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Abstract

Monte Carlo method has received significant consideration from the context of quantitative

finance mainly due to its ease of implementation for complex problems in the field. Among

topics of its application to finance, we address two topics: (1) optimal importance sampling

for the Laplace transform of exponential Brownian functionals and (2) analysis on the con-

vergence of quasi-regression method for pricing American option. In the first part of this

dissertation, we present an asymptotically optimal importance sampling method for Monte

Carlo simulation of the Laplace transform of exponential Brownian functionals via Large

deviations principle and calculus of variations the closed form solutions of which induces

an optimal measure for sampling. Some numerical tests are conducted through the Dothan

bond pricing model, which shows the method achieves a significant variance reduction. Sec-

ondly, we study the convergence of a quasi-regression Monte Carlo method proposed by

Glasserman and Yu (2004) that is a variant of least-squares method proposed by Longstaff

and Schwartz (2001) for pricing American option. Glasserman and Yu (2004) showed that

the method converges to an approximation to the true price of American option with critical

relations between the number of paths simulated and the number of basis functions for two

examples: Brownian motion and geometric Brownian motion. We show that the method

surely converges to the true price of American option even under multiple underlying assets

and prove a more promising critical relation between the number of basis functions and the

number of simulations in the previous study holds. Finally, we propose a rate of convergence

of the method.
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Part I.

INTRODUCTION
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This dissertation studies sampling-based computational methods in the context of finan-

cial applications. Stochastic simulation has played a prominent role in computing quantities

of interest across a variety of academic disciplines. The Monte Carlo method has, in partic-

ular, attracted attention from the researchers and practitioners in the area of quantitative

finance because of its ease of implementation and stability to model perturbations for com-

plex problems. The main concern is computing the expected value of a random variable

defined on a proper probability space. Monte Carlo methods consist of two steps: (i) simu-

late the random quantity of interest and (ii) estimate the expected value via sample average

of simulated variates.

Although Monte Carlo simulation is often easy to apply, it often displays a much slower

convergence rate than traditional numerical methods. The variance of Monte Carlo esti-

mates is 1
N where N represents the number of samples simulated. Then, since the size of

the confidence interval is proportional to the standard deviation, the smaller variance means

a more efficient implementation of the method. Therefore, it is worthwhile studying tech-

niques of variance reduction for Monte Carlo simulation. The popular methods for variance

reduction include antithetic variates, control variates, stratified sampling, variance reduction

by conditioned sampling and importance sampling.

The first question of this dissertation is how to reduce variance and therefore accelerate

the computing of Monte Carlo estimates of the Laplace transform of exponential Brownian

functionals. These quantities play an important role in statistical physics and mathematical

finance. We focus on the use of importance sampling. The intuition behind importance

sampling is to make a change of probability measure so as to give high probabilities to

events important in computing the quantity of interest. Although the idea is simple, it is

never a trivial problem to make a proper change of measure resulting in variance reduction.

Consider a problem of estimating EP [F ] where F is a random variable and the subscript

P indicates the probability measure with respect to which the expected valued is computed.

Importance sampling makes changes of both the probability P and the random variable F

to reduce the variance while still estimating the quantity of interest. Specifically, if Q is

a probability measure equivalent to P , then EP [F ] = EQ[F dP
dQ ] via the Radon-Nikodym

2



derivative dP
dQ . Thus, a good choice of Q has to reduce significantly the variance of F dP

dQ .

Equivalently, noting

V arQ(F
dP

dQ
) = EP [F 2 dP

dQ
]− EP [F ]2,

we seek to a Radon-Nikodym derivative dP
dQ with which the expected value of F 2 dP

dQ is

minimized.

It is easy to see that the Radon-Nikodym derivative dQ
dP = F

EP [F ] results in the optimal

change of measure since it gives the variance of zero. However, it includes the unknown

quantity EP [F ] to be estimated. It thus is of no use. Alternatively, one could try to solve

a sub-optimization problem over a smaller class of equivalent probabilities excluding the

optimal measure. While this attempt is intuitively natural it is often the case that the

problem admits no closed-form solutions.

Rather than solving the sub-optimization problem, Glasserman et al. (1999) considered

an asymptotic approximation of the second moment and minimizes the approximation over

a set of probabilities equivalent to the original one in finite dimensional setting. Guasoni

and Robertson (2008) extend the method to the infinite dimensional setting. We apply this

method to the problem of Monte Carlo estimation of the Laplace transform of exponential

Brownian functionals. Large deviations theory translates the asymptotic of the second mo-

ment into a calculus of variations problem. Fortunately, the calculus of variations problem

admits closed-form solutions. Then, the Cameron-Martin theorem tells us that the solution

for the calculus of variations problem gives us an asymptotically optimal importance sam-

pling measure for Monte Carlo simulation for the Laplace transform of exponential Brownian

functionals.

In addition to studying how to accelerate the speed of Monte Carlo simulation, we address

the convergence of a Monte Carlo method for American option pricing. An American option

differs from an European option in that the holder may select the time at which to exercise

the option. A theoretical result says that one has to appeal to an optimal exercise policy

for the fair price of an American option. Hence, the problem of pricing an American option

3



reduces to solving an optimal stopping problem (see Glasserman (2004) in references in the

first part).

The early-exercise feature of an American option makes this optimal stopping problem

analytically intractable and puts an emphasis on numerical methods. Numerical methods

include binomial trees and finite-difference methods. In low dimensional cases these methods

are fast. That is, if the number of underlying assets are less than three, then the methods

are effective. But many problems in real world have dimensions greater than three, which

has sparked studies on methods that are not affected by the "curse of dimensionality".

Monte Carlo simulation is well-known for its independence from dimension. However, it is

not obvious how to apply Monte Carlo simulation in the context of the optimal stopping

problem inherent in the course of American option pricing.

The algorithm by Longstaff and Schwartz (2001) may be the most popular method for

Monte Carlo method for pricing American option, which is evidenced by the number of

citations to this article. It builds on simulation, regression and backward induction. One

can find the details of the method in many monographs on stochastic simulation for finance

(for example, see Glasserman (2004) in the references of the second part).

While the implementation of the method is easy the analysis of convergence is difficult

enough to motivate numerous authors to study it (see the references for the second part).

Using Hermite polynomials and multiples of the powers as basis functions for Brownian

motion and geometric Brownian motion respectively Glasserman and Yu (2004) showed

that the method converges to an approximation of the true price of an American option

under a critical relation between the number of basis functions and the number of Monte

Carlo simulations if there is a single asset.

We note the method in Glasserman and Yu (2004) is a quasi-regression method, a variant

of the least-squares method. In particular, the method differs from Longstaff and Schwartz

method in how the sample paths of underlying assets are generated and the use of exact

matrix in estimating coefficients of the basis functions. In this dissertation, we revisit the

convergence of the quasi-regression method and address more promising results on its con-

vergence. With help from polynomial chaos expansion for L2 random variables, we show

4



for the case of geometric Brownian motion that the quasi-regression method converges to

the true value under a multi-asset environment with improved relation between the number

of basis functions and the number of Monte Carlo simulations for the case of geometric

Brownian motion. Further, the rate of convergence of the method is provided.

The dissertation is organized as follows. Part II addresses the problem of optimal impor-

tance sampling of the Laplace transform of exponential Brownian functional. Convergence

of the quasi-regression Monte Carlo method is dealt with in the part III. Finally, the results

of the thesis are summarized in part IV.

5



Part II.

OPTIMAL IMPORTANCE

SAMPLING FOR LAPLACE

TRANSFORMS OF

EXPONENTIAL BROWNIAN

FUNCTIONALS
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2.1. Abstract

An asymptotically optimal importance sampling method for Monte Carlo simulation of the

Laplace transform of exponential Brownian functionals is developed. We appeal to the theory

of large deviations, which converts the problem of finding a measure for importance sampling

into a calculus of variations problem and leads to a closed-form solution. Moreover, a path

to test regularity of optimal drift which is necessary in implementing the proposed method

is also addressed. Significant variance reduction in comparison to the crude Monte Carlo

simulations is demonstrated through numerical tests in the Dothan bond pricing model.

2.2. Introduction

In this part we develop a Monte Carlo method for estimating the Laplace transform of

exponential Brownian functional of the form

ˆ T

0
eσW (t)+ρσ2t/2dt

where {W (s)}x∈R+ is a standard Brownian motion, ρ ∈ R and σ, T > 0. Exponential

Brownian functionals are an important quantities in many academic disciplines. The list of

the disciplines includes mathematical finance and statistical physics of disordered systems

(See Comet et al. (1998), Linetsky (2004), Pintoux and Privault (2011), and references

therein). Computing the Laplace transform

L(a, T ) = E[exp(−a
ˆ T

0
eσW (t)+ρσ2t/2dt)], a > 0, ρ ∈ R

is in turn an important problem in such academic fields.

In the literature many papers are devoted to finding expressions such as integral repre-

sentations for the Laplace transform which aim at facilitating numerical to calculate these

quantities. There are two main applications in such studies: PDE and probability models

(see Pintoux and Privault (2011) and Privault and Uy (2013) for detailed review). However,

7



the representations are vulnerable to model perturbations and difficult to compute for some

values of a (see Guasoni and Robertson (2008) and Privault and Uy (2013)). In such cases,

Monte Carlo simulation may prove an easy solution.

However, Monte Carlo method suffers from its slow convergence rate. Thus, it is natural

to study methods to make it more efficient, which amounts to studying variance reduction

techniques. In Privault and Uy (2013) the author presented a Monte Carlo simulation

method by choosing an integral representation where the random quantity further follows the

generalized hyperbolic secant distribution with restricted ρ > 0. They also have presented

importance sampling and control variate methods to reduce variance based on likelihood

ratio with Beta function. However, numerical results there show that the performance of

their methods offers improvement only in restricted regions of T and ρ > 0.

We present a more promising and convenient importance sampling method, asymptocially

optimal importance sampling, which is free from the issues in Privault and Uy (2013). We

apply the method proposed by Glasserman et al. (1999) for finite dimensional case and later

extended to infinite dimensional case by Guasoni and Roberson (2008). The method builds

on the theory of large deviations, Cameron Martin theorem, and calculus of variations. The

large deviations principle results in a calculus of variations problem the solution of which in

turn induces a probability measure for importance sampling.

The main contribution of this chapter is that the resulting Euler equation admits closed-

form solutions. It dramatically improves the efficiency of Monte Carlo estimation in com-

parison to standard Monte Carlo with parsimonious computational overhead. Moreover,

considering the fact that the regularity of optimal drift is important in implementing the

method, a path to test its regularity is provided. Numerical tests applying the method

to the Dothan bond pricing model demonstrate the method is highly effective in variance

reduction in comparison to the crude Monte Carlo method.

8



2.3. Importance Sampling

Consider the general problem of estimating c ≡ E[F (G)] with a probability space (Ω,F , P )

where G : Ω→ X is a random variable and F : X → R is a measurable function. We assume

that X is a topological space with Borel sigma-algebra. Suppose there exists a measure

Q equivalent to P . Then, we have, through Radon-Nikodym derivative dP
dQ , EP [F (G)] =

EQ[F (G)dPdQ ] where the subscripts indicate the probability measure for the integral. The aim

of importance sampling is to find an equivalent measure Q for which Monte Carlo estimation

of c achieves a significant variance reduction in comparison to the original measure P ,

which therefore results in a shorter confidence interval and more accurate estimator. More

specifically, an optimal importance distribution Q should minimize the variance under the

measure Q itself,

V arQ[F (G)
dP

dQ
] = EP [F (G)2 dP

dQ
]− EP [F (G)]2.

