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Abstract

Let R be a commutative ring with nonzero identity and ∼ a multiplicative congruence

relation on R. Then, R/∼ is a semigroup with multiplication [x][y] = [xy], where

[x] is the congruence class of an element x of R. We define the congruence-based

zero-divisor graph of R to be the simple graph with vertices the nonzero zero-

divisors of R/∼ and with an edge between distinct vertices [x] and [y] if and only if

[x][y] = [0]. Examples include the usual zero-divisor graph of R, compressed zero-

divisor graph of R, and ideal-based zero-divisor graph of R. We study relationships

among congruence-based zero-divisor graphs for various congruence relations on R.

In particular, we study connections between ring-theoretic properties of R and graph-

theoretic properties of congruence-based zero-divisor graphs for various congruence

relations on R.
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Chapter 1

Introduction

1.1 Prelude

Ring theory is one of the fundamental areas of study in abstract algebra. More

specifically, we will remain in the realm of commutative ring theory. For a general

ring, multiplication does not have to be commutative and a multiplicative identity

element does not have to exist. However, throughout this dissertation, we will let R

be a commutative ring with nonzero identity. A general reference for abstract algebra

is T. W. Hungerford’s book [22], and a general reference for commutative ring theory

is I. Kaplansky’s book [23].

An important subset of R is the set of all zero-divisors of R, and we denote

this set by Z(R) = {x ∈ R \ {0} | xy = 0 for some y ∈ R \ {0}} ∪ {0}. If R does

not have any nonzero zero-divisors, we say that R is an integral domain. We may

associate with each R the zero-divisor graph Γ(R) of R. The set of vertices of Γ(R)

is Z(R)∗ = Z(R) \ {0}, and an edge exists between distinct vertices x and y if and

only if xy = 0. This definition of a zero-divisor graph of a commutative ring with

nonzero identity was introduced in P. S. Livingston’s 1997 Master’s thesis in [24] and

appeared in the 1999 paper of D. F. Anderson and P. S. Livingston that followed in

[8].
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A semigroup is a set with an associative binary operation. We say that a

multiplicative semigroup S has a zero element, 0, if for all s ∈ S, we have that

0s = s0 = 0, and we say that S has an identity element, 1, if for all s ∈ S, we have

that 1s = s1 = s. Any semigroup that has an identity element is called a monoid.

Semigroups are of particular interest to us in ring theory since every ring under the

operation of multiplication is a semigroup, or more specifically, a semigroup with

zero. Thus, the commutative rings with nonzero identity that we discuss throughout

this dissertation may also be viewed as commutative monoids with zero under the

operation of multiplication. Additional semigroup theory terminology and results can

be found in the two-volume work by A. H. Clifford and G. B. Preston in [14] and [15]

and in R. Gilmer’s book in [21].

Let S be a commutative semigroup with zero. The set of all zero-divisors of

S may be defined analogously to the set of all zero-divisors of R. More explicitly,

Z(S) = {x ∈ S \ {0} | xy = 0 for some y ∈ S \ {0}}∪{0}. Furthermore, we may also

associate with each S the zero-divisor graph Γ(S) of S, defined analogously to the

zero-divisor graph of R. The set of vertices of Γ(S) is Z(S)∗ = Z(S) \ {0}, and an

edge exists between distinct vertices x and y if and only if xy = 0. This definition of

a zero-divisor graph of a commutative semigroup with zero was introduced in 2002

by F. R. DeMeyer, T. McKenzie, and K. Schneider in [17]. Since every commutative

ring R with nonzero identity may be viewed as a commutative semigroup with zero

under the operation of multiplication, the usual zero-divisor graph Γ(R) is a special

case of the semigroup zero-divisor graph Γ(S).

The goal of this dissertation is to provide a generalization of the zero-divisor

graph of a commutative ring R with nonzero identity. We do this by imposing a

multiplicative congruence relation ∼ on R and then studying the zero-divisor graph of

the associated semigroup R/∼. We introduce the concept we call the congruence-

based zero-divisor graph of a commutative ring R with nonzero identity, and

we denote this graph by Γ∼(R). Our congruence-based zero-divisor graph unifies

several of the graphs associated to a commutative ring, including the compressed
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zero-divisor graph and the ideal-based zero-divisor graph that are discussed later

in this chapter. We study connections between ring-theoretic properties of R and

graph-theoretic properties of Γ∼(R) for various congruence relations ∼ on R. More

generally, we study relationships among congruence-based zero-divisor graphs for

various congruence relations on R.

1.2 Overview of Graph Theory Concepts

We need a few fundamental concepts from graph theory throughout our work. We

introduce those concepts and the corresponding notation here. Additional graph

theory terminology and results can be found in the book by B. Bollobás in [13].

For a graph G, we let V (G) denote the set of vertices of G and E(G) denote

the collection of edges of G. If V (G) = ∅, then G is the empty graph, and we

write G = ∅. In an undirected graph, there is no distinction between the two

vertices associated with each edge so that an edge between the vertices x and y can

be equivalently denoted by x−y and y−x. Any edge of the form x−x is called a loop,

and any edge x− y that occurs more than once in E(G) is called a multiple edge.

A graph G is a weighted graph if each edge in E(G) is assigned a value and is an

unweighted graph if no edge in E(G) is assigned a value. With these definitions

in mind, we can now define a simple graph to be an undirected, unweighted graph

that has no loops or multiple edges.

In a graph G, distinct vertices x and y in V (G) are adjacent if there exists an

edge x− y in E(G) between x and y. If x and y are adjacent vertices, they are said

to be incident with the edge between them. Furthermore, G is complete if for all

distinct x, y ∈ V (G), x and y are adjacent, and we write G = Kn, where n = |V (G)|.

The graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

Additionally, if for every pair of distinct vertices in V (G′) that are adjacent in G

we also have that they are adjacent in G′, then G′ is an induced subgraph of G.

A special type of a subgraph of G is a complete subgraph of G, and we call such a
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subgraph a clique. The clique number of G, denoted by cl(G), is defined to be

cl(G) = sup{r ∈ Z+ | Kr is a subgraph of G}, where Z+ = {1, 2, 3, . . .} denotes the

set of positive integers.

A graph homomorphism f : G −→ G′ is a mapping f : V (G) −→ V (G′) such

that x − y ∈ E(G) implies that f(x) − f(y) ∈ E(G′). Two graphs G and G′ are

said to be isomorphic graphs, and we write G ∼= G′, if there exists a bijection

f : V (G) −→ V (G′) such that both f and f−1 are graph homomorphisms. In other

words, G and G′ are isomorphic graphs if distinct vertices x and y of G are adjacent

in G if and only if f(x) and f(y) are adjacent in G′.

We say that G is connected if G contains a path of edges between any two distinct

vertices. The distance between distinct vertices x and y of G, denoted by d(x, y), is

the length of a shortest path between x and y. If no such path exists, we say that

d(x, y) = ∞. We also say that d(x, x) = 0 for completeness. With this definition

established, we say that the diameter of G, denoted by diam(G), is defined to be

diam(G) = sup{d(x, y) | x and y are (not necessarily distinct) vertices of G}. Thus,

diam(G) = 0 if and only if |V (G)| = 1, and if |V (G)| ≥ 2, then G is complete if and

only if diam(G) = 1. A cycle is a closed path x1 − x2 − · · · − xn − x1 in G of n ≥ 3

distinct vertices in G. If G contains a cycle, the girth of G, denoted by gr(G), is the

length of a shortest cycle in G. However, if G does not contain a cycle, we say that

gr(G) =∞. Thus, for any graph G, we have that gr(G) ∈ {3, 4, 5, . . .} ∪ {∞}.

1.3 Foundations

The zero-divisor graph of a commutative ring R with nonzero identity, denoted by

Γ(R), and the zero-divisor graph of a commutative semigroup S with zero, denoted

by Γ(S), are simple graphs. We begin with some fundamental results for Γ(R) and

Γ(S). Note that Theorem 1.1 is actually a special case of Theorem 1.2 since any ring

may be viewed as a semigroup under the operation of multiplication.
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Theorem 1.1. Let R be a commutative ring with nonzero identity.

(a) ([8, Theorem 2.3]) Γ(R) is connected and diam(Γ(R)) ≤ 3.

(b) ([19, Theorem 1.6], [25, (1.4)]) If Γ(R) contains a cycle, then gr(Γ(R)) ≤ 4.

Theorem 1.2. Let S be a commutative semigroup with zero.

(a) ([17, Theorem 1.2]) Γ(S) is connected and diam(Γ(S)) ≤ 3.

(b) ([17, Theorem 1.5]) If Γ(S) contains a cycle, then gr(Γ(S)) ≤ 4.

In order to discuss two generalizations of zero-divisor graphs of R that are

of particular interest to us, we must also establish a few algebra concepts for

completeness. An equivalence relation ∼ on a set X is a binary relation on X

that satisfies the following three properties:

1. reflexive property: x ∼ x for all x ∈ X

2. symmetric property: x ∼ y implies that y ∼ x

3. transitive property: x ∼ y and y ∼ z implies that x ∼ z

For all x ∈ X, the equivalence class of x with respect to the equivalence relation

∼ on X is given by [x]∼ = {y ∈ X | x ∼ y}. Furthermore, the set of all equivalence

classes determined by an equivalence relation on X forms a partition of X. A basic

example of an equivalence relation on X is the familiar relation of equality that we will

often denote as =X for clarity. The equivalence classes for this equivalence relation

are [x]=X = {x} for all x ∈ X. We may view an equivalence relation ∼ on a set X

as a subset of X ×X by saying that (x, y) ∈ ∼ if and only if x ∼ y. Note that the

equivalence relation =X on X is the diagonal {(x, x) | x ∈ X} of X×X. Also, X×X

is the equivalence relation defined by x ∼ y for all x, y ∈ X.

Let ∼1 and ∼2 be equivalence relations on X. We have that ∼1 ⊆ ∼2 if and

only if x ∼1 y implies that x ∼2 y. So, we may define a partial order ≤ on the set
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of all equivalence relations on X by saying that for equivalence relations ∼1 and ∼2

on X, ∼1 ≤ ∼2 if and only if ∼1 ⊆ ∼2. Note that a consequence of this definition

is that ∼1 ≤ ∼2 if and only if [x]∼1 ⊆ [x]∼2 for all x ∈ X. Furthermore, since

each equivalence relation ∼ on X must satisfy the reflexive property, we have that

=X ≤ ∼ ≤ X ×X.

Let R be a commutative ring with nonzero identity. For each x ∈ R, the

annihilator of x is defined to be annR(x) = {r ∈ R | rx = 0}, and it is a ring ideal

of R. Now, define the relation ∼ on R by x ∼ y if and only if annR(x) = annR(y),

and note that ∼ is an equivalence relation on R. With this definition of ∼, we have

that [0]∼ = {0} and [1]∼ = R \ Z(R). Thus, for each x ∈ R \ ([0]∼ ∪ [1]∼), we have

that [x]∼ ⊆ Z(R)∗.

For each commutative ring R with nonzero identity, the compressed zero-

divisor graph ΓE(R) of R is defined by utilizing the equivalence relation ∼ on

R given by x ∼ y if and only if annR(x) = annR(y). The set of vertices of ΓE(R) is

V (ΓE(R)) = {[x]∼ | x ∈ R \ ([0]∼ ∪ [1]∼)}, and two distinct vertices [x]∼ and [y]∼ are

connected by an edge in ΓE(R) if and only if xy = 0. The concept of the compressed

zero-divisor graph was introduced in 2002 by S. B. Mulay in [25].

The equivalence relation ∼ on R given by x ∼ y if and only if annR(x) = annR(y)

is more specifically a congruence relation on R. This will be further discussed in

Chapter 2. It turns out that ΓE(R) = Γ(S) for the semigroup S = R/∼, where

the multiplication on S = R/∼ is well-defined due to ∼ being a congruence relation.

Thus, by Theorem 1.2, we may automatically conclude that ΓE(R) is connected

and diam(ΓE(R)) ≤ 3 ([28, Proposition 1.4]). Furthermore, we also have that if

ΓE(R) contains a cycle, then gr(ΓE(R)) ≤ 4. However, D. F. Anderson and J. D.

LaGrange recently improved upon this result in [4, Theorem 3.1] where they showed

that gr(ΓE(R)) ∈ {3,∞}.

Let R be a commutative ring with nonzero identity, and let I be a ring ideal

of R. The ideal-based zero-divisor graph ΓI(R) of R has as its set of vertices

V (ΓI(R)) = {x ∈ R \ I | xy ∈ I for some y ∈ R \ I}, with distinct vertices x and

6



y connected by an edge if and only if xy ∈ I. This definition and initial results

surrounding ideal-based zero-divisor graphs were introduced by S. P. Redmond in his

2001 doctoral dissertation in [26] and in his paper that followed in 2003 in [27].

As in the case of the compressed zero-divisor graph, the ideal-based zero-divisor

graph may also be viewed as a zero-divisor graph of a semigroup. Thus, Γ(S) is

a unifying concept for Γ(R), ΓE(R), and ΓI(R). In order to describe ΓI(R) as a

zero-divisor graph of a semigroup, we must first provide some additional background

information from semigroup theory.

Let S be a commutative semigroup under the operation of multiplication, and let

J be a nonempty subset of S. We say that J is a semigroup ideal of S if for all

x ∈ S and y ∈ J , we have that xy ∈ J . We have mentioned before that any ring R

may be viewed as a semigroup under the operation of multiplication. So, it is worth

noting that any ring ideal I of a ring R is also a semigroup ideal of R when we view

R as a multiplicative semigroup. However, there exist semigroup ideals that are not

ring ideals. In fact, for a commutative ring R with nonzero identity, Z(R) is always a

semigroup ideal of R, but Z(R) need not be a ring ideal of R, in general. For example,

in the ring R = Z/6Z, we have that J = Z(R) = {0̄, 2̄, 3̄, 4̄} is a semigroup ideal of R

that is not a ring ideal of R since 2̄, 3̄ ∈ J , but 2̄ + 3̄ = 5̄ /∈ J . Additional examples

of semigroup ideals of a ring that are not ring ideals can be found in Example 2.12.

Now, for every commutative semigroup S and every semigroup ideal J of S, we

may construct the Rees semigroup, commonly denoted by S/J . The construction

of S/J is based on the congruence relation ∼ on S given by x ∼ y if and only if

x = y or x, y ∈ J . So, the Rees semigroup consists of the elements x ∈ S \ J

and a new element J that acts as the zero element of S/J . Conceptually, all of the

elements in the semigroup ideal J of S collapse to the single zero element J of the

Rees semigroup. Multiplication in S/J is defined as follows. For any x ∈ S/J , we

have that xJ = Jx = J , thus demonstrating that the element J of the Rees semigroup

S/J is its zero element. Now, for any x, y ∈ S \ J , the product xy = J if and only if

xy ∈ J . Otherwise, the product xy is simply the element xy ∈ S \ J .

7



With these semigroup theory concepts established, we may now make the claim

that ΓI(R) = Γ(S), where S is the Rees semigroup R/I. It is important to note

that the Rees semigroup R/I should not be confused with the quotient ring that

is also denoted by R/I. Since ΓI(R) may be viewed as a zero-divisor graph of a

commutative semigroup with zero, we may again automatically deduce some initial

results. We write these results in the following theorem for future reference.

Theorem 1.3. Let R be a commutative ring with nonzero identity, and let I be an

ideal of R.

(a) ([27, Theorem 2.4]) ΓI(R) is connected and diam(ΓI(R)) ≤ 3.

(b) If ΓI(R) contains a cycle, then gr(ΓI(R)) ≤ 4.

1.4 History

Zero-divisor graphs were first introduced by I. Beck in 1988 in [11]. In his definition

of a zero-divisor graph, every element of R is a vertex, and distinct vertices x and

y are adjacent if and only if xy = 0. With this definition, the zero element of R is

adjacent to every other vertex. Beck’s focus was primarily on colorings of zero-divisor

graphs, and D. D. Anderson and M. Naseer furthered his work in 1993 in [1].

The zero-devisor graph was redefined in the 1997 Master’s thesis of P. S. Livingston

in [24] and in the 1999 paper of D. F. Anderson and P. S. Livingston that followed in

[8]. They restricted the vertices to the set of nonzero zero-divisors of R, making

their zero-divisor graph Γ(R) an induced subgraph of Beck’s zero-divisor graph.

Furthermore, their focus was the investigation of the relationship between ring-

theoretic properties of the commutative ring R and graph-theoretic properties of the

zero-divisor graph Γ(R). D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston

furthered the study of the interplay between R and Γ(R) in 2001 in [3]. Then, the

work of S. B. Mulay in [25] and F. R. DeMeyer and K. Schneider in [19] provided

additional depth to the study of Γ(R) in 2002. In 2003, D. F. Anderson, R. Levy,
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and J. Shapiro restricted their focus to a particular type of ring R and investigated

the corresponding zero-divisor graph Γ(R) in [7].

Two distinct generalizations of zero-divisor graphs of rings originated in the early

2000s. S. B. Mulay’s 2002 paper provided the framework and initial results for the

compressed zero-divisor graph ΓE(R) in [25]; however, he used an alternative notation.

In 2011, S. Spiroff and C. Wickham introduced the ΓE(R) notation for what they

called the graph of equivalence classes of zero-divisors of a ring R in [28]. Their

work included many fundamental results and a comparison of ΓE(R) to the standard

zero-divisor graph Γ(R). Recent work by D. F. Anderson and J. D. LaGrange in [5]

and [4] furthered the study of ΓE(R) and introduced the terminology we use, the

compressed zero-divisor graph. A second generalization, the ideal-based zero-divisor

graph ΓI(R), was introduced by S. P. Redmond in his 2001 doctoral dissertation in

[26] and in his paper that followed in 2003 in [27]. Additional results for ΓI(R) were

provided in 2014 by D. F. Anderson and S. Shirinkam in [9].

In 2002, F. R. DeMeyer, T. McKenzie, and K. Schneider introduced what turns

out to be a unifying concept, the zero-divisor graph of a semigroup, denoted by Γ(S),

in [17]. The study of Γ(S) was continued by F. R. DeMeyer and L. DeMeyer in 2005

in [18], and by L. DeMeyer, L. Greve, A. Sabbaghi, and J. Wang in 2010 in [20].

There have also been many other ways of associating graphs to rings. For example,

A. Badawi introduced the annihilator graph AG(R) of a commutative ring R with

nonzero identity in 2014 in [10]. The set of vertices of AG(R) is Z(R)∗ = Z(R) \ {0},

and an edge exists between distinct vertices x and y if and only if annR(xy) 6=

annR(x) ∪ annR(y). Note that V (Γ(R)) = V (AG(R)); however, it turns out that

E(Γ(R)) ⊆ E(AG(R)), where equality does not hold, in general. To demonstrate

this, consider the ring R = Z/8Z. We have that 2 · 6 = 4 6= 0, implying that

2− 6 /∈ E(Γ(R)). But, annR(2) ∪ annR(6) = {0, 4} ∪ {0, 4} = {0, 4} 6= {0, 2, 4, 6} =

annR(4) = annR(2 · 6), implying that 2 − 6 ∈ E(AG(R)). Thus, AG(Z/8Z) 6=

Γ(Z/8Z) ([10, Example 2.7]). In fact, AG(Z/8Z) 6= Γ∼(Z/8Z) for any multiplicative

congruence relation ∼ on R.
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Over 200 papers associating graphs to rings have been published. Additional

results surrounding zero-divisor graphs as well as an extensive bibliography can

be found in the 2011 survey article by D. F. Anderson, M. C. Axtell, and J. A.

Stickles in [2] and in the 2012 survey article by J. Coykendall, S. Sather-Wagstaff, L.

Sheppardson, and S. Spiroff in [16].

1.5 Dissertation Organization

In Chapter 2, we define a multiplicative congruence relation ∼ on a commutative

ring R with nonzero identity and justify that R/∼ is a commutative semigroup with

zero. Then, we use this semigroup to define the congruence-based zero-divisor graph

Γ∼(R) = Γ(R/∼) and state a couple of fundamental properties that can be deduced

immediately from this definition. Furthermore, we show that the usual zero-divisor

graph of R, the compressed zero-divisor graph of R, and the ideal-based zero-divisor

graph of R are examples of congruence-based zero-divisor graphs of R. We conclude

by investigating the congruence class of [0]∼ and particular types of semigroup ideals

of R. Many of the examples that we develop throughout Chapter 2 will be utilized

in later chapters, as well.

In Chapter 3, we establish the notation C(R) for the set of all multiplicative

congruence relations on R, and we define a partial order on the set. We begin by

focusing on the elements ∼ ∈ C(R) such that [0]∼ is a fixed semigroup ideal of R, and

then we investigate the case when [0]∼ is, more specifically, a fixed ring ideal of R. We

also develop the relationship between certain pairs of congruence relations that were

introduced in Chapter 2, and we use these relationships to provide bounds on the

number of multiplicative congruence relations on R as well as provide the necessary

foundation for our work in Chapter 4 and Chapter 5.

