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Abstract 

 

 This dissertation provides a systematic method for resolving nonlinear inverse heat 

conduction problems based on a calibration formulation and its accompanying principles. It is 

well-known that inverse heat conduction problems are ill-posed and hence subject to stability 

and uniqueness issues. Regularization methods are required to extract the best prediction based 

on a family of solutions. To date, most studies require sophisticated and combined numerical 

methods and regularization schemes for producing predictions. All thermophysical and 

geometrical properties must be provided in the simulations. The successful application of the 

numerical methods relies on the accuracy of the related system parameters as previously 

described. Due to the existence of uncertainties in the system parameters, these numerical 

methods possess bias of varying magnitudes. The calibration based approaches are proposed to 

minimize the systematic errors since system parameters are implicitly included in the 

mathematical formulation based on several calibration tests. To date, most calibration inverse 

studies have been based on the assumption of constant thermophysical properties. In contrast, 

this dissertation focuses on accounting for temperature-dependent thermophysical properties that 

produces a nonlinear heat equation. A novel rescaling principle is introduced for linearzing the 

system. This concept generates a mathematical framework similar to that of the linear 

formulation. Unlike the linear formulation, the present approach does require knowledge of 

thermophysical properties. However, all geometrical properties and sensor characterization are 

completely removed from the system.   
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In this dissertation, a linear one-probe calibration method is first introduced as 

background. After that, the calibration method is generalized to the one-probe and two-probe, 

one-dimensional thermal system based on the assumption of temperature-dependent 

thermophysical properties. All previously proposed calibration equations are expressed in terms 

of a Volterra integral equation of the first kind for the unknown surface (net) heat flux and hence 

requires regularization owning to the ill-posed nature of first kind equations. A new strategy is 

proposed for determining the optimal regularization parameter that is independent of the applied 

regularization approach.  As a final application, the described calibration principle is used for 

estimating unknown thermophysical properties above room temperature. 
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Chapter 1: Literature Review 

 

Classic inverse heat conduction problems (IHCPs) involve estimating the surface thermal 

condition using in-depth sensors in lieu of boundary conditions. All inverse heat conduction 

problems are mathematically ill-posed and require additional mathematical devices for producing 

well-conditioned prediction. Hadamard’s [1] definition of well-posed is given through the 

postulates: (1) existence of a solution, (2) uniqueness of the solution (3) behavior of the solution 

changes continuously with the data. For inverse heat conduction problems, violation of these 

criteria is apparent as the data are discrete and hence stability is not assured in the prediction 

process. Measurement noise is magnified during this prediction process, thereby destabilizing the 

outcome. Conventional doctrine for both linear and nonlinear inverse heat conduction problems 

rely on numerical methods or iterative strategies for forming the approximate surface 

reconstructions. In this view, all parameters characterizing the system are required for insertion 

into the mathematical model. The system parameters include thermophysical properties, 

geometrical properties, and sensor characteristics. A recently proposed alternative that removes 

this specification is based on calibration principles. Systematical errors will be substantially 

reduced as the system parameters are implicitly incorporated through the calibration tests. This 

literature review (Section 1.1-1.6) provides sufficient background identifying a gap and 

justifying the development of a nonlinear calibration inverse heat conduction method. Section 

1.7 provides the scope for the research investigation. 
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1.1 Introduction of Inverse Heat Conduction Problems 

 

Physical theories that can be mathematically formulated in term of functional equations 

permit outcomes to be predicted based on the provided inputs. This defines the conventional 

forward direct problem normally proposed in physical studies. In contrast, the inverse problem 

consists of using measurements from a sensor to infer the values of the parameters that 

characterize the system [1]. Inverse problems lie at the heart of scientific inquiry and 

technological development. Applications include: diagnostic-based medical and imaging 

techniques [2], locating oil and mineral deposits in the earth substructure [3], creating 

astrophysical images from telescope data [4], finding cracks and interfaces within materials [5], 

developing shape optimizations [6] and more recently, modeling of biological systems in the life 

sciences [7]. Since there are a substantial number of books and papers on this subject, an 

exhaustive review of all available works on inverse problems is formidable. This literature 

review focuses on several general and classical techniques associated with the inverse heat 

conduction problems and provides context to the present state of their development.   

  

Inverse heat conduction problems (IHCPs) are one of the most important applications 

associated with inverse analysis. In heat transfer processes, severe working conditions are often 

encountered that make direct boundary condition measurement difficult. Hence, the IHCP was 

originally considered as an approach to estimate the surface heat flux through the use of in-depth 

temperature measurements during the course of an experiment [8]. This problem originated in 

1950s’ as a response to the needs of the space program and aerospace industries. The Russian 

paper by Shumakov [9] in 1957 is the earliest research publication in the IHCP field. This 
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experimental study focused on the heating process associated with nose cones of missile, rocket 

nozzle and other devices. Another early IHCP paper was published in 1960 by Stolz [10]. This 

paper provides a numerical solution for resolving the surface heat flux in a quenching process. 

Although the IHCP was initially introduced by an aerospace engineering application, their 

relevance have broadened to include: nuclear reactor components [11], solidification of glass 

[12], and periodic heating in internal combustion engines [13].  

 

Based on the type of causal characteristics to be estimated, IHCPs can be classified as: (1) 

boundary-value problem determination inverse problems, (2) initial-value determination inverse 

problems, (3) material property determination inverse problems, (4) source determination inverse 

problems and (5) shape determination inverse problems [14]. Boundary-value determination 

inverse problems involve resolving an unknown boundary condition based on in-depth 

temperature measurements or mixed in-depth temperature and other prescribed boundary 

conditions. The measured values are called internal responses. These responses are distributed 

and interpret as a discrete set of points. However, the selection of internal responses is not 

arbitrary as they should possess all system physics. For instance, characterizing a one-

dimensional problem requires information from at least two distinct positions or overspecified at 

the back surface as required by the heat equation. References 15-18 contain several examples 

describing the applications for this category subset. For initial-value determination problems, a 

spatially distributed initial condition is not known. To estimate the initial temperature 

distribution, either the spatial temperature profile at a given time [19] or the temperature 

measurements on a part of boundary [20] are required to be specified. This class of problems is 

also referred to as the backward heat conduction problem. Material property determination 
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inverse problems focus on estimating system thermophysical properties, such as the thermal 

conductivity, specific heat capacity and/or thermal diffusivity, from temperature measurements 

taken from interior points [21, 22]. In general, these specifications may be functions of 

temperature or spatial coordinates. In the case of the source determination inverse problems, a 

successful reconstruction of the volumetric source requires identification in terms of magnitude, 

spatial distribution and temporal behavior. For this purpose, the temperature sensors are 

distributed over the spatial domain to collect the necessary data. The complexity of these 

problems depends on the functional form of the source. The prediction of a stationary source is 

relatively easy to obtain. However, predicting a moving source with varying intensity is difficult. 

Physical examples of such cases can be found in Refs. 23-25. The shape determination inverse 

problem can be additionally subdivided into two classes. The first class of problem is considered 

as a design problem. The boundary location and shape requires to be reconstructed such that 

either a specified temperature or heat flux can be recovered at some intended locations [26]. It is 

extremely difficult to recover the boundary shape if the sample is multiply connected. The other 

class of problem is termed as the Stefan problem. This class involves determining temperature 

distribution within a domain and the position of the moving interface between two phases in a 

body when all the other parameters characterizing the system are known [27].  

 

1.2 Analytic Method for Inverse Heat Conduction 

 

Generally speaking, a successful quasi-solution for an inverse heat conduction problem 

depends on its reformulation as a forward problem, which either has an exact analytical solution 

or can be resolved through an accurate numerical method. An objective function can then be 
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proposed to minimize the residual, which is normally referred as the difference between the 

discrete measurement set at fixed position and the computed result based on the forward problem 

at the identical position. The residue is expected to be small and uncorrelated if the analytical or 

numerical solution of the forward problem is close to the physical system under the estimated 

parameters [28]. Next, a proposed least-square method can be applied to retrieve these 

parameters of interest. A formulation of this descriptive procedure is normally instituted for 

resolving inverse heat conduction problems. 

 

To find an analytical solution for the forward problem, commonly used methodologies 

include separation of variables [29], Laplace transformation [30-32], Green’s function [33], and 

Duhamel’s theorem [29, 33]. Separation of variables is one of the most common methods 

available and normally applied to linear partial differential equations [29]. This method is simple 

and easy to apply. It reduces the partial differential equation into a set of ordinary differential 

equations. However, application of this method possesses several restrictions. First, the partial 

differential equation describing the problem must be linear and homogeneous. If the field 

equation is satisfied by a specific function, then it must additionally be satisfied by the product of 

the specific function and an arbitrary constant. The boundary conditions must also be linear and 

homogeneous. If the system is a two-dimensional rectangle with four specified boundary 

conditions, at least three of them must be homogeneous. Otherwise, the superposition rule must 

be applied where repeated use of separation of variables is required. The last condition requires 

the domain to be a simple geometric shape in an orthogonal coordinate system.  
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The Laplace transformation technique has been widely used in the solution of time-

dependent heat-conduction problems [30-33]. This transformation is defined in the semi-infinite 

domain and transforms time into the frequency domain. As a result, the partial derivative with 

respect to time can be removed from the field equation. The Laplace transformation technique 

has several merits. For the one-dimensional heat equation, the partial differential equation can be 

reduced to an ordinary differential equation by directly applying the Laplace transformation 

technique. For multi-dimensional heat equations, this technique can also be combined with other 

transformation techniques, such as the Fourier transform method, to obtain exact solutions. Feng 

et al. [30] have employed the Laplace transform technique to form a real-time prediction that 

relates the measured conditions at one end of a domain to the unknown conditions at the remote 

surface. Monde and Mitsutake [31], and Monde et al. [32] developed an analytical method 

available for both one-dimensional and two-dimensional inverse heat conduction problems based 

on the Laplace transformation. However, the application of Laplace transformation technique has 

some constraints.  The inversion of the transformed quasi-solution is not straightforward if the 

inversion does not exist in the standard transformation table. Contour integration must be used in 

these cases. 

 

The Green’s function is the impulse response of an inhomogeneous differential equation 

defined on a domain, with specified initial conditions or boundary conditions [33]. If the 

superposition rule is available then the convolution of the Green’s function with an arbitrary 

function on that domain can be considered as the solution to the inhomogeneous differential 

equation for the same function. This method is quite general in that all inhomogeneous problems 

are handled in the same way and the solutions for one-, two-, and three-dimensional problems 
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can be formally presented in a compact form. The principle difficulty in using the Green’s 

function approach appears to be in deriving the appropriate Green’s function for a given problem, 

as it depends on the coordinate system, boundary conditions and the extent of the region.  

 

The extension of the Green’s function method leads to the generation of Duhamel’s 

theorem [29, 33] which provides a method for solving problems with time-dependent 

inhomogeneous terms. The function specification method proposed by Beck [34], Beck et al. [35] 

and Beck [36] is constructed from Duhamel’s theorem. In this method, the exact temperature 

distribution can be expressed as a convolution of the surface heat flux with its corresponding 

thermal response from an impulsive heat flux.  Afterwards, the functional form of surface heat 

flux in a small time step is approximated through a Taylor series expansion. A conventional 

least-square approach can then be used to minimize the residue in order to recover the local heat 

flux. This procedure can be repeated sequentially for the ensuing time step accuracy with high 

computational efficiency since it operates in a causal way. However, defining the length of the 

time step requires care in order for the method to remain stable. This stabilizing process, which is 

called “regularization”, is actually required by all inverse problems due to being inherently 

unstable. Discussion on this aspect is postponed until later. Similar to the Green’s function 

method, Duhamel’s theorem requires knowledge of fundamental solutions.  

 

A substantial effort has been placed on acquiring analytical solutions for inverse heat 

conduction problems. In 1964, Burggraf [37] formed an exact solution to a one-dimensional 

transient boundary-value inverse problem in a slab when the time-dependent temperature 

response was known at one internal point. Continuity was assumed in the derivation prior to 
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viewing data as discrete. The temperature function of the entire slab can be reconstructed from 

the local temperature and heat flux measurements with the aid of two accessory functions. Both 

the surface heat flux and temperature can then be directly reconstructed. It is interesting that no 

initial condition is needed for this solution. This follows from the assumption that both heat flux 

and temperature measurements are continuous and have been known for the complete time 

domain. This initial condition does not need to be uniform. 

 

Although numerous analytical solution methods have been proposed for solving heat 

conduction problems, the number of analytical solutions is limited and only available for special 

cases. As an analytical compromise, approximate analytical solutions have been proposed as a 

substitution to the exact solutions. The Trefftz method, first presented in 1926, is an excellent 

example [38]. Trefftz’s method forms an approximate solution through a linear combination of 

characteristic functions that satisfy the governing partial differential equation. The characteristic 

functions are termed as T-functions whose corresponding coefficients can be determined through 

some least-square approach satisfying the boundary and initial conditions. However, this 

methodology does not permit the existence of any volumetric source term. Another example is 

the integral transform technique [33], which provides a systematic, efficient, and straightforward 

approach for solving homogeneous and inhomogeneous, steady and time-dependent boundary-

value problems of heat conduction. To manipulate this technique, it is necessary to make the 

integration through the spatial domain in order to reduce the partial derivatives with respective to 

the space variables in the field equation. A polynomial form can be chosen to represent the 

temperature distribution. The coefficient functions expressed in terms of time can easily be 

obtained from the resulting first-order, ordinary differential equation subject to the transformed 
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initial condition. One disadvantage of the integral technique is that the accuracy of the solution 

cannot be ensured all the times.   

 

The Function Decomposition Method is a robust means of resolving ill-posed problems 

through approximate solutions, and proposed by Osborne, et al. [39]. This method is predicated 

by a functional representation for either the unknown surface temperature or surface heat flux, 

and, if necessary, followed by the application of Bellman’s quasi-linearization technique. The 

dependent variable is then decomposed into a finite sum of functions defined in terms of a 

baseline function and a finite set of sensitivity functions. The decomposition results in a series of 

well-posed partial differential equations which can be resolved by the weighted-residual method 

using a spectral basis set for both space and time. Once the baseline function and sensitivity 

functions have been determined, a least-square method can be applied to obtain the sensitivity 

coefficients such that the unknown boundary condition can be reconstructed.  

 

An alternative approach for resolving inverse heat conduction problems involves system 

calibration [40-45]. System calibration relies on analytical reasoning to form an apparent 

calibration or measurement equation. One major advantage of this approach is that the systematic 

errors can be substantially reduced since the probe position and thermophysical properties and 

sensor characteristics are implicitly included in the calibration tests. However, during the 

calibration process, the imposed net surface heat flux must be quantitatively known in advance if 

it is the goal to reconstruct the net surface heat flux for reconstructive test runs. Loehle et al. [40], 

Loehle et al. [41] and Gardarein et al. [42] have demonstrated the application of a calibration 

method that is based on system identification for estimating the surface heat flux using a single 
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in-depth sensor. The Non-Integer System Identification (NISI) method involves developing an 

impulse response function from a calibration test. A finite series expansion is formed in terms 

fractional derivatives of the measured calibration temperature and calibration surface heat flux. 

The unknown expansion coefficients are determined during the calibration stage. Next, the 

unknown surface heat flux can be recovered based on the impulsive response. In contrast, 

Frankel and Keyhani [43], Frankel et al. [44] and Elkins et al. [45] have proposed an alternative 

calibration methodology that eliminates the use of fractional derivatives and the resolution of 

expansion coefficients described by the NISI method. This method relates the net unknown 

surface heat flux to the calibration surface heat flux and the corresponding in-depth temperature 

measurements during the calibration test and reconstruction test runs. The resulting inverse 

statement is then expressed in terms of a Volterra integral equation of the first kind for the 

unknown surface heat flux. 

 

Both proposed calibration methods are based on the constant property (linear) heat 

equation. Their application has been limited at small temperature differences from the initial 

state. However, for many practical applications, the assumption of constant thermophysical 

properties does not hold true due to a large temperature variation from its initial state. For 

example, in hypersonic flight, a large temperature variation is expected due to 

aerothermodynamic heating effects. Under this scenario, the variable thermophysical property 

effects can be significant depending on the material and temperature range. As a result, it is best 

that a new calibration method can be designed such that it can be applied in both a linear and 

nonlinear framework. 
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1.3 Numerical Methods for Inverse Heat Conduction 

 

The forward solution or inverse prediction to heat conduction can also be generated by a 

purely numerical method. The most common method available is the finite difference method 

(FDM) [46]. In this technique, the heat conducting material is divided into discrete finite control 

volumes, upon which the energy balance is performed to determine the proper temperature 

relationship at each node. By marching forward in time, the spatial temperature distribution at 

every time step can be obtained. The finite difference method has explicit or implicit forms for 

marching time. The explicit form is direct and sequential. However, the length of its time step 

needs to be modulated in order to insure both convergence and stability. In contrast, the fully 

implicit form is not constrained by the time step for stability though its accuracy must be 

considered. The manipulation of the implicit form can be achieved by either matrix inversion or 

Gauss-Seidel iteration at each time step [46]. For example, Pourgholi et al. [47] resolved a two-

dimensional inverse heat conduction problem through the finite difference method and used a 

least-square scheme to modulate and suppress the noisy data. 

 

For inverse heat conduction problems, the finite difference method can also be 

reformulated into a space-marching form [48-50]. Similar to the conventional finite difference 

method, space marching finite difference methods discretize both the spatial and temporal 

domains. The only difference is that the calculation always starts from the sensor position, where 

both temperature and heat flux are assumed to be known, while the normal finite difference 

method needs both surface and initial conditions. In 1992, Carasso [48, 49] considered the space 

marching finite difference method for numerically resolving a nonlinear inverse heat conduction 
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problem. Carasso [49] presented a survey comparing different discretizations. Murio and 

Hinestroza [50] made use of this approach to identify the initial temperature distribution for the 

backward heat equation. Al-Khalidy [51] combined the space-marching finite difference method 

with a Savitzky-Gollay digital filter to predict the boundary condition. The filtering technique 

was used to suppress the high frequency noise contributions in the measurement. 

 

The global-time treatment of the inverse heat conduction problem by Elkins et al. [52] is 

motivated by the space marching finite difference method. However, this method does not 

require the numerical computation of the temperature at spatial nodes. Instead of finite 

differencing each time derivative in spatial domain, the global time method presents the 

numerical solution in a functional form such that the thermal conditions between the probe site 

and surface can directly communicate. This approach works well for linear problems. 

   

Another group of important numerical methods useful for solving direct and resolving 

inverse heat conduction problems includes the finite element method (FEM) and the boundary 

element method (BEM). The finite element method is based on the idea of dividing the 

complicated object into small and manageable pieces. On each element, the function is 

approximated by a characteristic form. This form is always represented by a linear combination 

of some shape functions, such as T-function [38]. The coefficients of these shape functions can 

be computed through (1) mean-square fitting of the approximated temperature field to the initial 

and boundary conditions, (2) least squaring the difference between the measurements and 

temperature approximation at probe sites, or (3) requiring temperature continuity from element 

to element though a heat flux jump is permitted. Boundary element methods are based on 
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Green’s function approach. For this method, and in the context of linear analysis, discretization 

is only performed on boundary surface rather than the entire volume. As a result, the number of 

elements can be significantly reduced. Since the construction of basic solution includes the 

convolution between the boundary conditions and the fundamental solutions, the least-square 

process is only required for minimizing the difference between measurement and temperature 

approximation at the probe sites. These two numerical approaches have been successfully 

applied and demonstrated for resolving inverse heat conduction problems [53-56]. 

 

1.4 Iterative Methods for Inverse Heat Conduction 

 

A well-presented group of the analytical and numerical solutions for the forward heat 

conduction problems have been introduced in the previous sections. However, their application 

in inverse heat conduction problems may be limited without the assistance of an optimization 

technique [28]. Optimization techniques are often referred as the parameter estimation 

approaches if the mathematical or numerical formulation of the physical process is known. 

Under this construct, it is best that the functional form of the unknown quantity for the IHCP be 

known a priori in order to minimize the number of unknown parameters. If not then the 

mathematical setting of the inverse problem requires an infinite dimensional space of functions. 

To make use of optimization techniques, an objective function should first be proposed. 

Minimization can be achieved by taking the first derivative of the objective function with 

respective to the parameters of interest and setting the results to zero. Moreover, a sensitivity 

matrix, whose components are always considered as the first derivative of measurement with 

respect to the unknown parameter, can be built for reformulating the minimization problem in a 
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closed matrix form. For linear problems, the sensitivity matrix is invariant and the parameter 

estimation can be achieved through simple matrix inversion in just one step. However, for 

complex nonlinear inverse heat conduction problems, an iterative procedure is necessary.  

 

A Gauss method [57] is one of the simplest iterative procedures for resolving a nonlinear 

inverse heat conduction problem. This method represents the next estimation by a first order 

Taylor series expansion about the current estimation. The sensitivity matrix is also required to be 

evaluated at the current estimation and assumed invariant until next iterative step. This 

linearization allows for updating the parameter of interest. The iterative procedure of this method 

can be repeated until a stopping criterion is satisfied. Khajehpour et al. [58] combined the 

domain decomposition approach with the Gauss method for resolving nonlinear inverse heat 

conduction problems. In this process, both the time and spatial domains are divided into several 

sub-domains to overcome the nonlinearity. The Gauss method is then used at each sub-domain to 

predict the heat flux at the interface. However, the Gauss method is not able to ensure the 

existence of a unique solution if the columns of its corresponding sensitivity matrix are not 

linearly independent. This method is actually an approximation for the well-known Newton-

Raphson method [28]. 

 

The conjugate gradient method [59] is another powerful iterative technique used for 

resolving both linear and nonlinear inverse problems. In the iterative procedure, at each step a 

suitable step size is chosen along a direction of descent in order to minimize the objective 

function. The direction of descent is represented by a linear combination of the negative gradient 

direction at the current step and the direction of descent from the previous iteration step. The 
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resulting angle between the direction of descent and the negative gradient direction should be 

smaller than ninety degrees. Zhou et al. [60] and Huang and Chen [61] used the conjugate 

gradient method for estimating the surface heating condition in a three-dimensional object. 

Hasanov and Pektas [62] identified an unknown time-dependent volumetric source term using 

the conjugate gradient method. 

 

The Levenberg-Marquardt method [63] was first presented by Levenberg in 1944. This 

approach modifies the ordinary least-square norm with a penalty term that limits the variation in 

the parameter set at each step. Later, in 1963, Marquardt [64] derived basically the same 

technique but through a different approach. His intention was to arrive at an iteration method that 

will tend to the Gauss method in the neighborhood of the exact solution and tend to the steepest 

descent method if the estimation is far away from the exact solution. Compared to Gauss method, 

the Levenberg-Marquardt method possesses a major advantage as it can alleviate the effects of 

an ill-conditioned sensitivity matrix [59]. The Levenberg-Marquardt method was originally 

designed for nonlinear parameter estimation problems. More recently, it has been successfully 

demonstrated and applied to both linear and nonlinear inverse heat conduction problems. For 

example, Rouquette et al. [65] applied this technique to an electron beam welding study for 

estimating the parameters of the Gaussian heat source.   

 

Iterative methods can be classified as gradient or deterministic. Gradient means that the 

computation is along a feasible search direction related to the local gradient direction. All of the 

iterative methods described above are considered as gradient type. However, some stochastic 

minimization techniques [66] also work well for inverse heat conduction problems. One good 
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example is the genetic algorithm [67]. This optimization technique starts with a randomly 

generated population of individuals. After entering a loop over the generations, one needs to 

evaluate the objective function with respect to each individual, and attributes a fitness ranking 

that will drive the selection process. Once this time consuming step is done, proper selection, 

crossover and mutation operators can be used in a sequential way to update the initial population. 

This iterative process can be repeated until the stopping criterion has been met. The application 

of this method is broad. Jones et al. [68] used genetic algorithms to locate inhomogeneities in a 

material by localizing variation in its thermal conductivity. In this process, an inverse heat 

conduction problem based on reconstruction of the thermal conductivity map was resolved 

through the temperature measurement in a two-dimensional surface. A standard genetic 

algorithm minimizes the error between measured and estimated temperature. Successive 

zooming was applied around the identified inhomogeneities to finesse the conductivity map. 

Verma and Balaji [69] studied the combined inverse heat conduction and inverse radiative heat 

transfer problem with genetic algorithms. Three properties, including surface emissivity, optical 

thickness and radiation parameter were estimated based on in-depth temperature measurements 

using a one-dimensional model. Raudensky et al. [70] determined a transient heat transfer 

coefficient in a one-dimensional inverse heat conduction problem. The objective function chosen 

minimized the error between estimated and measured temperature profiles with the aid of a 

genetic algorithm. A penalty term was added for the regularization when the heat transfer 

coefficient varied too abruptly.  In this case, regularization is used to control stability.  

  

In addition, the rapid development of artificial neural network technology [71] has lead to 

an entirely new approach for resolving IHCPs. Neural networks are artificial intelligence systems 
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that mimic the biological processes of a human brain by using non-linear processing units to 

simulate the functions of the biological neurons. The processing units are fully interconnected by 

joints of invariable strength that mimic the synaptic behavior of the human brain. As a result, 

neural networks have a self-learning function, which can be achieved through training. The 

process is similar to how the human brain comprehends new things. Neither the analytical 

solution nor the numerical process needs to be understood in advanced for the inverse process. 

