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ABSTRACT 
 

 

The NOνA (NuMI Off-axis electron neutrino Appearance) experiment is a long 

baseline neutrino oscillation experiment at Fermi National Accelerator Laboratory. Its 

purpose is to observe the oscillation of νµ (muon neutrino) to νe (electron neutrino) and to 

investigate the neutrino mass hierarchy and CP violation in the neutrino sector. Two 

detectors have been built for this purpose, a Near Detector 300 feet underground at 

Fermilab, and a Far Detector, on the surface at Ash River, Minnesota.  

The completion of NOνA’s Far Detector in October 2014 enabled not only the 

recent measurement of neutrino oscillations, but an array of other physics studies. 

Coronal mass ejections cause an observable effect on the cosmic ray intensity measured 

at and around Earth, through the enhancement of the interplanetary magnetic field. 

Studying this phenomenon generally entails the measurement of the change in intensity 

of secondary neutrons from air showers, but it is of equal interest to observe the effects 

on secondary muons. Presented here is the study of the intensity modulation as measured 

in cosmic muon data from NOνA’s Far Detector in Ash River, MN. In addition, this 

thesis details the study of the non-linear energy response of NOνA’s liquid scintillator 

through the measurement of Cerenkov reemission, providing a needed correction to 

NOνA’s energy calibration.  
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CHAPTER 1.  INTRODUCTION 

 

Neutrinos are weakly interacting spin ½ particles with no charge and currently 

undetermined masses. They come in three flavors associated with their partner leptons: 

electron neutrino, muon neutrino, and tau neutrino. In addition, each flavor has an 

associated antineutrino. For decades neutrinos were thought to be massless particles. The 

Standard Model does not accommodate massive neutrinos. But evidence of neutrino 

flavor oscillations, first predicted by Bruno Pontecorvo, and observed in solar neutrinos, 

suggest at least two neutrino flavors must have nonzero mass. Flavor oscillation is a 

function of mass difference squared, and would not be possible without massive 

neutrinos. Neutrino oscillation is described by the Pontecorvo–Maki–Nakagawa–Sakata 

(PMNS) matrix, which is defined by four parameters: the three mixing angles θ13, θ23, θ12, 

and a CP-violating phase δ. In addition to these parameters, the mass difference squared 

of the three neutrino mass eigenstates (ν1, ν2, ν3) are required to calculate oscillation 

probabilities. Presently, measured values exist for all three mixing angles, but the CP-

violating phase δ remains to be evaluated, as does the mass hierarchy. Values for the 

mass differences squared have also been measured, but exact mass measurements do not 

as of yet exist.   

The NuMI Off-Axis νe Appearance (NOvA) experiment based at Fermilab is 

designed to measure this CP-violating phase, and to determine the mass hierarchy of the 

neutrino types; m1
2
 < m2

2
 << m3

2
 (normal hierarchy), or m3

2
 << m1

2
 < m2

2
 (inverted 

hierarchy). When it is finished, NOvA will consist of three detectors: the prototype Near 

Detector on the Surface (NDOS) at Fermilab, the underground Near Detector at Fermilab 

in the NuMI beamline, and the underground Far Detector at Ash River, Minnesota, also 

in the NuMI beamline.  

NOνA’s detectors are triggered not only on the NuMI beam, but on cosmic 

evemts, mostly cosmic ray muons and neutrinos, which contribute a background to the 

beam signal. But cosmic rays are an interesting realm of physics on their own, and 

NOνA’s design allows for a large area of cosmic ray flux to be studied. This thesis details 
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the measurement of the Forbush decrease as observed by the NOνA detector, a 

phenomenon in which the intensity of cosmic rays suddenly decreases due to a coronal 

mass ejection from the Sun enveloping Earth, or at least partially covering Earth, and 

deflecting many of the cosmic rays that would normally enter the atmosphere and result 

in secondary particle showers that are observed in the NOνA detectors. 

Accurate energy calibration is vital in all particle physics experiments to allow for 

the precise reconstruction of interactions within the detectors. NOvA has been calibrated 

in-situ with cosmic ray muons, but its liquid scintillator exhibits a characteristic nonlinear 

energy response that causes an excess in the estimation of electromagnetic shower 

energies. This is observed for high dE/dx, as seen in the tail of an electromagnetic 

shower. The two factors responsible for this nonlinear energy response are Birk’s 

quenching and UV Cerenkov reemission. This thesis will detail the study of the latter 

contributor, the UV Cerenkov reemission, and how its effects on the scintillator’s energy 

response were measured and integrated for NOvA’s energy calibration. 

In addition to the studies of the Forbush decrease and NOvA’s scintillator’s 

nonlinear energy response, the author’s contributions in the NOvA experiment have 

included the preparation, construction, and repairing of the NDOS, the development and 

validation of software for offline physics analysis and reconstruction, the development of 

tools for monitoring environment variables in the detector’s instruments, and creating 

Monte Carlo simulations for the Production group for offline software validation, plus 

other service work, including scintillator filling and numerous data taking shifts in the 

NOvA control rooms. 
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CHAPTER 2.  NEUTRINO PHYSICS AND HISTORY 

 

2.1 Neutrino History 
 

 In June of 1998 the Super-Kamiokande experiment in Japan reported evidence of 

neutrino oscillation in atmospheric neutrinos. Although neutrino oscillation evidence 

from solar neutrinos was already available, Super-Kamiokanda was the first experiment 

to show with high statistics that the deficit of expected neutrinos was dependent upon the 

neutrinos’ path length and energy. This was the first sign that neutrino oscillation 

behaved as theorized. The implications of these findings were contrary to predictions of 

the Standard Model, which implied zero-mass neutrinos [1]. But the oscillation of flavor 

types is a phenomenon that is impossible without mass differences, as will be explained 

later. And differences in mass, of course, cannot exist in massless particles. 

 The neutrino was proposed by Wolfgang Pauli in 1930 to explain the results of 

Beta decay experiments. In 1914 James Chadwick had shown that, in beta decay, 

electrons were emitted in a continuous spectrum, from 0 eV to a maximum energy 

characteristic of the nuclide. The directions of the emitted electrons were almost never 

observed to be exactly opposite, a requirement for the conservation of linear momentum. 

Furthermore, the spins of all known particles involved in beta decay, the neutron, proton, 

and electron, are ½. As beta decay was understood, spin would not be conserved in the 

event of a neutron becoming a proton and an electron. Nor would angular momentum. 

Pauli proposed that a weakly interacting, spin-½, neutral-charged, light particle was 

responsible for the missing energy of Beta decay, and would also fix the problem of 

momentum and spin conservation. He suggested this particle’s properties ruled out its 

ever being detected.  

Energy conservation in Beta decay was handled by treating it as a three body 

decay, in which an antineutrino carried away the extra energy. Enrico Fermi developed 

his theory of the weak interaction in 1934 and was able to set a limit on the neutrino mass 

based on the idea that the neutrino’s mass would affect the shape of the energy spectrum 
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seen in Beta decay. Hans Bethe and Rudolf Peierls were able to predict an extremely 

small cross section for the neutrino with matter, from which they asserted neutrinos were 

not observable.  

 

 

 

Figure 2.1 Beta decay energy spectrum [2]. 

 
 The weakly interacting nature of the neutrino meant finding it would be difficult. 

Its cross section would be smaller than any known particle at the time. A large flux of 

neutrinos would be necessary if any observation was to be achieved. It wasn’t until 1956 

when Frederick Reines and Clyde Cowan made the first direct observation of 

(anti)neutrinos in inverse Beta decay (anti-νe + p
+
 → n0 + e

+
) 

 
at the Savannah River 

nuclear reactor in South Carolina, with a flux of 5E13 neutrinos/s/cm
2
 that the elusive 

neutrino was shown to exist [3]. This work would win Frederick Reines the 1995 Nobel 

Prize in physics.  

The lack of observed decay mode µ → e + γ suggested a conservation law for 

muon and electron type leptons. A second type of neutrino, the muon neutrino, was 

discovered in 1962 at Brookhaven National Laboratory’s Alternating Gradient 

Synchrotron (AGS) facility by Leon Lederman, Melvin Schwartz, and Jack Steinberger 

[4]. The AGS fired protons at a beryllium target, which produced a shower of pi mesons 

that decayed into muons and neutrinos. Only the neutrinos would penetrate the 5,000 ton 

steel wall of the neon-filled spark chamber, where muon spark trails would be formed by 
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muon neutrinos and observed by the scientists. For this discovery the team won the 1988 

Nobel Prize in physics.  

After the discovery of the tau lepton in 1975 the tau neutrino was postulated to 

exist. The DONUT collaboration at Fermilab detected the first signs of the tau neutrino in 

2000, the third flavor of neutrino predicted by the Standard Model. Its neutrino beam was 

created from 800 GeV protons from Fermilab’s Tevatron interacting in a tungsten beam 

dump. The main source of tau neutrinos was the decay of Ds mesons into tau leptons and 

tau antineutrinos, and the decay of tau leptons into tau neutrinos. Only four out of 203 

observed neutrino events were associated with tau neutrino tracks. But these events were 

in such excess of the background that there was only a 4E-4 probability these were part of 

the background [5]. 

 

 

Figure 2.2 Weak interactions of the neutrino. Charged current interaction (left) and 

neutral current interaction (right). 

 

2.2  The Solar Neutrino Problem 
 

Neutrinos observed on Earth have various sources, two of which are natural. Solar 

neutrinos are formed in fusion reactions in the sun, either in the proton-proton chain 

reaction (pp cycle) or the CNO cycle. The pp cycle is the dominant chain in the sun, as a 

process by which the sun converts hydrogen to helium.   

The first stage of the pp cycle, the fusion of two hydrogen atoms into deuterium, 

releases a positron and an electron neutrino. In the second stage, deuteron and proton 

combine to make 
3
He and a photon. During the third stage, the 

3
He combine to make an 
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alpha particle and two protons, or a 
3
He combines with a proton to make an alpha, a 

positron, and an electron neutrino. A third reaction in this stage is the creation of 

Berillium and a photon by the reaction of 
3
He with an alpha particle.  

 

 

Figure 2.3 Proton-Proton Chain. 

 

PP-chain: 

p + p → D + e
+ 
+ νe 

p + p + e
- 
→ D + νe 

D + p → 
3
He + γ 

3
He + p → α + e

+ 
+ νe 

3
He + 

3
He →  α + p + p 

3
H + α → 

7
Be + γ 

Berillium then creates alpha particles and additional neutrinos. 

7
Be + e

- 
 → 

7
Li + νe 

7
Li + p → α + α 

7
Be + p → 

8
B + γ 

8
B → 

8
Be + e

+ 
+ νe 

8
Be → α + α 
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 Five different reactions in the pp chain create neutrinos. There is a characteristic 

energy spectrum for each. The highest flux is from neutrinos created by the initial p + p 

reaction, accounting for about 60% of the expected flux, though they are also of the 

lowest energy.  

 

 

 

Figure 2.4 Expected energy spectra for solar neutrinos. 

 

Measuring neutrinos from the sun was made possible by Ray Davis, who devised 

a detector at Homestake mine filled with 100,000 gallons of Chlorine. The experiment 

was held a mile underground to eliminate cosmic ray backgrounds, and detected 

neutrinos through the process νe → 
37
Cl → 

37
Ar + e

-
. The reaction has a threshold of 0.8 

MeV, and was not sensitive to neutrinos from the initial pp reaction. Argon atoms were 

produced at a rate of about one every two days, and were collected over a period of 

several months. By 1968 only one third the predicted number of Argon atoms were 

found. The predicted number was based on the Standard Solar Model (SSM) of the 

interior of the sun, and experiments following Davis’s confirmed the solar neutrino 

deficit [6]. 

 This deficit in Davis’s experiment was known as the solar neutrino problem, 

because the cause of the deficit was unknown. No models of the sun or of particle physics 
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at the time could provide an answer. One possibility was a flaw in either the SSM or the 

SM, leading to inaccurate predictions for the numbers of neutrinos expected from the sun. 

But the rationale against this was that flaws in these models would have manifested 

elsewhere, in the form of questionable results from other experiments. With no existing 

evidence to suggest a flawed SSM or SM, the only possibility was something unknown 

happening to the neutrinos on their way from the sun’s core to Earth. The assumed zero 

mass of the neutrino turned out to be the flaw responsible for understanding these missing 

neutrinos. Bruno Pontecorvo proposed the idea of neutrino oscillation in 1957, the 

process by which one neutrino flavor transforms into another during flight. This 

phenomenon would require the neutrino to have mass, contrary to the common belief that 

the neutrino was a massless particle. Flavor oscillation would explain why detectors were 

seeing so few neutrinos when so many more were expected: They were seeing only one 

type of neutrino. In 1968 Pontecorvo suggested that Davis’s experiment’s shortage in 

neutrino detection was due to its insensitivity to the other neutrino types: muon and tau.   

2.3  Neutrino Oscillations 
 

Although the Kamiokande experiment in Japan measured a similar deficit of solar 

neutrinos in 1988, it wasn’t until 1998 that the first strong evidence for neutrino 

oscillation was found in the Super-Kamiokande experiment [1]. The experiment was 

sensitive to muon, tau, and electron neutrinos, and used water in its 22.5 kton fiducial 

volume detector instead of Chlorine, as in Davis’s experiment. The process by which 

Super-Kamiokande observed neutrinos was elastic neutrino-electron scattering: ν + e → ν 

+ e. The daughter electron was detected via Cerenkov radiation emitted in the water. In 

2001, the collaboration’s results were presented on the observation of atmospheric 

neutrinos produced by cosmic ray interactions in the atmosphere, π
+
 → µ

+
  + ν µ(anti ν µ),  

µ
+
  → e

+
  + anti ν µ (ν µ) +  ν e(anti ν e). They found only 45% of the predicted number of 

neutrinos, showing the data to be consistent with neutrino oscillations. Currently the 

Super-Kamiokande has provided the best measurement for sin
2
(2θ23).  
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A solar neutrino experiment at the Sudbury Neutrino Observatory (SNO) in 

Canada, using 1000 tons of heavy water (D2O), measured 
8
B solar neutrinos through 

charged-current (CC) and neutral-current (NC) interactions [8]. The CC interaction, νe + 

D → e + p + p, is sensitive only to νe, while the NC interaction, νx + D → νx + p + n, is 

sensitive to all neutrino types. SNO was also sensitive to electron scattering (ES) 

interactions involving the recoiling of an electron hit by a neutrino, an interaction largely 

dominated by electron neutrinos. If the solar neutrino problem was due to neutrino 

oscillation, a difference would be observed between the solar neutrino fluxes from CC 

and NC interactions. In 2001, SNO published their first results, finding 35% of the 

predicted flux. When compared to the data of Super-Kamiokande, noting its 6.5 times 

greater efficiency for electron-neutrinos, it appeared all the neutrinos could be accounted 

for if oscillation were a reality. Results published by SNO in 2002 confirmed their earlier 

findings, establishing a limit on θ12 at the time (θ12 ~ π/6) and on Δm
2
12, (Δm

2
12 = 7.59E-

5 eV
2
), the mixing angle and mass difference squared corresponding to the solar neutrino 

sector. 

 

Figure 2.5 Zenith angle distributions for fully contained e-like and µ-like events in 

Super-Kamiokande. Dotted (red) histograms show non-oscillated Monte Carlo 

events, and solid (green) histograms show best-fit expectations for νµ ↔ ντ 

oscillations. Figure taken from the Super Kamiokande Collaboration [7]. 
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(2.1) 

 The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) experiment 

was the first to observe, in 2002, evidence for reactor (anti)νe oscillations. The 

experiment is an 18 m wide spherical vessel with 1,879 50 cm PMTs. It measures 

electron antineutrino flux with a 1.8 MeV threshold created through inverse beta decay. 

365   24 events were expected in a non-oscillating case, but only 258 events were 

observed, suggesting oscillation [9].  

 These experiments provided the first measurements of the solar oscillation 

parameters θ12 and Δm12
2
, allowing for a limit on the parameters sin2θ = 0.86

+0.03
-0.04 and 

Δm12
2 

= 8.0 +/- 0.3 E-5 eV
2
.  

 

 

Figure 2.6 The flux of muon and tau neutrinos versus the flux of electron neutrinos 

in each of the three possible interactions detectable by SNO [8]. Super-K's electron 

scattering data is included [9]. 
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Pontecorvo’s idea of neutrino oscillation proposed that the neutrino flavor states 

observed in detectors were a linear superposition of mass states, which are what 

propagate through space [10]. The weakly interacting flavor states νe, νµ, ντ can be 

expressed as superpositions of mass states ν1, ν2, ν3, each propagating through space with 

characteristic frequencies due to their masses, m1, m2, and m3. It is this superposition that 

is seen experimentally, as the changing composition of neutrino flavors through flight, 

not the individual mass states.  

 The mathematical representation of the superposition of neutrino mass states is 

the PMNS matrix, a matrix analogous to the CKM matrix for quark mixing [11],  

 

 

  
  
  
    

         
         
         

   

  
  
  
  

(2.2) 

where U is the PMNS matrix [12], 

    
   
       
        

     
        

   

   
     

      

      
       
        
   

   

  
        
        
   

   

 

   

                
   

                  
                   

        
                 

                    
        

  

  
        
        
   

  

(2.3) 

 

The parameters of the PMNS matrix include three mixing angles and the CP-

violating phase. In the matrix, c = cos, and s = sin. The subscripts identify the mixing 

angle. The matrix is typically broken up into three matrices for experimental 
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convenience, each representing the three experimental regimes. The Dirac CP-violating 

term, with phase δCP, appears only in the θ13 sector. In the event of the leptonic violation 

of CP symmetry, this phase will be nonzero. Because this term appears only in the θ13 

sector, we require θ13 to be nonzero as well, which recent experiments have shown to be 

the case.  

The phase factors α1 and α2 will be observable only if the neutrino is found to be a 

Majorana particle, its own antiparticle. These Majorana CP-violating phases are not 

important for neutrino oscillations.  

The θ23 sector is identified with atmospheric neutrino mixing and is driven by 

Δm
2

23 = 2.43E-3 eV
2
. The θ12 sector is identified with solar neutrino mixing and is driven 

by Δm
2

12 = 7.59E-5 eV
2
. The mixing angles determine the amount of mixing among the 

mass and flavor  states.  

 The mass states propagate through space with a time dependent plane wave 

representation,  

                                      

(2.4) 

where Ei is the energy of the mass state i,          
  , t is the time from the start of 

the propagation, pi is the momentum vector, and L is the position of the neutrino with 

respect to its starting position. The momentum is expressed by 

           
       

  
 

  
   

(2.5) 

 Due to the low mass of the neutrinos we can say mi
2
 << E

2
, and the energy in the 

phase can be given by 

                  
  

 

  
   

(2.6) 

We may drop the phase factor E(t - L) by approximating that t = L, with L being 

the distance traveled. This is because the neutrino travels the distance L in the time t, and 

c = 1 (L = ct = t). Now the wave is represented by  
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(2.7) 

 The probability of a neutrino eigenstate (α) oscillating into another eigenstate (β) 

is given by  

                  
 
       

     
    

     

 

 

 

  

(2.8) 

which can also be expressed as 

                          
 

          

   

    
          

            
 
 

  
 

         
          

  

   

         
 
 

  
  

(2.9) 

This gives the probability that a neutrino starting in the state να will be detected in the 

state νβ after traveling a distance L [13][14]. The neutrinos themselves are massive, and a 

zero mass for neutrinos would eliminate all observed oscillation. The effect of matter on 

oscillations must be taken into account when neutrinos pass through matter, as in the Sun, 

or in Earth. The matter effects will allow the mass hierarchy of neutrinos to be 

determined.  
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Figure 2.7. The probabilities of detecting neutrinos of different flavors when 

starting with a beam of νµ. Detection probability is a function of L/E, (km/GeV). 

