
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2015

Domain Decomposition Methods for Discontinuous Galerkin Domain Decomposition Methods for Discontinuous Galerkin

Approximations of Elliptic Problems Approximations of Elliptic Problems

Craig Dwain Collins
University of Tennessee - Knoxville, ccolli37@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Numerical Analysis and Computation Commons, and the Partial Differential Equations

Commons

Recommended Citation Recommended Citation
Collins, Craig Dwain, "Domain Decomposition Methods for Discontinuous Galerkin Approximations of
Elliptic Problems. " PhD diss., University of Tennessee, 2015.
https://trace.tennessee.edu/utk_graddiss/3409

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Craig Dwain Collins entitled "Domain

Decomposition Methods for Discontinuous Galerkin Approximations of Elliptic Problems." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Mathematics.

Ohannes A. Karakashian, Major Professor

We have read this dissertation and recommend its acceptance:

Michael Berry, Xiaobing Feng, Clayton Webster, Steven Wise

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Domain Decomposition Methods

for Discontinuous Galerkin

Approximations of Elliptic

Problems

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Craig Dwain Collins

August 2015

c© by Craig Dwain Collins, 2015

All Rights Reserved.

ii

Dedication

To my mother Maricha, my father Jake, my wife Robin, and my daughter Maisie.

Thank you.

iii

Acknowledgements

I must first thank my advisor, Dr. Ohannes Karakashian, for his outstanding tutelage

and his immeasurable patience. The opportunity to learn from someone with his level

of expertise is a gift I had not imagined. His example is one I will strive to emulate

throughout the rest of my career.

I must also thank Dr. Steven Wise for his mentorship and encouragement. His

effortless mastery of bringing out the best in his students is nothing short of amazing.

I would also like to thank the remaining members of my dissertation committee,

Dr. Xiaobing Feng, Dr. Clayton Webster, and Dr. Michael Berry for taking time

from their incredibly busy schedules to offer invaluable comments and questions.

I would also like to thank Dr. Tan Zhang, Dr. Kelly Pearson, and Dr. Renee

Fister for their training and encouragement. Without them, I would never have found

this path.

I must also thank Ben Walker, Angela Woofter, and Tina Murr for their unending

supply of help (and patience) during my time at UTK.

No acknowledgement would be properly complete without offering thanks to Pam

Armentrout, without whom I doubt any graduate student at UTK would ever succeed.

I have rarely met anyone that good at her job – I can only dream of that type of

excellence.

Finally, I must thank my family – my parents Jake and Risha, who taught me to

believe in myself; my wife Robin, whose love and support are without measure; and

my daughter Maisie, who has brought so much joy to all our lives.

iv

Abstract

The application of the techniques of domain decomposition to construct effective

preconditioners for systems generated by standard methods such as finite difference

or finite element methods has been well-researched in the past few decades. However,

results concerning the application of these techniques to systems created by the

discontinuous Galerkin method (DG) are much more rare.

This dissertation represents the effort to extend the study of two-level nonover-

lapping and overlapping additive Schwarz methods for DG discretizations of second-

and fourth-order elliptic partial differential equations. In particular, the general

Schwarz framework is used to find theoretical bounds for the condition numbers of the

preconditioned systems corresponding to both the nonoverlapping and overlapping

additive Schwarz methods. In addition, the impact on the performance of the

preconditioners caused by varying the penalty parameters inherent to DG methods

is investigated. Another topic of investigation is the choice of course subspace made

for the two-level Schwarz methods.

The results of in-depth computational experiments performed to validate and

study various aspects of the theory are presented. In addition, the design and

implementation of the methods are discussed.

v

Table of Contents

1 Introduction 1

1.1 Background . 2

1.2 Summary of Dissertation . 3

2 Second Order Elliptic Problems 5

2.1 Preliminaries . 5

2.1.1 Model Problem . 6

2.1.2 Partitions of Ω . 6

2.1.3 Discontinuous Galerkin Formulation 8

2.2 Basic results . 11

2.3 Schwarz Framework . 16

2.3.1 Subdomain Spaces and Bilinear Forms 17

2.3.2 The Coarse Subspace and Bilinear Form 18

2.3.3 The Discontinuous Coarse Space 19

2.3.4 The Continuous Coarse Space 22

2.4 Construction of the Schwarz Preconditioners 22

2.4.1 Nonoverlapping Additive Schwarz Preconditioner 25

2.4.2 Overlapping Additive Schwarz Preconditioner 33

2.5 Numerical Experiments . 38

2.5.1 Comparison of the Nonoverlapping and the Overlapping Pre-

conditioners . 42

vi

2.5.2 Dependence on the Penalty Parameter γ 45

2.5.3 Penalty Compatibility for the Discontinuous Coarse Subspace 53

3 Fourth Order Elliptic Problems 63

3.1 Preliminaries . 63

3.1.1 Model Problem . 63

3.1.2 Partitions of Ω . 63

3.1.3 Discontinuous Galerkin Formulation 64

3.2 Basic results . 67

3.3 Schwarz Framework . 69

3.3.1 Subdomain Spaces and Bilinear Forms 69

3.3.2 The Coarse Subspace and Bilinear Form 71

3.3.3 The Discontinuous Coarse Space 71

3.3.4 The Continuous Coarse Space 74

3.4 Construction of the Schwarz Preconditioners 74

3.4.1 Nonoverlapping Additive Schwarz Preconditioner 75

3.4.2 Overlapping Additive Schwarz Preconditioner 87

3.5 Numerical Experiments . 99

3.5.1 Comparison of the Nonoverlapping and the Overlapping Pre-

conditioners . 100

3.5.2 Dependence on the Penalty Parameters σ and τ 103

3.5.3 Penalty Compatibility Conditions for the Discontinuous Coarse

Subspace . 110

4 Computational Implementation 120

4.1 Introduction . 120

4.2 Initialization . 121

4.2.1 Numerical Quadrature . 121

4.2.2 Mesh Generation . 123

4.3 Data Structures . 123

vii

4.3.1 VERT structs . 124

4.3.2 EDGE structs . 124

4.3.3 TRIANGLE structs . 127

4.4 Mesh Refinement . 127

4.5 Computation of Local Information 130

4.6 Solving the Linear System . 131

4.6.1 Conjugate Gradient Method 132

4.6.2 Preconditioned Conjugate Gradient Method 133

4.7 Two-Level Additive Schwarz Preconditioners 134

4.7.1 Components of the Nonoverlapping Preconditioner 135

4.7.2 Components of the Overlapping Preconditioner 137

4.7.3 Restriction and Prolongation Operators 139

4.7.4 Application of the Preconditioners 141

5 Future Directions 143

Bibliography 145

Appendix 152

A Affine Transformations and the Reference Element 153

B Computation of PDE Data 161

B.1 Second Order Elliptic Problem . 161

B.2 Fourth Order Elliptic Problem . 169

Vita 183

viii

List of Tables

2.1 (P1) Comparison of solvers. κ estimates, (iterations) for q = 1 43

2.2 (P2) Comparison of solvers. κ estimates, (iterations) for q = 1 44

2.3 (P3) Comparison of solvers. κ estimates, (iterations) for q = 2 45

2.4 Variations of γ (PCG). (P1) with q = 1, κ estimates (iterations) . . . 47

2.5 Variations of γ (PCG). (P1) with q = 1, CPU runtimes 47

2.6 Variations of γ (CG). (P1) with q = 1 47

2.7 Variations of γ (PCG). (P2) with q = 1, κ estimates (iterations) . . . 49

2.8 Variations of γ (PCG). (P2) with q = 1, CPU runtimes 49

2.9 Variations of γ (CG). (P2) with q = 1 49

2.10 Variations of γ (PCG). (P3) with q = 2, κ estimates (iterations) . . . 51

2.11 Variations of γ (PCG). (P3) with q = 2, CPU runtimes 51

2.12 Variations of γ (CG). (P3) with q = 2 51

2.13 (PC) not enforced. (P1), q = 1, κ estimates (iterations) 54

2.14 (PC) not enforced. (P1), q = 1, CPU runtimes 54

2.15 (PC) not enforced. (P2), q = 1, κ estimates (iterations) 57

2.16 (PC) not enforced. (P2), q = 1, CPU runtimes 57

2.17 (PC) not enforced. (P3), q = 1, κ estimates (iterations) 60

2.18 (PC) not enforced. (P3), q = 1, CPU runtimes 60

3.1 (P4) Comparison of solvers. κ estimates, (iterations) for q = 3 101

3.2 (P5) Comparison of solvers. κ estimates, (iterations) for q = 3 102

3.3 (P6) Comparison of solvers. κ estimates, (iterations) for q = 3 102

ix

3.4 Variations of σ, τ (PCG): (P4) with q = 3, κ estimates (iterations) . . 104

3.5 Variations of σ, τ (PCG): (P4) with q = 3, CPU runtimes 104

3.6 Variations of σ, τ (PCG): (P5) with q = 3, κ estimates (iterations) . . 106

3.7 Variations of σ, τ (PCG): (P5) with q = 3, CPU runtimes 106

3.8 Variations of σ, τ (PCG): (P6) with q = 3, κ estimates (iterations) . . 108

3.9 Variations of σ, τ (PCG): (P6) with q = 3, CPU runtimes 108

3.10 (PCσ), (PCτ) not enforced. (P4), q = 3, κ estimates (iterations) . . . 111

3.11 (PCσ), (PCτ) not enforced. (P4), q = 3, CPU runtimes 111

3.12 (PCσ), (PCτ) not enforced. (P5), q = 3, κ estimates (iterations) . . . 114

3.13 (PCσ), (PCτ) not enforced. (P5), q = 3, CPU runtimes 114

3.14 (PCσ), (PCτ) not enforced. (P6), q = 3, κ estimates (iterations) . . . 117

3.15 (PCσ), (PCτ) not enforced. (P6), q = 3, CPU runtimes 117

x

List of Figures

2.1 Violation of sign compatibility condition 21

2.2 Compliance with sign compatibility condition 21

2.3 Example: Coarse Partition TH and Fine Partition Th 41

2.4 (P1) Variations of γ. κ estimates, q = 1 48

2.5 (P1) Variations of γ. Iteration counts, q = 1 48

2.6 (P1) Variations of γ. CPU runtimes, q = 1 48

2.7 (P2) Variations of γ. κ estimates, q = 1 50

2.8 (P2) Variations of γ. Iteration counts, q = 1 50

2.9 (P2) Variations of γ. CPU runtimes, q = 1 50

2.10 (P3) Variations of γ. κ estimates, q = 2 52

2.11 (P3) Variations of γ. Iteration counts, q = 2 52

2.12 (P3) Variations of γ. CPU runtimes, q = 2 52

2.13 (P1), NOV. Effect of (PC) for κ, q = 1 55

2.14 (P1), NOV. Effect of (PC) for iteration counts, q = 1 55

2.15 (P1), NOV. Effect of (PC) for CPU runtimes, q = 1 55

2.16 (P1), OV. Effect of (PC) for κ, q = 1 56

2.17 (P1), OV. Effect of (PC) for iteration counts, q = 1 56

2.18 (P1), OV. Effect of (PC) for CPU runtimes, q = 1 56

2.19 (P2), NOV. Effect of (PC) for κ, q = 1 58

2.20 (P2), NOV. Effect of (PC) for iteration counts, q = 1 58

2.21 (P2), NOV. Effect of (PC) for CPU runtimes, q = 1 58

xi

2.22 (P2), OV. Effect of (PC) for κ, q = 1 59

2.23 (P2), OV. Effect of (PC) for iteration counts, q = 1 59

2.24 (P2), OV. Effect of (PC) for CPU runtimes, q = 1 59

2.25 (P3), NOV. Effect of (PC) for κ, q = 2 61

2.26 (P3), NOV. Effect of (PC) for iteration counts, q = 2 61

2.27 (P3), NOV. Effect of (PC) for CPU runtimes, q = 2 61

2.28 (P3), OV. Effect of (PC) for κ, q = 2 62

2.29 (P3), OV. Effect of (PC) for iteration counts, q = 2 62

2.30 (P3), OV. Effect of (PC) for CPU runtimes, q = 2 62

3.1 (P4) Variations of σ and τ . κ estimates, q = 3 105

3.2 (P4) Variations of σ and τ . Iteration counts, q = 3 105

3.3 (P4) Variations of σ and τ . CPU runtimes, q = 3 105

3.4 (P5) Variations of σ and τ . κ estimates, q = 3 107

3.5 (P5) Variations of σ and τ . Iteration counts, q = 3 107

3.6 (P5) Variations of σ and τ . CPU runtimes, q = 3 107

3.7 (P6) Variations of σ and τ . κ estimates, q = 3 109

3.8 (P6) Variations of σ and τ . Iteration counts, q = 3 109

3.9 (P6) Variations of σ and τ . CPU runtimes, q = 3 109

3.10 (P4), NOV. Effect of (PCσ), (PCτ) for κ, q = 3 112

3.11 (P4), NOV. Effect of (PCσ), (PCτ) for iteration counts, q = 3 112

3.12 (P4), NOV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3 112

3.13 (P4), OV. Effect of (PCσ), (PCτ) for κ estimates, q = 3 113

3.14 (P4), OV. Effect of (PCσ), (PCτ) for iteration counts, q = 3 113

3.15 (P4), OV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3 113

3.16 (P5), NOV. Effect of (PCσ), (PCτ) for κ, q = 3 115

3.17 (P5), NOV. Effect of (PCσ), (PCτ) for iteration counts, q = 3 115

3.18 (P5), NOV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3 115

3.19 (P5), OV. Effect of (PCσ), (PCτ) for κ estimates, q = 3 116

xii

3.20 (P5), OV. Effect of (PCσ), (PCτ) for iteration counts, q = 3 116

3.21 (P5), OV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3 116

3.22 (P6), NOV. Effect of (PCσ), (PCτ) for κ, q = 3 118

3.23 (P6), NOV. Effect of (PCσ), (PCτ) for iteration counts, q = 3 118

3.24 (P6), NOV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3 118

3.25 (P6), OV. Effect of (PCσ), (PCτ) for κ estimates, q = 3 119

3.26 (P6), OV. Effect of (PCσ), (PCτ) for iteration counts, q = 3 119

3.27 (P6), OV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3 119

4.1 Diagram of Main Algorithm. 122

4.2 Vertex data structure. 124

4.3 Local edge enumeration. 125

4.4 Edge data structure. 126

4.5 Edge geometric data. 126

4.6 Edge PDE data. 126

4.7 Triangle data structure. 128

4.8 Triangle geometric data. 128

4.9 Triangle PDE data. 128

4.10 Refinement by quadrisection and subsequent vertex enumeration. . . 129

4.11 Triangle tree structure. 130

4.12 Diagram of KLIST array. 131

4.13 Initial subdomain partition. 136

4.14 Construction of an overlapping partition. 138

A.1 Affine transformation between K̂ and K. 154

xiii

Chapter 1

Introduction

The use of numerical methods to approximate solutions of partial differential

equations (PDEs) is ubiquitous in many disciplines, including physics, chemistry,

engineering, and biology. The approximation of a PDE solution involves, in general,

two stages. The first is the discretization step, in which the continuous problem

is replaced with a discrete formulation resulting in a system of equations involving

a finite number of unknowns. One of the most widely used discretization methods

is the finite element method (FEM). The discontinuous Galerkin (DG) method is

a particular finite element method which has gained widespread popularity due

to its many beneficial attributes. Indeed, the discontinuous Galerkin method

is especially well-suited to handle complex geometries and boundary conditions,

facilitates adaptive implementation, and is eminently parallelizable. The second

stage is the solution step, in which the discrete system is solved to produce the

approximation. One drawback of the discontinuous Galerkin method is that the

resulting systems are larger than those produced by other finite element methods.

Given that a very large percentage of the CPU time is spent on the solution phase,

the design of efficient solvers is of critical importance. Domain decomposition (DD)

methods offer an elegant solution to this dilemma. While these techniques have

been successfully applied to many other discretization methods, their application

1

to discontinuous Galerkin is relatively recent. The focus of this dissertation is to

investigate the effectiveness of the techniques of domain decomposition in creating

efficient preconditioners for systems generated by the discontinuous Galerkin method.

1.1 Background

The discontinuous Galerkin method was developed at Los Alamos Scientific Lab-

oratory in the early 1970’s and was first described by Reed and Hill in [36] as a

method for approximating solutions for hyperbolic problems. Discontinuous Galerkin

formulations for the second order elliptic problem was introduced by Douglas and

Dupont [20], while Baker presented the DG formulation of the fourth order elliptic

problem [8]. These formulations belong to a class of discontinuous Galerkin methods

known as interior penalty methods (IP) due to the presence of terms penalizing the

jumps of functions over interelement boundaries. Further contributions developing IP

methods include works by Wheeler [44], Arnold [5], Baker, Jureidini, and Karakashian

[9], and Karakashian and Jureidini [30].

The latter part of the twentieth century saw a flurry of development for other

variants of discontinuous Galerkin methods. The DG method for the Navier-Stokes

equations was presented by Bassi and Rebay [11] in 1997, while the local discontinuous

Galerkin method (LDG) by Cockburn and Shu [18] was introduced in 1998. Cockburn

[17] presented a DG method for convection-dominated problems in 1999. The

nonsymmetric interior method was presented by Baumann and Oden [13] around

this time as well. A good source of the history of the development of discontinuous

Galerkin methods during this time is given by Arnold, et al. [6], while a unified

presentation gathering all the variants under the same framework is given by Arnold,

et al. in [7].

The techniques of domain decomposition presented in 1870 by Schwarz [39] have

been highly influential in the development of effective preconditioners for iterative

solution methods. In recent years, a comprehensive framework – often referred to

2

as the Schwarz framework – has been developed and codified for finite difference

methods and conforming finite element methods. In particular, the texts by Toselli

and Widlund [43], Smith, Bjørstad, and Gropp [42], and Quarteroni and Valli [35],

along with the article by Xu [45] are widely accepted as containing the fundamental

descriptions of the Schwarz framework for the classical methods mentioned previously.

Applications of the Schwarz framework to nonconforming methods and discontinuous

Galerkin formulations, while once quite rare in the literature, are becoming more

frequent. Early examples for these types of problems include Bassi and Rebay, who

used a Schwarz preconditioner for GMRES in a DG formulation for the Navier-Stokes

equations [12]. The works of Feng and Karakashian [23] and [24] develop two-level

Schwarz preconditioners for DG formulations of the second- and fourth-order elliptic

problems, respectively. Lasser and Toselli [33] present Schwarz preconditioners for

the advection-diffusion problem, while Antonietti and Ayuso examine apply Schwarz

methods to a mixed formulation of a second-order elliptic problem [2]. Recent activity

has included extending Schwarz methods to include hp-adaptive DG methods [4] and

the weakly over-penalized symmetric interior penalty method (WOPSIP) [10], [3], as

well as fully nonlinear Hamilton-Jacobi-Bellman equations [41].

1.2 Summary of Dissertation

This dissertation contains three essential chapters. The focus of Chapter 2 is the

development of two-level additive Schwarz preconditioners, (both nonoverlapping

and overlapping) for the prototypical second order elliptic PDE, Poisson’s equation.

Although these methods have been proposed earlier in [23], here the formulations

are presented using sleeker notation and updated proofs. In addition, the effect of

choosing a completely discontinuous coarse subspace will be compared with using

a continuous coarse subspace. In particular, the goal is to determine under what

conditions the definition of the coarse space bilinear form given in [23] may be

recovered. These conditions will be referred to as the penalty compatibility conditions.

3

A second update will involve proving the dependence of the nonoverlapping Schwarz

method on the penalty parameter γ while also showing that the overlapping

preconditioner is independent of γ. Computational simulations will be presented to

corroborate the theory. Finally, the numerical simulations will be greatly expanded

to include a variety of tests, including the scalability of the preconditioners with

respect to the number of subdomains, the effect of failure to enforce the compatibility

conditions, and the effects of increasing the amount of overlap for the overlapping

preconditioner.

Chapter 3 focuses on the development of two-level additive Schwarz precondi-

tioners for the prototypical fourth order elliptic PDE, the biharmonic equation. This

chapter represents an extension to the method presented in [24], focusing on the same

topics as those found in Chaper 2. In addition, the analysis for the corresponding

two-level overlapping method is presented for the first time, as well as the results of

computational simulations for both preconditioners.

Chapter 4 will provide details of the implementation of the computer program

designed to perform the numerical simulations supporting the theoretical results

shown herein. All aspects of the design will be discussed, including the creation

and representation of the mesh partitions, the data structures defined in support

of the program, and the implementation of the techniques of domain decomposition

utilized to create the additive Schwarz preconditioners.

The plans for future research arising from the work done in this dissertation will

be discussed in Chapter 5.

Finally, Appendix A will discuss the reference element, corresponding affine

transformations, and its role in the computations. Appendix B will describe the

formulation and contstruction of the stiffness matrices, load vectors, and the edge

off-diagonal matrix blocks used in the DG construction.

4

Chapter 2

Second Order Elliptic Problems

2.1 Preliminaries

Throughout the entirety of this dissertation, we consider an open and bounded domain

Ω ⊂ Rd with d = 2, 3. For a domain D ⊆ Rd and real number m ≥ 0, we will use the

standard notation Hm(D) = Wm,2(D) to denote the (Hilbert) Sobolev space of order

m with inner product

(u, v)m,D =
∑
|α|≤m

∫
D

DαuDαv dx

and norm

‖u‖m,D = (u, u)
1/2
m,D.

For simplicity, the m will not be included when its value is zero.

We will also use the Sobolev seminorms defined by

|u|m,D =

∑
|α|=m

∫
D

|Dαu|2 dx

1/2

.

5

2.1.1 Model Problem

Consider a bounded and open domain Ω ⊂ Rd with d = 2, 3 whose boundary ∂Ω

is the union of two disjoint sets ΓD and ΓN . Dirichlet boundary data is given on

ΓD while the Neumann data corresponds to ΓN . Furthermore, assume that ΓD has

positive (d − 1)-dimensional measure. In this section we will examine the following

model problem:

−∆u = f in Ω, (2.1)

u = gD on ΓD, (2.2)

∇u · n = gN on ΓN , (2.3)

where n is the unit normal vector exterior to Ω.

2.1.2 Partitions of Ω

In order to develop the discontinuous Galerkin formulation for the model problem, we

first need to introduce some notation. Let Th = {Ki : i = 1, 2, . . . ,mh} be a family

of simplicial partitions of the domain Ω parametrized by 0 < h ≤ 1. The members of

the partition Th are referred to as cells. We use the term edges to describe the sides

of the cells, regardless of dimension. Denote EIh as the set of all edges strictly interior

to the domain and EBh as the set of all boundary edges. Every interior edge e ∈ EIh is

shared by two cells. We will designate one of these cells as K+ and the other as K−.

(Note that we may choose either cell as K+ – the assignment is made in a completely

arbitrary fashion. We will soon see that this choice is not irrelevant, but this fact

does not change the arbitrary nature of this assignment. In a similar fashion, for an

edge e ∈ EBh , we denote the cell containing that edge as K+ by convention.

We will assume that the partition Th satisfies the following conditions:

6

(P1) The partition Th is conforming ; i.e., no hanging nodes are allowed. This

assumption is only included to simplify the analysis that follows and may be

relaxed in actual computations.

(P2) The cells of Th are shape-regular. In other words, for every K ∈ Th, the ratio

of the radius R of the circumscribed ball to the radius ρ of the inscribed ball of

K is bounded; i.e., there exist positive constants c1, c2 such that

c1 ≤
R

ρ
≤ c2.

This condition ensures that no cell K has a very “skinny” angle. An equivalent

way of stating this requirement is that the cells of Th satisfy the minimum angle

condition.

(P3) Th is locally quasi-uniform; i.e., if two cells Ki and Kj share an edge then

diam(Ki) ≈ diam(Kj).

(P4) For every boundary edge e ∈ EBh , either e ∈ ΓD or e ∈ ΓN . Set EDh and ENh as the

set of boundary edges on ΓD and ΓN , respectively. We then have EBh = EDh ∪ENh
and, since ΓD and γN are disjoint, EDh ∩ ENh = ∅.

(P5) Boundary edges e ∈ EBh of a cell are either Dirichlet or Neumann type, but not

both.

Given such a partition Th of Ω, we will make use of the broken Sobolev spaces

Hm(Th) =
∏
K∈Th

Hm(K).

In this context we will consider K to be open so that the elements of Hm(Th) are

single-valued.

7

We will frequently integrate along edges, so for e ∈ Eh define

〈u, v〉e =

∫
e

uv ds and |u|e = 〈u, u〉1/2e .

It is necessary to define values of functions in Hm(Th) on the edges, so for v ∈

Hm(Th), m ≥ 1, denote

v+ = v|K+ and v− = v|K− .

Furthermore, for e ∈ Eh let v+
e denote the trace on e of v+ and v−e denote the trace

on e of v−.

The discontinuous Galerkin formulation will also include the jumps and averages

of such traces. We define these by

[v] = v+
e − v−e , for e ∈ EIh , [v] = v+

e , for e ∈ EBh ,

{v} = 1
2
(v+
e + v−e), for e ∈ EIh , {v} = v+

e , for e ∈ EBh .

2.1.3 Discontinuous Galerkin Formulation

For v ∈ Hs(Th), s > 3/2 we define

{∂nv}e =
1

2
(∇v+ +∇v−) · n+, for e ∈ EIh , (2.4)

where n+ is the unit normal vector outward to K+. On the “Energy Space” Eh =

Hs(Th), s > 3/2 we consider the bilinear form aγhh (·, ·) given by

aγhh (u, v) =
∑
K∈Th

(∇u,∇v)K −
∑
eh∈Eh

(
〈{∂nu}, [v]〉eh + 〈{∂nv}, [u]〉eh

)

+
∑
eh∈Eh

γh
|eh|
〈[u], [v]〉eh ,

(2.5)

8

where Eh = EIh ∪ EDh and |eh| is a 1-dimensional measure of the size of eh. For d = 2

we take |eh| to be the length of eh while for d = 3 we set |eh| = diam(eh). The penalty

parameters γh are a family of dimensionless constants that are required to be larger

than some threshold γ0 in order to guarantee the coercivity of the above bilinear form.

The formulation of this bilinear form corresponds to what is called a symmetric

interior penalty DG (SIPG) method [5]. The treatment of the averages of the normal

derivatives on interior edges defined in (2.4) is referred to as Arnold’s formulation.

A similar form referred to as Baker’s formulation consists in defining the averages of

the normal derivatives on interior edges by

{∂nv}e = ∇v+ · n+, for e ∈ EIh . (2.6)

In the following analysis we will investigate both formulations.

In order to define a weak formulation for the model problem (2.1)-(2.3) and

the corresponding discontinuous Galerkin approximation uh to the solution u, we

introduce the linear functional

Fh(v) = (f, v) +
∑
eh∈ENh

〈gN , v〉eh −
∑
eh∈EDh

〈
gD, ∂nv −

γh
|eh|

v

〉
eh

. (2.7)

Assuming that u ∈ H2(Ω) is a solution of the model problem (2.1)-(2.3), an

integration by parts reveals that the bilinear form (2.5) is consistent with the model

problem in the sense that

aγhh (u, v) = Fh(v), ∀v ∈ Eh. (2.8)

We then introduce the discontinuous Galerkin finite element spaces

V h =
∏
K∈Th

Pq(K), q ≥ 1,

9

where Pq(K) is the space of polynomials of degree less than or equal to q on K.

Define the discontinuous Galerkin approximation uh ∈ V h of u to be solution of

aγhh (uh, v) = Fh(v), ∀v ∈ V h. (2.9)

The form aγhh is clearly symmetric and enjoys continuity and coercivity properties

which we present below. The proofs are well-known and are therefore omitted.

Introducing the norm ‖ · ‖1,h : Eh → R defined by

‖v‖1,h =

{∑
K∈Th

‖∇v‖2
K +

∑
eh∈Eh

|eh||{∂nv}|2eh +
∑
eh∈Eh

γh
|eh|
|[v]|2eh

}1/2

, (2.10)

we have the following continuity and coercivity properties.

Lemma 2.1.1. For both the Arnold and the Baker formulations,

|aγhh (u, v)| ≤ ‖u‖1,h‖v‖1,h, ∀u, v ∈ Eh, (2.11)

and there exist positive constants γ0 and ca (depending only on q and the shape

regularity of the cells in Th) such that if γh ≥ γ0 then

aγhh (v, v) ≥ ca‖v‖2
1,h, ∀v ∈ V h. (2.12)

It follows from these properties that the problem (2.9) is well-posed.

With the help of the basis functions of V h, equation (2.9) transforms into an

N ×N linear system

Ax = b, (2.13)

where N denotes the dimension of V h and the coefficient matrix A ∈ RN×N , called

the stiffness matrix, is symmetric and positive definite.

It is not hard to show that the (2-norm) condition number of A is of the order

O(h−2) where h = minK∈Th hK . So the system (2.13) becomes ill-conditioned for

10

small h. In addition, the size of the linear system becomes large. Consequently,

it is not efficient to solve it directly using the classical iterative methods. On the

other hand, if one can find a symmetric positive definite N ×N matrix B such that

BA is well-conditioned, then any of the classical iterative methods (in particular, the

Conjugate Gradient method) works effectively on the preconditioned system

BAx = Bb. (2.14)

2.2 Basic results

For the remainder of this chapter, D will denote a simply-connected, open, bounded

domain in Rd with Lipschitz boundary ∂D. We shall assume that D is star-shaped

with respect to some point x0 ∈ D, i.e. the line segment [x0,x] is contained in D for

all x in D. We shall also assume that D is shape regular in the sense that

(x− x0) · nD ≥ cD diam(D) for a.e. x ∈ ∂D, (2.15)

where cD = O(1) and nD denotes the unit outward normal vector to ∂D.

For such domains D, the following trace inequality holds (cf. [14], [30]):

|v|2∂D ≤ ctr
(
h−1
D ‖v‖

2
D + hD‖∇v‖2

D

)
∀v ∈ H1(D), (2.16)

where hD = diam(D). For a cell K ∈ Th, which is assumed to be shape regular, we

have the following inverse inequality

|v|j,K ≤ cinvh
i−j
K |v|i,K ∀v ∈ Pq(D), 0 ≤ i ≤ j ≤ q, (2.17)

the constant cinv depending only on q.

Furthermore, the following basic approximation result is assumed to hold. For

K ∈ Th, let u ∈ Hm(K),m ≥ 1 an integer. Then there exists χ ∈ Pq(K), 0 ≤ q ≤

11

m− 1, such that

|u− χ|j,K ≤ chq+1−j
K |u|q+1,K , 0 ≤ j ≤ q + 1. (2.18)

We shall make essential use of the fact that elements of V h, can be approximated

by continuous piecewise polynomial functions, specifically by elements of V h ∩C(Ω);

the degree of approximation being controlled, not surprisingly, by the jumps of the

discontinuous function. Here we quote the following local version of a result from

[31] and [32].

Theorem 2.1. Let Th be a conforming simplicial partition of Ω. Then for any vh ∈

V h and multi-index α with |α| ≤ q the following approximation results hold:

(i) There exists χ ∈ V h ∩ C(Ω) satisfying

‖Dα(vh − χ)‖2
K ≤ c

∑
eh∈ωh(K)

|eh|1−2|α||[vh]|2eh , ∀K ∈ Th, (2.19)

where ωh(K) is the (local) set of edges in EIh emanating from the vertices of K.

(ii) Let Γ denote a subset of EBh such that no cell in Th can contain edges from both

Γ and its complement. Suppose g is the restriction to Γ of some function in

V h ∩ C(Ω). Then, there exists χ ∈ V h ∩ C(Ω) with χ
∣∣
Γ

= g that satisfies

‖Dα(vh − χ)‖2
K ≤ c

∑
eh∈ωh(K)

|eh|1−2|α||[vh]|2eh + c
∑

eh∈Γ∩∂K

|eh|1−2|α||vh − g|2eh .

(2.20)

The constant c depends only on q and the shape regularity of the cells.

Remark 2.2.1. In [31] and [32] conditions are given under which the above result

holds for nonconforming meshes. Extensions to curved boundaries under reasonable

assumptions appear to be straightforward.

12

The next result consists of a piecewise version of the trace inequality (2.16). Its

proof was given in [23] but we give it here for the sake of completeness using less

cumbersome notation.

Lemma 2.1.1. Let D be the union of some collection TD of cells from Th and assume

that it is star-shaped with respect to some x0 ∈ D and that (2.15) holds. Then, there

is a constant c depending only on the shape regularity of the cells such that

|v|2∂D ≤ c
(
H−1
D ‖v‖

2
D +HD|v|21,h,D

)
∀v ∈ H1(TD), (2.21)

where HD = diam(D) and the seminorm |v|1,h,D is given by

|v|21,h,D =
∑
K∈TD

‖∇v‖2
K +

∑
eh∈EIh,D

|eh|−1|[v]|2eh , (2.22)

and EIh,D denotes all edges eh ∈ EIh which are also in the interior of D.

Proof. For any K ∈ TD, the divergence theorem gives

∫
∂K

v2(x− x0) · nK ds =

∫
K

div((x− x0)v2) dx

= d ‖v‖2
K + 2

∫
K

u∇v · (x− x0)dx, (2.23)

where nK is the unit outward normal to K. Summing (2.23) over all K ∈ TD we get

∫
∂D

v2(x− x0) · nD ds =
∑
K∈TD

(
d ‖v‖2

K + 2

∫
K

v∇v · (x− x0) dx

)
−
∑

eh∈EIh,D

〈
(x− x0) · nK+ , (v+)2 − (v−)2

〉
eh
. (2.24)

In view of (2.15), for the term on the left side of (2.24) we have

cHD|v|2∂D ≤
∫
∂D

v2(x− x0) · nD ds, (2.25)

13

whereas using the Cauchy-Schwarz and arithmetic-geometric mean inequalities and

the fact that |x− x0| ≤ hD, we obtain

∑
K∈TD

(
d ‖v‖2

K + 2

∫
K

v∇v · (x− x0) dx

)
≤ c‖v‖2

D + cH2
D

∑
K∈TD

‖∇v‖2
K . (2.26)

Now writing (v+)2 − (v−)2 = [v](v+ + v−), for eh ∈ EIh,D there holds

∣∣∣〈(x− x0) · nK+ , (v+)2 − (v−)2
〉
eh

∣∣∣ ≤ H2
D|eh|−1|[v]|2eh + |eh|

(
|v+|2eh + |v−|2eh

)
. (2.27)

Using the trace inequality (2.16) and the fact that Th is locally quasi-uniform and

shape regular (|eh| ≈ hK+ ≈ hK−), we have

|eh|
(
|v+|2eh + |v−|2eh

)
≤ c

∑
K=K+,K−

(
‖v‖2

K + h2
K‖∇v‖2

K

)
. (2.28)

From the last two inequalities and using hK ≤ hD, we obtain

∑
eh∈EIh,D

∣∣∣〈(x− x0) · nK+ , (v+)2 − (v−)2
〉
eh

∣∣∣
≤ c‖v‖2

D + cH2
D

(∑
K∈TD

‖∇v‖2
K +

∑
eh∈EIh,D

|eh|−1|[v]|2eh
)
.

