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Abstract

Neutron stars are the remnants of supernova explosions, and harbor the densest

matter found in the universe. Because of their extreme physical characteristics,

neutron stars make superb laboratories from which to study the nature of matter

under conditions of extreme density that are not reproducible on Earth. The

understanding of QCD matter is of fundamental importance to modern physics, and

neutron stars provide a means of probing into the cold, dense region of the QCD

phase diagram.

Isolated pulsars are rotating neutron stars that emit beams of electromagnetic

radiation into space which appear like lighthouses to observers on Earth. Observations

of these objects have been documented with very high accuracy. Measurements of

pulsar rotational velocity, along with its first and second time derivatives, show that

they slow down over time. The generally accepted explanation for the spin-down is

that the pulsars behave like giant magnetic dipoles that lose energy in the form of

electromagnetic radiation. This assumption of magnetic dipole radiation (MDR) leads

to a general power law constructed from observation and governed by the braking

index n, which relates the frequency to spin-down. The theoretical value for n is

exactly 3 for MDR, but accurate observational measurements consistently yield values

between 1.0 and 2.8.

The goal of this thesis is to improve understanding of the braking index through

a two pronged investigation into this important quantity. We develop a frequency

dependent model of the braking index that allows changing moment of inertia of the

v



star, and changes in magnetic field properties in the MDR torque mechanism. For

the first time, we use physically realistic equations of state, along with state of the

art computational codes to determine the dynamic neutron star properties required.

We probe the stars at constant baryonic rest masses ranging from 1.0 to 2.2 solar

masses over a range of frequency spanning from zero to the Kepler frequency for each

star. We also develop a toy model of two interacting dipoles to make a first attempt

at describing a plausible scenario by which the pulsar magnetic moment may evolve

in time.
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Chapter 1

Introduction

Neutron stars are the remnants of supernova explosions, and are among the most

dense objects in the universe. They have typical radii of about 10 km, masses between

1 and 2 times the mass of the sun (M⊙), and can spin at a rate of hundreds of rotations

per second (Weber, 1999; Glenndenning, 2000; Arnett and Bowers, 1977; Baym, 1978;

Glendenning, 1985). Neutron stars harbor the densest stable matter that exists in the

universe (Weber, 1999; Ozel et al., 2010; Lattimer and Prakash, 2004). The density

at the cores of neutron stars can be as much as 5 – 10 times the density of atomic

nuclei (ε0). At such high densities, ordinary protons and neutrons are compressed so

tightly that new particles and novel states of matter may be formed, such as hyperons

(Λ,Σ+,0,−,Ξ0,−), boson condensates (π−, K−), superfluid and superconductive matter,

and even deconfined quark matter. It has been hypothesized that some neutron stars

may be composed entirely of absolutely stable quark matter, which could be more

stable than the most stable atomic nucleus, 56Fe (Glenndenning, 2000; Weber, 1999).

The possible composition of compact stars (neutron stars, quark stars, or hybrids) is

shown in Figure 1.1. Modeling these objects is difficult because the composition at

the core is almost completely unknown, and so the interactions must be modeled for

1057 particles based on a few known low density parameters, creating both theoretical

and computational challenges. The nature of ultra-dense matter is an open question
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with important implications for nuclear and particle physics, as well as astrophysics.

One important goal of neutron star research is to cohesively bridge the gap between

the theory describing these objects, and the increasing amount of highly accurate

observational data being collected.

Figure 1.1: Cross sectional view of the possible composition of neutron stars based
on different models of ultra-dense matter. Image Credit: Weber (2013)

At the forefront of modern physics is the study of matter at extreme temperature

and density. The behavior of matter at extremely high temperatures and/or densities

is of key importance to understanding the theory that governs hadronic matter;

quantum-chromo-dynamics (QCD). Experiments at heavy-ion colliders such as RHIC

and LHC probe the hot quark-gluon-plasma (QGP), which is the state of hadronic

matter thought to exist in the very early universe. The phase-diagram of ultra-

dense baryonic matter is shown in Figure 1.2. The phase diagram is a qualitative
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description of the behavior of hadronic matter on a scale of density and temperature.

The lower left corner of Figure 1.2 represents ordinary nuclear matter (i.e. protons,

and neutrons), and one important goal of modern physics is to probe the regions of

the diagram for increasing temperature and density. Experiments proposed for the

Facility for Antiproton and Ion Research (FAIR) (GSI, 2012) hope to probe into the

high density, high temperature region of the QCD phase diagram as a complement to

investigation of the high temperature, low density region at LHC, and RHIC. Because

of the attributes described above, neutron stars provide excellent laboratories for

the study of cold, high density hadronic matter into the lower right region of the

QCD phase diagram. Neutron star research complements Earth-based probes such

as RHIC, LHC, and FAIR, in understanding the nature of dense hadronic matter.

Figure 1.2: Phase diagram of baryonic matter. The early universe is represented
by the low density/high temperature regime. Ordinary matter (protons / neutrons)
exists at low temperatures and low densities, and neutron star matter is at the high
density and low temperature regime. Image Credit: FAIR website GSI (2012).
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Advancements in observations have led to an increase in high-quality neutron star

data. Missions like the ROSAT MPI (2012) and XMM-Newton ESA (2012) have

collected an unprecedented amount of observational data which allows for the testing

of competing neutron star models. Numerical neutron star models are paramount

in the understanding and interpretation of such data, and the accurate prediction of

observable properties from microscopic models is key to understanding the ultra-dense

QCD matter existing at the neutron star core.

While current understanding of neutron star composition, specifically in the core,

is not well known, there exist constraints on the physics and particle interactions

which lead to some reasonable models. Based on known nuclear properties in ordinary

matter, extrapolation into high densities is possible. The microphysics governing

neutron star composition is manifested in the equation of state (EoS). The correct

description of known bulk properties, along with reasonable assumptions of energy-

density and pressure within the star can predict the particle composition with some

amount of accuracy. Figure 1.1 gives an illustration of some possible configurations of

matter contained in the neutron star. Reliable observations of neutron star properties

can constrain the possible particle composition. For example, high quality mass-

radius observations can help to determine the central density which greatly affects

the nature of the EoS, and the microphysics by extension.

There are direct and indirect observable properties of neutron stars which can

be related to physical theory. Astronomers can measure mass (in binary systems),

frequency (in pulsars), and energy loss by observing luminosities in pulsars and

nebulae surrounding the supernova remnants. Other physical quantities described

in neutron stars must be modeled based on these few observables. Pulsar frequency

measurements can be highly accurate, and can be used to constrain model predictions

of many neutron star properties ranging from energy-density profiles, to cooling

processes and the age of the pulsars themselves.

One important quantity related to pulsar frequency is the so-called braking index,

n. The braking index is a unitless quantity derived in the framework of total
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(measurable) energy loss as it relates to the rotational energy of a pulsar, and is

directly calculated from the observed frequency, along with the first and second time

derivatives thereof. The accuracy of these observations allows for highly reliable

braking indices to be calculated from observed frequencies. Because of the reliability

of this data, the braking index serves as a good test for theory. Unfortunately, given

the framework of the current theory, the most reliably measured data does not agree

with the predicted values from theory.

The current, most readily accepted model for braking index is derived in the

framework of magnetic dipole radiation (MDR). This model directly relates the loss of

rotational energy to that of a large magnetic dipole rotating in space. The magnetic

moment of the dipole is assumed to be misaligned to the axis of rotation which

radiates electromagnetic energy as it spins. This assumption is an obvious first step

in identifying the spin-down mechanism in pulsars simply because we can measure the

radiated energy. There are some competing theories for the braking index mechanism,

but it is widely accepted that the MDRmodel is dominant because the radiated energy

is seen (i.e. pulsars), and can account for the large magnetic field assumed to exist

in supernova remnants.

The goal of this research is to improve understanding of the braking index

mechanism, and to make attempts to bring prediction from theory closer to reliable

observed values. Our approach will be a two pronged investigation into the currently

accepted MDR model. The challenge will be to explore a fully dynamical derivation

of the braking index model based on state of the art calculations of the neutron star

macro-properties pertinent to the spin-down torque mechanism in the model.

We can improve the model within this framework by applying frequency de-

pendent, dynamic quantities such as moment of inertia (MoI) and magnetic field,

calculated from physically realistic EoS, to the braking index model. These changes,

along with the introduction of a simulated superfluid effect are used to converge

theoretical braking index predictions with observed values as a function of frequency.

The investigation requires two perspectives which will be outlined below. At high
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frequencies, the braking index is dominated by MoI, and is susceptible to change

across different microphysical descriptions. At frequencies below about 150 Hz, the

braking index is dominated by the dynamics of the governing torque mechanism

in the MDR model. The full investigation from these perspectives will provide a

clearer understanding of the MDR braking law, and the relevant need for competing

mechanisms can be better established.

Lastly, the braking index model derived can be used as a control for new

considerations. Any new developments beyond the MDR model can be tested in the

framework of dynamical changes occurring in the macroscopic properties of neutron

stars. In particular, the magnetic field considerations are applicable to all proposed

braking index models, and MoI is important to the density profile and composition of

neutron star matter. We aim to provide a benchmark which moves our understanding

of the braking index forward.

1.1 Neutron Stars Background Motivation

Isolated pulsars are assumed to be rotating neutron stars. Some of these objects,

shown in Table 1.1, have a highly accurately measured angular velocity Ω, and

corresponding time derivatives which show unambiguously that they are slowing

down. One quantitative measure of the spin-down rate of a rotating pulsar with

a constant moment of inertia (MoI) is the so-called braking index n (for definition

see Section 1.2) which relates the rate of change in the angular velocity Ω to the nth

power of Ω. Goldwire and Michel investigated this result in their quadratic least-

squares analysis of the time dependence of the period of Crab pulsar using data

available in 1967 and found n = 5 ± 3 (Goldwire and Michel, 1969). Current highly

refined observations and analysis yield much more precise data on the rotational

period of pulsars, and the first and second derivatives of the rotational frequency (n

= 2.51±0.01 for the Crab pulsar). The third derivative is known for the Crab pulsar

(Lyne et al., 1988), and PSR B1509-58 (Kaspi et al., 1994). Extraction of this data
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Table 1.1: Selected pulsars adopted from Magalhaes et al. (2012); Espinoza et al.
(2011); Lyne et al. (2015). nfreq is the value of n obtained for the given pulsar, at the
given frequency, with changing MoI calculated in this work.

PSR Frequency n nfreq Ref.
(Hz)

B1509−58 6.633598804 2.839±0.001 2.999 Livingstone et al. (2007)
J1119−6127 2.4512027814 2.684±0.002 2.999 Waltevrede et al. (2011)
J1846−0258 3.062118502 2.65±0.1 2.999 Livingstone et al. (2007)

2.16±0.13 Livingstone et al. (2011)
B0531+21 30.22543701 2.51±0.01 2.995 Lyne et al. (1993)
B0540−69 19.8344965 2.140±0.009 2.997 Livingstone et al. (2007)

Boyd et al. (1995)
J1833−1034 16.15935711 1.8569±0.001 2.999 Roy et al. (2012)
B0833−45 11.2 1.4±0.2 2.999 G. et al. (1996)
J1734−3333 0.855182765 0.9±0.2 3.000 Espinoza et al. (2011)

from observation involves a detailed analysis of the time evolution of the pulses, and

of the spectra and luminosity of radiation from the related nebulae in a wide range

of wavelengths. Although data on many pulsars are available in the literature, there

are only eight pulsars generally accepted to yield reliable values of the braking index

as displayed in Table 1.1.

Observation of the periodic emission of large amounts of electromagnetic radiation

from pulsars has led to a plethora of models attempting to explain this phenomenon.

Following the work of Pacini (1967, 1968), the first association between pulsars

and neutron stars was made by Gold (1968, 1969), who showed that a rotating

neutron star with surface magnetic fields of ∼ 1012 gauss could account for many

properties of pulsars, including the pulse polarization, and the increase in period.

The loss of rotational energy was identified with the emission of electromagnetic

waves (radio emission), exerting a radiation reaction as a drag on the spin of the

star. Another model for energy loss was introduced by Michel (1969), who considered

acceleration of charged particles, and massive winds. Ostriker and Gunn (see Ostriker

and Gunn (1969), and refs. therein) qualitatively explored a model for energy loss

through multipole radiation. They showed that a pulsar can emit a large amount
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of low frequency magnetic dipole and gravitational quadrupole radiation, which is

very efficient in accelerating charged particles to relativistic energies. The energy

losses due to the radiation were associated with losses of angular momentum, and

increase in the rotational period of the star. Considering the star to be a magnetized

sphere rotating in vacuum, with a magnetic moment misaligned at a fixed angle

to its axis of rotation, the surface magnetic field strength was estimated using the

measured change in angular velocity. Although the existence of the highly conducting,

co-rotating magnetosphere, and the interstellar medium (plasma), consisting of

relativistic particles accelerated up to the speed of light may theoretically affect

the calculation, it was neglected, but the order of magnitude of the calculated field

strength by Goldreich and Julian (1969) did not differ considerably from a more

rigorous estimate currently in use (Reisenegger, 2003).

The value of n provided by observations is deduced without any preconceptions

about the physical nature of the pulsar. Goldwire and Michel (1969) performed

a least-squares analysis of the time dependence of the period of the Crab pulsar,

and showed that Ω̇ = −KΩn, is an acceptable fit to the data. The value of n

is dependent on the mechanism used to describe the origin of the energy loss of

the rotating pulsar. Theoretical models based on different scenarios for the origin

of the energy loss by the pulsar yield different values of n. In the idealized case,

when the magnetic field is modeled as a pure dipole, MoI, and surface magnetic

field strength are constant, and the star rotates in vacuum, the value of the braking

index is always n = 3. It is widely assumed that most pulsars spin-down due to

magnetic dipole radiation (MDR) because it is the best model for the origination

of the pulse itself. The MDR, as stated above, is assumed to provide a reliable

enough estimate for the magnetic field strength of pulsars, so that it is the basis

for the calculation of the magnetic fields of all pulsars that cannot be measured

directly (as in some magnetars). Despite being inconsistent with measured braking

index values, the MDR model likely accounts for some portion of spin-down for all

pulsars. Consideration of radiation produced by a relativistic outflow of a pulsar wind
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from the surface of the rotating star leads to n = 1 (Michel, 1969; Harding et al.,

1999) (although n = 2 was also considered by Carraminana and Alvarez (1996)), and

emission of gravitational quadrupole radiation requires n = 5 (Ostriker and Gunn,

1969). Several authors note that the emission of gravitational radiation is unlikely

to compete with the other mechanisms at present because observations of braking

index n are consistently less than three. However, it cannot be ruled out that it plays

an important role at earlier times in the lifespan of pulsars. The relation between

emission of gravitational waves, and braking index of young pulsars was studied in

detail by Alford and Schwenzer (2014). A combination of these mechanisms was

considered by Alvarez and Carraminana (see Carraminana and Alvarez (2004) and

refs. therein) in their multipole spin-down equation. Most recently, Liu et al. (2014),

studied particle wind energy loss in intermittent pulsars and its role in the rate of

spin-down.

