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Abstract

Most current wind turbine aeroelastic codes rely on the blade element momentum

method with empirical corrections to compute aerodynamic forces on the wind turbine

blades. While efficient, this method relies on experimental data and does not allow

designers much flexibility for alternative blade designs. Unsteady solutions to the

Navier-Stokes equations offer a significant improvement in aerodynamic modeling, but

these are currently too computationally expensive to be useful in a design situation.

However, steady-state solutions to the Navier-Stokes equations are possible with

reasonable computation times. The harmonic balance method provides a way to

represent unsteady, periodic flows through coupled a set of steady-state solutions.

This method offers the possibility of unsteady flow solutions at a computational cost

on the order of a few steady-state solutions. By coupling a harmonic balance driven

aerodynamic model with a mode shape-based structural dynamics model, an efficient

aeroelastic model for a wind turbine blade driven by the Navier-Stokes equations is

developed in this dissertation.

For wind turbine flows, turbulence modeling is essential, especially in the

transition of the boundary layer from laminar to turbulent. As part of this

dissertation, the Spalart-Allmaras turbulence model and the gamma-Re theta-t

transition model are included in the aerodynamic model. This marks the first time

that this transition model, turbulence model, and the harmonic balance method have

been coupled to study unsteady wind turbine aerodynamics. Results show that the

v



transition model matches experimental data more closely than a fully turbulent model

for the onset of both static and dynamic stall.

Flutter is of particular interest as turbines continue to increase in size, and longer

and softer blades continue to enter the field. In this dissertation, flutter is investigated

for the 1.5 MW WindPACT rotor blade. The aeroelastic model created, which

incorporates the harmonic balance method and a fully turbulent aerodynamic model,

is the first of its kind for wind turbine flutter analysis. Predictions match those of

other aeroelastic models for the 1.5 MW WindPACT blade, and the first flapwise and

edgewise modes are shown to dominate flutter for the rotor speeds considered.
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Ũ Fourier coefficient vector of conservation variables

u, v, w Cartesian velocity components

uΩ, vΩ, wΩ rotational velocity components

ur, vr, wr relative velocity components

V volume

Vf reduced velocity

xx



x vector of physical displacements

x, y, z Cartesian coordinates

xxi



Chapter 1

Introduction

1.1 Motivation

The next generation of wind turbines will be required to operate in more diverse

environmental conditions with an increased energy output compared to today’s wind

turbines. In order to meet these demands, high resolution unsteady aerodynamic

analyses, such as those from a large-eddy simulation (LES) or a detached-eddy

simulation (DES), will be essential in the design process so that performance over

a range of realistic operating conditions may be predicted with high accuracy.

Unfortunately, such analyses are currently too computationally expensive to be

effective in an industrial setting. However, there is ample room for improvement

over the currently widely-used blade element momentum (BEM) method in terms of

wind turbine aerodynamic modeling.

The family of BEM methods became popular in wind turbine design due to

their ease of implementation and cheap computational cost. These models rely on

existing airfoil data, and thus, load predictions are only as accurate as the available

data. Moreover, designs are restricted to airfoils for which sufficient data exists.

To be effective in new blade designs, computational models must be able to predict

performance without requiring an existing experimental dataset.
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Steady-state solutions to the Reynolds-averaged Navier-Stokes (RANS) equations

offer a significant improvement in aerodynamic modeling at a reasonable computa-

tional cost, but wind turbine flows are inherently unsteady. Even if the unsteadiness

due to the rotation of the rotor is eliminated with a relative coordinate system,

which is only possible for orthogonal inflow, the vibrations of the turbine blades add

additional unsteadiness. Time accurate unsteady solutions of the RANS equations

are too costly to be effective, but with the harmonic balance method, there exists a

way to represent unsteady, periodic flows by coupling a set of steady-state solutions.

If a harmonic balance based aerodynamics model is coupled to a suitable structural

dynamics model, it is possible to create an efficient aeroelastic wind turbine model

driven by the unsteady RANS equations.

Aeroelastic analysis of wind turbines is an essential part of the design process

to ensure that no structural vibrations, catastrophic or fatiguing, will exist in

the structure over a range of operating conditions. The work in this dissertation

is directed at improving current aeroelastic modeling capability by improving the

aerodynamic solution via the unsteady RANS equations. The Spalart-Allmaras

turbulence model and the γ–Reθt transition model are included to model critical

turbulent flow features.

1.2 Related Work

This section presents related work in wind turbine aerodynamics, including transition

modeling and the harmonic balance method. Wind turbine aeroelastic modeling and

known instabilities are also presented. Two popular wind turbine aeroelastic models

from industry are briefly described, and finally, work related to flutter predictions for

wind turbine blades is provided.
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1.2.1 Wind Turbine Aerodynamics

Traditionally, wind turbines were designed using blade element momentum (BEM)

theory with corrections for dynamic wake, stall, or inflow to predict aerodynamic

loads acting on turbine blades [31]. In the steady BEM method, momentum theory

is combined with the blade element method to predict loads on turbine blades for

constant wind speeds, rotational speeds, or pitch angles. In momentum theory, a

streamtube enclosing an actuator disc is considered as in Fig. 1.1. The ambient

conditions upstream, p∞ and U∞, are known. The actuator disc represents the rotor

where the incoming wind is slowed down by some amount, Ud. There is also a step

change in pressure at the disc corresponding to the thrust exerted by the wind on

the rotor. Due to the decreasing velocity, the streamlines must diverge as they cross

the actuator disc moving downstream. The pressure returns to the ambient value far

downstream, but the velocity in the wake, Uw, is slightly less than the free stream.

Under these conditions, it is possible to relate the free stream velocity, velocity at the

rotor, velocity downstream, thrust, and absorbed power. In blade element theory, the

aerodynamic forces acting on a blade are determined at sections along a blade rather

than the entire blade.

  

p∞

U∞

p∞

Uw

Ud

p+      p-   

Actuator disc

Streamline

Figure 1.1: Streamtube around an actuator disc representing a 1-D model of a wind
turbine rotor.

Glauert [27] combined momentum theory and blade element theory to model flow

over airplane propellers. He considered the flow in annuli around the rotor. The forces

and induced velocity in each annulus were found using blade element and momentum
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theories. Glauert assumed that there was no radial dependency between elements

and that the force in each annulus was constant. The second assumption implies an

infinite number of blades. Prandtl’s tip loss factor is used to correct this assumption

so that a finite number of blades may be represented.

To account for unsteadiness in the flow, a number of corrections must be applied

to the steady BEM method. The unsteadiness of the incoming wind is included using

a dynamic inflow model. There are a number of models available for this purpose

[58, 64]. Additionally, a non-stationary airfoil will have different stall characteristics

than a stationary one. The forces on an airfoil change dramatically once stall occurs

so some representation of this phenomenon should be included. A popular choice here

is the Beddoes-Leishman model [46]. Other possible corrections include yaw/tilt for

non-orthogonal inflow and a turbulent wake for high loading.

BEM methods are limited in that existing airfoil data is required as an input.

Navier-Stokes solvers overcome this limitation, but they come with a much higher

computational cost. Steady solutions remain practical, but time-accurate unsteady

solutions are still prohibitively costly. Despite the limitations for industrial design, a

growing number of Navier-Stokes solvers have appeared in the literature in the past

decade as the available computational power has increased. Le Pape and Lecanu [43]

used ONERA’s compressible flow solver elsA to create a 3-D simulation of a stall-

regulated wind turbine. They achieve some success with their model but cite the

need for low speed preconditioning and a boundary layer transition model for better

results. Tongchitpakdee et al. [86] modeled several upwind cases from the National

Renewable Energy Laboratory’s (NREL) Phase VI rotor. They report success for

attached flow and massively separated flows. In the partially separated regime, their

solver does not perform as well. They use Eppler’s transition model to improve results

in this area.
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Transition Modeling

One challenge that comes with Navier-Stokes solvers is accurately modeling more

of the flow physics. Wind turbines operate in a flow regime where boundary layer

transition from laminar to turbulent flow has a major impact on the solution. In

unsteady RANS solvers, the success of the model seems to depend largely on the

ability of the turbulence model to predict the location of the laminar separation

bubble and turbulent reattachment during stall [40]. Many turbulence models assume

fully turbulent flow everywhere including inside the boundary layer unless a location

is defined by the user to trip the boundary layer. However, in that approach, the

location must be known a priori making it less appealing for design. A transition

model is necessary to predict the location and extent of the boundary layer transition.

One of the most successful transition models for airfoils is the en method of Smith

and Gamberoni [73] and van Ingren [94]. This method uses linear stability theory and

assumes a parallel flow to compute the growth of disturbance waves. However, some

knowledge of the flow is required as an input to the model, and the prediction of flow

reattachment is not possible. Moreover, disturbances are tracked along streamlines,

which can be very challenging in 3-D codes where the grid and streamsurfaces are not

aligned. Empirically-based transition models gained popularity due to their success

in matching experimental data. In these models, the momentum thickness Reynolds

number based on a laminar solution is computed along the surface, and transition

is said to occur when the momentum thickness Reynolds number in the turbulent

solution exceeds the laminar value. Two of the more widely known transition models

are attributed to Mayle [52] and Abu-Ghannam and Shaw [1].

Computation of the momentum thickness Reynolds number is not ideal since the

edge of the boundary layer may not be well-defined, and search algorithms to find

the edge of the boundary layer are too complex in the age of unstructured grids

and parallel computing. This problem can be avoided if a correlation based on local

flow variables is developed. The γ–Reθt transition model of Langtry [39] offers this
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advantage. This model was developed for use with the k-ω SST turbulence model, and

it includes an intermittency transport equation to slowly increase turbulence in the

boundary layer from the onset location. A modified version of this transition model

for use with the Spalart-Allmaras turbulence model has recently been developed by

Medida and Baeder [54]. This implementation has the advantage of solving one

less equation since the Spalart-Allmaras turbulence model is a one equation model

compared to the two equation k-ω SST model.

Harmonic Balance Method

Many flow characteristics about wind turbines are periodic, making their aerodynamic

analysis ideally suited for frequency domain techniques such as the harmonic

balance method. The generalized harmonic balance method put forward by Hall

et al. [30] for the analysis of nonlinear unsteady flows in turbomachinery is a

mixed time domain/frequency domain technique that computes the dependent flow

variables at equally spaced sub-time levels over a single period. Through the use

of a pseudo-spectral operator, the problem can be simplified to a set of coupled

steady-state problems where convergence acceleration techniques such as local time

stepping, residual smoothing, and multigrid can be employed to greatly reduce the

computational cost in comparison to unsteady methods in the temporal domain

[25, 23].

Using the harmonic balance method, it is possible to perform unsteady analyses

in wind turbine blade design at a cost that is only approximately 5-10 times the cost

of a steady Navier-Stokes analysis. Despite these potential savings, application of the

harmonic balance method to wind turbines has been very limited. Campobasso and

Baba-Ahmadi [15] developed a compressible harmonic balance solver with low speed

preconditioning necessary for modeling low Mach number regimes typical for wind

turbines. In their work, they applied the technique to a NACA 0012 airfoil section.

Extension of their solver to wind turbine type airfoils would require an additional step
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since the thicker airfoils require transition modeling to correctly predict the near-stall

flow regime.

1.2.2 Wind Turbine Aeroelasticity

Aeroelasticity is the study of the interaction of aerodynamic, inertial, and elastic

forces [9]. Consider air passing over a wind turbine blade where the aerodynamic

force of the air on the blade causes a small elastic deformation of the blade. The

elastic deformation of the blade changes the orientation of the blade in the air stream,

which, in turn, changes the aerodynamic force on the blade. The interactions will

either reach a new equilibrium state or diverge catastophically resulting in structural

failure. The inertial force plays a role in the interaction between the aerodynamic

and elastic forces predominantly through mass distribution.

Elastic structures will vibrate in discrete geometric patterns known as mode

shapes in response to periodic external forces. Each mode shape has a corresponding

frequency at which the vibration will occur. If undamped, these vibrations have the

potential to grow exponentially or interact with other vibrations containing a multiple

of this frequency. Wind turbine designers use aeroelastic analyses to ensure that these

vibrations are damped so that the stucture is safe and fatigue loads are minimized.

Thus, the aeroelastic design of wind turbines is concerned with maximizing the

damping of the system components and keeping the modal frequencies of the system

components separated. Of particular importance are the blade and tower natural

frequencies, which should be kept apart from each other. Multiples of the rotational

frequency should also be avoided.

Wind turbine aeroelasticity is closely related to helicopter aeroelasticity. Exhaus-

tive reviews of potential aeroelastic instabilities have been conducted by Pavel and

Schoones [61], van Holten et al. [93], and Holierhoek [33]. A few of the instabilities

associated with the blades and the coupling between the rotor and the tower are given

in the following sections.
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(a) Edgewise

  
(b) Flapwise

Figure 1.2: In-plane and out-of-plane blade deflections.

Blade Instabilities

Two single degrees-of-freedom (DOF) instabilities associated with turbine blades

are edgewise and flapwise instability. The names are derived from the associated

blade deflections, which are shown in Fig. 1.2. Edgewise deflections refer to blade

displacements in the rotor plane. Flapwise deflections refer to blade displacements

normal to the rotor plane. Note that there is some simplification in this description

as deflections are usually defined with respect to the local chord, which twists

considerably from blade root to tip. True edgewise deflections, for example, are not

purely in the rotor plane but contain a small component normal to the rotor plane.

Edgewise deflections are a result of the tangential force on the blade responsible for

creating torque to turn the rotor. Flapwise deflections are due to the thrust created

by the pressure jump as the wind crosses the rotor plane.

Stall regulated wind turbines are known to suffer from edgewise blade vibration

instability. The problem emerged as wind turbines began to increase in size. Stiesdal

reported edgewise vibrations on a 37 meter diameter rotor in 1994 [77]. The Aerpac

APX40T is a 600 kW, 43 meter diameter wind turbine that was subject to edgewise
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vibrations in high wind speeds [4]. The reason for the instability was explained by

Petersen et al. [63]. For a blade translating harmonically in the rotor plane (or a

plane near the rotor plane), the aerodynamic damping is negative or unstable at low

and high wind speeds. Given this result, it should be expected that this instability

is always present. However, due to the local orientation of the blade, the vibration is

typically never totally in the rotor plane. There is some component in the flapwise

direction, which has very good damping characteristics. The edgewise instability can

be controlled by designing blades to vibrate more in the flapwise direction so that the

edgewise vibrations are effectively damped.

Flapwise blade vibration instability has been observed, for example, on the Nibe A

turbine operating in stall [49]. However, the analysis of Petersen el at. [63] shows that

flapwise vibrations are well damped except at very high wind speeds. This instability

is of little concern in modern wind turbines, which are typically pitch regulated.

Other couplings of single DOF blade instabilities have been investigated. Chaviaropou-

los [18] studied the coupling of the flapwise and edgewise instabilities. Here, the

edgewise instability is referred to as lead-lag instability, which refers to the blade

deflection leading or lagging in the rotor plane. Although the model in this case is

highly simplified, some general trends reported are more stability with thicker airfoils

or minimal structural damping.

Flutter

Flutter is a common instability in turbomachinery and fixed-wing aircraft, but it has

never been a problem with commercial wind turbines [31]. In fixed-wing aircraft,

flutter results from the torsional DOF coupling with a translational DOF, usually a

flapwise mode. To better understand flutter, consider a wing rigidly attached at the

root. Due to the elastic properties of the wing material, it has freedom to bend and

twist as a cantilever beam. The wing also has freedom in other directions, but they

are not important here. Any small disturbance to the wing structure will cause the

wing to oscillate in these directions. Without any sustained source of perturbation,
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the oscillations will eventually be damped. As the wing encounters increasing wind

speeds, the dampening will at first increase before beginning to decrease. When the

flutter speed is encountered, the oscillations can just maintain themselves. Above

the flutter speed, the oscillations can become violent and destructive to the wing

structure [26]. In terms of damping, when the sum of the aerodynamic and structural

damping is zero, this corresponds to a neutrally stable solution known as flutter. If the

damping becomes negative, the system is unstable. Thus, it is critical to understand

the flutter onset point in aeroelastic structures since any small disturbance above this

condition has the potential to be catastrophic.

There is concern that flutter might emerge with larger wind turbines as the

torsional frequency decreases with increased stuctural flexibility. Lobitz performed a

flutter analysis on the WindPACT 1.5 MW turbine blade and found that the flutter

did not occur until about twice the max operating speed of the rotor [48]. The Wind

Energy Technologies Department at Sandia National Laboratories has continued to

investigate flutter in large wind turbines building off of his initial work [67, 57].

Vatne [97] analyzed the NOWITECH reference turbine using HAWC2 (see below for

description of HAWC2). He also found flutter for this 10 MW, 140 m diameter rotor

near double the max operational speed [97]. Larwood investigated flutter onset and

alleviation in straight and swept wind turbine blades [42]. One of the findings of this

work was the importance in moving the blade center of mass forward of the elastic

axis to increase the flutter speed.

Coupled Rotor/Tower Instabilities

Aeroelastic analysis of a single turbine blade is typically insufficient since it is possible

for the vibrations of other system components, e.g. tower, nacelle, etc., to couple with

blade vibrations through the structural connections. It is possible for the edgewise

blade vibrations to couple with various tower modes of vibration. Van Holten et al.

[93] found several instances in the literature of edgewise blade vibration coupling with

the translational modes of the tower. A slightly different version of this instability is
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a coupling of the advancing lead/lag mode with either the first tower torsion mode

or second tower bending mode. A famous example of this instability occurred on

the KEWT (Kosten Effectieve Wind Turbine) prototype in the 1980s where the first

tower torsion mode and lead/lag mode coupled when the angular velocity of the rotor

was half the frequency of first tower torsion mode. A second instability occurred

when the angular velocity was half the frequency of the second tower bending mode

[61, 62].

Aeroelastic Models

The dominant aeroelastic models in industry currently are RISØ’s HAWC2 [41] and

the National Renewable Energy Laboratory’s (NREL) Fatigue, Aerodynamics, Struc-

tures, and Turbulence (FAST) [38]. HAWC2 is a standard analysis tool developed and

maintained by the RISØ National Laboratory in Denmark. The structural dynamics

are modeled using a multibody formulation applied to Timoshenko beam elements.

The multibody approach allows for larger deformations to more accurately model

new, larger wind turbines. Aerodynamics are modeled using the BEM method with

corrections for dynamic stall, dynamic wake, skewed inflow, and tip losses.

FAST employs a combined multibody and mode shape formulation where the

blades and tower are modeled via mode shapes and the platform, nacelle, generator,

gears, hub, and tail are modeled via the multibody formulation. Aerodynamics

in FAST are also modeled with the BEM method with corrections as in HAWC2.

HAWC2 and FAST have both recently added capabilities to model offshore wind

turbines where there is an added complexity due to the interaction of the ocean and

sea floor with the support structure.

1.3 Contributions to State of the Art

The primary objective of this dissertation is to develop a wind turbine aeroelastic

model by coupling an unsteady Reynolds-averaged Navier-Stokes flow solver and a
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mode shape-based structural dynamics model. Utilization of the harmonic balance

method to model the unsteady flow behavior will keep the computational workload

favorable for use in a design setting. The presented aeroelastic model offers significant

improvement in the aerodynamics modeling capability over current aeroelastic models

based on the blade element momentum approach. Not only will this be the first wind

turbine aeroelastic model to utilize the harmonic balance method, this work will also

include the first use of the γ–Reθt transition model to analyze unsteady wind turbine

aerodynamics via the harmonic balance method.