In Chapter 4, we consider ∼1,∼2 ∈ C(R) with [0]∼1 = [0]∼2 and ∼1 ≤ ∼2.

We show how natural maps between the semigroups R/∼1 and R/∼2 induce maps

between the congruence-based zero-divisor graphs Γ∼1(R) and Γ∼2(R). We also show
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that Γ∼2(R) is graph isomorphic to an induced subgraph of Γ∼1(R). Furthermore,

with the relationships between pairs of familiar congruence relations that were

established in Chapter 3, we deduce corresponding relationships between pairs of

familiar congruence-based zero-divisor graphs.

In Chapter 5, we extend our work in Chapter 4 by considering commutative rings

R and T such that R ⊆ T and R and T have the same nonzero identity. We work

with compatible congruence relations ∼R ∈ C(R) and ∼T ∈ C(T ), and we show

when natural maps between the semigroups R/∼R and T/∼T induce maps between

the congruence-based zero-divisor graphs Γ∼R(R) and Γ∼T (T ). Furthermore, we show

that if ∼R = ∼T∩(R×R), then Γ∼R(R) is graph isomorphic to an induced subgraph of

Γ∼T (T ). While not all of our familiar congruence relations behave nicely, we are able

to make some conclusions regarding familiar congruence-based zero-divisor graphs

here, as well.

In Chapter 6, we restrict our focus to a particular congruence-based zero-divisor

graph, the ideal-based zero-divisor graph. We start by considering rings formed as

the direct product of two rings. Then, we conclude by working with rings formed as

an idealization of a module.

In Chapter 7, we conclude by providing a summary of our work as well as open

questions related to our work.
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Chapter 2

Congruence Relations and

Congruence-Based Zero-Divisor

Graphs

In this chapter, we define a multiplicative congruence relation ∼ on a commutative

ring R with nonzero identity and develop the necessary concepts to define our

congruence-based zero-divisor graph. We provide several examples of multiplicative

congruence relations and describe the congruence-based zero-divisor graphs for the

congruence relations that produce familiar zero-divisor graphs. We also discuss the

zero element [0]∼ of the multiplicative semigroup R/∼ for each of these examples of

congruence relations. Furthermore, we investigate what can be said about [0]∼ in

general, and we utilize special types of semigroup ideals in this discussion.
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2.1 Multiplicative Congruence Relations ∼ on a

Ring R and the Associated Semigroups R/∼

Let R be a commutative ring with nonzero identity. A multiplicative congruence

relation ∼ on R is an equivalence relation on the multiplicative monoid R with the

additional property that if x, y, z, w ∈ R with x ∼ y and z ∼ w, then xz ∼ yw.

Remark 2.1. Let R be a commutative ring with nonzero identity, and let ∼ be an

equivalence relation on R. Then, the following two properties are equivalent:

(1) If x, y, z, w ∈ R with x ∼ y and z ∼ w, then xz ∼ yw.

(2) If x, y ∈ R with x ∼ y, then zx ∼ zy for all z ∈ R.

Proof. To show that (1) implies (2), let x, y ∈ R with x ∼ y. Since ∼ satisfies the

reflexive property, we have that z ∼ z for all z ∈ R. Thus, zx ∼ zy for all z ∈ R.

Conversely, to show that (2) implies (1), let x, y, z, w ∈ R with x ∼ y and z ∼ w.

Now, z ∼ w implies that xz ∼ xw and x ∼ y implies that wx ∼ wy. But, since R is

commutative, we have that xw ∼ yw. Then, xz ∼ yw by the transitive property of

∼.

Before building upon this concept, we provide several examples of multiplicative

congruence relations on a commutative ring R with nonzero identity. These examples

will recur throughout this chapter, and many of them will be utilized in later chapters,

as well.

Example 2.2. Let R be a commutative ring with nonzero identity.

1. =R is clearly a multiplicative congruence relation on R.

2. R×R is clearly a multiplicative congruence relation on R.

3. Let I be a ring ideal of R, and define ∼ by x ∼ y if and only if x−y ∈ I. To show

that ∼ is a multiplicative congruence relation on R, suppose that a, b, c, d ∈ R.
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Since a − a = 0 ∈ I, a ∼ a. Suppose that a ∼ b. Then, a − b ∈ I, implying

that b− a = −(a− b) ∈ I so that b ∼ a, as well. Now, suppose that a ∼ b and

b ∼ c. Then, a − b, b − c ∈ I, implying that a − c = (a − b) + (b − c) ∈ I so

that a ∼ c. Finally, suppose that a ∼ b and c ∼ d. Then, a− b, c− d ∈ I. So,

ac− bd = ac− bc+ bc− bd = (a− b)c+ b(c− d) ∈ I, implying that ac ∼ bd, as

desired.

4. Let J be a semigroup ideal of R, and define ∼ by x ∼ y if and only if either

x = y or x, y ∈ J . Then, ∼ is clearly a multiplicative congruence relation on

R. In fact, this is the congruence relation mentioned in the construction of the

Rees semigroup in Chapter 1.

5. Define ∼ by x ∼ y if and only if annR(x) = annR(y). Clearly, ∼ is an

equivalence relation on R. To show that ∼ is also a multiplicative congruence

relation on R, suppose that a, b, c, d ∈ R with a ∼ b and c ∼ d. Then, we

have that annR(a) = annR(b) and annR(c) = annR(d), and we must show that

annR(ac) = annR(bd). Suppose that x ∈ annR(ac). Then, 0 = x(ac) = (xa)c,

implying that xa ∈ annR(c) = annR(d). Thus, 0 = (xa)d = (xd)a, and we have

that xd ∈ annR(a) = annR(b). Now, 0 = (xd)b = x(bd), and x ∈ annR(bd).

So, annR(ac) ⊆ annR(bd). The reverse inclusion can be shown in a similar

manner, and we may conclude that ac ∼ bd, as desired.

6. Let J be a semigroup ideal of R, and let (J :R x) = {r ∈ R | rx ∈ J} be

the conductor semigroup ideal of R with respect to J . Define ∼ by x ∼ y if

and only if (J :R x) = (J :R y). Clearly, ∼ is an equivalence relation on R.

To show that ∼ is also a multiplicative congruence relation on R, suppose that

a, b, c, d ∈ R with a ∼ b and c ∼ d. Then, we have that (J :R a) = (J :R b) and

(J :R c) = (J :R d), and we must show that (J :R ac) = (J :R bd). Suppose that

x ∈ (J :R ac). Then, (xa)c = x(ac) ∈ J , implying that xa ∈ (J :R c) = (J :R d).

Thus, (xd)a = (xa)d ∈ J , and we have that xd ∈ (J :R a) = (J :R b). Now,

x(bd) = (xd)b ∈ J , and x ∈ (J :R bd). So, (J :R ac) ⊆ (J :R bd). The reverse
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inclusion can be shown in a similar manner, and we may conclude that that

ac ∼ bd, as desired.

Now, note that ({0} :R x) = {r ∈ R | rx ∈ {0}} = {r ∈ R | rx = 0} = annR(x),

and (R :R x) = {r ∈ R | rx ∈ R} = R. So, if J = {0}, we are reduced to the

congruence relation found in Example 2.2.5, and if J = R, we are reduced to

the congruence relation found in Example 2.2.2.

7. Let U(R) = {u ∈ R | uv = 1 for some v ∈ R} be the set of units of R, and

note that U(R) is a multiplicative group. Define ∼ by x ∼ y if and only if

x = uy for some u ∈ U(R). To show that ∼ is a multiplicative congruence

relation on R, suppose that a, b, c, d ∈ R. Since a = 1a with 1 ∈ U(R), we have

that a ∼ a. Suppose that a ∼ b. Then, a = ub for some u ∈ U(R). Since

U(R) is a multiplicative group, u−1 ∈ U(R). Thus, since b = u−1a, we have

that b ∼ a, as well. Now, suppose that a ∼ b and b ∼ c. Then, a = ub and

b = vc for some u, v ∈ U(R). Since uv ∈ U(R) and a = ub = u(vc) = (uv)c,

we have that a ∼ c. Finally, suppose that a ∼ b and c ∼ d. Then, a = ub and

c = vd for some u, v ∈ U(R). Since uv ∈ U(R) and ac = (ub)(vd) = (uv)(bd),

we have that ac ∼ bd, as desired.

More generally, let G be a multiplicative subgroup of U(R), and define ∼G
by x ∼G y if and only if x = uy for some u ∈ G. Following the same

line of reasoning as above, ∼G is a multiplicative congruence relation on R.

Furthermore, for G = U(R), we have that ∼G = ∼, where ∼ is defined above,

and for G = {1}, we have that ∼G is the relation =R on R.

8. Let (x) = {rx | r ∈ R} be the principal ring ideal of R generated by the

element x ∈ R. Define ∼ by x ∼ y if and only if (x) = (y). Clearly, ∼ is an

equivalence relation on R. To show that ∼ is also a multiplicative congruence

relation on R, suppose that a, b, c, d ∈ R with a ∼ b and c ∼ d. Then, (a) = (b)

and (c) = (d), and we must show that (ac) = (bd). Suppose that x ∈ (ac). Then,

there exists a y ∈ R such that x = yac. Furthermore, ac ∈ (ac) = (bd), so there
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exists a z ∈ R such that ac = zbd. Thus, x = yac = yzbd ∈ (bd) since yz ∈ R.

So, (ac) ⊆ (bd). The reverse inclusion can be shown in a similar manner, and

we may conclude that ac ∼ bd, as desired.

Now, note that if R is an integral domain, (x) = (y) if and only if x = uy

for some u ∈ U(R). So, we are reduced to the congruence relation found in

Example 2.2.7 in this case.

9. Define ∼ by x ∼ y if and only if rx = sy for some r, s ∈ R\Z(R). To show that

∼ is a multiplicative congruence relation on R, suppose that a, b, c, d ∈ R. Since

1a = 1a with 1 ∈ R \ Z(R), we have that a ∼ a. Suppose that a ∼ b. Then,

ra = sb for some r, s ∈ R \Z(R), implying that sb = ra with s, r ∈ R \Z(R) so

that b ∼ a. Now, suppose that a ∼ b and b ∼ c. Then, ra = sb and r′b = s′c for

some r, s, r′, s′ ∈ R \ Z(R). We have that (rr′)a = r′(ra) = r′(sb) = s(r′b) =

s(s′c) = (ss′)c, but it remains to show that rr′, ss′ ∈ R \ Z(R). Suppose that

rr′ ∈ Z(R). First note that rr′ 6= 0 since r, r′ ∈ R \ Z(R). Thus, there exists

a t ∈ Z(R) with t 6= 0 such that (rr′)t = 0. But then, 0 = (rr′)t = r(r′t),

implying that r′t = 0 since r ∈ R \Z(R). However, that would imply that t = 0

since r′ ∈ R \ Z(R), and that is a contradiction. Thus, rr′ ∈ R \ Z(R), and

a similar argument would show that ss′ ∈ R \ Z(R), as well, so that a ∼ c.

Finally, suppose that a ∼ b and c ∼ d. Then, ra = sb and r′c = s′d for some

r, s, r′, s′ ∈ R\Z(R). We have that (rr′)(ac) = (ra)(r′c) = (sb)(s′d) = (ss′)(bd),

and rr′, ss′ ∈ R \ Z(R) by the argument above. Thus, ac ∼ bd, as desired.

Now, note that if R is an integral domain, Z(R) = {0}. So, in this case, we

would have that x ∼ y if and only if rx = sy for some r, s ∈ R \ {0}. But, this

happens if and only if x = y = 0 or x, y ∈ R \ {0}.

For any x ∈ R and any multiplicative congruence relation ∼ on R, the set of

elements that are congruent to x is called the congruence class of x and is denoted

by [x]∼ = {y ∈ R | x ∼ y}. Consider the set R/∼ = {[x]∼ | x ∈ R} of all

congruence classes with multiplication given by [x]∼[y]∼ = [xy]∼ for all x, y ∈ R.
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This multiplication is well-defined, for if x ∼ x′ and y ∼ y′, then xy ∼ x′y′ since ∼ is

a multiplicative congruence relation on R. Furthermore, ([x]∼[y]∼)[z]∼ = [xy]∼[z]∼ =

[(xy)z]∼ = [x(yz)]∼ = [x]∼[yz]∼ = [x]∼([y]∼[z]∼), so the multiplication is associative.

Thus, R/∼ = {[x]∼ | x ∈ R} is a semigroup under the operation given by [x]∼[y]∼ =

[xy]∼ for all x, y ∈ R. Additionally, [x]∼[y]∼ = [xy]∼ = [yx]∼ = [y]∼[x]∼ for all

x, y ∈ R, [1]∼[x]∼ = [1x]∼ = [x]∼ for all x ∈ R, and [0]∼[x]∼ = [0x]∼ = [0]∼ for all

x ∈ R. Thus, R/∼ is a commutative monoid with identity [1]∼ and zero [0]∼.

Now, R/∼ = {[0]∼} if and only if [0]∼ = [1]∼. To see this, first note that if

R/∼ = {[0]∼}, we clearly have that [0]∼ = [1]∼. Conversely, if [0]∼ = [1]∼, then

[x]∼ = [1x]∼ = [1]∼[x]∼ = [0]∼[x]∼ = [0x]∼ = [0]∼ for all x ∈ R. However, this

occurs if and only if ∼ = R×R. Thus, for any other congruence relation ∼, we have

[0]∼ 6= [1]∼. So, [1]∼ would be the nonzero identity element of R/∼.

2.2 Congruence-Based Zero-Divisor Graph Γ∼(R)

Let R be a commutative ring with nonzero identity, and let ∼ be a multiplicative

congruence relation on R. Since R/∼ is a commutative monoid with zero, we may

define the congruence-based zero-divisor graph Γ∼(R) of R as Γ∼(R) = Γ(R/∼).

More explicitly, the set of vertices of Γ∼(R) is Z(R/∼)∗ = Z(R/∼) \ {[0]∼}, and the

set of edges is defined such that for [x]∼, [y]∼ ∈ Z(R/∼)∗ with [x]∼ 6= [y]∼, there is

an edge between [x]∼ and [y]∼ if and only if [x]∼[y]∼ = [0]∼. Thus, there is an edge

between distinct vertices [x]∼ and [y]∼ if and only if xy ∼ 0. The definition of Γ∼(R)

as a zero-divisor graph of a commutative semigroup with zero allows us to deduce

some preliminary results.

Theorem 2.3. Let R be a commutative ring with nonzero identity, and let ∼ be a

multiplicative congruence relation on R.

(a) Γ∼(R) is connected and diam(Γ∼(R)) ≤ 3.

(b) If Γ∼(R) contains a cycle, then gr(Γ∼(R)) ≤ 4.
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Proof. Since Γ∼(R) = Γ(R/∼), this result follows from Theorem 1.2 and from [17,

Theorems 1.2 and 1.5] with S = R/∼.

Several of the multiplicative congruence relations on a commutative ring R with

nonzero identity provided in Example 2.2 lead to the familiar congruence-based zero-

divisor graphs shown here.

Example 2.4. Let R be a commutative ring with nonzero identity.

1. Γ=R(R) = Γ(R). Actually, we technically have that Γ=R(R) ∼= Γ(R) since we are

associating the congruence class [x]=R = {x} with the element x ∈ R; however,

we will write = whenever this is the case.

2. ΓR×R(R) = ∅.

3. Let I be a ring ideal of R, and define the multiplicative congruence relation ∼

on R by x ∼ y if and only if x−y ∈ I. In the case where I is a proper ring ideal

of R, Γ∼(R) = Γ(R/I), where R/I denotes the quotient ring. To justify this

equality, note that [x]∼ = {y ∈ R | x−y ∈ I} = {y ∈ R | x+I = y+I} = x+I.

4. Let J be a semigroup ideal of R, and define the multiplicative congruence relation

∼ on R by x ∼ y if and only if either x = y or x, y ∈ J . Then, Γ∼(R) = ΓJ(R),

where ΓJ(R) is the natural extension of the historical ideal-based zero-divisor

graph ΓI(R) with I more specifically a ring ideal of R. Again, technically we

have that Γ∼(R) ∼= ΓJ(R) since each vertex of Γ∼(R) is of the form [x]∼ = {x}

with x /∈ J , and we associate this congruence class with the element x ∈ R \ J .

5. For the multiplicative congruence relation ∼ on R defined by x ∼ y if and only

if annR(x) = annR(y), we have that Γ∼(R) = ΓE(R).

6. Let J be a semigroup ideal of R, and define the multiplicative congruence relation

∼ by x ∼ y if and only if (J :R x) = (J :R y). By Example 2.2.6, we may

conclude that if J = {0}, we have Γ∼(R) = ΓE(R), and if J = R, we have

18



Γ∼(R) = ∅. Now, in the case where J = I is a proper ring ideal of R, we

have that Γ∼(R) ∼= ΓE(R/I), where R/I denotes the quotient ring. This case is

discussed in detail in Chapter 4.

For a commutative ring R with nonzero identity, Example 2.4 demonstrates that

the congruence-based zero-divisor graph Γ∼(R) generalizes the zero-divisor graph

Γ(R), the ideal-based zero-divisor graph ΓI(R), and the condensed zero-divisor

graph ΓE(R). However, given a commutative ring R with nonzero identity and a

commutative semigroup SR with zero, Γ(SR) need not have the form Γ∼(R) for any

multiplicative congruence relation ∼ on R. The following example justifies that claim.

Example 2.5. M. Behboodi and Z. Rakeei introduced the annihilating-ideal graph of

a commutative ring R, denoted by AG(R), in [12]. AG(R) has as its set of vertices

the nonzero ideals I of R such that IJ = (0) for some nonzero ideal J of R, and I−J

is an edge in AG(R) if and only if IJ = (0). Now, AG(R) = Γ(SR) for the semigroup

SR that consists of the ring ideals of R under the operation of multiplication. Note

that SR is not a ring, in general.

Let R = Z/2Z[X, Y ]/(X2, XY, Y 2) = Z/2Z[x, y]. Then, we have V (AG(R)) =

{(x), (y), (x + y), (x, y)}, and Γ(SR) = AG(R) ∼= K4. But, since |V (Γ∼(R)) | =

|Z(R/∼)∗ | ≤ 3 for each multiplicative congruence relation ∼ on R, we may conclude

that Γ(SR) 6∼= Γ∼(R) for any multiplicative congruence relation ∼ on R.

2.3 The Congruence Class [0]∼ and Semigroup

Ideals of a Ring

Let R be a commutative ring with nonzero identity, and let ∼ be a multiplicative

congruence relation on R. It turns out that the zero element [0]∼ of R/∼ is a

particularly important subset of the multiplicative monoid R. Theorem 2.6 tells

us that the semigroup ideals of R are precisely the congruence classes [0]∼ for the

multiplicative congruence relations ∼ on R.
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Theorem 2.6. Let R be a commutative ring with nonzero identity, and let J be a

nonempty subset of R. Then, J is a semigroup ideal of R if and only if J = [0]∼ for

some multiplicative congruence relation ∼ on R.

Proof. Suppose that J is a semigroup ideal of R. Define the multiplicative congruence

relation ∼ on R by x ∼ y if and only if either x = y or x, y ∈ J . Then, [0]∼ = J .

Conversely, suppose that J = [0]∼ for some multiplicative congruence relation ∼ on

R. To show that J is semigroup ideal of R, let x ∈ R and y ∈ [0]∼. Since y ∼ 0 and

∼ is a multiplicative congruence relation on R, we have that xy ∼ x0 = 0. Thus,

xy ∈ [0]∼, as desired.

Now, the following example provides the description of [0]∼ for each ∼ introduced

in Example 2.2.

Example 2.7. Let R be a commutative ring with nonzero identity.

1. [0]=R = {0}.

2. [0]R×R = R.

3. Let I be a ring ideal of R, and define the multiplicative congruence relation ∼

on R by x ∼ y if and only if x − y ∈ I. Then, [0]∼ = {r ∈ R | 0 − r ∈ I} =

{r ∈ R | r ∈ I} = I.

4. Let J be a semigroup ideal of R, and define the multiplicative congruence relation

∼ on R by x ∼ y if and only if either x = y or x, y ∈ J . Then, we have that

[0]∼ = {r ∈ R | 0 = r or 0, r ∈ J} = {r ∈ R | r ∈ J} = J .

5. Define the multiplicative congruence relation ∼ on R by x ∼ y if and only if

annR(x) = annR(y). Then, we have that [0]∼ = {r ∈ R | ann(0) = ann(r)} =

{r ∈ R | R = ann(r)} = {0}.

6. Let J be a semigroup ideal of R, and define the multiplicative congruence relation

∼ on R by x ∼ y if and only if (J :R x) = (J :R y). Then, we have that

[0]∼ = {r ∈ R | (J :R 0) = (J :R r)} = {r ∈ R | R = (J :R r)} = J .
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7. Define the multiplicative congruence relation ∼ on R by x ∼ y if and only if

x = uy for some u ∈ U(R). Since Z(R) ∩ U(R) = ∅, we can clearly see that

[0]∼ = {r ∈ R | 0 = ur for some u ∈ U(R)} = {0}. More generally, let G

be a multiplicative subgroup of U(R), and define the multiplicative congruence

relation ∼G on R by x ∼G y if and only if x = uy for some u ∈ G. Then,

[0]∼G = {0}, as well.

