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ABSTRACT 

 

Increasing amounts of data, generated by electronic sensors from various sources that include 

travelers, vehicles, infrastructure and the environment, referred to as “Big Data”, represent an 

opportunity for innovation in transportation systems and toward achieving safety, mobility and 

sustainability goals. The dissertation takes advantage of large-scale trajectory data coupled with 

travel behavioral information and containing 78 million second-by-second driving records from 

100 thousand trips made by nearly four thousand drivers. The data covers 70 counties across the 

State of California and Georgia, representing various land use types, roadway network conditions 

and population. The trajectories cover various driving practices made by vehicles of varied body 

types as well as different fuel types including conventional vehicles (CVs) consuming gasoline, 

hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), diesel vehicles and other 

alternative fuel vehicles (AFVs). The dissertation establishes a framework for the research 

agenda in instantaneous driving behavior studies using the large-scale trajectory data. The 

dissertation makes both theoretical and empirical contributions: 1) Developing measures for 

driving volatility in instantaneous driving behaviors; 2) Understanding correlates of driving 

volatility in hierarchies & developing applications using large-scale trajectory data. 

 

Before using second-by-second trajectories, a study, answering research questions concerning 

the relationships between data sampling rates and information loss, was conducted. Then, a study 

for quantifying driving volatility in instantaneous driving behaviors was presented. “Driving 

volatility”, as the core concept in the dissertation, captures extreme driving patterns under 

seemingly normal conditions. After that, the dissertation presents a study on exploration of the 
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hierarchical nature of driving volatility embedded in travel survey data using multi-level 

modeling techniques, and highlights the role of AFVs in travel. Last, the dissertation presents a 

study for customizing driving cycles for individuals using large-scale trajectory data, given 

heterogeneous driving performance across drivers and vehicle types. The customized driving 

cycles help generate more accurate fuel economy information to support cost-effective vehicle 

choices. The implications of the findings and potential applications to fleet vehicles and driving 

population are also discussed in the dissertation.  
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CHAPTER 1 INTRODUCTION 

 

In the United States, the predominant mode of travel is by automobile, accounting for over 

86.3% of passenger miles traveled in 2011 [1, 2]. Since 1899, National Highway Traffic Safety 

Administration (NHTSA) and Federal Highway Administration (FHWA) began to document and 

report the facts of motor vehicle traffic fatalities and fatality rates [3, 4]. In recent years , though 

researchers are claiming that the motor vehicle deaths drop to the lowest level since 1949 and the 

rate of decline in annual fatalities trend seems to have stabilized since 2009, we can still notice 

the large number of motor vehicle death [5]. During 1996-2011, the average of annual motor 

vehicle fatalities is 38,150. Recent five years, the number is still over 32, 000. In 2010, motor 

vehicle crashes account for 93 percent of transportation related death and transportation crashes 

account for 31.9 percent of all accidental deaths reported [6, 7]. Specifically, automobiles 

including passenger cars, light trucks and vans, account for around 80 percent of all highway 

motor vehicle fatalities [4, 8].  

 

Automobile safety is still a topic of great interest and there is plenty of room to improve 

automobile safety. To improve automobile safety, we ought to figure out what causes contribute 

to automobile crashes. The critical causes can be attributed to the driver, vehicle, roadway or 

atmospheric condition [9, 10]. Early researchers pointed out driver behaviors were most 

intimately related to motor vehicle accident occurrence and its resultant loss [11]. In a NHTSA’s 

2008 national motor vehicle crash causation survey, researchers examined the critical reasons for 

a nationally representative sample of 5,471 crashes from July 3, 2005 to December 31, 2007. 
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Critical reasons of 5,096 crashes (93%) were attributed to drivers. Driver-related reasons 

included recognition errors, decision errors, performance errors and nonperformance errors [9]. 

In short, driver plays the central role of automobile driving safety, though an increasingly 

number of modern technologies are being applied in transportation system for improving its 

safety. Continuing to undertake researches on driver behaviors is worthwhile, since there is a 

plenty of room to improve automobile driving safety from the angle of driver behaviors.   

