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ABSTRACT 

The study focuses on understanding the dynamic nature of interactions between molecules 

and macromolecules. Molecular modeling and simulation technologies are employed to 

understand how the chemical constitution of the protein, specific interactions and dynamics of its 

structure provide the basis of its mechanism of function. The structure-dynamics-func tion 

relationship is investigated from quantum to macromolecular-assembly level, with applications in 

the field of rationale drug discovery and in improving efficiency of renewable sources of energy. 

Results presented include investigating the role of dynamics in the following: 

1) In interactions between molecules: analyzing dynamic nature of a specific non-covalent 

interaction known as “anion-π [pi]” in RmlC protein.  

2) In interactions between molecules and macromolecules: defining the structural basis of 

testosterone activation of GPRC6A.  

3) In disrupting the function using specific substrate interactions: incorporating protein 

dynamics and flexibility in structure-based drug-discovery approach targeting the 

prothrombinase coagulation complex.  

4) In interactions between macromolecules: elucidating the protein-protein binding and 

dynamics of electron-transport proteins, Ferrodoxin and Cytochrome c6, with 

Cyanobacterial Photosystem I.  
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Prologue 

Proteins are of critical importance for all living organisms. They perform an array of 

functions, including catalyzing metabolic reactions, maintaining structural integrity of the cell, 

transporting molecules from one location to another, to name a few. Proteins have a chemical 

nature defined by its amino acid sequence. This unique sequence of residues fold into unique three-

dimensional structures, which defines not only its size and shape but also its function (1). The 

three-dimensional structures can form complementary sites for binding other molecules, for 

example, active site in the case of reactions catalyzed by enzymes (2), and protein binding sites on 

protein surface in formation of oligomers (3). Hence, protein sequence and its structure can be 

compared to its fingerprint, where different structures represent different personalities and 

functions of the proteins.  

The function of a protein is also modulated by other molecules (4). Recognition and 

binding of a substrate to the protein involves specific interactions between protein residues and the 

substrate molecule. Covalent and non-covalent interactions play a critical role in maintaining the 

structural integrity of the protein itself (5,6). These interactions can be described both at the 

quantum scale with high accuracy, and by using semi-empirical and classical methods, that allow 

certain approximations. Hence, in order to understand the behavior of protein, it is important to 

understand and quantify all possible interactions that control protein structural integrity and drive 

its function (7).  

Biophysical methods like crystallography and NMR provide a static picture of the proteins  

(8,9). But, it is important to recognize that proteins are ‘alive’ molecules (10). They are flexible at 

room temperatures and can undergo changes in different interactions, leading to changes in its 

three-dimensional structure and function. This flexibility and stochastic fluctuations lead to 



 3 

different ‘active’ and ‘non-active’ states of the protein, directing reactions preferentially along 

functionally important pathways (11). Thus, in order to exploit this quality of biological molecules, 

for example in medicine and renewable power generation, computational methods that simulate 

molecular structure and interactions can be employed in exploring the structures (and interactions) 

that are unresolved through experiments (12). 

 

Scope of Study 

Protein dynamics are central to understanding the structure-function correlation in 

biological systems (13). The study presented here characterizes the dynamic nature of interactions 

in proteins, protein: ligand and protein: protein systems, and in understanding the structural and 

dynamical properties of macromolecular systems that furnish their biological function using 

computational methods (14). In particular, this research describes a new non-covalent interaction 

in proteins at the quantum and macromolecular level, the structural basis of substrate 

interactions/activation and function is explored in a membrane protein, structure-based drug 

discovery methods are extended to include the inherent flexibility of biological molecules in order 

to make better predictions in protein-ligand binding, and protein-protein interactions and dynamics 

are studied at the macromolecule-systems level. 

Understanding and quantifying different interactions in biological systems opens the 

avenue for designing new proteins/peptides and molecules with novel properties. Modeling 

interactions between protein and small molecules forms an important area of research in 

discovering new drugs for life-threatening diseases (15). Also, understanding the interactions 

between different macromolecules, especially those involved in plant/bacteria photosystem, can 

be used to modify and improve the efficiency of these systems for electricity production (16). 
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Molecular Interactions 

Atom and molecules constitute matter and form a complex network of weak and strong 

interactions conferring specific properties to the matter. The same is true for biological molecules. 

This interplay between strong and weak interactions in a macromolecule like protein results in a 

unique structure for that protein. The primary structure of a protein is determined by the bonded 

interactions between its amino acids. Secondary structure like alpha helix and beta strands are 

defined by patterns of non-bonded interactions, like hydrogen bonds, between the main-cha in 

atoms. Anion-π are an emerging non-bonded interactions that are present in biomolecules between 

negatively charged amino acid side chains and the positively charged ring edge of aromatic groups  

(17,18). These interactions have also been beneficially exploited in field structure-based drug-

discovery and in development of effective inhibitors (19). 

CHAPTER 1 introduces the theory of anion-π interactions and recent advances made in 

this field. The study aims at investigating the chemical, structural and thermodynamic 

characteristics of the anion-π interactions in RmlC protein (20), and characterizes the time- and 

temperature dependent dynamic stability of these interactions using molecular dynamics (MD) 

simulations, potential of mean force (PMF) and semi-empirical quantum energy calculations. 

 

Structure and function 

The structure of a protein is determined by its primary sequence of amino acids, which is 

encoded by the sequence of nucleotides in the gene (DNA). This unique structure of the protein 

and its active site allows the protein to interact with and bind different ligands, conferring it a 

unique function. So, in order to better understand the biological function of proteins, it is 
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imperative to correctly model the binding, interactions as well as the structural changes involved 

when a ligand binds to the protein.  

G protein–coupled receptors (GPCRs) are heptahelical membrane receptors, that sense  

molecules outside the cell, activating inside signal transduction pathways and, ultimately, cellular 

responses (21). Steroid hormone Testosterone (T) plays a key role in development of reproductive 

tissues, muscles and bones (22), and has been shown to lead to the downstream signaling in a 

newly characterized Family C GPCR, GPRC6A (23). CHAPTER 2 deals with providing the 

structural evidence for the T binding to GPRC6A, using homology modeling and molecular 

docking, to gain additional insights into this role of T in the activation of GPRC6A. 

 

‘Dynamics’ bridges the gap 

Proteins are not static entities. At room temperature, they populate an ensembles of 

conformations. Transitions between these states occur on a variety of  time scales (ns to s), linking 

these ensemble of structures to functionally relevant phenomena such as allosteric signaling and 

enzyme catalysis (24,25). As proteins have this dynamic nature, changes in its structure also 

complement the interplay between different interactions that maintain both its structural integr ity 

and function. 

The prothrombinase (PTase) enzymatic complex, consisting of the enzyme factor Xa 

(FXa), and a protein cofactor, factor Va (FVa), catalyzes the cleavage of prothrombin (PT) leading 

to the formation of thrombin and clot-formation (26,27).  The goal in CHAPTER 3 is to target 

FXa within the PTase complex, but instead of seeking another active-site directed inhibitor that 

have the serious liability of excessive bleeding (28), MD simulations and ensemble-based high-

throughput virtual screening methods are used to identify compounds that bind to FXa and alter 
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the interaction between FXa and its cofactor FVa. These compounds have the potential to down-

modulate the PTase activity in an allosteric and non-competitive manner.  

 

Macromolecular assemblies 

The functions of macromolecules are inter-connected. All the pieces in the puzzle need to 

come together to make the system work. Some small molecules can interact and bind to a protein, 

leading to its downstream signaling, activating/deactivating several other members in the same 

pathway (24). The final function or product formation is the product of this long assembly line. 

Treating individual elements of the same pathway or system separately only provides an isolated 

view of the whole process. As the biological system are dynamic and complex, their behavior can 

be hard to predict from the properties of individual subunits. So, in order to better understand the 

whole process, the complete system needs to be modeled.  

Photosystem is an interesting biological system that converts light energy into chemical 

energy through a series of redox reactions between two large, multi-subunit proteins Photosystem 

II (PSII) and Photosystem I (PSI) (29), and electron-transport proteins like Ferredoxin (Fd) and 

Cytochrome c6 (Cytc6) (30,31). CHAPTER 4 aims at developing new structural models between 

the stromal and luminal domains of PSI and Fd and Cytc6, respectively, using rigid-body 

molecular docking. MD simulations are being utilized to examine the atomic-level intermolecular 

interactions and dynamics at the protein-protein interface in these proteins to further understand 

and illustrate the small changes taking place in the transfer of electrons between the separate 

subunits. 
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Chapter 1 

ANION-Π NETWORKS IN PROTEINS ARE 
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Abstract 

The dynamics of anion- , (or anion-quadrupole) interactions formed between negatively charged 

(Asp/Glu) and aromatic (Phe/Trp/Tyr) side chains is computationally characterized in RmlC 

(PDB: 1EP0), a homodimeric epimerase. Empirical force field-based molecular dynamics 

simulations shows anion-π pairs and triplets (anion-anion-anion-) being formed in 

conformations sampled by the protein, extending the anion-π interactions beyond those observed 

in the crystal structure. The combined energies from the anion-π interactions sampled during the 

protein trajectory may provide a significant contribution to the overall stability of the protein, with 

an average of -1.6 kcal/mol per pair. These results suggest that near-planar anion-π pairs can exist 

– sometimes transiently - both at the active site and the dimer interface, which may play a role in 

maintaining the structural stability and function of the protein. 
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Introduction  

Non-covalent interactions play a constitutive role in maintaining the structural integrity of 

proteins, as well as in protein-protein and protein-ligand interactions. In addition to the well-known 

and well-described hydrogen bonds, van der Waals interactions and hydrophobic interactions, 

other non-covalent bond interactions have been suggested to contribute to the stabilization of 

protein structures and of protein-ligand complexes Our current analysis and understanding of 

protein structure, protein-protein and protein-ligand interactions is in large part based on our 

understanding of non-bonded interactions between atoms, functional groups or molecular 

domains. Among non-bonded interactions, hydrogen bonds, van der Waals interactions, 

hydrophobic interactions, and ion pairs are well described and well understood. However, other 

types of non-bonded interactions have been suggested to contribute to the stabilization of protein 

structures and of protein-ligand interactions (1-7). One of these is the anion-π interactions between 

an anion and the aromatic ring. These interactions have previously been studied with a focus on 

electron-deficient π rings, by incorporating strong electron-withdrawing substituents such as 

fluorobenzene derivatives, fluoro-s-triazine, and tetrafluoroethene, and negatively charged 

molecules and ions, as well as in the case of metallacycles (8-11). The positive charge on the 

aromatic ring edge arises from the quadrupole moment of the ring, leading to the anion-quadrupo le 

or anion-π interaction with the negatively charged anion. Wheeler et al. have recently provided an 

alternative explanation for the origin of anion-π interactions involving substituted benzenes and 

N-heterocycles and suggested that the positive electrostatic potentials and molecular quadrupole 

moments characteristic of π-acidic azines, which underlie the ability of these rings to bind anions 

above their centers, arise from the position of nuclear charges, not changes in the π-electron density 

distribution. (12,13). 



 15 

Anion-π interactions have also been found to be present in biomolecules between 

negatively charged amino acid side chains and the positively charged ring edge of aromatic groups. 

Small molecule analogs (benzene/phenol/indole interacting with formate) have been used to 

characterize the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) 

with anionic amino acids (aspartic and glutamic acids) at the MP2 level of quantum mechanica l 

(QM) theory (14). The study shows that the overall stabilization associated with an anion-π 

interaction to be potentially substantial, as large -9.5 kcal/mol for a benzene-formate (BF) planar 

dimer at van der Waals contact distance where the interaction is expected to be at a maximum.  

Studies by Kallenbach et al. using short α-helical peptides with glutamate/ phenylalanine 

pairs positioned at i and i+4 spacing indicate that this pairwise interaction provides ~0.5 kcal/mol 

additional stability to the helix (15-17).  Breberina et al. find a significant percentage of anion-π 

interacting residues located as stabilization centers in Sm/LSm proteins, with energies in the range 

-2 to -9 kcal mol-1 calculated by CHARMM22 (18). In the specific context of intermolecular 

binding interactions, Schwans et al. find two active site phenylalanines (F54, F116) help hold the 

general base (D38) in position for catalysis in ketosteroid isomerase (19). They also identified 46 

enzymes that appear to use an aromatic group to position Asp or Glu so that it can act as a general 

base in the mechanism, suggesting an important functional role in biology of anion-π interactions. 

These interactions have also been beneficially exploited in structure-based drug-discovery, where 

Sacchettini et al. developed effective inhibitors targeting malate synthase in Mycobacterium 

tuberculosis, where anion–π interactions play an important role (20). 

The energetics and structural properties of anion-π interactions present in the Protein Data 

Bank (PDB) have been investigated for Phe-Asp and Phe-Glu pairs (21). An average of ~3.4 anion-

π pairs per protein structure in the PDB were identified, and Kitaura-Morokuma (KM) QM analysis 
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indicates that 81% of these pairs exhibit stabilizing energies as low as -8.7 kcal/mol for pairs 

present at near-planar angles. Nearly planar aromatic- anionic amino acid pairs were also found to 

occur more often than expected from a random angular distribution, while axial aromatic-anionic 

pairs occur less often than expected from a random distribution, suggesting a contribution of 

anion–π interactions to protein stability.  

A number of proteins that exhibit clusters of such interactions have been identified (21). 

Some of these clusters involve relatively long and linear chains of anion-π interactions, or several 

anions clustering around a single resonant side chain. Pairs occur in α helices as well as in β strands 

and sometimes form “anion-π networks” involving several amino acids. In crystal structure of one 

of these proteins, RmlC, a homodimeric deoxythymidine diphosphate epimerase (dTDP-4-keto-6-

deoxy-d-hexulose 3,5-epimerase; PDB code 1EP0) a network of five anion-π pairs (in the 

monomer) was identified involving seven neighboring residues.  

There is hence a growing body of results, theoretical and experimental, that points to the 

structure, thermodynamic and functional importance of anion-π interactions in biomolecules. The 

previous work has essentially focused on static structures however, and essentially focused on the 

enthalpy of anion-π interactions.  The present work aims at investigating the dynamics 

characteristics of the anion-π network in RmlC using Molecular dynamics (MD) simulations. In 

particular we investigate whether the Phe-Asp or Phe-Glu anion-π interactions identified in the 

crystal structure remain stable on the free energy surface sampled by the protein, or whether these 

interactions are 'drowned out' by solvent interactions and/or otherwise larger scale protein 

dynamics.  Inversely, we investigate if anion-π interactions that would not been observed in the 

crystal structure appear in the dynamics, because, for instance, crystal packing forces could (22) 
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‘drown out’ otherwise relatively weak anion-π interactions initially present at non-ideal 

geometries.  

 

Materials and methods 

Anion-π cluster in RmlC 

Deoxythymidine diphosphate (dTDP)-4-keto-6-deoxy-d-hexulose 3,5-epimerase (RmlC; 

PDB ID- 1EP0), a homodimer with each monomer consisting of 183 residues, is involved in the 

biosynthesis of dTDP-l-rhamnose which is an essential component of the bacterial cell wall (23). 

The dimer interface is formed by an extensive set of hydrophobic and electrostatic contacts. 

Charged residues (Asp-24, Arg-26, Glu-35, Asp-50, Glu-52, Arg-61, Arg-76, Lys-134) and 

aromatic residues (Tyr-28, Phe-33, Phe47) are present at this interface. The substrate binding site 

is also lined with a number of charged residues (Asp-24, Arg-26, Glu-31, Glu-52, Arg-61, His-64, 

Lys-73, Asp-84, His- 120, Asp-144, Lys-171, Asp-172) and aromatic residues (Phe-29, Phe-122, 

Tyr-133, Tyr- 139, Trp-175).  

The crystal structure was analyzed with the STAAR (STatistical Analysis of Aromatic 

Rings) program (24). STAAR locates phenylalanine rings and determines their centers of mass 

(CM). For each aromatic ring, STAAR then calculates the distance r between the ring’s center of 

mass and the center of charge (CC) for the Glu or Asp carboxylate group, as well as the angle θ 

between the plane of the ring and the vector connecting the ring center of mass with this center of 

charge. The cutoff criteria of Gallivan and Dougherty (25) was adopted i.e., those pairs possessing 

a distance r of <= 7 Å were chosen for analysis to eliminate cases in which a water molecule could 

fit between the two residues and diminish the interaction energy. The Phe and Glu or Asp anion-π 
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pairs identified, both intramolecular and intermolecular, were then parsed from the STAAR output 

for their respective distance and angles using perl scripts. 

 

MD Simulations  

The dynamics of the RmlC dimer was characterized in molecular dynamics (MD) 

simulations. The asymmetric unit representing the dimer was generated using the biologica l 

assembly of the RmlC X-ray crystal structure (PDB code: 1EP0) (23). This PDB entry has a 1.50 

Å resolution, and no gaps in the structure. The structure was protonated according to estimated 

PkAs using the Protonate-3D facility in MOE-2010 (26), with an ion concentration of 0.1 mol/L 

in the Generalized Born (GB) electrostatics model. Crystallographic water molecules were 

retained and a periodic solvation cube of water molecules was created using the Solvate facility in 

MOE-2010. Twenty-six positive sodium ions were added to neutralize the system and the final 

system consisted of 47892 atoms, with 14,002 water molecules.  

In previous studies the correlation between the CHARMM-22 force-field (27) and ab init io 

interaction energies has shown that the ab initio anion-π interaction energies can be reproduced 

correctly by the CHARMM empirical force field for basic functional groups, albeit with a 

magnitude that underestimates the ab initio results by up to ∼50% (14,21). The system was energy-

minimized to a gradient of 10-5 RMS kcal/mol/Å2 using  a 8Å -10Å nonbonded cutoff distance. 

NAMD2 input files were generated using the Dynamics facility in MOE-2010. A time-step of 2 

fs/step was used for all calculations and water molecules were held rigid. A constant temperature 

of 300K was maintained throughout the simulation using Langevin dynamics. Particle Mesh 

Eswald (PME) was used for calculation of the electrostatic interactions with the periodic boundary 

conditions.  
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MD simulation of the complete system using NVT ensemble was performed on the 

University of Tennessee High Performance Computing architecture (Newton), using the NAMD2 

simulation engine (28). A 100 ps initial equilibration was ran followed by a 150 ns production run 

with structures saved at every 250 timesteps (0.5ps), giving a total of 300,200 trajectory frames 

including 200 frames (100ps) for equilibrium of the system. The resulting trajectories were 

analyzed for convergence of temperature and RMSD using perl scripts to parse data, Prody v1.2 

(29) and Gnuplot v4.6.  

 

Anion-π pair analysis in MD simulation 

The trajectory files in DCD format from the MD production run were converted to PDB 

format using Prody v1.2, generating a total of 300,000 structures, i.e., one for each trajectory 

frame. Perl scripts were used to modify these files to make them compatible with STAAR. The 

names of the amino acid residues, residue numbers, atom names and chain-ID were parsed from 

the starting PSF file using perl scripts and added to the generated PDB files to maintain consistency 

in residue naming and numbering. These snapshots were parsed with the STAAR program for Phe-

Glu or Asp pairs with a threshold distance of 11 Å. The anion-π pairs present in the crystal structure 

were parsed from the STAAR output for their respective distance and angles using perl scripts.  

Distance and angle plots were generated using Gnuplot-4.6.  

The STAAR output was again parsed for Phe-Glu or Asp pairs not seen in the crystal 

structure but that may form in the monomer during the course of the MD simulation, with a 

threshold distance of 6 Å (6 Å or below at any point during MD) between the pairs using perl 

scripts. The output was also parsed for anion-π pairs present between the two monomers 

(intermolecular) with the same threshold distance.  
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Solvent Analysis 

To quantify the amount of water molecules that can possibly interact and shield the 

interactions between the partners of the anion-π pairs identified by STAAR, the center of mass for 

Phe and the center of charge for Asp/Glu were obtained by parsing the STAAR output files. The 

number of water molecules for a given anion-π pair was calculated according to two different 

criteria: (i) number of water molecules within 4 Å of the center of mass of Phe and 4 Å of the 

center of charge of the anion, and (ii) water molecules in the region located between the Phe residue 

and the anion for a given anion-π pair. The latter was calculated by first determining the 

coordinates of the midpoint between the center of mass of Phe residue and the center of charge of 

the anion. The distance threshold was chosen as half of the distance between the center of mass of 

Phe residue and the center of charge of the anion.  

 

Semi-empirical quantum energy calculations 

The STAAR program was used to perform the quantum energy calculation as described in 

earlier work (24). Briefly, the approach is to reduce the Phe and Glu or Asp pairs identified to 

benzene-formate (BF) pairs, followed by addition of hydrogens to the BF pairs using ProDrg2 

(30). As the pKa values for Asp and Glu are low (i.e., 3.5 - 4.5) (31), Asp and Glu are sassumed 

to be ionized. The resulting file are converted from PDB coordinates to an xyz format using Babel 

v2.3.3 (32) and the appropriate input files for PC GAMESS (June 1999 version) (33) generated. 

PC GAMESS running a Kitaura-Morokuma (KM) energy decomposition analysis (34,35) was 

used for interaction energy calculation between the anion-π pairs. GAMESS energy calculat ions 

were performed on these pairs for every 200th point i.e. at a time interval of 100ps. Hence, 
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interaction energies were calculated for a total of 1500 snapshots for each pair in the MD trajectory. 

Perl scripts, Excel spreadsheets and Macros were used to sort through the data.  

 

Potential of Mean force (PMF) 

 The PMF describes the free energy changes of a system as a function of reaction 

coordinates of the system (36). Here, the distances ‘R’ and angles between the anion-π pairs were 

used to generate angle-distance frequency distribution over the entire trajectory. For normalizing 

this frequency distribution, 1 million points were randomly distributed on a unit sphere using 

python scripts, and the distribution of points at different polar angles (0 to 180°) was calculated. 

Figure S1 and S2 show the resulting Gaussian distribution of these points. The area of sphere (and 

solid angle) is proportional to R2. Accordingly, the distribution of points with same probability 

density function and at different distances (different sphere radii) was also calculated. Figure S3 

shows the resulting exponential distribution of these points. The random distribution of points 

based on angles and distances was used to normalize the angle-distance frequency distribution 

over the entire trajectory.  