There is extensive literature about observational data for the rotational period of

pulsars, and the first, second, and third time derivatives thereof for the Crab pulsar

(Lyne et al., 1988), and PSR B1509-58 (Kaspi et al., 1994). The extraction of this

data from observation involves a detailed analysis of the time evolution of the pulses,

and of the spectra and luminosity of radiation from the related nebulae in a wide range

of wavelengths. There are currently only eight pulsars which are generally accepted

to have reliably measured values of their braking indices. We summarize data on

these pulsars in Table 1.1. Examination of the tabulated values shows immediately

that the simple model of a pulsar as a rotating magnetic dipole field in vacuum,

yielding n = 3, does not agree with the results of precise observations. Most models

track the time evolution of the pulsar spin-down through the P − Ṗ diagram (e.g.,

Carraminana and Alvarez (2004); Contopoulos and Spitkovsky (2006)). Introduction

of time dependence of constants in the power law may lead to closer agreement

between models, and observation; however, it can only introduce a speculative

time dependence of observables, usually of the magnetic field (see e.g. Blanford

and Romani (1988); Contopoulos and Spitkovsky (2006); Zhang and Xiee (2012);
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Gourgouliatos and Cumming (2014)). Alternatively, modifications of the co-rotating

magnetosphere have been considered (Melatos, 1997). As our observations span,

at best, 50 years, they offer only a short snapshot of the time history of a pulsar,

and definitive information regarding long-term time dependence of the slow-down

mechanism, and variations from pulsar to pulsar is still not available.

As we have seen, Table 1.1 shows that the ideal model of a pulsar as a magnetic

dipole rotating in vacuum does not agree with the results of precise observations.

There have been many attempts to extend/modify the basics of the model. These

include consideration of magnetic field activity, superfluidity and superconductivity of

the matter within pulsars, and modifications of the power law and related quantities.

However, there is not a model currently available which would yield, consistently,

the typical spread of values of n as illustrated in Table 1.1. It is not the objective

of this thesis to give a comprehensive survey of all attempts to achieve consistency

between theory and observation. We only mention examples of some recent work,

mainly related to the pulsars with reliable braking indices.

Livingstone et al. (2011) surveyed several promising models of the relation between

magnetic activity and the neutron star spin-down, including an increasing magnetic

moment, (e.g. Blanford and Romani (1988); Lyne (2004)), and the effects of

magnetospheric plasma on the spin-down torque, (e.g. Harding et al. (1999); Kramer

et al. (2006)). There has been an interesting observation of a permanent change of the

braking index of PSR J1846-0258, which exhibited distinctly magnetar-like behavior

in May-July, 2006. With an initial braking index of 2.65±0.01, this pulsar exhibited

a strong magnetar-like outburst, and a post-burst measurement yielded a braking

index of n = 2.16±0.13 (Livingstone et al., 2011). No fully successful explanation of

this phenomenon has been found as of yet, but variability in magnetospheric plasma

remains a promising direction for future consideration, especially in light of the recent

report of variable spin-down rate correlated with radio pulse shape changes for several

pulsars, confirming a link between torque, and emission properties in several pulsars

(Lyne et al., 2010).
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Another interesting object, PSR J1734-3333, with a very low braking index, n =

0.9, has attracted a lot of attention. Espinoza et al. (2011) suggested that PSR J1734-

3333 may be a potential magnetar, whose magnetic field has been buried under the

surface due to large accretion shortly after the supernova explosion, and is relaxing out

of the surface at present. The increasing of magnetic field strength may also result in

the small braking index value of 0.9. Very recently, Liu et al. (2014) proposed another

interpretation for the small braking index as a consequence of a fall-back disk around

PSR J1734-3333 that is braking the pulsar by accreting matter with opposing angular

momentum.

It is supposed that superfluidity and superconductivity may exist in the inner crust

and cores of neutron stars. The effects of superfluidity on the angular momentum of

a pulsar, and thus on the changes of its rotational period have beed studied mostly

in connection with glitches, observed primarily in young, fast rotating pulsars. In

determination of the braking index, glitches are normally ignored because they happen

on very short timescales relative to the overall spin-down of the pulsar, and thus do

not effect the spin evolution over the life of the star. Ho and Andersson (2012)

provide a model based on a decrease in the effective MoI due to an increase in the

fraction of the stellar core that becomes superfluid as the star cools through neutrino

emission. The main assumption in their model is that core superfluid neutrons are

allowed to decouple and pin. However, it is not clear whether this mechanism can

be strong enough to act in the way assumed in Ho and Andersson (2012). Page

et al. (2014) extensively reviewed stellar superfluids, including a possible connection

between the occurrence of superfluidity in rotating pulsars and their spin-down rates,

but no solution to the braking index issue was suggested.

Modifications of the canonical MDR models have also been attempted by many

authors. For example, Johnston and Galloway (1999) used the standard equation

for the spin-down of a neutron star, and derived a formula for the braking index via

integration rather than the conventional differentiation. The new formula has the

advantage that it depends only on the first derivative of the rotational frequency.
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However, this formula was applied to cases apparently affected by glitches and,

although it reproduced the braking index of the Crab pulsar, its success was not

realized for other cases where glitches can be eliminated from the data. Recently,

Magalhaes et al. (2012) reported results of a study concerning determination of the

braking index based on a modification of the MDR model, which admits that pulsars

are rotating magnetic dipoles, but allows for a variable braking index in the braking

torque equation. Their statistical approach produced a satisfactory agreement with

observation, but only due to introduction of an empirical parameter which varies from

pulsar to pulsar, and is not motivated by any known physical considerations, i.e. it

is purely a numerical fit.

The evolution of the angle of inclination between the rotational axis of the star

and the dipole has been considered with interesting results. Lyne et al. (2013) have

investigated the effects of an increasing inclination angle on braking index. The

commons assumption so far has been that, over time, the magnetic moment should

align itself with the axis of rotation, but there is new observational evidence that

the dipole is, in fact, migrating toward the equator of the star. The time rate of

change of the angle of inclination α may affect the braking index, especially at low

frequencies where changes in the MoI are negligible, and the magnetic field strength

is constant. Lyne et al. (2013) showed that the correct model of this change in angle

can account for the current braking index of the Crab pulsar. Their results indicate

that the change in α with the correctly associated current value for α can reproduce

the measured braking index in the Crab pulsar. These results are very interesting

in that they achieve a solution for the very slowly rotating pulsars where changes in

MoI are insignificant. This idea is discussed further in Section 1.2.

In this thesis, we focus first on finding the full dynamical range of the MDR model

yielding a maximum physically meaningful deviation from the canonical value of the

braking index, n = 3, as a function of rotational velocity. The effects of variation

in the MoI of a rotating pulsar have been, in the spirit of analysis by Glendenning

(2000), fully derived and included in the calculation, using two independent computer
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codes, and four physically realistic Equations of State (EoS). We have also simulated

an effect of superfluid conditions at the threshold between the crust and core energy

density, inside the star, which eliminates the core contribution of angular momentum

to the calculation. For the low frequency region of the braking index curve, MoI and

surface magnetic field strength in the MDR model are essentially constant, which

leads to the canonical n = 3 for any object rotating at less than about 150 Hz. In

order to account for observed braking indices less than n = 3 in this ’low-frequency’

range, we look at the inclination angle of the magnetic moment to the axis of rotation,

and attempt to produce a function which varies in a way that reduces the braking

index values similar to the research by Lyne et al. discussed above.

1.2 Braking Index: Open Questions

It is important at this point to identify the main braking index mechanism, why it

is important, and how we can expect a frequency dependent model to behave. We

find that there are two ends to the dynamics of the braking index that are dominated

by different mechanisms in the braking law (Hamil, 2014). In this section we will

motivate the dynamical treatment of the braking index and set up the main problems

to be addressed in this thesis.

As stated earlier, isolated pulsars are assumed to be rotating neutron stars

with accurately measured angular velocities Ω, that tend to slow down over time.

Processes, including the emission of gravitational radiation, and of relativistic

particles (pulsar wind), are considered along side the most common MDR model

as explanation to the observed spin-down. The calculated energy loss by a rotating

pulsar is assumed proportional to a model dependent power of the rotational velocity,

Ω. This relation leads to the power law Ω̇ = -K Ωn where n is called the braking

index. Precise calculation of the braking index has been achieved for a small set of

very accurately measured pulsars, and the results are in the range 1 < n < 2.8. The
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correct model of the physics of pulsar spin-down should match the observed values.

No such model exists to date.

1.2.1 Definition

The pulsar spin-down rate is an observation that has been recorded for the past few

decades. That pulsars can be seen and measured is evidence of the electromagnetic

radiation emanating from what is assumed to be a strong dipole misaligned with

the axis of rotation. This misaligned dipole is generally considered to dominate the

pulsar spin-down as it accounts for rotational energy being carried away from the

star (Pacini, 1967, 1968; Gold, 1968, 1969; Goldwire and Michel, 1969). The observed

loss of energy is modeled, as shown above by Ω̇ = -K Ωn where n is the braking index.

The braking index itself is a purely observational parameter which is determined from

pulsar timing observations along with their first and second derivatives (see, e.g., Lyne

et al. (2015))

n =
ΩΩ̈

Ω̇2
. (1.1)

The value for the braking index n is theoretically determined by the torque

mechanism working counter to the rotation of the star. In the simple MDR model, the

radiating dipole carries energy away from rotation thereby producing a torque which

slows the rate of rotation of the pulsar. This is the main assumption for pulsars

because of the nature of the observed radiation, but there are at least two other

acceptable possibilities for the torque mechanism. The emission of charged particles,

accelerated to relativistic velocities, forming a massive wind from the surface of the

pulsar (Michel, 1969; Harding et al., 1999) may play a role in spin-down. Another

consideration is higher order multipole electromagnetic radiation, or gravitational

quadropole components to the radiated energy (Ostriker and Gunn, 1969; Alford and

Schwenzer, 2014). For each mechanism described above, the theoretical braking index

is n = 1, 3, 5 for particle wind, MDR, and quadrupole radiation, respectively.
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1.2.2 MDR Issue

Of the mechanisms described above, the most readily accepted is the MDR model.

This model predicts the radiated energy expected from a magnetized sphere rotating

in vacuum (the accepted description of pulsars). The braking index value for the

MDR model is n = 3. We see in Table 1.1 eight pulsars with accurately observed

spin evolution. The given values for the braking index are accurate to within a few

percent or better. It is clear that none of these observed stars has a braking index

consistent with any of the values produced from theory.

There is a clear deviation between observed braking index values, and those

calculated from theory. The static value associated with each torque mechanism

(MDR, wind, quadrupole) is directly due to the treatment of the differential equation

governing braking index. Each mechanism has the differential form,

Ė = −CΩn+1, (1.2)

where C contains the physics of the associated mechanism, Ω is the rotational velocity,

and n is the braking index. Likewise, the rotational energy of a rotating sphere is

given by,

Ė =
d

dt
(
1

2
IΩ2), (1.3)

where I is the moment of inertia. Setting the above two equations equal to each other

leads to the braking index power law. There are two different ways to consider the

evolution of the power law. Firstly, we can assume the moment of inertia is constant

in time which leads to the known power law,

Ω̇ = −KΩn, (1.4)
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where K = C/I. If K is a constant (static case), this leads to the given values

described earlier of n = 1, 3, 5. However, if we consider that the moment of inertia

changes over time, and that the physical values contained in the mechanism (C) may

change with time (or frequency), this leads to the braking index as a function of Ω,

n(Ω) = n0 −
3ΩI ′ + Ω2I ′′

2I + ΩI ′
+

C ′Ω

C
, (1.5)

where n0 is the theoretical (static case) braking index associated with each torque

mechanism, and the prime notation denotes derivatives with respect to angular

frequency. It will soon be evident that there are two ways in which the evolution

of the braking index may proceed. From Eq. 1.5, the change in MoI is clear, but

what is less clear is the meaning of C and C ′. The physics of each torque mechanism

is contained in C, and C ′ gives the change with respect to frequency of the values

describing the physics. For example, in the MDR model, C contains the magnetic

moment, which may change with frequency.

As we see from the above equations, the simple values for braking index come from

assumptions that the moment of inertia of the star is constant (or that the star is

static), and the parameters defining the physics of the braking torque are all constant.

This means that composition, magnetic field, rotational effects, etc., have no effect

on braking. The frequency dependent solution (Eq. 1.5) allows for the problem to

be explored in much greater detail. The microscopic properties of the star must be

considered in order to have a cohesive model which allows for changing values which

may affect the braking index.

1.2.3 Moving Forward

The frequency dependent solution to the braking index allows for the problem to be

approached from two extreme positions. There can be a dependence on frequency

where the moment of inertia changes at a rate which brings the braking index away

from the canonical value, or, in the limit of very slow rotation, the parameters

16



governing the torque mechanism can be changing with frequency (or time). Close

examination of Eq. 1.5 shows that changing moment of inertia can have a significant

effect on the braking index at high frequencies, but in the limit that moment of inertia

changes very slowly with frequency, there is still a term allowing for the physics in

the torque mechanism (C) to change. In the assumed MDR model, high frequency

calculations show a reduction in braking index consistent with observation; however,

the observed pulsars in Table 1.1 are all rotating at low frequency. It will be shown in

Sections 2.1 that the effect of changing moment of inertia over a range of frequency

up to 160 Hz, assuming constant C, is negligible. It is clear that below this frequency,

there is no change in moment of inertia, and the subsequent MoI dependent deviation

from n = 3 is also insignificant. Noting that the data in Table 1.1 spans a range of

frequencies between about 1 - 30 Hz, it is worthwhile to consider changes in the

physical parameters of the torque mechanisms at low frequency.

1.2.4 Mechanism

It is important to model pulsar braking indices for frequencies consistent with the

accepted observations. This can be approached in a few different ways. The first

thing to examine is the dependence on C in Eq. 1.5. For example, in the MDR model

we have,

C ∝ µ2 sinα2, (1.6)

where µ is the magnetic moment and sinα is the angle of inclination between the

magnetic moment and the axis of rotation. It is clear from Eq. 1.5 that one or both

of these values would have to increase as the pulsar spins down to move toward the

observed braking index values that are less than n = 3. It has been suggested that

there is some observational evidence that sinα is increasing with time (Lyne et al.,

2015).

