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ABSTRACT 

The Japanese archipelago exhibits an immense amount of variation in culture and history, 

despite the lay population mostly considering the modern Japanese a homogeneous population. 

Japan has experienced an amazing amount migration activity. These migration events are well 

represented in the archaeological record and have provided fodder for hypotheses proposed for 

peopling of the new world.  

 Biological anthropologists have tested hypotheses surrounding the initial peopling of the 

islands using linear data in conjunction with non-metric traits of the skull. Recent molecular 

studies have provided evidence for population substructure, which suggests an original founding 

group of North Asian descent, and a more recent migration into Southern Japan from the Korean 

peninsula. The secondary migration interbred with the indigenous Jomon inhabitants, ultimately 

giving rise to two distinct genetic lineages. 

 An examination of a variety of skeletal collections from a range of temporal and regional 

samples in Japan allows for an expansion of hypotheses proposed by previous research to explain 

the range of variation observed through time and space in Japan. This study aims to build upon 

research endeavors that have quantified various aspects of skeletal morphology represented in 

Japan. This study reexamines the majority of analyses that have used metric data by using three 

dimensional data (3D). 3D or coordinate data can be used to better identify evolutionary patterns 

in biological populations via geometric morphometric approaches.  Samples utilized represents 

skeletal collections of a nearly temporally continuous sequence that encompasses the indigenous 

Jomon culture that dates to 10,000 BP to the modern period.  

Results highlight the utility of comparisons of various types of data that represent 

morphological variation. It is argued that 3D data can provide novel results and thus the 

reexamination of a host of hypotheses that examine morphology of the cranium is warranted.  
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CHAPTER 1  

INTRODUCTION 

 

One of the major research areas within biological anthropology is the examination and 

estimation of ancestral relationships between skeletal samples, both at the population and 

individual level. Thus, estimation of population affinity using the skeleton has been a central 

focus of paleoanthropologists and bioarchaeologists and is now a goal for forensic 

anthropologists when dealing with unidentified human remains in a modern context. Studies of 

the human cranium have fueled a multitude of research within the last few centuries.  

Specifically, the last fifty years have provided some of the most fundamental sources of 

knowledge with respect to variation of the modern human skeleton.  Craniometric analyses that 

utilize multivariate statistical approaches have long provided evidence for evolutionary histories 

of human and hominid populations.  

Collection of skeletal data that can be employed in multivariate analyses in parts of the 

world that is not well represented in the research literature is imperative for the advancement of 

both broad and focused studies of human variation. Procurement and curation of this type of 

information provides a means for researchers to address hypotheses that have far-reaching 

implications for scientific communities.  While published research has examined skeletal 

variation in prehistoric and modern East and Southeast Asian human populations, more data is 

needed to represent the range of variation present in different geographic regions of Asia. This 

type of information can ultimately be used in future studies by students and professionals to 

answer questions within archaeological and forensic contexts. 

It is important to highlight the ambiguous and often detrimental terms used to describe 

world populations by scientists and lay populations alike. The distinction between race as a 
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social construct and biological reality is often difficult for non-anthropologists to understand. In 

particular, biological anthropologists have come under fire for studying human variation under 

large umbrella terms such as “Hispanic” or “Asian”. These broad terms are ambiguous and do 

not offer much biological meaning other than a label indicating which large region of the world a 

population inhabited. Even within the comparatively tiny archipelago of Japan, there is an 

immense amount of variation in culture and history, despite the lay population mostly 

considering modern Japanese as a homogeneous population (Low 2012). Unbeknownst to many, 

there has been tension and conflict between what is considered the dominant population of the 

‘Japanese’ and the Ainu, who are considered the direct descendants of the indigenous population 

of the sedentary hunter-gatherer culture of the Jomon. Thus, Japan is considered a “multi-ethnic” 

society (Low 2012). This study aims to build upon research endeavors that have quantified 

various aspects of skeletal morphology represented in Japan. Research in this seemingly small 

portion of the world adds to the wealth of knowledge that can have implications that may not be 

apparent at first glance. For instance, Japan has experienced an amazing amount of varied human 

groups that have migrated into this small group of islands over the last 10,000 years. These 

migration events are well represented in the archaeological record and have provided fodder for 

hypotheses proposed for initial migrations into the new world. 

Anthropological studies of East Asian skeletal samples have traditionally been carried out 

using linear data in conjunction with non-metric traits of the skull. Studies of metric and non-

metric dental variation also comprise a large portion of the available literature.  

Many hypotheses regarding migration theories for the initial peopling of East and 

Southeast Asia as well as North America have been based on analyses of craniometric and non-

metric traits of mostly premodern skeletal samples from northern and southern Japan (Brace et 
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al. 1989; Hanihara 1991; Hanihara et al. 2008a; Pietrusewsky 2004; Turner 1990) . Additionally, 

recent molecular studies have provided evidence for population substructure, which suggests an 

original founding population of north Asian descent, and a more recent migration into Southern 

Japan from the Korean peninsula (Nagaoka et al. 2013). The secondary migration is believed to 

have interbred with the indigenous Jomon inhabitants, ultimately giving rise to two distinct 

genetic lineages. 

 Given this foundational knowledge, an examination of a variety of skeletal samples from a 

range of temporal and regional samples in Japan allows for a more detailed examination of the 

range of variation described by previous research. 

.  The data collected and documented is presented as an initial step to better identify how 

evolutionary processes (specifically gene flow) have resulted in the morphological trends 

established in the literature and this study. 

The goals of this research in the most general sense are as follows: 

1) Examine variation of the human cranium in premodern and modern Japanese skeletal 

samples at a more meaningful biological level by employing methods that utilize 

coordinate data in comparison to linear data. 

 

2) Investigate how the shape of the cranium varies across skeletal collections that 

represent the regionally specific areas of northern, central and southern Japan, both in 

modern and prehistoric populations. 

 

3) Explore the possibility that different bony components of the skull can potentially 

provide different results when partitioned during analyses.  

 

In more detail, this study provides some of the preliminary measures required to 

eventually identify evolutionary events that are correlated with morphological patterns. The use 

of skeletal samples from various temporal depths, starting from the first archaeologically 
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identifiable culture that occupied Japan over 10,000 years ago to (almost) present day Japan 

offers the opportunity to explore and expand upon several research questions. Statistical 

approaches using this type of data can provide more information that can be used by researchers 

to infer relationships among biological populations. Given the complexity of the data set, the 

questions to be addressed with this research project are provided in explicit terms, as the large 

time frame and multitude of geographic locations represented can leave a convoluted path of 

research bread crumbs that may or may not disappear the deeper into the woods (the data) we 

venture. However, it is important to clarify that this dissertation is presented as an initial step of 

employing quantitative genetic analyses for hypothesis testing, which at this stage is beyond the 

scope of this work. By better identifying morphological variation that is patterned in such a way 

that suggests meaningful relationships in a population, hypotheses can be better identified in 

future work.  

This study examines cranial variability of Japanese populations utilizing skeletal 

collections housed at Kyushu University, which curates samples from Kyushu Island (Southern 

Japan) and nearby locales that represent a nearly temporally continuous sequence from the 

prehistoric Jomon culture to the modern period. Additionally, modern skeletal material is 

examined from Sapporo University, Tohoku University, University of Tokyo, Kyoto University, 

and the University of the Ryukyus. Collectively, these skeletal samples represent northern, 

central and southern Japan and include individuals with birth years from the late 19th and early 

20th century. 

Proposed Hypotheses 

1. The employment of coordinate data in analyses will provide different conclusions than 

found with linear data. Namely, a better understanding of how samples exhibit morphological 
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similarities and differences in both size and shape can be reached to expand on results of 

previous analyses that have employed traditional linear metric data. 

2.  Examination of the shape of the cranium in units that represent different areas of bone that 

have been shown to respond to evolutionary forces differently can provide more conclusive 

results when using morphology to infer population history. Comparisons of partitioned data 

sets with analyses of the skull as a whole will provide alternate result interpretations for 

sample comparisons.  

3. The use of coordinate data to examine how Japanese populations have changed 

incrementally through time will better elucidate how morphology has changed. This 

approach will provide a better avenue of comparative changes in temporally comparable 

populations throughout the world. Specifically, analysis of samples from the medieval period 

to the modern period will allow for the identification of shape changes correlated with 

brachycephalization, which is the most cited morphological trend in modern Japanese 

populations. 

4. The hybridization model for the peopling of Japan posits that peripheral regions of the 

archipelago, namely the northernmost and southernmost regions that encompass the Ainu and 

the Ryukyuans experienced less admixture with the Yayoi individuals than the mainland 

Japanese populations (Hanihara 1991; Ossenberg et al. 2006). It is hypothesized that regional 

variation may be evident in the modern samples (particularly from the northernmost and 

southernmost islands) that may indicate a retention of morphology exhibited in premodern 

parental populations. Furthermore, comparison of the regionally distinct modern samples 

with Jomon, Ainu and Yayoi groups will be used as an initial step for identifying population 
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substructure that may not be immediately apparent in analyses of modern data that do not 

include prehistoric samples. 

 The initial portion of this dissertation provides a biological and archaeological foundation 

for the proposed analyses and an extensive literature review. The following chapter provides a 

brief history of archaeological and anthropological research in Japan. The next chapter provides 

a framework for the implementation of geometric morphometric approaches and outlines the 

statistical procedures that are used in this study. The following chapter will provide results of the 

analyses described. The final chapter discusses the implications of results, both in an 

archaeological and evolutionary context.  
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CHAPTER 2  

LITERATURE REVIEW 

Biological Foundations 

 

Using craniometrics to infer evolutionary and population histories has experienced a long 

and troubled past in biological anthropology.  In the 19th and early 20th century, researchers 

exhibited a typologist method of describing variation in cranial morphology and metric 

dimensions among world populations (Coon 1962). These associations harken back to racial 

descriptions invoked by Linnaeus (Carolus 1735). The last several decades of research have 

greatly improved our understanding of how the skeleton reflects function and adaptation (or lack 

thereof) to epigenetic factors including biomechanical loading, diet and nutrition, climate and 

temperature. The importance of genetics and the implications of heritability of traits has also 

become imperative in studies of biological form and has resulted in a multitude of 

interdisciplinary collaborations that have shaped current perceptions of evolution. As such, the 

definition and usage of morphoscopic and metric traits of the human form requires an in-depth 

knowledge of the complex and interactive relationship between genetics and functional anatomy, 

as well as an understanding of the evolutionary history of biological organisms.  

Modern anthropological use of craniometric variation in conjunction with genetics has 

been shown to be extremely informative for population history studies. Several influential 

studies by Relethford (Relethford 2001; Relethford 2002)  have shown through model bound 

quantitative genetic approaches that selection pressures of inter-regional populations have played 

a limited role in producing global patterns of cranial diversity. However, some aspects of skeletal 

morphology have been subject to selection pressures in the recent past, as evidenced by 

correlation of morphology with climatic variables. Relethford has also shown that craniometric 

variation as a whole varies across regions in such a way that matches neutral genetic 
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expectations, supporting the idea that genetic variation accumulates and exists between 

populations as an artifact of neutral processes such as random genetic drift (Tishkoff and Verrelli 

2003). However, variation does not operate under a strictly neutral model. The similarities 

identified between genes and craniometric phenotypes may exist due to similar population 

history and structure (gene flow and genetic drift) and/or similarities due to selection pressures.  

Studies that emphasize the role of selection pressures argue that cranial traits are entirely too 

plastic to effectively be used for migration and population history research.  However, recent 

work investigating morphological integration and modularity in the skull has provided better 

resolution to the intricate relationship between genetic and environmental factors and their 

combined effects on the cranium.  

Many recent publications have built on foundational studies that defined morphological 

integration and modularity of the cranium (Cheverud 1988; Cheverud 1996) and demonstrate 

how the relationship between development and function of skeletal modules can provide insight 

regarding how plasticity can become selected for. Morphological integration is defined as 

cohesion or covariance among traits that result from biological processes that produce 

phenotypic structures. Integration can further be defined as features of developmental 

architecture. This set of potential connections or interactions between developmental 

components can result in developmental and phenotypic covariation (Hallgrimsson et al. 2009). 

This intricate relationship within a biological form can enhance or impede evolution, depending 

on integration of the traits being selected for.   

Using the human skull to deduce which evolutionary mechanisms can be identified when 

examining morphology has produced analyses that adhere to the rubric that morphological 

integration theory defines. For example, Gonzalez-Jose et al.,(González‐José et al. 2004) 
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proposed that morphological integration of the human cranium is mainly determined by effects 

of functional and developmental characteristics of traits. The authors showed that modern human 

populations exhibit a stable pattern of correlation and covariation among cranial modules, which 

suggests that morphological differences are highly concordant with genetic differences. The tenet 

that phenotype and genotype is inherently related in the human skull has been a foundational 

concept for some time. Yet, the results of studies such as the aforementioned work highlight how 

changes to form can be incredibly difficult to achieve given the complex and interdependent 

relationship of the bony compartments of the skull that are required for normal development and 

function.  

While much of the research of the last two decades has provided a solid foundation for 

biological anthropologists to elucidate which regions of the human skull are more susceptible to 

epigenetic factors, studies of population affinity and population history become more complex 

when taking gene flow into consideration. For example, it has been shown that gene frequencies 

of admixed populations place a hybrid population intermediately between two parent 

populations, but the effects of admixture on phenotypic morphology have been less clear within 

the discipline of anthropology (Elston and Stewart 1971).  

Thus, debate still exists regarding which areas of the skull are better predictors of 

population affinity. This relates to the topic of assessing admixture, as it is essential to try to 

illustrate which areas of the cranium are more susceptible to exhibiting a larger range of 

plasticity and in turn which areas of the cranium will be more affected by heritability. Several 

recent works have provided examples that are extremely relevant in anthropological application 

as metric variation of the skull is often used to establish biological distance in realms such as an 

archaeological site of unknown cultural provenience or forensic cases. This approach becomes 
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even more relevant in contexts where gene flow among defined parental populations has 

occurred, yet the morphological result is not well understood and/or has not been adequately 

modeled. A model example of such work is that of  Holló et al., (Holló et al. 2010), who 

compared the neurocranium to the facial skeleton to assess which region was able to better 

predict population affinity. The authors suggest that the neurocranium contains more biological 

information for prediction purposes as the neurocranium reaches adult size before the facial 

skeleton and thus the developing viscerocranium is affected by environmental variables for a 

longer duration of time. If further supported, this principle has vast implications for application 

in research. By identifying portions of the skull that may better reflect heritability versus 

adaptability and/or plasticity, researchers can better isolate anatomical regions to employ for 

specific analyses, thus eliminating nuisance parameters that can skew results and interpretations. 

In regards to work that has attempted to isolate and predict the effects of gene flow 

among distinct populations in the skull, Martínez‐Abadías et al., (Martínez‐Abadías et al. 2006) 

analyzed cranial dimensions of individuals subsequent to Spanish and Amerindian contact. 

Results of this study suggest that admixture between defined populations does not necessarily 

result in a linear relationship that is intermediate between parental populations when the cranium 

is treated as a single entity. Rather, this analysis provides support for using the neurocranium as a 

more stable indicator of admixture. A more linear and intermediate relationship between distinct 

populations is identified with the cranial base and vault whereas the facial skeleton does not 

provide such explicit evidence. 

These results coincide with conclusions of a study by Harvarti and Weaver (Harvati and 

Weaver 2006) which also postulated that different cranial regions preserved population histories 

in varying degrees. Neutral genetic distances were better correlated with the shape of the 
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temporal bone, neurocranium, and overall cranial shape. However, shape associated with the 

facial skeleton did not appear to preserve population history as effectively. Climatic variables 

showed an association with face shape, possibly indicating that facial dimensions are more 

plastic, as has been proposed and supported by a number of other publications. However, also 

relevant in the Harvarti and Weaver (Harvati and Weaver 2006) study is the inclusion of an 

arctic population, which is representative of an extreme morphology that possibly inflated 

correlation. 

Biomechanical stress is another variable relevant for interpretation of cranial 

morphology. Several morphological trends have been cited as resulting from modification of 

subsistence strategies. Most notable in the archaeological record is the transition from hunter-

gatherer to agriculturalist approaches. A major result of such a change was a shift from a coarse, 

gritty diet that placed high stress on the masticatory complex to softer foods that required less 

intense muscle function. These changes have been reflected in the facial skeleton and resulted in  

more gracile and narrow dimensions directly associated with diverting energy produced by 

muscles and structures associated with chewing (Lieberman 2011). Gonzalez-Jose et al., 

(González‐José et al. 2005) detailed this relationship in a study of craniofacial morphology 

among 18 populations of hunter-gatherers and farmers in South America, showing that 

differences in the masticatory complex could be identified and correlated with type of diet. The 

importance of studies that explicitly identify correlates among morphology and function helps 

rationalize the approaches for data collection and analyses that will later be described and 

implemented in this dissertation.  

Other analytical approaches have expanded upon principles of genetic and phenotypic 

neutrality of the cranium most notably outlined by the work of Relethford (Relethford et al. 
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1994; Relethford 2001; Relethford 2002). Several studies are cited as foundational works and 

impetus for hypotheses of much of the influential work of the last decade. For instance, a pivotal 

study by  Roseman and Weaver (Roseman and Weaver 2004) converted craniometric data into 

size variables of specific morphological regions relative to the overall size of the cranium. This 

approach was used to assess which measurements vary more than expected under a model of 

genetic neutrality.  Results indicate that some regions of the cranium, particularly nasal 

dimensions, differ among geographic groups, which are thought to be the result of differential 

selective pressures. Works such as this have proved to be an invaluable tool for aiding research 

that aims to examine morphology in an evolutionary framework, as it builds upon critiques of the 

adaptationist programme, or the tendency to assume that a phenotypic trait is the product of 

natural selection. 

 However, genetic and phenotypic neutrality of the cranium is by far irrefutable or even 

conclusively understood. For example, in a different, but related study to the previously cited 

work, Roseman et al., (Roseman et al. 2010) demonstrated via an experimental baboon model 

that certain levels of environmental and genetic variation are randomly distributed across regions 

of the cranium, rather than being structured by developmental origin. Individual traits in the 

cranium tend to be constrained by covariance with other regions of the skull that are subjected to 

high amounts of strain. Therefore, it is suggested that a high stress-strain region such as the 

masticatory complex will not be any more variable than other traits, implying all cranial modules 

are equally reliable for reconstructing patterns of evolution. The juxtaposition of two 

publications coauthored by the same researcher illustrates two very different, seemingly mutually 

exclusive concepts hopefully illustrates the unfathomably complex nature of morphology.   
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Despite these headache inducing concepts and sometimes confounding conclusions, the 

overarching consensus is that studies that have compared cranial dimensions with genetic data 

indisputably show that craniometric variation is geographically structured and for the most part 

coincide with patterns of variation found in studies of neutral DNA markers (Relethford 2001).   

An important caveat to this consensus is that there is also evidence that neutrality of 

cranial dimensions may be more limited to the developmental and functional modules 

encompassed within the cranial vault, as was conveyed by summaries of select studies earlier in 

this chapter (Holló et al. 2010; von Cramon-Taubadel 2011). To further support the skeletal 

evidence, recent molecular research has identified quantitative trait loci that influence normal 

craniofacial morphology and thus show high percentages of heritability in specific regions of the 

skull (Liu et al. 2012). Narrow sense heritability has also been identified in certain regions of the 

cranium. For example, Carson (Carson 2006) found facial dimensions often exhibit lower 

heritability percentages than the neurocranium. This provides further support for partitioning the 

cranium when examining biological distance among samples or ascertaining population affinity.  

The discussion of neutrality, heritability and adaptation in the cranium warrants examples 

of trends that are generally accepted as reflecting selection. An important example is that shape 

and size of the modern human skull reflects components of Bergmann-Allen’s rules.  

Bergmann’s rule posits that organisms in cold climates will exhibit larger body mass as a 

mechanism for heat retention. Conversely, hotter climate dwelling organisms will exhibit 

reduced mass to more efficiently disperse heat. Allen’s rules states that cold climate populations 

exhibit broad bodies with short extremities while hot climate organisms are narrow and have 

long, thin appendages. These rules applied to the skull results in smaller, narrower cranial vaults 
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expressed in populations adapted to warmer/ hotter climates and larger, broader skulls in cooler 

climates where heat retention in the head and brain is necessary (Beals et al. 1984; Ruff 1994).    

 

Growth and Development of the Cranium 

 

A brief overview of the development of the skull is warranted to provide necessary 

background information that helps elucidate the basis for hypotheses that postulate particular 

dimensions of the head as predisposed to be more responsive to environmental factors.  

Three complex developmental modules make up the human cranium. These integrated 

modules consist of the cranial vault, or neurocranium, the base, or basicranium, and the facial 

skeleton, or viscerocranium (Figure 1). While growth and development is a highly coordinated 

and complex process, these regions of the skull grow and develop by different patterns of 

ossification and thus are somewhat independent of each other. While it may seem contradictory 

to describe these elements as independent as well as highly correlated and coordinated during 

growth, a review of how these distinct regions of the cranium move and enlarge during ontogeny 

provides insight into the developmental and functional relationship and independence between 

these units.  
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Figure 1. Modules of the skull. Image modified from www2.aofoundation.org 
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Roughly three weeks after conception, minute structures begin to form, including 

ectoderm, mesoderm, and endoderm tissues (Lieberman 2011). Ectoderm forms the nervous 

system, sense organs, skin and hair, bones, muscles of the head, and tooth enamel. Mesoderm 

forms the musculoskeletal system, dermal/subdermal layers of the skin, and tooth roots 

(Schoenwolf et al. 2012) . Endoderm forms the epithelial lining of the gastrointestinal, 

respiratory, and urinary tracts. The notochord also begins to develop at this stage. 

Neuroectodermal cells begin to form the neural tube and epithelial cells cluster to form the nose, 

inner ears, and eyes. These cell clusters act as signaling centers to induce transformation in 

neighboring mesenchymal cells to stimulate craniofacial skeletogenesis. The next phase is 

gastrulation, in which clumps of embryonic connective tissue (mesenchyme) coalesce along 

sides of the notochord. Mesoderm closest to the notochord forms sclerotome which is a pre-

cursor skeletal tissue that eventually gives rise to cartilage of the axial skeleton and the cranial 

base surrounding the foramen magnum. The remaining units of the head come from 

unsegmented paraxial mesoderm, endoderm, and ectoderm.  

Formation of the cranial base begins roughly 28 days after conception when mesenchyme 

clusters beneath the brain and begins to differentiate into cartilages of the chondocranium via 

inductive interactions with other mesenchymal cells and ectodermal tissue around the brain 

(Schoenwolf et al. 2012). Parachordal, prechordal, and sensory cartilages form the basicranium. 

Ossification of the chondrocranium begins roughly 8 weeks in utero, and results in roughly 41 

ossification centers. The basicranium is the first part of the cranium to attain adult size and 

shape, slightly before the neurocranium, and drastically earlier than the face (Hallgrimsson et al. 

2007). The basicranium grows mostly through endochondral ossification and is thought to be less 

susceptible to epigenetic interactions with surrounding organs, however, growth of the face and 
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brain can also influence endochondral growth of the cranial base (Enlow and Hans 1996). The 

cranial floor is considered the template from which the face develops.   

During growth, the three fossae of the base elongate anteroposteriorly and widen 

mediolaterally, as well as grow deeper inferiorly (Enlow and Hans 1996). The cranial base angle 

flexes and extends in the mid-sagittal plane and the petrous pyramids rotate around a vertical 

axis. The endocranial surface of the basicranium is resorptive.  Fossa enlargement is 

accomplished by direct remodeling, involving deposition on the outside and resorption on the 

inside. The elevated portions that compartmentalize the brain are depository in nature. As the 

fossae expand outward by resorption, the partitions between them must enlarge by deposition.   

The midventral segment of the cranial floor grows slower than the lateral fossae to 

accommodate the slower growth of the medulla, pons, hypothalamus, and optic chiasma, which 

contrasts with the rapid growth of the cerebral hemispheres. In addition to remodeling, the floor 

of the neurocranium enlarges by sutural and synchondrosis, which allow for the differential 

speeds within the basicranium.  

Each foramen encompassing a cranial nerve and major blood vessel undergo drift 

processes to maintain proper position. The foramina thus move by deposition and resorption to 

keep in synchronized movement with the growing brain, cranial nerves and blood vessels.  

Although the posterior cranial fossa expands, the remodeling process maintains the 

proper position of the spinal cord, which passes through the foramen magnum. Synchondroses 

characterize the midline of the basicranium and are a retention of the primary cartilages after 

endochondral ossification centers appear during fetal development.  The spheno-occipital 

synchondrosis (SOS) is the primary growth cartilage of the cranial base, which is a pressure 
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adapted bone growth mechanism (as it supports the mass of the brain and face). The SOS allows 

for elongation in the midline, which also accommodates the growing neural mass and resulting 

compressive forces. The SOS is essentially two epiphyseal growth plates positioned back to 

back, resulting in two linear (opposite) growth patterns (Enlow and Hans 1996). ). The SOS 

reaches mature size between 12 and 15 years of age and typically closes in the later teenage 

years. The sphenoid and occipital are moved apart by primary displacement and new 

endochondral bone is laid down by the endosteum of each bone. Compact bone is formed around 

this core of endochondral/trabecular bone and each bone becomes lengthened and increase in 

girth by periosteal and endosteal remodeling. The sphenoidal sinus develops to stay in contact 

with the moving nasomaxillary complex.  