However, it is still necessary to know the causality of the system. Otherwise, the training will not 

be successful. For example, Deng and Hwang [72] presented a real-time method for processing 

temperature data to resolve an inverse heat conduction problem by training through a neural 

network set. In this process, the local temperature measurement is considered as input and the 

real-time heat flux is considered as output. After sufficient training, an accurate approximate 

relationship between the input and output can be built. Filtering techniques [73] are also 

preferred to aid stabilizing the result. 

 

1.5 Regularization for Stability Augmentation 

 

All inverse problems are difficult to resolve since they are mathematically ill-posed [8]. 

Unlike forward mathematical problems that possess unique and stable solutions with respect to 

the input data, inverse problems display significant error magnification when small errors are 

present in the input. This magnification quickly destabilizes the prediction. To deal with this 

situation, special techniques are required for introducing regularization [74-90]. Here 

regularization refers to stabilization. 
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Filtering has been demonstrated as an effective regularization approach. A Gauss low-

pass digital filter [74] devised from Fourier convolution principles removes high frequency noise 

in a manner that retains smoothness in the first time derivative of the filtered data. The 

regularization parameter for this filter is the cutoff frequency, which corresponds to the region 

near the elbow of a power spectrum formed by the discrete Fourier transformation. Wiener’s 

filtering principle can be used to estimate this parameter. Elkins et al. [52] showed that this 

filtering technique provides excellent results for inverse heat conduction problems when 

combined with the global-time method. Generalizing Gauss digital filter leads to the concept of 

mollification [75]. Here, the basic idea is to convolute noisy data with a smooth function 

possessing a tunable parameter that filters the high frequency component of the noisy data, such 

that the problem reappears as well-posed. For Gauss digital filtering, the smooth functions are 

the Gaussian functions which possess a key property when commuting between frequency and 

time domain, i.e., self reciprocation. 

 

The Kalman filter method uses a set of mathematical equations that provides an efficient 

computational solution of the least-square method [76]. It estimates a process using a form of 

feedback control. To be precise, it estimates the process state at some time and then obtains 

feedback in the form of the noisy measurement. Hence, the Kalman filter can be classified as a 

time update and measurement update scheme. The time update projects the current state forward 

to obtain a priori estimate while the measurement update incorporates a new measurement into 

the a priori estimate to obtain an improved a posteriori estimate. For example, when the Kalman 

filter is applied to remove high frequency noise in temperature measurements, the predicted 

temperature in future time steps can be obtained through a Taylor series expansion about the past 
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filtered temperature data which are assumed to be known. The noisy temperature measurements 

can then be used to update these predictions. In this process, an optimal scaling parameter is 

required to minimize the difference between the updated prediction and exact temperature data 

according to probability theory. This technique is both simple and straightforward, takes explicit 

measurement uncertainty incrementally, and explains the a priori information. Ijaz et al. [77] 

employed a Kalman filter to resolve a two-dimensional transient inverse heat conduction 

problem. LeBreux et al. [78] combined a Kalman filter for improved state estimation with a 

recursive least-squares estimator to predict the dynamic wall thickness of a furnace.  

 

Additionally, some other regularization approaches have been designed to control system 

instability thereby transforming an ill-posed problem into a well-posed one. The Lamm’s local 

future-time method [86] is based on conventional theory that a Volterra equation of first kind, 

which is ill-posed, can be approximately transformed into a Volterra equation of second kind, 

which is well-posed. The name “future time” is actually the regularization parameter to be 

specified. Frankel et al. [43-45] have showed that if the heat flux is held constant in some 

amount of future time, then an accurate surface heat flux prediction can be resolved through the 

calibration integral equation method without filtering the temperature data.  

 

Singular-value decomposition (SVD) is a well understood and easily implemented 

method that has been widely accepted for resolving inverse problems. It is well-known that the 

sensitivity matrices for inverse problems are ill-conditioned. Direct inversion leads to unstable 

results. SVD works through decomposing the sensitivity matrix into two new orthogonal 

matrices and one diagonal matrix whose diagonal elements (singular values) are arranged in a 
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descending sequence. The ill-conditiong of the sensitivity matrix comes from small singular 

values since they contribute little to the recovery of physics but their reciprocals significantly 

amplify the measurement noise. Therefore, for this technique, a condition number of reduced 

dimension is defined as the regularization parameter. Once the ratio between the first diagonal 

element and any other element is beyond a defined conditional number, this element must be 

truncated from the diagonal matrix. After that, the pseudo inversion process can alleviate the 

instability from ill-posed problems while retaining sufficient physics. The SVD can be operated 

in either global or sequential way. Shenefelt et al. [80] applied a global singular-value 

decomposition method to the matrix form of Duhamel’s principle in order to resolve a linear 

inverse heat conduction problem possessing temperature data containing significant noise. 

Garcia et al. [81] analyzed a nonlinear two-dimensional inverse heat conduction problem by 

sequential singular value decomposition.   

 

Tikhonov regularization method [82], named after Andrey Tikhonov, is perhaps the most 

commonly used regularization method for ill-posed problems. Similar to the Levenberg-

Marquardt method, this regularization method constructs a modified objective function seeking 

to minimize the sum of the L2 norm of the residue and the L2 norm of the penalty norm. The 

penalty norm is designed for controlling system instability and can be expressed in terms of the 

predictive function or its derivative. To balance the bias and variance, the penalty norm needs to 

be weighted by a regularization parameter to ensure that both two terms involved in the objective 

function are comparable. However, searching an optimal regularization parameter remains 

nontrivial. Several approaches have been proposed for this purpose, including L-curve analysis 

[83], Morozov’s discrepancy principle [84] and maximum likelihood methods [85]. Similar to 
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the singular-value decomposition method, the Tikhonov regularization method can be formulated 

in a sequential way. Both Lamm [86] and Berntsson [87] have demonstrated this formulation. In 

their approaches, a limited number of past predictions are retained. A new smaller problem is 

then formulated by incorporating the prior known information and a small set of available data in 

the future time. After removing the internal responses of the past predictions from the 

measurements, new predictions for the future time can be obtained through the Tikhonov 

regularization method. To ensure the accuracy at each step, only the first value of the prediction 

is retained such that these formulations operate in a sequential way.   

 

Alifanov’s iterative regularization [89] is another approach available as a regularization 

scheme. In this approach, the number of iterations is chosen so that reasonably stable solutions 

are obtained. Therefore, as opposed to Tikhonov regularization method, there is no need to 

modify the original objective function with a penalty term though it is still based on the L2 norm 

of the residue. The unknown function is not required to be discretized a priori since all the 

required mathematical derivations with Alifanov’s iterative regularization approach are made in 

the space of functions. The discretization of the function, resulting from the fact that 

measurements are taken at discrete times and positions, is then only made a posteriori. This 

iterative regularization approach is quite general and can be applied to both linear and nonlinear 

inverse problems. Jarny et al. [88] used the Alifanov’s iterative regularization to resolve a 

multidimensional inverse heat conduction problem. Alifanov [89] applied his method for 

designing and testing heat-loaded engineering objects.   
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Bayesian regularization is a statistical inference using a posteriori probability density 

function. This function is the model for evaluating the conditional probability density for the 

unknown parameters given the measurements [90]. It relies fundamentally on the principles of 

the Bayesian statistics for stabilizing the prediction of the inverse problem. Compared with the 

common Tikhonov regularization methods, the penalty term in Bayesian regularization is 

designed to yield error estimates that would have a reasonable statistical interpretation rather 

than just focusing on a stabilized form of the original objective function. This objective function 

is denoted as the maximum a posteriori (MAP) objective function, meaning that its minimization 

corresponds to the maximization of the a posteriori error distribution. Deng and Hwang [73] 

have shown that the Bayesian regularization method can be combined with neural networks for 

resolving inverse heat conduction problems.   

 

As noted in this literature survey, numerous techniques have been proposed for resolving 

inverse heat conduction problems over the past 50 years by the international community. A 

glaring commonality exists among all methods. That is, the identification of the optimal 

regularization parameter is critical to the success of any method.   

 

1.6 Thermophysical Properties Identification 

 

Quantitative understanding of heat transfer in industrial applications requires accurate 

knowledge of thermophysical properties, such as the thermal diffusivity and thermal conductivity. 

The magnitude of these properties significantly impacts the temperature distribution and heat 

transfer in a material during heating and cooling studies associated with direct analysis. 
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Additionally, thermophysical properties strongly affect the stability of the inverse heat 

conduction problem. For example, in inverse problems, the optimal selection of thermal 

protection systems depends on the ability to accurately predict the surface thermal condition 

based on in-depth temperature measurements. Also, the system reliability strongly depends on 

the accuracy and understanding of the thermophysical properties during the preparation and 

fabrication of the TPS. Accurate estimation of temperature-dependent thermophysical properties 

is a non-trivial task. Difficulties include: (1) thermophysical properties are a function of 

temperature; hence the resulting heat equation used to retrieve these unknown properties become 

nonlinear; (2) the identification of thermophysical properties is sensitive to measurement 

uncertainty; and, (3) the accuracy of the estimation is related the quality and accuracy of the 

defined boundary conditions and sensor locations.  Fortunately, many theoretical and 

experimental methods have been proposed for this purpose, including steady-state methods, 

probe methods, periodic heating methods, pulse heating methods and least-square methods. 

 

The steady-state method [91] is a relatively simple method for deducing thermal 

conductivity. Beck et al. [92] applied this method for estimating the thermal conductivity of 

rocks. In this process, a rock disk is prepared and introduced between two well characterized 

cylindrical metal bars. Heat is then supplied to the remote end of one bar while the remote end of 

the other is cooled with thermostatically controlled water. Temperature measurements are made 

along the bars after steady state is reached. The thermal conductivity is determined in terms of 

the conductivity of the bars which are assumed to be well characterized and known. The probe 

method [93] is a transient method for both thermal conductivity and thermal diffusivity. It 

estimates the thermophysical properties using the following steps. A body (the “probe” 
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containing heat-source and thermometer) of known dimensions and thermophysical properties is 

immersed into a medium whose thermophysical properties are unknown. With the aid of suitable 

theoretical relations, these properties are then calculated from a record of the “probe” 

temperature versus elapsed time. Herzen [94] successfully applied this probe method for 

estimating the thermal conductivity of deep-sea sediments while Lobo and Cohen [95] made use 

of it for measuring the thermal conductivity of polymer melts. The periodic heating method [96-

98] uses a well-defined periodic heat source to excite a time-dependent temperature distribution 

in a sample. The temperature difference between two locations along a one-dimensional sample 

or the apparent phase lag can be used to extract the thermal diffusivity of the material. 

Additionally, the temperature at different modulation frequencies instead of different locations is 

also available to obtain the same property estimation. This periodic heating method is 

particularly suitable for thin films. For example, Coufal and Hefferle [96], Kato et al. [97] 

applied this method to measure the thermal diffusivity of thin films using various calorimeters.  

 

A representative and classical pulse heating approach for estimating thermal diffusivity is 

the Flash method [98]. This method utilizes the exact temperature solution of the linear heat 

equation for a thermally insulated solid exposed to a pulse of radiant energy impacting the front 

surface. Parker et al. [98] proposed this means of estimating thermal diffusivity based on a single 

graphical representation involving a dimensionless backside temperature versus dimensionless 

time plot. This method is appealing as knowledge of the amount of energy absorbed at the front 

surface is not required for estimating the thermal diffusivity. However, the energy input must be 

specified when estimating the thermal conductivity. The Flash method is popular and has 

received s significant amount of attention over the past 50 years. Clark and Taylor [99] 
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investigated radiation heat loss associated with Flash method in a high temperature range and 

provided an experimental basis for evaluating radiation heat losses and forming a correction 

procedure. James [100] extended the Flash method to other one-dimensional heat conduction 

problems for measuring thermal diffusivity. James [100] considered one-dimensional heat 

conduction through slabs of two materials in direct thermal contact. In his process, the Laplace 

transformation technique is used to obtain the temperature in the frequency domain. However, 

instead of inverting the transform through integration in the complex plane, a convenient 

expansion of the transform is presented that permits term-by term inversion using a standard 

Laplace transform table. Baba and Ono [101] improved the Flash method to reduce uncertainty 

in thermal diffusivity measurements of solid materials above room temperature. This revised 

laser Flash method is constructed based on following technical improvements: (1) introducing 

laser source that achieves near uniform pulse heating (decreasing the error due to non-uniform 

heating); (2) including a fast infrared radiation thermometer (decreasing the error due to 

nonlinear temperature detection); and, (3) introducing a curve-fitting method for data analysis 

using the temperature history (decreasing the heat loss error). Gaal et al. [102] utilized the 

original Flash method for estimating the thermal conductivity measurement. In their 

interpretation, the heat capacity is obtained through calibration. In principle, this process 

involves testing a sample with known heat capacity and then replacing it with the sample with 

unknown capacity in the same apparatus. The magnitudes of both resulting temperature curves 

are then compared for estimating the unknown heat capacity. Sato and Taira [103] measured the 

thermal conductivity of GdVO4, YVO4, and Y3Al5O12 by a quasi-one-dimensional Flash method. 

The quasi-one-dimensional concept is introduced for simplifying three-dimensional thermal 

diffusion effects.  
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The least-square method is the most common approach for parameter estimation [104-

110]. A significant amount of attention has been directed toward this approach since it is suitable 

to any experimental situation that can utilize either analytical or numerical solutions. After the 

initial guess is provided, optimization methods are introduced for updating the parameter space 

that minimizes the difference between the experimental results and the model solution. The 

thermal diffusivity and thermal conductivity can simultaneously be determined by successive 

iteration. Monde and Mitsutake [104] solved for the unknown thermal diffusivity based an 

inverse reconstruction prediction. The inverse prediction resolves the surface temperature based 

on in-depth temperature measurements. After the initial guess is supplied, an update for the next 

iteration is calculated through the comparison between two surface temperature predictions 

corresponding to two different probe sites. Sawaf and Ozisik [21] estimated the linearly 

temperature-dependent thermal conductivity components and heat capacity of an orthotropic 

medium through the combination of numerical solution and the Levenberg-Marquardt iterative 

procedure. Huang and Yan [105] utilized the conjugate gradient method of minimization and the 

adjoint equation in the optimization process such that the temperature-dependent thermal 

conductivity and heat capacity can be simultaneously estimated. Battaglia et al. [106] indentified 

thermophysical properties from a metallic thin layer deposited on a silicon substrate through the 

combination of a Bayesian technique based on Monte Carlo Markov Chain and the Levenberg-

Marquardt technique. In this process, the thermal conductivity of the layer; the thermal resistance 

at the interface between the layer and substrate; and, the extension of the heat source at the initial 

temperature can simultaneously be identified. Chen and Lin [107] applied a hybrid numerical 

algorithm combining the Laplace transform technique and the control-volume method for 

simultaneously estimating the temperature-dependent thermal conductivity and heat capacity 
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from in-depth temperature measurements. Finally, Darcia and Scott [108, 109] applied genetic 

algorithms for simultaneously estimating thermophysical properties. This brief literature review 

illustrates the vast choices of methods developed for estimating the thermophysical properties 

based on inverse methods. 

 

1.7 The Scope of Research 

 

The previous sections presented a literature review describing the state of the recent 

approaches for resolving inverse heat conduction for variety of physical applications. 

Additionally, several noticeable gaps were identified involving fully nonlinear systems. This 

dissertation describes a systematic investigation to fill these gaps by expanding the calibration 

methodology initially proposed in Ref [43-45] to both nonlinear inverse heat conduction 

problems and thermophysical property estimation based on rescaling principles. 

 

Chapter 2 introduces the linear one-probe calibration method [43-45] relating the 

unknown surface (net) heat flux/temperature to a single in-depth temperature measurement for 

the one-dimensional heat equation. This formulation is applicable to constant backside 

thermophysical properties with a passive side boundary condition that maintains a constant heat 

transfer coefficient between the calibration and reconstruction tests. The final mathematical 

expression for the inverse statement appears as a Volterra integral equation of the first kind for 

the unknown surface (net) heat flux or temperature in the reconstruction test. Regularization is 

required for extracting an optimal prediction. The chapter is the basis of the dissertation. The 

calibration approach is used in all future chapters.  
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Chapter 3 generalizes the one-probe linear calibration method to a nonlinear framework. 

A time domain rescaling principle is combined with the Kirchhoff transform to form a quasi-

linearization of the mathematical system. In this process, the Kirchhoff transformation is 

exploited for linearizing temperature in the thermal conductivity. Time domain rescaling is 

incorporated for linearizing the temperature-dependent thermal diffusivity. The reliability of this 

quasi-linearization lies in the piecewise time-step linearization assumption. That is, at each time 

step, the thermophysical properties are held constant throughout the spatial domain though they 

are allowed to vary with advancing time. The rescaled forms are then resolved through the 

calibration framework. The modified calibration method will be shown to work well for a variety 

of practical isotropic materials.  

 

Chapter 4 introduces the two-probe calibration method for nonlinear one-dimensional 

inverse heat conduction. This method combines the attributes of the linear two-probe calibration 

formulation [111] with the nonlinear one-probe calibration equation [112]. Unlike the one-probe 

calibration method, two distinct calibration tests are required in the test campaign. In this way, 

the back boundary condition does not need to be passive and can varying among all tests 

(calibration and reconstruction). The final calibration equation is also expressed in terms of a 

Volterra integral equation of the first kind. However, additional attention is required as the kernel 

is more sensitive to noise than the one-probe system. A reduction of the ill-conditioning effects 

imposed by the kernel requires a careful design of the back boundary condition for the 

calibration tests. Results verify that a combination of cooling (first calibration test) and heating 

(second calibration test) back boundary conditions form an improved kernel for resolving the 

surface (net) heat flux.  
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 Chapter 5 introduces another version of nonlinear one-probe calibration method and a 

new strategy for estimating the optimal regularization parameter. This new calibration method 

linearizes the thermal conductivity through heat flux rescaling rather than the Kirchhoff 

transformation. The optimal regularization parameter search strategy is implemented 

independent of the applied regularization approach. This new search strategy is shown to be 

applicable regularization methods. This new strategy uses a Gaussian filtering of the probe 

temperature data sets for estimating the variance in the group of predictions. The best 

regularization parameters are obtained by balancing the weighted bias and variance. The 

effectiveness of this method is examined through three common regularization approaches. 

Encouraging results are consistently observed in presence of a significant noise. The over-

smoothness involved in the final prediction is avoided while the stability is still maintained.  

 

Chapter 6 applies the described calibration principle for estimating unknown 

thermophysical properties above room temperature. The estimation of thermophysical properties 

is also an inverse problem in the classical sense though it is less sensitive to noise than inverse 

heat conduction problems. This approach utilizes a single in-depth temperature measurement and 

a known set of boundary conditions. To acquire both the thermal diffusivity and thermal 

conductivity, two distinct stages are proposed for extracting these temperature-dependent 

properties. The first stage uses a temperature calibration equation for estimating the unknown 

thermal diffusivity. This process determines the thermal diffusivity by minimizing the residual of 

the temperature calibration equation with respect to the thermal diffusivity. The second stage 

uses the estimated thermal diffusivity and a heat flux calibration equation for estimating the 

unknown thermal conductivity. This stage produces the desired thermal conductivity by 
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minimizing the residual of the heat flux calibration equation with respect to the thermal 

conductivity. Results verify that the proposed estimation process works well in presence of 

significant noise for two test representative materials.   

 

Chapter 7 provides general conclusions and recommendations for future research that is 

suggested by the merits of this investigation.  
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Chapter 2: Introduction to a Surface Heat Flux and Temperature 

Calibration Formulation 

 

This chapter revisits previously published works [43-45] for introducing the concept of 

inverse heat conduction. The derivations for both the one-probe surface heat flux and 

temperature calibration equations are presented based on exact analytical solutions.  

 

2.1 Definition of Inverse Heat Conduction in a One-Dimensional Slab 

 

Physical theories that can be mathematically formulated in term of functional equations 

permit outcomes to be predicted based on the provided inputs. This defines the conventional 

forward direct problem normally proposed in physical studies. In contrast, the inverse problem 

consists of using the actual measurements from a sensor to infer the values of the inputs that 

characterize the system [1]. The difference between the forward direct problem and the inverse 

problem is presented in Fig. 2.1.1. Inverse problems lie at the heart of scientific inquiry and 

technological development. Inverse heat conduction problems (IHCP’s) are one of the most 

important applications associated with inverse studies. In heat transfer processes, severe working 

conditions are often encountered that make direct boundary condition measurement be difficult. 

The IHCP was originally considered as an approach for estimating the surface heat flux through 

the use of in-depth temperature measurements during the course of an experiment [8]. This 

problem originated in 1950’s as a response to the needs of the space program and aerospace 

industries. In 1957, the Russian scientist Shumakov [9] published the earliest research paper in  
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Figure 2.1.1: The difference between the forward and the inverse problems.  
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the field of IHCP’s. Stolz [10] published another early IHCP paper in 1960 that provides a 

numerical solution for resolving the surface heat flux in a quenching process. Presently, the 

application of IHCP’s has broadened to various fields, including: nuclear reactor components 

[11], solidification of glass [12], and periodic heating in internal combustion engines [13].  

 

In this chapter, we consider a one-dimensional heat conduction problem in the Cartesian 

coordinates having a front surface heat flux source at     and an adiabatic back surface 

at    . The geometric configuration is displayed in Fig. 2.1.2. This basic geometry and back 

boundary condition specification are often used in aerothermal applications [115]. The inverse 

problem under consideration involves resolving the net surface heat flux,         based on a 

thermocouple located at     with adiabatic condition at    .   

 

If the density  ; specific heat   ; and, thermal conductivity   are assumed constant then 

the heat equation is [33]  

 

 

 

  

  
      

   

   
                                                                    

 

where   is the temperature;   is the spatial variable;   is the time variable;   represents the 

thermal diffusivity,          ; and,   is the slab thickness. The                    boundary 

conditions are given as  
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Figure 2.1.2: System setup for the one-dimensional heat conduction problem showing 

adiabatic back boundary and the thermocouple position. 

     

 

 

 

 

 

 

 

 

 

 

 



35 
 

 
  

  
                                                                            

 

where         is the net surface heat flux entering the body per Fig 2.1.2 while        describes 

the total surface heat flux externally contacting at    . The initial condition is given as 

 

                                                                                         

 

The direct solution for the temperature distribution,        and heat flux distribution,         

can be obtained by a classic integral transform technique [33]. 

 

2.2 One-Probe Calibration Equation for Surface Heat Flux in a Linear Framework 

 

The derivation of the linear temperature calibration equation follows the approach of 

Frankel and Keyhani [43-45]. The Laplace transform is introduced to Eq. (2.1.1a) as  

 

 

 
  

  

  
         

   

   
                                                         

 

based on its definition [31] 
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where     is a complex variable having units, 1/s and       is the image of      in the frequency 

domain [31]. This procedure transforms the original partial differential equation given by Eq. 

(2.1.1a) into the linear ordinary differential equation 

 

    

   
      

 

 
                                                                     

 

where         is the Laplace transformed function of       . 

