in the current study 

compared with those found by two separate global investigations of Pi starvation in 

Arabidopsis.   

The comparison of As (V)-repressed genes that have also been shown to be 

induced by Pi deprivation elucidate some promising candidates for future studies.  For 

example, we are particularly interested in genes with unknown function that are strongly 

induced in both roots and leaves by Pi starvation (i.e. at1g73010; at1g17710; at2g04460; 

at5g20790; Mission et al. 2005, supplemental data; Morcuende et al. 2007).  These 

putative gene candidates may provide opportunities for gaining insight into As (V) / Pi 

dynamics in Arabidopsis thaliana.      
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Arsenate may affect cell wall growth 
 

 Due to the role that XTHs play in cell wall loosening, their activity contributes to 

cell wall growth and cell expansion (Rose et al., 2002).  Repression of mRNA transcripts 

for these genes may not reflect protein activity, however the As (V)-stressed plants 

display a phenotype of reduced growth compared to wild type, therefore, decreased XTH 

expression may be a contributing factor.  Decreased expression of other genes involved in 

cell wall growth that are consistent with the As (V)-stressed phenotype include a 

polygalacturonase inhibitory protein and an invertase / pectin methylesterase family 

protein (Table 1.2).    

 

Putative arsenic transport mechanisms 
 

Specific transporters have been discovered for arsenic detoxification in yeast, 

bacteria, and humans, however the molecular mechanisms of cellular arsenic transport in 

plants are unclear.  In mammalian cells, one defined arsenic detoxification pathway 

involves the reduction of As (V) and subsequent glutathione conjugation via GSTs to 

form As (III) triglutathione [As(GS)3] which is then excreted through a multi-drug 

resistance-associated protein transporter (MRP2/cMOAT) (Kala et al., 2000; Leslie et al., 

2004).  Vacuolar accumulation of arsenic in Saccharomyces cerevisiae is known to occur 

via transport of As (III)-GS3 complexes across an ABC-type transporter (Ghosh et al., 

1999), however a yeast aquaglyceroporin Fps1p was found to be involved with transport 

of arsenic trioxide [As(OH)3] (Liu et al. 2006), the protonated form of arsenite that is 
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more prevalent and more toxic at physiologic pH (Ramirez-Solis et al. 2004).  Additional 

evidence points towards the role of aquaglyceroporins in mediating transport of arsenite 

and methylated forms of arsenic from the E. coli GlpF (Meng et al. 2004; Sanders et al., 

1997) to the rat AQP9 (Liu et al. 2002; Liu et al. 2006) , suggesting that arsenite 

movement is a ubiquitous property of aquaglyceroporins (Liu et al. 2006).  Currently, 

there is no in vivo evidence of As(GS)3 or As-PC complex transport in plants, nor have 

there been any reports of specific transporters involved in vacuolar deposition of arsenic 

(Tripathi et al., 2007).  However, our data suggests that two members of the aquaporin 

family, PIP2;2 and a tonoplast intrinsic protein gamma (at2g36830) may be involved in 

As (V) transport.  Due to the high sequence conservation of aquaporins from prokaryotes 

to eukaryotes, we expect that PIP2;2 and Gamma TIP (at2g36830) are likely involved in 

arsenic transport in plants.    

 

Conclusion 
 

The transcriptional data seem to suggest a central role for H202 in response to 

arsenate stress, which also plays a predominant role in signal transduction (Vranova et 

al., 2002).  The results clearly support the recent study by Catarecha et al. (2007) that 

suggests As (V) and Pi signaling pathways act in opposition to protect plant health.  Here 

we provide a global snapshot of the Arabidopsis transcriptome under As (V) stress that 

strengthens and complements their proposed model.  This study opens new, unanticipated 

avenues of research, particularly in the areas of transcriptional regulation and signaling 
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pathways involved in As (V) detection, while providing insight into genes with poorly 

defined or unknown function.        

 

 

Materials and methods 
 

Plants and growth conditions 
 

Seeds of Arabidopsis thaliana ecotype Columbia plants were surface sterilized 

and plated on agar-solidified Murashige and Skoog culture medium supplemented with 

B5 vitamins, 10% sucrose, 2% Gelrite ®, pH 5.8.  Arsenic-treated plates were 

supplemented with 100 µM potassium arsenate (Sigma) according to a previously 

determined sub-lethal growth response curve.  Plates were cold stratified at 4°C for 24 

hrs and then placed in a growth chamber at 25°C under a 16 hr photoperiod.  After 10 d, 

2 g of whole plant material (shoots + roots) was harvested from each plate, frozen in 

liquid nitrogen, and subjected to RNA isolation using Trizol ® reagent (Invitrogen, 

Carlsbad, CA) according to manufacturer’s protocol.  A total of three biological 

replicates were assayed (3 control, 3 treated) where each pooled 2 g sample represented a 

single biological replicate.       
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Microarray experiments and aRNA labeling 
 

Total RNA from six biological replicates were purified using RNeasy MiniElute 

columns (Qiagen, Valencia, CA).  A total of 1.25 µg of purified total RNA was subjected 

to Aminoallyl Message Amp II kit (Ambion, Austin, TX) first strand cDNA synthesis, 

second strand synthesis, and in vitro transcription for amplified RNA (aRNA) synthesis.  

aRNA was purified according to manufacturers protocol (Ambion, Austin, TX) and 

quantified using a Nanodrop spectrophotometer.  Two 4 µg samples of aRNA were 

labeled with Cy3 and Cy5 monoreactive dyes (Amersham Pharmacia, Pittsburgh, PA) in 

order to conduct a dye swap technical replicate for each biological replicate.  Each aRNA 

sample was brought to dryness in a Speedvac and dissolved in 5 µL of 0.2 M NaHCO3 

buffer.  Five microliters of Cy3 or Cy5 (in DMSO) was added to each sample and 

incubated for 2 hrs in the dark at room temperature.  Labeled aRNA was purified 

according to kit instructions (Ambion, Austin, TX) and quantified using the Nanodrop 

spectrophotometer. One-hundred pmol Cy3- and Cy5-labeled aRNA targets were 

denatured by incubating at 65°C for 5 min and added to a hybridization mix containing 9 

µl 20X SSC, 5.4 µl Liquid Block (Amersham Pharmacia, Pittsburgh, PA), and 3.6 µl 2% 

SDS for a 90 µl total volume.   

 

Hybridization and data analysis 
 
 Microarrays comprised of 70-mer oligonucleotides obtained from the University 

of Arizona were immobilized by rehydrating the slide over a 50ºC waterbath for 10 s and 

snap drying on a 65ºC heating block for 5 s for a total of four times.  Slides were UV-
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crosslinked at 180 mJ in a UV cross-linker (Stratagene, La Jolla, CA).  The slides were 

then washed in 1% SDS, dipped in 100% EtOH five times followed by 3 min shaking.  

Slides were spun dry at 1000 rpm for 2 minutes and immediately placed in a light-proof 

box.  The 90 µl hybridization mix was pipetted onto a microarray slide underneath a 

lifterslip (Lifterslip, Portsmouth, NH) and placed in a hybridization chamber (Corning, 

Corning, NY) overnight at 55ºC.  After hybridization, slides were washed in 2X SSC, 

0.5% SDS for 5 minutes at 55ºC, 0.5X SSC for 5 minutes at room temperature, and 

0.05X SSC for 5 minutes at room temperature.  Slides were then spun dry at 1000 rpm in 

a Sorvall centrifuge and scanned with a GenePix 4000B scanner (Axon Instruments, Inc., 

Union City, CA).  The intensity variation was removed by fitting a loess regression using 

SAS 9.1 (SAS, Cary, NC).  Data were log-2 transformed and statistically analyzed using 

rank product statistics as described by (Breitling et al., 2004) to identify differentially 

expressed genes.  Bioconductor Rank Prod package was used to perform the rank product 

analysis (Hong et al., 2006; Gentleman et al., 2004).  Significantly different genes 

reported in this study exhibited P<0.001, as designated by the rank product analysis.  The 

false discovery rate (FDR) value obtained was based on 10,000 random permutations.  

Since 10,000 random permutations was very computer intensive, 1000 random 

permutations were performed 10 different times each time starting with a different 

random seed number and the average FDR value calculated was used for further 

analysis.  The genes that had FDR values less than or equal to 0.01 were considered as 

differentially expressed. 
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Microarray Data Quality Control 
 

Global gene expression profiling comparing arsenate-treated Arabidopsis plants 

with control was carried out to better understand the mechanisms of plant response to 

arsenate stress and to identify genes involved in arsenic metabolism. For microarray data 

quality control, we examined both dye dependent effects and distribution of the ratio after 

normalization. Figure 1.5 illustrates the quality of microarray experiments, as well as the 

overall gene expression pattern. Figure 1.5 shows the normalized M vs. A plot, which 

was generated as a scatter plot of log intensity ratios M = log2 (R/G) versus average log 

intensities A = log2 (R*G)/2, where R and G represent the fluorescence intensities in the 

Cy3 and Cy5 channels, respectively (Yang and Speed, 2002). As shown by the figure, 

Loess normalization effectively removed dye dependent effects in the microarray and 

rendered evenly distributed ratios across all signal intensities. Figure 1.5 also presents a 

histogram suggesting a normal distribution of the logarithm 2-based transformed ratio. 

Overall, the microarray experiments generated high quality data without significant dye-

dependent effects and skewness of ratio distribution. 

 

Gene ontology analysis 
 

Gene ontology annotations were translated from microarray data using the GO 

annotations bioinformatics tool available at The Arabidopsis Information Resource Web 

site (http://www.arabidopsis .org/tools/) where results were based on molecular function.   
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RT-PCR amplification 
 

Total RNA was extracted from Arabidopsis thaliana ecotype Columbia grown for 

ten days as described for the microarray experiment.  Five micrograms of total RNA was 

reverse-transcribed with oligo(dT)20 primers using the Superscript III first-strand cDNA 

synthesis kit (Invitrogen, Carlsbad, CA).  Real-time PCR was performed using the ABI 

7000 Sequence Detection System (Applied Biosystems, Foster City, CA).  PCR was 

performed in a 15 µl reaction volume containing QuantiTect SYBR® Green PCR mix 

(Qiagen, Valencia, CA) and gene-specific primers were designed with PrimerExpress 

software.  Ubiquitin was used as the reference gene, and the primer sequences for 

Arabidopsis ubiquitin gene were CACACTCCACTTGGTCTTGCG (F) and 

TGGTCTTTCCGGTGAGAGTCTTCA (R).  Primers for Arabidopsis genes were as 

follows:  At1g08830 -GATGGAACTGCCACCTTCACA (F) and 

TCATCAGGGTCTGCATGGAC (R), At2g28190 -TCAACAGGACCACATTTCAACC 

(F) and TCGGCATTGGCATTTATGTTT (R), At1g12520 –

ACAGAGCCATTGGGAGACCTG (F) and CCGATAAGGTCTGCAACCTTG (R), and 

At4g25100 –TCTTGGAACCGAGCTTGAAGG (F) and ACGCCTGAGCAGCGTTGTT 

(R).  After the real-time PCR experiment, Ct number was extracted for both reference 

gene and target gene with auto baseline and manual threshold. 

 

SOD activity assay 
 
 Total protein was extracted from whole Arabidopsis plants grown on plates as 

described above and quantified by the method of Bradford (1976) using BSA as a 



 37

standard.  Bovine SOD (Sigma) was used in each gel to serve as a positive control for 

SOD activity.  Following electrophoretic separation on a 10% non-denaturing 

polyacrylamide gel, SOD activity was determined as described by Beauchamp and 

Fridovich (1971) and modified by Azevedo et al. (1998).  The gels were rinsed with DDI 

water and incubated in the dark for 30 min at room temperature in a reaction mixture 

containing 50 mM potassium phosphate buffer (pH 7.8), 1 mM EDTA, 0.05 mM 

riboflavin, 0.1 mM nitroblue tetrazolium and 0.3% (v/v) TEMED.  Following incubation, 

gels were rinsed with DDI water and illuminated in water until SOD bands were visible.  

The gels were then immersed in a 6% (v/v) acetic acid solution to stop the reaction.  To 

confirm specificity of Cu/Zn-SOD activity, H202 and KCN were used as inhibitors as 

described by Azevedo et al. (1998) and modified by Vitoria et al. (2001).  Mn-SOD is 

resistant to both inhibitors, Fe-SOD is resistant to KCN and inhibited by H202, and Cu/Zn-

SOD is inhibited by both inhibitors, thus allowing classification of SOD activity.  Prior to 

SOD staining, gels containing lanes in triplicate were cut into three parts; one gel was 

treated as described above, the second and third parts were incubated for 20 min in 100 

mM potassium phosphate buffer (pH 7.8) containing either 2 mM KCN or 5 mM H202 , 

respectively.  Following incubation, gels were rinsed with DDI water and then stained for 

SOD activity.      

 

NBT staining for superoxide radical accumulation 
 
 Superoxide levels were detected via the reduction of nitroblue tetrazolium 

(Sigma) according to Song et al., (2006).  Instead of infiltrating with a syringe, leaves 
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were vacuum infiltrated with potassium phosphate buffer for 5 min and incubated for 60 

min prior to immersion in staining solution.  Leaves were boiled in 96% ethanol until 

clear and stored in 70% ethanol prior to analysis.   
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Table 1.1. Gene ontology based on molecular function for induced genes resulting 
from rank product analysis of microarray results of arsenic-treated Arabidopsis 
thaliana “Columbia” plants.  Only genes upregulated above 1.5-fold and meeting a 
significance criteria of P < 0.001 and FDR of 1% are shown. Rank products analysis 
reveals that most significantly induced genes display the lowest RP value.   
 
