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Abstract 

The first part of this dissertation focuses on interface and morphology engineering in 

polymer- and small molecule-based organic solar cells. High-performance devices were 

fabricated, and the device performance was correlated with nanoscale structures using 

various electrical, spectroscopic and microscopic characterization techniques, providing 

guidelines for high-efficiency cell design.  

     The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic 

technology with skyrocketing rise in power conversion efficiency (PCE) and currently 

showing comparable PCEs with those of existing thin film photovoltaic technologies 

such as CIGS and CdTe. Fabrication of large-area PSCs without compromising 

reproducibility and device PCE requires formation of dense, pinhole-free and highly 

uniform perovskite thin films over large area, which remains a big challenge as of today. 

In this work, a scalable process, called ultrasonic spray-coating (USC), was thoroughly 

optimized to deposit dense and uniform perovskite thin films for high-efficiency PSCs. In 

order to realize high-performance flexible PSCs, a unique photonic curing technique was 

demonstrated to achieve highly conductive TiO2 as electron transport layer on flexible 

substrates. Moreover, the effect of processing conditions on perovskite film growth was 

evaluated and taken into account to increase PCE to more than 15%.  

     In addition, a series of high-performance organic field-effect transistors (OFETs) were 

fabricated en route to demonstrate the versatility of the USC process. Several different 

polymer binders were used to modulate the lateral and vertical phase morphologies in 

OFETs, significantly improving the device performance.  
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     In summary, this research provides guidelines for the design and fabrication of high-

performance solution-processed solar cells and field-effect transistors based on organic 

materials and hybrid perovskites, while presenting a viable route for large-scale 

fabrication. 
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Chapter 1: Introduction 

 

 

1.1 Research Motivation 

The world is experiencing increasing energy demand every day, due to population growth, 

technology revolution, industry, etc. If we have a look at the energy scenario in USA, in only 

2013, the total generated electricity was about 4,058 billion kilowatthours (kWh) as reported by 

U.S. Energy Information Administration [1]. The energy sources and percent share of total 

electricity generation were coal 39%, natural gas 27%, nuclear 19%, hydropower 7%, other 

renewable 6% (biomass 1.48%, geothermal 0.41%, solar 0.23%, wind 4.13%), petroleum 1%, 

and other gases < 1%. As can be seen, about 67% of the total electricity was generated from 

fossil fuel (coal, natural gas, and petroleum), with 39% attributed to coal. Apparently, the 

demand for electricity is going to increase significantly in coming years, and to meet this 

demand, we need more clean energy-generating sources. Because it is well known that using 

fossil fuels to produce electricity has many drastic effects on our environment and climate 

change. For example, carbon emission – a byproduct – is one of the major causes for global 

warming. That is why many countries are now trying to reduce the dependence on fossil fuels in 

generating electricity. For instance, in the same year, the gross electric power generation in 

Germany totaled 631 billion kWh [2]. Although major proportion of the electricity was still 

generated using lignite (25.5%), hard coal (19.4%), and natural gas (10.6%), renewable sources 

(wind, water, biomass, photovoltaic) accounted for a significant amount (24.1%) of the total 

generated electricity.  
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     An alternative to fossil fuel is renewable energy sources, which are naturally replenished. One 

of the most promising, affordable, inexhaustible, and clean renewable sources is the naturally 

abundant sunlight. Photovoltaic technology, used to convert sunlight to electricity, is 

environmentally safe, and can be set up off-grid anywhere in the world that has access to 

sunlight, without worrying about the national grid. 

     The effectiveness and vast deployment of a solar power generation or photovoltaic 

technology, however, depend on the economics, i.e., associated costs for power generation. 

Based on the efficiency and associated cost/Wp, photovoltaic technologies are usually divided 

into three categories, as shown in Figure 1.1. The first generation technologies include mono- 

and multi-crystalline silicon (Si) based solar cells, which have power conversion efficiencies 

(PCEs) in the range of ~25%. Si solar cells dominate the market today, with almost 80-90% of 

total market share, due to their high performance and excellent stability. But as the used Si must 

be ultra-pure (99.9999%), the associated processing costs are very high. To reduce the 

production cost, second generation or thin film photovoltaic technologies such as amorphous Si 

(a-Si) [3-5], copper indium gallium (di)selenide (CIGS) [6,7], and cadmium telluride (CdTe) 

[8,9] were developed. One of the advantages of these technologies is their lower costs due to the 

fact that they don't require expensive Si wafers and material consumption is comparatively low. 

However, their main drawback is their lower PCEs (~ 15-20%) compared to first generation 

solar cells. In addition, both the first and second generation PV technologies suffer from a 

fundamental efficiency limit, called Shockley-Quiesser limit [10], describing the fact that the 

maximum achievable PCE from a single-junction solar cell is 33.7% assuming a bandgap of 1.34 

eV. In order to circumvent this limit and reduce manufacturing cost, third generation 
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technologies and ideas such as organic solar cells (OSCs) [11], multi-junction/tandem solar cells 

[12], dye-sensitized solar cells (DSSCs) [13,14], multi-exciton generation [15], and quantum dot 

based solar cells [16] were developed. Finally, the most recent addition to the family of PV 

technologies is the emerging perovskite solar cells (PSCs).   

 
Figure 1.1. Classification of solar cell technologies based on efficiency and per unit cost. The 

per unit prices shown in the figure are just for comparison. Absolute per unit manufacturing cost 

and market price have significantly decreased over the last several years.  

     Due to some notable advantages such as abundance of materials, ease of fabrication, 

compatibility with fast and inexpensive large-scale fabrication, OSCs and PSCs are the two most 

promising new-generation technologies. Figure 1.2 illustrates how the PCEs of these two 

technologies have evolved compared with other leading thin film technologies such as CIGS, 

CdTe, and a-Si. As can be seen, over the last decade, the PCE of single-junction OSCs has 

gradually reached to more than 10%, which is often considered as the manufacturing threshold. 

PSCs, in comparison, witnessed a very rapid increase in PCEs within a few years. In 2009, when 
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perovskite materials were used for the first time in photovoltaic devices, the PCE was less than 

4% [17]. By the end of 2014, the reported PCE reached ca. 17% [18], and now, the certified PCE 

is 20.1% [19], which is comparable to that of the dominant silicon solar cells. Though these two 

technologies experience significant increase in performances, there are some critical issues such 

as poor stability, presence of environmentally hazardous lead (Pb) and hysteresis in PSCs, etc. 

that need to be addressed before their large scale production.  

 
Figure 1.2. Evolution of solar cell efficiencies in different photovoltaic technologies. Data are 

taken from National Renewable Energy Laboratory efficiency chart [19].  

1.2 Solar Cell Working Principle 

This section illustrates the basic concept of how a solar cell works. Basically, when the sunlight 

falls on a cell, the light absorbing layer in the cell absorbs the light, and the incident photons 
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internal electric field between junctions. Under dark conditions, the cell behaves like a diode, 

and its characteristics can be expressed by the following equation [20]: 

  𝐼 = 𝐼0(𝑒
𝑞𝑉

𝑛𝑘𝑇 − 1)                                      (1.1) 

     where, I = output current; I0 = reverse saturation current through diode, q = elementary 

charge; V = bias (V); n = diode ideality factor (1 for an ideal diode); k = Boltzmann constant 

(8.617 × 10
-5

 eV/K); T = absolute temperature (K); and at 25 °C, kT/q ≈ 0.0259 V. 

 
Figure 1.3. Equivalent circuit of a solar cell under illumination. 

     Under illumination, the solar cell can be modeled as the equivalent circuit shown in Figure 

1.3 [21], and the output current from the cell can be expressed by the following equation: 

𝐼 = 𝐼𝐿 − 𝐼0  𝑒
𝑞 𝑉+𝐼𝑅𝑆  

𝑛𝑘𝑇 − 1 −
𝑉+𝐼𝑅𝑆

𝑅𝑆𝐻
     (1.2) 

     where, RS is the series resistance due to contacts and junctions, and RSH is the shunt or parallel 

resistance due to leakage current through the cell. 

     Taking the cell area into the consideration, the equation can be modified as- 

𝐽 = 𝐽𝐿 − 𝐽0  𝑒
𝑞 𝑉+𝐽𝑅𝑆 

𝑛𝑘𝑇 − 1 −
𝑉+𝐽𝑅𝑆

𝑅𝑆𝐻
     (1.3) 
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     where, J denotes current density. The current density and output power of a typical solar cell 

in the region of power generation are shown in Figure 1.4. Here, negative power indicates power 

generation. The output power of an operating solar cell, Pout is 

𝑃𝑜𝑢𝑡  =  𝑉𝑂𝐶𝐽𝑆𝐶𝐹𝐹         (1.4) 

     where, VOC is the open circuit voltage of the cell. At VOC, no power is generated, and it 

directly depends on the bandgap of the absorbing material and the work function difference 

between the electrodes. JSC is the short-circuit current density of the cell, and no power is 

generated at JSC either. JSC highly depends on how strongly light is absorbed, i.e., higher JSC 

corresponds to higher photocurrent generated by the cell. Third important parameter is the fill 

factor (FF), which indicates the sharpness of the J-V curve. It is defined by the ratio of VmaxJmax 

and VOCJSC. Due to the diode-like behavior, the FF of a solar cell is always less than one. In an 

ideal cell, FF is very high due to very small RS (≈ 0 Ω) and very high RSH (≈ ∞). However, in 

reality, every solar cell has a small but nonzero RS and large but finite RSH.  

 
Figure 1.4. Variation of current density and power with voltage in a typical solar cell. 
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     The evaluation of a solar cell's performance is measured by its power conversion efficiency 

(PCE), which is expressed as-  

𝑃𝐶𝐸 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑉𝑂𝐶 𝐽𝑆𝐶𝐹𝐹

𝑃𝑖𝑛
      (1.5) 

     where, Pin is the incident power and depends on atmosphere. Three different standard solar 

irradiance spectra are used to measure solar cell performance depending on applications, defined 

by American Society for Testing and Materials (ASTM), as illustrated in Figure 1.5 [22]. Air 

mass 0 (AM 0) is used to measure solar cells used in space applications. The total integrated 

power for this spectrum is 136.7 mW/cm
2
.  

     Solar cells used in different parts of the world are evaluated based on AM 1.5 Global (G) 

spectrum, which corresponds to solar radiation incident at an angle of 48° relative to the surface 

normal, and has an integrated power density of 100 mW/cm
2
 [23]. AM 1.5G includes both direct 

(D) and diffuse radiation, whereas AM 1.5D includes only the direct radiation.  

 
Figure 1.5. ASTM terrestrial reference spectra used for photovoltaic performance evaluation. 
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1.3 Research Goals and Dissertation Layout 

This dissertation mainly focuses on organic and perovskite solar cells (OSCs and PSCs). In order 

to give an idea of the recent advances, Chapter 2 covers an in-depth literature review on these 

two fields. The first part of this dissertation focuses on interface and morphology engineering in 

various polymer- and small molecule-based organic solar cells (OSCs). In Chapter 3, the higher 

PCEs for inverted organic solar cells (i-OSCs) compared to c-OSCs for a well-established 

polymer-fullerene bulk-heterojunction system is investigated by correlating the device 

performance to nanoscale structures using a variety of state-of-the-art characterization techniques 

including neutron reflectometry (NR), transmission electron microscopy (TEM), small-angle 

neutron scattering (SANS), and grazing incident wide-angle X-ray scattering (GIWAXS).  

     In Chapter 4, the effects of processing additive and annealing temperatures on active layer 

film morphologies and resulting device performance in a high-performing small molecule-based 

bulk-heterojunction OSCs are demonstrated. 

     The second part of the dissertation focuses on the design, fabrication, and characterization of 

high-performance PSCs. In Chapter 5, high-efficiency PSCs were fabricated on glass and 

flexible substrates using various deposition techniques including scalable ultrasonic spray-

coating (USC). A unique rapid thermal annealing technique, called photonic curing, was 

demonstrated to sinter solgel-deposited electron-transporting TiO2 films on polyethylene 

terephthalate (PET) substrates to realize high-efficiency flexible PSCs. 

     In Chapter 6, the photonic curing was further optimized to sinter TiO2 films on both glass and 

flexible substrates. In addition, the effects of various extrinsic and intrinsic parameters on 

perovskite film growth and device performance are evaluated and discussed.     
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     In order to demonstrate the versatility of the scalable USC technique, a series of high-

performance organic field-effect transistors were fabricated with both semiconducting/active and 

dielectric layers spray-coated, as described in Chapter 7. A well-studied small molecule was used 

for the active layer, and a polymer was used as dielectric layer to realize devices both on rigid 

and flexible substrates. Three different derivatives of polystyrene insulating polymer were used 

to control the crystal growth and orientation of the semiconducting small molecules (Chapter 8), 

significantly enhancing the device performance. 

     Finally, Chapter 9 draws the conclusion and emphasizes on scopes for future research and 

development. 
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Chapter 2: Literature Review - Organic and Perovskite Solar Cells 

2.1 Organic Solar Cells 

Organic solar cells (OSCs) have a long history. The oldest type of OSCs used to have a single 

semiconducting polymer sandwiched between two electrodes - indium tin oxide (ITO) with high 

work function and aluminum (Al) with low work function, as shown in Figure 2.1a. But in 

practice, these solar cells do not work well as the photoexcited electron remains bound to the 

created hole in valence band, and they behave like an exciton. Due to the exciton's charge 

neutrality, it does not drift with electric field, and eventually recombines without being collected.  

 
Figure 2.1. a) A single-layer semiconductor-polymer solar cell. b) A planar heterojunction cell. 

c) A bulk heterojunction solar cell with a hole transport layer [24]. 

     To circumvent this problem, a second semiconductor with electron accepting nature and low-

energy conduction band was used, as illustrated in Figure 2.1b. C. W. Tang reported a two-layer 

or planar heterojunction solar cell with a PCE as high as ~1% under AM2 illumination in 1986, 

(a) (b) (c)
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where he used copper phthalocyanine (CuPc) as the electron donor and a perylene 

tetracarboxylic derivative (PV) as the electron acceptor in the ITO/CuPc/PV/Ag architecture 

[25]. In 2001, a PCE of 3.6% was achieved with some modification to this planar heterojunction 

architecture, where a hole transport layer (HTL), poly(3,4-ethylenedioxylenethiophene): 

poly(styrenesulphonic acid) (PEDOT:PSS) was used between donor and anode, an electron 

transport layer (ETL), bathocuproine (BCP) was used between the acceptor and metal cathode, 

and fullerene (C60) was used as electron acceptor [26]. One of the biggest concerns with planar 

heterojunction OSCs is that due to extremely short exciton diffusion length (~ 10 nm) in the used 

absorber materials, electrons and holes recombine before reaching the electrodes. As a result, the 

active layer needs to be very thin, thus reducing the light absorption, leading to lower efficiency.  

 
Figure 2.2. Chemical structures commonly used high-bandgap donor polymers (top row) and 

two mostly used fullerene derivatives (bottom row). 

MDMO-PPV

PCBM
ICBA

MEH-PPV
P3HT
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     In order to avoid this problem, the idea of bulk-heterojunction (BHJ) was proposed in 1993 

[27], where both the donor polymer and acceptor fullerene are dissolved in a common solvent 

and spun-cast, forming a bi-continuous inter-penetrating network, facilitating the charge 

transport (Figure 2.1c). In 2001, Shaheen et al. reported a PCE of 2.5% under AM 1.5G 

illumination using a BHJ of poly[2-methoxy-5-(3‘,7‘-dimethyloctyloxy)]-1,4-

phenylenevinylene) (MDMO-PPV) (Figure 2) and [6,6]-phenyl-C61-butyric acid methyl ester 

(PCBM of PC61BM) blend film incorporated into the ITO/PEDOT:PSS (80 nm)/MDMO-

PPV:PCBM (100 nm)/LiF (0.6 nm)/Al (80 nm) architecture [28]. Later on, another donor 

polymer with similar bandgap, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

(MEH-PPV, Eg = 2.3 eV) yielded a PCE of ~ 3% when blended with PCBM in BHJ cells [29]. 

However, due to the rather large bandgap (~2.2-2.3 eV) and low mobility of PPP-based 

polymers, efficiencies remained at a maximum of ~ 3%. 

     Poly-3(hexylthiophene) (P3HT) was the next dominant donor polymer in OPV research, 

which, blended with PCBM, led to improved PCE. This is due to its relatively lower bandgap 

(~2.0 eV), increasing the absorption in the visible range and its higher mobility. Schilinsky et al. 

reported the first encouraging results on P3HT:PCBM solar cells in 2002, with a PCE of 2.8% 

[30]. Over the next couple of years, huge research efforts were expended on improving the 

performance of P3HT:PCBM OSCs. Morphology engineering of the active layer by thermal 

annealing [31-33], solvent vapor annealing [34,35], and bilayer inter-diffusion [36,37], and the 

use of various hole transport layers [38] led to PCEs of more than 5%. However, due to PCBM‘s 

lower lowest unoccupied molecular orbital (LUMO), the open circuit voltage (VOC) in these solar 

cells is relatively low ˗ in the range 0.55-0.65 V. To increase the efficiency further, it is very 
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important to have higher VOC. One easier way to increase VOC is to move up the LUMO level in 

fullerene derivative. For example, using indene–C60 bisadduct (ICBA) instead of PCBM 

increased the VOC by ~ 0.2V and PCE to more than 6% [39,40]. Another way of increasing PCE 

in P3HT:PCBM solar cells is adding a processing additive to P3HT:PCBM solution, which 

enhances the P3HT hole mobility, and charge-carrier lifetimes [41]. 

     Most of the earlier high-efficiency P3HT:PCBM solar cells incorporated PEDOT:PSS on top 

of indium tin oxide (ITO) as hole transport layer, and low work function metals such as Al as the 

top electrode in ITO/PEDOT:PSS/P3HT:PCBM/Ca or BCP or LiF/Al architecture, also known 

as regular architecture. Both these materials are highly reactive with moisture, and hence quickly 

degrade the device performance. To overcome this issue, an alternative architecture, also called 

inverted architecture ˗ ITO/ETL/P3HT:PCBM/HTL/electrode ˗ was developed where, a metal 

oxide such as ZnO, TiO2, aluminum doped zinc oxide (AZO) or Cs2CO3 is coated on top of ITO 

as ETL, molybdenum (III) oxide (MoO3) or vanadium (V) oxide (V2O5) is used as HTL, and a 

high work function metal such as Ag or Au is used as the top electrode [42-45]. Incorporating 

inverted device architecture led to the realization of highly stable OSCs.  

     Another way to increase the device efficiency is bandgap engineering. For instance, if the 

highest occupied molecular orbital (HOMO) of the conjugated donor polymer can be moved 

down while keeping the bandgap fixed, the VOC can be increased. Using poly[N-9′-hepta-

decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT, Figure 

2.3) conjugated polymer with [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) can yield 

PCE as high as 7% [46-48]. Here, it should be noted that PC71BM has higher absorption than 

PC61BM in the visible range [49]. The low absorption of PC61BM can be attributed to its high 
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degree of symmetry, whereas PC71BM is less symmetric, making the lowest-transitions easier 

and dramatically enhancing the light absorption. 

 
Figure 2.3. A few low-band gap polymers and a high-absorbing fullerene derivative. 

     Over the years, a series of low band gap polymers have been developed. Benzo[1,2-b:4,5-

b‘]dithiophene (BDT) based conjugated polymer PBDTTT-C-T (poly(4,8-bis(5-(2-ethylhexyl)-

thiophene-2-yl)-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl-thieno[3,4-b]thiophene)), 

when blended with PC71BM, exhibited 7.5% PCE with regular architecture, and more than 9% 

PCE with inverted architecture [50,51]. Another low-bandgap semiconducting polymer, 

poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2- [(2-

ethylhexyl)car-bonyl]thieno[3,4-b]thiophenediyl]] (PTB7) was shown to exhibit similar 

performance when blended with PC71BM [46,52,53]. The most recent low band gap conjugated 

polymer is poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2- b ;4,5- b ′]dithiophene-2,6-

PC71BM

PCDTBT

PBDTTT-EFT

PTB7

PBDTTT-C-T
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diyl-alt-(4-(2-ethyl-hexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTTT-

EFT), which, also known as PTB7-Th, is a derivative of PTB7. Recently, Liao et al. reported 

more than 10% PCE with a single-junction inverted organic solar cell based on this polymer 

[54]. The latest encouraging results on OPVs have been reported by He et al. [55] based on the 

same polymer. The authors achieved 10% certified PCE. It is worth noting here that most of the 

BHJs based on the abovementioned low bandgap polymers incorporate a small amount of 

processing additive such as 1,8-diiodoctane [46,52], 1,8-octanedithiol [56], 1,8-dibromooctane 

[57], etc. in the casting solution. Use of additive helps tuning the nanoscale morphology of active 

layer film, and significantly improves device efficiency [51-55]. 