 

Driving style is a topic of great interests in driver behavior studies. Researchers often define 

driving styles such as aggressive or transient driving and calm or smooth driving, by giving cut-

off thresholds. For example, Kim et al. reported that 1.47 m/s2 (4.82 ft/s2) and 2.28 m/s2 (7.47 

ft/s2) are the thresholds for aggressive and extremely aggressive acceleration in urban driving 

environments [12]. While De Vlieger et al. defined the ranges for driving styles on city journeys: 

0.45-0.65 m/s2 (1.47-2.13 ft/s2) for calm driving, 0.65-0.80 m/s2 (2.13-2.62 ft/s2) for normal 

driving and 0.85-1.10 m/s2 (2.79-3.61 ft/s2) for aggressive driving [13]. Under different driving 

conditions (local roads vs. interstate, flat vs. rolling roads) and different speeds, drivers may 

behave heterogeneously, and speeds and accelerations are mixture outcomes of driver decision 

and driving contexts. Simply giving cut-off thresholds may not describe the driving behavior 

very well. Furthermore, owing to the limited data sources, the sample’s representativeness is 

another problem in above studies. The dissertation uses large-scale trajectory data (90 million 

records) regional travel surveys to explore the extents of instantaneous driving behaviors. The 

thresholds for identifying extreme driving decisions are established based on extents of 90 

million records of driving decisions along speeds representing different driving contexts.   
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Connections between aggressive driving and safety were found in existing studies [14, 15]. Paleti 

et al. (2010) have explored aggressive pre-crash behaviors and defined aggressive driving to 

include “speeding, tailgating, changing lanes frequently, flashing lights, obstructing the path of 

others, making obscene gestures, ignoring traffic control devices, accelerating rapidly from stop, 

and stopping suddenly.” Their results show a positive association between injury severity and 

aggressive driving (given a crash). 

 

Safety has the priority to receive attentions from automobile driving community and a large 

number of modern technologies are involved in improving driving safety. In addition, 

automobile driving is highly engaged with energy and the environment. Vehicular energy 

consumption and emission is another great concern in addition to safety. Studies have shown that 

emissions can vary according to the decisions including both strategic decisions (vehicle 

selection and maintenance tactical decisions (selection of routes, dealing with congestion, and 

operational decisions (idling, speed selection, and use of cruise control) [16]. A large number of 

studies have linked microscopic “aggressive” driving with emissions. Research has shown that 

peak emissions are associated with aggressive driving behavior including high speeds and 

extreme speed-ups or brake-downs [13, 17-20]. Factors describing speed, acceleration, power 

demand, and gear changing behavior are significantly associated with emissions (HC, NOx, and 

CO2) as well as fuel consumption [21]. An understanding of speed variation/ speed fluctuation/ 

driving dynamics, acceleration variation can further benefit research in energy and emissions. 

 

The dissertation aims to establish a fundamental understanding of instantaneous driving 

behaviors, given “Big Data” environment with increasingly available large-scale trajectory data 
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from various sensors. Current literature uses the term “aggressive” to describe driver behaviors 

that are threatening to driving safety. “Aggressive”, in its broadest sense, is a behavior or a 

disposition with forceful and somewhat hostile intonations (such as hard brake and acceleration), 

and implies intents of the driver. However, some extreme driving decisions may not be what the 

driver intents to do. Driving decisions can be volatile since they are intended to response to the 

instantaneous changes of surrounding circumstances, e.g., adjacent vehicles, roadway conditions, 

and geometric changes in the roadway, and weather conditions [22]. Thus, some extreme driving 

decisions (e.g., hard brake) are made because of the special driving contexts (e.g., crash in front, 

or pavement hole). This dissertation is to explore the variability of the instantaneous driving 

behaviors and identify some extreme driving behaviors based on the extents of instantaneous 

driving behaviors, therefore, an alternative term “driving volatility” is more preferred in this 

study context. Driving volatility is the key term used in the dissertation to describe driver 

behaviors in instantaneous driving decisions.   

 

Potential applications can be drawn from the dissertation. Potential applications include 

establishing a new series of driving safety criteria based on driving volatility, providing 

suggestions to vehicle and accessory design, advising automobile insurance market, adding new 

functions into current traveler information systems and providing support to policy makers and 

planners concerning transportation safety, energy and emission. 

 

The data used in the dissertation is large-scale trajectory data collected in large travel surveys, 

including California Household Travel Survey (CHTS) conducted by California Department of 

Transportation California during January 2012 through January 2013 [23] and Atlanta Regional 
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Travel Survey (ARTS) conducted by Atlanta Regional Commission during February 2011 

through October 2011 [24]. The sample from CHTS covers 58 counties across the State of 

California representing various land use types and populations and the sample from ARTS 

covers 20 counties in the region of Atlanta Regional Commission. The data include 117,022 trips 

made by 4,560 drivers residing in 78 counties across two states; all trips were recorded by in-

vehicle GPS devices giving 90,759,197 second-by-second speed records [25]. 