(2.29)

The conclusion of the lemma now follows from using (2.25), (2.26) and (2.29) in

(2.24).

The next result concerns the approximation of a piecewise H1 function by a

constant function. In [23] a proof was given under a convexity assumption which

is dispensed with in the present treatment.

Lemma 2.1.2. Let D be as in Lemma 2.1.1 and let v ∈ TD. Then there exists

v ∈ P0(D) such that

‖v − v‖D ≤ cHD|v|1,h,D. (2.30)

14

Proof. The construction of v is done in two steps. If need be, we extend TD into a

conforming partition T CD and view v as an element of H1(T CD).

Now let χ ∈ Pq(T CD)∩C(D) be the continuous piecewise polynomial approximation

of v as stipulated in Theorem 2.1 (i) to yield

‖v − χ‖2
D =

∑
K∈T CD

‖v − χ‖2
K ≤ c

∑
eh∈EI,Ch,D

|eh| |[v]|2eh = c
∑

eh∈EIh,D

|eh| |[v]|2eh . (2.31)

Here, EI,Ch,D are the edges in EIh,D as well as any new interior edges introduced by the

conforming extension of TD. Also, the last equality is due to the fact that the jumps

of v vanish on these new edges. Now since |eh| ≤ HD, this readily implies the bound

‖v − χ‖D ≤ cHD|v|1,h,D. (2.32)

Note that χ belongs to H1(D). Hence, using (3.14) with |α| = 1, we obtain

‖∇χ‖2
D =

∑
K∈T CD

‖∇χ‖2
K ≤ 2

∑
K∈T CD

‖∇v‖2
K + 2

∑
K∈T CD

‖∇(v − χ)‖2
K (2.33)

≤ 2
∑
K∈T CD

‖∇v‖2
K + c

∑
eh∈EI,Ch,D

|eh|−1|[v]|2eh ≤ c |v|21,h,D.

In the second step, we let v be the constant function on D with value 1
|D|

∫
D
χ dx.

We shall next see that the Poincaré type inequality

‖v − χ‖D ≤ cHD‖∇χ‖D, (2.34)

holds. Indeed, since D is shape regular, there exist positive numbers r, R which are

both O(HD) such that Q(x0, 4r) ⊂ D ⊂ Q(x0, R) where Q(x0, ρ) is the cube centered

at x0 with side length ρ. Then (2.34) follows from Theorem 12.36 on page 370 of [34].

Finally, the estimate (2.30) now follows from (2.32), (2.33), (2.34) and the triangle

inequality.

15

Combining the previous two lemmas, we obtain the following useful result:

|v − u|2∂D ≤ cHD|u|21,h,D. (2.35)

To establish the convergence result for the overlapping Schwarz methods, we will

need the help of the following generalized Poincaré inequality, which is extension to

functions in H1(Th) of Lemma 3.10 of [43]. A proof can be found in [23].

Lemma 2.1.3. Let D be as in Lemma 2.1.1 and let 0 < ρ < HDD. Then for any

v ∈ H1(TD) there holds the following generalized Poincaré inequality:

‖v‖2
Bρ ≤ cρ

(
H−1
D ‖v‖

2
D +HD|v|21,h,D

)
, ∀v ∈ H1(TD), (2.36)

where

Bρ = {x ∈ D : dist(x, ∂D) ≤ ρ}

denotes the boundary layer of D of width ρ.

2.3 Schwarz Framework

We shall follow the powerful framework established by O. Widlund and coworkers [43].

It is of sufficient generality to cover a wide range of methods including nonoverlapping

or overlapping, additive or multiplicative or other approaches e.g. hybrid and to the

extent that the efficacy of a particular method can be gauged by verifying a set of

assumptions.

In addition to the partition Th, we shall need a partition TS of Ω into open

subdomains {Ωi}pi=1 and a coarse partition TH of Ω. At this point, we require the

following alignments between the three partitions

TS ⊆ Th and TH ⊆ Th, (2.37)

16

that is, each subdomain is the union of cells belonging to Th and each cell in TH
is the union of cells belonging to Th. The partitions TS and TH are, just like Th
used to construct certain subspaces of V h and corresponding bilinear forms on these

subspaces.

2.3.1 Subdomain Spaces and Bilinear Forms

We define the subspaces {V h
j }

p
j=1 associated with the subdomains {Ωj}pj=1 by

V h
j = {v ∈ V h|v = 0 in Ω \ Ωj}, j = 1, 2, · · · , p,

i.e. V h
i is the restriction of V h to Ωi. We clearly have

V h = V h
1 + · · ·+ V h

p . (2.38)

To each subspace V h
i we associate the bilinear form ai(·, ·) defined as the restriction

of aγhh (·, ·) to V h
i :

ai(u, v) = aγhh (u, v), ∀u, v ∈ V h
i , i = 1, . . . , p. (2.39)

In order to give a concrete expression for these forms, we introduce the following

sets:

1. Si := {eh ∈ EIh , eh ∈ ∂Ωi}, i = 1, . . . , p.

2. Th,i := {K ∈ Th, K ⊂ Ωi}.

3. EIh,i := {eh ∈ EIh , eh ⊂ Ωi}.

4. EDh,i := {eh ∈ EDh , eh ∈ ∂Ωi}.

5. Eh,i := EIh,i ∪ EDh,i.

17

For Arnold’s formulation, the subdomain bilinear forms are give by

ai(u, v) =
∑
K∈Th,i

(∇u,∇v)K

−
∑

eh∈Eh,i

(
〈{∂nu}, [v]〉eh + 〈{∂nv}, [u]〉eh −

γh
|eh|
〈[u], [v]〉eh

)

−
∑
eh∈Si

(1

2
〈∂nu, v〉eh +

1

2
〈∂nv, u〉eh −

γh
|eh|
〈u, v〉eh

)
,

(2.40)

for u, v ∈ V h
i , i = 1, . . . , p. In the above expression, the edge integrals on Si must be

interpreted as follows: The traces of u, v are taken from Ωi and the normal derivatives

are with respect to the unit outward normal vectors to Ωi.

For Baker’s formulation, the bilinear form ai(·, ·) takes the form

ai(u, v) =
∑
K∈Th,i

(∇u,∇v)K

−
∑

eh∈Eh,i

(
〈∂nu, [v]〉eh + 〈∂nv, [u]〉eh −

γh
|eh|
〈[u], [v]〉eh

)

−
∑
eh∈Si

(
〈∂nu, v〉eh + 〈∂nv, u〉eh −

γh
|eh|
〈u, v〉eh

)
,

(2.41)

for u, v ∈ V h
i , i = 1, . . . , p. Note that for eh ∈ Si, the terms 〈∂nu, v〉eh , 〈∂nv, u〉eh will

be present if and only if K+ belongs to Ωi.

2.3.2 The Coarse Subspace and Bilinear Form

In addition to the subspaces V h
i , i = 1, . . . , p, a coarse mesh subspace V h

0 correspond-

ing to the partition TH and the corresponding bilinear form a0(·, ·) : V h
0 × V h

0 → R

are presently introduced. TH consists of simplicial cells D each being a union of cells

from Th. We require TH to satisfy the conditions (P1)-(P5) imposed on Th and define

EIH , EDH , ENH , and EH to be the analogues of the corresponding sets in Th.

18

It is well known that this construction is crucial in obtaining a good preconditioner.

We shall consider two different possibilities for the choice of a coarse space. The first

consists in using discontinuous piecewise polynomials which will be in keeping with

the spirit of DG. However there are resulting compatibility issues arising from the

penalty terms which must be investigated. The second consists in using continuous

piecewise polynomials which has the advantages of resolving these compatibility issues

in a single stroke.

2.3.3 The Discontinuous Coarse Space

Here we set

V h
0 := V H,D = Pq0(TH), 1 ≤ q0 ≤ q. (2.42)

It is clear that V h
0 is a subspace of V h. Also, we define the coarse space bilinear form

by

a0(u, v) = aγHH (u, v) =
∑
K∈TH

(∇u,∇v)K

−
∑
eH∈EH

(
〈{∂nu}, [v]〉eH + 〈{∂nv}, [u]〉eH

)

+
∑
eH∈EH

γH
|eH |
〈[u], [v]〉eH , ∀u, v ∈ V H,D.

(2.43)

Here, EH is the analog of Eh.

In [23] aγHH was defined as the restriction of aγhh to V H,D, i.e.

aγHH (u, v) = aγhh (u, v), ∀u, v ∈ V H,D. (2.44)

19

Here, we have taken a more general approach. On the other hand, we would like to

identify conditions that imply (2.44). Indeed, (2.44) may have beneficial analytical

or practical consequences or may be even necessary in some contexts.

To begin, it easy to see that

∑
K∈Th

(∇u,∇v)K =
∑
K∈TH

(∇u,∇v)K , ∀u, v ∈ V H,D. (2.45)

Furthermore, for u, v ∈ V H,D, the jumps across edges eh ∈ EIh which are in the interior

of some K ∈ TH are zero. Also, for Arnold’s formulation the values of 〈{∂nu}, [v]〉eH
and 〈{∂nv}, [u]〉eH are independent of the sign convention used in the designation of

K+ vs. K−. For eh ∈ EDh , there is no issue since we always use K+ for the cell that

contains it. Hence, we can combine these edge integrals to obtain

∑
eh∈Eh

(
〈{∂nu}, [v]〉eh + 〈{∂nv}, [u]〉eh

)

=
∑
eH∈EH

(
〈{∂nu}, [v]〉eH + 〈{∂nv}, [u]〉eH

)
, ∀u, v ∈ V H,D.

(2.46)

For Baker’s formulation (2.46) may not hold as is easily exhibited by the example

in Figure 2.1. For this reason we consider the following sign compatibility assumption:

For all edges eh ∈ EIh that are part of an edge eH ∈ EIH , eH ⊂ ∂D,

D ∈ TH , the cells K ∈ Th that contain eh and belong to D have

the same sign as D in relation to eH . See e.g. Figure 2.2.

(SC)

With this assumption, the analog of (2.46) also holds for Baker’s formulation.

We now focus attention on the penalty jump terms. Note that these terms are

identical for both the Arnold and Baker formulations and are independent of the K+,−

convention. Furthermore, for u, v ∈ V H,D, the jumps across edges eh ∈ EIh which are

in the interior of some K ∈ TH are zero. On the other hand, we must deal with the

attached weights. Using (2.45) and (2.46) (we assume that (SC) holds for Baker’s

20

A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

+

−

−

+

Figure 2.1: Violation of sign
compatibility condition

A
A
A
A
A
A
A
A
A
A
A
A

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�

A
A
A

+

+

+

++

−

−

−

Figure 2.2: Compliance with
sign compatibility condition

formulation) we obtain

aγhh (u, v) = a0(u, v) +
∑
eH∈EH

∑
eh⊂eH

(
γh
|eh|
− γH
|eH |

)
〈[u], [v]〉eh , ∀u, v ∈ V H,D. (2.47)

This motivates the following penalty compatibility assumption:

γh
|eh|

=
γH
|eH |

, eh ⊂ eH ∈ EH . (PC)

The following lemma encapsulates the above discussion.

Lemma 2.3.1.

(i) Under assumption (PC), (2.44) holds for Arnold’s formulation.

(ii) Under assumptions (SC) and (PC), (2.44) holds for Baker’s formulation.

(iii) Under assumption (PC) restricted to eH ∈ EDH we have Fh(v) = FH(v), ∀v ∈

V H,D.

Concerning the practicality of assumptions (SC) and (PC), we stress that they

are easy to implement. Indeed, in most situations, one starts with the coarse mesh

TH and then obtains Th via a process of refinement. In fact, if one starts with the

21

mesh Th obtained say by a mesh generator, then it is not clear at all that one can

identify a simplicial coarse mesh.

2.3.4 The Continuous Coarse Space

Here we set

V h
0 = V H,C = {v ∈ Pq0(TH) ∩ C(Ω), v

∣∣
ΓD

= 0}. (2.48)

Note that V H,C is a subspace of V H,D. Hence, (2.47) holds for u, v ∈ V H,C also.

Since we are assuming that (SC) holds for Baker’s formulation, it follows

immediately from (2.47) that all the compatibilty issues considered above are resolved

and that a0(u, v) = aγhh (u, v), ∀u, v ∈ V H,C . There are other advantages stemming

from this choice. For one, the resulting stiffness matrix is smaller. Also, the analysis

which will be carried out for the discontinuous coarse space will also cover this one,

given that the crucial construct u0 used in the proofs belongs to the continuous coarse

space anyway.

2.4 Construction of the Schwarz Preconditioners

Define the projection operators Tj : V h → V h
j by

aj(Tju, v) = aγhh (u, v) ∀v ∈ V h
j , j = 0, 1, · · · , p. (2.49)

That the operators Tj are well-defined follows from the easily provable facts that

the bilinear forms are symmetric and coercive on their respective subspaces. For

j = 1, . . . , p, the coercivity of aj(·, ·) is inherited from that of aγhh (·, ·) in view of their

definition by restriction. For a0(·, ·), coercivity will hold under a variety of scenarios,

e.g. (i) taking V h
0 = V H,C , or (ii) V h

0 = V H,D and enforcing (PC), or (iii) V h
0 = V H,D

and γH ≥ γ0 in Lemma 2.1.1.

Following the framework given in [22, 42, 45], the general Schwarz approach

consists in replacing the discrete problem (2.9) by the equation

22

P(T0, T1, . . . , Tp)u = P(T0, T1, . . . , Tp)u
γh
h , (2.50)

where P is some polynomial in T0, T1, . . . , Tp with P(0, 0, . . . , 0) = 0. Note that the

right side of (2.50) can be calculated without knowing uγhh .

Additive, multiplicative as well as other (e.g. hybrid) methods may be formulated

as special cases of the polynomial P (see [42]). Whereas the analysis provided herein

is sufficient to obtain condition number estimates for all these methods, we shall

restrict ourselves to the additive nonoverlapping and overlapping cases.

For both the nonoverlapping and overlapping cases, the additive Schwarz method

consists in the following choice of the polynomial P

T = P(T0, T1, . . . , Tp) := T0 + T1 + · · ·+ Tp.

The operator T is the preconditioned form of the operator A induced by (2.9). In

matrix notation, the additive Schwarz preconditioning corresponds to choosing the

matrix B in (2.14) as

B = RT
0A
−1
0 R0 +RT

1A
−1
1 R1 + · · ·+RT

pA
−1
p Rp, (2.51)

where Ai is the stiffness matrix corresponding to ai(·, ·) and RT
i is the matrix

representation of the embedding V h
i → V h, i = 0, 1, . . . , p.

We have the following simple but important result.

Lemma 2.4.1. The operators Ti, i = 0, 1, . . . , p, and hence T , are self-adjoint with

respect to aγhh (··). Furthermore, T is invertible.

Proof. The proof of the first assertion is in Lemma 2 of [42]. Now suppose Tu = 0

for some u ∈ V h. We shall show that u = 0. Indeed,

p∑
i=0

ai(Tiu, Tiu) =

p∑
i=0

aγhh (u, Tiu) = aγhh (u,
(p∑
i=0

Ti
)
u) = aγhh (u, Tu) = 0.

23

Since the bilinear forms ai(·, ·), i = 0, 1, . . . , p are coercive on their respective

subspaces, it follows from the above that Tiu = 0, i = 0, 1, . . . , p. Now letting

u = u0 + u1 + . . . , up, ui ∈ V h
i , it follows that 0 = ai(Tiu, ui) = aγhh (u, ui). Summing

over i, we obtain aγhh (u, u) = 0, from which the desired result follows.

Following the abstract analytical framework, we shall verify the following three

assumptions and obtain bounds on the constants C2
0 , ρ(E) and ω appearing in them.

Assumption 1: For any u ∈ V h

p∑
i=0

ai(ui, ui) ≤ C2
0ah(u, u), (2.52)

for some representation u =
∑p

i=0 ui. Here, 1/C2
0 is a lower bound on the smallest

eigenvalue of the preconditioned matrix.

Assumption 2: Let 0 ≤ Eij ≤ 1 be the minimal values such that

|aγhh (ui, uj)| ≤ Eij aγhh (ui, ui)
1
2aγhh (uj, uj)

1
2 , ui ∈ V h

i , uj ∈ V h
j , i, j = 1, · · · , p.

(2.53)

That such values exist follows from the Cauchy-Schwarz inequality. Define ρ(E) to

be the spectral radius of E .

Assumption 3: Let ω ≥ 1 be the smallest value such that

aγhh (u, u) ≤ ω ai(u, u), ∀u ∈ V h
i , i = 0, 1, . . . , p. (2.54)

The following result gives an estimate for the condition number of the precondi-

tioner constructed using the additive Schwarz method. The theorem below is quoted

from [42], Lemma 3. See also [43].

Theorem 2.4.1. Suppose assumptions 1, 2, and 3 are satisfied. Then the abstract

additive Schwarz method T = T0 + T1 + · · ·+ Tp satisfies

κ(T) ≤ ω(1 + ρ(E))C2
0 . (2.55)

24

2.4.1 Nonoverlapping Additive Schwarz Preconditioner

In this case the subdomains Ωi are disjoint and the sum (2.38) is direct. Also, in

addition to the alignments shown in (2.37), we require TS ⊆ TH . It also turns out

that the analysis will depend on the consideration of a certain interface bilinear form

I(·, ·) : V h × V h → R that we now present.

For Arnold’s formulation, it is given by

I(u, v) =
1

2

∑
eh∈S

(〈
∂nu

+, v−
〉
eh

+
〈
∂nv

+, u−
〉
eh
−
〈
∂nu

−, v+
〉
eh
−
〈
∂nv

−, u+
〉
eh

)

−
∑
eh∈S

γh
|eh|

(〈
u+, v−

〉
eh

+
〈
u−, v+

〉
eh

)
,

(2.56)

where S := ∪pi=1Si is sometimes called the skeleton of the nonoverlapping partition.

For Baker’s formulation, the interface form is given by

I(u, v) =
∑
eh∈S

(〈
∂nu

+, v−
〉
eh

+
〈
∂nv

+, u−
〉
eh
− γh
|eh|

(〈
u+, v−

〉
eh

+
〈
u−, v+

〉
eh

)
. (2.57)

It is easy to show that for both Arnold’s and Baker’s formulations, the following

identity holds

aγhh (u, v) =

p∑
i=1

ai(ui, vi) + I(u, v), ∀u, v ∈ V h, (2.58)

where

u =

p∑
i=1

ui, v =

p∑
i=1

vi, and ui, vi ∈ V h
i .

Lemma 2.4.2. There exists a constant c independent of the number of subdomains,

such that

|I(w,w)| ≤ cγ
∑
D∈TH

h−1
D

(
H−1
D ‖w‖

2
D +HD|w|21,h,D

)
, ∀w ∈ V h, (2.59)

25

where

HD = diam(D), γ = max
eh∈Eh

γh, hD = min
K∈Th,K⊂D

hK .

Proof. We shall only treat Arnold’s formulation, Baker’s being similar. We have

I(w,w) =
∑
eh∈S

(〈
∂nw

+, w−
〉
eh
−
〈
∂nw

−, w+
〉
eh

)
− 2

∑
eh∈S

γh
|eh|

〈
w+, w−

〉
eh

(2.60)

:= A+B.

Now from the arithmetic-geometric mean inequality we obtain

|A| ≤ 1

2

∑
eh∈S

|eh|
(
|∂nw+|2eh + |∂nw−|2eh

)
+

1

2

∑
eh∈S

|eh|−1
(
|w+|2eh + |w−|2eh

)
(2.61)

= A1 + A2.

Using the trace and inverse inequalities (2.16), (2.17) it follows that

|A1| ≤ c
∑
K∈Th

‖∇w‖2
K . (2.62)

Now each eh ∈ S belongs to the boundary ∂D of some cell in the coarse mesh TH .

Hence, appealing to Lemma 2.1.1 we have

|A2| ≤
∑
D∈TH

h−1
D |w|2∂D ≤ c

∑
D∈TH

h−1
D

(
H−1
D ‖w‖

2
D +HD|w|21,h,D

)
. (2.63)

The estimation of B is identical to that of A2. We have

|B| ≤ cγ
∑
D∈TH

h−1
D

(
H−1
D ‖w‖

2
D +HD|w|21,h,D

)
. (2.64)

The required result now follows from (2.61)-(2.64).

26

Proposition 2.4.1. For any u ∈ V h, there exists a decomposition u =
∑p

j=0 uj, uj ∈

V h
j , j = 0, 1, . . . , p such that

p∑
j=0

ai(uj, uj) ≤ cγ [H : h] aγhh (u, u), (2.65)

where the constant c is independent of p and

[H : h] = max
D∈TH

HD

hD

is a measure of the fineness of Th with respect to TH .

Proof. An important component of the proof consists in constructing an appropriate

u0 in the coarse space V h
0 . Let v be the piecewise constant approximation on TH

of u constructed in Lemma 2.1.2 and let u0 be the continuous piecewise linear

approximation of v constructed in Theorem 2.1. We also require u0 to vanish on ΓD.

Thus u0 belongs to the continuous coarse space V H,C . According to the decomposition

(2.38), which is direct for the nonoverlapping method, there exist uniquely determined

functions ui ∈ V h
i , i = 1, . . . , p such that u− u0 = u1 + · · ·+ up. We have

aγhh (u− u0, u− u0) =

p∑
j=1

aj(uj, uj) + I(u− u0, u− u0).

Adding a0(u0, u0) to both sides and using the Cauchy-Schwarz inequality on aγhh , we

obtain

p∑
j=0

aj(uj, uj) = aγhh (u− u0, u− u0) + a0(u0, u0)− I(u− u0, u− u0)

≤ 2aγhh (u, u) + 2aγhh (u0, u0) + a0(u0, u0) + |I(u− u0, u− u0)|.
(2.66)

27

As for a0(u0, u0), recall that u0 is continuous and vanishes on ΓD. Hence it follows

from (2.47) that a0(u0, u0) = aγhh (u0, u0), leading to

p∑
j=0

aj(uj, uj) ≤ 2aγhh (u, u) + 3aγhh (u0, u0) + |I(u− u0, u− u0)|. (2.67)

We next estimate |I(u− u0, u− u0)|. From Lemma 2.4.2, it follows that

|I(u− u0, u− u0)| ≤ cγ
∑
D∈TH

h−1
D

(
H−1
D ‖u− u0‖2

D +HD|u− u0|21,h,D
)
. (2.68)

We shall next estimate ‖u− u0‖2
D. We have

‖u− u0‖2
D ≤ 2‖u− v‖2

D + 2‖v − u0‖2
D. (2.69)

It follows from Lemma 2.1.2 that

‖u− v‖D ≤ cHD|u|1,h,D. (2.70)

Furthermore, it follows from the approximation result (2.20),

‖v − u0‖2
D ≤ c

∑
eH∈ωe(D)

|eH | |[v]|2eH + c
∑

eH∈EDH∩∂D

|eH | |v|2eH , (2.71)

where ωe(D) is the (localized) set of edges eH emanating from the vertices of D. We

note that such edges are interior, i.e. belong to EIH . We also note, as this is crucial

to the analysis, that the second sum appears only if D has an edge on ΓD and is due

to the fact that u0 vanishes on that part of ∂Ω. Furthermore, since

|[v]|2eH ≤ 3|v+ − u+|2eH + 3|[u]|2eH + 3|v− − u−|2eH , for eH ∈ EIH ,

|v|2eH ≤ 2|v+ − u+|2eH + 2|u|2eH , for eH ∈ EDH ,

28

collecting terms in the sums in (2.71), we get

‖v − u0‖2
D ≤ c

∑
D∈ω(D)

|eH | |v − u|2∂D + c
∑

eH∈ωe(D)

|eH | |[u]|2eH + c
∑

eH∈EDH∩∂D

|eH | |u|2eH

≤ c
∑

D∈ω(D)

|eH | |v − u|2∂D + c
∑

eH∈ωe(D)

|eH ||eh|
∑
eh⊂eH

|eh|−1|[u]|2eh

+ c
∑

eH∈EDH∩∂D

|eH ||eh|
∑
eh⊂eH

|eh|−1|u|2eh ,

(2.72)

where ω(D) is the local patch of cells in TH that share a vertex with D (contains the

edges in ωe(D)) and

|eh| = max
eh⊂eH

|eh|.

Given that |eh| ≤ |eH | ≤ cHD and TH is locally quasi uniform, we have from

(2.35),

‖v − u0‖2
D ≤ cH2

D|u|21,h,ω(D) + cH2
D

∑
eh∈∂D∩ΓD

|eh|−1|u|2eh . (2.73)

where |u|1,h,ω(D) is the seminorm defined by (2.22) over the local patch ω(D).

Combining this with (2.70), it follows from (2.69) that

‖u− u0‖2
D ≤ cH2

D|u|21,h,ω(D) + cH2
D

∑
eh∈∂D∩ΓD

|eh|−1|u|2eh . (2.74)

We next estimate the term |u−u0|21,h,D in (2.68). Since u0 is continuous, from the

triangle inequality we have

|u− u0|21,h,D =
∑
K⊂D

‖∇(u− u0)‖2
K +

∑
eh∈EIh,D

|[u]|2eh

≤ 2
∑
K⊂D

(
‖∇u‖2

K + ‖∇u0‖2
K

)
+

∑
eh∈EIh,D

|[u]|2eh

≤ 2|u|21,h,D + 2‖∇u0‖2
D.

(2.75)

29

Now since v is constant on D, using the inverse inequality (2.17) and (2.73) we obtain

‖∇u0‖2
D = ‖∇(u0 − v)‖2

D

≤ c|u|21,h,ω(D) + c
∑

eh∈∂D∩ΓD

|eh|−1|u|2eh .
(2.76)

Using this in (2.75), we obtain

|u− u0|21,h,D ≤ c|u|21,h,ω(D) + c
∑

eh∈∂D∩ΓD

|eh|−1|u|2eh . (2.77)

Using (2.74) and (2.77) in (2.68), there follows

|I(u− u0, u− u0)| ≤ cγ
∑
D∈TH

h−1
D HD

(
|u|21,h,ω(D) +

∑
eh∈∂D∩ΓD

|eh|−1|u|2eh

)
≤ c γ [H : h] aγhh (u, u),

(2.78)

in view of the locality of the patches ω(D).

We next estimate aγhh (u0, u0). Since u0 is continuous and vanishes on ΓD, we

obtain

aγhh (u0, u0) =
∑
K∈Th

‖∇u0‖2
K =

∑
D∈TH

‖∇u0‖2
D. (2.79)

We already encountered the term ‖∇u0‖2
D in (2.76) and have a bound for it in

(2.77). Hence, summing over D in TH , we have

aγhh (u0, u0) ≤ c aγhh (u, u). (2.80)

The proof now follows from (2.78), (2.80), and (2.66).

Having verified Assumption 1 with C2
0 = c γ [H : h], we undertake the

verification of Assumption 2. It is easily seen that

aγhh (ui, uj) = 0 if S i ∩ Sj = ∅, i, j = 1, . . . , p. (2.81)

30

For such pairs (i, j), (2.53) holds with Eij = 0. For the remaining cases (2.53) holds

with Eij = 1 in view of the Cauchy-Schwarz inequality. Hence, it follows at once that

ρ(E) ≤ ‖E‖∞ ≤ Nc + 1, (2.82)

where

Nc = max
i
{number of Ωj such that Si ∩ Sj 6= ∅}.

In practice Nc is small, e.g. 4 in the case of a conforming partition TS into squares.

Concerning Assumption 3, we have

Lemma 2.4.3. Let ω ≥ 1 be given satisfying

ω =

 1 if V h
0 = V H,C, or V h

0 = V H,D and assumption (PC) holds

1 + µ
ca

otherwise,

(2.83)

where ca is the coercivity constant in (2.12) and µ is defined as

µ = max

∣∣∣∣ γh|eh| |eH |γH
− 1

∣∣∣∣ .
Then,

aγhh (u, u) ≤ ω ai(u, u), ∀u ∈ V h
i , i = 0, . . . , p. (2.84)

Proof. For i = 1, . . . , p, (2.84) holds with ω = 1 in view of the definition of the

subdomain bilinear forms by restriction. For i = 0, the situation is different. From

(2.47) we have

aγhh (u, u) = a0(u, u) +
∑

eH∈EIH∪E
D
H

∑
eh⊂eH

(
γh
|eh|
− γH
|eH |

)
|[u]|2eh . (2.85)

31

Of course if V h
0 = V H,C or V h

0 = V H,D and assumption (PC) holds then (2.84) holds

with ω = 1 for i = 0 as well. In the general case

∑
eH∈EIH∪E

D
H

∑
eh⊂eH

(
γh
|eh|
− γH
|eH |

)
|[u]|2eh =

∑
eH∈EIH∪E

D
H

∑
eh⊂eH

(
γh
|eh|
|eH |
γH
− 1

)
γH
|eH |
|[u]|2eh

≤ µ
∑

eH∈EIH∪E
D
H

γH
|eH |
|[u]|2eH

≤ µ‖u‖2
2,H

≤ µa0(u, u),

in view of (2.12). Using this in (2.85) gives

aγhh (u, u) ≤
(

1 +
µ

ca

)
a0(u, u),

thus completing the proof.

With the assumptions verified and the form of the constant in each assumption

determined, we may now find the bound for the condition number κ(T) of the of the

operator T .

Theorem 2.2. The condition number κ(T) of the operator T of the nonoverlapping

additive Schwarz method defined in this section, or equivalenty that of the matrix BA,

satisfies

κ(T) ≤ cγ ω
(
Nc + 1

)
[H : h], (2.86)

where c is independent of p and the constants

γ, ω, Nc, and [H : h]

have been defined.

Proof. This is an immediate consequence of the abstract estimate (2.55) and our

estimates (2.65), (2.82) and (2.83).

32

Remark 2.4.1. In the spirit of full disclosure, if the penalty compatibility assumption

(PC) is not enforced, then (2.86) must be replaced by

κ(T) ≤ cγ
(
Nc + 1

)
[H : h]2

in view of the presence in ω of the factor γh
|eh|
|eH |
γH

which could be as large as [H : h].

This gives further incentive for the enforcement of compatibility between the fine and

coarse mesh penalty parameters.

2.4.2 Overlapping Additive Schwarz Preconditioner

Let TS now denote an overlapping partition of Ω with overlaps characterized by

a corresponding collection of parameters δi > 0. The properties possessed by

this partition will be made precise next. In particular, the association of the

overlap parameter δi to a subdomain is designed to handle the possibility of having

subdomains of varying size, as may occur in the presence of local refinements. We

begin by introducing some preliminary assumptions and notation.

1. TH ⊂ Th and TS ⊂ Th.

2. We assume that there exist nonnegative functions {θi}pi=1, θi ∈ W 1,∞(Ω) such

that
p∑
i=1

θi = 1 on Ω, θi = 0 on Ω \ Ωi, ‖∇θi‖L∞ ≤ cδ−1
i .

Here, δi represents the width of a boundary layer of Ωi resulting from the overlap

with other subdomains. It is assumed that the practical range of its values is

h ≤ δi ≤ H.

3. Let N(x) denote the number of subdomains which contain x and Nc ≡

maxx∈ΩN(x). It is reasonable to assume that Nc is a small number.

33

4. Define the sets ΩI
i and Ωδi

i by

ΩI
i = {x ∈ Ωi; x 6∈ Ωk for all k 6= i}, Ωδ

i = Ωi \ ΩI
i .

Remark 2.4.2. 1. One practical way, which we adopt here, of generating such

partitions is (see e.g. [43]) to start with a nonoverlapping partition {Ω̃i}pi=1

which is aligned with TH and then add layers of cells from Th.

2. We may think of ‖∇θi‖L∞ ≤ cδ−1
i as characterizing the (local) overlaps by

allowing θi to decrease in a controlled fashion.

3. It follows from (4) above that θi(x) = 1 on ΩI
i . It is also possible that ΩI

i = ∅,

which may happen if δi is large or if the subdomains are small.

4. In view of the alignment TS ⊂ Th it follows that if a cell K ∈ Th belongs to Ωi,

then either K ⊂ ΩI
i or K ⊂ Ωδi

i .

The overall strategy in the analysis is similar to that of the nonoverlapping case.

To verify Assumption 1, we shall use the same u0 as in the nonoverlapping case but

u1, . . . , up are defined differently in the decomposition u = u0 +u1 + · · ·+up. In order

to do so we shall employ the usual Lagrange interpolation operator Πh : C(Th)→ V h

which is defined locally on each cell of Th.

Lemma 2.2.1. For u0 ∈ V h
0 , let ui ∈ V h

i , i = 1, . . . , p be given by ui = Πhθi(u− u0).

Then, there exists a constant c is independent of p such that for i = 1, . . . , p,

ai(ui, ui) ≤ c

(∑
K∈Th,i

‖∇(u− u0)‖2
K +

∑
eh∈EIh,i∪E

D
h,i

γh
|eh|
|[u]|2eh + δ−2

i ‖u− u0‖2

Ω
δi
i

)
. (2.87)

Proof. Since θi = 0 on Si, ui vanishes also on Si. Hence from (2.40) we obtain

ai(ui, ui) =
∑
K∈Th,i

‖∇ui‖2
K −

∑
eh∈EIh,i∪E

D
h,i

2 〈{∂nui}, [ui]〉eh +
∑

eh∈EIh,i∪E
D
h,i

γh
|eh|
|[ui]|2eh . (2.88)

34

Now using the Cauchy-Schwarz and the arithmetic-geometric mean inequalities on

the second sum, followed by the trace and inverse inequalities, we obtain

ai(ui, ui) =
∑
K∈Th,i

‖∇ui‖2
K +

∑
eh∈EIh,i∪E

D
h,i

|eh| |{∂nui}|2eh +
∑

eh∈EIh,i∪E
D
h,i

γh + 1

|eh|
|[ui]|2eh

≤ c
∑
K∈Th,i

‖∇ui‖2
K + c

∑
eh∈EIh,i∪E

D
h,i

γh
|eh|
|[ui]|2eh .

(2.89)

We next estimate the terms in (2.89). For this, let θi,K be the average of θi over

an element K ∈ Th,i. It can be shown that

‖θi − θi,K‖L∞(K) ≤

 0 if K ⊂ ΩI
i ,

chKδi
−1 if K ⊂ Ωδi

i .
(2.90)

Indeed, the first part follows since θi ≡ 1 on ΩI
i . The second part follows from the

approximation property (2.18) (which also holds in the L∞-norm cf. e.g. [14]) and

the fact that ‖∇θi‖L∞ ≤ cδ−1
i .

Let ΠK denote the restriction of the (global) interpolation operator Πh to the

cell K. By the inverse inequality (2.17) and the fact that 0 ≤ θi,K ≤ 1 we get with

w = u− u0

‖∇ui‖2
K = ‖∇ΠK(θiw)‖2

K

≤ 2‖∇ΠK(θi,Kw)‖2
K + 2‖∇ΠK

(
(θi − θi,K)w

)
‖2
K

≤ 2‖∇w‖2
K + ch−2

K ‖ΠK

(
(θi − θi,K)w

)
‖2
K ,

(2.91)

using the fact that ΠK(θi,Kw) = θi,Kw. Now ΠK is stable with respect to the L∞

norm. Also, using the fact that w is a polynomial,

‖ΠK

(
(θi − θi,K)w

)
‖2
K ≤ chdK‖θi − θi,K‖2

L∞(K)‖w‖2
L∞(K)

≤ c‖θi − θi,K‖2
L∞(K)‖w‖2

K .

