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ABSTRACT 

Domestication is usually defined as a proce s s  

involving human subj ugation of other animal o r  plant 

spec ies . From thi s  perspective , it  is  often presumed that 

morphological changes in domestic animals are the product 

of consc ious or unconsc ious human selection . A broader 

evolutionary perspective does  not make thi s  presumpt ion . 

The origin of the domestic dog ( Cani s  familiaris ) is  

best understood as a consequence of human adopt ion of wol f  

pups ( Canis lupus ) some 1 2 , 0 00 years ago . Young wolf pups 

growing up in human soc iety formed the ir primary social 

bonds with humans . The radically altered c ircumstances 

experienced by these early domestic c anids pl aced them in a 

new role as ecological colonizers . Selection under these 

c ircumstances favored precoc ious maturat ion , result ing in 

evolutionary progenesis , a form of heterochrony . 

concurrently,  an abrupt shift in diet resulted in rapid 

s ize reduct ion in the new evolving spec ies . 

craniometric data are analyzed from modern wild Canis 

and prehistoric domestic dogs from North America and 

northern Europe , all predating 3 , 00 0  B . P .  The goal is to 

as sess whether or not morphological changes in dogs are 

al lometric consequences of s ize reduction , brought about by 

heterochronic alterations . Previous investigations of 

canid allometry involving wild canids and modern dog breeds 

serve as a frame of reference . 
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B iv ar iate analys is of static data reveals that the 

dogs exhibit uniquely wide cranial vaults and pal ates , and 

are distinct from allometric trends seen among other 

groups . Anterior cranial length variables are tightly 

scaled among all groups , with proportional variation a 

consequence of allometric scaling . Dogs also tend to have 

proportionally longer teeth than s imilar s ized wild c anids . 

Bivariate analys i s  of ontogenetic data reveals that wide 

vaults and palates in dogs are associated with a greater 

correspondence to wolf ontogenetic regress ion l ines 

relative to other groups . on anterior cranial length 

variables all  groups exhibit evidence of ontogenetic 

scaling . Multivariate analys is indicates that dogs are 

morphologically more similar to j uvenile wolves than to any 

adult group . 

Juvenil ized morphology in dogs is a cons equence of 

rapid s ize change with morphology constrained to 

development al pathways . Invariance in gestation period in 

canis may pose a fundamental morphological constraint on 

dog morphology . confinement of morphology to developmental 

boundaries may be indicative of rapid evolutionary change 

in general . Heterochronic mechanisms respons ible for this 

mode of change may be important in the evolution of 

domestic animal s  other than the dog . 
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CHAPTER I 

INTRODUCTION AND PROBLEM DEFINITION 

This i s  a study of evolutionary proces s . It is  an 

ef fort to better understand evolutionary change s seen in a 

particular episode of spec iation involving wolves ( Cani s  

lupus ) and their descendents ,  domestic dogs ( Canis 

f amil iaris ) .  From a beginning presumed to l i e  about 1 2 , 0 0 0  

years ago , wolves assoc iated with humans radiated 

geographically and evolved into a new spec ies , the domestic 

dog. Because this process of spec iation occurred in the 

context of a social , ecological relat ionship with humans , 

it cannot be understood independent of  that relat ionship . 

Questions relating to the origins and evolution of the 

dog have been dealt with repeatedly by western science for 

wel l  over a century ( e . g . , Galton 1 8 6 5 ;  Darwin 1 8 6 8 ; 

Al len 1 9 2 0 ; Dahr 1 9 4 2 ; Werth 19 4 4 ;  Degerb�l 1 9 6 1 ;  Scott 

1 9 68;  Clutton-Brock 1984 ; s .  Ol sen 1 9 8 5 ) .  In fact , it 

has been remarked that this animal generates more interest 

than any other domestic spec ies ( B�k�nyi 1974 : 3 1 3 ;  s .  

Ol sen 1 979 : 1 8 8 ;  Benecke 1 9 87 : 3 1 ) . cons idering the 

attent ion bestowed on the dog ,  it is remarkable how l ittle 

is actually known about its origins and early evolution . 

For example , it is  not known where the dog originated , or 

whether its domestication occurred once or several times 

independently . Nor is it clear j ust  when its domestication 
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took place , though this c an be rel iably pushed back to 

about nine thous and years ago , less rel iably to about 

1 2 , 00 0  years or more ( see Chapter I I ) . 

Even ident ification of the basic ancestry of  dogs 

c annot be cons idered ful ly settled , though there is a broad 

modern concensus that one or more variet ies of the wol f  (£. 

lupus ) represents the progenitor of  modern dogs ( e . g . , 

scott and Ful ler 19 6 5 ;  Scott 1 9 6 7 ;  Reed 1 9 6 9 ; Bokonyi 

1 9 7 4 ; Clutton-Brock et al . 1 97 6 ;  Olsen and Olsen 1 9 7 7 ;  

Aaris-s�rensen 1 9 7 7 a ;  Clutton-Brock 19 8 1 ,  1 9 8 4 ; s .  Olsen 

1 9 8 5 ) . This concensus is  based on structural , 

physiological , and behavioral s imi larities between the two 

species . Although it is as sumed here that the wol f  was 

indeed the ancestor of the dog , it must be acknowledged 

that the issue is not ful ly closed ( see Chapter I I ) . As 

Clutton-Brock ( 1 9 8 4 : 20 2 ) has observed , it is surpris ing how 

l ittle our knowledge on this topic has advanced s ince 

Darwin ( 1 8 6 8 ) argued over a century ago for a multiple 

ancestry for dogs involving both wolves and j ackals ( Canis 

aureus ) .  

This study deals with morphological divergence of  dogs 

from wolve s . Analys is and discuss ion in the ensuing 

chapters focus on three interrelated questions : ( 1 )  What 

morphological changes occurred in the evolut ion of dog from 

wolf dog? , ( 2 )  How are these changes structurally or 

phys iologically interrelated? , and ( 3 )  Why did these 
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changes occur? With the exception of  the f irst question , 

these c an be counted among those frequently addressed bas ic 

issues that have not been resolved . In this  study 

quantitative analys is of  c raniometric data f rom recent and 

subfossil  c anids , including wolves and prehistoric dome stic 

dogs , prov ide the basis for attacking these quest ions . 

This study builds on a substant ial body of  l iterature that 

deals with these very questions and spans more than a 

century of  invest igations . 

Because this  study focuses on morphological divergenc e 

from wolves , the data base emphas izes early prehistoric dog 

remains . All spec imens are f rom North America or northern 

Europe . I t  is  cons idered des irable to focus on early , 

morphologically general ized dogs associated with peoples 

whose l i feway still  cons isted largely of broad spectrum 

hunting and gathering . With reference to archaeological 

taxonomy , this  refers to " Mesolithic " (or earl ier ) 

materials in Europe while in North America "Archaic " ( or 

earl ier ) remains are most appropriate . Thus , emphas is i s  

placed on materials that predate roughly 3 , 00 0  B . P .  

The reason for this emphasis is that sedentary 

agricultural or urban l i fe among humans is correlated with 

the widespread emergence of  morphologically specialized 

breeds of  dogs ( c f .  Bokonyi 1 9 7 4 : 3 1 3 -334 ; Clutton-Brock 

1984 : 2 0 7 - 2 0 8 ) .  The development and geneaology o f  modern 

dog breeds has been dealt with by other investigators 
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( e.g . , Hilzhe imer 1 9 3 2 ; Lumer 1 94 0 ;  Epstein 1 9 7 1 ;  

Bokonyi 1 9 7 4 ; Clutton-Brock 1 9 8 4 ) but is beyond the scope 

of this study . Discuss ions of modern or recent dogs are 

employed at various j unctures ,  but only when they help shed 

light on ques tions concerning the early evolution of dogs 

from wolves . Questions concerning the emergence of modern , 

spec ialized breeds are not unimportant or uninteresting-­

they s imply are not the quest ions under investigat ion here . 

Numerical ly ,  wolves comprise the greatest portion of 

the data base used in this  s tudy , all coming from several 

North American varieties ( including the red wol f ,  canis 

rufus ) .  Use o f  North American spec imens does not reflect 

theoretical concerns , but only the fact that these 

materials were most readily available  to this  author . 

Although North American wolves may have partic ipated in the 

ancestry of some dogs ( c f .  Olsen and Olsen 1 9 7 7 : 5 3 3 ; 

Clutton-Brock 1 9 8 4 : 1 99 ) , thei r  predominance in the data 

base should not be construed as an argument in support of 

this poss ibility . It  is  s imply assumed that North American 

wolves provide a generally val id model of  static var iation 

and growth in the species that gave rise to the dog .  In 

addition to wolves the data base include s a series of  

golden j ackal s ( Canis aureus ) and North American coyotes 

( Canis  l atrans ) .  

The rationale for undert�king yet another study of  the 

origins and early evolution of the dome�tic dog is multi-
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faceted . For anthroplogists , this  topic is  important 

because the evolution of the dog apparently s igni f ies the 

f irst domestic relationship between man and another animal 

spec ies . E arly domestication had f ar reaching 

consequences , for subsequent human evolution was 

inextricably l inked with domestic relationships . 

For b iologists the riddle o f  early dog evolution poses 

a fasc inating problem concerning mechanisms of  evolutionary 

change . A princ ipal challenge is to determine the genetic 

and developmental factors that control the express ion of 

morphological variabil ity in dogs . This task c annot be 

meaningful ly undertaken without reference to the 

evolut ionary divergence of dogs from wolves . 

Identi fication o f  the mechanisms that have produced 

dif ferent morphologies in polymorphic spec ies poses an 

important problem for evolutionary biology , with 

application beyond the spec i f ic taxa dealt with here ( e . g . , 

Stockhaus 1 9 6 5 ;  Wayne 1 986 a ,  1986b ) . 

Finally , at a broader level , it is this author ' s  hope 

to contribute to a better understanding o f  domestication as 

an evolutionary process . 

Domestication as Evolut ion 

Domestication is commonly viewed as a condit ion 

imposed by humans on other animals ( or plants - -this study 

deals only with domestic rel at ionships involving humans and 



6 

other animal s ) . consider the following examples : 

I would def ine the essence of domestic ation as : 
the c apture and taming by man of  animals of  a 
species with particular behav ioral characteri stics , 
their removal from their natural living area and 
the breeding community , and the ir maintainance 
under controlled breeding conditions for profit  
[Bokonyi 1 9 6 9 : 2 1 9] .  

I t  seems reasonable to accept the fact that the 
events leading from animals that were wild to those 
that were f inally domesticated would follow the 
process of c apture , taming , and control l ed breeding 
( but not necessarily conducted as a wel l-organzed 
procedure ) [S . Olsen 1 9 7 9 : 1 7 5] .  

A domestic animal i s  one that has been bred in 
captivity for purposes of  economic prof it to a 
human community that maintains complete mastery 
over its breeding , organiz ation of territory , and 
food supply [Clutton-Brock 1 9 8 1 : 2 1] .  

. . . domestic ation can be said to exist when 
l iving animals are integrated as obj ects into the 
soc ioeconomic organiz ation of the human group , in 
the sense that , while l iving , those animals are 
obj ects for ownership , inheritance , exchange , 
trade , etc . , as are the other obj ects ( or persons ) 
with which human groups have something to do [Ducos 
1 9 7 8 : 5 4] . 

Understandably,  these de f initions focus on the 

implic ations of domestic rel ationships for humans . It is 

certainly legitimate for investigators l inked with 

anthropology to exhibit primary concern for the role of  a 

process or relat ionship in human exis tence . Among the 

above def initions some ( Bokonyi , Olsen ) contain assumptions 

about the mechanisms by which humans impose this condition 

on other animals ( e . g . , " c apture " , " taming" ) ,  while others 

( Clutton-Brock , Ducos ) avo id s tatements of mechanism and 

stress instead the characteristics or roles of domestic 
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animals in human soc iety ( e . g . , " economic pro fit " ,  " obj ects 

of ownership " ) .  More recent di scuss ions mirror these 

perspectives ( Bokonyi 1989 ; Clutton-Brock 1 9 8 9 ; oucos 

1 9 8 9 ) . 

When domestication is  viewed as human subj ugat ion of  

another species, it is natural to  characterize it in  terms 

of the purposes behind it or the processes by which humans 

accompl ished it . The economic  impact on human soc iety o f  

an imals l ike cows , pigs , or sheep is s o  obv ious that this 

approach is intuitively appropriate . However ,  as Bokonyi 

( 1 9 7 4 : 3 1 3 ) has suggested , dogs are not economically 

important now and probably never were ( for a different view 

see Clutton-Brock 1 9 8 4 : 2 04 ) . Because of th is perception , 

it has been suggested that dogs bas ically domestic ated 

themselves ( c f .  Haag 1 9 4 8 : 2 5 7 - 2 5 8 ; Bokonyi 1 9 7 4 : 3 13 ) , or 

that at least they were less a product of human subj ugat ion 

for economic reasons than other animals ( e . g . , Epstein 

1 9 5 5 : 1 3 7 ) . Even so , morphological changes as soc iated with 

domesticat ion in dogs are often presumed to be direct 

products of  human selection , conscious or unconsc ious 

( e . g . , Davis and Valla 1 9 7 8 : 6 0 8 ;  Fox 1 9 7 8 a : 8 9 ;  Clutton­

Brock 1 9 8 4 : 3 8 ;  cas inos et al . 1 9 86 : 7 3 ) . Thus , humanly 

directed morphological evolut ion is believed to be 

operat ive f rom the very onset of a domestic relationship . 

Its intuitive appeal notwithstanding , it is  legitimate 

to seek a broader understanding of domestic rel at ionsh ips 
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than is  afforded by an anthropocentric perspective . 

Some inves tigators , for example Reed ( 1 9 5 9 , 1 9 84 ) , Scott 

( 1 96 8 ) , zeuner ( 1 9 6 3 ) , and Herre ( 1 9 7 0 ) , have focused on 

domestication as a symbiotic ecological relationship 

between two species that potentially entails evolutionary 

consequences for both ( see also Rindos 1 9 84 ) . This 

approach has by no means yielded a uni form outlook . Reed 

( 1 9 5 9 : 1 6 3 6 ) spoke of domestication in terms of "bene f ic ial  

mutual ism" at  about the same time zeuner ( 1 9 6 3 : 3 6 )  was 

us ing the term " s lavery" as a virtual synonym for 

"domestication " .  Nevertheless , both viewed domestication 

in terms of ecological relat ionships with evolutionary 

outcomes ,  however broad the spec trum of  those rel at ionships 

might be . 

This evo lutionary perspective entails much more than a 

difference in descriptive terms . It  lends the concept of 

domestication greater latitude than is possible when it is 

viewed anthropocentrically . First , and probably most 

obvious , domestic relationships are not restricted to 

humans , though this implication itse l f  sometimes generates 

discomfort even when it is  accepted ( e . g . , Herre 1 9 7 0 : 2 5 9 ) . 

Domestic re lationships occur among nonhuman animals ( Z euner 

1 9 6 3 : 3 6 - 6 4 ) and between plants and nonhuman an imals ( Rindos 

1984 : 99 - 1 1 2 ) .  

Second , an evolutionary perspective forcibly draws 

attention to the fact that domestic relationships involve 
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two spec ies, not j ust one . When viewed 

anthropocentrical ly, it is easy to forget that the 

consequences of human-animal domestic relationships are not 

restricted to humans . The evolutionary stakes for 

participating animals are high indeed . one need look no 

farther than dogs for a dramat ic il lustrat ion . Dogs now 

abundantly populate virtually the ent ire world while  the ir 

ancestors, wolves, have been extirpated from all but a few 

remote places . From a Darwinian point of  view, taking up 

res idence with humans a few thous and years ago was an 

awfully smart thing for wolves to do . 

Finally, and most importantly for this  study, an 

evolutionary perspective discourages the assumption that 

e arly morphological changes associated with domestic 

relationships must be the direct products of  consc ious or 

unconsc ious human selection for different traits . Every 

morphological change in an evolving domestic animal does 

not necessarily occur because it serves some end for humans 

( c f .  Berry 1 9 6 9 ) . The animals have their own Darwinian 

ends to serve . It  is even poss ible, as Chapl in ( 1 9 6 9 : 2 3 1 ) 

po inted out, that some changes may be purely coincidental 

with the evolution of a domestic relationship . 

The foregoing discuss ion should not be construed as a 

general indictment of an anthropocentric view of 

domes tic ation . The relatively rec ent emergence of  human­

animal domestic rel ationships had tremendous impact on 
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human cultural evolution . The broader view of  

domestication af forded by an  evolutionary perspective does 

not lessen that impact or call into question the legitimacy 

o� focus ing on the human s ide of the domestication 

equation . Nor does it negate the obvious fact that most 

human-animal domestic relationships have resulted in the 

l iteral subj ugation of the nonhuman participant . A cow,  

for example , has l ittle input into its own existence . 

Nevertheles s ,  it is appropriate to be critical of  

the frequently employed assumption that morpho logical 

changes in a domestic animal must be the product of human 

selection . Human selection is someth ing to be 

demons trated , not as sumed . In addition to th is criticism , 

an anthropocentric view is  rej ected here s imply because it 

is  inappropriate given the obj ectives of this s tudy . This 

study poses questions about the evolut ion of  dogs , not 

humans . A broader evolutionary perspective is better 

suited for deal ing with these questions because it fosters 

greater flexibil ity in seeking answers without ignoring the 

fact that dogs are indeed a direct product o f  a domestic 

relationship with humans . Domesticat ion is  evolution 

( Rindos 1 9 8 4:1 ) ;  it wil l  be investigated as such here . 

· Evolution , Genes, and culture 

Evolut ionary theory is a framework for understanding 

change as different ial pers is tence of variat ion ( Dunnel l  
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1 9 80:3 8 ) . Most variation in nonhuman orqanisms i s  the 

product of qenetic information , whereas most variation in 

humans is the product of cul tural information . culture is  

reqarded here as  phenotypic informat ion transm itted between 

orqanisms behaviorally rather than qenetically . In  this 

view culture is not the exclus ive domain of  humans , but may 

be found in other social animals ( Bonner 1 9 8 0 ) ,  albe it in 

much more l imited form . However , there is l ittle question 

that humans are the only animal in which cultural 

information has superceded qenetic informat ion as the 

primary aqent of evolutionary chanqe . 

In  qenetic  systems informat ion encoded in DNA is 

phys ically transferred from parents to offsprinq . Rates o f  

evolutionary chanqe are directly l imited b y  the rate of  

qenerational turnover in  a spec ies . In cultural sys tems 

informat ion flow is not restricted to parents and 

of fsprinq . It  may potentially be passed amonq any 

individuals , thouqh there is undoubtedly pattern inq in the 

kinds and quantities of information most l ikely transmitted 

between different cateqories o f  individual s ( e.q . , parents ,  

s ibl inqs , unrelated conspec i f ics , etc . - -s ee Caval l i - S forza 

et al . 19 8 2 ;  Richerson and Boyd 1 9 8 7 ) . Evolut ionary 

chanqe mediated by cultural informat ion need not be 

dependent on qenerational turnover and may take place at an 

explos ive pace relative to qenetical ly mediated evolut ion . 

Variabil ity in qenetic systems is af fected by 
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replication and recombination o f  genetic material . 

occas ionally a mistake occurs in repl ication , resulting in 

a mutation . New variants for any particular trait are 

produced by mutations . In cultural systems informat ion can 

be recomb ined and transmitted throughout an organism ' s  

l i fe , and new variation is not dependent on occas ional 

mis takes in genet ic replication . In addit ion , inher itance 

of cultural informat ion is much less prec ise than 

inheritance of genetic information . culturally  transmitted 

aspects of individual phenotypes are highly malleable . 

Yet , in spite of the tremendous variabil ity in cultural 

systems , and the potential for rapid change during a 

cultural being's l ifetime , there is a l arge degree of 

heritabil ity in cul tural information systems . Express ion 

of cul turally derived traits is not s imply random , as any 

anthropologist wel l  knows . 

In spite o f  the dist inctive features o f  cul tural 

informat ion systems , they are in principle subj ect to 

Darwinian processes . There is  nothing in the basic 

structure of  Darwinian theory to exclude mechanisms of  

inheritance other than genes ( Blute 19 7 9 ;  Dunnel l  

1 9 8 0 : 6 2 ) . I f  variation exis ts , i f  that vari at ion is 

heritable , and i f  dif ferent express ions of  that variation 

affect an organisms ' s  capacity to l ive , thrive , and 

reproduce succes s fully , evolution will occur following the 

Darwinian model ( Lewontin 1 9 7 0 : 1 ; Pyke et al . 1 9 7 7 : 1 3 8 ;  
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Dunnell 1 9 8 0 : 6 3 ;  Richerson and Boyd 1 9 87 : 3 1 ) . 

Wolves entering into a domestic assoc i ation with 

humans cannot be s implistically viewed as genet ic ally 

controlled robots ,  bl indly execut ing programmed behaviors . 

Wolves are intelligent social animals whose  survival 

depends not only on genetic endowment , but also on a 

repertoire of  learned ski l l s  and behaviors . Sharp ( 1 978 ) 

has strongly impl ied that wolves should be regarded as 

cultural organisms , while sull ivan ( 1 978 : 3 1 )  refers to 

" . .  soc i al and cultural traditions of individual packs . "  

In attempting to understand evolutionary changes in animal s 

l ike wolves , the effects of alterations in behaviorally 

transmitted information should be considered . I f  adopt ion 

of wol f  pups by humans initiated thi s domestic 

re lat ionship , as seems l ikely ( see Chapter I I ) ,  the se pups 

were sub j ect to profound alterations in behaviorally 

transmitted information . They experienced a very dif ferent 

learning environment than their wild counterparts . The 

impl ic ations of  this s ituat ion are re levant for 

understanding the evolutionary divergence of  dogs from 

wolves . 
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CHAPTER I I  

BACKGROUND TO THE STUDY O F  DOG DOMESTICATION 

The previous chapter presented three quest ions that 

provide the analyt ical framework for this  study . several 

other basic issues were also identified that are addres sed 

more fully in this chapter . These is sues inc lude 

determination o f  what spec ies was ( or were ) involved in the 

ancestry of dogs , when dog domestic ation occurred , where it 

occurred , and how it  occurred . No attempt is made to be 

exhaust ive in deal ing with these is sues ; rather , the 

intent is to present an overview that provides a frame of 

reference for subsequent analysis . 

Finally , based on the current state of  knowledge 

regarding these  is sues , the s econd port ion o f  th is chapter 

develops some expectations about the nature of 

morphological changes in the evolution of  wol f  to dog .  

These expectations then serve as the point o f  departure for 

attacking the central ques tions posed in Chapter I .  

The Ancestry of  the Dog 

The Wol f  as Projenitor 

As noted in Chapter I ,  modern concensus holds that one 

or more varieties of the wol f ,  £ · lupus , gave rise to 

modern dogs . This  is  not a s impl e  assertion; over the 

l ast century several other members of the genus Canis have 
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been suggested as playing the sole or at least a 

s igni f ic ant role in the ancestry of  the dog . At the head 

o f  this  l ist is  the golden j ackal , canis aureus , believed 

by Darwin ( 1 8 6 8 ) to share ancestry with the wol f ,  and l ater 

by Lorenz ( 1 9 5 4 ) , who eventually rec anted this  view ( Lorenz 

1 9 7 5 ) . In addition , the problematical Austral ian dingo , 

Canis dingo ( c f .  Macintosh 1 9 7 5 ;  Newsome et al . 1 9 8 0 ) , has 

been implicated ( D ahr 1 9 4 2 ) ,  as we l l  as the North Ameri can 

coyote ( Skaggs 1 9 4 6 ) . Final ly , Fox ( 1 9 7 8a : 2 4 8 ) has made 

the suggestion that dogs and wolves share a common ancestor 

prior to domestication and "·  . .  the dog was a dog before 

it was domesticated . "  This is unsupported 

paleontologically . 

The strong case for the wol f  as proj enitor is  based on 

several cons iderations . First , genet ic affinity between 

wolves and dogs is beyond dispute s ince they are full y  

c apable o f  interbreeding ( I l j in 1 9 4 1 ) .  They are 

nevertheless legitimately regarded as distinct biologic al 

species ( c f .  Wil l iams 1 9 6 6 : 2 5 2 ;  Wilson 1 9 7 5 : 9 ; Mayr 

1 9 8 2 : 2 7 0 - 2 7 5 ) s ince ecological barriers minimize the 

occurrence of hybridization unless it is encouraged by 

humans ( c f .  Clutton-Brock 1 9 84 : 2 03 ) . In any case 

interfertility between dogs and wolves is  insuffic ient by 

itself to e stab l ish the wol f  as proj enitor . Jackals 

apparently are also capable of  interbreeding with dogs 

( Gray 19 7 2 : 4 5-46 ) ,  and coyotes certainly are ( Mengel 1 9 7 1 ;  
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Gipson e t  al. 1 9 7 4 ) . Interferti lity among members of  the 

genus Canis is the rule rather than the except ion ( c f .  Gray 

1 9 7 2 : 4 5-5 1 ;  Evans and Cristensen 1 9 7 9 ;  Schmitz and 

Kolenosky 1 9 8 5 ) . However , additional support for wol f  

ancestry is  provided by biochemical analys is o f  genetic 

affinities among c anids through util ization of  

electrophoretic techniques ( S imonsen 19 7 6 ;  Wayne and 

O'Brien 1 9 8 7 ; Wayne et al . 1 9 8 9 ) . These studies 

cons istently demonstrate that at a molecular level the dog 

is  more s imilar to the wol f  than to other members o f  canis . 

In addition to clear genetic aff inity the case for the 

wol f  as ancestor of the dog is built on structural and 

behavioral grounds . Because l arge, morphologically 

generalized dogs are osteologically so s imilar to wolves, 

powerful multivariate analyt ical techniques are somet imes 

employed in an ef fort to make taxonomic dist inctions, 

particularly with archaeological material s ( e . g . ,  Walker 

and Frison 1 9 8 2 ;  Morey 1 9 8 6 ; Benecke 1 9 8 7 ) . osteological 

s imilarities and di f ferences between dogs and wolves, as 

wel l  as other c anids, are treated much more extensively in 

subsequent chapters . 

The soc ial behavior and communication sys tems o f  

wolves and dogs are s o  s imilar that Scott ( 1 9 5 0 : 1 0 1 9 ) was 

led to comment that " . the patterns of  behavior of  dogs 

in human society are the s ame as those of wo lves in wol f  

soc iety" ( see also Bekof f  e t  al . 1 9 7 5 ) . Although wolves 
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exhibit a wide range of  variabil ity ,  they are i n  general 

highly social animals ( c f .  Mech 1 9 7 0 ;  Peterson 1 9 7 7 ) , more 

so than j ackal s or coyotes ( Fox 19 7 1 , 197 5 ;  Bueler 1 9 7 3 ;  

Clutton-Brock 1 9 8 1:3 4 ) .  Wol f  soc iety i s  intricately 

structured in heirarchical f ashion , with social rel ations 

estab l ished and maintained primarily by the voc al , facial , 

and postural communication of  dominance and submission 

( Schenkel 19 6 7 ; Mech 1 9 7 0 ;  Zimen 1 9 7 5 ) . In fact , the 

patterns of soc i al behavior in wol f  and man are remarkable 

for the ir mutual intell igibil ity ( Scott 1 9 5 0 : 1 0 1 9 , 

1 9 6 8:2 5 7 ; Clutton-Brock 1 9 7 7 , 1 9 8 1:3 4 ) ,  another f actor 

pl acing the wol f  in the most favorable position for 

ancestry in terms of  compatib il ity with human soc iety . In 

addition , the vocalizations of  wolves and dogs are s imi lar , 

while those o f  j ackals are quite dif ferent ( Lorenz 1 9 7 5 ;  

Clutton-Brock 1 9 8 4:206 ) .  Thus , the c ase for the wol f  as 

proj enitor of the dog is convinc ing but unverified 

( Clutton-Brock 1 9 8 4 ; s. Davis 1 9 8 7:1 3 2 ) . It  is  the 

strongest working hypothesis  presently available and is 

employed as a basic assumption in this study . 

Where did Domestication Occur? 

While much attention has been bestowed on 

ident ification of the ancestral species , widespread 

agreement that the wol f  holds this role has prompted 

cons iderable attention to identif ication of the geographic 

variant ( s )  of  c. lupus respons ible . It is  widely held that 
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most dogs are too small to have been derived from the 

larger , northern varieties of £ · lupus . Thi s  has led many 

investigators to advance a case for smal l Indian or Arabian 

wolves , Canis  lupus pal l ipes or canis lupus arabs , as prime 

candidates for proj enitor of the dog ( Werth 19 4 4 ; zeuner 

1963 ; Lawrence 1 9 67 ;  Epstein 1971 ; Hemmer 1 9 7 6 ;  

Clutton-Brock 1 9 84 ) . However , the case for these wolves is 

not advanced to the exc lus ion of  other varieties . s .  Olsen 

( 1 9 7 4 , 1 9 8 5 ;  Olsen and Olsen 1 9 7 7 ) argues that the sma l l  

Chinese  wol f ,  Canis lupus chanc o ,  gave r i s e  t o  most  As ian 

and North American dogs , the latter arriving in North 

America with humans by way of  the Bering strait . Bokonyi 

( 1 97 5 )  presents a c ase for local in s itu domestication of 

wolves in southeastern Europe at about 8 , 0 0 0  B . P .  Clutton-

Brock ( 1 9 8 4 : 1 9 9 ,  Fig . 2 2 . 1 )  graph ic ally il lustrates the 

probabil ity that several subspecies of £· lupus were 

involved in the ancestry of  dogs in dif ferent parts of  the 

world . 

I t  is agreed here that a s ingle variant o f  £· lupus is  

unlikely to  be whol ly respons ible for  the ancestry of  

domestic dogs . Many dogs may have originated from smaller 

Euras ian varieties such as C . l .  chanco and £ ·!· pal l ipes . 

This author is not convinced , however , that larger northern 

varieties must be excluded by virtue of their  s iz e . S ince 

s ize reduction is a conspicuous feature of  c anid 

domestic ation thi s  reasoning may be faulty . Even 
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proponents o f  the small southern wolves a s  primary 

ances tors do not exc lude large northern varieties from a 

role in the ancestry of  some dogs ( Olsen and Ol sen 1 977; 

Clutton-Brock 1 9 8 4 : 1 99 ) . 

The point is as fol lows : it i s  not c lear where c anid 

domes tic ation occurred . It  is  entirely pos s ible--probable 

in thi s  author ' s  view--that several variants o f  c .  lupus 

were involved in different places . 

When did Domest ic ation Occur? 

Canid remains that predate about 9 , 000  B . P .  and are 

bel ieved to be dome stic dog have been reported from several 

parts of the world.  The most  dubious of these  cl aims have 

been rev iewed by s. Olsen ( 1 9 8 5 ) and are not repeated here . 

However ,  even some of the more plausible identifications 

must be regarded with uncertainty . 

The spec imen most frequently c ited as the eariest 

known trace of  a domestic dog is a partial mandible from 

Palegawra cave in I raq , and was reported by Turnbul l and 

Reed ( 1 974 ) . The specimen is associated with deposits that 

date to about 1 2 , 00 0  B . P .  Turnbul l and Reed ' s 

identi fic ation is based primarily on the rel atively close 

spac ing of  the teeth and its overall small s ize compared to 

modern wolves of  the region . s. Olsen ( 1 9 85:72 -73 ) has 

cautioned that this spec imen could come from an atypical 

wild wol f .  

Prior to the discovery o f  the Palegawra cave spec imen , 
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North American materials from Jaguar Cave i n  Idaho were 

regarded as the oldest known domestic dog remains in the 

world ( Lawrence 1 9 67,  1 9 6 8 ) . Lawrence ( 1 9 6 7 : 4 4 ) originally 

reported a date o f  j ust  over 1 0 , 0 0 0  B . P .  assoc iated with 

these dogs . However , reanalys i s  o f  these  spec imens 

suggests they are much younger ,  no more than about 2 , 000-

3 , 0 00 years old  ( c f .  Gowlett et al . 1 9 87 : 1 4 5 - 1 4 6 ) .  

Elsewhere in North America Grayson ( 1 9 8 8 : 2 3 )  has reported a 

skull fragment and two mandibles of  domestic dog from 

Danger cave in Utah that date between 1 0 , 0 0 0  and 9 , 00 0  B . P .  

These are presently the oldest known remains of  domestic 

dog in North America .  

Davis and Valla  ( 1 978 ) have reported canid remains 

from Natuf i an contexts in I srael that date between 1 1 , 000 

and 1 2 , 00 0  B . P .  The lengths of  two lower f irst  mol ars were 

compared to corresponding lengths from a variety of recent 

wolves . The Natufian spec imens are smal l compared to 

recent wolves and , based on this , they are identi f ied as 

domestic dogs (Davis and Vall a  1978 : 6 1 0 ) . However , the 

Natufian spec imens fall close to the lower l imits o f  the 

wol f  groups with the smallest teeth ( Davi s  and Val la  

1 978 : 6 1 0 , Table 1 ) . one specimen ( E in Mal laha ) c learly 

falls  within the range of  the smal lest wol f  group ( Arabian 

peninsul a wolves ) .  Although Davis and Val la ' s  analys i s  is 

strengthened by cons ideration of Pleistocene-Holocene 

trends in s ize reduction among wild Canis in the region , 
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the identif ication remains subj ect t o  uncertainty . 

From Europe , a fragmented cranium from starr carr in 

Engl and , dated at about 9 , 5 0 0  B . P . , was ident ified as 

domestic dog by Degerb�l ( 1 96 1 ) . Degerb�l ' s  identi f ication 

is based primarily on large , overlapping teeth in a very 

short j aw .  The spec imen is from an immature individual . 

s .  Olsen ( 1 9 8 5 : 7 1 )  ins ists that at best it should only be 

tentatively identified as £ ·  famil iaris . He goes  on to 

suggest  that it might in fact be a tamed wol f  pup . 

Benecke ' s  ( 1 9 8 7 ) recent analys is also casts doubt on the 

identi f ication of this spec imen as domes tic dog . 

other early ( pre-9 , 00 0  B . P . ) specimens from Europe 

ident i f ied as dog are reported from Senckenberg ( Mertens 

1 9 3 6 ) and Bonn-oberkassel ( Nob is 1 9 7 9 , 1 9 8 6 ) in Germany , 

and from Dobritz-Kniegrotte in czechoslovakia ( Musil  1 9 7 4 , 

1 9 84 ) . Mus il ' s  identi fication of  the Czechos lovakian 

material as domestic dog is explic itly tentative ( Musil  

1 9 7 4 : 4 7 ) . Nob is ( 1 986 ) presents a case for  domes tication 

with the Bonn-Oberkas sel spec imens ( see also Benecke 1987 ) 

based primari ly on a short j aw ( with several mis s ing 

premo lars ) re lat ive to wolves . The specimens , exc avated 

over 7 0  years ago , are dated at about 14 , 0 0 0  years old . It  

must be borne in  mind that absence of teeth that apparently 

never erupted ( Nobis 1 9 8 6 : 3 7 0 - 3 7 1 ) could s imply s igni fy an 

aberrant wild wol f . The senckenberg spec imen from Germany , 

a complete cran ium , is clearly a domestic dog .  While  its 
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datinq mus t be viewed with c aution ( Deqerb¢1 1 9 6 1 ;  Bokonyi 

1 975 : 1 67 ) , it is bel ieved to be 9 , 0 0 0 - 1 0 , 00 0  years old . 

The Senckenberg dog is used in this study . 

I t  i s  important to stre s s  that even the tentat ive 

identi f ic at ions reviewed above are based on thorough 

analyses . The ident ificat ions are c l early reasonable . The 

problem i s  with the materials themselves in the context of  

inherent taxonomic diff iculties . Fragments of  j aws and 

isolated teeth from 1 2 , 0 0 0  years ago do not lend themselves 

to certain ident ification . Indeed , at 1 2 , 0 0 0  years ago one 

must wonder whether a truly valid morphological dis t inction 

between dogs and wolves exists . It  is  agreed here that the 

evolut ionary divergence of dogs from wolves was surely 

underway by 1 2 , 0 0 0  years ago . Presently , however , 

spec imens of  this purported age remain sub j ect to taxonomic 

uncertainty . After about 9 , 0 0 0  B . P .  morphologically 

distinct dogs were indi sputably in existence ( Degerb�l 

1 9 6 1 ;  Grayson 1 9 88 ) ; they are increas ingly encountered 

archaeologically after this t ime . ( e . g . , Haag 19 4 8 ;  

Lawrence 1 9 67 : 5 6 -57;  McMillan 1971 ; Hill 1 972 ; Harcourt 

1 974 ; Brothwell et al . 1 979 ; Higham et al . 1 9 8 0 ;  J .  

Olsen 1 9 8 5 ) . 

How did Domestication Occur? 

It has been emphas ized that the overlapping ecological 

niches of  wolves and human hunter-gatherers dur ing the late 

Pleistocene ensured contact between the two spec ies ( Z euner 
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1 9 6 3 ; Scott 1 9 6 8 ;  Clutton-Brock 1 9 8 0 , 19 8 1 ;  s .  Olsen 

1 9 8 5 } . Both were social spec ies that hunted for many of  

the s ame prey items . Wolve s , as  opportunistic  scavengers , 

may have learned to be aware o f  human hunting activities 

and to scavenge from human kil l s . Perhaps humans even 

l earned to do the s ame with wolve s . Wolves and humans were 

ecological compet itors but may also have benef itted e ach 

other in some s ituations . 

In western culture wolves are often symbols of  evi l  

and as such are highly feared ( Lopez 1978 ) . our fo lklore 

and fairly tales abound with evil wol f  f igure s  ( Fiennes 

1 976 : 175 - 1 9 0 ;  Z imen 1 978 : 3 0 2 - 3 1 5 ) . Thi s  i s  not 

necessarily true of hunter-gatherers many thousands of  

years ago ( Fox 1978b : 2 5 ) . Alaskan E skimos , an  example  of 

people who were recently hunter-gatherers and who pres ently 

l ive in the s ame environment as wolves ,  expres s  not 

irrational f ear of wolves ,  but admiration--admi ration for 

their  intel ligenc e , thei r  sociality , their prowes s  as 

hunters , and the purpos ivenes s  and indiv idual ity of the ir 

behavior ( Aghook and stephenson 1 975 ; Lopez 1 978 ) . 

The most reasonable scenario for the origins of  c anid 

domesticat ion follows the two premises  introduced above . 

First , human hunter-gatherers and wolves had overlapping 

niches and were accustomed to contact with e ach othe r . 

Second , at least some groups of  anc ient hunter-gatherers 

did not share the cultural ly reinforced avers ion to wolves 
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that characterizes many western industrial soc ieties . 

Given these premises , we need merely to pos it that 

somewhere , somepl ace ( perhaps more than once ) ,  some young 

wol f  pups were found and adopted by humans . Why a given 

inc ident of wol f  pup adoption occurred many thous ands of  

years ago i s  a matter of  specul at ion . A reasonable  

sugqestion i s  frequently made that pet keeping ( c f .  Serpel l  

1989 ) was the mot ivation behind adoption ( e . g . , zeuner 

1 9 6 3 : 3 9 ;  Reed 1 9 6 9 , 1 9 8 4 : 5 ; Clutton-Brock 1 9 8 4 : 2 04 ) . 

However , this question can never be answered empirically 

and is not pursued further here . 

More to the point for this study are the consequences 

of adoption . Numerous studies have shown that wol f  pups 

taken at an early aqe and reared by humans are eas i ly tamed 

and soc ial ized ( Fentres s  1 9 67;  Pulliainen 1 9 67;  Woolpy 

and Ginsburg 1 9 67 ) . According to Scott and Fuller ( 1 96 5 )  

the most  c rucial social bonds of  a dog or wol f ' s  l i fe are 

formed when the animal is three to eight weeks old ( see 

also Woolpy and Ginsburq 1 9 67 ) . Wol f  pups adopted and 

soc ialized by humans dur ing thi s  period will  form thei r  

primary soc ial bonds with humans . The animals are 

proqre s s ively more di fficult to soc ialize with advanc ing 

aqe , though even adults can be soc ial ized with cons iderable 

di fficulty . Thus , wolf pups taken very young and reared by 

humans wil l  form their primary social bonds with members of 

their human "pack" . 
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This characteristic o f  social development amonq wolves 

provides an e f fic ient mechani sm for the inteqration of 

wolves into human society . It  need not be pos ited that 

c aptured animals had to be tamed as adults or confined to 

prevent the ir escape . Remarkable compatab i l ity in overall 

social orqanizat ion and communicat ion systems , above and 

beyond other hiqhly soc ial c arnivores , made wolves 

espec ially wel l  suited for domestic life with humans . Of 

course , some individual s  would not possess  the necess ary 

temperment to f i t  into a social settinq with dominant 

humans . Certainly individual wolves exhibit a wide ranqe 

o f  variabil ity in temperment and behavior ( Murie 1 9 4 4 : 2 5 ;  

Aqhook and Stephenson 1 9 7 5 ;  Sull ivan 1 9 7 8 ;  MacDonald 

1 9 87 ) . Only an imals predisposed to a submiss ive temperment 

or capable  of learninq a subordinate ro le to humans would 

have been tolerated in human soc iety ( Clutton-Brock 1 9 8 1 ; 

see also Be lyaev and Trut 1 9 7 5 ) .  

In terms o f  evolutionary implications an adopted 

wol f ' s  options for achievinq genetic representation in 

future qenerations were l imited . Individuals whose  

temperment prohibited the ir succes s ful integration into 

human soc iety would l ikely have been disposed o f . I f  an 

occas ional wol f  left the human qroup as an adult , to 

" return to the wild" , it could probably survive but its 

chances of  reproduc inq success fully would be s l im .  Wild 

wolves are unl ikely to accept unrel ated outs iders into 
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their pack ( c f .  Mech 1 970 : 5 1 - 5 6 ) , and breeding 

opportunities are l imited by social regul ations within a 

pack ( Peterson 1 977 : 80-8 5 ;  Jenks and Ginsburg 1 9 87 ;  

Schotte and Ginsburg 1 9 87 ) . Thus , for an adopted wol f  to 

contribute to future generations it  had to f it into human 

soc iety and , having been raised by humans , remain there . 

With that , the domestic relationship that produced 

dogs from wolves was underway , However , adoption and 

rearing of tame wolves does  not in and of itse l f  def ine a 

new species .  The evolutionary implications of  this 

domestic rel ationship , whose outcome was a new spec ies , 

canis familiaris , are explored in the discuss ion below . 

consequences o f  the E arly Domestic Relationship 

Young domestic wolves growing up with humans  

experienced a dramatic change in l ifeway rel at ive to  the ir 

wild counterparts . It i s  reasonable to expect that thi s  

change entailed immediate developmental cons equences for 

individual wolves ,  as wel l  as long term evolutionary 

( genetic ) consequences for domestic wolves  as a whole . 

Between developmental and evolutionary processes , the 

result was morphologic al changes that allow us to 

conf idently pinpoint the presence of domestic dogs from the 

archaeological record by early Holocene times . The 

fol lowing discuss ion emphas izes the consequences  of the 

radic ally altered learning environment experienced by a 
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domestic wol f ,  and explores the roles of individual 

development and genetic selection . 

The Altered E cological 
Niche of E arly Domestic Wolves 

Wild wolves are carnivorous . In most regions 

pres ently inhab ited by wolves one or two l arge ungulate 

spec ies constitute the princ ipal prey items , for example 

deer in many temperate environments or c aribou and moose in 

arctic or subarctic regions . However , a variety of  smaller 

animal s i s  also occasionally consumed , inc luding mice , 

rabbits , birds , and so on ( Mech 1970 ; Pul l iainen 1975 ) . 

Wild j uvenile wolves also grow up on a diet o f  animal 

products . As pups are weaned their diet shifts to 

regurgitated stomach contents provided by one or both 

parents ( Mech 1970 ) . Eventual ly the j uveniles are taken to 

kill locations or rendevous s ites and eat unprocessed meat . 

As they mature they begin to accompany adults on hunts and 

learn the hunt ing skill s  necessary for survival . 

The early domestic wol f  grew up quite differently . 

Humans , the source of  their food , are omnivorous . Human 

hunter-gatherers were unl ikely to provide a young wol f  with 

an opt imal diet . Rather , these  wolves were probab ly 

subj ect to a diverse array o f  human food refuse , dominated 

by pl ant products and meat scraps , much of which may have 

been spoiled or s imply undesi rabl e  to humans . A " f inicky" 

wol f  probably stood l ittle chance of  survival . It  i s  thus 
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reasonable to expect that young domestic wolves  experienced 

nutrit ional stres s  during their early months . 

The survival skills  learned by a maturing domestic 

animal would be fundamentally different from those learned 

by a wild one . For a domestic wol f ,  there were no 

experiences available from which to learn the group hunting 

ski l l s  of  wild wolves . Humans s imply could not provide 

that environment . Although some c aptive wolves learn to 

kill animals l ike deer ( Mech 1 970 : 1 3 8 ) , survival skills  

reinforced through learning experiences by the early 

domestic wol f  more likely involved scavenging and 

solicitation of food from humans . These activities would 

be supplemented by hunting of small animals ( e . g . rabbits , 

rodents ,  etc . )  whose c apture did not require the more 

refined and usually group oriented tactics employed in 

dispatching a deer or caribou . In short , the ir altered 

( omnivorous ) diet continued into adul thood . Only 

individuals who le arned to survive under the se 

c ircums tanc es could contribute to future generations . 

These  altered c ircumstances might leave their mark on 

a domes t ic wol f ,  espec ially during early months of normal ly 

rapid growth . Captive wolves provide a c rude model for the 

consequences of thi s  s ituation ( c f .  Epstein 1971 : 83 - 8 6 ; 

Stockhaus 1 9 6 5 ;  Clutton-Brock 1 970 : 3 0 5 ) . Domestic wolves 

might exhibit smal ler adult s izes and shortening of the 

facial region o f  the cranium , with their l arge teeth 
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consequently crowded into shorter j aws . The re ader who is 

familiar with the subj ect of  morpholoqical chanqes 

assoc iated with c anid domestication will recoqnize that 

these traits are widely held as the most conspicuous and 

cons istent qeneral differences between Joqs and wolves 

( Zeuner 19 6 3 ;  Lawrence 1 9 67 ;  Clutton-Brock 1 970 , 19 8 1 ;  

Epstein 1 971 ; B�k�nyi 1975 ; s .  Olsen 1 9 8 5 ) . As clutton­

Brock ( 1 9 8 4 ) and B�k�nyi ( 1 975 ) have noted , the l arqe teeth 

apparently bec ame reduced in s ize as doq evolution 

proceeded durinq the Holocene . 

It would thus appear that basic morpholoqical 

diverqence between doqs and wolves is efficiently explained 

on purely developmental qrounds . The problem is that the 

bas ic traits involved--head shape , tooth s i z e , body s ize-­

are c le ar ly inherited in modern doqs ( Deqerb�l 1 9 6 1 : 4 1 ;  

stockhaus 1 9 6 5 ;  Lawrence 1 9 67 ;  Epstein 1 971 : 8 6 ;  see also  

the breedinq experiments of  Stockard 194 4 ) . Thi s  is not to 

suqge st  that e arly domes t ic wolves  did not experience 

altered development or that the chanqes in question did not 

manifest themselves  in such animal s .  It is s imply arqued 

that nonqenetically altered development is insuffic ient to 

expl ain evolutionary diverqence of doqs from wolves . 

While individually altered development miqht result in 

reduced adult body size , there are sound reasons for 

expectinq smaller body s ize to have been a tarqet of 

selection under conditions of abrupt and dramatic dietary 
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chanqe . No s inqle aspect o f  structure and physioloqy i s  

more important than sheer body s ize i n  shapinq an 

orqanism ' s  niche ( Peters 1 98 3 ;  Calder 1 98 4 ;  Werner and 

Gil l i am 1 9 8 4 ; LaB arbera 1 9 86 ) . In c arnivores as a qroup 

there is  a clear pos itive correl at ion between adult body 

s i ze and prey s ize ( Rosenwe iq 1 9 6 6 ; Gittleman 1 9 8 5 ) . 

