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Abstract

We discuss a holographic model consisting of a U(1) gauge field and a scalar field

coupled to a charged AdS (anti-de Sitter) black hole under a spatially homogeneous

chemical potential. By turning on a higher-derivative interaction term between the

U(1) gauge field and the scalar field, a spatially dependent profile of the scalar

field is generated spontaneously. We calculate the critical temperature at which the

transition to the inhomogeneous phase occurs for various values of the parameters of

the system. We solve the equations of motion below the critical temperature, and

show that the dual gauge theory on the boundary spontaneously develops a spatially

inhomogeneous charge density. In addition to that we discuss the zeroes and poles

of the determinant of the retarded Green function (detGR) at zero frequency in

a holographic system of charged massless fermions interacting via a dipole coupling.

For large negative values of the dipole coupling constant p, detGR possesses only poles

pointing to a Fermi liquid phase. We show that a duality exists relating systems of

opposite p. This maps poles of detGR at large negative p to zeroes of detGR at large

positive p, indicating that the latter corresponds to a Mott insulator phase. This

duality suggests that the properties of a Mott insulator can be studied by mapping

the system to a Fermi liquid and then for small values of p, detGR contains both

poles and zeroes (pseudo-gap phase). Finally, we study holographic fermions in the

spontaneously generated holographic lattice background defined above. We solve the

equations of motion below Tc (critical temperature) and analyze the change in Fermi

surface due to introduction of the holographic lattice. The band structure of this
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fermionic system was also analyzed numerically and it was found that a band gap

was formed due to lattice effects.
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Chapter 1

Introduction

Recently ongoing studies have revealed that gauge/gravity duality makes possible to

understand the strongly coupled quantum systems. Gauge/gravity duality relates

string theory with the observable world by using the Maldacena’s idea of the

correspondence of strongly coupled gauge theories to weakly coupled gravity. The

correspondence is defined by using two different ways of defining the string theory

structures, branes. One perspective is to consider the branes as solutions to

supergravity, low-energy theory of open strings and the other perspective is to consider

them as low-energy theory of closed strings in which the gauge theory lives on the

brane. The origin of gauge/gravity duality is string theory but it has become a

powerful tool to study the strongly coupled systems such that rather than focusing

on string theory itself it focuses on the properties of strongly coupled systems like

condensed matter systems, and heavy-ion collisions. In this thesis gauge/gravity

duality is used to analyze condensed matter systems. Since the gauge theory

lives in a higher dimensional space the word holographic is used for these kind of

condensed matter systems, e.g. holographic superconductors, holographic superfluids,

holographic charge density waves etc.

In this thesis some particular condensed matter applications of gauge/gravity

duality are presented in the following organized fashion. In Chapter 1 we start
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with providing some background information about the condensed matter systems

like superconductors, charge density waves, and the band structure of the electrons

moving in periodic potential. The purpose of this introduction is to give the readers

of this dissertation an opportunity to understand the fundemantal concepts and

theories related to work presented in this dissertation. Then we continue with a brief

overview of gauge/gravity duality and AdS/CFT correspondence. In Chapters 2 and

3 we present our previously published work in Physical Review D [12], [13] and in

Chapter 4 our work in presubmit stage in collaboration with James Alsup, Eleftherios

Papantonopoulos, and George Siopsis. In Chapter 2 a holographic superfluid with

spatially inhomogeneous background was explored. The inhomegeneous phases

were spontaneously generated by the higher order derivative coupling between the

electromagnetic and the scalar field. The system was studied above and below the

critical temperature. In Chapter 3 the zeroes and poles of the Green’s function were

studies in a holographic system whose bulk has an AdS-Reissner-Nordström black hole

with a dipole coupling. As a result, we show that the dipole coupling acts as an order

parameter in Mott physics. As we vary the dipole coupling parameter we observe

the transfer of the spectral density between bands. In Chapter 4 we put holographic

fermions to the system that we studied in Chapter 2. We study the spectral functions

of the system to see holographic lattice effect which is spontaneously generated by

high-derivative coupling between the electromagnetic and scalar field. To be able to

analyze the system we solve the equations both analytically and numerically by using

perturbation theory. The findings of our study reveals the band gap structure at the

Brillouin zone boundary which is discussed in section 1.1.3.
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1.1 Background: Superconductivity, Charge Den-

sity Waves, and Holography

1.1.1 Superconductivity

In 1911 Kamerlingh Onnes observed the disappearance of the electrical resistance of

some metals like mercury, lead, and tin in a small temperature range at a critical

temperature Tc, which depends on the type of the metal. There are two important

indications of the superconductivity. The one which might lead to the potential

applications of superconductivity, such as high-current transmission lines or high-

field magnets is the perfect conductivity . The second one is the perfect diamagnetism

which was discovered by Meissner and Ochsenfeld in 1933 [14]. The Meissner effect

is defined through perfect diamagnetism which means that any magnetic field that is

present in the bulk of the sample when T > Tc is expelled when T is lowered through

the transition temperature [1]. The transition from the superconducting state to

the normal state can occur at a critical magnetic field Hc, which depends on the

difference between the free energies of the normal and superconducting states. This

energy difference is called the condensation energy of the superconducting state and

given by
H2
c (T )

8π
= fn(T )− fs(T ) (1.1)

Also experiments showed that

Hc(T ) ≈ Hc(0)

[
1−

(
T

Tc

)2
]

(1.2)

as seen in Fig.(1.1).
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Figure 1.1: Temperature dependence of the critical magnetic field of a typical
superconducting material [1].

London Equations

In 1935 London brothers published a paper to give a theoretical explanation to the

persistent electric currents in the superconductors [15]. The derivation of London

equations is the following. The equation of motion of a dissipationless electron in

superfluid is

m
d~vS
dt

= −e ~E (1.3)

then the current density is given by

~j = −nSe~vS (1.4)

then we obtain,
d~j

dt
= −nSe

d~vS
dt

=
nSe

2

m
~E . (1.5)

Eq.(1.5) tells us that in stationary conditions there is no electric field in the

superconductor and this equation is called the First London Equation . Then from

Faraday’s Law,
~∇× ~E = −1

c
~̇B (1.6)

by integrating Eq.(1.5) we obtain the solution

~∇×~j +
nSe

2

mc
~B = ~C (1.7)

4



where the constant vector ~C is to be determined from the initial conditions. To

satisfy the Meissner effect London brothers proposed this constant vector ~C to be

a zero vector. This leads to so called London gauge, i.e. ~j = −nSe
2

mc
~A. Using this

information we find the Second London Equation.

~∇× ~js = −nSe
2

mc
~B (1.8)

Here the constant λL = nSe
2

mc
is a phenomenological parameter which only depends

on the type of the material. This parameter is called the London penetration depth.

The applied magnetic field to the superconductor decreases exponentially with the

distance from the surface of the superconductor with an exponential factor of the

London penetration depth, i.e. ~B(x) = Bapp ŷ e
−x/λL . The temperature dependence

of this penetration depth is experimentally found as the following.

λL(T ) ≈ λL(0)

[
1−

(
T

Tc

)4
]−1/2

(1.9)

where λL(0) = nSe
2

mc
.

Landau-Ginzburg Theory of Superconductors

Although London and Pippard theory was good enough to explain the phenomeno-

logical behavior of the superconductors these theories also had some deficiencies to

be fixed. For instance, in London’s theory the superfluid density nS was assumed to

be constant in time and uniform in space and since it is treated to be given there

was no way to understand the dependence of nS on parameters like temperature or

applied magnetic field within these theories.

In 1937 to resolve these deficiencies of London theory Landau introduced the

idea of order parameter to describe the phase transitions [16]. This order parameter

that Landau introduced was constant in time and space. The main point of the

Landau’s theory was to describe the free energy in terms of the order parameter and

5



then find the phase transitions by minimizing the free energy with respect to the

order parameter. To cover the spatially non-uniform densities Ginzburg and Landau

included the gradient terms in the free energy as well [17]. We write the functional

for superconductors as the following.

F [ψ,A] ∼=
∫
d3r

[
α|ψ|2 +

β

2
|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− q

c
A

)
ψ

∣∣∣∣2 +
B2

8π

]
(1.10)

where the kinetic momentum and energy density of the magnetic field term are the

terms added to the Landau functional . Minimizing this functional F with respect

to the order parameter ψ and the vector potential A respectively we obtain the

Ginzburg-Landau equations as the following.

1

2m∗

(
~
i
∇− q

c
A

)2

ψ + αψ + β|ψ|2ψ = 0 (1.11)

j =
c

4π
∇×B = i

q~
2m∗

([∇ψ∗]ψ − ψ∗∇ψ)− q2

m∗c
|ψ|2A . (1.12)

As one can see from Eq.(1.12) in the case of uniform ψ(r) current j reduces to the

form of the London equation, i.e. j = − e2nS
mc

A,

j = −q
2|ψ|2

m∗c
A , (1.13)

Therefore, we can deduce that
q2|ψ|2

m∗
=
e2nS
m

(1.14)

Setting q = −2e and m∗ = 2me the superfluid density nS becomes

nS =
m

e2

q2|ψ|2

m∗
=
m

e2

4e2|ψ|2

2m
= 2|ψ|2 . (1.15)

6



Finally, the penetration depth is

λ =

√
mc2

4πe2ns
(1.16)

There are two characteristic length scales in Ginzburg-Landau theory of super-

conductors and superfluids. The penetration depth (λ) is associated with the vector

potential A and the coherence length (ξ) is associated with the order parameter

field |ψ(r)|. They are the minimal spatial scales over which they can vary with their

respective fields. The dimensionless ratio of these two length scales is called Ginzburg-

Landau parameter
(
κ := λ(T )

ξ(T )

)
. Depending on whether κ is less than or greater than

1/
√

2 superconductors are called Type-I or Type-II superconductors respectively.

BCS Theory of Superconductors

In 1957 Bardeen, Cooper, and Schrieffer [18] published a paper on the theory of

superconductivity which is also known as BCS theory. In the BCS theory, they

showed that there is an instability in the Fermi-sea ground state of the electron gas

due to the weak attractive interaction between electrons. This instability occurs for

the formation of bound pairs of electrons which are in the states with equal and

opposite momentum and spin [14]. These bound pairs form charged bosons which are

called the Cooper pairs . BCS theory predicted the minimum energy to break a pair

is Eg = 2∆(T ) and as a result two quasi-particle excitations are produced. The value

of ∆(T ) increases from zero at Tc to

Eg(0) = 2∆(0) = 3.528kBTc (1.17)

in the limit of T � Tc, where kB is Boltzmann constant. This value of gap is close

to the values measured for simple elementary superconductors. On the other hand,

the superconductors with stronger coupling and for unconventional superconductors

7



this value do not match with the experimental results. For instance, for mercury the

gap ratio 2∆(0)/kBTc ≈ 4.4.

High Tc Superconductors

In 1986 high temperature superconductivity in layered materials dominated by

copper oxide (CuO2) planes was discovered by Bednorz and Müller [20]. After

this discovery superconductors with Tc higher than 40K are classified as high-Tc

superconductors. Although BCS theory, which is based on the weakly-coupled

Fermi liquid description [29], suggests that the superconductivity is induced by the

electron-phonon interactions in high-Tc superconductors it is believed that strong

electronic correlations play the key role. The underlying physical mechanism for

high-Tc superconductivity is not clear yet but some models (e.g. Hubbard model) are

used to study these type of materials. So far the highest critical temperature measured

is Tc ≈ 133K [21] for a mercury, barium, calcium, copper, oxide (HgBa2Ca2Cu3O8).

For cuprates, a type of high Tc superconductors, the crystal structures share

the two-dimensional Cu-O planes. Although the mechanism behind it is not well

understood yet for high Tc superconductors the superconducting state is formed by

Cooper pairs. Another difference between the conventional superconductors and the

high Tc superconductors is that they former has s−wave and the latter has d− wave

symmetry for their Cooper pair wave function.

In the presence of many competing and mutually frustrating interactions a rich

phase diagram can appear in quantum many-body systems. For example, the

quantum critical behavior of the heavy fermion systems is summarized in Fig.(1.2).

In these systems, the ordered phase that terminates at the quantum critical point

(QCP) is magnetic, and is clearly visible in experiments. The phase diagram of

cuprate high-Tc superconductors (see Fig.(1.3)) is another example of one of the

richest and most interesting phase structures has been known to appear in strongly

correlated materials. The phase diagram of a hole-doped high-Tc superconductor

starts with an insulator phase with the antiferromagnetic order (Mott insulator) in the
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Figure 1.2: Quantum criticality in heavy-fermion systems. The temperature is
plotted with respect to the control parameter, e.g. pressure. Figure taken from [22].

underdoped regime which has strong electron-electron correlations is then followed by

the superconductor phase. Adjacent to the Mott insulator and superconductor phases,

there appear the pseudogap and strange metal phases, where transport properties

are highly unusual. For example, strange metals or non-Fermi liquid show linear

resistivity which makes weakly coupled description insufficient [29]. The underdoped

regime also exhibits a variety of spin and charge orders that can be static or fluctuate

in addition to the pseudogap phase, which suppresses spin and charge excitations

below a temperature T ∗. As we increase doping x beyond the superconductivity

phase, there is the fermi-liquid phase. One of the properties of the Fermi liquid phase

is that the resistivity is proportional to T 2. Due to short superconducting coherence

length, low carrier densities, and quasi-two dimensionality the transition temperature

relative to its mean field value due to phase fluctuations favor a suppression. It

is hard to identify which competing orders are essential to the description of high-

Tc superconductivity. Some questions still beg for an answer in understanding the

pseudogap phase [22].

9



Figure 1.3: Doping temperature phase diagram of the hole-doped cuprate
superconductors. Figure taken from [22].

1.1.2 Charge Density Waves (CDW)

Electron-phonon or electron-electron interactions result in the development of the

density waves ground state in low-dimensional metals [23]. A periodic spatial variation

of the charge or spin density can be observed in the ground states which are coherent

superposition of electron-hole pairs. The spatial variation of charge density is called

the charge density wave (CDW). The resulting ground state consists of a periodic

charge density modulation accompanied by a periodic lattice distortion. Both periods

are determined by the Fermi wavevector kF . The charge density of the collective mode

is given by [24]

ρ(r) = ρ0 + ρ1 cos(2kF · r + φ) (1.18)

where ρ0 is the unperturbed electron density of the metal. The formation of the charge

density waves results in a strong modification in both the electron and phonon spectra.

The phenomenon is usually described by discussing the behavior of a one-dimensional

coupled electron-lattice system, with the electrons forming a one-dimensional electron

gas, and the ions forming a linear chain.
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Figure 1.4: Various broken symmetry ground states of one-dimensional metals.
Figure is taken from [25].

The consequence of the electron-phonon interaction and of the divergent electronic

response at q = 2kF in one dimension is a strongly renormalized phonon spectrum

generally referred to as the Kohn anomaly. This identifies a phase transition to a state

where a periodic static lattice distortion and a periodically varying charge modulation

with varying charge modulation with a wavelength λ0 = π/kF develops.

The ground states of different broken symmetries carry similar characteristics

with superconducting state. One of these common properties is that for all of the

condensates there is a complex order parameter which can be written as

∆ = |∆|eiφ (1.19)

Although the gauge symmetry is broken for superconducting ground states the broken

symmetry for the density wave ground states is the translational symmetry. This

difference between the superconducting and the density wave ground states is the one

which makes them have different collective excitations and different coupling of the

collective modes to applied electromagnetic fields. In Fig. 1.4 the different ground

states of one-dimensional metals is given depending the total momentum, total spin,

and broken symmetry.
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The charge density waves’ collective excitations occur below a single gap which has

an amplitude of |∆|. This single particle gap occurs at ±kF and doesn’t contribute

to the DC conductivity due to the presence of impurities and lattice imperfections.

Therefore, instead of causing a supercurrent as in the case of superconducting states

the collective modes lead to semiconductor behavior below a transition temperature

[23]. Fröhlich (1954) pointed out that the absence of these pinning and damping

supercurrent of the condensate is lead by the collective modes [24].

1.1.3 Electrons in periodic potential

Although in simple free-electron models like Drude and Sommerfeld models the

electrons are assumed to be in an empty box, to explore the properties of the metals

we need to consider the crystalline structure of the ions since the conduction electrons

move in the periodic potential formed by the ions.

The Fourier transform of the periodic potential felt by the electrons is [1]

V (r) =
∑
K

VKe
iK·r , (1.20)

whereK is the vectors of the reciprocal lattice. Using the relationK·R = 2π×integer

between reciprocal vector K and translation vector R we can write

V (r + R) =
∑
K

VKe
iK·(r+R) =

∑
K

VKe
iK·r = V (r) (1.21)

due to the periodicity of the cyrstalline structure. The Bloch’s theorem states that

in a lattice-periodic the Hamiltonian is also periodic and the eigenfunctions can be

written as

ψk(r) = eik·ru(r) =
∑
K

CKe
i(k+K)·r (1.22)

where u(r) are lattice-periodic functions and where we expanded the periodic part in

Fourier series.
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In Schrödinger equation

H(r)ψ(r) =

[
− ~2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (1.23)

we substitute the Fourier expansions and find

∑
K′

[
~2

2m
(k + K)2 +

∑
K′′

VK′′e
iK′′·r

]
CK′e

i(k+K′)·r = E
∑
K′

CK′e
i(k+K′)·r (1.24)

Integrating over the volume and simplifying we obtain

[
E − V0 −

~2

2m
(k + K)2

]
CK =

∑
H 6=0

VHCK−H (1.25)

The main goal is to obtain a good approximation to the potential V (r) by solving

this infinite set of equations to understand the energy band structure. Solving these

equations by assuming that VK = 0 for K 6= 0 is called the free electron model then

we can write

EK = V0 + εk+K (1.26)

and C(0)
K = 1 for only band K and zero otherwise. Then the energy band structure

can be plotted as in Fig. 1.5.

Another way to solve these infinite set of equations is to use the perturbation

theory in which VK for |K| 6= 0 is taken to be very small. This type of model is called

the nearly-free-electron model. Let us start with the lowest band which has C(0)
0 = 1.

Then we can write

E(0) = V0 +
~2k2

2m
, C

(0)
0 = 1 and C

(0)
K = 0 for |K| 6= 0 . (1.27)

The first order equation is then

[
E − V0 −

~2

2m
(k + K)2

]
C

(1)
K =

∑
|H6=0

CK−HV|H| (1.28)
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Figure 1.5: One dimensional energy band structure for free electron model on the
left side. Band gap formation in the presence of periodic lattice on the right side.
Figures are taken from [1].

and we can solve for C(1)
K and find

C
(1)
K =

VK
~2

2m
[k2 − (k + K)2]

(1.29)

which gives the equation for the energy of the lowest band as following.

E = V0 + εk −
∑
|K|6=0

|VK|2

εk+K − εk
(1.30)

which is valid for |εk+K − εk| � |VK| where we defined εk = ~2k2

2m
. The denominator

goes to zero at εk+K = εk or |k + K| = |k|.

When the difference between two wave vectors is equal to the reciprocal lattice

vector, i.e. k′ − k = K, they are said to obey the Bragg reflection condition. For

the degenerate case where |k + K| ' |k| denominator of Eq. (1.29) goes to zero and

there is a degeneracy which can be lifted by the presence of the periodic potential.

This degeneracy eliminates one of the basic assumptions of the perturbation theory

of having small coefficients. To resolve this issue we assume that C0 and CK are not

small but important at this particular point. The reason for these coefficients being

large is the mixing of the degenerate states [2]. Then we obtain the following system
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Figure 1.6: Nearly-free-electron model band structure for reduced and extended-
zone scheme respectively. Figures are taken from [2].

of equations.

(E − V0 − εk)C0 = CKV−K ,

(E − V0 − εk+K)CK = C0VK .
(1.31)

The solution of this system of equations give two solutions for the band energy as

E±(k) = V0 +
1

2
[εk + εk+K]±

[
|VK|2 +

(
εk+K − εk

2

)2
]1/2

(1.32)

For the particular case of Bragg condition the band energy becomes

E±(k) = V0 + εk ± |VK| . (1.33)

The plot of this energy band structure can be seen in Fig.1.5. Looking at the

Brillouin zone boundary one can see that the degeneracy is lifted and there is a

gap between two bands. The magnitude of the band gap is proportional to the

magnitude of the periodic lattice potential. In Fig. 1.6 the extended and repeated

zone scheme is plotted where all degeneracies are lifted at the center and boundaries

of the Brillouin zone. The difference between the free-electron model and the nearly-

free-electron model is the lift of degeneracies at the center of the zone boundary.

Another interesting point in the nearly-free-electron model is that the group velocity
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and its perpendicular component are zero at the center and boundary of the zone

respectively. As a result of this the dispersion curves are perpendicular to the zone

boundary [2].

1.2 AdS/CFT Correspondence and Holography

In 1997 Maldacena proposed a conjecture which states that type IIB string theory

compactified on AdS5× S5 and four dimensional N = 4 supersymmetric Yang-Mills

theory are equivalent to each other. This conjecture is then called the AdS/CFT

correspondence where AdS stands for anti-de Sitter space and CFT stands for the

conformal field theory. In other words, we can state the equivalence as a quantum

gravity theory in an asymptotically anti-de Sitter spacetime is equivalent to a

quantum field theory in a lower dimensional space. This is the reason why this

correspondence is referred as holographic principle. Another reason is that the number

of degrees of freedom in the bulk is equal to the number of degrees of freedom at the

boundary.

The derivation of the AdS/CFT correspondence in the original conjecture that was

proposed by Maldacena can be done by considering type IIB string theory in 9+1

dimensional spacetime with a stack of N D3-branes [26]. One of the ways to think of

D-branes is that they are open string theory objects on which the open strings end on

them. Another way is that low energy closed string theory equations of motion gives

solitonic solutions which are D-branes. A stack of N D3 branes can be described in

terms of both closed and open strings. At the low energy, which is below the string

mass scale (α′)−1/2 or which is equivalent to taking ls → 0, the quantum gravity of

closed strings are reduced to classical supergravity. On the other hand, open string

theory in this limit corresponds to the planar limit N → ∞ of SU(N) gauge theory.

Therefore, at this low energy limit the open and closed string descriptions reduce to

N = 4 super Yang-Mills theory and string theory on AdS5× S5, respectively [27].
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Since we do not have a full understanding of non-perturbative structure of the type

IIB string theory on a curved sprace background there is no mathematical proof for the

AdS/CFT correspondence. Although there is no mathematical proof for Maldacena’s

conjecture, recently published studies [31] and [32] test the duality by providing a

numerical calculations which presents convincing evidence that the conjecture is true

[33].

To test the accuracy of the proposal by Maldacena, Hanada et. al. did numerical

calculations on the both sides. They compared the entropy of a black hole in the

gauge theory and entropy with a gravity theory with the first quantum gravity

correction included. As a result of their Monte Carlo simulations they found out

an agreement between the two computations. This agreement presents an evidence

that the gauge/gravity duality is valid and string theory is internally consistent as a

quantum theory of gravity [34].

Large N Expansion

Although there are different forms of AdS/CFT correspondence conjecture the

starting point of the Maldacena’s conjecture was due to a paper of ’t Hooft in 1973 in

which ’t Hooft proposed an interesting connection between SU(Nc) gauge theories in

the large Nc limit, i.e. Nc →∞, and string theory [4]. A simple toy model in N = 4

Super-Yang Mills theory has the Lagrangian of the form

L ∝ Tr
[
∂Φi∂Φj + gYMc

ijkΦiΦjΦk + g2
YMd

ijklΦiΦjΦkΦl

]
(1.34)

where the fields Φi can either be any bosonic field X i or gYMAµ. After rescaling the

fields by Φ̃i = gYMΦi and defining the fixed ’t Hooft coupling , λ = g2
YMNc as Nc →∞

it was found out that the expansion of Feynman diagrams in 1/Nc is equivalent

to a topological expansion of the corresponding surfaces. In the weak form of the

correspondence the limit of Nc → ∞ and λ is very large case the α′ is assumed to
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be small. Therefore, expanding supergravity in small α′ is dual to a field theory

expansion around strong coupling limit.

The virtue of providing strong/weak coupling duality of AdS/CFT is helps us to

explore properties of strongly coupled quantum field theories from the calculations

done in weakly coupled gravity. This is also what lets us to study the holographic

lattice structure and holographic fermions and their zeros and poles in this thesis in

the following chapters.

Now, let us summarize some properties of AdS space which are useful in

constructing the correspondence.

Anti-de Sitter (AdS) Space

One of the solutions to Einstein’s equations with negative cosmological constant is

anti-de Sitter space (AdS). It is a maximally symmetric Lorentzian manifold with

negative curvature [6]. A d-dimensional hyperboloid

X2
0 +X2

d −
d−1∑
i=1

X2
i = L2 , (1.35)

in (d+ 1)-dimensional embedding with AdS radius, L, which is a global constant and

in which the metric is

ds2 = −dX2
0 − dX2

d +
d−1∑
i=1

dX2
i . (1.36)

The construction of AdS space gives it an isometry group of SO(2, d− 1). Since the

conformal group of the gauge theory is the same as the isometry group of AdS it is

easier to establish the gauge/gravity duality.
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In different coordinate systems the metric of the AdS space can be written in

different forms. One of the forms that satisfy Eq.(1.35) is that

X0 = L coshχ cos τ ,

Xd = L coshχ sin τ ,

Xi = L sinhχΩi

(1.37)

where i stands for i = 1, ..., d− 1, τ ∈ [0, 2π), χ ≥ 0, and
∑

i Ω
2
i = 1 which gives the

metric

ds2 = L2(− cosh2 χdτ 2 + dχ2 + sinh2 χdΩ2
d) . (1.38)

The coordinates (τ, χ,Ω) covers the entire space therefore they are defined as the

global coordinates. Due to violation of causality the coordinate τ needs to be

unwrapped so that it is between −∞ < τ <∞.

In a different form we can write the metric by using Poincaré coordinates as

following. The local coordinates (u, t,x) with 0 < u, −∞ < t < ∞, x ∈ Rd can be

defined in terms of the global coordinates as

X0 =
1

2u

[
1 + u2(L2 + x2 − t2)

]
, Xd = Lut ,

Xd+1 =
1

2u

[
1− u2(L2 + x2 − t2)

]
, Xi = Luxi for i = 1, ..., d .