Expansion of the middle cranial fossa and its neural contents (the brain) results in a 

secondary anteroforward displacement effect on the anterior cranial floor. Between 5-6 years of 

age frontal lobe growth and anterior fossa expansion are nearly complete. Further protrusion of 

the forehead is a result of thickening of the frontal bone. The temporal lobe and middle fossa 

continue to enlarge for several more years. The growth on the inner table stops around the sixth 

year, but the outer table continues to remodel anteriorly to keep up with the nasomaxillary 

complex, which continues to grow, and eventually forms a gap that results in the frontal sinus.  

  The bones of the cranial vault ossify by intramembranous ossification and begin to 

develop soon after the skull base (Lieberman 2011). The frontal bone and the temporal squama 

derive from neural crest cells, the parietals derive from mesoderm while the occipital squamous 

derives from a combination of neural crest cells and mesoderm. Mesenchymal cells around the 

vault are induced to form two periosteal membranes, the endocranium and ectocranium 

membranes. Intramembranous ossification occurs between these layers. The expanding brain and 
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neurocranium grow as an integrated unit largely due to sutures. The sagittal and coronal sutures 

act as key signaling centers that coordinate vault osteogenesis by tensile forces placed on the 

sutures, stimulated by the expanding brain. Dura mater and dural bands also pull directly on 

sutures during brain growth. Flexible membranes (fontanelles) assist during rapid brain growth 

and permit rapid stretching and deformation as the brain expands faster than bone can grow.  

As the brain expands, the separate bones of the calvaria are displaced in outward 

directions. The bones are carried by the expanding connective tissue membrane meninges, which 

separate the bones at their articular sections of the sutures. This displacement causes tension 

along the suture membranes and stimulates new bone deposition along the sutural edges. Bone 

deposition also occurs in small amounts along the flat endo and ectocranial surfaces of the bones. 

Brain volume and cranial capacity reach 96% of mature size at roughly six to seven years of age. 

The vault bones (excluding the parietals) also participate in growth of the face and cranial base.  

The facial skeleton is described as the most variable and most evolvable part of the skull 

(Lieberman 2011). It is the most complex module within the cranium and also the least 

constrained. Bones of the facial skeleton grow intramembranously and are highly integrated to 

accommodate so many structures. Neural crest cells that form the face migrate toward and 

around what will develop into the mouth, or stomodeum. Differentiation results from interactions 

between the neural crest and epithelial cells. From the earliest stages of growth, the upper face 

grows through coordinated activity with the anterior cranial base, the forebrain, eyes, nose, and 

frontonasal prominences. The lower and middle portions of the face also develop around organs 

and functional spaces such as the nasal and oral cavities and the teeth, exhibiting patterns 

explained by the functional matrix hypothesis in which skeletal growth is governed by 

surrounding soft tissue and organs (Moss and Salentijn 1969; Moss and Young 1960)   
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Ossification of the face begins intramembranously, starting around six weeks in utero. At 

approximately eight weeks, the maxillae and zygomaticae begin to ossify and fuse with the 

zygomatic arches. By the end of the embryonic stage, the sphenoid and ethmoid connects the 

midface with the cranial base while the upper face articulates with the cranial base via the 

ethmoid (Schoenwolf et al. 2012). 

The facial skeleton grows anteriorly and inferiorly from the cranial base and is thus 

constrained by anterior and middle cranial fossae shape and position. The face grows at a 

different rate from the rest of the head, and the growth trajectory is not completed until the end 

of the adolescent growth spurt, roughly 10 years after the cranial base and neurocranium reach 

mature sizes.  

The entire maxilla undergoes primary displacement in an anterior and inferior direction 

as it grows and lengthens posteriorly. It is believed that bone growth at sutures occurs in tandem 

with the displacement of the bone. A major component of the midfacial growth complex is the 

lacrimal bone, which is completely surrounded by sutures. The outward portion of the lacrimal 

keeps pace with the expanding ethmoidal sinuses while the medial/superior portion of the bone 

stays stationary against the nasal bones.  

Growth at the maxillary tuberosity occurs in three directions: posteriorly, laterally, and 

inferiorly along the alveolar margin. Horizontal lengthening of the bony maxillary arch is carried 

out by remodeling at the maxillary tuberosity via a backward facing periosteal surface located on 

the tuberosity. The arch widens with the lateral surface being depository. The endosteal surface 

is resorptive. Due to these movements, the maxillary sinus becomes enlarged as well. The 

horizontal enlargement of the middle cranial fossa and brain advance and carry the 
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nasomaxillary complex anteroinferiorly while the horizontal span of the pharynx increases as 

well.    

The mandible develops from intramembranous growth around a central cartilaginous rod 

referred to as Meckel’s cartilage. The mandible grows forward from the cranial base and is 

highly integrated with the cranial base in an effort to avoid malocclusion. The lingual tuberosity 

is the border between the ramus and the corpus. It grows posteriorly by deposits placed on its 

posterior facing surface, almost exactly like the maxillary tuberosity (its counterpart). The 

tuberosity relocates posteriorly with a slight lateral shift. The entire ramus is also relocating 

posteriorly at the same time. Resorption on the anterior border of the ramus is making room for 

the third molars but also to relocate the entire ramus posteriorly. The condyles exhibit an 

obliquely backward and upward growth direction. The gonial region is variable and can have a 

resorptive buccal/depositional lingual surface or the reverse.  

The mandibular foramen relocates backward and upward by deposition on the anterior 

and resorption on the posterior portion of its rim (Enlow and Hans 1996) . The mandibular 

condyle forms from endochondral ossification and grows toward the articulation with the 

temporomandibular joint. The anteroposterior dimension of the ramus is a direct counterpart to 

the middle cranial fossa, which is also roof of the pharyngeal compartment.  

The mandibular ramus becomes more vertically inclined during development, which is 

accomplished by depositing greater amounts on the inferior part of the posterior body than on the 

superior part. A matching amount of corresponding resorption occurs on the anterior inferior 

border, more so than on the superior anterior border. Condylar growth becomes more vertically 

oriented in tandem with the uprighting of the ramus. Thus the angle of the ramus in relation to 
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the corpus is greatly reduced to accommodate vertical nasomaxillary growth. Vertical 

lengthening of the ramus continues after horizontal widening of the ramus ceases to match the 

vertical growth of the midface.  

During the descent of the maxillary arch and vertical drift of the mandibular teeth, the 

anterior mandibular teeth drift lingually and superiorly to compensate for the superior overbite of 

the maxillary teeth. Bone is progressively added to the mental eminence. The human chin is a 

phylogenetic result of downward-backward face rotation into a vertical position, decreased 

prognathism, increased in vertical facial growth, and development of an overbite. 

Phenotypic Plasticity in the Cranium 

 

A more in depth discussion of phenotypic plasticity is provided and expands on the 

principles of growth provided in the previous section. 

Rampant in anthropological and evolutionary biological literature is the debate 

surrounding whether environmental or molecular factors have a greater effect on the shape of the 

human skull. Although critiques exist regarding the interpretation that any given morphology 

must exist for an adaptive reason (Gould and Lewontin 1979), it can be argued that the 

combination of features that are unique to our species such as bipedality, encephalization, and 

distinct body proportions all hold some degree of adaptive significance (Aiello and Wheeler 

1995; Lovejoy and McCollum 2010; Ruff 2002).  

In a broad sense, plasticity is defined as trait that allows for environmental 

responsiveness (West-Eberhard 2003) but can further be defined as the range of potential 

phenotypes that are produced as a result of perturbations during ontogeny, or environmental 

variation (West-Eberhard 1989). Selection for a particular morphology within a range of given 
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phenotypes can occur by epigenetic or developmental factors and become selected for and 

ultimately fixed if the selection coefficient is high enough. Consequently, the full range of a 

phenotype may be hidden by selection, which can make it difficult for the researcher to tease 

apart causation, or even correlation related to a specific trait. However, it is the aim of many 

disciplines to identify plasticity at the individual and population level.  The results of such 

endeavors provides insight surrounding the etiology behind phenotypic accommodation and how 

environmental and or/genetic trends affect phenotypic traits in an organism.  

The discussion of phenotypic plasticity necessitates a definition of constraints. While 

plasticity is defined as a range of expressible variation, developmental and genetic constraints or 

biases limit or deflect the potential response to selection in certain directions of phenotypic space 

(Smith 1985). This concept is the reason humans do not exhibit an unlimited amount of genetic 

potential that could be expressed as phenotypes that fuel science fiction, such as wings, gills, x-

ray vision and such. Phenotypic constraint is interesting as it can also enhance variation. If 

environmental or genetic perturbations are extreme enough that a species cannot respond within 

the normal range of variability then developmental thresholds may be heightened. This can allow 

underlying variation to be expressed, which can result in the appearance of new phenotypes, or 

novelties (Muller and Newman 2005). 

Morphological Integration and Modularity in the Skull 

 

Directly related to plasticity is the concept of modularity. Wagner and Altenberg 

(Wagner and Altenberg 1996) explain that modularity limits the effects of mutations to sets of 

functionally or developmentally related traits.  A modular organization derives from selection for 

integration (shared function between traits favors pleiotropy for those traits). This can result in a 

developmental architecture that connects genotypic to phenotypic variation through 
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development. As a result, some structures will show higher levels of correlation with particular 

regions (Hallgrimsson et al. 2009). The result of such a relationship limits the effects of 

mutations to sets of functionally or developmentally related traits. This reduces potential 

deleterious effects produced by mutations by isolating them. As a result, overall fitness is not 

immediately affected. 

 To illustrate this concept, the study by Hallgrimsson et al (Hallgrimsson et al. 2007) is 

offered as an example. Via experimental mice models, cranial covariation is shown to be 

structured in a predictable manner. Genetic perturbations that affect the size and shape of a 

cranial unit, such as the neurocranium, are shown to have unequal but predictable effects on 

other regions of the cranium. Directly applicable to human models is the notion that width of 

vault and base are highly correlated while the facial module shows weaker correlations with 

these regions. As stated previously, this deduction has provided the foundation for many studies 

that investigate how modules of the skull can reflect evolutionary events differently.  

Recent work describes the cranium as an integrated structure that allows for phenotypic 

accommodation by developmental adjustments which is constrained through correlations 

between modules. Additional studies have shown how specific modules can be more susceptible 

to environmental factors and thus expose a larger range of variation, or phenotypic plasticity than 

other regions of the cranium. These ideas were proposed long ago, such as with the work of 

Schmalhausen (Schmalhausen 1949), who described canalization and plasticity not as opposing 

forces, but complimentary mechanisms. However, recent work has helped provide a better 

understanding of these concepts within the context of cranial variability.  

 Modularity is generally assessed by examining the covariance of traits that are partitioned 

into subsets, or expected modules. It is important to recognize that the interactions of modularity 
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at the genetic, developmental, and functional level can be highly correlated, and often produce 

downstream effects.  Investigating modularity at only the phenotypic level may not fully reveal 

the interaction of genotype and phenotype (Hallgrimsson et al. 2009). In addition to identifying 

where modularity occurs within an organism, researchers have also attempted to investigate why 

modularity occurs. Wagner and Altenberg (Wagner and Altenberg 1996) are often cited as 

stating that the advantage of modularity implies that genetic effects will only affect a portion (or 

module) of the phenotype. Responses will occur solely within the affected module, eliminating 

deleterious effects that can affect the entire genome, or many phenotypic areas of an organism. 

As deleterious effects are essentially avoided, modular organization can enhance the ability of a 

genetic system to generate adaptive variants and facilitate adaptive evolution. 

Scientific investigations of these concepts in the cranium of primates and modern humans 

has been pioneered by the work of Cheverud (Cheverud 1984; Cheverud 1988; Cheverud 1996) 

who has assessed covariance of traits in the non-human primate cranium. Lieberman et al., 

(Lieberman et al. 2000) (among others) have examined the presence of these concepts within the 

context of the human cranium. While the principles outlined in this section are not formally 

tested using the data collected in this dissertation, the relationship paradigms reviewed form the 

basis of the majority of analyses. 

Gene flow and admixture expression in the skull 

 

Phenotypic outcomes of gene flow and admixture have long been an interests of 

biological anthropologists and is still debated within the context of modern human origins. In 

forensic application and estimation of ancestry, understanding how admixture between 

established populations can affect morphology is an extremely important component for analysis. 

This concept is especially important within the context of the United States, which has high 



26 

 

percentages of populations from all over the world, and is often referred to as a genetic and 

biological “melting pot”. It is well known that the delineation of social races does not have much 

biological meaning, but historical racism has played an important role in obstructing gene flow, 

most notably between American whites and blacks (Ousley et al. 2009). Interestingly, it has been 

shown by genetic analyses that admixture has been a historical and largely undocumented and 

thus unquantified component within established U.S. populations.  

For example, the work by Parra et al., (Parra et al. 2001; Parra et al. 1998) estimated the 

extent of European admixture in six different samples of African descendants in South Carolina.  

Autosomal markers were employed to show differences between African and European 

populations. The authors found that European admixture showed contribution that ranged from 5 

to 15%. Howells (Howells 1970) showed this morphometrically in a multivariate study 

examining American blacks in comparison to West Africans and American whites. American 

blacks on average were metrically closer to the African sample, however also showed similarities 

to American whites which is interpreted as evidence of admixture. 

An increase of Hispanic, or Spanish speaking individuals has greatly increased with 

immigration of individuals from Central and South America into the United States within the last 

several decades. The range of variability expressed by population samples in the Americas has 

often proved difficult for practitioners to adequately estimate (Spradley et al. 2008). Similar to 

American Blacks, Hispanic populations are essentially defined by admixture between colonizing 

populations from Spain and the original inhabitants of the Americas. However, current research 

has shown that populations from Mexico and Latin America show differential percentages of 

admixture with other groups when partitioned into smaller geographical regions, resulting in 

identification of latitudinal clines (Hughes et al. 2013; Rubi-Castellanos et al. 2009).  
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Analyses involving the morphology of populations that have been defined by admixture 

can elucidate how hybridization between geographically distinct populations can affect 

phenotype in the skull. Specifically, practitioners in North America must be especially cognizant 

of these factors when estimating ancestry of unidentified individuals.  For instance, it has been 

reported by forensic anthropologists in the Southwest United States that using reference samples 

provided by FORDISC 3.1 (FD3) software often misclassify Hispanic individuals into modern 

Japanese and other Asian populations. Dudzik and Jantz (Dudzik and Jantz 2015) used a subset 

of the dataset presented in this dissertation to examine morphological overlap among Asian and 

Hispanic populations. Results revealed an interesting relationship between Hispanic and 

Japanese samples, which has implications for building upon the results of the current study. 

Earlier contributions to the study of admixture in the human cranium stem from the work 

of Jantz  (Jantz 1973) and Key and Jantz (Key and Jantz 1981). Both of these studies identified 

gene flow related changes in pre-historic and historic Plains Arikara that resulted from contact 

with the Mandan tribe. Non-metric cranial  and dental traits have also been employed in 

admixture analyses, however, patterns of variability are not linear (Stojanowski 2004; Wijsman 

and Neves 1986).  

The current research incorporates a combination of the topics outlined above. The 

archipelago of Japan is an extremely unique and interesting area for research. The indigenous 

Jomon population experienced several significant gene flow events from immigrating 

populations both at the Northern and Southern portions of the island. After hundreds of years of 

evolutionary events, Japan has since been considered a fairly homogeneous population beginning 

in the late 17th century Edo period. The data employed in this study allows for a deeper 

morphological examination of a population that has experienced large amounts of gene flow. 
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Summary 

Selected studies are summarized and presented as examples to support the use of cranial 

morphology to infer ancestral relationships within and between populations. Cranial morphology 

is the product of an extraordinarily complex combination of processes that broadly reflect 

function and heritability. Heritability of cranial dimensions is reviewed and the importance of 

genetic drift as a neutral contributor of variation is highlighted. Growth and development of the 

skull is reviewed to convey the complexity of growth and to provide reasoning for examining 

portions of the skull independently. Growth and development of the skull involves the three 

developmental modules of the cranial base, the cranial vault and the facial skeleton.  The cranial 

vault is formed by intramembranous and makes up the bony armor that protects the brain.  The 

cranial base and facial skeleton are formed by endochondral bone formation of neural crest cell 

origin.The cranial base and vault grow rapidly and achieve mature sizes roughly ten years before 

the facial skeleton. The differential growth rates have been used by many researchers to argue 

that the face exhibits more evolvability due to the longer duration of growth and development. 

This concept relates to the topic of plasticity; the ability for a range of phenotypes to be 

expressed under various environmental conditions is introduced. Modularity and morphological 

integration are also discussed in the context of the functional and developmental modules of the 

skull. The cranial modules exhibit varying levels of genetic independence, and the cranial base 

and vault show greater interdependence. Despite somewhat independent evolvability among 

modules, it is important to understand how the skull functions as a single entity; a complex 

mechanism that functions solely because of the relationship of independent pieces that form it.  
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Relevant Archaeological and Anthropological Research 

 

Archaeological History of Japan 

 

During the last glacial period, the northernmost island of Hokkaido and the Sakhalin 

Islands were connected via a land bridge, while the southern islands of Japan were separate from 

the northern islands and the Asian mainland (Adachi et al. 2009). The northern land bridge is 

considered to have been the most direct route into Hokkaido during the Paleolithic period. The 

earliest stone industries have been recovered at the Kanedori site in northeast Japan. These 

assemblages date from 67 to 80,000 years before present (BP) and are similar to tool traditions 

from northeast China. Close to six thousand Paleolithic sites have been identified throughout 

Japan, most of which are of a backed knife/ microblade culture associated with techniques dating 

to roughly 30,000 BP. Pebble and knife-shaped tool assemblages have also been found in 

Hokkaido and are dated at 40-15,000 BP. Some of the Hokkaido stone tool evidence show 

similarities to stone cores from the Maljta site in Siberia. A distinctive microblade style, the 

Yubetsu technique, appears to have been brought into this region via Siberia roughly 20,000 BP. 

This style of microblade appears in Honshu (mainland Japan) roughly 16-14,000 BP. During the 

interval between 20-14,000 BP, the water between Hokkaido and Honshu was very shallow and 

an ice bridge likely allowed for people to cross the Tsugaru Straight and enter the island of 

Honshu.  

No hominin fossils have been found in the Japanese archipelago prior to 35,000 years BP 

(Matsufuji 2009) but various vertebrate fossils are found in Japan that date to the Middle 

Pleistocene. The only hominin evidence identified on the Japanese mainland were recovered in a 
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limestone quarry in Hamakita city near Tokyo and are comprised of tibia, clavicle, humerus and 

skull fragments and date from 18 to 14,000 BP.  

The oldest complete skeletal material found in Japan is that from Minatogawa quarry, 

recovered on the island of Okinawa, dates to 18-16,000 years BP. Descriptions and 

interpretations of Minatogawa skeletons vary and have been described as both similar to and 

distinct from Jomon morphology (Baba and Narasaki 1991; Kamminga 1992; Suzuki and 

Hanihara 1982; Takamiya and Obata 2002). Some studies argue a southern origin while other 

interpretations maintain that as the Jomon were isolated from mainland Eurasia for over 10,000 

years, this population retained archaic morphologies shared with Upper-Paleolithic hunter-

gatherers (Hanihara et al. 1998; 山口敏 1982), 

At roughly 14,000 years BP, distinctive stone tools and earthenware appears in northern 

Honshu. Referred to as Mikoshiba culture, the earliest evidence is found at the Yamomoto I site, 

and is described as quickly spreading to the northeastern half of the island (Nakamura et al. 

2001). A second colonization into Hokkaido is thought to have occurred between 13-20,000 BP 

with immigrants travelling from Northeast Asia. The microblade technology brought into 

Hokkaido  replaced the larger knife-tool culture already present at around 15,000 BP (Hanihara 

and Ishida 2009a). Between 10-13,000 years BP, Paleolithic culture was replaced by the 

Neolithic Jomon ceramic culture. This period of cultural distribution is referred to as the start of 

the Jomon era. Again, similarities are identified between the Mikoshiba culture and the 

Osipovskaya culture of Siberia. For roughly 12,000 years, the Jomon culture relied on wild 

resources, managing the landscape but never ascribing to what is considered agriculture and 

domestication (Bleed and Matsui 2010). The Jomon culture was complex, exhibiting large 

sedentary communities and producing the earliest ceramic traditions ever documented.  



31 

 

Six time periods are considered within the Jomon culture; the Incipient, Initial, Early, 

Middle, Late, and Final. During these periods, the environmental makeup of the archipelago 

differed from north to south. The northeastern region to Honshu was covered in deciduous 

forests and had salmon filled rivers, while the southern portion of the archipelago was 

distinguished by evergreen forests. Climatic changes during the Jomon period resulted in rising 

sea levels that fluctuated considerably during the roughly 10,000 year period (Habu 2004). 

However, the Jomon people consistently lived in a region that could be supported by a lifestyle 

that is referred to as sedentary collectors (Habu 2002).  

Jomon diet was diverse, with evidence of fish and seafood consumption, including 

oysters as well as deer and wild boar hunting using bows, stone tipped arrows and pit traps. 

There is a multitude of evidence of complex ceramic assemblages, with the most common form 

being large, open cooking vessels likely used for soups and stews. Evidence of plant and animal 

processing and storage pits are also rampant at Jomon sites, which existed across the entirety of 

the Japanese archipelago (Figure 2). Plant fibers were used to make fishing nets, looms and 

clothing as well as implemented to make the quintessential Jomon cord marking on large vessel 

ware. Archeological evidence also shows evidence of fishhooks, harpoons, and sunken pit 

dwellings (Hong 2005). The earliest evidence of pottery indicates that food resources were vast, 

and that hunter-gatherer populations had time to construct complex earthenware (Hong 2005).  

Discussion surrounds why the Jomon never adopted pure agriculturalist practices, and 

one of the most paramount arguments involves niche-construction theory. This concept requires 

a population to form complex interactions with subsistence materials in their immediate 

surroundings, and it is posited that the Jomon were successful enough in their specific niche to 

exist as sedentary gatherers (Bleed 2006; Laland and Brown 2006).  
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While the Jomon culture has historically been defined as a sedentary hunter-gatherer 

society, interesting evidence also suggests possible plant cultivation. Kotani (Kotani and 小谷凱

宣 1981) states that plant cultivation started during the Early Jomon period, while cultivation of 

cereal plants occurred during the Late Jomon period. Vegetation distribution in Japan offered a 

variety of ecosystems, with the north exhibiting a boreal forest zone, descending in a southern 

direction into a deciduous mixed forest, an evergreen forest and finally a sub-tropical forest zone 

(Kotani and 小谷凱宣 1981). Evidence of a pre-cursor type of wet rice agriculture introduced 

during the Yayoi period is shown to be correlated with pottery shards that date to the Final 

Jomon Period. Evidentiary materials associated with the presence of agriculture include 

carbonized kernels and grains, plant impressions on pottery, and pollen grains derived from 

cultivated species. Plants found and believed to be cultivated during the Jomon period also 

include gourd, pea, bean, barley and buckwheat.  
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Figure 2. Jomon sites indicating evidence of plant cultivation. (Image from Kotani 1981). 
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The Japanese archipelago separated from the Eurasian continent roughly 10,000 BP 

which isolated the Jomon population from the mainland for several thousand years. While some 

researchers argue that the Jomon maintained the morphology of an initial founding population, 

other studies have shown the evidence of interregional cranial and body proportion variability 

among Jomon groups (Takigawa 2006). The existence of two distinct types of Jomon pottery is 

argued as evidence of multiple founding events (Sasaki 1991). These styles are found to be 

geographically separated, with the Tottaimon style on the western portion of the island, and the 

Kamegaoka on the eastern side. 

Dramatic change occurred at the end of the Final Jomon Era, in which new ceramic and 

stone working patterns were introduced with the arrival of the Yayoi people. With the Yayoi 

came iron and bronze artifacts and perhaps most importantly, wet-rice agriculture (Matsui and 

Kanehara 2006). These new components were introduced in the Kyushu area of southern Japan 

and quickly moved to the northern regions. The impetus for movement from the Asian mainland 

into southern Japan via the Korean peninsula  is described as an abrupt climate change that 

resulted in a cooler and drier landscape that could have led people to migrate in search of a more 

hospitable area (Hong 2005). 

The influx of people into the Japanese archipelago brought a host of new technologies 

and subsistence patterns. Along with the wet rice paddy style of cultivation, pit-dwelling and 

storage also spread across the archipelago. However, Jomon culture did not become obsolete, 

and rather the Yayoi adopted and/or modified stone tool styles and the distinctive pottery 

methods unique to the Jomon people.  
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However, with the introduction of differing subsistence methods, diet and eating habits 

changed drastically(Hong 2005). Hunting and fishing was reduced and rice became a new staple. 

Axes, ploughs, daggers, grinding stones were made from iron and bronze while wooded tools 

were used for farming.  

The Yayoi period lasted roughly 600 years and was followed by the Kofun or “Tomb” 

period, which lasted from roughly the 3rd to the 7th century. During this period cremation 

practices became common.  Small tombs were typically built on top of hills during the beginning 

of the Kofun period. Tombs usually consisted of wood coffins that were dug into a hole at the 

top of a hill, surrounded with stones and topped with stone panels. Over the centuries, tomb style 

changed. Tombs were built on flat ground and became enormous in size, resembling a large, 

rounded keyhole shape. The fifth century showed Korean influence, such as with artifacts of 

horse effigies, at a time when no horses were found on the Japanese archipelago. The Kofun 

period experienced an influx of people migrating to the Japanese archipelago. Movement into the 

archipelago is thought to be the result of an epidemic of draught, disease and plagues on the 

Eurasian continent (Hong 2005).  