These oscillations show the same behavior as coupled oscillators over long distances 

or with lower energies, revealing beat patterns. 
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2.4  Neutrinos in the Standard Model   
 

 

Figure 2.8. The elementary particles of the Standard Model. 

 
 The Standard Model is represented by the gauge group GSM = U(1) x SU(2) x 

SU(3) 

where hypercharge U(1) and isospin SU(2) correspond to the electroweak gauge group, 

and color symmetry SU(3) corresponds to quantum chromodynamics.  

All information about three of the four fundamental forces (strong, weak, 

electromagnetic) and the elementary particles of matter is contained within the Standard 

Model. Particles are organized by generations and types, and broken up into fundamental 

classes: quarks, leptons, and force mediating gauge bosons.  

Quarks and leptons are fermions, having spin ½. There are six leptons—three 

generations of two types (charged and neutral)—the charged particle type: the electron, 

muon, and tau; and neutral particle types corresponding to each generation: the electron 

neutrino, muon neutrino, and tau neutrino.  
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The charged fermions are Dirac particles, and have associated antiparticles: the 

positron, the mu minus, and the tau minus. Due to their neutral charge it is currently 

unknown if neutrinos are Majorana particles, meaning they could be their own 

antiparticles. If they are not, they are Dirac fermions like the electron, muon, and tau. 

This matter has yet to be settled in particle physics.  

Charged leptons interact via the electromagnetic force while the uncharged 

neutrinos interact via the weak nuclear force. 

The quarks, too, come in three generations of two types (up type and down type): 

up and down; charm and strange; top and bottom.  

 
 

 
     

 

 
     

 

 
    

Like the leptons, quarks have oppositely charged antiparticles corresponding to 

each, called antiquarks. Quarks interact with each other via the strong force, due to their 

color charge, and with other fermions via the weak and electromagnetic forces. 

Gauge bosons are force carrying particles, which mediate the forces mentioned 

above. The W+, W-, and neutral Z bosons mediate the weak interaction among particles 

with weak isospin, eight gluons mediate the strong force among particles of color charge, 

and photons mediate the electromagnetic force among particles with electric charge. 

Recent findings at CERN have confirmed the existence of the Higgs boson, the boson 

responsible for generating mass in other particles.  

It is the electroweak interaction mediated by the W and Z bosons that is relevant 

for neutrinos and the study of their properties. The electroweak theory, which unified the 

electromagnetic and weak interactions among elementary particles, was developed by 

Sheldon Lee Glashow, Abdus Salam, and Steven Weinberg, for which they won the 1979 

Nobel Prize in Physics. The W  bosons mediate charged current interactions (CC) and the 

Z boson mediates neutral current (NC) interactions [15]. 

Studying neutrinos opens up potential doors to physics beyond the Standard 

Model. In the Standard Model, neutrinos are without mass. In reality, however, 

experiment suggests the presence of neutrino masses, as implied by neutrino oscillation. 
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Massive neutrinos are therefore the first piece of evidence for physics beyond the 

Standard Model. 

 

2.5  Weak Interactions  
 

The neutrino has the unique quality of being the only particle that interacts 

through weak interactions alone. They possess no color charge and no electric charge, but 

have a weak hypercharge of -1.  

The direct observation of neutrinos in experimental devices is made impossible by 

both the small cross sections associated with low energy weak interactions and the 

electrical neutrality of neutrinos. It is through the neutrino’s interaction with other 

particles that we may observe its presence in detectors, and it is through the 

reconstruction of the resultant events that we are able to piece together information about 

these incident neutrinos. The weak interaction, therefore, is of utmost importance in 

neutrino physics. 

Electroweak interactions are represented in the Standard Model through the 

unification of the electromagnetic and weak interactions, by the SU(2) x U(1) gauge 

group. These forces are mediated by the W gauge bosons of weak isospin from SU(2) and 

the B
0
 boson of weak hypercharge from U(1), which mix to produce the Z boson and the 

photon. The W bosons mediate charged current (CC) interactions, and the Z boson 

mediates neutral current (NC) interactions. The photon mediates all electromagnetic 

interactions.  

To develop the electromagnetic portion of the electroweak theory we start with 

the Lagrangian for a free Dirac fermion [16] 

                                                

 (2.10) 

where ψ is the field that describes the particle, m is its mass, and γ
µ
 are the Dirac 

matrices. This Lagrangian is invariant under a global U(1) gauge transformation 
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 (2.11) 

where α is an arbitrary real number. However, if the phase transformation depends on the 

space-time coordinate, the Lagrangian is not invariant. This is a local gauge 

transformation, 

                           

(2.12) 

and is invariant because 

                                                                      

 (2.13) 

 The gauge principle requires that the U(1) phase transformation holds locally, 

which necessitates one adding an additional term to the Lagrangian. This allows us to 

cancel the δµx term in (2.13). We introduce a new spin-1 field called Aµ(x) that 

transforms under local gauge transformation as 

                                        
 

 
                                                          

(2.14) 

 We define the covariant derivative  

                                                                        

 (2.15) 

which transforms like the field, 

                                                                             

 (2.16) 

 The gauge field Aµ is added in a term to the Lagrangian, 

                                                                          

(2.17) 

and we apply the covariant derivative (2.15) to obtain a Lagrangian invariant under local 

U(1) transformations 

                                                        
     .      (2.18) 
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 It is the introduction of this gauge field that generates interactions. Here it is an 

interaction between the Dirac fermion and the gauge field Aµ. To make Aµ a propagating 

field and to complete the locally invariant Lagrangian, we add a gauge invariant kinetic 

energy term 

                         
 

 
       

     ,                            (2.19) 

where Fµν  =  ∂µAν - ∂νAµ is the electromagnetic field strength, invariant under (2.14). 

Local gauge invariance would be lost by the presence of a mass term for the gauge field, 

Lm = ½ m
2
A

µ
Aµ, because A

µ
Aµ is  not invariant under (2.14). Hence, the gauge field—

and by extension, the photon—must be massless. 

  Having imposed local gauge invariance on our original Lagrangian and adding a 

massless gauge field, we have a complete locally invariant Lagrangian  

                                                 
 

 
                                                  

(2.20) 

 The last term in (2.20) represents the coupling of fermion fields ψ and ψ  to the 

gauge field Aµ, the photon field that preserves gauge invariance [17]. When using the 

covariant derivative in (2.15) and defining Đ = γµDµ we can simplify the Lagrangian 

further, 

                 
 

 
        

             
 

 
        

   (2.21) 

This is the Quantum Electrodynamic (QED) Lagrangian. The Lagrangians in (2.19) and 

(2.20) lead to the Maxwell Equations: 

                                                             
                                                              

(2.22) 

where J
ν
 is the fermion electromagnetic current and α, up until now an arbitrary real 

constant, is the corresponding electromagnetic charge [18]. 
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 We see here how the electromagnetic portion of the electroweak theory takes 

shape. To unify the electromagnetic and the weak portions of electroweak theory we must 

now examine the weak interactions, and see how the W and Z bosons obtain their masses 

 A 1956 experiment by physicist Chien-Shiung Wu showed that neutrinos have a 

left-handed chirality and anti-neutrinos have a right-handed chirality. Because the left-

handed fermion field has a non-trivial representation in the SU(2) we can put the left 

handed states into the doublet representation of that group, 

     
  
  
 
 
              

  
  
 
 

      
  
  
 
 
 

                                                                        (2.23) 

These will couple to the W+ and W-, but the right-handed states will not. They can be 

represented as SU(2) singlets.  

                                        le = eR, lµ = µR, lτ = τR.                                                                      

(2.24) 

A massless gauge boson acquires mass through spontaneous symmetry breaking, 

via the Higgs mechanism. This is how the W, Z, and γ connect to the gauge fields, and 

how the W and Z bosons become massive. Glashow, Weinberg, and Salam based their 

theory of electroweak forces on a spontaneously broken SU(2) x U(1) gauge group. Four 

vector fields are required for the position dependent rotation of a field φ in the SU(2) x 

U(1) space. Three of these fields correspond to the SU(2) group, (W
a
µ), and one comes 

from the U(1) group, (Bµ) [17] [16]. 

Gauge boson mass terms are generated through the spontaneous breaking of 

symmetry, via the interaction with a scalar field H of the group SU(2), which has a 

vacuum expectation value 

       
 

  
 
 

 
  

           (2.25) 

To get our masses, let us define a new covariant derivative represented by the 

vector fields required for the rotation of φ discussed above.  
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(2.26) 

Where τa = σa/2, with σ being the Pauli matrices, and g and g’ are the coupling 

strengths for SU(2) and U(1) gauge groups, respectively.  

Squaring (2.26) and evaluating it at the vacuum expectation value (1.24), we 

begin to build the electroweak Lagrangian that will give us our gauge boson masses.  

   
 

 
          

     
 

 
        

      
 

 
      

 

 
  

(2.27) 

Using the Pauli matrices and evaluating the matrix product we get,  

   
 

 

  

 
      

  
 
        

  
 
      

        
 
  

(2.28) 

where Bµ are massless U(1) gauge bosons, and the massive vector bosons Wµ and Zµ can 

be defined in terms of Bµ and the massless SU(2) gauge field Āµ = (Aµ
1
, Aµ

2
, Aµ

3
).              

  
   

 

  
   

      
   

  
   

 

        
    

         

    
 

        
     

        

 (2.29) 

The Lagrangian (2.28) can now be written as 

   
 

 

  

 
     

                 
      

(2.30) 

The covariant derivative (2.15) can be written as, 
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  (2.31) 

with, 

               
 

 
              

  (2.32) 

The electron charge e is represented in the covariant derivative as 

   
   

        
 

   (2.33) 

and the electric charge quantum number is given by Q = T
3
 + Y, where T

3
 is weak isospin 

and Y is weak hypercharge. 

 We introduce the weak mixing angle, θW, which describes the rotation of the W
0
 

and B
0
 vector bosons to produce the Z

0
 boson and the photon via spontaneous symmetry 

breaking.  

                              

 
 

  
    

          
           

  
  

  
  

                 (2.34) 

where, 

       
 

        
           

  

        
 

              (2.35) 

We can express the electron charge’s magnitude in terms of the weak mixing angle, 

                  

   (2.36) 

We see that g = e/sinθW. Using this, we can express the covariant derivative that 

describes the W and Z
0
 coupling to fermions, given by 

         
 

  
   

       
       

 

     
    

                   

 (2.37) 

The Lagrangian for the coupling between gauge bosons and leptons is given by 
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    (2.38) 

in which, 

  
  

     
        

    

  
  

     
        

    

  
 
    

 

                

     
  
 

 
        

   
 

 
                

           

     
    

 

 
  

 

 
              

   
 

 
         

     
     

 

 
  

 

 
              

  
 

 
          

   
 

                
 

 
         

 

 
    

 (2.39) 

The first term in (2.39) handles all charged current interactions mediated by the W
+
 and 

W
-
 gauge bosons [18]. The second term describes neutral current interactions mediated 

by the Z
0
, while the last term represents electromagnetic interactions mediated by the 

photon, depicted by the gauge field Aµ. 

 The W
+
 and Z

0
 acquire mass, with the W

+
 mass given by,  

     
  

 
 

       (2.40) 

and the Z
0
 mass is given by, 

     
        

 
   

       (2.41) 

The masses are not predicted by the Standard Model, but are measured to be 

MW = 80.385+/-.015 GeV/c
2
,  MZ = 91.1867+/-.0021 GeVc

2
 

The currents of the W and Z bosons are  
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 (2.42) 

where γ
µ
 are the Dirac matrices, gW and gZ are coupling strengths for the W and Z bosons, 

  and   are Dirac spinors, and γ
5
 = iγ

1
 γ

2
 γ

3
. 

The coupling strengths in these interactions are related through the weak mixing 

angle. 

  
  

        

 (2.43)   

 The value of ϑW depends upon the value of Q, the momentum transfer at which it 

is measured. Experiments at SLAC and Jefferson Labs have measured the mixing angle 

at low Q
2
, via Møller scattering and parity violation electron scattering, respectively. The 

SLAC experiment measured the quantity sin
2
ϑW at Q = 0.16 GeV/c, obtaining the value 

sin
2
ϑW = 0.2397 ± 0.0013, and the Jefferson Lab experiment measured the same quantity 

at Q = 91.2 GeV/c obtaining the value sin
2
ϑW = 0.23120 ± 0.00015. The currently 

accepted value by NIST is sin
2
ϑW = 0.2223 ± 0.0021. All three values correspond to a 

mixing angle of approximately 30 degrees [19] [20] [21]. The Weinberg angle’s value is 

not predicted by the Standard Model, nor is the reason for its measured value currently 

understood. 

 

2.6  Neutrino Mass 
 
 Until the discovery of neutrino oscillations in 1998, neutrinos were treated as 

massless particles in the Standard Model. It is this oscillation of weak flavor states that 

first suggested that neutrinos, thought to be massless for decades, must have mass. Flavor 

oscillation is dependent upon mixing angles and the mass difference squared between 

neutrino states, requiring that Δm
2
ij ≠ 0, where Δm

2
ij = mi

2
 – mj

2
, and i and j denote the 
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mass states. A nonzero mass difference implies that at least one of the neutrino masses 

must be nonzero. 

 There are three known neutrino flavors, three neutrino mass states, and three mass 

splittings associated with the states, given by Δm21, Δm32, and Δm31. Only two are 

independent, Δm31= Δm21+ Δm32. 

 Experiments have shown that the mass differences for all neutrino oscillations are 

nonzero, meaning at least two of the three neutrino types are massive. Neutrino 

oscillations are insensitive to the neutrino masses themselves, depending instead only on 

the differences between masses, and so the direct measurement of neutrino mass is not 

discernible through oscillation measurements alone. The absolute neutrino mass scale is 

unknown. 

 Mass splitting has been observed between all neutrino mass states, but the sign of 

Δm
2

31 remains to be determined. It is the sign of this mass difference that will determine 

the neutrino mass hierarchy. For Δm
2

31 > 0 the mass hierarchy is called a “normal” 

hierarchy, but for Δm
2

31 < 0 the mass hierarchy is “inverted”. 

 Normal hierarchy: m3 ≫ m2 > m1 

 Inverted hierarchy: m2 > m1 ≫ m3 

A current limit on neutrino mass has been set by the Troitsk experiment, by 

experimentally measuring an electron antineutrino mass in tritium beta-decay. It provides 

an experimental estimate for neutrino mass squared mν
2
 = -0.67 + 2.53 eV

2
, giving an 

upper limit of mν = 2.05 eV, 95% CL [22]. This, however, is the measurement of a flavor 

state, a superposition of the three mass states. This does not reveal the masses of the mass 

states.  

 Beyond the three known neutrino flavor states lies the possibility of sterile 

neutrinos. If such a neutrino exists, other mass states may exist beyond the three already 

known. This would require an expansion of the neutrino mixing matrix. Sterile neutrinos, 

if they exist, do not interact via any known interactions except gravity. 
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Figure 2.9. The normal (left) and inverted (right) hierarchies for neutrino flavors.  

  

2.7  Neutrino Interactions  

 
 Neutrino interactions are mediated by the W and Z bosons, W

±
 mediating charged 

current interactions, and the Z
0
 boson mediating neutral current interactions. There are 

three categories of neutrino interactions, each of which will be discussed in depth [23] 

[24] [25]: 

 

Charged current quasi-elastic and neutral current elastic interactions: The neutrino 

strikes a nucleon and the nucleon recoils. Lower energies are dominated by NC elastic 

scattering in which the nucleus recoils intact: 

ν + N → ν + X,    + N →   + X 

where N is the nucleon, either n or p, and X is the final state hadron. 

Larger energies allow CC quasi-elastic scattering, which leave a charged lepton in 

the final state: 

νµ + N → µ
-
 + X,   µ + N → µ

+
 + X 

Resonance interactions: For higher energies, the neutrino excites the nucleon into 

a baryonic resonant state, which decays back to a nucleon, often times to be accompanied 
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by a single pion. Other final states are possible depending on the energy of the incoming 

neutrino. 

νµ + N → µ
-
 + Δ

++
 → µ

-
 + p + π

+ 

νµ + N → µ
-
 + Δ

+
 → µ

-
 + n + π

+
 

Deep inelastic scattering: At the highest energies, neutrinos can scatter off the 

quarks within the nucleons, producing a lepton and a hadron. This mode is dominant for 

neutrino energies above 10 GeV. 

Resonance interactions and deep inelastic scattering may occur in both charged 

current and neutral current processes. 

 

 

Figure 2.10. Neutrino and antineutrino CC cross sections in the GeV region, shown 

as σ/Eν. Deep inelastic scattering, quasi-elastic, and single pion cross sections shown 

separately. [25] 
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2.7.1  Quasi-elastic Interactions 

 
 

 

Figure 2.11. Neutral current electron elastic scattering (left) and charged current 

electron elastic scattering (right). 

 

 Neutral current elastic and charged current quasi-elastic interactions are the 

lowest energy neutrino interactions, occurring around less than 2 GeV. They provide a 

large source of signal events in neutrino oscillation experiments conducted at this energy. 

Neutrinos and antineutrinos scatter off of protons and neutrons in the nucleus in neutral 

current elastic scattering, and the nucleus remains intact. At slightly higher energies 

charged current interactions may occur, resulting in quasi-elastic scattering which places 

a massive charged lepton in the final state. This reaction type dominates for muon type 

neutrinos where Eν < 1 GeV. The following discussion borrow from [23]and [16].  

 For a charged current interaction, let us consider the process νµ + e
-
 → µ

-
 + νe. It 

is represented by  

 

 

In this process, q = p1 – p3. The W propagator is given by 



 

29 
 

               
    

      
   

 

(2.44) 

For the condition q
2
 <<   

   it reduces to 

    

      
 

(2.45) 

From this we get the amplitude 

  
  
 

      
 
                                   

        

(2.46) 

There is a shortcut to finding matrix elements, called Casimir’s trick, in which one sums 

over all spins, multiplies the matrices, and takes the trace.  

                         
                             

         

 

(2.47) 

where ma and mb are masses, c is the speed of light, and ᵽ ≡ p
µ
γµ. By assuming negligible 

neutrino masses and by applying Casimir’s trick we get 

         
  

 

        
 

 

     

                         
              

                 
                    

 (2.48) 

 Taking both traces gives 

                                            
 
  
     

   
 
                                                   

(2.49) 

for the first trace, and  

                                                                                  
   

                     

(2.50) 

for the second. And by the property that ϵ
µνλσ

ϵµνκτ = -2(  
   

  -   
   

 ), we can see that 
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 (2.51) 

We want the average over initial spins. Although the electron has two spin states the 

neutrinos have only one. Therefore, 

          
  
    

  
 

                    

 (2.52) 

Moving to the center of mass frame, we can ignore the mass of the electron, and say 

          
  
    

  
 

     
   

 

  
 

 

    

(2.53) 

where E is the incident electron or neutrino energy. The general form of differential cross 

section for a two body reaction is given by  

    
    

               
   

     
     

(2.54) 

and is integrated to give the total cross section 

                 
                    

    
        

    
        

  

(2.55) 

The isotropic differential scattering cross section of the charged current interaction is 

  

  
  

 

 
  

    
  

         
 

 

     
   

 

  
 

 

 

 

  

(2.56) 

Integrating over all angles gives us the total cross section 

   
 

  
   

  
 

      
 

 

    

 

     
   

 

  
 

 

 

 

  

(2.57) 
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 Now we consider an elastic neutral current interaction in which a neutrino scatters 

off an electron.  