 
Figure 2.4. Chemical structures of a series of oligomer-like small molecules based on 

oligothiophenes [60]. 

     In addition to conjugated polymer based OSCs, several research groups also reported high-

efficiency small molecule-based OSCs. For instance, Sun et al. reported that solution-processed 

small-molecule donor, 5,5'-bis{(4-(7-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-
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c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (DTS(PTTh2)2) exhibits PCE as high as 

6.7% [58]. Another small molecule donor, 7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-

b′]dithiophene-2,6-diyl)bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo-[c]-[1,2,5] 

thiadiazole) (p-DTS(FBTTh2)2) was reported to exhibit ~ 9% PCE with the use of a thin ZnO 

film as optical spacer [59]. Most recently, Kan et al. designed and synthesized a series of 

oligomer-like small molecules (Figure 2.4), achieving a record certified PCE of 10.08% [60].   

2.2 Perovskite Solar Cells 

Compared to OSCs, perovskite solar cells (PSCs) are a very new photovoltaic technology. This 

section covers a review of the current status of this technology. Before going into details, it is 

necessary to define the perovskite materials or perovskites. Calcium titanate (CaTiO3), a calcium 

titanium oxide material, is called perovskite, and it was named after Russian mineralogist, Lev 

Perovski. Perovskites are usually considered to be a family of chemical compounds that have a 

general nomenclature of ABX3, similar to that of CaTiO3. In case of organometallic tri-halide 

perovskite materials that are used in solar cell applications, A stands for a larger organic cation, 

mostly methylammonium (CH3NH3
+
) or formamidinium (NH2CH=NH2

+
), B for smaller metal 

cation (mostly Pb
2+

 or Sn
2+

), and X for monovalent halide anion (Cl
-
, Br

-
, or I

-
) that binds the 

other two (Figure 2.5a). Perovskites can have cubic/orthorhombic/tetragonal phase depending on 

temperature and combination of ions in the compound [17,61]. Two members of the 

organometallic tri-halide perovskite family ˗ pure halide perovskite (CH3NH3PbI3) and mixed 

halide perovskite (CH3NH3PbI3xClx) ˗ are dominating the field of PSCs so far. However, there 

are a series of other derivatives such as CH3NH3PbBr3, CH3NH3PbI3xBrx, etc. being used as the 

absorber layer.  
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     Both CH3NH3PbI3 and CH3NH3PbI3xClx have tetragonal crystal structure as shown in Figure 

2.5a. Strong Bragg peaks in X-ray diffraction (XRD) pattern (Figure 2.5b) of perovskite 

(CH3NH3PbI3-xClx) films, irrespective of processing technique, at ~ 14.1° and 28.4°, 

corresponding to (110) and (220) planes, respectively, indicate the formation of a highly 

crystalline tetragonal perovskite film. 

 
Figure 2.5. a) Single unit cell of an ABX3 perovskite crystal [61]. b) X-ray diffraction (XRD) 

pattern of a CH3NH3PbI3xClx film. 

     Perovskite materials came under extreme focus of photovoltaic research communities after 

they were first used as light absorbers in solar cells by Kojima et al. in 2009 [17]. Their 

incorporated device architecture was very similar to the conventional architecture of DSSCs. In a 

DSSC (Figure 2.6a,b), a dye such as 1-ethyl-3 methylimidazolium tetrocyanoborate 

[EMIB(CN)4] and copper-diselenium [Cu(In,GA)Se2] is used as the light-absorbing layer 

deposited on top of a porous TiO2-coated fluorine-doped tin oxide (FTO) electrode. Then, an 

electrolyte solution is incorporated onto dye, and a back contact, usually made of platinum-
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coated FTO glass, is sealed to complete the device. Kojima et al. basically replaced the dye layer 

by each of these perovskites ˗ CH3NH3PbI3 or CH3NH3PbBr3, leaving the other layers as same as 

in DSSCs. They achieved encouraging PCEs of 3.81 and 3.13%, respectively, comparable to 

PCEs of most of the contemporary OSCs.  

 
Figure 2.6. a) A typical DSSC [62]. b) Simple schematic representation of device in (a). c) 

Schematic representation of device architecture used by Kojima et al. [17]. 

     This seminal work on application of perovskite materials in solar cells grew tremendous 

interests in PV communities all over the world. In 2011, Im et al. reported a 6.5% PCE for 

perovskite-based quantum dot solar cells [63]. In 2012, several groups reported around 10% 

efficiencies using a nanostructured (or mesostructured) architecture, where perovskite layer was 

coated on a mesoporous semiconducting TiO2 or insulating Al2O3 layer, as shown in Figure 2.7. 

This rapid increase in PCEs was possible due to some of the excellent properties of perovskite 

materials - long carrier diffusion lengths [64], high carrier mobility [65], small exciton binding 

energy [66], and large absorption coefficients [67], etc. 

FTO with Pt-coating

Electrolyte

Nanoporous TiO2 with dye

FTO with blocking layer

FTO with Pt-coating

Electrolyte

Perovskite on mesoporous 
TiO2 

FTO with blocking layer
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Figure 2.7. Schematic and cross-section SEM of a typical perovskite-sensitized mesoscopic 

solar cell [67]. 

     In 2013, it was shown by Liu et al. that the nanostructuring using a mesoporous (mp) oxide is 

not necessary to achieve high-efficiency devices [61]. They achieved a record PCE of 15.4% 

using a vapor deposition technique, where the organic and inorganic precursors were co-

evaporated with a certain stoichiometric ratio. In comparison, their solution-processed cells, with 

the same stoichiometric ratio, exhibited an average PCE of only ~9%. The higher PCE from 

vapor deposition was due to the high and extremely uniform perovskite film coverage, and thus 

reduced leakage paths. The reason of lower and rough film coverage from solution-processed 

technique is the faster crystallization of perovskites. In order to solve this problem, Burschka et 

al. came up with a layer-by-layer deposition technique, where they separately coated inorganic 

and organic precursor solutions [68]. They first spin-coated inorganic lead iodide (PbI2) solution 

and annealed the obtained films at 70 °C for 30 min. Subsequently, the PbI2 films were dipped 

into the methylammonium iodide (MAI) solution in isopropanol, followed by an annealing at 70 

°C for 30 min to drive the interdiffusion between PbI2 and MAI to form perovskite. By this 

approach, they were able to achieve very uniform perovskite films, and the resulting devices 

exhibited a PCE as high as 15%.  
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     It should be noted at this point that all the PSCs discussed above incorporated either a 

mesostructured architecture, i.e., ITO/TiO2/mp-oxide/perovskite/HTL/back contact or planar 

heterojunction architecture avoiding the use of mesoporous oxide layer, i.e., 

ITO/TiO2/perovskite/HTL/back contact. This architecture is also known as n-i-p architecture 

(Figure 2.8a) in the sense that light passes through n-type layer first. The PCE of PSCs with this 

architecture gradually reached above 20% [69-71], achieved through compositional and process 

engineering. 

     The n-i-p architecture is similar to the inverted architecture of OSCs. The mostly used n-type 

or electron transport layer (ETL) is TiO2 [67,68,70] and ZnO [72,73], and p-type or hole 

transport layer (HTL) is 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine) 9,9′-spirobifluorene 

(Spiro-OMeTAD) [67,70,73] However, use of polymeric hole conductor such as P3HT [74],  

poly-triarylamine (PTAA) [18], poly-[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-

thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) [75], etc. also led 

to high-efficiency devices. To increase the hole conductivity, each of these HTLs is usually 

doped with lithium-bis(trifluoromethanesulfonyl)imide (Li-TFSI) and 4-tert-butylpyridine (tBP) 

[67,68,70,71].  

     Perovskite solar cells can also be fabricated in p-i-n or inverted architecture [76,77], similar 

to OSC regular architecture (Figure 2.8b), where mostly PEDOT:PSS is used as HTL, PCBM or 

ZnO is used as ETL, and Al or Ag is used as back contact [78,79]. Inverted PSCs exhibit 

comparable device performance to that of conventional PSCs [78-80]. 
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Figure 2.8. Planar perovskite solar cells with a) p-i-n and b) n-i-p architectures.  

     Although PSCs show very promising performance, there are some issues that need to be 

addressed before their commercialization. One of the major concerns with these solar cells is the 

presence of hysteresis in J-V characteristics. The cell shows different efficiencies depending on 

scanning direction, which makes it difficult to accurately quantify the performance. While there 

have already been several studies on the origin of hysteresis [18,81,82], the root cause is so far 

unclear. However, in devices based on p-i-n structures, the hysteresis effect is less pronounced 

[79,83]. The second big concern about PSCs is their poor air stability due to their high moisture 

sensitivity, which expedites the decomposition [70,84]. Finally, the presence of environmentally 

hazardous lead (Pb) in PSCs is another major concern. In order to develop environmentally clean 

and friendly perovskite solar cells, it is necessary to replace Pb by tin (Sn) or germanium (Ge), 

which are also the members of group-14 metals in periodic table. Several research groups have 

already reported tin (Sn) based perovskite (CH3NH3SnI3 and CH3NH3SnI3-xBrx) solar cells 

[85,86] with encouraging efficiency of ~6%. However, Sn-based perovskites are well-known for 

their poor atmospheric stability. Improved processing technique and engineering to increase the 

PCE and more advanced sealing technique to enhance the atmospheric stability of these solar 

cells could expedite the commercialization of this new technology in future.  
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Chapter 3: Interface and Morphology Engineering in Polymer-

Based Organic Solar Cells 

3.1 Research Goal 

In this chapter, a very important question regarding a state-of-the-art bulk-heterojunction (BHJ) 

OSC system is addressed ˗ why inverted OSCs (i-OSC) exhibit superior performance compared 

to conventional OSCs (c-OSCs)? The BHJ consists of a low bandgap conjugated polymer, 

poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-

ethylhexyl)car-bonyl]thieno[3,4-b]thiophenediyl]] (PTB7) as the electron donor and [6,6]-phenyl 

C71-butyric acid methyl ester (PC71BM) as the electron acceptor (Figure 3.1). 

     As of today, most of the c-OSCs incorporate PEDOT:PSS as the hole transport layer and low 

work-function metals as such as Al as top electrodes. Both of these materials are highly reactive 

with air and hence, quickly degrade the device performance [87,88]. This has been one of the 

major concerns for the current OSC research, necessitating the fabrication of inverted organic 

solar cells (i-OSCs). It is well-known that i-OSCs demonstrate excellent stability in ambient 

conditions, which is realized by avoiding the use of PEDOT:PSS and low work-function 

electrodes [89,90]. Despite the outstanding long-term device stability, however, early i-OSCs 

suffered from lower PCE as compared with c-OSCs [91]. Moreover, most early i-OSCs used an 

n-type metal oxide such as TiO2 as hole blocking layer that involves high temperature sintering 

(> 300 °C) in the device fabrication process [44,92], thus making them incompatible with 

flexible substrates preferred for roll-to-roll manufacturing. A breakthrough research overcoming 

such low PCE and incompatibility has recently been made by He et al. [53]. They fabricated 

PTB7:PC71BM i-OSCs, where conjugated poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-
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fluorene)-alt-2,7-(9,9–dioctylfluorene)] (PFN, Figure 3.1) layer was used as an ITO-cathode 

surface modifying layer that reduces the energy gap between PC71BM and ITO, facilitating 

easier electron transport to the cathode. From these i-OSCs, the authors achieved a record PCE 

of 9.2% and excellent ambient device stability. The PCEs of PFN-incorporated i-OSCs were 

reported to be higher than those of their counterparts with regular device architecture (PCE = 

~8%) fabricated using the same casting solution. Room-temperature, solution-processed PFN is 

favorable for flexible and large-scale roll-to-roll production [93].  

 
Figure 3.1. Chemical structures of PTB7, PC71BM, DIO, and PFN. 

     While the origin for the long-term ambient stability of i-OSCs has been well understood, the 

underlying morphological mechanism for their high PCE has so far remained to be investigated. 

The focus of this part of the research [94] is on understanding how the incorporated PFN layer 

interacts with PTB7 and PC71BM at the interface, affects the active layer morphologies, and 
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enhances the PCEs of the i-OSCs. The lateral and vertical phase morphologies of 

PTB7:PC71BM/PFN were studied by a combination of neutron reflectometry (NR) and cross-

section TEM. Grazing incidence wide-angle X-ray scattering (GIWAXS) was used to study the 

relative crystallinity and crystal orientation. In addition, small-angle neutron scattering (SANS) 

was used to study the precursor structures of PTB7 and PC71BM in the casting solution, as well 

as the effect of the solvent additive 1,8-diiodooctane (DIO, Figure 3.1) additive on the structures 

of precursors. The obtained structural information was linked to the measured device 

performances, providing important guidance to the design of more efficient i-OSCs. 

3.2 Experimental Section 

3.2.1 Device Fabrication  

PTB7 and PFN were purchased from 1-Material, and PC71BM was purchased from Lumtec, and 

used as received. DIO was purchased from Sigma Aldrich. The casting solution was prepared by 

dissolving PTB7 and PC71BM (with 1:1.5 weight ratio and 25 mg/ml total concentration) in 

dichlorobenzene (DCB) with or without 3% DIO additive, and heating at 70 °C for couple of 

hours under stirring. ITO substrates were first cleaned by using detergent and subsequently by 

sonication in deionized (DI) water, acetone, and isopropyl alcohol (IPA), followed by baking at 

80 °C for one hour.  

     For i-OSC fabrication, the PFN solution was prepared by dissolving PFN in methanol (2 

mg/ml) in the presence of a small amount of acetic acid (2 µl/ml), and the solution was spun-cast 

onto UV-treated ITO substrates at 2000 rpm for 60 s in air. The PTB7:PC71BM active layers 

were then spun-cast on top of PFN-coated ITO at 1000 rpm for 90 s, followed by drying for 30 
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minutes in inert ambient. Finally, devices were completed by thermally depositing 8 nm-thick 

MoO3 and 100 nm-thick Ag layers under a vacuum level of 5 × 10
-6

 mbar.  

     For c-OSCs, PEDOT:PSS solution was spun-cast onto UV-treated ITO substrates, followed 

by baking at 135 °C in air for 30 minutes. The active layer was spun-cast using same recipe as in 

i-OSCs, and devices were completed by thermally depositing 15 nm-thick Ca and 85 nm-thick 

Al layers. The device area of 23.7 mm
2
 was calculated by a high-resolution optical microscope. 

3.2.2 Device, Solution, and Thin Film Characterization  

The current density-voltage (J-V) curves of the fabricated solar cells were recorded using a 

source meter (Keithley 2400, USA) and a solar simulator (Radiant Source Technology, 300 W, 

Class A) under the AM 1.5G (100 mW cm
-2

) conditions. The intensity of the solar simulator was 

calibrated by a NIST-certified Newport Si reference cell.  

     The external quantum efficiency (EQE) spectra were measured in air using a Newport QE 

measurement kit under short circuit conditions. Both UV-Vis absorption spectroscopy and 

reflective absorption spectra were recorded using a Varian Cary UV-Vis-NIR spectrophotometer. 

Reflective absorption was measured in diffuse mode with an integration sphere. In this case, the 

incident light through the ITO electrode was reflected from the metal electrode back into the 

active layer for secondary absorption. Atomic force microscope (AFM) images were acquired 

with a Bruker Dimension Icon operating in a tapping mode.  

     Films for NR, cross-section TEM, and GIWAXS were prepared on PFN-coated or bare Si-

substrates. SANS measurements for the solutions were conducted at the EQ-SANS beamline in 

the Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL). 10 mg/ml 

PTB7/DCB and PTB7/DCB:DIO, and 15 mg/ml PC71BM/DCB and PC71BM/DCB:DIO 
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solutions were loaded into 1mm-thick quartz cells, and the scattered beams were collected at 

each SANS configuration. The raw two-dimensional (2D) SANS data were corrected for detector 

response, dark current, and scattering from background, before being azimuthally averaged to 

produce the 1D SANS profiles, i.e., scattered intensity, I(q) versus scattering vector, q profile, 

where q = 4sin/λ with λ and  being the wavelength of the incident neutron beam and the half 

of scattering angle, respectively. The data were placed on an absolute scale (cm
–1

) by the use of 

measured direct beam. The scattered neutrons were collected using a 2D position sensitive He 

detector with 11 m
2
 active area, composed of tube detectors providing 256192 pixels.  

     NR data were collected on the Liquids Reflectometer at the SNS, ORNL using a neutron 

beam with a bandwidth of 3.5 Å (2.5 Å<λ<6.0 Å), where λ is the wavelength of incident neutron. 

The reduced data were in the format of absolute neutron reflectometry (R) vs. Out-of-plane 

neutron momentum transfer (qz), where qz = (4π/) sini with i being the incidence angle of 

neutron beam. In order to account for the instrumental smearing of NR data, the instrumental 

resolution provided at the beamline was convolved with the calculated NR curves. GIWAXS 

patterns were measured on the beamline 8ID-E at Advanced Photon Source (APS), Argonne 

National Laboratory (ANL). In the GIWAXS measurements, the used wavelength of the X-ray 

beam was 1.6868 Å, and the grazing incidence angle was 0.2. 

     Samples for cross-section TEM measurements were prepared by a focused ion beam (FIB) 

milling in a Zeiss Auriga dual beam SEM FIB. TEM imaging was performed at the University of 

Tennessee using a Zeiss Libra 200 MC operated at 200 kV. For EF-TEM imaging, an energy slit 

width of 8 eV was used, centered at 19 and 30 eV, to generate contrast between the PTB7 and 

PC71BM. The contrast in the images was adjusted to maximize the intensity variations within the 
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PTB7:PC71BM layer. The two complementary images were artificially colored blue and yellow, 

and superimposed to clearly show the morphological structure within the bulk-heterojunction. 

3.3 Results and Discussion 

Figure 3.2a shows the current density versus voltage (J-V) curvess for a typical solar cell of each 

of the following architecture-processing combinations: ITO/PFN (10 nm)/active layer/MoO3(8 

nm)/Ag i-OSCs with and without 3 wt.% DIO additive in the PTB7:PC71BM-in-DCB solution 

for spin-casting the active layer; and ITO/PEDOT:PSS (40 nm)/active layer/Ca (15 nm)/Al c-

OSCs with and without 3 wt.% DIO additive when spin-casting the PTB7:PC71BM active layer. 

The device parameters (averaged over 20 devices in each type), i.e., short-circuit current density 

(JSC), open circuit voltage (VOC), fill factor (FF), and PCE are tabulated in Table 3.1.  

 
Figure 3.2. a) J-V curves for four different devices. b) External quantum efficiency (EQE) 

spectra for the corresponding devices.  

     As can be seen from Table 3.1, i-OSCs with and without DIO, exhibit higher PCEs than their 

c-OSC counterparts and that the DIO additive increases PCEs for both i-OSCs and c-OSCs. The 
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superior performance for the i-OSCs is attributed to efficient charge extraction by the ITO 

cathode the effective work function of which is drastically modified by PFN [53,55].
 
Here, 

PTB7:PC71BM i-OSCs fabricated with 3 wt% DIO exhibit PCE as high as 9.3%, much higher 

than the c-OSCs fabricated using the same solution showing a maximum PCE of 7.2% (Figure 

3.3a). Also, the i-OSCs retain ~94% of their initial PCEs up to more than 26 days when stored in 

air while OSCs lose 30% of their initial PCE in just 5 days (Figure 3.3b). The higher PCEs of i-

OSCs, compared to those of c-OSCs, are due to their higher JSC values, confirming that this is 

the result of efficient electron extraction. The EQE spectra for the same devices in Figure 3.2a, 

measured under short circuit conditions in air without encapsulations, are shown in Figure 3.2b. 

