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Abstract  

 

Chlorinated solvents are among the most encountered groundwater pollutants.  These toxic 

compounds cause harm to ecosystem functioning and human health.  1,2-Dichloropropane (1,2-

D) was used in a variety of industrial and agricultural applications until it was banned in the U.S. 

in the 1970s.  Only a handful of bacteria have been described to reductively dechlorinate 1,2-D 

to innocuous propene and inorganic chloride, among these the Dehalococcoides (Dhc) strains 

RC and KS.  In order to shed light into the genetic basis of 1,2-D dechlorination, efforts focused 

in identifying the gene encoding the enzyme system (i.e., reductive dehalogenase) responsible 

for 1,2-D to propene transformation.  To accomplish this goal, a multiple lines of evidence 

approach combining gene cloning, transcriptional studies, and enzyme activity assays implicated 

the dcpA gene in 1,2-D reductive dechlorination in Dhc strains RC and KS.  This gene was also 

identified in Dehalogenimonas lykanthroporepellens (Dhgm) strain BL-DC-9, another member 

of the organohalide-respiring Chloroflexi group, and also capable of growth with 1,2-D as 

electron acceptor.  Propene-producing enrichment cultures were derived from a variety of 

environments and the presence of dcpA correlated with 1,2-D reductive dechlorination observed 

in situ and/or in microcosms.  Nested PCR and qPCR assays were designed and validated to 

detected and quantify the gene in laboratory cultures and in environmental samples.  These 

surveys shed light into the distribution of this gene in diverse environments including pristine 

environments.  Genomic and bioinformatics tools explored the gene neighborhood of dcpA and 

revealed a genomic island shared between Dhc and Dhgm indicative of a horizontal gene transfer 

event.  Metagenome analysis of consortia RC and KS enabled the draft genome assemblies of 

these two Dhc strains.  This analysis revealed that the Dhc strain RC and strain KS harbor at 

least 34 and 31 reductive dehalogenase genes, including genes implicated in PCB reductive 

dechlorination.  These findings reveal broad reductive dechlorination potential and emphasize 

that such dedicated dechlorinators (i.e., Dhc strain FL2) occur in pristine environments and are 

members of natural microbial assemblages that have not been exposed to anthropogenic 

contamination. 
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Thesis Rationale  

 

Groundwater contamination by chlorinated ethenes (e.g. PCE, TCE, DCEs, VC) and chlorinated 

propanes (e.g. 1,2-D) is a major environmental problem in industrialized countries.  In anoxic 

environments, chlorinated organics can be biologically transformed to less-chlorinated ethenes 

and, in some cases, completely dechlorinated to non-toxic end products (e.g. ethene, propene).  

Dehalococcoides mccartyi (Dhc) strains play a major role in the dechlorination of these 

compounds in the subsurface, and bioremediation may be the only viable means to reduce the 

environmental risk posed by many contaminated aquifers.  Molecular tools have the potential to 

be used in monitoring and validation of intrinsic bioremediation by specifically linking microbial 

activity to the degradation process.  Since Dhc strains that exhibit different dechlorination 

activities share highly similar 16S rRNA genes (and other housekeeping genes) the approach of 

looking at phylogenetic markers is insufficient to reliably evaluate the dechlorination potential at 

contaminated sites.  Hence, additional targets that go beyond the 16S rRNA gene are needed to 

reliably predict whether sites that have Dhc populations can efficiently detoxify chlorinated 

ethenes and/or chlorinated propanes.  Previous to this study no biomarker linked to 1,2-D 

detoxification had been described and there was an incomplete understanding about the 

environmental distribution if 1,2-D dechlorinating populations in nature hindering our 

knowledge about the cycle of halogenated compounds in nature.  Moreover, there was no 

genome information available for the 1,2-D-dechlorinating Dhc strains RC and KS, and while 

the genome of the 1,2-D-respiring Dehalogenimonas sp. was available, the 1,2-D reductive 

dehalogenase in Dhgm was unknown and no horizontal gene transfer between Dehalogenimonas 

and Dhc sp. had been reported. 

 

Goals and Research Objectives  

 

The main objective of the proposed research was to discover a biomarker linked to 1,2-D 

detoxification, validate a tool to quantify the gene in environmental samples, describe the 

laboratory cultures and consortia linked to 1,2-D dechlorination, shed light into the ecology and 

distribution of 1,2-D dechlorinating populations in nature, study the possible mobility of RDase 
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genes between organohalide-respiring Chloroflexi, and determine the genomic features of Dhc 

strains RC and KS. 

 

The major limitation for implementing enhanced bioremediation and monitored natural 

attenuation at the many sites polluted with chlorinated compounds is the lack of suitable 

assessment and monitoring tools.  Therefore, the new assays described herein, provide new 

insights to engineers and practitioners on how to correlate 1,2-D detoxification with microbial 

activity during bioremediation processes.  Additionally, the new tools provide new 

understanding to scientists on the genetic basis of 1,2-D dechlorination, and the ecology and 

distribution of the populations of interest.  Finally, a set of policy recommendations are 

delineated, on contaminated site management, research and innovation needs and 

implementation of green and sustainable remedial practices. 

 

To decipher the genomic basis of 1,2-D detoxification and further describe 1,2-D dechlorinating 

cultures the following objectives were addressed: 

 

Objective 1:  Identify the reductive dehalogenase (RDase) gene implicated in 1,2-D to propene 

dechlorination. 

 

Objective 2:  Develop PCR and qPCR assays for the 1,2-D to propene reductive dehalogenase 

(dcpA). 

 

Objective 3:  Establish microcosms and enrichment cultures that could dechlorinate 1,2-D to 

propene.  

 

Objective 4:  Investigate the environmental distribution of dcpA in pristine and contaminated 

environments. 

 

Objective 5:  Determine the genomes of Dehalococcoides (Dhc) strain RC and strain KS through 

high-throughput sequencing technologies. 
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Objective 6:  Assemble, describe and annotate the genomes of Dhc strain RC and KS. 

 

Objective 7:  Investigate horizontal gene transfer events between Dhc and Dhgm.  

 

Taking advantage of classic culturing methods, genomic approaches, cutting-edge sequencing 

technologies, enzyme assays, proteomics, and bioinformatic tools, the following objectives 

where accomplished and are described in Chapters 2-6.  Chapter 7 discusses future directions on 

management of contaminated sites and the implementation of green and sustainable remediation 

approaches, bringing this thesis to a full circle from lab work to the field.  In Chapter 8 the 

research findings of this work are briefly summarized and the status quo of the latest findings on 

RDase characterization and sustainable remediation practices/initiatives are discussed.  Lastly, 

future recommendations and research directions are addressed.  
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Chapter 2 

 

Literature Review 

  



 

6 

 

Chapter overview  

 

This chapter comprises an overview on natural and anthropogenic sources of chlorinated 

solvents, their industrial use, toxicological profiles, as well as their means of disposal and 

environmental fate.  Special attention is given to 1,2-dichloropropane, a hazardous pollutant 

regulated by the United States Environmental Protection Agency (EPA) and to metabolic 

processes carried out by anaerobic bacteria with potential for the bioremediation of this and other 

related chlorinated compounds.  Emphasis is also given to current bioremediation practices, 

which include natural attenuation and enhanced bioremediation technologies such as 

bioestimulation and bioaugmentation.  

 

Naturally occurring chlorinated chemicals  

 

There are more than 5,000 naturally occurring organohalogen compounds containing bromine, 

chloride, fluorine, or iodine, which are produced by bacteria, fungi, plants, insects, marine 

organisms, and mammals (G W Gribble, 2000, 2003; Gordon W. Gribble, 2012; Öberg, 2002).  

Some of these biologically-generated halogenated compounds serve as hormones and 

pheromones in legume and ticks, respectively, while others are produced as chemical defenses in 

invertebrates and as signaling molecules in bacteria (Gordon W. Gribble, 2012).  Different algal 

species have been documented to produce PCE, TCE and halogenated propanes (Abrahamsson, 

Ekdahl, Collén, Fahlström, & Pedersén, 1995; Gschwend, MacFarlane, & Newman, 1985).  

However, some are abiotically generated during volcanic eruptions, forest fires, or via 

geochemical processes, as in the case of organobromine and organochlorines, which are 

ubiquitous in marine sediments and soil, respectively (G W Gribble, 1998, 2000).  Moreover, 

lightning strikes have been reported as additional emission sources of chlorinated compounds (G 

W Gribble, 2003). 

  

The uncovering of natural organohalogens is a growing field of research, with approximately 

100-200 compounds discovered yearly (G W Gribble, 2004).  In the case of organochlorides, 

only a dozen of these chemicals were known to be naturally-produced by 1952.  Nevertheless, by 
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2004 more than 2,400 were known (Gribble 2004).  The amounts of chlorinated compounds 

produced in the natural environment can be substantial.  Chlorinated phenols (CPs) have been 

reported to be produced in quantities as high as 40,000 tons per acre in Swedish peat bogs (De 

Jong, Field, Spinnler, Wijnberg, & De Bont, 1994).  Moreover, it is estimated that volcanoes 

emit around 3,000,000 tons of HCl per year (Graedel, T . E., 1995).  Examples of natural 

organohalogens encountered in terrestrial and marine environments are listed in Table 2.1.  

Despite their natural occurrence, chloroorganics are mainly associated with anthropogenic 

activity from the postindustrial age. 

 

The history of anthropogenic chlorinated solvents usage and environmental pollution   

 

The use and production of synthetic chemicals began during the Industrial Revolution (1760-

1840).  During that time elemental chlorine was discovered and the first patent for its use as a 

bleaching agent was developed (Deutsch, 1947).  The manufacture of synthetic chemicals, at 

larger scales, in the U.S. started after World War I, when exports from Europe halted.  

Subsequently, the production of these compounds in the U.S. rapidly increased, going from 

10,500 tons in 1921 to 316,500 tons in 1929, as reviewed by (H. Stroo, Leeson, & Ward, 2012). 

 

The use of chlorinated solvents in the dry cleaning industry was implemented after 1962 as a 

safer alternative to the inherent threat of gasoline as a flammable agent.  Shortly after, 

chlorinated compounds like tetrachloroethene  (PCE) and trichloroethene (TCE) were adopted 

and widely used in the commercial (textile and dry cleaning) and military sectors due to their 

nonflammable, noncorrosive properties; in addition to their low boiling points and cleaning 

efficacies.  These organic solvents have also been used as paint removers, degreasers, and 

components of industrial paint, lubricants and adhesives (ASTDR, 1993; ATSDR, 2010).  Other 

chlorinated compounds like 1,2-dichropropane (1,2-D) have been extensively used in agriculture 

as soil fumigants and as commercial solvents in a variety of industrial and household products 

(Agency for Toxic Substances and Disease Registry (ATSDR), 1989).  At the time, adequate 

treatment and disposal of industrial wastes, including chlorinated solvents, was not properly 

regulated resulting in the release of these chemicals into the environment.   
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Chlorinated solvents have been reported to be detrimental to the environment and human health 

leading to the development of regulations for their use and disposal (Ruder, 2006). The Clean 

Air Act formulated in 1970 by the U.S. EPA regulated emissions for TCE and PCE as these 

chemicals were suspected to be involved in ozone depletion and smog formation (Dimitriades, 

B., Gay Jr, B. W., Arnts, R. R., & Seila, 1983).  In 1975, investigations carried by the U.S. 

National Cancer Institute showed that TCE caused cancerous tumors in mice (ASTDR, 1993), 

which also raised concerns on potential hazards posed by PCE and TCE daughter products: cis-

1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), and vinyl chloride (VC).  Also, 

toxicological studies in rats and mice showed that brief exposure to high concentrations of VC 

(100,000 to 400,000 ppm for 30 mins by inhalation) caused kidney, liver, and pulmonary 

hemorrhage (Lester, D., Greenberg, L. A., & Adams, 1963; Mastromatteo, E., Fisher, A. M., 

Christie, H., & Danziger, 1960).   The toxicity of 1,2-D has also been documented in animals and 

humans (ATSDR, 1997; Pozzi C, Marai P, 1985).  1,2-D is mutagenic (in vitro) causing 

chromosomal damage.  Oral intake in humans causes functional disorder to the liver and kidneys, 

while in rats long-term oral exposure led to liver tumors (ATSDR, 1997; Pozzi C, Marai P, 

1985). 

 

Therefore in 1977 the Clean Water Act listed chlorinated compounds like PCE, TCE, and 1,2-D 

as part of the U.S. National Priority List (NPL) of pollutants, and between 1979 and 1980 

permissible levels for this chemicals were established.  Today, compounds like PCE, TCE, and 

1,2-D are no longer used in many industrial applications and their concentrations in drinking 

water are regulated by the U.S. EPA to 5 parts per billion (ppb); although drinking water 

standards at the state level may differ (Table 2.2).  In Europe, levels of chlorinated solvents are 

regulated by the EU Water Framework Directive and the World Health Organization (WHO) 

guidelines.  Federal regulated maximum contaminant levels (MCL) for various chlorinated 

solvents and their properties are listed in table 2.2.  Nevertheless, poor handling and disposal of 

chlorinated solvents has left a legacy of contamination across the U.S.  The government has 

listed these sites as a National Priority by declaring these locations as Superfund sites (i.e., 

locations within the U.S. and its territories that have been impacted by toxic chemicals and pose 

a thereat to human and ecosystem welfare).  As of February 09, 2015, there were 1,754 declared 

Superfund sites  (http://www.epa.gov/superfund/sites/npl/index.htm) (Table 2.3).  Chlorinated 

http://www.epa.gov/superfund/sites/npl/index.htm
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compounds are present in approximately 73% of these locations (Table 2.4).  

(http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm).  Despite these measures, their 

worldwide production and demand is substantial and the U.S. is the major producer as well as the 

top consumer (Fig. 2.1).   

 

1,2-dichloropropane as a groundwater contaminant  

 

1,2-Dichloropropane (1,2-D) is a halorganic compound extensively used in the past as a solvent 

and as a soil fumigant.  Major trade names of 1,2-D- formulations as an agrochemical were: 

Vorlex
®
, Vidden-D

®
, Nemex

®
, Telone

®
,
 
Nemafene

®
, Nemax

®
, Ditrapex

®
.  These admixes also 

contained other toxic chemicals such as cis/trans-1,3-dichloropropene (1,3-DCP),  2,3-

dichloropropene and chloropicrin (nitrochloroform) (“1,2-dichloropropane” SIDS Initial 

Assessment Report for SIAM 17, 2003).  Although its use as a solvent and agrochemical is 

banned, an assessment report for 1,2-D performed by the International Organization for 

Economic Co-operation and Development (OECD) estimated an annual production of 350 

kilotonnes (about 770 million pounds) in 2001 with the majority of 1,2-D produced in the U.S. 

(“1,2-dichloropropane” SIDS Initial Assessment Report for SIAM 17, 2003)  Table 2.5.  Various 

manufacturers of 1,2-D are listed in Table 2.6 (Greene, 2012).   Additionally, EPA’sToxics 

Release Inventory reported that 102,478 pounds (close to 50 tonnes) of 1,2-D was disposed of, or 

released during 2013 in the U.S.  (http://iaspub.epa.gov/triexplorer/tri_release.chemical  Table 

2.7.  Because of its large-scale use in plant agriculture and its recalcitrant nature 1,2-D is widely 

distributed as a contaminant in groundwater and aquifers posing a threat to human health.  

Toxicological studies in rat models have demonstrated that after oral and inhalation exposure 

1,2-D is rapidly absorbed and widely distributed within the body (Agency for Toxic Substances 

and Disease Registry (ATSDR), 1989).  12-D is a suspected carcinogen causing damage to the 

liver, brain, blood, lungs and kidneys at high exposure levels (Agency for Toxic Substances and 

Disease Registry (ATSDR), 1989; Pozzi C, Marai P, 1985). Consequently the Environmental 

Protection Agency has regulated its levels in drinking water to 5 ppb 

(http://water.epa.gov/drink/contaminants/index.cfm#List).   

 

http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm
http://iaspub.epa.gov/triexplorer/tri_release.chemical
http://water.epa.gov/drink/contaminants/index.cfm#List
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Although the presence of 1,2-D in the environment has been mainly attributed to anthropogenic 

activity, there is mounting evidence indicating the presence of naturally occurring processes 

constituting significant sources of halorganic compounds.  For instance, for a long time it was 

considered that the presence of vinyl chloride in the environment was exclusive from human-

related sources; but recent evidence has alluded to its natural production in soils by organic 

matter degradation (Keppler, Borchers, Pracht, Rheinberger, & Scholer, 2002).  1,2-D has been 

found in tobacco and tobacco smoke but its source as either a natural component, additive or as a 

product of combustion is still unclear.  The natural environment is ruled by a plethora of 

processes that we can only start to unravel.  Hence, the production of 1,2-D by organisms or 

naturally occurring abiotic processes cannot be disregarded. Based on the recent observations 

made for vinyl chloride (Keppler et al., 2002), it seem reasonable to hypothesize that natural 

chlorinated compounds could have a long history as substrates for microbial enzymes capable of 

carrying out the transformation of these compounds.  

 

Remediation technologies 

 

Nowadays, the use of chlorinated compounds is minimal and the levels in drinking water are 

regulated.  Nevertheless, chlorinated ethenes and propanes are persistent pollutants widely 

distributed in groundwater resources.  Due to their high density, chlorinated solvents are heavier 

than water and can travel deep into an aquifer creating what is known as Dense Non Aqueous 

Phase Liquid (DNAPLs).  DNAPLs are immiscible and form a separate phase in the aquifer that 

is difficult to remediate (Stroo, Hans F., Marvin Unger, C. Herb Ward, Michael C. Kavanaugh, 

Catherine Vogel, Andrea Leeson, Jeffrey A. Marqusee, 2003).  The restoration of contaminated 

sites has required the interaction between experts in the fields of environmental engineering, 

hydrogeology and microbiology in order to develop effective in situ (on-site) and ex situ  (off-

site) treatment strategies, as reviewed in (Brehm-Stecher & Johnson, 2004; H. F. Stroo et al., 

2012; Van Deuren J, Lloyd T, Chhetry S, Liou R, 2002).   

 

Among ex situ treatment strategies, injection and extraction (i.e. pump and treat) systems are 

commonly utilized for the treatment of contaminated groundwater.  In this method water is 
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extracted from wells and treated ex situ by air stripping, catalytic oxidation or activated carbon 

absorption, while clean water is injected to the subsurface.  Another technique used ex situ or 

insitu is cosolvent flushing which encompasses the application of water-soluble solvents  (e.g. 

acetone or methanol) to help aid dissolve the DNAPLs.  A similar method called surfactant 

flushing comprises the addition of compounds that act as detergents, which aid in the formation 

of micelles that can capture chlorinated solvents aiding in their solubility.  In situ vapor 

extraction and bioventing can also be used by placing pumps in wells to remove the volatile 

contaminants, vaporize the DNAPLs or supply oxygen to induce biodegradation.  

 

Other treatments available involve the alteration of physicochemical conditions at the site by in 

situ thermal treatment or in situ chemical processes.  Examples of in situ thermal treatment 

includes the addition of hot air or water to increase temperatures in the subsurface up to 100 -120 

degrees C to volatilize and increase mobilization of the compounds of interest.  In situ chemical 

processes include chemical oxidation and reductive reactions.  Chemical oxidation involves the 

addition of compounds like Fenton’s regent, permanganate, and ozone to transform contaminants 

into less toxic chemical species.   In contrast, reductive reactions consists in the addition of zero 

valent iron [Fe(0)] to react with chlorinated ethenes (removing the chlorine atom) and resulting 

in the formation of Fe(II) and H2 in the process.  

 

The biodegradation of chlorinated solvents is also a feasible alternative that is frequently used as 

the first option for the treatment of polluted groundwater (Pandey, Chauhan, & Jain, 2009; H. 

Stroo et al., 2012).  This method takes advantage of enzymes produced by microorganisms that 

can transform halorganic compounds to their benign form, through a thermodynamically 

favorable process known as organohalide respiration.  In this process, anaerobic bacteria 

conserve energy by using organohalogens as electron acceptors, while oxidizing electron donors 

such as lactate and H2 .  Relative to other remedial methods, in situ bioremediation provides 

several advantages as it is less intrusive, typically produces minimal secondary waste, and is 

often less expensive.  A more in-depth discussion on advantages and limitations of 

bioremediation is presented in Chapter 6 of this dissertation.  

 

To conclude, the remedial strategy chosen must be implemented depending on the physico-
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chemical conditions, magnitude of risks and history of contamination at the site.  Very often 

more than one complementary method is necessary to achieve cleanup goals.  In the next 

sections, an overview of microbial metabolism and viable and known bioremediation approaches 

for chlorinated solvents are explained. 

 

Overview on microbial transformation of chlorinated compounds  

 

Microbial metabolism encompasses a variety of catabolic (energy releasing) and anabolic 

(energy consuming) processes.  Biochemical cellular processes where microorganisms derive 

energy (ATP) coupled to growth involve the transfer of electrons from a donor (food source) to 

an electron acceptor (equivalent to oxygen in aerobic respiration).  Halogenated compounds can 

be biologically transformed via catabolic or cometabolic reactions, the latter provide no carbon 

or energy to the organism.  In the other hand, catabolic reactions include (i) oxidation, where the 

halogenated compound serves as the electron donor (carbon source), and (ii) reductive 

dechlorination, where the halogenated compound serves as the electron acceptor.  Reductive 

dechlorination is a thermodynamically favourable reaction that encompasses the removal of an 

halogen atom from an organic molecule and its subsequent replacement with hydrogen (Smidt & 

De Vos, 2004).  In this reaction two protons are consumed, two electrons are concomitantly 

added to the organic compound, and H
+
 and Cl

-
 are released (Figure 2.2).  When the halogenated 

compound is used as terminal electron acceptor and the reductive dechlorination reaction is 

directly linked to the electron transport chain and energy conservation it is known as 

organohalide respiration (Figure 2.2).  

 

Phylogenetically diverse taxa can co-metabolically transform chlorinated compounds under 

aerobic conditions.  But co-metabolic processes are complex and challenging for bioremediation 

efforts (Ward, SH, CherryJA, Scalf, n.d.).  Hurdles include the formation of toxic products, 

incomplete transformation of the contaminants of interest, and the need to supply the 

microorganisms with a substrate and oxygen for growth and energy.  Even in oxidative 

metabolism reactions, addition of substrate is needed to induce the enzyme that will 

“accidentally” interact with the chlorinated compound.  
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Co-metabolic and growth-linked VC oxidation has been described, and apparently the 

microorganisms involved in these processes are widespread in nature (Coleman, Mattes, Gossett, 

& Spain, 2002b).  In contrast, oxidation of cDCE under aerobic conditions is rare (Coleman, 

Mattes, Gossett, & Spain, 2002a).  Since anaerobic conditions are usually encountered in 

chlorinated solvent-impacted sites, groundwater and subsurface environments, reductive 

dechlorination processes are of interest in remediation efforts.   

 

Anaerobic bacteria use chlorinated compounds as terminal electron acceptors (i.e. via 

organohalide respiration) in a fashion analogous to oxygen in aerobic respiration in humans.  

Therefore, is it often said that dechlorinating bacteria can “breath” chlorinated solvents.  In the 

past, the terms dehalorespiration, catabolic reductive dechlorination, chloridogenesis, among 

others, were used to describe the process by which bacteria derive energy from reductive 

dechlorination reactions.  Nowadays, the term “organohalide respiration” is preferably used, 

which is more suitable for this particular energetic metabolism.  

 

In the next section the organisms involved in the transformation of chlorinated compounds via 

reduction/oxidation of co-metabolic or catabolic reactions are discussed in more detail.  

 

Aerobic transformation of chlorinated ethenes and propanes   

 

PCE was long thought to be totally recalcitrant to biodegradation under aerobic conditions until 

Pseudomonas stutzeri OXI was described to dechlorinate PCE by a toluene-o-xylene 

monooxygenase (Ryoo, Shim, Barbieri, & Wood, 2000; Shim & Wood, 2000).  Claims of PCE 

degradation were based on Cl
-
 released in the medium by P. stutzeri and by cloning and 

expression of the monoxygenase in E. coli.  Later in 2006, Marco-Urrea et al. (2006) described 

how the white rot fungus Trametes versicolor transformed PCE to trichloroacetic elucidating a 

new mechanism for aerobic PCE transformation involving a cychrome P450 monooxygenase 

(Marco-Urrea, E., Pérez-Trujillo, M., Vicent, T., & Caminal, 2009). 

 

TCE oxidation under aerobic conditions was first described in 1985 by Wilson and Wilson who 
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reported that methanotrophic bacteria could convert TCE to CO2 (J. T. Wilson & Wilson, 1985).  

Methanotrophs use methane as their source of carbon and energy through the methane 

monooxygenase enzyme that can fortuitously interact with TCE and oxygen creating an epoxide 

molecule, which is latter transformed into CO2.  In Rhodococcus sp. AD45 a monoxygenase 

oxidizes cDCE to form a DCE epoxide; and a gluthatione-s-transferases (GST) has been 

implicated in the opening of the epoxide ring for further degradation (Van Hylckama Vlieg, J. E. 

T., G. J. Poelarends, A. E. Mars, 2000).  The facultative aerobes Sphingobium chlorophenolicum 

and Sphingobium japonicum UT26 (formerly Sphingomonas paucimobili) are also able to 

dechlorinate compounds such as hexachlrobenzene thorough another GST-dependant enzyme 

denominated LinD (Miyauchi, K., Suh, S.K., Nagata, Y., and Takagi, 1998), see Figure 2.3 .  

 

In 2002, Coleman et al., described Polaromonas sp. strain JS666, the first isolate capable to 

oxidize cDCE coupled to growth (Coleman et al., 2002a).  Interestingly, this isolate can also 

transform VC, tDCE, TCE but only co-metabolically.  A variety of taxa have been described to 

mineralize VC to CO2 among, these Actinomycetales (Phelps, Malachowsky, Schram, & White, 

1991), Pseudomonas (Verce & Freedman, 2000), Nitrosomonas (Vannelli, Logan, Arciero, & 

Hooper, 1990).  

 

In the case of 1,2,3-TCP, there is no known natural metabolic aerobic degradation pathway.  

However, Bosma et al., (2002) expressed the haloalkane dehalogenase (DhaA) from 

Rhodococcus sp. m15-3 in Agrobacterium radiobacter strain AD1, making it able to use TCP as 

the sole carbon and energy source (Bosma, Damborsky, Stucki, & Janssen, 2002). 

 

The aerobic cometabolic oxidation of 1,2-D by nitrifying and methanotropic bacteria has been 

documented (Oldenhuis, Vink, Janssen, & Witholt, 1989; Rasche, M. E., M. R. Hyman, 1990).  

The cometabolic transformation needs both oxygen and a carbon source supplied.  This interferes 

with remediation processes in subsurface environments where anoxic conditions prevail, and the 

need to deliver co-substrates can be costly, making anaerobic reductive dechlorination the most 

viable solution. 
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Anaerobic transformation of chlorinated ethenes and propanes 

 

PCE and TCE can be reduced co-metabolically by anaerobic microorganisms such as acetogens 

and methanogens.  The homoacetogens Acetobacterium woodii strain WB1 and Sporomusa 

ovata are capable of dechlorinating PCE to TCE (Egli, Scholtz, Cook, Tschan, & Leisinger, 

1988; Terzenbach & Blaut, 1994).  Likewise, the ability to partially dechlorinate PCE to TCE 

has been demonstrated for the methanogens Methanosarcina sp. strain DCM and 

Methanobacterium thermoautotrophicum (Fathepure, Negu, & Boyd, 1987).  

 

In contrast, via organohalide respiration (Fig. 2.2A) can bacteria conserve energy by using 

organohalogens as electron acceptors, while oxidizing electron donors such as lactate and H2.  

Desulfomonile tiedjei strain DCB-1 was the first isolated anaerobic bacterium capable of 

organohalide respiration (Dolfing, 1990).  This sulfate-reducing bacterium uses 3-chlorobenzoate 

as terminal electron acceptor and H2 or formate as electron donor (Dolfing, 1990; Mohn & 

Tiedje, 1992).  ATP is synthesized by coupling the reduction of the C – Cl of 3-chlorobenzoate 

to oxidation of hydrogen or formate, as shown in Fig. 2.4. 

 

The reductive dechlorination pathway of PCE and TCE to non-toxic ethene is depicted in Figure 

2.5.  Dechlorination of PCE to TCE or cDCE has been described in bacterial isolates belonging 

to the Low G+C Gram-positives [e.g. Dehalobacter restrictus (Dhb)], ε-proteobacteria (e.g. 

Sulfurospirillum multivorans), δ-Proteobacteria (e.g. Anaeromyxobacter dehalogenans, 

Geobacter lovleyi) and the phylum Chloroflexi [Dehalococcoides mccartyi (Dhc) and 

“Dehalobium chlorocoercia”, “Dhbm”].  Table 2.8 shows a more comprehensive list.  

   

Various Dhc isolates and enrichments have been described to transform chlorinated ethenes to 

their benign, fully-dechlorinated form or to less, partially dechlorinated daughter products, as 

reviewed by Loeffler et al. (Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, 

Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, 2013).   So far, dechlorination past DCE 

has been described only in two genera: Dhc and Dehalogenimonas (Dhgm) strain WBC-2 (Table 

2.9).  
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Dhb, Dhc and Dhgm are restricted to organolilde respiration, thus have been described as 

“specialists” while the dehalogenating delta proteobacteria and the Desulfitobacterium spp. are 

considered “metabolic generalists” since they can use a broad spectrum of electron acceptors 

(e.g. sulfate, iron, nitrate, dimethylsulfoxide) and also chlorinated compounds (Richardson, 

2013).  

 

In the case of chlorinated propanes, members of the Dhgm, Dhc, Dhb and Desulfitobacterium 

genera have been implicated in the reductive dechlorination of 1,2-D (De Wildeman, Diekert, 

Van Langenhove, Verstraete, & De Wildeman S, Diekert G, Van Langenhove H, Verstraete, 

2003; F E Löffler, Champine, Ritalahti, Sprague, Tiedje, et al., 1997; Moe WM, Yan J, Nobre 

MF, da Costa MS, Rainey, 2009; Kirsti M Ritalahti & Löffler, 2004; Schlötelburg et al., 2002).  

Three different reductive dechlorination mechanisms for 1,2-D have been proposed:  

hydrogenolysis, dehydrochlorination and dichloroelimination, see Figure 2.6 (F E Löffler, 

Champine, Ritalahti, Sprague, Tiedje, et al., 1997).  In 1,2-D-dechlorinating Dhc pure and 

enrichment cultures, only transformation to propene has been observed (F E Löffler, Champine, 

Ritalahti, Sprague, Tiedje, et al., 1997; Moe WM, Yan J, Nobre MF, da Costa MS, Rainey, 2009; 

Padilla-Crespo et al., 2014; K. M. K. Ritalahti & Löffler, 2004) indicating that 

dichloroelimination is the major transformation mechanism.  So far, incomplete reductive 

dechlorination leading to formation 1-chloropropapane (1-CP) and 2-chloropropapan (2-CP) 

have been observed only in microcosms and enrichments with sediments present, indicating the 

possibility of abiotic transformations (F E Löffler, Champine, Ritalahti, Sprague, Tiedje, et al., 

1997; Padilla-Crespo et al., 2014).   

 

Dhgm has also been reported to use a variety of vicinal chlorinated alkanes including 1,2,3-TCP.  

Dechlorination of 1,2,3-TCP by Dhgm strain BL-DC-9 involves the formation of allyl chloride 

which undergoes a series of abiotic transformations leading to allyl alcohol and compounds 

similar to those present in garlic odor (diallyl disulfide, diallyl sulfide, and allyl methyl sulfide) 

(Moe WM, Yan J, Nobre MF, da Costa MS, Rainey, 2009).   
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Dhc physiology and genome insights 

 

Thirty years ago, chlorinated ethenes were though to be recalcitrant compounds, until the mid 

80’s when Bower and McCarty showed that anaerobic bacteria could degrade PCE and TCE to 

VC (Bouwer & McCarty, 1983).  Since VC is highly toxic, efforts were focused to isolate a 

microorganism that could dechlorinate VC.  Dhc strain 195 was the first isolate described to 

dechlorinate PCE to ethene using H2 as electron donor; it was recovered from an anaerobic 

sewage digestor (Maymó-Gatell, Chien, Gossett, & Zinder, 1997) and phylogenetic analysis of 

its 16S rRNA gene showed that it belonged to the phylum Chloroflexi.  Although cultures of Dhc 

strain 195 growing on PCE were able to dechlorinate VC to ethene, this last step was 

cometabolic and therefore slow.  The first Dhc culture reported to dechlorinate VC coupled to 

growth was that of strain BAV1, originally isolated from a chloroethene-contaminated aquifer in 

Oscoda, Michigan (J He, Ritalahti, Yang, Koenigsberg, & Löffler, 2003).  Since then, various 

Dhc strains (CBDB1, BAV1, GT, VS, FL2, MB, DCMB5, ANAS1, ANAS2, 11a 11a5, have 

been isolated from aquifer material or sediments and some of them can dechlorinate VC to 

ethene (Lee PK, Cheng D, West KA, Alvarez-Cphen L, 2013; Löffler FE, Yan J, Ritalahti KM, 

Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, 2013; Pöritz et 

al., 2013).  

 

Dhc are strict anaerobes, non-motile, disc-shaped, small in size (< 1 µm wide and 0.1-0.2 µm 

thick) and use only chlorinated or brominated compounds as electron acceptors (Löffler FE, Yan 

J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, 

2013).  Dhc strains have a single 16S rRNA gene copy, which ranges from 98% to 100%, 

sequence identity between strains.  Genome sequencing has revealed a small genome size  (~1 

Mb) among them, as well as a highly specialized metabolism lacking catabolic genes except 

those encoding reductive dehalogenation, which is consistent with physiological experiments.  

Multiple non-identical reductive dehalogenase genes are present in Dhc genomes, encoding for 

the catalytic enzymes involved in the halogen removal of the electron acceptors.  Dhc also posses 

genes encoding for 5 putative hydrogenase complexes (Hym, Vhu, Hup, Hym, Hyc, and Ehc) 

involved in the oxidation of the electron donor, H2 .  Due to the specialized metabolism of Dhc it 
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has been hypothesized that hydrogenases may be involved in the initial uptake of electrons from 

H2 in their electron transport chain .    

 

Dhc genomes are highly similar, (e.g. strain BAV1 and CBDB1, share a median nucleotide 

identity of >99% of their core genome) and the regions of variability (where rearrangement, 

indels and deletions have occurred) are localized in two High Plasticity Regions (HPRs) that 

flank the origin of replication (McMurdie et al., 2009).  Despite being very similar at the genetic 

level, Dhc isolates differ substantially in their dechlorination potential, as shown in Table 2.9.  

Dhc are highly sensitive to oxygen, have slow growth rates, and require growth on liquid or 

semisolid media, which hinders the development of screening methods and genetic systems to 

manipulate these organisms.  

 

The genetic basis and biochemistry of reductive dechlorination  

  

Reductive dechlorination of chlorinated ethenes consists of the following pathway:  

PCETCEDCE isomersVC and finally ethene, where each step is catalyzed by RDases.   

 

The overall reaction catalyzed by these enzymes is: 

 

R
  __ 

Cl + 2[H] = R 
__

 H + H
+ 

+ Cl
-
 

where R is the organic backbone. 

 

Dhc RDases are encoded by an operon containing the rdhA and rdhB genes, which encode the 

catalytic unit and a highly hydrophobic membrane protein, respectively.  The gene product of 

rdhB is believed to act as a membrane anchor of the catalytic unit.  The operon also includes 

other genes designated as rdhC-H which that are thought to encode regulatory functions (Figure 

2.7). 

 

Most of Dhc rdhA genes are 1,300-1600 bp long and are proceeded by the rdhB gene (~100 bp).  

RDase genes are abundant in Dhc genomes (up to 36 in strain VS) and the majority are localized 
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in HPRs (Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller 

JA, Fullerton H, Zinder SH, 2013).  It is hypothesized that multiple RDases gene copies give 

versatility to Dhc by expanding the range of halogenated compounds they can use as substrates; 

and “what they lack in overall metabolic diversity they make up for in RDase diversity” 

(Richardson, 2013).   

 

Canonical RDase A variants require cobalamins as a cofactor.  Other common features of 

RDaseA enzymes include: (1) a twin arginine (TAT) signal peptide motif (RRXFXK) indicative 

of periplasmic translocation; (2) amino acid sequence conservation at the C1-C5 regions; (3) a 

predicted cobalamin-binding (e.g. vitamin B12 or its derivates) domain; (4) the presence of two 

iron sulfur-binding motifs (e.g. CXXCXXCXXXCP) involved in electron transfer, and (5) the 

ability to associate with a small hydrophobic protein (RDaseB) that serves as a membrane anchor 

(Fig 2.1B) (Hölscher et al., 2004; Magnuson, Romine, Burris, & Kingsley, 2000; Smidt & De 

Vos, 2004).  However, some RDases lack some of these characteristics  (Hölscher et al., 2004; 

Hug et al., 2013). 

 

The first Dhc RDase identified was the TCE RDase from Dehalococcoides mccartyi strain 195 

(Magnuson, Stern, Gossett, Zinder, & Burris, 1998).  This RDase reductively dechlorinates TCE, 

cDCE and 1,1-DCE at rates up to 12 µmol min
-1

 mg of protein
-1

, while VC and tDCE were 

dechlorinated at substantially lower rates of 0.04 to 0.45 µmol min
-1

 mg of protein
-1

 (Magnuson 

et al., 1998).  Other RDases have been identified outside the Dhc genus, these include 

dehalogenases in Desulfitobacterium (Christiansen & Ahring, 1996; F E Löffler, Sanford, & 

Tiedje, 1996; Miller, Wohlfarth, & Diekert, 1998), Dehalobacter (Holliger et al., 1998),  

Sulfurospirillum (A Neumann, Scholz-Muramatsu, & Diekert, 1994), and Desulfomonile (Cole, 

Fathepure, & Tiedje, 1995).  The reactions catalyzed by characterized RDases and the methods 

through which each enzyme was identified are described in Table 2.10.  

 

Heterologous expression of the pceA genes of Desulfitobacterium hafniense Y51 and 

Sulfurospirillum multivorans in E. coli have been successful but the resulting RDase was inactive 

and in insoluble form (A Neumann, Wohlfarth, & Diekert, 1998; Suyama, Yamashita, Yoshino, 

& Furukawa, 2002).  Recently the heterologous expression, of the PceA from Dehalobacter 
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restrictus in E. coli was achieved by fusing it with a trigger factor protein (H Sjuts, Fisher K, 

Dunstan MS, Rigby SE, 2012), the RDase was soluble but also remained inactive.  The absence 

of chaperones involved in protein folding and proper corrinoids have been attributed to the 

inactivity of the expressed RDases.  Recently, the PceA of D. hafniense Y51 was expressed in 

the non-dechlorinating bacterium Shimwellia blattae (Nelly, Kai, Svatoš, & Diekert, 2014).  The 

resulting PceA was catalytically active, due to the coexpression of the respective chaperone PceT 

and adequate cofactor availability since S. blattae synthesizes cobamides de novo.  Due to their 

high sensitivity to oxygen and low biomass of Dhc cultures heterologous expression has been 

challenging.  

  

RDase structure elucidation is limited.  Recent work succeeded in describing the structure of two 

RDases from Nitratireductor Pacificus (NprdhA) and the PceA from S. multivorans (Bommer, 

M. Kunze C, Fesseler J, Schubert T, Diekert G, 2014; Payne PK, Quezada PC, Fisher K, Dunstan 

MS, Collins FA, Sjuts H, Levy C & Rigby SEJ, 2015).  NprdhA is an oxygen tolerant RDase 

capable of dechlorinating halogenated compounds as ortho-dibromophenol.  It is more closely 

related to catabolic RDases than respiratory ones (e.g. PceA, TceA, etc.).  The characterization of 

soluble and active NprdhA was achieved by heterologous recombination in Bacillus megateriu 

and the structure determined by electron paramagnetic resonance (EPR) and simulations (Payne 

PK, Quezada PC, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C & Rigby SEJ, 2015).  

Results showed direct interaction of the halogenated substrate with cobalamin via a proposed 

halogen–cobalt bond formation.  

 

The crystal structure of the PceA of Desulfitobacterium hafniense strain Y51 was determined by 

Bommer et al. 2014, which constitutes the first crystal structure from an anaerobic reductive 

dehalogenase (Bommer, M. Kunze C, Fesseler J, Schubert T, Diekert G, 2014).  Crystallization 

was achieved by heterologous expression in Shimwellia blattae and also revealed that the PceA 

RDase has a nitroreductase fold, a characteristic not seen in other methyl transferases, with its 

closest resemblance to a B12 mammalian chaperone.  The RDase was found to be dimeric, with 

short distances between the 4Fe-4S clusters to allow rapid electron transfer.  The structure also 

revealed that the cobalamin-binding site (i.e. nor-pseudo-B12 binding core) is deeply buried in 

the dimer. 
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Finally, groundbreaking work was achieved at the time of finishing this dissertation when 

Parthasarathy et al. (2015), successfully overexpressed the VcrA of Dhc strain VS in E. coli 

(Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, 2015).  The over expressed 

VcrA was not in soluble form, it was aggregated in inclusion bodies and required His-tag affinity 

chromatography under denaturation conditions for purification.  The enzyme’s activity was 

reconstituted by the addition of cobalamin and iron–sulfur cluster cofactors.  VcrA is the first 

and only Dhc RDase successfully heterologously expressed and reconstituted to its active form.  

EPR results led to a proposed mechanism involving the reduction of the iron sulfur clusters by 

ferrodoxin/flavodoxin.  Subsequently, the enzyme-bound cobalamin is reduced from Co(II) to 

Co(I).  The electron transfer from Cob(I)alamin to the chlorinated substrate leads to Cl
-
 release 

and the formation of a vinyl radical.  Up to date no crystal structure for a Dhc has been 

determined. 

 

Dhc biomarkers: molecular biology tools for enhanced bioremediation   

 

In isolation, Dhc cells have doubling times of up to 3 days; and can reach levels of 1.0 E+07 - 

1.0 E+08 per mL.  Although they can grow to such densities, the cultures have very low turbidity 

making it impossible to use optical density measurements to monitor growth.  Isolation of 

nucleic acids from laboratory and environmental samples, followed by 16S rRNA gene targeted 

qPCR, is a reliable approach to enumerate Dhc cells (Kirsti M Ritalahti et al., 2006).  The use 

and application of 16S rRNA gene-based assays have been linked to the presence of Dhc and the 

detoxification of chlorinated ethenes (Cupples, 2008; Fennell, Nijenhuis, Wilson, Zinder, & 

Häggblom, 2004; Hendrickson et al., 2002; Ise, Suto, & Inoue, 2011; Lendvay et al., 2003; 

Major et al., 2002; Kirsti M Ritalahti et al., 2006; Smits, Devenoges, Szynalski, Maillard, & 

Holliger, 2004; Van Der Zaan et al., 2010).  Since Dhc isolates exhibiting different 

dechlorinating capabilities share 98-100% sequence identity at the 16S rRNA level, and other 

housing keeping genes are almost identical, phylogenetic assays give an incomplete picture of 

the dechlorinating potential of a culture or a contaminated site.   
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Gene targets linked to specific key metabolic reactions are promising biomarkers to better 

predict contaminant detoxification, thus aiding in the remediation decision-making process.  