17



Effects on the magnetic field may be a factor for all three accepted torque

mechanisms. The magnetic field may increase, decrease, or change alignment

(Contopoulos and Spitkovsky, 2006). The torque may vary with magnetic field

in a way that is not a pure dipole. Plasma outflow may cause currents in the

magnetosphere. Interaction with the magnetosphere in general may play in the torque

mechanism (Livingstone et al., 2011). Rotationally-driven effects such as first order

phase transitions in the core neutron star matter, changes in the density profile, and

superfluidity may also affect the magnetic field. The evolution of the magnetic field

is most readily applied to the MDR model, but it is also important for the relativistic

wind, and higher order magnetic field terms.

Particles near the surface of the star can be accelerated to relativistic energies,

and thus carry away rotational energy from the pulsar in the form of a particle wind.

The wind mechanism also has a dependence on the magnetic field, and thus all of the

considerations explained above can affect the braking index due to the wind. The

braking index value for the wind is n = 1, which is near the lowest measured braking

indices shown in Table 1.1. Since all values fall between 1, and 3, it is prudent to

consider the wind as a possible torque mechanism affecting braking.

1.2.5 Polynomial

The considerations outlined above require knowledge of the origin and distribution

of the magnetic field which is not readily available. Also the nature of rotationally-

driven effects is not well known. This poses a problem in that there is some speculation

involved in trying to relate braking index values to changes in the magnetic field or

other similar physics in the torque mechanisms which leads to a phenomenology that

is not necessarily physical.

Another approach to this problem considered by Carraminana and Alvarez (2004)

is to expand the braking law itself into a polynomial which consists of all assumed

torque mechanisms. In this way, the low frequency variation in the braking index
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can be explored while we can assume there are no changes in the magnetic field,

composition of the star, magnetosphere, etc. Given that the accurately measured

braking indices range in value from about 1− 2.8, it is prudent to explore a solution

in which the braking index results from a combination different of torque mechanisms.

As shown in (Carraminana and Alvarez, 2004), the braking law can be expanded

as,

Ω̇ = −s(t)Ω− r(t)Ω3 − g(t)Ω5, (1.7)

where s(t), r(t), and g(t) are functions representing the wind, MDR, and quadrupole

torque mechanisms respectively, and Ω is the rotational frequency.

The polynomial can be used to fit the known braking index values. The braking

index range of roughly 1 − 3 indicates that the combination of wind (n = 1) and

MDR (n = 3) should be important. The quadrupole (n = 5) may not play a role

at low frequencies. Furthermore, the combination of s(t) and r(t) may constrain the

magnetic field. The polynomial solution may also be expanded into high frequencies

which may constrain other rotationally dependent effect on mass, composition, and

magnetic field.

This polynomial approach is not considered in this thesis, but is relevant to the

braking index issue, and should be explored in the future as complement to the present

work. Magnetic field evolution, along with other dynamic effects are first cataloged,

so that in the future they may be applied to the polynomial approach for a more

cohesive investigation of all possible constraints on the low to high frequency braking

index model.

1.2.6 Summary

The braking index problem can be approached from two ends. We can consider very

fast rotation where moment of inertia may dominate the spin evolution, or we can

consider very slow rotation where the physics of the braking mechanism must be
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changing to describe the observed data. As will be shown later, the braking index

is dominated by the torque mechanisms at frequencies below about 160 Hz. Above

this frequency, changes in moment of inertia due to deformation of the star become

increasingly important. Unknown composition and magnetic field dynamics play a

crucial role in understanding the braking index, and are important to magnetic dipole

radiation and relativistic wind at low frequency. These effects are difficult to model

as they are not yet well understood.

The high and low frequency ranges can be probed in the theory by first allowing

for changes in MoI to affect the braking index as a function of frequency in the

limit that the deformation of the star occurs. Secondly, at the low frequency range,

arbitrary changes in the physics, for example, magnetic field strength and inclination,

are allowed in order to affect the braking index. The change in inclination angle α is

a likely candidate for first approximations of these mechanism changes.

In order to model braking indices without knowledge of magnetic field evolution

or rotationally driven changes in composition, it is possible to construct a polynomial

which will fit the data using functions of the known braking index mechanisms at

low frequency. This model can be extended to high frequencies, and to include

considerations of the unknown values described above. This can also be extended

to include physical equations of state, and mass dependence.

A single, cohesive investigation of all the above possibilities is necessary to our

understanding of pulsar spin evolution. The resulting parameters may help to

constrain the poorly known micro-physics at work in the cores of rotating neutron

stars.

In this thesis, we will exhaustively investigate the MDR model using realistic

microphysics across all frequencies. The findings will be used in future work to

extend the physical relevance of the polynomial approach, and to constrain possible

rotationally driven composition changes in pulsars at high frequency.
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Chapter 2

High frequency dynamical MDR

We turn our attention first to the dynamical derivation of the MDR braking index,

and investigate the range of values it yields over the full range of frequency from zero

to the Kepler (mass shedding) frequency for a given star. In this section, the results

will include only those resulting from an allowed frequency dependent moment of

inertia, MoI, as shown in our Phys. Rev. D publication (Hamil et al., 2015).

We assume that isolated pulsars are rotating neutron stars that are seen to

be slowing down over time. Although the several mechanisms of the spin-down

discussed in Chapter 1 may contribute, the commonly accepted view is that emission

of magnetic dipole radiation (MDR) from a rotating magnetized body dominates.

The calculated energy loss by a rotating pulsar with a constant moment of inertia is

assumed proportional to a model dependent power of Ω. This relation leads to the

power law Ω̇ = -K Ωn where n is the braking index. The MDR model predicts n

exactly equal to 3.

In this chapter we aim to determine the deviation of the value of n from the

canonical n = 3 for a star with a frequency dependent moment of inertia in the

region of frequencies from zero (static spherical star) to the Kepler velocity (onset of

mass shedding by a rotating deformed star), in the macroscopic MDR model. For the

first time, we use physically realistic Equations of State (EoS) of the star to determine
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its behavior and structure as a function of spin rate. In addition, we examine the

effects of the baryonic mass MB of the star, and possible core superfluidity, on the

value of the braking index within the MDR model.

Four microscopic Equations of State are employed as input to two different

computational codes which solve Einstein’s equations numerically, either exactly or

using the perturbative Hartle-Thorne method, to calculate the moment of inertia

and other macroscopic properties of rotating neutron stars. The calculations are

performed for fixed values of MB (as masses of isolated pulsars are not known) ranging

from 1.0− 2.2M⊙, and fixed magnetic dipole moment and inclination angle between

the rotational and magnetic field axes. The results are used to solve for the value

of the braking index as a function of frequency, and find the effect of the choice of

the EoS, and baryonic mass MB. The density profile of a star with a given MB is

calculated to determine the transition between the crust and core of the star, and

used in estimation of one possible effect of superfluidity on the braking index.

Our results show conclusively that, within the model used in this work, any

significant deviation of the braking index away from the value n = 3 occurs at

frequencies higher than about five times the frequency of the fastest of the rotating

isolated pulsars most accurately measured to date. The rate of change of n with

frequency is related to the stiffness of the EoS and the MB of the star as this controls

the degree of departure from sphericity. Change in the moment of inertia in the MDR

model alone, even with the more realistic features considered here, cannot explain the

observational data on the braking index, and other mechanisms must be sought.

The chapter is organized as follows: The braking index, as calculated in the

canonical MDR model, and its extensions introduced in this work, are presented

Sections 2.2–2.2.1. Section 2.3 contains the computational method employed in this

work, followed by Section 2.4 where the main results are reported. The main findings

of this work, and discussion are summarized in Section 2.6.
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2.1 The MDR braking index

The slowing down of rotating neutron stars has been observed and modeled for

decades. The calculated energy loss by a rotating pulsar is assumed proportional

to a model dependent power of Ω. This relation leads to the previously discussed

power law Ω̇ = -K Ωn where n is the braking index. The value of n can be, in

principle, determined from observation of higher-order frequency derivatives related

to n by Lyne et al. (2015)

n =
ΩΩ̈

Ω̇2
(2.1)

n(2n− 1) =
Ω2

...
Ω

Ω̇3
. (2.2)

When the star is assumed to be a magnetized sphere, rotating in vacuum, with a

constant moment of inertia (MoI) and a constant magnetic dipole moment, misaligned

at a fixed angle to its axis of rotation, n is equal to 3 (for derivation see Section 2.2).

Extraction of the rotational frequency and its time derivatives from observation

involves a detailed analysis of the time evolution of the pulses, and of the spectra

and luminosity of radiation from the related nebulae in a wide range of wavelengths.

Although data on many pulsars are available in the literature, there are only eight

pulsars generally accepted to yield reliable data - including rotational frequency

and its first and second time derivatives - on the spin-down (see Table. 1.1, recent

compilation Magalhaes et al. (2012) and Refs. therein). The third derivative is known

only for the Crab pulsar Lyne et al. (1988), and PSR B1509-58 Kaspi et al. (1994).

As discussed in Chapter 1, examination of Table 1.1 shows that n = 3 does not

agree with observation. There have been many attempts to extend/modify the basics

of the MDR model. These include consideration of magnetic field activity (e.g.,

Livingstone et al. (2011); Blanford and Romani (1988); Melatos (1997); Lyne (2004);

Harding et al. (1999); Kramer et al. (2006); Lyne et al. (2010)), superfluidity and

superconductivity of the matter within pulsars (e.g., Sedrakian and Cordes (1998);
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Ho and Andersson (2012); Page et al. (2014)), and modifications of the power law

and related quantities (e.g., Johnston and Galloway (1999); Magalhaes et al. (2012)).

Time dependence of the constants in the MDR model has also been considered

(Blanford and Romani, 1988; Contopoulos and Spitkovsky, 2006; Zhang and Xiee,

2012; Gourgouliatos and Cumming, 2014). In particular, time evolution of the

inclination angle between spin and magnetic dipole axes has been recently addressed

(Lyne et al., 2015, 2013). However, there is no model currently available that would

yield, consistently, the typical spread of values of n as illustrated in Table 1.1.

Models outside the MDR have also been introduced. For example, energy loss

through emission of accelerated charged particles, forming a massive wind from

the surface of rotating stars (Michel, 1969; Harding et al., 1999), or emission of

higher multipole electromagnetic radiation, including the gravitational quadrupole

component (Ostriker and Gunn, 1969; Alford and Schwenzer, 2014), has been studied.

Competition of different mechanisms, MDR, emission of gravitational waves, and

particle wind was also investigated by Carraminana and Alvarez (1996, 2004).

In this chapter we focus on determination of the maximum deviation of the braking

index from the value n = 3 by introducing two modifications of the simple MDR

model: frequency dependence of MoI, related to the change of shape of a deformable

star due to rotation, and superfluidity at the crust/core interface of the pulsar. The

correction to the expression of the braking index arising from these modifications

is derived following Glendenning (2000), and included in the calculation, using four

realistic Equations of State (EoS) over a range of baryonic mass (MB). We study the

relation between the stiffness of the EoS and the rate of change of the braking index

as a function of frequency and the MB. The four EoS were also used to obtain mass

density profiles of the pulsars needed to determine the transition region between

the crust and core. These results were utilized in the simulation of an effect of

superfluid conditions that eliminates the angular momentum exchange at the radial

threshold between the crust and core. The calculation is performed over a full range

of frequencies of the pulsar from zero to the Kepler (mass shedding) frequency, and
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a range of MB from 1.0 to 2.2 M⊙, representing a range of gravitational masses from

about 0.8 to 2.0 M⊙.

2.2 Simple MDR model

The total energy loss by a rotating magnetized sphere can be expressed in terms of

the time derivative of the radiated energy as (Pacini, 1968; Glendenning, 2000; Lyne

et al., 2015)

dE

dt
= −

2

3
µ2Ω4sin2 α, (2.3)

where µ is the magnetic dipole moment of the pulsar, µ = B R3. R is the radial

coordinate of a surface point with the surface magnetic field strength B, Ω is the

rotational frequency, and α is the angle of inclination between the dipole moment

and the axis of rotation (Glendenning, 2000).

Substituting the kinetic energy of a rotating body, dependent on the MoI I,

E =
1

2
IΩ2, (2.4)

into (2.3) yields

d

dt

(

1

2
IΩ2

)

= −
2

3
µ2Ω4sin2 α. (2.5)

Assuming constant MoI, dI/dt = 0, we get

Ω̇ = −
2

3

µ2

I
Ω3sin2 α. (2.6)
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Setting K = 2
3

µ2

I
sin2 α in (2.6) and taking µ and α constant leads to the commonly

used braking power law describing the pulsar spin-down due to dipole radiation:

Ω̇ = −KΩ3. (2.7)

Differentiating (2.7) with respect to time

Ω̈ = −3KΩ2Ω̇, (2.8)

and combining (2.7) and (2.8) to eliminate K we get the value of the braking index

n,

n =
ΩΩ̈

Ω̇2
= 3. (2.9)

2.2.1 MDR model with frequency dependent MoI

The simple MDR value n = 3 (Eq. 2.9) is derived taking I, µ, and α as independent

of frequency and constant in time. However, in reality, the MoI of rotating pulsars

changes with frequency and, consequently, with time (Glendenning et al., 1997;

Glendenning, 2000). The equilibrium state of a rotating pulsar includes the effect

of centrifugal forces, acting against gravity. The shape of the pulsar is ellipsoidal

with decrease (increase) in radius along the equatorial (polar) direction with respect

to the rotation axis as the pulsar spins down. Thus the MoI, and, consequently, the

braking index, are both frequency dependent.

It is convenient to re-write (Eq. 2.5) as

d

dt

(

1

2
IΩ2

)

= −CΩ4, (2.10)
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where C = 2
3
R6B2sin2α. Assuming this time that dI/dt and dC/dt are non-zero,

differentiation of (Eq. 2.10) with respect to time gives

2IΩ̇ + Ωİ = −2CΩ3. (2.11)

Differentiating once more gives

2IΩ̈ + 2Ω̇İ + Ω̇İ + ΩÏ = −2Ω3Ċ − 6CΩ2Ω̇. (2.12)

Using the chain rule we can write İ, and Ċ in terms of Ω̇ and obtain

İ = I ′Ω̇ (2.13)

Ï = Ω̇2I ′′ + I ′Ω̈ (2.14)

Ċ = C ′Ω̇, (2.15)

where the primed notation represents the derivatives with respect to Ω.