The integrated JSC values for i-OSCs, with and without DIO, are 16.6 and 15.9 mA/cm
2
, 

respectively, while those for c-OSCs are 14.1 and 12.4 mA/cm
2
, reasonably well-consistent with 

the JSC values, measured from J-V curves in the inert ambient. 

Table 3.1. Summary of device parameters, i.e., JSC, VOC, FF, and PCE of the OPV devices 

fabricated with different device architectures.  

Device Type 
JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

PCEavg 

[%] 

PCEmax 

[%] 

i-OSC w/o DIO 15.3  0.72  47.8  5.3 ± 0.3  5.8 

i-OSC w/ DIO 16.9  0.72  67.0  8.2 ± 0.5  9.3 

c-OSC w/o DIO 12.9  0.74  52.7  5.0 ± 0.3 5.5 

c-OSC w/ DIO 14.4  0.72  62.3  6.5 ± 0.3 7.2 

 

     To estimate the internal quantum efficiency (IQE) spectra, the reflective absorption spectrum 

for each architecture-processing combination (Figure 3.4a) was first measured mimicking the 

light absorption process in an actual device. Here it should be noted that IQE is defined as the 
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percentage of absorbed photons that are converted into charges and collected at the electrodes at 

zero bias. The IQE spectra (Figure 3.4b) were estimated by following the procedures reported 

elsewhere [95].
 
Irrespective of the presence of DIO, i-OSCs show higher IQE compared to c-

OSCs. The DIO additive increases the IQEs for both the i-OSCs and c-OSCs, and more 

importantly, the i-OSC using DIO shows an IQE approaching 95% in the 500 to 700 nm spectral 

range. In principle, the high IQE is originated from highly efficient exciton generation and 

dissociation, and charge collection.   

 
Figure 3.3. a) J-V curves for the champion i-OSC and c-OSC, measured under AM 1.5G (100 

mW/cm
2
) illumination. b) Stability comparison of c-OSCs and i-OSCs stored in air without 

encapsulation- the normalized PCE as a function of time.    

     To understand the origin of the near-unity IQE, a variety of characterization techniques were 

employed to systematically examine the PTB7:PC71BM active film morphology in the i-OSCs as 

well as processing factors that influence the morphology. It has been shown that the initial 

precursor structures of electron donor (ED) and acceptor (EA) materials in the casting solution 

affect the crystallinity and phase morphology of the spun-cast films [96]. Here, small-angle 

neutron scattering (SANS) measurements were conducted on the PTB7 and PC71BM solutions in 
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DCB with and without DIO, to investigate the structure of PTB7 (ED) and PC71BM (EA) in the 

solutions, and the effect of DIO. As seen from the SANS curves in Figure 3.5a, both PC71BM 

solutions in DCB and DCB:DIO merely exhibit flat scattering features, implying complete 

dissolution. If PC71BM forms aggregates or clusters in the solutions, scattering features, showing 

an asymptotic decay in scattered intensity as a function of the scattering vector q, must be 

observed. The results are consistent with previously reported work, showing complete 

dissolution of PC71BM in DCB and DCB:DIO [97].  

 
Figure 3.4. a) Spectral reflection spectra, calculated using four different device architectures. b) 

Estimated internal quantum efficiency (IQE) spectra of devices shown in Figure 3.2a.  

     There have also been possibly contradicting results reported by Lou et al based on the small-

angle X-ray scattering (SAXS) [98],
 
indicating that the added DIO selectively increases the 

solubility of PC71BM when mixed with the host solvent, chlorobenzene (CB). In the study, it was 

proposed that the added DIO selectively increases the solubility of PC71BM when mixed with 

CB, resulting in reduced domain size of PC71BM in the spun-cast active layer. In this current and 

our other previous studies, however, used solvents, DCB and DCB:DIO are found to dissolve 
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PC71BM at the molecular level. The different conclusions might come from the solubility 

difference between CB and DCB. On the other hand, the SANS patterns of PTB7 solutions in 

DCB and DCB:DIO appear totally different from those of PC71BM solutions. The SANS curves 

for PTB7 solutions were modeled using a worm-like chain model with excluded volume effect 

under the assumption that PTB7 assumes a semi-rigid chain nature in good solvents. Since the 

SANS curves for both PTB7 solutions in DCB and DCB:DIO are almost identical within the 

error range, a single set of model parameters was applied to fit both curves. The fit parameters, 

including contour length (L), Kuhn length (bi), and diameter (R), are tabulated in Table 3.2. The 

L is about ~395 Å, a molecular dimension much larger than that of PC71BM. The molecular 

diameter of PC71BM is known to be ~11 Å [98].  

 
Figure 3.5. a) SANS patterns for PTB7/DCB, PTB7/DCB:DIO, PC71BM/DCB, and 

PC71BM/DCB:DIO solutions, where the solid lines indicate model fits by flexible cylinder 

scattering model with excluded volume effect. b) Schematic illustration of single PTB7 chain 

dissolved in DCB or DCB-DIO. 
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Table 3.2. Parameters obtained from the model fits for PTB7 chains dissolved in DCB and 

DCB:DIO. 

 
ContourLength, L  

[Å] 

Kuhn Length, bi 

[Å] 

Radius, R 

[Å] 
Polydispersity 

PTB7 in DCB/DCB:DIO 395±5 183±3 10.7±0.3 0.089±0.035 

 

     It is apparent that the different scattering features of PTB7 and PC71BM solutions are due to 

their different molecular sizes and shapes. A schematic diagram showing the possible molecular 

conformation of PTB7 dissolved in the solvents is shown in Figure 3.5b. The identical SANS 

curves for both PTB7 solutions indicate that the PTB7 chains have identical swollen or dissolved 

state regardless of the presence of DIO. Therefore, the SANS results clearly demonstrate that the 

improved PCEs in both i-OSCs and c-OSCs do not originate from their initial precursor 

structures in solution. 

 
Figure 3.6. AFM images showing film morphology of PTB7:PC71BM active layer on quartz a) 

without and b) with DIO, and c) PFN film coated on quartz. 

     Although DIO does not affect the PTB7 and PC71BM structures in solution, it strongly affects 

the phase separation in spun-cast films as shown in Figure 3.6. A pronounced nanophase 

separation is observed throughout the film with DIO, which is the reason why films with DIO 

(a) (b) (c)
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lead to better device performance irrespective of device architecture. However, no significant 

difference in absorption was observed from films with and without DIO (Figure 3.7). 

 
Figure 3.7. UV-Vis absorption spectra for PTB7:PC71BM films on quartz substrates with and 

with DIO additive. 

     In order to investigate the effect of DIO additive on the phase morphology, PTB7:PC71BM 

films spun-cast from solutions with and without DIO were sectioned using a focusd ion beam 

(FIB), and the exposed cross-sections were imaged by energy-filtered TEM (EF-TEM). Figure 

3.8 shows the cross-section images for PFN/PTB7:PC71BM and PEDOT:PSS/PTB7:PC71BM 

with and without DIO, where the yellow and grey areas indicate PC71BM-rich and PTB7-rich 

regions, respectively. The films exhibit much reduced domain sizes when DIO is used as a 

processing additive, consistent with the results reported in the literature [52,99]. Nevertheless, in 

terms of the domain size of PC71BM, no clear difference between PFN/PTB7:PC71BM and 

PEDOT:PSS/PTB7:PC71BM films, with or without DIO was identified, implying no significant 

effect of substrate on the sizes of PTB7 and PC71BM domains.  
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Figure 3.8. Cross-section TEM images for PEDOT:PSS/PTB7:PC71BM films (a) without and (b) 

with 3 wt.% DIO; and PFN/PTB7:PC71BM films (c) without and (d) with 3 wt.% DIO. 

     It is obvious that since the interfacial area between PTB7 and PC71BM increases with 

decreasing domain size, more efficient charge generation is possible as DIO is added to the 

casting solution resulting in smaller domains. It should be noted that no clear indication of the 

PFN layer is observed in the TEM images of PFN/PTB7:PC71BM regardless of the presence of 

DIO, while flat interfacial boundaries are clearly identified between PTB7:PC71BM and 

PEDOT:PSS layers in PEDOT:PSS/PTB7:PC71BM films both with and without DIO. It is well 

known that no diffusion of PC71BM into PEDOT:PSS layer occurs in spin-casting or thermal 

annealing [100],which is indeed not preferable, since it would prevent the hole transport to the 

anode, giving rise to a reduction in PCE. The absence of the PFN layer in the EF-TEM images of 

the PFN/PTB7:PC71BM cross-sections is due to the intermixing between PC71BM and PFN, as 

will be shown in the following section. 

Vacuum

PEDOT:PSS

Vacuum

PEDOT:PSS

Si-substrate

Vacuum

PC71BM

PTB7

Si-substrate

Si-substrate

Vacuum

PC71BM

PTB7

Si-substrate

Vacuum

Pt layer

Pt layer

Au layer

PTB7:PC71BM

Si substrate

(d)(c)

(a) (b)



 

 35 

     To investigate the vertical phase morphologies, NR measurements were conducted on 

PTB7:PC71BM films deposited onto PFN-coated Si-substrates. Figure 3.9a shows the 

experimental and fitted NR curves for PFN/PTB7:PC71BM films, which were prepared by spin-

casting PTB7:PC71BM solutions with and without DIO onto PFN-coated Si-substrates. As a 

reference, experimental and fit NR curves for ~8 nm thick pristine PFN film are also included in 

Figure 3.9a. Model-fits to the experimental NR curves were performed using Parratt formalism 

[101], from which the obtained neutron scattering length density (SLD) distributions and the 

composition distributions or volume fractions of PC71BM (VPC71BM), calculated from the SLD 

distributions, are depicted in Figure 3.9b and c, respectively. VPC71BM of each layer was 

calculated as follows using equation 3.1 and 3.2 shown below. 

𝑉𝑃𝐶71𝐵𝑀 =  𝜌𝑖 − 𝜌𝑃𝑇𝐵7  𝜌𝑃𝐶71𝐵𝑀 − 𝜌𝑃𝑇𝐵7                                      (3.1) 

     where, VPC71BM,i is equal to 1-VPTB7,i (volume fraction of PTB7 in i
th

 layer) and varies from 0 

to 1 depending on the composition of components. i is the SLD of i
th 

layer in film, and PTB7 

and PC71BM are the SLDs of pristine PTB7 and PC71BM, respectively. The SLDs of PTB7 and 

PCBM are obtained by fitting the NR curves for the pristine PTB7 and PC71BM films, which are 

1.26 10
-6

 Å
-2

 and 4.3410
-6

 Å
-2

, respectively. Similarly, VPC71BM in PFN layer is calculated as, 

𝑉𝑃𝐶71𝐵𝑀 =  𝜌𝑖 − 𝜌𝑃𝐹𝑁  𝜌𝑃𝐶71𝐵𝑀 − 𝜌𝑃𝐹𝑁                               (3.2) 

     where, PFN is the SLDs of pristine PFN, in which the SLD is obtained by fitting the NR 

curves for the pristine PFN film.  
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Figure 3.9. a) Experimental and modeled NR curves for PFN/PTB7:PC71BM films with and 

without DIO. b) The SLD profiles used to fit the NR curves shown in (a). c) Volume fraction of 

PC71BM, Zreduced vs. reduced distance from the substrate, calculated from the SLD profiles shown 

in (b). d) A schematic illustration showing how PC71BM diffuses into the PFN layer. 

     In the case of PFN film, two layers exist, where the layer adjacent to the substrate is enriched 

by poly(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene) block and the air interfacial layer 

is enriched by poly(9,9–dioctylfluorene), which are 0.8310
-6

 Å
-2

 and 1.1410
-6

 Å
-2

, respectively 

(Figure 3.9b). The reason that PFN has two different SLDs could be the phase separation of 

copolymeric PFN, where the higher SLD could be due to the enrichment of poly [(9,9-bis(3'-

(N,N-dimethylamino)propyl)-2,7-fluorene)] with short side chain, and the lower SLD to that of 

poly[2,7-(9,9–dioctylfluorene)] with its long alkyl side chain.  
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Figure 3.10. a) Experimental and modeled NR curves for PTB7:PC71BM/PFN films with and 

without DIO. b) The SLD profiles used to fit the NR curves shown in (a). c) Volume fraction of 

PC71BM, Zreduced vs. reduced distance from the substrate, calculated from the SLD profiles shown 

in (b).  

     The SLDs of PFN increase drastically after spin-casting PTB7:PC71BM solutions. In the film 

spun-cast without DIO, the SLDs of PFN layer increase from PFN = 0.83 10
-6

 and 1.1410
-6

 Å
-2 

to 2.6710
-6

 and 3.0210
-6 

Å
-2

, respectively. With DIO, the PFN SLDs increase even more to 

2.9310
-6

 and 3.2610
-6 

Å
-2

. Since the increased SLDs of PFN after spin-casting are higher than 

those of PTB7 (PTB7 = 1.26 10
-6

 Å
-2

) and PFN (PFN = 0.83 10
-6

 and 1.1410
-6

 Å
-2

), the 

increases in SLDs should be the results of the diffusion of high-SLD PC71BM. The SLD of 

PC71BM is PC71BM = 4.3410
-6

 Å
-2

, as shown in Figure 3.11 and 3.12
 
. The calculated VPC71BM, 

with the PFN layer underneath, using Equation 3.2, are 0.52 and 0.59 in PFN/PTB7:PC71BM 
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without using DIO, and are 0.60 and 0.67 with DIO. The diffusion of PC71BM into the PFN layer 

occurs when the residual solvent molecules remain in the films act as plasticizers and make 

PC71BM molecules mobile. Based on the TEM images (Figure 3.8) and NR results (Figure 3.9), 

a schematic illustration of the i-OSC active layer morphology is depicted in Figure 3.9d. Here, 

the diffusion of PC71BM into PFN layer has a very important implication on the device 

efficiency, since it can alter the process of electron transport. That is, the diffusion of PC71BM 

into PFN layer and the phase-separated domain formation of PC71BM can produce much more 

interfacial contact between PC71BM and PFN. Also, the increased PC71BM diffusion induced by 

the added DIO facilitates even more interfacial contacts between PC71BM and PFN, resulting in 

more efficient electron transport to the cathode and electron collection.  

     To confirm the aforementioned hypothesis, PTB7:PC71BM solutions in DCB with and 

without DIO were spun-cast onto bare quartz substrates and the films were dried completely, 

followed by PFN spin-casting. The measured and fitted NR curves for PTB7:PC71BM/PFN films 

spun-cast with and without DIO are depicted in Figure 3.10a, from which the acquired SLD and 

VPC71BM distributions are shown in Figure 3.9b and c, respectively. As can be seen in Figure 3.9b, 

the SLDs of PFN layers in both PTB7:PC71BM/PFN films remain unchanged compared to that of 

pristine PFN films. Also, the SLDs of PTB7:PC71BM layers in PTB7:PC71BM/PFN with and 

without DIO are identical to those of PTB7:PC71BM-only films (Figure 3.11). The results reveal 

that the diffusion of PC71BM does not occur in PTB7:PC71BM/PFN films, since no DCB or 

DCB:DIO remains in the film. There might be residual methanol after the spin-casting PFN 

solution; however, it is a nonsolvent for PC71BM and hence, cannot act as a plasticizer.  
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Figure 3.11. a) Experimental and fit neutron reflectivity curves for PTB7:PC71BM films with 

and without DIO, pristine PTB7, and PC71BM films spun-cast onto Si-substrates. b) Neutron 

SLD distributions obtained from the model-fit in (a). c) Volume fraction of PC71BM, Zreduced vs. 

reduced distance from the substrate, calculated from the SLD profiles shown in (b). 

 
Figure 3.12. (a) Experimental and fit neutron reflectivity curves for PTB7:PC71BM bilayer film. 

(b) SLD distribution obtained from the model-fit in (a). 
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Figure. 3.13. 2D GIWAXS patterns of (a) PFN/PTB7, (b) PFN/PTB7:PC71BM without DIO, and 

(c) PFN/PTB7:PC71BM with DIO films. (d) In-plane GIWAXS profiles extracted from the 

respective 2D GIWAXS patterns. 

     2D grazing-incidence wide-angle X-ray scattering (GIWAXS) was used to obtain insights 

into the global orientation, molecular packing and crystallinity of PTB7, and the aggregation of 

PC71BM. A 2D GIWAXS pattern for PFN/PTB7 is first shown in Figure 3.13a. Here, qy is the 

in-plane scattering vector given by qy= 2π/λX[sin(ψ)cos(αf)], where λX, ψ, and αf are the 

wavelength, in-plane exit angle, and out-of-plane exit angle, respectively. In the 2D GIWAXS 

pattern, the in-plane reflection arcs discerned at qy = 0.283 ± 0.008 Å
-1

 (d-spacing = 22.2 Å) is 

due to the (100) planes of PTB7 crystal. A broad out-of-plane reflection arc was also observed at 
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qz = 1.56 ± 0.05Å
-1

 (d-spacing = 4.03 Å), which is indexed by (010) reflection. The broad in-

plane (100) and out-of-plane (010) reflection indicates that the planes of PTB7 aromatic 

backbones are roughly aligned parallel to the surface plane of substrate with the alkyl side chains 

directed toward the in-plane direction. This orientation is so-called ‗face-on‘ orientation of PTB7 

crystals. While the face-on orientation of PTB7 crystal is desired for high PCE, it is not the case 

in the blend films as addressed in the 2D GIWAXS patterns depicted in Figure 3.13b and c.       

     In the 2D patterns of the blend films, the observed (100) reflection rings imply random 

orientation of PTB7 crystals. The broad reflection halos centered at q ≈1.37 Å
-1

 (d-spacing = 4.7 

Å), on the other hand, are attributed to the short range ordering of randomly oriented PC71BM 

crystals, i.e., (311) reflection. The random orientation of PTB7 and PC71BM crystals could 

possibly implicate that the growth process of oriented PTB7 and PC71BM crystals are impeded 

by each other during film formation process. One of the most notable features (Figure 3.13d) is 

that the in-plane GIWAXS slices for PFN/PTB7:PC71BM films, cast with and without DIO 

almost overlap with each other, indicating the same degree of crystallinity. Our results are in 

agreement with previous reports [99,102]. More importantly, the result indicates that the 

improved PCEs resulted from the DIO additive in neither the i-OSCs nor the c-OSCs based on 

PTB7:PC71BM active layers are related to crystallinity and orientation morphology.  

3.4 Conclusion 

In summary, the nanoscale structural aspects of high PCE of PTB7:PC71BM i-OSCs using PFN 

as the ITO modifier were investigated. SANS results of PTB7 and PC71BM solutions indicate 

that both PTB7 and PC71BM remain in completely dissolved states in both pristine DCB and 

DCB:DIO; no effect of DIO on the solution morphologies was identified. In the spun-cast films, 
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however, DIO was found to play a vital role in the morphological evolution occurring during the 

film formation process after spin-casting. In both i-OSCs and c-OSCs, the DIO, added to the 

casting solutions, induces the formation of much smaller PTB7 and PC71BM domains, which 

were revealed by cross-section TEM. The formation of smaller PC71BM domains form the basis 

for more efficient exciton transport to the PTB7/PC71BM interface and more effective charge 

separation at the interface. In i-OSCs, PC71BM was found to diffuse into the PFN layer as the 

casting solutions are spun-cast on top of the PFN layer, where more PC71BM diffusion occurs 

when DIO is added to the casting solutions. The increased PC71BM diffusion into the PFN layer 

increases the interfacial contact between PC71BM and PFN, and hence improves electron 

transport and collection at the cathode, increased the PCE.  
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Chapter 4: Morphology Engineering in Small Molecule-Based 

Organic Solar Cells 

4.1 Small Molecule-Based OSCs 

In this chapter, morphology engineering in a high-efficiency, small molecule-based bulk-

heterojunction (BHJ) OSC system is discussed. Small molecules are known to be easier to 

purify, and the devices show better batch-to-batch reproducibility, higher crystallinity and better 

performance compared to their polymer-based counterparts [103-105]. Small molecule/fullerene 

[58,103,106-112] blends have shown promising results. The incorporated BHJ in this work [113] 

consists of small molecule (SM) 7,7′ -[4,4-bis (2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′ 

]dithiophene-2,6-diyl] bis[6-fluoro-4-(5′ -hexyl-[2,2′ -bithiophen]-5-

yl)benzo[c][1,2,5]thiadiazole]) (p-DTS(FBTTh2)2) and PC71BM, and the device structure is 

ITO/PEDOT:PSS/p-DTS(FBTTh2)2:PC71BM/Ca/Al. Recently devices based this system have 

demonstrated PCEs as high as ~9% [58].  