RDases and hydrogenases are the central enzymes involved in Dhc metabolism.  Dhc have 

multiple, non-identical RDase genes.  In contrast, genes encoding for hydrogenase subunits can 

also exhibit high sequence identity (Table 2.11).  Therefore, quantitative real-time PCR 

approaches have been designed to target RDase genes (Cupples, 2008; Padilla-Crespo et al., 

2014; Kirsti M Ritalahti et al., 2006).  These assays can be applied to DNA from samples of 

interest to give information of the presence of these genes but also to RNA, which correlates, in 

most of the cases, to active expression and dechlorinating activity.  Consultants and regulatory 

agencies have recognized the value of molecular biology-based analysis for in situ 

bioremediation and natural attenuation (National Research Council, 2013; H. F. Stroo, Leeson, 

Shepard, Koenigsberg, & Casey, 2006; H. Stroo et al., 2012).  Hence, these molecular analyses 

are commercially available (i.e., Microbial Insights Inc., SiREM Inc.) and are routinely used for 

site assessment and bioremediation monitoring (Major et al., 2002; H. Stroo et al., 2012).  Tables 

2.12-13 show phylogenetic and functional gene targets that have been described in the literature 

to detect organohalide-respiring bacteria.   

 

The development and use of molecular biology tools to detect and quantify genes of interest are 

dependable of efforts focused on biomarker discovery.  Early proteomics and reverse genetics 

efforts characterized the PCE RDase (PceA) in phylogenetically diverse bacteria, as well as the 

TCE RDase (TceA) in Dhc (as depicted in Table 2.10).  Additional integrated approaches 

including transcriptional, enzymatic assays, expression and high throughput proteomic 

approaches have assigned function to additional Dhc RDases in (e.g. vcrA, bvcA, dceA, cbrA) 

without the need of a genetic system, heterologous expression or complete enzyme purification 

(Table 2.10).   

 

The present study assigned function to the 1,2-D to propene RDase in Dhc strain RC and KS, 

and also in Dhgm strain BL-DC-9 (Padilla-Crespo et al., 2014).  But still only a handful of Dhc 

RDases have assigned function while, hundreds of putative RDase genes homologues (from 

various taxa) linger in the databases awaiting for functional characterization.  The current novel, 

and “about to be discovered” RDase biomarkers, combined with 16S rRNA gene-targeted 
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approaches, will help implement enhanced bioremediation or monitored natural attenuation at 

contaminated sites.  Together, these efforts will assist in better allocation of resources, help in 

site restoration and closure, while unraveling the ecology and distribution of organohalide-

respiring bacteria and the mobility of their genes in the environment.   
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Chapter 2 Appendix: Figures 

 

 

 

 

 

 

 

Figure 2.1.  Worldwide production and consumption percentages of the three major 

chlorinate solvents (PCE, TCE and TCA).  Figure from (Glauser J, 2008). 
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A.      B.  

 

 

 

 

Figure 2.2.  Physiology of organohalide respiration 

A.  Bacterial organohalide respiration.  Bacteria conserve energy by using organohalogens as 

electron acceptors, while oxidizing electron donors such as lactate and H2 (denoted as 2[H+]). 

The reaction leads to cleavage of at least one carbon-halide bond and involves a membrane-

associated respiratory complex.  

B.  RDase complex as described by Holliger et al.  (Holliger, Wohlfarth, & Diekert, 1999).  

Reducing equivalents available from lactate or H2 (denoted as e
-
) reduce the iron sulfur centers 

(4Fe-4S, blue squares), which in turn reduce the cobalt(III) of the corrinoid to cobalt(I).  The 

reaction results in reduction of the organohalide substrate.  The catalytic unit RDase A contains 

both iron-sulfur clusters and a cobamide cofactor at the active site while the RDase B anchors the 

catalytic unit to the inner membrane.  Dotted lines depict the electron flow through the redox 

center.   
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Figure 2.3  γ-hexachlorocylohexane dechlorination in Sphingomonas paucimobilis UT26.   

A GSH-dependent glutathione S-transferase (LinD) reductively dehalogenates 2,5 

dichlorohydroquinone (2,5-DCHQ) to chlorohydroquinone and hydroquinone.  GSH; 

glutathione, (reduced form), GS-SG; glutathione (oxidized form).  
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Figure 2.4.  Reductive dechlorination of 3-chlorobenzoate (3-CB) by Desulfomonile tiedjei. 

 

 

 

 

 

 

 

 

Figure 2.5.  Reductive dechlorination pathway of chlorinated ethenes. 
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 (i)  

Figure 2.6.  Anaerobic dechlorination pathway of 1,2-D in microcosms and enrichments as 

described by (F E Löffler, Champine, Ritalahti, Sprague, & Tiedje, 1997).  Figure from 

Loeffler et al. (1997).(i) Hydrogenolysis of 1,2-D leading to monochlorinated propanes 

followed by  (iii) Dehydrochlorination resulting in the formation of propene, and (ii) 

dichloroelimination.  Hydrogenolysis and dehydrochlorination were only detected in 

microcosm with sediment material.  In sediment-free cultures, 1,2-D was dechlorinated to 

propene without the intermediate formation of monochlorinated propanes 

(dichloroelimination).  In the RC ad KS cultures only dichloroelimination is observed.  
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Figure 2.7.  Schematic representation of a representative RDase gene operon.  
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Chapter 2 Appendix: Tables 

Table 2.1  Sources, use, and production volumes and/or emissions of halogenated compounds. 

Chemical name 

(and synonyms) 

Acronym, molecular 

formula and skeletal 

structure 

Natural Source 
Biogenic production 

volumes and/or emissions 

Anthropogenic (past 

and current uses) 

Antropogenic production 

volumes and/or emissions 

Tetrachloroethene 

 

(Perchloroethylene, 

Perchloroethylene) 

 

PCE 

 

C2Cl4 

Volcanic activity, 

barley, marine algae 

(reported in one 

temperate, subtropical, 

and tropical algae, and 

in one red microalga) 

Production rates in algae were 

0.0026 - 8.2 ng g
-l
 fresh 

weight h
-l
 

Solvent, dry cleaning, 

metal degreasing, 

chemical intermediate 

Global production was 522,000 

tonnes in 2010.  In 2016, 

overall PCE production volume 

is anticipated to reach 567,000 

tonnes. 

1,2- Dichloropropane 

 

(Propylene 

dichloride) 

 

1,2-D 

 

C3H6Cl

2 

No known natural 

sources. 
1
 

N/A 

Solvent, chemical 

intermediate, grain 

fumigant (as 

nematocide and 

insecticide) 

In 2013,worldwide production 

was estimated to be 180,000 to 

230,000 metric tons (400 to 

510 million pounds).  No 

longer used as fumigant. 

Trichloroethene 

 

(Trichloroethylene) 

 

TCE 

C2HCl3 

 

Volcanic activity, 

barley, marine 

sediments, marine 

invertebrates, marine 

mammals, foods 

marine algae (e.g. 

reported in one red 

microalga and in 

temperate, subtropical 

and tropical algae) 

Production rates for 

trichloroethylene in algae 

varied between 0.022 - 3,400 

ng g
-l
 fresh weight h

-l
 

Solvent, metal 

cleansing, chemical 

intermediate, dry 

cleaning, 

Global consumption was 945 

million lbs (around 472, 500 

tons) in 2011.  Production 

volume was 225 million lbs 

(112, 500 tonns) in 2012. 

1,3-dichloropropane 

1,3-

DCP 

 

C3H6Cl2 

No known natural 

sources. 
N/A 

Soil fumigant, 

chemical intermediate 

(in 1971 an excess of 

over 1,285 tonnes of 

1,3-dichloropropene-

containing pesticides 

were used in CA.) 

Recent production volumes are 

not available.  Before 1978, 

about 25,000 tonnes were 

produced annually in the U.S.  

Estimated production in 

Europe in 1979 was 6-7 

kilotonnes per year. 
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Table 2.1.  (continued) 

  
 

 

      

Chemical name 

(and synonyms) 

Acronym, molecular 

formula and skeletal 

structure 

Natural Source 
Biogenic production 

volumes and/or emissions 

Anthropogenic (past 

and current uses) 

Antropogenic production 

volumes and/or emissions 

Polychlorinated 

biphenyl 

PCB 

C12H10-nCln 

(where n = 1-10). 

 

 

Volcanic activity NR 

Insulating fluid, 

microscope oil, 

stabilizing additive 

The estimated, cumulative 

production and consumption 

volumes (in millions of 

pounds) in the United States 

from 1930 to 1975 were: total 

production on, 1,400 (635 

million kg); imports, 3 (1.4 

million kg); domestic sales, 

1,253 (568 million kg); and 

exports, 150 (68 million kg). 

1,2,3-

Trichloropropane 

(Allyl trichloride, 

Trichlorohydrin) 

1,2,3-

TCP 

 

C3H5Cl3 

 

 

No known natural 

sources 

N/A 

Pesticide, industrial 

solvent, paint remover, 

and cleaner, chemical 

intermediate 

 

Less than 50,000 metric tons 

(110 million pounds) of are 

produced worldwide annually.  

In 2002, total U.S. production 

was estimated at between 453 

to 4,530 metric tons (1 to 10 

million pounds) 

Chloromethane 

 

(methyl chloride) 

CM 

 

CH3Cl 

 

Volcanic activity, 

marine algae, diatoms, 

marine phytoplankton 

(e.g. Synechocous sp.), 

fungi, plants, coastal 

salt marshes, 

freshwater, peatlands 

sites, rice plantations 

fields, potato tubers, 

burning of grasslands 

and forested areas 

 

Estimated annual global 

emissions 
2
: 

(1) oceans to the atmosphere 

= 5 Tg per year 

(2) termites = 100 Gg y
-1

 of 

atmospheric CHCl3. 

(3) 910 Gg yr-1 produced by 

plants in Southeast Asia alone 

(4) wood rotting fungi = 150 

Gg y-1 

(5) salt marshes =170 Gg y-1 

Refrigerant, foam-

blowing agent and 

pesticide, silicones, 

agricultural chemicals, 

methylcellulose, 

quaternary amines and 

butyl rubber 

 

In 2004, total global industry 

production was estimated at 2.7 

billion pounds (1,200 metric 

tons) 
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Table 2.1.  (continued) 
      

Chemical name 

(and synonyms) 

Acronym, molecular 

formula and skeletal 

structure 

Natural Source 
Biogenic production 

volumes and/or emissions 

Anthropogenic (past 

and current uses) 

Antropogenic production 

volumes and/or emissions 

Dioxins 

(Polychlorinated 

dibenzodioxins, 

PCDDs) 

Dioxins 

 

C12H8XClXO2, 

where x. 4 to 8 

 

Volcanic activity and 

forest fires 

Forest and agricultural 

burning account for 

approximately 30 kg/year in 

the U.S. 

 

Coal fired utilities, 

waste incineration, 

metal smelting, diesel 

truck, bleaching, pulp-

bleaching, 

intermediary, herbicide 

200 kg/year and 40 kg/year 

released in the U.S. by 

municipal waste 

incineration and hospital 

incinerators, respectively. 

 

Chlorophenol 

CP 

 

chlorophenol congeners 

 

Metabolites of 

microbes, fungi and 

lychens and sponges 

40,000 tons of chlorinated 

phenols are produced by 

humic acid degradation 

process in Swedish peat bogs 

alone. 

Pesticides, bleaching 

wood pulp, pesticides, 

herbicides, and 

disinfectants 

Around 1975, the combined 

global production of all 

approached 200 million kg. 

Brominated 

compounds 

Organobromine compounds 

X-Br 

 

e.g. bromoform 

e.g. dibromoindigo  

produced by snail 

 

Breakdown of organic 

matter, ubiquitous in 

marine sediments, 

algae (e.g 

Asparagopsis 

taxiformis has 80% by 

weight bromoform) 

sponge tissue (e.g. 

Aplysina aerophob 

produces 

bromophenol), other 

marine invertebrates 

(e.g. snails produces 

dibromoindigo), plants 

(e.g. broccoli and 

cabbage). 

In soil, total Br concentrations 

can exceed 100 mg/kg and in 

marine sediments 5 – 40 

mg/kg.  Annual oceanic 

emissions are estimated to be 

1–2 million tons and 56,000 

tons of bromoform and 

bromomethane, respectively 

Production rates of 

brominated halomethanes and 

Maximun release rates of 

bromoform by macroalgae: 

253 pmol g 
-1 

wet algal
 
 

weight. 

 

 

Pesticides, textiles, 

foams, plastics 
. 
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Table 2.1.  (continued) 
      

Chemical name 

(and synonyms) 

Acronym, molecular 

formula and skeletal 

structure 

Natural Source 
Biogenic production 

volumes and/or emissions 

Anthropogenic (past 

and current uses) 

Antropogenic production 

volumes and/or emissions 

Carbon tetrachloride 

 

CT 
 

CCl4 

Volcanic activity, 

marine algae (e.g. 

Eucheuma 

denticulatum), 

thermolysis, soil 
3
 

Volcanic emission rate 

accounts for .00341 Gg y
-1

 

while biomasss combustion is 

estimated to be 3 Gg y
-1

 

Solvent, 

chlorofuorocabon 

production 

In 2004 there was production 

capacity of 130 million pounds 

(around 65,000 tons) in the 

U.S. 

1,1-Dichloroethene 

 

(1,1-dichloroethylene 

vinylidene dichloride) 

1,1-

DCE 

 

C2H2Cl2 
Volcanic activity NR 

Chemical intermediate, 

agrochemical. 

Production in 1989 totaled 230 

million pounds, 650 tons/year 

released to air in the U.S. 

1,2-Dichloroethane; 

(Ethylene Dichloride) 

1,2,-

DCA 

 

C2H4Cl

2 

No known natural 

sources. 
N/A 

Chemical intermediate 

and precursor, soil 

fumigant, lead 

scavenger 

Global consumption in 

2011was 46,238 metric 

kilotons, 102 billion pounds. 

U.S. production of 1,2-

dichloroethane was about 14.5 

million tonnes in 1994. 

Dichloromethane 

(Methylene chloride) 

DCM 

 

CH2Cl2 
Volcanic activity, 

algae, phytoplankton 

phylotypes. 

0.64 3 10
6
 t Cl per year for 

MeCl and 49 3 10
3
 t Cl per 

year for CH2Cl2.62 

Paint remover, foam 

agent, degreaser, 

solvent, propellant, 

pressure mediator in 

aerosols; fumigant and 

degreening agent 

Total global industry capacity 

is approximately 1.1 billions 

pounds (520,000 metric tons). 

Chloroform 

(Trichloromethane) 

CF 

 

CHCl3 

Marine algae (e.g. 

Porphyridium 

purpureum), volcanic 

activity, fungi, trees,  

fruits, insects (e.g. 

termites), soil 

Total global flux through the 

environment is approximately 

660,000 tonnes per year, and 

about 90% of emissions are 

natural in origin. 

Solvent, 

chlorofuorocabon 

production, chemical 

intermediate 

In 2011, the global 

consumption of chloroform 

was estimated to be 1351 

metric kilotonnes (770 million 

pounds). 
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Table 2.1.  (continued) 

Chemical name 

(and synonyms 

Acronym, molecular 

formula and skeletal 

structure 

Natural Source 
Biogenic production 

volumes and/or emissions 

Anthropogenic (past 

and current uses) 

Antropogenic production 

volumes and/or emissions 

1,1,1-trichloroethane 

 

(methyl chloroform, 

chlorothene) 

1,1,1-

TCA 

 

C2H3Cl3 
No known natural 

sources 
N/A 

Solvent, degreasing 

agent, chemical 

intermediate, aerosol 

formulations, 

adhesives, protective 

surface coatings, 

cutting oils, and 

printing inks. 

As of 2007, it was 

commercially produced with an 

annual production volume of 

78,439 tonnes in the United 

States. 

 

  

NR; not reported  
1 

Associated with tobacco and tobacco smoke but its source as either a natural component, additive or as a product of combustion 

is unclear  
2 

Note: Studies have alluded to an unbalanced global flux between known sources and modeled sinks; therefore major unidentified 

source exists or current emission fluxes are overestimated 
3
 Unclear if measurements in soil are from natural or anthropogenic sources  

 

Useful unit conversions  

 1 tonne = 1 metric ton = 

1,000 kg = 1 megagram 

(Mg) = 1.1023 tons (U.S.) = 

2,204.6 pounds 

 1 ton (U.S.) = 0.907 metric 

ton = 2,000 pounds (U.S) = 

907.18 kg  

 1 million pounds = 500 tons 

(U.S) = 453.59 metric tons      

 1 pound = 0.455 kg  

   

 1 kg = 2.20 lb  

 1 Tg (teragram) = 1.0 x 10 
9
 

kg = 1000 Gg (gigagrams)

Sources: 

http://www.chemspider.com/ 

http://www.ecd.bnl.gov/pubs/BNL66327.pdf 

http://www.eurochlor.org/ 

 

http://www.inchem.org 

http://www.atsdr.cdc.gov/ToxProfiles/ 

http://www.dow.com/productsafety/assess/finder.htm#B

http://www.chemspider.com/
http://www.ecd.bnl.gov/pubs/BNL66327.pdf
http://www.eurochlor.org/
http://www.inchem.org/
http://www.atsdr.cdc.gov/ToxProfiles/
http://www.dow.com/productsafety/assess/finder.htm#B
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Table 2.2.  Chemical properties of chlorinated ethenes, propanes and propenes and their 

Maximum Contaminant Levels (MCL). 

Compound 
Molecular 

Weight (MW) 

Density                               

(g/mL) 

Aqueous 

Solubility             

(mg/L) 

Kh 
a
 

MCL
 b

 

(ppb) 

Chlorinated ethenes 

PCE 165.83 1.625 200 0.723 5
c
 

TCE 131.39 1.462 1100 0.392 5
c
 

cDCE 96.94 1.248 3500 0.167 70
d
 

tDCE 96.94 1.257 6300 0.384 100 

1,1-DCE 96.94 1.214 400 1.069 7 

VC 62.49 –
  e

 2700 1.137 2 

Chlorinated propanes 

1-chloropropane 78.54 0.89 2720 0.536 –
  f

 

2-chloropropane 78.54 0.86 3100 
j
 0.716 –

  f
 

1,1-dichloropropane 112.99 1.13 2700 
j
 0.154 –

  f
 

1,2-dichloropropane 112.99 1.16 2800 0.115 5 

1,3-dichloropropane 112.99 1.19 2750 0.0399 –
  f

 

2,2-dichloropropane 112.99 1.11 391 
j
 0.658 –

  f
 

1,2,3-trichloropropane 147.43 1.39 1750 0.014 –
  g

 

2-bromo-1-chloropropane 157.44 1.54 2240 0.216 –
  f

 

1,2-dibromo-3-chloropropane 236.33 2.1 1230 
i
 0.0061 0.2 

 

Table modified after .  

 
a
  Kh, Henry's law constants (dimensionless) at 25ºC (except Kh for 1,2-dibromo-3-chloropropane, 

 which is at 20ºC) from http://www.syrres.com/esc/physdemo.htm. 

 
b
  Maximum contaminant levels http://www.epa.gov/safewater/contaminants 

c
  In NJ an MCL of 1 ppb has been established for PCE and TCE; while in FL an MCL of 3 ppb is 

 in place for PCE and TCE.  
d
  In CA an MCL of 6 ppb has been established for cDCE and 5ppb in NY.  

e
  These compounds are gases at environmentally relevant temperatures. 

f
  No EPA-mandated MCL. 

g
  A federal MCL hasn't been established but the state of Hawaii has an MCL of 6 ppb, New York 

 and Minnesota have state regulations of 5 ppb and 3 ppb, respectively.  

  

http://www.syrres.com/esc/physdemo.htm
http://www.epa.gov/safewater/contaminants
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Table 2.3.  Number of federal and general sites for each status as of February 09, 2015. 

 

Status 
Non-Federal 

(General) 
Federal Total 

Proposed Sites 43 4 47 

Final Sites 1164 157 1321 

Deleted Sites 369 17 386 

  TOTAL SITES 1754 

 

 Source:  

 http://www.epa.gov/superfund/sites/query/queryhtm/npltotal.htm 

 http://www.epa.gov/superfund/sites/npl/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.epa.gov/superfund/sites/query/queryhtm/npltotal.htm
http://www.epa.gov/superfund/sites/npl/
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Table 2.4.  Incidence of chloroorganic contaminants at the Superfund sites listed in the 

Comprehensive Environmental Response, Compensation and Liability Information System 

(CERCLIS) Public Access Database
a
 .  

 

Contaminant 
Number of Superfund 

sites 
b 

Chlorinated compounds  1261 

Chlorinated ethanes and ethenes  938 

Polychlorinated biphenyl  390 

Chloropropanes  139 

Tetrachloroethene  688 

Trichloroethene
 
 791 

Dichloroethenes  696 

Vinyl chloride  563 

1,2-Dichloropropane  120 
 

a  
CERCLIS data accessed on March 2015.  The Superfund program is in the final stages of 

implementing a new information system, which will be available in April 2015.  Therefore the 

public data displayed in their website is from the end of FY 2013.   

 Source: http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm.   
b  

Due to inconsistent naming of chemicals in the database, different queries were performed for 

the same compound, which included common acronyms and names.  The resulting list of sites 

was cross-compared to remove duplicates.  Queries searched:  Chlorinated compounds: words 

containing “chloro” “chlori”; Chlorinated ethanes and ethenes: words containing” 

chloroethene”, “chloroethylene”, “chloroethane”; Polychlorinated biphenyl:  PCB, PCBs, 

polychlorinated biphenyl; Chloropropanes: chloropropane; Tetrachloroethene: PCE, 

perchloroethene, perchloroethylene, tetrachloroethene, tetrachloroethylene; Trichloroethene: 

TCE, trichloroethylene, trichloroethene, trichloroethylene; Dichloroethenes: DCE, 

Dichloroethylene, Dichloroethene; Vinyl chloride: VC, vinyl chloride.  

  

http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm
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Table 2.5.  Estimated regional production volumes of 1,2-D as of 2001. 

 

Region 
Estimated Percentage of 

Global Production 

North America 64-69 

Europe 19-25 

Latin America 9-10 

Japan 2-3 

 

  Source: http://www.inchem.org/documents/sids/sids/78875.pdf 

 

 

 

 

Table 2.6.  Manufacturers of 1,2-D as listed in the 2012 International Resources Guide to 

Hazardous Chemicals . 

Manufacturer 

Atofina (France) 

BASF (Germany) 

Bayer (Germnay) 

Cyanamid Agro Products (USA) 

Mitsui Chemical (Japan) 

Shangai Chemical Reagent (China) 

Shell Chemical (Netherlands) 

Showa Denko (Japan) 

Sigma-Aldrich Laborchemikalien (Germany) 

Sithean Corporation (USA) 

 

  

http://www.inchem.org/documents/sids/sids/78875.pdf
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Table 2.7.  Environmental releases for 1,2-dichloropropane in the U.S. 
1 

 

Year Pounds Released 
2
 

2013 102,507 

2012 69,922 

2011 67,523 

2010 93,882 

2009 92,366 

2008 103,542 

2007 115,714 

2006 98,255 

2005 132,585 
 

 1
  The EPA’s Toxic Release Inventory (TRI) Explorer database was queried by year using the 

default data set of 2013 (released March 2015).  The following criteria were selected: 

“Geographic Location: all locations” which cover all EPA regions, “Industry: all industries”, 

“Chemical: 1,2-Dichloropropane”.  

 (Source: http://iaspub.epa.gov/triexplorer/tri_release.chemical) 

 2  
TRI’s "release" of a chemical refers to emissions in the air, land, water or underground, or 

placed in some type of land disposal. 
 

 

 

 

  

http://iaspub.epa.gov/triexplorer/tri_release.chemical
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Table 2.8.  Bacteria capable of dechlorinating PCE and TCE. 

 

Isolate 

PCE 

Dechlorinating 

Activity 

Dehalobacter restricus PCE  cDCE 
Desulfuromonas chloroethenica PCE  cDCE 

Dehalobium chlorocoercia 

chlorocoercia 

PCE  cDCE 

Desulfuromonas michiganensis PCE  cDCE 

Sulfurospirillum multivorans PCE  cDCE 

Sulfurospirillum halorespirans PCE  cDCE 

Geobacter lovleyi PCE  cDCE 

Desulfitobacetrium sp. strain PCE-S PCE  cDCE 

Desulfitobacterium hafniense strain TCE1 PCE  cDCE 

Desulfitobacterium hafniense strain Y51 PCE  cDCE 

Anaeromyxobacter dehalogenans strain 2CP-C-

C 

PCE  cDCE 

Desulfitobacterium hafniense strain JH1 PCE  TCE 

Desulfitobacetrium sp. strain Viet1 PCE  TCE 
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Table 2.9.  Substrates dechlorinated by Dhc and Dhgm isolates and enrichment cultures.  

The primary maintenance substrate (S) for each culture is indicated. 

 

Culture  

Primary Substrate 

(S) 

Dechlorination Activity 
Chlorinated Substrates not 

used 

Dhc mccartyi strain 195 

(PCE) 

PCE, TCE, cDCE, tDCE* 1,1-DCE  VC*, ethene 

1,2-DCA ethene 

HCB PeCBTeCB, TCB 

 

1,2-dibromoethane,  

1,2,3,4-tetrachlorodibenzodioxin  

2,3,4,5,6- Pentachlorobiphenyl 

1,2,3,4-tetrachloronaphthalene  

2,3,6-trichlorophenol  

1,2,3,4-tetrachloro-dibenzofuran  

2,3-dichlorophenol 

2,3,4-trichlorophenol  

polybrominated diphenyl ethers  

polychlorinated biphenyls (Aroclor 1260) 

Monochlorophenols  

2,3-dichlorodibenzo-p-dioxin  

2,3,7,8- tetrachlorodibenzop- 

dioxin  

2,3,4-trichlorophenol 

pentachlorophenol 

2,4-, 2,5-, 

and 2,6-dichlorophenol 

  

(in summary, chlorophenols, that 

are NOT in the ortho position and 

are those where  

the chlorine substituent IS NOT 

present in the flanking meta 

position.) 

   

Dhc mccartyi strain 

BAV1 

(cDCE) 

 

PCE*, TCE*, cDCE, tDCE, 1,1-DCE  VC, ethene  

 

1,2-DCA, vinyl bromide 

Chlorinated propanes, 1,1,1-TCA, 

1,1-DCA and CA 

Dhc mccartyi strain 

FL2 

(TCE) 

 

PCE*, TCE, cDCE, tDCE,  VC 

VC* ethene  

1,1-DCE, 1,1,2-TCA, 

1,1-DCA, 1,2-DCA, and CA 

Dhc mccartyi strain GT 

(TCE) 
TCE, cDCE, 1,1-DCE, VC  ethene  

PCE, 1,2-DCA, tDCE, CA, 1,1-

DCA, 1,1,1-TCA; 1,1,2-TCA, CT, 

1,2-DCP; vinyl bromide, 1,1-

dichloro-2,2-difluoroethene, 1,2-

dichloro-1,2-difluoroethene; 2-

chloro-1,1-difluoroethene; 1,1-

difluoroethene 

Dhc mccartyi strain 

CBDB1 

(1,2,3-TCB,  
1,2,4-TCB) 

PCE, TCE  trans 

HCB, all TeCBs, 1,2,3-TCB and 1,2,4-TCB 

2,3-DCP, 2,3,4-TCP 

Polychlorinated dioxins, polychlorinated biphenyls 

DCEs, VC, 1,2-D, 1,2-DCA, 1,1-

DCA 

 Aroclor 1260   

Dhc mccartyi strain 

MB 

(PCE) 

PCE, TCE trans-1, 2-DCE VC 

Dhc mccartyi strains 

SG1, SG2, SG3 

(Aroclor 1260, PCE) 

 

PCB congeners in Aroclor 1260 

PCE TCE 

 

TCE, cDCE, VC 
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Table 2.9.  (continued) 
 

Culture  

Primary Substrate 

(S) 

Dechlorination Activity 
Chlorinated Substrates not 

used 

Dhc mccartyi strain 

BTF8 (in highly 

enriched culture) 

 

1,2,3-trichlorobenzene ND 

Dhc mccartyi strain VS 

(VC) 

 

TCE, cDCE, 1,1-DCE, VC ethene ND 

Dhc mccartyi strain 

DCMB5 

(PCE) 

 

1,2,3-TCB 1,3-DCB 

1,2,3,4-tetra- and 1,2,4-trichlorodibenzo-p-dioxin,  

1,2,3-trichlorobenzene  

ND  

Dhc mccartyi strain 11a 

 

TCE, 1,1-DCE, cDCE, tDCE, and vinyl chloride (VC) 

ethene 
ND 

Dhc mccartyi strain 

11a5 

 

TCE, 1,1-DCE, cDCE, tDCE VC VC 

Dhc mccartyi strain 

ANAS1 

 

TCE, 1,1-DCE, cDCEVC PCE, tDCE, VC 

Dhc mccartyi strain 

ANAS2 

 

TCE, 1,1-DCE, cDCE, VCethene PCE, tDCE 

Dehalogenimonas 

lykanthroporepellens 

strain BL-DC-9 

(1,2,3-TCP) 

 

1,2-DCP  propene 

1,2-DCAVC 

1,1,2-TCA  VC 

1,2,3-TCP Ally chloride 

1,1,2,2-TeCA  cDCE and tDCE  

1-CP, 2-CP, 1,2-dichlorobenzene, 

cDCE, tDCE, PCE, 

TCE, VC 

Dehalogenimonas 

Alkenigignens IP3-3 

1,2-DCAethene 

1,2-DCP  propene 

1,1,2-TCA  VC 

1,2,3-TCP Ally chloride 

1,1,2,2-TeCA  cDCE and tDCE 

ND 

Dehalogenimonas 

Alkenigignens SBP-1- 

1,2-DCAethene 

1,2-DCP  propene 

1,1,2-TCA  VC 

1,2,3-TCP ally chloride 

1,1,2,2-TeCA  cDCE and tDCE 

ND 

Dehalogenimonas sp. 

in WBC2 consortium 

 

tDCE VC ND 

Dehalobium 

chlorocoercia DF-1 

PCE, TCE tDCE 

HCB PeCBTeCB, TCB 
ND 

Dehalobacter spp. 

strain RM* enrichment 

(DCM) 

DCM  acetate 

 

 

ND 
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Table 2.9.  (continued) 
 

 

Culture  

Primary Substrate 

(S) 

Dechlorination Activity 
Chlorinated Substrates not 

used 

Geobacter lovleyi SZ 

(PCE) 
PCE, TCE  cDCE 

cDCE, VC, 1,2-DCA TCA, 

trifluoroacetic, tDCE, 1,1-DCE, 

CA, 1,1-DCA, 1,2-DCA, 1,1,1-

TCA 1,1,2-TCA, 1,2-DCP 

Geobacter sp. strain 

KB-1 

(PCE) 

 

PCE, TCE  cDCE cDCE, VC, 1,2-DCA 

Culture RC (contains 

one Dhc strain) 

(1,2-DCP) 

 

1,2-DCP  propene 
1,1,2-TCA, 1,2,3-TCP, 1,2-DCA, 

PCE, TCE, cDCE, tDCE, VC 

Culture KS (contains 

one Dhc strain) 

(1,2-DCP) 

 

1,2-DCP  propene 
1,1,2-TCA, 1,2,3-TCP, 1,2-DCA, 

PCE, TCE, cDCE, tDCE, VC 

Bio-Dechlor 

INOCULUM (BDI) 

(Contains Dhc strains 

BAV1, GT and FL2, 

Geobacter lovleyi strain 

SZ, and a Dhb sp.  

(PCE) 

PCE  ethene  

TCE  ethene 

cDCE  ethene 

VC ethene 

1,2-DCA  ethene 

1,1-DCE   ethene 

1-CP, 2-CP, 1,2-DCP 

1,2,3-TCP, 1,1,1-TCA 

1,1,2-TCA, 1,2,3-TCB, 1,2,4-

TCB, CT, CF, DCM 

Third Creek 

enrichments 

PCE  ethene 

TCE   ethene 

cDCE   ethene 

VC   ethene 

1,2-DCP   propene 

1,2-DCA  ethene 

1,1,2-TCA   ethene 

1,1-DCA   chloroethane 

1,1,1-TCA   chloroethane 

CF, DCM   nonchlorinated products 

NA 

 

 *cometabolic 
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Table 2.10.  Reductive dehalogenases with assigned function in Dhc isolates and enrichment cultures. 

 

RDase 

gene 
RDase Bacteria Catalyzing reaction Methods Reference 

Dehalococcoides sp. 

pceA PceA strain 195 
PCE/TCE  cDCE 

PCE  TCE 
IV, LC, PAGE (Magnuson et al., 1998) 

tceA TceA strain 195, FL2 TCE  VC IV, LC, PAGE 

(Magnuson et al., 1998) 

(Jianzhong He, Sung, 

Krajmalnik-Brown, Ritalahti, 

& Löffler, 2005; Hölscher et 

al., 2004) 

vcrA VcrA strains VS DCEs  ethene IV, LC, AA, GS 

(Müller JA, Rosner BM, Von 

Abendroth G, Meshulam-

Simon G, McCarty PL et al., 

2004) 

bvcA BvcA strain BAV1 DCEs, VCethene 
TRA, IV, qPCR, PAGE, 

LC 

(Krajmalnik-Brown et al., 

2004; Tang S, Chan WW, 

Fletcher KE, Seifert J, Liang 

X, Löffler FE, Edwards EA, 

2013)  

mbrA MbrA strain MB TCE  tDCE 
TRA, qPCR, PAGE, 

MS 

(Chow, Cheng, Wang, & He, 

2010) 

dcpA DcpA strains RC, KS 1,2-D  propene 
PAGE, IV, qPCR, TRA, 

LC/MS, 
(Padilla-Crespo et al., 2014) 

cbrA CbrA strain CBDB1 
1,2,3,4-TeCB  1,2,4-TCB 

1,2,3-TCB  1,3-DCB 

PAGE, IV, MS, TRA, 

T-RFLP, LC, LC/MS 

(Adrian, Rahnenführer, 

Gobom, & Hölscher, 2007; A. 

Wagner, Adrian, Kleinsteuber, 

Andreesen, & Lechner, 2009) 

pcbA PcbA 
strains CG1, CG4, 

and CG5 

PCB congeners 

PCE TCE 

PAGE, MS, qPCR, ME, 

GS 

(Wang, Chng, Wilm, et al., 

2014) 
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Table 2.10.  (continued) 

RDase 

gene 
RDase Bacteria Catalyzing reaction Methods Reference 

Other dehalogenating bacteria 

dcpA DcpA Dhgm strain BL-DC-9 1,2-D  propene 
cPCR, BN-PAGE, IV, 

qPCR, LC/MS, 
(Padilla-Crespo et al., 2014) 

pceA PceA 
Desulfito. hafniense strain 

PCE-S 
PCE/TCE  cDCE IV, LC, AA 

(Miller et al., 1998; Ye LD, 

Schilhabel A, Bartram S, 

Boland W, 2010) 

 

pceA PceA 
Desulfito. hafniense strain 

PCE-1 
PCETCE IV, LC, AA 

(Van De Pas, Gerritse, De 

Vos, Schraa, & Stams, 2001)  

pceA PceA 
Desulfito. hafniense strain 

TCE-1 
PCE/TCE  cDCE IV, LC, AA (Van De Pas et al., 2001) 

pceA PceA 
Desulfito. hafniense strain 

Y51 
PCE/TCE  cDCE IV, LC, AA (Suyama et al., 2002) 

pceA PceA 
Sulfurospirillum 

multivorans 
PCE/TCE  cDCE IV, LC, AA 

(A Neumann, Wohlfarth, & 

Diekert, 1996; Ye LD, 

Schilhabel A, Bartram S, 

Boland W, 2010) 

pceA PceA Geobacter lovleyi SZ PCE/TCE  cDCE GS (D. Wagner et al., 2012) 

      
      

pceA PceA 
Anaeromyxobacter 

dehalogenans 2-CPC 
PCE/TCE  cDCE GS (S. H. Thomas et al., 2008) 

cfrA CfrA Dhb sp. CF 
CF DCM 

1,1,1-TCA  1,1-DCA 

BN-PAGE, IV, LC/MS, 

ME 
(Tang & Edwards, 2013)  

dcrA DcrA Dhb sp. DCA 1,1-DCA  CA 
BN-PAGE, IV, LC/MS, 

ME 
(Tang & Edwards, 2013) 

rdh1 Rdh1 Dhb sp. 1,2-DCA ethene TRA, qPCR (Grostern, A, Edwards, 2009)  
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Table 2.10 (continued) 
 

RDase 

gene 
RDase    Bacteria Catalyzing reaction Methods Reference 

Other dehalogenating bacteria 

 
3-CIBI-

RD 

Desulfomonile tiedjei 

strain DCB-1 
3-chlorobenzoate LC, IV 

(Ni, Fredrickson, & Xun, 

1995) 

dcaA DcaA 

Desulfito. 

dichloroeliminans  strain 

DCA1 

1,2-DCA  ethene TRA, qPCR, (Marzorati et al., 2007) 

      

 

Desulfito; Desulfitobacterium  

Dhb; Dehalobacter 

Dhgm; Dehalogenimonas  

CB; chlorobenze 

IV; in vitro activity assays 

CS; chromatography separation   

PAGE; PAGE gel separation  

cPCR; cloning with targeted primers on cDNA   

qPCR; transcriptional analysis and quantification by qPCR  

GS; Genome sequencing  

TRFLP; Terminal Restriction Fragment Length Polymorphism on cDNA  

MS; detection of peptides via mass spectrometry  

LC; liquid chromatography separation  

ME; metagenome 

GENE; homology of gene sequence  
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Table 2.11.  Identity matrix of hydrogenase genes in Dhc strains.  Identities of 98-100% are 

in bold.  (1) strain 195; (2) strain VS; (3) strain CBDB1; (4) strain BAV1, (5) strain GT 

 

NiFe Hydrogenase (Hyc) 1 2 3 4 5 

1. DET1571_HycE  93.2 85.4 84.9 84.9 

2. DhcVS_1449 93.2  84.9 84.5 84.5 

3. cbdbA1653 85.4 84.9  99.2 99.2 

4. DehaBAV1_1317 84.9 84.5 99.2  100 

5. DehalGT_1365_1366 84.9 84.5 99.2 100  

NiFe Hydrogenase (Hup) 1 2 3 4 5 

1. det0110_Hup  90.8 89.2 89.2 89.1 

2. DhcVS_120 90.8  90.7 90.8 90.5 

3. DehalGT_0141 89.2 90.7  98.7 99.8 

4. DehaBAV1_0258 89.2 90.8 98.7  98.8 

5. cbdbA129 89.1 90.5 99.8 98.8  

NiFe Hydrogenase (Vhu) 1 2 3 4 5 

1. DET0615_Vhu  88.4 88.4 88.3 87.8 

2. DehalGT_0550 88.4  100 99.7 89.9 

3. cbdbA597 88.4 100  99.7 89.9 

4. DehaBAV1_0588 88.3 99.7 99.7  89.8 

5. DhcVS_553 87.8 89.9 89.9 89.8  

NiFe Hydrogenase (Ech) 1 2 3 4 5 

1. DET0867_EchEsubunit  91 87.1 87.1 87 

2. DhcVS_770 91  86.9 86.9 86.9 

3. DehalGT_0746 87.1 86.9  100 99.4 

4. cbdbA850 87.1 86.9 100  99.4 

5. DehaBAV1_0785 87 86.9 99.4 99.4  

Fe Hydrogenase (Hym) 1 2 3 4 5 

1. DET0146_DET0147_Fe_HymB  92.8 91 42.7 90.9 

2. DhcVS_154_155 92.8  92.3 43.8 92.3 

3. cbdbA170-cbdbA171 91 92.3  42.7 99.7 

4. DehaBAV1_0224_0225 42.9 44.1 42.8  42.7 

5. DehalGT_0174_0175 90.9 92.3 99.7 42.9  
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Table 2.12.  Primers described in the literature and currently used as part of the molecular toolbox to detect 16S rRNA genes 

of Dhc and other dechlorinating bacteria.  

 

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Dehalogenating Chloroflexi 

Chl348F 

Dehal884R 

GAG GCA GCA GCA AGG AA 

GGC GGG ACA CTT AAA GCG 
60 470 

PCR, qPCR-

SYBR 

chemistry, 

DGGE 

(Fagervold, Watts, May, 

Sowers, & Carolina, 2005) 

Dehalococcoides 

Dhc728, Dco728F, FL2F 

Dhc1164R, FL2R 

AAG GCG GTT TTC TAG GTT GTC AC 

CGT TTC GCG GGG CAG TCT 
58 436 PCR 

(Frank E Löffler, Sun, Li, & 

Tiedje, 2000) 

567F 

RpDHC1377, 1377R 

CGG GAC GTG TCA TTC AAT AC 

GGT TGG CAC ATC GAC TTC AA 
55 810 PCR 

(Fennell, Carroll, Gossett, & 

Zinder, 2001)  

Fp DHC 1 

Rp DHC 692 

GAT GAA CGC TAG CGG CG 

TCA GTG ACA ACC TAG AAA AC 
62

a
 692 PCR (Hendrickson et al., 2002) 

Fp DHC 1 

Rp DHC 1212 

GAT GAA CGC TAG CGG CG 

GGA TTA GCT CCA GTT CAC ACT G 
55 

1212 

 
PCR (Hendrickson et al., 2002) 

Fp DHC 1 

Rp DHC 1377 

GAT GAA CGC TAG CGG CG 

GGT TGG CAC ATC GAC TTC AA 
55 

 

1377 

 

PCR (Hendrickson et al., 2002) 

Fp DHC 385 

Rp DHC 806 

GGG TTG TAA ACC TCT TTT CAC 

GTT AGC TTC GGC ACA GAG AG 
68

a
 

 

421 

 

PCR (Hendrickson et al., 2002) 

Fp DHC 587 

Rp DHC 1090 

GGA CTA GAG TAC AGC AGG AGA AAA C 

GGC AGT CTC GCT AGA AAA T 
66

a
 503 PCR (Hendrickson et al., 2002) 

Fp DHC 774 

Rp DHC 1212  

GGG AGT ATC GAC CCT CTC 

GGA TTA GCT CCA GTT CAC ACT G 
55 438 PCR 

(Hendrickson et al., 2002) 
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Table 2.12. (continued) 

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Dehalococcoides      

Fp DHC 946 

Rp DHC 1212 

AGT GAA CCG AAA GGG AAA 

GGA TTA GCT CCA GTT CAC ACT G 
55 266 PCR (Hendrickson et al., 2002) 

Dhc1200F 

Dhc1271R 

Dhc1240P 

CTG GAG CTA ATC CCC AAA GCT 

CAA CTT CAT GCA GGC GGG 

TCC TCA GTT CGG ATT GCA GGC TGA A 

58 65 

PCR, qPCR-

TaqMan 

chemistry 

(Ritalahti et al., 2006) 

Dhc-730F 

Dhc-1350R 

GCG GTT TTC TAG GTT GTC 

CAC CTT GCT GAT ATG CGG 

 

58 620 PCR 
(Jianzhong He, Ritalahti, 

Aiello, & Löffler, 2003) 

Dhc728F, FL2F, Dco728F 

Dhc1164R, FL2R 

AAG GCG GTT TTC TAG GTT GTC AC 

CGT TTC GCG GGG CAG TCT 
58 436 PCR (Bunge et al., 2003) 

DHE‐for 

DHE‐rev 

AAG GCG GTT TTC TAG GTT 

CGT TTC GCG GGG CAG TCT 
58 443 

qPCR-SYBR 

chemistry 

(Dennis, Sleep, Fulthorpe, & 

Liss, 2003; Yan, Rash, Rainey, 

& Moe, 2009) 

Dhc728F, FL2F, Dco728F 

Dco944R 

AAG GCG GTT TTC TAG GTT GTC AC 

CTT CAT GCA TGT CAA AT 
58 216 

qPCR-SYBR 

chemistry 
(Smits et al., 2004)  

FpDHC1, Dhc1f 

1386r 

GAT GAA CGC TAG CGG CG 

CCT CCT TGC GGT TGG CAC ATC 
52 1380 PCR 

(M Duhamel, Mo, & Edwards, 

2004)  

      

582f 

728r 

CTG TTG GAC TAG AGT ACA GC 

GTG ACA ACC TAG AAA ACC GCC TT 
59 108 

PCR, qPCR-

SYBR 

chemistry 

(M Duhamel et al., 2004; Yan 

et al., 2009)  

FpDHC1, Dhc1f 

259r 

GAT GAA CGC TAG CGG CG 

CAG ACC AGC TAC CGA TCG AA 
59 258 

PCR, PCR-

DGGE, 

qPCR-SYBR 

chemistry 

(M Duhamel & Edwards, 

2007; M Duhamel et al., 2004; 

Melanie Duhamel & Edwards, 

2006; Hendrickson et al., 

2002)  
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Table 2.12. (continued)      

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Dehalococcoides      

DeF 

DeR 

GCA ATT AAG ATA GTG GC 

ACT TCG TCC CAA TTA CC 
55 1373 PCR 

(Cupples, Spormann, & 

McCarty, 2003) 

DHC66f GGT CTT AAG CAA TTA AGA TAG TG 
60 114 PCR, qPCR 

(Yoshida, Takahashi, & 

Hiraishi, 2005) DHC180r CAC CAA GCR CCT TRC GGC 

      

DHC793f GGG AGT ATC GAC CCT CTC TG 
60 153 PCR, qPCR (Yoshida et al., 2005) 

DHC946r CGT TYC CCT TTC TGT TCA CT 

DhcForward 

Dhc Probe 

DhcReverse 

GGT AAT ACG TAG GAA GCA AGC G 

ACA TCC AAC TTG AAA GAC CAC CTA CGC 

TCA CT 

CCG GTT AAG CCG GGA AAT T 

60 98 Taqman  

(Holmes, He, Lee, & Alvarez-

Cohen, 2006; Rahm, Morris, & 

Richardson, 2006)  

Forward 

Reverse 

GAAGTAGTGAACCGAAAGG 

TCTGTCCATTGTAGCGTG 
NR 235 

qPCR-SYBR 

chemistry 

(Schaefer CE, Condee CW, 

Vainberg S, 2009)  

FpDHC1, Dhc1f 

Dhc264r 

GAT GAA CGC TAG CGG CG 

CCT CTC AGA CCA GCT ACC GAT CGA A 
59 ~260 

PCR, qPCR-

SYBR 

chemistry 

(Grostern, A, Edwards, 2009; 

Hendrickson et al., 2002) 

Dhc193f 

Dhc1048r 

GGT TCA YTA AAG CCG YAA GG 

CCT GTG CAA RYT CCT GAC T 
53 855 PCR 

(Dowideit, K, Scolz-

Muramatsu H, Miethling-

Graff, R, Vigelahn L, 

Freygang M, Dohrmann, AB, 

n.d.) 