 

 

 

 In the reaction νµ + e → νµ + e the Z
0
 propagator is given by 

 

               
    

      
   

 

(2.58) 

For the condition q
2
 <<   

    it reduces to 

    

      
 

(2.59) 

following the same reasoning as in the charged current interaction. Our amplitude is 

  
  
 

       
                                   

         

(2.60) 

Using Casimir’s trick we find 

           
  

     
  
 
                  

             

              
                     

           

  
 

 
 
  
   

 
 

          
                   

          
                         

    
     

              

 (2.61) 
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where m is the electron mass, and cV and cA are the neutral weak vector and axial 

couplings for the electron, specified by the GWS model: 

 

Table 2.1. Neutral weak vector and axial couplings. 

 

 

Switching to the center of mass frame we can once more ignore the electron mass, 

           
   

    
 
 

           
            

      
 

 
  

(2.62) 

where E is the energy of either electron or neutrino, and θ is the scattering angle. We find 

the differential scattering cross section to be 

  

  
    

  

 
 
 

 
   

      
 
 

            
            

      
 

 
  

(2.63) 

Integrating over all angles of the differential scattering cross section we get the total cross 

section   

    
 

  
      

  
    

 
 

     
     

           

(2.64) 

  When speaking of neutrino or antineutrino quasi-elastic scattering what is meant 

is the processes νµ + n → µ
-
 + p and  µ + n → µ

+
 + p in which a charged lepton and 

single nucleon are ejected by the elastic interaction of a neutrino/antineutrino with a 
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nucleon. Quasi-elastic scattering is the dominant neutrino interactions at energies below 1 

GeV, and provides a large signal sample in neutrino oscillation experiments [27]. Such a 

quasi-elastic interaction for neutrinos is depicted by the diagram 

 

 

 

The amplitude of the interaction is  

   
 

  
                                   

            

(2.65) 

where θC is the Cabibbo mixing angle that determines the probability of quark flavor 

mixing in weak interactions, and Γλ provides the weak form factors for the nucleon, 

which are functions of the four momentum q
2
, and act to parameterize the amount of the 

weak currents present in the interaction 

        
       

     
    

     

  
  

    
     

 
          

    
        

  

 

  
            

     

 
 

(2.66) 

The differential quasi-elastic cross section can be written in the form of these nucleon 

form factors 

  

   
  

  
         
     

             
     

  
  

      

  
       

(2.67) 
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where GF is the Fermi constant, the (-)+ corresponds to (anti)neutrino scattering, and the 

Lorentz invariant Mandelstam variables are s and u, defined as 

           
           

            

           
           

                

(2.68) 

where p1 and p2 are the four momenta of the incoming particles and p3 and p4 are the four 

momenta of the outgoing particles.  

The form factors in equation (2.66) describe the underlying nucleon structure 

[26]. FV
1
, FV

2
, and FV

3
 are the vector form factors, which have been well determined via 

electron scattering experiments. FV
1
 is the Dirac electromagnetic isovector form factor, 

and FV
2
 is the Pauli electromagnetic isovector form factor. The values of A(q

2
), B(q

2
) and 

C(q
2
) in equation (2.66) are given by 

       
      

   
     

  

  
      

       
  

  
    

     
  

  
    

        
  

   
 

  
     

    
 

  
  

  

  
    

      
         

     

       
  

  
    

      
       

       
 

 
     

      
     

  

   
    

      

(2.69) 

 The Dirac and Pauli electromagnetic form factors may be expressed as functions 

of the Sachs form factors, which are known experimentally. 

  
       

 

   
  

   

   
       

  

   
  
        

(2.70) 

   
       

 

   
  

   

   
         

        

(2.71) 

The Sachs form factor values have been determined to be 



 

35 
 

  
       

 

    
  

        
  

(2.72) 

  
       

         

    
  

        
  

(2.73) 

Due to T invariance, all form factors must be real. Due to charge symmetry F
3

V,A = 0, 

because it is the only imaginary form factor. Conserved vector current requires F
3

V = 0. 

The remaining vector form factors have been measured to good precision.  

    
     

 

         
  

  

(2.74) 

 Fp is the pseudo-scalar form factor, and ξ is the difference between anomalous 

magnetic moments of the proton and neutron, µp - µn. 

FA is the axial-vector form factor, which is a function of axial mass 

    
    

  

         
  

                   

(2.75) 

Nuclear effects can change the cross section and kinematics of the final state. The nuclear 

effects considered in many neutrino experiments use the relativistic Fermi Gas model, in 

which the excitation of the nuclear system is accomplished by the transition of a nucleon 

from a state below the Fermi surface to one above the Fermi surface. These effects 

include the Fermi motion of the nucleons inside the target nucleus, the nucleon’s binding 

energy within the nucleus, Pauli blocking, and final state interactions like re-scattering of 

the outgoing particle. The q
2
 dependence has been taken from neutrino-nucleon quasi-

elastic scattering data. MA has been measured by a number of experiments, shown in 

Figure 2.12. The world average is MA = 1.026 ± 0.021 GeV [27]. 
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Figure 2.12. Experimental determination of the axial mass.  

 
 Figure 2.14 shows the current status of νµ and antiνµ quasi-elastic scattering cross 

sections as a function of neutrino energy. A theoretical comparator is provided by the 

NUANCE neutrino event generator.  

 

 

Figure 2.13. Data from numerous nuclear targets are shown, including ANL, BEBC, 

BNL, FNAL, LSND, Gargamelle, MiniBooNE, NOMAD, SKAT, and Serpukhov. 

The QE free nucleon scattering prediction assuming MA = 1.0 GeV is shown as well, 

although the prediction is altered by nuclear corrections from neutrino-nucleus 

scattering. [27] 
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2.7.2  Resonance Interactions 

 

 
Figure 2.14. A charged current resonance interaction with a Δ

+
 in the intermediate 

state and a single pion in the final state. The interaction is  νµ + n → µ
-
 + Δ

+
 → µ

-
 + n 

+ π
+
. 

 

 When a higher energy neutrino interacts with a nucleon, the nucleon can be sent 

into a baryonic resonant state, after which it will quickly decay back to its original state, 

often emitting a pion in the process. This is an inelastic scattering process, and can occur 

in both CC and NC interactions. Although the single pion in the final state is most 

common in baryonic resonances, other final states may include kaons, photons, η and ρ 

mesons, or even multiple pions. The photon production process in resonance interactions 

are an important background for νµ → νe appearance searches, because the π
0
 → 2γ signal 

can look identical to the signal produced by an electron. Resonance production is most 

significant in the region between CC QE dominance and DIS dominance, 0.5 GeV < Eν < 

10 GeV.   

 Neutrino induced single pion production is most commonly simulated with the 

Rein-Sehgal model, developed by Dieter Rein and Lalit Sehgal in 1981 [29] [30]. The 

model simulates both CC and NC resonance interactions. To obtain cross sections for 

particular channels the amplitude for each resonance production is calculated and 

multiplied by the probability of decay for that resonance into that channel. The model can 

be used to calculate the cross sections of single photon, kaon, and η productions by 

changing the decay probability of the resonances. Due to the model’s original 

approximation of the muon mass being zero, the model has known discrepancies with 

recent pion production data, especially for low Q
2
. Recent generators attempt to 

overcome the weaknesses of the model by using more appropriate form factors, or by 
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instead relying on electro-production data for the vector contribution and fit bubble 

chamber data to determine the parameters of the axial contribution. 

 The differential cross section for a single Δ resonance can be calculated by  

  

      
  

  
        

 

   
  

  

 

          
  

 

        
            

(2.76) 

where 
 

          
  

 

 is the Breit-Wigner propagator, Γ is the width of the resonance, W is 

the resonance invariant mass, where the values for σ± and σ0 are given by 

    
  

  

 

 
     

 

  

 

(2.77) 

     
  

  

  

  
      

 

  

 

(2.78) 

where                           . 

 

2.7.3  Deep Inelastic Scattering Interactions 

 

 

Figure 2.15. A deep inelastic scattering interaction between a muon neutrino and a 

proton, producing a µ
-
 and a hadron in the final state. νµ + p → µ

-
 + X. 

 
 For the highest energy neutrino interactions, dominating above 10 GeV, the 

neutrino can scatter off the quarks within the nucleons to produce a lepton and hadron in 
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the final state. This hadronization appears as a jet of strongly interacting particles. This 

can allow the internal structure of the nucleon to be resolved. The quarks “seen” by the 

neutrino depend upon the four-momentum transfer between neutrino and nucleon, carried 

by the virtual W boson. 

 When the nucleus is probed at sufficiently high energies the hadrons may behave 

as collections of point-like particles, and certain properties, such as scattering angle or 

momentum transfer, can be determined by dimensionless kinematic quantities. This is 

referred to as scaling, first proposed by James Bjorken in 1968. It is therefore sometimes 

referred to as Bjorken scaling. Three dimensionless kinematic invariants can describe 

DIS, one of which is the Bjorken variable x, 

  
  

    
  

  

   
  

  

     
 

(2.79) 

   
    
  

 

(2.80) 

            
                    

(2.81) 

where Eν is the incident neutrino energy, MN is the nucleon mass, ν = Ehad is the energy of 

the hadronic system, and Eµ, p3 = pµ,  and cosϑ are the energy, momentum and scattering 

angle of the outgoing muon in the laboratory frame [25]. 

 We can write the inclusive neutrino and antineutrino induced DIS cross section 

using these variables, 

      

    
  

  
    

            
  

  
  

 
        

          
   

  
       

  

      
 

 
        

     

(2.82) 

where GF is the Fermi weak coupling constant, MW,Z is the W
±
 (Z

0
 boson) mass, for CC 

(NC) scattering, and the +(-) is for neutrino (antineutrino) interactions. Fi(x,Q
2
) are the 
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dimensionless nucleon structure functions. Two structure functions appear for electron 

scattering, but a third is introduced for neutrino scattering for the V,A interference term. 

In the quark parton model of the nucleus the nucleon structure functions Fi(x,Q
2
) are 

expressed in terms of the target’s quark composition. Charged lepton and and neutrino 

DIS experiments have measured these structure functions. Although equation (2.82) 

describes deep inelastic scattering there are additional effects that modify the scattering 

kinematics and cross sections, which need to be considered for a realistic description, 

including nuclear effects, radiative corrections, lepton masses, higher order QCD 

processes, heavy quark production, target mass effects, and nonperturbative effects.  

 

 

Figure 2.16. Measurements of inclusive neutrino and antineutrino CC cross sections 

divided by energy [25]. 
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CHAPTER 3.  COSMIC RAYS 

3.1    Cosmic Ray Fundamentals 
 
 Before the advent of man-made particle accelerators, cosmic rays were a primary 

source of high energy particles for studies in physics. Although they were discovered in 

1912 by Victor Hess, who would go on to win the Nobel Prize in physics, they continue 

to be an important area of study over a hundred years later. Studies of cosmic rays 

enabled the discovery of the positron and the muon, and currently serve to inform us 

about the makeup of matter outside the Solar system, as well as motivating the 

investigation of deep space processes that accelerate the particles to high energies. 

 Victor Hess’s 1912 measurements entailed the use of a balloon carrying three 

electrometers to 5300 feet in altitude and measuring the change in radiation with altitude 

to try to explain the origin of radiation that was detectable everywhere on Earth, but 

which had no known source. His experiment was motivated by a discovery of Theodore 

Wulf who, in 1909, first noticed that radiation detected by electrometer was higher atop 

the Eiffel Tower than at its base. Hess discovered a large increase in the ionization rate at 

higher altitudes. The possibility of the Sun being the source of this radiation was 

eliminated when Hess sent a balloon up during a solar eclipse, and it was concluded that 

the source of radiation must be somewhere beyond the atmosphere [31]. 

 Cosmic rays originate in outer space, in supernovae and galactic nuclei. Contrary 

to what the name implies, they are not rays of electromagnetic radiation, but atomic 

nuclei covering most of the periodic table, about 89% of which are hydrogen nuclei, or 

single protons. 9% are alpha particles, and single electrons and heavy nuclei each make 

up about 1% of the remainder. These account for what are called secondary cosmic rays, 

particles produced in interactions of interstellar gas with primary cosmic rays. Primaries 

are the particles initially accelerated by astrohpysical sources [32]. The nomenclature is 

different when talking about cosmic rays on Earth, in which the secondaries that interact 

in the atmosphere are referred to as primaries, and the daughter particles are referred to as 

secondaries. These are the definitions used in this thesis. The heavier nuclei cosmic rays 
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(composed of oxygen, carbon, magnesium, iron, and silicone) appear in the same relative 

abundance as these nuclei appear in our solar system, since these are produced in stars. 

However, there is an overabundance of rare elements like lithium, boron, and beryllium 

produced when primary heavier nuclei cosmic rays interact with interstellar gas and 

fragment into secondaries. There is also evidence that nucleosynthesis of cosmic rays 

differ from that of solar system matter, in the overabundance of 
22

Ne [33]. 

The spectra of the components of cosmic radiation can be described in four ways, 

corresponding to different stages of their propogation and location, or different means of 

measurement:  

1. Particles per unit rigidity. The gyroradius multiplied by the magnetic field 

strength gives the magnetic rigidity, which drives the propagation and 

acceleration of cosmic rays through interstellar magnetic fields, by the 

relation: 

   
  

  
      

(3.1) 

where p is momentum, c is the speed of light, Z is atomic number, e is the 

charge of an electron, B is magnetic field strength, and rg is the gyroradius.  

2. Particles per energy per nucleon. Energy per nucleon is approximately 

conserved when a nucleon breaks up after interaction with interstellar gas, 

thus fragmentation depends on this  quantity. 

3. Nucleons per energy per nucleon. Secondary particles generated in collisions 

of primary cosmic rays with the atmosphere are dependent upon the intensity 

of nucleons per energy per nucleon. Whether the primaries are free protons or 

bound in nuclei does not matter.  

4. Particles per energy per nucleus. Quantities related to total energy per particle 

are used in air shower experiments that use the atmosphere as a calorimeter. 

These values are associated with the differential intensity of cosmic rays, I, which 

has units m
-2

s
-1

sr
-1
ξ

-1
, and are individually represented by ξ. Primary nucleon intensity in 

the energy range of a few GeV to beyond 100 TeV is approximated by 
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(3.2) 

where E is the energy per nucleon, α (          is the differential spectral index of 

the cosmic ray flux, and γ is the integral spectral index. Primary nuclei fractions are 

essentially constant over this range [32].  As charged particles, cosmic rays are affected 

by magnetic fields, undergoing a randomization in direction that makes the exact origins 

of Earth-detected cosmic rays impossible to determine. But observations of the 

electromagnetic radiation produced by cosmic rays outside the solar system make it 

possible to know where they are coming from, as well as where they are contained. 

 

 

Figure 3.1. The fluxes of nuclei in primary cosmic particles per energy per nucleus 

plotted against energy per nucleus. These are the most abundant components for 

energies greater than 2 GeV/nucleon [32].  
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In 1951, radio synchrotron radiation emitted by cosmic ray electrons spiraling 

along the magnetic field lines of the Crab Nebula supernova remnant made it the first 

confirmed cosmic ray source by Y. Sekido, et al [34]. Observations of gamma ray 

emissions in hydrogen gas clouds near the center of our galaxy obtained with the High 

Energy Stereoscopic System (HESS) telescope array in Namibia in 2006 showed that the 

center of the Milky Way is another source of cosmic rays [35].  In 2013 an analysis of 

data collected by the Fermi Space Telescope confirmed that supernovae are general 

cosmic ray sources [36], although whether or not they are the most abundant sources 

remains to be known.  

The accleration mechanism of cosmic rays is still undetermined, but supernovae 

explosions are thought to be the cause, accelerating particles as their shockwaves traverse 

the interstellar gas. The favored mechanism to explain cosmic ray acceleration is first 

order Fermi acceleration, also called diffusive shock acceleration, because in this model 

the particle performs a random walk that is described by diffusion, in which a charged 

particle moves through a shockwave and is reflected by magnetohydrodynamic (MHD) 

waves in the opposite direction at a higher velocity, and is repeatedly reflected back and 

forth across the shockwave by these magnetic mirrors until they are convected away from 

the shock. This is elaborated upon in the following discussion, from [37] and [38]. 

In first order Fermi acceleration the average energy of the particle after collision 

is       where E0 is the energy before collision and β is v/c. This energy gain per 

shock crossing being proportional to   gives the “first order” designation to this form of 

acceleration, differentiating it from second order Fermi acceleration, which is 

characterized by an energy gain  proportional to the square of v/c. After n collisions there 

are       
  particles with energies        , where P is the probability that the 

particle remains inside the acceleration region after one collision. The resulting energy 

spectrum is 

                   
    

   

      . 

(3.3) 
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The particle velocity distribution is isotropic in frames of reference that have the 

interstellar gas at rest on either side of the shock due to turbulence behind the shock and 

irregularities in front of it. A symmetry arises from this condition when a high-energy 

particle crosses the shock from upstream to downstream, or downstream to upstream. The 

particle gains energy in both types of crossing, with the average energy gained in a round 

trip given by 

        
 

 
      . 

(3.4) 

The probability that the particle escapes from the acceleration region is given by  

            
 

 
  
 

 
  

(3.5) 

so that when replacing these two parameters in equation (3.3) we are left with 

                         

(3.6) 

This acceleration mechanism is considered the most promising explanation of 

cosmic ray acceleration for its ability to predict a power law high-energy cosmic ray 

spectrum, although the observed spectrum has an exponent of 2.7, as shown in equation 

(3.2), instead of 2, as predicted. Cosmic rays cover a large energy range with an energy 

dependent flux that obeys the power law differential mentioned above, between 10
9
 and 

10
14

 eV and between 10
15

 and 10
19

 eV. This relationship is shown in Figure 3.2. 

 It is thought that the mean lifetime of galactic cosmic rays decreases with energy, 

as evidenced by the observation that the ratio of secondary to primary nuclei decreases 

with increasing energy. The knee and ankle features in Figure 3.2 are not well 

understood, but attempts to explain the knee hinge on the idea that, assuming the galactic 

cosmic ray portion of the spectrum is below 10
18

 eV, some cosmic accelerators, such as 

expanding supernova remnants, are incapable of accelerating particles above energies of 

10
15

 eV. Multiple plausible explanations exist for the ankle, one being that extragalactic 

flux begin to dominate over galactic flux, causing a population of higher energy particles 

overtaking the population of lower energy particles.  
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It is also thought that the dip structure is due to γ + p   e
+
 + e

-
 energy losses of 

extragalactic protons on the 2.7 K cosmic microwave background [32]. The ankle is 

interpreted as a signature of the extragalactic nature of the highest energy cosmic rays, 

which, if correct, implies galactic cosmic rays do not contribute to the cosmic spectrum 

above 10
18

 eV. NOνA’s Far Detector is sensitive to the spectrum that includes the knee 

region, up to about 10
17

 eV, although only about 20 cosmic rays per year are expected to 

be seen originating from particles of that energy, while 4   10
6
 cosmic rays per year will 

be seen from showers induced by particles of 10
14

 eV. 

 

 

Figure 3.2. Cosmic ray flux as a function of energy. Two breaks in the spectrum’s 

power law behavior occur, at the “knee” and “ankle”, corresponding to 10
15

 and 

10
19

 eV, respectively. Low energy cosmic particles are modulated by solar wind [39]. 
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In Table 3.1 the relative abundances of cosmic ray nuclei at 10.6 GeV/nucleon are 

given, normalized to oxygen (= 1). These values do not necessarily extend to fluxes at 

higher energies because of the differing power law indices corresponding to each 

element.    

 

Table 3.1. Relative abundances of cosmic ray nuclei at 10.6 GeV/nucleon, 

normalized to oxygen (= 1) [40], [41]. 

