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ABSTRACT. Existence of steady state solutions for the Allen-Cahn and Cahn-Hilliard equations 

in two dimensional domains is di scussed. We are in particular interested in establishing existence 

of single layered equilibria with the property that their transition layer intersect s the boundary. ln 

the case of the Allen-Cahn equation we consider bone-like domains and seek solutions intersecting 

the fiat part of the boundary. We establi sh conditions for the domain which ensure existence of 

such equilibria.Their stability is also analyzed.For the Cahn-Hilliard equations we show that 

there exist equilibria near every point of a local maximum of the curvature of the boundary. 
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INTRODUCTION 

Let n c RN be a bounded domain and consider the following two problems: 

(AC} 

(CH} 

{ e2 D.u- F'(u) = ut 

au= 0 
an { D. (-f2D.u+F'(u}) = Ut 

au= aD.u = 0 
an an 

in n, 

on an, 

inn, 

on an, 

where F is a double well potential (see figure 1}, F > O,F(-1} = F(1} = 0 (typical choice is 

F(u) = k(u2 -1)2),� exterior normal derivative and E < 1 a small parameter.In the sequel we 

assume that, unless stated otherwise, N = 2. 

F(u) F'(u) 

FIGURE 1. F AND ITS DERIVATIVE 

The first equation was introduced in [AC] as a model for the motion o f  the antiphase boundary 

that separates two phases of crystalline solid.Here u represents the long range order parameter, 
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the function F repersents the free energy per unit volume and its two wells correspond to different 

stable material phases.The equilibrium order parameters are u = 1 and u = -1 and the antiphase 

boundary r is simply the interface between the two regions, one with u approximately equal to 

1 and the other with u approximately equal to -l.We refer to (AC) as the Allen-Cahn equation. 

The so called Cahn-Hilliard equation (CH) serves as a model for phase separation and coars 

ening phenomena in binary alloys at a temperature at which only two different concentration 

phases can coexist.The evolution of the concentration divides into two stages.During the first 

relatively short stage called phase separation the alloy becomes inhomogeneous, a fine-grained 

mixture of the two phases corresponding to stable concentration configuration. 

In terms of (CH) the solution u is approximately equal to 1 in a subregion n+ of 0 and is 

approximately equal to -1 in another subregion n- of O.These two subregions are separated 

by a thin interface r. 

The first stage is followed by a very slow coarsening process during which the originally fine 

grained structure becomes less fine while the average concentration remains constant . 

At the level of (CH) this phenomena corresponds to such a behaviour of u in which the 

interface r moves and eventually tends to a surface minimizing the area subject to a volume 

constraint . More details on the physical background for (CH) can be found in [Cahn-H,Cahn] . 

From the mathematical point of view the formation of spatial patterns and coexistence of 

two different phases in both models are due to the presence of the bistable term F'( u).We will 

explain this point by a simple formal analysis.Consider for example the Allen-Cahn equation 

and set f = 0 so that (AC) becomes an ODE: 

ue = F'( u). 

By an elementary analysis we see that as t increases we have u(z, t)- ±1 depending on whether 

u(z, 0) > 0 or u(z, 0) < O.Therefore we expect that after a short time there will be regions where 

u � ±1 separeted by diffused (with the width 0( f)) interfaces .It turns out that a similiar in 
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principle effect is observed for the solutions of the Cahn-Hilliard equation, however even formal 

analysis is considerably more difficult in this case. We refer to [F3] for more details. 

It is perhaps beyond the scope of this work to give a full description of the dynamics generated 

by (AC) and (CH).We mention only that the presence of the moving spacial patterns allows us 

to reduce the very complex dynamics to much simpler approximate system consisting of rules for 

the evolution of patterns.For example it.is known for the Allen-Cahn equation that the interfaces 

move according to the law (the Mean Curvature Motion) 

(MCM) V = -E2�e: 

where V denotes the velocity in the direction normal to r and �e is its mean curvature.Rigorous 

analysis of (MCM) and its connection to (AC) can be found for example in [Chl,deM-S2,I,E-S-

S,R-S-K2,So). 

In the Cahn-Hilliard case Pego [Pe) by applying the method of matched asymptotic expansions 

derived the following law of motion for the interface r 

(HS) 

ll.p. = o z E n c r, 

op. = o z E an, 
on 

V = a2 [8Jl.] , 
on r 

where p. is an auxiliary function, a 1 ,  a2 are constants, 1e is the curvature of r, Vis the velocity 

in the direction normal to r and [�)r is the jump of the normal derivative of p. across r. We 

usually refer to (HS) as the Helle-Shaw problem.Existence of the solutions to (HS) and their 

relation to (CH) has beeen established in [Ch2,A-B-C). 

Notice that in both cases the interfaces move with the speed which is of the algebraic order 

in terms of E (0(E2) for (MCM) and O(E) for (HS)). Without futher analyzing (MCM) and 

(HS) we observe that the interfaces with zero curvature are the equilibria for (MCM) and that 
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the interfaces with constant curvature are the equilibria for (HS).It is natural to ask: do the 

equilibria of the geometric problem always correspond to the equilibria of the parabolic problem? 

To explain this point we first describe a very important feature of both (AC) and (CH), 

namely the presence of the so called metastable states.Consider the case when 0 = [-1 , I ].In 

one space dimension we of course do not have the curvature effect and the previous laws of 

motion do not apply.The formal analysis which was done by Neu [Neu] suggests that the layered 

solutions for the one dimensional (AC) move towards the equilibrium states without changing its 

structure (number of layers) for the lenght of time of the order 0( e �").In this case the speed with 

which the interfaces move is of th� order O(e-:).Those superslowly evolving solutions are called 

the metastable states. We refer to [F-H,C-P1,2,F,Bro-K2,A-B-F2] for the rigorous results and the 

detailed description of the dynamics in the context of the one dimensional (AC).Similiarly the 

presence of the metastable states was established for the one dimensional (CH) by Alikakos, 

Fusco and Bates [A-B-Fl] (see also [B-X] and [Gr]) and the multidemensional (CH) by Alikakos 

and Fusco [A-F2,3] (see also [A-Bro-F]).In particular for the two dimensional (CH) they showed 

that if initially the transition layer is very close to a circle (equilibrium for (HS)) then it moves 

superslowly towards the boundary of the domain while retaining its shape. 

This is not however always the case that all the equilibria for the geometric problem corre

spond to the metastable states for the PDE.It was shown for example in [K-S] that providing 

that there exists an isolated equilibrium of (MCM) (segment of straight line partitioning a non

convex domain) then there exist an equilibrium of (AC) whose transition layer is close to this 

equilibrium of (MCM).These remarks suggest that more detailed information about the domain 

0 may be needed in order to describe the relation between equilibria of (MCM) and (HS) and 

equilibria of (AC) and (CH). 

The main purpose of this work is to analyze equilibrium states of ( AC) and ( CH) whose spatial 

structure is characterized by the presence of a single interface which intersects the boundary of 

O.For (CH) those equilibria are the limits as t -+ oo of the solutions of the evolution problem 
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and they correspond to the isolated equilibria of the geometric problem.For (AC) we chose 

the domain n in such a way that there are continuum of non-isolated equilibria of the Mean 

Curvature Motion .In this case the equilibria of ( AC) lie on the invariant manifold of extremely 

slowly evolving (metastable) solutions of the evolution problem. 

For both models discussed here the steady state-state solutions we are interested in correspond 

to the final stages of the evolution described by (AC) and (CH).We remark here that the time 

scales involved make this phase of the process difficult to observe in either actual physical 

experiments or computer simulations . ln fact at a first glance the metastable states described 

above may look like equilibria since for a very long time no significant change in the location of 

the interfaces will be observed. 

The spatial structure of the steady state solutions we are after allows us to describe them in 

terms of the location of the interface.Here we define the interface r � as the zero level set of the 

equilibrium solution u�, r � = { u€ = 0} .In order to develop some intuition about the geometric 

properties of r€ we recall that equilibria of both (AC) and (CH) are critical points of the free 

energy functional: 

where for (CH) we additionally impose mass constraint In u = m, m E  ( - 10 1 , IOI) .Let's consider 

the constrained problem.Since F( -1) = F(1) = 0 therefore a minimizer ue should stay close to 

±!.However since the average concentration is conserved In u = const. we can not have u" = 1 

or u€ := 1 throughout n. Therefore there must be a transition layer between the regions where 

u• � ±Lit is intuitevely clear that the gradient term in the expression for :J� is proportional to 

the length of the interface. This suggests that the partition of f2 given by r • should be optimal 

in the sense that the length of the transition layer should be minimal. The rigorous result proven 

in [M,S] reads as follows: 

Theorem (Modica, Sternberg). If u� is a sequence of minimi zers of :J� satisfying area con-
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straint fo u = m then: 

(1) 

u• -±1 a.e. in 0, 

(2) 

E.= {u" $ 0 }- E, 

where I8EI $ j8FI for all sets F C 0 such that IF n 01 = tnt;m. 
In Chapter 2 of this work we shall analyze sets minimizing the perimeter subject to the area 

constraint for two dimensional domains. We apply the idea of Kohn and Sternberg [K-S] which 

allows us to reduce the problem of minimizing :J. to the geometric problem of minimizing the 

lenght subject to the area constraint. We show existence of the steady state solutions u• to ( CH) 

and characterize the location of the set u• = 0 in terms of the geometry of the domain.More 

precisely we prove that near each local maximum of the curvature of an there is an equilibrium 

of (CH).We refer the reader to [R-S-K1, S-Z] where this approach was used for a different 

model and to work of Gurtin and Matano [Gu-M] where existence and location of equilibria 

was established providing certain symmetry of the domain. We also mention the work of Ni and 

Takagi [N-T] who obtain similiar in the spirit results in yet another context. 

The applicability of the variational methods for the equilibrium problem is limited to those 

cases when the corresponding geometric problem is nondegenerate, namely there exists a unique 

set which locally minimizes the perimeter.For dealing with the class of problems with degenerate 

geometry we adopt a method developed in [FH,CP,F,ABF1,2] for the one dimensional (AC) and 

(CH) .This techinique is based on the following key ingredients: 

(1) Construction of the approximate solution by utilizing the method of formal asymptotic 

expansion (inner expansion); 

(2) Refinement of the approximate solution by solving the so called 11 equation and reduction 

of the infinite dimensional problem to a finite dimensional one (formula for the speed); 
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(3) Analysis of the linearized operator and the associated eigenvalue problem (the gap). 

At this point we briefly describe the main idea behind the step (1) for the one dimensional (AC) 

with F( u) = k{ u2 - 1 )2 .More details on the other steps the reader will find in Chapter 1 of the 

present work. 

Consider the equation: 

(AC1) Uz( -1) = U:(1) = 0. 

Stretching variables fJ = ; we get: 

Letting e -+ 0 we obtain: 

1 -u,'l + 2u(u2- 1) = 0, 

1 1 u,{--) = u,{-) = 0. 
e e 

u,(-oo) = u,(oo) = 0. 

- 1 < z < 1 ,  

1 1 
-- < TJ < -, 

e e 

-oo < fJ < oo, 

A unique solution to this problem U satisfying U(-oo) = -1 and U(oo) = 1 can be determined 

explicitly because of the special form of the nonlinear term. We have U = tanh(�) .In phase plane 

U is represented by the heteroclinic orbit joining ( -1, 0) with (1, 0). Notice that if we set 

then u' satisfies (AC1) but does not satisfy the boundary conditions.However u{ is a very good 

approximation of the true solution since we have: 

The idea is to consider a one parameter family of approximate solutions MA = { u{ I e E 

(-1 + l,1- l),l > 0} and look for the true solution to (AC1) near MA.It turns out that 
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we can reduce the problem of finding equilibria of the PDE to the problem of finding zeroes 

of the function c( of a single variable {. In terms of the evolution problem c( corresponds 

to the speed of the evoving interface. lt can· be shown that for (AC1) the unique zero of c{ 

is approximately located in the middle of the interval ( -l,l).Chapter 1 of the present work 

contains a generalization of this result to two dimensional bone-like domains. In Section 1.2 of 

this chapter we give asymptotic formula for c( as well as for its the derivative with respect to 

{.These formulas allow us to describe the location of the equilibria corresponding to the zeroes 

of the sp�ed (Theorem 1.13) and their analyze their stability (Theorem 1.15).  
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CHAPTER I 

THE EXISTENCE AND STABILITY OF 

EQUILIBRIA FOR THE ALLEN-CAHN EQUATION 

1.1 Preliminaries 

Let F: � __. � be a C3 function satisfying: 

(F1) F? 0 and F has exactly two zeros F(±1) = 0; 

(F2) F' has exactly 3 zeros F'(±1) = F'(O) = 0; 

(F3) F"(±1) = (32 > 0, F"(O) < 0. 

(F4) There exist constants wo > 0 and Fo > 0 such that for all u E [-1, 1 ] and w1, w2 such 

that w: = max{lwd, lw21} < wo we have: 

Function F is called a double well potential.Observe that the assumptions (F1)-(F4) are 

satisfied if for example F(u) = Hu2- 1)2.The reader may notice that the last assumption is 

redundant since as it can easily be proved (F4) follows from the fact that F is a C3 function.For 

the reasons explained in Section 3.1 it is however convenient to state it here in this form.In the 

sequel we shall denote F' = f. 

Under the hypothesis (F1)-(F3) there exists a unique solution U of; 

(1.1) { -U" + /(U) = .0, U = U(z), z E JR, 
U(O) = 0, ll�DQ:-±00 U(z) = ±1. 

In the phase plane U is the heteroclinic orbit connecting ( -1, 0) to (1 ,  0) (see figure 2) .Notice 

that U is strictly increasing. 
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FIGURE 2. U AND ITS DERIVATIVE 

The following asymptotic formulas will be used frequently: 

(1.2) 

±1 =F U(:c) = {re-Pizl + o(e-Pizl), as :c- ±oo, 

U'(:c) = {3/{ e -Pizl + o(e -Pizl), as :c- ±oo, 

U" (:c) = =F/32 /3' e -Pizl + o( e -PI:�:I)' as :c - ±oo, 

where /3' is a positive constant depending only on F. 

u 

U' 

Let 0 be a bounded simply connected region in .IR2 satisfying the following assumptions: 

(0 1) 0 = (0, 1) X (0,  b) U OR U flL, where b > 0 is a fixed number and OR, OL are bounded 

subregions of n such that: 

anL n [o, 11 x (o, b)= {o} x (o, b), 

anR n [o, 11 x (o, b) = {1} x (o, b). 

(D2) There exists a > 0 such that for all a' E (-a, 1 + a) each vertical line :Ct = a' in the 

( :l:t, Z2)-plane intersects ofl at exactly 2 points. 
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(D3) an is of class C2 except at the points C1 = (1, 0), C2 = (1, b) , C3 = (0, b), C4 = (0, O) .We 

will call those points the corners of 0. 