8. Define the multiplicative congruence relation ∼ on R by x ∼ y if and only if

(x) = (y). Then, [0]∼ = {r ∈ R | (0) = (r)} = {r ∈ R | {0} = (r)} = {0}.

9. Define the multiplicative congruence relation ∼ on R by x ∼ y if and only if

rx = sy for some r, s ∈ R \ Z(R). By following the reasoning first mentioned

in Example 2.7.7, we get [0]∼ = {y ∈ R | r0 = sy for some r, s ∈ R \ Z(R)} =

{r ∈ R | 0 = sy for some s ∈ R \ Z(R)} = {0}.

It turns out that the annihilator congruence relation ∼aR on R, defined by

x ∼aR y if and only if annR(x) = annR(y),

is of particular interest to us. We introdued ∼aR in Example 2.2.5, pointed out that

Γ∼aR (R) = ΓE(R) in Example 2.4.5, and justified that [0]∼aR = {0} in Example 2.7.5.

The following result provides some additional insight into the importance of this

particular congruence relation.
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Theorem 2.8. Let R be a commutative ring with nonzero identity, and let ∼

be a multiplicative congruence relation on R. Then, the following statements are

equivalent:

(1) For all x, y ∈ R, xy ∼ 0 implies that xy = 0.

(2) For all x, y ∈ R, x ∼ y implies that annR(x) = annR(y).

(3) ∼ ≤ ∼aR.

(4) [0]∼ = {0}.

Proof. First note that (2) and (3) are equivalent by definition of ≤. We show that

(1), (2), and (4) are equivalent to complete the proof.

To show that (1) implies (2), let x, y ∈ R with x ∼ y. Suppose a ∈ annR(x).

Then, ax = 0. Since x ∼ y, we have that ax ∼ ay. Thus, 0 = ax ∼ ay. So,

since ay ∼ 0, we have that ay = 0, by assumption. Thus, a ∈ annR(y) so that

annR(x) ⊆ annR(y). By similar argument, annR(x) ⊇ annR(y), and we may conclude

that annR(x) = annR(y).

Next, we show that (2) implies (4). Clearly, {0} ⊆ [0]∼. To show the reverse

inclusion, suppose that a ∈ [0]∼ \ {0}. Then, a ∼ 0 so that annR(a) = annR(0), by

assumption. But, annR(0) = R, implying that annR(a) = R. Thus, ra = 0 for all

r ∈ R, and we may conclude that a = 0. This is a contradiction. Hence, [0]∼ = {0}.

Finally, we show that (4) implies (1) to establish the equivalence of all four

statements. Let x, y ∈ R with xy ∼ 0. Then, xy ∈ [0]∼ = {0} so that xy = 0.

Since our focus is on zero-divisor graphs with vertices the nonzero zero-divisors, we

naturally wondered if R could be restricted to Z(R) in (1) and (2) of the Theorem 2.8

for two additional equivalent statements. More specifically, we wondered if we could

add the following two statements to the list of equivalent statements of Theorem 2.8.

(1)* For all x, y ∈ Z(R), xy ∼ 0 implies that xy = 0.

(2)* For all x, y ∈ Z(R), x ∼ y implies that annR(x) = annR(y).
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However, it turns out that we cannot. Example 2.9 demonstrates that (1)∗ and

(2)∗ above are not even equivalent to each other. But, note that (2)∗ does imply

(1)∗. To see this, assume (2)∗ holds, and let x, y ∈ Z(R) with xy ∼ 0. Then,

annR(xy) = annR(0) = R, implying that xy = 0, as desired.

Example 2.9. Let R = Z/4Z, and let ∼ = R × R. Note that Z(R) = {0̄, 2̄}.

Since 0̄ · 0̄ = 0̄ · 2̄ = 2̄ · 0̄ = 2̄ · 2̄ = 0̄, (1)∗ is trivially true. However, 0̄ ∼ 2̄ and

annR(0̄) = R 6= {0̄, 2̄} = annR(2̄), implying that (2)∗ is false.

As in ring theory, semigroup ideals may be further described by additional

properties that hold for them. Let S be a commutative semigroup under the operation

of multiplication, and let J be a proper semigroup ideal of S. We say that J is a

prime semigroup ideal of S if xy ∈ J implies that x ∈ J or y ∈ J . For example,

the set of zero-divisors J = Z(S) is a prime semigroup ideal of S whenever it is a

proper subset of S. Also, we say that J is a radical semigroup ideal of S if for any

x ∈ S, if xn ∈ J for some n ∈ Z+, then x ∈ J . Equivalently, J is a radical semigroup

ideal of S if and only if for any x ∈ S, if x2 ∈ J , then x ∈ J . Now, if a semigroup

ideal is prime, it is automatically radical. However, a semigroup ideal may be radical

but not prime. The following two results provide additional insight into semigroup

ideals.

Theorem 2.10. Let R be a commutative ring with nonzero identity, and let J be a

nonzero subset of R. Then, the following statements are equivalent:

(1) J is a semigroup ideal of R.

(2) J is a union of principal ring ideals of R.

(3) J is a union of ring ideals of R.

Proof. To show that (1) implies (2), suppose that J is a semigroup ideal of R. We

will show that J =
⋃
x∈J(x). First, note that since J 6= ∅, this union is nonempty,

as well. Now, since x ∈ (x) for each x ∈ J , we have that J ⊆
⋃
x∈J(x). To show the
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reverse inclusion, note that for each x ∈ J , we have that rx ∈ J for all r ∈ R since J

is a semigroup ideal of R. Thus, (x) ⊆ J for each x ∈ J , implying that
⋃
x∈J(x) ⊆ J .

Now, J =
⋃
x∈J(x), and since each (x) is a principal ring ideal of R, we may conclude

that J is a union of principal ring ideals of R.

Finally, since (2) clearly implies (3), it remains to show that (3) implies (1). To

do this, suppose that J is a union of ring ideals of R. Then, J =
⋃
α Iα, for ring ideals

Iα of R. First, note that J 6= ∅ since each Iα ⊆
⋃
α Iα = J is nonempty. Suppose

that x ∈ R and y ∈ J =
⋃
α Iα. Then, y ∈ Iα0 for some α0. But, since Iα0 is a ring

ideal of R, we have that xy ∈ Iα0 ⊆
⋃
α Iα = J . So, J is a semigroup ideal of R.

Theorem 2.11. Let R be a commutative ring with nonzero identity.

(a) A union of prime ring ideals of R is a prime semigroup ideal of R.

(b) A union of radical ring ideals of R is a radical semigroup ideal of R.

Proof. (a) Let J =
⋃
α Iα, where each Iα is a prime ring ideal of R. By Theorem 2.10,

J is a semigroup ideal of R. So, suppose that x, y ∈ R with xy ∈ J =
⋃
α Iα.

Then, xy ∈ Iα0 for some α0. But, since Iα0 is a prime ring ideal of R, either

x ∈ Iα0 ⊆
⋃
α Iα = J or y ∈ Iα0 ⊆

⋃
α Iα = J . Thus, J is a prime semigroup ideal

of R, as desired.

(b) Let J =
⋃
α Iα, where each Iα is a radical ring ideal of R. By Theorem 2.10, J is

a semigroup ideal of R. So, suppose that x ∈ R with xn ∈ J =
⋃
α Iα for some

n ∈ Z+. Then, xn ∈ Iα0 for some α0. But, since Iα0 is a radical ring ideal of R,

we have that x ∈ Iα0 ⊆
⋃
α Iα = J . Thus, J is a radical semigroup ideal of R, as

desired.

In particular, Theorem 2.11 implies that a prime ring ideal of R is a prime

semigroup ideal of R and that a radical ring ideal of R is a radical semigroup ideal

of R; however, that is also clear by definition. Next, we show by example that for a
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fixed ring, not every prime semigroup ideal is a prime ring ideal and that not every

radical semigroup ideal is a radical ring ideal.

Example 2.12. Consider the commutative ring R = Z with nonzero identity.

1. First note that 2Z and 3Z are prime ring ideals of R = Z since 2 and 3 are prime

integers. Thus, J = 2Z∪3Z is a prime semigroup ideal of R by Theorem 2.11(a).

But, J = 2Z∪3Z is not a prime ring ideal of R since 2, 3 ∈ J but 2+3 = 5 /∈ J ,

implying that J is not even a ring ideal of R.

2. First note that 6Z and 10Z are radical ring ideals of R = Z since 6 = 2 · 3 and

10 = 2 · 5 are products of distinct prime integers. Thus, J = 6Z ∪ 10Z is a

radical semigroup ideal of R by Theorem 2.11(b). But, J = 6Z ∪ 10Z is not a

radical ring ideal of R since 6, 10 ∈ J but 6 + 10 = 16 /∈ J , implying that J is

not even a ring ideal of R.

Now, even more can be said about the semigroup ideal [0]∼ of R. The following

result generalizes the well-known results that Γ(R) = ∅ if and only if R is an integral

domain, that ΓE(R) = ∅ if and only if R is an integral domain, and that ΓI(R) = ∅

if and only if I = R or I is a prime ideal of R.

Theorem 2.13. Let R be a commutative ring with nonzero identity, and let ∼ be a

multiplicative congruence relation on R. Then, Γ∼(R) = ∅ if and only if [0]∼ = R or

[0]∼ is a prime semigroup ideal of R.

Proof. First, note that [0]∼ = R if and only if ∼ = R×R. For this case, ΓR×R(R) = ∅.

Thus, we must show that if [0]∼ is a proper semigroup ideal of R, we have that

Γ∼(R) = ∅ if and only if [0]∼ is a prime semigroup ideal of R. So, suppose that [0]∼

is a proper semigroup ideal of R that it is not prime. Then, there exist x, y ∈ R \ [0]∼

such that xy ∈ [0]∼. Thus, [x]∼, [y]∼ ∈ R/∼ \ {[0]∼} with [x]∼[y]∼ = [xy]∼ = [0]∼.

So, [x]∼, [y]∼ ∈ Z(R/∼)∗ = V (Γ∼(R)), and Γ∼(R) 6= ∅.

Conversely, let [0]∼ be a prime semigroup ideal of R, and suppose that Γ∼(R) 6= ∅.

Then, Z(R/∼)∗ = V (Γ∼(R)) 6= ∅. So, there exist [x]∼, [y]∼ ∈ R/∼ \ {[0]∼} such that
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[x]∼[y]∼ = [0]∼. But, [0]∼ = [x]∼[y]∼ = [xy]∼. Thus, we have x, y ∈ R with xy ∈ [0]∼,

implying that either x ∈ [0]∼ or y ∈ [0]∼ since [0]∼ is a prime semigroup ideal of R.

So, either [x]∼ = [0]∼ or [y]∼ = [0]∼, a contradiction.

The following lemma provides the remaining information needed for us to arrive at

our concluding result. Note that it generalizes the well-known analog for commutative

rings with nonzero identity.

Lemma 2.14. Let R be a commutative ring with nonzero identity. Then, R is a field

if and only if for every semigroup ideal J of R, we have that J = R or J is a prime

semigroup ideal of R.

Proof. Suppose that R is a field. Then, the only ring ideals of R are R and {0}. But,

since every semigroup ideal J of R is a union of ring ideals of R by Theorem 2.10, it

is also true that the only semigroup ideals of R are J = R and J = {0}. But, since

J = {0} is a maximal ring ideal of R, it is also a prime ring ideal of R. Thus, J = {0}

is a prime semigroup ideal of R. So, for every semigroup ideal J of R, we have that

J = R or J is a prime semigroup ideal of R.

Conversely, suppose that for every semigroup ideal J of R, we have that J = R

or J is a prime semigroup ideal of R. First, note that since {0} is actually a prime

ring ideal of R, we have that R is an integral domain. Now, let r ∈ R \ {0} and

consider the semigroup ideal J = (r2) of R. If J = R, then 1 ∈ J = (r2), implying

that 1 = sr2 for some s ∈ R. But then, 1 = sr2 = (sr)r so that r−1 = sr ∈ R.

Otherwise, if J 6= R, then J is a prime semigroup ideal of R. So, since r2 ∈ (r2) = J ,

we also have that r ∈ J = (r2). Thus, r = sr2 for some s ∈ R. But, since R is an

integral domain, the cancellation law holds. So, since r 6= 0, we have that 1 = sr so

that r−1 = s ∈ R. Thus, R is a field.

Our final result for this chapter now follows immediately from Theorem 2.13,

Theorem 2.6, and Lemma 2.14.
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Theorem 2.15. Let R be a commutative ring with nonzero identity. Then, we have

that Γ∼(R) = ∅ for all multiplicative congruence relations ∼ on R if and only if R is

a field.

Proof. By Theorem 2.13, Γ∼(R) = ∅ for all multiplicative congruence relations ∼ on

R if and only if [0]∼ = R or [0]∼ is a prime semigroup ideal of R for all multiplicative

congruence relations ∼ on R. But, Theorem 2.6 tells us that this is true if and only

if for every semigroup ideal J of R, we have that J = R or J is a prime semigroup

ideal of R. Thus, Lemma 2.14 allows us to conclude that this occurs if and only if R

is a field.
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Chapter 3

Relationships Among Familiar

Congruence Relations in C(R) and

Bounds on | C(R) |

Let R be a commutative ring with nonzero identity. To aid in our discussion, we

define the set

C(R) = {∼ | ∼ is a multiplicative congruence relation on R}.

As in the more general case of an equivalence relation, we may view each element

∼ ∈ C(R) as a subset of R×R by saying that (x, y) ∈ ∼ if and only if x ∼ y. Then,

we may easily define a partial order ≤ on C(R) by ∼1 ≤ ∼2 if and only if ∼1 ⊆ ∼2.

Thus, for ∼1,∼2 ∈ C(R) we have that ∼1 ≤ ∼2 if and only if for x, y ∈ R, we have

that x ∼1 y implies that x ∼2 y. Also, for x ∈ R, if ∼1 ≤ ∼2, then [x]∼1 ⊆ [x]∼2 .

Furthermore, we have that =R ≤ ∼ ≤ R×R for all ∼ ∈ C(R).

Now, Theorem 2.6 gives us that every semigroup ideal J of R is of the form

J = [0]∼ for some ∼ ∈ C(R). So, for every semigroup ideal J of R, we define the set

CJ(R) = {∼ ∈ C(R) | [0]∼ = J}.
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Note that Theorem 2.8 implies that C{0}(R) = {∼ ∈ C(R) | ∼ ≤ ∼aR}, where x ∼aR y

if and only if annR(x) = annR(y). We also have that CR(R) = {R×R}. Furthermore,

C(R) is the disjoint union

C(R) =
⋃
{CJ(R) | J a semigroup ideal of R}.

In this chapter, we investigate the relationship among some of the elements of

C(R) that were introduced in Chapter 2. We start by considering the set CJ(R),

where J is a semigroup ideal of R, and then we move on to the special case where

J = I is a ring ideal of R. These results lead immediately to some bounds on the

cardinality of C(R).

3.1 The Set CJ(R) for a Semigroup Ideal J of a Ring

R

First, we maintain a broad perspective by letting J be a semigroup ideal of a

commutative ring R with nonzero identity. We begin with a simple remark that

provides some structure to the set CJ(R).

Remark 3.1. Let J be a semigroup ideal of a commutative ring R with nonzero

identity. Suppose that ∼1,∼2 ∈ CJ(R) and ∼ ∈ C(R). Then, if ∼1 ≤ ∼ ≤ ∼2, we

have that J = [0]∼1 ⊆ [0]∼ ⊆ [0]∼2 = J . So, [0]∼ = J , implying that ∼ ∈ CJ(R), as

well.

With this relationship in mind, we now investigate what can be said about various

familiar congruence relations in CJ(R).
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Lemma 3.2. Let R be a commutative ring with nonzero identity, and let J be a

semigroup ideal of R. Define ∼R(J),∼JR ∈ C(R) by

x ∼R(J) y if and only if x = y or x, y ∈ J, and

x ∼JR y if and only if (J :R x) = (J :R y).

Then, ∼R(J),∼JR ∈ CJ(R) and ∼R(J) ≤ ∼JR.

Proof. We have that [0]∼R(J)
= J by Example 2.7.4, and [0]∼JR = J by Example 2.7.6.

Thus, ∼R(J),∼JR ∈ CJ(R). Furthermore, if x, y ∈ R with x ∼R(J) y, then either

x = y or x, y ∈ J . If x = y, certainly (J :R x) = (J :R y), and if x, y ∈ J , then

(J :R x) = R = (J :R y) since J is a semigroup ideal. Thus, x ∼JR y so that

∼R(J) ≤ ∼JR .

Utilizing these two congruence relations, we can get a partial converse to the claim

made in Remark 3.1.

Theorem 3.3. Let R be a commutative ring with nonzero identity, and let J be a

semigroup ideal of R. Define ∼R(J),∼JR ∈ C(R) by

x ∼R(J) y if and only if x = y or x, y ∈ J, and

x ∼JR y if and only if (J :R x) = (J :R y).

Then, for ∼ ∈ C(R), we have that ∼R(J) ≤ ∼ ≤ ∼JR if and only if ∼ ∈ CJ(R).

Proof. First note that ∼R(J),∼JR ∈ CJ(R) with ∼R(J) ≤ ∼JR by Lemma 3.2. So,

the forward implication follows from Remark 3.1. Conversely, let ∼ ∈ CJ(R). Then,

[0]∼ = J . First, we show that ∼R(J) ≤ ∼. To do this, suppose that x, y ∈ R with

x ∼R(J) y. Then, x = y or x, y ∈ J . If x = y, certainly x ∼ y, so suppose that

x, y ∈ J . But, since x, y,∈ J = [0]∼, we have that 0 ∼ x and 0 ∼ y, implying that

x ∼ y. Thus, ∼R(J) ≤ ∼, as desired. Next, we show that ∼ ≤ ∼JR . To do this,

suppose that x, y ∈ R with x ∼ y, and let r ∈ (J :R x). Then, rx ∈ J = [0]∼ so
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that rx ∼ 0. But, we also have that rx ∼ ry since ∼ is a multiplicative congruence

relation on R. Thus, ry ∼ 0 so that ry ∈ [0]∼ = J . Now, r ∈ (J :R y), and we have

that (J :R x) ⊆ (J :R y). The reverse inclusion may be shown in a similar manner,

allowing us to conclude that (J :R x) = (J :R y). Thus, x ∼JR y, implying that

∼ ≤ ∼JR , as desired.

Corollary 3.4. Let R be a commutative ring with nonzero identity, and define

=R,∼aR ∈ C(R) by

x =R y if and only if x = y, and

x ∼aR y if and only if annR(x) = annR(y).

Then, for ∼ ∈ C(R), we have that =R ≤ ∼ ≤ ∼aR if and only if ∼ ∈ C{0}(R).

Proof. Since =R is ∼R({0}) and ∼aR is ∼{0}R , this result follows from Theorem 3.3

with J = {0}.

It is worth mentioning that Corollary 3.4 simply reiterates the established fact

that C{0}(R) = {∼ ∈ C(R) | ∼ ≤ ∼aR}. More generally, Theorem 3.3 tells us that

CJ(R) = {∼ ∈ C(R) | ∼R(J) ≤ ∼ ≤ ∼JR}. In other words, we now know that ∼R(J)

is the smallest congruence relation in CJ(R) and that ∼JR is the largest congruence

relation in CJ(R). Next, we will further investigate what can be said about these two

congruence relations as we let the semigroup ideal J vary.

Remark 3.5. Let J be a semigroup ideal of a commutative ring R with nonzero

identity, and define ∼R(J) ∈ C(R) by x ∼R(J) y if and only if x = y or x, y ∈ J .

Then, for semigroup ideals J and J ′ of R, we have that ∼R(J) = ∼R(J ′) if and only if

J = J ′ and ∼R(J) ≤ ∼R(J ′) if and only if J ⊆ J ′.

While the congruence relation ∼R(J) behaves nicely with respect to inclusion, it

turns out that the congruence relation ∼JR does not. Example 3.6 demonstrates that

the inclusion relationship between two semigroup ideals J and J ′ of R does not tell

us anything about the corresponding congruence relations ∼JR and ∼J ′R .
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Example 3.6. Let J be a semigroup ideal of a commutative ring R with nonzero

identity, and define ∼JR ∈ C(R) by x ∼JR y if and only if (J :R x) = (J :R y).

1. Let R = Z and consider the semigroup ideals J = 2Z and J ′ = 2Z ∪ 3Z. First,

note that J ⊆ J ′. Now, (J :R 1) = 2Z and (J :R 3) = 2Z so that 1 ∼JR 3.

However, (J ′ :R 1) = 2Z ∪ 3Z and (J ′ :R 3) = Z so that 1 6∼J ′R 3. Thus,

∼JR 6≤ ∼J ′R.