(2.92)

35

Thus, using (2.90) and (2.92) in (2.91), it follows that

‖∇ui‖2
K ≤ 2‖∇(u− u0)‖K +

 0, if K ∈ ΩI
i ,

cδ−2
i ‖u− u0‖2

K , if K ∈ Ωδi
i .

(2.93)

Let eh = ∂K+ ∩ ∂K− ∈ EIh,i. Since the mesh Th is conforming, eh is a full edge

of K+ and K−. Hence, given that θi is continuous, with Πeh denoting the Lagrange

interpolation operator on eh, we have

|[ui]|2eh = |ΠK+

(
θiw

+
)
− ΠK−

(
θiw

−)|2eh = |Πehθi[w]|2eh .

Therefore, using the stability of Πeh in the L∞-norm, the inverse estimate (2.17) on

eh, and the fact that u0 is continuous, we obtain

|[ui]|2eh ≤ c|[w]|2eh = c|[u]|2eh , eh ∈ EIh,i. (2.94)

For eh ∈ EDh,i, we have |ui|2eh = |Πehθiw|2eh = |Πehθiu|2eh since u0 vanishes on ΓD.

Hence the argument used above yields

|ui|2eh ≤ c|u|2eh , eh ∈ EDh,i. (2.95)

Finally, using (2.93), (2.94) and (2.95) concludes the proof.

Proposition 2.4.2. For any u ∈ V h, let u = u0 + u1 + · · · + up where u0 is as in

Proposition 2.4.1 and let ui = Πhθi(u−u0), i = 1, . . . , p. Then, there exists a constant

c which is independent of p such that

p∑
i=0

ai(ui, ui) ≤ cNc [H : δ] aγhh (u, u), where [H : δ] := max
1≤i≤p

max
D⊂Ωi

HD

δi
. (2.96)

Proof. The proof consists in estimating the terms in (2.87). For some of these we

shall use bounds already obtained in the proof of Proposition 2.4.1. To begin, note

36

that since
∑p

i=1 θi = 1 on Ω and Πh is the identity operator when restricted to Vh, we

have u =
∑p

i=0 ui. Since at any point in Ω the number of overlapping subdomains is

bounded by Nc and TH ⊆ Th we have

p∑
i=1

∑
K∈Th,i

‖∇(u− u0)‖2
K ≤ Nc

∑
D∈TH

∑
K⊆D

‖∇(u− u0)‖2
K

≤ Nc

∑
D∈TH

|u− u0|21,h,D

≤ cNc

∑
D∈TH

(
|u|21,h,ω(D) +

∑
eh⊂∂D∩ΓD

|eh|−1|u|2eh
)

≤ cNc a
γh
h (u, u),

(2.97)

where we have also used the bound (2.77) on |u− u0|21,h,D. As for the second sum in

(2.87), it follows immediately that

p∑
i=1

∑
eh∈EIh,i∪E

D
h,i

γh
|eh|
|[u]|2eh ≤ aγhh (u, u). (2.98)

We now estimate the last terms in (2.87). For this, let TH,i be the collection of cells

from TH such that Ωi ⊂ ∪D∈TH,iD. Using Lemma 2.1.3 with ρ = δi, it follows from

the already established bounds (2.74) and (2.77) that

‖u− u0‖2

Ω
δi
i

=
∑

D∈TH,i

‖u− u0‖2

D∩Ω
δi
i

≤ cδi
∑

D∈TH,i

(
H−1
D ‖u− u0‖2

D +HD|u− u0|21,h,D
)

≤ cδi
∑

D∈TH,i

HD

(
|u|21,h,ω(D) +

∑
eh⊂∂D∩ΓD

|eh|−1|u|2eh

)
.

(2.99)

A comment on the application of Lemma 2.1.3 is in order here. Recall that the

partition TS was obtained from a nonoverlapping partition TS̃ = {Ω̃i, i = 1, . . . , p}

aligned with TH by adding layers of cells from Th. So it is indeed the case D ∩ Ωδi
i is

a boundary layer of D. Hence, the use of Lemma 2.1.3 is justified.

37

Multiplying with δ−2
i and summing, it follows

p∑
i=1

δ−2
i ‖u− u0‖2

Ω
δi
i

≤ cNc [H : δ] aγhh (u, u). (2.100)

Finally, since a0(u0, u0) = aγhh (u0, u0) ≤ caγhh (u, u) according to (2.80), the required

result follows.

Theorem 2.3. The condition number κ(T) of the operator T of the overlapping

additive Schwarz method defined in this section, or equivalenty that of the matrix

BA, satisfies

κ(T) ≤ c ω N2
c [H : δ], (2.101)

where c is independent of p and where ω and [H : δ] are as in (2.83) and (2.96)

respectively.

Proof. Proposition 2.4.2 asserts that Assumption 1 holds with C2
0 = cNc [H : δ].

The verification of Assumption 3 is exactly as in the nonoverlapping case. As for

Assumption 2, the argument used before can still be applied provided we replace

the condition S i ∩Sj = ∅ in (2.81) by Ωi ∩Ωj = ∅ to yield ρ(E) ≤ Nc + 1. The result

now follows from the estimate (2.55) given in Theorem 2.4.1.

Remark 2.4.3. If the penalty compatibility condition (PC) is enforced, then ω = 1

in the above estimate and hence κ(T) becomes independent of the penalty parameters.

2.5 Numerical Experiments

The results of the experiments presented in this section are designed to either provide

computational verification of the theory presented herein or to investigate various

performance aspects of the preconditioners. In particular, the following topics are

examined:

38

• Comparison of the performance of the nonoverlapping and overlapping precon-

ditioners.

• Dependence of the preconditioner on the penalty parameter γ.

• Comparison of the performance of both preconditioners with the penalty

compatibility condition (PC) enforced versus not enforced.

All experiments are performed using the preconditioned Conjugate Gradient

(PCG) method to solve the system generated by the discontinuous Galerkin dis-

cretization. The preconditioners used correspond to the matrix B given in (2.51),

which has a different form for the nonoverlapping and overlapping methods. Three

test problems are considered in order to examine the method in a variety of situations.

The first is a problem with a smooth solution −∆u = 2π2 sin(πx) sin(πy), in Ω = [0, 1]× [0, 1]

u = 0, on ∂Ω
(P1)

with exact solution u = sin(πx) sin(πy).

The second test problem −∆u = 2048π2 sin(32πx) sin(32πy), in Ω = [0, 1]× [0, 1]

u = 0, on ∂Ω
(P2)

has the smooth but oscillatory solution u = sin(32πx) sin(32πy).

The final test problem −∆u = 0, in Ω

u = gD, on ∂Ω
(P3)

is a problem whose solution has a singularity; here, Ω is chosen as an L-shaped domain

with vertices (0, 0), (0, 1
2
), (−1

2
, 1

2
), (−1

2
,−1

2
), (1

2
,−1

2
), and (1

2
, 0) with the reentrant

39

corner at the origin. The boundary data gD is defined so that the exact solution is

u = r2/3 sin 2θ
3

in polar coordinates.

The triangulations Th and TH are taken to be uniform, following the pattern

shown in Figure 2.3. This choice is purely for simplicity; the methods work just as

well for completely unstructured meshes. The subdomains in the nonoverlapping

case are taken to be squares comprised of fine level cells. For the overlapping

preconditioner, the construction of the subdomains follows the approach discussed

previously in Remark 2.4.2. In this case, we begin with a nonoverlapping subdomain

partition and extend the subdomains by appending a layer of fine level cells belonging

to Th, as exhibited in Figure 4.14. This implementation corresponds to minimal

overlap with δ ≈ h. To create subdomains with generous overlap, continue the

process of appending layers of fine level cells in the same manner until the desired

overlap is obtained. Unless otherwise indicated, all experiments subsequently reported

will use 16 subdomains, with the subdomain partition corresponding to a grid or

“checkerboard”, as seen in Figure 4.13.

In addition, the discontinuous coarse space will be utilized in all experiments in

order to study the effect of the penalty compatibility condition (PC).

The estimation of the condition number κ(BA) will follow the approach of [23].

The estimation is derived from the error reduction property of the CG method:

(Aek, ek) ≤ 4

(√
κ(A)− 1√
κ(A) + 1

)2k

(Ae0, e0), k = 0, (2.102)

Here ek = x − xk, where x is the exact solution (computed to machine precision

beforehand) and xk is the k-th iterate. Using (2.102) as a model, the average error

reduction per iteration µ is

µ =

{
(Aek, ek)

(Ae0, e0)

}1/2k

. (2.103)

40

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�

�
�
�
�

Figure 2.3: Example: Coarse Partition TH and Fine Partition Th

From this, the estimate of κ(A) or of κ(BA) is calculated by

κ =

(
1 + µ

1− µ

)2

. (2.104)

Note that these estimates are in actuality underestimates of κ(BA); since the

convergence of the method is actually dependent upon these numbers, they are

reported instead of κ(BA). The PCG iterations are stopped once the condition

‖ek‖ ≤ 10−9 is met. This choice of stopping criterion takes advantage of the fact that

the exact solution x is available (since it is needed to compute the condition number

estimates anyway) to provide a equitable means of comparing solution methods.

The performance of the following three solvers will be compared throughout the

experiments:

1. Preconditioned conjugate gradient (PCG) with the nonoverlapping additive

Schwarz preconditioner,

2. PCG with the overlapping additive Schwarz preconditioner,

41

3. Traditional conjugate gradient (CG) with no preconditioning.

Comparisons will be made based on three metrics:

1. Condition number κ estimates of the corresponding stiffness matrix,

2. Iteration counts,

3. CPU runtime.

Another aspect of the theory we will seek to verify throughout all experiments

is that the nonoverlapping preconditioned system has a condition number of order

O(H
h

), as predicted by Theorem 2.2. Similarly, we will observe if the overlapping

preconditioned system has a condition number of order O(H
δ

), as predicted by

Theorem 2.3.

Experiments are performed on a variety of combinations of coarse grids TH and

fine grids Th. The indexing indicates that the diameters of cells in TH are of order

H whereas the diameters of cells in Th are of order h, where h ≤ H. Since the cells

involved in these experiments always have diameter smaller than 1, to maintain a

cleaner presentation the notation

1/H : 1/h

to indicate the ratio between coarse and find grids will frequently be used.

2.5.1 Comparison of the Nonoverlapping and the Overlap-

ping Preconditioners

The two preconditioners constructed in this chapter share much in common, yet

it remains to discover which offers the better performance. The subdomain matrices

corresponding to both methods have a sparse block structure, a feature which may be

exploited for improved efficiency when solving the subdomain systems. However, the

42

Table 2.1: (P1) Comparison of solvers. κ estimates, (iterations) for q = 1

NOV PCG OV PCG CG
PPPPPPPPP1/h

1/H
4 8 16 4 8 16

16 14.0 (36) 6.4 (23) - 5.3 (21) 4.3 (19) - 149.5 (115)

32 27.7 (49) 14.0 (34) 6.2 (22) 6.7 (24) 4.6 (19) 4.1 (18) 444.3 (196)

64 51.8 (65) 28.0 (49) 13.5 (33) 9.2 (28) 5.5 (21) 4.2 (18) 1362.1 (338)

128 106.7 (93) 55.8 (66) 26.4 (44) 13.1 (33) 8.0 (26) 5.0 (20) 4631.9 (647)

subdomain matrices corresponding to the overlapping method have greater dimension

due the contributions from the overlap. One important question is whether the

increased computational cost from this increased matrix dimension will be offset by

gains made elsewhere.

In addition, we will seek to verify aspects of the theory predicted by Theorem

2.2 and Theorem 2.3; namely, that the nonoverlapping preconditioned system has a

condition number of order O(H
h

) and the overlapping preconditioned system has a

condition number of order O(H
δ

).

Table 2.1 offers a comparison of the three solvers when applied to test problem

(P1) using γh = 10.0, degree q = 1, and a variety of coarse and fine meshes. Note that

the combination of 1/H = 1/h = 16 is excluded. In this case the coarse grid solve

provides the solution on the fine mesh as well, thus obviating the need for any further

work. From the results it is clear that both Schwarz methods offer an immediate

and considerable improvement over the standard conjugate gradient method, both

in terms of condition numbers and iterations. In addition, it appears as though

the overlapping method results in much smaller condition numbers relative to the

nonoverlapping method, with similar comparisons to be made for the iteration counts.

The adherence to the O(H
h

) law predicted by Theorem 2.2 for the nonoverlapping

method is evident; each condition number roughly increases by a factor of two as

43

Table 2.2: (P2) Comparison of solvers. κ estimates, (iterations) for q = 1

NOV PCG OV PCG CG
PPPPPPPPP1/h

1/H
4 8 16 4 8 16

16 14.3 (40) 6.7 (27) - 4.9 (23) 4.3 (21) - 177.6 (143)

32 26.0 (55) 15.2 (41) 7.3 (28) 5.5 (25) 4.3 (22) 3.9 (21) 571.1 (259)

64 48.7 (75) 27.3 (56) 15.0 (41) 6.3 (27) 4.8 (23) 4.1 (21) 1964.1 (489)

128 87.8 (102) 48.7 (73) 27.8 (56) 9.1 (32) 6.7 (27) 4.8 (23) 6341.6 (894)

1/h doubles. On the other hand, the overlapping method is stubbornly refusing to

follow the O(H
δ

) rule (recall that δ ≈ h in these experiments). Instead, the condition

numbers in this case grow by a factor much less than two for initial refinements, with

the rate of growth that seems to increase as the number of refinements grows.

Table 2.2 displays the results for test problem (P2) again using γh = 10.0, degree

q = 1, and the same selection of coarse and fine meshes. The performance in

this case when compared with (P1) is quite similar for all three methods, even

though this test problem is highly oscillatory when compared with the bubble

function represented in (P1). Again, both preconditioning methods offer substantial

improvement over the performance of the standard CG method. Note that the results

from CG deteriorate somewhat when compared with (P1), while the performance of

the preconditioned methods actually improve slightly. The adherence to the O(H
h

)

law for the nonoverlapping preconditioner is again quite strong. The rate of growth

for the condition number in the overlapping case is still underperforming the O(H
δ

)

law, although it does appear to be growing as h increases.

Table 2.3 exhibits the performance of the three methods for test problem (P2).

For this problem we again choose γh = 10.0 and utilize the same array of coarse

and fine meshes, but for variety we choose to use piecewise quadratic polynomials

q = 2 to construct the DG approximation. Note that the subdomain partition in this

44

Table 2.3: (P3) Comparison of solvers. κ estimates, (iterations) for q = 2

NOV PCG OV PCG CG
PPPPPPPPP1/h

1/H
4 8 16 4 8 16

16 11.6 (34) 5.8 (23) - 4.3 (21) 3.7 (18) - 514.9 (231)

32 22.1 (47) 11.0 (32) 5.5 (22) 4.9 (22) 3.9 (19) 3.6 (19) 1986.7 (461)

64 42.0 (65) 21.1 (45) 10.3 (31) 6.5 (26) 4.4 (21) 3.6 (18) 7707.6 (922)

128 79.5 (90) 40.1 (63) 19.7 (43) 9.7 (32) 5.9 (24) 4.1 (20) 29863.0 (1843)

case only contains 12 subdomains; the domain is L-shaped, but we follow the same

“checkerboard” pattern for assigning subdomains. The results are much in keeping

with the previous test problems – the performance of CG worsens even further while

the preconditioned methods remain very consistent. The overlapping method again

provides the best performance. The adherence to the O(H
h

) law for the nonoverlapping

preconditioner is again easily seen, while the overlapping case persists in falling short

of the O(H
δ

) rule.

2.5.2 Dependence on the Penalty Parameter γ

The primary role of the parameter γ is to penalize the jump terms so that the bilinear

form aγhh is coercive. In theory, we only need the condition that γ is larger than some

constant γ0 (depending on the polynomial degree of the approximation space V h) to

guarantee that this is the case. However, if γ is taken too large, the condition number

of the resulting stiffness matrix will suffer. There is no existing theory that dictates

how to choose γ in a precise manner, so the choice is often made heuristically.

Previously in this section, we showed that the condition number of the nonoverlap-

ping preconditioned system has an explicit dependence on γ (Theorem 2.2). Similarly,

the condition number of the overlapping preconditioned system is independent of γ,

assuming that the penalty compatibility condition (PC) is enforced (Theorem 2.3).

45

In the experiments that follow we will enforce (PC) and investigate the role of γ

computationally.

Tables 2.4-2.5 display the performance of both of the PCG methods for (P1). Here

we use q = 1, with a minimal overlap δ ≈ h for the overlapping PCG experiments

in this section. Results are shown for several combinations of coarse and fine meshes

and for γ = 10, 100, 1000 and 10000. For comparison, Table 2.6 reports corresponding

estimates of κ(A), iteration counts, and runtimes when using the CG method without

preconditioning.

As an example, Figures 2.4-2.6 illustrate the relative performance of each method

for the particular meshes h = 1/64 and H = 1/8. In terms of improvement

in condition number, iteration count, and runtime, the advantages gained by the

preconditioning are immediately obvserved. The result of increasing γ is obviously

quite detrimental to the results for CG. More importantly, the dependence upon γ

for the nonoverlapping method predicted by Theorem 2.2 is evident, both in the

illustration offered by Figures 2.4-2.6 and in the raw numbers reported in Tables 2.4-

2.5. On the other hand, the independence of γ for the overlapping method predicted

by Theorem 2.101 is exceptionally clear, as condition numbers, iteration counts, and

runtimes remain remarkably stable as the penalty parameter is increased.

The performance of both of the PCG methods for (P2) is shown by Tables 2.7-2.8.

Again we use q = 1 with minimal overlap δ ≈ h for the overlapping PCG method.

Table 2.9 offers the corresponding results for the CG method. Figures 2.7-2.9 offer a

sample visualization of the reults for the particular meshes h = 1/64 and H = 1/8.

Similarly, Tables 2.10-2.12 report the results for (P3) with q = 2 and minimal overlap,

while Figures 2.10-2.12 give a sample illustration for h = 1/64 and H = 1/8. In all

cases, the results are qualitatively identical. The performance of CG is drastically

reduced as γ increases, while the dependence on γ for the nonoverlapping method

is clearly evinced. Finally, the overlapping method is almost completely impervious

to variations in γ. The theoretical predictions made by Theorems 2.2 and 2.101 are

supported quite strongly by these experiments.

46

Table 2.4: Variations of γ (PCG). (P1) with q = 1, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 14.0 (36) 53.7 (68) 125.7 (107) 200.2 (133) 5.3 (21) 5.7 (22) 5.4 (21) 5.2 (21)

4 : 32 27.7 (49) 145.4 (110) 374.9 (179) 653.9 (236) 6.7 (24) 6.9 (24) 6.8 (24) 6.6 (24)

4 : 64 51.8 (65) 318.8 (159) 931.7 (272) 1671.6 (367) 9.2 (28) 9.8 (29) 9.6 (29) 9.5 (29)

8 : 16 6.4 (23) 22.9 (44) 44.0 (61) 79.4 (81) 4.3 (19) 4.5 (19) 4.5 (19) 4.3 (19)

8 : 32 14.0 (34) 67.9 (74) 181.8 (119) 325.5 (160) 4.6 (19) 4.8 (20) 4.7 (20) 4.5 (19)

8 : 64 28.0 (49) 165.6 (115) 483.4 (196) 931.2 (274) 5.5 (21) 5.6 (21) 5.5 (21) 5.4 (21)

16 : 32 6.2 (22) 20.4 (40) 46.4 (61) 73.4 (76) 4.1 (18) 3.9 (18) 3.8 (17) 3.8 (17)

16 : 64 13.5 (33) 74.0 (77) 208.8 (124) 350.6 (164) 4.2 (18) 4.2 (18) 4.1 (18) 3.9 (17)

Table 2.5: Variations of γ (PCG). (P1) with q = 1, CPU runtimes

NOV PCG: CPU time OV PCG: CPU time

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 0.043 0.064 0.098 0.117 0.044 0.049 0.043 0.048

4 : 32 0.239 0.491 0.731 0.990 0.244 0.254 0.247 0.261

4 : 64 1.678 3.735 6.149 8.267 1.514 1.646 1.552 1.578

8 : 16 0.035 0.052 0.063 0.080 0.041 0.043 0.040 0.042

8 : 32 0.188 0.331 0.514 0.665 0.205 0.212 0.213 0.206

8 : 64 1.291 2.817 4.527 6.709 1.337 1.332 1.332 1.334

16 : 32 0.191 0.222 0.318 0.393 0.202 0.205 0.198 0.201

16 : 64 1.002 1.942 2.975 3.865 1.255 1.256 1.257 1.222

Table 2.6: Variations of γ (CG). (P1) with q = 1

CG: κ(A), (iterations), CPU runtime

1
h

10 100 1000 10000

16 149.5 (115) 0.068 604.9 (229) 0.134 1199.5 (320) 0.187 1942.0 (424) 0.247

32 444.3 (196) 0.491 1962.8 (407) 1.122 4838.4 (662) 1.780 7234.5 (761) 1.869

64 1362.1 (338) 6.265 7162.9 (800) 14.197 15062.5 (1106) 19.665 27281.0 (1487) 26.419

47

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r

#104

0

0.5

1

1.5

2

2.5

3

 NOV

 OV

 CG

Figure 2.4: (P1) Variations of γ. κ estimates, q = 1

.
10 100 1000 10000

Ite
ra

tio
ns

0

500

1000

1500

 NOV

 OV

 CG

Figure 2.5: (P1) Variations of γ. Iteration counts, q = 1

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

5

10

15

20

25

30

 NOV

 OV

 CG

Figure 2.6: (P1) Variations of γ. CPU runtimes, q = 1

48

Table 2.7: Variations of γ (PCG). (P2) with q = 1, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 14.3 (40) 72.8 (90) 145.5 (129) 255.1 (163) 4.9 (23) 5.6 (24) 5.7 (24) 5.5 (23)

4 : 32 26.0 (55) 182.4 (145) 461.7 (229) 839.6 (309) 5.5 (25) 5.9 (27) 5.9 (26) 5.7 (26)

4 : 64 48.7 (75) 347.1 (199) 1026.9 (341) 1859.0 (461) 6.3 (27) 6.2 (27) 5.9 (26) 5.6 (25)

8 : 16 6.7 (27) 28.1 (53) 60.3 (76) 94.5 (96) 4.3 (21) 4.8 (22) 4.9 (22) 4.7 (21)

8 : 32 15.2 (41) 82.0 (94) 221.4 (156) 395.7 (206) 4.3 (22) 4.6 (22) 4.6 (22) 4.5 (22)

8 : 64 27.3 (56) 182.0 (140) 541.9 (241) 1025.7 (332) 4.8 (23) 4.6 (22) 4.5 (22) 4.5 (22)

16 : 32 7.3 (28) 32.5 (60) 72.7 (89) 121.1 (113) 3.9 (21) 4.1 (21) 4.0 (21) 3.9 (21)

16 : 64 15.0 (41) 93.6 (102) 239.5 (160) 456.6 (216) 4.1 (21) 3.9 (20) 3.9 (21) 3.8 (20)

Table 2.8: Variations of γ (PCG). (P2) with q = 1, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 0.044 0.086 0.116 0.148 0.045 0.048 0.047 0.046

4 : 32 0.266 0.579 0.906 1.209 0.249 0.259 0.252 0.254

4 : 64 1.848 4.589 7.734 10.463 1.517 1.557 1.487 1.467

8 : 16 0.036 0.057 0.078 0.092 0.042 0.053 0.051 0.043

8 : 32 0.205 0.414 0.656 0.830 0.229 0.225 0.231 0.233

8 : 64 1.469 3.311 5.494 7.647 1.645 1.423 1.448 1.425

16 : 32 0.175 0.297 0.433 0.537 0.231 0.231 0.246 0.238

16 : 64 1.216 2.466 3.791 4.925 1.375 1.335 1.353 1.381

Table 2.9: Variations of γ (CG). (P2) with q = 1

CG: κ(A), (iterations), CPU runtime

1
h

10 100 1000 10000

16 177.6 (143) 0.085 845.8 (302) 0.177 2012.9 (452) 0.263 3282.5 (562) 0.332

32 571.1 (259) 3353.1 (626) 1.507 7978.3 (948) 2.303 13216.9 (1269) 3.082

64 1964.1 (489) 8.835 11581.9 (1180) 20.807 27825.1 (1826) 32.305 41319.4 (2160) 41.664

49

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r

#104

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 NOV

 OV

 CG

Figure 2.7: (P2) Variations of γ. κ estimates, q = 1

.
10 100 1000 10000

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

3000

 NOV

 OV

 CG

Figure 2.8: (P2) Variations of γ. Iteration counts, q = 1

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

10

20

30

40

50

60

 NOV

 OV

 CG

Figure 2.9: (P2) Variations of γ. CPU runtimes, q = 1

50

Table 2.10: Variations of γ (PCG). (P3) with q = 2, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 11.6 (34) 81.6 (93) 251.5 (171) 456.7 (246) 4.3 (21) 4.2 (21) 4.1 (22) 4.0 (23)

4 : 32 22.1 (47) 161.9 (132) 530.9 (252) 1011.5 (366) 4.9 (22) 5.0 (23) 4.8 (24) 4.6 (24)

4 : 64 42.0 (65) 311.4 (184) 1068.8 (360) 2056.5 (527) 6.5 (26) 6.4 (27) 6.1 (27) 5.9 (28)

8 : 16 5.8 (23) 30.1 (56) 97.2 (106) 159.0 (141) 3.7 (18) 3.5 (19) 3.4 (19) 3.3 (19)

8 : 32 11.0 (32) 85.6 (94) 303.2 (189) 564.3 (266) 3.9 (19) 3.7 (20) 3.6 (20) 3.6 (21)

8 : 64 21.1 (45) 174.6 (136) 656.6 (278) 1280.2 (405) 4.4 (21) 4.4 (22) 4.1 (22) 3.9 (22)

16 : 32 5.5 (22) 28.9 (54) 96.5 (105) 167.4 (144) 3.6 (19) 3.4 (19) 3.2 (19) 3.2 (20)

16 : 64 10.3 (31) 82.5 (92) 346.6 (195) 652.3 (285) 3.6 (18) 3.5 (19) 3.3 (19) 3.3 (20)

Table 2.11: Variations of γ (PCG). (P3) with q = 2, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 0.071 0.150 0.262 0.359 0.077 0.079 0.081 0.083

4 : 32 0.455 1.077 1.989 2.799 0.457 0.466 0.479 0.481

4 : 64 3.146 7.626 14.241 20.512 3.951 4.043 4.038 4.099

8 : 16 0.055 0.104 0.175 0.228 0.075 0.077 0.077 0.079

8 : 32 0.340 0.804 1.499 2.075 0.429 0.440 0.439 0.444

8 : 64 2.483 5.812 11.106 15.956 3.661 3.723 3.712 3.704

16 : 32 0.285 0.548 0.952 1.277 0.431 0.432 0.433 0.454

16 : 64 1.863 4.460 8.233 11.909 3.475 3.563 3.547 3.605

Table 2.12: Variations of γ (CG). (P3) with q = 2

CG: κ(A), (iterations), CPU runtime

1
h

10 100 1000 10000

16 514.9 (231) 0.351 2717.2 (560) 0.761 11056.5 (1186) 1.615 22816.4 (1796) 2.438

32 1986.7 (461) 2.874 10574.0 (1122) 6.918 45216.1 (2440) 15.692 95172.7 (3720) 23.254

64 7707.6 (922) 30.328 41245.2 (2247) 73.511 179087.8 (4925) 161.154 382748.6 (7556) 247.143

51

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r

#105

0

0.5

1

1.5

2

2.5

3

3.5

4

 NOV

 OV

 CG

Figure 2.10: (P3) Variations of γ. κ estimates, q = 2

.
10 100 1000 10000

Ite
ra

tio
ns

0

1000

2000

3000

4000

5000

6000

7000

8000

 NOV

 OV

 CG

Figure 2.11: (P3) Variations of γ. Iteration counts, q = 2

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

160

180

 NOV

 OV

 CG

Figure 2.12: (P3) Variations of γ. CPU runtimes, q = 2

52

2.5.3 Penalty Compatibility for the Discontinuous Coarse

Subspace

Recall from Section 2.3 that choosing to use a completely discontinuous coarse

subspace V H,D when constructing the coarse mesh component of the Schwarz

preconditioner necessitates the enforcement of (PC) in order for the direct definition

of the coarse solver (2.43) to coincide with the definition by restriction (2.44). Here we

will examine computationally the effects of failing to enforce the penalty compatibility

condition.

For a nice variety of results, we investigate the effect of not enforcing (PC) over

the same range of γ used in the previous section; i.e., γ = 10, 100, 1000, and 10000 for

each test problem under identical conditions as the experiments reported previously.

The effects of not enforcing (PC) for (P1) are reported in Tables 2.13 and 2.14.

These results should be compared to those in Tables 2.4 and 2.5, respectively. It

is immediately clear that the performance of both preconditioners suffers from the

lack of (PC), in terms of condition numbers, iteration counts, and runtimes. As

an example, Figures 2.13 - 2.15 display comparisons for the nonoverlapping method

between the results for 1/h = 64 and 1/H = 8 with (PC) both enforced and not

enforced, across all three performance metrics. The corresponding comparison for

the overlapping method is shown in Figures 2.16 - 2.18. It appears that the negative

effect of failing to enforce (PC) is exacerbated in the nonoverlapping method as γ is

allowed to increase, whereas in the overlapping case it seems there may be a limit to

how drastically the results may be affected.

Similar comparisons for test problem (P2) are shown in Tables 2.15, 2.16, and

Figures 2.13 - 2.18. Corresponding results for test problem (P3) are shown in Tables

2.17, 2.18, and Figures 2.25 - 2.30. All experiments corroborate the need to enforce

(PC) when using the discontinuous coarse subspace V H,D. It should be reiterated

that the enforcement of this condition is negligible in implementation, as it consists

simply of a rescaling by an integer factor at each level of refinement.