 

 

The heliosphere of the sun extends roughly 200 AU and shields much of the solar 

system region against galactic cosmic rays below a certain energy. This has been 

determined by observing the anti-correlation between cosmic ray fluxes at Earth and the 

11 year solar cycle. The heliosphere ends at a boundary called the heliopause where the 

pressure of the interstellar medium is balanced with the pressure of the solar wind. In this 

region the solar winds slow down from supersonic (an average of 400 km/s) to subsonic 

speeds, causing compression, heating, and changes in the magnetic field. As the solar 

wind is slowed a shock is created, called the termination shock. At this barrier, about 

90% of cosmic rays below 1 GeV are deflected. The precise amount of cosmic rays 

deflected depends upon the relative strength of the solar wind, which fluctuates 

throughout the solar cycle. 
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3.2    Cosmic Rays at Earth 
 

Due to their diffusive propagation by the galactic magnetic field, and further 

modulation by the solar wind, cosmic rays reach Earth almost isotropically at most 

energies. Their collisions with the atmosphere produce air showers, cascades of particles 

including pions that decay into muons, neutrinos, and gamma rays. Alpha particles, 

neutrons, and kaons are also produced. Muons and gamma rays can lead to the production 

of electrons or positrons: muons via their decay into electron or positron, and gamma rays 

via interactions with atoms in the atmosphere, like oxygen and  nitrogen.  

 

 

Figure 3.3. The anti correlation between solar activity and cosmic flux. The top 

curve is the cosmic ray flux measured at the neutron monitor in Climax, Colorado 

(1953 - 1996). The middle is the annual mean variation in cosmic ray flux as 

measured by ionization chambers (1937 - 1994). Neutron data has been normalized 

to May 1965, and ionization chamber data has been normalized to 1965. The bottom 

curve is the relative sunspot number [42].  

 
The decay of neutral pions into photons creates a chain reaction of more photons, 

protons, antiprotons, electrons, and positrons. This produces an electromagnetic cascade. 
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Charged pions decay primarily into muons and neutrinos. Kaons, too, may decay to 

produce muons, as well as pions, permitting further cascades of electromagnetic radiation 

and muon and neutrino production. Muons and neutrinos are the most penetrating of the 

secondary particles, and are therefore the particles most commonly detected by ground 

based scintillation detectors, like NOνA. The decay chains described above for pions, 

kaons, muons, and neutrinos are shown below.  

 

            

                  

(3.7) 

The vertical flux of the cosmic ray components in the atmosphere for particles 

greater than 1 GeV are shown in Figure 3.4. These particles, except for electrons and 

protons, are produced in primary cosmic ray interactions in the atmosphere. Cosmic ray 

flux through the atmosphere is described by a set of coupled cascade equations that have 

boundary conditions at the top of the atmosphere in order to match the primary spectrum. 

This spectrum is then propagated through the atmosphere along with the associated 

secondaries via numerical or Monte Carlo calculations, and the interactions that produce 

new particles and cause the primaries to lose energy are taken into account. This method 

was used to produce Figure 3.4 [32]. 

 Muons dominate the particle spectrum reaching the surface of the Earth, making 

them a large background in neutrino experiments. This is why many neutrino 

experiments place detectors underground; it is one of the only ways to shield against 

large cosmic muon backgrounds.  

Muons are produced at an altitude of about 15 km and lose on average 2 GeV in 

ionization energy by the time they reach Earth’s surface. At sea level the mean energy of 

muons is approximately 4 GeV, and their energy and angular distribution are a result of 

the convolution of the production spectrum, energy loss in the atmosphere, and decay 

[33]. The muon energy spectrum is almost flat below 1 GeV and steepens in the 10-100 

GeV range, then steepens further at higher energies since pions with Eπ > επ (= 115 GeV) 

tend to interact with atmospheric matter before they can decay. Pions with energy lower 
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than this critical energy, however, tend to decay before they can interact with other 

particles in the atmosphere. 

 

 

Figure 3.4. Vertical fluxes of cosmic rays above 1 GeV. These estimates were made 

with the nucleon flux in equation 3.2. Data points show the measurements of 

negative muons with Eµ > 1 GeV [43] – [47]. 

 
The angular distribution of muons at ground level is proportional to cos

2
θ, a 

characteristic of muons with Eµ ~ 3 GeV. This distribution becomes steeper at lower 

energies and flattens at higher energies, approaching a secθ distribution at Eπ >> επ and θ 

< 70°. Average muon energy at ground level increases at higher angles due to the low  

energy muons decaying before reaching the surface, and high energy pions decaying 

before they interact. The spectrum can be approximated, if decay is treated as negligible 

(Eπ > 100/cosθ GeV) and Earth’s curvature is neglected (θ < 70°), by the formula 
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(3.8) 

where the first term in brackets gives the contribution of pions, and the second term gives 

the contribution of kaons.  

 Figure 3.5 shows the vertical flux of muons at the Earth’s surface, which reveals 

the hardening of the muon spectrum for muons at higher angle of incidence. At ground 

level, the approximate total number of muons from an air shower with energies above 1 

GeV is computed by [32] 

                       
  
   

 
   

 

(3.9) 

where Ne is the total number of charged particles in the shower. The distribution of 

muons per square meter, ρµ, as a function of lateral distance r from the center of the 

shower is  

    
       

           
  

 

   
 
    

          
 

   
 
    

 

(3.10) 

where Γ is the gamma function. Muon lateral spread depends on transverse momenta of 

the muons at production, and on multiple scattering. The charged particle number density 

is given by 

               
                        

   

(3.11) 

where x is r/r1, r1 is the Moliere radius and is dependent upon the atmospheric density and 

therefore altitude at which the shower is detected, s, d, and C2 are parameters that define 

the overall normalization constant C1(s, d, C2), 

            
  

      
                                      

(3.12) 
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where B(m, n) is the beta function. Shower size (Ne), atmospheric depth, and primary 

nucleus determine the values of the parameters [33]. At sea level, r1   78 m, and 

increases as air density decreases with higher altitude. Example parameter values given in 

[55] for Ne   10
6
 at sea level are s = 1.25, d =1, and C2 = 0.088. Coulomb scattering of 

low-energy electrons determines the lateral spread of a shower, which is characterized by 

the Moilere radius.  

 

 

Figure 3.5. Spectrum of muons at θ = 0°  and θ = 75°. The line is computed from 

equation 3.8.  ♦[48], ■ [49], 
▼

[50], ▲[51],   + [52], ○ [53], ● [54], and for 75°, ◊[54]. 

Figure taken from [32]. 

 

3.3    The Forbush Effect 
 
 The Forbush effect (FE) is the decrease in the observed galactic cosmic ray 

intensity/density caused by an interplanetary coronal mass ejection (CME/ICME) passing 

through Earth’s atmosphere and interplanetary magnetic field. This effect is named for 

Scott Forbush, who in 1937 made observations on the temporal changes in cosmic 

radiation at Earth. Using seventeen months of continuous ion chamber records from 

around the world he discovered correlated world-wide changes in cosmic ray intensities 
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measured at the stations. Forbush noted that the decreases occurred one or two days after 

large solar flares, and around the same time as geomagnetic storms. The variations were 

independent of atmospheric phenomena, and Forbush assumed the changes to be 

produced by perturbations of the geomagnetic field during geomagnetic storms. 

Observations made in the 1950s by Singer (1954, 1958) and Simpson et al. (1953) at the 

geomagnetic north pole suggested these variations were not solely due to geomagnetic 

field variations. Simpson and his colleagues measured a lower energy portion of the 

cosmic ray primary particle spectrum with neutron monitors and found that meteorlogical 

effects such as geomagnetic field variations did not seem to produce intensity decreases. 

They determined the effect was most likely related to solar activity, and not of terrestrial 

origin [56]. 

 CMEs are massive eruptions of solar gas and the solar magnetic field which, upon 

leaving the sun, become part of the solar wind. These ejections are associated with solar 

flares and sunspots, and their effects can be observable on Earth. A halo event CME is an 

Earth-directed ejection, so called because of how the CME appears in a coronagraph 

image, as a halo of light around the occulting disk. A CME associated with a halo event 

may pass Earth, and may be capable of causing a Forbush effect observable on Earth-

based particle detectors.  

Due to the complex physical nature of the solar interactions and the variety of 

interplanetary activity, the theoretical framework on Forbush decreases is incomplete. A 

detailed and predictive modeling of the mechanism by which the CME causes the 

observed decrease does not currently exist [57]. What is known is that the magnetic field 

of the plasma solar wind accompanying a CME causes enhancements in the 

interplanetary magnetic field that sweep away lower energy cosmic rays. The behavior is 

measurable and well studied, largely by neutron monitors around the world. As of 2008, 

the NOAA defined the Forbush effect as an abrupt decrease, of at least 10%, of the 

background galactic cosmic ray intensity as observed by neutron monitors.  

This definition, however, has been met with disagreement [57]. Physicists 

studying the Forbush effect say the decrease is not necessarily abrupt, sometimes 

occuring gradually. Nor are 10% decreases the norm, with the vast majority being much 
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smaller. Neutron monitors are not the only detectors used to measure the decrease, as 

evident in the very first observations made by Forbush, who used ionization chambers. 

Muon detectors below ground, above ground, and in space are also used to measure these 

decreases, although neutron monitors tend to be most common. A conventional definition 

of the Forbush effect is given by A.V. Belov, who says, “[the] Forbush effect is a result 

of the influence of coronal mass ejections (CMEs and ICMEs) and/or high speed streams 

of the solar wind from the coronal holes on the background cosmic rays.” [57] 

The Forbush effect is evident in cosmic ray profiles as a decrease in the cosmic 

ray intensity with characteristic features that distinguish the effect from daily fluctuations 

(sharp decrease occurring over hours or days, a recovery rate of 3 – 10 days, possible 

spike in cosmic flux directly before the decrease). Two physical mechanisms are known 

to cause the Forbush decrease, the interplanetary shock, if one is generated, and the 

interplanetary counterpart of the CME, the ejecta. According to Cane [58] there are three 

distinct cosmic ray responses for Forbush decreases, each generated by the different paths 

through which the CME passes Earth.  

In addition to the two profiles illustrated in Figure 3.6, there is a third, in which 

only the ejecta hits Earth, in the case that no shock is generated. This causes a short 

duration, one-step decrease as the ejecta passes Earth. Often times this type of Forbush 

effect is not large enough to measure in a neutron or muon monitor. The majority of 

short-term Forbush decreases greater than 4% are of the two-step type, caused by the 

shock and ejecta. The two-step is visible as a first sudden decrease that temporarily stops, 

leaving the cosmic ray intensity without fluctuation, which is soon followed by a second 

decrease (Figure 3.6, path A). The sudden increase observed directly before the sharp 

decrease in cosmic ray intensity is caused by the arrival of the interplanetary shock, and 

is referred to as precursory increase. After the passage of the shock and ejecta the cosmic 

intensity slowly recovers as particles diffuse around the shock [58] over a period of days. 

 Large Forbush decreases can have magnitudes in the 10-25% range as detected 

by neutron monitors. Anisotropies in neutron monitor data result in differing magnitudes 

measured based on the monitor’s location. When counting cosmic rates, daily averages 

give a smaller value than hourly averages. The smaller the interval measured over the 
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more noticeable the effect. Although the largest Forbush effects can reach 25% 

magnitude, most  FEs are < 10%. According to databases created by IZMIRAN (The 

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of 

the Russian Academy of Sciences), which contains about 5900 Forbush events spanning 

from July 1957 to December 2006 measured by the world wide neutron monitor network, 

the majority of FEs are even lower than 2% in magnitude. 

 

 

Figure 3.6. The structure of a coronal mass ejection and its associated shock. Solar 

wind is draped around the ejecta, compressed and heated toward the front. Cosmic 

ray profiles are modulated in different ways, depending upon the path Earth takes 

through the CME. In path A the shock and the ejecta contact Earth’s magnetic 

field. S marks the passage of the shock, T1 and T2 mark the start and end time of 

the ejecta’s passage. Path B shows the cosmic ray profile of a shock-only passage 

[58]. 

 
 Although neutron monitors are the most commonly used tools in measuring 

cosmic ray intensity, they do not measure direction and are incapable of robustly 
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handling the anisotropy of cosmic rays. Muons constitute about 70% of the charged 

cosmic ray particles at sea level, making muon detectors viable and important 

instruments for studying the Forbush decrease. Because of the difference in energies of 

the primary cosmic ray particles that produce muons and neutrons, muon detectors will 

measure approximately one third of the decrease seen by a neutron monitor, since the 

higher energy parent particles to muons will not be as strongly affected by magnetic field 

disturbances [60]. 

 

 

Figure 3.7. Cosmic ray intensity variation profiles of a simultaneous Forbush 

Decrease event on September 25
th

 2001 observed at the Jungfraujoch, Irkutsk, and 

Climax Neutron Monitor stations in (a) universal time and (b) local time. 

Jungfraujoch is in Switzerland (46.55° N, 7.98° E, Altitude: 3550 m), Irkutsk is in 

Russia (52.47° N, 104.03° E, Altitude: 433 m), and Climax is in USA (39.37° N, 

253.82° E, Altitude: 3400 m) [59]. 

 
The ability of Forbush effects to reflect large scale solar processes that are distant 

from the point of observation make the observations of cosmic ray intensity variations a 

unique means of studying solar activity and heliospheric processes [57]. The FE’s weak 

correlation to the parameters of interplanetary disturbance and geomagnetic activity 

indices is valuable, as the FE seems to be affected only by specific features of the solar 

sources of interplanetary disturbances, providing insight into heliospheric activity in 

remote space. FE observation has long been important for space weather analyses, and 

serves as part of the complete picture of heliospheric and solar storms. Old FE data is 
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valuable when considering the absence of CME and solar wind data from the early 

periods of FE measurement, allowing us to put together a more complete picture of solar 

activity when CME and solar wind data is unavailable. The study of FEs can improve our 

understanding of the sun’s behavior over long periods of time, so the accumulation of 

large amounts of information and data on this effect is important. The NOνA Far 

Detector is a fully instrumented 14 kiloton scintillation detector with a trigger for cosmic 

rays. Although designed for the purpose of studying neutrino oscillation (see Chapter 4), 

it is also a large muon detector. This thesis presents a study of the cosmic ray muon 

modulation by the Forbush effect as seen in the NOνA data. 

 

 

Figure 3.8. The magnitudes of Forbush decreases from 5900 events measured 

worldwide from July 1957 to December 2006. Ignoring the events with magnitude ≤ 

1.5%, the distribution is described by a power law with an index        , which is 

larger than the indices of other solar parameters, like the distribution of soft X-ray 

flare power with an index of 2.19 [57]. 
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CHAPTER 4. THE NOVA EXPERIMENT 

4.1  Overview 
 

The NOvA Experiment is a long baseline neutrino experiment designed to make 

high-precision measurements of the oscillation of muon neutrinos into electron neutrinos 

in the NuMI (Neutrinos at the Main Injector) beam at Fermilab. It is an appearance 

experiment, meaning its goal is to find the appearance of electron neutrinos in the near 

and far detector, and compare the muon neutrino and electron neutrino rates between two 

detectors. NOvA is the successor to the MINOS experiment, also based at Fermilab, 

which studies neutrinos with two detectors, a near detector at Fermilab, and a far detector 

735 km away in Minnesota. Like Super-Kamiokande before it, MINOS announced data 

that was consistent with neutrino oscillations in 2006. MINOS’s purpose was to see muon 

neutrinos oscillate into electron neutrinos, to measure the mixing angle θ23 and the 

squared mass differences of neutrinos, Δm
2

23.  

NOvA’s design is similar to that of MINOS, but with larger detectors and a longer 

baseline, 810 km compared to 735 km. Its physics goals are to measure the value of the 

mixing angle θ13, the CP-violating phase δ, and to determine the neutrino mass hierarchy. 

Recent measurements of θ13 by Double Chooz and Daya Bay give nonzero values for the 

mixing angle. Double Chooz found sin
2
(2θ13) = 0.085 + 0.051, and Daya Bay found, at 

5.2σ, sin
2
(2θ13) = 0.093 + 0.016 (stat) + 0.005 (syst). This large value of θ13 suggests 

NOvA will be sensitive to the neutrino mass hierarchy [61].  

The oscillation probabilities found for         and           will provide a 

value for the CP violating phase δ. NOvA’s sensitivity to the mass hierarchy depends on 

the value determined for this phase. The mass hierarchy may be determined based on 

where NOvA’s measurements lie, shown in Figure 4.1. Given the experimental values yet 

to be determined for appearance probabilities of electron neutrinos and antineutrinos, the 

value of δCP can be found within experimental error and the hierarchy can be resolved. 

NOvA’s sensitivity to neutrino oscillations depends on the oscillation probability, which 

is a function of the length traveled by the neutrino, and the energy of the neutrino beam.  
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0 

Figure 4.1. Contours surround the starred points where NOvA's measurements will 

be. The contours in this plot show a case in which δCP.= 3π/2 (for normal hierarchy, 

blue line) or π/2. The inner contour is 1σ and the outer contour is 2σ. Knowing the 

value of θ13 from reactor experiments allows NOvA to predict the appearance 

probabilities that will be seen for a given value of δCP and the mass hierarchy.  

 

 

Figure 4.2. NOvA's sensitivity to the mass hierarchy resolution (left), and the 

significance of the role of CP violation, dependent upon the value of the phase 

(right). 
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4.2  The  NuMI Beam 
 
 

 

Figure 4.3. The NuMI Beam. 

 
 The NuMI beam is the neutrino source for neutrino experiments at Fermilab, 

including MINOS, MINERvA, ArgoNeuT, and NOvA, and has been in operation since 

2005. The beam is created by firing 120 GeV protons from the Main Injector into a 

carbon target  6.4 mm wide, 15 mm high, and 940 mm long, creating a high flux of pions 

and kaons that are focused by two magnetic horns along the beam direction, into a 675 m 

long, 2 m wide decay pipe where the pions and kaons decay into muons and muon 

neutrinos (π
+
 → µ

+
 + νµ, K

+
→ µ

+
 + νµ). After the pipe are absorbers and earth that collect 

undecayed muons, pions, and kaons. Neutrinos or antineutrinos can be selected 

depending on the horn current (forward horn current for neutrinos, reverse horn current 

for antineutrinos). The target and horn locations can be reconfigured to provide a neutrino 

energy spectra from 3 to 15 GeV on axis. Pion decay kinematics provide a relationship 

between neutrino energy in the lab frame and flux, 

   
          
         

 

(4.1) 

      
  

       
  

 

    
 

(4.2) 
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where γ is the pion’s Lorentz boost and θ is the angle between pion/kaon and neutrino 

flight direction, or the beam direction and decay axis. The beam initially fired a 10 µs 

spill every 2.2 seconds, although after the upgrades to the accelerator and NuMI beam the 

recycle time between spills is 1.67 seconds, and will be ultimately reduced to 1.33 

seconds by slip stacking in the recycler, which is a method of merging two sets of a 

bunched beam into one, which doubles the bunch intensity [62]. The beam delivers 280 – 

340 kW of power, but after upgrades will deliver 705 kW for NOvA’s purposes.  

 The NOvA detectors are placed 14 milliradians off-axis of the NuMI beamline, 

where a narrow band beam exists. Moving off axis the flux decreases but the neutrino 

energy spectrum tightens. Oscillation probability is maximized at 2.2 GeV at this angle 

due to increased flux near oscillation maximum. Another benefit of the off-axis design is 

the reduction of neutral current backgrounds. Figure 4.4 shows the neutrino energies as a 

function of pion energies for different angles from the beam axis [62].   

Almost all pion decays in the NuMI beam yield neutrinos in the 1-3 GeV range. 