Dehalogenimonas 

BL-DC-57f 
b
 

BL-DC-1410r 

GCA AGT CGA ACG GTC TCT CGC 

AGG TGT TAC CAA CTT TCA TGA C 
63 1330 PCR 

 

(Yan et al., 2009)  

 

BL-DC-57f 
b
 

BL-DC-1351r 

GCA AGT CGA ACG GTC TCT CGC 

AAC GCG CTA TGC TGA CAC GCG T 
63 1271 PCR (Yan et al., 2009)  
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Table 2.12. (continued) 

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

BL-DC-117f 
b
 

BL-DC-1020r 

GTA ATA GGT AAG TAA CCT GCC CTT 

ATA GCT CCT GAC TTG ACA GGT GGA TC 
63 911 PCR (Yan et al., 2009)  

BL-DC-142f 

BL-DC-796r 
c
 

GTG GGG GAT AAC ACT TCG AAA GAA GTG C 

ACC CAG TGT TTA GGG CGT GGA CTA CCA GG 
63 661 PCR (Yan et al., 2009)  

BL-DC-142f 
d
 

BL-DC-1020r 

GTG GGG GAT AAC ACT TCG AAA GAA GTG C 

ATA GCT CCT GAC TTG ACA GGT GGA TC 
63 885 PCR (Yan et al., 2009) 

BL-DC-142f 
c
 

BL-DC-1243r 

GTG GGG GAT AAC ACT TCG AAA GAA GTG C 

CCG GTG GCA ACC CAT TGT ACC GC 
63 1093 PCR (Yan et al., 2009) 

BL-DC-183f 
b
 

BL-DC-796r 
b
 

GGT GCT CTT TCA CAA GGA AGA GTA CTG 

ACC CAG TGT TTA GGG CGT GGA CTA CCA GG 
63 620 PCR (Yan et al., 2009) 

BL-DC-610f 
b
 

BL-DC-1020r 

TCT CCC GGC TCA ACT GGG AGG GGT CAT CTG 

ATA GCT CCT GAC TTG ACA GGT GGA TC 
63 439 PCR (Yan et al., 2009) 

BL-DC-610f 
c
 

BL-DC-1243r 

TCT CCC GGC TCA ACT GGG AGG GGT CAT CTG 

CCG GTG GCA ACC CAT TGT ACC GC 
63 647 PCR (Yan et al., 2009) 

BL-DC-727f 
b
 

BL-DC-1020r 

GAA GGC GGT TTT CTA GGC CAW A 

ATA GCT CCT GAC TTG ACA GGT GGA TC 
63 322 PCR (Yan et al., 2009) 

BL-DC-727f 
b
 

BL-DC-1351r 

GAA GGC GGT TTT CTA GGC CAW A 

AAC GCG CTA TGC TGA CAC GCG T 
63 636 PCR (Yan et al., 2009) 

BL-DC-631f 
c
 

BL-DC-796r 

GGT CAT CTG ATA CTG TTG GAC TTG AGT ATG 

ACC CAG TGT TTA GGG CGT GGA CTA CCA GG 
63 194 

PCR, qPCR-

SYBR 

chemistry 

(Yan et al., 2009) 

BL-DC-727f 
b
 

BL-DC-982r 

GAA GGC GGT TTT CTA GGC CAW A 

TCT AAC ATG TCA AGC CCT GGT G 
63 294 PCR (Yan et al., 2009) 

BL-DC-142 
c
 

BL-DC-1351r 

GTG GGG GAT AAC ACT TCGAAA GAA GTG C 

AAC GCG CTA TGC TGA CACGCG T 
63 1199 PCR 

(Chen, Bowman, Rainey, & 

Moe, 2014)  
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Table 2.12. (continued) 

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Dehalogenimonas      

mod-BL-DC-1243f 
c
 

BL-DC-1351r 

GGY ACA ATG GGT TGC CACCGG 

AAC GCG CTA TGC TGA CACGCG T 
63 / 68.2 127 

PCR, qPCR 

EvaGreen 

chemistry 

(Chen et al., 2014) 

Dehalobium 

14F 

Dehal1265R 

AGA GTT TGA TCC TGG CTC AG 62 1215 PCR 
(Watts, Fagervold, May, & 

Sowers, 2005)  

GCT ATT CCT ACC TGC TGT ACC     

Dehalobacter 

Deb179F 

Deb1007R 

TGT ATT GTC CGA GAG GCA 

ACT CCC ATA TCT CTA CGG 
53 828 PCR (Schlötelburg et al., 2002)  

Dre441F 

Dre645R 

GTT AGG GAA GAA CGG CAT CTG T 

CCT CTC CTG TCC TCA AGC CAT A 
58 225 

PCR, qPCR-

SYBR 

chemistry, 

DGEE 

(Smits et al., 2004)  

Dre441F 

Dre1013R\ 

 

GTT AGG GAA GAA CGG CAT CTG T 

CGA AGC ACT CCC ATA TCT 

 

58 

 

589 

 

PCR 

 
(Smits et al., 2004)  

Dhb477f GAT TGA CGG TAC CTA ACG AGG 
63 ~170 

qPCR-SYBR  

chemistry 
(Grostern & Edwards, 2006) 

Dhb647r TAC AGT TTC CAA TGC TTT ACG G 

Anaeromyxobacter 

60F 

461R 

CGA GAA AGC CCG CAA GGG 

ATT CGT CCC TCG CGA CAG T 
56.5 401 PCR 

(Petrie, North, Dollhopf, 

Balkwill, & Kostka, 2003) 

F112 

R227 

GTA ATC TGC CCT AGA GTC CGG A 

AGA GCG ATA GCT TGT GTA CAG AGG 
60 115 

qPCR-SYBR  

chemistry  
(Sanford et al., 2007) 

Ade399Fwd 

Ade466Rev 

GCA ACG CCG CGT GTG T 

TCC CTC GCG ACA GTG CTT 
60 67 

qPCR-

TaqMan 

chemistry  

(Thomas, S. H., Padilla-Crespo 

E, Jardine PM, Sanford RA, 

2009) 
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Table 2.12. (continued) 

 

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Anaeromyxobacter      

2CP444Fwd 

2CP513Rev 

TCG CGA GGG ACG AAT AAG G 

CGG TGC TTC CTC TCG AGG TA 
60 69 

qPCR-

TaqMan 

chemistry 

(Thomas, S. H., Padilla-Crespo 

E, Jardine PM, Sanford RA, 

2009) 

 

Desulfitobacterium 

Dsb174F, Dd1 

Dsb1373R, Dd2 

AAT ACC GNA TAA GCT TAT CCC 

TAG CGA TTC CGA CTT CAT GTT C 
55 1199 PCR 

(El Fantroussi, Mahillon, 

Naveau, & Agathos, 1997) 

Dsb460F, Dd3 

Dsb1084R, Dd4 

TCT TCA GGG ACG AAC GGC AG 

CAT GCA CCA CCT GTC TCA T 
55 624 PCR (El Fantroussi et al., 1997) 

Dsb406F 

Dsb619R 

GTA CGA CGA AGG CCT TCG GGT 

CCC AGG GTT GAG CCC TAG GT 
58 213 

PCR, qPCR-

SYBR  

chemistry, 

DGGE 

(Smits et al., 2004) 

dsb434f 

dsb1299r 

 

TAC TGT CTT CAG GGA CGA AC 

TGA GAC CAG CTT TCT CGG AT 

 

60 865 PCR 

(Dowideit, K, Scolz-

Muramatsu H, Miethling-

Graff, R, Vigelahn L, 

Freygang M, Dohrmann, AB, 

n.d.) 

 

Dsb406F GTA CGA CGA AGG CCT TCG GGT 55 213 PCR, DGGE (Smits et al., 2004) 

Dsb619R 

 

CCC AGG GTT GAG CCC TAG GT 

 
    

Dsb406F 

Dsb1373R, Dd2 

GTA CGA CGA AGG CCT TCG GGT 

TAG CGA TTC CGA CTT CAT GTT C 
55 967 PCR (Smits et al., 2004)  
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Table 2.12. (continued) 

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Desulfomonile 

Dsm59F, Dt1 

Dsm1054R, Dt2 

CAA GTC GTA CGA GAA ACA TAT C 

GAA GAG GAT CGT GTT TCC ACG A 
55 995 PCR (El Fantroussi et al., 1997) 

Dsm205F, Dt3 

Dsm628R, Dt4 

GGG TCA AAG TCG GCC TCT CGA CG 

GCT TTC ACA TTC GAC TTA TCG 
55 423 PCR (El Fantroussi et al., 1997) 

DSMON85F 

DSMON1419R 

CGG GGT RTG GAG TAA AGT GG 

CGA CTT CTG GTG CAG TCA RC 
62 1334 PCR 

(Loy A, Kuse K, Drake HL, 

2004) 

Geobacter 

Geo564F 
e
 

Geo840R 

AAG CGT TGT TCG GAW TTA T 

GGC ACT GCA GGG GTC AAT A 
57 276 

PCR, qPCR-

SYBR  

chemistry 

(Bedard, Ritalahti, & Loffler, 

2007; Cummings et al., 2003; 

Sanford et al., 2007)  

Geo196F 

Geo999R 

GAA TAT GCT CCT GAT TC 

ACC CTC TAC TTT CAT AG 
53 820 PCR (Sung, 2005) 

Geo73f 

Geo485r 

CTT GCT CTT TCA TTT AGT GG 

AAG AAA ACC GGG TAT TAA CC 
59 412 

qPCR-SYBR  

chemistry 

(Melanie Duhamel & Edwards, 

2006) 

Geo196F 

Geo535R 

GAA TAT GCT CCT GAT TC 

TAA ATC CGA ACA ACG CTT 
50 357 

PCR, qPCR-

SYBR  

chemistry 

(Amos et al., 2007) 

Geo63F 

Geo418R 

CAG GCC TAA CAC ATG CAA GT 

CCG ACC ATT CCT TAG GAC 
62 1443 PCE (Dennis et al., 2003) 

Sulfurospirillum and Desulfuromonas  

Sulfuro114f 

Sulfuro421r 

GCT AAC CTG CCC TTT AGT GG 

GTT TAC ACA CCG AAA TGC GT 
59 307 

qPCR-SYBR  

chemistry 

(Melanie Duhamel & Edwards, 

2006; F E Löffler, Sanford, & 

Ritalahti, 2005)  
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Table 2.12. (continued)      

Primer pair Primer sequence (5’-3’) Ta (°C) 
Product size 

(bp) 
Assay Ref 

Dsf205F, BB1F 

Dsf1020R, BB1R 

AAC CTT CGG GTC CTA CTG TC 

GCC GAA CTG ACC CCT ATG TT 
58 815  (Frank E Löffler et al., 2000)  

 

 Ta; Reported annealing temperature  

 *  Optimized by .  
 b  

Only detect
 
Dhgm lykanthroporepellens BL-DC-9, failed to detect Dhgm alkenigignens IP3-3 and Dhgm strain NSZ-14 

 c  
Detect Dhgm lykanthroporepellens BL-DC-9, Dhgm alkenigignens IP3-3 and Dhgm strain NSZ-14 

 d  
Detect both

 
Dhgm lykanthroporepellens BL-DC-9 and Dhgm alkenigignens IP3-3, failed to detect Dhgm strain NSZ-14 

 e
  Reported to also amplify Anaeromyxobacter 16S rRNA genes   
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Table 2.13. Primers designed to detect and/or quantify RDase genes. 

 

Primer pair Primer sequence (5’-3’) Assay Ref  

pceA 

DET0318-484f 

DET0318-664r 

ATGGTGGATTTAGTAGCAGCGGTC 

ATCATCAAGCTCAAGTGCTCCCAC 
qPCR-SYBR  chemistry 

(Fung, Morris, Adrian, & Zinder, 2007) 

    

pceAF 

pceAR 

GGA GTG TAA TCC CGC TTT ATC 

AAT TTC CAC TGT TGG CCT TGT 
qPCR-SYBR  chemistry    

(Reinhold A, Westermann M, Seifert J, von Bergen 

M & G., 2012) 

tceA 

tceAF 

tceAR 

tceAP 

ATCCAGATTATGACCCTGGTGAA 

GCGGCATATATTAGGGCATCTT 

TGGGCTATGGCGACCGCAGG 

qPCR-Taqman  chemistry   

(Holmes et al., 2006; Johnson, Lee, Holmes, Fortin, 

& Alvarez-Cohen, 2005; Kirsti M Ritalahti et al., 

2006) 

    

tceA-500 F 

tceA-795R 

TAATATATGCCGCCACGAATGG 

AATCGTATACCAAGGCCCGAGG 
qPCR-SYBR chemistry 

(Fung et al., 2007) 

bvcA 

bvcAF – Bvc925F 

bvcAR – Bvc1017R 

bvcAP – Bvc977Probe 

AAAAGCACTTGGCTATCAAGGAC 

CCAAAAGCACCACCAGGTC 

TGGTGGCGACGTGGCTATGTGG 

qPCR-Taqman  chemistry   

(Daprato, Löffler, & Hughes, 2007; Krajmalnik-

Brown et al., 2004; Kirsti M Ritalahti et al., 2006) 

 

    

Forward 

Reverse 

Probe 

GGTGCCGCGACTTCAGTT 

TCGGCACTAGCAGCAGAAATT 

TGCCGAATTTTCACGACTTGGATGAAG 

qPCR-Taqman  chemistry   

(Holmes et al., 2006; Johnson, Lee, Holmes, Fortin, 

et al., 2005) 

vcrA 

Forward 

Reverse 

TGCTGGTGGCGTTGGTGCTCT 

TGCCCGTCAAAAGTGGTAAAG 
qPCR-SYBR chemistry   

(Müller JA, Rosner BM, Von Abendroth G, 

Meshulam-Simon G, McCarty PL et al., 2004) 

    

Forward 

Reverse 

Probe 

CTCGGCTACCGAACGGATT 

GGGCAGGAGGATTGACACAT 

CGCACTGGTTATGGCAACCACTC 

qPCR-Taqman  chemistry   

(Holmes et al., 2006; Johnson, Lee, Holmes, Fortin, 

et al., 2005) 

cbrA 

cbdbA84_f 

cbdbA84_r 

CTTATATCCTCAAAGCCTGA 

TGTTGTTGGCAACTGCTTC 
qPCR-SYBR chemistry   

(A. Wagner et al., 2009) 
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Table 2.13 (continued) 

    

Primer pair 

 
Primer sequence (5’-3’) Assay Ref 

crfA 

cfrA-413f 

cfrA-531r 
CCCGAACCTCTAGCACTTGTAG 

ACGGCAAAGC TTGCACGA 
 

(Tang & Edwards, 2013) 

dcrA     

dcrA-424f 

dcrA-533r 
AGCACTCAGAGAGCGTTTTGC 

CAACGGCCCAGCTTGCAT 
qPCR-SYBR chemistry   (Tang & Edwards, 2013) 

mbrA     

mbrAF 

mbrAR 
CCTGTAAACGACTCCCCAGA 

GGATTGGATTAGCCAGCGTA 
qPCR-SYBR chemistry   

(Chow et al., 2010) 

pcbA1,  pcbA4,  pcbA5 

CG1-17F 

CG1-17R 
CCGTCAATGGCACTCTGTTCCTTC 

TGCTGGCTTCATTCTCGAAGATCAG 
qPCR-SYBR chemistry   

(Wang, Chng, Wilm, et al., 2014) 

CG4-1F 

CG4-1R 
GGCACAGATGCCTCAAGGAACATAC 

TTGTCCGGCTGCTCCGTCAG 
qPCR-SYBR chemistry   

(Wang, Chng, Wilm, et al., 2014) 

CG5-1F 

CG5-1R 
TGACCAAGGATCTGGTGGAAGGTTG 

AGAAGCGCAATGCCTGAGTGATC 
qPCR-SYBR chemistry   

(Wang, Chng, Wilm, et al., 2014) 
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Chapter 3 

Identification and environmental distribution of dcpA, which encodes the reductive 

dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in 

organohalide-respiring Chloroflexi 
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Abstract 

 

Dehalococcoides mccartyi (Dhc) strains KS and RC grow with 1,2-dichloropropane (1,2-D) as 

an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine 

river sediments, respectively.  Transcription, expression, enzymatic and PCR analyses implicated 

the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic 

chloride.  Quantitative real-time PCR (qPCR) analyses demonstrated Dhc cell increase during 

growth with 1,2-D and suggested that both Dhc strains carried a single dcpA gene copy per 

genome.  Dhc strain RC and strain KS produced 1.8 ± 0.1 x 10
7
 and 1.4 ± 0.5 x 10

7
 cells per 

µmole of propene formed, respectively.  The dcpA gene was identified in 1,2-D-to-propene-

dechlorinating microcosms established with sediment samples collected from different 

geographical locations in Europe and North and South America.  Clone library analysis revealed 

two distinct dcpA phylogenetic clusters, both of which the dcpA gene-targeted qPCR assay 

captured, suggesting the qPCR assay is useful for site assessment and bioremediation monitoring 

at 1,2-D-contaminated sites.  

 

Introduction 

 

1,2-dichloropropane (1,2-D) has been used in a variety of applications including as an industrial 

solvent, a lead scavenger in gasoline, and a fumigant to prevent root nematode damage to high 

value crops (Agency for Toxic Substances and Disease Registry (ATSDR), 1989).  In addition, 

1,2-D is a precursor in the production of other chlorinated solvents and is produced as a 
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byproduct in the manufacture of propylene oxide and epichlorohydrine (Nijhuis, Makkee, 

Moulijn, & Weckhuysen, 2006).  1,2-D is toxic and a suspected carcinogen and the U.S. 

Environmental Protection Agency (EPA) regulates its maximum concentration level (MCL) in 

drinking water to 5 µg/L (http://water.epa.gov/drink/contaminants/index.cfm#List).  Today, 1,2-

D is no longer used as a solvent and in soil fumigant applications; however, the 2010 EPA's 

Toxics Release Inventory reported that 1,2-D in excess of 90,000 pounds were disposed of or 

released in the U.S. (http://iaspub.epa.gov/triexplorer/tri_release.chemical).  A 2006 study, 

conducted by the National Water-Quality Assessment Program (NAWQA) and lead by the U. S. 

Geological Survey (USGS), detected 1,2-D in 1.3% of aquifers samples throughout the U.S. (at 

an assessment level of 0.02 μg/L).  In 18 of 723 (2.5 %) shallow groundwater samples adjacent 

to agricultural areas, 1,2-D was present at concentrations exceeding 0.2 μg/L.  In some aquifer 

samples and domestic wells, 1,2-D was reported at levels above the 5 µg/L MCL (Zogorski JS, 

Carter JM, Ivahnenko T, Lapham WW, Moran MJ, Rowe BL, Squillace PJ, 2006).  The 

NAWQA aquifer study detected fumigants in 10 - 30% of the aquifers sampled in areas where 

fumigant applications were common such as Oahu, Hawaii, and the Central Valley of California 

(Zogorski JS, Carter JM, Ivahnenko T, Lapham WW, Moran MJ, Rowe BL, Squillace PJ, 2006).  

Hawaii used more than 1.8 million pounds of fumigants in the 1970's to protect pineapple crops 

from root-parasitic nematodes (Honolulu & Hawaii., 1975).  Today, 1,2-D use is controlled and 

new contamination minimized; however, 1,2-D has emerged as a pervasive groundwater 

contaminant and threatens environmental health and drinking water quality.  

 

1,2-D is recalcitrant under oxic conditions but a few strictly anaerobic bacteria have been 

implicated in 1,2-D reductive dechlorination to non-toxic propene.  These microorganisms use 

1,2-D as terminal electron acceptor for organohalide respiration.  Microbes involved in this 

process include a Dehalobacter identified in a mixed culture derived from river sediment 

(Schlötelburg C, Wintzingerode C, Hauck R, Wintzingerode F, Hegemann W, 2002), the 

bacterial isolate Desulfitobacterium dichloroeliminans strain DCA1 obtained from an industrial 

site impacted with 1,2-dichloroethane (1,2-DCA) (De Wildeman S, Diekert G, Van Langenhove 

H, Verstraete, 2003), Dehalogenimonas lykanthroporepellens (Dhgm) strains BL-DC-8 and BL-

DC-9 and Dehalogenimonas alkenigignens strain IP3-3 isolated from groundwater collected at a 

Superfund site (Bowman, Nobre, da Costa, Rainey, & Moe, 2013; Moe WM, Yan J, Nobre MF, 



 

 79 

da Costa MS, Rainey, 2009) and Dhc strains RC and KS derived from pristine and contaminated 

river sediment, respectively (F E Löffler, Champine, Ritalahti, Sprague, Tiedje, et al., 1997; 

Kirsti M Ritalahti & Löffler, 2004).   Dhc strains RC and KS share up to 99.8% 16S rRNA gene 

sequence identity with Dhc strains of the Pinellas group, which cannot grow with 1,2-D (Kirsti 

M Ritalahti & Löffler, 2004).  The incongruence between the 16S rRNA gene sequence and 

reductive dechlorination activity demonstrates the need for identifying 1,2-D dechlorination-

specific biomarkers.  

 

Reductive dechlorination reactions are catalyzed by reductive dehalogenases (RDases).  Dhc 

genomes contain multiple RDase genes (e.g., 11 in strain BAV1, 36 in strain VS) (Löffler FE, 

Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder 

SH, 2013).  Few Dhc RDases have assigned function and all of them share common 

characteristics such as a Tat signal peptide close to the N-terminus, two iron sulfur clusters close 

to the C-terminus, and an adjacent B gene.  To date, only a few RDases have been biochemically 

characterized and implicated in specific dechlorination reactions, and an RDase responsible for 

1,2-D-to-propene dechlorination has not been identified.  In this study, RDase transcript, cDNA 

clone libraries and expression analysis implicated DcpA in 1,2-D reductive dechlorination to 

propene.  A dcpA-targeted qPCR approach correlated dcpA presence with 1,2-D reductive 

dechlorination activity indicating that dcpA serves as a biomarker for 1,2-D reductive 

dechlorination.  

 

Methods 

 

Microcosms and enrichment cultures.  

 

Details on sample collection and site information are provided as Supplemental Material and 

given in Table 3.1.  Microcosms were prepared using completely synthetic, reduced mineral salts 

medium following established procedures (Jianzhong He et al., 2002) with the following 

modifications: One g (wet weight) of solids were transferred to sterile 60-mL (nominal capacity) 

glass serum bottles inside an anoxic chamber (N2/H2, 97/3%, vol/vol),,  lactate and vitamin B12 
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were added to a total volume of 40 mL to achieve final concentrations of 5 mM and 50 μg per 

liter, respectively.  Microcosms established with groundwater were initiated with 20 mL of 

groundwater plus 19 mL of medium.  1,2-D was added to each bottle to obtain a final aqueous 

phase concentration of 0.2 mM.  All microcosms were prepared in duplicates and incubated 

statically, in the dark, at room temperature.  After all of the 1,2-D was dechlorinated to propene, 

3% inocula [vol/vol] were transferred to glass vessels containing fresh medium.  After four 

consecutive transfers, all solids were removed.  Propene and 1,2-D concentrations were 

monitored by manually injecting 0.1 mL headspace samples into a HP 7890 gas chromatograph 

(GC) equipped with a DB-624 column (60 m length, 0.32 mm diameter; film thickness of 1.8 μm 

nominal) and a flame ionization detector (FID) as described (Amos, Christ, Abriola, Pennell, & 

Löffler, 2007). To verify propene formation, additional GC measurements were made with an 

Agilent HP-PLOT/Q column (30 m length, 0.53 mm diameter; 40 um of film thickness), which 

resolves propene from other C1-C3 alkanes and alkenes.  

 

DNA isolation.   

 

The DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) was used to extract DNA from 

sediment-free cultures, with modifications to improve cell lysis (Kirsti M Ritalahti & Löffler, 

2004).  DNA from solid and groundwater samples used the MO BIO Power Soil DNA kit (MO 

BIO Laboratories Inc., Carlsbad, CA, USA) and the PowerWater DNA Isolation Kit (MO BIO 

Laboratories Inc.), respectively, following the manufactures recommendations. 

 

RNA isolation and preparation of cDNA libraries.  

 

Biomass was collected from 10-20 mL of RC and KS culture suspensions, when 50-75% of the 

initial 1,2-D dose had been converted to propene.  Cells were harvested by vacuum filtration 

onto a Durapore hydrophilic polyvinylidene fluoride membrane (25 mm diameter and 0.22 μm 

pore size) (Millipore, Billerica, MA).  RNA extraction, DNase treatment, cDNA synthesis and 

purification were performed as described (K M Ritalahti, Cruz-García, Padilla-Crespo, Hatt, & 

Löffler, 2009).  cDNA libraries were established with degenerate primers B1R and RR2F 
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targeting Dhc RDase genes (Krajmalnik-Brown et al., 2004).  Primer walking procedures 

extended the partial dcpA and dcpB genes (see Supplemental Material for details).  

 

Quantitative real-time PCR (qPCR) 

 

Dhc and Dhgm 16S rRNA gene-targeted PCR assays followed established protocols (see Table 

3.2 for primer information and references).  The IDT DNA Primer Quest software 

(http://scitools.idtdna.com/Primerquest/) was used to design qPCR primers dcpA-1257F and 

dcpA-1449R with TaqMan probe dcpA-1426Probe to enumerate dcpA gene copies (Table 3.2).  

First, the primers were used with SYBR Green chemistry to recognize non-specific amplification 

and/or primer-dimer formation (Hatt & Löffler, 2011).  Standard curves were generated with ten-

fold serial dilutions (10
8 

to 10
0
 copies) of the partial Dhc strain KS dcpAB gene fragment cloned 

into the TOPO TA (Invitrogen) pCRII plasmid.  To confirm target specificity, melting curves 

were obtained with genomic template DNA from Dhc strains RC and KS and Dhgm strain BL-

DC-9.  

 

Additionally, the qPCR amplicons were resolved in 1% agarose gels run at 120 volts for 30 min 

to assess amplicon size target-specific amplification.  Reactions with sterile water (no-template 

DNA) and with genomic DNA from Dhc strain GT, which does not possess the dcpA gene, 

served as negative controls.  After validation and optimization in SYBR Green qPCR, the 

primers were used with the TaqMan probe dcpA-1426 in assays as described (Kirsti M Ritalahti 

et al., 2006). All assays exhibited amplification efficiencies between 100 ± 10%; (i.e., slope 

within -3.6 and ­3.1), consistency across replicate reactions, and linear standard curves (R
2
 > 

0.980) (ABI, 2005; Bustin et al., 2009).  A quantification limit of 30 copies per reaction was 

determined based on fluorescence signals above the cycle threshold value of 0.2 within the first 

38 PCR cycles measured in 20 replicate assays.  The lowest value of the standard curve (3 copies 

per reaction) was the detection limit, and all non-template control assays fell below this value.  

The qPCR assay conditions for the reactions targeting the Dhc 16S rRNA gene have been 

published (Kirsti M Ritalahti et al., 2006).  All known Dhc genomes possess one 16S rRNA gene 

copy and the enumeration of this gene is used to determine the Dhc cell numbers (Kirsti M 
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Ritalahti et al., 2006).  The number of dcpA genes per Dhc genome was calculated by dividing 

the number of dcpA genes copies detected per mL of culture by the total number of Dhc 16S 

rRNA genes detected in the same culture volume.   

 

For transcriptional analysis, cDNA generated from active 1,2-D-dechlorinating cultures served as 

template.  All qPCR data were corrected for the loss (i.e., % recovery) of luciferase transcripts, 

which were used as an internal standard  (Johnson, Lee, Holmes, Alvarez-Cohen, & V. F. 

Holmes, 2005) and rpoB transcripts were quantified as a measure of general metabolic activity as 

described (Fung, Morris, Adrian, & Zinder, 2007).  The rpoB housekeeping gene is conserved in 

Dhc genomes and rpoB transcripts were quantified as a measure of general metabolic activity 

and for normalization (Fung, Morris).  When applicable, dcpA transcript abundances were 

normalized to rpoB or to dcpA gene copy numbers.  Starved cultures (i.e., cultures that had 

consumed all 1,2-D for at least 1 month) served as baseline controls for the transcriptional 

studies.  All samples were analyzed in triplicate at two dilutions (1:10 and 1:100) using the ABI 

7500 fast quantitative real-time PCR (qPCR) instrument (Applied Biosystems) and the reported 

values represent the average of at least three biological replicate cultures (i.e., six pseudo-

replicates per sample, or 18 datasets for the three biological replicates).  

 

Cloning dcpA sequences from environmental samples and phylogenetic analysis.   

 

Primers dcpA-360F and dcpA-1449R were designed for standard PCR reactions to detect, clone 

and sequence dcpA genes from samples of interest (Table 3.2).  These primers were designed 

based on alignments of the dcpA sequences retrieved from the cDNA libraries of Dhc strains RC 

and KS and the dcpA gene (Dehly_1524) of Dhgm strain BL-DC-9.  dcpA clone libraries were 

established using DNA isolated from the original sediment and groundwater samples listed in 

Table 3.1.  Environmental DNA samples were subjected to nested PCR and using an initial PCR 

amplification reaction with 2 μL of undiluted or 1:10 diluted template DNA with the degenerate 

primers B1R and RRF2 as described .  Subsequently, a second (nested) round of PCR using the 

dcpA-specific primers dcpA-360F and dcpA-1449R was performed using 2 μL of the DNA 

solution obtained from the first round of amplification (see Figure 3.1 for approximate binding 
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sites for primers RRF2 and B1R as well as the dcpA specific primers).  The expected amplicon 

size generated in nested PCR was 1,089 bp.  The dcpA-specific PCR reactions consisted of (final 

concentrations) 1x PCR buffer, 2.5 mM of MgCl2, 250 μM of each deoxynucleoside triphosphate 

(ABI), 250 nM of each primer, and 2.5 U of AmpliTaq polymerase (ABI).  The following 

temperature program was used to amplify the dcpA gene: 94°C for 2 min 10 s (1 cycle); 94°C for 

30 s, 56.0°C for 45 s, and 72°C for 2 min 10 s (30 cycles); and 72°C for 6 min.  The dcpA 

amplicons were cloned in the pCRII TOPO vector and transformed into E. coli TOP’10 

competent cells (TOPO TA cloning kit, Invitrogen) following the manufacturer’s 

recommendations.  The QIAprep Spin Miniprep kit (Qiagen, Valencia, CA, USA) was used for 

plasmid isolation, the inserts were sequenced using primers M13F and M13R 

(http://tools.invitrogen.com/content/sfs/manuals/nupage_tech_man.pdf), and the DNA nucleotide 

sequences were translated (http://web.expasy.org/translate/) and aligned using ClustalW (J. D. 

Thompson & Higgins, 1994) in MEGA version 5 (Tamura et al., 2011).  Phylogenetic 

relationships were calculated from a total of 53 amino acid (aa) sequences using the neighbor 

joining tree method (Saitou & Nei, 1987) and evolutionary distances were computed using the 

number of differences method (Nei & Kumar, 2000).  Branch support values were estimated with 

a bootstrap test (1,000 replicates) (Felsenstein, 1985).  The 53 translated nucleotide sequences 

used in the phylogenetic tree comprised 48 partial dcpA sequences (~1 kb in length) obtained 

from environmental samples, the complete dcpA sequence of Dhgm strain BL-DC-9 RC, Dhc 

strain RC and strain KS, the translated nucleotide sequence of the pseudogene DET0162, and 

DET1538, encoding a putative RDase with unknown function (both identified on the genome of 

Dhc strain 195 (Seshadri et al., 2005).  DET1538 served as the out-group for phylogenetic 

analyses.  

 

Protein assays and BN-PAGE  

 

Dhgm strain BL-DC-9 was used for in vitro enzyme assays, BN-PAGE and proteomics 

workflows because strain BL-DC-9 is a pure culture and its genome sequence is available. Strain 

BL-DC-9 harboring the dcpA gene was grown with 0.5 mM 1,2-D.  Cells were harvested by 

centrifugation (10, 000 x g for 20 min at 4C) and lysed by bead beating (Tang S, Chan WW, 
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Fletcher KE, Seifert J, Liang X, Löffler FE, Edwards EA, 2013).  The crude extracts were 

subjected to Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) to detect reductive 

dechlorination activity in gel slices following electrophoretic separation.  Activity assays with 

individual gel slices were performed as described (Tang S, Chan WW, Fletcher KE, Seifert J, 

Liang X, Löffler FE, Edwards EA, 2013) with minor modifications (see Supplemental Material).  

In the activity assays, the positive controls consited of 1 mL of pelleted cell culture suspended in 

assay buffer while negative control vials received not protein.  

 

Two dimensional liquid chromatography-tandem mass spectrometry (2D LCMS/MS).    

 

BN-PAGE enzyme assays were combined with proteomic workflows to identify RDase peptides 

present in the gel slices showing 1,2-D dechlorination activity.  Identified peptides sequences 

were matched to the closed genome sequence of Dhgm strain BL-DC-9 (NC_014314.1) using 

MyriMatch Tabb, Fernando, & Chambers, 2007) along with the IDPicker software to translate 

spectra into peptide sequences (Holman, Ma, & Tabb, 2012).  Detailed information on sample 

preparation for 2D-LC-MS/MS analysis and database parameters are available in the 

Supplemental Material.  

 

Computational analyses.   

 

The DcpA sequences were analyzed for secretory signal peptides using the TatP 

(www.cbs.dtu.dk/services/TatP) and SignalP (http://www.cbs.dtu.dk/services/SignalP/) 

programs.  The Compute pI/Mw program (http://us.expasy.org/tools/pi_tool.html) was used to 

predict the molecular weight and isoelectric point of DcpA.  The DcpB sequences were analyzed 

with TMMOD (http://www.liao.cis.udel.edu/website/servers/TMMOD/) to predict protein 

topology based on transmembrane motifs.  The presence of corrinoid and ribosome binding sites, 

and a putative Dehalobox (a stretch of nucleotides that resemble the FNR-box that bind to the 

promoter for transcription initiation) (Smidt H, van Leest M, van Der Oost J, de Vos WM, 2000) 

were identified by visually inspecting the nucleotide sequences and by manually aligning the 

regions with known motifs. 
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Nucleotide sequence accession numbers.    

 

The dcpA gene sequences from Dhc strain KS and RC are deposited in GenBank under the 

accession numbers JX826286 and JX826287, respectively.  The 48 dcpA sequences obtained 

from environmental samples have the accession numbers JX913691-JX913735 and KC906160-

KC906162.   

Results 

 

cDNA libraries identify the 1,2-D RDase gene 

 

Using template cDNA derived from the RNA pool of the 1,2-D-grown cultures RC and KS, PCR 

with the degenerate RDase-targeted primers B1R and RR2F yielded amplicons of approximately 

1,500 base pairs (bp) in length (Figure S3.1).  No amplification occurred when RNA prior to the 

RT step was used as PCR template, confirming that all genomic DNA had been removed from 

the RNA pool (Figure S3.1).  Among 200 E. coli clones screened from the B1R and RR2F 

amplicon-derived clone libraries of cultures RC and KS, 12 and 10, respectively, had vectors 

carrying cDNA fragments of the expected size of ~1,500 bp.  Sequence analysis of the 10 KS 

cDNA library clones with an insert of the correct size revealed a single 1,486 bp long sequence.  

The sequence included the nearly complete RDase A and a partial RDase B gene indicating that 

these genes were co-transcribed.  An open reading frame corresponding to the RDase B gene 

start was found 18 nucleotides downstream of the RDase A gene TAA stop codon, and included 

35 nt of the adjacent RDase B gene.  Analysis of the 12 RC cDNA library clones revealed eight 

inserts with the same 1,486 bp insert found in the KS cDNA library clones and four clones had a 

1,589 bp-long insert.  The 1,589 bp-long insert consisted of 1,472 bp of the partial RDase A 

gene, 19 nt of intergenic region and 98 bp of a partial RDaseB gene.   

 

The 1,486 bp insert cloned from both Dhc strain RC and strain KS genes showed 90% sequence 

identity to a putative RDase gene (gene tag ID: Dehly_1524) found in the genome of the 1,2-D-

dechlorinating Dhgm strain BL-DC-9.  To rule out the presence of a Dhgm-type population in the 

RC and KS cultures, PCR with primers targeting the Dhgm 16S rRNA gene was performed; 
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however, DNA from cultures RC and KS failed to produce an amplicon confirming that Dhgm 

was not present in these cultures.  The second 1,589 bp-long insert found in four RC clones was 

99.9% similar to the putative RDase gene RCRdA02 (EU266045).  This gene was almost 

identical (98-99%) to the Dhc RDase genes DehalGT_1352 (CP001924), cbdbA1638 

(AJ965256), KSRdA02 (EU266035) and also demonstrated high similarity (96% nt identity) to 

FL2RdhA6 in Dhc strain FL2 (AY374250).  Additionally, RCRdA02 shared 98-99% nt sequence 

identity with RDase genes retrieved from the KB-1 and TUT2264 dechlorinating mixed cultures 

(KB1RdhAB5; DQ177510 and TUT2264_rdhA2; AB362921) and from a contaminated site 

(FtL-RDase-1638; EU137843).  At the nucleotide level, no gene in Dhgm strain BL-DC-9 

genome shared similarity with RCRdA02.  

 

Protein assays and LC-MS/MS analysis 

 

After BN-PAGE separation of Dhgm strain BL-DC-9 proteins, a gel slice representing the 

section below the 75 kDa marker demonstrated 1,2-D-dechlorinating activity (Figure 3.2A, slice 

4).  Coomassie staining revealed that this gel slice comprised multiple polypeptides (i.e., several 

visible bands) near the 75-55 kDa size marker, and a major band of 45.5 kDA (Figure 3.2A).  

Subsequent SDS-PAGE separation of the proteins eluted from this gel piece exhibited protein 

bands with masses of 75, 63 and 50 kDa (Figure 3.2B, slice N1, N2 and N3).  

 

LC-MS/MS analysis of the proteins separated by SDS PAGE identified 15 Dhgm strain BL-DC-

9 proteins (Table 3.3, slices N2 and N3).  In the N1 gel section, protein levels were too low for 

confident identification, while in the gel section around 50 kDa (i.e., slice N3), Dehly_0337 

(annotated as a translation elongation factor Tu) and Dehly_1524 (annotated as RDase) were the 

dominant proteins based on peptide spectral abundances (Table 3.3).  Other peptides associated 

with gel slice N3 included subunits of the nickel-dependent hydrogenases encoded by 

Dehly_0929 and Dehly_0726 (Table 3.3).  Among all the protein fragments recovered from 

slices N2 and N3, the highest coverage and spectral counts belonged to Dehly_1407, a 

chaperonin GroEL protein (Table 3.3, slice N2).  Dehly_1524 was the only RDase associated 
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with the gel slices (Table 3.3), corroborating that this enzyme catalyzes 1,2-D-to-propene 

dichloroelimination.  The 1,2-RDase was designated DcpA, encoded by the dcpA gene.  

 

Primer walking and characterization of dcpAB gene cassette.  

 

Since the degenerate primer pair B1R and RRF2 did not amplify the complete dcpA and dcpB 

gene sequences, the entire dcpAB genes from strains Dhc RC and KS were obtained using primer 

walking approaches.  The application of primer dcp_up120F and dcpA-1449R yielded ~1,569 

bp-long PCR products and extended the sequence 89 bp upstream of the ATG start codon 

(Figure S3.2).  The final and complete assembly of the dcpA gene sequences derived from Dhc 

strains RC and KS were nearly identical (99.8% nt sequence identity), and the translated protein 

sequence differed by only a single aa at position 85 (i.e., a serine (S) in strain RC is replaced by a 

leucine (L) in strain KS).  Inspection of the region upstream of the start codon identified the 

putative ribosome-binding site (RBS or Shine-Dalgarno sequence) ‘AGAGG’ starting nine 

nucleotides upstream of the dcpA start codon and a putative Dehalobox was identified 67 nt 

upstream of dcpA.  Primer walking procedures also extended dcpB through the TAA stop codon 

(an additional 184 bp).  The final assembly of the dcpB gene of Dhc strains RC and KS revealed 

that both sequences shared 99% sequence identity and their corresponding proteins differed in 

only one aa where glutamine (Q) was replaced by a glutamic acid (E) in strain RC at position 

eleven (Figure S3.3).  Therefore, the motif WYXW, conserved in other RDase B proteins, is 

present in the form WYEW in Dhc strain RC and in the form WYQW in Dhc strain KS and 

Dhgm strain BL-DC-9 (Figure S3.3).  The final assembly of the dcpAB gene cassette of Dhc 

strains RC and KS consisted of a 1,455 nt (484 aa) long dcpA gene and a 219 nt (73 aa) long 

dcpB gene separated by an 18 nt spacer.  