Noting the key factor to variance reduction is to make small the valued of EP [F (G)2 dP
dQ ],

Glassserman et al. (1999) proposed the use of a large deviations result for asymptotic

integrals to identify an effective change of measure for estimating small perturbations of

the second moment in the variance in finite dimensional setting. Guasoni and Robertson

(2008), later, extended the method to infinite dimensional setting, which is also effective for

the present chapter.

To be more precise, recall the quantity of interest,

EP [exp{−a
ˆ T

0
eσW (t)+ρσ2t/2}].

The standard Brownian motion induces Wiener measure P on the space of continuous

functions on [0, T ]. Then, the Cameron-Martin theorem identifies the class of drifts that

induce measures equivalent to the one by a Brownian motion. Specifically, denote by WT

the Wiener space

9



WT ≡ {x ∈ C([0,T],R) : x(0) = 0}.

This space is equipped with the sup-norm topology. The set of candidates for drifts inducing

equivalent measures is the Cameron-Martin space

HT ≡ {h ∈ AC[0, T ] : h(0) = 0,

ˆ T

0
h
′
(t)2dt <∞}.

Then, Cameron-Martin theorem (see Peres and Morters (2010)) tells us that each h ∈ HT

induces a measure Qh equivalent to P via Radon-Nikodym derivative

dQh

dP
(W ) = exp{−1

2

ˆ T

0
h
′
(t)2dt+

ˆ T

0
h
′
dW}.

Then, we have

EP [exp{−a
´ T

0 eσW (t)+ρσ2t/2dt}]

= EQh [exp{−a
´ T

0 eσW (t)+ρσ2t/2dt} dP
dQh

]

= EQh [exp{−a
´ T

0 eσW (t)+ρσ2t/2dt−
´ T

0 h
′
(t)dW (t) + 1

2

´ T
0 h

′
(t)2dt}]

.

Therefore, since W̃ = W − h is a standard Brownian motion under Qh, the estimator, in

implementing Monte Carlo simulation, is

exp{−a
´ T

0 eσ(W̃ (t)+h(t))+ρσ2t/2dt−
´ T

0 h
′
(t)dW̃ (t)− 1

2

´ T
0 h

′
(t)2dt} .

In section 2.4 below, we choose a drift h for variance reduction via importance sampling

for the Laplace transform of exponential Brownian functional through the method proposed

in Guasoni and Robertson (2008), which will be detailed below.

10



2.4. An Asymptotically Optimal Estimator and Large

Deviations

We introduce basic definitions and theorems on the theory of large deviations needed to

derive an optimal drift for importance sampling. We refer readers to Dembo and Zeitouni

(1998) and Kalenberg (2002) for detailed development of the theory. The theory of large

deviations concerns the asymptotic behavior of small probabilities on an exponential scale.

The first rigorous result on large deviations was due to Cramer. He explored the problem of

choosing premium for an insurance contract from the perspective of the insurance company.

Equivalently, he explored the asymptotic behavior of probabilities of the tail of the empirical

mean of i.i.d random variables.

Later, his idea of the tail probabilities had generalized to the setting for the studies

of the asymptotic behavior of probabilities of the rare events on an exponential scale. A

typical setting for large deviations principle as follows; let X be a Hausdorff topological

space equipped with its Borel σ-algebra B and M1(X ) be a space of probability measures

on the measurable space. Consider a class {µε}ε∈R+ of M1(X ). What we have interest

in here is the limit behavior of the probabilities µε assigns to an outcome x ∈ X on an

exponential scale as ε goes smaller and smaller. However, it is often not the case that we

assign a probability to an individual element x in the space of interest. To get around this

impracticability one considers probabilities assigned to sets in the space while introducing

ratefunction to identify the impact of each outcome x on the asymptotic behavior. However,

it is still problematic to consider all subsets of the space X for studying large deviations.

The reasonable subclass of X for it is the set of all measurable sets. Here is the precise

definition of an asymptotic behavior of small probabilities on an exponential scale.

Definition 2.1. Let (X,B) be a metric space with its Borel σ-algebra, and consider a lower

semicontinuous function I : X → [0,+∞]. A family of measures {µε}ε∈(0,δ) satisfies a large

deviation principle with good rate function I if

(i) {x ∈ X : I(x) ≤ α} is compact for all α ∈ R,

(ii) For all sets A ∈ B,

11



− inf
x∈Ao

I(x) ≤ liminf
ε→0

ε logµε(A) ≤ limsup
ε→0

ε logµε(A) ≤ −inf
x∈Ā

I(x).

On the Wiener space the following asymptotic of probabilities holds.

Theorem 2.2. (Schilder) Let X = WT and µε be the probability on WT induced by the

process
√
εW , where W is a standard Brownian motion. Then (µε)ε∈(0,δ) satisfies a large

deviation principle with good rate function

I(x) =


1
2

´ T
0 x

′
(t)2dt,

+∞,

if x ∈ HT,

if x ∈WT \HT

.

Here is another theorem for asymptotic of integrals.

Theorem 2.3. (Varadhan) Let (Zε)ε∈(0,δ) be a family of X-valued random variables, whose

laws µε = Zε(P ) satisfy a large deviations principle with good rate function I. If H : X → R

is a continuous function which satisfies

limsup
ε→0

ε logE[exp(
α

ε
H(Zε))] <∞,

for some α > 1, then

lim
ε→0

ε logE[exp(
1

ε
H(Zε))] = sup

x∈X
(H(x)− I(x)).

We introduce definitions proposed in Glasserman et al. (1999) with which we select a

drift h for variance reduction. Glasserman et al. (1999) considered a more general problem

of estimating

α(ε) = EP [eF (
√
εW )/ε], ε > 0

which includes the original problem as a specific case with ε = 1. We will conduct an analysis

of the limit behavior of the second moment in variance of estimators of α(ε) when ε → 0

12



with help from Schilder and Varadhan’ s theorems. Here is the first definition.

Definition 2.4. A family of estimators {α̂(ε)} is asymptotically relatively unbiased if

EQ(ε)[α̂(ε)]− α(ε)

α(ε)
→ 0 as ε→ 0

where the subscript Q(ε) represents the measure for the expectations.

For comparisons among such estimators we utilize their second moments as in the following

definition.

Definition 2.5. A family of asymptotically relatively unbiased estimators {α̂0(ε)} is asymp-

totically optimal if

limsup
ε→0

ε logEQ(ε)[α̂
2
0(ε)] = inf

{α̂(ε)}
limsup
ε→0

ε logEQ(ε)[α̂
2(ε)],

the infimum taken over all {α̂(ε)} satisfying above definition.

Note the degenerate estimator α̂(ε) ≡ α(ε) is trivially asymptotically optimal and we get

limsup
ε→0

ε logα2(ε) = 2limsup
ε→0

ε logα(ε).

Thus, an asymptotically optimal estimator achieves twice the exponential rate of α(ε)

itself as pointed out in Glasserman et al. (1999). We specify the setting for our problem.

Define F : WT → R by

F (x) = −a
ˆ T

0
eσx(t)+ρσ2t/2dt,

and also define Fh : WT → R by

Fh(x) = 2F (x)−
ˆ T

0
h
′
(t)dx(t) +

1

2

ˆ T

0
h
′
(t)2dt.

Now, we address properties of F to be used later.

Theorem 2.6. F is continuous on the Wiener space WT and strictly concave.

13



(Proof) Suppose xn → x in sup-norm. Note

∣∣∣´ T0 eσxn(s)+ρσ2s/2ds−
´ T

0 eσx(s)+ρσ2s/2ds
∣∣∣ =

∣∣∣´ T0 (eσxn(s) − eσx(s))eρσ
2s/2ds

∣∣∣
≤ c

´ T
0

∣∣eσxn(s) − eσx(s)
∣∣ ds

= c
´ T

0 eσx(s)
∣∣eσxn(s)−σx(s) − 1

∣∣ ds
≤ c̃

´ T
0

∣∣eσxn(s)−σx(s) − 1
∣∣ ds

.

Thus, by dominated convergence theorem, F is continuous. Also, note that

´ T
0 eσ( 1

2
x1(s)+ 1

2
x2(s))+ρσ2s/2ds =

´ T
0 e

1
2

(σx1(s)+ρσ2s/2)e
1
2

(σx2(s)+ρσ2s/2)ds

≤
´ T

0
1
2 [eσx1(s)+ρσ2s/2 + eσx2(s)+ρσ2s/2]ds

= 1
2

´ T
0 eσx1(s)+ρσ2s/2ds+ 1

2

´ T
0 eσx2(s)+ρσ2s/2ds

.

Therefore, since F is continuous, F is also strictly concave.

Note F satisfies the conditions in Varadhan’s theorem. Hence, by Schilder theorem, we

have

2limsup
ε→0

ε logα(ε) = 2 sup
x∈HT

(F (x)− 1

2

ˆ T

0
x
′
(t)2dt).

Now we consider this optimization problem;

sup
x∈HT

(−2a

ˆ T

0
eσx(t)+ρσ2t/2dt−

ˆ T

0
x
′
(t)2dt),

equivalently,

14



− inf
x∈HT

(

ˆ T

0
2aeσx(t)+ρσ2t/2 + x

′
(t)2dt).

Let us consider this problem in larger set AC[0, T ];

min
AC[0,T ]

ˆ T

0
2aeσx(t)+ρσ2t/2 + x

′
(t)2dt, x(0) = 0,

equivalently,

min
AC[0,T ]

ˆ T

0
2aeσx(t)+ρσ2t/2 + x

′
(t)2dt, x(0) = 0, x

′
(T ) = 0 (2.4.1)

by noting that any solution to the problem satisfies the transversality condition, x′(T ) = 0.

This problem of calculus of variations admits a unique and C∞ solution h∗.

Theorem 2.7. The problem (2.4.1) admits a unique C∞ solution.

(Proof) Let Λ(t, x, ν) = 2aeσx+ρσ2t/2 + ν2. Then, since Λ is coercive of degree 2, by

Tonelli theorem, there exists a solution h∗ ∈ AC[0, T ]. Moreover, the function G(x) =
´ T

0 Λ(t, x(t), x
′
(t))dt is strictly convex, h∗ is a unique solution. Now we consider the regu-

larity of the solution h∗. Note Λx = 2aσeσx+ρσ2t/2 and Λν = 2ν. It is obvious h∗ satisfies

the Euler equation in integral form. Then, using θ(t) = t2 as a test function we see that Λ

satisfies the Nagumo growth condition. Hence, h∗ is Lipschitz. Finally, since Λ is of class

C∞ and Λνν is positive definite, by the Hilbert-Weierstrass theorem, h∗ is also of C∞.

In the proof above we do not appeal to theorem 3.6 in Guasoni and Robertson (2008),

which says nothing about the regularity of solutions at the cost of generality. However, we

surely need a proper regularity of solutions to at least guarantee that its derivatives are of

bounded variation. In fact, we need more regularity considering the nature of the calculus

of variations problem. In particular, the path to regularity of optimal drift above will be

helpful to deal with other specific problems that do not allow a closed-form solution and one

must appeal to a numerical solution.

Note h∗ is also the solution of the original problem and (h∗)
′ is of bounded variation. We

also note for any h′ of bounded variation and α > 1, Fh is continuous on WT with respect
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to sup-norm and satisfies the condition in Varadhan’s theorem (see lemma 7.6 in Guasoni

and Robertson (2008)).

Let us consider the estimators

α̂h(ε) = exp{ε−1F (
√
εW )−

ˆ T

0

h
′
(t)√
ε
dW (t) +

1

2

ˆ T

0

h
′
(t)2

ε
dt}.

Denote L(h) by

L(h) := limsup
ε→0

ε logEQh/
√
ε [α̂2

h(ε)]

= limsup
ε→0

ε logEP [exp{1

ε
(2F (

√
εW )−

ˆ T

0

√
εh
′
(t)dW (t) +

1

2

ˆ T

0
h
′
(t)2dt)}].

