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Abstract 

 

Dominated by the endemic Fraser fir (Abies fraseri), the high-elevation forests of the 

Southern Appalachians are one of the most endangered ecosystems in the United States, and 

the future of these forests remains uncertain. Fraser fir is showing signs of decline in health and 

increased mortality throughout its range, possibly due to multiple environmental stresses. 

Using twenty years of forest monitoring data, this dissertation documents change in forest 

structure and species composition in high-elevation red spruce-Fraser fir forests in southern 

Appalachia and generates predictions of future forest change. Additionally, it quantifies 

physiological measures of carbon fixation, storage and growth in adult Fraser fir in situ under 

multiple stresses, which has been unstudied previously, and explores environmental constraints 

associated with climate, soil chemistry and acidic deposition on physiological metrics. 

We find no evidence of previously hypothesized shifts in forest composition to greater 

dominance of northern hardwood species across elevation and nitrogen deposition gradients or 

between different initial stand types.  Using a stage-structured Bayesian hierarchical model to 

predict Fraser fir populations through 2050, we predict robust recovery of populations on 

Clingmans Dome and Mount LeConte for at least the next several decades, as well as continued 

decline for populations on a number of mountains, notably Mount Sterling at the lowest end of 

Fraser fir’s elevation range. We find that maximum photosynthetic rates are low throughout the 

high elevation mountains of Great Smoky Mountains National Park, indicating trees are under 

considerable stress, but are highest in trees growing on the highest, steepest slopes. Trees from 

Clingmans Dome have significantly higher maximum photosynthetic rates and water use 

efficiency than trees on other mountains, which may indicate stress resistance in this 

population. Additionally both photosynthetic water use efficiency and leaf architecture are 

affected by maximum July temperature, suggesting future climate change will impact the foliar 

physiology of Fraser fir.  Measurements of nonstructural carbohydrate pools are consistent with 

those found in mature trees of other species which suggests the capacity for resistance of future 

stress events, particularly at the highest elevations where photosynthetic rates are the highest. 
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Preface 

 

 

29 June 0627 

The cold mountain fog makes coffee  

a necessity.  Firs the color of smoke in the early  

Dawn light.  I stumble toward the spring.  

Water, the life blood pouring out of 

the rocks of Mount Uyaye,  

Guardian Mountain of the Cherokee. 

Going to the Water, the first people's  

Holy Rite.   

 

I, too, am rising early, going to the water. 

Cleansing, invigorating, icy water-- 

Though pure no longer. 

When did filtration become essential on this 

holy mount?  Are the spirits still here,  

or have they left the land,  

tainted by smog and ozone?   

A single snake shed,  

improbable in this altitude, 

holds my answer. 

A sign and a gift in the stiff dawn. 
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1.1 A Review of Relevant Literature 

1.1.1 Natural Variation within Species 

Intraspecific natural variation, broadly defined as the within-species phenotypic variation 

in a given trait or parameter, is ultimately caused by spontaneously arising mutations that have 

been maintained by artificial and natural selection. The amount of intraspecific variation in key 

physiological traits like specific leaf area and leaf gas exchange measures varies by species 

(Poorter et al. 2009, Wilson et al. 1999, Abrams 1994). However, variation in physiological 

measurements across a landscape is unknown with regard to many species, and this variation is 

an important consideration when trying to assess the future outlook of individuals of 

threatened species.  

Partitioning how much of this variation in physiological measures are due to phenotypic 

plasticity in response to environmental conditions versus genetically controlled traits is difficult 

(Ackerly et al. 2000), but informs some of the most fundamental current questions in ecology 

(Sutherland et al. 2013).  Plants have a remarkable ability to alter their development in response 

to numerous environmental cues and stresses. A host of environmental cues can be interpreted 

by plants, including light, temperature and nutrients, and these inputs are integrated and 

translated into a range of developmental outputs like shoot elongation, leaf architecture, 

photosynthetic pigment production, and biomass allocation (Gratani 2014, Caldwell and Pearcy 

1994). This plasticity enables growth optimization for the local environment, allows range 

expansion into heterogeneous habitats, and may provide an advantage as the changing climate 

affects growth conditions around the globe. Individual trees can show a tremendous ability to 

acclimate to a changing environment, with the magnitude and variability of this response 

dependent upon species (Larigauderie and Körner 1995; Tjoelker et al. 1999), provenance 

(Bigras 2000; Gunderson et al. 2000), elevation (Fryer and Ledig 1972), and other factors.  

Genetic variation is fundamental for the persistence of a species because it provides the short 

term acclimation potential of an individual to the current biotic and abiotic conditions as well as 

providing diversity for long term adaptation in response to selection (van Delden 1994). If the 

genetic structure within a species or population is compromised due to population reduction 

and isolation, then the stability of the forest ecosystem may also be reduced when faced with 

future environmental changes (DeHayes et al. 2000). 
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Additionally, unusually harsh or extreme environments provide an understanding of the 

limits of plant growth and function and the process of plant adaptation and distribution 

patterns. Measurements of photosynthesis, temperature, water and nutrient relations provide 

the foundation for understanding adaptations in physiological processes and can provide 

insights into the responses of plants to a changing world.  Studies of water relations and 

drought stress in the harsh deserts of the southwest have helped elucidate the processes by 

which tree mortality occurs under such extreme conditions (Sevanto et al. 2013, McDowell & 

Sevanto 2010), and the adaptations which allow individuals to acclimate to drought conditions 

(McDowell et al 2008).  Conversely, studies in the high elevation cloud forests of the Great 

Smoky Mountains will provide insight on tree water usage and foliar light response (Berry & 

Smith 2012, 2013, Reinhardt & Smith 2008), and carbon gain and allocation in locally adapted 

conifers, which is especially relevant to understanding future impacts of changing climate on 

boreal forests. 

1.1.2 Biogeography and Evolution of Fraser fir  

The genus Abies is a group of 37-48 species generally restricted to cool and frigid 

environments in the northern hemisphere, with a few lower latitude species that persist only in 

high elevation ecosystems (Liu 1971). One of these lower latitude species is Fraser fir (Abies 

fraseri (Pursh.) Poiret). Fraser fir is the dominant tree species in the high-elevation forests of the 

southern Appalachian Mountains. This endemic conifer is found in island-like populations in 

seven locations in Tennessee, North Carolina and Virginia from 1,767 to 2,037 m in elevation 

(Beck 1990). The species natural elevation range is above 1,300 meters where it is co-dominant 

with red spruce (Picea rubens), and becomes the dominant tree species above about 1,800 meters 

(Cain 1935; Whittaker 1956; Busing et al. 1993). Adult Fraser firs range in size from 9 to 25 m 

tall, with most individuals around 15-18 m tall and under 30 cm D.B.H. (Beck 1990). Fraser fir 

generally reaches maturity and begins reproducing around 40 years of age and has a natural life 

span of about 150 years (Oosting & Billings 1951) 

Fraser fir is thought to be a relict population of a large conifer forest that once covered as 

much as 1.8 million km2 of the southeastern United States (Delcourt & Delcourt 1984; Delcourt 

& Delcourt 1998) in the late-Wisconsin glacial period, from 18,000 years to 12,500 years before 

present (Whitehead 1973; Whitehead 1981; Delcourt & Delcourt 1987). This forest retreated 
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northward as climatic warming occurred and became the Canadian boreal forest, leaving only 

refugial, disjunct populations at the higher elevations in the Southern Appalachians about 8,000 

years ago. Recent studies have shown close genetic similarities with the balsam fir (Abies 

balsamea) which is found extensively in the northern latitudes of the northeastern US and 

Canada and the Canaan fir (Abies balsamea var. phanerolepis) endemic to West Virginia and 

Virginia (Potter et al. 2010a) and suggest they became genetically isolated from each other 7,000-

10,000 years ago (Clark et al. 2000). The genetic structure of Fraser fir populations shows a 

significant deficiency of heterozygosity and a high degree of inbreeding relative to other 

conifers (Potter et al. 2008). This may have implications for the degree to which Fraser fir is able 

to acclimate or adapt to environmental and biological stresses. 

1.1.3 Southern Appalachian Spruce Fir-Spruce Forests 

Though the southern Appalachian spruce-fir forests have historically been regarded as an 

extension of the boreal forest (Whittaker 1956; Ramseur 1960), there are notable differences 

between the two ecosystems. Vegetation in the high-elevation spruce-fir forests is a mixture of 

boreal relicts and montane species (White 1984; Wiser 1994). Additionally, southern 

Appalachian spruce-fir forests receive greater annual precipitation, in amounts up to 2,500 mm 

per year (Shanks 1954). Much of this precipitation is from clouds; cloud immersion occurs in 

these forests 65% of all days annually (Mohnen 1992; Baumgardner et al. 2003) and about 30% 

of typical summer day (Reinhart & Smith 2008). Therefore, spruce-fir forests in the southern 

Appalachians are a unique ecosystem--a high-elevation temperate cloud forest.  

These forests are noted for their relatively high level of endemic species and relict 

populations of species only found in coniferous forests at much higher latitudes, especially in 

the pure fir of the highest peaks (Nicholas et al. 1999). A study of plant occurrences in the 

spruce-fir forest of the Great Smoky Mountains National Park found 132 species of vascular 

plants, 8 of which are endemic, and 6 are thought to be relict populations isolated from northern 

forests (White 1984). In addition, Fraser fir is the preferred host for 36 species of bryophytes 

(Smith 1984) and 20 species of epiphytic lichen (Dey 1984). Several bird species restricted to 

higher elevations depend on spruce-fir canopy including the black-throated green warbler, 

blue-headed vireo, red-breasted nuthatch and golden-crowned kinglet, and their numbers have 

been significantly reduced following the BWA infestation (Rabenold 1998). Of the species found 
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in Fraser fir forests, twenty are federally listed as “of concern” including two federally listed 

endangered species, the spruce-fir moss spider (Microhexura montivega) and the Carolina Flying 

Squirrel (Glaucomys sabrinus coloratus). 

The current geographic distribution of Fraser fir covers about half of what it once was in 

the late nineteenth century (Dull et al. 1988). Logging and failed regeneration caused by site 

degradation and poor management practices dramatically reduced the range of Southern 

Appalachian spruce- fir in the early 1900s (Pyle & Shafale 1988; Pyle 1984). With the 

establishment of Great Smoky Mountains National Park in 1934, protection of the largest part of 

this montane ecosystem was assured (Dull et al. 1988). Today most of the extant spruce fir 

forests in southern Appalachia is on public lands; indeed Fraser fir and the spruce-fir ecosystem 

is a central attraction of several well-known tourism destinations in the southern Appalachians 

like the Great Smoky Mountains National Park, Mt. Mitchell State Park, Grandfather Mountain 

private reserve, and Roan Mountain (in the Pisgah National Forest). Though these forests are 

protected from further anthropogenic disturbance, they are showing signs of decline in health 

and vigor potentially caused by multiple environmental stresses. 

1.1.4 Tree Stress 

Plant stress is defined as sustained deviation of any environmental condition beyond the 

optimum range which reduces plant potential productivity. There are several stresses 

associated with the high-elevation forests that have been identified over the last few decades. 

The relevant literature on these individual stresses and their effects of fir physiology is 

reviewed below. 

1.1.5 Atmospheric Deposition 

The major effects of long-term acid deposition on soils include accumulation of sulfate and 

nitrate, increased solubility and mobilization of aluminum, and depletion of nutrients like Ca, 

K, and Mg. Spruce-fir forests in Great Smoky Mountains National Park are currently classified 

at a stage 2 of nitrogen deposition (sensu Aber et al.1998) and receive a moderately high amount 

of nitrogen with wet, dry and fog deposition totaling about 30 kg ∙ ha-1 ∙ yr-1 (Johnson et al.1991; 

Lovett & Lindberg 1993). Much of this N is leached from the soil, with rates as high as 20 kg ∙ 

ha-1 ∙ yr-1 (Nodvin et al. 1995). As soil N levels increase, Fenn et al. (1998) predict a change in 
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forest type, where slow growing, slow N cycling conifer species are out-competed by deciduous 

maples and birches which can take advantage of the increased N. 

In addition, Fraser fir has been shown to have preferences in nitrogen form. A study 

comparing response to fertilization by either NO3- or NH4+ found that young trees were able to 

use NO3- as a sole nitrogen source. Nutrient uptake (N, P, K, Ca and Mg) and photosynthetic 

capacity both decreased with increasing proportion of NH4+ application (Rothstein & Cregg 

2005). Reports of amounts and relative proportions of these two N forms in red spruce-Fraser fir 

forests conflict, but all report high levels of overall N accumulation (Sasser & Binkley 1988; van 

Miegroet et al. 1993). 

The relatively thin, acidic soils of the high elevation forests offer limited buffering capacity 

for increased acidity (Shubzda et al. 1995). Increased soil acidity has been shown to lower cation 

exchange capacity and also results in the conversion of Aluminum into soluble forms that may 

be then taken up by plants. Studies of foliar elemental composition in both Fraser fir and the co-

dominant red spruce have shown considerably elevated levels of Al as well as low Ca:Al ratios 

(Robarge et al. 1989). Aluminum severely impacts root growth in plants, reducing root mass 

and thus nutrient and water uptake. The most toxic soluble form, Al3+, inhibits cell division, cell 

extension, and transport within the cell (Kozlowski & Pallardy 1997). Increased soluble 

aluminum also results in loss of essential nutrients from the soil; it is able to displace Ca, K, and 

Mg from soil cation exchange sites. These displaced minerals are then subject to leaching and 

become limiting nutrients for plant growth. Fine root turnover has been shown to be higher at 

sites with higher soil Ca availability, and cation depletion associated with acidic deposition has 

been suggested to cause reduced carbon allocation to fine roots in spruce-fir ecosystems (Park et 

al. 2008). 

In addition to changes in soil chemistry and nutrient dynamics, acid deposition impacts 

Fraser fir through cloud deposition and acid fog. High elevation forests receive about half of 

their considerable annual precipitation (> 2000 mm per year) from cloud water deposition and 

spend roughly a third of the summer immersed in clouds (Reinhart & Smith 2008b). Increased 

exposure to acid fog causes decreases in Ca and Mg within tissues by increasing foliar leaching 

(Shepard et al. 1995, Joslin et al. 1988). In red spruce, low amounts of foliar calcium have been 

linked to significant increases in dark respiration (MacLaughlin et al. 1991). Repeated exposure 

to acidic rain with high sulfur content causes needle necrosis, early senescence and defoliation 
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(Jacobson et al. 1990). Recent findings by Wilson and Butcher (2012) have found higher foliar 

concentrations of Ca and Mg than earlier studies, indicating that pollution controls may be 

limiting foliar leaching. However, high pollution levels in the Great Smoky Mountains may be 

also contributing to forest decline through lowered photosynthesis by reducing leaf chlorophyll 

content, and causing increased winter damage through lack of hardening (Adams & Eager 

1992). 

1.1.6 Ozone 

Ground level ozone amounts in the Great Smoky Mountains National Park are among the 

highest in the eastern US (Mueller 1994, US EPA 2001). On average, ozone concentrations over 

the ridge-tops of the park are twice that of nearby Knoxville and Atlanta. From 1997 to 2010 

there were over 500 days over 75 ppb, and 264 of these days had ozone levels over 85 ppb (US 

NPS 2010). High elevation ecosystems are thought to be particularly vulnerable to increased 

ozone pollution; ozone levels do not decline at night in these areas so they receive a higher 

amount of exposure for a longer period of time (Adams & Eager 1992). Ozone enters stomata 

and reacts with lipid and protein components of leaf tissue to form aldehydes, peroxides and 

various reactive oxygen species (ROS). These substances cause reduced stomatal conductance 

and photosynthesis, trigger the creation of antioxidants and even stimulate programmed cell 

death (Andersen 2003; Wittig et al. 2009). In sensitive species, long-term exposure leads to 

reduced growth rates and early leaf senescence (Somer et al.1998; Karnosky et al.2005). 

Though increased tropospheric ozone has been shown to have deleterious effects on some 

conifer species (Benoit et al. 1982; Woodman 1987), Fraser fir does not appear to be ozone 

sensitive. A study of the effect of long-term ozone fumigation on Fraser fir seedlings found no 

effect on seedling growth. Seedlings exhibited no consistent change in leaf net photosynthesis, 

stomatal conductance and total biomass when exposed to ozone concentrations as high as 0.15 

ppm during five accelerated 10-week growth cycles (Seiler et al. 1994). Studies have also found 

no interactive effects of water stress and increased ozone on Fraser fir photosynthesis, 

respiration or conductance (Tseng et al. 1988). 

1.1.7 Elevated Atmospheric CO2 

In addition to increased atmospheric deposition and ground level ozone amounts, burning 

fossil fuels and release of stored carbon into the atmosphere have led to greater levels of 
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atmospheric CO2. CO2 levels have increased by about 70ppm in the last 50 years and it is 

predicted that CO2 will continue to rise over the next few decades. A study of the effect of 

elevated CO2 on Fraser fir seedlings found that plants exposed to elevated CO2 (712 ppm) for a 

year were significantly larger in dry weight and size than those grown at ambient (374) but had 

lower water use efficiency, conductance, and photosynthetic rates (Samuelson & Seiler 1992). A 

similar study of red spruce found seedlings exposed to the same elevated CO2 level during 

budset and subjected to water stress had greater leaf weight, leaf area and height of the terminal 

leader than the control. Red spruce seedlings grown for 5 months at 712 ppm CO2 were taller, 

had denser canopies, and more biomass than those grown at ambient (Samuelson & Seiler 

1994). 

With elevated CO2, trees will be able to open their stomata for shorter periods of time and 

acquire more carbon for growth and storage, which may also make them less vulnerable to 

stress in drought conditions. However, increases in growth rates may lead to increased 

competition pressures for nutrients, water and space. Elevated atmospheric CO2 is also 

predicted to cause changes in global temperature with an estimated increase in global mean 

annual temperature of 3 C in the next 100 years. 

1.1.8 Climate Change 

Delcourt and Delcourt (1998) predict that a 3 C increase in the mean July temperature 

would raise climatically-limited ecosystems about 480 m in elevation. Because red spruce- 

Fraser fir forests are already confined to the highest mountain elevations, this shift could result 

in loss of the ecosystem. However, trees at high elevations may be able to acclimate or develop 

adaptation to increased temperatures. A study of elevated warming on red spruce found 

varying response to increased temperatures among different seed sources, indicating that 

temperature alone is unlikely to limit future establishment and growth (Hagen 2006). Potter et 

al. (2010b) developed an empirical multivariate clustering algorithm to predict future suitable 

habitat of individual tree species based on environmental characteristics existing at current 

locations. Using the higher emissions estimate published by the Hadley Centre for Climate 

Prediction and Research in this algorithm, predicted suitable habitat of Fraser fir in the southern 

Appalachians will shrink over the next 40 years but by 2100 will expand to a similar extent to 

current habitat. These results do not take into account changes in precipitation or cloud cover, 



9 

or potential physiological adaptations or acclimation to changes in climate. Additionally, 

because these models are based on current species distributions, which is biased by human land 

use change, they may under-predict species resilience to climate change. 