The normalized frequency distribution was used to generate the corresponding free energy 

maps for the anion-π pairs investigated here. For Potential of mean force (PMF) calculations the 

following equation was used: 

ΔG = -kT*ln(distribution ratio) 

With k = 0.5961 kcal/mol at T=300K. 
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Results 

Anion-π cluster in the RmlC crystal structure 

Anion-π interactions in RmlC crystal structure were found to consist of a total of ten anion-

π pairs, eight intramolecular and two intermolecular, comprising two clusters of four and five 

anion-π pairs at the dimer interface and in the monomer respectively, shown in Figure 1A, and 

their respective distance and angles are given in Table 1. The intramolecular clusters in the 

monomers each consist of interactions between seven residues (Figure 1B). The cluster shows the 

presence of several aromatic groups surrounding one anion, Phe122 and Phe112 around Asp84 

and Phe38 and Phe4 around Glu111 respectively, forming possible π-π-anion triplets, Anions, Glu-

31 and Glu-111, can also be seen to cluster around one aromatic group, Phe-4, forming an anion-

π-anion triplet. Out of the residues forming this cluster, two residues- Glu31 and Phe122, are 

present in the active site of the protein. 

The intermolecular cluster at the dimer interface consists of interactions between eight 

residues (Figure 1C). The cluster also contains possible π-π-anion (Phe33-Phe47-Asp50) and 

anion-π-anion (Glu35-Phe33-Asp50) triplets. Two symmetrical intermolecular pairs, Phe33-

Asp50 and Asp50-Phe33 (Phe and Asp residues present in separate monomers), are present in this 

cluster.   

 

MD Simulations and Anion-π pair analysis  

Figure S4 shows the RMSD plot for the protein backbone over the time course of the 

trajectory. Based on the RMSD plot, the RmlC homodimer is stable,  stabilizing after the first 2 ns 

of the production run around the value of 3.5 Å. The ten anion-π pairs present in the crystal 
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structure are found to sample different sidechain conformations in the MD snapshots, as shown in 

Figure S5.  

Distance vs time and angle vs time plots for the eight intramolecular pairs present in the 

crystal structure are shown in Figures S6A and S6B respectively, and the minimum, maximum 

and average distances and angles for each pair are given in Table 2. These pairs sample distance 

between 4 - 8 Å and angles 0 - 60°. The minimum average distances and angles are shown by 

Phe112- Asp84, whereas the maximum distances and angles are shown by Phe47- Asp50 and 

Phe118- Asp88 respectively. Noticeably, the pair Phe122- Asp84 samples planar configurat ions 

intermittently throughout the trajectory. Distance vs time and angle vs time plots for the two 

intermolecular pairs present in the crystal structure are shown in Figures S6C and S6D 

respectively, and the minimum, maximum and average distances and angles are given in Table 2. 

These two anion-π pairs, Phe33-Asp50 and Asp50-Phe33 (first and second residues present in 

separate monomers), sample distances between 4 - 6 A and angles between 0 - 40°.  

In addition to these pairs, a total of seven intra-molecular Phe-Glu or Asp pairs were seen 

appearing during the MD simulation and not in the starting crystal structure, showing distances < 

6 Å at some point in the trajectory (Figure 2A). Distance vs time and angle vs time plots are shown 

in Figures 2B and 2C respectively, and the minimum, maximum and average distances and angles 

sampled by each pair, along with the distances and angles seen in the crystal structure are given in 

Table 3. The pairs contain two anion-π-anion triplets, with one of these (Glu31-Phe29-

Asp24)present at the active site of the protein, and the other (Glu116-Phe113-Glu44) present in 

both monomers. These seven pairs were also found to sample different sidechain conformations, 

as shown in Figure S7. The pairs sample distance between 5 - 10 Å and angles 0 - 60°. The 

minimum average distances and angles are shown by Phe33-Glu111 and Phe113-Glu116, whereas 
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the maximum distances and angles are shown by Phe113-Glu44 and Phe4-Glu3, respectively. 

Phe4-Glu3 and Phe83-Asp157 transition between 'close' and 'distant' conformations with the 

corresponding transitions observed in the angles as well. Out of these, Phe4-Glu3 transitions 

between conformations that are closer in distance with the corresponding angles becoming more 

planar, whereas Phe83-Asp157 transitions between conformations that are closer in distance with 

the corresponding angles becoming more axial. These pairs may form anion-π interactions 

intermittently whenever the distance/angle falls below a certain threshold. Phe113-Glu44 also 

shows transition to the 'close' conformation at around 75 ns. 

 

Solvent Analysis 

The simulations showed that considerable number of water molecules may be present 

surrounding the anion-π pairs as well as between the pairs compared to the crystal structure. The 

number of water molecules surrounding each of the partners in the anion- π pairs is shown in 

Figure S8 and Table 4. In case of intramolecular pairs that were identified in the crystal structure, 

the maximum number of water molecules during the course of the simulation was lowest for 

Phe112-Asp84 and Phe122-Asp84 with three water molecules each (Figure S8A). There were no 

water molecules surrounding these pairs in the crystal structure even after explicit solvation. The 

largest number of water molecules was observed for Phe33-Glu35 followed by Phe4-Glu31 and 

Phe47-Asp50, all of which involve residues located near the surface of the protein. Considering 

the number of water molecules between the residues of the anion- π pairs, no water molecules were 

found to be present between Phe118-Asp88 (Figure 3A and Table 4), while the largest number of 

water molecules were observed for Phe33-Glu35, Phe47-Asp50 and Phe4-Glu31. Pairs comprising 

of partners near the surface, in general, showed more water molecules surrounding the pairs as 
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well as between the pairs (Table 4). In case of inter-molecular pairs, the number of water molecules 

surrounding the residues ranged from 1-9 at different points during the simulation (Figure S8B). 

The number of water molecules between the partners of the pairs ranged from 0-2 (Figure 3B).  

For anion pairs identified by MD simulations and not observed in the crystal structure, the 

number of water molecules was much higher. The surrounding water ranged from 0-17 (Figure 

S8C) while water molecules between the pairs ranged from 0-12 (Figure 3C). Phe4-Glu3 shows 

least number of water molecules corresponding to the times when the pairs transition to 

conformations that are closer in distance ('close' conformations). Phe33-Glu111 pair was 

associated with the least number of water molecules throughout the simulation amongst the non-

crystal structure pairs. The non-crystal structure pairs involved at least one residue which is close 

to the surface corresponding with the large number of water molecules associated with these pairs 

(Table 4). 

 

Semi-empirical quantum energy calculations 

The KM energy vs time plots for the ten anion-π pairs present in the crystal structure are 

shown in Figure 4A and 4B. The minimum, maximum and average interaction energies for these 

pairs during MD are given in Table 5, along with the interaction energies seen in the crystal 

structure. These pairs show energies ranging between +3 to -8 kcal/mol, with lower energies 

observed for pairs sampling shorter distances and near-planar angles, and vice-versa. Except Phe4- 

Glu111, all pairs sample lower energy conformations at some point during MD than that seen in 

crystal structure. The lowest interaction energy of -7.53 kcal/mol is shown by Phe38- Glu111, 

whereas Asp50-Phe33 shows the most prominent change (ΔE of -4.83 kcal/mol) between the 

minimum energy shown during MD and the crystal structure. Phe122-Asp84 intermittently shows 
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low energy configurations (~ -7 kcal/mol) corresponding to the times it samples planar angles. 

Phe47- Asp50 shows ~ 0 kcal/mol throughout the trajectory, as the distance and angle between 

this pair were stable at around 8 A and 45° respectively.  

The energy vs time plot for the seven anion-π pairs only seen during the simulation are 

shown in Figure 4C, and the minimum, maximum and average interaction energies for these pairs 

along with the interaction energies seen in the crystal structure are given in Table 6. These pairs 

too sample lower energy conformations during MD than that seen in crystal structure, with Phe33-

Glu111 showing both the lowest energy (-4.71 kcal/mol) and the most prominent change (ΔE of -

3.21 kcal/mol) between the minimum energy structure in MD and the crystal structure. Phe4-Glu3 

and Phe83-Asp157 show negative and positive energies intermittently at the times in the trajectory 

when the pairs sample planar and axial angles respectively. Phe113-Glu44 shows an interaction 

energy of -2.37 kcal/mol at 75 ns where it samples the 'close' configuration. 

 

Potential of Mean force  

The free energy maps of one intramolecular and one intermolecular anion-π pair present in 

the crystal structure, as well as one pair appearing during the MD simulation are shown in Figure 

5. The free energy maps for all other pairs are shown in Figure S9. 

Figure 5A shows an anion-π pair exhibiting average values of distances and angles close 

to the values seen in the crystal structure. These relatively small dynamics variations exhibit a 

narrow distance (~4.0 to ~6.3 Å) and angles (0 to ~44°) range sampled by this specific anion-π 

pair. The corresponding PMF (Figure 5B) correspondingly exhibit a narrow free energy basin of 

the energy landscape. 



 27 

Figure 5C shows one of the symmetrical intermolecular anion-π pairs showing dynamic 

variations corresponding to a slightly wider range of distances (~3.8 to ~6.6 Å) and angles (0 to 

~60). The pair shows average values of distances and angles during the MD close to the values in 

the crystal structure but with larger fluctuations. The corresponding PMF (Figure 5D) indicates a 

relatively wider associated free energy basin. 

Figure 5E shows an anion-π pair only seen during the MD simulation showing dynamic 

variations with a wide range of distances (~4.8 to ~10.9 Å) and angles (10 to ~76°), sampling 

'close' and 'distant' states (relative to the conformation in the crystal structure) intermittent ly 

throughout the simulation. The pair samples distances and angles both above and below the values 

shown in the crystal structure (Table 3). The PMF (Figure 5F) indicates two possible free energy 

minimas. 

 

Discussion 

Proteins are not static structures, but undergo dynamical variations at room temperature 

and in solution that can lead to changes in the amount and strength of anion-π interactions. Some 

relatively weak anion-π interactions cease to be present, and some new interactions are formed 

over time. Out of the twelve negatively charged or aromatic amino acid residues present at the 

dimer interface and the active site of the protein, nine have been shown to possibly form anion- π 

interactions (Asp-24, Phe-29, Glu-31, Phe-33, Glu-35, Phe47, Asp-50, Asp-84, Phe-122). Among 

these, two symmetrical pairs, Phe33-Asp50, are present at the dimer interface, and an anion-π 

triplet, Glu31-Phe29-Asp24, is present at the active site of RmlC. Together these results suggest 

that anion-π interactions may contribute to both the structural stability and the function of the  

protein.  Possible anion-π pairs and triplets only observed in other conformations sampled by the 
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protein during the MD form an extensive network of anion-π interactions extending through most 

of the protein structure (Figure 6A and 6B).  

From the previous analysis of the PDB, edgewise geometries (small θ values between the 

pairs) are found to be more common than would be expected from a random distribution (21). At 

the same time, QM calculations of optimized BF (benzene-formate) pairs (14) show that the 

strongest interaction energies are also associated with edgewise interactions (-9.5 kcal/mol for 

planar BF dimer). This trend continues to be seen during the MD simulation of RmlC, with sixteen 

out of the seventeen pairs showing average angle values of less than 45°. As expected, fifteen out 

of these seventeen pairs show negative (i.e., stabilizing) average interaction energies as calculated 

by the KM energy decomposition analysis (Table 5 and 6), with the minimum energies shown by 

the pairs at near planar angles. The calculated interaction energies for the pairs during MD can be 

more stabilizing (by up to -4.8 kcal/mol for Asp50- Phe33) than the interaction energy calculated 

in the crystal structure, indicating that the pairs are able to sample lower energy conformations not 

seen in the crystal structure.  While some of these anion-π interactions are relatively weak, they 

are still significantly above kT (i.e., ~0.6 kcal/mol at 300 K) and can occur frequently. The 

combined ΔE from the seventeen pairs may provide a significant contribution to the overall 

stability of the protein, with an average of -1.6 kcal/mol per pair.  

The PMF calculated for all the pairs (Figure 5 and Figure S9) shows that some pairs are 

very stable throughout the molecular dynamics simulations, while some other pairs are only 

transiently formed, with both narrow and wide free energy basins of the energy landscape, 

respectively. This indicates the variable amount of stability provided by these interactions to the 

protein structure, with pairs with narrow free energy basins likely sampling conformations close 

to the native state for these pairs and hence more stable.  The wide fluctuations in the angles and 
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distances of some of the pairs (Figure 5E and S9) transitioning between 'close' and 'distant' states 

and corresponding to wide PMF variations, can partly be attributed to the lack of convergence over 

the simulation time scale (150 ns).  

The effects of the solvent molecules on the polarization of surrounding organic moieties 

are implicitly incorporated in the effective charges and other parameters of the pair-additive force 

fields (37). As an electrostatic component of the anion-π interaction exists, the burial of the pair 

would minimize potential disruption of the anion-π geometry by water (14,21). As can be expected, 

pairs comprising of partners near the surface exhibit more water molecules surrounding the pairs, 

and show relatively larger fluctuations in distances and angles (Table 3 and 4) than more buried 

pairs. On the other hand, well buried pairs like Phe112-Asp84 and Phe122-Asp84 are exposed to 

very few waters throughout the simulations, and show low fluctuations in distances and angles. 

These variations in angle and distance are not due only to solvent screening, but to otherwise more 

crowded environments. Nonetheless, some pairs form anion-π only intermittently ('close' and 

'distant' conformations), likely because one or both of the anion- π partners prefer at time to interact 

with the nearby water molecules than with each other, preventing the pairs from staying in the 

favorable 'close' conformations at planar angles for long periods of time.  

Previous comparisons of ab-initio and empirical force fields calculations of anion- π  

interactions indicate that the agreement between these two approaches is qualitatively correct, but 

that empirical force fields can underestimate the ab-initio calculated interaction energies for anion-

π interactions by about 50% (14,21), especially close to the low distance / low angle values of the 

anion-π pairs geometries. This means that the strength of interactions may be underestimated in 

the present MD simulations. The of observations made here, based on using an empirica l 

forcefield, will need to be further validated in future experiments looking at the stability of the 
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proteins by mutagenesis studies, and by using new polarizable force fields like Amoeba (38) and 

Drude (39) that explicitly include polarization in their parameterization and in calculation of the 

forces. This will characterize the interplay between the strength of anion-π interactions and the 

folding and stability of the protein structure.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

LIST OF REFERENCES 

1.  Shi, G., Ding, Y., and Fang, H. (2012) Unexpectedly strong anion-pi interactions on the 

graphene flakes. Journal of computational chemistry 33, 1328-1337 

2. Rosokha, Y. S., Lindeman, S. V., Rosokha, S. V., and Kochi, J. K. (2004) Halide 

recognition through diagnostic "anion-pi" interactions: molecular complexes of Cl-, Br-, 

and I- with olefinic and aromatic pi receptors. Angewandte Chemie 43, 4650-4652 

3. de Hoog, P., Gamez, P., Mutikainen, I., Turpeinen, U., and Reedijk, J. (2004) An 

aromatic anion receptor: anion-pi interactions do exist. Angewandte Chemie 43, 5815-

5817 

4. Lucas, X., Quinonero, D., Frontera, A., and Deya, P. M. (2009) Counterintuitive 

substituent effect of the ethynyl group in ion-pi interactions. The journal of physical 

chemistry. A 113, 10367-10375 

5. Frontera, A., Saczewski, F., Gdaniec, M., Dziemidowicz-Borys, E., Kurland, A., Deya, P. 

M., Quinonero, D., and Garau, C. (2005) Anion-pi interactions in cyanuric acids: a 

combined crystallographic and computational study. Chemistry 11, 6560-6567 

6. Berryman, O. B., Hof, F., Hynes, M. J., and Johnson, D. W. (2006) Anion-pi interaction 

augments halide binding in solution. Chemical communications, 506-508 

7. Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J., and Reedijk, J. (2011) Putting 

anion-pi interactions into perspective. Angewandte Chemie 50, 9564-9583 

8. Lucas, X., Frontera, A., Quinonero, D., and Deya, P. M. (2010) Substituent effects in ion-

pi interactions: fine-tuning via the ethynyl group. The journal of physical chemistry. A 

114, 1926-1930 



 32 

9. Chen, Y., and Wang, F. (2015) Theoretical study of interactions between electron-

deficient arenes and coinage metal anions. Journal of molecular modeling 21, 2584 

10. Zhang, J., Zhou, B., Sun, Z. R., and Wang, X. B. (2015) Photoelectron spectroscopy and 

theoretical studies of anion-pi interactions: binding strength and anion specificity. 

Physical chemistry chemical physics : PCCP 17, 3131-3141 

11. Chifotides, H. T., and Dunbar, K. R. (2013) Anion-pi interactions in supramolecular 

architectures. Accounts of chemical research 46, 894-906 

12. Wheeler, S. E., and Bloom, J. W. (2014) Toward a more complete understanding of 

noncovalent interactions involving aromatic rings. The journal of physical chemistry. A 

118, 6133-6147 

13. Wheeler, S. E., and Bloom, J. W. (2014) Anion-pi interactions and positive electrostatic 

potentials of N-heterocycles arise from the positions of the nuclei, not changes in the pi-

electron distribution. Chemical communications 50, 11118-11121 

14. Jackson, M. R., Beahm, R., Duvvuru, S., Narasimhan, C., Wu, J., Wang, H. N., Philip, V. 

M., Hinde, R. J., and Howell, E. E. (2007) A preference for edgewise interactions 

between aromatic rings and carboxylate anions: the biological relevance of anion-

quadrupole interactions. The journal of physical chemistry. B 111, 8242-8249 

15. Shi, Z., Olson, C. A., and Kallenbach, N. R. (2002) Cation-pi interaction in model alpha-

helical peptides. Journal of the American Chemical Society 124, 3284-3291 

16. Olson, C. A., Shi, Z., and Kallenbach, N. R. (2001) Polar interactions with aromatic side 

chains in alpha-helical peptides: Ch...O H-bonding and cation-pi interactions. Journal of 

the American Chemical Society 123, 6451-6452 



 33 

17. Shi, Z., Olson, C. A., Bell, A. J., Jr., and Kallenbach, N. R. (2002) Non-classical helix-

stabilizing interactions: C-H...O H-bonding between Phe and Glu side chains in alpha-

helical peptides. Biophysical chemistry 101-102, 267-279 

18. Breberina, L. M., Milcic, M. K., Nikolic, M. R., and Stojanovic, S. D. (2014) 

Contribution of anion-pi interactions to the stability of Sm/LSm proteins. Journal of 

biological inorganic chemistry : JBIC : a publication of the Society of Biological 

Inorganic Chemistry  

19. Schwans, J. P., Sunden, F., Lassila, J. K., Gonzalez, A., Tsai, Y., and Herschlag, D. 

(2013) Use of anion-aromatic interactions to position the general base in the ketosteroid 

isomerase active site. Proceedings of the National Academy of Sciences of the United 

States of America 110, 11308-11313 

20. Krieger, I. V., Freundlich, J. S., Gawandi, V. B., Roberts, J. P., Gawandi, V. B., Sun, Q., 

Owen, J. L., Fraile, M. T., Huss, S. I., Lavandera, J. L., Ioerger, T. R., and Sacchettini, J. 

C. (2012) Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. 

tuberculosis malate synthase. Chemistry & biology 19, 1556-1567 

21. Philip, V., Harris, J., Adams, R., Nguyen, D., Spiers, J., Baudry, J., Howell, E. E., and 

Hinde, R. J. (2011) A survey of aspartate-phenylalanine and glutamate-phenylalanine 

interactions in the protein data bank: searching for anion-pi pairs. Biochemistry 50, 2939-

2950 

22. Hugh P. G. Thompsona, G. M. D. (2014) Which conformations make stable crystal 

structures? Mapping crystalline molecular geometries to the conformational energy 

landscape. Chemical science 5, 3173-3182 



 34 

23. Christendat, D., Saridakis, V., Dharamsi, A., Bochkarev, A., Pai, E. F., Arrowsmith, C. 

H., and Edwards, A. M. (2000) Crystal structure of dTDP-4-keto-6-deoxy-D-hexulose 

3,5-epimerase from Methanobacterium thermoautotrophicum complexed with dTDP. The 

Journal of biological chemistry 275, 24608-24612 

24. Jenkins, D. D., Harris, J. B., Howell, E. E., Hinde, R. J., and Baudry, J. (2013) STAAR: 

statistical analysis of aromatic rings. Journal of computational chemistry 34, 518-522 

25. Gallivan, J. P., and Dougherty, D. A. (1999) Cation-pi interactions in structural biology. 

Proceedings of the National Academy of Sciences of the United States of America 96, 

9459-9464 

26. (2014) Molecular Operating Environment (MOE), 2013.08. in Chemical Computing 

Group Inc.  

27. MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. 

J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., 

Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., 

Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., 

Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential 

for molecular modeling and dynamics studies of proteins. The journal of physical 

chemistry. B 102, 3586-3616 

28. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., 

Skeel, R. D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with 

NAMD. Journal of computational chemistry 26, 1781-1802 

29. Bakan, A., Meireles, L. M., and Bahar, I. (2011) ProDy: protein dynamics inferred from 

theory and experiments. Bioinformatics 27, 1575-1577 



 35 

30. Schuttelkopf, A. W., and van Aalten, D. M. (2004) PRODRG: a tool for high-throughput 

crystallography of protein-ligand complexes. Acta crystallographica. Section D, 

Biological crystallography 60, 1355-1363 

31. Pace, C. N., Grimsley, G. R., and Scholtz, J. M. (2009) Protein ionizable groups: pK 

values and their contribution to protein stability and solubility. The Journal of biological 

chemistry 284, 13285-13289 

32. O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, 

G. R. (2011) Open Babel: An open chemical toolbox. Journal of cheminformatics 3, 33 

33. M.W.Schmidt, K. K. B., J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, 

N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J. . (1993) 

General Atomic and Molecular Electronic Structure System. Comput. Chem., 1347-1363 

34. Kitaura, K., and Morokuma, K. (1976) New energy decomposition scheme for molecular 

interactions within Hartree-Fock approximation. Int. J. Quantum Chem. 10, 325–340 

35. Ishida, K., Morokuma, K., and Komornicki, A. (1977) The intrinsic reaction coordinate. 

An ab initio calculation for HNC - HCN and H-+CH4 - CH4+H-. J. Chem. Phys. 66, 

2153–2156 

36. Roux, B. (1995) The calculation of the potential of mean force using computer 

simulations. Computer Physics Communications 91, 275–282 

37. Leontyev, I., and Stuchebrukhov, A. (2011) Accounting for electronic polarization in 

non-polarizable force fields. Physical chemistry chemical physics : PCCP 13, 2613-2626 

38. Shi, Y., Xia, Z., Zhang, J., Best, R., Wu, C., Ponder, J. W., and Ren, P. (2013) The 

Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. Journal of 

chemical theory and computation 9, 4046-4063 



 36 

39. Lopes, P. E., Huang, J., Shim, J., Luo, Y., Li, H., Roux, B., and Mackerell, A. D., Jr. 

(2013) Force Field for Peptides and Proteins based on the Classical Drude Oscillator. 