53

Table 2.13: (PC) not enforced. (P1), q = 1, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 23.7 (45) 101.0 (92) 205.4 (134) 304.8 (164) 8.6 (27) 8.9 (28) 8.6 (27) 8.2 (27)

4 : 32 70.2 (76) 311.2 (161) 758.6 (251) 1219.3 (320) 15.7 (38) 14.1 (35) 13.6 (34) 13.3 (34)

4 : 64 221.4 (135) 750.2 (246) 1912.6 (395) 3213.1 (517) 27.0 (49) 23.2 (46) 22.3 (45) 22.1 (44)

8 : 16 8.6 (27) 26.2 (47) 57.8 (68) 84.1 (84) 5.1 (21) 5.4 (21) 5.2 (21) 5.0 (20)

8 : 32 27.4 (47) 110.8 (94) 262.9 (143) 455.3 (189) 7.9 (26) 7.6 (25) 7.6 (25) 7.2 (25)

8 : 64 87.8 (82) 310.4 (155) 818.1 (256) 1528.8 (354) 15.3 (36) 12.1 (32) 11.0 (30) 10.8 (30)

16 : 32 8.4 (25) 26.6 (46) 61.2 (69) 95.0 (85) 4.8 (20) 4.6 (19) 4.4 (19) 4.4 (19)

16 : 64 26.5 (45) 114.2 (94) 298.8 (150) 568.3 (204) 7.1 (24) 6.7 (23) 6.2 (22) 6.0 (22)

Table 2.14: (PC) not enforced. (P1), q = 1, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 0.051 0.083 0.121 0.141 0.049 0.048 0.047 0.048

4 : 32 0.322 0.627 0.933 1.275 0.317 0.291 0.283 0.284

4 : 64 3.123 5.307 8.578 11.306 2.092 1.996 1.958 1.951

8 : 16 0.034 0.054 0.067 0.082 0.044 0.044 0.041 0.042

8 : 32 0.215 0.444 0.589 0.794 0.237 0.237 0.238 0.237

8 : 64 1.954 3.507 5.533 7.679 1.725 1.646 1.550 1.554

16 : 32 0.152 0.226 0.375 0.411 0.214 0.208 0.205 0.207

16 : 64 1.283 2.258 3.494 4.702 1.393 1.359 1.325 1.343

54

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r
0

200

400

600

800

1000

1200

1400

1600

 (PC)

 no (PC)

Figure 2.13: (P1), NOV. Effect of (PC) for κ, q = 1

.
10 100 1000 10000

Ite
ra

tio
ns

50

100

150

200

250

300

350

400

 (PC)

 no (PC)

Figure 2.14: (P1), NOV. Effect of (PC) for iteration counts, q = 1

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

16

18

 (PC)

 no (PC)

Figure 2.15: (P1), NOV. Effect of (PC) for CPU runtimes, q = 1

55

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r

4

6

8

10

12

14

16

 (PC)

 no (PC)

Figure 2.16: (P1), OV. Effect of (PC) for κ, q = 1

.
10 100 1000 10000

Ite
ra

tio
ns

26

27

28

29

30

31

32

33

34

35

36

 (PC)

 no (PC)

Figure 2.17: (P1), OV. Effect of (PC) for iteration counts, q = 1

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

 (PC)

 no (PC)

Figure 2.18: (P1), OV. Effect of (PC) for CPU runtimes, q = 1

56

Table 2.15: (PC) not enforced. (P2), q = 1, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 21.5 (50) 111.8 (108) 242.9 (157) 406.0 (204) 8.2 (30) 8.6 (30) 8.9 (30) 8.6 (30)

4 : 32 67.2 (87) 342.7 (195) 792.2 (297) 1443.0 (402) 12.8 (39) 11.5 (38) 11.3 (37) 11.0 (37)

4 : 64 200.6 (151) 781.1 (293) 2028.2 (470) 3430.9 (622) 18.9 (48) 14.4 (42) 13.4 (40) 13.0 (39)

8 : 16 8.8 (31) 33.2 (58) 67.4 (80) 121.1 (109) 5.4 (24) 5.6 (24) 5.6 (23) 5.6 (23)

8 : 32 28.7 (56) 133.3 (120) 319.1 (185) 607.8 (258) 7.2 (29) 7.3 (28) 7.1 (28) 6.9 (28)

8 : 64 84.8 (98) 354.4 (196) 979.7 (327) 1743.6 (434) 13.4 (39) 9.4 (32) 9.3 (33) 8.9 (32)

16 : 32 10.1 (33) 36.9 (63) 89.2 (101) 142.6 (125) 4.7 (23) 4.7 (23) 4.7 (23) 4.4 (22)

16 : 64 29.1 (56) 139.4 (121) 357.1 (193) 642.7 (258) 7.3 (28) 6.4 (25) 6.0 (26) 5.8 (26)

Table 2.16: (PC) not enforced. (P2), q = 1, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 0.056 0.107 0.140 0.178 0.050 0.053 0.050 0.050

4 : 32 0.391 0.860 1.277 1.553 0.329 0.315 0.314 0.309

4 : 64 3.679 6.695 10.668 13.864 2.110 1.935 1.877 1.853

8 : 16 0.042 0.061 0.082 0.113 0.045 0.048 0.046 0.044

8 : 32 0.275 0.503 0.749 1.025 0.265 0.261 0.261 0.263

8 : 64 2.378 4.501 7.438 9.657 1.865 1.665 1.683 1.667

16 : 32 0.228 0.322 0.480 0.594 0.234 0.243 0.241 0.231

16 : 64 1.467 2.906 4.768 6.022 1.550 1.470 1.476 1.477

57

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r
0

200

400

600

800

1000

1200

1400

1600

1800

 (PC)

 no (PC)

Figure 2.19: (P2), NOV. Effect of (PC) for κ, q = 1

.
10 100 1000 10000

Ite
ra

tio
ns

50

100

150

200

250

300

350

400

450

 (PC)

 no (PC)

Figure 2.20: (P2), NOV. Effect of (PC) for iteration counts, q = 1

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

1

2

3

4

5

6

7

8

9

10

 (PC)

 no (PC)

Figure 2.21: (P2), NOV. Effect of (PC) for CPU runtimes, q = 1

58

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r

4

5

6

7

8

9

10

11

12

13

14

 (PC)

 no (PC)

Figure 2.22: (P2), OV. Effect of (PC) for κ, q = 1

.
10 100 1000 10000

Ite
ra

tio
ns

22

24

26

28

30

32

34

36

38

40

 (PC)

 no (PC)

Figure 2.23: (P2), OV. Effect of (PC) for iteration counts, q = 1

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

 (PC)

 no (PC)

Figure 2.24: (P2), OV. Effect of (PC) for CPU runtimes, q = 1

59

Table 2.17: (PC) not enforced. (P3), q = 1, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 39.1 (62) 137.6 (122) 371.9 (210) 650.4 (289) 11.4 (34) 7.0 (28) 6.5 (28) 6.4 (29)

4 : 32 134.8 (115) 335.6 (189) 922.4 (332) 1670.6 (468) 25.1 (50) 10.9 (35) 9.6 (34) 9.1 (35)

4 : 64 396.9 (199) 788.3 (294) 2116.9 (507) 3697.8 (706) 59.7 (78) 18.5 (46) 14.5 (44) 13.6 (44)

8 : 16 11.0 (32) 36.0 (61) 113.9 (115) 196.1 (159) 5.8 (24) 4.4 (21) 4.1 (22) 3.9 (22)

8 : 32 41.6 (64) 130.6 (117) 433.7 (224) 813.1 (323) 11.7 (34) 6.2 (26) 5.7 (26) 5.5 (27)

8 : 64 144.1 (117) 332.4 (187) 1034.1 (345) 1890.7 (492) 26.9 (53) 9.8 (33) 8.4 (32) 7.8 (32)

16 : 32 10.5 (32) 33.8 (59) 109.7 (113) 208.9 (163) 5.6 (24) 4.1 (21) 3.8 (21) 3.7 (22)

16 : 64 41.3 (62) 120.8 (110) 452.8 (227) 869.9 (331) 11.5 (34) 5.8 (25) 5.4 (26) 5.1 (26)

Table 2.18: (PC) not enforced. (P3), q = 1, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

10 100 1000 10000 10 100 1000 10000

4 : 16 0.108 0.191 0.309 0.411 0.103 0.091 0.096 0.096

4 : 32 0.956 1.504 2.536 3.609 0.748 0.593 0.583 0.598

4 : 64 8.172 11.792 19.811 27.289 7.305 5.243 5.110 5.118

8 : 16 0.072 0.113 0.188 0.254 0.090 0.081 0.082 0.082

8 : 32 0.590 0.979 1.783 2.507 0.587 0.507 0.501 0.511

8 : 64 5.099 7.726 13.616 19.540 5.702 4.421 4.360 4.348

16 : 32 0.360 0.599 1.034 1.435 0.489 0.460 0.465 0.469

16 : 64 3.059 4.891 9.387 13.363 4.512 3.923 3.994 3.987

60

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 (PC)

 no (PC)

Figure 2.25: (P3), NOV. Effect of (PC) for κ, q = 2

.
10 100 1000 10000

Ite
ra

tio
ns

0

50

100

150

200

250

300

350

400

450

500

 (PC)

 no (PC)

Figure 2.26: (P3), NOV. Effect of (PC) for iteration counts, q = 2

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

2

4

6

8

10

12

14

16

18

20

 (PC)

 no (PC)

Figure 2.27: (P3), NOV. Effect of (PC) for CPU runtimes, q = 2

61

.
10 100 1000 10000

C
on

di
tio

n
nu

m
be

r

0

5

10

15

20

25

30

 (PC)

 no (PC)

Figure 2.28: (P3), OV. Effect of (PC) for κ, q = 2

.
10 100 1000 10000

Ite
ra

tio
ns

20

25

30

35

40

45

50

55

 (PC)

 no (PC)

Figure 2.29: (P3), OV. Effect of (PC) for iteration counts, q = 2

.
10 100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

3.5

4

4.5

5

5.5

6

 (PC)

 no (PC)

Figure 2.30: (P3), OV. Effect of (PC) for CPU runtimes, q = 2

62

Chapter 3

Fourth Order Elliptic Problems

3.1 Preliminaries

3.1.1 Model Problem

Let Ω ⊂ Rd, d = 2, 3 be a bounded polygonal domain with boundary ∂Ω. Consider

the following model problem:

∆2u = f in Ω, (3.1)

u = gD on ∂Ω (3.2)

∂u

∂n
= gN on ∂Ω. (3.3)

In the case d = 2, the above problem models the bending of a clamped elastic plate

subject to the external load f and u stands for the vertical displacement of the plate.

3.1.2 Partitions of Ω

The notation introduced in Chapter 2 will be used throughout this chapter as well,

particularly mesh, cell, and edge designations. The assumptions made on Th, similar

to those made in Section 2.1.2, are as follows for the fourth order problem.

63

(P1) The elements of Th are shape regular.

(P2) Th is locally quasi-uniform; i.e., if two cells Ki and Kj share an edge then

diam(Ki) ≈ diam(Kj).

(P3) Th is conforming, i.e. no hanging nodes are allowed. As before, this assumption

is mainly imposed to simplify the proofs and may certainly be relaxed in actual

computations.

The definitions and notations used for broken Sobolev spaces, edge integrals, and

DG jumps and averages are precisely the same as in Section 2.1.2 as well.

3.1.3 Discontinuous Galerkin Formulation

On the energy space Eh = Hs(Th), s > 7/2, define the bilinear form ah(·, ·) as

ah(u, v) =
∑
K∈Th

(∆u,∆v)K

+
∑
eh∈Eh

(
〈{∂n∆u}, [v]〉eh + 〈{∂n∆v}, [u]〉eh +

σh
|eh|3

〈[u], [v]〉eh

)

−
∑
eh∈Eh

(
〈{∆u}, [∂nv]〉eh + 〈{∆v}, [∂nu]〉eh −

τh
|eh|
〈[∂nu], [∂nv]〉eh

)
.

(3.4)

To contrast with the bilinear form used for the second order problem (2.5), the fourth

order bilinear form contains penalty terms corresponding to both jumps and jumps

of normal derivatives on edges. Here, the penalty parameters σh and τh must each be

larger than some threshold in order to guarantee the stability of the method.

64

The bilinear form presented above corresponds to Arnold’s formulation; Baker’s

formulation is given by

ah(u, v) =
∑
K∈Th

(∆u,∆v)K

+
∑
eh∈Eh

(
〈∂n∆u, [v]〉eh + 〈∂n∆v, [u]〉eh +

σh
|eh|3

〈[u], [v]〉eh

)

−
∑
eh∈Eh

(
〈∆u, [∂nv]〉eh + 〈∆v, [∂nu]〉eh −

τh
|eh|
〈[∂nu], [∂nv]〉eh

)
.

(3.5)

In addition, define the functional Fh by

Fh(v) = (f, v)+
∑
eh∈EBh

(
〈gD, ∂n∆v〉eh−〈gN ,∆v〉eh+

σh
|eh|3

〈gD, v〉eh+
τh
|eh|
〈gN , ∂nv〉eh

)
.

(3.6)

The bilinear form ah is consistent with the BVP (3.1)-(3.3). Indeed, suppose

u ∈ Hs(Th), s > 7/2 is a solution. Then integration by parts reveals that

ah(u, v) = Fh(v), ∀v ∈ Eh. (3.7)

Using this as motivation, we introduce the DG finite element spaces

V h =
∏
K∈Th

Pq(K), q ≥ 2,

where Pq(K) is the space of polynomials of degree less than or equal to q on K. If

necessary, the notation V h
q will be used to indicate the degree of Pq explicitly. Define

the DG approximation of u to be the element uh ∈ V h that satisfies

ah(uh, v) = (f, v), ∀v ∈ V h. (3.8)

65

Note that the form ah is symmetric by construction. Introducing the norm ‖ · ‖2,h :

Eh → R defined by

‖v‖2,h =

{ ∑
K∈Th

‖∆v‖2
K +

∑
eh∈Eh

(
|eh| |{∆v}|2eh + |eh|3 |{∂n∆v}|2eh

+
τh
|eh|
|[∂nv]|2eh +

σh
|eh|3

|[v]|2eh

)}1/2

,

(3.9)

we have the following continuity and coercivity properties of ah.

Lemma 3.1.1. For both the Arnold and Baker formulations,

|ah(u, v)| ≤ ‖u‖2,h‖v‖2,h, ∀u, v ∈ Eh (3.10)

and there exist positive constants σ, τ and ca depending only on q and the shape

regularity of the cells in Th such that if σh ≥ σ0 and τh ≥ τ0, then

|ah(v, v)| ≥ ca‖v‖2
2,h, ∀v ∈ V h. (3.11)

These properties are sufficient to guarantee that the problem (3.8) is well-posed.

The proofs are well-known and are therefore omitted.

The linear system corresponding to (3.8), again formed by choosing a basis for

V h, is

Ax = b. (3.12)

The stiffness matrix A is symmetric, positive definite; unfortunately, the (2-norm)

condition number of A is of the order O(h−4) where h = minK∈Th hK . Thus, for

small h, (3.12) is even more ill-conditioned than the second order system (2.13). The

approach to solving this system is again to contruct the preconditioned system

BAx = Bb (3.13)

66

using the Schwarz framework, then solve this system iteratively with the Conjugate

Gradient method.

3.2 Basic results

A few results from Chapter 2 will be needed in order to construct the Schwarz

preconditioners for the biharmonic problem. As before, D will denote a simply-

connected, open, bounded domain in Rd with Lipschitz boundary ∂D that is star-

shaped and shape regular in the sense of (2.15). In addition, frequent use will be made

of the trace and inverse inequalities on D ((2.16) and (2.17), respectively), as well as

the basic approximation result (2.18). The broken trace lemma (Lemma (2.1.1)) and

generalized Poincaré inequality (Lemma (2.1.3)) will also be necessary.

The following result of [26] will play a crucial role in the analysis. It will enable

second order partial derivatives of u ∈ V h to be bound in terms of the norm ‖u‖2,h.

Indeed, one of the difficulties of fourth order problems is that ‖∆u‖ is not a seminorm,

so it cannot play a role similar to that of ‖∇u‖ in the context of second order problems.

Lemma 3.2.1. There exists an operator E : V h → V h
q+2∩H2

0 (Ω) satisfying the bound

|vh − E(vh)|2m,K ≤ c
∑

eh∈ωh(K)

(
|eh|1−2m |[vh]|2eh + |eh|3−2m |[∂nvh]|2eh

)
, ∀K ∈ Th,

(3.14)

where m = 0, 1, 2 and where ωh(K) is the (local) set of edges in Th emanating from

the vertices of K.

In particular, this is the local version of the result given in [26]. In [26] the

derivative jumps are given as [∇u]. These can be replaced by [∂nu] upon noticing

that one has |[∂τu]|eh = |∂τ [u]|eh for tangential derivatives along planar edges. Using

the inverse inequality on eh implies |eh|3−2m|[∂τu]2eh ≤ c|eh|1−2m|[u]|2eh , a term that is

already included in the right side of (3.14). The construction of E(u) is done using a

family of 2D macro elements introduced in [21].

67

Furthermore, the following estimates will be used frequently in the subsequent

analysis.

Lemma 3.2.2. For all u ∈ V h, the following bounds hold:

‖E(u)‖2,Ω ≤ c(Ω)‖E(u)‖Ω (3.15)

‖E(u)‖2
2,Ω ≤ c

∑
K∈Th

‖∆u‖2
K + c

∑
eh∈Eh

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
≤ c‖u‖2

2,h

(3.16)

∑
K∈Th

|u|22,K ≤ c
∑
K∈Th

‖∆u‖2
K + c

∑
eh∈Eh

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
≤ c‖u‖2

2,h.

(3.17)

Proof. To begin, (3.15) is a well-known elliptic a priori bound (cf. e.g. [27]). Using

it, the triangle inequality and (3.14) with m = 2,

‖E(u)‖2
2,Ω ≤ ‖∆E(u)‖2

Ω

≤ c
∑
K∈Th

‖∆u‖2
Ω + c

∑
K∈Th

‖∆(E(u)− u)‖2
Ω

≤ c
∑
K∈Th

‖∆u‖2
Ω + c

∑
K∈Th

∑
eh∈ωh(K)

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)

≤ c
∑
K∈Th

‖∆u‖2
Ω + c

∑
eh∈Eh

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
≤ c‖u‖2

2,h.

(3.18)

This proves inequality (3.16). The third inequality (3.17) follows by the triangle

inequality, (3.14) with m = 2, and (3.16)

68

3.3 Schwarz Framework

The construction of the nonoverlapping and overlapping additive Schwarz precondi-

tioners for the fourth order problem mirrors the development presented in Chapter

2. Much of the notation introduced previously will be used with identical definitions.

In particular, the domain Ω is divided into a collection of subdomains {Ωj}pj=1 with

corresponding partition TS, while TH is a coarse partition of Ω.

As before, the following alignments will be required between the partitions Th, TH ,

and TS:

TS ⊆ Th and TH ⊆ Th. (3.19)

3.3.1 Subdomain Spaces and Bilinear Forms

In order to define the subdomain bilinear forms for the current problem, it will be

useful to recall a few definitions presented in Chapter 2. Define the subspaces {V h
j }

p
j=1

associated with the subdomains {Ωj}pj=1 by

V h
j = {v ∈ V h|v = 0 in Ω \ Ωj}, j = 1, 2, · · · , p,

and the associated bilinear forms ai(·, ·) by restriction:

ai(u, v) = ah(u, v), ∀u, v ∈ V h
i , i = 1, . . . , p.

As before, the decomposition

V h = V h
1 + · · · + V h

0 (3.20)

holds. In addition, we will consider the following sets:

1. Si := {eh ∈ EIh , eh ∈ ∂Ωi}, i = 1, . . . , p.

2. Th,i := {K ∈ Th, K ⊂ Ωi}.

69

3. EIh,i := {eh ∈ EIh , eh ⊂ Ωi}.

4. EBh,i := {eh ∈ EBh , eh ∈ ∂Ωi}. Note that this set may be empty.

5. Eh,i := EIh,i ∪ EBh,i.

For Arnold’s formulation, the subdomain bilinear forms are give by

ai(u, v) =
∑
K∈Th,i

(∆u,∆v)K

+
∑

eh∈Eh,i

(
〈{∂n∆u}, [v]〉eh + 〈{∂n∆v}, [u]〉eh +

σh
|eh|3

〈[u], [v]〉eh

)
−

∑
eh∈Eh,i

(
〈{∆u}, [∂nv]〉eh + 〈{∆v}, [∂nu]〉eh −

τh
|eh|
〈[∂nu], [∂nv]〉eh

)
+
∑
eh∈Si

(
1

2
〈∂n∆u, v〉eh +

1

2
〈∂n∆v, u〉eh +

σh
|eh|3

〈u, v〉eh

)
−
∑
eh∈Si

(
1

2
〈∆u, ∂nv〉eh +

1

2
〈∆v, ∂nu〉eh −

τh
|eh|
〈∂nu, ∂nv〉eh

)
.

(3.21)

In the above expression, the edge integrals on Si must be interpreted as follows: The

traces of u, v are taken from Ωi and the normal derivatives are with respect to the

unit outward normal vectors to Ωi.

For Baker’s formulation, the bilinear form ai(·, ·) takes the form

ai(u, v) =
∑
K∈Th,i

(∆u,∆v)K

+
∑

eh∈Eh,i

(
〈∂n∆u, [v]〉eh + 〈∂n∆v, [u]〉eh +

σh
|eh|3

〈[u], [v]〉eh

)
−

∑
eh∈Eh,i

(
〈∆u, [∂nv]〉eh + 〈∆v, [∂nu]〉eh −

τh
|eh|
〈[∂nu], [∂nv]〉eh

)
+
∑
eh∈Si

(
〈∂n∆u, v〉eh + 〈∂n∆v, u〉eh +

σh
|eh|3

〈u, v〉eh

)
−
∑
eh∈Si

(
〈∆u, ∂nv〉eh + 〈∆v, ∂nu〉eh −

τh
|eh|
〈∂nu, ∂nv〉eh

)
.

(3.22)

70

Again, for eh ∈ Si, the terms 〈∂nu, v〉eh , 〈∂nv, u〉eh will be present if and only if K+

belongs to Ωi.

3.3.2 The Coarse Subspace and Bilinear Form

As in the second order problem, two choices will be investigated for the coarse mesh

subspace V h
0 . The consideration of the continuous course space V h,C will be quite

similar in this case, but the presence of the additional penalty terms in ah will require

a bit of extra attention when examining the discontinuous course space V h,D.

3.3.3 The Discontinuous Coarse Space

Here we set

V h
0 := V H,D = Pq0(TH), 2 ≤ q0 ≤ q. (3.23)

Clearly V h
0 is a subspace of V h. The coarse space bilinear form is defined by

a0(u, v) =
∑
K∈TH

(∆u,∆v)K

+
∑
eH∈EH

(
〈{∂n∆u}, [v]〉eH + 〈{∂n∆v}, [u]〉eH +

σH
|eH |3

〈[u], [v]〉eH

)

−
∑
eH∈EH

(
〈{∆u}, [∂nv]〉eH + 〈{∆v}, [∂nu]〉eH +

τH
|eH |
〈[∂nu], [∂nv]〉eH

)
.

(3.24)

In [24], a0(·, ·) was defined as the restriction of ah(·, ·) to V H,D, i.e.

a0(u, v) = ah(u, v), ∀u, v ∈ V H,D. (3.25)

This definition requires the imposition of certain compatibility conditions relating the

penalty paramaters σh to σH and τh to τH , in a similar fashion to the observations

made in Chapter 2. For Baker’s formulation, additonal conditions on the choice of

K+ and K− on interior edges must also be enforced. Again, all the conditions that

71

are necessary for (3.25) to hold need to be identified. Based on such a study a rational

choice as to whether to define a0(·, ·) by (3.25) or not can be made.

To begin, it easy to see that

∑
K∈Th

(∆u,∆v)K =
∑
D∈TH

(∆u,∆v)D, ∀u, v ∈ V H,D. (3.26)

For u, v ∈ V H,D the jumps across edges eh ∈ EIh which are in the interior of some

K ∈ TH are zero. Also, for Arnold’s formulation the values of 〈{∂n∆u}, [v]〉eH ,

〈{∂n∆v}, [u]〉eH , 〈{∆u}, [∂nv]〉eH , and 〈{∆v}, [∂nu]〉eH are independent of the sign

convention used in the designation of K+ vs. K−. For eh ∈ EBh , there is no issue

since we always use K+ for the cell that contains it. Hence, we can combine these

edge integrals to obtain

∑
eh∈Eh

(
〈{∂n∆u}, [v]〉eh + 〈{∂n∆v}, [u]〉eh − 〈{∆u}, [∂nv]〉eh − 〈{∆v}, [∂nu]〉eh

)
=

∑
eH∈EH

(
〈{∂n∆u}, [v]〉eH + 〈{∂n∆v}, [u]〉eH − 〈{∆u}, [∂nv]〉eH − 〈{∆v}, [∂nu]〉eH

)
,

(3.27)

for all u, v ∈ V H,D.

For Baker’s formulation, (3.27) does not necessarily hold (refer to Figure 2.1

in Chapter 2). It will again be necessary to enforce the same sign compatibility

assumption (SC) as in the second order case (Figure 2.2):

For all edges eh ∈ EIh that are part of an edge eH ∈ EIH , eH ⊂ ∂D,

D ∈ TH , the cells K ∈ Th that contain eh and belong to D have

the same sign as D in relation to eH .

(SC)

Under this assumption, the fourth order version of (3.27) also holds for Baker’s

formulation.

The focus now turns to the penalty jump terms. Note that these terms are

identical for both the Arnold and Baker formulations and are independent of the

72

K+,− convention. Furthermore, for u, v ∈ V H,D, the jumps across edges eh ∈ EIh
which are in the interior of some K ∈ TH are zero. On the other hand, the attached

weights must still be considered. Using (3.26) and (3.27) and assuming that (SC)

holds for Baker’s formulation,

ah(u, v) = a0(u, v) +
∑
eH∈EH

∑
eh⊂eH

(
σh
|eh|3

− σH
|eH |3

)
〈[u], [v]〉eh

+
∑
eH∈EH

∑
eh⊂eH

(
τh
|eh|
− τH
|eH |

)
〈[∂nu], [∂nv]〉eh .

(3.28)

This motivates introducing the following penalty compatibility conditions:

σh
|eh|3

=
σH
|eH |3

, eh ⊂ eH ∈ EH , (PCσ)

τh
|eh|

=
τH
|eH |

, eh ⊂ eH ∈ EH . (PCτ)

Putting this together,

Lemma 3.3.1.

(i) Under assumptions (PCσ) and (PCτ), (3.25) holds for Arnold’s formulation.

(ii) Under assumptions (PCσ), (PCτ), and (SC), (3.25) holds for Baker’s

formulation.

(iii) Under assumptions (PCσ) and (PCτ) restricted to eH ∈ EBH we have Fh(v) =

FH(v), ∀v ∈ V H,D.

As pointed out in Chapter 2, the enforcement of these conditions is trivial in

practical implementation.

73

3.3.4 The Continuous Coarse Space

As before, set

V h
0 = V H,C = {v ∈ Pq0(TH) ∩ C(Ω), v

∣∣
∂Ω

= 0} ⊂ V H,D. (3.29)

Since we are assuming that (SC) holds for Baker’s formulation, it follows from

(3.28) that

ah(u, v) = a0(u, v) +
∑
eH∈EH

∑
eh⊂eH

(
τh
|eh|
− τH
|eH |

)
〈[∂nu], [∂n[]v]〉eh , ∀u, v ∈ V H,C .

(3.30)

As mentioned previously, this option has the advantage of a smaller stiffness matrix

corresponding to the coarse level, as well as eliminating the need to enforce the penalty

compatibility conditions.

3.4 Construction of the Schwarz Preconditioners

The construction of the two-level additive Schwarz preconditioners for the fourth

order problem will follow the same abstract framework detailed in Section 2.4. In

particular, the current analysis will focus on verifying the following three assumptions

(recall from Section 2.4):

Assumption 1: For any u ∈ V h

p∑
i=0

ai(ui, ui) ≤ C2
0ah(u, u), (3.31)

for some representation u =
∑p

i=0 ui. Here, 1/C2
0 is a lower bound on the smallest

eigenvalue of the preconditioned matrix.

Assumption 2: Let 0 ≤ Eij ≤ 1 be the minimal values such that

|ah(ui, uj)| ≤ Eij ah(ui, ui)
1
2ah(uj, uj)

1
2 , ui ∈ V h

i , uj ∈ V h
j , i, j = 1, · · · , p. (3.32)

74

That such values exist follows from the Cauchy-Schwarz inequality. Define ρ(E) to

be the spectral radius of E .

Assumption 3: Let ω ≥ 1 be the smallest value such that

ah(u, u) ≤ ω ai(u, u), ∀u ∈ V h
i , i = 0, 1, . . . , p. (3.33)

Special attention will be given to the constants C2
0 , ρ(E) and ω appearing in these

assumptions, due to their role in determining the bounds for the condition number κ of

the preconditioned system (3.13) in both the nonoverlapping and the overlapping case.

The condition number estimates will again be derived using the abstract estimate

(2.55).

3.4.1 Nonoverlapping Additive Schwarz Preconditioner

Recall that in this case the subdomains Ωi are disjoint and the sum (2.38) is direct.

The alignments (2.37) and TS ⊆ TH are again required. The interface bilinear form

I(·, ·) : V h × V h → R for the fourth order problem is again vital to the analysis. For

Arnold’s formulation, it is given by

I(u, v) = −1

2

∑
eh∈S

(〈
∂n∆u+, v−

〉
eh

+
〈
∂n∆v+, u−

〉
eh

−
〈
∂n∆u−, v+

〉
eh
−
〈
∂n∆v−, u+

〉
eh

)

+
1

2

∑
eh∈S

(〈
∆u+, ∂nv

−〉
eh

+
〈
∆v+, ∂nu

−〉
eh

−
〈
∆u−, ∂nv

+
〉
eh
−
〈
∆v−, ∂nu

+
〉
eh

)

−
∑
eh∈S

σh
|eh|3

(〈
u+, v−

〉
eh

+
〈
u−, v+

〉
eh

)

−
∑
eh∈S

τh
|eh|

(〈
∂nu

+, ∂nv
−〉

eh
+
〈
∂nu

−, ∂nv
+
〉
eh

)
.

(3.34)

75

Recall that S := ∪pi=1Si is sometimes called the skeleton of the nonoverlapping

partition.

For Baker’s formulation, the interface form is given by

I(u, v) = −
∑
eh∈S

(〈
∂n∆u+, v−

〉
eh

+
〈
∂n∆v+, u−

〉
eh

)

+
∑
eh∈S

(〈
∆u+, ∂nv

−〉
eh

+
〈
∆v+, ∂nu

−〉
eh

)

−
∑
eh∈S

σh
|eh|3

(〈
u+, v−

〉
eh

+
〈
u−, v+

〉
eh

)

−
∑
eh∈S

τh
|eh|

(〈
∂nu

+, ∂nv
−〉

eh
+
〈
∂nu

−, ∂nv
+
〉
eh

)
.

(3.35)

For both Arnold’s and Baker’s formulations, the following identity holds

ah(u, v) =

p∑
i=1

ai(ui, vi) + I(u, v), ∀u, v ∈ V h, (3.36)

where

u =

p∑
i=1

ui, v =

p∑
i=1

vi, and ui, vi ∈ V h
i .

The first step in the analysis of the nonoverlapping method is to obtain a bound

for |I(w,w)|, for w ∈ V h. In order to simplify the exposition, assume that the

partition of each cell D ∈ TH into cells from Th is uniform; i.e., that there exists a

representative hD such that

hD ≈ min
K∈Th,K⊂D

hK ≈ max
K∈Th,K⊂D

hK . (3.37)

The bound for |I(w,w)| is shown below.

Lemma 3.4.1. There exists a constant c independent of the number of subdomains,

such that

76

|I(w,w)| ≤ c
∑
K∈Th

‖∆w‖2
K + c(σ + τ)

∑
D∈TH

h−3
D

(
H−1
D ‖w‖

2
D +HD|w|21,h,D,

)
(3.38)

where

HD = diam(D), σ = max
eh⊂Eh

σh, τ = max
eh⊂Eh

τh.

Proof. The proof will be given for Arnold’s formulation; Baker’s is similar. First,

note that

I(w,w) = −
∑
eh∈S

(〈
∂n∆w+, w−

〉
eh
−
〈
∂n∆w−, w+

〉
eh

+
〈
∆w+, ∂nw

−〉
eh

−
〈
∆w−, ∂nw

+
〉
eh

)
−2
∑
eh∈S

(σh
|eh|3

〈
w+, w−

〉
eh

+
τh
|eh|

〈
∂nw

+, ∂nw
−〉

eh

)
.

(3.39)

Using the arithmetic-geometric mean inequality (and making the reasonable assump-

tion that σh, τh ≥ 1/2),

|I(w,w)| ≤ 1

2

∑
eh∈S

(
|eh|3

(∣∣∂n∆w+
∣∣2
eh

+
∣∣∂n∆w−

∣∣2
eh

)
+ |eh|

(∣∣∆w+
∣∣2
eh

+
∣∣∆w−∣∣2

eh

))

+2
∑
eh∈S

σh
|eh|3

(∣∣w+
∣∣2
eh

+
∣∣w−∣∣2

eh

)

+2
∑
eh∈S

τh
|eh|

(∣∣∂nw+
∣∣2
eh

+
∣∣∂nw−∣∣2eh)

= A1 + A2 + A3.

(3.40)

Using the trace and inverse inequalities (2.16), (2.17),

|A1| ≤ c
∑
K∈Th

‖∆w‖2
K . (3.41)

77

Now, note that each eh belongs to the boundary ∂D of some cell in the coarse mesh

TH . Appealing to Lemma (2.1.1),

|A2| ≤ cσ
∑
D∈TH

h−3
D |w|

2
∂D

≤ cσ
∑
D∈TH

h−3
D

(
H−1
D ‖w‖

2
DHD|w|21,h,D

)
.

(3.42)

Finally, using the trace and inverse inequalities,

|A3| ≤ c
∑
eh∈S

τh|eh|−4
(
‖w‖2

K+ + ‖w‖2
K−

)
≤ cτ

∑
D∈TH

h−4
D ‖w‖

2
Dh
,

(3.43)

where Dh is a boundary layer of width hD. Applying the generalized Poincaré

inequality (2.1.3) with ρ = hD,

|A3| ≤ cτ
∑
D∈TH

h−3
D

(
H−1
D ‖w‖

2
D +HD|w|21,h,D

)
. (3.44)

Combining (3.40) - (3.44) proves the estimate (3.38).

With this lemma in place, the next step is the verification of Assumption 1.

Proposition 3.4.1. For any u ∈ V h, there exists a decomposition u =
∑p

j=0 uj, uj ∈

V h
j , j = 0, 1, . . . , p such that

p∑
j=0

ai(uj, uj) ≤ c(σ + τ + τ γ) [H : h]3 ah(u, u), (3.45)

where the constant c is independent of p, σ and τ have been introduced earlier, γ =

max
(
τH
|eH |

|eh|
τh

)
and [H : h] = maxD∈TH

HD
hD

is a measure of the fineness of Th with

respect to TH .

78

Proof. An important component of the proof consists in constructing an appropriate

u0 in the coarse space V h
0 . For u ∈ Vh, let E(u) be the element in V h

q+2 ∩ H2
0 (Ω)

constructed in Lemma 3.2.1 and let u0 = IH(E(u)) be the continuous piecewise

linear Lagrange interpolant of E(u) on the coarse mesh TH . Thus u0 belongs to the

continuous coarse space V H,C . Furthermore, the following approximation holds:

‖E(u)− u0‖D +HD‖∇(E(u)− u0)‖D ≤ cH2
D|E(u)|2,D, ∀D ∈ TH . (3.46)

The decomposition (3.20) indicates the existence of uniquely determined functions

ui ∈ V h
i , i = 1, . . . , p such that u− u0 = u1 + · · ·+ up. In view of (3.36),

ah(u− u0, u− u0) =

p∑
j=1

aj(uj, uj) + I(u− u0, u− u0).

Adding a0(u0, u0) to both sides and applying the Cauchy-Schwarz inequality to the

bilinear form ah(·, ·),

p∑
j=0

aj(uj, uj) ≤ 2ah(u, u) + 2ah(u0, u0) + a0(u0, u0) + |I(u− u0, u− u0)|. (3.47)

The next parts of the proof consist of bounding terms on the right side of (3.47).

The most difficult term to estimate will be |I(u− u0, u− u0)|. From Lemma 3.4.1,

|I(u− u0, u− u0)| ≤
∑
K∈Th

‖∆(u− u0)‖2
K

+ cγ
∑
D∈TH

h−3
D

(
H−1
D ‖u− u0‖2

D +HD|u− u0|21,h,D
)
.

(3.48)

For the first sum in (3.48), since u0 is piecewise linear it follows that

∑
K∈Th

‖∆(u− u0)‖2
K =

∑
K∈Th

‖∆u‖2
K . (3.49)

79

The second sum in (3.48) is broken apart by adding and subtracting E(u) and

applying the triangle inequality to obtain

∑
D∈TH

h−3
D H−1

D ‖u− u0‖2
D ≤ 2

∑
D∈TH

h−3
D H−1

D ‖u− E(u)‖2
D

+ 2
∑
D∈TH

h−3
D H−1

D ‖E(u)− u0‖2
D.

(3.50)

For the first of these sums, applying Lemma 3.2.1 with m = 0 gives

∑
D∈TH

h−3
D H−1

D ‖u− E(u)‖2
D =

∑
D∈TH

h−3
D H−1

D

∑
K⊂D

‖u− E(u)‖2
K

≤ c
∑
D∈TH

h−3
D H−1

D

∑
K⊂D

∑
eh∈ω(K)

(|eh| |[u]|2eh + |eh|3 |[∂nu]|2eh)

≤ c
∑
K∈Th

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
≤ c‖u‖2

2,h.

(3.51)

Note the use of the fact that hD ≤ HD and |eh| ≈ hD for eh ∈ ω(K), K ⊂ D. For the

second sum in (3.50), using (3.46) and (3.16)

∑
D∈TH

h−3
D H−1

D ‖E(u)− u0‖2
D ≤ c

∑
D∈TH

h−3
D H3

D|E(u)|22,D

≤ c[H : h]3|E(u)|22,Ω

≤ c[H : h]3‖u‖2
2,h.

(3.52)

Combining the previous two estimates, it follows that the second sum in (3.48) may

be bounded in the following way.

∑
D∈TH

h−3
D H−1

D ‖u− u0‖ ≤ c[H : h]3‖u‖2
2,h. (3.53)

80

The final sum in (3.48) is estimated as follows. Using the definition of the | · |1,h,D
norm and the fact that u0 is continuous gives

∑
D∈TH

h−3
D HD|u− u0|21,h,D =

∑
D∈TH

h−3
D HD

∑
K⊂D

‖∇(u− u0)‖2
K

+
∑
D∈TH

h−3
D HD

∑
EIH,D

|eh|−1 |[u]|2eh .
(3.54)

Adding and subtracting E(u) and applying the triangle inequality to the first sum on

the right side of (3.54) gives the estimate

∑
D∈TH

h−3
D HD

∑
K⊂D

‖∇(u− u0)‖2
K

≤ 2
∑
D∈TH

h−3
D HD

∑
K⊂D

(
‖∇(u− E(u))‖2

K + ‖∇(E(u)− u0)‖2
K

)
(3.55)

To bound the first sum in the above inequality, again use Lemma 3.2.1 with m = 1

to get

∑
D∈TH

h−3
D HD

∑
K⊂D

‖∇(u− E(u))‖2
K

≤ c
∑
D∈TH

h−3
D HD

∑
K⊂D

∑
eh∈ω(K)

(
|eh|−1 |[u]|2eh + |eh| |[∂nu]|2eh

)

≤ c[H : h]
∑
K∈Th

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
≤ c[H : h]‖u‖2

2,h.