2. Let R = Z and consider the semigroup ideals J = 6Z and J ′ = 2Z. First, note

that J ⊆ J ′. Now, (J :R 2) = 3Z and (J :R 6) = Z so that 2 6∼JR 6. However,

(J ′ :R 2) = Z and (J ′ :R 6) = Z so that 2 ∼J ′R 6. Thus, ∼J ′R 6≤ ∼JR.

3.2 The Set CI(R) for a Ring Ideal I of a Ring R

Now, we restrict our focus to the case where I is a ring ideal of a commutative ring

R with nonzero identity, and we investigate what can be said about various familiar

congruence relations in CI(R).

Lemma 3.7. Let R be a commutative ring with nonzero identity, and let I be a ring

ideal of R. Define ∼R(I),∼R/I ,∼IR ∈ C(R) by

x ∼R(I) y if and only if x = y or x, y ∈ I,

x ∼R/I y if and only if x− y ∈ I, and

x ∼IR y if and only if (I :R x) = (I :R y).

Then, ∼R(I),∼R/I ,∼IR ∈ CI(R) and ∼R(I) ≤ ∼R/I ≤ ∼IR.

Proof. First note that ∼R(I),∼IR ∈ CI(R) with ∼R(I) ≤ ∼IR by Lemma 3.2.

Furthermore, we have that [0]∼R/I = I by Example 2.7.3, so ∼R/I ∈ CI(R), as well.

Thus, Theorem 3.3 gives us that ∼R(I) ≤ ∼R/I ≤ ∼IR .
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In order to gain additional insight into the set CI(R), we determine conditions

under which ∼R/I is equal to the largest element ∼IR in CI(R) and conditions under

which ∼R/I is equal to the smallest element ∼R(I) in CI(R) . But first, we establish a

couple of facts.

Lemma 3.8. Let R be a commutative ring with nonzero identity, and let I be a proper

ring ideal of R. Define ∼R/I ,∼IR ∈ C(R) by

x ∼R/I y if and only if x− y ∈ I, and

x ∼IR y if and only if (I :R x) = (I :R y).

Suppose ∼R/I = ∼IR. Then,

(a) U(R/I) = {1 + I}, and

(b) I is a radical ring ideal of R.

Proof. Suppose that ∼R/I = ∼IR .

(a) Clearly we have that {1 + I} ⊆ U(R/I). To show the reverse inclusion, suppose

that x ∈ R such that x + I ∈ U(R/I). Then, there exists a y ∈ R such that

y + I ∈ U(R/I) and (x + I)(y + I) = 1 + I. So, 1 + I = xy + I, implying that

1 − xy ∈ I. We show that (I :R x) = (I :R 1). Clearly, (I :R 1) = I ⊆ (I :R x),

so suppose that r ∈ (I :R x). We have that r − (rx)y = r(1 − xy) ∈ I since

1 − xy ∈ I. Thus, r + I = (rx)y + I = I since rx ∈ I. So, r ∈ I = (I :R 1),

implying that (I :R x) ⊆ (I :R 1), as well. Now x ∼IR 1, so that x ∼R/I 1 since

∼R/I = ∼IR . Thus, x−1 ∈ I implying that x+ I = 1+ I, and U(R/I) ⊆ {1+ I}.

(b) Let x ∈ R be such that x2 ∈ I. Then, (1 + x+ I)(1− x+ I) = 1− x2 + I = 1 + I

So, 1 + x+ I ∈ U(R/I) = {1 + I} by Lemma 3.8(a). Thus, 1 + x+ I = 1 + I so

that x = (1 +x)− 1 ∈ I, and we may conclude that I is a radical ring ideal of R.
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A ring R is called a Boolean ring if x2 = x for all x ∈ R. Since we are interested

in commutative rings, it is worth pointing out that a consequence of this definition

is that every Boolean ring is commutative. An example of a Boolean ring is Z/2Z.

In fact, Z/2Z is the only Boolean ring that is also an integral domain. Furthermore,

any finite Boolean ring with nonzero identity is isomorphic to a finite product of

copies of Z/2Z. So, we may deduce from that fact that any finite Boolean ring with

nonzero identity has 2n elements for some n ∈ Z+. With this information, we are now

prepared to show that ∼R/I = ∼IR precisely when the quotient ring R/I is a Boolean

ring and then deduce additional results later in the chapter.

Theorem 3.9. Let R be a commutative ring with nonzero identity, and let I be a

proper ring ideal of R. Define ∼R/I ,∼IR ∈ C(R) by

x ∼R/I y if and only if x− y ∈ I, and

x ∼IR y if and only if (I :R x) = (I :R y).

Then, ∼R/I = ∼IR if and only if R/I is a Boolean ring.

Proof. Suppose that ∼R/I = ∼IR . Let x ∈ R so that x + I ∈ R/I. First, we show

that (I :R x2) = (I :R x). Suppose that r ∈ (I :R x2). Then, rx2 ∈ I, implying

that (rx)2 = r(rx2) ∈ I, as well. So, rx ∈ I since I is a radical ring ideal of R

by Lemma 3.8(b). Thus, r ∈ (I :R x), and we have that (I :R x2) ⊆ (I :R x). To

show the reverse inclusion, suppose that r ∈ (I :R x). Then, rx ∈ I, implying that

rx2 = (rx)x ∈ I. Thus, r ∈ (I :R x
2), and we may conclude that (I :R x) ⊆ (I :R x

2),

as well. Now, x2 ∼IR x, implying that x2 ∼R/I x since ∼R/I = ∼IR . Thus, x2− x ∈ I

so that (x+ I)2 = x2 + I = x+ I, and we may conclude that R/I is a Boolean ring.

Conversely, suppose that R/I is a Boolean ring. First note that ∼R/I ≤ ∼IR by

Lemma 3.7. To show the reverse inequality, suppose that x, y ∈ R with x ∼IR y.

Then, (I :R x) = (I :R y). But, x2 + I = (x + I)2 = x + I since R/I is a Boolean

ring. So, (x − 1)x = x2 − x ∈ I, implying that x − 1 ∈ (I :R x) = (I :R y). Thus,
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xy − y = (x − 1)y ∈ I, and a similar argument gives us that xy − x = yx − x ∈ I.

Now, x − y = (xy − y) − (xy − x) ∈ I, implying that x ∼R/I y. Thus, ∼IR ≤ ∼R/I ,

and we may conclude that ∼R/I = ∼IR .

Corollary 3.10. Let R be a commutative ring with nonzero identity, and define

=R,∼aR ∈ C(R) by

x =R y if and only if x = y, and

x ∼aR y if and only if annR(x) = annR(y).

Then, =R is ∼aR if and only if R is a Boolean ring.

Proof. Since =R is ∼R/{0}, ∼aR is ∼{0}R , and R/{0} ∼= R, this result follows from

Theorem 3.9 with I = {0}.

Note that Corollary 3.10 is essentially the same result as [5, Corollary 2.7], but

in a different context. Next, we move on to show that ∼R(I) = ∼R/I precisely when

I = {0}.

Theorem 3.11. Let R be a commutative ring with nonzero identity, and let I be a

proper ring ideal of R. Define ∼R(I),∼R/I ∈ C(R) by

x ∼R(I) y if and only if x = y or x, y ∈ I, and

x ∼R/I y if and only if x− y ∈ I.

Then, ∼R(I) = ∼R/I if and only if I = {0}. Moreover, in this case, ∼R(I) and ∼R/I
are each =R.

Proof. First, suppose that ∼R(I) = ∼R/I , and let x ∈ I. Then, x + 1− 1 = x ∈ I so

that x + 1 ∼R/I 1. But then, x + 1 ∼R(I) 1 since ∼R/I = ∼R(I). Now, since I is a

proper ring ideal of R, we must have that 1 /∈ I. So, x+ 1 = 1, implying that x = 0.

Thus, I = {0}. Conversely, suppose that I = {0}. Since ∼R({0}) and ∼R/{0} are each

=R, we have that ∼R(I) = ∼R/I , as desired.
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3.3 Bounds on | C(R) |

With the results shown earlier in this chapter, we can immediately deduce a couple

of facts about the number of elements in CI(R) for a ring ideal I of a commutative

ring R with nonzero identity. We have already established that ∼R(I) ∈ CI(R), so we

automatically know that | CI(R) | ≥ 1. Also, since CI(R) ⊆ C(R) for every ring ideal

I of R, these bounds on | CI(R) | implicitly provide bounds on | C(R) |.

Corollary 3.12. Let R be a commutative ring with nonzero identity, and let I be a

ring ideal of R. Then, | CI(R) | = 1 if and only if either

(a) I = R, or

(b) I = {0} and R is a Boolean ring.

Proof. First, note that if I = R, we have that | CR(R) | = | {R × R} | = 1. Thus,

we must show that if I is a proper ring ideal of R, then | CI(R) | = 1 if and only

if I = {0} and R is a Boolean ring. So, suppose that I is a proper ring ideal of

R. Theorem 3.3 implies that CI(R) = {∼ ∈ C(R) | ∼R(I) ≤ ∼ ≤ ∼IR}. But,

Theorem 3.11 tells us that ∼R(I) = ∼R/I if and only if I = {0}, and Theorem 3.9 tells

us that ∼R/I = ∼IR if and only if R/I is a Boolean ring. Combining these results, we

have that ∼R(I) = ∼R/I = ∼IR if and only if I = {0} and R ∼= R/{0} is a Boolean

ring. Thus, | CI(R) | = 1 if and only if I = {0} and R is a Boolean ring, as desired.

Corollary 3.13. Let R be a commutative ring with nonzero identity, and let I be a

proper, nonzero ring ideal of R. Then, | CI(R) | ≥ 2.

Proof. Since {0} ( I ( R, Corollary 3.12 tells us that | CI(R) | 6= 1. Thus, it must

be true that | CI(R) | ≥ 2.

Now, every commutative ring R with nonzero identity has at least two elements,

0 and 1. Thus, =R < R×R, and we automatically know that | C(R) | ≥ 2. However,

we can sharpen this bound if we require that R is not a field. But first, we establish

a couple of facts.
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Lemma 3.14. Let R be a Boolean ring with nonzero identity. Then, for x, y ∈ R,

we have that (x) = (y) if and only if x = y. Moreover, R does not have a unique

nonzero, proper semigroup ideal.

Proof. Suppose that R is a Boolean ring with nonzero identity, and let x, y ∈ R. If

x = y, then clearly (x) = (y). Conversely, suppose that (x) = (y). Then, x ∈ (x) =

(y), implying that x = ry for some r ∈ R, and y ∈ (y) = (x), implying that y = sx for

some s ∈ R. So, we have that x = ry = ry2 = (ry)y = xy = x(sx) = sx2 = sx = y.

Now, note that {0} = (0) and R = (1). So, for x ∈ R \ {0, 1}, we would have that

(x) is a nonzero, proper ring ideal of R. Furthermore, if x, y ∈ R \ {0, 1} with x 6= y,

then the nonzero, proper ring ideals (x) and (y) would be distinct. Thus, if R did

have a unique nonzero, proper ring ideal, then we must have that R \ {0, 1} contains

exactly one element. But then, the Boolean ring R must contain exactly 3 elements,

and this is a contradiction since every finite Boolean ring has 2n elements for some

n ∈ Z+. Thus, we have demonstrated that R does not have a unique nonzero, proper

ring ideal.

To conclude, we must further show that R does not have a unique nonzero, proper

semigroup ideal. To do this, suppose that J is the unique nonzero, proper semigroup

ideal of R that is necessarily not a ring ideal. Let x ∈ J \ {0}. Then, (x) ⊆ J . So, we

have that {0} = (0) ( (x) ⊆ J ( R. But, the ring ideal (x) of R is also a semigroup

ideal of R, so we must have that (x) = J since J is assumed to be the unique nonzero,

proper semigroup ideal of R. However, we would then have that J = (x) is a ring

ideal of R, a contradiction.

Theorem 3.15. Let R be a commutative ring with nonzero identity that is not a

field. Then, | C(R) | ≥ 5.

Proof. First, we will show that | C(R) | ≥ 4. Since R is not a field, there exists

a nonzero, proper ring ideal I of R. Then, | CI(R) | ≥ 2 by Corollary 3.13, and

| CR(R) | = 1 by Corollary 3.12. Also, since =R ∈ C{0}(R), we have that | C{0}(R) | ≥ 1.

Now, C(R) =
⋃
{CJ(R) | J a semigroup ideal of R} is a disjoint union, and we have
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that {0} ( I ( R are distinct semigroup ideals of R. So, combining these results

gives us that | C(R) | ≥ | C{0}(R) |+ | CI(R) |+ | CR(R) | ≥ 1 + 2 + 1 = 4.

Next, we will show that | C(R) | 6= 4 so that we may conclude that | C(R) | ≥ 5.

Since R is not a field, there exists a nonzero, proper ring ideal I of R. But, note that

to get | C(R) | = 4, it must be true that | C{0}(R) | = 1, and that the ring ideal I is the

unique nonzero, proper semigroup ideal J = I such that | CJ(R) | = 2. Now, in order

to get that | C{0}(R) | = 1, Corollary 3.12 tells us that R must be a Boolean ring.

Then, Lemma 3.14 implies that R does not have a unique nonzero, proper semigroup

ideal, a contradiction. Thus, | C(R) | ≥ 5, as desired.

The following two examples demonstrate that the bound of 5 on | C(R) | can be

achieved and that C(R) need not be finite or even countably infinite. So, the bound

presented in Theorem 3.15 cannot be improved.

Example 3.16. Let R = Z/4Z = {0̄, 1̄, 2̄, 3̄}. First, note that =R gives us the four

congruence classes [0̄]=R = {0̄}, [1̄]=R = {1̄}, [2̄]=R = {2̄}, and [3̄]=R = {3̄}, and

that R×R gives us the single congruence class [0̄]R×R = {0̄, 1̄, 2̄, 3̄}. The annihilator

congruence relation ∼aR gives us the three congruence classes [0̄]∼aR = {0̄}, [1̄]∼aR =

{1̄, 3̄}, and [2̄]∼aR = {2̄}. Since C{0̄}(R) = {∼ ∈ C(R) | =R ≤ ∼ ≤ ∼aR}, and since

no other congruence relation on R fits strictly between =R and ∼aR, we have that

| C{0̄}(R) | = 2. Also, Corollary 3.12 implies that | CR(R) | = |R×R | = 1.

Now, the only nonzero, proper ring ideal of Z/4Z is I = 2Z/4Z = {0̄, 2̄}. In fact,

I is the only nonzero, proper semigroup ideal of R. Define ∼R(I) ∈ C(R) by x ∼R(I) y

if and only if x = y or x, y ∈ I, and define ∼IR ∈ C(R) by x ∼IR y if and only if

(I :R x) = (I :R y). Furthermore, note that CI(R) = {∼ ∈ C(R) | ∼R(I) ≤ ∼ ≤ ∼IR}

by Theorem 3.3. The congruence relation ∼R(I) gives us the three congruence classes

[0̄]∼R(I)
= {0̄, 2̄}, [1̄]∼R(I)

= {1̄}, and [3̄]∼R(I)
= {3̄}, and the congruence relation ∼IR

gives us the two congruence classes [0̄]∼IR = {0̄, 2̄} and [1̄]∼IR = {1̄, 3̄}. But, since

no other congruence relation on R fits strictly between ∼R(I) and ∼IR, we have that
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| CI(R) | = 2. Finally, since C(R) = C{0}(R) ∪ CI(R) ∪ CR(R) is a disjoint union,

| C(R) | = | C{0}(R) |+ | CI(R) |+ | CR(R) | = 2 + 2 + 1 = 5.

Example 3.17.

1. Let R be a commutative ring with nonzero identity, and let G be a multiplicative

subgroup of U(R). Define the multiplicative congruence relation ∼G on R by

x ∼G y if and only if x = uy for some u ∈ G, as in Example 2.2.7. Then,

[0]∼G = {0} by Example 2.7.7, implying that ∼G ∈ C{0}(R). Furthermore, note

that [1]∼G = {x ∈ R | 1 ∼G x} = {x ∈ R | x = u for some u ∈ G} =

G. Now, for multiplicative subgroups G1 and G2 of U(R), with G1 ⊆ G2,

we automatically have that ∼G1 ≤ ∼G2. But, it turns out that the converse

is also true. To see this, suppose that ∼G1 ≤ ∼G2, and let x ∈ G1. Since

G1 = [1]∼G1
, we have that x ∼G1 1, implying that x ∼G2 1, as well. So,

x ∈ [1]∼G2
= G2, and G1 ⊆ G2, as desired. Thus, we have that ∼G1 = ∼G2 if

and only if G1 = G2 and ∼G1 ≤ ∼G2 if and only if G1 ⊆ G2. This implies that

{∼G | G is a multiplicative subgroup of U(R)} is a family of distinct congruence

relations in C{0}(R) ⊆ C(R).

2. Let R be a commutative ring that contains the field of rational numbers Q, and

let {px | x ∈ Z+} be the set of all positive prime integers. For each X ⊆ Z+,

define GX =
{∏

x∈X paxx | ax ∈ Z and ax = 0 for all but finitely many x ∈ X
}

.

Now, GX is a multiplicative subgroup of Q \ {0} ⊆ U(R) for each X ⊆ Z+.

Furthermore, since |Z+ | = ℵ0, there are 2ℵ0 = c possible subsets of Z+,

implying that there are uncountably many distinct subgroups GX of U(R). So,

Example 3.17.1 gives us that {∼GX | X ⊆ Z+} is an uncountable family of

distinct congruence relations in C{0}(R) ⊆ C(R), implying that | C(R) | ≥ c.

But, since we may also view C(R) as a subset of the power set of R × R, we

also have that | C(R) | ≤ c. Thus, C(R) is uncountable.

Finally, we will show by example that it is possible to achieve values of 2, 3, and

4 for | C(R) |. Note that R is necessarily a field in these examples by Theorem 3.15.

39



Now, the only ring ideals of a field R are {0} and R, and a similar proof allows us

to further conclude that the only semigroup ideals of a field R are {0} and R. Thus,

| C(R) | = | C{0}(R) | + | CR(R) | since C(R) = C{0}(R) ∪ CR(R) is a disjoint union.

Furthermore, since | CR(R) | = 1 by Corollary 3.12, our examples must have values of

1, 2, and 3 for | C{0}(R) |.

Example 3.18.

1. Let R = Z/2Z = {0̄, 1̄}. First, note that =R gives us the two congruence classes

[0̄]=R = {0̄} and [1̄]=R = {1̄}, and that R × R gives us the single congruence

class [0̄]R×R = {0̄, 1̄}. So, =R < R× R, but no other congruence relation on R

fits strictly between these two congruence relations. Thus, | C(R) | = 2.

2. Let R = Z/3Z = {0̄, 1̄, 2̄}. First, note that =R gives us the three congruence

classes [0̄]=R = {0̄}, [1̄]=R = {1̄}, and [2̄]=R = {2̄}, and that R×R gives us the

single congruence class [0̄]R×R = {0̄, 1̄, 2̄}. The annihilator congruence relation

∼aR gives us the two congruence classes [0̄]∼aR = {0̄} and [1̄]∼aR = {1̄, 2̄}. But,

since C{0̄}(R) = {∼ ∈ C(R) | =R ≤ ∼ ≤ ∼aR}, and since no other congruence

relation on R fits strictly between =R and ∼aR, we have that | C{0̄}(R) | = 2.

Thus, | C(R) | = 3.

3. Let R = Z/5Z = {0̄, 1̄, 2̄, 3̄, 4̄}. First, note that =R gives us the five congruence

classes [0̄]=R = {0̄}, [1̄]=R = {1̄}, [2̄]=R = {2̄}, [3̄]=R = {3̄}, and [4̄]=R = {4̄},

and that R × R gives us the single congruence class [0̄]R×R = {0̄, 1̄, 2̄, 3̄, 4̄}.

The annihilator congruence relation ∼aR gives us the two congruence classes

[0̄]∼aR = {0̄} and [1̄]∼aR = {1̄, 2̄, 3̄, 4̄}.

Consider the equivalence relation ∼0 on R, given by the three equivalence classes

[0̄]∼0 = {0̄}, [1̄]∼0 = {1̄, 4̄}, and [2̄]∼0 = {2̄, 3̄}. It is easy to check that ∼0 is

a congruence relation on R by Remark 2.1. Also, note that =R < ∼0 < ∼aR.

We show that ∼0 is the only congruence relation on R that fits strictly between

=R and ∼aR. To do this, suppose that ∼∈ C(R) with =R < ∼ < ∼aR. Then,

40



we must have that [0̄]∼ = {0̄}. Furthermore, for the inequality =R < ∼ to hold,

at least two of the elements in {1̄, 2̄, 3̄, 4̄} must be congruent to each other. If

1̄ ∼ 2̄, then we also have that 2̄ = 2̄ · 1̄ ∼ 2̄ · 2̄ = 4̄ and 3̄ = 3̄ · 1̄ ∼ 3̄ · 2̄ = 1̄.