The NDOS is located 6.1 degrees off-axis of the NuMI beam, but is on axis of the 

Booster neutrino beam, the beam used for the MiniBooNE experiment. Its design is 

similar to that of the NuMI beam, and its neutrinos have been used in the NDOS for 

calibration purposes.  

 

Figure 4.4. Neutrino energy versus pion energy. The red is NOvA’s 2 GeV neutrino 

energy band. 
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4.3  The NOvA Detectors 
 
 Two detectors make up NOvA; an underground Near Detector (ND) at Fermilab, 

in a cavern adjacent to the MINOS hall, and a Far Detector (FD) at Ash River, 

Minnesota, 810 km north of Fermilab. Both detectors share a similar design, composed of  

 

 

 

Figure 4.5. Oscillation probabilities for neutrinos up to 10 GeV. For NOvA, located 

14 mrad off-axis, oscillation maximum is at 2.2 GeV. 

 
the same parts. A prototype detector, Near Detector on the Surface (NDOS), was built in 

2010 to test the performance of the detector design. It was built of the same materials and 

with the same overall design specifications. 

Sixteen-cell PVC extrusions (15% TiO2) filled with a liquid scintillator composed 

of mineral oil (Renoil 70-T) (94.91%), pseudocumene (4.98%), PPO (0.110%), bis-MSB 

(0.00153%), Stadis-425 (0.0010%), and tocepherol (0.0010%) constitute the detector 

volume. Pseudocumene is the primary scintillant, absorbing light of wavelength 115 nm 

to 270 nm (peak is approximately 190 nm), and emitting it in the range 275-345 nm (peak 

is approximately 285 nm). PPO and bis-MSB act as wavelength shifting agents, to shift 

the pseudocumene’s emitted light to higher wavelengths that can be captured by the 
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wavelength shifting fibers. PPO absorbs light in the 220-345 nm range (peak is 

approximately 305 nm), emitting it over the range 310-450 nm (peak is approximately 

355 nm). This light is further shifted by the bis-MSB, which absorbs light over the 300-

390 nm range (peaks around 345 nm), and emits it over the 380-450 nm spectrum 

(peaking around 415 nm). This is within the range of light that will be captured by the 

fiber. See Chapter 5 for a detailed discussion of the liquid scintillator. Each cell in the 

extrusion is 3.9 cm x 6.0 cm x 15.6 m (FD) with up to 92% reflectivity on the inside, due 

to the titanium dioxide, at 430 nm, which is close to the peak of the scintillator’s emission 

spectrum. There are about 8 reflections on average in each cell before the light is 

captured by wavelength-shifting fibers.  

The FD is composed of approximately 360,000 of these PVC cells and the ND is 

composed of approximately 16,000 cells. Through each cell is looped a 0.7 mm thick 

wavelength-shifting (WLS) optical fiber that reads out onto one pixel of a 32-pixel 

avalanche photo-diode (APD). This fiber collects the light emitted by the scintillator and 

reflected by the cell walls when a particle passes through. The fiber absorbs light from 

350-480 nm, with a peak at 433 nm. Total internal reflection prevents most of the light 

from 450-650 nm from escaping. Light below 520 nm is attenuated while traveling 

through the fiber. 

When a charged particle travels through a cell of the detector it interacts with the 

scintillator, producing light, represented by the blue line in Figure 4.6. This light reflects 

off the inner walls of the cell until one of three things happens: it is absorbed by the WLS 

fiber, which sends light onto a pixel of a connected APD; it is absorbed by the PVC cell; 

it is reabsorbed by the scintillator. A MIP passing through a cell undergoes a dE/dx ≈ 

12.9 MeV across the cell.  

Two sixteen-cell extrusions are connected into modules, and the modules are put 

into planes layered in orthogonal views to create horizontal and vertical planes of cells. 

This allows for the determination of x and y coordinates within the detector. In addition 

to the 32 cell extrusions, each module, as pictured in Figure 4.6, consists of an end plane, 

a manifold cover (housing fiber covers, seals, and raceways, through which fibers are 
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routed to an optical connector) a snout, on top of which is held an electronics box with 

the front end boards (FEB), and an optical connector, reading out into an APD. 

 

 

Figure 4.6. A PVC cell with WLS fiber looped through, showing the trajectory of a 

particle (right), and a 16-cell extrusion with manifold cover and other assembly 

pieces. 

 

The Near Detector is composed of 196 planes of PVC extrusions, 2.9 m x 4.2 m 

in size. Ten steel scintillator planes are at the end of the detector as muon catchers. The 

detector’s mass is 220 tons, and the cosmic ray muon rate is approximately 50 Hz, with a 

105 m overburden. The  neutrino rate is expected to be 30 events per spill, with a 10 µs 

spill every 1.33 seconds. 

 The Far Detector is built of 896 planes of PVC extrusions, 15.6 m x 15.6 m in 

size. Its mass is 14 kTon, with a 65% active volume. The cosmic ray muon rate in the Far 

Detector is around 200 kHz, with a 2-3 m overburden. The expected neutrino rate is 

about 1400 νe beam events per year. The Far Detector and Near Detector were completed 

in late 2014, from which point they have been taking data continuously. 



 

65 
 

The prototype detector, the NDOS, actively collected data starting in October 2010 from 

the NuMI beam, the Booster beam, and cosmic ray muons. It is a 210 ton detector with 

20 tons of fiducial volume. It is 6 blocks of 31 alternating orthogonal planes, with a muon 

catcher at the end, filled with pseudocumene liquid scintillator. It gets 500 µs wide 

triggers from the NuMI and Booster beams, plus a 10 Hz pulser.  

 

 

Figure 4.7. Horizontal and vertical planes of cells in the NOvA detector design. The 

left arrow identifies horizontal cells and the right arrow identifies vertical cells. 
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Figure 4.8. The NOvA detectors at scale, including the prototype detector. 

 

 

Figure 4.9. The Near Detector on the Surface (NDOS), its veto, target, and shower 

containment areas colored for identification.  

 

4.4  NOvA Electronics and Data Acquisition 
 Both ends of the WLS fiber in the cell transmit light to a single pixel of a 32-pixel 

array avalanche photodiode. These 32 pixels are mapped to the 32 cells in the PVC 

extrusion module. Light from the fiber crosses an anti-reflection coating at the surface of 
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the APD and enters a collection region where it generates electron-hole pairs, which 

propagate to the p-n junction where avalanche multiplication of the electron occurs due to 

the applied electric field. The mean-free path of the electrons between ionizing collisions 

(dependent upon the electric field and the temperature) and the electric field provided at 

the junction determine the multiplication of the current. Because of the current’s 

dependence on temperature, the APDs are  operated at -15° C to reduce noise from 

current generated in the photo-converter region. The APDs have a quantum efficiency of 

85% in the 500-550 nm wavelength region, the fiber’s emission spectrum. The signal 

generated by the APD is processed through the front end board (FEB). Each FEB handles 

the readout of one APD.  

 

Figure 4.10. Left: The NOvA APD mounted on a carrier board. Right: The APD's 

structure, showing light passing through the antireflective coating and the contact 

layer to be absorbed in the collection region. Avalanche multiplication of 

photoelectrons the occurs in the drift region.  

 

 The field programmable gate array (FPGA) on the FEB extracts time and 

amplitude of the signals received by the APD,  using a digital signal processing 

algorithm. A pulse height and timing edge is found for each signal above a programmable 

threshold for each channel. The FPGA also removes low frequency noise and increases 

time resolution. The FEB is equipped with a connector for interfacing with the data 
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acquisition (DAQ) system. The data concentrator module (DCM) consolidates and 

concatenates data from 64 FEBs. Data is time stamped and compared to a NuMI timing 

signal in the DAQ to determine if an event is in or out of spill. Events are sorted into 500 

microsecond windows, called time slices, corresponding to a spill. The DCM also 

monitors the FEBs and provides synchronization of the system. Data is routed from the 

DCM to buffer nodes where it is stored for further processing. 

 

Figure 4.11. NOvA's front end board, the component that processes signals from the 

APD pixels and extracts time and amplitude data which it transmits to the data 

concentrator modules. 

 

4.5  Near Detector on the Surface (NDOS) 
 
 The construction of the NDOS began in the summer of 2010, and data taking 

began in October of the same year. The NDOS is a prototype Near Detector at full scale, 

although the size of the Near Detector was later modified in order to contain all neutrino 

events. The purpose of the NDOS was to test the design and construction of the NOvA 

experiment, and to learn about any shortcomings or necessary modifications that would 

need to be made for the final detectors designed to run for six years, such as hardware 

issues, structural issues, or commissioning and preparation methods. It is a fully 

functional detector that allowed data analysis methods to be developed early on, in time 

for use with the ND and FD. It still collects data but is not of primary importance to 

NOvA’s oscillation search, serving instead as a test detector.  

Early on it was found that the manifold covers at the end of the PVC extrusions 

were cracking either in pressure testing or due to temperature variations in the NDOS 
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building, requiring repairs and a redesign [64]. Scintillator filling procedures were 

modified after experience filling the NDOS showed inefficiencies in the original design,, 

such as the interior of the manifolds requiring a slight vacuum to be pulled on the vent 

port before filling machines would work. This was changed for the Ash River detector. 

Some support beams on the outside of the detector prevented proper filling of some 

extrusions, which was also redesigned for the FD and ND [65]. 

 

 

Figure 4.12. The NDOS. Left: The top of the detector. The DCMs are visible, as well 

as the FEB and APD electronics boxes. Right: The full detector. [63] 

  

 The installation of the electronics boxes, where the FEBs and APDs are housed, 

was modified for the FD and ND after issues were discovered at the NDOS concerning 

the installation, function, sealing quality, and efficiency of the APD/TEC (thermoelectric 

cooler) volume, and the associated exclusion of moisture. It was also necessary to fix 

grounding issues with the electronics box covers to the FEB boards, and spacing issues 

for the fiber/APD interface. [66]. 
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4.6  Monte Carlo in NOνA 
 
 Simulation of the NuMI beam and the NOvA detectors is important for 

understanding what the detectors see in order to develop methods for data reconstruction, 

calibration, and analysis. Monte Carlo algorithms allow us to produce simulated 

interactions that can be reconstructed and analyzed using code developed in the NOvA 

framework, then checked against truth information to evaluate the veracity of these 

analysis tools. In addition to simulating neutrino interactions within the detector, it is of 

interest to simulate interactions taking place within the rock around the Far and Near 

detectors to shed light on what effects these surroundings have on recorded data. 

Simulations are also created to represent differing detector configurations over the course 

of detector construction and commissioning, to reflect the changing conditions under 

which data is being gathered. The author held the temporary position in NOνA’s 

Production group responsible for running all simulations mentioned above and detailed 

below. 

 The simulation chain is comprised of a few steps, each using a particular Monte 

Carlo generator or simulation module [67]. All steps of the particle creation and detection 

process that would occur in real data are simulated: the creation of neutrinos in the NuMI 

beam, the interaction of these neutrinos in the NOvA detector, the propagation of the 

products of these interactions within the detector, and the electronics readout. The 

following is a discussion of these steps. 

 FLUGG (FLUka with Geant4 Geometry) is a C++ interface between Fluka and 

Geant4 (GEometry ANd Tracking) which acts as a Fluka extension allowing for the 

implementation of Geant4’s geometry and material assignments, and is used to create 

neutrino fluxes and kinematic values for each particle in the beam. Fluka performs the 

first step in the simulation chain, simulating 120 GeV protons scattering on NuMI’s 

carbon target, to be transported through the horn and decay pipe by Geant4 where the 

pions and kaons decay into the neutrinos used by the GENIE (Generates Events for 

Neutrino Interaction Experiments) Monte Carlo generator. The geometry and material of 

these objects are simulated by Geant4. Beamline parameters relating to number of 
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protons on target, forward or reverse horn current corresponding to neutrino or 

antineutrino modes, and geometry can be configured in this stage. So too must the “flux 

window” be evaluated, which corresponds to the orientation of the detector with respect 

to the beam. This is different for each detector. The file produced in this simulation is a 

weighted ntuple representing pions and hadrons that decay into neutrinos [68][69]. 

 GENIE handles the interactions of the neutrinos within the detector. It takes the 

flux files produced by FLUGG and transports the neutrinos through the detector 

geometry, deciding which particles will interact to produce daughter particles, and how, 

based on its knowledge of neutrino cross sections. This is the event generation stage, 

where a list of particles is produced with their 4-momenta and vertex positions to 

represent an event. GENIE simulates the neutrino interaction with a nucleus in the 

detector, then the resultant hadronization, and the transportation of these hadrons. The 

generator records additional information in this stage, such as the initial state of the 

neutrino and the nucleus upon which it is incident, the kinematic process that occurred in 

the interaction (quasi-elastic, resonance, deep inelastic scattering, etc.. See Chapter 2), 

and any inter-nuclear behavior, such as scattering or absorption. This produces a list of 

target or probe particles (neutrinos), intermediate particles, and final state particles [70].  

 In the interest of cosmic rays or single particles that are not neutrinos, different 

generators are used. CRY is the cosmic ray generator and SingleParticle is the Geant4-

based particle generator for non-neutrino interactions. These operate similarly to GENIE. 

The cosmic ray simulation package CORSIKA has been used to simulate cosmic air 

showers. 

 Particles produced in the event generation step are then transported through the 

detector geometry where they undergo physics processes like multiple scattering, energy 

loss, decay, and annihilation. These processes are carried out by Geant4. A list is created 

of true energy losses in the sensitive volume of the detector—the liquid scintillator inside 

the cells. The true energy deposited in each cell is counted as a “hit”. These are called 

FLSHits in NOvA, which stands for Fiber in Liquid Scintillator hits.  

 Light propagation in the cell and fiber is the next step. PhotonTransport processes 

the FLSHits, producing photons and propagating them through the cells to turn them into 
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collections of photoelectrons on the APDs. FLSHits represent a segment of track, each of 

which has energy depositions associated with it, recorded by PhotonTransport. For each 

amount of deposited energy along these track segments collected by the fiber, the fiber 

has half the total energy assigned to propagate in each direction, traveling a distance to 

the APD which is calculated for both, where attenuation and other scale factors are 

applied. The number of photons expected at each end of the fiber is the result, and this is 

labeled the PhotonSignal at the APD [71]. 

 The final stage of the simulation chain is the simulation of the DAQ electronics, 

managed by the ReadoutSim package. The PhotonSignal produced in the last step of the 

PhotonTransport simulation is treated as light at the APD. For each PhotonSignal in the 

channel, there is a pulse seen by the ADC with an associated time, shared by the 

PhotonSignal. In Monte Carlo, RawDigits are the raw form of “fake data”, i.e. the 

fundamental elements that simulations use to mimic the effects of data, that can then be 

used to test reconstruction and analysis. RawDigits also exist for raw data [72]. 

 

 

Figure 4.13. Monte Carlo simulation is a resource-expensive process that takes 

considerable time in each stage. There is a large variance depending on the detectors 

and particles being simulated, as seen here for a March, 2013 production [73]. 
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4.7 NOvASoft Software 
 
 The software used for offline analysis is called NOvASoft, and is written in C++ 

and built on the ROOT analysis software. This is based in the Fermilab Art event 

processing framework, a computing framework for data analysis developed by the 

Fermilab Scientific Computing Division. Art is used to build physics programs using 

physics algorithms that are provided as plug-in modules, and can be used for high-level 

software triggers, online data monitoring, calibration, reconstruction, analysis, and 

simulation. The art framework is shared by all experiments at Fermilab [74].  

 Events in NOνA are defined as the information associated with a single trigger or 

spill. In NOνA, events are 500 µs long, and include all the raw data associated with that 

slice of time, including any information computed from the raw data. These are the 

smallest units of information art can process. Event IDs are assigned by the DAQ 

software. This ID is composed of three parts: run, subrun, and event. 64 subruns make up 

a run, and the number of events in a subrun will vary for each detector, as well as from 

subrun to subrun. For the Far Detector a typical subrun of cosmic trigger data will have 

around 2100 events. 

Raw digits is the lowest data tier, the form immediately stored by the DAQ. 

Before raw data can be examined visually or otherwise it must be converted into the 

ART-ROOT format, allowing the further processing of data, including reconstruction and 

analysis. The production tool prod_artdaq_job.flc converts raw data into the ART-ROOT 

format, output as the data tier artdaq. 

The artdaq data tier is the input for the calibration and reconstruction stage of 

processing. This stage consists of various track-finding algorithms, and are followed in 

the processing chain by particle identification (PID) and calibration. Reconstructed and 

PID files serve as input to create common analysis files (CAFs), a high level file set 

containing reconstructed objects. Data sets can be viewed in the event display (EVD), a 

graphic interface that shows all the hits in the detector associated with each event, for 

both XZ and YZ views. Reconstructed data will show which of these hits have been 
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associated with a track, by drawing 2D and 3D tracks from the cell hits. See Figures 6.5 

and 6.6 for EVDs of cosmic muon events. 
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CHAPTER 5.  UV CERENKOV REEMISSION IN 

NOVA’S SCINTILLATOR 

5.1  Introduction 
 

The energy scale obtained from NOvA’s in situ muon calibration doesn’t fix the 

energy spectrum of electromagnetic showers. NOvA’s liquid scintillator (LS) is expected 

to have an up to 15% uncertainty in energy response at 2 GeV. It is characteristic of 

liquid scintillators to exhibit a non-linear energy emission caused by Birks’ quenching 

and Cerenkov photon reemission. The effect is noticeable in the tail of an EM shower 

where dE/dx is high. In an effort to understand this non-linearity studies have been 

performed on the Cerenkov UV reemission with a UV monochromator and the Birks’ 

quenching with a Compton spectrometer. This analysis details the study of the latter 

component, the UV Cerenkov reemission. Incorporating the measurements of the NOvA 

LS properties with NOvA’s simulation and calibration will provide a connection between 

cosmic muon data and expected energy responses in the NOvA detectors. Without an 

accurate understanding of the scintillator’s energy response it is impossible to reconstruct 

detector events with accurate energies.  

One aim of this thesis is the determination of the Cerenkov component of NOνA’s 

LS’s non-linear energy response. The chamber used for these measurements is the NOvA 

cell, different from those in the detector only in length (much shorter to reduce 

attenuation, and for practicality), and has two fibers looped through it, instead of the 

single fiber used in NOνA’s detectors. This is for increased light output. Instead of 

reading into an APD as the extrusions in NOvA do, ours feeds into a PMT with a low but 

serviceable quantum efficiency in the WLS fiber’s emission spectrum.  

A McPherson model 235 Spectrometer was used in this study. Before studying 

the scintillator, the photon flux from the lamp as a function of wavelength was studied 

with a silicon diode. UV light is absorbed and scattered by oxygen, so a turbomolecular 

pump is used to create a vacuum in the monochromater. The clear filter filters out all 
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light below approximately 400 nm, and the UV filter filters out higher wavelength light. 

Using different filters provides different fluxes at different wavelengths. 

 

 

 

Figure 5.1. Left: The NOvA cell used in this study. It is identical to the NOvA cell in 

every way besides length, and the hole acting as an entrance for light from the 

deuterium lamp. Right: The monochromator used in the study. Light from the 

deuterium lamp enters the monochromator through a .35 mm wide slit, passes 

through either no filter,  a clear light filter, or a UV filter, is reflected off a 150 nm 

or 300 nm blazed grating, and passes through another .35 mm slit, through a 

magnesium fluoride window, and enters the cell through the hole pictured on the 

left.   

 
The silicon diode used to study flux has been calibrated up to approximately 400 

nm. A second but similar silicon diode has been calibrated at higher wavelengths. A 

combination of the electron/photon efficiencies from the two diodes has been used in this 

study. The calibrated values for the first diode are used for wavelengths below 390 nm, 

and for higher wavelengths the calibration values for the second diode have been used. 