     Recent advances in structural study of the polymer/fullerene system have identified the 

presence of mixed phases containing fullerene molecules dispersed in the donor phase [114,115]. 

While pure donor and acceptor phases reduce charge recombination by pushing holes away from 

electrons and, thus, enhancing device performances, the role of a third phase remains unclear 

[114,115]. Formation of the mixed phases may be expected in SM OSC as well as p-

DTS(FBTTh2)2 and PC71BM phase-separation during solidification. If one blending component 

prefers the air/film, bulk or film/substrate interface, it may lead to complex vertical phase 

stratification, including pure or mixed phases with a morphology different from bulk phase of 

BHJ. Thus, in addition to the in-plane structure, the vertical structure of the SM OSC should also 
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be investigated in detail. Highly penetrative and nondestructive neutron reflectometry is an ideal 

tool for profiling the buried phases and interfacial morphology of p-DTS(FBTTh2)2:PC71BM 

blended films in the direction perpendicular to the film surface down to the substrate. The high 

contrast in neutron scattering length density (nSLD) between p-DTS(FBTTh2)2 (1.33 × 10
−6

 Å
−2

) 

(see Section 4.2) and PC71BM (4.3 × 10
−6

 Å
−2

) [116] allows clear distinction of the components.  

     Here, neutron reflectometry was used to unfold the depth phase morphology of p-

DTS(FBTTh2)2 and PC71BM blend, and complemented with the use of absorption and 

photoluminescence spectroscopy, atomic force microscopy (AFM) and X-ray diffraction (XRD) 

characterizations to correlate the morphology to the OSC performance after thermal annealing 

and DIO additive processing. The obtained results reveal that depth profiles of SM-based 

systems are different from the polymer-based systems. The described approach here allows 

correlating the device performance with morphology, as well as to explain origin of various 

morphologies. 

4.2 Experimental Section 

4.2.1. Device Fabrication 

p-DTS(FBTTh2)2 was purchased from 1-Material Inc., and used as received. A blend of p-

DTS(FBTTh2)2 (21 mg) and PC71BM (14 mg) was dissolved in CB (1 ml) with and without 0.25 

vol.% DIO. Solutions were heated at 60 °C for several hours and at 90 °C for 15 min just before 

spin-casting. Devices were fabricated as follows: ITO substrates were cleaned as described in 

previous chapter (Section 3.2). Clean ITO substrates were then coated with PEDOT:PSS. The 

blend solution with or without DIO was spun-cast onto the PEDOT:PSS-coated substrates at 

2000 rpm for 45 s. Films were allowed to dry for 20 min under inert atmosphere, and 
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subsequently annealed at 80 °C for 10 min. Films without DIO were annealed at either 80° or 

100 °C for 10 min. Finally, 20 nm Ca and 80 nm Al were deposited on top of the active layers 

through a shadow mask by the thermal evaporation to complete the devices. The electrode area 

of the cells was 22.6 mm
2
.  

4.2.2. Device and Thin Film Characterization 

The JV characteristics of the prepared devices were measured by a Keithley 4200 

semiconductor parameter analyzer under the AM 1.5 illumination. The morphological 

characterizations were done with blends of p-DTS(FBTTh2)2:PC71BM BHJ spun-cast on 

sapphire (Al2O3) or quartz (SiO2) substrates. To obtain the nSLD of pure p-DTS(FBTTh2)2, a 

solution of p-DTS(FBTTh2)2 (12 mg/ml) in CB was prepared and spun-cast onto silicon wafers. 

The NR experiments were performed at the Magnetism Reflectometer (BL 4A) and the Liquid 

Reflectometer (BL 4B) at the SNS, ORNL. The data were recorded on position sensitive 

detectors, and the reflected and scattered intensity signals were normalized to the intensity 

spectrum of the incident beam. The data are presented in 2D maps as a function of pi and pf 

where pi = 2π sinαi/λ and pf = 2π sinαj/λ are the perpendicular components of the neutron wave 

vectors. The specular reflectivities are extracted from these 2D intensity maps as a function of 

incident momentum transfer normal to the surface, Qz = pi + pj = 4π sinαi/λ . The experiential 

data is used to extract nSLDs.  

     XRD and XRR measurements were carried out on a high-resolution PANalytical X‘Pert Pro 

MPD diffractometer with a Cu-Kα source (λ = 1.5405 Å). The XRD measurements were 

performed at 2.5–35 Å angular range with 0.04° step size and 0.5° scan speed. Standard single 

crystal silicon single crystal sample was used measured to calibrate the instrument. The 
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photoluminescence (PL) spectra were collected using a FluoroLog 3T fluorescence spectrometer, 

where the excitation monochromator was set at 320 nm and 580 nm. 

 
Figure 4.1. AFM images of p-DTS(FBTTh2)2:PC71BM films a) without DIO, b) without DIO 

annealed at 100 °C, c) with 0.25% DIO, and d) with 0.25% DIO annealed at 80 °C. 

4.3 Results and Discussion 

Thin films were prepared by spin-casting a solution of p-DTS(FBTTh2)2:PC71BM (1.5:1 wt.%)-

in-CB onto sapphire (Al2O3) or quartz (SiO2) substrates. The surface morphologies of the coated 

films were investigated using AFM in tapping mode. As shown in Figure 4.1a, the surface of the 

as-cast sample consists of p-DTS(FBTTh2)2 and PC71BM molecules in a random arrangement as 

a uniform mixture. The root mean square roughness (rRMS) of the sample increases from 0.59 nm 

to 1.75 nm after thermal treatment (100 °C for 10 min, Figure 4.1b), and the surface of the 
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annealed film consists of domains approximately 500 nm to 1 μm long. On the other hand, the 

morphology of the film with 0.25 vol% DIO (Figure 4.1c) is drastically different from films 

without DIO, consisting of long wire-shape domains extending up to ~200 nm. After the thermal 

annealing (Figure 4.1d), the rRMS of the film decreases from ~2.39 nm to ~2.27 nm.  

 
Figure 4.2. a) Experimental (shown as symbols) and modeled (solid lines) NR curves for as-cast 

and annealed (80 and 100 °C) Al2O3/p-DTS(FBTTh2)2:PC71BM films without DIO. b) The SLD 

profiles as a function of distance from the surface obtained after fitting the experimental data 

shown in (a). c) Experimental (shown as symbols) and modeled (solid lines) NR curves for as-

cast and annealed (80 °C) SiO2/p-DTS(FBTTh2)2:PC71BM films with 0.25 vol% DIO. d) The 

SLD profiles as a function of distance from the surface from fitting the experimental data of (c). 

     Figure 4.2 shows the NR data of p-DTS(FBTTh2)2:PC71BM films, illustrating the vertical 

phase morphology. For devices, the active layer is usually spun-cast onto amorphous 
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PEDOT:PSS layers. However, in previously reported literatures, the NR studies have been 

performed using BHJ films grown directly on the substrates [97,117-119], which have similar 

surface properties as Al2O3 or SiO2 substrates used in this work. Figure 4.2a shows experimental 

and modeled NR data for as-cast and thermally annealed films (at 80 °C and 100 °C) without 

DIO as a function of out-of-plane momentum transfer, Qz. The associated fit of the data, 

obtained based on Parratt recursion formalism, is shown as solid line [101]. The value of neutron 

scattering length density (nSLD) for p-DTS(FBTTh2)2 was estimated to be 1.33 × 10
−6

 Å
−2

 (see 

Section 4.2). The nSLD of PC71BM was found to be 4.34 × 10
−6

 Å
−2

 based on the bulk PCBM 

density of 1.5 g/cm
3
 and neutron scattering lengths of the constituent elements [116].  

     Figure 4.2b shows the nSLD profiles of the best fit to the NR data. From the fits, the total 

thickness of the as-cast film was found to be ~45 nm. The nSLD profiles in Figure 4.2b reveal 

three distinct layers with the composition characterized by different nSLDs: 1) top surface layer 

in contact with the air/film interface, 2) a bottom layer interfacing with the substrate, and 3) a 

bulk layer sandwiched by the two interfacial layers. It also shows that the nSLD of the 

sandwiched layer increases with annealing temperature while that of the bottom layer decreases. 

The changes in nSLDs of the bulk and bottom layer are associated with the interdiffusion of p-

DTS(FBTTh2)2 and PC71BM. Remarkably, the nSLD of top interfacial layer remained almost 

unchanged regardless of thermal annealing. These results indicate that p-DTS(FBTTh2)2 prefers 

two interfacial regions, whereas, PC71BM tends to diffuse to the bulk layer. 

     Figure 4.2c shows the NR profiles of as-cast and annealed p-DTS(FBTTh2)2:PC71BM films 

prepared using 0.25 vol.% DIO. From the NR fits, the nSLD profiles were extracted and are 

depicted in Figure 4.2d. The nSLD profile of the as-cast film with 0.25 vol.% DIO is remarkably 
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different from the one without additive. Although it shows the presence of p-DTS(FBTTh2)2 

enriched bottom interfacial layer, its width is about 3-4 times thinner than in the samples without 

DIO. Further thermal annealing of the film with DIO at 80 °C induces only small changes in the 

nSLD profile. This is different from the change in nSLD profile for as-cast p-

DTS(FBTTh2)2:PC71BM film and sample annealed at 80 °C (Figure 4.2b). It indicates that no 

significant interdiffusion of p-DTS(FBTTh2)2 and PC71BM occurs by the thermal annealing. This 

observation is consistent with our AFM data where the films show densely packed structure with 

reduced surface roughness. Furthermore, at the bottom substrate/film interfaces, NR revealed a 

~20 nm thick layer with a high nSLD value of ~6 × 10
−6

 Å
−2

 in both as-cast and annealed 

samples with DIO. The peaks correspond to high-density PC71BM clusters formed in the samples 

with DIO [120]. Upon thermal annealing, the nSLD of the profile increased, resulting densely 

packed films. 

     These results show that presence of DIO results in much more evolved film morphology, 

which is close to the equilibrium state than that of the film spun-cast without DIO. Hence, 

thermal annealing only results in small refinement in the structure with negligible difference 

from as spun-cast film [97]. It is evident from the nSLD profiles that, for as-cast samples, 

accumulation of the ED material at the air/ film interface was enhanced with thermal annealing, 

which was previously observed using X-ray photon spectroscopy (XPS) for p-DTS(FBTTh2)2 

material [121]. By contrast, polymer:fullerene blend systems exhibit accumulation of PCBM at 

film/substrate and air/film interfaces, which is believed to be responsible for enhanced electron 

extraction [117,122]. Hence, the layer morphology of p-DTS(FBTTh2)2:PC71BM appears very 

different from polymer:fullerene blend systems. 
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     The structural evolution of SM in solutions and films can be correlated with the changes in 

electronic and photoluminescence (PL) spectra. The broad absorption peaks at 390 and 600 nm 

were assigned to p-DTS(FBTTh2)2 solution in CB, PC71BM to π–π* transition of p-

DTS(FBTTh2)2, while 370 nm and 460 nm peaks were ascribed to the PC71BM (Figure 4.3a). 

Upon spin-casting of the p-DTS(FBTTh2)2:PC71BM solution into film, a bathochromic shift of 

all absorption peaks is observed. As-cast thin film exhibits 550, 615 and 680 nm broad vibronic 

peaks of π–π stacked p-DTS(FBTTh2)2 aggregates, assigned to A0→2, A0→1 and A0→0 

transitions respectively [123]. The ratio of A0→1/A0→0 > 1 is indicative of dominating inter-

chain coupling in π–π stacked p-DTS(FBTTh2)2 aggregates [123].  

          
Figure 4.3. a) UV-Visible absorption spectra of pure p-DTS(FBTTh2)2, PC71BM and blend of p-

DTS(FBTTh2)2:PC71BM in CB. b) Absorption spectra of p-DTS(FBTTh2)2:PC71BM blend 

solution and cast films under thermal annealing. The absorption intensities are normalized. c) 

Photoluminescence spectra of as-cast p-DTS(FBTTh2)2:PC71BM film after thermal annealing at 

80 °C and 100 °C. d) UV-Visible absorption and e) photoluminescence spectra of p-

DTS(FBTTh2)2:PC71BM with 0.25 vol.% DIO after thermal annealing at 80 °C.  

(a) (b) (c)

(d) (e)
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     Upon thermal annealing at 80 °C and 100 °C, the A0→2, A0→1 and A0→0, vibronic peaks 

become more pronounced and show small bathochromic shift, indicative of an enhanced 

crystalline ordering in SM aggregates. The reduced intensity of ratio of A0→1/A0→0 < 1 is 

usually attributed to planarization of p-DTS(FBTTh2)2 molecules, with intra-chain interactions 

dominating over inter-chain coupling in SM aggregates. The PL spectra of the p-

DTS(FBTTh2)2:PC71BM film show two broad emission bands with maxima at 460 nm (2.7 eV) 

and 765 nm (1.6 eV), when excited at 320 nm and 580 nm, respectively. The 1.6 eV emission 

correlates with the transition between LUMO and HOMO of p-DTS(FBTTh2)2 aggregates, while 

the 2.7 eV band was assigned to the transition from LUMOp-DTS(FBTTh2)2 to HOMOPC71BM [58]. 

Annealing leads to increased PL intensity of 1.6 eV and 2.7 eV peaks, which correlates well with 

the changes in absorption spectra, and is probably related to the increase in p-DTS(FBTTh2)2 

aggregate ππ stacking and the structure of p-DTS(FBTTh2)2:PC71BM interface, respectively. 

     The absorption spectra of as-cast and annealed p-DTS(FBTTh2)2:PC71BM films are shown 

in Figure 4.3d. In addition to a broad ~400 nm peak, a progression of vibronic peaks was 

detected at 580 nm, 625 nm, and 680 nm, which are assigned to A0→2, A0→1, and A0→0 

transitions, respectively. The ratio of A0→1 to A0→0 peak intensities was found to be less than 

one which does not change upon annealing, indicating that high order of ππ stacking and 

molecular planarization in SM aggregate in the presence of DIO are achieved already at room 

temperature. PL spectra show same peaks without DIO. However, while the intensity of broad 

2.7 eV peak did not change, the intensity of low energy emission peak at 1.6 eV increased by a 

factor of five compared to annealed p-DTS(FBTTh2)2:PC71BM films without DIO. The improved 

PL intensity indicates that defect-related non-radiative transition is suppressed in the case of DIO 
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containing films, due to better ordering of SM aggregates. Both electronic absorption and PL 

spectra of annealed DIO containing p-DTS(FBTTh2)2:PC71BM films show that 

thermodynamically metastable molecular ordering was achieved already at room temperature. 

This metastable molecular ordering is consistent with the unchanged vertical phase morphology 

of DIO containing p-DTS(FBTTh2)2:PC71BM films observed in NR experiments. 

      
Figure 4.4: Out-of-plane XRD scans of p-DTS(FBTTh2)2:PC71BM blends with peaks at 2θ = 

3.98°, 7.88° and 11.90°. With thermal annealing, the intensity of the peaks is enhanced. Addition 

of 0.25 vol % DIO generated broader peak with higher intensities.  

     To gain insights into the effect of DIO and thermal annealing on the molecular packing and 

crystallinity of p-DTS(FBTTh2)2:PC71BM films, we conducted X-ray diffraction (XRD) 

measurements. Figure 4.4 shows XRD patterns for as-cast and annealed films with and without 

DIO. All films exhibit a peak at 2θ = ~3.90°, which is associated with the (001) reflection of p-

DTS(FBTTh2)2 crystal. Higher order (002) and (003) reflections observed at ~7.88°, and ~11.74° 

manifests that a fraction of p-DTS(FBTTh2)2 chains are highly-ordered aggregates within films 
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[124]. Upon annealing of thin films, the XRD peak intensity and sharpness increase, indicating 

an increase in ordering of p-DTS(FBTTh2)2 aggregates. Using the Scherrer equation, the size of 

crystalline domain of SM aggregate was calculated along with the peak areas for (001) reflection 

of p-DTS(FBTTh2)2 crystal (Table 4.1). The crystalline domain size in as-cast films were found 

to be ~22.8 nm, which increases to 41.2 nm and 134.7 nm after thermal annealing at 80 °C and 

100 °C, respectively. The integrated (001) peak area of the sample annealed at 100 °C is greater 

than that of the as-cast sample, suggesting an increased population of crystalline domains of p-

DTS(FBTTh2)2 in the annealed p-DTS(FBTTh2)2:PC71BM film (Table 1). Remarkably the 

integrated area of (001) peak of as-cast p-DTS(FBTTh2)2:PC71BM films with DIO is about three 

times larger than that without DIO. Interestingly, the crystalline domain size of sample is ~24.6 

nm, which is a ~2 nm increase to that of film without DIO. It is concluded that DIO drastically 

increases the population of p-DTS(FBTTh2)2 crystal domains already in as-cast films, and only 

slightly increases the crystal domain size. Thermal annealing of DIO-containing p-

DTS(FBTTh2)2:PC71BM films increases the size and the population of p-DTS(FBTTh2)2 

crystalline domains. It was also observed that the size of crystalline domains in annealed (80 °C) 

DIO-containing p-DTS(FBTTh2)2:PC71BM films is smaller by a factor of 1.6 compared to that in 

annealed p-DTS(FBTTh2)2:PC71BM films without DIO while the population of crystals increases 

by a factor of 3. Larger crystal domain size in annealed p-DTS(FBTTh2)2:PC71BM films suggests 

that excitons have to travel longer distances to reach D/A interface, which is detrimental for 

achieving high PCEs. 
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Table 4.1. Peak area and the crystallite sizes for p-DTS(FBTTh2)2 (001) reflection. 

Sample Normalized Peak Area Crystallite size (nm) 

Without DIO As-cast 2205 22.8 

Without DIO, annealed at 80° C 2358 41.2 

Without DIO, annealed at 100° C 3189 134.7 

With 0.25V% DIO, as-cast 6687 24.6 

With 0.25V% DIO anneal at 80° C 7386 26.4 

     Figure 4.5 shows the J-V curves of p-DTS(FBTTh2)2:PC71BM solar cells under AM 1.5G 

irradiation. The photovoltaic parameters, i.e., JSC, VOC, FF, and PCE are listed in Table 2. The 

device consisting of p-DTS(FBTTh2)2:PC71BM active layer shows relatively low value of PCE, 

about 2.1%. After thermal annealing, the PCE increases to 3.2% at 80 °C and 3.5% at 100 °C. 

DIO-containing p-DTS(FBTTh2)2:PC71BM devices show higher performance with PCE of 4.9% 

for as-cast active layer, which increases to 5.3% after annealing at 80 °C. The improved 

performance of DIO-containing devices is because the additive induces crystallization of size of 

SM aggregates with better spectral response as indicated by increase in PL [125]. 

 
Figure 4.5. J-V characteristics of the p-DTS(FBTTh2)2:PC71BM solar cells at different 

processing conditions under a) dark and b) AM 1.5G irradiation (100 mW/cm
2
). 

 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

10
-4

10
-3

10
-2

10
-1

10
0

10
1

C
u

r
r
e
n

t 
d

e
n

si
ty

 (
m

A
/c

m
2
)

Voltage (V)

 As-cast

 Annealed at 80C

 Annealed at 100C

 0.25% DIO

 0.25% DIO, annealed at 80C

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
-15

-12

-9

-6

-3

0

3
 As-cast

 Annealed at 80C

 Annealed at 100C

 0.25% DIO

 0.25% DIO, annealed at 80C

C
u

r
r
e
n

t 
d

e
n

si
ty

 (
m

A
/c

m
2
)

Voltage (V)

(a) (b)



 

 55 

Table 4.2. Electrical Parameters of p-DTS(FBTTh2)2:PC71BM solar cells at different processing 

conditions. 

 

 

4.4 Conclusion 

The thermodynamically stable p-DTS(FBTTh2)2:PC71BM BHJs obtained by thermal annealing 

are different in lateral and depth phase morphology and crystallinity from BHJs obtained with a 

DIO additive. Through an energy-level analysis on the absorption and emission spectra of the 

films, the different functions of thermal or DIO treatment to the π−π stacking in p-

DTS(FBTTh2)2 aggregates and the interaction at p-DTS(FBTTh2)2:PC71BM interface have also 

been revealed. The three-layer vertical phase morphology was observed for the films after 

thermal annealing. By contrast, DIO additive processing generates more evolved film 

morphology, which is closer to the equilibrium state. nSLD chemical/structural profiles obtained 

from NR data show more densely packed structures, which are consistent with the AFM images. 