Radinsky ( 1 9 8 2 ) suqqests that variation in body s i z e , 

re flectinq partitioninq of  prey resources ,  was an important 

factor in the late Eocene radiation of modern c arn ivore 

famil ies . Amonq modern wolves qeoqraphic variations in 

body s ize have been correlated with variation in primary 

prey s ize ( Kol enosky and Standfield 1 9 7 5 ) .  Schmitz and 

Laviqne ( 1 9 8 7 ) have explic itly rel ated recent chanqes in 

body s ize amonq canis  in ontario with sh ifts in modal prey 

s ize . 

The parallel  beinq advanced here may s eem s loppy . 

E arly domestic wolves experienced a dietary shift from 

c arnivory to omnivory . Nevertheless , thi s  shift 

undoubtedly entailed a dramatic decrease in "packaqe " s ize 

( Rosenweiq 1 9 6 6 : 6 03 ) of foods to be competed for , probably 

coupled with an overall decrease of bulk available . 

smaller animals ,  with reduced c aloric requ irements ,  would 

have been at a distinct advantaqe under competition for 

such resources . In turn , morpholoqical chanqes may s imply 

be al lometric consequences of  s ize reduction ( Lumer 1 9 4 0 ;  

Epstein 1 971 ; Wayne 1 9 8 6 a ) . Thi s  is sue i s  explored in 
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detail in thi s  study . 

Beyond the pres sure to learn a different set of  

surivial ski l l s  related to subsistence , early domestic  

wolves had to  fit into human soc iety . Domestic animals  

could not violate a subordinate pos ition to  humans in this 

new social heirarchy . Selection for animal s  compatible 

with human soc iety may have had s igni ficant phys iological 

ramificat ions . For example , in a s tudy of  c aptive s ilver 

foxes ( Vulpes fulvus ) Be lyaev and Trut ( 1 975 ) found that 

select ion for submi s s iveness and doc i l ity was correl ated 

with s igni ficant alterations  in seasonal periodic ity o f  

breeding cycles within a few generations . overal l , there 

are sound reasons for expect ing selection for maj or 

alterations in reproduct ive strategy under conditions of  

domestication , a topic explored below . 

Dogs as Colonizers: Evolutionary Impl icat ions 

Lewont in { 1 9 6 5 : 78 )  def ined colonization as " . .  the 

estab l ishment of a populat ion of a species in a 

geographical or ecological space not occupied by that 

species . "  Th is de f inition c learly applies to early 

domestic dogs . As scott ( 1 9 6 8 )  pointed out , dogs may be 

viewed as a species that entered a new hab itat , rapidly 

spreading to f i l l  a new ecological niche . They were 

coloni zers , ecologically po ised for rapid populat ion 

growth . 

Discuss ions o f  ecological colonization and popul ation 
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qrowth are often l inked in rec ent literature with the 

concepts of E and K selection . As oriqinal ly formul ated by 

MacArthur and Wilson ( 1 967) , r re ferred to selec tion for 

hiqh popul ation qrowth under uncrowded conditions while  ! 

referred to selection for competetive abi lity in c rowded 

populations . However , as P arry ( 1 9 8 1 ) has noted , the 

concept was rapidly expanded ( Gadqil and Bos sert 1970 ;  

Pianka 1970 ; Gadqil and Solbriq 1 972 ; Wilbur et al . 1 974 ; 

Southwood et al . 1 974 ) . In its expanded form the El! 

dichotomy predicts an association of  l i fe history traits 

into two qroups : "!-selected" orqanisms wi l l  be 

characterized by early maturity , larqe numbers of 

o ffsprinq,  semelparity,  l ittle or no parental c are , and 

larqe reproductive effort . on the other hand , "!­

selected" orqanisms will have delayed reproduction , small 

numbers of younq,  iteroparity , parental c are , and small 

reproductive ef fort ( Parry 1 9 8 1 : 2 6 0 ) . The util ity of  thi s 

expanded concept has been intens ively scrutinized and many 

criticisms have been raised (Stearns 1 9 7 6 ,  1 9 7 7 ; Parry 

1 9 8 1 ) . 

Thi s  author has l ittle interest in debatinq the 

overal l merits or l i ab i l ities  of the expanded concept of r 

and K .  The qoal here is s imply to provide the bas i s  for 

l inkinq some important life hi story traits with qeneral 

ecoloqical parameters , an endeavor that c annot reasonably 

be uncoupled from the l iterature on r and K .  The reader 
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familiar with this l iterature will have no trouble  grasping 

the contras t that is portrayed, with wild wolves as K­

selected organi sms , evolving as !- strategi sts when 

as soc iated domestically with humans . The development 

of fered below is expanded and modif ied from a previous 

discus s ion ( Morey 1 9 87 ) . 

Wol f  popul ations are regul ated primarily through 

adj us tments in rate of reproduction and by j uvenile 

mortal ity ( P imlott 1975 : 2 84 ) . Fall i s  a cruc ial time for 

young wolves and mortal ity is often related to 

malnutrition , particularly in j uven iles ( Van Bal lenberghe 

and Mech 1 975 : 57 ;  Mech 1977 ) . According to Rausch 

( 1 969 : 1 1 9 ) in Al aska pups may make up as much as 6 0  per 

cent of a wol f popul ation at any given time . Wol f  

mortal ity ( excluding human "predat ion " )  i s  often closely 

l inked to the availability of primary food resourc es and 

may thus be characterized as dens ity dependent ,  especially 

s ince predation ( again exc luding humans ) is  insign i f icant 

( c f .  P arry 1 9 81 ) . Wolves generally exist in a close 

balance with their  primary resources . 

The hallmark of a coloni z ing episode is the abs ence of 

dens ity dependent mortal ity ( Lewontin 1 9 6 5 : 78 ) . 

Colonization entails rapid population growth . Wel l  before 

MacArthur and Wilson ( 1 967 )  developed the El! dichotomy it 

was po inted out that selection in rapidly growing 

popul ations wil l  lower the age at f irst reproduction ( Cole 
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19 5 4 ; Lewontin 1 9 6 5 ) , a point that has been reasserted 

several  times ( Meats 1 9 7 1 ; Giesel 1 9 7 6 ;  stearns 1 9 7 6 ;  

Gould 1 9 7 7 : 3 2 6 ) . As Lewontin ( 1 9 6 5 ) put it , small  absolute 

alterations in developmental rates function approximately 

the s ame as l arge increases in fertility . 

Gould ' s  ( 1 9 7 7 ) influential work , ontogeny and 

Phylogeny , presents an extended argument for heterochrony 

( evolutionary changes in developmental t iming ) as a major 

force in affecting evolutionary change ( s ee also Alberch et 

al . 1 9 7 9 ; McKinney 1 9 8 8 a ;  McNamara 1 9 8 8 ) . The po int 

summarized in the preceding paragraph is a primary building 

block in the foundat ion of an important hypothe s i s  put 

forward by Gould ( 1 977 : 2 93 ) : progenes is , the accelerated 

onset of s exual maturity , wil l  be associated with r­

selec ted regimes , while neoteny , the general retardat ion of 

somat ic growth , wil l  be associated with !-selected regimes 

( see McNamara 1 9 8 6  for a recent detailed presentation of 

the terminology of heterochrony ) .  Gould detailed several 

examples in support of this hypothes i s  and , in spite of 

recent unpopularity of the El! dichotomy , c autiously 

advanced empirical support c an still  be found ( e . g . , 

McKinney 1 9 86 ) . This hypothes i s  leads directly to the 

prediction of progenes is in the early evolution of the dog . 

It should be noted that the concept of progenes is has 

recently been expanded in a manner that wil l  be important 

l ater in thi s  study . For the present discuss ion , however ,  
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i t  i s  used a s  outl ined by Gould i n  1 9 7 7 : truncat ion of 

growth period through accelerated onset of maturity . 

Wild wolves reach maturity at about two years of age 

( Murie 1 9 4 4 ;  Young and Goldman 1 9 4 4 ;  Novikov 1 9 6 2 ;  Mech 

1 9 7 0 ;  Pul l iainen 197 5 ) . In contrast , modern dogs may 

breed at s ix months to a year ( Scott and Ful ler 1 9 6 5 ; Fox 

1 9 7 8 a ;  Clutton-Brock 1 9 8 4 ) . It would thus appear that 

modern dogs are progenetic with respect to wolves . Two 

cons iderations compromise the apparently neat 

correspondence of prediction and result with this  

progenes is  hypothesis . Firs t ,  the timing o f  onset of 

puberty in dogs is more complicated than portrayed above . 

S ix to twelve months or s l ightly later brackets the onset 

of puberty in most dogs , but in large breeds particularly 

this may not occur until wel l  into the second year ( Hancock 

and Rowlands 1 9 4 9 ; Andersen and Wooten 1 9 5 9 ; Johnston et 

al . 1 9 8 2 ) . Second , even i f  one accepts that modern dogs 

are progenetic with respect to wolves , this  does not 

establ ish the s ame for early dogs , several thous and years 

ago ( Pr ice 1 9 8 4 : 2 2 ) . Rapid generational turnover could be 

an artifact of modern selective breeding . 

Thus , the morphological consequences of progenes i s  

provide a more useful avenue of investigat ion for this 

study . As outl ined by Gould ( 1 977 ) the bas is  of 

progenet ically caused morphological change is  the 

assoc iation between onset of maturity and trunc ation of 
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somatic  qrowth . Proqenesis  i s  expected t o  result i n  s ize 

reduction and paedomorphos i s , the latter referrinq to 

j uvenil i zed morpholoqy in the adult staqe of an orqanism 

with respect to its ancestors ( Gould 1 9 7 7 : 2 5 5 ) . S ize 

reduction has already been noted as a frequently observed 

correl ate of c anid domest ication . Moreover ,  it  has been 

observed that adult morpholoqy in many modern doqs , 

especially in the cranium , appears to re f lect arrested 

development or j uvenilization ( Hilzhe imer 1 9 3 2 ;  zeuner 

1 9 6 3 ; Epstein 1 9 7 1 ; Clutton-Brock 1 9 84 ) . In descript ive 

terms at least , shorteninq of the rostrum in particular 

appears to represent a j uveni l ized feature . 

I f  proqenes i s  alone underlies s ize reduct ion and 

j uvenilized morpholoqy in doqs , there should be a tiqht 

correlation between adult body s ize and aqe at onset of 

puberty . Houpt and Wol ski ( 1 9 8 2 : 1 3 3 ) note that there is no 

str ict correl ation between adult s ize and aqe at puberty, 

but smaller breeds qenerally attain puberty earl ier than 

larqer breeds ( see also Christiansen 1 9 8 4 : 5 ) . In addition , 

l arqe breeds tend to grow for a longer period than small 

breeds ( Kirkwood 1 9 8 5 : 1 0 2 ;  Wayne 1 9 8 6 a ,  1 9 8 Gb ) . 

Despite the compl ications noted above it is  c lear that 

heterochrony , and progenes is in particul ar , warrants 

investiqation as an evolutionary process with morpholoqical 

consequences in c anid domestication . There are additional 

compl icat ions in the analys i s  of heterochrony and these 
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will b e  dealt with at appropriate points during analys i s . 

Recent studies of growth and allometry in dogs , also dealt 

with l ate r ,  wil l  yield additional insights into the 

evolution of the dog .  

To sum , early domestic wolves experienced a radically 

altered environment relative to their  wild counterparts .  

some individuals had the necess ary genet ic endowment for 

integration into human soc iety and a capab i lity of learning 

vastly di f ferent survival skills . Only these individual s 

had an opportunity to reproduce and pass those  genes and 

learned behaviors to subsequent generations . Individual 

development was undoubtedly impacted under these 

c i rcumstances , but it c annot explain evolut ionary 

divergence of dogs from wolves . The radically new niche 

being f il led by early domes t ic wolves woul d  have placed a 

selective premium on reduced body s iz e  and altered 

reproductive strategy . This study seeks to determine i f  

these proces ses could account for morphological  changes 

seen in the evolution of the dog . 
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CHAPTER III  

OBJECTIVE S AND METHODS 

To addres s  questions concerning the morphological 

evolution of dogs , both bivariate and multivariate analyses 

are employed . B ivariate analys es explore craniometric 

scaling rel ationships among different groups o f  canids . 

The obj ect ive is to document relationships between 

variation in s ize and variation in morphology among the 

species ,  and to determine the degree to which the 

prehi storic dogs are cons is tent with those relat ionships . 

Adult static variation in s ize is  analyzed separately from 

variation due to growth . By beginning with a bivariate 

approach , spec i fic  components of morphological variation 

c an be isolated and assessed ( Wayne 1 9 8 6 a ) . To al low 

detailed analysi s  a smal l  set of cranial and dental 

measurements is used ( s ee Chapter IV ) . Multivariate 

analys is is  then used to assess  overall structural 

s imilarity between adults of different species and j uvenile 

wolves . The ultimate obj ective is to determine i f  

heterochronic  processes c an account for morphological 

variation in early dogs . 

This study faces methodological and theoretical 

problems , exacerbated by the fact that ontogenetic data are 

unavailable for the dog groups used here . The remainder of 

this chapter presents description o f  the techniques of 
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analys i s , explanation o f  the ir use ,  discus s ion o f  problems 

of interpretation , and a selective summary o f  relevant 

previous allometric investigations involving osteometric 

data f rom domestic dogs or wild c anids . 

Bivariate Analys i s  

Thi s  s tudy deals with questions about allometry , the 

study of s ize and its consequences ( Gould 1 9 6 6 ) . The most 

common approach to b ivariate al lometry fol lows the 

pioneering work of Huxley ( 1 93 2 ) , particularly his  

development of the equation 

where Y and X are biologic al growth variables and b and a 

are constants . Thi s  power curve , the equation o f  allometry 

( Laird 1 9 6 5 ; Gould 1 9 6 6 ) ,  has been appl ied to a broad 

range of biological growth phenomena ( e . g . , Cock 1 9 6 6 ; 

Gould 1 9 6 6 , 1 9 7 5 a ,  1975b ;  Peters 1 9 8 3 ; LaBarbera 1 9 8 6 , 

and re ferences therein ) .  In practice , the ! and ! 

variables are usual ly logarithmically trans formed to 

facil itate data manipulat ion and interpretation , allowing a 

l inear equation of the form : 

Here , ! is  the slope coe f f i c ient and b is  the !- intercept 

of the regres s ion equation . 
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Although the widespread and often uncritical u s e  of 

the power curve has occ as ioned critic ism ( e . g . , Smith 

1 9 8 0 ) , it has several things to recommend it for this 

st�dy . Gould ( 1 9 6 6 ) pointed out that the power curve may 

not be the best or even the s implest model for describ ing 

scal ing relationships in any spec i f ic context . Rather , the 

advantage of the power curve is its interpretabil ity and 

broad appl icab i lity to a wide range of b iologic al 

phenomena .  In this study selection of a s ingle form of 

equat ion i s  essential because the obj ect ive i s  comparison 

o f  scal ing relat ionships between groups . Thus , the power 

curve i s  used here with variables trans formed to base 1 0  

logarithms . 

Kinds of Data 

Cock ( 1 9 6 6 : 1 3 5 - 1 3 7 ) ident ifies  three basic kinds of 

data for al lometric studies : longitudinal ,  cros s ­

sectional , and static . Longitudinal data are compri sed of 

multiple observations on s ingle individuals at different 

stages during their ontogeny . Longi tudinal data are the 

best and the most difficult to obtain . They are 

unavai l able for this study . 

cros s-sectional data cons ist o f  single observations on 

individuals of different stages of growth in a popul at ion 

s ample .  Hence , the investigator c annot truly follow 

ontogeny of individuals , but ontogenetic development c an 

reasonab ly be approximated . In  thi s  study l imited cross-



4 1  

sectional data are avai l able from two species o f  wild 

c anids , f · lupus and c .  rufus . 

Stat ic data consist o f  observations on individuals at 

a s ingle stage of development , usual ly adults . From 

necess ity much of this study treats static data . At 

certain points in analys is comparisons involve adult and 

j uvenile series . 

Comparison of Regress ion Coe f f i c ients 

For a given b ivariate analys is with two or more 

groups , the first question to be asked is whether or not 

the regres s ion slopes are equal . I f  the nul l  hypothesis  o f  

homogene ity of s lopes cannot b e  rej ected, one may then ask 

if the regression l ines fall  at the same elevat ion . When 

least squares regress ion is used ( see below ) these two 

analytical steps comprise analys is  of covariance ( Tatsuoka 

1 9 7 1 : 4 0 - 5 0 ; Sokal and Rohlf  1 9 8 1 : 5 0 9 - 5 3 0 ) . Comparison of 

slopes and elevations , whether accompl ished formal ly or 

subj ectively, is  the core of all studies of  bivariate 

al lometry . 

several s ituations that may result when two groups are 

compared are i l lustrated on Figure 1 ( see Tatsuoka 1 9 7 1 : 4 1 

and Sokal and Rohlf  1 9 8 1 : 5 2 3  for s imilar i l lustrations and 

discuss ion ) . Let it be assumed that the plots on Figure 1 

represent static data from two closely rel ated species . 

Variables X and Y are two measurements , perhaps skull  

length ( ! )  and pal ate length ( !) .  
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Fiqure 1 .  Hypothet ical b ivariate plots showing different 
relationships between regress ion l ines . 3 a :  
equal slopes and elevations ; 3b : equal s lopes , 
unequal elevat ions ; 3c : unequal slopes , 
unequal elevat ions . 
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O n  Figure 1 a  the s lopes of the two regre s s ions are 

equal and they share the s ame elevation . I f  the slope is  

isometric ( equal to  1 )  the two variables are geometrically 

proportional at all s izes , across both spec ies . If the 

slope is allometric ( unequal to 1 ) , the two spec ies wil l 

exhibit proport ional differences at different s izes . The 

nature of these differences wi l l  depend on whether the 

scal ing relationship is pos itively al lometr ic ( s lope 

coefficient greater than 1 )  or negatively allometric ( s lope 

coeffic ient less  than 1 ) . statistically ,  a s ingle 

regres s ion l ine may be used to character ize both groups . 

The s ituation in Figure 1b i s  re ferred to as 

transpos ition ( White and Gould 1 9 6 5 ) . The s lopes of the 

regre s s ions are equal but the l ines exhibit different 

elevations . Transpositions without s lope di f ferences c an 

neatly describe shape differences where range s on the X 

variable overlap . At a common skull length ( ! ) , spec ies 1 

has a longer pal ate ( ! ) than species 2 .  Within each 

species the scaling relat ionship is the s ame , but at 

di fferent elevations . 

In Figure 1 c  the slopes are unequal , a c ircumstance 

that confounds assessment of transpos ition . At the 

smallest s izes both species exhibit a s imilar rel at ionship 

between the two variables . At l arger s izes spec ies 2 

probably has a s ign ificantly longer palate ( ! ) than species 

1 ,  in relation to skull length ( ! ) . Evaluation of 
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transpo s ition i n  s ituations involving unequal slopes must 

often employ subj ec'tive j udgement and can only be done on a 

c ase by c ase bas is . 

Solving the Allometric Equation 

The basic equation o f  allometry may be solved by one 

of several criteria ,  each producing different results . 

Because cons iderable debate exists over the optimal form of 

solution , discuss ion of this  problem is warranted . 

Model I ,  or least squares , regress ions assume error 

only with respect to the Y variable . Minim ized deviations 

from the regres s ion line are measured as squared vertical 

dis tances . Model I I  regress ions as sume error with respect 

to both variables . The minimization criterion solves for 

perpindicular deviations from the regres s ion l ine ( maj or 

axis ) ,  or areas of triangles bounded by the regress ion line 

and l ines proj ected from data points to the regression 

l ine , parallel  to the ! and ! axes ( reduced maj or axi s ) .  

D iscuss ions and il lustrations of the differences between 

these two basic approaches c an be found in J .  Davis 

( 1 973 : 2 0 0 - 2 04 ) , sokal and Roh l f  ( 1 9 8 1 ) , Harvey and Mace 

( 1 9 8 2 ) and Rayner ( 1 985 ) . 

It has been argued that least squares regress ion is 

poorly suited for allometric analys is  if  both variables are 

measured with error and there is no reason to ass ign c ausal 

priority ( i . e .  " dependent "  versus " independent " status ) to 

one over the other ( Gould 1 9 6 6 , 1 9 7 5 a ;  Jungers 1 9 7 9 ;  
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Harvey and Mace 1 9 8 2 ;  Rayner 1 9 8 5 ;  LaBarbera 1 9 8 6 ; 

McKinney 1 9 8 8b ) . Because the least squares solution treats 

variation only in one variable , s lope estimates are 

shallower than Model II solutions . Thus , least squares may 

be inappropri ate for determining structural relationships 

between variables or comparing coeffic ients to 

theoretically or empiric ally expected scaling coefficients . 

Many investigators have cont inued to use least squares 

regress ion in allometric analyses ( e . g . , Wolpof f  1 9 8 2 ; 

Leigh 1 9 8 6 ; Wayne 1 9 8 6 a , 1 9 8 6b ;  Shea and Gomez 1 9 8 8 ) . 

Wayne ( 1 9 8 6 a )  explicitly def ined independent and dependent 

variables for his  c anid craniometric study , thereby 

j ustifying a least squares approach ( see also Wayne 1 9 8 6b ) . 

Shea and Gomez ( 1 9 8 8 : 1 2 0 )  argue that use o f  least squares 

regress ion is j ustifiable when one is not attempting to 

asses s congruence between obtained and theoretically 

predic ted slope values . Wolpof f  ( 1 9 8 2 ) found that least 

squares solutions cons istently predicted c anine s ize from 

molar s iz e  among African apes  more accurately than reduced 

maj or axi s  solut ions . At a theoretical level Lande ( 1 9 7 9 , 

19 8 5 ) argues , based on a genetic model for static 

al lometry , that the least squares solution i s  more 

informative , especially in s ituations where phenotypic 

correlations are low . Wolpo f f  ( 1 9 8 5 : 2 9 5 ) has asserted that 

Lande ' s  model is a powerful argument for pre ferring least 

squares regress ion over other approaches . 
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one reason least squares regres s ion i s  commonly 

employed is that the model II approaches have the ir own 

problems ( Sokal and Rohl f  1 9 8 1 : 5 4 7 - 5 5 1 ) .  For example , when 

the reduced major axis approach i s  used s lopes are 

meaningless  if correlations are low ( Jol icoeur 1 9 7 5 a ;  

Gould 1 9 7 5b ;  Seim and s�ther 1 9 8 3 ; Rayner 1 9 85 ) . In 

general , the least squares approach i s  appropriate when 

c ausal rel at ionships between variables are known , when 

correlations may be low ,  when prediction i s  the analytical 

goal , or when relative patterns of scal ing between groups 

are emphasized . When correlat ions between variables 

approach unity the choice of approach is largely 

inconsequent ial ( Seim and s�ther 1 9 8 3 ; Rayner 1 9 8 5 ; 

LaBarbera 1 9 86 ) . 

In thi s  study reduced maj or axis slopes are reported 

alongs ide least squares s lopes , as sugges ted by LaBarbera 

( 1 986 ) . However , all tests of s ignif icance and comparisons 

between groups are based on least squares coef f ic ients . 

This study doe s  not seek to evaluate obtained coe f f ic ients 

against theoretical expectat ions ( c f .  Shea and Gomez 1 9 88 ) . 

Rather , relative patterns of scal ing are emphas ized ( c f .  

wayne 1 9 8 6 a ) . Following Wayne ( 19 8 6 a ) , a skull  length 

dimens ion , condylobasal length ( CL--see Chapter IV) , )  is 

used as the independent variable in all analyses . This 

measurement provides the best s ingle characterization of 

skull s ize , and other cranial dimens ions are modeled to 
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vary around this  dimens ion . CL c annot be considered an 

absolute subst itute for body s ize ( Stockhaus 1 9 6 5 ) .  

Howeve r ,  there is  no question that animals with l arger 

skull s  ( e . g . , wolves ) have larger bodies than animals with 

smaller skul ls  ( e . g . , dogs or j ackal s--c f . Wayne 1 9 86 a : 2 6 1 , 

1 9 8 6c : 39 9 ) . Radinsky ( 1 9 8 4 ) suggests that a total skull  

length measure is an  appropriate standard for compar ison 

when the goal of analysis  is to explore overall dif ferences 

in skul l shape . 

Interpretive Problems in Bivariate Al lometry 

Historically,  much work in b ivariate allometry has 

assumed that patterns of static allometry among adults of a 

spec ies wil l  mirror relative growth , or patterns of 

ontogenetic allometry,  in the same species ( see Shea 1 9 81  

and Cheverud 1 9 8 2 , and examples cited therein ) .  

Unfortunately , there is  no theoret ic al j us t i fication for 

this assumption ( Cock 1 9 6 6 ;  Shea 1 9 8 1 ;  Cheverud 1 9 8 2 ) . 

static allometry will mirror growth only when there is low 

variation in individual ontogenetic slopes and intercepts 

relative to the length of ontogenetic vectors ( Cheverud 

1 9 8 2 : 1 4 0 ) ; or , in s impler Engl ish , when " ·  . .  there is  

very l ittle individual variation in growth patterns . 

and smal ler adults resemble arrested ontogenetic stages of 

l arger adult s "  ( Shea 1 9 8 1 : 1 9 2 ) . Correspondence between 

static and ontogenetic allometry has been documented in 

some contexts ( e . g . , Freedman 1 9 6 2 ) ,  but found l acking in 
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other empirical studies ( e . g . , Shea 198 1 ; Cheverud 1 9 8 2 ) . 

Thus , thi s  assumption c an only be used when empirically 

j ustified . 

The fallacy o f  making such an assumpt ion i s  

i llus trated o n  Figure 2 .  Figure 2 a  depicts hypothetical 

adult s tatic regres sion l ines f rom a bivariate plot of two 

l inear measurements in two c losely related spec ies . The 

s lopes and elevations of the regres s ion l ines are the s ame . 

Assuming equivalence of static and ontogenetic allometry , 

one would argue that the spec ies exhibit ontogenetic 

scal ing . In other words , species 2 has a longer growth 

traj ectory than species 1 ,  but the s lope of the traj ectory 

is the s ame for both species ( see Shea 1 9 8 1 , 1 9 8 3 , and 

1 9 8 5 a  for discuss ions of ontogenetic scaling ) . 

Hypothetical individual ontogenetic vectors for each 

species show how such an inference can be grossly 

incorrect .  There i s  no overlap in the ontogenetic 

traj ectories for individuals of di fferent spec ies . Hence , 

the ontogenetic regres s ions will have di f ferent s lopes . A 

s ingle regres s ion l ine i s  adequate for predicting values of 

Y from ! with adults , but the growth traj ectories producing 

those  adult values c annot be inferred from static data . 

Figure 2b i l lustrates a different s ituation . The 

adult static regre s sion l ines exhib it different s lopes and 

elevations . Under the assumption of equivalence of static 

and ontogenetic allometry , one would infer that the two 
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St at i c  Regre••t on Li nes 
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Figure 2 .  Hypothetical regres s ions showing pos s ible 
rel ationships between ontogenetic and static 
al lometry of two groups . X and Y are l inear 
measurements . 4 a :  Individual ontogenetic 
vectors termininating in adult data points 
( numbers ) .  Despite equal static s lopes and 
elevations the groups are not ontogenetically 
scaled . 4b : Shared ontogenetic regres s ion l ine 
for two groups ( numbers ) reaching dif ferent 
adult s izes and patterns of static variation 
( el l ipses ) .  The groups are ontogenet ical ly 
scaled . 
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spec ies do not exhibit the s ame growth traj ectory . 

However , a s ingle ontogenetic regress ion l ine des cribes the 

growth traj ectory of both groups . They are ontogenetically 

sc aled . Because static allometry does not necessarily 

mirror ontogenetic al lometry , two groups with divergent 

patterns of static variation may share the s ame general 

growth traj ectory . 

Cont inuing with Figure 2b , i f  species 1 i s  known to be 

an evolutionary des cendent of spec ies 2 ,  it c an be 

described as progenetic ( Gould 1 9 7 7 ; MaNamara 1 9 8 6 ; 

McKinney 1 9 8 8b ) . Spec ies 1 exhibits truncated development 

rel ative to species 2 .  This ,  in turn , brings up another 

interpretive problem . It i s  no acc ident that Figure 2b ( as 

wel l  as Figure 2 a )  does not expre s s  or imply a time 

variable . It  is  unknown what the growth rates of the two 

species are . Growth rates c annot be inferred from such 

allometric plots , and s ize cannot be assumed to be a val id 

proxy for t ime ( Shea 1 9 8 3 , 1 9 8 8 ;  Jones 19 8 8 ;  McKinney 

1 9 8 8b )  . 

I f  growth rates between the two species are known to 

be the same , one could infer " time progenes i s "  ( c f .  

McKinney 1 9 8 8b ) , or " t ime hypomorphos i s "  ( Shea 1 9 83 ) . 

Spec ies 1 reaches maturity sooner than species 2 ,  but 

growth rates are unchanged . 

as outl ined by Gould ( 1 9 7 7 ) .  

Thi s  corresponds to progenes is 

Alternatively,  i f  spec ies 1 

exhibits a s lower growth rate than species 2 ,  one could 



5 1  

infer " rate proqenesis " ( McKinney 1 9 8 8b )  o r  " rate 

hypomorphi s i s "  ( Shea 1 9 83 ) . Both species may mature in 

approximately the s ame lenqth of time , but spec ies 1 qrows 

more slowly . In  the absence of qrowth rate informat ion , 

McKinney ( 1 9 8 8b )  has suqqested that heterochronic 

inferences drawn from al lometric plots be l abeled as j ust  

that . Thus , in the present example , species 1 exhibits 

" allometric proqene s is " . 

The vexinq problem of qeneratinq heterochronic 

inferences f rom al lometric data without knowledqe o f  qrowth 

rates is a c entral concern in the study o f  heterchrony , and 

will l ikely remain so for some t ime ( cf .  Gould 1 9 8 8 : 4 ) . 

An Interpretive Framework for Bivariate Al lometry 

With problems associated w1th bivariate allometry in 

mind , a s impl istic  interpretive framework for th ia study i s  

presented below .  This framework is intended only as a 

startinq point to quide analys i s  and interpretat ion , and to 

focus discuss ion . 

Shea ( 1 9 8 1 : 1 80 - 1 81 ) arques that any as sert ion that a 

shape difference between two spec ies is  an al lometric 

consequence of s ize differences can be vacuous ( see also 

Gould 1 9 6 6 ) . An analytical distinction mus t be drawn 

between kinds of s ize- correl ated chanqe . S ize-rel ated 

chanqes involve " ·  . . interspecific  shape dif ferences that 

mirror those  between younq and adults of the l arqer 
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species " ( Shea 1 9 8 1 : 1 8 1 ) . S ize-required changes are those 

that " · . .  s imply obey biomechanical l aws of s i ze required 

shape alteration " ( Shea 1 9 8 1 : 1 8 1 ) . 

Accordingly ,  morphological patterning resulting from 

broad , cons istent allometric trends between related taxa of 

differing size  suggest s ize-required changes . Although 

such patterning c annot be used to argue that only s ize 

selection is involved ( Cheverud 1 9 8 2 ) ,  it i s  consistent 

with an hypothes i s  that morphologic al patterning is closely 

l inked with s ize different iation . Deviations from such a 

trend may imply s ize-related changes via ontogenetic 

scaling ( c f .  Shea 19 81 , 1 9 8 S a ,  1 9 8 8 ; Gould 1 9 7 Sb ) , or  

selection for functionally altered "nove l "  morphology , 

presumably requiring greater genetic al terations ( c f .  Gould 

1 9 7 7 ; Shea 1 9 8 S a ,  198 8 ) . These two bas ic  alternatives-­

size-required versus s ize-related change- -provide a logical 

start ing point for examining the morphological divergence 

of dogs from wolves . The following discuss ions revolve 

around Figure 3 .  

Static Allometry 

Figure 3 a  is relevant to the analysi s  of static 

al lometry presented in Chapter V .  In Figure 3 a  

hypothetical regres s ions from adult static data from f ive 

groups are presented . X is a l inear dimens ion that best 

summarizes s ize , perhaps skull length , while Y is  another 

cranial dimens ion , perhaps palatal length . 
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St at i c  Regr••• ton  Lt ne• 
Oatogenet t c  Regr•••t o• L t ne 
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Figure 3 .  Hypothetical regress ions for different groups 
( numbers ) on two l inear measurements ( X  and Y ) . 
E l l ipses are range of variation around static 
regres s ion l ines . S a :  Static regres s ions for 
f ive groups . Group 5 deviates f rom a s ize 
correlated trend shown by groups 1 through 4 .  
Sb : Static regres s ions for four groups , and 
ontogenetic regres s ion for group 2 .  Group 1 is  
ontogenetical ly scaled with group 2 ,  group 4 
probably is not , and group 3 def initely i s  not . 
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Groups 1 through 4 exhibit a discernable statistical 

pattern of variation correlated with s ize different iat ion . 

Group two i s  transposed above group 1 ,  group 3 above group 

2 ,  and group 4 above group 3 .  Thi s  pattern is c ause for 

suspic ion that morphological variab i l ity between these 

groups is " s ize-required" . If the pattern holds for other 

bivariate rel at ionships , thi s  hypothesis  is strengthened .  

Group 5 i s  not cons istent with the pattern discussed 

above . Given the pattern among groups 1 through 4 ,  one 

would expect the regres s ion l ine describing group 5 to be 

transposed below group 1 .  Instead , its elevation is 

nearest groups 2 and 3 .  This c auses suspic ion that some 

factor other than s imple allometric scal ing has been most 

important in c reating the morphology of thi s  group , 

espec ially if its divergent location is cons istent on other 

bivariate plots . 

several methodological precaut ions are in order . 

First , relat ive locations of regres s ion l ine elevations are 

not neces s arily an accurate guide to morphology , except 

where individuals from dif ferent groups share a common 

value of X .  Cons ider Figure 3 a  again . From the pattern of 

downward transposition at smal ler s izes it is  tempt ing to 

interpret proportionally shorter palates ( !) at smaller 

s izes . However , an overall regres s ion of groups 1 through 

4 might yield a perfectly i sometric s lope of 1 .  Thi s  

pooled regress ion , which would pass close t o  the mean value 
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o f  X for each group , would accurately reflect an overall 

morphological trend of i sometric change . The morphologic al 

rel ationship between two indiv iduals of any group wil l 

al�ays depend on the s lope of the l ine connec ting them . 

Thus , average s ized individuals from different groups will  

exhib it s imilar proportions . 

Thi s  characteristic of the individual group scaling 

patterns does  not diminish the util ity of exploring 

patterns of static variation . Accurate ident ificat ion of 

deviations from broad allometric trends is a pr imary goal 

of this phase of analys i s . Pooled regre s sions describe 

basic morphological trends , while intergroup pattern ing in 

static variation allows ident i f ication of deviat ions from 

those trends . 

As a second precaution , it should be noted that the 

regress ion approach used can e f fect the results of 

analys i s . A pattern of downward transposit ion between 

groups generated from least squares coeffic ients could 

appear as identical elevations or even transposition in the 

oppos ite direction us ing a model I I  regres s ion ( Harvey and 

Mace 1 9 8 2 : 3 5 7 ) . However ,  this analys is emphas izes relative 

rather than absolute patterns of scal ing . S ince all  

regre s s ion coefficients are generated by the same 

criterion , rel ative patterning c an be assessed . 

Finally,  it must be emphasi zed that analys i s  of stat ic 

allometry does not concern growth . Again assuming 
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homogeneity of  s lopes , both statistical transpos ition and 

morphological differences are eas i ly documented between 

groups l ike 1 and 5 on Figure 3 a .  They exhibit a widely 

overlapping range o f  variat ion on ! ( skul l  length ) ,  and 

group f ive clearly has higher values on ! ( longer palates ) .  

Groups with non-overlapping ranges of  variation on X 

( l ike 1 and 4 )  are trickier . In this s ituation what is 

statistically mean ingful may not be meaningful in terms of  

biological growth . When analys i s  of  covariance is used to 

test for elevat ion differences , the covariate variable , !'  

is  adj usted to a common mean value for both groups ( c f .  

Tatsuoka 1 971 : 40-48 ) .  The resulting predicted values of !' 

which form the basis for this tes t ,  are generated by 

utilizing the common slope from both groups . The ef fect i s  

t o  move both groups t o  a common point on the the ! axi s , 

with pos itions on the ! axis shifted according to the s lope 

gradient defined by the pattern of static variation . Group 

1 gets "bigger" ,  whi le group 4 " shrinks " . B iologically,  

s ize c an only be changed in individuals through growth . 
-

The true effect of increased or decreased s i z e  c annot be 

gauged by the static allometry coe f f ic ient , but only by an 

appropriate ontogenetic allometry coefficient . 

A conc lus ion of transposition with groups l ike 1 and 4 

is  not incorrect ;  it i s  s imply not a mean ingful conclus ion 

about growth unless static and ontogenetic al lometry are 

the s ame . Rather , it is a meaningful conclus ion about 
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relat ive locations o f  regres s ion l ines generated from 

static data . Thus , analys i s  of  static al lometry focuses on 

patterns of vari ation rather than unwarranted inferences 

about the hypothetical consequences of growth . 

ontogenetic Allometry 

The obj ect ive of ontogenetic analys i s  presented in 

Chapter VI is to determine whether or not patterns of  

static variation in domestic dogs are consistent with a 

hypothesis  of  ontogenetic scal ing with wolves . Ideally,  

ontogenetic data from both groups would be ut il ized . In 

the absence of ontogenetic data from one group ( the dogs in 

this study ) , it is imperative that ontogenetic data be 

available from one species ( Shea 1 9 8 1 : 1 8 1 ) . 

Figure 3b corresponds to the analys i s  of  ontogenetic 

allometry in thi s  study . Here , hypothet ical adult static 

regress ions from four groups are il lustrated , along with 

the ontogenetic regress ion for group 2 .  The variables X 

and Y are the same as those for Figure 3 a .  Note that the 

s lope of the static regres s ion for group 2 does  not 

correspond to the s lope of its ontogenetic regres s ion 

( though it could ) . This ontogenetic regres s ion pas ses 

squarely through the range of  static variation exhibi ted by 

group 1 .  I f  group 1 i s  known on other grounds to be an 

evolutionary descendent of  group 2 ,  this pattern could be 

construed as support for the hypothes i s  of  progenetic 

heterochrony ( c f .  Gould 1 9 7 7 ; McKinney 1 9 8 8b ) . Groups 1 
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and 2 may exhibit ontogenetic scal ing,  with smal ler s iz e  

and altered morphology i n  group 1 a consequence of  

truncated development . I f  other bivariate plots exhibit a 

s imilar pattern , the hypothes is i s  strengthened . 

Groups 3 and 4 exhibit a dif ferent s ituation . Let it 

be assumed that these species  are also known to be 

evolutionary descendents of group 2 .  Group 3 is  wel l  

removed from the group 2 ontogenetic regre s s ion . I t  is  

unl ikely to be ontogenetical ly scaled with group 2 .  

Morphological change in thi s  group is probably the result 

of some other f actor . 

Group 4 i s  more problemat ical . The group 2 

ontogenetic regres s ion pas ses  through its range of  

variation , but not  centrally . I t  is  tempting to read 

s imilarity into thi s  pattern , but caut ion is in order . I f  

the data are wel l  controlled an hypothesis  of  ontogenetic 

scal ing is strongly supported only when an ontogenetic 

regression l ine pas ses squarely through the range of static 

variat ion o f  another group . In prac tice , determining how 

c lose an ontogenetic regress ion l ine comes to the central 

portion of another groups ' s  range of static variation i s  

subj ective , unless  the s tatic and ontogentic regres s ion 

s lopes are the s ame . I f  the two s lopes are the same , 

analys is of  covariance c an be used to test for elevation 

di fferences . I f  el evations do not dif fer the hypothes is of 

ontogenetic scal ing is strengthened . 
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I f  the s lopes are not the s ame , sub j ective evaluation 

is used . In any c ase , a cons i stent pattern involvinq 

several b ivariate relationships must obtain before the 

hypothes is c an be cons idered strenqthened or weakened . I f  

qroup 1 exhibits the relationship t o  qroup 2 shown on 

Fiqure 3b ( paqe 5 3 ) but shows a different pattern on other 

bivariate plots , perhaps l ike qroup 3 ,  the hypothes is is 

not stronqly supported . 

Mult ivariate Analys is 

The advantaqe of  multivariate techniques in 

morphometric studies is  that information from several 

variables can be analyzed s imultaneous ly ( Oxnard 1 9 7 8 ;  

Shea 1 9 8 5b : 3 6 9 ) . The disadvantaqe i s  that spec i fic 

components of  variation become more difficult to isolate 

( Wayne 1 9 8 6 a ) . For this reason , b ivar iate analys is 

precedes multivari ate analys i s  in this study . With 

spec i f ic components of variation amonq doqs and wild c anids 

isolated and assessed, multivari ate analys i s  is used to 

auqment these results by asses s inq overall  patterns of  

morpholoqical variability .  

Followinq Jol icoeur ' s  ( 1 9 6 3 ) development of  a 

multivariate qeneralization o f  bivariate al lometry , 

princ ipal components analys is is  commonly employed in 

allometric studies ( e . q . , Davies and Brown 1 9 7 2 ;  Cheverud 

1 9 8 2 ; Shea 1 9 8 5b ;  Tissot 1 9 8 8 ) . A closely related 
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technique , discriminant function analysi s  ( c f .  Tatsuoka 

1 9 7 1 : 1 5 7 - 2 1 6 ; Morrison 1 9 7 4 ; Klecka 1 9 80 ) , can also be 

informative and is used here . It has , for example , been 

succes s fully employed in studies  of  canid taxonomy and 

qeoqraphic variation ( e . q . , Jol icoeur 1 9 5 9 ; L awrence and 

Bossert 1 9 6 7 ; Nowak 1 9 7 9 ;  Morey 1 9 86 ) . In allometric 

studies  Wayne ( 1 9 8 6 a ,  1 9 8 6b ,  1 9 86c ) has util ized 

discriminant analys i s  to investiqate morpholoqical 

variation and evolutionary rel ationships amonq canids . 

The advantage of  discriminant analys i s  i s  that 

different groups are prede f ined by the invest igator ,  and 

variation between groups rather than within groups i s  

maximized ( Wayne 1 9 8 6 a ,  1 9 8 6b ) . A series of  l inear 

funct ions is computed that maximally separates those groups 

in multivari ate space . The di scriminant func tions c an then 

be used to c l ass i fy individuals into a group on the bas is 

of  the ir proximity to different group centroids . Thi s , 

coupl ed with mul tivariate distances , allows the 

investigator to as sess the success of the discriminant 

funct ions and to gauqe intergroup distances . In general , 

dis tances  between groups on discriminant axes should 

re flect evolutionary di stances ( Wayne 1 9 8 6 a ) . 

In this study discriminant analys is i s  used to assess  

overal l patterns o f  morphologic al variabil ity between c anid 

groups . First , exploratory analys i s  is  conducted for adult 

groups util i z ing raw values on al l v ariables  ( i . e . , not loq 
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trans formed ) .  Logarithmic trans formation does  not improve 

results  or enhance interpretab il ity ( Corruccini  1 9 8 7 : 2 8 9 -

3 0 3 ) . Discriminant analysi s  i s  then conduc ted on adult 

groups us ing indexed data . The measurement CL ( s ee Chapter 

IV ) is used as the standard , and remaining cranial 

variables are expressed as a proportion of  thi s  

measurement . This is appropriate because other cranial 

variables are analyzed in terms of  their relationship to CL 

in the bivariate analys is . Final ly , indexed data are used 

to compare j uveniles with adult groups . I f  dogs are 

progenetic , their morphology should be most s imilar to 

j uvenile wolves . 

considerable debate has been generated concerning 

undesirable mathematical properties of  ratios and the ir use 

for statistical ly partit ioning " s ize"  from " shape " in 

morphometric studies  ( e . g . , Atchley et al . 1 9 7 6 ;  Dodson 

1 9 7 8 ;  Thorington and Heaney 1 9 8 1 ; Shea 1 9 8 5b ;  Corruccini 

1 9 87 ) . However ,  separation of  " s ize"  from " shape " i s  not 

the goal here ; conceptual ly,  they may not be separable 

( McKinney 1 9 8 8b ) . Rather , the goal here is not to remove 

statistical ef fects of s ize but to analyze dimensions as 

proportions of s ize ( Corruc c ini  1 9 8 7 : 2 9 1 ) . 

Following Dodson ( 1 9 7 8 ) and Shea ( 1 9 8 5b ) , ratios are 

used c arefully with results cross-checked against results 

already obtained from b ivariate analys i s . Expres s ing other 

cranial dimens ions as a proportion of  CL provides the 
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necessary conceptual l ink for thi s  praqmatic approach . Us e 

of  ratios does  not part ition s iz e  from shape ( whatever that 

i s ) , but does  ensure that interqroup disc rimination will 

not be based on sheer differences in maqnitude of  

dimens ions in smaller versus larqer c anids . 

Previous Investiqations of Canid Allometry 

The followinq discussion summarizes several previous 

al lometric investiqations that have dealt with quest ions or 

produced results of direct re levance to this study . This 

review i s  hiqhly selective . First , an exhaust ive review o f  

morphometric studies that have inc luded domestic doqs for 

one purpose or another could ent ail an ent ire monoqraph . 

Second , a substant ial body of  appropriate l iterature i s  in 

German , a l anquaqe in which th is author has l imited skills .  

For an introduction to thi s  extens ive l iterature the reader 

may consult discuss ions and bibl ioqraphies in Lumer ( 1 9 4 0 ) , 

We idenreich ( 1 9 4 1 ) , Epstein ( 1 9 7 1 ) , and Wayne ( 1 9 8 6 a ,  

1 9 8 6b ) . In any c ase , review of  several maj or allometric 

studies , inc ludinq selected German works , provides an 

informat ive backqround for the analys is that follows . 

An early investigation of allometry in domest ic dogs 

was conducted by Lumer ( 1 9 4 0 ) . Lumer ' s  qoal was to clarify 

evolut ionary and taxonomic relat ionships amonq doqs by 

studying cranial and post-cranial allometry . Data from a 

variety of  modern adult domes t ic doqs and wolves yielded 
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various patterns o f  allometry . Based on analys is o f  static 

data ,  Lumer subj ectively def ined several " al lometric 

tribes " ,  which represented di fferent qroups of breeds 

thouqht to share s imilar bivariate scalinq rel ationships . 

ontoqenetic data from 3 0  German Shepherds revealed 

approximately the s ame s lope as for the " terrier tribe " , 

the qroup to which German Shepherds were ass iqned based on 

s everal b ivariate plots . Lumer hypothes ized equ ivalence of  

static and ontoqenetic allometry, and suqqes ted { 1 9 4 0 : 4 6 1 )  

that " · . . within a tribe the l arqer breeds recapitulate 

in the ir development the body porportions of the 

adult staqes of smaller breeds . "  Juvenilization was arqued 

to be a consequence of dec rease in adult body s ize with no 

s igni f icant chanqes in the course of relative qrowth . 

Thouqh Lumer ' s  subj ective methodoloqy has been 

soundly critic ized { Cock 1 9 6 6 ) , his s tudy is important for 

its emphas is on allometry as a mechanism of morpholoqical 

chanqe with chanqinq body s iz e . His qeneral observation o f  

j uvenilized morpholoqy i n  smaller breeds was cons istent 

with both earlier { e . q . , Hilzhe imer 1 9 3 2 ) and l ater studies 

{ e . q . , Wayne 1 9 8 6 a ,  1 9 8 6b ) . In Lumer • s  formulation , 

j uvenil iz ed morpholoqy i s  s imply an inevitable cons equence 

of s ize reduct ion , and only s iz e  selection need be invoked 

to explain it . 

Another early allometric investiqat ion was conducted 

by Dahr { 1 9 4 2 ) . Dahr analyzed allometry of  the braincase 
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i n  wild c anids and modern domestic dogs , hoping t o  arrive 

at inferences concerning the anc estry of dogs . Several 

species of  wild c anids were used and treated as one group , 

while " normally-shaped" domestic dogs were used for 

comparison . He argues that when size  changes are 

correl ated with form changes they must be regarded as 

independent of human intention . Breeds not conforming to 

this  criterion , such as bul ldogs and greyhounds , were 

el iminated . 