During the 5th-12th centuries, migration events from Northeast Asia occurred in 

Hokkaido, the most northern island of Japan. These events brought (or further developed) a 

distinctive culture, referred to as the Okhotsk culture (Amano 2003). This period is characterized 

by extensive exploitation of maritime resources, and existed throughout Hokkaido. 

The medieval period in Japanese history lasted roughly 400 years and dates 

approximately to 1185-1573 AD (Nagaoka et al. 2013). The socioeconomic history of this period 

is characterized by the establishment of military force, social hierarchy and an increase of power 
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and respect for the warrior/Samurai class. Past bioarchaeological studies of the medieval period 

in Japan have indicated high mortality rates, warfare and severe living conditions (Nagaoka 

2012; Nagaoka et al. 2010).  The medieval period has also been shown to demonstrate a higher 

instance of younger ages at death than later periods.  

The feudal activity between various parts of hierarchical society in Japan was greatly 

reduced during the more recent Edo period which lasted from 1600-1870 AD (Hanley 1997). 

Standard of living and overall health of the population is described as increasing during the Edo 

and modern periods. Industrialization, coupled with better nutrition and medical care are cited as 

reasons for the physical changes observed in the Japanese population during these more modern 

periods. The most majority of the population made a living as simple rice farmers but social 

structure was elaborate and hierarchical, which designated each citizen a social and economic 

role.  

The modern period in Japan is cited as beginning with the Meiji Restoration during the 

1860’s (Pyle 2006). This period restored imperial rule to Japan and resulted in rapid 

industrialization and modernization of the country’s society, economy and military (Yamamura 

1977).  

During the 13th century, the Ainu culture emerged, which involved a hunter-gatherer 

maritime lifestyle similar to Jomon culture (Habu 2004). In the late 19th century Japan was 

established as a modern nation-state which resulted in the colonization of northern Hokkaido, 

which was mostly populated by Ainu groups. Ainu have also historically populated portions of 

outlying islands of the Sakahlins and Kuriles. The signing of the St. Petersburg Treaty in1875 

resulted in the delineation of Japanese and Russian borders that interrupted Ainu territory and the 



37 

 

forcible relocation to Hokkaido the Ainu hunting lifestyle was forced to conform to that of an 

agriculturalist. These dislocated Ainu people were forced to be recorded in the national registry 

and given traditional Japanese names. 

 

Anthropological Research in Japan 

 

 This section will focus on the majority of research that has analyzed osseous material 

found within the Japanese archipelago. Reference is made to some archaeological context and 

artifacts; however it is beyond the scope of this study to summarize every facet of the 

archaeological history of Japan.  

Tsuboi Shogoro is credited as one of the founders of anthropology in Japan, and 

spearheaded research dedicated to documenting the history of the country, rather than using 

archaeological evidence to prove imperial lines (Low 2012). Shogoro founded the 

Anthropological Society of Nippon in 1884, and in 1893 founded the Institute of Archaeology in 

Tokyo, which focused on researching the origins of modern Japanese people.  

The majority of research that has been carried out in Japan has aimed to identify Jomon 

culture and the ancestors of this population. This work has mainly focused on craniofacial and 

dental morphology, however some research has been published that has examined the post-

cranial data. The following sections will summarize much of the pivotal research that has been 

published in the last 50 years.  

A host of craniometric and non-metric trait studies have been carried out that examined 

relationships between the various cultures represented within the Japanese archipelago. Howells 

et al., (Howells and Crichton 1966) was one of the first to examine Japanese crania in a 
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multivariate context. In addition to the examination of archaeological skeletal samples, studies of 

modern Japanese individuals have also been published to identify regional differences. 

A multitude of research has been carried out on craniometric variation in the temporally 

and geographically different regions of Japan. Many studies have focused on identifying the 

relationship between the Jomon, Yayoi and their genetic contributions to the modern Japanese 

population. Additionally, many researchers have explored hypothetical parental gene pools that 

are ancestral to the Jomon and Yayoi groups. One of the most comprehensive studies was carried 

out by Ishida et al., (Ishida et al. 2009) which compared an array of skeletal samples from 

northeast Asia to Japanese samples representing modern Honshu, Ryukyu Islander, Ainu and 

Jomon samples using linear measurements of the cranium. Prehistoric Japanese samples of the 

Okhotsk and Jomon showed greater than expected variation which implied external genetic 

contribution; however the Yayoi showed less than expected variation. Overall, the Japanese 

samples show greater craniometrics diversity than did the Arctic and Coastal Northeast Asian 

samples included in the analysis. This study also cites morphological similarities with the Iron 

Age Tagar samples from southern Siberia, which have been described as exhibiting European 

morphological features (Ishida 1996; Ishida 1997). These results provide implications for affinity 

with prehistoric Europeans and Americans, which has been proposed by a number of studies 

(Brace et al. 2001; Cunningham and Jantz 2003; Hanihara and Ishida 2009b). 

While the Jomon have been shown to exhibit high levels of variability, low level 

variability in southern Yayoi samples is cited by several studies and likely stems from a small 

number of founding immigrants (Iizuka and Nakahashi 2002). Interestingly, modern Honshu 

Japanese samples show more morphological affinity with Yayoi samples, while the Ainu and 

Ryukyu Islanders appear very distinct. High variability is also found in Ryukyu islanders, which 
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could also indicate outside gene flow. Ishida et al., (Ishida et al. 2009) also interestingly found 

low levels of variability in Arctic Asian samples, which could suggest a small founding 

population for this region, as is hypothesized for Yayoi populations. 

Yayoi cranial morphology has been described as similar to modern East Asians 

(Nakahashi and Li 2002). However, Ishida et al., (Ishida et al. 2009) emphasize the importance 

of immigrants from Northeast Asia and possible genetic and morphological contributions to 

modern Japanese populations via significant cultural (and biological) contact throughout the 

population history of Japan. Many studies have cited relationships among Northeast Asian 

groups, which show three major groups that consist of an Arctic component (Asian Eskimo, 

Chuckchi, Aleut), an Inland Asian component (Mongolian, Buryat, Yakut) and Baikal 

component (Ulch, Nanay, Negidal, Evenki and Yukagir)  (Ishida 1995; Kozintsev 1992).  

Research questions regarding parent populations for the Ainu have been somewhat 

contentious. Early research has generally shown that the Ainu share a number of morphological 

skeletal traits and genetic similarities with the indigenous Jomon (Brace et al. 1989; Brace et al. 

2001). However, much of the dental research have interpreted Ainu and Jomon dentition to be 

similar to Southeast Asian populations that exhibit sundadonty. This simple trait dental complex 

is thought to be retained morphology from Pleistocene populations (Turner 1990). Despite the 

dental evidence, most morphologic and genetic studies have indicated that the Ainu and Jomon 

are descended from populations from Northeast Asia (Adachi et al. 2009; Tajima et al. 2004).  

However, contradictory evidence exists in regard to interpretation of craniofacial 

morphology of Ainu and Jomon when compared to Northeast Asian populations. Some studies 

cite little to no morphological similarity (Dodo et al. 1992; Hanihara 1991) whereas other report 
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similarities between Ainu and Northeast Asian groups (Hanihara 2010; Hanihara et al. 2008b; 

Komesu et al. 2008).  

Studies of the unique Ainu population in Northern Japan have spanned skeletal and 

molecular approaches. One of the largest efforts to examine physical evidence of a direct 

relationship between the Ainu and indigenous Jomon was by Koganei. In 1888-1889, Koganei 

excavated 166 Ainu skulls and 92 skeletons for examination and provided skeletal evidence for 

similarities between the Jomon and Ainu populations. The findings that the Japanese had mixed 

racial origins assisted in the justification of the annexation of Korea in 1910, eventually resulting 

in the rise of the Japanese Empire. 

Morphological variation studies in modern populations of Japan have identified two 

distinct patterns that correlate with different geographic areas of the archipelago. Studies of 

modern Japanese skeletons have indicated that there is a northeast-southwest cline which has 

been shown through measurements of facial flatness (Yamaguchi 1980) and body size (Kouchi 

1983). Larger body sizes are identified in the northeast and smaller overall body size in the 

southwest. Additionally, a circular distribution of morphological differences has also been cited 

by studies of somatometric and osteometric analyses (Kouchi 1983). Central Japanese samples 

that come from regions near where the establishment of the Imperial Court occurred have been 

shown to differ from more peripheral locations from this region.  

 

Secular Change Studies in Japan 

 

Initial studies of secular change began with Boas’ pivotal publication on the plasticity of 

cranial form of immigrant children entering the U.S. (Boas 1912). This study identified 

morphological change between American born and foreign born children. The results of this 



41 

 

study have largely been discredited by Sparks and Jantz  (Sparks and Jantz 2003) who found that  

differences were not as distinct as originally described. Much more recently Jantz and Jantz  

(Jantz and Meadows Jantz 2000) examined secular change in American crania over a 135 year 

period. Results of this study indicated an increase in vault height that correlated with an increase 

in stature. 

Suzuki (Suzuki 1969) was one of the initial studies to examine micro-evolutionary 

change in Japan. Suzuki defined the “transformation theory” which was the initial hypothesis for 

the morphological variation observed in Japanese populations. This hypothesis is one that posits 

in situ change of a continuous population, and thus indicates that the modern Japanese are the 

direct descendants of the native Jomon occupants. Morphological changes were attributed to 

change in subsistence style, transitioning from sedentary hunter-gatherers to rice-agriculturalists. 

Suzuki acknowledged that immigrants from the Asian mainland entered the Japanese 

archipelago, but that physical changes were due to primarily cultural factors.  

 Other early studies have emphasized the importance of migration events from the Asian 

mainland and suggest that admixture occurred between the Jomon and incoming migrants. 

Kanaseki is credited with the first version of the “hybridization theory” which was later 

expanded upon by Hanihara (Hanihara 1991). Early excavations of Yayoi sites of the Doigahama 

and Mitsu sites in southern Japan showed that the Yayoi skeletons exhibited morphological 

features that were very different from previously discovered Jomon skeletal remains. Kanaseki 

(Kanaseki 1976) analyzed the newly excavated skeletons and observed overall taller body stature 

as well as longer facial dimensions. Kanaseki attributed these traits as being indicative of 

immigrant populations that travelled into southern Japan via the Korean Peninsula.  
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Nakahashi (Nakahashi 1993) explored what is defined as temporal changes in Jomon 

crania from the late period (1500 BC-300 BC) to the modern period in the western region of 

Japan. This large time depth could also be referred to as an examination of long-term 

microevolutionary changes in a region specific area of Japan. Nakahashi (Nakahashi 1993) found 

that cranial breadth shows a gradual decrease through time until the end of the Medieval period, 

in which a dramatic widening in vault breadth (brachycephalization) occurs during the modern 

period. The Kofun through the modern period also sees a marked increase of cranial vault height, 

with averages reaching modern values during the medieval period.  

However, Nakahashi describes the most significant changes occurring in the dimensions 

of the facial skeleton. The Jomon and Yayoi are described as differing most dramatically in 

facial height, with the Yayoi exhibiting a much taller face than the Jomon. Upper facial height 

decreases gradually until the medieval period in which it then increases to modern day averages. 

The facial differences between Jomon and Yayoi are more significant in the Kyushu and 

Yamaguchi (Southern Japan) samples, rather than in the Kanto (central Japan) samples, 

indicating regional differences in the Jomon material.  

However, an increase of facial height are observed in both regions in the medieval period. 

Nakahashi (Nakahashi 1993) also describes significant differences in nasal morphology, in 

which the Northern Kyushu Jomon show wide nasal bones and prominent nasal root 

morphology. This morphology is reduced in later populations, but is more significant in the 

Kanto (central Japan) samples during the medieval period. Modern populations show the 

smallest averages for this dimension. Comparison of lower facial heights showed significant 

differences between the Jomon and Yayoi, in which the Jomon show much shorter lower facial 

values. No differences were detected after the Yayoi period. Multivariate analysis of the various 
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temporal samples does not show significant differences, except for the Jomon period samples. 

The historical population overlap is explained by the author as evidence for continuity among 

groups in Japan.  

Okazaki and Nakahashi (Okazaki and Nakahashi 2011) explored this topic further with 

their study of sub-adult material that represents time periods from the middle-late Jomon period 

through the earliest portion of the modern period. Results indicated that the Jomon material 

differed from other samples in regards to upper facial height during childhood development and 

adolescence. The nasal region and breadth of mandible was also found to differ among Jomon 

and post-Jomon groups during development. Differences are thought to reflect distinct migratory 

events and different parental populations for the indigenous Jomon and post-Jomon series. 

Additionally, the authors cite a reduction in masticatory stress in post-Jomon series due to a 

reliance on rice. A softer diet is thought to have affected the growth trajectory of the mid-face 

and allowed for an overall height increase of facial dimensions observed.  

Kawakubo (Kawakubo 2007) also examined the morphological variables of facial 

dimensions in prehistoric and modern samples, and quantified facial flatness. Facial flatness is 

one of the hallmark morphologies of Jomon crania, and is also found among Hokkaido Ainu 

samples. Yayoi and Kofun samples do not show facial flatness indices as found in Jomon and 

Ainu samples. Differences in facial flatness are found in modern samples, which represent 

northern and central Japan. The northern samples show higher degrees of facial flatness, while 

the central samples show varying levels of facial projection. 

Arguably one the most important studies of secular change in modern Japanese crania has 

been the work of Kouchi (Kouchi 2000) who examined somatometetric data of recent 

populations. Collection of secular change data has been conducted via anthropometric surveys by 
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the Japanese government since the 1890’s and Kouchi (Kouchi 2000) employed this data and 

examined just over 9,000 males and 3,400 females. The sample was divided into two birth 

cohorts, with one sample dating to the 1940’s and the second sample dating between 1977 to 

1998 for males and 1955 to 1998 for females. Variables of sex, year of birth and socioeconomic 

status (education level) were included. Mean stature for Japanese males and females increased 

over time with an interesting decrease during the 1970’s. Body mass index (BMI) was also 

shown to increase for males born after 1950, but an overall decrease in BMI occurred in females 

born after 1930. Individuals with more recent birth years also showed wider heads, which the 

author argues reflects better nourishment and diet (Kouchi 2000). Individuals with higher 

education levels showed to be taller than the general population and was significantly correlated 

with wider head dimensions. However, as this data is based on somatometric data, changes in 

soft-tissue thickness could partially explain these trends.  

An additional and more recent study of secular change in Japan comes from the work of 

Nagaoka (Nagaoka 2003) who examined cranial morphological variation in Japanese skeletons 

dating from the Edo through the modern period. Nagaoka states that modern individuals from 

central Japan differ from northern and southern counterparts. Namely, s larger cranial indices 

and shorter vault lengths characterize central Japanese males. Male samples from northern and 

southern regions show smaller cranial indices and longer cranial vaults. Southern individuals are 

also described as having larger bizygomatic breadths than central equivalents, which exhibit the 

largest nasal breadths out of any region. Comparisons of Edo period to modern period Japanese 

showed decreases in inter-regional variation as well the hallmark trend of brachycephalization, 

which characterizes modern Japanese cranial morphology.  
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Post-Cranial Studies  

 

Geographic distributions of limb proportions in worldwide human populations generally 

follow Allen’s rule, which posits that organisms in colder environments will have shorter 

appendages and organisms living in warmer climates will have longer appendages (Allen 1877). 

This phenomenon is explained by the notion that a reduction in the size of appendages will 

mitigate heat loss via a decrease in overall surface area, while an increase in surface area will 

promote cooling of body temperature. Interestingly, the Yayoi population is representative of 

warmer climate and the Jomon culture is associated with a colder climate but neither group show 

predicted limb proportions. The Yayoi and Jomon exhibit differences in limb proportions, but the 

Jomon show longer distal elements relative to the proximal on the upper and lower limb, while 

the Yayoi exhibit shorter tibiae and radii relative to the femora and humerii. (Temple et al. 

2008). Limb proportions expressed by Jomon sample are more similar to populations from 

tropical environments of lower latitudes. Conversely, the limb proportions of the Yayoi show 

dimensions similar to groups of higher latitudes and colder environments. The Minatogawa 

specimens from one of the southernmost islands of the archipelago also show limb dimensions 

more similar to that of cold, high latitude environments. Proportions of modern Japanese show 

similarities to the Yayoi, which again similar to cold adapted, high latitude populations (Fukase 

et al. 2012).  

The differences observed in limb proportions among the Jomon and Yayoi and modern 

Japanese populations are hypothesized by Temple et al., (Temple et al. 2008) to reflect either a 

retention of limb proportions from parental populations that lived in a warmer, tropical 

environment, or the result of change that reflects the climate warming trends in Japan over the 

last several thousand years.  
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In regards to body breadth, the Jomon also exhibit proportions that are similar to cold 

adapted populations (Temple 2007; Temple 2008). This supports the idea that the indigenous 

Jomon of Japan initially migrated from a cooler environment as seen in North and Central Asia. 

Estimation of body size of Minatogawa specimen 1 shows body proportions that are consistent 

with colder environments, which could indicate that the subsequent Jomon migration resulted in 

morphological change in response to the more temperate environment in Japan.  

The Yayoi show limb and body proportions that are similar to other populations that live 

in high latitude, cold environments, which Temple et al., (Temple 2008) argue further supports 

that this group descended from a Northeast Asian parental population. It is further proposed that 

little change has occurred in the last several thousand years as is reflected by the similarly sized 

limb and body proportions expressed in modern Japanese populations.  

To support hypotheses for the interesting post-cranial morphologies identified in the 

archaeological record of Japan, genetic evidence can be used for inference of retention of 

parental population morphology. Molecular studies indicate a population from northeast or 

central Asia to be ancestral to the Jomon, which is representative of a cold adapted populated 

(Hammer et al. 2006; Omoto and Saitou 1997). In contrast, it is generally thought that the Yayoi 

agriculturalists are derived from a Korean or northern China parent population (Brace and Nagai 

1982; Hanihara 1991). The differences in parental populations for the Yayoi and Jomon cultures 

could very well be responsible for the differences identified in body size and limb proportions. 

Additionally, studies of post-cranial dimensions in modern Japanese samples have shown 

evidence of geographic clines. Kouchi (Kouchi 1983) identified differences in body size between 
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northeast and southwest Japan, which the author attributes to climatic adaptations. Ainu samples 

exhibit high crural indices as are found in Jomon samples.  

Genetic Studies 

 

The origins and prehistory of East Asia are not as generally accepted as are hypotheses 

concerning modern humans out of Africa, largely because of a lack of archaeological evidence 

(Jin and Su 2000). Molecular studies of modern populations have been used to infer evolutionary 

events across Asia in an effort to support what has been found with skeletal and archaeological 

material, and to offer novel hypotheses regarding the peopling of this portion of the world. In 

China, one of the largest regions in mainland Asia, the genetic structure of modern populations 

has been shown to contain a northern and southern component, although mtDNA studies have 

indicated that the majority of East Asians have descended from a common ancestor. Studies of 

East Asian groups using autosomal-miscrosatellite data have shown a common African cluster 

for all Asian groups, with some differentiation between Northern and Southern groups (Chu et al. 

1998).  

While it is somewhat easy to comprehend the scientific debate involved with identifying 

the who-what-when responsible for genetic diversity of Asia, it is interesting to highlight the lack 

of consensus in the much, much smaller region of Japan. 

Previous hypotheses have approached the question of the peopling of Japan and have 

advocated for continuity and admixture models. Continuity models such as proposed by Suzuki 

(Suzuki 1969) have argued that genetic continuity exists in Japan, and cite morphological 

differences over time in Japan as relating to secular change. Admixture models were originally 
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outlined by Kanaseki et al. (Kanaseki 1976), which identified change in culture and morphology 

on the Western portion of Japan as a result of gene flow with immigrating groups around 2300 

BP.  

Molecular studies have helped provide some clarity to the debate. Sequences of the 

modern Japanese genome exhibit a close genetic affinity with northeast Asians populations, 

especially Koreans (Tanaka et al. 2004) while the Ryukyuans appear to have a southern Asian 

history for their lineage. The Paleolithic populations of Japan likely received portions of their 

populations from both north and south Asian populations, including Korea during the Neolithic 

period. Other contributors were likely from western Asia and Siberia. In addition to the first 

entry of people that became the Jomon culture, a second wave of migrants from Siberia (the 

Ainu) reached the Sakhalin Islands by foot and then into Hokkaido around the termination of the 

glacial period.  

Both morphological and molecular studies support a model that involves admixture 

between several prehistoric populations that inhabited the Japanese archipelago. It has been 

extensively cited that the dual structure model proposed by Hanihara (Hanihara 1991) is too 

simplistic to account for the variability expressed in modern Japanese populations. Genetic 

studies have shown that Ainu and non-Ainu Japanese have deep temporal affiliations with 

Neolithic (indigenous) Jomon populations of Japan (Omoto and Saitou 1997; Ossenberg et al. 

2006). Rasteiro and Chikhi (Rasteiro and Chikhi 2009) specifically examined admixture between 

Jomon and Yayoi populations using Y-chromosomal data from modern individuals of Japan. 

Hypothetical models were examined by using a number of proxy parental populations to model 

the amount of estimated genetic drift that has occurred in daughter populations. Results indicate 

a likely “demic diffusion” model for Yayoi immigrants, with genetic drift accounting for less 
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variation in populations in southern Japan that are located closer to the Korean peninsula. These 

populations would have been greater in size compared to northern populations and are likely to 

have been more affected by genetic drift.  

Studies of ancestry informative markers (AIMs) have also been used to study the 

population history of Japan. AIMs are defined essentially as genetic markers that indicate a 

geographically constrained pattern of allele frequencies among regions that can be used to infer 

ancestral relatedness. Previous investigations of Y-chromosomal patterns have shown that 

halpologroups C1 and D2 are unique to the Japanese archipelago. Specifically, haplogroup D2 

has been shown at high frequencies in Okinawa Ryukyu and Hokkaido Ainu populations, 

(upwards of 0.55 and 0.85, respectively) and at lesser values in mainland populations that range 

between 0.26-0.38 (Shi et al. 2008). Haplogroups C1 and D2 have also been found in small 

frequencies in Chinese and Korean populations, respectively and thus can be described as mostly 

specific to Japanese populations. Hammer and Horai (Hammer and Horai 1995) hypothesized 

that since the Y alu polymorphism is absent in continental Asian populations but present in 

Jomon populations, this haplogroup D marker must have migrated with the Jomon during the 

initial peopling of Japan.  

A large scale study carried out by Tajima et al.,  (Tajima et al. 2002) examined 

distribution of Y-chromosome haplogroups in 14 global populations, which included a variety of 

Asian and Japanese samples. This study identified four major lineages, with three out of the four 

lineages accounting for almost 99% of the variation in Asian populations included in the study. 

Furthermore, the Asian data indicated three major clusters that represented North Asia, Southeast 

Asia and Japan. Additionally, it was found that the two North Asian populations of the Buryiat 

and the Nivkhi are closely related to Indonesian and Australo-Melanesian groups. In reference to 
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the Japanese groups, similarities were found with Tibetan and Korean groups, albeit at low 

percentages.  This study lends support to hypotheses that argue for multiple migratory events 

into the Asian continent. Coalescence of the three major clusters was estimated between 53,000 

and 95,000 years BP.    

The Ainu group has been rigorously investigated via maternal and paternal 

polymorphisms and compared to other Asian groups in an effort to identify a parental group. The 

Ainu exhibited 14 out of 25 mtDNA sequences that are frequently used in Asian studies and 

three Y-haplogroups were found to be unique to Ainu groups. Overlap with other Asian groups 

have indicated ancestral relatedness with  the Nivkhi population from the Sakhalin islands, as 

well as the Koryaks in the Kamchatka peninsula (Tajima et al. 2004). Results such as these 

indicate the Ainu have retained a unique genetic makeup with some overlap among North Asian 

populations. Studies using HLA genes and haplotypes support these types of findings in that 

there exists a shared haplotype among Ainu haplotypes and North Asian and Siberian groups. No 

Y-haplogroups have been found to be unique to the Ainu populations, and instead share Y-

chromosome haplogroups with other Japanese groups. 

Ancient DNA studies in Japan are somewhat scarce, and are not representative of the 

time depth that is found in the Japanese archaeological record. However, there has been some 

interesting site specific studies that have exposed various patterns.  

 An important ancient DNA study was carried out by Shinoda et al., (Shinoda 2005), 

which built on earlier work that examined the archaeological site of Kuma-Nishi-ioda, one of the 

largest Yayoi communities on the island of Kyushu. This sample dates to the middle to late 

Yayoi period. mtDNA was extracted from 35 individuals and compared to Late Jomon 

individuals from northern and central Japan to examine migration hypotheses in a molecular 
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context. Results indicated that within superhaplogroups M and N, the Yayoi samples showed a 

complete absence of haplogroups F and A (under superhaplogroup N) and an absence of 

haplogroup M7, which are frequent in Jomon and Ryukyu populations, respectively. The Yayoi 

group did show a high frequency of the superhaplogroup M. Superhaplogroups M and N have 

been shown to completely cover East Asia, and that daughter haplogroup M7a is specific to 

Japan.  

Genetic studies of occupants of the westernmost island of Japan, the island of Yonaguni-

jima have been carried out by Shinoda and Doi (Shinoda and Doi 2008) in an effort to elucidate 

relationships with other East Asian groups using HVR-1. Individuals recovered from a cemetery 

from the western island of Subaru represented individuals from early modern to recent modern 

individuals. Analyses of mtDNA haplogroups indicated variation in maternal lineages, and were 

closely related to haplogroups associated with North Asian groups, and populations from the 

island of Okinawa. 