Combining these results gives us that 3̄ ∼ 1̄ ∼ 2̄ ∼ 4̄, implying that ∼ = ∼aR,

a contradiction. So, 1̄ 6∼ 2̄. Now, if 1̄ ∼ 3̄, then we also have that 2̄ = 2̄ · 1̄ ∼

2̄ · 3̄ = 1̄, if 2̄ ∼ 4̄, then we also have that 1̄ = 3̄ · 2̄ ∼ 3̄ · 4̄ = 2̄, and if 3̄ ∼ 4̄, then

we also have that 2̄ = 4̄ · 3̄ ∼ 4̄ · 4̄ = 1̄. Each of these three cases leads to 1̄ ∼ 2̄,

but we just determined that 1̄ 6∼ 2̄. So, 1̄ 6∼ 3̄, 2̄ 6∼ 4̄, and 3̄ 6∼ 4̄. However, if

1̄ ∼ 4̄, then we also have that 2̄ = 2̄ · 1̄ ∼ 2̄ · 4̄ = 3̄, and if 2̄ ∼ 3̄, then we also

have that 1̄ = 3̄ · 2̄ ∼ 3̄ · 3̄ = 4̄. Thus, 1̄ ∼ 4̄ if and only if 2̄ ∼ 3̄, and this gives

us that ∼ = ∼0. Then, since C{0̄}(R) = {∼ ∈ C(R) | =R ≤ ∼ ≤ ∼aR}, we have

that | C{0̄}(R) | = 3, implying that | C(R) | = 4.

We conclude this chapter by showing that there is essentially only one field R that

gives us | C(R) | = 2.

Corollary 3.19. Let R be a commutative ring with nonzero identity. Then, we have

that | C(R) | = 2 if and only if R ∼= Z/2Z.

Proof. If R ∼= Z/2Z, then | C(R) | = 2 by Example 3.18.1. Conversely, suppose that

| C(R) | = 2. Then, R must be a field by Theorem 3.15. So, {0} is the only proper

ideal of R. Furthermore, since | CR(R) | = 1 by Corollary 3.12, it must be true that

| C{0}(R) | = 1, as well. But, Corollary 3.12 then gives us that R is a Boolean ring.

Thus, R ∼= Z/2Z since this is the only Boolean ring that is also a field.
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Chapter 4

Induced Maps Between

Congruence-Based Zero-Divisor

Graphs of a Ring R

Let R be a commutative ring with nonzero identity, and let J be a semigroup ideal

of R. For ∼ ∈ CJ(R), we have that [x]∼ and [y]∼ are adjacent in Γ∼(R) if and only

if xy ∈ J . Thus, the nicest case is when J = {0} so that [x]∼ and [y]∼ are adjacent

in Γ∼(R) if and only if xy = 0. In particular, this occurs for the graphs Γ(R) and

ΓE(R).

In this chapter, we consider ∼1,∼2 ∈ CJ(R) with ∼1 ≤ ∼2. We establish

that natural surjective semigroup homomorphism from R/∼1 to R/∼2 induces a

surjective map from Γ∼1(R) to Γ∼2(R) that is not necessarily a graph homomorphism.

Furthermore, we define an injective map from R/∼2 to R/∼1 that is not necessarily

a semigroup homomorphism, but we show that it induces an injective graph

homomorphism from Γ∼2(R) to Γ∼1(R). This injective graph homomorphism turns

out to be a graph isomorphism from Γ∼2(R) onto its image, allowing us to conclude

that Γ∼2(R) may be viewed as an induced subgraph of Γ∼1(R). Finally, we conclude

by studying graph homomorphisms between pairs of congruence-based zero-divisor
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graphs for congruence relations that were introduced in Chapter 2 and studied in

detail in Chapter 3.

4.1 Semigroup Homomorphisms and the Induced

Maps Between Graphs

Let R be a commutative ring with nonzero identity. We consider ∼1,∼2 ∈ CJ(R)

with ∼1 ≤ ∼2 throughout this chapter, so we begin by calling attention to these two

assumptions. Note that ∼1,∼2 ∈ CJ(R) tells us that [0]∼1 = J = [0]∼2 . However, the

assumption that ∼1 ≤ ∼2 automatically gives us [0]∼1 ⊆ [0]∼2 . Thus, if ∼1,∼2 ∈ C(R)

with ∼1 ≤ ∼2, we have that ∼1,∼2 ∈ CJ(R) if and only if [0]∼2 ⊆ [0]∼1 . The

following example demonstrates that it is possible to have two congruence relations

∼1,∼2 ∈ CJ(R) that are not comparable.

Example 4.1. Let R be a commutative ring that contains the field of rational numbers

Q, and consider the multiplicative cyclic subgroups G = 〈2〉 = {2n | n ∈ Z} and

H = 〈3〉 = {3n | n ∈ Z} of Q \ {0} ⊆ U(R). Define the multiplicative congruence

relations ∼G and ∼H on R by x ∼G y if and only if x = uy for some u ∈ G and x ∼H y

if and only if x = uy for some u ∈ H, as in Example 2.2.7 and Example 3.17.1. Then,

[0]∼G = {0} = [0]∼H by Example 2.7.7, implying that ∼G,∼H ∈ C{0}(R). However,

∼G and ∼H are not comparable.

We now establish a basic fact that will simplify the proof of our first theorem of

this chapter.

Lemma 4.2. Let R be a commutative ring with nonzero identity, and let J be a

semigroup ideal of R. Suppose that ∼1,∼2 ∈ CJ(R). Then, [x]∼1 ∈ Z(R/∼1)∗ if and

only if [x]∼2 ∈ Z(R/∼2)∗.

Proof. First note that since ∼1,∼2 ∈ CJ(R), we have that [0]∼1 = J = [0]∼2 .

Suppose that [x]∼1 ∈ Z(R/∼1)∗. Then, there exists a [y]∼1 ∈ Z(R/∼1)∗ such
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that [x]∼1 [y]∼1 = [xy]∼1 = [0]∼1 . Thus, xy ∈ [0]∼1 = [0]∼2 so that [0]∼2 =

[xy]∼2 = [x]∼2 [y]∼2 . Furthermore, since [x]∼1 6= [0]∼1 and [y]∼1 6= [0]∼1 , we have that

x /∈ [0]∼1 = [0]∼2 and y /∈ [0]∼1 = [0]∼2 . So, [x]∼2 6= [0]∼2 and [y]∼2 6= [0]∼2 , implying

that [x]∼2 ∈ Z(R/∼2)∗. Thus, [x]∼1 ∈ Z(R/∼1)∗ implies that [x]∼2 ∈ Z(R/∼2)∗. The

reverse implication may be shown by a similar argument, so we may conclude that

[x]∼1 ∈ Z(R/∼1)∗ if and only if [x]∼2 ∈ Z(R/∼2)∗.

The following example demonstrates that it is possible to have x ∈ Z(R)∗ with

[x]∼ /∈ Z(R/∼)∗. But, note that [0]=R = {0} ( [0]∼ for this example.

Example 4.3. Let R = Z/2Z × Z/2Z. Then, I = {(0, 0), (1, 0)} is a prime

ring ideal of R. Define the congruence relation ∼R(I)∈ C(R) by x ∼R(I) y if

and only if x = y or x, y ∈ I. By Example 2.7.4, [0]∼R(I)
= I 6= {(0, 0)}.

Also, R/∼R(I) = {[(0, 0)]∼R(I)
, [(0, 1)]∼R(I)

, [(1, 1)]∼R(I)
}. Now, (0, 1) ∈ Z(R)∗ since

(0, 1)(1, 0) = (0, 0). But, [(0, 1)]∼R(I)
/∈ Z(R/∼)∗ since [(0, 1)]∼R(I)

[(0, 1)]∼R(I)
=

[(0, 1)]∼R(I)
6= [(0, 0)]∼R(I)

and [(0, 1)]∼R(I)
[(1, 1)]∼R(I)

= [(0, 1)]∼R(I)
6= [(0, 0)]∼R(I)

.

However, note that Γ∼R(I)
(R) = ΓI(R) = ∅ for this example.

Let R be a commutative ring with nonzero identity, and let ∼1,∼2 ∈ C(R) with

∼1 ≤ ∼2. Consider the function f : R/∼1 −→ R/∼2 defined by f([x]∼1) = [x]∼2 .

First note that f is well-defined if and only if [x]∼1 = [y]∼1 implies that f([x]∼1) =

f([y]∼1). But this occurs if and only if [x]∼1 = [y]∼1 implies that [x]∼2 = [y]∼2 , or in

other words, if and only if for x, y ∈ R, we have that x ∼1 y implies that x ∼2 y. Thus,

f is well-defined if and only if ∼1 ≤ ∼2. Furthermore, f is clearly surjective, and f is

a semigroup homomorphism since f([x]∼1 [y]∼1) = f([xy]∼1) = [xy]∼2 = [x]∼2 [y]∼2 =

f([x]∼1)f([y]∼1). We also have that f([0]∼1) = [0]∼2 and f([1]∼1) = [1]∼2 .

Theorem 4.4. Let R be a commutative ring with nonzero identity, and let J be

a semigroup ideal of R. Suppose that ∼1,∼2 ∈ CJ(R) with ∼1 ≤ ∼2. Then, the

surjective semigroup homomorphism f : R/∼1 −→ R/∼2 defined by f([x]∼1) = [x]∼2

induces the surjective map F : Γ∼1(R) −→ Γ∼2(R) defined by F = f |Z(R/∼1)∗.
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Proof. First, note that since ∼1,∼2 ∈ CJ(R), we have that [0]∼1 = J = [0]∼2 . Now,

define the induced function F : Γ∼1(R) −→ Γ∼2(R) explicitly by F ([x]∼1) = [x]∼2 , and

note that F = f |Z(R/∼1)∗ is well-defined since f is well-defined. To show that F maps

into V (Γ∼2(R)) = Z(R/∼2)∗, let [x]∼1 ∈ V (Γ∼1(R)) = Z(R/∼1)∗. Then, Lemma 4.2

gives us that F ([x]∼1) = [x]∼2 ∈ Z(R/∼2)∗ = V (Γ∼2(R)), as desired. Finally, to show

that F is surjective, let [x]∼2 ∈ V (Γ∼2(R)) = Z(R/∼2)∗ ⊆ R/∼2. Then, [x]∼1 ∈ R/∼1

with f([x]∼1) = [x]∼2 since f is surjective. But, since [x]∼2 ∈ Z(R/∼2)∗, Lemma 4.2

gives us that [x]∼1 ∈ Z(R/∼1)∗ = V (Γ∼1(R)). So, F ([x]∼1) = f([x]∼1) = [x]∼2 , as

desired.

Remark 4.5. The induced function F in Theorem 4.4 is not necessarily a graph

homomorphism. However, more can be said about F . Suppose we have that

[x]∼1 , [y]∼1 ∈ V (Γ∼1(R)) = Z(R/∼1)∗ with [x]∼1 − [y]∼1 ∈ E(Γ∼1(R)). Then,

[x]∼1 [y]∼1 = [0]∼1. So, F ([x]∼1), F ([y]∼1) ∈ V (Γ∼2(R)) = Z(R/∼2)∗ with

F ([x]∼1)F ([y]∼1) = f([x]∼1)f([y]∼1) = f([x]∼1 [y]∼1) = f([0]∼1) = [0]∼2. Thus, either

F ([x]∼1) = F ([y]∼1) or F ([x]∼1)− F ([y]∼1) ∈ E(Γ∼2(R)).

The following result provides a sufficient condition to conclude that the induced

map F is a graph homomorphism.

Theorem 4.6. Let R be a commutative ring with nonzero identity, and let J be a

semigroup ideal of R. Suppose that ∼1,∼2 ∈ CJ(R) with ∼1 ≤ ∼2 so that we have

the map F : Γ∼1(R) −→ Γ∼2(R) defined by F ([x]∼1) = [x]∼2. Then, F is a graph

homomorphism if J is a radical semigroup ideal of R.

Proof. First note that since ∼1,∼2 ∈ CJ(R), we have that [0]∼1 = J = [0]∼2 . Let

J be a radical semigroup ideal of R. Suppose that [x]∼1 , [y]∼1 ∈ V (Γ∼1(R)) with

[x]∼1 − [y]∼1 ∈ E(Γ∼1(R)). In particular, note that [x]∼1 6= [0]∼1 . Remark 4.5

asserts that either F ([x]∼1) = F ([y]∼1) or F ([x]∼1) − F ([y]∼1) ∈ E(Γ∼2(R)). But,

if F ([x]∼1) = F ([y]∼1), we have that [x]∼2 = [y]∼2 . Thus, x ∼2 y, implying that

x2 ∼2 xy since∼2 ∈ C(R). Furthermore, since [x]∼1−[y]∼1 ∈ E(Γ∼1(R)), we have that

45



[x]∼1 [y]∼1 = [xy]∼1 = [0]∼1 . So, xy ∈ [0]∼1 = [0]∼2 , implying that xy ∼2 0. Combining

these facts gives us x2 ∼2 0. So, x2 ∈ [0]∼2 = J , implying that x ∈ J = [0]∼1

since J is a radical semigroup ideal of R. Thus, [x]∼1 = [0]∼1 , a contradiction. So,

F ([x]∼1) 6= F ([y]∼1), implying that F ([x]∼1) − F ([y]∼1) ∈ E(Γ∼2(R)). Thus, F is a

graph homomorphism.

We conclude this section by considering the special case of J = {0}.

Corollary 4.7. Let R be a commutative ring with nonzero identity, and suppose that

∼ ∈ C{0}(R). Then, we have the surjective maps Γ(R)
F−→ Γ∼(R)

F ′−→ ΓE(R) defined

by x
F7−→ [x]∼

F ′7−→ [x]∼aR . Moreover, if {0} is a radical ring ideal of R, then F and

F ′ are graph homomorphisms.

Proof. Since ∼ ∈ C{0}(R), Corollary 3.4 gives us that =R ≤ ∼ ≤ ∼aR , where ∼aR is

the annihilator congruence relation on R. Then, Theorem 4.4 gives us the surjective

maps F : Γ=R(R) −→ Γ∼(R) defined by F ([x]=R) = [x]∼ and F ′ : Γ∼(R) −→ Γ∼aR (R)

defined by F ′([x]∼) = [x]∼aR that are graph homomorphisms if {0} is a radical ideal of

R by Theorem 4.6. But, Example 2.4.1 gives us that Γ(R) ∼= Γ=R(R), where the vertex

x of Γ(R) is identified with the vertex [x]=R = {x} of Γ=R(R). Also, Example 2.4.5

gives us that ΓE(R) = Γ∼aR (R). Thus, we may redefine the functions F and F ′ so

that F : Γ(R) −→ Γ∼(R) is defined by F (x) = [x]∼ and F ′ : Γ∼(R) −→ ΓE(R) is

defined by F ′([x]∼) = [x]∼aR .

4.2 Induced Subgraphs of General Congruence-

Based Zero-Divisor Graphs

Let R be a commutative ring with nonzero identity, and let ∼1,∼2 ∈ C(R) with

∼1 ≤ ∼2. For each congruence class [x]∼2 ∈ R/∼2, choose a single representative

x0 ∈ R with x0 ∈ [x]∼2 . Then, define g : R/∼2 −→ R/∼1 by g([x]∼2) = [x0]∼1 . First,

note that g is well-defined since each congruence class has a single representative
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chosen for it. To show that g is injective, suppose that [x]∼2 , [y]∼2 ∈ R/∼2 with

[x]∼2 6= [y]∼2 . Let x0 ∈ [x]∼2 and y0 ∈ [y]∼2 be the chosen representatives. Thus,

[x0]∼2 6= [y0]∼2 , implying that x0 6∼2 y0. Then, since ∼1 ≤ ∼2, we also have that

x0 6∼1 y0. So, g([x]∼2) = [x0]∼1 6= [y0]∼1 = g([y]∼2), as desired.

Now, g is not necessarily a semigroup homomorphism. But, it turns out that

f ◦ g = 1R/∼2 , where f : R/∼1 −→ R/∼2 is the surjective semigroup homomorphism

defined by f([x]∼1) = [x]∼2 , as in the statement of Theorem 4.4. To see this, suppose

that [x]∼2 ∈ R/∼2 has chosen representative x0. Then, f(g([x]∼2)) = f([x0]∼1) =

[x0]∼2 = [x]∼2 , as desired.

In the following result, we will show that g induces the injective graph homomor-

phism G : Γ∼2(R) −→ Γ∼1(R) defined by G = g|Z(R/∼2)∗ . This map will turn out to

be a graph isomorphism from Γ∼2(R) onto its image under G, allowing us to conclude

that Γ∼2(R) may be viewed as an induced subgraph of Γ∼1(R).

Theorem 4.8. Let R be a commutative ring with nonzero identity, and let J be

a semigroup ideal of R. Suppose that ∼1,∼2 ∈ CJ(R) with ∼1 ≤ ∼2. Then, there

exists a surjective map F : Γ∼1(R) −→ Γ∼2(R) and an injective graph homomorphism

G : Γ∼2(R) −→ Γ∼1(R) such that F ◦ G = 1Γ∼2 (R). Furthermore, Γ∼2(R) is graph

isomorphic to an induced subgraph of Γ∼1(R).

Proof. First note that since ∼1,∼2 ∈ CJ(R), we have that [0]∼1 = J = [0]∼2 .

Furthermore, Theorem 4.4 gives us that the surjective semigroup homomorphism

f : R/∼1 −→ R/∼2 defined by f([x]∼1) = [x]∼2 induces the surjective map

F : Γ∼1(R) −→ Γ∼2(R) defined by F = f |Z(R/∼1)∗ .

For each congruence class [x]∼2 ∈ R/∼2, choose a single representative x0 ∈ R with

x0 ∈ [x]∼2 . Then, define the injective map g : R/∼2 −→ R/∼1 by g([x]∼2) = [x0]∼1 .

Now, define G : Γ∼2(R) −→ Γ∼1(R) by G = g|Z(R/∼2)∗ . First, note that G is well-

defined and injective since g is well-defined and injective. To show that G maps into

V (Γ∼1(R)) = Z(R/∼1)∗, let [x]∼2 ∈ V (Γ∼2(R)) = Z(R/∼2)∗, and let x0 ∈ [x]∼2

be the chosen representative. Then, [x0]∼2 = [x]∼2 ∈ Z(R/∼2)∗. So, Lemma 4.2
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gives us that G([x]∼2) = [x0]∼1 ∈ Z(R/∼1)∗ = V (Γ∼1(R)), as desired. Furthermore,

F (G([x]∼2)) = F ([x0]∼1) = [x0]∼2 = [x]∼2 .

Finally, we simultaneously show that G is a graph homomorphism and that Γ∼2(R)

and its image under G are graph isomorphic so that Γ∼2(R) is graph isomorphic to an

induced subgraph of Γ∼1(R). Let [x]∼2 , [y]∼2 ∈ V (Γ∼2(R)) have chosen representatives

x0 ∈ [x]∼2 and y0 ∈ [y]∼2 so that G([x]∼2) = [x0]∼1 and G([y]∼2) = [y0]∼1 . First note

that [x]∼2 6= [y]∼2 if and only if G([x]∼2) 6= G([y]∼2) since G is well-defined and

injective. Furthermore, [x]∼2 − [y]∼2 ∈ E(Γ∼2(R)) if and only if [x]∼2 [y]∼2 = [xy]∼2 =

[0]∼2 , which occurs if and only if xy ∼2 0. But, since x0 ∼2 x and y0 ∼2 y, we have

that x0y0 ∼2 xy since ∼2 ∈ C(R). So, xy ∼2 0 if and only if x0y0 ∼2 0. This happens

if and only if x0y0 ∈ [0]∼2 = [0]∼1 , which occurs if and only if [x0y0]∼1 = [0]∼1 . Finally,

we may conclude that G([x]∼2)G([y]∼2) = [x0]∼1 [y0]∼1 = [x0y0]∼1 = [0]∼1 if and only

if G([x]∼2)−G([y]∼2) is an edge in the image of Γ∼2(R) under the map G.

Again, we conclude this section by considering the special case of J = {0}. Note

that the fact that ΓE(R) is graph isomorphic to an induced subgraph of Γ(R) was

originally given in [6, page 4].

Corollary 4.9. Let R be a commutative ring with nonzero identity, and suppose

that ∼ ∈ C{0}(R). Then, we have surjective maps Γ(R)
F−→ Γ∼(R)

F ′−→ ΓE(R) and

injective graph homomorphisms ΓE(R)
G′−→ Γ∼(R)

G−→ Γ(R) such that F ◦G = 1Γ∼(R),

F ′◦G′ = 1ΓE(R), and F ′◦F ◦G◦G′ = 1ΓE(R). Furthermore, Γ∼(R) is graph isomorphic

to an induced subgraph of Γ(R), and ΓE(R) is graph isomorphic to an induced subgraph

of Γ∼(R) and of Γ(R).