Then, by Schilder’s theorem, we have

L(h) = sup
x∈HT

(2F (x) +
1

2

ˆ T

0
(x
′
(t)− h′(t))2dt−

ˆ T

0
x
′
(t)2dt).

if h′ is of bounded variation (see lemma 7.6 in Guasoni and Robertson (2008)).

We want to show that

L(h∗) = 2F (h∗)−
ˆ T

0
(h∗)

′
(t)2dt,

which means the family {α̂h∗(ε)} is asymptotically optimal and, in this sense, h∗ is an

optimal drift for the change of measure for importance sampling of the Laplace transform

of exponential Brownian functional.

Theorem 2.8. The family of estimators {α̂h∗(ε)} is asymptotically optimal.

(Proof) We note that the problem

sup
x∈HT

(2F (x) +
1

2

ˆ T

0
(x
′
(t)− h′(t))2dt−

ˆ T

0
x
′
(t)2dt)

has a maximizer for all h ∈ HT (see theorem 3.6 in Guasoni and Robertson (2008)).

Moreover, since F is concave and, for any r ≥ 0, the set

16



{x ∈ HT : ‖x′‖22 ≤ 2r}

is compact by Schilder theorem, utilizing minimax theorem, we have

L(h∗) = 2F (h∗)−
ˆ T

0
(h∗)

′
(t)2dt.

2.5. Optimal Drift

Now we determine h∗ explicitly. Let us consider

min
AC[0,T ]

ˆ T

0
2aebx(s)+ b2c

2
s + x

′
(s)2ds, x(0) = 0, x

′
(T ) = 0.

Depending on c we have three cases.

Case 1) c > 0

We have Euler equation,

x
′′
(t) = abebx(t)+ b2c

2
t, x(0) = 0, x

′
(T ) = 0.

Note x′(0) < 0. Let y(t) := bx(t)+ b2c
2 t. Then, y

′
= bx

′
+ b2c

2 , y′′ = bx
′′

= ab2ebx(t)+ b2c
2
t >

0, y(0) = 0, and y
′
(T ) = b2c

2 . Note 2y
′′
y
′

= [(y
′
)2]
′

= 2abeyy
′

=]2ab2ey]
′ and (y

′
)2 =

2ab2ey + d. If y′(0) = 0, then we have x′(0) = − bc
2 . Thus, we have three cases − bc

2 <

x
′
(0) < 0, x′(0) < − bc

2 , and x
′
(0) = − bc

2 ; y
′
(0) < 0, y′(0) > 0, and y′(0) = 0.

For the case of y′(0) < 0, since y′(T ) = b2c
2 , there is a unique point τ ∈ (0, T ) where

y
′
(τ) = 0. It follows that d < 0: we write d = −k2 where k > 0. On the interval [τ, T ] we

have y′ =
√

2ab2ey − k2. This separable differential equation, by letting u2 = 2ab2ey − k2,

can be integrated to get

y(t) = log
k2

2ab2
+ log(1 + tan2(

k(t+ α)

2
)) or y(t) = log

k2

2ab2
+ log(1 + tan2(

k(α− t)
2

)).
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Differentiating leads to

y
′

= ktan(
k(t+ α)

2
) or y

′
= ktan(

k(t− α)

2
).

Thus, from y
′
(τ) = 0, we have α = −τ or α = τ . In either case, on [τ, T ], we have

y(t) = log
k2

2ab2
+ log(1 + tan2(

k(t− τ)

2
)).

By same analysis, on [0, τ ], we have the same result. Thus, since y(0) = 0 and y′(T ) = b2c
2

we have two equations for k and τ ;

1 = k2

2ab2
(1 + tan2(kτ2 ))

b2c
2 = ktan(k(T−τ)

2 )

.

Now we consider the case y′(0) > 0. If d = 0 then we have

y
′

=
√

2ab2ey.

By letting u2 = 2ab2ey and integrating, we have

y = −log2ab2 − 2log(
t

2
+ α) or y = −log2ab2 − 2log(− t

2
+ α),

and,

y
′

= − 2

t+ 2α
or y

′
= − 2

t− 2α
.

Hence, we have α = ± 1
b
√

2a
from y(0) = 0. If α = − 1

b
√

2a
, y is undefined in either case.

Moreover, since y′(0) = − 1
α or y′(0) = 1

α , from y
′
(0) > 0, we have

y(t) = −log2ab2 − 2log(− t
2

+
1

b
√

2a
) and y

′
(t) = − 2

t− 2
b
√

2a

18



where T = 2
b
√

2a
− 4

b2c
and bc > 2

√
2a by y′(T ) = b2c

2 . If d > 0, then we have

(y
′
)2 = 2ab2ey + d = 2ab2ey + k2, k > 0.

Letting u2 = 2ab2ey + k2, we have

y = log
2k2

ab2
+ k(t+ 2α)− 2log(1− ek(t+2α))

or

y = log
2k2

ab2
+ k(−t+ 2α)− 2log(1− ek(−t+2α)),

and

y
′

= k +
2kek(t+2α)

1− ek(t+2α)
or y

′
= −k − 2kek(t+2α)

1− ek(−t+2α)
.

Since y′(0) > 0 we have

y = log
2k2

ab2
+ k(t+ 2α)− 2log(1− ek(t+2α)) and y

′
= k +

2kek(t+2α)

1− ek(t+2α)
.

So, since y(0) = 0 and y′(T ) = b2c
2 , we have two equations for k and α;

0 = log 2k2

ab2
+ 2kα− 2log(1− e2kα)

b2c
2 = k + 2kek(T+2α)

1−ek(T+2α)

,

where α < T
2 and 0 < k < b2c

2 . For the case of d < 0, we have

y(t) = log
k2

2ab2
+ log(1 + tan2(

k(t+ α)

2
)) or y(t) = log

k2

2ab2
+ log(1 + tan2(

k(t− α)

2
)).

Differentiating leads to
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y
′

= ktan(
k(t+ α)

2
)

or,

y
′

= ktan(
k(t− α)

2
).

Since y′(0) > 0 we have α > 0 or α < 0. Thus, we have

y(t) = log
k2

2ab2
+ log(1 + tan2(

k(t+ α)

2
)) and y

′
= ktan(

k(t+ α)

2
).

So, we have two equations for k > 0 and α > 0;

1 = k2

2ab2
(1 + tan2(kα2 ))

b2c
2 = ktan(k(T+α)

2 )

.

Finally, if y′(0) = 0, then d = −2ab2 and k = b
√

2a. Thus, we have

y(t) = log(1 + tan2(
b
√

2a

2
t)),

where T = 2
b
√

2a
tan−1( bc

2
√

2a
) by y′(T ) = b2c

2 .

In conclusion, by the existence and uniquness, we must have, depending on a, b, c, and T ,

one of the cases below;

(i)

x(t) =
1

b
log

k2

2ab2
+

1

b
log(1 + tan2(

k(t− τ)

2
))− bc

2
t

if 0 < τ < T and 0 < τk < π satisfy
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1 = k2

2ab2
(1 + tan2(kτ2 ))

b2c
2 = ktan(k(T−τ)

2 )

.

(ii)

x(t) = −1

b
log2ab2 − bc

2
t− 2

b
log(− t

2
+

1

b
√

2a
)

if T = 2
b
√

2a
− 4

b2c
and bc > 2

√
2a.

(iii)

x(t) =
1

b
log

2k2

ab2
+
k

b
(t+ 2α)− 2

b
log(1− ek(t+2α))− bc

2
t

if α < −T
2 and 0 < k < b2c

2 satisfy

0 = log 2k2

ab2
+ 2kα− 2log(1− e2kα)

b2c
2 = k + 2kek(T+2α)

1−ek(T+2α)

.

(iv)

x(t) =
1

b
log

k2

2ab2
+

1

b
log(1 + tan2(

k(t+ α)

2
))− bc

2
t

if α > 0 and 0 < αk < π satisfy

1 = k2

2ab2
(1 + tan2(kα2 ))

b2c
2 = ktan(k(T+α)

2 )

.

(v)

x(t) =
1

b
log(1 + tan2(

b
√

2a

2
t))− bc

2
t
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if T = 2
b
√

2a
tan−1( bc

2
√

2a
).

Case 2) c < 0

For this case we first note that y′(T ) = b2c
2 < 0 and y

′′
> 0 imply y′ < 0. Thus, it is

sufficient to consider the case of y′(0) > 0 among sub-cases for the case c > 0 with proper

changes. Following the reasoning there line by line we have three cases;

(vi)

x(t) = −1

b
log2ab2 − 2

b
log(

t

2
+

1

b
√

2a
)− bc

2
t

if T = − 2
b
√

2a
− 4

b2c
and 2

√
2a > −bc.

(vii)

x(t) =
1

b
log

2k2

ab2
+
k

b
(−t+ 2α)− 2

b
log(1− ek(−t+2α))− bc

2
t

if α < 0 and 0 < k < − b2c
2 satisfy

0 = log 2k2

ab2
+ 2kα− 2log(1− e2kα)

b2c
2 = −k − 2kek(−T+2α)

1−ek(−T+2α)

.

(viii)

x(t) =
1

b
log

k2

2ab2
+

1

b
log(1 + tan2(

k(t+ α)

2
))− bc

2
t

if k > 0, α < 0, and −π < αk < 0 satisfy

1 = k2

2ab2
(1 + tan2(kα2 ))

b2c
2 = ktan(k(T+α)

2 )

.

Case 3) c = 0

In this case, we first note that y′(T ) = 0 and y′(0) < 0. Thus, by considering the case
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d < 0 when c > 0 and y′(0) > 0 with proper changes, we have the only case below;

(ix)

x(t) =
1

b
log

k2

2ab2
+

1

b
log(1 + tan2(

k(t− T )

2
))

if k > 0 satisfies

1 =
k2

2ab2
(1 + tan2(

kT

2
)).

2.6. Numerical Results

We test the proposed method for the case of ρ > 0. Consider the Dothan model in Pintoux

and Privault (2011) for bond pricing for the zero-coupon price

L(T, r0) = E[e−
´ T
0 rsds | Ft]

where rs = r0e
σW (s)+ρσ2s/2, s ∈ R+ and T is the maturity of a bond. L(T, r0) is the bond

price under the condition L(0, r0) = 1.

For example, setting a volatility coeffieient of σ = 30% and a drift value of ρσ2/2 = 0.045

per year the approximate theoretical value of the Dothan model for a zero-coupon bond

ten years before maturity via an integral representation from PDE approach is 0.43 when

the underlying short term interest rate is of 6% (see page 512, 516 in Privault and Uy

(2013)). The values of parameters in the model allow us to have type (i) as the formula for

asymptotically optimal drift for the Monte Carlo simulation.

In Table 2.1 simulation results for crude and optimal drift cases are recorded. Simulations

are performed with 100, 300, and 500 paths with the time-increment of 1/2520 corresponding

to one business day. As the number of paths increase the results of simulations approaches

to the approximate theoretical value above.

