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ABSTRACT 

There is no quantitative method for evaluating infant bone quality that is non-invasive, portable, 

brief in scan duration, and does not use ionizing radiation. This study investigates the 

relationship between components of infant bone quality and a measure of quantitative ultrasound 

(QUS), speed of sound (SOS), to provide insight into the validity of QUS as a diagnostic tool for 

evaluating infant bone quality. The study sample was comprised of 78 infants between the age of 

30 weeks estimated gestational age and 12 postnatal months receiving an autopsy at the Harris 

County Institute of Forensic Sciences and Texas Children’s Hospital. Bone SOS measurements, 

costochondral rib and iliac crest samples, and radiographs of the forearm and leg were 

prospectively collected over a 9-month period. Demographic information, medical history, 

autopsy findings, and investigator reports were collected and used to identify chronic illness. 

Qualitative radiographic evaluation, bone mineral density (BMD), and tibial measurements were 

obtained from radiographs.  

Results indicated that SOS measures aspects of bone quality related to bone macrostructure. 

Prematurity and chronic illness were significantly associated in the current study sample and 

their detrimental effects could not be separated. Prematurity and, possibly, chronic illness 

significantly influenced SOS through their adverse effects on growth and bone health. BMD was 

not significantly associated with tibial or body size measurements, but this may have been due to 

the small area of bone used to estimate BMD. Although SOS and BMD were not significantly 

correlated, both showed a postnatal decline and subsequent increase at greater ages. Chronically 

ill infants had significantly lower BMD and greater qualitative radiographic evaluation scores 

than infants without chronic illness.   

Assessing bone quality is complex due to the multitude of factors which compose it. QUS 

remains a highly promising technology for evaluating infant bone quality, but it cannot be 

definitively concluded that QUS is a valid technique for evaluating infant bone quality based on 

this research alone. Research comparing SOS to finer-grained measurements of aspects of bone 

quality are necessary before the validity of QUS as a diagnostic tool for evaluating infant bone 

quality and strength can be determined.  
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CHAPTER 1 : INTRODUCTION 

In infants, the finding of multiple skeletal fractures without a reasonable and/or consistent injury 

history, and in the presence of normal bone, is considered suspicious for non-accidental injury 

(i.e. child abuse) (Harris County Institute of Forensic Sciences 2014; Kemp et al. 2008; 

Ravichandiran et al. 2010; Worlock et al. 1986). In 2013, Texas Children’s Hospital (TCH) 

evaluated 1,416 patients for abuse and neglect, 504 of these cases were evaluations for physical 

abuse (M. Donaruma-Kwoh, M.D., personal communication, November 22, 2014). 

Approximately 60-65% of the abuse and neglect evaluations have positive findings for abuse or 

neglect. Harris County Institute of Forensic Sciences (HCIFS) investigated the death of 143 child 

fatalities (0-4 years of age) of which 24 were classified as homicide (Harris County Institute of 

Forensic Sciences 2014). On a state level, the Texas Department of Family and Protective 

Services reported a total of 11,734 cases of confirmed physical abuse and 119, 991 cases of 

unconfirmed risk for child abuse/neglect (Department of Family and Protective Services 2014). 

Bone fragility is the most common used legal defense during adjudication of child abuse cases. 

However, there is no quantitative method for evaluating infant bone quality. The previously 

mentioned statistics highlight the need for a quantitative method for the evaluation of bone 

quality in infants at risk for physical abuse. Such a method could provide substantiated medical 

evidence for child abuse case adjudication, or equally as important, help prevent false 

accusations of physical abuse. Infants affected by chronic illness, heritable, and/or metabolic 

disease are at higher risk of skeletal fragility. The cause of skeletal fractures in these infants may 

be interpreted incorrectly as non-accidental injury (Kemp 2008; Paterson 2009; Scherl 2006). In 

both the medical examiner and clinical setting, the assessment of bone fragility may be pivotal in 

the diagnosis or exclusion of non-accidental injury as the cause of trauma. An incorrect diagnosis 

or exclusion of child abuse has devastating long-term effects for families. Research that aids the 

physician in making the correct diagnosis is an important contribution.  

Radiographic evaluation, a qualitative method, is often used to assess bone mineral density 

(BMD). However, qualitative radiographic evaluation is unreliable due to the substantial amount 

of bone loss that must occur before the reduction can be detected on radiographs and the large 

degree of inter-observer variation associated with the method (Allgrove 2009; Ardran 1951; 

Brooke and Lucas 1985; Epstein et al. 1986; Miller and Hangartner 1999; Shore and Poznanski 
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1999). In a study of 26 infants diagnosed with fragile bones, bone density was classified as 

normal according to qualitative radiographic evaluation (Miller and Hangartner 1999).  

Quantitative evaluation of bone mineral density is helpful for the assessment of bone fragility, 

but has limitations. Techniques, like dual-energy x-ray (DXA) and computed tomography (CT), 

used to measure bone mineral density are costly, possibly require sedation, use ionizing 

radiation, and have not been validated for infants (Adams and Bishop 2009; Chen et al. 2004; 

Glüer 2009; Koo et al. 2008; Rack et al. 2012; Shore and Poznanski 1999; Teitelbaum et al. 

2006). Magnetic resonance imaging (MRI) does not use ionizing radiation, but is not feasible for 

the sole purpose of evaluating BMD due to cost, relatively long scan times, and lack of pediatric 

standards (Ward et al. 2007). A non-invasive, quantitative method for the assessment of bone 

fragility that is portable, brief in scan duration, and does not expose the patient to ionizing 

radiation has yet to be developed and validated. Currently, pediatricians, forensic pathologists 

and forensic anthropologists have no quantitative method for evaluating infant bone fragility that 

is feasible for use in all infants, regardless of circumstance. Quantitative ultrasound (QUS) has 

been marketed as a technique that measures infant bone quality by measuring speed of sound 

(SOS). However, it remains unclear what aspects of bone quality are measured by SOS. The 

purpose of this research is to evaluate components of infant bone quality that are measured by 

SOS in order to determine if QUS is valid technique for measuring infant bone quality.   

Preliminary data on the use of QUS for the assessment of bone fragility in pediatric patients are 

promising (Ahmad et al. 2010; Chen et al. 2012; Gonnelli et al. 2004; Litmanovitz et al. 2003; 

Littner et al. 2005; McDevitt et al. 2005; Nemet et al. 2001; Pereda et al. 2003; Rack et al. 2012; 

Ritschl et al. 2005; Rubinacci et al. 2003; Tomlinson et al. 2006). Bone speed of sound (SOS), a 

QUS measurement, is influenced by bone properties which also influence DXA measurements of 

BMD. Studies indicate that bone SOS is correlated with BMD, bone elasticity, cortical thickness, 

trabecular microarchitecture, and fatigue damage (Foldes et al. 1995; Greenfield et al. 1981; 

Guglielmi et al. 2009; Kaufman and Einhorn 1993; Lee et al. 1997; Njeh et al. 1997; Prevrhal et 

al. 2001). Research also indicates that SOS is correlated with bone strength (Bouxsein et al. 

1995; Nicholson et al. 1997; Njeh et al. 2001) and is consistent with the claim that SOS measures 

bone quality (Koo et al. 2008; McDevitt et al. 2005; Pereda et al. 2003; Ritschl et al. 2005; 

Rubinacci et al. 2003). QUS has advantages over other methods used to assess bone fragility. 
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QUS does not use ionizing radiation, scan duration is brief, and the device is portable (Chen et 

al. 2012; Fricke et al. 2005). In premature infants, significant correlation was found between 

SOS and BMD values measured by DXA (Ahmad et al. 2010). In adults, QUS is already 

considered a reliable technology for osteoporosis screening (Bauer et al. 1997; Bouxsein et al. 

1999; Hans et al. 1996; Huang et al. 1998; Ross et al. 1995; Thompson et al. 1998). 

Although preliminary data are promising, most infant studies using QUS to assess bone quality 

are limited to preterm and term infants during the immediate neonatal period and preterm infant 

at term-corrected age (Ahmad et al. 2010; Altuncu et al. 2007; Chen et al. 2012; Gonnelli et al. 

2004; Litmanovitz et al. 2003; Littner et al. 2004a; Littner et al. 2003; Littner et al. 2005; 

McDevitt et al. 2005; Nemet et al. 2001; Pereda et al. 2003; Rack et al. 2012; Rigo and De Curtis 

2006; Ritschl et al. 2005; Rubinacci et al. 2003; Tomlinson et al. 2006; Wright et al. 1987; 

Yiallourides et al. 2004). Longitudinal studies have also been limited to preterm or very low 

birthweight infants. Other limitations of longitudinal studies include small sample sizes and 

inconsistent measurement intervals (Gonnelli et al. 2004; Litmanovitz et al. 2003; Litmanovitz et 

al. 2004; McDevitt et al. 2007; Mercy et al. 2007; Rack et al. 2012; Ritschl et al. 2005; Tansug et 

al. 2011; Tomlinson et al. 2006). Additionally, age-specific data for the first year of life are 

lacking and no threshold has been established for normal and abnormal SOS readings. Research 

in this area is necessary to investigate whether QUS is a valid diagnostic tool for the assessment 

of bone quality in the infant population. The current study is the first step in addressing this 

knowledge gap. 

 This study addresses three primary questions, listed below. 

1. Is QUS a valid tool for evaluating bone quality in infants? 

2. Can SOS be used to differentiate between infants with poor bone quality and infants 

with normal bone quality? 

3. If QUS is a valid method for evaluation bone health in infants, can a threshold for 

normal bone SOS values in infants be identified? 

To determine whether QUS can be used as a diagnostic tool, a prospective study was designed in 

which SOS measurements were compared to other indicators of overall health, bone health, and 

bone strength. Over a 9 month period, every infant between the age of 30 weeks estimated 
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gestational age (EGA) and 12 postnatal months that received an autopsy at HCIFS or TCH was 

included in the study. These populations were chosen because the hospital population consists of 

infants with well-documented, chronic illness and the medical examiner population consists of 

infants that were relatively healthy prior to death and chronically ill infants. QUS was used to 

obtain SOS measurements at a site on the anterior leg that approximated the midshaft of the tibia. 

Digital radiographs of the leg and forearm were collected for qualitative radiographic evaluation 

and to calculate BMD estimates from units of x-ray attenuation. Leg radiographs were also used 

to obtain tibial measurements (length, midshaft diameter, medullary cavity diameter, cortical 

thickness, and cortical index). BMD and cross-sectional measurements of the tibia served as 

proxies for bone strength. Additionally, data pertaining to demographics, medical history, family 

medical history, autopsy findings, and law enforcement/investigator reports were collected from 

each infant. Each infant’s medical history and autopsy findings were used to determine the 

presence/absence of chronic illness.  

The relationships between SOS and other bone health indicators were investigated by building 

associations. The pattern of growth-related changes in tibial structure was related to age-related 

changes in BMD and SOS. This was done to evaluate the similarity between relationships and 

establish whether SOS captured similar differences as BMD and qualitative radiographic 

analysis. The association between traumatic injury and indicators of bone health were evaluated 

to assess whether there were significant differences in bone quality between infants with and 

without traumatic injury. The effects of chronic illness and skeletal maturity at birth on growth 

were examined to establish whether these factors had significant detrimental effects on growth in 

the current study sample. These findings were then compared with SOS and BMD readings 

between chronically ill and premature infants. Differences in qualitative radiographic evaluation 

results based on prematurity and chronic illness were also assessed. Finally, direct comparisons 

between methods of evaluating infant bone quality were conducted.  

Various univariate statistics were used to test the following specific hypotheses.  

1. Growth-related changes in tibial structure and body size are significantly associated with 

each other, and both are significantly associated with age-related changes in BMD and 

SOS, which is reflected by the following sub-hypotheses.  
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a. Age-related changes in tibial measurements are positively associated with 

variables related to body size and growth percentiles.  

b. BMD and SOS are significantly related to age. 

c. BMD and SOS have positive relationships with variables associated with body 

size and growth percentiles. 

d. BMD and SOS are significantly related to tibial structure. 

 BMD and SOS have negative relationships with medullary cavity diameter. 

 BMD and SOS have positive relationships with cortical thickness and cortical 

index.  

2. The presence of traumatic injury is not associated with indicators of overall health, body 

size, or bone health.  

3. Chronic illness is negatively associated with growth and bone health, which is reflected 

by the following sub-hypotheses.   

a. Variables related to body size are negatively associated with chronic illness. 

b. Tibial growth is negatively associated with chronic illness. 

 Tibial length, cortical thickness, midshaft diameter, and cortical index are 

negatively associated with chronic illness. 

 Medullary cavity diameter is positively associated with chronic illness.  

c. Chronic illness is significantly related to qualitative and quantitative measures of 

infant bone health. 

 Qualitative radiographic evaluation scores are positively associated with 

chronic illness. 

 BMD and SOS have negative relationships with chronic illness.  

4. Skeletal maturity at birth is positively associated with body size, bone size, and bone 

health, which is reflected by the following sub-hypotheses.  

a. Skeletal maturity at birth is significantly related to body size.  

 Body size is positively associated with EGA and birthweight, and negatively 

associated with prematurity.  

b. Skeletal maturity at birth is significantly related to tibial measurements. 

 Tibial length and cross-sectional measurements are positively associated with 

birthweight and EGA, and negatively associated with prematurity. 
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c. Skeletal maturity at birth is significantly related to qualitative and quantitative 

measures of infant bone health. 

 BMD and SOS have positive relationships with EGA and birthweight, and 

negative relationships with prematurity.  

 Qualitative radiographic score has a positive relationship with prematurity. 

5. The methods used to assess infant bone quality are significantly associated with one 

another, which are reflected by the following sub-hypotheses.  

a. BMD has a negative relationship with qualitative radiographic score. 

b. SOS has a significant positive relationship with BMD. 

c. SOS has a negative relationship with qualitative radiographic score.  

The analyses used to test these hypotheses include Analysis of Variance (ANOVA), linear 

regression, and non-parametric analyses where appropriate. Findings associated with each 

hypothesis were used to draw conclusions regarding the components of infant bone quality 

measured by SOS. Finding significant associations between SOS and the other measures of bone 

health and bone strength would indicate that SOS measures aspects of infant bone health. If it is 

found that chronic illness and prematurity adversely affect other indicators of bone health and 

strength, a significant association between SOS and chronic illness and/or prematurity would 

indicate SOS is influenced by factors affecting bone health and strength. Such findings would 

support the argument that SOS measures infant bone quality and, therefore, QUS is a valid 

method for evaluating infant bone quality.  

Validating QUS as a method for evaluation of bone health and strength in infants has far 

reaching implications. Age-specific SOS thresholds could be used to differentiate between 

infants with normal and abnormal bone strength. These thresholds may applicable to both living 

and deceased infants. In the clinical setting, the bone strength of premature infants could be 

easily and routinely monitored without exposure to ionizing radiation. Bone strength could be 

regularly evaluated during infant well visits. Therapeutic interventions could be initiated prior to 

the development of skeletal fractures. Infants presenting with skeletal fracture/s in the emergency 

setting could be quickly assessed to determine whether abnormal bone strength was a 

contributing factor. Similarly, the bone strength of infants in the medical examiner setting that 

present with fractures could be easily assessed. In cases of non-accidental injury, quantitative 
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measures of infant bone strength could be offered at trials as evidence to dispute infant bone 

fragility. Conversely, showing that QUS is not a validated method for evaluating infant bone 

strength is also an important finding. Negative results would indicate that it is necessary to 

explore other avenues for the evaluation of infant bone strength.  
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CHAPTER 2 : LITERATURE REVIEW 

Introduction 

This chapter discusses the background research that is necessary for understanding the 

relationship between SOS and bone quality in infants. Before it can be assessed whether QUS is 

a valid technique for evaluating infant bone quality, the biological factors that influence SOS 

values must be established. As infant bone quality is the focus of this research, it is necessary to 

understand bone formation, development, maintenance, and the factors that affect these 

processes. It is also important to discuss the material and structural properties of bone that 

contribute to bone strength and how these properties have been measured. Topics in bone 

biology are discussed first and include bone structure, bone formation, modeling, remodeling, 

and the bone cells that are responsible for forming and maintaining bone. These topics are 

important for understanding growth-related changes in bone size and structure. Bone size and 

structure is related to bone strength. Secondly, prenatal and postnatal nutritional needs and other 

factors associated with the prenatal environment that affect skeletal development are discussed. 

Thirdly, the process by which the body maintains normal serum concentrations of minerals 

obtained through nutrition is discussed. Maintaining normal serum levels is important for vital 

bodily functions and can effect skeletal development. Nutritional insufficiencies in utero or 

postnatally compromise bone strength by changing material and structural properties of bone. 

Metabolic bone disorders occur when normal, mineral serum levels cannot be maintained due to 

nutritional insufficiencies. Metabolic diseases and other factors (environmental and genetic) that 

adversely affect the developing skeleton are discussed in the fourth section. Bone biomechanics 

are discussed in the fifth section. Topics in biomechanics that are discussed include bone 

material properties, cortical and trabecular bone structural properties, and differences in the 

properties related to young age. These properties comprise bone quality, defined as a bone’s 

ability to resist fracture, which is also discussed in the fifth section. Finally, the pros and cons of 

the non-invasive and invasive methods that have been used to assess bone quality are discussed 

in the sixth and seventh sections, respectively. Understanding which bone properties influence 

SOS measurements is essential for assessing whether QUS measures bone quality in infants.  
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Bone Biology 

Normal bone is able to sufficiently perform several vital bodily functions. These functions 

include protection of the internal organs, support for the body, a point of muscle attachment for 

locomotion, being a cavity for hematopoiesis, and being a mineral source for maintaining 

mineral homeostasis of the body (Bartl et al. 2009; Burr and Akkus 2013; Marks and Odgren 

2002; Rauner et al. 2012; Rodan 1992). There are a large number of factors that can compromise 

bone’s ability to function, starting during formation and continuing throughout growth. Overall 

health and bone strength suffer when there is a failure in normal bone formation or the ability to 

maintain mineral homeostasis. Chronic illness can disrupt mineral homeostasis, compromising 

bone growth and/or strength. Before understanding how these factors negatively influence bone 

growth and/or strength, normal bone structure and functioning must first be understood. The 

following section discusses important components of bone, skeletal formation, and growth. 

BONE CELLS 

There are four types of bone cells that are responsible for bone formation and maintenance. 

These are osteoblasts, osteocytes, bone lining cells, and osteoclasts. These cells can be classified 

into two categories, cells that form bone or have formed bone and cells that resorb bone. 

Osteoblasts, osteocytes, and bone lining cells are bone formers or previous formers of bone. 

Osteoclasts resorb bone.  

Osteoblasts and Related Cells 

Osteoblasts begin as undifferentiated mesenchymal progenitor cells. Undifferentiated 

mesenchymal cells have an irregular form, a single nucleus, minimum cytoplasm, and few 

organelles (Buckwalter et al. 1995a). These undifferentiated cells reside in the bone canals, 

endosteum (fibrous tissue lining the inner surface of bone) and periosteum (fibrous tissue lining 

the outer surface of bone), and marrow (Beresford 1989; Buckwalter 1994; Buckwalter and 

Cooper 1987; Cooper et al. 1966; Goshima et al. 1991; Haynesworth et al. 1992; Nakahara et al. 

1990; Nakahara et al. 1991; Paley et al. 1986; Sevitt 1981) until stimulated to proliferate and 

differentiate into osteoblasts. Differentiation of mesenchymal cells into osteoblasts occurs over a 

2-3 day period and is stimulated by mechanical stress or chemical stimuli such as transcription 

factors (Bellido et al. 2013; Martin et al. 1998c). Transcription factors of the helix-loop-helix 



10 

 

family are responsible for maintaining the osteoprogenitor population. Transcription factors of 

the AP-1 family may activate or repress transcription. Runt-related transcription factor 2 

(RUNX2, also known as core-binding factor subunit alpha-1, cbfa-1) and transcription factor 

Sp7/osterix are essential for establishing the osteoblast phenotype (Bellido et al. 2013).   

Mature osteoblasts are located on the bone surface. They are cuboidal in shape and have single 

large nucleus located close to the basal membrane, and an enlarged Golgi apparatus on the apical 

surface of the nucleus, an extensive endoplasmic reticulum, and multiple mitochondria 

(Buckwalter et al. 1995a). The osteoid matrix is produced within the cell by the endoplasmic 

reticulum and is packaged in vesicles for transport out of the cell by the Golgi apparatus. 

Osteoblasts deposit osteoid matrix at a rate of 1 micrometer per day.  

Osteoblasts cells also have cytoplasmic extensions that join with the cytoplasmic extensions of 

other cells at locations called gap junctions. At the gap junctions, osteoblasts communicate with 

other osteoblasts, bone lining cells, bone marrow cells and osteocytes embedded within the 

osteoid matrix and mineralized bone (Bellido et al. 2013). 

Osteoblasts secrete non-collagenous proteins along with type 1 collagen. The functions of some 

of these non-collagenous proteins remain unclear. Some important non-collagenous proteins 

produced by osteoblasts include bone-specific alkaline phosphatase (B-ALP), receptor activator 

of Nf-kB ligand RANKL, osteopontin, osteoprotegrin (OPG), osteocalcin, and bone sialoprotein. 

B-ALP is a potential calcium ion carrier and hydrolyzing inhibitors of mineral deposition; 

therefore, a marker of bone formation (Burr and Akkus 2013). Osteopontin and RANKL are 

secreted by immature osteoblasts.  Osteopontin promotes adhesion of the cement line and 

inhibits mineral formation and crystal growth. RANKL regulates osteoclast differentiation and 

survival. OPG is secreted throughout the life of an osteoblast, even as mesenchymal stem cells, 

and inhibits osteoclast differentiation. Mature osteoblast cells secrete osteocalcin, calcitonin and 

bone sialoprotein (Burr and Akkus 2013; Rauner et al. 2012). Osteocalcin enhances calcium 

binding and controls mineral deposition (Bellido et al. 2013; Burr and Akkus 2013). Calcitonin 

acts as chemoattractant for bone cells (Martin et al. 1998c). Bone sialoprotein is produced during 

the early stage of mineralization and is believed to influence the initiation of mineralization, but 

its function is not yet well understood (Bellido et al. 2013). 
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Osteoblasts are regulated by hormones and multiple local factors. Osteoblast cells carry receptors 

for parathyroid hormone (PTH), 1,25-dihydroxyvitamin D3 (active form of vitamin D), estrogen, 

glucocorticoids, and leptin. All of these hormones are involved in the regulation of osteoblast 

differentiation.  Some important local factors include bone morphogenic proteins (BMPs- 2, 4, 6, 

and 7) (Shore et al. 2006; Storm and Kingsley 1999; Wu et al. 2003; Wutzl et al. 2010), growth 

factors (Canalis 2009), Sonic and Indian hedgehogs (Guan et al. 2009; Maeda et al. 2007), and 

members of the Wnt family (Bodine and Komm 2006; Rauner et al. 2012).  

Osteocytes 

Fully differentiated osteoblasts that are embedded within the osteoid matrix or mineralized bone 

are called osteocytes. Osteocytes are the most numerous cells within the skeletal tissue and are 

scattered evenly throughout the matrix (Bellido et al. 2013). When an osteoblast becomes an 

osteocyte, it undergoes a reduction in the amount of cytoplasm present within the cell. An 

osteocyte cell is ellipsoid in shape with a single nucleus and has numerous, long, branching 

cytoplasmic processes projecting from the cell body (Buckwalter et al. 1995a; Rauner et al. 

2012). A single osteocyte has an average of 50 cytoplasmic processes (Bellido et al. 2013). Each 

cytoplasmic process ends at a gap junction that connects to the cytoplasmic processes from 

adjoining osteocytes, osteoblasts, or bone lining cells.  

Osteocyte functions include mechanosensation and regulation of bone mineral metabolism 

through the coordination of osteoblasts and osteoclasts (Bartl et al. 2009; Bellido et al. 2013; 

Buckwalter et al. 1995a; Paic et al. 2009). Osteocytes are able to function as mechanosensory 

cells by detecting strain within the skeletal tissue (Paic et al. 2009).  Osteocytes form an 

extensive intercellular communication network through their numerous cytoplasmic processes 

(Bartl et al. 2009). This intercellular network extends throughout the bone mineral matrix to the 

bone surfaces and bone marrow, which also reaches the blood vessels (Bellido et al. 2013). 

When a load is applied to a bone, osteocytes detect changes in the flow of fluid around them and 

respond by sending signals, electric or chemical, through their cytoplasmic processes into the 

gap junctions. The reception of these signals in the gap junctions of other osteocytes, osteoblasts, 

or bone lining cells initiates more signaling and amplifies the signal.  

Ultimately, this signaling may result in bone formation or resorption activity through the 

production secretion of factors. Some of the factors regulate phosphate metabolism, such as 



12 

 

phosphate regulating neutral endopeptidase (PEX), matrix extracellular phosphoglycoprotein 

(MEPE/OF45), dentin matrix acidic phosphoprotein 1 (DMP-1), and fibroblast growth factor 23 

(FGF-23). Some of the factors inhibit bone formation, such as MEPE/OF45, Dickkopf 1 (Dkk-

1), and sclerostin. RANKL and M-CSF are factors secreted by osteocytes and are necessary for 

the proliferation, differentiation, and survival of osteoclasts. Osteocytes produce greater amounts 

of osteocalcin than osteoblasts. Osteocytes are also able to secrete B-ALP and type 1 collagen, 

but they secrete lower levels than osteoblasts (Bartl et al. 2009; Bellido et al. 2013). 

Through the secretion of these factors and binding of hormones, osteocytes are able to regulate 

bone metabolism for the purposes of bone repair, maintenance, or mineral homeostasis (Bartl et 

al. 2009; Bellido et al. 2013). Osteocytes actively participate in mineral homeostasis through the 

transport of organic and inorganic materials throughout the skeletal tissue via their extensive 

intercellular network (Bartl et al. 2009). Through binding to their receptors, osteocytes are able 

to detect levels of circulating hormones such as PTH, estrogen, androgen and glucocorticoids. 

Binding of estrogens and androgens inhibit osteocyte apoptosis, which in turn prevents bone 

resorption. Glucocorticoids stimulate bone resorption by stimulating osteocyte apoptosis. 

Glucocorticoids inhibit osteocytes from producing factors necessary for its survival. Normal 

PTH expression increases osteoblast survival and over expression of PTH can lead to down 

regulation of sclerostin by osteocytes (Bellido et al. 2013).   

Bone Lining Cells 

After the completion of bone matrix synthesis, osteoblasts that do not become embedded within 

the bone matrix may become bone lining cells. Bone lining cells are flat and elongated with few 

cytoplasmic organelles (Marks and Odgren 2002).  Bone lining cells lie against the inactive bone 

surfaces and are attached to thin collagenous membranes on the outer and inner surfaces of bone 

(Bartl et al. 2009). The collagenous membrane on the outer surface of bone is called periosteum. 

The layer on the inner surface of bone is called the endosteum and separates the inner surface of 

bone from the bone marrow. Although bodies of bone lining cells reside in the endosteum and 

periosteum, bone lining cells possess many cytoplasmic processes that penetrate into the bone 

matrix (Matthews 1980; Recker 1992). At gap junctions, the cytoplasmic processes of bone 

lining cells contact the cytoplasmic processes of osteocytes within the bone matrix. Through 

these gap junctions, bone lining cells maintain close communication with osteocytes.  
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The function of bone lining cells is to form a protective layer over the bone and to act as a 

surveillance system for bone (Bartl et al. 2009). Through communication with osteocytes within 

the matrix and in reaction to factors in the bone marrow and blood, bone lining cells can be 

reactivated as osteoblasts and participate in the activation of osteoclasts for purposes of 

remodeling (Bartl et al. 2009). In response to PTH, bone lining cells can recover the ability to 

produce matrix (Bellido et al. 2013). Exposure to PTH may also cue bone lining cells to retract 

themselves from the bone surface and secrete enzymes that remove the thin layer of osteoid that 

covers the mineralized bone matrix (Bellido et al. 2013; Recker 1992). Removal of the thin 

osteoid layer allows osteoclasts access to the bone surface for resorption (Buckwalter et al. 

1995a). RANKL secreted from bone lining cells react with the receptor RANK on osteoclasts, 

which ultimately results in the initiation of remodeling. Bone lining cells also actively participate 

in the remodeling process. During remodeling, bone lining cells are responsible for removing 

fragments of collagen left behind by osteoclasts and initiating new bone formation at those sites 

(Bartl et al. 2009).  

Osteoclasts 

Unlike osteoblasts, osteoclast stem from hematopoietic cells. Hematopoietic stem cells 

differentiate into monocytes within the bone marrow. The monocytes remain in the bone marrow 

or circulate in the blood until they are recruited to a resorption site (Buckwalter et al. 1995a). 

Monocytes are recruited to the site of bone resorption by changes in calcium gradients and 

factors secreted by osteoblasts and osteocytes. Upon reaching the resorption site, the monocytes 

will become committed mononuclear preosteoclasts, proliferate, and differentiate. Multiple 

mononuclear osteoclasts will then fuse to become large multinucleated cells. Osteoclasts do not 

become mature activated cells until they bind to the bone surface. Binding of the osteoclast to the 

bone surface signals the osteoclast to undergo cytoskeletal and membrane reorganization. 

Reorganization results in polarization of the osteoclast cell (Bellido et al. 2013). Due to this 

polarization, the osteoclast cell can be divided into two sections, an apical membrane domain 

that is held in contact with the bone surface and a basolateral membrane domain that is located 

away from the bone surface. Vital structures for resorption within the apical domain are the 

ruffled border and sealing zone.  The ruffled border is formed by the fusion of transport vesicles 

and the apical membrane. The ruffled border is recognized as the central, highly infolded area of 

the osteoclast plasma membrane which appears brush-like (Marks and Odgren 2002). The edge 
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of the ruffled border has a ring of membrane that circumscribes it, which is called the sealing 

zone. The sealing zone adheres tightly to the bone surface through the binding of its receptors to 

various extracellular matrix proteins. The seal creates a closed space between the osteoclast and 

the bone matrix where resorption occurs. Within the sealing zone, small structures called 

podosomes aid in the adhesion of the osteoclast to the bone surface as well as function in the 

migration of the osteoclast along the bone surface (Bellido et al. 2013; Rauner et al. 2012). On 

the opposite side of the cell, the basolateral domain contains a functional secretary domain that is 

connected to the ruffled border via microtubules. The nuclei are also located on this side of the 

cell. Large numbers of mitochondria and lysosomes are present within the osteoclast cell. 

The function of the osteoclast is to remove bone through a process called resorption. Once the 

sealing zone of an osteoclast has adhered itself to the bone surface, proton pumps within the 

osteoclast migrate and insert themselves in the apical membrane and a ruffled border forms. 

Within the cell, protons (H
+
) and bicarbonate (HCO3

-
) are produced from the reaction of carbon 

dioxide and water catalyzed by the enzyme carbonic anhydrase. The proton pumps transport the 

protons through the ruffled border into the resorption space (Baron et al. 1985; Bellido et al. 

2013; Buckwalter et al. 1995a). HCO3
-
 is pumped out of the cell and into the extracellular space 

by a HCO3/Cl
-
 exchanger located in the basolateral membrane. To prevent intracellular 

polarization caused by the transport of protons out of the osteoclast, Cl
-
, which was transported 

into the cell by a bicarbonate HCO3/Cl
-
 exchanger is then transported out of the osteoclast 

through the ruffled border and into the resorption space. HCl is formed in the resorption space, 

creating an acidic environment which dissolves the bone mineral (Silver et al. 1988). To degrade 

the organic matrix, osteoclasts secrete lysosomal enzymes such as tartrate-resistant acid 

phosphatase (TRAP), cathepsin K and matrix metallopeptidase-9 (MMP-9) into the resorption 

space (Bellido et al. 2013; Rodan 1992; Teitelbaum 2000). After the bone matrix has been 

dissolved, the degraded bone matrix is internalized by osteoclasts through phagocytosis. The 

internalized degraded products travel inside vesicles to lysosomes, where they are degraded 

further, or they are transported to the functional secretory domain on the basolateral surface and 

discharged into the extracellular environment (Bartl et al. 2009; Bellido et al. 2013). Degraded 

bone products can also be directly released to the extracellular environment after osteoclasts 

release from the bone surface. After resorption is complete, the osteoclast may migrate to an 
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adjacent area to continue resorption or undergo apoptosis. Osteoclasts resorb bone at a rate of 

tens of micrometers per day (Martin et al. 1998c; Rauner et al. 2012). 

Recruitment, differentiation, and activation of osteoclasts are also influenced by numerous 

hormones (PTH, androgens, estrogens, leptin, and thyroid hormones) as well as factors secreted 

by osteoblasts and osteocytes. Preosteoclasts proliferation occurs in response to growth factors 

such as interleukin-3 and macrophage colony-stimulating factor (M-CSF). Exposure to RANKL 

causes committed mononuclear osteoclasts to differentiate, fuse into large, multinucleated 

osteoclasts, acquire osteoclast-specific markers, and attach to the bone surface. It also initiates 

resorption and promotes survival of mature active osteoclasts (Bellido et al. 2013). M-CSF 

contributes to osteoclast differentiation, survival and migration. Estrogens and androgens inhibit 

osteoclast recruitment by regulating the production of pro-ostoclastogenic factors by cells of the 

osteoblastic lineage. Estrogens also induce apoptosis in osteoclasts. Glucocorticoids extend the 

life of mature osteoclasts which leads to an initial increase in bone resorption. However, 

glucocorticoids also decrease osteoclastogenesis through their negative effect on the number of 

osteoblasts, leading to a reduction in remodeling.  

BONE STRUCTURE 

At the ultra-structural level, bone is composed of an organic matrix, non-organic components, 

and water. Approximately 90% of the organic component of bone is type 1 collagen and the 

remaining 10% is non-collagenous proteins (Burr and Akkus 2013). Collagen provides bone with 

its toughness, which will be discussed further in the Bone Biomechanics section. Non-

collagenous proteins are responsible for the organization of the collagenous matrix, 

mineralization of bone, and cellular signaling by bone cells (Buckwalter et al. 1995a; Burr and 

Akkus 2013). The inorganic matrix portion of bone consists of some variant of the mineral 

calcium phosphate, such as hydroxyapatite. The inorganic matrix contains ~99% of the calcium, 

85% of the phosphorus and between 40-60% of the total body sodium and magnesium (Glimcher 

1992). The mineral portion of bone provides bone its strength and stiffness, as well as a reservoir 

for mineral ions, and will be discussed further in the in the sections on Mineral Homeostasis 

and Bone Biomechanics.  



16 

 

Collagen Organization 

Individual collagen molecules are formed from two 1 chains and 1 2 chain. These chains 

assemble into a triple helix to form single collagen molecule called a tropocollagen. Five 

tropocollagen molecules organize into a pattern that is stacked and staggered by approximately 

one-fourth their length in a semihexagonal arrangement (Burr and Akkus 2013). The aggregate 

of 5 tropocollagens is referred to as a collagen microfibril. Due to the stacked and staggered 

arrangement of tropocollagens within the microfibril, there are empty spaces between the heads 

of a tropocollagens in one microfibril and the tails of the tropocollagens in the neighboring 

microfibril (Currey 2002), as well as empty spaces that run longitudinally between the 

tropocollagens of a single microfibril (Burr and Akkus 2013). The empty spaces between the 

heads and tails of the tropocollagens of neighboring microfibrils are called holes and the spaces 

between the tropocollagens within a single microfibril are called pores. These holes and pores 

are populated by some variant of calcium phosphate, such as a hydroxyapatite crystal, that 

increase in size during mineralization (Buckwalter et al. 1995a; Burr and Akkus 2013).  

The tropocollagens within a single microfibril are held together by intermolecular cross-links. 

The type of cross-link connecting the collagen molecules can have profound effects on the 

material properties of collagen tissue and ultimately in the mechanical behavior of the whole 

bone (Burr and Akkus 2013). There are two types of intermolecular cross-links, enzymatically 

mediated and non-enzymatically mediated collagen cross-links. The bonds of the enzymatically 

mediated collagen cross-links are formed through a highly regulated process and mature quickly 

(Allen and Burr 2014a). They are trivalent and very stable. An increased number of 

enzymatically mediated collagen cross-links has been related to increased compressive strength 

and stiffness in bone. Non-enzymatically mediated collagen cross-links form from the 

condensation of arginine, lysine, and ribose. Non-enzymatically mediated cross-links accumulate 

with age and create advanced glycation end products (AGEs). AGEs have been linked with 

reduced collagen fibril diameter, impaired osteoblast differentiation, and decreased resorption by 

osteoclasts. All of which contribute to bone fragility (Burr and Akkus 2013).   

Bone Microstructure  

At the microstructural level, collagen microfibrils aggregate to form collagen fibers. Collagen 

fibers are organized into a regular or irregular structure. Acting upon this organization, 
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osteoblasts form either woven or lamellar bone. In woven bone, collagen fibers are irregular in 

formation and appear randomly oriented (Baron 1999; Martin et al. 1998c; Sommerfeldt and 

Rubin 2001). Woven bone is synthesized by osteoblasts during times of rapid bone formation, 

such as growth, or in response to bone or soft-tissue injury, and some pathological conditions 

(Buckwalter et al. 1995a). Woven bone is more highly mineralized than lamellar bone, but the 

mineral crystals also appear randomly arranged and leave mineral free spaces within the 

collagen. Microscopically, woven bone appears porous. Due to its disorganization, woven bone 

is weaker than lamellar bone and not capable of providing long-term, structural support. In 

lamellar bone, osteoblasts deposit collagen fibers in densely packed, highly organized parallel 

sheets (Burr and Akkus 2013). These parallel sheets of collagen fibers are called lamellae. 

Collagen fibers often interconnect within and between lamellae, which increases the strength of 

bone (Buckwalter et al. 1995a) (Torzilli et al. 1981). Lamellar bone replaces woven bone that is 

laid down during growth and fracture healing, increasing bone strength.  

Most of the bone found in the body is a form of lamellar bone. Lamellae create circumferential 

bands of bone, each 3-7 µm thick, that give the appearance of tree rings. Each sheet of lamella is 

separated from the next sheet by an interlamellar layer about 1 µm thick (Burr and Akkus 2013). 

The collagen fibers within each sheet of lamella lie at a 90 degree angle to the collagen fibers in 

the adjacent sheets. A helicoidal arrangement of collagen fibers has also been found within 

regions of bone. In this arrangement, collagen fibers continuously change direction and the 

orientation of the collagen fibers rotates through 180 degree cycles, continuously repeating itself 

(Martin et al. 1998c). 

Lamellar bone can be further divided into 4 types based on how the sheets of lamellae are 

arranged. These types are circumferential, trabecular, concentric, and interstitial. Circumferential 

lamellae compose the outer (periosteal) and inner (endosteal) surfaces of cortical bone. Lamellae 

form individual spicules of trabecular bone, which will be discussed shortly. Lamellae arranged 

around vascular channels within the bone matrix are called concentric lamellae. Concentric 

lamellae form larger structures within the bone matrix called osteons. Osteons will be discussed 

further with cortical bone. Lamellae located between osteons are called interstitial lamellae 

(Buckwalter et al. 1995a; Burr and Akkus 2013).  
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Bone Macrostructure 

At the macro-structural level, bone is divided into two types, cortical (or compact) and trabecular 

(or cancellous). With the naked eye, cortical bone appears solid and trabecular bone appears 

porous. Cortical bone forms the outer, dense bone envelope. Trabecular bone is found within the 

dense cortical envelope and is exposed to bone marrow. Cortical bone is the primary component 

of the shafts (diaphyses) of long and short bones comprising the appendicular skeleton and 

surrounds the trabecular bone of the axial skeletal elements and the flat bones. Trabecular bone is 

found primarily in the metaphyses (flared ends) and in the bones of the axial skeleton and flat 

bones. Cortical bone performs support and protection functions, while trabecular bone primarily 

serves as a structural support for the cortical bone without adding excessive weight.  

Cortical Bone 

Cortical bone architecture consists of a combination of circumferential, concentric and interstitial 

lamellae, as well as spaces within the cortical bone for osteocytes and their cytoplasmic 

processes, blood vessels and resorption cavities. The majority of cortical bone is composed of 

structures called osteons. A single osteon is cylindrical in shape and composed of concentric 

lamellae. The concentric lamellae surround a central canal that is called a Haversian canal. 

Haversian canals are lined with discontinuous layer of osteoprogenitor cells and contain blood 

vessels, lymphatic vessels, and sometimes nerves (Buckwalter et al. 1995a; Burr and Akkus 

2013; Downey and Siegel 2006). Osteocytes are located between the sheets of concentric 

lamellae in open spaces called lacunae. Small tunnels, called canaliculi, radiate from the lacuna 

like spokes from a wheel (Buckwalter 1994; Buckwalter and Cooper 1987; Sevitt 1981). 

Canaliculi connect lacunae within and between lamellae of a single osteon. Osteocyte 

cytoplasmic processes are housed within the canaliculi. Canaliculi also connect osteocytes to the 

Haversian canal. In general, osteons are arranged longitudinally within the long axis of the bone. 

However, the orientation of any individual osteon may be variable because the Haversian canals 

they surround branch extensively. The vessels within the Haversian canals also anastomose with 

one another through canals called Volkmann canals. These canals run in a mostly transverse 

direction and also open to the inner and outer surfaces of the cortical bone where the vessels can 

join vessels in the marrow cavity and outer surface of bone (Burr and Akkus 2013).  
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There are two types of osteons, primary and secondary. Osteons formed in a space that had no 

prior bone matrix are called primary osteons. The osteons that replace primary osteons during 

remodeling are called secondary osteons or Haversian systems. Primary osteons structurally 

differ from secondary in several ways. Primary osteons are smaller than a secondary osteons. 

Primary osteons have no well-defined border separating them from surrounding osteons or bone 

matrix. Secondary osteons are isolated from the surrounding matrix by a thin layer of organic 

matrix called the cement line (Buckwalter 1994; Buckwalter and Cooper 1987; Burr and Akkus 

2013; Cooper et al. 1966; Currey 1984). Secondary osteons will be discussed in more detail in 

the Remodeling section.  

When secondary osteons replace primary osteons or other secondary osteons, fragments of the 

old osteon may be left behind. These fragments of old lamellae between osteons are called 

interstitial lamellae (Sevitt 1981). Interstitial lamellae have lacunae and canaliculi with 

osteocytes and their processes, but have no Haversian canal and therefore have no access to 

blood vessels. The tissue in interstitial lamellae usually dies (Currey 2002). However, osteocytes 

may survive within the interstitial lamellae if they are able obtain adequate nutrients from 

anastomosing network of canaliculi in areas above or below the invading osteon (Ortner and 

Turner-Walker 2003).  

Circumferential lamellae form the periosteal and endosteal walls of bone and encompass all of 

the osteonal and interstitial lamellae. As with the other types of lamellar bone, osteocytes are 

found within the sheets of circumferential lamellae. Osteocytes are able to communicate with 

other osteocytes within their own lamella and adjacent lamella through their cytoplasmic 

processes that are located in canaliculi. Circumferential lamellae do not have Haversian canals 

but are able to access nutrients from the few vessels entering the bone and through special 

membranes on the outer and inner surface of the bone, which will be discussed in the Skeletal 

Envelopes section.  

The extensive system of canaliculi, as well as Haversian and Volkmann canals is a vital structure 

in the performance of communication and mechanosensory functions by bone cells. Via 

migration through the canal system, communication from outside the cortices is able to make its 

way through the cortex and to the medullary cavity, and vice versa. Osteocytes fulfill their 
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mechanosensory function by sensing changes in the flow of fluid and ions through the canals. 

Changes in fluid flow and ions through the canal network are caused by load generated strains on 

bone. Osteocytes are able to pass on mechanosensory and other signals to other bone cells 

through the release of factors into the fluid filled canal system. The canal network also enables 

bone cells to adequately access nutrients from the circulating blood via the connection to the 

vascular canals (Haversian and Volkmann) and the vasculature running along the surfaces of the 

bone. Connection to the vascular canals also permits factors released by bone cells to migrate 

into the circulating blood or on to other bone cells within the matrix (Burr and Akkus 2013).   

Trabecular Bone 

Trabecular bone forms a honeycomb network of cylindrical struts of lamellar bone (Ortner 

2008). A single strut of bone within this network is called a trabecula and is approximately 1 mm 

long. Trabeculae can either have a plate-like or rod-like appearance depending on the amount of 

lamellae present in each trabecula. Due to the large numbers of trabeculae present within bone, 

the surface area of the trabeculae is greater than the surface area of the cortical bone. In general, 

lamellae are arranged parallel to the trabecular surface, but replacement of old lamellae can 

produce structures that appear like half osteons or hemiosteons. One surface of a hemiosteon 

borders the marrow cavity and the opposite surface is separated from the rest of the lamellae 

within a trabecula by a cement line. Complete osteons are rarely found within trabeculae. The 

open spaces between trabeculae are filled with hematopoietic bone marrow. Trabeculae derive 

their nutrient supply from the marrow require no central vascular channel (Burr and Akkus 

2013). Trabeculae join one another at locations called nodes. Within the bone, the trabeculae are 

oriented along the lines of stress. At joint surfaces, stress is transferred from the cortical bone to 

the trabeculae and into the nodes. The greater the number of plate-trabeculae and the more 

closely the trabecular nodes are spaced, the greater the overall stability and strength of the bone 

they support (Rauner et al. 2012).   

Skeletal Envelopes 

The inner and outer surfaces of bone are covered by membranes called endosteum and 

periosteum, respectively. The periosteum serves as a boundary between the skeletal and muscle 

tissues by adhering to the external surfaces of bone, except in the regions around or within 

synovial joints. There is an inner and outer layer of the periosteum. The inner layer is also called 

the cambium layer. The cambium layer contacts the bone surface and is vascular, cellular, and 
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innervated (Allen et al. 2004; Buckwalter 1994; Recker 1992). The cambium layer is the source 

of cells necessary for the growth, development, modeling/remodeling, and fracture repair of the 

skeleton (Burr and Akkus 2013). The cambium layer contains bone lining cells and 

mesenchymal stem cells, which can be reactivated into osteoblasts. Mesenchymal stem cells can 

also differentiate into chondrocytes (cartilage forming cells), which is important for fracture 

healing. The cytoplasmic processes on bone lining cells within the cambium layer penetrate the 

bone through canaliculi. At gap junctions, bone lining cells are able to communicate with 

osteocytes. The cambium layer is much thicker during growth than it is in adults. As adults age 

it, becomes thinner until it almost completely disappears (Whiteside 1983). There are blood 

vessels, progenitor cells, and mononuclear cells between the inner and outer layer of periosteum 

(Allen et al. 2004). The outer layer of the periosteum is more dense and fibrous than the inner 

layer because it contains more collagen than the inner layer. The outer layer also contains 

fibroblasts, a neural and vascular network (Chanavaz 1995), and elastin fibers (Taylor 1992). 

The outer layer continues to the joint capsule and connects adjacent bones. Some tendons and 

ligaments insert primarily into this layer of the periosteum (Buckwalter and Cooper 1987; 

Cooper and Misol 1970). During development and skeletal maturity, the fibrous layer increases 

in density but decreases in thickness (Ellender et al. 1988). 

The periosteum performs vital functions in the regulation of bone formation on the periosteal 

surface of bone. The cells within the periosteum respond to physiological levels of mechanical 

strain by cell proliferation, blood vessel formation, the release of nitric oxide, and prostaglandin 

E2 production. The release of these factors stimulates bone formation through various molecular 

pathways (Keila et al. 2001; McKenzie and Silva 2011; Robling et al. 2006; Turner and Robling 

2004). Also, periosteal cells respond to PTH, insulin-like growth factor (IGF-I), and growth 

hormone (GH) with bone formation. Estrogens inhibit periosteal bone formation, while 

androgens promote periosteal bone formation (Gosman et al. 2011).  

The endosteum consists of a discontinuous layer of bone lining cells that lines the medullary 

cavity. The endosteum is not a true membrane because it is discontinuous. The endosteum 

functions as a regulator for calcium exchange by forming somewhat of a barrier between the 

extravascular fluid in the marrow cavity and the extracellular fluid within the bone matrix (Burr 

and Akkus 2013). Although extracellular fluid separates the endosteum from the endocortical 
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surface, bone lining cells are associated with capillaries near the endocortical bone surface and 

sinusoids within the marrow cavity. Diffusion is the principal mechanism for exchange between 

extracellular fluid in the bone marrow and the bone capillaries. Also, the cytoplasmic processes 

of endosteal bone lining cells penetrate the endocortical bone surface through canaliculi and 

maintain communication with osteocytes at gap junctions (Bellido et al. 2013). Similar to the 

endosteum, a discontinuous layer of bone lining cells also covers the trabecular surfaces (Burr 

and Akkus 2013). 

BONE FORMATION 

Skeletal development begins during the 6
th

 week of gestation and continues into the postnatal 

years. Skeletal development occurs through intramembranous and endochondral ossification 

(Allen and Burr 2014a). Intramembranous ossification occurs in a condensation (aggregation into 

layers) of mesenchymal stem cells that differentiate directly into osteoblasts (Marks and Odgren 

2002). Most cranial bones, all facial bones, the mandible, scapula, pelvis, and the central portion 

of the clavicle develop by intramembranous ossification (Buckwalter et al. 1995b; Scheuer and 

Black 2000a). Endochondral ossification occurs on a cartilage template called an anlage that is 

produced by chondrocytes. Bones that bear weight and participate in joints form by 

endochondral bone formation (Marks and Odgren 2002). Within the embryo, the first bones to 

form from endochondral bone formation are the long bones, such as the femur, tibia, fibula, 

humerus, radius and ulna. After formation of the long bones, short bones, and epiphyseal centers 

of ossification, endochondral ossification continues in the growth plate and epiphyses until 

skeletal maturity in the late teens to early adulthood (Buckwalter et al. 1995b) . Remaining in 

utero until ~37 weeks gestation has important consequences for postnatal bone health and 

growth, which will be discussed further in the Disease and Bone section.  

Intramembranous Bone Formation/Ossification  

At the start of skeletal development, intramembranous bone formation initiates prior to 

endochondral bone formation. The first step in intramembranous bone formation is the 

condensation of mesenchymal stem cells at the site of future bone formation (Arcy 1965; 

Buckwalter 1994; Buckwalter and Cooper 1987; Recker 1992; Sevitt 1981). A mesenchymal 

condensation is a membrane that consists of mesenchymal cells, a loose organic matrix 

synthesized by the mesenchymal cells, blood vessels, and fibroblasts (Buckwalter et al. 1995b). 
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This structure is also called a bone blastema. A mesenchymal condensation can develop as the 

result of increased proliferation mesenchymal stem cells or through the aggregation of 

mesenchymal stem cells drawn to a specific site (Hall and Miyake 1992). As the mesenchyme 

condenses, cells become more rounded and the intercellular substance decreases (Streeter 1949). 

Under the influence of the transcription factor RUNX2, mesenchymal stem cells within the 

blastema differentiate into osteoblasts. The osteoblasts begin to produce woven bone in the form 

of spicules which then mineralize. This initial production of bone matrix is called the primary 

ossification center and growth proceeds from this site (Allen and Burr 2014a). Eventually, the 

initial osteoblasts produce a small island of woven bone. Some osteoblasts become embedded 

within the matrix and develop into osteocytes. Additional osteoblasts are then recruited to the 

surface of the island of woven bone. These additional osteoblasts produce either woven or 

lamellar primary bone matrix. Once the growing island of bone becomes so large that the 

osteocytes at the center are not able to access an adequate blood supply, the osteocytes at the 

center undergo apoptosis. Blood vessels from nearby capillary networks penetrate the middle of 

the ossification center. Osteoblasts deposit matrix between the vessels. The matrix mineralizes 

and continues to extend and expand as more matrix is added by osteoblasts, leading to the 

formation of a trabecular network. The intervascular spicules of bone enclose the blood vessels 

as more mesenchymal cells differentiate into osteoblasts. This initial trabecular network is called 

the primary spongiosa. The primary trabeculae radiate centrifugally from the center of 

ossification and increase in length by accretion to their ends (Ogden 1979; Weinmann 1947). 

Small secondary trabeculae develop at right angles to the primary trabeculae, which develop into 

the cortical walls and enclose the vascular space that becomes the marrow cavity. As the rate of 

growth slows, the secondary trabeculae are replaced with a primary osteonal system to form the 

cortex (Scheuer and Black 2000a). Mesenchyme on the surface of the developing bone 

condenses and forms the periosteal membrane. As periosteal osteoblasts continuously produce 

layers of matrix, more osteoblasts become trapped within the matrix and develop into osteocytes 

within lacunae. The ultimate result is a bone with a cortex, extensive intracortical network of 

canals, trabeculae, and a marrow cavity. The scapula and clavicle are exceptions and do not form 

marrow cavities (Allen and Burr 2014a).   
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Endochondral Bone Formation 

Like intramembranous bone formation, endochondral bone formation begins with mesenchymal 

condensation. However, under the influence of transcription factor Y-box 9 (SOX-9), the 

mesenchymal stem cells differentiate into chondroblasts instead of osteoblasts (Allen and Burr 

2014a). The chondroblasts produce a hyaline cartilage matrix which consists of type II collagen 

and chondroitin sulfate (Scheuer and Black 2000a). As the matrix is being produced, some 

chondroblasts become embedded within the matrix and develop into chondrocytes. Eventually, a 

hyaline cartilage template that resembles the shape of the future bone is produced. The entire 

cartilage template is surrounded by a connective tissue layer called the perichondrium, which 

contains chondroblasts, mesenchymal stem cells and a vascular network. The cartilage template 

continues to grow in size through the proliferation of chondroblasts within the perichondrium 

and the deposition of cartilage matrix by these chondroblasts on to the cartilage template. At the 

center of the cartilage model, there is a linear, interstitial (between the cells) proliferation of 

columns of chondrocytes. As the cartilage model grows, the oldest chondrocytes near the center 

of the cartilage model begin to swell (hypertrophy).  

Also as chondrocytes hypertrophy, the perichondrium develops osteogenic properties through the 

influence of transcription factor RUNX2 (Allen and Burr 2014a). In the central region of the 

cartilage template, the perichondrium thickens and osteoblasts differentiate from the 

mesenchymal stem cells within the perichondrium (Scheuer and Black 2000a). The osteoblasts 

are arranged in stacked layer of 4-6 cells that completely surround the cartilage template (Bruder 

and Caplan 1989). The osteoblasts surround capillaries from the perichondrial arterial network 

and deposit osteoid matrix on the surface of the cartilage template. The osteoid matrix is lamellar 

in organization and is quickly mineralized. Initially, the lamellar bone is restricted to the 

circumference of the cartilage model, forming a constricting cuff or bone collar. Ossification 

then radiates toward the epiphyses resulting in a sleeve of bone that envelops the entire diaphysis 

of the cartilage template. Once the bone collar has formed, the perichondrium surrounding the 

bone collar becomes populated with osteogenic precursor cells and develops into the periosteum. 

The periosteum is continuous with the perichondrium that covers the cartilaginous epiphyseal 

surfaces that remain unmineralized (Scheuer and Black 2000a). 
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Simultaneous to chondrocyte hypertrophy, the cartilage in between the hypertrophied columns of 

chondrocytes begins calcification. Formation of the bone collar limits the diffusion of nutrients 

into the cartilage matrix and may be responsible for initiating chondrocytes hypertrophy (Bruder 

and Caplan 1989). Calcification of the cartilage matrix surrounding the hypertrophied 

chondrocytes initiates near the center of the cartilage template and radiates outward. After the 

cartilage calcifies at the center of the template, the hypertrophied chondrocytes embedded in this 

calcified cartilage matrix undergo apoptosis and blood vessels are recruited to center of the bone 

collar. Chondrocyte apoptosis may release chemical factors that recruit a blood vessel or vascular 

bud to the bone collar. The vascular bud penetrates the bone collar through the formation of an 

irruption canal by osteoclastic resorption (Scheuer and Black 2000a). Although more than one 

blood vessel may penetrate the bone collar, only one will be dominant and develop into the 

nutrient artery. Ultimately, the site of penetration of the bone collar by the primary blood vessel 

becomes the nutrient foramen of the mature bone. 

Penetration by the blood vessel into the center of the cartilage template permits hematopoietic 

and mesenchymal stem cells to enter the cartilage template. This increases the rate of 

calcification occurring in the remaining uncalcified portion of the cartilage template. The 

hematopoietic stem cells that enter the template differentiate into osteoclasts. The osteoclasts 

resorb the central portion of calcified cartilage resulting in the formation of the marrow cavity. 

As the marrow cavity forms and is populated with cells, bone matrix is continuously added to the 

periosteal surface of the bone collar. Meanwhile, the mesenchymal stem cells differentiate into 

osteoblasts and lay down osteoid in the walls of the calcified cartilage between the hypertrophied 

and dying chondrocytes forming an internal trabecular network of woven bone. Over time, 

osteoclasts resorb the immature woven bone and the calcified cartilage that remains at the center 

of the trabeculae, while osteoblasts replace it with a trabecular network of mature lamellar bone. 

Once ossification has commenced, the site becomes the primary ossification center. Bone matrix 

ossification occurs centrifugally from the primary ossification center and will eventually involve 

the middle third of the hyaline cartilage template.  

Shortly after the primary ossification center has been established, a growth plate (also called the 

epiphyseal plate or physis) forms between the cartilaginous epiphyseal ends and the metaphysis 

of the ossifying diaphyseal shaft (Scheuer and Black 2000a). The growth plate is responsible for 
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longitudinal growth of bones through the continuous secretion of cartilage matrix by 

chondrocytes embedded within the matrix. Bones increase in length and not in thickness at the 

growth plate because upon reaching the metaphysis expansion is restricted, the matrix ossifies 

and is incorporated into the metaphysis. This will be covered in more detail below. The growth 

plate is described as having distinct zones with each representing a stage in the life cycle of the 

chondrocytes it contains (Martin et al. 1998c). These zones are called the resting zone (also 

reserve or germinal zone), proliferative zone, hypertrophic zone, zone of calcified cartilage, and 

the zone of ossification.  

The zone most distant from the primary ossification center and closest to the epiphysis of the 

cartilage template is called the resting zone. The resting zone is comprised of hyaline cartilage in 

which mesenchymal cells are randomly distributed (Scheuer and Black 2000a). Each 

mesenchymal cell divides (mitosis) to produce a chondroblast and a remaining mesenchymal 

cell. Like the mesenchymal stem cells, the chondroblasts are randomly distributed. 

Chondroblasts that become embedded within the hyaline cartilage develop into chondrocytes. 

Type II collagen is continually produced by chondroblasts near the perichondrium, as well as 

chondrocytes already embedded within the resting zone matrix. The chondrocytes within the 

resting zone receive nutrients from epiphyseal blood vessels (Allen and Burr 2014a).  

The proliferative zone follows the resting zone. Within the proliferative zone, chondrocytes 

repeatedly undergo mitosis and proliferate. Proliferation occurs in columns along the 

longitudinal axis causing the arrangement of chondrocytes to resemble stacked coins. Initially 

the chondrocyte cells are wedge-shaped and division occurs in the transverse plane. Following 

mitosis, the wedge-shaped daughter cells lay side-by-side with their narrow edges overlapping. 

As cells migrate towards the epiphyses, the narrow edges of the wedge-shaped chondrocytes 

expand and the chondrocytes become rectangular in shape (Scheuer and Black 2000a), forcing 

the originally oblique intercellular septum to become transverse. This results in chondrocytes 

that are aligned in columns. The chondrocytes within the proliferative zone continue to produce 

type II collagen and proteoglycans, but not as much as was produced in the resting zone.  

The subsequent zone is the hypertrophic zone and it can be further divided into a prehypertrophic 

region and a lower hypertrophic region. The prehypertrophic zone is responsible for the majority 
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of longitudinal bone growth. In the prehypertrophic region, chondrocytes cease proliferation, 

increase in size, and transition from producing type II collagen to secreting large amounts of type 

X collagen and alkaline phosphatase (Rauner et al. 2012). The bone collar restricts growth in the 

radial direction, forcing growth in the longitudinal direction (Martin et al. 1998c). Type X 

collagen contains fibers that are not present in type II collagen, which increases the stiffness of 

type X collagen in comparison to type II collagen. The increased stiffness of the surrounding 

cartilage matrix decreases the diffusion rate of nutrients through the matrix. Without adequate 

access to nutrients or removal of extracellular waste, chondrocytes in the lower hypertrophic 

zone stop producing cartilage matrix. The chondrocytes continue to enlarge and enter the early 

stages of apoptosis by producing molecules that prepare adjacent cartilage for calcification. 

Release of these molecules is a requirement for the initiation of vascular invasion which occurs 

in the subsequent zones.  

The next zone is called the calcified cartilage zone. As the cartilage matrix around the dead or 

dying chondrocytes condenses due to the incorporation of type X collagen, it also begins to 

calcify. After or prior to apoptosis, chondrocytes release vesicles into the condensed, 

extracellular cartilage matrix. The vesicles contain alkaline phosphatase (ALP), ATPase, and 

enzymes. ALP is a key contributor to the mineralization of the cartilage matrix by increasing the 

localized phosphate levels (Anderson and Morris 1993). The ATPase provides energy for the 

transport of calcium ions into the vesicles against the concentration gradient (Martin et al. 1998c; 

Scheuer and Black 2000a). Enzymes cleave calcium and phosphate from the surrounding 

environment, which increases the local mineral concentrations within the vesicles. Increased 

concentrations initiate calcium-phosphate (calcium hydroxyapatite) crystal growth which grow 

in size within the vesicle until they rupture the vesicle membrane and break free (Eanes and 

Hailer 1985). The hydroxyapatite crystals that break free from the vesicles serve as seed crystals. 

Through a process called epitaxy, the seed crystals act as substrate for new hydroxyapatite 

crystal proliferation (Neuman and Neuman 1953). Collagen is a favorable environment for 

epitaxy to occur (Arsenault 1989). The growing hydroxyapatite crystals displace water molecules 

within the collagen matrix by embedding themselves within the collagen, leading to the 

calcification of the collagen matrix. As the matrix calcifies through the process of epitaxy, more 

chondrocytes undergo apoptosis which signals for local vascular invasion metaphyseal vessels 

(Scheuer and Black 2000a).  
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The last zone of the growth plate is called the zone of ossification and is located where the 

growth plate ends and the metaphysis begins. As chondrocytes hypertrophy, they produce matrix 

metalloproteinase 13, which dissolves some of the surrounding cartilage (Stickens et al. 2004). 

The transversely oriented calcified cartilage septa are dissolved and the vertically oriented septa, 

although more narrow, remain mostly intact (Rauner et al. 2012). Once the chondrocytes die, 

only narrow walls called septa are left between the large and now empty lacunae. Monocyte 

derived cells called septaclasts resorb the septa at the bottom of each chondrocyte column 

(Hunziker 1994; Lee et al. 1995; Price et al. 1994). Once the septa are resorbed, blood vessels 

and cells from the metaphysis are able to gain access to the bottom of the growth plate through 

the tunnels and open spaces left behind by dead chondrocytes (Martin et al. 1998c). Trabeculae 

are the vertical walls of calcified cartilage that form the tunnel walls. The invading vasculature 

brings progenitor cells to the site. Chondroclasts resorb some of the calcified cartilage on the 

tunnel walls, or surfaces of the trabeculae. Osteoblasts then line the surfaces of the trabeculae 

and deposit wove bone on their surfaces. The conversion of calcified cartilage to mineralized 

bone marks the transition from the growth plate to the metaphyseal trabeculae. The trabecular 

tissue transitioning from calcified cartilage to ossified bone is called primary spongiosa. The 

trabecular struts of the primary spongiosa contain calcified cartilage within their cores. 

Eventually, the calcified cartilage within the trabecular core will be entirely replaced with 

lamellar bone to form the secondary spongiosa. This will be discussed in more detail in the 

Remodeling Section. As growth progresses, the trabeculae at the center of the metaphysis are 

eventually entirely resorbed to make room for the medullary cavity and the remaining trabeculae 

form an arch to transfer loads from the center of the growth plate to the cortices of the diaphysis. 

For simplicity, the zones were described as distinct. However, as growth occurs, there is a 

gradual transition from one zone to the next (Allen and Burr 2014a). Chemical factors are 

responsible for the transition of cellular processes from one zone to the next. Growth hormone 

(GH), insulin-like growth factors (IGFs), Indian hedgehog (IHH) protein, bone morphogenic 

proteins (BMPs), and the Wnt signaling pathway influence chondrocyte proliferation. Fibroblast 

growth factor (FGF) inhibits chondrocyte proliferation (Allen and Burr 2014a; Nilsson et al. 

1994). Under the influence of thyroxine and the Wnt signaling pathway, chondrocytes 

hypertrophy, while IHH protein and PTH-related protein (PTHrP) inhibit chondrocyte 

hypertrophy (Allen and Burr 2014a).  
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At birth, the growth plate is typically flat and disc-like in shape. During growth, the bones 

become larger and the growth plate must also increase in diameter. The growth plate increases in 

diameter by cellular division at the circumference. This zone of dividing cells called the zone of 

Ranvier. Also during growth, the growth plate transitions from a flat surface to being a curved 

surface with a system of ridges, valleys, and flaps. The purpose of these ridges is to protect the 

cartilage within the growth plate from shearing forces (Martin et al. 1998c).    

Prior to birth, some of the long bones establish secondary centers of ossification within the 

epiphyses. Ossification of the secondary centers is similar to the processes described for the 

ossification of the diaphysis. Ossification initiates through vascular invasion by epiphyseal 

vessels. However, the trabeculae are retained during ossification of secondary centers, while they 

are resorbed or largely resorbed during the ossification of primary centers (Alini et al. 1996).  

Once the growth plate completely ossifies, longitudinal growth ceases and the epiphyseal and 

metaphyseal vascular systems unite. The growth plate begins to completely ossify when activity 

within the zone of ossification exceeds chondrocyte repopulation in the resting zone. This 

process is called epiphyseal union (Rang and ed 1969). The growth plate shrinks in size until it 

disappears, leaving behind a thin plate of mineralized bone between the epiphysis and the 

metaphysis, which is called the epiphyseal line (or physeal scar) (Martin et al. 1998c; Scheuer 

and Black 2000a). Depending on the specific bony element, this occurs in the late teens to the 

early twenties (Riggs et al. 1999). 