Proof. Since ∼ ∈ C{0}(R), Corollary 3.4 gives us that =R ≤ ∼ ≤ ∼aR , where ∼aR is

the annihilator congruence relation on R. Thus, Theorem 4.8 gives us the surjective

maps F : Γ=R(R) −→ Γ∼(R) and F ′ : Γ∼(R) −→ Γ∼aR (R) and the injective graph

homomorphisms G : Γ∼(R) −→ Γ=R(R) and G′ : Γ∼aR (R) −→ Γ∼(R) such that

F ◦ G = 1Γ∼(R) and F ′ ◦ G′ = 1Γ∼aR (R). Theorem 4.8 also implies that Γ∼(R) is

graph isomorphic to an induced subgraph of Γ=R(R) and that Γ∼aR (R) is graph
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isomorphic to an induced subgraph of Γ∼(R). However, Example 2.4.1 gives us that

Γ(R) ∼= Γ=R(R), where the vertex x of Γ(R) is identified with the vertex [x]=R = {x}

of Γ=R(R). Furthermore, Example 2.4.5 gives us that ΓE(R) = Γ∼aR (R). Thus, we

may redefine the functions F , F ′, G, and G′ so that we have F : Γ(R) −→ Γ∼(R),

F ′ : Γ∼(R) −→ ΓE(R), G : Γ∼(R) −→ Γ(R), and G′ : ΓE(R) −→ Γ∼(R). Then, the

compositions become F ◦ G = 1Γ∼(R) and F ′ ◦ G′ = 1ΓE(R), allowing us to conclude

that Γ∼(R) is graph isomorphic to an induced subgraph of Γ(R) and that ΓE(R) is

graph isomorphic to an induced subgraph of Γ∼(R). Finally, note that we also have

the surjective map F ′ ◦ F : Γ(R) −→ ΓE(R) and the injective graph homomorphism

G◦G′ : ΓE(R) −→ Γ(R) such that F ′ ◦F ◦G◦G′ = F ′ ◦1Γ∼(R) ◦G′ = F ′ ◦G′ = 1ΓE(R).

This gives us the fact that ΓE(R) is graph isomorphic to an induced subgraph of

Γ(R), as well.

4.3 Induced Maps Between Familiar Congruence-

Based Zero-Divisor Graphs and Induced Sub-

graphs

For a commutative ring R with nonzero identity and ∼ ∈ C(R), it is always true that

[0]∼ is a semigroup ideal of R. However, we are particularly interested in the special

case when [0]∼ = I is also a ring ideal of R. Let I be a ring ideal of a commutative

ring R with nonzero identity. Then, for ∼ ∈ CI(R), we have that [x]∼ and [y]∼ are

adjacent in Γ∼(R) if and only if xy ∈ I.

The following elements of C(R) were introduced in Chapter 2, and various relation-

ships between pairs of these congruence relations were established in Chapter 3. We

list these particular elements of C(R) here for convenience to establish the notation

that will be used throughout this section.
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x =R y if and only if x = y,

x ∼aR y if and only if annR(x) = annR(y),

x ∼R(I) y if and only if x = y or x, y ∈ I,

x ∼R/I y if and only if x− y ∈ I, and

x ∼IR y if and only if (I :R x) = (I :R y).

In Example 2.4.1, we justified the identification of Γ=R(R) with the zero-divisor

graph Γ(R) by associating each congruence class [x]=R = {x} ∈ V (Γ=R(R)) with the

element x ∈ V (Γ(R)). Similarly, in Example 2.4.4, we justified the identification

of Γ∼R(I)
(R) with the ideal-based zero-divisor graph ΓI(R) by associating each

congruence class [x]∼R(I)
= {x} ∈ V (Γ∼R(I)

(R)) with the element x ∈ V (ΓI(R)).

Finally, in Example 2.4.3, we pointed out that the equality of Γ∼R/I (R) and the

zero-divisor graph Γ(R/I) is due to the fact that [x]∼R/I = x+ I.

Now, Example 2.4.5 asserts that Γ∼aR (R) is the compressed zero-divisor graph

ΓE(R), by definition. Also, we mentioned in Example 2.4.6 that Γ∼IR (R) may be

identified with the compressed zero-divisor graph ΓE(R/I); however, we did not

provide any justification. We will now build the foundation that is necessary to

establish this fact.
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Theorem 4.10. Let R be a commutative ring with nonzero identity, and let I be a

proper ring ideal of R. Define ∼R/I ∈ C(R) by

x ∼R/I y if and only if x− y ∈ I.

Suppose that ∼ ∈ CI(R) with ∼R/I≤ ∼, and define ∼′ ∈ C(R/I) by

x+ I ∼′ y + I if and only if x ∼ y.

Then, Γ∼(R) ∼= Γ∼′(R/I).

Proof. Let ∼ ∈ CI(R) with ∼R/I≤ ∼. First note that if x, x′ ∈ R with x+ I = x′+ I,

then x − x′ ∈ I so that x ∼R/I x′. But, since ∼R/I≤ ∼, we also have that x ∼ x′.

So, for x + I = x′ + I and y + I = y′ + I, we have that x ∼ y if and only if x′ ∼ y′.

Thus, x+ I ∼′ y+ I if and only if x′+ I ∼′ y′+ I so that ∼′ ∈ C(R/I) is well-defined.

Furthermore, [0]∼′ = {x + I ∈ R/I | 0 + I ∼′ x + I} = {x + I ∈ R/I | 0 ∼ x} =

{x+ I ∈ R/I | x ∈ [0]∼ = I} = {I} contains only the zero element of R/I.

Define the map H : Γ∼(R) −→ Γ∼′(R/I) by H([x]∼) = [x + I]∼′ , and note that

H([0]∼) = [0]∼′ . To simultaneously show that H is well-defined and injective, let

x, y ∈ R be such that [x]∼, [y]∼ ∈ V (Γ∼(R)) = Z(R/∼)∗. Then, [x]∼ = [y]∼ if and

only if x ∼ y, which occurs if and only if x+ I ∼′ y+ I, by the definition of ∼′. But,

that happens if and only if H([x]∼) = [x + I]∼′ = [y + I]∼′ = H([y]∼). Thus, H is

well-defined and injective.

To show that H is surjective, let x ∈ R be such that [x + I]∼′ ∈ V (Γ∼′(R/I)) =

Z(R/I/∼′)∗. Then, there exists a y ∈ R such that [y + I]∼′ ∈ Z(R/I/∼′)∗ and

[x + I]∼′ [y + I]∼′ = [(x + I)(y + I)]∼′ = [xy + I]∼′ = [0]∼′ , implying that xy ∈ I.

But, since ∼ ∈ CI(R), we have that [0]∼ = I. So, xy ∈ I = [0]∼, implying that

[x]∼[y]∼ = [xy]∼ = [0]∼. Now, since [x + I]∼′ 6= [0]∼′ and [y + I]∼′ 6= [0]∼′ , we have

that x, y /∈ I = [0]∼. So, [x]∼ 6= [0]∼ and [y]∼ 6= [0]∼, implying that [x]∼ ∈ Z(R/∼)∗ =

V (Γ∼(R)). Then, since H([x]∼) = [x+ I]∼′ , we may conclude that H is surjective.
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Finally, to show that H is a graph isomorphism, let x, y ∈ R. Note that

∼ ∈ CI(R) implies that [x]∼[y]∼ = [xy]∼ = [0]∼ = I if and only if xy ∈ I.

However, H([x]∼)H([y]∼) = [x + I]∼′ [y + I]∼′ = [(x + I)(y + I)]∼′ = [xy + I]∼′ ,

so H([x]∼)H([y]∼) = [0]∼′ if and only if xy ∈ I, as well. Furthermore, since H

is well-defined and injective, [x]∼ 6= [y]∼ if and only if H([x]∼) 6= H([y]∼). Thus,

[x]∼ − [y]∼ ∈ E(Γ∼(R)) if and only if H([x]∼)−H([y]∼) ∈ E(Γ∼′(R/I)). Thus, H is

a graph isomorphism, implying that Γ∼(R) ∼= Γ∼′(R/I), as desired.

Corollary 4.11. Let R be a commutative ring with nonzero identity, and let I be a

proper ring ideal of R. Define ∼IR ∈ C(R) by

x ∼IR y if and only if (I :R x) = (I :R y).

Then, for ∼′IR ∈ C(R/I), defined by

x+ I ∼′IR y + I if and only if x ∼IR y,

we have that Γ∼IR (R) ∼= Γ∼′IR
(R/I) ∼= ΓE(R/I).

Proof. Lemma 3.7 tells us that ∼IR ∈ CI(R) with ∼R/I ≤ ∼IR . So, the fact that

Γ∼IR (R) ∼= Γ∼′IR
(R/I) follows immediately from Theorem 4.10. Now, to show that

Γ∼′IR
(R/I) ∼= ΓE(R/I), let x, y ∈ R be such that x + I, y + I ∈ R/I. Then, by

definition, x + I ∼′IR y + I if and only if (I :R x) = (I :R y). However, (I :R x) =

{r ∈ R | rx ∈ I} and annR/I(x + I) = {r + I ∈ R/I | (r + I)(x + I) = 0 + I} =

{r + I ∈ R/I | rx + I = 0 + I}. Then, since s ∈ {r ∈ R | rx ∈ I} if and only if

s+ I ∈ {r+ I ∈ R/I | rx+ I = 0 + I}, we have that (I :R x) = (I :R y) if and only if

annR/I(x+I) = annR/I(y+I). So, we may conclude that x+I ∼′IR y+I if and only if

annR/I(x+ I) = annR/I(y+ I), implying that Γ∼′IR
(R/I) ∼= Γ∼aR/I (R/I) = ΓE(R/I),

as well.
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Now, Example 2.4 and Corollary 4.11 provide us with graph isomorphisms between

particular congruence-based zero-divisor graphs and familiar zero-divisor graphs from

the literature. We explicitly list those graph isomorphisms here for convenience.

Γ=R(R)←→ Γ(R) given by [x]=R ↔ x,

Γ∼aR (R)←→ ΓE(R) given by [x]∼aR ↔ [x]∼aR ,

Γ∼R(I)
(R)←→ ΓI(R) given by [x]∼R(I)

↔ x,

Γ∼R/I (R)←→ Γ(R/I) given by [x]∼R/I ↔ x+ I, and

Γ∼IR (R)←→ ΓE(R/I) given by [x]∼IR ↔ [x+ I]∼aR/I .

We conclude this chapter with a result that follows immediately from Theorem 4.8

and the above graph isomorphisms. Note that the special case of I = {0} was given

in Corollary 4.9. While additional relationships between pairs of congruence-based

zero-divisor graphs are given in Corollary 4.12, a couple of these relationships are

well-known. The fact that Γ(R/I) is graph isomorphic to an induced subgraph of

ΓI(R) was originally shown in [27, Corollary 2.7], and the fact that ΓE(R/I) is graph

isomorphic to an induced subgraph of Γ(R/I) can be deduced from [6, page 4].
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Corollary 4.12. Let R be a commutative ring with nonzero identity, and let I be a

proper ring ideal of R. Suppose that ∼ ∈ CI(R). Then, we have surjective maps

ΓI(R)

Γ∼(R)

Γ(R/I)

ΓE(R/I)

F

F

F ′

F
′

and the injective graph homomorphisms

ΓE(R/I)

Γ∼(R)

Γ(R/I)

ΓI(R)

G′

G
′

G

G

such that the following compositions hold:

F ◦G = 1Γ∼(R),

F ◦G = 1Γ(R/I),

F ′ ◦G′ = 1ΓE(R/I),

F
′ ◦G′ = 1ΓE(R/I), and

F ′ ◦ F ◦G ◦G′ = F
′ ◦ F ◦G ◦G′ = 1ΓE(R/I).

Furthermore, Γ∼(R) and Γ(R/I) are each graph isomorphic to an induced subgraph of

ΓI(R), and ΓE(R/I) is graph isomorphic to an induced subgraph of Γ∼(R), of Γ(R/I),

and of ΓI(R).

Proof. The fact that ∼R(I),∼IR ∈ CI(R) is given in Lemma 3.2, and since ∼ ∈ CI(R),

Theorem 3.3 gives us that ∼R(I) ≤ ∼ ≤ ∼IR . Furthermore, Lemma 3.7 gives us that
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∼R/I ∈ CI(R) with ∼R(I) ≤ ∼R/I ≤ ∼IR . Thus, Theorem 4.8 gives us the surjective

maps

F : Γ∼R(I)
(R) −→ Γ∼(R),

F : Γ∼R(I)
(R) −→ Γ∼R/I (R),

F ′ : Γ∼(R) −→ Γ∼IR (R), and

F
′
: Γ∼R/I (R) −→ Γ∼IR (R),

and the injective graph homomorphisms

G : Γ∼(R) −→ Γ∼R(I)
(R),

G : Γ∼R/I (R) −→ Γ∼R(I)
(R),

G′ : Γ∼IR (R) −→ Γ∼(R), and

G
′
: Γ∼IR (R) −→ Γ∼R/I (R),

such that

F ◦G = 1Γ∼(R),

F ◦G = 1Γ∼R/I (R),

F ′ ◦G′ = 1Γ∼IR
(R), and

F
′ ◦G′ = 1Γ∼IR

(R).

Theorem 4.8 also implies that Γ∼(R) and Γ∼R/I (R) are each graph isomorphic to an

induced subgraph of Γ∼R(I)
(R), and that Γ∼IR (R) is graph isomorphic to an induced

subgraph of Γ∼(R) and of Γ∼R/I (R). However, the isomorphisms listed above allow

us to redefine the functions so that we have
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F : ΓI(R) −→ Γ∼(R),

F : ΓI(R) −→ Γ(R/I),

F ′ : Γ∼(R) −→ ΓE(R/I),

F
′
: Γ(R/I) −→ ΓE(R/I),

G : Γ∼(R) −→ ΓI(R),

G : Γ(R/I) −→ ΓI(R),

G′ : ΓE(R/I) −→ Γ∼(R), and

G
′
: ΓE(R/I) −→ Γ(R/I).

Then, the compositions become

F ◦G = 1Γ∼(R),

F ◦G = 1Γ(R/I),

F ′ ◦G′ = 1ΓE(R/I), and

F
′ ◦G′ = 1ΓE(R/I),

allowing us to conclude that Γ∼(R) and Γ(R/I) are each graph isomorphic to an

induced subgraph of ΓI(R), and that ΓE(R/I) is graph isomorphic to an induced

subgraph of Γ∼(R) and of Γ(R/I). Finally, note that we also have the surjective

maps

F ′ ◦ F : ΓI(R) −→ ΓE(R/I) and

F
′ ◦ F : ΓI(R) −→ ΓE(R/I),
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and the injective graph homomorphisms

G ◦G′ : ΓE(R/I) −→ ΓI(R) and

G ◦G′ : ΓE(R/I) −→ ΓI(R),

such that

F ′ ◦ F ◦G ◦G′ = F ′ ◦ 1Γ∼(R) ◦G′ = F ′ ◦G′ = 1ΓE(R/I) and

F
′ ◦ F ◦G ◦G′ = F

′ ◦ 1Γ(R/I) ◦G
′
= F

′ ◦G′ = 1ΓE(R/I).

Then, each of these compositions gives us the fact that ΓE(R/I) is graph isomorphic

to an induced subgraph of ΓI(R), as well.
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Chapter 5

Induced Maps Between

Congruence-Based Zero-Divisor

Graphs of Rings R and T with

R ⊆ T

Let R be a subring of a commutative ring T , and assume that R and T have the

same nonzero identity. Let ∼R ∈ C(R) and ∼T ∈ C(T ). We say that ∼R and ∼T
are compatible if for x, y ∈ R, x ∼R y implies that x ∼T y. Thus, ∼R and ∼T are

compatible if and only if ∼R ⊆ ∼T , which holds if and only if ∼R ⊆ ∼T ∩ (R × R)

since ∼R ⊆ R×R.

The assumption that ∼R and ∼T are compatible automatically gives us that

[0]∼R ⊆ [0]∼T ∩R. Thus, if ∼R and ∼T are compatible, we have that [0]∼R = [0]∼T ∩R

if and only if [0]∼T ∩ R ⊆ [0]∼R . However, it is possible that compatible congruence

relations ∼R and ∼T are such that [0]∼R ( [0]∼T ∩ R. For example, =R ∈ C(R) and

T × T ∈ C(T ) are compatible. But, [0]=R = {0} while 0, 1 ∈ [0]T×T ∩R.

In this chapter, we consider rings R ⊆ T with compatible congruence relations

∼R ∈ C(R) and ∼T ∈ C(T ) as an extension of our work in Chapter 4. We establish
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when the natural semigroup homomorphism from R/∼R to T/∼T induces a map

from Γ∼R(R) to Γ∼T (T ) that is not necessarily a graph homomorphism. Then, we

discuss congruence relations on R that are induced by congruence relations on T and

establish that induced congruence relations lead to induced subgraphs of congruence-

based zero-divisor graphs. Finally, we conclude by presenting a commutative diagram

of various congruence-based zero-divisor graphs.

5.1 Compatible Congruence Relations, Semigroup

Homomorphisms, and the Induced Maps Be-

tween Graphs

Let R be a subring of a commutative ring T , and assume that R and T have the same

nonzero identity. Let ∼R ∈ C(R) and ∼T ∈ C(T ) be compatible congruence relations.

Consider the function f : R/∼R −→ T/∼T defined by f([x]∼R) = [x]∼T . First note

that f is well-defined if and only if [x]∼R = [y]∼R implies that f([x]∼R) = f([y]∼R).

But this occurs if and only if [x]∼R = [y]∼R implies that [x]∼T = [y]∼T , or in other

words, if and only if for x, y ∈ R, we have that x ∼R y implies that x ∼T y. Thus,

f is well-defined if and only if ∼R and ∼T are compatible. Furthermore, f is a

semigroup homomorphism since f([x]∼R [y]∼R) = f([xy]∼R) = [xy]∼T = [x]∼T [y]∼T =

f([x]∼R)f([y]∼R). We also have that f([0]∼R) = [0]∼T and f([1]∼R) = [1]∼T .

Now, f is injective if and only if f([x]∼R) = f([y]∼R) implies that [x]∼R = [y]∼R .

But, this occurs if and only if for x, y ∈ R, we have that [x]∼T = [y]∼T implies that

[x]∼R = [y]∼R , or in other words, if and only if for x, y ∈ R, we have that x ∼T y

implies that x ∼R y. Thus, f is injective if and only if ∼T ∩ (R × R) ⊆ ∼R. Note

that in this case, we have that [0]∼T ∩R ⊆ [0]∼R .

The preceding observations allow us to conclude the following result.
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Theorem 5.1. Let R be a subring of a commutative ring T , and assume that R

and T have the same nonzero identity. Let ∼R ∈ C(R) and ∼T ∈ C(T ). Then, the

function f : R/∼R −→ T/∼T defined by f([x]∼R) = [x]∼T is an injective semigroup

homomorphism if and only if ∼R = ∼T ∩ (R × R). Moreover, [0]∼R = [0]∼T ∩ R in

this case.

As in Chapter 4, we utilize the semigroup homomorphism above to induce a map

between corresponding congruence-based zero-divisor graphs.

Theorem 5.2. Let R be a subring of a commutative ring T , and assume that R and

T have the same nonzero identity. Let ∼R ∈ C(R) and ∼T ∈ C(T ) be compatible, and

let f : R/∼R −→ T/∼T be the semigroup homomorphism defined by f([x]∼R) = [x]∼T .

Then, f induces the function F : Γ∼R(R) −→ Γ∼T (T ) defined by F = f |Z(R/∼R)∗ if

[0]∼R = [0]∼T ∩R.

Proof. First, suppose that [0]∼R = [0]∼T ∩ R. Then, define the induced function

F : Γ∼R(R) −→ Γ∼T (T ) explicitly by F ([x]∼R) = [x]∼T , and note that F = f |Z(R/∼R)∗

is well-defined since f is well-defined. To show that F maps into V (Γ∼T (T )) =

Z(T/∼T )∗, let [x]∼R ∈ V (Γ∼R(R)) = Z(R/∼R)∗. So, there exists a [y]∼R ∈ Z(R/∼R)∗

such that [x]∼R [y]∼R = [xy]∼R = [0]∼R . Thus, xy ∈ [0]∼R = [0]∼T ∩ R, implying that

xy ∈ [0]∼T . So, [x]∼T [y]∼T = [xy]∼T = [0]∼T . Furthermore, since [x]∼R 6= [0]∼R and

[y]∼R 6= [0]∼R , we have that x /∈ [0]∼R = [0]∼T ∩R and y /∈ [0]∼R = [0]∼T ∩R. However,

since x, y ∈ R, we may conclude that x /∈ [0]∼T and y /∈ [0]∼T . Thus, [x]∼T 6= [0]∼T

and [y]∼T 6= [0]∼T , implying that F ([x]∼R) = [x]∼T ∈ Z(T/∼T )∗ = V (Γ∼T (T )).