Molecular function  Gene ID     Locus  FC   RP    
 
Antioxidant activity  Peroxiredoxin Q    at3g26060  1.53 151.4 
    peroxidase     at5g64100  2.50     7.3  
   peroxidase     at1g05250  1.90   49.0  
   peroxidase 57 (PER57) (P57) (PRXR10)  at5g17820  1.68   56.6   
   peroxidase     at1g05240  2.05   16.5   
   superoxide dismutase [Cu-Zn], chloroplast  at2g28190  4.57     2.3  

  superoxide dismutase [Cu-Zn], (SODCC) (CSD1) at1g08830  2.41     8.6  
   superoxide dismutase copper chaperone  at1g12520  3.16     5.2  
 
Metal ion binding  metallothionein-like protein 1A, (MT-1A)  at1g07600  1.67   41.9 
   ferredoxin, chloroplast   at1g10960  1.53   95.6 
  
Kinase activity  leucine-rich repeat transmembrane protein kinase at3g24240  1.59   63.2 
   Cyclin-dependent protein kinase   at5g61650  1.64   66.9  
 
Oxygen binding  non-symbiotic hemoglobin 1 (HB1) (GLB1)  at2g16060  1.59   94.2 
 
Hydrolase activity  ATPase, BadF/BadG/BcrA/BcrD-type family at1g30540  1.62   75.5   
   myrosinase-associated protein   at1g54010  1.54   90.5 
   myrosinase-associated protein   at1g54000  1.68   47.6 
   xyloglucan:xyloglucosyl transferase  at4g37800  1.61   72.0 
   glycosyl hydrolase family 1 protein  at3g09260  1.67   50.8 
 
Isomerase activity  peptidyl prolyl cis-trans isomerase  at3g62030  1.64   53.1 

 
Lyase activity  ribulose bisphosphate carboxylase small chain 2B  

at5g38420  1.75   36.1 
  ribulose bisphosphate carboxylase small chain 3B 
       at5g38410  1.71   22.4 

Alcohol dehydrogenase activity 
  alcohol dehydrogenase (ADH)   at1g77120  1.74   46.5  

 
Nitrate reductase activity nitrate reductase 1 (NR1)    at1g77760  1.77   41.8  
 
Sulfate reduction  5’-adenylylsulfate reductase (APR3)  at4g21990  1.53 112.1  
 
Molecular function unknown Glycine-rich protein    at2g05510  4.31     2.4 
   Photoassimilate-responsive protein  at3g54040  1.59 112.1 
   Expressed protein    at1g09310  1.67   63.1 
   Replication protein    at5g35260  1.62 975.3 
   Drought-responsive protein (Di21)  at4g15910  1.67   69.6 
   Hypothetical protein related to GB:AAD15331 at2g06480  1.58   81.6 
   DREPP plasma membrane polypeptide-related  at5g44610  1.54 106.5 
   Pentatricopeptide repeat-containing protein  at1g07590  1.62   74.6 
   Meprin and TRAF domain-containing protein at5g26280  1.60   70.8 
   Expressed protein    at4g39675  1.72   86.0 
   C2-domain-containing protein   at4g15740  1.76   42.7 
   Expressed protein    at1g09340  1.62   78.4 
    Late embryogenesis abundant 3 family protein at4g02380  1.67   52.1 
 
Transporter activity  Plasma membrane intrinsic protein 2B (PIP2B) at2g37170  1.70   43.3 
   Tonoplast intrinsic protein gamma  at2g36830  1.53 104.2 
 
Glutathione transferase activity 
   Glutathione S-transferase GST20; Tau class  at1g78370  1.68   53.5 
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Table 1.1, cont. 
 
Molecular function  Gene ID     Locus  FC   RP    
 
 
RNA binding  Pumilio / Puf RNA-binding domain-containing protein at1g78160  1.60   67.7 
  
Stress response  Universal stress protein   at3g03270  1.98   19.7 
 
Defense response  Bet v 1 allergen family protein   at1g24020  1.54   98.4 
 
Electron transport  Cytochrome  B561 family protein  at5g38360  1.56   97.9 
 
Asparagine biosynthesis asparagine synthetase 2    at5g65010  1.74   65.1 
 
Carbonic anhydrase activity Carbonic anhydrase  1, chloroplast  at3g01500  1.67   51.0 
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Table 1.2. Gene ontology based on molecular function for selected repressed genes 
resulting from rank product analysis of microarray results of arsenic-treated 
Arabidopsis thaliana “Columbia” plants.  Only genes upregulated above -1.5-fold and 
meeting a significance criteria of P < 0.001 and FDR of 1% are shown.  Rank products 
analysis reveals that most significantly repressed genes display the lowest RP value.  
 
Molecular function  Gene ID     Locus    FC       RP    
 
Catalase activity  catalase 3 (SEN2)    at1g20620  -1.59 191.7 
   
Peroxidase activity  peroxidase     at3g49120  -1.77 165.3  
   peroxidase     at5g64120  -1.84 123.2  
   cationic peroxidase    at4g25980  -1.52 333.1   
 
Oxidoreductase activity superoxide dismutase [Fe], chloroplast  at4g25100  -5.17     1.7  

  lipoxygenase    at1g72520  -2.41 242.9  
   FAD-binding domain-containing protein   at1g26380  -1.50 293.0  
   cytochrome p450 83B1   at4g31500  -1.71 142.3 
   auxin-responsive family protein   at5g35735  -1.59 156.4 
 
Metal ion binding  germin-like protein    at5g39160  -1.51 319.7 
   germin-like protein    at5g39190  -2.13   27.3 
   calcium-binding EF hand family protein  at1g76650  -2.00   50.4 
   C2-domain containing protein   at4g34150  -1.53 313.4  
   touch-responsive protein / calmodulin-related at2g41100  -1.64 137.9 
   ferritin 1 (FER 1)    at5g01600  -1.78   83.0 
   ferritin 4      at3g56090  -1.52 201.0 
   zinc finger (C2H2 type) protein   at3g46090  -1.51 191.2 
   zinc finger (C2H2 type) protein   at3g46080  -1.59 178.8 
   zinc finger (C3HC4 type) protein   at5g27420  -1.75   82.2 
 
Hydrolase activity  lipase class 3 family protein   at1g02660  -1.56 218.8   
   invertase / pectin methylesterase family protein at5g62360  -1.75   85.0 
   protein phosphatase 2C   at2g30020  -1.52 237.4 
   phosphoric monoester hydrolase    at1g73010  -3.01     7.0 
   acid phosphatase type 5 (ACP5)   at3g17790  -1.62 290.7 
   phosphoric monoester hydrolase   at1g17710  -1.88 118.6 
   glycosyl hydrolase family 17 protein  at3g55430  -1.53 201.2 
   glycosyl hydrolase family 17 protein  at4g31140  -1.71 248.5 
   glycosyl hydrolase family 17 protein  at4g19810  -1.96   99.2 
   glycosyl hydrolase family 36 protein  at5g20250  -1.52 201.8 

xyloglucan endotransglucosylase/hydrolase  at4g30280  -1.63 172.2 
   xyloglucan endotransglucosylase/hydrolase  at4g14130  -2.00   47.9 
   xyloglucan endotransglucosylase/hydrolase  at5g57560  -1.68   97.3 
   nudix hydrolase homolog 4   at1g18300  -1.54 215.9 
   MERI-5 endo-xyloglucan transferase  at4g30270  -1.96   45.6 
 
Protein binding  calmodulin-binding family protein  at4g33050  -1.78   88.6 
   ankyrin repeat family protein   at5g45110  -1.58 252.0 
   mitochondrial substrate carrier family protein at4g24570  -1.50 260.2 
   polygalacturonase inhibitory protein  at5g06860  -1.91   65.0 
 
Chitin binding  hevein-like protein (HEL)   at3g04720  -1.53 499.9 
 
Carbohydrate binding legume lectin family protein    at3g16530  -2.03   37.8 
 
Sugar binding  curculin-like lectin family protein  at1g78830  -1.64 138.3 
 
ATP binding  ATP-dependent Clp protease ATP-binding subunit at5g51070  -1.51 188.7 
 
Jasmonic acid synthesis allene oxide cyclase    at3g25760  -1.54 279.6 
    
Peptidase activity  vacuolar processing enzyme gamma  at4g32940  -1.65 117.1 
   subtilase family protein   at1g32970  -1.91   81.1 
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Table 1.2, continued 
 
 
Molecular function  Gene ID     Locus    FC       RP    
 
Ligase activity  v-box domain-containing protein   at2g35930  -1.63 205.5 
   asparagine synthetase 1    at3g47340  -1.74   75.5 
 
Transferase activity  glutathione S-transferase (GSTF6); phi class  at1g02930  -2.10   62.9 
   glutathione S-transferase (GSTF7); phi class  at1g02920  -2.88     7.6 
   branched-chain amino acid amino transferase 2 at1g10070  -1.60 113.8 
 
Nutrient reservoir activity patatin     at2g26560  -1.81   84.8 
 
Kinase activity  serine / threonine protein kinase 19  at3g08720  -1.55 249.8 
 
Molecular function unknown hypothetical protein no ATG start  at3g09922  -2.15   33.6 
   expressed protein    at2g25510  -1.99   96.9 
   expressed protein no ATG start   at5g03545  -2.72   16.8 
   expressed protein    at5g42530  -2.01 147.4 
   expressed protein    at4g31570  -2.21   45.6 
   expressed protein    at1g69890  -1.73   79.9 
   expressed protein    at5g20790  -2.33   32.7 
   VQ motif-containing protein   at2g22880  -1.83   57.3 
   glycine-rich protein    at1g07135  -1.53 167.4 
   glycine-rich protein    at3g04640  -1.81   73.9 
   glycine-rich protein    at2g05540  -1.85   47.9 
   glycine-rich protein    at2g05380  -1.59 146.7 
   integral membrane family protein   at4g15610  -1.58 139.7 
   gibberellin-responsive protein   at1g22690  -1.88   51.5 
   gibberellin-regulated protein (GASA1)  at1g75750  -1.70   93.7 

dehydrin (RAB18)    at5g66400  -1.70   81.1 
   unknown protein – similar to glycosyltransferase at2g41640  -1.54 185.8 
   patatin-like protein 8     at4g29800  -1.52 198.7 
   phosphate-responsive protein   at5g64260  -1.52 221.0 
   phosphate-responsive protein   at1g35140  -1.58 131.5 
   similar to LITAF-domain containing protein  at5g13190  -1.54 293.4 
 
Transcription factor activity DRE-binding protein    at1g12610  -1.74 116.8 
   AP2 domain-containing transcription factor  at4g34410  -2.01   50.4 
   zinc finger (C2H2 type) protein   at3g46090  -1.51 191.2 
   zinc finger (C2H2 type) protein   at3g46080  -1.59 178.8 
   WRKY family transcription factor 33  at2g38470  -1.63 157.9 
   WRKY family transcription factor 53  at4g23810  -1.55 278.3 
   WRKY family transcription factor 40  at1g80840  -1.88   70.9 
   NAC domain-containing protein   at5g08790  -1.53 238.7 
 
Senescence-related  senescence-associated family protein  at5g66040  -1.55 164.0 
   senescence / dehydration-associated protein  at2g17840  -1.60 256.9 
   senescence-associated protein (SEN1)   at4g35770  -1.59 123.9 
   SRG3 (senescence-related gene 3)  at3g02040  -2.65   11.0 
 
Transporter activity  MATE efflux family protein   at1g61890  -1.80 108.3 
 
Galactolipid biosynthesis monogalactosyldiacylglycerol synthase type C at2g11810  -1.78 130.5 
 
Electron transport  cytochrome p450 family 94 subfamily B  at3g48520  -1.56 249.8 
 
Guanosine tetraphosphate RSH 2 (RELA-SPOT HOMOLOG)   at3g14050  -1.52 188.7 
metabolism 
 
N-terminal protein  band 7 family protein    at3g01290  -1.54 253.4 
myristoylation 
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Table 1.3.  Comparison of microarray expression data with RT-PCR data from 
arsenate-treated Arabidopsis thaliana.  
 
       Microarray data RT-PCR data 
Gene id  gene name    ratio P-value  ratio P-value 
 
           
at2g28190  superoxide dismutase [Cu-Zn], chloroplast (CSD2) 4.58 0.0006  3.89 <0.001 
 
at1g12520  superoxide dismutase copper chaperone  3.16 0.0006  6.67 <0.001  
 
at1g08830  superoxide dismutase [Cu-Zn] (SODCC) / (CSD1) 2.38 8.4 e-5  4.72 <0.001 
 
at4g25100  superoxide dismutase [Fe], chloroplast (SODB) 0.23 0.0001  0.27 <0.001 
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Table 1.4.  Comparison of Arabidopsis thaliana genes differentially expressed in 
response to both arsenate and Pi starvation*.   
 