Dahr ' s  summary of diff iculties in assembl ing s amples 

of modern dogs that accurately approximate "primitive " dogs 

is so wel l  presented that it casts doubt on any conc lus ions 

he draws . He notes that once evolutionary transitions 

between " normal " forms and " aberrat ions " are underway , al l 

pos sible gradations exist between them . Further ,  

frequenc ies o f  different forms are highly i rregular , be ing 

time and space specific and subj ect to change with shi fting 

human economic needs or even " fashion trends " ( Dahr 

1 9 4 2 : 2 9 ) . 

In the end , Dahr derived evolutionary inferences from 

his  data . First , he documented a pattern o f  negative 

allometry involving breadth and length of  the cranial vault 

in wild canids . Cephal ic index ( breadth/length x 1 0 0 ) 

decl ines with increasing size . His sample of  " primitive " 

modern dogs exhib ited even more pronounced negative 

al lometry . Hence ,  the two groups have intersecting 
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regres s ion l ines with different s lope s . 

Dahr conc luded that the difference in s lopes indicates 

di f ferent directions of  deviation between dogs and wild 

c anids . Actually,  the direction is  the s ame in both 

( negative allometry ) , with only a difference in magnitude . 

Nonetheless , Dahr suggested that an ancestor o f  dogs mus t 

be sought in the s ize range represented by the intersection 

of the two regres s ion l ines . Both j ackals and wolves were 

rej ected , the former being too small  and the l atter too 

l arge . Dahr argued that the Australian Dingo provides an 

appropriate ancestor based on his  analys i s . As Werth 

( 1 944 ) subs equently pointed out , s imilarity between dingos 

and medium s iz ed dogs simply suggests that the dingo itself 

i s  bas ically a domestic dog .  Thus , although Dahr 

recognized the fundamental importance of allometry in 

producing s ize-correlated form changes , his evolutionary 

inferences must be rej ected . 

Another extens ive allometric invest igat ion involving 

canids was conducted by stockhaus ( 1 9 6 5 ) . stockhaus 

assembled craniometric data from wild wolves , zoo wolves , 

modern "primitive " dogs , and modern dogs of  special ized 

breeds . A princ ipal goal of  his  investigat ion was to 

determine how zoo wolves and primitive dogs differ in 

al lometric relations from wild wolves ( this summary does 

not address his  analysis of breed dogs ) . Mos t  dimens ions 

were scaled against cranial capac ity , while  some were 
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scaled against basal length of  the skul l . 

Regress ions were performed separately on the different 

groups and results compared . For wild wolves , Stockhaus 

found that most dimens ions were pos it ively allometric in 

relation to cranial capac ity . Thus , l arger skul ls  have 

smal ler cranial volumes , a result consistent with the 

f indings of Dahr ( 1 9 4 2 ) . Zoo wolves exhibited marked 

reductions in length measures but l ittle change in breadth 

measures . Thus , most zoo wolves have relatively broader 

skulls than the ir wild counterparts . 

For primitive dogs Stockhaus found that all  l inear 

measures were pos itively allometric with respect to cranial 

capacity . Many measures exhibited slopes s imilar to 

wolves , but transpos ed up or down . overal l ,  Stockhaus 

argued that allometric di stinc tions between zoo wolves and 

wild wolves are generally the same as those between 

primitive dogs and wild wolves . The s imil arity in scaling 

rel ationships between dogs and zoo wolves relat ive to wild 

wolves warrants attention . In zoo wolves , reduced size  and 

altered morphology are presumably the consequences of  

environmentally induced developmental alterations . In 

dogs , reduced s iz e  and altered morphology presumably have a 

genetic  basis . Thi s  suggests that genetically produced 

alterations in s ize and morphology in these animals are 

subj ect to constraints imposed by developmental pathways 

( see below ) . As stockhaus ( 1 9 6 5 : 1 8 6 ) himself  observed , 
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genetic  differences apparently have the same consequences 

as environmentally c aused changes . 

Limitations to the express ion of  morphological 

variab i l ity in dogs have been explored in a series of  

papers by R . K .  Wayne ( 1 9 8 6 a ,  1 9 8 Gb ,  1 9 8 6 c ; s ee al so Wayne 

1 9 8 4 ) . Wayne ' s  general obj ective was to determine how 

shared developmental and genetic architecture l imit 

morphological evolution . Although Wayne did not s et out 

spec i f ically to addres s  quest ions about the c auses of  

morphological change in the evolut ion of the dog from the 

wol f ,  his results have direct bearing on those questions 

and warrant c areful cons iderat ion . 

The f irst paper ( Wayne 1 9 8 6 a )  deals with cranial  

allometry . Dental and cranial measurements were recorded 

on adult domestic dogs of various breeds and adult wild 

canids of different spec ies . Longitudinal data were 

recorded from four growing dogs of di f ferent breeds , 

ranging from a Lhasa Apso ( smallest ) to a Great Dane 

( l argest ) .  In all  analyses total skull length was used as 

an independent variable in the computation of least squares 

regress ion coefficients . 

Cons idering static data f irst , Wayne found that the 

scal ing of cranial length components on total skull  length 

was s imilar in wild canids and dogs . Al l slopes were c lose 

to isometry . However , the two groups exhibited different 

scal ing patterns on cranial width and depth variables as 
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wel l  as dental vari ables . In thes e  cases , s lopes from the 

dog regress ions were shallower , with both groups exhibiting 

strong negat ive allometry . All small  breeds were found to 

have wider skul l s  than wild spec ies of  comparable s ize , 

with regres s ions intersect ing at largest s izes . 

Thus , variab i lity in scaling of  skull length 

components is tightly constrained in all c an ids , and all 

dog breeds " ·  . . are exact al lometric dwarfs with respect 

to measures of  skul l length " ( Wayne 1 9 8 6 a : 2 4 7 ) .  As a 

result of  the diss imilar scal ing of  skul l width and depth 

dimensions , dogs show overall morphological s imilar ity only 

to their close relatives , the larger wolf - l ike c anids . 

Discriminant analys is demonstrated that the dogs overlap 

only with the wol f - l ike genera ( Canis , cuon , Lyc aon ) . Wayne 

argues that morphological change in dogs has not 

transcended phylogenetic boundaries , as evidenc ed by the 

separat ion of a l l  dog breeds from smaller fox- l ike canids . 

Turning to ontogenetic al lometry , Wayne found that the 

scaling of j uvenile dogs of dif ferent ages was s imilar to 

that of adult dogs of different s izes . Wild c anids , adul t 

dogs , and j uvenile dogs all exhibit s imilar scal ing of  

skull length measures . In width and depth measures , 

j uvenile dogs are more s imilar to adult dogs than to wild 

canids . Thus , ontogenetic and static al lometry of  dogs are 

s imilar when the tremendous range of  s iz e  and morphology 

present in modern dogs i s  repres ented . Wayne ( 19 8 6 a : 2 5 6 )  
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concludes that under conditions o f  rapid evolutionary 

change , especially involving s ize selection , ontogenetic 

s c al ing may constrain morphological divers ity among adults . 

In a closely related paper Wayne ( 1 9 8 6b ) investigated 

allometry in the l imb bones of domestic dogs and wild 

canids . He util ized s amples s imilar to those  used in his 

s tudy of cranial allometry and regressed various l imb bone 

measurements against femur length . cons idering s tatic 

data ,  Wayne found that the scaling of  long bone lengths 

with femur lengths was s imilar in dogs and wild c anids . 

Slopes were isometric or only weakly al lometric . Long bone 

widths , however ,  scaled di f ferently . Dog slopes were 

shal lower , resulting in wider bones relative to wild 

species of comparable femur length . Discriminant analys is 

cl early distnguished the dogs from all groups except their  

close rel atives . ontogenetic analys i s  revealed that adult 

dogs and j uvenile dogs exhibit s imilarity in scal ing 

patterns . 

Wayne notes that given the evolut ionary dis tance o f  

dogs from some of  the wild taxa , s imilarity i n  scal ing 

between the groups is surpris ing . subtle differences  that 

exist , however , are taxonomically important and may rel ate 

to locomotor behavior . Nevertheles s , he argues that the 

pervas ive s imil arity suggests that s ize selec tion i s  

suf ficient for generating most of  the divers ity o f  l imb 

proportions in c anids . 
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wayne deals most extens ively with growth and 

development in a third paper ( Wayne 1 9 8 6c ) . Here , he notes  

that it i s  commonly expected that ontogenetic dif ferences 

between breeds or spec ies will appear late in ontogeny , 

while dif ferences among higher taxa will appear early . 

Thus , because dogs differ markedly in limb s ize and 

proportion , these dif ferences should be due to al tered 

pos tnatal growth rates . 

Wayne collected longitudinal data from four growing 

puppies representing breeds of vastly dif ferent s ize and 

morpho logy : Lhasa Apso , Cocker spaniel , Labrador 

Retriever , and Great Dane . Radiographs taken at systematic 

intervals were used to generate measurements dur ing a 

period from about 4 0  to 2 5 0  days post-partum , or about 7 5  

percent of  postnatal growth i n  l imb bone length . specific 

growth rates ( bas ically absolute growth rate divided by 

s ize ) were c alcul ated to express proport ionate increase in 

s ize with age . 

Wayne found specific growth rates similar in all f our 

breeds . Because of this , the four breeds must exhibit 

proportional di fferences in s i ze as puppies that are 

s imilar to those  among adul ts . Generalized growth curves 

were ut i l ized to construct hypothetical dogs by shi fting 

the init ial 40 day s izes and proj ect ing growth to 2 5 0  days . 

Discriminant analys i s  of  hypothetical dogs and real dogs 

corresponded c losely,  support ing the assertion that 
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patterns o f  postnatal growth in most dogs are s imilar to 

that o f  the four measured for Wayne ' s  study . However , 

l arge dogs deviated from the growth curve model , perhaps 

because they have an extended period of late postnatal 

growth relative to smal l dogs . 

Wayne argues that s imilar growth rate patterns after 

40 days indicate that differences in l imb conformation 

among adults are due either to di fferences in initial birth 

s ize or in specific growth rate soon after b irth . Birth 

weight differences account in part for s ize differences , 

but not fully . Thus , Wayne argues that smal l breeds must 

also have reduced per inatal (O to 40 days ) growth rates . 

It is argued here that Wayne may be underestimat ing 

the effects of an extended growth period in l arger dogs . 

Elsewhere ( Wayne 1 9 8 6b )  he observes , for exampl e ,  that the 

tiny Lhasa Apso grows for only about 10 months , while the 

enormous Great Dane grows for up to two years , albe it at a 

very slow rate in the second year . Growth rates in a 

medium-s ized breed l ike the Beaql e are slow at 3 0 0  days , 

and decl ine with increas inq age ( Anderson and Floyd 1 9 6 3 ) . 

Simple truncat ion or extens ion of  development should not be 

ignored as a contributinq f actor ( c f .  Kirkwood 1 9 8 5 : 1 0 2 ) , 

though alone it is  certainly incapable o f  explaining the 

vast size  dif ferences between breeds . 

Wayne also utilized growth data from two species of 

wild c anids , the bush dog ( Speothus venat icus ) and the 
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maned wol f  ( Chrysocyon brachyurus ) . Wayne notes that the 

three groups ( inc luding domestic dogs ) represent almost the 

ent ire range of l imb proport ions in canids . Yet , 

remarkably,  there are no signif icant dif ferences in 

spec ific growth rates . Like the domestic dogs , differences 

in s iz e  and proportion among different c anid spec ies must 

be due e ither to di fferences in initial birth s ize or in 

perinatal growth rates . 

Size  di f ferences at birth imply either different 

foetal growth rates or differences in gestat ion times . 

Wayne observes that in general there is a strong 

relat ionship between s ize at birth and gestat ion time among 

vertebrates . Foetal growth rates are similar and gestation 

lengths determine neonate s ize . Dogs , however , are a 

conspicuous exception to this general izat ion . As Wayne 

notes , the ir ge stat ion time , 6 0 - 6 3  days , is invariant 

( Kirkwood 1 9 8 5 : 1 0 4 ; Rivers and Burger 1 9 8 9 : 84 ) . Thus , 

smaller neonates of small breeds can only result from 

slower foetal growth rates . Contrary to the general 

expec tation , breeds are characterized by variation in 

foetal and perinatal growth rates rather than variation in 

postnatal rates . 

Small  dog breeds di f fer morphologic ally from smal l 

wild c anids in part because of  different gestat ion lengths . 

Among wild c anids differences in l imb bone conformat ion are 

related to discrepancies is gestation time . Among domestic 



7 3  

dogs , differenc es are due t o  alterations i n  foetal specific 

growth rates and perinatal rates . 

The implications of Wayne ' s  research will be returned 

to when results of the pres ent analys is have been 

presented . For the moment , several points should be 

emphas ized . First , morphological variabil ity in dogs is 

largely constrained to the range of variab i l ity expressed 

in ontogeny . Modern dogs , resulting from del iberate 

selection for al l manner of s izes and forms , have not 

accomplished the genetic reorganization necess ary to 

transcend the range of morphology represented by a basic 

phlylogenetic boundary . There is no reason to expect that 

earl ier prehistoric dogs did either . Thus , morphology of 

early dogs should be conf ined to the ontogenetic pathway of  

their immediate ancestor , f·  lupus . In a review of  

allometric relations between body weight and phys iological 

parameters in modern dogs , Kirkwood ( 1 9 8 5 ) argues that 

al lometries of dogs in general are conf ined to 

developmental boundaries . 

I f  s ize alterat ion mus t produce morphologies 

conforming to developmental pathways , it may be diff icult 

to distinguish the results of  s ize selection from selection 

on life  history traits . Select ion on developmental 

parameters may have been an important channe l available for 

contribut ing to s iz e  reduction . Hence , the conceptual 

distinction gets fuzzy . 
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In h i s  analyses of  size-correlated changes , wayne has 

util ized virtual ly the ent ire range of  size and morphology 

repres ented in modern dogs . The following chapters attempt 

to determine the degree to which morphology in prehistoric 

dogs is a reflec tion of s ize-correlated changes . These  

dogs are of  a general ized type , f ar more uni form in s ize  

and morphology than modern breeds . Despite their small  

s ize , they are legitimately regarded as true primitive dogs 

( see Chapter VIII ) . They represent what invest igators l ike 

Dahr ( 1 9 4 2 ) and Stockhaus ( 1 96 5 )  hoped to approximate when 

they subj ectively selected " primitive " dogs from among 

modern breeds . 
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CHAPTER IV 

MEASUREMENTS , AS SOCIATED OBSERVATIONS , AND SAMPLE S 

Measurements and Assoc iated Observations 

The data base used in this study consists of 

measurements and as soc iated obs ervat ions from 3 4 9  skul ls  of 

recent wild c anids and archaeologic al ly recovered domestic 

dogs from the earl iest time periods pos s ibl e .  All 

measurements and observations used in this s tudy were 

recorded by the author . These data res ide on a computer 

file stored at the Department of  Anthropology , University 

of Tennessee . Appendix A presents raw data from all 

specimens used in this study . 

In an earl ier study ( Morey 1 9 8 6 ) the author rel ied on 

metric data pub l i shed in Wil l iam Haag ' s ( 1 9 4 8 )  os teometric 

study of  nat ive North American dogs . Bec aus e of  this ,  the 

initial suite of  measurements def ined for this  research was 

taken directly from Haag ( 1 9 4 8 } . As this res earch 

progressed ,  however , some measurements were el iminated and 

s everal new ones were def ined to suit the purposes  of  this  

investigation . Thus , all spec imens available for  analys is 

do not have an identical suite of  measurements .  For this 

reason the number of spec imens ut ilized in any given phase 

of  analys is  fluctuates slightly, depending on which 

measurements are under cons ideration . 

The measurements used in this study are de f ined on 
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Table 1 and illus trated on Figures 4 and 5 .  cranial 

dimens ions ( CL ,  PL , · IM2 , OI , PW , MCW ) ) were taken in whole 

mill imeters with s l ide cal ipers . Dental measurements ( CAN ,  

P 1 , P 2 , P 3 , LC ) were taken to the nearest . 1  mm . with dial 

calipers . Measurements CL , PL , PW , OI , MCW , and IM2 

correspond to Haag ' s  ( 1 9 4 8 ) measurements 3 ,  4 ,  5 ,  1 2 ,  17 , 

1 8 , and 1 9 , respectively . Identical or s imi lar 

measurements are described and illustrated by von den 

Driesch ( 1 9 7 6 ) . These measurements were selected to 

include a variety of dimens ions that had previously proven 

useful in analyzing differences between domestic dogs and 

wild c anids ( Morey 1 9 86 ) . In addition , use of  these 

measurements minimized el imination of  archaeological 

spec imens with missing data . 

Dental measurements require additional c l arification . 

P4  is  the only measurement taken as a crown length . Other 

dental measurements , involving the canine and premolar 

teeth ( CAN ,  P 1 , P 2 , P3 ) ,  were taken as alveolar lengths for 

a purely practical re ason . Many archaeological spec imens 

were l acking several if not most of these teeth . I f  crown 

lengths were ut ilized the number of analyz able  

archaeological spec imens would have been s igni f icantly 

reduced . This is  unfortunate in that alveol ar lengths are 

not nec essarily directly proportional to crown lengths , 

especially in subadult individuals with newly erupted 

dentition . In  such individuals it can be observed that 
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Table 1 .  Measurements used in analys is  o f  canid crania . 

Measurement 

CL 
PL 
PW 
OI 

MCW 
IM2 

CAN 
Pl  
P2  
P3  
P4  

Description 

condylobasal length 
palatal length 
palatal width at Ml 
lateral face length ( orb it to anterior 

alveolus of  I l ) 
maximum cranial width 
tooth row length ( anterior alveolus of Il to 

posterior alveolus of M2 ) 
alveolar length o f  the c an ine tooth 
alveolar length of the first premol ar 
alveolar length of the second premolar 
alveolar length of  the third premo lar 
crown length of  the carnassial tooth 
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C L  

Figure 4 .  Palatal view o f  a canid skul l ,  showing loc ation 
of measurements CL , PL , IM2 , PW , CAN , Pl , P 2 , 
P3 , and P4 . Model is canis lupus lycaon , about 
7 0  percent actual s ize . 
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M C W 

Figure 5 .  Sagittal view of  a c anid skull , showing location 
of  measurements OI and MCW . Model is Canis 
lupus lycaon , about 7 0  percent actual size . 
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teeth are often not fully seated i n  their sockets , with the 

alveol i gradually filling in as the teeth are cemented into 

place . However , only adults are used in analyses involving 

these me asurements . 

In addit ion to metric data , informat ion was recorded 

on several nominal or ordinal level variables . This  

includes organizational informat ion ( spec imen number , 

institutional location ) , geographic locat ion , and 

b iological informat ion such as sex and age . Because age 

will be an important variable in this  study , it warrants 

clarification . Five age categories were def ined , 

summar ized on Table 2 .  The criteria described are not 

fully obj ective but they prov ide a reasonably accurate 

basis for distinguishing dif ferent general age groups . 

They were der ived by examination of  spec imens of  known age , 

coupled with published information on timing o f  dental 

erupt ion in wo lves , � · lupus ( Mech 1 9 7 0 : 1 4 0 ) . It  should be 

stres sed that the " corresponding age " shown on Table 2 is 

only an approximat ion , and perta ins directly only to c .  

lupus . However , timing o f  dent al eruption in modern dogs 

is similar to that in wolves ( c f .  smythe 1 9 7 0 : 4 3 - 4 5 ) .  

sexes are not analyzed separately in this  study . 

Although failing to control for sexual dimorphism is 

unfortunate it  would serve l ittle purpose here . There is 

no way to rel i ably distinguish males from females in the 

prehistoric dog s amples ( s ee below ) . Presumab ly both sexes 
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Table 2 .  Description of  ontoqenetic aqe c ateqories 
def ined for analys is  of  c anid crania . 

Aqe correspondinq 
Cateqory Description Aqe 

( 1 )  puppy dec iduous dentit ion erupt inq 4 5  days -
or in pl ace 4 months 

( 2 )  j uvenile dec iduous dentition beinq 4 - 6  months 
repl aced 

( 3 )  advanced permanent dentition erupted ; 6 months -
j uvenile  cranial sutures not fully 1 year 

sealed; bone very porous 

( 4 )  younq most sutures fully c losed; 1 - 2  years 
adult most bone ful ly ossified; 

no visible wear on teeth ; 

( 5 )  adult all sutures ful ly closed; over 2 
visible wear on teeth ;  years 
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are represented . Thus , because this  study h inges on 

comparisons of dogs and wild canids , sexes are pooled . 

Wild canid Samples 

Four species of  wild canis are used in this  study , 

inc luding the gray wol f  ( � . lupus ) ,  red wol f  ( � . rufus . ) ,  

coyote (� . latrans ) ,  and golden j ackal ( � . aureus ) .  These 

taxa provide a subs tantial range of  s ize variat ion , with c .  

lupus representing the l argest and c .  aureus the smallest . 

The domestic dogs used in this study ( see below )  are on 

average even smaller , but overlap cons iderably with the c .  

aureus spec imens in condylobasal length . 

Selection o f  spec imens for analys is is  compl icated by 

the highly polymorphic nature of  most species of Canis . 

With the spec ies used here several or many subspec ies are 

recognized which exhibit substantial variat ion in size and 

morphology . The adult wild c anid spec imens used in 

analys is  are summari zed on Table 3 .  Selection of  these 

samples is  explained below . For purposes of  this  study , 

individuals assigned to age categories 4 and 5 ( see Table 

2 )  are regarded as adults , and are pooled in all analyses . 
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Table 3 .  summary of  adult wild canid spec imens ( age 
c ategories 4 and 5 )  used in analys is  ( totals 
for different species in parentheses ) . 

Species/Subspecies 

canis lupus 

c .  lU;EUS lycaon 

c .  lupus baylei 

Canis rufus 

c .  rufus rufus 

canis l atrans 

c .  l atrans thamnos 

Canis aureus 

c .  aureus morrocanus 
c .  aureus al2irensis 
c .  aureus spp . 
c.  au reus lu�aster 
c.  aureus in icus 
c .  au reus l anka 
c .  aureus an thus 

Total 

Geographic Location 
No . of  

Spec imens 

( 1 0 2 ) 

Minnesota , Michigan , 59 
or Ontario 

southern Arizona , New Mexico ,  4 3  
or northern Mexico 

Texas 

I l l ino is 

Morocco or Mauritan i a  
Morocco 
Morocco 
Egypt or L ibya 
Nepal or India 
Sri Lanka 
senegal 

29  

62  

( 2 9 )  

6 
2 
5 
6 
4 
1 
5 

2 2 2  
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Adult Wild canids 

As the presumed ancestor the dog , selection of  

appropriate s amples of f ·  lupus presents an  especial ly 

vexing problem . In addition to dramatic size  variation , 

substant ial morphological variat ion in the cranium is wel l  

documented among different subspec ies ( e . g . , Jol icoeur 

1 9 5 9 , 1 9 7 5b ) . Ideally ,  the subspecies known to have been 

involved in domestication would be selected and analyzed . 

However ,  as expl ained in Chapter I I , this information is 

presently beyond our grasp . 

Two North American subspec ies of  f ·  lupus are util ized 

in this study . f · ! ·  lyc aon is the gray wol f  of 

northeastern North Amer ica . once ranging throughout the 

Great Lakes region , New Engl and , ontario , and Quebec ( Young 

and Goldman 1 9 4 4 : 4 3 7 -4 4 1 ; Hall 1 9 8 1 : 9 2 9- 9 3 3 ) ,  viable  

populations still  survive in  northern Minnesot a ,  Isle  

Royale , and portions of  the two canadian provinces . Much 

of our current knowledge of behavior and l ifeways of North 

American sub arctic wolves comes from long term 

investigat ions of  this subspecies ( e . g . , Mech 1 9 7 0 ; 

Peterson 1 9 7 7 ) . 

The other subspec ies , £ · ! ·  baylei , is  the de sert wol f  

of  the extreme southwestern United States and Mexico ( Young 

and Goldman 1 9 4 4 : 4 6 9 -4 7 1 ;  Hall 1 9 8 1 : 9 2 9 - 9 3 3 ) .  It  is  the 

smallest of the North American subspec ies . It  i s  now 

extinct in the united states ( and probably Mexico ) ,  a 
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situat ion encouraged by a government aided extermination 

program c arried out in the f irst hal f of the twent ieth 

century ( Brown 1 9 8 3 ) . 

The small red wol f ,  £ ·  rufus , once ranged throughout 

the south-central and southeastern United states . It  is 

now probably extinct in its former range , although a 

re introduct ion program involving c aptives is underway in 

northeastern North carol ina ( Phil l ips and Parker 1 9 8 8 ) . c .  

rufus is surrounded by taxonomic problems ( e . g . , Lawrence 

and Bossert 1 9 6 7 , 1 9 7 5 ;  Gipson et al . 1 9 7 4 ; Nowak 1 9 7 9 ) . 

At di f ferent times it has been regarded as a variant of c .  

lupus o r  an intermediate form between £ ·  lupus and £ ·  

latrans ( c f .  Nowak 197 9 : 8 5 - 9 0 ) .  Nowak ( 1 9 7 9 ) regards 

original popul ations of £ ·  rufus as a separate species with 

three geographic subspec ies ( see al so Young and Goldman 

1 9 4 4 : 4 8 3 -4 8 6 ; Hall 1 9 8 1 : 9 3 3 - 9 3 4 ) The smallest of the 

three subspecies , c .  r .  rufus , the Texas red wol f ,  is used 

in th is  study . 

Because of  the taxonomic problems surrounding £ ·  

rufus , compounded by recent hybridization with £ ·  l atrans , 

it is inadvisable to place too much weight on patterns of 

static variation in this  spec ies . Hence , a l imited sample 

of  29 adult spec imens was selected . Twenty- s ix of the 29  

specimens are from southeast Texas , east of  the Edwards 

Pl ateau region , one of the l ast strongholds of unmodif ied 

c .  rufus in the twentieth century ( Nowak 1 9 7 9 : 4 5 ) . The 
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majority predate 1 9 2 0 , and all but one predate 1 9 5 0 . The 

remaininq three are from north-central Texas , where 

popul ations were stronqly affected by hybridization with c .  

l atrans . However , all three are relatively early ( pre-

1 9 30 ) . In any case , cons iderable s imilar ity between the 

two spec ies c an be expected in this study . 

The coyote , £ ·  latrans , i s  represented by a s inqle 

relatively larqe subspecies , £ · ! ·  thamnos ( Ho f fme ister 

1 9 89 ) . When dealinq with recent coyote populat ions the 

inevitable problem of coyote-doq hybridization surfaces 

( Menqe l 19 7 1 ;  Gipson et al . 1 9 7 4 ; Lawrence and Bossert 

1 9 7 5 ; Nowak 1 9 7 9 ) . Spec imens used here are all from the 

collections of the I l l ino is state Museum in Sprinqf ield,  

and al l are from I l l ino is . They were clas s if ied as "pure " 

coyote on the bas is of a quant itative invest iqat ion which 

allowed the ir separation from spec imens that appeared to 

reflect qenetic mixinq with domestic doqs . Unfortunately , 

this study was never publ i shed , thouqh a publ i shed note 

makes brief re ference to this work when it was in proqress  

( Paul 1 9 6 9 ;  see also Hof fme ister 1 9 8 9 : 2 7 1 ) .  

The s inqle Old world wild c anid represented in this 

study is the qolden j ackal , £· aureus . This spec ies ranqes 

f rom northern Africa throuqh the Near East and into 

southern As ia ( c f .  Hufnaqel 19 7 1 : 3 6 -3 7 ;  Rosevear 1 9 7 4 : 3 6 -

4 9 ;  stains 1 9 7 5 : 1 9 ) . Thi s  is  a qeoqraphically 

heteroqeneous s ample , with at least s ix subspecies 
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represented , and five spec imens of undetermined subspec ific 

identity .  Because of the small s amples availabl e ,  thi s  

diverse series i s  treated as a s ingl e sample in all  

analyses . 

Subadult Wild canids 

This s tudy inc ludes data from 60 subadult wolves ( age 

c ategories 1 , 2 ,  or 3 )  of two spec ies , £ · lupus and c .  

rufus . Because of the small number of spec imens available , 

the subadul t samples incorporate data from several 

subspec ies not inc luded in the adult series . In both 

c ases , however , the maj ority of the subadult spec imens 

belong to the subspecies represented in the adult s amples . 

The subadult samples are summarized on Table 4 .  

Twenty-s ix of the 3 8  £ · lupus specimens are C . l .  

lyc aon or £ · ! · baylei . The remaining 1 2  spec imens are 

comprised of three additional North American subspecies , 

£ · lupus youngi , £ · lupus irremotus , and £ · lupus nub ilus 

( c f .  Young and Goldman 1 9 4 4 ) . All spec imens represent ing 

the latter three subspec ies are from the continental United 

States . 

Twenty-two subadult spec imens of c .  rufus are 

avail able for this study . S ixteen are £ · E · rufus , the 

subspec ies compris ing the adult series . Host  of these 

spec imens ( 1 3 )  are from southeastern Texas . One , col lected 

in 1 9 2 9 , is from from north-central Texas , while  the 

remaining two , collected in 1 9 0 5  and 1 9 2 2 ,  are f rom 
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Table 4 .  summary of  subadult wild canid spec imens ( age 
c ategories 1 ,  2 ,  and 3 )  used in analys is ( totals 
for different species in parentheses ) . 

Species/Subspecies 

canis lupus 

c .  lupus l�c aon 

c .  lupus ba�lei 

c .  lupus �oung:i 
c .  lupus irremotus 
c.  lupus nubilus 

Canis rufus 

c .  rufus rufus 
c. rufus gregoryi 

Total 

No . of 
Geographic Location Spec imens 

( 3 8 )  

Minnesota , Michigan , 2 2  
o r  ontario 

southern New Mexico , Arizona , 4 
or northern Mexico 

New Mexico 
Wyoming 
Colorado 

Texas or Okl ahoma 
Arkansas , Louis iana , Texas , 

or Missouri 

7 
4 
1 

( 2 2 )  

1 6  
6 

6 0  
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southern Oklahoma . Six spec imens of  c. rufus gregoryi , the 

Mis s i s s ippi Valley red wol f  ( Young and Goldman 1 9 4 4 : 4 8 3 -

4 8 6 ;  Nowak 1 9 7 9 ) are inc luded i n  the subadult c .  rufus 

sample . 

Several points concerning the ut ility o f  these 

subadult samples should be noted . First , the inclus ion of 

subspec ies not represented in the adult series introduces 

an element of  inconsistency into analysis . However this 

should not be a maj or problem s ince the subadult samples 

are dominated by subspecies compri s ing the adult s amples . 

Second , the subadult samples incorporate data from several 

individual s that were apparent ly members of  the s ame birth 

l itter . Thi s  is true , for example ,  of three � · E · gregory! 

specimens from Missouri , and several � · l · youngi specimens 

from New Mexico . Thus , the degree of genetic s imilarity 

among some of  the subadult spec imens is sure ly much greater 

than in the adult series , wh ich should more c losely ( though 

certainly not perfectly) approximate a random s ample within 

a qiven region . 

Finally ,  many of the measurement po ints ( s ee Figures  4 

and 5 ,  pages 7 8  and 79 ) ,  def ined for adult spec imens , are 

not directly applicable to subadults . Th is is most obvious 

with respect to dimens ions that utilize tooth locations as 

measurement points . Subadults falling into age categories 

1 and 2 have no permanent dent it ion ; hence , the defining 

criteria for measurements l ike PW or IM2 are not directly 
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appl icable . In the case of  PW , the measurement was taken 

as the widest dimens ion of the pal ate , which corresponds 

approximately to the more prec isely defined PW applied to 

adults . Simi larly , IM2 for subadults was taken as maximum 

length of the lateral margin of the palate , where the teeth 

would eventually have erupted . This measurement was 

frequently unavailable from youngest  specimens . 

Domestic Dog samples 

Assembl ing appropri ate s amples of  prehistoric domestic 

dogs presents some special problems . For reasons expl ained 

in the previous chapters , it is  des irable to restrict 

analysis to rel atively early spec imens , predating about 

3 , 000 B . P .  Because of inevitable prob lems with 

preservation condit ions or recovery technique s ,  many 

spec imens are incomplete or badly fragmented . There is no 

escape from this frustrat ing s ituation when deal ing with 

archaeo logical remains . 

A minimum criterion for inclus ion of  archaeological 

spec imens in this study was the availabil ity of  the 

measurement CL . Unfortunately,  this neces sary requ irement 

el iminated many wel l  preserved spec imens that had small but 

cruc ial portions of the cran ium miss ing . Some spec imens , 

however , could be measured after reconstruction of  broken 

skulls . Reconstruct ions were done as care fully as 

possible , and it must be assumed that any errors are small 
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and unbiased . 

Sometimes a measurement not apparently avail able could 

be carefully estimated . For exampl e ,  palatal width ( PW )  

spans the dis tance acros s the palate between P 3  and M 1  on 

either s ide ( s ee Figure 4 ,  page 7 8 ) . I f  one s ide of  the 

palate was miss ing , bilateral symmetry allowed estimat ion 

of the measurement . The distance from the avai lable P 3 -M1 

location to the mid- sagittal l ine could be measured and 

then doubled to estimate palatal width . In other instances 

a spec imen with Cl available might have one or more other 

measurements unavailable . Thus , the numbers of spec imens 

used in each analys is f luctuates slightly . 

Finally,  preservation o f  j uvenile spec imens from the 

archaeological record is rare . In  the collections examined 

for this study , only three measureable j uvenile specimens 

were encountered . They are not inc luded in analys i s . 

Thus , all dogs used in this study are adults ( age 

categories 4 and 5 ) . 

TWo groups of prehi storic dogs are used in analys i s ,  

summarized below . 

North American Dogs 

The largest series of dogs , summarized on Table 5 ,  i s  

f rom the southeastern and midwestern United States . Most 

spec imens are f rom Kentucky and Al abama ; the remainder are 

from Tennes see and Illinois . Most  of the Kentucky and 

Alabama spec imens were included in Haag ' s ( 1 9 4 8 ) 
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Table 5 .  summary of  North American Archaic Period 
archaeological dog crania used in analys is . 

S ite Date No . of 
( Site Number ) *  ( B . P . ) Spec imens References 

Koster 

Modoc 
( 1 1R5 ) 

Indian Knol l  
( 1 50H2 ) 

Chiggerville 
( 1 50H1 ) 

carl son Anni s  
( 1 5BT5 ) 

Read 
( 1 5BT1 0 )  

ward 
( 1 5McL 1 1 ) 

Perry 
( 1 LU2 5 ) 

Fl int River 
( 1MA4 8 )  

8 4 00 

7 000 

7 0 00-3000  

7 000-3000  

7 000-3000  

7 000-3000  

7 0 00-3000  

7 0 00-3000  

7 000-3000  

Whitesburg 7 000-3000  
Bridge ( 1MA1 0 )  

L ittle Bear 7 000-3000  
Creek ( 1 CT7 8 )  

Mulberry Creek 7 000-3000  
( 1CT2 7 ) 

Bailey 7000-3000  
( 4 0GL 2 6 ) 

2 

1 

14  

1 

5 

2 

4 

7 

2 

1 

2 

3 

1 

Houart 1 9 7 1  
streuver & Holton 1 9 7 8  
Brown e t  al . 1 9 8 3  
Wiant e t  al . 1 9 8 3  

Fowler 1 9 5 9 a ,  1 9 5 9b 
Styles et al . 1 9 8 3  

Webb 1 9 4 6  
Winters 1 9 7 4  

Webb & Haag 1 9 3 9  

Webb 1 9 5 0 a  
Marquardt & watson 1 9 8 3  
watson 1 9 8 5  

Webb 1 9 5 0b 

Webb & Haag 1 9 4 0  

Webb & DeJarnette 
1 9 4 2 , 1 9 4 8 a  

Webb & DeJarnette 
1 9 4 8b 

Webb & DeJarnette 
1 9 4 8c 

Webb & DeJarnette 
1 9 4 8d 

Webb & DeJarnette 1 9 4 2  

Bentz 1 9 8 8  
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Table 5 ( cont inued ) . 

Date No . of  
S ite ( B . P . ) Spec imens References 

Cherry 7 0 00-3000  2 MaGennis 1 9 7 7  
( 4 0MCL84 ) 

Eva 7 0 00-3000  2 Lewis & Lewis 1 9 6 1  
( 4 0MCL6 ) 

Total 4 9  

* S ite numbers beginning with 1 1  are in I l l inoi s . 
Those beginning with 1 ,  1 5 , and 4 0  are in Alab ama , 
Kentucky , and Tennessee , respectively . 
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descriptive analys is of aboriginal North American dogs . 

Al though Haag ' s data from these spec imens have been used 

repeatedly by other investigators ( e . g . , Potter and Baby 

1 9 6 4 ; Colton 19 7 0 ;  Olsen 1 9 7 0 ; Walker 1 9 8 0 ; Walker and 

Frison 1 9 8 2 ; Morey 1986 ) ,  to thi s  author ' s  knowledge thi s 

is the first study in which the specimens were reexamined 

and measured s ince Haag ' s original work in the 1 9 4 0 s . 

Most  of the North American spec imens are the product 

of exc avations in aboriginal shell  middens , conducted 

during the f irst half of  the twentieth century . As a 

consequence , it is imposs ible to ass ign f irm dates to most  

of them beyond their general association with Middle or  

Late Archaic occupations . Thi s  i s  the reason for  the 

general time span of 3 , 000-7 , 0 00 B . P .  indicated on Table 5 .  

The earl ier spec imens , from Koster and Modoc in I l l ino is , 

are securely dated as indicated . 

overall ,  these may be classified as " smal l "  dogs ( c f .  

Allen 1 9 2 0 ;  Colton 1970 ; Ems l ie 1 9 7 8 ) ;  they are , on 

average , s l ightly smaller than most of the golden j ackals 

( £ .  aureus ) used in this study ( see Chapter IV) . On 

subj ective grounds they exhibit a cons istent general ized 

morphology . The earl iest spec imens , from Koster and Modoc , 

are s igni f ic antly larger than most of  the southeas tern dogs 

from Kentucky , Tennessee , and Alabama ( see Chapter IV) . 

Many of  the southeas tern spec imens represent del iberate 

interments , often as soc iated with human interments ( Webb 
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1 9 4 6 ;  Lewis and Lewis 1 9 6 1 ) .  The Kos ter spec imens ,  

al though not assoc iated with human burial s ,  are also 

del iberate interments ( Morey and Wiant 1 9 89 ) . 

on figures and tables in subsequent chapters the North 

American series is referred to as " C . familiaris NA" . 

European Dogs 

A smaller series of  dogs , summarized on Table 6 ,  comes 

from northern Europe . With one exception , they are a l l  

from Denmark . The exception , senckenberg , i s  from northern 

Germany . It should be noted that the senckenberg spec imen 

is a plaster cast;  the original was lost  or  destroyed 

during world war I I . 

Because of  the small  s amples availab l e , this s eries 

includes spec�mens from early Neol ithic contexts , rather 

than being restricted to earlier time periods . However , 

these Neol ithic  contexts ( Bunds¢ ,  Spodsbj erg , Lids¢ ) 

correspond with the later Archaic time period in North 

America ( ca .  5 , 000-4 , 0 0 0  B . P . } .  Exc avat ions yielding the 

European specimens span the past c entury , and the 

reliability of assoc iated dates is  variable .  Uncertain 

dates are indicated with a question mark on Table 6 .  

Like the North Americ an dogs , these animals are 

relatively smal l , though they are on average s lightl y  

l arger than many of  the North American dogs . The more 

recent Neol ithic specimens tend to pe 'the smallest . Many 

of these specimens have been used in previous studies 
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Table 6 .  summary of  European archaeological doq c rania 
used in analysis . 

No . o f  
S ite 

Date 
( B .  p . ) Spec imens References 

Senckenberq 1 0000-9000?  

Vedb2k Boldbaner 7 3 00-6500  

Saltpetersmosen 6 6 0 0 - 5 1 0 0  

Rinqkloster 5700-5000?  

Erteb�lle 5 8 00 - 5 0 0 0  

Bunds� 4 7 00-4 200  

Spodsbj erq ca . 4 3 0 0  

L ids� 4 4 00-4 200  

Total 

1 

1 

2 

2 

1 

7 

1 

3 

1 8  

Mertens 1 9 3 6  
Benecke 1 9 8 7  
Degerb�l 1 9 6 1  

Degerb�l 1 9 4 6  
Aaris- s�rens en 1 9 7 7b 

unpub l ished* 

Andersen 1 9 7 4  

Madsen e t  al . 1 9 0 0  
Andersen & Johans en 

1 9 8 6  

Degerb�l 1 9 3 9 , 1 9 6 1  

Aaris-s�rensen 1 9 8 5  
Nyegaarde 1 9 8 5  

Hatt ing 1 9 7 8  

* Informat ion ob tained through personal communication 
with Kim Aaris-S�rensen at the Zoological Museum , 
Univers ity of  Copenhagen , Denmark , Augu�t ,  1 9 8 8 . 



9 7  

( e . g . , Degerb�l 1 9 2 7 , 1 9 6 1 ) .  It has been suggested that 

the prehi storic dogs of Denmark were used as hunting aids 

or even as an occas ional food source (Aari s - s�rens en 

1 9 8 8 : 1 5 7 - 1 6 2 ) .  

on f igure s  and tables in subsequent chapters this 

series is referred to as " C .  famil iaris EU" . 
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CHAPTER V 

BIVARIATE ALLOMETRY : ANALYSIS  OF STATIC DATA 

This chapter presents analyses  of  bivariate allometry 

of adult c anid groups . For organizational purposes , 

analyses  of  crani al variables ( PL ,  IM2 , OI , PW , MCW ) is  

presented separately from analyses of  dental var iables 

( CAN , P 1 , P 2 , P 3 , P4 ) .  As explained in Chapter I I I  

condylobasal length , CL , is  used a s  the independent 

variable in all analyses . 

Regres s ions were c alcul ated us ing the s imple 

regression model in the SAS GLM ( General L inear Models ) 

procedure ( SAS Institute 1 9 85 ) . To minim ize the risk of  

generating spurious slopes and elevations from weakly 

correl ated variables , regres s ions were performed only when 

correlations ( Pe arson ' s � )  were s ignific ant at the . 0 1 

level . Goodness of  fit and homoscedasticity were evaluated 

by inspection of res iduals ( Z ar 1 9 8 4 : 2 8 8 - 2 8 9 ) .  

Firs t ,  interspecific regress ions for all  groups were 

calculated for each variable . Slopes from these 

regres s ions c an indicate basic allometric trends across all 

species . A second set of  interspecific regres s ions was 

then c alcul ated for wild canids only . I f  slopes from the 

two interspec i f ic regres s ions di ffer , the dogs probably 

deviate from the bas ic allometric trend , and may distort 

it . 
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When intragroup correl ations were s igni ficant , 

assessment of  conformity to basic allometric trends was 

accomplished through analysi s  of covariance on intragroup 

regressions . Slopes of dif ferent groups were compared 

us ing the GLM homogeneity of s lopes model . When 

differences between slopes were found to be ins ignif icant , 

elevations were compared ut i l i z ing the the GLM analys is of 

covariance model . A general cutof f  value for tests of 

homogene ity of s lopes was 0 . 1 .  Thi s  unusual ly high cutoff 

value was employed to minimize error in compari sons of 

elevations . However ,  when s lope tests yield s igni f ic ance 

values less  than but approaching 0 . 1  ( e . g .  > 0 . 09 ) , results 

of elevation tests are reported . Thus , the reader may 

reach his  own determination . 

With some wild canids separate group regres sions were 

not performed due to ins ignif icant correlations . In  these 

cases conformity of a group to a basic allometric trend can 

be roughly gauged by referring to Appendix B .  This 

appendix contains a compilation of  bivariate plots o f  each 

variable against CL with interspecific  regres s ion l ines 

il lustrated . 

Analys is of  cranial variables 

summary statistics  on cranial variables from the 

di fferent c anid groups are presented on Table 7 .  As a 

preliminary step , groups belonging to the s ame species 
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Table 7 .  Means , standard deviations ( so )  1 and s ample s izes 
( n )  from cranial measurements of  adult c anids . 

Measurement ( mm ) 

Group CL PL IM2 OI PW MCW 

C . l .  lic aon 
Mean 2 2 9 . 0  1 2 0 . 5  1 2 2 . 1  1 07 . 1  7 6 . 0  7 2 . 5  

so 1 1 . 8 4 6 . 3 7 5 . 86 6 . 1 8 4 . 5 3 2 . 8 2 
n 5 9  5 9  5 9  5 9  5 9  5 9  

C . l .  bail e i  
Mean 2 1 7 . 5  1 1 2 . 8  1 1 6 . 3  102 . 6  7 2 . 8  7 1 . 5  

so 8 . 1 1 4 . 3 6 4 . 2 2 4 . 3 4 2 . 40 2 . 4 6 
n 4 3  4 3  4 3  4 3  4 3  4 3  

c .  rufus 
Mean 2 02 . 1  1 0 5 . 0 1 0 8 . 5  94 . 5  6 0 . 0  6 1 . 2  

so 7 . 5 9 3 . 3 7 3 . 4 5 3 . 3 3 2 . 4 6 1 .  7 5  
n 2 9  2 9  2 9  2 7  2 9  2 9  

c .  latrans 
Mean 1 83 . 6  94 . 9  99 . 9  8 8 . 6  5 6 . 2  5 8 . 8  

so 8 . 05 4 . 7 7 4 . 5 4 4 . 7 2 2 . 7 5 2 . 2 7 
n 6 2  6 2  6 2  6 2  6 2  6 2  

c .  aureus 
Mean 1 5 8 . 2  8 1 . 7  8 5 . 6  7 1 . 1  5 0 . 7  5 3 . 3  

so 1 1 . 1 3 5 . 6 2 5 . 4 1 5 . 7 7 3 . 7 5 2 . 6 1 
n 2 9  2 9  2 7  2 9  2 9  2 9  

c .  famil iaris 
-EU 

He an 1 5 6 . 1  8 0 . 8  84 . 4  7 0 . 6  5 6 . 1  5 7 . 0  
so 1 1 . 8 1 5 . 9 3 6 . 4 5 5 . 5 6 3 . 9 4 2 . 5 9 

n 1 8  1 8  1 8  1 7  1 8  1 8  

c. familiar is 
-NA 

Mean 1 4 9 . 2  7 8 . 0  8 2 . 4  6 7 . 6  5 4 . 5  5 4 . 2  
so 9 . 3 5 4 . 7 4  4 . 5 9 5 . 4 2 3 . 0 7 3 . 4 8 

n 4 9  4 8  4 9  4 7  4 8  4 8  
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(£ ·! ·  lycaon and baylei ,  £ ·  familiaris EU and NA ) were 

tested among themselves for homogeneity of s lopes  and 

elevations for regressions of each variable .  The obj ective 

was to pool these groups when j ustifiable to s impl i fy 

subsequent analysis . For the two dog groups dif ferences in 

s lopes  and elevations were ins ignificant on PL and PW 

( p >0 . 1 0 ) . For the c .  lupus groups differences were 

insignificant on IM2 , OI , and PW . Table 8 presents summary 

statistics for regress ions calculated for all  cranial 

variables . A regression was not calculated for £ ·  rufus on 

the variable PW due to an ins ignificant correlation with 

CL . Al l other correlations among every group are 

s ignificant ( p< . 0 1 ) . Table 9 presents analys is  of  

covariance results for comparisons of all  separate groups . 

To help construct a general picture of static cranial 

allometry in these canid groups , the regress ions of each 

variable against CL are discussed sequential ly . 