 

Computational characterization of DcpA and DcpB.   

 

A Tat signal peptide RRDFMK starting at position nine with a predicted peptide cleavage site 

between the aa positions 30 and 31 was identified (Figure S3.4).  The mature DcpA protein (i.e., 

after cleavage of the signal peptide) in Dhc strain RC and strain KS had a predicted isoelectric 
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point (pI) of 5.99 and a molecular weight of 50.8 kDa.  The corrinoid-binding motif DxHxxG-

x41-42-SxL-x24-28-GG found in several corrinoid-containing enzymes from prokaryotes (Ludwig 

& Matthews, 1997) was not present in DcpA but a putative corrinoid-binding sequence DHXG-

X39-S-X32-G close to the C-terminus was identified (Figure S3.4).  DcpA of both Dhc strain RC 

and strain KS share two identical iron sulfur cluster-binding motifs FCX2CX2CX3CP and 

CX2CX3C (Figure 3.1 and Figure S3.4).  

 

The topology of the DcpB protein revealed two predicted transmembrane regions spanning from 

positions 12-32 and 41-61 (Figure S3.3).  Additional characteristics included two inside loops 

(i.e., facing the cytoplasm) from aa positions 1-11 and 62-73, and one outside loop (i.e., facing 

the periplasm) from positions 33-40 (Figure S3.3).  Furthermore, a putative RBS site ‘AGAGG’ 

for initiation of translation was detected in the small 18-nt intergenic region separating dcpA and 

dcpB.  

dcpA Sequence similarity to other RDase genes.    

 

The dcpA gene of Dhc strains RC and KS and Dhgm strain BL-DC-9 (Dehly_1524) shared 60% 

overall nt identity to pseudogene DET0162 identified on the genome of Dhc strain 195, and an 

even greater sequence identity of 66% (260 out of 395 nt) occurred near the 3’ end.  Pseudogene 

DET0162 is 1,464 nt long and has a point mutation that results in a premature stop codon leading 

to a truncated, 59 aa-long polypeptide.  If completely translated, the gene would encode a 

putative RDase of approximately 486 aa in length with all the common RDase features, 

including the Tat RRDFMK motif near the N-terminus and the two FCX2CX2CX3CP and 

CX2CX3C iron sulfur cluster-binding motifs near the C-terminus.  The 486 aa protein would 

have 45% aa identity to the DcpA of strain RC and strain KS, and 46% to the DcpA of strain BL-

DC-9.  Located 129 bp downstream of the 3’ end of the pseudogene DET0162 is a characteristic 

B gene (DET0163).  This B gene also shared 55 - 56% nt sequence identity (44 - 47% aa 

sequence identity) with the dcpB of Dhgm strain BL-DC-9 (Dehly_1525) and of Dhc strains RC 

and KS.  
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The Dhc DcpA proteins shared 92% sequence identity and 95% sequence similarity with the 

Dhgm strain BL-DC-9 DcpA protein (Dehly_1524) (Figure S3.5).  DcpA shared no more than 

34% aa sequence identity with other Chloroflexi RDases and other RDase sequences deposited in 

databases.  Inspection of the recently closed genome of the 1,2-D-to-propene-dechlorinating 

Desulfitobacterium dichloroeliminans strain DCA1 (LMG P-21439) 

(http://www.ncbi.nlm.nih.gov/genome/?term=txid871963) revealed no RDase with greater than 

18% aa sequence identity to DcpA.  

 

dcpA-Targeted PCR and qPCR 

 

PCR with primers dcpA-360F and dcpA-1449R produced a single amplicon of the expected size 

of 1,089 bp when applied to genomic DNA from cultures RC and KS and Dhgm strain BL-DC-9.  

No amplicons were obtained with template DNA from Dhc strain GT, which cannot dechlorinate 

1,2-D.  qPCR standard curves generated with primers dcpA-1257F and dcpA-1449R using SYBR 

Green reporter chemistry exhibited linear amplification ranging from 1.7 to 1.7 x 10
8
 16S rRNA 

gene copies per µL of template DNA (e.g., slope = -3.4, y intercept = 36.6 and R
2
 = 0.999).  

Melting curve analyses of amplicons generated with genomic DNA from Dhc culture RC, culture 

KS and Dhgm strain BLDC-9 showed a single, symmetric peak (suggesting a single PCR 

product) with average melting temperatures (Tm) of 78.5±0.1, 79.2 ± 0.1, and 78.6 ± 0.1, 

respectively (Figure S3.6).  TaqMan qPCR assays with the same primer pair combined with 

dcpA-1426Probe also exhibited linear amplification over the same range of template DNA 

concentrations (e.g., slope = -3.5, y intercept = 39.5 and R
2
 = 0.997) (Figure S3.7).  

 

TaqMan qPCR demonstrated that Dhc cell numbers increased during cultivation with 1,2-D as 

electron acceptor.  Cultures RC and KS produced 1.8 ± 0.1 x 10
7
and 1.4 ± 0.5 x 10

7 
Dhc cells per 

µmole of Cl
-
 released.  The enumeration of dcpA and Dhc 16S rRNA genes in replicate cultures 

of Dhc strains RC and KS demonstrated that both gene targets occurred in similar abundances (in 

1 mL of culture of Dhc strain KS 6.6 E7 ± 0.4 E7 16S rRNA genes and 6.2 E7 ± 0.4 E7 of dcpA 

genes were detected; while Dhc strain RC 6.1 E7 ± 0.2 E7 16S rRNA genes and 5.2 E7 ± 0.3 E7 

dcpA genes were detected per mL of culture) indicating that the Dhc genomes harbored a single 
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dcpA gene copy The dcpA-targeted primers dcpA-1257F and dcpA-1449R were also used to 

quantify the dcpA transcript abundances in Dhc cultures RC and KS.  The RT-qPCR results 

showed the upregulation of dcpA gene transcription in actively dechlorinating RC and KS 

cultures as compared to cultures that had consumed all 1,2-D (Figure 3.3).  

 

Application of dcpA PCR and qPCR assays to microcosm and environmental samples.   

 

Propene was detected in 1,2-D-amended microcosms established with five out of the 13 sample 

materials tested (Table 3.1).  In contaminated sediments from Third Creek, TN, the dcpA gene 

increased from below the quantification limit to 5.6 ± 0.1 x 10
6
 copies per mL in propene 

producing sediment-free enrichment cultures.  Nested PCR assays detected both Dhgm and Dhc 

16S rRNA genes in the initial Third Creek sediment samples.  qPCR assays indicated that Dhc 

and Dhgm populations also increased from below the quantification limit in the initial samples to 

5.6 ± 0.6 x 10
6
 and 9.7 ± 0.3 x 10

3 
gene copies per mL of sediment-free enrichment culture, 

respectively.   

 

Nested PCR detected the dcpA gene in all aquifer and sediment samples that yielded 1,2-D-

dechlorinating microcosms.  The only microcosms with positive dcpA detection but without 

propene formation were established with aquifer materials from the site at Barra Mansa, Rio de 

Janeiro, Brazil.  The dcpA gene was not detected in site materials collected from the Waynesboro 

site and in Ft. Pierce groundwater samples collected outside of a 1,2-D plume.  Consistent with 

the absence of the dcpA gene, the microcosms established with these materials failed to 

dechlorinate 1,2-D (Table 3.1).  Interestingly, three of four wells collected inside the 1,2-D 

plume at the Ft. Pierce site tested positive for dcpA, consistent with the detection of propene at 

these well locations.  Figure S3.8 depicts the PCR results from microcosm and environmental 

samples.  
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dcpA gene diversity.   

 

The primer pair dcpA-360F and dcpA-1449R retrieved nearly complete (~1 kb) dcpA amplicons 

with template DNA extracted from seven distinct sample materials and cloning and sequencing 

efforts generated 48 dcpA sequences (Figure 3.4).  Distance analysis of the DcpA sequences 

(total of 247 aa analyzed) and high bootstrap values indicated that the sequences formed two 

distinct phylogenetic clusters.  Cluster 1 included 33 environmental DcpA sequences most 

similar (93-95%) to the Dhgm DcpA (Dehly_1524), and Cluster 2 comprised 15 DcpA sequences 

most similar (95-99%) to the DcpA of Dhc strains RC and KS.  All but one of the 48 DcpA 

sequences contained both of the characteristic iron-sulfur cluster binding motifs 

(FCX2CX2CX3CP and CX2CX3C) (Figure S3.9).  Overall, the translated environmental dcpA 

sequences differed by 5-7% from the DcpA of Dhgm strain BL-DC-9 and by 1-8% from the 

DcpA of Dhc strains KS and RC. Interestingly, the deduced DcpA sequences from different 

continents (i.e., Europe and South America) shared >98% sequence identity indicating that this 

RDase is either highly conserved or has been recently disseminated.   

 

Discussion 

 

Dhgm and Dhc populations have been implicated in 1,2-D-to-propene dechlorination(Moe WM, 

Yan J, Nobre MF, da Costa MS, Rainey, 2009; Kirsti M Ritalahti & Löffler, 2004).  Since the 

Dhc 16S rRNA gene provides insufficient resolution to distinguish strains with the ability to 

transform 1,2-D from strains lacking this trait, a functional biomarker was sought to support site 

assessment (i.e., are 1,2-D-dechlorinating populations present?) and bioremediation monitoring 

(i.e., are 1,2-D-dechlorinating populations active?).  An integrated approach combining 

transcription, expression, enzymatic and PCR approaches implicated dcpA in 1,2-D 

dichloroelimination to propene.  The dcpA gene is co-transcribed with its associated dcpB gene 

indicating that polycistronic mRNA was generated, a feature shared among functional RDases of 

Dhc strains and other organohalide-respiring bacteria (e.g., Desulfitobacterium dehalogenans, 

(Smidt H, van Leest M, van Der Oost J, de Vos WM, 2000).   The putative RBS site preceding 

both the dcpA and the dcpB gene has been observed in other RDases (i.e., cbrA, vcrA) supporting 
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that bacterial polycistronic mRNA often possess internal RBS sites to allow translation initiation 

at multiple sites resulting in efficient protein biosynthesis(Lodish H, Berk A, Zipursky SL, 

Matsudaira P, Baltimore D, 2000).  The presence of transcriptional regulatory elements (e.g., a 

ribosomal binding site and a putative Dehalobox box upstream of the dcpA gene start codon) and 

the results of the experimental transcription studies (cDNA library, RT-qPCR) suggest that dcpA 

gene activity is regulated.  qPCR revealed equal abundances of dcpA and Dhc 16S rRNA genes 

in cultures RC and KS suggesting that the dcpA gene occurs as a single chromosomal copy in 

Dhc strains RC and KS as well as in Dhgm strain BL-DC-9.  

 

The Dhc- and dcpA-targeted qPCR assays linked propene production to Dhc growth.  The 

abundances of Dhc strain RC and strain KS with 1,2-D as electron acceptor (1.8 ± 0.1 x 10
7
 and 

1.4 ± 0.5 x 10
7
 cells per mL, respectively) are similar to values reported for Dhgm (1.5 x 10

7
 

cells per mL) (Yan J, Rash BA, Rainey FA, Moe WM, 2009).  Standard Gibbs free energy 

calculations indicate that 1,2-D dichloroelimination (the removal of two chlorine substituents 

from adjacent carbon atoms) yields less energy per chlorine atom released than stepwise 

hydrogenolysis.  1,2-D dichloroelimination is associated with a change in Gibbs free energy of -

183 kJ/mol, which is less than the free energy change associated with stepwise hydrogenolysis 

(i.e., -131 kJ/mol per electron pair or 262.5 kJ/mol total). Theoretically, organisms capable of 

1,2-D hydrogenolysis to a monochlorinated propane consume the same amount of H2 but gain 

less energy compared to organisms catalyzing dihaloelimination; however, organisms capable of 

two-step 1,2-D hydrogenolysis to propane gain more energy but require the double amount of H2 

.  Therefore, under H2-limiting conditions, 1,2-D dihaloelimination organisms may have an 

advantage over 1,2-D hydrogenolysis organisms because of the reduced H2 requirement.  All 

enrichment efforts to date have yielded cultures that directly transform 1,2-D to propene without 

the intermediate formation of monochlorinated propanes.  The reasons why enrichment efforts 

with 1,2-D as electron acceptor only yielded cultures performing dichloroelimination are unclear 

but may have to do with deltaG, activation energy, kinetic barriers, the toxicity of 

monochlorinated propanes as dichloroelimination circumvents their formation, or biased 

cultivation conditions selecting against bacteria catalyzing stepwise reductive dechlorination 

(i.e., hydrogenolysis) reactions.  
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The gene most similar to dcpA is the pseudogene DET0162 from Dhc strain 195.  This 

pseudogene may be a vestigial remnant of a functional gene that shared a common ancestor with 

dcpA.  Interestingly, pseudogene DET0162 has a RBS site (“AGGAG”), and a possible 

Dehalobox, suggesting this gene is under regulatory control.  The pseudogene has the alternate 

GTG start codon (instead of ATG), which is a less effective starting codon. Interestingly, 

transcriptional studies targeting all 19 RDases of Dhc strain 195 actively dechlorinating PCE or 

TCE demonstrated that pceA (encoding a PCE RDase), tceA (encoding a TCE-to-VC RDase) and 

DET0162 were the only RDase genes upregulated (Fung et al., 2007).  Similar results were 

reported with PCE-dechlorinating mixed cultures containing Dhc strain 195, where pseudogene 

DET0162 and tceA were highly upregulated (Brian G Rahm et al., 2006).  The pseudogene was 

also one of only two RDase genes (along with pceA) that were found to exhibit high transcript 

levels in cells grown with 2,3-dichlorophenol (Fung et al., 2007).  Even though the transcript 

levels of the pseudogene significantly increased when PCE, TCE or 2,3-dichlorophenol were 

provided as electron acceptors to strain 195 cultures, the translated product was never detected in 

proteomics efforts (Fung et al., 2007), probably because of the stop codon and ensuing 

proteolysis.  The original function of this pseudogene remains speculative. Recently, a 

nomenclature for RDases has been proposed and DcpA clusters close to the RD_OG20, this 

group is composed of BAV1_0104, cbdbA88 and DET0311; but this ortolog group shares only 

31-33 % aa identity and no more than 45% similarity to DcpA.  

 

RDase characterization has been challenging due to the difficulty obtaining biomass from Dhc 

and Dhgm pure cultures, the sensitivity of RDases to oxygen and the lack of a genetic system to 

heterologously express functional RDases.  The utility of the BN-PAGE approach coupled with 

LC-MS/MS analysis to assign function to RDases has been demonstrated (Tang S, Chan WW, 

Fletcher KE, Seifert J, Liang X, Löffler FE, Edwards EA, 2013); however, functional assignment 

based solely on in vitro enzyme assays can be potentially misleading because the reduced 

corrinoid co-factor associated with the RDase can reductively dechlorinate compounds that are 

not RDase substrates (Anke Neumann et al., 2002). To assign function to an RDase capable of 

1,2-D dichloroelimination, a multiple lines of evidence approach was employed, which 

combined qPCR and RT-qPCR analyses, BN-PAGE, enzyme activity assays, and SDS-PAGE 

followed by LC-MS/MS analysis.  With genome sequence information of organohalide-respiring 



 

 94 

bacteria rapidly increasing, this multiple lines of evidence approach will be useful to assign 

function to more RDase genes.  

 

Protein assays combined with BN-PAGE and LC-MS/MS confirmed that DcpA catalyzed 1,2-D 

dichloroelimination to propene.  The 1,2-D dechlorination activity was detected in gel slice 4 

representing the 37-75 kDa size range.  A recent study by Tang et al. found the main reductive 

dechlorination activity following BN-PAGE separation associated with the high molecular 

weight fraction near the 242 kDa size marker(Tang S, Chan WW, Fletcher KE, Seifert J, Liang 

X, Löffler FE, Edwards EA, 2013).  RDases with assigned function range in size between 49.7 

and 57.7 kDa, suggesting that the formation of protein complexes can occur, causing RDase 

protein(s) to associate with a higher than expected molecular size fraction.  Interestingly, some of 

the peptides that co-migrated with DcpA (e.g., chaperonin GroEL, hydrogenase subunits, and the 

elongation translation factor Tu) have been shown to be abundant proteins in active Dhc cultures 

(Morris et al., 2006, 2007).  The co-migration of RDases with GroEL and hydrogenases proteins 

in BN-PAGE is not unprecedented (Tang & Edwards, 2013), suggesting a possible association of 

these proteins.  The interaction of RDases with the hydrogenases is intriguing because such 

complexes could enable direct electron transfer from the hydrogen-oxidizing hydrogenase to the 

RDase, which transfers the electrons to the chlorinated electron acceptor.  Direct hydrogenase-

RDase electron transfer would be consistent with the absence of electron carriers, which have not 

been identified in Dhc.  The chaperonin GroEL may aid in the folding and stabilization of such a 

hydrogenase-RDase complex.  EF-Tu (elongation factor thermo unstable) is a GTP-binding 

protein involved in protein translation and abundant in active bacterial cells (Furano, 1975), 

suggesting active protein biosynthesis occurring in 1,2-D-dechlorinating cells.  Although RDases 

are the most direct indicators for reductive dechlorination reactions, general RDase-associated 

proteins may serve as additional biomarkers for monitoring metabolically active Dhc and Dhgm 

populations.  

 

Recent studies have demonstrated that stress conditions (i.e., oxygen exposure, heat, starvation) 

influence RDase gene transcription and RDase transcript can be measured in Dhc cultures not 

exhibiting reductive dechlorination activity (Amos, Ritalahti, Cruz-Garcia, Padilla-Crespo, & 
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Löffler, 2008; Fletcher et al., 2011).  These findings emphasize that Dhc RDase gene activity 

and/or transcript turnover underlies poorly understood regulatory controls.  Nevertheless, 

transcriptional analysis applied to cultures amended with a growth-supporting chloroorganic 

substrate contributed to the identification of RDases including dcpA (this study), bvcA encoding 

a DCE and VC RDase (Krajmalnik-Brown et al., 2004)  and mbrA encoding a PCE to trans-DCE 

RDase (Chow et al., 2010).  

 

The analysis of the Dhc RC cDNA clone library revealed two active RDase genes, RCRdA02 

and dcpA.  Dhgm strain BL-DC-9 does not possess a RCRdA02 homolog but a highly similar 

dcpA gene.  Further, gene RCRdA02 has nearly identical orthologs in Dhc strains that cannot 

grow with 1,2-D (i.e., strains CBDB1, FL2 and GT).  These findings corroborate dcpA as a 1,2-D 

RDase and indicate that RCRdA02 is not directly involved in 1,2-D reductive dechlorination.  

Interestingly, the ortholog of RCRdA02 in strain FL2 (FL2RdhA6) was one of multiple RDase 

genes transcribed in strain FL2 cultures grown with TCE, cis-DCE (Waller, Krajmalnik-Brown, 

Löffler, & Edwards, 2005) and trans-DCE (unpublished results) indicating that this RDase gene 

is not induced by a specific chloroorganic substrate.  In previous studies, the RCRdA02 homolog 

KB1RdhAB5 was transcribed in consortium KB-1 when exposed to TCE, cis-DCE, or VC (A S 

Waller, Krajmalnik-Brown, Löffler, & Edwards, 2005) while in the enrichment culture 

TUT2264, the RCRdA02 homolog TUT2264_rdhA2 was highly transcribed in cultures spiked 

with PCE (Futamata, Kaiya, Sugawara, & Hiraishi, 2009).  Additionally, the gene FtL-RDase-

1638 (99% nt identity to RCRdA02) was the most abundant transcript recovered in cDNA 

libraries established with RNA extracted from chlorinated ethene-contaminated groundwater 

(Lee, Macbeth, Sorenson, Deeb, & Alvarez-Cohen, 2008).  Another RDase gene, DET1545, 

which is 86% identical to RCRdA02 (and its translated product 94% identical and 97% similar to 

RCRdA02) has also been documented to be highly expressed during the transition to stationary 

phase (B G Rahm & Richardson, 2008b) and in pseudo steady state (B G Rahm & Richardson, 

2008a).  Overall, these findings suggest that the RCRdA02 gene is constitutively transcribed in 

metabolically active Dhc strains.  The quantification of RCRdA02 transcripts in environmental 

samples may serve as an indicator of general Dhc activity; however, RCRdA02 transcription 

appears not to be linked to specific reductive dechlorination reactions.   
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Previous studies investigated the environmental distribution of RDase genes with assigned 

functions (e.g., vcrA, tceA) in sample materials retrieved from aquifers contaminated with 

chlorinated ethenes (Krajmalnik-Brown et al., 2007; Müller JA, Rosner BM, Von Abendroth G, 

Meshulam-Simon G, McCarty PL, 2004).  The recovered RDase sequences exhibited greater 

than 95% and 98% identity with known tceA and vcrA genes, respectively, even in samples 

collected from geographically distinct locations (Krajmalnik-Brown et al., 2007; McMurdie PJ, 

Hug LA, Edwards EA, Holmes S, 2011; Müller JA, Rosner BM, Von Abendroth G, Meshulam-

Simon G, McCarty PL, 2004; Sung, Ritalahti, Apkarian, & Löffler, 2006).  Similar results were 

found in this study, where dcpA sequences retrieved from geographically distinct samples shared 

>98% sequence identity to the Dhc strain RC and KS and the Dhgm BL-DC-9 dcpA sequences.  

Of course, it is expected that similar RDase gene sequences are recovered with PCR primers 

targeting conserved RDase gene motifs.  Nevertheless, the primer pair dcpA-360F and dcpA-

1449R amplified a 1,089 bp-long dcpA gene fragments with sequence variability between the 

conserved primer binding sites, and are useful to improve understanding of dcpA sequence 

variability.  This approach revealed two dcpA clades, both of which were captured with the 

dcpA-targeted PCR approach described herein.  

 

A multiple lines of evidence approach identified dcpA encoding the 1,2-D reductive 

dehalogenase that catalyzes the dichloroelimination of 1,2-D to propene in specialized 

organohalide-respiring Chloroflexi.  The utility of dcpA-specific nested PCR and qPCR assays 

for the sensitive detection and enumeration of dcpA genes in environmental samples was 

demonstrated, and dcpA presence and abundance correlated with propene formation except in the 

samples from the Barra Mansa site in Brazil, where dcpA was detected but no 1,2-D 

dechlorination activity was observed in microcosms.  This groundwater contained up to 7,860 

µg/L chloroform (CF) as well as carbon tetrachloride (CT) and 1,1,1-dichloroethane (1,1,1-

TCA), which were described as potent Dhc inhibitors (Melanie Duhamel et al., 2002).  The 

microcosms did not produce methane, suggesting that CT, CF, and/or 1,1,1-TCA affected 

microbial activity, including the 1,2-D dechlorinating population(s).  This observation suggests 

that 1,2-D bioremediation may require prior removal of inhibitory co-contaminants.   
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Although other 1,2-D RDases exist (e.g., Desulfitobacterium dichloroeliminans strain DCA1 

does not harbor the dcpA gene but dechlorinates 1,2-D to propene), 1,2-D-respiring Chloroflexi 

appear to be major contributors to this activity at the sites investigated and the dcpA-targeted 

PCR assays augment the available toolbox for site assessment and bioremediation monitoring.  

Carbon stable isotope enrichment factors associated with 1,2-D dichloroelimination in cultures 

RC and KS harboring the dcpA gene have been determined (Fletcher KE, Löffler FE, Richnow 

HH, 2009) and a comprehensive molecular biological tools approach can now be applied to 

tackle 1,2-D-contaminated sites.  The application of environmental molecular diagnostics 

promises to decrease cost and achieve cleanup goals faster leading to early site closures and 

realizing significant cost-savings to the site owner(s), which will ultimately determine the value 

of these molecular tools.   
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Chapter 3 Appendix: Tables 

Table 3.1.  Site materials used for microcosm setup to evaluate 1,2-D reductive dechlorination activity and analyzed for the 

presence of Dhc and Dhgm 16S rRNA gene and the dcpA gene.  

Sample designation Sample location 
Sample 

type 

Major reported 

contaminants 

Date of 

collection 

Dechlorina

tion end 

products 

Dhc Dhgm dcpA 

Microcosms 

Third Creek, TRS1 Third Creek, Knoxville, TN SE PCE, TCE, 1,1,1-TCA Feb. 2011 Propene + + + 

Third Creek, TRS2 Third Creek, Knoxville, TN SE PCE, TCE, 1,1,1-TCA Feb. 2011 Propene + + + 

Third Creek, TRS3 Third Creek, Knoxville, TN SE PCE, TCE, 1,1,1-TCA Mar. 2011 Propene + + + 

Neckar River Stuttgart, Germany SE None May, 2011 Propene + + + 

Trester Stuttgart, Germany Solids
a
 None May, 2011 Propene + + + 

001-ST-SO, 2.7-2.9 m Barra Mansa, Brazil SE Chloroform, CCl4 Aug. 2010 
-
 b 

 
+ ND + 

002-ST-SO, 5.7-5.8 m Barra Mansa, Brazil SE Chloroform, CCl4 Aug. 2010 - 
b 

+ ND + 

Way-MW13D-12J811 
Waynesboro, GA.USA 

 
GW 1,2-D and 1,2-DCA Aug. 2010 - ND ND ND 

FP1-MW46, 22-26 m Ft. Pierce, FL, USA SE None 
c
 Aug. 2010 - ND ND ND 

FP2-MW49, 26-27 m Ft. Pierce, FL, USA SE None 
c
 Aug. 2010 - + + ND 

FP3-MW49, 46-47 m Ft. Pierce, FL, USA SE None 
c
 Aug. 2010 - + + ND 

FP4-MW47, 47-48 m Ft. Pierce, FL, USA SE None 
c
 Aug. 2010 - + ND ND 

FP5-MW49, 95-98 m Ft. Pierce, FL, USA SE None 
c
 Aug. 2010 - ND ND ND 

FP-MW33, 13-14 m Ft. Pierce, FL, USA GW 18,000 μg/L of 1,2-D June, 2012 Propene + + + 

FP-MW26, 14-15 m Ft. Pierce, FL, USA GW  17,000 μg/L of 1,2-D June, 2012 Propene + + + 

FP-MW20, 20-21m Ft. Pierce, FL, USA GW  810 μg/L of 1,2-D June, 2012 Propene + + + 
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Table 3.1 (continued) 

 
        

Sample designation Sample location 
Sample 

type 

Major reported 

contaminants 

Date of 

collection 

Dechlorina

tion end 

products 

Dhc Dhgm dcpA 

DNA samples 

FP-MW-2S, 6-7 m Ft. Pierce, FL, USA Biobead 14,000 μg/L of 1,2-D July, 2011 
No 

Propene
d
 

+ ND ND 

FP-MW-20, 20-21 m Ft. Pierce, FL, USA Biobead 810 μg/L of 1,2-D Feb. 2011 Propene
d
 ND ND + 

FP-MW-26, 14-15 m Ft. Pierce, FL, USA Biobead 17,000 μg/L of 1,2-D Mar. 2011 Propene
d
 + + + 

FP-MW-61, 20-21 m Ft. Pierce, FL, USA Biobead 140 μg/L of 1,2-D May, 2011 Propene
d
 ND + + 

FW-024 IFC site, Oakridge, TN GW Multiple Feb. 2004 NT + ND ND 

FW-103 IFC site, Oakridge, TN GW Multiple Feb. 2004 NT + + + 

FW-100-2 IFC site, Oakridge, TN GW Multiple Aug. 2005 NT + ND + 

FW-100-3 IFC site, Oakridge, TN, USA GW Multiple Feb. 2004 NT + ND + 

 

 

 

Legend: GW; groundwater   SE; sediments  NT; not tested    ND; not detected  

- ; No dechlorination in microcosm after 90 days incubation.  
a 
; Solid residues (trester) from wine making consisting mostly of grape skins. 

b
 ; Small amounts of 1-CP or 2-CP were detected in live microcosm but also in negative controls. 

c 
; Ft. Pierce is contaminated with 1,2-D (up to 24,000 µg/L) but the sediments tested here were for wells outside plume area. 

d
; Dechlorination not tested on microcosm, data provided reflect field-site conditions; there was no propene detected in FP1-MW- 
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 Table 3.2.  Primers and probes used in this study. 

 

Primer or probe Primer sequence (5’- 3’) Target  Purpose 

RRF2 
1
 SHMGBMGWGATTTYATGAARR RDaseA RRDFMK motif  Amplification of RDase-like genes 

B1R 
1
 CHADHAGCCAYTCRTACCA RDaseB WYEW motif Amplification of RDase-like genes 

dcpA-1257F
2
 CGATGTGCCAGCCATTGTGTCTTT dcpA gene  dcpA gene quantification and primer 

walking dcpA-1449R
2
 TTTAAACAGCGGGCAGGTACTGGT dcpA gene  dcpA gene quantification, direct and 

nested PCR with dcpA-360F   dcpA-1426Probe
2
 FAM-ACGTCATCTCAGATGAAGGCAGAGCT-BHQ dcpA gene  dcpA gene quantification, direct and 

nested PCR dcpA-360F
2
 TTGCGTGATCAAATTGGAGCCTGG 

dcpA qPCR  

dcpA gene quantification, direct and 

nested PCR with primer dcpA-1449R, 

primer walking 

Dhc-1200F CTGGAGCTAATCCCCAAAGCT Dhc 16S rRNA gene  Dhc 16S rRNA gene quantification 

Dhc-1271R CAACTTCATGCAGGCGGG Dhc 16S rRNA gene  Dhc 16S rRNA gene quantification 

Dhc-1240Probe FAM-TCCTCAGTTCGGATTGCAGGCTGAA-TAMRA Dhc 16S rRNA gene  Dhc 16S rRNA gene quantification 

LuciF TACAACACCCCAACATCTTCGA Luciferase reference mRNA  Quantitation of internal standard 

LuciR GGAAGTTCACCGGCGTCAT Luciferase reference mRNA  Quantitation of internal standard 

Luci-probe JOE-CGGGCGTGGCAGGTCTTCCC-BHQ Luciferase reference mRNA  Quantitation of internal standard 

rpoB-1648F ATTATCGCTCAGGCCAATACCCGT Dhc rpoB gene  Dhc rpoB gene quantification  

rpoB-1800R TGCTCAAGGAAGGGTATGAGCGAA Dhc rpoB gene  Dhc rpoB gene quantification 

Dhc-730F GCGGTTTTCTAGGTTGTC Dhc 16S rRNA gene   Dhc detection by PCR 

Dhc-1350R CACCTTGCTGATATGCGG Dhc 16S rRNA gene  Dhc detection by PCR 

BL-DC-631F GGTCATCTGATACTGTTGGACTTGAGTATG Dhgm 16S rRNA gene  Dhgm detection by PCR 

BL-DC-796R ACCCAGTGTTTAGGGCGTGGACTACCAGG Dhgm 16S rRNA gene  Dhgm detection by PCR 

dcp_up120F
2
 GCTCCTGGCAGAGCCGTCAGT 120 bp upstream of dcpA Amplification and assembly of dcpA 

gene start  

1 
Abbreviations for degenerate nucleotides positions are as follows: R =A or G; K = G or T; M =A or C; S =C or G; W=A or T; Y =C 

or T; B =C, G, or T; D = A, G, or T; V =A, C, or G; H =A, C, or T 
2 

Primer names are given based on their target position related to the dcpA start coordinates in Dehalogenimonas lykanthroporepellens 

BL-DC-9 sequenced genome.   
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Table 3.3.  Dhgm strain BL-DC-9 proteins identified in gel slice 4 exhibiting 1,2-D-to-propene dechlorination activity following 

BN-PAGE.  Gel slice 4 was further separated in SDS-PAGE into gel slices N1, N2, and N3.  Proteins are listed in order of 

decreasing spectral counts; DcpA is indicated in bold letters.  In the N1 gel section, proteins levels were too low for confident 

identification and not included in the table below. 

Gel Slice 

Gene ID 

Protein 

Accession 

number 

Protein 

Length 

Sequence 

Coverage 

(%) 

Distinct 

Peptides 

Spectral 

Counts 

Adjusted 

NSAF values 
Protein Description 

 

 

 

 

 

 

 

 

 

 

       N2 

Dehly_1407 YP_003759016 534 33.0 17 230 74691.4 chaperonin GroEL  

Dehly_0935 YP_003758558 543 9.0 5 12 3832.4 DAK2 domain fusion protein YloV  

Dehly_0744 YP_003758371 526 7.0 3 12 3956.2 D-3-phosphoglycerate dehydrogenase  

Dehly_1273 YP_003758885 610 6.7 3 13 3695.7 hypothetical protein  

Dehly_1425 YP_003759034 511 7.0 3 10 3393.6 

phosphoribosylaminoimidazolecarboxamide 

formyltransferase/IMP cyclohydrolase  

Dehly_1020 YP_003758642 557 3.9 2 10 3113.4 arginyl-tRNA synthetase  

Dehly_0812 YP_003758435 588 4.9 2 8 2359.4 formate--tetrahydrofolate ligase  

Dehly_1485 YP_003759090 500 4.4 2 5 1734.1 glutamine synthetase  

Dehly_0665 YP_003758293 555 4.3 2 4 1249.8 dihydroxy-acid dehydratase  

Dehly_0337 YP_003757978 400 5.5 2 3 1300.6 translation elongation factor Tu  

Dehly_0353 YP_003757993 515 6.6 2 2 673.5 carboxyl transferase  

 

 

N3 

Dehly_0337 YP_003757978 400 9.8 4 23 53241.2 translation elongation factor Tu  

Dehly_1524 YP_003759128 482 6.6 3 14 26894.3 reductive dehalogenase  

Dehly_0929 YP_003758552 423 6.9 2 3 6566.9 nickel-dependent hydrogenase large subunit  

Dehly_1407 YP_003759016 534 6.4 3 3 5201.9 chaperonin GroEL  

Dehly_0692 YP_003758320 437 3.9 2 2 4237.7 diaminopimelate decarboxylase  

Dehly_0726 YP_003758353 480 3.5 2 2 3858.1 nickel-dependent hydrogenase large subunit  

* NSAF stands for Normalized Spectral Abundance Factor (NSAF) and is used for quantitative proteomic analysis by taking the 

MS/MS spectral counts of a protein and dividing it by its length (number of amino acids) resulting in a spectral abundance factor 

(SAF).  Following this, the SAF is normalized against the sum of all SAFs in the sample, resulting in the NSAF value.  Adjusted 

NSAF values allow for direct comparison of a protein's abundance between individual runs and samples.
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Chapter 3 Appendix: Figures  

 

 

 

 

 

Figure 3.1.  Arrangements of the dcpA gene and its corresponding dcpB genes in Dhc strain 

strains RC and KS.  Approximate binding sites for the degenerate primers RRF2 and B1R as 

well as the dcpA specific primers designed in this study are indicated.  Also shown are the 

characteristic dehalogenase features encoded by the dcpA gene which include the conserved Tat 

signal peptide RRXFXK at the N-terminus and two iron sulfur clusters closer to the C-terminus 

in the form of FCXXCXXCXXXCP (or FCX2CX2CX3CP) and CXXCXXXC (or CX2CX3C).  

dcpB is located downstream of dcpA and encodes for a small highly hydrophobic protein with 

the conserved twin arginine motif in the form WYXW.  The dcpA and dcpB gene (Dehly_1524 

and Dehly_1523) in Dhgm strain BL-DC-9 also encodes for a dehalogenase with these common 

features. 
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Figure 3.2.  Activity assays completed on an unstained lane run in parallel to the BN-PAGE 

separation of crude extracts of Dhgm BL-DC-9 cells grown with 1,2-D. Panel A: Coomassie-

stained BN-PAGE showing the predominant proteins and the gel sections that were subjected to 

dechlorination activity testing with 1,2-D.  Propene formation was only observed in gel slice 4, 

which was subjected to SDS-PAGE (Panel B).  Three bands were visualized by SDS-PAGE 

(Panel B) and gel slices (representing sections N1-N3) were further analyzed by LC-MS/MS. 

The Only RDase detected in Band 4 was DcpA (Dehly_1524) 
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Figure 3.3.  Relative transcript copy abundances in cells growing with 1,2-D.  dcpA 

transcripts levels were normalized to rpoB or to dcpA gene copy numbers.  Triplicate 

samples were analyzed and the reported values represent the average of at least three 

independent biological cultures.  Error bars depict standard error.  Negative numbers represent 

down regulated target genes, while positive numbers represented up regulated genes.  A ratio 

near unity (close to 1) indicates an insignificant change in the number of dcpA transcripts per 

rpoB transcripts or dcpA/Dhc gene copy numbers. 
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Figure 3.4.  Phylogenetic tree of DcpA sequences.  The neighbor-joining tree is drawn to scale, 

with branch lengths in the same units as those of the evolutionary distances used to infer the 

phylogenetic relationships.  All positions containing gaps and missing data were eliminated and a 

total of 247 aa positions were included in the final dataset. Evolutionary distances were 

computed using the number of differences method and are in the units of the number of amino 

acid differences per sequence. Samples that clustered together were grouped and numbers in 

parentheses indicate the number of sequences of each group.  The RDase DET1538 of Dhc strain 

195 served as an outgroup to root the tree.  Cluster 1 shares highest aa sequence identity to DcpA 

of Dhgm strain BL-DC-9 (93-95%), while Cluster 2 comprises sequences with higher sequence 

identity to DcpA of Dhc strains KS and RC (95-99%).  
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Chapter 3 Appendix: Supplemental Methods 

 

Sample collection and site description.   

 

Sediment, aquifer and solids were collected in sterile glass or plastic containers from Third 

Creek, Knoxville, TN (three locations), Neckar River and an agricultural site near Stuttgart, 

Germany.  The Third Creek site has a history of tetrachloroethylene (PCE), trichloroethylene 

(TCE), and 1,1,1-Trichloroethane  (1,1,1-TCA) contamination.  The Neckar River site has no 

history of chlorinated solvent contamination but is near urban and industrial areas.  The 

agricultural site contained residues from the winemaking process (consisting mostly of grape 

skins).  The samples from the municipality of Barra Mansa Brazil were from a contaminated 

mixed-waste site that contains up 7,860 µg/L of chloroform (CF) and 125 µg/L of carbon 

tetrachloride (CT) and 6.6 µg/L 1,1,1-TCA.  Additional groundwater samples from a 

contaminated industrial site in Waynesboro (Georgia, USA) were collected.  The Waynesboro 

site was a former facility that formulated pesticides and herbicides and is primarily contaminated 

with 1,2-dichloropropane  (1,2-D) up to 30,000 µg/L, 1,2-dichloroethane (1,2-DCA) and alpha-, 

beta-, delta-, and gamma-hexachlorocyclohexane but other contaminants such as CF and CT are 

also present.  Additional samples included sediments from a chlorinated solvent-contaminated 

site at Fort Pierce (Florida, USA), which is contaminated with mainly 1,2-D (up to 24,000 µg/L), 

1,2-DCA and vinyl chloride; however, the solids provided for microcosm set up were collected 

outside the plume area.  Additional Ft. Pierce DNA samples from wells inside the 1,2-D plume at 

the Ft. Pierce site were tested; the DNA was extracted from Bio-Sep® beads collected with Bio-

Trap samplers (http://www.microbe.com/index.php/Bio-Trap-Samplers/bio-trap-samplers.html) 
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that were deployed in monitoring wells inside the plume at the Ft. Pierce site.  All samples were 

delivered to the laboratory with overnight carrier and immediately processed or stored at 4°C for 

no more than 1 month.  In addition, DNA was obtained from samples collected from an in situ 

uranium bioreduction pilot test plot in area 3 (wells FW104, FW103, FW100-2, and FW100-3) at 

the Integrated Field Research Challenge site at Oak Ridge National Laboratory (Amos, Sung, et 

al., 2007; W.-M. Wu et al., 2006) 

 

Assembly of the dcpAB gene cassette by primer walking.   

 

Because the genomes of Dhc strains KS and RC are not available, the primer dcp_up120F was 

designed to obtain the 5’ end of the Dhc dcpA gene.  The dcp_up120F primer design was based 

on the available genome information for Dehalogenimonas lykanthroporepellens (Dhgm) strain 

BL-DC-9, and targeted a region 120 bp upstream of the dcpA gene (Dehly_1524) start position.  

Combined with the primer dcpA-1449R, PCR products of ~1,569 bp were predicted.  The PCR 

reactions consisted of 1 x PCR buffer, 2.5 mM MgCl2, 250 μM of each deoxynucleoside 

triphosphate (ABI), primers (250 nM each), and 2.5 U of AmpliTaq polymerase (ABI).  The 

following thermocycler temperature program was used for the amplification of the dcpA gene: 

94°C for 2 min, 10 seconds (1 cycle); 94°C for 30 seconds, 56.0°C for 45 seconds, and 72°C for 

2 min, 10 seconds (30 cycles); and 72°C for 6 min.  Reactions with genomic DNA from Dhgm 

strain BL-DC-9 as template served as positive controls.  Amplicons were separated on a 1% 

(wt/vol) agarose gel, stained with ethidium bromide (1 µg/mL), purified with the Qiagen PCR 

Purification kit (Qiagen, Valencia, CA, USA) and sequenced.  Alignments of sequences using 

SeqMan II software (DNASTAR, Lasergene version 7) and ClustalW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) were used to assemble the missing 5’ end and the 

dcpA start site coding sequence.  In addition, the DNA Walking SpeedUp
TM 

kit (Seegene, Seoul, 

South Korea) was used to extend the partial dcpAB sequence and amplify the entire dcpB gene.  

The procedure involved a series of consecutive PCR amplifications with primers targeting 

known sequence regions in combination with the kit’s DNA walking-annealing control primers.  
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The internal primers dcpA-360F and dcpA-1257F (Figure S3.1) were used with Dhc culture RC 

and culture KS genomic DNA following the manufacturer’s recommendations.  The resulting 

chromosome walking PCR products were purified, sequenced and assembled with the SeqMan II 

software (DNASTAR, Lasergene version 7).  

 

Protein assays and BN-PAGE for DcpA identification.   

 

Dhgm strain BL-DC-9 was grown as described (Yan J, Rash BA, Rainey FA, Moe WM, 2009) in 

twenty 160 mL serum bottles containing 100 mL of medium and 0.5 mM of 1,2-D.  The cultures 

received a second feeding of 1,2-D after the initial amount had been dechlorinated to propene.  

Cells were collected by centrifugation and suspended in sample buffer (50 mM Bis-Tris, 6 M 

HCl, 50 nM NaCl, 10% w/v glycerol, pH 7.2).  The cell suspensions were subjected to lysis by 

adding a small amount of spherical, lead-free soda lime glass disrupter beads (0.1 mm, VWR, cat 

no. 101454-154) and agitating at maximum speed using a desktop vortex unit (Vortex Genie 2, 

Scientific Industries, Inc., Bohemia, NY) for 10 minutes, while periodically cooling the 

suspension in ice water.  Following centrifugation, the extracts were subjected to Blue Native 

(BN) polyacrylamide gel electrophoresis (NativePAGE™ Novex® 4-16% Bis-Tris gels, 1.0 mm, 

Invitrogen, CA, part # BN1002BOX) and stained with the Fast Coomassie G-250 staining 

protocol (Invitrogen) to visualize proteins.  The same samples were applied to multiple lanes, 

which were then used in the in vitro enzyme assays as well as for further analysis via sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, 12% Mini-PROTEAN® 

TGX™ Precast Gel, Bio-Rad, Inc. CA. part # 456-1044) for subsequent LC-MS/MS analysis.  