Igawa et al., (Igawa et al. 2009) extracted mitochondrial DNA from Yayoi individuals 

from the Doigahama site, located north of Kyushu island. Analysis of HVI showed that Kyushu 

Yayoi samples were more similar to modern Japanese samples than were the Doigahama 

samples 

Several studies have successfully extracted DNA samples from Jomon sites in Hokkaido, 

Japan. Kazuta et al., (Kazuta et al. 2011) utilized molecular data from Jomon, Epi-Jomon and 

Ainu specimens from various archaeological sites in the northernmost island of the archipelago. 

The authors showed that allele frequencies of the gene that determines ear wax phenotypes 

differed between Jomon and Ainu individuals, but that the Epi-Jomon were an intermediary that 
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was not significantly different from either group. These results indicate that the Ainu have 

experienced gene flow with populations that are not descendent of the Jomon population.  

Kanzawa-Kiriyama et al., (Kanzawa-Kiriyama et al. 2013) extracted mitochondrial DNA 

from Jomon individuals from the Tohoku region and showed that these samples were genetically 

closer to Hokkaido Jomon than mainland counterparts. The northern samples exhibit 

subhaplogroup M7a2, which is also found in modern Siberian populations.  

Adachi et al., (Adachi et al. 2009) extracted mtDNA from 16 Jomon skeletons from 

Hokkaido that date to between 3800-3500 BP, which corresponds to the late Jomon period.  

Mitochondrial DNA was extracted and haplogroups D1a, M7a and N9b were identified. 

Haplogroup D1 is shared with Native Americans, which provides support for a common parental 

population among these groups.  

Building on the 2009 study, Adachi (Adachi et al. 2011) provides one of the most 

conclusive genetic analyses on available Jomon samples from all over Hokkaido. Four 

haplogroups were identified, which included N9b, D4h2, G1b and M7a. High frequencies of N9b 

in particular have been cited in Japanese populations and are thought to be a pre-Jomon genetic 

contributor to modern Japanese. This haplogroup is also found in southeastern Siberian 

populations, indicating the possibility of Paleolithic contributions to Jomon and Ainu 

populations. Interestingly, haplogroups A, C and D (barring D4h2) are present in modern 

Siberian populations, but are not identified in any of the Hokkaido Jomon material. Okhotsk 

Japanese, which date roughly to the 5th century in Hokkaido exhibit haplogroup Y, which is also 

the most prevalent haplogroup in Ainu populations. This indicates that the Okhotsk people may 

be the Siberian contributors that provided haplogroup Y to Ainu populations.  
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A recent study published by Adachi et al., (Adachi et al. 2013) extracted mitochondrial 

DNA from what is considered the oldest Jomon skeleton to be successfully sequenced. The 

sample dates to nearly 8,000 BP. Extraction of mtDNA from dentition showed this adult skeleton 

belongs to haplogroup D4b, which is prevalent in East Asian (including Japanese) populations. 

Previous research has established that three haplogroups are present in Jomon material, including 

M7a, D4h2, and E1a1a, indicating that the early Jomon populations were heterogeneous in 

regards to matrilineal genetic structure.  

The genetic literature of Japan indicates that it has been generally accepted that Jomon 

males are representative of haplogroups C or D while Yayoi males typically belong to 

haplogroup O, which indicates genetic clines evident in the archipelago. Jomon populations are 

typically associated with the northernmost portions of the island (Hokkaido) while the Yayoi 

inhabited the southernmost portions initially. Data is described as lacking for modern Japanese 

males in regards to Y-chromosome data. To remedy this problem, Sato et al., (Sato et al. 2014) 

examined Y-chromosome data from a sample of modern Japanese males from different regions 

of Japan. Results indicated that modern Japanese males are in general, genetically homogenized 

on the island of Honshu due to gene flow and genetic drift. However, analyses of maternal DNA 

indicated that the frequency of mitochondrial haplogroups M7 decrease from south to north, 

indicating the possibility of a different migratory pattern.  

Polymorphisms of the ABO gene of prehistoric populations in Hokkaido have also been 

investigated. Sato et al., (Sato et al. 2010) examined Jomon, Epi-Jomon and Okhotsk samples. 

Mitochondrial DNA analyses have shown that the Jomon/Epi-Jomon are dissimilar from the 

Okhotsk people, who inhabited the coastal regions around the Okhotsk Sea. Polymorphisms of 

the ABO blood groups were examined to further capture differences and/or similarities between 
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the Jomon/Epi-Jomon and the Okhotsk people. Results indicated that both the Jomon/Epi-Jomon 

and Okhotsk groups showed ABO blood group alleles that are common to Asian populations, 

however at different frequency levels.  Sato et al., (Sato et al. 2009) examined mtDNA 

haplogroups of Okhotsk people and found a high prevalence of haplogroups Y, which is 

commonly found in the Sakhalin Islands and Ainu populations but interestingly not found in 

Jomon lineages. These results indicate that gene flow occurred between the Okhotsk people and 

Ainu populations. It has also been reported that gene flow occurred between the Nivkhi people 

(other occupants of the Sakhalin Islands) and the Ainu (Tajima et al. 2004).  

Work has been done to approximate size of founding populations as well as subsequent 

migratory waves that have occurred and thus influenced population history and to a certain 

degree, shaped modern Japanese populations. Zheng et al., (Zheng et al. 2011) used Bayesian 

approaches to analyze modern Japanese mtDNA in an effort to estimate the rate of growth for 

females of specific migratory events. The authors cite a major migratory event occurring roughly 

at 5,000 BP which distinguished the Japanese population from North and Central Asia. Based on 

the genetic signature of the modern population, the authors show that population growth and 

expansion occurred rapidly, which likely resulted in a smooth transition from Jomon to Yayoi 

culture during the Middle Jomon period.  

Other novel approaches have examined molecular evidence of the JC polyomavirus to 

examine the colonization of Japan. Kitamura et al., (Kitamura et al. 1998) and Sugimoto et al., 

(Sugimoto et al. 2002) showed two distinct genotypes of the JC virus in Japan, which they offer 

as support for the hybridization theory.  

Other genetic studies that have examined the molecular structure of the modern Japanese 

have shown paternal lineages represented by haplogroup O at roughly 50%, and is also found in 
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East Asian populations. Hapologroup D2 is also a paternal lineage that is found in roughly 35% 

of male modern Japanese and is only found in Japan, but related haplogroups D1 and D3 are 

found in more southern areas of Asia. Haplogroup C1 is also unique to Japan (He et al. 2012). 

Interestingly mitochondrial haplotypes are found in Japan and throughout Asia, barring 

haplogroup M7a.  

In an extremely influential study, Hammer et al., (Hammer et al. 2006) examined SNP 

data to examine Y-chromosomal contribution of the Jomon and Yayoi populations to modern 

Japanese. This study showed definitive patterns of Y chromosome haplogroups D and O in the 

archipelago. Haplogroup D was shown to be present in roughly 35% of modern Japanese and 

showed highest frequencies in Ainu and Ryukyuan samples. Haplogroup O was found in roughly 

50% of the modern population, with highest frequencies in Kyushu. Coalescence of the STRs 

used is estimated at expanding in Japan at around 20,000, 12,000 and 4,000 BP.  

 

Summary 

Anthropological and archaeological research in Japan is summarized to highlight the 

occurrence of important evolutionary events. Two major migratory events into Japan occurred 

around 10,000 and 2,500 BP. The initial migration resulted in the sedentary hunter-gatherer 

Jomon culture and the second major influx of the Yayoi people brought bronze iron metallurgy 

and wet rice agriculture. Gene flow among these groups provided the initial biological 

foundation that is responsible for modern Japanese populations. Recent molecular studies have 

provided evidence for population substructure, which suggests an original founding group of 

North Asian descent. Regional heterogeneity in prehistoric and modern populations have been 

identified via anthropological and genetic approaches. Craniometric analyses of Japanese 
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skeletal samples have been used to show relationships and identify evolutionary events through 

time. No previous studies have employed landmark coordinate data. 
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CHAPTER 3  

MATERIALS AND METHODS 

 

The Yayoi samples were measured by the author at Kyushu University Museum (KU) in 

Fukuoka, Japan. Sample dates range from the Early Yayoi period to the Late Yayoi period and 

come from a number of archaeological sites from the southernmost portion of Honshu, as well as 

the islands of Kyushu and Okinawa. See Table 1 for definition of time periods. The majority of 

the samples come from the Doigohama archaeological site, in Yamaguchi prefecture. This site 

has been described as a cemetery and contains over 300 individuals that were buried either in 

stone coffins, large ceramic jars or directly in sandy shell middens.  

 The remaining Yayoi individuals have been excavated from a number of sites located in 

or near Fukuoka including the Kanenokuma, Kiri-Toshi, Mitsu, and Nagaoka sites. 

The Jomon samples from Kyushu island date mostly to the middle to late Jomon period.  

These individuals were excavated from the Einomaru, Yamagashi, Goryoukai (Kumamoto 

prefecture) sites. The Hokkaido Jomon samples were measured at Sapporo University and 

represent early, middle and late Jomon periods. The early and late specimens were excavated 

from sites in Abuta province, Hokkaido. The middle specimens are from Yakumo, Hokkaido and 

Chiba prefecture in Honshu.  

The Kofun period samples were mostly excavated from sites on Kyushu Island, but 

several specimens were recovered from Okinawa Island. These specimens were measured at KU 

and University of the Ryukyus, respectively. The medieval samples were measured at KU and 

are from various sites on Kyushu Island.  
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The Edo period samples were measured at KU and University of the Ryukyus, and are 

from regions within Kyushu and Okinawa Islands.  

The modern Japanese samples represent individuals with birth years from the late 19th 

century to the early 20th century and are representative of northern, middle and southern Japan 

and were collected Sapporo University, Tohoku University, University of Tokyo, Kyoto 

University, Kyushu University and University of the Ryukyus, respectively. See Figure 3 for a 

map illustrating locations of collections.   

 

 

Table 1.  Time period definitions for included samples. 

Time Periods Defined  

Jomon Period 10000- 300 B.C. 

Yayoi Period 300-300 B.C. 

Kofun Period 300-700 A.D. 

Medieval (Kamakura) Period 1400-1600 A.D. 

Recent (Edo) Period 1700-1900 A.D. 

Modern Period 1900-1950 A.D. 
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Figure 3. Collection locations. 

 

 

Variables Used 

  

An all too familiar problem in anthropological studies is the often fragmentary nature of 

skeletal remains recovered from archaeological sites. This study is no different, and due to the 

significant time depth represented, many of the earlier specimens (Jomon, mainly) are 

incomplete and most often missing the majority of the facial skeleton. While all landmarks were 

recorded and available for future studies, a subset of landmarks was utilized in this work to 

maximize number of individuals and maintain statistical power of the analyses performed (Table 

2). The cranium and facial skeleton were initially analyzed separately to assess whether this 
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approach would support the results of a multitude of studies that have been carried out using 

linear data.  This approach also allowed for more individuals to be included, as not all 

individuals that were missing facial landmarks would have all the vault landmarks used and vice 

versa. Additionally, some groups had to be combined, regardless of geographic distinction to 

increase sample size and make statistical analysis possible. Thus, northern and southern Jomon 

specimens were combined into a subset. The same was carried out for Kofun and Edo samples, 

which have samples from Kyushu and Okinawa Islands. See Tables 3 and 4 for sample sizes.  
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Table 2. Landmarks used and associated definitions. 

Landmark Definition Abbreviation 

Alare (bilateral) Instrumentally determined as the most 

lateral points on the nasal aperture in a 

transverse plane. 

AL 

Bregma (unilateral) The ectocranial midline point where the 

coronal and sagittal sutures intersect.  

 

BRG 

Eurion (bilateral) Instrumentally determined ectocranial 

points on opposite sides of the skull that 

form the termini of the line of greatest 

cranial breadth. 

EUR 

Glabella (unilateral) Midline protrusion in the supraorbital 

region 

GLB 

Radiculare (bilateral) A point on the lateral aspect of the root 

of the zygomatic process at the deepest 

incurvature 

RAD 

Opisthocranion (unilateral) Instrumentally determined most 

posterior point of the skull not on the 

external occipital protuberance 

O 

Frontotemporale (bilateral) The point where the temporal line 

reaches its most anteromedial position 

on the frontal. 

F 

Ectoconchion (bilateral) The most anterior point on the lateral 

border and its intersection with a 

bisection line of the orbit on the long 

axis. 

ECT 

Nasion (unilateral) The point of intersection between the 

naso-frontal suture, on the frontal 

NAS 

Dacryon (bilateral) The apex of the lacrimal fossa  DAC 

Prosthion (unilateral) The most anterior point on the midline 

on the alveolar process  

PRS 

Lambda (unilateral) Intersection of the sagittal and 

lambdoidal sutures, at the apex of 

occipital bone 

LAM 

Subspinale (unilateral) Deepest point from lateral view below 

anterior nasal spine 

SSP 

Inferior point, nasal aperture (bilateral) Lowest point on border of nasal aperture NIL 

Asterion (bilateral) Intersection of the temporal, parietal and 

occipital bone. 

AST 

Basion (unilateral) Intersection of the mid-sagittal plane 

with the most anterior portion of the 

foramen magnum 

BAS 

 

 

 

 

 



62 

 

 

Table 3. Sample sizes by period for facial variables. 

Facial Variables 

Sample Male Female Total 

Ainu 31 21 52 

Jomon 13 9 22 

Yayoi 58 42 100 

Kofun 22 12 34 

Medieval 13 17 30 

Edo 26 32 58 

Modern Northern 62 27 89 

Modern Central 57 36 93 

Modern Southern 78 53 131 

 

Table 4. Sample sizes by period for vault variables. 

Vault Variables 

Sample Male Female Total 

Ainu 31 21 52 

Jomon 16 14 30 

Yayoi 56 40 96 

Kofun 25 11 36 

Medieval 15 17 32 

Edo 29 33 62 

Modern Northern 62 28 90 

Modern Central 57 35 92 

Modern Southern 74 49 123 
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Geometric Morphometric Approaches 

 

Geometric morphometry (GM) is described as the compilation of methods used to 

acquire, process, and analyze coordinate data that retain geometric shape information. This 

approach can encompass the collection of metric data in three dimensions. Landmark coordinates 

are collected with respect to arbitrary axes, and thus the data must be transformed onto a 

common coordinate system so that statistical analysis is viable.  Once data has been collected on 

several specimens, the x, y and z coordinates can be analyzed, but data pre-processing is first 

required.  

Procrustes superimposition is a least squares method that estimates the parameters for 

location and orientation that minimize the sum of squared distances between corresponding 

points on two configurations (Rohlf and Slice 1990). Centroid size (center of a form) is 

calculated by summing all squared distances, and then taking the square root of that sum 

(Zelditch et al. 2004). Centroid size will then be set to one, which will remove isometric size. 

Centroid size can also be calculated based on interlandmark distances and is the one measure of 

size that is independent of shape.  However, independence of size by calculation of group 

centroids is only valid if scaling (changes in size) does not affect shape. If size is not isometric 

and proportions of a form change when size variables are disrupted, then size cannot be 

considered orthogonal and/or independent of shape. Generalized procrustes analyses differs from 

Procrustes analyses in that after translation, scaling and rotation, an average is taken to calculate 

the mean of  each specimen and is continued until there is no significant change from iteration to 

iteration. Following a Procrustes superimposition, the coordinates are representative of shape 

coordinates which can be analyzed using statistical methods. However, these coordinates do not 
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function in Euclidean space, which can be thought of as a two dimensional plane. Thus, the new 

coordinates need to be projected onto a curved space that is more akin to a hemisphere. 

Statistical analyses are available that can approximate the curved space represented by the 

Procrustes shape coordinates.  

Principal component analysis (PCA) is carried out on the shape variables that are 

projected onto tangent space, and PCA scores can then be used for multivariate analyses. 

Principal components that account for the largest amount of variation can be used for canonical 

discriminant analysis and to calculate a Mahalanobis distance matrix. 

The utility of geometric morphometric approaches is significant when compared to 

traditional morphometric analyses using linear metric data. The analysis of landmark data in 

three dimensions allows for visualization of similarities and/or differences of the entire specimen 

that has been recorded, rather than just isolated dimensions of metric differences (Marcus and 

Corti 1996).  

Statistical analysis of Cartesian coordinates of cranial landmarks has been shown to be a 

viable means of investigating biological relationships and distances between human populations. 

McKeown and Jantz (McKeown and Jantz 2005) evaluated the use of craniometric versus 

coordinate data. These methods showed high distances among the Sully site of the Arikara, where 

previous craniometric analysis did not show the same divergence. Similarly, Ross et al., (Ross et 

al. 1999) were able to better describe where morphological variability exists among comparisons 

of American White and Black samples.  

However, some caveats have been outlined for GM approaches. Richtsmeier et al., 

(Richtsmeier et al. 2002) outline what is referred to as “nuisance parameters” in which rotation 
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of an object corresponds to multiplication of a landmark coordinate matrix by an orthogonal 

matrix. von Cramon-Taubadel et al., (von Cramon-Taubadel et al. 2007) outlines the problems of 

inter/intraobserver error in geometric morphometrics and state that when raw configurations are 

superimposed using a least-squares criterion (generalized procrustes etc), the variance of 

individual landmarks is smeared out over all landmarks, which can be detrimental to studies that 

assess error or asymmetry, as the variance of essential landmarks can be distributed/allocated to 

other landmarks which results in what is referred to as the  “The Pinnochio Effect”.  

Despite these caveats, research has shown that using GM approaches can provide more 

insight into biological variability among samples.  

Data Collection 

Data collection procedures involved the recording of coordinate data from dry human 

skulls using a Microscribe digitizer and 3skull software which provides an interface for simple 

recording and calculation of interlandmark distances if so desired (Ousley 2004). This non-

invasive technique collects three dimensional coordinates of  established bilateral and isolated 

skeletal landmarks as defined by Howells and Martin with respect to arbitrary axes (Howells 

1973; R 1956) (Figures 4-6). While over 80 landmarks were recorded, a much smaller subset 

was used for analyses due to the fragmentary state of many archaeological specimens.  

Landmarks used, associated definitions and abbreviations are defined in Table 1.  Crania were 

placed on three clay pillars in an orientation so that the stylus of the digitizer could reach all 

landmarks, including those of the basicranium (Figure 6).  Coordinate data was then imported 

into shape analysis software and transformed onto a common coordinate system so that statistical 

analysis was possible.  
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Figure 4. Anterior view of cranial landmarks. 
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Figure 5. Lateral view of cranial landmarks. 
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Figure 6. Inferior view of cranial landmarks. 
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Figure 7. Digitizing of cranial landmarks using Microscribe. 
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Coordinate Data Analysis 

 

Coordinate data was recorded for each specimen and formatted for input into MorphoJ 

v1.06d shape analysis software (CP 2011) using a 3D formatting program written by Dr. Richard 

Jantz. Coordinates for each “configuration” exist in what is referred to as figure space in which 

pk dimensions exist, where p represents the number of landmarks and k represents coordinates 

(Rohlf 1996). Coordinates of homologous landmarks were first rotated, scaled and translated 

using a Generalized Procrustes Analysis (GPA), which provided fitted coordinates representative 

of shape variables. Specifically, GPA minimized the sum of squared differences among 

landmarks. All configurations were then centered upon the centroid and oriented so that bilateral 

landmarks made anatomical sense.  MorphoJ allows for projection of these coordinates into a 

curved space that approximates a Euclidean space so that multivariate (linear) statistical analysis 

can be performed. Principal component analysis was performed on the fitted coordinates which 

produced principal components (PC) scores. Centroid size were calculated for each group 

observed and retained for further analyses. Although the coordinates of each specimen are scaled 

and size is effectively removed, males and females were analyzed separately to investigate shape 

differences that may exist among the sexes.  GPA also produced a new dataset of Procrustes 

coordinates, which transfers the raw coordinates onto a common coordinate system among 

samples. The new Procrustes coordinate dataset was later used to assess differences in shape and 

size of groups 

Principal component analysis maximizes the within sample variance of a linear 

combination of variables, which is effectively the opposite of discriminant function analysis. As 

there is no prior group assignment, variance representative of the entire sample is used. Results 
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of principal component analysis will result in axes (dimensions) that can be visualized to assess 

biological variation. The Procrustes residuals can be used to construct a covariance matrix, 

which is used to run PCA. Correlation matrices are not used in geometric morphometric 

analyses, specifically with PCA as it removes the scaling procedure that translates axes into 

Procrustes distances (Klingenberg and Zaklan 2000). Correlation matrices would require scaling 

for each landmark which would affect the coordinate position of each respective landmark and 

cause a distortion or movement around each landmark recorded. 

Principal component analyses derives linear combination of variables that are most 

representative of the variation expressed in a dataset. Identifying which variables will provide 

dimensions with the greatest spread of variance will ultimately reduce the dimensionality of the 

group differences evident in the data into one or more dimensional spaces. Differences among 

groups can be summarized by Mahalanobis distance matrices, which is a generalized distance 

used to look at relationships among groups (Mahalanobis 1936).  

 Visualization of morphological variation is accomplished by projecting eigenvectors of a 

principal or canonical component into a configuration space. This is achieved by producing 

eigenvectors that are uniformly scaled for each coordinate by some factor and then applying the 

product to the coordinates of the mean configuration (Slice 2005). Thus morphological variation 

will be represented by a score and placed on an axis of a hypothetical configuration in which all 

other component scores are equal to zero. MorphoJ defaults to a scaling factor of 0.1, which has 

been commonly used in geometric morphometric analyses in anthropology (CP 2011). See 

examples of visualized shape differences in Figures 8 through 11. 
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Detection of outliers was conducted in MorphoJ software, which allows for a visual 

display of variation exhibited at each landmark for each specimen. This approach allows for the 

detection of landmarks that could have been recorded incorrectly (such as swapping landmarks) 

and allows for removal from the dataset if necessary.  

 

  

 

 

Figure 8. Anterior view example of shape comparison.  
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Figure 9. Lateral view example of shape analysis.  
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Figure 10. Superior view example of shape analysis.  
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Figure 11. Posterior view example vault analysis. 

Statistical Analyses 

 

Several analyses were carried out to test the various hypotheses that were outlined 

previously. First, analyses were carried out using the 3D data, with male and female subsets 

analyzed separately. 

Each group comparison was subjected to GPA superimposition and within group 

variance-covariance matrices were produced. Principal component analysis was carried out and 

the PC scores were retained for further comparisons.  PC scores were inputted into IBM SPSS 

software (v.22.0) and a multivariate analysis of variance (MANOVA) was carried out to examine 
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significant shape differences among regionally distinct modern Japanese groups. A Hotelling’s 

Two Sample T-Test was used for multiple comparisons.  

Assumption Tests 

Prior to each analysis, each dataset was examined for the presence of outliers. The 

squared Procrustes distances from the mean for each individual in cohort samples was compared 

to the cumulative distribution of Procrustes distances. Significant deviations from the mean are 

identified at all landmarks for each observation in a dataset (Figure 12). A preliminary principal 

components analysis was additionally run and observations were plotted by PC score to further 

identify any possible outliers (Figure 13).  PC scores were also used to generate a QQ-plot, 

which visually compares Mahalanobis distances from the centroid against a chi-square 

distribution and is a common technique to identify outliers and assess multivariate normality. 

Royston’s test for multivariate normality and QQ-plots were carried out using the MVN package 

in R (Korkmaz et al. 2014). If the dataset was not multivariate normal, the previous steps were 

repeated until multivariate normality was achieved.  While implementation of robust multivariate 

methods would be ideal to ensure normality of data, robust approaches are not yet available for 

geometric morphometric analyses. The iterative steps to remove outliers is offered as a work 

around until more options become available in freeware or open source computing programs.  

PC scores were then tested for multivariate normality using Royston’s multivariate 

normality test. PC scores were also used to generate a QQ-plot, which visually compares 

Mahalanobis distances from the centroid against a chi-square distribution and is a common 

technique to identify outliers and assess multivariate normality. Royston’s test for multivariate 

normality and QQ-plots were carried out using the MVN package in R (Korkmaz et al. 2014). 
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Outliers were first identified and removed using the outlier detection option in MorphoJ. This 

approach provides a visual representation of the variance of each landmark for each observation 

relative to the cumulative distribution of Procrustes distances of the entire sample, which is 

representative of overall shape variation (Klingenberg and Monteiro, 2005). A Box’s M test was 

performed on PC scores to test for homogeneity of covariances matrices.  

For each sample comparison, an analysis of variance (ANOVA) was carried out on the 

Procrustes coordinates using grouping variables such as geographic region or time period to 

assess whether the classifier variable exhibited significant shape differences among groups. This 

approach also examined whether significant differences existed among compared groups in 

regards to centroid size.  

Results of the male vault analysis using coordinate data was compared to a linear data 

analysis, to assess whether comparable results are found using coordinate data.  

 

 

Figure 12.  Average and above average deviation from the mean at landmarks. 
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Figure 13. Outlier detection using PCA plot. 

 

Group Comparisons/Hypothesis Testing 

The goals of this dissertation are to build on the decades of research carried out in the 

Japanese archipelago to identify morphological patterns at a more finite level. This is achieved by 

recording and analyzing three dimensional coordinate data of the skull. With the use of coordinate 

data, examination of morphological shape can identify variation at a more meticulous level as each 

landmark and subsequently entire portions of the skull can be analyzed in relation to the rest of the 

specimen. 

The first proposed hypothesis of this dissertation posits that employment of 3D data will 

provide differential conclusions regarding morphological trends in Japanese populations when 

compared to results achieved with linear data. This hypothesis is intentionally broad as to 
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encompass a number of smaller scale, related questions. Thus, examination of this question 

comprises a number of group comparisons to re-examine major morphological trends in Japan 

that have been documented in the literature.  