The specific contributions of this work are worth noting. The author converted

an in-house 2-D turbomachinery CFD code into a 3-D external CFD code. New

far field boundary conditions and periodic boundary conditions were added in the

process. The discretization was changed from vertex-based to cell-centered, and Roe

fluxes with MUSCL were also added. The original solver was designed for H-O-H

type meshes in turbomachinery, but the topology was converted to C-type meshes for

2-D simulations and C-H-type meshes for 3-D simulations. The implicit LU-SGS time

integration scheme was added to the solver as was the γ–Reθt transition model and

the harmonic balance method. Parallel computing capability was added to the code

via the OpenMPI framework. The governing aeroelastic equation in the frequency

domain was derived from the general form of the structural dynamics equation since

no form existed previously for wind turbine blade flutter.

1.4 Outline

The structure of the dissertation is as follows. The governing equations for the

aerodynamic and structural dynamic models are presented in the next chapter.

Chapter 3 details the numerical techniques employed to solve the governing flow

equations, and Chapter 4 details the flutter solution technique. Validation results for

the flow solver and aeroelastic model are provided in Chapter 5. Chapter 6 compares

results between fully turbulent and boundary layer transition solutions for a pitching
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S809 airfoil, and Chapter 7 investigates flutter of the 1.5 MW WindPACT turbine

blade. The dissertation closes with a summary and discussion of potential future

work in Chapter 8.
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Chapter 2

Governing Equations

This chapter presents the governing equations for the aerodynamic and structural

dynamic models used in this work. The chapter begins with the governing equations

of fluid dynamics known as the Navier-Stokes equations (Section 2.1). Section 2.2

describes the Spalart-Allmaras turbulence model, which is used to set the eddy

viscosity. For separated flows, it is essential to model the boundary layer transition

from laminar to turbulent. For this purpose, the γ–Reθt transition model is

used, which is described in Section 2.3. The chapter closes with the harmonic

balance equations in Section 2.4 and the governing structural dynamics equation

in Section 2.5.

2.1 Navier-Stokes Equations

The Navier-Stokes equations are derived from the conservation of mass, momentum,

and energy. When viscosity is neglected, the well-known Euler equations result. The

details of the derivation are readily available in textbooks and omitted here. The

interested reader may find an excellent discussion of the derivation in Hirsch [32]. In

integral form, the Navier-Stokes equations are written

∂

∂t

∫
V
ρ dV +

∮
S

ρv · dS = 0 (2.1)
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∂

∂t

∫
V
ρv dV +

∮
S

ρv(v · dS) =

∫
V
ρfe dV −

∮
S

pdS +

∮
S

¯̄τ · dS (2.2)

∂

∂t

∫
V
ρE dV+

∮
S

ρE(v ·dS) =

∮
S

k∇T ·dS+

∫
V
(ρfe ·v+qH) dV+

∮
S

(¯̄σ ·v) ·dS (2.3)

The Navier-Stokes equations define the time rate change of the conservation

variables in terms of convective and diffusive fluxes. The convective flux is due to

the bulk motion of the fluid, and the diffusive flux is due to molecular agitation.

Thus, a diffusive flux is possible in a fluid at rest, but a convective flux is not. The

Navier-Stokes equations may be written in strong conservation form according to

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= S (2.4)

where the vector of conservation variables, U , and the flux vectors F , G, and H and

source vector S are given by

U =



ρ

ρu

ρv

ρw

ρE


; F =



ρu− ρḟ

ρu2 + p− τxx − ρuḟ

ρuv − τxy − ρvḟ

ρuw − τxz − ρwḟ

ρuh− τxh − ρEḟ


(2.5)

G =



ρv − ρġ

ρuv − τyx − ρuġ

ρv2 + p− τyy − ρvġ

ρvw − τyz − ρwġ

ρvh− τyh − ρEġ


; H =



ρw − ρḣ

ρuw − τzx − ρuḣ

ρvw − τzy − ρvḣ

ρw2 + p− τzz − ρwḣ

ρwh− τzh − ρEḣ


; S =



0

0

0

0

0


(2.6)

The source vector S is zero in the absence of body forces such as gravity or

buoyancy. The shear stresses and pressure are defined in the coming sections. The ḟ ,

ġ, and ḣ terms are added as the x, y, and z components of the unsteady grid motion

velocity, respectively.

15



2.1.1 Viscous Stresses

The most general form of the viscous stress tensor includes the dynamic viscosity, µ,

and a second viscosity coefficient, λ. Stokes [78] hypothesized the two were related

according to

2µ+ 3λ = 0 (2.7)

In a Newtonian fluid, the shear stress is proportional to the velocity gradient. Using

this assumption with the Stokes hypothesis, the viscous shear stresses may be written

[69, 100]

τij = µ

[(
∂vj
∂xi

+
∂vi
∂xj

)
− 2

3
(∇ · v)δij

]
(2.8)

Thus, the shear stress terms in the x-direction are given by

τxx = (µl + µt)

[
4

3

∂u

∂x
− 2

3

(
∂v

∂y
+
∂w

∂z

)]
(2.9)

τxy = (µl + µt)

(
∂u

∂y
+
∂v

∂x

)
(2.10)

τxz = (µl + µt)

(
∂u

∂z
+
∂w

∂x

)
(2.11)

τxh = uτxx + vτxy + wτxz +

(
µl
Prl

+
µt
Prt

)
∂h

∂x
(2.12)

Similar terms define the shear stress terms in the y- and z-directions. The viscosity

is broken into two components in the shear stress terms, µl and µt. The laminar

viscosity, µl, is a fluid property determined with the Sutherland formula. The latter

is the eddy viscosity, and it is computed by a suitable turbulence model such as the

Spalart-Allmaras [75] or k − ω SST [55] model.

2.1.2 Perfect Gas Model

The Navier-Stokes equations are composed of five equations with seven unknown flow

variables: ρ, u, v, w, E, p, and T . It can be shown using the ideal gas assumption
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that the pressure can be related to the conservation variables through

p = (γ − 1)ρ

[
E − 1

2

(
u2 + v2 + w2

)]
(2.13)

The temperature can be computed using

p = ρRgasT (2.14)

2.1.3 Rotating Frame of Reference

It is convenient to use the Navier-Stokes equations in a rotating frame of reference

when the computational domain is steadily rotating about some axis such as in

turbomachinery, helicopter rotors, or wind turbines. This allows an unsteady flow

in an inertial frame of reference to be considered as a steady flow in a rotating frame

of reference.

Following the development by Agarwal and Deese [2, 3], the Navier-Stokes

equations may be recast in a rotating reference frame using absolute velocity

components. Letting (u, v, w), (ur, vr, wr), and (uΩ, vΩ, wΩ) denote the absolute,

relative, and rotational velocity components, the velocity components are related

according to

u = ur − uΩ ; v = vr − vΩ ; w = wr − wΩ (2.15)

where Ω is angular velocity of the rotor. For a rotation about the y-axis, the rotational

velocity components are given by

uΩ = −Ωz ; vΩ = 0 ; wΩ = Ωx (2.16)

Considering the Euler equations only, the governing equations in relative velocity

components are written

∂Ur

∂t
+
∂Fr
∂x

+
∂Gr

∂y
+
∂Hr

∂z
= Sr (2.17)
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where now the conservation variables, flux vectors, and source terms are given by

Ur =



ρ

ρur

ρvr

ρwr

ρEr


; Fr =



ρur

ρur
2 + p

ρurvr

ρurwr

ρurI


(2.18)

Gr =



ρvr

ρurvr

ρvr
2 + p

ρvrwr

ρvrI


; Hr =



ρwr

ρurwr

ρvrwr

ρwr
2 + p

ρwrI


; Sr =



0

ρΩ2x− 2ρΩwr

0

ρΩ2z + 2ρΩur

0


(2.19)

and the total relative enthalpy and the total rothalpy are defined as

Er =
p

(γ − 1)ρ
+

1

2

(
u2
r + v2

r + w2
r

)
− 1

2

(
u2

Ω + w2
Ω

)
(2.20)

I = Er +
p

ρ
(2.21)

The rothalpy represents the total energy in a steadily rotating frame of reference.

The source vector in this variable set is augmented by the Coriolis and centrifugal

force terms. The governing equations can be converted back to absolute variables

using the relations in Eq. 2.15. The conservation variables, flux vectors, and source

term then become

U =



ρ

ρu

ρv

ρw

ρE


; F =



ρu+ ρuΩ

ρu2 + p+ ρuuΩ

ρuv + ρvuΩ

ρuw + ρwuΩ

ρuh+ ρeuΩ


(2.22)
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G =



ρv

ρuv

ρv2 + p

ρvw

ρvh


; H =



ρw + ρwΩ

ρuw + ρuwΩ

ρvw + ρvwΩ

ρw2 + p+ ρwwΩ

ρwh+ ρewΩ


; S =



0

−ρΩw

0

ρΩu

0


(2.23)

Note that for zero angular velocity, the inertial frame of reference is recovered. The

viscous fluxes keep the same form from the inertial frame of reference.

2.2 Spalart-Allmaras Turbulence Model

The turbulent fluctuations are neglected when solving the Reynolds-averaged Navier-

Stokes equations, but in order to model turbulent flows accurately, the effects of

turbulence must be included in some way. One method is to use the Boussinesq

hypothesis [12, 13] that the turbulent shear stress is linearly proportional to the mean

strain rate. The constant of proportionality is known as the eddy viscosity. With this

approach, the effects of turbulence can be included by adding an eddy viscosity term,

µt, to the laminar viscosity, µl.

The Spalart-Allmaras [75] turbulence model is a popular and effective turbulence

model utilizing this approach. The model was developed empirically and performs

well over airfoils and in adverse pressure gradients. Keeping the form of Eq. 2.4, the

flux vectors for the Spalart-Allmaras model can be written as

U =
[
ρν̃
]

; F =
[
ρuν̃ − τxν − ρν̃ḟ

]
(2.24)

G =
[
ρvν̃ − τyν − ρν̃ġ

]
; H =

[
ρwν̃ − τzν − ρν̃ḣ

]
; S =

[
St

]
(2.25)

where the shear stress term in the x-direction, for example, is given by

τxν̃ =
1

σ
(µl + ρν̃)

∂ν̃

∂x
(2.26)
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The eddy viscosity is found using

µt = ρν̃fv1 (2.27)

The source term is composed of a production, destruction, and diffusion term. Written

in this order, the source term takes the form

St = cb1 (1− ft2) S̃ρν̃−

ρ
[
cw1fw −

cb1
κ2
ft2

]( ν̃
d

)2

+
ρcb2
σ

[(
∂ν̃

∂x

)2

+

(
∂ν̃

∂y

)2

+

(
∂ν̃

∂z

)2
]

(2.28)

The various terms and constants appearing in these equations are defined as

fv1 =
χ3

χ3 + c3
v1

; χ =
ρν̃

µl
(2.29)

S̃ = Ω +
ν̃

κ2d2
fv2 ; fv2 = 1− χ

1 + χfv1

(2.30)

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

; g = r + cw2

(
r6 − r

)
(2.31)

r = min

(
ν̃

S̃κ2d2
, 10

)
; ft2 = ct3e−ct4χ2

(2.32)

where Ω is the vorticity magnitude.

Notice the ease with which the Spalart-Allmaras turbulence model may be added

to a RANS solver since only the laminar viscosity in the mass, momentum, and

energy equations needs to be augmented by the eddy viscosity. Additionally, the

added computational workload is reasonable since only one more transport equation

is solved.
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2.3 Transition Model

The Spalart-Allmaras turbulence model as just described assumes fully turbulent flow

everywhere. This assumption is not valid for wind turbine flows where the boundary

layer is initially laminar before becoming turbulent some distance downstream. It is

possible to set a trip location along the airfoil surface, but doing so requires knowledge

of the location a priori so this is a very limited solution. A better approach is to use

a transition model that is able to predict the laminar to turbulent transition in the

boundary layer using local flow quantities.

The γ−Reθt transition model developed by Langtry [39] works very well with the

k-ω SST turbulence model. Recently, the model was adapted for the Spalart-Allmaras

turbulence by Medida and Baeder [54]. In strong conservation form, the flux vectors

for this model are given by

U =

 ργ

ρReθt

 ; F =

 ρuγ − τxγ − ργḟ

ρuReθt − τxr − ρReθtḟ

 (2.33)

G =

 ρvγ − τyγ − ργġ

ρvReθt − τyr − ρReθtġ

 ; H =

 ρwγ − τzγ − ργḣ

ρwReθt − τzr − ρReθtḣ

 (2.34)

S =

 Sγ

SReθt

 (2.35)

The transition model contains two equations. The first equation solves for the

intermittency, γ, which adjusts the production and destruction source terms in the

Spalart-Allmaras model. The intermittency takes on values between 0 and 1 where

0 corresponds to laminar flow and 1 to fully turbulent flow. The source term for the

intermittency equation is given as

Sγ = Pγ −Dγ + ργ

(
∂u

∂x
+
∂v

∂y

)
(2.36)
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where Pγ and Dγ are the intermittency production and destruction terms, respec-

tively. These are defined as

Pγ = Flengthca1ρS (γFonset)
0.5 (1.0− ce1γ) (2.37)

Dγ = ca2ρΩγFturb (ce2γ − 1.0) (2.38)

with input parameters given by

Fonset = max (Fonset2 − Fonset3, 0.0) (2.39)

Fonset1 =
Reν

2.193Reθc
(2.40)

Fonset2 = min
(
max

(
Fonset1, F

4
onset1

)
, 2.0

)
(2.41)

Fonset3 = max

(
1.0−

(
RT

2.5

)3

, 0.0

)
(2.42)

Fturb = e
−
(
RT
4

)4
(2.43)

Reν =
ρd2S

µl
; RT =

µt
µl

(2.44)

The calibration used by Medida and Baeder [54] is kept, which seems to be

appropriate for airfoil problems with freestream turbulence intensities much less than

1.0%. These correlations define the critical Reynolds number, Reθc, and the transition

length function, Flength, as

Reθc =
(
4.45Tu3

∞ − 5.7Tu2
∞ + 1.37Tu∞ + 0.585

)
Reθt (2.45)

Flength = 0.171Tu2
∞ − 0.0083Tu∞ + 0.0306 (2.46)

The second transport equation solves for the momentum thickness Reynolds

number, Reθt, which is used to determine the location and extent of the transition

from laminar to turbulent flow. Since the turbulence intensity varies inside the

domain, the freestream value of the momentum thickness Reynolds number is

22



inappropriate. Instead, the momentum thickness transport equation is used to

transport the freestream turbulence effects into the boundary layer. The source term

for the momentum thickness Reynolds number is given by

SReθt
= Pθt + ρReθt

(
∂u

∂x
+
∂v

∂y

)
(2.47)

with the production term, Pθt, defined as

Pθt = cθt
ρ

tscale

(
Reθt − Reθt

)
(1.0− Fθt) (2.48)

with input parameters given by

Fθt = min

(
max

(
Fwakee

−( dδ )
4

, 1.0−
(
γ − 1/ce2

1.0− 1/ce2

)2
)
, 1.0

)
(2.49)

δ =
50Ωd

U
δBL; δBL = 7.5θBL; θBL =

Reθtµl
ρU

(2.50)

Fwake = exp

[
Reω

1.0 x 105

]2

; Reω =
ρωd2

µl
(2.51)

where ω is the turbulence dissipation rate. Since the dissipation rate is not known

explicitly for the Spalart-Allmaras model like in the k-ω SST model, the approach

of Medida and Baeder [54] is used to define these values. The local value of Reθt

in the production term must be found iteratively using the following experimental

correlations

Reθt =


(
1173.51− 589.428Tu+ 0.2196

Tu2

)
F (λθ) Tu ≤ 1.3

331.50 (Tu− 0.5658)−0.671 F (λθ) Tu > 1.3
(2.52)

F (λθ) =

 1.0− (−12.968λθ − 123.66λ2
θ − 405.689λ3

θ) e

[
−(Tu1.5)

1.5
]

λθ ≤ 0

1.0 + 0.275 (1.0− exp [−35.0λθ]) e
[−Tu0.5 ] λθ > 0

(2.53)
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which are functions of the freestream turbulence intensity, Tu, and the pressure

gradient parameter, λθ. The pressure gradient parameter is defined

λθ =
ρθ2

µl

dU

ds
(2.54)

where dU/ds is the streamwise acceleration.

To improve the prediction of transition induced by a laminar separation bubble,

a second intermittency is defined as

γsep = min

(
s1max

[
0.0,

(
Reν

3.235Reθc

)
− 1.0

]
Freattach, 2.0

)
Fθt (2.55)

where

Freattach = exp

[
−
(
RT

20

)4
]

(2.56)

and an effective intermittency for use in the Spalart-Allmaras equation becomes

γeff = max (γ, γsep) (2.57)

The transition model is coupled to the Spalart-Allmaras equation via the

production and destruction terms. The modified terms are given by

P̃ν = γeffPν ; D̃ν = min (max (γ, β) , 1.0)Dν (2.58)

Notice that the original production and destruction terms are recovered when the

intermittency is equal to unity. The effect of the constant β is not fully understood

yet so the recommended value for the S809 airfoil of 0.1 is used [54]. The other model

constants are defined as

ce1 = 1.0; ca1 = 2.0; ce2 = 50.0; ca2 = 0.06 (2.59)

σf = 1.0; cθt = 0.03; σθt = 2.0; s1 = 2.0 (2.60)
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2.4 Harmonic Balance Equations

Many flows of interest are temporally periodic, which allows one to represent the flow

variables using a Fourier series in time with spatially varying coefficients. In the case

of wind turbine aerodynamics, the unsteadiness may be due to vibrating or pitching

blades or yawed (non-orthogonal) inflow. In such cases, the conservation variables

may be expressed as a truncated Fourier series given by

U(x, y, z, ti) = A0(x, y, z) +
N∑
n=1

[An(x, y, z) cos(ωnti) + Bn(x, y, z) sin(ωnti)] (2.61)

where ω is the fundamental excitation frequency, and A0, An, and Bn are the Fourier

coefficients of the conservation variables. The subscript i runs from 1 to 2N + 1.

Note that the flow variables can be computed and stored at 2N + 1 equally spaced

points over one temporal period. Following Eq. (2.61), the Fourier coefficients can be

determined from the sub-time level solutions and vice versa with a discrete Fourier

transform and inverse discrete Fourier transform given by

U ∗ = EŨ (2.62)

Ũ = E−1U ∗ (2.63)

where U ∗ are the conserved flow variables at each sub-time level, and Ũ are the

Fourier coefficients of the conserved flow variables. The terms E and E−1 are square

matrices as the number of sub-time levels is equal to the number of Fourier coefficients.