Remark 5.3. The induced function F in Theorem 5.2 is not necessarily a graph

homomorphism. However, more can be said about F . Suppose we have that

[x]∼R , [y]∼R ∈ V (Γ∼R(R)) = Z(R/∼R)∗ with [x]∼R − [y]∼R ∈ E(Γ∼R(R)). Then,

[x]∼R [y]∼R = [0]∼R. So, F ([x]∼R), F ([y]∼R) ∈ V (Γ∼T (T )) = Z(T/∼T )∗ with

F ([x]∼R)F ([y]∼R) = f([x]∼R)f([y]∼R) = f([x]∼R [y]∼R) = f([0]∼R) = [0]∼T . Thus,

either F ([x]∼R) = F ([y]∼R) or F ([x]∼R)− F ([y]∼R) ∈ E(Γ∼T (T )).
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The following result provides three different sufficient conditions to conclude that

the induced map F is a graph homomorphism.

Theorem 5.4. Let R be a subring of a commutative ring T , and assume that R and

T have the same nonzero identity. Let ∼R ∈ C(R) and ∼T ∈ C(T ) be compatible,

and suppose that [0]∼R = [0]∼T ∩R so that we have the map F : Γ∼R(R) −→ Γ∼T (T )

defined by F ([x]∼R) = [x]∼T .

(a) If [0]∼R is a radical semigroup ideal of R, then F is a graph homomorphism.

(b) If [0]∼T is a radical semigroup ideal of T , then F is a graph homomorphism.

(c) If ∼T ∩ (R×R) ⊆ ∼R, then F is an injective graph homomorphism.

Proof.

(a) Suppose [0]∼R is a radical semigroup ideal of R. Let [x]∼R , [y]∼R ∈ V (Γ∼R(R))

with [x]∼R − [y]∼R ∈ E(Γ∼R(R)). In particular, note that this implies that

[x]∼R 6= [0]∼R . Remark 5.3 asserts that either F ([x]∼R) = F ([y]∼R) or

F ([x]∼R) − F ([y]∼R) ∈ E(Γ∼T (T )). But, if F ([x]∼R) = F ([y]∼R), we have that

[x]∼T = [y]∼T . Thus, x ∼T y, implying that x2 ∼T xy since ∼T ∈ C(T ).

Furthermore, since [x]∼R − [y]∼R ∈ E(Γ∼R(R)), we have that xy ∼R 0, implying

that xy ∼T 0 since ∼R and ∼T are compatible. Combining these facts gives us

x2 ∼T 0 so that x2 ∈ [0]∼T . But, since x ∈ R, we also have that x2 ∈ R, implying

that x2 ∈ [0]∼T ∩ R = [0]∼R . Thus, x ∈ [0]∼R since [0]∼R is a radical semigroup

ideal of R, and we have that [x]∼R = [0]∼R , a contradiction. So, we may conclude

that F is a graph homomorphism.

(b) Suppose [0]∼T is a radical semigroup ideal of T . We will show that the semigroup

ideal [0]∼R of R is a radical semigroup ideal of R so that we may conclude that

F is a graph homomorphism by Theorem 5.4(a). Suppose that x ∈ R with

xn ∈ [0]∼R for some n ∈ Z+. Then, xn ∼R 0 so that xn ∼T 0 since ∼R and ∼T
are compatible. Thus, xn ∈ [0]∼T , implying that x ∈ [0]∼T since [0]∼T is a radical
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semigroup ideal of T . But, since x ∈ R, we have that x ∈ [0]∼T ∩ R = [0]∼R .

Thus, [0]∼R is a radical semigroup ideal of R, as desired.

(c) Suppose ∼T ∩ (R×R) ⊆ ∼R. Since ∼R and ∼T are compatible, we also have that

∼R ⊆ ∼T ∩ (R × R). Thus, ∼R = ∼T ∩ (R × R), implying that the semigroup

homomorphism f : R/∼R −→ T/∼T defined by f([x]∼R) = [x]∼T is injective by

Theorem 5.1. Thus, the induced function F : Γ∼R(R) −→ Γ∼T (T ) defined by

F = f |Z(R/∼R)∗ is also injective. Suppose that [x]∼R , [y]∼R ∈ V (Γ∼R(R)) with

[x]∼R − [y]∼R ∈ E(Γ∼R(R)). Remark 5.3 asserts that either F ([x]∼R) = F ([y]∼R)

or F ([x]∼R)− F ([y]∼R) ∈ E(Γ∼T (T )). But, if F ([x]∼R) = F ([y]∼R), we have that

[x]∼R = [y]∼R since F is injective, and this is a contradiction. Thus, F is an

injective graph homomorphism.

Now, if T = R, then ∼R and ∼T are compatible if and only if ∼R ≤ ∼T .

Thus, Theorem 4.4, Remark 4.5, and Theorem 4.6 are special cases of Theorem 5.2,

Remark 5.3, and Theorem 5.4(a)(b), respectively.

5.2 Induced Congruence Relations and Induced

Subgraphs

Let R be a subring of a commutative ring T , and assume that R and T have the

same nonzero identity. Each congruence relation ∼T ∈ C(T ) induces the congruence

relation ∼R ∈ C(R) defined by ∼R = ∼T ∩ (R × R). Then, Theorem 5.1 gives us

that the function f : R/∼R −→ T/∼T defined by f([x]∼R) = [x]∼T is an injective

semigroup homomorphism and that [0]∼R = [0]∼T ∩R. Furthermore, Theorem 5.4(c)

gives us that the induced function F : Γ∼R(R) −→ Γ∼T (T ) defined by F = f |Z(R/∼R)∗

is an injective graph homomorphism.

Now, suppose we have F ([x]∼R), F ([y]∼R) ∈ V (Γ∼T (T )) = Z(T/∼T )∗ with

F ([x]∼R) − F ([y]∼R) ∈ E(Γ∼T (T )). Then, F ([x]∼R)F ([y]∼R) = [0]∼T , implying that
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[x]∼T [y]∼T = [xy]∼T = [0]∼T . So, xy ∈ [0]∼T , but since x, y ∈ R, we also have that

xy ∈ R. Thus, xy ∈ [0]∼T ∩ R = [0]∼R , implying that [x]∼R [y]∼R = [xy]∼R = [0]∼R .

So, [x]∼R − [y]∼R ∈ E(Γ∼R(R)). With this final piece of information, we have that F

is a graph isomorphism between Γ∼R(R) and its image in Γ∼T (T ).

The preceding observations allow us to conclude the following result.

Theorem 5.5. Let R be a subring of a commutative ring T , and assume that R and

T have the same nonzero identity. Suppose that ∼T ∈ C(T ), and let ∼R ∈ C(R) be

the induced congruence relation on R defined by ∼R = ∼T ∩ (R×R). Then, Γ∼R(R)

is graph isomorphic to an induced subgraph of Γ∼T (T ).

Next, we utilize Theorem 5.5 to provide examples of induced subgraphs of a

few familiar graphs. These graphs were introduced in Chapter 2 as examples of

congruence-based zero-divisor graphs for various congruence relations.

Example 5.6. Let R be a subring of a commutative ring T , and assume that R and

T have the same nonzero identity.

1. The congruence relation =T on T induces the congruence relation =R on R.

Thus, we have that Γ(R) is graph isomorphic to an induced subgraph of Γ(T ).

2. Let I be a proper ring ideal of T . Then, I ∩ R is an induced proper ring ideal

of R. So, the congruence relation ∼T/I ∈ C(T ) defined by x ∼T/I y for x, y ∈ T

if and only if x− y ∈ I induces the congruence relation ∼R/I∩R ∈ C(R) defined

by x ∼R/I∩R y for x, y ∈ R if and only if x − y ∈ I ∩ R. Thus, we have that

Γ(R/I ∩R) is graph isomorphic to an induced subgraph of Γ(T/I).

3. Let J be a semigroup ideal of T . Then, J ∩R is an induced semigroup ideal of

R. So, the congruence relation ∼T (J) ∈ C(T ) defined by x ∼T (J) y for x, y ∈ T

if and only if x = y or x, y ∈ J induces the congruence relation ∼R(J∩R) ∈ C(R)

defined by x ∼R(J∩R) y for x, y ∈ R if and only if x = y or x, y ∈ J ∩R. Thus,

we have that ΓJ∩R(R) is graph isomorphic to an induced subgraph of ΓJ(T ).
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Now, not all of the familiar congruence relations and corresponding congruence-

based zero-divisor graphs we considered in Chapter 2 behave this nicely. The following

example provides a case when the natural candidate for the induced congruence

relation does not turn out to be the induced congruence relation.

Example 5.7. Let J be a semigroup ideal of T . Then, J ∩R is an induced semigroup

ideal of R. So, the congruence relation ∼JT ∈ C(T ) defined by x∼JT y for x, y ∈ T if

and only if (J :T x) = (J :T y) corresponds to the congruence relation ∼(J∩R)R ∈ C(R)

defined by x∼(J∩R)Ry for x, y ∈ R if and only if (J ∩ R :R x) = (J ∩ R :R y). In this

case, x∼JT y for x, y ∈ R implies that x∼(J∩R)Ry so that ∼JT ∩ (R × R) ⊆ ∼(J∩R)R.

But this inclusion may be strict. Thus, ∼JT ∈ C(T ) does not necessarily induce the

natural candidate ∼(J∩R)R ∈ C(R).

To demonstrate this claim, suppose that J = {0}, implying that J ∩ R = {0},

as well. Then, ∼JT = ∼aT is defined by x∼aT y for x, y ∈ T if and only if

annT (x) = annT (y), and ∼(J∩R)R = ∼aR is defined by x∼aRy for x, y ∈ R if and

only if annR(x) = annR(y). Certainly, annT (x) = annT (y) for x, y ∈ R implies

that annR(x) = annR(y). But, we may have annR(x) = annR(y) for x, y ∈ R

with annT (x) 6= annT (y). For example, suppose that R = F [X, Y, Z]/(XZ, Y Z) =

F [x, y, z] and T = F [X, Y, Z,W ]/(XZ, Y Z, Y W ) = F [x, y, z, w]. Then, we may

view R as a subring of T in the natural way. However, annR(x) = annR(y) while

annT (x) 6= annT (y) ([5, Section 3]). Thus, ∼aT ∩ (R × R) ( ∼aR, implying that

∼aT ∈ C(T ) does not induce the natural candidate ∼aR ∈ C(R).

It turns out that we may resolve this issue in a special case, but we must first

introduce a new ring. Let S ⊆ R be multiplicatively closed with S ∩ Z(R) = ∅

and 1 ∈ S. The localization of R with respect to S, denoted by RS, has as its

set of elements the equivalence classes of fractions r
s

with r ∈ R and s ∈ S. Two

such fractions r
s

and r′

s′
are equivalent if s0(sr′ − s′r) = 0 for some s0 ∈ S, and

the operations of addition and multiplication are defined as they are for the rational

numbers. Then, the map f : R −→ RS defined by f(x) = x
1

is injective, so we may
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view R as a subring of T = RS. Thus, for ∼T ∈ C(T ), we have the induced congruence

relation ∼R ∈ C(R) defined by ∼R = ∼T ∩ (R×R).

Example 5.8. Let S ⊆ R be multiplicatively closed with S ∩ Z(R) = ∅ and 1 ∈ S,

and let T = RS be the localization of R with respect to S.

1. Let ∼aT ∈ C(T ) be defined by x∼aT y for x, y ∈ T if and only if annT (x) =

annT (y). In this case, ∼aT induces the congruence relation ∼aR ∈ C(R)

defined by x∼aRy for x, y ∈ R if and only if annR(x) = annR(y) since

(annR(x))S = annRS(x
1
). Thus, we have that ΓE(R) is graph isomorphic to

an induced subgraph of ΓE(RS). However, since [x
s
]∼aT = [x

1
]∼aT for all x ∈ R

and s ∈ S, we actually have that ΓE(R) ∼= ΓE(RS) ([5, Theorem 3.2]).

2. Let I be a ring ideal of T = RS. Then, I∩R is an induced ring ideal of R. Note

that we have (I∩R)S = I in this case. So, the congruence relation ∼T (I) ∈ C(T )

defined by x ∼T (I) y for x, y ∈ T if and only if x = y or x, y ∈ I induces the

congruence relation ∼R(I∩R) ∈ C(R) defined by x ∼R(I∩R) y for x, y ∈ R if and

only if x = y or x, y ∈ I ∩R. Thus, we have that ΓI∩R(R) is graph isomorphic

to an induced subgraph of Γ(I∩R)S(RS). This is a special case of Example 5.6.3.

Realize that in the above set-up, we started with a ring ideal I of RS and then

defined the ring ideal I ∩ R of R. However, if we start instead with a ring

ideal I ′ of R and then define the ideal I ′S of RS, then it need not be true that

I ′ = I ′S ∩R. But, if I ′ = {x ∈ R | x
1
∈ I ′S}, then it is true that I ′ = I ′S ∩R.

5.3 Commutative Diagram of Congruence-Based

Zero-Divisor Graphs

Let R be a subring of a commutative ring T , and assume that R and T have the

same nonzero identity. Let ∼T ,∼′T ∈ C(T ) with ∼T ≤ ∼′T . Then, ∼T induces

∼R ∈ C(R) defined by ∼R = ∼T ∩ (R × R), and ∼′T induces ∼′R ∈ C(R) defined by
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∼′R = ∼′T ∩ (R×R). Note that the relationship ∼R ≤ ∼′R automatically holds. Thus,

we have the following two surjective semigroup homomorphisms:

fR : R/∼R −→ R/∼′R, fR([x]∼R) = [x]∼′R , and

fT : T/∼T −→ T/∼′T , fT ([x]∼T ) = [x]∼′T .

Furthermore, Theorem 5.1 gives us the following two injective semigroup homomor-

phisms:

g : R/∼R −→ T/∼T , g([x]∼R) = [x]∼T , and

g′ : R/∼′R −→ T/∼′T , g′([x]∼′R) = [x]∼′T .

Now, fT ◦ g : R/∼R −→ T/∼′T is such that fT
(
g([x]∼R)

)
= fT ([x]∼T ) = [x]∼′T , and

g′ ◦ fR : R/∼R −→ T/∼′T is such that g′
(
fR([x]∼R)

)
= g′([x]∼′R) = [x]∼′T . So, we may

conclude that fT ◦ g = g′ ◦ fR.

Suppose we also have that [0]∼T = [0]∼T ′ . Then, Theorem 5.1 allows us to conclude

that [0]∼R = [0]∼T ∩ R = [0]∼′T ∩ R = [0]∼′R , as well. Thus, Theorem 4.4 gives us the

following two surjective maps:

FR : Γ∼R(R) −→ Γ∼′R(R), FR([x]∼R) = [x]∼′R , and

FT : Γ∼T (T ) −→ Γ∼′T (T ), FT ([x]∼T ) = [x]∼′T .

Since Theorem 5.1 gives us that [0]∼R = [0]∼T ∩ R and [0]∼′R = [0]∼′T ∩ R, we may

apply Theorem 5.4(c) to give us the following two injective graph homomorphisms:

G : Γ∼R(R) −→ Γ∼T (T ), G([x]∼R) = [x]∼T , and

G′ : Γ∼′R(R) −→ Γ∼′T (T ), G′([x]∼′R) = [x]∼′T .
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Now, FT ◦ G : Γ∼R(R) −→ Γ∼′T (T ) is such that FT
(
G([x]∼R)

)
= FT ([x]∼T ) = [x]∼′T ,

and G′ ◦ FR : Γ∼R(R) −→ Γ∼′T (T ) is such that G′
(
FR([x]∼R)

)
= G′([x]∼′R) = [x]∼′T .

So, we may conclude that FT ◦G = G′ ◦ FR.

The preceding observations allow us to conclude the following result for the maps

defined above.

Theorem 5.9. Let R be a subring of a commutative ring T , and assume that R and

T have the same nonzero identity. Let ∼T ,∼′T ∈ C(T ) with ∼T ≤ ∼′T , and suppose

that ∼R,∼′R ∈ C(R) are defined by ∼R = ∼T ∩ (R × R) and ∼′R = ∼′T ∩ (R × R).

Then, the following diagram of semigroup homomorphisms commutes.

R/∼R T/∼T

R/∼′R T/∼′T

g

fR fT

g′

Furthermore, if [0]∼T = [0]∼′T , then the following diagram of induced maps of

congruence-based zero-divisor graphs commutes.

Γ∼R(R) Γ∼T (T )

Γ∼′R(R) Γ∼′T (T )

G

FR FT

G′

Moreover, G and G′ are graph homomorphisms.
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Chapter 6

Results for Ideal-Based

Zero-Divisor Graphs

In this chapter, we restrict our focus to a particular type of congruence-based zero-

divisor graph, the ideal-based zero-divisor graph. For a commutative ring R with

nonzero identity and a ring ideal I of R, the ideal-based zero-divisor graph ΓI(R) is

the congruence-based zero-divisor graph Γ∼(R), where the multiplicative congruence

relation ∼ on R is defined by x ∼ y if and only if x = y or x, y ∈ I, as discussed

in Example 2.4.4. We focus on two specific types of ideal-based zero-divisor graphs.

In particular, we consider rings formed as a direct product of rings, and we also

investigate rings formed as an idealization of a module.

6.1 Direct Products

From commutative rings R and S, each with nonzero identity, we may define another

commutative ring R × S with nonzero identity called the direct product of R and

S. The elements of R×S are ordered pairs, and for (r1, s1), (r2, s2) ∈ R×S, addition

is defined by (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and multiplication is defined by

(r1, s1)(r2, s2) = (r1r2, s1s2). With the operations defined in this way, it is clear that
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the zero element of R× S is (0, 0) and that the nonzero identity element of R× S is

(1, 1). Furthermore, every ring ideal of R× S is of the form I × J , where I is a ring

ideal of R and J is a ring ideal of S. So, we may consider how ΓI×J(R×S) is related

to ΓI(R) and ΓJ(S).

The following result discusses the vertices of ΓI×J(R× S) in terms of the vertices

of ΓI(R) and ΓJ(S).

Theorem 6.1. Let R and S be commutative rings, each with nonzero identity, and

let I and J be proper ring ideals of R and S, respectively. Then,

(a) V (ΓI×S(R× S)) = V (ΓI(R))× S,

(b) V (ΓR×J(R× S)) = R× V (ΓJ(S)), and

(c) V (ΓI×J(R×S)) = ((R\I)×J)∪ (I× (S \J))∪ (V (ΓI(R))×S)∪ (R×V (ΓJ(S))).

Proof.

(a) Let (x, y) ∈ V (ΓI(R))×S ⊆ (R\ I)×S = (R×S)\ (I×S). Since x ∈ V (ΓI(R)),

there exists an a ∈ R \ I such that xa ∈ I. Then, (a, 0) ∈ (R \ I) × S =

(R×S)\(I×S), and (x, y)(a, 0) = (xa, 0) ∈ I×S. Thus, (x, y) ∈ V (ΓI×S(R×S)),

and hence V (ΓI×S(R× S)) ⊇ V (ΓI(R))× S.

To show the reverse inclusion, suppose that (x, y) ∈ V (ΓI×S(R × S)). Then,

(x, y) ∈ (R × S) \ (I × S) = (R \ I) × S. Furthermore, there exists an element

(a, b) ∈ (R× S) \ (I × S) = (R \ I)× S such that (xa, yb) = (x, y)(a, b) ∈ I × S.

Thus, xa ∈ I, implying that x ∈ V (ΓI(R)). Then, (x, y) ∈ V (ΓI(R))× S so that

V (ΓI×S(R× S)) ⊆ V (ΓI(R))× S, as well.

(b) This proof is similar to the proof of Theorem 6.1(a).

(c) Let (x, y) ∈ ((R \ I)× J) ∪ (I × (S \ J)) ∪ (V (ΓI(R))× S) ∪ (R× V (ΓJ(S))). If

(x, y) ∈ (R \ I) × J , then (x, y) ∈ (R × S) \ (I × J). Since J is a proper ideal

of S, there exists an element b ∈ S \ J . Then, (0, b) ∈ (R × S) \ (I × J), and
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(x, y)(0, b) = (0, yb) ∈ I×J since y ∈ J . Thus, (x, y) ∈ V (ΓI×J(R×S)). Similarly,

if (x, y) ∈ I×(S\J), then (x, y) ∈ V (ΓI×J(R×S)). If (x, y) ∈ V (ΓI(R))×S, then

x ∈ V (ΓI(R)) ⊆ R\I so that (x, y) ∈ (R×S)\(I×J). Also, since x ∈ V (ΓI(R)),

there exists an a ∈ R \ I such that xa ∈ I. Then, (a, 0) ∈ (R × S) \ (I × J),

and (x, y)(a, 0) = (xa, 0) ∈ I × J . Thus, (x, y) ∈ V (ΓI×J(R × S)). Similarly, if

(x, y) ∈ R× V (ΓJ(S)), then (x, y) ∈ V (ΓI×J(R× S)). So, we may conclude that

V (ΓI×J(R×S)) ⊇ ((R\I)×J)∪ (I× (S \J))∪ (V (ΓI(R))×S)∪ (R×V (ΓJ(S))).