Formation of well-mixed ED and EA regions at the surface of the film facilitates the efficient 

charge transfer to the device. According to XRD data, the DIO additive morphology exhibits a 

high density of small donor nanocrystallites of ~24 nm, whereas thermal annealing generates 

smaller amount of much larger crystallites (~134 nm). DIO promotes the formation of a large 

density of p-DTS(FBTTh2)2 small nanocrystals arranged in an elongated network throughout the 

               Device JSC (mA/cm
2
) VOC (V) FF (%) PCEavg (%) 

w/o DIO, as-cast 6.7 0.81 37.9 2.1 ± 0.3 

w/o DIO, annealed at 80° C 7.6 0.81 51.4 3.2 ± 0.3 

w/o DIO, annealed at 100° C 7.9 0.81 54.6 3.5 ± 0.3 

w/ 0.25V% DIO, as-cast 11.7 0.78 54.2 4.9 ± 0.1 

w/ 0.25V% DIO annealed 80° C 12.0 0.76 58.2 5.3 ± 0.4 
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thickness of the active layer, which results in the enhancements of solar cell performance due to 

the formation of nanocrystallites with the domain size comparable to the maximum exciton 

diffusion length. This is favorable for device efficiencies, since they stimulate efficient exciton 

diffusion (less probable to recombine) to an ED/EA interface and provide a larger ED/EA 

interfacial area for exciton dissociation. The findings demonstrate the role and impact of DIO 

and thermal treatment on the morphology of small molecule BHJ and take us a step closer to 

fully controlling the performance of photovoltaic devices.  
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Chapter 5: Perovskite Solar Cells by Ultrasonic Spray-Coating 

This chapter describes the fabrication of perovskite solar cells (PSCs) by exploring a high-

throughput ultrasonic spray-coating. Perovskite films with high uniformity, crystallinity, and 

surface coverage were obtained in a single step. The USC processing was also used on 

TiO2/ITO-coated polyethylene terephthalate (PET) substrates to realize flexible PSCs that are 

robust under mechanical stress. In this case, a photonic curing technique was used to achieve a 

highly-conductive TiO2 layer on flexible PET substrates for the first time. The high device 

performance and reliability obtained by the combination of USC processing with optical curing 

appears very promising for roll-to-roll manufacturing of high-efficiency, flexible PSCs.  

5.1 Motivation and Research Goal 

The performance of PSCs highly depends on perovskite film quality and morphology. To 

achieve high-quality perovskite films, a variety of deposition techniques, such as thermal 

evaporation [61,126,127], single-step spin-coating [77,128], layer-by-layer or two-step coating 

[68,129], and vapor-assisted [130] processes have been developed. However, one major 

disadvantage of most laboratory-scale techniques is that they are incompatible with low-cost, 

roll-to-roll processing envisioned for large-scale manufacturing. Existing scalable processing 

techniques include ink-jet printing, slot-die coating, blade-coating, screen-printing, and 

ultrasonic spray-coating [78,131-137].  

     Among the cost-effective roll-to-roll compatible processes, USC is one of the most promising 

that has been successfully exploited for the fabrication of various organic electronic devices 

including light emitting diodes [138], photovoltaics [139-140], photodetectors [141], and field-
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effect transistors [142]. The overall advantage of USC is its ability to simultaneously provide 

high throughput, better directional control, efficient use of materials, uniform film coverage, and 

compatibility with variety of substrates, with the potential for the deposition of continuous layers 

without dissolution of underlying layers [139,142-144]. Recently, the USC process was 

demonstrated to deposit perovskite thin films on glass substrates, and the resulting PSCs showed 

an average PCE of 7.8% [145]. In this work, a USC processing was developed for the synthesis 

of highly-crystalline and uniform perovskite (CH3NH3PbI3-xClx) films. Considering the diverse 

application potential, it is also highly important to be able to fabricate high-performance devices 

on light-weight and flexible substrates using scalable techniques. So far, one major challenge for 

the fabrication of solar cells on plastic substrates is their incompatibility with high temperature. 

Typically, the fabrication of high-performance PSCs, particularly those based on compact TiO2 

electron-transporting layers, involves a high temperature (~ 500 °C) sintering process to increase 

the crystallinity of TiO2 [61,64,71]. In this work [146], to realize flexible solar cells, an optical 

curing technique that is compatible with roll-to-roll processing was used to achieve conductive 

TiO2 layers on ITO-coated PET substrates at low processing temperatures. 

5.2 Experimental Section 

5.2.1 Material, Solution, and Substrate Preparation  

TiO2 solution for the electron transport layer was synthesized by adding 365 µl of titanium 

isopropoxide into 5 ml of anhydrous IPA in the presence of 70 µl 1M hydrochloric acid (HCl), 

and stirring vigorously for 2h, and filtered using a 0.2 µm pore size PTFE filter [77]. 

CH3NH3PbI3-xClx precursors, methylammonium iodide (MAI) and lead chloride (PbCl2) were 

purchased from 1-Material and Sigma Aldrich, respectively, and used as received. MAI was 
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mixed with PbCl2 (3:1 molar ratio), and dissolved in anhydrous N,N-dimethylformamide (DMF) 

for a total concentration of 10 wt%. Hole transport material, 2,2′,7,7′-tetrakis-(N,N-di-

pmethoxyphenylamine) 9,9′-spirobifluorene (Spiro-OMeTAD, 1-Material) was dissolved in CB 

for a concentration of 90 mg/ml, and doped with 45 μl lithium-bis(trifluoromethanesulfonyl)- 

imide (LiTFSI) solution (170 mg/ml in acetonitrile) and 10 μl of 4-tertbutylpyridine (tBP) 

solution. Both LiTFSI and tBP were purchased from Sigma-Aldrich, and used as received. ITO-

coated glass (15 Ω/□, patterned) and PET (60 Ω/□) were used as substrates. PET substrates were 

patterned by immersing them into a solution of deionized (DI) water, nitric acid (HNO3), and 

HCl at a 4:1:3 ratio for 7 min under heavy stirring. Subsequently, they were rinsed with clean DI 

water. Both glass and PET substrates were cleaned using the previously described procedure. 

5.2.2 Device Fabrication  

The as-prepared TiO2 solution was spin-coated onto UV-ozone-treated ITO-coated glass and 

PET substrates at 2000 rpm for 40 s in air. Subsequently, glass substrates were annealed at 500 

°C in a muffle furnace for 30 min. For the PET substrates, the TiO2 films were annealed by 

exposing them to five infrared pulses under a radiant exposure of 17.3 J/cm
2
 from a plasma arc 

lamp for 2 ms pulse dwell time using a PulseForge 3300 processing system from NovaCentrix. 

The CH3NH3PbI3-xClx solution was spray-coated onto TiO2/ITO-coated glass and PET substrates 

in ambient air using an ExactaCoat system (Sono-Tek Corporation) equipped with a 120-kHz 

nozzle. Substrates were kept at 75 °C during coating under optimized USC process, i.e., a path 

speed of 100 mm/s, a nozzle height of 5 cm, an atomizing gas pressure of 2.6 psi, and an infusion 

rate of 3.2 ml/min. After drying, the films were annealed at 100 °C for 1h in air. For spin-coated 

devices, a 40 wt% CH3NH3PbI3-xClx solution was spin-coated onto TiO2/ITO-coated glass and 
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PET substrates at 3000 rpm for 45 s, and subsequently annealed at 100°C for 1 h. The as-

prepared Spiro-OMeTAD solution was spin-coated at 2000 rpm for 30 s on top of CH3NH3PbI3-

xClx films, and left in a desiccator overnight for doping. Finally, 100 nm-Ag layer was thermally 

deposited at 1 Å/s to complete the devices with an area of 6.5 mm
2
 each. 

5.2.3 Film and Device Characterization  

Current-voltage (J-V) curves of the fabricated solar cells were measured by scanning from 

forward bias to reverse bias (1.2 V to -0.2 V) direction and vice versa after ~ 120 s initial light 

soaking time, under the AM 1.5G conditions. The voltage step during the scan was fixed at 35 

mV with a delay time of 50 ms. EQE and XRD were done using previously described 

procedures. The film morphology was studied by Zeiss Merlin VP scanning electron microscope 

(SEM). Film thickness measurement was carried out using a KLA-Tencor profilometer. 

5.3 Results and Discussion 

Figure 5.1a schematically shows the USC process, where the solution is fed through a 

programmable syringe pump and sprayed using a 120-kHz ultrasonic nozzle. The nozzle 

atomizes the solution into micrometer-size droplets with the help of an atomizing nitrogen-gas 

pressure that prevents clogging of the solution in the nozzle-head. In this work, a solution 

mixture of MAI and PbCl2 was ultrasonically spray-coated on various substrates, and then the 

obtained films were thermally annealed at 100 °C for 1 h in air to drive the chemical reaction and 

crystallization. The annealed, spray-coated films show strong and sharp Bragg peaks (Figure 

5.1b) at 14.03° and 28.38°, corresponding to (110) and (220) planes, respectively, indicating the 

formation of highly crystalline tetragonal perovskite film [67,145].  
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Figure 5.1. a) Schematic diagram of ultrasonic spray-coating process. b) XRD pattern of a 

spray-coated CH3NH3PbI3-xClx film. The inset of b) schematically shows the device architecture. 

 
Figure 5.2. SEM images of spray-coated perovskite films on TiO2/ITO/glass substrates at 

different substrate temperatures: a) 26 °C, b) 45 °C, c) 60 °C, d) 75 °C, e) 90 °C, and f) 105 °C. 

     In order to achieve high-quality perovskite films for high-performance devices, the USC 

process was optimized by comparing different solvents, tuning the substrate temperature, and 
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drying times (~15 min for DMF and ~25 min for DMSO) for the coated films. To minimize the 

drying time, elevated substrate temperatures were used in conjunction with lower boiling point 

solvent, DMF. SEM image (Figure 5.2a) shows that the film, spray-coated on TiO2/ITO/glass 

substrate at room temperature (26 °C), exhibits low surface coverage due to the dewetting caused 

by the prolonged drying time. As shown in Figure 5.2b-f, elevated substrate temperatures result 

in improved film coverage by reducing the surface tension of the wet film, however temperatures 

> 90 ºC again result in lower film coverage due to immediate drying of the solution upon 

reaching the substrate.  

 
Figure 5.3. Device performance parameters, i.e., a) VOC, b) JSC, c) FF, d) PCE at different 

substrate temperatures. Device performance from 120 °C is included to illustrate the trend. 
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     Figure 5.3 shows the variation of device performance corresponding to these changing 

substrate temperatures. Though the VOC and FF exhibit negligible difference with increasing 

substrate temperature, the JSC reaches the highest, 13.8 mA/cm
2
, at 75 °C, which corresponds to 

the perovskite films with the highest surface coverage on the TiO2 layer.       

 
Figure 5.4. SEM images of a perovskite films coated using DMSO on TiO2/ITO/glass substrates 

at substrate temperature of (a) 60 °C (b) 75 °C, (c) 90 °C, (d) 105 °C, (e) 120 °C, and (f) 130 °C. 

     By comparison, films coated using a relatively high boiling point solvent DMSO exhibit 

lower surface coverage (Figure 5.4) compared to the films coated using DMF (Figure 5.2). 

These differences are reflected in the device performance, as shown in Table 5.1. The DMSO-
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respectively, which result from the fast evaporation of low-boiling-point solvent DMF, leading to 
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fast crystalliation and better surface coverage of CH3NH3PbI3-xClx films [128,145]. For the 

subsequent optimization of the USC process described below, therefore, the substrate 

temperature was fixed at 75 °C, and DMF was used as the solvent. 

Table 5.1. Comparison of device performance based on perovskite films spray-coated using 

DMF and DMSO at a substrate temperature of 75 °C. 

Solvent JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

PCE
*
avg 

[%] 

DMF 13.8 ± 0.5  0.98 ± 0.02  60.8 ± 3.3  8.2 ± 0.3  

DMSO 8.7 ± 1.6  0.80 ± 0.06  60.6 ± 3.2 4.2 ± 0.5 
      *

Average is based on eight devices, measured under AM 1.5G illumination conditions. 

Table 5.2. Device parameters of the PSCs fabricated with different perovskite film thicknesses.  

Infusion rate 

(ml/min) 

Solution 

Concentration 

(wt%) 

Film 

thickness 

(nm) 

JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

PCE
*
avg 

[%] 

2.6 8 15.6 ± 1.9 1.03 ± 0.05 62.0 ± 1.6 10.0 ± 2.0 15.6 ± 1.9 

2.6 10 16.0 ± 2.6 0.98 ± 0.07 64.0 ± 1.2 10.1 ± 2.3 16.0 ± 2.6 

3.2 10 19.3 ± 0.7 0.97 ± 0.03 60.8 ± 2.2 11.4 ± 0.3 19.3 ± 0.7 

2.6 12 16.8 ± 0.9 0.97 ± 0.02 61.4 ± 1.8 10.0 ± 0.2 16.8 ± 0.9 

3.2 12 17.1 ± 2.2 0.97 ± 0.10 59.4 ± 8.0 9.9 ± 2.4 17.1 ± 2.2 

4.4 12 17.2 ± 1.7 0.95 ± 0.06 59.6 ± 5.0 9.7 ± 2.0 17.2 ± 1.7 
*
Average PCEs are based on eight devices with each thickness. 

     To further enhance the device performance, the perovskite film thickness was further 

optimized by varying the solution concentration and infusion rate. Two important observations 

are shown as shown in Table 5.2. First, the film roughness increases with increasing the 

thickness of perovskite films. Second, the variation of film thickness primarily impacts the JSC. 

We found that the JSC steadily increases with increasing the thickness, which is due to enhanced 

optical absorption. The highest JSC of 19.3 mA/cm
2
 and thus the highest PCE of 11.4 ± 0.4 % are 
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reached when the film thickness is increased to 295 ± 33 nm. However, the JSC decreases with 

further increasing the thickness, probably due to higher charge recombination [79,129,147].  

 

Figure 5.5. (a) J-V curve of a typical PSC on glass substrate at different scanning directions. (b) 

Current density and PCE as a function of time for the same device held at 0.75 V forward bias. 

(c) EQE spectrum and integrated JSC from the corresponding device under short circuit 

conditions. (d) Histogram of PCEs measured for 60 devices, fabricated with optimized USC 

process. Gaussian fit is provided as a guide to eyes.  
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2
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(100 mW/cm
2
) illumination, measured in a nitrogen-filled glovebox. The small hysteresis may be 

attributed to use of planer device architecture [82,148]. In order to better evaluate the 

performance, the stabilized current density and power output (Figure 5.5b) of this device were 

determined by measuring current density at around maximum power point (~ 0.75 V), which 

gives a similar PCE of 11%. The EQE spectrum of the same device measured in air without 

encapsulation is shown in Figure 5.5c, where integrating the EQE curve over the spectral range 

(AM 1.5G) yielded JSC of 17.14 mA/cm
2
, ~4.7% lower than the JSC extracted from J-V 

characteristics, which could be due to the mismatch in two different solar spectra [70] or 

instability of Spiro-OMeTAD in air [149]. To demonstrate statistical significance of the high 

device performance obtained by process optimization, Figure 5.5d shows a PCE histogram of 60 

devices fabricated on glass substrates using the optimized process. The most efficient cell 

exhibits a JSC of 20.6 mA/cm
2
, VOC of 1.03 V, FF of 61. 6%, and PCE of 13% (Figure 5.6a). 

These devices demonstrate an average PCE of (10.6 ± 1.0)%, which is comparable to that of the 

devices fabricated by spin-coating (Figure 5.6b).  

     The excellent device performance discussed above encouraged us to fabricate devices on 

flexible and light-weight PET substrates. Instead of the high-temperature annealing (~ 500 °C) of 

the TiO2 films used for glass substrates [61,64,71], we used a photonic curing technique (Figure 

5.7) to achieve conductive TiO2 films on ITO/PET substrates, where the TiO2 films are exposed 

to five to ten high-density infrared (HDI) light pulses from a high-intensity plasma arc lamp for 

short dwell times of 1-2 ms. This technique, also called pulse-thermal processing (PTP), is a HDI 

processing technology based radiant heat treatment technique that can deliver a peak sintering 

power up to 20,000 W/cm
2
 during a millisecond, and is used to rapidly anneal thin films of 
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various materials without damaging underlying plastic substrates [150,151].This tool enables 

reproducible, roll-to-roll, high-temperature processing of thin-film materials on low-temperature 

substrates. Figure 5.8a shows the simulated temperature-versus-time profile for the photonic 

curing technique used to anneal TiO2 films on PET substrates. Figure 5.8b shows the J-V curves 

for the best devices with as-casted, thermally-annealed, and photonic-cured TiO2 films.  

 
Figure 5.6. (a) J-V curves of the champion device under dark and AM 1.5G illumination 

conditions. (b) Histogram of 60 spin-coated PCEs, showing an average PCE of (11.0 ± 0.8)%. 

 
Figure 5.7. Schematic of the photonic curing technique used in this work. 
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Figure 5.8. (a) Simulated temperature-versus-time profile for the photonic curing procedure used 

to anneal TiO2 thin films on ITO/PET substrates. (b) Comparison of flexible device 

performances with as-deposited, thermally-annealed, and photonic-cured TiO2 films. (c) Current 

density and PCE as a function of time for the same device held at 0.61 V forward bias. (d) EQE 

and integrated JSC for the flexible device with photonic-cured TiO2. (e) Normalized PCE of 

flexible devices after bending tests performed at 7 mm and 3 mm radii of curvature. Inset of (e) 

shows a photograph of the flexible devices. (f) Histogram of PCEs based on 17 flexible devices. 
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     As can be seen, the device with as-coated TiO2 film shows very poor photovoltaic 

performance: JSC = 3.2 mA/cm
2
, VOC = 0.78 V, FF = 15.1% and PCE = 0.4%. This poor 

performance, particularly very low JSC and FF, is due to the high interfacial resistance in the 

device due to poor conductivity of TiO2 films. Device, using thermally annealed TiO2, shows a 

JSC = 3.5 mA/cm
2
, VOC = 1.04 V, and FF = 48.7%, and PCE = 1.8%, a five-time improvement. 

On the other hand, the device with photonic-cured-TiO2 exhibits excellent performance with a 

JSC = 15.3 mA/cm
2
, VOC = 1.03 V, FF = 51.4%, and PCE of 8.1%, measured at FB-RB scanning 

direction under AM 1.5G illumination in a nitrogen-filled glovebox. At RB-FB scanning 

direction, however, the device shows a JSC = 15.1 mA/cm
2
, VOC = 0.98 V, FF = 46.9 %, and an 

overall PCE of only 6.9%, showing pronounced hysteresis, probably due to the use of planar 

device architecture [82,148]. The stabilized current density and power output from the same 

device at maximum power point (~ 0.61 V) are 12 mA/cm
2
 and 7.3%, respectively (Figure 5.8c), 

which gives a reasonably accurate estimate of the device performance. The integrated JSC from 

the EQE spectrum (Figure 5.8d) from the same device is 15.1 mA/cm
2
, which is consistent well 

with the measured JSC from J-V characteristics. 

     To demonstrate the mechanical flexibility, a stringent bending test was performed on four flat 

flexible devices at 7 mm and 3 mm radii of curvature (Figure 5.8e). The devices retain 60-90% 

of their initial PCEs after 1000 bending cycles, demonstrating the compatibility of perovskite 

solar cells with low-cost and light-weight flexible substrates. The small degradation in device 

performance results from decrease in JSC and FF (Figure 5.9) due to cracking of ITO at higher 

stress (Figure 5.10) and increased contact resistance. Overall, flexible devices exhibit an 

excellent average PCE of 5.9% (Figure 5.8f). Though the average JSC and FF of devices on PET 
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substrates (Table 5.3) are lower than those on glass substrates, due to lower conductivity of the 

photonic-cured TiO2 as compared to the thermally-annealed TiO2 on glass, the reasonably high 

PCEs of flexible devices fabricated using the combination of USC process and the photonic 

curing technique represent a substantial step towards the mass production of perovskite solar 

cells in near future. 