Along with a mean annual temperature increase, changes in precipitation patterns in the 

southeastern United States are also being anticipated. Fraser fir grows in a cold, moist climate 

characterized as a cool-temperate rain forest with a well-distributed mean annual precipitation 

of 1900 to 2540 mm (Beck 1990). Because it is adapted to such a wet environment, Fraser fir is 

susceptible to stress caused by lack of water availability. One study found three year old 

seedlings subjected to moderate water stress (watered when pre-dawn needle water potential 

was between −0.8 and −1.0 MPa) showed a 20% reduction in root and shoot dry weight as well 

as a decrease in both transpiration and leaf conductance. Seedlings subjected to severe water 

stress showed improved water use efficiency which may indicate acclimation to drought 

periods is possible (Tseng et al. 1988). In more recent study, water stress in four year old Fraser 

fir seedlings significantly impacted height growth, relative root collar diameter and terminal 

shoot growth and caused decreased levels of end-of-season leaf pigments. However, drought 

stress had no significant effect on leaf carbohydrate levels, suggesting that the effects seen on 

plant growth were not a result of carbon starvation but hydraulic failure (Kulak et al. 2012). 

This may be because the plant compensates by ensuring an increase in the relative availability 

of resources for root development as evidenced by a higher ratio of leaf N to root weight 

(Nzokou & Cregg 2010). 

Reinhart and Smith (2008b) found that leaf conductance of understory Fraser fir decreased 

exponentially as the vapor pressure difference between the leaf and atmosphere increased. A 

rise in vapor pressure difference from 0 to 0.5 kPa resulted in an 80–90% reduction in 

conductance. In addition, cloud saturation led to increases in light saturated photosynthesis 

(Reinhart & Smith 2008a). The ecotone between the spruce-fir zone and the southern hardwood 

forests roughly corresponds with the beginning of cloud immersion, and spruce-fir forests 

spend 30-40% of the growing season immersed in clouds (Reinhart & Smith 2008b). Cloud 

immersion has been shown to result in higher photosynthesis rates, leaf conductance and xylem 

water potentials in sapling Fraser fir (Berry & Smith 2013), but this impact has been shown to be 

greater on juvenile than adult trees (Berry & Smith 2012). This effect is not due to however to 

differences in stomatal pattern or frequency between high and low elevation individuals, but is 
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probably due to resource partitioning and use efficiency (Reed & Smith 2012). Because global 

climate change is predicted to increase regional cloud ceiling levels, it is expected that the 

negative impacts on Fraser fir physiology associated with coming out of cloud immersion will 

drive the optimal habitat for the species higher in elevation.  

1.1.9 Balsam Woolly Adelgid 

One of the most devastating stresses on Fraser Fir in the last century has been from 

predation by an invasive insect, the balsam woolly adelgid (Aldeges piceae Ratz.). A native of 

European silver fir forests, BWA was introduced into Maine and Nova Scotia on nursery stock 

in 1908 (Hain 1988). It was first discovered in the red spruce-Fraser fir forest in Mt. Mitchell, 

North Carolina in 1955, and the Great Smoky Mountains National Park in 1960. BWA is able to 

reproduce parthenogenetically and lays about 100 eggs with about 3 generations produced each 

year (Balch 1952; Amman & Speers 1965; Eagar 1984). The adelgid feeds on phloem by inserting 

its stylus-like mouth in the bark fissures of older fir trees, mainly those over 4 cm DBH (Eagar 

1984).  

In response to adelgid infestation, changes in both the phloem and xylem tissues of Fraser 

fir occur. Parenchyma form around the site of the stylus; these parenchyma subsequently 

degrade and are filled with resin and enclosed in cork tissue. This layer may help prevent 

against subsequent infestation. In the xylem, short heavily-lignified trachids are produced 

(Eager 1985). The response-wood is anatomically similar to compression-wood and heartwood. 

Depredation by BWA may also increase lower xylem pressure potentials and lead to cavitation 

of sapwood. The decrease of functioning xylem tissue lowers water conductance below critical 

levels and the tree succumbs to mortality in 2-3 years (Hollingsworth et al. 1991). 

While as much as 90% of over-story Fraser fir died during the height of the infestation 

(Dull et al. 1988), a few individual mature trees remain. Reasons for their survival are unclear, 

but there are a few hypothesized mechanisms of resistance. Grand fir (Abies grandis) produces 

copious amounts of resin as a wound response and is fairly resistant to adelgid attack with only 

20-30% of infested trees dying (Mitchell 1966). Resin contains many secondary metabolites and 

helps prevent infestation and damage by insects, fungi and pathogens; greater resin production 

may be a trait that assists in resisting BWA depredation. Natural variation in bark thicknesses 

or xylem anatomy may also increase the possibility of survival. Hollingsworth and Hain (1994) 



11 

hypothesize that low mortality rates of Fraser fir at Mount Rogers, Virginia may be caused by 

greater water availability at that site. Fowler et al. (2001) suggest that the juvenile hormone 

related compound Juvabione, which is produced in young trees, may be higher in resistant 

individuals. 

1.1.10 Multiple Stresses 

None of these environmental and biological stresses happen alone. Competition pressures 

from elevated CO2 levels add to those caused by N accumulation. Nitrogen deposition may also 

influence herbivory, and may affect tree drought- and cold-tolerance through alterations to tree 

anatomy and carbon allocation. Changes in global climate will impact soil nutrient cycling and 

availability (Garten 1999). Trees infested by BWA seem to be less resistant to drought stress 

because they continue to produce abnormal wood growth even with reduced water availability 

(Hollingsworth & Hain 1994). 

Under field conditions tree responses can be synergistically or antagonistically modified 

by the superimposition of other stresses. Synergistic effects could be additive or multiplicative; 

trees may react in a non-linear way to perturbations, such as climate change, so that the 

outcome may be greater than the sum effect of the individual components (Aber et al. 2001). 

Down‐regulation of photochemistry and, in the longer term, of carbon metabolism is an 

important defense mechanism in response to environmental stress. Changes in the root:shoot 

ratio or in nutrient reserve partitioning are accompanied by alterations in nitrogen and carbon 

metabolism. At the whole tree level, stresses may result in the slowing of growth and/or the 

decline of carbohydrate reserves. This creates a complex system of stress interactions and tree 

physiological and ecological response that will drive the future of the species. 

1.1.11 Growth and Phenology of Fraser fir 

Though an understanding of the growth and phenology of Fraser fir is essential to making 

accurate predictions about response to stress, particularly climate change (Rossi et al. 2011; 

Kramer et al. 2000), the timing of annual events related to growth and function in Fraser fir 

remains largely unstudied. Studies of the timing of bud break and primary growth in adult firs 

have been confined to the closely-related northern species balsam fir. Generally, fir bud break is 

determined by mean daily temperature, the threshold of which varies by population and 
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elevation. A study of plantation-grown balsam fir in Northern Michigan in 2000 found bud 

break began in most adult trees between 78-105 degree days above 10 C (April 22 to May 3) 

(Fondren & McCullough 2003) while observations of the same species from 1979 in Quebec 

placed bud break between 194 -215 degree days above the threshold of 4 C (Osawa et al.1983). 

Subalpine (A. lasiocarpa) and Pacific silver (A. amabilis) firs in Washington have been shown to 

exhibit variation in threshold temperatures as well, with seedlings at higher elevations flushing 

earlier by about 7 days per 1000 m difference (Worrall 1983). The lone study of seedling 

phenology in Fraser fir, however, found the opposite. Though bud break was determined by 

mean daily temperature, higher parent elevation was associated with later terminal and lateral 

bud flush dates and slower growth rates in seedlings (Emerson et al. 2006). While earlier 

flushing in northern latitudes may be adaptations to compensate for shorter growing periods, 

these adaptations may not be necessary in the southern Appalachians. Here, the later flushing 

dates likely developed to prevent frost damage of new shoots. 

Secondary growth of adult Fraser fir is again unexamined, but fairly well studied in 

balsam fir. In a study of xylem phenology in adult balsam fir in Quebec in 1998 to 2000, cell 

formation began between May 7 and June 7. The transition between earlywood and latewood 

production occurred between July 2 and July 19, and the end of the growing season was 

observed between August 20 and September 20 (Deslauriers et al. 2003a). Studies of cambial 

activity in both roots and stems of balsam fir in Quebec show similar initiation and conclusion 

dates for growth with similar variation (Thiebault-Martel et al. 2008). Temperature is the main 

factor driving xylogenesis during spring, and variations between these dates are hypothesized 

to be caused by year to year and site to site variations in climate. Short-term variations in 

temperature have been found to influence cell production or stem radius increase in many 

boreal and high-altitude coniferous species (Deslauriers et al. 2003b, Deslauriers & Morin, 2005, 

Rossi et al. 2011). Rossi et al. (2006) have also posited day length as a further important factor 

for onset of growth in coniferous species. An average annual temperature increase of 4 C 

predicted over the next century could stimulate earlier needle flush in Fraser fir, leaving trees 

vulnerable to damage by frost (Emerson et al. 2006). Earlier bud break may also increase 

vulnerability to insect attacks by aphids or spruce budworm (Fondren & McCullough 2003). At 

the same time, an increase in daily temperatures would create a longer growing season and 
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possibly increased primary and secondary growth of trees and greater fecundity (Rossi et al. 

2011). 

1.2 Research Objectives 

The studies presented here document change in forest structure and species composition 

in high-elevation southern Appalachian spruce-fir forests, quantify physiological measures in 

adult Fraser fir under multiple stresses, and generate predictions of future forest change. 

Additionally, they provide a basic understanding of adult Fraser fir physiology in natural 

stands, which was found to be absent in the literature, identify possible genetic resources in fir 

relevant to survival of chronic environmental stresses.  

Chapter 2 exploits the long-term monitoring dataset to evaluate hypotheses about forest 

change and dynamics in response to chronic environmental stress and large severe selective 

disturbance. It was hypothesized that hardwoods were increasing in high-elevation forests due 

to 1.) alterations in nutrient dynamics caused by high nitrogen deposition 2.) shifts in local 

temperatures, which should be noticeable at lower elevations 3.) exploitation of canopy gaps 

caused by insect induced fir mortality. We find no support for any of these hypotheses; data 

instead suggests alternative based on Grimes C-S-R triangle. 

Chapter 3 again uses the long-term monitoring dataset to ask whether Fraser fir forests are 

recovering from large scale mortality and what can we expect in the future for fir populations. 

We first generate size curves that describe changes in fir forest structure throughout the study 

over the last twenty years and the current state of fir populations. Then we make a stage 

structured population model using Bayesian methods to predict fir population densities 

through 2050.  

Chapter 4 quantifies physiological measurements associated with carbon fixation and 

allocation in adult Fraser fir occurring in natural stands. Then the relative importance of 

environmental factors of temperature, growing season, soil nutrient content, soil water 

availability, and acid deposition rates on fir physiology are explored. To determine possible 

future effects of climate warming, fir physiological metrics are viewed in terms of temperature 

or elevational gradients. Physiological metrics were also compared between mountain 

populations to identify possible genetic differences. 
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Appendix 

 

Figure 1.1. Fraser fir forest on Mount Leconte, early 1930’s. Photograph by the Thompson 

Brothers. http://dlc.lib.utk.edu/thompson/thompson_entry.htm 

 

 

Figure 1.2. Spruce-fir forest on Mount Sterling looking toward Mount Guyot, 1930’s. 

Photograph by Herbert Webster. http://digital.lib.utk.edu/collections/webstercollection/ 
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Figure 1.3. High-elevation spruce fir forest in Great Smoky Mountains National Park, pre-

adelgid. Photograph by Elgin Kinter. http://digital.lib.utk.edu/collections/kintnercollection/ 
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Figure 1.4. Dead and regenerating Fraser fir (Abies fraseri) on the summit of Clingmans Dome, 

2010.  Author’s photograph. 
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Figure 1.5. High-elevation spruce fir forest on the summit of Mount LeConte, 2012. Authors 

photograph. 
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Figure 1.6. Mature Fraser fir near the summit of Mount Rogers, VA, 2006.  Note wide canopy 

and high needle density. Photograph by Kevin Potter. 

http://repository.lib.ncsu.edu/ir/handle/1840.16/5794 
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Figure 1.7. Typical mature Fraser fir near the summit of Mount LeConte, 2012. Note extremely 

reduced canopy, and low needle density. Author’s photograph. 
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Chapter 2  

Evaluating Hypotheses of Species Shifts in High Elevation Southern 

Appalachian Forests Following Long Term Stress and Severe 

Disturbance  
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This chapter was submitted to Vegetation Science in July 2015 as a research article by myself, M. Joseph 

Hughes, and Jennifer Franklin.  I formulated the questions, performed the research, and was the primary 

author of the manuscript. 

Abstract 

Questions: This study examines questions relevant to previously hypothesized shifts from 

cool temperate coniferous forests toward greater hardwood composition: 1) Are changes in 

forest type occurring at lower ends of elevation gradients as a consequence of range shifts 

anticipated as a result of climate warming? 2) Are increases in hardwoods correlated with 

nitrogen deposition rates, offering support for hypothesized effects of soil nitrogen saturation in 

forest ecosystems? 3) Is increase in hardwood dominance greater in forest stands that had 

greater hardwood composition directly following a selective disturbance that caused severe 

conifer mortality?  Location: These hypotheses are addressed in the high elevation Picea rubens-

Abies fraseri forests of the Southern Appalachian mountains.  The study was carried out in 37 

long-term monitoring plots located over 5 mountains in Great Smoky Mountains National Park.   

Methods: Data from two decades of monitoring was analyzed to determine the change in 

hardwood share in both the overstory and sapling class from 1990 to 2010.  These values were 

regressed against modeled annual plot N deposition values and plot elevation to determine the 

respective influence of N deposition and climatic gradients on changes in forest type.  

Additionally, we compare changes in hardwood share in both size classes between plots which 

were mostly fir and those which were mixed species in 1990. Results: Our study finds no 

evidence that a shift in forest composition to greater dominance of northern hardwood species 

is occurring and no support for previously hypothesized changes across elevation and nitrogen 

deposition gradients.  Further, there is no statistical difference between forests which were 

mostly fir and those with a greater hardwood component at the beginning of the study.  

Findings suggest both recruitment of A. fraseri into the overstory and trade-offs in hardwood 

species with different life history strategies are occurring.  Conclusions: We conclude that neither 

long-term stress from climate and anthropogenic N saturation, nor Abies-selective disturbance 

are primaries drivers of change in tree communities in these forests. 
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2.1 Introduction 

Disturbance and environmental stress are selective pressures which can change the forest 

types that exist in a given location (Fralish & McArdle 2009; White et al. 2012). Post-disturbance 

change in species composition is a result of different evolutionary strategies that are reflected in 

plant functional traits related to resource capture, regeneration, and growth (Bernhardt-

Römermann et al. 2011; Raevel et al. 2012; Wilfahrt et al. 2014).  In the case of the Picea rubens-

Abies fraseri forests of the southern Appalachians, which occur in a small number of island-like 

populations at the highest elevations, it has been suggested that selective disturbance pressures 

may drive the forest from one dominated by the endemic Abies fraseri and Picea rubens toward 

one with a greater presence of deciduous trees (Delcourt & Delcourt 1998; Fenn et al. 1998; 

Smith & Nicholas 1998). There are a number of disturbance factors which could be responsible 

for composition shifts, and given the minimal direct human disturbance in this area, three are 

likely to be particularly important: changes in climate, high nitrogen deposition rates, and 

selective insect depredations. Though these disturbances may affect a number of different forest 

types world-wide (Iverson & Prasad 2001, Peñuelas & Boada 2003, Ellison et al. 2005, Hamann 

and Wang 2006, Beckage et al 2008, Bobbink et al 2010, Zhuang et al. 2014), the high-elevation 

forests of the Southern Appalachian Mountains are distinctively positioned to examine potential 

effects on shifts in forest type from these three disturbances.    

The Southern Appalachian spruce-fir forests represent the southern end of the spruce-fir 

forest type, which extends northward and forms the Canadian boreal forest.  As such, they may 

be particularly vulnerable to climate warming.  Temperature shifts associated with climate 

warming are hypothesized to shift optimal habitat for A. fraseri toward higher elevations or 

more northern latitudes (Solomon 1986; Bugmann & Solomon 1995; Delcourt & Delcourt 1998). 

A 3  C increase in mean July temperatures could raise the lower bound of A. fraseri habitat by 

480 m in elevation or about 2.8  northward in latitude (about 310.8 km) by the end of the 

century (Delcourt & Delcourt 1998). Conservative estimates for climate shifts in the next 70 

years predict a 3 C average increase in annual temperatures in the Southeastern US (Karl et al. 

2009). Greater changes may mean local extirpation or extinction of climatically-limited high-

elevation species. In fact, climate warming is already underway; from 1970-2008 the mean 

annual temperature in the southeastern U.S. has increased 0.9  C (Karl et al. 2009). Climate 

envelope models based on temperature, precipitation, topography and growing season for A. 
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fraseri predict a niche contraction over the next forty years, which will then stabilize by the end 

of the century (Potter et al. 2010). This contraction may reduce P. rubens-A. fraseri forest 

coverage at the lower bound of its elevation range, and this niche may then be filled by existing 

and adjacent species.  

Nitrogen deposition in these high elevation forests is also hypothesized to result in a shift 

in species composition (Aber et al. 1989; McNulty et al. 1996; Fenn et al. 1998). Southern 

Appalachian P. rubens-A. fraseri forests are nitrogen saturated; total deposition levels have been 

measured at about 30 kg ∙ ha-1 ∙ yr-1 (Johnson et al. 1991; Lovett & Lindberg 1993, Weathers et al. 

2006). However, nitrogen deposition effects on tree communities, especially with regard to 

different life history strategies, are still poorly understood (Wilfahrt et al. 2014). Chronically 

elevated N deposition in forest communities is predicted to cause a dramatic increase in the 

availability of NO3- accompanied by a change in N dynamics toward a rapid movement of NO3- 

within forest soils (Aber et al. 1989; Stoddard 1994). Sustained N saturation is also hypothesized 

to lead to declines in net primary productivity (Aber et al. 1989; Fenn et al. 1998). Increased N 

mobility may favor certain plant species that are able to quickly use available N to generate 

biomass. Preferential acquisition and use of NO3- vs. NH4+ differs between plant species and 

across ecological succession, with species characteristic of late-successional habitats and/or 

those on strongly acidic soils having been shown to have strong preferences for the NH4+ form 

(Zak & Pregitzer 1990; Lavoie et al. 1992; Kronzucker et al. 1997; Ste-marie & Pare 1999). 

Continued soil nitrogen saturation of a decade or more has been shown to cause imbalances in 

foliar nutrients and may contribute to successional changes from a slow growing and slow N-

cycling coniferous forest, to a fast N-cycling and fast growing deciduous forest (McNulty et al. 