The angle at which the light from the deuterium lamp contacts the blazed grating inside 

the monochromator determines the wavelength of the light that enters the cell. This is 
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controlled by a knob on the monochromator that turns the plate on which the grating sits 

to the desired angle with respect to the incident deuterium lamp beam. 

 

 

Figure 5.2. Efficiency of electron production per incident photon for calibrated SI 

diodes, as a function of wavelength. 

 
Flux is measured with a calibrated silicon diode over the range 115 nm to 500 nm. 

The location of this diode is pictured in Fig 5.1, situated after a magnesium fluoride 

window that the light passes through on exiting the monochromator. After the flux is 

measured the diode is replaced with the NOvA cell, with a PMT (Hamamatsu R329-02) 

connected to its top where the fibers exit. A 1400 volt power supply at negative polarity 

powers the PMT. 

For incident light over the range for which flux was measured, the current 

generated by the PMT is measured in the same fashion, through an open and closed slit 

process, finding the current difference between background and signal. When the 

measurements are finished, the signal current as produced by the PMT’s interface with 

the WLS fibers is known, as is the flux, the QE of the PMT, and the PMT gain. Cerenkov 

photon emission efficiency and the total light collection/emission efficiency are all that 

remain to be investigated. These quantities are related in equation 5.1. 
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(5.1) 

 

where          is the difference in current measured in the PMT, background and signal, 

      is the flux of photons exiting the monochromator, measured by the silicon diode, 

      is the emission efficiency of the Cerenkov photon, and is the primary value of 

interest.       is the average quantum efficiency of the PMT over the range 490 – 550 

nm (the emission spectrum of the wavelength shifting optical fiber), and      is the 

PMT’s gain. All unknown values are nested within            
     

 and have to do with the 

behavior of, and interactions between, the liquid scintillator, the cell walls, and the WLS 

fibers. Before determining the emission of the Cerenkov photon, this behavior must be 

understood. 

Three different wavelengths act as variables in equation 5.1. The dependence 

upon three wavelengths is due to the multiple stages of light capture and emission within 

the cell. The light entering the cell from the monochromator is not the same light the 

PMT sees to generate the measured current. The incident light from the monochromator 

interacts with the liquid scintillator, is absorbed over a low range of wavelengths by the 

primary scintillant, pseudocumene, which then emits light over a spectrum peaking right 

below 300 nm. This light is shifted by waveshifters in the scintillator, PPO and bis-MSB, 

which absorb light from 220 nm – 345 nm and 300 nm – 390 nm, respectively. These 

shifters then re-emit light from 310 nm – 450 nm, and 380 nm – 450 nm, respectively. 

For the most part, the complicated nature of the absorption and reemission of light within 

the scintillator by these three components will not be considered. However, the 

absorption spectra have been taken into consideration when noting that the PMT response 

corresponds to higher wavelength light from the monochromator. Incident light above 

390 nm will not be absorbed by the scintillator, and that which is not absorbed by the cell 

walls is free to be absorbed by the WLS fibers, which are sensitive to this range. So most 
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of the signal generated in this range is due not to scintillation, but to the fibers interacting 

with the incident light directly.  

 For the purpose of this study, all the light generated in the scintillator, by each 

scintillant, is treated as one “stage” of emission, of which there are three. These 

correspond to the variables used in equation 5.1: 

 

λ is the wavelength of incident light from the deuterium lamp exiting the monochromator, 

which is what the scintillator sees and absorbs, and from 390 nm – 480 nm it is most of 

what the fiber sees and absorbs. This is the wavelength corresponding to the Cerenkov 

emission within the scintillator. 

λ’ is the wavelength of scintillated light emitted by the scintillator, which is most of what 

the fiber sees and absorbs. Despite the scintillator emitting over a wide range of 

wavelengths, for this study, λ’ was treated as a constant at 430 nm which is the 

wavelength of peak emission. 

λ’’ is the wavelength of light emitted by the fiber, and is what generates the current in the 

PMT. The WLS fiber, too, emits over a spectrum, but λ’’ will be treated as a constant at 

505 nm, which is the peak of emission from 0.5 m of WLS fiber. 

 

 The objective of this measurement is to relate the PMT signal and the flux of 

incident light of known energy to the behavior of the scintillator. 

Total flux from the monochromator is found first by measuring the signal in a 

silicon diode that is exposed to light over a range of wavelengths (115 nm – 450 nm 

without a filter and using a 150 nm blazed grating, 200 nm-500 nm with UV and clear 

filters and using a 300 nm grating).  

Gain (      ) is 2.7   10
5
 when operating at -1400 V, and PMT quantum 

efficiency (            ) is known for the spectrum of light emitted by the fiber. A 

weighted average is used for the QE, since the PMT sees the entire emission spectrum of 

the fiber at once, not monochromatic light. There are three configurations for the scans. 

Three flux scans were conducted with a silicone diode, with no cell or scintillator, 

followed by three scans of the NOvA cell, filled with scintillator, reading out through 



 

80 
 

WLS fibers to a PMT, in the same filter-grating configurations. The first scan is with a 

150 nm blazed grating with no filter, over the 115-450 nm range. The second is with a 

300 nm blazed grating with a UV filter over the 200-500 nm range. The last is with the 

300 nm blazed grating and a clear filter, over the 350-500 nm range. An exit slit in the 

monochromator is closed, and the PMT current is read, constituting background. The exit 

slit is opened, allowing light into the cell, or in the case of calibration, onto the silicon 

diode. The current created when the slit is opened is the signal. This is repeated for each 

wavelength. The difference between background and signal is the PMT response,        

). We find a combined efficiency after making these measurements.  

 

                
     

   
       

                                    
 

(5.2) 

 

     is the reemission efficiency of the UV Cerenkov photon to the scintillation photon 

as emitted by PPO in the liquid scintillator. This is the primary quantity of interest. This 

is found through analysis of the data, and the removal of all other light collection 

efficiencies in order to isolate the Cerenkov factor as the only unknown. There are a few 

unseen values nested within            
     

. These include the scintillator’s absolute light 

yield as a function of wavelength, cell reflectivity, the fiber’s absorption spectrum and 

absorption efficiency, as well as the attenuation of the light in the cell and in the fiber. 

The quantities in equation 5.1 and 5.2 are discussed in the following section, including 

the methods used to determine these values within reasonable accuracy. 

5.2  Quantities of Importance in Determining Cerenkov 

Reemission Efficiency 
 

The following sections detail the factors contributing to the determination of the 

Cerenkov reemission efficiency, each of which appears in equations 5.1 and 5.2. How 

these factors affect this efficiency will be discussed toward the end of section 5.2.6. 
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5.2.1. Total photon flux from the deuterium lamp as a function of wavelength 

 

 

 

Figure 5.3. Photon flux of incident light from the monochromator, after reflecting 

off the blazed grating and passing through a filter and MgF2 window, as measured 

by Si diode. Photon flux per second vs. wavelength of incident light in nm. 

 

5.2.2. The current created by the PMT through the fiber interface at the top of the cell 

over the spectrum of incident light 

 

 

 

Figure 5.4. Current produced by the PMT (nA) versus the wavelength of incident 

light from the monochromator in nm. 
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From 390 nm – 480 nm the dominant contribution to the signal is light that passes 

straight through the scintillator to be absorbed by the fibers. The scintillator absorbs 

almost nothing in this region, and therefore can contribute very little to the light absorbed 

by the fiber. Cell wall reflectivity is also very high in this region, from 73 - 90%, 

meaning less light is absorbed by the cell walls.  

 

5.2.3. Cell wall reflectivity 

 

 

 

Figure 5.5. Reflectivity of the inner cell walls, as a function of wavelength. 

 

The reflectivity of the cell walls was measured at Fermilab for 360 - 700 nm light. 

The above plot is an average of 37 extrusions measured in 2011. The reflectance as a 

function of wavelength of TiO2 has been measured elsewhere, and suggests a very low 

reflectance at wavelengths below 350 nm. Because the scntillator’s emission spectrum 

peaks at 430 nm, a weighted average of the emission spectrum with the cell wall 

reflectivity gives an effective reflectivity for this measurement of 88.05%.  
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Figure 5.6. Reflectance of TiO2 at lower wavelengths [75]. The reflectance of 

NOvA’s cells is most similar to the nitrated Degussa, represented by the blue curve. 

  
 

5.2.4. The PMT’s quantum efficiency as a function of wavelength over the fiber’s 

emission spectrum 

 

 

.  

Figure 5.7. Left: PMT QE as a function of wavelength. Right: WLS fiber emission 

efficiency spectrum as a function of wavelength. 

 

The fiber emission spectrum at 0.5 m (the approximate average distance light travels 

along the fiber in this measurement) combined with the PMT’s wavelength dependent 

quantum efficiency is used to find an effective quantum efficiency for the PMT; a value 

of 11.66%. A weighted average is used because the PMT sees the full emission spectrum 

at once.  
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5.2.5. The fiber’s absorption spectrum 

 

  

 

Figure 5.8. WLS fiber absorption spectrum as a function of wavelength in 

nanometers, normalized to 1. 

 

The collection efficiency of the fibers with two fibers looped through is 19%, 

according to Monte Carlo simulations. For a single looped fiber the efficiency is 12%. 

This is a weighted average over the scintillator’s emission spectrum and the fiber’s 

absorption spectrum.  

Our cell is 20 inches long, and the fiber looped through it is approximately 41 

inches, or 1.04 meters in length. The attenuation length of the fiber for 505 nm light, 

according to studies by Carl Bromberg at Indiana University, is 2.54 meters. In our 

measurement, light from the monochromator enters the cell at a spot 31.27 cm from the 

top, where the fibers feed out to the PMT. Assuming the majority of the collected light is 

collected in this area, and split perfectly in half to travel to both ends of the fiber, 50% of 

the collected light travels approximately 31.27cm and 50% travels approximately 72.73 

cm.  

This light is attenuated:  

P(x) = 0.5  e-
x1/λ

 + 0.5   e-
x2/λ

 = 0.81758. 

(5.3) 

Approximately 81.76% of the light collected by the fibers reaches the end of the 

fibers and the PMT. It is assumed light loss from the fibers into the PMT is negligible, 

considering the optical grease and small separation. 
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Additional measurements were conducted in which light was passed through the 

monochromator into the cell without scintillator, with only air and fiber present. These 

measurements allow for an estimation of a combined efficiency of fiber collection and 

cell reflection when paired with flux data. The PMT current is divided by 1.602*10
-19

 

coulomb/electron, the flux for each wavelength as measured by the diode, the PMT’s QE, 

the PMT gain, and the attenuation of the fiber.  

Comparing the PMT signal measured with scintillator in the cell and measured again 

with only air and fiber in the cell (Figure 5.9) shows that this light is not due to 

scintillation. Since all generated light will be shifted to this spectrum, the combined 

collection efficiency will be an average of this spectrum weighted with the emission 

spectrum of the scintillator. And because the majority of light is absorbed directly by the 

fiber and not scintillated, incident light in this range will be excluded from study. 

 

 

 

Figure 5.9. The light output from the fibers is almost unchanged with or without 

scintillator in the cell, for incident light above 400 nm. Scintillator in the cell even 

seems to diminish fiber absorption in this region. 
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5.2.6. The absorption and emission spectra of the scintillator’s components 
 

Weighing the collection efficiency spectrum of the WLS fiber  with the relative 

emission spectrum of the scintillator gives a weighted average collection efficiency of 

1.91*10
-8

. This is not significantly different than the estimated value used in the old 

PhotonTransport package. Because they are the same order of magnitude, the differences 

in using one or the other should not be too large. In fact, the two numbers represent 

slightly different quantities. 0.19 represents the fiber’s collection efficiency alone. 

1.91*10
-8

 represents the overall  efficiency of light from the monochromator reaching the 

PMT, which takes into account cell reflectance, and the fiber’s attenuation length.  

This number relies on measurements in conditions that were not conducive to 

accuracy, so for the purposes of further calculations, the former value will be used. We 

can now account for these quantities in our overall efficiency: 

 

   
                

  
            
     

           
 

(5.4) 

 

where 0.8176 is the approximate light yield at the end of the fibers after attenuation, and 

0.19 is the average collection efficiency of the WLS fibers. The PMT’s QE is .1166, an 

average weighted against the fiber’s emission spectrum. 
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Figure 5.10. The components of the scintillator absorb from 115 nm to 

approximately 400 nm. Therefore, any incident light above 400 nm captured by the 

WLS fiber and detected by the PMT is unlikely to be due to scintillation, but is 

caused by direct absorption by the fibers [62]. 
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Figure 5.11. The emission spectrum of the scintillator, normalized to 100 [62]. 

We know the flux of incident photons over the spectrum 115 nm-500 nm, and we 

know the response seen in the PMT for each wavelength. This information combined 

with what is known, precisely or imprecisely, about the fibers and scintillator should 

allow us to reconstruct what is going on inside the cell in order to find the contribution of 

Cerenkov photon re-emission to the scintillator’s energy response. Isolating the known 

quantities leaves us with a combined efficiency: 

 

                      
  

  
        

                                                           
 

(5.5) 

 

 This efficiency represents the product of the Cerenkov factor and the scintillator’s 

absorption and emission efficiency. It is shown in Figure 5.13.  

 The three constituents of the liquid scintillator have their own absorption and 

emission spectra. Although we can treat the scintillator’s overall emission spectrum as 

matching that in Figure 5.11, its absolute light yield is not known.  
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We can find the remaining efficiencies through simple calculations, which will 

ultimately leave us with only a single unknown quantity: the Cerenkov emission 

efficiency. Early Monte Carlo simulations indicate that, on average, light will travel 1 

meter in the cell before being absorbed by the fibers, and will undergo 8 reflections from 

the cell walls. After 8 reflections, at 88.05% reflectance, this leaves 36.13% of light to be 

absorbed by the fibers. Because we are using two fibers instead of one, we double this 

number to 72.26%. NOνA’s scintillator’s attenuation length for light around 430 nm is 

8.75 nm.  

P(x) = e-
1/8.75

 = 0.892. 

(5.6) 

 

 After traveling one meter, 89.20% of the light will remain. Accounting for 

reflections, we are left with  

72.26%   89.20% = 64.46% 

(5.7) 

of the initial scintillated light available for absorption by the fibers. The absorption 

efficiency of the WLS fibers is known only within an order of magnitude, but for 

consistency we will use the value calculated from Monte Carlo, 0.19. The absorption 

efficiency multiplied by the amount of scintillant light remaining gives 0.122 as the 

overall efficiency of scintillated light absorbed by the WLS fibers.  

After attenuation in the fiber, which leaves 81.76% of the light to be seen by the 

PMT, the light collection efficiency of the cell + scintillator + fiber apparatus is 0.0997. 

The combined efficiency in Figure 5.13 becomes the benchmark for the Cerenkov 

reemission coefficient. The absorption spectrum of PPO determines the amount of light 

emitted as Cerenkov radiation that is reabsorbed by the scintillator and reemitted at 

higher wavelengths. The absorption and reemission efficiency of PPO is 1 at ~305 nm 

[76], so the curve for combined efficiency is set equal to 1 at 305 nm. This curve, when 

scaled to this value, represents the Cerenkov reemission coefficient. This value can be 

thought of as the likelihood that a photon at the given wavelength will be absorbed by the 

scintillator, and the absorption will result in scintillation.  
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Figure 5.12. The combined emission efficiency, cut off before fiber absorption effects 

become dominant, around 350 nm. 

 
 

 

Figure 5.13. The combined efficiency (left axis) and reemission probability (right 

axis) of the NOvA scintillator.  
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5.3  Cerenkov Re-emission Analysis 
 

Cerenkov radiation is emitted when a charged particle passes through a medium 

faster than the phase velocity of light for the medium. It is analogous to a sonic boom, 

which is caused by an object moving through air faster than the speed of sound in air. A 

sonic boom results in a cone of shockwaves emanating from the path of the object, and 

Cerenkov light behaves the same way, radiating outward from the particle’s path, 

creating a cone, the angle of which is determined by the particle’s speed and the index of 

refraction of the medium.  

 

       
 

      
 

(5.8) 

This radiation is emitted over a small frequency range, where    
 

 
 . There are 

two components to the non-linearity of the energy response of NOνA’s scintillator, Birks’ 

quenching coefficient and the Cerenkov reemission coefficient. The study of Birks’ 

quenching coefficient is detailed in [77]. The total energy response is a function of both 

effects,  

                                           

(5.9) 

Determining the Cerenkov reemission coefficient      requires knowledge of the 

quantities already discussed, as well as the number of Cerenkov photons emitted as a 

function of wavelength and particle velocity, given by the relation: 

   

    
  

     

  
    

 

       
  

(5.10) 

To understand the Cerenkov reemission measured in NOvA’s LS, particularly the 

relationship between the number of Cerenkov photons produced at each wavelength, it is 

necessary to know the index of refraction of the LS. Measuring the index of refraction is 
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difficult, so an estimation has been produced via calculation, as was done for the 

KamLAND LS based on the mixing of dodecane and benzene.   

The refractive index of a mixture of different materials can be approximated with 

the Lorentz-Lorenz mixing formula, given by equation 5.11. NOνA’s scintillator’s 

components are mineral oil (Renoil 70-T) (94.63%), pseudocumene (5.23%), PPO 

(0.14%), bis-MSB (0.0016%), Stadis-425 (0.0010%), and tocepherol (0.0010%) [78].  

The mineral oil is a composite of alkanes, all of which have slightly different 

refractive indices, scaled by density. The mineral oil’s alkane composition is given in 

Table 5.1. Pseudocumene’s index of refraction was estimated using the index of 

refraction for benzene. Because the indices of refraction were tabulated for photon energy 

and not wavelength, plotting them against wavelength results in unequal intervals 

between points. Missing points were filled in using inverse distance weighting 

interpolation from the known data points for both substances. The reference values for 

the refractive index of benzene and the alkanes composing the mineral oil were taken 

from [79] and [80]. The indices of refraction for PPO and bis-MSB were not used due to 

their very small contribution to the scintillator makeup. The mineral oil was treated as 

comprising 95% of the scintillator and pseudocumene as comprising 5%.  

Lorentz-Lorenz mixing for indices of refraction    and   : 

   
    

   
   

    
  
    

  
   

   

  
    

  
   

 

(5.11) 

where    is the volume fraction [81]. This method was used for the alkanes in the 

mineral oil, and then for the scintillator as a whole, with both mineral oil and benzene. 

Lorentz-Lorenz mixing gives an approximation for the scintillator’s index of refraction 

over the spectrum of interest. The number of Cerenkov photons produced in the 

scintillator can be calculated using equation 5.10.  

 Equation 5.9 can’t be integrated directly due the wavelength dependence of the 

index of refraction, so numerical integration is performed using Simpson’s rule.  
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(5.12) 

 The interval between each measured point on the spectrum is integrated over to 

give an approximation for the expected number of Cerenkov photons emitted at those 

wavelengths, in 5 nm intervals. Approximating equation 5.12 with numerical integration 

takes the form given in equation 5.13, 

  

  
   

     

  
    

 

       
   

  

  

  
      

 
      

  

  
     

 

        
 

  
 

 
     

  
     

 

     
     

  
  

  

  
     

 

        
   

(5.13) 

Integrating this over x, in the range x2 – x1 = N cm, gives the number of Cerenkov 

photons produced as a particle traverses some given length of scintillater, as a function of 

wavelength. In equation 5.10, β is in fact a function of x, but the x dependence cannot be 

explicitly expressed mathematically. The Bethe-Bloch equation describes the energy lost 

by a charged particle during its passage through matter.  