 
Figure 5.9. Effect of mechanical stress on a) VOC, b) JSC, and c) FF.  

 
Figure 5.10. Optical microscope images of ITO morphology on PET substrates a) before any 

bending and b) after 300 bending cycles using a metal cylinder with 3 mm radius. 
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Table 5.3. Summary of device parameters, i.e., JSC, VOC, FF, and PCE of the PSCs fabricated 

using different deposition techniques and substrates with optimized processing conditions. 

Deposition 

Technique 

Substrate 

Type 

JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

PCE
*
avg 

[%] 

PCEmax 

[%] 

Spray Coating 
Glass  17.37  0.99 61.41 10.56 ± 1.06  13.04  

PET  13.09  1.01  43.43  5.74 ± 1.60  8.02  

Spin-coating 
Glass  18.41  0.95 62.72 10.97 ± 0.82  12.96  

PET  16.67  1.02  45.52  7.74 ± 1.04  8.91  
*
The average device performances are based on 60 devices each in case of glass substrates, and 

17 and 10 devices each in case of spray-coated and spin-coated flexible substrates, respectively. 

 

Figure 5.11. Stability measurements on spray-coated perovskite devices while the devices are 

stored in three different environments over about a month time.
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in inert ambient did not degrade, rather the PCE has increased about 10% of the initial value over 

time, which is due to the increase in FF. On the other hand, the devices stored in desiccator 

retained ~60% of their initial PCEs, while the air-stored devices retained 35% of their initial 

PCEs after 26 days. The fact that air-stored devices still functioned even after a month of time is 

quite encouraging. It is possible that advanced encapsulation technique can lead to more stable 

perovskite solar cells for outdoor applications. 

5.4 Conclusion 

In summary, a high throughput ultrasonic spray-coating process was successfully applied to 

fabricate high-quality, uniform, and highly crystalline CH3NH3PbI3-xClx films on glass substrates 

for solar cell applications. The best solar cell fabricated on glass exhibited an efficiency of 13%, 

comparable to that of CH3NH3PbI3-xClx device made by spin-coating. The spray-coating process 

flow has also been successfully translated from glass substrates to plastic PET substrates. 

Together with a low temperature photonic-cured compact TiO2 layer, the best flexible 

CH3NH3PbI3-xClx solar cell, fabricated by spray-coating, exhibited PCE as high as 8.1%. The 

excellent mechanical flexibility of these devices was demonstrated by the minimal degradation in 

performance after more than 500 bending cycles. The scalability of spray-coating process 

together with a low thermal budget photonic curing technique used in this work for the 

development of high-performance flexible perovskite solar cells represent a very unique and 

viable route for the roll-to-roll manufacturing of new generation solar cells.   
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Chapter 6: Photonic-Cured Compact TiO2 Layer for Perovskite 

Solar Cells 

In Chapter 5, a low thermal budget photonic curing technique was demonstrated to achieve 

crystalline TiO2 layer on top of flexible, ITO-coated PET substrates. Here, this technique was 

optimized to sinter TiO2 compact layers on both glass and PET substrates.  

6.1 Motivation and Research Goal 

To date, most of the high-efficiency PSCs, especially those with use n-i-p architecture, use a 

compact TiO2 as the electron transport layer (ETL), which requires a high-temperature (~ 500 

°C) sintering step and a long (~1-2 h) overall processing time [152-154]. Moreover, due to high 

temperature, it is incompatible with low-temperature polymer substrates. In contrast, the 

photonic curing technique can sinter thin films on a variety of substrates, especially on flexible, 

low-temperature substrates such as PET, polyethylene naphthalate (PEN), etc., within an 

extremely short period of time (milliseconds to seconds), thus significantly reducing the overall 

processing time. In this part of the research, the viability of photonic curing technique is 

evaluated in achieving high-quality sol-gel processed TiO2 films on both ITO-coated glass and 

PET substrates. In addition, effect of moisture on the perovskite film growth and associated 

device performance was investigated. PSCs fabricated with optimized growth conditions on 

photonic-cured TiO2 layers exhibited PCEs as high as 15.0% and 11.2% on glass and flexible 

PET substrates, respectively, which represents a performance level similar to those reported so 

far. 
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6.2 Experimental Section 

6.2.1 Device Fabrication  

All solution and materials were prepared as described in Chapter 5. For device fabrication, the 

TiO2 solution was first dispensed onto ITO-coated glass and PET substrates, and spin-coated at 

2000 rpm for 40 s. The TiO2 films were then soft-baked at 80 °C for 10 min to drive off the 

residual solvent before they were either furnace annealed at 500 °C for 30 min or photonic-cured 

using a PulseForge 3300 processing system from NovaCentrix. For the glass substrates, the TiO2 

films were exposed to 25 pulses under a radiant exposure with a voltage of 200 V, pulse 

frequency of 2 Hz, and pulse duration of 7 ms from a plasma arc lamp. For PET substrates, the 

films were exposed to 10 pulses of 2 ms dwell time at a voltage of 200 V and pulse frequency of 

2 Hz. Subsequently, the heated (70 °C) perovskite solution was spin-coated onto TiO2/ITO-

coated glass and PET substrates at 2000 rpm for 50 s in N2-filled glove box, and immediately 

annealed at 100 °C for 70 min in air. The Spiro-OMeTAD solution was spin-coated at 2000 rpm 

for 30 s on top of CH3NH3PbI3-xClx films, and the coated films were stored in a desiccator for 12 

h for oxygen doping. Finally, 100 nm-Ag was thermally deposited at 1 Å/s using a shadow mask 

to complete the devices with area of 7.5 mm
2
 each. 

6.2.2 Film and Device Characterization  

Current-voltage (J-V) curves of the fabricated devices were recorded by scanning from forward 

bias to reverse bias (1.2 V to -0.2 V) direction and vice versa. The voltage step during the scan 

was fixed at 35 mV with a delay time of 50 ms. EQE, AFM, SEM, XRD, and UV-Vis absorption 

measurements were done as described in previous chapters. 
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6.3 Results and Discussion 

The photonic curing technique used in this work is illustrated in Figure 5.7, where a plasma arc 

lamp, capable of producing extremely high power densities up to 20,000 W/cm
2
, is used to 

produce a broad radiant spectrum with wavelength ranging from 200 nm to 1400 nm. TiO2 films 

on glass or PET substrates are exposed to 10-50 high-intensity pulses of high-density plasma arc 

in argon for a very short dwell time (~ 5-10 ms). For device fabrication, an n-i-p architecture, 

ITO/TiO2 (60 nm)/CH3NH3PbI3-xClx (300 nm)/Spiro-OMeTAD (200 nm)/Ag was incorporated. 

      
Figure 6.1. (a) JV curve of a typical device scanned at different directions under AM 1.5G 

illumination. (b) Stabilized power output of the corresponding device at near maximum power 

point (0.77 V). (c) EQE spectrum and integrated JSC from the corresponding device. (d) 

Histogram of PCEs measured for 30 devices, fabricated with photonic-cured TiO2 layer. 
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Figure 6.1a shows the typical J-V characteristics of a PSC with photonic-cured TiO2 on ITO 

glass substrate, showing a JSC of 19.3 mA/cm
2
, a VOC of 1.04 V, a FF of 63.8%, and an overall 

PCE of 12.8% at FB-RB scanning direction and a JSC of 19.2 mA/cm
2
, VOC of 0.98 V, FF of 

58.3%, and PCE of 11.0% at RB-FB direction, under AM 1.5G illumination measured in a 

nitrogen-filled glovebox. The presence of J-V hysteresis may stem from the use of a planar 

device architecture or ferroelectric property of the perovskite material [82,155,156]. To better 

evaluate the performance, the stabilized current density and power output at maximum power 

point (~0.75 V) of the same device were determined, showing a PCE of 12.7% (Figure 6.1b). 

The integrated JSC of 19.2 mA/cm
2
 from EQE spectrum (Figure 6.1c) of the same device is 

consistent with the value extracted from the JV curve. In order to demonstrate the performance 

reproducibility, a series of PSCs were fabricated with photonic-cured TiO2 layer, exhibiting an 

excellent average PCE of 12.6 ± 0.9% (Figure 6.1d and Table 6.1).   

Table 6.1. Comparison of device performances based on devices with photonic cured and 

furnace annealed compact TiO2 layers. 

TiO2 JSC 

[mA/cm
2
] 

VOC 

[V] 

FF 

[%] 

PCE
*
avg 

[%] 

PCEmax 

[%] 

Photonic cured 19.9 ± 0.8 1.04 ± 0.02 60.9 ± 3.5 12.6 ± 0.9 15.0 

Furnace-annealed 19.4 ± 0.5 1.04 ± 0.02 65.7 ± 2.7 13.3 ± 0.7 15.1 
      *

Average PCEs are calculated from 30 devices in each case. 

     For comparison, Figure 6.2a shows the JV curves of a typical device fabricated using 

furnace annealed (500 °C) TiO2 layer, exhibiting a JSC of 20.3 mA/cm
2
, VOC of 1.03 V, FF of 

65.2%, and PCE of 13.6% at FB-RB scan direction, and a JSC of 20.2 mA/cm
2
, VOC of 0.97 V, FF 

of 64.5%, and PCE of 12.6% at RB-FB direction, with an average PCE of 13.1%. The PCE 



 

 77 

histogram based on 30 devices with furnace-annealed TiO2 compact layers shows an average 

PCE of 13.3 ± 0.7% (Figure 6.2b).  

 
Figure 6.2. JV curve of a typical device with furnace-annealed TiO2 layer scanned at different 

directions under standard illumination (100 mW/cm
2
). (b) Histogram of PCEs measured for 30 

devices, fabricated with furnace annealed (500 °C) compact TiO2 as electron transport layer. 

 
Figure 6.3. J˗V curves of the champion PSCs with furnace-annealed and photonic-cured TiO2 

layers. 
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     In addition, the champion devices with photonic-cured and furnace annealed TiO2 layers 

show 15.0 and 15.1% PCEs, respectively (Figure 6.3). As can be seen, the devices with 

photonic-cured TiO2 show an excellent and comparable performances to those with furnace 

annealed TiO2 layers, demonstrating the potential of photonic curing technique to replace high-

temperature furnace annealing. 

 
Figure 6.4. Comparison of performances of devices with perovskite film annealed in N2 

(black) and air (red). 

     At this point, it is worth noting that during this study, we took into consideration the effect of 
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absorber material, thus effectively resulting in relatively less number of photogenerated charges 

for the N2-annealed film [157]. Another significant observation is that air-annealed films result in 

higher VOC, which is most likely associated with the reduced nonradiative recombination [157]. 

These observations are consistent with previous reports on the effect of moisture on perovskite 

film growth and device performance [70,158]. 

 
Figure 6.5. SEM image of perovskite film on ITO/TiO2 substrates after annealing for 70 

minutes in (a) N2 and (b) air. 

     In order to understand how photonic curing changes electrical and optical properties of the 

TiO2 films, the crystallinity and morphology of the films were characterized by XRD and AFM. 

Figure 6.5a shows the XRD spectra obtained on as-cast, photonic-cured, and furnace-annealed 

TiO2 films. While the as-cast film does not show any characteristic anatase peak reflection at 

~25.3°, formation of the desired anatase phase is evident for both the furnace-annealed and 

photonic-cured films. Figure 6.5b shows the absorption spectra for the same as-cast, photonic-

cured, and furnace-annealed ITO/TiO2 films, and the optical bandgaps using Tauc plot are 

estimated to be 3.82 eV, 3.43 eV, and 3.46 eV, respectively. To provide further insight, as well 

as to obtain quantitative information about the roughness features, Figure 6.6 shows how the 

1 µm1 µm
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TiO2 film morphology changes with various annealing treatments. While the as-cast film shows a 

smooth and uniform surface morphology with very small crystal sizes, both furnace-annealed 

and photonic-cured films demonstrated large grains and relatively rougher surface morphologies, 

indicating an increase in crystallinity and thus conductivity. The average root-mean-square 

roughness (rRMS) for the as-cast film was 0.24 nm, which gradually increased to 1.1 nm and 0.58 

nm for the photonic-cured and furnace-annealed counterparts, respectively. 

 
Figure 6.6. (a) XRD spectra for as-cast, photonic-cured, and furnace annealed TiO2 films, where 

* denotes ITO peaks; (b) Absorption spectra of the corresponding films. 

 
Figure 6.7. AFM images of (a) as-cast, (b) photonic-cured, and (c) furnace annealed TiO2 films. 
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Figure 6.8. (a) Simulated temperature-vs-time profile for the photonic curing procedure used to 

sinter TiO2 layer on PET substrate. (b) JV curve of a typical device scanned at different 

directions. (c) EQE spectrum of the corresponding device. Inset to (c) is a photographic image of 

the flexible devices. (d) Normalized PCE of flexible devices after bending tests performed using 

a radius of curvature of 3 mm.  
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higher than the PET substrates can sustain. Due to very short pulse dwell time (~2 ms), however, 

underneath PET substrate remain unaffected. Figure 6.8b shows the J-V characteristics of the 

champion flexible device with a JSC of 16.9 mA/cm
2
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PCE of 11.2%. Based on the measurements of 10 devices, the average PCE obtained from 

flexible PSCs is 9.4 ± 0.9%. The measured EQE spectrum of the same device is shown in Figure 

6.8c, yielding a JSC value of 16.2 mA/cm
2
, reasonable consistent with JSC value obtained from 

the J-V curve.  

     In order to investigate the mechanical flexibility of the flexible devices, a stringent and 

repetitive bending test was carried out on flat devices using a metal cylinder with 3 mm radius of 

curvature. Devices retain about ~70% of their initial PCEs after 1000 bending cycles, 

demonstrating their robustness under stress (Figure 6.8d). The small degradation may result from 

cracking of ITO after repetitive bending (Figure 5.10). 

6.4 Conclusion 

In summary, a roll-to-roll compatible photonic curing technique was successfully demonstrated 

and applied as a promising replacement of conventional furnace annealing to achieve high-

quality, compact TiO2 films on both glass and flexible substrates, significantly reducing the 

processing time and thermal budget. Devices fabricated on photonic-cured TiO2 demonstrated 

excellent photovoltaic device performance, which was comparable to that observed on furnace-

annealed TiO2 layers. More importantly, flexible devices exhibited a high reaching to 11.2%, 

that is on par with most of the reported values on state-of-the-art devices. 
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Chapter 7: Fabrication of Organic Field-Effect Transistors by 

Ultrasonic Spray-Coating 

This chapter evaluates the USC process in fabricating organic field-effect transistors (OFETs), 

where both the dielectric and active layers were sequentially spray-coated. A cross-linkable 

insulator poly-4-vinylphenol (PVP) was incorporated as the dielectric layer, and a soluble small 

molecule 6,13-bis(trisopropyl-silylethynyl) pentacene (TIPS-PEN) was used as the 

semiconductor or active layer. 

7.1 Motivation and Research Goal 

Recent progress in the design and synthesis of organic semiconductor materials have enabled 

OFETs to achieve high charge carrier mobilities comparable to or exceeding that of a-Si [159-

161]. As a result, they have been successfully integrated to enable a wide range of applications 

including display backplanes, electronic papers, sensors, memories, and radio-frequency (RF) 

identification tags [162-164]. However, the lack of low-cost and large-scale OFET 

manufacturing methods remains a major obstacle to their successful commercialization. To this 

end, solution processing of organic semiconductors for OFETs is attracting tremendous interest 

because it is suitable for large area processing, is compatible with flexible substrates, and has the 

potential to take advantage of existing low-cost, high-throughput, roll-to-roll manufacturing 

technology. Spin-coating and drop-casting are two widely employed solution processing 

techniques that are simple and effective for producing devices with excellent performance in the 

research laboratory environment [165,166]. However, these techniques are inherently inefficient, 

wasting high fractions of solution, and are not readily scalable to industrial scale, large area 

processing. Intense efforts have been directed toward the development of alternative solution-
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based methods such as ink-jet printing, screen printing, doctor blading, and spray coating that 

can meet the manufacturing requirements for cost-effective, large area processing [167-169]. 

     Due to the key advantages described in Chapter 5, this USC process was demonstrated in this 

work to fabricate OFETs. Although the USC process has been demonstrated as an alternative 

method to fabricate organic electronic devices including OLEDs [138,170], OPVs 

[132,139,140], and organic photodetectors (OPDs) [141], very little work concerning OFET 

fabrication by this process has been reported [171]. Previous work has mostly focused on the 

spray coating of soluble conjugated polymers such as poly(3-hexylthiophene) (P3HT) [140,171]. 

Compared to polymers, however, soluble small molecules are easier to synthesis and purify, and 

exhibit better charge carrier mobility and chemical stability [172].  

     A typical, soluble small molecule organic semiconductor that is widely used in organic 

electronics because of its high mobility and good air stability is 6,13-bis(trisopropyl-silylethynyl) 

pentacene (TIPS-PEN) [173]. So far, high mobility TIPS-PEN based OFETs have been 

fabricated by a variety of solution-based methods including spin-coating and drop-casting. TIPS-

PEN OFETs prepared by drop-casting have exhibited high mobilities of 0.65 cm
2
/Vs while those 

prepared by spin-coating usually show relatively lower mobilities, ranging between 0.05 to 0.20 

cm
2
/Vs [174]. Ink-jet printing of TIPS-PEN OFETs with mobilities of 0.12 cm

2
/Vs have also 

been reported [175]. There has so far been no report of TIPS-PEN OFETs prepared by the USC, 

a process that is compatible for the fabrication of large area, cost-effective OFETs.  

     In this work [142], a fabrication method for high-performance OFETs was developed based 

on ultrasonic spray-coated TIPS-PEN active layers, as well as spray-coated poly-4-vinylphenol 

(PVP) dielectric layers on various substrates. Highly crystalline, aligned TIPS-PEN films were 
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obtained on SiO2/n
++

 Si substrates by optimizing ultrasonic spray parameters such as flow-rate, 

nozzle height and moving speed, resulting in a maximum mobility as high as 0.36 cm
2
/Vs and an 

on/off current ratio over 10
5
. Moreover, flexible OFETs were fabricated by sequential spray 

deposition of a dielectric layer of PVP and an active layer of TIPS-PEN on PET substrates. The 

flexible TIPS-PEN OFETs exhibit a best mobility up to 0.35 cm
2
/Vs and an on/off ratio over 10

4
, 

together with negligible hysteresis in current-voltage characteristics. Ultrasonic spray-coating of 

OFETs thus provides device performance comparable or superior to similar devices prepared by 

other solution processing methods. 

7.2 Experimental Section 

7.2.1 Material, Solution and Film Preparation 

The poly(4-vinylphenol) (PVP, Mw = 20 kDa) and a cross-linking agent poly(melamine-co-

formaldehyde) (Mw = 432) were purchased from Sigma Aldrich. A 1.5 wt% PVP solution was 

first prepared with propylene glycol monomethyl ether acetate (PGMEA) as the solvent. Then, 

the poly(melamine-co-formaldehyde) was added to the solution at a weight ratio of 1:3 to PVP. 

The blend solution was stirred using a magnetic spin bar at room temperature for 24 h. TIPS-

PEN was used as purchased from Sigma Aldrich without further purification. TIPS-PEN was 

dissolved in toluene at a concentration of 8 mg/ml. In all our experiments the atomizing gas 

pressure for the spray process was kept at 0.4 psi in order to achieve a reasonable spray rate. 

Spray-coated films are optimized by varying the solution flow rate, nozzle movement speed, 

spray nozzle height and substrate temperature. The optimized processing conditions for TIPS-

PEN film in this work are: flow rate of 1.2 ml/min, nozzle-to-substrate height of 4.6 cm, and 

nozzle moving speed of 8 mm/s.  
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7.2.2 Device Fabrication and Testing  

A bottom-gate, top-contact (BG/TC) configuration, as shown in Figure 7.1a, was adopted in 

OFET fabrication. Prior to the spray-deposition of organic thin films, heavily doped n-type 

silicon substrates with 300 nm thermally grown silicon dioxide (capacitance, Ci = 12.5 nF/cm
2
), 

and ITO-coated PET substrates were cleaned with a sequence of detergent, DI water, acetone and 

IPA in an ultrasonic bath. The PVP solution was spray-coated on the pre-cleaned ITO-coated 

PET flexible substrates in air. Then, the spray-coated PVP films were cross-linked at 180 °C for 

1 h. After the crosslinking of the PVP dielectric layer, the TIPS-PEN was subsequently spray-

coated on the top of PVP film in air ambient. For devices using the Si substrate, TIPS-PEN was 

directly spray-coated onto the SiO2 surface. During spray-coating, the substrates were tilted at a 

small angle (3°) to align the orientation of TIPS-PEN crystals while the solution is sprayed. 