Table 2.2 shows the performance of asymptotically optimal estimator in terms of variance

reduction which is obtained by dividing the variance of crude Monte Carlo sample by the
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Table 2.1.: Monte Carlo estimation of crude and optimal estimators
Sample size Crude Optimal

100 0.4549 0.4533

300 0.4431 0.4393

500 0.4376 0.4344

Table 2.2.: Variance reduction ratio across various parameters
r0 σ ρσ2

2 S.E. Variance ratio Type
0.03 0.2 0.02 0.0307 9.4210 (iv)

0.3 0.045 0.0721 4.8846 (iv)

0.4 0.08 0.1170 3.6642 (iv)

0.06 0.2 0.02 0.0337 10.400 (i)

0.3 0.045 0.0980 3.5417 (i)

0.4 0.08 0.1025 4.9143 (i)

1.00 0.2 0.02 0.0001 116.6425 (i)

0.3 0.045 0.0004 97.81570 (i)

0.4 0.08 0.0008 84.43210 (i)
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Table 2.3.: Variance reduction ratio for other cases
T a σ ρ S.E. Variance reduction Type
0.4 2 3.16 4 0.0005 471.18 (v)

0.5 1 1 20 0.0004 166.95 (iii)

1 0.5 1 4 0.0648 7.8671 (ii)

variance of optimal sample. Each simulation is performed with 100,000 paths. The results

show that the application of optimal drift significantly improves Monte Carlo estimate in

variance reduction. In the table we observe a tendency that the variance reduction might be

more and more significant as the underlying short term interest rate increases. Hence, the

optimal drift method could be more effective when we use the Dothan model with a high

short term interest rate. However, since we get at least about four-fold in variance reduction

even at worst case, the optimal drift method is still effective for the case of a low short term

interest rate.

Some simulation results for other cases (ii), (iii) and (v) are recorded in Table 2.3. The

values of T are chosen to be small keeping in mind comparison to results in Table 2.2 where

T = 10. The results still show the optimal drift method significantly improves Monte Carlo

estimation by reducing dramatically sample variance in comparison to the sample variance

of crude Monte Carlo simulation.

2.7. Concluding Remarks

An importance sampling method for Monte Carlo simulation of the Laplace transform of

exponential Brownian functionals is developed. A Large deviation principle converts the

problem of finding the asymptotically optimal change of drift into a calculus of variations

problem. The solution of the variational problem is unique and is an element of C∞.

Moreover, the corresponding Euler equation allows us to have closed-form solutions. Hence,

the overhead for implementing the method is negligible.

Numerical experiments were performed in the case of the Dothan bond pricing model.
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The results shows that the proposed method demonstrates an effective variance reduction

in comparison to the case of a standard crude Monte Carlo method.
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Part III.

ON THE CONVERGENCE OF

QUASI-REGRESSION METHOD:

POLYNOMIAL CHAOS AND

REGULARITY
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3.1. Abstract

An analysis of convergence of a quasi-regression Monte Carlo method for American option

pricing proposed by Glasserman and Yu (2004) is conducted. In that paper the author

showed that the method converges to an approximation of the true price of American op-

tion with a single underlying asset while establishing a critical relation between the number

of basis functions and the number of Monte Carlo simulations, the method uses Hermite

polynomials and multiples of the powers as basis functions for Brownian motion and geo-

metric Brownian motion, respectively. We show that the method surely converges to the

true price of American option even under multiple underlying assets. Moreover, we show

the critical relation for Brownian motion case with single asset holds also for geometric

Brownian motions with basis functions different from ones in Glasserman and Yu (2004)

with multiple-underlying assets. A rate of convergence of the method is also provided by

introducing regularity of value functions.

3.2. Introduction

In this chapter we study the convergence of a Monte Carlo method for pricing American

options. American option differs from better known European option in that it gives the

holder the right to exercise the option at any time before the expiration date. A standard

theory of American option pricing tells us that the problem accompanies an optimal stopping

problem (see, e.g., Glasserman (2004)). Hence, the next step for the problem is to seek

numerical methods. Many papers are devoted to the topic of numerical methods for the

problem. Among numerical methods the least-squares Monte Carlo method proposed by

Longstaff and Schwartz (2001) has been one of the most popular one to both researchers

and practitioners(see Stentoft (2004) for more detailed review and comparison among other

approaches such as PDE or binomial tree methods).

The strong point of the least-squares Monte Carlo method is, needless to say, the ease

of implementation. However, analysis of the convergence of the method is a difficult task.

The first paper addressing this question was Clement, Lamberton and Protter (2002), which
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shows convergence of the method to an approximation to the true price under a fixed number

of basis functions. Glasserman and Yu (2004) and Stentoft (2004) have studied the problem

when the number of paths and number of basis functions increase at the same time. Gerhold

(2011) extended Glasserman and Yu (2004) to the case where underlying asset follows several

Levy processes. Stentoft (2004) used results about series estimator to show that the method

achieves polynomial growth of the number of paths in the number of basis functions. Later,

Egloff (2005), Egloff, Kohler and Todorovic (2007) appealed to statistical learning theory to

study the convergence of the method under the assumption of boundedness of state space.

Zanger (2013) later took a similar approach to the problem without the assumption.

However, it should be noted that Glasserman and Yu (2004) and Gerhold (2013) analyzed

a quasi-regression method which is a variant of the standard least-squares Monte Carlo

regression method proposed by Longstaff and Schwartz in two aspects: how paths are gen-

erated and the use of the exact matrix in calculation of coefficients of basis functions (see

Glasserman and Yu (2004), page 2095).

The purpose of the present part is to improve the results in Glasserman and Yu (2004).

To be specific, Glasserman and Yu (2004) have shown a quasi-regression method converges

to an approximation of the true price of the American option with two examples of single

underlying asset: Brownian motion and geometric Brownian motion. To prove convergence,

they show that the number of basis functions (Hermite polynomials) K in a sample size N

must grow at O(logN) (O(
√
logN) for geometric Brownian motion using multiples of the

powers xk as basis functions) in order to get convergence. We show that, even in the case of

multiple underlying assets, the algorithm converges to the true value using the asymptotic

of the moments of Hermite polynomials. Further, we show that the critical value on relation

between the number of basis functions and the number of paths simulated in Glasserman and

Yu (2004) still holds for geometric Brownian motion with basis functions different from the

multiples of powers, which points out the importance of proper choice of basis functions in

implementing a quasi-regression method. To this end, we use polynomial chaos expansion to

ensure the assumptions for Brownian motion case in Glasserman and Yu (2004) still holds for

the case of geometric Brownian motion. Finally, considering the regularity of continuation
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value function, we present a rate of convergence of the algorithm.

In Section 3.3 we recall the general backward induction framework for pricing of American

option. In section 3.4 we assume our market model. We also introduce some notations and

results for polynomial chaos and regularity of functions in Section 3.5 and 3.6. We propose

the algorithm to be analyzed in section 3.7. Section 3.8 presents two main results: (1) proof

of the convergence of the algorithm and (2) a rate of convergence for the algorithm. We will

end with some concluding remarks in section 3.9.

3.3. Pricing via Backward Induction

In this section, we present a general framework for pricing of an American option to which

our algorithm in the subsequent sections applies. We follow the presentation of Glasserman

and Yu (2004) since the goal of this chapter improves upon their results. One can find a

more detailed and kind description about the formulation of the framework in many sources

(see, e.g., Glasserman (2004), Korn et al. (2010)).

We assume a complete probability space (Ω,F , P ) where P is the risk-neutral measure.

We deal with the problem in a discretized time setting: the option expires in m periods with

T as the expiration date and set the early exercise points as t0 = 0 < t1 < ... < tm = T .

Hence, our problem can be considered as an approximation to the price of an American

option in discretized time or the exact price of a Bermudan option. A theoretical value

Vtn(x) of American option at tn in state x is given by

Vtn(x) = sup
τ∈Γn

E[h(Sτ ) | S(tn) = x]

where h : Rd → R is a payoff function for the option and h ∈ L2(Ω,F , P ), Γn is the set of

all stopping times taking values in {tn, ..., tm} adapted to the filtration corresponding to a

market model, S(t) = (S1(t), ..., Sd(t)) where S(t) is a given stochastic process.

The option value satisfies the backward induction equations:

Vtm(x) = htm(x)
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and

Vtn(x) = max{htn(x), E[Vtn+1(S(tn+1))|S(tn) = x]},

n = 0, 1, ...,m− 1. We can rewrite these with respect to continuation values

C∗tn(x) = E[Vtn+1(S(tn+1)) | S(tn) = x], n = 0, 1, ...,m− 1,

as

C∗tm(x) = 0,

C∗tn(x) = E[max{htn+1(S(tn+1)), C∗tn+1
(S(tn+1))} | S(tn) = x],

n = 0, 1, ...,m− 1. The option value satisfies

Vtn(x) = max{htn(x), C∗tn(x)}.

Therefore, we can calculate the value from the continuation values at least from a theoretical

perspective. We note if S(0) is a constant, then, C∗t0 = E[Vt1 ]. We, further, note that

deterministic or stochastic discounting can be absorbed into hn (see Glasserman and Yu

(2004)).

3.4. Market Model

We assume that the underlying assets {Si}di=1 follow a correlated geometric Brownian motion

with a fixed initial value S0 = {s1, ..., sd} under the risk-neutral measure:

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t), i = 1, ..., d,

equivalently,
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Si(t) = sie
(r− 1

2
σ2
i )t+σiWi(t), i = 1, ..., d,

where {Wi}di=1 is a correlated Brownian motion, r is the risk free rate, σi is the volatility

of the i-th asset. The correlations between Wi and Wj are given by a d × d matrix ρ with

[ρ]ij = ρij where ρii = 1 and −1 ≤ ρij ≤ 1. Since, by Cholesky decomposition,

ρ = HHT

where H is a lower triangular matrix,

W (t) = HZ(t),

where Z(t) is d-dimensional Brownian motion (see Glasserman (2004)). Then, in our dis-

cretized setting, for i = 1, ..., d

Si(tn) = sie
(r− 1

2
σ2
i )tn+σi

∑d
j=1 hijZj(tn), n = 0, 1, ...,m.

For notational convenience, we denote (Si(tn))di=1 and (Zi(tn)/
√
tn)di=1 by Sn and ξn for

n = 1, ...,m. Note ξn is a random vector consisting of i.i.d. random variables with standard

normal distribution. The assumption below turns out to be useful:

Assumption (1): ρ is positive-definite.

Then, since H is invertible, the σ-algebras generated by Sn and ξn are equivalent:

σ(Sn) = σ(ξn).

Therefore, by the Doob-Dynkin lemma (see Ernst et al. (2012)), there exists a Borel-

measurable function Ctn from Rd to R such that

C∗tn(Sn) = Ctn(ξn), n = 1, ...,m− 1.

Thus, for each n ∈ {1, ...,m− 1}, we have
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C∗tn(Sn) = Ctn(ξn) ∈ L2(Ω, σ(ξn), P ).

For notational simplicity, we write Cn for Ctn for each n.

3.5. Polynomial Chaos Expansion

Here we introduce some results on polynomial chaos expansion of a function. This section

is just an short summary of section 3 in Ernst et al. (2012). Thus, one can consult with

Ernst et al. (2012) for more detailed and comprehensive development of the theory of

generalized polynomial chaos expansion. An important issue in stochastic computation is

to find a manageable representation of random object of interest. A popular approach for

this is polynomial chaos expansion; a random variable is represented by a series of Hermite

polynomials. We detail this approach in the context of the current application.

Define the normalized Hermite polynomials {ψk}k∈N0 by

ψk(x) =
1√
k!
Hk(x), x ∈ R,

where Hk(x) = (−1)ke
x2

2 ( dk

dxk
e−

x2

2 ). From the results for (“probabilist’s”) Hermite polyno-

mials (See Abramowits and Stegun (1972)), the normalized Hermite polynomials satisfy

ψ
′
k(x) =

√
kψk−1(x), k ≥ 1, (3.5.1)

and

ψk+1(x) =
x√
k + 1

ψk(x)−
√
k√

k + 1
ψk−1(x), k ≥ 1. (3.5.2)

We further note

ˆ
R
ψm(x)ψn(x)ω(x)dx = δmn

where ω is the standard normal density function.
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We consider L2(Ω, σ(ξ), P ) where ξ has a standard normal distribution Fξ. For any

ϕ ∈ L2(Ω, σ(ξ), P ), by Doob-Dynkin lemma, there exists a Borel-measurable function f :

R → R such that ϕ = f(ξ). Then, since the normalized Hermite polynomials constitute

an orthonormal system for L2(R,B(R), Fξ(dx)), the set {ψk(ξ)}k∈N0 is also an orthonormal

system of L2(Ω, σ(ξ), P ). The completeness of these systems amounts to the question of

polynomials in an L2-space to the unique solvability of a moment problem; one says that

the moment problem is uniquely solvable for a probability distribution on (R,B(R)), or

that the distribution is determinate if the distribution function is uniquely defined by the

sequence of its moments

µk :=

ˆ
R
xkFξ(dx), k ∈ N0.