(3.56)

Again note the use of the fact that hD ≤ HD and |eh| ≈ hD for eh ∈ ω(K), K ⊂ D.

An approach similar to (3.52) is used to estimate the second sum in (3.55). Using

81

(3.46) and (3.16),

∑
D∈TH

h−3
D HD‖∇(E(u)− u0)‖2

D ≤ c
∑
D∈TH

h−3
D H3

D|E(u)|22,D

≤ c[H : h]3|E(u)|22,Ω

≤ c[H : h]3‖u‖2
2,h.

(3.57)

Since [H : h] ≤ [H : h]3, combining (3.56) and (3.57) gives the estimate

∑
D∈TH

h−3
D HD

∑
K⊂D

‖∇(u− u0)‖2
K ≤ c[H : h]3‖u‖2

2,h. (3.58)

For the second sum in (3.54), note that

∑
D∈TH

h−3
D HD

∑
eh∈EIH,D

|eh|−1 |[u]|2eh ≤ c[H : h]
∑
eh∈EIh

|eh|−3 |[u]|2eh

≤ c[H : h]‖u‖2
2,h.

(3.59)

Combining (3.58) and (3.59) with (3.54), the final term in (3.48) is estimated by

∑
D∈TH

h−3
D HD|u− u0|21,h,D ≤ c[H : h]3‖u‖2

2,h. (3.60)

Finally, all the pieces of the puzzle needed to bound I|u− u0, u− u0| are in place. It

follows from (3.49), (3.53), and (3.60) that

|I(u− u0, u− u0)| ≤ c(σ + τ)[H : h]3‖u‖2
2,h

≤ c(σ + τ)[H : h]3ah(u, u).

(3.61)

Note the use of the coercivity ((3.11)) of ah(·, ·) in the last step.

The second stage of the proof is deriving a bound for ah(u0, u0). Combining the

knowledge that u0 is continuous and piecewise linear on TH and vanishes on ∂Ω with

82

the fact that E(u) ∈ H2
0 (Ω),

ah(u0, u0) =
∑
eh∈Eh

τh
|eh|
|[∂nu0]|2eh

=
∑
eh∈Eh

∑
eh⊂eH

τh
|eh|
|[∂nu0]|2eh

≤ τ
∑
D∈TH

h−1
D |[∂n(E(u)− u0)]|2∂D .

(3.62)

Now, applying the trace and inverse inequalities (2.16) and (2.17) on TH gives

ah(u0, u0) ≤ τ
∑
D∈TH

h−1
D |[∂n(E(u)− u0)]|2∂D

≤ τ
∑
D∈TH

h−1
D H−3

D ‖E(u)− u0‖2
D.

(3.63)

Using the approximation and regularity results (3.46) and (3.16), as well as the

coercivity of ah(·, ·) given in (3.11),

ah(u0, u0) ≤ τ
∑
D∈TH

h−1
D H−3

D ‖E(u)− u0‖2
D

≤ cτ
∑
D∈TH

h−1
D HD|E(u)|22,D

≤ cτ [H : h]|E(u)|22,Ω

≤ cτ [H : h]‖u‖2
2,h

≤ cτ [H : h]ah(u, u).

(3.64)

83

The final stage of the proof involves estimating a0(u0, u0). From (3.24) and (3.11),

a0(u0, u0) =
∑
eH∈EH

τH
|eH |
|[∂nu0]|2eH

=
∑
eH∈EH

∑
eh⊂eH

(
τH
|eH |
|eh|
τh

)
τh
|eh|
|[∂nu0]|2eh

≤ γ‖u0‖2
2,h

≤ cγah(u0, u0).

(3.65)

Using the bound for ah(u0, u0) derived in (3.64), it follows that

a0(u0, u0) ≤ cγah(u0, u0) ≤ cγ τ [H : h]ah(u, u). (3.66)

Substitution of (3.61), (3.64), and (3.66) into (3.47) completes the proof, thus

verifying Assumption 1.

Remark 3.4.1. Note that if the penalty compatibility condition (PCτ) is enforced,

then γ = 1.

The next step is to verify Assumption 2. This follows in precisely the same way

as the second order problem. Again,

ah(ui, uj) = 0 if Si ∩ Sj = ∅, i, j = 1, . . . , p.

Thus, for disjoint subdomains Si and Sj, (3.32) holds with Eij = 0. All remaining

subdomains are (pairwise) adjacent; in these cases, (3.32) holds with Eij = 1 by the

Cauchy-Schwarz inequality. It follows that

ρ(E) ≤ ‖E‖∞ ≤ Nc, (3.67)

84

where

Nc := max
i
|{Ωj |Si ∩ Sj 6= ∅}|.

In essence, ρ(E) is bounded by the infinity norm of an adjacency matrix between the

subdomains, which is typically small in most practical applications.

The verification of Assumption 3 is presented as the following lemma.

Lemma 3.4.2. Let ω ≥ 1 be given by

ω =

1, if V h

0 = V H,C and assumption (PCτ) holds

1, if V h
0 = V H,D and assumptions (PCτ) and (PCσ) hold

1 + µσ+µτ
ca

, otherwise,

(3.68)

where ca is the coercivity constant in (3.11) and

µσ = max

∣∣∣∣ σh|eh|3 |eH |
3

σH
− 1

∣∣∣∣ and µτ = max

∣∣∣∣ τh|eh| |eH |τH
− 1

∣∣∣∣ .
Then there holds the bound

ah(u, u) ≤ ωai(u, u), ∀u ∈ V h
i , i = 0, . . . , p. (3.69)

Proof. For i = 1, . . . , p, the bound (3.69) holds with ω = 1 by the definition of the

subdomain bilinear forms by restriction. However, the more general definition of the

coarse space bilinear form a0(·, ·) necessitates a more careful analysis. From (3.28),

ah(u, u) = a0(u, u) +
∑
eH∈EH

∑
eh⊂eH

(
σh
|eh|3

− σH
|eH |3

)
|[u]|2eh

+
∑
eH∈EH

∑
eh⊂eH

(
τh
|eh|
− τH
|eH |

)
|[∂nu]|2eh .

(3.70)

If V h
0 = V H,C and assumption (PCτ) holds, or if V h

0 = V H,D and assumptions (PCσ)

and (PCτ) hold, then the above sums vanish and (3.69) holds with ω = 1 for i = 0

85

as well. In the general case,

∑
eH∈EH

∑
eh⊂eH

(
σh
|eh|3

− σH
|eH |3

)
|[u]|2eh +

∑
eH∈EH

∑
eh⊂eH

(
τh
|eh|
− τH
|eH |

)
|[∂nu]|2eh

=
∑
eH∈EH

∑
eh⊂eH

(
σh
|eh|3

|eH |3

σH
− 1

)
σH
|eH |3

|[u]|2eh

+
∑
eH∈EH

∑
eh⊂eH

(
τh
|eh|
|eH |
τH
− 1

)
τH
|eH |
|[∂nu]|2eh

≤ µσ
∑
eH∈EH

σH
|eH |3

|[u]|2eH + µτ
∑
eH∈EH

τH
|eH |
|[∂nu]|2eH

≤ (µσ + µτ)‖u‖2
2,H

≤
(
µσ + µτ
ca

)
a0(u, u),

(3.71)

where the coercivity (3.11) of a0(u, u) is used in the final step. Combining this

inequality with (3.70) above gives

ah(u, u) ≤
(

1 +
µσ + µτ
ca

)
a0(u, u), (3.72)

which covers inequality (3.69) for the case i = 0 and thus completes the proof.

With all three assumptions verified and the forms of the constants involved

determined, the main result for the nonoverlapping method is now presented.

Theorem 3.4.1. The condition number κ(T) of the operator T of the nonoverlapping

additive Schwarz method defined in this section (or equivalently that of the matrix BA)

satisfies

κ(T) ≤ c(σ + τ + τ γ)ω(Nc + 1)[H : h]3 (3.73)

86

where c is independent of p and the constants

σ, τ , γ, ω, Nc, and [H : h]

have been defined previously.

Proof. The proof is a direct application of the abstract estimate (2.55) to the estimates

(3.45), (3.67), and (3.68) derived to verify the necessary assumptions.

Remark 3.4.2. If the various penalty compatibility assumptions are not enforced,

then the parameter can be as large as powers of [H : h] depending on the sizes of the

parameters µσ, µτ shown in (3.68). This gives further incentive for the enforcement

of these conditions.

3.4.2 Overlapping Additive Schwarz Preconditioner

The focus of this section is to determine a corresponding condition number estimate

for the overlapping case. The overlapping subdomain partition TS has the same

properties as assumed for the second order problem (see 2.4.2). In particular, recall

that for each subdomain Si, the overlap is characterized by some parameter δi > 0.

In addition, recall the following:

1. Require the alignments TH ⊂ Th and TS ⊂ Th.

2. There exist nonnegative functions Ωi ∈ W 2,∞ ∩ C1(Ω), i = 1, . . . , p, such that

p∑
i=1

θi = 1, on Ω,

θi = 0 on Ω \ Ωi

|θi|α,∞ ≤ cδ
−|α|
i |α| = 0, 1, 2.

Here, δi represents the width of a boundary layer of Ωi resulting from the overlap

with other subdomains. It is assumed that the practical range of its values is

h ≤ δi ≤ H.

87

3. Let N(x) denote the number of subdomains that contain x and Nc ≡

maxx∈ΩN(x). It is reasonable to assume that Nc is a small number.

4. Define the sets ΩI
i and Ωδi

i by

ΩI
i = {x ∈ Ωi; x 6∈ Ωk for all k 6= i}, Ωδi

i = Ωi \ ΩI
i .

Finally, the contents of Remark 2.4.2 apply to the fourth order problem exactly

as before. The approach to estimating the condition number for the overlapping

Schwarz method again consists of verifying the three assumptions necessary to invoke

the abstract estimate (2.55). To verify Assumption 1, use the same u0 as the

nonoverlapping case and define u = u0 + u1 + · · ·+ up as in the second order case by

using the Lagrange interpolation operator Πh : C(Th) → V h defined locally on each

cell K ∈ Th. Denote by ΠK the restriction of Πh to K.

Proposition 3.4.2. Let u0 ∈ V H,C be as in (3.4.1), w = u−u0, and ui = Πh(θiw) ∈

V h
i , i = 1, . . . , p. Then there exists a constant c independent of p such that

ai(ui, ui) ≤ c

(∑
K∈Th,i

|u|22,K +
∑
K∈Ω

δi
i

(
δ−2
i ‖∇w‖2

K + δ−4
i ‖w‖2

K

)
+
∑

eh∈Eh,i

σh + τh
|eh|3

|[u]|2eh

+
∑

eh∈Eh,i

τh
|eh|
|[∂nu]|2eh +

∑
eh∈Eh,i

τh
|eh|
|[∂nu0]|2eh

)
,

(3.74)

for i = 1, . . . , p.

88

Proof. Since Ωi vanishes on Si, ui = 0 on Si. By definition (3.21) of the subdomain

bilinear form,

ai(ui, ui) =
∑
K∈Th,i

‖∆ui‖2
K + 2

∑
eh∈Eh,i

〈{∂n∆ui}, [ui]〉eh +
∑

eh∈Eh,i

σh
|eh|3

|[ui]|2eh

− 2
∑

eh∈Eh,i

〈{∆ui}, [∂nui]〉eh +
∑

eh∈Eh,i

τh
|eh|
|[∂nui]|2eh

≤ c

(∑
K∈Th,i

‖∆ui‖2
K +

∑
eh∈Eh,i

σh
|eh|3

|[ui]|2eh +
∑

eh∈Eh,i

τh
|eh|
|[∂nui]|2eh

)
.

(3.75)

In the last step the Cauchy-Schwarz inequality, trace and inverse inequalities, and

the arithmetic-geometric mean inequality have all been used to absorb the two terms

〈{∂n∆ui}, [ui]〉eh and 〈{∆ui}, [∂nui]〉eh into the sum
∑

K∈Th,i ‖∆ui‖
2
K .

The next step in the proof is to estimate the three terms on the right side of

(3.75). Each estimate is rather tedious; for this reason, each term will be considered

separately.

Estimation of
∑

K∈Th,i ‖∆ui‖
2
K.

Let θi,K be the linear Lagrange interpolant of θi over K ∈ Th,i. It can be shown that

θi − θi,K = 0, if K ⊂ ΩI
i , and

‖θi − θi,K‖L∞(K) ≤ ch2
Kδ
−2
i and ‖∇(θi − θi,K)‖L∞(K) ≤ chKδ

−2
i , if K ⊂ Ωδi

i .

(3.76)

The above follows from properties of θi and the approximation properties of Lagrange

interpolation which also hold in the L∞-norm (cf. e.g. [14]).

The next few steps will be concerned with the term ‖∆ui‖K . First, note that

θi = 1 for K ∈ ΩI
i , which gives

‖∆ui‖K = ‖∆ΠKw‖K = ‖∆w‖K = ‖∆u‖K , for K ∈ ΩI
i , (3.77)

89

since u0 is linear on K. As a result, only cells in Ωδi
i will need to be considered when

bounding ‖∆ui‖K . For K ∈ Ωδi
i , using the triangle inequality gives

‖∆ui‖2
K = ‖∆ΠK(θiw)‖2

K ≤ 2‖∆ΠK((θi − θi,K)w)‖2
K + 2‖∆ΠK(θi,Kw)‖2

K . (3.78)

For the first term on the right side of (3.77), using the inverse inequality (2.17),

scaling, stability of ΠK in the L∞ norm, the L∞-L2 inverse inequality together with

(3.76) gives

‖∆ΠK((θi − θi,K)w)‖2
K ≤ chd−4

K ‖ΠK((θi − θi,K)w)‖2
L∞(K)

≤ chd−4
K ‖(θi − θi,K)w‖2

L∞(K)

≤ ch−4
K ‖θi − θi,K‖

2
L∞(K)‖w‖2

K

≤ cδ−4
i ‖w‖2

K ,

(3.79)

for K ∈ Ωδi
i . For the second term on the right side of (3.77), using the triangle

inequality, the approximation properties of ΠK , and the inverse inequality (2.17)

gives

‖∆ΠK(θi,Kw)‖2
K ≤ 2‖∆(ΠK(θi,Kw)− θi,Kw)‖2

K + 2‖∆θi,Kw‖2
K

≤ ch
2(q−1)
K |θi,Kw|2q+1,K + |θi,Kw|22,K

≤ c|θi,Kw|22,K .

(3.80)

Using the Leibniz formula for partial derivatives and the fact the θi,K is linear on K,

|θi,Kw|2,K ≤ c‖∇θi,K‖L∞(K)‖∇w‖K + c‖θi,K‖L∞(K)|w|2,K . (3.81)

90

Using (3.76) and the fact that hK ≤ cδ−1
i , we have the bounds

‖∇θi,K‖L∞(K) ≤ cδ−1
i and ‖θi,K‖L∞(K) ≤ c.

From the last two inequalities and the fact that u0 is linear it follows that

|θi,Kw|2,K ≤ cδ−1
i ‖∇w‖K + c|w|2,K

= cδ−1
i ‖∇w‖K + c|u|2,K .

(3.82)

Hence, using (3.82) and (3.79) in (3.78) (note K ⊂ Ωδi
i here) together with (3.77)

(note ‖∆u‖K ≤ d|u|2,K) gives

∑
K∈Th,i

‖∆ui‖2
K ≤ c

∑
K∈Th,i

|u|22,K +
∑
K∈Ω

δi
i

(
δ−2
i ‖∇w‖2

K + δ−4
i ‖w‖2

K

)
. (3.83)

Estimation of
∑

eh∈Eh,i
σh
|eh|3
|[ui]|2eh.

Let eh ∈ Eh,i = EIh,i ∪ EBh,i. The analysis in this part applies notationally to both EIh,i
and EBh,i. Since θi is smooth,

[ui]|eh = ΠK+(θiw
+)− ΠK−(θiw

−).

The following two observations are crucial. Since the mesh Th is conforming, the

(nodal) Lagrange interpolation operator Πeh on eh coincides with the restrictions of

ΠK+ and ΠK− to eh. Also, as stated in Remark 2.4.2 (2), both ΩI
i and Ωδi

i are unions

of cells K ∈ Th. Hence, either eh ∈ ΩI
i or eh ∈ Ωδi

i .

91

If eh ∈ ΩI
i , then θi|eh = 1 and so

|[ui]|eh = |ΠK+w+ − ΠK−w
−|eh

= |[w]|eh

= |[u]|eh ,

(3.84)

for eh ∈ ΩI
i , given that u0 is continuous and vanishes on EBh,i.

If, on the other hand, eh ∈ Ωδi
i ,

[ui]eh = ΠK+(θiw
+)− ΠK−(θiw

−)

= Πehθi[w]eh

= Πehθi[u]eh .

Therefore, using scaling, stability of Πeh in the L∞ norm, the L∞-L2 inverse inequality

on eh,

|[ui]|2eh ≤ c|eh|d−1|Πehθi[u]|2L∞(eh)

≤ c|eh|d−1|θi[u]|2L∞(eh)

≤ c|eh|d−1|θi|2L∞(eh)|[u]|2L∞(eh)

≤ c|[u]|2eh ,

(3.85)

for eh ⊂ Ωδi
i .

Thus, from (3.84) and (3.85),

∑
eh∈Eh,i

σh
|eh|3

|[ui]|2eh ≤ c
∑

eh∈Eh,i

σh
|eh|3

|[u]|2eh . (3.86)

92

Estimation of
∑

eh∈Eh,i
τh
|eh|
|[∂nui]|2eh.

It is easy to see that for eh ⊂ ΩI
i , for which θi = 1,

|[∂nui]|eh = |[∂nw]|eh

≤ |[∂nu]|eh + |[∂nu0]|eh .
(3.87)

So in what follows, consider eh ∈ Ωδi
i . For such eh, it is only necessary to consider

the case θi 6= 1. Hence it follows from the construction of ΩI
i and Ωδi

i that both K+

and K− belong to Ωδi
i . This eliminates the need to enlarge the boundary layer by an

amount of O(h), which could be done in any case at the cost of further complicating

the notation, however. Then

|[∂nui]|eh =
∣∣∇(ΠK+(θiw

+)− ΠK−(θiw
−)
)
· n+

∣∣2
eh

≤ 3
∣∣∇(ΠK+(θiw

+)− θiw+
)∣∣2
eh

+ 3
∣∣∇(θi[w]

)
· n+

∣∣2
eh

+3
∣∣∇(ΠK−(θiw

−)− θiw−
)∣∣2
eh

:= 3(A+ +B + A−).

(3.88)

The estimation of A− is identical to that of A+ so only the estimate for A+ will be

presented (dropping the (+) for simplicity).

A ≤ 3
∣∣∇(ΠK(θiw)− ΠK(θi,Kw)

)∣∣2
eh

+ 3
∣∣∇(ΠK(θi,Kw)− θi,Kw

)∣∣2
eh

+3
∣∣∇((θi,K − θi)w)∣∣2eh

:= 3(A1 + A2 + A3).

(3.89)

93

Using the trace and inverse inequalities, scaling, (3.76), and the L∞-L2 inverse

inequality gives

A1 ≤ ch−3
K ‖ΠK

(
(θi − θi,K)w

)
‖2
K

≤ chd−3
K ‖ΠK

(
(θi − θi,K)w

)
‖2
L∞(K)

≤ chd−3
K ‖(θi − θi,K)w‖2

L∞(K)

≤ chd−3
K ‖θi − θi,K‖

2
L∞(K)‖w‖2

L∞(K)

≤ chKδ
−4
i ‖w‖2

K .

(3.90)

Using the trace and inverse inequalities and the approximation properties of ΠK ,

A2 ≤ ch−3
K ‖ΠK(θi,Kw)− θi,Kw‖2

K

≤ ch
2(q+1)−3
K |θi,Kw|2q+1,K

≤ chK |θi,Kw|22,K

≤ chK(δ−2
i ‖∇w‖2

K + |u|22,K).

(3.91)

where the estimate (3.82) was used in the last step. As for A3, from the trace

inequality, Leibniz’ formula and (3.76), it follows that

A3 ≤ ch−1
K |(θi,K − θi)w|

2
1,K + chK |(θi,K − θi)w|22,K

≤ c
(
h−1
K |θi,K − θi|

2
1,∞,K + hK |θi|22,∞,K

)
‖w‖2

K

+c
(
h−1
K ‖θi,K − θi‖

2
L∞(K) + hK |θi,K − θi|21,∞,K

)
‖∇w‖2

K

+hK‖θi,K − θi‖2
L∞(K)|w|22,K

≤ chK(δ−4
i ‖w‖2

K + δ−2
i ‖∇w‖2

K + |u|22,K),

(3.92)

where we have also used the fact that hK ≤ cδi and |w|2,K = |u|2,K .

94

It remains to estimate B. In view of Leibniz’ formula, (3.76), and the fact that

[u0] = 0 for eh ∈ Eh,i,

B ≤ 2 |(∂nθi)[w]|2eh + 2 |θi[∂nw]|2eh

≤ c‖∇θi‖2
L∞(eh) |[u]|2eh + c‖θi‖2

L∞(eh) |[∂nw]|2eh

≤ c
(
δ−2
i |[u]|2eh + |[∂nu]|2eh + |[∂nu0]|2eh

)
≤ c

(
|eh|−2 |[u]|2eh + |[∂nu]|2eh + |[∂nu0]|2eh

)
,

(3.93)

where the fact that |eh| ≤ cδi was used in the last step.

Collecting the estimates (3.90)-(3.93) gives

∑
eh∈Eh,i

τh
|eh|
|[∂nui]|2eh ≤

∑
eh∈Eh,i

τh
|eh|

(
|[∂nu]|2eh + |[∂nu0]|2eh

)
+
∑
K∈Ω

δi
i

τh
|eh|3

|[u]|2eh

+
∑
K∈Ω

δi
i

(
|u|22,K + δ−4

i ‖w‖2
K + δ−2

i ‖∇w‖2
K

)
.

(3.94)

The required estimate (3.74) now follows upon using (3.83), (3.86), and (3.94) in

(3.75).

Proposition 3.4.3. For any u ∈ V h, let u = u0 + u1 + · · · + up where u0 is as

in Proposition (3.4.1) and let ui = Πhθi(u − u0), i = 1, . . . , p. Then there exists a

constant c which is independent of p such that

p∑
i=0

ai(ui, ui) ≤ c
(
τ γ[H : h] +N2

c [H : δ]3
)
ah(u, u), (3.95)

where

[H : δ] := max
1≤i≤p

max
D⊂Ωi

HD

δi
.

Proof. The proof consists in estimating the terms in (3.74). To begin, note that

since
∑p

i=1 θi = 1 on Ω and Πh is the identity operator when restricted to Vh, then

u =
∑p

i=0 ui.

95

Since at any point in Ω the number of overlapping subdomains is bounded by Nc

and TH ⊆ Th, it follows from (3.17) and (3.11) that

p∑
i=1

∑
eh∈Eh,i

|u|22,K ≤ Nc

∑
K∈Th

|u|2K ≤ c‖u‖2
2,h ≤ cah(u, u). (3.96)

Clearly
p∑
i=1

∑
K∈Th,i

(σh + τh
|eh|3

|[u]|2eh +
τh
|eh|
|[∂nu]|2eh

)
≤ cah(u, u). (3.97)

In the above it was assumed that τh ≤ cσh for the sake of simplicity. The next step

is estimating the last term in (3.74). Note that E(u) belongs to H2
0 (Ω) and that

[∂n(E(u)− u0)] vanishes on all edges eh that are in the interior of a cell D in TH . It

then follows from the inverse and trace inequalities, (3.46), (3.16) and (3.11) that

p∑
i=1

∑
eh∈Eh,i

τh
|eh|
|[∂nu0]|2eh ≤ cτ

∑
eH∈EH

h−1
D |[∂n(E(u)− u0)]|2eh

≤ cτ
∑
eH∈EH

h−1
D H−3

D ‖E(u)− u0‖2
D

≤ cτ
∑
eH∈EH

h−1
D HD|E(u)|22,D

≤ cτ [H : h]|E(u)|22,Ω

≤ cτ [H : h]ah(u, u).

(3.98)

Let Ω̃i be the nonoverlapping part described in Remark 2.4.2 (1). From the

triangle inequality,

∑
K⊂Ω̃i∩Ω

δi
i

δ−4
i ‖u− u0‖2

K ≤ 2
∑

K⊂Ω̃i∩Ω
δi
i

δ−4
i

(
‖u− E(u)‖2

K + ‖E(u)− u0‖2
K

)
:= 2Ai + 2Bi.

(3.99)

96

Using Lemma 3.2.1 with m = 0,

Ai ≤ c
∑

K⊂Ω̃i∩Ω
δi
i

δ−4
i

∑
eh∈ω(K)

(
|eh| |[u]|2eh + |eh|3 |[∂nu]|2eh

)

≤ c
∑

K⊂Ω̃i∩Ω
δi
i

∑
eh∈ω(K)

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)

≤ c
∑
eh∈Ωi

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
.

(3.100)

Furthermore, using (3.46) and the generalized Poincaré inequality (2.36) with ρ = δi

together with the fact that |E(u)− u0|1,h,D = ‖∇(E(u)− u0)‖D gives

Bi ≤ c
∑
D⊂Ω̃i

δ−4
i ‖E(u)− u0‖2

D∩Ω̃i∩Ω
δi
i

≤ c
∑
D⊂Ω̃i

δ−3
i

(
H−1
D ‖E(u)− u0‖2

D +HD‖∇(E(u)− u0)‖2
D

)
≤ c[H : δ]3|E(u)|2

2,Ω̃i
.

(3.101)

As in the second order problem, the partition TS is obtained from a nonoverlapping

partition TS̃ = {Ω̃i, i = 1, . . . , p} aligned with TH by adding layers of cells from Th.

It follows that D ∩ Ω̃i ∩ Ωδi
i is indeed a boundary layer of D, which justifies the use

of Lemma 2.1.3 above.

Combining (3.99)-(3.101) and (3.16) gives

p∑
i=1

∑
K∈Ω

δi
i

δ−4
i ‖u− u0‖2

K ≤ cNc

p∑
i=1

∑
K⊂Ω̃i∩Ω

δi
i

δ−4
i ‖u− u0‖2

K

≤ cN2
c

∑
eh∈Eh

(
|eh|−3 |[u]|2eh + |eh|−1 |[∂nu]|2eh

)
+cNc[H : δ]3|E(u)|22,Ω

≤ cN2
c [H : δ]3ah(u, u).

(3.102)

97

The treatment of the terms
∑

K∈Ω
δi
i
δ−2
i ‖∇(u− u0)‖2

K proceeds exactly as above.

One minor difference is that in this case the generalized Poincaré lemma is applied to

∇(E(u)−u0), which is permitted since E(u) and u0 are smooth on D ∈ TH . Another

difference is that [H : δ] appears instead of [H : δ]3. Here,

p∑
i=0

∑
K∈Ω

δi
i

δ−2
i ‖∇(u− u0)‖2

K ≤ cN2
c [H : δ]ah(u, u). (3.103)

The bound a0(u0, u0) ≤ cτ γ[H : h]aγhh (u, u) (cf. (3.65)) which was derived earlier is

still valid since the same u0 is used here. Combining this with the bounds (3.96)-

(3.98), (3.102), (3.103) and keeping only the significant coefficients leads to the

required estimate (3.95).

Theorem 3.4.2. The condition number κ(T) of the operator T of the overlapping

additive Schwarz method defined in this section (or equivalently, that of the matrix

BA) satisfies

κ(T) ≤ cω
(
τ γ[H : h] +N2

c [H : δ]3
)

(1 + 2Nc), (3.104)

where c is independent of P and the constants

ω, τ , γ, Nc, [H : h], and [H : δ]

have all been defined previously.

Proof. Proposition 3.4.3 asserts that Assumption 1 holds with C2
0 = τ γ[H :

h] + N2
c [H : δ]3. The verification of Assumption 3 is exactly the same as in

the nonoverlapping case. For Assumption 2, the argument used in the second

order overlapping case still applies: replace the condition S i ∩ Sj = ∅ in (2.81) by

Ωi ∩ Ωj = ∅. In this case, the bound ρ(E) ≤ 2Nc + 1 is a reasonable estimate. The

result now follows from the abstract estimate (2.55) given in Theorem 2.4.1.

98

3.5 Numerical Experiments

The experiments presented in this section mirror those conducted for the second order

problem. Once again, the following topics are examined:

• Comparison of the performance of the nonoverlapping and overlapping precon-

ditioners.

• Dependence of the preconditioner on the penalty parameters σ and τ .

• Comparison of the performance of both preconditioners with the penalty

compatibility condition (PC) enforced versus not enforced.

All experiments are again performed using the preconditioned Conjugate Gradient

(PCG) method. The three test problems considered in this case are standard for the

biharmonic problem.

For the first problem, let Ω = [0, 1]× [0, 1] and choose the right hand side function

f and boundary data gD and gN so that the exact solution to (3.1)-(3.3) is given by

u(x, y) = sin2(πx) sin2(πy). (P4)

For the second test problem, again let Ω = [0, 1] × [0, 1] and choose choose the

right hand side function f and boundary data gD and gN so that the exact solution

to (3.1)-(3.3) is the oscillatory function is given by

u(x, y) = sin2(8πx) sin2(8πy). (P5)

The final test problem is again a problem with a singularity. As before, Ω is

chosen as an L-shaped domain with vertices (0, 0), (0, 1
2
), (−1

2
, 1

2
), (−1

2
,−1

2
), (1

2
,−1

2
),

and (1
2
, 0) with the reentrant corner at the origin. Choose the right hand side function

f = 0 and the boundary data gD and gN so that the exact solution to (3.1)-(3.3) in

99

polar coordinates is given by

u = r5/3 sin 5θ
3
. (P6)

All other aspects of the experiments correspond to those found in Chapter 2, with

the exceptions of implementing ‖ek‖ ≤ 10−7 as the stopping criterion for the CG

and PCG iteration. As before, we will seek to verify the theory; in this case, that

the nonoverlapping preconditioned system has a condition number of order O([H :

h]3), as predicted by Theorem 3.4.1. Similarly, we will observe if the overlapping

preconditioned system has a condition number of order O([H : δ]3), as predicted by

Theorem 3.4.2. Finally, we will enforce both penalty compatibility conditions (PCσ)

and (PCτ) throughout this section unless otherwise noted.

3.5.1 Comparison of the Nonoverlapping and the Overlap-

ping Preconditioners

In Chapter 2, the overlapping preconditioner exhibited superior performance to the

nonoverlapping method in almost every aspect. In the current scenario, the higher

regularity requirements of the fourth order problem necessitates the use of polynomial

approximations of higher degree than those used for the second order. Naturally, the

increased number of degrees of freedom will result in much larger stiffness matrices,

which in turn increases the computational workload. The question at hand is whether

or not the overlapping method will still maintain its outstanding performance in the

face of greater computational overhead.

Table 3.1 offers a comparison of the three solvers when applied to test problem (P4)

using σh = τh = 100.0, degree q = 3, and a variety of coarse and fine meshes. Note

that the combinations of 1/H = 1/h = 8, 1/H = 1/h = 16, and 1/H = 16, 1/h = 8

are excluded. The first two cases have the same coarse and fine grids; solving the

coarse grid problem eliminates the need for further work. The latter case violates the

assumed alignment TH ⊆ Th.

100

Table 3.1: (P4) Comparison of solvers. κ estimates, (iterations) for q = 3

NOV PCG OV PCG CG
PPPPPPPPP1/h

1/H
4 8 16 4 8 16

8 360.1 (119) - - 11.0 (21) - - 96419.5 (1706)

16 2279.2 (282) 307.7 (100) - 26.6 (31) 8.2 (18) - ?

32 18129.1 (779) 2006.9 (237) 182.3 (72) 76.6 (55) 16.1 (26) 6.4 (15) ?

64 145918.8 (2103) 13599.4 (612) 914.4 (143) 316.2 (114) 34.6 (37) 9.0 (18) ?

The results for conjugate gradient in the fourth order problem exhibit clearly the

need for some type of improvement. We only report the performance of CG for the

case 1/h = 8 as the duration of subsequent tests are too lengthy for the current

implementation. The performance of the preconditioned methods is significantly

improved over that of CG. As in the second-order problem, the overlapping method

exhibits condition numbers and iteration counts that are much smaller than those of

the nonoverlapping counterpart.

The adherence to the O([H : h]3) law predicted by Theorem 3.4.1 for the

nonoverlapping method is evident; each condition number increases roughly by a

factor between five and ten as 1/h doubles. This is very close to the expected rate,

where each condition number should grow at a factor of eight as 1/h doubles. As in

the second order case, the rate of increase for κ with the overlapping method is again

less than the O(H
δ

) prediction made by Theorem 3.4.2 (recall that δ ≈ h in these

experiments). Instead, the condition numbers in this case grow by a factor less than

eight that seems to increase as the number of refinements grows.

Table 3.2 displays the results for test problem (P5) again using σh = τh = 100.0,

degree q = 3, and the same selection of coarse and fine meshes. We again only report

the performance of CG for the case 1/h = 8, which is much worse for this test problem.

The performance of the preconditioned methods is quite similar to that observed

for (P4), although it seems the nonoverlapping method exhibits some deterioration

101

Table 3.2: (P5) Comparison of solvers. κ estimates, (iterations) for q = 3

NOV PCG OV PCG CG
PPPPPPPPP1/h

1/H
4 8 16 4 8 16

8 339.8 (144) - - 11.2 (27) - - 3163346.0 (25539)

16 2547.7 (416) 463.4 (172) - 20.4 (37) 9.0 (25) - ?

32 18374.3 (1083) 2483.7 (377) 351.3 (140) 48.6 (58) 13.4 (32) 7.5 (22) ?

64 123376.1 (2661) 14732.8 (891) 1382.3 (259) 188.0 (121) 29.9 (46) 11.2 (26) ?

while the overlapping method actually improves somewhat. The adherence to the

O([H : h]3) rule for the nonoverlapping preconditioner is again evident, while the rate

of growth for the condition number in the overlapping case is still underperforming

the O(H
δ

) law.

Table 3.3 details the results for test problem (P6), using σh = τh = 100.0, degree

q = 3, and the same choice of coarse and fine meshes. As in the second-order problem,

the subdomain partition in this case only contains 12 subdomains due to the L-shaped

domain and “checkerboard” subdomain partition. The results are very similar to the

previous test problems. The performance of the nonoverlapping preconditioner again

follows the O([H : h]3) law, while the overlapping method is still behind the O(H
δ

)

rule.

Table 3.3: (P6) Comparison of solvers. κ estimates, (iterations) for q = 3

NOV PCG OV PCG CG
PPPPPPPPP1/h

1/H
4 8 16 4 8 16

8 417.9 (185) - - 9.5 (29) - - 172267.3 (3850)

16 2041.7 (427) 289.1 (156) - 23.5 (50) 6.7 (25) - ?