The first group of comparisons examines cranial variation in the modern period Japanese 

skeletal samples to provide a more in depth view of shape variables. The modern Japanese 

samples are also the best preserved and most complete, which allows for additional analyses. 

Consequently, the modern data set is also used to address the next broad question outlined in 

chapter one, which inquires whether different bony components of the skull (the facial and 

vault/base modules) will reflect different results in iterative comparisons. This is achieved by 

employing subsets of landmarks that represent different regions of the skull to ascertain whether 

the same result is achieved with a different type of data. For this initial run of comparative 

analyses, the samples representing northern (Hokkaido, Tohoku), central (Tokyo) and southern 

(Kyoto, Kyushu, Okinawa) Japan were grouped into subsets. Group comparisons involved a 

vault landmark only analysis, a facial landmark only analysis, an all variable landmark analysis 

and finally, the inclusion of linear distances of vault landmarks.  

 

Following this initial battery of comparisons, a more focused hypothesis is addressed 

using 3D coordinate data. Examination of minute morphological changes in Japanese 

populations that represent the last several hundred years is employed to provide a more 

conclusive picture of shape changes associated with reported secular trends. Specifically, the 

comparison of samples from the medieval period, the Edo and the modern period using 

landmarks will allow for the identification of skeletal shape changes correlated with 

brachycephalization. This approach compares the results of studies that used somatometric data 
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with data recorded from actual skeletal material in an effort to identify whether more biologically 

meaningful information can be inferred from the current data. 

The final round of comparisons assesses whether any informative patterns can be gleaned 

from comparing the regional modern samples with the prehistoric groups.  Potential similarities 

among Jomon and modern groups (particularly the geographically extreme northern and southern 

cohorts) are postulated to be either retention of morphology exhibited in premodern parental 

populations or occurrences of genetic drift (such as in isolation by distance). While some studies 

have described the modern Japanese population as a homogeneous, the current comparison of the 

regionally distinct modern samples with Jomon, Ainu and Yayoi groups with 3D data may 

identify population substructure that has not been apparent in previous studies that have used 

linear metric datasets.  

Summary 

This chapter provided descriptions of data collection procedures, samples included and 

analytical methods used. Coordinate data was recorded using a Microscribe digitizer using 

skeletal samples from different regional locations and temporal depths in Japan. Coordinate data 

was examined using MorphoJ v1.06d shape analysis software. Coordinates were rotated, scaled 

and translated using a Generalized Procrustes Analysis which provided fitted coordinates 

representative of shape variables. Principal component analysis was performed on the fitted 

coordinates which produced principal components (PC) scores. Centroid size was calculated for 

each group observed. MANOVA was carried out on PC scores to examine significant shape 

differences among regionally distinct modern Japanese groups. A Hotelling’s Two Sample T-

Test was used for multiple comparisons.  
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Finally, an analysis of variance (ANOVA) was carried out on the Procrustes coordinates 

to assess whether groups differed in regards to shape variables and centroid size. Modern 

samples were examined to identify any regional variability. Time periods were compared to 

examine morphological trends.  
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CHAPTER 4 

RESULTS 

 

Results are presented for the various analyses described in the previous chapter. Results 

of the 3D analyses are presented first. The geometric morphometric approach of General 

Procrustes Analysis was performed on a number of subsets of total samples to investigate 

hypotheses previously described. GPA scaled variance/covariance matrices were computed and 

PC scores were produced via principal component analysis. For each comparison described 

previously, MANOVA results are first presented, followed by Hotelling’s T-Square Two Sample 

Test to identify which groups differ in regards to principal component scores. Results of the 

ANOVA’s used to examine differences in centroid size and overall shape are then presented. 

Finally, the results of canonical variate analyses and discriminant function analysis (DFA) on 

linear metrics are presented next (DFA used only for the first analysis). Visualization of shape 

changes are also provided via wireframe figures. Interpretation and discussion of results is 

offered in the following chapter.  

Homogeneity of covariance matrices among samples were assessed using Box’s M test in 

SPSS. All group comparisons had equal variances after outlier removal, barring the modern male 

facial variable analysis and the prehistoric and modern female comparison. The robust test 

statistics of Pillai’s Trace, Hotelling’s Trace and Wilks’ Lambda were reported in the MANOVA 

results in an effort to be conservative given that some assumptions were violated. See tables in 

Appendix A for results of Box’s M tests for all group comparisons.  

 After outlier identification and removal, all groups exhibited multivariate normality. See 

tables and figures in Appendix A for results of Royston’s test and QQ-plots with associated 

confidence bands surrounding the normal distribution line.   
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Modern Group Comparison Results 

 

Male Vault Analysis 

 

Principal component analysis was first carried out on the vault landmarks.  The first 

twelve components account for 90.8% of the among group variance, and thus were retained to 

test for mean differences among groups (Table 5).  

The first twelve principal components were used to compare the central, northern and 

southern regional samples. MANOVA results show that the samples differ in regards to the first 

twelve components (Table 6). The Hotelling’s T-2 indicates that the central group is distinct 

from the southern and northern groups (Table 7).  

Centroid size was calculated and compared among groups and shows no significant 

differences among groups (Appendix A). To examine if there were statistical differences for 

shape variables among groups, a Procrustes ANOVA was conducted, with region used as the 

effect. This test is significant and indicates that groups differ in terms of shape variables (PC 

scores from the first fourteen principal components) but not in overall size (Appendix B).   
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Table 5. Eigenvalues and percent variance for principal components 1-12. 

Component Eigenvalues % Variance     Cumulative % 
1 0.00112952 27.084 27.084 

2 0.00053700 12.876 39.961 

3 0.00042899 10.287 50.247 

4 0.00034028 8.159 58.406 

5 0.00029797 7.145 65.551 

6 0.00025608 6.141 71.692 

7 0.00018522 4.441 76.133 

8 0.00016919 4.057 80.190 

9 0.00014129 3.388 83.578 

10 0.00011764 2.821 86.399 

11 0.00009734 2.334 88.733 

12 0.00008698 2.086 90.819 
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Table 6. MANOVA Results for modern males vault variables. 

 

 

 Table 7. Hotelling’s T2 Two Sample Test for group comparisons. 

Covariance Assumption T2 DF1 DF2 Parametric 

P 

Randomization 

P 

Central/Northern Equal 66.785 5 108.0 0.0000 0.0010 

 Unequal 65.754 5 88.5 0.0000 0.0010 

Southern/Northern Equal 7.351 5 167.0 0.2143 0.1930 

 Unequal 8.774 5 137.4 0.1380 0.1270 

Central/Southern Equal 34.504 5 159.0 0.0000 0.0010 

 Unequal 36.296 5 86.0 0.0000 0.0010 

 

 

Canonical Variate Analysis  

 Canonical variate analysis was conducted to explore differences and patterns between 

samples in regards to the majority of landmarks that make up the vault and cranial base. Results 

show separation among groups, however a large amount of overlap is found when examining 

centroid plots. Canonical variate (CV) one accounts for nearly 84% of the among group variance 

(Table 8). The wireframe shape change shows differences occurring in the superior region of the 

vault and the maximum vault breadth (Figure 14). Canonical variate plots of group centroids 

show the northern and southern groups displaced towards the positive end of the axis, indicating 

higher vault heights and wider cranial breadths than the central group centroid, which plots on 

the negative side of the axis (Figure 16). CV2 is responsible for roughly 18 % of the variance 

and shows the largest shape changes in breadth of the vault and the position of bregma and the 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .016 .263b 12 189.00 .994 

  Wilks’ Lambda .984 .263b 12 189.00 .994 

  Hotelling’s Trace .017 .263b 12 189.00 .994 

Region  Pillai’s Trace .375 3.659 24 380.00 .000 

  Wilks’ Lambda .649 3.806b 24 378.00 .000 

  Hotelling’s Trace .505 3.952 24 376.00 .000 
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occipital (Table 8 and Figure 15). Patterning of group centroids is much more difficult to discern, 

but shows the southern group slightly and northern group centroids are slightly displaced 

towards the positive end of the axis, indicating slightly wider crania overall and a higher position 

of bregma and more inferior placement of the occipital bone. The Mahalanobis distance matrix 

supports the patterns observed in the CV plot and shows the least amount of distance between the 

northern and southern groups, with the central group showing a larger distance to the southern 

group, and the largest distance to the northern group (Table 9).  

 

 

 

Table 8. Eigenvalues and percent variance for canonical components 1 and 2.  

Component Eigenvalues Variance % Cumulative % 

  1 1.91526920 83.920    83.920 

  2 0.36698090 16.080    100.00 

 

 

 

 

 

 

 

 

 



87 

 

 

(a)  (b) 

(c) 

Figure 14. CV1 shape differences for modern males. (a) Superior view, (b) Anterior view, 

(c) Lateral view. 
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(a)                                                                                            (b) 

(c) 

Figure 15. CV2 shape differences for modern males. (a) Superior view, (b) Anterior view, 

(c) Lateral view. 
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Figure 16. CV1 and CV2 scores for modern male vault analysis. 

 

 

Table 9. Mahalanobis distances among modern male regions. 

  Central  Northern 

  Northern      3.8971 

 <0.0001 

Southern       2.4564          2.1287 

 <0.0001   <0.0001 
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Male Facial Analysis 

 

The first eleven components resulting from PCA accounts for 92.2% of the among group 

variance, and was used to compare means among groups (Table 10). MANOVA and Hotelling’s 

T2 analysis shows differences among all groups (Tables 11 and 12). 

Centroid size displays no significant differences among groups yet the Procrustes 

ANOVA shows statistical significant differences for shape variables among groups, again 

indicating that facial shape was different among groups but size was not (Appendix B). 

 

Table 10. Eigenvalues and percent variance for principal components 1-11. 

Component Eigenvalues % Variance     Cumulative % 
1 0.00070445 21.888 21.888 

2 0.00045745 14.214 36.102 

3 0.00040750 12.662 48.764 

4 0.00035920 11.161 59.925 

5 0.00022510 6.994 66.919 

6 0.00018571 5.770 72.689 

7 0.00017347 5.390 78.080 

8 0.00014130 4.391 82.470 

9 0.00011709 3.638 86.108 

10 0.00009913 3.080 89.188 

11 0.00009731 3.024 92.212 
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Table 11. MANOVA results for modern males facial variables. 

 

 

 

Table 12. Hotelling’s T2 Two Sample Test for group comparisons. 

Covariance Assumption T2 DF1 DF2 Parametric P Randomization P 

Central/Northern Equal 28.057 5 80.0 0.0003 0.0010 

 Unequal 26.059 5 63.8 0.0008 0.0020 

Southern/Northern Equal 14.321 5 138.0 0.0201 0.0220 

 Unequal 16.103 5 102.7 0.0123 0.0140 

Central/Southern Equal 11.388 5 120.0 0.0588 0.0510 

 Unequal 14.305 5 53.7 0.0337 0.0250 

 

 

Canonical Variate Analysis Results 

 

Results of canonical variate analysis of the facial variables shows similar patterns among 

groups compared to the vault only analysis. CV1 accounts for 86.2% of the among group 

variance (Table 13). The wireframe shape change figure shows differences in the inferior portion 

of the nasal aperture and slight differences of the anteroposterior position of nasal landmarks 

(Figure 17).  CV plots shows group centroids equidistant to one another, with the central group at 

the positive end of the axis, the northern at the negative end and the southern group placed 

intermediate (Figure 19). The central group exhibits a broader, slightly taller nasal aperture that 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .015 .268b 11 193.00 .991 

  Wilks’ Lambda .985 .268b 11 193.00 .991 

  Hotelling’s Trace .015 .268b 11 193.00 .991 

Region  Pillai’s Trace .523 6.246 22 388.00 .000 

  Wilks’ Lambda .519 6.800b 22 386.00 .000 

  Hotelling’s Trace .844 7.362 22  384.00 .000 
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projects more anteriorly than the other groups (Figure 17).  CV2 is responsible for 17% of the 

variance (Table 13). The wireframe shows minimal differences among groups but does indicate a 

slightly more anterior position of subspinale, just inferior to the nasal sill in the midline (Figure 

18). Differences are also identified in the position of the lateral orbit in a superoinferior 

orientation, as well as in the distance between the orbits at dacryon. Some differences are shown 

in the breadth of the nasal aperture, as was observed in CV1, but to a lesser degree (Figure 18). 

The group centroid plot shows the central and northern group slightly above the southern group, 

indicating a narrower interorbital breadth, a slightly higher positon of the lateral rim of orbits and 

an anterior projection of the maxilla below the nasal sill (Figure 19). The Mahalanobis distance 

matrix shows similar patterns identified in the vault variable analysis. Primarily, the least amount 

of distance is found between the northern and southern groups (Table 14). However, the northern 

and central group exhibit the largest distance between them, as opposed to the southern and 

central group that was observed in the facial analysis.  

 

 

Table 13.  Eigenvalues and percent variance for canonical components 1 and 2. 

Component Eigenvalues % Variance     Cumulative % 

1 0.98281987 86.288 86.288 

2 0.15618155 13.712 100.00 
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(a)    (b) 

Figure 17. CV1 shape differences for modern males. (a) Anterior view, (b) Lateral view. 

 

(a)                          (b) 

Figure 18. CV2 shape differences for modern males. (a) Anterior view, (b) Lateral view. 
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Figure 19. CV1 and CV2 scores for modern male facial analysis.  
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Table 14. Mahalanobis distances among modern male groups. 

     Central  Northern    

Northern   2.8947 

 <.0001 

Southern   1.7309    1.5687 

    <.0001    <.0001 

 

 

 

Male All Variable Analysis 

 

 As the modern samples were the most complete in comparison to the archaeological 

groups, an additional analysis was run using all cranial landmarks. This approach was used as a 

means to examine the validity of using a particular module (such as the face or vault) rather than 

the skull in its entirety to examine group differences. PCA shows the first seventeen components 

accounts for 90.3% of the among group variance (Table 17). MANOVA and the Hotelling’s T2 

show that the central group differs from the southern and northern group (Tables 18 and 19). 

 Groups differ both in centroid size and shape variables (Appendix B).  
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Table 17. Eigenvalues and percent variance for principal components 1-17. 

Component Eigenvalues % Variance     Cumulative % 

1 0.00076326 21.985 21.985 

2 0.00039562 11.396 33.381 

3 0.00029207 8.413 41.794 

4 0.00026118 7.523 49.317 

5 0.00022826 6.575 55.892 

6 0.00019918 5.737 61.629 

7 0.00016959 4.885 66.514 

8 0.00014514 4.181 70.695 

9 0.00012369 3.563 74.258 

10 0.00011069 3.188 77.446 

11 0.00009362 2.697 80.143 

12 0.00008008 2.307 82.450 

13 0.00006811 1.962 84.412 

14 0.00006358 1.831 86.243 

15 0.00005288 1.523 87.766 

16 0.00004680 1.348 89.114 

17 0.00004006 1.154 90.268 
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Table 18. MANOVA results for modern male all variable analysis. 

 

 

Table 19. Hotelling’s T2 Two Sample Test for group comparisons. 

Covariance Assumption T2 DF1 DF2 Parametric 

P 

Randomization 

P 

Central/Northern Equal 10.352 2 95.0 0.0077 0.0100 

 Unequal 10.524 2 79.0 0.0076 0.0100 

Southern/Northern Equal 1.293 2 149.0 0.5275 0.5380 

 Unequal 1.381 2 125.4 0.5060 0.5150 

Central/Southern Equal 6.339 2 138.0 0.0461 0.0450 

 Unequal 7.422 2 76.5 0.0303 0.0280 

 

 

Canonical Variate Analysis Results 

 

Results of the all variable analysis yields very interesting results, as groups are easier to 

delineate by region than was found with the vault or facial variable only analyses. CV1 accounts 

for 84.4% of the among group variance (Table 20).  The wireframe shape change figure shows 

the largest amounts of variation among cranial vault height, cranial breadth and width of the 

nasal aperture (Figure 20). The centroid plot shows clear separation among all groups, with the 

northern group on the positive end of the axis, indicating the widest vault breadths relative to the 

tallest vault heights and the narrowest nasal apertures (Figure 22). The central group centroid is 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .020 .211b 17 175.00 .991 

  Wilks’ Lambda .980 .211b 17 175.00 .991 

  Hotelling’s Trace .020 .211b 17 175.00 .991 

Region  Pillai’s Trace .435 2.878 34 352.00 .000 

  Wilks’ Lambda .604 2.947b 34 350.00 .000 

  Hotelling’s Trace .441 4.568c 34  348.00 .000 
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on the negative side of the axis, indicating narrower vault breadth, shorter vault height but a 

wider nasal aperture. The southern group centroid is located intermediate to both groups.  CV2 is 

responsible for roughly 16% of the variance (Table 20). Shape differences in the wireframe 

figure are identified in breadth of the frontal bone, length and breadth of the vault as well as 

position of the maxilla in an anteroposterior orientation (Figures 21). On this axis it is more 

difficult to distinguish patterns as group centroids are much closer to one another. However, the 

central and northern group centroids are displaced slightly above the southern group, indicating 

larger vault breadths and height relative to a more forward positioned maxilla (Figure 22). The 

Mahalanobis distance matrix again shows the least amount of distance between the northern and 

southern groups, as was found in previous analyses (Table 22). The central and northern groups 

show the largest difference in the matrix.  

 

 

Table 20. Eigenvalues and percent variance for canonical components 1 and 2. 

Component Eigenvalues % Variance     Cumulative % 

1 2.08218593 84.423 84.423 

2 0.38417894 15.577 100.000 
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(a) (b) 

(c) 

  Figure 20. CV2 shape differences for modern males. (a) Lateral view, (b) Superior view, 

(c) Anterior view. 
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(a)  (b) 

(c) 

Figure 21. CV1 shape differences for modern males. (a) Lateral view, (b) Superior view, (c) 

Anterior view. 
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Figure 22. CV1 and CV2 scores for modern male all variable analysis. 

 

 

Table 21. Mahalanobis distances for modern male regions. 

       Central   Northern 

Northern    4.0698 

               <.0001 

Southern    2.4554    2.3030 

               <.0001   <.0001 
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Linear Data Analysis 

 

The next component of this analysis is to examine whether results from a traditional 

craniometric approach provides the same pattern of results as does the coordinate analysis. For 

simplicity purposes, and ease of interpretation, only the male vault landmark datasets are 

compared. Measurements using the landmarks that were available for the 3D analysis is fairly 

limited and only the variables of GOL, BBH, AUB, XCB, XFB, WFB, ASB, FRC and PAC 

were employed. Analyses were performed using Fordisc 3.1 (Ousley 2005). Principal component 

analysis was conducted and the first seven components were kept as they were found to be 

responsible for 94.6% of the among group variance (Table 22). MANOVA results show 

differences among groups (Table 23).  

 

Table 22. Eigenvalues and percent variance for principal components 1-7. 

Component Eigenvalues % Variance     Cumulative % 

1 3.309 36.763 36.763 

2 1.835 20.386 57.149 

3 .998 11.088 68.237 

4 .854 9.494 77.731 

5 .597 6.637 84.368 

6 .500 5.557 89.925 

7 .421 4.679 94.604 
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Table 23. MANOVA Results for modern males vault linear data. 

 

 

Canonical Variate Analysis Results 

 

Canonical variate analysis using the PC scores shows minimal separation among groups. 

CV one accounts for 94% of the among group variance (Table 24). CV1 is loaded highest by 

PC4 (Table 25). The component matrix shows that PC4 represents negatively loaded breadth of 

the vault (Table 26). Observation of the group centroid plot shows the central group slightly on 

the positive end of the axis, indicating wider asterionic breadth (Figure 23). CV2 accounts for 

only 7% of the variance and thus will not be addressed. The Mahalanobis distance matrix mirrors 

the relationships that was found with the facial variable analysis. Namely, that the southern and 

northern group shows the smallest distance (Table 27).  

A cursory look at group means highlights the overall similarities (Table 28). As centroid 

size was not found to be significantly different in the 3D analysis, it can be argued that the shape 

analysis provided variables that better identified differences amongst groups.  

 

Effect Value    F Hypothesis df   Error df       Sig. 

Intercept Pillai's Trace         .004         .303b         3.000    231.000          .823 

Region Pillai's Trace   .067 2.698 6.000 464.000 .014 
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Table 24. Eigenvalues and percent variance for canonical components 1 and 2. 

CV Eigenvalues % Variance Cumulative % 

1 1.5773 93.89 93.89 

2 0.1014 6.11 100.00 

 

 

 

Table 25. Canonical structure coefficients. 

 

 Can 1 Can 2 

PC1 0.1612 -0.1044 

PC2 0.4487 0.1202 

PC3 0.4797 0.4995 

PC4 -0.7918 0.4721 

PC5 -0.2853 0.0359 

PC6 0.2206 0.5884 

PC7 -0.0968 -0.3263 
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Table 26. Component matrix for modern male analysis. 

Component Matrix 

 PC1     PC2 PC3 PC4 PC5 PC6 PC7 

GOL .629 .585 .114 -.157 -.310 -.109 .204 

BBH .691 .310 -.286 .303 .239 .105 -.403 

XCB .564 -.666 -.200 .067 .136 -.030 .168 

XFB .586 -.599 .079 .338 .041 .069 .229 

WFB .575 -.253 .599 .060 -.334 .252 -.227 

AUB .735 -.241 .011 -.255 -.019 -.534 -.182 

ASB .604 .060 .032 -.653 .318 .303 .065 

FRC .635 .333 -.542 .127 -.292 .127 .126 

PAC .367 .598 .450 .328 .354 -.122 .180 
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Figure 23. Canonical discriminant function score plot. 
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Table 27. Mahalanobis distance matrix for linear male analysis. 

                      Central       Northern 

Northern 1.72 

                    <0.001 

Southern 1.322          0.63                    

<0.001           <0.001          0.031                      

 

 

 

Table 28. Group means for modern males. 

Group GOL BBH XCB XFB WFB AUB ASB FRC PAC 

North 180 136 137 115 93 123 107 110 112 

South 180 139 138 115 93 123 107 111 114 

Central 177 138 140 115 93 123 107 110 111 

 

 

It thus can be argued that relationships were better identified with the coordinate analysis, 

as shape differences provide more information available for interpretation. Additionally, the 

visual representation of shape differences among groups provides a guide for description of 

patterns that can be better used to explore biological questions. The remaining hypotheses 

outlined in chapter one will be examined using coordinate data. It was also found that the 

partitioning of vault and facial variables did not produce significantly different results for the 

modern males, although it provided some additional information regarding morphological 

variation in the facial module. Therefore, to examine whether modern female groups show the 

same generally homogenous patterns that the males did, a female only analysis was performed 

with the vault and face combined.  
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Modern Females All Variable Analysis 

 

PCA indicates that the first sixteen components account for 90.7% of the among group 

variance, and are retained to test for mean differences among groups (Table 29). Results of 

MANOVA and Hotelling’s T2 indicate that the central group differs from the southern and 

northern groups (Tables 30 and 31).  

The female groups do not differ in centroid size but do differ in shape (Appendix B).  
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Table 29. Eigenvalues and percent variance for principal components 1-16. 

Component Eigenvalues % Variance Cumulative % 
1 0.00080898 24.696 24.696 

2 0.00041124 12.554 37.250 

3 0.00028323 8.646 45.896 

4 0.00025322 7.730 53.626 

5 0.00021129 6.450 60.076 

6 0.00017731 5.413 65.488 

7 0.00014391 4.393 69.881 

8 0.00012015 3.668 73.549 

9 0.00011361 3.468 77.018 

10 0.00009646 2.945 79.962 

11 0.00008278 2.527 82.489 

12 0.00006673 2.037 84.526 

13 0.00006206 1.895 86.421 

14 0.00005137 1.568 87.989 

15 0.00004891 1.493 89.482 

16 0.00004238 1.294 90.776 
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Table 30. MANOVA results for modern female analysis. 

 

 

Table 31. Hotelling’s T2 Two Sample Test for group comparisons. 

Covariance Assumption T2 DF1 DF2 Parametric 

P 

Randomization 

P 

Central/Northern Equal 6.154 2 56.0 0.0569 0.0510 

 Unequal 6.976 2 52.9 0.0402 0.0440 

Southern/Northern Equal 1.011 2 109.0 0.6074 0.5940 

 Unequal 1.656 2 39.7 0.4534 0.4480 

Central/Southern Equal 2.836 2 119.0 0.2492 0.2690 

 Unequal 2.966 2 57.7 0.2415 0.2550 

 

 

Canonical Variate Analysis Results 

 

Results of the female canonical variate analysis using all variables are comparable to 

those found with the male analysis. CV1 accounts for roughly 76% of the among group variance 

(Table 32).  The wireframe shape change figure indicates the majority of shape differences at the 

breadth of the frontal, breadth of the vault and forward projection of inferior border of the nasal 

aperture (Figure 19). Centroid plots show distinct separation among the northern and central 

groups, as was found in the male analysis. The central group shows larger dimensions at the 

positive end of the axis, indicating broader vault and frontal breadths and a more forwardly 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .036 .299b 16 127.00 .996 

  Wilks’ Lambda .964 .299b 16 127.00 .996 

  Hotelling’s Trace .038 .299b 16 127.00 .996 

Region  Pillai’s Trace .391 1.941 32 32.00 .003 

  Wilks’ Lambda .643 1.976b 32 32.00 .002 

  Hotelling’s Trace .502 2.821c 32  32.00 .002 
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placed nasal aperture (Figure 24). The northern group is on the negative side of the axis, 

indicating narrower dimensions. As with the male analysis, the southern group is intermediate 

between northern and central groups (Figure 26).  CV2 accounts for 24% of the variance and 

shows the majority of variation again at the frontal and vault breadth landmarks, as well as 

glabella and basion (Table 32 and Figure 25). The southern group is slightly displaced to the 

positive end of the axis, indicating broader frontal vault and base dimensions relative to taller 

and a more anteriorly positioned frontal bone (Figure 26). The norther group shows the opposite 

of these patterns and the central group is intermediate.  As with previous analyses, the 

Mahalanobis distance matrix shows the least amount of distance between the northern and 

southern groups (Table 33). The next smallest distance is between the central and southern 

group.  