 

The dissertation is organized in a journal article format since each chapter is a modified version 

of an article or combinations of multiple articles which are either published (or accepted) by an 

academic journal or presented at an academic/industrial conference. Following this chapter, the 

second chapter answers important research questions on sampling instantaneous driving behavior 

data. The third chapter quantifies driving volatility in instantaneous driving behaviors using a 

large-scale trajectory data, and then proposes a potential application to support calmer 

instantaneous driving decisions. The fourth chapter untangles the hierarchical nature of driving 

volatility embedded in travel survey data using multi-level modeling techniques, and highlights 

the role of alternative fuel vehicles in travel. The fifth chapter proposes a methodology to 

customize driving cycles for individuals using large-scale trajectory data and thus helps generate 

more accurate fuel economy information to support cost-effective vehicle choices. The 

dissertation makes both theoretical and empirical contributions: 1) Developing measures for 

driving volatility in instantaneous driving behaviors; 2) Understanding correlates of driving 

volatility in hierarchies & developing applications using large-scale trajectory data. 

Figure 2.1 shows the overall outline of the dissertation and highlights in each chapter.  
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Figure 1.1 Dissertation outline 
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CHAPTER 2 HOW MUCH INFORMATION IS LOST WHEN SAMPLING 

INSTANTANEOUS DRIVING BEHAVIOR DATA? 
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This chapter presents a modified version of a research paper by Jun Liu, Asad J. Khattak and Lee 

D. Han. The paper was presented (TRB 15-0968) at The 94th Annual Meeting of Transportation 

Research Board in Washington, D.C., in January 2015.  

 

ABSTRACT 

Individuals’ driving behavior data are becoming available widely through Global Positioning 

System devices and on-board diagnostic systems. These data can be used to make accurate 

estimates of vehicle fuel consumption, emissions, and safe driving. Storage and computing 

power have become readily available to the extent that scientists and engineers are presented 

with a wide range of options for balancing resource cost versus amount of data that needs to be 

stored. The incoming data can be sampled at rates ranging from one Hertz (or even lower) to 

hundreds of Hertz, i.e., one data point per second to hundreds of data points per second. Failing 

to capture substantial changes in vehicle movements over time by “undersampling” can cause 

loss of information and misinterpretations of the data, but “oversampling” can waste storage and 

processing resources. Empirical assessment of driving data is necessary because real-world 

vehicular movements are difficult to characterize mathematically and they vary substantially 

over time. A key objective of this study is to empirically explore how micro driving decisions to 

maintain speed, accelerate or decelerate, or change marginal rate of acceleration (known as 

vehicular jerk) can be best captured, without substantial loss of information. A framework for 

measuring information loss using several measures that are combined into an overall index is 

developed. Data from a driving simulator study collected at 20 Hertz are analyzed (N=718,481 

data points from 35,924 seconds of driving tests). The results show that marginally more 

information is lost as data are sampled down from 20 Hz to 0.5 Hz. However, the relationship 
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between loss of information and sampling rates is non-linear. The study provides a sound basis to 

help scientists easily identify data needs at the experimental design stage, and it has implications 

for designing monitoring systems. 

 

2.1 INTRODUCTION  

Increasingly detailed driving data are being collected with well-developed data acquisition 

technologies, such as Global Positioning System (GPS), video, Bluetooth, and on-board 

diagnostics. With the increasing amount of data from sensors, digging through detailed 

transportation data helps explore micro-level driver behaviors that were not possible until fairly 

recently. Instantaneous driving decisions are of particular interest, because they are related to 

energy consumption, emissions and safety. They include accelerating, decelerating, maintaining 

speed, altering acceleration/deceleration, etc. Driving reflects a chain of instantaneous driving 

decisions made by drivers according to changes in surrounding circumstances, e.g., adjacent 

vehicles, roadway conditions, and geometric changes in the roadway, and weather conditions 

[22]. The higher rate sampled data can capture more information about the instantaneous driving 

decisions. Current data collection in industry can go as high as 800 MHz [26] and it can contain 

valuable information [27]. One question is that, whether driving data need to be sampled by such 

high rates in the transportation context. High sampling rates can be expensive in terms of 

requiring extra storage and processing time, which is called oversampling [28]. 