Journal of chemical theory and computation 9, 5430-5449 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

Table 1.1. Anion-π pairs in crystal structure. The Phe and Glu or Asp anion-π pairs identified, 

both intramolecular and intermolecular, and their respective distance and angles in the crystal 

structure. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intra-/Inter-

molecular pairs 

Residue-1 Rsidue-2 Distance 

(A) 

Angle 

(deg) 

Intra Phe112 Asp84 4.59 0.62 

Intra Phe38 Glu111 5.49 0.74 

Intra Phe4 Glu31 5.03 0.10 

Intra Phe122 Asp84 5.11 23.98 

Intra Phe33 Glu35 6.09 4.98 

Intra Phe4 Glu111 6.17 12.33 

Intra Phe47 Asp50 6.88 36.01 

Intra Phe118 Asp88 4.31 73.86 

Inter Phe33 Asp50 5.02 33.28 

Inter Asp50 Phe33 5.02 33.28 
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Table 1.2. Distances and angles of anion-π pairs in crystal structure. The minimum, maximum 

and average distances and angles for the ten anion-π pairs during MD simulation. 

 

 

 

 

 

 

 

 

 

Anion-π pairs Min 

Distance 

(A) 

Max 

Distance 

(A) 

Avg 

Distance 

(A) 

Min 

Angle 

(deg) 

Max 

Angle 

(deg) 

Avg 

Angle 

(deg) 
Phe112- Asp84 3.94 6.32 4.75 0.00 43.83 6.56 

Phe38- Glu111 3.90 6.76 4.89 0.00 44.74 12.92 

Phe4- Glu31 3.73 6.74 5.07 0.00 61.77 17.91 

Phe122- Asp84 3.91 6.39 4.89 0.01 68.62 35.76 

Phe33- Glu35 4.73 8.18 6.29 0.00 36.50 6.63 

Phe4- Glu111 5.44 9.71 7.41 0.01 85.34 27.23 

Phe47- Asp50 6.08 9.26 7.94 13.69 75.10 44.87 

Phe118- Asp88 3.02 5.73 4.44 17.99 89.95 69.88 

Phe33- Asp50 3.75 6.61 4.83 0.03 60.44 28.10 

Asp50- Phe33 3.85 6.87 4.88 0.00 55.30 20.40 
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Table 1.3. Distances and angles of anion-π pairs seen during MD simulation. The minimum, 

maximum and average distances and angles for the seven anion-π pairs only seen during MD 

simulation. The respective distances and angles values in the crystal structure are shown in 

brackets. 

 

 

 

 

 

 

 

 

 

 

 

Anion-π pairs 

(distance, angle 

in Xtal) 

Min 

Distance 

(A) 

Max 

Distance 

(A) 

Avg 

Distance 

(A) 

Min 

Angle 

(deg) 

Max 

Angle 

(deg) 

Avg 

Angle 

(deg) 

Phe33-Glu111 
(7.13, 13.60) 

5.12 8.43 6.45 0.00 44.68 10.99 

Phe29-Glu31  
(7.23, 12.95) 

4.85 9.51 7.41 0.00 68.39 21.58 

Phe4-Glu3      
(8.84, 54.98) 

4.75 10.86 8.94 0.06 75.79 38.05 

Phe83-Asp157 
(8.39, 26.80) 

5.89 10.94 9.09 1.91 73.89 32.22 

Phe29-Asp24  
(8.99, 34.49) 

5.83 10.01 7.74 0.76 58.07 28.59 

Phe113-Glu116 
(8.42, 10.11) 

5.70 10.99 8.70 0.00 40.84 10.17 

Phe113-Glu44 
(8.11, 41.71) 

5.31 10.99 9.40 0.02 58.17 24.38 
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Table 1.4. Solvent analysis of anion-π pairs. The minimum and maximum number of water 

molecules for the ten anion-π pairs (present in crystal structure) and seven anion-π pairs only seen 

during MD simulation. 

 

Anion-

π pairs 

Depth (A.u.) Surrounding Between 

Phe 

Depth 

Anion 

Depth 
Xtal 

Solvated 

Xtal 
Min Max Xtal 

Solvated 

Xtal 
Min Max 

Phe112-

Asp84 
9.85 

9.58 
0 0 0 3 0 0 0 1 

Phe38-

Glu111 
8.08 

9.86 
1 1 0 5 0 0 0 1 

Phe4-

Glu31 
5.5 

4.29 
1 4 1 12 0 0 0 4 

Phe122-

Asp84 
10.59 

9.58 
0 0 0 4 0 0 0 2 

Phe33-

Glu35 
4.59 

4.2 
2 4 1 14 1 1 0 5 

Phe4-

Glu111 
5.5 

9.86 
2 2 1 7 0 0 0 2 

Phe47-

Asp50 
6.41 

3.85 
2 1 1 8 0 1 0 5 

Phe118-

Asp88 
8.48 

8.02 
0 0 0 3 0 0 0 0 

Asp50-

Phe33 
4.59 

3.85 
2 1 1 8 0 0 0 2 

Phe33-

Asp50 
4.59 

3.85 
1 2 1 9 0 0 0 2 

Phe33-

Glu111 
4.59 

9.86 
1 1 1 6 1 1 0 3 

Phe29-

Glu31 
4.04 

4.29 
0 3 1 15 0 2 0 12 

Phe4-

Glu3 
5.5 

3.86 
1 4 0 18 1 1 0 17 

Phe83-

Asp157 
6.67 

3.95 
1 6 3 15 1 3 0 13 

Phe29-

Asp24 
4.04 

4.09 
2 1 2 16 2 6 1 14 

Phe113-

Glu116 
9.24 

4.66 
1 4 2 14 1 0 0 11 

Phe113-

Glu44 
9.24 

3.77 
0 6 0 16 1 3 0 15 
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Table 1.5. Interaction energies of anion-π pairs in crystal structure. The minimum, maximum 

and average interaction energies for ten anion-π pairs during MD, along with the interaction 

energies seen in the crystal structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anion-π pairs Min 

Interaction 

energy 

(kcal/mol) 

Max 

Interaction 

energy 

(kcal/mol) 

Avg 

Interaction 

energy 

(kcal/mol) 

Xtal 

Interaction 

energy 

(kcal/mol) 
Phe112- Asp84 -7.37 +0.2 -5.09 -6.44 

Phe38- Glu111 -7.53 -0.99 -4.65 -4.83 

Phe4- Glu31 -6.86 +0.13 -3.18 -3.62 

Phe122- Asp84 -7.29 +1.3 -1.58 -2.87 

Phe33- Glu35 -4.62 -0.64 -1.98 -2.21 

Phe4- Glu111 -0.94 +0.24 -0.71 -2.09 

Phe47- Asp50 -0.97 +0.56 -0.21 -0.32 

Phe118- Asp88 -2.87 +2.98 +1.13 + 1.45 

Phe33- Asp50 -6.02 +0.61 -2.53 -2.48 

Asp50- Phe33 -7.31 +0.25 -3.59 -2.48 
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Table 1.6. Interaction energies of anion-π pairs seen during MD simulation. The minimum, 

maximum and average interaction energies for seven anion-π pairs only seen during MD 

simulation, along with their interaction energies in the crystal structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Anion-π pairs Min 

Interaction 

energy 

(kcal/mol) 

Max 

Interaction 

energy 

(kcal/mol) 

Avg 

Interaction 

energy 

(kcal/mol) 

Xtal 

Interaction 

energy 

(kcal/mol) 
Phe33-Glu111 -4.71 -0.7 -2.10 -1.50 

Phe29-Glu31 -2.74 +0.18 -0.89 -1.13 

Phe4-Glu3 -2.41 +0.37 -0.14 +0.20 

Phe83-Asp157 -0.5 +0.68 -0.15 -0.35 

Phe29-Asp24 -1.42 +0.22 -0.55 -0.31 

Phe113-Glu116 -1.9 -0.02 -0.65 -0.72 

Phe113-Glu44 -2.37 +0.09 -0.31 -0.05 
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Figure 1.1. Anion-π pairs in crystal structure. The two monomers are shown in grey and pink 

ribbon conformation. (A) Intrarmolecular cluster in two monomers shown in green, intermolecular 

cluster at dimer interface shown in orange, and a single anion-π pair shown in pink. Substrate 

dTDP bound in the active site shown in space-filling configuration. (B) Intramolecular and (C) 

Intermolecular cluster (residues in separate monomers colored grey and pink). 

 

A 

C B 
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Figure 1.2. Distances and angles of anion-π pairs seen during MD simulation. The two 

monomers are shown in grey and pink ribbon conformation. (A) Anion-π triplet at active site 

shown in green and another triplet in red. Single anion-π pairs shown in blue and pink. Substrate 

dTDP bound in the active site shown in space-filling configuration. (B) Distance vs Time and (C) 

Angle vs Time plots for the seven intramolecular anion-π pairs only seen during the MD 

simulation.  
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Figure 1.2 continued 

A 

B 
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Figure 1.2 continued 
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Figure 1.3. Solvent analysis of anion-π pairs. Total number of water molecules in the region 

between the Phe and anion residues for (A) eight intramolecular anion-π pairs in the crystal 

structure, (B) the two symmetrical pairs present at the dimer interface, and (C) seven 

intramolecular anion-π pairs identified during MD simulations. 
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Figure 1.3 continued 
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Figure 1.3 continued 
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Figure 1.4. Interaction energies of anion-π pairs. Interaction Energy vs Time plots for (A) eight 

intramolecular anion-π pairs in the crystal structure, (B) two symmetrical pairs present at dimer 

interface and (C) seven intramolecular anion-π pairs only seen during the MD simulation.  
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Figure 1.4 continued 
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Figure 1.4 continued 
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Figure 1.5. Angle/distance conformation distributions and free energy (PMF) maps. 

Angle/distance conformation distribution maps and free energy (PMF) maps for (A,B) Phe112-

Asp84, (C,D) Phe33-Glu35 and (E,F) Phe4-Glu3. The angle-distance values in the crystal structure 

are depicted as white dots on the plots. 
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Figure 1.5 continued 
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 Figure 1.5 continued 
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Figure 1.5 continued 
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Figure 1.6. Anion-π network. The two monomers are shown in grey and pink ribbon 

conformation. (A) Intrarmolecular cluster in two monomers in green and intermolecular cluster at 

dimer interface in orange, connected together by single anion-π pairs shown in blue that are only 

seen during the MD simulation. Substrate dTDP bound in the active site shown in space-filling 

configuration. (B) The complete anion-π network over the two monomers.  

A 
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Figure 1.S1. Spherical coordinates in space. Spherical coordinates in space (r, θ, φ): radial 

distance r, polar angle θ (theta), and azimuthal angle φ (phi).  
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Figure 1.S2. Randomly distributed points on unit sphere. Distribution of 1 million randomly 

distributed points on a unit sphere at polar angles: 0 to 180°. Each point on the plot represents the 

distribution in a 5 degree interval. The resulting distribution is Gaussian. 

 

 
 

 
 

 
 

 

 

 

 

 



 61 

 
 

 

 

 

Figure 1.S3. Randomly distributed points at different distances. Distribution of points with 

same probability density function and at different distances (different sphere radii). The area of 

sphere (and solid angle) ∝ R2. Accordingly, the resulting distribution is exponential. 
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Figure 1.S4. RMSD for protein backbone. RMSD plot for the protein backbone over the time 

course of the trajectory. 
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Figure 1.S5. Sidechain conformations sampled by anion-π pairs present in crystal structure . 

Sidechain conformations sampled by the ten anion-π pairs present in the crystal structure, in the 

MD snapshots showing minimum and maximum angles for each pair (Table 1.2).  
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Figure 1.S6. Distances and angles of anion-π pairs in crystal structure. (A) Distance vs Time 

and (B) Angle vs Time plots for the eight intramolecular anion-π pairs in the crystal structure. (C) 

Distance vs Time and (D) Angle vs Time plots for the two symmetrical pairs present at the dimer 

interface.  
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Figure 1.S6 continued 

A 
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Figure 1.S6 continued 
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D 
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Figure 1.S7. Sidechain conformations sampled by anion-π pairs seen during MD simulation. 

Sidechain conformations sampled by the seven anion-π pairs only seen during the simulation, in 

the MD snapshots showing minimum and maximum angles for each pair (Table 1.3). 
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Figure 1.S8. Solvent molecules around anion-π pairs. Total number of water molecules within 

4 Å  of center of mass of Phe and center of charge of the anion for (A) eight intramolecular anion-

π pairs in the crystal structure, (B) the two symmetrical pairs present at the dimer interface and (C) 

seven intramolecular anion-π pairs identified during MD simulations. 
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Figure 1.S8 continued 
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Figure 1.S8 continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 



 71 

Figure 1.S9. Angle/distance conformation distribution and free energy (PMF) maps. 

Angle/distance conformation distribution maps and free energy (PMF) maps for the remaining 

anion-π pairs. The angle-distance values in the crystal structure are depicted as white dots on the 

plots. 
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Figure 1.S9 continued 
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Figure 1.S9 continued 
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Figure 1.S9 continued 
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Figure 1.S9 continued 



 76 

 

 
 

Figure 1.S9 continued 
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Figure 1.S9 continued 
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Chapter 2  

STRUCTURAL AND FUNCTIONAL EVIDENCE 

FOR TESTOSTERONE ACTIVATION OF 

GPRC6A 
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Abstract 

GPRC6A is a multi-ligand G-protein coupled receptor (GPCR) that is activated by cations, 

L-amino acids, and osteocalcin. GPRC6A plays an important role in the regulation of testosterone 

(T) production and energy metabolism in mice.  T has rapid, transcript ion-independent (non-

genomic) effects that are mediated by a putative GPCR.  We previously found that T can activate 

GPRC6A in vitro, but the possibility that T is a ligand for GPRC6A remains controversial.  Here, 

we demonstrate direct T binding to GPRC6A by competitive binding assays and construct 

computational structural models of GPRC6A to identify potential binding poses of T.  The 

modeled binding was confirmed by mutagenesis.   Using Gpr6ca-/- mice, we define several 

biological functions regulated by GPRC6A-dependent T rapid signaling, including T stimula t ion 

of insulin secretion in pancreatic islets and enzyme expression involved in the biosynthesis of T in 

Leydig cells. Together our data show that GPRC6A directly mediates the rapid signaling response 

to T and uncovers previously unrecognized endocrine networks.  
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Introduction 

Classically, testosterone (T) stimulates target gene expression through the nuclear 

androgen receptor (AR).  T is converted by 5-reductase to dihydrotestosterone (DHT).  DHT 

binds with high affinity to AR to form a transcription factor complex that translocates to the 

nucleus to activate androgen-responsive genes.  Emerging clinical observations indicate that 

conversion of T to DHT is not obligatory and that T has clinically important functions distinct 

from activation of AR-mediated gene transcription in some tissues. T also elicits rapid, 

transcription- independent signaling responses, such as activation of ERK1/2, through a putative 

membrane G-protein coupled receptor (GPCR).  The identity of this T-sensing GPRCR is not 

known and its physiological significance remains uncertain (1).   

GPRC6A is a member of the class-C GPCR family (2-4), which includes the calcium 

sensing receptor (CasR).   Like CasR, GPRC6A is activated by cations and L-amino acids; 

however, the physiological ligand for GPRC6A is thought to be the bone-derived hormone 

osteocalcin (Ocn) (5-7).  Both GPRC6A and Ocn are involved in the regulation of energy 

metabolism and T production in mice (8-10), and Gprc6a-/- and Ocn-/- mice are phenocopies (6,11).  

GPRC6A is widely expressed, including β-cells, bone marrow stromal cells, monocytes, prostate 

cancer cells, skeletal muscle cells,  keratinocytes, and Leydig cells, as well as other tissues known 

to be targeted by T (11-16).  GPRC6A is also a candidate for this T-sensing GPCR (12,17).   In 

this regard, overexpression of GPRC6A imparts the ability of extracellular T to illicit a rapid 

signaling response in HEK-293 cells, which lack the AR.  Moreover, GPRC6A loss-of-func tion 

attenuates T stimulated rapid signaling in multiple tissues. Indeed, T rapid signaling is inhibited in 

bone marrow stromal cells derived from Gprc6a−/− mice and in 22Rv1 prostate cancer cells after 

siRNA-mediated knockdown of GPRC6A.  There is also indirect evidence that T regulates 
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luteinizing hormone secretion (18), stimulates insulin secretion in β-cells, and induces NADPH 

oxidase isozymes in keratenocytes (17) through GPRC6A (9).    

The role of GPRC6A in mediating the effects of T remain controversial, because the 

binding sites for T in GPRC6A have not been identified, some studies have failed to confirm T-

activation of GPRC6A in vitro (19), and the physiological roles of T activation of GPRC6A have 

not been directly demonstrated.  Indeed, the global Gprc6a-/- mouse phenotype is complex and has 

multiple hormonal abnormalities that might indirectly account for the effects attributed to T-

activation of GPRC6A (11).  To examine direct T binding to GPRC6A we have performed  

competitive binding assays. Furthermore, we have constructed computational structural models of 

GPRC6A to identify potential binding poses of T, which enabled confirmatory mutagenes is 

experiments to be performed.  Finally, we directly demonstrate the role of GPRC6A in mediating 

T effects in regulating β-cell and Leydig functions in cells derived from Gprc6a-/- mice. 

 

 

Materials and Methods 

Animals 

Generation of global Gprc6a-/- mice has been previously reported (11).  Mice were 

maintained and used in accordance with recommendations as described (National Research 

Council. 1985; Guide for the Care and Use of Laboratory Animals DHHS Publication NIH 86-23, 

Institute on Laboratory Animal Resources, Rockville, MD) and following guidelines established 

by the University of Tennessee Health Science Center Institutional Animal Care and Use 

Committee. The animal study protocol was approved by the institutional review board at 

University of Tennessee Health Science Center Institutional Animal Care and Use Committee.  



 91 

Reagents and antibodies 

Insulin (Mouse) Ultrasensitive ELISA kit and mouse C-peptide ELISA kit were obtained 

from ALPCO Diagnostics. T, glucose and insulin were purchased from Sigma. 

 

Cell culture 

All culture reagents were from Invitrogen. Human embryonic kidney HEK-293 cells were 

obtained from American Type Culture Collection. HEK-293 cells stably transfected with 

pcDNA3.mGPRC6A were created as previously described (12,20). 

 

Mouse islets isolation and ligand stimulation 

Primary islets were isolated using modified method as described (21,22). Briefly, after 

dissection and mincing, pancreata were digested with 3 ml/pancreas of a collagenase P (1 mg/ml; 

Roche) solution in complete HBSS (HBSS 1× supplemented with 20 mM Hepes, pH 7.4, and 2 

mM CaCl2) for 15 minutes in a 37 oC shaking water bath. Islets were subsequently purified through 

a Histopaque 1083 density centrifugation (Sigma). After centrifugation, the islet layer was 

transferred into petri dishes with wash buffer (HBSS with 10 mM Hepes and 1% FBS; Invitrogen), 

then handpicked, and cultured in low-glucose medium (RPMI 1640 with 5.6 mM glucose; 

Invitrogen) for 1 h before being treated for 1 h with T (80 nM). The insulin stimulation index (SI) 

was calculated as the ratio of media insulin concentrations in T or Ocn divided by the insulin 

concentration in low glucose conditions.  

 

 

 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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Real time RT-PCR 

For quantitative real-time RT-PCR assessment of insulin and glucagon gene expression, 

we isolated total RNA from the islets or pancreas or other tissues of control and Gprc6aβ-cells cko 

mice by standard TRIzol method (Invitrogen) and reverse transcribed 2.0 µg of total RNAs using 

cDNA synthesis kit (Bio-Rad). PCR reactions contained 100ng of template (cDNA or RNA), 

300nM each of forward and reverse primer, and 1× iQ SYBR Green Supermix (Bio-Rad) in 50µL. 

Samples were amplified for 40 cycles in an iCycler iQ Real-Time PCR Detection System (Bio-

Rad) with an initial melt at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds 

and 60°C for 1 minute. PCR product accumulation was monitored at multiple points during each 

cycle by measuring the increase in fluorescence caused by the binding of SybrGreen I to dsDNA. 

The threshold cycle (Ct) of tested-gene product from the indicated genotype was normalized to the 

Ct for cyclophilin A. The primers for mouse cytochrome P450, family 17, subfamily a, polypeptide 

1 (cyp17a1) consisted of mCyp17a.F56: agtcaaagacacctaatgccaag and mCyp17.R138: 

acgtctggggagaaacggt; for cytochrome P450, family 11, subfamily a, polypeptide 1 (cyp11a1) 

consisted of mCyp11a.F127: aggtccttcaatgagatccctt and mCyp11a.R263: tccctgtaaatggggcca tac ; 

and for the cyclophilin A consisted of cyclophilin A.For: ctgcactgccaagactgaat and cyclophil in 

A.Rev: ccacaatgttcatgccttct. Dissociation analysis was used to confirm the presence of a single 

transcript and the lack of primer-dimer amplification in all PCR reactions. 

 

Saturation analysis of [3H]T binding in HEK-293 cells expressing GPRC6A 

Cells were dislodged from tissue culture plates by using a rubber policeman and crude 

membranes were prepared by Dounce homogenization in 50 mM Tris-HCl pH 7.4 at 25ºC with 

120 mM NaCl, 1 mM EDTA, 10 mM MgCl2 and a protease inhibitor cocktail for mammalian 
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tissue culture containing 104 mM AEBSF, 80 µM aprotinin, 2 mM leupeptin, 4 mM bestatin, 1.5 

mM pepstatin A and 1.4 mM E-64.  The homogenate was subjected to centrifugation at 14,000 x 

g for 10 minutes and the resulting crude total cellular pellet was resuspended in the buffer above.  

The membranes were either used immediately for binding or flash frozen at -70º C.  The membrane 

protein concentration was quantified by the method of Bradford, using BSA as the protein standard 

(23).   