To show the reverse inclusion, let (x, y) ∈ V (ΓI×J(R × S)). Then, we have

that (x, y) ∈ (R × S) \ (I × J), and there exists an (a, b) ∈ (R × S) \ (I × J)

such that (xa, yb) = (x, y)(a, b) ∈ I × J . Since (x, y) ∈ (R × S) \ (I × J),

either x ∈ R \ I or y ∈ S \ J . First, suppose that x ∈ R \ I. If a ∈ R \ I,

then x ∈ V (ΓI(R)) since xa ∈ I, and (x, y) ∈ V (ΓI(R)) × S. However, if

a ∈ I, then b ∈ S \ J since (a, b) ∈ (R × S) \ (I × J). Then, if y ∈ S \ J ,

we have that y ∈ V (ΓJ(S)) since yb ∈ J , and (x, y) ∈ R × V (ΓJ(S)). But, if

y ∈ J , then (x, y) ∈ (R \ I) × J . Therefore, if x ∈ R \ I, we may conclude that

(x, y) ∈ ((R \ I)× J)∪ (V (ΓI(R))×S)∪ (R× V (ΓJ(S))). Similarly, if y ∈ S \ J ,

we may conclude that (x, y) ∈ (I × (S \ J))∪ (V (ΓI(R))× S)∪ (R× V (ΓJ(S))).

Thus, (x, y) ∈ ((R\I)×J)∪ (I× (S \J))∪ (V (ΓI(R))×S)∪ (R×V (ΓJ(S))), and

V (ΓI×J(R×S)) ⊆ ((R\I)×J)∪ (I× (S \J))∪ (V (ΓI(R))×S)∪ (R×V (ΓJ(S))),

as well.

With the vertices of ΓI×J(R×S) determined above, it remains to show how these

vertices are connected to one another. The following result gives us this information

by providing the conditions required for two vertices of ΓI×J(R× S) to be connected

by an edge.
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Theorem 6.2. Let R and S be commutative rings, each with nonzero identity, and

let I and J be proper ring ideals of R and S, respectively.

(a) Suppose that (r1, s1), (r2, s2) ∈ V (ΓI×S(R × S)) with (r1, s1) 6= (r2, s2). Then,

(r1, s1)− (r2, s2) ∈ E(ΓI×S(R× S)) if and only if r1r2 ∈ I.

(b) Suppose that (r1, s1), (r2, s2) ∈ V (ΓR×J(R × S)) with (r1, s1) 6= (r2, s2). Then,

(r1, s1)− (r2, s2) ∈ E(ΓR×J(R× S)) if and only if s1s2 ∈ J .

(c) Suppose that (r1, s1), (r2, s2) ∈ V (ΓI×J(R × S)) with (r1, s1) 6= (r2, s2). Then,

(r1, s1)− (r2, s2) ∈ E(ΓI×J(R× S)) if and only if r1r2 ∈ I and s1s2 ∈ J .

Proof.

(a) Let (r1, s1), (r2, s2) ∈ V (ΓI×S(R × S)) with (r1, s1) 6= (r2, s2). First note that

(r1, s1), (r2, s2) ∈ V (ΓI(R)) × S by Theorem 6.1(a) so that s1s2 ∈ S. Then,

we have that (r1, s1) − (r2, s2) ∈ E(ΓI×S(R × S)) if and only if (r1r2, s1s2) =

(r1, s1)(r2, s2) ∈ I × S, which occurs if and only if r1r2 ∈ I.

(b) This proof is similar to the proof of Theorem 6.2(a).

(c) Let (r1, s1), (r2, s2) ∈ V (ΓI×J(R × S)) with (r1, s1) 6= (r2, s2). Then, we have

that (r1, s1) − (r2, s2) ∈ E(ΓI×J(R × S)) if and only if we have (r1r2, s1s2) =

(r1, s1)(r2, s2) ∈ I × J , which occurs if and only if r1r2 ∈ I and s1s2 ∈ J .

Fortunately, we can say a bit more about ΓI×J(R × S). Suppose we have that

(r1, s1), (r2, s2) ∈ V (ΓI×J(R × S)) with (r1, s1) − (r2, s2) ∈ E(ΓI×J(R × S)). Then,

(r1, s1), (r2, s2) ∈ ((R \ I) × J) ∪ (I × (S \ J)) ∪ (V (ΓI(R)) × S) ∪ (R × V (ΓJ(S)))

by Theorem 6.1(c). Figure 6.1 provides a visualization of this region broken into

the more specific regions indicated by A,B,C,D,E, F, and G. Now, Theorem 6.2(c)

tells us that we have r1r2 ∈ I and s1s2 ∈ J . We can use this information to further

investigate how the vertices are connected by edges in ΓI×J(R× S).
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Figure 6.1: Visualization of Subregions of R× S
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First, suppose that (r1, s1) ∈ A. Then, since r1 /∈ I ∪ V (ΓI(R)), the only way to

have r1r2 ∈ I is to have r2 ∈ I. But then, since (r2, s2) /∈ I × J , we must have that

s2 ∈ S \ J but cannot be more specific as to whether or not s2 ∈ V (ΓJ(S)). Thus,

(r2, s2) ∈ E ∪ F . Similarly, if (r1, s1) ∈ E, we may conclude that (r2, s2) ∈ A ∪B.

Next, suppose that (r1, s1) ∈ B. Since s1 ∈ J , we will always have s1s2 ∈ J for

any s2 ∈ S. Now, it is possible for r2 ∈ I, and if this is the case, then all we can say

is that s2 /∈ J since we have that (r2, s2) /∈ I×J . Thus, our conclusion would be that

(r2, s2) ∈ E ∪ F . However, it is also possible for r2 ∈ V (ΓI(R)) since r1 ∈ V (ΓI(R)),

and if this is the case, then we would not have any restriction on s2 since r2 /∈ I would

imply that (r2, s2) /∈ I × J . Thus, our conclusion would be that (r2, s2) ∈ B ∪C ∪D.

Combining these cases gives us that (r2, s2) ∈ B ∪ C ∪ D ∪ E ∪ F . Similarly, if

(r1, s1) ∈ F , we may conclude that (r2, s2) ∈ A ∪B ∪D ∪ F ∪G.

Now, suppose that (r1, s1) ∈ C. Then, since s1 /∈ J ∪ V (ΓJ(S)), the only way to

have s1s2 ∈ J is to have s2 ∈ J . But then, since (r2, s2) /∈ I × J , we must have that

r2 ∈ R \ I. Furthermore, since r1 ∈ V (ΓI(R)), it must be true that r2 ∈ V (ΓI(R)), as

well. Thus, (r2, s2) ∈ B. Similarly, if (r1, s1) ∈ G, we may conclude that (r2, s2) ∈ F .

Finally, suppose that (r1, s1) ∈ D. It is possible for r2 ∈ I, and if this is the case,

we must have that s2 /∈ J since (r2, s2) /∈ I × J . Furthermore, since s1 ∈ V (ΓJ(S)),

it must be true that s2 ∈ V (ΓJ(S)), as well. Thus, our conclusion would be that

(r2, s2) ∈ F . However, it is also possible for r2 ∈ V (ΓI(R)) since r1 ∈ V (ΓI(R)).

If this is the case, it is possible for s2 ∈ J since r2 /∈ I. But, if s2 /∈ J , then

we would again have to have that s2 ∈ V (ΓJ(S)) since s1 ∈ V (ΓJ(S)). Thus, our

conclusion would be that (r2, s2) ∈ B ∪ D. Combining these cases gives us that

(r2, s2) ∈ B ∪D ∪ F .

6.2 Idealization

Given a commutative ringR with nonzero identity and anR-moduleM , we may define

another commutative ring R(+)M with nonzero identity called the idealization
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of M . The elements of R(+)M are ordered pairs in R × M . Furthermore, for

(r1,m1), (r2,m2) ∈ R(+)M , the operations of addition and multiplication are defined

by (r1,m1)+(r2,m2) = (r1+r2,m1+m2) and by (r1,m1)(r2,m2) = (r1r2, r1m2+r2m1),

respectively. With the operations defined in this way, it is clear that the zero element

of R(+)M is (0, 0) and that the nonzero identity element of R(+)M is (1, 0). Also,

every ring ideal I of R gives rise to the ring ideal I(+)M of R(+)M . So, we may

consider the relationship between ΓI(R) and ΓI(+)M(R(+)M).

The following result discusses the vertices of ΓI(+)M(R(+)M) in terms of the

vertices of ΓI(R).

Theorem 6.3. Let R be a commutative ring with nonzero identity, I a ring ideal of

R, and M an R-module. Then, V (ΓI(+)M(R(+)M)) = V (ΓI(R))×M .

Proof. Let (r,m) ∈ V (ΓI(+)M(R(+)M)). Then, (r,m) ∈ (R(+)M)) \ (I(+)M) =

(R \ I) × M and there exists an (s, n) ∈ (R(+)M)) \ (I(+)M) = (R \ I) × M

such that (r,m)(s, n) ∈ I(+)M . But, (r,m)(s, n) = (rs, rn + sm), implying that

rs ∈ I. Now, since r, s ∈ R \ I and rs ∈ I, we have that r ∈ V (ΓI(R)). Thus,

(r,m) ∈ V (ΓI(R))×M , giving us V (ΓI(+)M(R(+)M)) ⊆ V (ΓI(R))×M .

To show the reverse inclusion, let (r,m) ∈ V (ΓI(R)) ×M . Since r ∈ V (ΓI(R)),

we have that r ∈ R \ I and there exists an s ∈ R \ I such that rs ∈ I. Let

n ∈ M . Then, (r,m), (s, n) ∈ (R \ I) ×M = (R(+)M)) \ (I(+)M). Furthermore,

(r,m)(s, n) = (rs, rn+ sm) ∈ I(+)M . Thus, (r,m) ∈ V (ΓI(+)M(R(+)M)), giving us

V (ΓI(+)M(R(+)M)) ⊇ V (ΓI(R))×M , as well.

Corollary 6.4. Let R be a commutative ring with nonzero identity, and let M be an

R-module. Then, V (Γ{0}(+)M(R(+)M)) = V (Γ(R))×M .

Proof. Let I = {0}. Then, Theorem 6.3 gives us that V (Γ{0}(+)M(R(+)M)) =

V (Γ{0}(R))×M = V (Γ(R))×M .
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Now that we have investigated the vertices of ΓI(+)M(R(+)M), we must determine

how these vertices are connected to one another. The following result provides us with

this information by describing the edges of ΓI(+)M(R(+)M).

Theorem 6.5. Let R be a commutative ring with nonzero identity, I a ring ideal of

R, and M an R-module. Suppose that (r1,m1), (r2,m2) ∈ V (ΓI(+)M(R(+)M)) with

(r1,m1) 6= (r2,m2). Then, (r1,m1) − (r2,m2) ∈ E(ΓI(+)M(R(+)M)) if and only if

r1r2 ∈ I.

Proof. Let (r1,m1), (r2,m2) ∈ V (ΓI(+)M(R(+)M)) with (r1,m1) 6= (r2,m2). By the

definition of multiplication, we have that (r1,m1)(r2,m2) = (r1r2, r1m2+r2m1). Now,

we always have r1m2+r2m1 ∈M . So, (r1,m1)(r2,m2) = (r1r2, r1m2+r2m1) ∈ I(+)M

if and only if r1r2 ∈ I. Thus, (r1,m1)− (r2,m2) ∈ E(ΓI(+)M(R(+)M)) if and only if

(r1,m1)(r2,m2) ∈ I(+)M , if and only if r1r2 ∈ I.

Corollary 6.6. Let R be a commutative ring with nonzero identity, and let M be

an R-module. Suppose that (r1,m1), (r2,m2) ∈ V (Γ{0}(+)M(R(+)M)) with (r1,m1) 6=

(r2,m2). Then, (r1,m1)− (r2,m2) ∈ E(Γ{0}(+)M(R(+)M)) if and only if r1r2 = 0.

Proof. Let I = {0}. Then, (r1,m1) − (r2,m2) ∈ E(Γ{0}(+)M(R(+)M)) if and only if

r1r2 ∈ {0}, by Theorem 6.5. However, this occurs if and only if r1r2 = 0.

While Theorem 6.3 and Theorem 6.5 do not provide much insight into the nature

of the ideal-based zero-divisor graph ΓI(+)M(R(+)M), they do convey the message

that much of the structure of ΓI(+)M(R(+)M) is dictated by the structure of ΓI(R).

In fact, let us fix m0 ∈M . Then, Theorem 6.3 gives us that for every r ∈ V (ΓI(R)),

we have that (r,m0) ∈ V (ΓI(+)M(R(+)M)). Let r1, r2 ∈ V (ΓI(R)) with r1 6= r2.

Then, (r1,m0), (r2,m0) ∈ V (ΓI(+)M(R(+)M)) with (r1,m0) 6= (r2,m0). Furthermore,

r1 − r2 ∈ E(ΓI(R)) if and only if r1r2 ∈ I. However, Theorem 6.5 gives us that

(r1,m0) − (r2,m0) ∈ E(ΓI(+)M(R(+)M)) if and only if r1r2 ∈ I, as well. So, the

graph ΓI(+)M(R(+)M) contains an isomorphic copy of ΓI(R) as an induced subgraph

with vertex set {(r,m0) | r ∈ ΓI(R)}. We may think of the this induced subgraph as
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the m0 “layer” of ΓI(+)M(R(+)M). Furthermore, for m1,m2 ∈M with m1 6= m2, we

have that the set of vertices for the m1 “layer” is disjoint from the set of vertices for

the m2 “layer”. Thus, we have |M | disjoint induced subgraphs of ΓI(+)M(R(+)M)

that are isomorphic to ΓI(R), and we may think of each such subgraph as a “layer”

of ΓI(+)M(R(+)M).

Now, Theorem 1.3(a) gives us that ΓI(+)M(R(+)M) is connected. Thus, these

“layers” must be connected to one another, and it turns out that the structure of

ΓI(R) gives us most of the information we need to determine how the “layers” are

connected to each other. Let r1, r2 ∈ V (ΓI(R)) with r1 6= r2, and let m1,m2 ∈ M

with m1 6= m2. Then, (r1,m1), (r2,m2) ∈ V (ΓI(+)M(R(+)M)) by Theorem 6.3.

Furthermore, note that (r1,m1) is in the m1 “layer” and (r2,m2) is in the m2 “layer”.

We have that (r1,m1) − (r2,m2) ∈ E(ΓI(+)M(R(+)M)) if and only if r1r2 ∈ I by

Theorem 6.5, but this is true if and only if r1 − r2 ∈ E(ΓI(R)). Finally, the last

case we need to consider is when r1 = r2 = r. It follows from Theorem 6.5 that

(r,m1) − (r,m2) ∈ E(ΓI(+)M(R(+)M)) if and only if r2 ∈ I, but realize that this

information cannot be drawn directly from the structure of ΓI(R).

The following result can be deduced from what we know about the “layered”

structure of ΓI(+)M(R(+)M).

Theorem 6.7. Let R be a commutative ring with nonzero identity, I a ring ideal

of R, and M a nonzero R-module. Then, ΓI(+)M(R(+)M) is complete if and only if

ΓI(R) is complete and r2 ∈ I for all r ∈ V (ΓI(R)). Moreover, if ΓI(R) ∼= Kn and

r2 ∈ I for all r ∈ V (ΓI(R)), then ΓI(+)M(R(+)M) ∼= Kn|M |.

Proof. Suppose that ΓI(+)M(R(+)M) is a complete graph. First note that if

|V (ΓI(R))| = 1, then ΓI(R) is complete and for the single vertex r ∈ V (ΓI(R)),

it must be true that r2 ∈ I. So, suppose that r1, r2 ∈ V (ΓI(R)) with r1 6= r2. Fix

m0 ∈ M so that we have (r1,m0), (r2,m0) ∈ V (ΓI(+)M(R(+)M)) by Theorem 6.3.

Furthermore, note that (r1,m0) 6= (r2,m0). Since ΓI(+)M(R(+)M) is complete by

assumption, we have that (r1,m0) − (r2,m0) ∈ E(ΓI(+)M(R(+)M)). But then,
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Theorem 6.5 gives us that r1r2 ∈ I. So, r1 − r2 ∈ E(ΓI(R)), and we may conclude

that ΓI(R) is complete. Now, let r ∈ V (ΓI(R)) and let m1,m2 ∈ M with m1 6= m2

so that (r,m1) 6= (r,m2). By Theorem 6.3, (r,m1), (r,m2) ∈ V (ΓI(+)M(R(+)M)).

Thus, (r,m1) − (r,m2) ∈ E(ΓI(+)M(R(+)M)) since ΓI(+)M(R(+)M) is complete by

assumption. Then, r2 = rr ∈ I by Theorem 6.5.

Conversely, suppose that ΓI(R) is complete and r2 ∈ I for all r ∈ V (ΓI(R)).

Let (r1,m1), (r2,m2) ∈ V (ΓI(+)M(R(+)M)) with (r1,m1) 6= (r2,m2). Then,

(r1,m1), (r2,m2) ∈ V (ΓI(R))×M by Theorem 6.3. So, r1, r2 ∈ V (ΓI(R)). If r1 6= r2,

then r1r2 ∈ I since ΓI(R) is complete by assumption. Also, if r1 = r2 = r, then

r1r2 = r2 ∈ I by assumption. So, (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) ∈ I(+)M ,

and we have that (r1,m1) − (r2,m2) ∈ E(ΓI(+)M(R(+)M)). Thus, ΓI(+)M(R(+)M)

is complete.
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Chapter 7

Conclusion

7.1 Dissertation Summary

In this dissertation, we defined the congruence-based zero-divisor graph of a

commutative ring with nonzero identity as the zero-divisor graph of a particular

commutative semigroup with zero. Thus, we were able to immediately deduce

various graph-theoretic properties of congruence-based zero-divisor graphs from the

corresponding results for semigroup zero-divisor graphs. We also justified that several

familiar zero-divisor graphs are examples of our more general congruence-based zero-

divisor graph. In particular, for a commutative ring with nonzero identity, the usual

zero-divisor graph, the compressed zero-divisor graph, and the ideal-based zero-

divisor graph are all examples of congruence-based zero-divisor graphs. Thus, the

congruence-based zero-divisor graph generalizes each of these distinct types of zero-

divisor graphs. In the final content chapter, we more carefully considered a couple of

particular types of ideal-based zero-divisor graphs as a warm-up for research in the

area of zero-divisor graphs.

We also investigated various maps between pairs of congruence-based zero-divisor

graphs. Some of those maps led to conclusions surrounding isomorphic copies of
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congruence-based zero-divisor graphs being induced subgraphs of other congruence-

based zero-divisor graphs. We developed the relationship between various pairs of

familiar multiplicative congruence relations, and those relationships led to maps

between familiar examples of congruence-based zero-divisor graphs. Furthermore,

some of those maps allowed us to deduce well-known subgraphs of various zero-divisor

graphs using our framework.

7.2 Open Questions

For a commutative ring R with nonzero identity and a multiplicative congruence

relation ∼ on R, the congruence-based zero-divisor graph Γ∼(R) is the zero-divisor

graph of the semigroup S = R/∼. So, we know that every congruence-based zero-

divisor graph is a zero-divisor graph of a semigroup with zero. However, we have not

actually demonstrated that the concept of a congruence-based zero-divisor graph is

distinct from the concept of a semigroup zero-divisor graph.

Question 7.1. Given a monoid S, when do we have that Γ(S) ∼= Γ∼(R) for some

ring R and some congruence relation ∼ on R?

Note that S ∼= R/∼ implies that Γ(S) ∼= Γ∼(R). However, it is certainly possible

to have Γ(S) ∼= Γ∼(R) while S 6∼= R/∼. Thus, a related, but more difficult, question

follows.

Question 7.2. Given a monoid S, when do we have that S ∼= R/∼ for some ring R

and some congruence relation ∼ on R?

The defined equality Γ∼(R) = Γ(R/∼), where R/∼ is a commutative semigroup

with zero, allowed us to deduce some graph-theoretic properties of Γ∼(R) without

additional work. However, we have not investigated other connections between ring-

theoretic properties of R and graph-theoretic properties of Γ∼(R). The following

question points out some graph-theoretic properties that would be worth considering.
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Note that it is known when the usual zero-divisor graph and the ideal-based zero-

divisor graph are each complete, complete bipartite, a star graph, or planar and when

the compressed zero-divisor graph is complete. However, general results have not been

established.

Question 7.3. Let R be a commutative ring with nonzero identity. Under what

conditions on R do we have that Γ∼(R) is complete, complete bipartite, a star graph,

or planar?

Finally, for a commutative ring R with nonzero identity, C(R) is a complete lattice

with infα{∼α} = ∩α∼α. The following question is related to the structure of the set

of all congruence-based zero-divisor graphs of R.

Question 7.4. Let R be a commutative ring with nonzero identity, and let {∼α} be

a family of multiplicative congruence relations on R. Suppose that ∼ = infα{∼α}.

How is Γ∼(R) related to each Γ∼α(R)? In particular, how is Γ∼1∩∼2(R) related to

Γ∼1(R) and to Γ∼2(R)?
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