 

The general solution of Eq. (2.2.2) is   

 

                  
 

 
            

 

 
                                             

 

where       and       are unknown coefficients. Their evaluation requires taking the Laplace 

transformation of both auxiliary conditions given by Eq. (2.1.1b) and Eq. (2.1.1c). Doing so 

produces 

 

   
  

  
         

 

 
                                                             

 

   
  

  
         

 

 
           

 

 
            

 

 
                                

 

respectively. 
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The unknown coefficients       and        can be expressed in terms of these two 

boundary conditions as 

 

      
 

 
 
 

 
      

 

 
                                                                     

 

       
 

 
 
 

 
                                                                           

 

Upon substituting Eqs. (2.2.5a, b) into Eq. (2.2.3), we obtain 

 

                                                                                

 

where 

 

                 
 

 
 
 

 
        

 

 
        

 

 
         

 

 
      

                                           

 

Equation (2.2.6b) represents the exact “forward” or “direct” transformation solution for an 

impulsive surface heat flux. Implementing the inverse Laplace transformation would produce the 

exact solution in the time domain. The heat flux distribution,         could be recovered through 

Fourier’s law.  
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It is necessary to note that the impulsive function                  in the frequency 

domain is solely function of the thermophysical properties and system configuration. As a result, 

if these parameters are assumed fixed throughout a test campaign then it is possible to eliminate 

                 through a calibration test whose surface condition is known. For this purpose, 

the subscripts     and     are defined and introduced to represent the calibration and 

reconstruction tests, respectively. The term                  can be isolated in terms of an input-

output relationship and thus represented by the transfer function   

  

                 
       

        
                                                       

 

Due to the assumption of consistent system parameters, it is possible to eliminate this function 

based on experimental data in the calibration test. Next, we evaluate Eq. (2.2.7a) at the inserted 

probe position     to get 

 

                 
        

         
                                                         

 

 Upon substituting Eq. (2.2.7b) into Eq. (2.2.6a) after evaluation at     and taking its 

inverse Laplace transform, we formally obtain 
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where the inverse Laplace transform operator     is defined with the aid of the convolution 

theorem [31] through 

 

                               
 

   

                                               

 

Finally, Eq. (2.2.8) is explicitly expressible in time domain [43-45] as 

 

           

 

   

                     

 

   

                                             

 

This one probe linear calibration equation relates the net unknown surface heat flux to the 

calibration surface heat flux and the corresponding in-depth temperature measurements during 

the calibration and reconstruction tests. The resulting inverse statement is expressed in terms of a 

Volterra integral equation of the first kind for the unknown surface heat flux and hence is ill-

posed and will require regularization. This calibration method in linear framework has been 

experimentally verified with excellent accuracy at low temperatures [45]. In addition, though this 

derivation is based on an adiabatic back boundary condition, it is also suitable for either a semi-

infinite geometry or a slab with a fixed heat transfer coefficient at the back-face under the 

uniform initial condition assumption. 
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2.3 One-Probe Calibration Equation for Surface Temperature 

 

To derive the one-probe calibration equation for the surface temperature, the surface heat 

flux boundary condition at     given by Eq. (2.1.1b) is replaced by the temperature boundary 

condition  

 

                                                                                    

 

where        describes the surface temperature at    . The Laplace transform can then be 

applied to Eq. (2.1.1a) to produce the general solution 

 

                  
 

 
            

 

 
                                             

 

where        and       are undetermined coefficients to be obtained through the transformed 

boundary conditions Eq. (2.3.1) and Eq. (2.1.1c). Utilizing these boundary conditions produce 

 

                                                                             

 

   
  

  
         

 

 
           

 

 
            

 

 
                               

 

respectively. 
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The unknown coefficients       and        can then be expressed in terms of these two 

boundary conditions as 

 

                                                                                   

 

                   
 

 
                                                           

 

Upon substituting Eqs. (2.3.4a, b) into Eq. (2.3.2), we obtain 

 

                                                                                    

 

where 

                     
 

 
         

 

 
         

 

 
     

                                        

 

The impulsive transfer function              in the frequency domain can also be incorporated in 

a calibration test when the in-depth probe is located at    . Doing so produces 
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where all four system parameters           are explicitly contained in the transfer function.  As 

before, the impulsive transfer function can be removed in terms of calibration data assuming that 

these parameters remain unchanged among all tests. Therefore, Eq. (2.3.6) can equivalently 

expressed as 

  

        

        
 

        

        
                                                             

 

where          represents the unknown surface temperature to be resolved and expressed in the 

frequency domain. To obtain a time-varying functional equation, we introduce the convolution 

theorem to invert Eq. (2.3.7). Doing so produces  

 

          

 

   

                    

 

   

                                            

 

Similar to the one-probe linear calibration equation for surface heat flux presented in Section 2.2, 

the linear calibration equation for temperature has a broader geometrical application. It is 

suitable for either a semi-infinite geometry or a slab with a fixed heat transfer coefficient at the 

back surface under the uniform initial condition assumption.  
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Chapter 3: A Nonlinear Surface Heat Flux Calibration Method 

based on Kirchhoff Transformation and Rescaling Principles 

 

This chapter is a revised version of the paper published by Yinyuan Chen, Jay I. Frankel 

and Majid Keyhani: 

Chen, Y.Y., Frankel, J.I., and Keyhani, M., 2014, “A New Nonlinear Surface Heat Flux 

Calibration Method based on Kirchhoff Transformation and Rescaling Principles,” Inverse 

Problems in Science and Engineering, Vol. 22, No.8, pp. 1394-1421. 

My primary contributions to this paper include (1) conceptualization of the new model, (2) 

development of numerical and regularization methods (3) writing and implementing of the 

computer code (4) and served as lead writer of the manuscript. 

 

3.1 Introduction  

 

Accurately quantifying surface thermal conditions based on in-depth temperature 

measurements represents one commonly defined inverse heat conduction problem (IHCP) 

scenario. In aerospace engineering, it is a critical topic and applicable to a variety of short- and 

long-duration, ground- and flight-based experiments. For example, hypersonic flight requires 

reliable and predictable Thermal Protection Systems (TPS’s) in order to maintain the structural 

integrity of a flight vehicle. Optimal selection of a TPS depends on the ability to accurately 

predict the surface heat flux and temperature based on in-depth temperature measurements. 

Hostile thermal conditions at the surface often preclude the use of surface mounted thermal 

sensors. A variety of methods have been employed to resolve inverse problems, including “exact 
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solutions” [37], function specification [34-36], space marching and finite difference [49,110,114] 

and other well-studied technique. 

 

An alternative to purely numerically-based inverse heat conduction involves system 

calibration. Presently, two approaches have been proposed. There are several advantages to this 

view as systemic errors are substantially reduced. However, during the calibration test, the 

imposed net surface heat flux must be accurately measured. Loehle et al. [40], Loehle et al. [41] 

and Gardarein et al. [42] have demonstrated the application of a calibration method based on 

system identification for estimating the surface heat flux using measured in-depth temperature 

data. This Non-Integer System Identification (NISI) method involves developing an impulse 

response function from a calibration test. The NISI method [40-42] is presently derived based on 

the constant property (linear) heat equation. A finite series expansion is formed in terms 

fractional derivatives of the measured calibration temperature and calibration surface heat flux. 

The unknown expansion coefficients are determined during the calibration stage. In contrast, an 

alternative calibration methodology has been proposed [43-45] that eliminates the use of 

fractional derivatives and the resolution of expansion coefficients in the linear framework. This 

method relates the net unknown surface heat flux to the calibration surface heat flux and the 

corresponding in-depth temperature measurements during the calibration and reconstruction tests. 

The resulting inverse statement is then expressed in terms of a Volterra integral equation of the 

first kind for the unknown surface heat flux.  

 

The linear one-probe calibration method [43,44] has been experimentally verified [45] 

with excellent accuracy in a low temperature range. However, in hypersonic flight, a large 
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temperature variation is expected due to aerothermodynamic heating effects [115]. Under this 

scenario, the variable thermophysical property effects can be significant depending on the 

material and temperature range. To account for the temperature varying property effects that lead 

to a fully nonlinear description, a piecewise time-step linearization assumption is introduced and 

used in conjunction with the Kirchhoff transformation. The Kirchhoff transform is a basic 

transformation often used in nonlinear diffusion problem. It essentially converts the nonlinear 

operator equation into a linear operator equation if the thermal diffusivity is held constant [116]. 

However, over the temperature range of interest, the change in the thermal diffusivity of most 

materials with temperature is not negligible. This situation often restricts the use of the Kirchhoff 

transformation. To overcome this obstacle, a piecewise time-step linearization assumption is now 

introduced. It involves a whole time domain discretization involving a successive series of small 

time steps in increments of   . At each time interval, all thermal properties are assumed constant 

and evaluated at the probe                             temperature. However, at each 

advancing time step the thermal diffusivity may vary. Through this simplification, the nonlinear 

one-dimensional heat conduction problem can be equivalently expressed as a series of linear 

ones whose thermal diffusivity has been evaluated at their respective small time step    using the 

local temperature measurement. It is then possible to map the piecewise thermal diffusivities at 

various times back to the one evaluated at the initial temperature through rescaling the time 

domain based on the sensor temperature history.  This rescaling principle and its analysis are the 

major contribution of this chapter. 

 

The main numerical difficulty associated with the above calibration formulation is that it 

has the form of Volterra integral equation of the first kind which is ill-posed. An arbitrarily small 
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uncertainty, emanating from either or both computing errors from the numerical process or 

experimental noise, destabilizes the predicted result. Hence, stabilizing the process through 

regularization becomes necessary. Fortunately, many regularization schemes have been proposed 

for this purpose. These include Tikhonov regularization [82], iterative regularization [16], local 

future-time method [8] and Singular- Value Decomposition (SVD) [80-81].   

 

In this chapter, Section 3.2 presents the derivation of the new surface heat flux calibration 

formulation based on the Kirchhoff transformation and the proposed rescaling principle. Section 

3.3 presents the Tikhonov regularization approach for generating a family of predictions based 

on the Tikhonov parameter. The L-curve strategy is then used for selecting a proper 

regularization parameter. Section 3.4 presents numerical results verifying both accuracy and 

robustness of this new calibration formulation in presence of significant experiment noise.  

Finally, Section 3.5 provides some concluding remarks on the rescaling concept. 

 

3.2 Formulation 

 

Consider a nonlinear one-dimensional heat conduction problem in Cartesian coordinates 

having a front surface heat flux source at      and an adiabatic back surface at    . This 

basic geometry and back boundary condition specification is often used in aerothermal 

applications [115]. The heat equation can be written as [33] 
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where   is the temperature,   represents the thermal conductivity, and      represents the heat 

capacity.  The boundary conditions are given as 

 

          
  

  
                       

        

  

  
                                                                   

 

where        describes the total surface heat flux externally contacting at     while         is 

the net surface heat flux entering the body. The initial condition is given as 

 

                                                                                          

                                               

Notice that for simplicity but without loss of generality, all the temperatures used in this chapter 

can be interpreted as the relative temperature from the physically imposed constant initial 

condition.  

 

The inverse problem under consideration involves resolving the net surface heat flux 

based on a thermocouple located at     with adiabatic condition at     which is displayed in 

Figure 3.2.1. For this situation, Frankel and Keyhani [43] developed the linear calibration 

equation as 
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Figure 3.2.1: System setup for the one-dimensional heat conduction problem showing 

adiabatic back boundary and the thermocouple position. 
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where          is the measured calibration temperature at some depth            ; 

         is the net surface heat flux imposed during the calibration test;         is the measured 

temperature of the same thermocouple in response to the unknown heat flux; and          is the 

unknown surface heat flux to be predicted in the reconstruction test. This calibration integral 

equation has broad appeal as it is also valid for the semi-infinite geometry as well as a finite slab 

whose back surface is subjected to the same constant heat transfer coefficient between the two 

tests.  

 

The Kirchhoff transformation introduces a new dependent variable possessing the form 

[116] 

 

  
 

  
        

 

   

                                                                      

 

where   is the dummy variable used for the integration of       and    represents the thermal 

conductivity precisely defined according to  the initial temperature.   is relative remperature. 

The constant    can also be written as           since the initial temperature is uniform in 

space at time    . Using this definition, Eqs. (3.2.1a-d) can be recast in terms of the Kirchhoff 

transformation variable as 
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subject to the boundary conditions  

 

          
  

  
                      

 

  

  
                                                                      

 

and initial condition  

 

                                                                             

 

where                                 represents the thermal diffusivity evaluated at 

temperature       . If the thermal diffusivity is insensitive to temperature, (i.e.,      is a 

constant) then according to Duhamel’s principle, the final analytical solution becomes  

 

                                                                     
 

   

 

 

where          is the solution for        when the front surface         is exposed to impulsive 

heat flux. First, suppose that both calibration and reconstruction test data have been collected. A 

new linear calibration formulation in term of Kirchhoff transformed variable can be derived 

through the exchange of integral sequences using 
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such that 

 

           

 

   

          

          
 

   

                        
   

   

   

          
 

   

                        
   

   

    

            

 

   

                                                                                            

            

 

   

                                                                                  

 

Comparing Eq. (3.2.4c) to the linear calibration equation in Eq. (3.2.1e), the Kirchhoff 

transformed based calibration equation shown in Eq. (3.2.4c) can still be applied to problems 

with a semi-infinite geometry but will not hold true when the back surface is subjected to a heat 

transfer coefficient     =constant since the Kirchhoff’s transformation of a Robin’s condition 

retains the nonlinearity. The new equation shown in Eq. (3.2.4c) works well when the thermal 

diffusivity is approximately constant. However, for some materials the thermal diffusivity can 

significantly vary over the temperature range of interest and it must be accounted for. For this 

purpose, a piecewise time-step linearization assumption is now proposed to form the quasi-

linearization. That is, the thermal diffusivity distribution is viewed as uniform in the spatial 
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domain but permitted to vary in the time domain. In this way, the thermal diffusivity at each time 

step can be evaluated and approximated from its corresponding probe temperature at     

which is located near the desired surface being resolved. 

 

To display the time stepping process and rescaling concept, several time steps involving 

this concept are now presented.  If we apply the piecewise, time-step linearization assumption to 

Eqs. (3.2.3a-d) between time     and      then the heat equation becomes 

 

            
    

   
      

   

  
                                                              

 

subject to the boundary conditions 

 

          
   

  
               

 

   

  
                                                                      

 

and initial condition  

 

                                                                                         

 

During the first time step, the thermal diffusivity is evaluated at the initial temperature 

and it is assumed spatially invariant over the entire slab. The heat conduction problem now 
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becomes “linearized” in the time interval,         . Thus, Eq. (3.2.4c) can be applied to obtain 

the unknown surface heat flux prediction in the interval,         .  

 

For notational convenience and consistency, we define 

 

   
                                                                                           

 

    
                                                                                         

 

The superscript “star” notation is introduced to relate the rescaling concept. The subscript      is 

introduced to explicitly relate that the rescaling has been made in the time interval,    

            based on temperature data collected from the experiment. Hence, in the first time 

step,          , the Kirchhoff transformed based one-probe calibration equation from Eq. 

(3.2.4c) is 

 

       
           

 
 

   

                 
           

 
 

   

                                      

 

Similarly, for the second time step,            , the heat equation expressed in Eq. 

(3.2.3a) becomes  
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subject to the boundary conditions 

 

          
   

  
               

 

   

  
                                                                             

 

and initial condition 

 

                                                                                     

 

A substantial variability in thermal diffusivity can result from a large temperature 

variation due to the imposed heating process.  In such cases, a nonlinear analysis must be sought. 

To avoid this difficulty, one possible method involves rescaling the time domain based on the 

thermal diffusivity function. After introducing the rescaling, all piecewise governing equations 

and boundary conditions can be transformed into the same functional form for each new rescaled 

time step. For instance, if we can let            then the original system can then be recast 

into  
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subject to the boundary conditions 

 

          
   

  
                         

 

   

  
                       

  

  
                                      

 

and initial condition 

 

                                                                        

 

To map the local thermal diffusivity            shown in Eq. (3.2.7a) back to the            

given in Eq. (3.2.5a), we define  

 

  
                                   

  

  
   

 

       
                                  

  

  
                                   

 

where 
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Based on these definitions, Eqs. (3.2.7a-d) can be simplified to 

  

          
    

 

   
      

   
 

  
                             

  

  
                              

 

subject to the  boundary conditions 

 

   
                 

   
 

  
       

 

   
 

  
                  

  

  
                                                

 

and initial condition 

  

  
                                                                             

 

A scaling coefficient     is introduced into the second-time step.  The resulting rescaling 

Kirchhoff transformed variable   
 

 can be considered as the “linearized” solution using    
   and 

having a thermal diffusivity evaluated at its relevant initial temperature. The initial condition in 

this second step is merely the final state of the first time step            Next, we define 
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The rescaling coefficient    is set to one in order to illustrate that the heat flux     and the 

Kirchhoff transformed variable    for the first-time step can also be rescaled into the new time 

domain. 

 

Combining definitions from Eqs. (3.2.7e-g) with (3.2.9a-c), one can show that if 

  
  and   

  are collected in sequence; the final “linearized” solution obtained from the heat flux 

   
  followed by    

  will match the initial temperature at 0
o
C. 

 

We define this collecting process through 
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Implementing this process, the resulting one-probe integral calibration equation based on the 

Kirchhoff transform for the first two time steps becomes 

 

       
           

 
 

   

                 
           

 
 

   

                             

       
  

  

 

   

                        

 

A calibration equation becomes available for arbitrary time length by repeating the previously 

outlined procedure for all future time steps. For a heating process with             , with 

any small step                 (       ), the governing equation under piecewise time-

step linearization assumption becomes 

 

            
    

   
      

   

  
                                                             

 

subject to the boundary conditions 

 

          
   

  
               

 

   

  
                                                                   

 

and initial condition 
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Time domain rescaling is accomplished through 

  

  
                                   

  

  
    

 

   
                                  

  

  
                                  

 

   
         

           
                                                                      

 

Upon implementing the above definitions, it is possible to express Eqs. (3.2.11a-d) using the 

thermal diffusivity evaluated at the initial temperature as 

 

          
    

 

   
      

   
 

  
                            

  

  
                               

 

subject to the boundary conditions 
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and initial condition 

 

  
                                                                          

 

Notice that the local thermal diffusivity             can always be transformed to the initial 

temperature condition through rescaling the respective time domains by   . Thus, if all Kirchhoff 

transformed variables   
  from time zero       to final time       are collected in sequence 

then it can be regarded as a linearized solution of the heat equation leading to the surface heat 

flux following the reconstitution of    
  from     to    . 

 

It is possible to define the total sequential system as the collection given by 
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Finally, the rescaled calibration integral equation corresponding to the physical time domain 

           becomes 

 

       
           

 
 

   

                 
           

 
 

   

                            

  

          
  

  

 

   

                          

 

If a more general solution form is required then we can increase   such 

that          
    

   
. Thus, for any time               it is always possible to find a real 

index          to ensure       . Moreover, the sequential collecting procedure for the 

rescaled time domain can be approximated as a compact integral equation. From Eqs. (3.2.11e-g) 

and Eqs. (3.2.13a-c), we have  
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therefore 

 

             
     

         

         
  

    

   

                                      

 

               
     

         

         
  

    

   

   

 

The next step is to define 

 

    
         

         
   

 

   

 

with 

 

                                                                         

 

                 

 

such that the final form of the nonlinear, one-probe calibration integral equation for the entire 

time domain becomes 
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Once the unknown surface heat flux in the rescaled time domain has been predicted, the 

necessary return to the physical time domain can be accomplished with the aid of 

 

   
          

          
                                                                  

  

   

 

 

where 

 

                                                                                  

 

 

3.3 Regularization by Tikhonov Regularization and L-Curve 

 

The quasi-linearized Kirchhoff transformed methodology yields Eq. (3.2.15d) which is a 

Volterra integral equation of first kind [79]. As such, it is ill-posed and requires careful 

computational considerations in hope of retrieving an accurate prediction since arbitrary input 

noise and computational errors can destabilize the entire prediction. In the present formulation, 

the thermal diffusivity distribution at any instant of time is fixed or frozen at the probe 

temperature evaluated value. Therefore, some model introduced bias is expected. Regularization 

must be introduced to control prediction stability. The strategy adopted here involves the 

classical Tikhonov regularization approach. L-curve analysis is then introduced for estimating 

the “best” regularization parameter. If discrete experimental data collected from the physical 

time domain are mapped onto the rescaled discrete domain,            
   with      

    
 

   
, then 

the objective function to be minimized is given as 
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where 

 

    
    

       
        

 
  
 

   

     
        

 

    
    

       
        

 
  
 

   

     
                                           

 

Here,    denoted the regularization parameter and    
      . The regularization parameter 

retains the physical units (
o
Cs) associated with the balancing of Eq. (3.3.1a). For this 

investigation, if Eqs. (3.3.1b,c) are numerically processed using a convenient left-handed 

rectangle, product integration rule then Eq. (3.3.1a) can be represented in a compact matrix form  

 

                    
 
   

     
                                                             

 

where    is a              matrix with               
          

   for     and 

           for     ,       is a         vector with             
    

  , and    is a 

        matrix to be determined with           
      

  .    
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To obtain the minimum value of Eq. (3.3.2), the first derivative of          with 

respective to     must be computed and then the result is set to 0. Performing this operation 

yields 

 

  
               

                                                                          

 

Thus,    can be calculated through matrix inversion producing  

 

      
      

       
                                                                           

 

An alternative way to represent this result makes use of the Singular-Value 

Decomposition (SVD) of    [113].  Let 

 

               
 

   

   

                                                                    

 

with                     and                     satisfying            . 

Here, the term   is a             diagonal matrix whose diagonal value    arranges in a 

descending order as 
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A new form of           is developed once Eq. (3.3.4) is substituted into Eq. (3.3.2). Doing so 

yields 

 

                         
 
   

        
     

 

                   
 
   

         
                                          

 

Minimizing Eq. (3.3.6) leads to the SVD based Tikhonov regularized prediction 

 

    
  

  
    

   
       

   

   

                                                                           

 

It is crucial to determine a suitable value of the regularization parameter    for stabilizing the 

final prediction from the ill-condition matrix   .  The L-curve criterion proposed by Hansen and 

O’ Leary [83] is called upon for this purpose. This method defines the L-curve through 

 

                          
 
          

                                          

  

The L-curve mathematically described by Eq. (3.3.8) requires the evaluation of both heat flux 

and residual over the   -spectrum. A suitable regularization parameter must be identified from 

the formed elbow region of the L-curve. This region is assumed to produce the optimal 

regularization parameter by balancing bias             
 
  and variance      

  . Section 3.4 
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presents a numerical investigation applying the proposed rescaling principle and regularization 

method.  

 

3.4 Results 

 

This section presents computational results based on numerically simulated data. To 

numerically verify the new rescaling integral calibration formulation displayed in Eq. (3.2.15d), 

a 1cm-thick slab of stainless steel 304 is considered with an adiabatic back surface. The front 

surface can be exposed to a time-varying heat flux during both the calibration or reconstruction 

test stages. An idealized thermocouple is placed at       whose leads are placed parallel to 

the isotherms. The term “idealized” is used here to indicate that this thermocouple can accurately 

measure the positional temperature. The impact of signal decay and delay associated with 

realistic thermocouples is ignored. Figure 3.2.1 presents a schematic of this system. Simulated 

thermocouple data require the generation of temperature data at     from the forward or direct 

solution of the nonlinear heat equation. The direct problem for creating thermocouple probe data 

is defined between     and     with known the net surface heat flux condition at      and 

adiabatic back boundary condition at       For simplicity, the initial condition for all tests is 

assumed to be           . Again, fully temperature dependent thermophysical properties are 

assumed. A finite difference method [33] is applied to obtain        for the domain         

   . Hence, simulated data now become available at     for all tests.  

 

For demonstration purpose, the thermal conductivity and specific heat capacity functions 

for stainless steel 304 have been approximated as 
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respectively, where the density is estimated as                 Notice that all temperatures 

  in Eqs. (3.4.1a,b) are the relative temperature based on unit 
o
C rather than K. Figures 3.4.1 and 

3.4.2 display the thermal conductivity and specific heat capacity functions using Eqs. (3.4.1a,b). 

The thermal diffusivity function                   is also shown in Fig. 3.4.3. If the 

temperature in the slab rises to about 1000
o
C then nonlinearity effects must be accounted.    

 

For the present analysis,    and    have been set to 0.2mm and 50μs, respectively. The 

maximum heating time is fixed to 30s. To ensure the accuracy of the time stepping process with 

respect to the nonlinearity, both the spatial and temporal grid sets have been varied as 

(  =0.1mm and    =25μs), (   =0.2mm and    =100μs) for demonstrating stability and 

accuracy using both the calibration and reconstruction tests. Convergence to a relative accuracy 

of 0.01 has been verified. Next, the known time-rescaled calibration heat flux    
        , the 

time-rescaled Kirchhoff transformed variables of    
       and    

        from rescaled 

temperatures   
        and   

        can be considered as inputs to Eq. (3.2.15d) for predicting 

the time-rescaled unknown surface heat flux    
       .  
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Figure 3.4.1: Approximate thermal conductivity for stainless steel 304, Eq. (3.4.1a), 

showing a nearly two-fold change in thermal conductivity over the prescribed 

temperature range. 

 

 

 

 

 

 
Figure 3.4.2: Approximate specific heat capacity for stainless steel 304, Eq. (3.4.1b).  
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Figure 3.4.3: Approximate thermal diffusivity for stainless steel 304, 

                . 
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A significant amount of nonlinearity is introduced into the system in order to understand 

the accuracy and limitations of the quasi-linearized calibration formulation displayed in Eq. 

(3.2.15d). In this regard, the calibration test is a constant heat flux                lasting 

30s. An isosceles triangular net surface heat flux starting at 2.5s and ending at 22.5s is used for 

the reconstruction test possessing a peak of 400W/cm
2
. The calibration and unknown heat fluxes 

are presented in Fig. 3.4.4 while their respective thermal responses at probe position     as 

computed by the forward model are presented in Fig. 3.4.5. Figure 3.4.6 presents the temperature 

distribution at uniformly distributed spatial locations resulting from the forward solution for the 

triangular heat flux. Notice that the maximum surface temperature exceeds 1000
o
C, hence, 

justifying the existence of a substantial nonlinearity. Between the surface and probe position, the 

observed temperature difference is approximately 200
o
C. Figure 3.4.7 presents the dimensionless 

thermal diffusivity ratio distribution,                       in space at five specified time 

points indicating the variability of this function relative to probe position. This plot is useful for 

accessing the piecewise time-step linearization concept. From this figure, it is clear that the 

maximum thermal diffusivity ratio between the front and back surface is nearly 1.2 at about 10s.   

At first glance, this ratio appears excessive owing to the spatially invariant assumption at fixed 

time. However, it is noted that the calibration integral equation displayed in Eq. (3.2.15d) is only 

concerned with the temperature variation in         . In that region the maximum thermal 

diffusivity ratio is about 1.06. 