The excised gel segments were cut into smaller pieces and placed in 2 mL glass vials containing 

a mixture of 4 mM methyl viologen, 4 mM titanium III citrate, 0.5 mM 1,2-D and 100 mM Tris 

buffer, pH 7.4.  The vials were sealed with Teflon-coated septum screw caps (Grace Davis & 

Discovery Sciences, part # 95020).  Each vial received a small stir bar for continuous mixing 

inside an anoxic chamber at room temperature for 18 hours.  Negative control incubations 

received no gel slice and the positive control consisted of 1 mL of cell suspension.  The cells 

were collected by centrifugation (10, 000 x g for 20 min at 4C) and suspended in 100 µL 100 

mM Tris buffer, pH 7.4.  Propene was quantified in headspace samples (0.1 mL) using a GC-FID 
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as described (Amos, Christ, Abriola, Pennell, & Löffler, 2007) except that an inlet split ratio of 

1:1 was used.  From the replicate lanes, the corresponding gel band was excised with a scalpel 

and placed in SDS elution buffer (100 mM Tris, pH 7.0; 0.1% (w/vol) SDS) and incubated at 

4°C overnight to elute the proteins from the gel fragments.  The eluted proteins were 

concentrated using a low-binding 10 kDa Microcon ultrafiltration unit (Millipore, Billerica, MA, 

USA) following the manufacturers recommendations.  The concentrated samples were subjected 

to SDS-PAGE and Coomassie stained.  Subsequently, visible bands were excised from the gels 

for LC-MS/MS analysis.  The Precision Plus Protein Standards Kaleidoscope marker (cat #: 161-

0375, Bio-Rad, Inc., CA) was used to determine the molecular weights of proteins in the SDS-

PAGE gel.  

 

Two dimensional-liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS).   

 

Coomassie-stained gel bands were excised from the SDS-PAGE gel and rinsed in HPLC-grade, 

degassed water (i.e., MilliQ water filtered through 0.02 micron filter and bubbled with Nitrogen 

for 30 minutes).  In-gel digestion of proteins was performed as described (Shevchenko, Tomas, 

Havlis, Olsen, & Mann, 2006).  Briefly, gel pieces were cut into small pieces and destained for 

30 min in 100 mM ammonium bicarbonate/acetonitrile (1:1, vol/vol) at room temperature along 

with intermittent vortexing.  Gel-enmeshed proteins were further subjected to reduction, 

alkylation and overnight trypsin digestion at 37°C as described (Shevchenko et al., 2006), and 

peptides were obtained in 100 μL of extraction buffer (5% formic acid/acetonitrile, 1:2 vol/vol).  

The extracted peptide mix (50 μL) was pressure loaded onto an in-house packed biphasic 

MuDPIT (Multi Dimensional Protein Identification Technology) column packed with ~3 cm of 

strong cation exchange (SCX) resin (Phenomenex, Torrance, CA) and ~5 cm of reverse phase 

(RP) C18 resin (Phenomenex, Torrance, CA).  The sample column was connected to a 15 cm RP 

packed front column (New Objective, Woburn, MA) and analyzed via 2-D LC-MS/MS using 

three salt pulses (30, 60 and 100% of 500 mM ammonium acetate) followed by a 120 min elution 

gradient of 100% Solvent A (95% H2O, 5% acetonitrile, 0.1% formic acid to 60%) and Solvent 

B (30% H2O, 70% acetonitrile, 0.1% formic acid).  Peptide fragmentation data were collected 

using an LTQ or LTQ-Orbitrap (used in LTQ mode), operated in data-dependent mode and 
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under the control of the Xcalibur software (Thermo Scientific).  The LTQ-Orbitrap was set to 

30K resolution while rest of precincts on either instrument was maintained as described (Brown 

et al., 2006) (Chourey et al., 2010)(M. R. Thompson et al., 2008). The MS/MS data obtained 

were searched against Dhgm BL-DC-9 genome (NC_014314.1, downloaded from JGI, April 

2012) using the SEQUEST algorithm (Eng, McCormack, & Yates, 1994).  The resultant datasets 

were sorted using DTASelect (Tabb, McDonald, & Yates, 2002) set to following parameters: 

fully tryptic peptides only with ΔCN of at least 0.08 and cross-correlation scores (Xcorr) of at 

least 1.8 (+1), 2.5 (+2), and 3.5 (+3) (Brown et al., 2006)(M. R. Thompson et al., 2008).  All 

chemicals for proteomic analysis were obtained from Sigma Chemical Co. (St. Louis, MO), 

trypsin was acquired from Promega (Madison, WI), formic acid (99%) was obtained from EM 

Science (Darmstadt, Germany) and HPLC-grade water and acetonitrile were purchased from 

Burdick and Jackson (Muskegon, MI).  
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Chapter 3 Appendix: Supplemental Figures  

 

 

Figure S3.1.  PCR amplification of the putative 1,2-D RDase gene for cDNA library 

construction.  cDNA from 1,2-D-grown and propene producing RC and KS cultures was used as 

template with the degenerate  primers RRF2 and B1R.  Lanes 1-3 correspond to samples from 

culture RC and lanes 4-6 to samples from culture KS. Lanes 1 and 4 are “no reverse transcriptase 

reaction” controls to demonstrate the absence of genomic DNA in the RNA samples; lanes 2 and 

5 show amplification using cDNA as template and lanes 3 and 6 correspond to positive controls 

performed with genomic DNA from the respective cultures.  The 1Kb Plus Ladder from 

Invitrogen is shown.  

  

  1       2       3      4      5       6 

1,000 

bp 

1,650 
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Figure S3.2.  PCR amplicons obtained using the primers dcp_up120F  and dcp-1449R.   

Lane 1 is a positive control that used genomic DNA from Dhgm strain BL-DC-9 as template for 

the PCR reaction.  A PCR product of the expected size (~1569 bp) was also obtained using Dhc 

RC and KS genomic DNA as a templates (lanes 2 and 3, respectively).  Lane 4 is a negative 

control that did not include any template DNA in the PCR reaction.  A 1Kb Plus Ladder from 

Invitrogen is shown in the left lane.  

  

	

   1        2        3        4           

1,000 

bp  

1,650 
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Figure S3.3.  Characteristic DcpB features.   The upper portion of figure 3 shows the 

translated amino acid sequence (73 aa long) of the dcpB gene of Dhc strains RC and KS and 

dcpB gene of Dhgm strain BL-DC-9 (Dehly_1525) aligned by ClustalW and visualized in 

Jalview.  The lower portion of figure 3 represents the topology of this membrane anchoring 

protein predicted by TMMOD, a Hidden Markov model program used to predict where proteins 

span the cell membrane (http://www.liao.cis.udel.edu/website/servers/TMMOD/).  The deduced 

topology of the DcpB protein revealed two transmembrane regions between positions 12-32 and 

41-61.  Additional characteristics include two inside loops (i.e., facing the cytoplasm) at amino 

acid positions 1-11 and 62-73, and one outside loop (i.e., facing the periplasm) from positions 

33-40.  
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Figure S3.4.  Deduced DcpA amino acid sequence of Dhc strain RC and KS and the DcpA 

of Dhgm strain BL-DC-9 (Dehly_1524).  Highlighted are the Tat signal peptide motifs in the 

form RRDMFK present close to DcpA N-terminus.  The arrow depicts the predicted leader 

peptide cleavage site.  Also highlighted are the two iron sulfurs clusters in the form 

FCX2CX2CX3CP and CX2CX3C close to the C-terminus.  In bold is a possible corrinoid-binding 

site in the form DHXG-X39-S-X32-G. 

  

>Dhc_RC_dcpA 

MKSHSTMSRRDFMKSIGLGSAAIASMGATAPFFHDLDEMTGIGAAETFNSTTSMQKRPWW 

VKEVDIPTVEIDLKLRTPYAGPTPSAGTLASIYVTKEETAAILASQKNNAIEGAKNNRPG 

FTLRDQIGAWASLDRGQTGYVKYPPEGFRTIKVTHETLGVPKWEGSETENAFMIRTFLRQ 

FGAGAIGYARVDDDSVGPRKPLFNTHVRLENNADYKYDSNGVFVMPEKCKYAIIMYDRSP 

RDPNNYRRTVNSPQAFVSNMEKCEYGHKLQNFLWGLGYQSYWFEDGTTSKFTGTPTNVWG 

ILSGVGEYNRIHNAVSQPEGESGNFASILFTDLPLPTTKPIDFGALEFCKTCGICADVCP 

AGAIPTVEEYREPTWDRATGPWSASNDHKGYPNKSIECVKWYFSYAITAYAPSSRPVGVC 

RRCASHCVFSKDHEAWIHEVVKGVVSTTPVMNSFFTKMDMLSGYSDVISDEGRAEYWHQY 
LPAV 

>Dhc_KS_dcpA 

MKSHSTMSRRDFMKSIGLGSAAIASMGATAPFFHDLDEMTGIGAAETFNSTTSMQKRPWW 

VKEVDIPTVEIDLKLRTPYAGPTPLAGTLASIYVTKEETAAILASQKNNAIEGAKNNRPG 

FTLRDQIGAWASLDRGQTGYVKYPPEGFRTIKVTHETLGVPKWEGSETENAFMIRTFLRQ 

FGAGAIGYARVDDDSVGPRKPLFNTHVRLENNADYKYDSNGVFVMPEKCKYAIIMYDRSP 
RDPNNYRRTVNSPQAFVSNMEKCEYGHKLQNFLWGLGYQSYWFEDGTTSKFTGTPTNVWG 

ILSGVGEYNRIHNAVSQPEGESGNFASILFTDLPLPTTKPIDFGALEFCKTCGICADVCP 

AGAIPTVEEYREPTWDRATGPWSASNDHKGYPNKSIECVKWYFSYAITAYAPSSRPVGVC 

RRCASHCVFSKDHEAWIHEVVKGVVSTTPVMNSFFTKMDMLSGYSDVISDEGRAEYWHQY 

LPAV 

 
>Dehly_1524_dcpA 

MKSHSTMSRRDFMKTLGLGATAIGSVGVTAPIFHDLDEMMSISAAETFNSTTSMQKRPWW 

VKEVDIPTVEIDLKLRTPYAGHLSAGLSPLYLSKEEIAAILASQQNNAIEGAKNNRPGFT 

LRDQIGAWASLDRGQTGYVKYPPEGFRTIKVTHETLGVPKWEGSETENAFMIRTFLRQFG 

AGAIGYARVDDDSVGPRKPLFNTHVRLENNPDYKYDANGTFVMPEKCKYAIIIYDRSPRD 

PNNYRRTVNSPQAFVSNMEKCEYGHKLQNFLWGLGYQSYWFEDGTTSKFTGTPTNVWGIL 

SGIGEYTRIHNPVSQPEGETGNFASILFTDLPLPTTKPIDFGALEFCKTCGICADVCPAG 

AIPTVEEYREPTWDRATGPWSASNDHKGYPNKSIECVKWYFSNAVTAFAPASRPVGVCRR 

CSSHCVFSKDHKAWIHEVVKGVVSTTPVMNSFFTKMDTLSGYSDVISDEGRAEYWHQYLP 

AI 
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Figure S3.5.  Aligned aa sequences depicting conservation sites between RC/KS dcpA 

translated sequences. 
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Figure S3.6.   Evaluation of qPCR primers and assay conditions.  The left panel shows the 

melting curve analyses performed with the SYBR Green assay with primers dcpA-1257F/1449R 

using genomic DNA of Dhc strain RC and strain KS and Dhgm strain BL-DC-9 as template.  

Shown in the top-right panel are examples of TaqMan amplification curves obtained for a 10-

fold dilution series of template DNA with the dcpA gene-targeted primers dcpA-1257F/1449R 

and the dcpA-1426Probe, spanning a range of 1.7 to 1.7 x 10
8
 gene copies per µL of template 

DNA.  Additionally, dcpA TaqMan PCR amplification products were visualized by 

electrophoresis to confirm assay specificity (bottom-right panel).  Lanes 1-3 are from reactions 

that used 10 ng of template DNA from Dhc strain RC, Dhc strain KS, and Dhgm strain BL-DC-

9, respectively.  Lane 4 is a no template control and lane 5 corresponds to a reaction that had 2 ng 

of plasmid DNA carrying the dcpA gene fragment. The 1kb Plus DNA Ladder (Invitrogen) was 

used.  

qPCR amplicons  

RC      KS  Dhgm     (-)    (+) 

qPCR amplification curve Melting curve 
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Figure S3.7.  dcpA and Dhc 16S rRNA gene qPCR standard curves using 10-fold serial 

dilutions of plasmids with the inserts of interest.  TaqMan qPCR assays were performed using 

partial plasmid DNA carrying the dcpA gene fragment of Dhc strain.  Also included is the 

standard curve for Dhc 16S rRNA gene quantification (red squares).  The standard curve shown 

has a dynamic range of 1.7 to 1.7 x 10
8
 gene copies per µL of template DNA. 

 

  

dcpA =slope = -3.5, y intercept = 39.5 and R2 = 0.997 

 

Dhc= slope = -3.3, y intercept = 39.7 and R2 = 0.992 
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Figure S3.8.  dcpA-targeted nested PCR results from microcosm and environmental  

samples.  TRS1 TRS2 TRS3 Trester Neckar Brazil 1 Brazil 2, neg pos 1 % agarose gel of dcpA 

PCR products that have been stained with ethidium bromide.   PCR was performed with the 

specific primers dcpA-360F, dcpA-1449R in 20-μL total volume reactions. Marker used on the 

left is 1kb Plus DNA Ladder (Invitrogen). For all samples five µl of PCR product were mixed 

with 1 µL of 6X loading dye and resolved in 1% (wt/vol) agarose gels and stained with ethidium 

bromide (1 µg/mL).  Sample designation as follows: Panel A: TRS1, TRS2,  TRS3,  Trester,  

Neckar, Brazil 1 Brazil 2, negative control (PCR reaction with no template) and  positive control 

10 ng of genomic DNA of Dehalococcoides mccartyi (Dhc) RC.  Panel B: Ft. Pierce Biobead 

DNA samples: FP-MW-2S, 6-7 m; FP-MW-20, 20-21 m; FP-MW-26, 14-15 m; FP-MW-61, 20-

21 m; Waynesboro, negative and posotive control. Panel C. Ft. Pierce samples: FP1-MW46, 22-

26 m; FP2-MW49, 26-27 m; FP3-MW49, 46-47 m; FP4-MW47, 47-48 m; FP5-MW49, 95-98 m 

Please refer to Table 3.1. for more comprehensive sample information.  
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Figure S3.9.  Amino acid alignment showing the conserved iron sulfur cluster motifs near the C-terminus of the environmental 

DcpA sequences.  Also included are the Dhc RC and KS and the Dhgm DcpA sequences.  Numbers on top represent approximate 

amino acid positions with respect to the methionine start site of the DcpA encoded on the genome of Dhg strain BL-DC-9.  Only one 

environmental sequence does not possess this consensus motif (RED circle) perhaps representing a variant sequence or a sequencing 

error.  

Brazil_clone_18-5 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S F A I T A Y A P S S R P V G V C R R C A S H C V F S K D H E A W I H E

Brazil_clone_18-8 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S F A I T A Y A P S S R P V G V C R R C A S H C V F S K D H E A W I H E

Ft_Pierce2_clone_10 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_11 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V R W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_16 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_2 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_22 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_25 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_28 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_29 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_3 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G E C R R C A S H C V F S K E H K A W I H E

Ft_Pierce2_clone_8 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_10 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y S N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_11 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_14 D F G A L E F C K T Y G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W C A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_16 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K L I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_17 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_2 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C A K W Y F S N A T T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_20 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y L S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_21 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H D

Ft_Pierce3_clone_4 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_7 D F G A L E F C K T C G I C A D V C P A R A I S T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_8 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce3_clone_9 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T G Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce4_clone 13 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T V Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce4_clone_23 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce4_clone_30 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce4_clone_31 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Ft_Pierce4_clone_7 D F G A L E F C K T C G I C A D V C P A R A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K F I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

Neckar_clone_15_15 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S Y A I T A Y A P S S R P V G V C R R C A S H C V F S K D H E A W I H E

Neckar_clone_15_7 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S Y A I T A Y A P S S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS1_clone_7_10 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A V T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS1_clone_7_12 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A V T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS1_clone_7_2 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A V T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS2_clone _7_7 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H R G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS2_clone_7_11 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H R G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS2_clone_7_3 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H R G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS2_clone_7_4 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H R G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS2_clone_7_9 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H R G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K D H E A W I H E

TRS3_clone_1 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

TRS3_clone_2 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A I T A Y A P A S R P V G V C G R C A S H C V F S K E H K A W I H E

TRS3_clone_3 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

TRS3_clone_4 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A I T A Y A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

TRS3_clone_5 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

TRS3_clone_6 D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W N R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A I T A F A P A S R P V G V C R R C A S H C V F S K E H K A W I H E

dcpA Dhc KS D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S Y A I T A Y A P S S R P V G V C R R C A S H C V F S K D H E A W I H E

dcpA Dhc RC D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S Y A I T A Y A P S S R P V G V C R R C A S H C V F S K D H E A W I H E

dcpA Dhgm (Dehly 1524) D F G A L E F C K T C G I C A D V C P A G A I P T V E E Y R E P T W D R A T G P W S A S N D H K G Y P N K S I E C V K W Y F S N A V T A F A P A S R P V G V C R R C S S H C V F S K D H K A W I H E

388 390 460 467
390	388	 460	 467	



 

 131 

Chapter 4 

 

Inter-genus reductive dehalogenase gene transfer between organohalide-respiring 

Chloroflexi 
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Reproduced in part with permission from Padilla-Crespo E., D.D. Wagner, and F. E. Löffler.  

Evidence of horizontal gene transfer between of reductive dehalogenase genes across genera.  In 

preparation.  All copyright interests will be exclusively transferred to the publisher upon 

submission. 

 

Abstract  

 

Multiple, non-identical reductive dehalogenase (RDase) genes are common to genomes of 

organohalide-respiring Chloroflexi, and enable Dehalococcoides mccartyi (Dhc) strains, 

Dehalogenimonas (Dhgm) spp. and “Dehalobium chlorocoercia” (“Dhom”) to couple the 

reductive dechlorination of halogenated organics to energy conservation. The discovery of dcpA 

in Dhc strains RC and KS led to the identification of a gene homolog with 90% nucleotide 

identity in Dehalogenimonas lykanthroporepellens strain BL-DC-9.  Bioinformatic analyses and 

genomic comparisons provided evidence of gene synteny within the dcp operon and apparent 

horizontal gene transfer (HGT) between Dhc and Dhgm.  Further examination revealed that 

features of a composite transposon flank the dcp operon.  Various mechanisms for dcpAB 

dispersion are proposed, including transposition via 1S911 elements and XerD-mediated site- 

specific recombination.  Two additional Dhgm RDase genes shared with Dhc were identified: 

Dehly_0275, sharing 72-73% nt identity (79% amino acid identity) with the putative Dhc 

RDases DhcVS_1336, DhcVS_96 and DehaBAV1_0284 encoded in the high-plasticity regions 

of Dhc strains BAV1 and VS, and Dehly_0283, which shares 68% aa similarity with RCRDA15 

of Dhc strain RC.  These results indicate that RDase gene exchange occurs across the distinct 

Chloroflexi genera Dhc and Dhgm.  Inter-genus RDase gene HGT may play a major role in the 

dissemination of reductive dechlorination phenotypes and the acquisition of specific reductive 

dechlorination capabilities relevant for contaminant attenuation at sites impacted with 

chloroorganic contaminants.   
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Introduction  

 

Horizontal gene transfer (HGT, also known as lateral gene transfer) is a major driving force in 

bacterial evolution by allowing the sharing of genetic material between organisms “separated by 

reproductive barriers” (Campbell, 2007).  Known mechanisms of HGT include conjugation 

(involving cell-to-cell contact and mediated by plasmid, transposons and integrons), transduction 

(the mobility of DNA fragments mediated by a phage), transformation (the incorporation of 

exogenous “naked”-DNA by homologous recombination) and the more recently described gene 

transfer agents (GTAs) (defective phages that randomly package and transduce portions of host 

genomic DNA) (Zaneveld, Nemergut, & Knight, 2008). 

 

Of interest for bioremediation is the dissemination of genes involved in the transformation of 

contaminants since this can affect the fate and longevity of these chemicals in the environment 

(Hickey, Chen, & Zhao, 2012; Sobecky & Coombs, 2009).  Organohalide-respiring 

Dehalococcoides mccartyi (Dhc) strains transform toxic chlorinated compounds (e.g., 

chlorinated ethenes, chlorinated ethanes, chlorinated propanes, chlorobenzenes, PCBs) to their 

benign, or less chlorinated, products (Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, 

Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, 2013).  Dhc strain RC and strain KS, 

Dehalogenimonas (Dhgm) lykanthroporepellens strain BL-DC-9 and Dhgm alkenigignens, 

Desulfitobacterium dichloroeliminans and members of the genus Dehalobacter have been 

described to dechlorinate 1,2-dichloropropane (1,2-D), a suspected carcinogen, to innocuous 

propene (Bowman et al., 2013; De Wildeman et al., 2003; F E Löffler, Champine, Ritalahti, 

Sprague, Tiedje, et al., 1997; Moe WM, Yan J, Nobre MF, da Costa MS, Rainey, 2009; Kirsti M 

Ritalahti & Löffler, 2004; Schlötelburg et al., 2002).  Dhc possess multiple reductive 

dehalogenase (RDase) gene copies that encode for the key catalytic proteins involved in these 

dehalogenation reactions.  The gene dcpA encoding the 1,2-dichloropropane-to-propene RDase 

has been identified in Dhc strains RC and KS and showed remarkable similarity (90% nucleotide 

identity) with an RDase gene present in the sequenced genome of Dhgm lykanthroporepellens 

strain BL-DC-9 (Padilla-Crespo et al., 2014).  DcpA is a unique RDase with no more than 34% 

aa sequence identity to other RDases, but with 60% overall nt sequence identity to pseudogene 

DET0162 from Dhc strain 195 (Padilla-Crespo et al., 2014).  Also, the dcpB gene (encoding for a 
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RDase anchoring protein) in strains RC and KS share high nucleotide similarity with 

Dehly_1525, including an identical 18 nt intergenic region separating dcpA and dcpB (Padilla-

Crespo et al., 2014).  Dhgm 16S rRNA genes share no more than 90% sequence identity with the 

known Dhc strains (Yan J, Rash BA, Rainey FA, Moe WM, 2009).  The presence of this RDase 

gene in phylogenetically distinct organohalide-respiring genera suggests that a HGT event has 

occurred between Dhc and Dhgm. 

 

The first indication of integrated elements present in Dhc came to light when the genome of 

strain 195 became available (Seshadri et al., 2005).  Nine regions (corresponding to 13.2% of the 

total genome) were predicted to be integrated elements.  Reagard et al. (2005) characterized 

these genomics regions of atypical oligonucleotide composition in strain 195 and revealed most 

RDases were located in these regions and suggested that Dhc RDases were acquired by HGT 

(Regeard, Maillard, Dufraigne, Deschavanne, & Holliger, 2005).   In 2007, McMurdie et al. 

detected unusual codon bias in the vinyl chloride reductase gene vcrA and suggested that this 

RDase was horizontally acquired from a non-Dhc organism (McMurdie, Behrens, Holmes, & 

Spormann, 2007).  A proposed site-specific mechanism for the dissemination of the RDase gene 

vcrA involving the ssrA gene, encoding a transfer messenger RNA, has been described 

(McMurdie PJ, Hug LA, Edwards EA, Holmes S, 2011).  However, the ssrA-based mechanism 

only describes the sharing of the vcrA RDase gene and genetic material between Dhc strains and 

does not explain the origin and mobility of other RDase genes including tceA, bvcA and dcpA, or 

the presence of all integrated elements and atypical regions in Dhc genomes.  The donors of 

these RDase genes remain a hypothetical “foreign host”.  

 

Previous observations indicated that 4.7% of the Dhgm strain BL-DC-9 genome is composed of 

insertion elements and that a prophage lies in the region from coordinates 1,604,159 to 1,672,879 

(dcpA is outside this region), but additional genomic regions of putatively foreign DNA have not 

been identified.  In this study, additional atypical regions in the genome of Dhgm strain BL-DC-

9 were identified and the evolutionary history and genomic context of the RDase genes in these 

regions was investigated.  The sharing of other RDases across the dechlorinating Chloroflexi, 

Dhc, Dhgm and “Dehalobium chlorocoercia” DF-1 (“Dhom’) are discussed via phylogenetic 

analyses.  Special focus was given to the genomic island (GI) around the dcpA gene in Dhgm 
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while the corresponding GI in Dhc strain RC and strain KS was revealed by PCR efforts.  Two 

copies of IS911 transposase frame the dcpAB operon suggesting a composite transposon 

structure.  Inverted repeats at the ends of the transposases indicate a target site.  Furthermore, the 

presence of multiple IS911 elements in the Dhgm genome is discussed, especially those in the 

proximity of the dcp operon.  Various HGT mechanisms for dcpAB mobilization are proposed; 

among these: dispersion the site-specific, and phage-like recombinase XerD and transposition 

mediated by the IS911 elements. 

 

Methods  

Molecular phylogenetic analysis of RDases.   

 

To examine the phylogenetic association between Dhgm and Dhc RDases, the protein sequences 

of all putative RDaseA genes from the genomes of Dhgm lykanthroporepellens strain BL-DC-9 

(NC_014314, 19 RDases in total), “Dhom” strain DF-1 and Dhc (including 16 and 14 sequences 

from strain RC and strain KS, respectively) were downloaded from GenBank.  Translated dcpA 

sequences from the RC and KS strains were obtained as described .  The gathered RDases 

sequences were queried with BLASTP and PSI-BLAST, and the matching sequences were 

obtained from GenBank.  The sequences were aligned using the Clustal Omega software , and 

tree topology was inferred by the bootstrapped neighbor-joining method with branch lengths 

estimated by the maximum likelihood method .  

 

DcpA amino acid (aa) sequences were aligned in Jalview  and conservation scores for every site 

of the alignment were plotted in Excel (Excel 2003, Microsoft, Redmond, WA, USA).   Jalview 

calculates a numerical index in a scale from 0 to 11 using the AMAS (Analysis of Multiply 

Aligned Sequences) method by measuring the number of conserved physico-chemical properties 

of the amino acids in each column in the alignment.  Higher scores represent high conservation 

in the aa sites of the sequence of interest.  
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Computational analysis.   

 

For the identification of atypical regions in Dhgm lykanthroporepellens strain BL-DC-9 genome 

(NC_014314.1), the IslandViewer (http://www.pathogenomics.sfu.ca/islandviewer/query.php) 

interface was used for the computational visualization of genomic islands (GI) (M. G I Langille 

& Brinkman, 2009).  This tool incorporates several detection methods [e.g. IslandPath-DIMOB 

(Morgan G I Langille, Hsiao, & Brinkman, 2008) and SIGI-HMM (Waack et al., 2006) to 

examine common characteristics of foreign GIs for sequence composition bias and the presence 

of mobility genes.  Another online tool, SeqWord Genome Browser 

(www.bi.up.ac.za/SeqWord/), allowed identification of atypical regions within a genome based 

on oligonucleotide usage (OU) (Ganesan, Rakitianskaia, Davenport, Tümmler, & Reva, 2008).  

The "interphase" calculates the statistical OU parameters defined as: (D)– distance between the 

OU patterns (calculated as a percentage of the sum of all possible distances between the OU 

patterns); PS – defined as pattern skew, is the distance between OU patters (D) in both the direct 

and the reverse strands of the same DNA molecule; RV– local relative oligonucleotide variance 

and GRV – global oligonucleotide variance (local variance normalized by the calculated 

nucleotide frequencies for the complete genome).  The SeqWord web-browser was used to 

calculate the tetranucleotide usage (OU pattern: 4mer) and other parameters using a sliding 

window of 8 kbp genome fragments in 2 kbp steps.  Genomic fragments deviating from the 

genome signature (with high RV, low D, and low PS values) where considered of HGT origin.  

Bacterial genomes typically have a low PS (indicating strand symmetry), whereas phage and 

viral elements were shown to have high strand asymmetry (high PS).  For more in depth 

information on SeqWord OU pattern definitions and calculations see Ganesan et al. 2008 

(Ganesan et al., 2008).  

 

Furthermore, the average guanine cytosine (GC) content and genomic dissimilarity (δ*) of the 

dcpA GI (Dehly_1519-Dehly_1527, coordinates: 1493353 to 1499907) with respect to the Dhgm 

strain BL-DC-9 genome, was calculated using the web-based application delta-rho 

(http://deltarho.amc.uva.nl) using an non-overlapping window size of 10,000 bp or 10,500 (van 

Passel, Luyf, van Kampen, Bart, & van der Ende, 2005). A high δ* indicated a high discordance 

in the DNA nucleotide composition between the GI region and the genome of interest, and 

http://www.pathogenomics.sfu.ca/islandviewer/query.php
http://www.bi.up.ac.za/SeqWord/
http://deltarho.amc.uva.nl/
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fragments with a plot position of 90% or more δ* are indicative of HGT events.  Statistical 

significance was determined by running a two-tailed t-test comparing the GC content and δ* 

values of the dcpA GI sequence to the overall average of the Dhgm genome. 

 

The difference in codon usage (i.e., codon bias in a DNA sequence) was also used to detect 

foreign acquisition of genes.  Codon adaptation indices (CAI) were calculated using the “CAI 

calculator software” (http://genomes.urv.es/CAIcal/).  This interphase calculates the synonymous 

codon usage of a gene(s) of interest relative to a reference set of genes (Puigbò, Bravo, & 

Garcia-Vallvé, 2008).  CAI values from the genes from the putative dcpA GI (Dehly_1518-1527) 

and Dehly_0269-0283 were computed using codon usage tables based on Dhgm strain BL-DC-9 

and Dhc strain VS housekeeping genes (n=118 for Dhgm and n=142 for Dhc), and included 

genes encoding for ribosomal proteins, amino-acyl-tRNA-synthetases, chaperonins, 

oxidoreductases (e.g. ATP synthase F1, NADH:quinone, hydrogenases) among others.  In this 

analysis, the genes from Dhc strain VS (whose genome possesses 36 RDase genes) were used as 

a proxy for the genomes of the 1,2 D-dechlorinating Dhc strains RC and KS, whose genomes 

sequences are not available).  This proxy is justified by the fact that several sequenced Dhc 

genomes are more than 85% identical and share up to 100% similarity in housekeeping genes.  

Additionally, the E-CAI server (http://genomes.urv.es/CAIcal/E-CAI/) was used to calculate the 

expected CAI value for each gene, and to demonstrate that the CAI values are statistically 

significant the codon bias values are not due to sequence composition artifacts.  CAI values were 

normalized (divided by) the expected CAI values (eCAI) using the Poisson method with a 99% 

interval confidence and 99% population coverage.  Normalized CAI values with scores  < 1.00 

are indicative of codon bias and identified as putative foreign genes. 

 

Synteny block construction and GI characterization.   

 

Chromosomal regions identified as genomic islands were further analyzed in the KEGG 

Database (http://www.genome.jp/kegg/kegg1.html) to confirm their gene function, annotation 

and predicted motifs.  The MaGe (Microbial Genome Annotation and Analysis Platform) 

interface was used to explore the gene organization in the GIs and to find synteny blocks to other 

http://genomes.urv.es/CAIcal/
http://genomes.urv.es/CAIcal/E-CAI/
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Dhc strains (https://www.genoscope.cns.fr/agc/microscope/home/index.php).  Genes of interest 

were further analyzed by amino acid sequence and domain alignments using the GenBank, 

PFAM, COG and KEGG databases to identify orthologues, confirm their annotation and aid in 

identification of hypothetical genes.  Homologous genes were aligned with ClustalW, and their 

% identity across the full length was reported.  Genomic regions adjacent to the IS911 elements 

in the neighborhood of the dcpA GI were visually inspected for the presence of inverted repeats 

and compared with known IRL and IRR sequences of characterized IS911 elements in E. coli.   

 

Source DNA and PCR primer design for dcpA genomic island discovery.   

 

Cultures of Dhgm strain BL-DC-9 (isolated from a Superfund site near Baton Rouge, Louisiana, 

USA) and Dhc strain RC and KS (from the Red Cedar River near Okemos, Michigan, and the 

King Salmon River in Alaska, respectively) were grown as described (Moe WM, Yan J, Nobre 

MF, da Costa MS, Rainey, 2009; Padilla-Crespo et al., 2014; Kirsti M Ritalahti & Löffler, 2004).  

Replicate 100 mL-liquid cultures were harvested by vacuum filtration using a MoBio 

polyethersulfone filter membrane with 0.22 µm pore size (MoBio Laboratories Inc., Carlsbad, 

CA, USA, part number 14880-50-WF).  The PowerWater DNA Isolation Kit (MoBio 

Laboratories Inc., Carlsbad, CA, USA) followed the manufacturer’s recommendations and an 

additional step for improved cell lysis was included by heating the samples at 65°C for 10 

minutes before the bead beading step.  

 

Primers targeting the region surrounding the dcpA gene (Dehly_1524) were designed based on 

the genome of Dhgm strain BL-DC-9 (NC_014314.1).  Primer pairs targeted the genes 

Dehly_1518 to Dehly_1531 and were tested under standard Phusion-enzyme PCR conditions 

(New England Biolabs, Table S4.1).  The PCR reactions consisted of 1 U of the Phusion High 

Fidelity Polymeraze, 1x Phusion HF Buffer, 200 mM dNTPs, 100 pmol (or 0.5 μM forward 

primer and 0.5 μM reverse primer) each of primer, 3% (vol/vol) dimethylsulfoxide (DMSO) and 

10 ng of template genomic DNA.  Amplicons were purified with the Qiagen PCR Purification kit 

(Qiagen, Valencia, CA, USA) and cloned into the pCRII vector before transformation into 

chemically competent TOP-10 E. coli cells using the TOPO TA cloning kit (Invitrogen).  Since 

https://www.genoscope.cns.fr/agc/microscope/home/index.php
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the Phusion enzyme produces blunt-end products and the TA cloning kit requires 3’ A 

overhangs, an extra-step was required to adenylate the PCR products prior to cloning.  The 

addition of 3´A-overhangs to the PCR products was performed by incubating the purified 

amplicons (no Phusion enzyme present) at 72°C for 15 min in the presence of 0.2 mM dATP, 1x 

GeneAmp PCR Buffer and 1U of AmpliTaq Polymerase (ABI).  Cloned PCR products were not 

bigger that 2-3 kb, since the efficiency of the TOPO TA cloning protocol decreases when cloning 

inserts bigger than 3 kb.  Plasmids with inserts of the correct size were sequences with vector-

specific and internal sequencing primers (Table S4.1).  

 

Results and Discussion  

Phylogenetic analysis of dcpA.   

 

The Dhc DcpA RDase shares 92% sequence identity with Dhgm RDase Dehly_1524.  The 

analysis of the 484 aa positions illustrated that 98.7% (478/484 aa) are highly conserved (i.e., 

conservation scores > 7, Fig. 4.1) either identical or replaced with an aa with physico-chemical 

properties).  The region with the least conservation is around the aa positions 80-90.  The DcpA 

of Dhc strains RC and KS are true homologs (sharing common ancestry) to the DcpA RDase of 

strain BL-DC-9, as is apparent in the aa sequence bootstrapped maximum likelihood tree 

(Figures 4.2 and 4.3).  The homology of the dcpA RDase gene across microorganisms that only 

share 90% nt identity at the 16S rRNA gene is evidence of an HGT event between these two 

genera of organohalide-respiring bacteria within the phylum Chloroflexi.  Observations of 

plausible HGT across genus boundaries have been made, such is the case of the 

tetrachloroethene reductive dehalogenase (pceA) genes of the Gram-positive Desulfitobacterium 

and Dehalobacter groups (Maillard, Regeard, & Holliger, 2005). 

 

At the nucleotide level, the most similar gene to dcpA is the pseudogene DET0160 identified on 

the genome of strain 195 (Padilla-Crespo et al., 2014).  The fact that the dcpA gene in Dhgm is 

more similar to the Dhc RDase genes than to any other Dhgm RDase gene (Fig. 4.3) could be an 

indication that Dhgm acquired this gene from Dhc.  In addition, the dcpA gene (Fig. 4.3) is part 
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of a larger cluster including DET0311, DehalBAV1_0104, cbdbA88, plus two “Dhom” strain 

DF-1 RDase gene sequences.   

 

dcpA GI in the Dhgm genome.   

 

Bioinformatics and computational analysis on the Dhgm strain BL-DC-9 genome predicted 16 

putative GIs (Fig. S4.1).  The dcpA gene (Dehly_1524) is located in one of these GI from 

genome coordinates 1493353 to 1499907.  The dcpA GI is comprised of 9 genes (Dehly_1519 to 

Dehly_1527) and exhibits a high genomic dissimilarity value (δ*=69.9) based on dinucleotide 

frequency compared to the rest of the Dhgm genome (Fig. S4.2).  Additionally, the % G+C 

content of the dcpA GI with 46.4% was well below the chromosomal average of 55% G+C (Fig. 

4.3).  The dcpA GI is an anomalous sequence, in comparison to 95% of the Dhgm genome 

fragments, which exhibit on average a lower δ* and a higher % G+C content (Fig. S4.4).  

Oligonucleotide usage analysis performed on the Dhgm strain BL-DC-9 genome showed that the 

dcpA GI has a dissimilar tetranucleotide usage pattern from the core genome.  Specifically, the 

dcpA GI showed a high local pattern deviation and local relative variance, divergent from the 

global relative variance (Fig. 4.4).  Further analysis of other oligonucleotide usage parameters 

also showed that the region possessed a low relative variance, significantly high local pattern 

deviation and moderate to high pattern skew when compared to the rest of the genome (Fig. 4.5).   

 

Additionally, the codon usage for the genes surrounding dcpA in Dhgm shows a low normalized 

CAI (CAI/eCAI < 1.00) values further suggesting divergence following acquisition through HGT 

(Table S4.2).  Together all of these properties are characteristic of HGT GIs, transposons, 

pseudogenes, phages and IS elements.  

 

Oligonucleotide biases in Dhc genomes and in among RDase genes have been previously 

described (McMurdie et al., 2007; Regeard et al., 2005).  Regeard et al, (2005) identified 

“atypical regions” in the genome of Dhc strain 195 (Regeard et al., 2005).  These locations also 

depicted a GC composition different than the rest of the chromosome; reductive dehalogenase 

genes were located in these regions along with a high incidence of mobile elements (e.g. 
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transposase genes).  Moreover, McMurdie et. al., (2007) noted that RDases have a low GC 

content and that their third codon positions are biased to the T nucleotide (McMurdie et al., 

2007). 

 

The dcpAB genes in strain BL-DC-9 are sandwiched between a pair of genes annotated as 

“Transposase” (Dehly_1521 and Dehly_1528) and “Integrase catalytic unit” (Dehly_1522 and 

Dehly_1527) (Fig 4.6).  These genes have similar size and arrangements of IS911 transposable 

elements, member of the large IS3 family (https://www-

is.biotoul.fr//is/IS_infos/IS3_family.html).  Further analysis confirmed that Dehly_1527-1528 

and 1521-1522 posses all features present in IS3/911 insertions elements including: (1) an 

overlapping region between the genes 1521 (orfA) and 1522 (orfB) associated with a −1 

programmed translational frameshift (induced by AG4G motif), resulting in the expression of an 

OrfAB transposase (2) regions in the OrfA corresponding to helix-turn-helix (HTH) DNA-

binding motifs similar to RuvC Holliday junction resolvases (Rousseau, Gueguen, Duval-

Valentin, & Chandler, 2004), and a leucine zipper (LZ) motif transposase involved in regulation 

and protein oligomerization (Haren, Normand, Polard, Alazard, & Chandler, 2000; Haren, 

Polard, Chandler, & Paul, 1998) (3) a DDE motif in the OrfB for catalytic transposition closely 

related to retroviral integrases (Rousseau, Tardin, Tolou, Salomé, & Chandler, 2010).  In figure 

4.7 the distinctive features of 1S911 transposition noticed in Dehly_1521- Dehly_1522 are 

depicted (Rousseau et al., 2010).  Furthermore, Dehly_1527-1528 and 1521-1522 are identical 

insertion sequences reading in opposite direction; a characteristic of composite transposons  

 

Cloning and characterization of the genes encompassing the dcpA genomic island in Dhc 

strains RC and KS.  

 

The dcpA GI in Dhc strains RC and KS was cloned using primer pair combinations targeting the 

upstream region of the dcpA gene (Dehly_1524) in Dhgm strain BL-DC-9.  PCR reactions with 

primers 1520F and 1524R targeting for Dhc RC and KS genomic DNA amplified a smaller 

region of ~2.9 kb, in contrast to the 4 kb region in Dhgm (Fig. 4.8).  The smaller amplicon 

obtained with template DNA from Dhc strains RC and KS was due to the absence of the 

https://www-is.biotoul.fr/is/IS_infos/IS3_family.html
https://www-is.biotoul.fr/is/IS_infos/IS3_family.html
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integrase (Dehly_1521) and transposase (Dehly_1522) genes  (Fig. 4.8).  Analysis of the 4 kb 

fragment of Dhc strains RC and KS contained a complete open reading frame (ORF) of 1,383 nt 

(467 aa) of a fused Dehly_1523 and Dehly_1520 gene.  The Dhgm gene Dehly_1520 is 

annotated as a RDase gene yet it lacks common RDase features (i.e., no associated B gene and 

no iron sulfurs clusters) and a variant sequence (SNKDFMQ) instead of the conserved 

SRRXFLK twin-arginine motif.  Dehly_1520 is also much smaller than a typical RDase (only 

120 aa in length compared to the typical RDase size of ~ 450-500 aa).  The Dehly_1520 protein 

has high sequence similarity in the N-terminal region sharing 32% aa identity and 57% similarity 

to RDases like DhcVS_99 (Fig. S4.5).  By contrast, Dehly_1523 has two iron sulfur clusters in 

the form CX2CX2CX3CP and CX2CX3CP, which are commonly found near the C-terminus of 

RDases but is annotated as a “4Fe-4S ferredoxin”.  These observations suggest that the homologs 

to Dehly_1520 and 1523 are fused in Dhc strains RC and KS, comprising complete ORFs and 

are putative RDase genes.  Dehly_1520 and Dehly_1523 may have been an intact gene in Dhgm 

strain BL-DC-9 that was interrupted by the insertion of the integrase and transposase genes 

Dehly_1521 and Dehly_1522, respectively.  RDase gene interruption has been observed in 

rdhA2 Dhaf_0696 of Desulfitobacterium hafniense strain DCB-2, which was interrupted by the 

insertion of the transpose gene tra (Kim et al., 2012). 