 

Table 32. Eigenvalues and percent variance for canonical components 1 and 2. 

Component Eigenvalues % Variance     Cumulative % 

1 1.35972992 76.560 76.560 

2 0.41630257 23.440 100.000 
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(a) (b) 

(c) 

 

Figure 24. CV1 shape differences for modern females. (a) Lateral view, (b) Superior view, 

(c) Anterior view. 
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(a) (b) 

(c)  

Figure 25. CV2 shape differences for modern females. (a) Lateral view, (b) Superior view, 

(c) Anterior view. 
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Figure 26. CV1 and CV2 scores for modern female all variable analysis. 

 

Table 33. Mahalanobis distances for modern female regions. 

 

                      Central  Northern 

Northern    3.5083       

                          <.0001 

Southern    2.4289    2.0326 

                <.0001     <.0001 
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Secular Change Shape Changes 

 

The following analysis compared shape changes associated with samples from more 

recent time periods, in an effort to better quantify the morphological changes of modern Japanese 

that have been documented in the literature. Male samples from the medieval, Edo and modern 

periods were compared in the same manner as previous analyses. A female only analysis follows. 

As the more recent samples included in the following analyses are comparatively much more 

complete than the temporally earlier samples, the inclusion of vault and facial variables, all 

landmarks were used.  

Male Analysis 

 

PCA was performed using all landmarks. The first seventeen components account for 

90% of the among group variance (Table 34). Results of MANOVA and Hotelling’s T2 indicate 

that the modern group differs from medieval and Edo periods groups (Tables 35 and 36).  

 

Temporal groups do not differ in terms of centroid size but do differ with shape variables 

(Appendix B). 
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Table 34. Eigenvalues and percent variance for principal components 1-17. 

Component Eigenvalues % Variance Cumulative % 

1 0.00064558 20.251 20.251 

2 0.00035788 11.226 31.478 

3 0.00027274 8.555 40.033 

4 0.00025403 7.969 48.002 

5 0.00022764 7.141 55.142 

6 0.00019259 6.041 61.183 

7 0.00014912 4.678 65.861 

8 0.00013363 4.192 70.053 

9 0.00010687 3.352 73.405 

10 0.00009892 3.103 76.509 

11 0.00009437 2.960 79.469 

12 0.00007030 2.205 81.674 

13 0.00006365 1.997 83.671 

14 0.00005524 1.733 85.403 

15 0.00005010 1.572 86.975 

16 0.00004635 1.454 88.429 

17 0.00003620 1.136 89.565 

18 0.00003328 1.044 90.609 
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Table 35. MANOVA results for male secular change analysis. 

 

 

 

Table 36. Hotelling’s T2 Two Sample Test for group comparisons. 

Covariance Assumption T2 DF1 DF2 Parametric P Randomiza

tion P 

Medieval/Edo Equal 5.525 2 31.0 0.0854 0.0790 

 Unequal 5.451 2 30.3 0.0886 0.0850 

Edo/Modern Equal 12.394 2 54.0 0.0042 0.0080 

 Unequal 19.596 2 8.9 0.0102 0.0240 

Modern/Medieval Equal 28.624 2 60.0 0.0000 0.0010 

 Unequal 32.870 2 15.0 0.0003 0.0010 

 

 

Canonical Variate Analysis Results 

 

Results of the secular change male analysis illustrate some differences among groups, but 

not as significantly as has been reported by previous studies. Canonical variate one accounts for 

roughly 60% of the among group variance (Table 37).  Shape variation as indicated by the 

wireframe figure is most notable at the position of bregma in a superoinferior direction, and 

lambda in an anteroposterior direction. Also, the position of the region for maximum cranial 

breadth shows differences, but width of the vault does not (Figure 27). Additionally, the 

landmarks of the palate also differ in a superoinferior orientation (Figure 27). Vault length is also 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .157 2.158b 18 208.00 ..005 

  Wilks’ Lambda .843 2.158b 18 208.00 .005 

  Hotelling’s Trace .187 2.158b 18 208.00 .005 

Region  Pillai’s Trace .329 2.284 36 418.00 .000 

  Wilks’ Lambda .695 2.306b 36 416.00 .000 

  Hotelling’s Trace .405 3.305c 36  414.00 .000 
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longer in the modern group due to a more posterior position of lambda, and the palate is slightly 

superior compared to other groups (Figure 27). The centroid plot for CV1 shows the modern 

group positioned at the positive end of the axis, indicating taller vault height due to a superior 

movement of bregma, as well as a higher position for maximum breadth of the vault (Figure 29). 

The medieval and Edo period group centroids are positioned almost directly on top of one 

another. CV2 two is responsible for just above 40% of the variance and shows the majority of 

variation occurring at the breadth of the frontal, the vault and cranial base at radiculare (Table 37 

and Figure 28). The centroid plots shows the Edo group located at the highest end of the positive 

axis, with the modern group positioned slightly below it (Figure 29). These groups thus exhibit 

the largest vault and base breadths, with the medieval group exhibiting narrower dimensions for 

cranial breadth, which has been cited by previous studies. However, not found was a longer 

cranial length in the medieval group, which has been reported by several Japanese studies.  The 

Mahalanobis distance matrix shows that the modern group is closest to the Edo group, but the 

medieval group is closer to the modern group (Table 38).  

 

Table 37. Eigenvalues and percent variance for canonical components 1 and 2. 

Component Eigenvalues % Variance     Cumulative % 

1 0.59519624 65.324 65.324 

2 0.31594800 34.676 100.000 
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(a) (b) 

(c) 

Figure 27. CV1 shape differences for modern, medieval and Edo period males. (a) Lateral 

view, (b) Superior view, (c) Anterior view. 
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(a) (b) 

 (c) 

Figure 28. CV2 shape differences for modern. Medieval and Edo period males. (a) Lateral 

view, (b) Superior view, (c) Anterior view. 
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Figure 29. CV1 and CV2 scores for modern, medieval and Edo period males. 

 

Table 38. Mahalanobis distances for medieval, modern and Edo males. 

Edo      Medieval 

Medieval    3. 3570 

                         <.0001 

Modern      2.4926    3.1658         

<.                     <.0001              <.0001 
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Female Analysis 

 

Principal component analysis was performed using all landmarks for the female sample. 

The first seventeen components accounted for 90 % of the variance (Table 39). Results of 

MANOVA and Hotelling’s T2 show the modern sample to differ from the medieval and Edo 

period cohorts (Tables 40 and 41).  

Centroid size does not differ among groups, but shape was found to significantly differ 

(Appendix B).  

 

 

Table 39. Eigenvalues and percent variance for principal components 1-17. 

Component Eigenvalues % Variance Cumulative % 

1 0.00067026 22.062 22.062 

2 0.00033700 11.092 33.154 

3 0.00027317 8.992 42.146 

4 0.00023705 7.803 49.948 

5 0.00019926 6.559 56.507 

6 0.00017351 5.711 62.218 

7 0.00014299 4.707 66.925 

8 0.00011775 3.876 70.801 

9 0.00011088 3.650 74.450 

10 0.00009585 3.155 77.605 

11 0.00007659 2.521 80.126 

12 0.00007081 2.331 82.457 

13 0.00006350 2.090 84.547 

14 0.00005572 1.834 86.381 

15 0.00004529 1.491 87.872 

16 0.00004172 1.373 89.245 

17 0.00003470 1.142 90.387 
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Table 40. MANOVA results for secular change female analysis. 

 

 

 

Table 41. Hotelling’s T2 Two Sample Test for medieval and Edo groups. 

Covariance Assumption T2 DF1 DF2 Parametric P Randomizati

on P 

Medieval/Edo Equal 3.580 2 45.0 0.1856 0.1710 

 Unequal 3.522 2 43.0 0.1914 0.1820 

Edo/Modern Equal 12.394 2 54.0 0.0042 0.0080 

 Unequal 19.596 2 8.9 0.0102 0.0240 

Modern/Medieval Equal 28.624 2 60.0 0.0000 0.0010 

 Unequal 32.870 2 15.0 0.0003 0.0010 

 

Canonical Variate Analysis Results 

 

Results of the secular change female analysis support what was found in the male 

analysis. CV one accounts for roughly 74% of the among group variance (Table 42).  Shape 

variation in the wireframe figure is most notable at the position of bregma in a superoinferior 

direction (Figure 30). To a lesser degree, shape change is also observed in the breadth of vault at 

eurion and in the position of the palate. The modern group shows the largest dimensions in 

regards to these variables, and observation of group centroid plots show the modern group at the 

positive end of the axis (Figure 32). The Edo group is at the negative end of the axis, while the 

medieval group is intermediate, indicating somewhat shorter vault heights due to the position of 

bregma (Figure 32). Additionally, the Edo and medieval groups show a slightly more inferiorly 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .189 2.412b 17 176.00 .002 

  Wilks’ Lambda .811 2.412b 17 176.00 .002 

  Hotelling’s Trace .233 2.412b 17 176.00 .002 

Period  Pillai’s Trace .513 3.594 34 354.00 .000 

  Wilks’ Lambda .545 3.6677b 34 352.00 .000 

  Hotelling’s Trace .726 5.410 34  348.00 .000 
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positioned palate. CV2 is responsible for 26% of the variance and the wireframe figure shows the 

majority of variation occurring at landmarks that are responsible for width and length of the vault 

(Table 42 and Figure 31). The group centroid plots show the Edo and modern group at the 

positive end of the axis, distinct from medieval group which plots towards the negative end of 

the axis (Figure 32). The Edo and modern groups exhibit significantly wider vault breadths, and 

slightly longer lengths due to the anterior movement of glabella and posterior movement of the 

occipital and parietals. In the male analysis, the medieval group exhibited longer crania. The 

longer length of the vault in the recent female samples is interesting as that trend has not 

previously been described in the literature. The more anterior position of the upper face, and 

more posterior placement of the occipital shows the medieval group displaying narrower 

dimensions when compared to the modern and Edo periods. The Mahalanobis distance matrix 

shows that, as was found with the male analysis, the medieval and modern groups exhibit the 

smallest distance while the Edo group is more distant to both groups (Table 43).  

 

Table 42. Eigenvalues and percent variance for canonical components 1 and 2. 

Component Eigenvalue % Variance Cumulative % 

1 1.47804122 73.713 73.713 

2 0.52708617 26.287 100.000 
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(a) (b) 

(c)  

Figure 30. CV1 shape differences for modern, medieval and Edo period females. (a) Lateral 

view, (b) Superior view, (c) Anterior view. 
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(a)  (b) 

(c) 

Figure 31. CV2 shape differences for modern, medieval and Edo period females. (a) Lateral 

view, (b) Superior view, (c) Anterior view. 
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Figure 32. CV1 and CV2 scores for medieval, modern and Edo period females. 

 

Table 43. Mahalanobis distances for medieval, modern and Edo females. 

               Edo        Medieval 

Medieval    3.1438 

    <.0001 

Modern      3.2069    3.0537 

    <.0001   <.0001 
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Prehistoric and Modern Group Analysis 

 

To examine the idea that the northernmost populations (including the Ainu) and the 

southernmost populations experienced less admixture with the Yayoi than mainland Japanese 

populations, the regional modern samples were again partitioned into northern, central and 

southern cohorts. The regional groups were compared to the Jomon, Ainu, Yayoi and Kofun 

samples in an effort to identify morphological similarities evident in the modern groups. Male 

vault and facial landmarks were examined in separate analyses, partly to maximize sample size 

and to assess whether similar results are found when using landmarks that represent two separate 

cranial modules.  The female groups were analyzed with all variables, as the same number of 

individuals was available in both datasets. 

 

Male Vault Analysis 

 

The first thirteen components account for 90 % of the among group variance (Table 44). 

Results of MANOVA and Hotelling’s T2 indicate differences among Jomon and Kofun, Ainu 

and the central/southern modern, Yayoi and all modern groups, and the Kofun and all modern 

groups (Tables 45-49).  

 

 

Calculation and comparison of centroid size among groups indicate that the vault 

variables of the prehistoric and modern groups were significantly different in regards to size 

(Appendix B). Additionally, as with all previous analyses, the Procrustes ANOVA shows groups 

differ significantly in regards to shape (Appendix B). 
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Table 44. Eigenvalues and percent variance for principal components 1-13. 

Component Eigenvalues % Variance     Cumulative % 

1 0.00079179 22.881 22.881 

2 0.00039888 11.527 34.408 

3 0.00037452 10.823 45.230 

4 0.00031036 8.969 54.199 

5 0.00027362 7.907 62.106 

6 0.00017777 5.137 67.243 

7 0.00016572 4.789 72.031 

8 0.00013315 3.848 75.879 

9 0.00012102 3.497 79.376 

10 0.00010731 3.101 82.477 

11 0.00009688 2.800 85.277 

12 0.00007296 2.108 87.385 

13 0.00006678 1.930 89.315 

 

 

Table 45. MANOVA results for male vault analysis. 

 

 

 

 

 

 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .205  6.305b 12 294.00 .000 

  Wilks’ Lambda .795  6.305b 12 294.00 .000 

  Hotelling’s Trace .257  6.305b 12 294.00 .000 

Period  Pillai’s Trace .823 4.896 60 1490.00 .000 

  Wilks’ Lambda .367  3.806b 60 1380.47 .000 

  Hotelling’s Trace 1.251     3.952 60 1462.00 .000 
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Table 46. Hotelling’s T2 Two Sample Test for Jomon and all other groups 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Ainu Equal 2.038 2 33.0 0.3834 0.3710 

 Unequal 4.376 2 10.0 0.1950 0.1870 

Yayoi Equal 0.768 2 47.0 0.6889 0.6950 

 Unequal 1.838 2 7.9 0.4856 0.4950 

Kofun Equal 12.394 2 54.0 0.0042 0.0080 

 Unequal 19.596 2 8.9 0.0102 0.0240 

Modern-C Equal 5.164 2 49.0 0.0903 0.1050 

 Unequal 4.271 2 8.7 0.2154 0.2100 

Modern-N Equal 4.625 2 59.0 0.1121 0.0970 

 Unequal 6.756 2 7.6 0.1223 0.1000 

Modern-S Equal 3.395 2 109.0 0.1908 0.1880 

 Unequal 4.735 2 7.1 0.2101 0.1990 

. 

 

Table 47. Hotelling’s T2 Two Sample Test for Ainu and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Yayoi Equal 3.057 2 68.0 0.2292 0.2200 

 Unequal 2.724 2 51.4 0.2722 0.2610 

Kofun Equal 1.869 2 36.0 0.4124 0.4160 

 Unequal 1.601 2 14.8 0.4923 0.4960 

Modern-C Equal 16.282 2 70.0 0.0007 0.0010 

 Unequal 17.293 2 59.1 0.0006 0.0010 

Modern-N Equal 2.401 2 80.0 0.3110 0.2870 

 Unequal 2.575 2 48.8 0.2926 0.2740 

Modern-S Equal 5.755 2 130.0 0.0612 0.0660 

 Unequal 8.130 2 43.7 0.0262 0.0380 
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Table 48. Hotelling’s T2 Two Sample Test for Yayoi and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Kofun Equal 0.312 2 50.0 0.8585 0.8490 

 Unequal 0.266 2 11.8 0.8867 0.8700 

Modern-C Equal 28.088 2 84.0 0.0000 0.0010 

 Unequal 28.040 2 81.5 0.0000 0.0010 

Modern-N Equal 28.088 2 84.0 0.0000 0.0010 

 Unequal 28.040 2 81.5 0.0000 0.0010 

Modern-S Equal 19.135 2 144.0 0.0001 0.0010 

 Unequal 22.821 2 90.3 0.0000 0.0010 

 

 

Table 49. Hotelling’s T2 Two Sample Test for Kofun and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Modern-C Equal 14.368 2 52.0 0.0020 0.0060 

 Unequal 12.430 2 12.9 0.0180 0.0210 

Modern-N Equal 6.343 2 62.0 0.0513 0.0460 

 Unequal 4.568 2 11.3 0.1740 0.1510 

Modern-S Equal 7.752 2 112.0 0.0244 0.0220 

 Unequal 7.181 2 10.6 0.0834 0.0740 

 

 

Canonical Variate Analysis Results 

 

Results of the male vault analysis provide insight into relationships between prehistoric 

and modern samples. CV one accounts for roughly 47% of the among group variance (Table 50).  

Shape variation is most identifiable at the position of bregma, basion and radiculare in a 

superoinferior direction, as well as at vault breadth and the position of glabella in an 

anteroposterior direction (Figure 33). Examination of group centroid plots shows the prehistoric 

samples positioned at the positive end of the axis, and the modern samples group on the negative 

side (Figure 36). The Ainu group plots intermediately. Yayoi, Kofun and Jomon groups are at the 

positive end of the axis, indicating a wider, more anteriorly placed frontal, narrower vault 
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breadth and shorter vault height than the modern groups, which cluster at the negative end of the 

axis (Figure 36). The prehistoric groups exhibit a more superior and inferior position of bregma 

and basion, respectively, as well as a shorter vault length due to the posterior movement of 

glabella. The Ainu group is placed essentially in the middle of the axis. The modern groups 

conversely exhibit a longer vault that is shorter in height due to an inferior and movement of 

bregma, basion and radiculare. CV2 is responsible for 27% of the variance and involves the 

majority of variation at the cranial base, both in directions that affect width and position in a 

superoinferior direction (Table 50 and Figure 34). The group centroid plot shows the Ainu and 

Jomon samples group at the positive end of the axis, while the Yayoi and Kofun samples group 

at the negative end, andthe modern groups are intermediately placed (Figure 36). The Ainu and 

Jomon groups show a more inferiorly placed cranial base that is narrower in comparison to the 

remaining groups. The Yayoi and Kofun groups show the widest cranial bases and a more 

superior placement of bregma, indicating a taller vault height. CV3 is responsible for nearly 16% 

of the variance and displays the largest amount of shape changes in the region of maximum 

cranial breadth (Table 50 and Figure 35). Group centroid distinction is difficult, but the Jomon 

group is slightly distinct from the rest of the samples, indicating the widest vault (Figure 37). 

Observation of the Mahalanobis distance matrix shows the least amount of distance between 

southern and northern modern groups, with the southern group being closer to the central group 

(Table 51). All modern groups are roughly equidistant to the Jomon group, with the central 

modern group distance being slightly larger. Interestingly, the modern northern group is closer to 

the Ainu group than the Jomon group is. Also of note is the close relationship that the modern 

northern and southern groups display with the Yayoi group, while the northern group exhibits a 
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larger distance. The distance between the Yayoi and Kofun groups show the second smallest 

distance overall, supporting results of many studies (Table 51).  

 

Table 50. Eigenvalues and percent variance for canonical components 1-4. 

Component Eigenvalues % Variance Cumulative % 

1 1.11638811 47.137 47.137 

2 0.63607805 26.857 73.993 

3 0.30785783 12.998 86.992 

4 0.12526401 5.289 92.281 
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(a)  (b) 

(c) 

Figure 33. CV1 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Superior view, (b) Anterior view, (c) Lateral view. 
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(a)  (b) 

(c) 

Figure 34. CV2 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Superior view, (b) Anterior view, (c) Lateral view. 
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(a)  (b) 

 

(c)  

Figure 35. CV3 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Superior view, (b) Anterior view, (c) Lateral view.  
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Figure 36. CV1 and CV2 scores for Jomon, Ainu, Yayoi, Kofun and modern groups.  
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Figure 37. CV3 and C4 scores for Jomon, Ainu, Yayoi, Kofun and modern groups.  
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Table 51. Mahalanobis distances for Jomon, Kofun, Ainu and modern groups.  

                        Ainu            Jomon          Kofun           Mod-C    Mod-N            Mod-S 

Jomon       3.1635 

Kofun       3.7317               2.9645 

Modern-C    3.2655               3.9737             3.6044 

Modern-N    2.6163               3.2961             2.5990              2.2271 

Modern-S    2.8314              3.3505             2.8256              1.5524            1.1945 

      Yayoi       3.1275              2.5791             1.8976              3.3266            2.3610       2.4404 

      All distances significant at 0.005, except Yayoi and Kofun groups.  

 

 

Male Facial Analysis 

 

Principal component analysis show that first eleven components account for 92 % of the 

among group variance (Table 52). MANOVA and Hotelling’s T2 indicate differences among the 

Jomon and northern and southern modern groups, Ainu and all other groups, Yayoi and all 

modern groups, and Kofun and all modern groups (Tables 53-57).  

Comparison of centroid size shows that the facial variables of the male groups are 

significantly different in regards to size, as were the shape variables (Appendix B).  
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Table 52. Eigenvalues and percent variance for principal components 1-11. 

Component Eigenvalues % Variance     Cumulative % 

1 0.00067360 22.074 22.074 

2 0.00041141 13.482 35.557 

3 0.00036149 11.846 47.403 

4 0.00033745 11.059 58.462 

5 0.00023694 7.765 66.227 

6 0.00017379 5.695 71.922 

7 0.00016751 5.490 77.411 

8 0.00013930 4.565 81.976 

9 0.00010184 3.337 85.314 

10 0.00010005 3.279 88.593 

11 0.00009560 3.133 91.726 

 

 

 

Table 53. MANOVA results for male facial analysis.  

 

 

 

 

 

 

 

 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .075 2.00b 12 295.00 .024 

  Wilks’ Lambda .925 2.00b 12 295.00 .024 

  Hotelling’s Trace .081 2.00b 12 295.00 .024 

Period  Pillai’s Trace .375 3.659 72 1800.00 .000 

  Wilks’ Lambda .649 3.806b 72 1610.778 .000 

  Hotelling’s Trace .505 3.952 72 1760.00 .000 
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Table 54. Hotelling’s T2 Two Sample Test for Jomon and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Ainu Equal 1.802 2 30.0 0.4293 0.4090 

 Unequal 1.414 2 11.4 0.5443 0.5260 

Yayoi Equal 1.802 2 30.0 0.4293 0.4090 

 Unequal 1.414 2 11.4 0.5443 0.5260 

Kofun Equal 3.509 2 55.0 0.1882 0.1740 

 Unequal 3.335 2 10.3 0.2718 0.2540 

Modern-C Equal 8.304 2 57.0 0.0222 0.0190 

 Unequal 5.522 2 10.2 0.1365 0.1280 

Modern-N Equal 9.923 2 66.0 0.0105 0.0100 

 Unequal 6.115 2 9.6 0.1198 0.0880 

Modern-S Equal 10.577 2 118.0 0.0066 0.0100 

 Unequal 6.820 2 8.9 0.1062 0.0980 

. 

 

 

Table 55. Hotelling’s T2 Two Sample Test for Ainu and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomization 

P 

Yayoi Equal 14.152 2 69.0 0.0018 0.0030 

 Unequal 18.036 2 50.4 0.0005 0.0020 

Kofun Equal 10.400 2 34.0 0.0122 0.0140 

 Unequal 8.604 2 21.9 0.0313 0.0320 

Modern-C Equal 16.268 2 71.0 0.0007 0.0010 

 Unequal 17.615 2 50.4 0.0006 0.0010 

Modern-N Equal 17.529 2 80.0 0.0004 0.0010 

 Unequal 19.070 2 44.5 0.0004 0.0010 

Modern-S Equal 28.719 2 132.0 0.0000 0.0010 

 Unequal 34.517 2 34.3 0.0000 0.0010 
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Table 56. Hotelling’s T2 Two Sample Test for Yayoi and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomization 

P 

Kofun Equal 2.214 2 59.0 0.3435 0.3330 

 Unequal 4.193 2 19.7 0.1645 0.1520 

Modern-C Equal 9.888 2 96.0 0.0095 0.0100 

 Unequal 9.940 2 95.5 0.0093 0.0100 

Modern-N Equal 16.142 2 105.0 0.0006 0.0020 

 Unequal 16.009 2 98.3 0.0006 0.0020 

Modern-S Equal 7.656 2 157.0 0.0244 0.0210 

 Unequal 7.728 2 84.9 0.0259 0.0270 

 

 

Table 57. Hotelling’s T2 Two Sample Test for Kofun and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomization 

P 

Modern-C Equal 11.983 2 61.0 0.0046 0.0060 

 Unequal 24.697 2 19.7 0.0005 0.0020 

Modern-N Equal 18.039 2 70.0 0.0004 0.0010 

 Unequal 33.745 2 17.6 0.0001 0.0010 

Modern-S Equal 11.983 2 61.0 0.0046 0.0050 

 Unequal 24.697 2 19.7 0.0005 0.0020 

 

 

Canonical Variate Analysis Results 

 

Results of the male face analysis provided an opportunity to assess whether the same 

results would be found that were identified in the vault analysis. CV1 accounts for roughly 43% 

of the among group variance (Table 58).  Shape variation is shown by the wireframe figure, 

indicating the majority of change occur at the inferior border of the nasal aperture, the curvature 

of the nasal bones and projection of the aperture (Figure 38). The group centroid plot shows the 

modern northern and modern central group at the positive and negative extremes of the 

distribution, respectively (Figure 40). The remaining groups overlap heavily in the middle of 



143 

 

axis. The northern group exhibits a narrower nasal aperture that projects more anteriorly than the 

other groups.  CV2 is responsible for 28% of the variance and shows the majority of variation 

occurring at the lateral orbits in a superoinferior and  mediolateral direction as well as landmarks 

that are responsible for height of the face in a mostly superoinferior direction (Table 58 and 

Figure 39). The group centroid plot shows the Kofun, Jomon and Yayoi groups clustering at the 

positive end of the axis and exhibit wider dimensions for nasal breadth and biorbital breadth 

relative to the Ainu and modern groups (Figure 41). However the Kofun, Jomon and Yayoi 

cluster also exhibits a shorter face and less anteriorly projecting palate. CV3 is responsible for 

roughly 19% of the variance and displays the largest amounts of shape variation in similar 

regions shown in CV one, namely breadth and anterior projection of the nasal aperture (Table 58 

and Figure 40). Only the Ainu group is distinct from the other groups on the centroid plot, and is 

located on the negative side of the axis, indicating a slightly wider nasal aperture relative to a 

flatter profile of this region (Figure 42). The remaining groups overlap considerably, however 

the confidence interval for the Jomon group centroid extends toward the negative end of the axis. 