 

   

  
     

 

 

 

  
  
 

 
  
    

         

  
      

 

 
  

(5.14) 

The maximum kinetic energy available to be imparted to a free electron in a collision is 

given by Tmax, A is the atomic mass of the medium, K is 4πNAre
2
mec

2
, Z is the atomic 

number of the medium, I is the mean excitation energy, me is the electron mass, and δ is 

the density effect correction to ionization energy loss. Using the modified form of the 

Bethe equation for an electron, the energy loss for relativistic electrons allows the change 
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in β as the electron travels one centimeter to be evaluated, which, it turns out is small 

enough to treat as a negligible quantity that won’t affect the integration of equation 5.13. 

 

Table 5.1. NOνA’s mineral oil composition by percentage of alkane present. 

Carbon number % of mineral 

oil mixture 

10 0 

11 0.1 

12 0.1 

13 0.1 

14 0.1 

15 0.5 

16 3.9 

17 13.2 

18 24.7 

19 27.8 

20 19.0 

21 7.2 

22 2.3 

23 0.5 

24 0.1 

25 0.1 

26 0.1 

27 0.1 

28 0.1 

29 0.1 

30 0 
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The values of β before and after the traversal of one centimeter are compared, and 

the percent change is calculated by            . For kinetic energy above 0.5 MeV this 

effect is much less than 10%, and above 1.25 MeV the effect is less than 1%.  

 

 

Figure 5.14. The mineral oil's index of refraction dominates the total index of 

refraction of the scintillator. 

 

5.4  Results 
 
 This section presents the results of the Cerenkov reemission analysis after all 

efficiencies have been approximated. Figure 5.15 shows the results of integrating 

Equation 5.10 to find the number of Cerenkov photons produced in the scintillator by 

electrons of given energies, until the electron is stopped. This plot shows the relative 

numbers of photons produced at each wavelength, where UV dominates the overall 

contribution to the light produced.  
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Figure 5.15. A plot of the number of Cerenkov photons produced at each 

wavelength by the traversal of a relativistic electron through NOνA’s scintillator. 

Values were obtained by numerically integrating equation 5.10 via the method in 

5.13. 

 

Figure 5.16. This curve is the product of the number of Cerenkov photons initially 

produced by the traversal of a relativistic particle through NOνA’s scintillator 
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multiplied by the reemission coefficient. Therefore it represents the total Cerenkov 

photons of a given wavelength emitted by the NOνA scintillator. 

 
Multiplying the values in Figure 5.15 by the Cerenkov reemission coefficient 

from Figure 5.13 gives the total number of Cerenkov photons at each wavelength that 

will be produced in the NOνA scintillator by an electron traversing the scintillator. This 

curve is given in Figure 5.16. Integrating the area under the curves corresponding to each 

energy gives the total number of detectable Cerenkov photons produced by an electron 

passing through NOνA’s scintillator, as a function of energy. These values (Nproduced) are 

plotted in Figure 5.17. Multiplying this value by the total efficiency of the NOνA setup 

gives the number of Cerenkov photons seen.  The total number of these Cerenkov 

photons observed is given by 

 

                                                                                    

(5.15) 

where Nproduced is the number of Cerenkov photons produced by the charged particle per 

centimeter, εattenuation is the amount of light left after attenuation in the WLS fiber (through 

7.75 meters, one half the length of a cell, = 4.7%), εAPDefficiency is the percentage of 

photons seen by the APD (85%), and εfiberabsorption is the percentage of incident light the 

WLS fiber will absorb (12%). This value makes up the Cerenkov portion of equation 5.9,  

and represents the contribution of Cerenkov photon reemission to the non-linear energy 

response of NOνA’s liquid scintillator. When the Compton spectrometer experiment is 

finished the results from both experiments will be used in a model to determine the 

Cerenkov reemission contribution and the Birks’ quenching coefficient, which are 

necessary for NOνA’s proper energy calibration. At the time of writing this thesis the 

Compton spectrometer experiment is unfinished.  
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Figure 5.17. The total number of Cerenkov photons produced in NOνA’s scintillator 

by an incident electron of the given kinetic energy.  

 
The number of Cerenkov photons produced by an electron of energy E will follow 

the relationship shown in Figure 5.17. Equation 5.9 will give the final correction to be 

used in the Monte Carlo,  

                                           

with C(λ), the reemission probability, taking on the values plotted in Figure 5.13 as a 

function of wavelength. Figure 5.16 shows the Cerenkov photons produced at each 

wavelength multiplied by the reemission probability. NOνA’s scintillator’s light yield is 

currently unknown, but it is reasonable to estimate it is approximately that of 

KamLAND’s scintillator, which has 70% the efficiency of anthracene. Anthracene 

produces 1 photon for every 64 eV. If we estimate that NOνA’s LS produces 1 photon 

per 91 eV, we will see approximately 10,989 photons for 1 MeV. The Cerenkov 

reemission produces 1155 photons for a 1 MeV electron, creating a 10.5% additional 

energy output. The ratio of photons produced by Cerenkov reemission to initial 

scintillation photons is a nonlinear relationship at lower energies, as shown in Figure 

5.18. This represents the non-linear energy response contribution of Cerenkov 
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reemission, and it will be combined with the results from the Compton spectrometer for 

Birks’ quenching to determine the full energy correction required in NOνA’s scintillator.  

 

 

Figure 5.18. The curve represents the ratio of Cerenkov photons reemitted by the 

scintillator to the photons emitted in initial scintillation. For low energies (< 3 MeV) 

the relationship is non-linear. 

 
 The reemission of Cerenkov photons in the visible spectrum cannot be examined 

with this study, as no information can be obtained about the scintillator’s response to 

Cerenkov photons in the range above 350 nm due to the WLS fiber’s absorption spectrum 

beginning at 350 nm. This means the signal in the PMT seen for incident light at 350 nm 

and above, from the monochromator, is due to the emission of the fibers and not the 

scintillator, which is mostly transparent in this range.  

 If it is assumed that the refractive index of the scintillator remains constant above 

350 nm and the Cerenkov reemission coefficient is approximately constant, the number 

of total Cerenkov photons reemitted over the spectrum frorm 115 nm to 480 nm is given 

in Figure 5.19.  
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Figure 5.19. The total number of Cerenkov photons reemitted in NOvA's scintillator 

over the spectrum from 115 nm to 480 nm. 

 
 The ratio presented in Figure 5.18 can also be extended to higher wavelengths, up 

to 480 nm, resulting in an increase in the total Cerenkov reemission effect. Now the 

correction to light yield is approximately 15% at higher energies, but still nonlinear at 

lower energies.  
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Figure 5.20. The curve represents the ratio of Cerenkov photons reemitted by the 

scintillator to the photons emitted in initial scintillation. This curve is for 

considerations extending to higher wavelengths, covering the absorption spectrum 

of the WLS fibers. For low energies (< 3 MeV) the relationship is non-linear. 
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CHAPTER 6.  FORBUSH EFFECT ANALYSIS 

 

6.1  Introduction 
 
 In addition to the determination of the Cerenkov component of  the NOνA liquid 

scintillator’s non-linear energy response detailed in the previous chapter, an aim of this 

thesis is to provide a measurement of the Forbush decrease from data taken at NOνA’s 

Far Detector, in Ash River, MN. Unlike the Near Detector which lies 350 feet 

underground, the Far Detector is on the surface and detects cosmic ray muons, covering 

an area of 900 square meters, or 9700 square feet, making it one of the Earth’s largest 

continuous muon detectors. See Chapter 4 for more information on the detectors. Data for 

this analysis was taken by the cosmic pulser, with approximately two thousand one 

hundred 500 microsecond events per subrun. There are 64 subruns per run, although 

some subruns (4-10 per run, on average) fail reconstruction and analysis and are rejected.  

 

6.2  Data Selection 
 
 The hypothesis of this thesis is that a full halo event CME from the sun will cause 

a significant and observable decrease in cosmic muon flux when it hits Earth. This is the 

Forbush Effect, which was discussed in Chapter 3. Exact predictions as to which solar 

events will modulate cosmic ray intensity are impossible. In the interest of having a large 

and complete dataset corresponding to a fully instrumented and active detector, only data 

taken after the NOνA Far Detector’s completion has been considered. This includes data 

from October 2014 forward. The fully instrumented Far Detector is one of the largest 

single, continuous muon detectors on Earth, making it highly capable of measuring 

consistent cosmic ray flux in a specific area with no assumptions or interpolations 

required to fill in gaps, and still small enough that cosmic flux at ground level can be 
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treated as unvarying across its surface area. With data-taking running non-stop except for 

maintenance or tests, the NOνA data spans a continuous period, with very little 

interruption. This feature is important for studying fluxes that may change dramatically 

over brief intervals.  

 A Forbush decrease is detected two to three days after a CME occurs, depending 

on solar wind speed, providing a clear window of opportunity to investigate associated 

effects.  

 NASA and NOAA archives provide extensive CME and solar flare data, 

including data on full-halo or partial-halo events in which Earth could have been hit by 

ejections from the sun. This data was studied over a period spanning from October 2014 

to May 2015. Long-wave and short-wave imaging from the Solar Dynamics Observatory 

(SDO) is available for the viewing of solar activity, as well as X-ray, proton, and electron 

flux data from the Geostationary Operational Environmental Satellite (GOES) 

spacecrafts, and various forms of data and imaging from the Solar and Heliospheric 

Observatory (SOHO). Much of the data and images collected by these observatories were 

available through NASA and NOAA, and enabled the study of a link between solar 

activity and cosmic ray flux at Earth.  

The current solar cycle is solar cycle 24, an 11 year cycle of increasing and then 

decreasing solar flare activity. The activity of a solar cycle is determined by a count of 

sunspot number, since sunspots indicate regions of flare activity. Cycle 24 is a low-

activity cycle compared to those that came before (30% lower than cycle 23), but the 

solar flare activity of this cycle peaked in 2014 and 2015,  making 2015 a good period in 

which to study cosmic rates. NASA and NOAA solar data from March showed relatively 

high solar activity in flares and CMEs, indicating a sensible starting point to study cosmic 

rate variations. The cuts implemented for this study are detailed in section 6.3, the 

measurement of cosmic ray flux in March is discussed in section 6.4, and the results of 

the measurements and analysis are discussed in section 6.5. 
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6.3  Cuts 
 
 To insure consistency and a high quality of data used for the analysis the 

following selection criteria were implemented for the reconstructed cosmic muons.  

Every run and subrun used in the analysis passed the ‘good runs’ criteria established by 

NOνA, indicating the data was taken during a stable period in which no known problems 

occurred within the detector or DAQ that would result in inaccurate or incomplete data.  

 The minimum signal allowed is 22 photo electrons per cell. If a cell hit is below 

this threshold it is added to a noise cluster and not considered part of the track. If it meets 

or surpasses this threshold the hit is considered part of a track. A track length cut was 

implemented to limit the minimum acceptable track length to 50 cm. However, the 

following two criteria removed many tracks that were shorter than 1500 cm, by virtue of 

the detector geometry:  

1. The maximum track vertex distance from the edge of the detector was limited to 

10 cm, and the same limit was used for the track endpoint. So all tracks begin and 

end within 10 cm of the edge of the detector, leaving mostly very long tracks, 

except for those that entered and exited near corners of the detector. 

2. The angle of incidence was strictly limited to cosθy   -0.95 to include mostly 

vertical tracks. 

With these two criteria, the majority of reconstructed tracks that passed the cuts were at 

least 1500 cm in length, perhaps making the minimum track length cut irrelevant. But 

that cut was left in, to insure no short tracks were accepted, which could still be possible 

with the above two cuts.  

 To remove events that have an electromagnetic shower-like nature the maximum 

number of cells per plane that are allowed to be associated with a track are 6. More than 6 

cells per plane associated with one track are rejected.  

 Between the two views of the Event Display (Figures 6.5 and 6.6) in which 

particle events are pictured (ZX, ZY) the maximum plane asymmetry allowed between 

the number of planes in each view is 0.1.  This value is implemented in the following 
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way. A track is rejected if the difference in the total number of X planes and Y planes is 

greater than 0.1 multiplied by the total number of X planes plus Y planes. So, if 

                                                    

(6.1) 

the track is rejected. This is necessary because with hit planes in one view that are not 

visible in the other you lack information on the exact length of the track, so it is 

impossible to know if length and containment are correct. The largest allowed difference 

in the plane numbers of the endpoints of the track is 3 planes, requiring the XZ and YZ 

views to match sufficiently well for a track to be accepted. 

 Step size indicates the step distance between cell hits counted in a reconstructed 

track. For each reconstructed track a median of the step size distribution for the track is 

calculated. If the largest step is three times the median or larger then it is far outside the 

distribution and the track is considered poorly reconstructed. Large changes in step size 

within a track indicate bad reconstruction, and these tracks are removed. These selection 

criteria are not implemented until after the reconstruction phase of data processing, which 

is detailed in the next section. All tracks that pass these cuts are used for analysis. 

 

6.4  Track Reconstruction and Analysis 
 
 The NOνA Production group is largely responsible for the processing of data and 

Monte Carlo for use by the collaboration’s experimentalists. This entails converting raw 

data in the form of RawDigits into the artdaq data format, which is the .root form of data 

that is then calibrated and reconstructed by the same group to later be analyzed or, in the 

case of Monte Carlo, generated for use by the simulation, calibration, alignment, and 

analysis groups. The data hierarchy is detailed in section 4.7. The Production group’s 

efforts are prioritized by the urgency of the data they process, which means most of their 

production is focused on neutrino data for the oscillation analyses. Therefore, the cosmic 

muon data needed for this study had not been processed beyond the raw digit stage. I 

processed the data from artdaq through the reconstruction and analysis stages 
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independently, using production and reconstruction tools from the NOvASoft architecture 

and art framework modified for my own purposes.  

 I modified the cosmic reconstruction tool used by the Production group, a .fcl file 

that chains together the calibration and reconstruction algorithms for cosmic tracks. I 

added an analysis stage to the end of the output path to perform calibration, 

reconstruction, as well as a basic analysis together in a single executable. 187 runs were 

used in the analysis, spanning the period from March 1
st
 to March 31

st
, 2015. Each run is 

comprised of 64 subruns, and each subrun is comprised of approximately 2100 events. 

There is one raw data file corresponding to each subrun. This is over 11 TB of data and 

almost 12,000 individual data files, meaning over 24,000,000 events were processed, 

which requires thousands of hours of CPU time. Data was processed on Fermilab’s 

scientific computing grid, which is described in NOνA’s Offline computing wiki as: 

  “a large cluster of worker nodes controlled by a submission (or head) node. Each 

worker node is a CPU, each with a local disk for temporary file storage. The submission 

node maintains a queue of jobs which need to be run and distributes those jobs to worker 

nodes based on a user priority system. Submitting jobs to the grid means adding jobs to 

the queue. Jobs must be configured to run a specific executable along with any 

required arguments.” [82] 

 Jobs, which are the running of some type of software on some type of data or 

Monte Carlo file for analysis or other purposes, are submitted to the grid through the 

SAM system, a means of handling data by their metadata. SAM is also succinctly 

described in the wiki: 

“Sequential Access Metadata (SAM) is a data handling solution developed by 

Fermilab's Scientific Computing Division (SCD) to efficiently deliver tape-archived files. 

The tape archive is supplemented by the large dCache disk array which stores recently 

used files. Technically, SAM is just a database of file names, locations and metadata; in 

practice, it's the bit of machinery that ties everything together. One of the key features of 

SAM is that it obfuscates users from nitty gritty file details like names and locations in 

favor of higher level information cataloged by the file metadata. Metadata classifies files 
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based on their key features, like processing tier, run number, trigger stream, generator 

type, etc.”[82] 

 Using job submission tools developed in part by Fermilab’s Scientific Computing 

Division and in part by NOνA physicists, customizable projects can be submitted to the 

grid for processing, allowing multiple jobs to be handled automatically without any 

further user input. Due to the large CPU time required for calibration, reconstruction, and 

analysis, grid computing is the only viable means of handling large amounts of data. All 

computing for the reconstruction and analysis in this thesis was done on Fermilab’s 

computing grid. 

 The first step in processing data is calibration with the CalHit module, which 

takes as input hit-level data in the form of raw digits produced by the DAQ. Raw hits are 

converted to a list of calibrated cell hits after they are looped over with NOνA’s 

Calibrator, applying fitted ADC values and time to each hit. The cosmic muon data, upon 

being submitted to the grid for processing, first undergoes calibration.  

  Calibrated cell hits, or simply CellHits, as they’re designated in the software, are 

the input for the Cosmic Slicer, the initial stage of track reconstruction. The Slicer groups 

neighboring hits together in 4 dimensions, according to their proximity in time and 

location within the detector. These hits are collected into “clusters” or “slices”, of which 

every event may have many. Each slice or cluster then, ideally, corresponds to an 

individual interaction with a minimal number of noise hits. Noise slices are produced, 

containing hits that do not appear to correspond to any particle activity in the detector. 

Clusters produced by Slicer serve as the inputs to the rest of the reconstruction tools.  

 Reconstructing cosmic muon tracks is simpler than reconstructing tracks 

associated with neutrino interactions, because of their straightness, length, lack of shower 

behavior, and predictable energy deposition. The CosmicTrack module in the TrackFit 

package of track-finding algorithms takes the 3D clusters from Slicer and applies a 

straight-line fit to hits within a slice, using both XZ and YZ views. This line is made by 

minimizing the squared perpendicular distance between the hits in the slice and the 

straight line passing through them. Hits that are more than 10 cm from the line are 

dropped as noise hits. The output from this algorithm is 2D and 3D tracks, with start and 
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end points in each 2D view matched to create 3D tracks. Points downstream in Z are 

assumed to be endpoints. These points are swapped if timing indicates the track instead 

goes upstream, by comparing the times at each end of the track. Following this 

procedure, the cuts discussed in section 6.3 are implemented.   

 

 

Figure 6.1. A NOνA event display showing a single cosmic ray event from March 

27th, 2015. The event is 500 microseconds, and includes dozens of muon tracks. Cell 

hit views are shown for XZ (top)  and YZ (bottom). The charge produced in each 

cell is shown by color. 

 
 Cosmic rates were calculated for each subrun by counting the total number of 

reconstructed cosmic tracks that passed the cut criteria per subrun and dividing by the 

total number of events within that subrun. Because the flux is dependent upon surface 

area, the Tracks/Events quotient is multiplied by a correction factor, 14/Ndiblocks, to 

correct for detector configurations in which not all 14 diblocks are active. Detector 

configurations are changed only from run to run, so all subruns within a run will have the 

same number of active diblocks. Because a run with fewer than 14 active diblocks will 

have less active detector volume, this correction factor accounts for missing volume by 
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assuming the cosmic muon density in the missing volume will be equal to the muon 

density in the rest of the detector, an assumption that is valid for the uniform cosmic flux 

at ground level. 

 

 

Figure 6.2. The event display of the same event shown in Figure 6.1, with hits traced 

by the Slicer, grouped together by time and space. The cosmic tracker uses these 

slices as input and separates any hits that do not fit close enough to a straight line 

drawn through beginning and endpoints.  

 

 

                  
                 
                 

   
   

                
 

(6.2) 

 

The cosmic rate is given as Tracks / Events / FD Surface area, or Tracks/500 

microseconds/900m
2
. The surface area of the fully active, 14 diblock detector is 900 m

2
. 

Subruns are not uniform in length (sometimes as short as 3 minutes, sometimes as long as 

11 minutes), nor do they always contain the same number of events. But events are 

uniform in length, 500 microseconds in duration, so dividing the number of tracks by the 
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number of events is the most robust way of finding the average cosmic rate over a long 

period. The quotient gives the average number of muon tracks seen per event, a quantity 

easy to compare from subrun to subrun, and is unaffected by cutting a subrun short, or by 

runs in which not all subruns were processed.  