Substituting the identities shown above into (Eq. 2.11) and (Eq. 2.12), we get the

following relations for Ω̇ and Ω̈,

Ω̇ =
−2CΩ2

(2I + ΩI ′)
(2.16)

Ω̈ =
−Ω̇(2Ω3C ′ + 6CΩ2)− Ω̇2(3I ′ + ΩI ′′)

(2I + ΩI ′).
(2.17)

After some algebra, it is easy to show that the expression of the braking index as a

function of angular velocity reads

n(Ω) =
ΩΩ̈

Ω̇2
= 3−

(3ΩI ′ + Ω2I ′′)

(2I + ΩI ′)
+

C ′Ω

C
. (2.18)

We note that the magnetic dipole moment of the non-spherical pulsar may, in

principle, also change with frequency. Estimation of this effect would require detailed
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knowledge of the origin and distribution of the magnetohydrodynamics of the star,

which is lacking. We therefore ignore such considerations here and restrict ourselves

to analysis of the two effects described.

In the case of the MoI dominated high frequency regime, we hold C constant. We

will return in the next chapter to this equation for the low frequency calculations in

which we hold I constant, and allow C to change through migrating α as shown in

Lyne et al. (2013).

2.3 Calculation method

It has so far been standard practice to adopt the canonical 1.4M⊙ with a radius

∼ 10 km in calculations of the braking index. In this work, which includes frequency

dependent MoI and varying MB, we require the dynamic macro-properties of pulsars

to be included in the calculation of the braking index. For this reason, it is necessary to

employ physically realistic equations of state (EoS) in order to calculate the required

neutron star properties. Rather than strictly use the canonical values, we employ

calculated neutron star properties that are dependent on the structure of a particular

EoS. In order to acquire the neutron star macro-properties, we solve the equations of

motion of rotating stars with realistic EoS using two different numerical methods.

We test the modified braking index model using four physical EoS’s. The EoS

for neutron stars comes from essentially two main regimes; the high density core

and the relatively low density crust. The EoS’s from each region within the neutron

star are calculated independently, and then connected continuously over the energy

threshold between the two regions. In some cases, the cores of neutron stars can reach

central densities of between 3 to 10 times the density of atomic nuclei. Ordinary

nuclear matter consisting of nucleons and leptons is compressed so much under

these conditions that exotic particles, such as heavy strange baryons and mesons

may appear, and the occurrence of the hadron-quark phase transition cannot be

excluded. For these reasons the EoS of the neutron star core is almost completely
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unknown. In this work, we have chosen four EoS’s which have been shown to reliably

predict observed neutron star properties, and represent a reasonable approximation

to behavior of high density matter.

2.3.1 The codes

The PRNS9 code, developed by Weber (1999, 2013), is based on a perturbative ap-

proach to rotation of spherical objects. Hartle and Thorne (1968) first approximated

this effect using a perturbative expansion of the star’s properties up to the second

order in star’s angular velocity, assuming a slow rotating star. In later work, a third

order term in angular velocity has been included (Hartle and Thorne, 1973). The

third order correction enters into the expression for the change of moment of inertia

as a function of angular velocity (see Hartle and Thorne (1973)) studied in this work.

This approximation was implemented by Weber, with the addition of self-consistency

conditions, in the PRNS9 code.

To ensure the reliability of the PRNS9 code results, we also used the RPN code.

This code by Rodrigo Negreiros (Negreiros, 2012) is based on a publicly available

algorithm, RNS, developed by Stergioulas and J. L. Friedman (1995). The equations

of motion are derived directly from Einstein’s equations, following the Cook, Shapiro,

and Teukolsky approach (Cook et al., 1992), described in detail in Komatsu et al.

(1989). Both codes are applicable to stars rotating with all frequencies up to the

Kepler limit.

A comparison of the results of the two codes is demonstrated in Figure 2.1 which

shows MoI as a function of frequency for a pulsar with the QMC700 EoS and MB =

2.0 M⊙ (see Section 2.3.2). They differ most, but by less than 10%, as the Kepler

frequency is approached. This difference has no consequence in practical application

as no pulsars are known to rotate near Kepler frequencies, and we can assume all

pulsars considered here are rotating well below their mass shedding limit (see Table 2.1

for EoS and MB used in this paper). The small difference at near zero frequency
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(about 1.25%), due to the difference in behavior of the two low density EoS’s (see

Section 2.3.2), is negligible in the context of calculating the neutron star macro-

properties used in this work.
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Figure 2.1: (Color on-line) MoI as a function of frequency for a pulsar with MB =
2.0 M⊙ as calculated with both RPN and PRNS9 numerical codes.

Unless stated otherwise, we present the PRNS9 code results as this code has an

output that is set up to readily provide calculation results of some observables that

are needed in our study (see Sec 2.4), data not initially available in the RPN code

output. This choice is purely for convenience of generating informative plots easily

from the data.
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Table 2.1: Kepler frequencies in Hz for EoS’s and MB/M⊙ used in this work.

EoS/MB 1.0 1.5 2.0 2.2
KDE0v1 820 1024 1230 1327
NRAPR 778 985 1198 1312
QMC700 745 888 1017 1070
HV 612 761 908 985

2.3.2 The Equation of State

An essential input to the calculation of macroscopic properties of rotating neutron

stars is the EoS. The EoS is constructed for two physically different regimes, the high

density core (composed of uniform nuclear matter) and the relatively low density

crust (composed of nuclei). Each EoS, representing the two regions, is constructed

independently, and then smoothly matched over the threshold density marking the

transition from crust to core.

The microscopic composition of high density matter in the cores of neutron stars

is not well understood. We have chosen two EoS, which assume that the core is made

of uniform nuclear matter consisting of nucleons only, KDE0v1 (Agrawal et al., 2005)

and NRAPR (Steiner et al., 2005). These EoS were selected by Dutra et al. (2012)

as being among the very few which satisfied an extensive set of experimental and

observational constraints on properties of high density matter. Dutra et al. tested

240 parameterizations of the non-relativistic effective Skyrme interactions for their

performance in predicting various properties of nuclear matter. They found that

only a small set of the parameterizations satisfied all the known experimental and

observational constraints. Strictly speaking the Skyrme effective interaction is a low

momentum expansion of the nuclear force and may be questionable at densities higher

than about 3 times nuclear saturation density. However, some of the neutron star

models used in this work have low maximum masses and it is possible that the central

densities do not exceed the limit of validity of the Skyrme force. In addition to the

nucleon-only EoS, we use two other realistic EoS which include the heavy strange

baryons (hyperons) as well as nucleons. The QMC700 EoS is derived in the framework
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of the Quark-Meson-Coupling (QMC) model (Guichon et al., 2006; Stone et al., 2007),

and the Hartree V (HV) EoS (Weber and Weigel, 1989) is based on a relativistic

mean-field theory of nuclear forces.

The maximum mass of a static star, calculated using the Tolman-Oppenheimer-

Volkoff (TOV) equation, is 1.96, 1.93, 1.98, and 1.98 M⊙ for KDE0v1, NRAPR,

QMC700, and HV, respectively, which is close to the gravitational mass of the heaviest

known neutron stars (Demorest et al., 2010; Antoniadis et al., 2013). The EoS are

illustrated in Figure 2.2, which shows pressure as a function of energy density ǫ in

units of nuclear saturation energy density ǫ0 = 140 MeV/fm3. We observe that the

pressure increases as a function of energy density almost monotonically for KDE0v1,

NRAPR, and HV, whereas QMC700 EoS predicts a change in the rate of increase

at about 4 ǫ0. This change, and the subsequent softening of the EoS, happens at

the transition energy density marking the threshold for the appearance of hyperons

in the matter. Such a change is not apparent in the HV EoS. The main reason for

the difference between the two hyperonic models is that the QMC700 distinguishes

between the nucleon-nucleon and nucleon-hyperon interactions (neglecting the poorly

known hyperon-hyperon interaction), whereas the HV model uses a universal set of

parameters for all hadrons. Inclusion of both the QMC700 and HV EoS in this work

reflects the uncertainty in the theory of dense matter in the cores of neutron stars.

The high density EoS (KDE0v1, NRAPR, HV and QMC700) are smoothly

matched to the low density EoS at the threshold near nuclear energy density. For

the different numerical codes, it was necessary to use slightly different low density

EoS. For the RPN neutron star models, the low density EoS is given by Baym-Bethe-

Pethick (see Baym et al. (1971a) and Table 5 in Baym et al. (1971b)) at about 0.1

fm−3, augmented by Baym-Pethick-Sutherland (Baym et al., 1971b) at about 0.0001

fm−3, going down to ∼ 6.0× 10−12 fm−3. For the PRNS9 neutron star models, the

EoS is matched to the Harrison-Wheeler (Harrison and Wheeler, 1965), taken for the

outer crust of the star, and Negele-Vautherin (Negele and Vautherin, 1973) equation

of state for the inner crust. The reason for this difference is purely a matter of easing
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Figure 2.2: (Color on-line) Pressure vs energy density ǫ (in units of the energy
density of symmetric nuclear matter at saturation ǫ0) as predicted by the four EoS’s
used in this work.
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the numerical calculations within the architecture of each code, and the neutron star

macro-properties are not affected by these different low density EoS in the context of

the present work.

2.4 Results and discussion

As detailed in the previous section, the calculation of the value of the braking index

as a function of frequency has been done for a multiple combination of codes, EoS,

baryonic masses, and changing I of the rotating star. We have also included an

effect that mimics possible superfluid conditions thought to exist in the inner crust

and core of the star. In this section, we illustrate our findings by showing typical

representative results, and discuss some deviation from them if appropriate. Unless

stated otherwise, the example EoS used in the figures is arbitrarily chosen to be

QMC700, and the neutron star modeling code in use is PRNS9.

2.4.1 Braking index with frequency dependent MoI

Figure 2.3 shows the braking index as a function of frequency as calculated in the

derivation introduced in Section 2.2.1 where C is considered to be constant. The

braking index curve deviates from the canonical value of n = 3 as a function of

frequency. From the curve, we see that deviation from n = 3 is highest toward Kepler

frequency, and approaches the value of three at low frequency.

As part of the attempt to realize the full range of the dynamical braking index, we

looked systematically at the contribution by each individual EoS. Figure 2.4 gives an

example of the braking curve, as calculated by using PRNS9 code for a star with 2.0

M⊙ baryonic mass. When Figure 2.4 and Figure 2.2 are compared side-by-side, a clear

correlation between EoS stiffness, and braking index curve can be seen. Softer EoS’s

yield a lower braking index as a function of frequency, but also only support lower

mass objects as a function of central energy density. The softer EoS, by definition,
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Figure 2.3: (Color on-line) Braking index as a function of frequency calculated using
the PRNS9 code, for a pulsar of 2.0 M⊙ baryonic mass with the QMC700 EoS with
C constant (see text for more explanation).
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Figure 2.4: (Color on-line) Braking index as a function of frequency calculated for
a pulsar with MB = 2.0 M⊙ with all EoS’s adopted in this work.

has less response in pressure for increasing density, thus the star is more deformable,

but supports less mass against gravitational collapse.

Another important aspect of this study results from varying the rest mass of

pulsars in the calculations. For each EoS, and for all dynamic conditions, we have

tested a range of baryonic rest mass. The effect of varying mass for a single EoS

calculated in the PRNS9 code is shown in Figure 2.5. The braking index range is

related to rest mass in that the lowest mass pulsars see the largest change as a function

of frequency. In order to show the full extent that the braking curve changes with

frequency, we started at a relatively high baryonic mass of 2.2 M⊙, which represents

a roughly 2.0 M⊙ (gravitational mass) neutron star, and tested our model down to
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1.0 M⊙ baryonic mass, which represents an object with a central energy density close

to that of normal nuclear matter, and very low mass. This range of masses covers the

mass spectrum of known neutron star observations, and is consistent with the limits

on mass in neutron star theory (limited, in the upper region, by the physical EoS,

and in the lower region by the stellar evolution that resuts in the neutron star).
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Figure 2.5: (Color on-line) Braking index as a function of frequency calculated of
pulsars with MB = 1.0 - 2.2 M⊙.

As a general feature, we find that any appreciable deviation of the braking index

from the generic value n = 3 is observed only at rotational frequencies higher than

about 250 Hz. The sensitivity of this deviation to the EoS and MB is demonstrated in

Figures 2.4–2.5. As can be seen in Figure 2.4, the biggest change in the braking index

of an MB = 2.0 M⊙ pulsar is predicted by the HV EoS, followed by the QMC700,
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reaching ∼ values 1.75 and 2.15 at 750 Hz, respectively. The two nucleon-only EoS,

KDE0v1 and NRAPR, behave in a very similar way and predict a larger value of

(n = 2.5) at this frequency. These trends can be directly related to the properties

of the EoS. Figure 2.5 shows the sensitivity to MB for the QMC700 EoS. The effect

clearly increases with decreasing MB.

We recall that the stiffness/softness of the EoS relates to the rate of change of

pressure with changing energy density ǫ. For each EoS, the frequency dependent ǫ is

given in Table 2.2. Using Figure 2.2 we obtain the corresponding pressures. Figure 2.6

plots the pressure vs ǫ relation for each EoS, the slope indicating the stiffness/softness

in each case. The maximum change in the braking index in Fig. 2.4, observed for the

HV EoS, is seen to be associated with the smallest change in pressure with increasing

ǫ, i.e., the largest softness. The stiffest EoS, KDE0v1 and NRAPR, predict the

smallest response to the pulsar’s rotational deformation. This conclusion is further

supported by results shown in Figure 2.5. Pulsars with the lowest MB, governed by

the softest EoS, exhibit the largest change in the braking index at high frequency.

The deformation of the star, governed by EoS stiffness and stellar mass, is discussed

in greater detail in 2.4.2.

2.4.2 Superfluidity

The effects demonstrated in Figures 2.4–2.5 were calculated assuming that the

whole body of a pulsar contributes to the total (core+crust) MoI. However, some

theories suggest the conditions inside a pulsar are consistent with the presence of

superfluid/superconducting matter, both in the crust and in the core (Sedrakian

and Cordes, 1998; Ho and Andersson, 2012; Page et al., 2014; Hooker et al., 2013).

Superfluid material would not contribute to the change in rotation of the star thus

reducing the MoI.

In this work, we consider an extreme case in which the whole contribution of the

core to the total MoI is removed. This scenario could be realized, for example, if either
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Figure 2.6: (Color on-line) Pressure as a function central density of a pulsar with
MB = 2.0 M⊙, rotating with frequencies decreasing from the Kepler limit to zero as
predicted by the four EoS’s used in this work. Relation between the central density
and frequency is given in Table 1.1. For more explanation see the text.
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Table 2.2: Central energy density (in units of the ǫ0 ) of a pulsar with HV, QMC700,
NRAPR, KDE0v1 EoS and MB = 2.0 M⊙ as a function of decreasing rotational
frequency. For more explanation see text.