As an example, consider a solution with 2 harmonics or 5 sub-time levels. In this
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case, Eq. 2.62 takes the form

U1

U2

U3

U4

U5


=



1 cosωt1 cos2ωt1 sinωt1 sin2ωt1

1 cosωt2 cos2ωt2 sinωt2 sin2ωt2

1 cosωt3 cos2ωt3 sinωt3 sin2ωt3

1 cosωt4 cos2ωt4 sinωt4 sin2ωt4

1 cosωt5 cos2ωt5 sinωt5 sin2ωt5





A0

A1

A2

B1

B2


(2.64)

The semi-discrete form of the governing equations can be written for all sub-time

levels simultaneously, so that

d

dt
(V∗U ∗) + R∗ = 0 (2.65)

where R∗ is the residual vector evaluated at each sub-time level. The time derivative

acting on the conserved variables can be expanded by using Eq. 2.62 to get

∂U ∗

∂t
=
∂E−1

∂t
Ũ (2.66)

The result can be further expanded using the definition for the Fourier coefficient

vector to define the pseudo-spectral operator. This becomes

∂U ∗

∂t
=
∂E−1

∂t
EU ∗ = ωDU ∗ (2.67)

Replacing the time derivative term in Eq. (2.65) with the pseudo-spectral operator,

the harmonic balance equations are written in semi-discrete form as

ωD (V∗U ∗) + R∗ = 0 (2.68)

To solve the harmonic balance equations, a “pseudo-time” term is introduced so that

the equations may be marched rapidly to a steady-state condition using a conventional
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computational fluid dynamics scheme. Thus, Eq. (2.68) becomes [22]

∂

∂τ
(V∗U ∗) + ωD (V∗U ∗) + R∗ = 0 (2.69)

where τ is a fictitious or pseudo time, used only to march Eq. (2.69) to steady-state by

driving the pseudo-time term to zero. The pseudo-time harmonic balance equations

are similar in form to the original time domain equations (Eqs. 2.4). Thus, existing

well-developed steady CFD techniques may be used to efficiently solve the nonlinear

harmonic balance equations with a comparable number of iterations required.

2.5 Structural Dynamics

In order to study the effects of aerodynamic loading on a structure, a suitable

structural dynamics model is required to relate the time-varying motion of the

structure to the aerodynamic forces. In the absence of mechanical damping, the

vibration of a structure subject to aerodynamic excitation is described by

Mẍ + Kx = F (2.70)

where M is the structural mass matrix, K is the structural stiffness matrix, x is

the vector of physical displacements, and F is the vector of time-varying generalized

aerodynamic forces given as

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 ; K =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 (2.71)

ẍ =


ẍ

ÿ

z̈

 ; x =


x

y

z

 ; F =


Fx

Fy

Fz

 (2.72)
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For a wing or turbine blade, the total aerodynamic force is defined as

F =

∫∫
A

pn̂̂n̂n · dA +

∫∫
A

τττw · dA (2.73)

where n̂̂n̂n is the unit normal wall vector and τττw is the shear stress along the wing or

blade surface.

When a structure is perturbed from its static equilibrium position, in the absence

of structural damping and external forces, the response is called the free undamped

vibration. Assuming sinusoidal motion, the structural displacement and acceleration

can be written

x = φφφsinωt (2.74)

ẍ = −φφφω2sinωt (2.75)

where φφφ is the amplitude of the displacement and ω is the frequency of vibration.

Substituting Eqs. 2.74 and 2.75 into Eq. 2.70, one obtains the eigenvalue problem

(
K− ω2M

)
φφφ = 0 (2.76)

It is seen here that ω2 represents the eigenvalue and φφφ the associated eigenvector.

In structural dynamics terminology, each eigenvalue or frequency has an associated

eigenvector or mode shape.

There are an infinite number of mode shapes, but the first few are typically

sufficient in structural modeling. Letting n represent the degrees-of-freedom of the

model, the structural displacements can now be written in the x-direction, for example

x(t) =
n∑
i=1

φi(x)qi(t) (2.77)
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where φi is the ith mode shape and qi the ith modal displacement. The governing

equation in Eq. 2.70 in terms of the mode shapes becomes

MΦq̈ + KΦq = F (2.78)

where the modal matrix Φ is defined for n mode shapes as

Φ =


φ1(x) φ2(x) · · · φn(x)

φ1(y) φ2(y) · · · φn(y)

φ1(z) φ2(z) · · · φn(z)

 (2.79)

The governing equation can be simplified using mass normalized mode shapes.

The mass normalized mode shape is defined as

φ̃φφ =
φφφ√
φφφTMφφφ

(2.80)

where the denominator on the right hand side represents the square root of the

generalized mass. Rewriting the governing equation in terms of mass normalized

mode shapes and premultiplying by the transpose of Φ̃, one gets

Φ̃TMΦ̃q̈ + Φ̃TKΦ̃q = Φ̃TF (2.81)

Here, the mass normalized modal matrix and its transpose are given by

Φ̃ =


φ̃1(x) φ̃2(x) · · · φ̃n(x)

φ̃1(y) φ̃2(y) · · · φ̃n(y)

φ̃1(z) φ̃2(z) · · · φ̃n(z)

 ; Φ̃T =


φ̃1(x) φ̃1(y) φ̃1(z)

φ̃2(x) φ̃2(y) φ̃2(z)
...

...
...

φ̃n(x) φ̃n(y) φ̃n(z)

 (2.82)

Due to the orthogonality of the eigenvectors, the matrices on the left hand side are

greatly simplified. Orthogonality and mass normalized mode shapes give the following
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simplifications:

φ̃Ti Mijφ̃j = 1 for i = j (2.83)

φ̃Ti Mijφ̃j = 0 for i 6= j (2.84)

Similar simplifications can be used for the stiffness matrix. The governing equation

is now decoupled and reduced to

mj q̈j + kjqj = φ̃j
T
Fj (2.85)

Dividing by the mass, the final desired form of the governing structural dynamics

equation is obtained

q̈j + ω2
j qj =

φ̃j
T

mj

Fj (2.86)
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Chapter 3

Numerical Approach for Flow

Solver

3.1 Non-Dimensionalization

It is convenient to work with a non-dimensional form of the governing fluids equations

so that key parameters such as the Reynolds number and Mach number can be varied

independently of each other. Non-dimensionalization also normalizes the results so

that their limits fall in a convenient range, and it allows for easier comparison with

other datasets [84].

Many non-dimensional sets of variables are possible, and one based on a reference

length, pressure, and temperature is considered here. Additional reference quantities

may be defined in terms of these user-defined quantities, which are given as

ρref =
pref

RgasTref
; Vref =

√
RgasTref ; aref =

√
γRgasTref ; ωref =

Vref
Lref

(3.1)

The gas constant, Rgas, is also user-defined. Using overbars to denote dimensionless

quantities, the normalized variables are given as

x̄ =
x

Lref
; ȳ =

y

Lref
; z̄ =

z

Lref
; t̄ =

t

Lref/Vref
(3.2)
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ū =
u

Vref
; v̄ =

v

Vref
; w̄ =

w

Vref
; ω̄ =

ω

ωref
(3.3)

µ̄ =
µ

ρrefVrefLref
; ρ̄ =

ρ

ρref
; p̄ =

p

pref
; T̄ =

T

Tref
(3.4)

This choice of non-dimensionalization affects the form of the equation of state.

Substituting the above definitions into Eq. 2.14, the ideal gas law takes the form

p̄ = ρ̄T̄ (3.5)

For external flow problems, the free stream quantities are typically set to unity.

Following the form of the ideal gas law in Eq. 3.5, the free stream quantities are

given by

T̄∞ = p̄∞ = ρ̄∞ = 1 ; ā∞ =
√
γ (3.6)

For viscous simulations, the Reynolds number is required to properly scale all

viscous quantities. The Reynolds number based on reference values is given by

Re =
ρrefVrefLref

µref
(3.7)

Since pref , Tref , and Rgas are usually fixed for a given problem, the reference length,

Lref , is used to set the Reynolds number to the appropriate value.

3.2 Spatial Discretization

The governing fluids equations presented in Chapter 2 are discretized using a cell-

centered finite volume approach. In this section, the grid topology and details of the

cell-centered discretization are covered. A central and upwind difference method for

computing the convective fluxes is included as well as a central difference method for

the viscous fluxes.
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3.2.1 Grid Topology

The current flow solver is written specifically for a C-grid type mesh. This mesh

gets its name from the shape of the grid, which resembles a capital C. Figure 3.1

shows a 2-D diagram of a C-grid type mesh on the left hand side and the associated

computational plane on the right. A C-grid is formed by lines of constant η that

wrap around the airfoil in a clockwise direction. The lines run from η = 0 on the

aifoil surface to η = ηmax in the far field. Lines of constant ξ emanate from the airfoil

surface and wake and run from ξ = 0 to ξ = ξmax.

  

x

ηy

η = 0

η = η
max

ξ 
= 
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Figure 3.1: C-grid topology. Left: Physical plane. Right: Computational plane.

Each point in physical space is mapped onto the computational plane by a unique

value of ξ and η such that points may be addressed as x(ξ, η) and y(ξ, η). If ξ is

defined as the i-direction and η as the j-direction, then cells neighboring a particular

control volume are easily addressed by adding or subtracting one from the current cell

address. This feature is very useful for programming and defining fluxes at cell faces.

The line connecting the airfoil trailing edge and far field is known as a coordinate

cut. In addition to the airfoil surface and far field, this boundary must also receive

special attention. This topic is discussed further in section 3.4.
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For 3-D cases, the solver is written for C-H type grids. These grids are formed

with a single C-grid in each k-plane, where ζ is the k-direction. Points in this case

are addressed as x(ξ, η, ζ), y(ξ, η, ζ), and z(ξ, η, ζ). For flows about fixed wings,

the C-grid in each k-plane is similar to that shown in Fig. 3.1. For rotating flows,

each k-plane is wrapped around the center of rotation so that each plane takes on a

cylindrical shape. Examples of these grids appear in Chapters 5 and 7.

3.2.2 Cell-Centered Approach

With a cell-centered discretization, the control volumes coincide with the grid cells.

The values of the flow variables are stored at the centroids of the control volumes,

and the fluxes are computed at the faces of the control volumes. This situation is

depicted in Fig. 3.2. The alternative approach is a cell-vertex scheme where the flow

variables are stored at the nodes of the grid, and control volumes are defined that

do not coincide with the mesh. Both approaches have advantages and disadvantages.

For example, the cell-centered scheme is better near sharp corners and branch cuts,

but the cell-vertex scheme has higher accuracy on unrefined grids. The cell-centered

scheme is used here since accuracy is negligible compared to cell-vertex schemes on

smooth grids and better documentation seems to be more available in literature on

cell-centered schemes.

A few geometric quantities associated with the control volume must be defined.

The volume of the cell in 2-D is easily computed with

Vi,j =
1

2
[(xA − xC) (yB − yD) + (xD − xB) (yA − yC)] (3.8)
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Figure 3.2: Cell-centered discretization

Each face of the control volume has a face vector S and unit normal n̂ that may be

defined on Face 1, for example, by

Sx,1 = yB − yA ; Sy,1 = xA − xB (3.9)

n̂x,1 =
Sx,1
||S1||

; n̂y,1 =
Sy,1
||S1||

(3.10)

where ||S1|| is the magnitude of the face vector. The volumes and face vectors are

more complicated in 3-D, and formulas for these quantities may be found in Appendix

A.

3.2.3 Convective Fluxes

Two methods are described here to compute the convective fluxes. The first method

is a central scheme with artificial dissipation known as the JST scheme. It is named

for the authors of the original paper - Jameson, Schmidt, and Turkel [37]. The second

method is the flux difference splitting scheme of Roe [68]. Details, advantages, and

disadvantages of each method are provided in the next two sections. The central

35



scheme was typically used in this work during code development due to its simple

programming and computational efficiency. The Roe scheme was used in final results

for its better accuracy near flow gradients.

Central Scheme

The central scheme of Jameson et al. [37] became very popular due to its easy

implementation and low computational cost compared to other flux discretizations

[11]. The idea behind the scheme is to compute the convective flux at each face of

a control volume using the average of the flow variables on either side of the face.

Mathematically, this may be written for the i+ 1/2, j, k face as

(Fc∆S)i+1/2,j,k ≈ Fc

(
Ui+1/2,j,k

)
∆Si+1/2,j,k (3.11)

where

Ui+1/2,j,k =
1

2
(Ui,j,k + Ui+1,j,k) (3.12)

Two major disadvantages of the central scheme are even-odd decoupling of

the solution and oscillations near discontinuities such as shock waves. Artificial

dissipation is added to the scheme to alleviate these problems. With the addition

of the artificial dissipation, the convective flux in Eq. 3.11 becomes

(Fc∆S)i+1/2,j,k ≈ Fc

(
Ui+1/2,j,k

)
∆Si+1/2,j,k −Di+1/2,j,k (3.13)

where Di+1/2,j,k is the artificial dissipation flux at the cell face. The artificial

dissipation is constructed from a blending of second and fourth order differences,

which take the form

Di+1/2,j,k = λi+1/2,j,k

[
ε

(2)
i+1/2,j,k (Ui+1,j,k −Ui,j,k)

−ε(4)
i+1/2,j,k (Ui+2,j,k − 3Ui+1,j,k + 3Ui,j,k −Ui−1,j,k)

]
(3.14)
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The dissipation is scaled by the sum of the spectral radii in each coordinate direction

at the cell face, or

λi+1/2,j,k = λii+1/2,j,k + λji+1/2,j,k + λki+1/2,j,k (3.15)

The spectral radius at the cell face in a single coordinate direction is taken as the

average of the spectral radii of the two cells adjacent to the face. The spectral radius in

a coordinate direction is determined from the convective flux Jacobian. For example,

in the i or ξ direction, the spectral radius is given by

λii,j,k = (|V |+ c) ∆S (3.16)

The coefficients in Eq. 3.14 are used to adjust the numerical dissipation depending on

the local flow conditions. In smooth regions of the flow, the fourth-order difference

terms associated with ε(4) are active to damp the oscillations arising due to the central

difference scheme. Near strong discontinuities, the fourth-order difference terms are

reduced, and the second-order difference terms associated with ε(2) are increased. A

pressure-based switch is used to adjust these terms accordingly, which is written

νi,j,k =
|pi−1,j,k − 2pi,j,k + pi+1,j,k|
pi−1,j,k + 2pi,j,k + pi+1,j,k

(3.17)

The second- and fourth-order coefficients are defined as

ε
(2)
i+1/2,j,k = κ(2)max (νi,j,k, νi+1,j,k) (3.18)

ε
(4)
i+1/2,j,k = max

[
0,
(
κ(4) − ε(2)

i+1/2,j,k

)]
(3.19)

The constants in Eqs. 3.18 and 3.19 are typically in the range 0.25 < k(2) < 0.50 and

0.008 < k(4) < 0.032.

For viscous solutions where high aspect ratio cells are needed to resolve the

boundary layer, the above scaling factor creates too much artificial dissipation. The
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modified scaling factor of Martinelli [51] is used instead for viscous cases with the

modified spectral radii defined according to

λ̂ii,j,k = φi,j,kλ
i
i,j,k (3.20)

where

φi,j,k = 1 +

(
λji,j,k
λii,j,k

)ζ

(3.21)

The exponent ζ is usually between 1/2 and 2/3. The artificial dissipation in the

wall normal direction of the boundary layer can be reduced further while maintaining

stability since the flow contains enough physical viscosity in this region. Following the

approach mentioned by Swanson and Turkel [80], the artificial dissipation is scaled as

D̂i,j+1/2,k =
Mi,j,k

M∞
Di,j+1/2,k (3.22)

Upwind Scheme

The basic concept behind flux-difference splitting schemes is to solve the shock tube

problem at each face of the control volume. The exact solution for this problem

requires solving a nonlinear system of equations. To reduce the computational effort,

Roe [68] solved a linear approximation to the problem. His approach became popular

due to its better resolution of boundary layers and shocks compared to the central

scheme from Section 3.2.3, but implementation is more tedious and the computational

workload is greater.

To see how Roe’s scheme is formed, one may start with a linear approximation to

the one-dimensional shock tube (also known as Riemann) problem, which is given as

∂U

∂t
+ ARoe

∂U

∂x
= 0 (3.23)

where ARoe is the Roe-averaged matrix. This matrix is the same as the convective

flux Jacobian, but averaged values of the flow variables at the interface are used in
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place of the normal flow variables. These Roe-averaged variables must satisfy special

conditions that will not be presented here, but the variables are defined as

ρ̃ =
√
ρLρR ; ũ =

uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

(3.24)

ṽ =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

; w̃ =
wL
√
ρL + wR

√
ρR√

ρL +
√
ρR

(3.25)

H̃ =
HL
√
ρL +HR

√
ρR√

ρL +
√
ρR

; c̃ =

√
(γ − 1)

(
H̃ − q̃2/2

)
(3.26)

Ṽ = ũnx + ṽny + w̃nz ; q̃2 = ũ2 + ṽ2 + w̃2 (3.27)

Returning to the 1-D problem, if the Roe-averaged matrix is diagnolized and

inserted into Eq. 3.23, one obtains

∂U

∂t
+ TΛT−1∂U

∂x
= 0 (3.28)

where T and T−1 are the matrices of right and left eigenvectors, respectively, and Λ

is the matrix of eigenvalues all obtained using the Roe-averaged matrix. Defining a

vector W = T−1U , Eq. 3.28 may now be written in a linear form, which is given as

∂W

∂t
+ Λ̄

∂W

∂x
= 0 (3.29)

The value of Wk is constant along characteristics defined by λk until a wave associated

with another eigenvalue of the system is crossed whereWk experiences a jump in value.

Since ARoe is a constant matrix, the conservative variables and fluxes also follow this

behavior so that the flux changes may be written

(Fc)k = (Fc)1 +
k∑
j=2

δ (Fc)j (3.30)
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where the summation terms are the incremental jumps associated with crossing each

wave of the system. Now writing the flux changes for the entire system of equations

and using the left and right states, the fluxes are related by

Fc (UR) = Fc (UL) + ARoe (UR −UL) (3.31)

If the Roe matrix is split according to the diagonalization from before so that the

flux is decomposed into contributions from negative and positive waves at the face of

the control volume, two equally valid expressions for the flux are

(Fc)i+1/2,j,k = Fc (UL) + A−Roe (UR −UL) (3.32)

(Fc)i+1/2,j,k = Fc (UR)−A+
Roe (UR −UL) (3.33)

The flux is usually written as an average of Eqs. 3.32 and 3.33. The final expression

for the convective flux at the face of the control volume is given as

(Fc)i+1/2,j,k =
1

2
[Fc (UR) + Fc (UL)− |ARoe| (UR −UL)] (3.34)

The final term in Eq. 3.34 may be evaluated as

|ARoe| (UR −UL) = |∆F1|+ |∆F2,3,4|+ |∆F5| (3.35)

where

|∆F1| = |Ṽ − c̃|
(

∆p− ρ̃c̃∆V
2c̃2

)


1

ũ− c̃nx
ṽ − c̃ny
w̃ − c̃nz
H̃ − c̃Ṽ


(3.36)
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|∆F2,3,4| = |Ṽ |
(

∆ρ− ∆p

c̃2

)


1

ũ

ṽ

w̃

q̃2/2


+ ρ̃



0

∆u−∆V nx

∆v −∆V ny

∆w −∆V nz

ũ∆u+ ṽ∆v + w̃∆w + Ṽ∆V


(3.37)

|∆F5| = |Ṽ + c̃|
(

∆p+ ρ̃c̃∆V

2c̃2

)


1

ũ+ c̃nx

ṽ + c̃ny

w̃ + c̃nz

H̃ + c̃Ṽ


(3.38)

The Roe scheme as just described is only first-order accurate in the characteristic

coordinate. Second-order accuracy is achieved using the Monotone Upstream-

Centered Schemes for Conservation Laws (MUSCL) approach of van Leer [95]. In

order to prevent oscillations near strong flow gradients, limiters must be used with

second-order upwind spatial discretizations. The purpose of limiters is to restrict

the interpolation of flow variables to the control volume faces such that the scheme

remains total variation diminishing (TVD). The limited MUSCL scheme may be

written according to Spekreijse [76] as

UR = Ui+1,j,k −
1

2
ΨR (Ui+2,j,k − Ui+1,j,k) (3.39)

UL = Ui,j,k +
1

2
ΨR (Ui,j,k − Ui−1,j,k) (3.40)

The Roe scheme can be given a second-order upwind bias using the van Albada [92]

limiter, which is given by

Ψ =
r2 + r

1 + r2
(3.41)
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The right and left states in Eqs. 3.39 and 3.40 now become

UR = Ui+1,j,k −
1

2
δR (3.42)

UL = Ui,j,k +
1

2
δL (3.43)

where

δ =
a (b2 + ε) + b (a2 + ε)

a2 + b2 + 2ε
(3.44)

and

aR = Ui+2,j,k − Ui+1,j,k ; bR = Ui+1,j,k − Ui,j,k (3.45)

aL = Ui+1,j,k − Ui,j,k ; bL = Ui,j,k − Ui−1,j,k (3.46)

The limiter changes the scheme to first-order near strong discontinuities to preserve

monotonicity. In smooth regions, the limiter is turned off so that the solution is

unaffected. The parameter in Eq. 3.44 is used to prevent the limiter from incorrectly

turning on in a smooth region of the flow near small oscillations [98].