1996; Fenn et al. 1998; Barker et al. 2002; McNulty et al. 2005). 

Finally, a third recent major disturbance to high-elevation forests is the creation of canopy 

gaps by widespread mortality of overstory A. fraseri (DeSelm & Boner 1984; Smith & Nicholas 

1998). Depredation by an invasive insect, Adelges piceae (Hollingsworth & Hain 1991), killed an 

estimated 91% of mature A. fraseri in the overstory during the height of the infestation in the 

1970’s and 80’s (Dull et al. 1988). Under its natural disturbance regime, Fraser fir is a shade-

tolerant slow-growing species which normally exhibits advanced recruitment beneath a closed 

canopy (Oosting & Billings 1951). With the decimation of mature fir populations, this 

recruitment pattern may have been broken, allowing species with intermediate shade tolerance 
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or shade intolerance to become established. Forest stands with a greater mix of species prior to 

disturbance may have had greater propagule pressure from surviving mature hardwoods, 

while stands in which A. fraseri was dominant had greater resources become available when the 

overstory canopy died. The presence of hardwood seed in the seed bank and arriving through 

wind dispersal may be greater at the lower end of the elevation range closer to the ecotone with 

the hardwood forest. 

The two broad species groups of interest have different life-history tradeoffs in carbon 

allocation strategies and plant functional traits (Reich et al. 1998; Landhäusser & Lieffers 2001). 

Many conifers are slow-growing and take longer to mature than deciduous trees; their strategy 

is one of stress tolerance, prioritizing carbon expenditure for maintenance and persistence on 

the landscape. In contrast, the most common deciduous trees that occur in high-elevation 

forests (Sorbus americana, Betula alleghaniensis, Prunus pensylvanica, and Acer spicatum) have rapid 

growth and maturity, indicating a prioritization of carbon toward growth and reproduction 

(Grime 2001). We expect these two strategies to provide different advantages under different 

environmental conditions and disturbance agents and intensities. Conifers like P. rubens and A. 

fraseri have long-lived tissues and low productivity which allows for resistance where growth is 

limited by adverse conditions like low light availability, short growing seasons, or low rates of 

mineral nutrient supply, but this strategy does not allow for quick reproduction after a major 

disturbance like fires or insect outbreaks. Hardwoods, by contrast, may fare better in these post-

disturbance scenarios where rapid resource capture and the proliferation of offspring are 

successful strategies.  

We analyzed data from two decades of monitoring to examine possible changes in 

composition of high elevation forests to a type more dominated by hardwoods. We evaluated 

changes in forest composition to answer the following specific questions: 1) Are changes in 

forest type occurring at lower ends of elevation gradients as a consequence of range shifts 

anticipated as a result of climate warming? 2) Are increases in hardwoods correlated with 

nitrogen deposition rates, offering support for hypothesized effects of soil nitrogen saturation in 

high-elevation ecosystems? 3) Lastly, is increase in hardwood dominance greater in forest 

stands which had greater hardwood composition in 1990 after experiencing high overstory A. 

fraseri mortality, and does this relationship differ by elevation? 
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2.2 Methods 

2.2.1 Study Area 

The study was carried out in the Great Smoky Mountains National Park (GSMNP), which 

contains 74% of the nearly 36,500 ha of extant P. rubens-A. fraseri forests (Dull et al. 1988). Five 

mountains, encompassing nearly the entire A. fraseri range in the GSMNP, were chosen for 

study areas in 1990: Mount Sterling, Mount Guyot, Mount LeConte, Mount Collins and 

Clingmans Dome (Figure 2.1). Study area elevations range from 1,722m on Mount Sterling to 

1,999m on Mount LeConte. 

 

Figure 2.1. Research plot locations in Great Smoky Mountains National Park. Lightly shaded 

areas show park boundaries, while darkly shaded areas show Picea rubens-Abies fraseri forest 

cover within the park. There are 37 plots scattered over the 5 mountains indicated with a star. 

Plots measure 20 m x 20 m, are situated on different aspects, and range in elevation from 1721.7 

m on Mount Sterling to 1999.3 m on Mount LeConte. 
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2.2.2 Data Collection 

Thirty-seven long-term monitoring plots were established on these mountains in 1990 by 

National Park Service (NPS) as a replicated series of stratified plots with two replicates of four 

stand types on each site. These four stand types were based on both the intensity of Fraser fir 

mortality and dominance in the overstory at the time of plot establishment. These initial stand 

conditions provide a way to examine the effect of an initial condition on changes in forest 

species composition (Smith & Nicholas 1998; Smith & Nicholas 2000; Mancusi 2004). They are 

based on basal area measurements at the time of plot establishment: pure live fir (≥65% 

overstory of fir, ≥65% of fir living), pure dead fir (≥65% overstory of fir, ≥65% of fir dead), mixed 

live fir (≤35% overstory of fir, 65% of fir living), and mixed dead fir (≤35% overstory of fir, ≥65% 

of fir dead). Two plots on Mount Sterling and one plot on Mount Guyot were unable to be 

replicated due to a lack of stands of the given type on the mountain. Because plots which were 

mostly live fir in 1990 have experienced increased fir mortality in the ensuing decades, the 

present study only examines differences in hardwood encroachment with respect to overstory 

composition (mixed species vs. pure/mostly fir). None of the areas have been previously logged 

or burned; plots were old-growth fir forests before the widespread mortality event (Pyle 1984). 

Plots measure 400 m2 and are situated on different aspects and elevations. 

Forest plots were measured over the summers of 1990 and 2000 by NPS staff, and 2010 by 

D. Kaylor and NPS staff. The same written protocol and data sheets were used during each data 

collection period to minimize differences in sampling between periods. All live and dead 

overstory trees (>5 cm) were counted by species, mapped, tagged, and trunk diameter 

measured at 1.37 meters. Saplings (>1.37 m tall and <5 cm DBH) were determined to species and 

tallied in twelve 2 × 2 m subplots. Subplots were placed along 3 transects each randomly located 

in one of three pre-chosen plot quarters; four subplots were measured along each transect.  

Because forests consist of a finite amount of resources shared by individuals, we use 

proportion of plot basal area as a proxy for resource competition (Opie 1968; Biging & 

Dobbertin 1996; Greene et al. 2002). Changes in overstory hardwood share between collection 

periods was calculated using basal areas between 1990 and 2000 and between 2000 and 2010; 

these were used in all analyses. Analyses using change in the share of hardwood stem count 

yielded similar results; only analysis using basal area are presented. Because resource 

competition is generally thought to be highest in the sapling size class where trees compete for 



38 

light and available nutrients (Kobe 1996; Finzi & Canham 2000), changes in sapling hardwood 

share were also examined. 

2.2.3 Overall trends 

To determine whether the overall proportion of hardwoods increased or decreased over 

the study period, average change in hardwood share from 1990 to 2010 for both the overstory 

and sapling class were calculated and assessed with Welch’s one sample, two-tailed t-test. To 

examine possible differences in advantages of different life-history strategies, we look at basal 

area of 5 most common hardwood species through the study period. Because the time since 

disturbance differs by mountain (Smith & Nicholas 1998), we compare changes in hardwood 

share between mountains using Welch's ANOVA (Welch 1951). 

2.2.4 Elevation/climate effects 

To test whether plots at lower elevations are increasing in hardwood proportion as a 

hypothesized response of climatically limited forests to changes in climate, we used ArcMap 

(10.1, ESRI) to generate plot elevation from GPS coordinates taken at plot center. The changes in 

hardwood share over the two decades of monitoring in both saplings and overstory trees were 

used in a linear regression against these plot elevations.  

2.2.5 Nitrogen Deposition 

To address questions about the influence of long-term nitrogen saturation on changes in 

forest species composition, nitrogen deposition estimates were generated using a spatially 

explicit empirical model (Weathers et al. 2006). Using 378 point measurements and 

corresponding landscape variables throughout GSMNP, Weathers and colleagues constructed a 

general linear model relating deposition index to landscape variables measured in the field in 

2000. Then, using the independent landscape variables available in GIS data layers, they created 

a GIS-relevant statistical nitrogen (N) and sulfur (S) deposition model (LandMod), which was 

validated using field data. This model provides average annual nitrogen deposition (wet + dry) 

estimates at a 30 meter spatial resolution. 

We used plot locations to generate an estimate of average annual nitrogen deposition rate 

for each plot. While the highest deposition rates are seen at high elevations and lowest rate at 

the lowest elevation plots, this relationship is not strictly linear, indicating that aspect, terrain, 
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and forest type play a large part in nitrogen deposition rates (Weathers et al. 2006). Because of 

this non-linear relationship, we analyzed the effect of nitrogen deposition separately from that 

of elevation. A linear regression was used to test the relationship between changes in hardwood 

share over the two decades of monitoring in both saplings and overstory trees and annual 

nitrogen deposition rates.  

2.2.6 Effects of Initial Conditions 

Our final question was to examine whether forests which had greater hardwood 

composition in 1990 are experiencing increases in hardwood dominance and whether this 

relationship is greater in lower elevations, which may have greater propagule pressure of 

species from the adjacent northern hardwood forest type. We use the initial stand conditions 

described at the time of plot establishment (pure fir plots vs mixed fir plots), in an ANCOVA 

with plot elevation as a covariate to test these relationships.  

All statistical testing was performed using MatLab (2014A, MathWorks, Inc.). 

 

Figure 2.2. Change in hardwood share in overstory BA (left) and sapling density (right) from 

1990-2010 in 37 long-term Picea rubens-Abies fraseri monitoring plots grouped by mountain in 

Great Smoky Mountains National Park. The central mark represents the median value, edges 

of the box are the 75th and 25th percentiles, whiskers extend to the most extreme values that 

are not outliers; outliers are defined as points that fall outside of +/- 1.5 times the 

interquartile range. 
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2.3 Results 

2.3.1 Overall Trends 

Plots in the high-elevation forests in Great Smoky Mountains National Park showed an 

average 5% decline (SEM= 3.32) in the overstory hardwood share over the last two decades 

(Welch’s t-test, p=0.057). The changes in individual plots ranged from a 79% decrease to a 38% 

increase (Figure 2.2). In 43% of plots, hardwoods declined over the study period while 46% of 

plots showed some increase; the remaining 11%, representing 4 plots, were pure coniferous 

forests in both measurement periods. There is no statistical difference between mountains with 

respect to the average change in the overstory hardwood share, though plots on Mount Guyot 

exhibit the widest variance and account for both the greatest increases and decreases in 

hardwood share of overstory trees (Figure 2.2).  

Examining changes in the hardwood share of the sapling class, overall the plots showed a 

significant decline in hardwood composition of saplings, with an average decline of 9% over all 

plots (SEM = 4.94) (Welch’s t-test, p=0.035).Values for individual plots ranged from 100% 

decline in hardwood saplings to a 21% increase in the proportion of hardwood saplings. Of all 

forest plots sampled, 34% showed an increase in hardwoods in the sapling class while 32% 

showed declining ratios. Again, we find no statistical difference between mountains with 

respect to the average change in the hardwood share in the sapling class (Figure 2.2). 

While total hardwood basal area throughout the study area remained relatively constant 

over the two decade period, overstory co-dominant P. rubens have declined slightly and A. 

fraseri basal area increased dramatically (Figure 2.3).  

The most common hardwood species in the overstory of plots are shown in Figure 2.4. 

Seven species occurring within the study plots had less than 10 individuals observed in total 

over all monitoring plots, so are not represented. Over the sampling period we see a decline in 

Prunus pensylvanica and Fagus grandifolia, while Betula alleghaniensis and Sorbus americana 

increase slightly across all plots. Acer spicatum and Quercus rubra, which both represent smaller 

portions of the forest community, double in total basal area over all plots during the study 

period.  
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Figure 2.3. Total combined forest basal area in 37 long-term Picea rubens-Abies fraseri monitoring 

plots in Great Smoky Mountains National Park in 1990, 2000, & 2010. Proportion of Abies fraseri, 

Picea rubens, and mixed hardwoods is shown. 

 

 

Figure 2.4. Total combined forest basal area in 37 long-term Picea rubens-Abies fraseri monitoring 

plots in Great Smoky Mountains National Park in 1990, 2000, & 2010. Proportion of Sorbus 

americana, Quercus rubra, Prunus pensylvanica, Fagus grandifolia, Betula alleghaniensis and Acer 

spicatum is shown. Species with >10 individuals total are omitted. 
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Figure 2.5. Change in hardwood share in overstory BA (left) and sapling density (right) from 

1990-2010 regressed against elevation (m) in 37 long-term Picea rubens-Abies fraseri monitoring 

plots in Great Smoky Mountains National Park. Symbols represent plots on Clingman’s Dome 

(CD – open circle), Mount LeConte (LC – open square), Mount Collins (MC – closed circle), 

Mount Guyot (MG – cross), and Mount Sterling (MS – open diamond).  

 

 

 

 

Figure 2.6: Change in hardwood share in overstory BA (left) and sapling density (right) from 

1990-2010 regressed against N deposition estimates (kg/yr) from the Weathers et al. 2006 model 

in 37 long-term Picea rubens-Abies fraseri monitoring plots in Great Smoky Mountains National 

Park. Symbols represent plots on Clingman’s Dome (CD – open circle), Mount LeConte (LC – 

open square), Mount Collins (MC – closed circle), Mount Guyot (MG – cross), and Mount 

Sterling (MS – open diamond). 
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2.3.2 Effects of elevation 

The changes in overstory hardwood share in individual plots ranged from a 79% decrease 

to a 38% increase, but the majority of plots showed less than a 20% change. Changes in 

hardwood share of saplings were comparable. Across an elevational rise of 300 m, regressions 

show no significant relationships between this hardwood change and elevation in either size 

class. Even the lowest elevation plots on each mountain do not exhibit increases in hardwood 

share over the study period (Figure 2.5).  

2.3.3 Effects of Nitrogen deposition 

Total annual N deposition estimates ranged from 19.2 to 38.2 kg ∙ yr-1. However, there is 

no statistically significant relationship between changes in hardwood share in either the 

overstory or sapling size classes with respect to the estimated annual N deposition amount 

(Figure 2.6). Some plots which experience N deposition in excess of 30 kg ∙ yr-1 show large 

declines in hardwood saplings over the twenty years of study. 

  

 

Figure 2.7. ANCOVA showing effect of elevation on change in hardwood share in overstory BA 

(left) and sapling density (right) from 1990-2010 in 37 long-term Picea rubens-Abies fraseri 

monitoring plots in Great Smoky Mountains National Park. Symbols represent initial stand 

conditions in 1990 at the time of plot establishment: plots with overstory composition greater 

than 65% fir in 1990 (“pure”- open circles) and those that were less 35% fir (“mixed” - asterisk). 

Elevation regressions were non-significant. 
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2.3.4 Effects of initial stand composition 

Finally, we compared change in hardwood share between plots which were A. fraseri 

dominated overstory in 1990 with those that were dominated by other species in 1990. Because 

of climatic differences and the increase in hardwood presence at lower elevations, we first 

examine the significance of elevation as a co-variate in an ANCOVA. Model results indicate that 

this factor is not statistically significant in either size class (Figure 2.7). Changes in hardwood 

share over the study period between initial stand conditions are also not significantly different 

from each other in either size class (Figure 2.8). 

2.4 Discussion 

Our study finds no significant evidence to support hypothesized shifts in composition of 

high elevation forests from P. rubens and A. fraseri to hardwood species over the last two 

decades. Our data showing the persistence of  A. fraseri corroborates results of other studies; the 

 

Figure 2.8. Change in hardwood share in overstory BA (left) and sapling density right) from 

1990-2010 in 37 long-term Picea rubens-Abies fraseri monitoring plots in Great Smoky Mountains 

National Park by stand composition at the time of establishment in 1990. “Pure” designates 

plots with overstory composition greater than 65% fir in 1990, while “mixed” indicates those 

that were less 35% fir. The central mark represents the median value, edges of the box are the 

75th and 25th percentiles, whiskers extend to the most extreme values that are not an outlier, 

outliers are defined as points that fall outside of +/- 1.5 times the interquartile range. 
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thirty to fifty year recovery of A. fraseri canopy has been noted at other locations within the 

species range (Lusk et al. 2010; McManamay et al. 2011; White et al. 2012). 

High elevation P. rubens-A. fraseri forests in the southern Appalachians receive much 

higher nitrogen amounts annually than is typical in related boreal forest communities (Johnson 

et al. 1991; Nodvin et al. 1995; Gundale et al. 2011). While temperate forests are often considered 

to be N-limited (Vitousek & Howarth 1991), the montane forests in the GSMNP have been 

considered N saturated since the late 1990's (Fenn et al. 1998). It is important to note that 

Weathers et al. (2006) state that their model underestimates deposition rates at the highest 

elevations, so that actual values may be higher than what we have used for analysis. In 

addition, though increasing regulation has been put in place on air quality standards in the 

southeastern US, according to a briefing statement from the National Park Service, substantial 

decreases in NOx or NH4 deposition in the GSMNP have not been observed (personal 

communication Jim Renfro). Research on nitrogen deposition effects on tree communities in the 

southeastern US is lacking, but studies have shown that nitrogen deposition levels in the 

eastern US have exceeded critical loads for long enough to have substantial impacts on 

herbaceous plant communities in much of the region (Gilliam 2006; Clark et al. 2013) . 

The lack of a significant effect of N deposition rates on forest composition changes in the 

present study are likely driven by three factors. First, it is likely that A. fraseri regeneration is 

being stimulated by nitrogen addition through atmospheric deposition. It has been shown that 

A. fraseri seedlings are able to utilize both NO3- and NH4+ for growth (Rothstein & Cregg 2005). 

Contrary to previous findings about N preferences in shade-tolerant late successional species 

under acidic soils, Rothstein & Cregg (2005) found that A. fraseri seedlings performed better in 

terms of growth and photosynthetic rate with greater NO3-, which is the form increased under 

deposition. It may be that conifer seedling survival and persistence is greater in the presence of 

atmospheric N additions. In a study on the effects of nitrogen addition on understory tree 

regeneration in Harvard Forest, Catovsky & Bazzaz (2002) found that the coniferous Tsuga 

canadensis was the only species to show a positive response in seedling survival to nitrogen 

addition, and this response was significant over many growing seasons.  

Secondly, atmospheric N addition may not provide as great a benefit to hardwood trees as 

previously hypothesized. In a study of long-term N addition effects on 6 species of hardwood 

trees in the Catskill Mountains (Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Tsuga 
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canadensis, and Quercus rubra), no significant effects of 6 years of elevated N application were 

observed on woody biomass increment or above-ground net primary production for any 

species though some species showed significant increases in foliar N (Lovett et al. 2013). In 

addition, in the previously mentioned study on understory tree regeneration in Harvard Forest, 

nitrogen addition had no significant effects on survivability or growth of understory B. 

alleghaniensis, while Acer rubrum and Acer saccharum both exhibited nitrogen-induced declines in 

survival, particularly in early life stages (Catovsky & Bazzaz 2002).  