 

PCR with the primer pair 1518F/1520R using template DNA of Dhc strain RC and KS resulted 

in an amplicon of 1.5 kb, larger than the expected 1 kb fragment expected based on the Dhgm 

genome sequence (Fig. 4.8).  The difference in size suggested commonalities as well as 

differences in the gene composition and arrangement of this region; sequence analysis of the 

fragment revealed very high sequence identity to the region in Dhgm corresponding to genes 

1519 and 1520.  A homolog to the Xre (xenobiotic response element) transcriptional regulator 

Dehly_1519 was found in the dcpA GI in strains RC and KS (with 95 and 96% aa identity, 

respectively) (Fig. 4.8 and Fig. S4.5).  Xre transcription regulators are a large family of 

transcription factors with a characteristic helix-turn-helix motif involved in DNA binding 

(Santos, Tavares, Thioulouse, & Normand, 2009).  Characterized bacterial Xre family-like 

proteins include methylases, plasmid control proteins, restriction and modification systems, 

operator-promoter region in the metabolism of halogenated dibenzofurans and bacteriophage 

transcription control (i.e. in B. subtilis Xre genes repress the acquisition or transfer of integrative 
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and conjugative elements) (Tirumalai & Fox, 2013).  MarR-type regulators have been implicated 

to modulate RDase gene expression; however, xre gene products may also function as DNA-

binding response regulators in Dhc (A. Wagner et al., 2013).    

 

Interestingly, in strains RC and KS, the primer pair 1518F/1520R amplified a 300-500 nt partial 

gene most similar to DET0157, which encodes a XerD-like phage integrase/site-specific 

recombinase in Dhc strain 195 (Fig. 4.8).  DET0157 is located a few genes upstream of 

pseudogene DET0162, which shares a common ancestry with dcpA (Padilla-Crespo et al., 2014)   

and is located within an insertion element region, designated IE II (DET0155 to DET0169) 

(Regeard et al., 2005).  The XerD integrase DET0157 shares a high degree of conservation with 

the C-terminus of XerD integrases in available Dhc genomes including those of strains GT, 

BAV1, VS, DCMB, BTF08, DCMB5, and CG1.  No integrase with >36 % aa identity outside 

the Dhc genus was found in the databases (October 2014).  XerD-like phage integrases are part 

of the superfamily of DNA breaking-rejoining enzymes involved in DNA binding and site-

specific integration.  This family of integrases includes the bacteriophage lambda integrase, the 

Cre recombinase from E. coli bacteriophage P1 and type IB topoisomerases.  XerD enzymes are 

involved in mechanisms such as termination of chromosomal replication (in chromosome 

segregation), transposition of conjugative transposons, integration and excision of lysogenic 

bacteriophage genomes, and the stable control of circular replicons (plasmid) inheritance, which 

are possible mechanisms involved in foreign DNA insertion events in Dhc.  In the neighborhood 

of this DET0162, other mobile elements including ISDet2 transposases, DET0165 (orfA) and 

DET0166 (orfB) were noted.  Interestingly, DET0162 is preceded by a gene encoding a 

hypothetical protein (DET0161), which has as its closest match to a transposase from Vibrio 

vulnificus YJ016 (YP_180910). Both proteins share a helix-turn-helix domain characteristic of 

transferases involved in DNA binding, also alluding to possible HGT events (Grindley, 

Whiteson, & Rice, 2006; Nash, 1996). The assembled gene sequences around dcpA in Dhc 

strains RC and KS also had CAI values below the average (normalized CAI < 1.00) for Dhc 

housekeeping genes (n=142) (Table S3) further suggesting foreign origin.  Lastly, primer sets 

targeting genes upstream of Dehly_1518 as well as downstream of dcpA (from Dehly_1527-

1531) failed to produce amplicons indicating sequence divergence outside this region in strains 

RC and KS (Table S4.1).  
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Additional phylogenetic and genomic analysis of RDase genes in Dhc, Dhgm 

lykanthroporepellens and “Dhom" suggest HGT across genera.  

 

Besides dcpA, three other RDase genes (Dehly_0275, Dehly_0274, Dehly_0283) where 

identified among the 16 putative GIs on the Dhgm strain BL-DC-9 genome (Fig. S4.1).  

Normalized CAI values, a comparative measure of codon usage, for the genes Dehly_0269-

Dehly_0283 (genomic coordinates 258965 to 269792) were calculated.  All the genes in this 

region had values below the average (i.e., normalized CAI < 1.00) for Dhgm housekeeping genes 

(n=118) suggesting a codon bias (Table S4.1).   

 

Comparative analysis on RDases Dehly_0275 and Dehly_0283 revealed high sequence identities 

to RDases encoded on the genomes of Dhc strains VS and BAV1 (Figs. 4.2 and 4.3).  

Dehly_0275 shares 79% aa identity (across the entire length of the protein) with three Dhc 

RDases DhcVS_1336, DhcVS_96 and DehaBAV1_0284.  The genes DhcVS_96 and 

DehaBAV1_0284 are orthologs (sharing 87% nt identity; 92% identity at the aa level) localized 

in the first of two high plasticity regions (HPR1) of Dhc strain VS and strain BAV1 .  

DhcVS_1336 is identical to RDase DhcVS_96 gene, and is localized in a genomic region within 

HPR2 that is specific to strain VS.   

 

Additional examination of this gene neighborhood (Dehly_0269 - Dehly_0283) identified 

multiple genes associated with mobile elements.  In this GI of 15 genes, transposase and 

integrase genes account for a third of the genes (5 out of fifteen) (Figure S4.6).  The GI included 

two integrase catalytic units (Dehly_0279 and Dehly_0280) and three transposase genes of the 

IS3/IS911-type (Dehly_0272, Dehly_0278, Dehly_0281).  These transposase match multiple 

gene copies (99-100% nt sequence identity) throughout the Dhgm genome (i.e. Dehly_0278 

matches 10 genes that are 99-100% identical at the nt level), and the Dhgm genome is replete 

with mobile elements (i.e., it contains 74 transposase genes).   

 

In the other hand, the transposase Dehly_0281 shares 57% aa identity with four IS3/IS911 

transposases encoded on the genome of Dhc strain BAV1: DehaBAV1_0082, DehaBAV1_0293, 

DehaBAV1_0976, DehaBAV1_1326.  In the genome of strain BAV1, these transposase genes 
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are 100% identical to each other, and all but one of these four transposase genes 

(DehaBAV1_0976) are located in HPR regions.  Interestingly, this type of insertion element 

(IS3/IS911-type) is also present downstream the pceABCT operon of Dehalobacter restrictus and 

Dehalobacter sp. strain E1 (Maphosa, Van Passel, De Vos, & Smidt, 2012).  Sequences 

encoding IS3/IS911 transposases appear to be common around RDases in Dehalobacter sp. CF 

(AFV06388.1) and Dehalobacter sp. DCA (AFV03401.1) as well as in Dhc genomes.  Based on 

these findings, the insertion element IS3/911 and the xerD gene encoding a recombinase appear 

to be common in regions affected by HGT in organohalide-respiring bacteria.  

 

Lastly, the putative RDase Dehly_0283 has high aa sequence identity (69%, 79% similarity) with 

the translated sequence of the RDase gene RCRDA15 (ABY28334.1) from Dhc strain RC 

(Figure 3).  Other RDases encoded on the Dhc and Dhgm genomes shared less than 68% aa 

identity to Dehly_0283.  

 

Other apparent HGT events between Dhc and “Dhom” are indicated in Figure 4.3.  The RDases 

DET0311, cbdb_A88, DehaBAV1_0104 (from Dhc strain 195, CBDB1, BAV1, respectively) 

share 87% aa identity with the translated sequence of gene1_0603 from “Dhom” DF-1, while 

DhcVS_1320, shares 79% identity with the translated nucleotide of gene3_0607 from strain DF-

1 (Fig 4.3).   ORF4 on the draft genome (scaffold 0604) “Dehalobium chlorocoercia”.  In 

addition, DET0311 shared 87% aa identity with ORF1 on scaffold 0603 from “Dehalobium 

chlorocoercia”.  Given that housekeeping proteins in Dhc and “Dehalobium chlorocoercia” strain 

DF-1 share an average aa identity of 71%, cross-genus RDase similarities in groups i and v may 

represent lateral transfers between Dhc and “Dehalobium” 

 

Other apparent HGT events between Dhc and “Dhom” are indicated in Figure 4.3.  The RDases 

DET0311, cbdb_A88, DehaBAV1_0104 (from Dhc strain 195, CBDB1, BAV1, respectively) 

share 87% aa identity with the translated sequence of gene1_0603 from “Dhom” DF-1, while 

DhcVS_1320, shares 79% identity with the translated nucleotide of gene3_0607 from strain DF- 

1 (Fig 4.3).   
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The cluster containing DehaBAV1_0284, DhcVS_96, and DhcVS_1336 have two Dhgm 

sequences and two “Dhom” sequences at ancestral nodes, suggesting these sequences originated 

outside the Dhc genus. “Dhom” strain DF-1 gene59_1491 shares 91% identity and 95% 

similarity with the Venice lagoon clone CCA41202 obtained from PCB-contaminated sediment.  

Also “Dhom” strain DF-1 gene9_1501 shares 82% identity and 87% similarity with the marine 

sediment clone, BAI47846.  

 

The red bracket in Figure 4.4, indicate the Dhc gene DhcVS_1342 with apparent origins outside 

of the Dhc group.  This gene clusters most closely with Dehly_0910 from Dhgm and gene3_0607 

from strain DF-1.  Interestingly, DhcVS_1342 is downstream of the duplicated RDase gene 

DhcVS_1336 and the pair of IS3/IS911-transposase/integrase genes DhcVS_1332and 

DhcVS_1333.  However, the 58% identity shared with its most closely related homologue 

(Dehly_0910) is too low to infer (recent) HGT.  Moreover, Dehly_0910 is immediately upstream 

of essential nucleotide biosynthesis, which in general posses a low tendency for HGT.  Other 

more recent apparent transfers between Dhc and “Dhom” are indicated in Figure 4.3: DET0311 

from Dhc mccartyi strain 195 who shares 87% identity with gene1_0603 from “Dhom” strain 

DF-1 and DhcVS_1320 shares 79% identity with gene3_0607 from “Dhom” strain DF-1. 

 

HGT and possible mechanism of insertion  

 

RDase genes with assigned function include tceA (TCE RDase), vcrA (VC RDase), and bvcA 

(VC RDase) have all been shown to have features indicative of HGT (Krajmalnik-Brown et al., 

2007; McMurdie PJ, Hug LA, Edwards EA, Holmes S, 2011).  Regeard et al. found indications 

that 15 of the 18 RDase genes in in strain 195 (including tceA) were located in regions of 

putative HGT origin (Regeard et al., 2005).  Furthermore, the pceA RDase gene (encoding a 

PCE-to-cis-DCE RDase) of Geobacter lovleyi strain SZ is located in an atypical region 

speculated to be a GI (D. Wagner et al., 2012).  These findings suggest that RDase genes are 

prone to HGT.   
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The direction of HGT (donor versus recipient) and the mechanisms of insertion and mobility are 

unclear without experimental evidence, and correlations cannot be evaluated without bias 

because the databases consist primarily of Dhc RDases while only one Dhgm and "Dhom" 

genome are available.  Recently, a site mobilization element ssrA (tmRNA, DhcVS_1281) was 

described in Dhc strain VS as an integration site for the VC RDase gene vcrA.  The immediate 

upstream and downstream region of the dcpA gene in the Dhgm genome strain BL-DC-9 was 

inspected, but no ssrA signals were found.  Further analysis revealed that a ssrA gene (tmRNA, 

Dehly_R0050) and smpB (Dehly_1478, encoding an SsrA-binding protein) are present in Dhgm 

strain BL-DC-9 but not in close proximity to dcpA.  Moreover, the vicinity of dcpA does not 

share synteny with the integration modules described for ssrA GIs (McMurdie PJ, Hug LA, 

Edwards EA, Holmes S, 2011).  The region surrounding dcpA does not consist of an ssrA-

specific GI, indicating that multiple mechanisms are involved in RDase gene HGT.    

 

The presence of IS911 elements in the dcp operon in Dhgm suggest that the RDase gene 

insertions in this genome are recent, while in Dhc, the genes essential for the transfer events may 

have been lost.  Insertion elements of the IS3/911-type are characterized by having imperfect, 

terminal left and right inverted repeats (IRL and IRR) of ~36 bp, involved in binding and 

recognition of the flaking-end elements (Rousseau et al., 2010).  Terminal imperfect inverted 

repeats of 34 bp in length were identified at the 5’ and 3’ends of transposases; Dehly1521 - 

Dehly1522 and Dehly1527 - Dehly1526.  The identified IRL and IRR, shared ~70% nt sequence 

identity between themselves and highly reassembled those in characterized IS911 elements in E. 

coli and (see Figure 4.6) for nucleotide sequence comparison of the terminal IRs).  The pathway 

for IS911 transposition has been described by (Rousseau et al., 2010) and a proposed mechanism 

for its behavior in the region surrounding dcpA is depicted in Figure 4.10A.  IS911 insertion has 

been shown to be both targeted (next to DNA sequences similar to orfA) and not targeted (with 

no need of DNA sequence homology) (Rousseau et al., 2007) and the transposition as a “copy-

paste” mechanism (Duval-Valentin, Marty-Cointin, & Chandler, 2004).  The genetics and mobile 

mechanism of IS911 transposition explains the high number and propagation of this element in 

the genome of Dhgm strain BL-DC-9.  Thirty-tree copies of the IS911 elements are harbored in 

the genome.  These are 99-100% identical and are located throught the genome in the exact 

arrangement as depicted in Figure 4.7 (66 overlapping genes predicted to encode a complete 
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transposase; OrfAB).  Aside self-propagation as simple transposons (excision and reinsertion in 

the genome), identical elements flanking a series of genes can render the region mobile, a 

characteristic of composite transposons. 

 

A possible scenario is that dcpA was originally in a Dhc host strain and the dcpA island was 

replicated and moved to Dhgm in an IS911 circle (or a plasmid containing the IS911 elements).  

Such a circular element was identified in the organohalide-respiring Desulfitobacterium 

hafniense strain TCE1, harboring the transposon (Tn-Dha1) carrying the pceA RDase gene 

(Maillard et al., 2005).  Tn-Dha1 has two identical insertion sequences (belonging to the IS256 

family) that flank the pce gene cluster (just like the IS3/911 elements surround the dcpA GI) and 

integrates by transposition and homologous recombination across the identical copies of the 

insertion sequences (Futagami, Yamaguchi, Nakayama, Goto, & Furukawa, 2006).  Another case 

is the composite transposon Tn5280 of Pseudomonas sp. strain P51, which harbors a 

chlorobenzene dioxygenase and dehydrogenase gene cluster that is flanked by two almost 

identical (1 nt difference) insertion sequences IS1066 and IS106 (Van der Meer, Zehnder, De 

Vos, Van Neerven, & De Vries, 1991).  The region around dcpA does reassemble that of 

composite transposon (Figure. 4.10) making transposition a putative mechanism for the 

mobilization of the dcpA island.  No circular transposable element has been described in Dhc 

strains but recently the draft genome of Dhc strain SG1 suggests it carries a plasmid (the first 

Dhc reported to carry an extra chromosomal element) suggesting that RDase gene dissemination 

by integration or conjugation is possible (Wang, Chng, & Wu, 2014). 

 

Another hypothesis is that dcpA moved via a phage infecting the cells, also involving the Xer-D 

phage-site specific recombinase.  The application of PHAST (PHAge Search Tool), confirmed 

that complete, intact prophages are present in the genomes of Dhc strain 195 and strain BTF08, 

and incomplete phage or genomic regions with phage-like genes are present in the genomes of 

other Dhc as well as Dhgm (see Figure 5.7 in Chapter 5).  Additionally, a complete phage genome 

was detected in a Dhc contig in the metagenome of the dechlorinating consortium KB-1 (Alison 

S. Waller et al., 2012), and phage-like particles have been detected in Dhc cultures (Dumas et al., 

2008; K M Ritalahti, Helton, Fletcher, Wommack, & Löffler, 2007).  GTAs could also be 

involved in transfer of RDase genes in Dhc, although direct evidence for this hypothesis is 
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lacking.  Interestingly, scanning electron micrographs have shown Dhc cells with multiple 

extrusions and near small-round blebs (Kube et al., 2005; Kirsti M Ritalahti et al., 2006) of 

around ~50 nm, which is in size range (30–50 nm) of described GTAs (Lang, Zhaxybayeva, & 

Beatty, 2012).  Currently, 70% of viral metagenomes are populated with gene sequences that 

share no similarity with those deposited in public databases (Lang et al., 2012); while 

approximately 30% of the protein coding genes in strain BL-DC-9 (Siddaramappa et al., 2012) 

and 19
 
% of Dhc core genome (Ahsanul Islam, Edwards, & Mahadevan, 2010) are annotated as 

uncharacterized hypothetical genes.  Therefore it is difficult to draw further inferences on HGT 

mechanisms based on gene homology.  

Final remarks  

 

Organohalide-respiring Chloroflexi are of interest to bioremediation practitioners since strains of 

this genus have been shown to grow using a variety of chlorinated compounds as terminal 

electron acceptors including 1,2-D.  The discovery of dcpA in Dhc strains RC and KS resulted in 

assigning function to the RDase in its nearest relative, Dhgm .  Dhc and Dhgm share similar 

lifestyles and likely occupy similar environmental niches, which may facilitate HGT events 

between these organisms.  The dcpA GI gives a selective advantage to Dhgm and Dhc by 

expanding their catabolic capabilities and providing the benefit of using 1,2 D as electron 

acceptor.  

 

Acquisition of dcpA by Dhgm via HGT is supported by (1) high sequence similarities/identities 

between the Dhc and Dhgm dcpA genes, (2) localization of the dcpAB gene cassette in atypical 

genomic regions, as evidenced by % G+C content, di-nucleotide, tetra-nucleotide and codon 

biases in Dhgm lykanthroporepellens strain BL-DC-9, (3) the presence of mobilization genes 

encoding transposes and integrases upstream and downstream of dcpA, and (4) the finding that 

Dhc and Dhgm strains exhibit similar gene arrangements (i.e., gene synteny) in the gene 

neighborhood of dcpA.   

 

Similar to vcrA, the dcpA gene shows an evolutionary history different from the genes in the core 

Dhc genome, with a plausible origin in a non-Dhc organism.  Also, the donor might be not a 
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bacterium, but an independently replicating element such as a plasmid or a phage or transposon, 

common in subsurface environments (Burton, Day, & Bull, 1982; Eydal, Jägevall, Hermansson, 

& Pedersen, 2009; Kyle, Eydal, Ferris, & Pedersen, 2008; Ogunseitan O A, Tedford E T, Pacia 

D, Sirotkin K M, 1987).  In addition, 16 GI were identified in Dhgm lykanthroporepellens strain 

BL-DC-9 genome, and these regions are of putative foreign origin and include dcpA and two 

other RDase genes that are shared with some Dhc strains, providing evidence of additional HGT 

events between Dhc and Dhgm.  Understanding the mobility of RDase genes in the environment 

is relevant for elucidating the evolutionary history of organohalide respiration and for predicting 

a contaminated sites reductive dechlorination potential and trajectory in terms of meeting 

regulatory requirements.  
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Chapter 4 Appendix: Figures  

 

 

Figure 4.1.  Amino acid sequence conservation of the set of dcpA sequences (Dhc strain RC/KS and Dhgm) illustrated with 

conservation scores obtained with JALVIEW.  The translated dcpA sequences of Dhc RC/KS and Dehly_1524 were aligned with 

JALVIEW and the conservation scores extracted for every site of the alignment and plotted in EXCEL.  In summary, Jalview 

calculates a numerical index in a scale from 0 to 11 using the AMAS (Analysis of Multiply Aligned Sequences) method (Livingstone 

et. al) and by measuring the number of conserved physico-chemical properties of each column in the alignment.  Higher scores 

represent high conservation in the aa sites of the sequence of interest.  Analysis of the 484 sites in the dcpA alignment illustrates that 

the vast majority (98.7%, 478/484) are highly conserved (with conservation scores above 7).  The site with the least conservation is 

around the 80
th

-90
th

 position. The overall results support the notion that DcpA is highly conserved between different bacterial genuses.
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Figure 4.2.  Phylogenetic relationships between predicted RDases from Dhgm strain BL-

DC-9 and Dhc mccartyi.  The yellow-highlighted region indicates Dehly_1524 from the Dhgm 

GI spanning Dehly_1519 to Dehly_1527 and related dichloropropane reductase RDases (DcpA) 

from Dhc mccartyi strains KS and RC.  The magenta-highlighted clusters indicate Dhgm RDases 

from the genomic island spanning Dehly_0269 to Dehly_0283 and related putative RDases from 

Dhc mccartyi strains RC, BAV1, and VS. Dhc mccartyi RDases characterized by enzymological, 

proteomic, or reverse genetics studies are indicated in boldface.  
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Figure 4.3.  Phylogenetic relationships of putative horizontal transfers across genera indicated for 174 predicted RDases from 

Dehalogenimonas lykanthroporepellens strain BL-DC-9 (Dhgm), Dhc mccartyi (Dhc), and “Dehalobium chlorocoercia” DF-1 

(“Dhom’).  The yellow-highlighted region indicates Dehly_1524 from the Dhgm GI spanning Dehly_1519 to Dehly_1527 and related 

dichloropropane reductase RDases (DcpA) from Dhc mccartyi strains KS and RC.  The magenta-highlighted clusters indicate Dhgm 

RDases from the GI spanning Dehly_0269 to Dehly_0283 and related putative RDases from Dhc mccartyi strains RC, BAV1, and VS.  

The red bracket indicates the Dhc mccartyi gene, DhcVS_1342, with apparent origins outside Dehalococoides.  More recent apparent 

transfers between Dehalococcoides and “Dehalobium” are indicated in magenta brackets: DET0311 from Dhc mccartyi 195 shares 

87% identity with gene1_0603 from “Dehalobium” DF-1; DhcVS_1320 shares 79% identity with gene3_0607 from “Dehalobium” 

DF-1. Dhc mccartyi RDases characterized by enzymological, proteomic, or reverse genetics studies are indicated in boldface. 
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Figure 4.3.  (continued) 
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Figure 4.4 Identification of divergent regions in the genome of Dehalogenimonas 

lykanthroporepellens strain BL-DC-9 through oligonucleotide usage (RV, GRV, D).  

Genomic fragments dissimilar in tetranucleotide usage compared to the genomic average. x-axis: 

local relative variance of oligonucleotide usage (RV).  y-axis: global relative variance of 

oligonucleotide usage (GRV).  z-axis (color-coded): distance between two oligonucleotide usage 

patterns (D).  Horizontally transferred regions generally deviate from the core genome yielding a 

high local pattern deviation [D] and a local relative variance divergent from the global relative 

variance).  Positions where the dcpA GI is located are highlighted in red circles 
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Figure 4.5.  Identification of divergent regions in the genome of Dehalogenimonas 

lykanthroporepellens strain BL-DC-9 through oligonucleotide usage (RV, D, PS).  Based on 

oligonucleotide usage parameters, dcpA’s GI posses the characteristics of HGT gene islands, 

transposons, pseudogenes phages and IS having a low relative variance (RV), significantly high 

local pattern deviation (D), and moderate to high pattern skew (PS). 
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Figure 4.6.  Genetic map dcpA GI in Dehalogenimonas strain BL-DC-9 genome.  The 

positions of the following sequence elements are indicated:  IS911 elements flanking the dcpAB 

genes that caused gene interruption and the location of 24-bp IRR and IRL bordering the right 

and left ends of the transposases.   Nucleotide sequence alignment of terminal IRL and IRR of 

the IS911 elements in (A) Dhgm dcpA GI (B) in characterized IS911 elements in E.coli, as 

shown by (Rousseau et al., 2010). Conserved nucleotides are shown on a grey background.  
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Figure 4.7.  Genetic organization of Dehly_1521-1522: insertion sequence of the IS3/IS911 

family.  (A) The scheme represents the genetic organization of Dehly_1521 and 1522; both 

genes are in different reading frames (0 and -1, respectively) and overlap in a small region.  The 

dotted line depicts the translational frame shift-site caused by the A7G slippery codon.  The RNA 

sequence involved in the frame shift is indicated.  The shift (indicated as an arrow) occurs when 

the ribosome slides back one nucleotide to the left (-1).  The termination codon for Dehly1521 

(UGA) is depicted as well as Dehly_1522 putative ribosome bonding site (RBS) and its AUU 

start codon.  Terminal inverted repeats located in intragenic regions at the left (IRL) and right 

side (IRR) of the transposase are shown.  (B) Protein products of Dehly_1521-1522 are 

represented.  In Dehly_1521 a α helix–turn– α helix (HTH) motif was detected and a leucine 

zipper (LZ), both involved in DNA binding.  Dehly_1522 posses the catalytic DDE motif, a 

catalytic domain described to mediate sequence-specific strand cleavage in transposases.  All of 

these are common features of the IS3/IS911-type and result in the full-length expression of the 

fused transposase OrfAB (Rousseau et al., 2010).  The nearby pair of genes 1527-1628 have the 

same arrangement as depicted here 
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Figure 4.8.  Elucidation of the genes encompassing the dcpA genomic island in Dhc strains 

RC and KS.  PCR amplification of the region adjacent to dcpA using the primer pairs (A) 

1518F/1520R and (B) 1520F/1524R and genomic template DNA from Dhc RC and KS cultures.  

In each gel picture the 1kb plus ladder (Invitrogen, left lane) was used as marker, a reaction with 

H2O and no template DNA (lane 3) served as negative control, and Dhgm DNA (rightmost lane) 

was used as positive control to proof primer and reaction efficiency.  Reaction with primers 

targeting genes downstream of dcpB failed to produce an amplicon when tested on DNA from 

RC and KS.  (C) Organization of the dcpAB region as depicted in Dhgm genome and as 

elucidated in sequencing of the PCR amplicon produced with primers 1518F/1520R and 

1520F/1524R on Dhc RC and KS gDNA. 
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Figure 4.9.  Phylogenetic relationships between Dhc KS and RC dcpA GIs and Dhgm BL-

DC-9 GI with Dhc mccartyi putative RDase cluster.  Phylogenetic tree was constructed in 

Phylip by maximum likelihood based upon concatenated aa alignments of RDaseA-RDaseB 

clusters indicated by gray shading.  All bootstrap values at branches have 100% support out of 

100 replicates and the scale bar in the upper left.  DET0311-0312 was used as an outgroup.   
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Fig 4.10.  IS911 transposition in the dcpA GI.  The 1S911 transposition mechanism is depicted 

as described by (Rousseau et al., 2010). 

A. In summary, transposase OrfAB recognizes the IRRs leading them to form (1) a synaptic 

complex followed by (2) cleavage (hydrolysis) of one of the IRs to generate a 3′ OH 

group. The free ‘OH interacts (via nucleophilic attack) with 3 bp from the opposing end 

leading to the formation of a figure-eight structure (3). Following host-mediated 

secondstrand 

synthesis and resolution, (3) a covalently closed circle (IS circle) is generated with 

two adjacent IRRs separated by 3bp. 

B. The mechanism of IS insertion is similar, involving a second a synaptic complex now 

encompassing the target DNA (e.g. Dhgm chromosome), the adjacent IRRs, and the 

transposase proteins (OrfAB). Briefly the IRR-IRL junction in the IS circle serve as a strong 
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promoter for the expression of the OrfAB proteins leading to (4) asymmetric single-strand 

cleavage following liberation of a 3′ OH’ nucleophile that attacks the opposing end, resulting 

in (5) the insertion into a host DNA. 

C. Comparison of the dcpA region with a canonical composite transposon. 
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Chapter 4 Appendix: Supplemental Figures  

 

 

 

 

Figure S4.1.  Computational identification and visualization of genomic islands in Dhgm 

genome (NC_014314.1).   Using IslandViewer, an integrated interface that integrates different 

genomic-island prediction methods, genomic islands were predicted in Dhgm genome 

(NC_014314.1).  (A) On blue are regions identified by the IslandPath-DIMOB prediction 

method while on orange are regions identified by SIGI-HMM; both methods look for regions 

with abnormal sequence composition.  In red are regions identified by at least one of the two 

methods. (B) Genomic coordinates of the putative GIs.  
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Figure S4.2.  Compositional bias of dinucleotide frequency analysis using delta-rho WEB 

http://deltarho.amc.nl/cgi-bin/bin/index.cgi). For this analysis the genomic dissimilarity (the 

average dinucleotide relative abundance difference) of the dcpA genomic island and the Dehly  

chromosome was calculated. First the genome sequence is divided into non-overlapping 

fragments with a size equal to the length of the input GI sequence, the dinucleotide bias for each 

segment is calculated; after which a frequency distribution is made for both δ* scores. The δ* 

value of the genomic island is plotted vertically in the fragment distribution, indicating the 

proportion of genomic fragments with a lower δ* value. Marked with a solid line is the position 

of the GI indicating the 94.5 % of the genomic fragments in Dehalogenimonas have a lower δ*.  
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Figure S4.3 Comparison of GC content of the dcpA GI and that of the genome of 

Dehalogenimonas lykanthroporepellens strain BL-D-C9.  Using delta-rho WEB 

(http://deltarho.amc.nl/cgi-bin/bin/index.cgi) the chromosome sequence of Dehalogenimonas 

lykanthroporepellens BLDC9  strain BLDC9 is divided into non-overlapping fragments with a 

size equal to the length of the input GI sequence.  Then a  frequency distribution is made for the 

GC% percentage scores of the genomic fragments. Marked with a solid line is the position of the 

GI indicating the 95% of the genomic fragments in Dehalogenimonas have a higher GC%.  
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Figure S4.4.  Visualization of the GC composition and the genomic signature of 

Dehalogenimonas BL-DC-9 using δρ-web (http://deltarho.amc.uva.nl.) and a window size 

of 10,000 bp.  The graphs show the genomic dissimilarity (δ*) and GC percentage (bottom) 

distributions of Dhgm. strain BL-DC-9 genome the horizontal lines represent the respective 

average.  Atypical areas on the genome have high δ or a GC that deviated from the average.  

  

http://deltarho.amc.uva.nl/
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Figure S4.5.  Protein sequence similarity between predicted Dhgm BL-DC-9 GI loci, 

Dehly_1519-Dehly_1529.  Highest sequence similarity was found for predicted orthologs in Dhc 

strains KS and RC (second row, gray background).  Paralogous matches in the databases are 

indicated in the third row (blue background), where the “split reductive dehalogenase”, 

Dehly_1520 and Dehly_1523 shared their top BlastP match with the putative DcpA, 

Dehly_1524.  The IS3/IS911-Integrase pair of the Dehly_1519-Dehly_1529 GI matched 11 

duplicates throughout the BL-DC-9 genome, including within the GI itself. Similarly, the 

mutator-type transposase (Dehly_1529) matched 18 duplicates. Dhgm paralogs are also top 

database matches Dehly_1519-Dehly_1529 unless otherwise indicated.  In contrast to the Dhc 
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KS and RC orthologs, top BlastP database matches outside the Dhgm BL-DC-9 genome (bottom 

row) tended to share markedly weaker similarity with Dehly_1519 – Dehly_1529. 
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Figure S4.6.  Combined trees showing the commonalities of certain insertion elements in 

Dhc and Dhgm GI.  In black are the transposases (orfA) and integrases (orfB); in red the 

transposases mutator type.  
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Chapter 4 Appendix: Supplemental Tables  

Table S4.1. Primers used to explore sequence similarities upstream and downstream of the dcpA gene in Dhc RC and KS.  

Target locus 
Primer 

Name 

Annotated 

Target Gene 

Name 

Primer sequence 5’->3’ 

Primer 

Length 

(bp) 

Coordinates 

Gene Start 

Coordinates 

Gene End 

Gene 

Length 

(bp) 

Primer Binding 

Coordinates 
Comments 

Dehly_1518 1518F 
Cytochrome c 

class I 
TTCGGTCCCCAAAGTGCGGG 20 1493030 1492447 583 1492730…1492711 Used with primer 1520R 

Dehly_1520 1520F RDase ACCAGATGTTGAGTGCATCGGAGT 23 1494014 1493625 389 1493748...1493725 
Used with primer dcpA-

1449R 

Dehly_1520 1520R RDase TCGATTTCGACAGTAGGCACGTCG 19 1494014 1493625 389 1493800...1493777 Used with primer 1518F 

Dehly_1522 1522F 
Integrase 

catalytic subunit 
AGTTGGAGATCAAGGCAGCGGATA 24 1494383 1495243 860 1494510…1494533 

Tested with primer dcpA-574R 

and failed to yield a product on 

RC and KS gDNA 

Dehly_1523 1523F 
4Fe-4S 

ferredoxin 
TGGCAGGCGACTGCGCATTT 20 1495262 1496284 1022 1495925…1495905 Sequencing primer 

Dehly_1524 
dcpA-

1257F 
RDase CGATGTGCCAGCCATTGTGTCTTT 23 1497940 1496492 1448 1497772...1497749 Sequencing primer 

Dehly_1524 
dcpA-

1449R 
RDase TTTAAACAGCGGGCAGGTACTGGT 23 1497940 1496492 1448 1497941…1497918 Used with primer 1520F  

Dehly_1524 
dcpA-

360F 
RDase TTGCGTGATCAAATTGGAGCCTGG 23 1497940 1496492 1448 1496875…1496852 Sequencing primer 

Dehly_1524 
dcpA-

574R 
RDase TCGTCATCCACTCTTGCATAGCCA 23 1497940 1496492 1448 1505449…1505426 Sequencing primer 

Dehly_1526 1526R 
Integrase 

catalytic subunit 

AGAATTGTTGAGCATAAGCCGCCG 

 
24 1499047 1499907 860 1499070…1499093 

Tested with primer dcpA-

1257F and failed to yield a 

product on RC and KS gDNA 
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Table S4.1. (continued)       

Target locus 
Primer 

Name 

Annotated 

Target Gene 

Name 

Primer sequence 5’->3’ 

Primer 

Length 

(bp) 

Coordinates 

Gene Start 

Coordinates 

Gene End 

Gene 

Length 

(bp) 

Primer Binding 

Coordinates 
Comments 

Dehly_1527 1527F 

Transposase 

IS3/IS911 

family protein 

TGGAAAGGATTCCACACGGGAAGT 

 
24 1499904 1500221 317 1500220…1500197 

Tested with primer 1531R and 

failed to yield a product on RC 

and KS gDNA 

Dehly_1529 1529R 
Transposase 

mutator type 
ACATTACTGCGGCGCTTGATTTCC 24 1500745 1501959 1214 1501790…1501767 

Tested with primer dcpA-

1257F and failed to yield a 

product on RC and KS gDNA 

Dehly_1531 1531R 

LuxR 

transcriptional 

regulator 

GGGGATGGACGGCTTTGCGA 20 1504069 1504752 684 1504543…1504524 

Tested with primer dcpA-

1257F and 1527F and failed to 

yield a product on RC and KS 

gDNA 

  

Note: Primers on bold and shaded in grey successfully yielded a clean product that was cloned and sequenced. Primers were 

 designed based on Dhgm strain BL-DC-9 genome (NC_014314).   
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Table S4.2.  Dehly_1519-1527 genomic island codon adaptation index (CAI).  Codon usage 

of the putative GI encompassing genes Dehly_1519-1527 in comparison to all Dehalogenimonas 

chromosomal genes using the codon adaptation index (CAI).  Normalized CAI of < 1.00 

indicates a possible laterally acquired gene and is scored below genomic expected CAI at a 1% 

level of significance (genomes.urv.es/CAIcal/E-CAI).  

 

Description Gene locus 
Length 

(bp) 

Normalized 

CAI  

XRE family transcriptional regulator Dehly_1519 249 0.92 

reductive dehalogenase (partial) Dehly_1520 390 0.87 

transposase IS3/IS911 family protein Dehly_1521 318 0.92 

integrase catalytic region Dehly_1522 861 0.91 

4Fe-4S ferredoxin iron-sulfur-binding domain-

containing protein 
Dehly_1523 1023 

0.84 

reductive dehalogenase (RDaseA) Dehly_1524 1449 0.90 

reductive dehalogenase anchoring protein (RDaseB) Dehly_1525 219 0.89 

integrase catalytic region Dehly_1526 861 0.92 

transposase IS3/IS911 family protein Dehly_1527 318 0.92 
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Table S4.3.  dcpA genomic island codon adaptation index (CAI).  Codon usage of dcpA and 

adjacent genes (elucidated by PCR amplification) in comparison to all Dhc housekeeping genes 

(n=142) using the codon adaptation index (CAI).  Normalized CAI < 1.00 (red font) indicates a 

possible laterally acquired gene and is scored below genomic expected CAI at a 1% level of 

significance (genomes.urv.es/CAIcal/E-CAI).  

 

Description Length (bp) 
Normalized 

CAI 

KS_1519_XRE 249 0.97 
KS_1520_and_1523_fused 1386 0.84 
KS_1524_dcpA 1455 0.89 
KS_1524_dcpB 219 0.97 
      
RC_1519_XRE 249 0.97 
RC_1520_and_1523_fused 1386 0.82 
RC_1524_dcpA 1455 0.90 
RC_1525_dcpB 219 0.98 
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Table S4.4.  Dehly_0271-0283 genomic island CAI.  Codon usage Dehly_0271-0283 in 

comparison to Dehalogenimonas strain BL-DC-9 housekeeping genes (n=118) using the codon 

adaptation index (CAI).  Normalized CAI of < 1.00 indicates a possible laterally acquired gene 

and is scored below genomic expected CAI at a 1% level of significance 

(genomes.urv.es/CAIcal/E-CAI).  

  

Description Gene locus 
Length 

(bp) 

Normalized 

CAI 

(CAI/eCAI) 

 Puative PAS/PAC sensor protein (rdhC) Dehly_0269 1422 0.89 

LuxR family two component transcriptional regulator Dehly_0270 813 0.92 

Pseudogene  Dehly_0271 126 0.91 

transposase_IS3/IS911_family_protein Dehly_0272 306 0.91 

hypothetical protein Dehly_0273 285 0.85 

reductive dehalogenase (RDaseA) Dehly_0274 1419 0.90 

reductive_dehalogenase (RDaseA) Dehly_0275 1482 0.90 

reductive dehalogenase anchoring protein (RDaseB) Dehly_0276 276 0.84 

Pseudogene  Dehly_0277 348 0.87 

transposase_IS3/IS911_family_protein Dehly_0278 318 0.92 

integrase catalytic subunit Dehly_0279 861 0.92 

integrase catalytic subunit Dehly_0280 330 0.96 

transposase_IS3/IS911_family_protein Dehly_0281 285 0.99 

hypothetical protein  Dehly_0282 129 0.95 

reductive_dehalogenase (RDaseA) Dehly_0283 1431 0.84 
 

Dehly_0282 129 0.95 
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Chapter 5 

 

Genomic insights into 1,2-D organolide-respiration  
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Reproduced in part with permission from Padilla Crespo, E, S. Higgins and F.E. Loeffler. 

2013.  Draft genome sequence of Dehalococcoides mccartyi strain RC and strain KS. In 

preparation.  All copyright interests will be exclusively transferred to the publisher upon 

submission. 

 

Abstract  

 

Dehalococcoides mccartyi (Dhc) strains RC and KS respire toxic 1,2-dichloropropane (1,2-D) to 

environmentally benign propene.  The Ion Torrent semiconductor technology was used to 

sequence the draft genomes of these strains.  The resulting draft genomes reflect Dhc’s 

adaptation to organohalide respiration and genes encoding multiple reductive dehalogenases 

(RDases), hydrogenase complexes, and corrinoid salvage and modification mechanisms were 

present.  Additionally strain RC and KS exhibit the presence of various putative prophage 

regions and genes for arsenic resistance, features also observed in other Dhc strains.  

Interestingly, a copy of the recently identified polychlorinated biphenyl (PCB) RDase gene is 

present in the draft genomes implying that these strains can use PCB congeners as electron 

acceptors.  The drafts may provide new insights into the adaptation of Chloroflexi to 

organohalide respiration.  

 

 

 

Introduction  

 

1,2-dichloropropane (1,2-D) is a potential carcinogen regulated by the Environmental 

Protection Agency to a MCL of 5 ppb in groundwater.  Dehalococcoides mccartyi (Dhc) strains 

RC and KS conserve energy from dichloroelimination of 1,2-D to innocuous propene and 

inorganic chloride.  This reductive detoxification process is of interest for bioremediation 

applications and restoration of contaminated sites impacted with polychlorinated propanes.  The 

1,2-D-dechlorinating Dhc strains RC and KS share high 16S rRNA gene sequence identity to 

Dhc strains that cannot grow on 1,2-D, and recent efforts have identified the reductive 
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dehalogenase (RDase) biomarker gene dcpA implicated in 1,2-D detoxification (Padilla-Crespo 

et al., 2014).  Both strains were retrieved from geographically distinct locations, strain KS was 

derived from a BTEX-impacted site at the King Salmon River in Alaska while strain RC was 

derived from Red Cedar Creek sediments collected near Okemos, Michigan, USA with no 

previous reported contamination.  Sequencing of these genomes will shed light into the 

uniqueness or common features between these strains and other Dhc strains unable to grow on 

1,2-D.  Furthermore, since 1,2-D is the only chlorinated compound that these strains have been 

successfully grown on, genome information may reveal the possibility of them using additional 

chlorinated compounds as substrates.  

 

Methods  

Cultures and DNA isolation 

 

Cultures were grown with 1,2-D in reduced mineral salts medium as described (F E Löffler, 

Champine, Ritalahti, Sprague, & Tiedje, 1997; Padilla-Crespo et al., 2014; Kirsti M Ritalahti & 

Löffler, 2004) and genomic DNA (gDNA) was extracted from 100 mL of culture suspension 

containing 10
7
 cells/mL using the Mo BIO PowerWater DNA isolation kit (Mo Bio Laboratories 

Inc., Carlsbad, CA).  RNA was removed by adding a mixture of 2.5 U of RNase A and 100 U of 

RNase T1 (catalog number AM2286; Invitrogen) following incubation at 37°C for twenty 

minutes.  DNA concentrations were measured using a NanoDrop ND-1000 (Nanodrop 

Technologies, Wilmington, DE) and quality assessed by gel electrophoresis.  