3.2.4 Viscous Fluxes

The viscous fluxes are evaluated with central differences no matter the scheme used

for the convective fluxes. The viscous flux terms contain derivatives that must be

evaluated at the cell faces [11]. As in the JST scheme, the required flow variables

are averaged at the face of the control volume. In the 2-D code, the derivatives are

evaluated using Green’s theorem. Green’s theorem provides a relationship between

the volume integral of the first derivative of a variable and the surface integral of the

same variable. The derivative of u in the x-direction, for example, is approximated

as
∂u

∂x
=

1

V ′

∫∫
V ′

∂u

∂x
dxdy =

1

V ′

∫
∂V ′

u dy ≈ 1

V ′
NF∑
m=1

umS
′
x,m (3.47)
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where V ′ is the volume of the auxiliary cell and NF is the number of faces of the

auxiliary cell. The situation is depicted in Fig. 3.3 for the flux across the i+ 1/2 face.
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Figure 3.3: Viscous flux auxiliary cell

To use Eq. 3.47, the value of the flow variable must be known at the center of

each face of the auxiliary cell. The values at i, j and i+ 1, j are known directly. The

values at i + 1/2, j + 1/2 and i + 1/2, j − 1/2 are taken as the average of the four

surrounding cells. The value of u at i+ 1/2, j + 1/2, for example, is taken as

ui+1/2,j+1/2 =
1

4
(ui,j + ui+1,j + ui,j+1 + ui+1,j+1) (3.48)

Viscous fluxes computed with the above approach are second order accurate on

smooth grids [79]. Use of Green’s theorem is less accurate on non-uniform grids.

Closer inspection of Fig. 3.3 reveals the reason. Since the grid is non-uniform, the

auxiliary cell does not perfectly enclose the face. Thus, as grid quality deteriorates,

derivatives found using Green’s theorem become more approximate.

Green’s theorem can be used in 3-D, but defining auxiliary cells and appropriate

values at the auxiliary cell faces becomes more cumbersome. An alternate approach
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for calculating derivatives is the use of coordinate transformations. This approach

is also more efficient for calculating derivatives at the cell centers, which are needed

for turbulence and transition model source terms. Recalling that x = x(ξ, η) and

y = y(ξ, η), the derivatives of u in the x- and y-directions in 2-D may be written in

terms of ξ and η using the chain rule

∂u

∂x
=
∂ξ

∂x

∂u

∂ξ
+
∂η

∂x

∂u

∂η
(3.49)

∂u

∂y
=
∂ξ

∂y

∂u

∂ξ
+
∂η

∂y

∂u

∂η
(3.50)

The metric terms in Eqs. 3.49-3.50 are defined

∂ξ

∂x
= J

∂y

∂η
;
∂η

∂x
= −J ∂y

∂ξ
;
∂ξ

∂y
= −J ∂x

∂η
;
∂η

∂y
= J

∂x

∂ξ
(3.51)

where J is the coordinate transformation Jacobian. The inverse of the determinant

of J is defined

J−1 =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
(3.52)

The gradient terms appearing in Eqs. 3.51-3.52 are approximated using second

order accurate central finite differences. Figure 3.4 defines required terms for

computing the derivative at a cell center in 2-D. The ξ-direction derivatives at i, j,

for example, are approximated

(
∂u

∂ξ

)
i,j

=
1
2

[(ui,j + ui+1,j)− (ui,j + ui−1,j)]

(i+ 1/2)− (i− 1/2)
=

1

2
(ui+1,j − ui−1,j) (3.53)(

∂x

∂ξ

)
i,j

=
1
2

[(xi,j + xi+1,j)− (xi,j + xi−1,j)]

(i+ 1/2)− (i− 1/2)
=

1

2
(xi+1,j − xi−1,j) (3.54)(

∂y

∂ξ

)
i,j

=
1
2

[(yi,j + yi+1,j)− (yi,j + yi−1,j)]

(i+ 1/2)− (i− 1/2)
=

1

2
(yi+1,j − yi−1,j) (3.55)

A similar approach can be used to compute the gradient terms at the cell faces in

lieu of Green’s theorem. Both methods are valid, and Swanson and Turkel [81] note
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that no significant differences are observed between results found using either method.

The full 3-D metric terms and transformation Jacobian are available elsewhere [11].
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Figure 3.4: Viscous flux auxiliary cell

3.3 Temporal Discretization

The discretized equations can be marched forward in time using either an explicit

or implicit time integration method. The explicit method presented here is a widely

used, hybrid Runge-Kutta scheme that has been optimized for efficiency and stability.

The major drawback of this method like any explicit time integration method is the

restriction placed on the maximum allowable time step for stability [20]. The implicit

method described below is known as lower-upper symmetric Gauss-Seidel or LU-SGS.

Implicit methods do not suffer from time step restrictions, but simplifications are

necessary to allow inversion of the implicit operator using iterative methods. These

simplifications place limits on the time step.
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3.3.1 Runge-Kutta Scheme

For an explicit scheme, the solution at the next time step (t+ ∆t) is computed from

the known solution and corresponding residual at the current time level. Denoting

the current time level n, an explicit scheme takes the form

Un
i,j,k = −∆ti,j,k

Vi,j,k
Rn
i,j,k (3.56)

where Rn
i,j,k is the residual at the current time level. Many methods are available to

solve the above equation, but Runge-Kutta schemes have become the most common.

Jameson et al. [37] presented an explicit Runge-Kutta or multistage scheme for

use with their central spatial discretization of the Euler equations. Since memory

requirements were more restrictive 30 years ago, the scheme stored only the zeroth

solution and final residual. Stage coefficients were introduced to improve stability

and increase the maximum allowable time step.

It is possible to reduce the computational workload by only computing the viscous

and artificial dissipation fluxes at certain stages. The dissipation terms from different

stages can be blended for stages in which the dissipation is not computed. One of the

most popular hybrid schemes is known as the (5,3)-scheme, which is given as

U
(0)
i,j,k = Un

i,j,k (3.57)

U
(1)
i,j,k = U

(0)
i,j,k − α1

∆ti,j,k
Vi,j,k

[
R(0)
c −R

(0)
d

]
i,j,k

(3.58)

U
(2)
i,j,k = U

(0)
i,j,k − α2

∆ti,j,k
Vi,j,k

[
R(1)
c −R

(0)
d

]
i,j,k

(3.59)

U
(3)
i,j,k = U

(0)
i,j,k − α3

∆ti,j,k
Vi,j,k

[
R(2)
c −R

(2,0)
d

]
i,j,k

(3.60)

U
(4)
i,j,k = U

(0)
i,j,k − α4

∆ti,j,k
Vi,j,k

[
R(3)
c −R

(2,0)
d

]
i,j,k

(3.61)

Un+1
i,j,k = U

(0)
i,j,k − α5

∆ti,j,k
Vi,j,k

[
R(4)
c −R

(4,2)
d

]
i,j,k

(3.62)

(3.63)

46



where

R
(2,0)
d = β3R

(2)
d + (1− β3)R

(0)
d (3.64)

R
(4,2)
d = β5R

(4)
d + (1− β5)R

(2,0)
d (3.65)

The name (5,3)-scheme is given to this particular method since it is a 5-stage Runge-

Kutta integration with the dissipation calculated during three of the stages. A closely

related approach is to calculate the viscous fluxes at the first stage only to further

reduce the computational workload.

The stage and blending coefficients for the (5-3)-scheme are given in Table 3.1 for

central and upwind discretizations. It should also be noted that the maximum stable

CFL number for the central scheme in this approach is 3.5 [82], and for the upwind

scheme, it is 2.0 [83].

Table 3.1: Coefficients for Hybrid Multistage Runge-Kutta Scheme

Central Upwind
Stage α β α β

1 0.2500 1.0000 0.2742 1.0000
2 0.1667 0.0000 0.2067 0.0000
3 0.3750 0.5600 0.5020 0.5600
4 0.5000 0.0000 0.5142 0.0000
5 1.0000 0.4400 1.0000 0.4400

The maximum stable time step is easily determined on structured meshes. For a

given cell, the inviscid time step is defined

∆ti,j,k = CFL
Vi,j,k

(λi + λj + λk)i,j,k

(3.66)

where λi is the spectral radius of the convective flux Jacobian in the ξ-direction and

similarly for λj and λk. For viscous flows, the viscous spectral radii must be included
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so the time step becomes

∆ti,j,k = CFL
Vi,j,k

(λi + λj + λk)i,j,k + 4 ((λv)i + (λv)j + (λv)k)i,j,k
(3.67)

where the viscous spectral radius in the ξ-direction, for example, is given by

(λv)i = max

(
4

3ρ
,
γ

ρ

)(
µL
PrL

+
µT
PrT

)
∆Si
Vi,j,k

(3.68)

and PrL and PrT are the laminar and turbulent Prandtl numbers, respectively.

The source terms in the transition model increase the stiffness of the governing

equations significantly. For an explicit scheme, the time step must be drastically

reduced in order to keep the scheme stable, which will increase the steady state

computation time considerably. The time step restriction can be relaxed if a matrix

time step is used rather than a single time step for all equations. This approach

has been used for to stabilize explicit schemes with two equation turbulence models

with stiff source terms [47, 56]. To develop the idea, the residual term in the explicit

scheme in Eq. 3.56 is written in full form to give

Un
i,j,k = −∆ti,j,k

Vi,j,k

[
(F n

c − F n
v )i,j,k ∆S − Vi,j,kSn+1

i,j,k

]
(3.69)

The source term is unknown at time level n + 1 so it must be linearized about the

current time level. Retaining first order terms, the linearized source term is written

Sn+1
i,j,k ≈ Sn

i,j,k +
∂S

∂U
∆Un

i,j,k (3.70)

Replacing the source term in Eq. 3.69 with the linearization of Eq. 3.70, the new

explicit scheme becomes[
I

∆ti,j,k
−
(
∂S

∂U

)
i,j,k

]
∆Un

i,j,k = − 1

Vi,j,k
Rn
i,j,k (3.71)
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The effective time step is now given by the term in brackets on the left hand side of

Eq. 3.71. The new form allows the governing equations to be integrated in time at

the maximum stable time step for each equation.

3.3.2 Lower-Upper Symmetric Gauss-Seidel Scheme (LU-

SGS)

For an implicit scheme, the solution at the next time step (t+ ∆t) is computed from

the known solution at the current time level n and the unknown residual at the n+ 1

time level. A popular implicit form is given by

Un
i,j,k = −∆ti,j,k

Vi,j,k
Rn+1
i,j,k (3.72)

where Rn+1
i,j,k is the residual at the next time level. The unknown residual at the n+ 1

time level can be linearized about the current time level as was done with the source

term in the previous section. Thus, a first order approximation for the residual at

the next time level takes the form

Rn+1
i,j,k ≈ Rn

i,j,k +
∂R

∂U
∆Un

i,j,k (3.73)

Substituting the linearized residual into Eq. 3.72, the implicit scheme becomes[
Vi,j,k

∆ti,j,k
+

(
∂R

∂U

)
i,j,k

]
∆Un

i,j,k = −Rn
i,j,k (3.74)

The term on the left hand side of Eq. 3.74 is known as the implicit operator. The

term on the right hand side is known as the explicit operator. The implicit operator

is a sparse matrix with dimensions equal to the number of control volumes in the

domain times the number of conservation variables in each control volume. To solve

the system in Eq. 3.74, the implicit operator needs to be inverted, which can be done

via matrix inversion or factorization. Due to the size of the implicit operator, direct
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inversion is not practical so factorization is the preferred method. With factorization,

the implicit operator is approximated by factors that can be solved more easily with

iterative methods. Since the spatial accuracy of the solution is governed by the

explicit operator only, the implicit operator can be approximated in any number of

ways without affecting the steady-state solution. However, each approximation of the

implicit operator degrades the stability and efficiency of the scheme.

Yoon and Jameson [104] developed what became known as the Lower-Upper

Symmetric Gauss-Seidel (LU-SGS) method to solve the Euler equations implicitly.

The implicit operator is factored so that the implicit scheme in Eq. 3.74 becomes

(D + L) D−1 (D + U) ∆Un
i,j,k = −Rn

i,j,k (3.75)

where L and U are the terms in the lower and upper triangular matrices of the

implicit operator and D contains the diagonal terms. The system can be inverted in

a forward and backward sweep, which are defined as

(D + L) ∆U (1) = −Rn
i,j,k (3.76)

(D + U) ∆Un = D∆U (1) (3.77)

The convective fluxes in the implicit operator are approximated using a first order

accurate upwind extrapolation from neighboring cells. The flux Jacobian is split into

positive and negative parts at each cell face of the control volume as shown in Fig. 3.5

for a 2-D case. The positive and negative Jacobians are formed using the positive and

negative eigenvalues of the convective flux as in flux-vector splitting schemes. Thus,

the operators in Eq. 3.75 are constructed from the positive and negative convective

flux Jacobians, the viscous flux Jacobians, and the source term Jacobian. An excellent

reference for constructing these terms is a DLR report by Blazek [10]. On structured
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grids, the operators are expressed as

L =
(
A+ + Av

)
i−1,j,k

∆Si−1/2,j,k +
(
A+ + Av

)
i,j−1,k

∆Si,j−1/2,k +(
A+ + Av

)
i,j,k−1

∆Si,j,k−1/2 (3.78)

U =
(
A− −Av

)
i−1,j,k

∆Si−1/2,j,k +
(
A− −Av

)
i,j−1,k

∆Si,j−1/2,k +(
A− −Av

)
i,j,k−1

∆Si,j,k−1/2 (3.79)

D =
Vi,j,k

∆ti,j,k
I +

(
A− −Av

)
i,j,k

∆Si−1/2,j,k +
(
A− −Av

)
i,j,k

∆Si,j−1/2,k+(
A− −Av

)
i,j,k

∆Si,j,k−1/2 +
(
A+ + Av

)
i,j,k

∆Si+1/2,j,k+(
A+ + Av

)
i,j,k

∆Si,j+1/2,k +
(
A+ + Av

)
i,j,k

∆Si,j,k+1/2 −
(
∂(VS)

∂U

)
i,j,k

(3.80)

  

i,j i+1,j

i,j+1

i,j-1

i-1,j

A-A+A+ A-

A-

A-

A+

A+

Figure 3.5: Split flux Jacobian definitions for LU-SGS operators in cell i, j

Fortunately, approximations for these Jacobians are possible to avoid excessive

programming and computational time. Yoon and Jameson [104] approximate the
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split convective Jacobians using

A±∆S =
1

2
(Ac∆S ± ωΛcI) (3.81)

where ω is an overrelaxation parameter between 1 and 2. Higher values provide

more stability, and lower numbers increase the convergence rate. The convective flux

Jacobian, Ac, in 2-D is defined

Ac =


−Vt nx ny 0

nxφ− uV V − Vt − (γ − 2)nxu nyu− (γ − 1)nxv (γ − 1)nx

nyφ− vV nxv − (γ − 1)nyu V − Vt − (γ − 2)nyv (γ − 1)ny

V (φ− a1) nxa1 − (γ − 1)uV nya1 − (γ − 1)vV γV − Vt

 (3.82)

where

a1 = γE − φ ; V = nxu+ nyv ; φ =
1

2
(γ − 1)(u2 + v2) (3.83)

and Vt is the contravariant velocity of the cell face for a moving grid. The 3-D

convective flux Jacobian takes a similar form and can be found in a paper by Pulliam

and Steger [65]. The viscous flux Jacobians may be replaced by the viscous spectral

radius as suggested by Sharov and Nakahashi [71]. Finally, only the diagonal terms

from the source Jacobians are retained. These are found numerically using the formula

∂Si
∂Ui

=
Si(Ui + ε)− Si(Ui)

ε
(3.84)

where the perturbation parameter is typically in the range 1.0−5 < ε < 1.0−10.

In the LU-SGS method, the forward and backward sweeps are carried out along

diagonal i+ j = const. lines in 2-D and i+ j+ k = const. planes in 3-D. By sweeping

in this manner, the off-diagonal terms in the L and U operators are known from an

earlier part of the sweep. Returing to Eqs. 3.76 and 3.77, the LU-SGS scheme is
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implemented according to

D∆U
(1)
i,j,k = −Rn

i,j,k − L∆U (1) (3.85)

D∆Un
i,j,k = D∆U

(1)
i,j,k −U∆Un (3.86)

where ∆U (1) and ∆Un are the calculated updates to the flow variables known from

previous parts of the sweep. Since D is now only a diagonal matrix, the inversion of

the D operator requires little computational work. Although a key feature of implicit

time integration is unconditional stability, due to the approximations to the implicit

operator, an upper limit on the CFL number now exists. Further, the approximations

reduce the efficiency of the scheme so that the optimum CFL number is not necessarily

the largest stable CFL number.

3.4 Discrete Boundary Conditions

3.4.1 Solid Wall

The boundary conditions at a solid wall are different for inviscid and viscous flows.

For an inviscid flow, the velocity normal to the wall must be zero since the fluid is not

allowed to penetrate the wall. In the case of a moving wall, the normal velocity of the

fluid at the wall must equal the normal velocity of the wall. The convective fluxes at

the wall reduce to only the pressure term in the momentum equations. The control

volume faces on a solid surface can be treated differently to meet this requirement,

or ghost cells can be judiciously chosen to meet the requirement without requiring a

separate loop for wall fluxes. The second approach is used here.

The density and pressure across the wall are kept constant. This is easily

accomplished with ghost cells. The density, for example, is prescribed in the first
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two rows of ghost cells as

ρ0 = ρ1 (3.87)

ρ−1 = ρ2 (3.88)

where the cell indexes are defined according to Fig. 3.6.