Finally, a greater proportion of N addition could be used by understory herbaceous plants 

and soil ecosystems than that acquired by woody species. Many of the plots sampled contain 

abundant understory cover of the Rubus sp. and Dryopteris sp. which are associated with canopy 

disturbance in the P. rubens-A. fraseri forest (Crandall 1958). Related members of both of these 

genera have been found to be demonstrably nitrophilic (Falkengren-Grerup 1989; Rodenkirchen 

1992; Falkengren-Grerup & Schöttelndreier 2004), so it is possible that these plants are 

responsible for significant sequestration of N capital into their biomass. A long-term nitrogen 

addition study in the Catskills found N treatment caused a significant increase in C stock, N 

stock and C:N ratio in the forest floor, with the largest effect in Tsuga canadensis plots, 

suggesting that excess N may cause accumulations of C in the forest floor in coniferous forests 

(Lovett et al. 2013). 

Because of local weather patterns, the highest elevation plots and those with a northern or 

western aspect are generally those which have greater nitrogen deposition rates (Lovett & 

Kinsman 1990). Climate at these sites could be a limitation to hardwood establishment and 

dominance; important climatic factors at high elevations include shorter growing seasons, 

colder temperatures, and more ice, snow and wind damage and these effects are more 

pronounced on northern and western aspects. These climatic limitations may be mitigating 

benefits to species which have faster growing or nitrogen cycling and favoring stress-tolerant 

species like P. rubens and A. fraseri which are adapted to such conditions. 

Delcourt & Delcourt (1998) predicted the elimination of southern Appalachian P. rubens-A. 

fraseri forest with a global mean temperature increase of 3  C caused by greenhouse-effect 

warming. This warming is already underway; Karl et al. (2009) report that during 1970-2008 the 

mean annual temperature in the southeastern US has increased 0.9  C and mean precipitation 

has decreased 7.7 percent. Our data show no evidence of elevational range shifts from P. rubens-
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A. fraseri forest type to hardwood forest type in Great Smoky Mountains National Park. 

However, potential climate change impacts on the P. rubens-A. fraseri forests are not well 

understood. If the ecotone between forest types is shifting to higher elevations as a result of 

changes in climate, longer term monitoring and a more thorough investigation incorporating 

fine-scale climate data and comprehensive examination of forest cover is needed. It may be that 

in GSMNP's temperate forests, local topography and high soil moisture may buffer regional 

warming temperatures (Fridley 2009). Recent studies have shown a significant contribution of 

cloud immersion to A. fraseri water relations (Reinhardt & Smith 2008; Berry & Smith 2012; 

Berry & Smith 2013); cloud cover may be an important mitigating factor with respect to the 

effect of warming temperatures on P. rubens-A. fraseri forests. Additionally, Hagen (2006) 

reported varying response to increased temperatures among P. rubens of differing seed source, 

so certain populations or genotypes of conifers may exhibit physiological acclimation to 

changing temperature. Any of these factors, or a combination of them, may explain the lack of 

forest species shifts with respect to elevation in our study. 

Lastly, our analysis finds no significant differences between stands which were mostly fir 

and those that were predominantly hardwood in 1990. While we might surmise propagule 

pressure would differ between different species in different stand types, seed size and dispersal 

mechanisms play an important role in post-disturbance forest plant dispersal and growth 

(Marks 1974; Grime 2001; Wilfahrt et al. 2014). Time since disturbance (in this case, that 

associated with Adelges piceae infestation) may be an important consideration in tracking 

successional changes in hardwood forests as understory firs are recruited into the overstory. 

Because understory dynamics are predictive of future overstory composition (Oliver & Larson 

1996) and our data show no increase in the hardwood share of the sapling class, we also predict 

no significant hardwood increases in the overstory in the short term.  

In addition, while we do not see increases in percent composition of hardwood vs. 

softwood or the number of individual hardwood trees, data suggests changes in proportions of 

hardwood species. Grime's Universal C-S-R theory predicts that a major disturbance of a 

community dominated by stress tolerant species will be followed by an increase in ruderal plant 

species, which will decline as forest succession processes continue. This decline will be driven 

by increases in competitive and competitive-stress tolerant species (Grime 2001).  
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In the specific case of the high-elevation forests of the southern Appalachians, the 

mortality of 90% of mature A. fraseri, a stress tolerant-competitor species, caused an abundance 

of space and resources for colonization. The vegetation recolonization sequence of species 

abundance through time is much like that described by Marks (1974) in his study of post-

disturbance changes in northern hardwood forests. He describes the quick response of P. 

pensylvanica and B. alleghaniensis from the seed bank to available resources following canopy 

disturbance, with. populations of B. alleghaniensis stabilizing while after 25 years, populations of 

P. pensylvanica declined dramatically to be replaced with the late successional Fagus grandifolia.  

We found that Prunus pensylvanica, a ruderal species, quickly becomes abundant in the 

overstory and provides shade for the subsequent establishment of Acer species which are 

generally classed as ruderal competitors (Marks 1974; Grime 2001). Betula alleghaniensis, as a 

competitive strategist, also becomes abundant fairly early and populations stabilize within the 

forest (Moore et al. 2008). Later increases in overstory abundance in competitive-stress tolerant 

species, like Sorbus americana, Quercus rubra and A. fraseri, begin to replace trees with more 

ruderal strategies. See Wonkka et al. (2013) for species classification of life history strategies. 

However, we note overall declines in F. grandifolia, generally thought to be stress tolerant, 

possibly a result of Beech bark disease which has been responsible for widespread F. grandifolia 

mortality throughout much of the region (Wiggins et al. 2004; McCann & MacDonald 2012).    

2.5 Conclusions 

To evaluate previous hypotheses of shifts in forest types associated with selective long 

term stress and disturbance, this study analyzes data from 20 years of forest monitoring in high 

elevation forests in the Great Smoky Mountains National Park. We find no evidence to suggest 

shifts in forest composition to greater dominance of hardwood species either from long-term N 

saturation or climate change as reflected in elevational gradients. Additionally, we find no 

statistical difference between forests which were mostly fir and those which had a greater 

hardwood abundance at the time of canopy disturbance in terms of change in hardwood share. 

Instead data suggests both recruitment of A. fraseri into the overstory and trade-offs in 

hardwood species with different life history strategies.  
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Recovery trends and predictions of Fraser fir dynamics in the Southern 

Appalachian Mountains 
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Abstract 

The southern Appalachian spruce–fir forests are relic forests which exist only in seven 

montane regions in North Carolina, Tennessee, and Virginia above ca. 1,500 m elevation, and 

are home to the endemic Fraser fir (Abies fraseri). Due to widespread insect-caused mortality 

from the invasive balsam wooly adelgid (Adelges piceae) as well as possible impacts from climate 

change and atmospheric pollution, the future of Fraser fir populations remains uncertain. Long-

term monitoring programs have been established in this forest type since the 1980's, and here 

we present predictive population models using the inventory data for Fraser fir in Great Smoky 

Mountains National Park, which contains 74% of extant Fraser fir forests. Using two kinds of 

population data (understory density counts and overstory census data) we model Fraser fir 

populations on five different mountaintops as a stage-structured matrix with transition 

parameters estimated using hierarchical Bayesian inference. At Clingmans Dome, where mature 

overstory fir has persisted throughout the last two decades, Fraser fir populations are predicted 

to increase, reaching 3,800 trees ≥ 5cm dbh. We also predict robust Fraser fir populations on 

Mount LeConte for at least the next several decades. In contrast to these sites, our model 

predicts that average overstory fir densities on Mount Collins and Mt Guyot will slowly return 

to the 1990 level by mid-century. Further, our model predicts the fir population to decline at 

Mount Sterling, which is at the lower bound of the species elevation range. Fraser fir densities 

are already low at this site, suggesting this population is vulnerable to local extirpation, and we 

suggest management strategies to address this.  

3.1 Introduction 

The southern Appalachian spruce-fir forest is a relict ecosystem found in only six 

mountain-top populations ranging from Mt. Rogers in southwestern Virginia to the Great 

Smoky Mountains of eastern Tennessee and western North Carolina (Ramseur 1960; Whittaker 

1956). Currently occupying only about 26 kha (Smith & Nicholas 2000), the red spruce (Picea 

rubens)-Fraser fir (Abies fraseri) forests of the Southern Appalachians are currently listed as one 

of the most endangered ecosystems in the United States (Christensen et al. 1996; Noss et al. 

1995). These forests are noted for their relatively high level of endemic species, especially within 

the pure fir stands found on the highest peaks (White 1984).  
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The current geographic distribution of Fraser fir covers about half of what it once did in 

the late nineteenth century (Dull et al. 1988). Logging and failed regeneration caused by site 

degradation dramatically reduced the range of Southern Appalachian spruce- fir in the early 

1900s (Pyle & Schafale 1988; Pyle 1984). Since the late 1950s, Fraser fir has experienced 67% 

mortality of adult trees throughout the species’ range, with up to 91% mortality in the Great 

Smoky Mountains National Park (Dull et al. 1988; Eagar 1984). Impacts potentially contributing 

to this decline are numerous. One well-known factor is depredation from the invasive insect 

Adelges piceae, the balsam wooly adelgid (BWA). The insect feeds on the phloem of adult Fraser 

fir and causes reduction in water and sap conductance, which generally results in tree mortality 

in 2-5 years (Hollingsworth & Hain 1991). Additionally, acidic deposition associated with air 

pollution is high in the montane cloud forests of the southern Appalachians (Cai et al. 2011; 

Johnson et al. 1991; Nodvin et al. 1995), and has been linked to increased foliar injury and early 

senescence, reduction in leaf chlorophyll content, decreased cold hardiness, and alterations in 

soil aluminum and nutrient availability (Borer et al. 2005; Eagar & Adams 1992; Jacobson et al. 

1990; McLaughlin et al. 1990; McLaughlin & Wimmer 1999). Alterations to carbon balance and 

foliar respiration associated with changing climate are another possible reason for reduced 

forest health (Alexander et al. 1995; Gunderson 2000; Tjoelker et al. 1999). Finally, human use of 

these areas may impact forest regeneration directly through trampling of seedlings or cutting 

down saplings, or indirectly through the removal of coarse woody debris or by influencing seed 

dispersal.  

In the face of these relatively rapid changes, the future of Fraser fir populations remains 

uncertain. The US Forest Service’s 1988 regional assessment of spruce fir forests using aerial 

photography was the last systematic inventory to document the total extent of high elevation 

forests in the southern Appalachians, but is limited to presence/absence data for this forest type 

at a single point in time. Several descriptive studies were done prior to the arrival of BWA 

(Oosting & Billings 1951; Ramseur 1960; Whittaker 1956), and other studies document changes 

occurring during the infestation’s initial outbreak (Busing et al. 1993; Busing et al. 1988; Dull et 

al. 1988). 

Long-term monitoring programs were established during the 1980's throughout the range 

of Fraser fir. A number of studies have detailed forest dynamics over the past few decades at 

these sites (Jenkins 2003; Lusk et al. 2010; Mancusi 2004; McManamay et al. 2011; Moore et al. 
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2008), and generally describe juvenile and understory forests reaching the stem exclusion phase 

of stand development, indicating recovery from disturbance is underway. In addition, Dale et 

al. (1991) generated paired leslie matrix models for both Fraser fir and BWA to perform scenario 

analysis at different elevations. This study concluded that oscillations in BWA and fir 

populations with a cyclical pattern of mortality and recovery were likely but did not detail the 

length of this cycle. Additionally, because temperature ranges and amplitude affected the 

survival and fecundity of BWA, these factors had an indirect, but significant impact on future 

Fraser fir populations. Finally, some predictive climate envelope modeling has also been 

performed on Fraser fir based on current species distributions (Potter et al. 2005) and suggests 

suitable habitat will shrink by 2050 and then expand again by the end of the century. However, 

there are no predictive population models using the inventory data collected from monitoring 

efforts. By locating specific populations that are in decline, predictive population models could 

benefit management and conservation of this endemic species by allowing managers to 

concentrate their efforts on these key populations.  

In this paper, we describe past and current Fraser fir forest structure on five peaks in the 

Great Smoky Mountains National Park. Additionally, we present the first predictive population 

models for Fraser fir in the Park: a set of stage-structured matrix models fit using Bayesian 

methods. We then use these models to generate predictions of Fraser fir stand density in ten 

year increments until 2050, as well as error estimates around those predictions. 

3.2 Methods 

3.2.1 Study Area 

Fir populations were monitored by the National Park Service in five high-elevation 

mountaintop sites in the Great Smoky Mountains National Park (GSMNP). These five 

mountains encompass nearly the entire Fraser fir range in GSMNP: Mount Sterling, Mount 

Guyot, Mount LeConte, Mount Collins and Clingmans Dome (Figure 3.1). Thirty-seven long-

term monitoring plots were established at these sites in 1990 with roughly eight plots on each 

mountain (exceptions being six plots on Mount Sterling and seven on Mount Guyot). Plots 

measure 400 m2 and are situated at different aspects and elevations, ranging from 1,722 m on 

Mount Sterling to 1,999 m on Mount LeConte. 
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3.2.2 Data 

Forest plots were measured over the summers of 1990 and 2000 by National Park Service 

(NPS) staff, and 2010 by D. Kaylor and NPS staff. Species and diameter at breast height (dbh) 

were recorded for all adult trees (dbh > 5 cm) in each plot, which are labeled with a unique 

identifier. Total counts by species of seedlings (height < 1.37 m) and saplings (height > 1.37 m, 

dbh < 5 cm) were also recorded within 12 1×1 m subplots and 12 2x2 m subplots, respectively. 

3.2.3 Past and Current Population Size Distributions 

Data collected in 1990, 2000, and 2010 were used to generate both current live fir basal area 

as well as past and current size class distributions. Seedlings were approximated as all having a 

 

Figure 3.1: Map of study area within Great Smoky Mountains National Park. Light grey 

shading denotes park boundary. Dark grey shading represents red spruce-Fraser fir forest cover 

provided as a GIS layer from the National Park Service. Stars denote the five mountains where 

monitoring plots are located. 
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size = 0.5 cm (from an estimated range of 0 – 1 cm), and saplings as having a size of 3.0 cm 

(estimated range of 1 – 5 cm). Then, a kernel density estimator was applied to adult size data to 

estimate counts of adult trees in 1 cm increments. Error was estimated by means of a leave-one-

out (jackknife) cross-validation over the plots for each mountain. Because seedlings are 

substantially more dense within plots than large overstory trees, data is reported on a log scale. 

3.2.4 Population Model 

Population growth of Fraser fir on each mountaintop was modeled by a stage-structured 

matrix with transition parameters estimated using hierarchical Bayesian inference (Figure 3.2). 

The fir population is divided into four stage classes: seedlings (S), saplings/juveniles (J), non-

reproductive adults (A), reproductive adults (R) defined as adult trees with dbh > 15 cm, plus 

an additional 'stage' for dead stems (D) to account for the fate of all individuals over the study 

period. Over the two ten-year periods, individuals transitioned between stages. In the case of 

adult trees, these individual transitions were documented; in the case of saplings and juveniles, 

these transitions must be inferred from the aggregate count data. These stages, transitions, and 

recruitment rates define a matrix population model (Caswell 2001; Ellner & Guckenheimer 

2006). 

 

Figure 3.2. Model schematic showing stages for seedlings (S), saplings (juveniles, J), non-

reproductive adults (A), and reproductive adults (R). Between 10-year iterations, individuals 

may remain in their current stage (black arrows), transition to an older stage (red arrows), or die 

(gray arrows); additionally, reproductive adults may generate new individuals in the seedling 

or, less frequently, juvenile class (blue arrows). 
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In the case when all transitions and recruitment events are recorded, those rates can be 

straightforwardly estimated from observed proportions. However, when only counts are 

available, those rates are not fully determined and the same data can be observed from different 

vital rates (Caswell 2001; Wood 1994). When given multiple observations with the goal of 

determining vital rates over all samples, multiple regression techniques (Lee et al. 1977; 

Lefkovitch 1965) and iterative methods (Lawless & McLeish 1984; MacRae 1977) are well 

established. However, these techniques provide point-estimates only, and combining different 

types of data into the same model is challenging. A Bayesian approach can estimate model 

parameters using all of the available data. Additionally, it can provide uncertainty estimates 

around those parameters that can be propagated to functions of those parameters, such as 

future population estimates (Gross et al. 2002).  

Given that individuals may transition from stage to stage between observations, let 𝑚𝑖𝑗 

represent the number of individuals that were in stage j at the beginning of a ten-year period 

and were then in stage i at the end of that period, including the cases where those individuals 

remain in the same stage (i.e. i=j). These values are multinomially distributed (Welton & Ades 

2005) with parameters equal to the conditional probability of an individual ending in stage i 

given it started in stage j: 

 𝑚𝑆𝑗, 𝑚𝐽𝑗 , 𝑚𝐴𝑗 , 𝑚𝑅𝑗, 𝑚𝐷𝑗] ~ Multinomial(𝑝𝑆𝑗, 𝑝𝐽𝑗 , 𝑝𝐴𝑗 , 𝑝𝑅𝑗, 𝑝𝐷𝑗)  

It is these probabilities, 𝑝𝑖𝑗, that define the matrix model. They are themselves given an 

uninformative prior distribution: 

 [𝑝𝑆𝑗, 𝑝𝐽𝑗 , 𝑝𝐴𝑗 , 𝑝𝑅𝑗 , 𝑝𝐷𝑗] ~ Dirichlet(1,1,1,1,1) 

The Dirichlet is the conjugate prior to the multinomial, and ensures that: 

 𝑝𝑖𝑗 ∈ [0,1] 

 ∑ 𝑝_𝑖𝑗𝑖  = 1 

These probabilities are combined with (unknown) reproductive rates, 𝑏𝑖𝑗, into a matrix, G, 

that defines a linear model of population growth: 
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 G =

[
 
 
 
 
 
𝑝𝑆𝑆 0 0 𝑏𝑆𝑅 0
𝑝𝐽𝑆 𝑝𝐽𝐽 0 𝑏𝐽𝑅 0

𝑝𝐴𝑆 𝑝𝐴𝐽 𝑝𝐴𝐴 0 0

 0 𝑝𝑅𝐽 𝑝𝑅𝐴 𝑝𝑅𝑅 0

𝑝𝐷𝑆 𝑝𝐷𝐽 𝑝𝐷𝐴 𝑝𝐷𝑅 1]
 
 
 
 
 

 

The 'dead' stage is absorbing; individuals cannot transition into a different stage after dying. 

Reproductive adults can generate new seedlings and juveniles at rates equal to 𝑏𝑆𝑅 and 𝑏𝐽𝑅, 

respectively. These reproductive rates must be non-negative but are not constrained in 

magnitude. Finally, some theoretically possible transitions in the model that are ecologically 

infeasible, such as seedlings growing into reproductive adults in ten years, are defined to be 

zero. 