Modeling and Remodeling 

While bone formation results in the basic bone shape, the processes of modeling and remodeling 

are required for maintaining bone shape during growth and for repair and maintenance of the 

skeletal tissue throughout life. Therefore, bone remodeling does not usually result in changes to 

bone shape or size. Bone modeling alters the shape of bones through bone apposition and 

resorption, but both processes do not occur at the same site at the same time. Bone formation 

(endochondral ossification and intramembranous ossification) differs from bone modeling in that 

formation produces a bone where none previously existed, while the bone modeling process can 

only deposit or resorb bone from a preexisting bone surface. Modeling at a site is usually 

continuous and prolonged (Martin et al. 1998c). Modeling modifies bone structure in ways that 
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increases bone strength without adding excessive weight to the skeleton. Bone remodeling is 

episodic and occurs through the coupled processes of bone resorption and deposition at the same 

site (Allen and Burr 2014a). Bone remodeling has several functions, which are to mobilize 

calcium from the skeleton for purposes of calcium homeostasis, replace old bone tissue, repair 

damaged bone tissue, and to adapt the skeleton to better withstand changes in loading patterns. 

Bone fragility can result when either of these processes is compromised.  

Modeling 

Although modeling takes place in adults, it occurs predominantly during growth and occurs on 

the periosteal, endocortical, and trabecular bone surfaces. Approximately 90% of modeling is 

complete by the end of adolescence (Bartl et al. 2009). The primary functions of bone modeling 

are to increase bone mass and maintain or alter bone shape. Bone modeling by osteoblasts is 

called formation modeling and can be divided into two categories, appositional or periosteal 

intramembranous bone formation. Formation modeling on the periosteal surface is considered 

intramembranous bone formation because the osteoblasts and precursor cells that deposit osteoid 

on the periosteal surface are located within the periosteal membrane and are not directly on the 

bone surface (Martin et al. 1998c). The deposition of osteoid on the trabecular and endocortical 

bone surfaces is called appositional formation. Bone modeling by osteoclasts is called resorptive 

modeling. Locally, formation and resorption modeling occur independently of one another, 

meaning that bone is added at some sites while simultaneously being removed from others 

(Martin et al. 1998c). However, formation and resorptive modeling are not globally independent, 

their simultaneous actions on a single bone are coordinated to alter or maintain a bone’s overall 

shape, which plays an important role in fracture resistance.  

Although the actions are coordinated, specific bone surfaces are targeted by osteoblasts and 

osteoclasts during modeling to alter and maintain bone shape. Metaphyseal modeling is 

necessary during longitudinal growth in order to maintain normal long bone shape. To maintain 

long bone shape, the area that was formerly the metaphysis must decrease in diameter to become 

a new section of the diaphysis. As the bone increases in length, resorption removes bone on 

periosteal surface of the metaphysis while formation adds bone to the endocortical surface of the 

metaphysis in order to maintain mechanical strength. Epiphyseal modeling includes both 

increase in diameter and length.  
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As bones grow in length, the diaphysis must also increase in diameter (radial growth). Formation 

modeling on the periosteal surface (appositional formation) is the major mechanism for radial 

growth of the diaphysis (Allen and Burr 2014a). A relatively consistent cortical thickness is 

maintained throughout growth by simultaneous resorptive modeling on the endosteal surface of 

the diaphysis which also increases the size of the medullary cavity (Ortner and Turner-Walker 

2003). After completion of growth, the diaphysis continues to increase in diameter by 

appositional growth and endosteal resorption, but at a greatly reduced rate (Keshawarz and 

Recker 1984; Ruff and Hayes 1982).  

Modeling of the diaphysis is sexually dimorphic. Males have larger and thicker bones than 

females. During puberty, the release of estrogens in females inhibits periosteal formation which 

results in smaller bones due to decreased formation modeling in females. Androgens, such as 

testosterone, growth hormone, and IGF-I, which increase formation modeling on the periosteal 

surface, are greatly increased in pubescent boys resulting in thicker cortices. Other factors such 

as mechanical loading, PTH, and sclerostin also affect radial growth (Allen and Burr 2014a).  

Predominantly during growth and occasionally after maturity, bone shape needs to be altered to 

adjust the position of the cortex relative to the bone’s central axis. The process of altering a 

bones shape for these purposes is called bone drift. Bone drift occurs by formation modeling on 

one periosteal and endosteal surface while resorption modeling is simultaneously occurring on 

opposing periosteal and endosteal surfaces (Enlow 1963). 

Local tissue strain is the primary signal for modeling (Allen and Burr 2014a). During growth, 

stresses and strains on skeletal tissue change due to increases in bone length and due to 

alterations in the intensity and type of physical activity (Scheuer and Black 2000a). If tissue 

strain surpasses a given threshold, formation modeling is initiated and new bone matrix is 

deposited. If strains remain too low for too long, resorptive modeling is initiated. This is also 

referred to as the mechanostat theory (Frost 2001; Frost 2003b) and will be discussed in further 

detail in the Bone Biomechanics section. Once modeling has been activated, precursor cells, 

either hematopoietic or mesenchymal, are recruited to the site and differentiate into osteoclasts or 

osteoblasts, respectively. Bone lining cells can also be activated and differentiate into 
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osteoblasts. After enough bone tissue has been added or removed from cortical and/or trabecular 

bone to normalize local strains, modeling ceases. 

Remodeling 

Primary bone formed through ossification and modeling is short-lived and is replaced with 

secondary bone through a process called remodeling (Scheuer and Black 2000a). Remodeling 

consists of the removal of old bone, both primary and secondary, woven and lamellar, and its 

replacement with new lamellar bone. Remodeling is continuous throughout life, but the 

remodeling rate decreases after maturity. Remodeling can be described as targeted or stochastic. 

The function of targeted remodeling is to repair mechanically compromised bone matrix. In 

targeted remodeling, there is a specific local signaling event that directs osteoclasts to a 

particular remodeling site. Signals that initiate targeted remodeling are microdamage and/or 

osteocyte apoptosis. Microdamage disrupts the cytoplasmic network that connects osteocytes. 

Once this connection is disrupted, the osteocyte is cut off from communication with other cells 

and begins to undergo apoptosis. As the cell undergoes apoptosis it releases RANKL, a key 

factor in osteoclast development. Osteocytes near the dying osteocyte/s secrete OPG, an 

antiapoptotic signal. This pattern of signals guides osteoclast precursor cells to the targeted 

resorption site. Stochastic remodeling is a random process in which osteoclasts initiate bone 

resorption without location-specific signaling. Stochastic remodeling is to have a larger role in 

calcium homeostasis (Allen and Burr 2014a). 

Regardless of whether remodeling is targeted or stochastic, the cellular processes are similar 

(Allen and Burr 2014a). Remodeling consists of the spatial and temporal coupling of bone 

resorption and formation by osteoclasts and osteoblasts (Recker 1992; Rodan and Martin 1981), 

meaning that it is a coordinated effort by osteoclasts and osteoblasts to resorb a discrete section 

of bone and replace it with a packet of bone called a quantum packet or bone structural unit 

(Frost 2003a; Parfitt 1994; Parfitt 2000; Parfitt 2003). The collection of osteoblasts and 

osteoclasts for the purposes of remodeling is called a basic multicellular unit (BMU) and is ~1-2 

mm long and 0.2-0.4 mm wide. There are ~1 million active BMUs at any given time and ~3-4 

million BMUs are activated per year (Bartl et al. 2009). The BMU travels, resorbing and 

replacing bone as it moves on the bone surface or through the bone matrix. In general, resorption 

and formation occur at the same time, but at different location within the BMU. The front end or 

“head” of the BMU contains a capillary bud at its center to supply nutrients to the bone cells and 
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progenitor cells to replace the bone cells that undergo apoptosis during the remodeling process 

(Martin et al. 1998c; Ortner 2008). The collection of cells that form the BMU is covered on the 

bone surface by a canopy called the bone remodeling compartment (BRC). Research suggests 

that this canopy is composed of bone lining cells (Rauner et al. 2012). A BMU consists of 9-10 

osteoclasts and several hundred osteoblasts operating simultaneously (Jaworski et al. 1981; 

Martin et al. 1998c). The osteoclasts are located at the head of the BMU, along with the capillary 

bud. This location is called the cutting cone. The osteoblasts are located at the far end of the 

BMU. This location is called the closing cone.  

Although the processes carried out by the BMU are the same, the results of remodeling differ 

slightly depending on the surface on which remodeling is occurring, intracortical, endosteal, 

periosteal, or trabecular. In intracortical remodeling, the BMU will form a cylindrical shaped 

tunnel (Haversian resorption space) approximately 2,000 μm long and 200 μm wide and replace 

the resorbed bone with a secondary osteon. Remodeling of trabecular, periosteal, or endocortical 

is mostly on the surface. BMUs move over these surfaces of bone, digging ditches approximately 

50 μm deep and replacing the bone with hemiosteons along the way (Allen and Burr 2014a; 

Hauge et al. 2001; Martin et al. 1998c; Parfitt 1994; Parfitt 2003; Rauner et al. 2012). Overall, 

trabecular bone has a much higher turnover rate per year, ~25%, than cortical bone, ~2.5-5% per 

year, because trabecular bone has a much higher surface area to volume ratio than cortical bone 

and osteoclasts are readily available for resorption within the marrow cavity (Bartl et al. 2009; 

Done 2012). For this reason, it was hypothesized that medullary cavity diameter would be 

positively associated with chronic illness, due to the increased resorption on endocortical 

surfaces. The periosteal surface has the lowest remodeling rate of all the bone surfaces (Allen 

and Burr 2014a).  

The remodeling cycle carried out by BMU as it moves occurs in a predictable sequence of 

events, which is activation, resorption, reversal, formation, and quiescence (Allen and Burr 

2014a; Jaworski et al. 1983; Parfitt 1988). From activation to quiescence, and absent of 

pathology, the entire remodeling cycle occurs over 4-6 months (Baron 1999). In the activation 

stage, chemical signals originating from the marrow cavity, periosteum, or vasculature within an 

existing osteon activate bone lining cells that cover the resting bone surface (Allen and Burr 

2014a; Everts et al. 2002; Hauge et al. 2001; Parfitt 1994; Parfitt 2003; Raisz 1999). Bone lining 
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cells release signals that recruit a vessel from the local blood supply and precursor cells to the 

remodeling site. The local blood vessel supplies chemical signals that enable precursor cells to 

differentiate into osteoclasts and osteoblasts (Parfitt 2003). The activation stage can take up to 3 

days (Martin et al. 1998).  

The second stage is resorption and occurs over 2-3 weeks (Rauner et al. 2012). Once 

differentiated osteoclast are present, bone lining cells retract from the bone surface and expose 

the mineralized matrix to the osteoclasts (Allen and Burr 2014a). The bone lining cells then form 

the BRC over the BMU and remodeling site. Newly differentiated osteoclasts adhere to the bone 

surface and secrete acids and enzymes into the resorption space between the osteoclast and bone 

surface. The scalloped shaped hole in the bone surface created by a single osteoclast is called a 

Howship’s lacuna. Osteoclasts resorb primary bone at ~40-50 μm per day (Martin et al. 1998c). 

The collection of 9-10 osteoclasts resorbing bone at the front the BMU is called the cutting cone. 

The cutting cone moves more or less parallel to the longitudinal axis of the bone, but it spirals 

slightly at an angle of curvature of ~12⁰ (Petrtyl et al. 1996). There is significant variability in 

the size of remodeling sites on the endocortical and trabecular surfaces. The width of 

intracortical resorption sites is relative consistent, but the length varies (Allen and Burr 2014a). 

As resorption proceeds new osteoclasts are recruited to the site to support the osteoclasts in the 

cutting cone or to replace osteoclasts that die. The cutting cone tunnels through the matrix 

without regard for previously established osteons. Fragments of the previous osteons are left 

between the newly forming secondary osteon and other intact osteons, creating interstitial 

lamellae.  

The third stage is reversal. Reversal is a stage of transition between the leading osteoclastic 

cutting cone and the following osteoblastic region of bone formation. During reversal, 

mononuclear cells of an unknown lineage, possibly osteomacs (Pettit et al. 2008), or bone lining 

cells prepare the bone surface for osteoid deposition by removing any resorption remnants left at 

the bottom of the pit (Everts et al. 2002; Rauner et al. 2012). Osteomacs have been proposed as a 

candidate because they produce matrix metalloproteinases (MMPs), which are required for 

matrix degradation, and  transforming growth factor-β (TGF-β), and ephrin B2, which may 

promote osteoblast recruitment, differentiation, and/or activation of bone lining cells (Chang et 

al. 2008; Compagni et al. 2003). If the remnants of collagen fragments on the exposed surface 
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are not removed, bone formation by osteoblasts does not proceed (Allen and Burr 2014a). The 

reversal cells may also be responsible for depositing a thin layer of specialized matrix which 

forms the cement line. The cement line marks the resorption boundary and isolates secondary 

osteons and hemiosteons from the surrounding matrix (Baron 1999; Everts et al. 2002; Parfitt 

2000). The cement line consists of mineral, glycosaminoglycans, osteopontin, and some collagen 

(Burr and Akkus 2013). The degree of mineralization of the cement line is not known, but it 

differs from the surrounding matrix.  

During the formation stage, osteoblasts line the surface of the resorption space and deposit 

osteoid at a rate of 1-2 μm per day (Allen and Burr 2014a). In adults, bone formation occurs over 

~2-3 months. Throughout the formation stage, osteoblasts are continuously recruited to the site 

to replace osteoblasts that undergo apoptosis. In the formation of secondary osteons, osteoblasts 

deposit osteoid in the form of concentric lamellae and the resorption tunnel is not completely 

filled with osteoid. A Haversian canal is left behind to house the capillaries that are at the head of 

the migrating BMU. Within the Haversian canal, there is a supply capillary and a return 

capillary. These vessels connect with vasculature on the periosteal surface or in the medullary 

canal (Martin et al. 1998c). In the formation of hemiosteons, it is not necessary to leave an open 

space for blood vessels. Sheets of lamellae are deposited until the resorption space is filled. In 

the formation of both hemiosteons and secondary osteons, some of the osteoblasts become 

embedded in the matrix and develop into osteocytes. The collection of osteoblasts laying down 

lamellar bone is called the closing cone (Polig and Jee 1990).  

The fifth stage of secondary osteon formation is called mineralization. Mineralization of bone 

collagen fibrils occurs in an organized sequence over two phases. After the osteoid matrix is 

deposited, mineralization initiates with the growth of mineral crystals between the layers of 

collagen fibrils of the osteoid matrix (Landis 1995). Initiation of mineralization begins after 10-

15 days from the time of osteoid deposition by osteoblasts (Bartl et al. 2009). Once 

mineralization has initiated, approximately 50-75% (depending on the reference consulted) of an 

osteon’s final mineral content is deposited into the newly formed osteoid within hours (Amprino 

and Engstrom 1952; Bartl et al. 2009; Buckwalter et al. 1995a; Ortner 2008). This is called 

primary mineralization. The final addition and maturation of hydroxyapatite crystals will occur 

during secondary mineralization. Completion of secondary mineralization can take between 
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several months to a year (Allen and Burr 2014a; Sommerfeldt and Rubin 2001). Secondary 

mineralization is a much slower process than primary mineralization because the mineral ions, 

cell nutrients, and cell metabolites must pass through the canalicular system to reach the matrix 

undergoing mineralization. The rate of secondary mineralization decreases further with 

increasing age (Ortner and Turner-Walker 2003). Differences in mineral content between newly 

formed and more mature osteons result in osteons with different mechanical properties.  

The last stage is called quiescence. Any remaining osteoclasts and most osteoblasts undergo 

apoptosis. Some osteoblasts develop into quiescent bone lining cells until another cycle of 

remodeling is initiated (Allen and Burr 2014a; Martin et al. 1998c; Rauner et al. 2012). An 

osteon in the quiescent stage is fully mature and its surface is covered with bone lining cells. 

Secondary mineralization continues into the quiescent stage. In adult bone, the degree of overall 

bone mineralization is dependent on the rate of remodeling (Bartl et al. 2009).   

Nutrition and other Prenatal Factors Affecting Skeletal Development 

Diet is the second greatest contributor to variation in skeletal development after genetic 

background (Weaver and Fuchs 2014). Adequate nutrition is important for building a healthy 

skeleton and is most important during periods of rapid growth. Nutritional deficiencies can 

adversely affect achievement of peak height and bone mass, as well as increase the risk for age-

related bone loss. Protein-calorie malnutrition and mineral deficiencies can cause growth 

stunting (Weaver and Gallant 2014). Micronutrients, such as minerals and vitamins, play an 

important role in skeletal health and can only be obtained from the diet. Vitamin D is an 

exception and will be discussed in more detail below. The skeleton functions as a reservoir for 

99% of total body calcium, 85-90% of total body phosphorus, and 50% of total body magnesium 

(Martin et al. 1998c; Ortner 2008). Calcium, phosphorus, and magnesium are essential for 

various cellular processes, but only a small portion of these minerals can be stored in the 

extracellular fluid. The body will sacrifice skeletal health to release these minerals from the bone 

into the circulatory system to ensure that other more vital organ systems continue to function 

(Lanham-New et al. 2007). Maintaining a healthy skeleton requires sufficient intake of calcium, 

phosphorus, and magnesium, as well as other vitamins and macronutrients. Nutritional 
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insufficiencies can occur as a result of chronic illness or prematurity, putting these infants at 

greater risk for developing bone fragility. 

CALCIUM  

Adequate intake of calcium is extremely important. As much as 500 mg of calcium is mobilized 

from the skeleton to the extracellular fluid daily (Weaver and Gallant 2014). Dairy products are 

the primary source of dietary calcium, as well as fortified juices. However, dietary intake of 

calcium is often below the recommendation, which can create deficiencies that adversely affect 

bone. Calcium has a structural role within bone. During mineralization and in combination with 

phosphorus, calcium controls the rigidity and hardness of bones and teeth through the formation 

of hydroxyapatite crystals. Intestinal absorption and renal reabsorption are major sources of 

serum calcium. After intestinal absorption, calcium enters the circulation where it is transported 

to the skeleton or to the kidneys. The skeleton utilizes calcium for mineralization, to line bone 

surfaces, and also maintains it within the extracellular fluid of the canalicular network (DiMeglio 

and Imel 2014).  

PHOSPHORUS 

Due to the abundance of dietary phosphorus, most individuals consume adequate amounts. 

Phosphate is a key component of many biochemical compounds and has 3 major roles: 

structural, regulatory, and metabolic. As a component of hydroxyapatite crystals, phosphorus 

plays a structural role in bone (Weaver and Gallant 2014).  

MAGNESIUM 

On average, magnesium intake is less than the recommendation. Magnesium is the third most 

abundant mineral in bone and contributes to mineralization, hormone secretion, and energy 

metabolism. Magnesium seeds hydroxyapatite crystal formation. Due to its smaller ionic radius, 

magnesium also prevents hydroxyapatite crystals from becoming too large. As hydroxyapatite 

crystals become larger, they increasingly become more brittle. Magnesium deficiency has been 

associated with osteopenia and bone fragility (Weaver and Gallant 2014). 
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OTHER MICRONUTRIENTS 

Other micronutrients, such as zinc, copper, and iron, influence bone quality through their effects 

on connective tissue synthesis and maturation. Zinc stimulates osteoblastic bone formation, 

collagen synthesis, and bone resorption. However, excessive zinc consumption limits the size of 

hydroxyapatite crystals. Iron and copper are cofactors for enzymes involved in collagen 

synthesis and cross-linking. Iron deficiency increases cortical porosity. Depending on the 

severity and chronicity, deficiencies in these minerals can have negative effects on bone health, 

such as osteopenia and increased fracture risk (Shaw 1982; Weaver and Gallant 2014).  

Vitamins D, C, K, and A also play important roles in bone health. Vitamin D is an extremely 

important hormone that can be made endogenously or obtained from dietary sources. Vitamin D 

increases intestinal absorption of calcium and phosphorus, as wells as promotes mineralization. 

Vitamin D will be discussed further in the Mineral Homeostasis section. Vitamin C is necessary 

for collagen formation and crosslinking. Also, vitamin C stimulates ALP production, which is 

important for bone formation. Severe vitamin C deficiency impairs mineralization (Shaw 1955). 

Vitamin K is a cofactor of vitamin K-dependent gamma carboxylase, which is necessary for the 

activation of osteocalcin, a factor produced by osteoblasts that is involved in bone formation and 

mineralization. Osteoblasts and osteoclasts possess vitamin A receptors, suggesting that vitamin 

A influences bone remodeling. Vitamin A is necessary for epiphyseal cartilage cell function and 

deficiency will impair growth (Shaw 1955). Excessive intake of vitamin A has also been 

associated with poor bone mineralization. Both deficiency and excessive intake of vitamin A 

have been associated with low BMD and fracture risk (Weaver and Gallant 2014).  

MACRONUTRIENTS 

Protein and fat are essential macronutrients for bone health. Protein forms an important part of 

the organic bone matrix and is 5-10% of bone weight. Protein is especially important during 

growth. Through its positive influence on IGF-I production, high protein intake increases 

calcium absorption, bone formation and longitudinal bone growth. Fat forms 5-10% of bone 

weight but an excess of fat intake, resulting in obesity, increases fracture risk in children by 

adversely affecting peak bone mass during growth (Weaver and Gallant 2014). 
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OTHER PRENATAL FACTORS AFFECTING SKELETAL DEVELOPMENT 

Intrauterine factors can adversely affect fetal skeletal development (Weaver and Fuchs 2014). 

Negative stimuli in utero can result in slowed growth, reduced bone size, and reduced 

mineralization of the fetal and infant skeleton. Although there is no way to control for these 

effects, it is important to be aware of factors that can negatively affect fetal skeletal development 

and health. Negative effects on trabecular bone microstructure have also been reported as a result 

of maternal-fetal perturbations (Nuzzo et al. 2003; Salle et al. 2002). Research has shown that 

maternal obesity, smoking, nutrition at 18 weeks of gestation, and high maternal physical activity 

negatively affect fetal bone development (Godfrey et al. 2001; Högler et al. 2003). Smoking 

during pregnancy reduces fetal bone mass by 11% and leads to smaller bone size, possibly by 

compromising placental function and oxygenation of the fetus (Weaver and Fuchs 2014). The 

toxic effects of cadmium, which is found in cigarette smoke, negatively affects osteoblastic 

function and placental transport of calcium (Godfrey et al. 2001). Chronic maternal alcohol 

abuse inhibits osteoblast differentiation, proliferation, and function, resulting in lower fetal bone 

mass (Weaver and Fuchs 2014). Maternal inhalant abuse has similar negative effects on fetal 

skeletal development as maternal alcohol use (Jones and Balster 1998). Gestational diabetes can 

result from maternal obesity. Neonates born to mothers with gestational diabetes may be born 

with hypocalcemia due to reduced placental transport of calcium during gestation. The 

hypocalcemia may continue postnatally, resulting in decreased skeletal mineralization (Weaver 

and Fuchs 2014).  

Mineral Homeostasis 

As stated previously, mineral homeostasis is the process by which the body maintains normal 

serum calcium and phosphorus concentrations. Serum calcium and phosphorus levels are 

maintained within a limited range, with serum calcium concentrations being more strictly 

maintained than phosphorus concentrations. Mechanisms for the regulation of calcium 

homeostasis operate within minutes to correct aberrant serum calcium concentrations, while the 

mechanisms that maintain phosphorus concentrations are slower and can take hours to days. The 

total serum calcium concentration is maintained between 8.5-10.5 mg/dL (DiMeglio and Imel 

2014). Approximately half of the total serum calcium concentration is ionized (Ca
2+

) and the 

remainder is protein bound (Salter 1999a). Normal serum phosphorus concentration is ~3 
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mg/100 mL in adults and 5 mg/100 mL in children (Salter 1999a). It is important to understand 

mineral homeostasis and the hormones that regulate it because they can greatly affect bone 

structure and strength through its influence on bone resorption. An excess of bone resorption 

caused by various mineral and vitamin deficiencies can weaken the bone. Deficiencies resulting 

in excessive bone resorption will be discussed further in the section Disease and Bone. 

Mineral homeostasis can be maintained by keeping dietary intake of calcium and phosphorus 

above the level of excretion (Ortner 2008). A feedback system maintains this balance through 

regulation by hormones. PTH, the active metabolite of vitamin D [1,25(OH)2D], calcitonin, and 

PTHrP are the primary regulators of mineral homeostasis (Bartl et al. 2009). Postnatally, PTH 

and 1,25(OH)2D are the most important hormones for mineral homeostasis. These hormones also 

partially regulate the feedback system through direct effects on bone cells. Calcitonin and PTHrP 

play a larger role in fetal skeletal development and will be discussed below in the Fetal and 

Neonatal Mineral Homeostasis section. 

SERUM CALCIUM HOMEOSTASIS 

Serum calcium concentration is detected by calcium receptors (CaSRs) on C cells of the 

parathyroid gland. Calcium binding to CaSRs on the parathyroid gland, which occurs during 

normal and excessive serum calcium concentrations, inhibits PTH secretion (Allgrove 2009). 

The interaction of calcium with a CaSR activates phospholipase C (PLC) on the C cells, 

stimulating the release of diacylglycerol (DAG) from phosphatidylinositol-4,5-bisphosphate 

(PIP2), and the production of inositol-1,4,5-triphosphate (IP3). IP3 triggers intracellular release 

of calcium from the endoplasmic reticulum, which increases the intracellular calcium 

concentration and suppresses secretion of the stored PTH secretory granules. The binding of 

calcium to the CaSR also suppresses the expression of PTH genes by activating inhibitory G 

proteins. Inhibitory G proteins inhibit adenylate cyclase functioning, which then inhibits the 

production of cAMP by inhibiting the action of adenylate cyclase on ATP. Without cAMP, 

signaling for the production of PTH is suppressed.  

Under conditions of low calcium intake, serum calcium concentrations decrease and calcium 

fails to bind CaSRs of the parathryroid gland. Without the calcium binding, CaSR signaling 

decreases, increasing cAMP formation and increasing the production and secretion of PTH. PTH 
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is released into the circulatory system where it binds to receptors in the kidneys and bone 

(Rauner et al. 2012). Within the kidneys, PTH increases renal reabsorption of calcium through 

active pathways and promotes the synthesis of 1,25(OH)2D (Allgrove 2009). Through its effect 

on bone resorption, renal reabsorption, and the production of 1,25(OH)2D, PTH increases the 

overall calcium serum concentration (Buckwalter et al. 1995b). 1,25(OH)2D increases the 

efficiency of calcium absorption within the intestines through active pathways, thereby 

increasing the serum calcium and phosphorus concentrations (Civitelli et al. 1998; Heaney 1997; 

Wasserman 1997).  

1,25(OH)2D is essential for the metabolism of calcium and phosphorus. To maintain calcium 

homeostasis under conditions of low serum calcium, active transport of calcium is upregulated 

by 1,25(OH)2D to increase the efficiency of intestinal absorption. The metabolically active form 

of vitamin D (1,25(OH)2D) is formed within the body from the hydroxylation of inactive forms 

(Francis and Selby 1997; Hochberg 2003; Holick 2003; Mankin 1974). Pre-vitamin D can be 

synthesized in the skin or obtained from the diet. The majority of pre-vitamin D is made within 

the skin (Allgrove 2009) when 7-dehydrocholesterol is exposed to ultraviolet B light (UVB) and 

heat (DiMeglio and Imel 2014). Pre-vitamin D produced within the skin is referred to as vitamin 

D3. With adequate sun exposure, supplementation of vitamin D3 with dietary sources is not 

necessary, but this is not always possible. With regard to dietary sources, vitamin D can be 

obtained from plant (ergocalciferol, D2) or animal (cholecalciferol, D3) sources. After production 

in the skin or absorption from dietary sources, vitamin D (unspecified source) is incorporated 

into fat-containing particles (micelles). Incorporation of vitamin D into micelles allows it to 

diffuse across the enterocytes of the intestines and enter the circulation. Approximately 40% of 

the circulating vitamin D is stored in fatty particles called chylomicrons. The remainder of the 

vitamin D is bound to vitamin D-binding protein (DBP) and remains within the circulation.  

The vitamin D bound to DBP is transported through circulation to the liver. Within the liver and 

mediated by 25-hydroxylase, vitamin D is hydroxylated once on its side chain carbon-25 to form 

25-hydroxyvitamin D [25(OH)D]. Like the preform of vitamin D, 25(OH)D is transported within 

the serum by DBP. Generally, 25(OH)D is a stable metabolite of vitamin D and has a biological 

half-life of 2-3 weeks in the circulation. However, 25(OH)D2 (derived from plant sources) has a 

shorter half-life in the circulation than 25(OH)D3 (from animal and endogenous sources) because 
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of its lower affinity for DBP. Upon reaching the kidneys through the circulation, most of the 

25(OH)D-DBP complexes are reabsorbed. Cell membrane receptor complexes (cubilin and 

megalin) bind the 25(OH)D-DBP complexes and endocytosis is initiated. The process is very 

efficient and little 25(OH)D is excreted in the urine (DiMeglio and Imel 2014). 25(OH)D 

remains in the circulation until it degrades or is activated by a second hydroxylation stimulated 

by PTH.  

Low serum calcium concentration stimulates PTH secretion, which is transported by the 

circulation to the kidneys. Within the kidney, PTH stimulates 1α-hydroxylase production by 

initiating transcription of the CYP27B1 gene (DiMeglio and Imel 2014). The 1α-hydroxylase 

adds an OH molecule to the carbon-1 position, creating the active vitamin D metabolite 

1,25(OH)2D (Holick and Adams 1990; Raisz and Rodan 1990; Russell et al. 1990). 

Overproduction of 1,25(OH)2D is suppressed through the binding of 1,25(OH)2D to vitamin D 

receptors (VDRs) within the parathyroid glands and vitamin D responsive elements (VDREs) 

within the CYP27B1 gene, which suppresses PTH and 1α-hydroxylase production respectively. 

Binding of 1,25(OH)2D also induces 24-hydroxylase expression, which suppresses the actions of 

1,25(OH)2D and 25(OH)D. Hydroxylation of 1,25(OH)2D and 25(OH)D by 24-hydroxylase 

forms 1,24,25(OH)3D and 24,25(OH)2D, resulting in their inactivation and degradation 

(DiMeglio and Imel 2014).  

Increased serum calcium concentration is also gained through bone resorption triggered by PTH. 

(Bellido and Hill Gallant 2014). Bone’s response to PTH is surface-specific and has multimodal-

metabolic effects which depend on length of exposure (Gosman et al. 2011). Cells of the 

mesenchymal/osteoblastic lineage possess PTH/PTHrP receptors (PTH1-R) (Bellido and Hill 

Gallant 2014). Binding of PTH by these cells stimulates RANKL and IL-6 production and 

downregulates OPG production. The processes stimulated by PTH result in rapid (minutes to 

hours) loss of calcium adhered to the canalicular and lacunar surfaces that surround osteocytes 

and their cytoplasmic extensions (DiMeglio and Imel 2014; Jande 1972). RANKL and IL-6 

stimulate osteoclast precursor cells to differentiate and become active, as well as promotes 

osteoclast survival (Dai et al. 2006; Greenfield et al. 1993; Ibbotson et al. 1984; Raisz 1965; 

Raisz and Rodan 1990). PTH may also stimulate osteoclasts to increase the size and volume of 

their ruffled border and bone lining cells to retract from the bone surface so osteoclasts may gain 
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access (Dietrich et al. 1976; Jones and Boyde 1978; Raisz 1965; Raisz and Rodan 1990). 

Continuous exposure to PTH results in high remodeling rates and bone loss from the 

overproduction and excessive activity of osteoclasts and osteoblasts (Bellido and Hill Gallant 

2014; Locklin et al. 2003; Ortner and Turner-Walker 2003), which ultimately leads to the release 

of calcium and phosphorus from the skeleton into the circulation (Jüppner and Kronenberg 

1999). Although PTH promotes bone resorption through its effects on osteoclasts, intermittent 

daily exposure to PTH has a net result of bone formation. Intermittent daily exposure to PTH 

increases the proliferation of osteoblast precursors, inhibits osteoblast apoptosis, and reactivates 

bone lining cells to become osteoblasts. After the induction of the initial bone resorption process, 

osteoblasts secrete matrix on bone surfaces for longer periods of time due to the inhibition of 

osteoblast apoptosis, resulting in a net increase in trabecular and cortical wall thickness (i.e. 

remodeling) (Burr et al. 2001; Dempster et al. 2001; Jüppner and Kronenberg 1999; Lindsay et 

al. 2007; Rauner et al. 2012). Intermittent PTH exposure prevents osteoblasts apoptosis by 

inhibiting SOST gene expression in osteocytes, which inhibits sclerostin (bone formation 

inhibitor) production. Downregulation of sclerostin also promotes Wnt signaling, which 

stimulates osteoblast differentiation. The overall effect of inhibiting sclerostin production is 

increased bone formation on trabecular, endocortical, and periosteal surfaces. However, 

continuous exposure to PTH does not prevent sclerostin production and therefore does not 

promote osteoblast survival (Bellido and Hill Gallant 2014). 

The hormone 1,25(OH)2D affects skeletal tissue by ensuring that sufficient calcium and 

phosphate are available within the blood and extracellular fluid for normal bone mineralization 

and through its direct influence on bone cells (Bellido and Hill Gallant 2014; Raisz and Rodan 

1990; Russell et al. 1990). 1,25(OH)2D binds to VDRs that are present on the parathyroid gland, 

chondrocytes, osteoblast progenitor cells, osteoblast precursor cells, and mature osteoblasts 

(Brook and Brown 2008a). Similar to PTH, binding of 1,25(OH)2D promotes bone resorption by 

stimulating osteocytes to produce RANKL and decrease production of OPG, a hormone that  

increases osteoclastogenesis (Bartl et al. 2009; Bell 1985; DeLuca and Schnoes 1976; Holick and 

Adams 1990; Maierhofer et al. 1983; Ortner 2008; Raisz et al. 1980; Raisz and Kream 1983; 

Raisz and Rodan 1990; Roodman et al. 1985; Russell et al. 1990; Stern 1980). Binding of 

1,25(OH)2D also promotes mineralization by increasing the production of RUNX2, a 

transcription factor necessary for osteoblast differentiation, and by inducing osteoblasts to 
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produce osteopontin and osteocalcin, proteins necessary for mineralization. However, serum 

concentrations of 1,25(OH)2D that are too high can have negative effects on bone. Overexposure 

of osteoblasts to 1,25(OH)2D inhibits osteoblastic bone mineralization (Bellido and Hill Gallant 

2014).  

Calcitonin is an important regulator of mineral homeostasis, but its role in adults is not as 

important as in fetal mineral homeostasis. In adults, a deficiency or excess of calcitonin will not 

result in a calcium disorder. Calcitonin’s role in fetal mineral homeostasis will be discussed 

further in the Fetal Mineral Homeostasis section below. In adults, the binding of serum calcium 

to the C cells of the thyroid gland results in the secretion of calcitonin by the thyroid gland 

(DiMeglio and Imel 2014). Calcitonin lowers serum calcium concentration through its inhibitory 

effects on osteoclasts (Downey and Siegel 2006; Friedman et al. 1968; Friedman and Raisz 

1965; Gaillard 1966; Hirsch and Munson 1969; Martin 1990; Martin et al. 1966; Mundy and 

Roodman 1987). Calcitonin binds receptors on osteoclasts and prevents PTH from binding to 

them, effectively prohibiting osteoclast differentiation and proliferation (DiMeglio and Imel 

2014; Peck and Woods 1988). Calcitonin may also play a role in causing osteoclasts to withdraw 

from the bone surface and revert back to mononuclear cells. High levels of calcitonin can prevent 

bone resorption, which results in lowering serum calcium and phosphorus concentrations 

(Downey and Siegel 2006). If calcitonin induces hypocalcemia, the parathyroid gland will sense 

the deficiency and secrete PTH, starting the cycle anew.  

Maintaining serum calcium concentrations within a narrow normal range is important. An 

overabundance or lack of calcium in the extracellular fluid can have adverse to lethal effects 

depending on the severity. Hypercalcemia (> normal serum calcium concentrations) can cause 

abdominal and bone pain, nausea, vomiting, polyuria (excessive urine production), and kidney or 

biliary stones. Depression, anxiety, cognitive dysfunction, and possibly coma can also occur 

when calcium concentrations exceed more than 2 times the normal level (DiMeglio and Imel 

2014). Hypocalcemia (< normal serum calcium concentrations) can cause neurological excitation 

including paresthesias (tingling sensations), hyperactive reflexes, muscular spasms of the hands 

and feet, laryngospasm, cardiac arrhythmias, or seizures (DiMeglio and Imel 2014). 
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SERUM PHOSPHORUS HOMEOSTASIS 

Typically, phosphorus dietary intake is more than adequate to meet the required level. The 

typical diet is higher in phosphorus than calcium and, moreover, intestinal absorption of 

phosphorus is much more efficient than calcium absorption. Approximately 60-70% of ingested 

phosphate is absorbed by the intestines (DiMeglio and Imel 2014). However, phosphate 

absorption is more efficient when it is ingested separately from calcium. Phosphate binds 

calcium, which interferes with the absorption of both. Serum phosphorus concentration is 

maintained by a feedback system similar to calcium homeostasis with absorption by the 

intestines and excretion by the kidneys. Regulation of serum phosphate within the kidneys is the 

greatest contributor to overall serum phosphate concentration. Active transport of phosphorus in 

the intestines is regulated by 1,25(OH)2D. PTH and FGF-23 regulate phosphorus reabsorption in 

the kidneys. Unlike calcium, serum phosphorus concentrations are maintained within a wider 

range and changes more substantially after birth (4.3-9.4 mg/dL in newborns, 4.8-8.1 mg/dL in 

infants 1-5 months old, and 4.0-6.8 mg/dL in infants 6-24 months) (DiMeglio and Imel 2014). 

High serum phosphate concentration also impairs calcium absorption, which may result in 

hypophosphatemia. 

Failing to maintain serum phosphorus homeostasis has serious consequences. 

Hyperphosphatemia can cause renal failure by the deposition of calcium-phosphate complexes in 

the vasculature, soft tissues, and nephrons of the kidneys. Hypophosphatemia may result in 

muscle weakness, cardiac dysfunction, and adverse neurologic symptoms. Chronic 

hypophosphatemia causes bone pain and osteomalacia. Osteomalacia is an impairment of bone 

mineralization, resulting in increased bone fragility (Weaver and Gallant 2014). 

Hypophosphatemia will be discussed further in the section Disease and Bone.   

FETAL AND NEONATAL MINERAL HOMEOSTASIS 

During fetal development, The growth rate exceeds 100 cm/yr (Anderson and Shapiro 2010).  

Approximately 33 g of calcium and 100 g of bone mass are accumulated in utero, with ~80% of 

the total bone mineral content present at birth (in a normal infant) added during the last three 

months of gestation (1981; Weaver and Fuchs 2014). At 20 weeks gestation, the calcium 

accretion rate is ~50 mg/day, but during the last trimester calcium requirements increase to 200-



46 

 

250 mg/day and by the 35
th

 week of gestation the calcium accretion rate increases to 330 mg/day 

(DiMeglio and Imel 2014). During the last trimester, there is a rapid rate of bone metabolism, 

cell division, and modeling (Done 2012). This results in increased bone volume, trabecular 

thickness, rapid matrix mineralization, and increasing hydroxyapatite crystal size (Gosman et al. 

2011). Infants born before the last trimester, premature infants, do not experience this rapid rate 

of bone mineral accretion, which has detrimental effects on postnatal bone health and growth. 

Mineral homeostasis differs during fetal development and after birth. During gestation, fetuses 

receive all calcium, phosphorus, and magnesium from the mother through placental transfer. 

Transfer of calcium and phosphorus across the placenta is an active process (Kovacs and Rosen 

2008) that is stimulated by PTHrP and 1,25(OH)2D. PTHrP is produced in the fetal tissues and 

the placenta (Done 2012) and is essential for the regulation of endochondral bone formation and 

mineralization (DiMeglio and Imel 2014). High maternal serum calcium concentration is 

maintained by 1,25(OH)2D. The placenta produces some 1,25(OH)2D, but most is acquired from 

maternal sources and stored in the fetal liver in the form of 25(OH)D. During pregnancy, 

prolactin levels are also elevated, increasing maternal serum calcium levels by upregulating 

calbindin-D9K, TRPV6, and 1α-hydroxylase. High fetal calcium and 1,25(OH)2D concentrations 

are maintained at the expense of maternal levels and maternal health.  

Pregnant women experience a large increase in serum 1,25(OH)2D concentration, which results 

in doubling their calcium absorption efficiency and an increase in maternal bone resorption. The 

extra calcium is transported to the placenta. Upon entering the placental tissue the calcium binds 

to protein calbindin-D9k and is transported to the basolateral side of the placenta where it is 

pumped into the fetal circulation by PMCA proteins (DiMeglio and Imel 2014). Similar to 

mechanisms in extrauterine life, excessive calcium and phosphorus in the fetal serum are 

excreted in the urine. However, since fetal urine makes up the majority of amniotic fluid, 

calcium and phosphorus remain present for reuptake. When the fetus swallows the amniotic 

fluid, the calcium and phosphorus are available for intestinal absorption. Very little calcium is 

transferred back across the placenta to the maternal circulation (Glorieux et al. 2003). 

Research indicates that maternal vitamin D deficiency affects fetal bone development (Javaid 

and Cooper 2002). However, only extremely severe cases of maternal vitamin D deficiency or 



47 

 

hypocalcemia will detrimentally affect fetal skeletal development (Done 2012). During late 

gestation, maternal transport of 1,25(OH)2D almost completely stops and most, if not all, 

1,25(OH)2D is produced by the fetus (Kovacs and Kronenberg 1997; Kovacs and Rosen 2008). 

At this point, fetal serum 1,25(OH)2D concentration decreases below the maternal concentration. 

However, fetal serum 1,25(OH)2D is not as important during gestation as it will be after birth 

because the active transport of calcium across the placenta is regulated by PTHrP and not 

1,25(OH)2D. The lack of vitamin D receptors in fetal tissues also indicates that 1,25(OH)2D is 

not as important for fetal calcium homeostasis as it is postnatally (DiMeglio and Imel 2014).  

Due to the active transport of calcium, phosphorus, and magnesium across the placenta, fetal 

serum concentrations of these minerals are greater than maternal concentrations. To prevent fetal 

hypercalcemia, calcitonin is also produced within the placental tissues to decrease calcium 

transport across the placenta. Fetal calcitonin concentration is greater than maternal 

concentration, but maternal serum calcitonin concentration is elevated compared to nonpregnant 

women. Elevated maternal serum calcitonin concentration may place a limit on maternal skeletal 

resorption (DiMeglio and Imel 2014). 

After birth, normal term infants depend on the mineral stores built up during the last trimester 

and dietary sources of minerals to maintain mineral homeostasis. Lacking the active transport of 

minerals across the placenta, infants must obtain all minerals through intestinal absorption from 

dietary sources. Furthermore, all of the 25(OH)D that was stored in the fetal liver is utilized by 

the neonate within the first 3-4 weeks (Hess 1930; Holick and Adams 1990; Pettifor and Daniels 

1997). Regardless of gestational age, after birth there is a decrease in neonatal serum calcium 

level. The decrease in serum calcium concentration triggers PTH secretion to maintain mineral 

homeostasis, ultimately resulting in bone resorption to release calcium and phosphorus into the 

neonatal circulation (Mayne and Kovar 1991). Approximately 30% of neonatal bone is lost to 

bone resorption, but this does not result in compromised bone structure or strength because of the 

skeletal mineral buildup which occurred during the last trimester (Sharp 2007). This is not true 

for premature infants, in which postnatal bone resorption can be detrimental to bone structure 

and strength. 
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Maintaining calcium and phosphorus intake over excretion is very important during infancy 

because of initial bone resorption after birth and due to the high growth rate during the first year 

of life, 50 cm/year (Anderson and Shapiro 2010). For normal term infants, breast milk contains 

adequate amounts of calcium, phosphorus, and vitamin D for the production and mineralization 

of new bone during the first 6 months of growth. PTHrP produced by the mammary glands 

stimulates maternal bone resorption during lactation. Sufficient amounts of calcium and 

phosphorus are mobilized from the maternal skeleton, and along with maternally produced 

vitamin D are transferred to the breast milk. Prolactin is also elevated during lactation, 

contributing to increased maternal serum calcium concentrations. Maternal vitamin D status does 

not affect the amount of calcium and phosphorus that is resorbed from the maternal skeleton and 

transported to the breast milk, but maternal vitamin D deficiency will negatively affect the 

concentration of vitamin D transferred to the breast milk (DiMeglio and Imel 2014). After the 

first 6 months of growth, human milk needs supplementation to meet the energy, iron, and fiber 

needs of a growing infant (Weaver and Gallant 2014).  

Preterm infants have difficulty maintaining mineral homeostasis after birth because they missed 

or did not complete the rapid rate of bone mineral accretion which would have occurred during 

the last trimester. As a result, preterm infants are born without sufficient stores of calcium, 

phosphorus, iron, and copper. Supplementation with a formula fortified with calcium and 

phosphorus is necessary for preterm infants receiving breast milk. Without supplementation, 

concentrations of calcium, phosphorus, and vitamin D in breast milk are insufficient for preterm 

infants (Backstrom et al. 1996; Bishop et al. 1996). The consequences of preterm birth on bone 

health will be discussed below in the section Disease and Bone. 

Disease and Bone  

Bone structure and function can be affected by numerous factors such as chronic illness (genetic 

and acquired), nutritional deficiencies, and metabolic and endocrine disorders. In addition, these 

factors are not mutually exclusive and are often associated. Despite the very large number of 

diseases and factors that adversely affect the skeleton, bone is limited in its reactions (Salter 

1999b). Under abnormal conditions, bone can react by apoptosis, altering bone deposition 

(osteoid and/or mineral deposition), altering bone resorption, or mechanical failure. Due to the 
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limited number of bony reactions to abnormal conditions, skeletal manifestation of different 

chronic illness may the same or similar. The severity of the skeletal manifestations depends on 

the duration and severity of the abnormal condition. Understanding the effects of pathological 

conditions on bone structure is needed to appreciate how these conditions compromise bone 

health and structure. Compromised bone health and structure can result in compromised bone 

strength. For the purposes of being aware of which infants in the current study sample may have 

compromised bone health, and not for diagnostic purposes, the skeletal manifestations of some 

of the diseases and factors that have the potential to adversely affect bone are described in this 

chapter.  

DISORDERS OF BONE AND MINERAL METABOLISM 

Most metabolic disorders are caused by nutritional imbalances, which may result from over or 

under consumption of some food component or a defect in intestinal absorption (Ortner 2003c). 

Bone mineral metabolism is commonly affected by deficiencies in vitamin D, calcium, 

phosphorus, and vitamin C. For simplicity, these deficiencies will be discussed separately, but 

overlap is possible and does occur. Skeletal manifestations of these diseases are very similar due 

to bone’s limited response to abnormal conditions. Distinguishing between these diseases based 

on macroscopic observation may not be possible. For the purposes of the current study, 

distinguishing between diseases is not important. It is important to evaluate whether there are 

significant differences in SOS between infants with and without chronic illness, as these infants 

are at greater risk for compromised bone health and strength.  

Deficiencies of Vitamin D, Calcium, and Phosphorus 

During growth, deficiencies in vitamin D, calcium, and/or phosphorus have the potential to cause 

the coexistence of 2 types of metabolic bone disease, rickets and osteomalacia. Rickets 

specifically refers to a defect in mineralization occurring at the growth plate. Osteomalacia is a 

defect in the mineralization of osteoid deposited on previously formed bone (Mankin 1974; 

Pettifor 2003). In infants, osteomalacia coexists with rickets, but osteomalacia can also be 

present without obvious skeletal manifestations of rickets (Imel et al. 2014). Vitamin D, calcium, 

and phosphorus deficiency also cause increased bone resorption and growth retardation (Ortner 

2003c). As deficiencies become more severe, PTH increases in an attempt to increase serum 

mineral concentrations through bone resorption.  
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Vitamin D deficiency due to inadequate intake or exposure to sunlight is the most common cause 

of rickets (Brickley and Ives 2008c; Ortner 2003c; Pitt 1995). In normal term infants, rickets are 

rarely seen before the age of 4 months due to the storage of vitamin D in the fetal liver. Rickets 

is most commonly seen between the ages of 6 months and 2 years. The severity of skeletal 

manifestations depends on the stage of rickets, which relates to the length of time the infant has 

been deficient and the severity of the deficiency. Short periods of vitamin D deficiency are not 

sufficient to produce active rickets. Also, an insufficient, but not deficient, serum vitamin D 

concentration may be inadequate to produce macroscopically identifiable skeletal manifestations 

(Imel et al. 2014). However, short periods of deficiency and insufficiency can cause bone loss 

and decreases in mineralization. 

Rachitic bone (bone affected by rickets) is unable to support biomechanical function and when 

normal loading forces are applied the bone may become deformed and/or fracture. The earliest 

skeletal manifestations occur in the areas of rapid growth, such as the growth plates (Pettifor 

2003). Within the growth plate, the vitamin D deficiency interrupts the mineralization of the 

chondrocytes within the zone of hypertrophy. Without mineralization, the cells fail to undergo 

apoptosis and resorption, and the zone increases in size (Imel et al. 2014). Meanwhile, the 

cartilage proliferation and osteoid deposit continues(Mankin 1974; St-Arnaud and Glorieux 

1997). As a consequence, the unmineralized cartilage and osteoid accumulate next to the growth 

plate and the normally columnar organization of the cartilage becomes disorganized. The 

unmineralized, disorganized tissue cannot support biomechanical function and daily stresses and 

strains cause deformation. Mechanical forces applied to rachitic bone will spread the cartilage 

further apart, giving it a flared and horizontal appearance. Deformation is particularly prominent 

at the costochondral junctions of ribs, the distal metaphyses of the femur, radius, and ulna, and 

the proximal humerus (Brickley and Ives 2008c). Osteomalacia also develops as newly deposited 

osteoid on surfaces of previously formed and mineralized bone remains unmineralized. Cortices 

become soft as unmineralized osteoid builds up on diaphyseal surfaces (Imel et al. 2014), further 

decreasing biomechanical stability.  

There are two forms of rickets which differ based on the nutritional status of the infant (Brickley 

and Ives 2008c). The coincidence of malnutrition and vitamin D and/or mineral deficiency 

results in the porotic (or atrophic) form of rickets. Characteristic features of the porotic form 
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include generalized osteopenia, thin and brittle cortices, and sparse trabeculae. Stress fractures 

are common in the porotic form and may result in deformities of the axial skeleton and bending 

deformities of the extremities. The hypertrophic form, described above, occurs in well nourished, 

but vitamin D and/or mineral deficient infants. This form is referred to as hypertrophic because 

the child continues to rapidly produce and deposit osteoid in large amounts. In the hypertrophic 

form, the large amount of osteoid makes the long bones appear plump with narrow medullary 

spaces (Brickley and Ives 2008c).  

Although these two forms are described separately, there is considerable overlap in the skeletal 

manifestations of atrophic and hypertrophic rickets (Silverman 1985). The skeletal 

manifestations of rickets change as severity and the period of deficiency increases. During early 

stages of rickets, the costochondral junctions of the ribs appear flared and swollen. As the 

disease increases in severity, the costochondral junctions develop a bead-like appearance, 

making the chest wall appear lumpy (‘rachitic rosary’). Curvature of the ribs may become 

flattened from bending of the rib cartilage at the costochondral junction. Also due to the bending 

of the rib at the costochondral junction, the sternum may become bent forward, producing a 

pigeon breast deformity. In severe cases, pressure from the weight of the arms depresses the rib 

contour on the lateral aspect the rib cage (Pettifor 2003; Pettifor and Daniels 1997; Scheuer and 

Black 2000b). Cranial skeletal manifestations include generalized thinning of cranial bones, thin 

and softened parietal and occipital squama (craniotabes), delayed closure of fontanelles, and 

subperiosteal deposition on cranial and facial bones (Hess 1930; Mays 2006; Ortner and Mays 

1998; Pettifor 2003; Pettifor and Daniels 1997). The inner and outer tables of the cranial vault 

may be completely remodeled, making the entire cranial vault appear like diploë. Deformation of 

the curvature of the spine may result in kyphoscoliosis (outward and lateral curvature of the 

spine) (Hess 1930; Pettifor 2003; Pettifor and Daniels 1997). Height of vertebral bodies may 

decrease with scalloped appearing endplates. The bones of the pelvis appear smaller more plump 

than normal. Overall, the pelvis has a flattened appearance because maximum growth of the iliac 

bones occurs during infancy and deficiency in the growth of the iliac bones leads to an 

anteroposterior narrowing of the pelvic canal. The sacrum may protrude into the pelvic canal and 

the acetabula face more forward than normal (Hess 1930; Ortner and Mays 1998).  
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With regard to the long bones, metaphyses become flared and swollen during the early stages of 

rickets. The growth plate is porous and the margins are frayed. Both the metaphyses and growth 

plate display cupping deformities. Diaphyseal bending occurs during more advanced stages of 

rickets and may be variable between limbs. Porosity may be present on the concave side of the 

bent limb. In crawling infants, humeral shafts may be bent in the forward and lateral directions 

with medially depressed humeral heads. After walking has commenced, active rickets results in 

femoral necks that are bent downward and femoral shafts bent at the distal metaphysis with an 

anterolateral convexity. Shafts of the tibia and fibula may present with anterior bowing at the 

distal metaphysis (Hess 1930; Mays 2006; Ortner and Mays 1998; Pettifor 2003; Pettifor and 

Daniels 1997).  

After the development of active rickets, small amounts of vitamin D are sufficient to initiate 

mineralization, also referred to as healing. However, mineralization can only take place on 

preexisting surfaces, which may be deformed. Remodeling during growth may eventually correct 

the deformities, but major deformities will become permanent. For example, vertebrae that 

developed major deformities, such as kyphoscoliosis, will mineralize and be permanent (Hess 

1930; Pettifor 2003; Pettifor and Daniels 1997).   

The characteristic distribution of periosteal deposition during healing is dependent on bone type. 

On the long bones, periosteal deposition of osteoid is thickest at the mid-diaphyseal region, 

giving the diaphysis a columnar appearance (Schmidt 1929). On the ribs, deposition is limited to 

the anterior surface and margins. Deposition on the posterior surface of the femur is more 

prominent than the anterior. On the tibia, deposition occurs on the posterior and medial surfaces 

(Brickley and Ives 2008c). Prolonged and untreated rickets may permanently stunt growth (Imel 

et al. 2014). 

Rickets diagnosis typically occurs through qualitative assessment of bony morphology on 

radiographs, followed by testing of serum mineral concentrations. Generally, rachitic bone 

appears osteopenic on radiographs, giving it a more radiolucent appearance. The costochondral 

junctions appear bulbous. The margins of cortices and epiphyses lose their distinction. The 

growth plates of the long bones, especially at the wrists, knees, and ankles, appear widened and 

brush-like with fringed bony projections. The trabeculae appear coarse. Long bones may exhibit 
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torsional or bowing deformation (Berry et al. 2002; Hess 1930; Pettifor and Daniels 1997; 

Reynolds and Karo 1972; Silverman 1985).  

Characteristics of healing rickets can also be observed radiologically. In healing rickets, the 

cranium shows increased periosteal apposition on the ectocranial surface with apparent 

trabecular spurs. In long bones, new trabecular structure is apparent along the metaphysis. Due to 

the mineralization of previously formed defects, the disorganized orientation of the trabeculae 

may be present for some time. Cortical outlines and the margin of the growth plate appear 

defined while cortices may appear thickened due to the mineralization of periosteal apposition 

(Berry et al. 2002; Hess 1930; Pettifor and Daniels 1997; Reynolds and Karo 1972; Silverman 

1985).  

Abnormalities caused by rickets are also evident histologically. Osteoid seams are widened with 

delayed mineralization. Growth plates appear widened and irregular with delayed apoptosis of 

hypertrophied chondrocytes (Imel et al. 2014). There is a loss of new cortical bone formation and 

the number of resorption sites on the cortical bone increases. Cortical porosity is increased with 

Haversian canals and lacunae that appear larger than normal. Any new bone formation is poorly 

mineralized with mineralization defects adjacent to cement lines. The number of resorption sites 

on surfaces of trabecular bone is also increased and appear as bite-like defects and tunneling 

resorption. In cases of severe rickets, trabecular struts may be perforated. Newly deposited 

trabecular bone may appear separated from more mature bone. Similar to cortical bone, newly 

formed trabeculae bone is poorly mineralized with defects adjacent to cement lines. In healing 

rickets, resorption sites at the metaphyses may increase as remodeling removes cupping 

deformations (Mankin 1974; Mays et al. 2007; Pitt 1988).   

Vitamin C Deficiency 

Ascorbic acid (vitamin C) is essential in collagen fibril formation (Hodges 1980) and deficiency 

results in decreased or absent bone matrix formation (Brickley and Ives 2006; Ortner et al. 2001; 

Ortner and Ericksen 1997). Vitamin C deficiency disease is called scurvy. Although scurvy is 

rare in the modern population, autopsy findings suggest that sub-clinical and clinical vitamin C 

deficiency may be increasing (Akikusa et al. 2003; Brickley and Ives 2008b; Fain 2005). 

Incipient scurvy has been identified  in children that died from acute infections (Milgram 1990).  
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Vitamin C deficiency rarely occurs in neonates because vitamin C easily passes to the fetus by 

active placental transport and to the infant in breast milk. However, maternal vitamin C 

deficiency decreases the vitamin C concentration in breast milk (Fain 2005). Yet, even if an 

infant receives no vitamin C following birth, the disease still takes several months to manifest 

(Ortner 2003c). Infantile scurvy is rarely seen before 4 months of age and is most prevalent in 

infants 8-10 months of age (Wimberger 1925). Once vitamin C intake is reestablished, scurvy 

heals relatively quickly. Clinical signs of scurvy begin to improve in 48 hours (Greenfield 1990) 

and are almost completely resolved within 2 weeks (Pimentel 2003). In children, the histological 

signs of scurvy may be completely obliterated after three months of treatment (Follis et al. 1950).  

Scurvy causes a decrease or cessation of osteoblastic activity while osteoclastic and 

chondroclastic (cartilage resorption) activity continues, resulting in osteopenia. Meanwhile, 

subperiosteal hemorrhage causes skeletal lesions. The cellular disruption weakens the developing 

bones. The skeletal manifestations of scurvy are most severe in infants due to their rapid growth 

and are most prominent on bones that grow rapidly, such as the costochondral junctions of ribs, 

the distal metaphyses of the femur, radius, and ulna, as well as the proximal metaphysis of the 

humerus (Ortner 2003c). With growth, the calcified cartilage accumulates on the metaphyseal 

side of the growth plate in absence of normal ossification.  As a result, the metaphyseal zone 

becomes unstable and trabeculae fail to form. The region becomes susceptible to transverse 

fractures (i.e., classic metaphyseal lesions), epiphyseal dislocation and fragmentation of the 

calcified cartilage (Milgram 1990; Ortner 2003c). In severe cases, the proximal epiphysis of the 

femur may collapse resulting in a depressed angle of the femoral neck. The costochondral 

junctions may fracture causing an inward dislocation of the sternum and rib cartilages or may 

become abnormally large and flared, scorbutic rosary. Bone formation on the periosteal and 

endocortical surfaces is adversely affected, resulting in decreased cortical thickness (Ortner 

2003c).  

Periosteal hemorrhages are caused by collagen deficiency within the vascular walls. Most 

periosteal hemorrhages are observed in the weight-bearing bones (Ortner 2003c). Fractured 

metaphyses, trauma, or normal biomechanical stresses and strains may initiate subperiosteal 

hemorrhaging (Follis 1948). The hemorrhaging can strip the periosteum from the entire 

surrounding shaft. Only very small amounts of vitamin C are required for the subperiosteal 
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hemorrhage to trigger new bone formation (Bourne 1942). Subperiosteal new bone formation 

presents as a thin shell of new bone that envelops the old bone or  as spicules on the cortical 

surface (Ortner 2003c). Spicules deposited on the cortical surface are hypertrophic and have a 

porous, pumice-like appearance. On the scapulae, porosity has been observed on the 

supraspinous and infraspinous aspects of the cortex (Brickley and Ives 2006; Ortner et al. 2001). 

In infants with scurvy, hypertrophic and porous lesions have been observed on the frontal and 

parietal bosses of the skull, orbital roofs, sphenoid, maxilla, and mandible (Brickley and Ives 

2006; Fraenkel 1929; Ortner 2003c; Ortner and Ericksen 1997; Ortner et al. 1999; Sloan et al. 

1999). 

Infantile scurvy must be relatively severe before it is observed on radiographs (Follis et al. 

1950). Radiological features of scurvy includes metaphyseal ‘white lines’ (‘white lines of 

Frankel’), radiolucent lines (‘scurvy lines’ or ‘Trümmerfeld zone’) adjacent to the ‘white lines’, 

white outlining of the epiphyses (‘Wimberger ring’ or ‘pencilled effect’), corner fractures located 

at the lateral edges of the metaphyseal ‘white lines’ (‘Pelkan spurs’), micro-fractures of the 

cancellous bone (‘corner sign’ or ‘corner sign of Park’), and fractures of the cortex below the 

provisional line of calcification. The preservation of areas of provisional calcification at the ends 

of the metaphyses produces ‘white lines’ (Chatproedprai and Wananukul 2001; Grewar 1965; 

McCann 1962; Tamura et al. 2000). Adjacent to the ‘white lines’ bone mineral density is 

diminished, producing radiolucent lines. The ‘Wimberger ring’ or ‘pencilled effect’ is caused by 

intensified calcification of a limited area due to the cessation of new bone matrix formation. 

Generalized osteopenia is also visible on radiographs, along with cortical walls that appear 

irregular and thin.     

Metabolic Bone Disease of Prematurity 

As has been stated previously, failure to reach a certain degree of skeletal maturity by time of 

birth has detrimental effects on the postnatal bone health and growth. Research has shown that 

preterm infants have a significantly lower bone mineral content than term infants, even after 

correcting for size differences (James et al. 1986). Preterm infants are at higher risk for 

developing metabolic bone disease than term infants, especially infants born prior to 28 weeks 

gestation (Griscom and Jaramillo 2000). Approximately 55% of infants weighing <1000 g and 

23% of infants weighing <1500 g at birth develop metabolic bone disease (Done 2012). 
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Furthermore, reduced bone mineralization is found almost universally in infants with a birth 

weight <1500g (Barltrop et al. 1977; Senterre and Salle 1982; Shaw 1976). As a result, it was 

hypothesized that skeletal maturity at birth is significantly related to body size, bone structure, 

and BMD.  

Increased risk of metabolic bone disease in premature infants occurs for many reasons. The 

majority of bone mineral accretion occurs during the last 3 months of gestation and at a very 

high rate (Widdowson et al. 1988; Widdowson and Spray 1951). Premature infants miss the last 

trimester of gestation causing them to be born without the normal skeletal store of minerals. Due 

to the normal postnatal drop in serum calcium concentration and increase bone resorption, the 

already deficient bone mineral content decreases even further. Also, premature infants are born 

with immature organ systems creating a higher risk for developing malabsorption disorders, as 

well as diseases of the lungs and heart. Premature infants have greater fluid and calorie 

requirements than term infants, but may be intolerant to feeding due to incomplete development 

of the oral reflex and immature digestive systems (Darby and Loughead 1996; Johnson 1991). 

An immature digestive system are typically deficient in digestive enzymes and are at an 

increased risk for developing necrotizing enterocolitis (inflammatory disease of the bowel) (King 

2008). Preterm infants with malabsorption disorders may require the use of parenteral 

(intravenous) nutrition (Darby and Loughead 1996), but parenteral nutritional may not meet all 

nutritional requirements. The maximum amount of soluble calcium and phosphorus in parenteral 

nutrition approaches but does not match fetal mineral accretion (Specker et al. 2001). 

Furthermore, the underdeveloped lungs of premature infants often require treatment 

glucocorticoids and diuretics. Glucocorticoids increase bone resorption, downregulate the 

differentiation of osteoblast precursors, and increase osteocyte apoptosis. Diuretics, such as 

furosemide, cause excess excretion of important nutrients and minerals (King 2008). Heparin is 

another medication that may be prescribed to premature infants. Heparin prevents the formation 

of blood clots, but has been shown to adversely affect bone formation (Imel et al. 2014).  

Lack of mechanical loading is another reason that premature infants have increased risk of 

developing metabolic bone disease. Premature infants experience less mechanical loading in the 

extrauterine environment than would have been experienced in the intrauterine environment, 
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increasing bone loss after birth (Sharp 2007). Furthermore, severely ill infants are likely to be 

sedated, decreasing mechanical loading and increasing bone resorption (Done 2012).   

OTHER ENVIRONMENTAL FACTORS 

External factors such as general malnutrition, diseases of other organ systems, trauma, and 

infections can also have adverse effects on bone formation and development. For this reason, it 

was hypothesized that chronic illness would be significantly associated with body size, bone 

structure, and BMD. Some examples are discussed below.  

Protein/Calorie Malnutrition 

Adequate protein and fat intake are required for proper intestinal absorption of calcium. Severe 

prolonged malnutrition results in the arrest of all growth. Undernutrition causes a decline in 

osteoblast function resulting in decreased bone formation (Grinspoon et al. 1995; Orden et al. 

2002; Shires et al. 1980). In less severe cases, malnutrition, disordered eating, and/or starvation 

cause osteopenia. Osteopenia results from increased PTH secretion and bone resorption, in an 

attempt to increase serum calcium concentration (Brickley and Ives 2008a; Rizzoli and Bonjour 

2004). 

Other Systemic Diseases 

Diseases occurring in other organ systems adversely affect bone development and structure by 

interfering in processes necessary for normal bone metabolism. For example, renal insufficiency 

is the most common cause of secondary hyperparathyroidism, which results in excessive bone 

resorption. Hyperparathyroidism disorders are characterized by high serum PTH concentration 

that is unaffected by serum calcium concentration or by imbalanced PTH concentration in 

relation to serum calcium concentration (Brickley and Ives 2008a). The skeletal manifestation of 

secondary hyperparathyroidism are highly variable and include rickets-like changes, growth 

stunting, generalized bone loss, and an overall reduction of bone quality (Ortner 2003a; Ross 

1998).  

Inflammatory diseases, liver disease, and chronic kidney disease  also adversely affect bone 

(Imel et al. 2014). Liver disease can cause malabsorption disorders by impairing 25-

hydroxylation of vitamin D (Imel et al. 2014). Chronic kidney disease impairs renal clearance of 

phosphorus and results in abnormally high serum phosphate concentrations 
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(Hyperphosphatemia). In an attempt to increase phosphorus excretion, calcium excretion 

increases, resulting abnormally low serum calcium concentration. The low serum calcium 

concentration interferes with mineralization.   