Palatal Length ( PL )  

The pooled regress ion of PL against CL for all groups 

yields a slope ( 1 . 008 ) that reflects virtual ly perfect 

isometry ( Table 8 ) . Removal of  the domestic dogs to create 

a wild canid regress ion has only a minor effect on that 

slope ( 1 . 037 ) , suggesting that the dogs are consistent with 

this broad al lometric trend . Approximate isometry of 

palate length with skul l length in canids has been found in 

other studies ( e . g . , Lumer 1 9 4 0 ; stockhaus 1 96 5 ;  Wayne 
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Table 8 .  Least squares slopes ( LS )  and as soc iated standard 
errors ( SE ) , least squares Y- intercepts ( Y-INT ) , 
correlations ( R ) , and reduced maj or axis slopes 
( RMA )  from reqressions of cranial variables 
aqainst CL for adult canids ( all  variables loq 
transformed ) .  

Dependent 
variable Group 

PL 
PL 
PL 
PL 
PL 
PL 
PL 
PL 

IM2 
IM2 
IM2 
IM2 
IM2 
IM2 
IM2 
IM2 

OI 
OI 
OI 
OI 
OI 
OI 
OI 
OI 

PW 
PW 
PW 
PW 
PW 
PW 
PW 

All Groups 
Wild canids 
C . l .  lycaon 
c . I .  baylei 
c . -rufus 
c .  !a trans 
c .  aureus 
c .  fami!iaris 

All Groups 
Wild canids 

EU/NA 

f ·l · lycaon/baylei 
c .  rufus 
c .  latrans 
c .  aureus 
c . fami!iaris EU 
c .  familiaris NA 

All Groups 
Wild canids 
f ·l ·  lycaon/baylei  
c .  rufus 
c. l atrans 
c .  aureus 
c .  familiaris E U  
c. famili aris NA 

Al l Groups 
Wild canids 
f ·l ·  lycaon/baylei 
c .  rufus 
c .  latrans 
c .  aureus 
c .  famiiiaris EU/NA 

Slope* 
( LS )  SE 

1 . 00 8  
1 .  037  
0 . 944  
0 . 9 3 6  
0 . 7 5 2  
1 . 083  
0 . 93 2  
0 . 9 0 5  

0 . 9 2 7  
0 . 937  
0 . 884 
0 . 7 74  
0 . 9 9 4  
0 . 83 5  
0 . 944  
0 . 8 51  

1 .  094  
1 . 09 3  
0 . 9 54 
0 . 886  
1 . 1 9 2  
1 . 09 9  
0 . 97 8  
1 . 1 9 9  

. 007 

. 0 1 0  

. 0 54 

. 07 0  

. 08 0  

. 04 9  

. 0 54  

. 037  

. 007 

. 009 

. 033 

. 07 0  

. 04 6  

. 06 1  

. 07 5  

. 04 0  

. 009  

. 0 12  

. 04 6  

. 1 38  

. 0 53 

. 0 60  

. 086  

. 06 5  

Y- INT 

- 0 . 3 0 1  
-0 . 3 6 9  
-0 . 14 6  
-0 . 1 3 6  

0 . 2 8 6  
-0 . 4 7 4  
-0 . 137  
-0 . 07 6  

-0 . 1 0 1  
-0 . 1 24  

0 . 00 1  
0 . 2 5 2  

-0 . 2 5 0  
0 . 09 6  

-0 . 1 4 5  
0 . 06 6  

-0 . 5 4 9  
-0 . 5 4 5  
-0 . 2 1 9  
- 0 . 0 6 6  
- 0 . 7 6 6  
-0 . 5 6 5  
-0 . 2 9 4  
-0 . 7 7 6  

R 

> . 9 9 
. 9 9 
. 9 2 
. 9 0 
. 8 6 
. 9 4 
. 9 6 
. 9 5 

> . 9 9 
. 9 9 
. 9 4 
. 9 0 
. 9 4 
. 94 
. 9 5 
. 9 5 

> . 9 9 
. 9 9 
. 9 0 
. 7 9 
. 9 5 
. 9 6 
. 9 5 
. 94 

Slope 
( RMA )  

1 .  0 1 5  
1 .  047  
1 .  026  
1 . 04 0  
0 . 874 
1 . 1 48  
0 . 9 7 1  
0 . 9 53  

0 . 9 34 
0 . 9 46  
0 . 9 4 0  
0 . 8 6 0  
1 . 0 5 5  
0 . 888  
0 . 994  
0 . 89 6  

1 . 104 
1 . 1 07 
1 . 0 6 0  
1 . 1 2 2  
1 .  2 6 1  
1 . 14 5  
1 .  0 2 9  
1 . 2 7 6  

0 . 8 2 8  . 0 25  -0 . 0 9 3  . 8 9 0 . 9 2 9  
1 . 144  . 0 27  -0 . 8 2 8  . 9 4 1 . 2 17  
0 . 81 5  . 0 6 2  -0 . 04 3  . 80 1 . 01 9  
ins iqnif icant correlation 
0 . 827  . 0 95 -0 . 1 2 3  . 7 5 1 . 10 6  
0 . 9 1 8  . 1 10  -0 . 3 1 6  . 8 5 1 . 08 0  
0 . 7 1 5  . 06 5  0 . 1 8 2  . 8 1 0 . 883  
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Dependent 
Variable Group 

MCW 
MCW 
MCW 
MCW 
MCW 
MCW 
MCW 
MCW 
MCW 

All Groups 
Wild canids 
£ · .! ·  lyc aon 
C . l . baylei 
c . -rufus 
c . l atrans 
C .  aureus 
c . famil iaris EU 
c . familiaris NA 
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Slope 
( LS )  

0 . 704  
0 . 86 1  
0 . 5 6 8  
0 . 6 6 9  
0 . 574  
0 . 6 5 9  
0 . 6 3 7  
0 . 4 59  
0 . 7 8 3  

SE 

. 0 16  

. 0 19  

. 067 

. 1 02  

. 099  

. 073  

. 066  

. 099 

. 093 

Y-INT 

0 . 1 9 3  
-0 . 17 5  

0 . 5 2 0  
0 . 29 1  
0 . 4 63  
0 . 2 7 8  
0 . 3 2 6  
0 . 7 4 8  
0 . 03 2  

R 

. 9 3 

. 9 5 

. 7 5 

. 7 1 

. 7 5 

. 7 6 

. 88 

. 7 6 

. 7 8 

Slope 
( RMA )  

0 . 7 5 5  
0 . 907 
0 . 7 5 7  
0 . 93 7  
0 . 76 5  
0 . 86 7  
0 . 7 2 4  
0 . 604 
1 .  001  

*All least square slopes are s i qnificantly di fferent 
from zero ( p< . 00 1 ) . 
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Table 9 .  Analysis  of covariance results from paired 
comparisons of adult canid cranial measurements , 
with CL as a covariate ( al l  variables log 
trans formed) .  Included are F-ratios ( F ) and 
associated probabil ities from tests of 
homogeneity of s lopes  ( PS ) , F-ratios and 
assoc iated probabil ities from tests of equal ity 
of adj usted group means ( PAGH) , and adj usted 
group means ( AGHEAN ) with associated standard 
error ( SE ) * .  

Dependent Variable/ 
comparison 

PL 

ru us 
latrans 
rufus 

!a trans 
faa111aris 
aureus 
familiaris 

PS ( F ) PAGH ( F )  

. 937  ( < 0 . 1 )  < . 001  ( 1 5 . 6 )  

. 0  

. 0 6 2  ( 3 . 6 ) 

. 8 7 8  ( < 0 . 1 ) 

2 . 8 )  

. 9 59  ( < 0 . 1) 

(0 . 1 )  

1 1 . 2 )  

. 090  (3 . 0 )  

(7 .  6 )  

. 007  ( 7 .  7 )  

. 00 2  

. 16 1  

. 7 8 8  <0 . 1 )  

. 071 ( 3 .  4 )  

. 02 9  ( 4 . 9 )  

. 00 8  ( 7 . 6 )  

. 009  ( 7 .  2 

. 20 1  

AGHEAN ( SE ) 

1 . 8984  ( . 00 1  
1 .  9 0 1 0  ( . 0011 ) 
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Table 9 ( continued ) .  

Dependent variable/ 
comparison PS ( F ) PAGM ( F )  AGMEAN ( SE )  

IM2 

. 2 3 1  ( 1 .  5 )  . 1 4 3  ( 2 .  2 )  2 . 06 8 7  ( . 0008 ) 
2 . 0657  ( . 00 1 7 )  

.666 (3. 6) 

. 439 ( 0 .  6 )  . 002  ( 9 .  7 )  2 . 04 9 9  ( . 00 1 2 ) 
2 . 03 5 3  ( .  0038  

( 0 . 8 }  . 05 4  ( 3 . 8 2 . 05 5 9  ( . 0011 ) 
2 . 04 5 9  ( . 0044 ) 

( 0 . 4 )  . 104  ( 2 .  7 )  2 . 02 7 3  ( . 0016 ) 
2 . 0 196  ( . 0032)  

.615 (6.1) 

. 562 (0 . 3 ) . 002  {10 . 5) 1 .  9 9 3 5  
aureus 1 .  9 7 6 9  
ru us . 1 23  0 5 )  . 160  2 . 0 )  1 . 9 9 6 6  
lamiiiaris  EU 1 . 98 7 9  
rufus . 39 8  (0 . 7 )  . 066  {3 . 5 )  1 . 96 5 7  
lamiiiaris NA 1 .  9 568  
Iatrans .029 (4 .9) 
aureus 
I a trans . 5 19 ( 0 .  4 )  . 1 7 9  ( 1 .  8 )  1 .  9 8 3 6  ( . 00 1 1) 
familiar is EU 1 . 97 9 0  ( . 00 2 8 ) 
I a trans . 0 2 1  ( 5 .  5 )  
famil iaris NA 
aureus . 2 58  ( 1 .  3 )  . 9 3 8  ( < 0 . 1 )  1 . 9 2 9 1  ( . 00 2 3 ) 
lamiiiaris EU 1 .  9 2 9 4  ( . 00 1 9 ) 
aureus . 81 2  (0 . 1) . 007  ( 7 .  7)  1 .  917 4  ( . 00 1 8 ) 
famiiiaris NA 1 .  9 234  ( . 00 1 2 ) 
famiiiaris EU . 2 23  ( 1 .  5)  . 004  ( 8 . 9 )  1 . 9 1 2 9  ( . 0020) 

c .  famiiiaris NA 1 . 9 2 0 1  ( . 00 1 2 ) 

OI 

. 6 7 1  ( 0 .  2 )  . 383  ( 0 .  8 )  2 . 01 2 3  ( . 00 1 1 ) 
2 . 0096 ( . 0026 

. 07 6  ( 3 . 2 ) 

. 7 97  ( 0 .  1 )  . 004 1 . 9 9 9 6  ( . 0014  
1 .  9 7 9 1  ( . 006 1 ) 
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Table 9 ( continued ) 

Dependent Variable/ 
comparison PS ( F ) PAGH ( F )  AGHEAN ( SE ) 

OI ( continued )  

. 002  ( 10 . 3 )  
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Table 9 ( continued ) . 

Dependent Variable/ 
Comparison PS ( F ) PAGH ( F ) 

HCW 

C . l .  lycaon 
c . I .  baylei  
c . l.  lycaon 
c . -rufus 
£ ._ .  ycaon 
c .  latrans 
£ ·!· lycaon 
c .  aureus 
c . l.  ltcaon 
C . -fam liaris EU 

c . l . baylei  
c . -rufus 
c . l .  baylei 
c . -latrans 
£ ·!· baylei 
c .  aureus 

c .  rufus 
c .  latrans 
c .  rufus 
c .  aureus 
c .  rufus 
c .  familiaris EU 
c .  ru us 
c. famlliaris NA 
c .  atrans 
c. aureus 
c .  latrans 
C .  familiaris EU 
c .  latrans 
c .  familiaris NA 
c .  aureus 
c .  familiaris EU 

. 4 20 ( 0 . 7 )  . 004 ( 8 . 6 )  

. 9 65  ( < 0 . 1 )  < . 001 ( 1 26 ) 

< . 00 1  1 . 8 )  

. 474 (0 . 5) < . 001  ( 2 1 . 6) 

. 333 (0 . 9 )  . 085  (3 . 1) 

. 062  

. 5 28  ( 0 . 4 )  < . 001  ( 2 06 ) 

. 9 37  ( < 0 . 1 )  < . 001 ( 5 7 . 7 )  

. 794 ( 0 . 1) < . 00 1  ( 22. 0) 

. 138 ( 2 . 3) . 04 8  (4 . 1) 

. 47 

. 541 (0 . 4 )  . 0 1 2  (6 . 5) 

. 616  ( 0 .2) . 330 ( 1 . 0) 

.438 (0 .6) . oos (9 . 0) 

< . 00 1  

. 94 1  < 0 . 1 ) . 82 7  < 0 . 1 )  

.085 (3 .0) 

. 3 04 ( 1 . 1 ) < . 001  ( 2 7 . 4 )  

. 1 22  ( 2 . 5 ) < . 001  ( 85 . 7 )  

AGHEAN ( SE )  

1 . 854 5 
1 .  8 6 1 9  
1 .  8 4 9 9  
1 . 80 7 5  
1 . 83 0 2  
1 . 79 7 2  
1 .  8283  
1 . 7 9 09 
1 .  8 3 9 5  
1 . 82 27 

1 .  8 4 6 2  
1 . 7 9 89 
1 .  8 2 5 5  
1 . 7 887  
1 . 8 1 8 1  
1 . 77 9 9  
1 .  8 3 13 
1 .  8103  
1 .  7 88 5  
1 .  7 9 2 1  
1 . 7 6 8 7  
1 .  7 7 7 3  
1 . 7 5 3 6  
1 .  7 5 9 6  
1 . 7 6 5 6  
1 .  7 8 9 7  
1 . 7 2 4 8  
1 . 7 7 0 7  

1 .  7 3 9 5  ( .  0029 ) 
1 .  7 7 09 ( . 0036 ) 
1 .  7 2 5 0  ( . 0022)  
1 . 7 5 7 5  ( . 0028 ) 
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Table 9 ( continued ) . 

Dependent Variable/ 
Comparison 

MCW ( continued ) 

c .  aureus 
c. faa111aris NA 
c .  faai!laris BU 
c .  familiaris NA 

PS ( F )  PAGM ( F )  

. 2 55  ( 1 . 3 )  < . 001  ( 4 2 . 7 )  

. 635  (4 .7) 

AGMEAN ( SE )  

1 .  7 1 4 5  ( .  0030 ) 
1 . 7403  ( . 0023 ) 

*PAGM and AGMEAN are reported when slopes are 
assumed to be equal based on P S ,  i . e .  when p > . 1 .  PAGM 
and AGMEAN are also reported in several instances where 
PS yields a probability less than but very near . 1 .  see 
text for explanation . 
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1986 a ) . Thus , these two variables remain approximately 

proportional throughout the s ize  range represented . 

Separate regression slopes for each group tend to be 

shallower , with the exception of £ ·  l atrans . 

Regress ion l ines for each group are shown on Figure 6 .  

The regress ion l ines here and on all figures in this  

chapter were derived by solving the appropriate regress ion 

equation for the two extreme values of X ( CL )  from each 

group . on Figure 6 the regress ion l ines are all  grouped 

t ightly with no apparent maj or deviations from the overall 

trend . Quantitative comparisons ( Table 9 )  reveal that C . l .  

baylei  and £ ·  rufus are indistinguishable , and both are 

transposed below £ · ! ·  lycaon . Because of its steeper 

slope , placement of the c .  latrans regress ion is di fficult 

to compare to other groups , though it is apparently s imilar 

to £ · ! ·  baylei . At the smaller end of the spectrum , the c .  

famil iaris groups are indistinguishable from c .  aureus . 

Both groups are transposed weakly below £ · ! ·  baylei , more 

strongly below c . l .  lycaon , and apparently also below c .  

rufus . 

The bas ic statistical pattern is sl ight downward 

transpos ition at smaller sizes . The largest wol f  group is 

transposed above every other group , while all  of  the wolf  

groups are transposed above the dogs and j ackals . The 

effect of  the steeper slope exhibited by c .  latrans is  to 

connect the upwardly transposed wol f  group regress ion l ines 
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with the downwardly transposed dog and j ackal regre s s ion 

l ines . None of the statist ical differences  are of great 

magnitude . The dogs fit comfortably within the general 

p�ttern , indicating that they are cons istent with the broad 

allometric trend of isometry between these variables . 

Tooth Row Length ( IM2) 

For this  regress ion the slope coefficient of all the 

groups combined ( 0 . 9 27 ) suggests weak negative allometry 

( Table 8 ) . Thus , larger groups l ike wolves  exhibit 

proportionally shorter tooth rows than smal ler groups . 

Removal of the dogs from this  pooled regress ion has 

virtual ly no effect on the slope ( 0 . 93 7 ) . Separate 

regress ion l ines for each group vary around thes e  

interspecific slopes , with £ ·  latrans the steepes t  ( 0 . 9 94 ) 

and £ ·  rufus the shallowest ( 0 . 7 7 4 ) . 

Separate regress ion l ines are il lustrated on Figure 7 .  

c . l .  lycaon and baylei , pooled during prel iminary analys is , 

are indistinguishable from f ·  rufus ( Table 9 ) . The 

s ituation with the smaller canids is more complicated than 

that for PL , partly because the two dog groups could not be 

pooled . The European dogs are indistinguishable from f ·  

aureus , and both are transposed below the North American 

dogs . The £ ·  lupus groups cannot be securely distinguished 

from the North American dogs , and are only weakly 

transposed above the European dogs . c .  l atrans is 

indistinguishable from the European dogs . 
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The pattern yielded by the regress ion of  this variable 

is  best interpreted as  follows . There are slight , 

statistically significant differences in s lopes or 

elevations between groups . However , the pattern of  

transposition is  discernable only at  the broadest scale . 

£ ·  lupus tends to be weakly transposed above smaller dogs 

and j ackals ,  though in one instance ( North American dogs ) 

the transposition is  probably insignificant ( p= . 104 ) . At a 

finer scale , the smaller North American dogs are transposed 

above the s lightly larger European dogs and j ackals . In 

any case , differences are sl ight and the dogs fit within 

the general allometric trend . There are no major 

deviations from the general trend among any groups . 

Lateral Face Length ( OI )  

The interspecific regress ion slope for all  groups on 

this  variable ( 1 . 094 ) reflects weak positive allometry 

( Table 8 ) . Thus , l arger groups have lateral face lengths 

that are proportionally slightly longer than smal ler 

groups . Removal of the dogs from the pooled regression has 

no appreci able impact on the s lope ( 1 . 093 ) . Separate group 

regress ion slopes vary around these s imilar interspecific 

slopes . Lumer ( 1 940 ) found that a measure of " snout 

length" exhibited strong pos itive allometry among different 

breeds of dogs , and that this pattern seemed to be 

reflected in ontogenetic growth . 

Separate group regrss ion l ines are illustrated on 
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Figure 8 .  Like PL and IM2 , OI reflects a tight pattern of 

scaling among the groups . The two £ ·  lupus groups , pooled 

in preliminary analysis , are not s ignificantly different 

from £ ·  rufus ( Table 9 ) . At the other end of the s ize 

range , the two dog groups have different s lopes , but the 

intersection of  their regress ion l ines reflects s imilarity 

in placement . The wol f  groups are all transposed above the 

European dog group and , by subj ective inference , the North 

American dog group . Because c .  rufus is transposed above 

£ ·  aureus , it is inferred that the c .  lupus groups are as 

well .  

Analys is of OI reveals a basic pattern of slight 

downward transposition at smaller s izes , at least on a 

broad scale . Largest wolf  groups are transposed above the 

smaller dogs and j ackals . c .  l atrans forms an intermediate 

group that connects them . However , £ ·  aureus is transposed 

sl ightly below the smaller dog group . In all  cases , 

differences in elevations are s light , as indicated by the 

frequent occurrence of probabilities assoc iated with these 

tests that approach insignificance ( see Table 9 ) . There 

are no major deviaitons from the trend of weak positive 

allometry , and the dogs fit squarely within this trend . 

Palatal Width ( PW) 

on this  variable the interspec ific regress ion s lope of 

all groups combined ( 0 . 8 2 8 )  indicates marked negative 

allometry ( Table 8 ) . However , reduced correl ations 
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relative to anterior cranial length variables portend 

greater variability in scal ing relationships . When dogs 

are removed from the interspec ific regress ion , the 

resulting s lope of 1 . 144 is much steeper , indicating 

pos itive allometry . Wayne { 19 8 6 a )  found an approximately 

isometric relationship for this  variable based on a broader 

range of wild canids . 

Separate regress ion l ines for this analys is  are shown 

on Figure 9 .  It will be recalled that c .  rufus was 

eliminated due to an ins ignificant correlation . Because 

interspec ific regress ions suggested deviation of  this group 

from an overall trend, its location is  shown by the 

placement of actual data points . The two c .  lupus groups 

are transposed strongly above £ ·  latrans and c .  aureus 

{ Table 9 ) . By subj ective inference , they are transposed 

above c .  rufus as well . £· aureus is weakly transposed 

above c .  latrans . Thus , they are s imilar , and both are 

probably s imilar to c .  rufus . Among the wild canids a 

broad pattern separates the l argest wolves from smaller and 

medium s ized canids by strong transposition . However , £ ·  

rufus may be  transposed farther down than would be expected 

given its s ize . Alternatively,  the £ ·  lupus groups may be 

regarded as deviant from a trend exhibited by the other 

wild canids . 

Regardless  of  how the pattern among wild canids is 

interpreted , the dogs are distinct . They are transposed 
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strongly above both £ ·  aureus and c .  l atrans . From 

inspection of Fiqure 9 it can be seen that the doqs have 

proportionally wider pal ates than either of these qroups . 

The doqs are not s iqnificantly different from £ ·  lupus in 

slope or elevation . They have proportionally wider pal ates 

than £· lupus as a consequence of a common neqatively 

allometric reqress ion slope . However ,  the disparity 

between the doqs and £ ·  lupus is  not as pronounced as that 

between the doqs and other wild canids . For example ,  the 

averaqe ratio o f  PW/MCW amonq the doqs is . 3 6 5 , while for 

c .  aureus it  is . 3 20  and for £ ·  lupus it is . 3 32 . In 

short , the doqs have proportionally wider pal ates than any 

wild canid qroup . This morpholoqical pattern does not 

rel ate to any trend seen amonq wild canids . 

Maximum Cranial Width ( MCW ) 

on this  variable the interspec ific reqress ion slope of 

all qroups combined is 0 . 7 04 , indicatinq stronq neqative 

allometry ( Table 8 ,  paqe 102 ) . Removal of the doqs from 

the reqres s ion elevates the s lope ( 0 . 861 ) , but neqative 

allometry is maintained in the wild canids . Thus , smaller 

qroups have proportionally wider cranial vaults compared to 

larqer qroups . wayne ( 1 9 8 6 a )  also found neqative allometry 

with this  variable in wild canids and domestic doq breeds . 

Separate reqress ion l ines for the qroups are shown on 

Fiqure 10 . C . l .  baylei is  transposed sl iqhtly above C . l .  

lycaon , and both are transposed stronqly above c .  rufus , c .  
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l atrans , and c .  aureus ( Table 9 ,  paqe 104 ) . The l atter 

three qroups form a cluster ; c .  rufus is transposed below 

c .  latrans , but neither is  s iqnificantly different from c .  - -

aureus . Thus , the basic pattern is s iqnificant downward 

transposition separatinq larqest wolves ( f .  lupus ) from 

smaller wolves ( f .  rufus ) and the other smaller wild 

canids . Within these qroups , there are minor reversals  in 

this transpos itional trend . Only f· rufus provides a case 

for s iqnificant deviation from thi s trend . Given its size , 

one miqht expect its elevation to be hiqher . However , the 

maqnitude of this deviation is not qreat . 

The doqs deviate from the bas ic trend . Their sharp 

upward transposition relative to s imilar s ized wild canids 

and c .  rufus ( Tabl e  9 ,  paqe 104 ) s iqnif ies cranial vaults 

that are cons iderably wider than the bas ic al lometric trend 

would predict .  Their averaqe ratio of MCW/CL is . 3 6 3 . The 

most s imilar qroup is f ·  aureus , which exhibits a 

correspondinq ratio of . 3 34 . The maqnitude of  this 

difference is  greater than that seen among s imilar sized 

wild canid qroups . 

Unlike PW , the doq reqress ion l ines are not always 

statistically indistiquishable from the f ·  lupus 

reqress ions . However , the differences are sl iqht . The 

European doqs are weakly transposed below f · ! ·  lycaon 

( p= . 08 5 )  and C . l .  baylei ( p= . 04 8 ) , while the North American 

doqs are indistinquishable from f · ! ·  baylei  and cannot be 
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directly compared to C . l .  lycaon due to inequal ity of 

slopes ( see Table 9 ,  page 104 ) . The dogs have 

proportionally wider vaults than the much l arger f· lupus 

groups due to similarity in negatively allometric slopes of 

their regres sion l ines . overall , the dogs are 

morphologically distinct . They have cranial vault widths 

that are substantially greater than would be expected from 

the basic al lometric trend seen among wild canids . 

Analysis of Dental Variables 

Analys is  of dental variables is  conducted according to 

the same format as the analys is of cranial variables . 

summary statistics on dental variables from the di fferent 

canid groups are presented on Table 1 0 . Table 11  presents 

correlations between these variables and CL for each group . 

Five of  the seven groups exhibit ins ignificant correlations 

for Pl . Thus , separate regressions are not calculated and 

analyzed for this  variable . At a taxonomic level , c .  rufus 

exhibits insignificant correlations on four of the f ive 

variables . This undoubtedly reflects the small sample and 

the l imited range of size variation within that s ample . 

separate regress ions are not performed for c .  rufus . 

However , this  sample is  included in the interspecific 

regressions . 

£· !· baylei  is el iminated from analys is  on P2  due to 

an ins ignif icant correlation . Like c .  rufus it is included 
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Table 1 0 . Means , standard deviations ( so ) ' and sample 
s izes ( n )  on dental measurements from adult 
canids . 

Measurement ( mm 

Group CAN P1 P2 P3 LC 

C . l .  l):caon 
Mean 14 . 4 0 7 . 49 13 . 7 4 1 5 . 5 4 2 3 . 88 

so 1 . 17 8  0 . 5 8 5  0 . 903  0 . 84 2  1 .  203  
n 5 8  5 8  58  58  5 8  

C . l .  bailei  
Mean 13 . 03 6 . 43 13 . 18 14 . 54 2 3 . 4 4 

so 1 .  0 14  0 . 4 6 8  0 . 96 8  0 . 87 4  0 . 85 2  
n 3 0  2 9  3 0  2 9  4 2  

c .  rufus 
Mean 11 . 2 4 5 . 6 9 1 1 . 43 12 . 7 1 2 0 . 83 

SD 0 . 7 8 6  0 . 57 5  0 . 7 74  0 . 5 0 2  0 . 9 49  
n 24  24  24  24  29  

c .  latrans 
Mean 10 . 3 2 5 . 3 7 10 . 7 2 12 . 2 9 19 . 87 

so 0 . 93 0  0 . 4 6 7  0 . 886  0 . 803  0 . 9 8 6  
n 6 1  6 2  6 2  6 2  6 2  

c .  aureus 
Mean 8 . 77 4 . 7 2 8 . 7 9 1 0 . 1 0 17 . 24 

SD 0 . 8 1 8  0 . 3 8 6  0 . 7 2 0  0 . 67 7  0 . 9 5 5  
n 29  29  29  2 9  2 8  

c .  famil iaris 
EU 

Mean 9 . 99 4 . 3 7 9 . 1 2 10 . 4 9 16 . 80 
SD 1 . 2 2 0  0 . 600  1 .  209  0 . 9 9 0  1 .  4 1 5  

n 1 8  1 8  1 8  1 8  1 8  

c .  famil iaris 
-NA 

Mean 9 . 4 3  4 . 27 9 . 09 1 0 . 56 16 . 7 1 
SD 0 . 9 5 8  0 . 4 21  0 . 7 7 3  0 . 7 9 1  0 . 98 0  

n 4 7  4 2  4 7  4 9  4 9  
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Table 1 1 . correl ations ( Pearson ' s R )  between dental 
variables and CL , and associated probabilities 
( in parentheses ) for each group of adult canids . 

Variable 

Group CAN P1  P2 P3 LC 

C . l .  licaon . 6 06 . 5 6 9  . 609  . 4 81  . 6 63  
( . 0001 ) ( . 00 0 1 ) ( . 0 001 ) ( . 00 0 1 ) ( . 0 001 ) 

C . l .  bailei  . 6 04  . 2 7 4 *  . 4 50*  . 6 2 2  . 6 1 6  
( . 0004 ) ( . 1 508 ) ( . 0 1 2 6 ) ( . 0003 ) ( . 0001 ) 

c .  rufus . 5 1 2 *  . 1 3 4 *  . 4 7 6 *  . 5 3 6  . 4 1 2 *  
( . 0 1 0 6 ) ( . 5 1 6 1 )  ( . 0 186 ) ( . 00 7 0 ) ( . 0 2 6 1 ) 

c .  latrans . 6 9 0  . 3 1 6 *  . 5 4 5  . 4 85  . 5 6 7  
( . 0001 ) ( . 0 1 2 5 ) ( . 000 1 )  ( . 0001 ) ( . 0001 ) 

c .  aureus . 5 4 9  . 4 3 3 *  . 5 67  . 5 4 2  . 5 04  
( . 00 2 1 ) ( . 0 1 88 ) ( . 0 0 1 3 ) ( . 0 0 2 4 ) ( . 00 2 1 ) 

c .  famil i aris  . 7 5 9  . 5 4 8 *  . 7 18  . 7 17  . 7 51  -EU ( . 0003 ) ( . 0 1 8 6 ) ( . 0008 ) ( . 00 0 8 ) ( . 0003 ) 

c .  familiaris  . 7 16  . 4 6 5  . 4 3 2  . 5 06  . 5 4 6  
NA ( . 00 0 1 ) ( . 00 1 9 ) ( . 00 2 4 ) ( . 00 0 2 ) ( . 00 0 1 ) 

*Denotes insigni ficant correlation ( p> . 0 1 ) . 
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in the interspecific regress ion for this variable . Because 

interspeci fic regressions did not suggest maj or deviations 

among groups with insignificant correl ations ( see Appendix 

B ) , data points for el iminated groups are not indicated on 

illustrations . Like analys is of cranial variables , groups 

belonging to the s ame species were tested for homogeneity 

of  slopes and elevations in order to pool the samples where 

appropriate . As a result the dogs were pooled on CAN , 

while the two c .  lupus groups were pooled on P2 . 

Table 12  presents summary statistics for regress ions 

calculated for all  dental variables . Table 1 3  presents 

analysis  of covariance results for comparisons of all  

separate groups . Like analys is  of cranial variables , 

regress ions of each variable against CL are discussed 

sequentially . 

canine Alveolar Length ( CAN )  

Interspeci f ic regress ion of  this  variable for all 

groups yields an approximately isometric slope of 1 . 0 17  

( Table 1 1 ) . However , removal of the dogs steepens the 

slope to 1 . 3 09 , resulting in strong positive allometry 

among wild canids . Thus , among wild canids the largest 

groups have proportional ly longer canine alveol i than 

smaller canids . Separate group regressions yield 

substanti al vari ability in s lopes , ranging from 0 . 7 5 4  in c .  

aureus to 1 . 4 1 2  in c latrans . However ,  because of low 

correlations ( Table 1 2 )  and wide scatter around the 
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Table 1 2 . Least squares slopes ( LS )  and associated 
standard errors ( SE ) , least squares Y- intercepts 
( Y-INT ) , correlations ( R ) , and reduced major 
axis slopes ( RMA ) from regress ions of  dental 
variables against CL for adult canids ( al l  
variables log trans formed ) .  

Dependent 
variable Group 

CAN All Groups 
CAN Wild Canids 
CAN c . l .  lycaon 
CAN E · ! ·  baylei 
CAN c .  l atrans 
CAN c . aureus 
CAN C .  familiaris EU/NA 

Pl  
Pl  

P2  
P2 
P2  
P2  
P2  
P2  
P2  

P3 
P3 
P3 
P3 
P3 
P3 
P3 
P3 

P4 
P4 
P4 
P4 
P4 
P4 
P4 
P4 

All Groups 
Wild canids 

All Groups 
Wild canids 
£ · .! ·  lycaon 
c .  latrans 
c . aureus 
c . familiaris EU 
c . familiar is NA 

All Groups 
Wild canids 
C . l .  lycaon 
E · ! ·  baylei 
c .  l atrans 
c. aureus 
c .  famili aris EU 
c .  familiaris NA 

All Groups 
Wild Canids 
£ · .! ·  lycaon 
C . l .  baylei  
c . -l atrans 
c . aureus 
c . familiaris EU 
c . familiaris NA 

S lope* 
( LS )  

1 . 0 1 7  
1 . 30 9  
0 . 9 87  
1 . 1 9 0  
1 . 4 1 2  
0 . 7 5 4  
1 . 14 3  

SE 

. 03 2  

. 037  

. 1 73  

. 2 97  

. 1 9 3  

. 2 21  

. 1 2 8  

Y-INT 

-1 . 2 6 5  
-1 . 9 4 6  
-1 . 1 7 2  
-1 . 6 7 0  
-2 . 1 8 1  
-0 . 7 1 6  
-1 . 5 1 1  

R 

. 8 9 

. 9 3 

. 6 6 

. 60 

. 6 9 

. 5 5 

. 7 5 

S lope 
( RMA )  

1 . 14 0  
1 . 40 8  
1 . 49 5  
1 .  9 7 1  
2 . 045  
1 .  3 72  
1 . 53 0  

1 . 1 7 7  . 033  -1 . 9 2 9  . 9 1 1 . 2 9 3  
1 . 1 6 7  . 045  -1 . 9 0 5  . 8 7 1 . 34 1  

1 .  0 1 1  
1 . 14 4  
0 . 7 8 3  
1 . 048  
0 . 7 04 
1 . 306  
0 . 5 7 2  

0 . 9 1 7  
1 . 0 5 1  
0 . 5 16  
1 . 01 5  
0 . 7 1 6  
0 . 54 3  
0 . 89 9  
0 . 5 9 2  

0 . 844  
0 . 85 1  
0 . 6 4 4  
0 . 6 0 4  
0 . 6 3 8  
0 . 42 2  
0 . 8 5 3  
0 . 506  

. 0 27  

. 03 4  

. 1 36  

. 208  

. 1 9 7  

. 3 1 7  

. 17 8  

. 0 23  

. 03 1  

. 1 26 

. 24 5  

. 1 67 

. 1 6 2  

. 2 1 9  

. 1 47  

. 0 1 7  

. 0 23 

. 097  

. 1 22  

. 1 2 0  

. 1 42  

. 1 88  

. 1 13  

-1 . 2 5 5  
-1 . 5 6 4  
- 0 . 7 1 1  
-1 . 34 2  
-0 . 6 06 

1 . 3 0 6  
-0 . 2 8 5  

-0 . 9 8 5  
-1 . 2 9 7  
-0 . 0 2 7  
-1 . 2 1 1  
-0 . 5 3 1  
-0 . 1 9 0  
-0 . 9 5 1  
- 0 . 2 6 4  

- 0 . 6 1 4  
- 0 . 6 3 0  
-0 . 1 4 2  
-0 . 04 2  
-0 . 1 4 5  

0 . 3 09 
-0 . 6 4 6  

0 . 1 23  

. 9 2 

. 9 2 

. 6 1 

. 5 5 

. 5 7 

. 7 2 

. 4 3 

. 9 2 

. 9 2 

. 48 

. 6 2 

. 4 8 

. 5 4 

. 7 2 

. 5 1 

. 9 5 

. 9 3 

. 6 6 

. 6 2 

. 5 7 

. 5 0 

. 7 5 

. 5 5 

1 . 104 
1 .  2 3 9  
1 .  2 8 6  
1 .  9 2 3  
1 .  2 4 2  
1 .  8 2 1  
1 . 3 2 3  

0 . 993  
1 . 14 2  
1 . 07 3  
1 .  6 3 0  
1 . 47 7  
1 .  002  
1 .  2 5 5  
1 . 1 6 9  

0 . 890  
0 . 9 15  
0 . 97 1  
0 . 981  
1 . 1 2 5  
0 . 836  
1 . 1 36  
0 . 9 2 6  

*Al l l east squares s lopes  are s ignif icantly dif ferent 
from zero ( p< . 01 ) . 
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Table 13 . Analysis  of covariance results from paired 
comparisons of adult canid cranial measurements , 
with CL as a covariate ( all  variables log 
transformed) . Included are F-ratios ( F ) and 
associated probabil ities from tests of 
homogeneity of slopes ( PS ) , F-ratios and 
associated probabil ities from tests of equal ity 
of least square means ( PLSM ) , and least square 
means ( LSMEAN ) with associated standard errors 
( SE ) * .  

Dependent Variable/ 
comparison 

CAN 

£ . _ .  ycaon 
c .  latrans 
£·.!· lycaon 
c .  aureus 

PS ( F ) 

. 565  ( 0 . 3 )  

• 392 ( 0 .  7 )  

c .l. ltc aon 
c .-fam liaris 

. 477 (0 .5) 
EU/NA 

c .l. baylei  
c . -latrans 
C . l .  baylei  
c . -aureus 

. 5 44  ( 0 . 4 )  

. 2 68 ( 1 . 3 )  

. 823 (<0 . 1) 
EU/NA 

c .  latrans 
c . aureus 
c .  latrans 
c .  fami!iaris EU 
c .  aureus 
c .  fami!iaris 

P2  

C . l .  lycaon 
c . -latrans 
_ _ ycaon 
c ..  aureus 

c .i . ltc aon 
C . -fam liaris NA 
c .  atrans 
c .  aureus 

. 0 24 ( 5 . 3) 

( 1 .  3 )  

. 2 85  ( 1 . 2 )  

. 7 27  ( 0 . 1 )  

. 057 (3 .7) 

. 3 50  ( 0 . 9) 

. 2 37 ( 1 . 4 )  

PAGM ( F ) 

. 00 2  ( 10 . 2 )  

. 02 4  

. 00 2  ( 10 . 4 )  

. 29 5  ( 1 . 1) 

. 9 09 ( < 0 . 1 )  

. 0 5 7  ( 3 . 8 )  

. 012 {6 . 6 )  

< . 001  ( 4 5 . 3) 

< . 001  

. 10 2  ( 2 . 7 )  

< . 001  ( 1 5 . 4 )  

. 0 1 1  (6 . 8) 

. 01 3  ( 6 . 5  

AGMEAN ( SE ) 

1 . 1 4 9 7  
1 . 1 2 7 4  

1 . 1 0 9 5  
1 .  0 3 5 7  
1 .  0 5 2 3  
1 .  07 2 5  
1 . 04 4 4  
1 . 04 6 0  
1 .  0 5 3 2  
1 . 00 3 4  
0 . 9 871 
1 .  0 3 7 6  

0 . 9 5 9 0  
1 . 0 290  
0 . 9 2 7 1  
0 . 9 8 5 4  

1 . 09 2 2  
1 .  0709  
1 . 09 7 0  
1 .  0 2 28 

1 .  0 8 1 7  
1 . 0 2 5 7  
1 .  0 1 0 8  
0 . 9 8 1 0  

( . 00 3 8 ) 
. 00 5 5 ) 

( . 0083 ) 
( . 0 156 ) 
( . 01 0 5 ) 
( . 0094 ) 
( . 0097 ) 
( . 0054 ) 
( . 0 1 3 2 ) 
( . 0 136 ) 
( . 0138 ) 
( . 0069 ) 

( . 0 0 7 1 ) 
. 0067 ) 

( . 0069 ) 
( . 01 29 )  
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Table 13  ( continued ) . 

Dependent Variable/ 
comparison PS ( F )  PAGH ( F )  AGHEAN ( SE )  

P 2  ( continued ) 

c .  l atrans . 4 47 ( 0 .  6 )  . 4 9 6  ( 0 .  5 )  1 . 0 1 0 2  ( . 0051 ) 
c. lamiiiaris BU 1 .  0 2 0 5  ( . 0 1 2 2 ) 
c .  I a trans .086 (3 . 0 )  
c .  lamiiiaris NA 
c .  aureus .092 (3 . 0 ) . 07 7  (3 . 3) 0 . 9401  ( . 00 6 8 ) 
c .  lamiiiaris BU 0 . 9 6 0 0  ( . 0086 ) 
c .  aureus . 6 27 ( 0 .  2 )  < . 00 1  ( 13 . 5 )  0 . 93 2 6  ( . 0063 ) 
c .  lamiiiaris NA 0 . 9633 ( . 0049 ) 
c .  luiiiaris BU .030 (s . oJ 
c .  lamiiiaris NA 

P3 

C . l .  l;tcaon . 07 2  ( 3 .  3 )  
c . I .  baylei  
c . l. lycaon . 3 38  ( 0 .  9 )  < .  0 0 1  ( 1 6 . 2 )  1 .  1 606  ( . 0060 ) 
c . -latrans 1 . 1 1 7 0  . 0056 ) 

xcaon . 89 2  < 0 . 1 )  < . 00 1  37 . 8 )  1 . 16 23 . 0060 ) 
c . -aureus 1 . 0603  ( . 0 1 13)  
£ ·!· Iycaon . 086  (3 .0) 
c .  fami!iaris EU 
c . I .  Itcaon . 69 8  (0 .2) < . 00 1  (1 1 . 7 )  
c .-fam-IIaris  NA 
£·!· bayiei 
c .  latrans 

. 353 (0 .9) . 248  ( 1.4) 

c . I.  6axiei . 1 31  ( 2 . 3) . 00 1  ( 11 . 4) 
c . -aureus 
C . l .  baylei  . 7 34 ( 0 .  1 )  . 7 9 4 ( 0 .  1 )  
c . -famil iaris EU 
c . I .  batle i  . 2 03 ( 1 .  6 )  . 1 7 5  ( 1 . 9 )  
c . -fami-Iaris NA 
c .  I a trans . 46 0  ( 0 .  6 ) < . 00 1  ( 2 2 . 4 )  
c .  aureus 
c .  a trans . 26 8  1 .  2 )  
c .  lamiiiaris EU 
c .  I a trans . 58 2  (0 . 3 )  . 453 ( 0 .  6 ) 
c .  lamiiiaris NA 
c .  au reus . 1 84 ( 1 .  8) . 01 8  ( 6 . 0 ) 
c .  lamiiiaris BU 
c .  au reus 
c .  familiaris NA 
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Table 1 3  ( continued ) . 

Dependent variable/ 
Comparison PS ( F )  PAGH ( F )  AGHEAN ( SE )  

P3 ( continued ) 

c .  familiaris EU . 2 39  ( 1 .  4 )  . 0 49  ( 4 .  2 )  1 .  0 0 9 3  ( . 0070 ) 
c .  lamii!aris NA 1 . 02 6 1  ( . 0 04 1 ) 

LC 

l:tcaon . 8 14 ( < 0 . 1 )  . 0 57  ( 3 .  7 )  1 .  3 7 1 4  
baylei  1 .  3 7 8 1  

. 9 67  ( < 0 . 1 )  . 0 25  ( 5 .  2 )  1 . 34 5 6  
1 . 3 2 7 5  

. 1 7 1  ( 1 .  9 )  < .  001  ( 1 5 . 9 )  1 . 34 9 0  
1 . 2 9 4 8  

. 2 24 ( 1 .  4 )  . 04 0  { 4 . 38)  1 . 34 8 7  
EU 1 .  3 16 4  

. 359  ( 0 . 8 )  < . 00 1  ( 1 1 . 9 )  1 .  3 29 0  
NA 1 . 27 9 5  

. 8  < 0 . 1 )  < . 00 1  1 . 34 2 3  
1 . 3 1 6 3  

. 354 ( 0 . 9) < . 00 1  ( 26 . 6 )  1 .  3 3 6 7  
1 .  27  5 5  

. 24 1  . 02 4  1 . 3 3 6 7  
EU 1 . 3008  

.623 {0 . 2) < . 00 1  ( 1 8 . 7) 1 .  3 231 
NA 1 .  2 6 2 1  

. 2 31  ( 1 .  5) < . 00 1  (15 . 0) 1 .  2 8 7 2  
au reus 1 . 2 5 9 2  
I a trans . 277 ( 1 .  2)  . 0 1 6  ( 6 . 1 ) 1 .  2 8 6 0  
!am!t!aris EU 1 .  2 6 4 3  

a rans . 4 3 1  9 . 4 )  1 .  2 7 5  
!uaiiiaris NA 1 .  2 5 0 3  
aureus .666 (3 .6) 
lamiiiaris EU 

. 644  ( 0 .  2 )  . 8 2 6  ( < .  1 )  1 .  2 2 7 9  
NA 1 . 2 26 7  
EU . 096  ( 2 . 9 )  . 1 2 2  ( 2 .  5 )  1 .  2 1 5 0  
NA 1 .  2 2 54 

*PAGH and AGMEAN are reported when slopes are 
assumed to be equal based on PS , i . e .  when p > O  . 1 .  PAGH 
and AGMEAN are also reported in several instances where PS 
yields a probability less than but very near 0 . 1 .  
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regress ion l ines , the only signif icant slope difference is 

that between c.  aureus and £ ·  latrans ( Table 1 3 ) .  

Separate group regress ion l ines are shown on Figure 

1 1 . £ · ! ·  lycaon is transposed above all other wild canids . 

C . l .  bayle i  is not s ignific antly different from £ ·  latrans , 

but is  transposed weakly above £ ·  aureus . The dogs are 

transposed strongly above £ ·  latrans and £ ·  aureus , less 

strongly above £ · ! ·  baylei . Thus , among wild canids 

smaller groups tend to be transposed below larger groups . 

The dogs deviate from the overall allometric trend 

shown by wild canids . They are transposed strongly above 

£ ·  latrans , less strongly above £ · ! ·  baylei . They are 

statistically indistinguishable from C . l .  lycaon . The dogs 

have proportionally longer canine alveoli than s imilar 

sized coyotes or j ackals . 

First Premol ar Alveolar Length ( P1 )  

Interspecific regress ions for all groups on this  small 

tooth yield a pos itively allometric slope coe f f ic ient of 

1 . 177  ( Table 1 2 ) .  Removal of the dogs from this regression 

has virtually no ef fect on the s lope ( 1 . 1 6 7 ) . As explained 

above , separarate regress ions were not performed due to 

numerous insignificant correl ations . Inspection of 

bivariate plots ( Appendix B ,  Figure 34 ) suggested no 

s igni f icant deviations from the overall trend among the 

wild canids . 
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second Premolar Alveol ar Lenqth ( P2 )  

The interspecif ic reqress ion of all qroups for this 

variable yields an approximately isometric slope 

coefficient of 1 . 0 11  ( Table 1 2 ) .  Removal of the doqs 

steepens the interspec ific slope appreciably ( 1 . 14 4 ) . 

Thus , amonq wild canids , this variable shows marked 

pos itive allometry . 

Separate qroup reqres s ion l ines are shown on Fiqure 

1 2 . £ · ! ·  lyc aon may be sl iqhtly transposed above c .  

l atrans , but the probabil ity value associated with the 

elevation test ( . 10 2 ) is borderl ine ( Table 1 3 ) . c . l .  

lycaon is  clearly transposed above £ ·  aureus and the North 

American doqs . Both c .  l atrans and the North American doqs 

are transposed above c .  aureus . The extremely steep s lope 

yielded by the European doqs complicates comparisons . The 

European doqs are probably transposed above £ ·  aureus , 

thouqh the slope test is  ambiquous ( p= . 09 2 ) , shakinq 

confidence in an almost equally ambiquous elevation test 

( p= . 077 ) . 

The wild canids exhibit a qeneral pattern of downward 

transpos ition at smaller s izes . The doqs deviate from this  

trend , exhibitinq elevations apparently most s imilar to 

l arqer c .  l atrans . In turn , both doq qroups are apparently 

transposed above c .  aureus , thouqh diverqent slopes 

compl icate these comparisons . Doqs tend to have 

proportionally lonqer P2 alveo l i  than comparably s ized wild 
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canids . 