32 13918.5 (1158) 1644.8 (377) 252.0 (146) 78.5 (96) 13.1 (37) 6.2 (25) ?

64 114471.0 (3390) 14378.4 (1192) 1471.5 (358) 228.7 (163) 33.6 (63) 8.9 (32) ?

102

3.5.2 Dependence on the Penalty Parameters σ and τ

Previously in this chapter, we showed that the condition number of the nonoverlap-

ping preconditioned system has an explicit dependence on both penalty parameters σ

and τ (Theorem 3.4.1). In Theorem 3.4.2 it was shown that the overlapping method

has a dependence only on the parameter τ . In a similar manner to the experiments

performed for the second-order problem, we will investigate the effect of allowing both

parameters σ and τ to increase at the same rate.

Tables 3.4-3.5 display the performance of both of the PCG methods for (P4).

Here we use q = 3 and a minimal overlap δ ≈ h for the overlapping PCG method.

Results are shown for several combinations of coarse and fine meshes and for σ = τ =

100, 1000 and 10000.

As an example, Figures 3.1-3.3 illustrate the relative performance of each

preconditioned method for the particular meshes h = 1/64 and H = 1/16. The

dependence on σ and τ for the nonoverlapping method is quite pronounced, as is

reasonable give the dependence predicted by Theorem 3.4.1. The dependence on τ

of the overlapping method predicted by Theorem 3.4.2 is slight, which is reasonable

given that γ = 1 when the condition (PCτ) is enforced.

The corresponding reports for test problem (P5) are shown in Tables 3.6-3.7 and

Figures 3.4-3.6. Similarly, the results for (P6) are displayed in 3.8-3.9 and Figures

3.7-3.9. In all experiments, the dependence of the nonoverlapping method on the

penalty parameters σ and τ is clearly represented, while the dependence on τ for the

overlapping method is again slight.

103

Table 3.4: Variations of σ, τ (PCG): (P4) with q = 3, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 360.1 (119) 1616.9 (254) 6015.2 (490) 11.0 (21) 17.9 (27) 19.3 (29)

4 : 16 2279.2 (282) 16724.3 (758) 105808.4 (1924) 26.6 (31) 37.3 (38) 59.2 (48)

8 : 16 307.7 (100) 1779.9 (240) 8889.6 (535) 8.2 (18) 14.2 (24) 21.3 (29)

8 : 32 2006.9 (237) 13443.3 (580) 97035.5 (1540) 16.1 (26) 31.4 (42) 65.1 (56)

16 : 32 182.3 (72) 1743.8 (258) 12420.9 (736) 6.4 (15) 15.9 (30) 37.8 (43)

16 : 64 914.4 (143) 12415.0 (646) 100552.4 (1726) 9.0 (18) 30.2 (33) 91.3 (53)

Table 3.5: Variations of σ, τ (PCG): (P4) with q = 3, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 0.248 0.473 0.854 0.087 0.095 0.105

4 : 16 2.062 4.636 11.197 0.476 0.571 0.606

8 : 16 0.808 1.862 3.852 0.357 0.399 0.451

8 : 32 6.986 13.863 35.737 2.365 2.978 3.498

16 : 32 2.928 7.760 21.327 2.007 2.595 3.075

16 : 64 23.971 91.940 251.172 28.617 30.986 35.799

104

< = =
100 1000 10000

C
on

di
tio

n
nu

m
be

r

#104

0

2

4

6

8

10

12

 NOV

 OV

Figure 3.1: (P4) Variations of σ and τ . κ estimates, q = 3

< = =
100 1000 10000

Ite
ra

tio
ns

0

200

400

600

800

1000

1200

1400

1600

1800

 NOV

 OV

Figure 3.2: (P4) Variations of σ and τ . Iteration counts, q = 3

< = =
100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

50

100

150

200

250

300

 NOV

 OV

Figure 3.3: (P4) Variations of σ and τ . CPU runtimes, q = 3

105

Table 3.6: Variations of σ, τ (PCG): (P5) with q = 3, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 339.8 (144) 1629.3 (319) 5486.3 (575) 11.2 (27) 15.9 (31) 17.1 (33)

4 : 16 2547.7 (416) 18275.1 (1092) 121613.1 (2512) 20.4 (37) 29.8 (45) 36.6 (53)

8 : 16 463.4 (172) 2796.3 (398) 13456.4 (895) 9.0 (25) 15.0 (34) 22. 6()39

8 : 32 2483.7 (377) 19599.2 (1079) 165310.3 (3648) 13.4 (32) 17.9 (37) 78.6 (81)

16 : 32 351.3 (140) 2571.2 (364) 18552.7 (1216) 7.5 (22) 11.8 (28) 43.9 (60)

16 : 64 1382.3 (259) 19367.6 (1159) 142872.9 (2949) 11.2 (26) 39.4 (53) 94.9 (77)

Table 3.7: Variations of σ, τ (PCG): (P5) with q = 3, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 0.212 0.329 0.575 0.089 0.096 0.109

4 : 16 2.045 5.155 11.880 0.496 0.543 0.606

8 : 16 1.065 2.175 4.788 0.405 0.476 0.520

8 : 32 9.005 24.842 87.048 2.543 2.726 4.472

16 : 32 4.323 10.344 33.774 2.224 2.463 3.967

16 : 64 38.921 169.3 430.841 30.080 36.956 42.781

106

< = =
100 1000 10000

C
on

di
tio

n
nu

m
be

r

#104

0

5

10

15

 NOV

 OV

Figure 3.4: (P5) Variations of σ and τ . κ estimates, q = 3

< = =
100 1000 10000

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

3000

 NOV

 OV

Figure 3.5: (P5) Variations of σ and τ . Iteration counts, q = 3

< = =
100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

50

100

150

200

250

300

350

400

450

 NOV

 OV

Figure 3.6: (P5) Variations of σ and τ . CPU runtimes, q = 3

107

Table 3.8: Variations of σ, τ (PCG): (P6) with q = 3, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 417.9 (185) 1960.2 (427) 5938.8 (763) 9.5 (29) 17.0 (41) 25.8 (53)

4 : 16 2041.7 (427) 12333.9 (1105) 51107.5 (2221) 23.5 (50) 34.3 (63) 62.1 (90)

8 : 16 289.1 (156) 1974.3 (428) 6748.3 (781) 6.7 (25) 13.1 (36) 29.5 (56)

8 : 32 1644.8 (377) 11675.0 (1063) 72119.9 (2803) 13.1 (37) 15.9 (43) 46.7 (76)

16 : 32 252.0 (146) 1832.6 (408) 9002.9 (960) 6.2 (25) 9.8 (32) 25.3 (53)

16 : 64 1471.5 (358) 11793.6 (1060) 84438.0 (2980) 8.9 (32) 11.3 (37) 53.3 (90)

Table 3.9: Variations of σ, τ (PCG): (P6) with q = 3, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 0.171 0.348 0.631 0.062 0.086 0.101

4 : 16 1.489 3.947 7.833 0.401 0.508 0.619

8 : 16 0.635 1.706 3.094 0.276 0.335 0.464

8 : 32 6.726 18.161 47.690 1.812 1.954 2.874

16 : 32 3.181 8.273 18.861 1.549 1.752 2.366

16 : 64 38.856 112.733 347.690 20.015 20.793 30.065

108

< = =
100 1000 10000

C
on

di
tio

n
nu

m
be

r

#104

0

1

2

3

4

5

6

7

8

9

 NOV

 OV

Figure 3.7: (P6) Variations of σ and τ . κ estimates, q = 3

< = =
100 1000 10000

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

3000

 NOV

 OV

Figure 3.8: (P6) Variations of σ and τ . Iteration counts, q = 3

< = =
100 1000 10000

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

50

100

150

200

250

300

350

 NOV

 OV

Figure 3.9: (P6) Variations of σ and τ . CPU runtimes, q = 3

109

3.5.3 Penalty Compatibility Conditions for the Discontinu-

ous Coarse Subspace

As discussed previously, choosing to use a completely discontinuous coarse subspace

V H,D when constructing the coarse mesh component of the Schwarz preconditioner

necessitates the enforcement of (PCσ) and (PCτ) in order for the direct definition

of the coarse solver (2.43) to coincide with the definition by restriction (2.44).

Here we will examine computationally the effects of failing to enforce these penalty

compatibility conditions.

We investigate the effect of not enforcing (PCσ) and (PCτ) over the same range of

parameters used in the previous experiments; i.e., σ = τ = 100, 1000, and 10000 for

each test problem under identical conditions as the experiments reported previously.

The experimental results corresponding to the failure of enforcing (PCσ) and

(PCτ) for (P4) are given in Tables 3.10 and 3.11. It is apparent that the effects

are worse than in the second-order problem; here, both preconditioning methods

show a marked decrease in performance (cf. Tables 2.13 and 2.14). As an example,

Figures 3.10 - 3.12 display comparisons for the nonoverlapping method between the

results with (PCσ), (PCτ) both enforced and both not enforced for 1/h = 64 and

1/H = 16 , across all three performance metrics. The corresponding comparison for

the overlapping method is shown in Figures 3.13 - 3.15.

Similar comparisons for test problem (P5) are shown in Tables 3.12, 3.13, and

Figures 3.16 - 3.21. Corresponding results for test problem (P6) are shown in Tables

3.14, 3.15, and Figures 3.22 - 3.27. All experiments show that both methods suffer a

similar decrease in performance, again emphasizing the importance of enforcing the

compatibility conditions for the penalty paramaters σ and τ .

110

Table 3.10: (PCσ), (PCτ) not enforced. (P4), q = 3, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 986.0 (198) 4008.6 (389) 18893.2 (626) 25.4 (32) 41.7 (42) 47.2 (44)

4 : 16 25805.1 (887) 181115.9 (2201) 997600.9 (4411) 245.1 (93) 351.8 (115) 565.3 (146)

8 : 16 849.5 (168) 4889.5 (406) 24845.8 (901) 19.9 (27) 32.9 (35) 51.2 (45)

8 : 32 24680.0 (800) 192282.3 (2271) 1175577.1 (4615) 194.8 (87) 210.2 (94) 667.6 (176)

16 : 32 495.8 (116) 4755.1 (418) 25597.1 (887) 15.6 (25) 51.8 (54) 80.3 (62)

16 : 64 14318.7 (572) 135196.6 (1765) 835783.1 (4108) 114.8 (65) 248.6 (94) 952.9 (170)

Table 3.11: (PCσ), (PCτ) not enforced. (P4), q = 3, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 0.220 0.435 0.692 0.122 0.132 0.135

4 : 16 4.571 11.273 22.289 0.977 1.197 1.414

8 : 16 1.042 2.339 5.214 0.417 0.478 0.570

8 : 32 18.597 52.698 113.222 4.634 4.933 8.162

16 : 32 3.802 11.847 24.674 2.317 3.545 3.918

16 : 64 81.605 255.922 739.614 38.797 46.129 64.606

111

.
100 1000 10000

C
on

di
tio

n
nu

m
be

r

#105

0

1

2

3

4

5

6

7

8

9

 (PC)

 no (PC)

Figure 3.10: (P4), NOV. Effect of (PCσ), (PCτ) for κ, q = 3

.
1000 10000 100

Ite
ra

tio
ns

0

500

1000

1500

2000

2500

3000

3500

4000

4500

 (PC)

 no (PC)

Figure 3.11: (P4), NOV. Effect of (PCσ), (PCτ) for iteration counts, q = 3

.
1000 10000 100

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

100

200

300

400

500

600

700

800

 (PC)

 no (PC)

Figure 3.12: (P4), NOV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3

112

.
100 1000 10000

C
on

di
tio

n
nu

m
be

r
0

100

200

300

400

500

600

700

800

900

1000

 (PC)

 no (PC)

Figure 3.13: (P4), OV. Effect of (PCσ), (PCτ) for κ estimates, q = 3

.
1000 10000 100

Ite
ra

tio
ns

0

20

40

60

80

100

120

140

160

180

 (PC)

 no (PC)

Figure 3.14: (P4), OV. Effect of (PCσ), (PCτ) for iteration counts, q = 3

.
1000 10000 100

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

25

30

35

40

45

50

55

60

65

 (PC)

 no (PC)

Figure 3.15: (P4), OV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3

113

Table 3.12: (PCσ), (PCτ) not enforced. (P5), q = 3, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 934.4 (238) 4426.0 (523) 15635.8 (829) 25.9 (41) 37.2 (48) 40.6 (50)

4 : 16 29858.6 (1375) 200943.1 (2901) 1279916.8 (7168) 181.9 (114) 272.6 (136) 350.4 (167)

8 : 16 1294.1 (279) 7685.1 (666) 358127 (1412) 21.3 (38) 35.8 (53) 52.0 (57)

8 : 32 36751.0 (1464) 226436.3 (2915) 1523513.7 (7185) 146.7 (102) 186.2 (121) 760.5 (246)

16 : 32 1016.5 (237) 7152.1 (596) 46286.0 (1918) 18.3 (35) 28.1 (41) 84.0 (83)

16 : 64 22477.7 (1012) 182209.9 (2758) 1608144.1 (8798) 154.8 (96) 345.45 (156) 890.0 (237)

Table 3.13: (PCσ), (PCτ) not enforced. (P5), q = 3, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 0.256 0.514 0.841 0.115 0.128 0.132

4 : 16 6.509 13.618 33.244 1.186 1.306 1.558

8 : 16 1.596 3.712 7.539 0.514 0.650 0.706

8 : 32 33.761 68.446 180.873 5.411 6.067 10.997

16 : 32 7.038 16.642 52.824 2.776 3.076 4.920

16 : 64 147.642 403.967 1404.899 47.747 62.636 82.875

114

.
100 1000 10000

C
on

di
tio

n
nu

m
be

r

#105

0

2

4

6

8

10

12

14

16

18

 (PC)

 no (PC)

Figure 3.16: (P5), NOV. Effect of (PCσ), (PCτ) for κ, q = 3

.
1000 10000 100

Ite
ra

tio
ns

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 (PC)

 no (PC)

Figure 3.17: (P5), NOV. Effect of (PCσ), (PCτ) for iteration counts, q = 3

.
1000 10000 100

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

500

1000

1500

 (PC)

 no (PC)

Figure 3.18: (P5), NOV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3

115

.
100 1000 10000

C
on

di
tio

n
nu

m
be

r

0

100

200

300

400

500

600

700

800

900

 (PC)

 no (PC)

Figure 3.19: (P5), OV. Effect of (PCσ), (PCτ) for κ estimates, q = 3

.
1000 10000 100

Ite
ra

tio
ns

0

50

100

150

200

250

 (PC)

 no (PC)

Figure 3.20: (P5), OV. Effect of (PCσ), (PCτ) for iteration counts, q = 3

.
1000 10000 100

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

30

40

50

60

70

80

90

 (PC)

 no (PC)

Figure 3.21: (P5), OV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3

116

Table 3.14: (PCσ), (PCτ) not enforced. (P6), q = 3, κ estimates (iterations)

Nonoverlapping PCG: κ(BA), (iterations) Overlapping PCG: κ(BA), (iterations)

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 974.2 (284) 4942.7 (679) 13396.3 (1125) 21.5 (45) 39.8 (65) 59.7 (82)

4 : 16 20667.8 (1353) 106013.6 (2742) 379582.4 (4810) 198.9 (140) 349.8 (203) 601.1 (276)

8 : 16 737.7 (251) 5185.3 (701) 18897.9 (1398) 15.0 (38) 28.4 (53) 63.8 (81)

8 : 32 2085.8 (1361) 114302.2 (2939) 623610.8 (6952) 146.2 (124) 168.2 (140) 494.6 (238)

16 : 32 643.6 (230) 4699.4 (660) 21275.8 (1443) 14.0 (36) 21.4 (46) 54.5 (78)

16 : 64 21340.7 (1354) 159645.5 (3908) 823775.6 (8466) 99.8 (105) 117.5 (116) 523.8 (282)

Table 3.15: (PCσ), (PCτ) not enforced. (P6), q = 3, CPU runtimes

NOV PCG: CPU runtimes OV PCG: CPU runtimes

1
H

: 1
h

100 1000 10000 100 1000 10000

4 : 8 0.254 0.590 0.947 0.083 0.115 0.151

4 : 16 4.855 9.590 16.582 0.974 1.320 1.795

8 : 16 1.094 2.732 5.704 0.370 0.467 0.596

8 : 32 23.292 49.692 122.698 4.194 4.660 7.357

16 : 32 4.875 13.080 28.165 1.843 2.135 3.104

16 : 64 144.640 426.047 932.504 32.468 34.453 62.891

117

.
100 1000 10000

C
on

di
tio

n
nu

m
be

r

#105

0

1

2

3

4

5

6

7

8

9

 (PC)

 no (PC)

Figure 3.22: (P6), NOV. Effect of (PCσ), (PCτ) for κ, q = 3

.
1000 10000 100

Ite
ra

tio
ns

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

 (PC)

 no (PC)

Figure 3.23: (P6), NOV. Effect of (PCσ), (PCτ) for iteration counts, q = 3

.
1000 10000 100

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

0

100

200

300

400

500

600

700

800

900

1000

 (PC)

 no (PC)

Figure 3.24: (P6), NOV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3

118

.
100 1000 10000

C
on

di
tio

n
nu

m
be

r

0

100

200

300

400

500

600

 (PC)

 no (PC)

Figure 3.25: (P6), OV. Effect of (PCσ), (PCτ) for κ estimates, q = 3

.
1000 10000 100

Ite
ra

tio
ns

0

50

100

150

200

250

300

 (PC)

 no (PC)

Figure 3.26: (P6), OV. Effect of (PCσ), (PCτ) for iteration counts, q = 3

.
1000 10000 100

C
P

U
 r

un
tim

e
(s

ec
on

ds
)

20

25

30

35

40

45

50

55

60

65

 (PC)

 no (PC)

Figure 3.27: (P6), OV. Effect of (PCσ), (PCτ) for CPU runtimes, q = 3

119

Chapter 4

Computational Implementation

4.1 Introduction

This chapter is intended to provide details about the implementation of the methods

described in previous chapters. The primary goal is to design programs capable of

assembling and solving the linear system (2.13) corresponding to the discontinuous

Galerkin formulation of model problems (2.1)-(2.3) and (3.1)-(3.3) using both the

traditional conjugate gradient method as well as our preconditioned CG methods.

The code supporting the experiments is written using the C programming language.

One reason for this decision is the accessibility of dynamic memory allocation inherent

in C.Another reason is that much of the foundational code from which this program

is built was also written in C,making it a natural choice.

The implementation of these methods necessarily contains a lot of moving parts.

We adhere as much as possible to a modular design, which has several benefits:

• Significant portions of the code may be reused for both the second- and fourth-

order experiments

• Testing different aspects of the theory does not necessitate a complete rewrite

of the code

120

• The myriad errors that invariably materialize are much easier to track down

Figure 4.1 illustrates the primary components of the main algorithm. The

initialization phase is comprised of storing information about the initial mesh TH ,

storing various parameters used throughout the run, and loading quadrature data for

subsequent use. The next phase involves the computation of local stiffness matrices

and load vectors. The initial mesh is then refined a predetermined number of times,

creating a hierarchy of meshes, with the same local information computed at each

level. Once the mesh has been refined to the fine level mesh Th, the program

proceeds to the solution phase. If the standard conjugate gradient method is the

solver of choice, the solution is computed, the error and information about the run

are displayed, and the process is finished. Otherwise, we construct a preconditioner

using domain decomposition and then solve using PCG.

The remaining sections in this chapter will describe this process in greater detail,

including the data objects and structures used, the refinement process, and various

aspects of domain decomposition used to create the preconditioner.

4.2 Initialization

Only two aspects of this phase require further discussion: the quadrature template

files and the creation of the initial mesh representation. The other tasks involve

defining parameters used to control the run and allocating memory for certain data

structures that will be discussed in a subsequent section.

4.2.1 Numerical Quadrature

Creating the discontinuous Galerkin formulation requires the computation of integrals

over both cells and edges; in our case, two- and one-dimensional integrals, respectively.

Rather than compute these integrals exactly, they are approximated using Gaussian

quadrature. In general, Gaussian quadrature requires a collection of quadrature points

121

Figure 4.1: Diagram of Main Algorithm.

122

along with corresponding weights over the domain of integration. In our case, we

use suitable points and weights on the reference element K̂ along with an affine

transformation to compute these approximations.

At the beginning of the run, we load quadrature templates that store these points

and weights on K̂, as well as the values of basis functions at each point. This simplifies

the construction of local stiffness matrices and load vectors considerably.

4.2.2 Mesh Generation

The experiments conducted for the purpose of this thesis are performed with a “nice”

two-dimensional domain (either the unit square or the L-shaped domain used in test

problem (P3)) and a structured partition. This is purely for simplicity. The code

is designed for compatibility with the package Triangle, a two-dimensional quality

mesh generator and Delaunay triangulator created by Jonathan Shewchuk [40]. This

allows the input of exotic domains and/or highly unstructured partitions, so long as

the input is in a format compatuble with Triangle. All initial meshes used for the

experiments described herein were input using this format.

4.3 Data Structures

Information about the initial mesh is given in terms of components of the cells; namely,

vertices, edges, and triangles. Since keeping track of the geometry of these objects is

essential, each was implemented in the code as a data structure. In particular, these

objects were created as structs, a user-defined data type in C that is used to group

related information of different data types. In addition to geometric information,

each of these structures will also provide access to other information that will be

used during the course of the run, such as PDE data or subdomain information. In

general, information more substantive than an integer is accessed via a pointer in

order to maintain a reasonable size for the structs.

123

typedef struct vertstruct {

int IDnum; // global ID number of node

double x; // x-coordinate of node

double y; // y-coordinate of node

short bmark; // boundary marker: 0-interior, 1-boundary

} VERT;

Figure 4.2: Vertex data structure.

In order to keep track of the entire mesh and subsequent refinements, we will

utilize tree structures to keep track of both the triangle and the edge hierarchies. The

details of this implementation will be discussed in Section 4.4.

4.3.1 VERT structs

The struct VERT (Figure 4.2) is used to contain information about the vertices of cells

in the mesh. In particular, the fields of this struct contain the x- and y-coordinates

of the vertex, an identification number, and a marker to indicate if the vertex lies on

the boundary. The identification number is used primarily for outputting a node file

to Triangle in order to produce a quick visualization of a given mesh. This is done

using the program ShowMe, which is included with the Triangle package.

4.3.2 EDGE structs

The struct EDGE (Figure 4.4) is a repository for all the necessary information about

the edges of cells in the mesh. The purpose of many of the fields in this struct are self-

explanatory; those that are not deserve some additional details. The field meshlvl is

used to store the mesh level at which the edge is created, while the field leaf indicates

if the edge is currently a leaf on the edge tree. During the refinement process, if a cell

is marked for refinement, then its edges will also be refined; the field refine_flag

indicates the edge is to be refined. The field midpt is initialized as a NULL pointer. If

the edge is refined, then midpt will point to a VERT struct representing the midpoint of

124

K+

K−

v−0 v−1

v−2

v+
0

v+
1v+

2

e+
0

e−2

e−0

e+
1

e+
2

e−1

(i) K+, K− edge enumeration

�
�
�
�
�
�
�
�
�
�
�
�
�
��

K̂

v̂0

v̂1

v̂2

ê0ê1

ê2

(ii) K̂ edge enumeration

@
@
@

@
@
@

@
@
@

@
@
@

@
@@

Figure 4.3: Local edge enumeration.

the edge. The field enode is a pointer from the EDGE struct back to the corresponding

tree node. This pointer is used during the refinement process.

As mentioned previously, every interior edge e is shared by two triangles, K+ and

K−, whose designation relative to the edge is arbitrary. The pointers Kplus and

Kminus point to the TRIANGLE structs representing these cells. In addition, each edge

e of a cell K is mapped to a corresponding edge ê of the reference element K̂. The

field Kploc designates the edge number of ê corresponding to the edge’s position in

the cell K+. The field Kmloc plays a similar role for the edge’s position in the cell

K−. See Figure 4.3 for a visual representation of this enumeration.

The fields GData and EBlock are pointers to structures containing geometric

information about the edge and PDE data, respectively. In particular, GData points

to the struct EGDATA (Figure 4.5), which contains the length of the edge and the

components of the normal vector. The pointer EBlock points to the struct EBLOCK

(Figure 4.6), which holds the off-diagonal edge matrix that will be discussed in

Appendix B.

Finally, the integer array sd_marks is an array of flags used to indicate if the edge

belongs to the boundary of a given subdomain. These flags are used both during

the initial subdomain assignments and also reassigned when constructing overlapping

125

typedef struct edgestruct {

int IDnum; // global ID

unsigned meshlvl; // current mesh level

unsigned bmark; // 0-int, 1-Dir, 2-Neu

unsigned leaf; // 1: edge is a leaf

unsigned isnew; // 1: edge is new

unsigned refine_flag; // 1: marked for refinement

unsigned index; // used during initialization

VERT *endpt[2]; // Endpoints

VERT *midpt; // Midpoint

struct tree_edgenode *enode; // pointer to tree node

struct tristruct *Kplus; // pointer to K+ element

struct tristruct *Kminus; // pointer to K- element

unsigned Kploc; // local edge # (relative to K+)

unsigned Kmloc; // local edge # (relative to K-)

struct edge_geom_data *GData; // storage for edge geometric info

struct edge_storage *EBlock; // off-diagonal edge matrix

int *sd_marks; // bdry mark for each subdomain

} EDGE;

Figure 4.4: Edge data structure.

typedef struct edge_geom_data {

double length; // length of edge

double normal[2]; // components of normal vector

} EGDATA;

Figure 4.5: Edge geometric data.

typedef struct edge_storage {

double *off; // off-diagonal edge array

} EBLOCK;

Figure 4.6: Edge PDE data.

subdomains. This process will be described further in the sections detailing the

contruction of the Schwarz preconditioners.

126

4.3.3 TRIANGLE structs

The struct TRIANGLE (Figure 4.7) is used to link all the important information about

the cells in the mesh. As with the EDGE struct, only the fields which are not self-

explanatory will be addressed.

The fields meshlvl, leaf, refine_flag, and knode all function in an way

analogous to their EDGE counterparts. The field nbors is an array of pointers to

those triangles that share an edge with the current triangle. This field is used for a

particular type of subdomain designation that will be discussed later.

The fields GData and KBlock are pointers to structures containing geometric

information about the triangle and PDE data, respectively. In particular, GData

points to the struct KGDATA (Figure 4.8), which contains the area of the traingle, a

VERT struct representing the barycenter of the triangle, and the affine transformation

from the physical element K to the reference triangle K̂. The pointer KBlock points

to the struct KBLOCK (Figure 4.6), which holds the local stiffness matrix, the local

load vector, and the local solution vector, all of which will be discussed in greater

detail in Appendix ??.

Finally, the fields sd_list_orders and sd_incls designate subdomain informa-

tion about the triangle. sd_list_orders is an integer vector which indicates the

triangle’s numerical order within a given subdomain, while sd_incls is a vector of

flags to indicate if the triangle belongs to a particular subdomain.

4.4 Mesh Refinement

The experiments conducted in this thesis all utilize uniform refinement; i.e., all

triangles are refined in order to generate the next level in the mesh hierarchy. The

code is designed in such a way that adaptive refinement is relatively straightforward

to implement; however, this is a topic for future study. The refinement of a triangle

is done by quadrisection. In other words, each triangle is subdivided into four smaller

127

typedef struct tristruct {

int IDnum; // global ID

unsigned meshlvl; // current mesh level

unsigned leaf; // 1: element is a leaf

unsigned isnew; // 1: element is new

unsigned isrefined; // 1: element has been refined

unsigned refine_flag; // 1: marked for refinement

struct vertstruct *verts[3]; // Vertices

struct edgestruct *edges[3]; // Edges

struct tristruct *nbors[3]; // Neighbors

struct tree_elemnode *knode; // pointer back to tree node

struct elem_storage *KBlock; // storage for arrays

struct elem_geom_data *GData; // storage for geometric info

int *sd_list_orders; // subdomain list order

int *sd_incls; // subdomain inclusions

} TRIANGLE;

Figure 4.7: Triangle data structure.

typedef struct elem_geom_data {

double area; // area of triangle

struct vertstruct baryctr; // coordinates of barycenter

double aff_mat[2][2]; // maps K to Khat

} KGDATA;

Figure 4.8: Triangle geometric data.

typedef struct elem_storage {

double *sdb; // lower triangular local stiff. matrix

double *rhs; // local RHS vector

double *x; // local solution vector

} KBLOCK;

Figure 4.9: Triangle PDE data.

triangles by connecting the midpoints of opposite edges (see Figure 4.10). The

corresponding edge refinement constitutes a bisection.

128

K

0 1

2

�
�
�
�
�
�
�
�
�
�
�
�
�
��

K0 K1

K2

K3

0 1

2

0 1

2

0 1

2

01

2
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Figure 4.10: Refinement by quadrisection and subsequent vertex enumeration.

Recall that tree structures are used to maintain both the triangle and the edge

hierarchies. The choice of refinement implemented in this program implies that the

the triangle and edge trees will be quadtrees and binary trees, respectively. To be

precise, each triangle in the initial mesh is the root node of a quadtree (see Figure

4.11) and each edge in the initial mesh is the root of a binary tree.

When constructing the local stiffness matrices and load vectors for a particular

mesh, it is necessary to loop over the triangles and edges belonging to that mesh. In

order to avoid performing a series of tree traversals, the collections of triangles and

edges belonging to a particular mesh are collected into doubly-linked lists for easier

access.

The mesh hierarchy is maintained by creating two pointer arrays for each

refinement level. The array klists contains pointers for triangle doubly-linked lists,

where each list identifies the triangles belonging to that particular mesh (see Figure

4.12). The array elists performs a similar function for the edges.

129

Figure 4.11: Triangle tree structure.

4.5 Computation of Local Information

At each level of refinement the local stiffness matrix and load vector is computed for

each cell. In addition, the matrix representing interaction between adjacent cells –

i.e., the “off-diagonal” matrix associated with each interior edge – is also computed.

The stiffness matrix corresponding to each triangle is always symmetric, so we only

store the lower triangular part. This array is stored in the struct KBLOCK in the field

sdb. The local load vector is also stored in KBLOCK, in the field rhs. Finally, the

off-diagonal block corresponding to each interior edge is stored in EBLOCK in the field

off.

The details for the construction of these objects requires a rather lengthy

exposition; therefore, they will be deferred to Appendix B, both for the second order

problem and the fourth-order problem.

130

Figure 4.12: Diagram of KLIST array.

4.6 Solving the Linear System

In general, methods for solving the linear system (2.13) or the preconditioned system

(2.14) fall into two categories: direct methods or iterative methods. Systems
131

generated by the discontinuous Galerkin method tend to be substantially larger

than those arising from other methods due to the increased number of degrees of

freedom; consequently, direct methods are generally much too costly. On the other

hand, the SIPG formulation created here generates a system that is symmetric and

positive definite (SPD). For problems of this type, the solver most often utilized is

the Conjugate Gradient (CG) method. As highlighted in the current situation, if the

condition number of the system is large, then convergence of CG can be too slow

for practical application. In this scenario, the use of a preconditioner to improve

the conditioning of the system is a common practice. The Preconditioned Conjugate

Gradient (PCG) method can be substaintially more efficient than standard CG.

In many methods, the structure of the linear system generated by the discretiza-

tion requires the formation of a global stiffness matrix and corresponding load vector.

One very nice property of the discontinuous Galerkin method is the sparse block

structure inherent in the stiffness matrix. This feature can be exploited to avoid the

formation of a global stiffness matrix; for example, matrix-vector multiplications may

be performed without creating the global matrix at all. Instead, such a product is

calculated by incorporating contributions from local blocks, each corresponding to a

geometric entity such as an interior edge or a cell of a particular mesh. These blocks

correspond to the local stiffness matrices and load vectors described in 4.5.

4.6.1 Conjugate Gradient Method

The Conjugate Gradient method was introduced by Hestenes and Stiefel in 1952

[28]. The pseudocode for the CG method as implemented in these experiments

is given by Algorithm 1. If all operations in the algorithm are performed using

exact arithmetic, then convergence is guaranteed in a number of iterations at most

equal to the dimension of the system. However, since all computations are perfomed

using floating point arithmetic, the rate of convergence is determined by (2.102), as

mentioned in Section 2.

132

Algorithm 1 Conjugate Gradient (CG)

Require: Tolerance tol, initial vector x0, itermax, number of dof N
1. r = b− Ax0

2. for (i = 1; i ≤ itermax, i++) do
3. ρnew = rT r
4. err = (ρnew/N)1/2

5. if (err < tol) then
6. break

7. end if
8. if (i = 1) then
9. d = r
10. else
11. β = ρnew/ρold

12. d = r + βd
13. end if
14. if (dTAd 6= 0) then
15. α = ρnew/(d

TAd)
16. end if
17. x = x+ αd
18. r = r − αAd
19. ρold = ρnew

20. end for

4.6.2 Preconditioned Conjugate Gradient Method

The preconditioners constructed for this work correspond to the two-level additive

Schwarz methods developed in Chapters 2 and 3. The general pseudocode for the

implementation of PCG used here is given by Algorithm 2. The application of the

preconditioner during the process is handled by the routine ASprecond. This routine

allows for the choice of either nonoverlapping or overlapping Schwarz preconditioning,

as described in earlier chapters. The details of each implementation will be provided

in the following two sections.

133

Algorithm 2 Preconditioned Conjugate Gradient (PCG)

Require: Tolerance tol, initial vector x0, itermax, number of dof N
Require: Linked lists klists, elists, SDcells, SDedges
Require: Coarse level H, fine level h
1. r = b− Ax0

2. for (i = 1; i ≤ itermax, i++) do
3. z = 0
4. z = ASprecond(klists, elists, SDcells, SDedges, x0, H, h, r)
5. ρnew = rT r
6. ρz = zT r
7. err = (ρnew/N)1/2

8. if (err < tol) then
9. break

10. end if
11. if (i = 1) then
12. d = z
13. else
14. β = ρz/ρold

15. d = z + βd
16. end if
17. if (dTAd 6= 0) then
18. α = ρz/(d

TAd)
19. end if
20. x = x+ αd
21. r = r − αAd
22. ρold = ρz
23. end for

4.7 Two-Level Additive Schwarz Preconditioners

The creation of both the nonoverlapping and overlapping Schwarz preconditioners

follows the design paradigm for maintaining the mesh hierarchy. As described

previously, for each mesh level linked lists are created to represent all the cells

and edges belonging to that particular level. A similar approach is adopted for

representing the subdomain and coarse mesh information necessary to construct the

Schwarz preconditioners. In particular, all cells and edges needed to create the

134

subdomain solvers are collected in linked lists for ease of access, as are the coarse

mesh components.