Secondary Osteopenia 

Osteopenia can occur secondary to any illness that causes immobility or a decrease physical 

activity (Brickley and Ives 2008a). Mobility can be affected by congenital and developmental 

skeletal abnormalities, such as spina bifida cystica, severe congenital scoliosis, and 

neuromuscular conditions. Any trauma or pathology which limits mobility or leads to 

immobilization may cause osteopenia of the affected areas. Immobilization increases calcium 

excretion, which stimulates PTH secretion and osteoclastic resorption in order to increase serum 

calcium concentration (Epstein et al. 2003; Jenny Kiratli 2001). Bone loss and decreased 

osteoblastic activity following immobilization can occur rapidly and may be localized or 

generalized. Characteristics of secondary osteopenia on radiographs include thin cortices, 

increased intra-cortical porosity, sparse and/or thin trabeculae. Histologically, there is an overall 

increase in bone resorption, number of resorption sites, and size of Haversian canals. Size of 

osteons and bone formation will be limited. 

Medication 

Medications necessary for the treatment of other diseases and illness in infants can also adversely 

affect bone. Medications that affect bone include anticonvulsants, diuretics, glucocorticoids, and 

heparin (Imel et al. 2014). Anticonvulsants are prescribed to infants with seizure disorders. 

Anticonvulsants may contribute to bone loss by affecting vitamin D metabolism, but the 

mechanism by which anticonvulsants increase bone loss is not well understood. The adverse 

effects of diuretics, glucocorticoids and heparin on bone were described previously in the section 

Metabolic Bone Disease of Prematurity. Infants in the current study sample with histories of 

long-term use of medications that may have adversely affected bone health were classified as 

chronically ill due to the possibility of compromised bone health and strength.   

GENETIC DISORDERS 

Several genetic disorders interfere with the hydroxylation of vitamin D, renal function, FGF23, 

or collagen production and produce rachitic skeletal manifestations. Hereditary vitamin-D-
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dependent rickets is a rare autosomal disorder resulting from mutations which disrupt the 

production of metabolically active vitamin D or its metabolism (Malloy and Feldman 2010). 

There are three forms. Types 1 and IIA are inherited in a recessive pattern. In type 1, there is a 

mutation in the CYP27B1 gene, which produces 1α-hydroxylase. Without 1α-hydroxylase, 

25(OH)D cannot be converted to the metabolically active form in the kidneys, resulting in low 

serum concentrations of 1,25(OH)2D. The skeletal manifestations of this condition are usually 

observed by the age of 2 years. Type 11 is more severe than type I. In type II, there is a mutation 

in the VDR gene and affected children usually present with severe rickets within months of birth 

and may have stunted growth (Malloy and Feldman 2010). Serum concentrations of 1,25(OH)2D 

are high in the type II form, but the organ tissues cannot respond to the hormone because the 

defect in the VDR does not permit binding. Type IIB is the third type of vitamin-D-dependent 

rickets. Similar to the other types it has an early onset, but type IIB is caused by an abnormal 

expression of the hormone response binding element, preventing vitamin D from binding to 

VDRs (Ortner 2003c). The inheritance pattern of type IIB is not clear due to the isolated number 

of cases (Chen et al. 2006). Regardless of the type, the skeletal manifestations of vitamin D-

dependent rickets are similar to the manifestations of severe rickets caused by nutritional 

deficiency (Imel et al. 2014).   

Hypophosphatasia (HPP) is a rare genetic condition in which a missense mutation in the ALPL 

gene results in decreased or no ALP production (Rathbun 1948). HPP is inherited in either an 

autosomal dominant or recessive pattern. ALP deficiency results in an abnormal and deficient 

mineralization of bone matrix. Skeletal manifestations are widely variable and depend on age of 

onset (Brickley and Ives 2008a). Perinatal and infant forms of HPP tend to be inherited in a 

recessive pattern and are more severe than dominant forms. Affected neonates are usually 

stillborn or survive only a few days (Imel et al. 2014). On radiographs, severe cases exhibit 

characteristic ‘punched out’ defects of the metaphyses (Grech et al. 1985). Infants and neonates 

with HPP are dwarfed with long bone deformities, poorly mineralized skulls, and skeletal 

manifestations of active rickets (Ortner 2003c). In perinatal HPP, skeletal manifestations may be 

apparent in utero or at birth. In infantile forms, moderate to severe skeletal defects usually 

present before 6 months of age (Imel et al. 2014). Less severe forms of the disease may not 

become apparent till later childhood (Ortner 2003c). 
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Chronic hypophosphatemia can be acquired or inherited. The most common cause of chronic 

hypophosphatemia is X-linked hypophosphatemia (XLH). XLH is a dominant disorder resulting 

from a mutation that inactivates the PHEX gene (Imel et al. 2014). Deficiency in PHEX protein 

increases the expression and secretion of FGF-23, leading to renal wasting of phosphorus and 

decreased production of the active metabolite of vitamin D. There are also autosomal dominant 

and recessive forms of chronic hypophosphatemia. Recessive forms are caused by mutations in 

the DMP1 or ENPP1 genes and the dominant form is caused by a mutation in the FGF23 gene. 

Recessive or dominant, these disorders result in excess FGF-23 production. Chronic 

hypophosphatemia, regardless of the cause, manifests skeletally as rickets. However, the severity 

of skeletal effects is highly variable (Imel et al. 2014; Ortner 2003c). 

A rare autosomal recessive disorder called Hyperphosphatemic familial tumoral calcinosis (TC) 

causes chronic hyperphosphatemia. TC results from a mutation in the FGF23 gene which impairs 

phosphate excretion. Mutations in the GALNT3 and FL genes can also cause TC. In TC, there is 

an increase in serum calcium and phosphorus concentrations causing soft tissue calcifications 

and areas of skeletal hyperostosis may also develop (Imel et al. 2014).   

Osteopetrosis is a rare inherited disorder which causes increased bone mass and mineralization 

due to a defect in osteoclast function. Overmineralization of bone causes it to become 

increasingly brittle, resulting in bone fragility. Osteopetrosis can be inherited in an autosomal 

recessive, autosomal dominant, or X-linked pattern. Infantile forms of osteopetrosis are 

recessive. Mutations in genes CLCN7, OSTM1, TNFRSFIIA, or CA2 can cause the disease. 

Severity of skeletal manifestations varies widely. Some perinatal forms are lethal and individuals 

with infantile forms rarely survive to adulthood (Brickley and Ives 2008a). The infantile form 

presents shortly after birth with fractures, cranial deformities, and poor growth (Imel et al. 2014).   

Infantile Cortical Hyperostosis (Caffey’s Disease) affects the skeleton of infants in the first year 

of life. The cause is unknown, but may occur occasionally or sporadically in several siblings. In 

Caffey’s disease, areas of massive deposition of layered periosteal woven bone occur on one or 

several bones. The most frequently involved bones are the mandible and clavicle, followed by 

the long bone diaphyses and rib shafts. The excess bone is usually resorbed after weeks or 

months (Ortner 2003c).  
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Osteogenesis imperfecta (OI) refers to a number of rare genetic diseases that disrupt the amount 

or structure of type 1 collagen. The prevalence of OI is 1/10,000 persons. There are 12 types of 

OI and expression of the disease is highly variable regardless of type classification. Most cases 

are autosomal dominant, but recessive types also occur. Genetic mutations that cause 

abnormalities in the structure of the collagen protein tend to be more severe than mutations that 

result in a functionally null allele. A null allele will result in less collagen, but the collagen that is 

present is functionally normal. Collagen with an abnormal structure cannot fold into its proper 

shape which impedes functionality and results in a disorganized and weaker bone tissue. Types I-

IV are autosomal dominant disorders that considered the classic types of OI. Types I-IV directly 

affect the type 1 collagen protein. Type I is a mild expression of OI with few or no fractures 

occurring throughout the individual’s lifetime. Type II is lethal. Type III is progressively 

deforming. Type IV is an intermediate form in terms of severity. Type V is also autosomal 

dominant and is characterized by bone fragility, hypertrophic callus formation, and interosseous 

membrane calcification. Type V affects a gene (interferon-induced transmembrane protein-5) 

that plays an important role in osteoblast maturation and bone formation. Types VI-XII are 

recessive disorders. In type VI, the mutation of a gene responsible for inhibiting angiogenesis 

causes a defect in mineralization. In types VII-IX, there are defects in genes encoding 3-

hydroxylation proteins, which are necessary for proper folding or posttranscriptional 

modification of type 1 collagen. Types VII-VIII can be sever to lethal, while type IX is moderate 

to lethal. Types X-XII involve mutations of chaperone proteins that are necessary for the proper 

folding of type 1 collagen. Type X is severe to lethal. Type XI is progressively deforming. Type 

XII is intermediate in its severity and  involves a genetic mutation of the SP7 gene, which 

regulates bone cell differentiation (Imel et al. 2014).   

Other inherited non-skeletal disorders that are known to  affect bone density include cystic 

fibrosis , galactosemia, muscular dystrophy, lipid and glycogen storage diseases, Ehlers-Danlos 

syndrome, and Marfan syndrome (Imel et al. 2014).  

ENDOCRINE DISORDERS 

Abnormalities and dysfunctions of the endocrine system affect bone metabolism by interfering 

with the production of hormones necessary for normal bone mineral metabolism. The endocrine 

system consists of several glands that perform bodily functions by secreting hormones into the 
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circulatory system. Hormones secreted by the pituitary, thyroid, parathyroid, adrenal, and 

gonadal glands have important effects on bone growth, maturation, and maintenance during 

infancy. Defects in hormone secretion can be caused by intrinsic abnormalities in the tissue 

causing overproduction of hormones (hyperplasia), tumors, or congenital absence of glandular 

tissue (Ortner 2003a).   

The pituitary gland produces somatotrophic (growth) hormone which affects skeletal growth and 

regulates thyroid function. Excess production of growth hormone (hyperpituitarism) causes a 

rare disorder called pituitary gigantism. Excess growth hormone overstimulates both 

endochondral and intramembranous bone growth. The thickness, length, and diameters of bones 

are affected and produce individuals with abnormally large proportions. Hypopituitarism results 

in a deficiency of growth hormone and causes dwarfism. Both bone length and width are 

reduced. Overall, the skeleton is gracile, with thin cortices and porotic and sparse trabeculae 

(Ortner 2003a). 

The thyroid gland produces the hormones thyroxine and triiodothyronine (Resnick 1995). 

Secretion of thyrotropic hormone by the pituitary gland stimulates the thyroid gland to secrete 

thyroxine. Thyroxine stimulates skeletal maturation in local tissues and the secretion of growth 

hormone by the pituitary. Congenital absence of the thyroid gland causes severe dwarfing, delay 

in formation of secondary ossification centers, and epiphyseal plates that never fuse. 

Hyperthyroidism causes excessive secretion of thyroxine, which results in accelerated skeletal 

maturation and premature closure of epiphyseal plates (Ortner 2003a).   

Adrenal glands secrete adrenocortical glucocorticoid hormone when stimulated by pituitary 

adrenocorticotrophic hormone (ACTH). Excessive adrenocortical glucocorticoid suppresses 

collagen production causing severe osteoporosis, Cushing’s syndrome. The vertebrae and ribs 

are the most severely affected, with thin cortices and small, sparse trabeculae. Long bones have 

sparse trabeculae and endocortical resorption (Ortner 2003a). Compression fractures are 

common in the vertebrae along with kyphotic deformation of the spine. Multiple fractures may 

be present in the ribs (Sissons 1956). Cushing’s syndrome is rare in infancy, but has been 

reported (Loridan and Senior 1969). 
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The gonads produce sex hormones, such as estrogen and testosterone. Sex hormones stimulate 

endochondral growth and skeletal maturation. Hypogonadism is the deficient production of sex 

hormones. Hypogonadism delays the appearance of the secondary ossification centers and 

closure of epiphyseal plates. Intramembranous bone formation is also affected, resulting in thin 

cortices and an overall gracile skeleton. Due to the delay in closure of epiphyseal plates, the 

period of endochondral growth is extended, resulting in abnormally long limbs. Excessive 

amounts of estrogen or testosterone are produced in hypergonadism. Excessive sex hormone 

stimulates endochondral growth and causes premature closure of epiphyseal plates, resulting in a 

short and stocky skeleton (Ortner 2003a; Wilkins 1950).  

Primary hyperparathyroidism is one of the most common endocrine disorders. Primary 

hyperparathyroidism is characterized by high serum calcium concentration coupled with normal 

or high PTH concentrations (Ortner 2003a). The elevated PTH concentration increases 

osteoclastic activity and bone resorption, resulting in generalized bone loss throughout the 

skeleton (Greenfield 1990; Mays et al. 2001; Potts 1998). Bone loss in the spine may cause 

wedging and biconcavity of the vertebral bodies (Jaffe 1972; Milgram 1990). In radiographs, the 

endplates appear relatively dense in comparison to the generalized osteopenia observed in the 

rest of the vertebral body (Aufderheide and Rodriguez-Martin 1998; Greenfield 1990). The inner 

and outer cranial tables may be severely diminished and the diploë may be transformed into 

poorly mineralized, fine trabeculae (Bilezikian 1999; Greenfield 1990; Potts 1998). Pathological 

fractures and bone deformities may occur (Ortner 2003a). On radiographs, tunneling absorption 

may be seen within the cortices of the long bones, as well as cortical thinning, increased 

trabecular volume, loss of cortical definition, fractures, and tumors appearing as well-defined 

radiolucencies (Greenfield 1990; Jaffe 1972; Mays et al. 2001; Resnick and Niwayama 1988).  

Primary hypoparathyroidism is characterized by serum PTH concentrations that are low or 

imbalanced. Hypoparathyroidism disorders can be caused by PTH resistance, which is 

characterized by low serum calcium concentration despite elevated PTH concentration and 

normal vitamin D status. Low serum PTH concentration impairs bone resorption, decreases renal 

calcium reabsorption, and decreases the production of the active metabolite of vitamin D (Imel et 

al. 2014). Skeletal manifestations of hypoparathyroidism include excessive cortical thickening, 

periosteal hyperostosis, and abnormally enlarged trabecular bone (Ortner 2003a).    
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Basic Bone Biomechanics 

Along with its role in mineral homeostasis, the skeleton also serves as a mechanical support 

structure that resists deformation during muscle activity and functions as physical protection for 

the organs and soft tissues. In order to meet these mechanical requirements, bone must be stiff 

enough for muscles to work against and compliant enough to absorb energy during loading and 

impacts. When loading exceeds a bone’s strength, failure or fracture occurs. The ability to 

adequately resist fracture by forming a compromise between stiffness and compliance is called 

bone strength. Bone strength is affected by material composition, cortical structure, and 

trabecular structure. Disease also influences bone strength by altering bone material composition 

and structure (Cullinane and Einhorn 2002; Seeman 2008; Wallace 2014). The biological 

processes that alter bone material and structural properties were discussed in the previous 

sections. The relationship between bone material and structural properties, and bone strength are 

discussed below. Bone strength also varies by load type and magnitude, but a detailed discussion 

of variation in mechanical properties based on load type and magnitude are beyond the scope of 

this study. Compression, tension, and bending will be briefly mentioned throughout this section 

to facilitate the discussion of factors which affect bone strength. The purpose of this section is a 

general discussion of the factors that affect bone’s ability to resist fracture.   

BONE TISSUE MATERIAL COMPOSITION 

Fracture resistance begins at the material level. The composite nature of bone allows it to be both 

stiff and compliant when loaded. This balance is achieved through the interaction of collagen and 

mineral within the composite material. The mineral phase of the composite provides stiffness and 

strength in compression (forces directed toward the center of the objected) (Burstein et al. 1975). 

As the amount of bone mineral content within the bony material increases, stiffness also 

increases (Seeman and Delmas 2006). Bone mineral density (BMD) is the quantifiable measure 

of the proportion of bone mineral content relative to the total mass of the composite material. 

Therefore, bone stiffness increases as BMD increases. The measure of a material’s stiffness is 

called its elastic modulus or Young’s modulus. BMD is closely correlated with elastic modulus. 

The collagenous phase of bone provides ductility and strength in tension (forces pulling away 

from the object). The collagenous portion also increases a bone’s ability to absorb energy during 

loading. This characteristic is called a material’s toughness (Martin et al. 1998a). Although both 
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stiffness and toughness are of vital importance to fracture resistance, a bone cannot be both very 

stiff and very tough. As elastic modulus increases, bone becomes increasingly brittle and 

toughness decreases (Currey 2006; Wallace 2014). The balance formed between elastic modulus 

and toughness to adequately resist fracture depends on the bone’s function and is affected by the 

daily loads experienced by that bone. Therefore, there is no ideal stiffness and toughness value 

for bone. Different bones have different functions and therefore have different mechanical 

demands and those demands can change (Martin et al. 1998b; Wallace 2014).  

The strength of bone tissue is greatly affected by degree of mineralization, or BMD. A study 

examining the effects of matrix mineralization on breaking stress reported that an 8% increase in 

bone mineral content increased bone strength 3.7 fold (Vose and Kubala 1959). Due to this 

relationship, BMD estimates were used in the current study as indicators of bone strength. 

Degree of mineralization is influenced by disease. Diseases, such as metabolic bone disease, can 

increase bone turnover or delay mineralization. In both cases, bone mineral content is decreased, 

adversely affecting bone tissue stiffness and strength (Martin et al. 1998a). As a result, it was 

hypothesized in the current study that infants with chronic illness had significantly lower BMD 

than infants without chronic illness.   

Collagen fiber orientation also affects bone strength. As previously discussed, collagen fibers in 

woven bone have a random organization with widely varying degrees of mineralization. As a 

consequence, woven bone is not as strong and has a lower elastic modulus than lamellar bone. 

However, the random orientation of collagen fibers allows woven bone to performs equally well 

at resisting loads in all directions (isotropic). Lamellar bone performs best at resisting tensile and 

compressive loads in the longitudinal direction and less so in the perpendicular directions 

(anisotropic) (Martin et al. 1998b; Martin and Ishida 1989). Fiber orientation also varies within 

bone depending on the specific type of loading experienced within a specific area. 

Longitudinally oriented fibers promote strength in tension, while the transversely oriented fibers 

or stronger in compression. A study examining the femur found that regions habitually loaded in 

tension tend to have a larger number of longitudinally oriented fibers, while areas that are 

habitually loaded in compression have fewer (Portigliatti Barbos et al. 1984). Collagen cross-link 

maturity and quantity also influence bone tissue strength through their effect on tissue stability 

(Martin et al. 1998a; Wallace 2014). The effects of collagen cross-links on tissue stability were 
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discussed previously in the Bone Biology section. Although the relationship between collagen 

cross-link maturity and quantity, and SOS were not addressed in this study, it is important to be 

aware of other factors that influence bone strength and should be evaluated in future studies for 

potential associations with SOS.   

STRUCTURE 

Whole bone strength can be increased either by increasing bone mass or changing the structural 

dimensions of the whole bone (Schmidt-Nielsen 1984). However, there is a limitation to the 

amount of bone mass that can be added to increase bone strength. Skeletal weight increases with 

added bone mass, which increases the amount of metabolic energy required for locomotion and 

maintaining the added mass. The hierarchical structure of bone allows it to achieve a certain 

degree of strength with less material. The quantity, distribution, and geometry of cortical and 

cancellous bone contribute to the overall structural strength of bone (Martin et al. 1998a; 

Wallace 2014). Due to the association of bone shape and structure with bone strength, tibial 

measurements (tibial length, midshaft diameter, medullary cavity diameter, cortical thickness, 

and cortical index) were used in the current study as proxies for bone strength. The relationship 

between cortical and cancellous bone structure and overall bone strength is discussed further 

below.  

Cortical Bone 

Overall bone strength is related to the section modulus (Z) and porosity of cortical bone. In long 

bones, the section modulus is a measure of the distribution of bone mass about the neutral axis 

(axis of bending). The section modulus is proportional to a bone’s bending strength and depends 

on the fourth power of the radius of the bone. As the diameter of the bone increases, section 

modulus and bone strength in bending increase. Bone diameter has a greater influence on section 

modulus than bone mass. As long as the diameter does not change, a 16% decrease in the cortical 

area will only decrease the section modulus by 2.5%. Yet, in two bones with equal cortical mass, 

a 30% increase in diameter will increase the section modulus by 70%. Therefore, greater bending 

strength can be achieved without increasing bone mass by changing the geometry of cortical 

bone (Martin et al. 1998a; Wallace 2014). In the current study, it was hypothesized that tibial 

midshaft diameter was negatively associated with chronic illness and prematurity due to the 

negative effects these factors have on growth. It was also hypothesized that midshaft diameter 
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was positively associated with BMD, as both BMD and increased midshaft diameter should be 

correlated with increased strength. 

Small changes in overall bone size by the redistribution of bone mass further away from the 

neutral axis can also compensate for losses in bone material tissue strength. As discussed 

previously, disease can result in decreased bone mineral content for various reasons. Bone size 

and shape may adjust in an attempt to maintain structural integrity while using a weaker material 

(Martin et al. 1998a; Wallace 2014). For example, rickets results in curvature of the bones, 

producing large bending forces. Rachitic long bones alter their cross-sectional shape to 

compensate for these large bending forces (Martin et al. 1998a).   

Cortical porosity is another important factor influencing bone strength. Cortical bone is very 

dense (low porosity) relative to cancellous bone. Typically, larger bone size indicates greater 

bone mass due to the low porosity of cortical bone. However, diseases, such as metabolic bone 

diseases, can increase the porosity of cortical bone by increasing resorption or bone turnover. 

Increased cortical porosity decreases bone mass and stiffness, affecting its overall strength, but 

not necessarily influencing bone size or distribution of the bone mass (Martin et al. 1998a; 

Wallace 2014). 

Trabecular Bone 

The strength of trabecular bone is greatly influenced by both bone mass and its distribution. 

Trabecular bone is very porous, which makes bone mass an important contributor to the strength 

of cancellous bone. Bone mass accounts for 85% of the variation in cancellous bone stiffness or 

strength in compression. The mass of cancellous bone is found by calculating the bone volume 

fraction or the BMD. Bone volume fraction is calculated by dividing the volume of cancellous 

bone tissue by the total tissue volume. The BMD of cancellous bone is determined by both the 

bone volume fraction and the degree of mineralization of the bone volume fraction (Martin et al. 

1998a; Wallace 2014). Trabecular bone has a lower bone mineral content, and therefore lower 

elastic modulus, than cortical bone (Cullinane and Einhorn 2002; Dyson and Whitehouse 1968; 

Gong et al. 1964; Norrdin et al. 1977), as a result of its higher turnover rate. Small variations in 

either bone volume fraction or degree of mineralization can greatly affect the strength of 

cancellous bone (Martin et al. 1998a; Wallace 2014). 
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Bone tissue distribution of cancellous bone has major impacts on bone strength. The distribution 

of trabecular bone is described by its architecture and anisotropy. The architecture of cancellous 

bone explains 70-80% of the variation in compressive strength (Martin et al. 1998a; Wallace 

2014). Important measures of trabecular architecture include trabecular spacing, thickness, 

number, and connectivity (Goldstein 1987; Raux et al. 1975; Townsend et al. 1975). Decreases 

in trabecular number, thickness, and connectivity and increased spacing between trabeculae 

adversely affect bone strength. Also, the trabeculae of cancellous bone have a preferred 

orientation or direction, making it anisotropic. Cancellous bone is strongest when loaded in the 

direction of primary trabecular orientation (Martin et al. 1998a; Wallace 2014). Although 

trabecular bone plays an important role in overall bone strength, it was not evaluated in the 

current study because SOS measurements were taken at the tibial midshaft which consists 

primarily of cortical bone. 

SPECIAL CONSIDERATIONS FOR INFANT BONE 

The bones of infants/children have different mechanical demands than adults. Fetal/infant/child 

bone needs to be more compliant than adult bone for birth purposes and increased impact 

strength. The fetal skeleton, especially the skull, has a very low elastic modulus, making it very 

ductile and resistant to fracture. Increased ductility and resistance to fracture is exceedingly 

important for squeezing through the birth canal without injury. Due to the greater risk of falling, 

impact strength is an important characteristic for infants/children. The ductility in infant/child 

bone is achieved through a lower bone mineral content compared to adult bone (Martin et al. 

1998a). A study which compared the mechanical properties of femora from children ranging in 

age from 2-8 years old to adults ranging in age from 26-48 years old found that children’s bone 

was only 68% as stiff and required 48% more energy to break than the adult bone (Currey and 

Butler 1975). The decreased stiffness of children’s bone makes locomotion less energetically 

efficient than in adults. However, greater fracture resistance is more important to the survival of 

infants/children than locomotor efficiency. Also due to the increased ductility of infant/child 

bones, an impact with enough energy to cause the bone to fail usually does not result in a 

complete fracture. As the fracture travels, most of the energy is expended before the fracture can 

make it all the way through the bone, resulting in a greenstick fracture. As infants/children age, 

elastic modulus increases rapidly due to the age-associated increase in bone mineral content. As 
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a result, bending strength increases gradually, while impact strength declines rapidly with 

increasing age in infants/children (Currey 2006). Therefore, BMD was hypothesized to be 

significantly associated with age in the current study.  

BONE QUALITY AND BMD 

Bone quality has not been clearly defined nor has it been quantified due to the numerous factors 

that contribute to it. Yet, bone quality is often mentioned in the literature as a determinant of 

bone strength. Bone quality has been described as the “totality of features and characteristics that 

influence a bone’s ability to resist fractures (Bouxsein 2003).” BMD is the most often used 

surrogate measure, and sometimes the only measure, of bone strength. BMD is a very important 

component of bone strength, but it is not the only important factor that contributes to fracture 

resistance (Boyce and Bloebaum 1993; Marshall et al. 1996). Not all individuals that suffer 

fragility fractures have BMD measures that are considered osteoporotic (Browne et al. 2010; 

Schuit et al. 2004). In a study examining the mechanical strength of vertebral cancellous bone, 

BMD only accounted for ~80% of the variance in bone strength (Banse 2002). The difference in 

fracture resistance between individuals with similar BMD is found within the remaining 

unexplained ~20% of variance. The remaining ~20% of unexplained variance is an important 

component of bone quality. The term bone quality is used in this study to describe all of the 

factors, including BMD, that affect a bone’s ability to resist fracture. If SOS measures infant 

bone quality, it was assumed that SOS and BMD would be significantly positively associated 

due to the important role BMD plays in bone quality.  

Bone Histology  

Bone histomorphometry is an invasive method for the evaluation of bone health and structure. In 

bone histomorphometry, thin sections of bone tissue are microscopically examined for cellular 

and structural characteristics, which provide insight into the biological processes affecting bone 

function at the cellular level. Histological examination of bone sections is critical for 

understanding the balance between bone formation and resorption processes and whether these 

processes are functioning normally. Histological analysis of bone sections can range from simple 

evaluations of bone structure to more detailed measurement of cell numbers and functions. 

Histological analysis can in include static or dynamic measurements. Dynamic measurements 
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include rate measurements of bone formation and resorption and are obtained from living 

individuals. The special labeling required for dynamic measurements is administered to the 

individual over in a single dose or over period of time and its absorption by the bone tissue 

depends on rates and magnitude of change in the bone tissue (Allen and Burr 2014b).  

Static measurements characterize bone structure or describe the amount of tissue and the type 

and number of cells present. Static measurements describe the totality of growth, modeling, and 

remodeling processes that have occurred without reference to rate or time. Bone volume, cortical 

volume, trabecular volume, osteoid surface, mineralized surface, osteoid seam width, resorption 

surface, number of resorption sites, porosity, and number of osteoblasts and osteoclasts are all 

static measurements. Although some of these measurements are referred to as volumes, they are 

actually measurements of area. Differentiation between woven and lamellar bone is also 

evaluated in histological analysis and can be used to determine whether bone formation is 

occurring normally. Most evaluations of lamellar and woven bone are qualitative assessments. 

Examination of mineralized bone versus unmineralized bone provides information regarding 

changes in the mineralization process. Analysis of osteoid requires an assessment of the amount 

of osteoid covering the bone surface and normalizing that amount to the total bone surface under 

examination. Osteoid width and the total amount of osteoid surface are used to determine if bone 

formation is occurring normally. If osteoid width is normal, increased osteoid surface is an 

indication of bone formation. If osteoid width is abnormally large along with increased total 

osteoid surface, it is an indicator of a defect in mineralization (Allen and Burr 2014b).  

In clinical evaluations, the iliac crest is the most common biopsy site for obtaining bone 

histology samples due to its proximity to the skin surface relative to other bones. In the medical 

examiner’s setting, a rib sample is usually taken for histological analysis. After the bone samples 

are obtained, they are decalcified for better assessment of cellular and structural detail. However, 

decalcification prevents the assessment of remodeling. The decalcified samples are embedded in 

paraffin wax or plastic. Paraffin wax is preferred over plastic because it is less harmful to the 

proteins within the sample. However, a disadvantage of embedding samples in paraffin wax is 

that they have a tendency to distort and shrink up to 15%. Plastic embedded samples only shrink 

1-2%. Shrinking is a problem for analyses which require measurements. The block of paraffin 

wax with the embedded sample is then thin sectioned. The thin sections are placed on slides and 
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stained. Staining is used to differentiate between cells, collagen, and previously mineralized 

osteoid within the bone tissue section during microscopic analysis (Allen and Burr 2014b).  

Osteoclasts and osteoblasts are identified by their morphological characteristics and are 

important indicators of bone formation and resorption processes. The amount of surface covered 

by osteoblasts and osteoclasts provides an index of bone formation to bone resorption. 

Identification of active osteoblasts can provide important information, but can be difficult. 

Active formation surfaces are identified as osteoid covered surfaces with osteoblasts present. 

Osteoid surfaces without osteoblasts present are considered inactive formation surfaces. The 

presence of osteoclasts does not always indicate that active resorption is occurring. Resorption 

activity is evaluated by measuring the resorption surfaces or resorption depth. Resorption 

surfaces are easily identified by their characteristic scalloped shape and resorption surfaces with 

osteoclasts present are considered sites of active resorption. Resorption surfaces without 

osteoclast present are considered inactive. Osteoclasts may by absent from resorption surfaces 

for two reasons. The region may be undergoing remodeling and was in the reversal phase or the 

osteoclasts were simply not present on the sample section used for that particular slide (Allen 

and Burr 2014b). 

Bone abnormalities caused by diseases such as osteoporosis, osteomalacia, defective 

mineralization and vitamin D deficiency can be observed during histological analysis. In 

osteoporosis, there is a loss of cancellous and cortical bone mass causing an overall reduction in 

total bone volume. Cortical bone appears more porous due to the greater number of absorption 

cavities that are not filled or not completely filled. The trabeculae that are present appear thin 

and with reduced connectivity. Typically in osteoporosis, bone formation is low with normal or 

high resorption. Histologically, this appears as low bone volume with reduced osteoid surface 

and a normal or high number of osteoclasts. However, the presentation of osteoporosis can vary. 

Formation may appear normal, but with high resorption. This appears as low bone volume 

despite normal bone formation. The amount of resorption surface may be increased or normal 

with increased resorption depth. Decreased bone volume can also be caused by low formation 

and low resorption with greater reduction in formation relative to resorption. Decreased bone 

volume can be caused by high formation and high resorption, with greater increase in resorption 

relative to formation. High formation and resorption is identified by the presence of high 
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resorption surface with osteoclasts present and high osteoid surface with osteoblasts present. The 

average width of secondary osteons in cortical bone or hemiosteons in trabecular bone may also 

be reduced in individuals with osteoporosis. Osteomalacia is identifiable in histological 

evaluation by the presence of abnormally wide osteoid seams. The overall osteoid volume will 

be larger than normal and may be present with up to a 40% volume in extreme cases. The 

number of resorption sites and amount of resorption surface in osteomalacic bone appears 

normal (Jaworski 1983). Defective mineralization is identifiable as increased osteoid volume due 

to increased overall osteoid surface, but with normal osteoid seam width (Allen and Burr 2014b). 

Vitamin D deficiency also results in increased overall osteoid surface, but is differentiated from 

defective mineralization by increased osteoid seam width (Bordier et al. 1968; Jaworski 1972; 

Meunier et al. 1973). Osteoid volume may represent 20-40% of the total bone volume (Bordier et 

al. 1968; Melsen and Leif 1978; Meunier et al. 1973; Mosekilde and Melsen 1976). The number 

of resorption sites and total resorption surface is also moderately increased in bone affected by 

vitamin D deficiency (Jaworski 1983). Primary hyperparathyroidism elevates bone remodeling 

and results in increased number and size of osteoclasts and osteoblasts, osteoid surface, and 

mineralized surface relative to total bone surface. Marrow fibrosis may also be present (Bingham 

et al. 1969; Jaworski 1983). In trabecular bone, resorption depth is reduced and normal to high 

bone formation results in increased average width of hemiosteons. Cortical bone affected by 

primary hyperparathyroidism appears more porous and cortical width is reduced. Secondary 

parathyroidism also results in high bone turnover with increased numbers of osteoclasts and 

osteoblasts. However, secondary hyperparathyroidism is differentiated from primary 

hyperparathyroidism by the formation of woven bone and the presence of a large amount of 

marrow fibrosis. The bone volume of cancellous tissue may appear increased, but this is due to 

the increased accumulation of woven bone (Allen and Burr 2014b).    

Histological analysis makes several assumptions. It assumes that bone turnover was occurring at 

a steady state at the time of bone sampling. Another assumption is that the results obtained from 

the 2D histological evaluation are applicable to the 3D structure. The quality of the slides should 

also be considered. Slide quality affects the quality of the data obtained from the histological 

analysis. Folds in the thin section, loss of marrow adjacent to the trabeculae, cracked or 

incomplete bone specimens, and incomplete or heavy staining can reduce the quality of data 

obtained from the analysis (Allen and Burr 2014b). A limitation to the use of bone histology in 
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the evaluation of infant bone quality is that pediatric reference material is not readily available. 

As such, the normal range of variation in bone formation and turnover has not been clearly 

defined. Equally as unclear is how the normal range of variation changes with increasing age 

over the first year of life. Therefore, severe abnormality may be easily identifiable upon 

histological evaluation of infant bone; mild to moderate deviations from normal may not be as 

easily detected. Additionally, it is unknown how, or even if, mild to moderate deviations from 

histological normality compromise bone strength.  

Imaging Methods for Assessing Bone Quality 

Many different methods have been developed to evaluate bone health, structure, and integrity. 

Skeletal imaging is a category of technologies used to non-invasively assess skeletal health and 

structure (Allen and Krohn 2014). Several technologies fall under the umbrella of skeletal 

imaging, such as radiography, absorptiometry, quantitative computed tomography (QCT), 

magnetic resonance imaging (MRI), and quantitative ultrasound (QUS). The imaging modality 

chosen depends on the nature of the information to be obtained, qualitative or quantitative, and 

the resolution required for obtaining that information. In the clinical setting, it is desirable to use 

an imaging modality that obtains the necessary information with the least number of 

consequences. With regard to skeletal imaging, this means the lowest exposure to ionizing 

radiation. Most imaging modalities use of ionizing radiation and degree of exposure increases in 

proportion to the level of resolution (Allen and Krohn 2014). Some of the most commonly used 

imaging technologies along with their advantages and disadvantages are discussed below.     

RADIOGRAPHY (X-RAY) 

Conventional radiography is the most widely used skeletal imaging technique and is usually the 

first imaging modality of choice for infants due to its lower level of radiation exposure relative to 

other modalities (Done 2012). Radiography relies on the theory of attenuation. In radiography, 

X-rays are used to visualize objects inside of the body. X-rays are attenuated (weakened) in 

proportion to the density of the objects through which it passes. In other words, the amount of X-

ray absorbed by the bone is proportional to the density of the bone. The density of the bone 

attenuates the amount of X-ray that reaches the film or cassette on the opposite side of the 

anatomy being radiographed. A bone with increased density will appear more opaque on 
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radiographs than a less dense bone because of the greater degree of attenuation. Radiographs are 

most commonly used to assess skeletal fractures and evaluate changes in bone morphology 

(Allen and Krohn 2014).  

Changes in skeletal morphology can be assessed both qualitatively and quantitatively using 

radiographs. In terms of qualitative assessment, bone density is evaluated by making subjective 

decisions about the degree of opacity versus transparency of bone on radiographs. Cortical wall 

thickness is also qualitatively assessed based on radiologists’ experience of normal cortical 

width. Traditionally, rickets and osteomalacia diagnoses are based on qualitative assessments of 

radiographs. However, there are several disadvantages to the qualitative assessment of bone 

morphology on radiographs. Due to the subjective nature of qualitative assessment, there is a 

large degree of intra- and inter-observer variability in radiographic assessment of rachitic 

changes and demineralization. In a study evaluating the radiographic findings of children with 

vitamin D deficiency, intra-observer variability accounted for 55% of the variation in 

demineralization scores and inter-rater agreement was only 65% for rachitic changes and 70% 

for demineralization (Perez-Rossello et al. 2012). Another study found that inter-rater agreement 

was lowest (0%) for radiographs taken of mildly osteopenic children in comparison to 

radiographs taken from children with normal bone mineralization (71%) and severely osteopenic 

children (25%) (Mulugeta et al. 2011). This is suggestive of another problem with qualitative 

assessment of bone mineralization and integrity on radiographs. A significant amount of bone 

loss must occur before it can be detected on radiographs. The amount of bone loss that must 

occur before it can be detected on radiographs varies depending on the source, but reports range 

between 20-40% (Allen and Krohn 2014; Lachman 1955; Mazess and Cameron 1972; Mimouni 

and Littner 2004). Due to its frequent use in the assessment of bone quality and bone 

morphology, qualitative radiographic assessment of the radius/ulna and tibia/fibula were 

conducted in the current study. It was hypothesized that greater qualitative radiographic score, an 

indication of possible demineralization or abnormal mineralization, would be negatively 

associated with BMD. Due to the negative effects of chronic illness and prematurity on BMD, it 

was hypothesized that qualitative radiographic score would be positively associated with chronic 

illness and prematurity. Additionally, it was hypothesized that, if SOS measured infant bone 

quality, SOS would be negatively related to qualitative radiographic score.  
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Cortical width and BMD can be quantitatively assessed from radiographs. Radiogrammetry is a 

technique for measuring periosteal and endosteal diameters to obtain widths of cortical walls. 

Measurements can be made directly on radiographs using calipers or from digital radiographs 

with the help of special computer software. BMD can be quantitatively evaluated on radiographs 

using a technique called radiographic absorptiometry (RA) (previously called 

photodensitometry). RA requires the placement of a reference standard of known density, usually 

an aluminum wedge or hydroxyapatite phantom, within the field of view of the radiograph 

(Mack and Vogt 1971; Vose 1969; Yates et al. 1995). The use of the reference standard accounts 

for variations in voltage setting, exposure time, and processing. The radiographs undergo 

computer analysis to obtain grayscale values from the pixels representing the reference standard. 

These grayscale values are used to calculate the BMD of the region of interest. Studies have 

shown that BMD values obtained by RA are as precise and accurate as BMD values obtained by 

DXA (Cosman et al. 1991; Kleerekoper et al. 1994; Swezey et al. 1996; Takada et al. 1997; 

Yates et al. 1995). An advantage of RA is that it enables the quantification of BMD using 

equipment that is already widely available and obtaining the radiographs is relatively quick. Due 

to the readily available radiography equipment within the medical examiner setting, BMD was 

estimated using the RA method. However, RA has several disadvantages. RA requires radiation 

exposure, which is typically 600 µSv (Allen and Krohn 2014). Furthermore, the type of BMD 

calculated is areal BMD, not volumetric. Areal BMD does not account for size differences, 

meaning that the areal BMD of a larger child or infant may artificially appear to be greater due to 

the larger overall bone size, while in actuality a smaller child may have greater bone density. 

Due to this limitation, it was hypothesized that BMD estimates would be significantly positively 

associated with body size and tibial size. Another disadvantage of the use of radiographs is their 

low resolution, which inhibits measurements specific to trabeculae and may result in 

underestimates of BMD. Underestimation results from averaging the total bone mineral content 

over the entire measurement area, which includes the medullary cavity, to calculate BMD. Due 

to this issue, it was hypothesized that BMD would be negatively related to medullary cavity 

diameter and positively related to cortical thickness and cortical index.  
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ABSORPTIOMETRY 

Absorptiometry techniques also rely on the theory of attenuation, but certain absorptiometry 

techniques, such dual-energy X-ray absorptiometry (DXA), have the capability of differentiating 

between bone, fat, and soft tissue. Techniques have advanced from the use of photons in the 

1960s to X-rays beginning in the 1980s (Allen and Krohn 2014). DXA is the most widely used 

modality for measuring areal BMD in children and infants (Adams and Shaw 2004; Kalkwarf et 

al. 2013). DXA emits an X-ray beam that alternates between 2 different energies. As the beam 

passes through the bodily tissues, the interaction of the X-ray with chemical compounds within 

the body differentially attenuates the 2 energies of the X-ray (Laskey 1996; Lukaski 1993; 

Sartoris and Resnick 1989). Differential attenuation of the two energies allows for the 

discrimination between soft tissue and bone (Ward et al. 2007). Water and organic compounds 

attenuate the intensity of an X-ray beam less than bone. An external detector/s on the opposite 

side of the body determines the value of attenuated energy that reaches it and a computer 

interface provides an image of the scanned areas. Attenuation values of the bone are calculated 

for each pixel of the image by subtracting soft tissue values from the combined soft tissue and 

bone value. The attenuation values of the bone are converted into areal BMD (g/cm
2
) by 

comparing the attenuation values with values obtained from a reference standard. Bone area is 

calculated by summing the pixel areas within the bone edges. BMC (g) is obtained by 

multiplying bone area by BMD (Mimouni and Littner 2004; Ward et al. 2007).  

Currently, DXA is considered the gold standard for measuring bone mass (Allen and Krohn 

2014). Numerous studies have shown that DXA is a valid technique for assessing fracture risk 

and diagnosing osteoporosis in adults (Black et al. 1992; Cummings et al. 1993; Gärdsell et al. 

1993; Hui et al. 1989; Melton et al. 1993; Nguyen et al. 1993; Ross et al. 1991). The most 

commonly assessed regions for measuring bone mass using DXA are the whole body, lumbar 

spine, proximal femur, forearm, or a hand (Mimouni and Littner 2004). DXA has become the 

gold standard for measuring BMD in adults because it has several advantages. The whole body 

and specific regions can be scanned rapidly, ranging from 2-15 minutes (Chan 1992) and the 

exposure to ionizing radiation is low (~1-4 µSv) relative to traditional radiography (Allen and 

Krohn 2014; Lewis et al. 1994). DXA also has high precision and accuracy of measurement of 

bone mineral content (Lukaski 1993).  



77 

 

Although DXA is used to measure bone mass in infants/children, there are many disadvantages 

to its use for infants/children. Although the radiation dose from DXA scans is low (Lewis et al. 

1994), there is an ethical debate on the use of any amount of ionizing radiation on 

infants/children without medical necessity (Mimouni and Littner 2004). Even though normative 

pediatric data for DXA measured areal BMD is available in the literature and included in most 

DXA software packages, manufacturers of DXA systems caution against using data taken from 

the literature for comparison purposes. It is recommended that users obtain institutional and 

device specific normative data (Laskey 1996). For any given bone, different devices produce 

substantial variations in BMD values and standardization of the data is difficult (Benmalek and 

Sabatier 1998; Specker and Schoenau 2005). Furthermore, there are significant differences in the 

published normative pediatric data. Due to the difference in reference data used, there have been 

inconsistencies in the diagnosis of osteopenia in children with chronic disease (Leonard et al. 

1999). Also, there are holes in the normative pediatric data that is available. Data on whole body 

BMC and areal BMD of children younger than 3 years of age is lacking, especially in the newer 

generation fan-beam scanners (Kalkwarf et al. 2013).  

Another drawback for the use of the DXA on infants/children is the 2-dimensional (2D) nature of 

the data that is obtained. The 2-dimensional nature of DXA BMD measurements cannot account 

for differences in bone size, which is major limitation because of growth (Ward et al. 2007). 

Even if volumetric BMD is identical in 2 children, a larger child will have a greater areal BMD 

than a smaller child. In a study conducted on small and large piglets, DXA consistently 

underestimated BMC in small piglets by range of 17-40% (Brunton et al. 1993). A study of sick 

and healthy children reported similar findings. DXA underestimated BMD in children, regardless 

of age, sex, or health status, in comparison to volumetric BMD obtained with QCT (Wren et al. 

2005). The normative reference data that is available are based on infants/children that are 

average size for their age. This reference data can be misleading when being used to assess 

normality of areal BMD in infants/children that are large or small for their age (Gafni and Baron 

2004; Schoenau et al. 2004). To decrease error, normative reference data should be specific for 

age, sex, ethnicity, body size, and pubertal status. An attempt to correct for this problem has been 

made my estimating volumetric BMD from DXA scans, but the calculation of the volumetric 

measurements use inferences of bone geometry based on a database of 3-dimensional (3D) QCT 

datasets. However, the use of these methods is controversial because it may not reflect true 



78 

 

volumetric BMD (Gafni and Baron 2004). A third limitation is DXA scans cannot differentiate 

between cortical and trabecular bone. Areal BMD obtained from DXA includes both cortical and 

trabecular bone (Specker and Schoenau 2005). Due to its 2D nature and to the inability to 

differentiate between cortical and trabecular bone, DXA scans cannot be used to assess bone 

architecture or geometry (Allen and Krohn 2014). 

Another disadvantage of DXA is due to the equipment itself. The equipment is not portable, 

which is problematic for ill infants/children that cannot be easily transported to the scanner. 

Also, a skilled technician is required to conduct the scan and properly analyze the data. Correct 

positioning within the scanner by the technician has significant effects on the quality of the scan 

and the resulting data (Allen and Krohn 2014). Movement artifacts are another limiting factor of 

the quality of DXA scans. It is also necessary for the infant/child to remain motionless during 

scanning to prevent movement artifacts, which artificially inflate areal BMD values (Koo et al. 

1995b). Although scanning times are relatively low, but it may not be possible for an infant/child 

to remain still for even a short length of time without restraint or sedation (Chan 1992).  

QUANTITATIVE COMPUTED TOMOGRAPHY (QCT) 

Computed tomography (CT) is a technique that uses subtle differences in X-ray attenuation to 

produce a series of 2D images that represent transverse slices of the scanned object. The 

thickness of each transverse slice is known and used to generate volumetric data. Finally, the 

transverse slices are reconstructed to produce 3D images of anatomical structures within the 

body. The 3D data can be used to assess bone geometry (Allen and Krohn 2014). The use of the 

digital information to obtain quantitative information is called quantitative computed 

tomography (QCT) (Gilsanz 1998).  

CT has many advantages over DXA for measuring bone geometry and BMD in infants/children. 

Due to its 3D capabilities, QCT bone measurements are independent of size. Another advantage 

of CT is its higher resolution than radiography and DXA, enabling differentiation between 

cancellous and cortical bone. CT bone measurements can be obtained from any skeletal site and 

the addition a bone mineral reference standard to the scan for calibration purposes enables 

volumetric BMD to be estimated. Measurements obtained by QCT include cancellous bone 

density, cortical bone density, bone volume, bone size, and geometry measurements (Gilsanz 
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1998). The coefficients of variation for QCT bone measurements in children range from 0.6 and 

2% (Gilsanz et al. 1997; Kovanlikaya et al. 1996). There are limitations to CT measurements 

obtainable from clinical scanners. Partial volume averaging, also called partial volume effects, is 

a limitation for the quantification of trabecular parameters using CT. Each image is made up of a 

large amount of pixels. Each pixel represents an attenuation value or Hounsfield unit (HU). A 

single trabecula is small in comparison to a pixel. Therefore, each pixel may contain more than 

just bone and osteoid. A single pixel can include osteoid, bone trabecula, and bone marrow, but 

the attenuation value representing the pixel is the average attenuation of all densities captured 

within the pixel (Genant et al. 1996). This is a particular problem at the interface between 

endocortical bone and bone marrow, and between the bone marrow and trabecular bone. Higher 

resolution CT scanners use a smaller pixel sizes and can minimize partial volume averaging but 

not eliminate it. However, increasing the resolution also increases radiation exposure. Clinical 

CT scanners do not have the resolution to identify individual trabecula and cannot produce data 

on trabecular architecture.  

Peripheral QCT (pQCT) scanners are relatively new and have a higher resolution than clinical 

CT scanners, which enables the assessment of  trabecular architecture (Allen and Krohn 2014). 

Geometric properties of bone, such as polar moment of inertia and section modulus, can be 

obtained from pQCT data and are good indicators of bone strength (Augat et al. 1996; Turner 

and Burr 1993; van der Meulen et al. 2001). Other advantages of pQCT over clinical CT 

scanners are that pQCT scanners are  much smaller than clinical CT scanners, less expensive, 

and use less ionizing radiation (<1.5-4 µSv) (Ward et al. 2007). 

Exposure to ionizing radiation is the largest disadvantage of using CT scanners to assess bone 

status in infants/children. Radiation exposure depends on the duration of the scan and increases 

with resolution, number of slices, and the specific CT scanner (Allen and Krohn 2014). 

Radiation exposure can range from 1.5 µSv to 90 µSv (Gilsanz 1998). Like DXA, movement 

artifacts adversely affect the quality of the scan. It may not be possible for infants/children to 

remain still during scanning. pQCT also has disadvantages, some of which are similar to CT. 

Although pQCT scans reduce radiation exposure, it still exposes the infant/child to ionizing 

radiation. Another disadvantage of pQCT scanners is the restriction to measurements of the 

appendicular skeleton. Partial volume effects are still a limitation of pQCT scanners for the 
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measurement of cortical BMD in infant with cortical thickness of less than 2 mm (Binkley and 

Specker 2000; Schönau 1998). Scan times are relatively long, 2-3 minutes per slice, and the 

infant/child must remain motionless. Technical expertise is required for proper operation of 

pQCT scanners and postprocessing protocols have significant effects on analysis integrity. 

Moreover, pQCT scanners are still relatively expensive, although less than clinical scanners, and 

require costly maintenance (Allen and Krohn 2014). Also, pediatric reference data remains 

limited for both clinical CT and pQCT scanners (Ward et al. 2007).  

MAGNETIC RESONANCE IMAGING (MRI) 

Magnetic resonance imaging is a technique based on the resonance and relaxation of protons, 

which generate a magnetic signal in lipids and water within the body. Different tissues have 

varying amounts of water and lipids, which allows the imaging and differentiation of various 

anatomical structures (Ward et al. 2007). Bone is an exception and has no or few free protons, 

which MRI interprets as a void space (Allen and Krohn 2014). Bone appears black on MRI 

images, while the marrow appears white as it is composed of a large degree of lipids (Ward et al. 

2007). Like QCT, the scans are obtained in slices. The voids produce a negative image of the 

cortical bone and trabecular network in 2D on each slice. The slices are reconstructed to obtain 

3D volumes (Allen and Krohn 2014). Greater resolution is required to evaluate trabecular bone. 

Clinical MRI scanners typically do not have the resolution necessary to clearly delineate 

individual trabecula, but structural parameters can be determined using postimage processing 

techniques. Quantification of bone parameters using MRI correlate well with ash weight and 

bone parameters obtained from QCT scans (Hong et al. 2000). High resolution MRI (hrMRI) and 

micro-MRI (µMRI) can achieve the resolutions necessary to evaluate individual trabecula, but 

hrMRI and µMRI are currently used for research and their applicability to clinical practice has 

not been assessed (Allen and Krohn 2014; Ward et al. 2007). 

There are several advantages to MRI. The major advantage of MRI is that it does not require the 

use of ionizing radiation. Also, measures taken by MRI are independent of size, which is 

especially important for measurements obtained from infants/children. MRI can distinguish 

between cortical and trabecular bone and measures of bone morphometry can be obtained and 

used to calculate bone strength. There are several disadvantages to using MRI. MRI devices are 

extremely expensive and require trained technicians to operate the device. MRI has long 
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scanning times (20-30) and the process is very noisy. Long scanning times and loud noise is 

especially problematic for infants/children that may not be able to remain still and have a higher 

likelihood of being frightened by the loud noise. Furthermore, parents cannot remain in the room 

during scanning, which may contribute to the distress of the infant/child (Allen and Krohn 2014; 

Ward et al. 2007).  

QUANTITATIVE ULTRASOUND (QUS) 

Quantitative Ultrasound (QUS) is a non-invasive technique for assessing the physical properties 

of bone. QUS measures speed of sound (SOS, m/s) of an ultrasound wave and the broadband 

attenuation (BUA, dB/MHz) of the signal strength as it travels along the bone. Ultrasound waves 

are inaudible and range in frequency from the upper end of the audible range and into the 

Megahertz range (Mimouni and Littner 2004). BUA will not be discussed further because it is 

not being measured in this study. QUS measurements are restricted to areas of the skeleton with 

limited amounts of overlying soft tissue because ultrasound waves are almost completely 

attenuated by air, restricting QUS measurements to the appendicular skeleton (Allen and Krohn 

2014). 

SOS is a measure of the speed and distance ultrasound waves travel from the transmission 

source, through the bone, and to the detector (Allen and Krohn 2014). SOS is also referred to as 

the velocity of sound and apparent velocity of ultrasound. There are 2 methods for measuring 

SOS using QUS, the transverse transmission technique and the axial transmission technique. 

These techniques differ based on transducer placement. The transducers are placed on opposite 

sides of the measured bone site in the transverse transmission technique. A transducer on one 

side of the bone transmits the signal while the transducer on the opposite side of the bone 

receives the signal after it has traveled through the bone. In the axial transmission method, the 

transducers are aligned along the long axis of the bone. The signals obtained by the receivers are 

the combination of all waves propagating axially along the long axis of the bone. A single probe 

contains all of the transducers and with a set distance between them. The known distance and 

propagation times are used to calculate SOS (Laugier 2011).  

SOS is influenced by the material and physical properties of the bone (Specker and Schoenau 

2005). Bone mineral density and elastic modulus are positively correlated with SOS (Mimouni 
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and Littner 2004). In a study of 20 human calcaneal samples, SOS explained 71.6% of the 

variation in elastic modulus (Hodgskinson et al. 1997). Several other studies have reported a 

strong relationship between SOS taken at the tibia and elastic modulus and BMD (Abendschein 

and Hyatt 1970; Ashman et al. 1987; Ashman and Rho 1988; Lee et al. 1997; Yoon and Katz 

1976a; Yoon and Katz 1976b). Structural properties also influence SOS. Research has also 

shown that bone SOS is influenced by cortical thickness, porosity, and anisotropy (Bossy et al. 

2004b; Foldes et al. 1995; Greenfield et al. 1981; Guglielmi et al. 2009; Kann et al. 1993; 

Kaufman and Einhorn 1993; Kohles et al. 1994; Lee et al. 1997; Mimouni and Littner 2004; 

Njeh et al. 1997; Prevrhal et al. 2001; Raum et al. 2005; Specker and Schoenau 2005; Tansug et 

al. 2011). Due to the findings of these previous studies, it was hypothesized that SOS would also 

be significantly related to BMD, cortical thickness, and by extension cortical index in the current 

study. 

SOS is influenced by many of the same material and structural properties that determine bone 

strength. Studies have shown that QUS can be used as a tool to assess bone strength (Foldes et al. 

1995; Kang and Speller 1998; Njeh et al. 1999; Pearce et al. 2000; Prins et al. 1997). In a 

cadaveric study, heel SOS measurements were strongly correlated with femur strength. Tibial 

SOS was only weakly correlated with femur strength (Bouxsein et al. 1999), but a study 

conducted on cadaveric tibia specimens found that tibial SOS was highly correlated with 

ultimate and yield strength of cortical specimens taken from the tibia (Lee et al. 1997). Similar 

findings have been reported for SOS measurements of the phalanges in comparison to radial 

strength (Njeh et al. 2000). Currently, QUS is only used for the assessment of osteoporosis in 

adults. Specifically, heel QUS measures taken using the transverse transmission technique have 

been proven to predict hip fractures and other osteoporotic fractures comparably to DXA (Hartl 

et al. 2002; Laugier 2011). Yet, several clinical studies have shown that the axial technique is 

capable of discriminating healthy from osteoporotic individuals using other bone sites 

(Barkmann et al. 2000; Hans et al. 1999; Njeh et al. 2001; Talmant et al. 2009; Weiss et al. 

2000). Prospective studies found that SOS measurements are capable of predicting fracture risk 

independently of BMD (Bauer et al. 1997; Hans et al. 1997). Research also shows that SOS 

measurements are capable of discriminating between adults patients with osteoporotic fractures 

and age-matched controls (Gluer et al. 1996; Gregg et al. 1997; Njeh et al. 1997).  
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SOS may be a better candidate parameter than BMD for the evaluation of osteoporosis because it 

is influenced by both bone mass and structure (Drozdzowska and Pluskiewicz 2001; Kaufman 

and Einhorn 1993; Miller 2000; Njeh et al. 2000; Njeh et al. 2001; Töyräs et al. 1999; Wear 

2000; Wuster et al. 1992). Several studies have suggested that SOS is directly related to bone 

quality (McDevitt et al. 2005; Pereda et al. 2003; Ritschl et al. 2005; Rubinacci et al. 2003) 

because it is influenced by structural properties as well as BMD (Chen et al. 2004). In patients 

with Paget’s disease, SOS measurements were able to discriminate between affected and 

unaffected limbs within the same individual, even though there was no difference in estimated 

vBMD between the limbs (Pande et al. 2000). This indicates that SOS measures something 

besides BMD that affects bone strength and it also indicates that there are aspects of bone 

fragility not captured by BMD. 

The clinical use of QUS in infants/children has yet to be established because of the lack of 

adequate normative reference data (Specker and Schoenau 2005). The majority of research on 

bone SOS and infants focuses on newborn term and preterm infants during the immediate 

neonatal period or the preterm infant at term corrected age (Ahmad et al. 2010; Altuncu et al. 

2007; Chen et al. 2012; Gursoy et al. 2008; Koo et al. 2008; Littner et al. 2004a; Littner et al. 

2003; Littner et al. 2005; McDevitt et al. 2005; Nemet et al. 2001; Pereda et al. 2003; Rigo and 

De Curtis 2006; Rubinacci et al. 2003; Tomlinson et al. 2006; Wright et al. 1987; Yiallourides et 

al. 2004). Longitudinal studies are limited by small sample sizes, restricted to preterm or very 

low birth weight infants, or their measurement intervals are inconsistent (Gonnelli et al. 2004; 

Litmanovitz et al. 2003; Litmanovitz et al. 2004; McDevitt et al. 2007; Mercy et al. 2007; Rack 

et al. 2012; Ritschl et al. 2005; Tansug et al. 2011; Tomlinson et al. 2006; Zadik et al. 2003).   

QUS performed as well as DXA in identifying low BMD in children with fragility fractures 

(Fielding et al. 2003). Also, QUS performed better at predicting fractures in isolated infant bones 

in vitro than BMC (Wright et al. 1987). There are several advantages of using QUS over other 

skeletal imaging modalities to assess bone strength in infants/children. Scan time is quick and the 

device is portable and much less expensive than other skeletal imaging modalities. Moreover, 

QUS does not use ionizing radiation nor does it require technical expertise to operate the device 

(Allen and Krohn 2014).  
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Based on the above mentioned research, QUS appears to be a promising tool for evaluating 

infant bone quality. However, there are gaps in the literature that have prevented QUS from 

being identified as a diagnostic tool. More research is necessary to clarify exactly what aspects of 

bone quality are being measured by SOS. It is also unclear how changes in bone quality 

influence SOS readings or how sensitive SOS readings are to changes in bone quality. 

Additionally, the normal range of variation in SOS readings, that is specific to age in months 

throughout the first year of life, remains unknown. The current research uses what is known 

about bone biology and bone biomechanics to fill these gaps in the literature for the purposes of 

determining whether QUS can be used as a diagnostic tool for the evaluation of infant bone 

quality.  

Summary 

Bone’s ability to resist fracture depends on its structural and material biomechanical properties. 

These properties are affected by biological and environmental factors beginning in utero. 

Biological factors that affect bone include genetics and any congenital disease that interferes 

with development and growth. There are a large number of environmental factors that can affect 

bone beginning with the prenatal environment. Any maternal nutritional deficiencies or toxins 

introduced into the maternal body can have adverse effects on the skeletal development in utero. 

After birth, nutritional deficiencies, regardless of etiology, can adversely affect skeletal growth 

and development. Adverse effects on growth and development affects bone material and/or 

structural properties, affecting bone quality and possibly resulting in bone fragility. Aspects of 

bone quality can be assessed through invasive (bone histology) and non-invasive (imaging) 

methods. QUS is a promising non-invasive technique for the evaluation of infant bone quality 

that does not expose the infant to ionizing radiation. However, gaps in the literature have 

prevented QUS from definitively being identified as a diagnostic tool for infants. This study uses 

what is known about the adverse effects of chronic illness and prematurity on infant bone growth 

and strength to assess what SOS is measuring and, therefore, whether QUS is a valid diagnostic 

tool for the assessment of infant bone quality.  
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CHAPTER 3 : MATERIALS AND METHODS 

In both the medical examiner and clinical setting, the assessment of bone fragility may be pivotal 

to the diagnosis or exclusion of non-accidental injury as the cause of trauma. However, there is 

no non-invasive quantitative method for evaluating infant bone quality that does not require the 

use of ionizing radiation, with one exception. Magnetic-resonance imaging (MRI) with powerful 

magnets is capable of measuring aspects of bone quality in infants, but scan times are relatively 

long (20-30 minutes) and may require sedation (Ward et al. 2007). QUS may be a feasible 

alternative for measuring bone quality in infants, as it does not use ionizing radiation and scan 

times are relative short (2-3 minutes). The purpose of this research was to assess QUS as a 

possible method for evaluating bone quality in infants. In order to address this issue, the study 

sample was drawn from infants receiving autopsies in the medical examiner and hospital 

settings. A combination of qualitative and quantitative data was collected from the study sample 

as indicators of the infant’s bone health. The following data were collected from each infant: 

areal bone mineral density values (aBMD), bone cross-sectional measurements taken in the 

medio-lateral plane, qualitative evaluations of bone mineralization from radiographs, histological 

evaluation of bone normality/abnormality, as well as demographic and developmental 

information, individual and family medical histories, and details regarding the circumstances 

surrounding death. See Figure A- 1 of the Appendix for a complete list of variables collected for 

each infant. SOS readings obtained from each infant in the study sample were compared with 

these bone health indicators to assess the validity of QUS as a technology for the evaluation of 

infant bone quality. This chapter describes the variables collected, study sample, data collection 

methods, statistical analyses, and limitations of the materials and methods utilized in this 

research.  

Infant Injury Database 

The Infant Injury Database (IID) contains an extensive amount of de-identified information 

gathered from medical records, family medical history, investigator reports (medical examiner, 

law enforcement, and child protective services), and autopsy findings associated with infants that 

received examinations at Harris County Institute of Forensic Sciences (HCIFS). The variables 

recorded in the IID pertain to each infant’s demographic information, as well as information on 
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health, development, and circumstances surrounding the death. The IID was developed as a tool 

for understanding infant death. All data pertaining to the current study sample, including bone 

measurements, were recorded in the IID by the researcher. A brief description of the data 

recorded in the IID follows. See Figure A- 1 of the Appendix for a more detailed explanation of 

each variable recorded in the IID.  

The IID contains demographic information, such as sex, race, date of birth, and date and time of 

death. These variables were obtained from investigator reports and medical records. Date of birth 

and death were then used to calculate chronological age in months. Data associated with the 

circumstances surrounding the death were also obtained from investigator reports. These 

variables include the location the infant was found (bed, crib, floor, etc.), the relationship of the 

person that found the infant to the infant (mother, father, mother’s boyfriend, etc.), and where the 

infant died (hospital or residence). Other variables include whether the infant was sleeping alone 

or co-sleeping. If the infant was co-sleeping, the relationship of each individual in the bed was 

recorded (mother, father, siblings, etc.) along with their approximate weights. If the infant died at 

the hospital, method of transportation to the hospital (EMS or private vehicle) was documented. 

If emergency medical services (EMS) were contacted, the time EMS arrived on scene was 

recorded along with the time of arrival to the hospital. Cardiopulmonary resuscitation related 

variables were also documented in the IID and include whether the infant received CPR, who 

performed the CPR (bystander, medical personnel, or both), and the type of CPR performed 

(anterior, two-thumb, or both). For cases in which the infant survived for greater than 1 day in 

the hospital, the date/time of arrival to the hospital and date/time of death were used to calculate 

the length of the hospital delayed death.   

Information for variables pertaining to infants’ health at birth were obtained from birth records 

and recorded in the IID. These variables include whether the mother obtained prenatal care, 

estimated gestational age (EGA), and birthweight. EGA was used to determine whether an infant 

was born prematurely. Any infant born less than 37 weeks gestation was categorized as 

premature or preterm, while infants born at 37 weeks gestation or later were categorized as full 

term or term infants. EGA was also used to calculate term-corrected age by subtracting the 

number of weeks born prior to term, 40 weeks gestation, from chronological age in weeks. This 

value was then converted back to age in months. Birth records were also reviewed for reports of 
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congenital anomalies and maternal tobacco, alcohol, prescription and illicit drug use during 

pregnancy. In the IID, this information was recorded as medical history.  

Information for variables associated with infants’ health and development was obtained through 

review of medical records and investigator reports. Reports of congenital anomalies or chronic 

illness were recorded under medical history. There is no commonly used definition for chronic 

illness in the clinical literature, but a definition for chronic illness was developed for use in the 

current study based on definitions used by other studies and recommendations made in the 

literature (Mokkink et al. 2008; Perrin et al. 1993; Stein et al. 1993; van der Lee et al. 2007). 

Chronic illness was defined as any disease or condition that was diagnosed during or prior to 

autopsy which likely had a negative effect on the growth and development of the infant, or 

required pharmacological treatment that has known side effects impacting the growth and 

development of the child (Mokkink et al. 2008). An exclusionary criteria based on duration of 

illness was not used for two reasons. First, the most commonly used duration for a chronic illness 

is three months, but this duration is not based on systematic research or on conceptual grounds 

(Stein et al. 1993). Secondly, the duration of time required before illness begins to adversely 

effects the skeleton is unknown and likely depends on the scale at which the bone is being 

examined. The current study examined bone at more than a single scale. Current and past 

medications, as well as any genetic disorders were documented in the IID.  Level of gross motor 

development (non-ambulatory, crawling, cruising, or walking) and indications of developmental 

delays were also recorded variables.   