Third Premol ar Alveolar Length ( P3) 

The interspecific regression of all groups on this  

variable yields a s lightly negatively al lometric s lope 

coefficient of  0 . 9 1 7  ( Table 1 2 ) . However ,  an interspecific 

regress ion of  wild canids yields a steeper s lope of 1 . 0 51 . 

Thus , among wild canids this bivariate relationship is  

approximately isometric , tending towards weak pos itive 

allometry . Wayne ( 1 9 B 6 a )  found weak pos itive allometry for 

P3 crown length with a larger series of wild canids , and 

negative allometry for dog breeds . 

Separate group regress ion l ines are shown on Figure 

1 3 . £ ·! ·  lycaon is strongly transposed above £· latrans , 

while c .  latrans is , in turn , strongly transposed above £· 

aureus ( Table 13 ) .  C . l .  baylei  exhibits a dif ferent slope 

from £ · ! ·  lycaon , but is not significantly different from 

£ ·  latrans , and is  transposed above £ aureus . Neither c . l .  

baylei nor £ ·  latrans are distinguishable from either of  

the dog groups . Both dog groups are transposed above c .  

aureus . The two dog groups exhibit elevations that are 

only weakly separated ( p= . 04 9 ) . 

The pattern is similar to that for P2 . Among wild 

canids smaller groups tend to be transposed down from 

larger groups , though C . l .  baylei is apparently s imilar to 

c .  latrans . The dog groups are clearly different , with 

elevations most s imilar to c .  l atrans and c . l .  baylei . one 
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would expect them t o  b e  located near £ ·  aureus ; instead ,  

they are transposed above . Thus , the dogs are not 

consistent with the broad al lometric trend seen in wild 

Canis . They exhibit proportionally longer P3  alveol i than 

comparably s ized wild canids . 

Carnass ial Crown Length ( P4 )  

The interspecific regress ion for all groups on LC 

yields a negatively allometric slope coefficient of 0 . 844 

( Table 1 2 ) . Unl ike previous dental variables , removal of 

the dogs has no s ignificant impact on that s lope . Thus , 

larger groups have proportionally shorter carnassials  than 

smaller groups . Wayne ( 1 9 8 6 a )  found positive allometry for 

this variable among wild canids but strong negative 

allometry among dog breeds . 

Separate group regress ion l ines are shown on Figure 

14 . £ ·! ·  baylei  is sl ightly transposed above £ · ! ·  lycaon 

( p= . 05 7--Table 13 ) . Both are transposed above £ ·  latrans 

which is , in turn , strongly transposed above £ ·  aureus . 

Thus , the wild canids exhibit a general pattern of downward 

transposition at smaller s izes . The weak transposition of 

C . l .  baylei above C . l .  lycaon represents a minor deviation 

from that trend . 

Unl ike other dental variables , the dogs are consistent 

with this trend . Both dog groups are transposed below the 

£ ·  lupus groups and £·  latrans . The North American dogs 

are not significantly different from c .  aureus , while the 
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European doqs cannot be obj ectively compared due to 

inequality of s lopes . However , it can be seen from the 

intersection of the European doq reqression l ine with the 

c .  aureus l ine that they are s imilar . The doqs are only 

sl iqhtly different from each other , as reflected by the 

borderl ine probabilities ( . 09 6  for s lope , . 1 2 2  for 

elevation ) assoc iated with s iqnificance tests ( Table 13 ) . 

Evaluation of  static Allometry 

Anterior cranial lenqth measurements ( PL ,  IM2 , OI ) ,  

all hiqhly correlated with CL , are tiqhtly scaled amonq al l 

qroups . There are no s iqnificant deviations from the 

overall allometric trend seen with each variable . In 

contrast , cranial width measurements ( PW ,  MCW ) , exhibitinq 

lower correlations with CL , are more variable . Broad 

allometric trends are evident but there are deviations from 

those trends . Amonq the wild canids devi ations are 

relatively minor . Amonq the prehistoric doqs deviations 

are pronounced . The doqs are transposed far higher than 

would be expected qiven their  size . They have 

proportionally wider cranial dimens ions than any wild 

canids . on PW the disparity is greatest in comparison to 

s imilar s ized j ackals and coyotes .  on MCW the disparity is  

pronounced relative to all qroups , but especially wolves . 

These results are consistent with the f indinqs of Wayne 

( 1 9 8 6 a ) . It  wil l  be recalled that Wayne found hiqh 
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correspondence between static allometries of  modern dog 

breeds and wild canids with the scal ing of cranial length 

variables against skull length . In contrast , cranial width 

and depth variables showed divergent patterns . small dog 

breeds always had wider cranial dimens ions than s imilar 

s ized foxl ike c anids . As a consequence , dogs were found to 

be morphologically s imilar only to closely related wolf­

l ike genera . 

Results here auqment Wayne ' s  observations . Taxa in 

this study are all from a s ingle genus ; they are al l 

closely related and "wolf-l ike " ( sensu Wayne 1 9 8 6 a ) . Yet , 

dogs are morphologically dis tinguishable from s imilar s ized 

individuals of other taxa . Their divergent patterns of  

static variat ion are clearly discernable within a 

restricted range of "wolf-like" taxa . The nature of  that 

divergence is identical to that found by Wayne at a more 

general taxonomic level . 

With respect to anterior cranial length variables , 

Wayne ( 1 9 8 6 a )  found high correspondence between static 

allometries of dog breeds , static allometries of wild 

canids , and ontogenetic allometries of  dog breeds . 

conversely , cranial width and depth variables differed . 

Static and ontogenetic allometriee of dog breeds were 

s imilar , but both diverged from interspecific wild r�id 

allometries . Thus , morphology of dogs is constrained to 

ontogenet ic boundaries on all variables . In wild canids , 
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only anterior cranial lenqth variables mirror doq ontoqeny . 

These findings , coupled with results here , provide the 

basis for predictions concerning analys is of ontoqenetic 

allometry . Dogs should exhibit evidence of ontoqenetic 

scalinq with wolves on all cranial dimens ions . Other wild 

canids should appear ontoqenetically scaled with wolves on 

anterior cranial lenqth dimens ions only . However , c .  rufus 

and £ ·  l atrans may correspond closely ( see Chapter IV ) . In 

any case , maj or deviations from these predictions would 

suqqest that causes other than s imple allometric or 

ontoqenetic scal inq underly morpholoqical evolution in 

these qroups . These problems are dealt with in qreater 

detail in the next chapter .  

Analys is  of dental allometry i s  characterized by 

consistently weaker intraqroup correlations between tooth 

dimens ions and condylobasal lenqth , alonq with substantial 

variabil ity in scal inq relationships amonq qroups . Only 

the carnass i al ( P4 }  exhibits a tiqht interspec ific scal inq 

pattern . This reduced variabil ity is not surprisinq qiven 

the morphological complexity of carnass ial teeth in canids 

( Penqilly 1 9 84 ) . conversely , greater variability in other 

premolars  and the c anine is  consistent with their s impler 

morpholoqical or occlusal characteristics ( Ginqerich and 

Winkler 1 9 7 9 ; Penqilly 1 9 84 ) . 

Wayne ( 19 8 6 a )  found that wolves had proportionally 

lonqer post-canine teeth than doqs of comparable size . He 
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suggested that such tooth dwarfism is  a reflection of  

functional rather than developmental differences , 

presumably related to " artificial " versus "natural "  

selection ( Wayne 1986a : 2 47 ) . Describing this  phenomenon as 

"dwarf ism" obscures the fact that it applies only to 

l argest  dogs . small dogs have proportionally longer teeth . 

In any case , proportional tooth size reduction under 

domestication is  apparently a delayed phenomenon , 

characteristic of recent dogs ( Bokonyi 197 5 ;  Clutton-Brock 

1984 ) . Large , crowded teeth among early Holocene spec imens 

are often taken as evidence of early domestication ( e . g . , 

Degerb�l 196 1 ;  Turnbull  and Reed 1 9 74 ) . Observations of 

proportionally small teeth in dogs usually refer to large , 

recent dogs ( e . g . , Olsen 1 97 4 : 34 3 ;  Clutton-Brock 19 84 ; 

Morey 1986 ; Wayne 1986a ) . 

The prehistoric dogs used in this  study , which date no 

later than about 3 , 000 B . P . , do not exhibit proportional 

tooth s ize reduction relative to wolves , except with 

respect to the diminutive ( and often absent ) P l . Where 

scaling relationships among wild canids are pos itively 

allometric ( CAN ,  P2 , P3 ) ,  the smal ler dogs are transposed 

above s imilar s ized wild canids , resulting in proportional 

s imilarity or even longer teeth . The dogs are cons is tent 

with an allometric trend only on P4 , where the wild canids 

exhibit negative allometry . However , Wayne ( 1 9 8 6 a )  found 

pos itive allometry for this  variable among wild canids , 
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suggesting that negative allometry o f  P 4  may be 

characteristic of canis only . In any case , the dogs have 

proportionally longer carnass i als  than even £ ·  lupus . 

These morphological inferences are eas ily verified . For 

example ,  the average ratio of P4 to CL among the two c .  

lupus groups is  . 1 043 , while among both dog groups it is  

. 1 109 . 

summary 

1 .  on anterior cranial length variables ( PL ,  IM2 , OI ) 

all  groups produce tight scal ing patterns , and the domestic 

dogs are cons istent with those patterns . Proportional 

differences in morphology are the result of nonisometric 

interspecific s lopes . 

2 .  on cranial width variables ( PW ,  MCW ) there is 

greater variabil ity in scal ing patterns , and the dogs are 

distinct from allometric trends seen among wild Canis . The 

dogs have proportionally wider palates and vaults than wild 

Canis . 

3 .  The dogs tend to have proportionally longer teeth 

relative to wild canis . With one exception , P4 , this 

pattern does not relate to allometric trends seen among 

wild canis . 

4 .  Overall ,  relative scal ing patterns exhibited by 

the domestic dogs are cons istent with results from previous 

allometric studies involving modern dog breeds . Though 
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dogs show morphological s imilarity t o  wild Canis  they are 

nonetheless distinct , suggesting that their morphological 

patterning involves  more than s imple allometric 

(biomechanical ) scaling . 
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CHAPTER VI 

BIVARIATE ALLOMETRY : ANALYSIS  OF ONTOGENETIC DATA 

This chapter presents analys is  of ontogenetic data 

from wolves ( £ .  rufus and £ ·  lupus ) in relation to static 

data from domestic dogs and the other wild canids ( £ .  

aureus , £ ·  l atrans ) .  I n  accordance with an hypothesis of 

progenetic heterochrony in dogs ( see Chapters II and I II ) , 

the primary obj ective is to determine whether the dogs and 

wolves consistently exhibit ontogenetic scal ing ( Gould 

19 75b ;  Shea 1 9 8 1 , 1983 , 1 9 8 5b ,  1 9 8 8 ;  McKinney 1 9 8 8b ) . 

The interpretive framework for this analys is , outl ined in 

Chapter I I I , is  similar to that discussed by Shea 

( 1 981 : 1 81 ) for analysis of extended growth traj ectories in 

ancestor-descendent relationships . Briefly , if an 

ontogenetic regress ion line from a l arger spec ies ( wol f )  

passes through the range o f  static variation o f  a smaller 

species ( dog , j ackal , coyote ) ,  an hypothes is of ontogenet ic 

scaling is supported . If this pattern is cons istent across 

several bivariate relationships , the hypothesis  is further 

strengthened . I f  this pattern is not found the hypothesis  

of ontogenetic scal ing is  not supported . Analys is  excludes 

dental variables because young j uveniles do not have 

permanent dentition . 

c .  rufus is included in this phase of analys is because 

of  similarity in adult size with small  Asiatic wolves l ike 
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£ ·  lupus chanco o r  £ ·  lupus pall ipes , forms that have been 

implicated in the ancestry of dogs . The c .  rufus adults in 

this study have a mean condylobasal length of 2 0 2  

millimeters ( Table 7 ,  page 1 00 ) . Three spec imens o f  c . l .  

chanco examined by this author at the National Museum of 

Natural History , Washington , D . C .  ( age categories 4 or 5 ) , 

ranged from 1 9 7  to 210  millimeters in this dimens ion . on 

qual itative grounds , this  s ize s imilarity is  accompanied by 

morphological s imilarity . Although s imilarity in adult 

s ize and form does not guarantee identical patterns of 

growth , s imilarity in growth is a reasonable assumption . 

In the absence of ontogenetic data from As iatic wolves , c .  

rufus is used as a crude approximation . 

Analysi s  of ontogenetic data is  restricted to age 

categories 1 ,  2 ,  and 3 ( see Table 2 ,  page 81 ) . 

consequently , the regression slopes are unaf fected by 

static variation characteristic of age categories 4 and 5 .  

Precise ages cannot be ass igned to individuals in di fferent 

age categories . However , from dental eruption criteria  

used to  create age categories , it is  reasonably certain 

that al l individuals are approximately 45 days or older 

( Table 2 ,  page 8 1 ) . Accordingly , generated postnatal 

growth traj ectories exclude the perinatal growth period of 

0-40 days after birth ( Wayne 1986c ) . It  must be assumed 

that the schedule of dental eruption and other bas ic 

developmental events among recent wolves pertains to 
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prehistoric populations . 

Several precautions regarding the qual ity of the 

subadult wol f  samples must be emphas ized . Firs t ,  the 

samples are small : 22 c .  rufus and 38  c .  lupus . second , 

unlike the corresponding stat ic series they are 

subspeci f ic ally heterogeneous ( Tabl e  4 ,  page 88 ) . Finally , 

the actual age distribution of the samples is skewed , as 

shown on Table 14 . Both series are numerically dominated 

by individuals from aqe category 3 .  

The problem of  skewed age distributions is  especially 

pronounced with f· rufus , for which only three age category 

1 individuals are represented . There is a tremendous gap 

in size ( i . e . , growth data ) between these three and the 

next individuals from age category 2 .  Hence , it must be 

assumed that they are roughly representative of c .  rufus at 

that stage of development . I f  not , results are spurious . 

The location of these three cases with respect to other 

data points can be observed in Appendix c .  This appendix 

presents bivariate plots of cranial variables against CL 

for both j uvenile series of c .  rufus and c .  lupus , with 

calculated regress ion l ines illustrated . 

The f ·  lupus s ample is  a clear improvement over the c .  

rufus sample . Though it is also skewed , it reflects a more 

even distribution of individuals across the age categories . 

consequently , greater confidence may be placed in the 

accuracy of calculated regress ion coef ficients . The 
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Table 14 . summary data on c .  lupus and c .  rufus j uveniles 
used in a.nalysis  of ontoqenetic aiiometry . 

Species/ Measurement 
Aqe cateqory Parameter CL PL IM2 OI PW MCW 

c .  lupus 
aqe cat . 1 minimum 7 4  4 2  4 1  2 8  4 2  43  

maximum 143  78  61  64  59  60  
n 1 2  12  5 12  1 2  1 2  

aqe cat . 2 minimum 1 7 9  9 3  9 8  8 3  57  6 4  
maximum 1 9 4  1 0 3  1 0 9  9 3  7 3  6 7  

n 7 7 7 7 7 7 

aqe cat . 3 minimum 1 8 2  9 8  1 0 1  8 3  63  65  
maximum 230  1 20 123  109  7 6  7 5  

n 1 9  1 9  1 9  1 9  19  19  

c .  rufus 
aqe cat . 1 minimum 7 8  4 4  3 1  3 8  4 6  

maximum 80  45  31  4 0  4 8  
n 3 3 0 3 3 3 

aqe cat . 2 minimum 1 6 3  8 3  8 8  7 4  5 4  5 5  
maximum 1 7 5  9 2  100  81  6 2  6 1  

n 4 4 4 4 4 4 

aqe cat . 3 minimum 1 7 0  88  92  7 8  53  5 6  
maximum 204  104  110  9 4  64  63  

n 1 5  15  15  15  15  1 5  
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general conformity of these data to the regres s ion l ines 

( Appendix C) encourages the assumption that the gap in the 

£· rufus data is also adequately described by a straight 

line connecting the separated groups of points . 

The characteristics o f  these subadult s amples require 

a broad interpretive framework . It  would be unreal istic to 

demand precise , unequivocal evidence of ontogenetic 

scal ing . Rather , general correspondence between 

ontogenetic and static patterns is sought across several 

different b ivariate relationships . Increased subj ectivity 

in interpretation is an unavoidable consequence of 

decreased control over sample composition . 

Treatment of the adult samples differs from that 

presented in the previous chapter . The two £ ·  lupus groups 

and the two dog groups are pooled on all variabl es , 

regardless  of statistically s ignificant differences in 

slopes  or elevations . Differences within groups are never 

of great magnitude . Moreover , the obj ective of  this 

chapter is  to determine the relationship of wol f  

ontogenetic regress ions t o  the overall range of  static 

variation among different groups . Pool ing al l adults of 

the s ame species facil itates this  task . 
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ontogenetic Allometry of Wolves 

Ontogenetic regress ions from c .  lupus and f ·  rufus for 

each cranial variable against CL are summarized on Table 

1 5 . This  table also summarizes regres s ions from pooled 

adult f ·  lupus s amples on PL and MCW , and pooled c .  

famil iaris samples on IM2 , OI , and MCW . Because these  

groups were analyzed separately on those variables in 

Chapter V ,  these regress ions were not previously presented . 

Other adult regress ions used in this  chapter may be found 

on Table 8 ( page 10 2 ) . 

From inspection of Table 15  it can be seen that s lopes 

of the c .  rufus and c .  lupus ontogenetic regress ions are 

s imilar on PL , OI , and PW . They differ substantially on 

MCW . A c .  rufus regress ion was not calculated on IM2 

because this  measurement could not be recorded on the three 

age category 1 individuals . Adult regress ions , from Table 

15  and Table 8 ( page 102 ) apparently di ffer cons iderably 

from the ontogenetic regress ions . 

Table 1 6  presents analys is of covariance results from 

comparisons of j uvenile wol f regress ions with each other , 

and j uvenile wolves with their corresponding adult group . 

Obvious ly,  the ontogenetic regress ions for each group must 

intersect the range of variation of the corresponding adult 

group . From Table 16  it can be seen that of the eight 

j uvenile-adult wol f  comparisons pos s ible , s ix exhibit 

different s lopes . A seventh , c .  rufus on PL , yields 
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Table 1 5 . Least squares slopes ( LS )  and assoc iated 
standard errors ( SE ) , least squares Y-intercepts 
( Y- INT ) , correlations ( R ) , and reduced maj or 
axis  slopes ( RMA ) from regress ions of cranial 
variables against CL for j uvenile wolves ( age 
categories 1 , 2 ,  and 3 )  and pooled adult groups 
not previously reported ( all  variables log 
transformed) . 

variable Group 

PL 
PL 
PL 

IM2 
IM2 

OI 
OI 
OI 

PW 
PW 

MCW 
MCW 
MCW 

MCW 

c .  � ( j uvenile ) 
c .  rufUS ( j uvenile ) 
c . l .  lycaon/baylei  

( adUlt) 

c .  lupus ( j uvenile ) 
c .  famili aris EU/NA 

c .  lupus ( j uvenile ) 
c .  rufus ( j uvenile ) 
c .  familiaris EU/NA 

c .  lupus ( j uvenile ) 
c .  rufus ( j uvenile ) 

c .  lupus ( j uvenile ) 
c .  rufus ( j uvenile ) 
c . l .  lycaon/baylei  

( adUlt) 
c .  famil i aris EU/NA 

Slope* 
( LS )  

0 . 9 1 2  
0 . 89 9  
1 . 0 2 5  

0 . 99 1  
0 . 8 5 2  

1 . 1 7 6  
1 . 1 9 8  
1 . 1 24 

0 . 4 9 8  
0 . 44 9  

0 . 4 3 6  
0 . 287  
0 . 5 17 

0 . 7 12  

SE 

. 0 16  

. 0 12  

. 04 0  

. 0 1 7  

. 03 6  

. 009 

. 0 12  

. 0 51  

. 0 2 0  

. 03 3  

. 0 14  

. 0 2 1  

. 0 5 0  

. 07 1  

Y-INT R 

-0 . 084  > . 9 9 
-0 . 0 5 7  > . 9 9 
-0 . 334  . 9 3 

-0 . 2 3 9  > . 9 9 
0 . 06 3  . 9 5 

-0 . 7 3 5  > . 9 9 
-0 . 7 8 0  > . 9 9 
-0 . 6 1 2  . 9 4 

0 . 6 94  
0 . 744  

0 . 8 2 9  
1 . 1 24  
0 . 64 2  

0 . 1 8 8  

. 9 7 

. 9 5 

. 9 8 

. 9 5 

. 7 2 

. 7 8 

Slope 
( RMA ) 

0 . 9 1 9  
0 . 90 8  
1 .  096  

0 . 99 6  
0 . 90 1  

1 . 1 7 8  
1 .  2 10  
1 . 1 9 3  

0 . 5 13  
0 . 47 3  

0 . 444  
0 . 30 2  
0 . 7 2 1  

0 . 9 1 2  

*Al l least squares s lopes are s ignificantly different 
from zero ( p< . 0 1 ) . 
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Table 1 6 . Analys is o f  covariance results from paired 
comparisons of cranial measurements from 
adult wolves ( age cateqories 4 and 5 )  and 
j uvenile wolves ( aqe categories 1 , 2  and 3 ) , with 
with CL as a covariate ( all  variables loq 
trans formed ) .  Included are F-ratios ( F ) and 
associated probabil ities from tests of 
homoqeneity of s lopes ( PS ) , F-ratios and 
assoc iated probabilities from tests of equality 
of adj usted group means ( PAGM ) , and adj usted 
group means ( AGMEAN ) with associated standard 
errors ( SE ) * .  

Dependent Variable/ 
comparison PS ( F ) PAGM ( F )  AGMEAN ( SE ) 

PL 

c .  
c .  
c .  
c .  
c .  
c .  

IM2 

. 01 5  ( 6 . 1 )  

c .  lupus ( j uvenile ) . 0 12  ( 6 . 5 )  
c .  lupus ( adult) 

OI 

c .  
c .  
c .  
c .  
c .  
c .  

PW 

c .  
c .  
c .  
c .  

lupus 
1Ufus 
ru us 
rufus 

� s 

< . 00 1  ( 2 3 . 7 )  

. 016  (6 . 3 )  

. 18 1  ( 1 . 8 )  . 1 9 1  ( 1 . 7 )  1 . 86 7 1  ( . 00 1 3 ) 
1 .  8700  ( . 0018)  

< . 001  ( 20 . 2 )  



Table 1 6  ( continued ) . 

Dependent variable/ 
Comparison 

MCW 

c .  
c .  
c .  
c .  
c .  
c .  

1 5 1  

PS  ( F )  PAGM ( F )  AGMEAN ( SE )  

. 1 35  ( 2 . 3 )  . 2 97  ( 1 . 1 ) 1 . 83 8 2  ( . 0023 ) 
1 . 84 1 2  ( . 00 1 3 ) 

( 33 . 4 )  

* PAGM and AGMEAN are reported when slopes are assumed 
to be equal based on PS , i . e .  when p> . 1 .  PAGM and AGMEAN 
are al so reported in instances where PS  yields a 
probabil ity less than but very near . 1 .  

* *The C .  aupui adult group consists only of 
� · ! ·  lycaon-an � ·  . baylei . The � ·  llpls j uvenile group 
contains additionai subspec ies , as exp a ned in the text . 
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ambiguous results . Only the c .  lupus compar ison on MCW 

suggests equivalence of static and ontogenetic allometry . 

Assuming static allometry to be representative of 

ontogenetic allometry for s ingle spec ies would have been a 

serious error . 

comparisons between the j uvenile wol f  groups ( Table 

1 6 ) yield incons istent results . on PL and PW the two 

groups have s imilar slopes but different elevations , 

suggesting differences in growth patterns during the 

prenatal or perinatal periods . They are indistinguishable 

on OI , and exhibit divergent s lopes on MCW . Though the 

small samples used to generate these comparisons must be 

borne in mind , these data suggest that different varieties 

of wolves may show s ignificant variation in ontogenetic 

growth patterns . 

Analysis of Ontogenetic Scal ing 

In the following analys is ontogenetic regressions from 

c .  lupus and £ ·  rufus are compared to patterns of static 

variation among £ ·  latrans , £ · aureus , and c .  familiaris . 

Al l analys is  of  covariance comparisons are assembled on 

Table 17 . Discuss ion of each analyzed group is presented 

sequentially . 
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Table 1 7 . Analys is of covariance results from paired 
comparisons of cranial measurements from 
j uvenile wolves ( age categories 1 ,  2 ,  and 3 )  and 
adult canids ( age categories 4 and 5 ) , with CL 
as a covariate ( al l  variables log transformed ) .  
Included are F-ratios ( F )  and associated 
probabil ities from tests of homogeneity of 
s lopes ( PS ) , F-ratios and assoc iated 
probabilities from tests of equality of adj usted 
group means ( PAGM ) , and adj usted group means 
( AGMEAN) with associated standard errors ( SE ) * .  

Dependent Variable/ 
Comparison PS  

PL  

c .  
c .  c .  
c .  c .  
c .  
c .  
c .  c . 
c .  c .  
c .  

IM2 

c .  
c .  
c .  
c .  
c .  
c .  

OI 

c .  
c. 
c .  
c .  
c .  
c .  

lUEUS ( j uv . ) . 007  
latrans 
rufus ( juv . )  < . 00 1  
!a trans 
Iu;2us ( j uv . ) . 809  
aureus 
ru us 
aureus mn uv . . 

iaris EU/NA 
rufus (j uv . ) 
famiiiaris EU/NA 

. 867 

lupus ( j uv . ) 
tatrans 

. 96 9  

Iui!!s {juv . }  .053 
aureus � (juv . )  .003 

am iaris EU/NA 

ffi¥:i ( j uv . ) . 7 7 3  
a r ns 

rufus ( juv . )  . 91 5  
I a trans 
Iu2us ( juv . ) . 19 6  
aureus 

( F )  PAGM ( F ) AGMEAN ( SE )  

( 7 .  7 )  

( 13 . 4 )  

( <0 . 1 ) < . 00 1  ( 5 7 . 9 )  1 .  9 3 7 3  
1 .  9 188  

. 00 1  1 .  9 253  
1 .  9 1 7 5  
1 .  2 7 
1 . 9069  

( < 0 . 1) . 0 14  (6 . 3) 1 . 9088 
1 . 9034  

( < 0 . 1 ) . 0 1 1  ( 6 .  8 )  1 . 99 9 2  ( . 0 0 1 7 ) 
1 . 9 9 3 7  

(3 . 9) 
( . 00 1 2 ) 

( 9 . 6) 

( < 0 . 1 )  . 004  ( 8 .  7 )  1 . 9 0 3 7  ( . 0014 ) 
1 . 9088  ( . 00 1 1 ) 

( < 0 . 1) . 56 5  (0 . 3 )  1 .  9 1 4 9  ( . 00 1 7 ) 
1 .  9 1 60 ( . 00 1 0 ) 

( 1 .  7)  . 8 29  ( < 0 . 1) 1 . 8593  ( . 00 1 5 ) 
1 . 8 5 9 8  ( . 0017 ) 



1 5 4  

Table 1 7  ( continued ) . 

Dependent variable/ 
Comparison 

OI ( continued ) 

C .  rufus ( j uv . ) 
c.  
c .  
c .  
c .  
c .  

PW 

aureus 
� (juv . ) 
tai'IIiaris BU NA 
ru us ( j uv . ) 
familiaris EU/NA 

C .  � ( juv . ) 
C .  �ns 
c .  rufus ( juv . ) 
c .  latrans 
c .  lupus ( juv . ) 
C .  aureus 
c . rufus ( j uv . ) 
c .  aureus 

PS ( F ) 

. 0 8 9  ( 3 . 0 )  

. 27 5  ( 1 . 2) 

. 14 6  2 . 2 )  

. 003  ( 9 . 0 )  

< . 001 ( 12 . 1 )  

< . 00 1  ( 1 2 . 2 )  

< .001 ( 1 4 . 6) 

c .  
c .  

� (juv . )  . oo3 ( 9 . 0) 

c .  
c .  

raaiiiaris BU/NA 
rufus (juv . }  < . 00 1  
familiaris EU/NA 

MCW 

c .  � ( j uv . ) . 007 
c.  ns 
c. rufus (juv . )  < .661 
c .  1atrus 
c .  Iueus ( juv . )  . 0 14  
c .  aureus c .  rufus ( juv . )  < . 001 
c .  aureus 
c .  Im! (juv . )  < .001 
c .  iaris EU/NA 
c .  rufus ( juv . ) < . 00 1  
c .  fami11aris ( EU/NA 

( 1 2 . 8) 

( 7 .  7 )  

(23 . 0) 

( 6 . 3 )  

(22 . 1) 

( 16 . 5) 

(34. 8 )  

PAGM ( F ) 

. 38 1  ( 0 . 8 )  

< . 00 1  ( 14 . 0 )  

. 033 4 . 7 )  

AGMEAN ( SE ) 

1 . 86 0 6  
1 .  8584  
1 . 84 0 4  
1 .  8490  
1 .  8 3 86 
1 .  8447  

( . 00 18 ) 
( . 00 1 6 ) 
( . 0018)  
( . 00 1 4 ) 

. 00 2 4 ) 
( . 00 1 4 ) 

*PAGM and AGMEAN are reported when s lopes  are assumed 
to be equal based on PS , i . e .  when p> . 1 .  PAGM and AGMEAN 
are also reported in instances where PS  yields a 
probabil ity less  than but very near . 1 .  
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Analys is of  c .  l atrans 

Plots i l lustrating the range of static variation of c .  

latrans in relation to ontogenetic regress ions of wolves 

are shown on Figure 15 . Figure 1 5 a  indicates that both 

ontogenetic regress ions pass through the range of  static 

variation , £ ·  rufus more centrally than £·  lupus . 

Divergent static and ontogenetic slopes prohibit 

statistical comparison of elevations ( Table 1 7 ) .  on IM2 

the £· lupus ontogenetic regression passes through the £· 

l atrans data points , s lightly above the central portion 

( Figure 15b ) . weak transposit ion is statistically 

demonstrable ( Table 17 ) . on OI the c .  lupus ontogenetic 

regress ion is  transposed below the c .  latrans static 

regression , while the c .  rufus regress ion is 

indis tinguishable ( Table 17 ) .  on Figure 15c  it  can be seen 

that the c .  rufus regress ion l ine passes squarely though 

the c .  latrans static data points . The £ ·  lupus regres sion 

also passes through the £ ·  latrans data points , sl ightly 

below the central portion . 

The patterns shown by PW and MCW are s imilar to each 

other and markedly different from anterior cranial length 

variables . In both cases static slopes are different from 

ontogenetic s lopes . Further ,  in both cases the c .  rufus 

ontogenetic regress ions pass through the £ ·  latrans data 

points , sl ightly above the central portion ( Figure 1 5d and 

1 5 e ) . Finally ,  in both cases the c .  lupus ontogenetic 
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regress ion i s  removed far above all o f  the c .  latrans data 

points . 

As expected , a reasonable case for ontogenetic scaling 

can be made with respect to the three anterior cranial 

length variables ( PL ,  IM2 , OI ) . In all three cases both 

wol f ontogenetic regress ions pass through a l arge portion 

of the range of static variation of £ ·  latrans . 

Statistical dif ferences between static and ontogenetic 

regressions exist , but they are not of great magnitude . 

Conversely , on PW and MCW c .  l atrans adults are far removed 

from the c .  lupus ontogenetic regress ion . However , 

cons iderable s imilarity is evident between c .  rufus and c .  

latrans . Given the probabil ity of genetic mixing between 

these species ( see Chapter IV ) , this similarity is not 

surpris ing . In this case apparent ontogenet ic scaling 

probably results not from evolutionary divergence 

constrained by developmental pathways ( e . g . , Wayne 1 9 8 6 a ) , 

but from s econdary convergence produc ing s imil ari.ties in 

development and final adult morphology . 

Analys is of c .  aureus 

Figure 16 shows plots that illustrate the range of 

static variat ion of c .  aureus in rel ation to the wol f  

ontogenetic regre s s ions . on PL the wolf  regress ions pass 

through the c. aureus data points at their upper margin 

( Figure 1 6 a ) . This apparent transpos ition is statistically 

demonstrable ( Table 17 ) . Similarly , on IM2 the c.  lupus 
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ontogenetic  regress ion passes through the upper port ion o f  

the £ ·  aureus data points ( Figure 1 6b ) . Divergent static 

and ontogenetic s lopes prohibit evaluation of  elevations . 

On or both ontogenetic regres s ions pass squarely through 

the c .  aureus range of static variation ( Figure 1 6 c ) . 

Slopes and elevations are statistically indist inguishable 

or similar ( Table 1 7 ) . 

The variables PW and MCW exhibit greater disparity 

between static and ontogenetic patterns of variation . on 

PW the £ ·  rufus ontogenetic regression barely crosses the 

range of £ ·  aureus data points at its upper margin . The c .  

lupus ontogenetic regress ion is removed far above ( Figure 

16d ) . Although slope di fferences prevent formal comparison 

of elevations ( Table 1 7 ) , the differences are clearly 

substantial . MCW exhibits even greater differences . 

Again , ontogenetic and static slopes  are different ( Table 

1 7 ) .  However ,  both ontogenetic regress ions fall above the 

entire £ ·  aureus range of static variation , with c .  lupus 

the farthest  removed . 

Patterns of static variation in c .  aureus are 

generally consistent with an hypothes is of ontogenetic 

scaling with wolves in anterior cranial length variables .  

Admittedly the evidence is problematical . Robust  evidence 

of ontogenetic scal ing is found only with or . on PL and 

IM2 the wol f  ontogenetic regress ions fal l  higher than would 

be expected under conditions of ontogenetic scal ing . In 
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both cases , however ,  they intersect the range o f  static 

variation of c .  aureus . 

As expected, the cranial width variables do not 

reflect ontogenetic scal ing . £ ·  lupus does  not even 

approach the £ ·  aureus range of stat ic variation on either 

PW or MCW . c .  rufus intersects the c .  aureus range of data 

points only on PW , and only at its uppermost  range of 

variation . Wol f  ontogenetic regress ions arguably conform 

to an hypothes i s  of ontogenet ic scal ing only on anterior 

cranial length variables .  

Analys is of  c .  familiaris 

Plots showing the range of  static variation of  the 

dogs in relation to wol f  ontogenetic regress ions are 

presented in Figure 17 . Figure 1 7 a  indicates that both 

ontogenetic regress ions pass through the range of  variation 

of the dogs , with £ ·  rufus approaching the central portion 

of that range . However ,  both ontogenetic regress ions are 

transposed s lightly above the dog static regre s s ion ( Table 

17 ) .  on IM2 the c .  lupus ontogenetic regres sion exhibits a 

different slope from the £ ·  famil iaris static regress ion , 

preventing formal comparison of elevations . Figure 17b 

shows that the c .  lupus regress ion passes squarely through 

the range of the £ ·  famil iaris data points , s lightly above 

the central portion of that range . on or the ontogenetic 

regress ions are transposed below the c .  familiaris static 

regress ion ( Table 17 ) .  However , both ontogenetic 
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regress ions pass through a substantial portion o f  the range 

of c. fam i l i aris data points ( Figure 17c ) . 

On PW and MCW ontogenetic slopes are different from 

the static regression slopes . on PW both ontogenetic 

regressions intersect the range of �·  famil iaris data 

points ,  �- lupus at the uppermost margin and �- rufus in 

the lower portion of that range ( Figure 1 7 d ) . Together ,  

they almost bound the c .  famil iaris data points . on MCW 

the � ·  lupus ontogenetic regress ion passes through the 

range of � ·  famil iaris data points at its uppermost margin , 

while  the c .  rufus ontogenetic regress ion passes through in 

close proximity to the central portion of that range 

( Figure 17 e ) . 

overal l ,  the patterning exhibited by dogs on anterior 

cranial length variables is similar to that exhibited by � ·  

aureus and c .  l atrans . Wol f  ontogenetic regress ions always 

intersect the range of stat ic data points , often close to 

the central portion of that range . on cranial width 

variables the dogs and other adult c anids diverge . The C .  

lupus ontogenetic regress ions for both PW and MCW are 

removed far above the ranges of static variation shown by 

c .  aureus and c .  latrans . The c .  rufus ontogenetic 

regression is  consistently s imilar only to c .  latrans , an 

unsurpris ing pattern given the probability of  

hybridization . Conversely , both � - lupus and c .  rufus 

ontogenetic regress ions invariably intersect the range of 
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£ ·  famil iaris data points on both PW and MCW , if  only 

marginally . Evidence for ontogenetic scal ing with respect 

to thes e  variables  is stronger for the dogs than for the 

other adult  canids . 

Evaluation of ontogenetic Al lometry 

Based on analys is and discussion in previous chapters 

it was proposed that dogs should exhibit ontogenetic 

scaling with wolves on al l cranial variables . In contrast , 

other wild c anids should exhibit ontogenetic scal ing on 

anterior cranial length variables only . Results of 

analys is presented in this chapter are suggestive , though 

problematical . on anterior cranial length variables 

ontogenetic regressions from both £·  lupus and c .  rufus 

always pass through the range of variation exhibited by the 

adult canids . In some cases evidence for ontogenetic 

scal ing is  strong . Examples are the comparisons of both c .  

rufus and £ ·  lupus to c .  aureus on OI , and the £· lupus -£ . 

famil iaris comparison on IH2 . In other cases the 

ontogenetic regres sion l ines pass through the upper or 

lower port ions of the range of static variation of a given 

group . It is argued here that the general correspondence 

between static variation and wol f  ontogenetic traj ectories 

provides tentative support for an hypothes is of ontogenetic 

scal ing of all  groups on anterior cranial length variables . 

Better s ampl es , particularly of j uveniles , will be required 
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before a more definitive conclus ion can b e  reached . 

Results from analys is of cranial width variables are 

also sugges t ive but problematical . As expected , wol f  

ontogenet ic regress ions are usually far removed from ranges 

of static variation exhibited by � - aureus and c .  l atrans . 

A conspicuous and unsurprising exception involves c .  rufus ­

� - latrans comparisons . conversely , and as expected , wolf  

ontogenet ic regress ions consistently intersect the range of  

static variation shown by the dogs . There is no question 

that the dogs exhibit better evidence of ontogenetic 

scaling on PW and HCW than c .  latrans or c .  rufus . 

However ,  wol f  ontogenetic regress ions do not pass through 

the central portion of � - famil iaris data points . Hence , 

absolute evidence of  ontogenetic scaling is  ambiguous . 

Nonetheless , greater rel ative correspondence between 

the locations of c .  familiaris adults and the � - lupus 

ontogenet ic regress ions is striking . � - lupus ontogenetic 

regress ions do not even approach the ranges of  static 

variat ion of c .  aureus or c .  latrans on either cranial 

width variable . Greater correspondence between c .  

famil iaris and � - lupus is symptomatic of the upward 

transposition of �- famil iaris relative to c .  aureus or c .  

l atrans ( see Chapter V) . This upward transposition brings 

the c .  familiaris adults into closer proximity to the 

ontogenetic regress ion line of �· lupus . Despite the 

relatively close correspondence of c .  familiaris to the c .  
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lupus ontogenetic regress ions , the c .  rufus ontogenet ic 

regres s ions cons istently pass closer to the central portion 

of the £· familiaris data points on all variables . 

However , results of multivariate analysis in Chapter VII 

compl icate the apparent s imilarity between c .  famil iaris 

adults and £· rufus juveniles . 

The general correspondence of wol f  ontogenetic 

allometries to patterns of static variation among anterior 

cranial length variables is cons istent with the f indings of  

Wayne ( 19 8 6a ) . On cranial width variables the disparities  

between adult wild canids and wol f  ontogenet ic allometries , 

with concurrent s imilarity between adults dogs and wol f  

ontogenet ic allometries , are also cons istent with Wayne ' s  

f indings . In wayne ' s  case the divergent patterns shown by 

cranial width and depth allometries were viewed as a 

consequence of developmental constraints on dogs . Wayne 

argued that dogs are morphologically confined to boundaries 

as sociated with their own developmental pathway . It  is 

argued here that morphology in dogs is largely conf ined to 

the developmental boundaries of their wol f  ancestors . 

These arguments are complementary , not contradictory . Both 

specify a fundamental developmental constraint on the 

morphology of dogs . 
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summary 

1 .  on anterior cranial l ength variables ( PL ,  IM2 , OI ) 

the dogs , j ackals , and coyotes exhibit reasonable evidence 

of ontogenetic scal ing with wolves ( � . rufus and £ ·  lupus ) .  

2 .  on c ranial  width variables ( PW ,  MCW ) the £ ·  lupus 

ontogenetic regress ions are far removed from the range of 

static variation of the j ackals or coyotes .  The c .  rufus 

ontogenetic regress ions are far removed from the static 

data points of  the j ackals ,  but centrally intersect the 

coyote static data points . ontogenet ic scal ing between c .  

rufus and c .  l atrans is not surprising . 

3 .  on cranial width variables the domes tic dogs 

exhibit cons iderably stronger evidence of ontogenetic 

scaling with wolves than do other canids ( excluding the c .  

rufus-£.  l atrans comparisons ) .  Greater proximity of the 

dog static data points to � ·  lupus ontogenet ic regres s ions 

reflects upward transposition of the dogs relative to other 

adult groups . Adult dogs have wide cranial vaults and 

palates , features as soc iated with j uvenile wolves . 

4 .  These results are cons istent with previous 

allometric investigations . Though evidence is subj ect to 

uncertainty , an hypothes is of ontogenetic scal ing between 

wolves and dogs is supported . 



1 7 0  

CHAPTER VII 

MULTIVARIATE ANALYSIS 

This chapter presents results of canonical 

discriminant analyses on adult and j uvenile canid groups . 

As explained in Chapter I I I , discriminant analys is  i s  used 

to assess  overall patterns of morphological variability 

between different groups . A primary obj ective is to 

determine the relative degree of morphological 

correspondence between adult dogs and juvenile wolves . 

Discriminant analys is is well  suited to this task because 

it seeks to achieve maximum separation between groups 

( Wayne 1 9 8 6 a ) . Groups characterized by greatest 

morphological s imilarity can be expected to fall closest to 

each other on the canonical axes . 

sample composition and Obj ectives 

The North American and European dog groups are pooled 

into a s ingle sample in all analyses . Though there is 

variabil ity between these groups , the goal of this analys is 

is  to as sess overall differences between dogs and other 

groups . Similarly , it would be undes irable to analyze the 

adult c .  lupus groups separately . Rather than pool them 

into a s ingle sample , only the f ·l ·  lycaon adults are used . 

This helps reduce disparity between different s ample s izes 

without seriously impacting the accuracy of results . 
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Bivariate analysis  revealed cons iderable s imilarity between 

the two subspec ies , though they are by no means identical . 

Ordinarily,  analys is of  j uvenile wolves as if  they 

represented a s eparate species would be unj ustified . The 

kind of variabiity expressed in these samples is 

fundamental ly dif ferent from variabil ity in the adult 

series . Morphological variation in adult groups is  static , 

while the j uvenile groups reflect variation in growth . It 

must be borne in mind that these  comparisons rel ate to a 

specific hypothes i s . This  hypothes i s  predicts  that 

morphological s imilarity between dogs and wolves will 

depend on the developmental stage of wolves . This is  best 

assessed by direct comparison of j uveniles with adults of 

different taxa . 

Ideally , a series of j uvenile samples would be used, 

each representing a different age : for example , four 

months , s ix months , eight months , etc . Given the present 

data base this is imposs ible . Rather , individuals 

representing a range of ages must be assembled into a 

s ingle sample . To control the range of age and 

morphological variabil ity only individuals from age 

categories 2 and 3 are used . Thus , the ages represented 

span from roughly four months to one year ( see Table 2 ,  

page 8 1 ) , though the s amples are skewed towards the latter 

end of that range . This age range represents stages of 

development appropriate to the hypothesis  of progenetic 
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heterochrony i n  dogs . At four months the animals are 

developing into advanced j uveniles , s ignif ied by the 

replacement of deciduous dentition . At one year they have 

virtually attained their final adult size ( cf .  Mech 

1 9 7 0 : 1 2 3 - 1 4 2 ) . summary statistics for the j uvenile  s amples  

used here are presented in  Table 1 8 . 

There are eight bas ic discriminant analyses in this 

chapter . The first three analyses  explore multivariate 

patterning among adults .  The next five analyses 

incorporate j uvenile wol f  s amples for comparison to adult 

groups . The technical obj ectives of all analyses  are to 

( 1 )  extract a series of discriminant functions , ( 2 ) assess 

the robustnes s  of those functions , ( 3 )  evaluate intergroup 

distances on canonical axes , ( 4 )  determine the relative 

contribution of different variables to intergroup 

discrimination , and ( 5 )  plot discriminant scores on 

significant axes to facil itate visual interpretation of 

results . Discriminant analys is  statistics and coeff ic ients 

were calculated using a combination of features in BMDP , 

Program 7M ( Jennrich and sampson 1 9 8 5 ) and the SAS CANDISC 

Procedure ( SAS Institute 1 9 85 ) . For each analys is both 

programs computed identical discriminant functions ; thus , 

results are fully compatible . Explanation of different 

coefficients and statistics is best accomplished with 

reference to actual results . Accordingly ,  the f irst 

exploratory analysis  serves as a useful vehicle for 
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Table 1 8 . Means and standard deviations ( SD )  on cranial 
measurements from j uvenile wolves , age 
categories 2 and 3 .  

Measurement 

Group* CL PL IM2 OI PW MCW 

c .  lu�us 
Mean 2 03 . 2  107 . 5  1 1 2 . 0  9 5 . 2  6 9 . 9  6 8 . 4  

SD 1 4 . 90 6 . 6 7 6 . 2 2 7 . 88 4 . 3 0 3 . 5 8 

c .  rufus 
Mean 1 8 4 . 0  9 5 . 3  1 0 1 . 3  8 5 . 6  5 7 . 6  59 . 5  

SD 1 2 . 4 5 6 . 4 0 6 . 4 6 6 . 64 3 . 20 2 . 44 

*C .  lupus n= 2 6 ;  c .  rufus n= 1 9 . 
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explaining procedure and interpretation . Subsequent 

analyses are summarized more briefly . 

Analys is of Adults 

Analysis  1 :  Untrans formed Data , 
Seven Variables 

In this analys is all the adult groups are analyzed 

with respect to seven variables , all untrans formed . This 

includes the s ix cranial variables used for bivariate 

analys is ( CL ,  PL , IM2 , OI , PW , MCW ) , and one dental 

variable , P4 . The latter variable is included to assess 

the ef fect of variation in tooth length on intergroup 

discrimination . Tables 1 9 - 2 2  and Figure 1 8  summarize 

resul ts . From the summary statistics presented in Table 1 9  

it can be seen that the f irst two functions account for 

over 98 percent of the variab i lity in the s ampl es . 

Magnitude of dispers ion between groups can be gauged 

from Mahalonobis 02 statistics  on Table 2 0 . 02 is a 

general ized distance between group centro ids ( multivariate 

means ) that is independent of s ample size ( Klecka 1 9 8 0 : 5 5 -

5 6 ) .  Associated F-raties allow one t o  determine if  0 2  

distances between groups are s igni ficant . All distances 

are highly s ignificant in this analysis . Greatest 

separation is  obtained between c .  famil iaris and c .  lupus 

( 02=8 . 59 )  while least separation occurs between c .  rufus 

and c .  l atrans ( 02 = 2 . 09 ) . The dogs are closest to c .  

aureus ( 02 =3 . 4 7 ) . 
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Table 1 9 . Summary statistics  from discriminant analys is 1 .  