 

Two cases are now presented. The first case establishes the viability of this new 

calibration approach in the presence of noiseless data. As a result, the effect of bias associated 
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Figure 3.4.4: The known “calibration” surface heat flux          and the “unknown” heat 

flux          to be predicted.  

 

 

 

 

 
Figure 3.4.5: Noiseless temperature measurement          and          at the probe 

position         for both the calibration and reconstruction tests, respectively.  
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Figure 3.4.6: Temperature distribution resulting from the unknown imposed heat flux 

          Note the probe is located at         . 

 

 

 

 

 
Figure 3.4.7: Dimensionless thermal diffusivity distribution over the spatial domain at 

five prescribed times.  
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with numerical implementation and model can be viewed and understood. The second 

case investigates the robustness and stability of the regularization methodology in the presence 

of noisy temperature data collected at     . Since the proposed rescaling calibration 

formulation displayed in Eq. (3.2.15d) is represented in terms of the rescaled Kirchhoff 

transformed variable    rather than   , it is necessary to transform   to    according to Eq. 

(3.2.2a) and Eq. (3.2.15c) before implementation. For the first case involving noiseless data, the 

resulting Kirchhoff transformed variables and their time-rescaled forms are displayed in Figs. 

3.4.8 and 3.4.9, respectively. Notice that the rescaling is based on the noiseless probe 

temperature measurement at       in accordance to Eq. (3.2.15a). Similarly, the rescaled 

heat fluxes for both tests using Eq. (3.2.15b) are presented in Fig. 3.4.10. Figure 3.4.11 presents 

    
  and     

  over time in accordance to Eq. (3.3.1b,c) while their ratio is presented in Fig. 

3.4.12. From this figure, it is evident that the maximum relative difference between     
  and     

  

approaches to 2 percent which is lower than 8 percent if         and        are directly 

substituted into Eq. (3.2.4c). Figure 3.4.13 presents the L-curve of Eq. (3.3.8) for the noiseless 

test case. Although this shape is not representative of an L-shaped, one must interpret that “best” 

regularization parameter    from the minimum of the residual     
      

 .  Equation (3.3.7) can 

now be applied to predict the “best” rescaled surface heat flux, which has is shown in Fig. 3.4.14. 

This figure illustrates the model biasing as both shift and attenuation is observed. The predicted 

heat flux does not strictly fit the input due to the limitation of the piecewise time-step 

linearization assumption.  However, the result is acceptable considering the magnitude of the 

nonlinearity imposed into the system.  
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Figure 3.4.8: Noiseless Kirchhoff transformed variables         and         at the 

specified probe position for the calibration and reconstruction tests, 

respectively.  

 

 

 

 

 

 
Figure 3.4.9: Noiseless time-rescaled Kirchhoff transformed variables   

         and 

   
        at the specified probe position for the calibration and reconstruction 

tests, respectively. 
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Figure 3.4.10: Time-rescaled known “calibration” surface heat flux     

        and the 

“unknown” heat flux    
        to be predicted based on noiseless temperature 

data at    . 

 

 

 

 

 

 
Figure 3.4.11: Comparison of     

  and     
  computed by Eqs. (3.3.1b-c) using noiseless 

temperature data collected at    . 
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Figure 3.4.12: Ratio between     

  and      
  using noiseless temperature data collected 

at    . 

 

 

 

 

 

 
Figure 3.4.13: L-curve based on noiseless temperature data collected at    . 
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Figure 3.4.14: Predicted time-rescaled surface heat flux    

        based on noiseless 

temperature data at the regularization parameter,   
                 . 
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Figure 3.4.15 presents the final prediction once the rescaled time domain is transformed or 

mapped back to the physical time domain in accordance to Eq. (3.2.16a).    

 

For the second case, real experimental noise [117] has been added to the “noiseless” 

probe temperature data at    . For definiteness, the simulated noisy temperature data for the 

second case are generated through 

 

                                                                              

 

where              represents the “noiseless temperature data” at time        at position     

for the first case; and,             represents the corresponding noisy temperature data to be used 

for the second case. Here,     is a constant noise factor and    is the discrete raw experimental 

noise    collected at       . These noise estimators have been generated from the inverse heat 

conduction experiment described in Ref. 117. Note that the number N of discrete data points is 

set to 6000 in the provided 30s time period. That is, the sampling rate is 200 Hz. Here, the noise 

factor is set to     . This chosen value substantially amplifies the magnitude of the raw noise 

distribution. The added noise now has a standard deviation of error at about 1
o
C. The scaling 

noise distribution     and the noisy temperature             at probe position     applied for 

the second case are shown in Figs. 3.4.16 and 3.4.17, respectively. The identical numerical 

procedure previously described in the context of ideal data is implemented in the case of noisy 

data. Figure 3.4.18 presents the Kirchhoff transformed variable        for both calibration and 

reconstruction tests. Their corresponding rescaled forms of          and surface heat flux 

           are displayed in Figs. 3.4.19 and 3.4.20, respectively. All transformations are based  
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Figure 3.4.15: Predicted surface heat flux           based on noiseless temperature data 

at the regularization parameter,   
                 .  

 

 

 

 

 
Figure 3.4.16: Added experimentally obtained noise per Eq. (3.4.2) using Ref.117 data. 
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 Figure 3.4.17: Noisy temperature data          and          at the specified probe 

position,     for the calibration and reconstruction tests, respectively. 

 

 

 

 

 

 
Figure 3.4.18: Kirchhoff transformed variable           and          at the specified 

probe position     for the calibration and reconstruction tests, respectively 

(noisy data).  
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Figure 3.4.19: Time-rescaled Kirchhoff transformed variables   

        and   
        at 

the specified probe position for the calibration and reconstruction test, 

respectively (noisy data). 

 

 

 
 

 
Figure 3.4.20: Time-rescaled known “calibration” surface heat flux     

        and the 

“unknown” heat flux    
        to be predicted based on noisy temperature 

data. 
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on the noisy probe temperature data displayed in Fig. 3.4.17. Figure 3.4.21 presents     
  and 

     
  over time while their ratio is presented in Fig. 3.4.22. Again, we find that the relative 

difference between     
  and      

  remains about 2 percent even after introduction of the 

magnified experimental noise shown in Fig. 3.4.16. This reflects the robustness of the proposed 

rescaling calibration formulation displayed in Eq. (3.2.15d).  

 

Figure 3.4.23 presents the L-curve associated with this case where the L-shape emerges. 

A conventional L shape is now observed displaying a clear elbow. Two extreme values about the 

elbow, as indicated in Fig. 3.4.23, have been chosen to demonstrate robustness in the choice of 

the regularization parameter   . Figures 3.4.24 and 3.4.25 present the rescaled surface heat flux 

prediction    
         using the two highlighted regularization parameters from Fig. 3.4.23. 

Results show that    
                 produces excessive noise amplification while 

  
                 produces less error amplification. Higher frequencies are retained in the 

signal as the regularization parameter    decreases, as shown in Eq. (3.3.7). For this application, 

both of the predictions are stable. However, the optimal value chosen for this case is   
  

              . Figure 3.4.26 presents the physical time prediction of the surface (net) heat 

flux based on this choice of   . The standard deviation of error between predicted surface heat 

flux and exact input value, energy balance and the recovery of maximum heat flux are also 

analyzed and shown in Table 3.4.1. Result shows that the prediction is accurate even in presence 

of a significant experiment noise, justifying the application of the rescaling principle in 

conjunction with Kirchhoff transformation for this nonlinear inverse heat conduction problem. 
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Figure 3.4.21: Comparison of     

  and     
  computed by Eqs. (3.3.1b-c) using noisy data. 

 

 

 

 

 

 
Figure 3.4.22: Ratio between     

 and      
  using noisy temperature data collected 

at    . 
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Figure 3.4.23: L-curve based on noisy temperature data collected at    . 

 

 

 

 

 

 

 
Figure 3.4.24: Predicted time-rescaled surface heat flux    

        based on noisy 

temperature data using the lower choice of the regularization parameter from 

Fig. 3.4.23 (  
                 ). 
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Figure 3.4.25: Predicted time-rescaled surface heat flux    

        based on noisy 

temperature data using the higher choice of the regularization parameter from 

Fig. 3.4.23 (  
                 ). 

 

 

 

 

 

 
Figure 3.4.26: Predicted unknown surface heat flux           based on noisy temperature 

data when   
                 ,       for stainless steel 304. 
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Table 3.4.1: Quantitative comparison of standard deviation of error, total energy input 

and maximum value for the predicted surface heat flux,          at the chosen 

optical regularization parameter,   
                 ,       for 

stainless steel 304. 

 

Metric 

 

Exact           

 

Prediction 

(noiseless data) 

 

Prediction 

(noisy data) 

 

Standard deviation of error (W/cm
2
) 

 

0 

 

2.97 

 

7.15 

 

Total energy input(J/ cm
2
) 

 

4000 

 

3907 

 

3906 

 

Maximum value(W/cm
2
) 

 

400 

 

393 

 

402 
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3.5 Conclusions 

 

This study demonstrates a novel idea integrating the Kirchhoff transformation and a time- 

domain rescaling principle about a local-temperature measurement. A nonlinear inverse heat 

conduction problem can be quasi-linearized using a piecewise time-step linearization assumption. 

The resulting linearized calibration integral equation then utilizes the Tikhonov framework for 

predicting the surface heat flux. Classical L-curve analysis assists in identifying a near optimal 

regularization parameter,    based on locating the elbow region of the resulting L-curve over the 

   spectrum. The “exact” optimal value for this parameter is not necessary for the present 

formulation as substantial robustness has been demonstrated. The accuracy of this new 

formulation depends on quasi-linearization principle associated with the thermal diffusivity. The 

prediction accuracy increases if the thermal diffusivity distribution along the spatial domain is 

nearly uniform. Several aerospace materials, including the stainless steel, copper and carbon-

carbon are suitable for this analysis. In the present calibration framework, the precise sensor 

position does not require specification as it is implicitly included in the calibration test.  
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Chapter 4: A New Front Surface Heat Flux Calibration Method for 

1-D Nonlinear Thermal System with a Time-Varying Back 

Boundary Condition 

 

This chapter is based on a paper under review by Yinyuan Chen, Jay I. Frankel and Majid 

Keyhani:  

Chen, Y.Y., Frankel, J.I., and Keyhani, M., in review, “A New Front Surface Heat Flux 

Calibration Method for 1-D Nonlinear Thermal System with a Time-Varying Back Boundary 

Condition”, Mathematical Problems in Engineering.   

My primary contributions to this paper include (1) conceptualization of the new model, (2) 

development of numerical and regularization methods (3) writing and implementing of the 

computer code (4) and served as lead writer of the manuscript. 

 

4.1 Introduction 

 

In many engineering environments, hostile thermal conditions preclude the use of surface 

mounted sensors. Hence, the surface thermal conditions can only be quantified through in-depth 

temperature measurements. This temperature projection from an in-depth sensor position to the 

surface is representative of the inverse heat conduction problem (IHCP). Many challenges are 

associated with resolving IHCPs, such as the well-known ill-posed mathematical nature that 

requires special regularization methods for extracting the best prediction [8, 59]. To deal with 

these issues, several specific techniques have been proposed, including “exact solutions” [37], 
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function specification [34-36], space marching and finite difference [49,110,114,118] and other 

well-studied techniques.  

An alternative approach for resolving inverse heat conduction problems involves system 

calibration. System calibration relies on analytical processing to form a calibration or 

measurement equation. One major advantage of this approach lies in reducing the systematic 

errors introduced by uncertainties associated with probe positioning, probe signal delay and 

attenuation, and domain thermophysical properties. However, during the calibration process, the 

imposed net surface heat flux must be accurately measured. Loehle et al. [40], Loehle et al. [41] 

and Gardarein et al. [42] have demonstrated the application of a calibration based system 

identification method for estimating the surface heat flux using a single in-depth sensor. The 

Non-Integer System Identification (NISI) method involves developing an impulse response 

function from a calibration test. A finite series expansion is formed in terms of fractional 

derivatives of the measured calibration temperature and calibration net surface heat flux. The 

unknown expansion coefficients are determined during the calibration stage. The unknown 

surface heat flux can be recovered based on the impulsive response. In contrast, Frankel and 

Keyhani [43], Frankel et al. [44] and Elkins et al. [45] have proposed an alternative calibration 

methodology that eliminates the use of fractional derivatives and the resolution of expansion 

coefficients described by the NISI method. This method relates the net unknown surface heat 

flux to the net calibration surface heat flux and the corresponding in-depth temperature 

measurements during the calibration and reconstruction test runs. The resulting inverse statement 

is then expressed in terms of a Volterra integral equation of the first kind for the unknown 

surface heat flux.  
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The linear one-probe calibration integral equation method (CIEM) [43, 44] has been 

experimentally verified [45] with excellent accuracy in an appropriate temperature range. This 

method is derived assuming that an unchanging back boundary condition exists between the 

calibration and reconstruction tests. Hence, this formulation is applicable to the semi-infinite 

geometry or a slab with a fixed heat transfer coefficient at the back-face, and uniform initial 

condition. The initial condition can be dissimilar between the calibration and reconstruction tests, 

but the ambient temperature must be the same as the initial condition. However, in many 

practical situations, the calibration test environment is not the same as the reconstruction test 

environment. In addition, extending the applied temperature range normally requires the proper 

depiction of the thermophysical properties variation with temperature. That is, the properties 

need to be expressed in terms of temperature dependent functions. The inclusion of temperature 

dependency of the properties produces a fully nonlinear description of heat conduction. 

Therefore, expanding the linear one-probe calibration concept is germane such that variation of 

the back boundary condition and the system nonlinearity can be included. To account for a 

variation in the back boundary condition between calibration and reconstruction test, Frankel and 

Keyhani [111] designed a new calibration equation based on two in-depth probes. Inclusion of 

the second probe alleviates the need to quantify the back boundary conditions. As a result, an 

additional calibration test is also required. The final inverse statement can be expressed in terms 

of a Volterra integral equation of the first kind for the unknown front surface heat flux in the 

constant property framework. However, this calibration method is still derived in a linear 

framework. Recently, Chen et al. [112] proposed a novel one-probe calibration method achieving 

the quasi-linearization through the combination of Kirchhoff transformation and rescaling 

principles. In this process, the Kirchhoff transformation linearized the thermal conductivity while 
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time domain rescaling was used to handle the temperature-dependent thermal diffusivity. All 

predictions were performed in the rescaled variable and the final results were then obtained after 

mapping back to physical variables. However, this one-probe formulation maintained the 

previously noted back boundary condition restriction.  

 

This chapter proposes a novel nonlinear two-probe calibration method absorbing all 

positive attributes of the two-probe linear calibration method [111] and the recently proposed 

nonlinear one-probe calibration method [112]. With regard to the system nonlinearity, a quasi-

linearization approach is applied based on a rescaling principle that implements a piecewise 

time-step linearization assumption. This assumption involves a whole time domain discretization 

using a successive series of small time steps in increments of   . At any time interval, all the 

thermal properties are assumed fixed and evaluated at the closest probe to active boundary of 

interest. To allow for variability in the back boundary condition among tests, a second probe and 

additional calibration tests are introduced. This formulation produces a complicated but available 

discrete kernel that requires careful understanding as it possesses strong ill-posed effects. 

However, a proper calibration strategy can be implemented to overcome these difficulties based 

on physical understanding of diffusion.  

 

It is well-known that all inverse problems are ill-posed. Arbitrary noise introduced into 

the measurements magnify as the information is projected toward the boundary. Therefore 

destabilization is always encountered that can produce useless predictions. Hence, it is necessary 

to stabilize the mathematical system through regularization. Common regularization approaches 
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include Tikhonov regularization [82], iterative regularization [16], local future-time method [8] 

and Singular-Value Decomposition (SVD) [80, 81].   

 

Section 4.2 presents the detailed derivation of the new nonlinear two-probe calibration 

method based on rescaling principles. Section 4.3 presents the localized Tikhonov regularization 

approach used for generating a family of predictions based on the proper regularization 

parameters using an L-curve strategy. Section 4.4 presents numerical results using two common 

engineering materials, namely stainless steel 304 and a carbon composite. The back boundary 

condition strategy is also discussed and demonstrated for the calibration tests. Section 4.5 

provides concluding remarks on this new calibration method. 

 

4.2 Formulation of Nonlinear Two-Probe Calibration 

 

The nonlinear two-probe calibration method is an extension of the linear two-probe 

calibration integral method [111]. Therefore, the derivation of the linear two-probe calibration 

method for estimating the front surface heat flux is presented first and then extended to the 

nonlinear problem. A schematic of the sample geometry is given in Fig. 4.2.1. This coupon 

geometry could also be representative of a plug sensor used in aerospace application. Here, the 

first temperature probe is located at     while the second temperature probe is located 

at    . The addition of the second probe removes the need to specify the back boundary 

condition. The rescaling principle is then introduced to resolve the inverse problem in a 

nonlinear framework. This procedure leads to a new calibration equation that allows for system 

nonlinearities and alternative rear-side boundary conditions among test runs.  
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Figure 4.2.1: System set-up for one-dimensional heat conduction problem showing the 

positions of two in-depth temperature probes. 
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Consider a linear one-dimensional heat conduction problem in Cartesian coordinates 

having a front surface heat flux source at     and a time-varying back boundary condition 

at     in terms of a Robin’s condition [33] imposed either under laboratory conditions for 

coupon calibration or for practical implementation. For the moment, let us express the backside 

Robin’s boundary condition possessing a heat transfer coefficient    and corresponding 

environment temperature   . The heat equation can be written as [33] 

 

 

 

  

  
      

   

   
                                                                        

 

subject to the boundary conditions 

 

  
  

  
                       

 

  
  

  
                                                                 

 

Inclusion of the temperature measurement        at     provides a means to eliminate the 

Robin’s condition imposed at     given by Eq. (4.2.1c), thereby bypassing the need to specify 

both    and   . This reduces the analysis domain from         to         where     for 

estimating         . The resulting thermal boundary condition at      is defined as 
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where       represents the temperature measurement of the second probe at     . For 

presentation definition, the temperature data        at      is denoted through 

 

                                                                                    

 

where       is the temperature measurement of the first probe at    . To reiterate, we use the 

second in-depth probe away from the active side of interest for defining the second boundary 

condition required by the boundary-value problem. In this way, we have no need to quantify or 

specify the state at    . The initial condition is 

 

                                                                             

 

Notice that for simplicity but without loss of generality, all the temperatures used in this chapter 

are interpreted as the relative temperature from the initial uniform temperature condition.  

 

To obtain an exact solution for        using Eqs. (4.2.1a,b,d), one approach is to use the 

Laplace transform technique [31]. This technique is widely used for solving linear heat-

conduction problems. This transformation is defined in the semi-infinite domain and transforms 

the time variable onto the frequency domain. Explicitly, the Laplace transformation operator   is 

defined as [33] 
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where s is a complex variable. For notation simplicity, we write     but formally it is 

interpreted as        . To begin, we operate on the linear heat equation given by Eq. (4.2.1a) 

with the Laplace transformation operator    to get  

 

 

 
  

  

  
         

   

   
                                                       

 

This procedure transforms the original partial differential equation given by Eq. (4.2.1a) into the 

linear ordinary differential equation 

 

    

   
      

 

 
                                                                  

 

The general solution of Eq. (4.2.4) is  

 

                   
 

 
             

 

 
                                         

 

Here, the subscript      indicates that we are dealing with the two-probe thermal system 

for resolving unknown surface heat flux. To determine the unknown coefficients        

and       , it is necessary to take the Laplace transform of both auxiliary conditions. These 

conditions are at     for the surface heat flux and      for the in-depth temperature 

measurement. Doing so produces 
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respectively. 

 

Observe that the spatial domain of interest involves         rather than         since 

the temperature measurement at     represents the required rear-side boundary condition. 

Next, we express unknown coefficients        and         in terms of these two boundary 

conditions to obtain 

 

       

                 
 
 
 
 
 
      

 
 
 

     
 
  

                                               

 

        
 

 
 
 

 
                                                                      

 

respectively. Upon substituting Eqs. (4.2.7a, b) into Eq. (4.2.5) and evaluating the reconstruction 

solution         at    , we obtain 

 

                                                                                    

 



99 
 

where 

 

                
     

 
  

     
 
  

                                                                      

 

                   
 

 
 
 

 
  

     
 
 
     

     
 
  

                                                    

 

Here, the subscript     indicates that the thermal response function    in frequency 

domain is based on an impulsive temperature at     while the subscript     indicates that the 

corresponding thermal response function    is based on an impulsive surface heat flux at    . 

It is necessary to note that both                 and                   are solely functions of 

the thermophysical properties and probe positions. Their forms are independent of the time-

varying auxiliary conditions. As a result of this observation, it is possible to design a calibration 

strategy eliminating                 and                   in terms of two calibration tests 

using the known net heat flux input and measured temperature response [111]. These two 

calibration tests will be denoted with the aid of the additional     subscript notation as 

 

                                                                                         

                                               

 

Using Eq. (4.2.10), we can express the transfer functions as 
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Replacing the transfer functions                 and                   in terms of calibration 

data through Eq. (4.2.8) produces 

 

        
                                       

                                       
         

                                     

                                       
                                            

 

It is now possible to represent the unknown front surface heat flux data           in terms 

of                                 for        and                   . Here, the subscript 

    represents the reconstruction test from which the front surface heat flux needs to be resolved. 

 

Expressing Eq. (4.2.12) in the framework of a reconstruction run produces     
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The inverse Laplace transformation for a three-term product is [117] 

 

                                    
   

   

 

   

                                       

 

With this inversion expression, we can apply the inverse Laplace transformation on Eq. 

(4.2.13) and use the Eq. (4.2.14) to obtain the two-probe linear calibration equation as 

 

         
 

   

                                            
   

   

             

            
 

   

                                              
   

   

        

        
 

   

                                              
   

   

             

                                

 

Next, we consider the nonlinear situation. If the temperature range is large, then one 

should consider the effect of temperature dependent thermophysical properties. The nonlinear 

heat equation in the reduced spatial domain is [33] 

 

 

  
     

  

  
             

  

  
                                                           

 

subject to reduced the boundary conditions 
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which follows the logic previously described domain reduction and initial condition  

 

                                                                                      

 

Again, the resolution domain only involves         though physically         is affected 

during the calibration and reconstruction tests.    

 

To account for the variable property effects involved in this fully nonlinear formulation, a 

piecewise time-step linearization assumption is proposed to form the quasi-linearization. This 

assumption implies that the thermal property is fixed in any small time step and evaluated at the 

forward probe position temperature       . 

 

For purpose of illustration, consider a heating process with             , with any 

small interval                  (        ), then the governing heat equation under 

piecewise time-step linearization assumption becomes  
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where                                 and subject to the boundary conditions 

 

            
   

  
               

 

                                                                          

 

and initial condition is given as 

 

                                                                                  

 

Again, observe that all thermal properties are momentarily frozen in time and evaluated at the 

probe temperature          in the time interval              . This probe is nearest to the 

active side at    ; 

 

Next, we define 
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where 

 

   
         

           
                                                                                

 

   
         

           
                                                                  

 

Upon implementing the above definitions, it is possible to express Eqs. (4.2.17a-d) using the 

thermal properties evaluated at the initial temperature as 

 

          
    

 

   
      

   
 

  
                            

  

  
                           

 

subject to the boundary conditions 

 

          
   

 

  
         

        

 

  
         

                 
  

  
                                           

 

and initial condition 
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The local thermal diffusivity             and thermal conductivity             can be 

transformed to the values evaluated at the initial temperature through the two rescaling 

coefficients     and    . If all rescaled temperatures   
       from time zero       to final time 

      are collected in sequence then it can be regarded as the linear thermal response induced 

by both rescaled surface heat flux and rescaled furthest temperature boundary condition. Here, 

the rescaled heat flux is formed through the reconstitution of    
        from     to      

while the furthest rescaled temperature results from the reconstitution of    
       from     

to    .  