Autopsy reports also provided information for variables associated with infant health and 

traumatic injury. Recorded variables obtained from the autopsy report include cause of death 

(COD), manner of death (MOD), pathological findings, and traumatic injuries. With regard to 

pathology, each organ with pathological findings was documented individually and specific 

findings noted. If traumatic injuries were present, specific locations of external and internal 

traumatic injuries were recorded. Variables associated with skeletal injuries included specific 

skeletal element (rib, femur, occipital bone, etc.), location on the bone (proximal, distal, distal 

1/3 shaft, etc.), side (right or left), number of element (rib 1, rib 2, rib 3, etc.), type of fracture 

(buckle, transverse, oblique, etc.), and degree of healing assessed macroscopically (no healing, 

soft callus, hard callus, etc.). Variables such as height (cm) and weight (kg) at the time of death 
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were also obtained from autopsy reports and were used to calculate growth percentiles for each 

infant, such as length for age, weight for age, and weight for length. Growth percentiles were 

calculated based on growth standards specific to sex published by the World Health Organization 

(WHO) in 2006 (WHO Multicentre Growth Reference Study Group 2006). The Center for 

Disease Control and Prevention (CDC) recommends using the WHO growth standards for 

individual’s under the age of 2 years. These growth standards are used by pediatricians to 

determine how an infant, for their age and sex, compares in size to other infants of similar age. 

Study Sample 

The study sample consisted of infants ranging in age from 30 weeks gestation (actual or 

corrected) to 1 year postnatal at the time of death. All infants included in this study received 

autopsies at the Harris County Institute of Forensic Sciences (HCIFS) or Texas Children’s 

Hospital (TCH) in Houston, Texas. During the autopsy, the pathologists recorded all injuries and 

pathological findings as well as growth measurements. The cases autopsied by HCIFS also 

received full rib examinations. Full rib examinations consisted of removing the periosteum and 

all soft tissue from the pleural surface of the ribs and examining each rib from sternal to vertebral 

end for fractures. When non-accidental injury was suspected, a forensic anthropologist 

performed a pediatric skeletal examination as described by Love and Sanchez (2009) to identify 

skeletal injury. For infants receiving autopsies at TCH, the pathologist submitted a form for each 

infant describing the autopsy findings and all relevant medical and family history information 

(Figure A-2 and Figure A-3 of the Appendix). This information was recorded in the IID.  

This research employed a prospective research design. All infants within the specified age range, 

regardless of medical history or circumstances surrounding death, autopsied at HCIFS over a 9 

month period were included in the study. The prospective and all inclusive research design 

increased the probability that infants included in this study formed a representative study sample 

of the medical examiner and chronically ill infant population. 
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Methods 

OBTAINING AREAL BMD ESTIMATES FROM DIGITAL RADIOGRAPHS 

Radiographic absorptiometry was used to calculate areal BMD estimates from pixel gray-scale 

values obtained from digital radiographs of the forearm and leg. All radiographs were taken with 

an Aribex Nomad Pro handheld cordless x-ray system (Aribex, Inc., Orem, UT) on 10” x 12” x-

ray cassettes. All radiographs were taken at 60 kVp for 0.75 seconds at 2.5mA. Exposure time 

was selected based on the apparent contrast between bone and soft tissue, as well as the amount 

of apparent saturation of the density spheres where were to calculate the bone mineral density 

estimates. The x-ray unit was placed in a custom built stand to maintain a consistent 895 mm 

distance between the x-ray cassette and the x-ray unit and to ensure that the x-ray was 

perpendicular to the plane of the table (Figure 3-1). A plumb-bob was also used to ensure that the 

center of the x-ray unit’s collimator cone was aligned with the midshaft region of the forearm 

and leg. A lead apron was draped over the open side of the stand to protect the user from 

radiation backscatter while the x-ray unit was in use. For each decedent, the left arm and leg 

were radiographed in anatomic position (Figure 3-2-Figure 3-3). Masking tape was used to secure 

the limb to the x-ray cassette in anatomic position. When therapeutic equipment obstructed 

radiographs of the left limbs, radiographs of the right limbs were taken. Spherical phantom rods 

(CIRS, Norfolk, VA) of known hydroxyapatite density (250 mg/cm
3
 and 500 mg/cm

3
) were 

placed to the right and left of the limb, near the mid-shaft of the tibia/fibula and radius/ulna, in 

each radiograph (Figure 3-2-Figure 3-3). The spherical phantom rods allowed for calibration of 

the radiograph when the basic image intensity values (gray-scale values) from the radiographic 

images were converted to units (g/cm
2
) of hydroxyapatite. While the density phantoms were 

placed near the midshaft of the tibia/fibula and radius/ulna, care was taken to ensure that there 

was not tissue overlying the spheres in the radiographs. X-ray cassettes were processed using a 

VertX (iCRco, Goleta, CA) computed radiography unit and Clarity PACS software (iCRco, 

Goleta, CA). After processing, all radiographs were exported in DICOM format and sent to a 

biomechanical engineer at Medical Metrics Inc. and a pediatric radiologist at TCH. 
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Figure 3-1. Setup for obtaining radiographs.  
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Figure 3-2. Radiograph of right forearm in anatomic position with spherical density phantoms alongside.  

 

 

 
Figure 3-3. Radiograph of left leg with spherical density phantoms alongside.  

  



92 

 

A custom computer program was developed by a biomechanical engineer at Medical Metrics Inc. 

(Houston, TX) to convert basic image intensity values (gray-scale values) of the radiographic 

images to units (g/cm
2
) of hydroxyapatite. The basic image intensity values were obtained from 

the pixels which comprised the radiographic image. The program functioned by first prompting 

the user to identify the approximate center of the phantom sphere within the radiographic image. 

Then the program automatically identified the perimeter of the sphere. In order for the program 

to correctly identify the perimeter of the sphere, the density phantom must be located in a 

relatively homogeneous area without any overlying tissue. The program then identified the 

image intensity values from the periphery of the density phantom (background intensity values). 

The background intensity values were subtracted from the intensity values obtained within the 

radiographic image of the density phantom. The program then calculated a linear regression 

between the known bone mineral content at each location within the phantom and the 

background-subtracted image intensity values of the density phantom. The program performed 

this calculation by calculating the length of the path of the x-ray beam through the sphere at each 

location, and determining the volume as the x-ray path length times the pixel size squared. The 

known density of the sphere, times the volume that the x-ray beam passed through, gave the bone 

mineral content. 

Pilot experiments revealed that the radiographs tended to saturate toward the center of the 

radiographic image of the sphere. Thus, a regression formula was developed using only the outer 

third of the density phantom with the hydroxyapatite content of 250 mg/cm
3
. Despite only using 

the outer third, hundreds of data points were still available to obtain the regression equation, and 

the correlation coefficients were consistently > 0.95 within the same radiograph. Reliability of 

the custom program was estimated by the biomechanical engineer. BMD measurements were 

repeated for 21 of the radiographs. The average difference between measurements was -0.0054 

g/cm
2
.  

After the regression equation for converting image intensity values into hydroxyapatite content 

was established, the center of the target diaphysis (radius or tibia) was identified. The program 

prompted the user to identify the most proximal and distal points of the long bone diaphysis to be 

measured. After these points were identified, the program placed a 10 mm x 10 mm box at the 

midshaft of the bone. The box edges were placed parallel to the periosteal surfaces of the bone. If 
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necessary, the box was adjusted by the user. The program used the box to differentiate between 

the image intensity values associated with the image of the diaphysis and those associated with 

the surrounding soft tissue. The background image intensity values obtained from the 

surrounding soft tissue were subtracted from the image intensity values obtained from the image 

of the diaphysis. An example of the image intensity values plotted by their associated pixel 

spatial coordinates is provided in Figure 3-4. After subtracting image intensity values associated 

with the surrounding soft tissue, the program used the previously determined regression equation 

from the density phantom to calculate the total bone mineral content of the 10 mm section of the 

bone, as well as the areal bone density (g/cm
2
). The program failed to obtain a BMD value when 

the spherical phantom was not in a relatively homogeneous area of the image (e.g. due to over-

lying soft-tissue or artifacts in the imaging). The program also failed if there was not at least a 

few millimeters of bone to either side of the diaphyseal region being measured. This procedure 

was carried out by the biomechanical engineer for each radiograph. The data were output in 

excel file format, assembled into one master excel file, and sent to the researcher to enter into the 

IID. 

QUALITATIVE RADIOGRAPHIC EVALUATION 

All radiographic images were also sent in DICOM format to a pediatric radiologist for qualitative 

evaluation of bone mineralization. The pediatric radiologist qualitatively assessed bone 

mineralization by scoring each radiograph for rachitic changes and degree of demineralization. 

Rachitic changes were scored as present or absent and characteristics associated with rachitic 

changes, such as metaphyseal widening, irregular and/or fraying margins, and metaphyseal 

cupping, were recorded. Mineralization was scored on a scale of 0-2, with 0 indicating normal 

mineralization, 1 indicating indeterminate, and 2 indicating abnormal mineralization. An 

indeterminate score was given to bones which appeared somewhat demineralized, but not 

abnormal. Characteristics associated with demineralization, such as cortical and trabecular 

thickness and lucency were also recorded. The form used by the pediatric radiologist to record 

scores and observations for each infant is provided in Figure A-4 of the Appendix. All scores and 

observations were entered in the IID. 
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Figure 3-4. a. Plot of image intensity values by spatial coordinates of the pixels in the image. Note that the plot 

of image intensity values has two peaks. Each peak corresponds to image intensity values obtained from the 

medial and lateral cortical walls. The valley between the two peaks represents image intensity values obtained 

from the medullary cavity. b. Radiograph of leg with green highlighted area representing the location where 

image intensity values were obtained for the plot (a).   

 

TIBIAL MEASUREMENTS 

Digital radiographs of the tibia were used to obtain midshaft cross-sectional measurements. 

Using the software program ImageJ (Rasband 1997-2014), diaphyseal diameter, cortical 

thickness, and medullary diameter at the midshaft of the tibia were measured in mm. For each 

radiograph, the measurement scale was calibrated prior to obtaining any measurements. 

Calibration was carried out using the known diameter (25 mm) of the spherical density phantom. 

A line was drawn across the center of the image of the density phantom and a plot profile of the 

image intensity values associated with the line was generated by the program. The plot profile 

was used to identify the edges of the density phantom in a systematic manner by using the half-

maximum intensity values to define the edge locations (Figure 3-5). Half-maximum intensity 

values are the halfway point between the lowest image intensity value and the highest image 

intensity value for each slope of the line. The midshaft of the tibia was identified by drawing a 

line from the most proximal to the most distal points on the tibial diaphysis. The center of the 

line is automatically indicated by the program. After the midshaft was identified, a line  
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Figure 3-5. Setting the scale in ImageJ. Plot profile of the image intensity values is shown at the bottom of the 

figure. Red arrows on the plot profile indicate half-maximum intensity points along plot profile line.  
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perpendicular to the long axis was drawn across the midshaft and a plot profile of the image 

intensity values across the midshaft was generated by the program. The plot profile of the line 

across the midshaft had two peaks. Each peak corresponded to the image intensity values across 

one of the cortical walls. Similar to locating the edges of the density phantom, the edges of the 

periosteal and endocortical surfaces of the cortical walls were identified using a plot profile. The 

length of the line on the radiographs was adjusted until the endpoints were at locations associated 

with the half-maximum intensity values along the plot profile line. In the plot profile, the half-

maximum intensity values along the outer slopes of the peaks defined the edges of the periosteal 

surface. The length of the line associated with the half-maximum intensity values defined the 

diameter of the tibial midshaft. The half-maximum intensity points on the inner slopes of the 

peaks defined the edges of the endocortical surface (Figure 3-6). The length of the line associated 

with the half-maximum intensity values on the inner slopes of the peaks on the plot profile line 

defined the medullary cavity diameter. All measurements were taken in mm. Medullary cavity 

diameter was subtracted from midshaft diameter to obtain the cortical thickness measurement. 

The ratio of cortical thickness to diaphyseal diameter was then used to calculate cortical index. 

QUANTITATIVE ULTRASOUND EVALUATION (SOS MEASUREMENT) 

Bone SOS readings were measured with the Sunlight MiniOmni Bone Sonometer (BeamMed 

Ltd, Petah Tikva, Isreal). The MiniOmni™ Ultrasound Bone Sonometer uses the axial 

transmission technique to measure SOS along long bones, such as the radius, metatarsal, tibia, or 

the phalanx (Mimouni and Littner 2004). The ultrasound probe emits an array of ultrasound 

waves with a center frequency of 1.25 MHz, from a pair of transmitting transducers at one end of 

the probe. The signal travels through the soft tissue until it encounters bone. Some of the 

ultrasound waves encounter the bone at a critical angle and are refracted such that the waves 

propagate along the long axis of the bone. These waves then exit the bone at the same critical 

angle at which they entered the bone. A pair of receiving transducers at the opposite end of the 

probe detects these waves once they exit the bone. The first signal to be detected by the receiving 

transducers is used to calculate SOS. The ultrasonic pulses are only transmitted and received by 

the transducers when there is good acoustic contact between the probe surface and the patient’s 

skin, which is accomplished using ultrasound transmission gel (Aquasonic 100 Ultrasound 

Transmission Gel, Parker Laboratories Inc., Fairfield, NJ). 
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Figure 3-6. Obtaining cross-sectional measurements of the tibia in ImageJ. Measurement results of the tibial 

length, midshaft diameter and medullary cavity diameter are shown in the upper right hand corner of the 

figure. Plot profile of the image intensity values across the entire midshaft is shown in the lower right hand 

corner of the figure. Note that the plot profile line has two peaks. Red arrows point to the portion of the plot 

profile line (outer slopes) generated from image intensity values associated with the periosteal surface of the 

tibial midshaft. Blue arrows point to the portion of the plot profile line (inner slopes) generated from image 

intensity values associated with the endocortical surface of the tibial midshaft.  
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The speed of the signal is calculated by dividing the known distance between the transmitting 

and receiving transducers within the probe and the signal’s time of travel from the transmitting 

transducer through the bone to the receiving transducer (Barkmann et al. 2000; Njeh et al. 1999). 

The SOS measurement result is obtained after performing at least three statistically consistent 

measurement cycles. Each measurement cycle lasts ~20 seconds. If the coefficient of variation 

between the first three cycles exceeds 1.2%, a fourth and possibly fifth cycle must be conducted. 

If three statistically consistent measurements cannot be found after five measurement cycles, the 

entire measurement is aborted (Mimouni and Littner 2004). Differences in soft tissue thickness 

are accounted for through proprietary algorithms that subtract the duration of time it takes the 

signal to travel through soft tissue (BeamMed 2010). By accounting for the effects of soft tissue 

thickness on SOS, SOS measurements can be compared between infants with differing tissue 

thickness. Reference standards for preterm and term neonates have been developed for this 

device, but the sample size is small and will not be used in this study (Littner et al. 2003). 

Prior to use on each infant, the ultrasound probe was calibrated with a perspex phantom provided 

by the device manufacturer. After calibration, SOS readings were taken on the antero-medial 

region of the left leg at the midshaft. If therapeutic equipment obstructed access to the left leg, 

readings were taken on the right side. Three consecutive SOS readings were taken and recorded 

for each infant to assess intra-observer error. Although proprietary algorithms reportedly account 

for differences in soft tissue thickness, the circumference (mm) of the measured leg was still 

taken to test whether tissue thickness significantly affected SOS readings. The circumference 

was measured near the mid-point of the leg using a vinyl measuring tape. Vinyl measuring tape 

was used because it is flexible and is resistant to stretching. SOS readings and circumference of 

the leg were recorded in the IID. An average of the three SOS readings was calculated for each 

infant to be used for statistical analyses.   

QUALITATIVE BONE HISTOLOGY EVALUATION 

During the autopsy, samples of the costochondral junction of the left fourth rib and the mid-point 

of the left iliac crest were obtained for histological evaluation of bone health (Figure 3-7). A 

Stryker autopsy saw was used to excise all bone samples. When the left fourth rib could not be 

obtained, another rib was substituted. Rib number and side and iliac crest side were recorded. 

Samples were put in labeled specimen containers with EDF
TM

 fixer/decalcification solution  
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Figure 3-7: a. Costochondral junction of left 4

th
 rib (area marked in red) or other available rib taken for 

qualitative histological evaluation. b. Bone sample excised from mid-point of iliac crest (area marked in red) 

for qualitative histological evaluation.  

 

 

(StatLab, McKinney, TX) for at least 24 hours. A histology technician thin sectioned and stained 

each tissue slice with Hematoxylin and Eosin and Masson’s Trichrome using traditional 

histological methods. The stained specimen slides were then delivered to a bone pathologist for 

qualitative histological evaluation. Using a self-developed protocol that was developed 

specifically for this study, the bone pathologist evaluated the bone and cartilage of each rib and 

iliac crest section for the following characteristics: current vasculature, current mineralization, 

current volume, current formation, and current resorption. Each variable was scored as 0 

(normal), 1 (indeterminate), or 2 (abnormal). Native collagen architecture and native 

mineralization was also scored to evaluate the infant’s ability to produce normal bone. After 

evaluating all previously mentioned variables, the bone pathologist classified each bone sample 

as histologically normal or abnormal overall. The form used by the bone pathologist to record 

scores and observations for each infant is provided in Figure A-5 of the Appendix. The histology 

evaluation scores and observations for each decedent were recorded in the IID. 

 METHODS LIMITATIONS 

The methods used to conduct this research introduce several limitations. While x-ray equipment 

is more readily available than CT and DXA devices, digital x-ray is a lower resolution 

technology relative to these other technologies for estimating BMD. X-ray attenuation values, or 

image intensity values, are averages of the x-ray attenuation occurring within each pixel. The x-

ray attenuation values assigned to each pixel are a combination of the attenuation produced by 

both the cortical and trabecular bone and the overlying soft tissue, decreasing the precision of the 
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BMD estimates. Also, calculation of BMD estimates from radiographic images is sensitive to 

inhomogeneities within the image, which can be introduced by damaged x-ray cassettes or 

problems with the computed radiography processing unit. Another limitation to the use of digital 

radiographs to obtain BMD is that the estimates are areal (g/cm
2
), not volumetric (g/cm

3
). Areal 

estimates are sensitive to size differences. This is problematic for BMD comparisons made 

among infants due to their rapid growth rates.  

Poorly developed standards for the assessment of infant bone also results in research weaknesses. 

No infant standards have been developed for calculating BMD estimates from image intensity 

vales. For this reason, the biomechanical engineer developed his own protocol for converting 

image intensity values to BMD estimates. It could not be known at the outset of this research that 

the density phantom with the lowest density (250 mg/cm
3
) was slightly too dense for comparison 

with infant bone. However, this limitation was overcome by using the outer third of the density 

phantom’s radius to calculate the BMD estimates. Furthermore, there is no published normative 

BMD data for infants that are specific to the tibia, which prevents the validation of our BMD 

estimates with other published data. Ahmad and colleagues (Ahmad et al. 2010) published BMD 

data for the infant tibia, but these data were obtained from newborn infants within a few days of 

birth or preterm infants up to 3 months of age. In addition, standards have not been developed for 

the qualitative evaluation of mineralization on radiographs. Specifically for this study, a pediatric 

radiologist developed a standardized scoring system to consistently evaluate the degree of 

mineralization of each radiograph. The low resolution of radiographs was also a weakness for 

qualitative radiographic evaluation. It is reported that up to 30% of bone mineral must be lost 

before it is detectable on radiographs (Done 2012). Neither have standards been developed for 

the histological evaluation of infant bone normality/abnormality. Specifically for this study, a 

bone pathologist developed a scoring system for the evaluation of infant bone based on 

characteristics commonly evaluated for the assessment of bone health in the field of bone 

histology.  

STATISTICAL METHODS 

Tibial measurements (tibial length, midshaft diameter, medullary cavity diameter, cortical 

thickness, and cortical index), BMD, and SOS were evaluated for significant influences from 

demographic characteristics (race, sex, and age), proxies for overall health (prematurity and 
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chronic illness), body size (weight, weight for age percentile, height, length for age percentile, 

weight for length percentile, and leg circumference), and skeletal maturity at birth (EGA and 

birthweight). In addition, the relationships between tibial measurements and, BMD and SOS 

were investigated. Understanding how these variables were related to BMD and SOS provided 

insight into the factors measured by SOS and added clarification to the relationship between SOS 

and BMD. 

Detailed analyses were carried out to assess what SOS measured in term of bone quality and 

bone health. As such, a large number of statistical tests were conducted, which can be 

problematic. Conducting a large number of statistical tests increases the likelihood of a Type 1 

error, false rejection of the null hypothesis. A Bonferroni correction, an adjustment of the p-

value, can be applied to reduce the likelihood of a Type 1 error. A Bonferroni correction was not 

used in the current study for several reasons. The statistical power of the current study was 

reduced due to small sample size, which reduces the likelihood of a Type I error. Other reasons a 

Bonferroni correction was not utilized in the current study pertain to associated problems with 

the method. Bonferroni corrections reduce statistical power by increasing the likelihood of a 

Type II error, falsely accepting the null (Cabin and Mitchell 2000; Moran 2003; Nakagawa 

2004). As the number of planned tests increases, the significance value decreases, making this 

test overly conservative. Due to the increasingly small p-value, the probability of finding a 

significant result declines as the number of statistical tests increases (Moran 2003). Moran 

(2003) refers to this paradox as the hyper-Red Queen phenomenon. Secondly, statistical 

significance does mean the differences are biologically significant. Finally, there is no consensus 

among statisticians regarding how and when the Bonferroni correction should be applied (Cabin 

and Mitchell 2000).    

The data were analyzed using various univariate statistics. Descriptive statistics were used to 

describe the overall distributions and trends in the categorical and quantitative data. Ranges for 

minimum-maximum values of histologically normal and abnormal infants were reported for 

SOS, BMD (radius and tibia), tibial length, and tibial measurements (tibial length, midshaft 

diaphyseal diameter, cortical thickness, medullary cavity diameter, and cortical index). 

Normality testing (Shapiro-Wilks test) was carried out on the following pieces of data: SOS, 

BMD (radius and tibia), tibial length, and cross-sectional measurements of the midshaft. Prior to 
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their use as independent variables in statistical analyses that did not include age as a covariate, 

the following variables were centered on the mean: weight, height, leg circumference, EGA, 

birthweight, tibial length, midshaft diameter, cortical thickness, and medullary cavity diameter. 

Data were centered on the mean to provide more meaningful interpretation of the intercept 

calculated by regression analyses. All statistical analyses were carried out in version 22.0 of the 

software program IBM SPSS statistics or R. 

Wilcoxon signed-rank tests were performed to test for significant differences in the qualitative 

histological scores between the iliac crest and rib samples. Scores for each variable examined for 

the costochondral rib and iliac crest sections were paired by infant to assess intra-infant 

differences in histological qualitative evaluations of bone health.  

Non-parametric tests were performed to determine whether qualitative radiographic evaluations 

scores were significantly associated with sex, race, or age. The Mann-Whitney U test was used to 

test for sex differences and Kruskal-Wallis tests were used to test for differences based on race 

and age. Qualitative radiographic evaluation scores were also evaluated for significant 

differences based on chronic illness and prematurity using Mann-Whitney U tests.  

Most of the statistical tests performed on the data were ANOVAs and regression analyses. An 

assumption of ANOVA is that variances are equal between groups. An assumption of linear 

regression is that regression residuals are normally distributed. Levene’s test was used to 

evaluate the homogeneity of variances between groups for ANOVAs. Probability-probability (P-

P) plots were examined for all regression analyses to evaluate deviations of the regression 

residuals from normality. Deviations from normality were noted, but no attempt was made to 

correct for these violations due to the small size of the study sample.    

One-way ANOVAs were used to determine whether there were significant differences in size 

and growth based on chronic illness, prematurity, or the presence of traumatic injury. The 

dependent variables tested include weight, height, weight for age percentile, length for age 

percentile, and weight for length percentile. Additionally, chi-square tests were used to evaluate 

whether there were significant associations between chronic illness and prematurity, traumatic 

injury and chronic illness, or traumatic injury and prematurity. 
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Tibial length and midshaft cross-sectional measurements were evaluated for significant effects of 

race, sex, chronic illness, prematurity, and age. One-way ANOVAs were used to analyze these 

relationships. For sex, chronic illness, and prematurity, direction of statistically significant 

differences between groups was evaluated by examining the group means. Post analyses of 

statistically significant differences based on race were evaluated using Least Significant 

Difference (LSD) tests when variances between groups were equal or Tamhane’s T2 tests when 

variances were not equal between groups. Analyses of significant differences between racial 

groups were repeated with chronically ill infants excluded to determine if this had any effect on 

results. Relationships between the tibial measurements and age were analyzed using ANOVA 

and simple linear regression. Separate analyses with premature and chronically ill infants 

excluded were conducted for comparison of results with analyses conducted on the pooled data. 

In addition, multiple regression analyses predicting the tibial measurements using age as a 

covariate and prematurity and chronic illness as predictors in individual models were conducted.  

Two-way ANOVAs were conducted to determine there was a significant interaction between sex 

and age in models predicting the tibial measurements. These analyses were also conducted with 

chronically ill infants excluded to determine whether it had any effect on results.    

Effects of growth and skeletal maturity at birth on the tibial measurements were evaluated using 

ANOVA and simple linear regression. The independent variables used to evaluation the 

relationship between growth and the tibial measurements include height, length for age 

percentile, weight, weight for age percentile, and weight for length percentile. These data were 

reanalyzed with chronically ill infants excluded to evaluate whether this had any significant 

effect on results. Similar analyses were conducted using EGA and birthweight as independent 

variables to evaluate how skeletal maturity at birth effected the tibial measurements. These data 

were also reanalyzed with chronically ill infants excluded from analyses. 

The BMD data underwent multiple analyses. Nonparametric related-samples sign test was used 

to compare the radial and tibial BMD estimates obtained from the same infant. Radial BMD data 

was excluded from further analyses to prevent decreasing the overall sample size as a result of 

their inclusion. One-way ANOVAs were used to determine if the presence of traumatic injury, 

chronic illness, or prematurity had any effect on BMD of the tibia. A two-way ANOVA was 

performed to evaluate whether there was a significant interaction effect of chronic illness and 
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prematurity on BMD. Significant effects of sex and race on BMD were evaluated with one-way 

ANOVAs. Analyses assessing significant effects of sex and race on BMD were repeated with 

chronically ill infants excluded to evaluate whether results were affected. The relationship 

between BMD and chronological age, variables associated with body size and growth, variables 

associated with skeletal maturity at birth, and tibial measurements were evaluated using ANOVA 

and simple linear regression. Regression analyses were also conducted with the chronically ill 

infants excluded to evaluate the effects on results. 

ANOVA and linear regression analyses were used to evaluate the effects of size, growth, skeletal 

maturity at time of birth on BMD. To evaluate the effect of skeletal maturity reached by time of 

birth on BMD at time of death, birthweight and EGA were used to predict BMD. To evaluate the 

effect of size and growth on BMD, BMD was predicted by height, weight, leg circumference, 

and growth percentiles. To evaluate the relationship between BMD and changes in tibial size and 

structure, tibial length, tibial midshaft diameter, cortical thickness, medullary cavity diameter, 

and cortical index were used to predict BMD. All analyses were repeated with chronically ill 

infants excluded from analyses to evaluate how their exclusion affected results.  

The reliability of the QUS device used to conduct this research was evaluated by estimating 

Cronbach’s alpha from the three consecutive SOS readings obtained from each infant. 

Cronbach’s alpha is an intra-class correlation coefficient, which measures internal consistency 

among the three SOS readings. A high Cronbach’s alpha indicates a high degree of internal 

consistency or high reliability.  

The SOS data underwent thorough evaluation for significant effects of overall health, 

demographic characteristics, size, growth, skeletal maturity at birth. One-way ANOVAs were 

used to evaluate the relationship between SOS and chronic illness, prematurity, and traumatic 

injury. One-way ANOVAs were also used to determine whether sex or race had significant 

effects on SOS. These analyses were repeated with premature infants excluded from analyses to 

assess whether their exclusion affected results.  

Prior to assessing the relationship between age and SOS, the SOS data was tested for significant 

differences in age-specific means based on age grouping method (chronological age vs. term-

corrected age). A paired t-test was used to conduct the analysis. The Shapiro-Wilk test was used 
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to assess whether differences between pairs were normally distributed. A one-way ANOVA was 

used to test for significant differences between group mean SOS based on chronological age in 

months. The analysis was repeated with premature infants excluded to assess whether there were 

significant effects on results. LSD tests were used for post hoc analyses to determine which ages 

had significant different group means for SOS. To gain further clarity regarding the relationship 

between SOS and age, simple linear regression analysis was conducted using chronological age 

in months to predict SOS. Regression analyses predicting SOS from age were also conducted on 

the term born and premature infants separately to determine how the relationship between SOS 

and age may have been differentially affected by skeletal maturity at birth.  

The effects of growth, body size, skeletal maturity at birth, and tibial size and structure on SOS 

were assessed using ANOVA and simple linear regression. Size and growth effects on SOS were 

evaluated by using height, weight, leg circumference, and growth percentiles to predict SOS. To 

evaluate the effect of skeletal maturity at birth on SOS, birthweight and EGA were used to 

predict SOS. It is reported in the literature that cortical thickness has a significant effect on SOS. 

To evaluate this relationship and any other relationship between SOS and the size and structure 

of the tibia, tibial length, cortical thickness, medullary cavity diameter, and cortical index were 

used to predict SOS. To assess the relationship between SOS and the tibial measurements 

without the effects of size differences resulting from age differences, partial correlations and 

regression models predicting SOS from the tibial measurements while using age as a covariate 

were also tested. All analyses were repeated with chronically and premature infants excluded to 

assess the effect their exclusion had on the results. Chronically ill and premature infants were not 

excluded simultaneously to prevent the reduction of statistical power as a result of small sample 

size.  

Multiple regression analyses were conducted to determine which combination of variables best 

predicted SOS. Several models were constructed using the following variables as possible 

predictors: age, birth weight, EGA, height, height percentile for age, weight, weight percentile 

for age, cortical thickness, medullary cavity diameter, tibial midshaft diameter, and cortical 

index. Weight and EGA were not entered into the same model due to multicollinearity. Also due 

to multicollinearity, height and height percentile, weight and weight percentile, birthweight and 

EGA, tibial midshaft diameter and cortical index, cortical thickness and tibial midshaft diameter, 
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or cortical index and cortical thickness were not entered into the same model. Stepwise variable 

selection was conducted. A variable was entered into the model if the significance level of its F 

value was <.05 and was removed from the model if the significance level was >.10. After 

exclusion of premature and chronically infants from the analysis, the model that best predicted 

SOS was retested using stepwise variable selection to assess how the exclusion of these infants 

changed the model. 

Comparisons between methods of bone assessment (BMD, SOS, and qualitative radiographic 

evaluation) were conducted using ANOVA and simple linear regression. The relationship 

between radiographic mineralization scores from qualitative radiographic evaluations and BMD 

was evaluated to assess whether low BMD estimates were associated with increased qualitative 

radiographic evaluation scores. To evaluate the relationship between SOS and mineralization, 

qualitative radiographic evaluation scores and BMD estimates were used to predict SOS in 

separate analyses.  

Summary  

The purpose of this research was to assess QUS as a possible method for evaluating bone quality 

in infants by comparing SOS measurements to proxies of infant health, bone strength, and bone 

health. Comparison of SOS to influential factors of infant bone health and strength provided 

insight into what SOS measures and helped determine whether SOS is a valid measure of infants 

bone quality. The study sample consisted of 78 infants ranging in age from 30 weeks gestation 

(actual or corrected) to 1 year postnatal at the time of death. All infants included in this study 

were autopsied at HCIFS or TCH in Houston, Texas. Three SOS readings were obtained from 

each infant. Digital radiographs of the arm and leg, and samples from the iliac crest and 

costochondral junction of rib, were obtained from each infant. Digital radiographs were used to 

calculate BMD estimates of the midshaft radius and tibia, and to obtain cross-sectional 

measurements of the tibial midshaft. Qualitative radiographic evaluations of bone mineralization 

were conducted on radiographs of the forearm and leg of each infant. Qualitative histological 

evaluations of infant bone health were conducted on the iliac crest and costochondral rib 

sections. Each infant’s medical history, growth and development, and autopsy findings was 
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obtained and converted into variables used for statistical analyses. Statistical analyses were 

conducted using IBM SPSS Statistics version 22.0, or R.  
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CHAPTER 4 : RESULTS 

Introduction 

Various univariate statistical analyses were performed with the goal of answering the following 

questions. Is QUS a valid technique for evaluating infant bone quality? Can SOS be used to 

differentiate between infants with normal and abnormal bone? If so, what is the age-specific 

range of SOS readings for infants with normal bone? Five major hypotheses were constructed to 

answer these questions. Hypothesis 1: Growth-related changes in tibial structure and body size 

are significantly associated with each other, and both are significantly associated with age-

related changes in BMD and SOS. Hypothesis 2: The presence of traumatic injury is not 

associated with indicators of overall health, body size, or bone health. Hypothesis 3: Chronic 

illness is negatively associated with growth and bone health. Hypothesis 4: Skeletal maturity at 

birth is positively associated with body size, bone size, and bone health. Hypothesis 5: The 

methods used to assess infant bone quality are significantly associated. This chapter is organized 

into 6 sections. Descriptive statistic of the study sample and the data collected are presented in 

the first section. The following five sections report analyses that pertain to the five major 

hypotheses laid out above. Interpretations of results as supporting or refuting hypotheses are 

stated throughout each section.  

There is a small degree of missingness in the dataset. BMD data could not be calculated for the 

radius of 30 infants and the tibia of 8 of the infants. For one infant, qualitative radiographic 

evaluation and calculation of a BMD estimate could not be obtained for the radius due to x-ray 

cassette malfunction, which resulted in the loss of a radius/ulna radiograph. For the remaining 

infants with missing BMD data, the custom computer program was unable to calculate BMD due 

to several possibilities. The BMD may have been too low to differentiate between the tissue and 

bone attenuation in the radiographic image. The cortices may have been too thin (< 2 mm), 

causing the inability to differentiate between attenuation values produced by tissue and bone. 

Inhomogeneities in the radiographic image may have also resulted in the inability to calculate 

BMD. SOS data could not be obtained from one infant. This missing data was either due to a 

SOS value that was below the lowest SOS reading allowed by manufacturer settings or size 
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incompatibility between the probe (too large) and the infant’s leg. This infant also lacked BMD 

data, resulting in its exclusion from all comparative analyses.  

Descriptive Analyses 

STUDY SAMPLE 

The total sample comprised 78 decedents; 75 were autopsied at HCIFS and 3 were autopsied at 

TCH. Study sample demographics are provided in Table 4-1 to Table 4-2 and Figure 4-1 to Figure 

4-3. The median chronological age of the total sample was 3.0 months with an inter-quartile 

range of 2-6 months (Figure 4-1). The median term-corrected age of the total sample was also 3.0 

months with an interquartile range of 1-6 months (Figure 4-1). The sex distribution of the sample 

was fairly equal with females comprising a slightly larger proportion (53%) of the study sample 

than males (Figure 4-1). Black infants contributed to the greatest proportion (46%) of the study 

sample, followed by Hispanic (35%), White (17%), and Asian (3%) (Figure 4-2). Considering 

sex distribution by race, there were a greater number of black male infants than black females 

and a greater number of white female infants than white male infants (Figure 4-3). The number of 

male and female Hispanic infants was fairly equal. Two Asian female infants and no Asian male 

infants were also included in the study sample.  

Most of the infants in the study sample appeared relatively healthy at the time of their death. 

Only 13 of the 78 infants had medical histories significant for chronic illness. A list of disease 

and disorders affecting the chronically ill infants in the study sample is provided in Table 4-3. 

Seven of the 13 chronically ill infants were also premature at time of birth. Eight of the 13 

infants lived with chronic illness for at least 3 months. Three of the infants identified as 

chronically ill were 1 month of age or less at the time of death.  

Estimated gestational age was known for 74 of the 78 infants in the study sample (Figure 4-4). Of 

these 74 infants, 17 were premature at time of birth. Of the 17 premature infants, 7 were also 

chronically ill (Table 4-3).  
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Table 4-1. The demographic breakdown of the study sample by race, sex, median chronological age, and 

term-corrected chronological age. 

 

 

 

Table 4-2. Age (months) frequencies by chronological age and term-corrected age. 

 

 

  

Chronological Age 

(months) 

Term-corrected Age
a
 

(months) 

n Mdn n Mdn 

Black Female 14 3.0 13 2.0 

Male 22 5.0 21 5.0 

Hispanic Female 15 3.0 15 3.0 

Male 12 2.5 11 2.0 

White Female 9 4.0 8 3.5 

Male 4 5.0 4 5.0 

Asian Female 2 4.5 2 3.0 

Male 0 
 

0 
 

 Total 78 3.0 74
b 

3.0 

a. Term-corrected age was calculated by subtracting the number 

of weeks born prior to term (40 weeks gestation) from 

chronological age in weeks and converting back to months. 

b. Term-corrected age could not be calculated for 4 infants due to 

unknown estimated gestational age. 

 

Chronological Age Term-Corrected Age
a
 

Age 

(months) 
Frequency % 

Cumulative 

% 
Frequency % 

Cumulative 

% 

>1 4 5.1 5.1 15 20.3 20.3 

1 11 14.1 19.2 7 9.5 29.7 

2 15 19.2 38.5 13 17.6 47.3 

3 12 15.4 53.8 6 8.1 55.4 

4 6 7.7 61.5 8 10.8 66.2 

5 10 12.8 74.4 4 5.4 71.6 

6 4 5.1 79.5 8 10.8 82.4 

7 3 3.8 83.3 1 1.4 83.8 

8 2 2.6 85.9 2 2.7 86.5 

9 4 5.1 91.0 2 2.7 89.2 

10 3 3.8 94.9 3 4.1 93.2 

11 4 5.1 100.0 3 4.1 97.3 

12 0 0 
 

2 2.7 100.0 

Total 78 100 
 

74
b 

100 
 

a. Term-corrected age was calculated by subtracting the number of weeks born 

prior to term (40 weeks gestation) from chronological age in weeks and 

converting back to months. 

b. Term-corrected age could not be calculated for 4 infants due to unknown 

estimated gestational age. 
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Figure 4-1. Sex distribution of the study sample. 

 

 

 
Figure 4-2. Race distribution of the study sample. 
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Figure 4-3. Sex distribution of the study sample by race.  
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Table 4-3. Description of infants with chronic illness.  

Case 

ID 
EGA

a 
Age

b
  Description of Chronic Illness 

225 36 0 
Patent ductus arteriosus with persistent fetal circulation; thickened pulmonary 

vasculature, right ventricular hypertrophy and dilatation 

218 36 1 
Trisomy 21, congenital heart disease, neonatal hemochromatosis, total parenteral 

nutrition 

222 36 1 
Campomelic dysplasia due to Sox9 gene mutation- cleft palate, clinodactyly, clubbed 

feet, bowing of long bones, 46 XY, biologically female 

213 37 2 Mitochondrial myopathy  

152 40 2 Cardiomegaly with widely patent foramen ovale 

215 40 3 Subtotal occlusion of coronary arteries involved with fibromuscular dysplasia 

178 25 4 
Extreme prematurity, patent ductus arteriosus with surgical repair, cardiomegaly, 

atrial and right ventricular dilation 

172 25 5 
Extreme prematurity, cardiomegaly with atrial septal defect and right ventricular 

hypertrophy, chronic neonatal lung disease with pulmonary arterial hyperplasia 

212 Unk.
c 

5 Seizure disorder since 1 month of age treated with anticonvulsants 

205 40 6 

Multiple congenital anomalies: abnormal facial features, underdeveloped left lung, 

abnormal liver lobes, heart abnormalities (biventricular hypertrophy along with 

dilation, right atria and right ventricle dilatation, right ventricle extends into the apex, 

patent ductus arteriosus)  

174 36 6 
Seizure disorder since 3 weeks of age treated with anticonvulsants, descending spinal 

tract degeneration 

191 30 8 Prader-Willi syndrome, endocrinopathy treated with human growth hormone 

181 39 9 
Collagen 4A1 disorder, cerebral palsy, seizure disorder (3-4 seizures per day) since 

birth, treated with anticonvulsants  

a. EGA=Estimated gestational age 

b. Chronological age in months 

c. Unk. = Unknown 
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Figure 4-4. Distribution of study sample by estimated gestational age (EGA). One case with unknown EGA is 

excluded from the plot.  
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Forty-two percent of the infants in the study sample fell below the 25th percentile in length for 

age at the time of death (Figure 4-5). In weight for age, 47% fell below the 25
th

 percentile for 

their sex at the time of death (Figure 4-6). In weight for length, 36% fell below the 25
th

 percentile 

for their sex at the time of death (Figure 4-7). This indicated that a large proportion of the infants 

in the study sample were small in size for their sex and age at the time of their deaths. However, 

this is not an indication of growth status since the length and weight of each infant was measured 

at a single point in time and not tracked over a period of time.  

The manner of death for the majority of infants (n = 33, 42%) in this study sample was a natural 

disease process (chronic or acute) and recorded as Natural (Table 4-4). Deaths caused by Sudden 

Unexplained Infant Death (SUID) were classified as Natural. In 32% (n = 29) of infants, the 

manner of death could not be determined. Undetermined manners of death included cases of co-

sleeping, in which no natural disease was found to be a contributing factor and accidental 

asphyxiation could not be ruled out. Manner of death was classified as Accident for 9% (n = 7) 

of infants. Twelve percent (n = 9) of infant deaths were classified as Homicide (defined as death 

attributable to the actions of another individual). 

Cause of death for each infant in the study sample was categorized as Asphyxia/Drowning, Co-

sleeping, Infectious, Other, SUID, Trauma, or Undetermined based on the finalized classification 

made by the pediatric pathologist (TCH cases) or the medical examiner (HCIFS cases). The 

Cause of death for most of the infants in the study sample (n = 17, 22%) was categorized as Co-

sleeping, a subcategory of Undetermined (Table 4-5). For 20% (n = 16) of the study sample 

deaths, the cause of death was categorized as SUID. The cause of death for 18% (n = 14) of the 

study sample was categorized as Other. All causes of death categorized as Other, except for one, 

were associated with a Natural manner of death. The manner of death for the exception was 

Homicide with a non-traumatic cause of death. The cause of death was Undetermined for 14% (n 

= 11) of the study sample, not including the co-sleeping cases. Nine percent (n = 7) of the infants 

died due to accidental asphyxia/drowning. Trauma was the cause of death for 12% (n = 9) of the 

infants in this study. All traumatic causes of death were associated with homicides, except one. 

This traumatic case was classified as an Accident and involved a motor vehicle accident. Five 

percent (n = 4) of causes of death were categorized as Infectious.  



116 

 

 
Figure 4-5. Distribution of study sample by length for age percentile.  
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Figure 4-6. Distribution of study sample by weight for age percentile. 



118 

 

 
Figure 4-7. Distribution of study sample by weight for length percentile. Weight for length could not be 

calculated for two cases and were excluded from the above plot.  

 

 

 

 

Table 4-4. Frequency of study sample cases by Manner of Death classification. 

Manner of Death n % 

Natural 33 42 

Undetermined 29 37 

Homicide 9 12 

Accident 7 9 

Total 78 100 
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Table 4-5. Frequency of study sample cases by Cause of Death category.  

Cause of Death n % 

Co-sleeping 17 22 

SUID 16 20 

Other 14 18 

Undetermined 11 14 

Trauma 9 12 

Asphyxia/Drowning 7 9 

Infectious  4 5 

Total 78 100 

 

Most infants in the study sample (83%, n = 65) showed no evidence of traumatic injury (Table 

4-6). Injuries resulting from therapeutic intervention, such as cardiopulmonary resuscitation, 

were not considered traumatic. Twelve percent (n = 9) of the sample had fatal injuries caused by 

blunt force trauma. In 5% (n = 4) of the study sample evidence of healing injuries was found, but 

the cause of the injury, traumatic vs. non-traumatic, could not be determined.  

QUALITATIVE HISTOLOGY EVALUATION  

Costochondral rib and iliac crest sections were obtained from all infants in the study sample (N = 

78). A bone pathologist performed qualitative histology evaluations on H&E stained thin 

sections produced from each tissue sample. Results of the qualitative histological evaluation 

conducted on the thin sections of the costochondral rib and iliac crest sections are provided in 

Table A- 9 and Table A- 10 of the Appendix, respectively. Five infants were classified as 

histologically abnormal. Statistical analyses were performed on these data, but these analyses 

were excluded for several reasons. The evaluation method used to classify the bone samples as 

histologically normal/abnormal was developed specifically for this study, had not been validated, 

and the reproducibility of the method is uncertain. The evaluations of the rib and iliac crest as 

indicators of tibial bone health may be problematic due to differing mechanical environments 

(Eleazer 2013). Additionally, there appeared to be no relationship between the bone quality 

indictors and the classification of histological normality/abnormality, which did not justify the 

separation of the histologically abnormal infants from the histologically normal infants. 

Therefore, the data from the infants classified as histologically abnormal were pooled with 

remaining data in all subsequent analyses.  
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Table 4-6. Frequency of study sample cases by presence/absence of traumatic injury. 

Traumatic Injury n % 

No Trauma 65 83 

Trauma-Blunt Force 9 12 

Undetermined 4 5 

Total 78 100 

 

 

QUALITATIVE RADIOGRAPHIC EVALUATION 

Radiographs of the radius/ulna and the tibia/fibula were obtained from all infants in the study 

sample (N = 78); but, one radius/ulna radiograph (Case ID # 171) was lost due to x-ray cassette 

malfunction. Intra-infant radiographic evaluation scores of the radius/ulna and tibia/fibula 

radiographs did not differ from each other. Based on qualitative radiographic evaluation, bone 

mineralization appeared normal in 83% (radius/ulna, n = 64; tibia/fibula, n = 65) of the study 

sample. Thirteen percent (radius/ulna and tibia/fibula, n = 13) of the study sample showed 

indeterminate or slight demineralization and 4% (radius/ulna and tibia/fibula, n = 4) 

demonstrated abnormal mineralization on radiographs. Rachitic changes were not observed in 

any of the radiographs. A table of the descriptive statistics pertaining to the qualitative 

radiographic evaluation results can be found in Table A- 4 of the Appendix. A Kruskal-Wallis 

test indicated no significant relationship between radiographic score and chronological age 

(months) (K = 4.17, p = .965). Descriptions of the infants classified as having abnormal 

mineralization on radiographs and associated data are provided in Table A- 5 of the Appendix. 

TIBIAL MEASUREMENTS 

The Shapiro-Wilk test (W) was used to the normality of the data distributions for the cross-

sectional measurements of the tibial midshaft. Analyses indicated that tibial length (W = 0.983, p 

= .393), tibial midshaft diameter (W = 0.972, p = .089), medullary cavity diameter (W = 0.982, p 

= .355), and cortical index (W = 0.987, p = .603) were normally distributed. Cortical thickness 

was not normally distributed (W = 0.961, p = .019). Mean tibial length was 83.58 mm with a 

standard deviation of 15.62 mm. Mean tibial midshaft diameter was 7.20 mm with a standard 

deviation of 0.16 mm. Mean medullary cavity diameter was 3.38 mm with a standard deviation 

of 0.11 mm. Mean cortical index was .53 with a standard deviation of .01. Median cortical 

thickness was 3.75 mm with an inter-quartile range between 3.09-4.43 mm. A table of the 
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descriptive statistics pertaining to the tibial measurements can be found in Table A- 6 of the 

Appendix.  

Age-Related Changes in Tibial Structure  

Before age-related changes in the tibial structure could be related growth-related changes in body 

size, it was necessary to evaluate the age-related changes in the tibial measurements. ANOVA 

and simple linear regression analyses were performed to evaluate the relationship between 

chronological age and the tibial measurements. There was a significant linear relationship 

between age and tibial length (R
2

Adj. = .74, F(1, 75) = 218.83, p < .001). The regression 

coefficient for age indicated that tibial length increased by 4.40 mm for every 1 month increase 

in age (b = 4.40, 95% CI [3.81, 5.00]). The model summary is presented in Model 1 of Table 4-7 

and is illustrated by the black fitted line in Figure 4-8. An F test of the R
2
 change was conducted 

to determine if a cubic model was a significantly better fit than a quadratic model for the 

relationship between age and midshaft diameter. Analysis indicated a cubic model explained 

significantly more of the variance in midshaft diameter than a quadratic model (F(1, 73) = 8.17, 

p = .006). The curvilinear cubic relationship between age and tibial midshaft diameter was 

significant (R
2

Adj. = .51, F(3, 73) = 27.57, p < .001). The regression coefficients for age (b = 1.33, 

95% CI [0.61, 2.05]), age
2 

(b = -0.21, 95% CI [-0.36, -0.07]), and age
3
 (b = 0.01, 95% CI [0.004, 

0.02]) indicated that tibial midshaft diameter initially increased with after birth, the rate of 

increase gradually decreased at greater age values and then the velocity increases again at the 

greatest age values. The model summary is presented in Model 2 of Table 4-7and is illustrated by 

the black fitted line in Figure 4-9. An F test of the R
2
 change indicated that a cubic model was a 

significantly better fit than a quadratic model for the relationship between age and medullary 

cavity diameter (F(1, 73) = 5.57, p = .021). Medullary cavity diameter had a significant 

curvilinear cubic relationship with age (R
2

Adj. = .56, F(3, 73) = 32.57, p < .001). The regression 

coefficients for age (b = 0.97, 95% CI [0.51, 1.42]), age
2 

(b = -0.13, 95% CI [-0.22, -0.04]), and 

age
3
 (b = 0.01, 95% CI [0.001, 0.01]) indicated that medullary cavity diameter gradually 

increased after birth, the rate of increase gradually decreased at greater age values and then the 

rate gradually increased again at the greatest age values. The pattern was similar to that of tibial 

midshaft diameter and age, but less exaggerated. The model summary is presented in Model 3 of 

Table 4-7 and is illustrated by the black fitted line in Figure 4-10. Cortical thickness had a  
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Table 4-7. Models summaries for regression analyses predicting tibial measurements from age. Tibial length 

is the dependent variable in model 1. Tibial midshaft diameter is the dependent variable in Model 2. 

Medullary cavity diameter is the dependent variable in Model 3. Cortical thickness is the dependent variable 

in Model 4. Cortical Index is the dependent variable of Model 5. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      218.83 1,75 < .001 .74 

(Constant) 63.28 1.64 38.49 < .001     

Age 4.40 0.30 14.79 < .001     

2      27.57 3,73 <.001 .51 

(Constant) 4.57 0.50 9.10 < .001     

Age 1.33 0.36 3.68 <.001     

Age
2 

-0.21 0.07 -2.89 .005     

Age
3 

0.01 0.004 2.86 .006     

3      32.57 3,73 <.001 .56 

(Constant) 1.34 0.32 4.20 < .001     

Age 0.97 0.23 4.22 < .001     

Age
2 

-0.13 0.05 -2.80 .007     

Age
3 

0.006 0.003 2.36 .021     

4      10.50 1,75 .002 .11 

(Constant) 3.34 0.18 18.74 < .001     

Age 0.11 0.03 3.24 .002     

5      13.08 2,74 < .001 .24 

(Constant) 0.65 0.03 25.24 < .001     

Age -0.05 0.01 -4.42 < .001     

Age
2 

0.003 0.001 3.61  .001     
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Figure 4-8. Scatter plot of tibial length by chronological age in months. Black regression line is fitted to total 

sample. Dark blue regression line is fitted to data from infants without chronic illness. Light blue regression 

line is fitted to data from infants with chronic illness.   

  



124 

 

 
Figure 4-9. Scatter plot of tibial midshaft diameter by chronological age in months. Black regression line is 

fitted to total sample. Dark blue regression line is fitted to data from infants without chronic illness. Light 

blue regression line is fitted to data from infants with chronic illness.   
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Figure 4-10. Scatter plot of medullary cavity diameter by chronological age in months. Black regression line 

is fitted to total sample. Dark blue regression line is fitted to data from infants without chronic illness. Light 

blue regression line is fitted to data from infants with chronic illness. 

  



126 

 

significant linear relationship with age (R
2

Adj. = .11, F(1, 75) = 10.50, p = .002). The regression 

coefficient for age indicated that for every 1 month increase in age there was a 0.11 mm increase 

in cortical thickness (b = 0.11, 95% CI [0.04, 0.17]). The model summary is presented in Model 

4 of Table 4-7 and is illustrated by the black fitted line in Figure 4-11. An F test of the R
2
 change 

indicated that a quadratic model was a significantly better fit than a linear model for the 

relationship between age and cortical index (F(1, 74) = 13.0, p = .001). There was a significant 

relationship between cortical index and age (R
2

Adj. = .24, F(2, 74) = 13.08, p < .001). The 

regression coefficients for age (b = -0.05, 95% CI [-0.07, -0.03]) and age
2 

(b = 0.003, 95% CI 

[0.001, 0.005]) indicated that cortical index initially decreased after birth, but at greater age 

values cortical index increased with increasing age. The model summary is presented in Model 5 

of Table 4-7 and is illustrated in Figure 4-12. 

Chronically Ill Infants Excluded 

Analyses evaluating the relationship between age and the tibial measurements were repeated 

with chronically ill infants excluded from analyses to assess whether this substantially affected 

results. After removing the chronically ill infants from analyses, chronological age continued to 

be a significant predictor tibial length (R
2

Adj.
 
= .79, F(1, 62) = 239.35, p < .001). The regression 

coefficient for age indicated that tibial length increased by 4.23 mm for every 1 month increase 

in age (b = 4.23, 95% CI [3.68, 4.77]). An F test of the R
2
 change indicated that a linear model 

and not a cubic model was the best fit for the relationship between age and midshaft diameter 

after excluding chronically ill infants from the analysis. Age remained a significant predictor of 

midshaft diameter (R
2

Adj.
 
= .55, F(1, 62) = 76.56, p < .001) and the regression coefficient 

indicated an increase in midshaft diameter with age (b = 0.34, 95% CI [0.26, 0.41]). The 

relationship between age and cortical thickness remained significant (R
2

Adj. = .17, F(1, 62) = 

13.48, p = .001). The regression coefficient indicated that cortical thickness significantly 

increased with age (b = 0.12, 95% CI [0.06, 0.19]). An F test of the R
2
 change indicated that a 

quadratic model and not a cubic model was the best fit for the relationship between age and 

medullary cavity diameter with chronically ill infants excluded from the analysis (F(1, 61) = 

5.63, p = .021). The relationship between age and medullary cavity diameter was significant 

(R
2

Adj.
 
= .52, F(2, 61) = 35.17, p < .001). The regression coefficients for age (b = 0.47, 95% CI  

[0.25, 0.68]) and age
2
 (b = -0.02, 95% CI [-0.04, -0.003]) indicated that a significant increase in  
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Figure 4-11. Scatter plot of cortical thickness by chronological age in months. Black regression line is fitted to 

total sample. Dark blue regression line is fitted to data from infants without chronic illness. Light blue 

regression line is fitted to data from infants with chronic illness. 
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Figure 4-12. Scatter plot of cortical index by chronological age in months. Black regression line is fitted to 

total sample. Dark blue regression line is fitted to data from infants without chronic illness. Light blue 

regression line is fitted to data from infants with chronic illness. 
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medullary cavity diameter after birth, but the rate of increase decreased at greater age ranges. An 

F test of the R
2
 change indicated that a quadratic model remained the best fit for the relationship 

between age and cortical index after excluding chronically ill infants from the analysis (F(1, 61) 

= 7.65, p = .008). The relationship between cortical index and age remained significant (R
2

Adj.
 
= 

.18, F(2, 61) = 7.73, p = .001). The regression coefficients for age (b = -0.04, 95% CI [-0.07, -

0.02]) and age
2
 (b = 0.003, 95% CI [0.001, 0.005]) indicated an initial decrease in cortical index 

after birth with increasing age which gradually changed to an increase in cortical index at greater 

age values. The dark blue regression lines in Figure 4-8 to Figure 4-12 illustrate the regression of 

the cross-sectional variables against age for infants without chronic illness. Model summaries for 

regression analyses excluding chronically ill infants and predicting the tibial measurements from 

age are provided in Table 4-8. 

 Term Infants 

Due to the significant relationship between prematurity and SOS, regression analyses predicting 

the tibial measurements from age were repeated with premature infants excluded from analyses. 

An F test of the R
2
 change indicated that a cubic model was a significantly better fit than a linear 

or quadratic model for the relationship between age and tibial length among term born infants 

(F(1, 53) = 4.08, p = .048). The relationship between age and tibial length remained significant 

(R
2

Adj. = .84, F(3, 53) = 96.54, p < .001). Among term born infants, the regression coefficients for 

age (b = 10.79, 95% CI [5.93, 15.65]), age
2 

(b = -1.17, 95% CI [-2.15, -0.19]), and age
3
 (b = 

0.06, 95% CI [0.42E-3, 0.11]) indicated that tibial length increased with age, the rate of increase 

declines at greater age values, and increases again at even greater age values. The model 

summary is provided in Model 1 Table 4-9 and is illustrated by the dark blue regression line in 

Figure 4-13. An F test of the R
2
 change indicated that a cubic model was a significantly better fit 

than a linear or quadratic model for the relationship between age and midshaft diameter (F(1, 53) 

= 6.70, p = .012). The relationship between tibial midshaft diameter and age remained significant 

(R
2

Adj. = .53, F(3, 53) = 21.77, p < .001). The regression coefficients for age (b = 1.29, 95% CI 

[0.55, 2.03]), age
2 

(b = -0.20, 95% CI [-0.35, -0.05]), and age
3
 (b = 0.01, 95% CI [0.002, 0.02]) 

indicated that tibial midshaft diameter increased with age after birth, the rate of increase 

decreased for a period of time, and then increased again at greater age values. The model 

summary is provided in Model 2 Table 4-9 and is illustrated by the dark blue regression line in 

Figure 4-14. An F test of the R
2
 change indicated that a cubic model was a significantly better fit 
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than a linear or quadratic model for the relationship between age and medullary cavity diameter  

after excluding premature infants from the analysis (F(1, 53) = 6.67, p = .013). The relationship 

between medullary cavity diameter and age was significant (R
2

Adj. = .57, F(3, 53) = 25.55, p < 

.001). The regression coefficients for age (b = 1.06, 95% CI [0.56, 1.56]), age
2 

(b = -0.15, 95% 

CI [-0.25, -0.05]), and age
3
 (b = 0.007, 95% CI [0.002, 0.01]) indicated that medullary cavity 

diameter increased with age after birth, the rate of increase decreased for a period of time, and 

then increased again at greater age values. The model summary is provided in Model 3 of Table 

4-9 and is illustrated by the dark blue regression line in Figure 4-15. An F test of the R
2
 change 

indicated that a linear model was the best fit for the relationship between age and cortical 

thickness. Cortical thickness had significant relationship with age (R
2

Adj. = .09, F(1, 55) = 6.45, p 

= .014). The regression coefficient for age indicated that as age increased by 1 month cortical 

thickness increased by 0.08 mm (b = 0.08, 95% CI [0.02, 0.15]). The model summary is 

provided in Model 4 of Table 4-9 and is illustrated by the dark blue regression line in Figure 4-16. 

An F test of the R
2
 change indicated that a quadratic model was a significantly better fit than a 

linear or cubic model for the relationship between age and medullary cavity diameter  after 

excluding premature infants from the analysis (F(1, 54) = 1.42, p = .004). The relationship 

between cortical index and age was significant (R
2

Adj. = .23, F(2, 54) = 9.51, p < .001). The 

regression coefficients for age (b = -0.04, 95% CI [-0.07, -0.02]) and age
2 

(b = 0.003, 95% CI 

[0.001, 0.005]) indicate that cortical index initially declines with increasing age, but changes 

direction and begins to increase at greater age values. The model summary is provided in Model 

5 of Table 4-9 and is illustrated by the dark blue regression line in Figure 4-17.  

Sex*Age Interaction 

Significant sex differences in BMD have been reported in the literature that were attributed to 

greater bone size in male infants. Due to the possibility of finding significant sex differences in 

SOS or BMD in the current study, analyses were carried out to evaluate sex differences in bone 

size. Two-way ANOVAs were conducted on models predicting the tibial measurements using 

age, sex, and the interaction variable age*sex. Levene’s tests indicated equal variances in tibial 

length (F = 1.56, p = .095), midshaft diameter (F = 1.67, p = .065), cortical thickness (F = 1.59, 

p = .084), and cortical index (F = 1.72, p = .055) between groups. The variance in medullary 

cavity diameter was not equal across groups (F = 1.91, p = .027). Age was a significant predictor 
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Table 4-8. Results of regression analyses of cross-sectional measurements and age, with chronically ill infants 

excluded. Tibial length is the dependent variable in model 1. Tibial midshaft diameter is the dependent 

variable in model 2. Medullary cavity diameter is the dependent variable in model 3. Cortical thickness is the 

dependent variable in Model 4. Cortical Index is the dependent variable of Model 5. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      239.35 1,62 < .001 .79 

(Constant) 65.14 1.52 42.79 < .001     

Age 4.23 0.27 15.47 < .001     

2      76.56 1,62 <.001 .55 

(Constant) 5.81 0.22 27.08 < .001     

Age 0.34 0.04 8.75 < .001     

3      35.17 2,61 <.001 .52 

(Constant) 1.91 0.26 7.24 < .001     

Age 0.47 0.11 4.27 < .001     

Age
2 

-0.02 0.009 -2.37 .021     

4      13.48 1,62 .001 .17 

(Constant) 3.39 0.19 18.29 < .001     

Age 0.12 0.03 3.67 .001     

5      7.73 2,61  .001 .18 

(Constant) 0.65 0.03 21.73 < .001     

Age -0.04 0.01 -3.37  .001     

Age
2 

0.003 0.001 2.77  .008     
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Table 4-9. Results of regression analyses of cross-sectional measurements and age, with premature infants 

excluded. Tibial length is the dependent variable in Model 1. Tibial midshaft diameter is the dependent 

variable in Model 2. Medullary cavity diameter is the dependent variable in Model 3. Cortical thickness is the 

dependent variable in Model 4. Cortical Index is the dependent variable of Model 5. 

Model Unstandardized 

Coefficients 

t p F df P 

Adj. 

R
2 

b SE 

1      96.54 3,53 < .001 .84 

(Constant) 57.78 3.42 16.89 < .001     

Age 10.79 2.42 4.46 < .001     

Age
2 

-1.17 0.49 -2.39 .021     

Age
3 

0.06 0.03 2.02 .048     

2      21.77 3,53 <.001 .53 

(Constant) 4.90 0.52 9.41 < .001     

Age 1.29 0.37 3.49 .001     

Age
2 

-0.20 0.07 -2.71 .009     

Age
3 

0.01 0.004 2.59 .012     

3      25.55 3,53 <.001 .57 

(Constant) 1.35 0.35 3.83 < .001     

Age 1.06 0.25 4.25 < .001     

Age
2 

-0.15 0.05 -3.00 .004     

Age
3 

0.007 0.003 2.58 .013     

4      6.45 1,55 .014 .09 

(Constant) 3.58 0.18 19.46 < .001     

Age 0.08 0.03 2.54 .014     

5      9.51 2,54 < .001 .23 

(Constant) 0.65 0.03 22.31 < .001     

Age -0.04 0.01 -3.68 .001     

Age
2 

0.003 0.001 3.00 .004     
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Figure 4-13. Scatter plot of tibial length by chronological age in months. Black regression line is fitted to total 

sample. Dark blue regression line is fitted to data from term infants. Light blue regression line is fitted to 

data from premature infants. 
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Figure 4-14. Scatter plot of tibial midshaft diameter by chronological age in months. Black regression line is 

fitted to total sample. Dark blue regression line is fitted to data from term infants. Light blue regression line 

is fitted to data from premature infants. 
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Figure 4-15. Scatter plot of medullary cavity diameter by chronological age in months. Black regression line 

is fitted to total sample. Dark blue regression line is fitted to data from term infants. Light blue regression 

line is fitted to data from premature infants. 
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Figure 4-16. Scatter plot of cortical thickness by chronological age in months. Black regression line is fitted to 

total sample. Dark blue regression line is fitted to data from term infants. Light blue regression line is fitted 

to data from premature infants. 
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Figure 4-17. Scatter plot of cortical index by chronological age in months. Black regression line is fitted to 

total sample. Dark blue regression line is fitted to data from term infants. Light blue regression line is fitted 

to data from premature infants. 
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in the model predicting tibial length (F(11, 54) = 19.82, p < .001), but sex (F(1, 54) = 3.77, p = 

.058) and sex*age (F(10, 54) = 0.94, p = .504) were not significant. Although tibial length was 

not significantly different between the sexes, a plot of tibial length by age with the data separated 

by sex suggests that tibial length tended to be greater in males than females Figure 4-18. Age was 

a significant predictor in the model predicting midshaft diameter (F(11, 54) = 9.92, p < .001), but 

sex (F(1, 54) = 3.20, p = .079) and sex*age (F(10, 54) = 1.18, p = .323) were not significant. 

Although midshaft diameter was not significantly different between the sexes, a plot of midshaft 

diameter by age with the data separated by sex suggests that midshaft diameter tended to be 

greater in males than females Figure 4-19. Age was a significant predictor in the model 

predicting medullary cavity diameter (F(11, 54) = 10.52, p < .001), but sex (F(1, 54) = 0.007, p 

= .934) and sex*age (F(10, 54) = 1.81, p = .081) were not significant. Although medullary cavity 

diameter was not significantly different between the sexes, a plot of medullary cavity diameter 

by age with the data separated by sex suggests that medullary cavity diameter tended to be 

greater in males between 3-8 months of age than females (Figure 4-20). Age (F(11, 54) = 3.47, p 

= .001) and sex (F(1, 54) = 4.97, p = .030) were significant predictors in the model predicting 

cortical thickness, but sex*age (F(10, 54) = 1.40, p = .207) was not significant. Males had 

significantly greater cortical thickness than females after accounting for size differences due to 

age. The model summary is provided in Table 4-10. A plot of cortical thickness by age with the 

data separated by males and females is provided in Figure 4-21. Age (F(11, 54) = 3.67, p = .001) 

was a significant predictor in a model predicting cortical index, but sex (F(1, 54) = 3.45, p = 

.069) and age*sex (F(11, 54) = 1.69, p = .108) were not significant. A plot of cortical index by 

age with the data separated by sex is provided in Figure 4-22. Although there was no significant 

difference in cortical index between the sexes, the plot suggests that males tended to have greater 

cortical indices than females after the first 6 months of life.  