Locus  Gene ID     As (V) stress response      Pi starvation response * 
         
at1g08830 CuZn SOD (CSD1), chloroplast   induced    induced 1 
at5g61650 cyclin-dependent protein kinase   induced    induced 1 
at1g54010 myrosinase-associated protein   induced    induced 1 
at1g54000 myrosinase-associated protein   induced    induced 1 
at2g05510 glycine-rich protein    induced    induced 1 
at4g15740 C2-domain-containing protein   induced    induced 1 
        
at3g49120 peroxidase     repressed  induced 1 
at5g64120 peroxidase     repressed  repressed 1  
at1g72520 lipoxygenase    repressed  induced 1 
at1g26380 FAD-binding domain protein   repressed  induced 1 
at4g31500 cytochrome p450 83B1   repressed  induced 1 
at5g01600 ferritin 1 (FER 1)    repressed    induced 1 
at5g27420 zinc finger (C3HC4 type) protein   repressed    induced 1 
at1g73010 phosphoric monoester hydrolase   repressed  induced 1, 2 
at3g17790 acid phosphatase type 5 (ACP5)   repressed  induced 1 
at1g17710 phosphoric monoester hydrolase   repressed  induced 1, 2 
at4g19810 glycosyl hydrolase family 17   repressed    induced 1 
at5g20250 glycosyl hydrolase family 36   repressed    repressed 1 
at4g30280 xyloglucan endotransglucosylase   repressed    induced 1 
at5g06860 polygalacturonase inhibitory protein  repressed  induced 1 
at3g04720 hevein-like protein (HEL)   repressed    induced 1 
at1g32970 subtilase family protein   repressed  induced 1 
at2g26560 patatin     repressed  induced 1 
at3g08720 serine / threonine protein kinase 19  repressed   induced 1 
at1g19020 expressed protein    repressed   induced 1 
at2g04460 expressed protein    repressed  induced 1, 2 
at2g15890 expressed protein    repressed  repressed 1 
at5g20790 expressed protein    repressed  induced 1 , 2 
at4g23810 WRKY53 transcription factor   repressed  induced 1 
at3g02040 SRG3 (senescence-related gene 3)  repressed  induced 1, 2 
 glycerophosphodiesterase family        
at2g11810 monogalactosyldiacylglycerol   repressed  induced 1, 2 
 synthase type C       
  
 
* microarray data generated by others that investigated transcriptional responses to Pi starvation  

1 (Mission et al., 2005) 
2 (Morcuende et al., 2007) 
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Control   As (V)-stressed 
 

     
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1.  Phenotype of arsenate stress in Arabidopsis.  Arabidopsis thaliana 
“Columbia” control plants grown for 10 days on MS medium containing either 0 µM As 
(V) or 100 µM arsenate.  Graph depicts Arabidopsis thaliana root length at 10 days of 
growth on medium supplemented with various As (V) concentrations.     
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Figure 1.2.  SOD activity in Arabidopsis thaliana ‘Col’ grown on medium 
containing 100 µM potassium arsenate.  A, superoxide dismutase activity without 
inhibitors, B, Gels were preincubated with KCN (which inhibits CuZn SOD), C, H2O2 
added as an inhibitor (which inhibits both CuZn SOD and Fe SOD).  Lane 1, purified 
bovine SOD positive control. Lane 2, control plants harvested at 7 days, Lane 3, arsenate-
treated plants harvested at 7 days. Lane 4, control plants harvested at 10 days, Lane 5, 
arsenate-treated plants harvested at 10 days.  Lane 6, control plants harvested at 13 days, 
Lane 7, arsenate-treated plants harvested at 13 days.   
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A 

 
 
B 

 
 
Figure 1.3.  Nitroblue tetrazolium staining detects lower concentrations of 
superoxide in leaves of arsenate-treated Arabidopsis plants.  A, control leaves at 10 
days.  B, leaves from plants grown on 100 µM arsenate at 10 days.    
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A  

B  

Figure 1.4.  Functional characterization of differentially expressed A. thaliana genes 
in response to arsenate stress.  A, gene ontology for genes induced above 1.5-fold. B, 
gene ontology for genes repressed 1.5-fold.  All differentially expressed genes met a 
significance criteria of P<0.001 and had an FDR of < 1%.    
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Figure 1.5. Microarray quality control for chips used in this study. The top graph 
shows the M vs. A plot for normalized ratio of all six microarray slides. M vs. A plot is a 
scatter plot of logarithm transformed ratios M = log2 (R/G) plotted against average 
logarithm transformed intensity multiples A = log2 (R*G)/2, where R and G represent the 
fluorescence intensities in the Cy3 and Cy5 channels, respectively. The bottom graph 
shows a histogram of distribution of logarithm 2 transformed ratios.  
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Towards engineering an As-specific phytosensor utilizing 
genetic elements of the prokaryotic ars operon 
 



 60

Introduction 
 

Prokaryotic genes of the ars operon have evolved to confer resistance to arsenic 

in bacteria. The molecular mechanisms of this genetic system have been well 

characterized in both Gram-negative and Gram-positive bacteria (Mukhopadhyay et al., 

2002; Diorio et al., 1995; Xu et al. 1997; Xu and Rosen, 1997; Cai and DuBow, 1996).  

Genome sequencing projects have shown that the ars operon is not only ubiquitous 

among prokaryotes, but similar systems have also been discovered in eukaryotes (e.g., 

Saccharomyces cerevisiae) (Rosen, 1999). Present in both chromosomes and plasmids, 

ars operons encode for arsenic-responsive regulatory elements (the arsp promoter and a 

trans-acting arsR repressor protein), a cytoplasmic reductase (arsC) that reduces As (V) 

to As (III), and a transmembrane efflux pump (arsAB) that pumps As (III) out of the cell.  

In the absence of As (III) or As (V), the arsR repressor protein binds to the ars 

promoter region, blocking transcription of the ars operon.  When As (III) is present, it 

binds to cysteine thiolates of arsR, which then dissociates from the promoter, permitting 

transcription.  Transcriptional activity of the ars operon depends on the concentration of 

As (III) (Cai and DuBow, 1996). Arsenite-dependent induction of the ars operon has 

been demonstrated in the metal-reducing facultative anaerobe Shewanella sp. Strain 

ANA-3 (Saltikov and Newman, unpublished data). These authors constructed an arsp-gfp 

transcriptional fusion that showed an increase in fluorescence upon increasing As (III) 

concentration.  Several authors have developed highly sensitive bacterial As-sensing 

systems utilizing the specificity of the ars operon (Cai and DuBow, 1997; Ramanathan et 
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al., 1998), thus demonstrating the potential for employing such a system for the specific 

detection of As in contaminated media.   

Engineering plants to express prokaryotic sequences requires a promoter that is 

recognized by the transcriptional machinery of the plant to effectively drive transcription 

in vivo. Dhankher et al. (2002) demonstrated that prokaryotic genes of the ars operon can 

be used to engineer plants for increased tolerance and hyperaccumulation of arsenic. The 

researchers transformed Arabidopsis plants with the Escherichia coli arsC gene driven by 

a light-induced soybean rubisco promoter (SRS1p) that showed strong expression in the 

leaves. While these plants were hypersensitive to arsenate, moderate tolerance was 

observed in Arabidopsis plants expressing the E. coli gene encoding gamma-

glutamylcysteine synthetase (gamma-ECS) driven by a strong constitutive actin promoter 

(ACT2p). Surprisingly, plants expressing SRS1p/arsC and ACT2p/gamma-ECS together 

showed increased As-tolerance and accumulated 4- to 17-fold greater fresh shoot weight 

and 2- to 3-fold more arsenic per gram of tissue than wild type or plants expressing 

gamma-ECS or arsC alone (Dhankher et al., 2002). 

While most plant genetic engineering efforts focus on identifying novel genes for 

development of more effective As phytoextraction strategies, similar engineering 

approaches may enable phytosensor technologies, (i.e. transgenic plants that utilize 

reporter genes (e.g., green fluorescent protein, gfp) fused to contaminant-specific 

inducible promoters to allow for real-time contaminant-specific monitoring).  A major 

advantage of using plants to detect the presence of As in soil at a contaminated site is that 

only the soluble species As (V) and As (III) are taken up by plant roots, therefore plant-

based detection would represent a reflection of the bioavailable levels of As present.  The 



 62

results from employing gfp in plant genetic transformation studies that GFP is a reliable 

indicator of recombinant protein synthesis in transgenic plants, thus allowing it to 

become a standard tool in biological and biotechnological research (Stewart, 2001). 

Unlike other reporter genes (i.e., firefly luciferase and gus), gfp requires no cofactors or 

substrates, can report in real-time, and may potentially be remotely sensed (Kooshki et 

al., 2003; Stewart et al. 2005).   

 In this study, we aim to engineer a phytosensor for rapid, cost-effective in situ 

monitoring and detection of bioavailable arsenic in As-contaminated sites.  Our initial 

strategy was to clone DNA elements from the well characterized Escherichia coli ars 

operon. Recalling that in the presence of arsenic, the arsR repressor protein dissociates 

from the arsp promoter, transgenic plants constitutively expressing the arsR repressor 

gene and containing the arsp promoter driving expression of the gfp gene may enable the 

As-dependent expression of the fluorescent reporter.  The following research describes 

our attempts at engineering such a system, first by cloning the arsp promoter from E. coli 

in a transcriptional fusion to the gfp gene and characterizing the gfp expression from 

those plants in order to select the highest expressors.   

Due to the low levels of GFP protein expression, an alternative strategy was 

implemented that involved the site-directed mutagenesis of the CaMV 35S promoter to 

contain the DNA-binding domain of the E. coli arsR repressor protein.  Our goal here 

was to enable constitutive gfp expression in plants with potential for arsR binding to 

repress gfp expression completely in the absence of As, thereby allowing As-specific gfp 

fluorescence.  Simultaneously, we cloned the arsR repressor from E.coli that binds to the 

arsp promoter into tobacco. Once these plants were characterized, crosses were made to 
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introduce the mutated CaMV 35S promoter-driven gfp gene into a constitutively 

expressed arsR genetic background in order to determine if the presence of the repressor 

protein would diminish gfp expression.  A separate arsR gene was synthesized and 

introduced into tobacco for optimized plant codon usage.  Our transient expression 

experiments suggest that the binding of the arsR may occur to some degree, however not 

to the extent at which the gfp signal is completely repressed.  We discuss the implications 

of these data, suggest further characterization to obtain more quantitative assessments, 

and highlight some As-induced physiological processes that may disrupt the efficacy of 

this approach.     

 

 

Results 
 

Transforming of the arsp promoter into tobacco 
 
 Various cloning strategies were employed to generate transgenic tobacco plants 

with the arsp promoter from E. coli driving expression of the gfp gene (Figure 2.1), 

however gfp expression was only detectable when the construct included a transcriptional 

enhancer from the Cauliflower Mosaic Virus 35S sequence.  GFP levels were quantified 

by ELISA and found to be quite low compared to a high-expressing gfp line pBIN19-

mgfp5er (Table 2.1).  Because of the low levels of gfp expression observed in these 

transgenic plants, a new strategy was implemented that involved engineering of the arsR 

DNA binding domain into the CaMV 35S promoter. 
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Site-directed mutagenesis of the CaMV 35S promoter does not affect gfp expression 
 
 Transient expression assays demonstrated that introducing the three-nucleotide 

mutation near the TATA box of the CaMV 35S promoter (Table 2.2) does not affect gfp 

expression (Figure 2.2) and in fact, demonstrated that the resulting GFP fluorescence was 

quite similar between the two constructs.   This observation allowed us to conclude that 

pMDC110c would serve as an effective control, thereby enabling comparisons of GFP 

fluorescence between mutated and non-mutated constructs.      

 

Transgenic tobacco crosses (pMDC32-arsR x pMDC11035smut) generate progeny with 
pMDC32-arsR and pMDC110 transgenes 
 
 Three transgenic tobacco lines expressing pMDC32-arsR, three transgenic 

tobacco lines expressing pMDC11035Scontrol and three transgenic lines expressing 

pMDC11035Smutated were selected at random and grown in the greenhouse. GFP 

expression level was determined by sampling young leaves at the four leaf stage and 

observing green  fluorescence under blue light at 200x magnification. Each image shown 

was taken at 4.5s exposure time except the positive pBIN19-mGFP5-ER positive control, 

which was taken at 1.9s exposure time (Figure 2.3). Paternal crosses from high 

expressing GFP lines (pMDC11035Sc-6; pMDC11035Smut-15) were made to two 

different maternal lines representing the highest expressors, as indicated by northern blot 

(Figure 2.4) for a total of four crosses.  The resultant progeny were screened under the 

epifluorescence microscope to assure successful genomic insertion of the gfp transgene.  

Interestingly, more variation in GFP fluorescence was observed among progeny of the 

mutated 35S-gfp parents, indicating that some of the progeny may have lower gfp 
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expression as a result of arsR binding to the mutated 35S promoter.  Eight individuals 

from the progeny of each respective cross will be self-pollinated and subject to further 

characterization (i.e., GFP ELISA, Southern analysis).   

 

Synthesis of a novel arsR gene for optimal plant expression and nuclear targeting 
 
 In order for this phytosensor strategy to be functional, the arsR protein must be 

translated into a functional protein and this protein must localize to the nucleus to 

effectively bind to the appropriate motif for repression of gfp transcription.  Therefore, 

we generated a synthetic arsR (Blue Heron Biotechnology, Bothell, WA) that was codon-

optimized for expression in plants and attached a 15-amino acid nuclear localization 

signal (C2NLS; Grebenok et al., 1997) to ensure nuclear targeting of the arsR to the 

respective DNA binding domain.       

 

Transient expression of arsR from E. coli and codon optimized arsR in tobacco reveals 
localization 
 
 To test the effectiveness of the nuclear localization tag (Grebenok et al., 1997) 

engineered to promote binding of arsR to the DNA binding domain, we produced arsR-

gfp fusions to assess if there was indeed nuclear targeting for both native and synthetic 

arsR proteins (Figure 2.5). The results suggest that there is faint nuclear targeting of the 

arsR repressor protein from E. coli in the GFP fusion, however nuclear targeting does not 

seem to occur in the codon-optimized construct.  Instead, the fusion protein seems to be 

cytoplasmic and targeted to the endoplasmic reticulum. This indicates a potential problem 
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to solve before optimizing a construct to utilize for fern transformation. However, there 

seemed to be more GFP attenuation in the arsR-codon optimized co-infiltrations than was 

observed for co-infiltrations containing the native arsR protein (Figure 2.6).   