The Mahalanobis distance matrix shows interesting patterns and exhibits the least amount of 

distance between the Yayoi and Kofun group, followed closely by the Yayoi and modern 

southern group (Table 59). The modern southern and northern groups show a small distance 

between them as does the Yayoi and Jomon groups. The modern southern group shows a much 

closer distance to the Jomon and Ainu groups than do the northern and central modern groups, 

and is closer than the Ainu and Jomon distance. 

 

 

 



144 

 

 

 

Table 58. Eigenvalues and percent variance for canonical components 1-3. 

Component Eigenvalues % Variance     Cumulative % 

1 0.67779609 41.679 41.679 

2 0.46549698 28.624 70.303 

3 0.35194456 21.642 91.944 
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(a) (b) 

Figure 38. CV1 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Anterior view, (b) Lateral view. 

 

(a) (b) 

Figure 39. CV2 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Anterior view, (b) Lateral view. 
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(a)                 (b) 

Figure 40. CV3 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Anterior view, (b) Lateral view. 
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Figure 41. CV1 and CV2 scores of Jomon, Ainu, Kofun, Yayoi and modern groups.  
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Figure 42. CV2 and CV3 of Jomon, Ainu, Kofun, Yayoi and modern males. 
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Table 59. Mahalanobis distances of Ainu, Jomon, Kofun and modern groups. 

     Ainu  Jomon           Kofun     Mod-C Mod-N         Mod-S 

Jomon       2.2249 

Kofun       3.1057              1.7211 

Modern-C    2.7671              2.6342         2.7877 

Modern-N    2.6579              2.3416         2.8401    2.8171 

Modern-S    2.0656              1.6484         2.1126    1.8685             1.3393 

Yayoi       2.6490              1.4256         1.3395    2.3632             1.9561       1.3340 

All distances significant at α 0.05 except  Jomon and Kofun, Kofun and Yayoi and Yayoi and 

Modern-S groups. 

  

 

Males All Variables Analysis 

 

The first eighteen components account for 90 % of the variance (Table 60). MANOVA 

and Hotelling’s T2 show differences among Jomon and all modern groups, Ainu and all other 

groups (barring Kofun), and the Yayoi and all modern groups (Tables 61-65). 

 Calculation and comparison of centroid size among groups indicates that the all variable 

data set of the male groups are not significantly different in regards to size, but do exhibit shape 

differences (Appendix B).  
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Table 60. Eigenvalues and percent variance of principal components 1-18. 

Component Eigenvalues % Variance     Cumulative % 

1 0.00049032 16.754 16.754 

2 0.00033827 11.559 28.313 

3 0.00024961 8.529 36.842 

4 0.00022857 7.810 44.652 

5 0.00021750 7.432 52.084 

6 0.00018306 6.255 58.339 

7 0.00014089 4.814 63.154 

8 0.00012220 4.176 67.329 

9 0.00011463 3.917 71.246 

10 0.00009793 3.346 74.593 

11 0.00008720 2.980 77.572 

12 0.00007918 2.706 80.278 

13 0.00006174 2.110 82.388 

14 0.00005570 1.903 84.291 

15 0.00005097 1.741 86.033 

16 0.00004359 1.490 87.522 

17 0.00003933 1.344 88.866 

18 0.00003435 1.174 90.040 
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Table 61. MANOVA results for male all variable analysis. 

 

 

 

Table 62. Hotelling’s T2 Two Sample Test for Jomon and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomizatio

n P 

Ainu Equal 2.686 2 26.0 0.2926 0.3220 

 Unequal 4.027 2 14.0 0.1934 0.2020 

Yayoi Equal 1.393 2 44.0 0.5115 0.5480 

 Unequal 1.860 2 10.7 0.4593 0.4860 

Kofun Equal 0.725 2 14.0 0.7201 0.7120 

 Unequal 0.725 2 12.1 0.7239 0.7120 

Modern-C Equal 13.798 2 46.0 0.0027 0.0030 

 Unequal 13.010 2 11.6 0.0187 0.0210 

Modern-N Equal 8.850 2 59.0 0.0174 0.0160 

 Unequal 8.493 2 9.8 0.0640 0.0610 

Modern-S Equal 9.740 2 104.0 0.0099 0.0100 

 Unequal 12.792 2 8.9 0.0295 0.0280 

 

 

 

 

 

 

 

 

 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .133 2.500b 15 244.00 .002 

  Wilks’ Lambda .867 2.500b 15 244.00 .002 

  Hotelling’s Trace .154 2.500b 15 244.00 .002 

Period  Pillai’s Trace .949 3.117 90 1494.00 .000 

  Wilks’ Lambda .319 3.455 90 1378.77 .000 

  Hotelling’s Trace 1.417 3.815 90 1454.00 .000 
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Table 63. Hotelling’s T2 Two Sample Test for Ainu and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomizatio

n P 

Yayoi Equal 7.830 2 56.0 0.0274 0.0320 

 Unequal 7.356 2 37.4 0.0381 0.0430 

Kofun Equal 1.082 2 26.0 0.6006 0.5780 

 Unequal 1.198 2 11.2 0.5955 0.5670 

Modern-C Equal 23.465 2 58.0 0.0001 0.0010 

 Unequal 25.810 2 40.8 0.0001 0.0010 

Modern-N Equal 12.249 2 71.0 0.0038 0.0090 

 Unequal 14.144 2 33.7 0.0033 0.0040 

Modern-S Equal 12.443 2 116.0 0.0029 0.0040 

 Unequal 19.678 2 29.2 0.0007 0.0010 

 

 

Table 64. Hotelling’s T2 Two Sample Test for Yayoi and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomizatio

n P 

Kofun Equal 0.740 2 44.0 0.6988 0.6890 

 Unequal 0.639 2 9.0 0.7601 0.7490 

Modern-C Equal 7.691 2 46.0 0.0308 0.0360 

 Unequal 10.345 2 9.5 0.0436 0.0510 

Modern-N Equal 16.703 2 89.0 0.0005 0.0020 

 Unequal 17.492 2 80.3 0.0004 0.0020 

Modern-S Equal 25.771 2 134.0 0.0000 0.0010 

 Unequal 32.211 2 76.5 0.0000 0.0010 

 

 

Table 65. Hotelling’s T2 Two Sample Test for Kofun and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric P Randomizatio

n P 

Modern-C Equal 7.691 2 46.0 0.0308 0.0320 

 Unequal 10.345 2 9.5 0.0436 0.0330 

Modern-N Equal 3.488 2 59.0 0.1891 0.2140 

 Unequal 4.548 2 8.5 0.2004 0.2080 

Modern-S Equal 4.307 2 104.0 0.1237 0.1160 

 Unequal 6.499 2 8.0 0.1246 0.1210 
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Canonical Variate Analysis 

Results of the male all variable analysis provided somewhat different results compared to 

analyses with the facial and vault modules partitioned, but does not offer any conclusions that 

have not been addressed by previous analyses. CV1 accounts for roughly 35% of the among 

group variance (Table 66).  Shape changes are largest in the position of the frontal bone in an 

anteroposterior direction, as well as the cranial base in a superoinferior direction (Figure 43). 

Examination of group centroid plots for CV1 shows an interesting patterning of groups with the 

Jomon, Yayoi and Kofun groups forming a cluster at the positive end of the axis, indicating a 

somewhat longer vault length due to the more forward placement of the frontal bone (Figure 46). 

Additionally, these groups exhibit a more inferiorly placed cranial base. The central modern 

group is on the negative extreme of the axis, indicating a shorter vault length and height. The 

modern northern and southern samples group with the Jomon sample and are located 

intermediate to the negative and positive extremes (Figure 46).  CV2 is responsible for nearly 

28% of the variance and shows slight shape changes at maximum cranial breadth (Table 66 and 

Figure 44). The group centroid plot shows the Ainu and modern northern group are somewhat 

distinct at the positive end of the axis, indicating wider cranial breadths (Figure 41). The 

remaining groups heavily overlap. CV3 is responsible for roughly 21% of the variance and 

displays the largest amounts of variance in the position of the cranial base, the superior portion 

of the cranium, anterior facial projection and length of the vault due to the movement of the 

occipital (Table 66 and Figure 45). The Jomon and Ainu groups are displaced slightly towards 

the positive end of the axis on the group centroid plot, indicating slightly longer vaults relative to 

a more pronounced anterior placement of the midface as well as shorter vault height due to a 

more inferiorly placed cranial base and inferior movement of bregma (Figure 42). The remaining 

groups overlap considerably towards the negative side of the axis. The Mahalanobis distance 
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matrix shows the least amount of distance between southern and northern modern groups, 

followed by the Yayoi and Kofun groups (Table 67). The modern southern group shows the least 

amount of distance to the Jomon group, as was found with previous analyses. The Yayoi and 

Kofun groups show the second smallest distance overall, also was found with previous analyses.  

 

 

Table 66. Eigenvalues and percent variance for canonical components 1-4. 

Component Eigenvalues % Variance     Cumulative % 

1 1.37659975 34.634 34.634 

2 1.10495238 27.799 62.433 

3 0.95364395 23.992 86.425 

4 0.25848534 6.503 92.928 
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(a) (b) 

(c) 

Figure 43. CV1 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Superior view, (b) Lateral view, (c) Anterior view. 
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(a)  (b) 

(c) 

Figure 44. CV2 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Superior view, (b) Lateral view, (c) Anterior view. 
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(a)  (b) 

(c) 

Figure 45. CV3 shape differences for Jomon, Ainu, Yayoi, Kofun and modern males. (a) 

Superior view, (b) Lateral view, (c) Anterior view. 
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Figure 46. CV1 and CV2 scores for Jomon, Ainu, Yayoi, Kofun and modern groups. 
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Figure 47. CV3 and CV4 scores for Jomon, Ainu, Yayoi, Kofun and modern groups. 
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Table 67. Mahalanobis distances for Ainu, Jomon, Kofun and modern groups. 

               Ainu           Jomon            Kofun                Mod-C                Mod-N             Mod-S 

 

Jomon       3.8040 

Kofun       4.4622             3.2723 

Modern-C    4.2845             4.7053             4.1055 

Modern-N    3.7263             4.5588             4.0843           3.6121 

Modern-S    3.4160             3.9467             3.5083           2.3180         1.9916 

Yayoi                     4.2670             3.3236             2.4920           3.7553          3.0543 2.7910 

All distances significant at the α =0.005 level. 

 

 

Female All Variable Analysis 

 

The first seventeen components produced by principal component analysis accounts for 

90.2% of the variance (Table 68). Results of MANOVA and the Hotelling’s T2 analyses shows 

differences among Jomon and all prehistoric groups, Ainu and all other groups, Yayoi and all 

modern groups and Kofun and all modern groups (Tables 70-73). 

Comparison of centroid size show no differences, however shape differences are 

identified (Appendix B). 
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Table 68. Eigenvalues and percent variance for canonical components 1-17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component Eigenvalues % Variance Cumulative % 

1 0.00072713 23.210 23.210 

2 0.00037212 11.878 35.089 

3 0.00027670 8.832 43.921 

4 0.00024724 7.892 51.813 

5 0.00019532 6.235 58.048 

6 0.00016419 5.241 63.289 

7 0.00013650 4.357 67.646 

8 0.00011045 3.526 71.172 

9 0.00010239 3.268 74.440 

10 0.00009304 2.970 77.410 

11 0.00008622 2.752 80.162 

12 0.00006734 2.150 82.312 

13 0.00006235 1.990 84.302 

14 0.00005978 1.908 86.211 

15 0.00004640 1.481 87.692 

16 0.00004219 1.347 89.038 

17 0.00003774 1.205 90.243 
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Table 69. MANOVA results for female all variable analysis. 

 

 

 

Table 70. Hotelling’s T2 Two Sample Test for Jomon and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization 

P 

Ainu Equal 39.972 2 17.0 0.0001 0.0010 

 Unequal 81.079 2 8.0 0.0002 0.0010 

Yayoi Equal 14.788 2 36.0 0.0024 0.0020 

 Unequal 70.818 2 7.3 0.0006 0.0010 

Kofun Equal 15.348 2 14.0 0.0081 0.0170 

 Unequal 20.245 2 7.3 0.0151 0.0100 

Modern-C Equal 0.352 2 32.0 0.8441 0.8360 

 Unequal 1.584 2 8.8 0.5244 0.5360 

Modern-N Equal 2.602 2 28.0 0.3014 0.3070 

 Unequal 7.830 2 9.0 0.0822 0.0900 

Modern-S Equal 0.721 2 85.0 0.7013 0.7120 

 Unequal 8.555 2 6.1 0.1074 0.1060 

 

 

 

 

 

 

 

 

 

Value F 

Hypothesis

df 

Error 

DF Sig. 

Intercept  Pillai’s Trace .123 2.058b 12 176.00 .022 

  Wilks’ Lambda .877 2.058b 12 176.00 .022 

  Hotelling’s Trace .140 2.058b 12 176.00 .022 

Period  Pillai’s Trace 1.302 3.133 72 1086.00 .000 

  Wilks’ Lambda .307 3.248 72 963.348 .000 

  Hotelling’s Trace 1.369 3.315 72 1046.00 .000 
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Table 71. Hotelling’s T2 Two Sample Test for Ainu and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Yayoi Equal 9.325 2 43.0 0.0162 0.0140 

 Unequal 11.247 2 30.0 0.0099 0.0150 

Kofun Equal 20.066 2 21.0 0.0012 0.0040 

 Unequal 22.969 2 18.9 0.0008 0.0030 

Modern-C Equal 13.972 2 39.0 0.0030 0.0030 

 Unequal 21.894 2 35.4 0.0003 0.0010 

Modern-N Equal 8.561 2 35.0 0.0242 0.0270 

 Unequal 10.899 2 33.2 0.0104 0.0200 

Modern-S Equal 8.502 2 92.0 0.0179 0.0240 

 Unequal 24.560 2 22.4 0.0004 0.0010 

 

 

Table 72. Hotelling’s T2 Two Sample Test for Yayoi and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Kofun Equal 0.740 2 44.0 0.6988 0.6890 

 Unequal 0.639 2 9.0 0.7601 0.7490 

Modern-C Equal 7.691 2 46.0 0.0308 0.0360 

 Unequal 10.345 2 9.5 0.0436 0.0510 

Modern-N Equal 16.703 2 89.0 0.0005 0.0020 

 Unequal 17.492 2 80.3 0.0004 0.0020 

Modern-S Equal 25.771 2 134.0 0.0000 0.0010 

 Unequal 32.211 2 76.5 0.0000 0.0010 

 

 

Table 73. Hotelling’s T2 Two Sample Test for Kofun and all other groups. 

Group 

Compared 

Covariance 

Assumption 

T2 DF1 DF2 Parametric 

P 

Randomization P 

Modern-C Equal 9.961 2 36.0 0.0139 0.0190 

 Unequal 17.713 2 27.7 0.0014 0.0050 

Modern-N Equal 8.868 2 32.0 0.0226 0.0300 

 Unequal 16.566 2 27.4 0.0019 0.0080 

Modern-S Equal 10.845 2 89.0 0.0064 0.0120 

 Unequal 33.650 2 16.5 0.0002 0.0020 
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Canonical Variate Analysis 

Results of the female all variable analysis reflectd similar patterns identified in the male 

analysis. CV one accounts for roughly 37% of the among group variance (Table 74).  Shape 

changes are shown by the wireframe figure and indicate the anteroposterior position of the facial 

region above nasion and to a lesser extent the anteroposterior position of the palate to be 

important among groups (Figure 48). Additionally the position of the occipital in a superoinferior 

direction also shows a large amount of shape variation. Examination of the group centroid plot 

shows a dramatic distinction between the Ainu and Jomon groups, both of which cluster at the 

negative end of the axis and the Yayoi, Kofun and modern groups at the positive end of the axis 

(Figure 51). This pattern indicates that the Yayoi, Kofun and modern samples show narrower 

vaults, and also exhibit longer crania that are slightly taller than the Jomon and Ainu groups. 

CV2 is responsible for 27% of the variance and shows the majority of variation occurring at the 

landmarks involved with facial height and vault height due to the movement of bregma and 

basion in a superoinferior direction (Table 74 and Figure 49). The group centroid plot shows the 

Jomon, Kofun and Yayoi groups on the positive side of the axis, indicating taller facial and vault 

heights due to a superior and inferior movement of bregma and basion, respectively (Figure 51). 

The Ainu and modern groups are displaced towards the negative end of the axis, indicating an 

overall shorter cranium (Figure 51). CV3 is responsible for roughly 18% of the variance but 

displays such little shape change and will not be addressed (Table 74 and Figure 50). The 

Mahalanobis distance matrix shows the least amount of distance between southern and northern 

modern groups (Table 75). The southern modern group and central group also share a small 

distance between them, followed by the Yayoi and Kofun groups. The Jomon group shows 

relatively large distances to each group, but the smallest distance is shared with the Ainu group. 
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Interestingly, the Yayoi and modern southern group share a small distance that is much less than 

the Kofun and Yayoi distance.  

 

Table 74. Eigenvalues and percent variance for canonical components 1-5. 

Component Eigenvalues % Variance     Cumulative % 

1 1.79368104 37.441 37.441 

2 1.27194322 26.551 63.992 

3 0.85951774 17.942 81.934 

4 0.38618466 8.061 89.995 

5 0.27729922 5.788 95.783 

 

 

 

 

 

 

 

 

 



166 

 

 

 

(a) (b) 

(c) 

Figure 48. CV1 shape differences for Jomon, Ainu, Yayoi, Kofun and modern females. (a) 

Superior view, (b) Lateral view, (c) Anterior view. 
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(a) (b) 

(c) 

Figure 49. CV2 shape differences for Jomon, Ainu, Yayoi, Kofun and modern females. (a) 

Superior view, (b) Lateral view, (c) Anterior view. 
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(a) (b) 

(c) 

Figure 50. CV3 shape differences for Jomon, Ainu, Yayoi, Kofun and modern females. (a) 

Superior view, (b) Lateral view, (c) Anterior view. 
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Figure 51. CV1 and CV2 scores for Jomon, Ainu, Yayoi, Kofun and modern females. 
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Table 75. Mahalanobis distance matrix for Jomon, Ainu, Yayoi, Kofun and modern 

females. 

                          Ainu                Jomon  Kofun  Mod-C            Mod-N          Mod-S 

  

Jomon       4.5788 

Kofun       5.6119                5.7350 

Modern-C    5.0086                6.4714               4.4467 

Modern-N    4.5215                5.6789               3.6590                 3.6087 

Modern-S    4.5344                5.9263               3.2778                 2.3904               2.1283 

Yayoi       5.3532                5.9187               3.0638                 3.3993               3.4628            2.4384 

All distances significant at the α= 0.005 level. 

 

 

Summary 

This chapter provided results of the analyses described previously. Initial assumption tests 

indicated that all datasets in group comparisons had equal covariance matrices except for the 

modern male facial variable analysis and the prehistoric and modern female comparison. All 

subsets exhibited multivariate normality after outlier removal. Slight differences were found 

when landmarks were partitioned into module specific cohorts compared to all landmark 

analyses. In general, the all landmark analyses were easier to interpret. The majority of shape 

variation was identified in the vault, and size did not differ significantly among most groups. In 

general, it was found that the modern groups were somewhat regionally distinct. Comparisons of 

temporal samples showed that the prehistoric groups were distinct from the modern groups. 
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However, the northern and southern modern groups consistently showed a closer relationship 

with the prehistoric groups. 
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CHAPTER 5 

 DISCUSSION 

 

This dissertation addressed several questions that stemmed from the re-examination of 

variation of the skull in Japanese populations using three dimensional data. The primary goal of 

this research was to address whether coordinate data provided more information regarding 

morphological patterns that could be used to build upon results from the host of studies that have 

used traditional metric data. The employment of coordinate data also allowed for a better 

description of morphological trends within the context of shape variables. In this sense, the 

results presented represent an initial step to better understanding how admixture can affect 

populations, specifically small ones.   

Given the a number of recent studies that have aimed to elucidate whether specific 

modules of the cranium are more plastic than others and have shown that different areas of the 

skull can provide different results, the current research assessed whether partitioning landmarks 

would affect results. This was accomplished with several iterations of analyses that utilized 

landmark subsets, as well as combinations of landmarks that better represented the skull as a 

complete entity. However, modularity of the skull does not imply that the functional and 

developmental modules of the skull are completely independent as they are of course 

intrinsically intertwined by their anatomy. The purpose of this paper is not to test how related 

these modules are in the samples provided. Instead, landmark subsets are used to examine 

morphology in terms of the literature that states the neurocranium is a better indicator of 

population affinity. Additionally, archaeological skeletal assemblages are rarely perfectly 

preserved and the cranium is often fragmentary. Assessing the outcome of an analysis using 

various regions of the skull (particularly those that have a higher probability of better surviving 
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taphonomic processes) can help distinguish what analyses may be available to a researcher that is 

working with fragmentary remains.    

As temporally deep and somewhat continuous samples were available, the idea that 

morphologies associated with indigenous and prehistoric parental populations could be identified 

in modern populations was addressed at a superficial level. Interesting morphological patterns 

are identified that warrant further examination in conjunction with quantitative genetic 

approaches.  Lastly, secular change and the phenomenon of brachycephalization that has been 

reported in several seminal studies by Japanese researchers were reexamined in an effort to better 

understand the morphological implications of this trend.  

Regional variability in modern Japanese samples 

 

Modern Japanese groups were first partitioned by corresponding region of north, central 

or south and analyzed to examine if regional variation could be identified.  

The male vault variable analysis indicated small amounts of identifiable differences 

among groups, with the northern and southern groups being slightly more morphologically 

similar to each other than the samples from the central region. The northern and southern groups 

displayed taller and wider vaults than the central group. 

 The facial variable analysis of the regionally partitioned samples showed differences 

among all groups. This potentially provides implications for different interpretation of 

relationships between groups when employing the vault and face separately. As the brunt of the 

differences identified related to the nasal aperture, and the northern group exhibits a narrower 

breadth, this could potentially be inferred as reflecting morphology that reflects a response to the 

significantly colder climate in the northern portions of the Japanese archipelago.  A number of 

studies have identified nasal dimensions to be correlated with climatic variables (Noback et al. 
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2011; Roseman and Weaver 2004). Hallmark morphologies of the nasal complex associated with 

populations living in cold climates involve tall, narrow apertures (Noback et al. 2011). While this 

pattern in the northern samples allude to selective forces, this finding will need to be later 

assessed in a framework of quantitative genetics to identify how the cranium in this specific 

population responds to selective forces.  

 The all variable analyses for males showed essentially the same patterns as the vault 

analysis, but with more delineation between groups. The more interpretable results indicated that 

the two step process of analyzing different modules individually could be condensed into a single 

analysis. However, it is interesting to note that with the all variable analysis, the majority of 

variation is found at landmarks of the vault and base. This observation lends credence to the 

concept that the vault may express patterns of variation differently than the facial skeleton due to 

the less phenotypic constraints in this region of the skull (Harvati and Weaver 2006; Holló et al. 

2010; Lieberman 2011).  

 This initial analysis also compared results to a linear analysis of the modern male vault to 

assess whether more interpretable information is accrued with three dimensional shape analysis. 

For ease of interpretation, the vault variable measurements were selected for comparison. Overall 

patterns were consistent with what was found in the 3D vault analysis, and comparison of plots 

of canonical scores show very similar distributions of group centroids and variance (Figures 59 

and 60). Relative distances between groups in both analyses are extremely similar as well, 

further indicating that the pattern of relationships among groups does not differ.  It is not 

surprising that group relationships are mirrored in both analyses, as measurements are derived 

from landmarks. However, emphasis is placed on the ability to better recognize underlying 

morphological patterns with geometric morphometric approaches. Most notably, visualization of 
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shape changes assists in identifying which variables of the cranium contain the most information 

for parsing out similarities and differences among comparative analyses. 

 

 

          

Figure 52. CVA Plot of metric data.   Figure 53. CVA plot of 3D data. 

 

 

 

The female only analyses examined the vault and facial landmarks congruently. Results 

were consistent with the patterns between regions as was described in the male analysis. Namely, 

that the southern and northern groups were more similar to one another, while the central groups 

was distinct. Again, the central group was furthest from the northern group.  