(D4) From the assumptions (D1), (D2) it follows that near each corner an can be represented 

as a graph of a function. More precisely there exists r > 0 such that ann Br(C;) = 

{(z1, z2) I :z:2 = q,,(:cl)} where Br(C;) denotes a ball with radius r centered at C,.We 

assume that there exist numbers� • ..\; > �. i = 1, ... ,4,1�1 + 1�+11 > 0, i = 1,2 such 

that: 

with similiar formulas holding for 4»';'. 

We call � the curvature of the ith corner (or simply the curvature of the corner) .The condi-

tion (D4) will sometimes be referred to as the nondegeneracy condition.We point out that the 

numbers � can be seen as a natural generalization of the usual curvature (see fig.3). 

We consider the following semilinear elliptic problem: 

(1 .3) 

-t"2.6u + f(u) = 0, in n , 

au - = 0 , 8n 
on an. 

Here f < < 1 and :
n 

denotes the outward normal derivative. In the sequel we will use notation 

The main goal of this chapter is to establish existence of the layered solution u to (1.3) with 

the property that the layer is located in the rectangular part of 0 and u � ±1 on OL U OR. We 

see easily that the rescaled heteroclinic UC\-i) solves for any e the equation (1 .3) but does 

not satisfy the boundary conditions. We first construct a one parameter family of approximate 
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b 

0 

FIGURE 3. A TYPICAL BONE-LIKE DOMAIN 

solutions (ansatz) to (1 .3) which resembles the heteroclinic and also satisfies the boundary 

conditions. We clearly need to adjust uc=';') only near the curved part of an. To accomplish 

this we take a monnotone function w1 E OOO(R) such that: { 0 for 8 > 1, 
w1(8) = 0 � w1 < 1 for 0 < 8 < 1 ,  

1 for 8 � 0. 

It is easy to see that there exists a OOO(R2) function w� such that w�(an) = 1 ,  a;: = 0 on an 

and supp(w2) = {:z: I dist(:z:, OO) � e}. We set: 

Let l, l > 0 be a fixed small number.Unless stated otherwise we always assume that { E (l, 1-l). 

Let a{ be a smooth function such that: 

We set 

{ U(=f) for 8 < t• 
a'(8) = U(=f) �a{� U(�) 

U(!..=..{) for 8 > �. e - 4 

16 
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For each { E (l, 1 -l) we define: 

It follows from the definition of w' that suppw' n (€,1-f) x (0, b)= 0, 0 � w' � 1 and �:' = 0 
au{ on an hence an = 0 on an. It is also easy to see from the asymptotic formulas (1.2) that: 

Here and below we adopt the rule that C stands for a positive constant independent on f and 

its value may change from line to line. 

It turns out that the term e -�� � + e -P� and its square appear frequently in this chapter 

and therefore for simplification we shall denote: 

The set 

MA = {u{ I e E (l,1-l)} 

will be called the approximate invariant manifold. Elementary calculations show that MA is 

very close to the set {u I.C•(u) = 0}. Indeed by {1.1), (1.2) and the definition of ue we have: 

(1 .5) 

Essential in our work is the analysis of the operator .c� linearized about u{: 

(1.6) 

-€2�u + /'(u{)U = � in n, 

au= 0 an 
17 
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together with the associated eigenvalue problem 

(1 .7) 

-e2LlV + f(u()V = >.V in 0, 

av 
= O 

an 
on an. 

In the sequel we shall denote L'•(u = ��Llu + f'(u()u. 

If we assume for example that if? E L2(0) and /0 if?V1 := (if?, V1} = 0 ,  where V1 is the 

eigenfunction of ( 1 .7) corresponding to >. = 0 then it follows that there exists a unique weak 

solution to (1 .6) u E W1•2(0).Moreover we have·(the first fundamental inequality): 

(1.8) 

Notice however that it is not entirely obvious that this weak solution satisfies u E W2•2(0) .The 

reason is that we have only assumed that an is piecewise C2 while usually W2•2(0) regu-

larity of the solutions of the linear elliptic PDE is obtained under stronger assumption an E 

C2 .Smoothness of the domain allows us to weaken the conditions on the coefficients of the elliptic 

operator, typically we need to assume for example that the coefficients of the second derivatives 

are in W2•q(O) , q > dimension of the space.lt is therefore natural to expect that by requiring 

sufficient smoothness of the coefficients one can establish W2•2 regularity of the solutions under 

weaker assumptions on the regularity of the domain.Consider the following problem 

( 1 .9) 

-Llu + q(:z:)u = if?(:z:) in n ,  

au 
an

+ u(:z:)u = ,P(:z:) on an, 

where for our purposes it sufficies to assume if? E L2(0), q E C0(0), u, ,P E C1(0) .We also assume 

that n satisfies the conditions (Dl)-(D4) .We claim that if u is a weak W1•2(0) solution to ( 1 .9) 

then u E W2•2(0) and moreover 

{ 1 . 10) 
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where constant C depends only on 01 q1 u.The proof of the claim is based on the well known 

idea of :flattening the boundary by using an appropriate local diffeomorphism; we omitt the 

details.We shall refer to {1 . 10) as the second fundamental inequality.Finally notice that from 

the Sobolev embedding W2•2(0) <-+ CO•a(0)1 a < 1 and the second fundamental inequality it 

follows that the solutions to (1.9) are Holder continuous as well. 

Before we proceed further we would like to quote two usefull interpolation inequalities (see 

(L-U] pp.48-49 (2.19) and {2.25)).Let u E W1•2(0) and £10 < e < 11m > 1 be given.There exists 

a constant Cc depending on e 1m and 0 only such that 

(1 . 1 1) 

Assuming additionally that m > 2 we also have: 

(1 . 12) 

We remark that these estimates play a crucial role in showing (1 . 10) . 

We conclude this section with some observations regarding the eigenvalue problem (1.7) .  From 

the general theory of the selfadjoint operators we know that the spectrum of L'•f is discrete and 

real with oo as the only possible limit point.By (A� 1 "if) we shall denote the ith eigenvalue 

and eigenfunction of L'•{ 1 respectively. The Krein-Rutman theorem implies that the principal 

eigenvalue Ai is simple and the principal eigenfunction Vl is positive. 

We shall present now the main idea in investigating vr Observe that differentiating {1 .1) 

with respect to z we obtain: 

-U"' + I'(U)U' = 01 

hence 0 is an eigenvalue of the operator in (1.1) linearized about U and U' is the corresponding 

eigenfunction. Since from the estimates (1 .4) uf can be viewed as a small perturbation of 

UC'';') therefore it is not unreasonable to expect that (1 .6) has a small eigenvalue and that 

the corresponding eigenfunction resembles ur In Section 3.1 we show that in fact V1{ � q'u� 
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where qe = -llu�IIL�(n)· By using (1.2) we can show easily that: 

(1.13) 

The key points of our analysis in the next sections are: 

(1) The existence of the solutions to the reduced equation and the improved v estimate 

(Lemma A). 

(2) The analysis of the associated eigenvalue problem including the estimates on the gap in 

the spectrum and the on the rate of decay of the principal eigenfunction (Lemma B) .  

(3) Derivation of the explicit asymptotic formula for the speed c€. 

This chapter is organized as follows .In Section 1.2 we state Lemma A and Lemma B and evaluate 

the speed. We also give there proofs of the main existence and stability results (Theorems 1.13, 

1 .15).Subsequent sections 2.1 and 3.1 are devoted to the proofs of Lemmas B and A respectively. 

1.2 The Existence and Stability of the Equilibria 

The purpose of this section is to show existence of the solutions of (1.3) lying close to the 

manifold MA and describe their stability. In order to execute this plan we need several technical 

results whose proofs will be given in the following sections. We first outline the method applied 

in showing the existence so that the role played by Lemma A and Lemma B will become clear. 

The main idea is to construct a new one parameter family of aproximate solutions to (1.3) 

by solving the following problem: 

(1.14) 

{V1£, v€) = 0, 

ave 
- = 0 8n 

on 80, 

where vl( is the principal eigenfunction of the linear eigenvalue problem (1.7) and an uknown 

function v€ and number c€ are to be determined for each e E (l, 1-l). Throughout this chapter 
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the symbol {·, ·} stands for the standard inner product in L2(0).The second condition in (1 .14) 

will be referred to as the orthogonality condition. To find a solution to (1 .3) it sufficies to find 

a solution to the reduced equation: 

(1 .1S) e E (l, 1 -l). 

From this point of view our method is nothing else but a variation of the classical Liapunov

Schmidt reduction. We notice that investigating cf. provides not only a precise information 

about the location of equilibria but also gives as a very good approximation of a portion of the 

true invariant manifold of the Allen-Cahn equation. In fact it can be shown that the set: 

MQ = {uf. + vf. I e E (l, 1 - l), vf. solves (1 .14)} 

called a quasi-invariant manifold, both contains equilibria of the Allen-Cahn equation and is 

tangential to the true invariant manifold at equilibria. We shall not pursue this here and refer 

the reader to (F-H,CP,F , A-B-F2] in the context of the Allen-Cahn equation and to (A-B-F1, A

F12] in the context of the Cahn-Hilliard equation for further details. 

Existence of solutions to (1 .14) is established in the following 

Lemma A. Given l > 0 there exists fo > 0 such that for each f < fo, e E (l, 1 - l) and uf. E MA 

there exists a unique pair (vf., cf.) E W2•2(0) x lR solving (1.14). 

Moreover we have estimates: 

(1.16 a) 

(1 .16 b) 

(1.16 c) 

jcf.l :$ cf-lf"'(e, 

llve l lw�.�(�$ CE-4o e, 

llvf.(:z:)l lwt.�(Rsr> :$ Cof.e-�, 

where f = t'l and Rsi = {(zt,Z2) E n  I sf< Zl < 1- sf}. In addition (vf.,cf.) are both 

differentia ble with respect to e and : 

(1 . 17 a) 

(1 . 17 b) 

lc�l :$ cf-17r, 

l lv� llw�.�(O) :$ C€-90(.. 
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Remark 1 . 1 .  The estimate (1 .16 c) is of special importance for establishing existence of solutions 

to (1 .15) and this fact was first pointed out in [F-H] and then later in [A-B-F2] where it was 

referred to as the improved 11 estimate. 

We prove Lemma A in Section 3. Using the above lemma we can derive a formula for �.We 

will do this now in order to justify our interest in the eigenvalue problem (1 .7). The nonlinear 

elliptic equation in (1. 14) can be recast as: 

where 

M(w!) = f(U)- f(U + w!) + /'(U + w!)w!. 

From the orthogonality condition (Vl, v!) = 0 and the Fredholm Alternative we obtain after 

elementary computations: 

(1.18) cf. __ (-L•.fw! + A'(vt) + M(J), vf} -
{ytf,u�} 

. 

It turns out that the principal part in the asymptotic expansion of� comes from the boundary 

integral in the expression: 

( 1 . 19) 

From the definition of w! we see that 

therefore denoting: 

(1 .20) 
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the boundary integral in (1.19) becomes 

1 IJw€ �e- dS::: -JE. 
80 an 

The intuitive argument suggests that c;( = e2qeJ{ +higher order terms. However we need to 

have a very refined information about �{ in order to establish this statement rigorously. In this 

direction we have: 

Lemma B.  With the notation as in Section 1.1, for l and e given as in Lemma A and :z: = 

(i) 

(1.21 a) 

(1.21 b) 

where A� denotes the ith eigenvalue of (1. 7).In addition 

(1.22 a) 

(1.22 b) 

IIVl - q•u�IIL2(0) � ce-26{ I 

IIVl- q•u�llw2,2(n) � ce-46e, 

where V1e is the principal eigenfunction of (1. 7) and qf = -llu�lli:;<nr 

(ii) For the rate of decay ofV1{ we bave: 

(1.23) 

(iii) Similiar to (1.21)-(1.23) estimates hold for the derivatives of Ai, �{ with respect to(, 

namely, 

(1.24 a) 

(1.24 b) 

(1.24 c) 

(1.24 d) 

'IAtel � ce-6r, 

IIVl�{- q•u�eiiL2(0) � ce-56{, 

IIVl�{ - qfu�ellw2,2(0) � ce-7 o€ I 
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The proof of the above lemma will be given in Section 2 .1 .  

Our goal is  to find the asymptotic form of the integral I� defined in (1 .20) .This calculation 

is somewhat involved and we need several intermediate steps in order to complete it.First we 

recall the following classical result . 

Lemma 1.1. The fundamental solution G(:c,y), (:c,y) E JR2 x JR2 of the operator -e26.+{32 is 

given by: 

(1.25) G(z,y) = 
2:E2 Ko ( �lz- Yl) , 

where Ko is the modified Bessel function of order O.Moreover Ko satisfies: 

r > 0 ,  

r Ko(r) = -In 2 -J.L+ O(r), where J.L is the Euler constant, r � 1 ,  

Ko(r) = #e-� [1 + 0 (�)] , r.:> 1 .  

Notice that all we need to know in order to  compute I� are the boundary values of Vl. The 

next lemma shows that they can be determined from certain integral equation. 

Lemma 1.2. For every x E 80,e E (l, 1 - l) we have: 

(1 .26) 

where 

(1 .27) . � ) 2
1 � ( ) a a ( K:_ V1 (X = 2E 

B
O V1 Y an, X, Y) dSy 1 

G(x, y) is the fundamental solution defined in (1.25) and 

(1 .28 a) 

(1 .28 b) 

1/1�(:1!) = 2 fo G(x,y)h�(y)dy, 
h�(y) = (!32- /'(u�)- >.i) vl(Y) 
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Proof of Lemma 1.2. We fix a point :1: E n and set S(z,o) = {y E IT I l z - Yl = o}.Let 

Os = 0\ Bs(z) and 806 = 80s\ S(z,6).We recast the equation (1.7) in the form: 

(1 .29) 

where {J2 = /'(±1).Multiplying ( 1 .29) by G(z , y), y E Os and integrating over.Os with respect 

to y we obtain: 

1 G(z,y)h((y)dy = e2 { V1((y)� (z, y)dS11 
o, lan� ...... !1 

(1 .30) +e2 1 �e(y)
8
8G

(z, y)dS11 - e2 f a:_l (y)G(:i:, !i)dS11, Js(•,l) fly ls(c,S) v•'11 

where we have made use of 
a::,e 

= 0 on an.Consider the last integral in the above expres-

sion.Taking 6 sufficiently small we get from Lemma 1 . 1 :  

where r = lz- yj.Therefore, the Schwarz inequality and the estimate (1 . 1 1) with m = 2 we 

implies 

(1.31) 

Observe that on S(z,6) we have 

hence 

Since 

{1.32) 

aa 1 f3 
-a {z,y) = -2 2r + -0{1), 

ny �f 0 f 
as 6-0, 

. 1 1 e · 1e hm ---r V1 (y)dSy = -2V1 (z) , s-o 21ro S(e,6) 

as 6-0. 

as 6-0. 

therefore (1 .26) follows now by letting 6- 0 in {1.30) and utilizing {1 .31) ,  (1 .32). 