Repression is suggested by lower transient expression of pMDC11035Smut in 
transgenic tobacco expressing arsR  
 
 Agrobacterium infiltrations of pMDC11035Smut versus pMDC11035Scontrol 

were performed to determine if transient expression of gfp would be lower in the 

presence of the arsR repressor protein, thereby suggesting the binding of the arsR protein 

to the DNA binding motif within the 35S promoter.  Nicotiana tabacum allows for 

effective comparisons of the two constructs, as the infiltrations become 

compartmentalized in sectors between leaf veins (Figure 2.7).  Therefore, this 

experimental setup was used for T2 homozygous lines expressing the native arsR gene 

(Figure 2.8), as well as the T 1 trangenic lines expressing the arsR gene codon-optimized 

for plant expression (Figure 2.9).  Figure 2.8 and Figure 2.9 show three separate 

replications of infiltration comparisons between the mutated and the control 35S 

constructs.  Both experiments reflect similar results, in that the level of gfp fluorescence 

appears lower in sectors of leaf representing the pMDC35Smut infiltration compared to 

the non-mutated control infiltrations.  However, these observations were less obvious 

under blue light illumination using the lower magnification of the dissecting scope. 

Nevertheless, gfp expression still occurs to a great extent in these infiltrations, suggesting 

that our OD600 was too high for detecting the effect, if any, of the arsR repressor on the 

expression of gfp in the mutated constructs.  Therefore, repeat experiments using lower 

OD600 is warranted.   
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Discussion 
 
 The concept of harnessing the specificity of the ars operon for the purposes of 

developing an As-specific biosensor (but not phytosensor) has been previously reported 

(Ramanathan et al., 1998; Cai and DuBow, 1997).  Ramanathan et al. (1997) engineered 

a chemiluminescent bacterial system of As detection using β-galactosidase that utilized 

the As-specific dissociation and repression of the E. coli arsR regulatory protein.  These 

authors measured β-galactosidase activity by chemiluminescence and demonstrated 

detection of antimonite/arsenite at sub-picomolar concentrations.  A similar strategy by 

Cai and DuBow (1997) utilized a luciferase transcriptional gene fusion (arsB::luxAB) 

that demonstrated As (V)-specific luminescence in a dose-dependent manner.  It was 

shown that this system had detection limits near 10 ppb and that cells exhibited higher 

induction when starved for phosphate, an ion of which arsenate is a competitive analog.  

Despite these exciting findings, these approaches are limited by the presence of a 

chemical substrate and the limitations inherent in a bacterial system; more susceptibility 

to contamination by other organisms and the dependence of labor intensive, laboratory-

based culture maintenance.  Employing a sentinel plant to detect As would not only 

report the presence of As in real time in contaminated media, but would require little 

maintenance and no chemical substrates due to the nature of the fluorescent GFP.  

Additionally, incorporating such a system into a perennial As-hyperaccumulator (i.e. 

Pteris vittata) would enable As detection in combination with As phytoextraction.  The 

perennial nature of the plant would allow As removal with each harvest until the GFP 

signal was no longer detected, thus indicating when levels of bioavailable As were below 

the levels of detection.     
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 The most promising candidates for As-phytosensor proof-of-concept will 

certainly be individuals that are homozygous for both arsR and the mutated 35S-gfp, but 

that also exhibit an As-inducible GFP fluorescence.  It is clear from the results of this 

study that transient expression assays will not be effective determinants of whether arsR 

protein produced by plants bind to an engineered DNA binding domain, or for that 

matter, whether the arsR protein is even synthesized and/or functional in plants.  At least 

these experiments should be repeated using lower OD600 values in attempts to capture a 

threshold vector concentration where arsR may effectively bind to the mutated 

constructs.  Nevertheless, the obvious hurdles to overcome in this project will be to 1) 

obtain purified plant-synthesized arsR protein , 2) demonstrate binding of plant-produced 

arsR to the engineered CaMV 35S promoter, and 3) if ideal double-transgenic individuals 

are eventually identified that demonstrate As-induced gfp fluorescence, then 

experimentation will be needed to show this response is specific for arsenite.      

 The increased variation in GFP fluorescence observed among progeny of the 

mutated 35S-gfp parents may be indicative of lower gfp expression as a result of arsR 

binding to the mutated 35S promoter in these progeny.  Of course, the other possibility is 

that the gfp gene was not incorporated into the genome, therefore we have selected a 

subset of progeny from these crosses to capture the observed variation in gfp expression 

by testing for the presence of the gfp gene.   GFP quantification (i.e. ELISA) in 

combination with Southern analysis of homozygous individuals (via self-pollination) 

from the progeny of each respective cross should allow us to determine the underlying 

causes of the observed variation in GFP fluorescence.   
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 Attempting to engineer a sensor for arsenic in plants is not without inherent 

difficulties and challenges due to the evolved mechanisms that plants employ for arsenic 

tolerance, transport, and detoxification.  For example, it is known that As (V) is taken up 

through the high-affinity phosphate transporters, reduced by either arsenate reductase or 

reduced glutathione to As (III), and subsequently bound by phytochelatins and 

compartmentalized in the vacuole (Meharg and McNair, 2002).  Therefore, it would be 

unlikely that arsenite would localize to the nucleus unless either the phytochelatin and/or 

glutathione concentration was compromised or the arsenite concentration in the cell was 

sufficiently high.  From an engineering standpoint, perhaps an RNAi approach to silence 

phytochelatin synthase would enable higher concentrations in the cell.  This approach 

was recently demonstrated by Dhanker et al. (2006) to be effective in inducing As 

hyperaccumulation in A. thaliana.  These authors identified an arsenate reductase in A. 

thaliana (ACR2) that had moderate sequence homology to the yeast arsenate reductase 

and silenced its expression using RNAi.  The resulting knockdown lines accumulated 60 

to 20-fold more As in the shoot compared to wild-type plants.  These transgenic lines 

were sensitive to high concentrations of arsenate, but not arsenite.  It was clearly 

demonstrated that the ACR2 gene was involved in blocking the long-distance transport of 

As from root to shoot.  If we can show that arsR binding to the mutated 35S promoter 

occurs in our transgenic tobacco plants, then combining the RNAi approach to induce As 

hyperaccumulation in those lines would likely improve the sensitivity of the system or at 

least increase the above-ground cellular concentration of As, thereby increasing the 

likelihood of As-induced dissociation of the arsR repressor from the DNA binding motif.              
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Materials and methods 
 

Plants and growth conditions 
 
 Nicotiana tabacum cv. Xanthi and Nicotiana benthamiana were used for 

Agrobacterium-mediated transformation. To generate stable transformants, seeds were 

surface sterilized, grown under aseptic conditions in a growth chamber at 25ºC and a 16 h 

photoperiod, and 4-week old leaf tissue was transformed using the Agrobacterium 

tumefaciens leaf disc transformation method (Horsch et al., 1985). Transgenic shoots and 

callus were cultured on a modified MS medium (Murashige and Skoog, 1962) under 

hygromycin selection.  Hygromycin-resistant transgenic plants were transplanted to soil, 

allowed to self-pollinate in the greenhouse, and brought to the T2 generation to ensure 

homozygosity.  All self- and cross pollinations were performed in the greenhouse. After 

crossing, plants were allowed to set seed in the greenhouse.        

 

DNA and RNA analyses 
 
 Genomic DNA was isolated from transgenic tobacco plants using a CTAB 

method (Stewart and Via, 1993).  Total RNA was isolated from plants using Trizol ® 

reagent (Invitrogen, Carlsbad, CA) according to manufacturer’s protocol. Ten 

micrograms of total RNA was separated on a 1.2% formaldehyde agarose gel.     
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Cloning of the arsp promoter and the arsR gene 
 
 Gateway®-compatible cloning vectors produced by Curtis and Grossniklaus 

(2003) pMDC110, pMDC32, and pMDC201 were provided by Mark Curtis (Institute of 

Plant Biology, Zurich, Switzerland) and used for cloning of the arsp promoter and the 

arsR gene. The arsp promoter was amplified from E.coli K-12 (NCBI accession NC 

000913) genomic DNA with forward primer containing the sequence 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTACACATTCGTTAAGTCAT-3’ and 

the reverse primer contained the sequence 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTATTGCGCTCCTGATTGTT-3’. The 

region between -209 and -46 of the 35S promoter has been used as an enhancer, 

regardless of its position and orientation, to activate the transcription of promoters in both 

monocots (Omirulleh et al., 1993) and dicots (Fang et al., 1989).  This particular 

sequence was used as an enhancer to activate transcription of the arsp promoter in our 

engineered plants. The arsR gene was also amplified from E. coli K-12 genomic DNA 

using forward primer containing the sequence 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTAAGCTTATGTCATTTCTGTTACC

C-3’ and the reverse primer contained the sequence 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTATTAACTGCAAATGTTCTTACT-

3’. To amplify the arsR gene minus the stop codon for gfp fusion construct the reverse 

primer contained the sequence 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTAACTGCAAATGTTCTTACT-3’. The 

products of BP clonase and LR clonase reactions were used to transform competent E. 
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coli strain DH5α using heat shock.  DNA was isolated from single colonies, confirmed 

via sequencing, and introduced into Agrobacterium tumefaciens strain GV3850 for leaf 

disc transformation.   

  

CaMV 35S promoter mutation 
 
 To engineer the arsR DNA binding domain into the CaMV 35S promoter, three 

mismatched nucleotides were incorporated into the reverse primer. Forward primer 

(CaMV35Sup) contained the sequence 5’-AGATTAGCCTTTTCAATTTCAG-3’ and the 

non-mutated reverse primer (CaMV35Sdwn) contained the sequence 5’-

CGTGTTCTCTCCAAATGAAA-3’.  The reverse primer designed to include the 

mismatch for mutation (CaMV35SmutDWN) was 5’-

CGTCAAATCTCCAAATGAAATGAACTT-3’ (mismatched nucleotides underlined). 

Both mutated and non-mutated PCR products were cloned into pcr8/GW/TOPO using the 

TA cloning kit (Invitrogen, Carlsbad, CA) and resulting vectors were used to transform 

SE DH5α competent E. coli cells (Invitrogen, Carlsbad, CA).  Sequence-confirmed 

plasmid DNA was cloned into pMDC110 using Gateway LR clonase (Invitrogen, 

Carlsbad, CA) and subsequently used to transform Agrobacterium tumefaciens strain 

GV3850 for tobacco leaf disc transformation.             

  

Transient expression assays 
 
 Transient expression assays were performed in N. tabacum and N. benthamiana 

via infiltration with a needleless syringe according to Sparkes et al (2006).  Each 
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infiltration consisted of 200 µL of Agrobacterium (strain EHA101) transformed with 1 

µg of DNA.  Transient expression of gfp was observed first under a dissecting 

microscope and subsequently under an epifluorescence microscope using blue light 

excitation with a FITC filter.  Images were recorded using Q capture imaging software 

(Quantitative Imaging Corporation, British Columbia, Canada).    
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Table 2.1. Green fluorescent protein (GFP) expression in transgenic tobacco lines as 
determined by ELISA assay. 
 
Transgenic Line       Event No.          Concentration   Total Soluble Protein  

 ng/µL           % 
35Se arspmin   10   0.0034     0.0052 
35Se arspmin   11   0.0036     0.0061 
35Se arspmin   12   0.0004     0.0007 
35Se arspmin   13   0.0056     0.0096 
pBIN19 (mGFP5er)  NA   0.27    0.28 
Xanthi control   NA   0     0 

 

 

Table 2.2.  Site-directed mutagenesis of three nucleotides introduced the arsR DNA 
binding motif within the CaMV 35S promoter region.  The TATA box is underlined 
and the arsR binding motif is highlighted and underlined in red.   
 
Native CaMV35S promoter sequence        
 tatataaggaagttcatttcatttggagagaacacgaagggc 
 
Mutated CaMV35S promoter sequence 
 tatataaggaagttcatttcatttggagatttgacgaagggc 
 
 

    

 

Figure 2.1.  Constructs generated to enable gfp expression driven by the prokaryotic 
arsp promoter in N. tabacum. Various combinations of constructs shown were cloned 
with three different lengths of the arsp promoter.  The combination highlighted in red 
indicates the construct with the highest level of gfp expression.   
 



 79

 

 

Figure 2.2.  Site-directed mutagenesis of CaMV 35S promoter does not affect GFP 
expression in pMDC110.  A, transient expression after Agrobacterium infiltration of 
pMDC11035Scontrol in N. benthamiana. B, transient expression after Agrobacterium 
infiltration of pMDC11035Smutated in N. benthamiana.  Images were taken at the same 
exposure length and infiltrations were performed at the same OD600 (0.3).  



 80

 

 

Figure 2.3.  Selection of high-expressing GFP tobacco lines for introduction of 35S-
mutated-gfp construct into a high-expressing arsR tobacco line.  A (pMDC11035Sc) 
and B (pMDC11035Smut), are images taken from leaves of the highest expressors of gfp 
that were selected as paternal parents to cross with homozygous arsR-native tobacco 
lines. C-F show that significant variation in gfp expression exists among transgenic 
events (i.e. pMDC110control and pMDC110mut) G, represents a positive control 
(pBIN19-mGFP5-ER) with an unaltered 35S promoter controlling the mGFP5-ER gene 
and H, shows an image of a non-transgenic control plant.  The similar expression levels 
observed in the highest expressing events of mutated and control promoters indicates that 
the mutation does not affect expression in the absence of the repressor protein.  
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    1               2               4              6        neg. control 

 

Figure 2.4.  Northern blot of T2 transgenic tobacco lines showing high transcript 
abundance for the arsR gene from E. coli.   
 

pMDC201arsRnative     pMDC201arsRcodonoptimized 

   
 
Figure 2.5. Transient expression of arsR-gfp fusion constructs in tobacco. Both 
constructs clearly indicate that each repressor is cytoplasmic and located in the 
endoplasmic reticulum, however only faint nuclear localization is observed for the native 
arsR fusion, whereas the codon-optimized arsR does not seem to be nuclear localized.  
These results are contrary to our expectations, as the codon-optimized arsR contains a 
nuclear localization tag.    
 