For saturation analysis of [3H]T, a range from 0-20 nM [3H] T was used.  Routinely, 50-

75 ug of membrane protein was used per tube, and the analysis was performed in triplicate. The 

buffer consisting of 120 mM NaCl, 1 mM EDTA, 10 mM MgCl2 was used as the binding and wash 

buffer and varying concentrations of [3H]T was added and allowed to incubate for 2 hours at 

ambient room temperature with agitation.  Non-specific ligand binding was determined by the 

inclusion of 200 nM cold T to a parallel set of tubes. The reactions were terminated by dilut ion 

with ice cold buffer and filtration through GF/C glass fiber membranes to retain bound ligand.  The 

retained radioactivity was quantified by liquid scintillation counting.  

For saturation analysis of [3H]T binding in the presence of Ca2+, 3mM CaCl2 was added to binding 

and wash buffer and the assays performed as described.  

The saturation data was analyzed using Graphpad Prism 6.0.  For analysis of best fit, an 

extra sum of squares F test was performed to determine if a one site with hill slope or two site fit 

was superior for the saturation data.  

For competition analysis, a concentration of 1nM [3H]T was used, with a concentration of 

50-75 µg of cell membrane per tube.  The analysis was performed in triplicate. L-Arginine (0-50 

mM), or osteocalcin (0-50 µg/ml) were added to the assays and the incubations continued for 2 

hours at ambient temperature.  The assays were terminated by dilution with ice cold buffer and 
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filtration through GF/C glass fiber membranes and the retained radioactivity quantified by liquid 

scintillation counting. Non-specific binding was determined by the addition of 200 nM cold T.  

The data was analyzed by Graphpad Prism 6.0.  

 

GPRC6A homology modeling 

Multiple sequence alignment (MSA) of the GPRC6A sequence with eight family-C 

sequences was performed using MAFFT (Multiple Alignment using Fast Fourier Transform) 

sequence alignment and the EINSI alignment method (24). The family-C sequences used are: 1) 

human calcium-sensing receptor, 2) human probable G-protein coupled receptor-158, 3) human 

retinoic acid-induced protein-3, 4) human taste receptor type-1 member-1, 5) human metabotropic 

glutamate receptor-1 (PDB code 4OR2), 6) human metabotropic glutamate receptor-5 (PDB code 

4OO9), 7) mouse metabotropic glutamate receptor-3 (PDB code 2E4U), and 8) human gamma-

aminobutyric acid B receptor-1 (PDB code 4MQE). Sequences 1 through 4 have no available 

crystal structure, whereas sequences 5 and 6 have crystal structures for their transmembrane 

domains, and sequences 7 and 8 have crystal structures for their extracellular domains. In addition, 

the MAFFT multiple sequence alignment also included seven family-A sequences, which are 

closest in sequence identity with family-C GPCR’s, with existing crystal structures of the short 

extracellular domain, transmembrane domain and short cytoplasmic domain. These sequences 

were: bovine rhodopsin receptor (PDB code 3CAP), turkey beta-1 adrenergic receptor 2VT4), 

human beta-2 adrenergic receptor (PDB code 2RH1), human adenosine A2A receptor (PDB code 

2YDV), human 5-hydroxytryptamine receptor-2B (PDB code 4IB4), human 5-hydroxytryptamine 

receptor-1B (PDB code 4IAR) and rat neurotensin receptor type-1 (PDB code 4GRV).  
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From the MSA results, the structures of the mGlu-1 and mGlu-5 receptors (with crystal 

structures of transmembrane domains) were selected as templates for the transmembrane domain 

modelling. Missing regions in the cytoplasmic loop-2 (seq 688-691) and C-terminus (seq 844-845) 

of the mGluR-1 template structure were modelled using mGluR-5, and missing regions in the 

cytoplasmic loop-2 (seq 683-688) and the extracellular loop-2 (seq 721-728) of mGluR-5 template 

structure were modelled using mGluR-1. Ten main chain models with ten sidechain conformers 

per mainchain model were generated for each template using the MOE-2012 (Molecular Operating 

Environment, 2013.08; Chemical Computing Group Inc.) homology modeling facility with the 

CHARMM27 force-field (25). The GPRC6A homology models were validated using PolyPhobius 

(26). The best-scoring homology models; one from using mGluR-1 as a template and one from 

using mGluR-5 as a template, were selected for docking studies based on their predicted GB/VI 

scores (27), that rank the models based on Coulomb and Generalized Born interaction energies. 

 

Identification of ligand binding sites in GPRC6A models  

The recently published crystal structures of mGluR-1 and mGluR-5 contain negative 

allosteric modulators bound (28,29). The allosteric binding-site residues for these two receptors 

and the respective CasR and GPRC6A residues in the MSA are listed in Tables 1 and 2. In this 

site, Gly-667, Ser-669, Trp-795, Phe-798 and Tyr-802 in GPRC6A are found to be conserved 

between all the four receptors, with conserved or chemically similar residues also present for 

residues Phe-650, Phe-666, Cys-673, Phe-752, Met-755, Leu-756, Ala-763, Ala-794, Ile-818 and 

Ile-825. 

A number of agonists/antagonists have been reported for the closest family-C member, 

CasR, that bind to the transmembrane domain of the receptor (38). All residues involved in binding 
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in CasR identified by mutagenesis experiments (Ser-657, Phe-668, Arg-680, Phe-684, Phe-688, 

Leu-773, Leu-776, Trp-818, Phe-821, Glu-837, Ile-841) are conserved in GPCR6A except Ser-

657, Leu-773 and Leu-776, which are replaced by Cys-639, Phe-752 and Met-755, respectively. 

CasR calcimimetic calindol and the calcilytic NPS2143 have been found to antagonize mouse -

GPRC6A (28). The binding site residues for these antagonists in mouse-GPRC6A found by 

mutagenesis experiments (Phe-666, Phe-670, Trp-797, Glu-816) are conserved in both human-

GPRC6A and CasR. Several 2-phenyl-indole derived allosteric antagonists have also been 

reported in mouse-GPRC6A that are selective only for this receptor among the family-C family 

receptors (7). The possible binding site residue reported for these antagonists in mouse-GPRC6A 

(Ile-759) is conserved in human-GPRC6A and not conserved in CasR (Thr-780), mGluR-1 (Asn-

760) or mGluR-5 (Asn-747). 

The above binding site information from both conservation of residues in the MSA and the 

mutagenesis experiments was used for identifying binding sites in GPRC6A used in the present 

docking studies.  

 

Docking of T  

Docking of T to the transmembrane domain of the selected GPRC6A homology models 

was carried out using MOE-2012’s Docking facility with the CHARMM27 force-field. CHARMM 

parameters for the ligands were generated by MOE from a fragment-based approach. The binding 

site was defined in MOE from the binding-site residues described above using MOE’s Site Finder 

facility. Binding site residue side-chains were allowed to be flexible during the docking using a 

tethering weight of 0.1. London dG free energy scores were used to rank poses of the docked 

ligand (36). Potential hydration sites were calculated in the binding sites of both homology models 
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using the MOE’s Solvate facility. Water molecules are predicted to be potentially present in both 

homology models’ binding sites, which were only implicitly included in the docking calculations.  

 

Measurement of cAMP accumulation 

 HEK-293 and HEK-293 transfected with mouse GPRC6A cDNA cells  (105 cells/we ll) 

(12) were cultured in triplicate in 12-well plates in DMEM supplemented with 10% fetal bovine 

serum and 1% P/S (100 units/ml of penicillin and 100 ug/ml of streptomycin) for 48 hours followed 

by overnight incubation in DMEM/F12 containing 0.1% BSA to achieve quiescence.  Quiescent 

cells were treated with vehicle control, 40 nM T or 60 ng/ml bovine osteocalcin (Ocn) or 40 nM T 

and 60 ng/ml Ocn together for 30 minutes at 37 °C. Then the reaction was stopped and the cells 

lysed with 0.5 ml 0.1 N HCl. cAMP levels were measured by using Cyclic AMP EIA kit (Cayman 

Chemical, Ann Arbor, MI) following the manufacture’s protocol. 

 

Leydig cells isolation 

To isolate Leydig cells from wild type and Gprc6a-/- mice, the testes from 10~12 week-old 

mice were obtained and enzymatically dispersed with the method as previously described (30). 

Briefly, the testes from wild type and Gprc6a-/- mice were decapsulated and dispersed with 0.25 

mg/ml collagenase (Invitrogen) in medium 199 for 10 min at 4oC with 70~90 rpm shaking. The 

separated cells were filtered through 100 nm filter, centrifuged at 250 X g and resuspended in 55% 

isotonic Percoll (Sigma). Following density gradient centrifugation at 25 000 X g for 45 min at 

4oC, the PLC fraction was collected between densities of 1.064 and 1.070 g/ml. The cells were 

washed with HBSS (5 time of volume; Invitrogen), centrifuged at 250 X g and The cells were 

washed with HBSS (5 time of volume), centrifuged at 250 X g and resuspended in phenol red-free 
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medium (DMEM/Ham’s F-12, D-2906, Sigma) supplemented with 1 mg/ml bovine serum albumin 

(BSA).  

 

Statistics 

 We evaluated differences between groups by one-way analysis of variance, followed by a 

post-hoc Tukey's test. Significance was set at p<0.05. All values are expressed as means ± SEM.  

All computations were performed using the Statgraphic statistical graphics system (STSC Inc.). 

 

Results 

Binding of T to GPRC6A 

To examine whether T binds to GPRC6A, we performed saturation analysis of [3H]T 

binding in HEK293 cells overexpressing GPRC6A (Figure 1A).  We found that T binds to 

GPRC6A with a Kd for [3H]T of 9.5 ± 2.41 nM (n=5) in the absence of added calcium (control) 

(Figure 1A), with the data best fitting a model with a Hill slope of 1.9 ± 0.25.  GPCRC6A is known 

to be activated by calcium (7,31).  Adding 3mM calcium resulted in a shift in the Kd of [3H]T to 

7.7 ± 1.7 nM  with a Hill slope of 1.17 ± 0.13 (n=4) (Fig 1A).  Ocn also activates GPRC6A (10,14).  

Interestingly, Ocn (40 ng/ml) shifted the Kd for [3H]T to 3.3 ± 0.5 nM, with a Hill slope  of 1.5 ± 

0.2 compared to 9.8 ± 1.7 nM with a hill slope  of 2.0 ± 0.2 in the controls (n=3) (Figure 1B). 

These data indicate that T binds to GPRC6A and this interaction is modulated by calcium and Ocn. 

 

Computational modeling of T binding to GPRC6A 

To investigate the molecular basis for T binding to GPRC6A (9,32), structural models of 

GPRC6A were constructed and used to identify potential T binding poses.   The GPRC6A 
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homology models developed are shown in Figure 2.  Helix regions in multiple sequence alignments 

are highly conserved among GPCRs, whereas the loop regions exhibit low sequence similarity, as 

shown in Figure 2A. The GPRC6A sequence exhibits a similarity of 43.2% and 44.7% to the 

mGluR-1 and mGluR-5 receptors respectively, the only sequences for which crystal structures of 

the transmembrane domain exist (sequence-2 and sequence-3 in Figure 2B). These receptor 

structures were selected as templates for the homology modeling calculations and the 

corresponding structural models selected for docking studies.  

The highest scoring models are shown in Figure 2C and 2D. These models exhibit very 

similar structures, with a root mean square deviation (RMSD) of ~4 Å2 between the backbone 

atoms. These models were validated against Hidden Markov secondary structure predictions 

generated by PolyPhobius, and found to be consistent (Table 3 and 4), with only one loop region 

and one transmembrane helix in the homology models exhibiting deviation from the PolyPhobius -

predicted structure for five or more residues.  

 

Docking of Testosterone 

Next, we docked T to the above homology models as described in the Methods. The 

binding sites found in the mGluR-1 and mGluR-5 based models of GPRC6A are shown in Figure 

3A and B respectively. The docking scores and the binding pocket residues in these sites are listed 

in Table 5 for the top-ranking binding poses of T. Thirteen residues in the mGluR-1 model, and 

twelve in mGluR-5 were identified as possibly interacting with T. In both homology models, the 

hydrophobic core of T is surrounded by aliphatic side-chains and/or aromatic Phe (F), Trp (W) or 

Tyr (Y) residues. The hydroxyl and carbonyl moieties of T are located in hydrogen bond acceptor-

rich regions, either on side chains or on the backbones of residues in the binding pocket.  Six of 
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these predicted binding residues are found in both models, including F-666, F-670, F-752, M-755, 

L-756 and L-759 (Fig 2 and Table 5). 

 

Validation of T-binding and computational model by mutagenesis 

To validate the binding model, we compared the T activation of wild-type and mutant 

GPRC6A transfected into HEK-293 cells.  We observed a dose-dependent effect of T to stimulate 

cAMP accumulation (Figure 4A) and ERK phosphorylation (Figure 4B) in HEK-293 cells 

transfected with wild-type GPRC6A.  A significant response was observed at 5 nM and a maximal 

response at a T concentration of 60 nM, using cAMP accumulation as the read out (Figure 4A).  

No response to T is observed in non-transfected HEK-293 cells in ERK phosphorylation (Figure 

4B low panel).  Consistent with prior reports (13,14), L-Arginine (L-Arg) (20 mM) stimulated 

cAMP to a similar magnitude as T in HEK-293 cells expressing GPRC6A but not in untransfected 

HEK-293 cells (Figure 4C).   We also found that the protein kinase A (PKA) inhibitor, H89, 

blocked GPRC6A-mediated T stimulated ERK phosphorylation (Figure 4D), indicated that PKA 

is involved in the GPRC6A signaling pathway. 

To validate the computational modeling of T binding to GPRC6A, we mutated Phe-666 

(F-666) (Fig 2 and Table 5) into alanine by site-directed mutagenesis to investigate its possible 

interaction with T (33). The Phe-666-Ala (F666A) mutant and the wild type mGPRC6A were 

transiently transfected into HEK293 cells.  Expression of the wild-type and F666A mutant 

GPRC6A receptors was assessed by Western blotting using a Myc antibody, which recognized the 

Myc epitope located at the amino-terminal tail of the WT and mutant receptors (33). Expression 

of the F666A mutant receptor was comparable to that of the WT receptor (Figure 4E, right panel). 

However, the F666A mutant showed a significant and reproducible decrease in the ERK 



 101 

phosphorylation compared to that of WT receptor in transfected HEK293 cells (Figure 4E, left 

panel), thus validating the computational model. 

 

Loss of T responses in Gprc6a-/- mice 

To evaluate the role of GPRC6A in sensing T in vivo, we examined Egr-1 expression in 

the pancreas and testis of Gprc6a-/- mice and wild-type littermates after the administration of 200 

mg/kg T by intraperitoneal injection. We found that T administration significantly increased Egr-

1 expression in the pancreas and testis of wild-type mice, whereas Gprc6a-/- mice showed no 

response to T (Figure 5A).  

To test this biological response ex vivo, we examined the effect of GPRC6A activation in 

isolated islets and Leydig cells from wild-type and Gprc6a-/- mice.  We found that T increased the 

insulin stimulation index in islets isolated from wild-type but not Gprc6a-/- mice (Figure 5B).   

Next, we confirmed that GPRC6A is expressed in β-cells.  We found that Gprc6a transcripts were 

present in INS-1 rat β-cell line  (Figure 5C) (34). In addition, we observed a dose-dependent effect 

of T to stimulate insulin secretion in INS-1 β-cells (Figure 5D).   Finally, we found that 100 nM T 

significantly stimulated T biosynthesis enzymes, cholesterol side-chain cleavage enzyme 

(Cyp11a) and steroid 17-alpha-monooxygenase (Cyp17a) expression in Leydig cells from wild-

type mice but not in Gprc6a-/- mice (Figure 5E).    

 

Discussion 

The diverse ligand specificity of GPRC6A and the lack of understanding of the structural 

basis for ligand/receptor interactions have resulted in controversy regarding the possibility that 

GPRC6A functions as a T-sensing GPCR (12,32).  In the current study, we showed that T 
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specifically binds to GPRC6A using [3H]T radioligand binding assays and provided a structural 

model in which T binds to the heptahelical domain of GPRC6A.  Mutagenesis of a critical T 

binding site identified in this model inhibited T activation of GPRC6A in vitro, confirming the 

model.  Finally, we showed that T activates GPRC6A signaling in vitro and in vivo, leading to 

regulation of insulin secretion by -cells and enzymes controlling T production by Leydig cells.  

Collectively, these data indicate that GPRC6A is a T-sensing receptor that mediates the non-

classical, rapid membrane signaling responses to T. 

Our computational model of GPRC6A suggests that the binding pocket for T corresponds 

to the common allosteric site for Class C GPCRs.  Residues in GPRC6A predicted to be involved 

in docking T, include Phe-666, Phe-670, Phe-752, Met-755, Leu-756, Ile-759, Ala-794, Trp-795, 

Phe-798, Glu-814 and Ile-818.  Previous mutagenesis-based studies of Class C GPCR allosteric 

sites showed that positions of the T binding-pocket residues have also been implicated in the 

binding of mGluR-1, mGluR-5, and CasR allosteric modulators (Table 1 and 2).  Here, we have 

confirmed the importance of the Phe-666 in T activation of GPRC6A by mutagenesis studies; 

substitution of Phe-666 with Ala resulted in marked attenuation of T activation of the mutant 

GPRC6A compared to the wild-type receptor.   Phe-666 also overlaps the site for the calcimimetic 

and calcilytic binding to the closely related calcium sensing receptor, CasR (33).  Calcimimetics 

and calcilytic also respectively stimulate and antagonize mouse-GPRC6A (7,33).  Other residues 

identified in the model are candidates for additional directed mutagenesis studies to confirm their 

role in T-binding and activation of GPRC6A.  Antagonists may also interact with this binding site 

in GPRC6A (35).  Of note, the 2-phenyl-indole derived allosteric antagonist, which is specific for 

only GPRC6A among the class-C GPCR's, is found to interact with Ile-759. This residue is not 

conserved in other class-C GPCR's, and may be important in conferring specificity to this receptor.  
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Thus, this site could potentially control the binding of a number of different allosteric modulators 

(antagonists and agonists) of GPRC6A. Future molecular dynamics computer simulations of the 

models, followed by selection of representative protein conformers and ensemble-docking of 

ligands in the snapshots, while computationally expensive, will likely be able to identify the most 

stable binding modes of ligands in GPRC6A and allow a detailed structure-based description of 

binding poses (36), as well as  identification of novel small molecules that selectively modulate 

GPRC6A.  

The identification of the GPCR mediating the rapid response to T now permits us for the 

first time to identify the physiological processes regulated by this T-sensing GPRC and to 

distinguish these from the functions of the androgen receptor (AR).  In the current studies, we 

show that GPRC6A is an important G-protein coupled receptor for T signaling in β-cells.  In this 

regard, T dose-dependently stimulated insulin secretion in INS-1 cells and activated cAMP-

dependent pathways in HEK-293 cells expressing GPRC6A.  More importantly, T administra t ion 

stimulated rapid Egr-1 signaling in the pancreas of wild-type mice, but this response was lost in 

the pancreas of Gprc6a-/- mice.  Pancreatic islets from Gprc6a-/- mice had a diminished insulin 

secretion index.   The direct regulation of insulin secretion and β-cell proliferation by GPRC6A 

raises the possibility of a link between T, male puberty and β-cell mass.  Although increased β-

cell mass with an accelerated rate of somatic growth of adolescence has not been identified (37), 

T  has been shown to protect against glucotoxicity-induced apoptosis of pancreatic β-cells (38) 

and  T deficiency can  contribute to the development of  metabolic syndrome  (39).  Our data 

suggest that some of  the protective effect of T on pancreatic β-cell mass and insulin secretion 

could be mediated by GPRC6A, in addition to androgen receptor-mediated mechanisms (39). 
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We also showed here that T activates GPRC6A in Leydig cells. Isolated Leydig cells from 

Gprc6a-/- mice exhibited diminished expression of the T-stimulated Cyp11a and Cyp17a, which 

regulate T biosynthesis. In addition, T stimulated rapid Egr-1 signaling in the testes of wild-type 

mice, but not in the testes of Gprc6a-/- mice, indicating that loss-of-GPRC6A disrupts a putative 

autocrine positive feedback loop whereby T regulates its own production.  Our observation could 

account for the heretofore unexplained finding that testicular interstitial fluid has effects on Leydig 

cell testosterone secretion that are independent of LH and hCG (40), as well as the finding that 

Leydig cell production of T and Cyp17a expression are unaffected by the loss of AR (41).  T 

activation of T production through GPRC6A is also consistent with the actions of another 

GPRC6A ligand, Ocn, to stimulate T production (12,14). 

            Other studies have shown that GPRC6A is important in prostate cancer.  GPRC6A is 

increased in prostate cancer cells and is linked to prostate cancer progression in genome wide 

associative studies (13,42).  Ablation of GPRC6A attenuates prostate cancer progression in a 

mouse model (13), suggesting that the AR-independent effects of T in resistant prostate cancer 

might be mediated by GPRC6A.  GPRC6A has also been shown to mediate the functional response 

to T in skin keratinocytes (17).   

            The fact that GPRC6A is also expressed in liver, adipocytes, muscle, skin, and bone, as 

well as other tissues, and is activated by T, as well as multiple structurally distinct ligands, predict 

additional metabolic functions and integration of endocrine networks involving multiple organs.  

Indeed, global Gprc6a-/- mice, in addition to abnormalities of β-cells, Leydig cells, and prostate, 

also have abnormalities in hepatic, bone, muscle and adipocyte function.  Since GPRC6A and AR 

are also co-expressed in many of these tissues, there may be other organs where differences in 

rapid and classical T effects may be physiologically important.  Interestingly, consistent with AR-
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independent effects of T that are mediated through GPRC6A,  recent clinical studies show that 

-reductase inhibitor has 

effects on lean body and muscle mass, sexual functions, hematocrit, cholesterol and other 

biological effects that are consistent with the predicted functions of GPRC6A derived from the 

phenotype of Gprc6a-/- mice (43).   

In conclusion, an understanding of the tissue specific functions of GPRC6A and the 

structural basis for its binding to distinct ligands is revealing new connections between endocrine 

networks that heretofore were not thought to be related.  Future studies that conditionally delete 

GPRC6A and AR in these and other tissues are now possible to differentiate between GPRC6A 

and AR in mediating T functions. The structural modeling presented here also represents a first 

step towards developing agonists and antagonists for this novel druggable target.  
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Table 2.1. mGluR-1 allosteric binding site residues for negative allosteric modulator 

(antagonist) and alignment with other receptors (28,29). mGlu1 and CasR residues with ‘*’ 

shown to be important for binding allosteric modulators by mutagenesis experiments. GPRC6A 

residues with ‘*’ show reduced binding affinity for allosteric modulators by mutagenes is 

experiments in mouse-GPRC6A and are conserved in human-GPRC6A.  