Percent canonical 
Function E igenvalue Variation correl at ion 

1 1 0 . 856  7 1 . 9 4 . 9 5 7  
2 3 . 986  26 . 4 1 . 8 94  
3 0 . 173  1 . 1 5 . 3 84 
4 0 . 076  0 . 5 0 . 2 6 5  

Table 2 0 . Matrix of Hahalanobis 02 distances between 
groups and as soc iated F-ratios ( in parentheses ) 
from discriminant analys is 1 . *  

Group 

c .  familiaris 

c .  latrans 

c .  rufus 

c .  aureus 

canis 
lupus 

8 . 5 9 
( 309 . 7 )  

6 . 1 5  
( 1 5 8 . 0 ) 

5 . 43 
( 7 5 . 7 )  

8 . 1 3 
( 1 6 5 . 2 ) 

canis canis 
famil iaris latrans 

5 . 6 1  
( 1 37 . 0 )  

7 . 1 8 
( 13 5 . 5 )  

3 . 4 7 
( 3 0 . 9 )  

2 . 09 
( 1 1 . 4 )  

3 . 2 6 
( 2 7 . 0 )  

canis 
rufus 

4 . 81 
( 4 2 . 6 )  

*All F-ratios have 7 and 2 2 5  degrees of freedom , and 
are significant at the . 00 1  level . 
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Table 2 1 . standardized discriminant funct ion coef fic ients 
from the f irst two funct ions from discriminant 
analys is ·1 . 

variable Function 1 Funct ion 2 

CL 1 . 4 10 -4 . 7 0 9  
PL 1 .  5 2 9  2 . 6 53  

IM2 -0 . 1 2 8  -1 . 5 2 7  
OI -0 . 3 7 6  -0 . 5 5 8  
PW -0 . 7 5 1  3 . 68 7  

MCW 0 . 5 01  1 .  7 4 6  
P4 1 .  2 2 1  -0 . 7 7 0  

Table 2 2 . Matrix of classification results from 
discriminant analys is 1 .  

GrouE classified Into 

Actual canis canis canis canis canis 
Group IuEus fami!iaris latrans rufus aureus 

c .  lupus 5 8  0 0 0 0 

c .  famil iaris  0 5 9  0 0 4 

c .  latrans 0 0 5 5  6 1 

c .  rufus 0 0 2 2 5  0 

c .  aureus 0 1 1 1 2 3  
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Figure 18 . Discriminant analys is 1 :  plot of discriminant 
score ranges on two axes ( contours ) for each 
group , based on untrans formed cranial variables 
and P4 . Numbers are group centroids : 
1 =C . l .  lycaon , 2 =C . familiaris , 3=C . latrans , 
4 =C . -rufus , S =C .  aureus . All groups are 
adults . 
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Rel at ive locations between groups can b e  seen on 

Figure 1 8 , which provides a plot of discriminant scores on 

the first two functions . Because two funct ions account for 

over 98 percent of the variabil ity two dimens ional plots 

are accurate . Function 1 orders the taxa by ascending 

s ize : smal lest groups ( dogs , j ackals ) have low 

discriminant scores while l argest groups ( wolves ) have high 

discriminant scores . Size-related discriminant is a common 

phenomenon with untrans formed data ( e . g . , Nowak 197 9 ;  

Wayne 1 9 8 6 a ;  Morey 1986 ) . The second funct ion separates 

c .  famil iaris and c .  lupus from the other groups , 

suggesting patterned morphological variabil ity ( see below) . 

Variables primarily respons ible for intergroup 

discrimination on different axes can be identi fied by 

examining standardized discriminant function coeffic ients 

on Table 2 1 . Ignoring the s ign , variables with l argest 

coeffic ients contribute the most  to intergroup 

discrimination on the corresponding axis ( Klecka 1 9 80 : 29-

3 0 ) . on the f irst function coe f f icients for CL and PL have 

the highest  values . It wil l  be recalled that bivariate 

analys is revealed tight isometric scal ing between these  

variables . Consequently, their importance on the first 

discrimant function supports the interpretat ion of s ize­

related discriminat ion inferred from Figure 1 8 . once one 

or two variables have accounted for the bas ic s ize  

disparities between groups , other variables assume less 
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importance . However , P 4  also apparently contributes 

s igni ficantly to s ize discrimination . 

on the second function CL and PW are most  important . 

Fiqure 1 8  indicates that this funct ion separates £ ·  

famil iaris and £ ·  lupus from the other canid groups . 

Bivariate analys is revealed that £ ·  famil iaris and , to a 

lesser extent , £ ·  lupus have proportionally wider palates 

in rel ation to other groups . Thus , the second discriminant 

function has keyed primarily on this morphological pattern . 

overall robustnes s  of the discriminant functions can 

be gauged from classification results summarized on Table 

2 2 . Each individual is classified by its proximity to 

group centroids . I f  the discriminant funct ions are robust 

individuals are classified into the correct group . In this 

study the BMDP7M JACKKNIFE option is used . In the 

j ackknife procedure the individual being clas s i f ied is 

removed from the computation of  the clas s i f icat ion 

functions , and then returned when the next case  is pulled 

out for clas s i f ication . This  approach to assess ing 

class ificat ion error is less biased than the 

nonsubstitution routines found in many other software 

packages ( c f .  Lachenbruch and Mickey 196 8 ) . 

In this analys is overall clas s i fication accuracy is 

9 3 . 2  percent ( Table 2 2 ) .  Not surpris ingly,  

miscl ass i f ications occur primarily between c .  rufus and c .  

l atrans , and between c .  famil iaris and c .  aureus . All c .  
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lupus individuals are correctly classified . overal l ,  a 

9 3 . 2  percent success rate indicates relatively robust  

discriminant functions . 

A final step taken in each analysis is  a response to 

the fact that discriminant analys is can be influenced by 

substantial differences in s ample sizes ( Klecka 1 9 8 0 : 6 3 ;  

Wayne 1 9 8 6 a ) . Because the goal is maximal overall 

separation , di fferences between groups with l arge sample 

s izes may be magnified relat ive to  groups with smaller 

s amples . For example , the apparent proximity of £ ·  

famil iaris ( n= 6 3 ) to £ ·  aureus ( n= 2 7 ) could result from 

discriminant functions des igned primarily to maximize 

separation between £ ·  familiaris and another l arge sample 

like c .  lupus ( n= S 8 ) . 

To check the accuracy of the primary discriminant 

analys is , a secondary analys is  was performed us ing the same 

variables but with the dogs excluded from the computation 

of the discriminant functions . While this  s tep el iminates 

s ample s ize bias with respect to the dogs , it does  not 

neces s arily el iminate bias among the wild canids . However ,  

subsequent analyses wil l  resolve any interpretive 

ambiguities stemming from sample s ize disparities among 

wild canid groups . 

In this secondary analys is the dogs were treated as if  

their spec ies memberships are unknown . Accordingly,  their 

c l as s if ic at ion is based on functions derived solely from 
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patterns o f  variability among wild canids . Primary 

analys is indicated that the dogs should fall closest to c .  

aureus . When secondary analys is was performed all 6 3  dogs 

were clas s f ied with c .  aureus . Thus , primary and secondary 

analyses  yield consistent results . 

To sum , this  analys is  of  adults yields s ize  

discrimination on the first axis based primarily on the 

variables CL , PL , and , to a les ser extent , P4 . The second 

axis separates groups with proportional ly wide palates (£ . 

famil iaris and E· lupus ) from groups with narrower palates 

( £ . rufus , c .  l atrans , c .  aureus ) .  Overall ,  the dogs are 

closest to c .  aureus . 

Analys is 2 :  Indexed Data , 
six variables 

This analys is uses the s ame groups as before , but with 

s ix indexed variables . PL , IH2 , OI , PW , HCW , and P4 are 

all expressed as a ratio of CL . As expl ained in Chapter 

III , express ing each measurement as a proportion of CL 

focuses discrimination on morphological variabil ity rather 

than sheer differences in the magnitude of dimens ions . 

Because CL is the reference , results should be compatible 

with bivariate analyses in which the other measurements 

were scaled against CL . 

Results  of this analys is  are summarized on Tables 2 3 -

2 6  and Figure 1 9 . Table 23  indicates that the f irst two 

functions account for over 9 7  percent of the variability in 
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Table 2 3 . summary statistics  from discriminant analysis  2 .  

Percent canonical 
Function E igenvalue Variat ion Correl at ion 

1 5 . 8 17 77 . 1 5 . 9 24  
2 1 .  534  20 . 34 . 7 78  
3 0 . 1 53 2 . 03 . 3 6 5  
4 0 . 03 6  0 . 4 7 . 1 86  

Table 24 . Matrix of Mahalanobis  02 distances between 
groups and associated F-ratios ( in parenthe s i s ) 
from discriminant analys is 2 . *  

canis canis canis Canis 
Group lUEUS familiar is l atrans rufus 

c .  famil iaris 4 . 8 6 
( 1 1 6 . 4 )  

c .  latrans 3 . 43  5 . 6 6 
( 5 7 . 4 )  ( 1 6 3 . 4 )  

c .  rufus 3 . 16 6 . 6 9 1 .  7 1  
( 30 . 1 )  ( 1 3 8 . 0 )  ( 9 .  0 )  

c .  aureus 3 . 34 4 . 2 1  2 . 1 3 3 . 23 
( 3 2 . 6 )  ( 5 3 . 2 )  ( 1 3 . 5 ) ( 2 2 . 5 )  

*All F-ratios have 6 and 226  degrees of freedom and 
are s ignificant at the . 00 1  level . 
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Table 2 5 . Standardized discriminant funct ion coeffic ients 
from the first two functions from discriminant 
analysis  ·2 . 

variable Function 1 Function 2 

PL/CL -0 . 0 2 0  - 0 . 5 8 3  
IH2/CL 0 . 2 1 7  0 . 9 0 9  

OI/CL -0 . 1 8 2  -0 . 3 5 6  
PW/CL 1 .  5 6 2  - 1 . 5 9 8  

HCW/CL 1 .  2 2 4  1 . 1 2 7  
P4/CL -0 . 4 7 9  0 . 1 9 1  

Table 26 . Matrix of clas s ification results from 
discriminant analys is 2 .  

Group Classified Into 

Actual Canis Canis canis canis canis 
Group lupus famiiiaris latrans rufus aureus 

c .  lupus 4 9  1 0 4 4 

c .  familiaris 0 5 9  1 0 3 

c .  l atrans 2 0 4 6  9 5 

c .  rufus 2 0 1 2 4  0 

c .  aureus 2 1 2 1 2 0  



184  

N 
c 
0 4 . 0  -

.. 
0 c 
:;, 

.... 
.. 
c 
� c 1 . 0 -
E 
c.. 
0 
., -

Q 

D t sor 1 m t n a n t  Funot t o n 1 

Figure 1 9 . Discriminant analys is 2 :  plot of discriminant 
score ranges on two axes ( contours ) for each 
group , based on indexed cranial variables and 
indexed P4 . Numbers are group centroids : 
l=C . l .  lycaon , 2 =C .  familiaris , 3 =C .  latrans , 
4 =C . -rufus , S=C . aureus . All groups are 
adults . 
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the samples . 02 distances ( Table 24 ) indic ate greatest 

separation between c .  familiaris and £·  rufus , with weakest 

separation between c .  l atrans and c .  rufus . Like the 

previous analysis , dogs are closest to £ ·  aureus . The plot 

of discriminant scores ( Figure 1 9 ) indicates that the f irst 

function separates the dogs from the wild canids while the 

second function primarily separates £ ·  lupus from the other 

groups , espec ially the smaller wild canids . 

Standardized discriminant function coeffic ients on 

Table 2 5  are especially noteworthy . Measurements important 

in the first analys is now assume a minor rol e . With 

indexed dat a ,  PW/CL and MCW/CL assume greatest importance 

on both of the first two functions , with IM2/CL also 

contributing s ignificantly on Function 2 .  Thus , on the 

f irst function the dogs are conspicuously removed from 

other groups primarily as a consequence of proportionally 

wider palates and cranial vaults . Function 2 discriminates 

£· lupus , the only group exhibiting proportionally short 

tooth rows and narrow cranial vaults in combination with 

relatively wide palates . 

Not surpris ingly , classif ication results indicate 

weaker discrimination relative to the first analysis , with 

only 8 3 . 9  percent correct classification . Errors occur 

primarily between c .  rufus and £ ·  latrans , and between c .  

lupus and two of the wild canid groups . Clearly,  indexing 

weakens taxonomic resolution . However , it provides a more 
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accurate assessment o f  morpholoqical differences . The doqs 

remain rel atively distinct , indicated by their correct 

classification in 59 of 63 cases , and by their pos ition on 

the canonical axes ( Fiqure 19 ) .  

Thouqh the doqs are wel l  separated from other qroups , 

primary analys is  has suqqested they are c losest to c .  

aureus , and not much further removed from £ ·  lupus . 

Secondary analysis , in which doqs were removed from the 

computation of the discriminant functions , are cons istent 

with primary analysis . Fifty-two of the doqs are 

classified with c .  aureus , while  the remaininq eleven are 

class i fied with c .  lupus . 

Results of this analysis are cons istent with bivariate 

analyses .  c .  familiaris and c .  aureus are s imilar in 

lenqth measurements as a consequence of s imilar s ize . 

While the doqs differ from £ ·  aureus in width proportions , 

they are even more distinct from c .  latrans or c .  rufus . 

On the other hand , doqs exhibit qreatest s imilarity in 

palate width to c .  lupus ( thouqh they are still  distinct ) .  

However ,  relative lenqths of IM2 and OI are different as a 

consequence of  allometric scalinq . Thus , the kinds of  

patterninq that rel ate doqs to  £ ·  lupus and £ ·  aureus are 

different , but cons istent with bivariate patterns . The 

overall morpholoqical pattern analyzed here suqqests 

qreater proximity to c .  aureus . 
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This  analys is util izes the same five groups with 

indexed dat a ,  but P4/CL is el iminated . This  dental 

variable must be el iminated because it cannot be included 

in subsequent analyses involving j uveniles . In any cas e ,  

the previous analys is demonstrated that P4/CL was not an 

important discriminating variable . Patterns of 

discrimination among adults us ing only indexed cranial 

variables provide an appropropriate frame of  reference for 

subsequent analys is of j uveniles . 

Results of this  analys i s ,  summarized on Tables 2 7 -30  

and Figure 2 0 ,  parallel results from the previous analysis . 

Since P4/CL contibuted little to intergroup discrimination 

this is not surprising . In this analysis the f irst two 

functions account for 97 . 8  percent of the variabil ity 

( Table 2 7 ) .  0 2  distances ( Table 2 8 ) indicate greatest 

separation between c .  familiaris and £ ·  rufus , with weakest 

separation between c .  l atrans and c .  rufus . The dogs are 

closest to £ ·  aureus , fol lowed by £ ·  lupus . The plot of 

discriminant scores ( Figure 2 0 )  is virtually identical to 

the plot from the previous analys is ( Figure 1 9 ) . Reversal 

of the axes is  inconsequential . Standardized disc iminant 

function coefficients ( Table 2 9 ) exhibit the same pattern 

as the previous analysis . Classification results ( Table 

2 9 ) are also about the same . Finally , removal of  the dogs 

from the analys is results in 55  spec imens classifying as c .  
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Table 2 7 . summary statistics from discriminant analys is  3 .  

Percent canonical 
Function E igenvalue variation correlation 

1 5 . 0 29  74 . 8 9 . 9 1 3  
2 1 .  5 4 1  2 2 . 9 5 . 7 7 9  
3 0 . 14 3  2 . 1 2 . 3 5 3  
4 0 . 003  0 . 0 1 . 0 5 0  

Table 2 8 . Matrix of Mahalanobis D 2  distances between 
groups and associated F-ratios ( in parentheses ) 
from discriminant analys is 3 . *  

canis canis Canis canis 
Group lUEUS familiaris l atrans rufus 

c .  familiar is  4 . 64 
( 1 28 . 9 ) 

c .  latrans 3 . 34 5 . 1 9 
( 6 6 . 3 )  ( 1 6 5 . 4 )  

c . rufus 3 . 1 3 6 . 37  1 . 6 7 
( 3 5 . 7 )  ( 1 50 . 9 )  ( 1 0 . 4 )  

c .  aureus 3 . 3 6  3 . 7 3 2 . 1 1 3 . 2 8 
( 4 1 . 2 )  ( 5 1 . 7 )  ( 1 6 . 5 )  ( 2 8 . 5 ) 

*Al l F-ratios have 5 and 2 2 9  degrees of freedom and 
are s ignificant at the . 001  level . 
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Table 2 9 . Standardized discriminant function coeffic ients 
from the first two functions from discriminant 
analys is 3 .  

variable Function 1 Function 2 

PL/CL -0 . 3 5 0  0 . 6 0 1  
IM2 /CL -0 . 0 2 8  - 1 . 0 1 7  

OI/CL -0 . 1 1 1  0 . 3 9 2  
PW/CL 1 . 33 0  1 . 6 0 5  

MCW/CL 1 .  2 1 9  - 1 . 0 9 2  

Table 30 . Matrix of classification results from 
discriminant analys is  3 .  

Group Classified Into 

Actual Canis canis canis canis canis 
Group lupus familiaris l atrans rufus aureus 

c .  lupus 5 2  1 1 1 4 

c .  familiaris 1 5 8  1 0 3 

c .  latrans 1 0 4 6  1 1  4 

c .  rufus 2 0 1 2 4  0 

c .  aureus 2 2 3 1 1 9  
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Fiqure 2 0 . Discriminant analys is 3 :  plot of  discriminant 
score ranqes on two axes ( contours ) for each 
qroup , based on indexed cranial variables . 
Numbers are qroup centroids : l = C . l .  lycaon , 
2 =C .  familiaris ,  3=C . latrans , i=c . rufus , 5 =C . 
aureus . All qroups-are adults . -



1 9 1  

aureus , seven a s  £ .  lupus , and one as c .  l atrans . 

Analys is of Adults and Juveniles 

The remaininq five analyses incorporate samples of 

j uvenile £· lupus and £ ·  rufus { See Table 18 , paqe 173 ) 

with different combinations of the adult qroups . Analyses 

4 and 5 include all adult qroups with one of  the j uvenile 

series . Then , to focus on spec ific qroups , analyses 6 ,  7 ,  

and 8 use only combinations of the j uvenile wolves , the 

doqs , and the j ackals in three qroup analyses . All f ive 

analyses utilize  the five cranial variables indexed aqainst 

CL . 

Analysis  4 :  All Adult Groups 
with Juvenile c .  lupus 

Results of this six qroup analys is are summarized on 

Tables 3 1-34  and Fiqure 2 1 .  The f irst two discriminant 

functions account for 9 6 . 2  percent of the variation { Table 

3 1 ) . 02 distances between adult qroups { Table 3 2 )  are 

cons is tent with previous analyses . The £ ·  lupus j uveniles 

are closest to the £ ·  lupus adults , with both c .  aureus and 

c .  famil iaris not much further removed . c .  aureus is  

sliqhtly closer to  the j uvenile qroup ( 02 = 2 . 64 )  than is  c .  

famil iaris { 02= 2 . 7 2 ) . Thouqh this result i s  surprisinq , it 

may be a consequence of disparate sample sizes . Subsequent 

analyses will  focus on this  problem . For the present , the 

most noteworthy result is  that c .  familiaris is closer to 
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Table 3 1 . summary s tatistics from discriminant analys is  4 .  

Percent canonical 
Funct ion E igenvalue Variation Correl at ion 

1 4 . 306  7 2 . 54 . 90 1  
2 1 . 4 0 5  23 . 66 . 7 64  
3 0 . 19 5  3 . 2 9 . 404  
4 0 . 030  0 . 50 . 1 70  
5 0 . 000  0 . 00 . 00 2  

Table 3 2 . Matrix of Hahalonobis D2 distances  between 
groups and assoc iated F-ratios ( in parentheses ) 
from discriminant analysis  4 . *  

canis canis canis canis canis 
Group lupus familiaris l atrans rufus aureus 

c .  familiar is  4 . 50 
( 1 21 . 6 )  

c .  latrans 3 . 3 1  5 . 0 1 
( 6 5 . 3 )  ( 1 5 4 . 7 )  

c .  rufus 3 . 08 6 . 1 6 1 .  6 4  
( 34 . 6 )  ( 1 4 1 . 3 )  ( 9 . 9 6 )  

c .  au reus 3 . 37 3 . 6 2 2 . 09 3 . 2 2 
( 4 1 . 5 ) ( 4 8 . 7 )  ( 1 6 . 1 )  ( 2 7 . 6 )  

c .  lupus 2 . 35 2 . 7 2  3 . 06 3 . 8 5 2 . 64 
-( j uveniles ) ( 1 9 . 7 )  ( 2 6 . 8 )  ( 33 . 9 )  ( 3 8 . 7 )  ( 1 8 . 2 )  

*All F-ratios have 5 and 2 54 degrees of freedom and 
are s ignificant at the . 001  level . 
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Table 33 . Standardized discriminant function coeffic ients 
from the first two functions from discriminant 
analys is 4 .  

variable Function 1 Function 2 

PL/CL -0 . 0 4 0  0 . 6 2 5  
IM2/CL -0 . 1 4 0  -1 . 05 2  

OI/CL -0 . 0 3 0  0 . 4 44 
PW/CL 1 . 23 7  1 .  5 7 2  

MCW/CL 1 . 2 5 0  -1 . 0 5 1  

Table 34 . Matrix of  classification results from 
discriminant analys is 4 .  

Group classified Into 

Canis 
Actual canis canis canis canis canis t3m Group Iupus famiiiaris l atrans rut us aureus ) 

c .  lupus 4 8  0 1 1 2 7 

c .  famil iaris 0 54  0 0 2 7 

c .  latrans 1 0 4 6  11  3 1 

c .  rufus 2 0 1 2 4  0 0 

c .  aureus 2 2 3 1 18  1 

c .  lupus 
( j uveniles ) 

4 3 1 0 1 17 
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Figure 2 1 . Discriminant analys is 4 :  plot o f  discriminant 
score ranges on two axes ( contours ) for each 
group , based on indexed crani al variables . 
Numbers are group centroids : 1 =C . l .  ltcaon , 
2 =C .  familiaris , 3=C . latrans , 4�c: ru us , S=C . 
aureus , 6=C . lupus Juveniles . Groups 1 - 5  are­
adults . 
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the j uvenile wolves than to any adult group . 

The discriminant score plot ( Figure 2 1 )  illustrates 

the proximity between £ ·  famil iaris and the j uvenile  

wolves . The basis  for intergroup discrimination is not 

significantly altered by the addition of the j uvenile 

wolves . Like analyses 2 and 3 ,  the first function 

separates dogs from wild canids on the bas is of differences 

in rel ative width of the palate and cranial vault ( Table 

33 ) .  The intermediate pos ition of the j uvenile  wolves 

( Figure 2 1 )  reflects their wide palates and cranial vaults 

relative to adult wild canids . The second function again 

separates adult £ ·  lupus on the bas is of their unique 

combination of relatively wide palates with narrow cranial 

vaults and short tooth rows . The j uvenile wolves were 

approaching s imilar proportions , evidenced by their 

relative proximity to adult c .  lupus on the second axis 

( Figure 21 ) . 

Incorporation of the j uvenile £ ·  lupus groups results 

in a weak clas s i f ication success  rate of 7 8 . 4  percent 

( Table 34 ) . About one third ( 9  of 2 6 ) of the juvenile 

wolves are misclassified, most with adult £·  lupus ( 4 )  or 

£· famil iaris ( 3 ) . Because of their cons iderable range of 

variabil ity, probably coupled with small sample s iz e ,  the 

j uvenile £ ·  lupus group is not strongly separated . 

Nonetheless , they show greater morphological affinity with 

c .  famil iaris than does any other group . Secondary 
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analys is confirms this conclusion . When dogs are removed 

from the analys i s , 5 2  of the 6 3  class ify with the j uvenile 

wolf  group . The remaining 1 1  c lass ify with £ ·  aureus . 

To sum , incorporation of  j uvenile £ ·  lupus weakens 

overall  discrimination . The basis for discrimination 

remains the same as in analyses 2 and 3 ,  which included 

only adults . Most importantly,  c .  familiaris is more 

s imilar to j uvenile £· lupus than to any other group . 

Analys is 5 :  All Adult Groups 
with Juvenile c .  rufus 

Results of this analys is are summarized on Tables 3 5 -

38  and Figure 2 2 . The first two functions account for 97 . 1  

percent of the variation ( Table 3 5 ) . 0 2  distances ( Table 

3 6 ) involving the £ ·  rufus j uveniles are markedly dif ferent 

from those involving £ ·  lupus j uveniles in the previous 

analysis  ( Table 3 2 ) . While distances between j uveniles and 

adults of the same species are s imilar , £ ·  rufus j uveniles 

are cons iderably closer to other adult groups , especially 

c .  aureus and c .  l atrans . Remarkably,  the D2 distance 

between c .  rufus j uveniles and £ ·  latrans is  statistically 

ins ignificant . In terms of the few dimens ions analyzed 

here , £· l atrans is  a perfectly j uvenil ized vers ion of £·  

rufus . 

The discriminant score plot ( Figure 2 2 )  il lustrates 

the proximity between £ ·  rufus j uveniles and c .  l atrans . 

The primary bas is for overall discrim ination remains the 
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Table 35 . summary statistics from discriminant analysis  5 .  

Percent Canonical 
Function Eiqenvalue vari ation correlation 

1 4 . 24 5  7 0 . 94 . 9 00  
2 1 . 5 66  26 . 16 . 7 8 1  
3 0 . 1 56  2 . 6 7 . 3 7 1  
4 0 . 013  0 . 2 1 . 1 1 3  
5 0 . 001  0 . 00 . 033 

Table 3 6 . Matrix of Mahalanobis 02 distances between 
qroups and associated F-ratios ( in parentheses ) 
from discriminant analys is 5 . *  

Canis canis canis Canis  Canis 
Group lupus famiiiaris l atrans rulus aureus 

c .  famil iaris 4 . 48 
( 1 20 . 6 )  

c .  latrans 3 . 30 4 . 89 
( 6 5 . 0 )  ( 1 4 7 . 2 )  

c .  rufus 3 . 01 6 . 03 1 .  64  
( 33 . 1 ) ( 1 3 5 . 2 ) ( 1 0 . 0 ) 

c .  aureus 3 . 4 0 3 . 5 6 2 . 0 5 3 . 1 7 
( 4 2 . 2 ) ( 4 7 . 1 ) ( 1 5 . 5 )  ( 2 6 . 7 )  

c .  rufus 3 . 47 4 . 47 0 . 7 8 2 . 24 1 .  9 5  
( j uveniles ) ( 34 . 1 ) ( 5 7 . 5 )  ( 1 . 7 6 )  ( 1 1 . 0 )  ( 8 .  4 )  

*All F-ratios have 5 and 247  deqrees of freedom . With 
one exception , all are siqnif icant at the . 00 1  level . 
c .  latrans and c .  rufus j uveniles are not s iqni ficantly 
aifferent ( p= . 12 ) . 
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Table 3 7 . standardized discriminant function coeffic ients 
from the first two functions from discriminant 
analysis  ·5 . 

Variable Function 1 Function 2 

PL/CL -0 . 032  -0 . 6 0 5  
IM2 /CL -0 . 0 7 0  1 . 034  

OI/CL -0 . 0 7 9  -0 . 377  
PW/CL 1 .  2 27 - 1 . 5 57 

MCW/CL 1 . 17 1  1 .  0 9 9  

Table 3 8 . Matrix of clas s ification results from 
discriminant analys is 5 .  

GrouE Cl assified Into 

Canis 
Actual canis canis canis canis canis rufus 
Group lupus famil iaris latrans rufus aureus ( j uv )  

c .  lupus 5 2  1 1 1 4 0 

c .  familiaris 1 57  0 0 3 2 

c .  latrans 1 0 28  11  4 18  

c .  rufus 2 0 1 24  0 0 

c .  aureus 2 2 2 1 16  4 

c .  rufus 0 1 4 4 2 8 
( j uveniles ) 
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Figure 2 2 . Discriminant analysis  5 :  plot of discriminant 
score ranges on two axes ( contours ) for each 
group , based on indexed cranial variables . 
Numbers are group centroids : 1 =C . l .  lycaon , 
2=C . familiari s ,  3=C . latrans , 4�C� rufus , S=C . 
aureus , 7=C . rufus Juveni les . Groups 1-5  are­
adults . 
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same as  previous analyses . The dogs , with markedly wide 

palates and cranial vaults , are well  demarc ated by the 

f irst function . c .  lupus , combining short tooth rows and 

narrow cranial vaults with wide pal ates , is discriminated 

by the second function ( see Table 37 ) .  overall 

class ific ation success , at 72 percent , is  the weakest thus 

far encountered ( Table 3 8 ) . Tremendous overlap between f·  

rufus j uveniles and c. l atrans is primarily respons ible . 

Eighteen coyotes were incorrectly classified as c .  rufus 

j uveniles . L ittle confusion between c .  famil iaris and c .  

rufus j uveniles is evident . When dogs are removed from the 

analys is , 54 of 63 are classified with c .  aureus . Seven 

are class i fied with c .  lupus and only two are classified 

with j uvenile f ·  rufus . Clearly,  the dogs are not s imilar 

to j uvenile f ·  rufus . 

cons idering the proximity of  f ·  rufus ontogenetic 

bivariate regressions to f ·  famil iaris adult data points 

( Chapter VI ) ,  the distance between the two groups in this 

analys is seems surpris inq . overal l ,  £ ·  famil iaris exhibits 

much closer affinities to f ·  lupus j uveniles . However , the 

apparent incongruity presented in this  analysis  is 

cons istent with bivariate results . Expl anation is best 

postponed until all multivariate analyses have been 

cons idered . 

Analyses 1-5  have suggested several provocative 

patterns . Firs t ,  among adult  groups c .  famil iaris  is most 
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s imilar to c .  aureus . second , f ·  famil iaris is  more 

s imilar to j uvenile  f· lupus than to any other group . 

Finally ,  f ·  famil iaris is not s imilar to j uvenile £ ·  rufus . 

As noted earl ier , however , a probl em with multigroup 

analyses  is that discrimination may be heavily biased 

towards groups with large s ampl e  s izes . some of the trends 

j ust noted may be partial ly an artifact of this phenomenon , 

despite the measure taken to minimize this poss ibil ity 

( removal of dogs at the end of each analys is ) . To verify 

the basic accuracy of these trends , analyses  6 - 8  focus on 

morphological affinities only among dogs , j ackals , and 

j uvenile wolves . 

Analys is 6 :  Dogs , Jackal s ,  
and c .  lupus Juveniles 

Results of analysis  s ix are summarized on Tables 39-

4 2  and Figure 2 3 . Because three groups are involved , only 

two functions were extracted ( Table 39 ) .  0 2  distances 

indicate that c .  famil iaris is  closer to the f· lupus 

j uveniles than to £ ·  aureus ( Table  4 0 ) .  contrary to 

results of analys is 4 ,  c .  aureus is further removed from 

the c .  lupus j uveniles than is c .  familiaris . The present 

result must be cons idered more accurate s ince this  analys is 

keys on differences between only three groups . 

The discriminant score plot ( Figure 2 2 )  clearly shows 

that the f irst function separates the j ackals and dogs , 

while the second function separates both the j ackals and 
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Table 3 9 . summary statistics from discrim inant analys is  6 .  

Function 

.1 
2 

E igenvalue 

1 .  8 7 2  
0 . 630  

Percent 
variation 

7 4 . 8  
25 . 2  

canonical 
correlation 

. 807  

. 6 2 2  

Table 40 . Matrix of Hahalanobis 02 distances between 
groups and associated F-ratios ( in parentheses ) 
from discriminant analys is 6 . *  

Group 

c .  aureus 

c .  lupus ( j uveniles ) 

Canis familiaris 

3 . 30 ( 39 . 7 3 )  

2 . 3 7 ( 1 9 . 9 7 )  

canis aureus 

2 . 6 8 ( 1 8 . 34 )  

*All F-ratios have 5 and 109  degrees of freedom and 
are s ignificant at the . 0 01  level . 
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Table 41 . Standardized discriminant function coef fic ients 
from discriminant analysis  6 .  

variable Function 1 Funct ion 2 

PL/CL -0 . 2 2 5  0 . 3 21  
IM2/CL - 0 . 2 3 2  -0 . 107  

OI/CL 0 . 5 0 9  0 . 847 
PW/CL 1 .  340  0 . 6 7 7  

MCW/CL 0 . 6 5 2  -0 . 8 1 5  

Table 4 2 .  Matrix of class ification results from 
discriminant analysis 6 .  

Group Classified Into 

Canis  
Actual Group familiaris 

Canis 
aureus 

Canis lupus 
( j uveniles ) 

c .  familiaris 5 0  

c .  aureus 2 

c .  lupus ( j uveniles ) 4 

4 

23  

2 

9 

2 

20  
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Figure 23 . Discriminant analys is 6 :  plot of discriminant 
score ranges on two axes ( contours ) for each 
group , based on indexed cranial variables . 
Numbers are group centro ids : 2=C . famil iaris , 
S =C .  aureus , 6 =C .  lupus j uveniles . Groups 2 
ana 5 are adults . 
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dogs from the £ ·  lupus j uveniles . Discrimination on the 

f irst function involves primarily differences in palate 

width ( Table 4 1 ) . Discrimination on the second function is 

based primarily on covariation between MCW and OI . In 

relation to their cranial vault widths , the c .  lupus 

j uveniles have longer faces than dogs . For example , the 

average ratio of MCW/CL is . 3 37  for j uvenile £ ·  lupus and 

. 3 65  for c .  famil iaris . Conversely , average ratio of OI/CL 

is . 4 6 8  for j uvenile £ ·  lupus and . 4 53 for £ ·  familiaris . 

Classif ication results indicate an overall success  

rate of 8 0 . 2  percent ( Table 4 2 ) . S imilarity between the 

dogs and £ ·  lupus j uveniles is indicated by the 

misclassif ication of nine j uveniles into the dog group . 

When dogs are removed from the analys is , 4 9  class ify with 

the c .  lupus j uveniles and only 1 1  classify with c .  aureus . 

Hence , bas ic results of previous analyses are confirmed . 

Dogs exhibit similarities to both £ ·  aureus and £ ·  lupus 

j uveni les . However , they are most s imilar to the c .  lupus 

j uveniles . 

Analysis  7 :  Dogs, Jackals ,  
and c .  rufus Juveniles 

Results of this analys is  are summarized on Tables 4 3 -

46  and Figure 24 . The second function , accounting for 10 . 1  

percent of the variabil ity , shows reduced discriminating 

power relative to previous analyses ( Table 4 3 ) . D2  

distances ( Tabl e  4 4 ) indicate greatest proximity between c .  
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Table 43 . summary statistics from discriminant analys is 7 .  

Function 

1 
2 

Eiqenvalue 

2 . 7 76  
0 . 3 13 

Percent 
variation 

8 9 . 9  
1 0 . 1  

canonical 
correlation 

. 8 57  

. 4 8 9  

Table 44 . Matrix of Mahalanobis  D2 distances between qroups 
and associated F-ratios ( in parentheses ) from 
di scriminant analysis 7 . *  

Group canis familiaris canis aureus 

c .  aureus 3 . 2 1 ( 3 7 . 4 )  

c .  rufus ( j uveniles ) 3 . 7 2 ( 3 8 . 8 )  1 .  7 9  ( 6 .  9 )  

*All F-ratios have 5 and 1 0 2  deqrees of freedom and 
are siqnif icant at the . 00 1  level . 
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Table 4 5 . standardized discriminant funct ion coe f f ic ients 
from discriminant analys is  7 .  

variable Funct ion 1 Funct ion 2 

PL/CL -0 . 07 1  - 0 . 5 5 3  
IM2/CL -0 . 2 4 9  0 . 6 1 2  

OI/CL 0 . 3 34  0 . 9 2 4  
PW/CL 1 .  5 7 5  0 . 6 1 0  

MCW/CL 0 . 5 8 2  -0 . 4 8 0  

Table 46 . Matrix of classification results from 
discriminant analys is  7 .  

Grou2 Classified Into 

canis canis canis luEus 
Actual Group familiaris aureus ( j uveniles ) 

c .  famil iaris 58 4 1 

c .  aureus 2 2 0  5 

c .  lupus ( j uveniles ) 1 2 16  
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Fiqure 2 4 . Discriminant analysis  7 :  plot of discriminant 
score ranqes on two axes ( contours ) for each 
qroup , based on indexed cranial variables . 
Numbers are qroup centroids : 2=C . famil iaris , 
5=C .  aureus , 7 =C . rufus j uveniles. Groups 2 
ana 5 are adults . 
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aureus and the c .  rufus j uveniles . c .  famil iaris is well 

removed from the f ·  rufus j uveniles . 

The discriminant score plot ( Figure 2 4 ) indicates that 

the first function distingu ishes the dogs from the other 

two groups . Not surprisingly,  the primary basis for 

discrimination is variation in relative palate widths 

( Table 4 5 ) . The weak second function contributes mostly to 

discrimination between c .  aureus and the c .  rufus 

j uveniles . Variation in relative face lengths is primarily 

responsible ( Table 4 5 ) . Overall discrimination is good , 

evidenced by an 86 . 2  percent success rate ( Table 4 6 ) .  Most  

misclass i fications involve c .  aureus and c .  rufus 

j uveniles . When dogs are removed from the analys i s , 4 5  

individuals classify with c .  aureus and 1 8  class ify with 

the f ·  rufus j uveniles . 

Bas ic results of earlier analyses are verified in this 

analysis . f·  famil iaris  is  not morphologically s imilar to 

the f ·  rufus j uvenile group . Rather ,  £· famil iaris is more 

s imilar to c .  aureus . £ ·  rufus j uvenile morphology closely 

parallels  that of adult f ·  l atrans . 

Analysis  8 :  Dogs , Juvenile  
c .  lupus , Juvenile c .  rufus 

This  final analys is seeks verification of the greater 

proximity of c .  familiaris to £ ·  lupus j uveniles , rel ative 

to the c .  rufus j uveniles . Results are summarized on 

Tables 4 7 -50  and Figure 2 5 . D2 distances ( Table 4 8 )  
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Table 4 7 . summary statistics from discriminant analysis  8 .  

Function 

1 
2 

Eiqenvalue 

2 . 064  
0 . 367 

Percent 
Variation 

84 . 90 
1 5 . 1 0 

canonical 
correlation 

. 8 2 1  

. 5 1 8  

Table 4 8 . Matrix of Mahalanobis 0 2  distances between qroups 
and associated F-ratios ( in parentheses ) from 
discriminant analys is 8 . *  

Group 

c .  lupus ( j uveniles ) 

c .  rufus ( j uveniles ) 

canis famil iaris  

2 . 3 2 ( 1 9 . 0 )  

3 . 6 6  ( 37 . 5 )  

canis lupus 
( juveniles ) 

2 . 38 ( 1 1 . 9 )  

*All F-ratios have 5 and 101  deqrees of  freedom and 
are siqnificant at the . 00 1  level . 
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Table 4 9 . Standardized discriminant function coef ficients 
from disc.riminant analys is 8 .  

variable Function 1 Function 2 

PL/CL -0 . 1 1 9  0 . 7 2 8  
IM2/CL -0 . 4 03  -0 . 6 2 9  

OI/CL 0 . 04 3  0 . 66 5  
PW/CL 1 . 04 8  1 . 1 6 2  

MCW/CL 0 . 88 1  -0 . 7 7 8  

Table 5 0 . Matrix o f  classification results from 
discriminant analys is  8 .  

Group Classified Into 

canis canis lupus canis rufus 
Actual Group famil iaris ( j uveniles ) ( j uveniles ) 

c .  familiaris 5 2  8 3 

c .  lupus ( j uveniles ) 4 20  2 

c .  rufus ( j uveniles ) 1 2 16  
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Figure 2 5 . Discriminant analysis  8 :  plot of  discriminant 
score ranges on two axes ( contours ) for each 
group , based on indexed cranial variables . 
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clearly indicate that the dogs fall  closest to the c .  lupus 

j uveniles . Greater proximity between these groups is 

evident on the discriminant score plot ( Figure 2 5 ) . 

The first function distinguishes the groups on the 

bas is of relative palate and cranial vault widths ( Table 

4 9 ) .  The groups are neatly ordered by increas ing relative 

widths ( Figure 24 ) .  The bas is  for discrimination on the 

weaker second funct ion is less cl�ar , but apparently 

involves different patterns of covariation between PW and 

other variables ( Table 4 9 ) .  In any case , it does not 

ef fectively discriminate the dogs . 

Clas s i fication produces an overall success rate of 

8 1 . 5  percent ( Table S O ) . The maj ority of  

misclass ificat ions involve c .  familiaris and the c .  lupus 

j uveniles . When dogs are removed from the analys is  5 1  

individuals c l ass ify with the f ·  lupus j uveniles , while  1 2  

classify with the f ·  rufus j uveniles . 

Again , bas ic results of earlier analyses are 

confirmed . c .  famil iaris is morphologically more s imilar 

to f ·  lupus j uveniles than to f ·  rufus j uveniles . This 

result is consistently obtained regardless of dif ferent 

sample combinations . 

Evaluation of Multivariate Results 

Different combinations of groups have yielded 

cons istent patterns of intergroup discrimination . Three 
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patterns are o f  primary s ignif icance . First , among adults 

the dogs are most s imilar to c .  aureus . Second , among all 

groups dogs are most similar to C . l .  lupus j uveniles . 

Finally,  the dogs are not s imilar to £ ·  rufus j uveniles . 

Instead , £ ·  l atrans is strikingly s imilar to--actually 

indist inguishable from--the £ ·  rufus j uveniles . 

Given their s imilar s ize , relative s imilarity between 

C .  famil iaris and c .  aureus is ensured from tight scal ing - ·  

of cranial length variables ( PL ,  IM2 , OI ) .  Larger canids 

are divergent from dogs with respect to these dimensions as 

a consequence of allometric scal ing . If  c .  famil iaris and 

c .  aureus exhibited similar scaling with respect to PW and 

MCW they might be indistinguishable . However ,  it is 

precisely these variables that allow discriminat ion between 

the dogs and j ackals , and strengthen the separat ion of dogs 

from other adult groups . In bivariate analyses dogs are 

always transposed strongly above other groups on PW and 

HCW . In mult ivariate analyses us ing indexed data , the 

f irst function always serves primarily to separate dogs 

from other groups on the bas is  of wider palates and cranial 

vaults . 

on the other hand , proximity of c .  famil iaris to c .  

lupus j uveniles relative to £ ·  rufus j uveniles seems 

contrary to results of bivariate analysis . It wil l  be 

recalled that ontogenetic regress ions for both wol f  groups 

suggs ted ontogenetic scal ing with dogs on PL , IH2 , and OI . 
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On PW and MCW absolute evidence o f  ontoqenetic scal inq was 

less clear , but £ ·  rufus ontoqenet ic reqress ions apparently 

provided stronqer evidence than £· lupus ontoqenetic 

reqress ions . Understandinq why bivariate and multivariate 

results are consistent requires recons ideration of the 

bivariate ontoqenetic analys i s  in relat ion to s amples used 

for multivariate analys i s . 

On averaqe , the j uvenile wolves used in multivariate 

analys is  are cons iderably l arqer than the adult doqs ( see 

Table 1 8 ,  paqe 1 7 3 ) . The j uvenile samples are biased 

towards advanced subadults . consequently,  the bivariate 

ontoqenetic reqress ions in Chapter VI pass the static data 

points of the doqs ( Fiqure 1 7 , paqes 163-1 6 4 ) at a 

condylobasal lenqth considerably less than the averaqe 

lenqth of j uveniles in the multivariate analys i s . In fact , 

virtually no juvenile wolf  specimens are represented in the 

size ranqe of adult doqs . The proportional rel ationships 

exhibited by doqs and wolves at the s ize of doqs wil l  

remain constant a t  l arqer s izes only if  a l l  ontogenetic 

s lopes are isometric . They are not . 

Both £ ·  lupus and c .  rufus ontoqenetic reqres s ions for 

PL and OI are s imilar and apparently nonisometric . As 

qrowth in wolves produces increas inq s ize disparity 

relat ive to doqs , their morpholoqy will diverqe 

accordinqly . In these cases , however ,  both £ ·  lupus and c .  

rufus will  diverqe in s imilar ways . Consequently , the 
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cause underlying morphological s imilarity between c .  

familiaris  and the larger £ ·  lupus j uveniles must l ie with 

the width variables , PW and MCW . 

c .  lupus and £ ·  rufus ontogenetic regress ions for PW 

and MCW are different . Their s lopes are divergent ( MCW ) or 

the regress ions are strongly transposed ( PW--see Table 15 , 

page 149 ) . In both cases the £ .  lupus regress ions fall at 

the upper margin of the £ ·  familiaris data points , while 

the £·  rufus regressions fall near the center or in the 

lower portion of those data points ( Figure 17 , page 1 6 4 ) . 

ontogenetic s lopes for both j uvenile series exhibit strong 

negative allometry . The morphological consequences at 

larger s izes are eas ily deduced . £· rufus , exhibit ing 

s imilar or proportionally narrower palates and cranial 

vaults at the same size as dogs , diverge in morphology as 

growth proceeds . As advanced j uveniles , they assume 

proport ions like c .  latrans . 

The consequences for c .  lupus in relation to c .  

famil iaris are different . At the size of dogs the c .  lupus 

j uveniles have wider palates and vaults . unl ike £ ·  rufus , 

negative allometry ensures that this  disparity is  reduced 

rather than magnified during subsequent growth . At some 

point on the ontogenetic traj ectory the £ ·  lupus j uveniles 

must exhibit proportional s imilarity to dogs with respect 

to these dimens ions , though that point is not necessarily 

the same for each dimension . Eventually , the c .  lupus 
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j uveniles attain adult proportions : narrower palates and 

vaults relative to dogs . 

Thus , when examined closely the s imilarity between C .  

famil iaris and £ ·  lupus j uveniles i s  consistent with 

bivar iate analysis . In fact , it c an be predicted that c .  

lupus samples with better age control would exhibit 

striking s imilarity to £ ·  famil iaris .  Espec i al ly 

noteworthy is  the fact that £ ·  famil iaris is  more s imilar 

to the C .  lupus j uveniles than to C .  aureus , despite being 

closer in overall s ize to c .  aureus . Taking these patterns 

all into account , the evidence for j uvenilized morphology 

in the dogs is  strong . Their distinctively wider palates 

and vaults correspond to j uvenile proportions in c .  lupus . 

These proportions are not seen in other groups . 

summary 

1 .  Discriminant analys is  of untrans formed data yields 

s ize related discrimination among adult groups . When 

indexed data are used multivariate analys is indicates that 

the dogs are most s imilar to j ackals . Morphological 

s imilar ity between these groups results from cons istent 

allometric scal ing of anterior cranial length variables . 

2 .  Inclus ion of juvenile wolf  groups indicates that 

the dogs are morphologically more similar to j uvenile £ ·  

lupus than to  any adult groups . The dogs do not exhibit 

morphological s imilarity to j uvenile  c .  rufus . c .  rufus 
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j uveniles and £ ·  latrans adults are statistically 

indistinguishable . 

3 .  When examined closely these results are cons istent 

with results of bivariate analyses . Greater multivariate 

similarity between dogs and £· lupus j uveniles relative to 

£· rufus j uveniles stems from j uvenile wol f  samples skewed 

heavily towards advanced subadults . It can be deduced that 

j uvenile £ ·  lupus samples not as markedly skewed in this 

way would exhibit even greater s imilarity to the adult 

dogs . 

4 .  The prehistoric dogs exhibit j uvenilized 

morphology . Results of analys is are consistent with an 

hypothes is of ontogenetic scal ing between dogs and wolves . 



2 1 9  

CHAPTER VIII  

PATTERN AND PROCESS IN  THE EVOLUTION OF  THE DOG 

The obj ective of this chapter is to integrate results 

of quantitative analys is with theoretical and 

methodological cons iderations outl ined in the first three 

chapters . Ambiguities in results and assoc iated 

interpretive problems are given primary cons ideration . The 

chapter culminates with a summary of the principal results 

and arguments presented in the dissertation . 

Paedomorphos is and Heterochrony 

Evidence for paedomorphosis ( j uvenilized morphology ) 

in dogs has been a central target of investigation in this 

study . Paedomorphosis in general is a pers istent theme in 

discuss ions of the origins and evolution of the domestic 

dog ( e . g . , Hil zheimer 193 2 ;  Lumer 1 9 4 1 ;  Weidenreich 1 9 4 1 ;  

zeuner 1 9 6 3 ;  Epstein 197 1 ;  clutton-Brock 1 9 8 1 ; wayne 

1 9 86a ) . Therefore , it is necessary to assess the strength 

of this evidence and determine its interpretive 

s ignificance . 