Multiplying G with a vector representing the number of individuals in a population 

within each stage at a given time, v𝑡 generates an estimate of the stage structure at the end of a 

ten-year period, v𝑡+1: 

 v𝑡+1 = G v𝑡 + 𝜖 

where ϵ is a vector of normally-distributed errors such that: 

 𝜖𝑖~ N(0, 𝜏𝑖) 

 𝜏𝑖 ~ Gamma(1, 0.1) 

and where 𝜏𝑖 is a precision for stage i, each of which is given a minimally informative prior 

distribution. 

Because individual adult trees were tracked through time, the number of individuals that 

remain within the non-reproductive adult class (𝑚𝐴𝐴), remain within the reproductive class 

(𝑚𝑅𝑅), transition to reproductive adults from the non-reproductive class (𝑚𝑅𝐴), or transition 

from either adult stage to the dead stage (𝑚𝐷𝐴, 𝑚𝐷𝑅) are known for each plot. Therefore, the 

distribution of the associated transition probabilities can be estimated directly from the 

multinomial distribution. However, distributions for reproductive rates and the transition 

proportions for seedlings and juveniles must be estimated indirectly from the linear model 

using the aggregate count data. The use of the Bayesian modeling approach allows these data 

types to be seamlessly combined to estimate distributions of all probabilities simultaneously. 
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The total number of individuals in each stage in 1990, 2000, and 2010 were tallied for each 

plot, as were the number of known transitions. Plots on the same mountain were considered 

together to estimate shared parameters. Bayesian hierarchical modeling was used to sample 

from those parameter distributions using the Metropolis-Hastings algorithm (Hastings 1970) as 

implemented in OpenBUGS (Lunn et al. 2009). The algorithm was allowed to run for 100,000 

burn-in iterations in order to converge; samples were taken over 20,000 additional iterations. 

Convergence was confirmed by scale reduction factors (�̂�) very near 1 (|�̂� − 1| < 0.01) for each 

monitored parameter (Gelman & Rubin 1992). For each of the five sets of parameter 

distributions sampled, five parallel chains with initial conditions selected from over-dispersed 

distributions were aggregated for a total of 100,000 post-convergence samples. The OpenBUGS 

model specification is available as an Appendix. 

Transition matrices of the same form as G were constructed from each of the 100,000 

parameter samples drawn by OpenBUGS for each of the five mountains. Using each of these 

matrices, estimates of population structure were projected in 10-year increments from the 

observed stage-structured population totals on each mountain in 1990, 2000, and 2010. This 

provided likelihood distributions of population structure for each decade until 2050. In 

addition, by forecasting populations in 1990 and 2000 and comparing them to known counts in 

2000 and 2010, the validity of the model was visually evaluated. 

3.3  Results 

3.3.1 Past and Current Stand Structure 

Stands at Clingmans Dome, Mount LeConte and Mount Collins all show recovery or 

increases in overstory fir over the last twenty years. Currently these stands have the same 

average density of overstory fir—approximately 2,000 stems per hectare (Table 3.1; Figure 3.3). 

Fir forest recovery is particularly dramatic at Mount Collins, where overstory fir (>5 cm dbh) 

more than doubled in the last decade (Figure 4). In terms of live fir basal area, average basal 

area is highest on Mount LeConte at 27.3 (m2· ha-1) (Table 3.1). 

Fraser fir stands on Clingmans Dome show the most consistency over the last two decades 

of any of the five peaks sampled (Figure 3). Reproductive adults (>15 cm dbh) have been 

persistent over the last two decades. The forest structure currently has a fairly even mix of sizes, 
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with a number of larger reproductive trees. Consistently high numbers of seedlings are present 

in all three sampling times. The large number of 5-10 cm dbh trees sampled in 2000 declined by 

an order of magnitude by 2010, but likely is the result of these trees growing and moving to 

larger size classes, which is evidenced by an overall increase in the average number of stems per 

hectare in mature stems between these two years (Figure 3.4). 

Forest stands on LeConte, Collins and Guyot show marked ongoing disturbance, but also 

recovery of overstory Fraser fir. On Mount LeConte a marked decline in seedling density 

occurred between 1990 and 2000. While there a decline in average density of trees 8-15 cm dbh, 

this is coupled with an increase in trees of the largest size classes. On Mount Collins, mortality 

of overstory trees larger than 20 cm dbh occurred between 1990 and 2000. This is followed by 

recovery, though large trees >30 cm dbh are not currently common as at many of the other sites. 

On Mount Guyot, the density of overstory trees < 20 cm dbh doubled between 1990 and 2000, 

however, many of the largest trees on this peak died over the last decade. This trade-off means 

that the average density of overstory fir has remained relatively constant since 1990 at about 

1,000 trees per hectare.  

At Mount Sterling sites over the last two decades, we see a decline in seedlings and 

saplings by an order of magnitude. Though recruitment from the understory nearly doubled the 

average overstory fir density from 1990 to 2000, this site has the least dense coverage of 

overstory fir at about 500 trees per hectare. Our data also show very little increase in larger, 

reproductive adults (> 15 cm dbh) over the monitoring period.  

Table 3.1. Average Basal area of Fraser fir ≥ 5 cm dbh and overstory density (with standard 

errors) from 37 long-term monitoring plots on 5 peaks in Great Smoky Mountains National Park 

re-measured in 2010 and 2011. 

Mountain Elevation Range (m) Fir BA (SE) (m2·ha-1) Fir stems (n·ha-1) 

Clingmans Dome 1,937 – 1,993 18.4 (2.8) 2100 

Mount LeConte 1,892 – 1,999 27.3 (5.7) 2200 

Mount Collins 1,821 – 1,887 15.7 (2.9) 2300 

Mount Guyot 1,913 – 1,990 13.7 (5.3) 1000 

Mount Sterling 1,722 – 1,783 7.5 (2.1) 500 
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Figure 3.3. Size class histograms for five populations of Fraser fir in Great Smoky Mountains 

National Park: Clingmans Dome (CD), Mount LeConte (LC), Mount Collins (MC), Mount 

Guyot (MG), and Mount Sterling (MS). Charts show 1cm DBH size classes in 1990 (right), 2000 

(center) and 2010 (left) reported on a log scale. The gray region is the area between the 

minimum and maximum estimations from jack-knifed cross-validation and represents 

uncertainty due to sampling; the dark line is the mean for all plots. 
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3.3.2 Population Model 

Though data from all size classes was used to generate the population model, results for 

overstory and understory size classes are presented separately for ease of interpretation.  The 

majority of observed data points are within the model’s 95% prediction intervals.   

While stands on Clingmans Dome already show the most complexity as far as live fir size 

distributions, our population model predicts a further increase in average overstory tree density 

by 2020. Current live standing overstory Fraser fir density is approximately 2,000 trees per 

hectare. We predict that this will nearly double by 2020 and then level out, with densities at 

least as equal to current levels by 2050 (Figure 3.4). For understory size classes, we predict live 

fir density will stay relatively constant with a slight increase over time indicating continued 

reproduction (Figure 3.5). 

By contrast, model results for Mount LeConte predict that overstory Fraser fir densities 

will stay at a relatively consistent level at about 2,500 adult trees per hectare (Figure 4). For 

understory stems, this level will decline by 2020, likely due to stem exclusion of smaller trees. 

However, as on Clingmans Dome, we predict a slight increase over time indicating continued 

Fraser fir reproduction (Figure 3.5). 

Though stands on Mount Collins increased in overstory fir dramatically over the last 

decade, this average density is predicted to decline in the next twenty years. By 2040, the 

predicted average live overstory Fraser fir densities will reach that suggested by applying the 

model to the 1990 data (Figure 3.4).  Understory fir by contrast is expected to remain fairly 

constant through mid-century (Figure 3.5). 

On Mount Guyot, which has had a relatively constant density of adult trees in the 

overstory at around 1,000 trees per hectare, our model predicts an increase by another 500 

overstory trees per hectare by 2020. This increase will be followed by a slow decline, with levels 

returning to what they were in 1990 by 2050 (Figure 3.4). Understory stems also will continue to 

decline (Figure 3.5). 

Lastly, for Fraser fir populations on Mount Sterling, our model predicts no increase in 

overstory fir densities, but a steady decline reaching below 1990 levels by 2050 (Figure 3.4). We 

predict a steady average density of understory stems at around 250 individuals per hectare 

(Figure 3.5). 
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Figure 3.4. Bayesian population model predictions for overstory adult (>5cm dbh) Fraser fir on 

5 mountains in Great Smoky Mountains: Clingmans Dome, Mt LeConte, Mt Collins, Mt Guyot 

and Mt Sterling (top - bottom). Open circles represent measured densities, black dots are 

projected means. The light gray dotted lines represent the 95% prediction interval of the model 

as applied to the initial measurements in 1990, dark grey dotted lines are the same bounds as 

applied to 2000 data, and solid lines the same for 2010 data. 
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Figure 3.5. Population model predictions for understory seedlings and saplings (<5cm dbh) 

Fraser fir on 5 mountains in Great Smoky Mountains: Clingmans Dome, Mt LeConte, Mt 

Collins, Mt Guyot and Mt Sterling (top - bottom). Open circles represent measured densities, 

black dots are projected means. The light gray dotted lines represent the 95% prediction interval 

of the model as applied to the initial measurements in 1990, dark grey dotted lines are the same 

bounds as applied to 2000 data, and solid lines the same for 2010 data. 
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3.4 Discussion 

Pre-adelgid forest census data collected in GSMNP in the 1930's suggest that Fraser fir 

forests were fairly uniform across the park with an estimated average Fraser fir basal area of 

40.7 m2·ha-1 and an average total basal area of 55.9 m2·ha-1(Busing et al., 1993). While the average 

Fraser fir basal areas measured in the present study are considerably lower than these estimates, 

3 of the plots measured on Mount LeConte exceeded this number. Average total basal area is 

37.9 (Franklin & Kaylor, 2014), also much lower than measured in the 1930's. Additionally, 

stands at Clingmans Dome, Mount LeConte and Mount Collins all show recovery or increases 

in overstory fir density over the last twenty years. When considering this most recent inventory 

data, there is no evidence to support the elimination of Fraser fir as suggested by Smith (1995) 

and Smith and Nicholas (1998), based on earlier inventories. In addition to recovery in Great 

Smoky Mountains National Park detailed in this study, Fraser fir forest recovery is also 

underway on Roan Mountain (White et al. 2012), and in the Black Mountains (Lusk et al. 2010; 

McManamay et al. 2011).  

While overstory forest inventory data are often used to monitor forest recovery, seedling 

production and the transition rates between life stages are essential components in predicting 

future forest dynamics. The dramatic declines in seedling density, which are most extreme on 

Mount LeConte and Mount Sterling over the two decades of monitoring (Figure 3.3), have been 

previously noted (Mancusi 2004; Smith & Nicholas 2000; Smith 1995). These declines in 

seedlings may have been caused by increased forest floor insolation (Smith & Nicholas 2000), 

understory competition (Mancusi 2004; Smith & Nicholas 2000; Smith 1995), or lowered seed 

production or viability (Fedde 1973a, 1973b; Nicholas 1992). It is only by considering seedling 

abundance within the context of longer-term population dynamics that this data becomes useful 

in predicting the restoration and maintenance of a viable fir overstory (Clark et al. 1999). While 

many individual plots show large reductions in seedling densities over the last two decades, we 

predict relatively stable overstory fir populations and continued reproduction on Mount 

LeConte and Clingmans Dome. As has been noted in earlier surveys in Great Smoky Mountains 

National Park (Jenkins 2003; Smith & Nicholas 2000), Fraser fir regeneration is patchy; this 

patchiness exhibited in the error estimates in our model.  
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However, our model does predict a steady decline in the Fraser fir population on Mount 

Sterling, the lowest elevation mountain in our study. These predictions are consistent with 

previous estimates of future suitable habitat for Fraser fir using a multi-temporal spatial 

clustering method of climate envelope modeling (Potter et al. 2005), which showed a pattern of 

suitable habitat contraction by 2050 and slight expansion by 2100. Additionally, Delcourt and 

Delcourt (1998) hypothesize that a 3 C increase in mean July temperatures will raise the lower 

bound of Fraser fir's habitat 480 m in elevation by 2100 CE. The continued decline of Fraser fir 

on Mount Sterling may be evidence of habitat suitability shifts caused by long-term 

environmental changes.  

The method we present here differs widely from other approaches like niche modeling, 

which uses current presence-absence data of a species and current and future environmental 

site parameters to predict the future extent of the species of interest.  These models are biased 

by historical land use change which limits the current geographic coverage of species.  Further, 

the spatial resolution of predictions generated by niche models is limited by the spatial 

resolution of available environmental data. Additionally, they are not able to incorporate past 

population dynamics or generate predictions of differing densities, which is a strength of the 

approach we have used.   

Although matrix-models often rely on eigenvalue analysis to determine the eventual fate 

of the population (Caswell 2001; Ellner & Guckenheimer 2006), the long-term dynamics of the 

Fraser fir forests in the Smoky Mountains are complex and deeply uncertain. Simple linear 

models such as the one constructed here cannot generate long-term predictions. Therefore our 

analysis focuses on the relatively short-term transient dynamics of these populations that is 

enabled by using the distribution-generating tools of Bayesian methods.  

Additionally, the predictive population model we present here assumes no changes will 

occur in current and chronic stress factors. Because the population data and transition rates on 

each mountain incorporate individual tree response to multiple environmental parameters 

(acidic deposition, climate, BWA induced mortality, and others), these are implied in the model 

and are a source of variability/uncertainty. If, however, these factors change in the future, for 

instance emissions standards were to decrease the rates of acid deposition well below what 

these forests have experienced over the last two decades, then our model cannot anticipate or 

account for the effects this would have on future population dynamics. Further, the model 
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assumes that the population will not change in its response to ongoing stresses. However, the 

gene pool may undergo future changes due to selective pressure and/or limited and isolated 

populations. 

The comparison of model predictions of populations in 1990 and 2000 and known counts 

in 2000 and 2010 provides a visual estimate of model validity. Overall, our model accurately 

predicts observed data within a 95% prediction interval of the models applied to the 1990 data, 

with notable exceptions being the 2010 overstory fir density for Mount Collins (Figure 3.4) and 

the 2000 understory density on Mount Sterling. For Mount Collins, this is likely due to the 

ongoing overstory mortality between 1990 and 2000 and release of smaller size classes into the 

overstory (Figure 3.3).   Alternatively, it may be that fir populations at Mount Collins are too 

unstable to model using our approach, or that there are differing population trajectories 

occurring across this site.  However, when 95% prediction intervals are applied to the 2000 data, 

we clearly see that observed data are on the upper bound of our predicted intervals for both 

2000 and 2010.  For the Mount Sterling understory, this unexpected spike in the seedling and 

sapling size class is caused by seedling increases in a single plot.  Such spikes in seedling 

densities are not uncommon following canopy removal, but are often followed by self-thinning 

as our data demonstrates.  Additionally, observed seedling densities at Mount Sterling are 

currently within the 95% prediction intervals so we believe our model predictions to be 

accurate.  

Two important factors influencing the future of Fraser fir are the severity and timing of 

future BWA-induced mortality. Frequent and severe mortality events would cause a dramatic 

departure of this forest type from pre-BWA conditions, while infrequent or milder-mortality 

events may yield a forest that is quite similar to pre-BWA forests with stable populations of 

Fraser fir. The emergence of a two aged forest with cyclical BWA outbreaks and overstory fir 

mortality followed by a regeneration period has been hypothesized (Dale et al., 1991; Eagar, 

1984; Mancusi, 2004; Smith & Nicholas, 1998, 2000). We do not yet see evidence of this pattern in 

these long-term monitoring plots across mountains, which suggests a patchy forest structure 

that has also been noted in the Black Mountains (McManamay et al., 2011). Forests on Mount 

Sterling experienced widespread fir death at the summit in 1970–1972, on Mount Guyot in 

1980–1982, Mount LeConte in 1982–1984, Mount Collins in 1985–1987, and Clingmans Dome in 

1990–1992 (Smith & Nicholas, 2000). The generation time of Fraser fir is roughly 15 years from 
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seedling to the onset of reproductive maturity (Beck 1990) and even the most recently infested 

site surpasses this period. Trees greater than 4 cm dbh are susceptible to BWA-induced 

mortality (Eager 1984), which is sooner than the onset of reproduction.  

Another severe wave of overstory fir mortality has not yet swept through; the more time 

passes before BWA returns, the more time this recovering forest has to return to pre-BWA 

conditions. We did note the presence of BWA on Mount Sterling while taking field 

measurements. This may indicate that lower elevations where annual temperatures have a 

smaller range provide a refugia for the insects, which could contribute to the observed decline 

in fir density at these sites. Or it may mean that another wave of fir mortality is immanent and 

beginning again at the site of initial infestation.  

While the exact timing of future mortality events is unknown, forest structural complexity 

may provide some resilience to large infrequent disturbances. Stands where a number of large 

trees persisted through the infestation, like those on Clingmans Dome, may recover more 

quickly due to the presence of reproductive trees. Other stands with very little overstory 

persistence are limited by the survival and maturation of trees present in the understory at 

initial disturbance. This creates a mosaic-like structure of stands in different stages of 

regeneration, which has been previously noted (Jenkins, 2003; Smith & Nicholas, 2000; 

McManamay et al. 2011). Because BWA feeds on mature fir and a contiguous, dense overstory 

of large, mature fir no longer exists, this structural complexity may provide some resilience to 

future BWA mortality.  

When comparing projected future populations between mountains, clear differences 

between them emerge. While proximal causes for these differences in outcomes are likely the 

aforementioned differences in forest structure, there are a number of possible reasons for the 

persistence of mature trees and the differences in regeneration and mortality rates at different 

sites. Genetic differences between populations in response to environmental stresses are likely. 

Individual trees can show a tremendous ability to acclimate to a changing environment, with 

the magnitude and variability of this response dependent upon species (Larigauderie & Körner 

1995; Tjoelker et al. 1999), provenance (Bigras 2000; Gunderson 2000), elevation (Ledig & Fryer 

1972), and other factors. In a study of red spruce (a species co-dominant with Fraser fir) 

acclimation and adaptation to elevated temperatures (Hagen 2006), seedlings grown from seeds 

collected at one of 4 sites in the GSMNP showed a significantly different response to an increase 
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in growth temperature, suggesting that individuals capable of thriving under predicted 

temperatures may exist within local populations. The longevity, vigor and fecundity of trees are 

determined, at least in some part, by tree physiological parameters like photosynthetic rates, 

water use efficiency, and the size of nonstructural carbohydrate pools which likely differ 

between trees in different locations. In addition, environmental factors like temperature, 

precipitation, and soil chemistry differ across elevations and aspects. The importance of 

temperature on this system is particularly noted in a scenario analysis of Fraser fir and BWA 

persistence at different elevations; larger annual temperature ranges increased the longevity of 

Fraser fir and decreased the spread of BWA, particularly at higher elevations (Dale et al. 1991). 

Additionally, recent work has highlighted the importance of cloud water and cloud immersion 

on Fraser fir physiology (Berry & Smith 2012, 2013; Reinhardt & Smith 2008). It is possible that 

cloud immersion differs across the study area and may account for some of the variation 

between predicted populations. It is clear that an understanding of the important 

environmental factors that affect individual tree physiology is needed before long-term 

predictions of population dynamics can be made. 