 

Now, we define the total sequential system as the collection given by 
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After the quasi-linearization has been performed, we can substitute Eqs. (4.2.20a-b) into the two-

probe linear calibration equation given by Eq. (4.2.15) to obtain 

 

       
      

 

   

        
            

          
   

   

       
            

                    

       
      

 

   

         
            

          
   

   

        
            

                

       
      

 

   

         
            

          
   

   

        
            

                 

 

       
  

  

 

   

                            

 

To generalize this solution procedure, let          
    

   
 such that for any time 

                it is then possible to find an integer          to ensure        . The 

collection procedure produces the compact integral relation 

 

 
  

  

 

   

  
         

         
   

    

   

 

 

where 
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Next, we define the rescaled time domain as 

 

    
         

         
   

 

   

 

 

          
         

         
                                                     

 

and 

 

                                                                   

 

The final form of the nonlinear, two-probe calibration integral equation for the entire time 

domain becomes 
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After the prediction in the rescaled time domain is complete, then it is still necessary to 

return the physical variables through the following transformation  

 

   
          

          
                                                                      

      

  

   

 

 

         
           

          
   

                                                      

 

4.3 Numerical Procedure and Regularization 

 

The nonlinear two-probe calibration equation given by Eq. (4.2.24) is a Volterra integral 

equation of first kind for the unknown front surface heat flux, and hence it is ill-posed. Its 

computational procedure will require regularization for producing a stable and an accurate 

prediction. In this chapter, a localized Tikhonov method is adopted for this purpose [86]. The 

classic L-curve analysis [83] is then introduced for estimating the optimal regularization 

parameter. Before any numerical operation is made on Eq. (4.2.24), it is necessary to map the 

discrete experimental data from the physical time domain   onto the rescaled time domain    in 



109 
 

accordance to Eq. (4.2.23a). We let            
   with      

           and make the 

following definitions 

 

   
    

       
         

 
  
 

   

     
        

 

   
    

        
         

      
        

         
      

     
  
 

   

                      

 

   
    

                                                                                                                

   
      

  
 

   

      
         

      
           

         
      

       
  
   

   

       

    
      

  
 

   

      
         

      
           

         
      

       
  
   

   

      

 

With these definitions for    
    

   and     
    

  , the residual resulting from the 

approximation imposed in the calibration integral equation  and its normalized form are given as 
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In this chapter, all numerical examples possess long heating times (120s) with a sampling 

rate of 200Hz. The global Tikhonov method is not feasible in the present context owing to the 

extended time domain and sampling rate. As an alternative, a localized Tikhonov method is 

adopted here. Assuming the rescaled heat flux from 0 to          is known then we obtain 

the rescaled heat flux    
          through 

 

    
         

 
    
 

    
 

     
          

      
       

         
 

  
 

   

     
            

                                 

 

Here,      represents the future time increment in which the regular Tikhonov method is 

used to resolve the localized front heat flux. This regularization parameter has no upper value. 

When one available   is defined, then larger   values work equally well for the identical test case. 

So it is conservative to use a larger value  . However, it is necessary to notice that as the future 

time increment       increases, a reduction in resolvable total time occurs. Therefore, it is 

prudent to retain temperature measurement data beyond the required analysis time span.   

 

Now, we define 

     
    

      
      

       
         

 
  
 

   

       
                              

 

which allows Eq. (4.3.3) to be represented in a compact matrix form using a convenient left-

handed rectangular integration rule as 
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where     is a     matrix with                 
        

   for     and             for 

    ,         is a     vector with                
    

  , and      is a     vector to be 

determined with             
          

  . 

 

Since the present work involves an ill-posed problem, the direct inversion for     

produces an unacceptable result. To avoid this situation, a regularization parameter    with the 

physical units (
o
C

2
s

2
) is introduced for regularization. The objective function now becomes 

 

                          
 
   

       
 
                                                   

 

Singular-value decomposition is imposed on     to obtain 

 

                
 

 

   

                                                               

 

where                   and                   satisfying            . The 

symbol   is a     diagonal matrix whose diagonal value    arranges in a descending order as 
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Upon substituting Eq. (4.3.7) into Eq. (4.3.6), the first derivative of          with 

respective to     is acquired and set equal to 0. After several steps of calculation, the final 

prediction for      is yielded, namely 

 

      
  

  
    

   
                                                          

 

   

 

 

It is noted that when       is obtained, only its first term    
      

   is retained [86]. The above 

procedure can be repeated for all unknown heat fluxes in next successive Tikhonov processing 

time intervals. In addition, the L-curve criterion proposed by Hansen and O’ Leary [83] is called 

upon for determining optimal regularization parameter. This method defines the L-curve through 

 

                  
    

      
    

   
 

     

   

           
      

    
     

   

                     

Section 4.4 presents numerical results applying the proposed calibration equation given 

by Eq. (4.2.24) for two common engineering materials, stainless steel 304 and a representative 

carbon composite. 

 

4.4 Results 

 

In this section, the merit of the nonlinear two-probe calibration equation given by Eq. 

(4.2.24) is verified based on numerically simulated data from two in-depth temperature probes. 
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For demonstration purposes, the slab composition is (a) stainless steel 304 and (b) a carbon 

composite. The thermophysical property functions are approximated as 

 

                                          

 

                                                                        

 

for stainless steel 304 and 

 

                                   

 

                                                                      

 

for a representative carbon composite. Figures 4.4.1-4.4.3 and 4.4.4-4.4.6 display the thermal 

conductivity, heat capacity and thermal diffusivity                     functions for 

stainless steel 304 and the carbon composite respectively, according to Eq. (4.4.1) and Eq. 

(4.4.2). From these figures, a pronounced temperature dependence can be observed for both 

cases as the temperature rises from 0
 o

C to 1000
 o

C. It is interesting to note that the thermal 

diffusivities for these two materials possess opposing slopes as the temperature rises (see Figs. 

4.4.3 and 4.4.6). As a result, these material choices provide a good test for examining the 

nonlinear two-probe calibration equation. 

 



114 
 

 
Figure 4.4.1: Approximate thermal conductivity for stainless steel 304, Eq. (4.4.1a). 

 

 

 

 

 

 
Figure 4.4.2: Approximate heat capacity for stainless steel 304, Eq. (4.4.1b). 
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Figure 4.4.3: Approximated thermal diffusivity for stainless steel 304, 

                . 
 

 

 

 

 
Figure 4.4.4: Approximate thermal conductivity for the carbon composite, Eq. (4.4.2a). 
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Figure 4.4.5: Approximate heat capacity for the carbon composite, Eq. (4.4.2b). 

 

 

 

 

 

 

 
Figure 4.4.6: Approximate thermal diffusivity for the carbon composite, 

                . 
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To numerically generate the simulated temperature data        for a slab of thickness 

  10mm that is exposed to time-varying boundary conditions, a finite difference method (FDM) 

[33] is applied to the domain              where fully temperature dependent 

thermophysical properties are included. To ensure the accuracy of the time stepping process with 

respect to the nonlinearity and time-varying rear-side boundary condition, both the spatial and 

temporal grid sets have been varied as (  =0.1mm and    =25μs), (  =0.2mm and    =50μs), 

and (   =0.2mm and    =100μs). Results verify grid convergence to a relative accuracy of 0.01. 

Therefore, for the present analysis,    and    are set to 0.2mm and 50μs, respectively. In 

addition, the impact of the probe position combination on the accuracy of the inverse predictions 

needs to be considered since the new calibration method given by Eq. (4.2.24) involves two 

probes rather than one. For this purpose, we used three combinations for the probe positions as 

( =2mm and   =8mm), ( =2mm and   =6mm) and ( =3mm and   =7mm). It has been shown 

that the front heat flux prediction from all three probe position combinations have comparable 

accuracy for both stainless steel 304 and the carbon composite. In this section, results for probe 

positions  =2mm and   =8mm are provided as representative outcomes. 

 

The kernel given by Eq. (4.3.1b) has the form of a residual. It possesses a strong self-canceling 

effect at early times if the back boundary condition is similar for the two calibration tests. 

Similar back boundary conditions reverts the two-probe system to the one-probe system, hence 

driving the kernel given by Eq. (4.3.1b) toward zero. This self-canceling effect further 

aggravates the ill-posed situation and thus increases the difficulty for resolving the front surface 

heat flux. To avoid this obstacle, strategies are required for designing the backside calibration 

tests boundary conditions for assuring a rapid departure from these cancelling effects. In this 
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chapter, five tests with different boundary condition combinations are constructed for 

demonstration and testing purposes. Figures 4.4.7 and 4.4.8 display three front surface heat flux 

histories to be applied for the five test suites of the stainless steel 304 and the carbon composite, 

respectively while the applied back boundary conditions are defined as: (1) adiabatic (    ); 

(2) back surface heating when                                      and (3) back 

surface cooling when                                    Table 4.4.1 summarizes 

the five constructed test suites (Run 1-5) through combination of the three front heat flux 

histories       and three back boundary conditions            referred above. Based 

on simulated temperature data from these five tests, four groups of experiments are proposed and 

defined as: (Group 1) Run 1 as calibration test 1, Run 3 as calibration test 2 and Run 4 as 

reconstruction test whose front surface heat flux is to be determined; (Group 2) Run 1 as 

calibration test 1, Run 3 as calibration test 2 and Run 5 as reconstruction test; (Group 3) Run 2 as 

calibration test 1, Run 3 as calibration test 2 and Run 4 as reconstruction test; and (Group 4) Run 

2 as calibration test 1, Run 3 as calibration test 2 and Run 5 as reconstruction test. Since Run 1 

and Run 2, Run 4 and Run 5 have identical front surface heat inputs, it is possible to observe the 

impact of varying the back boundary condition on the final prediction through comparison 

between Group 1 and Group 3, or Group 2 and Group 4. The reliability of the nonlinear two-

probe calibration equation given by Eq. (4.2.24) can also be verified through comparison 

between Group 1 and Group 2, or Group 3 and Group 4.    

 

Figures 4.4.9-4.4.13 and 4.4.14-4.4.18 present the noiseless temperature distributions at 

uniformly distributed spatial locations resulting from the forward solution for the five runs  
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Figure 4.4.7: Surface heat fluxes 1, 2 and 3 designed for five tests of stainless steel 304. 

 

 

 

 

 
Figure 4.4.8: Surface heat fluxes 4, 5 and 6 designed for five tests of a carbon composite. 
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Table 4.4.1: Definition of test runs displaying different back boundary condition 

combinations for stainless steel 304 and the carbon composite. 

Stainless steel 

304 

Front boundary 

(Fig. 4.4.7) 

Back boundary 

Run 1 Flux 1 (1) Adiabatic         

Run 2 Flux 1 (2) Heating (when          ) 

                        

Run 3 Flux 2 (3) Cooling (when            

                      

Run 4 Flux 3 (1) Adiabatic         

Run 5 Flux 3 (3) Cooling (when            

                      

Carbon 

composite 

Front boundary 

(Fig. 4.4.8) 

Back boundary 

Run 1 Flux 4 (1) Adiabatic         

Run 2 Flux 4 (2) Heating (when          ) 

                        

Run 3 Flux 5 (3) Cooling (when            

                      

Run 4 Flux 6 (1) Adiabatic         

Run 5 Flux 6 (3) Cooling (when            
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Figure 4.4.9: Stainless steel 304 temperature data at uniformly distributed spatial 

locations for Run 1 subjected to flux 1 and adiabatic back surface. 

 

 

 

 

 
Figure 4.4.10:  Stainless steel 304 temperature data at uniformly distributed spatial 

locations for Run 2 subjected to flux 1 and heating back surface     
                     . 
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Figure 4.4.11: Stainless steel 304 temperature data at uniformly distributed spatial 

locations for Run 3 subjected to flux 2 and cooling back surface     
                   . 

 

 

 

 

 
Figure 4.4.12: Stainless steel 304 temperature data at uniformly distributed spatial 

locations for Run 4 subjected to flux 3 and adiabatic back surface.  
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Figure 4.4.13: Stainless steel 304 temperature data at uniformly distributed spatial 

locations for Run 5 subjected to flux 3 and cooling back surface     
                   . 

 

 

 

 

 

 
Figure 4.4.14: Carbon composite temperature data at uniformly distributed spatial 

locations for Run 1 subjected to flux 4 and adiabatic back surface. 
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Figure 4.4.15:  Carbon composite temperature data at uniformly distributed spatial 

locations for Run 2 subjected to flux 4 and heating back surface     
                     . 

 

 

 

 

 

 
Figure 4.4.16: Carbon composite temperature data at uniformly distributed spatial 

locations for Run 3 subjected to flux 5 and cooling back surface      
                   . 
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Figure 4.4.17: Carbon composite temperature data at uniformly distributed spatial 

locations for Run 4 subjected to flux 6 and adiabatic back surface. 

 

 

 

 

 

 
Figure 4.4.18: Carbon composite temperature data at uniformly distributed spatial 

locations for Run 5 subjected to flux 6 and cooling back surface     
                   . 
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involving both stainless steel 304 and the carbon composite, respectively as defined in Table 

4.4.1. The noiseless temperature data at     and     are then used for resolving the front 

surface heat flux in the reconstruction phase. The purpose of applying the noiseless temperature 

data is to (1) confirm the suitability of the nonlinear two-probe calibration model, (2) verify the 

numerical method, and (3) check the system ill-conditioning situation due to the back boundary 

condition under ideal data.  

 

For the same heat flux applied at the front surface of the stainless steel 304, variation of 

the back boundary condition results in significant temperature variations in the domain (shown 

by comparing Figs. 4.4.9 and 4.4.10 or Figs. 4.4.12 and 4.4.13).  Also, comparison of Figs. 

4.4.14 and 4.4.15 or Figs. 4.4.17 and 4.4.18 indicate significant variations in the temperature 

response of the carbon composite due to changes in the back surface boundary condition. The 

noted substantial temperature variation necessitates the use of the two-probe formulation. 

Additionally, the significant temperature range observed in the slab requires the proper 

accounting of the temperature-dependent thermophysical properties for all test groups. After 

rescaling the test data (heat flux, time and probe temperatures) during both calibration and 

reconstruction stages in accordance to Eq. (4.2.23a-c), the rescaled data are substituted into Eq. 

(4.3.2b) for computing the normalized residual. 

 

Table 4.4.2 summarizes the normalized base residuals for all considered test groups if the 

exact rescaled unknown heat fluxes are applied. The small relative values observed from all test 

groups indicate that the calibration equation given by Eq. (4.2.24) is well suited for resolving a  
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Table 4.4.2: The normalized base residual      , given by Eq. (4.3.2b) for all investigated 

groups of stainless steel 304 and the carbon composite using the exact 

rescaled heat flux and noiseless data. 

 

 

Stainless steel 

304 

 

 

          
      

    

 

 

Carbon composite 

 

 

          
      

    

 

Group 1 

 

2.01×10
-7

 

 

Group 1 

 

4.48×10
-6

 

 

Group 2 

 

5.69×10
-5

 

 

Group 2 

 

4.45×10
-5

 

 

Group 3 

 

2.82×10
-6

 

 

Group 3 

 

8.24×10
-6

 

 

Group 4 

 

5.23×10
-5

 

 

Group 4 

 

4.91×10
-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 
 

1-D nonlinear problem with a time-varying back boundary condition. Also, it is noted that small 

magnitude of the base residual is expected for the two-probe nonlinear integral method since the 

piecewise time-step linearization assumption is a spatial approximation. The rescaled front 

surface heat flux    
      

   is then resolved using Eq. (4.3.9). Since the predictions are presented 

in terms of the rescaled surface heat flux and time domain, they must be converted back to the 

physical variables in accordance to Eq. (4.2.25b) for final presentation. Figures 4.4.19-4.4.22 and 

4.4.23-4.4.26 display the final predictions in physical time domain for all test groups of stainless 

steel 304 and the carbon composite, respectively while their accuracy is analyzed through 

  

                     

 
   

 

 
                                 

 
   

   

 

   

                          

 

                  
                   

                   
                                  

 

Here,   represents the root-mean square of the heat flux error. Table 4.4.3 summarizes standard 

deviation of the prediction error  , maximum value ratio    for all test groups associated with 

their chosen regularization parameter   , and future time increment      based on noiseless data. 

 

For this calibration approach, significant flexibility exists in choosing the proper 

regularization parameter since: (1) the kernel    
  given by Eq. (4.3.1b) has a integration form 

that promotes damping temperature noise in this forward direction; and (2) the localized 

Tikhonov method is only utilized on the future time period      which only retains the first  
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Figure 4.4.19: Predicted unknown surface heat flux          for Group 1 of stainless 

steel 304 based on noiseless temperature data. 

 

 

 

 

 

 
Figure 4.4.20: Predicted unknown surface heat flux          for Group 2 of stainless 

steel 304 based on noiseless temperature data. 
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Figure 4.4.21: Predicted unknown surface heat flux          for Group 3 of stainless 

steel 304 based on noiseless temperature data. 

 

 

 

 

 

 
Figure 4.4.22: Predicted unknown surface heat flux          for Group 4 of stainless 

steel 304 based on noiseless temperature data. 
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Figure 4.4.23: Predicted unknown surface heat flux          for Group 1 of the carbon 

composite based on noiseless temperature data. 

 

 

 

 

 

 
Figure 4.4.24: Predicted unknown surface heat flux          for Group 2 of the carbon 

composite based on noiseless temperature data. 
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Figure 4.4.25: Predicted unknown surface heat flux          for Group 3 of the carbon 

composite based on noiseless temperature data. 

 

 

 

 

 

 
Figure 4.4.26: Predicted unknown surface heat flux          for Group 4 of the carbon 

composite based on noiseless temperature data. 
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Table 4.4.3: Prediction accuracy metrics for the stainless steel 304 and the carbon 

composite results using the noiseless temperature data for all groups under the 

provided regularization parameters    and future time increment     .  

 

Stainless steel 

304 

(Table 1) 

 

Regularization 

Parameter 

   (
o
C

2
s

2
) 

 

Future 

Time 

Period 

     (s) 

 

Standard deviation 

of Prediction Error 

 (W/cm
2
) 

 

 

 

Peak ratio 

   

Group 1 0.135 30 1.134 0.984 

Group 2 0.135 30 0.564 0.993 

Group 3 0.135 30 0.748 1.008 

Group 4 0.135 30 0.336 1.010 

 

Carbon 

composite 

(Table 1) 

 

Regularization 

Parameter 

  (
o
C

2
s

2
) 

 

Future 

Time 

Period 

     (s) 

 

Standard deviation 

of Prediction Error 

 (W/cm
2
) 

 

 

Peak ratio 

   

Group 1 0.223 20 1.476 0.978 

Group 2 0.223 20 0.534 0.981 

Group 3 0.223 20 0.534 1.006 

Group 4 0.223 20 0.277 1.007 
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prediction value hence promoting a good signal-to-noise ratio. For all the test groups based on 

noiseless data investigated, an optimal domain for    was determined lying in the range of (0.1-

0.5
o
C

2
s

2
) through the L-curve defined in Eq. (4.3.10). The prediction accuracy is satisfactory for 

all groups considering the magnitude of the nonlinearity and the varying extent of the back 

boundary conditions. In addition, the predictions from Group 3 and Group 4 are better than the 

predictions from Group 1 and Group 2 for both materials. This implies that the heating and 

cooling back boundary condition combination (Run 2 and Run 3) for calibration tests reduce the 

system ill-posed situation through the kernel    
 , further improving the signal-to-noise ratio. The 

early time kernel formed by Run 1 and Run 3 stainless steel data is shown in Fig. 4.4.27(a) and 

the kernel formed by Run 2 and Run 3 data is displayed in Fig. 4.4.27 (b). The corresponding 

kernels for the carbon composite are presented in Figs. 4.4.28(a,b).  It is clear that the kernel due 

to the combination of calibration tests involving early-time heating (Run 2) and cooling  (Run 3) 

back boundary condition data produces a shorter signal delay (Figs. 4.4.27(b) for stainless steel 

304 and Fig 4.4.28(b) for carbon composite).  

 

It is also necessary to explore the robustness and stability of the localized Tikhonov 

regularization methodology in the presence of noisy data. For this purpose, normally distributed 

noise    with a standard deviation 1
 o
C and mean 0

 o
C are added to “noiseless” probe temperature 

data         at     and    . All simulated random noise is obtained through a Matlab 

random number generation function called “randn”. Figure 4.4.29 displays a sample of the 

generated temperature noise. Since the combination of Run 2 and Run 3 (the heating and cooling 

back boundary condition) has been shown to be an appropriate calibration set, we apply Group 4 

(Run 2 and Run 3 as calibration tests and Run 5 as reconstruction test whose front heat flux is to  
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(a) 

 
(b) 

Figure 4.4.27: Kernel, Eq. (4.3.1b), based on noiseless calibration temperature data of 

stainless steel 304 formed by (a) Run 1 and Run 3 data, and (b) Run 2 and 

Run 3 data.  
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(a) 

(b) 

Figure 4.4.28: Kernel, Eq. (4.3.1b), based on noiseless calibration temperature data of 

carbon composite formed by (a) Run 1 and Run 3 data, and (b) Run 2 and Run 

3 data. 
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Figure 4.4.29: The simulated noise generated from the Matlab “randn” function with 

standard deviation 1
o
C and mean 0. 
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be reconstructed) for justifying the stabilization impact of the localized Tikhonov regularization 

methodology on the two-probe calibration model in the presence of noisy data. Figures 

4.4.30(a,b) present the early-time kernel of Group 4 formed using noisy data for the stainless 

steel 304 and carbon composite samples, respectively. It is noted that both kernels retain a 

relative smooth character although noise has been added to the temperature data. This is because 

the kernel    
  given by Eq. (4.3.1b) has the form of an integral that rapidly damps out 

temperature noise. Figures 4.4.31(a,b)  present the L-curve analysis for extracting the optimal 

regularization parameter for the stainless steel 304 (  =0.368
o
C

2
s

2
) and carbon composite 

(  =0.135
o
C

2
s

2
) samples, respectively. These parameters are chosen at the elbow of the shape L. 

Figures 4.4.32(a,b) present the final physical time domain net heat flux prediction 

         based on above determined optimal regularization parameters in the presence of noise 

for the stainless steel 304 and the carbon composite samples, respectively. The regularization 

parameter, future time period, and prediction accuracy metrics for the stainless steel 304 and the 

carbon composite results using noisy temperature data are presented in Table 4.4.4. The standard 

deviation of prediction errors   for stainless steel 304 and carbon compost are 1.357W/cm
2 

and 

1.159W/cm
2
, respectively. The ratios    of the predicted peak heat flux to the actual heat flux 

for stainless steel 304 and carbon compost are 1.032
 
and 1.017, respectively. Clearly stable and 

accurate results are obtained for both materials. This implies that an appropriate combination of 

the calibration test data with carefully designed back boundary conditions and the localized 

Tikhonov regularization methodology works well for resolving the front surface heat flux in the 

quasi-linearized two-probe system. It should also be noted that this approach works equally well 

for other high thermal diffusivity materials such as copper. 

 



139 
 

(a) 

(b) 

Figure 4.4.30: Kernel, Eq. (26b), formed by Run 2 and Run 3 noisy temperature data (a) 

stainless steel 304, and (b) the carbon composite.  
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(a) 

 
(b) 

Figure 4.4.31: L-curve analysis for Group 4 based on noisy data (a) stainless steel 30, and 

(b) carbon composite.  
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(a) 

(b) 

Figure 4.4.32: Predicted unknown surface heat flux          for Group 4 based on noisy 

temperature data (a) stainless steel 304, and (b) carbon composite.   
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Table 4.4.4: Group 4 regularization parameter, future time period, and prediction 

accuracy metrics for the stainless steel 304 and the carbon composite results 

using noisy temperature data.  

Parameter Stainless steel 304 Carbon composite 

Regularization Parameter    (
o
C

2
s

2
) 0.368 0.135 

Future Time Period      (s) 30 20 

Standard deviation of Prediction Error   

(W/cm
2
) 

1.357 1.159 

Peak ratio    1.032 1.017 
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4.5 Conclusions 

 

This chapter proposes a nonlinear two-probe calibration formulation that incorporates 

rescaling principles for resolving the front surface heat flux of a one-dimensional nonlinear heat 

conduction problem. Further, the back boundary condition variations among calibration and 

reconstruction tests were allowed to vary in order to demonstrate the importance of experimental 

design. Introduction of the second temperature probe removes the need to explicitly specifying 

the backside boundary condition as required by a boundary-value problem. However, careful 

selection of the calibration back boundary condition is required and demonstrated for reducing 

the ill-conditioning effects. To deal with the system nonlinearity, rescaling is introduced under a 

piecewise time-step linearization assumption. The ill-posed problem is resolved through the 

rescaled variables and then transformed back to the physical variables for presentation. A 

localized Tikhonov regularization scheme is introduced and shown to be effective and robust.  L-

curve analysis is applied for determining a proper regularization parameter. This new nonlinear 

two-probe calibration formulation has generality in application. It works well for both high 

thermal diffusivity materials, such as copper and low thermal diffusivity materials, such as 

stainless steel and the carbon composite. 
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Chapter 5: A Rescaling Based Inverse Heat Conduction Calibration 

Method and Optimal Regularization Parameter Strategy 

 

This chapter is revised based on a paper to be published by Yinyuan Chen, Jay I. Frankel 

and Majid Keyhani:  

Chen, Y.Y., Frankel, J.I., and Keyhani, M., accepted, “A Nonlinear, Rescaling Based 

Inverse Heat Conduction Calibration Method and Optimal Regularization Parameter Strategy”, 

Journal of Thermophysics and Heat Transfer.   

My primary contributions to this paper include (1) conceptualization of the new model, (2) 

development of numerical and regularization methods (3) writing and implementing of the 

computer code (4) and served as lead writer of the manuscript. 

 

5.1 Introduction 

 

Thermal protection systems require tools for accurately predicting the surface heat flux 

and temperature based on in-depth temperature measurements. Hostile thermal conditions at the 

surface preclude the use of surface mounted thermal sensors. Hence, sensors must be embedded 

below the surface and the resulting sensor temperature measurements must be projected to the 

surface for the surface prediction. This process is representative of the inverse heat conduction 

problem (IHCP), and is well-known to be ill-posed. There are many challenges associated with 

resolving inverse heat conduction problems [8, 59]. Fortunately, a variety of methods have been 
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proposed to deal with such issues. These includes: “exact solutions” [37], function specification 

[34-36], space marching and finite difference [49,110,114,118] and other well-studied techniques.  