Frequency [Hz] HV QMC700 NRAPR KDE0v1
1200 − − 5.04 5.09
1100 − − 5.23 5.26
1000 − 3.05 5.40 5.41
900 3.32 3.14 5.57 5.55
800 3.54 3.22 5.72 5.68
700 3.75 3.30 5.84 5.80
600 3.94 3.36 5.96 5.90
500 4.11 3.43 6.06 5.98
400 4.30 3.48 6.15 6.06
300 4.40 3.52 6.21 6.11
200 4.47 3.54 6.25 6.15
100 4.52 3.56 6.28 6.17
0 4.54 3.57 6.29 6.18

the whole core is superfluid, or there is a layer of superfluid material between the core

and the inner crust of the star, preventing any angular momentum transfer between

the core and the crust. Either scenario simply results in removal of the contribution

of the core to the MoI. To model this effect, it was necessary to locate the transition

between the two phases of neutron star matter, which is assumed to occur roughly

at 120 MeV/fm3. The corresponding pressure is dependent on the EoS and is used

to locate the physical position of the transition along the polar and equatorial radii.

The results are schematically illustrated in Figure 2.7, which shows the proportion

of the core (equatorial) radius in a static star and a star rotating at an arbitrarily

chosen frequency of 600 Hz as a function of MB, as predicted by the KDE0v1 EoS. We

observe that the proportion is different for a static and rotating star, mainly because

of the varying shape of the star. The expansion (compression) along the equatorial

(polar) direction with respect to the rotational axis leads to larger deformation of the

less dense crust than that of the denser core.

It is worth looking into the frequency dependent changes in crust/core behavior

of the pulsars which explains the result in Figure 2.7. For each individual star, the
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Figure 2.7: (Color on-line) Percentage of the core in a static star (by mass) and a
star rotating at 600 Hz as a function of MB. For more explanation see the text.

total ratio of crust/core material is governed by the EoS and the baryonic mass. For

a given EoS, the radial percent of core in the star goes up as mass increases, and for

a given mass, the percent increases with increasing stiffness of the EoS. The relative

pressures of each EoS at each given mass dictates the transition energy where the

crust and core regions meet. For example, the relatively soft HV EoS transitions

from crust to core at higher pressure than the others, thus resulting in a transition

deeper within the star. The remaining EoS are similar in behavior at low density, but

the softening of the QMC700 EoS is evident at the higher masses where the onset of

hyperons starts to soften the EoS. The initial crust/core ratio of a given pulsar is very

important to the effects of removal of the core from MoI. As the star rotates, we find
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that the crust deforms significantly more than the core. Therefore, stars with larger

fractions of their mass in the core see less overall deformation and a larger effect from

core removal, and stars with less massive cores see more overall deformation and a

noticeably smaller effect of core removal.

We calculate the ratio of core to crust material along the radius of the star. We

make the assumption that nuclear saturation density is roughly 120 MeV/fm3, and

that this represents the transition from ordinary nuclear matter in the crust to the

super-dense core. A close view of the EoS, near this transition density, is shown

in Figure 2.8 where we can see the relative differences in pressure at the crust/core

interface (120 MeV). Each EoS has a corresponding pressure at the given energy

density which represents a position, in the star, along the radius. In this way we are

able to estimate the physical position within the star, along the radius, where the core

ends and the crust begins. This position, dependent on the mass of the star and the

EoS, is initially calculated for a static star which is then allowed to rotate to arbitrary

frequencies, and calculated again. The results of this calculation are described below.

Figure 2.9 shows the percentage of core in non-rotating neutron stars by mass for

each EoS. From the figure it is clear that the higher mass objects have a much higher

percentage of core material versus crust, and this is to be expected. There exists a

lower limit for rest mass below which the entire star will consist of crust material,

though it is uncertain if neutron stars of this low mass can be formed, and the star

approaches some upper limit where it consists mostly of core material at higher mass.

A plot of the evolution of the percentage of core material along the polar and

equatorial radii, by comparison, is shown in Figure 2.10, using the HV EoS. It is clear

that most of the change in the percentage of core material occurs equatorially. The

polar composition by radius remains relatively constant. This implies that while the

total polar radius shrinks with rotation, this change occurs predominatly in the crust

rather than in the core. This is consistent with the equatorial radial change which

gets larger with rotation, and most of the increase comes in the crust. We see that
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Figure 2.8: The four physical EoS’s used in this study. We show the behavior of
each EoS around the crust/core transition density of 120 MeV/fm3.

the star gets more oblate with rotation as seen from the surface, but the core remains

essentially spherical.

What can be taken from Figures 2.9, and 2.10 is that when the star spins up,

the percentage of core material along the radial axis decreases slightly. This decrease

is more significant at lower masses. Physically, rotation provides effective pressure

which reduces density and hence mass in the nuclear matter region while the star is

deformed from a (static) sphere. As the equatorial radius gets larger, the portion of

radius that is core material is not increasing as fast as the total star, and hence there

is more crust material, so the percentage of core is reduced. At higher mass, the initial

percentage of core is much higher, and the effects of rotation are less significant in

terms of increasing crust material along the equator. We see that the crust material

deforms much more readily than the core.
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Figure 2.9: Percent of star that is core material by mass for non-rotating stars.

The deformation of the star away from spherical, for the arbitrarily chosen

frequency of 600Hz, is shown in Figure 2.11. It is clear that the lowest mass stars

see the highest amount of surface deformation at a given frequency. The deformation

clearly relates to the percent of core material as shown in Figure 2.9. At a given

frequency, we can conclude that the stars with the highest amount of crust material

by percentage will see significantly more deformation than stars with the highest

amount of core material by percentage.

The percentage reduction in moment of inertia by mass is illustrative of the

crust/core relation. From the preceding data, we see that the stars with the lowest

amount of core material are more deformed at lower frequencies than their high

percentage core counterparts. In removing the core from the contribution to angular

momentum, we see this difference manifest in two ways. For lighter stars, with a lower
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Figure 2.10: Percent of star that is core material by mass comparison between
static, and rotating models where both polar and equatorial radius are considered.

percent of core material, there is larger deformation due to the higher amount of crust

material, and the removal of the core has less impact on the total mass. Therefore,

the reduction of moment of inertia is less. Conversely, the higher mass stars, with

a high percentage of core material, will deform less at the same frequency, and the

removal of the core has a high impact on the reduction of total mass contributing to

angular momentum. From these considerations, it is clear that the removal of the

core, at a given frequency, will reduce the moment of inertia much more significantly

for stars with higher masses, although the reduction of braking index, due to changes

in MoI, is less significant for heavy stars than for light ones.
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Figure 2.11: Percent of deformation away from spherical at 600Hz.

2.4.3 Core elimination

As stated above, we have included a phenomenological superfluid effect in order

to further reduce the braking index curve, where there exists a latent portion of

superfluid material in the inner crust of neutron stars that does not contribute to the

moment of inertia, and hence acts as an angular momentum reservoir. Assuming this

is the case, or that there is some amount of superfluidity in the core, we consider an

extreme version of this effect where there exists a superfluid barrier in the crust/core

region which disallows the exchange of angular momentum. In this case, the MoI is

modeled for the crust only, effectively lowering the overall I as a function of frequency.

We see in Figure 2.12 an example for a single modeled EoS, at a given constant baryon
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mass, where we see two curves for moment of inertia. The solid line is our original

calculation, and the dashed line is a calculation of only the moment of inertia coming

from the crust, where we are effectively allowing no momentum exchange between

the crust and core of the star.
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Figure 2.12: (Color on-line) Total (crust and core) and the crust-only MoI as a
function of frequency, calculated for a pulsar with MB = 1.0 M⊙.

In Figure 2.13, we have an example of how the imposed superfluid condition

reduces the braking index curves in this work. We illustrate here the effects of reducing

the baryonic mass, and then the further reduction that comes from the imposition of

the superfluid effect. The highest overall effect comes from the smallest mass pulsars

in this study because of the reasons described above. It should be noted that the

reduction of the braking index of the crusty-only 2.2M⊙ star falls very close to the
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Figure 2.13: (Color on-line) We show here the effect of eliminating the core angular
momentum from the calculation for the simulated superfluid condition. This effect is
insignificant below about 150 Hz.

1.0M⊙ line with total MoI. Thus the overall deviation in braking is largest for the

small mass star, the relative reduction is larger for the high mass star as predicted

above.

We represent in Figure 2.14 the resulting braking index curves obtained, for a

single EoS (QMC700) at a given constant baryon mass, with changing MoI and the

simulated superfluid effect. From Figure 2.14, it should be clear how each step reduces

the curve to lower values. This lower limit provides the boundary for the full range

of braking index as a function of frequency while keeping the inclination angle α, and

magnetic field strength constant.

Elimination of the core contribution can lead to a dramatic lowering of the total

MoI by more than a factor of three, as shown, for example, in Figure 2.12 for the
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Figure 2.14: (Color on-line) Braking index as a function of frequency calculated
with PRNS9 code and QMC700 EoS for a neutron star with 1.0 M⊙ baryonic mass.
This is similar to Figure 2.3, but now with the inclusion of the curve with the core
angular momentum removed.

1.0 M⊙ baryon mass and the QMC700 EoS. The difference between the total and

crust-only MoI shows a weak frequency dependence with a slight increase above

roughly 600 Hz. In turn, the reduction of the MoI by removal of the core contribution

leads to additional changes in the braking index on top of the changes due to the

frequency dependent MoI (see Figure 2.5) as shown in Figure 2.15. This change is,

as expected, larger for higher mass stars that contain a more significant proportion

of dense core material than for lower mass stars that are more crust-like throughout.

For the purpose of this work, we assumed that there is sufficient superfluid material

located in the transition region between the crust and core of the star to disallow

exchange of angular momentum, but made no assumption as to the superfluidity (or
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Figure 2.15: (Color on-line). ∆ n represents the difference in braking index as a
function of frequency between stars with (see Fig. 2.5) and without core contribution
to the MoI. Each curve is displayed up to the Kepler frequency of the star.

not) of the neutron star as a whole. The effects reported here should be taken as

illustrative rather than definitive of the possible effects of superfluidity.

2.5 Summary

The variation of the braking index of isolated rotating neutron stars of mass MB =

1.0, 1.5, 2.0, and 2.2 M⊙ with rotational frequency from zero to the Kepler limit

within the MDR model with frequency dependent MoI has been investigated. The

microphysics of the star was included through utilizing realistic EoS of the pulsar

50



matter. An illustration of the possible effect of superfluidity in the star core has been

included in the study.

Compiling the models constructed from every condition that can change the MoI

as explained above, along with the simulated superfluid condition, we get a definitive

range on the braking index curve as a function of frequency. The maximum change

in the braking index is obtained with the QMC700 EoS and 1.0 M⊙; the least effect

is found for KDE0v1 at 2.2 M⊙. Figure 2.16 represents the upper and lower braking

index curves achieved by our model for both numerical neutron star codes. The lower

limit is the result of allowing a changing MoI, for the softest equation of state, at

the lowest mass, including the phenomenological superfluid effect, while keeping the

surface magnetic field strength and inclination angle constant. What results from

our calculations is a braking index curve that is relatively much lower than the one

described by a simple dipole torque acting with static properties on a canonical mass

neutron star. However, this reduction is realized only at frequencies that are some

significant fraction of Kepler frequency, and/or at very low MB. At frequencies closer

to those observed for pulsars with a well documented braking index, the reduction

away from n = 3 is negligible (see Chapter 3).

The conditions used so far in this study have reduced the braking index

significantly from the canonical value of n = 3, but, as expected, have failed to

accurately model known observations as stated above. Most of the effects explored

have a large effect only at the high frequencies usually associated with very young,

or binary pulsars, and do not recreate the observed conditions of braking index for

isolated pulsars rotating at low frequencies. The conditions used thus far show the

effects of rotational dynamics on MDR braking index, but all reliable observations

are seen at low frequencies where the effects are negligible. While agreement with

observation is strictly not met, we gain some insight into the high frequency behavior

of braking index in the MDR model.

In order to show the importance of an additional changing variable in the MDR

model, we calculate the amount of deformation in the rotating star, and plot it
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Figure 2.16: (Color on-line) Lower and upper limits on values of the braking index
as a function of frequency, including results from both numerical codes, all EoS’s,
MB, and the superfluid condition. The (yellow) shaded area between the two lines
defines the location of all results within the limits. The pulsar with baryonic MB =
2.2 M⊙ and the KDE0v1 EoS has the highest Kepler frequency (see Table 2.2) and
defines the frequency limit in this work.

(normalized to 3 for comparison) along side the changing braking index as a function

of frequency in Figure 2.17. We see that over a range of about 150 Hz, the star remains

spherical within about 1.2%, while the braking index stays within about 2% of the

canonical value, n = 3. This is important for two reasons. First, the MDR model is

based on a spherical object, and large deformation should complicate the magnetic

field. Second, we see that the changing MoI in the MDR model has negligible effect

at this range of frequency which is also much higher than the frequencies seen in the

reliable observations shown in Table 1.1.
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Figure 2.17: (Color on-line) The lower limit of the braking index (see Figure 2.16)
as a function of frequency (solid line) compared with the ratio between polar (Rp) and
equatorial radii (Req), normalized to three, which determines deformation of the star.
The difference between the two lines represents a correlation between deviations of the
braking index from n = 3 and deformation for a 1.0 M⊙ pulsar rotating at frequencies
below 160 Hz (notice the expanded y-scale). It is seen that the shape deformation,
even for this most deformable star, is small at these frequencies and quite unable to
reproduce the observed range of braking indices.
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2.6 Conclusions and outlook

We calculated models of the braking index of rotating neutron stars with constant

baryonic mass within the framework of the MDR assumption. We allowed rotational

frequencies from zero to the specific Kepler frequency defined from the central energy

density of each tested pulsar. We used four different, physically realistic, EoS, two

different numerical codes, and the baryonic rest mass was set over the range of MB =

1.0 M⊙ – 2.2 M⊙. We calculated properties of the rotating star as functions of

frequency, and used this data to calculate the braking index as a function of frequency

in an attempt to examine the full range of the dynamical braking index.

At frequencies in the range of reliable pulsar braking index observations, our

dynamical study shows that the canonical value of n = 3 prevails in the framework of

MDR. Our results show the largest deviation from n = 3 at frequencies approaching

a significant fraction of Kepler frequency for all model improvements which maintain

constant α and magnetic field strength. These results show a very high dependence on

the mass of pulsars, and very good agreement between all four equations of state, and

between both numerical codes, especially at low frequencies. The lowest braking index

curves, occurring for pulsars with low baryonic masses, are not showing deviation from

n = 3 at frequencies less than 160 Hz, which is highly inconsistent with observed

braking index values.