Evidence for Paedomorphosis 

Evidence for paedomorphos is in this study takes two 

primary forms . First , bivariate analysis revealed that 

uniquely wide cranial vaults and palates among adult dogs 

are associated with greater proximity to wol f  ontogenetic 
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reqressions relat ive t o  other qroups . All qroups exhib it 

reasonable evidence of ontoqenetic scalinq on anterior 

cranial lenqth variables . Second , multivariate analys is 

revealed that the doqs exhib�� qreatest overall 

morpholoqical s imilarity to j uvenile f· lupus . Thouqh 

compe l l inq , these patterns are not free of potential 

compl ications . 

The f irst potential complication is  that absolute 

evidence of ontoqenetic scal inq between wolves and doqs is 

ambiguous . on cranial width variables wol f  ontoqenetic 

reqress ions cons istently pass closer to the doq static data 

points than to data points of  other adult groups ( excludinq 

the C .  rufus-f . l atrans comparisons ) .  Wide vaults and 

palates are c learly a j uvenil ized feature , and they are 

exhibited by doqs . Howeve r ,  the wol f  ontoqenetic 

reqress ions do not cons istently pass throuqh the central 

portion of the doq static data points . This  is  espec ially 

true of the c .  lupus reqress ions . 

It is  argued here that the greater s imilarity between 

dogs and j uvenile wolves relative to other adult groups is  

far  more compelling than l ack of  absolute correspondence .  

Wolves are polymorphic , exhibitinq a wide range of  size and 

morphology . The j uvenile  samples of f ·  lupus used here 

cons ist exclus ively of a few North American subspecies , 

primarily f · ! ·  lycaon . Without detailed knowledge of  the 

ancestry of the dogs , to expect prec ise morpholoqical 
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correspondence between dogs and the j uvenile wolves i s  

unreasonable . " Perfect"  c .  lupus ontogenetic  regressions 

for different subspecies would undoubtedly yield a variety 

of simil ar but different traj ectories . Presumably,  some 

traj ectories would pass closer to the central portion of 

the dog stat ic data points while  others would pass farther 

away , rel ative to the wol f  ontogenetic regress ions 

constructed here . Thus , the general correspondence between 

dogs and j uvenile wolves is compelling . 

Another complication is  greater evidence of  

ontogenetic scaling between £·  familiaris and c .  rufus 

rather than c .  lupus . At the size of  dogs £ ·  rufus is  more 

s imilar to the dogs than is £ ·  lupus . This , in and of  

itself ,  is not a problem . The problem is  that c .  rufus 

develops into adults shaped more l ike £ ·  l atrans than c .  

lupus . Consequently , multivari ate analys is , focus ing on 

advanced subadults , indicated l ittle morphological 

correspondence between c.  famil iaris and c .  rufus 

j uveniles . 

Even assuming the tiny £ ·  rufus j uvenile samples to be 

representative , this apparent dilemma is not serious . 

First , £.  rufus and c .  l atrans are expected to be  s imilar 

for historical reasons ( see Chapter IV ) . Second , and most 

importantly , the coyote- l ike morphology of  £ .  rufus is  not 

dictated whol ly by the elevation of cranial width 

ontogenetic regress ion l ines . Numerous regression l ines 
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can pass through the range of  variation of  the dogs , but 

their s lope will influence adult morphology . 

This  point is  illustrated on Figure 2 6 . Note that 

several regressions pass centrally through the group 5 data 

points , but sl ight perturbations in slope produce different 

adult morphologies . The artificial scale  necessary for 

constructing this  diagram exaggerates the s lope differences 

actually necessary to produce different adult morphologies . 

Without investigation of a more robust data base , it is 

reasonable to suggest that the coyote-l ike adult morphology 

of  £·  rufus is  produced by unusually shallow ontogenetic 

regres s ion s lopes for cranial width variables . S lightly 

steeper s lopes , which might characterize other small  

wolves , would produce slightly more "wol f-l ike " 

proportions . Clearly, additional studies are needed . 

overall , it is  argued that evidence for j uvenil ized 

morphology in dogs is robust .  Differing patterns of 

bivariate and multivariate s imilarity are assoc iated with 

taxonomic and methodological problems . Thus , any argument 

concerning the ancestry of dogs among smaller versus larger 

wolves is unwarranted . For the present , it can safely be 

stated only that morphology of prehistoric dogs corresponds 

more closely to morphology of j uvenile wolves than to adult 

wolves or adults of any other taxa . This  s imil arity 

transcends size s imilarities . 



2 2 3  

y 

X 

.,.,..., ... ... 
... 

Figure 2 6 . Hypothetical bivariate plot of two l inear 
dimens ions showing ranges of static variation 
( el l ipses ) for f ive groups in relation to 
ontogenetic regress ions ( broken lines ) for 
groups 1 through 4 .  
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The Cause of  Paedomorphos i s  

Apparent paedomorphos i s  among modern dogs has prompted 

different ideas concerning its c auses . Clutton-Brock 

( 19 8 1 : 3 7 - 3 8 , 1 9 8 4 : 205 ) suggests that among early dogs 

paedomorphic features ,  assoc iated with submissive behavio r ,  

were more endearing t o  humans and were therefore selected 

for . While  this  notion has intuitive appeal , it is  

untestable . We do not know , and have no way of  knowing , 

what features in dogs were " endearing" ( Clutton-Brock 

1 9 8 1 : 3 8 )  to prehistoric human hunter-gatherers . 

Other propos itions concerning morphological change in 

dogs generally correspond to Shea ' s  ( 198 1 )  distinction 

between size-required and s ize-related changes ( see Chapter 

I II ) . Both are concerned with consequences of s ize  

reduction . A " s ize-related" perspective is  as soc iated 

espec ially with the work of German schol ars in the early 

twentieth century ( see discuss ion in Weidenreich 1 9 4 1  and 

Epstein 1 9 7 1 ) .  From this perspective j uvenil ized 

morphology itself is the key . The course of ontogenetic 

development is  paralleled by the pattern of morphological 

change from small breeds to large breeds . Thus , skull  

forms among different s izes of  adult dogs represent 

arrested developmental stages ( Hilzheimer 1 9 3 2 : 4 1 2 ) . Thi s  

view probably reflects the then current discuss ions o f  

recapitul ation i n  ontogeny--in this case reverse 

recapitulation--as an evolutionary force ( see historical 
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review i n  Gould 1 9 7 7 ) . 

A " s ize-required" perspective holds that 

paedomorphos i s  is a secondary consequence of biomechanical 

constraints associated with s ize  reduction ( e . g . , Lumer 

1 94 0 ,  Weidenreich 1 94 1 ;  Epstein 1 9 7 1 : 83 - 1 06 ) . For 

example ,  Epstein ( 19 7 1 : 1 0 3 - 106 ) argued that j uvenilizat ion 

is an accurate morphological description , but indicates 

nothing about physiological mechanisms . Rather , s ize­

correlated changes in cranial morphology are dictated by 

the fact that small  animals must have relatively l arger 

brains to maintain s imilar funct ions at different s izes 

( see also Weidenreich 1 94 1 ;  Stockhaus 1 96 5 : 1 7 1 - 1 7 2 ;  

Radinsky 1 9 8 1 : 3 83 ) . Cranial morphology in sma l l  dogs 

appears paedomorphic in response to this b iomechanical 

necessity .  

Arguments advanced by Wayne ( 1 9 8 6 a ,  1 98 Gb , 1 9 8 6c ) 

support a cons iderably refined vers ion of the earl ier 

recapitulation notions . Paedomorphos is is  a consequence of 

s ize reduction , but this  paedomorphos is itse l f  is  

s ignificant . Phylogenetic rather than purely biomechanical 

constraints are respons ible for paedomorphic features in 

dogs . The existence of alternative morphologies among 

other c anids of s imilar s ize seriously damages an argument 

of biomechanical necess ity . Even i f  distinctive 

neurocrania! proportions in dogs are necess itated by 

biomechanical constraints related to brain conformation , 
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this does not easily explain the distinctive palatal 

morphology of  dogs . Moreover , brain development itself 

could be constrained by ontogenetic boundaries . 

Results of this study are cons istent with wayne ' s  

findings . The prehistoric dogs are distinct from other 

adult groups in palate and cranial vault widths . It is 

precisely on those dimens ions that the dogs correspond more 

closely than other groups to the ontogenetic regress ion 

l ines of wolves . Where dogs scale s imil arly to other 

groups ( anterior cranial length variables ) ,  all groups 

correspond generally to wol f  ontogenetic regress ion l ines . 

In general , dog morphology is j uvenil ized , evidenced by 

s imilarity to � - lupus j uveniles in multivariate analysis . 

Thus , as wayne ( 1 9 8 6 a ) argued, morphology of dogs is 

l argely constrained to ontogenetic boundaries . confinement 

of morphology to developmental pathways presumably reflects 

the genetically s implest means of accomodating rapid 

evolutionary s ize change ( Wayne 1 9 8 6 a ,  1 9 8 6b ) . As Alberch 

et al . ( 1 9 7 9 : 3 1 5 ) have stated , "Many elements of  

morphological evolution can be interpreted as  minor 

reshuffling within a fundamental developmental program 

during phylogenesis . "  In general , developmental pathways 

may pose the s ingle most powerful category of  restrictions 

on evolutionary pathways ( Gould and Lewontin 1 9 7 9 ) . 

Intensive selection for size  change , channeled by 

ontogenetic boundaries , probably explains the generally 
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paedomorphic morphology of both prehistoric and recent 

dogs . 

The Developmental cause of  P aedomorphos is : 
What Kind of Heterochrony? 

As outl ined by Gould ( 1 9 77 ) , clas s ic progenes is 

entails truncation of development through accelerated 

sexual  maturation . The consequence is  reduced s ize and 

j uvenil ized morphology in descendents relative to their 

ancestors . Among modern dogs earlier sexual maturity 

relative to wolves ,  general correlation between adult s ize 

and age at maturity ( see Chapter I I ) ,  and general 

correl ation between adult size and period of  growth ( c f .  

Kirkwood 1 9 8 5 : 10 2 ) all suggest a role for this  s imple 

" t ime " progenes i s  in the evolution the dog . 

Time progenesis alone is incapable of accounting for 

size  divers ity among modern dogs , or differences between 

dogs and wolves . Assuming an age at maturity of  two years 

for £· lupus development could be truncated by a full year 

with l ittle effect on size and morphology . Among l iving 

wolves yearlings are notoriously difficult to distinguish 

from mature adults ( Mech 1 9 7 0 : 14 1 ) . Even at s ix months 

wolf  pups strongly resemble adults ( Mech 1 9 7 0 : 14 1 ) .  In 

this study individuals j udged to be about one year old were 

regarded as adults prec isely because their cranial s ize and 

proportions are essentially adult .  

Data in this study also verify the inadequacy of time 
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progenesis . At the size of  dogs , with most condylobasal 

lengths fall ing in the 140-160  mil l imeter range , £ ·  lupus 

j uveniles are just beginning to lose their dec iduous 

dentition ( see Table 2 ,  page 8 1  and Table 1 4 , page 1 46 ) . 

Clearly,  alteration of developmental factors other than age 

at maturity are involved in s ize  reduction of dogs . 

Wayne ' s  studies of growth and allometry in c anids 

( 1 9 86 a ,  1 9 86b , 1986c ) strongly suggest that s ize and 

morphological divers ity among dogs are l argely a function 

of vari abil ity in foetal or perinatal specific growth 

rates . From Lhasa Apso to Great Dane , specific  growth 

rates after 4 0  days post-partum are relatively invariant . 

The same is  true of  wild c anids studied by Wayne . Wayne 

( 1 986c ) argues that invariance in gestat ion period 

represents a fundamental morphological constraint on dogs . 

In fact , gestation lengths in Canis as a whole are similar 

( c f .  Gittleman 1 9 8 6 : 7 4 8 ) . As a consequence , small  dogs are 

distinct from s imilar s ized canids of other genera , while  

showing s imilarity to  their closest relatives in  the genus 

canis . 

Stability of  gestation periods may contribute to 

morphological s imilarity between dogs and s imilar s ized 

wild canis . Nonetheless , prehistoric dogs studied here are 

distinct from j ackal s  or coyotes of s imilar s ize . Their 

distinctive morphology probably reflects developmental 

constraints that were not pronounced in the evolution of 
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other species of  canis . As Dahr ( 19 4 2 : 3 5 )  observed almost 

50  years ago , different patterns of allometry between 

domestic and wild canids may result from body size  changes 

being brought about in different ways . This  may apply as 

well to differences between domestic and wild canids in 

brain-body s ize allometries ( cf .  Weidenre ich 1 94 1 ;  Dahr 

1 9 4 2 ; Clutton-Brock 1 9 8 4 : 205-206 ) .  

The developmental mode of size change in dogs 

presumably reflects intens ity of size select ion . The 

consequences of early growth rate alterations caused early 

dogs to reduce dramatically and rapidly in s ize . one 

immediate consequence may have been disharmony between 

overs ized teeth in unders ized j aws ( see below ) . This  

s ituation is  frequently suggested among earliest dogs 

( Degerb�l 1 9 6 1 ;  Bokonyi 1 9 7 5 ; clutton-Brock 1 9 84 ) . such 

anomal ies may render this mode of s ize  change unviable 

among more slowly evolving wild species . Among dogs , 

however ,  a radically altered niche dictated change of  a 

maj or magnitude in a brief period of  time . 

Bonner and Horn ( 1 982 : 26 8 ) note that a common problem 

in analys is of heterochrony is separating cases in which 

s ize/shape selection has produced accompanying changes in 

developmental t iming , from cases in which selection on 

developmental timing has produced accompanying changes in 

s ize and shape . In the present case a solution to the 

Bonner and Horn dilemma can be advanced . As explained in 



2 3 0  

Chapter II , conditions associated with colonizat ion of a 

new niche selected directly for precocious maturation among 

dogs . consequently , dogs reach maturity sooner than 

wolves . However ,  this alteration had minor influence on 

size and morphology . As also outlined in Chapter II , body 

size was a primary target of selection among early dogs in 

abrubtly and radically altered circumstances .  As a 

consequence ,  developmental rates were altered early in 

ontogeny . Thus , selection acted on both body size  and 

developmental timing . Dogs exhibit both time and rate 

progenes i s  relative to the ir ancestors . 

Time and S ize Change 

S ize and Ancestry 

As noted previously , many investigators seek ancestry 

for most dogs among small Euras ian wol f  subspec ies l ike 

£ · ! ·  pal l ipes or f · ! ·  chanco ( Zeuner 1963 ; Lawrence 1 9 6 7 ; 

Epstein 1 97 1 ;  Olsen and Olsen 1 9 7 7 ; Clutton-Brock 1 9 8 4 ;  

s. Olsen 1 9 85 ) . Insistence on an important role  for small 

subspecies stems in part from dramatic s ize disparities 

between wolves and early domestic dogs . E fforts to 

minimize the magnitude of s ize reduction in models  of dog 

ancestry probably reflect a belief that evolutionary 

change , even under domestication , must occur rel atively 

gradually . Thus , prevail ing logic holds that relatively 

small early dogs were derived from small wolves ( e . g . , 
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Lawrence 1 9 6 7 : 57 ;  Clutton-Brock 1 9 7 0 : 307 ; Olsen and Ol sen 

1 9 7 7 ; s .  Ol sen 1 9 8 5 : 4 1- 4 2 ) .  

It is  arqued here that intensive s ize selection , 

implemented throuqh heterochrony, negates the necess ity of 

deriving smal l dogs from small wolves . Because 

heterochrony involves relatively s imple genetic 

alterations , evolutionary change c an be rap id .  From this 

perspective substantial s ize difference between early dogs 

and wolves is unsurpris ing . If  a tiny toy dog l ike the 

Lhasa Apso c an be produced from a wolf  ( of any s ize ) in 

1 2 , 000 years , the s ize dif ferential between early dogs and 

wolves i s  no problem . 

The obj ective of these comments is not to dogmatically 

assert that small  Eurasian wolves played an unimportant 

role in dog ancestry . Rather , the point is that reduced 

s ize disparity between these wolves and early dogs is  not 

convincing evidence of their ancestry . In this  author ' s  

view the question of dog ancestry among smaller versus 

large wolves ,  or multiple ancestry involving wolves of 

dif ferent s izes , remains open . 

S ize reduct ion in early dogs indicates l ittle about 

subspec ific ancestry . However , it is an important clue 

regardinq evolutionary process .  The perspective advanced 

here is that s ize reduction was ubiquitous in the early 

evolution of the dog for ecological reasons already 

discussed . Because body s ize  diversity at a given point in 
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t ime was initially constrained ,  morpholoqical divers ity was 

s imilarly constrained . The prehistoric doqs used in this 

study exhibit rel atively l imited s ize  and morpholoqical 

variation compared to more recent doqs . J .  Olsen { 1 9 8 5 : 5 1 )  

illustrates an early Neo l ithic doq cranium from Hemudu , 

China { 60 6 5 ± 1 2 0  years B . P . ) ,  that is  approximately the same 

size as many of  the North American and European doqs used 

here . Clutton-Brock { 19 8 1 : 4 3 -44 ) cautiously suqqests that 

Neolithic doqs in Britain exhibited less vari ability than 

l ater populations . scott { 19 6 8 : 24 9 ) , c it inq a study in 

German by Dahr { 1 937 ) , indicates that " Stone Aqe " doqs of 

Europe should be reqarded as one qeneral population , 

characterized by considerably less variation rel ative to 

modern doqs { see also Dahr 19 4 2 : 3 2-33 ) .  

S ize chanqe throuqh t ime is  reflected in the l imited 

data set analyzed here . Amonq the North American doqs the 

three earliest specimens have condylobasal lenqths of 1 5 8  

{ estimated for Koster F23 5 7 ) ,  1 6 5  { Koster F2 2 5 6 ) ,  and 1 6 2  

millimeters { Modoc ) .  These values are substantially hiqher 

than the mean of 149 . 2  for the North American series as a 

whole . Amonq the European doqs the earl iest specimen , from 

Senckenberq,  has a condylobasal lenqth of  1 7 8  mill imeters . 

The Mesolithic specimens , from Vedb2k Boldb aner , 

Saltpetersmosen , Rinqkloster , and Erteb�ll e ,  have a 

condylobasal lenqth ranqe of 1 5 6 - 1 7 8  mill imeters . The 

early Neolithic specimens , f rom Bunds� ,  Spodsbj e rq , and 
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Lids� , range i n  condylobasal length from 1 3 6 - 1 6 0  

millimeters . Though samples are small  and geographic 

variation may complicate comparisons , there is  a clear 

tendency for early specimens to be larger than more recent 

specimens . 

Figure 2 7  illustrates the general rel ationship between 

s ize change and t ime in the evolution of the dog .  A s ingle 

ancestry for dogs is impl ied only for clarity of  

illustration . For about 6 , 000  years dogs experienced rapid 

s ize  reduction with l imited morphological divers ificat ion . 

It is expected , of course ,  that these early populations 

exhibited variation , but the overall trend was towards 

decreas ing s ize . Sometime between 6 , 000 and 3 , 000 B . P . , 

depending on the region , increas ing divers ity in size  and 

form i s  evident . For example ,  Clutton-Brock ( 1 9 8 1 : 44 )  

notes that in ancient Egypt cons iderable s ize  and 

morphological divers ity among dogs is evident by 4 , 000 B . P .  

In northern Europe and North Americ a ,  sources of  the dog 

samples used here , 3 , 000 B . P .  is a useful time boundary for 

divers ification of  s ize and morphology in dog evolution . 

To sum , early dog evolution was characterized by size 

reduction and l imited morphological diversificat ion . 

Because of  the ubiquitous role of size  reduction brought 

about by evolutionary alterations in development , it  is 

imposs ible to specify the local variants of  £ ·  lupus 

involved in initial ancestry . Increased diversi ty in s ize  
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and morphology , presumably stemming from selective breeding 

by humans , appears at different times in different regions . 

Once underway the amaz ing range of s izes and forms , so 

fa�il iar in modern times , was rapidly produced . 

S ize , Time , and " Primitivene s s "  

Not surprisingly , many investigators have sought to 

identify varieti es of modern dogs that may be held as 

models of  earliest dogs ( Dahr 1 94 2 ;  Werth 1 94 4 ; Stockhaus 

1 96 5 ;  s .  Olsen 1 9 8 5 } . Large breeds that resemble wolves 

in many respects , for example northern Eskimo dogs , are 

usually regarded as primitive ( e . g . , Stockhaus 1 9 6 5 ; Olsen 

1 9 8 5 : x } . S imilarly,  reduced size is taken as evidence of 

evolutionary distance from wolves . For example ,  s .  Olsen 

( 1 985 : 3 5 }  refers to North American Archaic Period dogs from 

Kentucky and Alabama--i . e . , some of the spec imens used in 

this  study--as "quite advanced . "  

It  is argued here that s imilarities between a modern 

form and the wolf  do not make that form primitive in an 

evolutionary sense . Size s imilarities wil l  produce 

morpholological s imilarities through s imple allometry . 

Most  so-called primitive modern dogs are evolutionarily as 

far removed from wolves as are special ized breeds . In some 

morphological and behavioral traits they are certainly 

s imilar to wolves . Many other traits , however ,  are l ikely 

to represent 1 2 , 000 years of  evolution . This  is  true even 

of varieties l ike Eskimo dogs that were probably subj ect to 
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occas ional hybridization with wolves . As Haag ( 19 4 8 ) 

argued many years ago , North American Eskimo dogs are no 

closer to their progenitor than any other recent native 

North American variety . 

Under an assumption that s ize disparity can be a 

useful  clue to evolutionary distance , most o f  the dogs used 

in this study are indeed " advanced" . It is  argued here 

that such an assumption is misleading . Rapid evolutionary 

s i ze reduction is expected from the model advanced in this  

study . The dogs used here are primitive in the important 

sense that they are a more accurate reflection of early 

evolutionary divergence from wolves than l iving varieties . 

At a given point in time they may have varied more in size 

than wild populations , but their range of  variation was 

considerably less than modern dogs . Their  relatively 

consistent , general ized morphology suggests that del iberate 

selective breeding is unl ikely .  As  Dahr ( 1 9 4 2 : 29 )  cogently 

observed , once selective breeding was underway all pos s ible 

gradations existed between generalized forms and derived 

specialized forms . Virtually all modern dogs are directly 

or indirectly a product of selective breeding . E arly , 

morpholoqically generalized dogs , predating the rel atively 

recent acceleration of morphological divers ificat ion , are 

true primitive dogs in an evolutionary sense . 
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Tooth Length Changes 

Analys is in Chapter V revealed that the prehistoric 

dogs tend to have proportional ly longer teeth than 

comparably s ized wild canids or even c .  lupus . Wayne ' s  

( 1 986 a )  analysis of dental al lometry among modern dog 

breeds and wild canids revealed that tooth lengths among 

dogs showed pronounced negative allometry . In contrast , 

these dimens ions were pos it ively allometric in wild canids . 

Wayne , apparently impressed by proportionally small teeth 

among largest dogs , suggested that tooth dwarfism under 

domestication is a product of " artificial " versus "natural " 

selection . As noted previously,  however ,  "dwarfism" is a 

misleading term;  it applies only to  largest dogs . An 

evolutionary basis for tooth length patterns in dogs is 

suggested below .  

Gould ( 19 7 5 a )  has observed that in rapidly dwarfed 

l ineages dwarfed forms often exhibit relatively enlarged 

teeth . This could occur only if  developmental factors 

controlling overall body growth are not tightly integrated 

with factors governing dental growth . Shea and Gomez 

( 1 9 8 8 ) found a developmental bas is for this phenomenon in a 

study of tooth scal ing in human pygmies . Small  s ize in 

pygmies apparently relates to defic ienc ies in a spec ific 

postnatal growth hormone , insul in-l ike factor I .  Shifts in 

growth hormone levels have virtually no effect on tooth 

size . Accordingly ,  body s ize is reduced while  tooth s ize 
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i s  not ( cf .  Shea and Gomez 1 9 8 8 : 1 2 6 - 1 2 7 ) .  

It would , of c·ourse , be inappropriate to equate 

dwarfism among canids with dwarfism among humans . However ,  

this work provides one sound developmental bas is for a case 

of  rel ative tooth enlargement in a dwarfed l ineage . 

Consistently weak intraspecific correlations between tooth 

lengths and condylobasal length in this study suggest 

rel ative independence of tooth s ize and skull  s ize in 

canids . Robust correlations are obtained only with broad , 

interspecific regressions . Relative lack of integration 

between body growth and tooth growth may underlie patterns 

of dental allometry in dogs . 

Early domestic dogs underwent rapid s ize reduction , a 

process  accompanied by allometrically produced 

morphological changes . Evolutionarily,  tooth size 

apparently l agged behind body s ize reduction due to 

different developmental pathways . This would  account for 

the frequent observation that early dogs exhibit large , 

crowded teeth . These trends are also reflected in the 

present data set , though relatively subtly . A pos s ible 

exception is  the specialized c arnassial teeth . In this  

study P4 is  consistent with an interspec i f ic allometric 

trend . However ,  the product of that cons istency is 

proportional ly longer carnass ials relative to wolves . 

During the early and middle Holocene dogs in many 

parts o f  the world evolved to a relatively small  body s ize , 
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exemplified b y  the present s amples from both North America 

and Europe . Later , as humans subj ected the animals to 

intensive s ize  selection in both directions , size  and 

morphological diversif ication accelerated . Tooth s ize  

apparently l agged behind again , with the result evident in 

modern or recent breeds . small  dogs are wel l  known for 

dental anomal ies stemming from teeth that are crowded into 

unders ized j aws ( cf .  Weidenreich 19 4 1 ;  smythe 1 9 7 0 ;  

Epstein 1 9 7 1 ;  McKeown 1 9 7 5 ) . Largest dogs , approaching or 

exceeding the s ize  of wolves ,  commonly exhibit 

conspicuously small  teeth , including carnassials  ( e . g . , 

Clutton-Brock 1 9 8 4 : 2 00 ;  Morey 19 8 6 ;  Wayne 1 9 8 6 a ) . 

From this  perspect ive it is  not surprising that Wayne 

( 19 8 6 a )  found strong negative allometry of tooth l engths 

with skull  lengths among modern breeds . Smallest breeds 

have proportionally larger teeth than largest breeds . The 

range of variation in tooth s ize  among dogs is  less than 

the range of  variation in skull  and body size  ( McKeown 

1 9 7 5 ) . Teeth have lagged behind rapid changes in body 

s ize . Consequently, a corollary can be suggested to the 

phenomenon of relative tooth enlargement in rapidly dwarfed 

l ineages described by Gould ( 1 9 7 S a ) . In rapidly enlarged 

l ineages the enl arged forms wil l  show rel atively smaller 

teeth . 

Changes in tooth s ize and morphology in the domestic 

dog are an important but poorly understood aspect of their 
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evolutionary divergence from wolves . Absolute reduction in 

body size  is , of course , accompanied by absolute reductions 

in tooth s ize . However ,  absolute reductions at small  s izes 

are assoc iated with frequent loss of  specific teeth and 

greater s impl icity of tooth morphology relative to larger 

dogs or wolves ( see detailed discussion in Weidenreich 

1 9 4 1 ) . Clearly ,  efforts to understand evolut ionary changes 

in teeth among dogs wil l  require considerably more 

knowledge of the developmental bases underlying growth of 

different structures ( e . g . , van Valen 1970 ) . 

Future Research 

This  study deliberately employed a strategy of  

analyz ing of a small set  of  cranial and dental varibles . 

The advantages of  this approach were twofol d .  First , 

variation in specific dimens ions could be explored in 

detail . second , f luctuations in sample compos ition among 

the archaeological specimens were minimized . The 

disadvantage is  that important components of morphological 

variation were undoubtedly overlooked by the use of a small 

set of dimensions . Results were cons istent with studies 

involving larger sets of measurements ( e . g . , wayne 1 9 8 6 a ) , 

but complete cons istency can only be presumed . Thus , 

future invest igations should expand the suite of analyzed 

measurements . This  expans ion should minimally include 

additional neurocrania! dimensions , including cranial 
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capacity . In addition , more detailed approximations of  

tooth s ize  and morphology would be helpful . 

There is  no escape from a plea for better ontogenetic 

data for analyses of  the kind presented here . The j uvenile 

wolf  s amples used here are small and taxonomically 

heterogeneous . Though this  author bel ieves useful results 

were obtained , l arger samples with better control would 

certainly be more convincing . They might also lead to 

altered conclus ions . 

Thi s  study has advanced a model in which dog evolution 

produced cons istent , ubiquitous changes for several 

thousand years . Available data suggest the model is  

reasonable . It cannot be fully evaluated , however ,  until 

early spec imens from a variety of  geographic regions have 

been analyzed . Not surpris ingly,  appropriate spec imens are 

scattered among collections in many different countries . 

Some may never have been formally reported .  Among those 

reported measurements and other data are incons istent . 

Even when measurements are cons istent one must  be concerned 

with interobserver error ( c f .  Olsen 1 9 8 5 : 9 3 ) . 

Interobserver error was e liminated in this  study by us ing 

only measurements taken by the author . In any case , 

expansion of  the data base of  prehistoric dogs is  clearly 

important . Because of the scattered locations of 

specimens , it may be necessary to combine data from 

different sources . 
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Finally , heterochrony has been advanced here a s  a 

major force in the evolution of  the dog . Because R . K .  

wayne ' s  research ( 1 986 a ,  1 9 8 6b , 1986c ) dealt specifically 

with growth and morphology in modern canids , it provided 

crucial results despite the fact that he was not 

speci fically address ing questions about the origins of the 

dog . Continuation of  this l ine of research is needed . 

Detailed studies of  growth and development , keyed to 

isolating heterochronic processes are most  important . 

Brain development in modern canids should also be analyzed 

from the same perspective . 

Wayne ( 1 9 8 6 a ) notes that developmental boundaries may 

constrain morphology in other domestic animals as well . 

For example , in cats and horses shape change during 

ontogeny is minimal . Similarly , morphological divers ity 

among adults of modern breeds representing these taxa is 

minimal . on the other hand pigs ( like dogs ) exhibit a 

relatively wide range of cranial morphology as adults . Not 

surprisinqly , they underqo cons iderable chanqes in cranial  

proportions during ontogeny . These patterns may be 

characteristic of domestic animals s imply because they have 

undergone rapid evolutionary change . Under conditions of 

rapid change ontogenetic pathways may def ine the limits to 

morphological change , among both domestic and nondomestic 

taxa . Clearly , the role of heterochrony in produc ing 

changes assoc iated with domestication warrants intens ive 
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investigation in taxa other than Canis , and i n  nondomestic 

taxa as well . 

Dissertation Summary 

1 .  Domestication is often viewed as human subj ugation 

of another species . consequently , morphological changes in 

domest ic animals are often presumed to be the results of  

human selection , conscious or unconscious . A broader 

evolutionary perspective focuses on other selective 

mechanisms without disregarding the cruc ial association 

with human soc iety . An evolutionary perspective also 

encourages cons ideration of nongenetically mediated 

evolut ion . 

2 .  Domestic ation of  the dog began sometime near the 

close of the Pleistocene , probably through the adoption of 

wol f  pups by humans . This may have taken place more than 

once and in more than one place . Adoption occurred for 

reasons that can only be speculated , and some growing pups 

were tolerated in the human group . Young wolves passed 

their critical f irst weeks of soc ialization in human 

soc iety and were from that time on bonded with their  human 

"pack" . 

3 .  The wol f , evolutionarily engineered for l i fe as an 

apex predator with heirarchical soc ial structural ,  

elaborate communication , cooperative hunting of  l arge game , 

and a capacity for learned behaviors , was abruptly 
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transplanted into radically altered circumstances among 

humans . Similarities in soc ial structure and mutual 

intell igibil ity of portions of their respective 

communication systems provided necessary compatibility .  

Early domestic wolves had no opportunities to learn the 

hunting and related subsistence skills  of the wild wol f 

pack . As members of a human " pack"  they survived by 

learning different skills  involving solicitation of food 

from humans , scavenging of human food refuse , and greater 

emphas i s  on hunting of small prey spec ies . Some 

individuals exhibited the behavioral -pl asticity to 

success fully learn new survival skills without violating 

their inflexibly subordinate pos ition in the soc ial 

he irarchy . They were the founders of  a new spec ies , canis 

familiaris . 

4 .  The domestic niche with humans was fundamentally 

new . The evolutionary opportunity to fill  it  placed early 

domestic animals in the rol e  of colonizers . Selection 

strongly targeted precoc ious maturation in thi s  new 

environment ,  l argely free of density dependent mortal ity . 

concurrently,  the diet of  early domestic wolves was 

abruptly altered relative to the ir wild counterparts . 

Rather than keying on one or two l arge ungulate spec ies , 

domestic wolves fed on a diverse variety of  smaller food 

items . As a result , reduced body size  was strongly 

targeted by selection . These two aspects of  the selective 
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reqime experienced by early domestic populat ions led to 

morpholoqical chanqes that allow the identi fication of c .  

familiaris from prehistoric contexts . 

5 .  craniometric data from modern canids ( � .  lupus , � ·  

rufus , � ·  latrans , and � ·  aureus ) and prehistoric domestic 

doqs from North America and northern Europe , the latter all 

predatinq 3 , 000  B . P . , were analyzed to determine if  

morpholoqical chanqes exhibited by early doqs are 

al lometrically linked with s ize reduction . Bivariate 

analys is of static data revealed that doqs have uniquely 

wide cranial vaults and palates , patterns not referrable to 

allometries seen amonq wild canis . Face lenqth proportions 

in doqs are referrable to broad interspeci fic al lometries . 

The doqs also tend to have proportionally lonqer teeth than 

wild canids . Bivariate analys is of ontoqenetic data 

revealed that unique morpholoqical features in doqs are 

as sociated with qreater proximity to wolf  ontoqenetic 

reqress ions relative to other adult canids . Multivariate 

analys is confirmed that doqs exhibit paedomorphos is ;  adult 

doqs are more s imilar to j uvenile �· lupus than to any 

adult qroup . Doqs are ontoqenetically scaled with wolves . 

6 .  Unique morpholoqy amonq doqs is allometrically 

produced , but not biomechanically necessitated . Morpholoqy 

in doqs is larqely constrained to developmental pathways , 

with j uvenilized morpholoqy a consequence . This pattern 

probably reflects the qenetically simplest means of 
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accomodating rapid evolutionary s ize change , and may be 

unviable among more slowly evolving taxa . 

7 .  The evolutionary mode of s ize change in dogs was 

progenetic heterochrony . Studies of  modern dog breeds 

indicate that s imple truncation of growth period ( time 

progenes is ) ,  while probably characteristic of early dog 

evolution , cannot account for s ize disparity between early 

dogs and wolves . Because postnatal spec ific growth rates 

in modern dogs and other canids are s imilar , dogs must 

exhibit reduced prenatal of perinatal growth rates ( rate 

progenes is ) .  Invariance in gestation length may be a 

fundamental morphological constraint in canis . 

a .  Proportionally longer teeth in early dogs may 

reflect l ack of tight integration between dental 

development and overall somatic growth . Under conditions 

of rapid s ize change , tooth s ize changes l ag behind . 

consequently , modern dogs exhibit strong negative allometry 

of tooth s ize in relation to skull s ize . 

9 .  Modern breeds l ike northern Eskimo dogs cannot 

serve as accurate structural models for earliest  domestic 

dogs . Early dog evolution is ubiquitously characterized by 

s ize reduct ion . Large , modern breeds are a product of 

1 2 , 00 0  years of evolution . Prehistoric dogs , though smal l , 

are a more accurate reflection of early divergence from 

wolves than are modern breeds . 

1 0 . Because heterochrony involves s impl e  genetic 
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alterations , s ize disparity between early dogs and large 

northern wolves does not exclude the latter from a primary 

role in the ancestry of dogs . Similarly , reduced s ize  

disparity between small Euras ian wolves rel ative to  early 

dogs is not convinc ing evidence of  the ir ancestry .  The 

question of ancestry of dogs among smal ler versus larger 

wolves remains open . 

1 1 . Although early dogs underwent rapid evolutionary 

size reduction , del iberate selective breeding eventually 

produced great divers ity in size and form . The point in 

time at which selective breeding can be inferred varies 

from region to region . 

1 2 . Future research should focus on l arger suites of 

measurements , better ontogenet ic data , and greater variety 

in the samples analyzed , of both prehistoric dogs and 

modern canids . Emphas is on heterochrony as a primary 

mechanism of evolutionary change in domestic animals should 

continue . 

conclus ion 

It is a tactical and theoret ical error to assume that 

morphological changes in domestic animals must be products 

of human selection . This  study has sought to demonstrate 

that general princ iples derived from evolutionary ecology 

more pars imoniously account for basic morphological changes 

during the early evolution of  the domestic dog . When 
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humans are viewed a s  the primary component of  the 

ecological niche of a coloniz ing organism , rather than as 

evolutionary engineers , anthropocentric assumptions become 

unneces s ary . 

To be sure , when research questions focus on 

implications of  domestic rel ationships for humans an 

anthropocentric perspective is  appropriate . However ,  when 

research questions deal with implications of  domestication 

for nonhuman organisms a broader evolutionary perspective 

is more appropriate . Heterochrony may be a common 

underlying force associated with s ize and morphological 

changes during early evolution of many domestic animals .  

Ultimately,  gaining a more complete understanding of  

domestic rel ationships wil l  require recognition that 

evolutionary forces not under human control do not 

necessarily cease s imply because a domestic relationship is  

underway . It is  hoped that this  study is  a small  step 

towards a more complete understanding of domestic 

relationships . 
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APPENDIX A 

• 

RAW DATA AND CODING INFORMATION ON ALL CANID 

SPECIMENS USED IN ANALYSIS 

Table 51  presents raw data on all canid crania used in 

this study . For each specimen this includes all 

measurements ,  aqe cateqory ( code numbers from Table 2 ,  paqe 

81 ) ,  sex , and subspec ies or qeoqraphic reqion . Each 

specimen is identif ied by a three letter acronym indicatinq 

its institutional location , followed by its institutional 

cataloq number . Table 5 2  presents a key to inst itutional 

acronyms and code values for sex and subspecies or 

qeoqraphic reqion . 
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Table 5 1 .  Raw data on all canid 1pect.ena u1ed in analylil . 

Group/ Mealurf!llfttl <•� Ob1ervation1** 
Ca1e Spect.en• CL PL PW 01 tiCW 1M2 P4 CAl P1 P2 P3 A 5 SG 

£!!!!.! lupus lycaon adults 

1 JFB 001360 228 120 73 108 72 121 23 . 0  13 . 7  6 . 9 13 . 7  15 . 2  5 2 2 
2 JFB 001872 250 130 80 116 77 130 24 . 4  15 . 8  8 . 5  13 . 9  15 . 9  5 1 2 
3 JFB 012295 252 133 80 118 77 131 24 . 5  15 . 3  8 . 3  15 . 1  15 . 7  5 1 2 
4 JFB 013 259 230 121 77 109 75 123 22 . 9  14 .0  7 .9  14 . 8  16 . 0  5 1 2 
5 JFB 005689 213 1 1 1  70 097 67 113 22 . 7  1 2 . 5  7 . 8  1 2 . 8  15 . 3  4 3 2 
6 JFB 012290 226 123 76 110 73 123 23 . 6  15 . 3  7 . 6  13 . 9  15 . 7  5 2 2 
7 JFB 001219 225 116 78 100 73 1 19 23 . 6  13 . 9  6 .9 12 . 2  14 . 9  5 1 2 
8 JFB 012252 230 122 73 106 72 120 24 . 0  13 . 2  8 . 4  13 . 1  1 5 . 7  5 1 2 
9 JFB 001221 240 126 81 111 74 127 26 . 8  15 . 6  8 . 1  15 . 9  1 7 . 5  5 1 2 

10 JFB 013243 224 118 74 103 76 121 23 . 9  14 . 9  7 . 4  13 . 4  15 . 3  5 1 2 
11 JFB 012299 223 118 74 101 72 122 23 . 2  15 . 1  7 . 9  15 . 0  15 . 0  5 1 2 
12 JFB 010634 240 125 79 112 79 126 25 . 1  15 . 4  7 . 5  14 . 2  1 5 . 7  4 1 2 
13 JFB 012296 244 129 84 115 74 129 26 . 3  1 4 . 4  7 . 9  13 . 2  14 . 7  5 1 2 
14 JFB 010633 236 122 75 107 74 125 24 . 6  15 . 8  8 . 0  15 . 4  16 . 7  5 1 2 
15 JFB 013260 237 123 77 108 72 126 23 . 7  14 . 3  7 . 7  13 . 7  15 . 6  5 1 2 
16 JFB 012301 228 123 76 107 71 123 24 . 0  13 . 2  7 . 0  13 . 7  16 . 2  5 1 2 
17 JFB 001930 229 122 73 115 71  126 24 . 6  15 . 0  7 . 8  13.6  16 . 3  4 2 2 
18 JFB 003850 230 120 77 106 74 121 23 . 2  14 . 3  7 . 5  13 . 3  1 5 . 6  5 1 2 
19 JFB 001856 235 124 74 107 73 126 25 . 0  14 . 3  7 . 7  13 . 5  14 . 6  5 2 2 
20 JFB 012303 223 124 73 107 72 123 24 . 3  14 . 5  7 . 2  13 . 8  15 . 0  5 2 2 
21 JFB 001220 227 115  7 1  104 72 119 22 . 4  13 . 8  6 . 6  13 . 5  15 . 0  4 1 2 
22 JFB 013265 249 126 83 120 76 132 26 . 8  15 . 8  8 . 1  15 . 4  16 . 8  5 1 2 
23 JFB 013252 226 119 75 105 74 118 23 . 7  13 . 4  6 . 8  12 . 7  15 . 2  5 2 2 
24 JFB 013266 209 110 73 96 73 111 21 . 4  5 2 2 
25 JFB 013255 219 116 68 103 71 117 23 . 1  12 . 6  6 . 8  1 2 . 9  14 . 7  5 2 2 
26 JPB 013256 237 129 81  112 74 127 24 . 5  14 . 4  7 . 6  13 .0  15 . 8  5 2 2 
27 JPB 012308 243 129 82 113 78 128 25 . 0  15 . 3  7 . 9  13 . 0  15 . 5  5 1 2 
28 JPB 012309 255 135 81 122 75 135 26 . 0  16 . 7  9 . 0  16 . 2  16 . 7  5 1 2 
29 JFB 013262 227 115  7 5  108 73 118 23 . 3  13 . 7  8 . 0  13 . 6  14 . 6  5 1 2 
30 JPB 013261 239 128 79 111 74 127 24 . 8  14 . 1  7 . 5  14 . 4  15 . 6  5 1 2 
31 JFB 013257 238 127 82 106 73 129 25 . 3  14 . 6  7 . 3  14 . 6  16 . 3  5 1 2 
32 JFB 010631 233 123 78 110 69 126 23 . 4  1 4 . 5  8 . 6  14 . 6  16 . 0  5 2 2 
33 JPB 013264 247 129 80 119 73 132 23 . 9  15 . 4  7 . 6  14 . 1  14 . 9  5 1 2 
34 JFB 013250 218 117 74 99 70 116 22 . 2  14 . 0  7 . 1  12 . 8  14 . 8  5 2 2 
35 JPB 010637 246 126 91 113 76 131 24 . 2  17 . 1  7 . 8  13 . 0  1 6 . 0  5 1 2 
36 JPB 012313 244 125 84 111 78 127 24 . 3  14 . 2  8 . 0  14 . 7  15 . 8  5 2 2 
37 JFB 012312 231 123 81 112 72 127 25 . 4  16 . 6  6 . 2  14 . 2  17 . 2  5 1 2 
38 JPB 001350 228 119 79 109 74 122 23 . 9  14 . 3  7 . 3  14 . 2  1 6 . 3  4 1 2 
39 JFB 012289 227 117 76 104 72 120 23 . 6  13 . 1  7 . 6  13 . 6  1 5 . 6  5 2 2 
40 JPB 012293 212 114 72 104 65 1 16 22 . 8  1 4 . 3  7 . 5  13 . 3  1 5 . 4  4 2 2 
41 JPB 012304 214 115 75 102 70 119 24 . 6  15 . 9  7 . 6  13 . 2  15 . 4  4 1 2 
42 JFB 012306 219 117 75 99 70 120 23 . 8  15 . 1  7 . 2  13 . 6  15 . 9  4 1 2 
43 JFB 013253 220 123 79 104 72 122 15 . 1  8 . 3  1 4 . 4  16 . 8  4 1 2 
44 JFB 012292 214 113 72 110 67 116 22 . 6  13 . 6  7 . 5  13 . 3  1 5 . 3  4 2 2 
45 SNM 289995 249 132 78 118 75 129 24 . 4  1 4 . 6  7 . 8  14 . 1  16 . 5  5 2 2 
46 SNM 265071 223 120 79 110 73 123 25 . 6  1 6 . 0  7 . 3  13 . 8  16 . 1  5 1 2 
47 SNM 258637 216 112 69 100 68 111 20 . 9  1 1 . 8  6 . 3  12 . 9  13 . 5  5 2 2 
48 SNM 243973 224 120 70 107 73 120 23 . 0  12 . 9  6 . 7  12 . 7  13 . 9  4 2 2 
49 SNM 243395 224 115 74 104 69 119 24 . 9  14 . 2  6 . 7  13 . 2  15 . 4  5 1 2 
50 SNM 242290 216 117 69 102 68 115 22 . 6  12 . 6  6 . 6  13 . 3  14 . 2  5 2 2 
51  SNM 170692 230 1 18 73 103 72 115 2 2 . 8  14 . 4  7 . 8  13 . 6  14 . 9  · 5  1 2 
52 SNM 530436 204 106 69 095 68 109 22 . 4  1 2 . 9  6 . 6  1 1 . 7  14 . 1  4 2 2 
53 SNM 530435 216 113 72 100 72 1 17 2 4 . 6  13 . 2  7 . 1  13 . 7  15 . 4  4 2 2 
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. Table 51 (continued) . 