 

The accuracy of above classic inverse techniques relies on the accurate knowledge of the 

probe depth, thermophysical properties and probe response characteristics, i.e., signal delay and 

attenuation. To minimize the uncertainty associated with these physical parameters, system 

calibration is proposed as an alternative approach for resolving inverse heat conduction problems. 

This approach forms a calibration or measurement equation by analytical processing that 

eliminates the need to specify system parameters. The Non-Integer System Identification (NISI) 

method [40-42], involves developing an impulse response function from a calibration test. A 

finite series expansion is formed in terms of fractional derivatives of the measured calibration 

temperature and calibration surface heat flux. The unknown expansion coefficients are 

determined during the calibration stage. The unknown surface heat flux can be recovered based 

on the impulsive response. Frankel and Keyhani [43], Frankel et al. [44] and Elkins et al. [45] 

proposed an alternative calibration methodology that eliminates the use of fractional derivatives 

and the resolution of expansion coefficients described by the NISI method. This method relates 

the net unknown surface heat flux to the calibration surface heat flux and the corresponding in-

depth temperature measurements during the calibration and reconstruction tests. The resulting 

inverse statement is then expressed in terms of a Volterra integral equation of the first kind for 

the unknown surface heat flux. In essence, the analytical transfer function is expressed in terms 

of experiment data.  
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The one-probe calibration method [43, 44] has been derived in a linear framework and 

has been experimentally verified [45] with excellent accuracy in an appropriate temperature 

range. However, in many practical situations, one should not assume that all the thermophysical 

properties can be considered constant as the temperature range is extended. As a result, the 

properties need to be considered as temperature dependent functions. This inclusion produces a 

fully nonlinear description of heat conduction. To account for the temperature varying property 

effects, a piecewise time-step linearization assumption is introduced to form the quasi-

linearization. It involves a whole time domain discretization using a successive series of small 

time steps in increments of   . At each time interval, all thermophysical properties are assumed 

constant and evaluated at the forward probe temperature; i.e., probe closest to the active heating 

surface. Through this simplification, the nonlinear one-dimensional heat conduction problem can 

be equivalently expressed as a series of linear ones whose thermophysical properties are 

evaluated at their respective small time step    using the local temperature measurement as 

previously defined. Though all thermophysical properties vary at each time step, they can be 

transformed back to the values evaluated at the initial temperature through two rescaling 

coefficients. The inverse problem is then resolved in term of rescaled variables.  

 

All inverse problems are ill-posed as previously noted. Arbitrary noise introduced into 

the measurements significantly magnifies the prediction uncertainty as the information is 

propagated toward the boundary of interest. Hence, it is necessary to stabilize the mathematical 

system through regularization. Common regularization approaches include: Tikhonov 

regularization [82], iterative regularization [16], local future-time method [8] and singular value 

decomposition (SVD) based regularization [80,81].  
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However, determining a suitable regularization parameter remains challenging as the bias 

and variance possess different magnitudes and sensitivities. In addition, no general method exists 

for obtaining the optimal regularization parameter for all cases independent of the applied 

regularization approach. Based on this consideration, a new optimal regularization parameter 

selection strategy is proposed in this chapter. This strategy exploits Gauss filter for evaluating or 

estimating the variance in the prediction [74] and adjusts the weight between the relative 

variance and bias with the aid of a weight coefficient. The optimal regularization parameter is 

acquired through pursuing a balance between the weighted bias and variance. This strategy is 

conceptually general and independent of the adopted regularization approach. 

 

5.2 Formulation of the New Nonlinear One-Probe Calibration 

 

Consider a one-dimensional heat conduction problem in Cartesian coordinates having a 

front surface heat flux source at     while maintaining an adiabatic back surface at    . A 

schematic of the sample geometry is given in Fig. 5.2.1. If the temperature range of interest is 

large then the effect of temperature dependent thermophysical properties cannot be ignored. 

Under this assumption, the nonlinear heat equation becomes [33] 

 

             
  

  
      

 

  
          

  

  
                                             

 

subject to the boundary conditions 
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and the initial condition  

 

                                                                                  

 

The initial condition is considered as zero since all the temperature data involved in Eqs. (5.2.1a-

d) are actually the relative temperature defined from the initial uniform temperature condition. 

The boundary condition at     is assumed unchanging for all tests. As such, only one in-depth 

probe is required. Recall that the primary focus of this chapter is to demonstrate a quantitative 

means for estimating the optimal regularization parameters.   

 

Exact solutions available to practical heat conduction problems are available for only a 

limited number of cases. Moreover, most of the solutions can only be obtained under significant 

constraints. Hence, it is prudent to quasi-linearize the nonlinear system such that linear analysis 

tools become available. For this purpose, a piecewise time-step linearization assumption is 

proposed, implying that the thermophysical properties are fixed in any small time step and 

evaluated at the forward most probe position temperature        relative to the active heating 

surface.  
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Figure 5.2.1: System setup for the one-dimensional heat conduction problem showing 

boundary conditions and the thermocouple position. 
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Explicitly, consider a heating process using              , with any small 

interval                 (       ). The governing heat equation, under this piecewise 

time-step linearization assumption, simplifies to 

 

 

           

   

  
       

    

   
                                                            

                               

 

where                                 and subject to the boundary conditions  

 

            
   

  
               

 

   

  
                                                                      

 

and the initial condition 

 

                                                                             

 

Again, observe that all thermophysical properties are momentarily frozen in time and evaluated 

at the probe temperature          in the time interval                      . However, 

the evaluated properties vary among different time steps. To achieve the quasi-linearization, two 

rescaling coefficients     and      are introduced to transform the local thermal diffusivity 
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            and thermal conductivity             to system values evaluated at the initial 

temperature. These rescaling coefficients are defined as 

 

   
         

           
     

 

   
         

           
                                                            

 

Based on Eqs. (5.2.3a-b), let us define 

 

  
                                   

  

  
    

 

   
                                    

  

  
                           

 

Upon substituting the above definitions given in Eqs. (5.2.4a-b) into Eqs. (5.2.2a-d), the heat 

equation can now be expressed as 

 

         
    

 

   
      

   
 

  
                            

  

  
                        

 

subject to the boundary conditions 
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and the initial condition 

 

  
                                                                    

 

Since all thermophysical properties are evaluated at the initial condition independent of 

selected time step, we can collect all rescaled temperatures   
       from time zero       to 

the final time        in sequence. This collection can be regarded as the linear thermal 

response induced by the rescaled surface heat flux which is formed through the reconstitution of 

   
        from     to    .  

 

For notational compactness, define  

 

                                                                            

 

then the total sequential system for the surface heat flux and temperature can be expressed as 
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respectively. Observe that the rescaling is based on the reference thermophysical properties 

          and           which are evaluated at the initial temperature. The rescaling 

coefficients given by Eqs. (5.2.3a,b) can actually be based on any value. In fact, one can set the 

reference thermal diffusivity and thermal conductivity using     and  , respectively such that 

  =  
               and    =             . The corresponding heat equations given by Eqs. 

(5.2.5a,b) will possess a dimensionless form in terms of rescaling variables        

and                              . However, this dimensionless form is not implemented 

since the calibration strategy does not require the specification of the probe position b or slab 

thickness L. 

 

In the linear framework, Frankel et al [43-45] developed the calibration equation for the 

one-probe inverse problem as 

 

           

 

   

                     

 

   

                                       

 

where          is the measured calibration temperature at some depth    ;          is the net 

surface heat flux imposed during the calibration test;         is the measured temperature of the 

same thermocouple in response to the unknown heat flux; and          is the unknown surface 
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heat flux to be predicted. Again, note that these are reduced temperatures. This calibration 

integral equation has broad appeal since it does not require any knowledge of probe position or 

thermophysical properties.  

 

Extending the linear calibration equation to a nonlinear framework requires the 

replacement of physical variables         and        involved in Eq. (5.2.7) with the rescaling 

variables     
       and    

       in Eqs. (5.2.6a-c). Performing this replacement produces 

 

       
           

 
 

   

                 
           

 
 

   

                     
  

  

 

   

     

                                      

 

Two observations must be made: First, Eq. (5.2.8) requires knowledge of the explicit 

thermophysical property functions since the two rescaling coefficients     and     defined in Eqs. 

(5.2.3a,b) require the thermal conductivity and thermal diffusivity. The probe position can still 

be considered as unnecessary. Second, if all thermophysical properties are constant then Eq. 

(5.2.8) reduces to Eq. (5.2.7). This verifies that Eq. (5.2.8) is actually suitable for both linear and 

nonlinear situations. 

 

To generalize this solution procedure, let          
    

   
 such that for any time 

                it is possible to find an integer         to ensure       . The sequential 

procedure produces the compact integral relation 
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Therefore, the surface heat flux and temperature variables are expressed as 

 

             
     

         

         
  

    

   

                                           

 

           
          

         
    

     
         

         
  

    

   

                     

 

respectively. 

 

Next, we define the rescaled time variable    as 

 

    
         

         
                                                            

 

   

 

 

and we express the rescaled surface heat flux and temperature as 

 

          
         

         
                                                                  

and 
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respectively. 

 

The final form of the calibration integral equation for the entire time domain that allows 

for variable thermophysical properties under the proposed assumption is 

 

    
        

 
  

   

               
        

 
  

   

                                           

 

After the prediction in the rescaled time domain is complete then it is necessary to 

transform the rescaled variables to the physical domain through 
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5.3 Regularization Parameter Search Strategy 

 

The quasi-linearized calibration equation given by Eq. (5.2.11) is a Volterra integral 

equation of first kind for the unknown front surface heat flux. As remarked earlier, it is ill-posed. 

Its computation requires careful regularization to ensure a stable and an accurate prediction. The 

strategy adopted in this paper involves the classical Tikhonov regularization approach [82], 

singular-value decomposition (SVD) based regularization [80,81] and local future-time method 

[8]. Since the calibration equation given by Eq. (5.2.11) is resolved in rescaled time domain, it is 

necessary to transform the physical discrete experimental data to the rescaled variables according 

to Eqs. (5.2.10a-c) before any numerical operations are made. Afterwards, discretization is 

achieved in the rescaled time domain using            
   with     

          .  Let us 

define  

 

  
    

       
        

 
  
 

   

     
        

 

   
    

       
        

 
  
 

   

     
                                             

 

   
        

 

which merely represent the left-hand and right-hand side of Eq. (5.2.11), respectively. These 

definitions are convenient in later analysis. 
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 The local future-time method is a sequential regularization method [8]. Assuming that 

the rescaled heat fluxes from 0 to          are known then the unknown rescaled heat flux 

   
          can be obtained according to [45] 

 

   
      

   
  

      
       

        
   

 

   
       

      

    
  
 

   
       

                             

  

Here,        represents the future time increment and is considered as a regularization 

parameter. Small values of   produce unstable predictions while large values of   lead to the 

over-smoothed solutions associated with an excessive bias.    

  

Both Tikhonov and singular-value decomposition (SVD) based regularization methods 

resolve the inverse problem using different means for defining regularization. In their 

conventional implementation, these methods are global while the local future time method 

preserves causality and locality. To apply these global methods for the present investigation, we 

first need to represent Eq. (5.2.11) in a compact matrix form based on a convenient left-hand 

rectangular discretization rule as  

 

                                                                                     

 

where    is a              matrix with               
          

   for     and 

           for     ,     is a         vector with         
    

  , and    is a       

  vector to be determined with           
        

  . 
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To better understand the principal of both Tikhonov and SVD based regularization 

methods, we impose singular-value decomposition on    as the first step. As a result,     can be 

written as the product of three matrices (       ) 

 

                
 

   

   

                                                        

 

where                     and                     satisfying           . 

The symbol   is a             diagonal matrix whose diagonal value    arranges in a 

descending order as 

 

                                                                             

 

The direct inversion of Eq. (5.3.3) produces the forward formal prediction for    as   

 

    
 

  
  

                                                                      

   

   

 

 

However, this result is unacceptable since small value of    amplify the noise located in   . We 

know that as the singular values    become excessive small, instability grows and the system 

prediction is unreliable. To avoid this destabilization effect, we describe and implement two 
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techniques that regularize Eq. (5.3.3) in effective ways. First, the Tikhonov method is introduced. 

This method introduces the regularization parameter    through 

 

    
  

  
    

   
                                                                 

   

   

 

 

such that all     singular values are retained in the analysis. Here, we see that the denominator 

of Eq. (5.3.7) can never be driven to zero. Although the regularization parameter    is introduced 

to modify and control the behavior of the denominator shown in Eq. (5.3.7), this equation is 

actually a direct result of minimizing the objective function 

 

      
      

      
       

    
     

    
   

 
 

   

   

   
      

      
    

 

   

                         

 

Second, we describe how to regularize Eq. (5.2.11) using SVD based regularization 

method with the aid of Eq. (5.3.3). In this case, any    whose condition number (     ) is 

smaller than a designed limitation      is ignored. Then, if the index   can be found such that  

         and          for all    , regularized     can be represents as 
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Here, either the designed limitation    or index   is considered as the regularization parameter. 

However, for both Tikhonov and SVD based regularization approaches, estimating the proper    

and   are nontrivial tasks.  

 

In this chapter, a new strategy is proposed for selecting an optimal regularization 

parameter independent of the applied regularized methodologies. Mathematically, we propose to 

investigate the two-component exponential function given as 

 

                                                                         

 

where 

 

   
    

      
        

      
   

      
      

   
  

 

   
   

    
     

    
   

       
   

                                                    

 

 

Here,      
      

   represents the filtered form of     
      

   . For example, using a Gauss filter 

[74], we express      
      

   as 

 



162 
 

     
      

   
    

      
    

   
    

  
 
  

 

  
   

   
   

    
  

 
  

 

  
   

                                     

 

where 

 

                                                                                

 

Here,    represents the cutoff frequency that must be defined based on      
      

  . It is well-

known that a Gauss low pass filter is capable of effectively removing high frequency noise from 

the signal after introducing the proper    [74]. Hence, it can be applied to evaluate function 

smoothness. Here, we interpret smoothness as a representative measure of variance. Therefore, in 

Eq. (5.3.10a),    represents the magnitude of the prediction variance while    is used for the 

computation of the model bias which is represented as the normalized norm of the residual for 

the new calibration method given in Eq. (5.2.11). Since variance and bias are not equally 

important for the final prediction, a weight coefficient   is suggested to adjust their relative 

importance. The optimal regularization parameter is identified as the maximum value of   which 

indicates a balance between weighted bias and variance.  

 

5.4 Results 

 

In this section, the merit of the nonlinear calibration equation given by Eq. (5.2.11) is 

verified through numerically simulated temperature data generated at    . A schematic of the 

physical system is given in Fig. 5.2.1. For demonstration purpose, a slab of carbon material is 
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investigated with probe location       and depth      . The front surface of this slab is 

exposed to distinct time-varying heat fluxes during testing while the back surface is modeled as 

adiabatic during all tests. This simplicity is introduced as it is the purpose of this investigation to 

study the optimal regularization search through Eq. (5.3.10a). Carbon composite is a common 

aerospace testing material. The assumed representative functions for bulk thermal conductivity 

and bulk heat capacity are expressed as 

 

                                                                              

 

                                                                      

 

Figures 5.4.1-5.4.3 display the thermal conductivity, heat capacity and thermal 

diffusivity                  ) functions, respectively. From these figures, we conclude that 

the temperature dependence of these properties should be accounted in the heat transfer analysis 

when a large temperature range is considered.  

 

Noiseless temperature data        at the probe position require the temperature field 

                   for a given set of boundary and initial conditions to be obtained by a 

forward solution. For this purpose, a finite difference method (FDM) [33] is applied on the 

domain              where fully temperature dependent thermophysical properties are 

assumed. For the FDM solution, the spatial grid,    and temporal grid,    are varied until the 

solution convergence is met to some predefined criteria. For this study, it was found that 
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Figure 5.4.1: Approximate thermal conductivity for the carbon composite, Eq. (5.4.1a). 

 

 

 

 

 

 

 
Figure 5.4.2: Approximate heat capacity for the carbon composite, Eq. (5.4.1b). 
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Figure 5.4.3: Approximate thermal diffusivity for the carbon composite,  

                . 
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  =0.2mm and    =50μs work sufficiently well for all data collection reported based on an 

absolutely convergence of       . 

 

The calibration heat flux is set to a constant             lasting 30s, while the 

reconstruction test exploits an isosceles triangular heat flux starting at 2.5s and ending at 22.5s 

possessing a peak of 200W/cm
2
. These heat fluxes and their corresponding probe temperature 

responses       , as computed by the proposed forward model are presented in Fig. 5.4.4 and 

Fig. 5.4.5, respectively. Figure 5.4.5 indicates the large temperature variation at the probe 

position during both tests. Inclusions of nonlinear effects due to the thermophysical properties 

are required. In addition, Figure 5.4.6 presents the temperature histories at uniformly distributed 

spatial locations during the reconstruction test. For the reconstruction test, the surface 

temperature exceeds 1000
 o
C. The signal decay from surface to probe position at         

is also pronounced. 

 

Data without and with noise are investigated in this chapter. The first case establishes the 

new calibration approach in the presence of noiseless data. The purpose of applying the noiseless 

temperature data at     are to (1) confirm the suitability of the nonlinear calibration model, 

and (2) verify the numerical method. Since all the computations are made in terms of rescaled 

variables, noiseless temperature data are immediately required to be rescaled in accordance to Eq. 

(5.2.10a-c). Before proceeding the reconstruction process based on          it is good to 

understand the intrinsic bias. To see this, the rescaled variables are then substituted into Eqs. 

(5.3.1a-c) for computing the normalized base residual (
  

    
  

  
    

  
          ) where the correct 

“unknown” surface heat flux is applied. 
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Figure 5.4.4: The known “calibration” surface heat flux          and the “unknown” heat 

flux          to be predicted.  

 

 

 

 

 
Figure 5.4.5: Noiseless temperature measurement          and          at the probe 

position for both the calibration and reconstruction tests, respectively.  
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Figure 5.4.6: Temperature histories resulting from the reconstruction imposed heat flux 

         at the indicated depths. 

 

 

 

 

 
Figure 5.4.7: Normalized residual comparison between the linear model given by Eq. 

(5.2.7) and nonlinear model given by Eq. (5.2.11). 
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This base residual reflects the inherent bias in the proposed calibration model given by 

Eq. (5.2.11). Figure 5.3.7 presents a comparison of normalized base residuals between the linear 

model given by Eq. (5.2.7) and the nonlinear model given by Eq. (5.2.11). The linear model also 

used the temperature data collected by the nonlinear forward solution to emulate the 

corresponding physical process. For visualization, both rescaled time domain and physical time 

domain have been normalized by their maximum value in this figure. Results show that the 

nonlinear calibration model reduces the inherent model bias by properly accounting for the 

varying thermophysical properties. However, some bias remains due to the piecewise time-step 

linearization assumption.  

 

In this chapter, the classical Tikhonov regularization given in Eq. (5.3.7), SVD based 

regularization given in Eq. (5.3.9) and local future-time method given in Eq. (5.3.2) are applied 

for regularization while their corresponding optimal regularization parameters are determined 

through observing the maximum value of   proposed in Eq. (5.3.10a) with 

                . As an example, Figure 5.4.8 presents the optimal regularization 

parameter search process based on Tikhonov regularization with         and       . It is 

clear that for a fixed  , the optimal regularization parameter corresponds to the peak of the 

function P. For all these cases, the cutoff frequency     is fixed at     while the weight 

coefficient   is adjusted (since the cutoff frequency    represents a standard for function 

smoothness). A high value of    accepts additional high frequencies in the filtering process and 

increases the variance involved in the final prediction. Therefore, the weight coefficient   and 

cutoff frequency    actually produce a similar effect in adjusting the weight between bias and 

variance. However, the weight coefficient m possesses more sensitivity than the cutoff 
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Figure 5.4.8: The selection of optimal regularization parameter based on the maximum 

value of function P. 
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frequency   , and hence is more useful. As an example, for all cases involved in this chapter, 

   0.1-10Hz leads to almost the same optimal regularization parameter for fixed  . Conversely, 

for fixed    , the position of the maximum value of   strongly depends on m, especially when m 

is small (  1-1000). A possible explanation for this observation lies in the fact that the weight 

coefficient m relates to relative weight between the bias and variance in a more direct way. As a 

result, the impact of   on the optimal regularization parameter becomes significant and must be 

carefully studied. In addition, bias is commonly a more important factor than variance when 

resolving inverse heat conduction problems. Therefore, the value of   must be set to a positive 

number greater than 1 to avoid the over-smoothness. To better understand variation of heat flux 

prediction with   , the optimal regularization parameters are determined based on    

              . The front surface heat flux in the rescaled domain is resolved in accordance 

to Eq. (5.3.7), Eq. (5.3.9) and Eq. (5.3.2), corresponding to the classical Tikhonov regularization, 

SVD based regularization and local future-time method, respectively. As the last analysis step, 

all rescaled variables are transformed back to the physical ones in accordance to Eqs. (5.2.12a,b). 

 

Figures 5.4.9-5.4.11, 5.4.12-5.4.14, and 5.4.15-5.4.17 present the final surface heat flux 

predictions in the physical time domain with                  for all three regularization 

approaches. It is shown that all results are stable and possess comparable accuracy though some 

underestimation appears due to the linearization assumption. In addition, though different   

values lead to different optimal regularization parameter, there are minor variations among the 

predictions. This verifies that there exists a significant flexibility in the choice of  . However, a 

proper domain of   is still required to avoid over-smoothness. For this purpose, the bias    is 

evaluated by substituting the rescaled prediction at the optimal regularization parameter into Eq.  
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Figure 5.4.9: Predicted unknown surface heat flux          with        by Tikhonov 

regularization. 

 

 

 

 
Figure 5.4.10: Predicted unknown surface heat flux          with         by 

Tikhonov regularization. 
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Figure 5.4.11: Predicted unknown surface heat flux          with          by 

Tikhonov regularization. 

 

 

 

 

 
Figure 5.4.12: Predicted unknown surface heat flux          with        by SVD 

based regularization. 
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Figure 5.4.13: Predicted unknown surface heat flux          with         by SVD 

based regularization. 

 

 

 

 

 
Figure 5.4.14: Predicted unknown surface heat flux          with          by SVD 

based regularization. 
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Figure 5.4.15: Predicted unknown surface heat flux          with        by local 

future time. 

 

 

 

 

 
Figure 5.4.16: Predicted unknown surface heat flux          with         by local 

future time. 
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Figure 5.4.17: Predicted unknown surface heat flux          with          by local 

future time. 
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(5.3.10c) for fixed   . To reiterate, at a fixed   , all optimal regularization parameters are 

obtained by searching for the maximum value of the function  . Figures 5.4.18-5.4.20 display 

the development of the bias    as   varies, corresponding to the three regularization approaches 

applied in this chapter. The dash line is presented for mere visualization to indicate the L-shaped 

feature. The curves begin to converge near        for all three approaches implying that for 

noiseless data an optimal prediction can be obtained if   is between             . The value of 

  for convergence can be defined on a range since the final prediction is insensitive to small 

changes in  . However, a larger or conservative value of   ensures that over-smoothness can be 

avoided. As a result (see Fig.5.4.20), the weight coefficient   can be considered as 2000 though 

convergence actually appears earlier. In this chapter, the estimated convergence point of this “L-

shaped curve” is referred to as the elbow. 

 

Figures 5.4.11, 5.4.14 and 5.4.17 can be considered as optimal predictions corresponding 

to Tikhonov regularization, SVD based regularization and local future-time method, respectively. 

The prediction accuracy is analyzed through unbiased standard deviation of the error  , energy 

conservation ratio    and maximum value ratio    as defined by 
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Figure 5.4.18: Bias    at optimal regularization parameter versus   (Tikhonov 

regularization). 

 

 

 

 

 

 
Figure 5.4.19: Bias    at optimal regularization parameter versus   (SVD based 

regularization). 
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Figure 5.4.20: Bias    at optimal regularization parameter versus   (local future time). 
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respectively. Pertinent and statistical information, corresponding to                 , are 

included in Table 5.4.1 for reference.    

 

Experimental data contains contamination (i.e, noise). To study the impact of this 

inclusion on the proposed method for acquiring the optimal regularization parameter, we add 

noise in accordance to [117]  

 

                                                                                 

 

where           represents the “noiseless temperature” at time        at position    . Here, 

   is the discrete raw experimental noise   at       , which was generated from an inverse heat 

conduction experiment described in Ref. 117;   is a constant noise factor, whose value is set as 

50 to ensure that the added noise has a standard deviation near 1
o
C. The parameter   is set to 

       since the experimental noise sampling rate was 200Hz and the maximum time for 

data collection is 30s. Figure 5.4.21 presents the added noise     on         during both 

calibration and reconstruction tests. The noisy data are then rescaled and substituted into the 

proposed nonlinear calibration equation for resolving the unknown front surface heat flux 

according to Eq. (5.3.2), Eq. (5.3.7) and Eq. (5.3.9), respectively. The identical numerical 

procedure previously described in the context of noiseless data is repeated. 