Chronically Ill Infants Excluded 

Analyses were repeated with chronically ill infants excluded to evaluate whether their inclusion 

substantially affected results calculated from the pooled data. Two-way ANOVAs were 

conducted on models predicting tibial measurements using age, sex, and the interaction variable 

age*sex. Levene’s tests indicated that variances in tibial length (F = 1.22, p = .287), midshaft 

diameter (F = 1.80, p = .052), medullary cavity diameter (F = 1.81, p = .050), cortical thickness  
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Figure 4-18. Plot of tibial length by age and sex. 
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Figure 4-19. Plot of tibial midshaft diameter by age and sex. 
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Figure 4-20. Plot of medullary cavity diameter by age and sex. 

 

 

Table 4-10. Model summary for two-way ANOVA predicting cortical thickness using sex, age, and sex*age. 

Tests of Between-Subjects Effects 

Dependent Variable: Cortical Thickness 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F p 

Corrected Model 31.90
a
 22 1.45 2.49 .003 

Intercept 816.54 1 816.54 1401.16 < .001 

Sex 2.90 1 2.90 4.97 .030 

Age 22.24 11 2.02 3.47 .001 

Sex * Age 8.14 10 0.81 1.40 .207 

Error 31.47 54 0.58 
  

Total 1187.03 77 
   

Corrected Total 63.37 76 
   

a. R Squared = 0.50 (Adjusted R Squared = 0.30) 
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Figure 4-21. Plot of cortical thickness by age and sex. 
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Figure 4-22. Plot of cortical index by age and sex. 
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(F = 1.54, p = .115), and cortical index (F = 1.71, p = .070) were equal across groups. Age (F(11, 

42) = 12.75, p < .001) and sex (F(1, 42) = 4.14, p = .048) were significant predictors in the 

model predicting tibial length , but sex*age (F(9, 42) = 0.73, p = .676) was not significant. This 

finding differed from the results calculated from the pooled data. Males had significantly greater 

tibial lengths after accounting for age differences. A plot of tibial length by age with the data 

separated by sex and excluding chronically ill infants is provided in Figure 4-23. Age was a 

significant variable in the model predicting midshaft diameter (F(11, 42) = 8.61, p < .001), but 

sex (F(1, 42) = 2.48, p = .123) and sex*age (F(9, 42) = 1.65, p = .131) were not significant. Age 

(F(11, 42) = 8.71, p < .001) was a significant predictor in a model predicting medullary cavity 

diameter, but sex (F(1, 42) = 0.03, p = .862) and age*sex (F(9, 42) = 1.86, p = .086) were not 

significant. Age (F(11, 42) = 2.66, p = .011) was a significant predictor in the model predicting 

cortical thickness, but sex (F(1, 42) = 4.06, p = .050) and sex*age (F(9, 42) = 1.73, p = .113) 

were not significant. This finding differed from results calculated from the pooled data. Age 

(F(11, 42) = 2.83, p = .007) was a significant predictor in a model predicting cortical index, but 

sex (F(1, 42) = 2.85, p = .099) and age*sex (F(9, 42) = 1.73, p = .113) were not significant.  

Race  

Studies have reported significant racial differences in BMD and SOS among infants that may be 

attributed to significant racial differences in bone size. Due to the possibility of finding 

significant racial differences in BMD or SOS in the current study, tests were carried out to 

evaluate racial differences in the tibial measurements. ANOVAs and simple linear regression 

were used to determine if there were any significant racial differences in the tibial measurements. 

Variances in tibial length (F = 1.10, p = .355), midshaft diameter (F = 0.78, p = .512), medullary 

cavity diameter (F = 0.08, p = .973), and cortical index (F = 0.32, p = .808) were equal across 

racial groups. There were significant differences in cortical thickness variance between the racial 

groups (F = 3.68, p = .016). ANOVAs indicated no significant differences in tibial length (F(3, 

73) = 1.95, p = .130), midshaft diameter (F(3, 73) = 2.53, p = .063), medullary cavity diameter 

(F(3, 73) = 0.96, p = .419), or cortical index (F(3, 73) = 0.90, p = .447) based on race. There 

were significant racial differences in cortical thickness (F(3, 73) = 2.75, p = .049). Post hoc 

analyses using Tamhane’s T2 test indicated that Asian infants had significantly lower cortical 

thickness than black, white, and Hispanic infants (p < .001). Although analyses for cortical 
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Figure 4-23. Plot of tibial length by age and sex with chronically ill infants excluded. 
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thickness indicated significant differences between Asian infants and other groups, these results 

should not be given much weight due to the small number of infants in the Asian group (n = 2). 

Chronically Ill Infants Excluded 

Analyses were repeated with chronically ill infants excluded to evaluate whether their inclusion 

substantially affected results calculated from the pooled data. Variances in tibial length (F = 

0.57, p = .569), midshaft diameter (F = 0.80, p = .455), medullary cavity diameter (F = 0.25, p = 

.780), cortical thickness (F = 2.08, p = .134), and cortical index (F = 0.12, p = .885) were equal 

between the racial groups. The association between race and midshaft diameter was significant 

after chronically ill infants were removed from the analysis (F(2, 61) = 3.42, p = .039). LSD tests 

indicated that black infants had significantly greater midshaft diameters than white infants (p = 

.013) Table 4-11. Racial differences in tibial length (F(2, 61) = 3.09, p = .053), cortical thickness 

(F(2, 61) = 2.64, p = .079), medullary cavity diameter (F(2, 61) = 1.85, p = .167), and cortical 

index (F(2, 61) = 0.83, p = .439) remained insignificant.  

Due to the significant racial differences in midshaft diameter, one-way ANOVAs were 

conducted to determine if there was a significant relationship between race and age, race and sex, 

or sex and age that may explain the difference. Asian infants were excluded from analyses 

because the group consisted only of females. Levene’s test indicated equal variances in age (F = 

0.30, p = .741), sex (F = 1.03, p = .315), and race (F = 1.54, p = .224) between groups. There 

was no significant difference in age based on race (F(2, 62) = 0.43, p = .653) or sex (F(1, 63) = 

0.07, p = .791). A significant association was found between race and sex (F(2, 62) = 3.74, p = 

.029). LSD post hoc analyses indicated black infants were significantly more likely to be male 

than white (p = .025) and Hispanic infants (p = .035) after excluding chronically ill infants from 

analyses (Table 4-12). Significantly greater midshaft diameter among black infants may be 

attributable to the greater number of black male infants than white or Hispanic males infants. 

Term Infants 

To determine if inclusion of the premature infants affected the results, the data were reanalyzed 

with the premature infants excluded. Of note, exclusion of the premature infants removed the 

Asian infants from the analyses because both were premature. Levene’s test indicated that 

variances in tibial length (F = 1.16, p = .321), midshaft diameter (F = 0.96, p = .388), medullary 
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Table 4-11. LSD post hoc comparisons between racial groups with tibial midshaft diameter as the dependent 

variable and chronically ill infants excluded from analyses. 

Multiple Comparisons 

(I) Race (J) Race 

Mean 

Difference 

(I-J) SE p 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Black Hispanic 0.52 0.38 .186 -0.25 1.28 

White 1.19
*
 0.46 .013 0.26 2.11 

Hispanic Black -0.52 0.38 .186 -1.28 0.25 

White 0.67 0.49 .177 -0.31 1.66 

White Black -1.19
*
 0.46 .013 -2.11 -0.26 

Hispanic -0.67 0.49 .177 -1.66 0.31 

*. The mean difference is significant at the .05 level. 

 

 

 

 

Table 4-12. LSD post hoc comparisons between racial groups with sex as the dependent variable (Males = 1) 

and chronically ill infants excluded from analyses. 

Multiple Comparisons 

(I) Race (J) Race 

Mean 

Difference 

(I-J) SE p 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Black Hispanic 0.29
*
 0.14 .035 0.02 0.56 

White 0.38
*
 0.16 .025 0.05 0.70 

Hispanic Black -0.29
*
 0.14 .035 -0.56 -0.02 

White 0.08 0.17 .635 -0.27 0.43 
White Black -0.38

*
 0.16 .025 -0.70 -0.05 

Hispanic -0.08 0.17 .635 -0.43 0.27 

*. The mean difference is significant at the .05 level. 

 

  



 

148 

 

diameter (F = 0.74, p = .483), cortical thickness (F = 2.97, p = .060), and cortical index (F = 

0.21, p = .815) were equal across racial groups. After excluding premature infants from analyses, 

there were no significant racial differences in tibial length (F(2, 54) = 1.22, p = .303), midshaft 

diameter(F(2, 54) = 2.66, p = .079), medullary cavity diameter(F(2, 54) = 0.95, p = .392), 

cortical thickness(F(2, 54) = 2.37, p = .103), or cortical index (F(2, 54) = 0.38, p = .684.  

QUANTITATIVE ULTRASOUND 

Reliability 

Reliability analyses were conducted on the SOS readings by estimating an intra-class correlation 

coefficient, Cronbach’s alpha, from the three consecutive SOS readings obtained from each 

infant. Cronbach’s alpha was statistically significant and indicated excellent reliability (α = .983, 

p < .001). To determine if there were significant differences in intra-infant SOS readings, a 

repeated-measures ANOVA was performed. Results indicated there was no significant difference 

between the three intra-infant SOS measurements (F(2, 75) = 0.57, p = .567). Lastly, a 

coefficient of variation (CV) was calculated for the intra-infant SOS readings. On average the 

three SOS measurements taken on each infant varied by approximately 1.2% (CV = .012) with a 

range of 0-6%. 

SOS  

Three consecutive SOS measurements were taken from the tibial midshaft of each infant, with 

the exception of two cases. Only two SOS measurements could be obtained from one infant 

(Case ID # 180) due to operator error and no SOS readings could be obtained from another case 

(Case ID # 185). It is possible that QUS could not detect the ultrasound signal reflected from this 

infant’s tibia either due to a low SOS reading or inappropriate probe size. The manufacture sets 

the lowest SOS signal detected by the QUS device and is not adjustable. The CM probe may 

have been too large relative to the size of the infant’s leg to maintain good contact between the 

probe and the skin of the leg. The CS probe, a smaller probe designed to measure SOS of the 

proximal phalanx, was not available at the time the measurement was obtained.  

Average SOS measures were calculated from the consecutive SOS measurements obtained from 

the 77 infants (M = 3010.75 m/s, SD = 213.12) (Table A- 6 of the Appendix). A Shapiro-Wilk 

test was used to evaluate data distribution normality. The average SOS data were normal 
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distributed (W = 0.995, p = .992). A frequency distribution of SOS with the SOS values from 

premature infants represented in light blue is provided in Figure 4-24. To test for significant 

differences in age-specific SOS means based on type of age grouping method (chronological age 

in months versus term-corrected age in months), a paired t-test was conducted. A Shapiro-Wilk 

test indicated that the differences between pairs were normally distributed (W = 0.871, p = .079). 

There was no significant differences between age-specific SOS means based on type of age 

grouping method (t = -0.21, p = .839). It is recognized that chronological age may not 

correspond with skeletal development. However, there is no way to correct for this difference. 

Since there is no way to correct for this difference and was no significant difference in age-

specific SOS means between term- corrected and chronological age, chronological age was used 

in all remaining analyses which included age as a variable. 

Sex and Race  

ANOVAs were used to test for sex and race dependent differences in SOS data. Levene’s tests 

indicated that variances in SOS were equal between the sexes (F = 1.74, p = .192) and racial 

groups (F = 0.05, p = .987) There were no statistically significant differences in SOS based on 

sex (F(1, 75) = 0.56, p = .457) or race (F(3, 73) = 0.63, p = .596).  

Term Infants 

Premature infants are reported to have significantly lower SOS values than term born infants. 

Analyses were repeated with premature infants excluded to determine whether results calculated 

using only term born infants different from data calculated using the pooled sample. ANOVAs 

were performed which predicted SOS by sex and race. The effects of sex (F(1, 55) = 0.45, p = 

.505) and race (F(2, 54) = 0.97, p = .387) on SOS remained insignificant.  

BMD 

BMD estimates for the radial midshaft and tibial midshaft were obtained for 48 infants and 70 

infants, respectively. The custom program could not calculate BMD estimates for 21 radiographs 

of the radius/ulna and 8 radiographs of the tibia/fibula. There are several possible explanations 

for the inability to calculate BMD estimates. The program may not have been able to 

differentiate between the attenuation associated with soft tissue and bone due to inhomogeneities 

in the radiographic image, low BMD, or thin cortices (< 2 mm). The distribution of the BMD  
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Figure 4-24. Distribution of average SOS readings. Dark blue represents SOS data from term born infants 

and light blue represents data from premature infants. 
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data was evaluated for normality using the Shapiro-Wilk test. The radial (W = 0.805, p < .001) 

and tibial (W = 0.959, p = .022) BMD data were not normally distributed. Descriptive statistics 

of the radial and tibial BMD estimates for the entire study sample are given in Table A- 6 of the 

Appendix. The median and inter-quartile range for radial BMD estimates were 0.40 g/cm
2
 and 

0.30-0.58 g/cm
2
, respectively. The median and inter-quartile range for the tibial BMD estimates 

of the entire study sample were 0.86 g/cm
2
 and 0.62-1.15 g/cm

2
, respectively.  

A nonparametric paired-sample sign test was used to compare the radial and tibial BMD 

estimates obtained from the same infant. BMD estimates of both the radius and tibia were 

obtained for 46 infants. Results indicate that intra-infant radial BMD estimates were significantly 

lower than tibial BMD estimates (Z = 1.0, p < .001). All BMD measurement of the radius were 

excluded from further statistical analyses in order to prevent decreasing the overall sample size 

as a result of their inclusion. 

Sex and Race 

Significant differences in BMD estimates based on sex and race were evaluated using one-way 

ANOVA. Levene’s test indicated unequal variances in BMD between the sexes (F = 5.14, p = 

.027). Males had significantly lower BMD than the females in the study sample (F(1, 68) = 4.72, 

p = .033).Variances in BMD were equal between groups based on race (F = 1.08, p = .365). 

There were significant differences in BMD estimates based on race (F(3, 66) = 2.88, p = .042). 

LSD post hoc analyses indicated that white infants had significantly greater BMD estimates than 

Hispanic infants. Asian infants had significantly lower BMD estimates than White infants, but 

these results should be disregarded due to the small number of Asian infants in the group (n = 2). 

Results of post hoc analyses are provided in Table 4-13.  

Analyses were conducted to determine if the sex difference in BMD was related to an association 

between sex and age, prematurity, chronic illness, or size. Chi-square tests indicated no 

significant associations between sex and prematurity (X
2
(1, n = 74) = 1.58, p = .209) or chronic 

illness (X
2
(1, n = 78) = 1.03, p = .311). A one-way ANOVA was used to test for a significant 

relationship between sex and age, height, weight, and birthweight. Levene’s tests indicated that 

variances in age (F = 0.36, p = .552), weight (F = 1.40, p = .241), height (F = 1.29, p = .259),  
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Table 4-13. LSD post hoc comparisons between racial groups with BMD as the dependent variable. 

Multiple Comparisons 

(I) Race (J) Race 

Mean 

Difference 

(I-J) SE p 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Black Hispanic 0.08 0.08 .355 -0.09 0.25 

White -0.18 0.11 .093 -0.39 0.03 

Asian 0.40 0.23 .085 -0.06 0.85 

Hispanic Black -0.08 0.08 .355 -0.25 0.09 

White -0.26
*
 0.11 .023 -0.48 -0.04 

Asian 0.32 0.23 .170 -0.14 0.78 

White Black 0.18 0.11 .093 -0.03 0.39 

Hispanic 0.26
*
 0.11 .023 0.04 0.48 

Asian 0.58
*
 0.24 .018 0.10 1.05 

Asian 

Black -0.40 0.23 .085 -0.85 0.06 

Hispanic -0.32 0.23 .170 -0.78 0.14 

Asian -0.58
*
 0.24 .018 -1.05 -0.10 

*. The mean difference is significant at the .05 level. 
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and birthweight (F = 0.18, p = .677) were equal between the sexes. There were no significant sex 

differences for age (F(1, 76) = 0.12, p = .728), weight (F(1, 76) = 1.71, p = .196), height (F(1, 

76) = 1.48, p = .227), and birthweight (F(1, 69) = 0.55, p = .463). These results indicated that 

there were no significant sex differences in age, health, or body size to account for the significant 

sex differences in BMD.  

Chronically Ill Infants Excluded 

After removing the chronically ill infants from the analysis, variances in BMD were equal 

between groups based on sex (F = 2.51, p = .119) and race (F = 0.70, p = .500). Males continued 

to have significantly lower BMD than females ( F(1, 56) = 4.12, p = .047). Racial differences in 

BMD ceased to be significant after exclusion of chronically ill infants from the analysis (F(2, 55) 

= 2.07, p = .136). 

Association between Growth-Related Changes in Size and Age-Related 

Changes in SOS and BMD 

HYPOTHESIS 1A: AGE-RELATED CHANGES IN TIBIAL STRUCTURE ARE 

ASSOCIATED WITH GROWTH-RELATED CHANGES IN BODY SIZE.   

Age-related changes in tibial structure were hypothesized to be significantly positively 

associated with variables related to body size and growth percentiles. ANOVA and regression 

analyses were performed to evaluate the relationship between tibial measurements and variables 

related to growth and size. Age was a covariate in the model predicting tibial length. Age, age
2
,
 

and age
3
 were used as covariates in models predicting midshaft diameter and medullar 

cavitydiameter. Age and age
2 

were used as covariates models predicting cortical thickness and 

cortical index. Models using height to predict tibial length (R
2

Adj. = .90, F(2, 74) = 326.40, p < 

.001), midshaft diameter (R
2

Adj. = .64, F(4, 72) = 35.23, p < .001), medullary cavity diameter 

(R
2

Adj. = .61, F(4, 72) = 30.41, p < .001), and cortical thickness (R
2

Adj. = .23, F(3, 73) = 8.47, p < 

.001) were significant. Regression coefficients for height were significant (p < .05) and indicated 

that, while holding age constant, tibial length (b = 1.26, 95% CI [1.03, 1.50]), midshaft diameter 

(b = 0.11, 95% CI [0.07, 0.15]), cortical thickness (b = 0.06, 95% CI [0.02, 0.10]), and medullary 

cavity diameter (b = 0.05, 95% CI [0.02, 0.07]) increased as height increased. After accounting 

for age, height was not a significant predictor of cortical index (p = .564).  
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Models using length for age percentile to predict tibial length (R
2

Adj.
 
= .10, F(1, 74) = 8.94, p = 

.004), midshaft diameter (R
2

Adj.
 
= .12, F(1, 74) = 10.77, p = .002), and cortical thickness (R

2
Adj.

 
= 

.12, F(1, 74) = 10.75, p = .002) were significant. The regression coefficient for length for age 

percentile indicated that tibial length increased by 0.15 mm with every 1 percentile increase in 

length for age percentile (b = 0.15, 95% CI [0.05, 0.25]). Regression coefficients for length for 

age percentile indicated that tibial midshaft diameter (b = 0.01, 95% CI [0.006, 0.02]) increased 

by 0.01 mm and cortical thickness (b = 0.01, 95% CI [0.004, 0.02]) increased by 0.01 mm with 

every 1 percentile point increase in length for age percentile. No significant relationship was 

found between length for age percentile and medullary cavity diameter (F(1, 74) = 2.82, p = 

.097) or cortical index (F(1, 74) = 1.20, p = .277). 

ANOVA and linear regression analyses were used to predict the tibial measurements from 

weight while using age as a covariate. Weight was a significant predictor (p < .05) in models 

predicting tibial length (R
2

Adj. = .82, F(2, 74) = 169.76, p < .001), midshaft diameter (R
2

Adj. = .63, 

F(4, 72) = 33.07, p < .001), medullary cavity diameter (R
2

Adj. = .61, F(4, 72) = 30.44, p < .001), 

and cortical thickness (R
2

Adj. = .21, F(3, 73) = 7.78, p < .001). Regression coefficients for weight 

indicated that tibial length (b = 2.84, 95% CI [1.83, 3.84]), cortical thickness (b = 0.18, 95% CI 

[0.06, 0.31]), midshaft diameter (b = 0.32, 95% CI [0.19, 0.45]), cortical thickness (b = 0.18, 

95% CI [0.10, 0.27]), and medullary cavity diameter (b = 0.15, 95% CI [0.06, 0.24]) increased as 

weight increased. Weight was not a significant predictor of cortical index after accounting for 

age (p = .708).  

ANOVA and linear regression analyses were used to predict the tibial measurements using 

weight for age percentile. Models using weight for age percentile to predict tibial length (R
2

Adj. = 

.14, F(1, 74) = 13.39, p < .001), midshaft diameter (R
2

Adj. = .16, F(1, 74) = 15.47, p < .001), 

medullary cavity diameter (R
2

Adj. = .10, F(1, 74) = 9.44, p = .003), and cortical thickness (R
2

Adj. = 

.08, F(1, 74) = 7.25, p = .009) were significant. The regression coefficients for weight for age 

percentile indicated that tibial length (b = 0.17, 95% CI [0.08, 0.27]), midshaft diameter (b = 

0.02, 95% CI [0.01, 0.03]), medullary cavity diameter (b = 0.01, 95% CI [0.003, 0.02]), and 

cortical thickness (b = 0.008, 95% CI [0.002, 0.01]) increased as weight for age percentile 

increased. There was no significant relationship between weight for age percentile and cortical 

index (F(1, 74) = 0.06, p = .808). 
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ANOVA and linear regression analyses were used to predict the tibial measurements using 

weight for length percentile. There was no significant relationship between weight for length 

percentile and tibial length (F(1, 72) = 1.04, p = .311), midshaft diameter (F(1,72) = 3.71, p = 

.058), medullary cavity diameter (F(1,72) = 3.19, p = .078), cortical thickness (F(1,72) = 1.16, p 

= .286), or cortical index (F(1, 72) = 0.58, p = .448).  

With the exception of weight for length percentile and cortical index, results indicated that the 

tibial measurements were positively associated with body size, even after accounting for size 

differences due to age. These findings support the hypothesis that age-related changes in tibial 

structure are positively associated with growth related increases in body size.  

HYPOTHESIS 1B: BMD AND SOS ARE SIGNFICANTLY RELATED TO AGE.  

BMD and Age 

ANOVA and simple linear regression were used to evaluate the relationship between age and 

BMD. Age in months was used in analyses instead of age in weeks due to the low number of 

infants, 1 in some cases, in each age category when age was subdivided by weeks. There was a 

significant linear relationship between chronological age (months) and BMD (R
2

Adj. = .04, F(1, 

68) = 4.19, p = .044). An F test of the R
2
 change indicated that adding a quadratic term did not 

significantly improve the fit of the model. The regression coefficient for age indicated that BMD 

significantly decreased by 0.03 g/cm
2
 for every 1 month increase in age (b = -0.03, 95% CI [-

0.05, -0.001]). There was no significant relationship between term-corrected age (months) and 

BMD (F(1, 68) = 2.13, p = .150). The significant association between BMD and chronological 

age supported the hypothesis. 

Chronically Ill Infants Excluded 

Due to the significant negative relationship between chronic illness and BMD, analyses were 

repeated with the chronically ill infants excluded. The relationship between chronological age 

and BMD remained significant (R
2

Adj. = .05, F(1, 56) = 4.11, p = .047). The regression coefficient 

for chronological age indicated that BMD at the tibial midshaft decreased as postnatal age 

increased (b = -0.03, 95% CI [-0.06, -0.003E-1]). A box and whisker plot of BMD by age and 

excluding chronically ill infants is presented in Figure 4-25. Due to the significant sex differences 

in BMD, the distribution of BMD by chronological age with the sexes differentiated is presented 

in Figure 4-26. 
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Figure 4-25. Box and whisker plot of BMD by chronological age in months with chronically ill infants 

excluded.   
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Figure 4-26. Box and whisker plot of BMD distributed by chronological age in months and sex, chronically ill 

infants excluded. Dark blue boxes represent data from female infants and are located to the left of gridlines 

representing age and light blue boxes represent data from male infants and are located to the right of 

gridlines representing age. The dark blue circle is a female outlier (Case ID # 159).  
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SOS and Age 

F tests of the R
2
 change indicated that a cubic model was a significantly better fit than a 

quadratic or linear model for the relationship between age and SOS (F(1, 73) = 11.09, p = .001). 

The regression coefficients for age (b = -233.72, p < .001), age
2
 (b = 48.02, p < .001), and age

3
 

(b = -2.41, p = .001) indicated that for every unit increase in age SOS decreased on average by 

~234 m/s. The positive parameter estimate for age
2
 indicated a positive quadratic trend in the 

data as age increased. Larger age values were associated with greater SOS readings. The 

negative parameter estimate of age
3
 indicated a second curvature in the data. While the quadratic 

trend at smaller values of age was positive, the quadratic trend at larger age values was negative. 

The model predicting SOS using age explained ~36% of the variance in SOS (R
2

Adj. = .36, F(3, 

73) = 14.88, p < .001) (Model 1, Table 4-14). A box and whisker plot of the SOS values by age in 

months for the pooled data is provided in Figure 4-27.A regression plot of the curvilinear (cubic) 

relationship between age and SOS is presented in Figure 4-28. The plot suggested that after birth 

SOS decreased with increasing age until ~3 months of age. After ~3 months of age, SOS 

gradually increased with increasing age. These results support the hypothesis that SOS has a 

significant relationship with age. 

To evaluate which age ranges had significantly different mean SOS values, a one-way ANOVA 

was conducted on the SOS data using age in months as a grouping variable. Significant 

differences in group mean SOS were indicated (F(11, 65) = 3.99, p < .001). Levene’s test 

indicated equal variances between groups (F = 1.26, p = .270). Results of post hoc tests using 

LSD are provided in Table 4-15. Post hoc analyses indicated that mean SOS for infants less than 

one month of age was significantly greater than the mean for infants 2 and 4 months of age (p < 

.05). Mean SOS for infants 1 month of age was significantly lower than infants 8-11 months of 

age (p < .05). Mean SOS for infants 2 months of age were significantly lower than infants less 

than 1 month of age and for infants 7-11 months of age (p < .05). Mean SOS values for infants 3, 

4, and 5 months of age were significantly lower than for infants 8-11 months of age (p < .05). 

Mean SOS for infants 4 months of age was also significantly lower than for infants less than 1 

month of age (p < .05). For exact p-values see Table 4-15. Mean SOS for infants 6 months of age 

was significantly lower than for infants 10 months of age (p = .016). In general, these analyses  
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Table 4-14. Results of regression analyses with SOS as the dependent variable. Model 1 predicts mean SOS 

using the age variables. Model 2 predicts mean SOS from the age variables with premature infants excluded 

from the analysis. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      14.88 3,73 <.001 .35 

(Constant) 3222.64 87.26 36.93 <.001     

Age -233.72 62.72 -3.73 <.001     

Age
2 

48.02 12.70 3.78 <.001     

Age
3 

-2.41 0.72 -3.33 .001     

2      10.20 3,49 <.001 .33 

(Constant) 3197.63 96.50 33.14 <.001     

Age -196.18 68.29 -2.87 .006     

Age
2 

42.77 13.78 3.10 .003     

Age
3 

-2.23 0.78 -2.85 .006     
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Figure 4-27. Box and whisker plot of SOS by chronological age in months.  
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Figure 4-28. Plot of SOS readings against age in months with a Lowess-smoothed regression line. Dark blue 

circles represent SOS readings from term born infants. Light blue circles represent SOS readings from 

premature infants.  
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Table 4-15. LSD post hoc comparisons of SOS group means by age in months. 

Multiple Comparisons 

(I) Age 

(months) 

(J) Age 

(months) 

Mean 

Difference 

(I-J) SE p 

95% Confidence Interval 

Lower 

Bound Upper Bound 

< 1 1 183.46 104.12 .083 -24.47 391.39 

  2 282.63
*
 101.10 .007 80.73 484.54 

  3 172.56 102.95 .099 -33.05 378.16 

  4 238.47
*
 115.10 .042 8.59 468.35 

  5 200.22 105.49 .062 -10.47 410.90 

  6 157.08 126.09 .217 -94.74 408.90 

  7 -10.53 136.19 .939 -282.52 261.47 

  8 -133.58 154.43 .390 -442.00 174.83 

  9 -85.42 126.09 .501 -337.24 166.40 

  10 -180.19 136.19 .190 -452.19 91.80 

  11 -69.42 126.09 .584 -321.24 182.40 

1 < 1  -183.46 104.12 .083 -391.39 24.47 

  2 99.17 71.85 .172 -44.32 242.66 

  3 -10.91 74.43 .884 -159.56 137.75 

  4 55.01 90.50 .545 -125.73 235.75 

  5 16.75 77.91 .830 -138.85 172.36 

  6 -26.38 104.12 .801 -234.31 181.55 

  7 -193.99 116.15 .100 -425.95 37.97 

  8 -317.05
*
 137.07 .024 -590.80 -43.29 

  9 -268.88
*
 104.12 .012 -476.81 -60.95 

  10 -363.66
*
 116.15 .003 -595.62 -131.70 

  11 -252.88
*
 104.12 .018 -460.81 -44.95 

2 < 1  -282.63
*
 101.10 .007 -484.54 -80.73 

  1 -99.17 71.85 .172 -242.66 44.32 

  3 -110.08 70.15 .121 -250.17 30.02 

  4 -44.16 87.01 .614 -217.93 129.61 

  5 -82.41 73.83 .268 -229.86 65.04 

  6 -125.55 101.10 .219 -327.45 76.36 

  7 -293.16
*
 113.45 .012 -519.73 -66.59 

  8 -416.21
*
 134.80 .003 -685.42 -147.01 

  9 -368.05
*
 101.10 .001 -569.95 -166.14 

  10 -462.83
*
 113.45 .000 -689.40 -236.25 

  11 -352.05
*
 101.10 .001 -553.95 -150.14 

3 < 1  -172.56 102.95 .099 -378.16 33.05 

  1 10.91 74.43 .884 -137.75 159.56 

  2 110.08 70.15 .121 -30.02 250.17 

  4 65.92 89.16 .462 -112.15 243.98 

  5 27.66 76.35 .718 -124.82 180.15 

  6 -15.47 102.95 .881 -221.08 190.14 

  7 -183.08 115.10 .117 -412.96 46.80 

  8 -306.19
*
 136.19 .028 -578.13 -34.14 

  9 -257.97
*
 102.95 .015 -463.58 -52.36 

  10 -352.75
*
 115.10 .003 -582.63 -122.87 

  11 -241.97
*
 102.95 .022 -447.58 -36.36 
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Table 4-15. Continued. 

Multiple Comparisons 

(I) Age 

(months) 

(J) Age 

(months) 

Mean 

Difference 

(I-J) SE p 

95% Confidence Interval 

Lower 

Bound Upper Bound 

4 < 1  -238.47
*
 115.10 .042 -468.35 -8.59 

  1 -55.01 90.50 .545 -235.75 125.73 

  2 44.16 87.01 .614 -129.61 217.93 

  3 -65.92 89.16 .462 -243.98 112.15 

  5 -38.26 92.08 .679 -222.16 145.65 

  6 -81.39 115.10 .482 -311.27 148.49 

  7 -249.00 126.09 .053 -500.82 2.82 

  8 -372.06
*
 145.60 .013 -662.83 -81.28 

  9 -323.89
*
 115.10 .006 -553.77 -94.01 

  10 -418.67
*
 126.09 .001 -670.49 -166.85 

  11 -307.89
*
 115.10 .009 -537.77 -78.01 

5 < 1  -200.22 105.49 .062 -410.90 10.47 

  1 -16.75 77.91 .830 -172.36 138.85 

  2 82.41 73.83 .268 -65.04 229.86 

  3 -27.66 76.35 .718 -180.15 124.82 

  4 38.26 92.08 .679 -145.65 222.16 

  6 -43.13 105.49 .684 -253.82 167.55 

  7 -210.74 117.38 .077 -445.18 23.69 

  8 -333.80
*
 138.12 .018 -609.65 -57.95 

  9 -285.63
*
 105.49 .009 -496.32 -74.95 

  10 -380.41
*
 117.38 .002 -614.84 -145.98 

  11 -269.63
*
 105.49 .013 -480.32 -58.95 

6 < 1  -157.08 126.09 .217 -408.90 94.74 

  1 26.38 104.12 .801 -181.55 234.31 

  2 125.55 101.10 .219 -76.36 327.45 

  3 15.47 102.95 .881 -190.14 221.08 

  4 81.39 115.10 .482 -148.49 311.27 

  5 43.13 105.49 .684 -167.55 253.82 

  7 -167.61 136.19 .223 -439.61 104.38 

  8 -290.67 154.43 .064 -599.08 17.75 

  9 -242.50 126.09 .059 -494.32 9.32 

  10 -337.28
*
 136.19 .016 -609.27 -65.28 

  11 -226.50 126.09 .077 -478.32 25.32 

7 < 1  10.53 136.19 .939 -261.47 282.52 

  1 193.99 116.15 .100 -37.97 425.95 

  2 293.16
*
 113.45 .012 66.59 519.73 

  3 183.08 115.10 .117 -46.80 412.96 

  4 249.00 126.09 .053 -2.82 500.82 

  5 210.74 117.38 .077 -23.69 445.18 

  6 167.61 136.19 .223 -104.38 439.61 

  8 -123.06 162.78 .452 -448.15 202.04 

  9 -74.89 136.19 .584 -346.88 197.11 

  10 -169.67 145.60 .248 -460.44 121.11 

  11 -58.89 136.19 .667 -330.88 213.11 
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Table 4-15. Continued 

Multiple Comparisons 

(I) Age 

(months) 

(J) Age 

(months) 

Mean 

Difference 

(I-J) SE p 

95% Confidence Interval 

Lower 

Bound Upper Bound 

8 < 1  133.58 154.43 .390 -174.83 442.00 

  1 317.05
*
 137.07 .024 43.29 590.80 

  2 416.21
*
 134.80 .003 147.01 685.42 

  3 306.14
*
 136.19 .028 34.14 578.13 

  4 372.06
*
 145.60 .013 81.28 662.83 

  5 333.80
*
 138.12 .018 57.95 609.65 

  6 290.67 154.43 .064 -17.75 599.08 

  7 123.06 162.78 .452 -202.04 448.15 

  9 48.17 154.43 .756 -260.25 356.58 

  10 -46.61 162.78 .776 -371.71 278.49 

  11 64.17 154.43 .679 -244.25 372.58 

9 < 1  85.42 126.09 .501 -166.40 337.24 

  1 268.88
*
 104.12 .012 60.95 476.81 

  2 368.05
*
 101.10 .001 166.14 569.95 

  3 257.97
*
 102.95 .015 52.36 463.58 

  4 323.89
*
 115.10 .006 94.01 553.77 

  5 285.63
*
 105.49 .009 74.95 496.32 

  6 242.50 126.09 .059 -9.32 494.32 

  7 74.89 136.19 .584 -197.11 346.88 

  8 -48.17 154.43 .756 -356.58 260.25 

  10 -94.78 136.19 .489 -366.77 177.22 

  11 16.00 126.09 .899 -235.82 267.82 

10 < 1  180.19 136.19 .190 -91.80 452.19 

  1 363.66
*
 116.15 .003 131.70 595.62 

  2 462.83
*
 113.45 .000 236.25 689.40 

  3 352.75
*
 115.10 .003 122.87 582.63 

  4 418.67
*
 126.09 .001 166.85 670.49 

  5 380.41
*
 117.38 .002 145.98 614.84 

  6 337.28
*
 136.19 .016 65.28 609.27 

  7 169.67 145.60 .248 -121.11 460.44 

  8 46.61 162.78 .776 -278.49 371.71 

  9 94.78 136.19 .489 -177.22 366.77 

  11 110.78 136.19 .419 -161.22 382.77 

11 < 1 69.42 126.09 .584 -182.40 321.24 

  1 252.88
*
 104.12 .018 44.95 460.81 

  2 352.05
*
 101.10 .001 150.14 553.95 

  3 241.97
*
 102.95 .022 36.36 447.58 

  4 307.89
*
 115.10 .009 78.01 537.77 

  5 269.63
*
 105.49 .013 58.95 480.32 

  6 226.50 126.09 .077 -25.32 478.32 

  7 58.89 136.19 .667 -213.11 330.88 

  8 -64.17 154.43 .679 -372.58 244.25 

  9 -16.00 126.09 .899 -267.82 235.82 

  10 -110.78 136.19 .419 -382.77 161.22 

* The mean difference is significant at the 0.05 level.  
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indicated that mean SOS decreased significantly after the first month of life and did not begin to 

increase again until after the 5
th

 month of life. 

Term Infants 

Analyses were repeated using data from the term born infants to assess whether there were 

substantial differences between results calculated from the pooled data and those calculated 

using only the term infants. To determine if inclusion of the premature infants had a significant 

effect on age-specific mean SOS, age-specific SOS means from the pooled sample were 

compared with age-specific SOS means from the term born infants. A Shapiro-Wilk test 

indicated that the differences between pairs were normally distributed (W = 0.865, p = .056). A 

paired t-test indicated a significant difference in age-specific SOS means based on the pooled 

data (M = 3009.63, SD = 213.46) and data from the term born infants (M = 3042.40, SD = 

196.93) (t = -2.41, p = .035). A box and whisker plot of the SOS data from the term born infants 

is provided in Figure 4-29. 

An F test of the R
2
 change indicated that a cubic model was still the best fit for the relationship 

between age and SOS among term born infants (F(1, 53) = 8.14, p = .006). The regression model 

predicting SOS from the age variables remained significant (R
2

Adj. = .33, F(3, 53) = 10.20, p < 

.001). Regression coefficients indicated that SOS initially decreased as age increased, but the 

relationship changed with increasing age as indicated by the significantly positive coefficient for 

age
2
. Larger age values were associated with greater SOS readings. The significant negative 

coefficient of age
3
 indicated a second curvature in the regression line. The rate of increase in 

SOS begins to decrease at the largest age values. The model summary is presented in Model 2 of 

Table 4-14. 

The one-way ANOVA and post hoc analyses were repeated using SOS data from term born 

infants to compare the results with those of the pooled data, which were reported above. An 8 

month old infant was also removed from the analysis because it was the only infant in that age 

group. Differences between age groups continued to be significant after exclusion of premature 

infants (F(10, 45) = 2.54, p = .016). Levene’s test indicated equal variances between groups (F = 

1.30, p = .262). LSD post hoc tests indicated 1-2 month old infants had significantly lower mean 

SOS than infants aged 7 and 9-11 months (p < .05). Infants ranging in age from 3-4 months had  
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Figure 4-29. Box and whisker plot of SOS by chronological age in months with premature infants excluded. 

The circles represent outliers. Case ID # 204 is a trauma case. Case ID # 152 was a chronically ill infant. 

There was nothing remarkable in the case history of Case ID # 189.  
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significantly lower mean SOS than infants aged 9-11 months (p < .05). Infants that were 5 

months of age had significantly lower mean SOS than infants 9-10 months of age (p < .05). 

Although the differences were insignificant, it should be noted that infants less than 1 month of 

age tended to have greater mean SOS than older infants until 7 months of age. These findings 

were similar to the post hoc analyses that included the premature infants. All post hoc 

comparisons are provided in Table 4-16.  

Premature Infants 

To demonstrate the effect of prematurity on the regression estimates, separate Lowess-smoothed 

regression lines predicting average SOS from age were fitted to the term and premature data 

(Figure 4-30). Comparison of the plots in Figure 4-28 and Figure 4-30 suggests that the SOS data 

from the premature infants pulled down the curve fitted to the total sample. Figure 4-30 

demonstrates that the postnatal decrease in SOS was much more severe in premature infants than 

term infants and the subsequent gradual increase in SOS occurred later in premature infants than 

term infants. In addition, the shapes of the curves differed. The cubic model was the best fit for 

the regression line associated with the term infants. An F test of the R
2
 change indicated that a 

quadratic model was a better fit than a cubic or linear model for the regression line fitted to the 

data associated with the premature infants (F(1, 13) = 12.13, p = .004).  However, the shape 

difference may be related to the fewer number of premature infants in the older age categories 

relative to the term infants. Regression models for the term and premature infants are presented 

in Model 2, Table 4-14 and Table 4-17, respectively. Results indicated that SOS was significantly 

related to age among both term and premature infants, but the pattern of age-related changes in 

SOS differed between term and premature infants. These findings also gave further support to 

hypothesis 4c, which stated that SOS was significantly related to skeletal maturity at birth. 

HYPOTHESIS 1C: BMD AND SOS ARE SIGNIFICANTLY RELATED TO BODY SIZE 

AND GROWTH PERCENTILES. 

BMD 

BMD was hypothesized to be positively related to body and growth percentiles because the 

measurement did not account for size differences. BMD was regressed against mean centered 

weight and weight for age percentile. There was no significant relationship between BMD and 

mean centered weight (F(1, 68) = 1.54, p = .220), weight for age percentile (F(1, 67) = 0.01, p =  
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Table 4-16. LSD post hoc comparisons of SOS group means by age in months with premature infants 

excluded. 

Multiple Comparisons 

(I) Age 

(months) 

(J) Age 

(months) 

Mean 

Difference 

(I-J) SE p 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

< 1 1 197.57 116.30 .096 -36.68 431.82 

2 209.94 113.09 .070 -17.83 437.71 

3 138.88 113.09 .226 -88.89 366.65 

4 170.44 125.46 .181 -82.24 423.13 

5 143.11 121.48 .245 -101.55 387.78 

6 145.78 156.82 .358 -170.08 461.64 

7 -82.72 156.82 .600 -398.58 233.14 

9 -90.56 131.21 .494 -354.82 173.71 

10 -161.22 156.82 .309 -477.08 154.64 

11 -74.56 131.21 .573 -338.82 189.71 

1 < 1 -197.57 116.30 .096 -431.82 36.68 

2 12.37 81.49 .880 -151.75 176.50 

3 -58.69 81.49 .475 -222.82 105.43 

4 -27.13 97.94 .783 -224.38 170.13 

5 -54.46 92.78 .560 -241.32 132.41 

6 -51.79 135.81 .705 -325.33 221.75 

7 -280.29
*
 135.81 .045 -553.83 -6.75 

9 -288.13
*
 105.20 .009 -500.01 -76.24 

10 -358.79
*
 135.81 .011 -632.33 -85.25 

11 -272.13
*
 105.20 .013 -484.01 -60.24 

2 < 1 -209.94 113.09 .070 -437.71 17.83 

1 -12.37 81.49 .880 -176.50 151.75 

3 -71.07 76.83 .360 -225.81 83.67 

4 -39.50 94.09 .677 -229.02 150.02 

5 -66.83 88.71 .455 -245.51 111.84 

6 -64.17 133.07 .632 -332.18 203.85 

7 -292.67
*
 133.07 .033 -560.68 -24.65 

9 -300.50
*
 101.63 .005 -505.20 -95.80 

10 -371.17
*
 133.07 .008 -639.18 -103.15 

11 -284.50
*
 101.63 .008 -489.20 -79.80 

3 < 1 -138.88 113.09 .226 -366.65 88.89 

1 58.69 81.49 .475 -105.43 222.82 

2 71.07 76.83 .360 -83.67 225.81 

4 31.57 94.09 .739 -157.95 221.08 

5 4.23 88.71 .962 -174.44 182.91 

6 6.90 133.07 .959 -261.12 274.92 

7 -221.60 133.07 .103 -489.62 46.42 

9 -229.43
*
 101.63 .029 -434.13 -24.73 

10 -300.10
*
 133.07 .029 -568.12 -32.08 

11 -213.43
*
 101.63 .041 -418.13 -8.73 
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Table 4-16. Continued. 

Multiple Comparisons 

(I) Age 

(months) 

(J) Age 

(months) 

Mean 

Difference 

(I-J) SE p 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

4 < 1 -170.44 125.46 .181 -423.13 82.24 

1 27.13 97.94 .783 -170.13 224.38 

2 39.50 94.09 .677 -150.02 229.02 

3 -31.57 94.09 .739 -221.08 157.95 

5 -27.33 104.03 .794 -236.85 182.18 

6 -24.67 143.73 .865 -314.16 264.82 

7 -253.17 143.73 .085 -542.66 36.32 

9 -261.00
*
 115.24 .028 -493.11 -28.89 

10 -331.67
*
 143.73 .026 -621.16 -42.18 

11 -245.00
*
 115.24 .039 -477.11 -12.89 

5 < 1 -143.11 121.48 .245 -387.78 101.55 

1 54.46 92.78 .560 -132.41 241.32 

2 66.83 88.71 .455 -111.84 245.51 

3 -4.23 88.71 .962 -182.91 174.44 

4 27.33 104.03 .794 -182.18 236.85 

6 2.67 140.27 .985 -279.85 285.18 

7 -225.83 140.27 .114 -508.35 56.68 

9 -233.67
*
 110.89 .041 -457.01 -10.32 

10 -304.33
*
 140.27 .035 -586.85 -21.82 

11 -217.67 110.89 .056 -441.01 5.68 

6 < 1 -145.78 156.82 .358 -461.64 170.08 

1 51.79 135.81 .705 -221.75 325.33 

2 64.17 133.07 .632 -203.85 332.18 

3 -6.90 133.07 .959 -274.92 261.12 

4 24.67 143.73 .865 -264.82 314.16 

5 -2.67 140.27 .985 -285.18 279.85 

7 -228.50 171.79 .190 -574.51 117.51 

9 -236.33 148.78 .119 -535.98 63.32 

10 -307.00 171.79 .081 -653.01 39.01 

11 -220.33 148.78 .146 -519.98 79.32 

7 < 1 82.72 156.82 .600 -233.14 398.58 

1 280.29
*
 135.81 .045 6.75 553.83 

2 292.67
*
 133.07 .033 24.65 560.68 

3 221.60 133.07 .103 -46.42 489.62 

4 253.17 143.73 .085 -36.32 542.66 

5 225.83 140.27 .114 -56.68 508.35 

6 228.50 171.79 .190 -117.51 574.51 

9 -7.83 148.78 .958 -307.48 291.82 

10 -78.50 171.79 .650 -424.51 267.51 

11 8.17 148.78 .956 -291.48 307.82 
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Table 4-16. Continued. 

Multiple Comparisons 

(I) Age 

(months) 

(J) Age 

(months) 

Mean 

Difference 

(I-J) SE p 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

9 < 1 90.56 131.21 .494 -173.71 354.82 

1 288.13
*
 105.20 .009 76.24 500.01 

2 300.50
*
 101.63 .005 95.80 505.20 

3 229.43
*
 101.63 .029 24.73 434.13 

4 261.00
*
 115.24 .028 28.89 493.11 

5 233.67
*
 110.89 .041 10.32 457.01 

6 236.33 148.78 .119 -63.32 535.98 

7 7.83 148.78 .958 -291.82 307.48 

10 -70.67 148.78 .637 -370.32 228.98 

11 16.00 121.48 .896 -228.66 260.66 

10 < 1 161.22 156.82 .309 -154.64 477.08 

1 358.79
*
 135.81 .011 85.25 632.33 

2 371.17
*
 133.07 .008 103.15 639.18 

3 300.10
*
 133.07 .029 32.08 568.12 

4 331.67
*
 143.73 .026 42.18 621.16 

5 304.33
*
 140.27 .035 21.82 586.85 

6 307.00 171.79 .081 -39.01 653.01 

7 78.50 171.79 .650 -267.51 424.51 

9 70.67 148.78 .637 -228.98 370.32 

11 86.67 148.78 .563 -212.98 386.32 

11 < 1 74.56 131.21 .573 -189.71 338.82 

1 272.13
*
 105.20 .013 60.24 484.01 

2 284.50
*
 101.63 .008 79.80 489.20 

3 213.43
*
 101.63 .041 8.73 418.13 

4 245.00
*
 115.24 .039 12.89 477.11 

5 217.67 110.89 .056 -5.68 441.01 

6 220.33 148.78 .146 -79.32 519.98 

7 -8.17 148.78 .956 -307.82 291.48 

9 -16.00 121.48 .896 -260.66 228.66 

10 -86.67 148.78 .563 -386.32 212.98 

*. The mean difference is significant at the .05 level. 
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Figure 4-30. Plot of SOS readings against age in months with a separate Lowess-smoothed regression lines for 

premature and term infants. Dark blue circles with dark blue dashed Lowess-smoothed regression line 

represent SOS data from term born infants. Light blue circles with light blue dashed Lowess-smoothed 

regression line represent SOS data from premature infants. 

 

 

 

 

 
Table 4-17. Model summary for regression analysis of premature infant data with SOS as the dependent 

variable and using age as the predictor variable.  

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

     6.56 2,13 .011 .43 

(Constant) 3225.53 141.96 22.72 <.001     

Age -248.01 78.62 -3.15 .008     

Age
2 

29.87 8.58 3.48 .004     
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.925), or weight for length percentile (F(1, 65) = 1.77, p = .189). BMD was regressed against 

mean centered leg circumference. There was no significant relationship between BMD and leg 

circumference (F(1, 68) = 1.84, p = .180). BMD was regressed against mean centered height and 

length for age percentile. There was no significant relationship between BMD and mean centered 

height (F(1, 68) = 0.89, p = .359) or length for age percentile (F(1, 67) = 0.63, p = .432). These 

results did not support the hypothesis of a positive relationship between BMD and body size. 

Chronically Ill Infants Excluded 

Analyses were repeated with chronically ill infants excluded to evaluate if the presence of 

chronically ill infants in the analyses affected the previously reported results. There was still no 

significant relationship between BMD and mean centered weight (F(1, 56) = 1.98, p = .165), 

weight for age percentile (F(1, 55) = 0.004E-1, p = .985 ), weight for length percentile (F(1, 54) 

= 0.50, p = .484), mean centered leg circumference (F(1, 56) = 2.64, p = .110), mean centered 

height (F(1, 56) = 1.99, p = .164), or length for age percentile (F(1, 55) = 0.12, p = .732), which 

did not support the hypothesis. 

SOS  

SOS was hypothesized to be positively associated with body size. To determine if body size was 

a significant predictor of SOS after accounting for age-related differences in body size, models 

predicting SOS using age, age
2
, and age

3
 as covariates and the variables related to body size as 

independent variables. Age was not used as a covariate in models using growth percentiles as 

predictor variables of SOS. Models predicting SOS using the age variables as covariates and 

weight (R
2

Adj. = .40, F(4, 72) = 13.74, p < .001), leg circumference (R
2

Adj. = .39, F(4, 72) = 12.89, 

p < .001), height (R
2

Adj. = .44, F(4, 72) = 15.79, p < .001) were significant. Models predicting 

SOS using weight for age percentile (R
2

Adj. = .11, F(1, 74) = 10.32, p = .002) and length for age 

percentile R
2

Adj. = .07, F(1, 74) = 6.71, p = .012) were significant. Model summaries for models 

with significant body size variables are presented in Table 4-18. The regression coefficient for 

weight was significant (p = .011) and indicated that, while holding age constant, SOS increased 

by 33 m/s for every 1kg increase in weight (b = 32.93, 95% CI [7.73, 58.13]). The regression 

coefficient for leg circumference was significant (p = .034) and indicated that, while holding age 

constant, SOS increased by 2 m/s for every 1 mm increase in leg circumference (b = 2.29, 95% 

CI [0.18, 4.40]). The regression coefficient for weight for age percentile was significant (p =  
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Table 4-18. Model summaries of regression analyses with SOS as the dependent variable. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      13.74 4,72 <.001 .40 

(Constant) 3126.87 91.69 34.10 <.001     

Age -273.22 62.25 -4.39 <.001     

Age
2 

51.51 12.30 4.19 <.001     

Age
3 

-2.56 0.70 -3.67 <.001     

Weight  32.93 12.64 2.61 .011     

2      10.32 1,74 .002 .11 

(Constant) 2926.19 34.72 84.27 <.001     

Weight for 

Age 

Percentile 

2.10 0.66 3.21 .002     

3      15.79 4,72 <.001 .44 

(Constant) 2565.81 207.23 12.38 <.001     

Age -279.59 60.01 -4.66 <.001     

Age
2 

50.87 11.88 4.28 <.001     

Age
3 

-2.52 0.68 -3.74 <.001     

Height 13.19 3.83 3.45 .001     

4      6.71 1,74 .012 .07 

(Constant) 2937.36 36.48 80.52 <.001     

Length for 

Age 

Percentile 

1.73 0.67 2.59 .012     

5      12.89 4,72 <.001 .39 

(Constant) 2984.08 139.38 21.41 <.001     

Age -270.57 63.53 -4.26 <.001     

Age
2 

51.86 12.52 4.14 <.001
 

    

Age
3 

-2.57 0.71 -3.62 .001
 

    

Leg Circ.
a
  2.29 1.06 2.16 .034     

a. Leg Circ.= Leg Circumference 
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.002) and indicated that for every 1 percentile point increase in weight for age percentile SOS 

increased by 2 m/s (b = 2.10, 95% CI [0.80, 3.41]). The regression coefficient for height was  

significant (p = .001) and indicated that, while holding age constant, SOS increased by ~13 m/s 

with every 1 cm increase in height (b = 13.19, 95% CI [5.56, 20.82]). The regression coefficient 

for length for age percentile was significant (p = .012) and indicated that SOS increased by ~2 

m/s for every 1 percentile point increase in length for age percentile (b = 1.73, 95% CI [0.40, 

3.06]).  Weight for length percentile was not a significant predictor of SOS (F(1, 72) = 0.06, p = 

.816). These results support the hypothesis that SOS is significantly positively related body size, 

even after accounting for body size differences due to age.  

Chronically Ill Infants Excluded 

After chronically ill infants were removed from analyses, models predicting SOS from weight 

for age percentile (R
2

Adj. = .10, F(1, 61) = 7.60, p = .008) and length for age percentile (R
2

Adj. = 

.06, F(1, 61) = 5.18, p = .026) remained significant. The regression coefficient for weight for age 

percentile indicated that SOS increased by 2 m/s with every 1 percentile point increase in weight 

for age percentile (b = 2.02, 95% CI [0.55, 3.49]). The regression coefficient for length for age 

percentile indicated that SOS increased by ~2 m/s with every 1 percentile point increase in 

length for age percentile (b = 1.68, 95% CI [0.20, 3.16]). The model predicting SOS from height 

and using the age variables as covariates was significant (R
2

Adj. = .43, F(4, 59) = 12.95, p < .001). 

Height was a significant predictor in the model (p = .011) and the regression coefficient indicated 

that, while holding age constant, SOS increased by ~12 m/s with every 1 cm increase in height (b 

= 12.58, 95% CI [2.95, 22.21]). Weight (p = .077) and leg circumference (p = .127) were no 

longer a significant predictors of SOS after chronically ill infants were excluded from analyses. 

Weight for length percentile remained an insignificant predictor of SOS after chronically ill 

infants were excluded from the analysis (p = .767). Model summaries for models with 

statistically significant body size predictor variables are presented in Table 4-19. Although 

weight was no longer a significant predictor of SOS after chronically ill infants were excluded 

from analyses, these results continued to support the hypothesis that SOS was significantly 

positively associated with body size.  
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Table 4-19. Model summaries for regression analyses with SOS as the dependent variable and chronically ill 

infants excluded from analyses. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      7.60 1,61 .008 .10 

(Constant) 2936.42 39.21 74.89 <.001     

Weight for age 

Percentile 

2.02 0.73 2.76 .008     

2      12.95 4,59 <.001 .43 

(Constant) 2553.12 261.61 9.76 <.001     

Age -257.23 68.43 -3.76 <.001     

Age
2 

49.05 13.35 3.67 .001     

Age
3 

-2.49 0.75 -3.32 .002     

Height 12.58 4.81 2.62 .011     

3      5.18 1,61 .026 .06 

(Constant) 2943.51 41.96 70.16 <.001     

Length for age 

Percentile
 

1.68 0.74 2.28 .026     

 

 

Term Infants 

Analyses were repeated with premature infants excluded from analyses to evaluate whether the 

significant association between SOS and body size was being driven by the premature infants in 

the study sample. Among term born infants, weight while accounting for age (p = .556), height 

while accounting for age (p = .276), leg circumference (p = .579), weight for age percentile (p = 

.354), weight for length percentile (p = .932), and length for age percentile (p = .521) were not 

significant predictors of SOS. These findings indicated that SOS was significantly positively 

associated with body size among premature infants, but not among term born infants, partially 

supporting the hypothesis. These findings also gave further support to hypothesis 4c, which 

stated that SOS was significantly related to skeletal maturity at birth.   

HYPOTHESIS 1D: BMD AND SOS ARE SIGNIFICANTLY RELATED TO TIBIAL 

STRUCTURE. 

BMD 

BMD was hypothesized to have a significant positive relationship with cortical thickness and 

cortical index, and a significant negative relationship with medullary cavity diameter. The tibial 

measurements were regressed on BMD to evaluate the relationship between BMD and tibial 

structure. There was no significant relationship between BMD and mean centered tibial length 
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(F(1, 68) = 0.92, p = .341), mean centered midshaft diameter (F(1, 68) = 0.41, p = .525), mean 

centered medullary cavity diameter (F(1, 68) = 2.32, p = .133), or mean centered cortical 

thickness (F(1, 68) = 0.23, p = .634). There was a significant relationship between BMD and 

cortical index (R
2

Adj. = .05, F(1, 68) = 4.22, p = .044).The regression coefficient for cortical index 

indicated that BMD increased as cortical index increased (b = 0.97, 95% CI [0.03, 1.91]). The 

model summary is presented in Table 4-20. The significant relationship between BMD and 

cortical index provided partial support for the hypothesis that BMD was positively associated 

with tibial structure.  

Chronically Ill Infants Excluded 

Chronically ill infants were excluded from analyses to evaluate whether inclusion of the 

chronically ill infants in the above analyses affected results. The relationships between BMD and 

mean centered tibial length (F(1, 56) = 2.37, p = .129), centered midshaft diameter (F(1, 56) = 

1.89, p = .175), mean centered medullary cavity diameter (F(1, 56) = 2.19, p = .144), and mean 

centered cortical thickness (F(1, 56) = 0.40, p = .532) remained insignificant. Cortical index was 

no longer a significant predictor of BMD after chronically ill infants were excluded from the 

analysis (F(1, 56) = 1.48, p = .229). These findings suggested that BMD was significantly 

positively associated with cortical index among chronically ill infants, but not among the infants 

without chronic illness. Although these findings did not support the hypothesis that BMD is 

significantly associated with tibial structure, these findings did lend support to hypothesis 

3c.Hypothesis 3c stated that chronic illness was significantly related to measures of infant bone 

health.  

SOS 

SOS was hypothesized to have a significant negative relationship with medullary cavity diameter 

and a significant positive relationship with cortical thickness and cortical index. ANOVA and 

regression analyses were conducted the SOS data using age as a covariate and the tibial 

measurements as predictor variables. Tibial length (p = .495), midshaft diameter (p = .205), and 

cortical thickness (p = .884) were insignificant predictors of SOS after accounting for age. After 

accounting for age, medullary cavity diameter had a significant negative relationship with SOS  

(R
2

Adj. = .23, F(2, 74) = 12.61, p < .001). The regression coefficient for medullary cavity diameter 

indicated that SOS decreased by 70 m/s with every 1 mm increase in medullary cavity 
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Table 4-20. Model summary of regression analysis predicting BMD using cortical index. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

     4.22 1,68 .044 .05 

(Constant) 0.37 0.26 1.46 .148     

Cortical 

Index
 

0.97 0.47 2.05 .044     

 

 

diameter (b = -70.00, 95% CI [-133.80, -6.19]). After accounting for age, cortical index had a 

significant positive relationship with SOS (R
2
Adj. = .23, F(2, 74) = 12.18, p < .001). The 

regression coefficient for cortical index indicated that with every .01 increase in cortical index 

SOS increased by ~6 m/s (b = 553.04, 95% CI [9.41, 1096.67]). Model summaries of statistically 

models predicting SOS using age as a covariate and statistically significant tibial measurements 

as predictor variables are presented in Table 4-21. These results supported the hypothesis that 

SOS was significantly related to tibial structure.  

Chronically Ill Infants Excluded 

Chronically ill infants were excluded from analyses to determine whether inclusion of 

chronically ill infants in previous analyses resulted in the significant findings. After controlling 

for age and removing the chronically ill infants removed from analyses, tibial length (p = .839), 

midshaft diameter (p = .252), and cortical thickness (p = .803) remained insignificant predictors 

of SOS. Medullary cavity diameter (p = .056) and cortical index (p = .097) became insignificant 

predictors of SOS after removing chronically ill infants from the analyses, which did not support 

the hypothesis that SOS was significantly associated with tibial structure among infants without 

chronic illness. Although these findings did not support the hypothesis, these results did support 

hypothesis 3c which stated that chronic illness was significantly associated with measures of 

infant bone health such as SOS. 

Term Infants 

Analyses were repeated with only the term infants included in analyses to evaluate whether the 

inclusion of the premature infants substantially altered results. After controlling for age and 

removing the premature infants from the analyses, tibial length (p = .110) and cortical thickness  

(p = .395) remained insignificant predictors of SOS. Midshaft diameter became a significant  
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Table 4-21. Model summaries of regression analyses with SOS as the dependent variable, age as a covariate, 

and tibial measurements as independent variables.  

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      12.61 2,74 < .001 .23 

(Constant) 3031.37 85.88 35.30 <.001     

Age 46.66 9.81 4.76 <.001     

Medullary 

Cavity 

Diameter
 

-70.00 32.02 -2.19 .032     

2      12.18 2,74 < .001 .23 

(Constant) 2543.75 162.57 15.65 <.001     

Age 37.19 7.54 4.93 <.001     

Cortical 

Index
 

553.04 272.83 2.03 .046     

 

 

predictor of SOS (R
2

Adj. =.29, F(2, 54) = 12.54, p < .001). The regression coefficient for midshaft 

diameter indicated that, while holding age constant, SOS decreased by ~64 m/s with every 1 mm 

increase in midshaft diameter (b = -63.90, 95% CI [-112.95, -14.84]). A model predicting SOS  

using age and medullary cavity diameter was significant (R
2

Adj. = .29, F(2, 54) = 12.43, p < .001). 

The regression coefficient for medullary cavity diameter indicated that SOS decreased by ~88 

m/s with every 1 mm increase in medullary cavity diameter while holding age constant (b = -

88.41, 95% CI [-157.12, -19.70]). Cortical index was an insignificant predictors of SOS among 

term infants after removing premature infants from the analysis (p = .187). The model summaries 

for statistically significant models are presented in Table 4-22. Although cortical thickness and 

cortical index were not significantly predictors of SOS after accounting for age, midshaft 

diameter and medullary cavity diameter were significant predictors of SOS among term infants. 

These findings support the hypothesis that SOS is significantly associated with tibial structure. 

Multiple Regression Analyses 

Multiple regression analyses were conducted to assess which combination of variables best 

predicted SOS. The following variables were entered into the regression models as possible 

predictors: age, birthweight or EGA, height or length for age percentile, weight or weight for age 

percentile, cortical index, cortical thickness, medullary cavity diameter, and midshaft diameter. 

Stepwise variable selection was conducted. A variable was entered into the model if the  
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Table 4-22. Model summaries for regression analyses with SOS as the dependent variable and premature 

infants excluded from analyses. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      12.54 2,54 <.001 .29 

(Constant) 3295.31 155.65 21.17 < .001     

Age 47.43 9.72 4.88 <.001     

Midshaft 

Diameter 

-63.90 27.47 -2.61 .012     

2      12.43 2,54 <.001 .29 

 (Constant) 3129.58 96.61 32.40 < .001     

 Age 46.95 9.65 4.87 <.001     

 Medullary 

Cavity 

Diameter 

-88.41 34.27 -2.58 .013     

 

 

significance level of its F value was < .05 and was removed from the model if the significance 

level was > .10. Although multiple models were produced, only the model accounting for the 

greatest amount of variance in SOS is presented here. The model accounting for the greatest 

amount of variance in SOS included age (b = 45.77, 95% CI [22.39, 69.16]), birthweight (b = 

92.97, 95% CI [29.58, 156.35]), height (b = 11.47, 95% CI [1.41, 21.53]), cortical index (b = 

4106.72, 95% CI [1623.99, 6589.46]), midshaft diameter (b = -328.75, 95% CI [-493.34, -

164.16]), and medullary cavity diameter (b = 486.615, 95% CI [138.41, 834.80]). The parameter 

estimates in the model indicate that as age increased by 1 month SOS increased by ~46 m/s, 

holding all other variables in the model constant. Holding all other variables in the model 

constant, a 1 kg increase in birthweight was associated with an increase in SOS by ~93 m/s and a 

1 cm increase in height was associated with an increase in SOS by ~11 m/s. An increase in 

cortical index of .01 was associated with an increase in SOS by ~41 m/s. A 1 mm increase in 

midshaft diameter was associated with a ~ 329 m/s decrease in SOS and 1 mm increase in 

medullary cavity diameter was associated with a ~487 m/s increase in SOS, also holding all other 

variables in the model constant. This model accounted for ~53% of the variance in SOS (R
2

Adj. = 

.53, F(6, 63) = 13.89, p < .001). The model summary is provided in Table 4-23. These findings 

supported hypotheses 1b, 1c, 1d, and 4c. For the pooled sample, SOS was significantly related to 

age, body size, skeletal maturity at birth, and tibial structure.  
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Table 4-23. Summary of multiple regression results with SOS as the dependent variable. 

Model 

Unstandardized 

Coefficients 

t p F df p Adj. R
2
 b SE 

     13.89 6,63 <.001 .53 

(Constant) 370.56 668.56 0.55 .581     

Age  45.77 11.70 3.91 .000     

Birthweight (kg)  92.97 31.72 2.93 .005     

Height 11.47 5.03 2.28 .026     

Cortical Index 4106.72 1242.40 3.31 .002     

Midshaft 

Diameter 
-328.75 82.36 -3.99 .000 

    

Medullary Cavity 

Diameter 
486.61 174.24 2.79 .007 

    

 

 

Chronically Ill Infants Excluded 

To assess the effect of chronic illness on the regression model predicting SOS, the multiple 

regression analysis was repeated with the chronic illness infants excluded from the analysis. The 

following variables were entered into the regression models as possible predictors: age,  

birthweight or EGA, height or length for age percentile, weight or weight for age percentile, 

cortical index, cortical thickness, medullary cavity diameter, and midshaft diameter. Stepwise 

variable selection was conducted. A variable was entered into the model if the significance level 

of its F value was < .05 and was removed from the model if the significance level was > .10. 

Age, birthweight, and medullary cavity diameter were selected by stepwise variable selection as 

the significant predictors of SOS. The model summary is presented in Table 4-24. After 

excluding chronically ill infants, continued to support the hypotheses that SOS was significantly 

related to age, skeletal maturity at birth, and tibial structure.  