0 
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Corollary 1.3. The formula {1.26) remains valid if V1e is replaced by V1�e with he, .pt replaced 

by h�, t/J� respectilvely. 

It can be shown that the operator K,� is completely continuous on G0(80) into G0(80) 

and that I IK-�11 s Gf.Q providing that a n  E G1•Q.Thus the operator I + K,� is invertible and 

in principle it should be possible to determine V1( by solving the equation (1. 26) .We shall not 

however pursue it here since by utilizing the equation itself we can obtain sufficient for our 

purposes information about V1(. We will analyze the right hand side of (1. 26) first .It turns out 

that we only need to know .pt (:z:) for :z: E -y14 where for e E (l, 1 -l)-and M > 0 we set : 

The reader should keep in mind that -yM depends also on f.. In the sequel we shall denote: 

where rt = {:z: E n  I :Z:} = e}. 

Lemma 1.4. If .pt ( :z:) is the function defined in (1.28) then the follo wing formula is satisfied 

for all sufficiently large M: 

(1. 33) :z: E �, &Sf. -+ 0, 

where: 

(1.34) 

In particular there exists a positive constant c such that c-1ct $ qc $ cf.-t. 

Proof of Lemma 1.,/. Set: 

For fixed :z: E -yM we write: 

l vt = {y E n  1 de(y) < -}. 4 
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We first estimate ,Pf .Observe that on 0\ ]){ we have by Lemma B: 

(1. 35) 

Let p > 0 be a fixed number .From Lemma 1.1 we know that there exist constants c1 , c2 depending 

on p such that : 

r 
IKo(r) l � cd In 2! for r � p, 

(1.36) IKo(r)l � c2r-!e-" for r > p, 

where Ko is the modified Bessel function of order 0 .  We now further decompose: 

Since for y E (0 \ D{) n Bp,(:c) we have by (1.35) : 

therefore via (1.36) we get: 

For :c E -,AI we have: 

(1. 37) 

Since on -,AI 

therefore it follows: 

(1.38) 
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To estimate ,pf2(:z:) we observe that for y E n \� we have lz- Yl + IY1- el- lz1- el;::: O.It 

follows from (1 .36) that: 

(1. 39) 

where we have made use of IY1 - el ;::: t in n \ D€ and ( 1. 37) . 

It remains to evaluate 1/l� (:z:) .Let zZ = ( zf I z�) E n be a unique point such that d{(:z:) = 

Jz- zzJ.Observe that either zz = (e,z2) or zz = (e,o) or zz = ({,b) -depending on nand the 

location of z.From Lemma 1. 1 it follows that for :z: E �, y E � we have: 

E-t _ l. _ 1!. 1 _ I [ ( E )] G(z, y) = lz- y J  2 e • z Y 1 + 0 --
2V'FiP lz - Yl 

as E- 0 .  

Since lz - yJ > t, y E � therefore i t  sufficies to compute: 

From Lemma B (see (1. 22 b)) and the definition of u€ it follows that for y E D€ we have: 

Taking into account only the principal term in the above expression, stretching variables y- z"' = 

ETJ in the formula for �( and utiliz ing (1.40) we obtain: 

( 1.41) 

where 

�( )  -1 � { 2 f( ( )) >.€} '( ) { TJ(2(.r:11-:a) + ETJ) } ( 1.42) H TJ = -E q {3 - U 1]1 + 1 U 1]1 exp f3(Jz- z"'- ETJl + lz- z"'l) 

and 
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It follows that H�(TJ) is integrable in 1JS. Observe also that we can break H'(TJ) into H�(TJ) = 

Hf<TJ)H2(TJ), where 

Notice that if:z: E -yM then lz2 -:z:2l � C(Mp-1ellntl)>. with>.> � and therefore by integrating 

with respect to TJ2 we obtain that asymptotically : 

1•-:t .l {jj .l { /2.jj!�:., /2���:3!: I } .1 -� H;{TJ) dTJ2=t-2 V 2 1:z: - z"'l2 Jo + Jo 6-2e-•ds+o(l) 

(1.43) = £-t �l:z:- z"'ltr(�) + o(l), 

where we have made use of min{lz21. lb- z21} < C(ellntl)>.. Since by Lemma B,  l>.il � Ct-5-f 

therefore combining (1.41) ,  {1.42) and (1.43) yields : 

Thus by (1.38) , (1.39) and {1.44) the lemma follows. 

0 

Corollary 1.5. Under the assumptions of the previous lemma the follo wing formula holds for 

:z: E 'Y:u for all sufficiently large M: 

(1.45) 

where 

In particular there exists a constant c > 0 su ch that c-1ct � IQ�I � cct and Q� < 0 if:z:l < e 

and Q� > 0 if :Z:l > e. 
The proof of the above corollary is similiar to the proof of Lemma 1 .4 and we omitt the 

details. 
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Next we shall estimate the second term in the equation (1.26) , namely K'Vi.�(z) for z E .:yM 

where 

(note that -yM C .:yM).We first need a techni<;al lemma. 

Lemma 1.6. Let () > 0 be such that A = miDi:l, ... ,4 � > � + () > � and M > 2 + () . Then 

there exists r, r > min{� . !} such that 

(1.46) 

for all z E .:yM . 

Proof of Lemma 1.6. Let p, c3, c4 be chosen so that the following inequalities are satisfied 

for r � p, 

(1.47) for r > p. 

For definitness we assume that z E .:yM satisfies e � Zt and Z2 < b (z lies near the corner Ct) .Set 

z = (e, O) .We break the integral in (1.46) into: 

By using the first of the estimates in (1.47) we obtain : 

Notice that if a n  E c l,a then I(Y- z )nyl � Crl+a' where r = lz- Yl, hence: 

(1.48) 

For estimating 12 we use the second of the formulas in (1.47). 

30 



Set 

We have 

lhl $ Ct-t l r-!e-�<,.+lt�t-(l)l(y-x)nyldS11 
'YI 

(1.49) +Ct-t f r-�e -�<,.+h11-mi(Y-:c)nyl dS11 := ht + h2, lan\-r1 
Observe that for yEan' "Yl we haver+ IYt-el � lzt- el + MP-1tllntl, hence 

To estimate the first integral in {1.49) we introduce parametrization of "Yt as follows: 

For a given a: E :yM we consider function 91 : 11 -+ lR defined by: 

91(Y) = lz- Yl + IY1 -el-lz1 -el. 

Notice that 91 (y) � O.From the Mean Value Theorem it also follows that there exists -o, 0 $ -o $ 1 

such that for Yi = -oy1 + (1 - -o)z1 we have 

By using the assumption (D4) we get l</li(y1)l + I</11(Y•)I $ C(tllnEI)A-l hence 

(1. 51) 

l12 $ Ce -tl.l.!J.;:i11 e-�gl(!l)l:z:t -Yd-t (I<P� (yt)l + II/I� (Yi)l) dy1 $ Ce -tl.l.!J.;:i1 ( tlln tpA-1 . 
..,, 

By combining (1.48) ,  ( 1 .50) and (1 .51) we obtain ( 1.46) . 

0 
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Remark 1.2. Note that from (1.49) ,  (1.50) it follows that if a function V( :z:) satisfies: 

where M > O,p > 0 are such that M- 2- p > (} > 0 then there exists -r > 0 depending on (} 

such that : 

for :z: E :yM. This observation will be used in the proof of the following corollary. 

Corollary 1. 7. For all sufliciently large ·M the follo wing estimate holds for Vl, the principal 

eigenfunction of ( 1. 7): 

(1.52) 

where :z: E .Y2Jl. 

Proof of Corollary 1. 7. Notice that by Lemma B (see (1.22 b)) the estimate (1.52) is satisfied 

for :z: E a n  such that e - � < zl < e + H .It sufficies to prove (1.52) for z E -y2M.Let for given 

M and >. a positive number -r be chosen as in Lemma 1.6 and let k be a positive integer such 

that k-r- ��- � .From Lemma B (1.23) we have: 

y E a n, 

hence from Lemma 1.6 it follows: 

for :z: E -y(lr+l)Al.Utilizing (1.26) we get for z E -y(lo+l)Jl: 

where we have made use of Lemma 1.4 and the fact that for :z: E -y(lr+l)M 
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Combining (1.53) and Lemma B (1.23) yields: 

V,�( ) - ' I' � { < Cc i+.,. e -fJ � :c E �1 111 +1).11 I 1 :c C - � -fJ .I.!J;.tl (III+I)JI � f � e • I :c E an \ :y . 

From Remark 1.2 by utilizing the last estimates and repeating the argument leading to (1.53) 

we obtain: 

for :c E -y"M .We can continue the above procedure of improving the upper bound on V1� as long 

as -� + mr < -t and thus (1.52) follows. 

0 

Combining Lemma 1.6 and Corollary 1.7 we immediately obtain: 

Corollary 1.8. Providing that M > 2 there exists r > 0 depending on M1 A = miDi=1, . .. ,4 A,: 
such that 

(1.54) 

for :c E :yM. 
By using Corollary 1.5 and Lemma 1.6 we can easily prove results analogous to Corollary 1. 7 

and Corollary 1.8 with V1� replaced by V1� �.We summarize the corresponding estimates in the 

next coroll ary: 

Corollary 1.9. For all sufficiently M > 2 there exists r > 0 depending on M1 A such that for 

(1.55) 

and consequently 

(1.56) 

We are in the position now to derive an asymptotic formula for the integral I� defined in 

(1.20). 
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Lemma 1.10. The following asymptotic formula holds true: 

( 1. 57) 

where 

qE is as in Lemma 1.4, M, r > 0 are as in Lemma 1.6 and such that M- 2 > r + E �.numbers 

,..., .\i are defined in (D4) and r stands for the standard gamma function. 

Proof of Lemma 1. 10. Let M, r be chosen as in Lemma 1.6.0bserve that by taking M sufficiently 

large we can always achieve M - 2 > T + E ..X,. We decompose J{ to: 

The idea is to estimate If and evaluate 4 . Utilizing (1. 23) and the asymptotic formula ( 1.2) we 

get: 

Since z E 80\ ,_,M therefore jz1- e1?:: MP-1tjlne-j + min{e,l- e}, hence 

( 1.58) 

We shall now evaluate 4 .By employing (1.26) we c an recast the expreBBion for 1g in the form: 

From Lemmas 1.4, 1 .6  it follows that it is convenient to evaluate first 

Let C, = ( Cil, C,2) denote the ith corner of 0 and let 

_ (au) -yfl = { z E � !lz1- Cill < M/3 1tllntj and z E supp on }. 
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In each � the local coordinates are given as in (D4), namely if :z: = (:z:1 , :z:2) E � then 

:z:2 = ¢•(:z:l ) .Observe that for :z: E "Tf we have 

(1 .59) 

where we have made use of the assumption (D4).We also have : cc�;') = E- 1U'('1:1;')J,(:z:i) , 

where 

( 1.60) 

From the assumption (04) we further conclude: 

( 1.61) 

Thus combining (1 . 59),(1.60),(1. 61) and the well known asymptotic formula for the Laplace 

integrals (see (E] p. 36) we obtain: 

1 e -�.tt(:z:)!._U (:z:l - {) dS = €- 11 e -�.tt(•)u' (:z:l - {)¢,(:z:t ) [1 + (¢�)2] !  dyl 
.,f' an € .,f' e 

i = 1,2; 
= 
{ e--1.B.B'II:ir(�)( 2p)e -2�<1-f)(t + o(1)), 

-E-1.8.8' ll:ir(�)( 2P )e -2�f(l + o(l)) , i = 3, 4. 

This and Lemma 1 .4 yields: 

The integral 1�1 1 can be treated similiarly hence: 

( 1.63) 

Combining ( 1. 59), (1.62) and (1. 63) yields {1. 57) .  

0 

By employing Corollary 1.5 and Corollary 1.9 we obtain: 
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Corollary 1.11. The following asymptotic formula holds true: 

where QE is a positive constant depending only on F such that there exists c > 0, c- 1E- t < 

for M, T > 0 as in Lemma l .6 and such that M - 2 > T + E .X, . 

The proof is essentially a repetition of the argument in the proof of Lemma 1 . 10 and we omitt 

it. 

In the sequel we shall denote: 

( 1 .65) 

where qE , qE, QE are defined in Lemma B, (1 .4) and Corollary 1 . 11  respectively. We can now 

establish the asymptotic formula for the speed c{ . 

Lemma 1.12. The following formula holds: 

(1 .66) 

where 

and M, T > 0 are as in Lemma 1 . 10. 

Remark 1 .3.  In verifying (1 .66) the improved v estimate plays an essential role. 
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Proof of Lemma 1. 12. By using (1. 1 8), (1 . 19) we get 

where 

Since from Lemma B we have: 

( ( 1 _ Q (V1 1 u�) = - + e • , � q' 

therefore by Lemma 1.10 and (1. 65) the proof will be complete if we can show: 

(1. 67) 

Let R1 = (.n1 1 + .n12 + R�3) (Vl 1 u�)-1  where Ri1 = (.\�w( 1 Vl) �  .n12 = -(N(11() 1 Vl} 1 R�3 = 

-(M(w() 1  Vl} .  By Lemma B ((1.21 a),(1 . 23)) and the definition of w( we easily get 

(1. 68) 

For estimating R�2 we shall use the improved 11 estimate from Lemma A.We have 

where R5j is defined in Lemma A.Since IN(�) I < Cl11( 12 therefore from the improved 11 estimate 

and ( 1 . 12) with m = 4 we get 

Similiar argument utilizing Lemma A and Lemma B (1.23) yields 

From the last two estimates it follows 

(1. 69) 
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The estimate for afs is obtained by a similiar argument.Observe that IM(we) l � Clwel2 and 

supp we n R5; = 0 hence 

Combining this with { 1.68), (1.69) yields { 1. 67) .The proof of the lemma is complete. 

0 

Now we shall prove the main existence result in this chapter. 

Theorem 1.13. 

( 1) Suppose that there exists Eo > 0 such that for all E, 0 < E < Eo we have 

( 1. 70) 

Then there exists E1 > 0 such that for all E, 0 < E < E1 there exists i E (�, 1- {) such 

that: 

( 1. 71) 

Moreover 

( 1. 72) 

{ 2) If there exists Eo > 0 such that for all E, 0 < E < Eo we have 

( 1. 73) 

then there exists E1 > 0 such that for all E, 0 < E < E1 we have either ce > 0 or ce < 0 

for all { E ( l, 1 - l) . 