The latter characteristic is important because a typical run of 64 subruns will 

always see a few failed processes once the files are processed by the grid. Of the 64 

subruns in a run, it is normal for only about 50-60 subruns to finish processing without 

ambiguous errors that cause them to fail and become unusable for analysis. This many 

missing subruns can create a gap of up to over 2 hours where it would wrongly appear 

that no cosmic activity has occurred. If instead the calculation were of the number of 

tracks per minute or hour, or some unit of time independent of subrun, incongruities 

would arise in cases where a subrun fails reconstruction or another stage of processing, or 

a subrun is cut short by some user action, and a segment of time may appear to have no 

cosmic activity when in reality it has plenty. Averaging the tracks per event within the 

subrun removes any miscalculation risk associated with short or missing subruns. The 

weakness in this approach, however, is that a histogram binned by subrun may appear to 

give an inaccurate picture of the cosmic activity over a long duration, due to length non-

uniformity, and situations in which entire runs were skipped during data-taking may 

create gaps in the data that appear to be longer or shorter than they are, or where in fact 

no gap exists in time. 

 A histogram of cosmic rates plotted as Tracks / Events / FD surface area vs. 

subrun are given in Figure 6.3. Gaps indicate subruns that failed reconstruction and 

analysis, or runs that were skipped in data taking. Missing runs do not necessarily 

indicate as much missing time as the scale would suggest, since the bins represent 

subruns and not times, which are not uniform in length. Other than failed subruns and 

nonexistent runs, no data was left out of the analysis. In Figure 6.3 the rate drops of 

interest are numbered in red. The total cosmic flux profile for March includes 9370 

subruns, and 19.3 million events. 

There was a quick drop in cosmic rates early in the month (1), lasting 

approximately a day before returning to a somewhat steady rate. This short duration made 
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it a bad FE candidate, as FEs are characterized in part by a recovery rate of  3 – 10 days 

[58], far more gradual than the recovery of this decrease. The quick return to previous 

rates suggests other causes. The cosmic rates remained steady for approximately 6 days 

with small variations before a large decrease appeared (2), on March 10
th

-11
th

. This 

decrease seemed to exhibit the same shape and behavior as a Forbush decrease, with the 

slow return to a steady rate over a period of days. A week later, before rates returned to 

normal, a second large decrease appeared (3), also with characteristic Forbush decrease 

behavior, with slowly increasing flux over the following days. The fourth decrease could 

be a remnant of a previous CME encounter, or a separate CME encounter in which only 

the CME’s shock was incident upon Earth, (see Figure 3.6).  

 

 

Figure 6.3. Cosmic muon flux in the Far Detector, reconstructed Tracks per Event 

per FD surface area, or tracks/500µs/900m
2
. Activity is binned by subrun instead of 

time. Red numbers indicate areas of cosmic rate drops to be  investigated in 

connection with solar activity. Data is not normalized or corrected for any other 

known effects. 
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 Each observed decrease could be due to factors that are not necessarily 

extraterrestrial activity. These factors need to be evaluated first so corrections may be 

applied. Air pressure and air temperature are known to affect cosmic ray flux at Earth, 

and the degree to which these factors play a role varies from location to location, and 

from detector to detector. Latitude, altitude, and depth of the detectors will cause each to 

see different changes depending on temperature and air pressure, so the coefficients 

determining the magnitude of these effects need to be evaluated on a case by case basis. 

Increases in temperature cause an expansion of the atmosphere so that muons are 

produced at higher altitudes and have a larger probability of decaying before being 

detected. There is also a possible increase in muon flux that can be caused by increased 

temperature, since raised temperatures lead to air density decreases, in which meson 

interaction probabilities are lowered. This means more mesons decay, leading to more 

muons. However, the latter effect is more pronounced for underground detectors, while 

the former is dominant in surface detectors, like the Far Detector, which is expected to 

lead to a negative correlation between air temperature and muon rates.  

The relationship between air pressure and cosmic ray intensity is 

 
  

 
 
 
       

(6.3) 

where ΔI is the change in cosmic ray intensity, β is the barometric coefficient, and ΔP is 

the change in atmospheric pressure [83]. The barometric coefficient is determined by the 

relationship between detector counting rates N and air pressure P, given by 

   
        
       

 

(6.4) 

where N is the detector counting rate at pressure P, and N0 is the detector counting rate at 

pressure P0. 

 The temperature variation has the same relation, given by 

 
  

 
 
 
       

(6.5) 
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with K the ground temperature coefficient, and ΔT the change in temperature. The value 

K is determined similarly to the barometric coefficient,  

   
        
       

 

(6.6) 

 The total effect of air pressure and temperature on cosmic flux is  

 
  

 
    

  

 
 
 
   

  

 
 
 
 

(6.7) 

The coefficients K and β were evaluated by analyzing segments of the data in which no 

significant decreases (<1%) were observed, to insure data unaffected by other factors, and 

comparing air temperature and air pressure to measure the contributions of each. If the 

cosmic rates fluctuate without a discernible dependence upon P or T, the decreases may 

instead be attributed to other sources.  

Data spanning March 4
th

 – 8
th

 showed relatively steady cosmic rates, with less 

than 1% variation. This steadiness implied an absence of measurable extraterrestrial 

effects on cosmic intensity, which was confirmed against solar activity data [84]. These 

dates were used to study temperature and pressure effects on cosmic rates at the Far 

Detector, as well as the variation in daytime and nighttime cosmic rates. Cosmic rates 

were examined periodically through each day with corresponding air pressure and 

temperature fluctuations. Periods of identical temperature and fluctuating air pressure 

were compared to determine the barometric coefficient (when the second term in 

Equation 6.7 is 0), and periods of identical air pressure and fluctuating temperature were 

compared to determine the temperature coefficient (when the first term in Equation 6.7 is 

0).  

The barometric coefficient was found to be β = 0.00035   0.00025. The 

temperature coefficient was found to be K = 0.00029   0.00011. To establish whether or 

not temperature and pressure effects could explain the decreases numbered in Figure 6.3, 

the expected cosmic flux variation was calculated for each decrease, using data from 

March 7
th

 as a reference point, with a temperature of -4°C, an air pressure of 1016.93 mb, 
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and a cosmic muon rate of 47.38 tracks per event per 900 m
2
. Air pressure and 

temperature modulation of the cosmic flux are tabulated in Table 6.1. 

Air pressure and temperature effects were found not to account for the observed 

decreases. In three of the four cases, temperature and air pressure effects would instead 

have resulted in slight increases in cosmic rates, not decreases. For the decrease in which 

temperature and air pressure contributed to decreased cosmic rates, less than 1% of the 

decrease is explained by temperature and pressure. The cosmic rate fluctuation from day 

to night was also studied during this calm period, with data from 10 am – 2 pm compared 

with data from 10 pm – 2 am over four days. 163 subruns were used to establish the 

daytime rate, 285 subruns were used to establish the nighttime rate. The difference 

between day rates and night rates shows only a 0.48% decrease from day to night, 

indicating a steady cosmic flux when conditions are normal. See Figures 6.4 and 6.5. 

Stratospheric temperatures can also affect muon rates at Earth, but most studies for these 

effects show a relationship for high energy muons, in the TeV range. The effects are  

gradual, causing rate changes noticeable over a period of days and weeks. The Forbush 

effect is immediate, occurring over a period of hours, with rapid changes, and so 

stratospheric effects are considered negligible for this analysis.  

Although a quantitative relationship between most characteristics of Forbush 

decreases is incomplete, the recovery rate of a Forbush effect can be described 

approximately by 

                               

(6.8) 

where I0 is the cosmic ray intensity at the point of greatest decrease, directly before 

recovery begins at time t0, I is the measured cosmic ray intensity at time t, M is the 

magnitude of the rate decrease, and   is the recovery coefficient. According to this 

relationship and the estimated recovery periods for a number of Forbush decreases with 

similar magnitudes, the three observed periods of significant decrease should have the 

following recovery periods. 

  Decrease 1 should have a recovery period of approximately 113 hours, but its 

observed recovery rate is approximately 20 hours, exhibiting a symmetric onset and 
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recovery time, making it a bad candidate for a Forbush decrease. Decrease 2 should have 

a recovery period of approximately 154 hours, and has an observed recovery of greater 

than 120 hours. Its full recovery is not observed, as the third decrease begins before it can 

be completed. Decrease 3 should have a recovery period of approximately 180 hours, and 

its observed recovery is about 200 hours. The second and third decreases therefore appear 

to be good candidates for Forbush decreases. 

The decrease on March 2
nd

 does not exhibit the characteristics of a Forbush 

decrease or any other known interplanetary effect. The decreases later in the month have 

the characteristics of a Forbush decrease, and are unexplained by normal variations or 

any known Earth-sourced effects. The fourth observed decrease is unlikely to be the onset 

of a new Forbush decrease, instead explained as a continuation of the previous decreases. 

These results are discussed in the next section. 

 

Table 6.1. The expected change in cosmic flux due to temperature and air pressure 

in Ash River, MN was calculated for the data corresponding to the 4 decreases. 

Temperature and pressure effects were compared to the observed change in flux. 

Three of the four decreases occurred during periods in which temperature and 

pressure effects alone would have instead caused an increase in flux (column 6). 

None of the observed decreases can be explained by air pressure and air 

temperature fluctuations. 

Date Cosmic Rate 

(tracks/event/FD 

area) 

Temperature 

(C) 

Air 

Pressure 

(mb) 

Total 

observed 

% rate 

change 

% rate change 

due to T,P 

3/2 46.54 -5 1024.04 -1.77 +0.25   0.18 

3/10 46.11 7 1007.11 -2.68 -0.025   0.27 

3/17 45.62 2 1027.09 -3.71 +0.53   0.26 

3/22 46.22 -4 1028.10 -2.45 +0.39   0.28 
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Figure 6.4. Cosmic rates during the 10 am - 2 pm period for 4 days, with an average 

rate of 47.45 tracks/event/detector area, and σ = 0.1974. 

 

 

Figure 6.5. Cosmic rates during the 10 pm - 2 am period for 4 days, with an average 

rate of 47.22 tracks/event/detector areaa, and σ = 0.1893.  

 

6.5 Results 
 
 The data in this analysis spans March 1

st
 – March 31

st
, 2015. The runs included 

are 19016 – 19232 from the Far Detector. Not including missing runs and subruns that 

failed reconstruction, we are left with 187 runs, 9370 subruns, and about 19.3 million 
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events for analysis, for a total of 2.7 hours of total detector livetime spread over March. 

Rates from March 3
rd

 – March 10
th

 constitute the regular cosmic rates unaffected by solar 

activity or other terrestrial and extraterrestrial sources, so this data was used to establish a 

“Pre-Decrease” average rate, with which the decrease rates were compared. The pre-

decrease rate is shown in Figure 6.6. It was calculated from 2107 subruns, and 4,405,809 

events. 

 

 

Figure 6.6. The pre-decrease distribution of the number of reconstructed 

tracks/500µs/900m
2
. The average rate is 47.25 tracks, with σ = 0.2734. 

 

The point of lowest intensity during the decrease compared with the pre-decrease 

average gives the magnitude of a Forbush effect. The cosmic rates for the first Forbush 

candidate are given in Figure 6.7, determined from 105,667 events. The decrease has a  

magnitude of 2.98%, with a standard deviation of 0.1565. The error associated with this 

measurement is 4.814 10
-5

. This decrease occurred on March 11
th

, and recovered over 

the next six days until the second decrease appeared. The rates for this decrease are given 

in Figure 6.8, determined from 120,749 events. The decrease has a magnitude of 3.43%, 

with a standard deviation of 0.1678. The error associated with this measurement is 

4.829 10
-5

. The decrease occurred on March 17
th

, and its recovery time took the rest of 
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March. Solar data has been used to confirm that the identified decreases are due to solar 

activity.  

 

 

Figure 6.7. The distribution of cosmic rates at the point of maximum decrease for 

the first Forbush effect candidate, on March 11th. The rate was an average of 45.84 

reconstructed tracks/event/detector area, and σ = 0.1565. The change in cosmic flux 

is a 2.98% decrease from the average cosmic flux, peaking at 16:50 on March 11
th

.  

 
As discussed in Chapter 3, a Forbush decrease is caused by a full halo CME, i.e., 

a coronal ejection facing Earth. The solar wind speed at the time of the CME determines 

when the CME will arrive at Earth. The average solar wind speed is approximately 

400km/s. Forbush decreases usually occur 2-3 days after the appearance of a CME. Solar 

data for this thesis was retrieved from SolarMonitor.org, managed by the Solar Physics 

Group at Trinity College, Dublin, provided by the NOAA Space Weather Prediction 

Center and the SDO/HMI and SDO/AIA consortia, and from the solen.info Solar 

Terrestrial Activity Report, which accumulates data from LASCO (the Large Angle and 

Spectrometric Coronagraph Experiment) and SOHO (the Solar and Heliospheric 

Observatory). Early March was devoid of solar activity until late March 7
th

 and early 

March 8
th

. LASCO observed a fast partial halo associated with an M9 solar flare event in 

the AR12297 region on the sun. Figure 6.9 shows the X-ray flux profile, with a sharp, 



 

119 
 

fast burst during the night of the 7
th

 – 8
th

. Solar wind speed at this time was ~550km/s, 

giving the CME an arrival time of early March 11
th

, coinciding perfectly with the 

decrease in NOνA’s cosmic data. 

 
 

 

Figure 6.8. The distribution of cosmic rates at the point of maximum decrease for 

the first Forbush effect candidate, on March 17th. The rates were an average of 

45.63 reconstructed tracks/event/detector area, and σ = 0.1678. The change in 

cosmic flux is a 3.43% decrease from the average cosmic flux.  

 
 A full-halo CME occurred on March 15

th
, associated with a C9.1 solar flare from 

the AR12297 region on the sun (Figure 6.10). The CME arrived at Earth in the early 

morning of March 17
th
, again coinciding with NOνA cosmic data. The x-ray flux and 

proton flux profiles are shown in Figures 6.11 and 6.12, respectively, showing extended 

bursts of x-ray activity and a large increase in proton flux.  
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Figure 6.9. X-ray flux profile for the March 7th-8th partial-halo CME. Much of the 

data is missing, but the peak at the end of March 7th is visible, as well as its trail 

into March 8th. [85] 
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Figure 6.10. A C9.1 magnitude solar flare erupts from the sun in region 2297, the 

source of the CME associated with the March 17th geomagnetic storm on Earth. 

This image was taken from NASA’s Solar Dynamics Observatory. The plot on the 

bottom shows the magnitude of X-ray flux, designated by flare class. Flare class is a 

measure of watts/square meter, with A < 10
-7

, B = 10
-7

 – 10
-6

, C = 10
-6

 – 10
-5

, M = 10
-5

 

– 10
-4

, and  X = 10
-4

 – 10
-3

. [84] 
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Figure 6.11. X-ray flux profile as measured by the GOES spacecraft. The March 

15th CME can be seen as the wide curve, peaking early in the morning. [85] 

 

 

 

Figure 6.12. Proton flux associated with the March 15th CME, taken from the 

GOES spacecraft. [85] 
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The observed decreases of 2.98% on March 11
th

 and 3.43% on March 17th are 

consistent with the arrival of CMEs generated on March 8
th

 and March 15
th

. The second 

CME’s arrival at Earth was notable for causing a G2 geomagnetic storm (visible at 54.2° 

latitude and higher), the strongest geomagnetic storm of the year to date. In Chapter 3 the 

differences between Forbush decreases observed in neutron and muon data were 

mentioned. Neutron monitors are the most common detectors used for observing the 

Forbush decrease, and due to the lower energy of their parent cosmic particles, will 

exhibit a larger decrease than what is seen in muon detectors, typically three times the 

magnitude. NOνA’s data was compared to that of two neutron monitors, the Oulu 

Neutron Monitor in Finland, and the Moscow Neutron Monitor in Russia, to check the 

veracity of these findings. Both monitors detected the March 17
th

 decrease, with a 

magnitude of ~4.5%. This is greater than the magnitude observed in NOνA, but the 

NOνA data shows a larger decrease than 1/3 that in 0the neutron data. The decrease 

observed on March 11
th 

does not appear clearly in the neutron data, though there is a 

small magnitude decrease in cosmic flux from March 11
th

 – 12
th

 of about 1-2%, but not to 

the extent that NOνA sees it. Many characteristics in the cosmic ray profiles shared 

between both neutron monitors are also found in the NOνA data, as shown in Figure 

6.13.  

The tight distribution of cosmic events in both decreases and the large sample 

sizes put both CME-influenced cosmic intensity decreases within a confidence interval of   

  0 at the 99.9% confidence level. The measurement of the March 17
th

 Forbush decrease 

is confirmed by data from two neutron monitors. Most data on Forbush effects exist in 

the form of neutron data. The analysis of this thesis provides additional data on solar 

modulation of muon cosmic ray intensity at Earth, which is comparatively lacking in the 

overall study of Forbush decreases. Theoretical modeling of the Forbush effect is still 

incomplete, and detailed data is important for furthering this work. The long term study 

of Forbush decreases enables a stronger understanding of the effects of solar activity on 

Earth’s magnetic field, with data on muon cosmic rays complementing that of neutron 

cosmic rays for a more complete picture.  

 



 

124 
 

 

 

 

 

Figure 6.13. Data from the Oulu (top) and Moscow (middle) neutron monitors, 

plotted as percentage deviation from the average cosmic rate vs. time. NOνA’s 

cosmic data is plotted on the bottom. Red bars show the time of impact of CMEs on 

March 11th and March 17th. Both Forbush decreases are observed in the neutron 

and muon data. Oulu and Moscow neutron data taken from [86] and [87]. 
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CHAPTER 7. CONCLUSIONS 

 The measurement of Cerenkov reemission in NOνA’s liquid scintillator is found 

to cause up to a 15% excess of photon production over the UV spectrum that will 

contribute to a signal in NOνA’s cells, with a non-linear ratio of the number of reemitted 

Cerenkov photons to the number of photons produced by scintillation alone. This value is 

close to the value estimated for Cerenkov reemission in KamLAND’s liquid scintillator 

after fitting to the measured value of Birks’ quenching coefficient, suggesting 

approximately a 15% contribution. 

Birks’ quenching constant has not been measured for NOνA’s liquid scintillator, 

because the experiment intended to do so has not been finished. This value is required for 

a full correction to the energy calibration of NOνA’s liquid scintillator. Once Birks’ 

constant is determined, the reemission and quenching results will be implemented into a 

simulation to evaluate the total effect on the scintillator’s energy response. However, 

even without a simulation the effects of these quantities can be calculated.  

Measuring the solar modulation of cosmic flux at Earth revealed two Forbush 

decrease events in excess of 2% with greater than 10 sigma confidence, with recovery 

periods longer than 5 days. If, in fact, muons tend to exhibit only one third the decrease 

magnitude exhibited by neutrons, the data from the Far Detector shows a larger effect 

than expected from comparison to neutron data taken at the Moscow and Oulu neutron 

monitors. A possible explanation for the difference in magnitude is the directional cuts 

made for this analysis, because neutron monitors do not account for direction. Were one 

to look at muons from all angles, it is possible the overall decrease magnitude would be 

lesser than when cutting at 18 degrees, since a wider energy spectrum would be observed.  

This study demonstrates NOνA’s capability as a cosmic muon detector to be used 

for physics outside of neutrino oscillations, and provides useful data that serves as a 

comparison against neutron data. The quantitative modeling of FEs is incomplete, and 

more data sets, particularly from muon detectors, are necessary for progress toward this 

end.  
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