(1.39)

The reason why these coordinates are local is that they cover only half of the

hyperboloid in Eq.(1.35). Then we obtain the metric with Poincaré coordinates as

ds2 = L2

[
du2

u2
+ u2dxµdx

µ

]
. (1.40)

In addition to using the coordinate u it is more general to use the transformation

z = u−1 then this transformation gives the metric

ds2 =
L2

z2
(−dt2 + d~x2 + dz2) (1.41)
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where the conformal boundary is located at z = 0. Another useful parametrization

is given by r = L2u which leads to

ds2 =
r2

L2
dxµdx

µ +
L2dr2

r2
. (1.42)

Finally, another form of coordinates is the static coordinates (t, r, θ, φ) where the static

coordinates are defined as t = Lτ and r = L sinhχ. For example, the asymptotically

AdS metric for d = 1 is

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2 . (1.43)

Due to the factor −g00 = 1 + r2

L2 the temperature and the energy is red-shifted

therefore, there is an infinite potential wall at the asymptotic infinity of AdS space.

In AdS/CFT, the radial coordinate is interpreted as the energy scale of the gauge

theory. Depending on how close an energy excitation to the AdS boundary the energy

of the gauge theory changes from IR to UV as r → 0 to r →∞ [29].

For Einstein-Hilbert action with a cosmological constant Λ

S =
1

16πGN

∫
dd+1x

√
−g [−2Λ +R] (1.44)

where GN is Newton’s constant, g is the determinant of metric gµν , and R is the

scalar curvature the solution to Einstein’s equations is the AdS metric. Then the

cosmological constant and the scalar curvature are obtained as

Λ = −d(d+ 1)

2L2
, R = −d(d+ 1)

L2
(1.45)

respectively [30].

One of the properties of 5-d AdS spaces is that their large symmetry group matches

with the group of conformal symmetries of N = 4 super Yang-Mills theory.
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Hawking-Page and Witten discussed the thermodynamics of Schwarzschild-AdS

black holes and found out that they go through a first order phase transition at

a critical temperature. Above this critical temperature the large black hole has a

smaller free energy than radiation and the small black hole. Since the temperature

of this black hole is the temperature of the CFT side, Hawking-Page transition is the

gravitational form of the thermal phase transition on the CFT side [28].

Although Maldacena proposed a correspondence between a conformal field theory

in d dimensions and a theory on AdSd+1, Witten was the one who included the precise

way for computing observables of the conformal field theory in terms of supergravity

on AdSd+1 in his paper in 1998 [5].

Dictionary of the Correspondence

As stated in the earlier sections there is an equivalence between N = 4 Super-Yang-

Mills theory which is a conformal theory, and type IIB supergravity on AdS5 × S5.

In order to understand this equivalence we need to form a dictionary between the

operators O in conformal field theory and the fields in φ in supergravity. For the

fields of the conformal theory let us use dilaton field φ [6].

The string coupling gs and the expectation value of the dilaton field are related

to each other and the expectation value of the dilaton field is determined by the

boundary condition for the dilaton field at the AdS boundary. Therefore, changing

the boundary value of the field φ leads to a deformation of the Lagragian by an

operator O in the dual field theory. Because of the correspondence between couplings

gYM and gs, a change in gs formed by the variation of the expectation value of the

dilaton field will induce a change in the gauge coupling gYM. Therefore, the boundary

value of the dilaton field acts as a source for the dual operator O. The correspondence

can be expressed in terms of the generating function for correlation functions of the

super Yang-Mills theory and the boundary partition function of the string theory.

〈e
∫
dx4φbdy(x)O(x)〉CFT = ZAdS [φ(z, x)|z = 0 = φbdy(x)] (1.46)
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This relation is called the GKP-Witten relation [35]. The large Nc limit it suffices to

use classical gravitational theory and not evaluate the full partition function of the

string theory in GKP-Witten relation [29]. As a result of this relation there should

be an operator Oi with conformal dimension ∆i in gauge theory for every field in φi

in AdS.

Now, let us show that the scaling dimension ∆ of the operator O which transforms

under the superconformal group SU(2, 2|4) is given by the mass m of the dua freel

field φ in AdS space. The field equation is then

(�g −m2)φ = 0 . (1.47)

Then using the metric (1.36), we find two independent solutions of the radial equation

(
∂2
z −

3

z
∂z −

R2m2

z2

)
φ = 0 . (1.48)

As z → 0 the solutions behave as z4−∆ (non-normalizable solution), and z∆

(normalizable solution) where ∆ = 2 +
√

4 +R2m2 or in general we can state this

as ∆ = 1
2

(
d+
√
d2 + 4R2m2

)
in AdSd+1 spacetime. Thus, we need to regularize the

boundary condition of the field φ and in general we can write it as the following.

φ(x, z) = z4−∆φbdy(x) (1.49)

To make the scalar field φ dimensionless φbdy(x) has to have dimension [length]∆−4.

Then from equation (1.46) we can infer that the operator O has dimension ∆. We can

also conclude that the normalizable solution z∆ has dimension [length]∆ is related to

the vacuum expectation value (vev) of the dual operator 〈O〉.

For the fields with different Lorentz quantum numbers conformal fields will have

different dimensions. Let’s consider the example of a massless p-form C on AdS space

coupled with a d− p -form operator O on the boundary via coupling
∫
Md
C ∧O then

due to the conformal invariance the dimension of O becomes d−p. On the other hand,
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Figure 1.7: The dictionary of AdS/CFT correspondence taken from [36].

for the massive field the Cbdy is a p-form on the boundary of conformal dimension

p + ∆, and an operator that couples to Cbdy has conformal dimension ∆ calculated

from

(∆ + p) (∆ + p− d) = m2 . (1.50)

A general form of a dictionary table which gives the dual description of each

parameter in the boundary theory and in the bulk was provided by Zaanen et. al.

[36]. We also used this dictionary table (see Fig. 1.7) throughout this thesis in our

calculations.

1.2.1 Holographic Superconductors

As stated in the earlier sections, due to the strongly correlated structure of the high

Tc superconductors the microscopic theory behind them is not clear yet. There is an

endavour going on for high Tc superconductors to understand their pairing mechanism.

Gauge/gravity duality is a recently developed tool to understand strongly coupled

systems. Since condensed matter theorists do not have sufficient tools to make

a contribution to the solution of this problem gauge/gravity dualiy might be an

alternative tool to help condensed matter theorists. AdS/CFT correspondence can
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be used as a way to work out the equation of state, real time correlation functions

and transport properties such as diffusion constants, conductivities, and viscosities.

A holographic dual for a superconductor requires a notion of temperature which

is provided by the black hole temperature on the gravity side and a condensate which

is described by the some field coupled to gravity in the bulk. In gauge/gravity duality

black holes whose spacetime asymptotically approaches to AdS space at infinity are

used and these black holes have positive specific heat, i.e., their temperature increases

with their mass. The other requirement of a superconductor, a condensate, is obtained

by a static nonzero field outside this black hole which is called the black hole “hair”.

More precisely, our goal is to find a Schwarzschild or Reissner-Nordström AdS black

hole to be unstable to forming hair, i.e. at low temperature [37]. Gubser showed in his

paper [38] that a charged scalar field around a charged black hole in AdS would have

this unstability to forming hair at low temperature. Then the action to be considered

is

S =

∫
dx4
√
−g
(
R +

6

L2
− 1

4
FµνF

µν − |∇Ψ− iqAΨ|2 −m2|Ψ|2
)

(1.51)

where there is gravitation term with cosmological constant Λ = − 3
L2 coupled with

Maxwell field and charged scalar field of mass m and charge q. Let us define the

effective mass of the charged scalar field Ψ, m2
eff = m2 + q2gttA2

t . For this black hole

to be unstable m2
eff needs to become sufficiently negative near the horizon. Moreover,

as the temperature of the charged black hole is lowered it becomes near extremal which

means since gtt is closer to developing a double zero at the horizon |gtt| becomes larger

and the possible instability becomes stronger.

The AdS black hole plays a crucial role in confining the created pairs of charged

particles as a box due to the negative cosmological constant. Thus, these charged

particles stay outside the horizon and form the hair of the black hole.

We will now discuss the system in the probe limit which means that there is no

backreaction of the matter fields on the metric. The probe limit is obtained by first

rescaling the fields Aµ = Ãµ/q and Ψµ = Ψ̃µ/q and then taking the limit q → ∞
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while keeping qA and qΨ fixed. This will drop out the matter sources from Einstein’s

equations while the scalar and the Maxwell equations remain essentially unchanged.

Condensate

As we discussed earlier the planar Schwarzschild AdS metric ansatz for solving the

Einstein’s equations in 3+1 dimensions is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2) (1.52)

with Ψ = Ψ(r) and At = φ(r). Solving the Einstein equations give

f(r) =
r2

L2

(
1− r3

0

r3

)
(1.53)

where L and r0 are AdS and Schwarzschild radii respectively. Then from the gtt term

the Hawking temperature of the black hole is calculated from

TH = T =
3r0

4πL2
. (1.54)

To analyze this system we need to solve the Maxwell- scalar field equations in this

fixed background. From the Maxwell equations choosing Ar = Ax = Ay = 0 shows

that the phase of the scalar field ψ must be constant therefore we take ψ to be real.

The Maxwell and scalar field equations are obtained as the following.

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

φ2

f 2
ψ − m2

f
ψ = 0 (1.55)

φ′′ +
2

r
φ′ − 2ψ2

f
φ = 0 . (1.56)

The term which will lead to the scalar hair at low temperature in eq.(1.55) is (φ2/f 2)ψ

since it has the opposite sign with the mass term in scalar field equation.
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We choose the mass to be m2 = −2/L2 which seems to be tachyonic but this case

is perfectly allowed in gauge/gravity duality. This type of mass describes instability.

However, it was shown by Breitenlohner and Freedman [39] that the AdSd+1 spacetime

is stable if m2 ≥ m2
BF where

m2
BF = − d2

4L2
. (1.57)

Therefore, mass choice of m2 = −2/L2 satisfies the BF bound. For large enough µ/T

or low enough temperature the scalar field becomes tachyonic and condensates.

We now need to consider the boundary conditions at the horizon and at the infinity

to solve the Maxwell and scalar field equations. First of all, φ = At needs to vanish

at the horizon. The reason for that can be explained as the following. The source

for Maxwell’s equations in the bulk is, of course, gauge invariant. But in a gauge

in which ψ is real, the current is just ψ2Aµ. Since the current must remain finite at

the horizon, we need Aµ to remain finite, and hence φ = At = 0. Second constraint

at the horizon is coming from the requirement that the solution needs to be smooth

at the horizon. From eq.(1.55) one can find that there is a two parameter family of

solutions which is regular at the horizon, i.e. ψ(r0) and φ′(r0).

Now, let us look at the boundary conditions at infinity. The general asymptotic

behavior of the scalar and the Maxwell field are

ψ =
ψ(1)

r
+
ψ(2)

r2
+ . . . (1.58)

and

φ = µ− ρ

r
+ . . . . (1.59)

Since our choice of mass value is close to BF bound both of these falloffs are

normalizable so that we can choose the boundary condition in which either of them

vanishes at the end we will have a one parameter family of solutions.

Gauge/gravity duality allows us to tell some properties of the dual field theory.

The dual theory is a 2+1 dimensional conformal field theory (CFT) at temperature
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Figure 1.8: The condensate as a function of temperature. The critical temperature
is proportional to the chemical potential. Figure is taken from [37].

T given by (1.54). The local gauge symmetry in the bulk corresponds to a global

U(1) symmetry in the CFT. Also from the asymptotic behavior of the bulk solution

the chemical potential µ and the charge density ρ can be found from eq (1.59). The

condensate of the scalar operator O in the field theory dual to the field ψ is given by

〈Oi〉 =
√

2ψ(i), i = 1, 2 (1.60)

with the boundary condition εijψj = 0. The normalization constant
√

2 corresponds

to taking the bulk-boundary coupling 1
2

∫
d3x

(
Ōψ +Oψ̄

)
.

The numerical solution of the Maxwell and scalar field equations exist. In Fig. 1.8

we can see the temperature dependence of the condensate. The qualitatively behavior

of the graph obtained is similar to BCS theory. As seen in Fig. 1.8 the condensate

rises as soon as T is decreased below the critical temperature, Tc and becomes zero

at zero temperature. Near Tc behavior of the graph is O2 = 100T 2
c

(
1− T

Tc

)1/2

which

is the standard behavior predicted by Landau-Ginzburg theory.

To discuss the continuity of the phase transition the free energy (Euclidean action)

can be calculated. Remember that ψ = 0, φ = ρ(1/r0−1/r) are also solutions for the

equations but they do not develop a scalar hair in the black hole. After calculating

the free energies of these two particular solutions it turns out that the free energy of
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the hairy configuration is always lower and it becomes equal as T → Tc. In addition

to that the difference of free energies scales like (T − Tc)2 near the transition which

tells us that there is a second order phase transition. This kind of finite temperature

continuous symmetry breaking phase transitions are only possible in 2+1 dimensions

in the large N limit, where fluctuations are suppressed.

For a general scalar field of mass m in AdS4 remember that the scalar field can

be written as

ψ =
ψ−
rλ−

+
ψ+

rλ+
+ . . . . (1.61)

Therefore, for a scalar field of mass

λ± =
1

2

(
3±

√
9 + 4(mL)2

)
. (1.62)

There are again two boundary conditions to be considered. For m2 ≥ m2
BF +L−2,

the normalizable falloff is the one with λ+. Therefore, the expectation value of the

operator dual to the scalar field is ψ+ = 〈O〉 which is dual to the response, and

the source for this operator is ψ− = 0. One can also consider the other boundary

condition in which ψ+ = 0 for m2
BF ≤ m2 < m2

BF + L−2.

In Fig.1.9 condensates for different mass and scaling dimension values are shown.

The qualitative behavior is the same as before, i.e. the condensate is zero above

a critical temperature Tc and there is a square root behavior near the critical

temperature, 〈O〉 ∝ (T − Tc)1/2. There is one exceptional case at λ = 1 in which the

condensate grows up at low temperature. This kind of behavior is attributed to the

neglected backreaction on the metric. Once the solution is done away from the probe

limit the condensate at this particular λ approaches a finite limit at zero temperature.

In conclusion, for this particular model for higher temperature superconductor one

should lower the dimension of the condensate.

The holographic superconductors are GL theory type but adding fermions to the

bulk one can also study Fermi liquid and non-Fermi liquid phases. The ultimate goal is

28



Figure 1.9: Condensates with different dimension, λ, as a function of temperature.
The condensate tends to increase with λ. Figure is taken from [37].

to study all gravity dual of these phases to understand the high Tc superconductivity

and other strongly coupled condensed matter systems [29].
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Chapter 2

Spontaneously Generated

Inhomogeneous Phases via

Holography

2.1 Introduction

There has been considerable recent activity studying phenomena at strong coupling

using a weakly coupled dual gravity description. The tool to carry out such a study

is the gauge/gravity duality. This holographic principle [3] has many applications in

string theory, where it is well founded, but it has also been applied to other physical

systems encountered in condensed matter physics. One of the most extensively

studied condensed matter systems using the gauge/gravity duality is the holographic

superconductor (for a review see [37]).

The gravity dual of a homogeneous superconductor consists of a system with

a black hole and a charged scalar field. The black hole admits scalar hair at

temperatures lower than a critical temperature [38], while there is no scalar hair

at higher temperatures. According to the holographic principle, this breaking of the

abelian U(1) symmetry corresponds in the boundary theory to a scalar operator which
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condenses at a critical temperature dependent on the charge density of the scalar

potential. The fluctuations of the vector potential give the frequency dependent

conductivity in the boundary theory [9]. Backreaction effects on the metric were

studied in [10]. In [74] an exact gravity dual of a gapless superconductor was discussed

in which the charged scalar field responsible for the condensation was an exact solution

of the equations of motion, and below a critical temperature dressed a vacuum black

hole with scalar hair.

Apart from holographic applications to conventional homogeneous superconduc-

tors, extensions to unconventional superconductors characterized by higher critical

temperatures, such as cuprates and iron pnictides, have also been studied. Interesting

new features of these systems include competing orders related to the breaking of

lattice symmetries introducing inhomogeneities. A study of the effect on the pairing

interaction in a weakly coupled BCS system was performed in [40]. Additionally,

numerical studies of Hubbard models [41, 42] suggest that inhomogeneity might play

a role in high-Tc superconductivity.

The recent discovery of transport anomalies in La2−xBaxCuO4 might be explained

under the assumption that the cuprate is a superconductor with a unidirectional

charge density wave, i.e., a “striped" superconductor [43]. Other studies using mean-

field theory have also shown that, unlike the homogeneous superconductor, the striped

superconductor exhibits the existence of a Fermi surface in the ordered phase [44, 45]

and possesses complex sensitivity to quenched disorder [43]. Holographic striped

superconductors were discussed in [46] by introducing a modulated chemical potential

producing superconducting stripes below a critical temperature. Properties of the

striped superconductors and backreaction effects were studied in [47, 48]. Striped

phases breaking parity and time-reversal invariance were found in electrically charged

AdS-Reissner-Nordström black branes with neutral pseudo-scalars [49]. In [50], it was

shown that similar phases could be generated in Einstein-Maxwell-dilaton theories

that leave parity and time-reversal invariance intact.
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Inhomogeneities also appear in condensed matter systems other than supercon-

ductors. These systems are characterized by additional ordered states which compete

or coexist with superconductivity [51, 52]. The most important of these are charge

and spin density waves (CDW and SDW, respectively) [53]. The development of

these states corresponds to spontaneous modulation of the electronic charge and spin

density, below a critical temperature Tc. Density waves are widely spread among

different classes of materials. One may distinguish between types either orbitally

[54], Zeeman driven [55], field-induced CDWs, confined [56], and even unconventional

density waves [57].

The usual approach to study the effect of inhomogeneity at strong coupling is to

introduce a modulated chemical potential. According to the holographic principle

this is translated into a modulated boundary value for the electrostatic potential

in the AdS black hole gravity background. The corresponding Einstein-Maxwell-

scalar systems can be obtained which below a critical temperature undergoes a phase

transition to a condensate with a non-vanishing modulation. Depending on what

symmetries are broken, the modulated condensate gives rise to ordered states like

CDW or SDW in the boundary theory [58, 46].

To explore the properties of spatial inhomogeneities in holographic superfluids,

gravitational backgrounds which are not spatially homogeneous were introduced in

[59, 60? , 61]. In [62] the breaking of the translational invariance is sourced by a

scalar field with a non-trivial profile in the x-direction. Upon perturbing the one-

dimensional “lattice”, the Einstein-Maxwell-scalar field equations were numerically

solved at first order and the optical conductivity was calculated. Further properties

of this construction were studied in [63].

In this work, we study a holographic superfluid in which a spatially inhomogeneous

phase is spontaneously generated. The gravity sector consists of a RN-AdS black hole,

an electromagnetic field, and a scalar field. We introduce high-derivative interaction

terms between the electromagnetic field and the scalar field. These higher-order terms

are essential in spontaneously generating the inhomogeneous phase in the boundary
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theory. Alternative approaches for spontaneously breaking translational symmetries

have been found by use of an interaction with the Einstein tensor [64, 65], a Chern-

Simons interaction [66, 67], and more recently with a dilaton [50].

We put the gravitational background on a one-dimensional “lattice” generated

by an x-dependent profile of the scalar field. At the onset of the condensation

of the scalar field, we calculate the transition temperature. We find that as the

wavenumber of the scalar field increases starting from zero (homogeneous profile),

the transition temperature increases, showing that inhomogeneous configurations

dominate at higher temperatures. We find a maximum transition temperature

corresponding to a certain finite wavenumber. This is the critical temperature (Tc)

of our system. Below Tc the system undergoes a second order phase transition to an

inhomogeneous phase. This occurs in a range of parameters of the system that we

discuss.

We then solve the equations of motion below the critical temperature. we use

perturbation theory to expand the bulk fields right below Tc, thus obtaining an

analytic solution to the coupled system of Einstein-Maxwell-scalar field equations at

first order. We find that a spatially inhomogeneous charge density is spontaneously

generated in the boundary theory.

The paper is organized as follows. In section 2.2, we present the basic setup of the

holographic model, and introduce the higher-derivative couplings. In section 2.3, we

discuss the instability to a spatially inhomogeneous phase. We calculate numerically

the critical temperature of the system, and analyze its dependence on the various

parameters of the system. In section 2.4, we use perturbation theory to obtain an

analytic solution below the critical temperature, and show that the charge density in

the boundary theory is spatially inhomogeneous. Finally, in section 2.5, we present

our conclusions.
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2.2 The setup

In this section we introduce a holographic model whose main feature is the

spontaneous generation of spatially inhomogeneous phases in the boundary theory.

This cures the main deficiency of an earlier proposal [58]. This is achieved by

introducing higher-derivative coupling of the electromagnetic field to the scalar field.

Consider a system consisting of a U(1) gauge field, Aµ, with corresponding field

strength Fµν = ∂µAν−∂νAµ, and a scalar field φ with charge q under the U(1) group.

The fields live in a spacetime of negative cosmological constant Λ = −6/L2.

The action is given by

S =

∫
d4x
√
−gL , L =

R + 6/L2

16πG
− 1

4
FµνF

µν − (Dµφ)∗Dµφ−m2|φ|2 . (2.1)

where Dµφ = ∂µφ− iqAµφ. For simplicity, we shall set 16πG = L = 1.

Our main concern is to generate spatially inhomogeneous phases in the boundary

theory. To this end, we may introduce higher-derivative interaction terms of the form

Lint = φ∗ [ηGµνDµDν + η′HµνρσDµDνDρDσ + . . . ]φ+ c.c. , (2.2)

which may arise from quantum corrections. The possible operators in the above

expression and their emergence from string theory are worth exploring. Candidates

for Gµν include contributions to the stress-energy tensor form the electromagnetic

field and the scalar field, the Einstein tensor [64, 65], etc., and similarly for Hµνρσ,

etc. Here we shall be content with a special choice which leads to inhomogeneities,

Lint = ηGµν(Dµφ)∗Dνφ− η′|DµGµνDνφ|2 , (2.3)

where

Gµν = T (EM)
µν + gµνL(EM) = FµρFν

ρ − 1

2
gµνF

ρσFρσ , (2.4)
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coupling the scalar field φ to the gauge field. This coupling is the essential tool for

the generation of spatial inhomogeneities.

From the action (2.1), together with the interaction term (4.3), we obtain the

Einstein equations

Rµν −
1

2
Rgµν − 3gµν =

1

2
Tµν , (2.5)

where Tµν is the stress-energy tensor,

Tµν = T (EM)
µν + T (φ)

µν + ηΘµν + η′Θ′µν , (2.6)

containing a gauge, scalar, and interaction term contributions, respectively,

T (EM)
µν = FµρFν

ρ − 1

4
gµνF

ρσFρσ ,

T (φ)
µν = (Dµφ)∗Dνφ+Dµφ(Dνφ)∗ − gµν(Dαφ)∗Dαφ−m2gµν |φ|2 ,

Θµν =
2√
−g

δ

δgµν

∫
d4x
√
−gGµν(Dµφ)∗Dνφ ,

Θ′µν = − 2√
−g

δ

δgµν

∫
d4x
√
−g|DµGµνDνφ|2 . (2.7)

Varying the Lagrangian with respect to Aµ we find the Maxwell equations

∇µF
µν = Jν , (2.8)

where Jµ is the current,

Jµ = qJ (φ)
µ + ηJµ + η′J ′µ , (2.9)

containing scalar and interaction term contributions, respectively,

Jµ = i [φ∗Dµφ− (Dµφ)∗φ] ,

Jµ =
1√
−g

δ

δAµ

∫
d4x
√
−gGµν(Dµφ)∗Dνφ ,

J ′µ = − 1√
−g

δ

δAµ

∫
d4x
√
−g|DµGµνDνφ|2 . (2.10)
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Finally, the equation of motion for the scalar field is

DµD
µφ−m2φ = ηDµ (GµνDνφ) + η′Dρ(GµρDµ(Dν(GνσDσφ))). (2.11)

Our aim is to study the Einstein-Maxwell-scalar system of equations first at the

critical temperature, and then below the critical temperature using perturbation

theory.

2.3 The critical temperature

At the critical temperature, we have φ = 0. The Einstein-Maxwell system has a static

solution with metric of the form

ds2 =
1

z2

[
−h(z)dt2 +

dz2

h(z)
+ dx2 + dy2

]
. (2.12)

The system possesses a scaling symmetry. The arbitrary scale is often taken to be the

radius of the horizon. It is convenient to fix the scale by using a radial coordinate z

so the horizon is at z = 1. Since the scale has been fixed, we should only be reporting

on scale-invariant quantities.

The Maxwell equations admit the solution

At = µ(1− z) , (2.13)

so that the U(1) gauge field has an electric field in the z-direction equal to the chemical

potential, Ez = µ.

The Einstein equations are then solved by

h(z) = 1−
(

1 +
µ2

4

)
z3 +

µ2

4
z4 . (2.14)
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The temperature is given as

Tc
µ

= −h
′(1)

4πµ
=

3

4πµ

(
1− µ2

12

)
, (2.15)

where we divided by µ to create a scale-invariant quantity.

Additionally, at the critical temperature the scalar field satisfies the wave equation,

∂2
zφ+

[
h′

h
− 2

z

]
∂zφ+

1

h

(
1− ηµ2z4 − η′µ4z10∇2

2

)
∇2

2φ−
1

h

[
m2

z2
− q2A

2
t

h

]
φ = 0 ,

(2.16)

where ∇2
2 = ∂2

x + ∂2
y , and we fixed the gauge so that φ is real.

The wave equation (2.16) can be solved by separating variables,

φ(z, x, y) = Φ(z)Y (x, y) , (2.17)

where Y is an eigenfunction of the two-dimensional Laplacian,

∇2
2Y = −τY . (2.18)

We will keep translation invariance in the y-direction, and concentrate on the one-

dimensional “lattice" defined by

Y = cos(kx) , (2.19)

with τ = k2, and leave the two-dimensional lattices for future study.