Group/ !leaaure.enta (•) Obaervations 
case Speci��en CL PL PW 01 MCW Iii2 P4 CAN Pl P2 Pl A s SG 

f!!!!.! lupus lycaon adults (continued) 

54 SNM 513676 215 111 73 100 71 114 23 . 2  13 . 0  7 . 0  1 2 . 8  14 . 6  4 2 2 
55 SNM 529877 212 110 70 99 70 114 22 . 3  12 . 0  7 . 1  12 . 4  14 . 7  4 2 2 
56 SNM 512026 233 124 74 109 72 124 23 . 7  15 . 5  7 . 6  1 4 . 3  16 . 7  4 3 2 
57 SNM 512009 231 120 77 105 72 122 23 . 6  14 . 4  7 . 7  14 . 7  17 . 2  4 3 2 
58 SNM 512007 233 122 73 109 74 122 23 . 3  1 5 . 9  7 . 0  14 . 6  1 4 . 9  4 3 2 
59 SNM 347921 220 111 72 101 72 117 23 . 2  13 . 6  7 . 1  12 . 8  15 . 0  4 2 2 

£!!!.!! lupus baylei adult.-

60 SNM 224484 231 117 76 110 73 123 22 . 9  13 . 1  6 . 0  14 . 0  15 . 0  5 1 3 
61 SNM 224485 212 106 73 99 72 114 23 . 1  12 . 8  6 . 4  12 . 2  13 . 9  4 2 3 
62 SNM 225394 210 111 71 101 72 113 22 . 9  13 . 2  6 . 7  1 4 . 4  14 . 8  5 3 3 
63 SNM 228269 220 114 72 104 73 1 17 24 . 6  12 .6 6 . 1  13 . 6  13 . 9  5 1 3 
64 SNM 231320 217 115 73 101 73 113 24 . 1  12 . 7  6 . 8  13 . 4  14 . 1  5 1 3 
65 SNM 231322 224 114 76 103 72 117 22 . 7  12 . 6  6 . 2  13 . 1  14 . 6  5 1 3 
66 SNM 231323 217 1 1 1  7 4  105 74 116 22 . 9  12 . 1  6 . 6  12 . 3  13 . 8  4 2 3 
67 SNM 231324 225 117 74 107 72 123 24 . 4  13 . 8  6 . 0  13 . 2  15 . 1  5 1 3 
68 SNM 231532 218 115 74 102 73 115 23 . 0  13 . 9  13 . 8  1 4 . 5  5 1 3 
69 SNM 231533 217 112 75 101 73 117 23 . 4  13 . 9  6 . 8  1 4 . 7  15 . 8  4 1 3 
70 SNM 231534 216 1 1 1  7 4  99 69 114 22 . 6  13 . 0  6 . 0  13 . 6  14 . 5  4 1 3 
71  SNM 231536 210 107 73 101 70 1 13 22 . 3  12 . 1  6 . 0  12 . 3  14 . 4  5 2 3 
72 SNM 232446 235 124 78 111 73 124 24 . 8  15 . 4  6 . 8  12 . 9  5 1 3 
73 SNM 002193 203 104 69 96 66 109 21 . 7  1 1 . 6  5 . 5  10.8  12 . 5  5 3 3 
74 SNM 285754 233 1 19 76 111 74 124 24 . 3  14 . 2  7 . 3  14 . 0  15 . 5  5 1 3 
75 SNM 094728 210 110 73 102 67 1 18 24 . 5  13 . 6  7 . 4  1 4 . 8  15 . 9  5 2 3 
76 SNM 003335 220 114 73 106 74 119 24 . 3  14 . 2  6 . 7  13 . 6  14 . 5  5 3 3 
77 SNM 167989 208 111 71 96 68 111 2 2 . 9  13 . 0  6 . 2  1 2 . 9  13 . 9  4 2 3 
78 SNM 095752 202 105 67 94 69 110 21 . 2  1 1 . 1  6 . 1  1 1 . 11  12 . 5  4 3 3 
79 SNM 098307 222 114 69 105 70 117 23 . 9  12 . 6  6 . 6  13 . 1  13 . 9  5 1 3 
80 SNM 09831 1  216 116 70 104 72 118 22 . 8  1 1 . 7  6 . 5  12 . 5  14 . 0  5 2 3 
Ill SNM 098313 225 116 72 107 74 122 23 . 6  13 . 2  6 . 11  13 . 3  15 . 1  5 1 3 
82 SNM 099668 209 108 69 99 73 1 13 24 . 0  13 . 0  6 . 5  13 . 0  14 . 7  4 3 3 
83 SNM 117059 232 121 77 108 77 123 24 . 5  13 . 9  6 . 5  14 . 5  16 . 0  5 1 3 
84 SNM 117060 224 1 17 74 105 75 1 111 1 2 . 2  6 . 0  12 . 1  13 . 11  5 1 3 
85 SNM 1 17061 214 113 73 100 73 116 23 . 0  1 2 . 2  6 . 0  1 1 . 3  14 . 1  4 2 3 
86 SNM 1 17062 222 113 72 105 74 120 23 . 8  1 2 . 2  6 . 0  13 . 0  14 . 9  5 2 3 
87 SNM 117542 219 1 12 70 105 72 119 22 . 6  11 . 8  5 . 9  13 . 4  14 . 9  4 2 3 
88 SNM 170556 228 115 75 107 72 120 24 . 7  14 . 5  7 . 2  13 . 9  1 5 . 7  5 1 3 
89 SNM 235089 225 116 74 109 71  122  24 . 5  14 . 6  7 . 0  14 . 0  15 . 3  4 1 3 
90 UIK 001048 218 1 13 7 1  101 70 114 23 . 11  5 2 3 
91 UIK 001153 227 1 16 77 104 73 1 19 24 . 0  5 1 3 
92 UDt 001156 221 ll5 74 106 73 1 17 23 . 5  5 1 3 
93 UIK 001160 221 120 73 107 74 120 24 . 5  5 1 3 
94 UDt 001161 215 114 73 102 72 1 15 23 . 11  5 3 3 
95 UIM 001163 210 109 74 99 69 1 13 22 . 5  5 3 3 
96 UIM 001165 215 111 73 100 72 112 23 . 5  5 3 3 
97 UDt 001164 207 108 70 93 66 1011 23 . 7  5 1 3 
98 UDt 211 109 72 98 70 1 1 1  24 . 0  5 2 3 
99 UDt 001149 206 106 70 99 67 112 23 . 0  5 2 3 

100 UDt 004105 209 108 73 100 69 112 22 . 6  5 2 3 
101 UDt 004106 213 1 10 71 99 71  1 15 2 2 . 6  5 2 3 
102 nm 076473 214 113 71 101 70 1 14 23 . 1  5 2 3 
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Table 51 (continued) .  

Group/ tleaauraenta c-> Observations 
Case SpeciHn CL PL "' OI MCW IK2 P4 CAN P1 P2 P3 A s SG 

E!!!i! � adults 

103 SNM 266506 193 102 57 91 61 105 19 .6  10.9 6 . 1  11 . 6  12 . 8  4 2 21 
104 SNM 266173 189 97 59 86 58 101 19 . 9  10 . 5  5 . 7  1 1 . 0  12 . 0  5 3 21 
105 SNM 265645 206 108 63 96 64 109 20 . 2  1 1 . 6  5 . 8  1 1 . 0  12 . 6  5 1 21 
106 SNM 265599 192 99 55 89 59 103 19 .9  1 1 . 1  5 . 8  9 . 1  1 2 . 3  4 1 21 
107 SNM 224531 209 107 60 98 64 112 22 . 3  11 . 6  5 . 8  11 . 4  12 . 6  4 1 21 
108 SHM 224972 204 106 61 96 63 108 2 1 . 2  11 . 1  s . o  1 1 . 8  13 . 7  5 1 21 
109 SHM 224973 195 103 56 91 60 106 20 . 0  12 .0  5 . 4  1 1 . 0  12 . 5  5 1 21 
110 SHM 224974 198 103 59 94 62 106 21 . 1  12 . 5  5 . 4  11 . 7  13 . 0  4 1 21 
111 SHM 225366 196 103 60 95 59 108 20 . 4  1 1 . 0  4 . 9  1 1 . 0  1 1 . 8  5 1 21 
112 SHM 225367 204 107 58 96 61 109 20 . 3  1 1 . 3  5 . 2  10 . 7  12 . 3  5 1 21 
113 SHM 227899 202 108 58 96 61 111 19 . 3  10.4  5 . 2  1 1 . 0  12 . 2  5 1 21 
114 SHM 227900 199 103 61 60 106 2 1 . 4  10.8 5 . 9  11 . 7  13 . 0  5 1 21 
115 SHM 228069 202 108 58 95 61 110 2 1 . 6  10 . 6  5 . 9  12 . 1  13 . 2  5 1 21 
116 SHM 228089 195 100 6 1  93 62 105 20 . 5  10 . 0  5 . 5  u . s  12 . 3  4 2 21 
117 SHM 228239 207 108 58 101 61 113 2 1 . 8  10 . 7  6 . 4  1 1 . 8  12 . 4  5 1 21 
118 SNM 228517 198 103 62 93 60 108 2 1 . 3  10 . 7  6 . 3  1 1 . 5  1 2 . 7  5 1 21 
119 SNM 251084 218 110 63 100 63 114 2 1 . 4  12 .7  6 . 1  13 . 2  13 . 9  5 1 21 
120 SNM 251085 225 113 63 65 118 22 .0 12 .9 7 . 1  1 1 . 9  13 . 0  5 1 21 
121 SNM 251086 206 105 62 93 64 109 2 1 . 6  12 . 3  6 . 8  12 . 1  13 . 3  5 2 21 
122 SNM 261609 204 106 56 96 60 111 22 . 4  1 1 . 1  5 . 6  12 . 4  12 .8  4 1 21 
123 SHM 261753 201 104 62 96 61 109 20 .7  12 . 0  5 . 6  1 2 . 0  12 . 5  5 1 21 
124 SNM 262105 207 106 61 93 61 107 19 . 7  10 . 7  4 . 9  1 1 . 4  13 . 1  5 2 21 
125 SNM 262106 200 103 59 90 60 107 19 . 1  10 . 7  5 . 3  10 . 7  12 . 4  4 2 21 
126 SNM 265458 209 108 59 98 62 110 19 . 4  10 . 6  s . o  10 . 8  12 . 7  5 2 21 
127 KUM 024879 198 103 59 92 61 106 2 1 . 0  5 1 21 
128 � 060148 201 105 62 95 62 109 21 . 4  5 2 21 
129 � 024878 202 105 65 98 62 110 21 .9  5 1 21 
130 � 060149 194 107 61 94 58 106 20 . 9  5 2 21 
131 � 054820 207 106 63 96 61 112 21 . 8  5 1 21 

£!!!!! latrana adults 

132 ISJt 686535 180 96 57 87 58 100 20 . 7  10 .6  5 . 3  1 1 . 3  12 . 8  5 1 36 
133 ISM 001651 182 94 58 83 58 98 19 . 0  10 . 3  4 . 7  9 . 2  1 1 . 7  5 3 36 
134 ISM 614755 174 88 53 78 57 95 19 .6 8 .6 4 . 6  9 . 3  1 1 . 8  5 2 36 
135 ISM 683716 158 81 51 71 54 82 17 . 2  7 . 9  5 . 2  9 . 6  1 1 . 7  5 2 36 
136 ISM 614240 170 86 55 77 55 93 20 . 6  9 . 8  5 . 7  11 . 1  1 1 . 9  5 2 36 
137 ISM 687981 187 95 54 86 59 102 19 . 3  1 1 . 0  4 . 9  1 1 . 3  1 1 . 9  5 2 36 
138 ISM 614378 183 95 54 87 58 100 19.0  9 . 2  5 . 1  1 1 . 1  1 1 . 9  5 2 36 
139 ISM 614204 179 92 54 84 59 98 18 . 7  9 . 0  4 . 9  1 1 . 1  1 1 . 9  5 3 36 
140 ISM 614754 189 98 61 90 62 101 21 . 2  1 1 . 2  5 . 3  12 . 3  14 . 1  5 1 36 
141 ISM 688233 186 102 57 88 59 103 19 . 0  9 . 2  5 . 4  10 . 5  1 1 . 2  5 3 36 
142 ISM 614569 180 91 55 85 59 97 18 . 7  9 . 4  5 . 3  10.8  1 1 . 9  5 2 36 
143 ISM 614472 185 97 57 86 60 101 20 . 3  10 . 5  5 . 2  9 . 3  1 1 . 6  5 2 36 
144 ISJt 614379 203 106 63 97 65 109 19 . 3  1 1 . 3  5 . 2  1 1 . 7  12 . 9  5 1 36 
145 ISM 683778 188 98 57 88 60 102 20 . 6  10 . 6  5 . 4  10 .4  11 .9  5 1 36 
146 ISM 687966 195 101 59 91 58 106 21 . 2  10 . 8  5 . 6  1 1 . 4  12 . 5  5 1 36 
147 ISJt 614705 190 98 55 90 60 103 19 . 3  10 . 5  4 . 8  10 . 5  12 . 2  5 3 36 
148 ISJt 687968 183 94 53 84 56 98 20 . 0  10 . 3  s . o  10 . 9  1 1 . 3  5 1 36 

- 149 ISM 614674 184 96 57 87 58 102 20 . 9  10 . 9  5 . 4  1 1 . 2  12 . 7  5 1 36 
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Table 51 (continued) .  

Group/ Pleaaurewentl (•) Obaervations 
Caae SpeciHn CL PL .... OI NCW 1M2 P4 CAM Pl P2 P3 A s SG 

� latrana adulta ( continued) 

150 ISM 687748 195 101 60 92 65 104 20 . 0  1 1 . 5  5 . 9  10 . 8  12 . 3  5 1 36 
151 ISM 690935 193 100 61 89 61 105 22 . 1  1 1 . 7  5 . 9  12 . 1  13 . 1  5 3 36 
152 ISM 614658 184 96 56 89 60 101 20 . 5  9 . 9  5 . 3  10 .0  1 2 . 5  5 3 36 
153 ISM 614390 178 91 55 80 57 96 18 . 4  9 . 3  5 . 2  1 1 . 2  1 1 . 7  5 3 36 
154 ISM 614666 185 97 58 89 60 104 19 . 4  11 . 1  5 . 0  9 . 9  11 . 7  5 3 36 
155 ISM 688235 186 98 59 88 61 104 21 . 1  10 . 4  6 . 1  10 . 5  1 1 . 5  5 3 36 
156 ISM 614262 186 96 59 87 59 103 21 . 5  10 . 5  5 . 9  12 . 0  1 3 . 7  5 1 36 
157 ISM 614254 192 100 57 89 61 104 20 . 1  10 . 5  6 . 1  10 . 4  12 . 3  5 1 36 
158 ISM 614382 202 105 62 97 63 108 20 . 2  11 . 5  5 . 2  1 1 . 7  13 . 8  5 1 36 
159 ISM 614731 167 87 49 78 55 93 17 . 8  8 . 5  5 . 3  9 . 5  10 . 0  5 2 36 
160 ISM 614213 176 91 55 82 59 98 18 . 5  9 . 2  5 . 4  10 . 3  12 . 4  5 3 36 
161 ISM 614562 183 95 53 85 57 100 20 . 6  10 . 4  5 . 6  10 . 4  1 2 . 3  5 1 36 
162 ISM 614463 189 95 55 89 59 104 19 . 5  10 . 5  4 . 7  11 . 1  12 . 7  5 1 36 
163 ISM 687983 177 92 58 82 59 96 19 . 8  10 . 2  5 . 2  10 . 1  1 1 . 5  5 3 36 
164 ISM 614675 184 96 56 83 57 100 20 . 0  10 . 4  5 . 1  1 1 . 7  13 . 1  5 1 36 
165 ISM 614398 182 92 54 82 59 97 19 . 5  10 . 0  4 . 6  10 . 7  1 2 . 3  5 3 36 
166 ISM 614242 189 99 60 88 60 104 19 . 9  10 . 6  5 . 9  1 1 . 6  13 . 3  5 1 36 
167 ISM 614241 178 92 57 82 58 97 19 . 8  9 . 1  4 . 9  10 . 1  12 . 6  5 2 36 
168 ISM 614263 184 92 59 88 58 100 19 . 3  9 . 6  4 . 9  10 . 8  12 . 1  5 2 36 
169 ISM 687967 184 94 55 85 59 99 20 . 0  10 . 6  5 . 0  10 . 8  1 1 . 7  5 1 36 
170 ISM 614628 187 96 55 88 57 101 20 . 0  10 . 3  5 . 7  1 1 . 8  12 . 6  5 1 36 
171 ISM 001364 183 95 55 86 57 100 19 . 6  10 . 4  5 . 3  8 . 3  1 1 . 8  4 3 36 
172 ISM 001356 198 104 59 94 63 108 21 . 3  1 1 . 5  6 . 0  12 .8  13 . 6  4 2 36 
173 ISM 001665 167 84 51 78 59 90 18 . 6  9 . 7  4 . 9  8 . 2  1 1 . 0  4 3 36 
174 ISM 001600 189 98 59 89 59 104 2 1 . 8  12 . 1  6 . 2  11 . 5  14 . 3  4 3 36 
175 ISM 001631 186 99 58 88 59 102 2 1 . 5  1 2 . 3  6 . 7  10 . 1  12 . 4  4 3 36 
176 ISM 000549 185 96 55 89 60 102 19 . 5  9 . 4  5 . 3  10 . 6  12 . 0  4 1 36 
177 ISM 001357 193 96 56 89 61 102 19 . 7  11 . 4 5 . 3  10 . 5  1 1 . 8  4 1 36 
178 ISM 614565 175 90 54 81 58 98 20 . 4  10 . 7  5 . 3  10 . 1  12 . 5  4 2 36 
179 ISM 614265 173 87 55 78 56 93 19 . 3  9 . 6  4 . 9  9 . 7  11 . 3  4 2 36 
180 ISM 614625 176 91 53 83 60 96 18 . 3  9 . 8  5 . 0  9 . 8  11 . 9  4 3 36 
181 ISM 614277 192 101 58 91 60 105 21 . 3  12 . 4  5 . 8  10 . 9  13 . 3  4 1 36 
182 ISM 614623 186 94 57 88 60 101 19 . 5  10 . 3  6 . 1  1 1 . 8  13 . 2  4 2 36 
183 ISM 685944 174 90 54 81 55 96 19 . 5  1 1 . 6  5 . 4  11 . 1  13 . 2  4 2 36 
184 ISM 684394 183 94 56 86 58 101 20 . 8  10 . 6  6 . 1  10 . 3  1 2 . 3  4 2 36 
185 ISM 614474 - 177 95 53 82 56 95 19 . 2  10 . 3  5 . 2  11 . 2  1 1 . 9  4 2 36 
186 IS!t 614729 178 90 53 80 54 94 19 . 6  10 .0  5 . 2  10 . 7  12 . 8  4 3 36 
187 ISM 614261 190 98 60 86 61 102 20 . 2  9 . 8  5 . 7  1 1 . 6  12 . 7  4 2 36 
188 ISM 614750 185 94 56 84 60 100 2 1 . 1  10 . 4  5 . 5  10 . 6  10 .8  4 1 36 
189 ISM 614532 186 97 53 85 58 103 20 . 2  11 . 3  5 . 0  10 .8  12 .0  4 1 36 
190 ISM 686003 182 94 57 83 57 97 19 . 2  9 . 6  5 . 3  10 .6  1 1 . 7  4 1 36 
191 IS!t 614389 186 95 56 86 59 99 20 . 3  5 . 4  1 1 . 3  12 . 6  4 1 36 
192 ISM 614627 184 95 56 85 58 100 19 .5  10 . 4  6 . 6  11 . 3  1 2 . 8  4 2 36 
193 ISM 689929 177 92 57 81 56 98 19 . 1  9 . 1  4 . 9  10 . 6  13 . 1  4 1 36 



Table 51 (continued) .  

Group/ 
case Speci��en CL PL PW 

� � adults 

194 SNM 290135 
195 SNM 173280 
196 SNM 173283 
197 SNM 173284 
198 SNM 256727 
199 SNM 321958 
200 SNM 321956 
201 SNM 321954 
202 SNM 322834 
203 SNM 399436 
204 SNM 322833 
205 SNM 410915 
206 SNM 399432 
207 SNM 410910 
208 SNM 410911 
209 SNM 476031 
210 SNM 486165 
211 SNM 486167 
212 SNM 476030 
213 SNM 378686 
214 SNM 476034 
215 SNM 378688 
216 SNM 378685 
217 SNM 378684 
218 SNM 378683 
219 SNM 476856 
220 SNM 399435 
221 SNM 321951 
222 SNM 399434 

149 76 51 
150 76 47 
157 78 50 
153 78 50 
155 78 55 
192 101 61 
180 90 56 
176 91 55 
150 79 49 
155 80 52 
159 82 50 
157 80 47 
163 83 54 
151 77 49 
151 81 45 
157 81 49 
146 79 49 
152 80 48 
146 77 47 
147 76 44 
163 85 53 
158 82 50 
157 81 51 
155 80 50 
156 81 48 
155 80 50 
160 83 52 
183 93 58 
156 82 49 

� � juveniles 

223 JFI 012302 
224 JFI 012305 
225 JFB 010632 
226 JFB 013254 
227 JFB 000091 
228 JFI 012307 
229 JFI 005019 
230 JFI 013249 
231 JFB 013258 
232 JFB 012726 
233 SNM 529878 
234 SNM 347920 
235 SNM 347919 
236 SNM 347916 
237 SNM 243394 
238 SNM 243393 
239 SNM 242291 
240 SNM 170138 
241 SNM 022371 
242 SNM 156838 
243 SNM 512021 

207 110 68 
194 104 68 
182 98 69 
187 100 73 
217 115 74 
188 103 71 
216 114 72 
187 103 70 
184 98 70 
203 \13 71 
194 103 64 
196 104 65 
198 103 67 
208 111 72 
191 102 67 
194 107 63 
217 114 68 
179 93 57 
206 110 72 
230 115 74 
218 113 72 

2 7 8  

Measure.ents ( .. ) 
OI I'ICIO W P4 CAlli 

67 53 
66 52 
68 54 
66 52 
67 55 
88 59 
82 58 
81 57 
69 51 
68 54 
72 53 
70 52 
74 54 
68 50 
69 49 
71 54 
69 51 
69 52 
65 51 
66 49 
73 55 
70 53 
69 52 
68 51 
70 53 
68 54 
72 55 
85 59 
71 54 

82 
16 . 0  

82 16 . 7  
81 16 . 5  
80 18 . 2  

101 18 . 8  
9 2  17 . 3  
95 16 . 9  
8 3  17 . 1  
86 17 . 8  
87 18 . 1  
86 16 . 8  
89 17 . 5  
83 16 . 1  
82 14 . 9  

16 . 7  
8 3  18 . 0  
83 17 . 1  
79 16 . 2  
79 15 . 6  
90 18 . 5  
84 17 . 1  
84 18 . 6  
82 17 . 6  
84 17 . 5  
8 5  17 . 4  
88 18. 1 
97 18 . 5  
85 17 . 1  

P1 

8 . 7  4 . 2  
8 . 0  4 . 1  
7 . 9  4 . 3  
8 . 5  4 . 7  
8 . 9  4 . 4  

10 . 8  5 . 5  
9 . 1  5 . 2  
9 . 8  5 . 5  
9 . 6  4 . 5  
8 . 5  4 . 6  

10 . 0  4 . 6  
8 . 0  5 . 0  
9 . 1  4 . 6  
7 . 7  5 . 2  
7 . 8  4 . 5  
8 . 2  4 . 3  
9 . 7  4 . 7  
8 . 4  4 . 7  
8 . 0  4 . 3  
9 . 1  4 . 4  
9 . 5  4 . 3  
9 . 0  5 . 3  
9 . 5  4 . 9  
8 . 0  5 . 1  
8 . 2  4 . 8  
7 . 8  5 . 0  
9 . 1  4 . 5  
9 . 6  4 . 9  
7 . 7  4 . 9  

P2 

7 . 2  
7 . 5  
8 . 1  
9 . 1  
8 . 5  

10 . 1  
9 . 3  
9 . 0  
8 . 7  

10 . 0  
9 . 7  
8 . 8  
9 . 2  
8 . 1  
8 . 0  
8 . 3  
9 . 1  
8 . 2  
8 . 6  
7 . 9  
9 . 3  
9 . 2  
9 . 7  
8 . 2  
8 . 6  
8 . 5  
9 . 4  
9 . 4  
9 . 1 

P3 

9 . 2  
8 . 6  
9 . 5  

10 . 3  
10 . 3  
1 1 . 4  
10 .0  
10 .6  
10 . 5  
10 . 4  
10 . 4  
9 . 6  
9 . 8  
9 . 6  
9 . 1  
9 . 7  

10 . 6  
9 . 6  

10 .0 
9 . 5  
9 . 8  

10 . 6  
10 . 6  
10 . 8  
9 . 8  
9 . 7  

1 1 . 0  
1 1 . 6  
10 . 3  

99 67 1 15 
89 65 111 
83 66 101 
87 65 109 

24 . 6  14 . 8  8 . 2  14 . 4  16 . 0  
22 . 4  12 . 5  6 . 6  13 . 3  13 . 9  
22 . 6  14 . 1  7 . 0  1 2 . 6  

104 72 118 
88 64 107 

101 71 115 
86 62 109 
83 63 107 
95 66 116 
93 66 108 
91 69 108 
93 68 107 
96 72 112 
90 67 106 
92 67 108 

103 70 119 
83 64 98 
95 69 112 

106 70 118 
100 71 115 

23 . 1  1 3 . 4  7 . 8  12 . 7  15 . 3  

24 . 0  13 . 8  7 . 7  15 . 2  15 . 8  

22 . 9  16.5  7 . 0  13 .3  15 . 8  
22 . 5  
21 . 5  12 .6  6 . 7  12 .6 14 . 4  
22 . 2  1 2 . 8  6 . 4  12 . 6  14 . 3  
2 2 . 5  13 . 7  6 . 8  13 .0 1 3 . 8  

22 . 1  13 . 5  7 . 2  13 . 9  15 . 0  
23 . 8  15 . 1  7 . 5  13 . 4  15 . 8  

24 . 3  13 . 2  6 . 8  12 . 7  13 . 5  
2 2 . 7  13 . 7  6 . 4  14 . 4  14 . 8  
21 . 8  12 . 2  6 . 4  12 . 7  14 . 5  

Observations 
A S SG 

5 
5 
5 
4 
5 
5 
5 
5 
5 
4 
4 
5 
5 
5 
4 
5 
5 
5 
5 
4 
4 
5 
5 
5 
5 
5 
5 
5 
4 

3 
3 
3 
2 
3 
2 
3 
2 
2 
3 
2 
3 
3 
3 
2 
3 
3 
2 
3 
3 
3 

1 
2 
2 
2 
2 
1 
1 
2 
1 
3 
1 
2 
1 
2 
2 
2 
2 
2 
1 
2 
1 
1 
1 
2 
2 
2 
1 
1 
2 

3 
2 
2 
1 
2 
2 
2 
2 
1 
2 
2 
2 
1 
1 
2 
2 
2 
2 
2 
3 
1 

23 
23 
23 
23 
24 
25 
25 
25 
25 

1 
25 

1 
1 

26 
26 
26 
26 
26 
26 
27 
28 
27 
27 
27 
27 
28 
1 

25 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
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Table 51 (continued) . 

Group/ Ple .. uraentl <-� Observations 
Case Specit�et� CL PL "' 01 MCW 1M2 P4 CAll P1 P2 P3 A s SG 

f!!!!! � juveniles (coat ioued) 

244 SNM 170567 223 116 74 109 73 123 24 . 7  15 . 8  7 . 2  14 .6  16 .9  3 1 2 
245 SNM 224172 212 109 76 99 73 116 24 . 4  15 . 3  6 . 8  14 . 3  15 . 6  3 1 . 3 
246 SNM 224187 203 105 70 96 70 113 24 . 3  14 . 2  7 . 3  13 . 1  14 .8  3 2 3 
247 SNM 098328 223 112 74 104 75 119 24 . 8  13 . 1  7 . 1  13 . 3  15 . 1  3 1 3 
248 SNM 117064 226 120 75 109 74 123 24 . 9  14 . 5  6 .9  14 . 6  15 . 6  3 3 3 
249 SNM 147203 75 42 42 28 43 41 1 1 16 
250 SNM 147204 75 44 43 30 45 43 1 3 16 
251 SNM 147195 74 43 43 29 43 41 1 3 16 
252 SNM 147205 101 58 49 43 49 53 1 2 16 
253 SNM 168427 113 63 54 49 54 61 1 1 15 
254 Sh1'1 232440 143 78 59 64 60 1 1 20 
255 SNM 232439 139 73 55 62 57 1 1 20 
256 SNM 232442 138 72 57 59 58 1 1 20 
257 SNM 232441 135 70 57 60 56 1 2 20 
258 SNM 231338 93 54 45 38 53 1 1 20 
259 SNM 231340 89 49 46 36 47 1 1 20 
260 SNM 231341 86 49 47 34 49 1 1 20 

� � juveniles 

261 SNM 253474 170 88 53 78 58 92 20 . 6  9 . 7  5 . 3  10 . 5  1 1 . 7  3 2 21 
262 SNM 243318 199 101 62 93 62 109 21 . 1  12 . 2  5 . 2  1 1 . 8  13 . 6  3 2 21 
263 SNM 136879 185 97 60 89 62 105 22 . 7  14 . 1  5 . 4  10 . 0  12 . 3  3 2 21 
264 SNM 289222 204 102 64 93 62 110 22 . 1  12 . 8  6 . 6  12 . 6 14 . 4  3 2 21 
265 SHM 289221 202 103 60 94 61 108 2 2 . 8  12 .8  7 . 3  12 . 4  13 . 9  3 1 21 
266 SHM 271862 191 100 55 91 59 105 19 . 8  1 1 . 6  6 .6 12 . 6  1 3 . 7  3 1 21 
267 SNM 266156 190 99 57 89 60 102 20 . 7  12 .9  5 . 5  12 . 5  13 . 2  3 1 21 
268 SNM 266090 177 91 54 82 57 100 20 . 2  12 . 6  6 . 2  12 .0 12 . 2  3 2 21 
269 SNM 266101 185 96 56 88 58 102 1 1 . 5  5 . 4  1 1 . 8  13 . 3  3 1 21 
270 SNM 266102 173 88 55 79 56 95 19 . 6  10 . 8  5 . 5  1 1 . 1  12 . 7  3 2 21 
271 SNM 261758 163 84 54 75 55 88 2 1 21 
272 SHM 224967 195 104 60 93 63 106 2 1 . 6  10 . 4  5 . 4  1 1 . 5 13 . 0  3 1 21 
273 SNM 227892 186 96 55 86 60 102 20 . 1  3 2 21 
274 SNM 227895 192 101 57 90 62 108 20 . 3  12 .0  6 . 4  11 .5  1 3 . 9  3 1 21 
275 SNM 265735 163 83 56 74 56 92 2 1 21 
276 SNM 266154 190 97 55 88 59 102 20 . 5  12 . 0  6 . 0  10 . 7  1 2 . 4  3 1 21 
277 SHM 271885 186 98 60 87 62 105 20 . 0  1 2 . 9  6 . 4  12 . 3  1 2 . 7  3 2 22 
278 SNM 265135 175 92 59 81 58 100 2 1 22 
279 SNM 348042 170 90 62 76 61 93 2 1 22 
280 SNM 244494 80 45 38 31 48 1 2 22 
281 SNM 244495 78 44 40 31 47 1 1 22 
282 SliM 244493 79 45 40 31 46 1 1 22 
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Table 51 (continued) .  

Group/ Measure.ents ( .. ) Observations 
Case SpeciHn CL PL PW 01 ltQi 1M2 P4 CAJI Pl P2 P3 A s SG 

� familiaris North �erica 

Indian Jtnoll ( 15082 ) 

283 m 1-4 156 80 56 70 54 85 16 . 7  9 . 2  4 . 1  9 . 4  10 . 7  5 3 10 
284 UKL 1-10 147 75 53 69 52 81 16 . 4  9 . 1  9 . 2  10 . 5  5 3 10 
285 1.1KL 1-24 142 76 54 63 55 80 16 . 5  4 . 3  8 . 2  10 . 5  4 3 10 
286 UKL 1-26 136 73 49 62 51 77 16 . 8  8 . 2  4 . 0 8 . 9  11 . 0  5 3 10 
287 m 1-30 126 65 49 54 47 69 15 . 6  8 . 3  4 . 1  8 . 5  9 . 8  5 3 10 
288 UKL 1-35 144 76 52 66 52 82 18 . 1  10 . 0  5 . 0  9 . 9  1 1 . 3  4 3 10 
289 l'KL 1-55 133 69 54 56 51 73 16 . 8  8 . 1  4 . 7  8 . 3  10 . 5  5 3 10 
290 UKL 1-56 154 81 56 65 55 84 1 7 . 4  9 . 9  4 . 4  10 . 0  1 1 . 0  5 3 10 
291 m 1-60 136 71 53 61 53 77 16 . 5  8 . 5  4 . 1  9 . 1  10 .0  4 3 10 
292 UKL 1-117 144 75 54 64 54 80 1 6 . 4  9 . 2  10 . 2  1 1 . 0  5 3 10 
293 m 1-129 153 80 57 70 56 84 1 6 . 6  8 . 8  4 . 4 9 . 7  10 . 9  5 3 10 
294 UKL 1-130 153 81 56 70 53 85 1 6 . 3  10 . 1  4 . 8 7 . 8  11 . 2  5 3 10 
295 m 1-132 142 75 48 64 51 80 16 . 1  8 . 1  3 . 3  8 . 9  9 . 7  5 3 10 
296 L'KL 1-134 165 85 57 73 59 87 1 7 . 0  10 . 3  4 . 2  8 . 9  10 . 5  4 3 10 

Carlson Annis ( 1 5BT5) 

297 1.1KL 1-146 143 75 51 67 54 80 15 . 6  8 . 6  3 . 8  8 . 4  10 . 1  5 3 10 
298 UKL 1-148 152 83 54 72 56 87 16 . 6  9 . 2  9 . 5  10 . 5  5 3 10 
299 m 1-150 141 76 53 64 51 80 1 7 . 4  11 . 0  5 3 10 
300 UKL 1-151 154 79 55 69 55 85 1 6 . 0  9 . 4  4 . 0  9 . 7  10 . 2  5 3 10 
301 UKL 153 81 56 70 55 84 16 . 9  9 . 6  4 . 0  8 . 0  1 0 . 9  5 3 10 

Ward ( 15MCL1 1 )  

302 m 1-70 157 80 55 72 56 84 16 . 6  9 . 7  4 . 9  8 . 4  10 . 7  4 3 10 
303 UKL 1-72 146 80 56 64 53 83 16 . 4  9 . 1  9 . 8  9 . 9  4 3 10 
304 m 1-98 148 80 55 51 83 1 6 . 6  9 . 7  3 . 9  8 . 3  9 . 4  5 3 10 
305 UKL 1-99 163 82 57 73 57 87 16 . 4  9 . 5  4 . 6  8 . 8  1 0 . 6  5 3 10 

Chigerville (15081 ) 

306 tlKL 1-61 151 78 51 71 51 85 1 7 . 2  10 . 7  4 . 4  9 . 8  1 1 . 0  5 3 10 

Read ( 15BT10) 

307 un 1-144 160 80 59 64 88 18 . 2  9 . 7  4 . 8 10 . 3  12 . 1  5 3 10 
308 UKL 71-1 156 81 56 71 58 85 18 . 3  8 . 7  4 . 0  9 . 8  10 . 8  5 3 10 

Perry ( 1LU25) 

309 UKL 2-43 144 74 51 64 53 79 15 . 4  8 . 0  3 . 9  7 . 9  10 . 0  5 3 10 
310 un 2-45 145 76 53 65 57 81 16 . 4  10 . 0  9 . 5  1 1 . 1  5 3 10 
311 UKL 2-52 146 76 52 65 57 79 1 5 . 3  9 . 1  3 . 8  8 . 7  9 . 2  5 3 10 
312 un 2-53 141 73 54 61 52 80 15 . 8  8 . 3  4 . 0  8 . 6  10 . 3  5 3 10 
313 un 2-55 129 70 49 59 49 73 1 5 . 1  8 . 2  3 . 6  7 . 9  9 . 5  5 3 10 
314 UKL 2-73 142 73 53 64 50 80 17 . 5  9 . 0  3 . 9  9 . 3  10 . 8  5 3 10 
315 un 2-82 154 79 59 69 60 82 17 . 4  12 . 2  4 . 6  a . 5  9 . 8  5 3 10 
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Table 51 (continued) . 

Group/ lteaturetHDtl <-> Observations 
Case SpeciHn CL PL PW OI MellO 1M2 ;4 CAl Pl P2 P3 A s SG 

Canis faailiaria North �rica (coat iDued) 
Whiteabura Bridae ( 1KA10) 

316 UKL 40-25 155 82 57 72 55 86 17 .6  9 . 5  4 . 3  9 . 1  11 . 5  5 3 10 

Flint River ( 1KA48) 

317  UKL 40-7 156 82 57 72 56 85 15 . 7  8 . 9  4 . 1  8 . 3  9 . 9  5 3 10 
318 UKL 40-9 167 86 57 78 59 91 17 .0  1 1 . 3  4 . 9  9 . 8  10 .8  5 3 10 

Little Bear Creek ( 1CT78 ) 

319 UKL 2-93 148 78 58 71 52 84 16 .6  9 . 7  4 . 0  9 . 8  9 . 9  5 3 10 
320 UKL 2-97 156 83 58 71 60 86 17 . 1  10 . 8  4 . 4  9 . 6  11 . 1 5 3 10 

Mulberry Creek (1CT27 )  

321 UKL 2-3 152 79 50 69 53 82 16 . 1  9 . 3  4 . 1  8 . 3  9 . 6  5 3 10 
322 UKL 2-5 151 78 54 68 55 86 17 . 7  10.0 4 . 5  9 . 3  10 . 9  5 3 10 
323 UKL 2-9 157 82 56 70 56 86 18. 1 9 . 4  10 . 1  1 1 . 5  5 3 10 

Bailey (40GL26) 

324 MCL 86-157 141 72 52 61 54 78 1 5 . 2  8 . 2  4 . 0  8 . 1  9 . 0  5 3 10 

Cherry (40HCL84 ) 

325 MCL 84-22 151 80 53 69 51 82 15 . 5  9 . 5  4 . 2  8 . 2  9 . 8  5 3 10 
326 HCL 84-49 133 69 50 59 46 73 14 . 1  7 . 9  4 . 2  8 . 4  9 . 3  4 3 10 

Eva (40HCL6) 

327 HCL 6-16 149 80 57 67 53 82 17 . 2  9 . 7  4 . 5  9 . 4  10 . 9  5 3 10 
328 MCL 6-49 153 82 58 72 54 83 17 . 1  10 . 7  4 . 3  10 . 3  5 3 10 

ltoater 

329 ISM F2357 158 77 86 18.9 10 . 9  5 . 1  10 . 7  1 1 . 8  5 3 11 
330 ISM F2256 165 85 61 78 60 91 18 . 5  10.6  5 . 3  10 .3  12 . 9  5 3 11 

Hodoc 

331 ISH B-2 162 86 59 75 56 90 17 . 9  10 . 5  3 . 9  9 . 9  1 1 . 8  5 3 11 

� faailiaris Europe 

Rinakloster 

332 IPA 1592AVEN 156 80 56 71 57 84 17 . 3  9 .0  4 . 1 9 . 1  10 . 6  5 3 33 
333 IPA 1592AYPG 158 80 57 71 58 14 15 . 5  9 . 7  3 . 7  9 . 2  10 . 1  5 3 33 

ErteWlle 

334 ZMC 168 16 57 56 90 11 . 1  10 .5  3 . 1  9 . 6  11 .0  5 3 33 
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Table 51 (continued) .  

Group/ Measureeeats ( .. ) Observationa 
Csse SpeciHn CL PL PW 01 Mao 1!12 P4 CAlf Pl P2 P3 A s SG 

� t .. iliaris Europe (coot imaed) 

Vedbltk Boldbaner 

335 ZKC 1944-45 161 84 61 74 59 88 18 . 7  10 . 1  4 . 9  10 . 7  1 1 . 3  5 3 33 

Saltpeters110sen 

336 ZMC R . 7-l 178 93 63 82 62 96 18 . 1  1 2 . 0  5 . 2  9 . 9  1 1 . 4  5 3 33 
337 ZMC H . 7-2 163 83 60 75 59 87 17 . 3  10 . 8  5 . 3  10 . 1  11 . 5  5 3 33 

Bunds46 

338 ZMC Bll 136 72 52 61 54 76 15 . 1  8 . 7  3 . 7  8 . 8  1 0 . 3  5 3 33 
339 ZKC F . A  62 137 71 50 62 51 74 14 . 2  8 . 6  4 . 2  7 . 4  9 . 2  5 3 33 
340 ZKC DS 3 154 76 53 69 56 79 14 . 3  8 . 5  4 . 1  7 . 4  8 . 5  5 3 33 
341 ZKC ltV A . l  160 84 57 73 60 87 16 . 9  10 . 2  4 . 4  8 . 8  10 . 3  5 3 33 
342 ZKC ltV B  158 83 57 71 56 84 17 . 5  9 . 6  4 . 6  9 . 5  1 0 . 9  5 3 33 
343 ZKC BS 2 159 80 59 68 58 86 18 . 1  10 . 0  4 . 4  9 . 4  10 . 8  5 3 33 
344 ZMC DS 5 149 77 51  66 53 80 16 . 9  9 . 5  4 . 1  9 . 2  10 . 4  5 3 33 

Spodabjera 

345 ZMC 9688 : 941 149 78 54 70 57 82 17 . 1  9 . 7  4 . 0  8 . 4  9 . 8  5 3 33 

Lids46 

346 ZMC 141 77 53 68 56 80 15 . 6  10 . 2  3 . 4  6 . 5  9 . 1 5 3 33 
347 ZKC 157 80 53 72 57 86 16.3  9 . 2  3 . 9  8 . 7  10 . 5  5 3 33 
348 ZMC 148 78 54 67 58 78 16 . 4  1 0 . 0  4 . 9  9 . 2  10 . 4  5 3 33 

Senclr.enbera 

349 ZMC 178 93 63 81 59 99 19 . 0  13 . 5  5 . 4  1 1 . 6  12 . 8  5 3 34 

•Institutional acroor- , followed by iDatitutioaal cata1oa nuaber 

••A•aae cateaory , S•sex , so-subspecies or aeoaraphic reaion 
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Table 5 2 . Key to coding information on canid spec imens 
used in analysis . 

variable/ 
Value Description 

Institutional 
Acronym 

JFB 

s� 

UIM 

KUM 

ISM 

UKL 

MCL 

IPA 

ZMC 

subspec ies or 
Geographic Region 

1 
2 
3 

10  

11  
15  
1 6  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
27  
28  

James Ford Bell Museum of Natural 
History , Minneapolis , Minnesota 

smithsonian Institution , National 
Museum of Natural History , 
Washington , D . C .  

Univers ity of Ill inois Natural His tory 
Museum , Urbana , Ill inois  

Kansas University Natural History 
Museum , Lawrence , Kansas 

Illinois  State Museum , Springf ield,  
Illinois  

Univers ity of Kentucky Museum of 
Anthropology , Lexington , Kentucky 

Frank H .  McClung Museum , University of 
Tennessee , Knoxville , Tennessee  

Institute for Prehistory , Univers ity 
of Arhus , MoesgArd, Denmark 

Zoological Museum , Univers ity of 
copenhagen , Denmark 

unknown 
canis lupus lycaon 
canis lupus baylei 
Midsouth: Kentucky , Alabama , or 

Tennessee 
I l linois River Valley , I l l inois 
canis lupus nubilus 
canis lupus irremotus 
canis lupus young{ 
canis rufus rufus 
canis rufus qregoryi 
canis aureus indicus 
canis aureus lanka 
canis aureus lupaster 
canis aureus morracanus 
canis aureus anthus 
Canis aureus algirensis  
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Table 5 2  ( continued ) . 

variable/ 
Value 

subspecies or 
Geographic Region 
( continued ) 

33  
3 4  
3 6  

sex 

1 
2 
3 

Descript ion 

Denmark 
Germany 
Canis  latrans thamnos 

Male 
Female 
Unknown 
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APPENDIX B 

BIVARIATE PLOTS OF CRANIAL AND DENTAL MEASUREMENTS 

AGAINST CL FOR ADULT CANID SPECIES 

Figures 28-37 present bivariate plots of each cranial 

and dental measurement against CL for adult canids used in 

analysis . All measurements are log transformed . Because 

of the quantity of  data many observations--over 100  in some 

cases--are masked . With two exceptions , each plot 

il lustrates two static regression lines . The longer l ine 

is the regress ion for all groups combined . The shorter 

line is the regress ion for wild canids only,  with domestic 

dogs excluded . The two exceptions are the plots for OI and 

P4 . ·  In these  cases the two regression l ines were virtually 

ident ical . consequently , only the regress ion for all 

groups is  il lustrated . 

Different spec ies are represented by dif ferent 

numbers , as fol lows : 

1--canis lupus lycaon/baylei  
2--canis familiaris NA/EU 
3--canis latrans 
4--canis rufus 
5--canis aureus 



I 
I 

2. 13 + 

I 
I 
I 

2. 10 + 

I 
I 
I 

2. 07 + 

I 
I 
I 

2. 04 + 

I 
I 
I 

2. 0 1  + 

I 
I 
I 

� 1 . 98 7 
00 I 

0 I 
...:I 1 .  95 + 

I 
I 
I 

1. 92 + 

I 
I 
I 

1. 89 + 

I 
I 
I 

1 .  eo + 

I 
I 
I 

1 .  83 + 

I 
I 
I 

1. 80 + 

I 

2 8 6  

-+------..---�+------+--------
2. 1 0  2.  1:1 2. 20 2. 2:t 2. 30 2. 3:t 2. 40 

Log CL 

Figure 28 . Bivariate plot of PL x CL for adult spec imens 
of five canid spec ies , with interspec i fic 
regress ion l ines shown for all groups 
( longer line ) and wild canids only ( shorter 
l ine ) . 
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Figure 29 . Bivariate plot of IM2 x CL for adult specimens 
of five canid species , with interspec ific 
regress ion l ines shown for all  groups 
( longer line ) and wild canids only ( shorter 
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Figure 3 1 . Bivariate plot of PW x CL for adult spec imens 
of five canid spec ies , with interspeci f ic 
regres s ion l ines shown for all groups 
( longer line ) and wild canids only ( shorter 
l ine ) . 
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Figure 32 . Bivariate plot of MCW x CL for adult specimens 
of five canid species , with interspec i f ic 
regression l ines shown for all groups 
( longer l ine ) and wild canids only ( shorter 
l ine ) . 
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Figure 33 . Bivariate plot of  CAN x CL for adult spec imens 
of five canid species , with interspec ific 
regress ion lines shown for al l grou�s 
( longer line ) and wild canids only ( shorter 
line ) . 
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regress ion l ines shown for all groups 
( longer line ) and wild canids only ( shorter 
l ine ) . 
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APPENDIX C 

BIVARIATE PLOTS OF CRANIAL MEASUREMENTS AGAINST CL 

FOR JUVENILE WOLF SPECIES 

Tables 38-46  present bivariate plots of cranial 

measurements against CL for j uvenile £ ·  lupus and j uvenile 

c.  rufus samples . All measurements are log trans formed . 

In each case the regress ion l ine fit to the data is 

i l lustrated . Data points are represented by a number that 

identifies the age category ( see Table 2 ,  page 8 1 ) of the 

individual represented . Only age categories 1 ,  2 and 3 are 

represented . In all cases several observations are masked . 
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Figure 38 . Bivariate plot of PL x CL for j uvenile c .  
lupus ( age categories 1 ,  2 ,  and 3 )  with 

regression line shown . 
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reqress ion line shown . 
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Figure 40 . Bivariate plot of  OI X CL for j uvenile c .  
lupus ( age categories 1 ,  2 ,  and 3 )  with­
regress ion l ine shown . 
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Figure 4 1 . Bivariate plot of PW x CL for j uvenile c .  
lupus ( age categories 1 ,  2 ,  and 3 )  with­
regress ion l ine shown . 
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Bivariate plot of MCW x CL for j uvenile c .  
lupus ( age categories 1 ,  2 ,  and 3 )  with 
regression line shown . 
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Figure 4 3 . Bivariate plot of PL x CL for j uvenile c .  
rufus ( age categories 1 ,  2 ,  and 3 )  with­
regress ion l ine shown . 
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Figure 44 . Bivariate plot of OI x CL for j uvenile c .  
rufus ( age categories 1 ,  2 ,  and 3 )  with­
regress ion l ine shown . 
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Figure 4 5 . · Bivariate plot of  PW x CL for j uvenile c .  
rufus ( age categories 1 ,  2 ,  and 3 )  with­
regress ion line shown . 



I 

1 .  BO + 
I 

I 

1. 79 + 
I 

I 
1. 78 + 

I 

I 

1 . 77 + 
I 

I 

1 . 76 + 
I 

I 

1. 75 + 
I 

I 

1 . 74 + 
I 

I � 1 .  73 + 
X I 

CIO I 

0 1 .  72 + 
� I 

I 

1. 71 + 
I 

I 

1 . 70 + 
I 

I 

1 . 69 + 
I 

I 

1. 68 + 
I 

I 

1. 67 + 
I 

I 

1 .  66 + 
I 

I 

1 .  65 + 
I 

1 . 86 

1 

1 . 92 1 .  98 

3 0 5  

3 

333 33 

2. 04 2. 10 2. 16 2. 22 2. 28 2. 34 

Log CL 

Figure 46 . Bivariate plot of MCW x CL for j uvenile c .  
rufus ( age categories 1 ,  2 ,  and 3 )  with 
regress ion l ine shown . · 
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