  

 1

 2

 0

-1

Figure 3.6: Wall adjacent and ghost cells at a solid boundary

The velocity ghost cells are more complicated. To determine the appropriate ghost

cell values, the conserved values at the wall are first determined by extrapolation from

the domain interior. For inviscid flows, the wall values are extrapolated as

Uw =
3

2
U1 −

1

2
U2 (3.89)

The normal velocity at the wall is easily determined with the unit normal vector at

the wall. For a moving wall, the normal motion of the wall should be included so

that the normal velocity can be written

Vnormal =
(
uw − ḟ

)
ηx + (vw − ġ) ηy +

(
ww − ḣ

)
ηz (3.90)
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where ḟ , ġ, and ḣ are the Cartesian components of the wall motion. When the

rotating frame of reference is used, the normal wall velocity is augmented according

to

Vnormal =
(
uw − ḟ − Ωz

)
ηx + (vw − ġ) ηy +

(
ww − ḣ+ Ωx

)
ηz (3.91)

The velocity in the first ghost cell can be related to the wall velocity and the first

cell in the domain by taking the velocity at the wall as an average of the two, or

equivalently

V0 = 2Vw − V1 (3.92)

The normal velocity at the wall must be removed from the wall velocity in order

to satisfy the no penetration condition. The wall velocity is effectively the value

extrapolated from the domain less the normal velocity component. Thus, the velocity

components in the first row of ghost cells become

u0 = 2 (uw − ηxVnormal)− u1 (3.93)

v0 = 2 (vw − ηyVnormal)− v1 (3.94)

w0 = 2 (ww − ηzVnormal)− w1 (3.95)

Applying the same approach for the second row of ghost cells, the velocity components

are given by

u−1 = 2 (uw − ηxVnormal)− u2 (3.96)

v−1 = 2 (vw − ηyVnormal)− v2 (3.97)

w−1 = 2 (ww − ηzVnormal)− w2 (3.98)

For viscous flows, the no-slip condition is applied at solid surfaces, which means

that the velocity at the wall must be zero. For a moving surface, the velocity should

be that of the moving surface. The density is set the same as for the inviscid case.

The energy condition at the wall is found by applying the adiabatic wall condition.
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Since the wall is adiabatic, there is a zero temperature gradient normal to the wall,

or ∂T
∂η

= 0. This implies that T0 = T1. Using the ideal gas law, the total energy in

the first ghost cell becomes

(ρE)0 =
p0

γ − 1
+

1

2

[
(ρu)2

0 + (ρv)2
0 + (ρw)2

0

]
/ρ0 (3.99)

The velocity is less complicated than the inviscid case since the wall value now

must either be zero on stationary grids or the value of the wall motion for moving grids.

As before, the grid motion component must be augmented when using a rotating

frame of reference. Using Eq. 3.92, the velocity components in the first and second

rows of ghost cells are written as

u0 = 2
(
ḟ − Ωz

)
− u1 (3.100)

v0 = 2ġ − v1 (3.101)

w0 = 2
(
ḣ+ Ωx

)
− w1 (3.102)

u−1 = 2
(
ḟ − Ωz

)
− u2 (3.103)

v−1 = 2ġ − v2 (3.104)

w−1 = 2
(
ḣ+ Ωx

)
− w2 (3.105)

The Spalart-Allmaras working variable, intermittency, and momentum thickness

Reynolds number are all set to zero at a solid wall so they may be set according

to

ν̃0 = −ν̃1 (3.106)

γ0 = −γ1 (3.107)(
Reθt

)
0

= −
(
Reθt

)
1

(3.108)

Similar relationships are used to set the second row of ghost cells.

56



3.4.2 Far Field

Far field boundary conditions are often treated using characteristic variables since

the governing equations are dominated by hyperbolic propagation [32, 17, 81]. One-

dimensional flow is typically analyzed with results that are easily extended to higher

dimensions. The eigenvalues of the convective flux Jacobian are given as

λ =


λ1

λ2

λ3

 =


u− c

u

u+ c

 (3.109)

The eigenvalues represent acoustic and entropy waves. For a boundary node

subject to subsonic inflow, the situation is depicted in Fig. 3.7. The left running

acoustic wave leaves the domain, and the right running acoustic wave and an entropy

wave enter the domain. The situation is reversed for subsonic outflow. For supersonic

inflow, all waves enter the domain, and for supersonic outflow, all waves exit the

domain.

Right ru
nning

characteristic

Left running

characteristic

Domain
Exterior

Domain
Interior

 t

 u
 u - c

 u + c

 
n  ˆ

 x

Figure 3.7: Characteristics at subsonic inflow boundary
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Characteristic equations may be defined from the left eigenvectors of the

eigenvalues in Eq. 3.109 as

dp+ ρcdu = 0 (3.110)

dp− c2dρ = 0 (3.111)

dp− ρcdu = 0 (3.112)

The Riemann invariants are recovered by integrating Eqs. 3.110 and 3.112

R+ = u+

∫
dp

ρc
(3.113)

R− = u−
∫
dp

ρc
(3.114)

The expressions are simplified using ρ = γp/c2 and p = k1c
2γ/γ−1 for a calorically

perfect gas so that the Riemann invariants become

R+ = u+
2c

γ − 1
(3.115)

R− = u− 2c

γ − 1
(3.116)

Combining the two equations, expressions for the velocity and speed of sound at the

domain boundary are now determined as

u =
1

2

(
R+ +R−

)
(3.117)

c =
γ − 1

4

(
R+ +R−

)
(3.118)

The remaining characteristic equation, Eq. 3.111, is integrated directly to give

p

ργ
= constant (3.119)
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Table 3.2: Far Field Boundary Conditions

Case Condition R+ R− s v or w

1 subsonic inflow free stream extrapolated free stream free stream
2 subsonic outflow extrapolated free stream extrapolated extrapolated
3 supersonic inflow free stream free stream free stream free stream
4 supersonic outflow extrapolated extrapolated extrapolated extrapolated

Equation 3.119 implies that entropy is constant along the characteristic line. For

convenience, entropy is defined using Eq. 3.119, which has the same functional

dependence as the actual entropy relation

p

ργ
= k1e

s/cv (3.120)

For one-dimensional flow, Eqs. 3.117-3.119 may be used to define the flow

conditions at the far field boundary. For 2-D and 3-D flow, the new coordinate

directions add tangential velocity components to the solution. The tangential velocity

is constant across the Riemann invariant waves so this condition can be added to

Eqs. 3.117-3.119 as the far field boundary conditions. All flow conditions can be

determined from these relations at the boundary.

Recall that for one-dimensional subsonic inflow, two waves enter the domain

and one exits. If each wave is thought to carry one piece of information about a

conserved or primitive variable, then for this case two free stream variables should

be specified that determine the solution inside the domain. The variable exiting the

domain changes as the solution in the domain changes. Thus, the third variable is

extrapolated at each time step from the domain interior. For 2-D or 3-D flow, the

tangential velocity follows the constant entropy wave with respect to entering and

exiting the domain. Table 3.2 is constructed to show the free stream and extrapolated

boundary conditions for each of four possible conditions at the boundary.
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3.4.3 Coordinate Cut

Structured grids contain an artificial boundary or cut where the grid connects to itself

(see Fig. 3.1). This boundary is easily handled using ghost cells. The cells on either

side of the cut correspond to real cells in the domain. Ghost cells are defined on both

sides of the cut with values set equal to the corresponding cells in the domain. For a

cell-centered scheme, no further attention is required at a coordinate cut.

3.4.4 Periodic Boundary

For rotating flows, periodic boundary conditions are utilized to decrease the

computational grid size to that spanning a single blade. Scalar quantities such as

density and pressure are matched at periodic sides of the domain. Vector quantities

such as velocity are transformed via the rotation matrix at periodic boundaries. For

rotation about the y-axis, the rotation matrix is given by

R =


cos φ 0 sin φ

0 1 0

−sin φ 0 cos φ

 (3.121)

where φ is the angle between the edges of the two periodic boundaries. Thus, the

transformed velocity at periodic edge B is related to periodic edge A according to

VB = RVA (3.122)

3.5 Convergence Acceleration Techniques

Four techniques to accelerate steady-state convergence are presented in this section.

Local time stepping, multigrid, and low speed preconditioning are applicable to

explicit and implicit time integration. Residual smoothing is only applicable to

explicit time integration.

60



3.5.1 Local Time Stepping

Convergence to steady-state may be accelerated by using the largest perimissible time

step for each control volume rather than a global time step. This approach destroys

the time accuracy of the transient solution, but since the harmonic balance method

relies only on steady-state solutions to reconstruct the unsteady periodic solution, it

is not necessary to preserve time accuracy.

3.5.2 Residual Smoothing

Residual smoothing was conceived as a way to increase the maximum CFL number by

giving an implicit flavor to an explicit scheme. The idea was first explored by Jameson

and Baker [36]. They proposed replacing the residual at each point by a weighted

average of residuals from neighboring points. The most popular method became

known as implicit residual smoothing. In the i-direction, the formula is written

− εiR∗i−1,j,k +
(
1 + 2εi

)
R∗i,j,k − εiR∗i+1,j,k = Ri,j,k (3.123)

where R∗i,j,k is the smoothed residual. Similar equations are written for the j- and k-

directions. Equation 3.123 forms an implicit system of equations that must be inverted

numerically. The smoothing coefficients εi, εj, and εk are defined as functions of the

spectral radii of the convective flux Jacobians and the viscous spectral radii. Various

formulations are provided in Turkel et al. [90].

3.5.3 Multigrid

Multigrid greatly reduces computation time by solving the governing equations on

successively coarser grids. The solution on the fine grid is updated by coarse grid

approximations. Multigrid was originally developed by Achi Brandt for elliptic partial

differential equations [14]. However, Jameson was the first to apply the method to the

Euler equations [35]. Multigrid has since been applied to the Navier-Stokes equations
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by many authors. The idea behind multigrid is that coarse grid corrections can be

used to drive the fine grid solution faster to steady-state. The coarser grids allow

larger time steps due to the larger control volumes and also require less work since

there are fewer cells to compute the solution. Moreover, low frequency errors on the

fine grid that hinder convergence become high frequency errors on coarse grids that

can be quickly damped.

A simple multigrid cycle is illustrated in (Fig. 3.8). A series of successively coarser

grids are created by skipping every other node in each coordinate direction on each

grid. The finest grid is designated as h. The next three grids are 2h, 4h, and 8h with

increasing coarseness. This three level multigrid cycle is known as a V-cycle owing to

the shape of Fig. 3.8.

  

h

2h

4h

8h

Figure 3.8: Multigrid V-cycle. Symbols designate: • solve equations and restrict
solution and ◦ prolongate corrections.

The multigrid cycle starts by transferring the fine grid solution and residual to the

next coarser grid. An interpolation operator is used to control the solution transfer.

This operation may be written as

U
(0)
2h = Î2h

h Un+1
h (3.124)
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where Î2h
h is the interpolation operator. For a cell-centered scheme, the solution on the

coarse grid is simply a volume weighted interpolation of the fine grid cells comprising

a coarse grid cell. In 2-D, the solution interpolation becomes

(
U

(0)
2h

)
i,j

=
(Un+1

h )i,jVi,j + (Un+1
h )i+1,jVi+1,j + (Un+1

h )i,j+1Vi,j+1

Vi,j + Vi+1,j + Vi,j+1 + Vi+1,j+1

+

(Un+1
h )i+1,j+1Vi+1,j+1

Vi,j + Vi+1,j + Vi,j+1 + Vi+1,j+1

(3.125)

The fine grid residual is sent to the coarse grid via a restriction operator, I2h
h . For

a cell-centered scheme, the restriction is just a summation of the residuals from the

fine grid cells comprising a coarse grid cell. The idea is depicted in Fig. 3.9. In

mathematical form, the restriction operator is written as

(
I2h
h Rn+1

h

)
i,j

=
(
Rn+1
h

)
i,j

+
(
Rn+1
h

)
i+1,j

+
(
Rn+1
h

)
i,j+1

+
(
Rn+1
h

)
i+1,j+1

(3.126)

  

i,j i+1,j

i,j+1 i+1,j+1

Figure 3.9: Restriction of residual to coarse grid.

To retain the accuracy of the fine grid solution on a coarse grid, a forcing function is

used, which is the difference between the fine grid residual and the residual computed

on the coarse grid from the initial approximation, U
(0)
2h . The forcing function takes
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the form

(QF )2h = I2h
h Rn+1

h −R
(0)
2h (3.127)

where R
(0)
2h is the residual on the coarse grid from the initial coarse grid approximation.

Care must be taken when defining the forcing function on successively coarser grids

since the accuracy from the finest grid must remain unchanged. This is accomplished

by retaining the forcing function from the previous grid. The forcing function on the

4h grid, for example, is written as

(QF )4h = I4h
2h

[
Rn+1

2h + (QF )2h

]
−R

(0)
4h (3.128)

The solution on a coarse grid can be obtained using the same time integration

scheme as on the fine grid. However, the coarse grid residual is formed from the usual

convective and viscous fluxes and the forcing function. Thus, the residual on the

coarse grid is given by

(RF )2h = R2h + (QF ) (3.129)

Using the multistage scheme from before, the coarse grid solution can be obtained

from

U
(k)
2h = U

(0)
2h − αk

∆t2h
V2h

[
R

(k−1)
2h + (QF )2h

]
(3.130)

where 1 < k < m and m is the number of stages in the scheme. Since the final

accuracy of the solution is unaffected by the accuracy of the solution on coarse grids,

lower order schemes are typically used on coarse grids for computational efficiency.

The correction on the coarse grid is the difference between the solution obtained

on the coarse grid and the initial approximation, or

δU2h = Un+1
2h −U

(0)
h (3.131)
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The coarse grid correction is interpolated to the next finer grid using

U+
h = Un+1

h + Ih2hδU2h (3.132)

where Ih2h is the prolongation operator. Prolongation can be accomplished in a few

ways for a cell-centered scheme, but a simple zeroth order prolongation is achieved if

the coarse grid residual is sent to the constituent fine grid cells. In 2-D, the solution

on the fine grid in cell i+ 1, j becomes

(
U+
h

)
i+1,j

=
(
Un+1
h

)
i+1,j

+ (δU2h)i,j (3.133)

The fine grid cells defined by i, j, i, j+1, and i+1, j+1 have a similar form. Figure 3.10

shows this simple prolongation.

  

i,j i+1,j

i,j+1 i+1,j+1

Figure 3.10: Zeroth order prolongation of coarse grid correction to finer grid.

3.5.4 Low Speed Preconditioning

The governing equations become stiff as the Mach number tends towards zero and

density becomes constant. The reason is that the convective waves, traveling at speed

u, are much slower than the acoustic waves, traveling at u + c. This disparity leads
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to slower convergence rates for incompressible flows and even decreased accuracy for

flows as the Mach number becomes less than 0.1.

The time derivatives in the governing equations can be multiplied by a precondi-

tioning matrix to remove the stiffness from the system. This preconditioning matrix

changes the eigenvalues of the system so that the acoustic wave speeds are more on

the order of the convective wave speeds. A variety of preconditioning matrices are

presented in the literature, including those of Turkel [87, 89], Choi and Merkle [19],

van Leer and Lee [96], and Weiss and Smith [99]. All have had varying degrees of

success along with limitations, and thus, no single preconditioner has turned into an

accepted CFD standard.

To motivate the development of the preconditioning matrix, consider the 2-D

Euler equations. Using primitive variables, these are written as

∂U0

∂t
+
∂F0

∂x
+
∂G0

∂y
= 0 (3.134)

where

U0 =


p

u

v

S

 ; F0 =


u (p+ ρc2)

u2 + p/ρ

uv

uS

 ; G0 =


v (p+ ρc2)

v2 + p/ρ

uv

vS

 (3.135)

The dependent variables are chosen as the non-conservative set U0 to simplify

the derivation. A matrix transformation will be applied later to switch back to

conservative variables. The Euler equations may be recast in quasi-linear form by

using the flux Jacobian matrices, or

∂U0

∂t
+ A0

∂U0

∂x
+ B0

∂U0

∂y
= 0 (3.136)
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where

A0 =


u ρc2 0 0

1/ρ u 0 0

0 0 u 0

0 0 0 u

 ; B0 =


v 0 ρc2 0

0 v 0 0

1/ρ 0 v 0

0 0 0 v

 (3.137)

The preconditioner, P−1, is applied to the time dependent terms to scale the

acoustic wave speeds to the convective wave speeds. Applied to the quasi-linear form

in Eq. 3.136, the preconditioned equations become

P−1
0

∂U0

∂t
+ A0

∂U0

∂x
+ B0

∂U0

∂y
= 0 (3.138)

Equivalently, the inverse of the preconditioner can multiply the flux Jacobian

matrices so that
∂U0

∂t
+ P0A0

∂U0

∂x
+ P0B0

∂U0

∂y
= 0 (3.139)

where Turkel’s preconditioner is given by

P−1
0 =


c2/β2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ; P0 =


β2/c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (3.140)

and the preconditioning parameter is defined by

β2 = min

[
max

(
K1

(
u2 + v2

)(
1 +

1−M2
0

M4
0

M2

)
, K2

(
u2
∞ + v2

∞
))

, c2

]
(3.141)

Here, M0 is some cutoff Mach number where preconditioning should be turned off.

This number should be near unity to avoid difficulties near shocks. The parameters

K1 and K2 are free parameters. K1 is typically in the range of 1.0-1.1, and K2 is

usually less than 1.0 for inviscid flows and may be as high as 5.0 for viscous flows.
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Due to preconditioning, the eigenvalues of the system are now a function of P0A0

and P0B0 instead of A0 and B0, and thus, the characteristics of the system are

changed. The eigenvalues for the matrix P0A0 are given by

λ0 = λ1 = u (3.142)

λ2 =
1

2

[
zu−

√
z2u2 + 4β2

(
1− u2

c2

)]
(3.143)

λ3 =
1

2

[
zu+

√
z2u2 + 4β2

(
1− u2

c2

)]
(3.144)

where

z = 1− α +
β2

c2
(3.145)

The eigenvalues for P0B0 take a similar form. An important observation is that

the two acoustic eigenvalues are of the form u′ ± c′, which reduces to the familiar

u ± c when β2 = c2. Taking β2 = c2 corresponds to the case of no preconditioning,

and thus, preconditioning scales the acoustic waves while maintaining their form. It

is also noted that the eigenvalues are invariant under variable transformations so that

the eigenvalues remain the same for the conservation form of the Euler equations or

other primitive formulations. To convert the preconditioner to conservative form, the

transformations in Turkel et al. [91, 89] may be used so that

Pc =
∂Uc

∂U0

P0
∂U0

∂Uc

(3.146)

where the subscript c is added to reinforce a conservative variable formulation.

One of the major challenges in low speed preconditioning is correctly scaling the

artificial dissipation. It is known that the artificial dissipation scales poorly as the

Mach number goes to zero in the non-preconditioned system. Turkel et al. [88] showed

that a necessary condition for convergence, as the Mach number approaches zero, is
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that the dissipation scale in the x-direction according to

U−1
x |UxA| ∼


O (1/M2) O (1/M) O (1/M) O (1)

O (1/M) O (1) O (1) O (1)

O (1/M) O (1) O (1) O (1)

O (1) O (1) O (1) O (1)

 (3.147)

Similar scaling is needed in all other directions. Since the artificial dissipation is based

on the eigenvalues of the convective flux Jacobians, it must be modified to reflect the

new eigenvalues of the preconditioned system. In a general form, the preconditioned

artificial dissipation can be represented for the JST flux as

Di+1/2,j = P−1|σ(PA)|i+1/2,j (3.148)

where σ is the spectral radius of the preconditioned system. For the Roe flux, the

dissipation becomes

|ARoe|i+1/2,j = P−1|PARoe|i+1/2,j (3.149)

A particularly useful resource for programming the preconditioned Roe flux is given

by Guillard and Viozat [29].
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Chapter 4

Numerical Approach for Structural

Solver

4.1 Conversion to Frequency Domain

The governing structural dynamics equation is also non-dimensionalized. Caution

must be exercised in using a non-dimensional form compatible with the flow solver

since the generalized force from the flow solver is used as an input into the structural

model. One possible non-dimensionalization is [34]

φT∗ = φT ; F ∗ =
F

ρ∞U2
∞L

2
ref

; m∗j =
mj

m̄
(4.1)

t∗ = tωα ; q∗ =
q

Lref
(4.2)

Inserting these relationships into Eq. 2.86, the governing equation becomes

Lrefω
2
α

d2q∗j
dt∗2

+ Lrefω
2
j q
∗
j =

φT∗j
m∗jm̄

F ∗j ρ∞U
2
∞Lref (4.3)
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Using the definitions of reduced mass, µ = m̄/ρ∞V̄ , and reduced velocity, Vf =

U∞/
√
µωαbs, the desired form of the governing equation is

d2q∗j
dt∗2

+
1

V 2
f

(
ωj
ωα

)2

q∗j =
φT∗j
m∗j

F ∗j
b2
sLref
V̄

(4.4)

The harmonic balance approach employed in the flow solver enables direct

determination of the unsteady aerodynamic force in the governing structural equation.