Term Infants 

Multiple regression analyses were repeated with premature infants excluded to assess whether 

the regression model constructed from the term infant data substantially differed from the model 

constructed from the pooled sample data. The following variables were entered into the 

regression models as possible predictors: age, birthweight or EGA, height or length for age 

percentile, weight or weight for age percentile, cortical index, cortical thickness, medullary 

cavity diameter, and midshaft diameter. Stepwise variable selection was conducted. A variable 

was entered into the model if the significance level of its F value was < .05 and was removed  
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Table 4-24. Summary of multiple regression results with SOS as the dependent variable and chronically ill 

infants excluded from the analysis. 

Model 

Unstandardized 

Coefficients 

t p F df p Adj. R
2
 b SE 

     13.63 3,56 <.001 .39 

(Constant) 2737.35 125.82 21.76 <.001     

Age  52.91 9.71 5.45 <.001     

Birthweight (kg) 120.56 35.56 3.39 .001     

Medullary Cavity 

Diameter 

-92.46 9.71 -2.89 .006     

 

 

 

from the model if the significance level was > .10. Age and medullary cavity diameter were 

chosen by stepwise variable selection as the significant predictors of SOS. The summary of the 

model is presented in Table 4-25. For term infants, results supported the hypotheses that SOS was 

significantly related to age and tibial structure. 

Association between Traumatic Injury, Health, and Bone Health 

HYPOTHESIS 2: THE PRESENCE OF TRAUMATIC INJURY IS NOT ASSOCIATED 

WITH INDICATORS OF OVERALL HEALTH, BODY SIZE, OR BONE HEALTH.  

Chi-Square and ANOVA tests were performed to determine whether there was a significant 

association between traumatic injury and the indicators of overall health, such as chronic illness 

and prematurity. Descriptions of chronic illnesses associated with each infant were previously 

provided in Table 4-3. Descriptions of infants with traumatic injury and associated data are 

provided in Table A- 3 of the Appendix. A Fisher’s exact test was used to test for significant 

associations between traumatic injury and prematurity, as well as traumatic injury and chronic 

illness, since there were no cases of premature infants with traumatic injury or chronically ill 

infants with traumatic injury. There was no significant association between the presence of 

traumatic injury and prematurity (p = .185) or traumatic injury and chronic illness (p = .342), 

supporting the hypothesis that the presence of traumatic injury was not associated with overall 

health. 

One way ANOVAs were conducted to evaluate whether there were significant differences in 

body size or growth percentiles between infants with and without traumatic injury. Variances in 
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Table 4-25. Summary of multiple regression results with SOS as the dependent variable and premature 

infants excluded from the analysis. 

Model 

Unstandardized 

Coefficients 

t p F df p Adj. R
2
 b SE 

     11.46 5,51 <.001 .28 

(Constant) 3133.25 96.80 32.37 <.001     

Age  45.63 9.77 4.67 <.001     

Medullary Cavity 

Diameter 

-87.17 34.69 -2.51 .005     

 

 

height (F = 1.55, p = .217), weight (F = 0.53, p = .470), length for age percentile (F = 1.03, p = 

.313), weight for age percentile (F = 0.43, p = .513), and weight for length percentile (F = 0.07, p 

= .790) were equal across groups based on the presence/absence of traumatic injury. There was a 

significant difference in height between infants with and without traumatic injury, but it should 

be noted that the p value was only on the borderline of significance significant (F(1, 76) = 4.13, 

p = .046). There were no significant associations between traumatic injury and length for age 

percentile (F(1, 75) = 1.48, p = .228), weight (F(1, 76) = 2.72, p = .103), weight for age 

percentile (F(1, 75) = 0.61, p = .436), and weight for length percentile (F(1, 73) = 0.12, p = .731) 

between infants with and without traumatic injury, which supported the hypothesis that there was 

no association between body size and traumatic injury.  

One-way ANOVAs were conducted to evaluate whether there were significant differences in the 

bone health indicators based on the presence on traumatic injury. Radiographic evaluation score 

was not significantly associated with traumatic injury (U = 289.5, p = .612). Variances in BMD 

between groups was equal (F = 1.10, p = .298). No significant difference in BMD was found 

between infants with and without traumatic injury (F(1, 68) = 0.09, p = .770). There were no 

statistically significant differences in SOS based on the presence of traumatic injury (F(1, 75) = 

2.82, p = .097). These findings supported the hypothesis that traumatic injury was not associated 

with indicators of bone health.  
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Association between Chronic Illness, Growth, and Bone Health 

HYPOTHESIS 3A: CHRONIC ILLNESS IS NEGATIVELY ASSOCIATED WITH 

VARIABLES RELATED TO BODY SIZE.  

One-way ANOVAs were conducted to evaluate the relationship between chronic illness and 

body size/growth. Levene’s test of homogeneity of variances indicated the variances in weight (F 

= 0.08, p = .783), height (F = 0.94, p = .335), weight for age percentile (F = 1.23, p = .272), 

length for age percentile (F = 0.63, p = .429), and weight for length percentile (F = 0.05, p = 

.824) were equal across infants with and without chronic illness. There were no significant 

differences in weight (F(1, 76) = 0.86, p = .357), height (F(1, 76) = 2.17, p = .145), weight for 

age percentile (F(1, 75) = 0.36, p = .549), length for age percentile (F(1, 75) = 2.61, p = .111), 

and weight for length percentile (F(1, 73) = 0.71, p = .403) based on chronic illness. Analyses 

indicated no significant relationship between chronic illness and body size. 

HYPOTHESIS 3B: CHRONIC ILLNESS IS NEGATIVELY ASSOCIATED WITH TIBIAL 

GROWTH. 

To determine if chronic illness significantly influenced growth of the tibia, models predicting the 

tibial measurements were conducted with age as a covariate and chronic illness as a predictor 

variable. Descriptive statistics of the tibial measurements are presented in Table A- 6 of the 

Appendix. Analyses of the relationships between the tibial measurements and age are presented 

in more detail later in this chapter. Chronic illness had a significant effect on tibial length (R
2

Adj. 

= .76, F(2, 74) = 121.74, p < .001), midshaft diameter (R
2

Adj. = .53, F(2, 74) = 43.78, p < .001), 

and cortical thickness (R
2

Adj. = .21, F(2, 74) = 10.86, p < .001) after accounting for age 

differences. The regression coefficients for chronic illness indicated that tibial length decreased 

by 6.17 mm (b = -6.17, 95% CI [-10.81, -1.54]), midshaft diameter decreased by 0.95 mm (b = -

0.95, 95% CI [-1.54, -0.36]), and cortical thickness decreased by 0.78 mm (b = -0.78, 95% CI [-

1.28, -0.29]) in infants with chronic illness after holding age constant. These results support the 

hypothesis that chronic illness is negatively related to tibial length, midshaft diameter, and 

cortical thickness. Model summaries are presented in Table 4-26. Regression plots of the tibial 

measurements by age with a regression line representing data from the chronically ill infants in 

light blue and a dark blue regression line representing data from all other infants are presented in  

Figure 4-8 to Figure 4-12. The black regression line reflects regression analysis of the pooled 
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data. After accounting for age, chronic illness was not a significant predictor of medullary cavity 

diameter (p = .409) or cortical index (p = .106).These findings did not support the hypotheses 

that cortical index was negatively associated with cortical index and positively associated with 

medullary cavity diameter. However, examination of Figure 4-12 indicates that chronically ill 

infants tended to have a lower cortical index than infants without chronic illness. Overall, these 

results supported the hypothesis that chronic illness had a negatively relationship tibial growth.  

HYPOTHESIS 3C: CHRONIC ILLNESS IS SIGNIFICANTLY RELATED TO MEASURES 

OF INFANT BONE HEALTH. 

A non-parametric Mann-Whitney U test was performed to determine whether radiographic 

evaluation scores were significantly associated with chronic illness. Data associated with 

chronically ill infants are presented in Table A- 7. Radiographic evaluation score was 

significantly associated with chronic illness (U = 613.5, p < .001). Infants with chronic illness 

had significantly greater radiographic evaluation scores (0 = normal, 1 = indeterminate, 2 = 

abnormally mineralized) than infants without chronic illness, supporting the hypothesis that 

qualitative radiographic evaluation scores are positively associated with chronic illness. 

BMD was hypothesized to have a negative relationship with chronic illness. Prior to analysis, a 

Chi-square test was performed to assess whether there was a significant association between 

chronic illness and prematurity in the study sample. The chi-square test indicated a significant 

association between prematurity and chronic illness, X
2
(1, n = 69) = 10.07, p = .002. Due to the 

significant association, a two-way ANOVA was performed to evaluate the relationship between 

BMD as the independent variable and chronic illness, prematurity, and the interaction of 

prematurity and chronic illness as dependent variables. Levene’s test indicated equal variances 

between groups (F = 2.73, p = .051). The model predicting BMD from chronic illness, 

prematurity, and prematurity*chronic illness was significant (R
2

Adj. = .12, F(3, 62) = 3.99, p = 

.012). Chronic illness (F(1, 62) = 7.81, p = .007) was a significant predictor in the model, but 

prematurity*chronic illness (p = .862) and prematurity (p = .681) were not significant predictors 

in the model. Chronically ill infants had significantly lower BMD estimates than infants without 

chronic illness. When premature infants were excluded from the analysis, the ANOVA model 

predicting BMD from chronic illness remained significant (F(1, 52) = 5.09, p = .028). These 
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Table 4-26. Model summaries of regression analyses with age as a covariate and chronic illness as the 

predictor variable. Tibial length is the dependent variable in model 1. Tibial midshaft diameter is the 

dependent variable in model 2. Cortical thickness is the dependent variable in Model 3.  

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      121.74 2,74 < .001 .76 

(Constant) 64.38 1.64 39.37 < .001     

Age 4.39 0.29 15.33 < .001     

Chronic Illness -6.17 2.33 -2.65 .010     

2      43.78 2,74 < .001 .53 

(Constant) 5.90 0.21 28.45 < .001     

Age 0.32 0.04 8.72 < .001     

Chronic Illness
 

-0.95 0.30 -3.23 .002     

3      10.86 2,74 < .001 .21 

(Constant) 3.48 0.17 19.98 < .001     

Age 0.10 0.03 3.37 .001     

Chronic Illness -0.78 0.25 -3.16 .002     

 

 

findings supported the hypothesis that chronic illness is negatively related to BMD. The 

frequency distribution of BMD with data from chronically ill infants indicated is presented in 

Figure 4-31. 

SOS was hypothesized to have negative relationships with chronic illness. An ANOVA was used 

to evaluate SOS readings for significant differences based on chronic illness or prematurity. 

Levene’s test indicated variances in SOS were equal between infants with and without chronic 

illness (F = 0.42, p = .521). There were no statistically significant differences in SOS between 

infants with and without chronic illness (F(1, 75)= 0.73, p = .394), which did not support the 

hypothesis. 

Association between Skeletal Maturity at Birth, Body Size, Tibial Structure, 

and Bone Health 

HYPOTHESIS 4A: SKELETAL MATURITY AT BIRTH IS SIGNIFCANTLY RELATED TO 

BODY SIZE. 

One-way ANOVAs and regression analyses were conducted to evaluate the relationship between 

skeletal maturity at birth and body size. It was hypothesized that EGA and birthweight would be 
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Figure 4-31. Distribution of BMD data differentiating between infants with and without chronic illness. Dark 

blue represents BMD data from infants without chronic illness and light blue represents data from 

chronically ill infants. 
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positively associated with body size, while prematurity would be negatively associated with 

body size. Mean centered EGA was used to predict weight, height, weight for age percentile, 

length for age percentile, and weight for length percentile. Age was added as a covariate in 

models predicting height and weight. Models predicting height (R
2

Adj. = .78, F(2, 71) = 129.38, p 

< .001), length for age percentile (R
2

Adj. = .19, F(1, 71) = 18.00, p < .001), weight (R
2

Adj. = .60, 

F(2, 71) = 56.78, p < .001), weight for age percentile (R
2

Adj. = .10, F(1, 71) = 8.96, p = .004), and 

weight for length percentile (R
2

Adj. = .06, F(1, 69) = 5.34, p = .024) were significant. Regression 

coefficients for mean centered EGA were significant (p < .05) and indicated that height (b = 

0.96, 95% CI [0.71, 1.22]), length for age percentile (b = 4.62, 95% CI [2.45, 6.79]), weight (b = 

0.18, 95% CI [0.09, 0.28]), and weight for age percentile (b = 3.38, 95% CI [1.13, 5.63]) 

significantly increased for each week increase in EGA greater than the mean. Weight for length 

percentile significantly decreased for each week increase in EGA greater than the mean (b = -

3.04, 95% CI [-5.66, -0.42]). These findings supported the hypothesis that greater EGA had a 

positive relationship with body size. 

 Birthweight was converted from kilograms to grams prior to analyses in order to improve 

interpretation of the regression model. In separate regression analyses, mean centered 

birthweight was used to predict weight, height, length for age percentile, weight for age 

percentile, and weight for length percentile. Age was used as a covariate for models predicting 

height and weight. Mean centered birthweight was a significant predictor of height (R
2

Adj. = .77, 

F(2, 68) = 117.92, p < .001), length for age percentile (R
2

Adj. = .24, F(1, 68) = 23.08, p < .001), 

weight (R
2

Adj. = 0.62, F(2, 68) = 58.12, p < .001), and weight for age percentile (R
2

Adj. = .14, F(1, 

68) = 12.39, p = .001). Regression coefficients for mean centered birthweight  were significant (p 

< .05) and indicated that height (b = 4.22, 95% CI [3.00, 5.44]), length for age percentile (b = 

23.90, 95% CI [13.97, 33.83]), weight (b = 0.88, 95% CI [0.44, 1.33]), and weight for age 

percentile (b = 18.61, 95% CI [8.06, 29.16]) significantly increased for each kg increase in 

birthweight greater than the mean. Mean centered birthweight was not a significant predictor of 

weight for length percentile (F(1, 66) = 1.99, p = .163). These findings support the hypothesis 

that birthweight has a positive relationship with body size.  

One-way ANOVAs were used to test for significant differences in body size between term and 

premature infants. Age was used as a covariate in models predicting height and weight. 
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Variances in height (F = 3.02, p = .087), weight (F = 0.86, p = .358), and weight for age 

percentile (F = 2.03, p = .159) were equal across groups based on prematurity. Variances in 

length for age percentile (F = 35.04, p < .001) and weight for length percentile (F = 5.74, p = 

.019) were significantly different between term born and premature infants. Significant 

differences were indicated for height (F(2, 71) = 105.47, p < .001), length for age percentile 

(F(1, 71) = 24.17, p < .001), weight (F(2, 71) = 50.08, p < .001), weight for age percentile (F(1, 

71) = 7.46, p = .008), and weight for length percentile (F(1, 69) = 5.79, p = .019) based on 

prematurity. Examination of means indicated that body size in premature infants was 

significantly lower than in term infants, except in weight for length percentile. Premature infants 

were significantly greater than term infants in weight for length percentile. This indicated that 

premature infants weighed more for their length than term infants. These results supported the 

hypothesis that prematurity is negatively associated with body size. These findings support the 

hypothesis that prematurity has a negative relationship with body size. 

HYPOTHESIS 4B: SKELETAL MATURITY AT BIRTH IS SIGNIFICANTLY RELATED 

TO TIBIAL MEASUREMENTS. 

It was hypothesized that the tibial measurements were positively associated with birthweight and 

EGA. Regression analyses were used to evaluate the relationships between skeletal maturity at 

birth and the tibial measurements. Models using age as a covariate and EGA to predict tibial 

length (R
2

Adj. = .84, F(2, 70) = 183.52, p < .001) and cortical thickness (R
2

Adj. = .14, F(2, 70) = 

7.07, p = .002) were significant. Models using age, age
2
, age

3
, and EGA to predict midshaft 

diameter (R
2

Adj. = .59, F(4, 68) = 26.49, p < .001) and medullary cavity diameter (R
2

Adj. = .60, 

F(4, 68) = 27.55, p < .001) were significant. Regression coefficients for EGA were significant (p 

< .05) and indicated that, while holding age constant, tibial length (b = 1.45, 95% CI [1.02, 

1.89]), midshaft diameter (b = 0.13, 95% CI [0.07, 0.19]), cortical thickness (b = 0.07, 95% CI 

[0.02, 0.13]), and medullary cavity diameter (b = 0.06, 95% CI [0.01, 0.10]) significantly 

increased for every 1 week increase in EGA. EGA was not a significant predictor of cortical 

index after accounting for age (p = .792). Findings indicated that EGA had a positive relationship 

with tibial measurements, which supported the hypothesis.  

Models using age as a covariate and birthweight to predict tibial length (F(2, 67) = 180.16, p < 

.001) and cortical thickness (R
2

Adj. = .15, F(2, 67) = 7.25, p = .001) were significant.  Models 
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using age, age
2
, age

3
, and birthweight to predict midshaft diameter (R

2
Adj. = .60, F(4,65) = 25.68, 

p < .001) and medullary cavity diameter (R
2

Adj. = .59, F(4,65) = 26.40, p < .001) were significant. 

Regression coefficients for birthweight were significant (p < .05) and indicated that, while 

holding age constant, tibial length (b = 6.62, 95% CI [4.56, 8.68]), midshaft diameter (b = 0.59, 

95% CI [0.30, 0.88]), medullary cavity diameter (b = 0.25, 95% CI [0.05, 0.45]), and cortical 

thickness (b = 0.37, 95% CI [0.10, 0.63]) increased as birthweight increased. Birthweight was 

not a significant predictor of cortical index (p = .435). Findings indicated that birthweight had a 

positive relationship with tibial measurements, which supported the hypothesis. 

Chronically ill infants were excluded from the analyses to evaluate whether this influenced the 

above results. After chronically ill infants were excluded from analyses, models using age as a 

covariate and EGA to predict tibial length (R
2

Adj. = .83, F(2, 58) = 151.39, p < .001) and cortical 

thickness (R
2

Adj. = .19, F(2, 58) = 8.22, p = .001) remained significant. Models using age, age
2
, 

age
3
, and EGA to predict midshaft diameter were significant (R

2
Adj. = .62, F(4, 56) = 25.45, p < 

.001). Regression coefficients for EGA were significant (p < .05) and indicated that, while 

holding age constant, tibial length (b = 1.32, 95% CI [0.73, 1.90]), midshaft diameter (b = 0.16, 

95% CI [0.08, 0.24]), and cortical thickness (b = 0.09, 95% CI [0.02, 0.17]) significantly 

increased for every 1 week increase in EGA. EGA was not a significant predictor of medullary 

cavity diameter (p = .090) or cortical index after removing chronically ill infants from the 

analysis (p = .548). Among infants without chronic illness, EGA had a positive relationship with 

linear and appositional growth of the tibia. These findings lend further support to hypothesis 4b.  

After chronically ill infants were excluded from analyses, models using age as a covariate and 

birthweight to predict tibial length (R
2

Adj. = .83, F(2, 57) = 148.88, p < .001), midshaft diameter 

(R
2

Adj. = .58, F(2, 57) = 41.50, p < .001), and cortical thickness (R
2

Adj. = .18, F(2, 57) = 7.53, p = 

.001) remained significant. Models using age, age
2
, age

3
, and birthweight to predict midshaft 

diameter were significant.  Regression coefficients for birthweight were significant (p < .05) and 

indicated that, while holding age constant, tibial length (b = 4.90, 95% CI [2.43, 7.38]), midshaft 

diameter (b = 0.57, 95% CI [0.20, 0.94]), and cortical thickness (b = 0.40, 95% CI [0.07, 0.73]) 

significantly increased for every 1 kg increase in birthweight. Birthweight was not a significant 

predictor of medullary cavity diameter (p = .247) or cortical index after removing chronically ill 

infants from the analysis (p = .369). Among infants without chronic illness, birthweight had a 
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positive relationship with linear and appositional growth of the tibia. These findings lend further 

support to hypothesis 4b.  

It was hypothesized that prematurity would have a negative relationship with the tibial 

measurements. Regression models using age as a covariate, and prematurity to predict tibial 

length (R
2

Adj.
 
= .81, F(2, 70) = 153.53, p < .001) and cortical thickness (R

2
Adj.

 
= .19, F(2, 70) = 

9.37, p < .001) were significant. Models using age, age
2
, age

3
, and prematurity to predict 

midshaft diameter (R
2

Adj.
 
= .59, F(4,68) = 26.70, p < .001), medullary cavity diameter (R

2
Adj.

 
= 

.58, F(4, 68) = 26.03, p < .001), and cortical thickness. The regression coefficients for 

prematurity indicated that tibial length (b = -10.40, 95% CI [-14.27, -6.52]), midshaft diameter (b 

= -1.06, 95% CI [-1.57, -0.55]), medullary cavity diameter (b = -0.37, 95% CI [-0.72, -0.02]), 

cortical thickness (b = -0.73, 95% CI [-1.18, -0.29]) were significantly lower in premature infants 

than term infants of the same chronological age. Model summaries are presented in Table 4-27. 

After accounting for age, prematurity was not a significant predictor of cortical index (p = .516). 

These findings support the hypothesis that prematurity has a negative relationship with tibial 

measurements, but not the proportion of cortical bone relative to bone size.  

HYPOTHESIS 4C: SKELETAL MATURITY AT BIRTH IS SIGNIFICANTLY RELATED 

TO MEASURES OF INFANT BONE HEALTH 

It was hypothesized that BMD had positive relationships with EGA and birthweight. BMD was 

regressed against mean centered birthweight (kg) and mean centered EGA to evaluate the effects 

of skeletal maturity at birth on BMD. Mean centered birthweight (kg) was a significant predictor 

of BMD (R
2

Adj.
  
= .06, F(1, 62) = 4.66, p = .035). Mean centered EGA was not a significant 

predictor of BMD (F(1, 64) = 3.90, p = .053). The regression coefficient for mean centered 

birthweight indicated that BMD increased by 0.11 g/cm
2
 with each 1 kg increase in birthweight 

greater than the mean (b = 0.11, 95% CI [0.01, 0.22]). The model summary is presented in Table 

4-28. These findings partially supported the hypothesis that skeletal maturity at birth is positively 

related to BMD.   

Data from chronically ill infants were removed from the analysis to determine whether the 

correlation between prematurity and chronic illness caused the significant association between 
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Table 4-27. Model summaries of regression analyses with age as a covariate and prematurity as the predictor 

variable. Tibial length is the dependent variable in Model 1. Tibial midshaft diameter is the dependent 

variable in Model 2. Medullary cavity diameter is the dependent variable in Model 3. Cortical thickness is the 

dependent variable in Model 4.  

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      153.53 2,70 < .001 .81 

(Constant) 66.63 1.54 43.23 < .001     

Age 4.19 0.27 15.81 < .001     

Premature -10.40 1.94 -5.35 < .001     

2      26.70 4,68 < .001 .59 

(Constant) 4.99 0.46 10.79 < .001     

Age 1.19 0.32 3.65 <.001     

Age
2 

-0.18 0.07 -2.69  .009     

Age
3 

0.009 0.004 2.52 .014     

Premature
 

-1.06 0.25 -4.17 < .001     

3          

(Constant) 1.49 0.32 4.67 < .001 26.03 4,68 < .001 0.58 

Age 0.91 0.23 4.05 < .001     

Age
2 

-0.12 0.05 -2.57  .012 
 

   

Age
3 

0.005 0.003 2.08 .041 
 

   

Premature
 

-0.37 0.18 -2.13 .037     

4      9.37 2,70 < .001 .19 

(Constant) 3.63 0.18 20.58 < .001     

Age 0.07 0.03 2.35 .022     

Premature -0.73 0.22 -3.29 .002     

 

 

Table 4-28. Results of simple linear regression analysis with BMD as the dependent variable and birthweight 

as the predictor. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

      4.66 1,62 .035 .06 

(Constant) 0.91 0.04 23.40  < .001     

Birthweight 

(kg) 
0.11 0.05 2.16 .035     

a. EGA = Estimated Gestational Age 
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BMD and birthweight. After removing the chronically ill infants from the analysis, there was no 

longer a significant relationship between BMD and mean centered birthweight (F(1, 53) = 1.68, 

p = .201). The relationship between BMD and mean centered EGA remained insignificant (F(1, 

53) = 0.94, p = .338). This suggests that the chronically ill and/or premature infants in the 

analysis may have been responsible for the initial significant relationship between BMD and 

birthweight. As chronic illness and prematurity were previously found to be significantly 

associated in the current study sample, these findings could also suggest that birthweight is an 

important predictor for BMD among premature infants. Birthweight decreases as severity in 

prematurity and likelihood of chronic illness increases.  

It was hypothesized that BMD had a negative relationship with prematurity. Results of a two-

way ANOVA performed to assess the effects of chronic illness, prematurity, and whether there 

was an interaction effect between prematurity and chronic illness in the prediction of BMD were 

reported in the above section, hypothesis 3c, and will not be repeated here. Prematurity was not a 

significant variable in the model predicting BMD (p = .681), which did not support the 

hypothesis that BMD had a negative relationship with prematurity.   

SOS was hypothesized to have a positive relationship with EGA and birthweight. A model 

predicting SOS using age, age
2
, age

3
, and birthweight was statistically significant (R

2
Adj. = .43, 

F(4, 65) = 13.79, p < .001). The regression coefficient for birthweight was significant (p = .001) 

and indicated that, while holding age constant, for every 1 kg increase in birthweight SOS 

increased by ~96 m/s while holding age constant (b = 96.17, 95% CI [42.25, 150.10]). A model 

predicting SOS using age, age
2
, age

3
, and EGA was statistically significant (R

2
Adj. = .41, F(4, 68) 

= 13.32, p < .001) The regression coefficient for EGA was significant (p = .003) and indicated 

that, while holding age constant, for every 1 week increase in EGA the mean SOS increased by 

~18 m/s (b = 17.67, 95% CI [6.32, 29.03]). Model summaries are provided in Models 1 and 2 of 

Table 4-29. These results supported the hypothesis that SOS was positively associated with EGA 

and birthweight. 

After chronically ill infants were removed from analyses and using the age variables as 

covariates, the relationships between SOS and birthweight (R
2

Adj. = .42, F(4, 55) = 11.60, p < 

.001), and EGA (R
2

Adj. = .40, F(4, 56) = 10.82, p < .001) remained significant. The regression  
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Table 4-29. Model summaries of regression analyses using the age variables as covariates and birthweight 

(Model 1), and EGA (Model 2) to predict SOS. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      13.79 4,65 <.001 .43 

(Constant) 2938.50 113.78 25.83 <.001     

Age -227.80 59.64 -3.82 <.001     

Age
2 

48.36 12.09 4.00 <.001
 

    

Age
3 

-2.50 0.69 -3.62 .001
 

    

Birthweight 

(kg) 

96.17 27.00 3.56 .001     

2      13.32 4,68 < .001 .41 

(Constant) 2547.40 231.72 10.99 <.001     

Age -224.69 60.32 -3.73 <.001     

Age
2 

46.93 12.18 3.85 <.001     

Age
3 

-2.39 0.69 -3.45 .001     

EGA
a 

17.67 5.69 3.11 .003     

a. EGA= Estimated Gestational Age 

 

 

coefficient for birthweight was significant (p = .008) and indicated that, while holding age 

constant, SOS increased by ~96 m/s with each 1 kg increase in birthweight  (b = 95.81, 95% CI  

[26.64, 164.97]). The regression coefficient for EGA was significant (p < .001) and indicated 

that, while holding age constant, SOS increased by ~18 m/s with each week increase in EGA (b 

= 18.48, 95% CI [2.24, 34.72]). Model summaries are provided in Table 4-30. After removal of 

premature infants from analyses and including the age variables as covariates, birthweight (p = 

.111) and EGA (p = .799) were no longer significant predictors in models predicting SOS. These 

findings supported the hypothesis that SOS was significantly associated with skeletal maturity at 

birth. 

SOS was hypothesized to have a negative relationship with prematurity. ANOVAs were used to 

evaluate SOS readings for significant differences between term born and premature infants. 

Levene’s test indicated variances in SOS were equal between term born and premature infants (F 

= 0.83, p = .366). Premature infants had significantly lower SOS readings than term born infants 

(F(1, 71) = 7.09, p = .010), which supported the hypothesis that SOS had a negative relationship 

with prematurity. Results supported the hypothesis that SOS was significantly associated with 

skeletal maturity at birth.  
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Table 4-30. Model summaries of regression analyses using the age variables as covariates and birthweight 

(Model 1), and EGA (Model 2) to predict SOS, excluding chronically ill infants. 

Model Unstandardized 

Coefficients 

t p F df p 

Adj. 

R
2 

b SE 

1      11.60 4,55 <.001 .42 

(Constant) 2888.96 144.65 19.97 <.001     

Age -203.42 67.86 -3.00 .004     

Age
2 

45.52 13.52 3.37 .001     

Age
3 

-2.40 0.76 -3.16 .003     

Birthweight 

(kg) 

95.81 34.51 2.78 .008     

2      10.82 4,56 <.001 .40 

(Constant) 2474.61 327.48 7.56 <.001     

Age -201.71 69.30 -2.91 .005     

Age
2 

44.06 13.84 3.18 .002     

Age
3 

-2.29 0.78 -2.94 .005     

EGA
a 

18.48 8.11 2.28 .026     

a. EGA= Estimated Gestational Age 

 

Qualitative radiographic score was hypothesized to have a positive relationship with prematurity. 

A non-parametric Mann-Whitney U test was performed to determine whether radiographic 

evaluation scores were significantly associated with prematurity. Data associated with 

chronically ill infants are presented in Table A- 7. Radiographic evaluation score was not 

associated with prematurity (U = 551.5, p = .193), which did not support the hypothesis. 

Relationships between Measures of Bone Quality 

HYPOTHESIS 5A: BMD HAS A NEGATIVE RELATIONSHIP WITH QUALITATIVE 

RADIOGRAPHIC SCORE. 

Regression analysis was used to evaluate whether the perceived degree of abnormal 

mineralization or demineralization on radiographs could be used to reliably predict BMD. The 

distribution of BMD estimates grouped by qualitative radiographic score is provided in Figure 

4-32. BMD could not be reliably predicted using qualitative radiographic scores (F(1, 67) = 3.80, 

p  < .055). The relationship between BMD and radiographic score remained insignificant after 

chronically ill infants were removed from the analysis (p = .199). With premature infants 

removed from the analysis, the relationship between BMD and radiographic score remained  
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Figure 4-32. Distribution of BMD values with qualitative radiographic score specified. Dark blue represents 

cases classified as normally mineralized on radiographs. Light blue represents cases classified as 

indeterminately or slightly demineralized on radiographs. Purple represents cases classified as abnormally 

mineralized on radiographs. 
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insignificant (p = .057). These findings did not support the hypothesis that perceived degree of 

abnormal mineralization or demineralization, represented by greater radiographic scores, was 

significantly associated with lower BMD estimates. 

HYPOTHESIS 5B: SOS HAS A SIGNIFICANT POSITIVE RELATIONSHIP WITH BMD. 

The relationships between SOS and BMD was examined using ANOVA and linear regression 

models SOS estimates were not reliably predicted by BMD estimates (F(1, 68) = 0.24, p = .628). 

To determine if age was acting as a suppressor variable between SOS and BMD, a model 

including age as a covariate and BMD as a predictor variable to predict SOS. After accounting 

for age, there was still no significant correlation between SOS and BMD (p = .668). Due to their 

lack of significance, the relationship between SOS and BMD and qualitative radiographic scores 

were not explored any further using regression analyses. These findings did not support the 

hypothesis that SOS was positively related to BMD. 

HYPOTHESIS 5C: SOS HAS A SIGNIFICANT NEGATIVE RELATIONSHIP WITH 

QUALITATIVE RADIOGRAPHIC SCORE. 

The relationship between SOS and qualitative radiographic score was examined using ANOVA 

and linear regression analyses. There was no significant relationship between radiographic scores 

and SOS (F(1, 75) = 0.07, p = .792). These findings did not support the hypothesis that lower 

SOS values would be associated with greater qualitative radiographic scores, which indicated 

perceived degree of abnormal mineralization or demineralization. 

Summary 

Analyses indicated a significant positive association between chronic illness and prematurity 

among infants in the study sample. Due to this association, analyses conducted on the pooled 

data were repeated with chronically ill and premature infants excluded from analyses to help 

identify spurious relationships. Analyses indicated no association between the presence of 

traumatic injury and chronic illness, prematurity, body size, or indicators of bone health.  

Infants with chronic illness had significantly smaller tibia lengths, midshaft diameter, and 

cortical thickness than infants without chronic illness. However, chronically ill infants were not 

significantly smaller in body size. Infants with chronic illness had significantly lower BMD, but 
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not SOS, than infants without chronic illness. Skeletal maturity at birth was significantly related 

to body size. Premature infants were significantly smaller than term born infants, except in 

weight for length percentile. Skeletal maturity at birth was significantly related to tibial size. 

Premature infants were significantly smaller in tibial size then term born infants, even after 

removing chronically ill infants from analyses. Prematurity was not associated with the 

proportion of cortical bone to cross-sectional size of the tibia. BMD and SOS were significantly 

related to skeletal maturity at birth. BMD was not significantly associated with prematurity, but 

was significantly positively associated with birthweight. SOS was positively associated with 

birthweight and EGA and negatively associated with prematurity. Greater qualitative 

radiographic score, an indication of demineralization or abnormal mineralization, was not related 

to prematurity.  

BMD, SOS, and tibial measurements were significantly related to age. BMD significantly 

decreased with age. Tibial measurements significantly increased with increasing age with the 

exception of cortical index, which decreased. There was a cubic trend in the relationship between 

SOS and age. SOS decreased after birth until ~ 3 months of age and began to increase thereafter. 

SOS plateaued at ~9 months of age. A similar pattern was observed among premature infants, 

although the postnatal decrease was more severe with a prolonged recovery period relative to 

term infants.  

Tibial size, but not the relative amount of cortical bone to cross-sectional diameter, was 

significantly positively related to body size. BMD was not related to body size. BMD was 

significantly associated with cortical index when chronically ill infants were included in the 

analysis, but the association was no longer significant after chronically ill infants were excluded. 

SOS was positively associated with body size when premature infants were included in the 

analysis, but not among term born infants. For the pooled data, SOS was significantly related to 

medullary cavity diameter and cortical index after accounting for variation due age. Among term 

infants, SOS was significantly associated with midshaft diameter and cortical index after 

accounting for age. When chronically ill infants were excluded from analyses, there was no 

significant relationship between tibial structure and SOS after accounting for variation due to 

age. 
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Statistical analyses were conducted to evaluate the relationship between the different measures of 

infant bone health. There was no significant association between BMD and SOS, BMD and 

qualitative radiographic score, or SOS and qualitative radiographic score.  
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CHAPTER 5 : DISCUSSION 

Introduction 

The purpose of this study was to evaluate factors contributing to infant bone quality that are 

measured by SOS. The relationship between infant bone quality and SOS was investigated 

through the testing of five hypotheses. Hypothesis 1: Growth-related changes in tibial structure 

and body size are significantly associated with each other, and both are significantly associated 

with age-related changes in BMD and SOS. Hypothesis 2: The presence of traumatic injury is 

not associated with indicators of overall health, body size, or bone health. Hypothesis 3: Chronic 

illness is negatively associated with growth and bone health. Hypothesis 4: Skeletal maturity at 

birth is positively associated with body size, bone size, and bone health. Hypothesis 5: The 

methods used to assess infant bone quality are significantly associated with one another. The first 

five sections of this chapter discuss the findings associated with each of these hypotheses. The 

findings associated with each of these hypotheses were used to draw conclusions that would help 

answer this study’s major questions. Is QUS a valid tool for evaluating bone quality in infants? 

Can SOS be used to differentiate between infants with poor bone quality and infants with normal 

bone quality? And if QUS is a valid method for evaluating infant bone health, can a threshold for 

normal bone SOS values in infants be identified? These conclusions are addressed in the 

conclusion section. The final section discusses the limitations of this study.   

Association between Growth-Related Changes in Size and Age-Related 

Changes in SOS and BMD 

 Studies report that bone microstructural and macrostructural properties are strongly associated 

with SOS (Bossy et al. 2004a; Bossy et al. 2004b; Foldes et al. 1995; Greenfield et al. 1981; 

Guglielmi et al. 2009; Guglielmi et al. 2003; Kann et al. 1993; Kaufman and Einhorn 1993; 

Kohles et al. 1994; Lee et al. 1997; Njeh et al. 1997; Prevrhal et al. 2001; Raum et al. 2014; 

Raum et al. 2005; Sakata et al. 2004; Wuster et al. 2005). Therefore, understanding age-related 

changes in tibial structure is important for investigating the aspects of bone quality that are 

measured by SOS. Before the relationship between growth and age-related changes in SOS and 

BMD could be interpreted, age-related changes in bone size and its relationship with growth-

related changes in body size were thoroughly assessed.  
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Age-related changes in tibial measurements were evaluated through regression analyses using 

age as the independent variable. F tests were performed on the R
2
 change to determine whether a 

hierarchical model (quadratic or cubic) was a better fit for the data than a linear model. Age was 

a significant predictor of tibial length, midshaft diameter, cortical thickness, medullary cavity 

diameter, and cortical index. All tibial measurements, except cortical index, significantly 

increased from birth to 12 months of age. The rate of increase in tibial length was greater than 

the rate of increase of the other tibial measurements (Figure 4-8 to Figure 4-12). Overall, there 

was a net increase in medullary cavity diameter and midshaft diameter over the first year of life. 

But, the rate of increase in midshaft diameter and medullary cavity diameter fluctuated over 

time, resulting in curvilinear (cubic) relationships that are illustrated by the black regression lines 

in Figure 4-9 and Figure 4-10. After birth, tibial midshaft diameter and medullary cavity diameter 

increased with age. At ~3-4 months of age, there was a decline in the rates of increase for the 

midshaft and medullary cavity diameters. At ~7-8 months of age, the rate of increase in midshaft 

diameter increased again and continued to increase, while the increase in medullary cavity 

diameter did not commence until ~8-9 months of age. The regression coefficients for the age 

variables indicated that periosteal expansion occurred at a slightly greater rate than expansion of 

the medullary cavity, which suggested a gradual increase in cortical thickness. A gradual, but 

significant, increase in cortical thickness with age was indicated (black regression line, Figure 

4-11). In contrast, cortical index had a negative quadratic relationship with age. Initially, cortical 

index declined from birth until ~7-8 months of age at which point it began to rebound (Figure 

4-12). Periosteal and endosteal expansion both declined a few months prior to the rebound in 

cortical index. The decline in endosteal expansion lasted longer than the decline in periosteal 

expansion, resulting in increased cortical thickness. The decline in periosteal expansion coupled 

with the increase in cortical thickness resulted in the increase in cortical index beginning at ~8 

months of age. After ~7-8 months of age, the rate of periosteal and endosteal expansion 

increased again, but the rate of endosteal expansion lagged behind the rate of periosteal 

expansion, resulting in a continued increase in cortical thickness with age. These findings 

suggest that there is a decline in the amount of cortical bone relative to midshaft cross-sectional 

size as age increases over the first 6-7 months of life. After 6-7 months of age, the relative 

amount of cortical bone to midshaft cross-sectional size increases. Age-related changes in the 

cross-sectional tibial measurements are illustrated in Table 5-1. 
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Table 5-1. Illustration of the age-related changes in tibial measurements and SOS during the first year of life.  

  Birth 1 2 3 4 5 6 7 8 9 10 11 12 
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Separate analyses were conducted on term born infants and infants without chronic illness 

(“healthy”) to determine if tibial growth significantly differed from results based on the pooled 

study sample. Age remained a significant predictor of all of the tibial measurements whether or 

not premature or chronically ill infants were excluded from analyses (as shown in Table 4-7, 

Table 4-8, and Table 4-9). There were no significant changes of the relationship trends between 

age and cortical thickness, or cortical index. Among term born infants, the relationship between 

age and tibial length was cubic and not linear. The rate increase in tibial length showed a slight 

reduction between 5-7 months of age (Figure 4-13). Exclusion of chronically ill infants 

remarkably affected relationship trends between age and, midshaft diameter and medullary 

cavity diameter. The relationship between age and midshaft diameter changed from cubic to 

linear, indicating that variability in the midshaft values of chronically ill infants caused the 

relationship between age and midshaft diameter to appear curvilinear for the pooled sample. 

Midshaft diameter showed a steady increase with age among infants without chronic illness. The 

relationship between age and medullary cavity diameter changed from cubic to quadratic when 

chronically ill infants were excluded from the analysis. Medullary cavity diameter increased with 
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increasing age, but the rate of increase declined towards the end of the first year of life (Figure 

4-10).  

The changes in midshaft cross-sectional geometry over the first year of life observed in the 

current study are consistent with growth-related changes reported in the literature. After birth, 

bone is redistributed from the endosteal surface to the periosteal surface of long bones. Midshaft 

diameter and medullary cavity diameter increase, while cortical thickness decreases, resulting in 

a decrease in relative cortical area (Rauch and Schoenau 2001). A study using high resolution-

CT to evaluate ontogenetic changes in the cross-sectional geometry of tibias and femurs obtained 

from an archeological sample reported that total area, cortical area, and medullary area gradual 

increases with age (Gosman et al. 2013). Periosteal and endosteal expansion at the femoral and 

tibial midshafts were roughly equal and that cortical area was greater than medullary area 

(Gosman et al. 2013). Studies examining femoral growth during the first 6 months of life in more 

recent populations report that diaphyseal and medullary cavity diameters increase while cortical 

thickness slightly decreases BMD (Rauch and Schoenau 2001; Rauch and Schoenau 2002; Vinz 

1970). Although cortical thickness decreases, overall bone strength increases due to the 

redistribution of bone mass further way from the neutral axis (Rauch and Schoenau 2001). A 

study on postnatal growth of the metacarpal reported that, over the first year of life, total cross-

sectional area increased with age, but cortical index declined due to decreased cortical thickness 

(Bonnard 1968). In contrast to the previously mentioned studies, cortical thickness of the current 

study sample gradual increased with increasing age. However, Garn (1970) also reported a net 

increase in cortical thickness with increasing age. The increase in cortical thickness found in the 

current study sample was not sufficient enough to prevent the decline in cortical index. This 

finding was consistent with a previous study which reported that tibial cortical index declined 

until ~7 months of age (Bernard 1962). In the current study, cortical index also declined until ~7 

months of age.   

HYPOTHESIS 1A: AGE-RELATED CHANGES IN TIBIAL MEASUREMENTS ARE 

POSITIVELY ASSOCIATED WITH VARIABLES RELATED TO BODY SIZE AND 

GROWTH PERCENTILES.  

The relationship between tibial size and structure and body size at time of death was assessed 

using height with age as a covariate, weight with age as a covariate, length for age percentile, 
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weight for age percentile, and weight for length percentile. Height shared significant positive 

relationships with all tibial measurements except cortical index. The same pattern in 

relationships was observed between weight and the tibial measurements. Using length for age 

and weight for age percentiles accounted for size differences due to age. As length for age 

percentile increased, tibial length, midshaft diameter, and cortical thickness significantly 

increased, but length for age percentile had no significant effect on medullary cavity diameter or 

cortical index. As weight for age percentile increased, tibial length, midshaft diameter, medullary 

cavity diameter, and cortical thickness significantly increased, but weight for age percentile had 

no significant relationship with cortical index. Weight for length percentile was not significantly 

associated with any of the tibial measurements.  

In general, these findings support the hypothesis that age-related changes in tibial measurements 

are positively associated with growth-related changes in body size and growth percentiles. The 

relationship between age and the tibial measurements is driven by a growth-related size increase. 

Tibial size increased as overall body size increased, with the exception of cortical index. The 

increase in body size had no relationship to amount of cortical bone relative to cross-sectional 

size. It is not surprising that there is not association between body size and cortical index. Most 

of the infants in the study sample were non-ambulatory, meaning they were not mechanically 

loading their long bones with their body mass.  

HYPOTHESIS 1B: BMD AND SOS ARE SIGNFICANTLY RELATED TO AGE.  

BMD and Age 

Most studies evaluating BMD in infants report a significant association between BMC and/or 

BMD and age (Carrascosa et al. 1996; del Rio et al. 1994; Kalkwarf et al. 2013; Koo et al. 

1995a; Koo 2000; Koo et al. 1998; Kurl et al. 2002; Prentice et al. 1990; Rauch and Schoenau 

2001; Rawlings et al. 1999; Sievanen et al. 1999; Specker et al. 1997; Trotter and Hixon 1974; 

Yeste et al. 2004), but whether this association is positive or negative varies by study. Studies 

using CT to evaluate the changes in trabecular bone volume fraction in the proximal humerus 

and femur (Ryan and Krovitz 2006; Ryan et al. 2007) and proximal tibia (Gosman and Ketcham 

2009; Gosman et al. 2011) reported that the bone volume fraction is high at birth and declines to 

a minimum by 1 year of age, at which point it begins to increase again. In contrast, infant total 

body BMC and BMD have been reported to significantly increase with postnatal age (Koo et al. 
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1995a; Koo et al. 1998; Rawlings et al. 1999; Specker et al. 1997). Studies of the infant lumbar 

spine report a positive association between BMD and postnatal age (Carrascosa et al. 1996; del 

Rio et al. 1994; Kalkwarf et al. 2013; Kurl et al. 2002; Yeste et al. 2004). BMC of the midshaft 

radius had a significant positive curvilinear relationship with age in a study evaluating British 

and Gambian infants (0-36 months of age) (Prentice et al. 1990). A longitudinal study of BMC 

and BMD at the distal forearm and forearm shaft (radius and ulna) in premature infants found a 

significant association between age and distal forearm BMC and BMD, but no significant 

association between forearm shaft and age (Sievanen et al. 1999). This suggests that the 

relationship between age and BMD during infancy is site-specific and depends on the proportion 

of cortical to trabecular bone at the evaluation site (Seeman 1997; Sievanen et al. 1999) 

As was discussed previously, age-related changes in tibial structure result in increased bone 

strength. Therefore, it was important to test whether the indicators of bone strength used in the 

current study were also related to age. A significant decline in BMD with postnatal age was 

indicated, even after the exclusion chronically ill infants from the analysis. After chronically ill 

infants were excluded, BMD significantly declined with increasing age until ~9-10 months of 

age and increased was greater in infants 11 months of age. The decline in BMD with age is most 

likely associated with the age-related changes in cross-sectional geometry of the tibia. 

Diaphyseal diameter and medullary cavity diameter increased significantly during the first year 

of life, while the increase in cortical thickness was comparatively much smaller. As a result, 

cortical index significantly decline until ~7 months of age at which point it gradually increased.  

Other studies of the infant tibia have also reported a postnatal decline in BMD and cortical area. 

Trotter and Hixon (1974) reported a decline in mean percentage ash weight (a direct measure of 

bone density) of the tibia during infancy, while Bernard (1962) reported a decline in tibial 

cortical area until ~7 months of age (Bernard 1962). Studies evaluating ontogenetic changes of 

the infant femur report similar patterns of bone mass redistribution (Rauch and Schoenau 2001; 

Trotter and Hixon 1974; Vinz 1970; Vinz 1971). During the first 6 months of life, the femoral 

diaphyseal and medullary cavity diameters increase while cortical thickness slightly decreases 

(Rauch and Schoenau 2001; Rauch and Schoenau 2002; Vinz 1970). It has been reported that 

~30% of total BMD is lost from the femur during infancy (Trotter 1971; Trotter and Hixon 1974; 

Trotter and Peterson 1970). If only cortical BMD is taken into account, the decrease in cortical 
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BMD is only 7% (Rauch and Schoenau 2002). The decline in femoral BMD is not only caused 

by a decline in relative cortical area, it is also due to a small decline in the mineral content of the 

cortical bone (Rauch and Schoenau 2001; Rauch and Schoenau 2002; Trotter 1971; Yiallourides 

et al. 2004). A study of BMD at the femoral midshaft reported a decline in the ratio of calcium to 

nitrogen (mineral:collagen) in femoral cortical bone that occurs between 2-4.5 months and 5-9 

months of age (Dickerson 1962; Rauch and Schoenau 2001).  

These findings support the hypothesis that BMD is significantly related to age. For term born, 

healthy infants, the postnatal decline in BMD is a physiological and not a pathological process. 

The decline in BMD and changes in cross-sectional geometry over the first year of life indicate a 

redistribution of bone mass from the endosteal surface to the periosteal surface (Rauch and 

Schoenau 2001; Rauch and Schoenau 2002). The redistribution of bone mass further away from 

the neutral axis results in a whole bone that is stronger in resistance to bending. 

SOS and Age 

Investigation of the relationship between SOS and age is important because it provides insight 

into what aspects of bone quality, such as growth-related changes in bone size and 

mineralization, are measured by SOS. Multiple studies have reported a significant relationship 

between SOS and age (Altuncu et al. 2007; Litmanovitz et al. 2003; Litmanovitz et al. 2004; 

McDevitt et al. 2007; Mercy et al. 2007; Nemet et al. 2001; Rack et al. 2012; Ritschl et al. 2005; 

Rubinacci et al. 2003; Tansug et al. 2011; Tomlinson et al. 2006; Zadik et al. 2003). However, 

normative SOS data for infants that are specific to age in months are still lacking. Only a handful 

of studies have reported SOS readings for infants older than a few months of age (Gonnelli et al. 

2004; McDevitt et al. 2007; Ritschl et al. 2005; Tansug et al. 2011; Zadik et al. 2003) and even 

fewer studies have reported age-specific SOS data for normal term infants that are more specific 

than the range over the first year of life (McDevitt et al. 2007; Ritschl et al. 2005). Most studies 

utilizing SOS to evaluate bone quality in infants focus on preterm and term infants during the 

first few months of life (Ahmad et al. 2010; Altuncu et al. 2007; Litmanovitz et al. 2003; 

Litmanovitz et al. 2004; Littner et al. 2003; Littner et al. 2004b; Littner et al. 2005; McDevitt et 

al. 2005; Mercy et al. 2007; Nemet et al. 2001; Rubinacci et al. 2003; Teitelbaum et al. 2006; 

Tomlinson et al. 2006; van Rijn et al. 2000; Wright et al. 1987; Yiallourides et al. 2004), the 

majority of which report a negative correlation between SOS and postnatal age (Altuncu et al. 
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2007; Litmanovitz et al. 2003; Litmanovitz et al. 2004; Mercy et al. 2007; Nemet et al. 2001; 

Rubinacci et al. 2003; Tomlinson et al. 2006). Two studies monitoring infants over longer 

periods of time report an initial decrease in SOS reading with increasing postnatal age, but these 

studies also report that after ~6 months of age SOS begins to increase with increasing age 

(Ritschl et al. 2005; Tansug et al. 2011). SOS values obtained from larger pediatric study 

populations over broader age ranges have been published in the literature, but the age-specificity 

is limited to age in years (Mimouni and Littner 2004; Zadik et al. 2003).  

The current study’s results are consistent with the findings of these previous studies and support 

the hypothesis that SOS is significantly related to age. Analyses suggest a cubic trend in the 

relationship between age and SOS among both the pooled sample (Figure 4-28) and the term born 

infants (Figure 4-29). After birth, SOS readings for the pooled sample decreased over the first 3 

months. After ~3 months of life, SOS readings gradually increased until ~9 months of life. After 

9 months of life, SOS readings appeared to plateau. The relationship between SOS and age was 

similar for the term infants, but the increase in SOS appeared to occur earlier and the postnatal 

decline was more shallow than in the pooled sample. The relationship between SOS and age 

significantly differed among premature infants. The relationship between SOS and age was 

quadratic, showing a much more severe postnatal decline that occurred until ~5 months of age. 

After ~5 months of age, SOS in premature infants gradually increased. Recovery of the SOS to 

values approximating those seen shortly after birth appeared to occur later among the premature 

infants than in the term infants.  

The initial decline in SOS associated with increased postnatal age reflects the physiological 

changes occurring in infant bone mineral metabolism that commence after birth. In utero, the 

minerals necessary for bone mineral metabolism are obtained through the active transport of 

calcium, phosphorus, and magnesium across the placenta (DiMeglio and Imel 2014). After birth, 

preterm and term infants depend on the bone mineral accumulated during the last trimester in 

utero and intestinal absorption of mineral from dietary sources to maintain mineral homeostasis. 

Cut off from maternal mineral sources after birth, bone resorption is triggered to release the 

necessary mineral into the body. As mentioned previously, research has shown that ~30% of 

neonatal BMD is lost and cortical area declines after birth. The decline in SOS is consistent with 

the decline in BMD and cortical area during the first 3-6 months of life reported by this and other 
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studies (Altuncu et al. 2007; Litmanovitz et al. 2003; Litmanovitz et al. 2004; Mercy et al. 2007; 

Nemet et al. 2001; Ritschl et al. 2005; Rubinacci et al. 2003; Tansug et al. 2011; Tomlinson et al. 

2006). In term infants, the bone loss does not compromise bone structure or strength due to the 

skeletal mineral buildup which occurred during the last trimester (Sharp 2007).  

Caution should be exercised with regard to the data from infants greater than 6 months of age. A 

great deal of heteroscedasticity is present in the SOS data distributed by age (Figure 4-28). This 

indicates that the variance in the SOS readings is not equal across the entire age range. Upon 

examination of Figure 4-28, it is apparent that the spread in SOS values is much greater during 

the first 3-4 months of age than after 4 months of age. The heteroscedasticity may be caused by 

the uneven age distribution of the study sample. The majority of infants in the study sample are 5 

months of age or less. It also possible that there is a reduction in the variance in SOS readings as 

age increases. More SOS data from infants greater than 5 months age is necessary to understand 

if the heteroscedasticity is an artifact or a true reflection of changes in the SOS with age.  

In an effort to develop more finely-grained age-specific normative data and to encourage more 

research in this area, means and ranges of SOS readings specific to chronological age, with 

premature infants included and excluded, are plotted in Figure 4-27 and Figure 4-29, respectively. 

Relative to the data reported by Zadik and colleagues (2003) (female (n=590): 3012 ± 137 m/s; 

boys (n=485): 3000 ± 106 m/s), the SOS readings obtained from the current study sample fell 

well within the range of normative tibial SOS readings for the first year of life. However, the 

SOS data from this study should still be considered experimental due to the unequal and limited 

sample sizes of some of the age groups. More SOS data should be collected from infants before 

normative standards for infants specific to age in months can be developed.  

HYPOTHESIS 1C: BMD AND SOS ARE SIGNIFICANTLY RELATED TO BODY SIZE 

AND GROWTH PERCENTILES. 

BMD was hypothesized to have a significant positive relationship with body size and growth 

percentiles. This hypothesis was based on the use of an areal measurement to estimate BMD. 

There were no significant relationships between BMD and the body size variables or growth 

percentiles. It is likely that no relationship was found due the small area of bone used to calculate 

the BMD estimate. Although no correction for bone size was used, an area of 10 mm in height by 
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the width of the tibial midshaft may not be sufficient to cause a significant association with body 

size. 

The relationship between body size and SOS was investigated for two reasons. First, a significant 

association between body size and SOS is suggestive of a relationship with tibial size and 

structure due to the correlation between body size and bone size. Secondly, studies have reported 

that SOS is negatively influenced by increased tissue thickness. According to the manufacturer, 

the MiniOmni™ Ultrasound Bone Sonometer (BeamMed Ltd, Petah Tikva, Isreal) accounts for 

the effects of soft tissue thickness on SOS readings through proprietary algorithms. These 

algorithms subtract the duration of time required for the signal to travel through soft tissue 

(BeamMed 2010). Yet, a study examining the effects of subcutaneous fat on SOS readings found 

that increased subcutaneous fat significantly decreased SOS readings (Bajaj et al. 2010). Bajaj 

and colleagues (2010) measured the effects of subcutaneous fat on SOS readings by injecting 

chicken wings with lard. In addition, SOS readings obtained from large-for-gestational age 

(LGA) infants were compared to SOS readings from appropriate-for-gestational age (AGA) 

infants. SOS readings from LGA infants were significantly lower than for AGA infants. Littner 

and colleagues (2004) also reported that LGA infants had significantly lower SOS readings than 

AGA infants. These studies used QUS devices produced by the same manufacturer as the device 

used in the current study. The results of these studies suggest that tissue thickness continued to 

significantly negatively influence SOS readings despite manufacturer claims that proprietary 

algorithms account for tissue thickness effects.  

It was hypothesized that SOS would have a significant positive association with body size and 

growth percentiles due to the correlation between bone size and body size. To evaluate the 

relationship between body size and SOS while accounting for age-related size differences, the 

age variables (age, age
2
, and age

3
) previously determined as significant predictors of SOS were 

used as covariates in models predicting SOS using the body size variables. Weight for age and 

length for age percentiles were not analyzed with the age variables as covariates due to the 

multicollinearity between the variables. Weight, weight for age percentile, height, length for age 

percentile, and leg circumference were significant predictors of SOS. However, after chronically 

ill infants were excluded from analyses only weight for age percentile, height, and length for 
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percentile were significant predictors of SOS. Among term infants, SOS was not significantly 

associated with any of the variables related to body size.  

With regard to the negative influence of tissue thickness on SOS, the findings of the current 

study are not consistent with reports from previous studies (Bajaj et al. 2010; Littner et al. 

2004b). Although tissue thickness was not directly measured in the current study, proxies for 

tissue thickness, such as leg circumference and weight percentile for age, were measured. In the 

pooled sample, SOS readings had significant positive relationships with weight for age percentile 

and leg circumference, suggesting that SOS increased as body mass, and presumably tissue 

thickness, increased. Yet, this may not be a fair comparison because weight for age percentile 

and leg circumference are not direct measures of tissue thickness. But, the SOS readings 

obtained from three LGA infants in the current study sample were also not consistent with the 

findings of previous studies. Only one (Case ID # 182) of the three infants born LGA had low 

SOS relative to the other infants of the same age (11 months). Moreover, the one LGA infant that 

died shortly after birth had the highest SOS reading of any infant in the study sample (Case ID # 

202). SOS of the third LGA infant (Case ID # 215) was unremarkable and was in the midrange 

relative to other infants of similar age (3 months). More specific information pertaining to these 

infants is provided in Table A- 1 to Table A- 12 in the Appendix. Before it can be determined if 

tissue thickness significantly affected SOS readings in the current study, research comparing 

known tissue thickness at the SOS measurement site to SOS readings is necessary. 

Therefore, after accounting size differences due to age and prematurity, SOS was not 

significantly affected by differences in body size. In contrast, analyses suggest that larger body 

size had positive relationship with SOS among premature infants and chronically ill infants. 

These findings partially support the hypothesis. SOS did not appear to be influenced by body 

size or tissue thickness, but is likely indirectly, significantly associated with body size through 

growth-related factors.  

HYPOTHESIS 1D: BMD AND SOS ARE SIGNIFICANTLY RELATED TO TIBIAL 

STRUCTURE. 

BMD was hypothesized to have a significant positive relationship with tibial structure due to the 

use of an areal measurement to estimate BMD. Cortical index was the only tibial measurement 
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significantly related to BMD. Among the pooled sample, there was a significant positive 

relationship between cortical index and BMD, which supported the hypothesis. After removal of 

the chronically ill infants from the analysis, there was no longer a significant association between 

cortical index and BMD. Although BMD was not significantly associated with tibial structure 

among infants without chronic illness, these findings suggest that tibial structure was 

significantly related to BMD in chronically ill infants. It is possible that the differences in tibial 

structure among the “healthy” infants were not great enough to result in a significant difference 

in BMD. These findings partially support the hypothesis. 

To assess whether tibial macrostructure at the measurement site was significantly related to SOS, 

regression analyses predicting SOS from the tibial measurements while using as a covariate. 

Only medullary cavity diameter and cortical index were significantly correlated with SOS after 

accounting for variance due to age. Regression analysis indicated that SOS significantly 

increased as cortical index increased. Although the current study did not directly measure 

cortical area, it could be argued that cortical index is a measure of the relative amount of cortical 

bone located at the midshaft. Therefore, these results suggest that SOS in infants is significantly 

influenced by changes in the relative amount of cortical bone at the measurement site. 

Regression analysis indicated that SOS significantly decreased as medullary cavity diameter 

increased. After removing chronically ill infants from the analysis, there was no significant 

relationship between the tibial measurements and SOS after accounting for variation due to age. 

Among term born infants, midshaft diameter and medullary cavity diameter were significant 

predictors of SOS. After accounting for variance due to age, SOS decreased as medullary cavity 

and midshaft diameter increased. The increase in medullary cavity diameter and midshaft 

diameter may be suggestive of the decline in cortical index. These findings support the 

hypothesis that SOS is significantly associated with tibial structure. As was discussed, previously 

medullary cavity diameter significantly increased with age, while cortical index and SOS 

significantly decreased with age (Table 5-1). SOS may be measuring the reduction in proportion 

of cortical bone relative to bone size as a result of the increase in medullary cavity diameter and 

decrease in cortical index with increasing age.   

Multiple regression analyses were conducted using stepwise variable selection to determine 

which factors, while controlling for age, accounted for the greatest variance in SOS. For the 
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pooled data, the model selected for predicting SOS included age, birthweight, height, medullary 

cavity diameter, cortical index, and midshaft diameter. This model accounted for ~53% of the 

variance in the SOS data, which accounted for quite a bit more of the variance than the 

hierarchical age model (35%). SOS significantly increased as birthweight increased, holding all 

other variables constant. Birthweight may have accounted for differences in SOS as a result of 

skeletal maturity reached by the time of birth. Increases in height had a positively influence on 

SOS, holding all other variables constant. Height is often used as an indicator of healthy 

development in infants and children. Pediatricians use growth percentiles for length and weight 

to track whether an infant appears to be growing normally. Height may have also accounted for 

some of the variance in SOS as a result of prematurity. Premature infants had significantly lower 

height measurements, but the significant relationship between height and SOS was not 

significant among the term born infants. After excluding chronically ill infants from analyses, 

age, birthweight and medullary cavity diameter were selected as significant predictors of SOS. 

Medullary cavity diameter, midshaft diameter, and cortical index are variables associated with 

bone shape and are affected by growth and health of the infant. In this model, SOS increased as 

medullary cavity and cortical index increased, while SOS decreased as midshaft diameter 

increased. Among term infants, only age and medullary cavity diameter were selected as 

significant predictors of SOS. As medullary cavity diameter increased SOS decreased among 

term born infants and infants without chronic illness. These results suggest that SOS measures 

skeletal changes as a result of age, skeletal maturity reached at time of birth, bone structure at the 

measurement site, and health factors that affect bone structure. Therefore, the multiple regression 

results support the hypothesis that SOS measures aspects bone structure that are affected by 

growth. These results also suggest that SOS is multidimensional in the factors which influence it 

and supports the argument that SOS is affected by several characteristics which contribute to 

overall bone quality.      

The negative effect on SOS with increasing medullary cavity size makes technological sense 

because ultrasound waves travel slower through soft tissue than through bone. The marrow 

within the medullary cavity would have decreased the velocity of the ultrasound signal. There 

was some concern that the ultrasound signal may have penetrated through the medullary cavity 

and into the cortex on the opposite side of the bone. Studies indicate that QUS axial 

measurements penetrate the periosteal/subperiosteal region by < 2 mm (Bossy et al. 2004a; 
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Bossy et al. 2004b). The distance between the periosteal surface adjacent the QUS probe and the 

endocortical wall on the opposite side of the medullary cavity was calculated for each infant. In 

no instance was this distance less than 2 mm, supporting the assumption that the ultrasound 

signal did not penetrate past the medullary cavity.  

To my knowledge, the current study is the first infant study to compare SOS to bone cross-

sectional measurements at the QUS measurement site. A study of older children, ranging from 3-

21 years of age, compared SOS taken at the proximal phalange to bone width of the proximal 

phalange. The study results found that bone width had significant, but minor effects on SOS, 

accounting for ~6% of the variance (Baroncelli et al. 2001). Although the results of the current 

study seem to suggest that SOS in infants is influenced by the amount of cortical bone at the 

measurement site, as well as its distribution, the association between chronic illness and 

prematurity continue to confound the interpretation. A larger sample size of term infants without 

chronic illness across the entire age range (0-12 months) is needed to confirm these results.  

Association between Traumatic Injury, Health, and Bone Health 

Results supported the hypothesis that the presence of traumatic injury is not related to indicators 

of overall health, body size, or bone health. Infants with traumatic injury showed no indication of 

compromised overall health, reduced bone mineralization, or growth deficiency. There were no 

infants with traumatic injury that were also chronically ill and/or premature. Infants with 

traumatic injury were not significantly different from those without traumatic injury in 

comparative analyses using BMD, SOS, or qualitative radiographic score data. Neither were 

there differences in body size between infants based on the presence of traumatic injury, with the 

exception of height. Although height was significantly different between infants with and 

without traumatic injury, there was no significant difference in length for age percentile. 

Therefore, there was no difference in body size between infants with and without traumatic 

injuries after accounting for variations in size due to age. The lack of any statistically significant 

differences between infants with and without traumatic injury suggests that the individuals who 

died of traumatic injury had comparable bone quality to the other infants in the study sample. 

These findings are important because they do not support the argument that infants with 
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traumatic injuries have poor bone quality or compromised bone strength which increases the risk 

for injury during normal handling.   

Association between Chronic Illness, Growth, and Bone Health 

Differentiating between the effects of chronic illness on growth and bone health versus those due 

to prematurity was not possible due to the significant association between prematurity and 

chronic illness in the current study. Premature infants are at a high risk for the development of 

chronic illness due to immature organ systems that are not fully equipped to function in the 

extrauterine environment. Premature infants are at high risk for developing respiratory distress 

due to underdeveloped lungs. Infants in respiratory distress may require mechanical ventilation. 

Prolonged used of mechanical ventilation may result in the development of bronchopulmonary 

dysplasia, also called chronic lung disease (CLD), which is the inflammation and scarring of the 

lungs (Backstrom et al. 1996; Venkataraman et al. 1983). Persistent patent ductus arteriosus 

(PDA) is another common problem among premature infants (Hamrick and Hansmann 2010). 

The ductus arteriosus is a blood vessel that facilitates fetal circulation and is supposed to close 

after birth. When the ductus arteriosus fails to close, it is referred to as PDA. PDA has adverse 

effects on bone mineralization in premature infants. A study conducted on infants born at ≤ 31 

weeks gestation found that premature infants with PDA had lower BMD than premature infants 

without PDA (Figueras-Aloy et al. 2014). PDA can result in low blood oxygenation, 

cardiomegaly (enlarged heart), and heart failure. In a multi-center study of preterm infants born 

at 28 ± 3 mean gestational age, 31% of infants had symptomatic PDA requiring treatment or 

surgery (1993).  