It is obvious that ξ satisfies Assumption 3.1. in Ernst et al. (2012): (i) each basic

random variable ξm possesses finite moments of all orders and (ii) the distribution functions

Fξm(x) := P (ξm ≤ x) of the basic random variables are continuous. Now we need some

results from Ernst et al. (2012).

Theorem 3.9. (Theorem 3.3 in Ernst et al. (2012)) The sequence of orthogonal poly-

nomials associated with a real random variable ξ, satisfying Assumption 3.1 is dense in

L2(R,B(R), Fξ(dx)) if and only if the moment problem is uniquely solvable for its distribu-

tion.

Here is another one.

Theorem 3.10. (Theorem 3.4 in Ernst et al. (2012)) If one of the following conditions

for the distribution Fξ of a random variable ξ satisfying Assumption 3.1 is valid, then the

moment problem is uniquely solvable and therefore the set of polynomials in the random

variable ξ is dense in the space L2(Ω, σ(ξ), P ).

(a) The distribution Fξ has compact support.

(b) The moment sequence {µn}n∈N0 of the distribution satisfies
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liminf
n→∞

2n
√
µ2n

2n
<∞.

(c) The random variable is exponentially integrable, i.e., there holds

ˆ
R
exp(a | x |)Fξ(dx) <∞

for a strictly positive number a. An equivalent condition is the existence of a finite

moment-generating function in a neighborhood of the origin.

(d) The moment sequence {µn}n∈N0 of the distribution satisfies

∞∑
n=0

1
2n
√
µ2n

=∞.

(e) If the distribution has a symmetric, differentiable and strictly positive density fξ and

for a real number x0 > 0 there holds

ˆ ∞
−∞

−logfξ(x)

1 + x2
dx =∞ and

−xf ′ξ(x)

fξ(x)
↗∞(x→, x ≥ x0).

Note these two theorems imply {ψk(ξ)}k∈N0 is a complete orthonormal system for L2(Ω, σ(ξ), P ):

ϕ = f(ξ) =
∞∑
k=0

akψk(ξ), in L
2,

where

ak =< ϕ,ψk(ξ) >=

ˆ
Ω
ϕψk(ξ)dP =

ˆ
Ω
f(ξ)ψk(ξ)dP =

ˆ
R
f(x)ψk(x)Fξ(dx), k ∈ N0.

Next, we construct the same result for multi-dimensional case. Let us consider a random

vector ξ : Ω → Rd where ξ = (ξ1, ..., ξd) and {ξi}di=1 is i.i.d. with standard normal distri-

bution. First, denote by {p(m)
j }j∈N0 , m = 1, ..., d, the sequence of polynomials orthonormal

with respect to the distribution ξm. Then, the set of multivariate polynomials given by
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pα(ξ) =
d∏

m=1

p(m)
αm (ξm), α(α1, ..., αd) ∈ Nd0,

consititutes an orthonormal system of random variables in the space L2(Ω, σ(ξ), P ). There-

fore the polynomials

pα : x 7→ pα(x), α ∈ Nd0,

form an orthonormal system in the image space L2(Rd,B(Rd)) with the product probability

measure Fξ1(dx1) × · · · × Fξd(dxd). Now we address the multi-dimensional counterparts of

theorem 3.9 and 3.10.

Theorem 3.11. (Theorem 3.6 in Ernst et al. (2012)) Let ξ = (ξ1, ..., ξM ) be a vector

of M ∈ N independent random variables satisfying Assumption 3.1 and {p(m)
j }j∈N0 , m =

1, ...,M , the associated orthonormal polynomial sequences. Then the orthonormal system of

random variables

pα(ξ) =
M∏
m=1

p(m)
αm (ξm), α ∈ NM0 ,

is an orthonormal basis of the space L2(Ω, σ(ξ), P ) if and only if the moment problem is

uniquely solvable for each random variable ξm, m = 1, ...,M . In this case any random

variable η ∈ L2(Ω, σ(ξ), P ) can be expanded in an abstract Fourier series of multivariate

orthonormal polynomials in the basic random variables, the generalized polynomial chaos

expansion

η =
∑

α∈NM0

aαpα(ξ) with aα =< ηpα(ξ) > .

Here is sufficient conditions for solvability.

Theorem 3.12. (Theorem 3.7 in Ernst et al. (2012)) If the distribution function Fξ of a

random vector ξ = (ξ1, ..., ξM ) with continuous distribution and finite moments of all orders

satisfies one of the following conditions, then the multivariate polynomials in ξ1, ..., ξM are
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dense in L2(Ω, σ(ξ), P ). In this case any random variable η ∈ L2(Ω, σ(ξ), P ) is the limit of

its generalized polynomial chaos expansion, which converges in quadratic mean.

(a) The distribution function Fξ has compact support.

(b) The random vector is exponentially integrable, i.e., there exists a > 0 such that

ˆ
RM

exp(a‖x‖)Fξ(dx) <∞,

where ‖ · ‖ denotes any norm on RM .

Thus, denoting {ψ(i)
j }j∈N0 by the normalized Hermite polynomials corresponding to ξi,

the set of multivariate tensor product of the polynomials given by

ψα(ξ) =

d∏
m=1

ψ(m)
αm (ξm), α = (α1, ..., αd) ∈ Nd0,

is a complete orthonormal system of L2(Ω, σ(ξ), P ): For each ϕ ∈ L2(Ω, σ(ξ), P ) and a

Borel-measurable function f : R → R,

ϕ = f(ξ) =
∑
α∈Nd0

aαψα(ξ) in L2,

where

aα =< ϕ,ψα(ξ) >=

ˆ
Ω
ϕψα(ξ)dP =

ˆ
Ω
f(ξ)ψα(ξ)dP =

ˆ
Rd
f(x)ψα(x)Fξ(dx)

and

Fξ(dx) = Fξ(1)(dx)× · · · × Fξ(d)(dx).

Although the multi-index representation is legitimate in theoretical development, it is im-

practical to use the multi-index representation for the purpose of finite-term approximation

to a function in L2(Ω, σ(ξ), P ). We therefore introduce a single-index that is more tractable

in constructing a finite truncation of infinite-sum representation of a function in L2. Among
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single-index schemes, we adopt the graded lexicographic order, which says that higher degree

monomials are bigger and we use lexicographic order to break ties. By adopting the scheme,

ϕ = f(ξ) =

∞∑
k=0

akψk(ξ),

where ak =< ϕ,ψk(ξ) >, k ∈ N0. Thus, we have

Cn(ξn) =
∞∑
k=0

akψk(ξn),

where ak =< Cn(ξn),ψk(ξn) >. Note supposing α(k) = (α(k)1, ..., α(k)d) is the multi-index

with |α(k)| =
∑d

m=1α(k)m corresponding to k we have |α(k)| ≤ |α(k+1)| and | α(k) |≤ k.

Now, we present an estimate for the fourth moments of Hermite polynomials useful in

developing main results later.

Proposition 3.13. Let ψ and ψ be Hermite polynomials and multi-dimensional Hermite

polynomials, respectively. Then, the followings hold; (i) for sufficiently large k, there exist

positive constants C and C̃ such that

C
32k

k
≤ E[ψ4

k] ≤ C̃
32k

k
,

and (ii) for k ≥ 1, there exists a positive constant C such that

E[ψ4
k] ≤ C32|α(k)|.

(Proof) From Theorem 2.1. in Lars (2002), it is obvious that (i) is true. For (ii) we note

that

E[ψ4
k] =

d∏
j=1

E[ψ4
α(k)j

].

Then, by (i), we have

E[ψ4
k] ≤ C32|α(k)|,
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which completes the proof.

Note C denotes a generic positive constant in this chapter.

3.6. Regularity Conditions

In addition to the theory of polynomial chaos, we need some facts about regularity. First, we

introduce some basic notations for regularity which are common in PDE. We follow Section

2 in Guo (1999) and Guo and Xu (2003). Let Λ = {x | −∞ < x <∞} and ω(x) = 1√
2π
e−

x2

2 .

Define

L2
ω(Λ) = {v | v is measurable and ‖v‖L2

ω(Λ) <∞},

where ‖v‖L2
ω(Λ) = (

´
Λ | v(x) |2 ω(x)dx)1/2. Further, let ∂xv = ∂v

∂x , and for a non-negative

integer r,

Hr
ω(Λ) = {v | ∂kxv ∈ L2

ω(Λ), 0 ≤ k ≤ r}.

The semi-norm and the norm of Hr
ω(Λ) are given by

|v|Hr
ω(Λ) = ‖∂rxv‖L2

ω(Λ) and ‖v‖Hr
ω(Λ) = (

r∑
k=0

|v|2Hk
ω(Λ))

1/2.

Similarly, for d-dimensions, let

Λi = {xi | −∞ < xi <∞}

Λd = Λ1 × Λ2 × · · · × Λd

x = (x1, x2, . . . , xd)

.

Also, let | x |= (
∑d

i=1 x
2
i )

1/2 and ω(x) = 1
(2π)d/2

e−
|x|2

2 . Define

Lpω(Λd) = {v | v is measurable and ‖v‖Lpω(Λd) <∞}.

Let α = (α1, α2, ..., αd) be a multi-index and
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∂αx v(x) =
∂|α|v

∂α1
x1 · · · ∂

αd
xd

(x),

where | α |=
∑d

j=1 αj . For any non-negative integer r,

Hr
ω(Λd) = {v | ∂αx v ∈ L2

ω(Λd), 0 ≤ |α| ≤ r}.

The semi-norm | v |Hr
ω(Λd) and the norm ‖v‖Hr

ω(Λd) of Hr
ω(Λd) are the natural extension of

one-dimensional case (see Adams (1975)).

3.7. Algorithm

We recall the quasi-regression algorithm to be analyzed that was proposed by Glasserman

and Yu (2004) (see page 2094-2095):

Step 1. Set Ĉm = 0 and V̂m = max{hm, Ĉm} = hm.

Step 2. For each n = 1, ...,m− 1, starting from m− 1, we repeat the following: Generate

N independent copies {Si1, ...,Sin+1} of path {S1, ...,Sn+1}, i = 1, ..., N , up to time tn+1,

independent of all previously generated paths. Set

γ̂n,k =
1

N

N∑
i=1

V̂n+1(Sin+1)ψn,k(S
i
n), k = 0, ...,K,

calculate the coefficients β̂n = Ψ−1
n γ̂n and set

Ĉn =
K∑
k=0

β̂n,kψn,k and V̂n = max{hn, Ĉn}.

Step 3. Set ĈN,K,0(S0) = 1
N V̂1(Si1) and V̂0(S0) = max{h0(S0), ĈN,K,0(S0)}.

In this algorithm S0 is fixed and ψ′s are general basis functions . We note that step 2 is

different from the algorithm in Longstaff and Schwartz (2001), which generates a single set

of paths for all dates. Moreover, we also note that the present algorithm has another feature

different from the algorithm in Longstaff and Schwartz (2001); in the regression process, we

use the exact matrix

42



Ψn = E[ψn(Sn)ψn(Sn)T ]

instead of its sample counterpart

1

N

N∑
i=1

ψn(Sin)ψn(Sin)T ,

calculated from the simulated values themselves.