Finally, 50 nm thick Au were deposited by thermal evaporation through a shadow mask for 

source and drain electrodes. Channel lengths of the devices were 25, 50, 75 and 100 μm, while 

the width was fixed at 2000 μm. In order to compare the OFET devices fabricated with spray 

process, spin-coated and drop-casted OTFTs were fabricated. For spin-coated and drop-cast 

OFETs, the same 8 mg/ml TIPS-PEN solution in toluene was spin-coated at 500 rpm for 60 s, or 

drop-cast onto the SiO2/Si substrates.  

     Electrical measurements of OFETs were carried out in ambient environment with a Keithley 

4200 semiconductor analyzer attached to a probe station. By exploiting the slope of transfer 

curve (IDS
1/2

-VGS), the field-effect mobility in saturation regime was calculated from the equation 

IDS = WCi(VGS-VT)
2
/2L, where W and L are channel width and length, Ci is the capacitance per 

unit area,  is the field-effect mobility, and VGS, VT are gate voltage and threshold voltage, 
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respectively. The capacitance of dielectric layer was measured with an Agilent E4980A precision 

LCR meter. 

7.2.3 Thin Film Characterization  

Optical micrographs of thin films were collected using a Nikon OptiPhot2-POL optical 

microscope with cross-polarizers. Thin film crystallinity was characterized using Philips X‘Pert 

X-ray diffraction. 2D GIXD data were collected as a 2D image map using an image plate that 

was divided into a component in the plane of the substrate and a component perpendicular to the 

substrate in an Anton Paar SAXSess mc2 spectrometer (high-resolution grazing incidence 

scattering with a point x-ray beam). Morphology and roughness of spray-coated films were 

investigated using a Bruker Dimension Icon AFM operated in tapping mode.  

7.3 Results and discussion 

Figure 7.1a schematically illustrates the USC process and the structure of fabricated BG/TC 

OFET devices. Figure 7.1b shows a polarized optical microscopy image of the top view of spray-

coated TIPS-PEN film from a 0.8 wt% toluene solution. As the solvent evaporates, long, ribbon-

shaped TIPS-PEN polycrystals containing some single-crystalline domains were observed to 

grow as indicated by their color variation under polarized light. The typical TIPS-PEN crystals 

observed in the spray-coated films were several hundred micrometers long and tens of 

micrometers wide. In general, the charge transport in polycrystalline TIPS-PEN films is quite 

different in two types of regions: the high-mobility large crystalline grains and the low-mobility 

polycrystalline regions with many grain boundaries. The large-grained, ribbon-shaped TIPS-PEN 

polycrystals appear to be responsible for the higher field-effect mobilities because the charge 

carriers encounter fewer grain boundaries in these regions. Figure 7.1c shows an AFM image of 
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a spray-coated TIPS-PEN film. The well-developed terrace-like multilayered structure indicates 

the formation of a highly crystalline film. The mean step height per terrace measured by the 

cross-sectional AFM profile in Figure 7.1d is around 1.65 nm, which is in agreement with the 

vertical intermolecular spacing in TIPS-PEN single crystals [173,176]. This result suggests that 

the TIPS-PEN in the spray-coated film is oriented in a (001) orientation with the pentacene 

backbone packed in a face-to-face orientation. 

 
Figure 7.1. (a) Schematic diagram of the USC process and the BG/TC OFET device 

architecture. The chemical structure of TIPS-PEN is shown in the inset. In the Si substrate case, 

the n
++

 doped Si substrate serves as the unpatterned gate. (b) Polarized optical microscopy image 

of a spray-coated TIPS-PEN film, (c) AFM image of a terraced structured spray-coated TIPS-

PEN film, (d) Line profile taken along the black line segment in (c) crossing three single steps. 

     The molecular orientation and packing in the spray-coated TIPS-PEN films were further 

confirmed by out-of-plane XRD and two-dimensional (2D) grazing-incident X-ray diffraction 
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(GIXD). Figure 7.2a shows the out-of-plane XRD patterns of a spray-coated TIPS-PEN film, 

consisting only of a series of (00l) reflection diffraction peaks, indicating a well-organized 

molecular crystal structure with a vertical intermolecular spacing of 1.68 nm. This result is 

consistent with the terrace step height of 16–17 Å measured from AFM images, which is 

identical to that of the c-axis unit cell [177]. Figure 7.2b shows an in-plane GIXD pattern of a 

spray-coated TIPS-PEN film on SiO2, exhibiting many scattering spots along the Qz and the Qx,y 

directions. The (01l) diffraction peaks, corresponding to the repeating period perpendicular to the 

direction of crystal growth, and (00l) diffraction peaks, corresponding to the repeating period 

parallel to the direction of crystal growth, were observed, indicating that the crystals are 

azimuthally oriented. These results demonstrated that well-ordered TIPS-PEN crystals in the 

lateral and vertical directions are formed in the USC process.  

 
Figure 7.2. (a) Out-of-plane XRD pattern, and (b) 2D GIXD image of a spray-coated TIPS-PEN 

film on SiO2. Indices are provided for the most intense Bragg rods.    

     Figure 7.3 shows the typical transfer and output curves of spray-coated OFETs on SiO2/n
++

 

Si substrates. The average mobility of 20 spray-coated devices is 0.15 ± 0.02 cm
2
/Vs, with a 

maximum of 0.36 cm
2
/Vs. The average threshold voltage (VTh) is -0.9 ± 3.8 V and the on/off 
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current ratio is 1.3×10
5
. Negligible current hysteresis was observed in the transfer characteristics, 

indicating a less number of charge trapping centers between the polycrystalline surface of TIPS-

PEN and the gate dielectric layer. The variations in the values of the characteristic parameters of 

these devices are shown in Figure 7.3c. The mobility, VTh, and on/off ratio fluctuated slightly, 

but overall, the electrical properties were found to be uniform. These results suggest that the 

USC technique can be used to fabricate a variety of printed electronic devices that exhibit a high 

degree of inter-device uniformity. The performance of the spray-coated devices is comparable to 

that of TIPS-PEN OFETs fabricated by drop-casting process and better than those of devices 

fabricated by spin-coating process, as shown in Table 7.1. 

Table 7.1. Electrical properties of TIPS-PEN OFETs fabricated by different methods. The 

mobilities were calculated at the saturation region at the drain bias of -40 V.  

 

Substrate 

Insulator Active layer µavg
*
 

(cm
2
/Vs) 

VTh 

(V) 

On/off 

ratio 
Materials Processing Processing 

 

 

Si 

 

 

 

SiO2 

Thermal oxide Spin-coating 0.0005 -7.6 1×10
3
 

Drop-casting 0.157 7.0 8×10
4
 

Spray-coating 0.145 -0.9 1×10
5 

PVP Spin-coating Spray-coating 0.117 2.0 6×10
4
 

Spray-coating Spray-coating 0.108 3.6 2×10
4
 

PET PVP Spin-coating Spray-coating 0.100 1.6 4×10
4
 

Spray-coating Spray-coating 0.122 11.3 1×10
4 
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Figure 7.3. (a) Representative transfer (at drain bias of -40 V) and (b) output characteristics of a 

spray-coated TIPS-PEN OFET on SiO2/Si substrate with a channel width of 2000 m and 

channel length of 100 m. (c) Variation of device performance parameters including mobility, 

VTh, and on/off ratio for 20 devices. 

     The boiling point (bp) and vapor pressure of the solvent could change the drying behavior 

of droplets in a spray-coating process, and hence significantly affect the morphology and 

crystallinity of spray-coated TIPS-PEN film. Therefore, TIPS-PEN OFETs were fabricated using 

three solvents with different boiling points, toluene (bp = 111 °C), CB (bp = 131 °C) and DCB 

(bp = 180 °C) to investigate their suitability to the USC processing. The lower evaporation rate 

of these high boiling point solvents makes the coating process less sensitive and easier to control 

over a large parameter space. The device performances of spray-coated TIPS-PEN OFETs with 

these solvents are compared in Figure 7.4. The mobility is 0.05 cm
2
/Vs for films spray-coated 

from a CB solution, 0.03 cm
2
/Vs for DCB, and 0.16 cm

2
/Vs for toluene. The results show that 
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the highest boiling point solvent does not necessarily provide the highest mobility, and suggest 

toluene with medium boiling point to be the most suitable solvent for the TIPS-PEN deposition 

by USC. This observation is consistent with previously reported results [178,179]. 

     The performance of OFETs strongly depends on the morphology of TIPS-PEN polycrystal 

films. TIPS-PEN films with high crystallinity and large grain size exhibit the best mobility and 

on/off ratio. Particularly, in our USC process, balancing the solvent evaporation and diffusion-

driven flows of solution droplets is critical to obtain highly ordered TIPS-PEN crystals. The 

moderate evaporation rate of toluene can improve the morphology uniformity and packing 

density of the TIPS-PEN molecules, and therefore resulted the best device performance [179]. 

 
Figure 7.4. Current-voltage characteristics (IDS versus VGS measured in saturation regime at VDS 

= -40 V) for ultrasonic spray-coated TIPS-PEN devices using toluene, chlorobenzene, and ortho-

dichlorobenzene as casting solvents. 

     In addition, film formation in spray-coating is a complex process that is affected not only by 

the solvent boiling point but also by other factors such as the infuse rate and nozzle moving 

speed. Figure 7.5 shows the relationship of device mobility with the infuse rate, nozzle-substrate 
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distance, or nozzle path speed while the other parameters were held constant. From this plot, the 

optimized processing conditions for spray-coated TIPS-PEN film in this work were determined 

to be an infuse rate of 1.2 ml/min, a nozzle-to-substrate distance of 4.6 cm, and a nozzle path 

speed of 8 mm/s. 

 
Figure 7.5. Variation in the field-effect mobilities of ultrasonic spray-coated TIPS-PEN OFETs 

on SiO2/Si substrates (a) at different infuse rates while keeping the path speed (8 mm/s) and 

nozzle height (4.6 cm) fixed, (b) at different nozzle heights while keeping the infuse rate (1.2 

ml/min) and path speed (8 mm/s) fixed. (c) at different path speeds while keeping the infuse rate 

(1.2 ml/min) and nozzle height (4.6 cm) fixed. 

 
Figure 7.6. Optical images of a cross-linked PVP film on glass prepared by ultrasonic spray at 

(a) room temperature and (b) 50°C, demonstrating the higher uniformity of the spray-coated PVP 

film prepared at 50°C. 
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     To demonstrate the versatility of ultrasonic spray technique, the deposition of a dielectric 

layer by USC was also explored to fabricate flexible OFETs. A wide range of insulators with 

different solvents have been used in various deposition techniques for OFETs [176,177]. In this 

work, a cross-linkable PVP [180] was selected to improve environmental stability and structural 

robustness and to enhance chemical stability to minimize potential solubility issues arising from 

subsequently deposited layers. In order to get a smooth film, a single-pass spray was used to 

deposit the PVP dielectric layer. During the spray process, the dispersed droplets merged into a 

single wet surface layer on the substrate before drying. As the solvent evaporates, a uniform PVP 

film was successfully coated with the additive poly(melamine-co-formaldehyde) in PGMEA on 

the substrate. Pre-heating the substrate up to 50 °C can facilitate the merging of droplets, speed 

up the drying process, and improve the homogeneity of the PVP film (Figure 7.6). The coating 

was followed by a heating cycle at 175 °C for an hour to induce crosslinking. At this 

temperature, crosslinker poly(melamine-co-formaldehyde) efficiently acts as a donor of a 

formaldehyde moiety by firstly reacting at the activated 3-position of the phenol ring in the PVP. 

Then, the cross-linking process is completed by reacting with another phenol ring to form a 

strong covalent-bonded bridge. Crosslinked PVP films are not dissolved in common organic 

solvents such as chloroform, toluene, or chlorobenzene, allowing for subsequent solution-based 

deposition of organic semiconductors.  

     Figure 7.7a shows an optical image of a spray-coated PVP film. A uniform PVP film was 

obtained over a large area. We also observed some bumps and craters on the film, induced by the 

impingement of sprayed droplets and convergence on droplet boundaries. Similar phenomenon 

was reported earlier in other spray-coated films [171]. The resultant spray-coated PVP insulator 
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layer at optimized spray conditions has a thickness of around 600 nm. The root-mean-square 

roughness of the local spray-printed PVP film is 0.46 nm (across a 5 m×5 m area), determined 

by AFM measurements (Figure 7.8), similar to the roughness of spin-coated films (~ 0.30 nm).  

The low roughness is mainly due to the small size of droplets atomized by ultrasonic waves.  

 
Figure 7.7. (a) Optical microscopy image of a spray-coated PVP film prepared at 50°C, (b) 

Optical microscopy image of a sequentially spray-coated TIPS-PEN film on a PVP layer, (c) 

Current leakage versus applied voltage curves of PVP films prepared by ultrasonic spray and 

spin-coating processes. The electrical measurements were performed using Si/PVP/Al structures 

fabricated on highly doped silicon substrates. (d) Frequency-dependent capacitance of the spray-

coated PVP film measured up to 1MHz. (e) Transfer and (f) output characteristics of ultrasonic 

spray-coated TIPS-PEN based flexible OFETs with sequentially-deposited dielectric (PVP) and 

semiconductor (TIPS-PEN) layers, pictured in the inset of (e). 
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     The capacitance per unit area was found to be equal to 6.2 nF/cm
2
. The PVP films exhibit 

excellent dielectric properties with large breakdown voltage over 100 V and sufficiently low 

leakage current densities in the 10
-7

-10
-8

 A/cm
2
 range at device operating voltages, as shown in 

Figure 7.7c. The capacitance does not significantly change for wide frequency sweeps (20 Hz - 2 

MHz) as shown in Figure 7.7d. These results indicate that the spray-coated PVP films have good 

film quality and meet the requirement for the gate dielectric of flexible OFETs. 

 
Figure 7.8. AFM morphologies and corresponding RMS roughnesses of (a) spin-coated and (b) 

ultrasonic spray-coated PVP films on different length scales.  

     After the formation of the dielectric layer, the TIPS-PEN semiconductor was subsequently 

spray-coated on top of the PVP film. The spray-coated TIPS-PEN solution does not dissolve the 

PVP film and long ribbon-shaped TIPS-PEN polycrystals form on the spray-coated PVP layer, as 

shown in Figure 7.7b, similar to that observed on SiO2/Si substrate. Devices with spray-coated, 
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cross-linked PVP on highly doped silicon substrate exhibited an average mobility of 0.11 ± 0.03 

cm
2
/Vs. This is comparable to the values achieved for devices using spin-coated cross-linked 

PVP as the insulator layer on silicon substrate (Table 7.1).  

 
Figure 7.9. (a) A digital camera image of the OFET devices on a PET substrate in a bent 

configuration during electrical measurement. (b) No significant change of transfer characteristics 

of OFET with different bend radius values, R (26 mm, 15 mm, 13 mm, 9 mm). (c) No significant 

change of transfer characteristics of OFET after 20 cycles bending (R = 9 mm) are observed 

(before: black line, after: red line). The transfer curves are measured in the saturation regime at a 

drain bias of -40 V. 

     After achieving excellent performance on Si substrates, a series of flexible TIPS-PEN OFETs 

were fabricated flexible PET substrates with patterned ITO electrodes using sequentially spray-

coated layers of PVP dielectric and TIPS-PEN semiconductor, as shown in the inset of Figure 

7.7e. The spray-coated, flexible OFETs exhibited the maximum mobility of 0.35 cm
2
/Vs, with an 

average mobility 0.12 ± 0.02 cm
2
/Vs, a threshold voltage of 11.3 ± 2.5 V, and an on-off current 

ratio >10
4
, as shown in Figures 7.7e and f. Device parameters of the TIPS-PEN OFETs 

fabricated on rigid and flexible substrates using sequential USC process are summarized in Table 

7.1. In all cases, the mobilities and on/off ratios are consistent with those obtained in other 

solution-processing methods. Additionally, a bending test demonstrated no deterioration in the 

drain current even when the devices were bent to a bending radius as small as 9 mm. No 
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significant changes in the OFET performance after 20 bending cycles were observed except a 

slight increase in the off current (Figure 7.9), probably due to the polymer dielectric or TIPS-

PEN degradation [181,182]. 

7.4 Conclusion 

In summary, the ultrasonic spray-coating (USC) process was demonstrated for coating small 

molecule semiconductor and polymer insulator films for high-performance OFETs. Aligned, 

well-organized, ribbon-shaped TIPS-PEN polycrystal films were formed on both rigid and 

flexible substrates using the ultrasonic spray process. The spray-coated, cross-linked PVP 

dielectric films have smooth surfaces over large area along with excellent dielectric properties. 

Thus, the high-performance, flexible OFETs were fabricated using sequentially spray-coated 

TIPS-PEN semiconductor and PVP insulator layers on a plastic substrate at optimized processing 

parameters, including the choice of solvent, solution infuse rate, nozzle-substrate distance, and 

nozzle moving speed. The TIPS-PEN OFETs exhibited excellent device performance with a 

maximum hole mobility 0.36 cm
2
/Vs, a low threshold voltage -1 V and on-off current ratio larger 

than 10
5
, which are comparable or even superior to those obtained with conventional solution 

processing methods such as drop-casting and spin-coating. The results successfully demonstrated 

USC as a promising, cost-effective, and scalable technique to fabricate large-area and flexible 

OFETs for industrial production. 
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Chapter 8: Polymer Binder-Induced Crystal Growth and Its Effect 

on OFET Performance 

In this chapter, an in-depth structure and performance study of TIPS-PEN based OFETs is 

discussed, where three polystyrene (PS) based insulating polymer binders with different 

branching architectures – linear PS, 4-arm star PS and centipede PS – were incorporated into the 

active layer. The phase separation profile and nanostructure in the thin blend films were 

characterized by a combination of complementary experimental techniques including UV-vis 

absorption, NR, XRD, plane-view and cross-section TEM. 

8.1 Why Polymer Binder?  

A promising approach to improve the solution processability of small molecule semiconductors 

is to add an insulating polymer binder, which acts as a wetting agent. By combining the excellent 

film formation capability and mechanical properties of a polymer and the high charge carrier 

mobility of a small molecule semiconductor, it is possible to deposit high-quality, highly-

crystalline films, and fabricate high-performance OFETs. Previous studies reported that 

incorporating insulating polymer binders such as poly(α-methylstyrene) (PαMS), amorphous 

polystyrene (PS), amorphous polycarbonate (APC), or even semiconducting polymer like 

poly(triarylamines) (PTAA) into TIPS-PEN significantly improve the device performance 

uniformity without sacrificing the intrinsic high charge carrier mobility of small molecule 

semiconductors [183-188]. A fine control of vertical phase segregation of small molecules in the 

insulating polymer binder towards to the semiconductor/dielectric interface is believed to be 

important to achieve surprisingly superior OFET performance (mobility, on/off ratio, and 

threshold voltage) over those of neat small molecule system [189,190]. However, the vertical 
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phase separation and interplay between small molecules and polymers, due to competing effects 

of different interface energies and film growth kinetics, is a complex process. 

     Most of the previous studies mainly focused on the properties of polymer binder and effects 

of different solvents on morphology and device performances. For example, Kang et al. found 

that the molecular weight (Mw) of polymer strongly affects the phase separation in blend films 

[191]. Madec et al studied the effect of molecular weight of polymer binder and at the same time 

binary solvents on film growth and cystallinity of TIPS-PEN [192]. More recently, Cho and 

coworkers investigated the effect of solution viscosity and solvent properties on the phase 

separation [184]. However, very few studies have addressed how the structures of insulating 

polymer binders affect the crystallization, molecular packing, and phase separation of small 

molecule semiconductor, and associated electrical properties of small molecule/polymer OFETs.  