The radial function Φ(z) satisfies the wave equation

Φ′′ +

[
h′

h
− 2

z

]
Φ′ +

τ

h

[
1− ηµ2z4 − η′τµ4z10

]
Φ− 1

h

[
m2

z2
− q2A

2
t

h

]
Φ = 0 . (2.20)
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The asymptotic behavior (as z → 0) is Φ ∼ z∆, where ∆(∆−3) = m2. It is convenient

to write

Φ(z) =
〈O∆〉√

2
z∆F (z) , F (0) = 1 . (2.21)

For general ∆, we obtain

F ′′+

[
2(∆− 1)

z
+
h′

h

]
F ′+

[
−τ (1− ηµ2z4 − η′τµ4z10)

h
+
q2A2

t

h2
+
m2

z2

(
1− 1

h

)
+

∆h′

zh

]
F = 0 .

(2.22)

The maximum transition temperature of the system can be calculated by solving

(2.22) numerically, and using the expression (2.15) for the temperature. The

maximum transition temperature is the critical temperature Tc of the system. Figure

2.1 shows the numerically calculated transition temperature without the higher-

derivative couplings ( η
µ2 = η′

µ4 = 0) dependent on the wavenumber k. Both quantities

are divided by the chemical potential µ to render them dimensionless. The maximum

value is found at k = 0, which shows that the homogeneous solution is dominant.

When the higher-derivative interaction terms are turned on, the critical temperature

Tc of the system also depends on the coupling constants η, η′, and the homogeneous

solution no longer dominates.

In the limit of vanishing second higher-derivative coupling, η′ → 0, we may

analytically calculate the asymptotic critical temperature. The latter is found in the

limit in which the wavenumber diverges (τ → ∞). In this limit, the wave equation

(2.22) is dominated by the term proportional to τ near the horizon (z → 1), thus

giving the critical value for the chemical potential as µ4
c = µ2

η
, and corresponding

temperature (2.15)

lim
τ/µ2→∞

T0

µ
=

3

4π

(
η

µ2

)1/4
1− 1

12
√

η
µ2

 . (2.23)

The critical temperature for a standard Einstein-Maxwell-scalar system, i.e., η
µ2 =

η′

µ4 = 0, with a neutral scalar was calculated in [68]. For ∆ = 2, it was found
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Figure 2.1: Dependence of the transition temperature T0/µ on the wavenumber
k/µ for ∆ = 2 in the absence of higher-derivative interactions ( η

µ2 = η′

µ4 = 0). From
left-to-right the lines correspond to q = 0, 1, 1.5, 3, 5, 10. The maximum transition
temperature (i.e., the critical temperature) occurs at k = 0 and the homogeneous
configuration is dominant.

that Tc
µ
≈ .00009. For η large enough, the asymptotic (τ/µ2 → ∞) transition

temperature will be higher than that of the homogeneous solution. In this case,

the transition temperature monotonically increases as we increase the wavenumber

k and asymptotes to (2.23). Hence the higher-derivative coupling’s encoding of the

electric field’s back reaction near the horizon is the cause of spontaneous generation

of spatial modulation.

As we switch on η′ > 0, the transition temperature is bounded from above by

(2.23). It attains a maximum value at a finite k. Thus the second higher-derivative

coupling acts as a UV cutoff on the wavenumber, which in turn determines the size

of the “lattice" through k = 2π
a
, where a is the lattice spacing. As η′ → 0, the lattice

spacing also vanishes (a→ 0) and the wavenumber diverges (k →∞). We will focus

on small-to-zero charge, realizing a transition temperature at zero wavenumber below
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Figure 2.2: Dependence of the transition temperature T0

µ
on the wavenumber k

µ
for

η
µ2 = 1, η′

µ4 = 0.005, q = 1, and ∆ = 1.7 (solid line), 2 (dash-dotted line), and 2.5

(dotted line).

(2.23), which guaranties that k 6= 0 at the maximum transition temperature, hence

the dominance of inhomogeneous modes. For our purposes, we do not expect any

quantitative differences between small and zero charge, even with a neutral scalar

leaving the boundary U(1) symmetry intact.

In Figure 2.2, we show the transition temperature T0 as a function of the

wavenumber k with q = 1, η
µ2 = 1, η′

µ4 = 0.005, for various values of the conformal

dimension of the scalar field ∆. The critical temperature of the system is the

maximum transition temperature which occurs at finite k/µ ≈ 3.98. The effect of

the charge q is shown in Fig. 2.3. It can be seen that for finite coupling constants

η and η′, and small enough charge q, the system produces a critical temperature at

non-vanishing finite values of k/µ. For large enough q, the homogeneous solution

(k = 0) remains the dominant solution.
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Figure 2.3: The critical temperature Tc
µ
(left panel) and corresponding wavenumber

k
µ
(right panel) as functions of q with η

µ2 = 1, η′

µ4 = 0.005, and ∆ = 2. When q . 3.2,
the charge is small enough that the higher-derivative couplings spontaneously generate
inhomogeneity. Above that range, the homogeneous scalar is dominant.

Figure 2.4 shows the dependence of the critical temperature Tc and wavenumber k

on the second higher-derivative coupling constant η′

µ4 . There is little to no dependence

of Tc on the conformal dimension ∆. We see numerical confirmation that in the

absence of the second coupling (η′ = 0), the maximum transition temperature

corresponds to k → ∞. Thus η′ acts as an effective UV cutoff, determining the

wavenumber k at the critical temperature, and therefore the size of the “lattice" of

the system (if k = 2π
a
, where a is the lattice spacing). The value of the wavenumber

decreases with increasing coupling η′, as shown on the right panel of Fig. 2.4.

The UV cutoff η′, or effective lattice spacing, can be understood as stabilizing the

inhomogeneous modes introduced by the first higher-derivative coupling η. Looking

forward, we trust our linearization below the critical temperature because it will not

rely on a gradient expansion but on an order parameter proportional to (T − Tc)1/2.

Summarizing, at the critical temperature the electric field backreacts on the

system, the Einstein-Maxwell field equations admit solutions with a spatially

dependent scalar field while the electric field attains a constant value equal to the

chemical potential. In the next section we will perturb around the critical temperature
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Figure 2.4: Dependence of the critical temperature Tc
µ
(left panel) and corresponding

wavenumber k
µ
(right panel) on the second higher-derivative coupling constant η′

µ4 , for
η
µ2 = 1, q = 1, ∆ = 1.7 (solid), 2 (dash-dotted), and 2.5 (dashed). The inset is shown
only for ∆ = 2 because, at the scale shown, no difference can be seen between the
three different conformal dimensions of the full graph.

and show the system develops a spatially inhomogeneous phase in the boundary

theory.

2.4 Below the critical temperature

In this section we study the system below the critical temperature. The equations

of motion resulting from the considered action (2.1) together with (4.3) may be

perturbed near the critical temperature with spatially dependent solutions. We will

study the behavior of the system analytically, leaving a full numerical study for the

future. To simplify the discussion somewhat, we shall assume that the effects of the

cutoff are negligible near the critical temperature (T ≈ Tc), and set η′ = 0. We

will build a perturbative expansion on the departure below Tc and not in terms of

gradients or momentum of the scalar mode. It is straightforward, albeit tedious, to

include the effects of the cutoff below Tc.
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Below the critical temperature the scalar field backreacts on the metric. Consider

the following ansatz

ds2 =
1

z2

[
−h(z, x)e−α(z,x)dt2 +

dz2

h(z, x)
+ eβ(z,x)dx2 + e−β(z,x)dy2

]
. (2.24)

To solve the equations of motion (4.5), (4.8), and (4.11) below the critical temperature

Tc, we expand in the order parameter

ξ =
〈O∆〉√

2
, (2.25)

and write

h(z, x) = h0(z) + ξ2h1(z, x) +O(ξ4) ,

α(z, x) = ξ2α1(z, x) +O(ξ4) ,

β(z, x) = ξ2β1(z, x) +O(ξ4) ,

φ(z, x) = ξφ0(z, x) + ξ3φ1(z, x) +O(ξ5) ,

At(z, x) = At0(z) + ξ2At1(z, x) +O(ξ4) , (2.26)

where At0, h0, and ξφ0 are defined at the critical temperature Tc by eqs. (2.13), (2.14),

and (2.16), respectively. The chemical potential is given as

µ ≡ At(0, x) = µ0 + ξ2µ1 +O(ξ2) , µ0 = At0(0) , µ1 = At1(0, x) . (2.27)

It should be noted that we are working with an ensemble of fixed chemical potential,

which seems to contradict eq. (4.19) in which the chemical potential appears to receive

corrections below the critical temperature. However, the reported chemical potential

is measured in units in which the radius of the horizon is 1 and a change in µ, in

these units, is due to a change in our scale as we lower the temperature.
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At each given order of the parameter ξ, only a finite number of modes of the

various fields are generated. At O(ξ2), we have only 0 and 2k Fourier modes,

h1(z, x) = z3
(
h10(z) + h2

0(z)h11(z) cos 2kx
)
,

α1(z, x) = α10(z) + z3h0(z)α11(z) cos 2kx ,

β1(z, x) = β10(z) + z3β11(z) cos 2kx ,

At1(z, x) = At10(z) + zh0(z)At11(z) cos 2kx , (2.28)

where we included explicit factors of z and h0(z) for convenience. From (4.19), we

obtain the boundary condition

At10(0) = µ1 . (2.29)

Then from the Maxwell equation (4.8), and the boundary condition (2.29), we find

At10(z) = C(1− z) +
µ0

4

∫ z

1

dw

∫ w

1

dw′w′
2∆−2

h0(w′)A(w′) , (2.30)

where

C = µ1 +
µ0

4

∫ 1

0

dz

∫ z

1

dww2∆−2h0(w)A(w) ,

A(z) =

[
q2µ

2
0(1− z)2z3 + 4q2(1− z)h0(z)

h2
0(z)

+ z
(
∆2 + 8k2η(1 + ∆)z2

)]
F 2(z)

+2z2
[
∆ + 4k2ηz2

]
F (z)F ′(z) + z3[F ′(z)]2 . (2.31)

Thus the integration constant C is expressed in terms of the chemical potential

parameters µ0 and µ1. While µ0 is determined at the critical temperature, µ1 still

needs to be determined. Subsequently, we will determine C using the scalar equation

and use that value in eq. (2.30) to find µ1.
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After some algebra, from the Einstein equations we deduce that the mode function

α10(z) is given by

α10(z) =
1

2

∫ z

0

dww2∆−1

[(
q2µ2

0

(1− w)2w2

h2
0(w)

+ ∆2

)
F 2(w) + 2∆wF (w)F ′(w) + w2[F ′(w)]2

]
.

(2.32)

Notice that the mode function α10 contributes to α1 at an order higher than O(z3)

near the boundary for ∆ > 3
2
.

The mode function β10(z) is given by

β10(z) =
k2

2

∫ z

0

dww2

h0(w)

∫ 1

w

dw′w′
2∆−2

(1− η µ2
0w
′4)F 2(w′) , (2.33)

The mode function β10 also contributes at O(z3) near the boundary, because β10 ∼ z3

at the boundary.

Finally, the mode function h10(z) is given by

h10(z) = −µ0[2C + µ0α10(1)]

4
(1− z)− 1

4

∫ 1

z

dww2∆−4H(w) , (2.34)

where

H(z) =

[
m2 +

q2µ2
0z

2(1− z)2

h0(z)
+ k2z2(1 + ηz4µ2

0) + ∆2h0(z)

]
F 2(z)

+2z∆h0(z)F (z)F ′(z) + z2h0(z)[F ′(z)]2 (2.35)

−z4−2∆µ2
0

∫ z

1

dww2∆F (w)

[(
2q2(1− w)

w2h0(w)
+ 4τη(∆ + 1)w

)
F (w) + 4τηw2F ′(w)

]
.

The mode function h10 contributes at O(z3) to the metric (2.24) near the boundary

because h10(0) is finite, and we removed a factor of z3 in the definition (4.21). We fix

one of the integration constants by setting h10(1) = 0, so that the horizon remains at

z = 1. C (eq. (2.31)) is the remaining integration constant to be determined.
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The remaining first-order modes α11, β11, h11, At11 are determined by a system of

coupled linear ordinary differential equations,

α′11 +
zh′0 + 3h0 + 2k2z2

zh0

α11 −
4k2z

h0

h11 −
z2∆−4

2h0

A1 = 0 ,

β′11 −
3

2
zµ0A

′
t11 − 4h0h

′
11 + 3

2k2z2 + h0

zh0

β11 −
µ0 (5h0 + 3zh′0)

2h0

At11

+
1

4

(
−8k2z + 3µ2

0z
3 + 2h′0

)
α11 +

(10k2z2 − h0 − 8zh′0)

z
h11 +

z2∆−4

4h2
0

A2 = 0 ,

h′11 − α′11 −
β′11

h0

+

[
1

z
+

2h′0
h0

]
h11 +

µ0At11

h0

− 3

2

[
2

z
+
h′0
h0

]
α11 −

3β11

zh0

+
z2∆−4

2h0

A3 = 0 ,

A′′t11 + 2

[
1

z
+
h′0
h0

]
A′t11 +

2h′0 + z(−4k2 + h′′0)

zh0

At11 −
µ0

2
z2α′11

−µ0

2
z2

[
3

z
+
h′0
h0

]
α11 −

z2∆−3µ0F
2 [q2(1− z)− 2τηz3h0]

h2
0

= 0 ,(2.36)

where

A1(z) = z2h2
0F
′2 + 2z∆h2

0FF
′ +
[
q2(1− z)2µ2

0 + ∆2h2
0

]
F 2 ,

A2(z) = 5z2h2
0F
′2 + 2z(5∆− 1)h2

0FF
′

+
[
5q2µ2

0(1− z)2z2 + 3
(
m2 − k2z2(1 + 2ηz4µ2

0)
)
h0 + ∆(5∆− 2)h2

0

]
F 2 ,

A3(z) = F (∆F + zF ′) , (2.37)

with F defined as in (2.21). The system of equations (2.36) can be seen to possess a

unique solution by requiring finiteness of all functions in the entire domain z ∈ [0, 1].

Notice that the unknown parameter C is absent, which is due to the fact that at

first-order the 10 modes decouple from the 11 modes (see eq.(4.21) for the definition

of the Fourier modes). However, explicit solutions can only be obtained numerically.

A complete numerical analysis will be presented elsewhere.

To complete the determination of the first order modes, we need to calculate the

integration constant C (or, equivalently, the chemical potential parameter µ1 - see

eq. (2.31)). To this end, we turn to the scalar wave equation. At zeroth order, the
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chemical potential parameter µ0 was obtained as an eigenvalue of the scalar wave

equation. The first-order correction, µ1, is determined by the first-order equation of

the scalar wave equation.

Considering (4.11) below the critical temperature, the scalar field at first order

has two Fourier modes,

φ1(z, x) = Φ10(z) cos kx+ Φ11(z) cos 3kx . (2.38)

The first (Φ10) mode satisfies the equation

Φ′′10+

[
h′0
h0

− 2

z

]
Φ′10+

τ

h0

(
1− ηµ2

0z
4
)

Φ10−
1

h0

[
m2

z2
− q2At0

h0

]
Φ10+z∆+1B+Cz∆+2C = 0 ,

(2.39)

where

B = B2F
′′ + B1F

′ + B0F , C = C2F
′′ + C1F

′ + C0F , (2.40)

and the coefficients Bi and Ci (i = 0, 1, 2) are

B0 =
zµ2

0 [q2(1− z)2 + k2z4ηh0]

h0

α10 −
1

2
∆h0α

′
10 + τz(1− ηz4µ2

0)β10

+
z2 [−q2(1− z)2z2µ2

0 + ∆2h2
0]

h2
0

h + z3∆h′ − 2q2(−1 + z)zµ0

h0

A

−2τηµ0z
5A′ +

1

4
z2
(
2q2(1− z)2z2µ2

0 − 3∆h2
0 − zh0

(
2k2z + ∆h′0

))
α11

−1

4
z3∆h2

0α
′
11 −

1

2
τz4

(
1− ηz4µ2

0

)
β11 − z2µ0

(
q2(−1 + z) + 2k2z3ηh0

)
At11

+
1

2
z2
(
−q2(1− z)2z2µ2

0 + ∆2h2
0 + 2z∆h0h

′
0

)
h11 +

1

2
z3∆h2

0h
′
11 ,

B1 = z3(1 + 2∆)h + z4h′ − 1

2
zh0α

′
10 −

1

4
z3h0 (3h0 + zh′0)α11 −

1

4
z4h2

0α
′
11

+
1

2
z3h0 (h0 + 2∆h0 + 2zh′0)h11 +

1

2
z4h2

0h
′
11 ,

B2 = z4h +
1

2
z4h2

0h11 , (2.41)
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C0 =
µ0

2h2
0

[
q2(1− z)2

(
(z − 1)z3µ2

0 + 4h0

)
+ z

(
−∆2 + ∆(∆ + 1)z + 4τηz3

)
h2

0

]
,

C1 =
µ0

2
z2 [−1− 2∆ + 2z(1 + ∆)] ,

C2 =
µ0

2
(z − 1)z3 . (2.42)

We defined (see eqs. (2.31) and (2.35))

h(z) = −1

4

∫ 1

z

dww2∆−4H(w) , (2.43)

A(z) =
µ0

4

∫ z

1

dw

∫ w

1

dw′w′
2∆−2

h0(w′)A(w′) .

By using the zeroth order wave equation (2.16), we obtain

C = −
∫ 1

0
dz z2∆+1F [B2F

′′ + B1F
′ + B0F ]∫ 1

0
dz z2∆+2F [C2F ′′ + C1F ′ + C0F ]

. (2.44)

Having obtained the integration constan C, the remaining unknown parameter µ1 is

calculated using eq. (2.30).

The temperature of our system below the critical temperature Tc can be calculated

using
T

µ
= −h

′(1)e−α(1)

4πµ
. (2.45)

We obtain
T

Tc
= 1− ξ2

(
α10(1) +

µ1

µ0

)
− ξ2

3− µ2
0

4

h′10(1) , (2.46)

where ξ is given by eq. (2.25).

Eq. (2.46) can be inverted to find the energy gap (2.25) as a function of

temperature near the critical temperature,

〈O∆〉1/∆

Tc
≈ γ

(
1− T

Tc

) 1
2∆

, γ =
4π

3− µ2
0

4

(
α10(1)

2
+

µ1

2µ0

+
h′10(1)

2(3− µ2
0

4
)

)− 1
2∆

.

(2.47)
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Thus, as the temperature of the system is lowered below the critical temperature Tc

the condensate is spontaneously generated. The dependence of the condensate on the

temperature is of the same form as in conventional holographic superconductors.

Finally, the charge density of the system is determined by using

ρ

µ2
= −∂zAt(0, x)

[At(0, x)]2
=
ρ0 + ξ2ρ1(x)

µ2
0

, (2.48)

where ρ0 = µ0 is the charge density at or above the critical temperature, and

ρ1(x) = −2µ1 − A′t10(0)− At11(0) cos 2kx , (2.49)

from eq. (A.10). This is an important result showing the generation of a spatially

inhomogeneous charge density below the critical temperature in the presence of

a spatially homogeneous (constant) chemical potential. This is the case provided

At11(0) 6= 0, which is guaranteed analytically from the system of equations (2.36)

for the 11 modes. Indeed, from the last equation in (2.36), we obtain A′t11(0) = 0.

Moreover, there is a boundary condition at the horizon z = 1 where we demand

finiteness of At11 (At11(1) < ∞). If additionally At11(0) = 0, then the second-order

differential equation is overdetermined and has no solution. Thus, a general solution

has At11(0) 6= 0.

2.5 Conclusions

We have discussed a holographic model in which the gravity sector consists of a

U(1) gauge field and a scalar field coupled to an AdS charged black hole under

a constant chemical potential. We introduced higher-derivative interaction terms

between the U(1) gauge field and the scalar field. A gravitational lattice was

generated spontaneously by a spatially dependent profile of the scalar field. The

transition temperature was calculated as a function of the wavenumber. The critical
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temperature was determined as the maximum transition temperature. This occurred

at finite non-vanishing wavenumber, showing that the inhomogeneous solution was

dominant over a range of the parameters of the system which we discussed.

The system was then studied below the critical temperature. We obtained analytic

expressions for the various fields using perturbation theory in the (small) order

parameter. It was found that a spatial inhomogeneous phase is generated at the

boundary. In particular, we showed analytically that a spatially inhomogeneous

charge density is spontaneously generated in the system while it is held at constant

chemical potential.

It will be illuminating to compare features between different mechanisms for

generating spontaneous translation symmetry breaking seen with the Einstein tensor-

scalar coupling [64], Chern-Simons interaction [66, 67], and dilaton [50]. Additionally,

this work only considered a uni-directional lattice. It would be interesting to

extend our discussion to a more general two-dimensional lattice and determine

which configuration is energetically favorable. Finally, one would like to understand

the origin of the higher-derivative couplings we introduced in terms of quantum

corrections within string theory. Work in these directions is in progress.
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Chapter 3

Duality between zeroes and poles in

holographic systems with massless

fermions and a dipole coupling

3.1 Introduction

The AdS/CFT correspondence is a principle that connects a strongly coupled d-

dimensional conformal field theory with a weakly coupled (d+ 1)-dimensional gravity

theory [3]. This principle, also known as the gauge/gravity duality, is well-founded

in string theory, and has been applied to many field theories having gravity duals

with the most noticeable application in condensed matter physics. One of the

earliest applications of the gauge/gravity duality to condensed matter systems was

the holographic description of a superconductor [69]. It is described by an Einstein-

Maxwell-scalar field theory in which the breaking of a gauge symmetry in the gravity

sector corresponds, in the boundary theory, to an operator (the order parameter)

which condenses below a critical temperature signaling the onset of superconductivity.

The gauge/gravity duality has also been used as a framework for Fermi liquid

behavior [70], non-linear hydrodynamics [71], quantum phase transitions [72] and
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transport [73]. Thus, classical gravity theories have been transformed into a

laboratory for exploring condensed matter physics from a different point of view

[74]. In this way the holographic principle is a powerful tool for studying strongly-

correlated systems.

Recently, there has been considerable activity using the holographic principle to

describe metallic states of matter outside of Landau’s Fermi liquid theory [75, 76].

Experiments provide evidence for the existence of materials whose electronic structure

cannot be described by Fermi liquid theory, nor by any other known effective theory.

While Fermi liquids are characterized by stable quasi-particles, these exotic materials

possess well-defined Fermi surfaces but lack long-lived quasi-particles. A quantitative

discussion of signatures of different excitations is presented in detail below. To

describe such metallic systems, one needs to introduce charged fermions in the

gravity sector of the holographic system. However, in general, fermions cannot be

treated classically as in the case of charged scalar fields of holographic superfluids

or superconductors. The coupled system of Einstein-Maxwell-Dirac field equations

become tractable only in the limit in which the fermions may be treated locally in the

bulk as a charged ideal fluid of zero temperature. The solutions of these systems are

known as an electron star [77, 78, 79], Dirac hair [80] or confined Fermi liquid [81].

In another approach to describe the various phases of a metallic state at low

temperatures, a dipole coupling for massless charged fermions is introduced [82, 83].

The modified Dirac equation in the background of an AdS-Reissner-Nordström black

hole produces a boundary fermionic spectrum with vanishing spectral weight for a

range of energies around ω = 0 without the breaking of any symmetry. As the dipole

coupling strength is varied, the fluid has Fermi, marginal Fermi, non-Fermi liquid

phases and also an additional insulating phase. The insulating phase possesses the

characteristics representative of Mott insulators, namely the dynamic formation of a

gap and spectral weight transfer. Similar behavior was found in other constructions

[84, 85, 86, 87, 88]. The dependence of the Fermi surface and selection of (non-) Fermi

liquid type are discussed in [89].
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For a Fermi liquid, the characteristic signature of a quasi-particle is a pole in the

retarded Green Function GR. The location of the pole

G−1
R (ω = 0, k = kF ) = 0 , (3.1)

in momentum space at zero frequency dictates the Fermi surface and dispersion.

Additionally, the real component of the Green function, <GR, must change signs.

In a normal, weakly-coupled metal, this is only possible through the pole, and via

Luttinger’s theorem, integrating over the positive region ofGR one obtains the particle

density [90].

Apart from Fermi liquids, one of the principal examples of a strongly correlated

condensed matter system is the Mott insulator, parent state of high-temperature

copper-oxide superconductors in which a gap is dynamically generated. An explana-

tion for the insulating nature [91] is that a Mott gap manifests as a surface of zeroes

in the Green function. The Green function of interest, GR, may be expressed in terms

of the non-interacting theory Green function, G0, and the self-energy Σ,

G−1
R (ω, k) = G−1

0 (ω, k) + Σ(ω, k) , (3.2)

of which a zero is indicative of a divergent self-energy. It is the divergent self-energy

that restricts the band from crossing the Fermi energy leading to Mottness. The

full condition for Mottness is specifically on the eigenvalues of the matrix GR and

represented with the determinant as,

detGR(ω = 0, k = kL) = 0 . (3.3)

For our purposes, we are interested in the spinor space but the statement may be

extended to multiple bands [92]. A mean-field theory approach such as conventional

BCS theory as calculated with the Nambu propagator, is unable to produce such a
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result. The location of poles and zeroes in GR provides a path to uncover a system’s

behavior.

The interplay between poles and zeros is a characteristic feature of QCD. The

renormalization from high (UV) to low (IR) energy of couplings and masses in QCD

involves free quarks at UV scales, which exhibit poles in the propagator, while at IR

scales the poles are converted to zeros [93] signaling the formation of bound states.

The zero of the single quark propagator in the IR is due to an orthogonal configuration

between the (UV) single quark description and the composite mesons in the IR.

In condensed matter physics the competition of poles (k = kF ) and zeroes (k = kL)

in the Green function provides an illuminating criterion for characterizing the different

phases found in strongly-coupled fermion systems [92]. Exploring the Hubbard model

in this context has led to a variety of features present in doped Mott insulators,

including spectral weight transfer, Fermi arcs found in the pseudo-gap state, and

Fermi pockets [91, 94]. The Fermi arcs may be seen as a general consequence of

a composite state of UV fields, and hence zeroes, existing at low energies within

the Hubbard model [95]. In [96], a “pole-zero mechanism” for the two-dimensional

Hubbard model was used to characterize the transition from metal to Mott insulator

in terms of interfering pole and zero surfaces. The formalism is comprehensive enough

to accommodate arcs, hole pockets, in-gap states, Lifshitz transitions and non-Fermi

liquids. The work was furthered in [97] to address several anomalies in connection to

(non) d-wave symmetries seen in the pseudo-gap and to suggest a topological quantum

phase transition responsible for a non-Fermi liquid phase.