 

mGlu1 

Numbering 

mGlu

1 

mGlu5 CasR GPRC6

A 

Consensus  (% 

similarity) 

Conservati

on (% 

identical) 

648 L L-635 F-668* F-650 100 (nonpolar) 50 (L,F) 

660 Q Q-647 R-680* R-662 50 (polar/charged) 50 (Q,R) 

661 R R-648 Q-681 Q-663 50 (charged/polar) 50 (R,Q) 

664 V I-651 F-684* F-666* 100 (nonpolar) 50 (F) 

668 S* P-655 F-688* F-670* 75 (nonpolar) 50 (F) 

748 T T-735 E-767 E-746 50 (polar/charged) 50 (T,E) 

753 V V-740 L-773* F-752 100 (nonpolar) 50 (V) 

756 P* P-743 L-776* M-755 100 (nonpolar) 50 (P) 

757 L* L-744 I-777 L-756 100 (nonpolar) 75 (L) 

760 N* N-747 T-780 I-759* 75 (polar) 50 (N) 

761 G G-748 C-781 A-760 75 (nonpolar) 50 (G) 

794 T T-781 F-814 Y-791 75 (polar) 50 (T) 

797 I I-784 V-817 A-794 100 (nonpolar) 50 (I) 

798 W* W-785 W-818* W-795* 100 (nonpolar) 100 (W) 

801 F* F-788 F-821* F-798 100 (nonpolar) 100 (F) 

805 Y* Y-792 Y-825 Y-802 100 (polar) 100 (Y) 

811 K K-798 V-833 V-810 50 (charged/nonpolar) 50 (K,V) 

812 I I-799 S-834 P-811 75 (nonpolar) 50 (I) 

815 T* M-802 E-837* E-814* 50 (charged) 50 (E) 

818 A* S-805 A-840 V-817 75 (nonpolar) 50 (A) 

822 S S-809 A-844 S-821 75 (polar) 75 (S) 
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Table 2.2. mGluR-5 allosteric binding site residues for negative allosteric modulator 

(antagonist) and alignment with other receptors (28,29). mGlu5 and CasR residues with ‘*’ 

shown to be important for binding allosteric modulators by mutagenesis experiments. GPRC6A 

residues with ‘*’ show reduced binding affinity for allosteric modulators by mutagenes is 

experiments in mouse-GPRC6A and are conserved in human-GPRC6A. 

 

mGlu5 

Numbering 

mGlu

5 

mGlu

1 

CasR GPRC6

A 

Consensus  (% 

similarity) 

Conservatio

n (% 

identical) 

624 G G-637 S-657* C-639 50 (nonpolar/polar) 50 (G) 

625 I I-638 L-658 H-640 75 (nonpolar) 50 (I) 

628 G G-641 C-661 N-643 50 (nonpolar/polar) 50 (G) 

651 I* V-664 F-684* F-666* 100 (nonpolar) 50 (F) 

652 G G-665 G-685 G-667 100 (nonpolar) 100 (G) 

654 S S-667 S-687 S-669 100 (polar) 100 (S) 

655 P* S-668 F-688* F-670* 75 (nonpolar) 50 (F) 

658 S* C-671 C-691 C-673 100 (polar) 75 (C) 

659 Y* Y-672 I-692 I-674 50 (polar/nonpolar) 50 (Y,I) 

740 V V-753 L-773* F-752 100 (nonpolar) 50 (V) 

743 P P-756 L-776* M-755 100 (nonpolar) 50 (P) 

744 L L-757 I-777 L-756 100 (nonpolar) 75 (L) 

747 N* N-760 T-780 I-759* 75 (polar) 50 (N) 

751 I I-764 A-784 A-763 100 (nonpolar) 50 (I,A) 

781 T T-794 F-814 Y-791 75 (polar) 50 (T) 

784 I I-797 V-817 A-794 100 (nonpolar) 50 (I) 

785 W* W-798 W-818* W-795* 100 (nonpolar) 100 (W) 

788 F* F-801 F-821* F-798 100 (nonpolar) 100 (F) 

802 M* T-815 E-837* E-814* 50 (charged) 50 (E) 

805 S* A-818 A-840 V-817 75 (nonpolar) 50 (A) 

806 V V-819 I-841* I-818 100 (nonpolar) 50 (V,I) 

809 S* S-822 A-844 S-821 75 (polar) 75 (S) 

810 A* V-823 S-845 N-822 50 (nonpolar/polar) 25 (A) 

813 A A-826 L-848 I-825 100 (nonpolar) 50 (A) 
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Table 2.3. PolyPhobius secondary structure prediction for GPRC6A sequence. 
  

 
 

 
 
 

 
 

 
 
 

 
 

  

Residue Number Structure Prediction 

1-18 SIGNAL PEPTIDE 

 19-592 NON CYTOPLASMIC 

593-616 TRANSMEM 

 617-630 CYTOPLASMIC 

631-651 TRANSMEM 

652-663 NON CYTOPLASMIC 

664-683 TRANSMEM 

684-702 CYTOPLASMIC 

703-727 TRANSMEM 

728-750 NON CYTOPLASMIC 

751-773 TRANSMEM 

774-782 CYTOPLASMIC 

783-804 TRANSMEM 

805-811 NON CYTOPLASMIC 

812-833 TRANSMEM 

834-926 CYTOPLASMIC 
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Table 2.4. Secondary structure features of mGluR-1/mGluR-5 models generated in MOE-2012. * 

indicates the regions that show deviation from predicted structure for 5 or more residues. 

 

Residue 

Number 

 

 

Structure 

1-18 SIGNAL PEPTIDE 

19-591 NON CYTOPLASMIC 
 

592-617 TRANSMEM 

618-633 CYTOPLASMIC 

634-651 TRANSMEM 

652-657* NON CYTOPLASMIC 

658-686* TRANSMEM 

687-703 CYTOPLASMIC 

704-725 TRANSMEM 

726-750 NON CYTOPLASMIC 
 

751-772 TRANSMEM 

773-778 CYTOPLASMIC 

779-804 TRANSMEM 

805-811 NON CYTOPLASMIC 

812-837 TRANSMEM 

838-926       CYTOPLASMIC 
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Table 2.5. Docking scores and binding pocket residues for testosterone binding in GPRC6A 

models generated in MOE-2012. 

 

 

 

 

 

 

 

 

 
C=Cys; R=Arg; Q=Gln; F=Phe; G=Gly; E-Glu; A=Ala; M=Met; L=Leu; I= Ile; Y=Tyr; W=Trp; 

V=Val; S=Ser  
 
 

 
 

 
  

Model Docking 

Score 

Binding Site Residues 

mGluR-1 -11.58 C-659, R-662, Q-663, F-666, G-667, F-670, E-746, 
A-751, F-752, M-755, L-756, I-759, E-814 

mGluR-5 -12.31 F-666, F-670, F-752, M-755, L-756, L-759, Y-791, 

A-794, W-795, F-798, V-817, S-821 
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Figure 2.1. Evidence for T-binding and activation of GPRC6A.  (A) Saturation analysis of [3H] 

T binding in HEK-293 cells expressing GPRC6A. The figure shows the saturation isotherm of 

[3H] T with or without Ca2+ (A) or with or without Ocn (B).   
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Figure 2.2. GPRC6A Homology Modelling. (A) MSA between 16 sequences shown using 

clustralx color code. Alignment is shown for helix-4, extracellular loop-2 and helix-5 regions. (B) 

Sequence similarity scores between 16 sequences after MSA. Sequence 1: GPRC6A, Sequences 

2-9: class-C GPCR's, Sequences 10-16: class-A GPCR's. mGluR-1 (sequence-2) and mGluR-5 

(sequence-3) taken as main templates for transmembrane domain modelling (C, D) GPRC6A 

transmembrane homology models based on the mGlu-1 and mGlu-5 receptor structures.  
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Figure 2.3. Docking of Testosterone to GPRC6A. (A) (top): Allosteric site in the mGluR-1-

based template model, T is shown in yellow stick representation. (Bottom): Residues surrounding 

T in the binding pocket. (B) (top): Allosteric site in the mGlur-5-based model, T is shown in yellow 

stick representation. (Bottom): Residues surrounding T in the binding pocket. 
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Figure 2.4. Evidence for T activation of GPRC6A. Dose dependent effects of T on cAMP 

response (A) and ERK phosphorylation (B) in HEK293 cells expressing GPRC6A. (C) 

Comparison of cAMP accumulation stimulated by T with other GPRC6A ligands, L-Arginine 

(Arg) in HEK293 cells transfected with and without GPRC6A.  * and ** Significant difference 

from control group and stimulated group at p<0.05 and p<0.01 (n≥4). (D) PKA inhibitor H89 

blocked GPRC6A-mediated ERK phosphorylation stimulation. (F) Functional effect of mutations 

affecting the F666A mGPRC6A residue. HEK293 cells were transfected with the mock plasmid 

or with a plasmid encoding the WT or F666A mGPRC6A mutants. Analysis of mGPRC6A 

expression by Western blot was shown in right panel. Immunoblot analysis of whole cell lysates 

(5 μg proteins) from HEK293 cells transiently transfected with an empty vector (MOCK), or a 

vector containing the WT or the indicated mGPRC6A mutant, was performed following 3~8% 

SDS polyacrylamide gel electrophoresis. Mouse GPRC6A (mGPRC6A) proteins were detected 

using the anti-Myc antibody (Cell signaling). The position of the molecular mass markers is shown 

on the left (kDa). Arrow heads on the right indicate the molecular weight of two major bands 

corresponding to mGPRC6A. Black arrows on the right indicate major bands corresponding to the 

WT and mutant receptors, and white arrow head indicates the dimer of the receptors, respectively.  
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Figure 2.5. β-cell and Leydig cells dysfunction in Gprc6a-/- mice. (A) Effects of systemic 

administration of T on Egr-1 expression in pancreas and testis. T (200 mg/kg) or vehicle was 

injected into mice intraperitoneally, Egr-1 mRNA abundance in various mouse tissue 1 hour after 

injection was determined by real time PCR. Values represent the mean ± SEM. * significant 

difference from control group and stimulated group at p<0.05 (n ≥ 3). (B)  Effects of T on insulin 

stimulation index in islets isolated from wild-type and Gprc6a-/- mice. Values represent the mean 

± SEM. * significant difference from control group and stimulated group at p<0.05 (n ≥ 3). # 

indicates significant different between T treated control group and Gprc6a-/- mice (P< 0.05; n ≥ 

3). (C) RT-PCR analysis showing that Gprc6a message is expressed in INS-1 cells. A similar band 

was observed in rat kidney and pancreas which are known to express GPRC6A. The primers 

sequence are rGPRC6A.For535: aaaatccgctttccttcgttr; and GPRC6A.Rev1400: 

tgggcatcaaaatgaaatgar.   (D)  Effects of T to stimulate insulin secretion in rat β-cells INS-1.  Values 

represent the mean ± SEM.* and ** significant difference from control group and stimulated group 

at p<0.05 and p<0.01 (n=4). (E) Effects of T on message expression of enzymes regulating T 

biosynthesis in isolated Leydig cells. Values represent the mean ± SEM. * significant difference 

from control group and stimulated group at p<0.05 (n ≥ 3). 
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Chapter 3  

NOVEL ALLOSTERIC INHIBITORS OF THE 

PROTHROMBINASE ENZYME COMPLEX 
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Research described in this chapter is reproduced from an article submitted to the Blood Journal by 

Karan Kapoor, Nicole McGill, Cynthia B. Peterson, Harold V. Meyers, Michael N. Blackburn and 

Jerome Baudry. 

 

My contribution in the paper includes (1) Compiling and interpretation of the literature (2) 

Designing and carrying out all computation research (3) Understanding the literature and 

interpretation of the results (4) Preparation of tables and figures (5) Writing and editing. 
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Abstract 

The risk of serious bleeding, particularly at high dosage, is a major liability of anticoagulant 

drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) 

binding site. The present work identifies a new class of anticoagulants that can act as allosteric 

inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). This 

new class of anticoagulants was identified though an integrated computatio nal/experimenta l 

approach. A 300 ns Molecular Dynamic (MD) simulation of the FXa heavy chain was used to 

identify conformational snapshots representing a structural ensemble sampled by the protein. 

These snapshots were used in ensemble docking calculations of a 281,128 compound drug-like 

subset of the ZINC database against FXa, targeting potential protein/protein interaction sites in the 

FXa-FVa binding interface. From about three million docking calculations, five hundred and 

thirty-five compounds and their structural analogs were selected for experimental validat ion 

through a series of binding and inhibition assays, based on their predicted binding affinities to 

FXa. From these, ten compounds represented by three families of inhibitors were experimenta l ly 

identified that achieve dose-independent partial inhibition of PTase activity in a non-active site 

dependent and self-limiting mechanism. 
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Introduction 

The blood coagulation system represents the first line of defense against blood loss 

following injury.  This system consists of a cascade of circulating inactive serine protease 

zymogens as well as regulatory cofactors and inhibitors.  Each active enzyme, once generated from 

its zymogen, specifically cleaves the next zymogen in the cascade pathway to produce an active 

protease, a process that is repeated until finally thrombin cleaves the fibrinopeptides from 

fibrinogen to produce fibrin which polymerizes to make a blood clot.  The amplification provided 

by this system leads to the potential for explosive clot formation.(1) Although efficient clotting 

limits the loss of blood at a site of trauma, it also poses the risk of systemic coagulation resulting 

in massive thrombosis.  This can result in myocardial infarction, unstable angina, atrial fibrillat ion, 

stroke, pulmonary embolism and deep vein thrombosis. 

Several new oral Factor Xa and thrombin inhibitors have received approval for clinical use 

in anticoagulant therapy. These new oral anticoagulants or NOACs include Xarelto, Eliquis and 

Savaysa,(2) which are FXa active site inhibitors, and Pradaxa(3) which is a thrombin inhibitor. 

These drugs are a significant improvement over Coumadin but as use of these drugs expands, 

bleeding remains a concern,(4) particularly in the treatment of arterial thrombosis. 

Each of these drugs binds in the active site of a coagulation protease and is a competitive 

inhibitor of its target enzyme. Following classical Michaelis-Menten kinetics, as competitive 

inhibitor concentration increases, enzyme activity decreases until at saturating concentrations, 

activity approaches zero. Although prescribed drug levels are designed to achieve a safe and 

effective concentration, increased drug plasma levels can result from impaired renal clearance, 

drug-drug interactions, improper time between dosing and accidental over-dosing. These increases 

in drug plasma concentrations give rise to a potential bleeding diathesis. Alternative approaches 
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to anticoagulant therapy with truly novel starting points are needed to circumvent the bleeding 

liability of these active-site targeted agents. 

The prothrombinase (PTase) enzymatic complex, consisting of the enzyme factor Xa 

(FXa), a protein cofactor, factor Va (FVa), associated on the surface of negatively charged 

phospholipid membranes in the presence of divalent metal ions,(5,6) forms a critical junction of 

the blood coagulation cascade pathways.(7) This complex catalyzes the cleavage of prothrombin 

(PT) leading to the formation of thrombin and subsequent clot-formation.(8) FXa alone can slowly 

activate PT, but the rate of thrombin formation is enhanced by >105 by the presence of the cofactor, 

FVa and Ca2+ on phospholipid membranes in the PTase complex.(9,10) 

FXa consists of two chains– the light chain of 139 residues, and the heavy chain of 305 

residues that contains the catalytic active site and is connected via a disulfide (Cys132-Cys302) 

bridge to the light chain.(11) A wealth of structural data is available for this protein; over 150 

crystal structures of the protein or protein-ligand complexes have been deposited in the 

Brookhaven Protein Data Base (PDB).(12) Activated human FVa consists of a non-covalent 

calcium-dependent complex between the heavy chain (Hc: A1 (1–303)-A2 (317–656) domains) 

and the light chain (Lc: A3 (1546–1877)-C1 (1878–2036)-C2 (2037–2196) domains) in which the 

cofactor binding site is exposed for interaction with FXa.(13,14) Several studies have shown that 

both the Hc and Lc of FVa are involved in the binding of FXa, and also give some insights about 

FVa residues interacting with FXa.(15-19) In addition, some regions in the Hc of FXa have been 

suggested to be important for the interaction with FVa.(20-26) High-resolution crystal structures 

of FXa are available,(27) and homology models of FVa using the crystal structure of inactivated 

bovine FVa (FVai)(28) have also been built. Using these two structures, models of the FVa–FXa 

complex have been generated that are in agreement with available experimental data.(29)  
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The goal of this study is to target FXa within the PTase complex, but instead of seeking 

another active-site directed inhibitor, high-throughput virtual screening methods are used to 

identify compounds that are likely to bind to FXa and alter the interaction between FXa and FVa, 

and hence have the potential to down-modulate the PTase activity in an allosteric and non-

competitive manner.  

 

Materials and Methods 

FXa-FVa binding site 

The active site-inhibited human FXa structure, solved by X-ray crystallography (PDB 

code: 1XKA), was used as the starting structure.(27) It has a 2.3 Å resolution and no gaps in the 

structure. MD simulations in previous studies showed that the light chain, which is connected to a 

negatively charged phospholipid membrane in the PTase complex, and does not form any 

interactions with FVa, is highly flexible in aqueous solution and undergoes angstroms-wide 

fluctuations within a few nanoseconds of the MD.(30) To focus on the serine protease domain that 

interacts with FVa, this flexible part was removed and only the globular heavy chain was used in 

the MD calculations.  Homology models of FVa using the crystal structure of inactivated bovine 

FVa (FVai) have been built by other groups.(28) Using these models and the crystal structure of 

FXa, models of the FVa–FXa complex have been generated that are in agreement with available 

experimental data.(29) These models and the available experimental data were used to identify the 

regions of FXa that have been suggested to be important for the interaction with FVa. 

Figure 1A shows the FXa binding surface that is proposed to interact with FVa, based on 

the FVa–FXa complex models, consisting of twenty-eight residues. They form part of 3 helices-  

H1, H2 and H3 and one loop, L1, shown in Figure 1B. 
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Recently, the crystal structure of the FX:FV complex from the venom of Pseudonaja textilis 

has been solved.(31) The complex shows specific interactions between the structured A2 and A3 

domains of FV and FX. The highly flexible terminal region following the A2 domain forms non-

directional/non-specific ionic interactions and lacks a fixed binding mode, and only a small 

hydrophobic portion at the end of this region (IFADIFI) was well resolved. 

The FXa binding interface selected in the current study can be compared to the crystal 

structure of the FX:FV complex from P. textilis. Human FX and FV sequences show an identity 

of 50.5% and 53.5 % with the P. textilis sequences, respectively. Figures 1C shows the 

superposition of the human FXa crystal structure with the FX-FV complex from P. textilis (PDB 

code: 4BXS). The selected human FXa:FVa binding site consisting of 3 helices and 1 loop also 

forms the interface between FX:FV complex from P. textilis (Figure 1C).  The FXa/FVa contact 

region mapped on human FXa shown on Figure 1A is essentially reproducing the P. textitlis’s 

protein:protein interface.  

 

MD Simulations and Clustering 

The dynamics (MD) of the FXa heavy chain was characterized using molecular dynamics 

(MD) simulations. The active site ligand and the light chain were removed. One calcium ion known 

to be structurally important(32,33) was kept in the structure. The structure was protonated 

according to estimated pKa calculations using the Protonate-3D facility in MOE, version 2011,(34) 

with an ionic concentration of 0.1 mol/L in the Generalized Born (GB) electrostatics model. A 

periodic solvation cube of water molecules was created using the Solvate facility in MOE-2011. 

Seven negative chloride ions were added to neutralize the system, and the final system consists of 

22,516 atoms, with 6279 water molecules. The system was energy minimized to a gradient of 10-



 132 

5 RMS kcal/mol/Å2 using the CHARMM-22 force field(35) and a 8Å-10Å nonbonded cutoff. 

NAMD2 input files were generated using the Dynamics facility in MOE-2011. MD simulat ions 

using the NAMD2 simulation engine(36) were performed using an integration time-step of 2 

fs/step, holding covalent bonds in water molecules rigid. A constant temperature of 300K was 

maintained throughout the simulation using Langevin dynamics. Particle Mesh Eswald (PME) was 

used for calculation of the electrostatic interactions with the periodic boundary conditions. 

Simulations were performed in the NVT ensemble. The MD simulation was run on the Univers ity 

of Tennessee High Performance Computing architecture (Newton). A 100 ps initial equilibra t ion 

was performed followed by a 300 ns production trajectory. The resulting trajectories were analyzed 

for convergence of temperature and RMSD using perl scripts for parsing data, Prody v1.2(37) and 

Gnuplot v4.6.  

Structures of the protein along the MD trajectory were generated every 50ps using Prody 

v1.2, i.e., generating a total of 6,000 structures. Nearest-neighbor RMSD clustering was used to 

cluster these structures with Maxcluster(38) using RMSD distance between the data point 

represented by each structure. Two structures were considered part of the same cluster if they were 

closer to each other than the cut-off threshold distance, i.e. if they were nearest-neighbors. The 

entire ensemble docking process flowchart is shown in Figure 2.  

 

Ligand and Receptor Preparation for Docking 

Virtual screening was performed using the program Autodock Vina(39) on 12  structures: 

11 structures obtained from the MD clustering described above, and the FXa crystal structure. The 

'clean drug-like' subset of the ZINC database(40) was used, consisting of ~11.1 million compounds 

without reactive functional groups, and that do not violate any of the Lipinski's criteria. The subset 



 133 

of compounds used for virtual screening contained  244,493 compounds (referred as “Subset A” 

from here on) and covered 90% of the 'clean drug-like' compounds of ZINC database’s chemical 

diversity based on Tanimoto’s similarity coefficient.(41) These compounds were converted from 

the smile format to the PDB format using Babel v2.3.3(42) with the generate-3D option. The 

geometries of the ligands were optimized using the MMFF94 force field(43) in Babel. The 

compounds’ coordinates in PDB format were converted to PDBQT format using the Prepare 

Ligand scripts provided in ADT/MGL tools v1.5.4.(44) The FXa structures in PDB format from 

the clustered MD trajectory were also converted to PDBQT format directly in ADT tools. The 

configuration files for each FXa structure, including the docking grid box dimensions and the box 

center, used as input for docking in Autodock Vina, were created using ADT tools.   

The Subset A compounds were docked in the crystal structure and in the first 11 

representative structures from MD trajectory clustering, as indicated in Figure 2, allowing 

additional conformations of the ligand by sampling the rotatable bonds, and keeping the protein’s 

sidechains rigid. The docking was performed “agnostically,” i.e., binding could happen anywhere 

on the protein without imposing a particular binding site using Autodock Vina and an 

exhaustiveness value of 100 on the Newton cluster.  