     This work reports the effects of different branch/chain architectures of three different 

polystyrene (PS) based polymer binders [193] – linear PS, 4-arm star PS, and centipede PS 

(Figure 8.1) – on the phase separation and crystallization TIPS-PEN, and resulting electrical 

performance of fabricated OFETs. The variations in the vertical composition profiles and order 

of crystallinity in the blend films explain the significant impacts of the polymer binder choice on 

the electrical performance of these films in the solution-processed OFETs. Although based on 

the same monomer, the different number of branches in each PS chain architecture impacts the 

diffusion process, and consequently influences the crystallization and phase separation of TIPS-

PEN. Therefore, an in-depth understanding of the blend system is essential to understand 

whether branching is a promising approach to control the phase separation in the small 

molecule/polymer blend system. The capability of inducing vertical phase separation profile 
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rearrangement of small molecule/polymer blend through the topographic structure of polymer 

matrix appears to be an alternative approach to modify charge transport and OFET performance. 

8.2 Experimental Section 

8.2.1 Material and Solution Preparation 

TIPS-PEN was separately blended with three different polymer binders, 4-arm star PS (Mw = 483 

Kg/mol), linear PS (Mw = 486 Kg/mol), and centipede PS (Mw = 540 Kg/mol) at a weight ratio of 

1:1, and dissolved in toluene at a total concentration of 5 mg/ml. Each solution was spray-coated 

on SiO2/Si
++

 substrates in air using the USC process. For reference, neat TIPS-PEN solution in 

toluene was also spray-coated with similar conditions except a different (8 mg/ml) concentration.  

8.2.2 Device Fabrication and Testing  

BG/TC architecture was incorporated for the OFET fabrication. Prior to the deposition of organic 

thin films, heavily doped n-type silicon substrates with 250 nm thermally-grown SiO2 dielectric 

layer were cleaned using the same recipe mentioned in Chapter 7. TIPS-PEN solution with or 

without polymer binder was directly spray-coated onto the SiO2 surface using the following 

parameters: an atomizing gas pressure of 0.4 psi, a solution flow rate of 1.2 ml/min, nozzle-to-

substrate distance of 4.6 cm, nozzle path speed of 8 mm/s, and a substrate tilting angle of 3°. 

Finally, 50 nm-thick Au source and drain electrodes were deposited by thermal evaporation at 1 

Å/s using a shadow mask to complete the devices. The electrical characteristics of OFETs were 

measured following the procedure described in Chapter 7. 

8.2.3 Thin Film Characterization 

NR experiment was conducted at SNS, ORNL using the Liquids Reflectometer (Beamline-4B). 

To prepare films for NR measurements, 2"-diameter Si substrates were cleaned, and the solutions 
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were spin-coated on them at 600 rpm for 1 min. In order to account for the instrumental smearing 

of NR data, the instrumental resolution provided from the beam line was convoluted with the 

calculated NR curves. AFM images were acquired with a Bruker Dimension Icon operating in 

tapping mode. TEM images were collected using a Zeiss Libra 120 with an in-column energy 

filter or a Hitachi HF3300. Cross-section TEM with FIB was conducted at University of 

Tennessee. 

 

Figure 8.1. (a,b,c) Schematic of the chain architectures of the PS binders used: (a) linear PS, (b) 

4-arm star PS, and (c) centipede PS. (d) Chemical structure of TIPS-PEN. (e) Schematic 

configuration of device cross-section. 

8.3 Results and Discussion 

OFETs with a BG/TC configuration (Figure 8.1e) were fabricated using neat TIPS-PEN, and 

TIPS-PEN separately blended with 4-arm star PS, linear PS, and centipede PS, by using the USC 

process discussed in Chapter 5 and 7. Figure 8.2a shows a set of typical transfer curves of 

devices based on neat TIPS-PEN and TIPS-PEN:PS blend films. Figure 8.2b shows the average 

n+ Si wafer 〈100〉

TIPS-PEN w/ or w/o polymer binder

Silicon dioxide (250 nm)

Au Au
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mobilities based on more than 20 devices from each type of polymer binder. Neat TIPS-PEN 

based OFETs exhibited an average mobility of 0.1 cm
2
/V-s. The addition of 4-arm star PS, linear 

PS, and centipede PS binders into TIPS-PEN increased the average mobility to 0.264, 0.374, and 

0.446 cm
2
/V-s, respectively. Detailed device performance parameters are summarized in Table 

8.1.  

 
Figure 8.2. (a) Typical transfer characteristics of Neat TIPS-PEN and TIPS-PEN:PS blend 

devices. (b) Average mobility of devices based on TIPS-PEN and TIPS-PEN with three different 

polymer binders. 

Table 8.1: Electrical properties of OFETs based on TIPS-PEN and TIPS-PEN:PS blend films 

using BG/TC device geometry. The mobilities were calculated at the saturation region at a drain 

bias of -40 V. 

Blend type 
Mobility 

[cm
2
/V-s] 

VTh 

[V] 

On-off 

ratio 

Subthreshold Slope 

[V/decade] 

Neat TIPS-PEN 0.099 ± 0.125 1.50 8.48 × 10
4
 4.91 

TIPS-PEN:4-arm star PS 0.264 ± 0.055 -0.60 7.75 × 10
5
 2.23 

TIPS-PEN:linear PS 0.374 ± 0.068 -1.50 6.12 × 10
5
 1.91 

TIPS-PEN:centipede PS 0.448 ± 0.068 -1.50 3.25 × 10
5
 1.58 
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     Notably, blending TIPS-PEN with centipede PS led to an over four-fold increase in average 

mobility. Moreover, the ratio of average mobility to the standard deviation of the measured 

mobility (µStdev/µStdev) was increased eight-fold, indicating a significant enhancement in device-

to-device uniformity over neat TIPS-PEN, which is also illustrated by device performance 

histogram shown in Figure 8.3. This interesting simultaneous improvement of average mobility 

and performance uniformity is in good agreement with previous reports [191,194]. However, no 

significant difference was observed in device stability in air ambient induced by polymer 

binders, as shown in Figure 8.4. The excellent device stability could be attributed to the good air 

stability of TIPS-PEN, combined with passivating effect of polymer binders. 

 
Figure 8.3. Histogram of devices performances based on neat TIPS-PEN and TIPS-PEN:PS 

blends. Gaussian fits are given as guide to eye. 
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     In order to understand the performance variation among various TIPS-PEN:PS blends, the 

relationship between the measured OFET electrical properties and microstructure of blend films 

were investigated using a combination of characterization techniques. The surface morphologies 

of blend films of TIPS-PEN:PS were studied by AFM (Figure 8.5). As shown, neat TIPS-PEN 

film showed a step-terrace geometry, indicative of its highly crystalline nature. The step height 

was around 1.65 nm, which is in agreement with the vertical intermolecular spacing of (001) 

plane, as previous reports [173]. Similar characteristic terrace topography was also observed in 

TIPS-PEN:4-arm star PS and TIPS-PEN:centipede PS blend films. However, a more 

homogeneous topography was observed in TIPS-PEN:linear PS blend film. Therefore, it was 

speculated that a thin layer of PS formed on the surface of TIPS-PEN:linear PS blend film. 

 
Figure 8.4. Stability test on device mobility: devices exhibit similar stability retaining 85-90% of 

their initial mobilities, while being stored in air. 

     In order to study the lateral phase morphology of TIPS-PEN:PS blend films, energy-filtered 

TEM was carried out, where each TIPS-PEN:PS blend film was imaged at 0  5 eV and 20  5 
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eV, as shown in Figure 8.6. Here, the 0 eV (elastic) image reveals the features based on electron 

density contrast, including mass thickness contrast and thickness variation. The 20 eV (inelastic) 

images correspond to the low plasmon contribution from the p-type organic semiconductor, in 

which the brighter area corresponds to TIPS-PEN rich domains and darker area corresponds to 

PS rich region. In the TIPS-PEN:4-arm star PS film, sharp TIPS-PEN crystal edges were 

observed, suggesting that there is mainly lateral phase separation between 4-arm star PS and 

TIPS-PEN. In contrast, fuzzy crystal edges were observed in TIPS-PEN:linear PS blend film, 

suggesting that phase separation is more dominant along vertical direction. And, slightly rounded 

TIPS-PEN edge with still recognizable crystal shapes was found in TIPS-PEN:centipede PS film. 

Hence, it is possible that a combination of vertical and lateral phase separation mode underwent 

in the blend films. 

      
Figure 8.5. AFM images of a) neat TIPS-PEN b) TIPS-PEN:4-arm  star PS, c) TIPS-PEN:linear 

PS, and d) TIPS-PEN:centipede PS.  
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Figure 8.6. TEM images of TIPS-PEN:linear PS (a,d), TIPS-PEN:4-arm  star PS (b,e), and 

TIPS-PEN:centipede PS (c,f) at 0 eV (a-c) and 20 eV (d-f). 

      In order to investigate vertical phase separation, EFTEM was employed on the cross-sections 

of TIPS-PEN:PS blend films (Figure 8.7), where the cross sections were prepared by focused 

ion beam (FIB). To better distinguish the small molecule TIPS-PEN and PS binder, EFTEM was 

used in the energy range targeted to Si to locate TIPS-PEN rich phase. In TIPS-PEN:4-arm star 

PS blend film, a distinct bi-layer structure was observed, with a TIPS-PEN rich layer at air 

interface and an underlying 4-arm star PS rich layer at the gate/dielectric interface. TIPS-

PEN:linear PS blend film exhibited a tri-layer morphology in which TIPS-PEN mainly 

segregated towards near the gate/dielectric interface. This vertical phase separation feature is 

critically important for the charge carrier transport in the incorporated BG/TC OFET 

architecture. Unlike TIPS-PEN:4-arm star PS film, no strong TIPS-PEN aggregation was 

observed at the air interface in TIPS-PEN:linear PS blend film. This observation is in accordance 

with the AFM results revealing the presence of a thin layer of PS on top of the TIPS-PEN:linear 
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PS film. On the other hand, TIPS-PEN:centipede PS film did not show any clear multi-layer 

structure. No abrupt interface was observed in the blend layer, rather from the TEM image with 

Si tracing, an increased TIPS-PEN concentration gradient was found towards air interface. 

 
Figure 8.7. Cross-section EFTEM images for a) TIPS-PEN:4-arm  star PS, b) TIPS-PEN:linear 

PS, and c) TIPS-PEN:centipede PS films. 

     Neutron reflectivity (NR) also can provide insight into vertical phase morphology, and 

provides quantitative information about layer thickness in nanometer resolution, presence of 

multi-layers, and composition gradient as well. Figure 8.8a shows the experimental and fitted 

NR curves for each blend film, where fitting to the experimental NR curves were performed 

using Parratt formalism [101] from which obtained neutron scattering length density (SLD) 

distributions and the composition distributions of TIPS-PEN (VolTIPS-PEN), calculated from the 

SLD distributions, are depicted in Figure 8.8b-c. Each blend film of TIPS-PEN exhibits high 

contrast, where Kiessig fringes with different frequency/period mean that different blend films 

have different thicknesses. Relatively high-frequency fringes in case of TIPS-PEN:linear-PS film 

indicates thicker film. It should be noted here that due to the requirement of smooth films for 

neutron reflectometry experiments, the films were prepared by spin-coating. After converting 
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SLDs to volume fraction profiles, we can see that TIPS-PEN:4-arm star-PS blend film has 

polymer rich regions at the dielectric interface and TIPS-PEN was segregated to air interface. 

TIPS-PEN:linear-PS blend film has the highest percentage of TIPS-PEN at the dielectric 

interface compared to other two blend films and its air interface is polymer rich with a 

decreasing volume gradient of TIPS-PEN. It is worth noting here that the segregation of TIPS-

PEN molecules to the gate-dielectric interface is important for device performance as charge 

transport occurs within a narrow region adjacent to the dielectric layer [189]. 

      
Figure 8.8. a) Experimental and modeled NR curves for TIPS-PEN films separately blended 

with linear PS, 4-arm star PS, and centipede PS b) The SLD profiles used to fit the NR curves 

shown in (a). c) Volume fraction profiles of TIPS-PEN vs. reduced distance from the substrate, 

Zreduced calculated from the SLD profiles shown in (b). 
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     On the other hand, though centipede PS has smaller percentage of TIPS-PEN at the 

gate/dielectric interface compared to linear PS, the film is TIPS-PEN rich along thickness 

direction with a positive gradient towards the air interface, meaning that it has a better injection 

of charge carriers. Better injection in case of TIPS-PEN:centipede PS film was also reflected in 

the output characteristics of TIPS-PEN:centipede PS OFET as shown in Figure 8.9, unarguably 

explaining better device performance based on TIPS-PEN:centipede PS blend films. 

      
Figure 8.9. Typical output characteristics of devices based on: a) neat TIPS-PEN, b) TIPS-

PEN:4-arm star PS, c) TIPS-PEN:linear PS, and d) TIPS-PEN:centipede PS. Same scale is used 

for the blends to illustrate the difference in charge injection. 
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8.4 Conclusion 

In summary, the topographic effects of different branch/chain architectures of three different 

polystyrene based polymer binders – 4-arm star PS, linear PS, and centipede PS – on vertical and 

lateral phase separation, crystallinity of TIPS-PEN small molecules, and resulting OFET 

performances were unraveled in this work. It was demonstrated that each of these binders 

improves film formation capability and uniformity of TIPS-PEN, significantly enhances device 

performance, and minimizes device-to-device performance variation. The device performance 

was correlated with neutron reflectivity and cross-section TEM data, and the results were well-

consistent. Overall, TIPS-PEN:centipede PS based devices exhibited the best performance with 

an average mobility of 0.45 cm
2
/V-s and excellent charge transport.  
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Chapter 9: Conclusion and Future Works 

9.1 Original Contributions 

The original contributions of this dissertation to electronic and optoelectronic device research are 

briefly described as follows- 

A. Interface and morphology engineering in a state-of-the-art organic photovoltaic system, 

PTB7:PC71BM was presented. The higher power conversion efficiency of devices with 

inverted architecture compared to those with regular architecture was correlated with 

nanoscale structures. It has been shown that the higher performance from inverted 

devices is due to the diffusion of electron accepting fullerene molecules into ITO surface 

modifying PFN layer. 

B. How the processing additive and annealing temperature affect the nanoscale morphology 

in small molecule solar cells is presented. The device performance was correlated with 

film morphology and crystallinity, providing guidelines for better solar cell design.  

C. High-efficiency perovskite solar cells (PSCs) were fabricated using a roll-to-roll 

compatible ultrasonic spray-coating (USC) process. The spray-coating system parameters 

such as substrate temperature, nozzle path speed, nozzle-to-substrate distance, and spray 

pressure were thoroughly optimized to achieve highly uniform and dense perovskite thin 

films. Devices based on the obtained films exhibited PCE as high as 13.0% with an 

average PCE more than 10%. A unique photonic curing technique was used for the first 

time to anneal electron transporting TiO2 compact layer on flexible PET substrates to 

realize flexible and mechanically robust PSCs with PCE up to 8.1%.  
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D. The photonic curing technique was further optimized to anneal TiO2 layers on top of both 

glass and flexible substrates. Combined with controlled and optimized perovskite film 

growth by introducing moisture during annealing, photonic-cured TiO2 films yielded 

PCE as high as 15.0%, comparable to the best solution-processed PSCs. 

E. To demonstrate versatility of USC process, a series of high-performance small molecule 

(TIPS-pentacene)-based organic field-effect transistors were fabricated. The average 

mobility was as high as 0.35 cm
2
/V-s with on-off ratio being >10

4
.  

F. TIPS-pentacene crystal growth and orientation were further optimized by using a series 

of polystyrene (PS)-based insulating polymers - 4-arm star, centipede, and linear PS. The 

devices exhibited enhanced mobility and on-off ratio with highest being 1.0 cm
2
/V-s and 

8.4 × 10
6
, respectively. 

9.2 Future Works 

Both organic and perovskite solar cells have great potentials to see the light of commercialization 

and vast deployment in the future. Before that, however, certain issues need to be addressed. 

Following could be the research directions that will further advance these two technologies 

towards reality. 

9.2.1 Organic Solar Cells 

Reported PCE of lab based single-junction OSCs has already surpassed the widely considered 

commercialization threshold of 10%. However, the reported devices are too small with area in 

the range of 10-30 mm
2
. Taking the scaling into consideration, the efficiency will be much lower 

due to decreased fill factor. That is why further enhancement of cell efficiency is of paramount 

importance, and there are certainly scopes of process and materials engineering to achieve that. 
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Another common concern with OSCs is their poor stability. Though development of inverted 

device architecture and advanced encapsulation technique led to significantly improved device 

stability, it still needs further improvement. Based on the works reported in this dissertation, 

following works could be significant. 

a) We observed that the diffusion of electron accepting fullerene into ITO electrode 

modifying layer, PFN (which is a conjugated polymer) is the reason behind higher 

efficiency in inverted devices. There is a cross-linked version of PFN, called PFN-OX, 

which is shown to outperform PFN. It would be interesting to see whether any such 

diffusion occurs if this polymer is used as the ITO modifying layer. And also, study of 

bulk-heterojunction system based on a better performing polymer, PTB7-Th, would be 

quite interesting. 

b) Small molecule-based OSCs show comparable efficiencies to those of polymer-based 

cells. Based on the results presented here, it is possible that processing additive can be 

optimized to further tune the active layer morphology. Interface engineering also has 

many scopes of study. For instance, incorporating nanoparticles (Ag, Au, etc.) into 

interfacial layer or absorber layer can enhance the light absorption and thus device 

performance. Moreover, above mentioned PFN and PFN-OX surface modifying layers 

can be investigated in small molecules solar cells. 

9.2.2 Perovskite Solar Cells 

Perovskite solar cells already reached more than 20% certified PCE. However, PSCs currently 

suffer from poor stability and strong J-V hysteresis, which, if not addressed in time, will prevent 

the timely commercialization of this technology. Moreover, there is still a great possibility to 
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push the PCE to the theoretical maximum, which is estimated to be more than 30% [195]. Hence, 

considering the efficiency enhancement, high reproducibility, performance stability, flexible 

device realization, better understanding of underlying physics, and most importantly, the 

scalability, following issues require strong attention:  

a) First, hysteresis is one of major concerns associated with PSCs. The presence of 

hysteresis in current density-voltage (J−V) characteristics makes it difficult to reliably 

quantify the cell performance. Hysteresis in solar cells is usually assumed to arise from 

the cell capacitance – fast scanning under forward bias conditions eases the extraction of 

both extra-capacitive and photogenerated charges, but in case of fast scanning from short-

circuit to forward bias, the photogenerated charge cannot fully charge the solar cells, 

reducing the amount of charge flowing through the external circuit. However, hysteresis 

in PSCs does not follow this trend; they show strong hysteresis effect at both faster and 

slower scans. Though there have already been several reported works on this issue, the 

origins are not clearly understood yet. 

b) Second, it is critically important to understand how moisture, extended exposure to UV 

light, and other environmental variation (e.g., temperature variation) affect PSCs. One of 

the most important questions to address is how the water molecules first react with 

perovskite – does the reaction initiate at the air interface or in the bulk region through the 

grain boundaries? Better understanding of device physics, interfaces, and underlying 

mechanism of material decomposition and performance degradation will help designing 

more stable PSCs.   
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c) Last, one of the most important parameters that determine perovskite solar cell 

performance is the perovskite thin film morphology per se. Depositing highly uniform 

and dense perovskite thin films over large area remains a big challenge as of today. 

Scalable techniques such as spray-coating and ink-jet printing can be employed and 

optimized to enable large-scale fabrication of PSCs. ORNL's scalable ultrasonic spray-

coating (USC) process was used in one of our previous works to deposit mixed halide 

perovskite (CH3NH3PbI3-xClx, Eg = 1.55 eV) thin films, where associated devices 

demonstrated PCE of 13%. The USC technique is capable of yielding highly uniform and 

dense perovskite thin films over large area with a very low density of pinholes, without 

requiring inert environment, which is one of the fundamental requirements for perovskite 

film deposition. Using lower bandgap (Eg < 1.5 eV) perovskite materials such as those 

using formamidinium organic cation, USC can yield photovoltaic cells with higher PCEs. 

Another scalable technique, ink-jet printing can be used to fabricate all-printed PSCs, 

without requiring expensive high-vacuum evaporation technique to deposit top metals, 

significantly reducing the processing and fabrication cost.  
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