Ion Torrent genome library preparation  

 

The draft genomes were assembled from single-end DNA reads using the Ion Torrent Ion 

Torrent PGM sequencer (Life Technologies) with 200-bp chemistry.  Genomic libraries of 

strains KS and RC were constructed using 100 ng of gDNAusing the Ion Xpress™ Plus 

Fragment Library Kit (4471269) following the User’s Guide directions.  All steps were 

performed using 1.5 mL LoBind tubes (Eppendorf, PN 022431021), which provide higher 

recovery rates by minimizing the interactions of nucleic acids with the tube surface wall, thus 
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avoiding sample loss.  DNA shearing was performed by enzymatic fragmentation, by adding 5 

μL of Ion Shear™ Buffer 10X, 10 μL of Ion Shear™ Enzyme-100 (Ion Shear™ Plus Reagents; 

PN 4471248) to a 100 ng of gDNA (diluted to 10 ng/μL).  Nuclease free water was added up to a 

final volume of 50 μL.  Reactions were mixed by gently pipetting up and down, incubated for 15 

or 7 minutes at 37°C, and terminated with 5 μL of Ion Shear™ Stop Buffer.  Samples were 

placed on ice and subsequently purified following the directions of the Agencourt AMPure XP 

Kit, PN A63881, Beckman Coulter, Brea, CA.).  Briefly, the Ion Shear reaction mixture was 

combined with 99 μL of the Agencourt
®
 AMPure

® 
XP Reagent containing magnetic beads, 

incubated for 5 min at room temp, placed in a DynaMag magnetic bead stand (PN 12321D, Life 

Technologies) for 5 min, washed twice with 500 μL of 70% v/v ethanol and eluted with 25 uL of 

Low-TE buffer (PN 602-1155-010, Life Technologies).  One microliter of the eluted sheared 

DNA was analyzed in the Bioanalyzer 2100 DNA High Sensitivity chips (Agilent Technologies, 

Palo Alto, CA) to check the size distribution of the resulting fragments.  The fragmented DNA 

(~24 μL) was subjected to adaptor ligation by adding 10 μL of Ligase Buffer, 10 μL of Adapters 

mix, 1 μL of DNA Ligase (Xpress™ Fragment Library Kit, PN 4468987) and 54 μL of nuclease-

free water.  The mixture was pipetted up and down and incubated at room temperature for 30 

mins.  The ligations were purified and eluted in 30 μL of Low-TE using the Agencourt XP beads 

and magnetic rack as previously described.  Size selection of the library was achieved using a 

Pippin Prep™ instrument (SAGE Science, Beverly, MA, USA), which allows for automated size 

selection and collection of DNA fragments.  Fragment sizes of 180–210 bp were collected 

following the manufacturer’s recommendations.  Nuclease free water was added to the recovered 

fragments up to a final volume of 60 μL and purified with the Agencourt 
® 

XP magnetic beads 

procedure as previously described but now eluted in 20 μL of Low-TE.  The purified and size-

selected DNA (20 μL) was amplified by mixing it with 50 μL of Platinum
®

 High Fidelity PCR 

Super Mix and 5 μL of Library Amplification Primer Mix.  Amplifications were carried with the 

following thermocycler parameters 72°C for 20 min and 95°C for 5 min, followed by 9 cycles of 

95°C for 15s, 58°C for 15s and 72°C for 1 min.  Subsequently, samples were once again purified 

with the Agencourt XP-PCR beads and eluted in 20 μL of Low-TE.  Concentrations and size 

distribution of the final DNA library were determined using the Bioanalyzer 2100 DNA High 

Sensitivity chips (Agilent Technologies).  Electropherograms were verified for indications of 

primer dimers (as a peak of ~75 bp, close to the lower marker), and concatemers, which are 
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artifacts of inefficient ligations and appear as peaks of high- molecular weight fragments ranging 

from ~300-500 bp in size.  Each library was diluted to 2.8×10
8
 DNA molecules in 18 μL, and 

used as templates for emulsion PCR according to the Ion Xpress™ Template Kit User Guide 

v2.0 (Life Technologies, PN 4469004).  During this step the templates were bound to the Ion 

Sphere particles at the manufacturer’s specified proportions and subjected to clonal amplification 

by emulsion PCR following the Template Kit User Guide’s recommendations.  After 

amplification, several washing steps broke the emulsion and beads with no template were 

removed by standard protocols.  Ion sphere particles with amplified-bonded fragments were 

mixed with the Ion Torrent sequencing primers and polymerase (Ion PGM™ 200 Sequencing 

Kit, PN 4474004) and loaded onto Ion 316™ in the Ion Personal Genome Machine system 

(PGM; Life Technologies, Germany).  Sequencing was performed following the protocol 

outlined in the user guide (4471999 Rev B, 13. Oct. 2011) and base-calling and preliminary 

alignments to the genome of Dhc strain 195 were performed by the Ion Torrent software suite 

(version 2.0.1) 

 

Sequence assembly and annotation  

 

A subset of 600,000 sequence fragments were randomly selected and different genomic sequence 

assembly strategies were tested: Newbler, which is based on the overlap-layout-consensus 

methodology, and three differet de Bruijn graph-based methods: Velvet, SOAP de novo and Ray.  

Various combined methods (e.g., Velvet and SOAP de novo contigs fed into Newbler) were also 

evaluated.  The performance of the different assembling approaches was measured by: (1) the 

number of resulting contigs, (2) the length of contigs with a value of N50 (i.e., L50, a standard 

measure of quality in de novo assemblies that refers to the length of the smallest contig that 

covers at least 50% of the entire assembly), and (3) the maximum contig length.  Following the 

trials with the different methods, consensus assemblies were obtained using Newbler version 2.6 

(Roche) and reads aligned using Bowtie2 version 2.1.0 (Langmead & Salzberg, 2012).  The 

genomeCoverageBed package of BEDTools version 2.17.0 (Quinlan & Hall, 2010) was used to 

calculate genome coverage statistics.  The reads were aligned using BLAT (BLAST-like 

alignment tool) to the reference genomes of Dhc strains 195, BAV1, BTF08, CBDB1, DCMB8, 
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GT and VS (Kent, 2002).  Alignments to the genome of DCMB5 produced the highest counts of 

over 3 million aligned reads, and this genome was used as reference for further analysis using the 

ABACAS software  (Assefa, Keane, Otto, Newbold, & Berriman, 2009) to align, order, and 

orientate genomic regions.  Protein coding sequences were predicted with the RAST annotation 

server version 4.0 (Aziz et al., 2008) with default settings and correction for frameshifts turned 

on.  Further RDase identification and sequence comparison was performed using BLASTP and 

manually querying against NCBIs non-redundant sequence database (Altschul, Gish, Miller, 

Myers, & Lipman, 1990).  Translated RDase gene sequences were aligned using CLUSTAL_W 

(J. D. Thompson, Gibson, & Higgins, 2002).  RNA genes were annotated with RNammer version 

1.2 (Lagesen et al., 2007) and transfer RNAs were predicted using tRNAscan-SE version 1.3.1 

(Lowe & Eddy, 1997).  Putative prophage genomic regions were identified using the PHAST 

Search Tool (http://phast.wishartlab.com/index.html).  

 

Results and Discussion 

 

DNA extractions from the RC and KS cultures yielded nucleic acid preparations of high 

molecular weight with 260/280 nm absorbance ratios of 1.8-1.9 (Figure 5.1).  Enzymatic 

reactions with 100 ng total DNA incubated for 15 minutes resulted in fragmentation with a size 

distribution of 50-200 bp, with the majority of the fragments having a size of ~100 bp (Figure 

5.2A).  Since a 200-bp library was the goal, a second enzymatic shearing reaction was performed 

with an incubation time of only 7 minutes, which yielded a size distribution of 100-300 bp with 

the majority of fragments having the optimal size of ~200 bp (Figure 5.2B).  The needed 

modification in the incubation time during the enzymatic shearing step may be due to the small 

size of Dhc genomes and/or the presence of small fragments already in the samples since the 

DNA extraction protocol consisted of bead beating (although gel electrophoresis confirmed the 

presence of mostly high molecular weight DNA). 

 

After ligation, size selection and nick translation, the final Ion Torrent library preparation 

showed a peak of ~300 bp (Figure 5.3), the expected size for 200 bp libraries (adapters + insert 

http://phast.wishartlab.com/index.html
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are expected to yield fragments of around 280–320 bp).  The single narrow peak also indicated a 

clean preparation with no primer dimers or concatemers.  

 

Sequencing of the RC and KS genomic libraries generated 4,501,960 and 3,640,282 reads with 

an average read length of 176.4 ± 65.2 bases and 148.0 ± 79.4 respectively (complete Ion Torrent 

run statistics are shown in Figures 5.4-5).  Using the Ion Torrent software suite version 2.0.1, a 

preliminary alignment to the genome of Dhc strain 195 (CP000027.1) showed a 341 fold and 229 

fold coverage with default settings (Figure 5.6).  When using AQ20 values (a quality score that 

represents the length at which the error rate is 1% or less), a mean depth of genome coverage of 

14.5 fold and 9.2 fold was achieved (Figure 5.7).  The Newbler software package provided the 

best de novo sequence assembly resulting in the fewest numbers of total contigs, longer contigs 

and higher numbers of contigs with N50 values (Table 5.1).  

 

The draft genomes of strains RC and KS were assembled into 23 and 15 contigs with estimated 

genome sizes of 1,509,214 and 1,485,739 bp, and G+C contents of 47.15 and 47.26  %, 

respectively (Table 5.2).  These findings are in accordance with the average sizes and G+C 

contents of characterized Dhc genomes, which range from 1.34 to 1.47 Mbp and 47 to 48.9 %, 

respectively (Table 5.2).  The maximum contig size had 643,701 and 647,595 bp and N50 values 

of 210,101 and 268,024 bp for the RC and KS genomes, respectively (Table 5.1).  Genome 

coverage statistics showed that 99.53 and 99.70 % of nucleotide bases in the draft genomes had a 

read depth of >20 fold (which is a metric used to support reliable sequencing and variant 

detection).  Moreover, an average read depth of 187.83 fold ± 123.73 and 76.5 fold ± 44.46 was 

reported for the genomes of strain RC and strain KS, respectively.  This level of coverage is 

sufficient to make confident genotype calls (e.g., a 15-fold coverage was enough to call 

heterozygous single nucleotide polymorphism on the human genome) (Bentley et al., 2008; 

Nielsen, Paul, Albrechtsen, & Song, 2011).  

 

A total of 1,610 and 1,626 putative protein-coding sequences (this is not counting the rra? genes) 

were identified for strains RC and KS, respectively.  For both strains, 74% of the genes were 

annotated based on proteins with known biological functions and 26% were annotated as 

hypothetical proteins.  Single copies of the 5S, 16S, and 23S ribosomal RNA genes shared 98-
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100% identities to the respective genes on other Dhc strains, and a total of 46 genes encoding 

transfer RNAs were predicted, also similar to what has been observed for other Dhc genomes 

(Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, 

Fullerton H, Zinder SH, 2013).  The 16S rRNA gene is spatially separated from the 5S and 23S 

rRNA genes.  Features characteristic of Dhc’s specialized organohalide-respiring energy 

metabolism are present in the draft genomes of strains RC and KS including genes encoding for 

the six hydrogenase complexes Hup, Hyp, Ech, Hyc, Hym, Vhu involved in hydrogen oxidation, 

which is the required electron donor (as described by Seshadri et al., 2005) (Table 5.3 and 5.4) 

and multiple putative reductive dehalogenase (RDase) genes that catalyze the reduction of the 

chlorinated substrates used as terminal electron acceptors.   

 

In the draft genomes of strain RC and strain KS, 34 and 31 putative RDase genes were identified.  

Twenty-nine of the RDase genes in strain RC are shared with strain KS at an amino acid (aa) 

identity of 80% or higher (Table 5.5).  Moreover, the encoded RDases share >92 % aa identity to 

other RDases in Dhc strains, and one RDase (DhcRC_1002; KS_1087) has an ortholog with 69-

70% aa identity in Dhgm strain BL-DC-9 (Dehly_0283, YP_003757927).  As expected, the dcpA 

gene previously cloned from strains RC and KS (JX826287, JX826286, respectively) is present 

in the draft genomes (DhcKS_1220; DhcRC_1554).  This RDase gene is not found in other Dhc 

strains but is shared with the 1,2-D-respiring Dhgm strain BL-DC-9.  Another putative RDase 

gene shared with strain BL-DC-9 (and not present in sequenced Dhc genomes) is found adjacent 

to dcpA (DhcRC_1553; DhcKS_1221).  This RDase gene is a homologue of Dehly_1523 and, 

along with dcpA, is putatively part of a genomic island presumably acquired by HGT (Padilla-

Crespo, E, Wagner D, n.d.)..  

 

Gene homologues of vcrA, bvcA, pceA, and mbrA were not found in the draft genomes, which is 

in agreement with the inability of strains RC and KS to grow with chlorinated ethenes.  The 

chlorobenzene (CB) RDase gene cbrA is absent while both genomes share an almost identical 

RDase gene (97-98 nt% identity, DhcRC_1592 and DhcKS_1618) to the recently described PCB 

RDase pcbA4 (position 64056-65504 on the genome of Dhc strain CG4 (Wang, Chng, Wilm, et 

al., 2014).  Dhc strains 195 and JNA, which also possess a RDase gene nearly identical to pcbA4 

dechlorinate the PCB mixture Aroclor 1260 (LaRoe SL, Fricker AD, 2014; Zhen, Du, 
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Rodenburg, Mainelis, & Fennell, 2014).  Based on this finding, it is plausible that strains RC and 

KS can also respire PCB congeners.  This observation has major implications for bioremediation 

practice at PCB-contaminated sites as discussed by Bedard (2014) (DL, 2014).   

 

Similarly to other Dhc strains, the draft genomes of strains RC and KS also contain the btu gene 

operon encoding for the BtuCDF system involved in cobalamin uptake and transport, as well as 

genes involved in corrinoid scavenging and cofactor modifications (e.g., cobT, cobU and cbiZ) 

(Table 5.6).  These genomic features are crucial for organohalide respiration since cobamides are 

required cofactors for RDases but Dhc cells lack de novo corrin ring synthesis genes.  Strains RC 

and KS also possess several genes involved in arsenic resistance (Table 5.7), a feature described 

in strain DCMB5 .  Further, the RC and KS genomes have as a cluster of CRISPR elements of 

the Cas- and Cse-types (Table 5.8), which are known to function as a defense mechanism against 

invading exogenous DNA sequences like phages and plasmids.  Lastly, multiple putative 

prophage regions were found by PHAST analysis (Zhou, Liang, Lynch, Dennis, & Wishart, 

2011) (Figure 5.7 and Table 5.9)  

 

Conclusion 

Several Dhc genomes have now been reported, only strains RC and KS have been described to 

grow with 1,2-D.  The genomes of strains RC and KS share common Dhc genomic features but 

possess the RDase gene dcpA gene giving these strains the distinguishing 1,2-D-respiring 

phenotype.  Although growth on PCBs have not been attempted with strain RC and strain KS 

cultures, their genome information suggest these Dhc strains use and PCBs as terminal electron 

acceptors (since they posses a nearly identical pcbA4 RDase gene).  Strain GT also has a RDase 

gene sharing 97%  nucleotide identity (1,373 out of 1,412) with pcbA4.  Therefore, along with 

the PCB-dechlorinating Dhc strains JN and 195, which also harbor a nearly identical pcbA4, 

strain GT may also grow with certain PCB congeners.  

 

The finding that pcbA4 is distributed among several Dhc strains is a relevant observation because 

the PCB RDase PcbA4 may also be involved in PCE to TCE and cis/trans-DCE reductive 

dechlorination.  Although early RC enrichments could dechlorinate PCE to the DCE isomers 
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(with small amounts of TCE formed as an intermediate) this ability was lost in both the RC and 

KS cultures after 35 successive transfers in medium amended with 1,2-D (F E Löffler, 

Champine, Ritalahti, Sprague, & Tiedje, 1997; Kirsti M Ritalahti & Löffler, 2004).  

Interestingly, the PCE dechlorinating ability of strain CG4 (with a trans-DCE/cis-DCE ratio of 

2.50-2.67) is very similar to that reported of an early RC enrichment culture by Löffler et al. 

(with a trans-DCE/cis-DCE ratio of 2.45) (F E Löffler, Champine, Ritalahti, Sprague, & Tiedje, 

1997).  The finding that the same RDase in strain CG4 is responsible for PCE and PCB 

dechlorination is puzzling since strain 195 (a strain that can also can dechlorinate PCB and has 

the pcbA4 homologue DET1559 encoding a RDase that is 99% identical to the PCB RDase of 

strain CG4) also has a putative pceA gene (DET0138), which shares no similarity to the known 

PCB-dechlorinating RDases.  In fact, the PceA RDase of strain 195 displays lower aa identity to 

RDases in Dhc genomes (<87 %) and was previously described to be “bifunctional” serving as a 

PCE and 2,3-dichlorophenol RDase (Fung et al., 2007).  But both DET0138_pceA and 

DET1559_pcbA4 were reported to be among the few RDase transcripts produced (along with 

tceA and the pseudogene DET0162 transcripts) in cultures of strain 195 grown with PCE.  Morris 

et al. also detected peptides from both RDases encoded by DET0138 and DET1559 in the cell 

fractions of strain 195 in pure and mixed cultures grown with PCE (Morris et al., 2007).  

Therefore, it can be hypothesized that both RDases are involved in PCE dechlorination, while 

DET1559_PcbA4 is only responsible for growth on PCBs.  

 

Biodegradation assays are needed to confirm the ability of Dhc strains RC and KS to respire 

PCB congeners, and new trials with PCE should be attempted to investigate if growth on PCE is 

restituted.  Further molecular and proteomic approaches, along with substrate range 

characterization experiments, should assign function or redundancy to the high number of RDase 

in these strains only known to respire and grow on 1,2-D thus revealing more insights into 1,2-D 

dechlorination.  

 

Nucleotide sequence accession numbers 

 

The draft genome of Dehalococcoides mccartyi strain RC and KS was deposited in GenBank 

under accession numbers PRJNA230754 and PRJNA230755 respectively.  
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Chapter 5 Appendix: Figures 

 

 

Figure 5.1.  Genomic DNA extraction for Ion Torrent Genome Sequencing.  RC and KS 

cultures were grown on defined anaerobic mineral salts medium with 5 mM lactate, and 0.2 mM 

1,2-D. Genomic DNA was extracted from 100 mL of culture with the MoBio WaterKit. DNA 

was diluted to 10 ng/uL and ran into a 1% agarose gel. 
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Figure 5.2.  Bioanalyzer electropherograms of gDNA following enzymatic fragmentation. 

Reactions with 100 of ng total DNA incubated for 15 minutes resulted in excessive 

fragmentation with a size distribution of 50-200 bp (Panel A) with the majority having a size of 

~100 bp.  A second enzymatic shearing reaction was performed with an incubation time of only 

7 minutes (Panel B) which yielded a size distribution of 100-300 bp with the majority of 

fragments having the optimal size of ~200 bp. Peaks at 35 and and 10380 bp indicate the low- 

and high-molecular weight markers. Agilent High Sensitivity DNA chips kit and chips were 

used.  
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Figure 5.3.  Final sequencing library as seen using the Bioanalyzer 2100 (Agilent, 

Technologies).  The electropherogram and gel images show the size distribution of the DNA 

libraries of Dhc strains RC and KS prepared according to Ion Torrent’s 200-bp chemistry.  A 

single discrete peak of the expected size is depicted (ligated adapters cause the DNA fragments 

to migrate ~100 bp higher.) Peaks at 35 and and 10380 bp indicate the low- and high-molecular 

weight markers. Agilent High Sensitivity DNA chips kit and chips were used.  
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Figure  5.4. Ion Torrent sequencing run report for Dhc strain RC. Statistics and quality 

metrics for the 200-bp library and Ion Spheres particles (ISP) are shown. The average read length 

was 176 bp (close to the 200-bp goal). Seventy-six percent of the wells in the Ion 316 chip 

contained an ISP and only 14% of those wells contained a sphere with no DNA template. Thirty-

one percent of the ISPs with a PCR template tethered to them were polyclonal (multiple DNA 

fragments were bounded and amplified in the surface of the bead).  Finally, only 13% of the 

clonal ISPs were removed (due to low quality reads or because they had test fragments bound to 

them serving as  controls) leaving a total 4,501,952 ISPs providing usable sequences for analysis.  
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Figure 5.5 Ion Torrent sequencing run report for Dhc strain KS.  Statistics and quality 

metrics for the 200-bp library and Ion Spheres particles (ISP) are shown. The average read length 

was 148 bp (close to the average 200-bp goal). Eighty four percent of the wells in the Ion 316 

chip contained an ISP and only 2% of those wells contained a sphere with no DNA template. 

Forty-one percent of the ISPs with a PCR template tethered to them were polyclonal (multiple 

DNA fragments were bounded and amplified in the surface of the bead).  Finally, 31% of the 

clonal ISPs were removed (due to low quality reads or because they had test fragments bound to 

them serving as controls) leaving a total 3,640,282 ISPs providing usable sequences for analysis.  
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Figure 5.6.  Ion Torrent report metrics on reads aligned to Dhc strain 195.  Filtered and 

trimmed reads (i.e. with no adapter sequences, excluding control/reference fragments and low 

quality reads) were aligned to the genome of Dhc strain 195 (CP000027.1). The graphs on the 

left show the total aligned (in blue) and unaligned (in purple) bases by position.  The average 

coverage depth of reference (228.9× and 341.3×) indicates the total aligned bases divided by the 

number of bases in the reference sequence.  Alignment quality statistics are shown in the upper 

right tables. Two quality levels are depicted, the AQ20 quality level refers to values with an error 

rate of 1% or less, and “perfect” refers to the longest perfectly aligned segment. Mean coverage 

depth is the average number of times that a base was independently sequenced and aligned to the 

reference genome (e.g. 1× means that every base was sequenced and aligned, on average, once. 

2× means that every base was sequenced and aligned, on average, twice). The raw accuracy 

graphs on the lower left, plot the percent accuracy for each position in the aligned sequences 
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Figure 5.6. (Continued) 
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Figure 5.7.  Putative prophage regions in Dhc strains.  No prophage regions were identified in 

strains CG1, CY50, CT, VS, CBDB1, BAV1,UH007, DCMB5.   

 

Figure Legend: 
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Figure 5.7. (continued) 
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Chapter 5 Appendix: Tables  

Table 5.1. Performance of different de novo genome assembly tools.  

 

Genome Assembly method N50 
Number of 

contigs 

Maximum 

contig 

length (bp) 

Total bases in 

final assembly 

KS 

Velvet 859 6326 4240 1477523 
RAY 5499 503 20925 1692498 

Soapdenovo 109 30734 1283 2924569 
Velv_SOAP_Newb 

1 2198 566 11204 905320 
RAY_Velv_Newb 

2 60296 77 113991 1481443 
Newbler 268024 14 647595 1482308 

RC 

Velvet 2598 1705 10120 1475848 
RAY 847 5337 3629 2352638 

Soapdenovo 112 31359 1592 3109896 
Velv_SOAP_Newb 

1 5325 364 18112 1330869 
RAY_Velv_Newb 

2 10247 219 37685 1476130 
Newbler 210101 23 643701 1504103 

 

1
 Contigs were first assembled with Velvet and Soapdenovo and subsequently entered to Newbler 

for re-assembly.  

2  
Contigs were first assembled with Ray and Velvet and subsequently entered to Newbler for re-

assembly.  
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Table 5.2. Dehalococcoides mccartyi sequenced genome statistics. 

 

Organism 
Genome Features 

Type RefSeq INSDC 
Size 

(Mb) 
GC% Protein rRNA

1
 tRNA Gene Pseudo RDases 

Dehalococcoides mccartyi strains 

RC 
Draft 

genome 
PRJNA230754 

2
 n/a 1.50 47.2 1,610 3 46 1,610 n/a 34 

KS 
Draft 

genome 
PRJNA230755 

2
 n/a 1.49 47.3 1,626 3 46 1,626 n/a 31 

CBDB1 Chr NC_007356.1 AJ965256.1 1.40 47.0 1,458 3 47 1,510 1 32 

BAV1 Chr NC_009455.1 CP000688.1 1.34 47.2 1,371 3 46 1,436 14 10 

DCMB5 Chr NC_020386.1 CP004079.1 1.43 47.1 1,477 3 46 1,526 0 23 

GT Chr NC_013890.1 CP001924.1 1.36 47.3 1,417 3 46 1,484 16 20 

BTF8 Chr NC_020387.1 CP004080.1 1.45 47.3 1,529 3 46 1,580 2 20 

195 Chr NC_002936.3 CP000027.1 1.47 48.9 1,580 3 46 1,642 11 17 

VS Chr NC_013552.1 CP001827.1 1.41 47.3 1,439 3 46 1,491 1 36 

GY50 Chr NC_022964.1 CP006730.1 1.41 47.0 1,519 3 46 1,592 14 28 

CG1 Chr n/a CP006949.1 1.41 46.9 n/a 3 49 1,557 n/a 35 

CG4 Chr n/a CP006950.1 1.38 48.7 n/a 3 47 1,421 n/a 15 

CG5 Chr n/a CP006951.1 1.37 47.2 n/a 3 n/a 1,413 n/a 26 

Dehalogenimonas lykanthroporepellens strain BL-DC-9 

BL-DC-9 Chr NC_014314.1 CP002084.1 1.69 55.0 1,659 3 47 1,772 61 25 
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Table 5.3. Predicted hydrogenase complexes in the draft genome of Dhc strain RC. 

 

Complex Contig 

Contig 

location 

(gene 

start) 

Contig 

location 

(gene stop) 

Strand Function/Annotation 

FIGfam 

protein family 

code 

Comments 

Hyc 

contig00004 17603 17058 - hydrogenase, group 4, HycG subunit, putative FIG01304218 
NiFe Hydrogenase, 

membrane-bound 

periplasmic, 

location in Dhc 

strain 195: 

DET1575-1570 

contig00004 19160 17584 - hydrogenase, group 4, HycE subunit, putative FIG082496 

contig00004 20645 19164 - Formate hydrogenlyase antiporter, MnhD subunit FIG00004567 

contig00004 21325 20645 - Hydrogenase-4 component E FIG00138953 

contig00004 22270 21329 - Formate hydrogenlyase subunit 4 FIG00133502 

contig00004 24200 22267 - hydrogenase, HycC subunit, putative FIG143015 

Hyp 

contig00008 21952 22248 + [NiFe] hydrogenase nickel incorporation protein HypA FIG00001182 NADH 

Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0933-0923 

contig00008 22291 22944 + [NiFe] hydrogenase nickel incorporation-associated protein HypB FIG00001210 

contig00008 22945 25236 + [NiFe] hydrogenase metallocenter assembly protein HypF FIG00001209 

contig00008 25236 25451 + [NiFe] hydrogenase metallocenter assembly protein HypC FIG00003908 

contig00008 25455 26550 + [NiFe] hydrogenase metallocenter assembly protein HypD FIG001208 

contig00008 26513 27549 + [NiFe] hydrogenase metallocenter assembly protein HypE FIG003378 

Hup 

contig00007 20892 20410 - Hydrogenase maturation protease FIG00621884 NiFe Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0112-0109 

contig00007 22474 20895 - [Ni/Fe] hydrogenase, group 1, large subunit FIG132950 

contig00007 23569 22505 - [Ni/Fe] hydrogenase, group 1, small subunit FIG01304860 

contig00007 24368 23622 - nickel-dependent hydrogenase, iron-sulfur cluster-binding protein FIG01848221 

Hym 

contig00007 54639 55104 + NAD-reducing hydrogenase subunit HoxE n/a Fe Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0148-0145 

contig00007 55106 56359 + [Fe] hydrogenase, HymB subunit, putative FIG00083472 

contig00007 56347 58068 + Periplasmic [Fe] hydrogenase large subunit FIG00049433 

contig00007 58108 58611 + [Fe] hydrogenase, HymD subunit, putative FIG01430996 
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Table 5.3 (continued) 

        

Complex Contig 

Contig 

location 

(gene 

start) 

Contig 

location 

(gene stop) 

Strand Function/Annotation 
FIGfam protein 

family code 
Comments 

Vhu 

contig00001 394197 394670 + [Fe] hydrogenase, HymA subunit, putative FIG01303850 NiFe Hydrogenase, 

soluble 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0616-0614 

contig00001 394670 396528 + [Fe] hydrogenase, HymB subunit, putative n/a 

contig00001 396552 397273 + Periplasmic [Fe] hydrogenase large subunit FIG049433 

Ech 

contig00001 511636 513580 + Energy-conserving hydrogenase (ferredoxin), subunit A FIG017701 

contig00001 513577 514392 + Energy-conserving hydrogenase (ferredoxin), subunit B FIG00019322 

contig00001 514427 514894 + Energy-conserving hydrogenase (ferredoxin), subunit C FIG00013663 

contig00001 514887 515371 + [Fe] hydrogenase, HymA subunit, putative FIG031417 NiFe Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0868-0860 

contig00001 515385 517307 + [Fe] hydrogenase, HymB subunit, putative FIG00083472 

contig00001 517307 517900 + NADH-ubiquinone oxidoreductase chain G (EC 1.6.5.3) FIG00010922 

contig00001 517903 519287 + Energy-conserving hydrogenase (ferredoxin), subunit D FIG096540 

contig00001 519288 520366 + Energy-conserving hydrogenase (ferredoxin), subunit E FIG023953 

contig00001 520385 520720 + Energy-conserving hydrogenase (ferredoxin), subunit F FIG00092760 
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Table 5.4.  Predicted hydrogenase complexes in the draft genome of Dhc strain KS. 

Complex Contig 

Contig 

location 

(gene 

start) 

Contig 

location 

(gene 

stop) 

Strand Function/Annotation 

FIGfam 

protein 

family code 

Comments 

Hyc 

contig00009 17895 17428 - hydrogenase, group 4, HycG subunit, putative FIG01304218 

NiFe Hydrogenase, 

membrane-bound 

periplasmic, location 

in Dhc strain 195: 

DET1575-1570 

contig00009 19532 17954 - hydrogenase, group 4, HycE subunit, putative FIG082496 

contig00009 21014 19565 - Formate hydrogenlyase, MnhD subunit FIG004567 

contig00009 21694 21014 - Hydrogenase-4 component E FIG00138953 

contig00009 22639 21698 - Formate hydrogenlyase subunit 4 FIG00133502 

contig00009 24568 22636 - hydrogenase, HycC subunit, putative FIG143015 

Hyp 

contig00002 235264 235560 + [NiFe] hydrogenase nickel incorporation protein HypA FIG00001182 
NADH 

Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0933-0923 

contig00002 235603 236255 + 
[NiFe] hydrogenase nickel incorporation-associated protein 

HypB 
FIG001210 

contig00002 236256 238545 + [NiFe] hydrogenase metallocenter assembly protein HypF FIG001209 

contig00002 238545 238760 + [NiFe] hydrogenase metallocenter assembly protein HypC FIG00003908 

contig00002 238764 239857 + [NiFe] hydrogenase metallocenter assembly protein HypD FIG001208 

contig00002 239850 240857 + [NiFe] hydrogenase metallocenter assembly protein HypE FIG00003378 

Hup 

contig00001 20568 20086 - Hydrogenase maturation protease FIG00621884 NiFe Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0112-0109 

contig00001 22151 20571 - [Ni/Fe] hydrogenase, group 1, large subunit FIG01955975 

contig00001 23246 22182 - [Ni/Fe] hydrogenase, group 1, small subunit FIG01304860 

contig00001 24045 23299 - 
nickel-dependent hydrogenase, iron-sulfur cluster-binding 

protein 
FIG01848221 

Hym 

contig00001 54780 56032 + [Fe] hydrogenase, HymB subunit, putative FIG083472 Fe Hydrogenase, 

membrane-bound 

cytoplasmic, 

location in Dhc 

strain 195: 

DET0148-0145 

contig00001 56020 57734 + Periplasmic [Fe] hydrogenase large subunit HymC FIG049433 

contig00001 57860 58276 + [Fe] hydrogenase, HymD subunit, putative FIG01430996 

contig00001 262704 262234 - [Fe] hydrogenase, HymA subunit, putative n/a 
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Table 5.4 (continued) 

        

Vhu 

contig00001 480803 481275 + [Fe] hydrogenase, HymA subunit, putative FIG031417 NiFe Hydrogenase, 

soluble cytoplasmic, 

location in Dhc strain 

195: DET0616-0614 

contig00001 481275 483145 + [Fe] hydrogenase, HymB subunit, putative n/a 

contig00001 483158 483880 + Periplasmic [Fe] hydrogenase large subunit HymC FIG00049433 

Echo 

Contig00001 598207 600150 + Energy-conserving hydrogenase (ferredoxin), EchA FIG017701 

NiFe Hydrogenase, 

membrane-bound 

cytoplasmic, location 

in Dhc strain 195: 

DET0868-0860 

contig00001 600147 601046 + Energy-conserving hydrogenase (ferredoxin),  EchB FIG00019322 

contig00001 601132 601461 + Energy-conserving hydrogenase (ferredoxin),  EchC FIG00013663 

contig00001 601454 601939 + [Fe] hydrogenase, HymA subunit, putative FIG01303850 

contig00001 602066 603872 + [Fe] hydrogenase, HymB subunit, putative FIG083472 

contig00001 603872 604465 + NADH-ubiquinone oxidoreductase chain G FIG00010922 

contig00001 604468 605852 + Energy-conserving hydrogenase (ferredoxin),  EchD FIG096540 

contig00001 605853 606931 + Energy-conserving hydrogenase (ferredoxin),  EchE FIG023953 

contig00001 606950 607285 + Energy-conserving hydrogenase (ferredoxin),  EchF FIG00092760 
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Table 5.5.  Comparison of pairwise aminoacid identity of the RDases in the Dhc RC and 

KS draft genomes. The draft genome of strain RC has 32 putative reductive dehalogenases, 

these were compared to the 31 RDases found in strain KS.  Bold KS IDs are RDases that are in 

duplicate just for table/comparison purposes).  

RC Draft 

Genome ID 

RC RDase 

protein length 

(aa) 

KS Draft 

Genome ID 

KS RDase 

protein length 

(aa) 

Shared % aa 

Indentity 

DhcRC_1535 429 DhcKS_1573 429 100 

DhcRC_43 491 DhcKS_130 491 100 

DhcRC_1055 475 DhcKS_1120 475 100 

DhcRC_1018 482 DhcKS_1103 482 100 

DhcRC_1010 508 DhcKS_1096 508 100 

DhcRC_1006 469 DhcKS_1091 469 100 

DhcRC_999 291 DhcKS_1085 463 100 

DhcRC_946 465 DhcKS_1033 465 100 

DhcRC_944 513 DhcKS_1031 513 100 

DhcRC_935 505 DhcKS_1022 492 100 

DhcRC_1554 484 DhcKS_1220 484 99.79 

DhcRC_1002 417 DhcKS_1087 468 99.76 

DhcRC_1553 472 DhcKS_1221 366 99.73 

DhcRC_1389 509 DhcKS_3 510 99.41 

DhcRC_45 407 DhcKS_132 407 99.26 

DhcRC_38 514 DhcKS_125 514 99.22 

DhcRC_1071 500 DhcKS_1587 500 99.2 

DhcRC_1509 497 DhcKS_1547 484 99.17 

DhcRC_998 482 DhcKS_1083 469 99.15 

DhcRC_1453 455 DhcKS_67 455 98.9 

DhcRC_987 453 DhcKS_1076 377 98.14 

DhcRC_1601 581 DhcKS_1615 503 97.42 

DhcRC_1592 285 DhcKS_1618 482 97.19 

DhcRC_1023 504 DhcKS_1108 495 96.16 

DhcRC_1062 491 DhcKS_1578 479 94.57 

DhcRC_1384 531 DhcKS_1330 532 92.28 

DhcRC_1531 525 DhcKS_1569 506 81.42 

DhcRC_1593 199 DhcKS_1618 482 81.41 

DhcRC_928 288 DhcKS_1015 264 80.3 

DhcRC_990 213 DhcKS_1078 479 61.5 

DhcRC_1034 503 DhcKS_1120 475 60.21 

DhcRC_1055 475 DhcKS_1509 497 56.42 

DhcRC_1509 497 DhcKS_1120 475 56.42 

DhcRC_1030 494 DhcKS_1096 508 50.2 
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Table 5.6. Putative genes involved in the corrinoid salvage pathway and lower ligand modification in the draft genomes of D. 

mccartyi strain RC and KS. 

 

Contig 

Contig 

locatio

n (gene 

start) 

Contig 

location 

(gene 

stop) 

Strand Function Aliases 
Figfam family 

protein 

Dhc KS  

contig00001 136142 136699 + Cob(I)alamin adenosyltransferase  cobA FIG00000641 

contig00001 136696 137650 + Adenosylcobinamide-phosphate synthase cobD FIG000689 

contig00001 139085 139908 + Cobalamine biosynthesis-related hypothetical 

protein CobX 
cbiZ n/a 

contig00001 139905 141320 + Vitamin B12 ABC transporter, B12-binding 

component BtuF 
btuF  FIG00016684 

contig00001 439993 441045 + Vitamin B12 ABC transporter, B12-binding 

component BtuF 
btuF FIG00016684 

contig00001 441101 442190 + Vitamin B12 ABC transporter, permease 

component BtuC 
btuC FIG003124 

contig00001 442202 443028 + Vitamin B12 ABC transporter, ATPase 

component BtuD 
btuD FIG004481 

contig00001 443018 443787 + Cobalamine biosynthesis-related hypothetical 

protein CobX 
cbiZ n/a 

contig00001 443790 444715 + Adenosylcobinamide-phosphate synthase cobD/cbi

B  

FIG000689 

contig00001 446176 447235 + Nicotinate-nucleotide--dimethylbenzimidazole 

phosphoribosyltransferase (EC 2.4.2.21) 
cobT-2 FIG000824 

contig00001 447275 448038 + Cobalamin synthase cobS FIG006032 
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Table 5.6. (continued) 

 

Contig 

Contig 

locatio

n (gene 

start) 

Contig 

location 

(gene 

stop) 

Strand Function Aliases 
Figfam family 

protein 

Dhc KS  

contig00001 448057 448589 + Alpha-ribazole-5'-phosphate phosphatase (EC 

3.1.3.73) 
cobC FIG000979 

contig00001 448708 449273 + Adenosylcobinamide-phosphate 

guanylyltransferase (EC 2.7.7.62) 
cobU FIG000764 

contig00002 41897 42495 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA3 FIG000641 

contig00003 80401 80009 - Adenosylcobinamide amidohydrolase (EC 

3.5.1.90) 
cbiZ FIG00058905 

contig00005 75547 76469 + Adenosylcobinamide-phosphate synthase cobD/cbi

B  

FIG000689 

contig00005 76505 76627 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA FIG00000641 

contig00005 76603 77052 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA FIG00000641 

contig00020 42 248 + Adenosylcobinamide amidohydrolase (EC 

3.5.1.90) 
cbiZ FIG00058905 

Dhc RC  

contig00001 49480 50019 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA FIG00000641 

contig00001 50143 50685 + Adenosylcobinamide-phosphate synthase cobD FIG00000689 
contig00001 50694 50990 + Adenosylcobinamide-phosphate synthase cobD FIG00000689 
contig00001 53244 54659 + Vitamin B12 ABC transporter, B12-binding 

component BtuF 
btuF FIG00016684 

contig00001 353384 354436 + Vitamin B12 ABC transporter, B12-binding 

component BtuF 
btuF FIG00016684 
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Table 5.6. (continued)    

Contig 

Contig 

locatio

n (gene 

start) 

Contig 

location 

(gene 

stop) 

Strand Function Aliases 
Figfam family 

protein 

Dhc RC  

contig00001 354492 355601 + Vitamin B12 ABC transporter, permease 

component BtuC 
btuC FIG00003124 

 Dhc RC  
contig00001 355594 356421 + Vitamin B12 ABC transporter, ATPase 

component BtuD 
btuD FIG00004481 

 

contig00001 356411 357180 + Cobalamine biosynthesis-related hypothetical 

protein CobX 
cbiZ n/a 

contig00001 357183 358109 + Adenosylcobinamide-phosphate synthase cbiZ FIG00000689 

contig00001 359622 360653 + Nicotinate-nucleotide--dimethylbenzimidazole 

phosphoribosyltransferase (EC 2.4.2.21) 
cobT-2 FIG000824 

contig00001 360666 361430 + Cobalamin synthase cobS FIG00006032 

contig00001 361449 362032 + Alpha-ribazole-5'-phosphate phosphatase (EC 

3.1.3.73) 
cobC FIG000979 

contig00001 362101 362667 + Adenosylcobinamide-phosphate 

guanylyltransferase (EC 2.7.7.62) 
cobU FIG00000764 

contig00002 38708 39253 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA3 FIG00000641 

contig00003 80415 80023 - Adenosylcobinamide amidohydrolase (EC 

3.5.1.90) 
cbiZ FIG00058905 

contig00006 70197 71118 + Adenosylcobinamide-phosphate synthase cobD/cbi

B2 

FIG000689 

contig00006 71154 71276 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA1 FIG00000641 

contig00006 71252 71701 + Cob(I)alamin adenosyltransferase (EC 

2.5.1.17) 
cobA2 FIG00000641 
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Table 5.7.  Putative genes involved in Arsenic resistance. 

Contig  
Contig 

location 

(gene start) 

Contig 

location 

(gene stop) 
Strand Function 

Dhc strain KS 

contig00001 53456 53868 + Arsenate reductase  

contig00001 614471 615640 + Arsenic efflux pump protein 

contig00002 65196 66258 + 

Arsenical-resistance protein 

ACR3 

contig00003 59592 60584 + 

Arsenical-resistance protein 

ACR3 

contig00007 23124 23465 + Arsenate reductase  

contig00007 23701 24767 + 

Arsenical-resistance protein 

ACR3 

Dhc strain RC  

contig00001 527906 529075 + Arsenic efflux pump protein 

contig00002 61953 63017 + 

Arsenical-resistance protein 

ACR3 

contig00007 53784 54196 + Arsenate reductase  

contig00007 53784 54196 + Arsenate reductase  

contig00005 36365 37430 + 

Arsenical-resistance protein 

ACR3 
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Table 5.8.  CRISPR locus in the draft genomes of Dhc RC and KS.   

Contig  

Contig 

location 

(gene 

start) 

Contig 

location 

(gene stop) 

Strand Function 

Dhc strain KS 

contig00003 34587 33658 - CRISPR-associated protein Cas1 

contig00003 35170 34587 - CRISPR-associated protein, Cse3 family 

contig00003 35613 35239 - CRISPR-associated protein, Cas5e family 

contig00003 37134 35851 - CRISPR-associated protein, Cse4 family 

contig00003 37375 37127 - CRISPR-associated protein, Cse2 family 

contig00003 39281 37650 - CRISPR-associated protein, Cse1 family 

contig00003 41966 39274 - CRISPR-associated helicase Cas3, protein 

Dhc strain RC  

contig00003 34544 33669 - CRISPR-associated protein Cas1 

contig00003 37146 35864 - CRISPR-associated protein, Cse4 family 

contig00003 37671 37139 - CRISPR-associated protein, Cse2 family 

contig00003 39292 37661 - CRISPR-associated protein, Cse1 family 

contig00003 41977 39285 - CRISPR-associated helicase Cas3, protein 
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Table 5.9  Putative prophage genomic regions identified in Dhc strains and in Dhgm BL-

DC-9.  The genome of Dhc strains CG1, GY50, VS, CBDB1, DCMB5, BAV1 and UH007 were 

analyzed but no regions where identified.   

 

Phage 

region  

Region 

length 

Phage 

completeness 
Score 

# of 

CDS 

Region position in 

genome  
Phage  

Region 

GC %  

Dhc 

195 31.5Kb  intact  110  32  969361-1000886  PHAGE_Geobac_E2 53  

Dhc 

BTF08 

35.8Kb  intact  100  40  190700-226538  Bacillus phagePBC1  52  

20.8Kb  incomplete  60  26  816956-837763  Natrialba_phage_PhiCh1 46  

Dhc 

RC 

16.9Kb  incomplete  10  22  232196-249122  PHAGE_Bacill_IEBH_NC_011167 49  

14.9Kb  incomplete  10  20  1445807-1460792  

PHAGE_Ectoca_siliculosus_virus_1_NC_0026

87, PHAGE_Prochl_P_SSM2_NC_006883 48  

Dhc 

KS 17.9Kb  incomplete  10  22  311932-329850  

PHAGE_Bacill_IEBH_NC_011167, 

PHAGE_Bacill_G_NC_023719 49 

Dhgm 

BL-

DC-9 

24.5Kb  questionable  80  17  1608371-1632888  

PHAGE_Aeromo_Aeh1_NC_005260, 

PHAGE_Bacill_BCD7_NC_01951 63  

24Kb  incomplete  50  11  1630124-1654188  PHAGE_Bacill_G_NC_023719 57  

 

 Legend: 

 REGION: the number assigned to the region 

 REGION LENGTH: the length of the sequence of that region (in bp) 

 COMPLETENESS: a prediction of whether the region contains a intact or 

 incomplete prophage based on the above criteria 

 SCORE: the score of the region based on the above criteria,. If the region's total  score 

 is less than 70, it is marked as incomplete; if between 70 to 90, it is marked  as 

 questionable; if greater than 90, it is marked as intact. 