 

Docking Analysis and Secondary Compound Selection 

Perl scripts were used to select the best-scoring binding mode reported in the AutoDock 

Vina output for each ligand and to parse these binding modes in order to identify ligands that bind 

in the regions of FXa involved in FVa interactions (steps III in Figure 2). 

The top 80 ranked compounds in the crystal structure and top 40 ranked compounds in 

each of the other 11 MD snapshots (representing a total of 520 compounds) were identified from 
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the docking calculations.  ZincPharmer,(45) a pharmacophore search tool for screening the Zinc 

database, was used to identify an additional 42,309 compounds in the ZINC database that are 

chemically similar to the docking hits but with larger molecular weights (step IV in Figure 2). 

These compounds were parsed to keep only the drug-like compounds with properties as defined 

in the Zinc database, i.e., 150 ≤ mol wt ≤ 500, xlogp ≤5, -5 ≤ net charge ≤ 5, rotatable bonds ≤ 8, 

polar surface area < 150 Å2, no. of H donors ≤ 5, no. of H acceptors ≤ 10, -400 ≤ polar desolvation 

energy ≤ 1 kcal/mol, -100 ≤ apolar desolvation energy ≤ 40 kcal/mol, and also to remove any 

duplicates, giving a total of 36,635 compounds (referred as 'Subset B' from here on), correspond ing 

to step V in Figure 2. These compounds were again docked in the 12 structures using Autodock 

Vina on the UTK’s Newton High Performance cluster with the same configuration settings as 

described above. Perl scripts were again used to parse the docking results for compounds that bind 

in the regions of FXa involved in FVa interactions.  

 

Analysis of Compound Lists 

The results from docking of Subset A (step II in Figure 2) and Subset B (step VI in Figure 

2), indicated that compounds can bind in different sub-binding sites at the FXa-FVa interface, in 

different protein MD snapshots. Based on the clustering of the binding loci for these compounds, 

the FXa-FVa interface was divided into ten sub-binding sites.  

The computational hits were analyzed using two main criteria (in addition to their predicted 

binding energies): the number of MD snapshots to which they were predicted to bind, and the 

number of sites in the protein where a compound is predicted to bind. This allows the identifica t ion 

of compounds that bind to a large number of target structural variations and binding site(s). A 

value named “snapshot count” was calculated using Perl scripts that gives the total number of 
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snapshots in which a given compound binds to the FXa-FVa interface. Compounds found to bind 

to most snapshots were checked for the different sub-binding sites (on FXa-FVa interface), 

yielding another value named “binding-site score” that gives the number of sub-binding sites that 

a given compound is docked.  

Two lists of compounds were generated for experimental validations: first, a list that 

contained 288 compounds consisting of the strongest binders in the crystal structure and the 11 

snapshots, as predicted by Vina docking scores (shown in step VIIIa of Figure 2). Second, a list 

was generated that contains 247 compounds with “snapshot count” scores of three and above (i.e., 

including compounds that successfully bind to three or more different protein conformations) and 

“binding-site scores” of one or two (i.e. removing promiscuous compounds that bind in many sites 

in different snapshots), shown in step VIIIb of Figure 2. The first list thus contains compounds that 

are predicted to bind with the highest binding affinities at the FXa-FVa interface, and the second 

list contains the compounds that can bind to different protein conformations but at the same time 

are selective for particular binding sites at the interface.  

Visual inspection was performed on the compounds in the two lists to insure their 

commercial availability and affordable cost, and to identify and remove compounds with reactive 

functional groups (e.g. aldehydes and alkyl bromides), excessive hydrophobicity (LogP >5), a lack 

of functionalization (e.g. polyaromatics with few or no functional groups) or an excess of 

functionalization, the latter two of which would render synthetic analoging difficult for any follow 

up structure-activity relationship (SAR) studies. The compounds ordered for experimental testing 

were selected to sample different sub-binding sites at the interface as predicted by the docking, be 

of affordable cost and presenting desirable chemical features.  
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Experimental Validation 

Initial screening of these compounds for potential FXa inhibitors was performed using a 

prothrombinase assay as described by Nesheim et al.(9) FXa, FVa, prothrombin and thrombin were 

purchased from Hematologic Technologies. The thrombin and FXa substrates S-2238 and S-2222, 

respectively, were obtained from diaPharma. Apixaban was purchased from Selleckchem. PTase 

activity measurements were initiated by the addition of prothrombin to the reaction mixture, and 

the rate of thrombin generation was determined by measuring thrombin activity towards the 

chromogenic substrate S-2238. Replicate samples were analyzed and the rates were corrected for 

the very low rate of hydrolysis of S-2238 by FXa. FXa activity was measured using the substrate 

S-2222. Assay data was analyzed using GraphPad Prism 5.0f to obtain kinetic parameters. 

Structural analogs of the identified hits were searched from the list of all the compounds 

used for docking, including Subsets A and B, using Tanimoto coefficient and the MACCS 

structural keys fingerprints(46) in MOE-2011. Similar compounds not present in this list were also 

identified directly from the ZINC database using substructure searching. Further filters described 

above were also applied on these compounds to order a second set of compounds. All compounds 

were dissolved in anhydrous spectroscopic grade DMSO at 10 mM and were stored in sealed vials 

at -20°C. Compounds were diluted in the assay to final concentrations of 5 to 100 μM. The final 

DMSO concentration in the assay was kept constant at 1%. 

 

Binding Sites Analysis  

The initial FXa inhibitors identified by PTase activity assays (and given in results) were 

re-docked in the binding sites identified with Vina using MOE-2011 with the CHARMM27 Force-

field, allowing protein sidechain flexibility. Additional conformations of the ligand were allowed 
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by sampling the rotatable bonds. Binding site residues side-chains were allowed to move away 

from their original location using a tethering weight of 0.1. The GBVI/WSA dG scoring 

function(47) was used for scoring different poses of the docked ligand. The top ranked binding 

poses were energy-minimized and the compounds’ predicted binding free energies were calculated 

using a MM/GBVI-adapted protocol.(48) 

 

Results 

MD Simulations and Clustering  

The FXa heavy chain structure including the FXa-FVa binding interface residues were 

found to sample different conformations in the MD snapshots as shown in Figure 3A. Figure 3B 

shows the RMSD plot for the protein backbone over the time course of the trajectory. Generally, 

MD simulations are considered stable when the backbone RMSD is in the low angstrom area.(30) 

However, in the case of FXa, higher RMSD values ranging between 2 and 7 Å have been 

reported.(49-51) Based on the RMSD plot in Figure 3B, the FXa structure converges after the first 

100 ns of the trajectory. 

Nearest-neighbor RMSD clustering was used to divide the trajectory into 15 clusters as 

described in Methods. Figure 3C shows the superposition of these structures, also represented on 

the RMSD plot (Figure 3B) over the time course of the trajectory.  

 

Docking in AutoDock Vina 

The docking of compound Subset A in 12 FXa structures (crystal structure and 11 

representative structures from 15 clusters) represented a total of ~2.9 million docking calculat ions 

(step II in Figure 2). After selecting the best scoring poses of docked ligands as predicted by 
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AutoDock Vina and parsing these for the selected FXa-FVa binding sites, it was found that in the 

crystal structure most of the compounds (99.8%) bind to sites outside of the FXa-FVa interface, 

mostly in the protein active site, and only around 0.2% of compounds screened (532 compounds 

in the case of crystal structure) bind to FXa within the FXa-FVa interface. As the MD snapshots 

sample larger conformational space, more compounds bind at this interface compared to the 

number that bind to the crystal structure. Docking of Subset B compounds in the 12 structures 

represented another ~0.45 million docking calculations (step VI in Figure 2). In the case of crystal 

structure, only 177 of these compounds (0.5%) bind to FXa within the FXa-FVa interface, and the 

higher hit rate compared to Subset A could be expected due to the larger MW’s of Subset B 

compounds. Figure 4A shows the comparison between a compound from Subset A and one from 

Subset B binding in the FXa-FVa interface in the crystal structure (both compounds were later 

identified as inhibitors). As one would expect, larger compounds are found to bind to larger regions 

on the FXa surface, and also often (although not in all cases) exhibit better binding (docking) 

scores than smaller compounds. 

 

Docking Analysis and Compound Lists 

In the crystal structure the compounds that bind in the FXa-FVa interface were found to 

bind essentially in four regions represented by four grooves, shown in Figure 4B. Taking the 

docking results from all snapshots together, the interface was divided into ten sub-binding sites, 

as shown in Figure 4C and Table 1, with sub-binding sites 1, 4, 5, 6 and 9 corresponding to groove-

A, groove-B, groove-C, groove-D and groove-E in the crystal structure, respectively. Other 

binding sites were not observed in the crystal structure but only in MD snapshots. The ten binding 

subsites are thus defined by the localization of compounds observed in the docking studies as 
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opposed to the topological features of the protein surface as observed in the crystal structure. It 

was found that compounds with top snapshot count scores were concentrated in sub-binding sites 

9 (52%), 7 (27%) and 10 (4%), respectively. Compounds with low binding-site scores of 1 and 2 

mostly bind to binding site 9 as well. This site is relatively large and present at the center of the 

binding interface.  

The strongest binders as predicted by Vina docking scores were also concentrated in sub-

binding site 9 (43%), 7 (38%) and 10 (22%). These compounds are weighted heavily from Subset 

B (~91%), compounds that arose from the pharmacophore based search around the best-ranked 

compounds from Subset A, and represent an overall higher molecular weight. 

 

Experimental Validation 

After employing further filters to the compounds in the two lists based on compounds' 

availability, cost, chemical similarity, and presence of reactive functional groups, compounds were 

ordered for experimental validation, shown in step IX of Figure 2. The majority of these selected 

compounds were predicted to bind in sites 9 and 7, with some representation of the remaining 

binding sites. Compounds were screened for solubility in the assay buffer (about half were soluble 

at 100 μM) and for their effect on PTase and FXa enzyme activity. Initial screening of these 

compounds at 100 μM concentration was performed in a PTase activity assay measuring inhibit ion 

of the rate of generation of active thrombin using the thrombin specific chromogenic substrate, S-

2238.  Further screening of these compounds with inhibitory activity was performed as a function 

of inhibitor concentration from about 5 μM to 100 μM. PTase activity assays identified 16 

compounds as inhibitors for the PTase activity, out of the initial compounds suggested from the in 

silico calculations. Eight of these 16 compounds were not computationally predicted to bind well 
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in the crystal structure but were predicted to bind well in one or more of the MD snapshots. These 

inhibitors would not have been identified if the docking calculations had been made using only the 

crystal structure. Ten more inhibitors were identified from a screen of structural analogs (step Xa 

and Xb in Figure 2) of those compounds that were obtained for initial screening. A total of 26 

inhibitors were identified. 

These compounds inhibit PTase activation of thrombin from prothrombin in the presence 

of FVa, but at a concentration of 100 µM, these compounds do not inhibit the activity of FXa 

towards the chromogenic substrate S-2222 indicating that they do not bind to the active site of the 

FXa molecule. Similarly, the compounds do not inhibit thrombin activity towards its chromogenic 

substrate, S-2238. The compounds thus appear to be specific inhibitors of the PTase complex, and 

inhibition is dependent upon the interaction between FXa and FVa.  

When these 26 compounds were assayed as a function of inhibitor concentration, 10 

compounds exhibited incomplete or partial inhibition of PTase activity even at high concentrations 

of inhibitor. Figure 5A, which shows percent inhibition as a function of [I]/Ki, contrasts the effects 

of five of these partial inhibitors on PTase activity with the anticoagulant apixaban, which is an 

active site competitive inhibitor of FXa. The characteristic feature of these novel inhibitors is that 

they achieve or approach plateau levels of inhibition as the concentration of inhibitor is increased. 

Maximal inhibition, calculated from the inhibition curves, is 100% for apixaban and 25%, 40%, 

80% and 90% for SBC-160,029, SBC-160,119, SBC-160,042 and SBC-160,109/SBC-160,012, 

respectively.  

SBC-160,029 was identified by the computational screen as a member of a substituted 

tetrazole series and binds to FXa in four snapshots, including the crystal structure. SBC-160,029 

docked exclusively in Site 9. SBC-160,029 inhibits PTase activity to about 25% with a Ki of 15 
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μM. Two analogs (Table 2), SBC-160,124 and SBC-160,125, exhibit similar inhibitory activity 

and comparable Ki values. 

Compounds SBC-160,012 and SBC-160,042 were also identified as site 9 binders; both 

compounds also dock into site 7 in other MD snapshots. SBC-160,012 docks in site 9 in the crystal 

structure and two other snapshots, but docks to site 7 in snapshot 10. SBC-160,042 does not dock 

in the crystal structure, but docks in site 9 in one snapshot and in site 7 in another (Table 3). With 

the exception of SBC-160,042 (Ki = 30 uM) these inhibitors have similar affinity for FXa with Ki 

values of 10 ± 5 μM, but the maximal inhibition for each compound varies from about 25% (029) 

to about 95% (012). Comparing the series of site 9 inhibitors indicated that maximal inhibit ion 

increased with increasing size of the inhibitor. Figure 5B shows the change in maximum PTase 

inhibition with the molecular weights of the compounds. It can be seen that larger compounds 

inhibit PTase activity to a greater extent. SBC-160,109, which is a tight binding analog of SBC-

160,042 with higher molecular weight, shows greater inhibition, contrasted with SBC-160,119, 

which has lower molecular weight and lower inhibition than SBC-160,042. Interestingly, SBC-

160,012, which has a relatively small molecular weight, is a clear outlier from this trend suggesting 

a complex inhibition mechanism. 

These hits comprise three families of inhibitors as represented by SBC-160,029, SBC-

160,012 and SBC-160,042, respectively. SBC-160,099, SBC-160,109, SBC-160,112 and SBC-

160,119 were selected from a panel of structural analogs of SBC-160,042. 

In summary, from around 3.4 million docking calculations, the computational results 

yielded 535 compounds that could potentially bind at the FXa-FVa interaction region. Twenty six 

hits were identified, with 10 of them represented by three families of inhibitors exhibiting partial 

inhibition of PTase activity in which the extent of inhibition reaches a maximal value so that further 
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increases in inhibitor concentration do not further inhibit PTase enzyme activity. We refer to this 

as self-limiting inhibition.  Four of these self-limiting inhibitors originated directly from the 

docking calculations.  

 

Sub-binding Sites Analysis  

Table 3 shows three families of inhibitors, represented by parent compounds SBC-160,012, 

SBC-160,042 and SBC-160,029. These compounds were identified as non-active site or allosteric 

inhibitors by PTase and FXa activity assays. Compound SBC-160,029 binds in only site 9, whereas 

SBC-160,012 and SBC-160,042 are able to potentially bind in either site 9 or site 7 in separate 

snapshots. Table 4 lists the difference in predicted binding energies calculated using the 

MM/GBVI protocol in MOE for the two compounds binding in site 7 and in site 9 in snapshot 10. 

The results indicate that compound SBC-160,012 is predicted to bind more strongly in binding site 

7 than in binding site 9. Compound SBC-160,042, however, is predicted to bind more strongly in 

binding site 9.  

Table 5 gives the cluster population from which the representative snapshots (centroid 

structures) were selected. Among the snapshots to which these compounds bind, site 9 was 

identified in snapshots 2 and 4, and these show relatively high cluster populations. Binding site 7, 

however, was identified only in snapshot 10 that represents a cluster of structures that was found 

only 0.5% of the time in the molecular dynamics trajectory; i.e. snapshot 10 represents structures 

rarely sampled. This makes binding in site 7 for compound SBC-160,012 a rare but possible 

binding pose, which is nonetheless quite significant in terms of the strength of the interaction (G 

-3.72).   
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Site 9 was observed in the crystal structure, but its shape and structure change significantly 

during the MD simulation. Figure 6A shows a compound identified initially as an inhibitor that 

binds to site 9 only in the later snapshots and not in the crystal structure. Sub-binding site 10 was 

not seen in the crystal structure and became apparent in 3 of the 11 snapshots from the MD 

trajectory. Figure 6B shows one of the compounds initially found as a non-active site binder 

docked in snapshot 7, and how it is not possible for it to bind to the crystal structure. 

 

Discussion 

Results from clustering the MD trajectory indicate that the regions of FXa that interact with 

FVa sample a relatively large accessible conformational space, as seen in Figures 3A and C, and 

that ligands are predicted to interact with FXa in a way that would not necessarily be observed 

from an analysis that focused solely on the starting crystal structure. These structural variations 

shown in the MD translated into a diverse set of compounds that potentially bind to FXa’s 

conformations. 

Larger compounds are found to bind to larger sites on the FXa surface, with binding 

(docking) scores that predict tighter binding compared to smaller compounds in the Subset A, 

which will likely prove advantageous in modulating the FXa-FVa protein-protein interaction. 

Figure 5B supports the hypothesis that larger compounds are better able to alter the FXa-FVa 

interaction. Compound 12, the outlier in Figure 5B, which is predicted to bind preferentially to 

binding site 7 according to free-energy calculations, may follow a more complex inhibit ion 

mechanism. 

Compounds with low binding site scores of 1 and 2 mostly bind to sub-binding site 9, a 

relatively large area at the center of the FVa binding interface. This site is particularly important 
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for inhibiting the FXa-FVa interaction, as compounds that bind at this site interact with residues 

from all three helices of interest (H1, H2 and H3). This site was observed in the crystal structure, 

but its shape and structure change significantly during the MD simulation, as shown Figure 6A. 

Eleven of the 26 non-active site inhibitors identified by PTase activity assays (including 10 

structural analogs which were not docked to generate binding site data) are predicted to bind to 

site 9. This includes 3 out of the 10 compounds (comprising 6 of the 10 analogs) that achieve self-

limiting inhibition of PTase activity.  

Among the 10 self-limiting inhibitors, only two compounds were observed to bind to the 

crystal structure. Sub-binding site 10 was not seen in the crystal structure and became apparent in 

3 of the 11 snapshots from the MD trajectory, where two loops that are close to each other in the 

crystal structure open up, as shown in Figure 6B. SBC-160,064 is a non-active site-inhibitor, 

inhibiting PTase activity by about 20% at 100 μM, and is predicted to bind in this site but would 

not have been identified from the crystal structure searches alone.  

Tables 3 and 5 indicate that, while compounds appear to bind in site 9 (snapshots 2, 4 5 

and 9) an order of magnitude more often than in site 7 (snapshot 10), the predicted binding affinity 

of compound SBC-160,012 is stronger in site 7 by 3.72 kcal/mol. Hence, this compound’s 

predicted binding site is difficult to assess: site 9 is more often accessible but binding in site 7 is 

more stable. It is theoretically possible that the compound may bind at both sites and possibly 

simultaneously. Inversely, binding of compound SBC-160,042 is predicted to happen most likely 

in binding site 9 since the predicted binding free energy of this compound is better in site 9 than 

in site 7 by 2.38 kcal/mol.  

The comparison of the human structure and the crystal structure of the prothrombinase 

complex from the venom of P. textilis(31) suggests that the binding sites investigated here are 
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relevant. Figures 7A and B show the superposition of human FXa (crystal structure) bound with a 

site-9 inhibitor in its predicted binding mode, with the FX-FV complex from P. textilis. Site-9 

inhibitors discovered from the computational approach bind directly at the interface of FXa and 

the A2/A3 domains of FV, possibly interfering with the specific interactions between these 

proteins. Figures 7C and D show the superposition of human FXa (snapshot 10 from MD 

simulation) containing an inhibitor predicted to bind in site-7, with the P. textilis FX-FV complex. 

In this snapshot the flexible loop L1 folds to form site-7, which is not seen in the crystal structure 

of human or P. textilis FXa. As seen in this MD snapshot, binding in site-7 can interfere with the 

interactions between human FXa and the small hydrophobic portion of the terminal region in FV.  

Compounds binding to other sites on the human FXa-FVa interface did not inhibit the 

prothrombinase activity possibly because of the non-specific nature of ionic interactions between 

FX and the flexible terminal region following the A2 domain of FV in the P. textilis crystal 

structure. This flexible region of FV may sample alternate binding modes that can overcome the 

interference of the inhibitors binding to FXa at these sites. 

The initial aim of this study to identify compounds that reduce the PTase activity has been 

met as shown in Figure 5A. In future virtual screening studies, additional compounds can be 

identified for experimental validation. In addition, lead optimization can be aided by the chemical 

structures and binding poses of positive hits predicted to bind at both site 7 and site 9. Library 

design can be based on compound modifications guided by pharmacophore features associated 

with active compounds, while at the same time avoiding those features associated with inactive 

compounds (e.g., volume exclusion). It should also be possible to differentiate between binding in 

site 7 and site 9 from the experimental testing of compounds originating from the pharmacophore 

features of the active compounds binding at these two sites, as well as directed mutagenesis studies 
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that would affect the predicted potential binding modes identified computationally. These 

compounds will be used to identify new hits and to develop structure-activity relationships (SAR) 

in order to identify more potent and selective lead compounds against PTase. 

 

Conclusion 

This study used an ensemble docking approach to identify structural variations of FXa 

using MD simulations, and targeted these conformations with compounds that specifically bind to 

the FXa-FVa interface to modulate the PTase activity in an allosteric and non-active site dependent 

manner. In contrast to competitive active site inhibitors, which completely inhibit enzyme activity 

at saturating inhibitor concentrations, these allosteric PTase inhibitors exhibit a plateau in 

inhibition referred to as 'self-limiting inhibition’. PTase activity assays identified a total of 26 

compounds as inhibitors. Only 8 of these compounds were predicted to dock in the crystal 

structure. From these non-active site inhibitors, 10 compounds, 4 of which were identified by 

initial screening and 6 that were structural analogs, achieved self-limiting inhibition of PTase. 

Only two of these compounds bind to the crystal structure, and two compounds and their analogs 

would not have been identified if the virtual screen had used only this one structure. 