Recall from (2.51) that the structure of the additive Schwarz preconditioner is

given by

B = RT
0A
−1
0 R0 +RT

1A
−1
1 R1 + · · ·+RT

pA
−1
p Rp,

where Ai is the stiffness matrix corresponding to ai(·, ·) and RT
i is the matrix

representation of the embedding V h
i → V h, i = 0, 1, . . . , p. In the following sections,

the details of constructing the stiffness matrices Ai for both the nonoverlapping and

the overlapping methods will be presented. In addition, the details for constructing

the embedding operators RT
i will be shown.

4.7.1 Components of the Nonoverlapping Preconditioner

Once the local information has been computed and stored for each level, the primary

task necessary to construct the preconditioner is essentially one of bookkeeping. Note

that the information needed to contruct the coarse grid solver is collected and stored

at the very beginning of the program – this is precisely the initial cell list and

initial edge list. Thus, the remaining step in the construction of the nonoverlapping

preconditioner is to assign a subdomain for each cell K and edge eh of the fine mesh

Th.

The primary domain used for the tests described herein is the unit square Ω =

[0, 1]× [0, 1], so a natural method for subdomain assignment is to create a m×m grid

and designate subdomain inclusion for a particular triangle by the coordinates of its

barycenter. In other words, if the (x, y)-coordinates of the barycenter of K fall within

the bounds (xj, xj+1)× (yk, yk+1) of a particular subdomain Ωi, then K belongs to Ωi

(see Figure 4.13).

The routine createInitSD(klist,SDcells) assigns each fine level cell K in the

list klist to a subdomain based on the criteria described above. The ith-entry in the

135

vector SDcells is a pointer to the sentinel of a linked list that represents the cells in

subdomain Ωi.

Figure 4.13: Initial subdomain partition.

The next step in the construction of the nonoverlapping preconditioner deals

with interior edges. Note that boundary edges play no role in the creation of the

local subdomain solvers; instead, they appear in the coarse grid solver. First, those

interior edges belonging to the boundary of a subdomain Si are grouped into linked

lists, with each list corresponding to a subdomain Ωi (recall the definition of the

skeleton from Section 2.4.1 as the union of all such subdomain boundary edges). For

a nonoverlapping subdomain partition (in which the subdomains are disjoint), such

edges are straightforward to identify – those interior edges for which K+ and K−

belong to different subdomains. If K+ and K− belong to the same subdomain, then

that edge belongs to the interior of the corresponding subdomain.

The routine assignEdges(SDcells,skel,SDedges) loops over the subdomains

and tests the edges of each cell. If the edge belongs to the boundary of Ωi it is

added to the linked list skel[i] (in Figure 4.13, note that the edges belonging to

the skeleton are marked in red). If the edge does not belong to the skeleton, then

it belongs to the current subdomain Ωi and is added to the corresponding edge list

SDedges[i].

136

4.7.2 Components of the Overlapping Preconditioner

As mentioned in Remark 2.4.2 (1), a practical way to generate an overlapping

subdomain partition is to begin with a nonoverlapping partition that is aligned with

TH and then add layers of cells from Th. This is the approach implemented in these

experiments.

As in the nonoverlapping case, the process of constructing the overlapping

preconditioner begins by assigning a subdomain for each cell K ∈ Th. This is again

accomplished via the routine createInitSD, with the corresponding subdomain lists

stored in SDcells.

The next phase involves creating the skeleton for the nonoverlapping partition.

At this point, it is unnecessary to assign a subdomain to the remaining edges, so

the routine createSkeleton(SDcells,skel) is called to store those edges belonging

to the skeleton in the vector skel (note that each entry in skel is a pointer to a

linked list). These subdomain boundaries Si are used to determine which cells will be

appended to a given subdomain, thus creating the extra “layer” described previously.

The routine collectOverlap(SDcells,skel) is used to create this layer of

overlap. Recall that, at this point, the cells in a given subdomain Ωi are stored in the

list SDcells[i]. The concept behind the routine collectOverlap is to loop over all

the cells and determine if a cell has a vertex that lies on the boundary Si of a given

subdomain Ωi. If this is the case, then that cell is appended to the list corresponding

to Ωi. Figure 4.14 shows this process, beginning with a nonoverlapping partition,

then the process of extending a given subdomain using the method described.

At this point the overlapping method creates a new difficulty. For the nonoverlap-

ping case, a cell K can belong to at most a single subdomain Ωi. In the overlapping

case, this is no longer true. The field sd_incls found in struct TRIANGLE is used

to keep track of the subdomains Ωi to which a particular cell K belongs. sd_incls

is simply a vector of integers with length equal to the number of subdomains whose

entries are used as flags – 0 or 1 – to indicate subdomain inclusion. Note that

137

Figure 4.14: Construction of an overlapping partition.

the primary bookkeeping of subdomain inclusion is SDcells – each subdomain list

contains all cells belonging to that subdomain. The use for the sd_incls arises during

subsequent phases of the construction.

With the subdomain inclusions for each cell stored, the next stage of building the

overlapping conditioner is determining the status of each interior edge. Contrasting

with the nonoverlapping case, the issue is that an edge may belong to the interior

of multiple subdomains while potentially also belonging to the boundary of another

subdomain. As with the cells, this difficulty is dealt with by a vector of integer flags

to indicate the status of an edge with respect to a particular subdomain. The field

sd_marks located in the struct EDGE is utilized for this task. sd_marks[i] is either

0 to indicate the edge belongs to the interior of Ωi, or 1 to indicate the edge belongs

to Si. Again, sd_marks serves only an auxiliary purpose – the primary bookkeeping

of subdomain inclusion for edges will be SDedges, the construction of which will be

described below.

To designate the status of each interior edge, the routine markSD_bdry(SDcells)

is called. The process works much as the routine assignEdges, in that if the cells

K+ and K− corresponding to a given edge belong to different subdomains, then that

edge will belong to the boundary of that subdomain. This routine loops over the

edges of the cells belonging to each subdomain Ωi and tests if sd_incls[i] for K+

is different from sd_incls[i] for K−. If so, sd_marks[i] is set to 1; otherwise, it is

set to 0.

138

Finally, the routine gatherSDedges(SDcells,SDedges) collects the edges interior

to each subdomain into a list, based on the status of sd_marks. Analagous to the

nonoverlapping version, SDedges is a vector of pointers, each of which points to the

list containing the interior edges relative to the corresponding subdomain.

4.7.3 Restriction and Prolongation Operators

The final pieces necessary to construct the additive Schwarz preconditioners are the

prolongation and restriction operators. From (2.51), it is clear that global data must

be restricted to each subspace V h
i , solved locally, then prolongated (or embedded)

back into the global space V h, for i = 0, 1, . . . , p (note that this process for i = 0

corresponds to the coarse-grid correction).

Let Ri : V h → V h
i , for i = 0, 1, . . . , p denote the matrix representation of the

restriction operator from the global approximation space to the coarse subspace

and the subspaces corresponding to the subdomains. Choose RT
i : V h

i → V h, for

i = 0, 1, . . . , p as the corresponding prolongation operator. The construction of the

prolongation operator will now be discussed.

Denote by K̂0, K̂1, K̂2, and K̂3 the four children of the reference element obtained

by quadrisection. Let

{ϕK̂j }, j = 0, . . . , n− 1

be the n basis functions on the reference element, and let

{ϕK̂`j }, j = 0, . . . , n− 1, ` = 0, 1, 2, 3

be the basis functions on the children of the reference element. Now, for v ∈ Pq(K̂),

there exists the basis expansion

v(x) =
n−1∑
j=0

αK̂j ϕ
K̂
j (x).

139

At the same time, v may be written as an expansion in terms of {ϕK̂`j }:

v(x) =
n−1∑
j=0

αK̂j ϕ
K̂
j (x) =

3∑
`=0

n−1∑
j=0

αK̂`j ϕK̂`j (x). (4.1)

Now, define

M K̂`
i,j := ϕK̂j (xK̂`i), for i, j = 0, . . . , n− 1 and ` = 0, 1, 2, 3. (4.2)

Essentially, each M K̂`
i,j for ` = 0, 1, 2, 3 is a matrix corresponding to the basis functions

ϕK̂j evaluated at the degrees of freedom xK̂`i of the children K̂0, K̂1, K̂2, and K̂3.

Choosing x = xK̂`i in (4.1) gives

n−1∑
j=0

αK̂j ϕ
K̂
j (xK̂`i) =

3∑
`=0

n−1∑
j=0

αK̂`j ϕK̂`j (xK̂`i). (4.3)

Since ϕK̂`j (xK̂`i) = δji, using 4.1 gives

n−1∑
j=0

M K̂`
i,j α

K̂
j = αK̂`i , for ` = 0, 1, 2, 3. (4.4)

In block matrix form, this is

M K̂0

M K̂1

M K̂2

M K̂3

[
αK̂j

]
=

αK̂0
i

αK̂1
i

αK̂2
i

αK̂3
i

. (4.5)

The matrix M = [M K̂0M K̂1M K̂2M K̂3]T is precisely the matrix representation of the

prolongation operator from the reference element to its children. As an example,

consider the case q = 1, i.e., the approximation space consists of piecewise linear

140

polynomials. In this case, M has the form

1 0 0

1
2

1
2

0

1
2

0 1
2

1
2

1
2

0

0 1 0

0 1
2

1
2

1
2

0 1
2

0 1
2

1
2

0 0 1

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

and maps the n-vector of coefficients on the parent cell to the 4n-vector of coefficients

on the children. The prolongation operator RT
i is constructed by concatenating copies

of this matrix M for each cell in the subdomain Ωi.

4.7.4 Application of the Preconditioners

With the construction of the coarse grid components, subdomain components, and

the restriction and prolongation operators complete, the application of the Schwarz

preconditioner is relatively straightforward. Prior to beginning the PCG iterations,

the stiffness matrices corresponding to the coarse subspace and the subdomains (each

of which is sparse, symmetric, and positive definite) are factored using a Cholesky

factorization Aj = LLT , for j = 0, 1, . . . , p. These factors are stored, so that during

141

each PCG iteration, the operation

RT
j A
−1
j Rjx, for j = 0, 1, . . . , p (4.6)

consists of a restriction, an exact solve executed via a backward and a forward

substitution, then a prolongation of the result. The Cholesky factorization is

performed using the sparse matrix package CSparse created by Tim Davis [19], using

the routine cs_chol. The corresponding backward and forward substitution solves

are executed via the routines cs_lsolve and cs_ltsolve.

Remark 4.7.1. It is important to note that choosing an exact solver for the coarse

grid component and each of the subdomain solves is done purely for ensuring accurate

estimates for the condition numbers κ(BA). In order to develop a truly efficient

implementation, the use of an exact solve in these situations would be abandoned and

replaced with an iterative solver.

142

Chapter 5

Future Directions

This chapter will contain a few of the plans for future research that will extend the

ideas presented in this dissertation.

• Investigate the creation of two-level Schwarz preconditioners applied to an

adaptive DG scheme

The creation of a posteriori error estimates for the DG

formulation of Poisson’s equation was developed in [31]. The

code developed for the experiments contained herein is already

capable of implementing an adaptive process, making this a

natural direction to investigate.

• Analyze and construct Multilevel Schwarz preconditioners

The theoretical relationships between multilevel Schwarz

methods and multigrid methods are explored in [45]. The

comparison of the performance of the two methods applied to

both second and fourth order elliptic problems is a potentially

illuminating endeavor.

143

• Construct and analyze other Schwarz preconditioners, including Multiplicative

and Hybrid variants

A comparison of the performance of alternatives to the additive

Schwarz methods constructed here could result in superior

preconditioners. The questions to investigate are ones of design

difficulty, computational efficiency, and performance.

• Create a parallel implementation of the additive Schwarz preconditioners

The techniques of domain decomposition used to create

the Schwarz preconditioners lend themselves readily to an

implementation using a parallel architecture. In fact, the

methods presented in this dissertation are designed specifically

to reach peak performance in conjunction with a parallel

implementation.

144

Bibliography

145

[1] R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] P. F. Antonietti and B. Ayuso. Schwarz domain decomposition preconditioners

for discontinuous Galerkin approximations of elliptic problems: non-overlapping

case. ESAIM: Mathematical Modelling and Numerical Analysis, 41(01):21–54,

2007. 3

[3] P. F. Antonietti, B. Ayuso de Dios, S. C. Brenner, and L. Y. Sung.

Schwarz methods for a preconditioned wopsip method for elliptic problems.

Computational Methods in Applied Mathematics Comput. Methods Appl. Math.,

12(3):241–272, 2012. 3

[4] P. F. Antonietti and P. Houston. A class of domain decomposition

preconditioners for hp-discontinuous galerkin finite element methods. Journal

of Scientific Computing, 46(1):124–149, 2011. 3

[5] D. Arnold. An interior penalty finite element method with discontinuous

elements. SIAM Journal on Numerical Analysis, 19(4):742–760, 1982. 2, 9

[6] D. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Discontinuous galerkin

methods for elliptic problems. In Discontinuous Galerkin Methods, pages 89–101.

Springer, 2000. 2

[7] D. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of

discontinuous galerkin methods for elliptic problems. SIAM journal on numerical

analysis, 39(5):1749–1779, 2002. 2

[8] G. A. Baker. Finite element methods for elliptic equations using nonconforming

elements. Mathematics of Computation, 31(137):45–59, 1977. 2

[9] G. A. Baker, W. N. Jureidini, and O. A. Karakashian. Piecewise solenoidal vector

fields and the stokes problem. SIAM journal on numerical analysis, 27(6):1466–

1485, 1990. 2

146

[10] A. T. Barker, S. C. Brenner, E. H. Park, and L. Y. Sung. Two-level additive

schwarz preconditioners for a weakly over-penalized symmetric interior penalty

method. Journal of Scientific Computing, 47(1):27–49, 2011. 3

[11] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method

for the numerical solution of the compressible navier–stokes equations. Journal

of computational physics, 131(2):267–279, 1997. 2

[12] F. Bassi and S. Rebay. Gmres discontinuous galerkin solution of the compressible

navier-stokes equations. In Discontinuous Galerkin Methods, pages 197–208.

Springer, 2000. 3

[13] C. E. Baumann and J. T. Oden. A discontinuous hp finite element method

for convectiondiffusion problems. Computer Methods in Applied Mechanics and

Engineering, 175(3):311–341, 1999. 2

[14] S. C. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods.

Springer-Verlag, 3rd edition, 2008. 11, 35, 89

[15] S. C. Brenner and K. Wang. Two-level additive schwarz preconditioners for c 0

interior penalty methods. Numerische Mathematik, 102(2):231–255, 2005.

[16] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland,

Amsterdam, 1978.

[17] B. Cockburn. Discontinuous galerkin methods for convection-dominated

problems. In High-order methods for computational physics, pages 69–224.

Springer, 1999. 2

[18] B. Cockburn and C. W. Shu. The local discontinuous galerkin method for time-

dependent convection-diffusion systems. SIAM Journal on Numerical Analysis,

35(6):2440–2463, 1998. 2

147

[19] T. A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of

Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 2006. 142

[20] J. Douglas and T. Dupont. Interior penalty procedures for elliptic and parabolic

galerkin methods. In Computing Methods in Applied Sciences, pages 207–216.

Springer, 1976. 2

[21] J. Douglas Jr., T. Dupont, P. Percell, and R. Scott. A family of C1 finite elements

with optimal approximation properties for various Galerkin methods for 2nd and

4th order problems. RAIRO Analyse Numérique, 13(3):227–255, 1979. 67

[22] M. Dryja and O. B. Widlund. Towards a unified theory of domain

decomposition algorithms for elliptic problems. In T. Chan, editor, Proceedings of

Third International Symposium on Domain Decomposition Methods for Partial

Differential Equations, pages 3–21. SIAM, 1990. 22

[23] X. Feng and O. A. Karakashian. Two-level additive Schwarz methods for a

discontinuous Galerkin approximation of second order elliptic problems. SIAM

Journal on Numerical Analysis, 39(4):1343–1365, 2001. 3, 13, 14, 16, 19, 40

[24] X. Feng and O. A. Karakashian. Two-level non-overlapping Schwarz

preconditioners for a discontinuous Galerkin approximation of the biharmonic

equation. Journal of Scientific Computing, 22(1-3):289–314, 2005. 3, 4, 71

[25] X. Feng and O. A. Karakashian. Fully discrete dynamic mesh discontinuous

Galerkin methods for the Cahn-Hilliard equation of phase transition.

Mathematics of computation, 76(259):1093–1117, 2007.

[26] E. H. Georgoulis, P. Houston, and J. Virtanen. An a posteriori error indicator for

discontinuous Galerkin approximations of fourth-order elliptic problems. IMA

Journal of Numerical Analysis, page drp023, 2009. 67

148

[27] P. Grisvard. Singularities in Boundary Value Problems, volume 22 of Recherches

en Mathématiques Appliquées [Research in Applied Mathematics]. MASSON,

Paris, 1992. 68

[28] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49(6):409–436,

1952. 132

[29] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite

Element Method. Cambridge University Press, Cambridge, 1992.

[30] O. A. Karakashian and W. N. Jureidini. A nonconforming finite element

method for the stationary Navier–Stokes equations. SIAM Journal on Numerical

Analysis, 35(1):93–120, 1998. 2, 11

[31] O. A. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous

galerkin approximation of second-order elliptic problems. SIAM Journal on

Numerical Analysis, 41(6):2374–2399, 2003. 12, 143

[32] O. A. Karakashian and F. Pascal. Convergence of adaptive discontinuous galerkin

approximations of second-order elliptic problems. SIAM Journal on Numerical

Analysis, 45(2):641–665, 2007. 12

[33] C. Lasser and A. Toselli. An overlapping domain decomposition preconditioner

for a class of discontinuous Galerkin approximations of advection-diffusion

problems. Mathematics of Computation, 72(243):1215–1238, 2003. 3

[34] G. Leoni. A First Course in Sobolev Spaces, volume 105. American Mathematical

Society, 2009. 15

[35] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial

Differential Equations. Oxford University Press, 1999. 3

149

[36] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport

equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory,

1973. 2

[37] B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic

Equations: Theory and Implementation. SIAM, 2008.

[38] M. A. Saum. Adaptive Discontinuous Galerkin Finite Element Methods for

Second and Fourth Order Elliptic Partial Differential Equations. PhD thesis,

University of Tennessee, August 2006.

[39] H. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2. Springer

Verlag, Berlin, 1890. First published in Vierteljahrsschrift der Naturforschenden

Gesellschaft in Zürich, volume 15, 1870, pp.272-286. 2

[40] J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and

Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied

Computational Geometry: Towards Geometric Engineering, volume 1148 of

Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996.

From the First ACM Workshop on Applied Computational Geometry. 123

[41] I. Smears. Nonoverlapping domain decomposition preconditioners for

discontinuous galerkin finite element methods in H2-type norms. arXiv preprint

arXiv:1409.4202, 2014. 3

[42] B. E. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel

Multilevel Methods for Elliptic Partial Differential Equations. Cambridge

University Press, New York, 1996. 3, 22, 23, 24

[43] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and

Theory. Springer Series in Computational Mathematics, 2005. 3, 16, 24, 34

[44] M. F. Wheeler. An elliptic collocation-finite element method with interior

penalties. SIAM Journal on Numerical Analysis, 15(1):152–161, 1978. 2

150

[45] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM

review, 34(4):581–613, 1992. 3, 22, 143

[46] H. You. Adaptive Discontinuous Galerkin Finite Element Methods. PhD thesis,

University of Tennessee, August 2009.

151

Appendix

152

Appendix A

Affine Transformations and the

Reference Element

The construction of the system corresponding to the DG formulation involves the

computation of integrals over each element K and over edges eh. Rather than

compute these integrals directly, they are approximated using Gaussian quadrature.

The computation of each local stiffness matrix requires the computation of several

such approximations, which could prove costly if performed for each and every cell in

a fine partition.

The common technique to avoid such inefficiency is to compute these approxi-

mations instead on a reference element K̂, then use an affine transformation to map

them back to the physical element K itself. The idea is that the necessary quadrature

information to compute the integral approximations on the reference element K̂ is

computed and stored for easy access when computing local stiffness matrices and

load vectors. Accessing template files containing this previously stored information is

clearly much more efficient than performing a redundant computation over and over

for each cell.

The implementation constructed for this thesis uses triangles for every cell K in a

partition. The reference element K̂ used is the triangle with vertices at (1, 0), (0, 1),

153

and (0, 0), enumerated as in Figure ??. Given a triangle with vertices (x0, y0), (x1, y1),

and (x2, y2), the affine transformation F : K̂ → K is given (in matrix form) by

 x

y

 =

 x0 − x2 x1 − x2

y0 − y2 y1 − y2

 x̂

ŷ

 +

 x2

y2

 (A.1)

The inverse F−1 : K → K̂ is given by x̂

ŷ

 =
1

2|K|

 y1 − y2 x2 − x1

y2 − y0 x0 − x2

 x− x2

y − y2

 (A.2)

where |K| is the area of the triangle K. Note that, componentwise, this is the system

x̂ =
1

2|K|

(
(y1 − y2)(x− x2) + (x2 − x1)(y − y2)

)
ŷ =

1

2|K|

(
(y2 − y0)(x− x2) + (x0 − x2)(y − y2)

) (A.3)

K̂

v̂0

v̂1

v̂2

ê0

ê1

ê2

@
@

@
@
@

@
@
@

@
@

@
@
@

@@

K

v0

v1

v2

e0

e1

e2

��
��

�
��

�
��

�
��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
��@
@
@
@
@
@
@@

Figure A.1: Affine transformation between K̂ and K.

154

It will be necessary to compute derivatives of basis functions ψj on each triangle K

when computing local information. To avoid computing these directly, the derivatives

of corresponding basis functions ψ̂j on the reference triangle K̂ will be calculated. The

chain rule will be used to relate the derivatives on K to those on K̂. In the following

sections, the derivatives that appear in both the second order and the fourth order

problems will be computed.

First Order Partial Derivatives

Suppose that ψ(x, y) and ψ̂(x̂, ŷ) are corresponding basis function on K and K̂,

respectively. Using the chain rule,

∂ψ

∂x
=

∂ψ̂

∂x̂

∂x̂

∂x
+
∂ψ̂

∂ŷ

∂ŷ

∂x
and

∂ψ

∂y
=

∂ψ̂

∂x̂

∂x̂

∂y
+
∂ψ̂

∂ŷ

∂ŷ

∂y
.

The derivatives
∂x̂

∂x
,

∂x̂

∂y
,

∂ŷ

∂x
, and

∂ŷ

∂y

can be computed using (A.3):

∂x̂

∂x
=

1

2|K|
(
y1 − y2

) ∂x̂

∂y
=

1

2|K|
(
x2 − x1

)
∂ŷ

∂x
=

1

2|K|
(
y2 − y0

) ∂ŷ

∂y
=

1

2|K|
(
x0 − x2

)
.

(A.4)

For ease of notation, denote

a00 := y1 − y2 a10 := x2 − x1

a01 := y2 − y0 a11 := x0 − x2.

(A.5)

It follows that
∂ψ

∂x
=

1

2|K|

(
a00

∂ψ̂

∂x̂
+ a01

∂ψ̂

∂ŷ

)
(A.6)

155

and
∂ψ

∂y
=

1

2|K|

(
a10

∂ψ̂

∂x̂
+ a11

∂ψ̂

∂ŷ

)
(A.7)

Normal derivatives will be required as well. If n = [nx ny]
T is the outer unit normal

for edge eh, using the above gives

∂nψ = ∇ψ · n

=
∂ψ

∂x
nx +

∂ψ

∂y
ny

=
1

2|K|

[(
a00

∂ψ̂

∂x̂
+ a01

∂ψ̂

∂ŷ

)
nx +

(
a10

∂ψ̂

∂x̂
+ a11

∂ψ̂

∂ŷ

)
ny

]
.

(A.8)

Second Order Partial Derivatives

The second order derivatives needed occur in the fourth order problem, specifically in

the Laplacian terms. Note that the first order derivatives (A.6) and (A.7) computed

previously will be used here.

156

∂2ψ

∂x2
=

1

2|K|

[
a00

∂

∂x

(
∂ψ̂

∂x̂

)
+ a01

∂

∂x

(
∂ψ̂

∂ŷ

)]

=
1

2|K|

[
a00

(
∂2ψ̂

∂x̂2
· ∂x̂
∂x

+
∂2ψ̂

∂x̂∂ŷ
· ∂ŷ
∂x

)
+ a01

(
∂2ψ̂

∂ŷ∂x̂
· ∂x̂
∂x

+
∂2ψ̂

∂ŷ2
· ∂ŷ
∂x

)]

=
1

2|K|

[
a00

(
1

2|K|
a00

∂2ψ̂

∂x̂2
+

1

2|K|
a01

∂2ψ̂

∂x̂∂ŷ

)

+ a01

(
1

2|K|
a00

∂2ψ̂

∂ŷ∂x̂
+

1

2|K|
a01

∂2ψ̂

∂ŷ2

)]

=

(
1

2|K|

)2
[
a2

00

∂2ψ̂

∂x̂2
+ 2a00 a01

∂2ψ̂

∂x̂∂ŷ
+ a2

01

∂2ψ̂

∂ŷ2

]
.

(A.9)

Similarly,

∂2ψ

∂y2
=

(
1

2|K|

)2
[
a2

10

∂2ψ̂

∂x̂2
+ 2a10 a11

∂2ψ̂

∂x̂∂ŷ
+ a2

11

∂2ψ̂

∂ŷ2

]
. (A.10)

The Laplacian is then given by

∆ψ =

(
1

2|K|

)2
[
α1

∂2ψ̂

∂x̂2
+ α2

∂2ψ̂

∂x̂∂ŷ
+ α3

∂2ψ̂

∂ŷ2

]
, (A.11)

where

α1 = a2
00 + a2

10

α2 = 2 a00 a01 + 2 a10 a11

α3 = a2
01 + a2

11.

(A.12)

157

In addition, the mixed second partial derivative is useful in the next section, so it is

given here.

∂2ψ

∂x∂y
=

(
1

2|K|

)2
[
a00a10

∂2ψ̂

∂x̂2
+ (a00a11 + a01a10)

∂2ψ̂

∂x̂∂ŷ
+ a01a11

∂2ψ̂

∂ŷ2

]
.

(A.13)

Third Order Partial Derivatives

The third order derivatives needed also occur in the fourth order problem, specifically

in the terms involving the normal derivative of the Laplacian.

∂3ψ

∂x3
=

∂

∂x

(
∂2ψ

∂x2

)

=

(
1

2|K|

)2
(
a2

00

∂

∂x

[
∂2ψ̂

∂x̂2

]
+ 2a00a01

∂

∂x

[
∂2ψ̂

∂x̂∂ŷ

]
+ a2

01

∂

∂x

[
∂2ψ̂

∂ŷ2

])

=

(
1

2|K|

)3
(
a3

00

∂3ψ̂

∂x̂3
+ a2

00a01
∂3ψ̂

∂x̂2∂ŷ
+ 2a2

00 a01
∂3ψ̂

∂x̂2∂ŷ

+ 2a00 a
2
01

∂3ψ̂

∂x̂∂ŷ2
+ a00 a

2
01

∂3ψ̂

∂x̂∂ŷ2
+ a3

01

∂3ψ̂

∂ŷ3

)

=

(
1

2|K|

)3
(
a3

00

∂3ψ̂

∂x̂3
+ 3a2

00a01
∂3ψ̂

∂x̂2∂ŷ
+ 3a00 a

2
01

∂3ψ̂

∂x̂∂ŷ2
+ a3

01

∂3ψ̂

∂ŷ3

)
.

(A.14)

158

Similarly,

∂3ψ

∂x2∂y
=

(
1

2|K|

)3
(
a2

00a10
∂3ψ̂

∂x̂3
+ (2a00 a10 a01 + a2

00a11)
∂3ψ̂

∂x̂2∂ŷ

+ (2a00 a01 a11 + a2
01a10)

∂3ψ̂

∂x̂∂ŷ2
+ a2

01a11
∂3ψ̂

∂ŷ3

)
,

(A.15)

∂3ψ

∂x∂y2
=

(
1

2|K|

)3
(
a00 a

2
10

∂3ψ̂

∂x̂3
+ (2a00 a10 a11 + a01 a

2
10)

∂3ψ̂

∂x̂2∂ŷ

+ (2a01 a11 a10 + a00 a
2
11)

∂3ψ̂

∂x̂∂ŷ2
+ a01 a

2
11

∂3ψ̂

∂ŷ3

)
,

(A.16)

and

∂3ψ

∂y3
=

(
1

2|K|

)3
(
a3

10

∂3ψ̂

∂x̂3
+ 3a2

10a11
∂3ψ̂

∂x̂2∂ŷ
+ 3a10 a

2
11

∂3ψ̂

∂x̂∂ŷ2
+ a3

11

∂3ψ̂

∂ŷ3

)
.

(A.17)

Then, again with n = [nx ny]
T ,

∂n∆ψ = ∇(∆ψ) · n

=

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
nx +

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
ny

=

(
1

2|K|

)3
[(

β1
∂3ψ̂

∂x̂3
+ β2

∂3ψ̂

∂x̂2∂ŷ
+ β3

∂3ψ̂

∂x̂∂ŷ2
+ β4

∂3ψ̂

∂ŷ3

)
nx

+

(
η1

∂3ψ̂

∂x̂3
+ η2

∂3ψ̂

∂x̂2∂ŷ
+ η3

∂3ψ̂

∂x̂∂ŷ2
+ η4

∂3ψ̂

∂ŷ3

)
ny

]
,

(A.18)

159

where

β1 = a3
00 + a00a

2
10

β2 = 3a2
00a01 + 2a00a10a11 + a01a

2
10

β3 = 3a00a
2
01 + 2a01a11a10 + a00a

2
11

β4 = a3
01 + a01a

2
11

(A.19)

and

η1 = a2
00a10 + a3

10

η2 = 2a00a10a01 + a2
00a11 + 3a2

10a11

η3 = 2a00a01a11 + a2
01a10 + 3a10a

2
11

η4 = a2
01a11 + a3

11

(A.20)

160

Appendix B

Computation of PDE Data

B.1 Second Order Elliptic Problem

Derivation of the Bilinear Form

For each K ∈ Th, using integration by parts gives

∫
K

−∆uv dx =

∫
K

∇u · ∇v dx −
∫
∂K

(∇u · n)v ds (B.1)

or, more compactly,

(−∆u, v)K = (∇u,∇v)K − 〈∇u · n, v〉∂K . (B.2)

Summing over all K ∈ Th gives

(−∆u, v)Ω =
∑
K∈Th

(
(∆u,∆v)K − 〈∇u · n, v〉∂K

)

=
∑
K∈Th

(∇u,∇v)K −
∑
eh∈ENh

〈∇u · n, v〉eh −
∑
eh∈EDh

〈∇u · n, v〉eh

−
∑
eh∈EIh

〈
∇u+ · nK+ , v+

〉
eh
−
∑
eh∈EIh

〈
∇u− · nK− , v−

〉
eh
.

(B.3)

161

The term involving Neumann edges is known data; therefore it is moved to the right

side of the equation (−∆u, v) = (f, v). Writing n = neh = nK+ = −nK− , and using

the identity a+b+ − a−b− = {a}[b] + [a]{b},

(−∆u, v)Ω =
∑
K∈Th

(∇u,∇v)K −
∑
eh∈EDh

〈∂nu, v〉eh

−
∑
eh∈EIh

(〈
∂nu

+, v+
〉
eh
−
〈
∂nu

−, v−
〉
eh

)

=
∑
K∈Th

(∇u,∇v)K −
∑
eh∈EDh

〈∂nu, v〉eh

−
∑
eh∈EIh

(
〈{∂nu}, [v]〉eh − 〈[∂nu], {v}〉eh

)
(B.4)

Assuming u is sufficiently smooth, the term 〈[∂nu], {v}〉eh is zero. For the SIP-DG

method, it is replaced by the symmetrizing term −〈{∂nv}, [u]〉eh . Combining this

with the addition of the penalty terms and the symmetrizing term for the Dirichlet

edges gives

(−∆u, v)Ω =
∑
K∈Th

(∇u,∇v)K −
∑
eh∈EDh

(
〈∂nu, v〉eh + 〈∂nv, u〉eh

)

−
∑
eh∈EIh

(
〈{∂nu}, [v]〉eh + 〈{∂nv}, [u]〉eh

)

+
∑

eh∈EIh∪E
D
h

γh|eh|−1 〈[u], [v]〉eh .

(B.5)

162

Note that all nonzero terms added above are also added to the right hand side of

(−∆u, v) = (f, v). Putting this together, the bilinear form aγhh (·, ·) is given by

aγhh (u, v) =
∑
K∈Th

(∇u,∇v)K −
∑
eh∈EDh

(
〈∂nu, v〉eh + 〈∂nv, u〉eh

)

−
∑
eh∈EIh

(
〈{∂nu}, [v]〉eh + 〈{∂nv}, [u]〉eh

)

+
∑
eh∈EIh

γh|eh|−1 〈[u], [v]〉eh +
∑
eh∈EDh

γh|eh|−1 〈u, v〉eh

(B.6)

or, more concisely,

aγhh (u, v) =
∑
K∈Th

(∇u,∇v)K −
∑

eh∈EIh∪E
D
h

(
〈{∂nu}, [v]〉eh + 〈{∂nv}, [u]〉eh

)

+
∑

eh∈EIh∪E
D
h

γh|eh|−1 〈[u], [v]〉eh .
(B.7)

The corresponding RHS linear functional is

L(v) :=
∑
K∈Th

(f, v)K +
∑
eh∈ENh

〈gN , v〉eh −
∑
eh∈EDh

〈gD, ∂nv〉eh

+
∑
eh∈EDh

γh|eh|−1 〈gD, v〉eh .
(B.8)

Formulation of Stiffness Matrix Terms

First, choose a basis for the DG space V h. Let {ψKj }
p
j=1 be a set of basis functions

for each cell K and suppose that

u(x) =
n∑
j=1

ξKj ψ
K
j (x) and v(x) =

p∑
i=1

ψKi (x). (B.9)

are the basis expansions of u and v, respectively. Here, n is the dimension of the basis;

i.e., the number of degrees of freedom on K. Consider the terms from the bilinear

163

form one by one. Note that the superscript K will be suppressed except when needed

in order to provide a less cumbersome notation.

Main Diagonal Block: Volume contributions from cell K

These terms represent the interaction of the basis functions of a cell K with each

other and will appear in the main diagonal blocks. Using (B.9),

(∇u,∇v)K =
n∑

i,j=1

ξKj (∇ψj,∇ψi)K .

All integrals will be computed on the reference element, so using the derivatives shown

in Appendix 1,

(∇ψj,∇ψi)K =

∫
K

∇ψj · ∇ψi dx

=

(
1

2|K|

)∫
K̂

[(
a00

∂ψ̂j
∂x̂

+ a01
∂ψ̂j
∂ŷ

)(
a00

∂ψ̂i
∂x̂

+ a01
∂ψ̂i
∂ŷ

)

+

(
a10

∂ψ̂j
∂x̂

+ a11
∂ψ̂j
∂ŷ

)(
a10

∂ψ̂i
∂x̂

+ a11
∂ψ̂i
∂ŷ

)]
dx̂.