In conjunction to being born with limited nutritional stores relative to term born infants, it may 

be more difficult for premature infants to obtain adequate nutrition. Adequate nutrition is 

important for supporting bone mineral accretion. Infants born prior to 35-37 weeks gestation 

have difficulties with the suck-swallow-breathe pattern due to immature oral reflexes. An 

immature gastrointestinal (GI) tract hinders the ability to obtain adequate nutrition to support 

sufficient bone mineralization. Intestinal absorption of fat, calcium, and vitamin D is lower in 

preterm infants than term infants (King and Tavener 2014; Senterre and Salle 1982; Shaw 1976). 

Implementing enteral feeds before the GI system is mature enough can result in necrotizing 
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enterocolitis, intestinal tissue death (King and Tavener 2014). Infants that cannot feed normally 

require intravenous feeding or enteral feeding facilitated through a gastric tube (King and 

Tavener 2014). Intravenous feeding is called total parental nutrition (TPN). Long-term use of 

TPN is associated with reduced bone mineralization due to limits on the concentration of calcium 

and phosphorus (Figueras-Aloy et al. 2014). At high concentrations, the calcium and phosphorus 

will precipitate out of the solution. Maintaining adequate enteral or parenteral nutrition is 

complicated several other factors. Fluid intake is limited by the size of the infant and intake may 

be restricted as a treatment for other illnesses. Over intake of fluid is also problematic for infants 

with immature renal systems.  

Therapeutic interventions used to treat chronic illnesses, including those associated with 

prematurity, may increase the risk for developing low BMD (Rigo and De Curtis 2006). As 

mentioned previously, respiratory distress may require mechanical ventilation. Diuretics are 

often used in combination with mechanical ventilation to decrease fluid buildup in the lungs. 

Diuretics cause increased urinary excretion of calcium, negatively affecting bone mineral 

metabolism (Venkataraman et al. 1983). Additionally, mechanical ventilation may require 

immobilization, increasing the risk of bone loss due to disuse (Backstrom et al. 1996). 

Glucocorticoids are used to reduce the inflammation caused by CLD, but prolonged and 

excessive use of glucocorticoids is detrimental to bone mineral metabolism by increasing bone 

resorption and decreasing bone formation (Canalis and Delany 2002; Kurl et al. 2000; Weiler et 

al. 1995). Infants with CLD have higher energy requirements due to the increased respiratory 

rate that results in higher energy expenditures (de Meer et al. 1997; Greer and McCormick 

1986). Fluid restriction is used as a treatment to prevent to prevent pulmonary hypertension in 

infants with PDA (De Buyst et al. 2012). Pulmonary hypertension may result in permanent lung 

damage. However, the fluid restriction prevents maximum nutrient intake (Itabashi et al. 1999).  

In the current study sample, there were 13 infants identified as chronically ill. Most of these 

infants were undergoing medical treatment or at least monitoring for their illness. Seven of the 

13 chronically ill infants were premature (Figure 4-3). Of the premature infants with chronic 

illness, two had heart disease and one had heart disease and chronic lung disease. The heart 

disease was unknown prior to death in only one of these cases, and this infant died before 1 

month of age. The other infants with heart disease were born extremely premature (25 weeks 
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EGA) and had been undergoing medical treatment/monitoring of their conditions. There were 

three premature infants with genetic disorders, all of which had been undergoing medical 

treatment/monitoring for their conditions. One of the infants had Trisomy 21 with associated 

congenital heart disease and was receiving TPN. Trisomy 21 has been associated with low BMD 

and reduced growth velocity between 3-6 months of age (Brook and Brown 2008c) One of the 

infants had Prader-Willi syndrome and was deficient in human growth hormone (HGH), but was 

undergoing HGH replacement therapy. HGH stimulates growth and influences the conversion of 

food into energy. HGH is produced by the pituitary gland. It has been reported HGH deficiency 

adversely affects bone mineralization and growth velocity (Bachrach 2001). Children with HGH 

deficiency have been found to have low areal (Saggese et al. 1993) and volumetric (Högler et al. 

2005) lumbar spine BMD prior to therapy. Six months of GH replacement therapy positively 

affected growth velocity and 12 months positively affected BMD (Saggese et al. 1993). The third 

infant with a genetic disorder had Campomelic dysplasia which is caused by a gene mutation in 

Sox9. Sox9 is important in skeletal development (Bi et al. 2001). This infant had bowing of the 

long bones and clubbed feet. One of the premature infants had a seizure disorder that was treated 

with anticonvulsants since 3 weeks of age. Long-term anticonvulsant use is associated with 

reduced BMD (Sheth 2004).  

Five term born infants were classified as chronically ill and one infant with an unknown EGA 

was classified as chronically ill. Two of the term born, chronically ill infants had heart disease. 

One of these infants had cardiomegaly with a widely patent foramen ovale. The second infant 

with heart disease had fibromuscular dysplasia resulting in subtotal occlusion of the coronary 

arteries. These conditions were not diagnosed prior to autopsy, so neither of these infants had 

been undergoing medical treatment/monitoring of their conditions. One of the term born infants 

had multiple congenital abnormalities that affected the heart, lungs, and liver. This infant had 

been undergoing medical treatment/monitoring prior to death. One of the term born, chronically 

ill infants had mitochondrial myopathy. Mitochondrial myopathy is a disease of the muscle 

mitochondria (DiMauro et al. 1985). Complications of mitochondrial myopathy are heart defects, 

diabetes, and stunted growth (Muscular Dystrophy Association Inc. 2015). This infant had a 

prolonged hospitalization due to their illness prior to death. One of the infants had a collagen 

4A1 (COL4A1) disorder, cerebral palsy, and severe seizure disorder. This infant had been 

undergoing medical treatment/monitoring and was treated with anticonvulsants since birth. 
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COL4A1 disorder affects the type 4 collagen α1 chain, which is an important component of 

vasculature, renal glomeruli, and ocular membranes (Vahedi and Alamowitch 2011). This infant 

was 9 months of age at the time of death. The chronically ill infant in which EGA was unknown 

had a seizure disorder since 1 month of age that was treated with anticonvulsants. This infant 

was 5 months of age at time of death.  

HYPOTHESIS 3A: CHRONIC ILLNESS IS NEGATIVELY ASSOCIATED WITH 

VARIABLES RELATED TO BODY SIZE.  

Although it was not possible to differentiate the effects of chronic illness on growth and bone 

health from those due to prematurity, the differences between infants with and without chronic 

illness were evaluated. Due to the detrimental effects on bone mineral metabolism and higher 

energy expenditure associated with chronic illness, it was hypothesized that chronic illness 

would be negatively associated with variables related to body size. Results did not support this 

hypothesis. There were no significant relationships between chronic illness and the variables 

associated with body size, even after accounting for variation due to age.  

HYPOTHESIS 3B: CHRONIC ILLNESS IS NEGATIVELY ASSOCIATED WITH TIBIAL 

GROWTH. 

It was also hypothesized that chronic illness would be negatively associated with tibial growth. 

More specifically, it was hypothesized that chronic illness would be negatively associated tibial 

length, midshaft diameter, cortical thickness, and cortical index. Medullary cavity diameter was 

hypothesized to be positively associated with medullary cavity diameter due to increased 

endocortical resorption. After accounting for variation due to age, infants with chronic illness 

had significantly lower tibial length, midshaft diameter, and cortical thickness. This is illustrated 

by comparing the light blue regression lines to the dark blue regression lines in Figure 4-8, Figure 

4-9, and Figure 4-11. There was no significant association between chronic illness and medullary 

cavity diameter or cortical index.  

The regression lines in Figure 4-8 suggest that chronically ill infants began to catch up in tibial 

length to infants without chronic illness by ~8 months of life. Tibial midshaft diameter and 

cortical thickness remained significantly lower in chronically ill infants than infants without 

chronic illness, regardless of age. The relationship between age and midshaft diameter was more 

variable among chronically ill infants than infants without chronic illness. Tibial midshaft 
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diameter increased after birth, but the rate of increase sharply declined by ~3 months of birth and 

appeared to decrease until ~8 months of age, which may indicate growth disturbance in 

periosteal expansion among the older chronically ill infants (Figure 4-9). Tibial midshaft 

diameter appeared to increase after 8 months of age, but remained lower than in the infants 

without chronic illness. Interestingly, there appeared to be no significant relationship between 

cortical thickness and age among the chronically ill infants, further suggesting a growth 

disturbance not observed among infants without chronic illness. Expansion of the medullary 

cavity appeared to occur at reduced rate in chronically ill infants relative to infants without 

chronic illness (Figure 4-10). Cortical index tended to be lower in chronically ill infants than 

infants without chronic illness (Figure 4-12), but this difference was not significant.  

In general, these results support the hypothesis that chronic illness is negatively associated with 

tibial growth. Linear growth of the tibia occurred at a significantly lower rate in chronically ill 

infants than infants without chronic illness, but appeared to catch up in tibial length by the end of 

the first year of life. Midshaft diameter and cortical thickness remained significantly lower in 

chronically ill infants throughout the first year of life. Medullary cavity diameter was 

insignificantly smaller in chronically ill infants. Significantly smaller midshaft diameters without 

significant differences in medullary cavity diameters resulted in significantly lower cortical 

thickness in chronically ill infants. Another important observation was the lack of a relationship 

between cortical thickness and age among chronically ill infants (Figure 4-11), suggestive of a 

growth disturbance. It should be kept in mind that there were only five term infants with chronic 

illness. Therefore, these results may not be representative of term born infants with chronical 

illness.  

HYPOTHESIS 3C: CHRONIC ILLNESS IS SIGNIFICANTLY RELATED TO MEASURES 

OF INFANT BONE HEALTH. 

Once evidence of the detrimental effect of chronic illness on tibial growth was obtained, analyses 

were conducted to determine whether the detrimental effects of chronic illness on tibial growth 

were also reflected by indicators of tibial bone health, such as SOS, BMD, and qualitative 

radiographic evaluation. There was no significant association between chronic illness and SOS, 

but there were significant associations between chronic illness and BMD, as well as radiographic 

score. Chronically ill infants had significantly lower BMD estimates and greater qualitative 
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radiographic scores (indicative of demineralization or abnormal mineralization) than infants 

without chronic illness. These findings indicate that the chronically ill infants in the current study 

sample experienced a significant degree of macroscopic bone loss, which supports the hypothesis 

that chronic illness is negatively associated with indicators of bone health. 

There is a large body of literature on the effects of chronic illness on BMD (Bachrach 2001; 

Binkovitz et al. 2007; Brook and Brown 2008a; Done 2012; Koo 1996; Sheth 2004; Specker et 

al. 2001). The degree to which chronic illness affects BMD depends on disease duration and 

severity (Bachrach 2001). Chronic illness can affect bone mineralization directly, as in 

osteogenesis imperfecta, or secondarily through complicating factors such as malnutrition, 

immobilization or decreased physical activity, and medications with adverse effects on bone 

mineral metabolism. A large number of chronic illnesses are associated with reduced BMD. 

Some broad categories of chronic illnesses that are associated with low BMD include specific 

genetic disorders, liver disease, renal disease, congenital heart disease, malabsorption disorders, 

lung disease, neurological disease, and endocrine disorders (Bachrach 2001; Binkovitz and 

Henwood 2007; Binkovitz et al. 2007; Brook and Brown 2008a; Brook and Brown 2008b; Brook 

and Brown 2008c; Carrascosa et al. 1996; Done 2012; Holm 2007; Koo 1996; Rigo and De 

Curtis 2006; Specker et al. 2001; Specker and Schoenau 2005). There were 13 chronically ill 

infants in the current study sample. These chronic illnesses have already been described in Table 

4-3. For information on the specifics of each chronically ill infant see Table A- 2 and Table A- 7 

in the Appendix. 

Although there was a significant relationship between qualitative radiographic score and chronic 

illness, evaluation of the qualitative radiographic scores for the chronically ill infants highlights 

the large degree of error associated with this method. There were two cases of chronically ill 

infants with abnormally mineralized bone and three cases with indeterminate bone loss on 

radiographs (Table A- 5). There were also three chronically ill infants that were classified as 

completely normal radiographically. However, these three infants were 1 month of age or less. It 

is possible that these three infants died before the sequelae of their chronic illness/disease 

became overtly manifest at the macroscopic level. In normal term infants, it is rare for rickets or 

osteomalacia to be observed in infants before 4 months of age and is most commonly observed in 

infants at least 6 months of age due to the increased accretion of bone mineral that occurs during 
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the last trimester of gestation (Imel et al. 2014). These three infants reached 36 weeks gestation 

at time of birth, which is one week shy of being considered full term. It is possible that the 

infants were able to maintain sufficient metabolic function with the available stores of bone 

mineral that built up during the last trimester of gestation. This may suggest that, in term infants, 

bone is more resistant to insult during the first months of life than previously assumed.  

While chronically illness had a significant negative relationship with bone mineralization, the 

relationship between SOS and chronic illness did not mirror this finding. Chronic illness had no 

significant effect on SOS, even after premature infants were removed from the analysis. This 

result did not support the hypothesis that SOS was significantly negatively associated and 

chronic illness and is contradictory to other pediatric studies. Studies have found that duration of 

total parenteral nutrition (McDevitt et al. 2007; Rack et al. 2012; Tansug et al. 2011; Tomlinson 

et al. 2006; Yiallourides et al. 2004), mechanical ventilation, and treatment with corticosteroids 

or diuretics were inversely related to SOS (Rack et al. 2012). A longitudinal study which 

followed preterm infants up to 35-37 weeks corrected gestational age reported no significant 

difference between infants with or without chronic lung disease, but the few infants that 

developed necrotizing enterocolitis had some of the lowest SOS measurements in the study 

sample. Pediatric studies of older children with chronic illnesses, such as Crohn’s disease, 

rheumatic diseases, Type 1 diabetes, and illnesses resulting in severe handicaps, report that 

chronically ill children had significantly lower SOS than children without chronic illness 

(Damilakis et al. 2004; Hartman et al. 2004a; Hartman et al. 2004b; Hartman et al. 2004c; Levine 

et al. 2002; Zadik et al. 2005). The current study may have found no significant differences 

between infants with and without chronic illness due to possible confounding effect of the 

association between prematurity and chronic illness. Another possible explanation is that 

duration of chronic illness in these infants was not long enough to have a significant effect on 

SOS. However, this seems unlikely due to the significant effect of chronic illness on BMD 

among the infants in the current study.   
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Association between Skeletal Maturity at Birth, Body Size, Tibial Structure, 

and Bone Health 

HYPOTHESIS 4A: SKELETAL MATURITY AT BIRTH IS SIGNIFCANTLY RELATED TO 

BODY SIZE. 

Skeletal maturity at birth was hypothesized to be significantly related to body size during the 

first year of life. The reasoning behind this hypothesis was that longer gestation times result in 

larger body sizes at birth and that body size continues to be larger throughout the first year of 

life. Additionally, the likelihood of chronic illness and metabolic disturbance as gestational age 

at birth decreases for reasons that were previously discussed.  

To determine whether increased skeletal maturity at birth had positive effects on variables 

related to body size, regression analyses were conducted which predicted the body size variables 

using mean centered EGA and mean centered birthweight. Age was used as a covariate in 

models predicting height and weight. Analyses indicated that height, length for age percentile, 

weight, and weight for age percentile significantly increased for each week increase in EGA 

greater than the mean. The same results were obtained for each kg increase in birthweight greater 

than the mean. Weight for length percentile significantly decreased for each week increase in 

EGA greater than the mean. These findings supported the hypothesis that greater skeletal 

maturity at birth is related to greater body size in infants.  

To confirm that prematurity had a significant negative relationship with body size during the first 

year of life, one-way ANOVAs were used to test for significant differences in body size between 

term and premature infants. Age was used as a covariate in models predicting height and weight. 

Infants that were born prematurely were significantly smaller in height, length for age percentile, 

weight, and weight for age percentile than term born infants. Weight for length percentile was 

significantly greater among infants born prematurely. This indicated a significant difference in 

fat distribution between premature and term born infants. These results support the hypothesis 

that prematurity is negatively associated with body size.  
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HYPOTHESIS 4B: SKELETAL MATURITY AT BIRTH IS SIGNIFICANTLY RELATED 

TO TIBIAL MEASUREMENTS. 

Prematurity is widely reported to have adverse effects on skeletal health (Barltrop et al. 1977; 

Done 2012; Imel et al. 2014; Ortner 2003b; Senterre and Salle 1982; Shaw 1976). The degree of 

adverse effect on skeletal health depends on severity of associated chronic illness and degree of 

prematurity. Based on detrimental effects of prematurity on skeletal health, it was hypothesized 

that the tibial measurements would be positively associated with increased birthweight and EGA. 

Regression analyses were used to evaluate the relationships between skeletal maturity at birth 

and the tibial measurements. Age was used as a covariate in all analyses. Analyses indicated that 

as EGA and birthweight increased tibial length, cortical thickness, midshaft diameter, and 

medullary cavity diameter significantly increased. There was no relationship between cortical 

index and EGA or birthweight. Analyses were repeated with chronically ill infants excluded 

from the analysis to determine if the significant relationship between skeletal maturity at birth 

and tibial size were due to the chronically ill infants in the analyses. After exclusion of 

chronically ill infants from analyses, EGA and birthweight remained significant predictors of 

tibial length, midshaft diameter, and cortical thickness, even after accounting for variation due to 

age. EGA and birthweight were no longer significant predictors of medullary cavity diameter. 

Therefore, EGA and birthweight had positive relationships with linear and appositional growth 

of the tibia among infants without chronic illness. These findings support the hypothesis that 

increased skeletal maturity at birth resulted in greater tibial size, even after accounting for 

variation due to age and chronic illness. However, increased skeletal maturity at birth had no 

relationship with the amount of cortical bone relative to cross-sectional size.  

To determine if prematurity significantly affected skeletal health in the current study sample, 

one-way ANOVAs were conducted. Analyses indicated that premature infants had significantly 

lower tibial length, midshaft diameter, and cortical thickness, and medullary cavity diameter than 

term born infants even after accounting for variation due to age. These findings support the 

hypothesis that prematurity has a significant negative relationship with tibial size, but not the 

relative amount of cortical bone to bone size.  

Due to the significant association between chronic illness and prematurity in the current study, 

the detrimental effects of these factors cannot be entirely separated. However, the separation of 
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the effects of prematurity from chronic illness may not be necessary. Whether the metabolic 

disturbance is caused by chronic illness or nutritional deficiency is of little consequence due to 

bone’s limited response to illness and/or nutritional deficiencies. Bone responds to these stresses 

by altering bone deposition (decrease or increase), resorption (decrease or increase), or through a 

combination of altered deposition and resorption (Salter 1999b). The effects of chronic illness 

and prematurity on growth of the tibia in the current study are consistent with the negative 

effects of metabolic disturbance on skeletal growth reported in the clinical and anthropological 

literature. The presence of skeletal lesions has been used in anthropological studies as an 

indicator of metabolic stress due to disease load and/or nutritional deficiency. Eleazer (2013) 

used a subadult cemetery sample to evaluate the effects of metabolic stress and mechanical 

loading on cross-sectional geometry of the rib, femur, and humerus during growth. The subadult 

sample was divided into lesion/no-lesion groups to differentiate between chronically stressed and 

acutely/non-stressed subadults, respectively. Long bone lengths did not significantly differ 

between stress groups, but long bone lengths tended to be lower among subadults between 1 and 

7 years of age with lesions than subadults with no lesions. Medullary area was non-significantly 

greater in the elements of lesion group than the no lesion group. Relative cortical area tended to 

be lower in all three elements of the lesion group, while total area was slightly non-significantly 

greater in the lesion group. This suggested that the lesion group experienced greater endosteal 

resorption than the no-lesion group due to metabolic disturbance, but that the lesion group also 

experienced mechanical compensation for the loss of cortical bone through slightly greater 

periosteal expansion. In the lesion group, the femur showed the greatest reduction in relative 

cortical area elements, but the least amount of mechanical compensation through periosteal 

expansion. Even with the lower degree of compensation through periosteal expansion, the femur 

remained non-significantly stronger in bending rigidity relative to the humerus. Eleazer (2013) 

concluded that the non-significant reduction in cortical bone in the lesion group did not result in 

decreased bone rigidity. Compensation through periosteal expansion resulted in non-significantly 

greater bending rigidity in the elements of the lesion group than the no-lesion group. Therefore, 

chronic metabolic stress reduced macroscopic bone mass, but mechanical compensation through 

diaphyseal expansion increased the strength properties in the same bone (Eleazer 2013). Skeletal 

elements responded to metabolic bone loss by maintaining relative resistances to mechanical 

loading through periosteal expansion (Eleazer 2013).  
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Eleazer (2013) also reported that chronic metabolic stress was associated with microscopic bone 

loss, but not in the same pattern between the stress groups. In the no-lesion group, more cortical 

bone (microscopic bone loss) was removed from the femur during remodeling, as was expected 

for a highly loaded bone. In the lesion group, microscopic bone loss preferentially occurred in 

the humerus and did not occur in the femur or rib. The femur and rib of the lesion group showed 

the greatest reductions in relative cortical area in comparison to the no-lesion group. The 

humerus showed the least amount of reduction in relative cortical area for the lesion group, but 

was the only element with microscopic bone mass reduction in the lesion group. This suggested 

that metabolic stress disrupts the effects of mechanical loading on cortical bone, as indicated by 

the microscopic resorption observed in the humerus of the lesion group and not the femur. 

Additionally, this suggests that, under chronic stress, microscopic bone mass in highly loaded 

elements is conserved.   

The findings of Eleazer (2013) are consistent with the finding of significantly lower tibial length 

and cortical thickness among the chronically ill and premature infants in the current study 

sample. Differences in cortical index were not statistically significant, but cortical index tended 

to be lower among premature and chronically ill infants. Tibial midshaft diameter was not 

significantly greater among the premature and chronically ill infants as was observed by Eleazer 

(2013), but this is likely due to the younger age group and the associated limited degree of 

mechanical loading in the current study sample. In contrast, midshaft diameter was significantly 

lower among chronically ill and premature infants. Mechanical compensation by periosteal 

expansion would not be expected in infants that are non-ambulatory, which made up the largest 

proportion of the current study sample. 

Mensforth (1985) conducted a study comparing two archeological samples with exposure to 

differing levels of environmental stress also found significant differences in skeletal growth. 

Degree of environmental stress was inferred from second year death rates and the frequency of 

periosteal reactions for each age cohort of each population sample. Tibial length was comparable 

between the two groups for the first six months of life. After 6 months of life, diaphyseal growth 

of the tibia was delayed in the sample which experienced greater environmental stress. The 

greatest degree of growth delay occurred between 6 and 24 months of age (Mensforth 1985). The 

differences between groups were not statistically significant, but the lack of significance may 
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have been due to small sample sizes. In contrast to Mensforth (1985), the current study did not 

find comparable tibial lengths during the first 6 months of life between infants with and without 

chronic illness. The significant differences in tibial length based on chronic illness during the 

first six months of life may have been caused by the association between prematurity and chronic 

illness in the current sample, which was not a likely factor in the archeological groups.  

HYPOTHESIS 4C: SKELETAL MATURITY AT BIRTH IS SIGNIFICANTLY RELATED 

TO MEASURES OF INFANT BONE HEALTH 

Due to the previously discussed negative effects of prematurity on skeletal health, skeletal 

maturity at birth was hypothesized to be significantly related to BMD, qualitative radiographic 

score, and SOS. Regression analyses were conducted using mean centered EGA and mean 

centered birthweight to predict BMD and SOS. One-way ANOVAs were conducted to evaluate 

whether there were significant differences in BMD, SOS, and qualitative radiographic score 

between premature and term born infants.  

Mean centered birthweight was a significant predictor of BMD, but mean centered EGA was not. 

After exclusion of chronically ill infants from the analyses, BMD was no longer significantly 

related to birthweight. These findings may suggest that birthweight is an important predictor of 

BMD among chronically ill and possibly premature infants, as prematurity and chronic illness 

were significantly associated in the current sample. There was no significant difference in BMD 

between term born and premature infants. These findings only partially support the hypothesis 

that BMD is significantly related to skeletal maturity at birth. Birthweight was a significant 

predictor of BMD, but this may have been related to the chronically ill or premature infants in 

the sample. BMD was not significantly associated with prematurity, but his result cannot be 

stated with confidence due to the significant relationship between BMD and chronic illness and 

the significant association between prematurity and chronic illness in the current study. 

It is well documented that, relative to term infants, preterm infants have lower mineral stores at 

birth and reduced calcium and vitamin D absorption, resulting reduced BMD (Senterre and Salle 

1982). There are numerous DXA studies which excluded infants with chronic illness that report a 

positive association between BMC and/or BMD measurements and gestational age at birth 

(Ahmad et al. 2010; Atkinsona and Randall-Simpson 2000; Hayashi et al. 1996; James et al. 
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1986; Koo et al. 2002; Koo and Hockman 2000; Koo et al. 1996; Kurl et al. 2000; Rigo et al. 

1998; Sievanen et al. 1999; Vyhmeister et al. 1987). It was not likely that the age of the infants 

played a role in the inconsistency between the current study’s findings and other studies, as all 

premature infants without chronic illness ranged from 2-4 months of age. The small sample size 

of premature infants with associated BMD data, and without chronic illness (n = 5) may be 

responsible for the contrasting findings. EGA ranged from 26-36 weeks gestation among these 

infants. Significant differences may not have been detected due to the combination of small 

sample size and large range in EGA. 

A large number of infant QUS studies have evaluated the effects of skeletal maturity at birth on 

SOS. Based on these studies, it was hypothesized that SOS would be significantly related to 

skeletal maturity at birth. Regression analyses were used to test this hypothesis and age was used 

as a covariate. In the current study, EGA and birthweight were significant positive predictors of 

SOS. These findings are consistent with reports from other studies (Chen et al. 2012; Littner et 

al. 2003; McDevitt et al. 2007; Nemet et al. 2001; Pereda et al. 2003; Rack et al. 2012; Rubinacci 

et al. 2003; Tansug et al. 2011; Teitelbaum et al. 2006; Tomlinson et al. 2006). These studies 

propose that maturity at time of birth is the main factor influencing SOS and not overall body 

size at birth. The findings of the current study support this proposal. While holding age constant, 

SOS increased by 96 m/s with every 1 kg increase in birthweight. With every 1 week increase in 

EGA, SOS increased by 18 m/s. This is similar to the increase in SOS reported by the 

manufacturer for each week gain in EGA between 26-40 weeks gestation, 15 m/s (Littner et al. 

2003; Zadik et al. 2003). After chronically ill infants were excluded from the analyses, EGA and 

birthweight remained significant predictors of SOS in the current study. However, once 

premature infants were excluded from the analysis, EGA and birthweight were no longer 

significant predictors of SOS. This suggests that gains in birthweight and EGA after reaching 

term age (≥ 37 weeks gestation) resulted in no statistically significant gains in SOS. These 

findings support the hypothesis and indicate that the detrimental effects on bone health and 

structure due to prematurity effect measures of SOS.  

For premature infants, postnatal bone loss can be detrimental to the skeleton. Premature infants 

either do not have the opportunity to experience or complete the skeletal mineral accretion that 

should have occurred during the last trimester in utero, resulting in adverse effects on the infant 
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skeleton. Studies comparing SOS between newborn term and premature infants report that 

preterm infants had significantly lower SOS than term infants (Chen et al. 2012). It has been 

reported that premature infants reaching term age continued to have significantly lower SOS than 

newborn term infants (Altuncu et al. 2007; Nemet et al. 2001; Rack et al. 2012). In the current 

study, it was hypothesized that prematurity would have a significant negative relationship with 

SOS. One-way ANOVA was used to predict SOS using prematurity as the dependent variable. 

Results indicated that premature infants had significantly lower SOS than term infants. While the 

removal of premature infants from the regression analysis had limited effect on the relationship 

between age and SOS, the relationship between SOS and age among premature infants was 

substantially different from relationships based on the pooled data or the term infants. As was 

discussed previously, reanalysis of the data using only the term infants revealed a cubic trend 

between age and SOS that was similar to the analysis using the pooled data, but with slopes that 

were slightly more shallow (Table 4-14, Figure 4-30). A quadratic trend was observed for the 

relationship between age and SOS among the premature infants (Table 4-17). The difference in 

severity of postnatal decline in SOS with increasing age is reflected in Figure 4-32. Among 

premature infants, SOS steeply declined until ~4-5 months of age, at which point it increased 

with age. The slope for age indicated that the postnatal decline in SOS was much more severe in 

premature infants than term infants. In addition, the subsequent increase in SOS appeared to 

commence later in premature infants, after 5 months of age, than term infants, a gradual increase 

after 3 months of age. The increase in SOS data from premature infants greater than 5 months of 

age is suggestive of the recovery in BMD which reportedly occurs in preterm infants between 6-

12 months of age (Lapillonne et al. 1994; Specker et al. 2001; Wauben et al. 1998). However, 

too much weight should not be given to the preterm data due to the limited number of preterm 

infants greater than 5 months old (n = 4).  

The greater severity of the initial postnatal decline in SOS among premature infants, relative to 

term infants, is consistent with reports from other studies (McDevitt et al. 2007; Ritschl et al. 

2005; Tansug et al. 2011; Tomlinson et al. 2006). Reportedly, the decline in SOS is the most 

severe for the most premature infants (24-27 weeks EGA) (Tomlinson et al. 2006). A 

longitudinal study of preterm infants reported that preterm infants tended to reach their lowest 

SOS at ~3 months of age while term infants tended to reach their lowest SOS by 6 months of age 

(Ritschl et al. 2005). In the current study, the lowest SOS tended to occur at 4-5 months of age in 
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premature infants and 2-3 months of age in term infants. Differences in age at nadir may have 

resulted from comparing a longitudinal study to a cross-sectional study. Inclusion of chronically 

ill infants in the analysis may be another explanation for the difference, as this likely increased 

the variation in SOS among both the term and premature infants.  

Relationships between Measures of Bone Quality 

HYPOTHESIS 5A: BMD HAS A NEGATIVE RELATIONSHIP WITH QUALITATIVE 

RADIOGRAPHIC SCORE. 

Qualitative evaluation of radiographs is a common practice for screening infants at high risk for 

osteopenia due to prematurity and/or chronic illness. If perceived degree of bone mineralization 

on radiographs is a true reflection of BMD, there should be a significant relationship between 

qualitative radiographic scores and the BMD estimates. It was hypothesized that BMD would 

have a negative relationship with greater radiographic scores. Regression analysis was used to 

evaluate the relationship between qualitative radiographic score and BMD. No statistically 

significant relationship was found between BMD and qualitative radiographic evaluation scores. 

Upon examination of the distribution of BMD data by radiographic mineralization score (Figure 

4-32), the lack of association between these indicators of bone quality becomes clear. Many of 

the infants with normal radiographic evaluation scores had low BMD values. These results did 

not change after exclusion of chronically ill infants or premature infants from the analyses. 

Although no significant association was found between BMD and qualitative radiographic score, 

both BMD and qualitative radiographic score was significantly related to chronic illness, as was 

discussed above. In conjunction, these findings lend partial support to the hypothesis that 

qualitative radiographic score is significantly negatively related to BMD. There may be no 

significant relationship among infants without chronic illness, but there does seem to be a 

relationship among chronically ill infants.  

The insignificant results indicate there is a large degree of error associated the qualitative 

assessment of bone mineralization from radiographs. Although BMD estimates were on the low 

end of the continuum, mineralization appeared normal on radiographs. These findings are 

consistent with previous studies that compared rickets diagnoses made from qualitative 

assessment of radiographs to diagnoses based on measurements of BMD or biochemical analyses 
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(Fraser et al. 1967; James et al. 1986; Kruse 1995; Mulugeta et al. 2011). James and colleagues 

(1986) report a weak but significant correlation between radiographic appearance and bone 

mineral content. However, at 40 weeks postconceptual age, four of the six preterm infants with 

normal radiographic scores had BMC measurements that were 3.7 to 6.5 SDs below the mean for 

infants born at term (James et al. 1986). A pediatric study evaluating the biochemical 

characterization of the three stages of vitamin D deficiency reported that radiographic indicators 

of rickets remained mild during the first stage of rickets and did not become moderate to severe 

till the disease progressed to stages 2 and 3 (Kruse 1995). If the radiographic indicators of rickets 

do not become moderate or severe until stage 2 or 3, it is conceivable that demineralization of 

bone, indicated by low BMD values, could be missed during qualitative radiographic evaluation. 

Another pediatric study reported that radiographic indicators of rickets were minimal in infants 

during the first stage of vitamin D deficiency (Fraser et al. 1967). As with the previously 

mentioned study, stage of vitamin D deficiency was assessed using biochemical analyses. The 

results of these previous studies were consistent with studies that report a large amount of BMD 

must be lost (reports vary between 30-40%) before osteopenia/osteoporosis is reliably identified 

on radiograph (Bachrach et al. 2007; Barden and Mazess 1988; Done 2012; Sievanen et al. 

2001). A study examined inter-observer agreement of osteopenia/osteoporosis diagnosis based 

on qualitative radiographic evaluation (Mulugeta et al. 2011). Correct diagnosis of osteopenia 

was determined by DXA Z-score values of lumbar BMD measurements. Inter-observer 

agreement was 71% for normal bone mineralization, 25% for severe demineralization, and 0% 

for mild demineralization. Determination of normal bone mineralization was adequate, but the 

diagnosis of osteopenia/osteoporosis in children based on radiographs of the appendicular 

skeleton had low sensitivity and poor inter-observer agreement. The results also indicated that 

the reliability of the diagnosis improved with increasing severity of the BMD loss (Mulugeta et 

al. 2011), which is consistent the finding of a significant relationship between chronic illness and 

both BMD and qualitative radiographic score.   

HYPOTHESIS 5B: SOS HAS A SIGNIFICANT POSITIVE RELATIONSHIP WITH BMD. 

BMD was an indicator of bone quality in the current study. A significant relationship between 

BMD and SOS would be indicative that SOS is influenced by a significant component of bone 

quality. As such and based on previous studies, it was hypothesized that SOS would have a 
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significant positive relationship with BMD. Regression analyses indicated no significant 

relationship between SOS and BMD, even after accounting for age and excluding chronically ill 

and premature infants from analyses. These findings did not support the hypothesis and were 

quite unexpected. Previous pediatric studies reported low but significant correlation between 

SOS readings and BMD or bone mineral content measured by DXA or ashing (Ahmad et al. 

2010; Fielding et al. 2003; Jaworski et al. 1995; Sundberg et al. 1998; van Rijn et al. 2000; 

Wright et al. 1987). Differences in age distribution between the study samples utilized by these 

studies and the current study sample may have resulted in the lack of correlation between BMD 

and SOS. These other studies examined term infants within a few days of birth, premature 

infants up to 3 months of age, or children older than 5 years of age, while the current study 

sample included preterm and term infants which ranged from birth to 12 months. It is possible 

that the broad age span of our study sample may have suppressed any statistically significant 

relationship between SOS and BMD. The first year of life is a period of remarkable growth and 

development. As age increases, the relationship between SOS and BMD may change as a 

consequence of growth, suppressing associations between the variables by increasing the overall 

variance in the data. Another possible explanation is that the significant correlation between 

BMD and SOS develops at some point after the first year of life, since SOS and BMD are 

significantly correlated in adults and some pediatric studies. It cannot be known whether SOS 

and BMD values are unrelated during the first year of life until volumetric BMD obtained from 

the SOS measurement site is compared SOS measurements collected from a larger sample of 

healthy and chronically ill infants that includes both term born and premature infants.  

Although there was no significant relationship between SOS and BMD, SOS and BMD appear to 

be affected by similar factors. After birth, both BMD and SOS decline with increasing age. It is 

possible that the factors influencing the postnatal decline in SOS and BMD are inter-related but 

different factors. For instance, BMD was significantly affected by chronic illness, but was not 

significantly affected by prematurity after accounting for chronic illness. In contrast, SOS was 

significantly affected by prematurity and not chronic illness. Yet, chronic illness and prematurity 

were significantly associated in the current study sample. Another possibility is that the small 

sample size of chronically ill term born, infants (n = 5) may have prevented any statistically 

meaningful comparison. Numerous studies on older children have found chronically ill infants 

have significantly lower SOS than infants without chronic illness (Damilakis et al. 2004; 
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Hartman et al. 2004a; Hartman et al. 2004b; Hartman et al. 2004c; Levine et al. 2002; Zadik et 

al. 2005). It is also possible that the adverse effects of chronic illness on SOS develop some time 

after the first year of life, but this seems unlikely since chronic illness had already manifested 

negative effects on BMD in the current study sample. 

Researchers have suggested that SOS and BMD measure overlapping but not identical properties 

of bone related to bone quality (Baroncelli et al. 2001; Fricke et al. 2005). A study of healthy 

children aged 11 to 16 years lends support to this argument. In this study, the lowest quartiles for 

SOS and BMD did not contain the same individuals from the study sample (Sundberg et al. 

1998). Consistent with the findings of the current study, a study of 10-12 year old healthy 

children found no significant correlation between BMD and SOS (Rebocho et al. 2014). The 

study also reported that there was only a 36.3% overlap among individuals in the lowest tertiles 

of SOS and BMD. An important finding of Rebocho and colleagues (2014) was that radial SOS, 

and not BMD, was the only significant variable which predicted past fracture (Rebocho et al. 

2014); supporting the argument that SOS and BMD measure different aspects of bone quality. 

Findings of the current study also support this argument by showing that prematurity had a 

greater influence on SOS while BMD was more greatly influenced by chronic illness. More 

research with finer grained measurements of bone properties is necessary to test this hypothesis.  

HYPOTHESIS 5C: SOS HAS A SIGNIFICANT NEGATIVE RELATIONSHIP WITH 

QUALITATIVE RADIOGRAPHIC SCORE. 

To determine whether degree of perceived mineralization was significantly associated with SOS 

readings, the relationship between qualitative radiographic evaluation scores and SOS was 

evaluated using regression analyses. It was hypothesized that SOS would have a significant 

negative relationship with increased radiographic scores. The reasoning behind this hypothesis 

was that increased radiographic evaluation scores indicated demineralization or abnormal 

mineralization, which has negative effects on bone quality. These negative effects on bone 

quality would be reflected by lower values of SOS. Analyses indicated no significant relationship 

with SOS. Results remained the same for term born infants and after the exclusion of chronically 

ill infants. This finding was not unexpected since qualitative radiographic score was not 

significantly related to BMD during direct comparisons of these variables. Additionally, the large 
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degree of error associated with the qualitative radiographic method may have introduced a large 

amount of statistical noise into the analysis.  

Limitations 

The current study has several limitations. The use of a cadaver study sample limited the 

extrapolation findings to living infants. An assumption of this study was that the infants without 

significant biological findings at autopsy, to explain death, were “healthy” or in “normal” health 

at the time of death and would have bone quality comparable to living infants of the same age. 

Since truly healthy infants do not die without biological cause, this assumption may not be 

accurate. There may have been yet unknown factors, which influenced the likelihood of death for 

the infants versus those infants that continued to live. These unknown factors may have also 

influenced infant bone quality, limiting the applicability to living infants. Another limitation was 

the number of chronically ill (n = 13) infants. The low number of these types of cases limited the 

statistical analyses performed on the study sample data, and therefore the conclusions that could 

be drawn.  

Although there is no way of knowing if the infants in the study sample have comparable bone 

quality to living infants, tibial measurements in the current study did not appear to be 

significantly different from measurements of living infants reported in the literature. The range 

of tibial length from birth to 12 months of age among term born infants in the current study was 

consistent with previous studies (Anderson et al. 1964; Gindhart 1973; Maresh 1970; Stuart et al. 

1940; Trotter and Peterson 1969). With the exception of the Trotter and Peterson (1969), all 

measurements were taken on living, healthy infants in these previous studies. The consistency 

between tibial lengths of the current study sample and those reported in the literature suggests 

that linear growth in the current study sample was at least comparable to linear growth in living 

infants. As with tibial length, midshaft diameter was comparable between the current sample and 

studies evaluating healthy, living infants (Maresh 1970; Stuart et al. 1940). The similarities in the 

ranges of tibial midshaft diameter between the current study sample and diameters reported in 

the literature support the argument that growth in the current study sample was at least 

comparable to growth in healthy, living infants  
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Classifying bone as either normal or abnormal is a difficult task due to the numerous factors 

contributing to bone’s ability to function as a mineral reservoir as well as resist fracture. At the 

outset of this research, it was planned to use histological evaluation as the gold standard for 

determining bone health status. Cellular functioning is a very important building block for 

overall bone health, but no standards have been developed for the evaluation of bone health in 

infants. Results from histological evaluation could not be validated and were excluded from 

analyses. Clearly there is a relationship between bone’s ability to function as an organ 

maintaining mineral homeostasis and its ability to resist fracture, but much more remains to be 

elucidated about this relationship and how it changes as a result of growth during infancy.  

The limited number of influential factors on SOS evaluated in the current study relative to the 

complexity of the topic of bone quality may be considered another limitation. This study 

evaluated growth and environmental factors that may have influenced SOS such as body size, 

tibial structure, chronic illness, and skeletal maturity at birth. There are many more factors that 

need to be evaluated as possible influential factors on SOS. For instance, prenatal factors such as 

maternal tobacco and illicit drug use may have adversely affected SOS. Cross-sectional 

properties of the tibial midshaft were not calculated because radiographs were only taken in the 

anterior-posterior plane. Calculation of cross-sectional properties would have required an 

assumption of a circular cross-section, which may not be a valid assumption for the tibia. 

Therefore, cross-sectional properties which are correlated with strength in bending were not 

evaluated. Additionally, the effects of bone micro-architectural and tissue-level properties on 

SOS were not evaluated. However, it is not possible to account for every environmental and 

biological factor that may have affected SOS. More research on cross-sectional, micro-structural, 

and tissue-level properties of infant bone is needed as these properties remain poorly understood 

for infants, as well as the relationship between these properties and SOS during infancy.  

The low resolution technology used to obtain the BMD data was another limitation. Units of x-

ray attenuation from digital radiographs may not be sensitive enough (i.e. too low in resolution) 

to adequately measure BMD in low density bone. A study evaluating the correlation between ash 

weight of defatted bone and bone mineral density calculated using the x-ray attenuation method 

(radiographic absorptiometry) reported a significant decrease in accuracy when the bones are 

covered by soft tissue (Baker et al. 1959). In adults, this method can determine bone loss within 
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broad limits (10-20%) (Mimouni and Littner 2004). Partial volume effect is an inherent 

limitation in the use of x-ray attenuation units to calculate BMD (Schönau 1998). Partial volume 

effect occurs when a pixel only contains a portion of the bone image, such as the periosteal or 

endosteal edges of a bone. The density of the bone that is captured in a single pixel is average out 

over the entire pixel causing the mean density of that pixel to be lower than the actual density of 

the portion of bone. In infants, this is especially problematic because they have relatively thin 

cortical walls causing a greater number of pixels to be partially filled. The greater number of 

partially filled pixels results causes an artificial reduction in the mean density calculated for the 

entire bone (Schönau 1998). The difference between the actual bone density of a bone and the 

measured bone density is referred to as the measurement error. In the current study, there may 

have been increased measurement error introduced by partial volume effect. Partial volume 

effect cannot be avoided, but it can be reduced by using a higher resolution technology to 

measure BMD. Additionally, higher resolution technologies, such as DXA or CT, would be able 

to detect smaller differences in BMD that is possible through the use of x-ray attenuation.  

The utilization of a study sample from the medical examiner’s setting may have also affected the 

relationship between SOS and BMD measurements. The majority of infants in our study sample 

were considered in “normal” health at the time of death because the cause of death for most of 

the infants was SUID or Undetermined (co-sleeping). These classifications for cause of death are 

applied to infants in whom there are no physiological findings at autopsy that explain the death. 

But, with the exception of accidental deaths, these infants cannot actually be considered 

completely normal because it seems unlikely that infants in completely normal health die without 

a physiological cause. At time of death, over 40% of the study sample fell below the 25
th

 

percentile for height and weight. This may indicate differences in growth between living and 

deceased infants, but growth percentiles are meant to track growth and not meant to be used to 

evaluate growth at a single point in time. The large proportion of infants in the current study 

sample that were below the 25
th

 percentile at their time of death may be coincidental. This 

possibility is supported by the comparable tibial lengths and widths reported in the current study 

sample in relation to those reported by studies of living, healthy infants.  The possible difference 

in growth is simply meant to illustrate that there may be a number of unidentified, environmental 

and/or biological factors that predisposed these infants to death. These unidentified factors may 

or may not have also affected BMD of the study sample. If so, SOS and BMD of deceased 
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infants may not exhibit the same association as has been reported for in vivo population samples. 

To our knowledge, only one other study has used a cadaveric sample to determine whether SOS 

could be used to assess bone status in infants (Wright et al. 1987). Wright and colleagues (1987) 

reported a significant positive correlation between BMD and SOS measurements obtained from 

the distal radius and ulna of 13 deceased newborn infants.  
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CHAPTER 6 : CONCLUSIONS AND RECOMMENDATIONS 

Age-related changes in tibial measurements were significantly related to growth-related changes 

in body size as was hypothesized. Tibial size increased as overall body size increased, with the 

exception of cortical index. These results suggest that increased body size for age is associated 

with greater overall tibia size, but not necessary a more robust structure as the proportion of 

cortical thickness to midshaft diameter did not significantly differ based on body size. The lack 

of association between cortical index and body size is likely due to the reduced amount of 

mechanical loading in the study sample. Most of the infants in the study sample were non-

ambulatory. 

SOS and BMD were both significantly related to age as was hypothesized. BMD showed a 

significant postnatal decline. The postnatal decline in BMD is consistent with studies that report 

BMD and cortical area decline during the first 3-6 months of life (Altuncu et al. 2007; 

Litmanovitz et al. 2003; Litmanovitz et al. 2004; Mercy et al. 2007; Nemet et al. 2001; Ritschl et 

al. 2005; Rubinacci et al. 2003; Tansug et al. 2011; Tomlinson et al. 2006). SOS also showed a 

significant postnatal decline, but the relationship between SOS and age became more 

complicated as age increased. Relative to the other investigated variables, age accounted for the 

largest proportion of variance in SOS (33%) among term born infants. Among term born infants, 

SOS had a curvilinear (cubic) relationship with age during the first year of life. SOS declined 

over the first 2-3 months of life followed by a gradual increase that plateaued as age approached 

12 months. The early postnatal decline in SOS is consistent with the postnatal decline observed 

in bone mass. These findings suggest that SOS measures age-related changes at the measurement 

site. 

BMD and SOS were hypothesized to be positively related to body size. It was hypothesized that 

BMD would be positively associated with body size due to the use of an areal measurement to 

estimate BMD, which does not account for differences in body size. SOS was hypothesized to be 

positively associated with body size due to the correlation between body size and bone size and 

the reported negative effect of increased tissue thickness on SOS. There was no significant 

relationship between BMD and body size, which is likely due to the small area of bone used to 

estimate BMD. After accounting size differences due to age and prematurity, SOS was not 

significantly related to body size. In contrast, analyses suggest that larger body size had positive 
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relationship with SOS among premature infants and chronically ill infants. Therefore, SOS was 

not influenced by body size or tissue thickness, but is likely indirectly, significantly associated 

with body size through growth-related factors affecting bone size.  

BMD was hypothesized to be positively associated with tibial size and structure. BMD was 

significantly associated with the proportion of cortical bone relative to cross-sectional size of the 

midshaft. There was no longer significant after chronically ill infants were excluded from 

analyses. These findings did not support the hypothesis. One explanation for these findings is 

that the differences in tibial size after accounting for variation due to age were too small to result 

in a significant relationship between BMD and tibial structure among infants without chronic 

illness. The method used to measure BMD may be another explanation for the insignificant 

relationship between BMD and the tibial measurements. Although the method used to estimate 

BMD captured the postnatal decline in BMD and the reduction in BMD due to chronic illness, 

radiographic absorptiometry may not have the sensitivity necessary to detect small differences in 

low density bone. Detecting small differences in BMD may be essential for infants due to the 

postnatal loss of bone mass. Higher resolution techniques may be necessary to achieve greater 

precision in BMD estimates obtained from infants. 

SOS was hypothesized to be positively associated with tibial size and structure. SOS did have a 

significant association with tibial structure after accounting variation due to age. In the pooled 

sample and among term born infants, SOS was significantly and negatively related to medullary 

cavity diameter, as was hypothesized. SOS was also significantly related to cortical index in the 

pooled sample and midshaft diameter among the term born infants. Additionally, age-related 

changes in SOS appear to correspond to growth-related changes in cortical index. These findings 

support the hypothesis that SOS is significantly associated with bone structure at the 

measurement site.  

At the outset of this research, the presence of traumatic injury was hypothesized to have no 

association with indicators of overall health, bone structure, or bone health. Results support this 

hypothesis. Infants with skeletal fractures as a result of traumatic injury were not significantly 

different from the other infants in the study sample in terms of body size and growth percentiles. 

Additionally, there were no significant associations between traumatic injury and chronic illness 
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or prematurity. Therefore, neither skeletal fragility nor bone disease was a contributing factor in 

fracture occurrence for infants whose deaths were attributed to traumatic injury. These findings 

do not support common arguments made by the legal defense during adjudication of child abuse 

cases that bone fragility is a common contributing factor to skeletal injuries in infants. 

Chronic illness was hypothesized to be negatively associated with growth and bone health, which 

would be reflected in BMD and qualitative radiographic evaluation scores. Chronic illness was 

not related to body size but was significantly related to tibial size. Linear and appositional 

growth of the tibia were negatively affected by chronic illness, but medullary cavity diameter nor 

the proportion of cortical bone to midshaft cross-sectional size were significantly affected. This 

finding supported the hypothesis that chronic illness was negatively associated with bone health 

in the current study sample. Chronically ill infants had significantly lower BMD than infants 

without chronic illness. Due to the reported negative effect of chronic illness on BMD, 

qualitative radiographic evaluation scores were also hypothesized to be positively associated 

with chronic illness. Results supported this hypothesis. Chronically ill infants had significantly 

greater qualitative radiographic scores. Therefore, chronic illness in the current study sample had 

significant negative effects on mineralization in the current study sample.  

Studies have reported that chronically ill children have significantly lower SOS than healthy 

children (Damilakis et al. 2004; Hartman et al. 2004a; Hartman et al. 2004b; Hartman et al. 

2004c; Levine et al. 2002; Zadik et al. 2005). Based on these studies it was hypothesized that 

chronic illness would be negatively related to SOS. However, there was no significant 

relationship between SOS and chronic illness in the current study. The insignificant finding may 

have resulted from the small sample size of chronically ill infants (n = 13). A larger sample size 

of chronically ill infants is needed to further investigate the relationship between chronic illness 

and SOS. The proposed hypothesis that SOS is significantly influenced by chronic illness was 

not supported by results, but this finding cannot be interpreted due to the significant association 

between chronic illness and prematurity in the current study sample.  

Skeletal maturity at birth was hypothesized to be significantly positively related to body size. 

Increased skeletal maturity at birth, as assessed by birthweight and EGA, was significantly 

related to increased body size, even after accounting for variation due to age. Prematurity had a 
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significant negative relationship with all measures of body size except for weight for length 

percentile, which was significantly greater among premature infants. This difference suggests 

that fat distribution is different between term born and premature infants. These findings support 

the hypothesis that increased skeletal maturity at birth is significantly related to greater body size 

during the first year of life.   

Skeletal maturity at birth was also hypothesized to have a positive relationship with the tibial 

size, while prematurity was hypothesized to have a negative relationship with tibial size. The 

influence of skeletal maturity at birth on tibial size and structure were evaluated by comparing 

tibial measurements to EGA and birthweight. In the pooled sample, all of the tibial 

measurements except for cortical index were positively associated with EGA and birthweight. 

After the exclusion of chronically ill infants from the analysis, EGA and birthweight remained 

significant predictors of tibia length, midshaft diameter, and cortical thickness. Prematurity was 

hypothesized to be negatively associated with all tibial measurements. After accounting for age-

related size differences, premature infants were significantly smaller in all tibial measurements 

except for cortical index. These findings support the hypothesis that skeletal maturity at birth is 

significantly associated with tibial size, during the first year of life. Therefore, infants with 

greater skeletal maturity at birth have larger tibias than infants that are less skeletally mature at 

birth, but the proportion of cortical bone to midshaft cross-sectional size was not affected.  

The absence of a significant relationship between cortical index and both chronic illness and 

prematurity was an interesting finding. These findings indicate that chronic illness and 

prematurity had significant negative effects on linear and appositional growth of the tibia, but 

endocortical resorption was not significantly increased among these infants. It is possible that 

resorption of the endocortical surface may have been prevented by increased strain produced by 

the combination of thinner cortices and smaller midshaft diameter. Although most of the infants 

in the study sample were non-ambulatory, mechanical strain produced by muscles contractions 

may have been sufficient to prevent significant endocortical resorption. Bone responds to 

increased strain by depositing bone on the periosteal surface, but metabolic disturbance may 

have impaired this response in the chronically ill and premature infants. This explanation is 

consistent with mechanostat theory (Frost 1996; Frost 2001) in biomechanics and the non-

mechanical factors that influence how bone adapts to strains (Frost 2003a; Martin et al. 1998b).  
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Due to the detrimental effects of prematurity on bone health and bone size, BMD was 

hypothesized to be negatively associated with prematurity and positively associated with 

increased skeletal maturity at birth. BMD was significantly associated with EGA and birthweight 

in the pooled sample, but was no longer significantly related when chronically ill infants were 

excluded from analyses. Therefore, increased skeletal maturity at birth had no relationship with 

BMD among infants without chronic illness. Analyses also indicated no significant relationship 

between prematurity and BMD, which did not support the hypothesis. The negative relationship 

between BMD and prematurity is well documented in the literature. It is possibly that this 

insignificant relationship was produced by the low resolution method used to estimate BMD, 

which lacks precision. 

Studies report that premature infants have significantly lower SOS than term born infants 

(Altuncu et al. 2007; Nemet et al. 2001; Rack et al. 2012). Due to the significant negative 

influence of prematurity on SOS reported by other studies (McDevitt et al. 2007; Ritschl et al. 

2005; Tansug et al. 2011; Tomlinson et al. 2006), it was hypothesized that SOS would have a 

significant positive relationship with EGA and birthweight. Results indicated that EGA and 

birthweight had significant positive relationships with SOS. When premature infants were 

excluded from analyses, EGA and birthweight no longer had a significant relationship with SOS. 

Analyses also indicated that premature infants had significantly lower SOS values than term born 

infants. The difference in the relationship between age and SOS among term and premature 

infants lends further support to the hypothesis that SOS measures characteristics of bone that are 

related to bone health and structure. Among premature infants, the postnatal decline in SOS was 

more severe and lasted until ~4-5 months of age (Figure 4-30). Additionally, the recovery of SOS 

to neonatal levels occurred later in premature infants than term infants. Not only does SOS 

capture age-related changes at the measurement site, it is also influenced by degree of skeletal 

maturity at birth which can adversely affect bone health.  

Relationships between measurements of bone quality were also explored. BMD and qualitative 

radiographic score were hypothesized to be significantly related because both of these variables 

are measures of bone mineralization. Analyses indicated no significant relationship between 

BMD and qualitative radiographic score in the current study. This was an unexpected finding 

since both BMD and qualitative radiographic score were significantly related to chronic illness. 
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However, there is a large degree of error was also associated with the qualitative radiographic 

method. Examination of Figure 4-32 illustrates the number of infants with low BMD estimates 

that were classified as having normal mineralization according to qualitative radiographic 

evaluation. The error associated with this method may have introduced a large degree of 

statistical noise which prevented the detection of a significant association.  

To further investigate what other factors may be influencing SOS, the relationships between SOS 

and the other bone health indicators were investigated. Previous studies reported low but 

significant, positive correlations between SOS and BMD in children (Ahmad et al. 2010; 

Fielding et al. 2003; Jaworski et al. 1995; Sundberg et al. 1998; van Rijn et al. 2000; Wright et 

al. 1987). In accordance with these reports, SOS was hypothesized to be positively associated 

with BMD. It was also hypothesized that SOS would have a significant negative relationship 

with qualitative radiographic evaluation score. Neither of these hypotheses was supported by 

results. SOS had no significant associations with BMD or qualitative radiographic evaluation 

score. However, age-related changes in SOS suggest that SOS was influenced by the postnatal 

decline in bone mass. There are several explanations for the insignificant relationship between 

BMD and SOS. SOS is reportedly influenced by more than one aspect of bone quality, while 

BMD only measures bone quantity. It is possible that bone quantity is influential during early 

postnatal life, while other factors become more influential on SOS later in postnatal life. The low 

resolution method used to obtain BMD estimates may be another explanation. The low resolution 

of the method produced BMD estimates with low precision. The low precision of the BMD 

estimates may have introduced error into the analysis preventing the detection of a significant 

relationship between BMD and SOS. The use of areal BMD as opposed to a volumetric BMD 

may have also decreased the precision of the BMD estimates. A final possibility is that there is 

no relationship between BMD and SOS during the first year of life. This relationship may not 

develop until after the first year of life. Before it can be determined whether SOS is significantly 

influenced by BMD during infancy, comparison of SOS to volumetric BMD measurements 

obtained with a high-resolution imaging technology is necessary. 

Multiple regression analyses indicated that SOS was significantly influenced by skeletal maturity 

at birth and at time of measurement, as well as by bone structure at the measurement site. Fifty-

three percent of the variance in SOS was accounted for by a model including age, birthweight, 
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height, medullary cavity diameter, midshaft diameter, and cortical index. Height, cortical index, 

and midshaft diameter were excluded from the model after chronically ill infants were removed 

from the analysis. Reanalysis using only the term born infants resulted in a model that only 

included age and medullary cavity diameter as significant predictors of SOS. These results 

support the hypotheses that SOS measures aspects of bone quality associated with skeletal 

maturity and bone structure. Another implication of the regression analyses is that there is a large 

proportion of variance in SOS that is not accounted for by skeletal maturity and bone structure, 

and more research is necessary to investigate these factors. 

Bone quality is a complex multidimensional concept that is influenced by environment, genetics, 

and biology. This research has produced many questions. It is known that bone mass declines for 

several months after birth, but it remains unknown how the loss of bone mass influences infant 

bone strength. If postnatal bone loss is a normal physiological process, are BMD measurements 

informative for determining if infant bone is abnormal or compromised? It is reported that infant 

bone strength is not compromised by the decline in bone mass due to the redistribution of bone 

mass further away from the neutral axis, resulting in an increase in bending strength (Rauch and 

Schoenau 2001; Rauch and Schoenau 2002). Although this possibility is likely because skeletal 

fractures in infants are not a common occurrence, this hypothesis has not been formally tested. 

The point at which postnatal bone loss becomes abnormal or leads to compromised bone strength 

also remains unknown. More research is needed to gain an understanding of age-specific changes 

in BMD during infancy and how this may differ by skeletal element. With the exception of 

Ahmad and colleagues (2010), age-specific BMD values for the infant tibia have not been 

reported in the literature. Most studies report values for whole body BMD or BMD of the lumbar 

vertebrae measured using DXA. It also needs to be investigated whether aspects of bone quality 

other than BMD are more informative for evaluating bone strength during infancy. To encourage 

future research in the area of infant bone health and bone quality, this study contributes age-

specific SOS and BMD values which can be found in Table A- 12 of the Appendix. 

Two major conclusions can be drawn from this research. First, traumatic injury in infants is not 

associated with increased bone fragility. Secondly, bone macrostructure and factors detrimental 

to growth and bone health, such as prematurity and possibly chronic illness, influence SOS 

measurements. QUS remains a promising technology for evaluating infant bone quality, but 
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more research is necessary. Studies comparing SOS to finer-grained measurements of various 

aspects of bone quality are necessary before it can be determined whether QUS can be used as a 

diagnostic tool to evaluate infant bone quality. These fine-grained measurements can be obtained 

using high-resolution technologies such as micro-CT and Raman spectroscopy. Comparison of 

SOS with measurements of bone strength obtained from biomechanical testing is also necessary. 

As the next step of this research, a study incorporating these technologies will be conducted to 

evaluate the relationship between bone strength and SOS and to investigate which aspects of 

bone quality are measured by SOS.  
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Infant Injury Database 

Database Variable Definitions and Data Entry Protocol 

The purpose of this database is to describe pathology/trauma found in infants. The database is 

constructed into 11 tabs. The main headings of each section below correspond to the tab titles 

within the database. The listed variables within each section correspond to the variables found 

within the corresponding tab of the database. Database variables are underlined and definitions 

or descriptions of each variable follow. In some cases, clarification on how some data should be 

categorized or entered is also provided.  

 

Case Stats 

 Fractures-Anthropology: Number of fractures observed by the forensic anthropologist. 

This number is automatically generated by the database from the information entered in 

the Fxs_Anthro tab. 

 Fractures-Pathology: Number of fractures observed by the forensic anthropologist. This 

number is automatically generated by the database from the information entered in the 

Fxs_Path tab. 

 Fractures-Radiology: Number of fractures observed by the radiologist. This number is 

automatically generated by the database from the information entered in the Fxs_Radiol 

tab. 

 Pathology-External: Number of areas with external trauma. This number is automatically 

generated by the database from information entered in the Pathology tab. 

 Pathology-Organs: Number of organs with pathology/trauma. This number is 

automatically generated by the database from information entered in the Pathology tab. 

 Pathology-ICH: Number of intracranial hemorrhages. This number is automatically 

generated by the database from information entered in the Pathology tab. 

 Case Number: Unique agency/hospital case number assigned to every reported case 

 Last Log date: Date and time data was last entered for the case, expressed in 

month/day/year and hours:minutes:seconds 

 Initials: Initials of last individual to enter data regarding the case 

 Case Status: Case status marked complete indicates that all information for this case has 

been entered and is complete. Case status marked incomplete indicates that data entry for 

this case has yet to be completed.  

 Change Case Status: To change case status or upon starting data entry for a case, enter 

your initials into this box and select change case status. Pop-up box will ask you to select 

No if the case is to remain incomplete and yes if you want to change the case status to 

complete.   

Presentation 

 Study ID:  Random index number assigned to each case by the database software for 

tracking purposes  

 CaseNumber:  unique agency/hospital case number assigned to every reported case  

 Case ID:  Random number assigned to the CaseNumber to annonymize the cases 
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 Date of death:  Date the infant was declared dead by medical personnel, expressed in 

month/day/year 

 Time of death: Time the infant was declared dead by medical personnel, expressed in 

hours:minutes  

 Date of birth:  Date the infant was born, expressed in month/day/year 

 Race:  The biological ancestry or ethnic affiliation of the infant, expressed as Black, 

White, Hispanic, or Asian.  

 Gender:   The biological sex of the infant 

 Manner appears:  An estimated preliminary manner of death listed in the Forensic 

Investigator’s Scene Report based on death scene information 

 TraumaType:  Injuries to the infant documented by the Forensic Investigator based on 

preliminary examination at the death scene 

 TraumaCausedBy:  Possible mechanism of injury as documented by the Forensic 

Investigator based on preliminary death scene investigation 

 Cause of Trauma: Categorize cause of trauma as No trauma, (BA/BF/SF/TH), or 

Undetermined. BA/BF/SF/TH indicates ballistic, blunt force, sharp force, or thermal 

trauma is present. Undetermined should be selected when trauma is present but the cause 

cannot be determined. 

 Cause Category: Categorize cause of death as Asphyxia/Drowning, Co-sleeping, 

Infectious, Other, SUID, Trauma, or Undetermined based on the finalized classification 

made by the Medical examiner regarding the cause of the infant’s death. 

 Cause of Death:  The finalized classification made by the Medical Examiner regarding 

the cause of the infant’s death 

 Manner:  The finalized classification made by the Medical Examiner regarding the 

manner of the infant’s death 

 InjuryZip:  The postal zip code of the location where the infant was injured or became 

unresponsive 

 Place of Death:  The location or facility where the infant died, such as hospital or 

residence. 

 DeathZip:  The postal zip code of the location where the infant’s death occurred 

 Found in location:  The location where the infant was found, such as the crib or an adult 

bed. 

 Discovered by:  What is the relationship between the infant and the person who found the 

infant? Such as mother, father, etc. 

 Transport pending:  Was the infant transported to a hospital? yes or no 

 Transport preference:  If the infant was transported to a hospital, what was the means of 

transport or the relationship of the individual transporting? Such as private vehicle or the 

emergency medical service (EMS). 

 TransportFrom:  If the infant was transported to a hospital, what was the location where 

transport began? Such as residence or father’s residence.   

 Duration of Transport: Duration of time it took to transport the infant to the hospital, 

expressed in minutes. 

 Time EMS at scene: Time EMS arrived at the scene, expressed in hours:minutes 

 Time to hospital 1: Arrival time at first hospital, expressed in hours:minutes 
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 Time to hospital 2:  If transported to second hospital for different treatment, arrival time 

at second hospital, expressed in hours:minutes 

 Autopsy performed: If full autopsy performed by Medical Examiner, enter autopsy into 

the free text box, otherwise specify the type of autopsy.  

 Bone quality in situ:  How was the bone quality as assessed by anthropologist during the 

autopsy? Select Good, Indeterminate, Poor, or Unknown.   

 Bone quality after processing: If bone specimens were removed and processed, how was 

the bone quality as assessed by the anthropologist after removal and processing? Select 

Good, Indeterminate, Poor, or Unknown.   

 Path reviewed:  Did the anthropologist review the pathological findings or discuss the 

findings with the pathologist prior to the anthropological examination? Select yes, no or 

unknown 

 Full skeletal exam:  Was a full pediatric skeletal exam (PSE) performed by an 

anthropologist? Select yes, no, or unknown. 

 Pathologist:  The name of pathologist who completed the postmortem examination 

 Pathologist (if additional):  Name of pathologist supervising the pathology fellow (if the 

fellow has conducted the autopsy) or name of pathologist that reviewed and co-signed the 

case 

 

Clinical_HX  

 CC:  Infant’s chief health complaint or symptoms documented in perimortem period 

 Current height: Height of infant at time of death, expressed in cm. 

 Current Weight: Weight of infant at time of death, expressed in kg.  

 Found Down:  Was the infant found unconscious or unresponsive? Select yes, no, or 

unknown. 

 How Long:  If found down, how long was the infant down? Expressed in minutes or 

hours and minutes 

 Movement:  Upon discovery of infant unresponsive or in distress, was movement noted? 

Select yes, no, or unknown. 

 Seizures: Upon discovery of infant unresponsive or in distress, were seizures noted? 

Select yes, no, or unknown. 

 Breathing: Upon discovery of infant unresponsive or in distress, was the infant breathing? 