 
 
 
 
 



 82

 
 
Figure 2.6. Co-infiltrations of pMDC110 35S and pMDC32-arsR constructs.  These 
comparative groups of images were taken at the same exposure length and magnification 
48 hrs post infiltration. A/B, taken at 286 ms exposure and 100X magnification, C/D, 
taken at 1.9 s exposure and 40X magnification, and E/F were taken at 351 ms exposure 
and 100X magnification.  These coupled comparisons represent 200 μL infiltrations. 
Each construct has a finalOD600 of 0.3.  In these cases, non-transgenic tobacco plants 
were infiltrated with the mutated 35S or control 35S GFP promoter construct in 
combination with an arsR construct. 
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Figure 2.7.  Experimental design for comparisons of transient expression in 
transgenic tobacco line constitutively expressing the arsR gene.  Agrobacterium 
infiltrations of M, pMDC110-mutated 35S and C, pMDC110-control native 35S enabled 
high statistical power and adjacent contrasts to determine if the plant synthesized arsR 
protein repressed gfp expression.   
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Figure 2.8.  Transient expression of gfp as a result of Agrobacterium infiltrations of 
transgenic tobacco expressing the arsR-native construct.  A1-C1 represent biological 
replicates of pMDC11035Scontrol infiltrations, whereas A2-C2 are respective 
infiltrations of the pMDC11035Smutated construct on the same tobacco leaf.  D and E 
show transient gfp expression in a non-transgenic tobacco leaf from infiltrations of 
pMDC11035Scontrol and pMDC11035Smutated, respectively.     
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Figure 2.9.  Transient expression of gfp as a result of Agrobacterium infiltrations of 
transgenic tobacco expressing the arsR-codon optimized construct.  A1-C1 represent 
biological replicates of pMDC11035Scontrol infiltrations, whereas A2-C2 are respective 
infiltrations of the pMDC11035Smutated construct on the same tobacco leaf.  D and E 
show transient gfp expression in a non-transgenic tobacco leaf from infiltrations of 
pMDC11035Scontrol and pMDC11035Smutated, respectively.     
 
 
 
 
 
 
 
 
 
 
 
 



 86

Towards genetic transformation of Pteris vittata and Pteris 
cretica:  Transient expression of green fluorescent protein and 
β-glucuronidase in Pteris cretica and PCR amplification of 
Pteris vittata rbcS promoter sequence from Pteris cretica 
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Abstract 
 
 Currently, little is known about the potential for genetic transformation in ferns.  

The recent discovery of arsenic hyperaccumulation in members of the Pteris genus has 

prompted investigations to elucidate the underlying mechanisms of this interesting trait.   

An efficient genetic transformation protocol would facilitate these endeavors.  In efforts 

to develop a transformation method for Pteris vittata and Pteris cretica, two known As-

hyperaccumulators, experiments were conducted to optimize callus induction and 

regeneration of transformants.  The efficacy of various transformation methodologies (i.e. 

biolistic bombardment, Agrobacterium-mediated transformation) were evaluated and low 

levels of transient expression were observed using constructs containing either GFP or 

GUS driven by CaMV 35S and maize ubiquitin promoters, respectively.  This prompted 

us to pursue cloning of a partial RUBISCO promoter sequence (rbcS) from Pteris vittata 

and attempts to sequence the entire Pteris vittata rbcS promoter using an inverse PCR 

approach.  Poor genomic DNA yields forced us to focus on PCR products amplified from 

Pteris cretica genomic DNA.  Our efforts have identified a putative PCR product that 

may represent an rbcS promoter sequence from Pteris cretica and enabled new 

approaches toward the first genetic transformation method for a fern species.  
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Introduction 
 

Arsenic hyperaccumulation has recently been discovered in the fern species Pteris 

vittata (Ma et al., 2001), and as a result, has generated intense research efforts towards 

elucidating the mechanisms by which this process occurs.  While several groups have 

demonstrated the efficacy of this high biomass crop for field-scale remediation of As-

contaminated sites (Wei et al., 2006; Wei et al., 2007; Wang et al., 2006; Wang et al., 

2007), others have studied the molecular mechanisms involved in As hyperaccumulation 

(Wang et al., 2002; Dong 2005; Gumaelius et al., 2004; Caille et al., 2005; Pickering et 

al., 2006; Ellis et al., 2006).    

Previous studies have reported on tissue culture systems for Pteris vittata and 

Pteris cretica.  Kwa et al. (1991) successfully induced callus formation in Pteris vittata 

pinnae strips using modified MS medium (Murashige and Skoog, 1962) containing the 

synthetic auxin 2,4-D. Furelli and Garcia (1987) developed a protocol for callus induction 

and explant regeneration in Pteris cretica.   

Reverse genetic studies are enabled through DNA sequence availability and 

facilitated through tissue culture and efficient genetic transformation methods.  To date, 

there is minmal sequence available for members of the Pteris genus.  Eilenberg et al. 

(1998) provided the RUBISCO gene sequence from Pteris vittata that included a 

characterized, but incomplete promoter sequence. Therefore, the objectives of this study 

were to 1) develop an efficient tissue culture system for Pteris vittata and Pteris cretica, 

2) to test the effectiveness of biolistic bombardment and Agrobacterium-mediated 

transformation methods on these ferns employing a 35S-gfp construct and a maize 
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ubiquitin-GUS construct, and 3) to capture the complete sequence of the Pteris vittata 

rbcS promoter using an inverse PCR approach using sequence specific primers for the 

known region (Eilenberg 1998).  In this paper, we also discuss new strategies for the 

genetic transformation of ferns (i.e. protoplast transformation).          

 

Results 
 

Optimization of Pteris tissue culture  
 
 We demonstrated successful regeneration of mature sporophytic Pteris cretica 

and Pteris vittata plants (Figure 3.1) from the induction of undifferentiated callus, 

generation of embryogenic tissue via cytokinin treatment, and subsequent recovery of 

mature plants following growth on medium supplemented with indole acetic acid (IAA) 

through a modified protocol similar to that of Furelli and Garcia (1987).  Although these 

plants are not transgenic, a working protocol for the induction of callus and regeneration 

of mature plants has been established. 

 Antibiotic dose response studies have been performed and glufosinate ammonia 

has emerged as the most likely candidate for use in Pteris transformation.  Pteris calli 

were hypersensitive to hygromycin, whereas kanamycin showed little toxic response in 

developing calli (Table 3.1).  Therefore, bombardments with a vector containing a maize 

ubiquitin promoter driving expression of GUS and a glufosinate selectable marker have 

been employed in bombardment experiments.   
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Transient expression of GFP and GUS via biolistic bombardment 
 
 Results from bombarding Pteris cretica callus have demonstrated very low levels 

of transient expression (Figure 3.2).  Previous bombardments have been performed on 

calli consisting of undifferentiated cells induced by 2,4-D.  However, in order for 

embryogenic tissue to arise from these cells, it is believed that treatment of calli with 

cytokinins is required (Furelli and Garcia 1986).  Bombardments performed on calli 

following treatment for one month with cytokinins were thought to improve efficiency of 

transient expression, but our experiments have not demonstrated this (data not shown).   

 

Agrobacterium infiltration of Pteris cretica 
 
 Observed transient expression in Agrobacterium infiltration of Pteris cretica was 

low and difficult to interpret, as negative controls produced similar types of fluorescence 

observed in infiltrations of GFP-containing constructs (Figure 3.3).  Therefore, the 

observed fluorescence may potentially be a result of autofluorescence of damaged tissue.     

 

PCR amplification of the Pteris vitatta rbcS promoter (partial sequence) 
 
 Seven PCR products were amplified from Pteris cretica genomic DNA using 

sequence specific primers from the Pteris vittata rbcS promoter.  High-yielding, good 

quality genomic DNA has been difficult to obtain from Pteris vittata, therefore we tried 

amplification of Pteris cretica genomic DNA because we could obtain high yields of 

intact genomic DNA from this closely related species.  We were relying on the highly 

conserved nature of the rubisco sequence to enable amplification of the rbcS promoter.  A 
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gradient PCR revealed that 45ºC was the optimal annealing temperature for 

amplification.  A range of genomic DNA concentrations were used as template and all 

yielded 7 to 8 separate PCR products ranging in size from 500bp to 1500bp (Figure 3.4).  

These PCR reactions were excised and gel purified for cloning into vector 

pCR8/GW/TOPO.  According to Pteris vittata sequence, we expected to see a 518bp 

product, therefore we sequenced clones containing a ~500bp product and a ~750bp 

product.  BLAST (NCBI) searches revealed no significant homology, therefore we plan 

to sequence the remaining 5 clones.     

 

 

Inverse PCR strategy to capture the complete Pteris vittata rbcS promoter 
 
 The Pteris vittata rbcS promoter (Figure 3.5) was selected for cloning and 

expression of transgenes in our experiments with Pteris cretica because of its constitutive 

expression and characterized promoter elements (i.e. TATA box, CAAT box, LRE, etc) 

(Eilenberg 1998).  Due to its incomplete sequence, an inverse PCR strategy was designed 

to capture the remaining unknown upstream sequence of the rbcS promoter using long 

and accurate PCR.  These efforts are ongoing due to an unsuccessful cloning of the 

candidate PCR product (Figure 3.6).  Additionally, poor quality genomic DNA 

extractions have prevented us from obtaining rbcS PCR products.   
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Discussion 
 
 The development of an efficient transformation the As hyperaccumulators Pteris 

cretica and Pteris vittata would present an excellent opportunity to study the mechanisms 

involved in As hyperaccumulation.  As a result of the low level of transient expression 

observed in Pteris leaves and callus (Figure 3.2), we conclude that maize ubiquitin and 

CaMV 35S promoters do not effectively drive transcription of transgenes in Pteris cretica 

or Pteris vittata.  Therefore, we have selected the rbcS as a putative candidate for driving 

expression of transgenes in bombarded fern calli.  Attempts are ongoing to obtain quality 

genomic DNA from Pteris vittata, as current efforts have been unsuccessful, perhaps due 

to a lack of PVP in the CTAB buffer.  Once quality genomic DNA is obtained from 

Pteris vittata, our inverse PCR strategy will allow the sequencing of the complete rbcS 

promoter.   

 For the predominant duration of our efforts towards developing an efficient tissue 

culture protocol for callus induction and plantlet regeneration, we have used a modified 

version of the Furelli and Garcia (1987) method of Pteris cretica tissue culture.  The 

biggest problem we have experienced with this system is that the integrity of the calli 

seems to be short-lived and produces a darker green, “mushy” phenotype, one not 

optimal for perpetuating in culture or using for biolistic bombardments.  We are 

continuing to optimize a callus induction method that may produce more rigid callus that 

is lighter in color.  The clarity seen in the callus in Figure 1A is a rare event.  We 

cultivated such pieces that stand out in culture as lighter in color.  Recently, a new paper 

has emerged that describes a tissue culture protocol specific to Pteris vittata (Yang et al. 
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2007) where the authors also demonstrate As hyperaccumulation by callus.   These 

authors present a new method of callus induction that varies from the method of Furelli 

and Garcia (1987), therefore we have begun to experiment with this protocol as well.  

Using both liquid and solid cultures as described by Yang et al. (2007), We have had 

difficultly in replicating their results.  Interestingly, these authors report for the first time 

that Pteris vittata callus was also found to hyperaccumulate As.    

 Another strategy that we have recently begun to employ is the regeneration of 

gametophytes from isolated protoplasts.  Due to the difficulty of genetic transformation 

that seems inherent in this genus, we are attempting to test whether protoplast 

transformation is a feasible alternative.  My objective here would be to transform isolated 

protoplasts and assess their capacity for gametophyte and sporophyte regeneration and 

evaluate their subsequent survival as stable transgenics.  Binding et al. (1992) 

demonstrated that mature plants could be recovered from isolated protoplasts from 

members of Bryophyta, Pteridophyta, and Spermatophyta.  Several members of our lab 

have recently isolated protoplasts from Pteris vittata and Pteris cretica, therefore opening 

the door to begin testing the efficacy of protoplast transformation in these species.      

 

Materials and methods 
 

Plant material  
 
 Spores of Pteris cretica cv. ‘Mayii’ and Pteris vittata provided by Edenspace 

corporation (Dulles, VA) were sterilized in 20% Clorox bleach for two minutes, followed 

by a 70% ethanol wash for two minutes, then washed three times with sterile water. 
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Spores were sown on plates containing solid MS basal medium (Murashige and Skoog, 

1962) and grown at 25ºC and under a 16 h photoperiod until gametophytes developed (~ 

2 months).   

 

Initiation and maintenance of callus  
 
 Gametophytes were transferred in replicates of four to solid MS medium 

supplemented with 5 µM 2,4-Dichlorophenoxyacetic acid (2,4-D) (Sigma) and incubated 

in the dark at room temperature for three weeks.  Upon development of opaque to light 

green calli approximately 0.25 cm in diameter, opaque sectors of callus were subcultured 

on fresh medium containing 2,4-D every two weeks until bombardment.  To evaluate the 

effect of osmotic treatment on transient expression, calli were either placed on callus 

induction medium or callus induction medium containing 0.25, 0.5, 0.75, or 1.0 M 

mannitol 4 hr prior to bombardment until 16 hr after bombardment.    

 

Biolistic transformation experiments 
 
 Calli or 8-week old and 12-week old leaves were placed in replicates of six on 

either callus induction medium or osmotic medium in a PDS 1000/He device (Bio-Rad, 

Richmond, CA).  The plasmid pAHC25 (Christensen and Quail, 1996) containing the bar 

gene and the gusA reporter driven by the maize ubiquitin promoter and containing a nos 

terminator (GUS) was used for bombardment.  We also used another plasmid 

pSKA35Se-gfp that contained a CaMV 35S enhancer element with a 35S minimal 

promoter driving the expression of the gfp gene in a pBluescript® SK+ backbone.  
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Besides osmotic treatment, rupture disk pressure (450, 650, and 900 psi) was evaluated as 

a parameter in order to optimize the bombardment protocol. 2 µg of plasmid DNA was 

precipitated onto 3 mg of 1.0 µm gold (Bio-Rad, Richmond, CA) particles according to 

Klein et al. (1987).  Five microliter samples were spread evenly onto macrocarriers (Bio-

Rad, Richmond, CA).  Tissue was bombarded at a distance of 7 cm from the stopping 

screen at a vacuum pressure of 22 in. Hg.  To visualize transient expression, three 

individual calli or leaves were randomly chosen for GUS activity staining with 2-bromo-

3-chloro-4-indolyl- β-glucuronic acid (X-Gluc) (Jefferson et al. 1987) 48 hr post 

bombardment. The remaining three calli were used for selection of stable trangenics.        