Thus, it is convenient to work directly with the structural dynamics equation written

in the frequency domain. To begin, harmonically varying excitations of the modal

displacements are assumed. In non-dimensional form, these excitations appear as

q∗j = ξje
i ω
ωα

t∗ (4.5)

Since ξ is already dimensionless, the ∗ is omitted for brevity. It should also be noted

that ξ is complex. The aerodynamic loading must also be converted to the frequency

domain, and it takes a similar form according to

F ∗j = F̄ ∗j e
i ω
ωα

t∗ (4.6)

Substituting these relationships into Eq. 4.4 and simplifying, the governing equation

becomes
m∗j V̄

b2
sLref

[
−µω̄2δij +

1

V 2
f

(
ωj
ωα

)2
]
ξj = CQj (4.7)

where

CQj =
1

ρ∞U2
∞L

2
ref

(∫∫
A

p̄1φ
∗
j n̂ · dA +

∫∫
A

τ̄1φ
∗
j · dA

)
Here, CQ is defined as the non-dimensional generalized force, and p̄1 and τ̄1 are the

first harmonics of the unsteady pressure and shear stress, respectively. Defining kw =

V̄ /b2
scrm̄ and letting Lref = cr, the final form of the governing structural equation is
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recovered

kwmj

[
−µω̄2δij +

1

V 2
f

(
ωj
ωα

)2
]
ξj = CQj (4.8)

4.2 Aeroelastic Solution Technique

In this work, the flutter onset point is considered. The flutter solution corresponds

to small amplitude harmonic motions that are neutrally stable. Because of the small

amplitude assumption, the generalized aerodynamic forces can be determined through

a linear analysis that requires the use of only a single harmonic for the CFD solutions

[60]. In the case of a linear approximation the generalized force vector CQj can be

written as

CQj = Gij(ω̄)ξj (4.9)

where Gij(ω̄) is the matrix of aerodynamic transfer functions[59]. If two structural

mode shapes are included in an analysis, then Gij would be written as

G =

G11 G12

G21 G22

 (4.10)

The elements in Gij can be thought of as sensitivities of each mode shape to an

excitation of a given mode shape. For example, G12 represents the sensitivity of

first mode shape to an excitation of the second mode shape. Inserting Eq. (4.9) into

Eq. (4.8) one gets

[
kwmj

(
−ω̄2µδij +

1

V 2
f

(
ωj
ωα

)2
)
−Gij(ω̄)

]
ξj = 0 (4.11)

The flutter condition is obtained when the determinant of the matrix in the

equation above is zero. To determine the flutter condition (if one exists), one can

vary the value of ω̄, which is positive and purely real, and determine the value of Vf
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that would satisfy ∣∣∣∣∣kwmj

(
−ω̄2µδij +

1

V 2
f

(
ωj
ωα

)2
)
−Gij(ω̄)

∣∣∣∣∣ = 0 (4.12)

The flutter frequency and the corresponding flutter speed, Vf , is determined when Vf

also becomes purely real.
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Chapter 5

Validation Studies

Validation of the flow solver and aeroelastic solver are considered in this chapter.

The chapter begins with validation of the 2-D flow solver. A steady flat plate and a

steady Aerospatiale-A airfoil case are used to inspect the turbulence and transition

modeling. An oscillating NACA 64A010 airfoil is examined to validate the harmonic

balance implementation. The 3-D flow solver is validated with the steady ONERA

M6 wing. The Caradonna-Tung rotor in hover is used to validate the rotating frame

of reference 3-D flow solver, and a cylinder in crossflow is used to check the harmonic

balance implementation in 3-D. Finally, the aeroelastic solver is validated in 3-D by

studying the AGARD 445.6 wing.

5.1 Steady Flat Plate

The turbulent flat plate problem is used to verify the flow solver by comparison with

results from CFL3D. CFL3D is a structured, cell-centered solver developed at NASA

Langley Research Center in the 1980s. In the present case, turbulent flow is simulated

along a flat plate with length L = 2 and Mach number M = 0.2. Although this could

be classified as an incompressible problem, compressibility effects are included. The

Reynolds number based on length is Re = 5 million at x = 1 and Re = 10 million at

x = 2. It is also noted that at the far field, ν̃ = 3ν∞ is used, where ν∞ is the far field
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kinematic viscosity. The CFL3D results presented here use a rectangular 545 x 385

grid with the plate adjacent to the bottom of the domain.

A C-grid with 577 x 257 nodes is used with the current solver (Fig. 5.1). The grid

extends over 1 plate length in all directions. The grid spacing at the wall is y+ = 0.1

which is the same as the CFL3D grid. However, this grid only contains 256 nodes

on the upper plate surface compared to 449 in the CFL3D grid. As the results will

indicate, this resolution is sufficient.

Figure 5.1: 577 x 257 flat plate C-grid.

The boundary layer quantities are of particular interest since it is here that the

effects of turbulence are significant. The skin friction along the upper surface of the

flat plate is compared for the two solvers in Fig. 5.2. As can be seen, the solutions

only differ significantly near the leading and trailing edges. The more pronounced

singular behavior in the current results are believed to stem from the difficulty in

creating a C-grid type mesh around a flat plate with vanishing thickness.

Turbulence related quantities at x = 0.97 are also compared in Fig. 5.2. The

ratio of the eddy viscosity to the free stream viscosity, µT/µ∞, for the two solvers are

nearly the same with a small disagreement towards the edge of the boundary layer.

The grid used in the current study becomes much coarser than the CFL3D grid in

this region, and it is almost certainly the reason for the disagreement. The law of the
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wall and velocity profile in the boundary layer from CFL3D and the current solver

are nearly identical.
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Figure 5.2: Boundary layer quantities for a flat plate with Re = 5 million at x = 1
and M = 0.2. Top Left: Skin friction along the upper surface. Top Right: Ratio
of eddy viscosity to free stream viscosity at x = 0.97. Bottom Left: Law of the wall
at x = 0.97. Bottom Right: Velocity profile at x = 0.97.

The predicted non-dimensional eddy viscosity along the entire plate is also

compared for the two solvers. Referring to Fig. 5.3, the two solvers produce very

similar contours along the plate surface. The results of this section confirm the

correct implementation of the Spalart-Allmaras turbulence model in the flow solver.

5.2 Steady Aerospatiale-A Airfoil

The Aerospatiale-A airfoil has been used as a benchmark in the development of the γ−

Reθt transition model since it requires the prediction of separation-induced transition
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Figure 5.3: Ratio of the turbulent eddy viscosity to the free stream viscosity for a
flat plate with Re = 5 million at x = 1. Left: CFL3D. Right: Current solver.

[39, 54]. The free stream Mach number is taken to be 0.15, the Reynolds number 2.1

million, and the angle of attack 13.1◦. The grid used for this case is the 321 x 129

C-grid shown in Fig. 5.4 with a wall spacing of y+ = 0.1. The turbulence intensity is

taken to be 0.05%, which was also used by Medida and Baeder [54]. This is a typical

value in a low-turbulence wind tunnel such as that used for this experimental dataset.

Figure 5.4: 321 x 129 Aerospatiale-A C-grid.

The intermittency, γ, controls the production of turbulent kinetic energy in order

to properly initiate transition. The momentum thickness Reynolds number, Reθt,
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determines the onset and extent of the transition. Contour plots of the intermittency

and momentum thickness Reynolds number are given in Fig. 5.5. An increase in

intermittency is evident near 12% chord at the location of the separation-induced

transition. The momentum thickness Reynolds number is expected to decrease in

high pressure gradient zones. Indeed, the momentum thickness Reynolds number is

lower on the upper surface of the airfoil where the pressure gradient is larger. These

results follow those of Medida and Baeder [54]. Further validation of the transition

model is provided in Chapter 6 for the S809 airfoil.

Figure 5.5: Boundary layer transition along upper surface of Aerospatiale-A airfoil
showing increase in intermittency and corresponding increase in eddy viscosity. Left:
Intermittency, γ. Right: Non-dimensional eddy viscosity, µT/µ∞.

5.3 Pitching NACA 64A010 Airfoil

Comparison with experiment for a simple oscillating airfoil is used to validate the

harmonic balance solver. For this, the experimental data of Davis [21] for a NACA

64a010 airfoil pitching about the quarter chord is used. This case has become a

standard test case for frequency domain solver validation [53, 28]. The airfoil is set at

a zero mean angle of attack with a pitching amplitude of 1.01 degrees. The Reynolds

number is 12.56 million, and the Mach number is 0.796. The airfoil oscillates at

a reduced frequency of 0.202. The computational grids for inviscid and turbulent

results are shown in Fig. 5.6.
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Figure 5.6: NACA 64A010 C-grid. Left: 193 x 33 inviscid grid. Right: 225 x 65
viscous grid.

Results were obtained using 1 and 3 harmonics for both inviscid and turbulent

conditions. In Fig. 5.7, the instantaneous lift and moment coefficients for a complete

cycle are shown. The solver is able to predict the lift coefficient fairly well throughout

the entire cycle. The moment coefficient is not captured quite as well, but such

behavior matches what is observed by McMullen et al. [53] and Gopinath and

Jameson [28]. The effect of viscosity is also evident in the results, and the viscous

terms here provide better agreement with experimental data.

Mode convergence is achieved in harmonic balance solvers when additional

harmonics do not have an effect on the solution. The inviscid and turbulent results

both exhibit mode convergence with 1 to 3 harmonics as the lift and moment

coefficients for 3 harmonics are very close to their 1 harmonic counterparts. This is

not surprising given the linearity of this particular case with such a small oscillation

amplitude.

The workload for each sub-time level is approximately equivalent to the workload

for a single steady state solution. Thus, the unsteady solution is predicted at a much

reduced workload compared to a time accurate unsteady analysis, which requires a

converged solution at each physical time step during the cycle. Unsteady solutions
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are reconstructed in this case with the computational cost of only about 3 to 7 steady-

state solutions.

The convergence histories for the two inviscid and turbulent solutions are shown

in Fig. 5.8. The turbulent solutions are slowed due to the extra effort required to

resolve the viscous boundary layers. However, the convergence histories for the two

inviscid cases and two turbulent cases are very similar, which indicates that while

additional harmonics increase the overall computational time, the rate of convergence

is unaffected.
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Figure 5.7: Pitching NACA 64A010 airfoil force coefficients. Left: Lift coefficient.
Right: Moment coefficient.
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5.4 Steady ONERA M6 Wing

Transonic flow over the ONERA M6 wing is considered in this section to validate the

steady 3D Navier-Stokes solver. Because this case exhibits features such as locally

supersonic flow and lambda shock waves [6], it has become a standard CFD case

for code validation. The M6 wing is a swept, semi-span wing with no structural

twist based on the symmetric ONERA D airfoil section. The experimental data of

Schmitt and Charpin [70] and the CFD results from NASA WIND [72] are used for

comparison. The particular case under consideration here is for a Mach number of

0.8395, 3.06◦ angle of attack, and a Reynolds number of 11.72 million based on the

mean aerodynamic chord. Inviscid and turbulent results from the current solver are

presented. For the inviscid results, the 193 x 33 x 33 C-H grid shown in Fig. 5.9 was

used. For the turbulent results, a 257 x 49 x 49 C-H grid was used with a grid spacing

near the wall corresponding to y+ = 3.

Figure 5.9: Inviscid ONERA M6 wing C-H grid (193 x 33 x 33).

The coefficient of pressure is shown for six spanwise locations along the wing

in Fig. 5.10. The overall agreement between the experimental and NASA WIND

results with the current inviscid and turbulent results is very good. The only major

disagreement is at the double shock at 80% span, and in fact, most CFD solutions

found in the literature cannot capture the double shock at this location [24, 85].

Pressure contours on the wing surface and symmetry plane for the current results are
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shown in Fig. 5.11. The classically observed lambda-shock formation is evident in

both the inviscid and turbulent results.
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Figure 5.10: Coefficient of pressure distribution for ONERA M6 wing. Top Left:
20% span. Top Middle: 44% span. Top Right: 65% span. Bottom Left: 80%
span. Bottom Middle: 90% span. Bottom Right: 95% span.

5.5 Caradonna-Tung Rotor

Flow around a helicopter rotor in hover is considered in this section to validate

the relative frame of reference component in the flow solver. Caradonna and Tung

[16] conducted a series of experiments for a two-bladed rotor with two untapered

rectangular blades for varying collective pitch angles and rotational speeds. The

blades have an aspect ratio of 6 and a NACA 0012 airfoil profile. For the cases

considered here, the collective pitch angle is θc = 8.0◦ with tip Mach numbers of
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Lamba Shock

  

Figure 5.11: Contours of pressure on ONERA M6 wing and symmetry plane. Left:
Inviscid. Right: Turbulent.

0.439 and 0.877. A C-H grid, shown in Fig. 5.12, with a maximum spacing near the

wall of y+ = 0.4 was used for the results provided herein. The top, bottom, and

outboard boundaries were placed 2 blade spans away from the surface. The grid

contained 17 nodes on the blade in the spanwise direction. Using periodic boundary

conditions, the grid spanned only a single blade sector.

Figure 5.12: Viscous Caradonna-Tung C-H grid (257 x 65 x 33).

To assess the performance of the solver, the surface pressure is compared with

experiment at 5 different spanwise locations for a tip Mach number of 0.439. As

can be seen in Fig. 5.13, the flow remains subsonic throughout the entire blade span
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as expected. The solver matches the experimental data very well, especially at more

outboard locations. The surface pressure for Mach 0.877 is shown in Fig. 5.14. Here, it

is seen that flow becomes transonic near 80% span. The solver matches experimental

data well again with the exception of the vicinity near the shock. Finally, contours

of computed static pressure are shown in Fig. 5.15 for Mach 0.877. The formation of

the strong shock is clearly evident at the outboard stations.
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Figure 5.13: Coefficient of pressure distribution for Caradonna-Tung rotor in hover
with tip Mach number of 0.439.

5.6 Vortex-Shedding Cylinder in Cross Flow

The harmonic balance implementation of the solver was validated with the classic

problem of a cylinder in cross flow. The features of this flow are strongly dictated by
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Figure 5.14: Coefficient of pressure distribution for Caradonna-Tung rotor in hover
with tip Mach number of 0.877.
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Figure 5.15: Contours of static pressure for Caradonna-Tung rotor in hover with tip
Mach number of 0.877. Top Left: 50% span. Top Middle: 65% span. Top Right:
77% span. Bottom Left: 87% span. Bottom Middle: 97% span. Bottom Right:
100% span.
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the Reynolds number. For 40 < Re < 150, the laminar boundary layer begins to shed

from the top and bottom of the cylinder at alternating intervals. This phenomenon

is known as the von Kármán vortex street. A Reynolds number of 100 is considered

here so that the flow is in the laminar regime.

The unsteady but periodic nature of this flow makes it ideal for harmonic balance

modeling. However, the frequency of the vortex shedding must be known a priori

in order to use the method. This data is readily available over a wide range of

Reynolds numbers from experiments, but a better approach is to use a frequency

search procedure[53, 23]. An O-grid, shown in Fig. 5.16, with 257 nodes in the wrap

around direction and 129 nodes in the wall normal direction was used. The solver was

specially modified to accommodate an O-grid in this case since a highly quality grid

in the boundary layer near the coordinate cut of a cylinder is nearly impossible with

a C-grid. Symmetry boundary conditions were used at both edges of the domain to

simulate an infinite span cylinder.

Figure 5.16: Infinite span cylinder O-grid (257 x 129).

The Strouhal number is used to characterize the vortex shedding frequency.

Many experiments appear in the literature documenting the relationship between the

Strouhal and Reynolds numbers. For example, Williamson measured Strouhal number

for Reynolds numbers ranging from 40 to 200 [101]. For a Reynolds number of 100,

the Strouhal number is experimentally determined to be approximately 0.16, which
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was successfully predicted by the frequency finding procedure. The unsteady lift

coefficient (Fig. 5.17) can also be used to determine the Strouhal number. Applying

a fast Fourier transform (FFT) to the unsteady lift data, the Strouhal number is

given by the peak in the frequency data (see Fig. 5.17).
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Figure 5.17: Lift coefficient for Re = 100. Left: Temporal lift coefficient. Right:
FFT of temporal lift coefficient.

Vorticity contours capture the vortex street effect as shown at 6 different snapshots

throughout one shedding cycle in Fig. 5.18. The vorticity shedding is evident from

the contour plots where shed vortices are shown alternating from the top and bottom

of the cylinder.

5.7 AGARD 445.6 Wing

In this section, flutter of the AGARD 445.6 wing [103, 102] is examined. This is

a standard aeroelastic benchmark coming from a series of flutter tests carried out

at NASA Langley’s transonic wind tunnel. The name for this set of cases, 445.6,

describes the geometry of the problem. The first 4 indicates the airfoil profile, which

is the NACA 65A004. This is a very thin profile having a nose radius of 0.1% chord.

The 45 points to the sweep angle along the quarter chord line of 45◦. The remaining .6

indicates a taper ratio of 0.66. The configuration considered in this paper is referred

to as the Weakened 3 model. This model has a semi-span of 0.762 m, root chord of
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Figure 5.18: Contours of vorticity through one cycle of vortex shedding with Re =
100.

0.559 m, and an aspect ratio of 1.65. Structural properties and modal data are also

given in the referenced reports.

For the Weakened 3 model, Yates [102] provides experimentally determined mode

shapes for the first six modes. The first two bending and torsional modes are shown

mapped onto a computational grid in Fig. 5.19. The experimental modes are mapped

to the CFD grid using a polynomial fit of the displacements as a function of node

location. Lee-Rausch and Batina [45] showed flutter in this case is almost entirely

dependent upon the interactions of the first bending and first torsional mode shapes

alone. Many others have also demonstrated accurate flutter predictions with these

modes alone. Thus, only these two mode shapes are considered in the following

analysis.

Generalized aerodynamic forces for small amplitude motions (1.0 × 10−4) of the

first two modes are computed on an inviscid and viscous grid to carry out flutter

analyses in both inviscid and turbulent flow fields. The inviscid grid consists of 193

nodes in the wrap-around direction and 33 nodes in the wall normal direction. In the

spanwise direction, the grid contains 17 nodes on the wing and 17 nodes extending to
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Figure 5.19: Measured mode shapes for AGARD 445.6 Weakened configuration.
Top Left: Mode one (first bending) 9.6 Hz. Top Right: Second Mode (first
twisting) 38.2 Hz. Bottom Left: Third mode (second bending) 48.4 Hz. Bottom
Right: Fourth mode (second twisting) 91.5 Hz.
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Table 5.1: Sample AGARD 445.6 Turbulent Flutter Calculation, M∞ = 0.960

ω̄ Vf Determinant

0.08250 0.3055 + 5.022×10−4 i -1.324×10−2 + 4.303×10−3 i
0.08247 0.3058 − 7.744×10−6 i 2.045×10−4 − 7.154×10−5 i
0.08240 0.3065 − 1.281×10−3 i 3.532×10−2 − 9.618×10−3 i

the far field. The viscous grid contains 257 x 97 nodes in the wrap-around and wall

normal directions with the same distribution in the spanwise direction as the inviscid

grid. The approximate grid spacing at the solid wall is y+ = 0.2.