This study exemplifies a successful MD simulation and high-throughput virtual screening 

approach to drug discovery targeting a protein-protein complex. Amaro et al. showed the 

importance of employing molecular dynamics to account for protein flexibility in the discovery of 

new molecules for African sleeping sickness.(52) Here we apply a similar ensemble docking 

approach, but use a larger compound database covering a larger chemical space, with around 3.4 

million docking calculations completed in total. In future studies the same approach can be 

extended to even larger compound databases covering millions of compounds and targeting 
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multiple protein targets, using massive high-throughput screenings on supercomputers like 

TITAN.(53,54) This can increase dramatically the number and diversity of compounds that can be 

identified, while at the same time taking into account the inherent flexibility and the dynamic 

nature of macromolecules and their complexes under physiological conditions.  
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Table 3.1. Ten sub-binding sites identified at the FXa:FVa interface and the corresponding FXa 

residues in these sites that are proposed to interact with FVa (Figure 3.1A). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub-binding site Residues  

1 Arg-125, Asp-126, Trp-127 

2 Val-231, Leu-235 

3 Val-231, Ile-238 

4 Arg-125, Asp-126, Val-231, Thr-232, 
Ala-233, Phe-234, Leu-235, Lys-236, 
Trp-237, Ile-238, Asp-239, Arg-240 

5 Glu-129, Thr-232, Ala-233, Phe-234, 
Leu-235, Lys-236, Trp-237, Ile-238 

6 Ser-241, Met-242, Lys-243, Arg-93, Phe-
94 

7 Arg-93, Phe-94, Thr-95, Lys-96 

8 Arg-93, Phe-94, Thr-95, Lys-96 

9 Arg-125, Asp-126, Trp-127, Ala-128, 
Glu-129, Asp-164, Arg-165, Asn-166, 
Ser-167, Cys-168, Lys-169, Leu-170, 

Val-231, Thr-232, Ala-233 

10 Asp-164, Arg-165, Asn-166, Ser-167, 
Cys-168, Lys-169, Leu-170 
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Table 3.2. Nine self-limiting inhibitors identified by PTase activity assays. The compounds 

without “Binding Sites” values are the structural analogs of compounds obtained for init ia l 

screening. Max % inhibition and Ki, were obtained by fitting activity inhibition as a function of 

inhibitor concentration. 

 

SBC  ID 
Inhibition 

@ 100 uM 

Max % 

inhibition 
Ki, μM 

Binding 

Sites 

Binds 

Xtal 
Structure 

SBC-160,010 65-70 80±10 25 7/8* No 

SBC-160,012 85-90 95±5 10 9,9,9,7 Yes 
SBC-160,029 15-30 25±5 15 9,9,9,9 Yes 

SBC-160,042 60-70 85±10 30 9,7 No 
SBC-160,109 85-95 90±5 5 - - 

SBC-160,114 20-25 25±5 10 - - 
SBC-160,119 35-40 40±5 10 - - 

SBC-160,124 15-20 23±5 5 - - 
SBC-160,125 20-25 25±5 20 - - 

      
*Binding across both sites 7 and 8 
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Table 3.3. Compounds experimentally tested to be active. Binding snapshot 1 represents the 

crystal structure. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Structure Molecular 

Weight 

Binding 

Snapshots  

Binding 

sites  

 
 
 
 

SBC-160,012 

 

 
 
 
 

276 

 
 
 
 

1,2,4,10 

 
 
 
 

9,9,9,7 

 
 
 
 

SBC-160,029 

 

 
 
 
 

236 

 
 
 
 

1,2,5,9 

 
 
 
 

9,9,9,9 

 
 
 
 

SBC-160,042 

 

 
 
 
 

388 

 
 
 
 

4,10 

 
 
 
 

9,7 
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Table 3.4. Differences in binding free energy for selected compounds in binding site 9 and binding 

site 7 in snapshot 10. 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

Compound G (G  site 7 – G site 9) 

Kcal/mol 

SBC-160,012 -3.72 

SBC-160,042 +2.38 
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Table 3.5. Cluster population for the snapshots that compounds 012, 029 and 042 bind to. 
 

 

 

 

 

 

 
 
 

 

 

 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Snapshot 

number 

Cluster population (in % of MD 

structures) 

2 10.7 

4 4 

5 1.3 

9 2.3 

10 0.5 



 162 

Figure 3.1. FXa-FVa binding site. (A) Human FXa residues proposed to interact with human 

FVa, based on the FVa–FXa complex models and the available experimental data. Binding site 

residues 93-96, 125-129, 164-170, 231-244 shown in green.  (B) Residues (green) form part of 3 

helices- H1, H2 and H3 and a loop, L1. (C) Superposition of human FXa with the FX-FV complex 

from P. textilis. Only superposed human FXa (red) and P. textilis FV (blue) are shown and P. 

textilis FX structure is not shown for clarity. Binding interface (green) in human FXa proposed to 

interact with human FVa. 
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Figure 3.2. Flowchart showing the Ensemble docking process. I. (a) 300 ns MD simula t ion 

carried out followed by (b) Nearest-neighbor RMSD clustering, generating 15 snapshots. II. 244K 

compounds docked, covering 90% of 11.1 million “clean drug-like” subset from the Zinc database. 

III. Parsed for compounds that bind to FXa:FVa interface in the crystal structure or at least one of 

the 11 snapshots. Only 532 out of 244,493 docked compounds bind at this interface in the crystal 

structure. IV. (a) Top 80 compounds in the crystal structure + top 40 compounds in each of 11 

snapshots selected (520 total) for (b) pharmacophore search with ZincPharmer for larger 

compounds (MW 280-600 amu’s), against purchasable Zinc database compounds. V. Compounds 

parsed for drug-like properties and redundant compounds removed. VI. 37,000 larger compounds 

docked in 11 snapshots + crystal structure. VII. Parsed again for compounds that bind to FXa:FVa 

interface in the crystal structure or at least one of the 11 snapshots. Only 177 out of 36,635 docked 

larger compounds bind at this interface in the crystal structure. VIII. (a) Top 50 compounds in 

crystal structure + top 30 compounds from each of 11 snapshots based on docking scores selected: 

288 compounds (after removing redundancy), from which 44 bind to the crystal structure and 

others bind to MD snapshots. (b) 247 compounds selected that bind to most number of snapshots 

and only 1 or 2 different binding sites on FXa-FVa interface. Out of these 79 bind to the crystal 

structure and others bind to MD snapshots. IX. Compound selection based on compounds' 

availability, cost, chemical diversity, and lack of reactive functional groups. X. (a) Analog 

generation based on initial positive hits. (b) Experimental validation of these analogs. 
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Figure 3.3. MD Simulations and Clustering. (A) Superposition of 3 FXa structures at different 

times in the MD trajectory. Starting crystal structure shown in green, structure at 150 ns in blue 

and structure at 300 ns in orange, with binding site residues shown as stick-ball representation. (B) 

RMSD plot over the time course of the trajectory. (C) Superposition of representative non-

redundant structures from 15 clusters with binding site residues shown in white. Structures in (C) 

represented on the RMSD plot (B) as black dots. 
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Figure 3.4. Docking analysis. (A) Smaller original compound from the Subset A in blue and 

larger similar compound from the Subset B in brown binding in the FXa-Va interface in the crystal 

structure. The exposed regions are shown as red on the molecular surface, hydrophobic regions in 

green and polar regions in magenta. Larger compounds cover more binding surface. (B) In crystal 

structure compounds bind in four regions: grooves A, B, C, D and E. (C) Ten binding sites 

considered taking all 12 structures into account.  
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Figure 3.5. PT inhibition. (A) Effect of the identified inhibitors on PT activity based on activity 

measurements, presented as % inhibition vs. [I]/Ki. (B) Plot of the maximum inhibition vs. the 

molecular weights of identified PTase inhibitors and corresponding analogs.  
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Figure 3.6. Structural variations with MD. Superposition of loop backbones in FXa-FVa 

interacting region. Yellow: FXa crystal structure. Blue: snapshots from the MD trajectory. (A) 

Inhibitor (cyan) binds to sub-binding site 9 in snapshot 3 where the Helix 3 (H3) is pushed out, 

and not in the crystal structure. (B) Non-active site binder (cyan) binds to sub-binding site 10 in 

snapshot 7 where two loops move apart, opening the binding site. These loops occlude the binding 

site in the crystal structure. 
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Figure 3.7. Site 9 and 7 in FX-FV complex. (A) Superposition of human FXa (crystal structure) 

bound with a site-9 inhibitor, with the FX-FV complex from P. textilis. Only superposed human 

FXa and P. textilis FV are shown and P. textilis FX structure is not shown for clarity. Red: human 

FXa structure. Cyan: A2 domain from P. textilis FV. Green: A3 domain from P. textilis FV. Purple: 

Flexible terminal region in FV. Site-9 inhibitor binds directly at the interface of FXa and A2/A3 

domains of FV. (B) 90 degree rotation of (A). (C) Superposition of human FXa (snapshot 10 from 

MD simulation) bound with site-7 inhibitor, with the FX-FV complex. Hydrophobic portion of 

terminal region shown in stick conformation. (D) 90 degree rotation of (C).  
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Chapter 4  

ELUCIDATION OF THE PROTEIN-PROTEIN 

BINDING/DYNAMICS OF ELECTRON 

TRANSPORT PROTEINS WITH 

CYANOBACTERIAL PHOTOSYSTEM I 
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Research described in this chapter is reproduced from a manuscript prepared by Karan Kapoor, 

Derek J. Cashman, Barry D. Bruce and Jerome Baudry. 

 

My contribution in the paper includes (1) Designing and carrying out all computation research (2) 

Understanding the literature and interpretation of the results (3) Preparation of tables and figures 

(4) Writing and editing.  
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Abstract 

The Luminal domain (PsaA, PsaB, and PsaF) of photosystem I (PSI) in Cyanobacteria 

accepts electrons from Cytochrome c6. After a series of electron transfer steps, the stromal domain 

(PsaC, PsaD, and PsaE) transfers these electrons and reduces the transiently bound ferredoxin (Fd) 

or flavodoxin. Experimental structures exist for all of these protein partners individually, but no 

experimental structure of the PSI/Cytc6 and PSI/Fd complexes is presently available. Molecular 

models of Cytc6 docked on the lumen side and Fd docked onto the stromal domain of the 

cyanobacterial PSI site are constructed here utilizing X-ray and NMR structures of PSI, Cytc6 and 

Fd. Predictions of potential protein-protein interaction regions are based on previous experimenta l 

site-directed mutagenesis and cross-linking studies to guide rigid body docking calculations of 

these proteins. Agnostic docking without any constraints are also carried out, validating the PSI/Fd 

results, and providing an alternate binding mode for the PSI/Cytc6 complex. The results are 

complemented by the calculations of coevolving residues between the interacting partners on the 

two domains of PSI. These results further validate the complex models and provide a 

comprehensive picture of the binding and interactions between the PSI and the electron-transport 

proteins. 
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Introduction 

The process of photosynthesis converts light energy into chemical energy through two 

large, multi-subunit proteins bound to the thylakoid membranes in the chloroplasts of 

cyanobacteria, algae and plants. These large, multi-subunit proteins are referred to as Photosystem 

II (PSII) and Photosystem I (PSI). Upon photo-excitation, PSII extracts electrons from water, and 

transfers them to the b6/f complex and ultimately to PSI using soluble electron transfer proteins 

such as Cytc6 or plastocyanin (PC). PSI then undergoes a second photo-excitation, which induces 

a cascade of electron transfer steps through several redox cofactors within the protein, ending up 

at one of two terminal electron acceptors, the 4Fe-4S centers in the PsaC subunit. Electrons are 

then transferred from these 4Fe-4S centers to the 2Fe-2S center of ferredoxin (Fd) (1,2) or the 

flavin mononucleotide (FMN) cofactor of flavodoxin under iron-deficient conditions (3,4). The 

reduced Fd transfers two electrons to the ferredoxin-NADP oxidoreductase (FNR) to produce 

NADPH, which functions as a reducing agent in Calvin Cycle reactions as well as several other 

metabolic processes (5). Understanding the binding and affinity of Fd and Cytc6 with PSI is a key 

element of the structure/function relationship of the electron transfer mechanisms during the 

process of photosynthesis. 

The purpose of this study is to examine the atomic-level intermolecular interactions at the 

protein-protein interface in cyanobacterial photosynthetic proteins using advanced computationa l 

methods. Using the NMR structures of cyanobacterial Fd (6,7) and Cytc6 (8), and X-ray crystal 

structures of cyanobacterial PSI (9), molecular models of Fd docked onto the stromal domain and 

Cytc6 docked on the luminal domain of the cyanobacterial PSI are constructed. Docking models 

of PSI-Fd have recently been published by Cashman et al (10). The newly generated models are 

compared with these previously published models. Docking studies were guided by predictions of 
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protein-protein interaction regions from experimental site-directed mutagenesis (11,12) and cross-

linking (13,14) studies. Several plausible docked configurations are ranked based on the 

predictions of the coevolving residues between the interacting partners, forming the basis of the 

computational model prediction presented here. 

 

Materials and Methods 

Structure preparation 

Protein structures from T. elongatus, a thermophilic cyanobacterium, were used to model 

the interaction sites between the X-ray crystal structure of PSI and the NMR structures of Fd and 

Cytc6 (6-9). The structural files were downloaded from the PDB (15) using the PDB accession 

coordinates 1JB0 for photosystem I, 2CJN for Fd and 1C6S for Cytc6. In the case of PSI-Fd 

models, using MOE, v. 2012 (16) the PsaC, PsaD, and PsaE chains were extracted from the PDB 

file, and hydrogen atoms were added to the structure according to standard residue protonation. 

Similarly in the case of PSI-Cytc6 models, the PsaA, PsaB, and PsaF chains were extracted from 

the PDB file and hydrogen atoms were added. The remainder of the system was omitted, as it is 

not involved in interacting with Fd or Cytc6.  

 

PSI-Fd and PSI-Cytc6 binding sites 

To identify potential protein–protein interaction sites between the stromal domain of PSI 

(PsaC, PsaD, and PsaE) and Fd, the residues that have been experimentally determined on the basis 

of site-directed mutagenesis, cross-linking and other studies, to be involved in interactions with 

both systems (11,12,17,18) were used (Ile-11, Thr-14, Gln-15, Lys-34, Gly-36, Val-48, Lys-51, 
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Arg-52 from PsaC, His-95, Asp-98, Glu-103, Lys-104, Lys-107, Arg-109 from PsaD and Arg-39 

from PsaE).  

In the case of interactions between the Luminal domain of PSI (PsaA, PsaB, and PsaF) and 

Cytc6, the stretch of charged residues in Cytc6 shown to be involved in interactions with the 

Lumen side of PSI through mutagenesis studies (data unpublished) were used (Gly-63, Arg-64, 

Leu-65, Thr-66, Asp-67, Glu-68 and Gln-69). The stretch of residues from the multiple sequence 

alignment of PsaF domain in different species and containing the basic residues possibly involved 

in interaction with the corresponding acidic residues in Cytc6 (data unpublished) were also used 

(Ser-11, Pro-12, Ala-13, Phe-14, Gln-15, Lys-16, Arg-17, Ala-18, Ala-19, Ala-20, Ala-21, Val-

22, Asn-23, Thr-24, Thr-25). In addition, explicit repulsions were added between Cytc6 and the 

residues in PsaA, PsaB and PsaF present on the stromal side or interacting with the surrounding 

membrane regions. 

Agnostic docking, without using any constraints in the docking protocol, was done for 

comparison and to further validate the results generated using the residue filters for both PSI-Fd 

and PSI-Cytc6 models. In the case of PSI-Cytc6 models, explicit repulsions were retained to obtain 

a realistic set of results. 

 

Rigid-body docking  

Fast-fourier transform (FTT) based rigid-body docking program, Cluspro (19-21), was 

used for generating docking models between PSI and Fd and between PSI and Cytc6. The working 

of Cluspro is described as follow- Cluspro treats one of the proteins as the receptor (PSI in this 

case) and the other as the ligand (Fd or Cytc6). The translation and rotation of ligand with respect 

to the receptor is carried out on a grid, sampling around 109 positions of the ligand relative to the 
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receptor. Translation with the best score from each rotation is selected, using pairwise interaction 

potential scoring function based on attractive and repulsive contributions to the van der Waals 

interaction energy, electrostatic energy term, and the desolvation contributions. Of all the 

generated structures, 1000 rotation/translation combinations that have the lowest score are chosen 

for further clustering. Clustering of these 1000 ligand positions is done using pairwise C-α RMSD 

(of ligand residues) as the distance measure, within 10 Å of any receptor atom in these docked 

models. Ligand positions with the most ‘neighbors’ in 9 Å becomes a cluster center, and its 

neighbors the members of the cluster. These are removed from the set and the same procedure 

repeated till all structures are divided into clusters. The biophysical meaning of clustering is 

isolating highly populated low energy basins of the energy landscape, as large clusters are more 

likely to include native structures. This means that the cluster centers representing the largest 

clusters are found to be closest to the native state and are shown to give better results than ranking 

the structures only based on their energies. After clustering with this hierarchical approach, the 

ranked complexes are subjected to a (300 step and fixed backbone) van der Waals minimiza t ion 

using the CHARMM (22) potential to remove potential side chain clashes. ClusPro then outputs 

the centers of the largest clusters. 

 

Calculation of Fe-Fe and Chlorophyll-Heme distances 

The models generated using Cluspro were subjected to a further energy minimization of 

side-chains (fixed backbone) to a 0.01 RMS kcal/mol/Å2 gradient in MOE 2012, using the 

CHARMM27 forcefield (22). In the case of PSI- Fd models, the original PSI structure (1JB0) was 

superimposed on these models to obtain the Fe4S4 center in PsaC. Because the 2CJN structure 

does not include the Fe2S2 center of Fd, these atoms were obtained from the 1ROE Fd NMR 
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structure. To insert the FeS center into 2CJN, residues 37 through 48 of 1ROE were superimposed 

in MOE with the same residues of 1ROE, and the FeS cluster was copied from the 1ROE structure 

into the 2CJN structure.  

Similarly, in the case of PSI- Cytc6 models, the original PSI and Cytc6 (1C6S) structures 

were superimposed on these models to obtain the Chlorophyll molecules in PsaA-PsaB and Heme 

group in Cytc6, respectively. The distances were calculated between the iron atoms in 

corresponding Fe-S centers in PsaC and Fd and between the Heme and Chlorophyll A in PsaA/B 

and Cytc6, respectively. 

 

Results 

PSI-Fd Modeling 

PSI-Fd models generated using Cluspro consisted of a total of 12 separate clusters 

represented by their cluster centers. Table 1 shows these 12 clusters, the number of members 

belonging to each cluster, and the weighted energy scores. Figure 1A shows the RMSD deviation 

between these twelve clusters. These 12 structures are separated by relatively larger RMSD 

distances, with the closest centers (New_7 and New_10) having a RMSD deviation of 3.71 Å. 

These 12 structures can be considered as separate PSI-Fd states that are possibly sampled, 

weighted against the cluster population represented by each cluster center, i.e. cluster 1 center 

represents the structure most sampled and hence closest to the native state of the complex. 

Table 2 shows the number of inter-residue protein contacts and the Fe-Fe distances between 

the FeS centers in PsaC and Fd in each of these 12 cluster centers. The top-3 models show more 

inter-residue contacts compared to previously published models of PSI-Fd (10). The Fe-Fe 

distance is under 13.5 A for most of these models, with the lowest distance shown by 3rd model 
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(8.5 Å). These distances closely compares with the Fe–Fe distances of 8.9–13.1 Å between the 

two FeS centers of PsaC observed in six available crystal structures of PSI from T. elongatus, 

Pisum sativum, and Arabidopsis thaliana (9,23-26), suggesting that the distances between the 

generated models may provide an adequate proximity for rapid electron transfer (27). The Fe-Fe 

distances on average are also smaller than the previously published models. Superposition of these 

12 cluster centers shows Fd sampling multiple rotational modes around the same binding site near 

the PSI FeS center, shown in Figure 1B.  

The agnostic docking protocol in Cluspro generated a total of 18 cluster centers, shown in 

Table 3. Figure 1C shows the superposition of the two top models (cluster centers with largest 

cluster populations) generated by Cluspro using the residues filter and the agnostic docking 

protocol. These two models are very similar with a RMSD of only 1.70 Å. The model shows direct 

interactions between Arg-41, Ser-63, Glu-23 and Glu-93 in Fd and the residues in PsaC, PsaD and 

PsaE that have been shown to be important for binding Fd through mutagenes is studies (Gln-15 in 

PsaC, Lys-34 in PsaC, Lys-104 in PsaD and Arg-39 in PsaE, respectively), given in Table 4. This 

complex structure, the distance between the FeS centers, and two salt bridges between Arg-39 in 

PsaE and Lys-104 in PsaD and Glu-93 and Glu-23 in Fd, is shown in Figure 1D.  

The previously published models of PSI-Fd consisted of a set of 12 models represented by 

only three clusters shown in Figure 2A: cluster I represented by structures 2, 4, 5 and 7; cluster II 

represented by structures 1, 3, 6, 10, 11, 12; cluster III represented by structures 8, 9. These 12 

structures are separated by relatively shorter RMSD distances. Figure 2B shows the comparison 

of RMSD of the newly generated models to the previous models. Structures in cluster I are found 

to be similar to New_12 model; cluster II similar to New_8 model; and cluster III similar to New_6 

model. The previous three clusters (consisting of 12 models) likely represent a subset of the 
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conformational ensemble sampled by PSI-Fd, as seen from the much larger ensemble of structures 

generated by Cluspro, both by residues filter and agnostic approach. 

 

PSI-Cytc6 Modeling 

PSI-Cytc6 models generated using Cluspro consisted of a total of 15 separate clusters 

represented by their cluster centers. Table 5 shows these 15 clusters, the number of members 

belonging to each cluster, and the weighted energy scores. Figure 3A and B show the superposition 

and the RMSD deviation between these 15 cluster centers, respectively. These structures are also 

separated by relatively large RMSD distances, with the closest centers (2 and 9) having a RMSD 

deviation of 8.23 Å. The center of cluster 1 represents the center of the most populated cluster, and 

hence most sampled and closest to the native state of the complex. This structure shows direct 

interactions between the charged residues in Cytc6, PsaF and PsaB, given in Table 6. The complex 

structure, the distance between the Heme and Chlorophyll groups, two salt bridges between Glu-

617 in PsaB and Lys-8 in Cytc6, and between Lys-16 in PsaF and Asp-67 in Cytc6, are shown in 

Figure 3C. The distance between the Heme group and Chlorophyll molecule is 14.03 Å, which is 

high, compared to the value predicted by the Moser-Dutton rule (< 7 Å) for distances suitable for 

electron transfer between these groups (28). 