A holographic description of the structure of poles and zeros and their interconnec-

tion addresses central issues in strongly-coupled fermionic systems. A Fermi surface

in the Green function for holographic fermions was discovered in [98, 75] with the

discussion further expanded in [76, 70]. Near the Fermi surface, the structure of the

poles is expanded similarly to eq. (3.2) as

G−1
R (ω, k) ∼ k − kF − ω/vF − Σ(ω, k) (3.4)
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with self-energy Σ(ω, k) [99] given as

Σ(ω, k) ∼ cω2ν±k , 6ν2
k = k2 − q2

2
, (3.5)

with fermion charge q and numerically calculated constant c. It is this scaling

dimension νk that selects the leading term in (3.4) dictating the dispersion relation

at the Fermi surface, and hence the type of fluid. For scaling dimension νk < 1/2,

the pole of GR corresponds to an unstable quasi-particle. This is identified as a non-

Fermi fluid. With the value νk = 1/2, the excitations are of marginal Fermi fluid

type. For νk > 1/2 the dispersion relation is linear. This is the Fermi (non-Landau)

fluid. Lastly, imaginary νk corresponds to “log oscillatory” solutions.

Since the discovery of Fermi surfaces within the strongly coupled field theories

analyzed via holography, an exploration of fermions has taken place. Mechanisms

underlying different p-wave [100] and d-wave [101] symmetries for spectral functions

have been offered. An effective lattice was added in [102] by using a modulated

chemical potential. The spatial dependence alters the energy scaling and offers

identifying signs for a holographic realization of a pseudo-gap state.

More fundamental (top-down) holographic theories from truncations of string/M-

theory have produced viable models describing superfluity and superconductivity [103,

104, 105, 106, 107]. In higher dimensions, fermions are typically coupled to gravity

and gauge fields with high-order derivatives. There are consistent truncations to lower

dimensions in the fermionic sector giving interesting fermionic couplings [108, 109].

Dipole (Pauli) couplings are found to be a common feature of the theories with the

coupling constant realized as scalar-dependent [110]. It would be interesting to explore

their effect on fermion spectral functions at the boundary.

In this work, we aim at studying the zeroes and poles of the Green function GR in

a holographic system with a gravity sector consisting of an AdS-Reissner-Nordström

black hole and a dipole coupling of massless charged fermions to an electromagnetic

field. By exploring a duality between the zeroes and poles of this holographic system
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we show that by varying the dipole coupling strength, GR may possess only poles,

only zeroes, or both poles and zeroes.

This behavior suggests that the dipole coupling strength plays the role of an order

parameter in the Mott physics. By studying a simple model in which a fermion is

coupled to a gauge field through a dipole interaction in the bulk, we find that on

the field theory side as the strength of this interaction is varied, a new band in the

density of states emerges and spectral density is transferred between bands. In the

language of Green functions only poles is the signature of the Fermi and non-Fermi

liquids, only zeroes corresponds to the Mott insulating phase, and the coexistence of

both poles and zeroes is the pseudo-gap phase.

This duality between zeroes and poles also suggests that within the holographic

system, the properties of the Green function GR signifying the Mott phase can be

inferred by mapping to the well understood Green function of a Fermi liquid by simply

changing the sign of the dipole coupling constant p→ −p.

The discussion is organized as follows. In Section (3.2) we set up the theory and

derive the Einstein-Maxwell-Dirac equations. In Section (3.3) we solve the Dirac

equation. In Section (3.4) we discuss the duality of poles and zeros, and finally,

Section (3.5) contains our conclusions.

3.2 Gravitational Bulk

The bulk dynamics in an asymptotically Anti-de Sitter (AdS) space is described by

the Einstein-Maxwell action with cosmological constant Λ = −3/L2,

S =

∫
d4x
√
−g
[
R + 6/L2

16πG
− 1

4
FMNF

MN

]
, (3.6)

where FMN = ∂MAN − ∂NAM is the field strength of the U(1) vector potential AM .

For convenience, we set L = 4πG = 1.
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The Einstein-Maxwell equations admit a charged four-dimensional AdS black hole

solution,

ds2 =
1

z2

[
−h(z)dt2 +

dz2

h(z)
+ dx2 + dy2

]
. (3.7)

The metric function is given by

h(z) = 1−
(
1 + µ2

)
z3 + µ2z4 , (3.8)

with the horizon radius set at z = 1, and the U(1) potential is

At = µ (1− z) , Az = Ax = Ay = 0 , (3.9)

corresponding to a non-vanishing electric field in the radial z direction,

Ftz = −Fzt = µ . (3.10)

The Hawking temperature is given by

T = −h
′(1)

4π
=

3− µ2

4π
, (3.11)

with µ2 = 3 providing the zero temperature limit. There is a scaling symmetry of the

solutions found as

z → λz , x→ λx , µ → µ/λ , T → T/λ , (3.12)

and we should only report on scale-invariant quantities, such as T/µ, etc.

In this gravitational background we add a massless fermion with charge q and we

include a dipole coupling to the U(1) field [82, 83]. The action is

Sfermion = i

∫
d4x
√
−gΨ̄

[
/D − pΣMNFMN

]
Ψ . (3.13)
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The various terms in the action are

/D = eMa Γa (∂M + ΩM − iqAM) ,

ΩM =
1

8
ωabM

[
Γa,Γb

]
,

ωabM = ηacω
c
bM ,

ωabI = eaM∂Ie
M
b + eaMe

N
b ΓMNI ,

ΣMN =
i

4

[
Γa,Γb

]
eMa e

N
b , (3.14)

with spin connection ωabM and vierbein eMa , and lower-case indices a, b belong to the

tangent space.

In the conventional case, p = 0, the system is of two non-interacting Weyl fermions

of opposite chiralities. With p 6= 0, the dipole term introduces an interaction between

the two Weyl fermions. The system corresponds to an order parameter in the dual

gauge theory of conformal dimension ∆ = 3
2
.

To analyze the Dirac equations of the bulk fermion we find it more convenient to

go to momentum space by Fourier transforming

Ψ = e−iωt−ikx
√
z3

h

 ψ−

ψ+

 , ψ± =

 ψ±1

ψ±2

 , (3.15)

and choosing a basis for the Γ matrices

Γ1 =

 iσ1 0

0 iσ1

 , Γ2 =

 −σ2 0

0 −σ2

 ,

Γ3 =

 0 −iσ2

iσ2 0

 , Γ4 =

 −σ3 0

0 −σ3

 . (3.16)
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The Dirac equation decomposes into decoupled equations

±hψ′−,12 +
(
µq(1− z) + ω ± k

√
h∓ pµ

√
h
)
ψ−,21 = 0,

±hψ′+,12 +
(
µq(1− z) + ω ∓ k

√
h∓ pµ

√
h
)
ψ+,21 = 0 .

The presence of the dipole coupling p modifies the Dirac equation. The effects of the

coupling will be seen more clearly in the solutions of the Dirac equations.

3.3 Solutions of the Dirac Equations

To solve the Dirac equations we choose in-going boundary conditions at the horizon,

ψ±,12 = (1− z)−iω/(4πT )F±,12 . (3.17)

The ratios

ξ± =
F±1

F±2

, (3.18)

satisfy the non-linear flow equations [76]

hξ′± +
[
ω + µq(1− z) +

√
h (±k + µpz)

]
ξ2
± + ω + µq(1− z) +

√
h (∓k − µpz) = 0 ,

(3.19)

together with the in-going boundary conditions,

ξ± =


i , ω 6= 0 ,

i
√

q/
√

2+
√

3p±k
q/
√

2−
√

3p∓k , ω = 0 .

(3.20)

The solution to the flow equations determines the retarded Green function as

GR(ω, k) =

 G+ 0

0 G−

 , G±(ω, k) = ξ±|z→0 . (3.21)
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From the symmetries of the Dirac equation (3.15), we deduce the relation between

the Green functions

G±(ω, k) = G∓(ω,−k) . (3.22)

The Fermi momentum is found as the pole

G−1
± (ω = 0, k = kF ) = 0 . (3.23)

Since both solutions ψ± are normalizable, there is an alternative quantization in which

G+ and G− are interchanged.∗ This leads to physically equivalent results.

To identify the type of (non-) Fermi fluid, we look at the near-horizon region,

z → 1. Employing the limiting procedure [76], we obtain the scaling dimension ν±k

given by

6
(
ν±k
)2

=
(√

3p± k
)2

− q2

2
, (3.24)

to be compared with (3.5). The self energy Σ(ω, k) at the Fermi surface remains

Σ(ω, k) ∼ cω2νk . (3.25)

For our system with fixed fermion charge and mass, νk and the fluid character is

determined by the strength of the dipole interaction p.

To study explicit solutions, we set the fermion charge to q = 1, and numerically

solve the flow equation (3.19) to determine where the system possesses a Fermi surface

and the type of excitations. Figure 3.1 displays our results for ν±k evaluated at the

Fermi momentum kF . We recover the results of [82, 83] and classify the excitations

as Fermi liquid (p . −.53), marginal Fermi liquid (p ∼ −.53), non-Fermi liquid

(−.53 . p . .41) and log-oscillatory (p & .41). The system has a Fermi surface with

p . .41 but no Fermi surface for larger values of p.
∗Since the appearance of this work, the duality between poles and zeroes has subsequently been

shown as a consequence of the two possible quantizations [111].
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Figure 3.1: Scaling dimension νkF vs. p for q = 1.

3.4 Duality of poles and zeroes

Using the properties of the solutions (3.21) of the flow equation (3.19) we will show

that there is a duality between poles and zeroes. We first emphasize that a pole of

G± at ω = 0 (eq. (3.23)) is not necessarily a pole of the determinant

detGR = G+G− . (3.26)

It is known [99] that in the conventional case, p = 0,

detGR(ω = 0, k; p = 0) = 1 , (3.27)

therefore it possesses neither poles nor zeroes. This is because poles (zeroes) of G+

are cancelled by zeroes (poles) of G− at the same momentum. We shall see that

this coincidence of poles and zeroes is lifted when the dipole coupling is turned on,

resulting in poles and zeroes of detGR.

It is easily deduced from the flow equation (3.19), that the reciprocal of ξ±,

ζ± =
1

ξ±
, (3.28)
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Figure 3.2: Plots of < detGR (= detGR = 0) with q = 1 for p = −5 (first panel)
showing a pole at k = kF ≈ 1.5, and p = 5 (second panel) showing a zero at
k = kL ≈ 1.5.

satisfies the flow equation

hζ ′± +
[
−ω − µq(1− z) +

√
h (±k + µpz)

]
ζ2
± − µq(1− z) +

√
h (∓k − µpz)− ω = 0 .

(3.29)

Upon comparison of the two flow equations, we see that ζ± solves the same equation

as −ξ± under the change of parameters k → −k and p → −p. It follows that the

inverse Green function G−1
± (0, k) at p is identified with −G±(0,−k) at opposite dipole

coupling −p. Using the relation between the two Green functions (3.22), we arrive at

detGR(ω = 0, k; p) =
1

detGR(ω = 0, k;−p)
. (3.30)

This is the central result of our work and its importance relies on the fact that

it establishes a relation between poles and zeroes of the determinant of the Green

function at zero frequency between systems of opposite dipole coupling. For p = 0,

we recover eq. (3.27). For p 6= 0, the poles found for p < 0 (Fermi liquid) correspond

to zeroes for p > 0 (Mott insulator).

For large negative dipole coupling strength, i.e., p . −.53, we are in the Fermi

liquid phase, since νk > 1/2 (figure 3.1). In this regime, we obtain poles of detGR

and no zeroes. A typical example is shown in figure 3.2 (first panel) for p = −5. In

this case, = detGR vanishes and the graph has two poles at k = kF ≈ ±1.5, and no
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Figure 3.3: Plots of < detGR (solid lines) and = detGR (dashed lines) with q = 1 for
p = −0.1 (first panel) showing a pole at k = kF ≈ 0.8 and a zero at k = kL ≈ 1.0, and
p = 0.1 (second panel) showing a pole at k = kF ≈ 1.0 and a zero at k = kL ≈ 0.8.

zeroes. According to the duality (3.30), we expect to see two zeroes at k = kL ≈ ±1.5

and no poles for a system with p = 5. This is indeed what we obtain by a numerical

calculation of detGR (second panel of figure 3.2). This is in the Mott insulator regime

and no Fermi surface is found.

For small values of the dipole coupling strength (|p| . .41), we expect both zeroes

and poles. Again, using the duality (3.30), the zeroes can be deduced from the poles

at opposite p (and vice versa). An example is shown in figure 3.3 for p = ±.1. Unlike

in the case of large p, = detGR does not vanish. Instead, the zeroes for p = .1 found

at k = kL ≈ ±.8 are isolated zeroes of both < detGR and = detGR. Correspondingly,

the same is true for the poles at k = kF ≈ ±.8 for p = −.1. At the other set of

zeroes at k = kL ≈ ±1.0 for p = −.1 (and correspondingly poles at k = kF ≈ ±1.0

for p = .1), = detGR vanishes over a range containing the zeroes (poles).

Finally, figure 3.4 shows the location of poles (k = kF ) and zeroes (k = kL) as the

dipole coupling strength p varies. Notice the symmetry under k → −k, as well as the

interchange kL ↔ kF under the mapping p→ −p.
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Figure 3.4: Poles at k = kF (blue lines) and zeroes at k = kL (red lines) vs. p with
q = 1. Notice the symmetry under k → −k, and the duality of poles and zeroes under
p→ −p.

3.5 Conclusions and discussion

We have shown that a holographic theory with a bulk dipole interaction between a

massless fermion and gauge field possesses a robust phase diagram including Fermi and

non-Fermi liquids, insulating Mott state and pseudo-gap state. The various phases

are identified by the structure of the poles and zeroes found in GR. The selection of

the phase is controlled by the strength of the dipole coupling which plays the role of

an order parameter in the holographic system [82, 83].

A pole of GR is indicative of a Fermi or non-Fermi fluid while a zero is responsible

for an insulating phase. It is the coexistence of both that underlies the identification

of a holographic pseudo-gap state. We showed that a duality exists relating systems of

opposite dipole coupling strength p. This duality maps zeroes to poles and vice versa,

pointing to the interesting possibility of understanding the properties of a system with

zeroes (insulating phase) by mapping the system to one with poles (Fermi liquid).

It will be interesting to explore further the pseudo-gap state and other aspects

that may be recovered by the evolution of the Fermi and Luttinger surfaces. Of

particular significance will be the response of the system with ~k dependence. Also, it

might be worth exploring further the physical significance of the behavior of = detGR

near zeroes and poles.

64



As we discussed in the introduction, the interplay between the state of matter and

the appearance of poles and zeroes is also observed in QCD. The difference with QCD

is that the appearance of free quarks or bound states depends on the dynamics of the

strong gauge theory while in our case there is a variation of a simple coupling that

gives the various phases of matter. It would be intriguing to find other dynamical

systems exhibiting this behavior.

One may wonder if this analysis can be applied to holographic superconductors.

In BCS superconductivity the role of the order parameter is played by the condensate

of a scalar field. The formation of a condensate corresponds to a critical temperature

below which the system enters the superconductivity phase. In this phase, the

electrons are combined to form Cooper pairs which are electronic bound states and

therefore correspond to zeroes. On the contrary, the electrons in the normal phase

are free corresponding to poles.

In spite of the similarities with superconductivity, our analysis does not explicitly

break a gauge symmetry that could have defined an order parameter for the various

phases. Instead the metallic phases are controlled by an explicit coupling of charged

fermions to a gauge field. Nevertheless, it will be enlightening to consider how a bulk

scalar responsible for superconductivity or the coupling will influence the system.

Also worth exploring is if a description with additional fields could explain the Green

function zeroes in terms of a composite excitation.

Another way to better understand our results is to calculate the holographic

entanglement entropy in our theory. The entanglement entropy [112, 113] has proven

to be a powerful tool in counting the degrees of freedom available in a holographic

system. In [114] it was found that the holographic entanglement entropy of a

superconducting phase is less than that of the normal phase due to the formation

of Cooper pairs reducing the degrees of freedom available (see also [115]). Near the

contact interface, the normal phase entanglement entropy possesses a higher value

compared to the superconducting phase due to the proximity effect: the leakage of

Cooper pairs to the normal phase so more free electrons were available. Similarly we

65



expect that the entanglement entropy in a holographic fermionic system with a dipole

coupling will vary, as the degrees of freedom change from the Fermi liquid phase to

the Mott insulating phase providing important information on the various phases of

the system. However, such a study has to overcome the basic difficulty of working

with a probe fermonic system. The boundary theory will see the effect of the dipole

coupling only with a fully back-reacted solution. Once a full solution is obtained the

dipole coupling could leave some trace on the metric. Work in this direction is in

progress.
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Chapter 4

Holographic Fermions with

Spontaneously Generated

Inhomogeneous Phases

4.1 Introduction

The study of the Cu-O high-temperature superconductors shows that in the normal

state the electrical resistivity, the thermal conductivity and the optical conductivity

are anomalous. An explanation of this behaviour was put forward in [116]. In

these high-temperature superconductors over a wide range of momentum, there exist

excitations which make a contribution to both the charge and spin polarizability.

Calculating the retarded one-particle self-energy due to exchange of these charge

and spin fluctuations they found a quite different behaviour from the one-particle

self-energy in a conventional Fermi liquid. This behaviour was refereed in [116] as

representing a marginal Fermi liquid. Calculating the spectral function A(k, ω) they

found that it has some distinct features from the Fermi liquid case. It is much broader

(a normal Fermi liquid, for example, has a δ-function peak when εk = 0, and carries

substantially more weight in the wings because of the ω−1 tail).
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The formation of marginal Fermi liquid in the normal phase of the superconductor

implies that the formed quasiparticles are unstable. A way to stabilize the

quasiparticles of the marginal Fermi liquid was proposed in [119]. It was shown

that with a suitable coupling between the fermion and the condensate which is

formed in the superconducting phase below a critical temperature Tc, there are stable

quasiparticles with a gap.

In this work we will propose another way to stabilize the quasiparticles. We will

show that without having a direct coupling of a fermion field to a scalar field that

it condenses below Tc, a Fermi surface is formed with a gap below Tc because of

lattice effects. To simulate the lattice effects we introduce a spontaneously generated

inhomogeneity and we analyze the behaviour of a fermionic system at the boundary.

The inhomogeneity is introduced by a higher order derivative coupling between

electromagnetic term and the scalar field [12]. The band gap behaviour of the fermions

is analyzed due to this backreacted geometry in the bulk by using the Green’s function

behaviour of the Dirac field.

This work is organized as follows. In Section 4.2 we study the numerical and

analytical solutions of a holographic system with a spontaneously generated inho-

mogeneous phases introduced by higher derivative couplings by using perturbation

theory. In Section 4.3 we introduce Dirac field into this holographic model which

includes holographic lattice structure in one dimension to analyze the holographic

lattice effects on Fermi surface by studying the spectral function of the system. To

this end, we solve the Dirac equations in periodic background both numerically and

analytically at each perturbation order at small but finite temperature in Section

4.4. The numerical results of the spectral function at zeroth and second order of

perturbation where the band gap is observable are given in Sections 4.4.3 and 4.4.5

respectively. Finally, in Section 4.5 we discuss the results of the study and present

and outlook for future studies.
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4.2 The Holographic Setup

The holographic system includes a U(1) gauge field Aµ, with field strength Fµν =

∂µAν − ∂νAµ, and a scalar field φ with charge q under U(1) group of the gauge field.

In addition a Dirac field with mass mf and charge qf is added to the system. The

AdS spacetime geometry of the bulk where these fields live has negative cosmological

constant of Λ = −6/L2.

We consider the following action

S =

∫
d4x
√
−gL , L =

R + 6/L2

16πG
− 1

4
FµνF

µν − (Dµφ)∗Dµφ−m2|φ|2 , (4.1)

with Dµφ = ∂µφ − iqAµφ. In the rest of this paper, we shall set 16πG = L = 1 for

simplicity and without loss of generality.

Following [12] introducing a higher derivative term leads to spatial inhomogeneity

in the boundary theory. A general form of higher-derivative interaction term is

Lint = φ∗ [ηGµνDµDν + η′HµνρσDµDνDρDσ + . . . ]φ+ c.c. (4.2)

In [12] to produce the ‘holographic lattice’ structure at the boundary, a special choice

of the interaction term was made

Lint = ηGµν(Dµφ)∗Dνφ− η′|DµGµνDνφ|2 , (4.3)

where

Gµν = T (EM)
µν + gµνL(EM) = FµρFν

ρ − 1

2
gµνF

ρσFρσ . (4.4)

The action (4.1) with the interaction term 4.3 is added gives the Einstein equations

Rµν −
1

2
Rgµν − 3gµν =

1

2
Tµν , (4.5)
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where Tµν is the stress-energy tensor,

Tµν = T (EM)
µν + T (φ)

µν + ηΘµν + η′Θ′µν , (4.6)

where gauge, scalar, and interaction term contributions can be written as

T (EM)
µν = FµρFν

ρ − 1

4
gµνF

ρσFρσ ,

T (φ)
µν = (Dµφ)∗Dνφ+Dµφ(Dνφ)∗ − gµν(Dαφ)∗Dαφ−m2gµν |φ|2 ,

Θµν =
2√
−g

δ

δgµν

∫
d4x
√
−gGµν(Dµφ)∗Dνφ ,

Θ′µν = − 2√
−g

δ

δgµν

∫
d4x
√
−g|DµGµνDνφ|2 , (4.7)

respectively. The Maxwell equations are obtained by varying the total Lagrangian

with interaction term included with respect to Aµ as

∇µF
µν = Jν , (4.8)

where Jµ is the current,

Jµ = qJ (φ)
µ + ηJµ + η′J ′µ , (4.9)

containing scalar and interaction term contributions, respectively,

Jµ = i [φ∗Dµφ− (Dµφ)∗φ] ,

Jµ =
1√
−g

δ

δAµ

∫
d4x
√
−gGµν(Dµφ)∗Dνφ ,

J ′µ = − 1√
−g

δ

δAµ

∫
d4x
√
−g|DµGµνDνφ|2 . (4.10)

Finally, varying the Lagrangian with respect to the scalar field the equation of motion

for the scalar field is found as

DµD
µφ−m2φ = ηDµ (GµνDνφ) + η′Dρ(GµρDµ(Dν(GνσDσφ))). (4.11)
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To capture the lattice effects we consider the following metric ansatz

ds2 =
1

z2

[
− (1− z)P (z)Qtt(x, z)dt

2 +
Qzz(x, z)dz

2

P (z)(1− z)

+ Qxx(x, z)(dx+ z2Qxz(x, z)dz)2 +Qyy(x, z)dy
2
]
, (4.12)

where P (z) is defined as

P (z) = 1 + z + z2 − µ2
0

4
z3 . (4.13)

Then the temperature is given by

T

µ
=

12− µ2
0

16πµ
. (4.14)

The required boundary conditions at the horizon and the boundary are respectively

Qtt(x, 1) = Qzz(x, 1) , (4.15)

and

Qtt(x, 0) = Qzz(x, 0) = Qxx(x, 0) = Qyy(x, 0) = 1 , Qxz(x, 0) = 0 , At(x, 0) = µ(x) .

(4.16)

The critical temperature solutions of this system has the same form as in Section

III of our previous paper [12]. Now, we will solve the below critical temperature

equations with a slightly different ansatz (4.12) in the following section.
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4.2.1 Below the critical temperature

We will solve the coupled Einstein-Maxwell-scalar field equations perturbatively below

the critical temperature. For this we expand all the field in the order parameter

ξ =
〈O〉√

2
, (4.17)

and write

Qtt(z, x) = 1 + ξ2Qtt1(z, x) +O(ξ4) ,

Qzz(z, x) = 1 + ξ2Qzz1(z, x) +O(ξ4) ,

Qxx(z, x) = 1 + ξ2Qxx1(z, x) +O(ξ4) ,

Qxz(z, x) = ξ2Qxz1(z, x) +O(ξ4) ,

Qyy(z, x) = 1 + ξ2Qyy1(z, x) +O(ξ4) ,

φ(z, x) = ξφ0(z, x) + ξ3φ1(z, x) +O(ξ5) ,

At(z, x) = (1− z)
[
At0(z) + ξ2At1(z, x) +O(ξ4)

]
,

(4.18)

where ξφ0, and At0 are defined at the critical temperature Tc The chemical potential

is given by

µ ≡ At(0, x) = µ0 + ξ2µ1 +O(ξ2) , µ0 = At0(0) , µ1 = At1(0, x) . (4.19)
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Going to the Fourier modes on the boundary the fields (4.18) become

Qtt(z, x) = 1 + ξ2(Qtt10(z) +Qtt11(z) cos 2kx) +O(ξ4) ,

Qzz(z, x) = 1 + ξ2(Qzz10(z) +Qzz11(z) cos 2kx) +O(ξ4) ,

Qxx(z, x) = 1 + ξ2(Qxx10(z) +Qxx11(z) cos 2kx) +O(ξ4) ,

Qxz(z, x) = ξ2Qxz1(z, x) +O(ξ4) ,

Qyy(z, x) = 1 + ξ2(Qyy10(z) +Qyy11(z) cos 2kx) +O(ξ4) ,

φ(z, x) = ξφ0(z, x) + ξ3φ1(z, x) +O(ξ5) ,

At(z, x) = (1− z)
[
At0(z) + ξ2(At10(z) + At11(z) cos 2kx) +O(ξ4)

]
,

(4.20)

At each given order of the parameter ξ, only a finite number of modes of the

various fields are generated. At the first order, i.e. O(ξ2), we have only 0 and 2k

Fourier modes,

Qtt1(z, x) = Qtt10(z) +Qtt11(z) cos 2kx ,

Qzz1(z, x) = Qzz10(z) +Qzz11(z) cos 2kx ,

Qxx1(z, x) = Qxx10(z) +Qxx11(z) cos 2kx ,

Qxz1(z, x) = Qxz10(z) +Qxz11(z) sin 2kx ,

Qyy1(z, x) = Qyy10(z) +Qyy11(z) cos 2kx ,

At1(z, x) = At10(z) + At11(z) cos 2kx . (4.21)

Solving the Maxwell’s equations at second order we get

At10(z) = C +

∫ z

1

dw′
1

(w′ − 1)2

∫ w′

1

1

4P 2(w)
(1− w)w2∆−2µ0A(w)dw , (4.22)
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where

A(z) =F 2(z)
[
q2(z3µ2

0 + 4P (z)) + z(∆2 + 8k2z2η(1 + ∆))P 2(z)
]

+ 2z2(∆ + 4k2z2η)P 2(z)F (z)F ′(z) + z3P 2(z)[F ′(z)]2 .
(4.23)

In the above expression of the first order gauge field At10(z) the only unknown is the

integration constant C.