Our findings have a number of implications for forest management. A number of 

insecticides are effective in managing BWA outbreaks, but they all must be applied from within 

the stand to the bole of the tree to the point of saturation (Eager 1984). Because Fraser fir 

populations are remote and have limited accessibility, saving large numbers of trees this way is 

infeasible and costly in terms of cost of chemicals and man-hours required for application. Our 

data suggests that protection of a subset of reproductive overstory adults could ensure 

continued fir reproduction through future mortality events and speed recovery. Additionally, 

our model predicts further decline of fir populations at Mount Collins, Mount Guyot, and 

Mount Sterling and managing for the survival of fir seedlings and saplings may improve future 

forest densities. Because these sites are all hiking and camping destinations, limitation of 

recreational impacts may prove beneficial. Firewood collections have been curtailed by NPS at 

backcountry shelters at Mount LeConte and Mount Collins due to removal of fir saplings (pers 

communication, Kris Johnson). Additional viable options are the removal of competitive species 

in the understory such as Rubus canadensis, which has been shown to be negatively correlated 

with Fraser fir seedling densities (Pauley 1989), and planting Fraser fir seedlings at these sites 

with predicted fir population declines.  
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3.5 Conclusions 

We present the first predictive model for Fraser fir populations in the Great Smoky 

Mountains National park. We predict robust recovery of select Fraser fir populations for at least 

the next several decades, as well as continued decline for populations on a number of 

mountains, notably those at the lowest elevations. Our data suggest forest structural complexity 

may provide some resilience to large infrequent disturbances like BWA infestation. Stands 

where a number of large trees persisted through the infestation may recover more quickly due 

to the presence of reproductive trees. This suggests management strategies that protect a 

selection of robust and reproductively mature individuals will improve recovery of Fraser fir 

populations through further mortality events. Further, our findings highlight vulnerable 

populations which would benefit from limiting human impacts on successful reproduction and 

recruitment, and may also be appropriate sites for Fraser fir plantings. 
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Appendix: BUGS Listing 

model { 

 
# get survival and transition rates of adults from Panel Data 
# sumA[i] and sumR[i] are the same as A0[i] and R0[i], except that 
# samples with A0[i]==0 or R0[i]==0 are removed since those are  
# not allowed as parameters to dmulti or dbinom 
for(i in 1:NUM_ADULT_SAMP){ 
    sumA[i] <- sum(A2ARD[i,1:3]); 
    A2ARD[i,1:3] ~ dmulti(Pa[1:3], sumA[i]) 
} 

 
for(i in 1:NUM_REPROD_SAMP) { 
    R2R[i] ~ dbin(Prr, sumR[i]) 
} 
 
# get other transition probabilities from aggregate data 
for(i in 1:NUM_SAMPLES) { 
    # Define the transition model 
    S1_mu[i] <- Pss*S0[i] + Bsr*R0[i] 
    J1_mu[i] <- Pjj*J0[i] + Pjs*S0[i] + Bjr*R0[i] 
    A1_mu[i] <- Paa*A0[i] + Paj*J0[i] + Pas*S0[i] 
    R1_mu[i] <- Prr*R0[i] + Pra*A0[i] + Prj*J0[i] 
 
    # Same as putting a noise term on the above equations 
    S1[i] ~ dnorm(S1_mu[i], tau_S) 
    J1[i] ~ dnorm(J1_mu[i], tau_J) 
    A1[i] ~ dnorm(A1_mu[i], tau_A) 
    R1[i] ~ dnorm(R1_mu[i], tau_R) 
} 

 
# Uninformative prior on precision of normal distribution 
tau_S ~ dgamma(1, 0.1) 
tau_J ~ dgamma(1, 0.1) 
tau_A ~ dgamma(1, 0.1) 
tau_R ~ dgamma(1, 0.1) 
 
# Probabilties of moving from Seedlngs 
Ps[1:4] ~ ddirch(alpha4[]) 
Pss <- Ps[1] 
Pjs <- Ps[2] 
Pas <- Ps[3] 
 
# Probabilties of moving from Juveniles 
Pj[1:4] ~ ddirch(alpha4[]) 
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Pjj <- Pj[1] 
Paj <- Pj[2] 
Prj <- Pj[3] 
# Probabilties of moving from Adults 
Pa[1:3] ~ ddirch(alpha3[]) 
Paa <- Pa[1] 
Pra <- Pa[2] 
 
# Probability of staying in Reproduct Adult 
# This reduces to Binomial from Multinomal since only two options 
# and so has a beta distribution. 
Prr ~ dbeta(1,1) 
 
# Uninformative Prior on Reproductive rates 
# But constrain Bjr to be somewhat realistic given 
# seedling recruitment and survival rates 
Bsr ~ dgamma(1,0.1) 
Bjr ~ dgamma(mu_pjr,0.1) 
mu_pjr <- Bsr*Pjs/Pss /10 
 
#Construct transition Matrix 
G[1,1] <- Pss; G[1,2] <- 0;   G[1,3] <- 0;   G[1,4] <- Bsr 
G[2,1] <- Pjs; G[2,2] <- Pjj; G[2,3] <- 0;   G[2,4] <- Bjr 
G[3,1] <- Pas; G[3,2] <- Paj; G[3,3] <- Paa; G[3,4] <- 0 
G[4,1] <- 0;   G[4,2] <- Prj; G[4,3] <- Pra; G[4,4] <- Prr 
 
# Calculuate Eigenvalue for ease of monitoring 
# Eigenvalues are unused in analyses. 
y[1:4] <- eigen.vals(G[,]) 
z <- ranked(y[1:4],4) 
 
} 
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Chapter 4  

Ecophysiology of Adult Fraser fir (Abies fraseri) in High-Elevation 

Southern Appalachian Cloud Forests 
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Abstract 

The high-elevation forests in the southern Appalachians are dominated by the endemic Fraser 

fir (Abies fraseri) which is under considerable stress due to the depredations of the balsam wooly 

adelgid (Adelges piceae), indirect and direct effects of air pollution, and shifts in climate. 

Identification of healthy trees would aid land managers in selecting targets for future 

conservation and restoration efforts.  We measured diameter growth, Amax, photosynthetic 

WUE, root and stem NSC pools, SLA, and needle pigment content in 218 adult Fraser fir over 5 

mountains in Great Smoky Mountains National Park to identify healthy trees. We also asked 

how much variation in these measurements can be attributed to plot-scale environmental 

factors and determined the direction and strength of these relationships with fir physiology. We 

found metrics associated with carbon gain, storage and growth are largely uncorrelated, and 

suggest conservation targets be selected to maximize diversity. Amax rates were generally low, 

with highest rates found in trees at the highest elevations and steepest slopes.  We find trees at 

Clingmans Dome have significantly higher Amax rates and photosynthetic water use efficiency 

than those on other mountains, which may suggest greater stress resistance in these trees. NSC 

pools however, are consistent with those found in mature trees of other species and suggests the 

capacity for resistance of future stress events, particularly at the highest elevations where 

photosynthetic rates are the highest. Both WUE and leaf architecture were affected by max July 

temperature, which indicates future climate change will impact the foliar physiology of this 

species.  

4.1 Introduction 

Fraser fir (Abies fraseri) is a species endemic to the southern Appalachian mountains and 

restricted to six island-like populations at high elevations over 1300 m in eastern Tennessee, 

western North Carolina, and southern Virginia (Beck 1990). A relict of the boreal forest, Fraser 

fir is adapted to the unique habitat of the high-elevation temperate cloud forests. These forests 

have a cool climate with a mean annual temperature of 6 C and abundant annual precipitation 

ranging from 1500-2500 mm · yr-1 (Shanks 1954), of which about half is from cloud water 

deposition (Reinhardt and Smith 2008).  
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Fraser fir is currently under considerable pressure from many factors. Direct and indirect 

effects of the balsam woolly adelgid (Adelges piceae Ratz.) (BWA) caused widespread overstory 

mortality during the latter part of the 20th century (Eagar 1984; Dull et al. 1988; Hollingsworth 

and Hain 1991; Smith and Nicholas 2000).  BWA causes alterations to fir xylem anatomy which 

generally results in hydraulic failure within a few years.  High levels of acidic deposition (Eagar 

and Adams 1992) and high aluminum / low calcium soil concentrations (McLaughlin et al. 1990; 

McLaughlin and Wimmer 1999; Borer et al. 2005) are also potential contributing factors to 

decline in the high elevation forest.  Acidic deposition results in lowered soil nutrient 

availability and also causes nutrient leaching from needles and early needle senescence, all of 

which can reduce needle pigment content and biochemical capacity for carbon fixation.  

Increased soil aluminum can reduce plant calcium, which is needed for membrane stability and 

cell signaling.  Aluminum can also reduce root growth and increase root turnover rate, resulting 

in lowered nutrient and water uptake. 

Additionally, because Fraser fir occupies a confining temperature niche, climate warming 

may also be negatively impacting the species. Delcourt and Delcourt (1998) predicted that a 3 C 

increase in the mean July temperature would raise climatically-limited ecosystems about 480 m 

in elevation, resulting in the loss of Fraser fir forests. Data from the National Climatic Data 

Center shows that the average growing season temperature on Mount Mitchell has increased by 

2 C since 1996 (McNulty et al. 2014). Temperature determines the relative activity of RuBisCO in 

carbon fixation, and is a key factor in leaf to air vapor pressure deficit which directly impacts 

transpiration rates and thus photosynthetic water costs.  Additionally high temperatures can 

result in damages to photosynthetic enzymes and increases of carbon losses to maintenance 

respiration.   

 Most studies evaluating Fraser fir decline in the southern Appalachians have focused on 

population biology, emphasizing long-term changes in tree mortality, recruitment, age-class 

distribution and community structure (Busing et al. 1988; Dale et al. 1991; Smith and Nicholas 

1998; Smith and Nicholas 2000; Mancusi 2004; Moore et al. 2008). Very few studies have 

evaluated the ecophysiology of this species in natural stands (Johnson and Smith 2005; 

Reinhardt and Smith 2008; Reinhardt et al. 2009; Berry and Smith 2013), and we know of none 

that are performed using mature adult trees.  
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Firs are common throughout the coniferous boreal forest and perform a significant portion 

of long-term carbon fixation and storage in this forest type, which is responsible for 32% of the 

global carbon sink (Pan et al. 2011). Fraser fir, at the southern extent of the spruce-fir forest type, 

live in a range of current environments that may reflect future warming in the northern boreal 

forest (Karl et al. 2009). An understanding about the local effects of climate and soil nutrients on 

carbon fixation may therefore be useful to predicting global effects of climate change and help 

parameterize global carbon models.  

Finally, while an understanding of environmental factors influencing fir carbon dynamics 

and mortality is necessary for predicting future effects, there is also a need to identify 

individuals that are more tolerant of multiple stresses to act as a source of genetic material for 

future restoration. Since populations of Fraser fir are fairly isolated from one another on several 

mountain peaks, some genetic variation would be expected to arise from genetic drift and 

varying environmental selection pressure.  An open question for land managers is how to select 

target individuals for conservation and management. Because the bulk of spruce-fir forests in 

the southern Appalachians is on federally managed public lands (White 1984; Dull et al. 1988), a 

main goal of ecophysiological study of Fraser fir should be to determine healthiest individuals 

for future conservation efforts like saving genetic material for replanting, or through focused 

management like the application of insecticides to more vigorous trees.  

There are multiple physiological parameters that may reflect tree health and vigor. Fast 

growth has classically been one of the hallmarks of a healthy forest, but recent work suggests 

fast growing trees may be less able to withstand chronic stress (McNulty et al. 2014). Foliar 

measures like maximum photosynthetic rate (Amax), and the associated photosynthetic water use 

efficiency (WUE) are better metrics of the amount of carbon fixation possible under current 

conditions. Specific Leaf Area (SLA) and pigment content are measures of plant investment of 

carbon to light-intercepting mechanics, which is also related to plant water loss, leaf longevity, 

and plant secondary metabolites (Wright et al. 2004; Reich et al. 2007) as well as indicators of 

plant nutrient status. Finally, reserves of total non-structural carbohydrates (NSCs) may 

provide the ability to persist through stress events (Niinemets 2010). Studies in the 

southwestern US have proposed the carbon starvation hypothesis, which explains individual 

tree mortality in terms of the inability to capture carbon to cover energetic demands especially 
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under drought conditions (McDowell & Sevanto 2010; Adams et al. 2009). Small sized NSC 

pools in Fraser fir trees may implicate this mechanism as an important driver in fir decline.  

We hypothesize that trees with higher resource investment in photosynthetic pigments 

would have higher maximum photosynthetic rates. Further, trees which have a greater 

maximum carbon fixation rate would exhibit greater biomass production and larger 

nonstructural carbohydrate storage pools. In total, we hypothesize that these physiological 

measures are indicative of tree vigor, which contributes to survival of the combination of 

episodic climate variability and chronic stresses. Because these parameters are interdependent 

(Pollardy 2007), it may be possible to simplify these key physiological parameters into a few 

dimensions representing underlying factors of vigor, which may be used as a “health score” for 

selecting individual conservation targets.  

Although individuals in a stand may exhibit differences due to genetics or differences in 

microsite, environmental variables measurable at the stand level may have an influence on 

growth and physiology.  Elevation is expected to influence foliar physiology through changes in 

specific leaf area.   Maximum July temperature is expected to impact photosynthetic water use 

efficiency, with higher summer temperatures resulting in decreased water use efficiency due to 

higher transpiration cost.  Nonstructural carbohydrate pools may also be impacted by higher 

summer temperatures as more energy is used for maintenance respiration and growth.   Acid 

deposition levels are expected to decrease leaf photosynthetic pigment amounts which would 

result in lower maximum photosynthetic rates and lower NSC pools. 

In this paper we quantify physiological measures associated with carbon gain and storage 

in adult trees in a threatened high-elevation cloud forest. We ask if these metrics can be 

simplified into a few dimensions to form a “tree health” score to find particularly vigorous 

trees. Then we ask how much variation in the physiological parameters of diameter growth, 

Amax, WUE, root and stem NSC, SLA, and needle pigment content in adult Fraser fir can be 

explained by plot-scale environmental variables (specifically: elevation, aspect, slope percent, 

mean yearly temperature, max summer temperature, degree days, available water supply, 

annual acidic deposition amounts, soil pH, soil Al, and soil nutrient levels), and we determine 

the direction and strength of these relationships. We view key physiological parameters in 

terms of temperature gradients for insight into the role of climate change on Fraser fir tree 

carbon dynamics. Lastly, we compare physiological measurements between mountains to 
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identify populations which may possess genetic resources relevant to survival of multiple 

chronic stresses.  

4.2 Methods 

4.2.1 Study Area 

The study was performed in Great Smoky Mountains National Park (GSMNP) over five 

peaks, which represent nearly the entire Fraser fir range in GSMNP: Mount Sterling, Mount 

Guyot, Mount LeConte, Mount Collins and Clingmans Dome. None of the areas have been 

previously logged or burned (Pyle 1984; Pyle and Schafale 1988). Thirty seven research plots 

measuring 200 m2 were spread over these five peaks, ranging in elevation from 1,722m on 

Mount Sterling to 1,999m on Mount LeConte.  

4.2.2 Physiological Measurements 

Six co-dominant trees in each plot were selected for physiological study. Where possible, 

the six trees selected were those cored and aged in a previous study (Mancusi 2004). In the 

event that a given tree died in the previous decade, an alternate co-dominant tree of a 

corresponding size to the others sampled was randomly selected. When there were not 6 co-

dominant trees within a plot, as many were found, saplings and small adults were not sampled 

so as not to skew results from ontological differences. Trees ranged in size from 6.2 to 34.2 cm 

dbh, and, according to size-age curves produced by Mancusi (2004), all trees were greater than 

22 years of age. No BWA were noted on any of the sampled trees during data collection. Shoot 

level gas exchange measurements were not made on trees on Mount Guyot; tissue samples 

were, however, collected from trees in all plots for biochemical analysis. 

Diameter growth was obtained by using dbh measurements obtained from National Park 

Service made in 2000 and those collected in 2010 as detailed in Chapter 3. In the few cases 

where growth rate could not be calculated because trees were smaller than 5 cm dbh in 2000 at 

the time of data collection, the average growth rate of the plot was used as an approximate 

growth. This is a common method of data imputation for missing data (Manley 2004). 

At the end of the growing season in 2011, wood and root samples were taken from each 

tree. Increment cores were taken from a height of 1m, approximately where the trunk 
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buttressing ends, avoiding the compression wood formed on the up-slope side, and the borer 

was not greased to avoid future complications with chemical analysis. Roots were collected, 

verifying that they came from the target tree; root samples were a mixture of fine and lateral 

root tissue (< 1 mm diameter when dried). All samples were placed on ice and transported to 

the lab, where they were dried at 100 C for 24 hours then at 70 C for 72 hours and ground using 

a mechanical grinder to pass through a 2 mm sieve. Sugars were extracted from tissue samples 

with ethanol and then then measured colorimetrically using phenol-sulfuric acid. The 

remaining starch in the residue was then solubilized by sodium hydroxide, hydrolyzed to 

glucose by an enzyme mixture of α-amylase and amyloglucosidase, and measured 

colorimetrically using a peroxidase-glucose oxidase-o-dianisidine solution (Chow and 

Landhäusser 2004).  

Measurements of maximum photosynthetic rates and transpiration rates were made 

during the summer of 2012 using an infrared gas analyzer (IRGA) LI-6400 Portable 

Photosynthesis System (LICOR, U.S.A.) with a conifer chamber attached. To reduce variations 

between plots, gas exchange measurement collections were taken between 9:00 am and 12:30 

am (based on findings from Reinhardt et al. 2009), from from fully expanded non-shaded shoots 

from mid-canopy over a two month period during July and August. No plot experienced 

drought conditions during this period. Shoots were clipped from the canopy using pole pruners 

and measurements were made within six minutes of incision to prevent stomatal closure and 

concurrent declines in photosynthetic rates. Meng and Arp (1993) investigated photosynthetic 

gas exchange in red spruce twigs before and after detachment from the parent tree and found 

that Anet and stomatal conductance did not decline significantly within that time; this was also 

verified in the field. No collections were taken during rain, and all shoots were blotted to absorb 

excess water prior to measurements. Since the high elevation forests of the smoky mountains 

are often cloud immersed with high humidity, air intake was routed through 1 m of coiled cold-

trap followed by a desiccant chamber in order to stabilize humidity and vapor pressure deficit 

within the IRGA measurement chamber to standardize gas exchange measurements. The air 

intake tube was placed at least 1m from the ground to minimize fluctuations in CO2 from 

ground level respiration. Total photosynthetic active radiation (PAR) was provided by a 

flourometer at 700 μmols · m-2 · s-1 at 10% blue. This light level was selected based on light 

response curves published by Reinhart (2009). Chamber conditions were set as close to ambient 
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as possible, with a block temperature of 20 C. Though every effort was made to standardize gas 

exchange measurements, variation between plots may still be confounded by preceding 

weather conditions at each plot and time of year, which are unavoidable due to the nature of in 

situ measurements over a wide geographic region. 