 



181 
 

Table 5.4.1: Prediction accuracy analysis for noiseless data. 

 

Tikhonov 

Regularization 

 

  (
o
Cs) 

 

Standard Deviation of 

Prediction Error   

(W/cm
2
) 

 

Peak Ratio 

   

 

Energy balance 

   

      2.718 2.997 1.007 9.951×10
-1

 

       6.065×10
-1

 3.008 1.018 9.954×10
-1

 

        4.540×10
-5

 3.033 1.023 9.959×10
-1

 

 

SVD based 

Regularization 

 

  

 

Standard Deviation of 

Prediction Error   

(W/cm
2
) 

 

Peak Ratio 

   

 

Energy balance 

   

      13 3.051 1.003 9.950×10
-1

 

       16 3.044 1.016 9.954×10
-1

 

        26 3.033 1.028 9.959×10
-1

 

 

Local Future 

Time 

 

 (s) 

 

Standard Deviation of 

Prediction Error   

(W/cm
2
) 

 

Peak Ratio 

   

 

Energy balance 

   

      0.3 3.051 1.003 9.950×10
-1

 

       0.1 3.044 1.016 9.954×10
-1

 

        0.1 3.033 1.028 9.959×10
-1
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Figure 5.4.21: Added experimentally obtained noise per Eq. (5.4.3) using Ref.117 data. 
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After transforming all rescaled variables back to the physical ones according to 

Eqs.(5.2.12a,b), the surface heat flux predictions with                  based on classical 

Tikhonov regularization, SVD based regularization and local future-time method are presented in 

Figs. 5.4.22-5.4.24, 5.4.25-5.4.27, 5.4.28-5.4.30, respectively. Results show that the predictions 

remain accurate even in presence of significant experimental noise and the differences among 

these predictions are not pronounced. All these results are deemed acceptable which verifies that 

the choice of   is not restrictive. To obtain a proper domain from where   can be chosen, we 

plot the bias    versus  , corresponding to the three regularization approaches. The logic is 

exactly the same as discussed when using the noiseless data. These results are presented in Figs. 

5.4.31-5.4.33. Again, the L-shaped feature with a pronounced elbow near        is observed. 

Given that the reduction in bias after        is minimal, we can consider  

               as a proper domain for  . Another important observation is that the elbows 

of the L-shaped curves in Figs. 5.4.18-5.4.20 (noiseless data) and Figs. 5.4.31-5.4.33 (noisy data) 

all lie near        independent of noise level and applied regularization methodology. This 

justifies the generality of the proposed regularization parameter strategy given in Eq. (5.3.10). It 

also indicates that in this example, the optimal weight ratio between bias and variance is 

approximated         for the selected cutoff frequency        . Table 5.4.2 summarizes 

pertinent prediction accuracy analysis for the noisy data study. In addition, though not explicitly 

contained in this chapter, stainless steel and copper were studied under similar heating scenarios. 

Combination of the nonlinear calibration model given in Eq. (5.2.11) and the proposed optimal 

regularization parameter strategy works equally well for these alternative materials. Finally, one 

can demonstrate the need for the fully nonlinear model by direct comparison with the linear 

model given by Eq. (5.2.7). Figure 5.4.34 uses the nonlinear temperature data sets described in 
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Figure 5.4.22: Predicted unknown surface heat flux          with        by 

Tikhonov regularization (Noisy data). 

 

 

 

 

 
Figure 5.4.23: Predicted unknown surface heat flux          with         by 

Tikhonov regularization (Noisy data). 
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Figure 5.4.24: Predicted unknown surface heat flux          with          by 

Tikhonov regularization (Noisy data). 

 

 

 

 

 
Figure 5.4.25: Predicted unknown surface heat flux          with        by SVD 

based regularization (Noisy data). 
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Figure 5.4.26: Predicted unknown surface heat flux          with         by SVD 

based regularization (Noisy data). 

 

 

 

 

 
Figure 5.4.27: Predicted unknown surface heat flux          with          by SVD 

based regularization (Noisy data). 
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Figure 5.4.28: Predicted unknown surface heat flux          with        by local 

future time (Noisy data). 

 

 

 

 

 

 
Figure 5.4.29: Predicted unknown surface heat flux          with         by local 

future time (Noisy data). 
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Figure 5.4.30: Predicted unknown surface heat flux          with          by local 

future time (Noisy data). 

 

 

 

 

 

 
Figure 5.4.31: Bias    at optimal regularization parameter versus   (Tikhonov 

regularization, Noisy data). 
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Figure 5.4.32: Bias    at optimal regularization parameter versus   (SVD based 

regularization, Noisy data). 

 

 

 

 

 

 
Figure 5.4.33: Bias    at optimal regularization parameter versus   (local future time, 

Noisy data). 
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Table 5.4.2: Prediction accuracy analysis for noisy data. 

 

Tikhonov 

Regularization 

 

  (
o
Cs) 

 

Standard Deviation of 

Prediction Error   

(W/cm
2
) 

 

Peak Ratio 

   

 

Energy balance 

   

 

 

      4.482 2.972 1.004 9.950×10
-1

 

       2.718 2.991 1.010 9.951×10
-1

 

        6.065×10
-1

 3.453 1.033 9.953×10
-1

 

 

SVD based 

Regularization 

 

  

 

Standard Deviation of 

Prediction Error   

(W/cm
2
) 

 

Peak Ratio 

   

 

Energy balance 

   

 

 

      13 3.041 1.005 9.953×10
-1

 

       14 3.030 1.012 9.953×10
-1

 

        19 3.538 1.032 9.952×10
-1

 

 

Local Future 

Time 

 

 (s) 

 

Standard Deviation of 

Prediction Error   

(W/cm
2
) 

 

Peak Ratio 

   

 

Energy balance 

   

 

 

      0.5 3.018 1.011 9.950×10
-1

 

       0.35 3.328 1.033 9.951×10
-1

 

        0.3 3.766 1.045 9.952×10
-1
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Figure 5.4.34: A comparison between linear and nonlinear models using noisy data based 

on Tikhonov regularization. 
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Fig. 5.4.5 contaminated with the experiment noise described in Ref. 115 and the calibration heat 

flux          displayed in Fig. 5.4.4 to generate the reconstruction heat flux          based on 

both linear (Eq. 5.2.7) and nonlinear (Eq. 5.2.11) models. As seen in this figure, the two models 

produce noticeably different predictions. It is evident that this test requires the proper accounting 

of the temperature dependent thermophysical properties. 

 

5.5 Conclusions 

 

This chapter proposes a nonlinear calibration formulation that incorporates rescaling 

principles for resolving the front surface heat flux in a one-dimensional nonlinear inverse heat 

conduction problem. Additionally, a new strategy is proposed for obtaining the optimal 

regularization parameter independent of the regularization technique. The nonlinear inverse heat 

conduction problem can be quasi-linearized by rescaling based on the piecewise time-step 

linearization assumption. For regularization, three different techniques were considered; namely, 

local future-time method, Tikhonov and SVD based regularization. The new strategy estimates 

the variance with the aid of a Gauss filter and determines the optimal regularization parameter 

based on a balance between the weighted bias and estimated variance. A weight coefficient is 

required since bias and variance are not equally important in reconstruction of the surface heat 

flux based on calibration approach. The proper weight coefficient domain is estimated by 

plotting the prediction bias    versus   . Here, the prediction bias    is obtained from the 

rescaled heat flux prediction at the optimal regularization parameter associated with the chosen 

regularization approach. The optimal regularization parameter is obtained corresponding to the 
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maximum value of   with respect to  . In this chapter, the proper weight coefficient domain is 

estimated in the range                based on a cutoff frequency       .  

 

For physical reasons, the rescaled variables must be returned to the physical spaces for 

final prediction presentation. All obtained results in this chapter for the representative carbon 

composite are both stable and accurate in the presence of significant noise. This approach is also 

suitable for several other engineering materials such as the stainless steel and copper. One 

pronounced advantage of this proposed calibration method is that the precise sensor position 

does not need specification as it is implicitly included in the calibration test. The reliability of the 

new calibration method depends on accuracy of the piecewise time-step linearization assumption. 

Hence, if a high heat flux is applied over a short time span, then a substantive model bias results 

due to the failure of quasi-linearization. However, in an appropriate heat flux range, this new 

calibration method is suitable and is actually superior to the linear calibration model. 
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Chapter 6: A New Thermophysical Property Estimation Approach 

based on Calibration Equations and Rescaling Principle 

 

This chapter is revised based on a paper to be submitted for publication by Yinyuan Chen, 

Majid Keyhani and Jay I. Frankel:  

Chen, Y.Y., Keyhani, M., and Frankel, J.I., in preparation, “A New Thermophysical 

Property Estimation Approach based on Calibration Equations and Rescaling Principle”.  

My primary contributions to this paper include (1) conceptualization of the new model, (2) 

development of numerical and regularization methods (3) writing and implementing of the 

computer code (4) and served as lead writer of the manuscript. 

 

6.1 Introduction 

 

The need to accurately measure thermal conductivity and thermal diffusivity at high 

temperatures is significant to many engineering applications. Rapid advancement of new 

materials for high temperature applications necessitates this quantification and characterization 

for advanced engineering systems. For example, in thermal protection systems, low thermal 

diffusivity materials are required for protecting high-speed flight vehicles during glide and re-

entry.  

 

Presently, several methods exist for evaluating these important thermophysical properties 

[21,91-109,119]. The Flash method [98] is a classical and often called upon method for 
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estimating thermal diffusivity. This method is predicated on knowing the exact temperature 

solution of the linear heat equation for a thermally insulated solid exposed to a pulse of radiant 

energy impacting the front surface. Parker et al. [98] proposed this means of estimating thermal 

diffusivity based on a single graphical representation involving a dimensionless backside 

temperature versus dimensionless time plot. This method is appealing as the knowledge of the 

amount of energy absorbed at the front surface is not required for estimating the thermal 

diffusivity. However, the energy input must be specified when estimating the thermal 

conductivity. The Flash method is popular and has received significant attention over the past 50 

years. Clark [99] investigated radiation heat losses associated with Flash method in a high 

temperature range and provided an experimental basis for evaluating radiative heat losses and 

forming a correction procedure. James [100] applied the Flash method to one-dimensional heat 

conduction through slabs of two materials in direct thermal contact. Baba and Ono [101] 

improved the Flash method by reducing uncertainties in thermal diffusivity measurements of 

solid materials above room temperature. The thermal property estimation is also achieved with 

the aid of the Laplace transform technique [119]. Based on a semi-infinite assumption in the 

transform variable, this transformation can be applied to solve the one-dimensional heat 

conduction problem when both the heat flux and temperature of the front surface are known. In 

this process, the thermal diffusivity can directly be expressed in terms of the temperature in the 

frequency domain while the thermal conductivity can be estimated with the aid of the estimated 

thermal diffusivity and known surface heat flux. Unlike the Flash method, this approach permits 

an arbitrary heating condition.  
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The least-square method is the most common approach for parameter estimation [105-

109]. A significant amount of attention has been directed toward this technique as it is suitable to 

any experimental situation that can utilize either analytical or numerical solutions. After the 

initial guess is provided, optimization methods are introduced for updating the parameter space 

that minimizes the temperature difference between the experimental results and the model 

solution. The thermal diffusivity and thermal conductivity can simultaneously be determined by 

successive iteration. Sawaf and Ozisik [21] estimated the linearly temperature-dependent thermal 

conductivity components and heat capacity of an orthotropic medium through the combination of 

numerical solution and the Levenberg-Marquardt iterative procedure. Huang and Yan [105] 

utilized the conjugate gradient method of minimization and the adjoint equation in the 

optimization process such that the temperature-dependent thermal conductivity and heat capacity 

can be simultaneously measured. Battaglia et al. [106] indentified thermophysical properties 

from a metallic thin layer deposited on a silicon substrate through the combination of a Bayesian 

technique based on Monte Carlo Markov Chain and the Levenberg-Marquardt technique. Garcia 

and Scott [108, 109] applied genetic algorithms for simultaneously estimating thermophysical 

properties. 

 

In contrast to the approaches previously noted, this chapter describes an alternative 

method for predicting the thermophysical properties based on system calibration principles. It is 

well known that several system parameters are required prior to extracting the thermophysical 

properties. That is, the probe positions and the sample configuration are necessary inputs. These 

system parameters introduce uncertainties into the analytical process. These uncertainties 

adversely affect the estimated thermal diffusivity and thermal conductivity. To avoid this 
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obstacle, the proposed method utilizes a calibration principle that intrinsically accounts for these 

parameters.  

 

This calibration principle relies on analytical pre-processing for constructing a calibration 

or measurement equation that eliminates the unwanted system parameters. This concept has been 

demonstrated in the context of inverse heat conduction. Inverse heat conduction by a calibration 

approach was initially introduced as the Non-Integer System Identification (NISI) method [40-

42]. This approach requires the estimation of a series of parameters and the identification of the 

optimal regularization parameter. In contrast, Frankel and Keyhani [43], Frankel et al. [44] and 

Elkins et al. [45] proposed a calibration methodology that also directly relates the net unknown 

surface heat flux to an in-depth temperature measurement but removes the need to resolve a set 

of intermediate coefficients. This calibration approach was derived in linear framework and has 

been experimentally verified [45] with excellent accuracy in an appropriate temperature range.  

 

To extend the linear calibration equation to a nonlinear framework, Chen et al. [112] 

proposed a variation of the one-probe calibration method by achieving the quasi-linearization 

through the combination of Kirchhoff transformation and rescaling principles. In this process, the 

Kirchhoff transformation was exploited for the thermal conductivity linearization. In contrast, 

the time domain rescaling was incorporated to linearize the temperature-dependent thermal 

diffusivity. In the present chapter, the same rescaling principle is utilized for the thermophysical 

property estimation. First, a temperature calibration equation is proposed for estimating the 

thermal diffusivity. Second, the thermal conductivity is obtained based on using the estimated 

thermal diffusivity and a new heat flux calibration equation. Section 6.2 presents the detailed 
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derivations of the temperature and heat flux calibration equations based on rescaling principles. 

Section 6.3 presents the idealized experimental strategy and predicted results for two common 

engineering materials, namely, stainless steel 304 and a representative carbon composite using 

simulated data. Section 6.4 provides concluding remarks on the proposed calibration method for 

estimating both the thermal conductivity and thermal diffusivity over a large temperature range.  

 

6.2 Formulation  

 

Consider a one-dimensional heat conduction problem in Cartesian coordinates having a 

front surface heat flux source at     while maintaining an adiabatic back surface at    . A 

schematic of the sample geometry is given in Fig. 6.2.1. The heat equation is given as [33] 

 

           
  

  
      

 

  
          

  

  
                                                       

 

where   is the temperature,   represents the thermal conductivity, and      represents the heat 

capacity. Since experimental data are involved, the time span is constrained up to         

where data collection ends. The boundary conditions are given as 
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where        describes the total surface energy externally contacting at     while         is 

the net surface heat flux entering the body. If the surface temperature measurement        

at      is included, the surface heat flux boundary condition imposed at     given by Eq. 

(1b) can be eliminated, thereby bypassing the need to specify the surface thermal 

conductivity          . The resulting thermal boundary condition at     is defined as 

 

                                                                                       

 

where       represents the surface temperature measurement at    . The initial condition is  

 

                                                                                      

 

Here, the initial condition is considered as zero since all temperature data involved in Eqs. 

(6.2.1a-e) are defined in terms of the relative temperature, i.e., the deviation from the uniform 

initial temperature condition.  

 

Suppose that the positional temperature at     are measured and given as       . For 

each heating time interval         , if the incurred temperature rise produces little change in the 

thermophysical properties then these properties are assumed to constant over this time interval of 

interest. Explicitly, we define the mean temperature in this time interval as 
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Figure 6.2.1: System setup for the one-dimensional heat conduction problem showing 

boundary conditions and the thermocouple position. 
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Here,           represents the absolute initial temperature at    . All constant 

thermophysical properties during time interval           are evaluated at the mean 

temperature    .  

 

Based on this assumption, Eqs. (6.2.1a,c-e) simplify to 

 

 

      

  

  
      

   

   
                                                        

 

subject to the boundary conditions 

 

               

   

  

  
                                                                             

                                

 

with the initial condition  
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After this quasi-linearization, it is found that the replacement of the heat flux boundary condition 

given by Eq. (6.2.1b) by the temperature boundary condition given by Eq. (6.2.1d) successively 

decreases the number of the unknown thermophysical properties from two                  to 

one         .  

  

The purpose of this chapter is to apply the calibration principle described in Refs. [43-45, 

121] for estimating the unknown thermophysical properties evaluated at the mean 

temperature    , when     is significantly greater than the room temperature. In this process, two 

tests are required in the experimental campaign. The first test is referred to as the calibration test 

(subscript c), which implicitly includes all physical information of the thermal system and 

requires the knowledge of both thermal conductivity and thermal diffusivity evaluated at      . 

Many thermophysical properties near room temperature can be readily measured or found in the 

open literature. It is preferred that       is set near the room temperature. The second test is called 

the reconstruction test (subscript r) where the initial temperature can be set at a totally different 

value. The unknown thermophysical properties evaluated at       can then be estimated through 

the calibration from the known thermophysical properties evaluated at         

 

To successfully use the calibration principle, the rescaling concept needs to be applied to 

time domain [112]. Explicitly, let us define the rescaled temperature in the reconstruction test as  
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To reiterate, the subscript “r” represents the reconstruction test in a defined temperature range 

that contrasts the temperature range from the calibration test. Upon implementing the above 

definitions into Eqs. (6.2.2a-d), we can describe the heating process for the reconstruction test 

based on the thermophysical properties evaluated at the calibration mean temperature       , 

namely 

 

 

         

   
 

  
      

    
 

   
                           

        

        
                    

 

subject to the boundary conditions 

 

  
           

       

 

   
 

  
                   

        

        
                                            

 

and initial condition 

 

  
                                                                            

 

In the linear framework, the temperature calibration equation [120] is given as  
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The calibration equation displayed in Eq. (6.2.5) is suitable for an unchanging back boundary 

condition transpiring between the calibration and reconstruction tests. This formulation is 

applicable to the semi-infinite geometry or a slab with a fixed heat transfer coefficient at the back 

face, and uniform initial condition. The temperatures displayed Eq. (6.2.5) are the relative 

temperature. Since the thermal diffusivities of both    and   
  are evaluated at the same 

calibration mean temperature, it is only necessary to replace the physical temperature         

involved in Eq. (6.2.5) with the rescaling temperature   
       defined in Eq. (6.2.3) such that Eq. 

(6.2.5) is available for thermophysical property estimation. Performing this replacement 

produces   

 

   
        

 

   

                    
 

 

   

              

                    
                

 

where 
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It is also necessary to return the rescaled temperature   
       back to the physical temperature 

        in accordance to Eq. (6.2.3), this implementation produces 

 

      
        

        
    

 

   

                    

 

   

   
        

        
                  

                    
                  

 

Equation (6.2.7) is used to predict          when an accurate value of          is provided. 

The predicted result possesses uniqueness since the thermal conductivities for both tests are not 

included in this equation. Based on this consideration, the residual function utilizing the 

proposed temperature calibration equation is given as 

 

               
    

        
      

     
   

   
      

   
   

                                                  

 

where   
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Here, the integer     represents the number of time intervals uniformly distributed in        
  . 

The thermal diffusivity          is obtained by minimizing this residual function given in Eq. 

(6.2.8a) with respect to the thermal diffusivity. 

 

To estimate the unknown thermal conductivity         , the heat flux boundary condition 

given in Eq. (6.2.1b) is required for both calibration and reconstruction tests. To ensure the 

thermal conductivity in the reconstruction test is transformed back to the value evaluated at the 

calibration mean temperature, we define the rescaled heat flux in the reconstruction test as  

 

   
       

        

        
      

        

        
             

        

        
                        

 

Based on the constant thermophysical properties assumption referred to before, the substitution 

of Eq. (6.2.3) and Eq. (6.2.9) into Eqs. (6.2.1a-c,e) produces  

 

 

         

   
 

  
      

    
 

   
                           

        

        
                     

 

subject to the boundary conditions 
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and initial condition 

 

  
                                                                    

 

It is found that both thermophysical properties (  and  ) given in Eqs. (6.2.10a-d) are evaluated 

at the calibration mean temperature after this transformation. 

 

The linear heat flux calibration equation for a one-probe inverse heat conduction problem 

is also developed [43]  

 

           

 

   

                     

 

   

                

                                 

 

Similarly, to apply Eq. (6.2.11) for estimating the thermal diffusivity in the reconstruction test, 

the physical variables          and         involved in Eq. (6.2.11) are replaced with the 

rescaling variables    
       and   

       given by Eq. (6.2.3) and Eq. (6.2.9), respectively. 

Performing these replacements yields   
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Two variables                         are included in Eq. (6.2.12). However, the 

unknown thermal diffusivity          can be estimated with the aid of the residual function given 

by Eq. (6.2.8a). Based on the consideration, the residual function for the unknown thermal 

conductivity          utilizing the proposed heat flux calibration equation is given as  

 

               
    

        
      

 
    

   

         
   
   

                                             

 

where 

 

  
      

        

        
       

        

        
    

 

   

                                  

 

  
                 

 

   

   
        

        
          

 

To reiterate, the thermal diffusivity          during the reconstruction test is estimated by 

minimizing                defined in Eq. (6.2.8a) with respect to   . After acquiring the 

estimated          , the corresponding thermal conductivity          is estimated through 

minimizing                given by Eq. (6.2.13a) with respect to  .   
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6.3 Results 

 

In this section, results from implementing the calibration principles given by Eq. (6.2.7) 

and Eq. (6.2.12) for estimating the thermophysical properties during the reconstruction test are 

presented. A schematic of the physical system is given in Fig. 6.2.1. The front surface of the slab 

is exposed to a designed time-varying heat flux while the back surface is modeled as adiabatic. 

Two common engineering materials are considered in this chapter illustrating the generality of 

this new thermophysical property estimation approach. In-depth temperature data are collected 

at     . For the present study, the collected data are assumed to be representative of the 

positional temperature        . In an appropriate temperature range              , the 

representative functions for the bulk thermal conductivity and bulk heat capacity for stainless 

steel 304 are expressed as 

 

                                                                        

 

                                                                      

 

and for a representative carbon composite as 
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Stainless steel is a standard testing material for verifying the effectiveness of the 

mathematical model and proposed methodology. Carbon composite materials have value at high 

temperature applications as associated with hypersonic flight.  

 

For both stainless steel and the chosen carbon composite, four geometrical assignments 

are defined for verifying the estimation methodology. These four assignments are defined as (1) 

probe location       and depth       ; (2) probe location       and depth    

   ; (3) probe location       and depth       ; (4) probe location       and 

depth      , respectively. Figure 6.3.1 presents the designed time-varying source heat flux 

applied to the front surface for both the stainless steel and the carbon composite. For stainless 

steel, the maximum experimental run time      is set as 15s using 10s of heating time and 5s 

cooling (source is off). During the heating period, the input source heat flux possesses an 

isosceles triangular shape in time with a peak of 18W/cm
2
. For the representative carbon 

composite, the heating rate is fixed at 2.5W/cm
2
 lasting the whole 15s. Utilizing different surface 

heat flux design is to verify the generality of the proposed calibration method. To obtain their 

thermophysical property functions      and      , eleven (11) simulated experiments are 

performed for each individual assignment where the input heat flux is spatially uniform. The 

initial temperature is varied from 25
o
C (room temperature) to 825

o
C using increments of 80

o
C 

leading to the eleven (11) tests for the defined temperature range. 

 

The calibration principle implies that if the thermophysical properties for one experiment 

are known in advance then Eq. (6.2.7) and Eq. (6.2.12) can be used to estimate the unknown  
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Figure 6.3.1: Time-varying input surface heat flux applied to the front surface of stainless 

steel and representative carbon composite. 
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thermophysical properties corresponding to other initial conditions. This process requires 

considering the known property experiment as the calibration test while further high temperature 

experiments are the reconstruction tests. In this chapter, we assume that the thermophysical 

properties for the first experiment corresponding to the room temperature 25
o
C are known and 

use this information as the standard for predicting the bulk thermal diffusivity and thermal 

conductivity temperature-dependent functions for both stainless steel and the representative 

carbon composite. 

 

The calibration equation given by Eq. (6.2.7) requires the temperature data        at the 

front surface and         at the probe position. The temperature field                  

  for a given set of boundary and initial conditions is required for developing the appropriate 

simulated data. A finite difference method (FDM) [33] is applied on the domains           

  to form the forward solution where fully temperature dependent thermophysical properties are 

assumed (see Eqs. (6.3.1) and (6.3.2)). For the FDM solution, the spatial and temporal grids (   

and     are varied until solution convergence is met to a predefined criterion. Results shows that 

  =0.2mm and    =50μs work sufficiently well for all reported data based on an absolute 

convergence of       . Figures 6.3.2 and 6.3.3 present the temperature histories at the indicated 

uniformly distributed spatial locations for both materials based on   5mm and            

        (    ), i.e., the calibration test. The recovered (small) temperature rise in both the time 

and spatial domains verifies the reliability of the linearization assumption.   
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Figure 6.3.2: The temperature histories at uniformly distributed spatial locations for 

stainless steel with the slab thickness      . 