In the model of isolated pulsars used in this work, the rate of change in rotational

frequency of a spherical magnetized pulsar in vacuo depends on three factors: the MoI

(constant or frequency dependent), the magnitude of the magnetic dipole moment,

and the inclination angle between the magnetic and rotational axes. The braking

index is related to the rate of change of these observables. We considered effects due

to changes to the MoI and its variation, and showed that any significant deviation

from the n = 3 value appears only at frequencies much higher than the frequency

range of observed isolated pulsars with reliable braking index measurements. As MoI

is related to the shape of the star, this result is consistent with the assumption of
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the simple MDR model that the pulsar is spherical at low frequencies. We show in

Figure 2.17 the correlation between the braking index and the deformation of the star

in terms of the polar to equatorial radii ratio Rp/Req (normalized to 3 for display).

It follows that changes in MoI alone cannot explain the observed deviation of the

braking index at low frequencies from the simple MDR model predictions. If the

MDR model is to be sustained, attention has to be paid to changes in the magnitude

magnetic dipole moment and/or in the inclination angle. As stated above, the lack

of knowledge of the origin and properties of the pulsar’s magnetic field makes the

former task difficult but the latter may be worth pursuing, particularly in view of the

recent work by Lyne et al. (2013, 2015).

Finally, we have shown that the simple exclusion of the core due to superfluidity,

or some superfluid barrier between the crust and core, does not have a strong effect on

braking in the frequency range of observed isolated pulsars. Further development of

the idea of a macroscopic description of superfluidity would be interesting. Changes

to the magnetic field due to superfluidity and possible magnetic field expulsion, and

a consequential increase in surface magnetic field strength B, could also be usefully

explored. It is important to note that our simulation only accounts for the removal of

core contribution to the rotation, and does not account for the rate of change of the

mass contribution as a function of frequency due to the onset of superfluidity. Such

considerations may also be important, even at low frequencies.

We conclude that the phenomenological investigation of superfluidity, simulated

by eliminating the neutron star core from the total angular momentum of the pulsar,

had a measurable effect at high frequencies. This may imply that superfluidity is

a microscopic property inherent in the EoS, and has no significant influence on the

moment of inertia of the star over long time periods. It should be noted, however,

that we are only simulating a condition from some ’frozen in’ superfluidity, and have

not modeled dynamic superfluid differences in the interior of the star. Such a model

may have a much larger impact on braking index as a function of time. This may be
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implemented, for example, in the context of cooling over the characteristic age of the

star.
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Chapter 3

Low Frequency Dynamical MDR

The results from Chapter 2 show conclusively that changes in the moment of inertia

as a function of frequency for a rotating pulsar, within the simple MDR model,

cannot explain the braking indices obtained from measurement (Hamil et al., 2015).

This is because the most reliable braking index data is limited to frequencies at or

below around 30 Hz, where the moment of inertia of the star is essentially constant.

Therefore, we include a possible constraint on the braking index model, at low

frequencies, by allowing an increase in the angle of inclination between the magnetic

moment and the axis of rotation.

Changes in the moment of inertia as a function of frequency, within the MDR

model, do not explain the observed braking indices at frequencies below about 150 Hz.

This is because the changes in shape, and thus the moment of inertia of the star,

is negligible at low frequencies. In this chapter, we explore the MDR model with

variable α, and present a parameter dependent set of solutions which would predict

the braking index correctly if variation in α was observed. Inspired by the suggestion

from Lyne et al. of possible observational evidence for a magnetic dipole migrating

away from the rotation axis, we develop a toy model which shows that the magnetic

field in the pulsar can be described, to first approximation, by two interacting dipoles,

fixed to a finite length line between their centers, but allowed to rotate relative to one
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another. Such a system generates enough magnetic energy to slow down the pulsar,

by allowing α to increase with time.

The evolution of the angle of inclination between the rotational axis of the star

and the dipole has been considered with interesting results. Lyne et al. investigated

the effects of an increasing inclination angle on braking index (Lyne et al., 2015).

It has been assumed that, over time, the magnetic moment should align itself with

the axis of rotation, but there is some observational evidence for the angle to be

migrating away from the rotational axis, although the authors stress that this idea is

only one possible explanation of their observation (Lyne et al., 2015). Assuming this

is the case, it provides a means by which the braking index can be affected at low

frequencies. A rate of change in the inclination angle α will affect the sin2 α term in

the MDR torque in Eq. 2.3, and results in a braking index that matches observation.

Lyne et al., used their predicted change in α from observation, α̇ = 0.6±0.03 (degrees

per century), and showed that this will reproduce the measured braking index value

for the Crab pulsar if α = 450.

So far, we have focused on finding the full dynamical range of the MDR model

yielding a maximum physically meaningful deviation from the canonical value of the

braking index, n = 3, as a function of rotational velocity. The effects of variation in

the MoI of a rotating pulsar are only applicable to very fast rotating pulsars. For the

low frequency region of the braking index curve, MoI in the MDR model is essentially

constant, which leads to the canonical n = 3 for any object rotating at less than

about 150 Hz.

We now investigate the consequence of variable α, and derive an expression for

the energy loss by the rotating pulsar and its braking index under these conditions.

We also develop a toy model of the pulsar magnetic field represented, to a first

approximation, by two interacting dipoles. This model allows for α increasing with

time, as measured from the axis of rotation, which results in recovery of the observed

braking index values shown in Table 1.1 (Hamil and Stone, 2015).
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3.1 The modification for changing alpha

As shown earlier, the energy loss by a rotating body with a constant MoI is

proportional to a power of Ω. This relation leads to the power law Ω̇ = -K Ωn

where n is the braking index, equal to the ratio

n =
ΩΩ̈

Ω̇2
. (3.1)

Keeping with our investigation of the MDR model, we must revisit the dynamical

derivation of the braking index. The derivation is the same as in Chapter 2, but now

we consider the low-frequency side of the problem as defined in Section 1.2. We hold

MoI constant, and allow for the physics of the braking mechanism to change with

time (or frequency).

3.1.1 Dynamic extension of the MDR model revisited

As shown in Section 2.2.1, the expression for the braking index in the MDR model

can be modified to include the dynamics of rotation. Taking the time variation of

MoI and magnetic field into account will lead to a dynamical expression for n as a

function of Ω in which we can choose to allow I, C, or both to evolve.

We start again with Eq. 2.10 from Section 2.2.1

d

dt

(

1

2
IΩ2

)

= −CΩ4, (3.2)

where C = 2
3
R6B2sin2α contains the physics of the MDR braking mechanism. As

detailed in Section 2.2.1, we derive a frequency dependent model of the braking index

where either the MoI, or the physics contained in C change with frequency (or time).

There is no reason MoI and the physics should not both change as a function of

frequency, but as explained in Section 1.2, and shown in Chapter 2, we see that
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the MoI dominates the braking index at high frequency, and the changing physics,

whatever they may be, dominate at low frequency.

Continuing from the derivation in Section 2.2.1, we recall the resulting frequency

dependent braking index model for MDR:

n(Ω) =
ΩΩ̈

Ω̇2
= 3−

(3ΩI ′ + Ω2I ′′)

(2I + ΩI ′)
+

C ′Ω

C
. (3.3)

All eight reliable pulsars in Table 1.1 are rotating at frequencies near or below

about 30 Hz, and have braking indices less than n = 3. At these frequencies, there

must be an additional change in the physics to account for the measured braking

index values. In the MDR model, the only physical parameters that can be changing

at these frequencies are the surface field strength B, and angle of inclination between

the magnetic dipole and the rotational axis of the pulsar. We leave out possible

speculation of magnetic field expulsion, and other effects of changing field strength

(Blanford and Romani, 1988; Contopoulos and Spitkovsky, 2006; Zhang and Xiee,

2012; Gourgouliatos and Cumming, 2014; Melatos, 1997), and instead focus on the

evolution of the inclination angle, α in light of the recent work of Lyne et al. (2015,

2013).

Starting from Equation 3.3, we include sin2α for the C′

C
term, while considering

MoI and magnetic field strength to be constant. We find a dependence on α with

frequency which leads to following equation;

n(Ω) = 3 + 2Ω
α′

tanα
, (3.4)

where the angle of inclination α is a function of frequency. For our initial investigation

into changing inclination angle, it is more useful to consider α changing as a function

of time as,

n(α, α̇) = 3 +
2Ω

Ω̇

α̇

tanα
(3.5)
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The resulting calculation from Eq. 3.5 can be compared to the observational value

for α̇ produced in Lyne et al. (2015, 2013).

It is worth mentioning the jerk parameter, m, at this point. The jerk parameter is

similar to the braking index, but evokes the third derivative of rotational velocity,
...
Ω.

In a few cases, the third derivative is known observationally. The jerk parameter can

also be approximated using the braking index if the third derivative is not reliably

known, but it should be noted that this adds no additional information to the braking

index problem. The jerk parameter goes as follows:

m =
Ω2

...
Ω

Ω̇3
. (3.6)

Similar to the treatment of n, we can derive a solution for m using our relations for

Ω and its derivatives to get m as a function of tanα, α̇, and also α̈. The resulting

equation becomes,

m(α, α̇, α̈) = 15 +
9Ω

Ω̇

2α̇

tanα
+

Ω2

Ω̇2

( 2α̇

tan2 α
− 2α̇−

2α̈

tanα

)

, (3.7)

which could be used to further constrain the evolution of α, and set a more precise

relation between α and its derivatives, if α̈ can be found observationally. So far

the third derivatives of rotational frequency are not well established, and the second

derivative of α is not observationally apparent. Therefore, the jerk parameter is not

important in the current work, but may become useful as pulsar observations improve.

3.2 Calculation with alpha

The effects of the time rate of change in α at low frequency (where MoI is constant)

are investigated. In every case, the gravitational mass, radius, and magnetic field

are calculated for a full range of allowed frequencies, starting from low frequencies

which produce a static star, up to the limiting Kepler frequency where a star starts
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to eject mass from its equator. In the case of changing α, all variables in the MDR

mechanism except for the migration of the dipole moment are inconsequential in the

current work. The obtained data is used in determination of the value of the braking

index as a function of α, and α̇, as shown in Section 3.1.1.

We solve for the required change in the inclination angle α by using the braking

index, and its measured values given in Table 1.1. In the MDR model, this allows

the braking index to be matched to observed values at very low frequencies (below

about 150 Hz) where I is approximately constant. This introduces the treatment as

outlined in Section 3.1.1.

We obtain an analytical solution for α̇ by using the known values of Ω, Ω̇, and

the braking index with the only free parameter being tanα. The tanα parameter is

set by the results reported by Lyne et al., where they found it to be tanα = 1, or

α = 450. With this assumption, it is easy to solve for the remaining pulsars with well

known braking indices in order to find α̇ if the conditions were found to be similar to

those observed in the Crab pulsar.

Additionally, it is useful to investigate the relationship between α̇ and tanα for

arbitrary angles between zero and ninety degrees. For each fixed value of n, Ω, and

Ω̇, we plot the solution to α̇, and α, in order to set a parameter that may be used if

any of these values should be seen observationally.

3.3 Changing alpha results

In light of possible observational evidence for the angle α to be migrating away from

the axis of rotation, we show that it provides a means by which the braking index

can be matched with observation at low frequencies. We employ the braking index,

and known values of Ω and Ω̇, to solve for α̇ analytically while assuming conditions

similar to those found in the Crab pulsar by Lyne et al.. We are able to reproduce

the results of Lyne et al. for the Crab pulsar, and obtain results for the remaining

pulsars.
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Table 3.1: Calculated values of α̇ based on the braking index, with the assumed
condition imposed from Lyne et al.that tanα = 1.

Pulsar n α α̇

(Degrees)
(

deg

100yrs

)

PSR B0531+21 (Crab) 2.51±0.01 45 0.56 ± 0.012
PSR B0540−69 2.140±0.009 45 0.739 ± 0.0075
PSR B0833−45 (Vela) 1.4±0.2 45 0.203 ± 0.026
PSR B1509−58 2.837 45 0.15 ± 0.00
PSR J1846−0258 2.16±0.13 45 1.65 ± 0.26
J1833−1034 1.8569±0.0006 45 0.3371 ± .0002
PSR J1119−6127 2.684 45 0.281 ± 0.00
PSR J1734−3333 0.9±0.2 45 0.259 ± 0.025

It can be seen that an analytical solution for α̇ can be obtained by using the known

values of Ω, Ω̇, and the braking index with the only free parameter being tanα. If

tanα is set to tanα = 1, or α = 450, as reported by Lyne et al. for the Crab pulsar,

then it is straight forward to solve for the remaining pulsars from Table 1.1, to find α̇

solutions. The results are presented in Table 3.1 showing reasonable rates of change

in α for all pulsars.

In addition to the above analytical approach, we have employed a numerical

solution to the relation between α and α̇ for arbitrary values of α ranging from

approximately zero to ninety degrees. The resulting curves are given in the upper

part of Figure 3.1. Each curve represents the relation between α̇ and α over the range

of allowed angles, for the individually known values of n, Ω, and Ω̇ pertaining to each

pulsar as given in Table 1.1. The lower part of Figure 3.1 shows the braking index as

a function of α̇/ tanα for the fixed ratio of Ω/Ω̇ pertaining to each individual pulsar.

The curves can be used for determination of α provided the braking index and α̇

would be known simultaneously from observation.

We see from Figure 3.1 that as the dipole moment approaches orthogonality, the

braking index asymptotically approaches zero. This shows that the pulsar may be

eventually killed by increasing α, but a realistic time calculation of this process is

necessary to make such a prediction. The time rate of change of the angle is very
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slow, and only known for the length of our current observation. Therefore we cannot

predict, with any certainty, a correlation between increasing α and the pulsar death

line.

3.4 Toy model of two interacting dipoles

The origin and distribution of the assumed magnetic field of a pulsar, and its

misalignment with respect to the axis of rotation are not well understood. There

is extensive literature on this subject, documenting the complexity of the problem

(see e.g. Spruit (2008); Fujisawa and Kisaka (2014); Potekhin (2014)).

There is very little observational evidence for the existence and intensity of pulsar

magnetic fields. The only “direct” evidence comes in the form of radiation from

pulsars accreting material from a binary partner (Coburn et al., 2003) which has been

associated with cyclotron resonance of electrons orbiting the field lines. The resonance

frequencies correspond to fields of up to (1−4) x 1012 Gauss (Reisenegger, 2003). In

isolated pulsars, the field is usually derived from the relation between the period of

rotation and spin down, assuming MDR, using the formalism detailed in Hamil et al.

(2015) and this work. The values obtained are of the order of 1012 Gauss. Existence of

objects with extremely strong surface magnetic fields, up to 1015−16 Gauss, based on

observation of high energy X-ray and gamma-rays (magnetars) seem to be generally

accepted (Harding and Lai, 2006).