 

Selection and regeneration of transgenic plants 
 
 Dose response curves for glufosinate ammonium (Sigma), Kanamycin (Sigma), 

and Hygromycin (Sigma) were generated by evaluating Pteris cretica callus growth in a 

range between 1-50 µM  glufosinate ammonium, 10-200 mg/L Hygromycin, and 10-300 

mg/L Kanamycin.  These concentrations were selected based on the range of commonly 

used concentrations observed in the tissue culture literature.  Calli health was evaluated 

daily for 14 days (Table 3.1).     

 

Inverse PCR strategy to capture the complete Pteris vittata rbcS promoter 
 
 An inverse PCR strategy was developed in order to obtain a complete sequence of 

the Pteris vittata rbcS promoter based on the published complete coding sequence and 

incomplete promoter sequence (Eilenberg et al. 1998).  Primers were designed according 
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to known restriction sites (XbaI and EcoRV) within the rbcS sequence (Table 3.2) in an 

orientation that would amplify through the unknown sequence between known promoter 

and the upstream ORF.  Five micrograms of genomic DNA was digested with either XbaI 

or EcoRV in a 200µL volume overnight at 37ºC.  Enzymes were heat inactivated (EcoRV 

for 20 min at 80 ºC and XbaI for 20 min at 65 ºC) and 1 microgram of digested DNA (40 

µL from the 5 µg digestion) was subjected to ligation with 5 µL of T4 ligase in a 1000 µL 

reaction volume.  Ligated products were purified with QIAquick PCR purification kit 

(QIAGEN, Valencia, CA) and subjected to LA PCR (Takara Bio Inc., Madison, WI).     

 

Amplification of Pteris vittata rbcS promoter sequence  
 
 Primers for the amplification of the Pteris vittata rbcS promoter sequence were 

designed for cloning into TOPO cloning vector pCR8/GW/TOPO (Invitrogen, Carlsbad, 

CA).  Forward primer sequence was 5’-GGCTAAACCATCAACAAT-3’ and reverse 

primer sequence was 5’-TGCTACTGATACGCTAGAG-3’.  A gradient PCR was 

performed from 40-60ºC to determine optimal annealing temperature  
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Table 3.1.  Dose-dependent effects of Kanamycin (Kan), Hygromycin (Hyg), and 
Glufosinate ammonium (Gluf) on Pteris cretica calli after two weeks of treatment. 
“survived” indicates treatments where all calli were healthy in appearance at 14 days.   
 
Antibiotic Concentration (mg/L)  Days until 100% mortality 
 
Kan   10    survived 
Kan   25    survived 
Kan   50    survived 
Kan            100    survived 
Kan            200    survived 
Kan            300    survived 
Hyg   10     2 
Hyg   25     1 
Hyg   50     1 
Hyg            100     1 
Hyg            200     1 
Gluf   2.5    survived 
Gluf   5.0     6 
Gluf   7.5     5 
Gluf            10.0     5 
None   0.0    survived 
 

 

Table 3.2.  Primers designed for inverse PCR amplification of the Pteris vittata rbcS 
promoter.  
 
Primer  Sequence    id location    
 
RbcSEcoRVfwd   5’-taacgtgtgagaaggggctaaaggg-3’    a 293-317  
 
RbcSXbaIfwd  5’-ccccaagtgcgccaaccccctcgcc-3’   b 609-633  
 
RbcSrev    5’-ttggccaaccttatccgtcttgcct-3’    c 21-45  
 
RbcSrev2  5’-tcttgccttcattgttgatggttta-3’    d 4-28  
     
RbcSEcoRVfwd2  5’-acttagaagtggtggataatttaca-3’     e 353-377  
    
RbcSXbaIfwd2   5’- tgtctccgcaatgcttgtgcgtaca-3’   f 651-675  
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Figure 3.1.  Mature Pteris vittata and Pteris cretica plants (non-transgenic) recovery 
from tissue culture.  Successful callus induction of gametophytic tissue, development of 
embryo-like structures via cytokinin treatment, and subsequent development of plantlets 
following treatment with IAA is shown.  A, callus; B, root emerging from callus 
incubated in dark; C, Pteris cretica plantlets generated from embryogenic callus; D, 
Pteris vittata plantlets generated from embryogenic callus.     
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Figure 3.2.  Pteris cretica callus tissue displaying transient expression of GUS and 
gfp trangenes. A, yellow circle indicates cells that are expressing GUS reporter gene 
(driven by maize ubiquitin promoter).  B, cells displaying transient expression of a 35S-
GFP after bombardment. 
 
 
 

 
Figure 3.3.  Agrobacterium infiltrations of pMDC11035Smut and pBINmGFP5er in 
Pteris cretica. A, pMDC11035Smut at 3.24s exposure 200X mag.  B, pBIN19mGFP5er 
at 2.4s exposure 200X mag.  C,  pBIN19mGFP5er at 6s exposure 200X mag.  D, no 
plasmid control at 6s exposure 200X mag.  
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Figure 3.4.  Agarose gel showing a gradient PCR (40-60ºC annealing temp.) of Pteris 
vittata rbcS gene amplification in Pteris cretica.  This PCR resulted in the amplification 
of 7 recoverable products from Pteris cretica genomic DNA that ranged from 500bp-
1500bp.  
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Figure 3.5.  Identification of restriction sites (XbaI and EcoRV) within the Pteris 
vittata RUBISCO gene to enable an inverse PCR approach to obtain the complete 
promoter sequence.     
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Figure 3.6.  Gradient PCR amplification of Pteris vittata rbcS promoter sequence.  
Red box indicates a PCR product of ~1 kb that was selected for cloning. Each group of 
five lanes correspond to a gradient from 45ºC to 65ºC, ascending in temperature equally 
from left to right. Letter combinations reflect various primers used (Table 2).   
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Aluminum accumulation in Pteris cretica and metal uptake in 
vegetation growing on an abandoned aluminum smelter site in 
Knoxville, TN USA.2 
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Abstract  
 

 Smokey Mountain Smelters in South Knoxville, Tennessee is an abandoned 

secondary aluminum smelter where smelter waste (slag) was dumped on site, potentially 

posing a threat to nearby human and ecosystem health.  Nitric acid-extractable metal 

concentrations in the slag (Al, As, Cd, Co, Cr, Cu, Ni, Pb, Se, Zn) were quantified by 

inductively-coupled plasma spectrophotometry (ICP) and the solids were characterized 

by x-ray diffraction (XRD).  The highest metal concentrations observed were 223 g kg-1 

Al, 281 mg kg-1 As, 132 mg kg-1 Se, and 2910 mg kg-1 Cu.  Metal uptake was quantified 

in leaves from plants growing naturally on slag, as well as Pteris cretica plants employed 

to extract As from slag.  Our data suggests that P.  cretica accumulates Al in high 

concentrations, but not As, when grown in slag.  Metal concentrations in vegetation 

growing on slag were lower than controls grown in uncontaminated soil, suggesting low 

metal availability in slag or exclusion mechanisms in roots.        
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Introduction 
 

The smelting of metal ores has resulted in extensive emissions of toxic metals into 

surrounding environmental media (Nriagu and Pacyna 1988).  The waste generated 

during the smelting process is sometimes within close proximity to developed areas, thus 

posing a significant threat to human health.   Smokey Mountain Smelters (SMS) is an 

abandoned secondary aluminum smelter in South Knoxville, TN that was declared a 

Superfund site in 2001 due to massive piles of smelter slag and other unknown wastes 

over most of the 29 acre property.    The site is located within a mile radius of numerous 

residential and commercial properties, wells, schools, and churches.  The site is also 

directly adjacent to a large public housing complex (Figure 4.1).  Because the slag 

material is exposed and uncovered, the surrounding community has no protection from 

potential pollution derived from groundwater leaching, stormwater runoff, and wind 

dispersal of the slag-borne metals.   

 Phytoremediation, or the use of plants to remediate contaminated sites, may serve 

as a complementary technology in the remediation of grossly polluted soils, such as the 

SMS site.  Plants that can tolerate and thrive on metal-contaminated soils can prevent 

dispersal by creating a barrier to wind, but may also facilitate safer removal of 

contaminants via harvesting the above-ground shoot tissue, where metals may 

accumulate (Salt 1998).  Surveys of native plants able to grow on metal-polluted land 

(e.g. slag spoils) provide more useful candidates for creating a site-specific, vegetative 

cap because the plants are well-suited to local conditions (Remon et al. 2005).  

Vegetative caps may serve to prevent erosion of the barren and exposed areas, while at 
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the same time, initiate the processes of soil formation and vegetative succession 

(Munshower 1993).  Plants that have evolved mechanisms of metal tolerance generally 

employ one of two main strategies; (1) uptake and accumulation in the vacuole or cell 

wall or (2) exclusion via organic acid exudates and suppression of root transporters 

(Baker 1987).   

 Mounting evidence has demonstrated the utility of Pteris vittata for the 

phytoextraction of arsenic from contaminated soils (Ma et al. 2001; Wei et al 2006a; Wei 

et al. 2006b; Wei et al. 2007; Wang et al. 2006; Wang et al. 2007).  This species is 

desirable for field-scale phytoextraction of arsenic due to its high biomass and 

accumulation of > 2% of its dry mass as arsenic (Wang et al. 2002).  Fayiga et al. (2004) 

investigated the effects of metals on the growth and arsenic accumulation in Pteris vittata 

in a greenhouse study.  They found that the fern was able to hyperaccumulate arsenic 

despite the presence of Cd, Ni, Pb, and Zn.  Less is known about the performance of 

Pteris cretica, an arsenic-hyperaccumulating relative of Pteris vittata, thus prompting its 

use in this investigation.  Because preliminary data indicated high nitric-acid extractable 

levels of As and the observation that wild vegetation could thrive on the slag piles 

warranted a test of the hypothesis that Pteris cretica could grow in the slag and extract As 

from the media.  A preliminary greenhouse study using slag from the smelter site 

demonstrated that Pteris cretica grew at a reduced rate compared to controls, but showed 

no other signs of phytotoxicity (Figure 4.2), thus providing the impetus for a field-scale 

trial of its performance at the SMS site.     

The SMS site offers a unique opportunity for scientific investigation due to the 

various plant species that grow without symptoms of toxicity and predominate on the 



 108

otherwise barren landscape of the metal-laden property.   Therefore, the objectives of this 

study were to (1) characterize and quantify the trace metals found in the slag piles, (2) 

evaluate the shoot tissue for metal accumulation in plants that were found thriving on the 

piles, and (3) evaluate the capacity of arsenic phytoextraction in Pteris cretica when 

challenged with the mixed slag waste.     

 

Results   
 

Soil pH and metal content of smelter slag and adjacent control soils  
 
 Table 4.1 summarizes the metal content (Al, As, Cu, Cr, Cd, Co, Se, Ni, Pb, Zn) 

and pH of each designated plot (1-6) located within the smelter slag waste area, as well as 

the nearby uncontaminated soils (A-D), the locations of which are indicated in Figure 4.1.  

Pb was not detected in any of the slag samples, but was present at low concentrations (<7 

mg kg-1) in control soils A-C (data not shown).  XRD analysis of the slag material 

revealed the presence of the Al(OH)3 polymorphs bayerite and gibbsite, spinel 

(MgAl2O4), calcite (CaCO3), and calcium aluminum oxide (Ca3Al2O6) (Figure 4.3).  

Statistical comparisons of the mean metal content in slag and control soils reveal 

significant differences between slag material and control soils (Table 4.1).  No significant 

differences in metal content were found to exist between the two depths assayed.  Slag 

pH values ranged from 7.33 to 8.27, whereas raw pH values for the control soils ranged 

from 3.86 to 7.66 (Table 4.1).  Metal content and pH for uncontaminated control soil 

employed in the Pteris cretica experiment is represented by control soil D (Table 4.1).  

Although relatively high in Al, As was not detected in nitric acid-extractable samples in 
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this soil.  Additionally, Zn, Ni, Cu, Cr, and Co, were all relatively low in the fern control 

soil, thereby presenting concerns for interpretation of Pteris cretica metal uptake data 

that are discussed later.      

 

Metal uptake in slag-grown Pteris cretica  
 
 Figure 4.4 illustrates the metal content in fronds of field-grown P. cretica plants 

harvested two months after planting.  Despite the absence of As in the control soils used 

for this experiment, As uptake was observed to be restricted in the slag-grown ferns 

(Figure 4.4).  However, Al was accumulated in high concentrations in the slag-grown 

ferns, ranging from 569 mg kg-1 to 4 380 mg kg-1, and averaging 1 821 mg kg-1.  Slag-

grown ferns also accumulated significantly higher amounts of Cu, Mo, Se, Zn, and Ni 

than were observed for control ferns.  

 

Metal uptake in slag-grown vegetation and bioaccumulation factors 
 
 A comparison of the metal content in leaves of wild vegetation found growing on 

the slag heaps versus nearby uncontaminated control soils is illustrated in Figure 4.5.  

Surprisingly, restricted uptake of several species analyzed was indicated by significantly 

higher metal uptake in plants harvested offsite on uncontaminated soil compared to the 

slag-grown plants (Figure 4.5.), especially evident for the uptake of As, Se, Cu, and Co.  