Proof of Theorem 1.13. Proof of part {l).Observe that ( 1.70) implies that both terms in the 

brackets are of the same sign.For definitness we assume that for all sufficiently small E: 

4 ( ) "' " and t; "ir(A•) 2� • > 0. 
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We can choose constant K > 0 so that for all sufficiently small e 

This implies :  

2 ( ) 
>.
;-
K
{J 4 ( ) >.;.+

K
fJ 

o < :L 1\:ir(A.) .;-- - L �r(>.•) � , 
i=l fi i=3 2fi 

2 ( )
>.
;+
K
{J 4 ( )

>.
,-
K
p 

o > ?= ltir(�) 2
e - ?= �r(�) 2

e . 
s:l fi •=3 fi 

b� > 0, 1 for all { E (2  + Ke! In ej, 1- l) , 

1 for all { E (l, 2 - Kej lnel) .  

From Lemma 1. 12 it follows (taking K bigger if necessary) 

c� < 0 1 for all { E ( 2 + Kelln el, 1- l) , 

1 for all { E (l, 2 - Kej ln e-1), 

for all sufficiently small e. The proof of part (1) is now complete. 

Proof of part (£).For the proof of the second assertion of the theorem we notice that from 

(1. 73) it follows that the terms in bracket s are of opposite signs .As in the proof of part (1) we 

can assume, for definitnes s ,  that: 

2 ( ) ). ·  t; �r(>.,) 2� • > o 
4 ( ) ). ·  and � �r(>.,) 2� • < 0 .  

It follows that for all { E (l, 1 - l) we have b� > 0 ,  hence by the formula {1. 66) in Lemma 1. 12 

we obtain 

for all { E (l, 1 - l). 

This ends the proof of the theorem. 

0 

From Theorem 1.1 3  we immediatelly obtain: 
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Corollary 1.14. Under the assumptions of part (1) of Theorem 1 .13 there exists { E (l, 1 - l) 

and a function u = uf + vi such that u is a solution to the steady state Allen-Cahn equation 

(eq. (1 .14)). 

The last result in this chapter deals with stability of the equilibria whose existence we have 

just proved. 

Theorem 1.15. Suppose that the assumptions of part (1) of Theorem 1 . 13 are satisfied and 

let { E (l, 1- l) be such that ci = O.Let further u = ui + ,i be an equilibrium solution to (1 .14) 

and �1 denote the principal eigenvalue of: 

( 1. 74) 

-€2dV+ f'(u)V= �v. 

av _ 0 
an - ' 

in n, 

on an. 

Then the following statements hold true. 

( 1) If 4 denotes the derivative of � with respect to { taken at { = { then 

( 1.75) c� = b{{l + o(1)) + rf, 

where 

bf is defined in (1 .65) and constants M, r > 0 are as in Lemma 1 . 10. 

(2) If 

( 1. 76) 
4 ( ) "' '  

and � "'r(A.) 2� • > 0, 

for all sufficiently small f then cf < O.If on the other hand 

( 1. 77) 

then cf > 0. 
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( 3) The following asymptotic formula holds 

(1 .  78) 

In particular il is unstable when (1.76) holds and is stable when (1.77) holds. 

Remark 1 .4. It is well known from the work of Casten and Holland (Ca-H) and Matano [Ma] 

that equilibria of ( 1 . 14) are unstable if the domain n is convex. Theorem 1 . 15 shows that for 

non-convex domains both stability and instability may occur. 

Proof of Theorem 1. 15. Proof of part {1). Differentiating the expression ( 1 .18) with respect to 

e yields 

hence at e = e we have 

By applying Corollary 1 . 11  we have 

where 

a B({N(v�) + M(w�) - >.�w� , Vl} 
(V',_f ,u1) 

4 
IRfl $ CE� (E- !+T � ,�,E�. + E- !+M ) ·  

It sufficies to show that for { = { 

f=i 

But this last estimate follows from Lemma A and Lemma B by the argument similiar to the one 

in Lemma 1 . 1 2.We again make use of the improved 11 estimate since 
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Proof of part {2).The argument we applied in the proof of the part (2) of Theorem 1.13 can 

be used here with only minor modifications. We omitt the details. 

Proof of part {3).For the proof of the third assertion of the theorem we observe that since 

at the equilibrium /. = 0 therefore after differentiating ( 1. 14) with respect to e we obtain for 

-�au( + f(u)u€ = c!u1 in 01 

{)u( = 0 on 80. 
{)n 

From the definition of u we have: 

( 1. 79) 

Setting: 

we can recast ( 1. 79) as: 

Notice that c1 is almost the principal eigenvalue of £« linearized about u.Indeed we have 

The following lemma is needed to complete the proof: 

Lemma 1.16 (The Abstract Perturbation Result) .  Let A be selfadjoint operator on 'H., a 

Hil bert space , I a compact interval in R ,  { ,P1 1  • • •  1 1/.tn} linea rly independent normalized elements 

in D(A).Assume that the follo wing conditions hold true : 

(i) 

A,P; = >.;t/J; + r; I l lr; l l  � f'l 

>.; E I, j = 11 • • •  1 N. 
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(ii) There is a number a >  0 such that I is a-isolated in the spectrum of A: 

Then 

(cr(A) \ I) n (I +  (-a, a)) = 0. 

N!€' d (£, .1") = sup d(4J, F) � (>. . 
) 

, 
4>EE a mm 

114>11=1 

where £ = span {1/11 , . • •  , '1/JN } ,  :F is the closed subspace of1t associated to cr(A) n I and >.min is 

the smallest eigenvalue of the matrix ((,Pi , '1/J;) ) . 

The proof of this lemma can be found in [H-S) (see also [A-F1,2) for more details on applica-

tions) . Let A = -�26. + f'(u) .We first show that i2 � C€2.By the variational characterization 

of eigenvalues we have: 

{ 1 .80) 

where the last inequality follows from Lemma B. Let a constant K > 0 be chosen such that : 

(1 .81) as e - 0 .  

Let I = ( c� - ,l e -.K , c� + ,l e =!!-) and set a = ,l e =!!- .Suppose that i1 rf. ( c� - 2-yf e =!>- ,  c� + 

2,ie =!'- ) .This,Lemma l . 16 and ( 1 .80) implies that the subspace :F associated to u(A)ni contains 

only 0 vector hence d (£, :F) = l .On the other hand by ( 1 .81) we have 

a contradiction. The proof of the theorem is complete. 

0 
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Existence 

- ---
Stable 

--- -

Non-existence 

FIGURE 4 . EXISTENCE AND STABILITY OF EQUILIBRIA IN DIFFERENT DOMAINS 

Figure 4 illustrates some typical examples of domains to which the results of this chapter 

apply. 

2.1 The Eigenvalue Problem-proof of Lemma B .  

Before we give the proof of Lemma B we will consider an example in which the spectrum of 

the operator Le,( can be calculated explicitly. The importance of the result of these calculations 

will become apparent in the proof of Lemma 2.2 below. 

The Sola-Morales Example. Let Re = (e, 1 - e) X (0, b).We claim that the estimates ( 1 .22) 

hold true for 0 = R •. 

Proof of the claim. We follow here [Ste] . Since supp wf c n \ R. therefore {1. 7) becomes: 

-t2�V + f' [u (z1; {) ] V = JJV in He, 
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The potential f'(U) depends only on Zt and we can solve this eigenvalue problem explicitly by 

separation of variables.Setting V = w 1 ( Zt )w2( :1:2) we obtain: 

0 < Zt < 1 ,  w� (O) = w� (1) = 0, 

0 < Z2 < b, 

Simple calculations show that: 

m, n = 0 , 1 , . . . 

It is well known that (see [F-H,C-P,DeM-S2,A-B-F1,2]): 

Ut > C. 

It follows that: 

2 2 71" o(· - �-.l)  J.'Ol = e b2 + e 2 T  . 

0 

For convenience we present the proof of Lemma B in several steps. 

Proof of part (i) of Lemma B. For the proof of (1 .21) we need two lemmas. 

Lemma 2.1. Given l > 0 there exist eo > 0 such that for all e < eo and e E (l, 1 - l) we have: 

{2.1)  

Proof of Lemma 2. 1.  From the variational characterization of eigenvalues by choosing U' ( "'1 ;E) 
as a test function we obtain: 

(2.2) 
>.! 

< 
Jq�,IVU'(�)I2 + /'(u{)ju(¥)12 

1 - fo!U'("'t;') l2 , 
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We can estimate the numerator in (2.2) with the help of Green's formula: 

L €2 fvrr c�l ;e) r + /'(ue) fu' ( Zl; e) r 

s L [-E2Au' (z1 ;e) + J'(u)u' (z1 ;e)] u' (z1 ;e) 

+ L l!'(ue) - t(U) I [u' ( Zt; e)] 
2 

+ t2 L
n 

U' (Zl ;e) :n U' C':l: e) dS = : It + 12 + 13 . 

By (1.1) l1 = 0 .  From the asymptotic formulas for U', U" and the definition of ue it follows 

that h can be estimated by re - � .It sufficies now to estimate the boundary .integral 13 • Since 

from the asymptotic formulas (1. 2) only small neighborhoods of the corners matter standard 

computations show: 

(2. 3) l3 $ -0 [t ">r(�) ( 2
E ) >., e -21'( .t:;t) + t ">r(�) ( 2

E ) >., e -21'U )] ( 1  + o(1)) . 
1=1 {3 1=3 {3 

On the other hand the denominator in ( 2. 2) satisfies 

( 2.4) 

From ( 2.2) ,  (2.3) and (2.4) the lemma follows. 

0 

Now we will establish the rest of ( 1.21) in Lemma B .  

Lemma 2.2. Under the hypothesis of Lemma. 2. 1 we have: 

( 2. 5) 

( 2. 6) 

Proof of Lemma £.£. We decompose n to n =  R, u 01, u OR where 

n1 = { z E n 1 z 1 s E}, 

nR = { z E n 1 z 1 � 1 - E}. 
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By p�,L , p�,R, p� we will denote the eigenvalues of (1 .  7) restricted to Oi , 0�, Re r�pectively. 

We rearrange the set {J'�'L} U {J.&!'R} U {J'�}  in the order of increasing magnitude (counting 

multiplicities) and denote the resulting sequence by J'i . From the Hilbert-Courant comparison 

principle we have: 

(2.7) for i =  1, 2 ,  . . .  

Since for all sufficiently small e and { E (l , 1 -l) we have 

therefore a simple argument using the Rayleigh quotient for (1 .7) restricted to Oi,, 0� implies: 

This and Lemma 2.1 shows that without loss of generality we can assume that 

From the Sola-Morales example we know that : 

The above estimates and (2.7) yield (2.5), (2 .6) . 

0 

Combining the previous two lemmas gives { 1 .21). 

Proof of the inequalities {1.22} in Lemma B. 

Lemma 2.3. Set as in Section 1 . 1  q• = -l lu� I I.LJ(o) and let 

Under the hypothesis of the previous lemmas we have: 

(2.8) 
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Proof of Lemma !!.9. We follow the proof of Proposition B in (ABF2).  We first decompose p€ 

to: 

( 2.9) where (r€ , vf) = 0 .  

Applying L�.€ on both sides of ( 2.9), multiplying by r€ and using the orthogonality condition 

for r€ , vf we obtain: 

( 2. 10) 

Since 

therefore we get: 

From the definiton of we we know that l suppw• l = O(t) hence: 

In a similiar manner we can estimate each term in the expression for Le•(u� and using the 

formula {1 . 13) it follows: 

( 2. 12) 

On the other hand from Lemma 2. 2 and the variational characterization of eigenvalues we obtain: 

( 2. 13) 

Using the Schwartz inequality on the right hand side of ( 2. 10) and combining ( 2. 12) and ( 2. 13) 

yields: 

( 2. 14) 
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Writing -H{ = (a - 1)'"1{ + re and taking £2 norm on both sides we conclude via (2. 14) : 

hence 

(2.15) 

This together with (2.14) completes the proof of the lemma. 

0 

To finish the proof of (1 .22) we need the following: 

Corollary 2.4. With the assumptions as in Lemma 2.3 we have: 

{2.16) 

In particular for each l' , 0 < l' < l there exists a constant K such that lz1 - {I $ l' implies: 

(2.17) 

Proof. The first formula in (2.16) follows immediately from (2.15) .For the other estimate we 

observe that pe satisfies: 

L'·epe = >.f"le - L'•eHe in 0, 
ape - = 0  
on 

on an. 

Using Lemma 2.3 and (2. 12) we get: 

(2 .18) 

To estimate pe we employ the second fundamental inequality (1 .10) applied to the operator £f,{ 

and estimates (2.8), (2.18): 
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The second assertion of the lemma follows from (2.16) and the Sobolev embedding W2•2(0) � 

0 

The proof of the part (i) of the Lemma B is complete. 

Proof of part {ii) of Lemma B. 

Fix l' , 0 < l' < l and set: 

From the previous lemma and the asymptotic formulas for U' we can easily show that the 

estimate (1 .23) holds for :z: E R(Our goal is to extend it to the rest of 0. We shall use the 

idea of Agmon [Ag1 ,2] and Hellfer-Sjostrand [H-S] and estimate the expression V1(ef'¥. Let 

p- = f3 - € .Straightforward calculations give: 

(2.19) 

Since �( satisfies the Neumann boundary conditions it follows from (2.17) : 

4 

= LI;, , 
i=l 

where p€ is defined in Lemma 2.3.Utilizing the interpolation inequality (1 . 11 )  with m = 2 and 

the Corollary (2.4) we get 
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The other integrals Ii can be treated similiarly so that we obtain IIi I ::; C, i = 1, . . . , 4, hence 

(2.20) 

Since 

in n, 

on 80, 

therefore another application of the second fundamental inequality and the Sobolev embedding 

implies the required estimates. 

0 

Proof of part (iii) of Lemma B. We shall denote: 

We first observe that from classical perturbation theory (Af ,  V;e) are differentiable functions 

of the parameter e (see [K] chp.VII, sec.2) .This follows from the differentiability properties of 

!' { ue)  as a function of e .  

Proof of the estimate for Ate· Differentiating both sides of the equation (1 .7) with respect to { 

we obtain the following problem for (Ate• l';.�e): 

(2 . 21) 

Lc,eTTe - \e TTe + \hT{ e "1 - "'1 ,e "1 "'1 "1 ,e 
avfe ar: = 0 on an. 
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Notice that {Vl , l1,f) = 0 = {H[ ,Hf) where Hf = q•u� . Multiplying both sides of (2.21)  by Vl 

and integrating over n we obtain: 

Orthogonality of Vl and V1�f implies that (L•.fy1�f ' vf) = 0, hence: 

(2.22) 

For R. = (e, l - e) x (0, b) we set: 

(u, v). = f uv. JR. 
From (2.22) and (1 .23) it follows: 

IAtf l ::::; { /"(uf)u� (vlf + (f"(u{)u�V1f, vf). lnvt. 
::::; ce-5-yfof + (/"(uf)u�vl .  vl) •.  