Photosynthetic Water Use Efficiency (WUE), the amount of carbon gain per unit water 

loss, was calculated from measured Amax and E values.  

Measured shoots were then placed in plastic bags in a cooler and taken back to the lab to 

measure leaf area in order to standardize gas exchange measurements. Needles were stripped 

from the shoot and placed on a flatbed scanner; total leaf area was calculated from the resulting 

images using MIMSI, a MATLAB (2014A, MathWorks, Inc.) tool developed for this purpose. 

The program is a graphical user interface created in MATLAB to load scans of needles and 

cluster the spectral signal of the image using k-means clustering. A user then is able to divide 

clusters into those that correspond with the needles and those that correspond with the 

background. The interface allows the user to tweak the separation using a variety of automated 

image morphological operations, such as expanding or contracting around all objects or filling 

gaps, and also by hand-editing the object mask. Total needle area was calculated by the number 

of pixels designated as needle standardized by the resolution of the scanned image.  

Needles were freeze dried for 72 hours to obtain dry weight. Approximately 100 mg of 

needle from each shoot was analyzed for pigment content. Pigments were extracted using 100% 

methanol and the quantity of Chlorophyll A and B and total carotenoids in each sample 

determined from light absorbance in a spectrophotometer (ThermoScientific, Biomate3) at 

wavelengths of 470, 666, and 653nm using the formulas presented by Lichtenthaler and 

Wellburn (1983) standardized by needle weight. 

4.2.3 Plot-Scale Environmental Data 

We used ArcMap (10.1, ESRI) to generate plot elevation, aspect, and slope percent from 

GPS coordinates taken at plot center. Plot level temperature data for GSMNP was obtained from 

the model produced by Fridley (2009). We use degree days, maximum July temperature and 

average annual temperature for each of the sample plots in our analysis.  
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Down-scaled precipitation data for GSMNP is not available. We use available water 

supply (AWS), which is the total volume of water (in centimeters) that should be available to 

plants when the soil, inclusive of rock fragments, is at field capacity. Plot level AWS was 

obtained from the USDA Natural Resources Conservation Service Web Soil Survey Database.  

Annual N and S deposition estimates were obtained using the acid deposition model 

produced by Weathers et al. (2006). This is a general linear model relating deposition index to 

landscape variables measured in the field in 2000 using 378 point measurements and 

corresponding landscape variables throughout GSMNP and validated using field data. 

Estimates for annual nitrogen and annual sulfur deposition for each plot were obtained using 

this model and summed to form a total annual amount of acid deposition at the plot scale. 

To measure soil nutrient availability and soil aluminum content, three soil samples were 

randomly collected from each plot. Though Cai et al. (2011) showed significant differences in 

soil chemistry between the A horizon and the B horizon at nearby Nolan Divide, tree roots 

grow through both layers in response to available nutrients and so both layers were mixed into 

a single sample. Samples were procured from depth of no greater than 25 cm using a 

polycarbonate plastic hand trowel, and the three samples were combined into a composite 

sample for each plot. All soil samples were air dried at room temperature and sent to the 

Clemson University Agricultural Service Laboratory for analysis of soil nutrient levels.  Though 

we report summary statistics for soil nutrients in Table 4.1, to simplify analysis, we used a 

subset of these measurements that we considered to be biologically relevant to our system: pH, 

P, K, Ca, and Al levels and Cation Exchange Capacity (CEC). 

4.2.4 Statistical Methods 

Needle carotenoids, total chlorophylls, SLA, Amax, WUE, and NSCs of roots and stem were 

considered as physiological metrics of tree health to be reduced into a health score using 

principle components analysis. Covariances were calculated between each pair of z-score 

normalized metrics, thereby retaining data for Mt. Guyot in comparisons that did not include 

Amax or WUE, which were not available for those sites. Principle components were calculated as 

the eigenvectors of the pair-wise covariance matrix. 

Because environmental predictors are plot-scale, the upper limit to the amount of variation 

in each physiological parameter explainable by any set of plot-scale environmental predictors is 
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simply the amount explainable by the plot label. For each physiological parameter, a one-way 

ANOVA was performed to partition variation in physiological metrics between that which is 

explainable by plot and that which is due to the combined effects of tree history, genetics, 

micro-environmental effects, and measurement error. 

Plot-scale means of each physiological parameter were calculated for each site, and 

regressed against the set of z-score normalized environmental predictors.  Normalization of 

environmental predictors facilitates comparison of effect size between predictors, such that 

regression betas reflect the change in the physiological parameter associated with a standard 

deviation change in each predictor. All combinations of linear models with no interaction terms 

were considered; the selected model minimizes the Bayesian Information Criterion (BIC), a 

measure of model fit that penalizes more complex models (Schwarz 1978). Assumptions of 

normality and linearity were assessed visually; White's test (White 1980) was used to test for 

heteroskedasticty. 

Physiological parameters were also compared between mountains to assess differences in 

tree vigor at the population level using one-way analysis of variance, with significance 

established at the 0.05 confidence level.  All data was assessed to ensure assumptions of 

normality and equality of variances were met.  Differences between mountains were tested in a 

post-hoc test using Tukey’s Honestly Significant Difference (HSD) criterion (Kramer, 1956), with 

significance again set at the 0.05 level.        

4.3 Results 

Summary statistics are reported for physiological measurements across all trees and 

environmental variables across all plots in Table 4.1. 

Our attempts to reduce the dimensionality of diameter growth, Amax, WUE, root and stem 

NSC, SLA, and needle pigment content in adult Fraser fir to generate a comprehensive 

measurement of tree vigor and health were unsuccessful (Table 4.2). The first principle 

component only explains 27% of the variation, and it takes five components to explain 82 % of 

the variation in the data structure. With respect to the component loadings, the gas exchange 

measurements of Amax and WUE are loaded onto the first component and the leaf resource 

investment metrics of SLA and total chlorophyll on the second. Diameter growth, root NSC,  
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Table 4.1. Summary statistics of physiological measures from adult Fraser fir across 37 plots in 

Great Smoky Mountains National Park and corresponding plot scale environmental 

measurements from these plots. 

Physiological measures Median Mean Std. Dev. N 

 Specific Leaf Area (m2 ∙ kg-1) 8.90 9.02 1.90 217 

 Carotenoids (mg ∙ g-1) 0.07 0.07 0.04 217 

 Total Chlorophylls (mg ∙ g-1) 2.02 2.10 0.63 217 

 Chlorophyll A (mg ∙ g-1) 1.35 1.37 0.35 217 

 Chlorophyll B (mg ∙ g-1) 0.68 0.73 0.31 217 

 Amax (μmol ∙ m-2 ∙ s-1) 0.88 1.09 0.61 177 

 Transpiration (mmol ∙ m-2 ∙ s-1) 0.32 0.35 0.13 177 

 Water Use Efficiency (μmol CO2 ∙ mmol-1 H2O) 2.74 3.32 1.81 177 

 Root Starch (% dry mass) 4.10 4.28 1.32 217 

 Root Sugar (% dry mass) 43.47 43.80 12.31 217 

 Core Sugar (% dry mass) 1.36 1.54 0.94 217 

 Core Starch (% dry mass) 4.78 4.79 0.90 217 

 Root TNC (% dry mass) 47.95 48.08 12.56 217 

 Core TNC (% dry mass) 6.15 6.32 1.37 217 

 Diameter Growth (Δ cm ∙ 10 yr-1) 4.90 5.57 3.09 217 

 Diameter at Breast Height (cm) 16.00 16.08 5.48 217 
     

Environmental measures Median Mean Std. Dev. N 

 Mean Temperature (C) 8.13 8.21 0.20 37 

 Max July Temperature (C) 13.85 14.06 0.84 37 

 Degree Days 554 584 90.6 37 

 Sulfur (kg ∙ ha-1 ∙ yr-1) 35.68 32.49 7.00 37 

 Nitrogen (kg ∙ ha-1 ∙ yr-1) 26.60 24.09 5.36 37 

 Available Water Supply to 25 cm (cm) 3.55 4.74 2.24 37 

 Soil pH 3.50 3.57 0.29 37 

 P (ppm) 15.50 17.07 8.07 37 

 K (ppm) 57.00 61.89 20.40 37 

 Ca (ppm) 122.00 151.32 99.09 37 

 Mg (ppm) 35.50 38.27 13.03 37 

 Zn (ppm) 2.65 2.99 1.41 37 

 Mn (ppm) 6.50 12.93 15.25 37 

 Cu (ppm) 0.50 0.60 0.31 37 

 B (ppm) 0.55 0.56 0.26 37 

 Na (ppm) 38.50 40.59 11.24 37 

 Al (ppm) 336.04 418.63 269.88 37 

 CEC (meq ∙ 100 g-1) 15.30 15.40 2.46 37 
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and stem NSC are loaded onto the third, fourth and fifth components respectively. Leaf 

carotenoid and chlorophyll content are the main parameters loaded onto the sixth principle 

component.  

Results from the plot-wise ANOVAs performed using each of these physiological variables 

are given in Table 4.3; the R2 values presented here are the proportion of variance in these 

response variables that is possible to be explained by plot-scale environmental parameters. 

These values are highest in the gas exchange measurements with 74% for Amax and 72% for 

WUE. While these proportions are smaller for diameter growth (58%), total needle chlorophyll 

(54%), total carotenoid amounts (49%), and SLA (43%), they are smallest for NSC values in both 

root and stem tissues (29% and 19%, respectively). This indicates that there is a large variation 

in non-structural carbohydrate storage between individuals in the same plot. Tree size was not 

a statistically significant explanatory variable for any of the physiological measurements.  

Mean Amax (per plot) responded to elevation, percent slope, and soil Al (Table 4.4 A, total 

model p = 0.0001, r2=0.541). All three environmental factors have a positive effect on plot mean 

Amax. Soil Al content and elevation having the strongest effects; percent slope having half the 

effect size of that of elevation. Examining projected Amax over an elevational gradient, a 200 

meter increase in elevation raises predicted mean Amax by 0.5 μmols · m-2 ·s-1 (Figure 4.1). 

Incorporating the water cost of carbon fixation as WUE, we see that Mean WUE (per plot) 

Table 4.2. Results from Principal Components Analysis performed on physiological 

measurements from 222 adult Fraser fir (Abies fraseri) in Great Smoky Mountains National Park. 

Principle components were calculated as the eigenvectors of the pair-wise covariance matrix.  

Physiological Metric PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Light-saturated Photosynthesis 0.56 0.35 -0.01 0.14 0.03 -0.18 -0.12 0.70 

Photosynthetic Water Use 

Efficiency 

0.51 0.46 -0.05 0.18 0.11 -0.08 0.07 -0.69 

Total Chlorophyll -0.33 0.50 -0.07 0.06 0.16 0.49 -0.61 0.02 

Specific Leaf Area  -0.38 0.47 -0.19 0.14 0.12 0.07 0.73 0.17 

Diameter Growth 2000-2010 0.19 -0.11 0.73 0.08 0.33 0.50 0.23 0.05 

Root Nonstructural 

Carbohydrates 

-0.18 -0.03 0.25 0.82 -0.47 -0.08 -0.07 -0.02 

Core Nonstructural 

Carbohydrates 

-.02 -0.37 -0.38 -0.49 0.68 -0.02 -0.06 0.02 

Carotenoids 0.33 -0.20 -0.46 0.06 0.16 0.49 -0.61 0.02 

Percent Explained 27.2 18.2 14.2 12.5 10.3 8.7 6.8 2.1 

Cumulative Percent Explained 27.2 45.3 59.6 72.0 82.3 91.1 97.9 100 
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responded to percent slope , Max July Temp, and CEC (Table 4.4 B whole model p = 0.00446, 

r2=0.39). While percent slope has a positive effect on WUE, both maximum July temperature 

and soil cation exchange capacity have a negative effect. When examining predicted mean WUE 

in terms of maximum July temperatures, a 3 C increase in max July temperatures results in a 

decrease of photosynthetic WUE from 4 μmol CO2 ∙ mmol-1 H2O to 2 μmol CO2 ∙ mmol-1 H2O 

(Figure 4.2). 

In terms of all physiological response variables measured, regression models for SLA 

highest predictive value. Mean SLA (per plot) responded to Max July Temp, K, and CEC (Table 

4.4 C whole model p < 0.00001, r2=0.633). Soil CEC had a positive effect on fir needle SLA, and 

soil K had a negative effect (Table 4.4 C). Increases in Max July Temp had the largest effect on 

predicted mean SLA (per plot), with a 3 C increase in summer temperatures yielding an 

increase in 2 m2/kg (Figure 4.3). Plot mean chlorophyll amount in needles is negatively 

correlated with acidic deposition (Table 4.4 D whole model p < 0.00013, r2=0.346).  

With regard to end of season NSC storage pools, we found much greater levels in root 

tissue as compared to stem tissue, most of which is expressed in sugars (Table 4.1). Mean Root 

NSC (per plot) responded positively to max July temperature, with generally higher sugar 

storage in end of season root tissue in plots with higher summer temperatures (Table 4.4 E, 

p=0.00318, r2=0.223). This relationship is fairly weak, however, with a 3 C temperature increase  

Table 4.3. Results of plot-wise one-way ANOVAs performed on physiological measurements 

from 222 adult Fraser fir (Abies fraseri) at 37 plots in Great Smoky Mountains National Park. R2 

values presented show the amount of variation in the measurements explainable by the plot 

label. All tests were significant at the alpha=0.05 level. 

Physiological Metric R2 value 

Light-saturated Photosynthesis (Amax) 0.74 

Photosynthetic Water Use Efficiency 0.72 

Diameter Growth 0.58 

Chlorophyll Content 0.54 

Carotenoid Content 0.49 

Specific Leaf Area 0.42 

Root Non-structural Carbohydrates 0.29 

Core Non-structural Carbohydrates 0.19 
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Table 4.4. Linear regression models to predict plot-mean physiological measurements from 

adult Fraser fir (Abies fraseri) in Great Smoky Mountains National Park.  Models were selected 

using the Bayesian Inference Criterion. 

 

A. Amax = I + Elevation + Slope + Al 

 Estimate SE tStat p-value 

(Intercept) 1.0591 0.071769 14.757 3.7738e-14 

Elevation 0.26684 0.070197 3.8013 0.00078319 

Slope 0.13237 0.068704 1.9267 0.045012 

Al (in ppm) 0.2968 0.073814 4.0209 0.00044274 

n: 30, error df: 26, RMSE: 0381, R2: 0.54, F-stat vs. constant model: 10.2, p < 0.001 

 

B. WUE = I + Slope + Max July Temp + CEC 

 Estimate SE tStat p-value 

(Intercept) 3.2666 0.24704 13.223 4.7403e-13 

Slope 0.78372 0.24468 3.203 0.0035759 

Max July Temp -0.69415 0.23732 -2.9249 0.0070566 

CEC -0.54201 0.27124 -1.9983 0.046244 

n: 30, error df: 26, RMSE: 1.29, R2:0.39, F-stat vs. constant model: 5.54, p < 0.005 

 

C. SLA = I + Max July Temp + K + CEC 

 Estimate SE tStat p-value 

(Intercept) 8.9996 0.13051 68.959 2.973e-37 

Max July Temp 0.92319 0.13576 6.8001 9.347e-8 

K -0.49523 0.17476 -2.8337 0.0077893 

CEC 0.43259 0.1762 2.4551 0.019524 

n: 37, error df: 33, RMSE: 0.794, R2: 0.633, F-stat vs. constant model: 18.9, p <0.001 

 

D. Total Chlorophyll = I + Acid Deposition 

 Estimate SE tStat p-value 

(Intercept) 208.9 6.3408 32.946 6.169e-28 

Acid Dep -27.646 6.4283 -4.3006 0.00012974 

n: 37, error df: 35, RMSE: 38.6, R2: 0.346, F-stat vs. constant model: 18.5, p <0.001 

 

E. Root NSC = I + Max July Temp 

 Estimate SE tStat p-value 

(Intercept) 48.049 1.0001 48.046 1.5092e-33 

Max July Temp 3.2118 1.0139 3.1679 0.0031799 

n: 37, error df: 35, RMSE: 6.09, R2: 0.223, F-stat vs. constant model: 10.0, p <0.001 



99 

yielding a predicted increase from 45 % to 55% of root NSC by weight (Figure 4.4). We find 

there is limited predictive power of plot-level environmental data on NSC in either root or stem 

tissue, and wide within-plot variation in carbon storage pools.  

The remaining regression models for needle carotenoid content, diameter growth, and core 

NSCs are reported in the Appendix. 

When comparing gas exchange measurements between mountains, we find that trees on 

Clingmans Dome had significantly higher Amax than those on other mountains; mean Amax was 

twice as high on this mountain than average Amax of trees at other locations (Figure 4.5). When 

considering the transpiration cost of carbon fixation as water use efficiency, again trees on 

Clingmans Dome perform significantly better than those on other mountains (Figure 4.6).  

These higher rates of carbon fixation are not explained by increases in needle photosynthetic 

pigment (Figure 4.7) when viewed on the same scale, trees with highest Amax have about half the 

total chlorophyll amounts of those with the most concentrated pigment levels. 

To determine whether trees on certain mountains had smaller NSC pools, we compared 

the size of these pools in root tissue between mountains.  While results show significant 

differences between mean carbohydrate content (expressed as % dry weight) from Mount 

Collins and Clingmans Dome (Figure 4.8), differences are not appreciable. 

4.4 Discussion 

We measured key physiological parameters associated with carbon gain and storage in 

adult Fraser fir in threatened high-elevation cloud forests. Though these measurements 

contribute to tree health and stress tolerance, our study shows that, in Fraser fir, they are not 

highly correlated. Individual trees rarely performed highly with respect to more than one 

metric, suggesting that individuals dealt with the stresses they encountered in different ways. 

There is high uncorrelated variation between individuals; conservation targets should be 

selected to conserve this phenotypic diversity within the species.   

Additionally, though we have quantified some measures of carbon gain, storage and 

growth, we do not have measurements of carbon costs for dark respiration, reproduction or 

defense, nor whole-day or whole-year estimates of photosynthesis, and these measurements  
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Figure 4.1. Plot-mean light-saturated photosynthesis rates from 180 adult Fraser fir (Abies 

fraseri) at 30 sites in Great Smoky Mountains National Park regressed against plot elevation.  

Dots represent site means, bars represent the 80% prediction interval.  The full regression model 

is given in Table 4.4 A. 



101 

  

 

Figure 4.2.  Plot-mean photosynthetic water use efficiencies from 180 adult Fraser fir (Abies 

fraseri) at 30 sites in Great Smoky Mountains National Park regressed against plot maximum 

July temperatures (from Fridley 2009).  Dots represent plot means, bars represent the 80% 

prediction interval.  The full regression model is given in Table 4.4 B. 
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Figure 4.3. Plot-mean specific leaf areas from 217 adult Fraser fir (Abies fraseri) at 37 sites in 

Great Smoky Mountains National Park regressed against site maximum July temperatures 

(from Fridley 2009).  Dots represent plot means, bars represent the 80% prediction interval.  