HavingAt10(z) from (??) we can solve Einstein equations to findQtt10, Qzz10, Qxx10, Qyy10,

as can be seen in the Appendix A ((A.1), (A.4), (A.7), (A.8) respectively). We find

that Qxz10 does not appear at first order equations. So we can set Qxz10(z) = 0.

Then to find the other modes in the Appendix A we give the Einstein and Maxwell

equations they satisfied. These are six equations with six unknown functions. Two

equations are first order. We can solve (A.10) for Qxz11(z) and (A.11) for Qzz11(z).

Without loss of generality we can also set Qxz11 = 0 as well. Then we can solve the

remaining equations by using the boundary conditions specified.

To find this integration constant, C we will use the first order scalar field by

expanding it in Fourier modes.

φ1(x, z) = Φ10(z) cos(kx) + Φ11(z) cos 3kx. (4.24)

Then the scalar field equation at first order for Φ10(z) is

Φ′′10 +
(z − 1)zP ′ − (z − 2)P

(z − 1)zP
Φ′10 +

P (m2 + k2z2 (1− ηµ2
0z

4)) + µ2
0q

2(z − 1)z2

(z − 1)z2P 2
Φ10

+ Cz∆C + z∆D = 0 ,

(4.25)

where

C = C2F
′′ + C1F

′ + C0F , D = D2F
′′ +D1F

′ +D0F , (4.26)

where the coefficients C2, C1, C0 and D2, D1, D0 are given in Appendix B from (B.1)

to (B.6).
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Figure 4.1: Numerical solutions for Qtt11(x, z), Qzz11(x, z), Qyy11(x, z), and
At11(x, z) for η

µ2
0

= 0.41, η′

µ4
0

= 0.005, q = 0, ∆ = 1.

Finally, we can calculate the integration constant from first order scalar field

equation (4.25) and we find

C = −
∫ 1

0
dz z2∆F [C2F

′′ + C1F
′ + C0F ]∫ 1

0
dz z2∆F [D2F ′′ +D1F ′ +D0F ]

. (4.27)

The charge density of the system can also be determined by

ρ

µ2
= −∂z [(1− z)At(z, x)] |z=0

[At(0, x)]2
=
ρ0 + ξ2ρ1(x)

µ2
0

. (4.28)

In Figure 4.1 we show the solutions for the metric functions Qtt11(x, z), Qzz11(x, z),

Qyy11(x, z), and At11(x, z), while the charge density of the system is shown in Fig. 4.2.

As seen in Fig. 4.2 the charge density is spatially modulated which is an indicator of

the holographic lattice structure. We observed that keeping the ξ value fixed when
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ρ(x)

Figure 4.2: The charge density of the system for η
µ2

0
= 0.41, η′

µ4
0

= 0.005, q = 0,
∆ = 1, and ξ = 0.1.

the parameters are changed such that the critical temperature, Tc, is lower then the

magnitude of the spatial modulation decreases.

In summary, we have a fully-backreacted pertubative solution up to second order

in ξ of the Einstein-Maxwell-scalar equations. In the next section we will introduce

a Dirac field.

4.3 The Dirac Equation

In this section we will introduce a Dirac spinor field Ψ(z, t, ~x) with mass mf and

charge qf in addition to the scalar and gauge field. The bulk action for Dirac field is

SD = i

∫
d4x
√
−gΨ̄(ΓaDa −mf )Ψ , (4.29)

where Γa = (eµ)aΓµ with (eµ)a a set of orthogonal normal vector bases and Γµ Gamma

matrices. The covariant derivative Da is defined as

Da = ∂a +
1

4
(ωµν)aΓ

µν − iqfAa , (4.30)

with Γµν = 1
2
[Γµ,Γν ], and (ωµν)a = (eµ)b∇a(eν)

b are the spin connection 1-forms.

Here indices a, b denote tangent space and indices µ, ν, . . . denote indices along
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boundary directions. Gamma matrices with tangent space indices satisfy Clifford

algebra {Γa,Γb} = 2ηab and Γab = 1
2
[Γa,Γb].

From the action (4.29) the most general form of the Dirac equation is

− 1
√
gzz

Γ3∂zΨ +
1
√
gtt

Γ0 (∂t − iqfAt) Ψ +
1
√
gxx

Γ1∂xΨ +
1
√
gyy

Γ2∂yΨ−mfΨ

+

(
∂xgtt

4gtt
√
gxx

+
∂xgyy

4gyy
√
gxx

+
∂xgzz

4gzz
√
gxx

)
Γ1Ψ

− 1

4gxx
√
gzz

(
∂zgxx +

gxx∂zgtt
gtt

+
gxx∂zgyy
gyy

)
Γ3Ψ = 0 .

(4.31)

Following [13] we choose the basis

Γ1 =

iσ1 0

0 iσ1

 , Γ2 =

−σ2 0

0 σ2

 , Γ3 =

 0 σ2

σ2 0

 , Γ4 =

−σ3 0

0 −σ3


(4.32)

for the Gamma matrices of the (2+1)-dimensional boundary theory and the following

ansatz for the spinor fields

Ψ = (gttgxxgyy)
− 1

4 e−iωt+i(kxx+kyy)

ψ+

ψ−

 , ψ± =

ψ±1

ψ±2

 , (4.33)

with two-component spinors ψ±.

We have the holographic lattice structure in x−dimension only. Therefore, we can

expand the spinor fields according to the Bloch theoremψ±1(x, z)

ψ±2(x, z)

 =
∑

l=0,±1,±2,...

ψ(l)
±1(z)

ψ
(l)
±2(z)

 eilKx . (4.34)

If we substitute (4.34) to the Dirac equation (4.31) we get a set of infinite coupled

equations with an infinite many fields to be solved, corresponding to the full range

of l = 0,±1,±2, . . . ,±∞. In our holographic fermionic system we will use the

retarded Green’s function and the spectral function to get some information out of
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it. This is equivalent to measuring the spectral function by using Angular Resolved

Photoemission Spectroscopy (ARPES) in an experimental setup [99]. To this end,

we will both numerically and analytically solve these equations using perturbation

theory at small but finite temperature.

4.4 Perturbation Theory for Dirac Equations

4.4.1 Numerical Solution to Dirac Equation at Finite Temper-

ature

The most general form of the Dirac equations are as follows.

−mfψ
(l) +

1
√
gζζ

Γ4∂ζψ
(l) +

1
√
gtt

Γ1 (ω + qfAt)ψ
(l) − i ky√

gyy
Γ3ψ(l) +AΓ2ψ(l) = 0

(4.35)

where

A =
−gzz∂xgxx + gxx [4i(kx +Kl)gzz + ∂xgzz]

4 (gxx)
3/2 gzz

(4.36)

and

ψ(l) =


ψ

(l)
+1

ψ
(l)
+2

ψ
(l)
−1

ψ
(l)
−2

 . (4.37)

The retarded Green’s function on the boundary can be found by considering the

ingoing boundary conditions at the horizon. Therefore, we writeψ(l)
±1(z)

ψ
(l)
±2(z)

 =

 1

−i

 (1− z)−
iω

4πT (4.38)

for each spinor mode and for each l when others are turned off. Another boundary

condition is near AdS boundary. As z → 0 the solution to Dirac equation asymptotes
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to

ψ
(l)
αl,βl′ = Aαl,βl′ z

−m

0

1

+Bαl,βl′ z
m

1

0

 . (4.39)

where βl′ indicates the ingoing horizon boundary conditions. The retarded Green’s

function can be found from the expression

Gαl,βl′ = Bαl,βl′A
−1
αl,βl′ (4.40)

of the asymptotic expansion coefficients where α, β = +,−.

To be able to solve the Dirac equations we need some simplications. To this

end, we will rotate Dirac spinors. After rotating the equations, we find the general

expression for the Dirac equation as

−mf ψ̃
(l) +

1
√
gzz

Γ4∂zψ̃
(l) +

1
√
gtt

Γ1 (∂t − iqfAt) ψ̃(l) + ÃΓ2ψ̃(l) + B̃ Γ3ψ̃(l) = 0 (4.41)

where

Ã =
i(k2

l − (kx +Kl)2)

kl
√
gyy

− ikx +Kl

4kl g
3/2
xx

[
− (4(kx +Kl)gxx + i∂xgxx) +

igxx∂xgzz
gzz

]
(4.42)

B̃ =
(−1)α(kx +Kl)− kl

4kl gzz g
3/2
xx

[
gxx [4i(kx +Kl)gzz + ∂xgzz]− gzz

(
4i(kx +Kl)

g
3/2
xx√
gyy

+ ∂xgxx

)]
(4.43)

after expanding ψ̃ → ψ̃(x, z)e−iωt+ikxx+ikyy and rotating the equations such that ky →

0. where

ψ̃
(l)
1 = ψ

(l)
+1 + λψ

(l)
−1 , ψ̃

(l)
2 = ψ

(l)
+2 + λψ

(l)
−2 , (4.44)

ψ̃
(l)
3 = ψ

(l)
+1 + δψ

(l)
−1 , ψ̃

(l)
4 = ψ

(l)
+2 + δψ

(l)
−2 . (4.45)
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and kl =
√

(kx +Kl)2 + k2
y. We will explain the details of this rotation in Appendix

C.

Having the Green’s function we can calculate the spectral function A(ω, kx, ky) =

=(Gαl,αl+Gβl,βl) which is imaginary part of the diagonal terms of the retarded Green

function and from which the Fermi surface can be found. Although the Fermi surface

is defined at zero temperature, as indicated in [118] and [101] Fermi surface can be

located by searching a peak at spectral function A(ω, kx, ky) with tiny frequency ω at

lower temperature.

Backreaction contribution of the scalar field and gauge field is small in higher

orders therefore, we have expanded scalar field, gauge field, and metric functions in

small ξ up to first order in (4.18). To solve the Dirac equation for the Dirac spinor

field we will expand it in ξ up to second order for reasons which will be explained

later. Therefore, we write

ψ
(l)
+,1(z) = ψ

(0,l)
+,1 + ξ2ψ

(1,l)
+,1 + ξ4ψ

(2,l)
+,1 +O(ξ6) ,

ψ
(l)
+,2(z) = ψ

(0,l)
+,2 + ξ2ψ

(1,l)
+,2 + ξ4ψ

(2,l)
+,2 +O(ξ6) ,

ψ
(l)
−,1(z) = ψ

(0,l)
−,1 + ξ2ψ

(1,l)
−,1 + ξ4ψ

(2,l)
−,1 +O(ξ6) ,

ψ
(l)
−,2(z) = ψ

(0,l)
−,2 + ξ2ψ

(1,l)
−,2 + ξ4ψ

(2,l)
−,2 +O(ξ6) . (4.46)

Applying ingoing boundary conditions at the horizon we can write

ψ
(s,l)
+,1 (z) = (1− z)−

iω
4πT F

(s,l)
1 (z) ,

ψ
(s,l)
+,2 (z) = (1− z)−

iω
4πT F

(s,l)
2 (z) ,

ψ
(s,l)
−,1 (z) = (1− z)−

iω
4πT F

(s,l)
3 (z) ,

ψ
(s,l)
−,2 (z) = (1− z)−

iω
4πT F

(s,l)
4 (z) . (4.47)
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Similarly, below the critical temperature, Tc, boundary condition at the boundary

can be written as

ψαl,βl′ =
∑

s=0,1,...

A
(s)
αl,βl′z

−m

0

1

+
∑

s=0,1,...

B
(s)
αl,βl′z

m

1

0

 , (4.48)

where s is the order of perturbation and l indicates the Brillouin zone. We will

only solve the equations up to second order. To find the retarded Green’s function

we need to find the inverse of the matrix A which includes both diagonal and off-

diagonal terms. The elements of matrices A and B are formed based on the two

assumptions. The first assumption is that the diagonal elements of matrix A are in

order of 1 and ξ4 and the second assumption is that the off-diagonal elements are in

order of ξ2. Taking these assumptions into consideration and using the inverse of a

matrix A−1 = 1
detA

(cofactors of matrix A)T the retarded Green’s function was found

in [117] as

GRαl,αl =
1

detA

( ∑
β=+,−

(Bαl,βl−1∆αl,βl−1 +Bαl,βl+1∆αl,βl+1) +Bαl,αl∆αl,αl

)
(4.49)

where ∆αl,αl are cofactors of matrix A and the cofactors and detA up to second order

are given in [117].

4.4.2 Analytical Solution to Dirac Equation at Finite Temper-

ature

Below the critical temperature at finite temperature near horizon metric can be

written as

ds2 =
R2

2

ζ2

−(1− ζ2

ζ2
0

)Qtt(ζ, x)dt2 +
Qζζ(ζ, x)dζ2

1− ζ2

ζ2
0


+ µ∗

2R2Qxx(ζ, x)dx2 + µ∗
2R2Qyy(ζ, x)dy2 .

(4.50)
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The gauge potential then becomes

At(ζ, x) =
ed
ζ

(
1− ζ

ζ0

)
+ At1(ζ, x) (4.51)

where

ζ ≡ z∗
2

d(d− 1)(z∗ − z)
, ζ0 ≡

z∗
2

d(d− 1)(z∗ − z0)
, ed ≡

gF√
2d(d− 1)

,

µ∗ ≡
1

z∗
= 2(d− 2)ed

µ

g2
F

.

(4.52)

where gF is the bulk gauge coupling and in our system we choose it to be gF = 2. We

are also working in d+ 1 = 4 spacetime in the bulk, therefore d = 3. Using these we

can write the parameters as

ζ0 =
z∗

2

6(z∗ − z0)
, ed =

1√
3
, µ∗ =

µ

2
√

3
. (4.53)

The metric functions and gauge field can be expanded as

Qtt = 1 + ξ2 [Qtt10 +Qtt11 cos(2kx)] +O(ζ4) ,

Qζζ = 1 + ξ2 [Qζζ10 +Qζζ11 cos(2kx)] +O(ζ4) ,

Qxx = 1 + ξ2 [Qxx10 +Qxx11 cos(2kx)] +O(ζ4) ,

Qyy = 1 + ξ2 [Qyy10 +Qyy11 cos(2kx)] +O(ζ4) ,

At(ζ, x) =
ed
ζ

(
1− ζ

ζ0

)
+ ξ2

(
1− ζ

ζ0

)
[At10(ζ) + At11(ζ) cos(2kx)] +O(ζ4) .

(4.54)

To be able to solve the Dirac equations we again rotate Dirac spinors. After rotating

the equations we find the general expression for the Dirac equation with metric (4.50)

as

−mf ψ̃
(l) +

1
√
gζζ

Γ4∂ζψ̃
(l) +

1
√
gtt

Γ1 (∂t − iqfAt) ψ̃(l) + ÃΓ2ψ̃(l) + B̃ Γ3ψ̃(l) = 0 (4.55)
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where

Ã =
i(k2

l − (kx +Kl)2)

kl
√
gyy

− ikx +Kl

4kl g
3/2
xx

[
− (4(kx +Kl)gxx + i∂xgxx) +

igxx∂xgζζ
gζζ

]
(4.56)

B̃ =
(−1)α(kx +Kl)− kl

4kl gζζ g
3/2
xx

[
gxx [4i(kx +Kl)gζζ + ∂xgζζ ]− gζζ

(
4i(kx +Kl)

g
3/2
xx√
gyy

∂xgxx

)]
(4.57)

after expanding ψ̃ → ψ̃(x, z)e−iωt+ikxx+ikyy and rotating the equations such that ky →

0. Using the Gamma matrices we can write

−mf ψ̃α − σ3 1
√
gzz

∂ζψ̃α +
1
√
gtt
σ1 (ω + qAt) ψ̃α + Ã (−1)ασ2ψ̃α + B̃ σ2ψ̃β = 0 (4.58)

where α = 1, 2 and β = 3− α.

To simplify the Dirac equations we will make another rotation here. Let us define

Φ = (−ggζζ)−1/4ψ̃ = 1√
2
(1 − iσ1)Φ̃. We multiply (4.58) by 1√

2
(1 + iσ1)σ3 from left

after substituting Φ = 1√
2
(1− iσ1)Φ̃ and find

mfσ
2Φ̃(l) − 1

√
gζζ

∂ζΦ̃
(l)
α +

i
√
gtt
σ3 (ω + qfAt) Φ̃(l)

α − Ã (−1)αiσ1Φ̃(l)
α − B̃ iσ1Φ̃

(l)
β = 0 .

(4.59)

At zeroth order we find

−mfσ
2Φ̃(0,l)

α +
ζ
√
f

R2

∂ζΦ̃
(0,l)
α − iζ

R2

√
f
σ3 (ω + qfAt0) Φ̃(0,l)

α +
kl
µ∗R

(−1)ασ1Φ̃(0,l)
α = 0

(4.60)
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where At0 = ed
ζ

(
1− ζ

ζ0

)
. At higher orders the equations can be written as

−mfσ
2Φ̃(s,l)

α +
ζ
√
f

R2

∂ζΦ̃
(s,l)
α − iζ

R2

√
f
σ3 (ω + qfAt0) Φ̃(s,l)

α +
kl
µ∗R

(−1)ασ1Φ̃(s,l)
α

− (−1)αiσ1Ã(s−1,l′) − iσ1B̃(s−1,l′) − iσ3C̃(s−1,l′) = 0

(4.61)

where s is the order of perturbation.

4.4.3 Zeroth Order Solution to Dirac Equations

Zeroth Order Numerical Solution to Dirac Equations

After Bloch expansion the Dirac equation at zeroth order for the different spinor

modes can be written as the follows

∂zψ
(0,l)
αj − i

qfµ0(1− z) + ω

h
σ2ψ

(0,l)
αj +

kx +Kl√
h

σ3ψ
(0,l)
αj −

ky√
h
σ1ψ

(0,l)
βm = 0 (4.62)

where α = +,−, j = 1, 2 and β = −α, m = 3− j, h(z) = (1− z)P (z) and where we

set mf = 0. We want to plot the spectral function with respect to ky for a fixed kx

value therefore we take the transformation one step further to get Dirac equations to

kx +Kl→ 0 form. Following that (A.10) can be combined with (A.11) to obtain

√
h(ψ+1 + λψ−1 + ψ+1 + δψ−1)′ +

mf

z
(ψ+1 + λψ−1 + ψ+1 + δψ−1)

−
[
µ0qf (1− z) + ω√

h

]
(ψ+2 + λψ−2 + ψ+2 + δψ−2)− kl(ψ+2 + δψ−2 − ψ+2 − λψ−2) = 0

(4.63)
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which is identical to the first equation with kx = 0. Similarly, by combining other

equations we obtain

√
h(ψ+2 + λψ−2 + ψ+2 + δψ−2)′ − mf

z
(ψ+2 + λψ−2 + ψ+2 + δψ−2)

+

[
µ0qf (1− z) + ω√

h

]
(ψ+1 + λψ−1 + ψ+1 + δψ−1)− kl(ψ+1 + δψ−1 − ψ+1 − λψ−1) = 0 ,

(4.64)

√
h(ψ+1 + δψ−1 − ψ+1 − λψ−1)′ +

mf

z
(ψ+1 + δψ−1 − ψ+1 − λψ−1)

−
[
µ0qf (1− z) + ω√

h

]
(ψ+2 + δψ−2 − ψ+2 − λψ−2)− kl(ψ+2 + λψ−2 + ψ+2 + δψ−2) = 0 ,

(4.65)

√
h(ψ+2 + δψ−2 − ψ+2 − λψ−2)′ − mf

z
(ψ+2 + δψ−2 − ψ+2 − λψ−2)

+

[
µ0qf (1− z) + ω√

h

]
(ψ+1 + δψ−1 − ψ+1 + λψ−1)− kl(ψ+1 + λψ−1 + ψ+1 + δψ−1) = 0 .

(4.66)

These equations tell us that the modes decouple and the equations are the same as

with kx +Kl = 0. The modes corresponding to kx +Kl = 0 are as following.

ψ̄
(s,l)
1 = ψ

(s,l)
+1 + λψ

(s,l)
−1 + ψ

(s,l)
+1 + δψ

(s,l)
−1 ,

ψ̄
(s,l)
2 = ψ

(s,l)
+2 + λψ

(s,l)
−2 + ψ

(s,l)
+2 + δψ

(s,l)
−2 ,

ψ̄
(s,l)
3 = ψ

(s,l)
+1 + δψ

(s,l)
−1 − ψ

(s,l)
+1 − λψ

(s,l)
−1 ,

ψ̄
(s,l)
4 = ψ

(s,l)
+2 + δψ

(s,l)
−2 − ψ

(s,l)
+2 − λψ

(s,l)
−2 .

(4.67)
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where s is the perturbation order. We can also write kx + Kl 6= 0, ky 6= 0 modes in

terms of kx +Kl = 0 modes as

ψ
(s,l)
+1 =

(λ− δ)ψ̄(s,l)
1 + (λ+ δ)ψ̄

(s,l)
3

2(λ− δ)
,

ψ
(s,l)
+2 =

(λ− δ)ψ̄(s,l)
2 + (λ+ δ)ψ̄

(s,l)
4

2(λ− δ)
,

ψ
(s,l)
−1 = − ψ̄

(s,l)
3

λ− δ
,

ψ
(s,l)
−2 = − ψ̄

(s,l)
4

λ− δ
.

(4.68)

Applying the ingoing boundary conditions at zeroth order,

i.e. ψ(0,l)
±1,2 = (1− z)−

iω
4πT F

(0,l)
±1,2, eq.s (C.1) in Appendix C are transformed into

F
′(0,l)
+1 +

m(z − 1)(µ2
0 − 12) + 4izω

√
h

(z − 1)z(µ2
0 − 12)

√
h

F
(0,l)
+1 +

√
h(kx +Kl)− qµ0(1− z)− ω

h
F

(0,l)
+2

− ky√
h
F

(0,l)
−2 = 0 ,

F
′(0,l)
+2 − m(z − 1)(µ2

0 − 12)− 4izω
√
h

(z − 1)z(µ2
0 − 12)

√
h

F
(0,l)
+2 +

√
h(kx +Kl) + qµ0(1− z) + ω

h
F

(0,l)
+1

− ky√
h
F

(0,l)
−1 = 0 ,

F
′(0,l)
−1 +

m(z − 1)(µ2
0 − 12) + 4izω

√
h

(z − 1)z(µ2
0 − 12)

√
h

F
(0,l)
−1 −

√
h(kx +Kl) + qµ0(1− z) + ω

h
F

(0,l)
−2

− ky√
h
F

(0,l)
+2 = 0 ,

F
′(0,l)
−2 − m(z − 1)(µ2

0 − 12)− 4izω
√
h

(z − 1)z(µ2
0 − 12)

√
h

F
(0,l)
−2 −

√
h(kx +Kl)− qµ0(1− z)− ω

h
F

(0,l)
−1

− ky√
h
F

(0,l)
+1 = 0 .

(4.69)
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Figure 4.3: The plot of the peak of spectral function A(ω, kx, ky = 0) at kF = 2.573
for qf = 1.7, µ = 2.35, ∆ = 1 above the critical temperature, Tc.

Spectral function is found by solving differential equations at the boundary and it

can be expressed as

A(ω, kx, ky) = =

[
F

(0,l)
+1 (ε)

F
(0,l)
+2 (ε)

+
F

(0,l)
−1 (ε)

F
(0,l)
−2 (ε)

]
. (4.70)

The spectral function above the critical temperature, Tc is plotted in Fig. 4.3 for

different kx values at ky = 0 with tiny frequencies. The plot shows the peak of the

spectral function at kF = 2.653 which is an indicator of Fermi surface. However, the

peak is quite broad indicating an instability of the quasiparticles.
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We can do a similar transformation for kx +Kl = 0 case, i.e.

ψ̄
(0,l)
1,2,3,4 = (1− z)−

iω
4πT F̄

(0,l)
1,2,3,4, eq.s (4.63)-(4.66) are transformed into

F̄
′(0,l)
1 +

mf (z − 1)(µ2
0 − 12) + 4izω

√
h

(z − 1)z(µ2
0 − 12)

√
h

F̄
(0,l)
1 +

−qfµ0(1− z)− ω
h

F̄
(0,l)
2 − kl√

h
F̄

(0,l)
4 = 0 ,

F̄
′(0,l)
2 +

−mf (z − 1)(µ2
0 − 12) + 4izω

√
h

(z − 1)z(µ2
0 − 12)

√
h

F̄
(0,l)
2 +

qfµ0(1− z) + ω

h
F̄

(0,l)
1 − kl√

h
F̄

(0,l)
3 = 0 ,

F̄
′(0,l)
3 +

mf (z − 1)(µ2
0 − 12) + 4izω

√
h

(z − 1)z(µ2
0 − 12)

√
h

F̄
(0,l)
3 − qfµ0(1− z) + ω

h
F̄

(0,l)
4 − kl√

h
F̄

(0,l)
2 = 0 ,

F̄
′(0,l)
4 +

−mf (z − 1)(µ2
0 − 12) + 4izω

√
h

(z − 1)z(µ2
0 − 12)

√
h

F̄
(0,l)
4 +

qfµ0(1− z) + ω

h
F̄

(0,l)
3 − kl√

h
F̄

(0,l)
1 = 0 .

(4.71)

Then the spectral function is calculated from

Ā(ω, kx +Kl, ky) = =

[
F̄

(0,l)
1 (ε)

F̄
(0,l)
2 (ε)

+
F̄

(0,l)
3 (ε)

F̄
(0,l)
4 (ε)

]
. (4.72)

After the transformation above we can state wavefunctions F (s,l)
±1,2 in terms of F̄ (s,l)

1,2,3,4

as following

F
(s,l)
+1 =

(λ− δ)F̄ (s,l)
1 + (λ+ δ)F̄

(s,l)
3

2(λ− δ)
,

F
(s,l)
+2 =

(λ− δ)F̄ (s,l)
2 + (λ+ δ)F̄

(s,l)
4

2(λ− δ)
,

F
(s,l)
−1 = − F̄

(s,l)
3

λ− δ
,

F
(s,l)
−2 = − F̄

(s,l)
4

λ− δ
.