These results are interesting given the archaeological history of the Jomon and the belief 

that indigenous populations in the most northern and southern extremes experienced lesser 

percentages of admixture with migrant groups (Ossenberg et al. 2006).   It has been cited by 

several studies that modern populations from the central region of Japan exhibit differences 

when compared to samples from northern or southern Japan. In particular, Yamaguchi 
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(Yamamura 1977) showed that Japanese samples from regions near where the establishment of 

the Imperial Court occurred (i.e. central Japan) differ from contemporaneous samples from 

northern and southern Japan. Interestingly, Jomon samples from the Kanto (central) region of 

Japan have also been shown to differ from northern and southern counterparts. Nakahashi 

(Nakahashi 1993) showed that in regards to facial flatness, the Kanto district Jomon were 

extremely different from Jomon period crania from the Kyushu (southern) region. It is thus 

difficult to postulate whether the distinctness identified with modern samples from the Kanto 

region reflect initial differences that are identified with the indigenous samples, or if morphology 

is related to differential quality of life populations near the Imperial Court experienced.  

Additionally, a demic diffusion model has been postulated for Yayoi immigrants that 

posits genetic drift accounts for less variation in southern Japan (Rasteiro and Chikhi 2009). This 

model is based on analyses of Y-chromosomal data from modern Japanese. Frequencies from 

this study support less admixture occurring in the southern islands, which could potentially be 

related to the differences identified with the southern (and northern) groups when compared to 

the central groups. Y-chromosomal data from modern individuals in Japan. Studies of 

distributions of Y chromosome haplogroups D and O in Japan also support regional differences. 

Haplogroup D is shows highest frequencies in Ainu and Ryukyuan samples while haplogroup O 

is found at higher frequencies on the main islands of Japan (Hammer et al. 2006). Studies of 

maternal DNA show decreasing frequencies of mitochondrial haplogroups M7 from south to 

north which is not replicated in Y chromosome data (Sato et al. 2014).   

Additionally, it is important to take into consideration the following when interpreting 

differences identified in the modern samples. Differences have been described in environmental 

conditions between northern and southern Japan during the Jomon period. While the northeastern 
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region of the archipelago was covered in deciduous forests and rivers, the southern portion of the 

archipelago was distinguished by subtropical flora and fauna (Habu 2004). While the culture and 

subsistence practices of the “sedentary gatherer” are documented as fairly consistent throughout 

the islands, the differences in environment could be reflected in north and south Jomon 

morphology. Unfortunately, the small Jomon sample sizes required pooling of samples from this 

time period, but future researchers will hopefully be granted access to more southern material 

that is curated on the island of Kyushu (Seguchi, personal communication). The addition of more 

Jomon data and hypothesis testing using quantitative genetic models will reveal whether 

differences in morphology identified in this paper are the result of selection pressures and/or  

In regards to the actual shape differences identified, in the male analysis the modern 

northern group showed broader vault and frontal breadths, longer vault length and slightly taller 

facial heights than the central and southern groups. The northern and southern groups also 

exhibited wider nasal apertures and taller facial heights. The female analysis indicated that the 

modern central group was distinct from the northern in southern groups by exhibiting broader 

parietal and frontal breadths as well as an overall longer and taller vault.  

The findings that the central group is the distinct from the northern and southern groups 

is further supported by the work of Nagaoka (Nagaoka 2003) who identified different cranial 

morphologies with central area samples using linear data. Specifically, the author found that 

central Japanese males showed larger cranial indices and longer vault lengths, while the southern 

groups exhibited wide facial dimensions, including nasal breadth. These general trends are 

supported by the current study, but are better shown by the female analysis.  

A final point can be made in regards to the similarities found between northern and 

southern modern groups. The southern islands of Japan that encompass the Ryukyus have been 
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separate from the Japanese mainland since the last glacial period (Adachi et al. 2009). The 

oceanic barrier likely reduced the interaction (gene flow) between indigenous southern residents 

and incoming migrations as interaction would require seafaring travel versus land exploration. 

Secular Shape Changes 

 

To examine shape changes associated with secular change samples from the medieval, 

Edo and modern temporal periods were compared. This analysis was performed in an effort to 

better identify how regions of the cranium reflect change over time in the context of Japanese 

history.  

The male analysis indicated slight differences among the medieval and the more recent 

periods. The modern group shows slightly larger breadths of the parietals, as well as a narrower 

base and more anterior placement of basion. However, the largest differences among the more 

recent periods and the medieval group is the increase in vault height and length.  

The female analysis showed the modern group as showing the broadest breadth 

dimensions of the vault, but as with the male analysis, more notable is an increase in vault height 

due to the superior movement of bregma. Overall, both components of the secular change 

analysis using 3D data did identify a trend of brachycephalization in the more recent samples, 

but not to the drastic degree indicated by other secular change studies of Japanese populations.  

Increase in vault height and length in the recent samples is extremely interesting when 

compared to the well documented trends of European studies that show these changes to be 

correlated with an overall increase in stature. Stature increase is generally associated with access 

to better living conditions (Jantz and Meadows Jantz 2000). The medieval samples did show 

narrower breadth dimensions cited by the majority of studies of secular change in Japan, but did 

not exhibit longer vault lengths when compared to the more recent groups. Additionally, an 
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increase in vault height is due to a superior movement of bregma which differs from the 

downward movement of basion in American populations (Wescott and Jantz 2005) 

It is interesting to juxtapose the results of this study with that found in the literature. 

Specifically, Nakahashi (Nakahashi 1993) reports that that a dramatic reverse in cranial breadth 

occurs at the end of the medieval period, and into the Edo and modern periods. Also identified 

by earlier studies is a marked increase of cranial vault height during the medieval period, 

however longer vault lengths was also found in the current study. 

Opposing results between this analysis and previous studies can be partially explained by 

the different types of data that were analyzed.  Kouchi (Kouchi 2000) examined somatometric 

data and results could be partially skewed by variation of soft-tissue. The author states that better 

nourished individuals, regardless of height will reflect wider heads, and while this general trend 

is observed in the current study, it is not as significant as described in other publications. This 

highlights the importance of using actual skeletal material to examine changes directly reflected 

in skeletal morphology. 

It is interesting to place the morphological trends identified into historical context. The 

medieval period is characterized by the establishment of military force and hierarchical power. 

These political changes greatly affected socioeconomic status and quality of life for many 

portions of the Japanese population.  Social classes became distinct, and a new class of the 

Samurai was treated as royalty compared to the majority of the common population. 

Paleodemographic studies of the medieval period in Japan have indicated high mortality rates, 

lower averages for age at death, instances of violent warfare and severe living conditions. All of 

these factors undoubtedly affected general health, and is reflected by skeletal markers that 
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indicate high instances of healed traumatic injury as well as disruption in normal growth rates 

(Nagaoka and Hirata 2008; Nagaoka et al. 2010).   

During the Edo period, feudal activity between various parts of hierarchical society in 

Japan was greatly reduced. The standard of living and overall health of the population was 

increased during this period, and even more during the modern period. This shows not only 

(debatably) drastic morphological changes in the cranium, but also the largest trend being an 

increase in stature.  Industrialization, coupled with better nutrition and medical care are thought 

to be responsible for changes observed during these more modern periods. 

Quality of nutritional intake has improved greatly in Japan within the last century, and 

especially since 1945. A correlation between an increase in height and head breadth has been 

cited in other Asian samples, including individuals from Korea, China and Japanese immigrants 

in the United States (Appleton 1927; Lasker 1946). As is well known in the literature, secular 

change studies that examined populations of European descent have shown cranial shape trends 

of debrachycephalization. Hypotheses for the brachycephalization event observed in recent 

Japanese populations tend to emphasize an improvement in nutritional quality. Mizoguchi 

(Mizoguchi 2007) showed a correlation between cranial dimensions and muscle attachments on 

long bones, which he attributes to a possible relationship between brachycephalization and 

diachronic development of skeletal muscles. It is argued in this dissertation that the Edo and 

modern periods show morphological trends that are identified in European populations. A 

combination of an increase in vault height and length has not been previously reported and may 

reflect a common response of the cranium to better nutrition and overall quality of life. 
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Prehistoric and modern sample comparisons 

  

The final analysis examined the modern regional samples in relation to the prehistoric 

samples in an effort to assess whether similar morphologies could be identified.  Relationships 

among the temporal samples would suggest that genetic contribution from the Jomon or Yayoi 

groups can be morphologically identified, however these principles require formal testing using 

genetic evolutionary models. In addition to the prehistoric samples of Jomon, Yayoi and Kofun 

periods, this analysis included the Ainu population samples as well.  

 Interestingly, results indicated that the Yayoi, Kofun and Jomon show similarities in 

regards to the vault when compared to the modern samples. On average, the prehistoric groups 

show shorter vault heights, narrower vault breadths and shorter vault lengths than the modern 

groups. However, the Yayoi and Kofun groups show vault heights that are taller than the Jomon 

and Ainu. This trend is well documented in the literature. The Jomon and Ainu groups also show 

wider and flatter dimensions of the face relative to the other groups. A relationship between the 

Ainu and modern northern group is identifiable with the Mahalanobis distance matrix, as is a 

closer relationship between the modern northern and southern group with the Yayoi. These 

results are interesting, as other studies have found that modern Honshu (central) Japanese show 

similarities to Yayoi groups, while the southern groups do not (Iizuka and Nakahashi 2002). 

With the facial analysis, the southern modern group shows a close relationship with the Jomon 

and Ainu groups, indicating similarities in regard to facial breadth and mid face projection. 

However, the facial variable analysis also shows a very small Mahalanobis distance among the 

Yayoi and modern southern group. The all variable analysis generally supported the relationships 

found by the partitioned vault and facial analyses, and group delineation was again easier to 

interpret. 
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 The female version of this analysis indicated a strong relationship between the Jomon and 

Ainu groups in relation to vault breadth and height, as well as facial breadth and projection. The 

Yayoi and Kofun females show longer, narrower crania that are taller than the Jomon and Ainu 

samples. The modern groups cluster with the Yayoi and Kofun groups, however the modern 

northern and southern groups show narrower facial dimensions. Relationships among groups as 

evidenced by Mahalanobis distances shows the same patterns that were identified with the male 

analysis.  

While it has been hypothesized by previous research that the populations on the extreme 

ends of the archipelago experienced less admixture with immigrating Yayoi cultures, it is also 

important to highlight migration events that have occurred within the northern portion of the 

archipelago. Immigration of northeast Asian groups is thought to have begun roughly around the 

fifth century and introduced a maritime dependent culture (Amano 2003). This influx of 

movement likely brought sources of variation that made the northern populations somewhat 

distinct when compared to the archipelago as a whole, and do not necessarily reflect retention of 

indigenous Jomon characteristics. In that same vein, while most researchers accept that the Ainu 

population descended directly from the indigenous Jomon, other studies have argued similarities 

with other circumpacific populations. This study shows that the Ainu group does not exclusively 

group with Jomon samples, but rather shows a relationship with the northern modern group as 

well. This finding could stem from multiple gene flow events with individuals that arrived in 

Japan via the northern land bridge after the end of the Jomon period.  

An important pattern emerged that highlights the importance of populations that 

historically have inhabited remote portions of the archipelago. Across the combination of 

comparisons of prehistoric and modern groups, the modern southern sample most consistently 
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grouped closer with the Jomon group than do the other modern samples. Of further interest is 

that Mahalanobis distances between the Jomon and the modern southern, Kofun and Yayoi 

groups were consistently smaller than distances between the Ainu and the Jomon samples. This 

trend lends support to the idea that retention of parental population traits can be identfied in 

groups from the southernmost portion of the archipelago. This may indicate that less admixture 

occurred in the southern islands during the expansion of Yayoi people. This is a logical 

assumption as the Ryukyu Islands were separate from Kyushu and Honshu by a large body of 

water (Adachi et al. 2009) . Future work using these results will involve model bound 

approaches to support morphological patterns identified in this work. 

 Across all combinations of analyses, a few common trends were identified. Namely, 

centroid size was not significantly different among the majority of group comparisons. However, 

centroid size was shown to be significantly different when the prehistoric groups were compared 

with the modern period groups, but the male analysis was only significant for the vault only 

analysis. Conversely, the female all variable analysis showed significant differences in regards to 

centroid size, barring the prehistoric/modern comparison. 

 All comparisons showed significant differences in regard to shape. Additionally, the 

majority of shape variation almost always involved vault and base landmarks, and facial 

landmarks typically showed lower degrees of variation among group comparisons. The findings 

that shape of the vault and base is important for identifying variation among Japanese groups 

supports the conclusions of many studies that identify the neurocranium as retaining more 

biologically meaningful information (Hallgrimsson et al. 2007; Holló et al. 2010). Furthermore, 

the importance of the vault and base as indicators of group differences can be supported by 

descriptions of the facial skeleton which has been described as the most variable, the most 
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evolvable and the least constrained portion of the skull (Lieberman 2011). It is not for this study 

to state that the shape of the face does not reflect biological meaning, as that would be an empty 

and unsupported claim. The results of this study does warrant further examination into what the 

neurocranium can provide for reconstruction of relationships and evolutionary events within 

Japan. 
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CHAPTER 6 

CONCLUSIONS 

  

In an effort to summarize the findings of this study, it is practical to provide the questions 

posed and the results reported.  

 

1. Does the use of 3D data provide different results regarding variation in the Japanese 

archipelago than has been reported in previous studies? 

The overall patterns identified in this analysis support findings of previous researchers, such 

as the modern central group being distinct from the northern and southern modern groups. 

However, comparisons of linear data with geometric morphometric approaches shows that 

morphological patterns are better identified with GM output. Additionally, morphological 

patterns are identified that are not described in the literature. One of the most important uses of 

the 3D approach is the ability to identify not only shape variation within the cranium, but the 

direction of change expressed in landmarks. This allows for descriptions of which specific 

portions of the skull is changing and thus contributing to shape changes across groups. For 

instance in the secular change analysis, the superior movement of bregma is responsible for an 

increase in vault height in modern populations. This trend has not previously been described by 

the seminal secular change studies within Japan. The seemingly small impact of such a result can 

become magnified when taking into consideration the implications for not only other studies of 

secular change, but as 3D data analyses can provide novel results, re-examination of a host of 

hypothesis that examine morphology of the cranium is warranted. 
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2. Does the separation of facial landmarks from those associated with the cranial vault 

and base provide alternate results interpretations for sample comparisons? 

The initial and final analyses of this study compared the effects of partitioning landmarks 

into facial and vault/base modules with the results of an all variable analysis. With the modern 

regional analysis did not show drastically different results when using the facing module versus 

the vault module data, it is interesting to note that the majority of variation was identified within 

the vault/base region of the cranium when the all variable analysis was performed.  

 

3. Does the use of coordinate data to examine how Japanese populations have changed 

incrementally through time better elucidate how morphology has changed? 

Based on the results of previous analyses, it was expected to find a gradual increase in vault 

breadth through the Edo and modern periods, as is described by the drastic brachycephalization 

event towards the end of the medieval period in Japan. However, only slight morphological 

distinctions were observed between the medieval, Edo and modern periods. While a larger vault 

breadth was noted in the more recent samples, it was not as drastic as is identified in earlier 

studies using different data mediums. An increase of vault height and vault length within the 

temporally recent groups show larger differences when compared to the medieval group than 

does the expansion of the breadth of the vault. 

4. Are morphological similarities identified in comparisons of the modern and prehistoric 

samples? Do any trends identified differ from what has been found in previous studies? 

The results of the comparisons between prehistoric groups with the regional modern groups 

generally supported results published in other studies. Namely, that the northern and southern 
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groups are distinct from modern samples from the Honshu (mainland) region of Japan. However, 

some differences are identified. Specifically, with facial variable analyses, the southern modern 

group showed affinities with the Jomon and Ainu groups, but also showed a close relationship 

with Yayoi samples as well. This pattern opposes results from previous studies that have found 

similarities among central modern and Yayoi groups. Again, results such as this highlights the 

utility of comparisons of various types of data that can be differentially representative of 

morphological variation. 

Overall, this study identifies the use of the cranial vault and base as exhibiting a large 

amount biological information that can be used to infer patterns of variation. While it cannot 

conclusively be stated that the neurocranium provides more information than the face, it is 

interesting to note that landmarks representative of the base and vault were important across all 

group comparisons. However, it was also found that the inclusion of variables that encompass 

the cranium as a whole provides can provide interpretable results. These results are not used to 

argue that portions of the skull should be emphasized and/or ignored, but rather highlight how 

analyses that involve fragmentary remains may impact broad interpretations. Additionally, this 

work has shown that the use of three dimensional data can provide more insight into the patterns 

of human variation within Japan. The results outlined in this study identifies shape changes 

through time that have been not been previously reported by researchers. These findings are 

encouraging, as it provides the opportunity to not only build upon previous research, but also 

show how the inclusion of different types of data can provide different answers to the same 

questions.  

Along these lines, the major purpose of this work is to emphasize that morphology cannot 

be assessed in a manner devoid of context. Applied to the study of skeletal variation, it becomes 
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increasingly clear that population history cannot be deduced solely from specific aspects 

morphology, as different methodology or utilization of different types of data can often provide 

contradictory results. Science is an iterative process, a concept that we learn as young students. 

With the advent of new ways to collect and analyze data, foundational tenets often need to be 

examined in fresh light. This work has provided the opportunity to examine a novel data set that 

represents temporal and regional diversity in a very unique area of the world. Documentation of 

how coordinate data can perform, and the additional information it can provide is presented as a 

stepping stone for future analyses.  

Future Directions 

This dissertation provided some of the preliminary measures required to assist in 

assessing morphological patterns in a quantifiable evolutionary context. As very interesting 

morphological patterns were identified, further examination in conjunction with quantitative 

genetic approaches is warranted. Collaboration with a quantitative evolutionary geneticist is 

anticipated, as is increasing sample sizes for prehistoric samples. Modeling selection pressure as 

well as admixture is complicated and small sample sizes makes it nearly impossible. 

Supplementation of prehistoric samples, most notably Jomon samples will hopefully be possible 

with future collaboration with the Japanese researchers that made this project viable. 

Additionally, it is acknowledged that in this study morphological diversity in Japan was 

examined using a statistical microscope. In other words, variation was assessed using only 

Japanese samples, and the addition of an unrelated outgroup will provide further resolution to the 

results presented. Preliminary work has shown that the addition of East Asian outgroups does not 

affect the results presented here. Future analyses will include coordinate data from unrelated 

outgroups, such as populations from the African continent.  
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APPENDIX A: Results of variance and normality test for each comparison. 

Table 1A. Results of Box’s M test for equality of covariance matrices for modern male 

vault variables. 

 

 

 

 

 

 

Table 2A. Results of Royston’s multivariate normality test for modern male vault 

variables. 

H 16.46325 

p-value 0.225 

Data multivariate normal at the α= 0.05 level. 

 

 

 

 

 

 

 

 

 

 

Box’s M 211.180 

F 1.221 

df1 156 

df2 56647.998 

Sig. .031 
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Figure 1A. QQ-plot of PC scores for modern male vault variables.  

 

Table 3A Results of Box’s M test of equality of covariances matrices for modern male facial 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

Box’s M 192.266 

F 1.289 

df1 132 

df2 29129.990 

Sig. .014 
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Table 4A. Results of Royston’s multivariate normality test for modern male facial 

variables. 

H 16.2331 

p-value 0.181 

Data multivariate normal at α=0.05. 

 

Figure 2A. Q-Q plot of PC scores for modern facial variables.  
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Table 5A. Results of Box’s M test of equality of covariances matrices for modern male all 

variables. 

 

 

 

 

 

 

 

Table 6A. Results of Royston’s multivariate normality test for modern male all variables. 

H 18.60447 

p-value 0.416 

Data is multivariate normal at α=0.05. 

 

Box’s M 367.134 

F 1.026 

df1 306 

df2 50714.274 

Sig. .367 
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Figure 3A. Q-Q plot for PC scores for modern males all variables. 

 

 

Table 7A. Box’s M test for equal covariance matrices for modern females. 

 

 

 

 

 

 

 

 

 

Box’s M 400.574 

F 1.129 

df1 272 

df2 14415.769 

Sig. .073 
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Table 8A. Results of Royston’s multivariate normality test for modern females. 

H 21.1498  

p-value 0.219663 

Data Multivariate normal at the α=0.05 level. 

 

 

 

 

Figure 4A. Q-Q plot for PC scores for modern females. 
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Table 9A. Box’s M test for equal covariance matrices for medieval, Edo and modern males. 

 

 

 

 

 

 

 

 

 

Table 10A. Results of Royston’s multivariate normality test for medieval, Edo and modern. 

males 

H 22.34716 

p-value 0.267320 

Data is multivariate normal at the α=0.05 level. 

 

 

Table 8. 

Box’s M 

304.043 

F 1.179 

df1 171 

df2 4197.796 

Sig. .058 
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Figure 5A.  Q-Q plot for PC scores for medieval, Edo and modern males. 

 

Table 11A. Box’s M test for equal covariance matrices for medieval, Edo and modern 

females. 

 

 

 

 

 

 

 

 

 

 

Box’s M 178.527 

F .904 

df1 153 

df2 8566.430 

Sig. .794 
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Table 12A. Results of Royston’s multivariate normality test for medieval, Edo and modern 

females. 

H 13.0597  

p-value 0.1599 

Data is multivariate normal at the α=0.05 level. 

 

 

 

 

Figure 6A. Q-Q plot of PC scores for medieval, Edo and modern females. 
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Table 13A. Box’s M test for equal covariance matrices for prehistoric and modern male 

vault variables. 

 

 

 

 

 

 

 

 

 

 

Table 14A. Results of Royston’s multivariate normality test for prehistoric and modern 

male vault variables. 

H 7.57278  

p-value 0.47 

Data is multivariate normal at the α=0.05 level. 

 

 

 

 

 

 

 

Box’s M 271.686 

F 1.026 

df1 234 

df2 35484.609 

Sig. .378 
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Figure 7A. Q-Q plots for PC scores for prehistoric and modern male vault variables. 

 

 

Table 15A. Box’s M test for equal covariance matrices for prehistoric and modern male 

facial variables.  

 

 

 

 

 

 

Box’s M 507.30 

F 1.034 

df1 420 

df2 37918.776 

Sig. .305 
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Table 16A. Results of Royston’s multivariate normality test for prehistoric and modern 

male facial variables. 

H 15.15922 

p-value 0.056 

Data multivariate normal at the α=0.05 level. 

 

 

 

 

 

Figure 8A. Q-Q plot of PC scores for prehistoric and modern male facial variables.  
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Table 17A. Box’s M test for equal covariance matrices for prehistoric and modern male all 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18A. Results of Royston’s multivariate normality test for prehistoric and modern 

male all variables. 

 

H 25. 0823 

p-value 0.1223 

Data multivariate normal at the α=0.05 level. 

 

 

 

 

 

Box’s M 905.109 

F 1.024 

df1 684 

df2 27421.886 

Sig. .324 
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Figure 9A. Q-Q plot of PC scores for prehistoric and modern male all variables.  

 

 

 

Table 19A. Box’s M test for equal covariance matrices for prehistoric and modern female 

all variables. 

 

 

 

 

 

 

 

 

Box’s M 481.542 

F 1.175 

df1 312 

df2 10877.539 

Sig. .020 
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Table 20A. Results of Royston’s multivariate normality test for prehistoric and modern 

female all variables. 

H 13.05975 

p-value 0.1599 

Data is multivariate normal at the α=0.05 level.  

 

 

 

 

Figure 10A. QQ-plot of PC scores for prehistoric and modern female all variables. 
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APPENDIX B. Centroid size and shape comparison summaries. 

Table 1B. Centroid Size means and standard deviations.  

Group Centroid 

Size Mean 

Std. Deviaiton Sig. Dif at 0.05 

Modern Male Vault 290 0.38 No 

Modern Male Face 123 0.73 No 

Modern Male All 396 2.30 Yes 

Modern Female All 377 2.00 No 

Male Secular Samples 398 4.40 No 

Female Secular Samples 382 3.06 No 

Prehistoric Modern Male Vault 329 3.50 Yes 

Prehistoric Modern Male Face 111 1.89 Yes 

Prehistoric Modern Male All Var 402 4.69 No 

Prehistoric Modern Female 380 4.83 Yes 
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Table 2B. Shape variable Procrustes ANOVA results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect: Shape SS    MS df   F       P 

Mod Male Vault 

Region  0.03150648     0.0009185     82 16.08 <0.0001 

Residual  0.81309567 0.0000506 16058   

Mod Male Face 

Region 0.03553309    0.0011104 32 16.45 <0.0001 

Residual 0.735330098 0.0001249 5887   

Mod Male All 

Region 0.0209281 0.0002552 82 10.33 <0.0001 

Residual 0.6362656 0.0000450 14134   

Mod Female All 

Region 0.0128373 0.0001645      78 6.77 <0.0001 

Residual 0.5236600 0.0000519         10082   

Male Secular 

Period 0.0418680 0.0002252        164 6.13 <0.0001 

Residual 0.8624788 0.0000479 17982   

Female Secular 

Period 0.0211383 0.0002577 82 3.23 <0.0001 

Residual 0.6845713 0.0000489 13986   

Prehistoric Modern Male Vault 

Period 0.1108895    0.000770 144 15.01 <0.0001 

Residual 1.2606111 0.000094 13376   

Prehistoric Modern Male Face 

Period 0.1018225    0.001061 96 10.15 <0.0001 

Residual 1.0851500 0.0001268 7975   

Prehistoric Modern Male All 

Period 0.0847401 0.0003444 246 12.52 <0.0001 

Residual 1.0030498 0.0000470 21312   

Prehistoric Modern Female All 

Period 0.07472468     0.0002603     287 9.19 <0.0001 

Residual 0.7320101 0.0000482 15170   
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