The full regression model is give in Table 4.4 C. 
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Figure 4.4. Plot-mean root nonstructural carbohydrate amounts (as % dry mass) from 217 

adult Fraser fir (Abies fraseri) at 37 sites in Great Smoky Mountains National Park regressed 

against site maximum July temperatures (from Fridley 2009). Data are the sum of simple 

sugar and starch pools.  Dots represent plot means, bars represent the 80% prediction 

interval.  The full regression model is given in Table 4.4 E. 
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Figure 4.5. Box plot of light-saturated photosynthesis rates in adult Fraser fir (Abies fraseri) 

compared between mountains (Clingmans Dome - CD, Mount Collins - MC, Mount LeConte 

– LC, Mount Sterling – MS). The central mark represents the median value, edges of the box 

are the 75th and 25th percentiles, whiskers extend to the most extreme values that are not an 

outlier, outliers are defined as points that fall outside of +/- 1.5 times the interquartile range. 

Letters under mountains designate significant difference at alpha=0.05 using Tukey’s H.S.D. 
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Figure 4.6. Box plot of photosynthetic water use efficiencies in adult Fraser fir (Abies fraseri) 

compared between mountains (Clingmans Dome - CD, Mount Collins - MC, Mount LeConte 

– LC, Mount Sterling – MS). The central mark represents the median value, edges of the box 

are the 75th and 25th percentiles, whiskers extend to the most extreme values that are not an 

outlier, outliers are defined as points that fall outside of +/- 1.5 times the interquartile range. 

Letters under mountains designate significant difference at alpha=0.05 using Tukey’s H.S.D. 
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Figure 4.7. Scatterplot of light saturated photosynthetic rates and total leaf chlorophyll 

amounts (A+B) from 217 adult Fraser fir (Abies fraseri) in Great Smoky Mountains National 

Park.  Values are expressed in terms of leaf area. Symbols represent trees on Clingman’s 

Dome (closed circle), Mount LeConte (gray square), Mount Collins (gray triangle), and 

Mount Sterling (open circle). 
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Figure 4.8. Box plot of total nonstructural carbohydrates (simple sugar + starch) in root tissue 

adult Fraser fir (Abies fraseri) compared between mountains (Clingmans Dome - CD, Mount 

Collins - MC, Mount LeConte – LC, Mount Guyot – MG, Mount Sterling – MS) expressed as 

% dry mass. The central mark represents the median value, edges of the box are the 75th and 

25th percentiles, whiskers extend to the most extreme values that are not an outlier, outliers 

are defined as points that fall outside of +/- 1.5 times the interquartile range. Letters under 

mountains designate significant difference at alpha=0.05 using Tukey’s H.S.D. 
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would clarify estimates of whole tree carbon budgets. Shoot physiology integrated over the 

entire crown of the tree may help explain limitations in carbon fixation and observed decline in 

health and vigor in Fraser fir.  

Our study has defined an upper bound on the variability in physiological measurements 

that is explainable by site level environmental parameters. The remaining within-plot 

variability comes from history, genetics, microbiome and measurement error. Though tree size 

was not a significant factor in any of the physiological measurements, tree age (and thus, tree 

history) may be. Fraser fir is a shade-tolerant slow-growing species which can persist in the 

understory many years before canopy release (Oosting and Billings 1951), and tree age and size 

are not well correlated in these stands (Mancusi 2004). Common garden experiments may be a 

useful approach to control for these factors, but, in Fraser fir, this method is limited by the slow 

growth and long life cycle of firs.  

Maximum photosynthetic rates in adult Fraser fir were highest at the highest and steepest 

sites, and trees in these stands may be more resistant to future chronic and episodic stress than 

trees at the lower bounds of the elevation range. Our measurements of Amax are lower than those 

given by Reinhardt et al. (2009), who reports an average Amax of 3.0 ± 0.2 μmols·m-2·s-1 for adult 

Fraser fir understory trees, and Bernier et al. (2001) who found average Amax of 4.3 μmols∙m-2·s-1 

for adult understory balsam fir (Abies balsamea). However, similar species to Fraser fir which are 

facing multiple stresses or are in decline have comparable Amax (Zimmermann et al. 1988; 

Johnson et al. 2004).  

The positive relationship between Amax and soil aluminum levels was unexpected. 

However, other studies have found that moderate amounts of aluminum are correlated with 

peak growth rates (McCanny et al. 1995) and increases in photosynthetic rates (McLaughlin et 

al. 1991) in red spruce, a co-dominant species which is more sensitive to aluminum toxicity than 

fir (Schier 1985). It has been hypothesized that Al exerts a positive effect on red spruce at field 

concentrations (McCanny et al. 1995), and our data suggests that this may also be true in Fraser 

fir.  

Though the large amounts of individual variation that can possibly be explained by plot-

level environment we have reported for gas exchange measurements (Amax 74%, WUE 72%) may 

be partially attributed to preceding weather patterns between plots, the regression models built 
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were able to explain a large portion of the variation in these measurements (Amax 54%, WUE 

39%).  

Here we explored environmental constraints on fir physiology. While the biological 

relevance of some of the regression models is not readily apparent, particularly with regard to 

the model presented for light saturated photosynthesis, we can offer some thought on why 

these variables may be preferred to more mechanistic variables. Model selection conservatively 

picks the most explanatory variables, therefore there is at minimum more information 

contained in elevation than simply water availability and temperature, which are not included 

in the model.  Alternatively elevation succinctly summarizes the information included in those 

two variables, making their inclusion redundant.   

For both Amax and WUE in Fraser fir, soil available water supply was not a significant 

predictor variable.  Cloud immersion has been shown to be vitally important to fir water 

relations, with up to one third of plant water absorbed by needles from clouds (Berry and Smith 

2014).  Elevation and percent slope may instead explain this vital, but here unmeasured, 

variable. Additionally, measurements of Amax are shown to be significantly higher at Clingmans 

Dome which also may contribute to the high predictability of elevation and percent slope. 

Our predictive models for specific leaf area highlight the importance of nutrient 

availability and temperature in determining leaf architecture.  SLA is a measure of plant 

investment of carbon to light-intercepting leaf area per unit leaf dry mass, and is a key trait in 

the carbon economy of a plant (Wright et al. 2004; Reich et al. 2007). A relatively high SLA 

allows for greater carbon uptake and relative growth rate in the short term, and is observed in 

leaves of younger compared to older trees (Day et al. 2001; Thomas and Winner 2002). A low 

SLA may be an adaptive trait to cope with climatic stress in cold environments, and has been 

observed to decrease with increasing elevation in adult conifers (Hultine and Marshall 2000). 

We find that higher maximum July temperature increases SLA in Fraser fir, which implies an 

increase in resource investment in photosynthetic machinery under future warming. 

Acidic deposition was only found to have a significant negative impact with regard to 

needle chlorophyll levels in Fraser fir. Acid deposition is well known to disrupt tree nutrient 

availability and causes through-fall and leaching in needles (Aber et al. 1989; Lucier and Haines 
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1990; Eagar and Adams 1992; Johnson and Lindberg 1992), and our findings are consistent with 

the body of scientific literature.  

In contrast to foliar measurements of carbon acquisition, carbon storage is not well 

predicted by environmental variables and is highly variable between individuals. Given the 

broad spectrum of relationships between NSC to other physiological processes, there are many 

sources of variation in the NSC pool. NSC levels in Fraser fir may vary because of 

environmental stress on carbon source-sink balance (Kozlowski 1992), or may result from active 

accumulation of carbon stores for coping with long periods of freezing temperatures. Because 

our data shows a low ability to predict the size of NSC pools, it suggests that these pools are not 

solely controlled by environmental stressors. Instead, between tree differences may be the result 

of different fixation rates and differences in carbon demand from respiration, growth or 

reproduction, which taken together may define carbon usage strategies for different 

individuals.  

The size of NSC pools is a critical factor in tree survival through periods of environmental 

stresses by directly covering metabolic needs and fueling structural and metabolic acclimation 

to additional stresses (Amthor and McCree 1990). In general, our measurements of the size of 

NSC pools in Fraser fir are consistent with those found in mature trees of other species (Hoch et 

al. 2003; Hoch and Körner 2009; Richardson et al. 2013). This suggests that high-elevation forests 

may have the capacity for resistance of future stress events, particularly at the highest 

elevations where photosynthetic rates are the highest. Additionally, we find that the end of 

season is highest in the root tissue and mostly in the form of sugars, which may increase 

osmotic water gain as the ground freezes in these high elevation montane forests.  

Delcourt and Delcourt (1998) predicted that a 3 C increase in the mean July temperature 

would result in the loss of Fraser fir forests. While the current study examines the effect of 

maximum July temperatures on Fraser fir forests, it does cover a 3 C range which we find 

results in significant decreases in photosynthetic WUE. Higher maximum July temperatures are 

correlated with increases in SLA, meaning needles are flatter and thinner. However, our data 

finds no strong effect on light-saturated photosynthetic rates, which, coupled with the increases 

in photosynthetic water cost and shifts in leaf architecture, suggests decreases in the efficiency 

of carbon fixation at higher summer temperatures. Recent studies have shown that the effect of 

temperature on leaf-level VPD and water demand are mitigated by cloud immersion in 



111 

understory Fraser fir (Johnson and Smith 2006; Berry and Smith 2012; Berry and Smith 2013). In 

Southern Appalachian fir forests, where rates of carbon fixation are already low, we 

hypothesize that future warming will restrict Fraser fir occurrence to the highest elevations and 

cloud-dense areas. 

This study finds that, on the basis of foliar physiology, trees at Clingmans Dome perform 

better than trees at other sites.  This is not simply due to higher photosynthetic pigment content; 

indeed these trees have considerably lower pigment levels than trees with lower photosynthetic 

rates found at other sites.  This may indicate a breakdown in biochemical efficiency at other 

sites, or evidence of genetic or phenotypic stress resistance in trees at Clingmans Dome.  Further 

study is warranted.   

Finally, while the present study examined carbon dynamics in trees under multiple 

stresses and the direction and effect size of environmental conditions on fir physiology, we did 

not examine interactive effects between environmental parameters. The sequence, severity, and 

duration of stresses may change overall tree response and the extent to which trees can 

acclimate and persist in systems with multiple stresses (Aber et al. 2001; Niinemets 2010). Here, 

we have asked what the environmental constraints on fir physiology are. However, 

physiological metrics are also themselves causally related. Explicitly mechanistic approaches 

such as structural equation modeling or hierarchical Bayesian methods may be an appropriate 

way to incorporate stress interactions and timing and causal relationships between 

physiological variables.  

4.5 Conclusions 

Physiological measurements associated with carbon gain, use and storage in mature Fraser 

fir cannot be collapsed into a simplistic health score, and, on average, roughly half of the 

variability in these measurements can be explained by site level environmental measurements. 

This study is the first to examine carbon gain and carbohydrate pools in adult Fraser fir trees 

and to link environmental conditions to these measurements in situ. Maximum photosynthetic 

rates are low throughout the high elevation mountains of Great Smoky Mountains National 

Park, indicating trees are under considerable stress, but are highest in trees growing on the 

highest, steepest slopes. Trees from Clingmans Dome have significantly higher maximum 
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photosynthetic rates and water use efficiency, which may indicate stress resistance in this 

population. Maximum July temperature plays an important role in the water use efficiency and 

needle specific leaf area in Fraser fir. Future warming is likely to restrict Fraser fir occurrence to 

the highest elevations and cloud-dense areas. Questions about whether resistance to multiple 

stresses at these sites is genetically controlled, or the result of phenotypic plasticity, or is 

explained by unmeasured environmental parameters still remain.  
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Appendix 

Linear regression models to predict plot-mean physiological measurements from adult Fraser 

fir (Abies fraseri) in Great Smoky Mountains National Park.  Models were selected using the 

Bayesian Inference Criterion. 

 

 A.  Carotenoids = I + Mean Temp + Max July Temp 

 Estimate SE tStat p-value 

(Intercept) 7.1095 0.40606 17.508 1.3889e-18 

Mean Temp 1.2483 0.63636 1.9616 0.04804 

Max July Temp -2.711 0.63636 -4.2602 0.00015269 

n: 37, error df: 34, RMSE: 2.47, R2: 0.394, F-stat vs. constant model: 11.1, p < 0.001 

 

B. Core NSC = I + P 

 Estimate SE tStat p-value 

(Intercept) 6.3241 0.090834 69.631 3.9512e-39 

P 0.27035 0.092076 2.9362 0.005838 

n: 37, error df: 35, RMSE: 0.552, R2: 0.198, F-stat vs. constant model: 8.62, p < 0.01 

 

C.  Diameter Growth = I + K + Ca 

 Estimate SE tStat p-value 

(Intercept) 5.536 0.32455 17.058 3.0866e-18 

K 1.893 0.44664 4.2384 0.00016269 

Ca -1.1434 0.44664 -2.56 0.015081 

n: 37, error df: 34, RMSE: 1.97, R2: 0.348, F-stat vs. constant model: 9.07, p < 0.001 
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Chapter 5  

Conclusions 
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The previous chapters, taken as a whole, provide some broad patterns and insights into 

the dynamics and persistence of high elevation spruce-fir forests in the southern Appalachians. 

They also address previously unexamined questions about carbon fixation in adult Fraser fir 

trees in situ as well as providing valuable predictions of both the future of this endemic species 

and threatened forest type in the coming decades. Additionally, there are clear and valuable 

implications for forest management relevant for the conservation and restoration of spruce-fir 

forests. Furthermore, long term monitoring and collection of baseline data on forest health is an 

important goal, and the data collected and contained in the previous chapters is a significant 

contribution to long-term ecological research.  

We find no regular, consistent increase in hardwood share in high elevation forests 

(Chapter 2), but predict further declines in fir populations, particularly at Mount Sterling 

(Chapter 3). Together these studies suggest that the once dense spruce-fir forests will be 

replaced with novel ecosystems. Observations from the field during data collection indicate fern 

brakes, grassy balds, and shub thickets dominated by Rubus canadensis are likely replacements. 

Studies by Crandall (1958) and Busing et al. (1988) both indicate that the establishment of fern 

brakes and Rubus thickets are common in canopy gaps created by individual tree mortality. 

However, because of the wide-spread extent of fir overstory mortality, seed sources may be 

lacking to regenerate spruce-fir forests in these areas. Thus, difference in scale between the 

patch sizes created by single tree mortality and large scale overstory mortality may be an 

important driver in land cover changes. Further, studies have shown that high cover of Rubus 

canadensis is associated with low fir seedling density (Pauley and Clebsch 1990; Pauley 1989); 

competition may be limiting forest re-establishment in these patches.  

This dissertation also finds that data at two different scales corroborate one another. Leaf 

level physiological metrics (Chapter 4) and results from our fir population model (Chapter 3) 

both suggest that Fraser fir trees at Clingmans Dome possess some measure of resistance to 

chronic environmental stresses. Varying response to stress in plants from a single location is not 

unlikely. A study of elevated warming effects on another high-elevation Southern Appalachian 

species, red spruce, found varying response to increased temperatures among different seed 

sources (Hagen 2006). In Fraser fir, Li et al (1988) found differences in seedling growth rates and 

biomass production from seeds from different elevations. A study of population genetics in 

Fraser fir found small but significant differences between allele number, allele richness and 
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allele privacy between different populations (Potter et al. 2008). Though our data indicates that 

stress resistance in the Clingmans Dome population is likely, it is unknown if this is due to 

phenotypic plasticity or genetically controlled, and further study is warranted.  

Additionally, our data suggests that management strategies which protect a number of 

adult trees will yield faster forest regeneration, presumably due to the presence of ready seed 

sources (Chapter 3). However, our characterization of ecophysiological measurements in fir 

indicate that the selection of individual trees for targeted managing efforts or future 

conservation may be not a straightforward matter (Chapter 4). Physiological measurements 

associated with leaf resource investment, carbon fixation rates, carbon storage pools and growth 

were found to be largely uncorrelated with one another in adult Fraser fir. Even when 

examining a single metric, light—saturated photosynthesis rates, we find a few individuals 

trees with higher rates in plots dominated by trees with much lower rates (Figure 4.7). While 

tree physiology is only partially controlled by genetics, this dissertation supports a general 

biological principle that diversity within populations is important.  

Recent work in tree ecophysiology have called for measurements of NSC pools, especially 

under environmental stresses (Adams et al. 2009; Leuzinger et al. 2009; Sala 2009; McDowell & 

Sevanto 2010; Sala et al., 2010). These pools, which are not often quantified, are thought to allow 

trees to persist through stress events by covering both maintenance carbon costs as well as 

providing carbon for biochemical compounds that provide mechanisms of resistance. Our data 

adds to body of scientific knowledge on this front. Additionally, though a number of studies 

have posited the carbon starvation hypothesis as a mechanism for tree mortality (McDowell & 

Sevanto 2010; Adams et al. 2009), our data suggests that carbon starvation isn't responsible for 

the observed declining vigor of Fraser fir trees, and instead other factors, such as disruptions to 

water relations or biochemical pathways, may be to blame.  

Lastly, a recent paper by McNulty et al. (2014) posits that changes in climatic variability 

may cause what they term “the rise of the mediocre forest”. They hypothesize that chronically 

stressed trees may be better suited to survive the combination of chronic low-level 

environmental stress and extreme episodic stress associated with anthropogenic climate change 

and increasing climate variability. These conditions may create a selection bias toward 

individuals that have persisted through chronic stress events over their non-stressed, vigorous 
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conspecifics. The studies presented here establish important baseline data for both monitoring 

this threatened forest as well as testing the mediocre forest hypothesis in the coming decades.  

A number of ideas for future study have arisen in the course of completing this 

dissertation. Though we did not address specifically mechanistic models in Chapter 4 or 

examine specific interactions between environmental variables or causal relationships between 

physiological metrics, applying hierarchical Bayesian modeling or structural equation modeling 

to datasets generated and used in chapter 4 may be a next step. Applying statistical clustering 

methods to group particularly vigorous tress, which may highlight broad physiological 

strategies in adult Fraser fir, could also follow. In the course of this work, a large data set of 

needle morphology metrics was generated. Preliminary analysis shows that stunted needles 

have proportionally fewer non-photosynthetic compounds than healthy needles, suggesting 

that stressed trees prioritize photosynthetic capacity over secondary functions performed by 

other compounds. We would like to incorporate the temperature gradients from chapter 4 as 

well as soil nutrient measurements into this analysis. Lastly, though common garden 

experiments are difficult undertakings with slow growing species like Fraser fir, we recently 

discovered that NPS started a genetic conservation forest using Fraser fir in the mid-1990's. 

Future work could exploit this common garden to continue to study the effects of environment 

and role of genetics on Fraser fir physiology.  
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