The two principal sources of magnetic field in pulsars most frequently discussed

are the dynamo effect and constituents magnetization. The dynamo theory describes

the process by which a rotating, convecting, and electrically conducting fluid acts

to maintain a magnetic field. It requires kinetic energy, which is provided by the

pulsar rotation, and an internal energy source to drive convective motions within

the fluid (Thompson and Duncan, 1993). Existence of a stable ferromagnetic core

inside the liquid interior of the pulsar has been discussed by many authors in the

past (see e.g. Haensel and Bonazzola (1996) and ref. therein) and has been recently
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Figure 3.1: (Color on-line) Solution of the required rate of change of the inclination
angle between magnetic moment and axis of rotation, for arbitrary angle between
zero and 90 degrees, assuming constant braking index. The eight reliable pulsars are
shown. The second plot shows the value of braking index as a function of the ration
of α̇/ tanα.
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revived (Eto et al., 2013; Hashimoto, 2015). The ferromagnetic material may have a

domain structure which would lead to a magnetic field that is not con-centric with

the rotational axis.

Although the magnetic field inside pulsars is likely a complicated configuration,

it is assumed, to first approximation, to be dominated by a dipolar term. The

dipole explains the observed pulse, and the estimated power radiated due to rotation;

however, there is no intrinsic reason to discount possible additional magnetic fields

that go unseen because they are overwhelmed by the first order observed dipole

radiation. In this work we will consider two dipoles existing within the star. The

first comes from the dynamo effect, and is centered in the star, pinned to the axis

of rotation. The second is a stronger dipole that is the resultant of ferromagnetic

material in the star.

As stated above, the magnetic field in this work will manifest in two different

ways: either by charged particles travelling in a current (dynamo effect), or in the

alignment of many particles, each with dipole moments (ferromagnetism). Both of

these originating conditions can surely exist within neutron stars, and therefore it

is not altogether unreasonable to assume they may co-exist. In this case the dipole

moments of the two configurations may interact in a way that causes one, or both, of

them to migrate toward orthogonality with respect to the axis of rotation. Here we

present a toy model of interacting dipoles which makes a crude first order attempt

to define the possible physics behind the increase in α seen by Lyne et al., which can

account for the braking index of the Crab pulsar.

3.4.1 Potential energy configuration

If we assume that there are two dipoles existing in the neutron star, separated by

some distance r that is held radially fixed at some angle with respect to the axis

of rotation, the potential energy for their interaction can be calculated. We can

conceive of a few configurations which will seek lower energy, and thus one or both of
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the dipoles can rotate, resulting in a lower energy state configuration. We will first

outline the derivation of the energy, and give examples of solutions. Later, we will

speculate as to the different possible configurations and comment on the remaining

physical assumptions required.

In this model, we will define two dipoles, ~m1 and ~m2, which are fixed along a

line, r̂, connecting their centers, and oriented with angles θ1 and θ2, respectively, to

r̂ as illustrated in Figure 3.2. The first dipole, ~m1, represents the dynamo effect,

and is pinned to the center of the star with fixed angle, θ1. The second dipole, ~m2,

is the resultant of the sum of dipole moments in the ferromagnetic material in the

star which is held at fixed distance r, but allowed to rotate through angle θ2. The

motion of ~m2 is also illustrated in Figure 3.2. Next, we will derive an expression for

the potential energy of our two dipole interaction.

Starting with the magnetic field of dipole ~m1,

~B1 =
µ0

4π

1

r3
[3( ~m1 · r̂)r̂ − ~m1], (3.8)

where µ0 is the magnetic permeability of free space, ~m is the magnetic moment of

the dipole, and r̂ is the line from the center of the dipole extending a distance r. The

potential energy of the magnetic dipole with moment, ~m2 in the magnetic field of the

first dipole with magnetic field, ~B1 is given as

U12 = − ~m2 · ~B1, (3.9)

the energy of the interaction between two dipoles reads as

U =
µ0

4π

1

r3
[3( ~m1 · r̂)( ~m2 · r̂)− ~m1 · ~m2]. (3.10)

Now we assume that two dipoles are fixed along a line bisecting both so that each

dipole moment makes an angle θ1 and θ2, with respect to the line. In this case, the
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Figure 3.2: (Color on-line) Example of possible configuration of the magnetic field
interaction inside a neutron star modeled as two simple dipoles. The central dipole
~m1 is held fixed to the center of the star, and ~m2 is offset at a fixed distance defined
by r. The centered dipole is held fixed with angle θ1 with respect to r̂, while the
offset dipole ~m2 is allowed to arbitrarily rotate through angle θ2, also with respect
to r̂. This configuration is exaggerated for illustration, but in the case of the Crab
pulsar, we will assume that the initial and final values for θ2 are very close to zero
(as measured over 100 years by Lyne et al.)
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interaction energy can be worked out as a function of both angles. The energy of the

configuration becomes,

U =
µ0m1m2

4πr3
(sin θ1 sin θ2 − 2 cos θ1 cos θ2). (3.11)

Assuming the interacting dipoles are in some initial configuration, they will progress

over time toward a final configuration as long as the interaction energy has reduced.

There are a few scenarios that we can consider, and it turns out that as long as the

energy allows the scenario, the initial and final configurations of the moments does

not have a large effect on the result. We can start both dipoles parallel to the axis

of rotation, and then let them both migrate toward θ1 = θ2 = 0, or we can hold one

fixed to the axis of rotation while the other is allowed to rotate freely, etc. Because of

the very large magnetic fields associated with pulsars, the change in energy coming

from these different configurations is not significant compared to the product of the

magnitude of magnetic moments m1 and m2 in Eq. 3.11.

The illustration in Figure 3.2 represents the initial and final configuration that we

will explore in this work. The initial configuration has magnetic moment ~m1 pinned

to the center of the star, and ~m2 is allowed to rotate at a fixed distance r from ~m1.

Both moments are initially parallel to the axis of rotation and angles θ1 and θ2 with

respect to r̂. After some time, ~m2 rotates until its angle θ2 has reduced to zero. We

assume, in this model, that ~m2 represents the measured dipole moment in the neutron

star. In this case, α is the angle between ~m2 and the (vertical) axis of rotation. This

way, as θ2 approaches zero, α approaches the initial angle we chose for r̂ with respect

to vertical. Thus we can set the final angle of α by our choice of r̂. In this study, we

will set r̂ at 450 in keeping with the results of Lyne et al..

We now can relate the potential energy of the dipole to the kinetic energy of its

motion. We initially assume that the angle we measure is θ2 in our configuration.

We must assume here that the measured dipole, ~m2, is pinned to some portion of the

material in the star as it rotates. This way, we can estimate the moment of inertia
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as some fraction of the pulsar’s total MoI. This is done, in general, by assuming that

the dipoles are similar enough in motion that they may be approximated by only one

angle, or that one dipole is fixed, so it only facilitates the motion of the other, and

we only have one changing θ. In our model, we consider only the second option, so

θ2 is moving while θ1 is fixed to the rotational axis of the pulsar. Since ~m1 is fixed to

the center of the star, the total kinetic energy involves only the rotating dipole, ~m2.

In the following derivation of the motion of θ2 we note that as θ2 decreases toward r̂,

so too α increases away from the vertical axis of rotation. It is clear that θ̇2 = −α̇.

So we continue with our calculation of θ̇2 below, but understand that the values

obtained will be equivalent in magnitude to the possible α̇ described in Section 3.3.

See section 3.5 for discussion of other possible configurations.

Assuming we are measuring the motion in the limit of one rotating dipole carrying

some portion of the total moment of inertia of the pulsar, we have only one kinetic

energy term. In the following, we consider θ1 to be fixed to the center of the star,

and θ2 is allowed to rotate which results in an expression for θ̇2,

1

2
Iθ̇22 = ∆U = Uf − Ui, (3.12)

where Uf and Ui are the final and initial configurations of the dipole moments

respectively. Eq. 3.12 becomes,

1

2
Iθ̇22 =

µ0m1m2

4πr3
F (3.13)

where,

F = (sin θ1f sin θ2f − 2 cos θ1f cos θ2f )− (sin θ1i sin θ2i − 2 cos θ1i cos θ2i) (3.14)

is a simple function that we define here for ease of calculation.
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Solving for our rotation rate we have an equation for θ̇,

θ̇22 =
2µ0m1m2

4πIr3
F (3.15)

where m1 and m2 are the magnitudes of the dipole moments, I is the moment of

inertia of the rotating portion of the star, and r is the distance between the centers

of the dipoles.

It is convenient to express Eq.3.15 in cgs units:

θ̇22 =
2m1m2

Ir3
F. (3.16)

3.4.2 Calculation of θ̇2

The calculation of Eq. 3.14 can be done in a very straight forward way. We initially

seek any solution which results in a lower energy for the final configuration. These

negative solutions, depending on the initial and final values taken for θ1 and θ2, range

in value from a high value of three and approach the limit of zero if we assume

very little change in the configuration. In light of the Lyne observations, we make

certain assumptions. Firstly, the Lyne observation of the Crab pulse gives the angle

at roughly 450, so we will set the line connecting the two dipoles, r̂, at 450 with

respect to the equator of the star, so both initial angles for each dipole is at 450 with

respect to r̂ (see Figure 3.2). Secondly, we adopt the configuration where one dipole

is pinned to the center of the star, while the second is allowed to rotate carrying some

fraction of the MoI of the star. If θ2 goes to zero, it has moved 450 and sets the

value of F = 0.91. In order to test the Lyne result, however, we require the observed

value for α̇, which sets a total motion of α over 100 yrs which is much smaller than

450. Using the results of Lyne et al. we will assume that the α = 0.785 radians, and

α̇ = 3.32 × 10−12 radians/s. This requires that θ1 is set at 450 with respect to r̂,

but θ2 is initially set to a smaller value corresponding to its motion over 100 yrs as
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measured by Lyne. Using these values, we can obtain the amount of change in α, and

θ2 by extension.

With these considerations, the central dipole is pinned, the line connecting the

two dipoles is at 450 with respect to the axis of rotation, and the second dipole has

moved roughly 0.01 radians over 100 years (note: 100 yrs is the time frame used by

Lyne to calculate α̇). These conditions, valid only for the Crab pulsar, result in the

value of F = 0.00672.

We are now in a position to investigate the parameters required for the dipole

interaction. We start with Eq. 3.16, and rearrange for our known values such that,

m1

r3
=

Iθ̇22
2m2F

(3.17)

where m2 is the dipole moment magnitude of the measured pulse, m1 is the central

dipole magnitude, and r is the distance between the dipole centers. We require that

the value of θ̇2 has the same magnitude as α̇, and that I is on the order of some

fraction of the MoI of the star. We can go one step further by noting that r is some

fraction of the radius R of the pulsar;

m1 =
( r

R

)3 Iθ̇22
2BF

(3.18)

where (r/R)3 is the ratio of the distance between dipoles to the radius of the star,

and B is the magnetic field of the pulsar as calculated in the PṖ diagram.

We are free to choose the values of r, the initial and final angle associated with

the rotating dipole moment, θ2, and the time over which the rotation occurs. We

have chosen reasonable values for these, and included the results in Table 3.2. For

the values calculated, we choose the ending position for the measured dipole moment

to be 450 from the axis of rotation, the value of m2 = 1030 erg/G (from the canonical

B = 1012 G and R = 106 cm), and expect that the time is on the order of the
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Table 3.2: Calculated values of the central dipole moment, m1 with respect to the
allowed change in angle θ2 (α̇), and the distance of moment m2 from the center of
the star. The units are as follows: r[106cm], ∆α [degrees/100yrs], α̇[10−12radians/s],
and m1 [erg/G].

∆α = 0.60 ∆α = 1.00 ∆α = 10.00 ∆α = 25.00 ∆α = 45.00

α̇ = 3.32 α̇ = 5.53 α̇ = 55.3 α̇ = 138 α̇ = 249

r = .0001 0.7369 1.220 10.62 22.19 33.92
r = .001 736.9 1.220× 103 1.062× 104 2.219× 104 3.392× 104

r = .01 7.369× 105 1.220× 106 1.062× 107 2.219× 107 3.392× 107

r = .1 7.369× 108 1.220× 109 1.062× 1010 2.219× 1010 3.392× 1010

r = .2 5.895× 109 9.758× 109 8.492× 1010 1.775× 1011 2.714× 1011

r = .4 4.716× 1010 7.806× 1010 6.794× 1011 1.420× 1012 2.171× 1012

r = .6 1.591× 1011 2.635× 1011 2.293× 1012 4.793× 1012 7.327× 1012

r = .8 3.773× 1011 6.245× 1011 5.435× 1012 1.136× 1013 1.737× 1013

r = .999̄9 7.369× 1011 1.220× 1012 1.062× 1013 2.219× 1013 3.392× 1013

history of pulsar observations, all of which are consistent with the results of Lyne

et al. (2015).

Using the known values for the Crab pulsar in Eq. 3.18, and defining the distance

between the dipole centers on the order of 1 km, we get a value for the centered dipole

moment of about m1 = 7.37×108 erg/G. This represents a very small magnetic dipole

pinned to the center of the star. Depending on the physical parameters of this dipole,

it may have a very small magnetic field which would be undetectable at the surface

of the star compared to the measured dipole field. This calculation can be made for

the remaining pulsars in the data, but the result for the Crab is illustrative of one

possible mechanism for changing α.

From the results shown in Table 3.1, we calculate values of m1 for all eight pulsars.

The results shown in Tables 3.3 and 3.4 are similar to those in Table 3.2, but are

calculated based on the change in angle found in Table 3.1. We have chosen a value

of r that represents a position anywhere within the radius of the star starting from

1 meter all the way to the edge of the star. It is assumed that the resultant dipole

representing the sum of magnetic moments may be arbitrarily centered somewhere

between the center of the star and the crust. We include the asymptotic limit of
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Table 3.3: Part 1: Calculated values of the central dipole moment, m1 with respect
to the allowed change in angle θ2, and the distance of moment m2 from the center
of the star, using the calculated values shown in Table 3.1. The units are as follows:
r[106cm], ∆α [degrees/100yrs], α̇[10−12radians/s], and m1 [erg/G].

PSR B0531+21 PSR B0540-69 PSR B0833-45 PSR B1509-58
∆α = 0.560 ∆α = 0.740 ∆α = 0.200 ∆α = 0.150

α̇ = 3.10 α̇ = 4.09 α̇ = 1.11 α̇ = 0.831

r = .0001 6.882× 10−1 9.054× 10−1 2.473× 10−1 1.857× 10−1

r = .001 6.882× 102 9.054× 102 2.473× 102 1.857× 102

r = .01 6.882× 105 9.054× 105 2.473× 105 1.857× 105

r = .1 6.882× 108 9.054× 108 2.473× 108 1.857× 108

r = .2 5.506× 109 7.243× 109 1.979× 109 1.485× 109

r = .4 4.405× 1010 5.795× 1010 1.583× 1010 1.188× 1010

r = .6 1.487× 1011 1.956× 1011 5.342× 1010 4.010× 1010

r = .8 3.524× 1011 4.636× 1011 1.266× 1011 9.506× 1010

r = .999̄9 6.882× 1011 9.054× 1011 2.473× 1011 1.857× 1011

r = 0.999̄9 for completeness, but realize it is unlikely that a dipole is centered at the

surface of the pulsar. We have shown that, for the results expected in agreement with

the results of Lyne et al., the value of the centered dipole m1, is sufficient to cause the

required rotation, but small enough to go undetected, and is positioned reasonably

inside the radius of the pulsar.