(4.73)
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Figure 4.4: The plot of the peak of spectral function A(ω, kx, ky = 2kx) at kF =
2.4548 for qf = 1.7, µ0 = 2.257, ∆ = 1 above the critical temperature, Tc, as a
function of ω calculated from (4.72).

Therefore, we can state the spectral function A(ω, kx + Kl, ky) in (4.70) at zeroth

order as

A(ω, kx +Kl, ky) = =

 (λ−δ)F̄ (0,l)
1 (ε)+(λ+δ)F̄

(0,l)
3 (ε)

2(λ−δ)

(λ−δ)F̄ (0,l)
2 (ε)+(λ+δ)F̄

(0,l)
4 (ε)

2(λ−δ)

+
− F̄

(0,l)
3 (ε)

λ−δ

− F̄
(0,l)
4 (ε)

λ−δ


= =

[
(λ− δ)F̄ (0,l)

1 (ε) + (λ+ δ)F̄
(0,l)
3 (ε)

(λ− δ)F̄ (0,l)
2 (ε) + (λ+ δ)F̄

(0,l)
4 (ε)

+
F̄

(0,l)
3 (ε)

F̄
(0,l)
4 (ε)

]
.

(4.74)

After SO(2) rotation we can also plot the spectral function for non-zero kx and

ky values as seen in Fig.s 4.4, 4.5, 4.6 . Fig. 4.4 is the plot of the spectral function

A(ω, kx, ky = 2kx) as a function of ω. There is a peak at small frequency such that

kF = 2.4548 for parameters qf = 1.7, µ0 = 2.257, ∆ = 1 above and at the critical

temperature. Similarly, we plotted the spectral function as a function of ky as seen

Fig. 4.5 for the same parameters and at tiny frequency. The plot shows a peak at

ky = 2.195 such that kF =
√
k2
x + k2

y = 2.4548. Finally, Fig. 4.6 show the Fermi

surface at tiny frequency for l = 1, 0,−1 from left to right respectively.
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Figure 4.5: The plot of the peak of spectral function A(ω = −0.0001, kx = 1.098, ky)
at kF = 2.4548 for qf = 1.7, µ0 = 2.257, ∆ = 1 above the critical temperature, Tc,
calculated from (4.72).

Zeroth Order Analytical Solution to Dirac Equations

At finite temperature, in T/µ� 1 limit the near horizon region spacetime is AdS2×

Rd−1 and the metric can be written as [76]

ds2 =
R2

2

ζ2

−(1− ζ2

ζ2
0

)dt2 +
dζ2

1− ζ2

ζ2
0

+ µ∗
2R2dx2 + µ∗

2R2dy2 (4.75)

and the U(1) gauge field is

At =
ed
ζ

(
1− ζ

ζ0

)
. (4.76)

From this metric the temperature can also be calculated and found as

T =
1

2πζ0

. (4.77)

Varying action (4.29) we obtain Dirac equation

(
∂ζ − iσ3ω + qfAt

f

)
Φ̃(0,l) =

R2

ζ
√
f

(
mfσ

2 + m̃σ1
)

Φ̃(0,l) (4.78)

90



Figure 4.6: The plot of the peak of spectral function A(ω = −0.0001, kx + Kl, ky)
for qf = 1.56, µ0 = 2.257, ∆ = 1 above the critical temperature, Tc, calculated from
(4.72).

where f(ζ) = 1− ζ2

ζ2
0
, R2 = 1√

d(d−1)
R and

Φ̃(0,l) ≡

ỹ
z̃

 ≡ 1√
2

(1 + iσ1)(−ggζζ)−1/4ψ(0,l) . (4.79)

From (4.78) we can write

(
∂ζ − i

ω + qfAt
f

)
ỹ(0,l) =

R2

ζ
√
f

(−imf + m̃) z̃(0,l)(
∂ζ + i

ω + qfAt
f

)
z̃(0,l) =

R2

ζ
√
f

(imf + m̃) ỹ(0,l)

(4.80)

91



Then for the upper component ỹ(0,l) we obtain the equation

∂2
ζ ỹ

(0,l) +
2ζ2 − ζ2

0

ζ(ζ2 − ζ2
0 )
∂ζ ỹ

(0,l)

+

− ν2
kl

ζ2 − ζ4

ζ2
0

+

[
ω + qed

(
1
ζ
− 1

ζ0

)]2

1− 2ζ2

ζ2
0

+ ζ4

ζ4
0

+

q2e2d
ζ2
0

(
1− 1

ζ2

ζ20

)
− iqed

ζ2
0

(
1− 1

ζ
ζ0

)
− iω

ζ

1− 2ζ2

ζ2
0

+ ζ4

ζ4
0

 ỹ(0,l) = 0

(4.81)

where we set mf = 0 and m̃ = −kl (−1)α

z∗R
with α = 1, 2 for ỹ and z̃ respectively and

νkl =
√
m̃2R2

2 − q2e2
d. From now on we will use qf = q for simplicity since the charge

of the scalar field doesn’t play a role in this part. Then the two independent solutions

to this equation are

ỹ(0,l) ∼
(

1 +
ζ0

ζ

)∓νkl (ζ0 + ζ

ζ0 − ζ

) iζ0ω
2

× 2F1

(
±νkl − iqed,

1

2
± νkl + iqed − iζ0ω; 1± 2νkl ;

2ζ

ζ + ζ0

)
,

(4.82)

or

ỹ(0,l) =

(
ζ0 + ζ

ζ0 − ζ

) iζ0ω
2

×
[
cin

(
1 +

ζ0

ζ

)−νkl
2F1

(
νkl − iqed,

1

2
+ νkl + iqed − iζ0ω; 1 + 2νkl ;

2ζ

ζ + ζ0

)
+ cout

(
1 +

ζ0

ζ

)νkl
2F1

(
−νkl − iqed,

1

2
− νkl + iqed − iζ0ω; 1− 2νkl ;

2ζ

ζ + ζ0

)]
.

(4.83)
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These solutions are linear combinations of incoming and outgoing solutions as

ỹ(0,l) = (ζ − ζ0)−
iω

4πT cinỹ
(0,l)
in + (ζ − ζ0)

iω
4πT coutỹ

(0,l)
out

= (ζ − ζ0)−
iωζ0

2 cinỹ
(0,l)
in + (ζ − ζ0)

iωζ0
2 coutỹ

(0,l)
out .

(4.84)

We require the solution to be an incoming wave at the horizon (i.e. ∼ (ζ − ζ0)−
iωζ0

2 ).

Therefore, we expand the solution around ζ0 and we find that

cin = cout
(−1)1−2νklΓ(1− 2νkl)Γ(νkl − iqed)Γ

(
1
2

+ iqed + νkl − iζ0ω
)

Γ(2νkl + 1)Γ(−iqed − νkl)Γ
(

1
2

+ iqed − νkl − iζ0ω
) , (4.85)

or substituting T = 1
2πζ0

and using the identity Γ(1 + t) = tΓ(t) for Gamma functions

we obtain

cin = (−1)2−2νklcout
(iqed + νkl)

(iqed − νkl)
·

Γ(−2νkl)Γ(1 + νkl − iqed)Γ
(

1
2

+ iqed + νkl − iω
2πT

)
Γ(2νkl)Γ(1− iqed − νkl)Γ

(
1
2

+ iqed − νkl − iω
2πT

) .

(4.86)

We can use the transformation of hypergeometric functions which are given by

Abramowitz and Stegun, in 1964 as

F (a, b; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

z−a2F1

(
a, a− c+ 1; a+ b− c+ 1; 1− 1

z

)
+

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

(1− z)c−a−bza−c2F1

(
c− a, 1− a; c− a− b+ 1; 1− 1

z

)
with (|arg(1− z)| < π, |1− z| < 1) .

(4.87)
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Then the two linearly independent solutions are

ỹ(0,l) =

(
1 +

ζ0

ζ

) 1
2

+iqed−
iωζ0

2

×
[
cin

(
ζ0

ζ
− 1

)− iωζ0
2

2F1

(
1

2
− νkl + iqed − iωζ0,

1

2
+ νkl + iqed − iωζ0;

1

2
− iωζ0;

ζ − ζ0

2ζ

)
+ cout

(
ζ0

ζ
− 1

) 1
2

+
iωζ0

2

2F1

(
1− νkl + iqed, 1 + νkl + iqed;

3

2
+ iωζ0;

ζ − ζ0

2ζ

)]
(4.88)

Similarly, we can find the two linearly independent solutions for lower component z̃

as the following.

z̃(0,l) =

(
1 +

ζ0

ζ

) 1
2
−iqed+

iωζ0
2

×
[
cin

(
ζ0

ζ
− 1

) iωζ0
2

2F1

(
1

2
− νkl − iqed + iωζ0,

1

2
+ νkl − iqed + iωζ0;

1

2
+ iωζ0;

ζ − ζ0

2ζ

)
+ cout

(
ζ0

ζ
− 1

) 1
2
− iωζ0

2

2F1

(
1− νkl − iqed, 1 + νkl − iqed;

3

2
− iωζ0;

ζ − ζ0

2ζ

)]
(4.89)

Earlier we defined (4.79) the spinor field near horizon region can be found by solving

the equation for Φ(0,l) = 1√
2
(1− iσ1)Φ̃(0,l). Near the AdS2 boundary, i.e. ζ → 0, Dirac

equation becomes

(ζ∂ζ − iσ3qed)Φ̃
(0,l) = R2(mfσ

2 + m̃σ1)Φ̃(0,l) . (4.90)

We write Φ̃(0,l) = 1√
2
(1 + iσ1)Φ(0,l) in (4.90) then we find

ζ∂ζ(1 + iσ1)Φ(0,l) =
[
R2(mfσ

2 + m̃σ1) + iσ3qed
]

(1 + iσ1)Φ(0,l) . (4.91)
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which gives

ζ∂ζ

y + iz

iy + z

 =

(iqed + (mf + im̃)R2) −(qed + (imf − m̃)R2)

(qed + (imf + m̃)R2) −i(qed − (imf + m̃)R2)

y
z

 (4.92)

finally we obtain [120]

ζ∂ζΦ
(0,l) = UΦ(0,l) , U =

 mfR2 m̃R2 − qed
m̃R2 + qed −mfR2

 . (4.93)

The boundary behavior of Φ(0,l) can be written as

Φ(0,l) = Av
(0,l)
− ζ−νkl (1 +O(ζ)) +B v

(0,l)
+ ζνkl (1 +O(ζ)) . (4.94)

The coefficients v(0,l)
± can be found by substituting (4.94) in (4.93) as

v
(0,l)
± =

mfR2 ± νkl
m̃R2 + qed

 (4.95)

where we chose the normalization so that the bottom components are the same. Then

the retarded AdS2 Green’s function is obtained from

GR =
B

A
(4.96)

near AdS2 boundary. To find the retarded AdS2 Green’s function let us write

Φ̃(0,l) = cout

(m̃− imf )y
(0,l)
out

−z(0,l)
out

+ cin

 −y(0,l)
in

(m̃+ imf )z
(0,l)
in

 (4.97)
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where

y
(0,l)
out =

1√
2

(
ỹ

(0,l)
out − iz̃

(0,l)
out

)
y

(0,l)
in =

1√
2

(
ỹ

(0,l)
in − iz̃(0,l)

in

)
z

(0,l)
out =

1√
2

(
−iỹ(0,l)

out + z̃
(0,l)
out

)
z

(0,l)
in =

1√
2

(
−iỹ(0,l)

in + z̃
(0,l)
in

)
(4.98)

with

ỹ
(0,l)
out =

(
1 +

ζ0

ζ

) 1
2

+iqed−
iωζ0

2
(
ζ0

ζ
− 1

) 1
2

+
iωζ0

2

× 2F1

(
1− νkl + iqed, 1 + νkl + iqed;

3

2
+ iωζ0;

ζ − ζ0

2ζ

)
,

ỹ
(0,l)
in =

(
1 +

ζ0

ζ

) 1
2

+iqed−
iωζ0

2
(
ζ0

ζ
− 1

)− iωζ0
2

× 2F1

(
1

2
− νkl + iqed − iωζ0,

1

2
+ νkl + iqed − iωζ0;

1

2
− iωζ0;

ζ − ζ0

2ζ

)
,

z̃
(0,l)
out =

(
1 +

ζ0

ζ

) 1
2
−iqed+

iωζ0
2
(
ζ0

ζ
− 1

) 1
2
− iωζ0

2

× 2F1

(
1− νkl − iqed, 1 + νkl − iqed;

3

2
− iωζ0;

ζ − ζ0

2ζ

)
,

z̃
(0,l)
in =

(
1 +

ζ0

ζ

) 1
2
−iqed+

iωζ0
2
(
ζ0

ζ
− 1

) iωζ0
2

× 2F1

(
1

2
− νkl − iqed + iωζ0,

1

2
+ νkl − iqed + iωζ0;

1

2
+ iωζ0;

ζ − ζ0

2ζ

)
.

(4.99)

The retarded AdS2 Green’s function can be found by expanding around ζ = 0.

Therefore, we obtain

GR = (4πT )2νkl
(mf − im̃)R2 + iqed + νkl
(mf − im̃)R2 + iqed − νkl

·
Γ(−2νkl)Γ(1 + νkl − iqed)Γ

(
1
2

+ iqed + νkl − iω
2T

)
Γ(2νkl)Γ(1− iqed − νkl)Γ

(
1
2

+ iqed − νkl − iω
2T

) .

(4.100)
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The zeroth order Dirac equation in the near region at finite temperature can be

reorganized as

∂ζΦ̃
(0,l)
α − iσ3ω + qAt0

f
Φ̃(0,l)
α − R2

ζ
√
f

(
mfσ

2 + m̃σ1
)

Φ̃(0,l)
α = 0 (4.101)

where At0 = ed
ζ

(
1− ζ

ζ0

)
. To be able to expand in small ω we make a change of

variable as u = ωζ and u0 = ωζ0 where the inner region is ε < u < ∞ and outer

region is u < ε, where ε� 1. Then we will compare the solutions in the overlapping

region which is u → 0. After the coordinate transformation and setting mf = 0 we

can write

∂uΦ̃
(0,l)
α − iσ3

1 + qed

(
1
u
− 1

u0

)
f(u)

Φ̃(0,l)
α − m̃R2

u
√
f(u)

σ1Φ̃(0,l)
α = 0 (4.102)

where f(u) = 1− u2

u2
0
. Then the second order differential equation is

∂2
uΦ̃

(0,l)
α − h′11

h11

Φ̃(0,l)
α −

(
h2

11 + h2
22 + (−1)α

h22h
′
11

h11

− (−1)αh22

)
Φ̃(0,l)
α = 0 (4.103)

where

h11 = − m̃R2

u
√
f(u)

, h22 = i
1 + qed

(
1
u
− 1

u0

)
f(u)

. (4.104)

Solving the equations we find the incoming and outgoing solutions as

ỹ(0,l) =cout

(
u+ u0

u

)νkl (u− u0

u+ u0

)−iu0
2

× 2F1

(
−iqed − νkl ,

1

2
+ iqed − iu0 − νkl , 1− 2νkl ,

2u

u+ u0

)
+ cin

(
u

u+ u0

)νkl (u− u0

u+ u0

)−iu0
2

× 2F1

(
−iqed + νkl ,

1

2
+ iqed − iu0 + νkl , 1 + 2νkl ,

2u

u+ u0

)
(4.105)
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and

z̃(0,l) =cout

(
u+ u0

u

)νkl (u− u0

u+ u0

)iu0
2

2F1

(
iqed − νkl ,

1

2
− iqed + iu0 − νkl , 1− 2νkl ,

2u

u+ u0

)
+ cin

(
u

u+ u0

)νkl (u− u0

u+ u0

)iu0
2

2F1

(
iqed + νkl ,

1

2
− iqed + iu0 + νkl , 1 + 2νkl ,

2u

u+ u0

)
.

(4.106)

where νkl =
√
m̃2 − q2e2

d. After transformation of the Hypergeometric function we

can also write the upper component of Φ̃
(0,l)
α as

ỹ(0,l) =cin

(
1 +

u0

u

) 1
2

+i(qed−u0
2 ) (u0

u
− 1
)− iu0

2

× 2F1

(
1

2
+ iqed − νkl − iu0,

1

2
+ iqed − iu0 + νkl ,

1

2
− iu0,

u− u0

2u

)
+ cout

(
1 +

u0

u

) 1
2

+i(qed−u0
2 ) (u0

u
− 1
)1+i

u0
2

× 2F1

(
1 + iqed − νkl , 1 + iqed + νkl ,

3

2
+ iu0,

u− u0

2u

)
.

(4.107)

4.4.4 First Order Solution to Dirac Equations

First Order Numerical Solution to Dirac Equations

Below the critical temperature the first order Dirac equations before rotation are

∂zψ
(1,l)
αj − i

qfµ0(1− z) + ω

h
σ2ψ

(1,l)
αj +

kx +Kl√
h

σ3ψ
(1,l)
αj −

ky√
h
σ1ψ

(1,l)
βm +A = 0 (4.108)

where

A =−
(
Qzz11

4
ψ

(0,l−1)′

αj +
Qzz11

4
ψ

(0,l+1)′

αj +
Qzz10

2
ψ

(0,l)′

αj

)
+M(0,l−1)

α ψ
(0,l−1)
αj

+M(0,l+1)
αj ψ

(0,l+1)
αj +M(0,l)

αj ψ
(0,l)
αj +

Qyy11

4
√
h
σ1ψ

(0,l−1)
βm +

Qyy11

4
√
h
σ1ψ

(0,l+1)
βm +

Qyy10

2
√
h
σ1ψ

(0,l)
βm ,

(4.109)

98



M(0,l)
αj =i

[
(qfµ0(1− z) + ω)Qtt10

2h
− qf (1− z)At10

h

]
σ2 − α(kx +Kl)Qxx10

2
√
h

σ1 ,

(4.110)

M(0,l∓1)
αj =i

[
(qfµ0(1− z) + ω)Qtt11

4h
− qf (1− z)At11

2h

]
σ2 ± αkQzz11

4
√
h

σ1

− α(±k + kx +K(l ∓ 1))Qxx11

4
√
h

σ1

(4.111)

where α = +,−, j = 1, 2 and β = −α, m = 3− j.

The first order Dirac equations show us that the (l ± 1), and (l) modes of the

zeroth order spinor fields are mixed with each other.

Applying ingoing boundary conditions at the horizon we can write

ψ
(1,l)
+,1 (z) = (1− z)−

iω
4πT F

(1,l)
1 (z) ,

ψ
(1,l)
+,2 (z) = (1− z)−

iω
4πT F

(1,l)
2 (z) ,

ψ
(1,l)
−,1 (z) = (1− z)−

iω
4πT F

(1,l)
3 (z) ,

ψ
(1,l)
−,2 (z) = (1− z)−

iω
4πT F

(1,l)
4 (z) . (4.112)

After doing the similar calculations for the first order and applying the ingoing

boundary conditions we obtain the first order Dirac equations. When we calculate

the retarded Green’s function from (4.49) we see that there is no contribution to the

Green’s function at first order. We solve the first order equations to use them in

solving the second order equations.

First Order Analytical Solution to Dirac Equations

At the first order we can write the Dirac equations as

− mR2

ζ
√
f
σ2Φ̃(1,l)

α + ∂ζΦ̃
(1,l)
α − i

f
σ3 (ω + qAt0) Φ̃(1,l)

α +
klR2

ζ
√
fµ∗R

(−1)ασ1Φ̃(1,l)
α + Ã(0,l′)

α,β = 0

(4.113)
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where

Ã(0,l′)
α,β =−

(
1

4
Qzz11Φ̃(0,l−1)′

α +
1

4
Qzz11Φ̃(0,l+1)′

α +
1

2
Qzz10Φ̃(0,l)′

α

)
+M(0,l−1)

α Φ̃(0,l−1)
α

+M(0,l+1)
α Φ̃(0,l+1)

α +M(0,l)
α Φ̃(0,l)

α +N (0,l−1)
β Φ̃

(0,l−1)
β +N (0,l+1)

β Φ̃
(0,l+1)
β +N (0,l)

β Φ̃
(0,l)
β ,

(4.114)

with

M(0,l∓1)
α =

i
[
qed

(
ζ0
ζ
− 1
)
Qtt11 + 2q(ζ − ζ0)At11

]
4ζ0f

σ3 + (−1)α
±k (k1 +K(l ∓ 1)) m̃R2Qzz11

4zk2
l∓1

σ1

+
(−1)αm̃R2

4z
√
fk2

l∓1

×
[ (
k2
l∓1 − (k1 +K(l ∓ 1))2)Qyy11 + (k1 +K(l ∓ 1)) (k1 ± k +K(l ∓ 1))Qxx11

]
σ1 ,

(4.115)

M(0,l)
α =

i
[
qed

(
ζ0
ζ
− 1
)
Qtt10 + 2q(ζ − ζ0)At10

]
2ζ0f

σ3

+ (−1)α
m̃R2 [(k1 +Kl)2Qxx10 − ((k1 +Kl)2 − k2

l )Qyy10]

2zkl
√
f

σ1 ,

(4.116)

N (0,l∓1)
β =

(−1)αm̃R2 (k1 +K(l ∓ 1) + kl∓1) [(k1 ± k +K(l ∓ 1))Qxx11 − (k1 +K(l ∓ 1))Qyy11]

4z
√
fk2

l∓1

σ1

± (−1)αm̃R2 (k1 +K(l ∓ 1) + kl∓1) kQzz11

4z
√
fk2

l∓1

σ1 ,

(4.117)

N (0,l)
β = (−1)α

m̃R2 (k1 +Kl − (1)αkl) (Qxx10 −Qyy10)

2z
√
fk2

l

σ1 . (4.118)

where we defined m̃ = kl
µ∗R

.

As in the zero temperature case [117] we divide the spacetime in two regions, i.e.

near region and far regionant then compare the solutions in the overlapping region

which is u→ 0.
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In the near region the first order Dirac equation is

∂ζΦ̃
(1,l)
α − iσ3ω + qfAt

f
Φ̃(1,l)
α − R2

ζ
√
f

(
mfσ

2 + m̃σ1
)

Φ̃(1,l)
α

+
iq

ζ0

(
1 + ζ

ζ0

)σ3
∑

β;l′=l±1

Mαβ,ll′Φ̃
(0,l′)
β = 0

(4.119)

with

Mαβ,ll′Φ̃
(0,l′)
β =

iqAt11

2ζ0

(
1 + ζ

ζ0

)σ3Φ̃
(0,l′)
β +

iqAt10

ζ0

(
1 + ζ

ζ0

)σ3Φ̃
(0,l′)
β (4.120)

where we used the boundary condition that at the boundary of the near region Qtt =

Qzz = Qxx = Qyy = 1. After the coordinate transformation the second order equation

is

∂2
uΦ̃

(1,l)
α −h

′
11

h11

Φ̃(1,l)
α −

(
h2

11 + h2
22 + (−1)α

h22h
′
11

h11

− (−1)αh22

)
Φ̃(1,l)
α +X l

αj = 0 (4.121)

where

X l
αj =

∑
β;l′=l±1,l

X(αβ,ll′) (4.122)

with

X(αβ,ll′) =
iq(−(−1)αh11 + h22)Mαβ,ll′Φ̃

(0,l′)
β

u+ u0

− (−1)αh11∂u

(
iqMαβ,ll′Φ̃

(0,l′)
β

(u+ u0)h11

)
(4.123)

The first order inhomogeneous Dirac equations can be solved by using the

homogeneous solution with the help of Green’s function. Let us review the solution

of non-homogeneous differential equation with Green’s function. For the boundary

value problem
d

du

(
p(u)

dy(u)

du

)
+ q(u)y(u) = f(u) , (4.124)

with y(a) = 0, y′(b) = 0 the solution is of the form

y(u) =

∫ b

a

G(u, u′)f(u′)du′ , (4.125)
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where Green’s function is defined as

G(u, u′) =


y1(u′)y2(u)

pW
a ≤ u′ ≤ u

y1(u)y2(u′)
pW

u ≤ u′ ≤ b
(4.126)

where W is the Wronskian for homogeneous solution.

As mentioned earlier in zero temperature case the solution for inhomogeneous

equations are going to be found in terms of homogeneous solutions at zeroth order.

To solve these inhomogeneous differential equations we are going to follow the same

steps as followed in [117] and as we followed in zero temperature case. We will use

the similar notation. The special solution to the inhomogeneous equation is found

from Green’s function

G
(l)
αj(u, u

′) =
η1
l
αjη2

l
αjθ(u− u′) + η1

l
αjη2

l
αjθ(u

′ − u)

W (u)
. (4.127)

where we defined η1
l
αj = Φ̃

(0,l),in
αj and η2

l
αj = Φ̃

(0,l),out
αj . The W (u) term in the Green’s

function above is the Wronskian determinant of the system which can be stated as

W (u) = η1
l
αj∂uη2

l
αj − η2

l
αj∂uη1

l
αj . (4.128)

Then the near horizon region Wronskian is found to be

W (u) = c0
−5u+ 9u0√

u− u0

. (4.129)

Then the special solution to the first order Dirac equations at finite temperature is

ηs,canonical
(1,l)
(αj,βl′)(u) = η1

l
αj

∫ u

0

du′
η2
l
αjX(αj,βl′)

W (u′)
+ η2

l
αj

∫ ∞
x

du′
η1
l
αjX(αj,βl′)

W (u′)
. (4.130)

To fix the coefficients of ingoing homogeneous solutions we change the integration

limits and set the upper limit of the first integral to ∞. Then we find the special
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solution as

ηs
(1,l)
(αj,βl′)(u) = −η1

l
αj

∫ ∞
u

du′
η2
l
αjX(αj,βl′)

W (u′)
+ η2

l
αj

∫ ∞
u

du′
η1
l
αjX(αj,βl′)

W (u′)
. (4.131)

The near region solution can be written with the contribution from infalling

homogeneous solution as

Φ̃
(1,l)
αj = ηs

(1,l)
(αj)(u) + c4η1

l
αj(u) (4.132)

with an arbitrary constant c4 which can be set to zero due to the fact that Green’s

functions are independent of normalization.

Remember that we use matching method therefore we need the behavior of this

special solution at the boundary of the near horizon region, i.e. u � 1. To analyze

the boundary of the near region we separate the integral in the special solution into

two parts as following.