On R. we have ui (:c) = U C"' ;e) .It is convenient to denote Uf = U C"' ;e) .Since Uf satisfies 

-e2ll.Uf + f(Uf ) = 0 therefore after differentiating this last equation twice with respect to e we 

obtain: 

This and the decomposition pf = V1f - Hf as in Lemma 2.3 yields: 

(2.23) 

(f"(Uf )U[Pf, Vl). = (f"(Uf)U[V1f , V1f). + (/"(Uf)Hfu[, Vl). 

= (/"(Uf)u[ ,  (Pf)2). + q" (J"(Uf)(U/)2, pf + vl). 

= (/"(Uf)uf ,  (Pf)2). - 9• {L"·futf , pf + vl) • . 

From the estimate (2.8) we have: 

(2.24) 
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Integration by parts yields the estimate for the second term in (2.23): 

lq' (L•.euf I pe + vf>· l = lq"{Ufe · L'·e (pe + v1e >>· l 

+ 19cf2 faR. [ufe :n (vf + F() - (V1e + pe) :n ufeJ dSI 
$ 1q"(ufe I 2.\�Vl>· l + cf-5,.e $ cf-6f I 

where we have made use of Vf + pe = ne + 2Pe and (1 . 1 1 )  The last inequality combined with 

(2.24) gives ( 1 .24 a) . 

Proof of (1.24 b). From the decomposition pe = Vl - ne as we have: 

hence 

(2.25) 

Pe _ ue He _ uf. �(q•uf. ) ( - y 1 ,( - e - y 1 ,( - 8� ( ' 

L"•epe - L"•e(v.e - q•uf. ) - q' L"•f.uf. ( - l,e (( e f. 
= -�(q' L"·f.ue) - f"(ue )ue pf. + ,xev.e + ,xf. v:f. 

8� e e 1 1 ,e 1 ,( 1 . 

Let Pf = af.�( + Qe with (V1( 1 Qe} = 0. We first estimate ae : 

(Pf1  Vl} = af. = -(H[ � vf} 

= -(Hf I V1e - He} = -(H[ I Ff} 

From the formula for q" we get : 

(2.26) 

lq( l  = 1- (u� l u�e}(q')2 1 $ (q")2 , (u� l  u�e>· l + cf-2f 

$ cf-2f . 

where the last inequality follows from J� U'U" = 0 and the asymptotic formulas (1 .2). Con-

sequently: 
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From the representation formula for Pf we obtain: 

Orthogonality of Vl and Qe yields as in Lemma 2.3: 

{2.28) 

On the other hand from {2.25) : 

Differentiating L•·(u� = L•·ew� + (/'(ue) - f'(Ue)) uf with respect to � and using (2.26) we 

obtain: 

{2.30) 

For the second term in {2.29) we get: 

{2.31) 

Finally for the last term in {2.29) we have: 

l (5.iv;.�e · Qe) l = l>·i i i (Pf + H:, Qe) l 
{2.32) = l>·i i i (Qe , Qe) + (H: I Qe) l $ 1>-i i i iQe lli�(O) + ce-6-y( I IQe iiL�(O) · 

Combining {2.27)-{2.32) yields: 

{2.33) 

This and (2.26) completes the proof of {1 .24 b). Argument analogous to the one in Lemma 2.3 

implies the inequality { 1 .24 c) as well.We omitt the details . 

0 
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Proof of {1.£8 d). The expression V1�eep- �  can be treated quite similiarly as the expression 

VleP- ¥ in the proof of part (ii) of Lemma B.Notice that in this case the identity (2.19) 

requires slight modification since we have an extra term (>.f .e - f"(ue)unvrln fact: 

However the extra term in the above expression as well as the boundary integral can be estimated 

by using (2.20) and the inequality (1 .24 c): 

�1  e 2r l!.t;:11v;_e !!_v;_e dS + j (>.� - /"(ue)ue) (v1ee p-¥)2 
B(D!uD�) .e 8n .e (D1uD�) .e e 

::; c�.-2. 

From this point we can follow the proof of part (ii) of Lemma B to complete the proof of (1.24) . 

0 

3.1 The Quasi Invariant Manifold-proof of Lemma A. 

Recall from Section 1.2 that we are after a pair ( ve ,  ct) E W2•2(0) x R such that: 

Lc·eve = ceu� - L'·ewe + N(ve ) + M(we) in 0, 

(v;_e , ve) = o, 

(3.1) 

where 

(3 .2) 

Set for w E W2•2(0) : 

(3.3) 

!!_ve = o 
8n on 80 , 

N(ve) = -f(ue + ve ) + f(ue ) + f(ue)ve , 

M(we) = f(U) - f(U + we) + f'(U + we)we . 

�(w) = {-L•.twe + N(w) + .M(we) , vf) 
<vf.t4> 
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Notice that {�((w) , Vl} = 0. Let K:( , (  E (l, 1 - l) be a one parameter family of maps K;( : 

W2•2(0) - W2•2(0) defined by 

if and only if v E W2•2(0) 

It is clear that 11( is a solution to (3.1)  if and only if K;((v() = v( and therefore the idea is to 

prove Lemma A by applying the Banach Contraction Mapping theorem. We first need a technic� . 

lemma: 

Lemma 3.1. Let ( E (l, 1 - l) and w E W2•2(0) . We have tlie fo11owing e8.tiinates: 

(3.4) 

IIL''•(w(IIL'(O) $ CJ( , 

I IM(w()IIL2(0) $ Cf,  

I IN(w)IIL'(O) $ Cllwii�2,2(0) • 

lc((w) l $ 0fl llwll�2,2(0) + ce-4-y( . 

Proof of Lemma 9. 1. The first two estimates in (3.4) follow from (1 .4) and (1 .5) and the definition 

of w( and M.For the third estimate we notice that N(w) is a "quadratic" function of w, hence 

we have: 

The last estimate follows from 

the first estimate in (3.4) ,  ( 1 .23) and supp w( n (e, 1 - e) x (0, b) = 0 .  

0 

The following lemma is a simple consequence of the theory of elliptic PDE and the Fredholm 

Alternative (see also Section 1 . 1  of this chapter) . 
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Lemma 3.2. For each w E W2•2(0) and e E (l, 1 - l) there exists a unique pair (c{ (w), v) 

such that � is determined from the formula (3.3) and L«,!v = �! (w) . In particular the map 

JC! is well defined as a map from W2•2(0) to the subspace of W2•2(0) consisting of functions 

orthogonal (in L2 inner product) to �{ . 

Set: 

B(w, p) = {u E W2•2(0) l l lu - wl lw2,2(0) < p} , 

B(p) = B(O, p) , 

As a first step in showing the existence of a fixed point for K_{ we establish: 

Lemma 3.3. There exists eo > 0 su.ch that for each e < e0 we have: 

for all { E (l, 1 - l) .  

Proof of Lemma 9.9. Let w E B(p! ) be fixed and let v = JC!(w) .From Lemma 3 .2  we have 

Le,{v = �! (w) .It sufficies to show v E B(p! ) .Since: 

therefore from the variational characterization of eigenvalues,orthogonality condition for v and 

Lemma B (1 .21 b) we get: 

(3.5) 

From Lemma 3 .1  we obtain: 

(3.6) 
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hence 

Consequently: 

(3.7) 

From (3.5), (3.6) we also get by the second fundamental inequality (1.10) :  

(3.8) 

l lvllw2,2(Il) $ Ct-
2 (IIL"•eviiL2(0) + l lvl l£2(0)) $ Ct-� (ll�e(w)_ll£2(0) + l lvi iL2(o)) $ Ct-4�e . 

hence the lemma follows. 

0 

Remark 9. 1. By the assumption (F4) if w1, w2 are sufficiently small then IN(wl ) - N(w2) 1 $ 

Folw1 - w2 l (lwd + lw2 1) .This inequality will be used in the next lemma. 

Lemma 3.4. For each sufflciently small t the map x:,e restricted to B(pe ) is a uniform contrac-

tion map, namely for each w1 , w2 E B(pe) : 

(3.9) 

where 0 < 9 < 1 can be chosen uniformly for { E (l, 1 - l) .  

Proof of Lemma 9.4. Let e be fixed and for given Wt '  w2 let ,te(wi) = v, ,  i = 1,  2.From the 

definiton of ,te we have: 

Set ow =  w1 - w2, ov = v1 - v2 .From Remark 3.1 we get : 

IIN(w! ) - N(w2)I IL2(0) $ Cllowi!L2(0) (l lwt l l£2(0) + l lw211L2(0)) , 

l�(w! ) - ce(w2) 1 $ Ce! llowi!L2(0) (llwt ll£2(0) + I IW2 11L2(0)) 1 1Vte l lo0(0) o 
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hence, 

Multiplying both sides of the second equation in (3.10) by 6v and integrating by parts over n 

we get after arguing as in the previous lemma: 

hence 

l l6vllw2,2(0) $ CE-2 (l l�{ (wl ) - �{(w2) I IL2(0) + ll6viiL2(0)) 

$ CE-4116wiiL2(0) (llwl iiL2(0) + l lw2 I IL2(0)) $ CE-4p{ ll6wiiL2(0)· 

and the lemma follows.Notice that since l > 0 is independent on E therefore 0 in the assertion 

of the lemma can be chosen uniformly for all e.  

0 

The proof of Lemma A will be given in two parts.First we shall establish all but the assertion 

(1 .16 c) of this lemma.Proof of the improved v estimate will be presented separetely since it 

requires different techniques and is more involved. 

Lemma 3.5 (first part of Lemma A). For each e E (l, 1 - l) and all E sufficiently small there 

exists a unique pair ( v{ , c{ )  such that: 

(3. 11 )  

Moreover we have estimates: 

(3.12 a) 

(3 .12 b) 

K{(v{ ) = v{ , 

c{ = c{ (v{ ). 

l lv{ 1lw2,2(o) $ C E-46{ , 

lc{ l $ ce-lff.  
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In addition ( ve ,  ct) are differentiable with respect to { and we have: 

(3.13 a) 

(3.13 b) 

l lv� llw3,2(0) � ee-96{ '  

141 � eE-17,t .  

Proof of Lemma 9.5. The existence and uniquenes s  part of the lemma i s  a consequence of the 

Banach Contraction Mapping Theorem and Lemma 3.4.(3.12) follows from Lemma 3.3 (estimate 

(3.12 a)) and Lemma 3 . 1  (estimate on (3.12 b)) .Since the constant 0 in the st atement of Lemma 

3.4 can. be chosen uniformly with respect to { E (l, 1 - l) therefore it follows from the results in 

[H,He] that vt is continuous with respect to { hence c'- is continuous as well.ln order to show 

differenti ability it sufficies to show that K;f(w) is Frechet differentiable with respect to e ( see 

[He]) .Fix { E (l, 1  - l) ,  w E B(p{ ) and v = K;{ (w) .Set �Lhu({) = u({ + h) - u({). We first 

consider �{ ,h�f(w) .From Lemma B we obtain: 

1:e (u� , vf} l � ee-lf&e . 

Straightforward calculations show: 

Consequently: 

(3.14) 

(3.15) 

l l�o� N(w)IIL2(n) � ee-1 llwll�n,2(n)h, 

� ��{ ,hLE•{w{ IIL2(0) � el-16e , 

l l�{,h M(we)IIP(n) � ee-1'Ye .  

From (3.7) , (3.14) we get: 

IIL•·{�{,hviiL2(0) � e (E-36f&Hhh + €- l&fh) � ee-16eh. 
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Using the technique from the previous section, namely decomposing D..f.•"v = af.,hyl + rf.,h, 

where {V1f. , rf·"} = 0 and estimating the remainder and the coefficient as in Lemma 2.3 we get: 

hence 

(3.16) 

jaf.·" l � I {Vl , t::..f.·"v) l $ l {V!+h - ylf. , ,tH"(w)} l $ ce- tpeh, 

l lt::..f.·"vllc.2(fi} $ ce-! pf. h, 

From the Rellich-Kondratchov Theorem we conclude that for each sequence {hn}, hn -+ 0 there 

exists a subsequence, which we again denote for convenience by { hn} and a function 1i E W2•2(0) 

such that: 

strongly in £2(0) and weakly in W2•2(0) . 

Now we need to show that the limiting function 1i does not depend on the choice of a sequence 

{hn}.To this end assume that there are sequences {h�}, i = 1, 2 such that: 

1 � d . 
hi D.� ,,. .. 1) -+ 1i' n 

strongly in £2(0) and weakly in W2•2(0) for i = 1 ,  2. 

After passing to the limit (as n -+  oo) in the equation (3. 15) for i =  1 , 2 we get: 

Lc,e (til _ 1i2) = 0 

a 
(-1 -2) o 

8n
v - v  = 

in 0, 

on a n. 

This implies that there exists a such that 1i1 = 1i2 + aV1e .Since for each e E (l, 1 - l) we have 

(v, vl> = 0 therefore: 

i = 1 , 2.  

Taking the limit on both sides we get: 
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hence 

Consequently o: = 0 and v1 = ii2 : = ii. By using (3.15) with the help of (1 . 10) we obtain 

the strong convergence of ,;.,. .6_{,A,.v in W2•2(0).1t remains to show now that v = ��{(w) is 

continuous with respect to e.The proof of this standard and we omitt it .The estimates (3.13) 

follow now from (3.16) and Lemma 3.1 .  

0 

Proof of the improved v-estimate. Before we begin the proof we point out that in some sense 

W2•2(0) estimate in Lemma A is already optimal.This is due to the fact that I IL'•€u�I IL�(O) = 
O(c1J€ ) and therefore we can not hope on improving (3.12) globally on the whole O.On the 

other hand on the rectangular part of 0 we have -t2.6.u€ + f(u€ ) = 0 and thus the ansatz 

U( "'1 ;c ) is there a better approximation of the true solution then on the rest of n. This is why 

we can improve the estimate on v{ only locally, near the layer. First we need a classical result : 

Lemma 3.6. Let 'E be an infinite strip in IR2, 'E = {:z: = (:z:1 , :z:2) E IR2 j 0 < :z:2 < b}.Consider 

the following equation: 

-£2 .6.u + {32u = ,p 

au = 0 
8n 

in 'E, 

on 8'E. 

Then for each ,P E L2 ('E) the above equation has a unique solution u E L2(�) which can be 

represented by: 

u(:z:) = E-2 l ,P(y)G(:z: , y) dy, 

where for :z: = (:�:1 , :z:2) , y  = (y1 , Y2) we have: 

00 

G(:t:, y) = b- 1  :�::::0·; 1e -u,.J=•-v•l cos( 11'bn :z:2) cos(bn Y2) , 0 < Y2 < :z:2 < b, 
n=O 
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Proof can be found in [D-N] . We set: 

BD = an n an for any D C  JR2, 

Set i = fr· The next lemma gives us estimate on ve on the "boundary" of the rectangular part 

of f! .  