Our purpose is to analyze convergence of the algorithm for two concrete examples: Brow-

nian motion and geometric Brownian motion. To this end we alter step 2 in the algorithm

to be more convenient for our purpose. Specifically, we choose a proper transformation φ so

to have φ(S) = ξ and take the composit ψ ◦φ as basis functions in the algorithm where ψ′s

are Hermite polynomials. Considering the assumption and results in section 3 it is possible

for one to have this kind of basis functions at least for correlated Brownian and geomet-

ric Brownian motion under assumption (1). The resulting modified version of step 2 is as

followings;

Step 2. For each n = 1, ...,m− 1, starting from m− 1, we repeat the following: generate

N independent copies {Zi
1, ...,Z

i
n+1} of path {Z1, ...,Zn+1}, i = 1, ..., N , up to time tn+1,

independent of all previously generated paths. Calculate

Sin+1 and ξ
i
n

and

β̂n,k =
1

N

N∑
i=1

V̂n+1(Sin+1)ψk(ξ
i
n), k = 0, ...,K.

Set

ĈN,K,n =
K∑
k=0

β̂n,kψk and V̂n = max{hn, ĈN,K,n}.

The meaning of additional subindices N, K will be clear in the next section.
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We note Glasserman and Yu (2004) used the expectation of the weighted L2-norm on

functions G : R → R that slightly differs from the ordinary L2-norm (see pp 2106 in

Glasserman and Yu (2004)). We alter slightly step 3 so to use the ordinary L2-norm to

estimate errors in the analysis of convergence of the algorithm: For n = 0, generate N

independent copies Si1 of S1 independent of all previously generated paths. With these

samples, we calculate ĈN,K,0(S0). The overhead for this additional computational effort is

negligible. Moreover, at the cost of adding this step, we gain a huge reward; there are a lot

of assumptions in Glasserman and Yu (2004) but those assumptions are unnecessary, which

will be clear in the next section.

Before going to the main results of this chapter we now reconsider single-period problems

in Glasserman and Yu form = 2 where the dimension of underlying asset is one. Glasserman

and Yu (2004) proposed three assumptions (A1), (A2), and (A3) to get the desired result

for the single-period problem;

(A1) |β| = 1

(A2) h2(St2) =
∑K

k=0 akψ2k(St2), for some constants ak

(A3) ψnk(Sn) are martingales, up to a deterministic function of time

.

The present algorithm with the step 2 altered is exactly same as one in 3.1 in (see pp

2098-2099 in Glasserman and Yu (2004)) where {S(t), 0 ≤ t ≤ T} is a standard Brownian

motion and basis functions are ψnk(x) = 1√
k!
Hek(x/

√
tn). Therefore, for the single period

problem, our results are identical to Theorem 1 in section 3.1 in Glasserman and Yu (2004).

Naturally, Theorem 2 for lognormal setting does not hold for the present algorithm because

the basis functions used are different each other; in Glasserman and Yu (2004), the basis

functions used are multiples of the powers xk resulting in

ψk(S(t)) = ekW (t)−k2t/2,

under the geometric Brownian motion assumption. However, for the present algorithm the

basis functions are, by the facts from section 3 and argument in the present section,
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ψk(φtn(Stn)) = ψk(ξtn),

where φn(x) = logx+tn/2√
tn

. Then, since ψk(φtn(S(tn)) = ψk(W (tn)/
√
tn), the assumption

(A3) is satisfied (see page 2098 in Glasserman and Yu (2004)). For assumption (A2) we

note that

h2(St2) = H(ξt2)

for some Borel-measurable function H : R → R. Hence, by polynomial chaos expansion in

section 4, we have

h2(St2) =

∞∑
k=0

akψk(ξt2),

which is the motivating idea for the present chapter.

Gerhold (2011) has given some intuitive justification of the infinite series representation

above and the interpretation of (A2) as a good approximation of the payoff at t2 (see page

596 in Gerhold (2011)). However, in our setting, the intuitive justification turns into a

rigorous one. It is now obvious that the argument in the proof for Theorem 1 in Glasserman

and Yu (2004) is available for the single-period problem of geometric Brownian motion.

Therefore, theorem 1 in Glasserman and Yu (2004) also holds for the case of geometric

Brownian motion. We collect the above observations for the single-period problem with

single-underlying asset as a proposition.

Proposition 3.14. Set cρ = 2log(2 +
√
ρ) and ρ = t2/t1. Suppose (A1) holds. If K =

(1− δ)logN/cρ for some δ > 0, then

lim
N→∞

sup
|β|=1

E[| β − β̂ |2] = 0.

If K = (1 + δ)logN/cρ for some δ > 0, then
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lim
N→∞

sup
|β|=1

E[| β − β̂ |2] =∞.

3.8. Main Results

In this section we present two main results: (1) the convergence of the algorithm when

multiple underlying assets are considered and (2) a rate of convergence of the algorithm.

To this end we introduce several artificial devices useful for the proof for the main results

below. Define for n ∈ {1, 2, ...,m− 1}

CK,n = PKVn+1 =

K∑
k=0

βn,kψk,

where PK is the orthogonal projection onto span{ψ0, ..., ψK} and βn,k = E[Vn+1ψk]. Define

an approximation to backward induction equations as follows: C̄K,m ≡ 0,

C̄K,n = PK V̄n+1 =

K∑
k=0

β̄n,kψk, n ∈ {1, ...,m− 1}

where V̄n+1 = max{hn+1, C̄n+1} and β̄n,k = E[V̄n+1ψk]. Finally, define for n ∈ {1, ...,m−1}

C̃N,K,n =
K∑
k=0

β̃n,kψk

where β̃n,k = 1
N

∑N
i=1 V̄n+1(Sin+1)ψk(ξ

i
n). Now, we address the single period problem where

m = 2.

We introduce an assumption needed to derive the main results:

Assumption (2) E[h4
n] <∞ for each n.

The Assumption (2) is less restrictive than the ones for fourth moment of h in the literature

(see, e.g., (B3) in Glasserman and Yu (2004) and theorem 6 in Gerhold (2011)).

We now address the result for the case of the single-period and single underlying asset.

Theorem 3.15. (i) If K = (1−δ)
c logN where c = log32 and δ ∈ (0, 1), the algorithm

converges in L2 as N → ∞. (ii) If K = (1+δ)
c logN, δ > 0, the algorithm diverges to the
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infinite in L2 as N →∞.

(Proof) (i) First, we estimate E[(ĈN,K,1(ξ1)− CK,1(ξ1))2].

By independence and orthogonality,

E[(ĈN,K,1(ξ1)− CK,1(ξ1))2] = E[
K∑
k=0

(β̂1,k − β1,k)
2].

Since E[β̂] = β,

∑K
k=0E[(β̂1,k − β1,k)

2] = 1
N

∑K
k=0 V ar(ψ1,k(ξ1)ht2(S2))

≤ 1
N

∑K
k=0E[ψ2

1,k(ξ1)h2
t2(S2)].

Thus, by Cauchy-Schwartz and proposition 3.13,

E[
K∑
k=0

(β̂1,k − β1,k)
2] ≤ C (K + 1)32K

N
.

Therefore, since CK,1 → C1 in L2, by triangle inequality, we have ĈN,K,1 → C1 in L2.

Now, we show that Ĉ0(S0) converges to C0(S0) = E[V1] in L2. Note

E[(Ĉ0(S0)− E[V1])2]

= E[( 1
N

∑N
i=1 V̂1(Si1)− E[V1])2]

≤ 2E[( 1
N

∑N
i=1 V̂1(Si1)− 1

N

∑N
i=1 V1(Si1))2] + 2E[( 1

N

∑N
i=1 V1(Si1)− E[V1])2]

≤ 2E[(ĈN,K,1(ξi1)− C1(ξi1))2] + 2V ar(V1)
N .

Then, since the coefficients of ĈN,K,1 are independent of ξi1 by alteration of step 3, we get

the convergence as N →∞.

(ii) It is enough to address an example showing the divergence.

Let ht2(S2) = ( t2t1 )K/2ψ2K(ξ2) via φ. By triangle inequality and the fact that CK,1 → C1
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in L2, it is sufficient to show E[(ĈN,K,1(ξ1)− CK,1(ξ1))2] diverges to the infinity. Note

E[(ĈN,K,1(ξ1)− CK,1(ξ1))2] = E[
∑K

k=0(β̂1,k − β1,k)
2]

=
∑K

k=0 V ar(β̂k)

= 1
N

∑K
k=0E[( t2t1 )Kψ2

2K(ξ2)ψ2
1k(ξ1)]

− 1
N

∑K
k=0(E[( t2t1 )K/2ψ2K(ξ2)ψ1k(ξ1)])2.

Then, by (28) in Lemma 1 in Glasserman and Yu (2004),

E[(ĈN,K,1(ξ1)− CK,1(ξ1))2] = E[
∑K

k=0(β̂1,k − β1,k)
2]

= 1
N

∑K
k=0E[( t2t1 )Kψ2

2K(ξ2)ψ2
1k(ξ1)]− 1

N

≥ 1
NE[( t2t1 )Kψ2

2K(ξ2)ψ2
1K(ξ1)]− 1

N .

Now, we note that E[t
K/2
2

√
K!ψ2K(ξ2)|ξ1] = t

K/2
1

√
K!ψ1K(ξ1) (see page 2098-2099 in

Glasserman and Yu (2004)). Then, by Jensen inequality,

E[(ĈN,K,1(ξ1)− CK,1(ξ1))2] = E[
∑K

k=0(β̂1,k − β1,k)
2]

≥ 1
NE[( t2t1 )Kψ2

2K(ξ2)ψ2
1K(ξ1)]− 1

N .

= 1
NE[ 1

K!(
1
t1

)Kψ2
1K(ξ1)E[(t

K/2
2

√
K!ψ2K(ξ2))2|ξ1]]− 1

N

≥ 1
NE[ψ4

1K(ξ1)]− 1
N .

Finally, by proposition 3.13, we have

48



E[(ĈN,K,1(ξ1)− CK,1(ξ1))2] ≥ C 32K

NK −
1
N ,

which completes the proof.

We make a remark about the theorem. With ht2(S2) = ( t2t1 )(
∑d
j (α(K)j)/2

d

ψ2K(ξ2), the

proof for the theorem also holds for the case of multiple underlying assets by the inde-

pendence of multi-dimensional Hermite polynomials with a generalized result | α(K) |=

O(logN). When d = 1 the result is exactly same as one in the above theorem. After

Theorem 1 in Glasserman and Yu (2004) the author stated that "This results show rather

precisely, from a sample size of N , the highest K for which coefficients of polynomials of

order K can be estimated uniformly well is O(logN).". This result is based on numerous

unrealistic assumptions that are imposed on the quantities of interest to achieve a conver-

gence to an approximation to the true value of an American option. However, we now states

that the critical rate for the true value of American option is O(logN) with the finiteness of

fourth moment of payoff function as the only assumption.

We need two lemmas to deal with the multi-period problem.

Lemma 3.16. (i) For n = m− 1

K∑
k=0

E[(β̂m−1,k − β̃m−1,k)
2 = 0.

(ii) For each n ∈ {1, ...,m− 2},

K∑
k=0

E[(β̂n,k − β̃n,k)2] ≤ 2m−n−1Am−n−1
K

m−n−1∑
l=1

K∑
k=0

E[(β̃m−l,k − β̄m−l,k)2],

where AK = (K + 1)2 max
0≤k≤K

E[ψ4
k].

(Proof) In this proof we drop the boldface notation for convenience. The idea of proof is

same as the one for the case of Brownian motion in Glasserman and Yu (2004) although

the details are different because of differences in the number of underlying assets and the

assumptions on the fourth moments.