 #CDS: the number of coding sequence 

 REGION_POSITION: the start and end positions of the region on the bacterial 

 chromosome 

 PHAGE: the phage with the highest number of proteins most similar to those in  the 

 region 

 GC%: the percentage of GC nucleotides of the region   
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Chapter 6 

 

Towards a clean and sustainable future: Green technologies, restoration and management 

of 1,2-D contaminated sites.  

  



 

 219 

This chapter is based on a previous “White Paper” prepared for the Congressional Hispanic 

Caucus Institute (CHCI).  It is reproduced in part with permission from the Elizabeth Padilla-

Crespo and CHCI.  http://www.chci.org/doclib/2014421233527696-

2014STEMGraduateSummitWhitePaper-ElizabethPadilla-Crespo.pdf?trail=201548144630 

 

 

Abstract  

 

Poor handling and disposal of hazardous substances have left a legacy of contamination in sites 

all across the United States that affect human and ecosystem welfare.  The U.S. Environmental 

Protection Agency (EPA) addresses these contaminated sites under the Comprehensive 

Environmental Response Compensation and Liability Act (CERCLA) commonly known as the 

“Superfund Program.” Currently chlorinated contaminants are present in approximately 70% of 

these sites. TheThe management and cleanup of these impacted areas is a matter of national 

security and environmental justice as it is estimated that one in four Americans live near a 

Superfund site and that minorities, particularly Hispanics are more likely to live near affected 

areas.  Green technologies such as bioremediation and sustainable practices represent a solution 

to treat and restore these sites; but several factors including scientific and regulatory 

considerations hinder the implementation of these technologies.  Changes in environmental 

regulations, better management of the Superfund sites and the creation of initiatives that promote 

collaboration between academia and federal agencies should be made to safeguard the livelihood 

of U.S. citizens and enhance the restoration of contaminated sites. 

 

Introduction  

 

Environmental degradation is a threat in industrial and developing countries due to population 

growth, increased use of resources, and a legacy of poor handling and disposal of hazardous 

substances.  The Comprehensive Emergency Response Compensation and Liability Act 

(CERCLA, 42 U.S.C. §§ 9601-9675) is the federal statute that addresses uncontrolled and 

http://www.chci.org/doclib/2014421233527696-2014STEMGraduateSummitWhitePaper-ElizabethPadilla-Crespo.pdf?trail=201548144630
http://www.chci.org/doclib/2014421233527696-2014STEMGraduateSummitWhitePaper-ElizabethPadilla-Crespo.pdf?trail=201548144630
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abandoned contaminated sites and requests these areas be investigated, evaluated and ultimately 

restored (S. US EPA, n.d.-a).  This law gives authority to the EPA to compel responsible parties 

to perform cleanups at impacted sites and also establishes a trust fund to finance restoration of 

orphan sites, where no responsible party exists.  After an evaluation by our federal government, 

locations that represent a high threat to human and ecosystem welfare are declared as “Superfund 

sites” and the worst cases are listed in the National Priority List (NPL).  CERCLA was enacted 

in 1980 under the Reagan Administration after the discovery of toxic waste impacting sites such 

as Love Canal in New York and Times Beach in Missouri.  Today the Superfund (or NPL) has 

become one of the nation’s largest government programs, and as of January 24, 2014, there were 

1,372 proposed or declared NPL sites (S. US EPA, n.d.-l)  (Table 6.1 and Figure 6.1) 

 

Superfund and chlorinated solvents impacted sites can be treated with various remedial 

technologies that can include physical methods (e.g., removal of the hazardous substances by 

excavation or incineration), application of biological processes (e.g., biodegradation of a 

particular waste by microorganisms, plants or fungi), and chemical treatments (e.g., the addition 

of certain compounds to induce chemical reactions that would transform hazardous compounds 

to inert or less toxic compounds).  Sustainable remediation (also referred as green remediation) 

can be defined as remedial methods used to treat and restore areas considering all environmental 

effects of technology implementation; maximizing the environmental and human welfares, while 

minimizing cost and the use of limited resources.  Cleanup strategies that involve the application 

of biological processes to achieve detoxification, cleanup and restoration of contaminated sites 

are of particular interest since these are often considered environmentally friendly, and are 

widely accepted by the scientific community.  Special attention has been given to in situ 

bioremediation approaches (the use of microorganism at the site which can degrade the 

contaminants of interest at the site) since it has the potential to be a non-intrusive, non-waste 

generating and cost efficient natural method.  However, there are four factors that hinder 

implementation of this green technology in Federal Superfund sites.  These include: (1) scientific 

and regulatory aspects that limit the implementation of these technologies; (2) the current state of 

the CERCLA statue and management of the Superfund sites which have no clear language for 

implementation of sustainable practices; (3) the absence of incentives to promote the use 
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(implementation) of green technologies over other strategies; and (4) lack of collaboration 

between agencies, practitioners and academia.  

 

This paper will review the history of the Superfund Program and the CERCLA statue, the current 

management of contaminated sites and describe how bioremediation as well as other sustainable 

approaches represent feasible and attractive cleanup methods to treat these locations.  Emphasis 

will be given on addressing why the conditions of these areas are important to minority and 

Hispanic communities and the regulatory aspects of the program that could be amended 

regarding site management, contaminant removal actions, research and innovation and 

implementation of green sustainable remedial practices.  Lastly, a set of recommendations is 

delineated to enhance the restoration of these sites.  

 

Communities affected by contaminated sites 

 

The EPA estimates that one in four Americans live within three miles of a toxic waste 

contaminated site and around 10 million children under the age of 12 live within four miles of a 

Superfund site (S. US EPA, n.d.-i, n.d.-k)..  A study focused on evaluating 50 Superfund sites 

across the United States revealed between 205,349 and 803,100 people live within one mile of 

these areas.  Furthermore, this study revealed these sites are in neighborhoods whose household 

incomes are below the national average.  Moreover, 60% of the U.S. Census tracts in these 

regions comprised 40% or more racial or ethnic minorities (Steinzor, Clune, Progress, & Reform, 

2006).  Other studies have also shown that Blacks, Hispanics and low-income individuals are 

more likely (i.e., positively associated) to live near Superfund and NPL locations (Burwell-

Naney et al., 2013; Stretesky & Hogan, 1998; S. M. Wilson et al., 2012).  Executive Order 12898 

entitled “Environmental Justice for Low Income & Minority Population” is intended to protect 

individuals and communities against unfair treatment due to color, race or nationality with 

respect to environmental policies, laws and regulations.  However, a study conducted by O’Neil 

(2007) indicated that, since the enactment of EO 12898 in 1994, “marginalized and poor 

populations are less likely to benefit from a cleanup program such as Superfund despite their 



 

 222 

overrepresentation in proximity to environmental hazards” (O’Neil, 2007).  Another study by 

Anderton et al. (1997) also concluded that areas with a higher percentage of minorities are less 

likely to receive NPL status, thus delaying the cleanup process (Anderton, Oakes, & Egan, 

1997).  

 

The Commonwealth of Puerto Rico, a U.S. territory with a 99% Hispanic population, serves as 

an example of a minority community impacted with hazardous waste by having more than 150 

contaminated sites (Padilla, Irizarry, & Steele, 2011) (Figure 6.2).  Remarkably, as of January 

24, 2014, Puerto Rico has 16 NPL sites; the same as states like Tennessee, Georgia and Utah; 

and more than states like Oregon, Delaware and Oklahoma which have 14, 13 and 7 NPL sites, 

respectively (S. US EPA, n.d.-e)..  It is suspected that exposure to contaminants may contribute 

to the premature birth incidence in Puerto Ricans, which is among the highest in the United 

States (Ghasemizadeh et al., 2012; Padilla et al., 2011).  Overall, these studies and occurrences 

reflect that racial and ethnic minorities (especially Hispanics) are among the most vulnerable and 

at-risk communities when it comes to Superfund sites, suggesting a case of inequality and 

environmental justice.   

 

History of CERCLA  

 

In the 1970s, the Love Canal in upstate New York, made headlines in what is considered to be 

“one of the most appalling environmental tragedies in American history” (Beck, 1979).  Located 

near the Niagara Falls, this body of water and its adjacent community suffered the consequences 

of 21,000 tons of toxic waste that were disposed by a nearby chemical industry since the 1940s.  

The hazardous waste (which included pesticides such as DDT, carcinogenic solvents and heavy 

metals) was lined with clay and buried under the canal.  The chemical company that owned the 

area sold it to the city for one dollar and included a warning about the chemical wastes buried 

and a disclaimer absolving the industry of any future liability.  But on 1976, the waste was 

exposed after record-breaking rainfall; nearby vegetation started to die, corroding barrels were 

exposed to the surface, chemicals leached forming toxic puddles and a fouling smell covered the 
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residential area.  In the years that followed, astonishing levels of miscarriages and stillbirths were 

recorded, and 56% of the children born between 1974–1978 had at least one birth defect.  For 

two years, the local community battled to prove the industrial waste buried in the area was 

responsible for the citizens’ illnesses, and finally their united efforts and mobilization brought 

attention at the state and federal level.  On August 2, 1978, the New York State Health 

Department declared the site in a state of emergency and more than 800 families were relocated. 

Five days later, President Jimmy Carter declared a federal state of emergency in the Love 

Canal’s surrounding areas and later allocated federal funds to remediate the area.  This was the 

first time that federal monies were used to assist in a man-made disaster.  The Love Canal 

incident was a “wake up call” creating awareness on the dangers of public exposure to toxic 

waste and the need to compel the parties liable for the incidents.  Consequently, extensive House 

and Senate committee hearings were held during 1979, which led to Congress enacting CERCLA 

in 1980.  On September 1, 1983, the Love Canal was added to the NPL list and the chemical 

company that generated the hazardous waste was found liable of the disaster and negligent in the 

way it handled the waste and sale of the area.  Although the company had followed all U.S. 

applicable laws at the time of disposing the waste, the EPA sued the company for $129 million 

under a retroactive liability provision underlined in CERCLA (section 107) and the families were 

compensated for their properties.  In, 2004 after great efforts, over $400 million dollars, and after 

21 yrs. of its inception as an NPL, the Love Canal was clean enough to be taken off the 

Superfund list.  

 

Management of Superfund Sites 

 

EPA’s Office of Solid Waste and Emergency Response (OSWER) in Washington, D.C oversees 

the Superfund Program.  A representation and summary of the phases and milestones for a site 

cleanup under CERCLA are illustrated in Figure 6.3.  In aggregate, the Act requires a 

preliminary site assessment to identify if the environment poses or not a threat to human health, 

and identifies sites where possible response actions are needed.  These include removal actions 

(e.g., immediate control of the spread of hazardous substances during a spill) and remedial 
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activities (e.g., prolonged monitoring and ultimate restoration).  If the environment and sites are 

considered a threat, further investigation is required and a site inspection is made to determine 

the nature and extent of the contamination and the potentially responsible parties.  The 

information collected in these first two phases will be evaluated and sites will be given a score 

from 0 to 100 using the “Hazard Ranking System” (as stated in section 105(a)(8)(B) of 

CERCLA, as amended).  Sites with a score of 28.50 or higher are eligible for listing as NPL. The 

NPL serves as an informational and management tool indicating which sites are priorities for 

cleanup, as they pose a high treat to the community, only sites in the NPL list can use federal 

funds for cleanup.  After a site is listed as an NPL a remedial investigation and feasibility study 

are concurrently conducted for more detailed investigations on site contamination and exposure.  

At this phase, treatability studies of alternatives methods for treatment are considered and 

evaluated.  Once the assessments and investigations are complete, a document identifying the 

treatment procedure to be used at the site is made public, this is known as a “record of decision”.   

 

Consequently, remedial designs and remedial actions are followed, which involve the design and 

implementation of the site cleanup strategies.  The EPA designates sites as “construction 

complete” when any type of construction or containment activity at the site has been completed 

or when the site qualifies for NPL deletion.  Complex sites with ongoing cleanup activities that 

require long term treatment and monitoring are overseen by “post construction completion 

activities”.  During this time, five-year reviews are requested to evaluate implementation and 

performance at sites where hazardous substance levels are higher than permitted.  These reviews 

receive recommendations from the EPA, and aim to help determine whether the remedies in use 

protect human health and the environment.  Finally, sites can be deleted from the NPL when the 

EPA, in conjunction with the State, considers that no further response action is needed to protect 

human and ecosystem health.  

 

 

 



 

 225 

Remediation Technologies used for site restoration  

 

Remediation technologies are techniques applied to impacted sites to achieve environmental 

restoration.  Contaminated water, soil or sediments can be treated on site (in situ) or they can be 

removed and transferred to a different location for disposal or treatment (ex situ).  Methods for 

restoration include biological, physical methods, chemical treatments, among others.  Ex situ 

approaches that involve the excavation and removal of large quantities of water or soil are not 

ideal, transporting the hazardous materials imposes additional risk, cost and environmental 

impacts by adding to fossil fuel consumption and green house (CO2) emissions.  Incineration is 

subjected to technology-specific regulations and handling requirements because certain materials 

can only be incinerated offsite, while others produce ashes that require further stabilization 

impacting applicability and cost.  Another remedy referred to as “pump and treat” is also 

considered an expensive, slow and energy-intensive technology.  This process requires 

groundwater to be extracted out of the subsurface with vacuums pumps and then transferred to 

vessels where either chemical reagents are added for treatment or materials like activated carbon 

are used to absorb the contaminants.  The addition of chemical additives for treatment in situ (to 

neutralize or precipitate the contaminants in place) can also be costly and considered a major 

capital investment, as the synthesis or purchase of these additives can be expensive and can 

create hazardous products that need subsequent disposal.  

 

Conversely, the application of biological treatment using microorganisms (bioremediation) can 

be used to degrade chlorinated compounds at impacted sites.  Bacteria have thrived over three 

billion years on this planet having evolved effective mechanisms to gain energy by utilizing a 

wide variety of substrates, including hazardous chemicals.  Microbes can use materials like 

gasoline, diesel and other hydrocarbons as “food” (carbon source) while others can “respire” 

compounds like carcinogenic chlorinated solvents, pesticides and radioactive waste (uranium) 

similarly as we humans respire oxygen (F E Löffler & Edwards, 2006).  An excellent example of 

microbiological processes aiding during environmental disasters was during the BP Deepwater 

Horizon, where indigenous marine bacteria degraded the oil plume to nearly undetectable levels 

within a few weeks of the spill (Hazen et al., 2010).  Furthermore, bioremediation has proven 
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effective in other massive spills like the Exxon Valdez in the coast of Alaska and the Gulf War 

oil spill (Atlas & Hazen, 2011; Bragg, Prince, Harner, & Atlas, 1994; Höpner & Al-Shaikh, 

2008; T. D. Thomas, Ellwood, & Longyear, 1979).  

 

Analysis 

Highlights and limitations of the Superfund Program 

 

The Superfund Program has been considered the “world’s most advanced hazardous waste 

program in the world” (Macey, 2007),  and its significance is portrayed in the Love Canal’s 

story.  A study led by researchers at the Massachusetts Institute of Technology deduced that 

Superfund cleanups had reduced the incidence of congenital anomalies by 20 - 25 percent in the 

U.S. (Currie, Greenstone, & Moretti, 2011).  Furthermore, since its inception, it has lowered the 

risks for cancer and poisoning of many citizens by reducing their exposure to hazardous 

substances.  CERCLA has also increased knowledge on how to deal (planning and response) of 

accidents and established the Agency for Toxic Substances and Disease Registry (ATSDR) 

which nowadays conducts health surveys, assessment, surveillance and toxicological studies 

associated with exposure of hazardous chemicals.  ATSDR also focuses on disseminating 

information via education and outreach initiatives and managing accessible databases of toxics 

incidents, and chemical profiles of substances of concern.  By the end of FY 2013, the Superfund 

Program had controlled or reduced human exposure to contamination in 1,389 NPL sites, 

controlled groundwater contamination in 1,091 NPL sites and completed a cumulative total of 

92,282 remedial assessments since the program’s creation in 1980 (S. US EPA). 

 

Superfund cleanups also have positive economic benefits.  Mastromonaco (2001) showed the 

impact on property values in residences near a Superfund site; by looking at houses within 3 km 

of a site. Results indicated that houses increased in value by 7.3 percent after cleanups were 

completed (Mastromonaco, 2011).  Restored areas can also serve as sources of revenue, 

recreation and job creation; an example of this is the Anaconda Co. NPL site in Montana.  At this 

site cleanup and restoration has included the removal of heavy metals in contaminated water and 
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soil and the re-vegetation of more than 250 acres.  EPA’s coordinated efforts led to the creation 

of a park, trails and a golf course, which have then increased the commercial and residential 

growth in the area (S. US EPA, n.d.-f). 

 

The Superfund program has also been the center of many environmental debates, long scrutiny 

and criticism.  One of the aspects is that sites take too long time to remediate (8-11 years in 

average but many linger in the NPL for decades, like the Love Canal) and residual contamination 

remains at least 126,000 sites (National Research Council, 2013).  Additional limitations include: 

insufficient information on sites that have been delisted but still have residual contamination, and 

the absence of resources (e.g., databases) to compare remedial technology performances across 

sites (National Research Council 2013).  Recently, the situation with deleted sites has been 

referred as THE PARADOX OF “CLOSED” SITES.  The EPA defines site closure as when “no 

further Superfund response is necessary to protect human health and the environment” and 

EPA’s site closure guidelines include the intent to “provide an approach for conducting five-year 

reviews” (S. US EPA, n.d.-c).  However, the EPA states that a five-year review is only required 

when hazardous contaminants are left in place in levels higher than the current safety standards 

(S. US EPA, n.d.-b).  This contradiction in the current definition and language may confuse 

stakeholders as “operation and maintenance of a remedy may continue for many decades after 

closure” (National Research Council, 2013) .  Other concern is that the construction complete 

milestone may be misleading to many, as it does not necessarily means that restoration is 

completed or the levels of hazardous substances are safe.  The presence of emerging 

contaminants (those substances that have not historically been considered as hazardous), can 

impose an additional problem when evaluating the level of contamination at a site.  These 

chemicals, which are not yet regulated and their toxicity not yet completely understood, are a 

problem that could affect the HRS (Hazard Ranking System) score given to a site and its 

inception or deletion as an NPL.  Controlling “the unknown” is a challenge, plus it may lead to 

the selection and implementation of inadequate remedial responses.  

 

A GAO report for FY 2010 investigated four Superfund sites deleted from the NPL.  The 

investigation revealed gaps and errors in EPA’s long-term monitoring reports and residual 
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contamination at these sites that was previously unknown.  The same GAO investigation also 

highlighted the following weakness in EPA’s Superfund management: (1) not completing the 

performance evaluations of Superfund contractors, (2) not managing efficiently the 

recommendations of Five-Year Reviews (84 percent of the review recommendations were 

overdue), (3) fines and penalty billings were not consistently recorded, and (4) errors in internal 

receipts and/or expenditures totaling about $2.5 million were discovered.  Since site assessment, 

investigation and clean up can cost up to be hundreds of millions of dollars (S. US EPA, n.d.-j), 

it is imperative that EPA’s oversight and management is strong and consistent.  

 

Bioremediation as a possibility for Superfund remedial actions: principles and case studies  

 

Bioremediation approaches include natural attenuation, a process that involves no intervention, 

letting natural occurring microbial communities degrade the contaminants, and enhanced 

bioremediation practices that require the application of procedures to promote the removal or 

containment of the hazardous substances.  The methods of bioestimulation and 

bioaugmentation are among the most used in situ enhanced bioremediation procedures.  During 

bioestimulation, injection of amendments are applied at the site to promote growth and activity 

of indigenous microbes; additions can include nutrients, oxygen (to promote the specific growth 

of aerobic microorganisms) and vegetable oil and molasses that serve as hydrogen supply to 

promote growth of anaerobic microbial populations.  At times the site does not harbor the 

microorganisms capable of degrading or transforming the contaminants; in these cases 

bioaugmentation can be implemented by introducing microbial populations that are not native 

to the site but that can carry out the desired reactions (Philp & Atlas, 2005).  

 

Bioremediation has the advantage of being a more cost effective technology (Philp & Atlas, 

2005; Saaty & Booth, 1994; Wijensinghe, Knapp, Taylor, & Carman, 1992).  As reviewed by 

Megharaj et al. (2011) bioremediation technologies are 80-90% cheaper than other approaches 

that rely merely on chemical or physical methods, and have been successfully applied in more 

than 400 areas in the United States (Megharaj, Ramakrishnan, Venkateswarlu, Sethunathan, & 
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Naidu, 2011).  For example, the cost of cleaning 120 km of shoreline after the Exxon Valdez 

spill using biological methods resulted in less than a day’s cost of performing physical washing 

(Philp & Atlas, 2005)..  Furthermore, it has been estimated that applying non-biological 

approaches to remediate the current listed waste sites across the United States would cost around 

$750 billion (in a time frame of 30 years); while with bioremediation the cost would be an order 

of magnitude less, only $75 billion (Pimentel et al., 1997).  Finally, Hunter-Cevera (1998) 

projected that worldwide bioremediation approaches would cost $14 billion compared to $135 

billion per year if other technologies were used (Hunter-Cevera, 1998).  

 

As previously stated, microbial-mediated bioremediation represents an alternative to degrade 

waste to benign products or to immobilize inorganic contaminants such as heavy metals and 

radionuclides.  In the case of toxic chlorinated solvents, a recent review of 32 sites indicated that 

contaminant levels were reduced by 60-90% when in situ bioremediation approaches were 

implemented (H. F. Stroo et al., 2012).  Another example is that of Anaeromyxobacter 

dehalogenans, a bacterium that can respire uranium.  Although uranium cannot be biologically 

degraded or removed Anaeromyxobacter sp. can transform it, by reducing it from insoluble and 

mobile U(VI) to insoluble U(IV) oxide.  This microbial reduction holds significant promise, as 

the insoluble uranium can then be contained in groundwater, preventing it from reaching aquifers 

and posing a human health risk.  Bioestimulation can be achieved in these cases by the addition 

of acetate (diluted vinegar) to the subsurface, which will promote growth of uranium-reducing 

bacteria.  Pilot studies have shown that this technique has a reduced cost when compared to 

pump and treat (U.S. Nuclear Regulatory Commission, 2008).  

 

Finally, two particular case studies of sustainable in situ bioremediation are listed below 

showing the benefits and potential of the technology.  

 

A) In a chlorinated solvent contaminated site in Cape Canaveral (Kennedy Space Center), 

bioremediation and bioestimulation were implemented with approaches to minimize the 

environmental footprint caused by the clean-up remedy.  Treatment was optimized in various 

ways including the use of solar powered units for water recirculation and strategic and careful 
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selection of additives (for microbial growth) to avoid the need of multiple interventions. This 

strategic and greener approach resulted in less CO2 equivalents released than technologies like 

pump and treat, air sparge and multiphase extraction (Daprato, R.C., J. Langenbach, R. Santos-

Ebaugh, R. Kline, n.d.).   

 

B) Another case study is a DuPont site contaminated with approximately 10 million tons of 

toxic waste.  At this location excavation, stabilization and bioremediation were considered, 

and after evaluation, bioremediation was selected.  Compared to excavation, bioremediation 

imposed a lesser disturbance to the nearby community and represented a reduction of 2.5 

million tons of CO2.   

 

Shortcomings of Bioremediation and possibilities on other Sustainable approaches 

 

Although bioremediation is a promising technique it may not be applicable to all sites.  Some of 

drawbacks of bioremediation are listed below: 

1. Not all contaminants are biodegradable, example of these are 1,4-diozane and 

chloroform, which are recalcitrant chemicals.  

2. The process is sensitive to the geochemical conditions at the site, and changes could lead 

to incomplete detoxification. Inhibitory conditions like certain chemicals, pH, temperature 

can inhibit biodegradation, these can be adjusted but can result in higher cost.  

3. The response of biological systems cannot always be predicted which can lead to a longer 

restoration time.  

4. Constant monitoring is needed to quantify the rate of biodegradation, and ensure that the 

right densities and levels of the organisms of interest are present. 

5. Preliminary pilot studies and laboratory experiments are encouraged before the complete 

site is treated. These trials help in evaluating the feasibility of treatment but require time and 

funding to conduct the investigations.  

 

Therefore, the nature of contamination and conditions at the site may require a different 
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technology than bioremediation to restore the area, or a combined approach including biological, 

physical and/or chemical remediation methods.  For example, after evaluating several methods to 

restore a landfill with vast soil contamination, excavation resulted in the most viable and 

sustainable approach.  In this case excavation resulted in a third less CO2 emissions than other 

approaches considered, lesser time and a more cost efficient method.  Another case is the 

California Gulch Superfund NPL Site in Leadville, Colorado, an area impacted by past mining 

activities.  At this Superfund site, an intelligent and strategic plan of remediation was 

implemented designed to minimize environmental disturbances.  Excavation and offsite disposal 

was avoided and soil was treated in situ, therefore reducing air emissions associated with 

equipment work and transportation.  Natural amendments present at the site (compost consisting 

of agricultural and forestry byproducts) were used for soil treatment instead of using synthetic 

materials (Kathleen S. Smith Katherine Walton-Day & Pietersen, 2012; S. US EPA, n.d.-g).  .  

Efforts were coordinated with Colorado’s Division of Natural Resources, Colorado Department 

of Public Health and Environment, U.S. Fish and Wildlife Service and the U.S. Bureau of Land 

Management. 

  

Hence, it is clear that when evaluating treatment options, site-specific circumstances may not 

lead to bioremediation as the appropriate choice, but it is important that the techniques 

implemented are still cost-effective and also sustainable.  This optimal decision-making process 

follows President Obama’s Executive Order (EO) 13514, “Federal Leadership in Environmental, 

Energy, and Economic Performance” issued on October 5, 2009.  EO 13514 calls for energy 

reduction, awareness of green technologies and practices “to establish an integrated strategy 

towards sustainability in the Federal Government”.  Following the EO, the EPA and Interstate 

Technology & Regulatory Council (ITRC) have published guideline documents for green 

remediation practices that provide an overview of the subject, current efforts and best practices 

(ITRC, n.d.; S. US EPA, n.d.-h).  These documents aim to “educate and inform state regulators 

and other stakeholders in the concepts and challenges” but currently there is no regulation that 

specifically governs the green sustainable process.  Actually the ITRC report clearly states how 

“There is no industry-wide consensus on the definitions of the term “green and sustainable”; 

therefore, discussions on this area may not be addressing consistent concepts.”  The EPA has 



 

 232 

defined green remediation as “the practice of considering all environmental effects of remedy 

implementation and incorporating options to minimize the environmental footprints of cleanup 

actions” (S. US EPA, n.d.-h); but this narrow definition leaves behind social and economic 

aspects.  Bardons et al. (2011) as well as a recent NRC report have indicated the importance of 

considering those aspects as elements of sustainable development but yet “ethical and equity 

considerations, indirect economic costs and benefits, and employment and capital gain (among 

others) are not explicitly provided for in any cleanup statute or existing programs” (Bardos, 

Harries, & Smith, 2011).  

 

 

Research, education and innovation needs  

 

It is the impression of many that there is a lack of collaboration between academia, the private 

sector (consultants, practitioners) and regulators (government) when it comes to Superfund sites.  

A recent National Academies report alluded to the impression that federal research funding for 

groundwater remediation has “generally declined over the past decade” (National Research 

Council, 2013).  This is not surprising since overall research investments by federal agencies has 

declined in the last years due to budget cuts and financial constraints (NSF, n.d.).  During 1996-

2011 the National Institute of Environmental Health Sciences (NIEHS) awarded funding of 

approximate $500-800 millions on research related to groundwater remediation (National 

Research Council, 2013). But NIEHS gives funding to projects investigating the exposure and 

impacts of contaminants on human health; it does not funds research on contaminant removal or 

the implementation of remedial technologies.  During the same time period, the EPA only 

awarded approximately $14 million; while most of the applied research on groundwater 

remediation in this area was funded by the Department of Defense (DoD) and the Department of 

Energy (DOE) with $315 and $138 million, respectively (National Research Council, 2013).   

 

The DoD supports field demonstrations, application and validation of technologies under their 

Environmental Security and Technology Certification Program (ESTCP) (DOD, n.d.-a).  DoD 
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also funds basic research and development under the Strategic Environmental Research and 

Development Program (SERDP) (DOD, n.d.-b).  These programs are unique, providing funding 

to academia, the private and federal sector on a peer review, competitive basis.  ESTCP is 

operated solely under DoD while SERDP operates in partnership with DOE and EPA, but EPA’s 

support in recent years has been minimal.  Programs like SERDP and ESTCP have opened many 

doors, for example vinyl chloride (a proven carcinogen and pervasive groundwater contaminant) 

was thought to be recalcitrant to biotic degradation.  After much dedicated research, SERDP-

funded investigators proved that bacteria can use this compound for growth and nowadays 

specific tools are addressed to monitor these microbes in vinyl chloride-contaminated sites 

during remediation efforts (Jianzhong He et al., 2003; F E Löffler & Edwards, 2006).  Therefore, 

more research is needed to decipher the toxicity, environmental fate, and removal of toxic 

chemicals, including those considered recalcitrant, unregulated or not yet completely understood.  

This is imperative as sites become more complex by the presence of emerging and multiple 

contaminants.  Furthermore, research efforts need to encompass the molecular basis of chemicals 

under controlled laboratory studies, but also their behavior at bigger scales (e.g., pilot and field 

studies); it is in these scenarios where interdisciplinary efforts are most needed for righteous 

remedy implementation.  Investigations leading to discovery and innovation of novel 

remediation procedures are crucial, but there’s also constant need for optimization of classical 

environmental engineering as more efficient and sensitive instruments are developed.  

 

Research on remediation technologies can also turn a negative environmental incident into an 

opportunity for development.  For example, if an investigator wants to find a bacterium capable 

of breaking down chloroform, having access to samples from a chloroform-contaminated site 

increases his chances of finding it, since natural processes (evolution and natural selection) 

would have already selected for microorganisms with those capabilities.  In other words, 

scientists thrive the opportunity to work with “unusual” samples that will give rise to discoveries, 

while the industry and community benefits from the applications of these findings for site 

restoration.  Without funding, researchers cannot address the needs of practitioners at the sites, 

and correspondingly, practitioners and regulators will not keep pace with the latest cutting-edge 

technologies gestated at the laboratories of universities and research centers.  For example, a 
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responsible party or contractor may consider and choose more conservative methods instead of 

the latest “state to the art” sustainable and green technology due to misinformation and pressure, 

as EPA and CERCLA penalties are strict and can result up to $37,500 for each day of non-

compliance.  The isolation and miscommunication of “different professional and scientific 

cultures” is detrimental leading to stagnant practices and much longer cleanups of NPL sites.  

 

Final Policy Recommendations: 

 

To promote bioremediation practices and sustainable technologies: 

 Government and private sector need to reach a consensus on the definition of 

sustainability and clarify the role of green remediation.  Once a consensus is reached, 

specific regulations for green sustainable remediation can be drafted. 

 Amend CERCLA to include sustainability criteria on remedy selection.  The language 

should specify that after evaluation of all parameters, the remedy selected is not only 

efficient and cost effective but also sustainable.   

 Create legislation that provides incentives to companies that voluntarily select and 

implement more sustainable remedial approaches, including bioremediation.  

 

To foster education, research and development across all sectors especially with 

academia: 

 Establish a Research Program (lead by the EPA) that gives grants on a competitive basis 

to remediate projects at Superfund sites.  For a proposal to get awarded it needs to show a 

united effort between the private sector, regulators, and academia.  

 The SERDP-ESTCP Program should be a model to follow by other institutions to foster 

collaborations and dialogue to better link science with practice (e.g., promoting 

institutional innovations to develop and improve techniques for environmental 

monitoring assessment).  

 Create more education and training programs for regulators and practitioners.  It is the 

impression of many academics (who are in more close contact to the state-of-the-art, 
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cutting edge techniques) that regulators (government) and practitioners simply don’t 

know enough about the technologies, hindering the selection and implementation of 

bioremediations practices.  

 

To improve management of contaminated sites: 

 Track sites after they are deleted from the NPL, especially when those have indicatives of 

residual contamination.  

 Require liable parties and contractors to file reports exclusively on their green 

remediation practices, environmental impact, remedial action procurement, cost and 

energy use. 

 During the decision-making and remedy selection process, the anticipated land use (after 

restoration) should be considered.  

 Follow an “adaptive management” that will allow decisional flexibility in the clean up 

process, as discussed by Cannon (2005). 

 Firmly state that the remedy selected needs to serve not only the natural environment but 

also the surrounding community.  

 Enforce oversight and adequate performance documentation to the contractors and liable 

parties.  

 The creation of databases that can be used to compare the effectives of different 

technologies at different sites.  

 

To improve strategies for sustainable remediation implementation: 

 Establish incentives to promote the selection and implementation of bioremediation and 

other sustainable approaches (e.g., reduce fines for those liable parties that choose green 

remediation over other technologies).  

 Standardize and reach a consensus on the metrics used to measure green and sustainable 

remediation actions (e.g., CO2 emissions, use of renewable energy, environmental impact 

footprint, and community job creation).  
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 Reduce the use of natural resources (e.g., water), maximize use of renewable sources 

while considering social and economic impact.  Identify innovative and optional uses for 

onsite materials and byproducts otherwise considered waste. 

 Educate and train the local workforce (especially low income communities and 

minorities) on remedial technologies.  This opens doors for quicker cleanups, job creation 

and better social relationships leading to community empowerment. 
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Chapter 6 Appendix: Figures  

 

 

Figure 6.1.  Map of Superfund sites in the United States as March 31, 2010.  Red dots 

indicates indicate final sites in the National Priority List, yellow are proposed sits, and 

green are deleted sites (O. O. of S. R. and T. I. US EPA, n.d.; S. US EPA, n.d.-d).  
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Figure 6.2.  Impacted areas in Puerto Rico.   

Hydrogeology and contaminated sites are indicated; the north coast limestone aquifer is depicted 

in orange and light pink color. Resource Conservation and Recovery Act (RCRA) facilities are 

also included; these are sites where releases of hazardous waste into soil, ground water, surface 

water, sediments, and air have occurred; requiring the investigation and cleanup, or remediation. 

Forty-five percent of all Superfund sites are located in the northern karst region of the island, 

which includes one of the largest and most productive sources of groundwater.  Evidence 

suggests that the higher preterm birth rates in Puerto Rico cannot be explained by changes in 

obstetric practices and that exposure to hazardous chemicals contributes to preterm birth (Padilla 

et al., 2011).  

 

 

 

Active Superfund Inactive Superfund RCRA Corrective Action Landfill 
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Figure 6.3.  DoD CERCLA environmental restoration phases and milestones. Figure from 

the National Academies Report (National Research Council, 2013). 
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Chapter 6 Appendix: Tables   

 

Table 6.1. Number of Federal and general sites for each status and milestone as of January 

24, 2014: 

 

Status 
Non-Federal 

(General) 
Federal Total 

Proposed Sites 49 4 53 

Final Sites 1162 157 1319 

Deleted Sites 358 17 375 

Milestone 
Non-Federal 

(General) 
Federal Total 

Partial Deletions 42 18 60* 

Construction 

Completions 
1085 72 1157 
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Chapter 7 

Conclusion and recommendations  
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Summary of research findings and future research needs 

 

Bioaugmentation is now a widely accepted strategy for the remediation of chlorinated solvents.  

Microbial consortia containing Dehalococcoides are the basis for successful bioremediation 

efforts at sites (i.e., drinking water aquifers) contaminated with chlorinated ethenes.  

Dehalococcoides species have a highly restricted energy metabolism and require halogenated 

compounds to make a living.  All Dhc strains share highly similar 16S rRNA genes (>98 nt % 

identity) but may exhibit different dechlorination activities.  For example, strain FL2 and strain 

195 cannot grow with VC while strains BAV1, GT and VS use VC as an electron acceptor and 

efficiently detoxify VC to ethene.  Hence, gene targets providing higher resolution than the 16S 

rRNA gene are desirable for site assessment and bioremediation monitoring to link cause-and-

effect relationships between microbial activity and contaminant detoxification. 

 

The research efforts encompassed herein elucidated the RDase involved in the 1,2-D 

dichloroelimination.  Results showed that 1, 2-D-respiring Chloroflexi organisms (Dhc and 

Dhgm) appear to be major contributors to this activity at the sites investigated.  The sensitive 

dcpA-targeted PCR assays developed in this dissertation provide a more comprehensive 

molecular biological tool approach that can now be applied to tackle 1,2- D-contaminated sites.  

The assays resulted in an invention disclosure filed to UTRF (University of Tennessee Research 

Foundation) and a patent application to USTPO 

http://www.google.com/patents/US20140072965. 

 

Although the 1,2-D RDase in the dehalospiring Chloroflexi Dhc and Dhgm has been identified 

the equivalent RDase in Desulfitobacterium dichloroeliminans and Dehalobacter sp. remains to 

be elucidated.  To achieve this and based on the lessons learned on Dhc transcription, expression; 

the use of DNA/RNA molecular tools along with already-optimized BN-PAGE methodology, a 

multiple lines of evidence approach, similar to the one employed to identify dcpA should be used 

to assign function to the 1,2- D RDase in Dhb and Desulfitobacterium.  

 

http://www.google.com/patents/US20140072965
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Dhgm is also known to grow on 1,1,2-TCA and 1,2-DCA and the RDase involved in these 

additional dichloroelimination reactions are inconclusive.  Of particular interest are the enzymes 

involved in 1,2,3-TC dechlorination, by Dhgm spp., the only group characterized to use this 

contaminant as electron acceptor.  TCP is a persistent groundwater pollutant, and although a 

federal MCL has not been established several states already have state-regulatory levels.  

Furthermore the EPA has added TCP in their “contaminate candidate list” which are unregulated 

chemicals that are anticipated to require future regulation.  Therefore, as concern for 1,2,3-TCP 

grows as an emerging contaminant, the elucidation of the dechlorination mechanism by Dhgm is 

an area of interest and future research. 

 

The sequencing of the Dhc RC and KS genomes provided clues about possible additional 

substrate utilization otherwise unknown.  So far strain Dhc RC and KS are maintained in 1,2-D 

as its sole electron acceptor, since they fail to grow on other chlorinated solvents (TCE, VC).  

Interestingly the findings presented indicated multiple non-identical RDase genes are harbored in 

Dhc RC and KS genomes.  Aside from dcpA, only one other RDase gene present has assigned 

function, pcbA; a gene recently implicated in PCB and PCE dechlorination (Wang et al., 2014).  

PCB is highly toxic and recalcitrant and since only a few strains have been reported to posses the 

ability to dehalogenase PCB congeners, efforts to grow RC and KS on PCB should be attempted.  

Concomitant dechlorination trials with PCE should also be performed, to investigate co-

contaminate inhibition or dual transformation of PCE/PCB. 

 

The discovery of dcpA in Dhc strain RC and KS lead to the discovery of the 1,2-D RDase also in 

in Dhgm strain BL-DC-9, indicating HGT between these groups of organohalide respiring 

bacteria.  While a mechanism has been proposed for the VC-to-ethene RDase (vcrA) by site-

specific integration via a ssrA module, this dissertation effort elucidated the sharing of a genomic 

island encompassing the dcp operon in Dhc RC and KS and Dhgm and a mechanism by phage 

insertion and transposition are proposed, among others. Since bioremediation monitoring relies 

on biomarker detection and quantification, understating of RDase genes mobility in the 

environment is relevant for scientists and practitioners alike.  
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The future is Green 

 

A wave of initiatives for a more environmentally conscious society has emerged and sustainable 

remedial practices are now, more than ever part of the conversation.  As stated by the American 

Society for Testing and Materials (ASTM) “Green remediation shouldn’t be an oxymoron. When 

it comes to handling contaminated sites, from a small to a huge location the goal is to protect 

human health and the environment.”  Historically, site restoration remedies have been 

implemented without consideration of green or sustainable concepts in order to restore sites; but 

things are changing.  A framework has been in the works for sustainable remediation.  Since the 

80s a series of executive orders regarding sustainability, environmental protection and energy 

efficiency have been drafted, and in the last decade the EPA’s Green Remediation Strategy was 

launched, also the Sustainable and Remediation Forum (SURF) composed or private sector 

leaders and practitioners was created.  In recent years, Guidance documents have been drafted by 

stakeholders and last year the ASTM, which is globally recognized as a leader in the 

development and delivery of international voluntary consensus standards, developed the first 

“Green and Sustainable clean up standards”, but still the implementation of sustainable practices 

in voluntary.  On February 2014, the Horinko Group published a white paper entitled “the Rise 

and Future of Green and Sustainable Remediation” led by Ms. Marianne Horinko, past EPA 

administrator, alluding to the up-and coming interest of this topic.  Once upon a time, the 

drafting of environmental regulations and policies were dependable, on analytical chemistry 

advances: as technology and instruments increased their sensitivity to detect contaminants in the 

environment, specific statues for maximum contaminant levels were drafted or amended.  A 

similar scenario is in the works nowadays, not with by state-of-the-art technology primed in a 

more mindful decision making process with uniting efforts across disciplines and experts, which 

is crucial to the enhancement and restoration of impacted sites. 

 

The future is bright 

 

We are living in exciting times.  In 2013, Chen et al., isolated an aerobic Comamonas strain 

(designated 7D-2) capable of growing by reductive bromination of bromoxybil, a compound 
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used in herbicides (Chen, 2013).  Further characterization of the dehalogenating mechanism 

uncovered a new class of reductive dehalogenase found in aerobes designated as BhhA.  Several 

bhhA homologues have been identified in a variety of aerobic genera (e.g. Roseobacter, 

Silicibacer, Sulfitobacter) indicating a wide distribution of these enzymes and suggesting 

important contributions to the orgahalogen cycle in nature (Chen, 2013). 

 

Alongside, Bommer et. al. achieved the first crystal structure of the Pce RDase, resulting in the 

first reductive dehalogenase crystalized (Bommer, M. Kunze C, Fesseler J, Schubert T, Diekert 

G, 2014).  Furthermore, during the final stages of this research the VcrA RDase of strain became 

the first Dhc RDase heterologously expressed in E. coli and reconstituted to its active form 

(Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, 2015).  These advances had shed 

light into the characteristics and biochemistry of these particular enzymes and are paving the 

path for the next generation of discoveries.  In the near future RDase genes could be genetically 

modified resulting in protein with modified motifs or substituents to add or increase the spectrum 

of halogenated compounds that that they can dechlorinate.  The implications of such RDases 

engineering efforts could be enormous. 

 

Nevertheless, early efforts used to characterized the Pce RDase in dehalogenating bacteria and 

classical approaches that included reverse genetics, and transcriptional approaches were 

successful in assigning function to six Dhc RDases (e.g. vcrA, pcbA, bvcA, dceA, cbrA, dcpA).  

These RDases were identified, without the need of a genetic system, heterologous expression or 

complete enzyme purification.  Moreover, the present study assigned function to the 1,2-D to 

propene RDase in Dhc strain RC and KS, and also in Dhgm strain BL-DC-9 (Padilla-Crespo et 

al., 2014) with similar integrated techniques.  Therefore, biomarker discovery and RDase 

characterization will remain an emerging filed of research with vast opportunities since dozens 

of putative RDase genes with unknown functions are harbored in Dhc genomes while hundreds 

of putative RDase genes homologues linger in the databases awaiting for their functional 

characterization.  Combined with 16S rRNA gene-targeted approaches, these RDase gene targets 

will assist in site assessment and bioremediation monitoring.  

The future is green, and the future is bright. 
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