Lemma 3.7. For each € E (1, 1 - l) and E sufficiently small we have: 

(3.17) 

for x E 0(3f, 7f) U 0(1 - 7f, 1 - 3f) . 

Proof of Lemma 3. 7. Fix x E 0(3f, 7f) .Recall that on (f, 1 - f) x (0, b) we have we = 0 hence 

from (3.3): 

in O(f, 9f) . 

We recast the equation for v{ : 

(3.18) 

Multiplying (3.18) by G(x , y) and integrating by parts with respect to y over O(f, 9l) we obtain: 

ve (x) = f _ [ 4>{ (v{) + (.62 - /'( u{)) v{ ) {y)G(x, y) dy Jfl(1,9l) 
- e2 f _ _  G(x , y):_ ve(y) dSy + e2 f _ _  ve (y) 0

a G(x, y) dSy lan(l,91) vn lan(l,91) n 

(3.19) = :  h - e2 l2 + e2 Ia. 

From Lemmas 3 .1  and 3.3 we can easily estimate: 
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Note that the first inequality above follows from the fact that the series Jn(i,gf) IG(z , Y) l dz is 

absolutely and uniformly (in f) convergent since J000 e -ut dt = �·  From 

ave _ 
0 on - ' 

a 
-G(z, y) = 0 ony on BO(f, 9f) 

it follows for z E 0(3f, 7f) by making use of (1 . 11 )  again that 

for i =  2, 3 .  

This completes the proof of for z E 0(3f, 7f) , the argument for the other part is  analogous and 

we omitt it. 

0 

Recall that 

R5; = (Sf, 1 - Sf) x (0, b) . 

Let ('Vi{ , Xf) denote respectively the ith eigenfunction and eigenvalue of the problem (1 .7) with 

the set n replaced by R5r.It is not very difficult to show (eee Lemma B and the Sola-Morales 

example) that : 

(3.21) 

This fact will be used in the next lemma in which we extend (3.17) to the set Rsi· 

Lemma 3.8. Under the assumptions of Lemma 3. 7 we have: 

Proof of Lemma 9.8. From (V1{ , vt) = 0 we obtain via Lemma B and Lemma 3.S: 

(3.22) 

This and (3.21) yields: 
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Let v€ be the restriction of v€ to R5;.We can decompose: 

(3.24) 

av e -
It is easy to see that an = 0 on aR5; and 

(3.25) 

over R5; we obtain via (3.26) and ( 1 . 11) 

(3 .26) 

:S Ct-8")'{ l lii e IlL�( Rat) + E2l lii { l lco(0(4i,6i))flii { ( z )llw�.�(Ra�) 

::; Ce-12ro e + Ct-26 e l l;; e l lco(n(4i,6i)) · 

From Lemma (3.7) we obtain 

hence by (3.26) we get from (ii€ , V'f) = 0 

and therefore 

Combining this with (3.23) and (3.24) we get 

The proof of the improved v estimate is complete. 

0 

65 



1.1 Preliminaries 

CHAPTER II 

THE EXISTENCE OF EQUILIBRIA 

FOR THE CAHN-HILLIARD EQUATION 

In the present chapter we will be interested in establishing existence of certain equilibrium 

states of the nonlinear Cahn-Hiliard equation 

(CH) 

Ut = .6.( -e2 .6.u + ..l"'( u)), :z: E 0, 

a a 
an 

u = an ( -e2 .6.u + F'(u)) = 0, :z: E an. 

where 0 C JR2 a smooth, bounded domain, :
n 

the exterior normal derivative, 0 < e <t:: 1 small 

parameter. Here F E  C2(0) is a double well potential: F � O,F( -1) = F(1) = O.ln addition we 

assume that there exist positive constants p, u0 such that c-1 luiP :S F(u) :S CluiP for u > UQ. 

It is convienent to rescale the free energy functional .J. = J0 e2 1V'ul2 + F(u) associated to 

(CH) in the form 

(1 .1) 

We introduce now a class of functions of bounded variation which turns out to be a natural 

function space for our problem. For f E L1 (0) we define: 

If J0 IDJI < <X> then we say that f has bounded variation.By BV(O) we denote the Banach 

space of all such functions equipped with the norm: 

l l!l lsv = I I/I lL• + k ID  fl. 

For any measurable set E C lR 2 by ¢ E we denote the characteristic function of E .If E C 0 and 

l lif>E I Isv < oo then we say that E has finite perimeter and we denote: 

Pero(E) = L ID¢E I ·  

66 



Let -y be a plane curve. We call -y a 01•a curve if locally it can be represented as a graph of 

01•a function. It is known for such curves that if .C(-y) denotes the lenght of -y and if E.., is the 

set cut off from n by 'Y then 

Pern(E..,) = .C(-y). 

In fact similiar statement holds if we only assume that -y is a rectifiable curve. 

Of the special importance is the fact that the Rellich�Kondratchov theorem holds in BV(O), 

namely bounded BV sets are precompact in L1 . More details about the space of functions of 

bounded variation the reader can find in [Gl] . 

For any given A E (0, IO I )  we define: 

VA = {E c n I lEI = A and L ID4>E I < oo}. 

Definition 1.1. Set E C 0, E E VA is called a local minimizer of the perimeter in the class 

VA if there exists p > 0 such that for each set F C n, F E VA satisfying: 

we have: 

( 1 .2) 

We say that E is an isolated local minimizer of the perimeter in the class VA if the equality in 

( 1 .2) implies E = F a.e. in 0 

It turns out that to the functional Q. we can relate the following functional: 

(1 .3) [ ] { 2co In IDul if u E BV(O) and fn u = m and F(u(:c)) = 0 a.e. in n 
9o u, m = . +oo otherwlSe 

where c0 = 11 F112(s) ds. The relation between the global minimizers of Q. and 9o was first -1 
pointed out in the work of Modica [M] (see also [S]) .Later Kohn and Sternberg [K-S] observed 

that the methods used previously for the global minimizers extend to local minimizers as well and 

that, moreover, certain existence result can be established. We will define now local minimizers 

for both Q. and 9o. 
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Definition 1.2. We call u� an L1-local minimizer of (}� if for some p > 01 (}�[u� 1 m] � (}�[v1 m] 

whenever 0 < l lv - u�IILI (O) � p. We also call u0 an isolated L1-local minimizer of (}0 if for some 

p > 01 Qo[u0 1 m] < Qo[tJ1 m] whenever 0 < l lv  - u011Ll(O) < p. 

Using the r-convergence method it can be shown [K-S] that the following holds. 

Theorem 1.1. Let n be a bounded domain in JR 2 with Lipschitz boundary and suppose that 

u0 is an isolated L1-local minimizer of(}o.Then there exists to > 0 and a family {u�}�<�o such 

that: 

(1)  u� is an L1-local minimizer of(}�; 

The main goal of this chapter is to give a geometric characterization of isolated L1-local 

minimizers of Qo and by doing so showing the existence of certain equilibrium states for (CH). 

Observe that W(u0(:z:)) = 0 a.e. in n is equivalent to u0 = ±1 a.e in n.Denote E = {u0 = 

l} .From the Coarea Formula we have 

Qo[u0 1 m] = 4co L ID<PE I 1 

with lEI = m � 1n1 . Thus the problem of minimizing (}0[· 1  m] is equivalent to the problem of 

minimizing Pero(·) in the class 'DA with A =  m� IOI . This is the the latter problem we shall 

concentrate on here. 

In order to characterize minimizers of the perimeter in BV(O) class in terms of the geometric 

properties of the domain we consider a family CA of circular arcs lying in 0 whith the endpoints 

lying on an and enclosing area A.We give a precise definition of the circular class CA in the next 

section. We also prove there that it is possible to introduce in CA a differentiable function L( s 1 q) 

which to each circular arc w E  CA joining points z(s)1 z(u) E an assigns its lenght .lt turns out 

(Lemma 2.3) that the local minima of L(s 1 u) correspond to the shortest (locally) smooth curves 

with their ends lying on an and enclosing area A.Now the main result of this chapter can be 

stated: 
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Theorem 1.2. Let n C JR2 be a bounded region with an E C4• 

(i) If z(.i) is the point of a local (strict) maximum of the curvature of an then for all 

sufficiently small A > 0 there exist points SA 1 u A such that the function L( 8A 1 u A ) defined 

on C A attains its local (strict) minimum at 8 = 8 A 1 u = u A .Moreover sA --+ s 1 u A --+ .i as 

A --+  0. 

(ii) Let A, A E (O, Inl) be given and BA , UA be the points of a strict local minimum of L(81 u) 

on CA .Let w E  CA be the circular arc with endpoints z(8A) ,  z:(u A ) and E be the set with 

area A cut off from n by w.Then E is an isolated local minimizer of the perimeter in 

the class VA . 

Figure 5 below illustrates the situation. 

n 

FIGURE 5 .  LOCATION OF THE LOCAL MINIMIZERS IN THE CL ASS  CA 

From Theorems 1 . 1  and 1.2 existence of equilibria to (CH) whose transition layers are close 

to circular arcs intersecting the boundary orthogonally follows immediately.Notice that if A is 

sufficiently small (which in terms of the mass constraint corresponds to m � 0 or m � ln l)  

then the Four Vertex Theorem guarantees that we have at least two such equilibria.lt is natural 
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to conjecture that in fact the number of equilibria of the type described above is equal to the 

number of critical points of the curvature of an.However the method used in this chapter allows 

us only to establish the correspondence between local minima of the free energy functional and 

local maxima of the curvature. 

The rest of this chapter is organized as follows: in Section 2.1 we investigate the family CA 
and the function L.Part (i) of the above theorem is contained in Corollary 2.6.1n Section 2.2 

we consider class VA , in particular part (ii) of Theorem 1 .2 is contained in Lemma 2.12 of this 

section. 

We are greatly indebted to Professor Xinfu Chen for suggesting the argument in Section 2 . 1 .  

2.1 Minimizers in  the Circular Class 

Let n C lR 2 be an open, bounded,limply connected domain with C4 boundary. We will assume 

that an is oriented counterclockwise and equipped with the arc lenght parametrization z(s) .In 

order to motivate our considerations we first give the following: 

Example 2.1. Let A E (0, In I ) be a given number.Find the shortest smooth curve with its ends 

lying on an and dividing n on two parts one of which has area A. 

Let w(:z:) , :z:  E (0, 1] denote the parametrization of the curve we are after and let w(O) = 

z(s), w(1) = z( u) be the endpoints of w lying on an.Set: 

.C(w] = 11 lw'l dz, 

(2 . 1) A[w] = � {11 (w1w� - w�w2) d:z: + 1' (z1z2 - z�z2) ds'} . 

We seek a solution of the problem of minimizing .C(w] subject to the constraint A[w] = A.It is 

well known that minimizers are critical points of: 

(2.2) F>.[w] : = .C[w] - 2>.A[w] . 

From classical calculus of variations any critical point of (2.2) satisfies: 

(2.3) 
{ � (� - >.w2) = Aw� , 

� (� + >.w2) = ->.w� . 
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where A is the Lagrange multiplier and w, z satisfy the transversality conditions: 

{w'(O) , z'(s)} = 0, 

(2.4) {w'(l), z'(u)} = 0. 

From (2.3) we conclude that unless A = 0 there exist numbers a 1 ,  a2 , r such that: 

If A = 0 then there exist constants a, b such that aw1 + b = w2 and in any case the solution to 
. . 

(2.3) must be a curve of constant curvature.Thus any critical point of :F>.. must be a curve of 

constant curvature which meets an orthogonally. One could try to solve (2.3) directly and then 

by using classical calculus of variations methods find all critical points of C in the contrained 

class and then describe their properties (perhaps depending on an) .We shall not pursue this 

approach here and instead we shall reduce the problem of minimising the functional C to the 

problem of minimizing appropriately constructed function of two variables. 

In the sequel any curve of constant curvature will be reffered to as a circular arc or simply a 

circle. 

Before we proceede further we remark that all calculations in this sections are greatly simpli-

fied if we treat n and various curves appearing later as subsets of the complex plane.For example 

z(s), the arc lenght parametrization of an is to be understood as z(s) = Rez(s) + iimz(s) .The 

formula for the area in (2.2) takes form 

We first need the following lemma. 

Lemma 2.1. Let A be a given positive real number.For any two points z(s), z(u) E an there 

exists a circular arc w joining them, whose arc lenght parametrization can be written: 

(2.5) 
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Moreover K. the curvature ofw, t/J the contact angle between w and 80 at z(s) and L the lenght 

of w are all smooth functions of (", u) determined from the equations: 

(2.6) 
{ w(L, 6, u) = z(u), 

! Im { J0L 
w dw + J: z dz} = A. 

Proof of Lemma £.1 .  Let {3(6, u) be the angle between the tangent z'(s) and the chord z(u)-z(s) 

measured in the counterclockwise direction from z'(s) to the chord.lf we denote R = !z(u) -z(s)l 

then we can write: 

(2.7) z(u) - z(s) = Rz'(s)e
ifJ . 

Let t/J E [0, 2w) and 8 = 2({3 - ,P).If we define: 

(2.8) 

2 sin {�) "' =  
R 

' 

8 , 
L = - = -:-L-(') R. 

K. 8lD 2 

then an elementary geometric argument (or direct calculation�) shows that the circular arc whose 

representation is given by (2.5) satisfies the first equation in (2.6) .1n other words w is the circular 

arc joining z(s) and z(u) with the contact angle at z(s) equal to t/J.To complete the proof we 

need to show that t/J can be chosen so that the second condition in (2.6) (the area constraint) 

is satisfied. Because of the relation (2.8) it sufficies to find a smooth function 8 = O(s, u) such 

that (2.6) holds.From the definition of w: 

hence after standard calculations: 

(2.9) 

where 

(2. 10) H(O) = 1 - cos O + / - sin O = : � + iF(O) , 4 sin2 !  4 sin2 ! 2 2 2 
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thus 

(2.11)  R2 F(O) = 2A - Im {z(•)(z(u) - z(s)) + 1• zdz} . 

Since 

8 E (-211", 2rr) 

and F(±21r) = ±oo therefore p-l is smooth. This immediately implies that (2.11) can be solved 

for 8 and that 8 is a smooth function of (• ,  u).The proof is complete. 

0 

For any A E (0, IO I ) a family of circular arcs CA defined below will be called the circular class: 

CA = {w( · , •, u) I z(s) , z(u) E an, w(t, •, u) E 0 for t E  (O, L) and w satisfies (2.6)}. 

From Lemma 2.1 we conclude: 

Corollary 2.2. The set: 

is open. 

From what we have said above it is clear that we would like to reduce the problem of inves-

tigating geometric properties of minima of (2 .2) to the problem of investigating minima of the 

function L(s, u) in the set SA .The next lemma shows that this reduction is legitimate. 