ηs
(1,l)
(αj,βl′)(u) =− η1

l
αj

∫ ∞
ε

du′
η2
l
αjX(αj,βl′)

W (u′)
+ η2

l
αj

∫ ∞
ε

du′
η1
l
αjX(αj,βl′)

W (u′)

− η1
l
αj

∫ ε

u

du′
η2
l
αjX(αj,βl′)

W (u′)
+ η2

l
αj

∫ ε

u

du′
η1
l
αjX(αj,βl′)

W (u′)
.

(4.133)

The first two terms can be calculated as constants as ε is a non-zero constant. Now,

we will analyze the u-dependence of the third and the fourth terms above by using

the asymptotic values of the homogeneous solutions, i.e.

η1
l
αj ∼ ωνkl

(
u−νkl + G̃IRuνkl

)
, η2

l
αj ∼ ωνkl

(
u−νkl + G̃†IRu

νkl

)
. (4.134)

To obtain the ω-dependence of the non-homogeneous solution we make a linear

transformation in which the special solution is invariant, i.e.

η1
l
αj = a1αju

−νkl + a2αju
νkl , η2

l
αj = a1αju

−νkl + a2αju
νkl . (4.135)
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Therefore, we find the ω-dependence of the special solution at the boundary of the

near region as

ηs
(1,l)
(αj,βl′)(u) ≈uνklωνkl′n1

(1,l)
(αj,βl′) + u−νklωνkl′n2

(1,l)
(αj,βl′)

+ uνkl′ωνkl′n3
(1,l)
(αj,βl′) + u−νkl′ωνkl′n4

(1,l)
(αj,βl′)

(4.136)

where the coefficients are calculated as

n1
(1,l)
(αj,βl′) = ω−νkl′

∫ ε

∞
dz
ηl1αjX

l
(αj,βl′)

W (z)

+
iqMαβ,ll′

9(−u0)3/2
[−2(−1)α + 2iqed + (−1)αm̃R2 + (−1)αm̃′R2]

×
[
ε−νkl−νkl′

νkl + νkl′
v

(0,l′)
−βj +

ενkl+νkl′

νkl − νkl′
G̃l′β v

(0,l′)
+βj

]
,

(4.137)

n2
(1,l)
(αj,βl′) = −ω−νkl′

∫ ε

∞
dz
ηl2αjX

l
(αj,βl′)

W (z)

+
iqMαβ,ll′

9(−u0)3/2
[−2(−1)α + 2iqed + (−1)αm̃R2 + (−1)αm̃′R2]

×
[
ενkl−νkl′

νkl − νkl′
v

(0,l′)
−βj +

ενkl+νkl′

νkl + νkl′
G̃l′β v

(0,l′)
+βj

]
,

(4.138)

n3
(1,l)
(αj,βl′) =

2iqMαβ,ll′

9(−u0)3/2
[−2(−1)α + 2iqed + (−1)αm̃R2 + (−1)αm̃′R2] G̃l′β v

(0,l′)
+βj ,

(4.139)

n4
(1,l)
(αj,βl′) = −2iqMαβ,ll′

9(−u0)3/2
[−2(−1)α + 2iqed + (−1)αm̃R2 + (−1)αm̃′R2] v

(0,l′)
−βj (4.140)

The explicit ω dependence of this solution scales as ωνkl+νkl′ , ωνkl′−νkl , ω2νkl′ , and ω0.

The non-analyticity due to the possibility of having νkl′ − νkl < 0 can be overcome

by adding a homogeneous solution. Then the non-homogeneous solution is

ψ̃
(1,l)
αj,βl′(u) = ηs

(1,l)
(αj,βl′)(u) + c4η

(0,l)
αj (u) . (4.141)
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Substituting η(0,l)
αj (u) = (u−νkl + G̃IRuνkl ) one will see that the best choice for c4 is

c4 = −ωνkl′nl2αjβl′ . (4.142)

Finally, the first order near region solution is obtained as

ψ̃
(1,l)
αj,βl′(u) ' uνklωνkl′ ñl1αjβl′ + uνkl′ωνkl′nl3αjβl′ + u−νkl′ωνkl′nl4αjβl′

' uνklωνkl+νkl′ ñl1αjβl′ + uνkl′ω2νkl′nl3αjβl′ + u−νkl′nl4αjβl′
(4.143)

where

ñ1αjβl′ = nl1αjβl′ − (−1)jG̃IRnl2αjβl′ . (4.144)

We were able to eliminate the non-analyticity of first order solution in the near

region due to ω terms but looking at the coefficients (4.138), (4.139), (4.140) we can

see that this solution blows up in the degenerate case, i.e. νkl = νkl′ .

Degenerate case νkl = νkl′ :

The issue of divergency in the degenerate case in the near region solutions can be

addressed by expanding the first order (4.136) solution in νkl → νkl′ limit. Then we

find at first order

ηs
(1,l)
(αj,βl′)(u) ≈uνklωνkld1

(1,l)
(αj,βl′) + u−νklωνkld2

(1,l)
(αj,βl′) + uνklωνkl (lnω)d3

(1,l)
(αj,βl′)

+ uνklωνkl (ln ζ)d3
(1,l)
(αj,βl′) + u−νklωνkl (lnω)d4

(1,l)
(αj,βl′)

+ u−νklωνkl (ln ζ)d4
(1,l)
(αj,βl′)

(4.145)

with the coefficients

d1
(1,l)
(αj,βl′) = ω−νkl

∫ ε

∞
dz
ηl1αjX

l
(αj,βl′)

W (z)
−ml

αj,βl′

[
ε−2νkl

−2νkl
v

(0,l′)
−βj +

(
1

2νkl
+ ln ε

)
G̃l′β v

(0,l′)
+βj

]
,

(4.146)
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d2
(1,l)
(αj,βl′) = −ω−νkl

∫ ε

∞
dz
ηl2αjX

l
(αj,βl′)

W (z)
+ml

αj,βl′

[(
− 1

2νkl
+ ln ε

)
v

(0,l′)
−βj +

ε2νkl

2νkl
G̃l′β v

(0,l′)
+βj

]
,

(4.147)

d3
(1,l)
(αj,βl′) = ml

αj,βl′G̃l
′

β v
(0,l′)
+βj , (4.148)

d4
(1,l)
(αj,βl′) = −ml

αj,βl′v
(0,l′)
−βj (4.149)

where we defined

ml
αj,βl′ = qMαβ,ll′

[
−2(−1)α + 2iqed + (−1)αm̃R2 + (−1)βm̃′R2

]
. (4.150)

We repeat the procedure for eliminating irregular terms as ω → 0 for degenerate case

as well.

ψ̃s
(1,l)

(αj,βl′)(u) ≈uνklωνkl d̃1
(1,l)

(αj,βl′) + 2uνklωνkl (lnω)d3
(1,l)
(αj,βl′)

+ uνklωνkl (ln ζ)d3
(1,l)
(αj,βl′) + u−νklωνkl (lnω)d4

(1,l)
(αj,βl′)

+ u−νklωνkl (ln ζ)d4
(1,l)
(αj,βl′)

(4.151)

or the explicit ω dependence can be written as

ψ̃s
(1,l)

(αj,βl′) ≈ζνklω2νkl d̃1
(1,l)

(αj,βl′) + 2ζνklω2νkl (lnω)d3
(1,l)
(αj,βl′)

+ ζνklω2νkl (ln ζ)d3
(1,l)
(αj,βl′) + ζ−νkl (ln ζ)d4

(1,l)
(αj,βl′)

(4.152)

where we added the terms
(
−ωνkld2

(1,l)
(αj,βl′)η

(0,l)
αj (u)

)
and

(
−ωνkl lnω d4

(1,l)
(αj,βl′)

v
(0,l′)
+βj

v
(0,l′)
−βj

η
(0,l)
αj (u)

)
respectively and remembering that d3

(1,l)
(αj,βl′) =

v
(0,l′)
+βj

v
(0,l′)
−βj
Gl′βd4

(1,l)
(αj,βl′). We also defined

d̃
(1,l)
1(αj,βl′) = d1

(1,l)
(αj,βl′) − (−1)jd2

(1,l)
(αj,βl′)G

l
α . (4.153)
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4.4.5 Second Order Solution to Dirac Equations

Second Order Numerical Solution to Dirac Equations

The second order Dirac equations are

∂zψ
(2,l)
αj − i

qfµ0(1− z) + ω

h
σ2ψ

(2,l)
αj +

kx +Kl√
h

σ3ψ
(2,l)
αj −

ky√
h
σ1ψ

(2,l)
βm + B = 0 (4.154)

where

B =−
(
Qzz11

4
ψ

(1,l−1)′

αj +
Qzz11

4
ψ

(1,l+1)′

αj +
Qzz10

2
ψ

(1,l)′

αj

)
+

3

32
Q2
zz11

(
ψ

(0,l−2)′

αj + ψ
(0,l+2)′

αj

)
+

3

8
Qzz10Qzz11

(
ψ

(0,l−1)′

αj + ψ
(0,l+1)′

αj

)
+

3

16

(
2Q2

zz10 +Q2
zz11

)
ψ

(0,l)′

αj

+M(0,l−1)
αj ψ

(1,l−1)
αj +M(0,l+1)

αj ψ
(1,l+1)
αj +M(0,l)

αj ψ
(1,l)
αj +M(0,l−2)

αj ψ
(0,l−2)
αj +M(0,l+2)

αj ψ
(0,l+2)
αj

+M(2,l)
αj ψ

(0,l)
αj +

Qyy11

4
√
h
σ1ψ

(1,l−1)
βm +

Qyy11

4
√
h
σ1ψ

(1,l+1)
βm +

Qyy10

2
√
h
σ1ψ

(1,l)
βm

+N (0,l−1)
βm ψ

(0,l−1)
βm +N (0,l+1)

βm ψ
(0,l+1)
βm +N (0,l)

βm ψ
(0,l)
βm +N (0,l−2)

βm ψ
(0,l−2)
βm +N (0,l+2)

βm ψ
(0,l+2)
βm ,

(4.155)

M(2,l)
αj =− i

[
3 (qfµ0(1− z) + ω) (2Q2

tt10 +Q2
tt11)

16h
− qf (1− z)(2Qtt10At10 +Qtt11At11)

4h

]
σ2

+ α
3(kx +Kl)(2Q2

xx10 +Q2
xx11)

16
√
h

σ1 ,

(4.156)

M(0,l∓2)
αj =i

[
−3 (qfµ0(1− z) + ω)Q2

tt11

32h
+
qf (1− z)Qt11At11

8h

]
σ2 ∓ αkQ2

zz11

8
√
h

σ1

+ α
3(±2k + kx +K(l ∓ 2))Q2

xx11

32
√
h

σ1 ∓ αkQxx11Qzz11

16
√
h

σ1

(4.157)

N (0,l±2)
βm = −

3Q2
yy11

32
√
h
σ1 , N (0,l±1)

βm = −3Qyy11Qyy10

8
√
h

σ1 , N (0,l)
βm = −

3
(
2Q2

yy10 +Q2
yy11

)
16
√
h

σ1 ,

(4.158)
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Figure 4.7: Plot of spectral function A(ω, kx = k, ky = 2.8538) vs. ω for parameters
η
µ2

0
= 0.25, η′

µ4
0

= 0.005, q = 0, ∆ = 1, qf = 2, µ0 = 2.25072, T
µ0

= 0.0613 and for
ξ = 0.0, 0.05, 0.07, 0.1 respectively.

where α = +,−, j = 1, 2 and β = −α, m = 3 − j. The coefficients M(0,l)
αj ,M

(0,l∓1)
αj

are given in(4.110) and (4.111) respectively.

The first order Dirac equations show us that the (l± 1), (l), and (l± 2) modes of

the zeroth and first order spinor fields are mixed with each other.

The most general form of the retarded Green’s function for both degenerate and

non-degenerate cases is provided in [117] as

GR '
B

(0)
αl,αl +O(ξ4)

A
(0)
αl,αl + ξ4A

(2)
αl,αl − ξ4

∑
β=1,2

(
A

(1)
βl−1,αlA

(1)
αl,βl−1

A
(0)
βl−1,βl−1

+
A

(1)
βl+1,αlA

(1)
αl,βl+1

A
(0)
βl+1,βl+1

) . (4.159)

We do numerical calculation to find the spectral function from this retarded

Green’s function and see that there is no band gap formed in near kl → kF for

non-degenerate case.
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Retarded Green’s function gives a pole at the Fermi surface where kl = kF . Near

the Fermi surface we can write the retarded Green’s function for degenerate case

νkl → νk′l as

GRαl,αl =
A

(0)
αl,αlB

(0)
αl,αl

(A
(0)
αl,αl + ξ4A

(2)
αl,αl)

2 − ξ4A
(1)
αl,αl−1A

(1)
αl−1,αl +O(ξ6)

(4.160)

To find the retarded Green’s function we solve second order Dirac equations, i.e.

(4.154), at the boundary choosing the ingoing boundary conditions at the horizon.

Remember that near the Fermi surface the retarded Green’s functions has the form

GR =
Z

ω − vF (k − kF ) + Σ(ω, k)
(4.161)

where Σ is the self energy for fermionic excitations near Fermi surface and Z is the

residue of the pole or in other words the quasiparticle weight. Therefore, we can write

A
(0)
αl,αl + ξ4A

(2)
αl,αl = ω− vF (kl− kF ) + i(c1− ic2)ω2νkl where vF , c1, c2 are real constants

and are determined from boundary data.

The retarded Green’s function has three different cases depending on the

parameters.

For νkl >
1
2
, the system has fermionic quasiparticles and the effective theory is a

Fermi liquid. In this case the imaginary part of the self-energy behaves as ∝ ω2. Also

in this case the spectral function has a nice Lorentzian distribution centered around

ω = 0. For νkl >
1
2
the dominant linear term leads dispersion and we obtain

GRαl,αl '
(ω − vF (kl − kF ))B

(0)
αl,αl

(ω − vF (kl − kF ))2 −∆2 + ic1(ω − vF (kl − kF ))ω2νkl
. (4.162)

Near Fermi surface and small ω there are two peaks in the spectral function

(A(ω, kx, ky) = =[GR1l,1l + GR2l,2l]) of the system are found in ω = vF (kl − kF ) ±∆
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Figure 4.8: Plot of spectral function A(ω = 0.0005, kx = k, ky) vs. ky for parameters
η
µ2

0
= 0.25, η′

µ4
0

= 0.005, q = 0, ∆ = 1, qf = 1.8, µ0 = 2.25072, T
µ0

= 0.0613 and for
ξ = 0.0, 0.07, 0.075 respectively.

as seen in Fig.4.7. Here the band gap, ∆ is first order in ξ2 and is given by

∆2 = ξ4A
(1)
αl,αl−1A

(1)
αl−1,αl (4.163)

and its width can be changed by taking second order terms into account. Fig. 4.7

also shows us that the order of the gap is in the order of ξ, i.e. ω ∼ ∆ ∼ ξ2.

ξ = 0 corresponds to above critical temperature case. As we increase the ξ value

the magnitude of the gap also increases. But after a certain ξ value the perturbation

breaks down. The width of the peaks in the order of ξ2νkl therefore they can be

ignored and they will seem to be sharp peaks. For the parameters used for plotting

Fig.4.7, νkl = 1.5064 which is greater than 0.5 and shows the Fermi liquid property.

We can also observe the presence of the gap in A(ω, kx, ky) vs. ky graph as seen in

Fig.4.8 at small ω near Fermi surface region. Again perturbation breaks down near

ξ ∼ 0.08.
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On the other hand, for νkl <
1
2
, i.e. in non-Fermi liquid case the non-analytic term

dominates non-linear dispersion and we can write A(0)
αl,αl + ξ4A

(2)
αl,αl = c2ω

2νkl −vF (kl−

kF ) + ic1 − ω2νkl which gives the retarded Green’s function

GRαl,αl '
(ω2νkl − vF (kl − kF ))

(ω2νkl − vF (kl − kF ))2 −∆2 + ic1(ω2νkl − vF (kl − kF ))ω2νkl
, (4.164)

where the two peaks are at ω2νkl = vF (kl − kF ) ± ∆ and as opposed to the Fermi

liquid case both the width of the non-linear dispersion and band gap are in the order

of ξ1/2νkl .

Finally, for νkl = 1
2
, leads too marginal Fermi liquid. There is still a Fermi surface

but the self energy scaling is not quadratic in ω but =Σ ∝ ω lnω. Therefore, near

Fermi surface and ω = 0 the ω dependence of matrix elements of A are Aαl,αl =

ω + c2ω lnω − vF (kl − kF ) + ic1ω lnω.

Second Order Analytical Solution to Dirac Equations

In the near region the second order Dirac equation is

∂ζΦ̃
(2,l)
α − iσ3ω + qAt

f
Φ̃(2,l)
α − R2

ζ
√
f

(
mσ2 + m̃σ1

)
Φ̃(2,l)
α

+
iq

ζ0

(
1 + ζ

ζ0

)σ3
∑

β;l′=l±1

Mαβ,ll′Φ̃
(1,l′)
β = 0

(4.165)

with

Mαβ,ll′Φ̃
(1,l′)
β =

iqAt11

2ζ0

(
1 + ζ

ζ0

)σ3Φ̃
(1,l′)
β +

iqAt10

ζ0

(
1 + ζ

ζ0

)σ3Φ̃
(1,l′)
β (4.166)

where we used the boundary condition that at the boundary of the near region Qtt =

Qzz = Qxx = Qyy = 1. After the coordinate transformation the second order equation

is

∂2
uΦ̃

(2,l)
α − h

′
11

h11

Φ̃(2,l)
α −

(
h2

11 + h2
22 + (−1)α

h22h
′
11

h11

− (−1)αh22

)
Φ̃(2,l)
α +Y l

αj = 0 (4.167)
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where

Y l
αj =

∑
β;l′=l±1,l

Y(αβ,ll′) (4.168)

with

Y(αβ,ll′) =
iq(−(−1)αh11 + h22)Mαβ,ll′Φ̃

(1,l′)
β

u+ u0

− (−1)αh11∂u

(
iqMαβ,ll′Φ̃

(1,l′)
β

(u+ u0)h11

)
(4.169)

Similar to the first order case the special solution at second order can be written as

ηs
(2,l)
(αj,βl′)(u) =− η1

l
αj

∫ ∞
ε

du′
η2
l
αjY(αj,βl′)

W (u′)
+ η2

l
αj

∫ ∞
ε

du′
η1
l
αjY(αj,βl′)

W (u′)

− η1
l
αj

∫ ε

u

du′
η2
l
αjY(αj,βl′)

W (u′)
+ η2

l
αj

∫ ε

u

du′
η1
l
αjY(αj,βl′)

W (u′)
.

(4.170)

We substitute (4.143) and (4.135) in (4.170) and find

ηs
(2,l)
(αj,βl′)(u) ≈uνklωνkls1

(2,l)
(αj,βl′) + u−νklωνkls2

(2,l)
(αj,βl′) +

∑
l′=l±1

uνkl′ωνkls3
(2,l)
(αj,βl′)

+ uνklωνkl (ln ζ) s4
(2,l)
(αj,βl′) + u−νklωνkl (ln ζ) s5

(2,l)
(αj,βl′)

+ uνklωνkl (lnω)s4
(2,l)
(αj,βl′) + u−νklωνkl (lnω)s5

(2,l)
(αj,βl′) + . . .

(4.171)

where the coefficients are found as the following.

s1
(2,l)
(αj,βl′) = ω−νkl

∫ ε

∞
dz
ηl1αjY

l
(αj)

W (z)

+ q
∑

β;l′=l±1

Mαβ,ll′

[
ενkl′−νkl

νkl′ − νkl
N1

l′

βj,αl +N3
l′

βj,αl

(
ln ε+

1

2νkl

)
− ε−2νkl

2νkl
N4

l′

βj,αl

]
,

(4.172)

s2
(2,l)
(αj,βl′) = −ω−νkl

∫ ε

∞
dz
ηl2αjY

l
(αj)

W (z)

− q
∑

β;l′=l±1

Mαβ,ll′

[
ενkl′+νkl

νkl′ + νkl
N1

l′

βj,αl +
ε2νkl

2νkl
N3

l′

βj,αl +N4
l′

βj,αl

(
ln ε− 1

2νkl

)]
,

(4.173)
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s3
(2,l)
(αj,βl′) = q

∑
β;l′=l±1

Mαβ,ll′
2νkl

ν2
kl
− ν2

kl′

N1
l′

βj,αl , (4.174)

s4
(2,l)
(αj,βl′) = −q

∑
β;l′=l±1

Mαβ,ll′N3
l′

βj,αl , (4.175)

s5
(2,l)
(αj,βl′) = q

∑
β;l′=l±1

Mαβ,ll′N4
l′

βj,αl (4.176)

where we defined

N1
l′

βj,αl =
(−1)α

9(−u0)3/2

(
−im̃R2 + (−1)−αqed + i(1 + νk′l)

)
ñ1 ,

N3
l′

βj,αl =
(−1)α

9(−u0)3/2

(
−im̃R2 + (−1)−αqed + i(1 + νkl)

)
ñ3 ,

N4
l′

βj,αl =
(−1)α

9(−u0)3/2

(
−im̃R2 + (−1)−αqed − i(−1 + νkl)

)
ñ4 .

(4.177)

Due to the coefficients of s2
(2,l)
(αj,βl′) and s5

(2,l)
(αj,βl′) terms in the second order special

solution

ω → 0 limit is not regular therefore we add (−ωνklηlαjs2
(2,l)
(αj,βl′)) and (−ωνklηlαjs5

(2,l)
(αj,βl′))

respectively. Therefore, we can write the second order solution at zero temperature

as

ψ̃
(2,l)
(αj)(u) ≈uνklωνkl s̃(2,l)

1(αj,βl′) +
∑
l′=l±1

uνkl′ωνkls3
(2,l)
(αj,βl′) + uνklωνkl (ln ζ)s4

(2,l)
(αj,βl′)

+ u−νklωνkl (ln ζ)s5
(2,l)
(αj,βl′) + uνklωνkl (lnω)s̃

(2,l)
4(αj,βl′) + . . .

(4.178)

or we can also write

ψ̃
(2,l)
(αj)(ζ) ≈ζνklω2νkl s̃

(2,l)
1(αj,βl′) +

∑
l′=l±1

ζνkl′ωνkl+νkl′ s3
(2,l)
(αj,βl′)

+ ζνklω2νkl (ln ζ)s4
(2,l)
(αj,βl′) + ζ−νkl (ln ζ)s5

(2,l)
(αj,βl′)

+ ζνklω2νkl (lnω)s̃
(2,l)
4(αj,βl′) + . . .

(4.179)
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with

s̃
(2,l)
1(αj,βl′) = s1

(2,l)
(αj,βl′) − (−1)js2

(2,l)
(αj,βl′)G

l
α , s̃

(2,l)
4(αj,βl′) = s4

(2,l)
(αj,βl′) − (−1)js5

(2,l)
(αj,βl′)G

l
α .

(4.180)

We managed to eliminate of irregular solution due to ω terms but the coefficients

(4.172), (4.174) are not regular in the degenerate case, i.e. νkl = νkl′ as in the first

order case. Next, we will try to resolve the divergent coefficients problem for the

degenerate case.

Degenerate case νkl = νkl′ :

Now, we repeat the same steps for second order near region solution (4.171).

ηs
(2,l)
(αj,βl′)(u) ≈uνklωνkls1(2,l)

(αj,βl′) + u−νklωνkls2
(2,l)
(αj,βl′) + uνklωνkl (lnω)s3

(2,l)
(αj,βl′)

+ u−νklωνkl (lnω)s4
(2,l)
(αj,βl′) + uνklωνkl (ln ζ)s5

(2,l)
(αj,βl′) + u−νklωνkl (ln ζ)s6

(2,l)
(αj,βl′)

+ uνklωνkl lnω(ln ζ)s7
(2,l)
(αj,βl′) + u−νklωνkl lnω(ln ζ)s8

(2,l)
(αj,βl′)

+ uνklωνkl (lnω)2s9
(2,l)
(αj,βl′) + uνklωνkl (ln ζ)2s10

(2,l)
(αj,βl′)

+ u−νklωνkl (ln ζ)2s11
(2,l)
(αj,βl′)

(4.181)

with the coefficients

s1
(2,l)
(αj,βl′) = ω−νkl

∫ ε

∞
dz
ηl1αjY

l
(αj,βl′)

W (z)
+ q

∑
β

M l
αj,βl′D̃1β

(
1 +

1

2νkl
ln ε

)
, (4.182)

s2
(2,l)
(αj,βl′) = −ω−νkl

∫ ε

∞
dz
ηl2αjY

l
(αj,βl′)

W (z)
− q

∑
β

M l
αj,βl′

D̃1β

2νkl
ε2νkl , (4.183)

s3
(2,l)
(αj,βl′) = q

∑
β

M l
αj,βl′

[
−D̃1β +D3β

(
1

νkl
+ 2 ln ε

)]
, (4.184)

s4
(2,l)
(αj,βl′) = −q

∑
β

M l
αj,βl′

D3β

νkl
ε2νkl , (4.185)
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s5
(2,l)
(αj,βl′) = q

∑
β

M l
αj,βl′

[
−D̃1β +D3β

(
1

2νkl
+ ln ε

)
−D4β

ε−2νkl

2νkl

]
, (4.186)

s6
(2,l)
(αj,βl′) = q

∑
β

M l
αj,βl′

[
−D3β

ε−2νkl

2νkl
+D4β

(
1

2νkl
− ln ε

)]
, (4.187)

s7
(2,l)
(αj,βl′) = −q

∑
β

M l
αj,βl′3D3β , (4.188)

s8
(2,l)
(αj,βl′) = q

∑
β

M l
αj,βl′D4β , (4.189)

s9
(2,l)
(αj,βl′) = −q

∑
β

M l
αj,βl′2D3β , (4.190)

s10
(2,l)
(αj,βl′) = −q

∑
β

M l
αj,βl′D3β , (4.191)

s11
(2,l)
(αj,βl′) = q

∑
β

M l
αj,βl′D4β , (4.192)

where we defined

D̃1β =
(−1)α

9(−u0)3/2

(
−im̃R2 + (−1)−αqed + i(1 + νkl)

)
d̃l
′

1βj,αl , (4.193)

D3β =
(−1)α

9(−u0)3/2

(
−im̃R2 + (−1)−αqed + i(1 + νkl)

)
dl
′

3βj,αl , (4.194)

D4β =
(−1)α

9(−u0)3/2

(
−im̃R2 + (−1)−αqed + i(1− νkl)

)
dl
′

4βj,αl . (4.195)

To regularize the second order solution in ω for degenerate case we repeat the same

procedure with the u−νklωνkl terms and find

ψ̃
(2,l)
(αj,βl′)(u) ≈ζνklω2νkl s̃1

(2,l)
(αj,βl′) + ζνklω2νkl (lnω)s̃3

(2,l)
(αj,βl′)

+ ζνklω2νkl (ln ζ)s5
(2,l)
(αj,βl′) + ζ−νkl (ln ζ)s6

(2,l)
(αj,βl′)

+ ζνklω2νkl lnω(ln ζ)s7
(2,l)
(αj,βl′) + ζ−νkl lnω(ln ζ)s8

(2,l)
(αj,βl′)

+ ζνklω2νkl (lnω)2s9
(2,l)
(αj,βl′) + ζνklω2νkl (ln ζ)2s10

(2,l)
(αj,βl′)

+ ζ−νklω2νkl (ln ζ)2s11
(2,l)
(αj,βl′)

(4.196)
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where

s̃1
(2,l)
(αj,βl′) = s1

(2,l)
(αj,βl′) − (−1)js2

(2,l)
(αj,βl′)G̃

l
α , s̃3

(2,l)
(αj,βl′) = s3

(2,l)
(αj,βl′) − (−1)js4

(2,l)
(αj,βl′)G̃

l
α ,

s̃8
(2,l)
(αj,βl′) = s8

(2,l)
(αj,βl′) − (−1)js9

(2,l)
(αj,βl′)G̃

l
α .