The agnostic docking protocol in Cluspro generated a total of 29 cluster centers, shown in 

Table 7. The top cluster center shows interactions between the hydrophobic surfaces of Cytc6, 

consisting of residues Val-25 and Met-26, and PsaA and PsaB, consisting of residues Trp-655 and 

Phe-644, shown in Figure 4A and Table 8. The distance between the Heme group and Chlorophyll 

molecule is 9.66 Å, closer to the value predicted by the Moser-Dutton rule. Trp-655 in PsaA and 

Trp-631 in PsaB that are well conserved and have been shown to be important in binding Cytc6 in 
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other species, Spinacia oleracea and Chlamydomonas reinhardtii (29,30), are present at the 

interface between these two interacting proteins, shown in Figure 4B. 

Figure 4C shows the superposition of the top two PSI-Cytc6 models generated by Cluspro 

using the residue filter and the agnostic docking protocol. These models show a RMSD of 16.39 

Å. The first model shows contacts that are rich in electrostatic interactions, whereas as the agnostic 

model shows more hydrophobic contacts. 

 

Discussion 

The rigid body directed-docking calculations yield several observations with regard to 

possible interactions between the electron-transport protein, Fd and Cytc6, and PSI. Docking 

calculations focused on the stromal (PsaC, PsaD, PsaE) and luminal (PsaA, PsaB, PsaF) domains 

of PSI where these electron-transport proteins bind. Previously published PSI-Fd models (10) had 

used a ‘top-down’ approach by using the regions of high Frustration to direct rigid-body docking 

calculations, with distance constraints applied between the possibly interacting residues/regions. 

In this study, only the residues in PSI that have been shown to interact with the electron-transport 

proteins have been used to direct the docking calculations. This allows the receptor and the ligand 

in the rigid-body docking protocol to sample well all the six degrees of freedom, generating ~ 109 

positions of the ligand relative to the receptor. These are then filtered to only keep the structures 

that are thermodynamically most stable, giving preference to the complexes that show interactions 

between the input residues. This provides a ‘bottoms-up’ approach, where the best models are 

predicted from the possible ~ 109 generated models, and hence decreasing the possibility of 

sampling only certain fixed rotational/translational modes of the ligand with respect to the 

receptor. 
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The top cluster center for the PSI-Fd model shows direct interactions between the residues 

experimentally predicted to be important for binding Fd, Gln-15 in PsaC, Lys-34 in PsaC, Lys-

104 in PsaD and Arg-39 in PsaE, and the Arg-41, Ser-63, Glu-23 and Glu-93 residues of Fd. There 

are two salt bridges present between Arg-39 in PsaE and Glu-93 in Fd, and Lys-104 in PsaD and 

Glu-23 in Fd. Low RMSD between the top PSI-Fd models (Figure 1C) generated using the residues 

filter and the agnostic docking protocol highlights the preference for the top binding mode 

generated by using two separate approaches. 

Previous PSI-Fd models can be represented by a subset of the newly generated models; 

hence the new results provide a more comprehensive picture of the possible binding modes. Fd is 

found to sample multiple rotational modes around the same binding site near the PSI FeS center .  

It is possible that Fd may bind in two or more different orientations with PSI. In future, further 

refinement using molecular dynamics simulation on high-performance supercomputers of the 

generated docked complexes, will enable a thorough analysis of the protein dynamics and 

conformational changes that occur upon binding. This will help to determine if the system 

converges to a single binding mode, or if the complex samples multiple modes throughout. 

Two separate models are generated for PSI-Cytc6 using the residues filter and the agnostic 

docking protocol, showing preference for electrostatic and hydrophobic interactions respectively. 

In the first model, Asp-67 in Cytc6, that has been shown experimentally to be important for binding 

with PSI (unpublished data), forms a salt-bridge with Lys-16 in PsaF. In the agnostic model, Trp-

655 in PsaA, that is well conserved and has been shown to be important in binding Cytc6 in other 

species (29,30), forms hydrophobic interactions with Val-25 in Cytc6. Trp-631 in PsaB, also well-

conserved, is also present in close proximity to Cytc6. It is possible that there is an equilibr ium 

between these two modes, with the Cytc6 first interacting with PSI through long-range electrostatic 
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interactions, and then the system equilibrating/relaxing to the second mode where the hydrophobic 

surfaces in PSI and Cytc6 come together by minimizing the area exposed to the solvent. Between 

the two modes, the distance between Heme group and Chlorophyll decreases from 14.03 A to 9.66 

Å, possibly facilitating in the transfer of electrons from Cytc6 to PSI.    

In case of the two PSI-Cytc6 models, future MD simulation in explicit solvent of the two 

binding modes can show if there is an overlap between the models, and if the first model with 

preference for electrostatic interactions finally converges to the model showing preferentia l ly 

hydrophobic interactions in the presence of the surrounding solvent molecules. The distance 

between Heme and Chlorophyll groups can also be expected to decrease further in the presence of 

solvent molecules, as the exposed hydrophobic surfaces will try to minimize the solvent accessible 

area by moving closer. These studies will provide an improved model that describes the atomic 

interactions and the possible binding mechanism at the luminal domain of photosystem I. 

 

Conclusion 

Overall, this study provides a new, detailed insight into visualizing possible binding 

mechanisms between PSI, Fd and Cytc6. These complexes are involved in the electron transfer 

reactions of photosynthesis, and a thorough understanding of their atomic-level interactions and 

dynamics will help in suggesting future mutagenesis experiments for validation purposes. This 

will also enable in the design more efficient mutants of these proteins, to optimize rate of electron 

transfer and hence the rate of energy generation from these systems, leading to the development 

of biologically-based solar energy cells for electricity generation. 
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Table 4.1. PSI-Fd models generated using Cluspro. The 12 clusters, the number of members 

belonging to each cluster, and the weighted energy scores. 

 

 

Cluster Members Representative Weighted Score 

1 247 Center -744 

1 247 Lowest Energy -852 

2 163 Center -712.6 

2 163 Lowest Energy -850.2 

3 140 Center -714.4 

3 140 Lowest Energy -815.2 

4 119 Center -723.2 

4 119 Lowest Energy -882.8 

5 106 Center -712.4 

5 106 Lowest Energy -870.7 

6 53 Center -729.7 

6 53 Lowest Energy -784.2 

7 44 Center -740.2 

7 44 Lowest Energy -808.2 

8 38 Center -723 

8 38 Lowest Energy -769.5 

9 22 Center -747.9 

9 22 Lowest Energy -805.5 

10 18 Center -720.5 

10 18 Lowest Energy -758 

11 13 Center -754.3 

11 13 Lowest Energy -754.3 

12 6 Center -706.3 

12 6 Lowest Energy -753.4 
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Table 4.2. PSI-Fd models contacts and Fe-Fe distances. The number of inter-residue protein 

contacts and the Fe-Fe distances between the FeS centers in PsaC and Fd in each of the 12 cluster 

centers. 

 

 

Models 
Inter-residue 

protein contacts 
Fe-Fe distance 

(Å) 

1 29 11.7 

2 24 9.9 

3 25 8.5 

4 26 9.7 

5 23 13.5 

6 27 9.95 

7 27 12.4 

8 22 10.8 

9 33 15.7 

10 25 12.6 

11 25 21.6 

12 29 12.4 
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Table 4.3. PSI-Fd models generated using Cluspro using agnostic docking. The 18 clusters, 

the number of members belonging to each cluster, and the weighted energy scores. 

 

Cluster Members Representative 

Weighted 

Score 

0 248 Center -615.7 

0 248 Lowest Energy -698.8 

1 99 Center -597.5 

1 99 Lowest Energy -667.4 

2 85 Center -590.8 

2 85 Lowest Energy -685.6 

3 79 Center -592.9 

3 79 Lowest Energy -648.6 

4 77 Center -590.6 

4 77 Lowest Energy -728.1 

5 64 Center -595.3 

5 64 Lowest Energy -711.5 

6 57 Center -607.1 

6 57 Lowest Energy -690.5 

7 51 Center -622 

7 51 Lowest Energy -650.9 

8 43 Center -685.4 

8 43 Lowest Energy -685.4 

9 39 Center -589 

9 39 Lowest Energy -646 

10 32 Center -626.9 

10 32 Lowest Energy -676.7 

11 28 Center -603.9 

11 28 Lowest Energy -636 

12 17 Center -583.1 

12 17 Lowest Energy -632.8 

13 16 Center -585.1 

13 16 Lowest Energy -647.8 

14 14 Center -592.6 

14 14 Lowest Energy -614.9 

15 14 Center -595.4 

15 14 Lowest Energy -684.1 

16 4 Center -585.8 

16 4 Lowest Energy -628.2 

17 4 Center -596.8 

17 4 Lowest Energy -604.7 
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Table 4.4. PSI-Fd best model interactions. Interactions between PSI and Fd in the top model 

(cluster center with largest cluster populations).  

 

Type Chain Position Residue Chain Position Residue 

HB PsaC 13 CYS13.O Fd 41 ARG41.NE 

HB PsaC 15 GLN15.OE1 Fd 41 ARG41.NE 

HB PsaC 18 ARG18.NH1 Fd 23 GLU23.OE1 

HB PsaC 18 ARG18.NE Fd 30 GLU30.OE2 

HB PsaC 18 ARG18.NH2 Fd 31 GLU31.OE1 

HB PsaC 34 LYS34.NZ Fd 63 SER63.OG 

HB PsaD 73 ARG73.NH1 Fd 31 GLU31.OE1 

HB PsaD 76 LYS76.NZ Fd 22 ASP22.OD2 

HB PsaD 104 LYS104.NZ Fd 23 GLU23.OE2 

HB PsaE 3 ARG3.NH1 Fd 66 ASP66.OD1 

HB PsaE 3 ARG3.NH2 Fd 68 ASP68.OD1 

HB PsaE 25 SER25.OG Fd 44 ALA44.O 

HB PsaE 39 ARG39.NH1 Fd 46 SER46.O 

HB PsaE 39 ARG39.NH2 Fd 93 GLU93.OE2 

HB PsaE 48 TYR48.N Fd 35 ASP35.OD2 

HB PsaE 51 SER51.OG Fd 35 ASP35.OD2 

HB PsaE 53 SER53.OG Fd 11 ASP11.OD1 

HB PsaE 57 THR57.O Fd 39 SER39.OG 

HB PsaE 57 THR57.OG1 Fd 47 THR47.OG1 

ION PsaC 18 ARG18.NH1 Fd 23 GLU23.OE1 

ION PsaC 18 ARG18.NH1 Fd 27 ASP27.OD2 

ION PsaC 18 ARG18.NE Fd 30 GLU30.OE2 

ION PsaC 18 ARG18.NH2 Fd 31 GLU31.OE1 

ION PsaD 73 ARG73.NH1 Fd 31 GLU31.OE1 

ION PsaD 76 LYS76.NZ Fd 22 ASP22.OD2 

ION PsaD 104 LYS104.NZ Fd 23 GLU23.OE2 

ION PsaE 3 ARG3.NH1 Fd 66 ASP66.OD1 

ION PsaE 3 ARG3.NH2 Fd 68 ASP68.OD1 

ION PsaE 39 ARG39.NH2 Fd 93 GLU93.OE2 
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Table 4.5. PSI-Cytc6 models generated using Cluspro. The 15 clusters, the number of 

members belonging to each cluster, and the weighted energy scores. 

 

Cluster Members Representative 

Weighted 

Score 

0 234 Center -998.5 

0 234 Lowest Energy -1129.2 

1 149 Center -1036.9 

1 149 Lowest Energy -1132.2 

2 106 Center -942 

2 106 Lowest Energy -1136.3 

3 77 Center -1009.1 

3 77 Lowest Energy -1130.4 

4 70 Center -938.7 

4 70 Lowest Energy -1082 

5 68 Center -980 

5 68 Lowest Energy -1168.5 

6 57 Center -946.3 

6 57 Lowest Energy -1013.4 

7 52 Center -1122.3 

7 52 Lowest Energy -1122.3 

8 46 Center -952.4 

8 46 Lowest Energy -1068.2 

9 36 Center -963.1 

9 36 Lowest Energy -1069.4 

10 26 Center -935.4 

10 26 Lowest Energy -977 

11 25 Center -1015.8 

11 25 Lowest Energy -1058.2 

12 19 Center -927.1 

12 19 Lowest Energy -1017.9 

13 8 Center -934 

13 8 Lowest Energy -1014.3 

14 5 Center -928.4 

14 5 Lowest Energy -977 
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Table 4.6. PSI-Cytc6 best model interactions. Interactions between PSI and Cytc6 in the top 

model. 

 

Type Chain Position Residue Chain Position Residue 

HB PsaA 117 ASP129.OD2 Cytc6 56 ASN56.ND2 

HB PsaA 644 SER659.OG Cytc6 16 ALA16.O 

HB PsaA 645 GLN660.NE2 Cytc6 24 VAL24.O 

HB PsaA 738 SER753.OG Cytc6 25 VAL25.O 

HB PsaB 617 GLU617.OE1 Cytc6 8 LYS8.NZ 

HB PsaB 617 GLU617.OE2 Cytc6 66 THR66.OG1 

HB PsaB 618 SER618.OG Cytc6 13 ASN13.ND2 

HB PsaB 621 TYR621.OH Cytc6 13 ASN13.OD1 

HB PsaB 621 TYR621.OH Cytc6 64 ARG64.NH2 

HB PsaB 628 ASP628.OD1 Cytc6 13 ASN13.N 

HB PsaF 16 LYS16.NZ Cytc6 67 ASP67.O 

HB PsaF 17 ARG17.NH2 Cytc6 64 ARG64.O 

HB PsaF 17 ARG17.NH1 Cytc6 65 LEU65.O 

HYD PsaA 654 LEU669.CD1 Cytc6 25 VAL25.CG1 

ION PsaB 617 GLU617.OE1 Cytc6 8 LYS8.NZ 

ION PsaF 16 LYS16.NZ Cytc6 67 ASP67.OD2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 199 

Table 4.7. PSI-Cytc6 models generated using Cluspro using agnostic docking. The 29 clusters, 

the number of members belonging to each cluster, and the weighted energy scores. 

 

Cluster Members Representative 

Weighted 

Score 

0 140 Center -663.4 

0 140 Lowest Energy -782.3 

1 118 Center -716 

1 118 Lowest Energy -716 

2 81 Center -618.6 

2 81 Lowest Energy -735.5 

3 65 Center -650.9 

3 65 Lowest Energy -778.3 

4 47 Center -708.1 

4 47 Lowest Energy -725.3 

5 43 Center -689.4 

5 43 Lowest Energy -689.4 

6 42 Center -648.7 

6 42 Lowest Energy -707.7 

7 40 Center -654.3 

7 40 Lowest Energy -721.9 

8 39 Center -724.8 

8 39 Lowest Energy -724.8 

9 38 Center -605.8 

9 38 Lowest Energy -677.8 

10 38 Center -663.4 

10 38 Lowest Energy -670.8 

11 37 Center -620 

11 37 Lowest Energy -721 

12 37 Center -673.5 

12 37 Lowest Energy -687.9 

13 30 Center -624.9 

13 30 Lowest Energy -665.6 

14 27 Center -618.4 

14 27 Lowest Energy -709.6 

15 24 Center -617.4 

15 24 Lowest Energy -654.2 

16 18 Center -662.2 

16 18 Lowest Energy -662.2 
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Table 4.7 continued 
 

Cluster Members Representative 
Weighted 

Score 

17 14 Center -644.7 

17 14 Lowest Energy -644.7 

18 13 Center -610.6 

18 13 Lowest Energy -635.6 

19 13 Center -694.2 

19 13 Lowest Energy -694.2 

20 13 Center -691.9 

20 13 Lowest Energy -691.9 

21 12 Center -636.4 

21 12 Lowest Energy -636.4 

22 11 Center -613.6 

22 11 Lowest Energy -662.3 

23 11 Center -677.8 

23 11 Lowest Energy -677.8 

24 11 Center -641.5 

24 11 Lowest Energy -641.5 

25 11 Center -614.8 

25 11 Lowest Energy -646.2 

26 6 Center -607.2 

26 6 Lowest Energy -652.1 

27 2 Center -608.1 

27 2 Lowest Energy -609.1 

28 1 Center -613.8 

28 1 Lowest Energy -613.8 
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Table 4.8. PSI-Cytc6 best model interactions (agnostic docking). Interactions between PSI 

and Cytc6 in the top model. 

 

Type Chain Position Residue Chain Position Residue 

HB PsaA 609 THR624.OG1 Cytc6 49 TYR49.OH 

HB PsaA 617 SER632.OG Cytc6 55 LYS55.NZ 

HB PsaA 618 HIS633.O Cytc6 49 TYR49.OH 

HB PsaA 623 ASN638.ND2 Cytc6 56 ASN56.O 

HB PsaA 644 SER659.OG Cytc6 60 ALA60.O 

HB PsaA 644 SER659.OG Cytc6 64 ARG64.NE 

HB PsaA 645 GLN660.NE2 Cytc6 60 ALA60.O 

HB PsaA 645 GLN660.NE2 Cytc6 61 PHE61.O 

HB PsaA 735 ARG750.NH2 Cytc6 53 HIS53.O 

HB PsaA 738 SER753.OG Cytc6 63 GLY63.N 

HB PsaB 636 GLN636.NE2 Cytc6 16 ALA16.O 

HYD PsaA 640 TRP655.CZ3 Cytc6 25 VAL25.CG1 

HYD PsaB 644 PHE644.CE1 Cytc6 26 MET26.CE 
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Figures 4.1. PSI-Fd models generated using Cluspro. (A) RMSD deviation between 12 cluster 

center. (B) Superposition of 12 cluster centers. (C) Superposition of two top models (cluster 

centers with largest cluster populations) generated by Cluspro using residues filter, Fd in green, 

and agnostic docking protocol, Fd in blue. (D) Distance between FeS centers and salt bridges 

between PSI and Fd in top model. 
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Figures 4.2. Comparison with previously published PSI-Fd models. (A) RMSD deviation 

between previously published models of PSI-Fd consisting of 12 models represented by 3 clusters. 

(B) Comparison of RMSD of the newly generated models to the previous models. 
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Figures 4.3. PSI-Cytc6 models generated using Cluspro. (A) Superposition of 15 cluster 

centers. (B) RMSD deviation between 15 cluster center. (C) Distance between Heme and 

Chlorophyll groups and salt bridges between PSI and Cytc6 in top model. PsaA in purple, PsaB in 

orange, PsaF in cyan and Cytc6 in red. 
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Figures 4.3 continued 

A 

B 



 207 

 
 
 

 
 

 
 

 
Figures 4.3 continued 
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Figures 4.4. PSI-Cytc6 models generated using Cluspro using agnostic docking. (A) Distance 

between Heme and Chlorophyll groups and salt bridges between PSI and Cytc6 in top model. PsaA 

in purple, PsaB in orange, PsaF in cyan and Cytc6 in red. (B) Trp-655 and Trp-631 present at the 

interface between Heme (pink) and Chlorophyll (green). (C) Superposition of the top two PSI-

Cytc6 models generated by Cluspro using the residue filter (red) and the agnostic docking protocol 

(green). 
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CONCLUSION 
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The biological levels of organization in living beings form a highly structured hierarchy. 

This range from a single atom, all the way up to the biosphere. The different subunits- atoms, 

molecules, amino acid sequences, proteins, cells, tissues, organs, etc., together (as a system) 

perform the functions necessary for survival and reproduction. Thus, to understand the function at 

the macroscopic scale that we see around us, it is important to understand the function at the 

microscopic level first.  

There is a direct relationship between the structure of the proteins and the diverse functions 

that they can perform. The flexible nature and dynamics of macromolecules forms an 

indispensable link between their structure and function. The interactions that drive most of the 

biological processes are also influenced by this dynamic nature of biological molecules. The study 

presented here explores this structure-dynamics-function relationship. Important insights were 

gained about the dynamics of interactions in proteins, between protein: ligands and protein: protein 

systems. Throughout this work, different molecular modeling and simulation technologies were 

employed to tackle specific problems in the field of molecular and structural biophysics. 

 In CHAPTER 1, an emerging non-covalent interaction is identified to potentially play 

important roles in protein systems in: i) maintaining stability of the folded structure of protein 

monomers, ii) dimeric interface interactions i.e., forming quaternary assemblies, and iii) active-

site interactions in maintaining function. Experimental work like mutagenesis studies can help to 

validate these results in terms of physical effects of these interactions on the stability of the protein. 

These interactions have been exploited in field of drug-discovery in developing active-site 

inhibitors. Hence, in future it is imperative to include these interactions in the description of new 

forcefields and docking scoring-functions in order to make better predictions both in the fields of 

molecular modelling and structure-based drug discovery.  



 212 

CHAPTER 2 focuses on understanding the tissue specific functions of GPRC6A and the 

structural basis for its binding to distinct ligands, elucidating new systems biology involving 

coordinated metabolic processes. Future molecular dynamics simulations of the T:GPRC6A 

models, will likely be able to identify the most stable binding modes of ligands in GPRC6A and 

allow a detailed structure-based description of binding poses.  The study also takes the first step 

for the development of agonists for GPRC6A that may stimulate insulin production, -cell 

proliferation and peripheral tissue sensitivity, and thereby provide a new treatment for Type II 

diabetes.  Conversely, antagonists to GPRC6A might represent new treatments to retard the 

progression of prostate cancer.  . 

CHAPTER 3 exemplifies a successful MD simulation and high-throughput virtua l 

screening approach to drug discovery, targeting a protein-protein complex, and shows the 

importance of explicitly including the flexibility of proteins in making better predictions in drug-

discovery. New protein targets for diseases like cancer and diabetes are being discovered rapidly. 

The same approach can be extended to target these proteins, using even larger compound databases 

covering millions of compounds. This can increase dramatically the number and diversity of 

compounds that can be identified, while at the same time providing a more realistic approach that 

accounts for the dynamic nature of macromolecules and their complexes under physiologica l 

conditions.  

The work in CHAPTER 4 allows the atomic-level description of protein-protein 

interactions and dynamics between electron transport proteins in PS1. Information obtained from 

the docking models and ongoing MD simulations can be used to guide future experimental studies, 
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enabling the design of high affinity variants of these proteins to optimize electron transfer and 

leading to the development of biologically-based solar energy cells for electricity generation. 

Overall, the work presented here explores the importance of dynamics in describing both 

the structure and the function of macromolecules. It becomes indispensable to spend more time 

and resources in the study of this field, as it forms an important link between the thousands of 

protein structures solved till now, and their functions. An unwanted change in the 

structure/interactions/dynamics can lead to a change in the function, leading to diseases. At the 

same time, this dynamic nature of biological molecules can be exploited for making better drugs 

and improving the efficiency of renewable sources of energy. 
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