One exception to this trend was demonstrated by the pioneering species Verbascum 

thapsus, accumulating the highest levels of aluminum uptake among slag-grown plants, 

as well as among controls (323 mg kg-1 and 137 mg kg-1, respectively).  Slag-grown V. 
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thapsus also exhibited the highest Ni and As uptake, however all control plants exhibited 

significantly higher As uptake compared to the slag-grown plants. Carduus nutans 

growing offsite accumulated the highest levels of As, Cr, Co, and Cd.  Phytolacca 

americana contained the highest concentrations of Zn in leaf tissues harvested from 

plants growing in uncontaminated soil. 

 Bioconcentration factors (BCFs) (i.e. the ratio of metal concentrations in the shoot 

to those in the soil) indicate the efficiency at which plants extract metals from the soil.  

Slag-grown P. cretica exhibited the highest BCF values with respect to Al and Se (Figure 

4.6).  All plant species analyzed from uncontaminated soil had significantly higher BCFs 

for Al, As, Cu, Cr, Se, Ni, and Cd, with the exception of slag-grown P. cretica which 

exhibited much higher BCFs for Al, As, and Se.  BCF for Zn in P. cretica grown in 

uncontaminated soil exceeded 50, significantly higher than any other species.  Carduus 

nutans grown in uncontaminated soil had the highest BCFs for As, Ni, and Cd.     

 

Discussion 
 
 

Metal uptake and bioaccumulation factors in wild vegetation 
 
 Numerous investigators have surveyed wild plant populations growing on or 

nearby metal-contaminated sites, generally with intentions of discovering species with 

novel remediation traits, such as metal tolerance and accumulation.  Del Rio et al. (2002) 

studied trace metal uptake in 99 wild plant species growing in an area contaminated from 

a spill of toxic pyretic sludge.  These authors identified 11 plant species that 
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demonstrated promising utility in the phytoremediation of Pb, Zn, Cu, Cd, and As due to 

their observed metal tolerance, accumulation, and high biomass.  If phytoextraction is not 

a feasible means of remediation, then natural revegetation of a contaminated site can 

serve to stabilize the contamination by minimizing stormwater runoff and wind dispersal 

(Vangronsveld et al. 1995).  In the current study, most plants exhibited significantly 

lower concentrations of trace elements in their leaves compared to control plants (Figure 

4.5), thereby suggesting that these plants were able to survive in the metalliferous 

medium via exclusion mechanisms.  Alternatively, due to the neutral pH range of the slag 

and the abundance of aluminum (hydro)oxides, trace metal adsorption resulted in very 

low metal availability.  Similar reports by Gonzalez and Gonzalez-Chavez (2006) suggest 

that most plants growing near mining wastes were employing exclusion mechanisms 

because metals did not accumulate in shoot tissues despite the high concentrations found 

in the soil.  Despite the exclusion behavior found in those plants, two species, Polygonum 

aviculare and Jatropha dioica were reported to accumulate Zn at concentrations near the 

criteria for hyperaccumulation.  Similarly, we report that slag-grown Verbascum thapsus 

was not only tolerant to the slag metal concentrations, but exhibited significantly higher 

accumulation of Ni and Al than those growing in uncontaminated soil (Figure 4.5).  

Regardless, the highest metal content observed in V. thapsus (462 mg kg-1) was lower 

than sufficient for hyperaccumulator status.  In a recent study of metal (Cu, Fe, Mn, Ni, 

Pb, Zn) content in a close relative, Verbascum olympicum, Guleryuz et al. (2006) 

reported that metal contents in different organs were highly correlated to metal content 

found in the soil.   



 112

 The BCF values for these species demonstrate that most of the wild species have 

no reasonable utility for employment in phytoextraction at the SMS site.   McGrath and 

Zhao (2003) demonstrate that the two key components necessary for a plant to be of 

feasible utility in the phytoextraction of metals are high biomass and high BCF (i.e. the 

metal concentrations in the above-ground biomass should exceed those found in the soil).  

Some of the species that grew on the slag exhibited substantial biomass.  One obvious 

explanation for the low BCF values observed for slag-grown plants is the elevated metal 

concentrations found in the slag (Table 4.1).  Even in the control plants that exhibited 

significantly higher BCFs than slag-grown plants, no wild species had a BCF close to 1.  

McGrath and Zhao (2003) present a useful model for selecting feasible candidates for 

phytoextraction.  According to these authors, in order to reduce the metal concentration 

in the top 20 cm of topsoil by half, with a BCF of 1, even high biomass crops (20 t ha-1) 

would require approximately 100 crop harvests.   

      

Trace element uptake in Pteris cretica 
 

Arsenic hyperaccumulation in members of the Pteris genus is well documented 

and the list of field-capable As-hyperaccumlating Pteris species and cultivars continues 

to grow as surveys of Pteris taxa found at As-contaminated sites are being conducted 

(Wei et al 2006; Wei et al. 2007; Wang et al. 2006; Wang et al. 2007).  We selected P. 

cretica cv. Mayii because of its proven field-scale and hydroponic performance in As 

hyperaccumulation (Wei et al. 2006; Poynton et al. 2004; Fayiga et al. 2005).  We were 

primarily interested in whether the fern was capable of extracting the high concentrations 
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of As found in the slag material.  Interestingly, the fern accumulated high amounts of Al 

during the 8 weeks of growth in the slag waste.  

The most common criteria for a plant to be considered a hyperaccumulator is that 

the shoot metal concentration must exceed 1.0% for Zn and Mn, 0.1% for Al, As, Se, Ni, 

Co, Cr, Cu, and Pb and 0.01% for Cd (Branquinho et al. 2007). In this study, P. cretica 

clearly met these criteria for Al, however the extremely high concentrations of Al found 

in the growth medium (slag) contributed to a low BCF value, thus negating a 

characterization of P. cretica as a hyperaccumulator of aluminum at this time.  However, 

the interesting observation that P. cretica exhibited a BCF of over 50 for Zn uptake 

(Figure 4.6) warrants further investigation into the uptake dynamics of P. cretica under 

Zn-deficient conditions, as was observed in control soils used in the P. cretica 

experiment.  These results are similar to those found by An et al. (2006) who reported Zn 

tolerance and accumulation in Pteris vittata.  These authors demonstrated that P. vittata 

accumulated up to 737 mg kg-1 Zn in fronds in the field, but could also accumulate As 

under high Zn concentrations, suggesting that P. vittata could be useful in sites co-

contaminated with Zn and As.  We did not detect the presence of As in the 

uncontaminated soil used for the P. cretica control plants in this study, thus explaining 

the very low amount of As observed in these plants.       

 Although aluminum (hydro)oxides were the predominant minerals found in the 

SMS slag, these minerals are also ubiquitous in soils and affect the fate and transport of 

ionic pollutants (Cox and Ghosh, 1994).  Cox and Ghosh (1994) demonstrated that the 

adsorption of As(V), CH3AsO(OH)2, and (CH3) 2AsOOH to amorphous Al(OH)3, 

gibbsite, α-Al2O3, and γ-Al2O3 increased up to pH 7, but decreased sharply at higher pH 
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values.  Extractions to determine the bioavailability of As in the slag material were not 

performed.  However, based upon the uptake measurements observed in slag-grown P. 

cretica, we believe that the arsenic is likely adsorbed to the aluminum oxides/hydroxides 

found to predominate in the slag, thereby making As unavailable for uptake.  This 

phenomenon has recently been reported in a study that characterized arsenate adsorption 

on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils 

(Beaulieu et al. 2005).  These authors suggested that As originally released from the 

smelter was oxidized, dissolved, and adsorbed onto soil minerals and that the mildly 

acidic pH conditions found in the soil allowed for stable sorption complexes, thus 

preventing significant As mobilization.  It is known that As mobility in soils is affected 

by pH (Adriano 1986).  A recent study of As mobility in sites impacted by As mining and 

smelting suggested that As is mobile at extreme pH values (<2 or >8), such as those 

observed in mine tailings and tailings-impacted alluvial soils, however all other soils 

exhibited very low As mobility (Krysiak and Karczewska, 2007).  Our data only reflects 

the pH values found in the top 20 cm of the slag piles, however since some of the plots 

exhibited pH values near 8 and greater (Table 4.1; plot 4 and 5), pH and resulting 

absorptive capacities in deeper zones may differ from those at the slag surface, thereby 

potentially mobilizing Al-bound As species into the groundwater.   

 

Aluminum tolerance and accumulation 
 

Aluminum toxicity in acid soils is a global agricultural dilemna, therefore much 

attention has been given towards understanding Al tolerance in plants.  Attempts to 
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identify genes involved in Al tolerance have been made in studies of Arabidopsis, wheat, 

barley, and, rye (reviewed by Magalhaes 2006).  A major mechanism of Al tolerance that 

has been elucidated in these species is associated with the chelation of Al via exudation 

of the organic acid malate from the root apex, thereby preventing Al uptake via exclusion 

(Magalhaes 2006).   

Conversely, Al accumulation has been reported for 127 species within the 

Melastomataceae family in the Order Myrtales, however the mechanisms through which 

this occurs are unknown (Jansen et al. 2002).  Al accumulators have also been reported 

for members of the Rubiaceae and it is believed that these plants may utilize Si for Al 

detoxification, as relatively high Si levels were also observed in these plants (Jansen et al. 

2003).  However, this finding has not been confirmed because the Si : Al mole ratio 

widely varied among species (Jansen et al. 2003).  The Al uptake in Pteris cretica 

observed in this study certainly warrants follow-up investigation.  Because of the high 

number of environmental variables found in a field-scale study such as this, more 

controlled experiments are needed, paying particular attention to effects of pH and 

nutrient availability on Al content in various tissues.  However, high Al accumulation 

was observed for all six plots, spanning a wide spatial range at the study site, thereby 

suggesting that the ferns are able to employ some mechanisms of accumulation.         

Our data suggests that for wild vegetation growing on slag, Al is excluded, 

possibly via exudation of organic acids (i.e. malate, citrate) similar to well-characterized 

Al tolerance mechanisms.  It is known that the solubility of Al is significantly reduced at 

pH 5.0 and above (Reid et al. 1971).  Additionally, elevated concentrations of cations (i.e. 
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Ca2+, Mg2+) in the rhizosphere are known to ameliorate Al toxicity (Brady et al 1993; 

Kinraide et al 1992).  XRD analyses have revealed the presence of spinel (MgAl2O4), 

calcite or CaCO3, and calcium aluminum oxide (Ca3Al2O6), indicating the presence of 

these cations, thereby leading us to speculate that despite the abundantly high 

concentrations of Al found in the slag, the effects of pH and abundance of Ca2+ and Mg2+ 

ions likely decrease the concentration of Al3+ ions and ameliorate the phytotoxicity of the 

slag Al.      

   

Conclusions 
 
 Our discovery that aluminum accumulation occurs in Pteris cretica when 

challenged with slag containing  high concentrations of other toxic metals and metalloids 

has prompted us to investigate this phenomenon under controlled experimental 

conditions.  We are particularly interested in the dynamics of As and Al uptake in P. 

cretica in the context of their bioavailability.  Also as a result of this study, we intend to 

characterize the capacity for P. cretica to accumulate Cu and Zn.    

It would be unreasonable to employ phytoremediation to cleanup a site as grossly 

contaminated as the SMS site, however this study has provided new insights that extend 

beyond phytoextraction.  The windborne dispersal of metals at the SMS site may be 

lowered by continued succession of the known tolerant ecotypes found growing directly 

on the slag material.  Therefore, phytostabilization of the slag may serve as an interim 

measure in prevention of contaminant spread that precedes appropriate remediation of 

this potential danger to the local community.     
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Additionally, we have identified several plant species as candidates for further 

study that may contribute to our understanding of aluminum tolerance.  Because Al 

toxicity is such a significant global agricultural problem, exploring the molecular 

mechanisms that play a role in the exclusion of Al in the species evaluated in this study is 

warranted.    

 

 
 

Materials and Methods 
 

Study site: site history, hydrogeologic setting, and EPA site inspection summary 
 
 The Smoky Mountain Smelter site is located in Knoxville, TN (83°55’36.77” 

West longitude and 35°55’06.68” North latitude).  The 29-acre property is partially 

wooded, but significantly barren and covered with large piles of unknown wastes thought 

to derive primarily from the secondary aluminum processing facility that operated onsite 

from 1979 until the close of operations sometime after May 1994.  Prior to Smokey 

Mountain Smelters and the existence of environmental regulations, the site was home to 

Knoxville Fertilizer Company from at least 1922 until 1948, and subsequently associated 

with several agricultural chemical manufacturing companies until 1965 (Maupin 2005).  

The agricultural facility could have discharged wastes into settling ponds (TDHE 1983).  

No information is known concerning the regulatory status of the site prior to 1980.    

 During the years of SMS operation, owners Daniel E. Johnson and David A. 

Witherspoon, Jr. received numerous citations from the local division of air pollution 
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control due to numerous complaints from local residents (KCDAPC 1985; KCDAPC 

1989).  The site historically had a strong ammonia odor and the waste was often burning 

(KCDAPC 1983).  In addition to air pollution violations, the TN Division of Solid Waste 

Management issued a citation for operating a landfill without a permit and a geologic 

inspection of the site characterized the site as unsuitable for use as an industrial landfill 

(TDHE/DSWM 1983a; TDHE/DSWM 1983b).  Materials that were incinerated in the 

smelters included by-products of primary aluminum production (i.e. aluminum dross, pot 

pads, pot bottoms, bath pads, and crushed material containing “non-processible” carbon, 

iron, cryolite (Na3AlF6), dust, etc. (Maupin 2005).  Pot pads, pot bottoms, and bath pads 

are all generated inside of and in contact with spent potliners, which are listed Hazardous 

Wastes, designated as hazardous waste number K088 under the EPA Resource 

Conservation and Recovery Act (RCRA) (Maupin 2005).  Maupin (2005) reported that 

between 1985 and 1992 SMS received large quantities of materials (oily scraper chips, 

furnace bottoms, magnetic separator accumulations, tabular balls, selee filters, south 

ingot furnace bottoms, mold line floor sweepings, can rec skim, and other miscellaneous 

materials derived from primary aluminum production) from a nearby primary aluminum 

production facility in the city of Alcoa, TN.  Large quantities of hazardous substances 

derived from the materials sent by the primary processing facility are known to still be 

present at the site (Maupin 2005). 