Flutter is predicted by substituting the generalized aerodynamic forces into

Eq. 4.12. These forces are determined by using an excitation of one mode and

computing the associated generalized forces for all modes individually due to this

excitation. The constant kw is set to 1.596 to match the model properties, and mj

is set to unity due to the use of mass normalized mode shapes. For M∞ = 0.960, a

sample calculation is provided in Table 5.1. The reduced frequency, ω̄, is varied until

the reduced velocity, Vf , becomes purely real. In practice, the reduced frequency is

determined when the imaginary part of Vf changes sign. Notice the imaginary part

of Vf changes sign between ω̄ = 0.08250 and ω̄ = 0.08247. The sign change indicates

Vf has a purely real value between these two frequencies, and the magnitudes of the

respective imaginary parts (5.022×10−4 and 7.744×10−6) indicate that the flutter

frequency is very close to ω̄ = 0.08247.

With this approach, the predicted flutter velocity and frequency ratio using

inviscid and turbulent aerodynamic data are plotted in Fig. 5.20. The experimental

results of Yates [103] and the inviscid predictions of Lee-Rausch and Batina [44]

are also included. Only the subsonic cases are considered in the present effort. The

experimental data, predictions of Lee-Rausch and Batina, and the current predictions

are all fairly close near the upper subsonic limit. The three sets of data begin to

diverge as the Mach number decreases. This is a common trend from other published

AGARD 445.6 predictions. There is almost no difference between the current inviscid
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and turbulent predictions as far as frequency ratio, but the turbulent predictions are

much closer to the experimental data at higher Mach numbers. For example, at Mach

0.960, the turbulent flutter velocity is within 1% of the experimental data while the

inviscid flutter velocity is only within 10%. While it might be possible to improve the

current predictions by generating mode shapes from a custom structural model, the

results shown here are sufficient in validating the aeroelastic model.
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Figure 5.20: Inviscid and viscous predictions for AGARD 445.6 wing. Left: Flutter
velocity. Right: Frequency ratio.
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Chapter 6

Pitching S809 Airfoil

This chapter investigates the impact of transition modeling on static and dynamic

stall predictions of the S809 airfoil. The first part of the chapter examines steady

flow about an S809 airfoil to both validate the transition model and demonstrate the

need for transition modeling in wind turbine flows. The second part of the chapter

gives a comparison between fully turbulent and transition solutions for a pitching

S809 airfoil.

6.1 Steady Results

To validate the transition model and assess its ability, a series of steady S809 airfoil

simulations are performed. For these simulations, the Reynolds number is 1 million

and the free stream turbulence intensity is set to 0.05%. The angle of attack is varied

between -12 and 30 degrees. Two experimental data sets are used for comparison.

The first set of data are from wind tunnel tests at the Delft University of Technology

and are reported in Somers [74]. The second set of data are from wind tunnel tests

at the Ohio State University [66]. The C-grid shown in Fig. 6.1 was used for all

steady and unsteady simulations. This grid contains 449 x 129 nodes in the wrap

around and normal directions with a near wall spacing of y+ = 0.1. The grid extends

approximately 50 chord lengths in all directions. To check grid independence, the grid
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resolution was doubled for steady runs at 3, 9, and 18 degrees angle of attack both

with and without transition modeling. The maximum observed variation in the lift

coefficient was 2%, and the maximum observed variation in the moment coefficient

was 3%.

Figure 6.1: S809 C-grid, 449 x 129 nodes.

It is difficult to predict stall and post stall behavior of the S809 airfoil using a

RANS-based solver. The static force coefficients in Fig. 6.2 emphasize the necessity

of a transition model to modify the boundary layer turbulence in order to accurately

model the S809 airfoil when the flow is separated. Only pressure contributions for

drag are reported in the experiment. For consistency, only pressure contributions

are used in the CFD results for drag. In the post stall region, the lift is largely

over-predicted without the transition model, but reasonable agreement is found with

the aid of the transition model. The success of the transition model in this region

is due to an increase in eddy viscosity in the separation zone compared to the fully

turbulent model. The second lift curve beginning around 20◦ degrees is predicted

prematurely by the transition model and late by the fully turbulent model. The

delayed separation in the fully turbulent case and the premature second lift increase

with the transition model will have a noticeable effect in the dynamic stall cases in

the proceeding section. Returning to Fig. 6.2, the drag is increased when compared

to the fully turbulent simulation in the post stall region owing to the earlier onset of

separation with the transition model. For attached flows, it appears that transition

94



modeling is not necessary in terms of force coefficient accuracy, but as will be seen

momentarily, the solutions are still very different due to the boundary layer not being

assumed fully turbulent.
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Figure 6.2: Steady force coefficients. Left: Lift. Middle: Drag. Right: Moment.

To examine the effect of the transition model more closely, the pressure coefficients

at 4.1◦ and 12.2◦ are given in Fig. 6.3 with and without transition. When the flow is

attached, the disagreement between the two predictions is small, but a critical flow

feature is only captured with the transition model. Near the mid-chord on the upper

and lower surfaces, the fully turbulent boundary layer remains attached, and the

transition model predicts the laminar separation bubble and turbulent reattachment.

This bump in the pressure distribution indicated on the lower surface in Fig. 6.3

is indicative of such behavior [40]. When the flow is separated, the power of the

transition model is easier to see. The pressure coefficient closely matches experimental

data with the transition model on the suction surface while the fully turbulent

simulation does not.

The turbulent eddy viscosity and intermittency for these two cases provide further

insight. Referring to Fig. 6.4, the turbulent eddy viscosity is reduced with the

transition model when compared to the fully turbulent simulation at 4.1◦. Such

a reduction in eddy viscosity reflects the mostly laminar behavior of the actual

flow for this case. When the angle of attack is increased to 12.2◦, the transition

model serves to increase the turbulent eddy viscosity as shown in Fig. 6.5. The fully
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Figure 6.3: Coefficients of pressure. Left: 4.1◦. Right: 12.2◦.

turbulent simulation under-predicts the separation for this case, which is reflected by

the insufficient eddy viscosity in the separation zone.

Figure 6.4: Non-dimensional eddy viscosity contours at 4.1◦. Top: With transition
model. Bottom: Fully turbulent.

The intermittency adjusts the eddy viscosity predicted by the fully turbulent

Spalart-Allmaras model. When the value is one, the eddy viscosity is unaltered. As

the intermittency goes to zero, the eddy viscosity production is decreased to reflect

the laminar nature of the flow in that region. For attached flow, Fig. 6.6 shows that

the intermittency slowly increases from 0 near the airfoil surface to 1 near the edge

of the boundary layer. The boundary layer steadily grows moving downstream from

the leading edge of the airfoil. When the flow is separated, the intermittency grows
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Figure 6.5: Non-dimensional eddy viscosity contours at 12.2◦. Top: With transition
model. Bottom: Fully turbulent.

more rapidly before the flow detaches. In the separation wake, the eddy viscosity is

kept near fully turbulent levels.

Figure 6.6: Transition model intermittency contours. Top: 4.1◦. Bottom: 12.2◦.

The convergence rates for these two cases are shown in Fig. 6.7. The convergence

rates with and without the transition model follow the same basic shape, indicating

that the inclusion of the transition model has little effect on the global convergence

properties of the solution.
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Figure 6.7: Steady convergence rates. L2 norm computed from residuals from
Navier-Stokes and Spalart-Allmaras equations.

6.2 Unsteady Results

Given the necessity of the transition model to predict static stall, we now focus on

dynamic stall predictions with and without the transition model. Dynamic stall is

characterized by vortex shedding near the leading edge of the airfoil that produces a

pressure wave along the surface of the airfoil as the disturbance travels downstream

[46]. Compared to the static stall case, when the airfoil is pitching up, stall is delayed

to higher angles of attack whereas when the airfoil is pitching down, stall is delayed

to lower angles of attack. Such behavior gives rise to hysteresis in the force coefficient

plots over an oscillation cycle.

In addition to the steady data presented earlier, Ramsay [66] also conducted a

series of oscillating S809 airfoil tests where mean angle of attack, oscillation amplitude,

reduced frequency, and Reynolds number were varied. Predictions for some of these

cases are presented in this section with and without the transition model using the

harmonic balance solver. The cases are summarized in Table 1. For clarity, only the

average values from three pitching cycles are presented from the experimental data.

Since the reported experimental data is given at different angles of attack during each

cycle, the angles of attack from the first cycle are kept, and data is interpolated to
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Table 6.1: Unsteady S809 Airfoil Simulation Matrix

Case Mean Angle Oscillation Reduced Reynolds
Number of Attack, α Amplitude Frequency, κ Number

1 8.0o 5.5o 0.026 1.01 million
2 8.0o 5.5o 0.077 1.00 million
3 20.0o 5.5o 0.025 1.00 million
4 8.0o 10.0o 0.077 0.98 million

these angles in the remaining two cycles. Error bars corresponding to the maximum

and minimum values at each angle over the three cycles are included.

In harmonic balance solvers, mode convergence is achieved when the solution does

not change with the addition of more harmonics in the solution. The lift coefficient

plots for Case 1 shown in Fig. 6.8 reveal that more harmonics are necessary for mode

convergence when the transition model is used. This is not surprising given the added

complexity of the solution when dynamic stall occurs, and only the transition model

predicts close to an appropriate level of stall. Mode convergence occurs with three to

five harmonics without transition and seven to nine harmonics with transition. Since

each additional harmonic means solving for two more sub-time levels, the transition

model adds approximately the cost of four steady-state solutions compared to the

fully turbulent solution. It was found that 7 harmonics with the transition model

and 5 harmonics for fully turbulent solutions were sufficient for the other three cases

considered in this dissertation.

For the first case, the necessity of the transition model is evident from the lift

coefficient plots in Fig. 6.8. Without the transition model, dynamic stall only

very weakly occurs. The transition model offers an accurate prediction of the lift

throughout the entire cycle. The drag coefficients are shown in Fig. 6.9 for the

fully turbulent and transition models. Despite the large under-prediction in lift, the

fully turbulent model offers a reasonable prediction in drag. The transition model

appears to capture the behavior of the experimental data, but it does overshoot the

experimental values at higher angles of attack. The transition model again shows
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Figure 6.8: Case 1 lift coefficients. Mean angle of attack is 8.0◦, oscillation amplitude
is 5.5◦, reduced frequency is 0.026, and Reynolds number is 1.01 million. Left: With
transition model. Right: Fully turbulent.

improvement in moment coefficient (Fig. 6.10) predictions in the dynamically stalled

portion of the cycle. While the solution does not quite match the experimental values,

the features in the experimental data are reproduced well with the transition model.

The fully turbulent solution does not capture such behavior.

Contours of velocity magnitude with and without transition are shown in Figs. 6.11

and 6.12 at 10◦ during the upstroke and downstoke. The wake is much larger with the

transition model in both the upstroke and downstroke, which reflects the deeper stall

of the airfoil. The fully turbulent model is only approaching the onset of dynamic

stall at this angle of attack. The contours of vorticity and streamlines in Figs. 6.13

and 6.14 at angles of attack throughout the cycle provide greater insight. During the

upstroke, the experimental data indicates that dynamic stall has occurred at 10◦ angle

of attack as does the transition model. Only the streamlines from the transition model

exhibit a recirculation zone indicative of separated flow. The fully turbulent solution

does not predict dynamic stall until a higher angle of attack. Both solutions exhibit

recirculation at the maximum angle of attack, but only the transition model predicts

a sufficiently large recirculation zone. During the downstroke, only the transition

model shows any appreciable recirculation. Again, the transition model is necessary

to provide sufficient flow separation to match the experimentally observed dynamic
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stall. The increased vorticity at higher angles of attack for the transition model is

also apparent in Figs. 6.13 and 6.14.
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Figure 6.9: Case 1 drag coefficients. Mean angle of attack is 8.0◦, oscillation
amplitude is 5.5◦, reduced frequency is 0.026, and Reynolds number is 1.01 million.
Left: With transition model. Right: Fully turbulent.
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Figure 6.10: Case 1 moment coefficients. Mean angle of attack is 8.0◦, oscillation
amplitude is 5.5◦, reduced frequency is 0.026, and Reynolds number is 1.01 million.
Left: With transition model. Right: Fully turbulent.

Case 2 is the same as Case 1 except that the reduced frequency is increased

approximately threefold. The faster pitching delays dynamic stall to higher angles of

attack in the upstroke and increases it to lower angles during the downstroke. This

provides for a more dramatic hysteresis effect in the force data. The force coefficients

in Fig. 6.15 show a similar performance to Case 1. The fully turbulent model is still

inadequate in terms of predicting dynamic stall. The transition model enjoys the

same success as before and nicely captures the increased hysteresis effect. The drag
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Figure 6.11: Case 1 contours of velocity magnitude at 10◦ angle of attack with
transition. Left: Upstroke. Right: Downstroke.

Figure 6.12: Case 1 fully turbulent contours of velocity magnitude at 10◦ angle of
attack. Left: Upstroke. Right: Downstroke.
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(a) 2.5◦ angle of attack (b) 6.0◦ ↑ angle of attack

(c) 10.0◦ ↑ angle of attack (d) 13.5◦ angle of attack

(e) 10.0◦ ↓ angle of attack (f) 6.0◦ ↓ angle of attack

Figure 6.13: Case 1 contours of vorticity and streamlines throughout a complete
cycle with transition. Arrows indicate either upstroke or downstroke portion of the
cycle.

(a) 2.5◦ angle of attack (b) 6.0◦ ↑ angle of attack

(c) 10.0◦ ↑ angle of attack (d) 13.5◦ angle of attack

(e) 10.0◦ ↓ angle of attack (f) 6.0◦ ↓ angle of attack

Figure 6.14: Case 1 fully turbulent contours of vorticity and streamlines throughout
a complete cycle. Arrows indicate either upstroke or downstroke portion of the cycle.
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and moment coefficients are also similar to Case 1. Neither model matches the drag

well throughout the entire cycle. With the moment coefficient, the transition model

again captures the behavior in the experimental data albeit with a small offset.

In comparison to Case 1, the vorticity contour and streamline plots with transition

in Fig. 6.16 highlight the delay in onset of dynamic stall. The vorticity is reduced

and the recirculation zone is no longer present at 10◦ during the upstroke. During

the downstroke at 10◦, the vorticity and recirculation is similar to Case 1, but the

leading edge vorticity now has more separation along the latter portion of the airfoil.
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Figure 6.15: Case 2 force coefficients. The transition model solution contains 7
harmonics, and the fully turbulent solution contains 5 harmonics. Mean angle of
attack is 8.0◦, oscillation amplitude is 5.5◦, reduced frequency is 0.077, and Reynolds
number is 1.00 million. Left: Lift. Middle: Drag. Right: Moment.

Case 3 is well into the massively separated regime centered at 20◦ angle of attack.

At large angles of attack, the steady solutions with and without transition start to

merge. Referring back to Fig. 6.2, the lift, drag, and moment coefficients predicted

by the transition and fully turbulent models begin to agree at the highest angles of

attack considered. The same is true for the unsteady solutions. The force coefficients

in Fig. 6.17 begin to match at the higher angles of attack in the cycle. Neither model

is capable of predicting the behavior exhibited by the experimental data around 23◦.

The fully turbulent solution matches experimental data better than the transition

model solution at the lower angles of attack.
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Figure 6.16: Case 2 contours of vorticity and streamlines at 10◦ angle of attack with
transition. Top: Upstroke. Bottom: Downstroke.

The nature of dynamic stall is easiest to observe in Case 3. Vorticity contours

at the lowest angle of attack in Fig. 6.18 show the leading edge vortex moving aft

along the airfoil and interacting with the trailing edge vortex. A new vortex is being

generated at the leading edge of the airfoil as the previous vortex moves downstream.
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Figure 6.17: Case 3 force coefficients. The transition model solution contains 7
harmonics, and the fully turbulent solution contains 5 harmonics. Mean angle of
attack is 20.0◦, oscillation amplitude is 5.5◦, reduced frequency is 0.025, and Reynolds
number is 1.00 million. Left: Lift. Middle: Drag. Right: Moment.

The mean angle of attack is changed back to 8◦ in Case 4, and the oscillation

amplitude is increased from 5.5◦ to 10◦. In the steady force data, a sharp change
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Figure 6.18: Case 3 contours of vorticity and streamlines at 14.5◦ angle of attack.

in slope occurs right near the maximum angle of attack reached in this case, which

makes it especially difficult to model. The lift curves in Fig. 6.19 show that both

models predict dynamic stall in this case. The transition model, however, is adversely

affected by a poor solution in one sub-time level near the maximum angle of attack.

Looking back at the steady force prediction, the largest disagreement between the

experimental data and the transition model is at 18◦. This is where the transition

model prematurely predicts the onset of the slope change. The failure of the transition

model in this one location has a strong negative impact on the unsteady solution

reconstruction. To minimize the impact of a poor solution at one sub-time level, the

number of harmonics could be increased, but such a study is not included here. The

fully turbulent model in this case performs better than the related Cases 1 and 2, but

dynamic stall is still largely under-predicted.
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Figure 6.19: Case 4 force coefficients. The transition model solution contains 7
harmonics, and the fully turbulent solution contains 5 harmonics. Mean angle of
attack is 8.0◦, oscillation amplitude is 10.0◦, reduced frequency is 0.077, and Reynolds
number is 0.98 million. Left: Lift. Middle: Drag. Right: Moment.
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Chapter 7

WindPACT Flutter Analysis

Flutter data for wind turbine blades is very limited. This is mainly owing to the

fact that blades up until recently have been small enough that flutter was not a real

concern. The baseline blade developed for the WindPACT rotor design study is one of

the few blades that has been the subject of any flutter analyses. This chapter presents

the results of flutter predictions for this blade using generalized forces derived from

inviscid and fully turbulent CFD simulations. The blade geometric and structural

properties are presented first followed by a steady aerodynamic simulation. The

results of the flutter analysis and the associated unsteady aerodynamics are given in

the final portion of the chapter.

7.1 Model Properties

The WindPACT rotor design study was conducted between 2000 and 2002 by Global

Energy Concepts, LLC and Windward Engineering [50]. The overall purpose of the

WindPACT project was to identify ways to reduce the cost of wind energy per kWh.

The baseline 1.5 MW rotor design from this project is analyzed here. The rotor

characteristics are summarized in Table 7.1. It is important to realize that this rotor

is purely conceptual, and no prototypes were built or tested. The rotor was meant to

be representative of a MW scale wind turbine used in onshore wind energy production.
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Table 7.1: Characteristics of 1.5 MW Baseline WindPACT Blade

Characteristic Unit Value

Rotor diameter m 70
Max. rotor speed rpm 20.5
Max. tip speed m/s 75
Blade coning deg 0
Max. blade chord m 8% of radius
Radius to blade root m 5% of radius
Blade mass kg 4230

The rotor blade is twisted 11.1 degrees from root to tip. The airfoil profiles are

derived from the S818, S825, and S826 series. Thicker versions of these profiles were

used since manufacturing limitations at the time suggested that the original profiles

were too thin for such a massive blade. The blade planform and cross-sections are

shown in Fig. 7.1. Clearly evident is the twist and tapering along the blade span.
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Figure 7.1: WindPACT 1.5 MW blade geometry. Left: Blade planform. Right:
Blade profiles from near root to tip.