(i) It is obvious since V̂m(Sim) = hm(Sim) = V̄m(Sim).
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(ii) By Cauchy-Schwartz,

(β̂n,k − β̃n,k)2 = ( 1
N

∑N
i=1 V̂n+1(Sin+1)ψk(ξ

i
n)− 1

N

∑N
i=1 V̄n+1(Sin+1)ψk(ξ

i
n))2

≤ 1
N

∑N
i=1 ψ

2
k(ξ

i
n)(V̂n+1(Sin+1)− V̄n+1(Sin+1))2.

Then, by noting

| V̂n+1(Sin+1)− V̄n+1(Sin+1) |

= | max{hn+1(Sin+1), ĈN,K,n+1(Sin+1)} −max{hn+1(Sin+1), C̄N,K,n+1(Sin+1)} |

≤ | ĈN,K,n+1(Sin+1)− C̄N,K,n+1(Sin+1) |,

and

(ĈN,K,n+1(Sin+1)− C̄N,K,n+1(Sin+1))2 = (
∑K

k=0(β̂n+1,k − β̄n+1,k)ψk(ξ
i
n+1))2

≤ (K + 1)
∑K

k=0(β̂n+1,k − β̄n+1,k)
2ψ2

k(ξ
i
n+1),

we have

E[(β̂n,k − β̃n,k)2] ≤ (K + 1)E[
∑K

l=0 ψ
2
k(ξ

i
n)ψ2

l (ξ
i
n+1)(β̂n+1,l − β̄n+1,l)

2]

= (K + 1)
∑K

l=0E[ψ2
k(ξ

i
n)ψ2

l (ξ
i
n+1)]E[(β̂n+1,l − β̄n+1,l)

2]

≤ (K + 1)
∑K

l=0

√
E[ψ4

k(ξ
i
n)]
√
E[ψ4

k(ξ
i
n+1)]E[(β̂n+1,l − β̄n+1,l)

2]

≤ (K + 1) max0≤k≤K E[ψ4
k(ξ)]

∑K
l=0E[(β̂n+1,l − β̄n+1,l)

2].
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Thus, letting BK = (K + 1) max
0≤k≤K

E[ψ4
k(ξ)], we have

E[
K∑
k=0

(β̂n,k − β̃n,k)2] ≤ BK(K + 1)
K∑
k=0

E[(β̂n+1,k − β̄n+1,k)
2].

Let AK = (K + 1)2 max
0≤k≤K

E[ψ4
k(ξ)]. Then, since

E[(β̂n+1,k − β̄n+1,k)
2] ≤ 2E[(β̂n+1,k − β̃n+1,k)

2] + 2E[(β̃n+1,k − β̄n+1,k)
2],

we have

E[

K∑
k=0

(β̂n,k − β̃n,k)2] ≤ 2AK

K∑
k=0

E[(β̂n+1,k − β̃n+1,k)
2] + 2AK

K∑
k=0

E[(β̃n+1,k − β̄n+1,k)
2].

By repeating the procedure, we reach

E[
∑K

k=0(β̂n,k − β̃n,k)2] ≤ (2AK)m−n−1
∑K

k=0E[(β̂m−1,k − β̃m−1,k)
2]

+
∑m−n−1

l=1 (2AK)m−n−l
∑K

k=0E[(β̃m−l,k − β̄m−l,k)2].

Therefore, by (i), we finally have

E[
K∑
k=0

(β̂n,k − β̃n,k)2] ≤ 2m−n−1Am−n−1
K

m−n−1∑
l=1

K∑
k=0

E[(β̃m−l,k − β̄m−l,k)2],

which completes the proof.

Lemma 3.17. For each n ∈ {1, ...,m− 1},

K∑
k=0

E[(β̃n,k − β̄n,k)2] ≤ C (K + 1)3

N
( max
0≤k≤K

√
E[ψ4

k] + max
0≤k≤K

E[ψ4
k]).

(Proof) Note E[β̃n,k] = β̄n,k. Then, for n ∈ {1, ...,m− 2},
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∑K
k=0E[(β̃n,k − β̄n,k)2] =

∑K
k=0

1
N V ar(ψk(ξn)V̄n+1(Sn+1))

≤
∑K

k=0
1
NE[ψ2

k(ξn)V̄ 2
n+1(Sn+1)]

≤
∑K

k=0
1
NE[ψ2

k(ξn)max{h2
n+1(Sn+1), C̄2

n+1(Sn+1)}]

≤
∑K

k=0
1
NE[ψ2

k(ξn)(h2
n+1(Sn+1) + C̄2

n+1(Sn+1))]

= 1
N

∑K
k=0E[ψ2

k(ξn)h2
n+1(Sn+1)] + 1

N

∑K
k=0E[ψ2

k(ξn)C̄2
n+1(Sn+1)].

Thus, by Cauchy-Schwartz,

∑K
k=0E[(β̃n,k − β̄n,k)2] ≤ 1

N

∑K
k=0

√
E[ψ4

k(ξ)]
√
E[h4

n+1(Sn+1)]

+ 1
N

∑K
k=0E[ψ2

k(ξn)(
∑K

l=0 β̄n+1,lψl(ξn+1))2]

≤ 1
N (K + 1) max1≤n≤m

√
E[h4

n(Sn)] max0≤k≤K

√
E[ψ4

k(ξ)]

+ 1
N (K + 1)

∑K
k=0E[ψ2

k(ξn)(
∑K

l=0 β̄
2
n+1,lψ

2
l (ξn+1))].

Then, by noting
∑K

k=0 β̄
2
n+1,k ≤ E[(PK V̄n+2)2] ≤ E[V̄ 2

n+2] by Plancherel,
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∑K
k=0E[(β̃n,k − β̄n,k)2] ≤ 1

N (K + 1) max1≤n≤m
√
E[h4

n(Sn)] max0≤k≤K

√
E[ψ4

k(ξ)]

+ 1
N

∥∥V̄n+2

∥∥2

L2 (K + 1)
∑K

k=0E[ψ2
k(ξn)(

∑K
l=0 ψ

2
l (ξn+1))]

≤ 1
N (K + 1) max1≤n≤m

√
E[h4

n(Sn)] max0≤k≤K

√
E[ψ4

k(ξ)]

+ 1
NE[V̄ 2

n+1](K + 1)3 max0≤k≤K E[ψ4
k(ξ)]

≤ C(K + 1)3 1
N (max0≤k≤K

√
E[ψ4

k(ξ)] + max0≤k≤K E[ψ4
k(ξ)])

for some constant C > 0. Since max{h2
m(Sm), C̄2

m(Sm)} = h2
m(Sm) the estimate also

holds for n = m− 1, which completes the proof.

We are now in position to address the result for the case of multiple underlying assets.

Theorem 3.18. Suppose assumption (1) and (2) hold. Then, if K = (1−δ)
c logN where

c = log32m and δ ∈ (0, 1), the algorithm converges to the true value of American option in

L2 as N →∞.

(Proof) Note for each n ∈ {1, ...,m− 1},

E[(ĈN,K,n(ξn)− Cn(ξn))2]

≤ 4(E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))2] + E[(C̃N,K,n(ξn)− C̄K,n(ξn))2]

+E[(C̄K,n(ξn)− CK,n(ξn))2] + E[(CK,n(ξn)− Cn(ξn))2]).

We estimate each term of right-hand-side of inequality above:

(i) E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))2]

Note, by independence,
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E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))2] = E[(
∑K

k=0(β̂n,k − β̃n,k)ψk(ξn))2]

= E[
∑K

k=0(β̂n,k − β̃n,k)2].

Then, by lemmas and proposition,

E[(ĈN,K,n(ξn)− C̃N,K,n(ξn))2]

≤ 2m−n−1Am−n−1
K

∑m−n−1
l=1

∑K
k=0E[(β̃m−l,k − β̄m−l,k)2]

≤ C
Am−n−1
K (K+1)3

N (max0≤k≤K

√
E[ψ4

k(ξ)] + max0≤k≤K E[ψ4
k(ξ)])

≤ C (K+1)2m−2n+1

N 32(m−n)K

≤ C (K+1)2m32m|α(K)|

N .

(ii) E[(C̃N,K,n(ξn)− C̄K,n(ξn))2]

Since E[(C̃N,K,n(ξn)− C̄K,n(ξn))2] = E[
∑K

k=0(β̃n,k − β̄n,k)2], by lemma and proposition,

E[(C̃N,K,n(ξn)− C̄K,n(ξn))2] ≤ C(K + 1)3 1
N (max0≤k≤K

√
E[ψ4

k(ξ)] + max0≤k≤K E[ψ4
k(ξ)])

≤ C (K+1)332|α(K)|

N .

(iii) E[(C̄K,n(ξn)− CK,n(ξn))2] and E[(CK,n(ξn)− Cn(ξn))2]

Note

E[(C̄K,n(ξn)− CK,n(ξn))2] =
∑K

k=0(β̄n,k − βn,k)2

=
∑K

k=0(E[(V̄n+1(Sn+1)− Vn+1(Sn+1))ψk(ξn)])2.
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Then, by Plancherel (see Folland (1999) or Weiss and Mcdonald (2012))

E[(C̄K,n(ξn)− CK,n(ξn))2] = E[(PK(V̄n+1(Sn+1)− Vn+1(Sn+1))2]

≤ E[(V̄n+1(Sn+1)− Vn+1(Sn+1))2]

≤ E[| max{hn+1(Sn+1), C̄K,n+1(ξn+1)}

−max{hn+1(Sn+1), Cn+1(ξn+1)} |2]

≤ E[(C̄K,n+1(ξn+1)− Cn+1(ξn+1))2]

≤ 2E[(C̄K,n+1(ξn+1)− CK,n+1(ξn+1))2]

+2E[(CK,n+1(ξn+1)− Cn+1(ξn+1))2].

Thus, by repeating the procedure, we have

E[(C̄K,n(ξn)− CK,n(ξn))2] ≤ 2m−n−1E[(C̄K,m−1(ξm−1)− CK,m−1(ξm−1))2]

+
∑m−n−1

l=1 2m−n−lE[(CK,m−l(ξm−l)− Cm−l(ξm−l))2].

Since V̄ (Sm) = hm(Sm) = Vm(Sm),we have

E[(C̄K,n(ξn)− CK,n(ξn))2] ≤ 2m−n−1
m−n−1∑
l=1

E[(CK,m−l(ξm−l)− Cm−l(ξm−l))2].

Thus,

E[(C̄K,n(ξn)− CK,n(ξn))2] + E[(CK,n(ξn)− Cn(ξn))2]
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≤ 2m−n−1
∑m−n

l=1 E[(CK,m−l(ξm−l)− Cm−l(ξm−l))2].

By (i), (ii) and (iii), we finally reach

E[(ĈN,K,n(ξn)− Cn(ξn))2] ≤ C1
(K+1)2m32m|α(K)|

N

+C2
∑m−n

l=1 E[(CK,m−l(ξm−l)− Cm−l(ξm−l))2].

Therefore, as N →∞, ĈN,K,n(ξn) converges to Cn(ξn) in L2 for each n ∈ {1, ...,m− 1},

which completes the proof.

We make several remarks about the theorem. For the case of multi-periods and single

underlying asset, we observe that the continuation value function at tm−1 is same as the one

in single-period problem. Thus, the critical relation O(logN) for single-period problem still

holds for the multi-periods problem. Since the observation is also true for the case of multiple

underlying assets, the critical relation O(logN) still hods for this case. Therefore, for any

case, the critical relation is O(logN) for geometric Brownian motion. Furthermore, we note

that the proof still holds for correlated Brownian motion by using proper transformation φ.

Therefore, we conclude that the highest K to achieve convergence is O(logN) for any case.

Next, we present a rate of convergence of the algorithm considering the regularity of

continuation value function Cn. To this end we need a lemma. First, we deal with the

one-dimensional case.

Lemma 3.19. For any positive integer r, if v ∈ Hr
ω(Λ), then, for sufficiently large K,

‖v − PKv‖L2
ω(Λ) ≤

1√
(K + 1)K · · · (K − r + 2)

‖v‖Hr
ω(Λ).