 The East Tennessee valley, in which the SMS site is situated, is oriented in a 

northeast-southwest direction as a result of folding and fracturing (TDC/DG 1956).  The 

underlying geology of the SMS site is Middle Ordovician shale and characterized by 

extensive Karst development (TDC/DG 1956).  Groundwater movement in such areas is 
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restricted to largely interconnected fractures, thus potentially targeting approximately 

2524 people that use groundwater in the 4 mi radius surrounding the SMS site (Maupin 

2005).  Previous analytical results of groundwater samples from the site indicated the 

presence of antimony, arsenic, pentachlorophenol, dieldrin, and various toxic metals 

(except Cd), all exceeding the primary drinking water maximum contaminant levels as 

declared by the US EPA (Maupin 2005).  This report also concluded that the onsite, 

unlined waste lagoon posed a serious threat to groundwater quality, considering the 

permeable subsurface.  Similar conclusions were also reported for the vulnerability of 

local wetlands and downstream fisheries.   

As a result of the aforementioned evidence, the TN Division of Remediation site 

inspection report suggested that the SMS site has potential to be placed on the National 

Priorities List for cleanup and recommended immediate remedial action.  It is clear that 

trespassing occurs on the site by local children; the adjacent housing project, 

Montgomery Village, currently houses hundreds of individuals and an elementary school 

is located approximately one mile away.  For example, large gaps in the chain-link 

fencing on the side facing the adjacent public housing complex, well worn footpaths 

leading between the complex, and the predominance of graffiti within the dilapidated 

warehouse surrounding the rotary furnaces of the smelter raise obvious concerns for the 

health of local children.     
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Soil and plant sampling 
 

During the month of May 2006, leaves were sampled from plants growing on 

smelter waste piles, but displaying no apparent symptoms of toxicity.  Species selected 

for analysis were those found in multiple locations among the slag heaps, initially leading 

us to speculate that these species were employing some mechanisms of tolerance to 

potentially high concentrations of several metals.  These species were: Verbascum 

thapsus, Lirodendron tulipifera, Carduus nutans, Solidago �mericana�, Ailanthus 

altissima, Parthenocissus quinquefolia, Platanus occidentalis, and Phytolacca 

�mericana.  Representative control samples for each species collected at the site were 

taken from an uncontaminated area adjacent to the site.  Leaf samples were only collected 

for each species that appeared to best represent a mirror image of plant age, which was 

performed by on-site comparisons of leaf size and plant height.  Each treatment (species) 

sampled consisted of ≥4 biological replicates. 

 Slag and soil samples were taken with an auger to represent a depth ranging from 

0-20 cm. All soil samples were air dried and sieved to < 2 mm prior to analysis.  Each 

soil sampling was performed in triplicate at each plot from the Pteris cretica experiment, 

as well as the uncontaminated control plots.   Due to the high clay content of the soil 

found in the nearby representative control soil samples (A, B, C; Figure 4.1), less 

compact soil with a higher organic content was selected for the Pteris cretica planting 

controls.        
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Pteris cretica experiment  
 
 Six 1 m2 plots of waste soil were chosen to span the spatial range of the site for 

uptake experiments using Pteris cretica cv. Mayii.  Within each plot, fifteen 5-month-old 

ferns were transplanted, spaced 20 cm apart, fertilized with 20-20-20 N:P:K Osmocote® 

fertilizer, and treated with a  3 kg application of lime.  Shade cloth structures were 

employed randomly to three of the six plots, as well as one of the two control plots which 

were located adjacent to the contaminated area on uncontaminated soil. All plots were 

watered as needed with water from the on-site waste lagoon. After two months of growth 

in the field (June 1 – July 30th, 2006), above-ground biomass for each sample was 

harvested for metal analysis.    

 

Sample preparation and chemical analysis 
 
 Soil, smelter slag, and plant tissue nitic acid-extractable metals (Al, As, Cd, Co, 

Cr, Cu, Mo, Ni, Pb, Se, Zn) were determined. Three and a half grams were subjected to a 

4 M nitric acid overnight reflux at 70 ºC according to Chang et al. (1984).  One gram of 

leaf tissue from each plant analyzed was oven-dried at 60 ºC for 72 hrs and ashed in a 

muffle furnace at 450 ºC overnight.  Ashed samples were digested with 10 ml of 1 M 

HNO3, heated to dryness, then warmed to near boiling in 10 ml of HCl.  Samples were 

brought to 50 ml volume with deionized H20 and filtered using Whatman no. 42 paper 

prior to ICP analysis by a SPECTRO CIROS CCD EOP inductively coupled plasma 

spectrophotometer (ICP) with an AS400 autosampler (SPECTRO Analytical Instruments, 

Kleve, Germany).  To characterize the mineralogy of the smelter slag, samples were 
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subjected to x-ray diffraction (XRD) analysis using a D8 Advance with a K760 generator 

(Bruker AXS, Inc., Madison, WI).  A simple fizz test was performed by adding a few 

drops of 10% HCl to confirm the presence of calcium carbonate in the slag material.  Soil 

and slag pH was determined after a 1 hr shaking incubation of a 1:1 mixture of soil: 0.1 

M CaCl2.         

 

Statistical analysis 
 
 Because all field data did not meet the assumptions for normality, a one-way 

Mann-Whitney U test was employed to evaluate the differences in mean metal uptake 

between slag-grown and control wild vegetation, as well as in comparisons of mean slag 

and control soil metal concentrations using JMP statistical software (SAS Inc., Cary, 

NC).   
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Table 4.1 

HNO3-extractable metal concentrations (mg kg-1; Al given in g kg-1) in smelter slag (plots 1-6) and uncontaminated control soil 
(A-C) expressed as mean ± sd.  P values represent one-way Mann-Whitney U test comparisons of slag and control means. 
 

Plot depth 
(cm) pH Al As Zn Se Ni Cu Cr Co Cd 
1-10 7.65 178 ± 13 196.1 ± 14.0 318.4 ± 128.8 19.7 ± 1.2 333.3 ± 105.5 924.8 ± 378.4 47.8 ± 4.4 6.6 ± 0.8 15.2 ± 1.0 

1 
10-20 7.60 170 ± 19 182.3 ± 20.0 457.2 ± 196.8 21.8 ± 4.2 239.0 ± 118.5 790.8 ± 398.4 49.2 ± 11.8 5.8 ± 0.3 14.2 ± 1.4 
1-10 7.64 203 ±   6 219.6 ± 5.7 610.8 ± 298.2 25.2 ± 6.8 1 196.5 ± 648.7 999.0 ± 775.0 67.6 ± 23.0 7.9 ± 2.9 17.0 ± 0.7 

2 
10-20 7.58 189 ± 29 204.0 ± 27.3 233.4 ± 118.0 17.9 ± 9.2 1 750.4 ± 223.7 2 082.5 ± 208.4 42.0 ± 25.8 7.7 ± 1.5 16.0 ± 2.3 
1-10 7.42 181 ± 13 202.6 ± 12.4 879.2 ± 85.0 53.4 ± 2.9 318.0 ± 22.2 1 479.3 ± 53.3 111.4 ± 8.6 9.0 ± 0.5 17.1 ± 0.5 

3 
10-20 7.62 168 ± 14 185.7 ± 13.7 767.0 ± 159.2 49.1 ± 3.5 309.1 ± 30.0 1 873.5 ± 469.7 103.3 ± 8.5 8.1 ± 1.1 15.8 ± 0.8 
1-10 7.78 201 ± 23 212.2 ± 23.2 160.0 ± 25.0 111.1 ± 16.6 82.9 ± 24.1 685.1 ± 169.9 309.1 ± 57.0 4.0 ± 0.7 15.9 ± 2.5 

4 
10-20 8.13 185 ± 14 189.7 ± 15.8 105.3 ± 12.9 116.3 ± 15.6 61.2 ± 15.6 500.4 ± 32.8 345.9 ± 41.1 4.2 ± 0.8 16.5 ± 1.4 
1-10 7.55 209 ± 17 209.1 ± 6.2 255.6 ± 80.2 19.4 ± 3.4 531.8 ± 18.4 827.5 ± 124.4 44.1 ± 4.9 6.9 ± 0.3 18.3 ± 0.5 

5 
10-20 7.99 198 ±   6 207.5 ± 9.1 436.1 ± 237.6 36.0 ± 15.9 324.8 ± 121.6 871.8 ± 195.5 81.9 ± 36.8 6.6 ± 0.8 18.2 ± 0.8 
1-10 7.60 210 ±   9 221.1 ± 11.8 676.9 ± 156.4 34.4 ± 7.7 882.6 ± 473.3 1 639.5 ± 319.3 82.8 ± 22.7 9.2 ± 0.9 19.8 ± 1.0 6 
10-20 7.78 223 ± 17 230.3 ± 26.2 719.2 ± 255.0 27.0 ± 8.6 691.5 ± 672.5 1 440.8 ± 628.7 65.2 ± 22.3 8.3 ± 2.8 20.5 ± 2.3 
1-10 6.46 20 ± 0.1 41.4 ± 2.0 4 645.4 ± 219.2 nd  24.6 ± 0.9 990.8 ± 43.8 20.9 ± 0.9 30.1 ± 1.3 13.0 ± 0.6 

A 
10-20 7.43 24 ± 2  43.0 ± 4.9 3 284.5 ± 509.2 2.5 ± 0.7 28.3 ± 3.2 742.6 ± 116.7 23.5 ± 3.1 25.9 ± 2.4 11.3 ± 1.1 
1-10 6.73 40 ± 0.7 53.2 ± 1.2 289.6 ± 64.3 16.4 ± 2.1 44.0 ± 0.6 187.5 ± 16.4 32.5 ± 0.4 18.5 ± 1.4 8.6 ± 0.4 

B 
10-20 6.44 14 ± 23  58.7 ± 5.6 267.5 ± 44.3 19.8 ± 0.6 53.7 ± 6.5 215.0 ± 37.4 35.3 ± 2.6 22.4 ± 0.9 9.4 ± 0.8 
1-10 6.36 0.4 ± 0.01 36.1 ± 0.7 147.5 ± 35.2 79.1 ± 2.7 39.8 ± 3.0 57.3 ± 20.7 29.6 ± 0.8 34.0 ± 1.8 0.8 ± 0.0 

C 
10-20 6.26 0.4 ± 0.05 nd  120.3 ± 12.0 77.3 ± 1.6 38.5 ± 1.0 42.9 ± 5.7 29.6 ± 1.1 32.3 ± 0.8 0.8 ± 0.0 
1-10 5.65 42 ± 0.2 nd  0.7 ± 0.0 nd  5.5 ± 0.1 2.7 ± 0.1 0.5 ± 0.0 0.6 ± 0.1 0.8 ± 0.0 D 
10-20 5.80 29 ± 3 nd  0.7 ± 0.1 nd  5.9 ± 0.6 2.8 ± 0.4 0.5 ± 0.1 0.5 ± 0.0 0.9 ± 0.1 

  
P   ***  ***       ***    ***             ***         ***      ***           ***       *** 

     
   *P<0.01,**P<0.001,*** P<0.0001 
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Figure 4.1.  Satellite image of the abandoned Smokey Mountain Smelter site in 
South Knoxville, TN, USA (Image from Google™ Earth).  The large building on the 
property houses two rotary furnaces and an incinerator.  Slag from the smelting process 
now exists in piles over much of the property.  Numbers 1-6 and respective black spots 
designate plots of Pteris cretica plantings and slag sampling. The white line outlines the 
waste lagoon.  Letters A-D indicate approximate locations of uncontaminated soil 
sampling.  The right side of the image shows the adjacent public housing project. 
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Figure 4.2 Phenotype of Pteris cretica grown for two months in the greenhouse on 
SMS slag material.  A, Pteris cretica grown in uncontaminates soil.  B, Pteris cretica 
grown for two months in smelter slag.   
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Figure 4.3  XRD analysis of slag from the Smokey Mountain Smelter site.   
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Figure 4.4.  Trace element accumulation (mg kg-1) in Pteris cretica grown on slag 
piles at the SMS site for 8 weeks.  Black bars indicate plants grown on slag piles and 
grey bars refer to plants grown in uncontaminated control soil D (Table 1). 
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Figure 4.5.  Trace element accumulation (mg kg-1) in wild vegetation found growing 
on slag piles at the SMS site.  Species represented are Verbascum thapsus, Lirodendron 
tulipifera, Carduus nutans, Solidago �mericana�, Ailanthus altissima, Parthenocissus 
quinquefolia, Platanus occidentalis, and Phytolacca �mericana.  Black bars indicate 
plants grown on slag piles and grey bars refer to plants grown in uncontaminated control 
soils represented by controls A, B, and C (Table 1). 
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Figure 4.6.  Bioconcentration factors (BCF) of trace elements in slag-grown wild 
vegetation and Pteris cretica.  Species represented are Verbascum thapsus, Lirodendron 
tulipifera, Carduus nutans, Solidago �mericana�, Ailanthus altissima, Parthenocissus 
quinquefolia, Platanus occidentalis, Phytolacca �mericana and Pteris cretica.  Black 
bars indicate plants grown on slag piles and grey bars refer to plants grown in 
uncontaminated control soils.  Control BCFs for wild vegetation were calculated from 
control soils A, B, and C, whereas BCFs for Pteris cretica controls were derived from 
control soil D.   
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