3.5 Discussion

The result shown for the Crab pulsar is for one configuration where every effort was

made to find a realistic scenario. Given the value for α̇, and the assumed parameters

for the Crab (i.e. B = 1012 G, etc.), the result is essentially an upper limit to the

value of the centered dipole moment. This effort is made because it may be difficult to

make the case that a very small centered dipole will have the required effect. There

are additional considerations that must be accounted for, such as conservation of

angular momentum (which leads to a precession of the dipole moment and may be in

the direction of its rotation), that are not accounted for in this work.
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Table 3.4: Part 2: Calculated values of the central dipole moment, m1 with respect
to the allowed change in angle θ2, and the distance of moment m2 from the center
of the star, using the calculated values shown in Table 3.1. The units are as follows:
r[106cm], ∆α [degrees/100yrs], α̇[10−12radians/s], and m1 [erg/G].

PSR J1846-0258 PSR J1833-1034 PSR J1119-6127 PSR J1734-3333
∆α = 1.650 ∆α = 0.340 ∆α = 0.280 ∆α = 0.260

α̇ = 9.13 α̇ = 1.88 α̇ = 1.55 α̇ = 1.44

r = .0001 1.991× 101 4.194× 10−1 3.458× 10−1 3.212× 10−1

r = .001 1.991× 103 4.194× 102 3.458× 102 3.212× 102

r = .01 1.991× 106 4.194× 105 3.458× 105 3.212× 105

r = .1 1.991× 109 4.194× 108 3.458× 108 3.212× 108

r = .2 1.592× 1010 3.355× 109 2.766× 109 2.569× 109

r = .4 1.274× 1011 2.684× 1010 2.213× 1010 2.056× 1010

r = .6 4.299× 1011 9.060× 1010 7.469× 1010 6.938× 1010

r = .8 1.019× 1012 2.148× 1011 1.770× 1011 1.645× 1011

r = .999̄9 1.991× 1012 4.194× 1011 3.458× 1011 3.212× 1011

The interpretation of this particular model is that there is a small dipole field

at the center of the pulsar which is pinned to the axis of rotation. This is possibly

because the dipole is a result of charged fluid rotating in-line with the star. It may

be very small and only generated in the inner core of the star. The second field

may be the sum of all the moments of the ferromagnetic material in the star. The

second field, as far as 100 years ago, is misaligned with rotation almost to 450, and

has migrated very slowly due to interaction with the centered dipole.

The MoI may be thought of as the sum of all of the ”chunks” of magnetic material

(or particles) as they very slowly rotate due to the fixed dipolar field resulting from

the central dynamo. It is important to note here that any material in the star which

contributes to the ferromagnetic dipole moment is also subject to rotational forces.

Coriolis, and centrifugal effects may be important, but are neglected in this work to

a first approximation.

We note that the interpretation can possibly be different. For example, the weaker

field could be frozen into the crust of the star, and the stronger field is pinned in

the superfluid material which may rotate inside the star. The secondary field may
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also come from particles in the magnetosphere which are simply not connected to the

rotation of the star. We assume the scenario described in this thesis, but acknowledge

there may be multiple explanations. We maintain that ferromagnetic moments in a

dynamo induced, centered, dipole field is the most promising description for our toy

model.

3.6 Summary and outlook

In light of recent evidence that the angle of inclination between the magnetic

moment and axis of rotation is migrating toward the equator of the star, we have

investigated how this change might affect the braking index. More specifically, we

have investigated how this change must manifest at low frequencies in order to recover

known observational values for the braking index. We know that the observed braking

indices for which the data is reliable exist only for pulsars whose frequencies are

well below the threshold beyond which rotational effects have any significant impact.

Because of this, we also know there must be a mechanism by which the braking index

can change in the range of frequency where rotational effects are negligible. The

only possibility in the MDR model for such a mechanism is a change in the magnetic

moment. In this case, it is quite interesting that there is observational evidence of

such a change.

We investigated the changing angle α in two ways. We first assumed, for each

pulsar, that conditions shown by Lyne et al. for the Crab are realized. In this way,

we have a value for α as it exists today, along with the known frequency and braking

index, for which we can solve for α̇. In so doing, we have created a table of values

which one may expect to see for each pulsar, assuming that the conditions found by

Lyne et al. for the Crab pulsar are consistent.

Secondly, we can assume that the conditions vary between pulsars, and as such,

the value attained by Lyne for the α of the Crab pulsar is not known in any of the

remaining pulsars in our study. In this case, we have a two variable system with only
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one equation. In order to provide some insight into the possible evolution of α in

each of the pulsars, we allow α to run from approximately zero up to ninety degrees,

and solved for the corresponding values of α̇. This results in a plot representing the

relation between α and α̇ for the pulsars in Table 1.1. Figure 3.1 gives a range of

values which may be expected to be seen upon further analysis of data similar to that

studied in Lyne et al. (2015). For a given α or α̇, one may be able to match data in

our curves. This also gives insight into the behavior of pulsars as α migrates outward.

It can be seen from Figure 3.1 that as the angle increases, the rate of change increases

as tanα. This suggests that the evolution of α causes a significant impact on rotation

that blows up as α approaches 900. It can be speculated that an angle above the 800

range may effectively kill the pulsar, although much more investigation is required to

substantiate such a claim.

Finally, we have constructed a toy model of one possible mechanism which may

cause α to migrate. We assume some complicated magnetic field interaction which

may be approximated by two simple interacting dipoles. For example, this situation

could occur if the large measured dipole was the resultant of the sum of the magnetic

dipoles of ferromagnetic material in the star (Hashimoto, 2015), slightly offset from

the center of the star, which interacts with a smaller dipole, located at the center of

the star, resulting from a rotating conducting fluid. This configuration results in a

potential energy configuration that will seek a lower energy state over time. If only

the measured dipole moment is allowed to rotate while its center is held at some finite

distance from the center of the secondary dipole as shown in Figure 3.2, the value for

α̇ required to solve the braking index obtained in Lyne et al. (2015) (at least for the

Crab) is recovered. This interaction is a very simple first order approximation, but

it has the advantage of solving the problem with a plausible configuration. It should

be noted that this toy model may be expanded with considerations of conservation of

angular momentum, precession of the offset dipole as it rotates, and rotational forces

acting within the star. This model may also be improved with increased knowledge

of the nature and origin of the pulsar magnetic field in general.
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Chapter 4

Conclusions and future goals

In this research, our aim was to identify and investigate the well known problem

of the divergence of the observed spin evolution of pulsars, with the theoretical

predictions. We have assumed that pulsars are neutron stars which carry a detailed

set of parameters that are useful in the multifaceted study of many different aspects

of physics. In this work, we have studied a combination of astrophysics, nuclear-

particle physics, the physics of complex magnetic fields, general relativity, and

the parameterization of ultra-dense cold matter through investigation of the spin

evolution of pulsars. We explored a wide range inquiry into the dynamical possibilities

of the braking index in the framework of magnetic dipole radiation (MDR).

In rotationally powered, isolated pulsars, the predominant mechanism of the

observed spin down is attributed to MDR. If the star can be considered to be a large

magnetic dipole that is misaligned to the axis of rotation of the star, it will radiate

electro-magnetic energy into space. This description fits the observed phenomena of

pulsars well, and explains why they shine like lighthouses in the sky. It is well known,

however, that this MDR description of pulsars leads to a definite value for the braking

index, n = 3, which is not found in nature. The aim of this research was to find a

reasonable solution to this issue by examining the MDR braking index model from
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a dynamical description based on neutron star properties generated from physically

realistic equations of state (EoS).

We re-derived the braking index model, in the framework of MDR, to allow for

physical parameters in the physics of the pulsar to change with frequency (or time).

This exercise leads to the realization that the dynamic braking index is dominated at

high and low frequencies by different aspects of the model. It also provides, for the first

time, the inclusion of physical properties of neutron stars to the model. Because of

this unique aspect of the work, we were able to introduce physically realistic EoS, and

model the braking index over a range of baryonic masses, at all available frequencies.

Our preliminary investigation shows how the braking index changes if the moment

of inertia (MoI) of the star is increased as a function of frequency while the physics in

the MDR torque (magnetic moment strength, and inclination angle) are held constant.

We modeled neutron stars based on four physically realistic EoS over a range of

baryonic mass of 1.0M⊙ < MB < 2.2M⊙ with frequencies ranging from zero to

the Kepler (mass shedding) frequency of each star. We employed state of the art

computational methods to generate the neutron star macro-properties by using two

sophisticated rotating neutron star codes (Negreiros, 2012; Weber, 1999, 2013). Our

investigation yields the full allowed range of braking index as a function of frequency

with constant magnetic field. While our results recover the measured braking index

values, they do so at frequencies that are much higher than those of the measured

pulsars with reliable braking indices shown in Table 1.1. We have shown conclusively

that the effects of changing moment of inertia alone cannot affect the braking index

values of pulsars that are rotating at anything less than about 150 Hz. For pulsars

in this range, we need to approach the problem in the low-frequency range.

Because all of the reliable braking index observations (see Table 1.1) come from

pulsars rotating at approximately 30 Hz or less, the changing MoI cannot have any

measurable effect. This leads to the low frequency portion of the research where we

allow the variable physics in the MDR mechanism to evolve in time. This amounts

to allowing the magnetic dipole moment to change. There are two ways this can
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manifest. Either the surface strength of the magnetic field increases as the pulsar

spins down, or the angle of inclination α of the magnetic moment to the axis of

rotation of the star increases over time. The first option, while plausible, is merely

a source of speculation at this point (Blanford and Romani, 1988) since the origin

and configuration of the pulsar magnetic field is not well understood. The evolution

of the angle of inclination is interesting in light of the recent paper by Lyne et al.

(2015), because they find reasonable evidence of the required change in α that solves

the braking index for the Crab pulsar. Continuing with the result of Lyne et al., we

calculate the results for the remaining pulsars described in Table 1.1 analytically. In

addition, we calculate a numerical parameterization of the allowed changes in α as

a function of braking index with no assumed knowledge of the Lyne results for the

Crab. This provides a template from which to verify braking indices in the event that

future observations of α migration, in general, become available.

Aiming to describe a first order approximation of one possible description of the

physics that would produce the results of Lyne et al., we formulated a toy model

that can produce the measured change in α. We assume that there may exist

some complicated magnetic field within the pulsar that may be approximated by

two interacting magnetic dipoles. This could manifest, for example, if there was a

dipole centered with the axis of rotation of the star due to a rotating conductive fluid,

and then a second dipole which is the resultant of the assembly of magnetic moments

of ferromagnetic material in the star (Hashimoto, 2015). In this simple model, the

two interacting dipoles have an initial potential energy between them, and seek a

lower energy state at some later time. We find that this is possible if one, or both,

dipoles are allowed to rotate while fixed at some finite radial distance to each other.

Our result shows that the measurements of Lyne et al. are reproduced if there is a

relatively small dipole pinned to the center of the star, and the secondary (observed)

dipole is allowed to rotate even very slightly.

To summarize, we investigated the dynamic treatment of the MDR braking index

for all possible frequencies. We used neutron star macro-properties, developed from
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physically realistic equations of state, modeled with state of the art computational

methods, in order to calculate the braking index as a function of frequency. We

managed to recover known braking index values at both high and low frequency

considerations. It is interesting, however, that all reliable braking index observations

occur in the low frequency range where changes in moment of inertia are irrelevant

because this requires changes in the magnetic field to provide a valid solution.

Following the worked of Lyne et al. such a solution can be realized. It is also notable

that there are only eight reliable braking index measurements out of hundreds of

observed pulsars. Many pulsars have very high frequencies which may imply some

importance to the changing MoI in their braking indices which are not reliably known

as of yet. Perhaps, in the near future, as more observations become available, braking

indices of high frequency pulsars may be studied in the context of changing MoI.

4.1 Future study

In the future, we would like to model the braking index over the full range of

frequencies considering all possible mechanisms. We have a very good handle on the

physics of MDR over the two regions, but to bridge the gap, we need to learn more

about rotationally driven effects on neutron star magnetic fields and composition. It

will be worthwhile to apply the current work on magnetic moment to the relativistic

wind braking index mechanism, and to couple this to the MDR by the polynomial

shown in Carraminana and Alvarez (2004). The addition of realistic neutron star

properties, and the effects of rotation should improve the polynomial model. This

work has not been done in the context of rotation, and we now have models in place

that will enhance the investigation. A combination of MDR and pulsar wind, along

with magnetic field evolution and changing MoI is worthy of further investigation,

and this should be done as soon as possible.

Additionally, it would be very useful to explore the full magnetohydrodynamics

of neutron stars, and formulate some mechanism that will actually increase surface
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magnetic field strength as a function of frequency (or time). Magnetic field line

expulsion due to superfluidity is one consideration that manifests itself in cooling

models, but has not been used in braking index research specifically. There may be

other factors at work, in the magnetosphere for example, that increase magnetic field

with spin-down. The toy model defined in Section 3.4 is also dependent on a correct

description of the interior pulsar magnetic field, and should be explored further with

the addition of angular momentum conservation and other rotational effects.

At this point, further investigation into the idea of superfluidity is necessary. We

made a first attempt at constraining the effects on braking index due to superfluidity,

but this is insufficient in exploring the full consequences of superfluidity on spin

evolution. We have tested a large scale effect of total core superfluidity, but this is a

more ’static’ description. We need to model the onset of superfluidity as a function of

time in order to see a time rate effect on the braking index. The onset of superfluidity

may lead to a dynamic differential rotation which may account for observed braking

index values (Ho and Andersson, 2012), but this has not been fully realized as of

yet. We would also like to investigate the effects of superfluidity on the magnetic

field. Magnetic field expulsion and its consequential increase in surface magnetic field

strength B, as they relate to the braking index should be considered.

Another, very important area of study is the EoS itself. It is hypothesized that at

the extreme conditions of density in neutron star cores, there could exist a possible

phase transition from hadronic matter to deconfined quark matter. This would

represent a strong, first order phase transition in the EoS, which has the effect of

softening the EoS significantly. The new state would require the star to have a further

decrease in radius, a subsequent increase in density, and possibly become self-bound.

All of which will lead to a temporary spin-up of the star, and subsequently, a likely

significant effect on the dynamics of the braking index.
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