(Proof) We note, by Plancherel,

‖v − PKv‖2L2
ω(Λ) =

∞∑
l=K+1

a2
l ,
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where al =
´
R v(x)ψl(x)ω(x)dx, ω(x) = 1√

2π
e−

x2

2 . Now, by (3.5.1), (3.5.2) and integra-

tion by parts,

´
R v(x)ψl(x)ω(x)dx =

´
R v(x)[ x√

l
ψl−1(x)−

√
l−1√
l
ψl−2(x)]ω(x)dx

= 1√
l

´
R xv(x)ψl−1(x)ω(x)dx− 1√

l

´
R v(x)ψ

′
l−1(x)ω(x)dx

= 1√
l

´
R v
′
(x)ψl−1(x)ω(x)dx.

By repeating the calculation, we have

ˆ
R
v(x)ψl(x)ω(x)dx =

1√
l
√
l − 1 · · ·

√
l − r + 1

ˆ
R
v(r)(x)ψl−r(x)ω(x)dx.

Thus,

∣∣∣∣ˆ
R
v(x)ψl(x)ω(x)dx

∣∣∣∣ ≤ 1√
(K + 1)K · · · (K − r + 2)

∣∣∣∣ˆ
R
v(r)(x)ψl−r(x)ω(x)dx.

∣∣∣∣
Therefore,

‖v − PKv‖2L2
ω(Λ) ≤

1√
(K + 1)K · · · (K − r + 2)

∥∥∥v(r)
∥∥∥2

L2
ω(Λ)

,

which completes the proof.

If Cn is inHr
ω(Λ) for each r, the error E[(CK,n−Cn)2] converges faster than any polynomial

order and we may expect exponential decay of the error in L2. One can find a same result

for ω(x) = e−x
2 in Guo (1999). However, the proof there is not applicable here.

We now address a convergence rate for the case where d = 1.

Theorem 3.20. Suppose K = (1−δ)
c logN . Then, if Cn ∈ Hr

ω(Λ) for some positive integer r

and each n = 1, ...,m− 1, then the algorithm converges at least as fast as O((logN)−r/2) in
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L2.

(Proof) By the proof of theorem 3.18,

E[(ĈN,K,n(ξn)− Cn(ξn))2] ≤ C1
K2m32mK

N
+ C2

m−n∑
l=2

E[(CK,m−l(ξm−l)− Cm−l(ξm−l))2].

Then, assumptions and lemma 3.19 complete the proof.

We now consider the multi-dimensional case. To this end, we add one more condition to

our multi-index scheme, the graded lexicographic order; given an expansion order L, we use

a truncated basis {ψk : |α(k)| ≤ L}. With this new scheme we thus have
∑K

k=0 akψk where

1 +K = (d+L)!
d!L! for L = 0, 1, 2, ...

Lemma 3.21. For any positive integer r, if v ∈ Hr
ω(Λd), for sufficiently large K,

‖v − PKv‖L2
ω(Λd) ≤

1√
(L/d)(L/d− 1) · · · (L/d− (r − 1))

‖v‖Hr
ω(Λd) .

(Proof) We note, by Plancherel,

‖v − PLv‖2L2
ω(Λ) =

∑
|α(k)|>L

a2
α(k),

where aα(k) =
´
Rd v(x)ψα(k)1

(x1) · · ·ψα(k)d(xd)ω(x)dx. For |α(k)| = L + 1, there exists at

least one component α(k)i such that α(k)i ≥ |α(k)|
d . Suppose, for some k, α(k)1 ≥ (L+1)/d.

Then, by lemma 3.19, we have
´
Rd v(x)ψα(k)1

(x1) · · ·ψα(k)d(xd)ω(x)dx

≤ 1√
(L+1

d )(L+1
d − 1) · · · (L+1

d − (r − 1))

ˆ
Rd

∂(r)v(x)

∂x1
ψα(x)1−r(x1)ψα(k)2

(x2) · · ·ψα(k)d(xd)ω(x)dx.

Hence, we have

‖v − PLv‖2L2
ω(Λd) ≤

1

(Ld )(Ld − 1) · · · (Ld − (r − 1))

d∑
i=1

‖∂
(r)v(x)

∂xi
‖2L2

ω(Λd)

,
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which completes the proof.

We address a rate of convergence of the algorithm for multi-dimensional case.

Theorem 3.22. Suppose L = (1−δ)
c logN . Then, if Cn ∈ Hr

ω(Λd) for some positive integer

r and each n = 1, ...,m− 1, then the algorithm converges at least as fast as O((logN)−r/2)

in L2.

(Proof) By the proof of theorem 3.18,

E[(ĈN,K,n(ξn)−Cn(ξn))2] ≤ C1
( (d+L)!
d!L! )2m32mL

N
+C2

m−n∑
l=2

E[(CK,m−l(ξm−l)−Cm−l(ξm−l))2].

Then, assumption and lemma 3.21 complete the proof.

3.9. Concluding Remarks

We improved the results in Glasserman and Yu (2004) in three different ways. First, we

prove the L2-convergence of the quasi-regression Monte Carlo method to the true price

of American option under the multiple underlying assets where the number of paths and

number of basis functions increase together. Second, we show, given N simulated paths, the

highest possible number of basis functions necessary for obtaining convergence is O(logN) in

both Brownian motion and geometric Brownian motion cases. Furthermore, this holds even

in the case of multiple underlying assets. This implies the importance of the proper choice

of basis functions in implementing the method. Finally, we propose a rate of convergence

considering the regularity of the continuation value function.
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Part IV.

CONCLUSION AND SUMMARY
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In this dissertation we studied stochastic simulation from the perspective of financial

applications. The first topic was development of an optimal importance sampling scheme

for the Laplace transform of exponential Brownian functional that is an important quantity

in many disciplines such as statistical physics and mathematical finance.

To this end, we first specify a class of probabilities over which we choose a measure for

importance sampling. For this purpose, we utilize the Cameron-Martin theorem that says

each element of Cameron-Martin space induces a distribution equivalent to the distribution

on the Wiener space induced by a Brownian motion. Then, we focus on the asymptotic of

the second moment in variance rather than considering the sub-optimization problem of it

over the specified class. That is, we generalize the optimization problem to one of finding

a class of asymptotically optimal estimators for the expected values of random quantities

slightly perturbed from the original one.

Schilder ’s theorem tells us that the distributions on Wiener space induced by the small

perturbations of a Brownian motion satisfy large deviations principle with a good rate

function. Then, by Varadhan’s theorem, we have an asymptotic result of the second moment

when the perturbations are small. Noting the class of degenerate estimators achieves the

lowest limit of asymptotics, our problem finally reduces to finding an element of Carmeron-

Martin space inducing a class of estimators which achieves the same asymptotic behavior

as the degenerate one. Indeed, the minimax theorem allows us to have such an element

in Carmeron-Martin space. Moreover, the calculus of variations problem induced by the

asymptotic of the degenerate estimator admits a closed-form solution. We summarize the

results:

• We develop a Monte Carlo method for the Laplace transform of exponential Brownian

functionals.

• The scheme utilizes large deviations theory to derive a calculus of variations problem

the solution of which results in asymptotically optimal importance measure to be used

to sample for Monte Carlo simulations.

• The main point is that the calculus of variations problem admits closed-form solutions.
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Thus, the computational effort for the method is parsimonious.

• We also address a path to the test of regularity of optimal drift which plays an impor-

tant role in implementing the proposed method.

• Numerical tests are provided through the Dothan bond pricing model, which shows

the method is significantly effective in variance reduction.

The second topic is to improve the results on the convergence of quasi-regression Monte

Carlo method for pricing of American option. In Glasserman and Yu (2004) the authors

showed that a variant of least-squares Monte Carlo method for American option pricing by

Longstaff and Schwartz (2001) converges to an approximation to the true price of American

option and the number of simulation paths grows exponentially in the number of basis func-

tions to obtain convergence for Brownian motion (however, faster for geometric Brownian

motion) under single underlying asset.

In this dissertation we improve the results in Glasserman and Yu (2004) in three directions:

• We provide a more general proof that the method indeed converges to the true price

of American option under multiple underlying assets.

• We show, again under simplified assumptions, that the highest possible number of basis

functions for N paths is O(logN) in both Brownian motion and geometric Brownian

motion cases even under multiple underlying assets.

• A rate of convergence is provided considering the regularity of the continuation value

function.

To achieve first two results in the list above we introduce a polynomial chaos expansion

of L2-functions, which says that the assumptions for Brownian motion case in Glasserman

and Yu (2004) still holds for geometric Brownian motion case via a proper choice of basis

functions. Then, we proved the desired results with help from an asymptotic result for
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Hermite polynomials. Moreover, by presenting L2-error bounds for orthogonal projection

of value functions to span of Hermite polynomials depending on its regularities, we derived

the last result in the list.

For further research, one question is to find a sharper convergence rate than one proposed

in this paper. It amounts to finding a sharper bound on error between finite truncation of

the continuation value function and the true function. It could be a challenging problem.

Another question is an extension of the results in Gerhold (2011) in the same manner here.

The critical difficulty could be how to get Lp-asymptotics on the basis function used in

Gerhold (2011) like one in Appendix B.1.
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A. Calculus of Variations

A.1. Tonelli Theorem

Theorem A.1. (Tonelli) Let the Lagrangian Λ(t, x, ν) be continuous, convex in ν, and

coercive of degree r > 1: for certain constants α > 0 and β we have

Λ(t, x, ν) ≥ α | ν |r +β ∀(t, x, ν) ∈ [a, b]× Rn × Rn.

Then the probelm: minimize J(x) : x ∈ AC[a, b], x(a) = A, x(b)=B.

A.2. Nagumo Growth Condition

Definition A.2. We say Λ has Nagumo growth along x∗ if there exists a functon θ : R+ → R

satisfying limt→∞θ(t)/t = +∞ such that

t ∈ [a, b], ν ∈ Rn =⇒ Λ(t, x∗(t), ν) ≥ θ(| ν |).

Theorem A.3. Let Λ admit gradients Λx, Λν which, along with Λ, are continuous in

(t, x, v). Suppose further that for every bounded set S in Rn, there exist a constant c and a

summable functon d such that, for all (t, x, ν) ∈ [a, b]× S × Rn, we have

| Λx(t, x, ν) | + | Λν(t, x, ν) |≤ c(| ν | + | Λ(t, x, ν) |) + d(t).

If Λ(t, x, ν) is convex in ν and has Nagumo growth along x∗, then x∗ is Lipschitz.
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A.3. Hilbert-Weierstrass Theorem

Theorem A.4. (Hilbert-Weierstrass) Let x∗ ∈ Lip[a, b] satisfy the integral Euler equation,

where Λ is of class Cm(m ≥ 2) and satisfies

t ∈ [a, b], ν ∈ Rn =⇒ Λνν(t, x∗(t), ν) > 0(positive definite).

Then x∗ belongs to Cm[a, b].
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B. Other Mathematical Results

B.1. Asymptotics of Hermite Polynomials

Theorem B.1. As k →∞,

(

ˆ
R
| ψk(x) |4 ω(x)dx)1/4 =

C

k1/4
3k/2(1 +O(

1

k
))

where C = ( 2
π )1/4(3

4)3/8.

B.2. Minimax Theorem

Theorem B.2. Let K be a compact convex subset of a Hausdorff topological vector space

X and C be a convex subset of a vector space Y. Let f be a real-valued function defined on

K × C such that

(i) x 7→ f(x, y) is convex and lower-semicontinuous for each y.

(ii) y 7→ f(x, y) is concave for each x.

Then

inf
x∈K

sup
y∈C

f(x, y) = sup
y∈C

inf
x∈K

f(x, y).
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