Lemma 2.3. Let (so , u0) be a local minimum of L(s, u) for (•, u) E SA .There exists p > 0 such 

that for any (s, u) E Bp(.t0 , u0) (ball with radius p and center at (s0 , uo)) and any C1•a, o: > 0 

curve -y lying in 0, joining points z(s), z(u) and satisfying the area constraint .A[-y] = A we 

have: 

(i) 

.C[-y] � L(so , uo) . 
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Moreover if L attains its strict local minimum at (so , uo) then the inequality above is 

strict unless 'Y = w(· , .so, uo) . 

(ii) Circular arc w( · , .so , uo) satisfies the orthogonality conditions (2.4). 

Proof of Lemma !UJ. Let p be chosen so that for any (s, u) E Bp(s0 , uo) there exists a circular arc 

w( - .  s, u) E CA .Let 'Y be a given curve joining z(s) , z(u) and w = w( · , s , u) E CA .If the curvature 

of w is zero then Lemma 2.3 follows immediately.Assume that " =/= 0 and extend w outside 11 

to the full circle (with radius K-1 ) . We also extend 'Y outside 11 by the same circular arc that we 

used to extend w to the full circle. Denote the resulting closed curves by w, ;y respectively.Since 

w E CA and 'Y satisfies the area constraint we conclude that the areas enclosed by the circle w 

and curve ;y are equal.Isoperimetric property of circle implies therefore that the lenght of ;y can 

not be smaller than the lenght of w.The first assertion of the lemma follows now from the fact 

that :Y and w coincide outside 11.Since from (i) w( · , .s0, uo) is a critical point of C subject to the 

constraint .A[w] = A therefore the second assertion of the lemma follows. 

0 

In order to find the location of local minima of L(.s, u) we shall further restrict the family of 

"competing" curves.Set: 

Cl = {w( · , s , u) I tP = i} . 
From the necessary conditions for the minima in (2.3) and the transversality conditions (2.4) 

we see that Cj contains minimizers of C. 

We now define the contact angle t/J between 811 and w(· , s, u) at z(u) and the angle a between 

z'(u) and the chord z(s) - z(u) as: 

(2.12) 

ei� = -w,(L, s, u)z'(u) , 

eia = (z(s) - z(u))z' (u) . 
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A simple geometric argument shows that: 

0 = 2(¢ - a) , 

(2 .13) 

where 0 is defined in Lemma 2.1. The next lemma gives the parametrization of Ci . 
Lemma 2.4. Let (so , uo) E SA be such that 1/J( so , uo) = � .Providing that sin ¢( s0 , u0) =f 0 we 

have: 

(i) There exists an open interval (s1 , 12) containing so and a smooth function u :  (s1 , •2) -

[0 , 1 801)  such that: 

(2.14) 

(ii) The following formulae hold: 

(2 .15 a) 

u(so) = uo , 

1f' 
1/J (s, u(s)) = 2· 

, 1 
u = 

2F'(0) sin ¢ '  

(2.15 b) R(K.' + v) = 2 cos � = 2 sin,B, 

(2.15 c) L' = -u' cos ¢. 

where R = lz(s) - z(u) !, F is defined in Lemma 2. 1 and 11 = v(s) denotes the curvature 

of 80. at z( s).  

Proof of Lemma !!../. For the first assertion of the lemma it sufficies to show that if w, 0, K. and 

L are defined as in (2.5) and (2.8) of Lemma 2.1  with 1/J = � then for each s sufficiently close to 

s0 there exists u such that the area constraint (2.6) is satisfied.Let A(s, u) denote the number 

of the right hand side of the expression (2 .6) . The proof will be completed if we show that: 

(2.16) 8A 

au 
(so , uo) =/= 0. 
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For verifying (2.16) it is convenient to compute :: = K.u first.We claim that : 

(2. 17) 

To show (2.17) observe that from (2.8) with t/J = j we have: 

From the definition of {3 we obtain: 

Multiplying both sides by z'(6)e -i.f3 yields: 

hence 

(2.18) 

-i.a D ·a R -e = .. o.u + ,,..,u 1 

Ru = - cos a =  - cos (<P - �) 1 

f3u = n-l sin Q = n- l si� ( <P - �) . 

Now (2.17) follows after direct calculations.We shall verify (2.16) .Denoting for simplification 

w(t) = w(t1 61 u) we get after differentiating (2.6): 

hence fu A(6o 1 Uo) = sin <fo(so 1 Uo) '# 0. 

Now we shall show the second assertion of the lemma. We begin with the proof of the formula 

(2. 15 a) .From tr.1 = "• + K.uu' we get: 

(2. 19) 
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We first compute 

(2.20) 
a Re (Cz(cr) - z(a))z' (•)] 

R, = -a lz(u) - z(s) l = = cos/3. s R 

Differentiating (2.11) with respect to s we get: 

RB = 
- sin /3 - 2R,F(8) 

' F'(8) ' 

hence by using the definition of te and F(B) we obtain: 

1 
"• = 

R2 F'(8) . 

and the expression for cr1 follows. To show the second formula in (2.15) we evaluate: 

(2.21) 

d d 1 { fL 1' } 0 = dsA (s, cr(s)) = ds 21m 
Jo 

wdw + � zdz 

1 { /L _ _ } = 2Im wweL' + Jo (w,wt + WWt1) dt + z(a)z'(s) - z(cr)z'(u)cr' 

= lm { 1L w, Wt dt} . 
Straightforward calculations using the definition of w and z"(s) = ivz'(s) yield (2 .15 b) . For 

the proof of the expression for L' in (2. 15 c) we consider: 

Re [tsz(u)wt(L)] = u'Re [z'(u)wt (L)] = -cr' cos ¢.  

From the definition of w we have on the other hand 

Re [:s z(u)we(L)] = Re [:s w(L)wt (L)] 

= L' + Re [z'(s)wt(L)] + Re { [iz"(s) 1L e1"T dr] Wt(L)} 

+ te1Re { [i2z'(s) 1L e1"T dr] Wt(L)} 
sin B . 8 = R - ( IC + II) SID 2 + L' = L' . 

The last equality above follows from (2 .15 b) . The proof of the lemma is complete. 
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0 

In order to relate minimizers of L with some geometric properties of the domain we need to 

" localize" the minimization problem by considering circular arcs enclosing a very small area. The 

lemma below provides the asymptotic formulae for L the circular arc shrinks to a point. 

Lemma 2.5. 

(i) There exists a positive constant An such that for all A <  An the function u(8) described 

in the previous lemma is defined on the whole interval [0, 1801 ) .  

(ii) For each fixed 8 E [0, 1801) we have the following approximate formulae: 

(2.22) 

(2.23) 

1 L' (s, u(8)) = -(j"'(8)(u - 8)2 + 0 ((u - 8)3) , 

L" (s,  u(8)) = -�v11(8)(u - 8)2 + 0 ((u - 8)3) , as u(8) -+ 8. 

Consequently, 

4A � L' (8, u(8)) = - 311' v'(s) + O(A • ) , 

4A � L" (8, u(s)) = - 311' v"(s) + O(A • ) , as A -+ 0. 

Proof of Lemma 2.5. The first assertion of the lemma is easy to show by using the fact that 80 

is compact. We omitt the details. We shall show now the second part of the lemma. Combining 

the first and the last formula in (2.15) yields: 

L' = 2F'(8) sin � 
Using ,P = � and the definitions of a ,{3 we get: 

(2.24) L' = 
Im { (z(u) - z(8))2 z1(8)z'(u)} 

2F'(8)Re { (z(u) - z(8))2 z1(8)z'(u)} 
From z11 (8) = iv(8)z'(s) , z111(8) = (iv1(8) - v2} z1(8) and 8 -+ 11' as u -+ 8 we obtain for each 
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term appearing in (2.24): 

F'(8) = 1 + 0 ((8 - 11Y) ' 
11'" 

¢ = - + o(1), 2 
as 8 -+  1r. 

Combining the last two formulae with the expressions for u', 8 we get : 

F'(8) = 1 + 0 ((u - s)2) ,  as u -+  s.  

as u -+  s, 

The first approximate formula in {2.22) now follows by substituting the above expressions in 

{2.24) .The second fromula in {2.22) is obtained by differentiating the first one with respect to s 

and using u' = 1 + 0 ((u - s)2) .To get {2.23) we observe that: 

R2 = !z(u) - z(s)l2 = (u - s)2 + 0 ((u - s)3) ,  

Im { z(s) (z(u) - z(s)) + 1• z dz} = 0 ((u - s)3) ,  
11'" F(8) = 4 + 0 ((u - s)) , as u -+ s , 

hence by {2.9) we obtain: 

and therefore 

(SA) l. (u - s) =  -;- 2 + O(A). 

Substituting the last expression into {2.22) ends the proof. 

0 

As an immediate consequence of {2.23) we obtain 
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Corollary 2.6. Let an E C4 and z(i) be the point of a strict local maximum of the curvature 

of an i.e. 11(8) = 0, 11"(i) < O.For each sufficiently small A there exists a point SA such that the 

function L = L (s ,  u(s)) has a strict local minimum at SA and SA - s as A - 0. Analogous 

statements hold if either z(i) is a local minimum or a saddle point of the curvature of an. 

Corollary 2.7. Suppose that there exists an open interval (s1 , s2) E [O, !anl) and a positive 

number A* such that for each s E (s 1 , s2) and A E (O , A*) the function L = L (s , u(s)) has a 

critical point at s . Then the curvature 11(s) = const. on the interval (s1 , s2) . 

Proof of Corollary 2. 7. Since the asymptotic formulas (2.22) and the hypothesis of the corollary 

imply that 

4A }. 0 = L' = --11'(s) + O(A2) 
311' 

holds for all s E (s 1 ,  s2) and A < A* therefore 111(s) = 0 hence the corollary follows. 

0 

The next corollary shows that it may happen, even if 111 ::/= 0 that mi�ima of L are not strict 

for some values of A. 

Corollary 2.8. Let "'( be a given C4 curve and z(s) be its arc lenght parametrization.Fix 

A > 0, Lo > 0, �eo > 0 and a point z(so) E 'Y· There exists a curve .:Y whose parametrization with 

arc lenght y( s) satisfies: 

y(s) = w(L, s), 

where 

the functions L, /C are to be determined from the system of equations 

. (2.25) 
{ R(�e' + 11) - 2 cos � = 0 , 
L' = 0 , L(so) = Lo , �e(ao) = �eo 

and B = �eL, R = � sin � .Moreover for any z(s) , z(u) E "'( we have: 

0 = -Im w dw + y dy + w dw + z dz . 
1 {1L(•) l

a 

10 1• } 2 0 • L(a) o 
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Proof of Corollary £.8. From the second equation in (2.25) we get L(s) = L0 .Substituting this 

in the first equation and using that K(O) = 2R- 1 cos � - 11 is Lipschitz and IK(O) I ::5 C(IOI + 1) 

we can establish existence of "' satisfying the first equation.The second assertion follows now 

from Lemma 2.4. 

0 

2.2 Minimizers in the BV Class 

Recall that in Section 1 . 1  of the present chapter we defined for A E (0, 101) :  

(2.28) 

Notice that if a circular arc c E CA and Ee E VA is the set cut of£ from 0 by c then .C(c) = 

Pern(Ee) .Our goal is to prove that strict local minimizers of .C in CA (which as we know from 

the previous section correspond to strict local minima of the function L on SA) are also isolated 

local minimizers of Pern( -) in VA· One of the difficulties in executing this plan is the fact 

that the sets "competing" with a local minimizer in the circular class have to satisfy the area 

constraint. Therefore we need to know how the perimeter of the set is affected when we change 

its area. The key point for our consideration is the following perturbation result which is due to 

Giusti [G2] .We state the lemma only for two dimensional domains although it remains true in 

any dimension. 

Lemma 2.9. Let E be a given set of finite perimeter, D be an open domain such that 

fv lDti>El  > 0 and K > 0 be a positive constant. There exist positive constants Po ,  vo , Qo de-

pending on E, D n E, and K such that for every set F of finite perimeter which satisfies: 

L IDt/>F l < K L lDti>E I .  

(2.29) L l ti>F - ti>E I < PO ·  
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and for every v E R, lvl < vo there exists set F'�� coinciding witb F outside D with tbe following 

properties: 

(2.30) 

(2.31) 

(2.32) 

IF'�� I = IFI + v, 

IL ID<PF� I - L ID</>F I I :s; Qo lvl , 

L l<PF� - <I>FI :s; Qo lvl L ID</>BI ·  

Proof of Lemma 2.9. For completeness we reproduce the proof from {G2] adopted for simplifi-

cation to two dimensional case. From the definition of the perimeter it follows that there exists 

a function w E  CJ(D), lwl :s; 1 such that: 

Choose Po satisfying: 

For any set F satisfying (2.29) we have: 

hence from the choice of Po we get: 

For t E � we define a one parameter family of functions 9t : D -+ R 2 by: 9t ( :1:) = :1: + tw( :c) .It is 

clear that 9t is a difeomorphism into D providing that t is sufficiently small.Let Ft = 9t(F) .We 

have: 

IFt l = L l det Dgt l ,  

(2.33) fn !D<PF. I = L I det Dgt i i(Dgt )- 1  D</>F I · 
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Notice that the last formula is standard if ¢P, , ¢F are replaced by smooth functions .Its general-

ized version can be found in [G1]. Direct calculations show that: 

det Dg, = 1 + t divw + t2 P(Dw) , 

(2 .34) 

where P is a second degree polynomial and M, 's are matrices whose entries are bounded functions 

of Dw.Using {2.34) in (2.33) we obtain 

Since 

�'(t) = f ¢F div w + 2t f ifJpP(Dw) > ! - 2 lt1 1DI I IP(Dw)l lco(D) •  � � . 4 

therefore there exists to > 0 depending only on D and w such that �'(t) > 0 for l t l < to .This 

implies that there exists vo > 0 depending again only on D and w such that for each v, lvl < vo 

there exists t11 such that �(t11 ) = v .Moreover: 

(2.35) 

for some Q0 = Q0(D, E n D).Let F11 = Ftv .It is clear thar F11 satisfies (2.30). Combining (2.33) 

and (2.34) yields: 

where H is a bounded constant depending only on D, D n E and K. Taking to smaller if necessary 

and using (2.35) we conclude (2.31) from (2.36) .1t remains now to prove the last assertion of the 

lemma. We use the fact that C1 functions are dense in BV(D).Let f E C1{D) and ft = fog't1 .We 

have: 

J,(z) - /(z) = ft(z) - It (g,(z) ) = -11 (tw, Df,(z + tsw)) ds, 
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hence 

(2.37) L lft - !I $ JtJ IL 11 (w, Df(� + tsw)} dsl $ Q1 ltl L JDJJ ,  

where Q1 depends only on D, E n D  and K.Taking the approximating sequence fn - f/Jp in 

BV(D), using f/Jp o gt'1 = f/Jp, and passing to the limit in (2.37) we obtain (2.32).The proof is 

complete. 