Select yes, no, or unknown. 

 Pulse palpated: Upon discovery of infant unresponsive or in distress, when checked, was 

a pulse palpated? Select yes, no, or unknown. 

 Vomiting: Upon discovery of infant unresponsive or in distress, was vomit noted? Select 

yes, no, or unknown. 

 Co-sleeping:  Upon discovery of infant unresponsive or in distress, was the infant 

sleeping in the same bed with another individual (co-sleeping)? Select yes, no, or 

unknown. 

 Co-sleeping with:  If the infant was co-sleeping, what is the relationship of the infant to 

the other individual(s) in the bed? Such as mother, father, brother, etc. 

 Weight:  The corresponding weight of the other individual(s) co-sleeping with the infant, 

expressed in pounds.  
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 Person(s) impaired:  Were the co-sleeping individuals impaired by a substance(s)? Select 

yes, no, or unknown. 

 Last feeding:  What was the range of time from the most recent feeding to the time the 

infant became or was discovered unresponsive? Select <= 30 minutes, 30-60 minutes, 60-

90 minutes, 90 minutes to 2 hours, 2-4 hours, 4-6 hours, >6 hours, or unknown.  

 CPR performed:  Was cardiopulmonary resuscitation performed? Select yes, no, or 

unknown.  

 By whom:  Who performed the CPR? Select Medical personnel, layperson, or mixture. 

Mixture should be selected if laypersons and medical personnel both performed CPR.  

 Where performed:  Where was the CPR performed? Such as hospital or residence.  

 CPR technique:  What CPR technique was used? Select 2-thumb, anterior, both or 

unknown. CPR performed by medical personnel should be classified as 2-thumb. CPR 

performed by laypersons, including that instructed by emergency dispatcher, should be 

classified as anterior, unless documented otherwise. CPR performed by mixture of 

laypersons and medical personnel should be classified as both.  

 CPR technique verified:  Was the technique verified by another witness? Select yes, no, 

or unknown.  

 Clinical Dx: If a clinician made a documented diagnosis related to the infant’s death, this 

diagnosis is entered here 

 L retinal hemorrhages: Were retinal hemorrhages noted in the left eye? Select traumatic, 

nontraumatic, or unknown. Select traumatic if they were noted and caused by traumatic 

injury. If not present or caused by mechanisms other than traumatic injury, select 

nontraumatic. 

 R retinal hemorrhages:  Were retinal hemorrhages noted in the right eye? Select 

traumatic, nontraumatic, or unknown. Select traumatic if they were noted and caused by 

traumatic injury. If not present or caused by mechanisms other than traumatic injury, 

select nontraumatic. 

 Notes:  Free text box for additional notes regarding the circumstances surrounding the 

infant’s death. 

 

Medical_Hx 

 EGA (weeks):  Estimated gestational age of the infant at birth, expressed in weeks 

 Birth weight:  Weight at birth, expressed in grams 

 Prenatal Care?: Did the mother receive prenatal care? Select yes, no, or unknown 

 Date of most recent hospitalization: Date of the most recent hospitalization, expressed in 

month/day/year. Date of birth should be excluded. If it was a delayed hospital death, the 

date of admission prior to death should be entered here.    

 Normal at last visit:  Was the infant normal at the last pediatric check-up? Select yes, no, 

or unknown 

 Chronic medical condition:  Did the infant have a chronic medical condition? Select yes, 

no, or unknown 

 If so, type of condition:  If infant had a chronic medical condition(s), list any chronic 

medical conditions here 

 Developmental disability:  Did the infant have a developmental disability? Select yes, no, 

or unknown 
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 If so, type of disability:  If the infant had a developmental disability, list any 

developmental disabilities here. 

 Normal gross motor development:   Were the infant’s motor skills developing normally? 

Select yes, no, or unknown 

 GM stage:  Select gross motor development stage the infant had progressed to prior to 

death, such as non-ambulatory, crawling, cruising, walking, or unknown. Cruising is 

defined as walking with the aid of objects or persons to maintain balance.  

 Additional medical information:  List additional relevant medical information here, such 

as prior medical history. 

 Current medications:  List any medication the infant was being given in the perimortem 

period here 

 Previous medications:  List any medication previously administered to the infant here 

 Formula fed:  Was the infant formula fed? Select yes, no, or unknown 

 Breast fed:  Was the infant breast fed? Select yes, no, or unknown 

 Fed solid foods:  Was the infant eating solid foods? Select yes, no, or unknown 

 Known solid food:  If the infant was eating solid foods, list all known solid foods here 

 Special diet:  Was the infant on a special diet? Select yes, no, or unknown. Examples of 

special diets include vegetarian, vegan, gluten free, etc.  

 Dietary restrictions:  Were there any medical dietary restrictions? Select yes, no, 

unknown 

 Rickets:  Had the infant ever been diagnosed with rickets? Select yes, no, or unknown 

 Family history bone disease:  Was there a family history of bone disease? Select yes, no, 

or unknown 

 Full sibling:  Was a full sibling diagnosed with bone disease? Select yes, no, or unknown 

 Type of Bone Disease:  If there was a family history of bone disease, list the disease(s) 

here 

 Genetic Condition:  Did the infant have an underlying genetic condition? Select yes, no, 

or unknown 

 Prior Infant Deaths:  Were there any prior infant (birth to 1 year of age) deaths in the 

immediate family? Select yes, no, or unknown 

 Infant age at death:  If there were prior infant deaths in the immediate family, enter the 

age of the infant’s infant relative at death here, expressed in months 

 Relationship to case:  Identify the relationship of the deceased infant to the target 

decedent here, such as brother, step brother, uncle, etc.  

 Cause of death:  Enter the cause of death of the infant’s infant relative here 

 Prior Child Deaths:  Were there any prior childhood (>1 year of age) deaths in the 

immediate family? Select yes, no, or unknown 

 Child age at death: Age of the infant’s child relative at death, expressed in years 

 Relationship to case:  Identify the relationship of the deceased child to the target decedent 

here, such as brother, cousin, uncle, etc. 

 Cause of death:  Enter the cause of death of the infant’s child relative 

 

Fxs_Anthro 

List all fractures/bony defects for each bone as indicated by the forensic anthropologist, 

including multiple fractures/defects of the same bone 



 

279 

 

 Bone: Select type of bone injured or cranial suture with injury 

 Rib number:  If injured bone is a rib, select the corresponding rib number. This option is 

only available for the rib.  

 Side: Select the side of the injured bone, such as left or right. This option may not be 

available for some types of injured bone 

 Fracture location:  Select specific location of the injury on the bone, eg:  anterior, 

posterior, suture, etc. Options for specific location depend on the type of injured bone 

selected 

 Fracture type: Select type of fracture observed for the injured bone. Options for type of 

fracture depend on the type of injured bone selected.  

 Fracture healing:  Identify the stage of healing. Options for the fracture healing will 

depend on the type of injured bone selected. Selections include no healing, initial 

response, soft callus, hard callus, reducing callus, unspecified healing, or tissue bridging 

(skull only). CML fractures with healing and areas of subperiosteal new bone formation 

(SPNBF) unassociated with a fracture should be categorized as unspecified healing.  

 

Fxs_Path 

List all fractures/bony defects for each bone as indicated by the forensic pathologist, including 

multiple fractures/defects of the same bone 

 Same list as the “ANTHROPOLOGY FRACTURE” tab 

 

Fxs_Radiol 

List all fractures/bony defects for each bone as indicated by the radiologist, including multiple 

fractures/defects of the same bone 

 Same list as the “ANTHROPOLOGY FRACTURE” tab 

 

Pathology  

External Path 

 Cutaneous injuries:  If cutaneous injuries present, select cutaneous and all areas with 

cutaneous injuries identified by the pathologist during the autopsy. The options are listed 

below.  

o Cutaneous  

o Mouth 

o Face   

o Scalp   

o Subscalpular hemorrhage  

o Neck  

o  Ear  

o Back  

o Chest  

o Cutaneous rib outline   

o Buttocks   

o Ventral Abdomen   

o Anal-Genital   

External Path- Extremities 

o R upper arm   
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o R forearm   

o R hand   

o L upper arm   

o L forearm   

o L hand   

o R upper leg   

o R lower leg   

o R foot   

o L upper leg   

o L lower leg   

o L foot   

o Other soft tissue injuries   

Abnormal Organ Pathologies 

 Injury internal organs:  Select all organs with abnormal findings (pathological and 

traumatic). Categorize organs with petechiae as pathological. Organ tissue congestion 

should not be categorized as pathological or traumatic. Options for organ selection or 

listed below.  

o Heart 

o L lung 

o R lung 

o Esophagus 

o Thymus 

o Adrenal 

o Bladder 

o Gallbladder 

o Large intestine 

o Small intestine 

o Peritoneum 

o Kidney 

o Liver 

o Pancreas 

o Spleen 

o Stomach 

o Ovaries 

o Uterus 

Intracerebral hemorrhage types 

 Intracranial hemorrhage:  If present, select the type of hemorrhage(s). Options for 

selection are listed below. 

o Subdural (SDH) 

o Subarachnoid (SAH) 

o Extra-dural (EDH) 

o Intraventricular (IVH) 

o Parenchymal-Contusion 

o Parenchymal-Intraparenchymal 

o Unknown.  



 

281 

 

Notes 

 None/Path refer to: Enter the specific soft tissue, organ or area with pathology/trauma to 

be described in the corresponding “notes” column 

 Notes: Corresponding to the specific soft tissue, organ or area listed in the adjacent 

“None/Path refer to” column, enter a detailed description of the pathology/injuries 

observed   

Bone Density Study PT 1 

 Tibia SOS Measurements 

o Side analyzed: Which tibia was measured? Select left or right  

o SOS measurement: SOS value measured with MiniOmni QUS, expressed in m/s 

o Leg side: Which leg was measured for circumference? Select left or right  

o Leg circumference: Leg circumference at the tibial midshaft, expressed in mm 

o Arm side: Which arm was measured for circumference? Select left or right 

o Arm circumference: Arm circumference at radial midshaft, expressed in mm 

 

Radiology Data 

o Date: Date radiographs analyzed, expressed as month/day/year   

o Observer: Name of analyst 

o Bone: Which bones were analyzed by the radiologist? Select tibia/fibula or 

radius/ulna 

o Adequate Radiograph?: Was the radiograph adequate for analysis? Select yes or 

no 

o Rachitic Changes Present: Were rachitic changes present? Select present or absent 

o If so, check all that apply: If present, select all characteristics from drop down 

menu that apply. Options include cupping, irregular/fraying margins, and widened 

metaphyses 

o Demineralization score: Demineralization score assigned by radiologist, 0 

(normal), 1 (indeterminate), or 2 (abnormal).  

o If so, check all that apply: If demineralization score is greater than 0, select 

characteristics that apply from drop down menu. Options include general 

translucency, thinning cortices, and thinning trabeculae 

o Notes: Any additional notes provided by the radiologist 

Bone Density Study PT 2 

 Histology 

o Date: Date slide analyzed by bone pathologist, expressed in month/day/year 

  

o Observer: Name of analyst 

o Bone: Select bone analyzed by bone pathologist. Select rib or iliac crest  

o Adequate Specimen?: Was the specimen adequate for analysis? Select yes or no  

o Current Vasculature: Enter score for current vasculature assigned by bone 

pathologist. Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 
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o Current Mineralization: Enter score for current mineralization assigned by bone 

pathologist. Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 

o Current Volume: Enter score for current volume assigned by bone pathologist. 

Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 

o Current Formation: Enter score for current formation assigned by bone 

pathologist. Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 

o Current Resorption: Enter score for current resorption assigned by bone 

pathologist. Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 

o Composite Score: Summation current variable scores. This variation is 

automatically generated by the database.  

o Native Collagen: Enter score for native collagen assigned by bone pathologist. 

Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 

o Native Mineralization: Enter score for native mineralization assigned by bone 

pathologist. Options are 0 (normal), 1 (indeterminate), or 2 (abnormal). 

o Abnormal?: Was the native bone abnormal? Select yes, no, or N/A 

o If abnormal: If native bone was abnormal, describe type of native bone 

abnormalities noted by the bone pathologist. 

o Notes: Enter any additional notes provided by the bone pathologist here. 

Bone Mineral Content 

o Date: Date radiograph analyzed, expressed in month/day/year   

o Observer: Name of analyst 

o Bone: Which bone was bone analyzed for bone mineral content (BMC). Select 

radius or ulna 

o Adequate Specimen?: Was the radiograph adequate for analysis? Select yes or no  

o BMC Value: Enter BMC value estimated by analyst from radiograph 

o Side: Which bone side was analyzed for BMC? Select left or right 

o BMD Value: Enter BMD value estimated by analyst from the radiograph 

o Side: Which bone side was analyzed for BMD? Select left or right 

Figure A- 1. Data recorded for each infant in the Infant Injury Database and associated variable definitions. 
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Figure A-2. Page 1 of form completed by TCH pathologist for each decedent.  
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Figure A-3. Page 2 of form completed by TCH pathologist for each decedent 

.
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Table A- 1. Demographic and autopsy findings of each infant in the study sample.  

Case 

ID # Sexa Raceb 
Agec 

(wks.) 
Aged 

(mos.) 
Exact 

Age EGAe 

T-C 

Agef 

(wks.) 

T-C 

Ageg 

(mos.) Prem.h 
BW.i 

(g) 

GMD 

Stagej 

Hospital 

Delayk 

(days) 

Traumatic 

Injury?l 
Trauma 

Typem 

152 M B 12 2 2.8912 40 12 3 N  Non-amb. 0 N NA 

153 F H 13 3 3.1541 40 13 3 N 2920 Non-amb. 5 N NA 

154 M B 14 3 3.0883 37 11 2 N 3010 Non-amb. 0 N NA 

155 F H 49 11 11.3347 37 46 11 N 2690 Crawl-ing 0 N NA 

156 F H 12 2 2.8583 40 12 3 N 3150 Non-amb. 0 N NA 

157 F B 39 9 9.0349 38 37 9 N 2540 Non-amb. 0 N NA 

158 F B 13 3 3.0226 38 11 2 N 2980 Unk. 0 N NA 

159 F H 8 2 2.3326 33 1 0 Y 1361 Non-amb. 0 N NA 

160 M B 8 1 1.8398 40 8 2 N 3266 Non-amb. 25 N NA 

161 F H 3 0 .7556 39 2 0 N 3037 Non-amb. 0 Y Blunt Force 

162 F H 23 5 5.4209 38 21 5 N 3294 Non-amb. 0 Y Blunt Force 

163 F B 11 2 2.6940 36 7 1 Y 2595 Non-amb. 0 N NA 

164 M B 30 7 7.0637 40 30 7 N 2840 Crawl-ing 0 N NA 

165 M B 47 10 10.9076 39 46 11 N 2850 Walk-ing 0 Y Blunt Force 

166 M B 29 6 6.7680 36 25 6 Y 2210 Unk. 0 N NA 

167 F H 21 5 5.0267 40 21 5 N 2977 Non-amb. 0 N NA 

168 F W 17 3 3.9754 40 17 4 N 3540 Non-amb. 0 N NA 

169 M H 10 2 2.3984 38 8 2 N 2750 Non-amb. 0 N NA 

170 M B 5 1 1.2156 40 5 1 N 2268 Non-amb. 0 N NA 

171 F H 31 7 7.2608 36 27 6 Y 2406 Unk. 0 N NA 

172 F B 21 5 5.0267 25 6 1 Y 540 Non-amb. 0 N NA 

173 F B 13 3 3.0226 30 3 0 Y 1542 Non-amb. 0 N NA 

174 F B 29 6 6.8665 36 25 6 Y 2520 Non-amb. 0 N NA 

175 M B 25 5 5.7495 40 25 6 N 3572 Non-amb. 0 N NA 

176 M H 11 2 2.9240 40 11 2 N 3690 Non-amb. 0 N NA 

177 M B 24 5 5.6838 43 27 6 N  Non-amb. 3 Y Blunt Force 

178 M H 18 4 4.1725 25 3 0 Y 737 Non-amb. 0 N NA 

179 F H 6 1 1.5770 37 3 0 N 3090 Non-amb. 0 N NA 

180 F H 16 3 3.8439 39 15 3 N 3565 Non-amb. 0 N NA 

181 M W 43 9 9.9877 39 42 10 N 2980 Non-amb. 0 N NA 

182 F H 50 11 11.5647 39 49 12 N 4000 Non-amb. 0 N NA 

183 M B 49 11 11.3676 39 48 12 N 2695 Walk-ing 0 Y Blunt Force 

184 M B 15 3 3.4498 35 10 2 Y 2125 Non-amb. 0 N NA 

185 F B 9 2 2.1684 31 0 0 Y 1450 Non-amb. 0 N NA 

186 M H 8 1 1.8727 37 5 1 N 3070 Non-amb. 0 N NA 

187 F B 39 9 9.1663 38 37 9 N 2690 Crawl-ing 0 N NA 

188 M B 7 1 1.6756 40 7 1 N 3236 Non-amb. 0 N Blunt Force 

189 F B 10 2 2.4312 40 10 2 N 2552 Non-amb. 0 N NA 
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Table A- 1. Continued 

Case 

ID # Sexa Raceb 
Agec 

(wks.) 
Aged 

(mos.) 
Exact 

Age EGAe 

T-C 

Agef 

(wks.) 

T-C 

Ageg 

(mos.) Prem.h 
BW.i 

(g) 

GMD 

Stagej 

Hospital 

Delayk 

(days) 

Traumatic 

Injury?l 
Trauma 

Typem 

190 F W 22 5 5.1910 37 19 4 N 2880 Non-amb. 0 N NA 

191 F A 37 8 8.6078 30 27 6 Y 1320 Unk. 2 N NA 

192 F B 6 1 1.4784 37 3 0 N 2590 Non-amb. 0 N NA 

193 M H 20 4 4.5997 38 18 4 N 3470 Non-amb. 0 N NA 

194 F H 17 4 3.9754 40 17 4 N 3175 Non-amb. 0 N NA 

195 M H 17 3 3.9097 39 16 4 N 3370 Non-amb. 0 N NA 

196 F W 35 8 8.1150 39 34 8 N 2766 Unk. 0 N NA 

197 M B 27 6 6.4066 38 25 6 N 3118 Non-amb. 2 N NA 

198 M B 12 2 2.8583 37 9 2 N 2830 Non-amb. 0 N NA 

199 F H 9 2 2.1684 39 8 2 N 3485 Non-amb. 0 N NA 

200 F W 17 4 4.0739 38 15 3 N 2948 Crawl-ing 0 N NA 

201 F B 8 2 2.0370 35 3 0 Y 2220 Non-amb. 0 N NA 

202 M W 0 0 .0000 38 0 0 N 4050 Non-amb. 0 N NA 

203 F W 23 5 5.2895  23    Unk. 0 N NA 

204 F W 18 4 4.3039 40 18 4 N 3685 Non-amb. 43 Y Blunt Force 

205 M B 26 6 6.0452 40 26 6 N 2582 Non-amb. 0 N NA 

206 M B 21 5 5.0267  21   2380 Unk. 0 N NA 

207 M B 23 5 5.2896 39 22 5 N 2401 Non-amb. 0 N NA 

208 M H 12 2 2.7598 26 0 0 Y 886 Non-amb. 0 N NA 

209 F B 46 10 10.7762  46    Unk. 0 Y Blunt Force 

210 M H 45 10 10.4476 38 43 10 N 2610 Cruis-ing 0 N NA 

211 M W 8 1 1.9055 32 0 0 Y  Non-amb. 3 N NA 

212 M H 22 5 5.2567  22    Non-amb. 0 N NA 

213 M H 12 2 2.8583 37 9 2 N  Non-amb. 6 N NA 

214 M B 32 7 7.3593 40 32 8 N 3236 Unk. 0 N NA 

215 M H 16 3 3.8768 40 16 4 N 3875 Non-amb. 0 N NA 

216 M W 41 9 9.4949 39 40 10 N 3150 Unk. 0 N NA 

217 F W 14 3 3.2854 37 11 2 N 2095 Non-amb. 4 N NA 

218 F H 5 1 1.1499 36 1 0 Y 2060 Non-amb. 33 N NA 

219 M B 49 11 11.3347 38 47 11 N 3365 Walk-ing 0 N NA 

220 F H 16 3 3.7782 40 16 4 N 3710 Non-amb. 0 N NA 

221 M B 4 1 1.0842 38 2 0 N 2620 Non-amb. 0 N NA 

222 F A 5 1 1.2813 36 1 0 Y 2549 Non-amb. 0 N NA 

223 M B 9 2 2.1355 40 9 2 N 3182 Non-amb. 0 N NA 

224 F B 21 4 4.8624 39 20 5 N 3665 Non-amb. 4 Y Blunt Force 

225 M H 1 0 .3285 36 0 0 Y 2520 Non-amb. 0 N NA 

226 F B 14 3 3.3511 40 14 3 N 2790 Non-amb. 0 N NA 

227 F W 3 0 .8871 41 4 1 N 3650 Non-amb. 2 N NA 
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Table A- 1. Continued 

 

Case 

ID # Sexa Raceb 
Agec 

(wks.) 
Aged 

(mos.) 
Exact 

Age EGAe 

T-C 

Agef 

(wks.) 

T-C 

Ageg 

(mos.) Prem.h 
BW.i 

(g) 

GMD 

Stagej 

Hospital 

Delayk 

(days) 

Traumatic 

Injury?l 
Trauma 

Typem 

228 M B 11 2 2.6940 39 10 2 N 3710 Non-amb. 2 Y Blunt Force 

229 F W 5 1 1.2813 39 4 1 N 3010 Non-amb. 0 N NA 

a. Sex: M = Male, F = Female 

b. Race: B = black, H = Hispanic, W = white, A = Asian 

c. Chronological age in weeks 

d. Chronological age in months 

e. Estimated Gestational Age 

f. Term-Corrected age in weeks 

g. Term-Corrected age in months 

h. Premature: Y = Yes, N = No 

i. Birthweight in grams 

j. Gross Motor Development Stage: Non-amb. = Non-ambulatory, Unk. = Unknown 

k. Hospital Delayed Death: number of days between arrival to hospital and death 

l. Traumatic Injury Present: Y = Yes, N = No 

m. Trauma Type: NA = Not Applicable 
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Table A- 2. Chronic illness and autopsy classifications 

Case ID # Chronically Illa MODb CODc COD Categoryd 

152 Y Undetermined Undetermined (co-sleeping) Co-sleeping 

153 0 Natural 
Hypoxic encephalopathy and multi-organ failure complicating Sudden Infant Death 

Syndrome 
Other 

154 0 Natural Sudden Infant Death Syndrome SUID 

155 0 Natural Small bowel infarction due to intestinal volvulus Other 

156 N Natural Sudden Infant Death Syndrome SUID 

157 0 Natural Sudden Infant Death Syndrome SUID 

158 N Natural 
Acute bronchopneumonia due to bacterial Streptococcus pneumonia infection complicating 

respiratory bronchiolitis and idiopathic pulmonary hemosiderosis 
Infectious 

159 N Undetermined Undetermined (co-sleeping) Co-sleeping 

160 N Undetermined Undetermined Undetermined 

161 0 Homicide Blunt trauma of head, torso and extremeties Trauma 

162 N Homicide Blunt trauma with subdural hematoma Trauma 

163 N Accident Asphyxia due to overlay Asphyxia/Drowning 

164 N Natural Sudden Infant Death Syndrome SUID 

165 N Homicide Blunt trauma of the head Trauma 

166 N Natural Sudden Infant Death Syndrome (SUID) SUID 

167 0 Undetermined Undetermined (co-sleeping) Co-sleeping 

168 N Undetermined Undetermined Undetermined 

169 0 Undetermined Undetermined (co-sleeping) Co-sleeping 

170 N Undetermined Undetermined (co-sleeping) Co-sleeping 

171 N Undetermined Undetermined (co-sleeping) Co-sleeping 

172 Y Natural Complications of extreme prematurity Other 

173 N Undetermined Undetermined (co-sleeping) Co-sleeping 

174 Y Natural Complications of Group B strep Meningitis Infectious 

175 N Natural Sudden Infant Death Syndrome SUID 

176 0 Undetermined Undetermined Undetermined 

177 N Homicide Subdural and subarachnoid hemorrhage dueto blunt force head injuries Trauma 

178 Y Natural Complications of prematurity with neonatal lung disease and cardiomegaly Other 

179 N Natural Acute Bacterial Pneumonia (Haemophilus influenzae) Infectious 

180 N Natural Sudden Infant Death Syndrome SUID 

181 Y Natural Complications of intrauterine hypoxic neurologic events (cerebral palsy) Other 

182 N Undetermined Undetermined Undetermined 

183 N Homicide Blunt head trauma Trauma 

184 N Undetermined Undetermined (co-sleeping) Co-sleeping 

185 N Undetermined Undetermined Undetermined 

186 N Natural Sudden Infant Death Syndrome SUID 

187 N Natural Sudden Infant Death Syndrome SUID 
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Table A- 2. Continued. 

Case ID # Chronically Illa MODb CODc COD Categoryd 

188 0 Undetermined Undetermined Undetermined 

189 N Undetermined Undetermined Undetermined 

190 0 Natural Sudden Infant Death Syndrome SUID 

191 Y Undetermined Undetermined Undetermined 

192 0 Undetermined Undetermined (co-sleeping) Co-sleeping 

193 N Undetermined Undetermined Undetermined 

194 0 Undetermined Undetermined (co-sleeping) Co-sleeping 

195 N Undetermined Undetermined (co-sleeping) Co-sleeping 

196 N Undetermined Undetermined Undetermined 

197 0 Accident Positional asphyxia Asphyxia/Drowning 

198 N Undetermined Undetermined (co-sleeping) Co-sleeping 

199 N Undetermined Undetermined (co-sleeping) Co-sleeping 

200 N Natural Sudden infant death syndrome SUID 

201 N Natural Bacterial pneumonia and sepsis due to Staphylococcus aureus infection Infectious 

202 N Natural 
Extensive remote Central Nervous System injury- congenital viral infection vs. hypoxic 

ischemia 
Other 

203 0 Natural Sudden Infant Death Syndrome SUID 

204 N Homicide Complications following blunt force head trauma Trauma 

205 Y Natural Congenital diaphragmatic hernia Other 

206 0 Accident Overlay Asphyxia/Drowning 

207 N Undetermined Undetermined (co-sleeping) Co-sleeping 

208 N Undetermined Undetermined (co-sleeping) Co-sleeping 

209 0 Accident - MVA Blunt trauma of head and torso Trauma 

210 0 Accident Asphyxia due to compression of neck Asphyxia/Drowning 

211 N Undetermined Undetermined (co-sleeping) Co-sleeping 

212 Y Undetermined Undetermined Undetermined 

213 Y Natural Mitochondrial myopathy Other 

214 0 Homicide Toxic effects of diphenhydramine Other 

215 Y Natural Myocardial ischemia and infarction due to fibromuscular dysplasia of coronary arteries Other 

216 0 Accident Suffocation Asphyxia/Drowning 

217 0 Natural Sudden Infant Death Syndrome SUID 

218 Y Natural Multiorgan failure with hemorrhagic coagulopathy secondary to neonatal hemochromatosis Other 

219 0 Undetermined Drowning Asphyxia/Drowning 

220 0 Undetermined Undetermined (co-sleeping) Co-sleeping 

221 0 Natural Sudden Infant Death Syndrome SUID 

222 Y Natural Complications of Campomelic dysplasia Other 

223 0 Natural Sudden Infant Death Syndrome SUID 
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Table A- 2. Continued. 

Case ID # Chronically Illa MODb CODc COD Categoryd 

224 0 Homicide Blunt force injuries of head Trauma 

225 Y Natural Patent ductus arteriosus with persistent fetal circulation Other 

226 0 Natural Volvulus of sigmoid colon Other 

227 0 Natural Near sudden infant death syndrome SUID 

228 N Homicide 
Multiple blunt force injuries with skull and rib fractures, subdural and subarachnoid 

hemorrhage and hepatic lacerations 
Trauma 

229 N Accident Asphyxia due to overlay Asphyxia/Drowning 

a. Chronically ill: Y = Yes, N = No   

b. Manner of Death 

c. Cause of Death 

d. Cause of Death Category: SUID = Sudden Unexplained Infant Death  
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Figure A-4. Qualitative radiography evaluation score form. 
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Figure A-5. Qualitative histological evaluation score form.  
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Table A- 3. Description of infants with traumatic injuries.  

Trauma Cases 

Case ID Age
a 

Sex Race EGA
b Weight 

(kg) 

SOS 

(m/s) 

BMD 

(g/cm
2
) 

Radiographic 

Score
d 

161 0 F H 39 2.67 2843 1.14 0 

228 2 M B 39 6.8 3053 1.06 1 

204 4 M W 40 4.59 3189 1.26 0 

224 4 F B 39 8 2899 0.71 1 

162 5 F H 38 6.69 3115 0.69 0 

177 5 F B 43 10 3173 0.92 0 

165 10 M B 39 8.91 3331 0.85 0 

209 10 M B Unk.
c 

10.9 3376 0.45 0 

183 11 F B 39 9.07 3106 1.18 0 

a. Chronological age in months 

b. EGA = Estimated gestational age 

c. Unk. = Unknown 

d. Qualitative radiographic evaluation score: 0 = normal, 1 = indeterminate, 2 = abnormal mineralization  

 

 

 
Table A- 4. Qualitative Radiographic Evaluation Results 

 
Count Variable % 

Rachitic Changes 

Absent 78 100 

Present 0 0 

Total 78 100 

Radial Mineralization Score 

  

Normal 64 83 

Indeterminate 10 13 

Abnormal Mineralization 3 4 

Total 77 100 

Tibial Mineralization Score 

  

Normal 65 83 

Indeterminate 10 13 

Abnormal Mineralization 3 4 

Total 78 100 
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Table A- 5. Description of infants with abnormally mineralized bone on radiographs. 

Abnormally Mineralized Cases 

Case 

ID 
Age

a 
Sex Race EGA

b Wt. 

(kg) 
SOS 

BMD 

(g/cm
2
) 

MOD
c 

COD
d 

Radiography Notes
e 

170 1 M B 40 4 2666 0.77 Und.
f 

Und.
g
 (co-sleeping) radioluscent metaphyseal 

bands,  thinning cortices 

213 2 M H 37 6.64 2971 0.53 Nat.
g 

Mitochondrial myopathy thinning cortices, thinning 

trabeculae 

215 3 M H 40 5.21 3155 0.63 Nat.
g 

Myocardial ischemia and 

infarction due to fibromuscular 

dysplasia of coronary arteries 

thinning cortices, thinning 

trabeculae 

a. Chronological age in months 

b. EGA = Estimated gestational age 

c. MOD = Manner of death 

d. COD = Cause of death 

e. Notes from qualitative radiographic evaluation 

f. Und. = Undetermined 

g. Nat. = Natural 
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Table A- 6. Descriptive statistics of bone measurements, BMD, and SOS data. 

Study Sample: Bone Measurements 

 N Mean SD 

Tibial Length (mm) 77 83.58 15.62 

Tibial Midshaft Diameter (mm) 77 7.20 0.16 

Medullary Cavity Diameter (mm) 77 3.38 0.11 

Cortical Index
a
 77 0.53 0.010 

  Median Inter-Quartile Range 

Cortical Thickness (mm) 77 3.75 3.09-4.43 

Bone Mineral Density (g/cm
2
)    

Radial midshaft BMD 48 0.40 0.30-0.58 

Tibial midshaft BMD 70 0.86 0.62-1.15 

Quantitative Ultrasound  Mean SD 

Tibial midshaft SOS (m/s) 77 3010.75 213.12 m/s 

a. Cortical Index = Total Cortical Thickness/Tibial Midshaft Diameter 

 

 

Table A- 7. Data associated with chronically ill infants.  

Case ID 
SOS 

(m/s) 

BMD 

(g/cm
2
) 

Radiographic 

Score
a
 

Description of 

Chronic Illness 

225 3163 0.82 0 see Table 4-3 

218 3307 
b
 0 see Table 4-3 

222 2822 0.59 0 see Table 4-3 

213 2971 0.53 2 see Table 4-3 

152 2688 0.42 0 see Table 4-3 

178 2595 0.49 0 see Table 4-3 

215 3155 0.63 2 see Table 4-3 

172 2740 0.79 0 see Table 4-3 

212 2822 0.45 0 see Table 4-3 

205 2907 0.93 1 see Table 4-3 

174 2940 0.51 0 see Table 4-3 

191 3219 0.41 1 see Table 4-3 

181 3194 0.62 1 see Table 4-3 

a. Qualitative radiographic evaluation score: 0 = normal, 1 = indeterminate, 2 = 

abnormal mineralization 

b. BMD could not be calculated        
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Table A- 8. Results of Qualitative Radiographic Evaluation for each infant.  

Case 

ID # 

Radius 

Rachitic 

Scorea 

Tibia 

Rachitic 

Scorea 

Radius 

Mineralization 

Scorea 

Tibia 

Mineralization 

Scorea 

Overall 

Mineralization 

Scorea 
Demineralization 

Characteristics Radiography Notes 

152 0 0 0 0 0     

153 0 0 0 0 0     

154 0 0 0 0 0   Focal irregularity of trabecular pattern mid tibia, 

but this cannot be characterized further  without  

155 0 0 1 1 1 Thinning cortices   

156 0 0 0 0 0     

157 0 0 1 1 1 Thinning trabeculae Tibia cortex is maintained but the trabecular 

pattern looks a little indistinct 

158 0 0 0 0 0     

159 0 0 0 0 0     

160 0 0 0 0 0     

161 0 0 0 0 0     

162 0 0 0 0 0     

163 0 0 0 0 0     

164 0 0 0 0 0     

165 0 0 0 0 0     

166 0 0 0 0 0     

167 0 0 0 0 0     

168 0 0 0 0 0     

169 0 0 0 0 0     

170 0 0 2 2 2 Thinning cortices Radiolucent metaphyseal bands 

171  0  0 0   No arm radiograph 

172 0 0 1 1 1 Thinning cortices   

173 0 0 0 0 0     

174 0 0 0 0 0     

175 0 0 0 0 0     

176 0 0 0 0 0     

177 0 0 0 0 0     

178 0 0 1 1 1 Thinning cortices   

179 0 0 0 0 0     

180 0 0 0 0 0     

181 0 0 0 0 0     

182 0 0 0 0 0     

183 0 0 0 0 0     

184 0 0 0 0 0     
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Table A- 8. Continued    

Case 

ID # 

Radius 

Rachitic 

Scorea 

Tibia 

Rachitic 

Scorea 

Radius 

Mineralization 

Scorea 

Tibia 

Mineralization 

Scorea 

Overall 

Mineralization 

Scorea 
Demineralization 

Characteristics Radiography Notes 

185 0 0 1 1 1 General translucency Radiograph of left leg;  this is a small infant, but 

the general bone density seems slightly 

decreased 

186 0 0 0 0 0     

187 0 0 0 0 0     

188 0 0 0 0 0     

189 0 0 0 0 0     

190 0 0 0 0 0     

191 0 0 0 0 0     

192 0 0 0 0 0     

193 0 0 0 0 0     

194 0 0 0 0 0     

195 0 0 0 0 0     

196 0 0 0 0 0     

197 0 0 0 0 0     

198 0 0 0 0 0     

199 0 0 0 0 0     

200 0 0 0 0 0     

201 0 0 0 0 0     

202 0 0 0 0 0     

203 0 0 0 0 0     

204 0 0 0 0 0     

205 0 0 1 1 1 General translucency   

206 0 0 0 0 0     

207 0 0 0 0 0     

208 0 0 0 0 0     

209 0 0 0 0 0     

210 0 0 0 0 0     

211 0 0 0 0 0   Trophic bands present at wrist 

212 0 0 0 0 0   Trophic bands at wrist 

213 0 0 2 2 2 Thinning cortices, Thinning 

trabeculae 

  

214 0 0 0 0 0     

215 0 0 2 2 2 Thinning cortices, Thinning 

trabeculae 

  

216 0 0 0 0 0     

217 0 0 0 0 0     

218 0 0 1 1 1 General translucency   
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Table A- 8. Continued. 

Case 

ID # 

Radius 

Rachitic 

Scorea 

Tibia 

Rachitic 

Scorea 

Radius 

Mineralization 

Scorea 

Tibia 

Mineralization 

Scorea 

Overall 

Mineralization 

Scorea 
Demineralization 

Characteristics Radiography Notes 

219 0 0 0 0 0     

220 0 0 0 0 0     

221 0 0 0 0 0     

222 0 0 0 0 0   Radius-small and bowed, but mineralization 

looks within normal limits; Tibia-same as above 

with deformities 

223 0 0 1 1 1 General translucency   

224 0 0 1 1 1 Thinning cortices   

225 0 0 1 1 1 General translucency   

226 0 0 0 0 0     

227 0 0 0 0 0   Trophic bands in metaphyses 

228 0 0 0 0 0     

229 0 0 0 0 0     

a. Score: 0 = Normal, 1 = Indeterminate/Slight Demineralization, 2 = Abnormal Mineralization 
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Table A- 9. Results of Qualitative Histological Evaluation of the costochondral rib section for each infant. 

Case 

ID # 

Rib 

Sidea Rib #b 

Rib 

Vasc.cd 

Rib 

Mineralizationd 

Rib 

Volumed 

Rib 

Formation
d 

Rib 

Resorption
d 

Rib Native 

Mineralizationd 
Rib Native 

Collagend 

Rib 

Normal?
e Rib Notes 

152 R 4 1 1 1 1 1 0 0 Y increased periosteal 

inflammation 

153 L 4 2 1 2 2 2 1 1 N way too many vessels 

and resorption 

154 L 6 1 0 0 0 1 0 0 Y marrow in several of the 

vessels 

155 L 4 1 0 0 0 1 0 0 Y 
 

156 L 4 0 0 0 0 0 0 0 Y 
 

157 R 4 1 0 1 0 2 0 0 Y way too much 

resorption 

158 R 6 1 0 0 1 2 0 0 Y increased resorption 

159 R 4 1 0 1 1 2 0 0 Y 
 

160 L 4 2 0 1 2 2 0 0 Y Increased periosteal 

new bone formation 

161 L 9 0 0 0 0 0 0 0 Y 
 

162 L 7 1 0 0 0 1 0 0 Y ? Normal growth 

163 L 4 0 0 0 0 1 0 0 Y 
 

164 L 6 0 0 0 0 0 0 0 Y 
 

165 R 4 0 0 0 0 1 0 0 Y 
 

166 L 6 1 0 1 1 2 0 0 Y 
 

167 R 5 1 0 0 1 2 0 0 Y 
 

168 R 6 2 0 1 1 1 0 0 Y increased vasculature 

169 L 4 1 1 0 0 1 0 0 Y too much woven bone 

in the cortex 

170 L 4 0 0 0 0 0 0 0 Y 
 

171 L 4 2 0 1 2 2 0 1 Y significant issues with 

the periosteum and 

growth plate  

172 L 4 2 0 2 2 2 0 1 Y significant cortical 

disruption   

173 R 5 2 1 2 2 2 0 1 Y very increased vessels 

and resorption 

174 L 4 0 0 1 1 2 0 0 Y small cortical defect  

175 R 5 1 0 1 1 1 0 0 Y low bone volume 

176 R 5 2 0 0 1 2 0 0 Y 
 

177 R 4 0 0 0 0 0 0 0 Y 
 

178 R 4 1 1 0 0 0 1 2 Y extensive cortical 

woven bone 
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Table A- 9. Continued. 

Case 

ID # 

Rib 

Sidea Rib #b 

Rib 

Vasc.cd 

Rib 

Mineralizationd 

Rib 

Volumed 

Rib 

Formation
d 

Rib 

Resorption
d 

Rib Native 

Mineralizationd 
Rib Native 

Collagend 

Rib 

Normal?
e Rib Notes 

179 R 4 2 0 0 1 2 0 0 Y 
 

180 R 6 0 0 0 0 0 0 0 Y 
 

181 L 4 1 0 0 1 1 0 2 Y 
 

182 L 4 0 0 1 1 1 0 0 Y 
 

183 R 4 1 0 0 1 1 0 0 Y 
 

184 L 6 2 1 1 1 2 0 0 Y 
 

185 L 7 0 0 0 0 0 0 0 Y 
 

186 L 4 2 0 0 1 2 0 1 Y increased resorption 

187 L 4 1 0 0 1 1 0 0 Y 
 

188 R 4 1 0 0 0 1 1 1 N thinned cortex and 

growth plate 

disturbance 

189 R 4 0 0 0 0 0 0 0 Y 
 

190 R 4 0 0 0 1 2 0 0 Y Increased formation and 

resorption 

191 R 4 0 0 0 0 0 0 0 Y 
 

192 L 4 1 0 2 0 2 0 0 Y increased resorption and 

splinters of resorbing 

bone 

193 L 4 0 0 2 1 2 0 2 N not sure how to classify 

this… most of the 

cortex is 

missing…collagen 

seems weak in 

formation 

194 L 4 0 0 0 0 1 0 0 Y gaps in the cortices 

195 L 6 0 0 0 0 1 0 0 Y mildly increased 

resorption 

196 L 4 0 0 0 0 0 0 0 Y relatively normal 

197 L 4 0 0 0 1 2 0 0 Y increased resorption 

with fragmentation and 

subperiosteal new bone 

formation 

198 L 3 0 0 0 0 0 0 0 Y relatively normal 

199 L 4 1 0 0 1 2 0 0 Y subperiosteal fibrosis 

and remodeling 

200 L 4 0 0 0 0 0 0 0 Y relatively normal 

201 L 4 0 0 0 0 2 0 1 Y increased endosteal 

resorption 
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Table A- 9. Continued. 

Case 

ID # 

Rib 

Sidea Rib #b 

Rib 

Vasc.cd 

Rib 

Mineralizationd 

Rib 

Volumed 

Rib 

Formation
d 

Rib 

Resorption
d 

Rib Native 

Mineralizationd 
Rib Native 

Collagend 

Rib 

Normal?
e Rib Notes 

202 L 4 2 0 0 1 2 0 0 Y increased cortical 

resorption 

203 L 4 0 0 0 0 2 0 0 Y increased subperiosteal 

resorption 

204 L 4 0 0 0 0 0 0 0 Y relatively normal 

205 R 4 0 0 0 0 0 0 0 Y relatively normal 

206 R 4 1 0 1 1 1 0 0 Y thinned cortex and 

trabecular architecture 

207 R 6 0 0 0 0 0 0 0 Y relatively normal 

208 R 4 0 0 0 0 0 0 0 Y relatively normal 

209 L 5 0 0 0 0 0 0 0 Y relatively normal 

210 R 3 0 0 0 0 0 0 0 Y relatively normal 

211 L 4 0 0 2 1 1 0 1 Y markedly thinned bone 

and increased 

resorption, new 

subchondral bone 

formation 

212 R 3 0 0 2 0 1 0 1 Y markedly thinned bone 

and increased resorption 

213 L 4 0 0 1 0 2 0 0 Y thinned bone with 

increased resorption 

214 L 6 0 0 0 0 1 0 1 Y mildly increased 

resorption in the rib 

215 L 4 0 1 0 0 0 0 1 Y discordant rib and iliac 

samples 

216 L 5 1 0 1 1 1 0 0 Y gap in cortex with 

remodeling 

217 R 6 0 0 0 0 2 0 0 Y extensive cortical 

resorption 

218 L 4 0 0 0 0 0 0 0 Y 
 

219 L 7 0 0 0 0 2 0 0 Y extensive subperiosteal 

resorption 

220 L 5 0 0 0 0 1 0 0 Y 
 

221 L 4 0 0 0 1 1 0 0 Y subperiosteal new bone 

formation 

222 L 4 0 0 0 0 0 0 0 Y 
 

223 L 4 0 0 0 0 1 0 0 Y 
 

224 R 4 0 0 0 0 0 0 0 Y 
 

225 L 4 0 0 0 0 0 0 0 Y 
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Table A- 9. Continued. 

Case 

ID # 

Rib 

Sidea Rib #b 

Rib 

Vasc.cd 

Rib 

Mineralizationd 

Rib 

Volumed 

Rib 

Formation
d 

Rib 

Resorption
d 

Rib Native 

Mineralizationd 
Rib Native 

Collagend 

Rib 

Normal?
e Rib Notes 

226 L 6 0 0 0 0 1 0 0 Y 
 

227 L 4 0 0 0 0 0 0 0 Y 
 

228 R 9 0 0 0 0 0 0 0 Y 
 

229 L 7 0 0 0 0 0 0 0 Y 
 

a. Side of body: L = left, R = right 

b. Rib number in series of 1 – 12 

c. Rib Vasculature 

d. Qualitative evaluation score: 0 =  normal, 1 = Indeterminate, 2 = Abnormal 

e. Rib classified normal: Y = yes, N = no  
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Table A- 10. Results of Qualitative Histological Evaluation of the iliac crest section for each infant.  

Case 

ID # 

Iliac 

Sidea 
Iliac 

Vasc.bc 
Iliac 

Mineralizationc 
Iliac 

Volumec 
Iliac 

Formationc 
Iliac 

Resorptionc 
Iliac Native 

Mineralizationc 

Iliac 

Native 

Collagenc 
Iliac 

Normal?d Iliac Notes 

152 L 0 0 0 0 0 0 0 Y 
 

153 L 0 0 0 0 1 0 0 Y rib and iliac crest do not 

match biology 

154 L 1 1 0 2 2 0 0 Y ? Normal growth 

155 L 0 1 0 1 2 0 0 Y current resorption out of 

balance with formation 

156 L 1 0 1 0 1 0 0 Y increased subperiosteal 

resorption 

157 L 0 0 0 0 1 0 0 Y 
 

158 L 0 0 1 0 0 0 0 Y too much periosteum 

159 L 0 0 0 1 1 0 0 Y 
 

160 L 0 0 0 0 1 0 0 Y 
 

161 L 0 0 0 0 0 0 0 Y 
 

162 L 1 0 0 0 1 0 0 Y 
 

163 L 0 0 0 0 1 0 0 Y 
 

164 L 0 0 0 0 0 0 0 Y 
 

165 L 0 0 0 0 2 0 0 Y increased resorption 

166 L 1 1 0 1 2 0 0 Y 
 

167 L 1 0 0 1 2 0 0 Y periosteum too big 

168 L 1 2 1 1 2 0 0 Y ? Normal growth 

169 L 2 1 1 2 1 0 0 Y too much periosteum 

170 L 0 0 0 0 1 0 0 Y 
 

171 L 1 0 1 1 1 0 0 Y 
 

172 L 1 0 0 0 1 0 0 Y 
 

173 L 1 0 2 0 1 0 1 Y low bone volume 

174 L 0 0 0 0 1 0 0 Y 
 

175 L 0 0 1 1 2 0 0 Y 
 

176 L 0 0 0 0 0 0 0 Y 
 

177 L 0 0 0 0 1 0 0 Y 
 

178 L 0 0 0 0 0 0 0 Y mismatch in rib and iliac 

crest biology 

179 L 1 0 0 0 1 0 0 Y 
 

180 R 0 0 0 0 0 0 0 Y 
 

181 L 0 0 0 0 1 0 0 Y mismatch in rib and iliac 

crest biology 

182 L 1 0 0 0 1 0 0 Y 
 

183 L 0 0 0 1 2 0 0 Y 
 

184 L 2 1 0 1 2 0 2 N trabeculae are deformed 
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Table A- 10. Continued 

Case 

ID # 

Iliac 

Sidea 
Iliac 

Vasc.bc 
Iliac 

Mineralizationc 
Iliac 

Volumec 
Iliac 

Formationc 
Iliac 

Resorptionc 
Iliac Native 

Mineralizationc 

Iliac 

Native 

Collagenc 
Iliac 

Normal?d Iliac Notes 

185 R 2 0 0 2 1 0 0 Y Increased cortical vessels 

and periosteal new bone 

186 L 0 0 0 0 0 0 0 Y 
 

187 L 1 0 0 1 1 0 0 Y 
 

188 L 0 0 0 0 0 0 0 Y 
 

189 L 0 0 0 0 1 0 0 Y 
 

190 L 1 0 0 0 2 0 0 Y extensive resorption noted 

191 L 0 0 0 0 0 0 0 Y 
 

192 L 0 0 1 0 1 0 0 Y thinned bone and 

increased resorption 

193 L 0 0 0 0 2 0 0 Y increased subperiosteal 

resorption and loss of 

trabecular integrity 

194 L 0 0 0 0 1 0 0 Y relatively normal with 

mild remodeling 

195 L 0 0 0 0 0 0 0 Y relatively normal 

196 L 0 0 0 0 0 0 0 Y relatively normal 

197 L 0 0 0 0 0 0 0 Y relatively normal 

198 L 1 0 0 0 2 0 0 Y increased subperiosteal 

resorption 

199 L 0 0 0 0 0 0 0 Y relatively normal 

200 L 0 0 0 0 0 0 0 Y relatively normal 

201 L 0 0 2 2 0 0 0 Y there is extensive new 

formation and resorption 

along one cortex 

202 L 2 0 2 1 2 0 0 Y significant cortical loss, 

hemorrhage, and 

inflammation 

203 L 0 0 0 0 2 0 0 Y increased subperiosteal 

resorption 

204 L 0 0 0 0 0 0 0 Y relatively normal 

205 L 0 0 0 0 1 0 0 Y relatively normal 

206 L 2 0 0 0 1 0 0 Y increased subperiosteal 

vascularization 

207 L 1 2 2 0 1 0 2 N problems with growth 

plate and primary 

spongiosa 

208 L 0 0 0 0 0 0 0 Y relatively normal 
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Table A- 10. Continued. 

Case 

ID # 

Iliac 

Sidea 
Iliac 

Vasc.bc 
Iliac 

Mineralizationc 
Iliac 

Volumec 
Iliac 

Formationc 
Iliac 

Resorptionc 
Iliac Native 

Mineralizationc 

Iliac 

Native 

Collagenc 
Iliac 

Normal?d Iliac Notes 

209 L 0 0 0 0 0 0 0 Y relatively normal 

210 L 0 0 0 0 0 0 0 Y relatively normal 

211 L 1 0 2 2 0 0 0 Y this is new bone formation 

near one of the cortices 

and it is unclear why 

212 L 0 0 1 0 2 0 0 Y extensive resorption along 

the subperiosteal space 

213 L 0 0 1 0 2 0 0 Y extensive resorption 

214 L 0 0 1 0 1 1 0 Y mild bone loss 

215 L 0 1 2 1 1 1 0 Y low bone and 

disorganization …etiology 

unclear 

216 L 0 0 0 0 1 0 0 Y mildly increased 

remodeling 

subperiosteally 

217 L 0 0 0 0 0 0 0 Y 
 

218 L 0 0 0 0 0 0 0 Y 
 

219 L 0 0 0 0 1 0 0 Y 
 

220 L 0 0 0 0 0 0 0 Y 
 

221 L 0 0 0 0 0 0 0 Y 
 

222 L 0 0 0 0 0 0 0 Y 
 

223 L 0 0 0 0 0 0 0 Y 
 

224 L 0 0 0 0 0 0 0 Y 
 

225 L 0 0 0 0 0 0 0 Y 
 

226 L 0 0 0 0 0 0 0 Y 
 

227 L 0 0 0 0 0 0 0 Y 
 

228 L 0 0 0 0 0 0 0 Y 
 

229 L 0 0 0 0 0 0 0 Y 
 

a. Side of body: L = left, R = right 

b. Iliac Vasculature 

c. Qualitative evaluation score: 0 =  normal, 1 = Indeterminate, 2 = Abnormal 

d. Iliac classified normal: Y = yes, N = no 
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Table A- 11. Body size, growth percentiles, and tibia measurements for each infant. 

 

Body Size Measurements Growth Percentiles Tibia Measurements 

Case 

ID # 

Leg 

Circumference 

(mm) 

Height 

(cm) 

Weight 

(kg) 

Length for 

Age 

Weight for 

Age 

Weight for 

Length 
Tibia Length 

(mm) 

Midshaft 

Diameter 

(mm) 

Medullary 

Cavity 

Diameter 

(mm) 

Total 

Cortical 

Thicknessa 

(mm) 

Cortical 

Indexb 

152 144 65.00 7.30 96.4 89.1 52.4 81.028 8.136 3.602 4.534 .557 

153 169 62.00 8.84 79.4 99.9 100.0 80.104 8.165 4.354 3.811 .467 

154 166 66.50 7.20 98.5 83.0 24.2 90.527 7.396 3.360 4.036 .546 

155 150 72.00 8.84 32.4 51.6 63.3 98.256 7.607 4.264 3.343 .439 

156 156 60.96 5.07 74.6 17.6 1.7 79.074 5.781 3.021 2.760 .477 

157 143 63.50 5.90 0.3 0.3 6.9 88.693 7.391 3.501 3.890 .526 

158 127 60.96 4.99 69.9 10.4 1.0 82.300 7.630 3.926 3.704 .485 

159 129 54.00 4.08 4.5 2.8 29.1 67.528 5.421 2.892 2.529 .467 

160 110 62.00 3.96 96.9 3.3 0.0 74.229 6.319 2.572 3.747 .593 

161 82 52.00 2.67 37.5 2.4 0.0 63.652 5.884 2.293 3.591 .610 

162 166 60.50 6.69 3.7 33.3 87.7 83.232 7.238 3.395 3.843 .531 

163 135 54.61 4.53 3.9 6.8 57.9 69.711 5.803 3.321 2.482 .428 

164 154 68.58 6.35 38.0 0.7 0.1 95.571 8.059 2.915 5.144 .638 

165 167 77.00 8.91 86.4 31.7 9.9 116.558 9.156 3.967 5.189 .567 

166 164 66.04 7.80 11.1 32.2 67.5 94.804 7.547 3.268 4.279 .567 

167 144 63.50 6.31 39.8 22.9 23.6 86.883 6.559 3.627 2.932 .447 

168 147 63.50 5.92 74.7 26.1 7.5 87.087 6.698 3.060 3.638 .543 

169 138 60.96 5.73 70.2 42.8 14.3 76.590 7.522 3.486 4.036 .537 

170 113 55.00 4.00 44.5 16.3 6.3 67.196 5.682 2.795 2.887 .508 

171 160 66.00 8.46 24.5 77.0 94.1 94.319 8.163 5.362 2.801 .343 

172 116 48.00 3.85 0.0 0.0 99.7 65.430 6.012 3.080 2.932 .488 

173 120 51.50 3.72 0.0 0.0 55.2 71.781 6.275 3.253 3.022 .482 

174 158 62.00 6.40 1.6 8.0 51.6 90.065 5.870 3.356 2.514 .428 

175 179 69.50 9.31 84.7 94.1 91.3 96.879 9.654 4.394 5.260 .545 

176 134 59.00 5.37 15.4 9.8 23.3 80.574 6.994 2.843 4.151 .594 

177 145 71.30 10.00 96.9 98.8 94.8 92.452 7.991 4.272 3.719 .465 

178 135 52.00 4.77 0.0 0.0 99.5 62.112 7.487 3.091 4.396 .587 

179 113 57.00 4.00 68.6 17.4 0.3 66.635 6.332 2.467 3.865 .610 

180 155 63.00 6.74 70.5 68.6 58.3 91.152 7.082 3.283 3.799 .536 

181 190 78.00 10.10 98.1 81.7 50.8 115.962 7.553 3.984 3.569 .473 

182 173 76.20 10.90 85.0 95.2 94.8 111.842 10.451 5.607 4.844 .463 

183 161 73.66 9.07 29.2 33.8 41.9 118.208 9.340 4.750 4.590 .491 

184 135 57.00 5.71 0.8 11.4 89.4 85.228 6.758 2.116 4.642 .687 

185  48.50 3.38 0.0 0.1 85.8      

186 144 57.00 5.36 32.1 44.7 69.8 74.515 7.169 3.045 4.124 .575 

187 169 66.04 7.98 3.9 38.6 82.5 101.502 7.573 3.851 3.722 .491 
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Table A- 11. Continued 

 

Body Size Measurements Growth Percentiles Tibia Measurements 

Case 

ID # 

Leg 

Circumference 

(mm) 

Height 

(cm) 

Weight 

(kg) 

Length for 

Age 

Weight for 

Age 

Weight for 

Length 
Tibia Length 

(mm) 

Midshaft 

Diameter 

(mm) 

Medullary 

Cavity 

Diameter 

(mm) 

Total 

Cortical 

Thicknessa 

(mm) 

Cortical 

Indexb 

188 132 54.00 4.55 12.5 21.7 76.7 69.047 6.205 2.784 3.421 .551 

189 124 54.00 4.29 3.9 5.3 50.4 76.418 8.225 2.959 5.266 .640 

190 152 61.00 5.78 7.3 6.5 25.8 84.278 6.686 3.566 3.120 .467 

191 175 68.58 8.48 34.2 63.9 79.2 95.253 6.593 3.874 2.719 .412 

192 118 57.50 3.88 78.8 16.0 0.0 73.036 6.712 2.322 4.390 .654 

193 157 61.00 7.05 2.5 38.1 91.9 91.839 8.526 3.640 4.886 .573 

194 170 62.00 8.00 49.4 96.2 99.1 89.743 8.071 3.650 4.421 .548 

195 160 61.00 6.79 11.3 42.2 83.1 83.105 7.952 4.759 3.193 .402 

196 146 66.68 6.79 17.6 9.0 14.7 89.553 6.881 3.746 3.135 .456 

197 190 71.12 13.60 89.5 100.0 100.0 100.121 8.296 4.191 4.105 .495 

198 134 64.00 6.50 91.1 61.1 16.9 83.117 7.090 2.646 4.444 .627 

199 155 55.88 5.44 23.9 61.2 91.5 74.297 6.057 2.846 3.211 .530 

200 150 61.00 5.66 29.2 14.7 18.9 75.183 7.108 3.782 3.326 .468 

201 131 53.34 4.20 3.2 6.2 58.4 74.422 7.225 2.917 4.308 .596 

202 106 55.50 3.96 100.0 93.2 2.9 63.482 5.439 1.516 3.923 .721 

203 147 65.50 5.99 66.3 10.4 1.9 82.554 6.989 2.718 4.271 .611 

204 125 60.50 4.59 3.8 0.2 0.1 82.871 6.563 3.357 3.206 .488 

205 101 58.00 4.18 0.0 0.0 0.1 88.993 6.474 3.744 2.730 .422 

206 161 66.04 8.85 52.0 93.1 97.3 88.440 7.531 4.503 3.028 .402 

207 141 66.00 6.80 43.5 15.7 11.1 97.116 8.799 5.656 3.143 .357 

208 101 42.00 2.53 0.0 0.0  59.000 4.486 2.011 2.475 .552 

209 176 76.20 10.90 92.6 96.7 94.8 114.824 11.210 4.522 6.688 .597 

210 177 64.00 8.70 0.0 28.0 99.4 102.579 9.101 3.392 5.709 .627 

211 110 49.00 3.56 0.0 0.5 91.9 55.253 4.680 1.902 2.778 .594 

212 156 60.00 6.90 0.2 19.3 95.1 75.380 6.822 3.579 3.243 .475 

213 143 59.00 6.64 18.8 67.8 96.1 83.523 6.016 3.465 2.551 .424 

214 165 76.00 9.16 99.7 78.2 24.2 105.704 10.049 4.986 5.063 .504 

215 106 63.50 5.21 47.7 1.0 0.0 90.376 7.348 4.281 3.067 .417 

216 173 72.00 9.08 39.7 51.8 61.0 103.035 8.999 4.499 4.500 .500 

217 159 62.00 6.25 74.6 61.9 41.3 69.822 7.008 2.650 4.358 .622 

218 175 51.50 6.13 11.2 98.6 100.0 52.778 4.095 1.492 2.603 .636 

219 190 76.00 11.00 67.1 91.2 93.1 117.431 11.304 5.471 5.833 .516 

220 177 66.00 7.90 97.2 96.1 80.0 84.964 7.673 2.901 4.772 .622 

221 120 51.00 3.70 2.6 7.7 69.1 65.896 5.470 2.677 2.793 .511 

222 109 42.50 3.06 0.0 0.9  50.111 5.463 2.786 2.677 .490 

223 142 57.00 5.31 20.9 31.3 65.9 83.469 7.529 2.784 4.745 .630 



 

308 

 

Table A- 11. Continued 

 

Body Size Measurements Growth Percentiles Tibia Measurements 

Case 

ID # 

Leg 

Circumference 

(mm) 

Height 

(cm) 

Weight 

(kg) 

Length for 

Age 

Weight for 

Age 

Weight for 

Length 
Tibia Length 

(mm) 

Midshaft 

Diameter 

(mm) 

Medullary 

Cavity 

Diameter 

(mm) 

Total 

Cortical 

Thicknessa 

(mm) 

Cortical 

Indexb 

224 156 69.00 8.00 93.8 89.6 52.4 96.757 7.286 4.174 3.112 .427 

225 99 50.00 2.66 35.4 4.4 0.4 61.905 4.990 1.473 3.517 .705 

226 132 59.00 5.89 25.5 42.5 69.8 81.127 7.066 1.992 5.074 .718 

227 146 55.88 6.76 88.3 100.0 100.0 66.573 5.377 1.892 3.485 .648 

228 147 56.00 6.80    82.512 8.121 3.344 4.777 .588 

229 113 54.00 3.87 42.3 20.9 12.5 68.059 6.490 2.736 3.754 .578 

a. Total cortical thickness at midshaft 

b. Cortical Index = Total cortical thickness/ midshaft diameter 
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Table A- 12. SOS and BMD measurements for each infants.  

  Quantitative Ultrasound Radiographic Absorptiometry 

Case ID 

# 

SOSa 1 

(m/s) 

SOSa 2 

(m/s) 

SOSa 3 

(m/s) 

Avg. SOSa 

(m/s) 

Tibia BMD  

(g/cm2) 

Radius BMD  

(g/cm2) 

152 2851 2534 2679 2688 0.41786   

153 3184 3241 3249 3224.67 0.46701   

154 3077 3112 3126 3105 0.66124 0.28368 

155 3524 3509 3508 3513.67     

156 3184 3176 3180 3180 1.3197 0.57633 

157 3135 3231 3272 3212.67 0.83905   

158 2824 2841 2827 2830.67 1.1487 0.60934 

159 2761 2794 2848 2801 0.5506 0.28394 

160 3170 3089 3038 3099 0.66878 0.32536 

161 2860 2835 2835 2843.33 1.1432   

162 3067 3180 3097 3114.67 0.69363 0.40636 

163 2718 2867 2816 2800.33     

164 3360 3364 3363 3362.33 0.63448 0.29715 

165 3342 3329 3322 3331 0.84716 0.44895 

166 3074 3056 2958 3029.33 0.86517 0.35268 

167 2890 2931 2949 2923.33 0.43649 0.28055 

168 2730 2747 2750 2742.33 1.0264 0.52945 

169 2928 2952 2950 2943.33 0.87218 0.26217 

170 2696 2621 2682 2666.33 0.76629 0.3583 

171 2983 3002 3088 3024.33     

172 2741 2767 2713 2740.33 0.78603 0.56035 

173 2667 2678 2650 2665 1.0126 0.3621 

174 2918 2958 2944 2940 0.50731 0.29014 

175 2873 2893 2879 2881.67 0.59804 0.40222 

176 2879 2846 3017 2914 0.71679 0.2811 

177 3161 3169 3190 3173.33 0.92445 0.33676 

178 2622 2574 2589 2595 0.48637 0.27195 

179 2922 2864 2848 2878 1.3102 0.57633 

180 3062 2958   3010 1.169 0.40537 

181 3108 3195 3278 3193.67 0.62066 0.47806 

182 3142 3100 3134 3125.33   0.50421 

183 3111 3114 3094 3106.33 1.1795 0.35257 

184 2973 3013 3015 3000.33 1.2561 0.82565 

185             

186 2864 2778 2784 2808.67 0.90007 0.32423 

187 3271 3295 3295 3287 0.78767 0.60731 

188 3014 3062 3051 3042.33 1.1853 0.23335 

189 2516 2562 2497 2525 1.3707 0.58785 

190 2868 2886 2880 2878 1.0315   

191 3206 3233 3217 3218.67 0.40879   

192 2863 2891 2858 2870.67   0.23236 

193 2981 2955 2883 2939.67 0.45695 1.4788 

194 2842 2822 2816 2826.67 1.4945   

195 2962 2813 2834 2869.67 1.0677 0.50586 

196 3360 3345 3328 3344.33 0.7193 0.36148 

197 3104 3051 3106 3087 0.88199 0.25178 

198 3166 3164 3169 3166.33 1.4595 0.39916 

199 2930 2846 2945 2907 1.3101 0.83212 

200 2992 3011 3020 3007.67 1.2092 0.65703 

201 2433 2463 2461 2452.33 1.0381 0.51429 
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Table A- 12. Continued. 

  Quantitative Ultrasound Radiographic Absorptiometry 

Case ID 

# 

SOSa 1 

(m/s) 

SOSa 2 

(m/s) 

SOSa 3 

(m/s) 

Avg. SOSa 

(m/s) 

Tibia BMD  

(g/cm2) 

Radius BMD  

(g/cm2) 

202 3572 3472 3478 3507.33 1.0133 0.68064 

203 2845 2884 2915 2881.33 1.2201 0.51007 

204 3156 3195 3215 3188.67 1.2606 0.33227 

205 2911 2899 2911 2907 0.93144 0.60989 

206 3104 2961 3040 3035 1.0784 0.30774 

207 3027 3018 3036 3027 1.1138 0.39144 

208 2751 2721 2724 2732 0.63602 0.23529 

209 3387 3365 3377 3376.33 0.45361   

210 3284 3264 3283 3277 0.47127   

211 2834 2924 2996 2918     

212 2761 2914 2792 2822.33 0.44535   

213 2996 2963 2953 2970.67 0.53267   

214 3088 3084 3094 3088.67 0.68128   

215 3151 3140 3173 3154.67 0.62527   

216 3194 3245 3281 3240 0.8057   

217 3019 2955 2931 2968.33 0.70265   

218 3406 3270 3246 3307.33     

219 3161 3070 3141 3124 1.2782   

220 3150 3142 3143 3145 0.87401   

221 2985 3094 3114 3064.33 0.46738   

222 2822 2822 2822 2822 0.58747   

223 3006 2984 2954 2981.33 0.61827   

224 2696 2979 3022 2899 0.71026   

225 3178 3169 3143 3163.33 0.81694   

226 3009 2937 3020 2988.67 1.3421   

227 3083 3095 3055 3077.67 1.682   

228 3090 3006 3062 3052.67 1.0621 0.73991 

229 3132 3134 3131 3132.33 1.6129 0.6818 

a. a. SOS = Speed of Sound 
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