(B.10)

Denoting for brevity

ϕ̂ :=

(
a00

∂ψ̂j
∂x̂

+ a01
∂ψ̂j
∂ŷ

)(
a00

∂ψ̂i
∂x̂

+ a01
∂ψ̂i
∂ŷ

)

+

(
a10

∂ψ̂j
∂x̂

+ a11
∂ψ̂j
∂ŷ

)(
a10

∂ψ̂i
∂x̂

+ a11
∂ψ̂i
∂ŷ

)
,

and approximating via Gaussian quadrature, we have

(∇ψj,∇ψi)K ≈
1

2|K|

nq∑
q=1

ŵq ϕ̂j(x̂q), (B.11)

where nq is the number of Gaussian quadrature points used and x̂q are the Gaussian

quadrature points on the reference element with corresponding weights ŵq.

164

Contributions from edge eh

Recall that each interior edge eh is shared by two triangles, K+ and K−. In the

derivations that follow, the definitions of jump and average will be used extensively.

In addition, only the Arnold formulation will be shown, as Baker’s follows similarly.

For each interior edge eh, the edge terms from the bilinear form (B.7) may be

expanded using the definition of jump and average. First, the flux terms:

(i) −〈{∂nu}, [v]〉eh = −1

2

〈
∂nu

+, v+
〉
eh

+
1

2

〈
∂nu

+, v−
〉
eh

−1

2

〈
∂nu

−, v+
〉
eh

+
1

2

〈
∂nu

−, v−
〉
eh
,

(B.12)

(ii) −〈{∂nv}, [u]〉eh = −1

2

〈
∂nv

+, u+
〉
eh

+
1

2

〈
∂nv

+, u−
〉
eh

−1

2

〈
∂nv

−, u+
〉
eh

+
1

2

〈
∂nv

−, u−
〉
eh
.

(B.13)

The penalty terms may be expanded the same way.

(iii)
γh
|eh|
〈[u], [v]〉eh =

γh
|eh|

〈
u+, v+

〉
eh
− γh
|eh|

〈
u+, v−

〉
eh

− γh
|eh|

〈
u−, v+

〉
eh

+
γh
|eh|

〈
u−, v−

〉
eh
.

(B.14)

Main Diagonal Block: Flux Terms

The details of these contributions will only be shown for the 〈+,+〉eh terms as the

〈−,−〉eh are similar. Using (B.12) – (B.14), these terms will be considered one at a

time.

From (B.9), 〈
∂nu

+, v+
〉
eh

=
n∑

i,j=1

ξ+
j

〈
∂nψ

+
j , ψ

+
i

〉
eh
. (B.15)

165

Using the affine transformation (A.8), for brevity denote

ϕ̂+
j =

(
a00

∂ψ̂

∂x̂
+ a01

∂ψ̂

∂ŷ

)
nx +

(
a10

∂ψ̂

∂x̂
+ a11

∂ψ̂

∂ŷ

)
ny (B.16)

where n = [nx ny]
T . Then this main block diagonal term may be approximated via

Gaussian quadrature by

〈
∂nψ

+
j , ψ

+
i

〉
eh
≈ |eh|

2|K|

nq∑
q=1

ŵq ϕ̂
+
j (x̂q) ψ

+
i (x̂q). (B.17)

The main diagonal term 〈∂nu−, v−〉eh is approximated similarly:

〈
∂nu

−, v−
〉
eh

=
n∑

i,j=1

ξ−j
〈
∂nψ

−
j , ψ

−
i

〉
eh
, (B.18)

where 〈
∂nψ

−
j , ψ

−
i

〉
eh
≈ |eh|

2|K|

nq∑
q=1

ŵq ϕ̂
−
j (x̂q) ψ

−
i (x̂q). (B.19)

where ϕ̂−j has an analagous definition to that of ϕ̂+
j .

The quadrature approximations of the corresponding symmetrizing terms that

contribute to the main diagonal block, 〈∂nv+, u+〉eh and 〈∂nv−, u−〉eh that appear in

(B.13), are found exactly the same way as the previous two terms – simply with the

i and j switched. 〈
∂nv

+, u+
〉
eh

=
n∑

i,j=1

ξ+
j

〈
∂nψ

+
i , ψ

+
j

〉
eh

(B.20)

where 〈
∂nψ

+
i , ψ

+
j

〉
eh
≈ |eh|

2|K|

nq∑
q=1

ŵq ϕ̂
+
i (x̂q) ψ

+
j (x̂q), (B.21)

and 〈
∂nv

−, u−
〉
eh

=
n∑

i,j=1

ξ−j
〈
∂nψ

−
i , ψ

−
j

〉
eh

(B.22)

166

where 〈
∂nψ

−
i , ψ

−
j

〉
eh
≈ |eh|

2|K|

nq∑
q=1

ŵq ϕ̂
−
i (x̂q) ψ

−
j (x̂q), (B.23)

where the definitions of ϕ̂±i are analogous to the previous definition of ϕ̂+
j .

Main Diagonal Block: Penalty Terms

The contribution to the main diagonal blocks from the penalty terms are approxi-

mated as follows. The terms from (B.14) are easily dealt with. Again using the basis

expansion (B.9), 〈
u+, v+

〉
eh

=
n∑

i,j=1

ξ+
j

〈
ψ+
j , ψ

+
i

〉
eh
, (B.24)

where 〈
ψ+
j , ψ

+
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
+
j (x̂q)ψ̂

+
i (x̂q). (B.25)

Also, 〈
u−, v−

〉
eh

=
n∑

i,j=1

ξ−j
〈
ψ−j , ψ

−
i

〉
eh
, (B.26)

where 〈
ψ−j , ψ

−
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
−
j (x̂q)ψ̂

−
i (x̂q). (B.27)

Off-Diagonal Block: Flux Terms

The construction of the off-diagonal blocks follows very similarly to the derivations

shown previously. Recall that these blocks represent the interaction of degrees of

freedom from K+ and K− across an interior edge eh. Since local enumeration follows

a counterclockwise orientation, this means the quadrature points corresponding to

the K− cell must be traversed in reverse. The rest of the derivations follow exactly

as before.

For brevity, again make use of the shorthand ϕ̂+
j (B.16). The approximations from

the off-diagonal flux terms are as follows.

167

From (B.12), 〈
∂nu

+, v−
〉
eh

=
n∑

i,j=1

ξ+
j

〈
∂nψ

+
j , ψ

−
i

〉
eh

(B.28)

where 〈
∂nψ

+
j , ψ

−
i

〉
eh
≈ |eh|

2|K+|

nq∑
q=1

ŵq ϕ̂
+
j (x̂q) ψ

−
i (x̂q̃), (B.29)

where q̃ := nq + 1− q denotes the reverse traversal previously mentioned. Also,

〈
∂nu

−, v+
〉
eh

=
n∑

i,j=1

ξ−j
〈
∂nψ

−
j , ψ

+
i

〉
eh

(B.30)

where 〈
∂nψ

−
j , ψ

+
i

〉
eh
≈ |eh|

2|K−|

nq∑
q=1

ŵq ϕ̂
−
j (x̂q̃) ψ

+
i (x̂q). (B.31)

The approximations from (B.13) are

〈
∂nv

+, u−
〉
eh

=
n∑

i,j=1

ξ−j
〈
∂nψ

+
i , ψ

−
j

〉
eh

(B.32)

where 〈
∂nψ

+
i , ψ

−
j

〉
eh
≈ |eh|

2|K+|

nq∑
q=1

ŵq ϕ̂
+
i (x̂q) ψ

−
j (x̂q̃), (B.33)

and 〈
∂nv

−, u+
〉
eh

=
n∑

i,j=1

ξ+
j

〈
∂nψ

−
i , ψ

+
j

〉
eh

(B.34)

where 〈
∂nψ

−
i , ψ

+
j

〉
eh
≈ |eh|

2|K−|

nq∑
q=1

ŵq ϕ̂
−
i (x̂q̃) ψ

+
j (x̂q). (B.35)

168

Off-Diagonal Block: Penalty Terms

The approximations from the off-diagonal penalty terms from (B.14) are as follows.

〈
u+, v−

〉
eh

=
n∑

i,j=1

ξ+
j

〈
ψ+
j , ψ

−
i

〉
eh
, (B.36)

where 〈
ψ+
j , ψ

−
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
+
j (x̂q)ψ̂

−
i (x̂q̃). (B.37)

Also, 〈
u−, v+

〉
eh

=
n∑

i,j=1

ξ−j
〈
ψ−j , ψ

+
i

〉
eh
, (B.38)

where 〈
ψ−j , ψ

+
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
−
j (x̂q̃)ψ̂

+
i (x̂q). (B.39)

B.2 Fourth Order Elliptic Problem

Derivation of the Bilinear Form

For each K ∈ Th, using integration by parts gives

∫
K

∆2uv dx = −
∫
K

∇(∆u) · ∇v dx +

∫
∂K

v ∇(∆u) · n ds

=

∫
K

∆u∆v dx −
∫
∂K

∆u ∇v · n ds

+

∫
∂K

v ∇(∆u) · n ds

(B.40)

or, more compactly,

(∆2u, v)K = (∆u,∆v)K − 〈∆u, ∂nv〉∂K + 〈∂n∆u, v〉∂K . (B.41)

169

Summing over all K ∈ Th, writing n = neh = nK+ = −nK− , and using the identity

a+b+ − a−b− = {a}[b] + [a]{b} gives

170

(∆2u, v)Ω =
∑
K∈Th

[
(∆u,∆v)K − 〈∆u, ∂nv〉∂K + 〈∂n∆u, v〉∂K

]

=
∑
K∈Th

(∆u,∆v)K +
∑
eh∈EBh

[
〈∂n∆u, v〉eh − 〈∆u, ∂nv〉eh

]

+
∑
eh∈EIh

[
〈∂n∆u+, v+〉eh − 〈∂n∆u−, v−〉eh

−〈∆u+, ∂nv
+〉eh + 〈∆u−, ∂nv−〉eh

]

=
∑
K∈Th

(∆u,∆v)K +
∑
eh∈EBh

[
〈∂n∆u, v〉eh − 〈∆u, ∂nv〉eh

]

+
∑
eh∈EIh

[
〈{∂n∆u}, [v]〉eh + 〈[∂n∆u], {v}〉eh

−〈{∆u}, [∂nv]〉eh − 〈[∆u], {∂nv}〉eh
]

=
∑
K∈Th

(∆u,∆v)K +
∑
eh∈EBh

[
〈∂n∆u, v〉eh − 〈∆u, ∂nv〉eh

]

+
∑
eh∈EIh

[
〈{∂n∆u}, [v]〉eh − 〈{∆u}, [∂nv]〉eh

]

=
∑
K∈Th

(∆u,∆v)K +
∑

eh∈EIh∪E
B
h

[
〈{∂n∆u}, [v]〉eh − 〈{∆u}, [∂nv]〉eh

]

=
∑
K∈Th

(∆u,∆v)K +
∑

eh∈EIh∪E
B
h

[
〈{∂n∆u}, [v]〉eh − 〈{∆u}, [∂nv]〉eh

]

+
∑

eh∈EIh∪E
B
h

[
〈{∂n∆v}, [u]〉eh − 〈{∆v}, [∂nu]〉eh

]
(B.42)

171

Finally, adding the penalty terms

∑
eh∈EIh∪E

B
h

(
γh
|eh|3
〈[u], [v]〉eh +

γh
|eh|
〈[∂nu], [∂nv]〉eh

)
(B.43)

and rearranging, we have the bilinear form

aγhh (u, v) :=
∑
K∈Th

(∆u,∆v)K +
∑

eh∈EIh∪E
B
h

(
γh
|eh|3
〈[u], [v]〉eh +

γh
|eh|
〈[∂nu], [∂nv]〉eh

)

+
∑

eh∈EIh∪E
B
h

(
〈[u], {∂n∆v}〉eh + 〈[v], {∂n∆u}〉eh

−〈[∂nu], {∆v}〉eh − 〈[∂nv], {∆u}〉eh
)

(B.44)

and the corresponding RHS linear functional

L(v) :=
∑
K∈Th

(f, v)K +
∑
eh∈EBh

(
〈∂n∆v, gD〉eh − 〈∆v, gN〉eh

)

+
∑
eh∈EBh

(σh
|eh|3

〈gD, v〉eh +
τh
|eh|
〈gN , ∂nv〉eh

)
.

(B.45)

Formulation of Stiffness Matrix Terms

First, choose a basis for the DG space V h. Let {ψKj }
p
j=1 be a set of basis functions

for each cell K and suppose that

u(x) =
n∑
j=1

ξKj ψ
K
j (x) and v(x) =

p∑
i=1

ψKi (x). (B.46)

are the basis expansions of u and v, respectively. Here, n is the dimension of the basis;

i.e., the number of degrees of freedom on K. Consider the terms from the bilinear

form one by one. Note that the superscript K will be suppressed except when needed

in order to provide a less cumbersome notation.

172

Main Diagonal Block: Volume contributions from cell K

These terms represent the interaction of the basis functions of a cell K with each

other and will appear in the main diagonal blocks. Using (B.46),

(∆u,∆v)K =
n∑

i,j=1

ξKj (∆ψj,∆ψi)K .

All integrals will be computed on the reference element, so using the derivatives shown

in Appendix 1,

(∆ψj.∆ψi)K =

∫
K

∆ψj∆ψi dx

=

(
1

2|K|

)4 ∫
K̂

[(
α1

∂2ψ̂j
∂x̂2

+ α2
∂2ψ̂j
∂x̂∂ŷ

+ α3
∂2ψ̂j
∂ŷ2

)

·
(
α1

∂2ψ̂i
∂x̂2

+ α2
∂2ψ̂i
∂x̂∂ŷ

+ α3
∂2ψ̂i
∂ŷ2

)]
dx̂

(B.47)

Denoting

ϕ̂j := α1
∂2ψ̂j
∂x̂2

+ α2
∂2ψ̂j
∂x̂∂ŷ

+ α3
∂2ψ̂j
∂ŷ2

ϕ̂i := α1
∂2ψ̂i
∂x̂2

+ α2
∂2ψ̂i
∂x̂∂ŷ

+ α3
∂2ψ̂i
∂ŷ2

,

and approximating via Gaussian quadrature, we have

(∆ψj,∆ψi)K ≈
(

1

2|K|

)3 nq∑
q=1

ŵq ϕ̂j(x̂q) ϕ̂i(x̂q), (B.48)

where nq is the number of Gaussian quadrature points used and x̂q are the Gaussian

quadrature points on the reference element with corresponding weights ŵq.

173

Contributions from edge eh

Recall that each interior edge eh is shared by two triangles, K+ and K−. In the

derivations that follow, the definitions of jump and average will be used extensively.

In addition, only the Arnold formulation will be shown, as Baker’s follows similarly.

For each interior edge eh, the edge terms from the bilinear form (B.44) may be

expanded using the definition of jump and average. First, the flux terms:

(i) 〈[u], {∂n∆v}〉eh =
1

2
〈u+, ∂n∆v+〉eh −

1

2
〈u−, ∂n∆v+〉eh

+
1

2
〈u+, ∂n∆v−〉eh −

1

2
〈u−, ∂n∆v−〉eh .

(B.49)

(ii) 〈[v], {∂n∆u}〉eh =
1

2
〈v+, ∂n∆u+〉eh −

1

2
〈v−, ∂n∆u+〉eh

+
1

2
〈v+, ∂n∆u−〉eh −

1

2
〈v−, ∂n∆u−〉eh .

(B.50)

(iii) −〈[∂nu], {∆v}〉eh = −1

2
〈∂nu+,∆v+〉eh +

1

2
〈∂nu−,∆v+〉eh

− 1

2
〈∂nu+,∆v−〉eh +

1

2
〈∂nu−,∆v−〉eh

(B.51)

(iv) −〈[∂nv], {∆u}〉eh = −1

2
〈∂nv+,∆u+〉eh +

1

2
〈∂nv−,∆u+〉eh

− 1

2
〈∂nv+,∆u−〉eh +

1

2
〈∂nv−,∆u−〉eh

(B.52)

174

The penalty terms may expanded in the same way.

(v)
γh
|eh|3
〈[u], [v]〉eh =

γh
|eh|3
〈u+, v+〉eh −

γh
|eh|3
〈u+, v−〉eh

− γh
|eh|3
〈u−, v+〉eh +

γh
|eh|3
〈u−, v−〉eh

(B.53)

(vi)
γh
|eh|
〈[∂nu], [∂nv]〉eh =

γh
|eh|
〈∂nu+, ∂nv

+〉eh −
γh
|eh|
〈∂nu+, ∂nv

−〉eh

− γh
|eh|
〈∂nu−, ∂nv+〉eh +

γh
|eh|
〈∂nu−, ∂nv−〉eh

(B.54)

The terms above containing functions both on K+ or both on K− will contribute only

to the main diagonal block (note that this includes terms corresponding to boundary

edges). The mixed terms with one function from K+ and the other from K− will

contribute to the off-diagonal block corresponding to the shared edge eh.

Main Diagonal Block: Flux Terms

The details of these contributions will only be shown for the 〈+,+〉eh terms as the

〈−,−〉eh are similar. Using (B.49) – (B.54), these terms will be considered one at a

time.

From (B.46),

〈u+, ∂n∆v+〉eh =
n∑

i,j=1

ξ+
j

〈
ψ+
j , ∂n∆ψ+

i

〉
eh

(B.55)

175

Using the affine transformation (A.18), for brevity denote

ϕ̂+
i =

(
β+

1

∂3ψ̂+
i

∂x̂3
+ β+

2

∂3ψ̂+
i

∂x̂2∂ŷ
+ β+

3

∂3ψ̂+
i

∂x̂∂ŷ2
+ β+

4

∂3ψ̂+
i

∂ŷ3

)
nx

+

(
η+

1

∂3ψ̂+
i

∂x̂3
+ η+

2

∂3ψ̂+
i

∂x̂2∂ŷ
+ η+

3

∂3ψ̂+
i

∂x̂∂ŷ2
+ η+

4

∂3ψ̂+
i

∂ŷ3

)
ny,

(B.56)

where the coefficients are those given in (A.19) and (A.20). Putting this together,

this main block diagonal term may be approximated via Gaussian quadrature by

〈
ψ+
j , ∂n∆ψ+

i

〉
eh
≈ |eh|

(
1

2|K|

)3 nq∑
q=1

ŵq ψ̂
+
j (x̂q) ϕ̂

+
i (x̂q). (B.57)

The main diagonal term 〈u−, ∂n∆v−〉eh is approximated similarly:

〈u−, ∂n∆v−〉eh =
n∑

i,j=1

ξ−j
〈
ψ−j , ∂n∆ψ−i

〉
eh

(B.58)

where

〈ψ−j , ∂n∆ψ−i 〉eh ≈ |eh|
(

1

2|K|

)3 nq∑
q=1

ŵq ψ̂
−
j (x̂q) ϕ̂

−
i (x̂q) , (B.59)

with ϕ̂−i defined analogously to the definition of ϕ̂+
i .

The quadrature approximations of the symmetrizing terms contributing to the

main diagonal block, 〈v+, ∂n∆u+〉eh and 〈v−, ∂n∆u−〉eh found in (B.50), are found

exactly the same way as the previous two terms – simply with the i and j switched.

〈v+, ∂n∆u+〉eh =
n∑

i,j=1

ξ+
j

〈
ψ+
i , ∂n∆ψ+

j

〉
eh

(B.60)

where

〈ψ+
i , ∂n∆ψ+

j 〉eh ≈ |eh|
(

1

2|K|

)3 nq∑
q=1

ŵq ψ̂
+
i (x̂q) ϕ̂

+
j (x̂q) , (B.61)

176

and

〈v−, ∂n∆u−〉eh =
n∑

i,j=1

ξ−j
〈
ψ−i , ∂n∆ψ−j

〉
eh

(B.62)

where

〈ψ−i , ∂n∆ψ−j 〉eh ≈ |eh|
(

1

2|K|

)3 nq∑
q=1

ŵq ψ̂
−
i (x̂q) ϕ̂

−
j (x̂q) , (B.63)

where the definitions of ϕ̂±j are analogous to the previous definition of ϕ̂+
i .

The next terms, found in (B.51), are 〈∂nu+,∆v+〉eh and 〈∂nu−,∆v−〉eh . As before,

〈∂nu+,∆v+〉eh =
n∑

i,j=1

ξ+
j

〈
∂nψ

+
j ,∆ψ

+
i

〉
eh

(B.64)

and

〈∂nu−,∆v−〉eh =
n∑

i,j=1

ξ−j
〈
∂nψ

−
j ,∆ψ

−
i

〉
eh
. (B.65)

Appealing to the results of the affine transformations (A.8) and (A.11), for brevity

denote

µ̂+
j :=

(
a00

∂ψ̂+
j

∂x̂
+ a01

∂ψ̂+
j

∂ŷ

)
nx +

(
a10

∂ψ̂+
j

∂x̂
+ a11

∂ψ̂+
j

∂ŷ

)
ny (B.66)

and

ν̂+
i := α1

∂2ψ̂+
i

∂x̂2
+ α2

∂2ψ̂+
i

∂x̂∂ŷ
+ α3

∂2ψ̂+
i

∂ŷ2
, (B.67)

with the coefficients defined as in (A.5) and (A.12). Then

〈
∂nψ

+
j ,∆ψ

+
i

〉
eh
≈ |eh|

(
1

2|K|

)3 nq∑
q=1

ŵq µ̂
+
j (x̂q) ν̂

+
i (x̂q) , (B.68)

and 〈
∂nψ

−
j ,∆ψ

−
i

〉
eh
≈ |eh|

(
1

2|K|

)3 nq∑
q=1

ŵq µ̂
−
j (x̂q) ν̂

−
i (x̂q) , (B.69)

177

where the definitions of µ̂−j and ν̂−i are analogous to the definitions of µ̂+
j and ν̂+

i ,

respectively.

The approximations of the next symmetrizing terms contributing to the main

diagonal block, 〈∂nv+,∆u+〉eh and 〈∂nv−,∆u−〉eh found in (B.52), are found exactly

the same way as the previous two terms; again by symmetry, simply by switching i

and j. Then

〈∂nv+,∆u+〉eh =
n∑

i,j=1

ξ+
j

〈
∂nψ

+
i ,∆ψ

+
j

〉
eh
, (B.70)

where 〈
∂nψ

+
i ,∆ψ

+
j

〉
eh
≈ |eh|

(
1

2|K|

)3 nq∑
q=1

ŵq µ̂
+
i (x̂q) ν̂

+
j (x̂q) , (B.71)

and

〈∂nv−,∆u−〉eh =
n∑

i,j=1

ξ−j
〈
∂nψ

−
i ,∆ψ

−
j

〉
eh
, (B.72)

where 〈
∂nψ

−
i ,∆ψ

−
j

〉
eh
≈ |eh|

(
1

2|K|

)3 nq∑
q=1

ŵq µ̂
−
i (x̂q) ν̂

−
j (x̂q) . (B.73)

As usual, the definitions of µ̂±i and ν̂±j are analogous to the definitions of µ̂+
j and ν̂+

i

given previously.

Main Diagonal Block: Penalty Terms

The contribution to the main diagonal blocks from the penalty terms are approxi-

mated as follows. The terms from (B.53) are easily dealt with. Again using the basis

expansion (B.46), 〈
u+, v+

〉
eh

=
n∑

i,j=1

ξ+
j

〈
ψ+
j , ψ

+
i

〉
eh
, (B.74)

where 〈
ψ+
j , ψ

+
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
+
j (x̂q)ψ̂

+
i (x̂q). (B.75)

178

Also, 〈
u−, v−

〉
eh

=
n∑

i,j=1

ξ−j
〈
ψ−j , ψ

−
i

〉
eh
, (B.76)

where 〈
ψ−j , ψ

−
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
−
j (x̂q)ψ̂

−
i (x̂q). (B.77)

The terms from (B.53) are also fairly simple. Again using the affine transformation

(A.8) and the shorthand µ̂+
j (B.66),

〈
∂nu

+, ∂nv
+
〉
eh

=
n∑

i,j=1

ξ+
j

〈
∂nψ

+
j , ∂nψ

+
i

〉
eh
, (B.78)

where 〈
∂nψ

+
j , ∂nψ

+
i

〉
eh
≈ |eh|

(
1

2|K+|

)2 nq∑
q=1

ŵq µ̂
+
j (x̂q)µ̂

+
i (x̂q). (B.79)

The corresponding 〈−,−〉eh term is

〈
∂nu

−, ∂nv
−〉

eh
=

n∑
i,j=1

ξ−j
〈
∂nψ

−
j , ∂nψ

−
i

〉
eh
, (B.80)

where 〈
∂nψ

−
j , ∂nψ

−
i

〉
eh
≈ |eh|

(
1

2|K−|

)2 nq∑
q=1

ŵq µ̂
−
j (x̂q)µ̂

−
i (x̂q). (B.81)

Off-Diagonal Block: Flux Terms

The construction of the off-diagonal blocks follows very similarly to the derivations

shown previously. Recall that these blocks represent the interaction of degrees of

freedom from K+ and K− across an interior edge eh. Since local enumeration follows

a counterclockwise orientation, this means the quadrature points corresponding to

the K− cell must be traversed in reverse. The rest of the derivations follow exactly as

before. Again make use of the shorthands for ϕ̂+
j (B.56), µ̂+

j (B.66), and ν̂+
j (B.67).

With this in mind, the approximations from the off-diagonal flux terms are as follows.

179

From (B.49),

〈u+, ∂n∆v−〉eh =
n∑

i,j=1

ξ+
j

〈
ψ+
j , ∂n∆ψ−i

〉
eh

(B.82)

where 〈
ψ+
j , ∂n∆ψ−i

〉
eh
≈ |eh|

(
1

2|K−|

)3 nq∑
q=1

ŵq ψ̂
+
j (x̂q) ϕ̂

−
i (x̂q̃), (B.83)

where q̃ := nq + 1− q denotes the reverse traversal previously mentioned. Also,

〈u−, ∂n∆v+〉eh =
n∑

i,j=1

ξ−j
〈
ψ−j , ∂n∆ψ+

i

〉
eh

(B.84)

where 〈
ψ−j , ∂n∆ψ+

i

〉
eh
≈ |eh|

(
1

2|K+|

)3 nq∑
q=1

ŵq ψ̂
−
j (x̂q̃) ϕ̂

+
i (x̂q). (B.85)

The approximations from (B.50) are

〈v+, ∂n∆u−〉eh =
n∑

i,j=1

ξ−j
〈
ψ+
i , ∂n∆ψ−j

〉
eh

(B.86)

where

〈ψ+
i , ∂n∆ψ−j 〉eh ≈ |eh|

(
1

2|K−|

)3 nq∑
q=1

ŵq ψ̂
+
i (x̂q) ϕ̂

−
j (x̂q̃) , (B.87)

and

〈v−, ∂n∆u+〉eh =
n∑

i,j=1

ξ+
j

〈
ψ−i , ∂n∆ψ+

j

〉
eh

(B.88)

where

〈ψ−i , ∂n∆ψ+
j 〉eh ≈ |eh|

(
1

2|K+|

)3 nq∑
q=1

ŵq ψ̂
−
i (x̂q̃) ϕ̂

+
j (x̂q). (B.89)

The approximations from (B.51) are

〈∂nu+,∆v−〉eh =
n∑

i,j=1

ξ+
j

〈
∂nψ

+
j ,∆ψ

−
i

〉
eh

(B.90)

180

where

〈
∂nψ

+
j ,∆ψ

−
i

〉
eh
≈ |eh|

(
1

2|K+|

)(
1

2|K−|

)2 nq∑
q=1

ŵq µ̂
+
j (x̂q) ν̂

−
i (x̂q̃) , (B.91)

and

〈∂nu−,∆v+〉eh =
n∑

i,j=1

ξ−j
〈
∂nψ

−
j ,∆ψ

+
i

〉
eh
. (B.92)

where

〈
∂nψ

−
j ,∆ψ

+
i

〉
eh
≈ |eh|

(
1

2|K+|

)2(
1

2|K−|

) nq∑
q=1

ŵq µ̂
−
j (x̂q̃) ν̂

+
i (x̂q) . (B.93)

The approximations from (B.52) are

〈∂nv+,∆u−〉eh =
n∑

i,j=1

ξ−j
〈
∂nψ

+
i ,∆ψ

−
j

〉
eh
, (B.94)

where

〈
∂nψ

+
i ,∆ψ

−
j

〉
eh
≈ |eh|

(
1

2|K+|

)(
1

2|K−|

)2 nq∑
q=1

ŵq µ̂
+
i (x̂q) ν̂

−
j (x̂q̃) , (B.95)

and

〈∂nv−,∆u+〉eh =
n∑

i,j=1

ξ+
j

〈
∂nψ

−
i ,∆ψ

+
j

〉
eh
, (B.96)

where

〈
∂nψ

−
i ,∆ψ

+
j

〉
eh
≈ |eh|

(
1

2|K+|

)2(
1

2|K−|

) nq∑
q=1

ŵq µ̂
−
i (x̂q̃) ν̂

+
j (x̂q) . (B.97)

181

Off-Diagonal Block: Penalty Terms

Again using the shorthand µ̂+
j (B.66), the approximations from the off-diagonal

penalty terms from (B.53) and (B.54) are as follows.

〈
u+, v−

〉
eh

=
n∑

i,j=1

ξ+
j

〈
ψ+
j , ψ

−
i

〉
eh
, (B.98)

where 〈
ψ+
j , ψ

−
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
+
j (x̂q)ψ̂

−
i (x̂q̃). (B.99)

Also, 〈
u−, v+

〉
eh

=
n∑

i,j=1

ξ−j
〈
ψ−j , ψ

+
i

〉
eh
, (B.100)

where 〈
ψ−j , ψ

+
i

〉
eh
≈ |eh|

nq∑
q=1

ŵq ψ̂
−
j (x̂q̃)ψ̂

+
i (x̂q). (B.101)

Finally, 〈
∂nu

+, ∂nv
−〉

eh
=

n∑
i,j=1

ξ+
j

〈
∂nψ

+
j , ∂nψ

−
i

〉
eh
, (B.102)

where

〈
∂nψ

+
j , ∂nψ

−
i

〉
eh
≈ |eh|

(
1

2|K+|

)(
1

2|K−|

) nq∑
q=1

ŵq µ̂
+
j (x̂q)µ̂

−
i (x̂q̃), (B.103)

and 〈
∂nu

−, ∂nv
+
〉
eh

=
n∑

i,j=1

ξ−j
〈
∂nψ

−
j , ∂nψ

+
i

〉
eh
, (B.104)

where

〈
∂nψ

−
j , ∂nψ

+
i

〉
eh
≈ |eh|

(
1

2|K−|

)(
1

2|K+|

) nq∑
q=1

ŵq µ̂
−
j (x̂q̃)µ̂

+
i (x̂q). (B.105)

182

Vita

Craig Dwain Collins was born in Murray, Kentucky in 1973. He attended Marshall

County High School until his senior year, at which point he left to attend the Armand

Hammer United World College of the American West in Montezuma, New Mexico.

Leaving this international school in 1990, he returned to Kentucky and began taking

classes at Murray State University. A scholastic career was not yet meant to be – he

left school to pursue a career in music, successfully working as a professional guitarist

for more than a decade.

In 2002 the siren song of academia became too strong to ignore and he returned

to Murray State University to study mathematics. He earned a Bachelor of Science

degree in Mathematics in the Spring of 2006. He stayed at Murray State as a graduate

student, under the tutelage of Dr. Renee Fister. During the next two years he helped

author several papers with Dr. Fister on the application of Optimal Control theory

to tumor modeling. In the Spring of 2008, he earned a Master of Science degree in

Mathematics. He accepted a position as a lecturer at Murray State for the 2008-09

school year.

In the fall of 2009, he was accepted into the Ph.D. program at the University

of Tennessee, Knoxville. As a graduate student at UTK, he worked for Dr. Steven

Wise as a research assistant on multigrid methods and unconditionally energy stable

schemes for the Cahn-Hilliard-Brinkman system. This work led to a publication with

Dr. Wise and Dr. Jie Shen of Purdue. He earned a Doctor of Philosophy degree in

Mathematics in the Summer of 2015, working under Dr. Ohannes Karakashian.

183

	Domain Decomposition Methods for Discontinuous Galerkin Approximations of Elliptic Problems
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Summary of Dissertation

	2 Second Order Elliptic Problems
	2.1 Preliminaries
	2.1.1 Model Problem
	2.1.2 Partitions of
	2.1.3 Discontinuous Galerkin Formulation

	2.2 Basic results
	2.3 Schwarz Framework
	2.3.1 Subdomain Spaces and Bilinear Forms
	2.3.2 The Coarse Subspace and Bilinear Form
	2.3.3 The Discontinuous Coarse Space
	2.3.4 The Continuous Coarse Space

	2.4 Construction of the Schwarz Preconditioners
	2.4.1 Nonoverlapping Additive Schwarz Preconditioner
	2.4.2 Overlapping Additive Schwarz Preconditioner

	2.5 Numerical Experiments
	2.5.1 Comparison of the Nonoverlapping and the Overlapping Preconditioners
	2.5.2 Dependence on the Penalty Parameter
	2.5.3 Penalty Compatibility for the Discontinuous Coarse Subspace

	3 Fourth Order Elliptic Problems
	3.1 Preliminaries
	3.1.1 Model Problem
	3.1.2 Partitions of
	3.1.3 Discontinuous Galerkin Formulation

	3.2 Basic results
	3.3 Schwarz Framework
	3.3.1 Subdomain Spaces and Bilinear Forms
	3.3.2 The Coarse Subspace and Bilinear Form
	3.3.3 The Discontinuous Coarse Space
	3.3.4 The Continuous Coarse Space

	3.4 Construction of the Schwarz Preconditioners
	3.4.1 Nonoverlapping Additive Schwarz Preconditioner
	3.4.2 Overlapping Additive Schwarz Preconditioner

	3.5 Numerical Experiments
	3.5.1 Comparison of the Nonoverlapping and the Overlapping Preconditioners
	3.5.2 Dependence on the Penalty Parameters and
	3.5.3 Penalty Compatibility Conditions for the Discontinuous Coarse Subspace

	4 Computational Implementation
	4.1 Introduction
	4.2 Initialization
	4.2.1 Numerical Quadrature
	4.2.2 Mesh Generation

	4.3 Data Structures
	4.3.1 VERT structs
	4.3.2 EDGE structs
	4.3.3 TRIANGLE structs

	4.4 Mesh Refinement
	4.5 Computation of Local Information
	4.6 Solving the Linear System
	4.6.1 Conjugate Gradient Method
	4.6.2 Preconditioned Conjugate Gradient Method

	4.7 Two-Level Additive Schwarz Preconditioners
	4.7.1 Components of the Nonoverlapping Preconditioner
	4.7.2 Components of the Overlapping Preconditioner
	4.7.3 Restriction and Prolongation Operators
	4.7.4 Application of the Preconditioners

	5 Future Directions
	Bibliography
	Appendix
	A Affine Transformations and the Reference Element
	B Computation of PDE Data
	B.1 Second Order Elliptic Problem
	B.2 Fourth Order Elliptic Problem

	Vita