0 

For E E VA we define: 

We consider now the problem of minimizing Pero(-) in the set S(E, 6). 

Lemma 2.10. Let A E (0, 111 1)  and E E VA be fixed. There exist a positive constant oo depend

ing on E and A only, such that the minimum of Pero( ·) in S(E, 6) is for each o, O < o < oo 

attained for some F& in S(E, o).Moreover the boundary of F& consists of C1•a, o: > 0 curves. 

Proof of Lemma iUO. The argument in the proof is motivated by the similiar result in [G2] . 

First we need to chose oo .Let r0 be the largest positive number such that for each r < ro there 

exist � E E, y E 11 \ E and two balls with centers at :c, y and radii r such that Br (�) C E and 

Br (Y) C 11 \ E.Let oo = 271"r�. 

Now we show existence of a set F& minimizing Pero( ·) in S( E, 6) m.Fix o, 0 < 6 < 60 and let 

{Fn} C S(E, 6) be a minimizing sequence for Pero(·).Since the set G = ((E \ Br (�)) U Br (Y) 

with r = Jk satisfies: 

therefore for the minimizing sequence we have: 

fo ¢F.,. + fo JD</JF,. I $ const. 
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This implies that there exists <P E L1(0) such that </JF ... -+ <P in L1(0) (after passing to a 

subsequence if necessary).Since <PF .. = 1 or 0 therefore <P must be a characteristic function of 

some set F6 1 <P = <P Fa .From the lower semicontinuity of Pero( ·) we obtain: 

1 1D<PF, I ::; lim infl iD<PF .. I ::; con8t .  0 n-+oo 0 

hence F6 E S(E1 o). To show the second assertion of the lemma we shall employ the perturbation 

result from Lemma 2.9 .Notice that from F6 E S(E1 6) we have: 

Let z E 8F6 n 0 be fixed and chose Po > 0 small such that there exist two open sets n+ I n-

satisfying: 

(2.38) 

n- e El n+ c (O \ E)�  

I ID<PF, I > 01 I ID<PF, I > 01 JD- jD+ 
Bp0 (x ) n (D- U n+) = 01  

For p < Po we define function: 

In order to show that 8F6 is a C1•a. curve near x it sufficies to show that for p < po : 

(2.39) 

(see [G1 12 1T-M) for details) .Let M minimize J0 ID<Pal among all G such that G = F6 outside 

Bp(z) .We clearly have: 

(2 .40) 

Let numbers 11+ 1 11- be defined by: 

{2.41) 
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From the definition of M and (2.40) we conclude that lv+ l , lv- 1 � 1rl We shall apply Lemma 

2.9 with E = F6 , F = F6 , D = n- , D = D+ .Let Pd , vt, Qci , Po , v0 , Q0 be constants depending 

on F6 and D+ ,  n- respectively as in Lemma 2.9.Taking p0 smaller if necessary we can guar-

antee that 1rp� � min(pci , p0) and lv+ l � vci , lv- 1 � v0 so that we can utilize Lemma 2.9 on 

D+ ,  n- .Therefore there exist sets Fl, F6- satisfying the assertions of the lemma on D+ ,  n-

respectively.ln particular: 

(2.42) 

Define set M6 as: { M in Bp(x), 
p+ in n+ , M6 = 6 
p- in n- , 
F: otherwise . 

We claim that M6 E S(E, o).From (2.41), (2.42) we have: 

(2.43) 

1 ¢M6 - 1 </Jp, = I (<PM, - </Jp, ) 
0 0 JD+uD-uB,. (z) 

= 1Fli - IF6 n n+ 1 + IF6- I - IF6 n n- 1 

+ I (¢MnE + ¢Mn(O\E) - ¢F,nE - ¢.F,n(O\E)) 
Js,.(z) 

= 0. 

(2.41) and the definition of M6 also yields: 

1 1¢Ma - ¢E I - 1 1¢F, - <PE l = I (<PM, - ¢F, ) + I (¢M,n(O\E) - ¢F1n(O\B)) 
0 0 JD+ JB,.(z) 

(2.44) 

+ I (¢O\M1 - ¢0\.F,) + I (¢En(O\M,) - ¢En(O\.Fa)) JD- Js,.(z) 

= v+ - v+ + I (-</JM6 + ¢F, ) + I (-¢M,nE + ¢F6nE) 
JD- Js,.(z) 

= -v- + v- = 0 .  

From (2.43) and (2 .44) the claim follows.For each p < Po the function ,P(F6 1 P) satisfies: 
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From Lemma 2.9 we have: 

From the choice of v+ , v- the estimate (2.39) follows. This ends the proof. 

0 

Remark 2.2. 

(1)  Lemma 2 . 10 easily generalizes to higher space dimensions. 

(2) Similiar to Lemma 2.10 results can be found for example in [M,S] . 

It is intuitionally clear that if a set E is connected then the global minimizer of the perimeter 

in S(E, &), F6 should also be connected, at least for sufficiently small &.For our purposes the 

following lemma is sufficient. 

Lemma 2.11. Let A E (0, IO I) be a given number and let E E 1J A be a connected, proper 

subset of O.Assume that 8E = 'Y is a C1 •a curve with endpoints -y0, "f1 E 80, -y0 =f: "f1 .Let {En} 

be a sequence of open subsets of n whose boundaries consist of C1•a curves satisfying: 

(2.45) 

lim { l<foE,. - <foE I = 0, n--.oo }0 
lim r ID<PE .. l = r ID<PE I ·  n--.oo }o Jn 

Then there exist a sequence { Gn} of open, connected, proper subsets ofn such that 8Gn = "'n 

is for each sufficiently large n a C1•a curve in O.Moreover: 

(i) 

lim sup dist(z , "f) = 0. n--.oo ze.., .. 

In addition if"'� , "/� denote the endpoints of 'Yn then we can choose the orientation on 

'Yn such that "f� --+ "fi , i = 1 ,  2 as n --+  oo. 
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(ii) (2.45) holds with Gn in place of En and moreover: 

(2.46) fo 1Dt.ba .. l ::; fo lDt.bs .. l .  

with equality holding only if 8En n 0 is a single C1•a curve. 

Proof of Lemma 2. 11. Let En = U; En; be for each En its decomposition to open, disjoint, 

connected components. The idea of the proof is to find 'Yn 's among the components of 8En; .First 

observe that (2.45) implies that: 

{2.47) fo lDt.bs .. l ::; const. 

We claim that there exists a constant d > 0 depending only on E such that for each sufficiently 

large n there exists En , a component of En, satisfying: 

(2.48) 

We show the claim by contradiction.Let 

bn : = sup r t.bs .. .  ; Jo ' 

and assume that lim infn bn = O.Let 2: E E be a fixed point and p be such that B p ( 2: ) C E .From 

{2 .45) there exists a positive integer Np such that for all n > Np we have: 

Let {bn11 } be a subsequence of {bn} such that: 

By the definition of Np and bn,. there must exists at least 2" disjoint subsets of each set En,. , 

which we denote by A�o; , i = 1 , . . .  , 2" satisfying: 

i =  1, . . . , 2" . 
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The choice of the sets A�ci can be accomplished by selecting first all those disjoint connected 

2 2 
components of En,.nBp(:z:) whose measure falls between f/i:r and � .Next we take those among 

2 2 
remaining connected components whose measure is between � and � and group them in 

pairs.We can continue this procedure untill the sets A�ci are constructed.From the lsoperimetric 

Inequality we have (with constant c2 independent on p) : 

i = 1 , . . . , 2lc ,  

hence 

therefore taking k large enough we get a contradiction with (2.47).The proof of the claim is 

complete. 

Now we shall choose sets Gn .Notice that it is natural to take as Gn this component of En 

which has the largest measure.This however in general will not gaurantee that 8Gn is a single 

curve.That is why we need an intermediate step.Let for each n the set Fn be the largest in the 

sense of measure among those connected components of En which satisfy (2.48) .Smoothness of 

8En implies that 8En n n = U; 'Ynj where each 'Ynj is a C1•0 curve.Each such curve divides n 

into two disjoint subregions one of which includes Fn .We denote this subregion by Goy,.; so that 

Fn C Goy,., .Finally we define 'Yn to be the longest among 'Yn; 's and we set Gn = Goy .. .  

We will first establish (i).We claim that there exists a sequence of points :Z:n E 'Yn such that: 

(2 .49) 

We show (2.49) by contradiction.For f > 0 we set: 

N. = {:z: E n  I dist(z , "f) < f} . 

If (2.49) does not hold then there exists f such that for each sufficiently large n we have 'Yn nN. = 

0.Consequently: 
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Passing to the limit in the above expression we obtain by using the first assumption in (2.45) 

and the lower semicontinuity of the perimeter: 

1 1D<PE I = lim r ID<PB .. I � lim inf r ID<PE .. I + lim inf hn l n n-oo ln n-oo l.w. n-oo 

� r ID<PE I + lim inf hn l  J.w. n-oo 

hence lim infn-oo hn I = O.But this contradicts the choice of 'Yn since neither IFni -+ 0 nor 

IFn i -+ IOI .This ends the proof of the claim. 

To finish the proof of the first part of (i) it suffi.cies to show that for each E > 0 there exists 

n£ such that 'Y� C N� for n > n�.We again establish this by contradiction.Let E be such that 

that there exists a subsequence { 'Yn• }  of { 'Yn} and a seqeunce of points Ylc E 'Yn• such that 

{Yic } n.N£ = 0 for all k � ! .Consider the set .N� .From the previous claim we conclude that there 

exists a sequence of points {z�c} E 'Yn• n .N� converging to 'Y as k -+  oo.We have: 

a contradiction with E > 0. 

We shall establish the second assertion in (i).By 'Y� � 'Y� we will denote the endpoints of 'Yn .lf 

dist('Y� 1 'Y!) -+ 0 as n -+ oo then for each sufficiently small E > 0 we have either Gn C .N£ 

or n \ N£ c Gn \ N£.But this would imply that either IGn l ..... 0 or IGn l  ..... IO I  which is 

impossible.Thus we have limn-oo dist('Y� 1'Y!) > O.Since 'Yn -+ 'Y by (i) therefore 'Y� -+ -y' 1 i = 11 2 

(after possibly changing the orientation of -y") .The whole assertion (i) is now established. 

From (i) it follows that the first equality in (2.45) holds with Gn in place of En .From the 

lower semicontinuity of the perimeter we also get: 

1 1D<PE I = lim sup r ID<PE .. i � lim sup r ID<Pa .. l n n-oo Jn n-oo Jn 
� lim inf r ID<Pa .. l � r ID<PE I · n-oo Jn Jn 

The last part of (ii) follows directly from the construction. 
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0 

Now we are in the position to prove the main result of this section. 

Lemma 2.12. Let (so , uo) be a strict local minimum of L in SA and wo = w(· ,  so, uo) be the 

corresponding circular arc. Then the set E cut off from 11 by w0 is an isolated local minimizer 

of the perimeter (in the sense of the Definition 2. 1) in VA . 

Proof of Lemma 2. 12. We prove the lemma by contradiction.For � sufficiently small o by F5 

we denote as in Lemma 2.10 the minimizer of the perimeter in S(E, o).If E is not an isolated 

local minimizer of the perimeter then there exists a sequence {On} ,  On -+ 0 as n -+ oo such that 

the sets Fn : = F& .. satisfy: 

{2.50) 

Since Fn E S(E, On) therefore the lower semicontinuity of the perimeter implies: 

hence the family {Fn} satisfies the assumptions of Lemma 2 . ll .Let { Gn} denote a family of sets 

satisfying assertions (i), {ii) of the same lemma and set 'Yn = oGn . 

In general Gn � VA but we will show now that we can modify Gn for each sufficiently large 

n in such a way that the new set Gn satisfies Gn E VA .Let: 

Notice that A =  IFn i = IGn l + tln .From Lemma 2 . 1 1  we know that Vn -+ 0 as n -+  oo.Let f be 

chosen such that (so - f1 so + E) x (o-0 - f1 uo + E) C SA and let NE = {:r: E 11 I dist(:r:, w0) < f}.We 

shall apply Lemma 2.9 with Gn in place of F and D = J1€.Let tJo , po , Qo be constants defined 
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in Lemma 2.9 and therefore depending only on E,Ne.BY choosing n sufficiently large we can 

guarantee that: 

by Lemma 2 . 1 1 , 

Vn < vo , by Lemma 2.9. 

Therefore Lemma 2.9 applies for the set Gn in place of F hence there exists a set Gn such that: 

(2.51) 

IGn l  = IGn l + Vn = A, 

IL ID�a .. 1 - fo 1D�a.. l l � Qo lvnl· 

Moreover from the proof of Lemma 2.9 it follows that 'Yn and .:Yn = 8Gn are diffeomorphic and 

.:Yn C Ne.From the Isoperimetric Inequality there exists a constant C(O) such that : 

(2.52) 

fo 1D�G .. \F,. I  � C(O) IGn \ Fn lt ,  

fo 1D�F .. \G .. I � C(O)!Fn \ Gn lt . 

From (2.51) , (2.52) it follows that for all sufficiently large n we have: 

fo 1D�F .. 1 - fo 1D�a .. l = fn 1D�a .. 1 - fo 1D�0 .. 1 + fo 1D�G .. \F,. I + fn !D�F .. \G .. I 

� -Qo lvn l  + C(O) IGn \ Fn lt  + C(O) IFn \ Gnl t  

(2.53) 

= -Qoj- IGn \ Fn l + IFn \ Gn l l  + C(O)IGn \ Fn l t + C(O)IFn \ Gnl t 

� -Qo iGn \ Fn l + C(O) IGn \ Fnl t - QoiFn \ Gnl + C(O) IFn \ Gn lt 

� 0. 

We first show that the last inequality is strict .For if we have equality in (2.53) then IGn \ Fn I = 

0 = IFn \ Gnl hence we must have Fn = Gn E VA for all sufficiently large n which implies that 

8Fn = 'Yn is a C1•a embedded curve.By Lemma 2.3: 
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and this inequality is strict unless Fn = E.But this contradicts the fact that Fn E S(E, cSn) 

with cSn > O.We conclude therefore that the inequality in (2.53) is strict.This, however leads to 

a contradiction as well.Since Gn E 1) A and .:Yn C N� is a 01 •0 curve Lemma 2.3 implies: 

L(6o, cro) = L ID¢E I :5 L ID¢a,. l . 

while from (2.50) and (2.53) we get : 

L ID¢a. l < fn ID¢F.. I :5 fn lD¢E I, 

a contradiction.The proof of the lemma is complete. 

0 
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