 

 

 

 

 

 
Figure 6.3.3: The temperature histories at uniformly distributed spatial locations for 

carbon composite with the slab thickness      . 

 



214 
 

Thermophysical property prediction based on noiseless in-depth temperature data is first 

investigated. The purpose of using noiseless temperature data at     allows for the evaluation 

of the implemented numerical method and model accuracy. For this purpose,                is 

formulated using noiseless temperature data        and       , based on Eq. (6.2.8a). In this 

process, the simulated data using the initial temperature                   (     ) are 

considered as the calibration test while simulated data using higher initial temperatures are 

considered as the reconstruction tests whose thermophysical properties are estimated. Upon 

plotting the formulated       against different   , the thermal diffusivity evaluated at the 

reconstruction mean temperature       is found corresponding to the minimum value of     . 

Figure 6.3.4 graphically describes how the thermal diffusivity is selected using the reconstruction 

test based on an initial temperature                   (     ) for the stainless steel sample 

with       and      . The function       plotted against   forms a V-shaped curve with 

a clear minimum. The same procedure is used for the other reconstruction tests based on the 

chosen family of initial conditions. 

 

Figures 6.3.5 and 6.3.6 present the predicted thermal diffusivities for the stainless steel 

and representative carbon composite samples, respectively. All predictions produce excellent 

accuracy when compared to the exact properties used to generate the temperature data. The 

predicted results display more sensitivity to the slab thickness than the probe position. The 

reconstructed thermal diffusivity for the carbon composite possesses about a 2-3% bias based on 

the slab thickness       . In contrast, the prediction based on the slab thickness   

     shows improved accuracy. For stainless steel, the situation is opposite. The thermal  
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Figure 6.3.4: An example for the optimal thermal diffusivity selection: the optimal 

thermal diffusivity corresponds to the minimum value of residual 

function     . 

 

 

 

 

 
Figure 6.3.5: Predicted thermal diffusivity for stainless steel corresponding to different 

probe position and slab thickness. 
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Figure 6.3.6: Predicted thermal diffusivity for carbon composite corresponding to 

different probe position and slab thickness 
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diffusivity of stainless steel is estimated better through the configuration       than   

    . One possible explanation for this observation lies on the fact that the proposed parameter 

estimation algorithm is built upon a linearization assumption. This implies that for every 

individual experiment in the assignment set, both the thermal diffusivity and thermal 

conductivity in any of the eleven temperature ranges are considered constant. This linearization 

should exist in both the space and time domains to ensure model accuracy. However, if the slab 

thickness is excessive then a large temperature difference exists between the front and back 

surfaces such that the linearization in spatial domain is easily violated. In contrast, if the slab is 

too thin then the heating energy accumulates in the thin sample such that an excessive maximum 

temperature incurs and weakens the linearization assumption in the fixed time domain. This 

contradiction indicates that the slab thickness requires optimization based on different material 

properties and input heat fluxes. However, this further consideration is beyond the scope of the 

present chapter.  

 

To estimate the unknown thermal conductivity, the residual function                 is 

formulated using the same noiseless data defined by the test initial conditions. The estimated 

thermal diffusivities          previously acquired are assumed to be known. To estimate the 

thermal conductivity         , it is only necessary to plot      against    and extract its minimum 

value. The identification process is similar to that described using Fig. 6.3.4 in the context 

of         . Figures 6.3.7 and 6.3.8 present the predicted thermal conductivities for stainless steel 

and the carbon composite samples, respectively. Results indicate that the predicted thermal 

conductivities corresponding to the minimum value of      produce favorable accuracy when 

compared to exact input thermal conductivity for generating the simulated temperature data.  
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Figure 6.3.7: Predicted thermal conductivity for stainless steel corresponding to different 

probe position and slab thickness. 

 

 

 

 

 

 
Figure 6.3.8: Predicted thermal conductivity for carbon composite corresponding to 

different probe position and slab thickness. 
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Tables 6.3.1-6.3.8 summarize the explicit comparison between the predicted thermophysical 

properties and their exact values. From these tables, it is found that the best geometric 

assignment for stainless steel 304 is probe location       and       while the best 

geometric assignment for the representative carbon composite is probe location       and 

      . It should be noted that the thermal conductivity and thermal diffusivity of the 

carbon composite are lower that stainless steel 304. These differences can cause an excessive 

maximum temperature in the temporal domain of the carbon composite sample, weakening the 

linearization assumption. Therefore, the carbon composite requires a larger optimal slab 

thickness than the stainless steel 304 in order to decrease its maximum temporal temperature.  In 

addition, the percent errors between the predicted and exact thermophysical properties are 

negative. This negative percent error is considered as model bias, and may come from the 

assigned mean temperature given by Eq. (6.2.2). It indicates that if there is a better way to 

calculate the mean temperature, the predicted result may have additional improvement.   

 

The impact of noise is now considered on the proposed calibration method for acquiring 

the unknown thermophysical properties following the previously developed procedure. For this 

purpose, normally distributed noise    with a standard deviation of 0.5
o
C and mean of 0

o
C are 

added to the “noiseless” probe temperature data         at      and     . All simulated 

random noise is obtained through the Matlab random number generator, “randn”. Figure 6.3.9 

presents an example of the generated temperature noise while Figure 6.3.10 presents the noisy 

temperature data        and        from the calibration test                    (    )) for the 

stainless steel sample with       and      . The noisy temperature data are substituted 

into both      and      as given by Eq. (6.2.8a) and Eq. (6.2.13a), respectively. The identical 
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optimization procedure is applied as described by the noiseless data campaign. Figures 6.3.11 

and 6.3.12 present the predicted thermal diffusivities based on noisy temperature data for 

stainless steel and the carbon composite samples, respectively when       and        

Figures 6.3.13 and 6.3.14 present the corresponding predictions for the thermal conductivity. 

Accurate thermophysical properties are obtained in the presence of significant noise indicating 

that the calibration strategy is both stable and robust. Tables 6.3.9 and 6.3.10 compare the 

predicted thermophysical properties based on the noisy temperature data with exact 

thermophysical property function shown in Eq. (6.3.1) and Eq. (6.3.2).  

 

The new thermophysical property estimation approach offers some additional advantages. 

First, two in-depth temperature measurements could be proposed instead of using a surface and 

single in-depth sensor arrangement as described and implemented in the present study. In this 

process, two in-depth sensors can be located at     and    . If     then the probe closer 

to the active side would be considered as new “surface” temperature        while the 

temperature data        would be considered as new sensor response. Second, the proposed 

calibration method is simple and straightforward. It is observed that the slab thickness and probe 

position are not required by the calibration equations given by Eq. (6.2.7) and Eq. (6.2.12). These 

parameters are inherently contained in the calibration data. The only parameters required in 

advance are the thermophysical properties used in the calibration test.  
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Table 6.3.1: Accuracy analysis for estimated thermophysical property of stainless steel 

(L=5mm, b=2mm, noiseless data) 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

400.43 0.0408 0.0408 16.50 16.48 

479.65 0.0425 0.0424 17.78 17.75 

559.01 0.0441 0.0440 19.04 19.00 

638.46 0.0458 0.0456 20.29 20.23 

717.99 0.0474 0.0472 21.51 21.43 

797.57 0.0490 0.0488 22.72 22.63 

877.19 0.0506 0.0503 23.90 23.83 

956.85 0.0521 0.0518 25.07 24.98 

1036.53 0.0535 0.0532 26.22 26.10 

1116.24 0.0550 0.0546 27.34 27.23 
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Table 6.3.2: Accuracy analysis for estimated thermophysical property of stainless steel 

(L=5mm, b=4mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

400.43 0.0408 0.0408 16.50 16.50 

479.65 0.0425 0.0424 17.78 17.78 

559.01 0.0441 0.0440 19.04 19.03 

638.46 0.0458 0.0456 20.29 20.25 

717.99 0.0474 0.0473 21.51 21.48 

797.57 0.0490 0.0488 22.72 22.68 

877.19 0.0506 0.0504 23.90 23.85 

956.85 0.0521 0.0519 25.07 25.03 

1036.53 0.0535 0.0533 26.22 26.15 

1116.24 0.0550 0.0547 27.34 27.28 
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Table 6.3.3: Accuracy analysis for estimated thermophysical property of stainless steel 

(L=10mm, b=2mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

389.79 0.0406 0.0405 16.33 16.28 

469.32 0.0423 0.0420 17.61 17.53 

548.93 0.0439 0.0436 18.88 18.78 

628.61 0.0456 0.0452 20.13 19.98 

708.33 0.0472 0.0467 21.36 21.18 

788.08 0.0488 0.0483 22.58 22.38 

867.86 0.0504 0.0498 23.77 23.53 

947.67 0.0519 0.0512 24.94 24.68 

1027.49 0.0534 0.0527 26.09 25.80 

1107.33 0.0548 0.0540 27.22 26.90 
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Table 6.3.4: Accuracy analysis for estimated thermophysical property of stainless steel 

(L=10mm, b=4mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

389.52 0.0406 0.0405 16.32 16.28 

469.09 0.0422 0.0421 17.61 17.53 

548.74 0.0439 0.0437 18.88 18.78 

628.44 0.0456 0.0452 20.13 20.00 

708.18 0.0472 0.0468 21.36 21.20 

787.96 0.0488 0.0484 22.57 22.40 

867.76 0.0504 0.0499 23.76 23.58 

947.57 0.0519 0.0514 24.94 24.70 

1027.41 0.0534 0.0528 26.09 25.85 

1107.26 0.0548 0.0542 27.22 26.95 
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Table 6.3.5: Accuracy analysis for estimated thermophysical property of carbon 

composite (L=5mm, b=2mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

396.10 0.0280 0.0278 5.91 5.91 

474.47 0.0259 0.0256 6.00 6.00 

553.28 0.0244 0.0240 6.09 6.10 

632.41 0.0233 0.0229 6.19 6.19 

711.75 0.0226 0.0222 6.28 6.28 

791.26 0.0221 0.0217 6.38 6.38 

870.89 0.0218 0.0213 6.47 6.48 

950.60 0.0216 0.0212 6.57 6.57 

1030.39 0.0215 0.0211 6.66 6.66 

1110.23 0.0216 0.0211 6.76 6.76 



226 
 

Table 6.3.6: Accuracy analysis for estimated thermophysical property of carbon 

composite (L=5mm, b=4mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

394.42 0.0281 0.0279 5.90 5.90 

472.81 0.0259 0.0256 6.00 6.00 

551.65 0.0244 0.0241 6.09 6.10 

630.80 0.0233 0.0230 6.19 6.19 

710.17 0.0226 0.0222 6.28 6.28 

789.70 0.0221 0.0217 6.38 6.38 

869.35 0.0218 0.0214 6.47 6.47 

949.09 0.0216 0.0212 6.57 6.57 

1028.90 0.0215 0.0211 6.66 6.66 

1108.76 0.0216 0.0211 6.76 6.75 
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Table 6.3.7: Accuracy analysis for estimated thermophysical property of carbon 

composite (L=10mm, b=2mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

390.33 0.0282 0.0281 5.90 5.90 

469.41 0.0260 0.0258 5.99 6.00 

548.74 0.0244 0.0242 6.09 6.08 

628.23 0.0234 0.0231 6.18 6.18 

707.84 0.0226 0.0224 6.28 6.28 

787.53 0.0221 0.0218 6.37 6.37 

867.30 0.0218 0.0215 6.47 6.46 

947.11 0.0216 0.0213 6.57 6.56 

1026.96 0.0215 0.0213 6.66 6.66 

1106.85 0.0216 0.0213 6.76 6.75 
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Table 6.3.8: Accuracy analysis for estimated thermophysical property of carbon 

composite (L=10mm, b=4mm, noiseless data). 

 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

387.41 0.0283 0.0282 5.90 5.90 

466.55 0.0261 0.0259 5.99 5.99 

545.93 0.0245 0.0243 6.09 6.08 

625.47 0.0234 0.0232 6.18 6.17 

705.13 0.0226 0.0224 6.28 6.27 

784.87 0.0221 0.0219 6.37 6.36 

864.67 0.0218 0.0216 6.47 6.46 

944.53 0.0216 0.0214 6.56 6.55 

1024.42 0.0215 0.0213 6.66 6.65 

1104.33 0.0216 0.0213 6.75 6.74 
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Figure 6.3.9: An example of the simulated noise added to the noiseless temperature with 

mean of 0
o
C and standard deviation of 0.5

o
C.  

 

 

 

 

 

 
Figure 6.3.10: The noisy temperature data        and        of stainless steel for the 

experiment with initial temperature 25
o
C. 
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Figure 6.3.11: Predicted thermal diffusivity for stainless steel based on noisy data. 

 

 

 

 

 
Figure 6.3.12: Predicted thermal diffusivity for carbon composite based on noisy data. 
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Figure 6.3.13: Predicted thermal conductivity for stainless steel based on noisy data. 

 

 

 

 

 
Figure 6.3.14: Predicted thermal conductivity for carbon composite based on noisy data. 
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Table 6.3.9: Accuracy analysis for estimated thermophysical property of stainless steel 

(L=5mm, b=2mm, noisy data). 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

400.43 0.0408 0.0407 16.50 16.45 

479.65 0.0425 0.0423 17.78 17.73 

559.01 0.0441 0.0442 19.04 19.08 

638.46 0.0458 0.0456 20.29 20.23 

717.99 0.0474 0.0472 21.51 21.45 

797.57 0.0490 0.0486 22.72 22.58 

877.19 0.0506 0.0505 23.90 23.90 

956.85 0.0521 0.0514 25.07 24.78 

1036.53 0.0535 0.0533 26.22 26.15 

1116.24 0.0550 0.0545 27.34 27.13 
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Table 6.3.10: Accuracy analysis for estimated thermophysical property of carbon 

composite (L=5mm, b=2mm, noisy data). 

 

 

 

 

 

 

 

 

 

 

Mean Temp 

      (K) 

Exact α 

(cm
2
/s) 

Predicted  α 

(cm
2
/s) 

Exact  k 

(W/mK) 

Predicted  k 

(W/mK) 

395.67 0.0281 0.0276 5.91 5.86 

474.20 0.0259 0.0253 6.00 5.95 

553.69 0.0244 0.0238 6.10 6.06 

633.14 0.0233 0.0229 6.19 6.18 

712.48 0.0226 0.0219 6.28 6.22 

791.31 0.0221 0.0215 6.38 6.35 

870.70 0.0218 0.0212 6.47 6.43 

950.56 0.0216 0.0209 6.57 6.52 

1029.80 0.0215 0.0212 6.66 6.69 

1109.85 0.0216 0.0209 6.76 6.70 
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6.4 Conclusions 

 

This chapter proposes a novel calibration approach that incorporates rescaling principles 

for estimating the temperature-dependent thermophysical properties of materials. The proposed 

calibration approach relies on the assumption that all thermophysical properties in both the 

calibration and reconstruction test can be considered as constants over a fixed and incremental 

temperature range. A proper temperature range that permits this assumption is required for all 

tests. The rescaling temperature calibration equation is used for estimating the thermal diffusivity. 

The estimated thermal diffusivity is combined with the rescaling net heat flux calibration 

equation to predict the thermal conductivity. Results verify that the new property estimation 

approach works well for both a representative carbon composite and stainless steel sample. Due 

to the limitation of the linearization assumption, an optimal slab thickness may exist 

corresponding to the choice of material and input heat flux. Some additional predicative 

improvement could result if implemented. Finally, this approach does not require the explicit 

knowledge of the slab thickness or probe position.  

 

This new thermophysical property estimation method has additional advantage for 

resolving the unknown surface thermal condition in a nonlinear one-dimensional thermal system. 

The nonlinear calibration equation [112] requires the Kirchhoff transformation and time domain 

rescaling to make the quasi-linearization. Also, the implementation of both the Kirchhoff 

transformation and the time domain rescaling rely on the knowledge of the thermal conductivity 

and diffusivity ratio. These ratios could be obtained through the temperature and heat flux 

calibration methods (Eq. (6.2.7) and Eq. (6.2.12)) proposed in this dissertation since both of 
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these equations are represented in terms of ratios. Therefore, it is possible to acquire the 

thermophysical property ratio function without the specification of the thermophysical properties 

during the calibration temperature range (near room temperature) and then use the calculated 

property ratio functions to resolve the unknown surface thermal condition based on the nonlinear 

calibration equation. 
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Chapter 7: Conclusion and Recommendation for Future Research 

 

This dissertation provides a novel approach for resolving the nonlinear one-dimensional 

inverse heat conduction problems with temperature-dependent thermophysical properties. A new 

rescaling principle is introduced and combined with a calibration concept [43-45] to derive a 

series of calibration equations that are available for both linear and nonlinear inverse heat 

conduction problems. To regularize the ill-posed system associated with the proposed calibration 

equations, a new regularization parameter search strategy is proposed independent of the applied 

regularization approach. To illustrate the versatility of the methodology, the calibration and 

rescaling principles are also applied for estimating thermophysical properties.   

 

7.1 Conclusions 

 

In Chapter 2, the linear one-probe calibration method [43-45] relating the unknown 

surface (net) heat flux or temperature to a single in-depth temperature measurement are reviewed 

for the one-dimensional linear heat equation. The Laplace transform technique [33] is used to 

obtain the exact solution. The surface heat flux and temperature calibration equations given by 

Eq. (2.2.10) and Eq. (2.3.8) are constructed based on equating the impulsive thermal responses 

given by Eq. (2.2.7a) and Eq. (2.3.6) in the frequency domain. Both equations are applicable to 

constant thermophysical properties with a passive side boundary condition that maintains a 

constant heat transfer coefficient on the backside boundary between the calibration and 

reconstruction tests. 
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Chapter 3 generalizes the one-probe linear calibration method to a nonlinear framework. 

Quasi-linearization is achieved by combining the principle of time domain rescaling as given by 

Eq. (3.2.15a) and the Kirchhoff transform given by Eq. (3.2.2). In this process, the Kirchhoff 

transformation is exploited for linearizing the temperature-dependent thermal conductivity. Time 

domain rescaling is incorporated for linearizing the temperature-dependent thermal diffusivity. 

The reliability of this quasi-linearization relies on the piecewise time-step linearization 

assumption. That is, at each time step, the thermophysical properties are held constant 

throughout the spatial domain though they are allowed to vary with advancing time. Results 

displayed in Figure 3.4.26 justify the accuracy of this new calibration equation given by Eq. 

(3.2.15d) for resolving the unknown surface heat flux in stainless steel 304. In this test, 

significant temperature-dependent effects and noise are present.  

  

The nonlinear calibration equation presented in Chapter 3 is limited to an adiabatic back 

boundary condition. Chapter 4 introduces a new calibration method that permits both a varying 

back boundary condition and temperature-dependent thermophysical properties. This method 

combines the attributes of the linear two-probe calibration formulation [43-45] with the nonlinear 

one-probe calibration equation [112]. Unlike the one-probe calibration method, the second 

temperature measurement at              is required to eliminate the Robin’s condition 

imposed at      given by Eq. (4.2.1c). Correspondingly, two distinct calibration tests are 

required in the test campaign rather than one. Figures 4.4.19-4.4.26 verify that this new two-

probe calibration method given by Eq. (4.2.24) is applicable to both stainless steel 304 and a 

representative carbon composite. Comparisons between Fig. 4.4.27a and Fig. 4.4.27b; and, Fig. 
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4.4.28a and Fig. 4.4.28b show that the ill-conditioning effects imposed by the kernel can 

significantly be reduced when cooling (first calibration test) and heating (second calibration test) 

back boundary condition combinations are applied. Figures 4.4.32a and 4.4.32b indicate that the 

prediction for unknown surface heat flux is both stable and accurate in the presence of a 

significant noise.   

 

Chapter 5 introduces a new strategy for estimating the optimal regularization parameter 

that is independent of applied regularization technique.  Each previously described calibration 

equation in Chapters 2-4 is expressed in term of a Volterra integral equation of the first kind. 

This form of functional equation is ill-posed and hence requires regularization. For this purpose, 

the L-curve strategy [83] is applied for estimating the optimal regularization parameter. However, 

the L-curve strategy strongly depends on the visualization of the elbow (Fig. 3.4.23). A poor 

visualization of the elbow leads to either an over-smoothed or oscillatory prediction.  The new 

parameter search strategy given by Eq. (5.3.10a) is based on Gaussian filtering the surface heat 

flux prediction sets given by Eq. (5.3.10b) and Eq. (5.3.11a) for estimating the variance. The 

normalized residual given by Eq. (5.3.10c) is applied for evaluating the model bias. The best 

regularization parameters are obtained by balancing the weighted bias and variance. The 

effectiveness of this method is examined through three common regularization approaches; 

namely, the classical Tikhonov regularization approach [82], the singular-value decomposition 

(SVD) based method [80,81] and the local future-time method [8]. Figures 5.4.22-5.4.4.30 

present encouraging results in the presence of significant noise for a representative carbon 

composite. Over-smoothness in the final prediction is avoided while the stability is maintained.   
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Chapter 6 presents an extension of the calibration method for estimating unknown 

thermophysical properties. This approach utilizes a single in-depth temperature measurement and 

a set of known boundary conditions throughout the test campaign. To acquire both thermal 

diffusivity and thermal conductivity, two distinct test stages are proposed for extracting these 

properties. The first stage relies on the temperature calibration equation given by Eq. (6.2.7) for 

estimating the unknown thermal diffusivity. This stage determines the thermal diffusivity by 

minimizing the residual of the temperature calibration equation with respect to the thermal 

diffusivity. Figure 6.3.4 graphically describes how the thermal diffusivity is selected. The second 

stage uses the estimated thermal diffusivity and the heat flux calibration equation given by Eq. 

(6.2.12) for estimating the unknown thermal conductivity. This stage produces the desired 

thermal conductivity by minimizing the residual of the heat flux calibration equation with respect 

to the thermal conductivity. Figures 6.3.5-6.3.8 illustrate that the proposed calibration equation 

accurately estimate both the thermal conductivity and thermal diffusivity in the context of 

stainless steel 304 and a representative carbon composite. Significant flexibility exists in the 

selection of the slab thickness and probe position. Figures 6.3.11-6.3.14 indicate that the 

proposed parameter estimation remained stable and accurate even in the presence of significant 

noise.   

 

7.2 Recommendations for Future Research   

 

Chapters 3-6 provide details of a new methodology for resolving inverse heat conduction 

problems based on numerically simulated data. However, experimental verification is still 

required since additional nuances exist in experimental systems beyond what is normally 
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imposed in a computational study. To verify the nonlinear calibration equations (Chapter 3 and 4) 

for resolving unknown surface heat flux, one could use a high-powered laser that would impinge 

energy on the front surface of the carefully designed and instrumental specimen. The spectral 

absorptivity and total hemisphere emissivity of this surface must be known in advance to 

determine the net surface heat flux required by the calibration tests. In addition, prior to 

resolving the net unknown surface heat flux for the reconstruction test, one would need the 

surface temperature during the calibration tests such that the radiation losses at the heated surface 

could be properly accounted. However, direct measurement of the surface temperature is difficult 

even in the laboratory. A method for avoiding this obstacle would require the addition of another 

layer (calibration plate) perfected attached onto the front heating surface of the specimen. The 

calibration plate needs to be thin and possess a high thermal conductivity such that the 

temperature distribution in this plate could be considered as spatially uniform. A probe would be 

inserted into this layer to measure its temperature history. Though this temperature measurement 

does not equal to the temperature at the front surface of the sample due to contact resistance, the 

net heat flux entering the front surface of the sample could be determined through an energy 

balance. A filter might be necessary for calculating the time derivative of temperature associated 

with energy in the calibration plate. Natural convection effects can be shown to be minimum at 

elevated temperatures and hence neglected. 

 

To experimentally verify the unknown thermophysical property estimation method, an 

electrically heated sandwich facility [117] is recommended. The proposed parameter estimation 

method includes two stages. The first stage involves applying the temperature calibration 

equation given by Eq. (6.2.7) to estimate the unknown thermal diffusivity. However, the surface 
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temperature in Eq. (6.2.7) is difficult to directly measure. To handle this issue, two in-depth 

temperature measurements could be implemented instead of using a surface and single in-depth 

sensor arrangement. In this process, two in-depth sensors can be located at     and    . If 

    then the probe closer to the active side would be considered as new “surface” temperature 

       while the temperature data        would be considered as new sensor response. When 

the thermal diffusivity function is determined, the second stage would utilize the estimated 

thermal diffusivity and heat flux calibration equation given by Eq. (6.2.12) to predict the 

unknown thermal conductivity. In this process, the symmetric heating provided by the 

electrically heated sandwich facility is able to remove the constraint of accounting for radiation 

effects in the front surface.   

 

This dissertation combines the calibration equation with a rescaling principle to account 

for temperature-dependent thermophysical properties in a one-dimensional setting. However, 

multi-dimensional and multi-layer equations have not been considered in the context of this 

proposed framework. Careful analysis is required to consider the possibility of forming the 

multi-dimensional and multi-layer calibration equations in the nonlinear framework using 

rescaling or other principles. 
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