(4.197)

4.4.6 The Far Region

The reason for us to use the matching method is that expanding in small ω is

problematic at zero or at T � µ temperatures due to the fact that ω-term is dominant

in the near horizon region. To find the leading order equation in the far region we set

ω = 0 at zeroth, first, and second orders. In the far region, i.e. as z → 0 the solution

to the leading order equations can be written as

ψ̃(s,l)
α (z) = A(s,l)

α z−mR

0

1

+B(s,l)
α zmR

1

0

+ . . . (4.198)

where s = 0, 1, 2, . . . is the order of perturbation. Now, we use the matching method

to find the coefficients A(s,l)
α and B

(s,l)
α since the retarded Green’s function is GR =

BA−1. The matching method is applied in the overlap region, i.e. the inner boundary

of the far region and the boundary of the near horizon region. In general the small ω

expansion of the retarded Green’s function is

GR(ω, k) = K
B

(0)
+ + ωB

(1)
+ +O(ω2) + GIR(ω)

(
B

(0)
− + ωB

(1)
− +O(ω2)

)
A

(0)
+ + ωA

(1)
+ +O(ω2) + GIR(ω)

(
A

(0)
− + ωA

(1)
− +O(ω2)

) (4.199)

where K is the normalization factor but it does not affect the result, thus can be set

K = 1 [120]. In the following calculations we will be interested in the leading order

but they can be generalized to higher orders in ω.
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The non-degenerate case the far region solutions read

A
(0)
αl,αl = A

(0)−
αl,αlv

(0,l)
−α2 + G̃lαIRA

(0)+
αl,αlv

(0,l)
+α2ω

2νkl ,

B
(0)
αl,αl = B

(0)−
αl,αlv

(0,l)
−α1 + G̃lαIRB

(0)+
αl,αlv

(0,l)
+α1ω

2νkl ,

A
(1)
αl,βl′ = A

(1,1)
αl,βl′ñ

l
1α2βl′ω

νkl+νkl′ + A
(1,3)
αl,βl′n

l
3α2βl′ω

2νkl′ + A
(1,4)
αl,βl′n

l
4α2βl′ ,

B
(1)
αl,βl′ = B

(1,1)
αl,βl′ñ

l
1α2βl′ω

νkl+νkl′ +B
(1,3)
αl,βl′n

l
3α2βl′ω

2νkl′ +B
(1,4)
αl,βl′n

l
4α2βl′ ,

A
(2)
αl,αl =

(
A

(2,1)
αl s̃l1α2 + A

(2,4)
αl sl4α2

)
ω2νkl +

∑
l′

A
(2,3)
αl,l′ s

l
3α2,l′ω

νkl+νkl′ + Ã
(2,4)
αl s̃l4α2ω

2νkl lnω

+ A
(2,5)
αl sl5α2 ,

B
(2)
αl,αl =

(
B

(2,1)
αl s̃l1α2 +B

(2,4)
αl sl4α2

)
ω2νkl +

∑
l′

B
(2,3)
αl,l′ s

l
3α2,l′ω

νkl+νkl′ + B̃
(2,4)
αl s̃l4α2ω

2νkl lnω

+B
(2,5)
αl sl5α2 .

(4.200)

For degenerate case

A
(0)
αl,αl = A

(0)−
αl,αlv

(0,l)
−α2 + G̃lαIRA

(0)+
αl,αlv

(0,l)
+α2ω

2νkl ,

B
(0)
αl,αl = B

(0)−
αl,αlv

(0,l)
−α1 + G̃lαIRB

(0)+
αl,αlv

(0,l)
+α1ω

2νkl ,

A
(1)
αl,βl′ =

(
A

(1,1)
αl,βl′ d̃

l
1α2βl′ + A

(1,3)
αl,βl′d

l
3α2βl′

)
ω2νkl + A

(1,4)
αl,βl′d

l
4α2βl′ + 2A

(1,3)
αl,βl′d

l
3α2βl′ω

2νkl lnω ,

B
(1)
αl,βl′ =

(
B

(1,1)
αl,βl′ d̃

l
1α2βl′ +B

(1,3)
αl,βl′d

l
3α2βl′

)
ω2νkl +B

(1,4)
αl,βl′d

l
4α2βl′ + 2B

(1,3)
αl,βl′d

l
3α2βl′ω

2νkl lnω ,

A
(2)
αl,αl =

(
A

(2,1)
αl s̃l1α2 + A

(2,5)
αl sl5α2 + A

(2,10)
αl sl10α2

)
ω2νkl +

(
A

(2,3)
αl s̃l3α2 + A

(2,7)
αl sl7α2

)
ω2νkl lnω

+
(
A

(2,6)
αl sl6α2 + A

(2,11)
αl sl11α2

)
+ A

(2,8)
αl sl8α2 lnω + A

(2,9)
αl sl9α2ω

2νkl (lnω)2

+ (terms from non-degenerate l′′) ,

B
(2)
αl,αl =

(
B

(2,1)
αl s̃l1α2 +B

(2,5)
αl sl5α2 +B

(2,10)
αl sl10α2

)
ω2νkl +

(
B

(2,3)
αl s̃l3α2 +B

(2,7)
αl sl7α2

)
ω2νkl lnω

+
(
B

(2,6)
αl sl6α2 +B

(2,11)
αl sl11α2

)
+B

(2,8)
αl sl8α2 lnω +B

(2,9)
αl sl9α2ω

2νkl (lnω)2

+ (terms from non-degenerate l′′)

(4.201)
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as given in [117].

4.5 Conclusion

In this study, we have explored the holographic fermionic spectral function to see the

band gap structure due to the presence of a spontaneously generated holographic

lattice structure. Holographic fermionic field was put into a finite but small

temperature black hole and the Einstein, Maxwell, scalar, and Dirac equations were

solved both analytically and numerically using perturbation theory. The results of

our calculations are consistent with the lattice effect in a periodic potential and we

found out that there is a band gap formed at the edge of the Brillouin zone, i.e.

degenerate case with νkl = νkl′ due to the interaction between different levels. The

magnitude of this gap increases as we increase magnitude of the order parameter, ξ,

up to a certain value in which the perturbation breaks down.

A similar system was studied in papers [117] and [118] to analyze the holographic

lattice effect on the Fermi surface. The contribution of our paper to these studies is

that in our system the holographic lattice structure was spontaneously generated by

a higher order derivative term which we studied previously in [12].

In [121] and [122] they introduced the dipole coupling in Q-lattice background to

dynamically generate the Mott gap and analyze its behavior as a function of dipole

coupling and the effects of lattice parameters and to analyze the metal-insulator

transitions. As a future study, it would be interesting to explore the Mott gap and the

metal-insulator transitions by studying our system in Chapter 3 in a spontaneously

generated holographic lattice background.
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Chapter 5

Conclusion and Outlook

In this PhD thesis holographic duals of the spatially inhomogeneous phases, a robust

phase diagram, and fermionic system with lattice effects have been presented. The

summary of these studies are as follows.

We started with presenting a holographic model which includes a U(1) gauge field

and a scalar field coupled to a charged AdS black hole with a spatially homogeneous

chemical potential in Chapter 2. As we turned on the higher derivative interaction

term between the U(1) gauge field and the scalar field a spatially dependent scalar

field and a spatially inhomogeneous charge density at the boundary was spontaneously

generated below a transition temperature, T . We discussed the dependence of the

critical temperature to parameters like wavenumber (k), higher derivative coupling

constant ( η
µ2 ), charge of the U(1) gauge field (q), scaling dimension (∆), and second

higher-derivative coupling constant ( η
′

µ4 ). Plotting the transition temperature as

a function of wavenumber, k, shows that the maximum transition temperature

corresponds to the critical temperature, Tc, of the system. The scaling dimension does

not make a significant difference in our results. We also found out that inhomogeneous

solution is more dominant for small enough q value. Finally, the second higher

derivative term plays the UV-cutoff role to obtain a finite wavenumber, k. In

addition to these results we explored the fully backreacted system below the critical
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temperature using the perturbation theory and our analytical results confirm that

the spatial dependent charge density was spontaneously generated at the boundary

gauge theory.

In Chapter 4 we analyzed the behavior of the Fermi surface in spatially

inhomogeneous background that was spontaneously generated by higher derivative

coupling term studied in Chapter 2. To this end, we needed the numerical results

of the previously analytically studied system. By using the perturbation theory we

numerically solved the Einstein, Maxwell, scalar field equation system which gave

us the opportunity to observe the spatial variation of metric functions due to the

backreaction of the spatially dependent gauge field. We were also able to see the

spatial variation of the charge density of the boundary gauge field theory numerically.

These results confirmed our claim in Chapter 2 that the holographic lattice structure

was spontaneously generated at the boundary. To study the Fermi surface we added

holographic fermions to the system and analyzed the single fermion spectral function.

As a result of the degeneracy the interaction of different momentum levels leads to

the band gap structure which is well defined in condensed matter physics.

Another interesting application of gauge/gravity duality was studied in Chapter 3

where a robust holographic dual of phase diagram was explored. The holographic dual

of the phase diagram was formed by using a dipole coupling between the fermion and

gauge fields in the bulk. A pole in the spectral function of the holographic fermionic

system is an indicator of a Fermi and non-Fermi liquid depending on the scaling

dimension νk and a zero is an indicator of a Mott insulator. The coexistence of both

poles and zeroes indicates the pseudo-gap phase in the phase diagram. The important

contribution of this study was pointing out that since there is duality between zeroes

and poles of the Green’s function, GR, the Mott phase can be studied by mapping

it to the Fermi liquid phase by applying a sign change to dipole coupling constant

between the massles fermion and the gauge field.

To finalize this thesis we will present an outlook for future studies based on the

work presented in this thesis.

120



One interesting work that can be done is generalizing the spontaneously generated

one-dimensional holographic lattice structure to two-dimensional lattice effect which

in general can be anisotropic in x− y plane.

In most of the gauge/gravity duality studies probe limit is studied and lattice

effects are ignored. Therefore, to see the lattice effects we can apply our spontaneously

generated holographic lattice model to different systems to analyze the lattice effect

to different mechanisms. One of the implications of the spontaneously generated

holographic lattice effect can be to study the lattice effect on the optical conductivity.

This work has been done by Horowitz et. al. in [62] and [63]. They added the lattice

by introducing a neutral scalar field with boundary conditions corresponding to a

periodic source and also by a spatially varying chemical potential in both AdS4 and

AdS5 spacetimes. Their studies revealed that adding the lattice to the background

leads to broadening of the delta function at ω = 0 of the real part of the optical

conductivity. Also the real and imaginary parts of the optical conductivity obeys

the simple Drude form at low frequencies and then they show a power-law depence

on frequency, σ ∼ ω−2/3 in the mid-infrared regime. Given these findings, it would

be interesting to analyze the frequency dependent optical conductivity of a lattice in

both spatial directions.

Another possible follow up study can be to explore the Mott metal-insulator

transition which involves strongly correlated system and requires methods other than

conventional techniques. We can study the effect of lattice constant to this transition

by putting the holographic fermions with dipole coupling system into a spatially

inhomogeneous background. This was done in [121] by introducing a Q-lattice instead

of the spontaneously generating the holographic lattice structure. As a result of their

study they found out that the lattice amplitude and the wave number provides a

wider parameter space and this leads to an abundant Mott physics. Since in our

holographic lattice system we have more parameters we believe that we will be able

to analyze the Mott physics in more detail.
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The ultimate goal of the gauge/gravity duality is to become an alternate solution

for understanding the strongly correlated electron systems where conventional

methods cannot be used. The phase diagram of high-Tc superconductors has a variety

of phases like Mott insulator, strange metal, pseudo-gap phase which are not well

understood yet due to their strongly coupled nature. We hope that gauge/gravity

duality studies will expand our understanding of these phases and contribute to

condensed matter physics.
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Appendix A

Calculation of the metric functions

Qtt10(z) =
z3

4(1− z)P (z)

×
∫ z

1

[
2µ0At10(w)− 2(1− w)µ0A

′
t10(w)− 12At1(w)

w4
+

w2∆−4

16P (w)
At2(w)

]
dw

(A.1)

where

At1(z) = −
∫ z

0

dww2∆+1 q
2µ2

0F
2(w) + w−2 [P 2(w)(∆F (w) + wF ′(w))2]

2P 2(w)
, (A.2)

and

At2(z) = 16(z − 1)z2P (z)2[F ′(z)]2 + 32∆(z − 1)zP 2(z)F (z)F ′(z)

+
[
16µ2

0q
2(z − 1)z2 + ∆2z3

(
4
(
µ2

0 + 4
)

+ µ4
0z

4 −
(
µ2

0 + 8
)
µ2

0z
3 + 16z2 + 16z

)]
F 2(z)

+ 16k2z2P (z)
(
ηµ2

0z
4 + 1

)
F 2(z)− 48∆P (z)F 2(z) .

(A.3)
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Similarly,

Qzz10(z) =
z3

4(1− z)P (z)

×
∫ z

1

[
−2µ0At10(w) + 2(1− w)µ0A

′
t10(w) + µ2

0Az1(w) + w2∆−4Az2(w)
]
dw

(A.4)

where

Az1(z) = −
∫ z

0

dww2∆+1 q
2µ2

0F
2(w) + w−2 [P 2(w)(∆F (w) + wF ′(w))2]

2P 2(w)
, (A.5)

and

Az2(z) =− [q2(1− z)z2µ2
0 + ((∆− 3)∆ + k2z2(1 + z4ηµ2

0))P (z)]

P (z)

+ (1− z)P (z) [∆F (z) + zF ′(z)]
2
.

(A.6)

Qxx10(z) =

∫ z

0

dw
w2

P (w)(1− w)

∫ w′

1

1

2
k2w′

2∆−2
(w′

4
ηµ2

0 − 1)F 2(w′)dw′ (A.7)

and calculations show us that Qyy10(z) = −Qxx10(z). Therefore, we find

Qyy10(z) = −
∫ z

0

dw
w2

P (w)(1− w)

∫ w′

1

1

2
k2w′

2∆−2
(w′

4
ηµ2

0 − 1)F 2(w′)dw′ . (A.8)

Maxwell’s, and Einstein’s equations for the remaining first-order modes, i.e.

Qtt11, Qzz11, Qxx11, Qyy11 and Qxz11, are reduced to the following equations.
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Q′′xx11 +Q′′yy11 +
Qzz11 [z (8k2z + 4(z − 1)P ′ + µ2

0z
3) + (12− 8z)P ]

2(z − 1)z2P
+

4k2Qyy11

(z − 1)P

− 2kz2Qxz11 ((z − 1)P ′ + P )

(z − 1)P
− 4kz2Q′xz11 +

((z − 1)zP ′ + (4− 3z)P )Q′xx11

2(z − 1)zP
+

2Q′zz11

z

+
((z − 1)zP ′ + (4− 3z)P )Q′yy11

2(z − 1)zP
+
µ2

0z
2Qtt11

2(z − 1)P
− µ0z

2A′t11

P
+
µ0z

2At11

P − zP
+A1 = 0 ,

(A.9)

Q′xx11 +Q′yy11 − 4kz2Qxz11(z) +
(8k2z + µ2

0z
3)Qtt11

(z − 1)zP ′ + (4− 3z)P
+

8k2zQyy11

(z − 1)zP ′ + (4− 3z)P

− 4(z − 1)PQ′tt11

(z − 1)zP ′ + (4− 3z)P
+

[z (4(z − 1)P ′ + µ2
0z

3) + (12− 8z)P ]Qzz11

z ((z − 1)zP ′ + (4− 3z)P )

− 2µ0z
3At11

(z − 1)zP ′ + (4− 3z)P
− 2µ0(z − 1)z3A′t11

(z − 1)zP ′ + (4− 3z)P
+A2 = 0 ,

(A.10)

Q′tt11 +Q′yy11 +
[(z − 1)P ′ + P ]Qtt11

2(z − 1)P
+

[(3z − 4)P − (z − 1)zP ′]Qzz11

2(z − 1)zP

+
µ0z

2At11

P
+A3 = 0 ,

(A.11)

Q′′tt11 +Q′′yy11 +
[3(z − 1)zP ′ − (z − 4)P ]Q′tt11

2(z − 1)zP
+

[(z − 1)zP ′ − (z − 2)P ]Q′yy11

(z − 1)zP

− [(z − 1)zP ′ + (4− 3z)P )]Q′zz11

2(z − 1)zP
+
µ2

0z
2Qtt11

2P − 2zP
+
µ0z

2A′t11

P

− [z (z (2(z − 1)P ′′ + µ2
0z

2)− 4(z − 2)P ′) + 4(z − 3)P ]Qzz11

2(z − 1)z2P
+
µ0z

2At11

(z − 1)P
+A4 = 0

(A.12)
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Q′′tt11 +Q′′xx11 −
[z (z (−8k2 + 2(z − 1)P ′′ + µ2

0z
2)− 4(z − 2)P ′) + 4(z − 3)P ]Qzz11

2(z − 1)z2P

+
Qtt11 (8k2 − µ2

0z
2)

2(z − 1)P
− 4kz2Qxz11 ((z − 1)P ′ + P )

(z − 1)P
+

(3(z − 1)zP ′ − (z − 4)P )Q′tt11

2(z − 1)zP

+
((z − 1)zP ′ − (z − 2)P )Q′xx11

(z − 1)zP
− ((z − 1)zP ′ + (4− 3z)P )Q′zz11

2(z − 1)zP

+
µ0z

2A′t11

P
+
µ0z

2At11

(z − 1)P
− 4kz2Q′xz11 +A5 = 0 ,

(A.13)

and from Maxwell’s equation

A′′t11 +
4k2At11

(z − 1)P
+

2A′t11

z − 1
− 2kµ0z

2Qxz11

z − 1
+

µ0Q
′
tt11

2(1− z)
+
µ0Q

′
xx11

2(z − 1)
+
µ0Q

′
yy11

2(z − 1)

+
µ0Q

′
zz11

2(1− z)
+A6 = 0

(A.14)

where

A1 =
F 2z2∆−2 [P (k2 (ηµ2

0z
6 + z2)− (∆− 3)∆) + ∆2(z − 1)P 2 + µ2

0q
2(z − 1)z2]

2(z − 1)P 2

+
1

2
z2∆F ′2 + ∆Fz2∆−1F ′ ,

(A.15)

A2 =− 2∆(z − 1)Pz2∆FF ′

(z − 1)zP ′ + (4− 3z)P
− (z − 1)Pz2∆+1F ′2

(z − 1)zP ′ + (4− 3z)P

−
z2∆−1

[
(∆− 3)∆− k2 (ηµ2

0z
6 + z2) +

µ2
0q

2(z−1)z2

P
+ ∆2(z − 1)P

]
F 2

(z − 1)zP ′ + (4− 3z)P
,

(A.16)

A3 =
1

2
Fz2∆−1 (zF ′ + ∆F ) , (A.17)
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A4 =
1

2
z2∆F ′2 + ∆z2∆−1FF ′

+
z2∆−2 [P ((∆− 3)∆ + k2z2 (1− ηµ2

0z
4))−∆2(z − 1)P 2 + µ2

0q
2(z − 1)z2]

2(1− z)P 2
F 2 ,

(A.18)

A5 =
1

2
z2∆F ′2 + ∆z2∆−1FF ′

+
z2∆−2 [P ((∆− 3)∆ + k2z2 (ηµ2

0z
4 − 1))−∆2(z − 1)P 2 + µ2

0q
2(z − 1)z2]

2(1− z)P 2
F 2 ,

(A.19)

A6 =
µ0z

2∆−2 (q2 − 2ηk2z3P )

(z − 1)P
F 2 . (A.20)
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Appendix B

The first order scalar equation below

Tc

C2 = −z
3µ0

2P
, (B.1)

C1 = −µ0z
3P ′

2P 2
+
µ0z

2 [8∆ + (2∆− 1)µ2
0z

4 − 2z3 (∆ (µ2
0 + 4)− µ2

0)− 8z2 − 8z + 4]

8(z − 1)P 2
,

(B.2)

C0 =
2q2µ0(1 + z + z2)

P 3
− z2∆µ0P

′

2P 2
− 2k2z4ηµ0

(z − 1)P

+
∆µ0z [z4(∆− 2)µ2

0 + z3(4 + 3µ2
0 −∆(4 + µ2

0))− 8z(z + 1) + 4∆]

8(z − 1)P 2
,

(B.3)

D2 = −qzz10 −
1

2
Qzz11 , (B.4)

D1 =qzz10

[
(2∆− 2∆z + z − 2)

(z − 1)z
− P ′

P

]
+

1

4
Qzz11

[
2(2∆− 2∆z + z − 2)

(z − 1)z
− 2P ′

P

]
+

qtt10
′

2
+
Q′tt11

4
+
Q′xx10

2
+
Q′xx11

4
+
Q′yy10

2
+
Q′yy11

4
− qzz10

′

2
− Q′zz11

4
,

(B.5)
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D0 =
qzz10 (z (ηk2µ2

0z
5 + (∆−∆z)P ′) + ∆P (∆ + (∆− 2)(−z)− 3))

(z − 1)z2P

− Qzz11 (z (k2z + ∆(z − 1)P ′) + ∆P (−∆ + (∆− 2)z + 3))

2(z − 1)z2P

+
µ2

0qtt10

(
ηk2z4P
z−1

− q2
)

P 2
+
Qtt11

(
−k2P
z−1
− µ2

0q
2
)

2P 2
+

2µ0v10

(
q2 − ηk2z4P

z−1

)
P 2

+
µ0At11 (q2 − 2ηk2z3P )

P 2
+
k2Qxx10 (ηµ2

0z
4 − 1)

(z − 1)P
+
k2Qyy11 (ηµ2

0z
4 − 1)

2(z − 1)P

+
∆
(
2qtt10

′ − 2qzz10
′ + 2Q′xx10 + 2Q′yy10 +Q′tt11 −Q′zz11 +Q′xx11 +Q′yy11

)
4z

− 2ηk2µ0z
4v10

′

P (z)
.

(B.6)

where qtt10,qzz10,v10 is found by setting C → 0 in (A.1), (A.4), and (4.22)

respectively.
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Appendix C

Details of Spinor Rotation

Consider the Dirac equations

√
hψ′+1 +

mf

z
ψ+1 +

[
kx +Kl − µqf (1− z) + ω√

h

]
ψ+2 − kyψ−2 = 0 ,

√
hψ′+2 −

mf

z
ψ+2 +

[
kx +Kl +

µqf (1− z) + ω√
h

]
ψ+1 − kyψ−1 = 0 ,

√
hψ′−1 +

m

z
ψ−1 +

[
−kx −Kl −

µqf (1− z) + ω√
h

]
ψ−2 − kyψ+2 = 0 ,

√
hψ′−2 −

mf

z
ψ−2 +

[
−kx −Kl +

µqf (1− z) + ω√
h

]
ψ−1 − kyψ+1 = 0 . (C.1)

The first and third equations can be combined into

√
h(ψ+1 + λψ−1)′ +

mf

z
(ψ+1 + λψ−1)−

[
µqf (1− z) + ω√

h

]
(ψ+2 + λψ−2)

+(kx − λky)ψ+2 + (−ky − λkx)ψ−2 = 0 . (C.2)

Let kx +Kl = kl cos θ, ky = kl sin θ with kl =
√

(kx +Kl)2 + k2
y and choose

λ = − tan
θ

2
(C.3)
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Then (C.2) becomes

√
h(ψ+1+λψ−1)′+

mf

z
(ψ+1+λψ−1)+

[
kl −

µqf (1− z) + ω√
h

]
(ψ+2+λψ−2) = 0 , (C.4)

which is identical to the first equation with ky = 0. Similarly, we obtain

√
h(ψ+2+λψ−2)′−mf

z
(ψ+2+λψ−2)+

[
kl +

µqf (1− z) + ω√
h

]
(ψ+1+λψ−1) = 0 . (C.5)

Similarly, choosing δ = cot
(
θ
2

)
we obtain

√
h(ψ+1 + δψ−1)′ +

mf

z
(ψ+1 + δψ−1) +

[
−kl −

µqf (1− z) + ω√
h

]
(ψ+2 + δψ−2) = 0 ,

(C.6)
√
h(ψ+2 + δψ−2)′ − mf

z
(ψ+2 + δψ−2) +

[
−kl +

µqf (1− z) + ω√
h

]
(ψ+1 + δψ−1) = 0 ,

(C.7)

i.e., the modes decouple and the equations are the same as with ky = 0. Solutions

only depend on kl and we define

ψ̃
(l)
1 = ψ

(l)
+1 + λψ

(l)
−1 , ψ̃

(l)
2 = ψ

(l)
+2 + λψ

(l)
−2 , (C.8)

ψ̃
(l)
3 = ψ

(l)
+1 + δψ

(l)
−1 , ψ̃

(l)
4 = ψ

(l)
+2 + δψ

(l)
−2 . (C.9)

which is given in (4.45).
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