7.2 Structural Analysis

Since no physical model exists with which to extract experimental mode shape data

for the WindPACT blade, finite element modeling is required. Several models of

the blade have been created and results published. Results from RCAS (Rotorcraft

Comprehensive Analysis System) and BModes generally agree very well. The former
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is a mature tool developed for rotorcraft analysis that was subsequently used by

NREL for wind turbine aeroelastic modeling and analysis [7]. The latter is a code

developed by NREL for use in FAST [8]. Sandia National Laboratories created a

finite element model in NASTRAN for modal extraction [48], but that model is not

readily available. Sandia has also created a blade design system in MATLAB known

as NuMAD [5]. This program is capable of outputting an FEA model that can be read

directly by ANSYS. The 1.5 MW WindPACT blade is included in the distribution as

a program demo.

The demo included with NuMAD was used to generate an ANSYS finite element

model of the 1.5 MW WindPACT blade. However, this model did not match the

modal frequencies listed in various other reports. This shortcoming is documented in

the NuMAD manual. Fine tuning of the material properties is suggested to better

match published data. In this work, all densities were reduced to 75% of their given

values. The modal frequencies of this model are compared with several others in

Table 7.2 for the first six mode shapes at several rotor speeds. The first and third

modes correspond to the first and second flapwise modes. The second and fourth

modes correspond the first and second edgewise modes. The sixth mode corresponds

to the first torsional mode.

It is possible for resonant vibrations to occur if the rotor operational speed matches

the natural frequencies of the blades. A Campbell diagram graphically shows possible

resonant points by plotting multiples of the rotor speed (1E, 2E, etc.) with the natural

frequencies of the system. A Campbell diagram for the WindPACT blade is shown

in Fig. 7.2. Points of intersection should be avoided during wind turbine operation.

This analysis, however, does not take into account other structural frequencies of the

wind turbine such as the tower, which could also lead to resonant conditions.

The first, second, third, and sixth modes, which correspond to those used by

Lobitz [48] in his flutter analysis, are shown in Fig. 7.3. Looking at Table 7.2,

the modal frequencies among the models tend to vary more as the mode number
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Table 7.2: WindPACT Natural Frequencies (Hz)

Mode
Rotor

RCAS BModes ANSYS Lobitz
Speed (rad/s)

Mode 1

0

1.229 1.228 1.212 1.199
Mode 2 1.875 1.869 1.964 1.714
Mode 3 3.662 3.658 3.372 3.596
Mode 4 6.291 5.740
Mode 5 7.970 7.354
Mode 6 10.17 11.57 9.846

Mode 1

2

1.300 1.298 1.277
Mode 2 1.889 1.883 2.000
Mode 3 3.736 3.733 3.448
Mode 4 6.323 5.777
Mode 5 8.043 7.425
Mode 6 10.17 11.64

Mode 1

4

1.484 1.454
Mode 2 1.924 2.101
Mode 3 3.948 3.665
Mode 4 6.418 5.886
Mode 5 8.257 7.635
Mode 6 10.18 11.85
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Figure 7.2: Campbell diagram for WindPACT rotor blade.
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increases. However, these results suggest that the current structural model is sufficient

to compare trends in flutter predictions for the 1.5 MW WindPACT turbine blade.

Figure 7.3: Computed mode shapes for WindPACT blade rotating at 2 rad/s. Top
Left: Mode one (1st flapwise) 1.28 Hz. Top Right: Second Mode (1st edgewise)
2.00 Hz. Bottom Left: Third mode (2nd flapwise) 3.45 Hz. Bottom Right: Sixth
mode (1st torsion) 11.64 Hz.

7.3 Steady Aerodynamics

In addition to a structural model, a flutter analysis also requires an aerodynamic

model. As was done with the AGARD 445.6, the harmonic balance solver can be

used with small amplitude motions of each mode shape to generate the required

generalized aerodynamic forces. Before proceeding to an unsteady analysis, it is

worth documenting the results from a steady analysis. In this section, an inviscid

and fully turbulent simulation of the WindPACT rotor operating near twice the max
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speed is examined. This speed (42 RPM or Mtip = 0.45) was chosen as a starting

point for flutter analysis since Lobitz [48] and Owens et al. [57] both observed flutter

near the same speed.

An inviscid C-H grid and a viscous C-H grid are used to conduct the steady,

inviscid and turbulent simulations, respectively. The inviscid grid contains 193 x 41 x

49 nodes, with 25 nodes on the airfoil in the spanwise direction and 129 nodes on the

airfoil in the wrap around direction. The viscous grid (Fig. 7.4) contains 257 x 65 x 33

nodes, with 17 nodes on the airfoil in spanwise direction, 193 nodes on the airfoil in

the wrap around direction, and a y+ value of approximately 2.5 at the blade surface.

This grid is intentionally coarse for a turbulent simulation to minimize computation

times. Simulations need to be performed on finer grids in the future. In both cases,

the far field is approximately two blade lengths from the hub, and the side faces of

the domain are periodic.

Figure 7.4: Viscous WindPACT C-H grid (257 x 65 x 33). The grid on the right
shows the blade starting at 39% span.

For steady aerodynamics, the force on the blade is largely due to the pressure

distribution on the blade. Pressure distributions at 5 spanwise stations along the

blade are shown in Fig. 7.5. There is no experimental data for comparison, but there

are a couple of distinguishing features between the inviscid and turbulent simulations.

At all spanwise locations, the results differ over the aft half of the respective airfoil
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section. This is not surprising given the results in Chapter 6 where the critical region

of wind turbine type airfoils was shown to be in the aft portion of the airfoil. The

results tend to agree the most between 62 and 87 percent span. The blade cross-

section becomes increasingly thick and round as one moves toward the hub. It is

easy to see that an inviscid simulation would be inaccurate here. At the blade tip,

vortical structures are lost in an inviscid simulation, and this probably contributes to

the increased disagreement near the blade tip.
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Figure 7.5: Coefficient of pressure distribution for 1.5 MW WindPACT rotor
operating at 42 RPM in still air.
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7.4 Flutter Analysis

The flutter solution requires complex generalized forces for each considered mode

shape. Previous work by Lobitz [48] and Owens et al. [57] suggests that the dominant

modes for flutter are the 2nd flapwise and edgewise modes and 1st torsional mode.

These three modes are included in the forthcoming analysis as well as the 1st flapwise

and edgewise modes. Each of the five mode shapes considered requires a single

unsteady aerodynamic solution using a real, small amplitude motion of the respective

mode shape. For example, the unsteady aerodynamics for the 2nd flapwise mode

are computed by using a 10−4 amplitude unsteady grid motion. This unsteady

aerodynamic solution gives five complex generalized forces, which are the sensitivities

of the five mode shapes being considered to displacements of the 2nd flapwise mode.

Lobitz and Owens et al. both observed flutter around 42 RPM (Mtip = 0.45).

To ensure flutter conditions and test the viability of the technique, a slightly higher

rotor speed of 46.4 RPM (Mtip = 0.50) is considered first. Figures 7.6 to 7.10 show

inviscid and fully turbulent generalized forces for the five modes considered at reduced

frequencies of 0.12, 0.24, and 0.36. Given that inviscid solutions are very limited in

accuracy for wind turbine airfoils, it is not surprising to see the differing generalized

forces between inviscid and fully turbulent solutions.

The generalized forces can be used in Eq. 4.12 to determine the flutter solution if it

exists. Recall in the derivation of Eq. 4.12 that the structural damping was neglected.

Thus, the results here are considered a worst case scenario since all damping must

be aerodynamic damping. Including all five modes (1st and 2nd flapwise, 1st and

2nd edgewise, and 1st torsional), the fully turbulent generalized force data predicts

a flutter frequency of ω̄ = 0.232. A sample calculation is provided in Table 7.3 to

show how this number is determined. The reduced frequency, ω̄, is varied until the

imaginary part of the reduced velocity, Vf , changes sign. This indicates the existence

of a purely real reduced velocity in this frequency range. A value of ω̄ which gives a

vanishingly small imaginary value then can be taken as the flutter frequency.
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Figure 7.6: Generalized aerodynamic forces for mode shape one with Mtip = 0.500.
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Figure 7.7: Generalized aerodynamic forces for mode shape two with Mtip = 0.500.
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Figure 7.8: Generalized aerodynamic forces for mode shape three with Mtip = 0.500.
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Figure 7.9: Generalized aerodynamic forces for mode shape four with Mtip = 0.500.
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Figure 7.10: Generalized aerodynamic forces for mode shape six with Mtip = 0.500.

Table 7.3: Sample WindPACT Flutter Calculation, Mtip = 0.500

ω̄ Vf Determinant

0.230 0.0647 − 1.55×10−6 i 2.28×10−9 − 1.45×10−9 i
0.231 0.0645 − 7.23×10−7 i 1.09×10−9 − 6.82×10−10 i
0.232 0.0642 + 7.71×10−8 i 9.46×10−11 + 1.12×10−10 i
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The two dominant modes are apparently the 1st flapwise and 1st edgewise modes.

Including only these two modes in the analysis has a negligible effect on the predicted

flutter frequency. Much like the AGARD 445.6 case, flutter analysis can be reduced

to these two modes only without loss of accuracy. The torsional mode, which is

fundamental to classic flutter, does not play a role in this case. As Lobitz [48] points

out, the natural twist of the blade moving in the edgewise direction reproduces the

effect of a torsional mode. Interestingly, the inviscid data does not admit a flutter

solution within the reduced frequency range considered. The real and imaginary

components of the unsteady pressure for the 1st flapwise and 1st edgewise modes are

shown at several blades spans in Figs. 7.11 and 7.12 for inviscid and turbulent cases.

These plots highlight the differences between the inviscid and turbulent generalized

forces along the blade span for these modes. The largest disagreement is near the rotor

hub where the thick airfoils make accurate inviscid modeling impossible. Near the

blade tips, where the airfoil sections are more streamlined, the inviscid and turbulent

models have much better agreement.

Given the importance of the generalized forces, it is useful to examine the first

harmonics of the real and imaginary pressures. The imaginary pressure manifests

itself as the imaginary generalized force. For stability, this value should be negative.

Integration of these pressure distributions largely determines the generalized forces

(the shear stress slightly alters the generalized force in turbulent simulations). Figures

7.13 and 7.14 show the unsteady pressure distributions for the first and second mode

shapes. The pressures near the hub appear are very similar in both cases. Moving

outboard, differences between the two modes begin to emerge. Looking back at

Fig. 7.3, the reason is that displacements near the root are minimal in all cases due

to the required structural stiffness near the root. The outer portions of the blade are

where the critical generalized forces develop.

Flutter for two other rotor speeds is calculated using generalized force data from

additional CFD simulations. The tip Mach number is decreased to 0.475 and increased

to 0.525 to observe any trends in flutter related to rotor speed. Only the first two
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Figure 7.11: Real and imaginary pressures for 1st flapwise mode for 1.5 MW
WindPACT rotor operating at Mtip = 0.500.
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Figure 7.12: Real and imaginary pressures for 1st edgewise mode for 1.5 MW
WindPACT rotor operating at Mtip = 0.500.

Figure 7.13: Unsteady pressure distributions (p̄/0.5ρU2
tip) on suction and pressure

sides of WindPACT blade surface for first flapwise mode with Mtip = 0.500. Real
component is shown in (a), and imaginary component is shown in (b).
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Figure 7.14: Unsteady pressure distributions (p̄/0.5ρU2
tip) on suction and pressure

sides of WindPACT blade surface for first edgewise mode with Mtip = 0.500. Real
component is shown in (a), and imaginary component is shown in (b).

mode shapes are considered now given the results of the previous flutter analysis. The

required generalized forces are shown in Figs. 7.15 to 7.18. The predicted reduced

frequency does not vary much over this range with ω̄ = 0.223 and ω̄ = 0.233 for

Mtip = 0.475 and Mtip = 0.525, respectively.
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Figure 7.15: Generalized aerodynamic forces for mode shape one with Mtip = 0.475.

Only Lobitz provides flutter predictions over a range of rotor speeds. Fig. 7.19

compares the predicted flutter frequency ratios vs. rotor speed from Lobitz’s analysis

and the current analysis. The flutter frequency is normalized in both the traditional

way using ωα and using ω2. Given that the second mode (1st edgewise) acts as the

torsional mode in this case, it may be a more appropriate scaling. The comparison is

more qualitative given the known differences in the respective structural models, but
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Figure 7.16: Generalized aerodynamic forces for mode shape two with Mtip = 0.475.

0.1 0.2 0.3 0.4

ω
_

-4

-3

-2

-1

0

G
1

1
 x

 1
0

3

0.1 0.2 0.3 0.4

ω
_

-1

-0.5

0

0.5

1

G
1
2
 x

 1
0

3

Re, Inviscid

Im, Inviscid

Re, Turbulent

Im, Turbulent

Figure 7.17: Generalized aerodynamic forces for mode shape one with Mtip = 0.525.
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Figure 7.18: Generalized aerodynamic forces for mode shape two with Mtip = 0.525.
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the predicted frequency ratios are similar in magnitude with the average difference

over the rotor speed considered being about 8%. Interestingly, the solutions appear

to converge at higher rotor speeds. This could be similar to the AGARD 445.6 where

predictions typically diverge between models at lower free stream speeds but tend to

agree at higher subsonic speeds.
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Chapter 8

Conclusion

8.1 Summary

An aeroelastic model was developed in this dissertation driven by unsteady aerody-

namic solutions via the harmonic balance method and a mode shape-based structural

dynamics model. This is the first aeroelastic model of its kind to be applied to a

wind turbine blade. The model allows for blade motions in the flapwise, edgewise,

and torsional directions. Compared to traditional wind turbine aeroelastic models

that rely on blade element momentum theory for aerodynamic loads, this model is

significantly more robust since the unsteady RANS equations are used to compute

the aerodynamic loads. The computational workload associated with the unsteady

RANS equations is normally too high to be useful in any realistic scenario, but the

harmonic balance method reduces the workload 5 to 10 times keeping solution times

manageable. Analysis of the 1.5 MW WindPACT wind turbine blade gave flutter

predictions similar to predictions from another published aeroelastic model with an

average difference in frequency ratio of about 8% between models.

The first known application of the γ −Reθt transition model in combination with

the harmonic balance method to study unsteady wind turbine flows also appeared

in the dissertation. Other authors have shown the necessity of a transition model
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to accurately predict static stall of wind tubrine airfoils. Pitching S809 airfoils were

analyzed in this dissertation with a fully turbulent model and transition model. The

transition model was shown to be far more capable in predicting the onset of dynamic

stall than the fully turbulent model.

8.2 Future Work

Inclusion of the transition model into the aeroelastic model is the next logical step in

this work. While the implementation is straightforward from the 2-D work presented

herein, a significant departure from the fully turbulent flutter predictions is not

expected for the WindPACT case considered. The parameters of that case were

chosen over a decade ago with the intent to keep the aerodynamics as simple as

possible. More interesting results should be encountered if the angle of attack of the

blade is changed so that portions of the blade experience dynamic stall.

The current method of flutter solution is somewhat tedious in that a range of

generalized forces over a range of frequencies are required to find the flutter condition

if it exists. A better approach might be to automate the process such that the

flutter condition is automatically found by the solver. Limit cycle oscillation (LCO)

frequency finding procedures have been applied to turbomachinery problems, and it

should be possible to extend them to wind turbine blades.

Along the same lines as an automated procedure, a fully coupled aeroelastic

model should also be developed from the aerodynamic and structural models

presented here. In this scenario, the aerodynamic and structural models would

be solved simultaneously with the current solution from each solver. Updates of

the computational grid might limit the efficiency of the process so an optimal grid

updating interval would need to be investigated.

125



Bibliography

126



[1] Abu-Ghannam, B. J. and Shaw, R. (1980). Natural transition of boundary layers-

the effects of turbulence, pressure gradient, and flow history. Journal of Mechanical

Engineering Science, 22(5):213–228. 5

[2] Agarwal, R. K. and Deese, J. E. (1987). Euler calculations for flowfield of a

helicopter rotor in hover. Journal of Aircraft, 24(4):231–238. 17

[3] Agarwal, R. K. and Deese, J. E. (1989). Navier-Stokes calculations of the flowfield

of a helicopter rotor in hover. In 26th Aerospace Sciences Meeting, Reno, NV. AIAA

88-0106. 17

[4] Anderson, C., Heerkes, H., and Yemm, R. (1999). The use of blade-mounted

dampers to eliminate edgewise stall vibration. In European Wind Energy

Conference, Nice, France. 9

[5] Berg, J. C. and Resor, B. R. (2012). Numerical manufacturing and design tool

(NuMAD v2.0) for wind turbine blades: Users guide. Sandia Report SAND2012-

7028, Sandia National Laboratories. 109

[6] Bijl, H., Lucor, D., Mishra, S., and Schwab, C. (2013). Uncertainty Quantification

in Computational Fluid Dynamics. Springer, Switzerland. 81

[7] Bir, G. S. (2005). Structural dynamics verification of rotorcraft comprehensive

analysis system (RCAS). Technical Report NREL/TP-500-35328, National

Renewable Energy Laboratory. 109

[8] Bir, G. S. (2007). Users guide to BModes (software for computing rotating beam

coupled modes). Technical report, National Renewable Energy Laboratory. 109

[9] Bisplinghoff, R. L., Ashley, H., and Halfman, R. L. (1996). Aeroelasticity. Dover

Publications. 7

[10] Blazek, J. (1993). Investigations of the implicit LU-SSOR scheme. Technical

Report DLR-FB 93-51, DLR. 50

127



[11] Blazek, J. (2001). Computational Fluid Dynamics: Principles and Applications.

Elsevier, first edition. 36, 42, 45, 140

[12] Boussinesq, J. (1877). Essai sur la théorie des eaux courantes. Mem. Pres. Acad.
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A Face Vectors in 3-D

This appendix shows the calculation of face vectors on a 3-D structured computational

grid as described in Hirsch [32] and Blazek [11]. Since each face is shared by two

volumes, only three face vectors are required per volume. The remaining three face

vectors can be retrived from the neighboring volumes as needed. To start, consider

the generic volume shown in Fig. 1. Using this notation, the x, y, and z components

of the face vectors S1, S2, and S3 can be calculated as

  

S2

A B

C

D

H G

FES1

S3

Figure 1: Face vectors on a 3-D volume
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S1x =
1

2
[(yH − yA)(zD − zE)− (zH − zA)(yD − yE)] (1)

S1y =
1

2
[(zH − zA)(xD − xE)− (xH − xA)(zD − zE)] (2)

S1z =
1

2
[(xH − xA)(yD − yE)− (yH − yA)(xD − xE)] (3)

S2x =
1

2
[(yF − yA)(zE − zB)− (zF − zA)(yE − yB)] (4)

S2y =
1

2
[(zF − zA)(xE − xB)− (xF − xA)(zE − zB)] (5)

S2z =
1

2
[(xF − xA)(yE − yB)− (yF − yA)(xE − xB)] (6)

S3x =
1

2
[(yC − yA)(zB − zD)− (zC − zA)(yB − yD)] (7)

S3y =
1

2
[(zC − zA)(xB − xD)− (xC − xA)(zB − zD)] (8)

S3z =
1

2
[(xC − xA)(yB − yD)− (yC − yA)(xB − xD)] (9)
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