Undersampling/inadequate sampling may cause loss of critical information [27]. Next 

Generation Simulation Program (NGSIM) collected detailed vehicle trajectory data in 10 Hz to 

develop behavioral algorithms in support of traffic simulation on microscopic modeling [29], as 

well as Safety Pilot Model Deployment (SPMD) sampling the safety messages (e.g., motion and 
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location data) transmitted between connected vehicles and infrastructures at 10 Hz [30]. One 

problem for data sampled by high sampling rates is the data accuracy. The accuracy of NGSIM 

data is estimated at 2~4 ft. [31]. For NGSIM data, in 0.1 second, the distance travelled by a 60 

mph vehicle is about 8.8 ft. but with a 2~4 ft. error. Therefore, the accuracy of NGSIM data 

might be jeopardized with high sampling rates. Jackson et al., discussed the validity of using in-

vehicle GPS second-by-second (1 Hz) velocity data to track the 1-second driving operation 

modes, including acceleration and deceleration. Their results imply that the 1-second operation 

modes can be successfully measured by using GPS data sampled by 1 Hz [32], while the driving 

operation modes within 1-second are unknown. For example, if a driving command –

“acceleration decelerationacceleration” occurs within one second, the 1 Hz sampled data 

may lose the information about the deceleration, though the deceleration exists in a very short 

time. Thus, another question is how much information we may lose if we only sampled data by 1 

Hz or even lower rates. Current driving data are usually continuously sampled by rates from 0.2 

to 10 Hz [24, 33-40]. Note that the continuous driving data are different from the traffic data 

collected by loop detectors [41, 42]. The focus of this study is the continuous driving data used 

to explore micro-driving behavior. The key question to be answered is what sampling rates are 

appropriate to capture micro-driving behavior without losing much information (i.e., by 

undersampling).  

 

In the field of signal processing, Nyquist–Shannon sampling theorem gives the appropriate 

sampling rates for continuous signal. The Nyquist criterion for sampling rates is twice the 

bandwidth of a bandlimited signal or a bandlimited channel. The key question is to find out the 

bandwidth of a signal [43]. However, the driving behavior does not fulfill the features of 
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bandlimited signal. Driving behavior varies according to the decisions a driver makes to respond 

the instantaneous driving circumstances. This study aims to find out the appropriate sampling 

rates for driving behavior data through exploring the nature of driver’s micro-driving behavior. 

 

2.2 DATA DESCRIPTION  

Data used in this study comes from the University of Tennessee Driving Simulator Lab (DSL). 

This driving simulator, Drive Safety DS-600c, is fully integrated and immersive to driving test 

subjects with its visual and audio effects in the front half cab of a Ford Focus sedan and it 

provides 300° horizontal field-of-view via five projectors and back sight via three rear mirror 

liquid crystal display displays [44]. The cab base is able to mimic pitch and 30 longitudinal 

motions. Since 2009, over 10 simulator studies have been conducted in DSL. The equipment has 

been recognized as a high-fidelity driving simulator and is qualified to be used to conduct 

driving behaviors associated research. The data of driver responses (e.g. speed) gathered from 

simulator driving tests can be used as surrogate measures of driving behavior [45, 46]. The 

driving data used in this study was collected from 24 subjects (13 males, 11 females, average 

licensed year – 17.6, standard deviation –7.87). Subjects were tested in a simulated driving 

scenario designed with various driving conditions, e.g., urban vs. rural environments. Each 

subject completed the driving test in 22 ~ 29 minutes, depending on their travel speed and 

responses to traffic controls. The driving speed was sampled at 20 Hz. The final dataset used in 

this study includes 718,481 data points from 35,924 seconds (598 minutes) of driving tests.  
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2.3 METHODOLOGY 

A fundamental question to be answered is how much information is lost in going to lower 

sampling rates. Driving can be volatile as drivers made driving decisions (e.g., accelerating and 

braking) according to the instantaneous changes of surrounding circumstances, e.g., adjacent 

vehicles, roadway conditions, geometric changes in the roadway, and weather conditions [22]. 

Using the 20-Hz simulator driving data, this study creates a set of measures to quantify the 

magnitude of information loss (MIL): 

a) MIL1: Instantaneous driving decision loss (based on combined direct and indirect 

‘detectability’ explained below) – Equations 1, 2, 3; 

b) MIL2: Percentage of out-of-range observations during driving– Equation 4; 

c) MIL3: Ratio of sampled to actual range in driving data– Equation 5; 

d) MIL4: Relative speed deviation from linear interpolation of under-sampled data (based 

on observed speed deviation over the under-sampled data) – Equations 6 and 7.  

 

An index named Extent of information loss (EIL), given a sampling rate is created and it is 

shown in Equation 2.8. The overall methodological framework for this study is shown in Figure 

2.1 and explained in more detail below. Each measure is calculated as a percentage in order to 

index the extent of information loss in different situations. The Extent of Information Loss (EIL) 

is an overall measure of information loss that combines the above measures. The study quantifies 

the relationship between information loss measures and sampling rates. A user can then select 

thresholds, e.g., 5% or 1% of information loss may be acceptable and find the appropriate 

sampling rate.  
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Figure 2.1 Study steps and measures 

 

2.3.1 Direct Detectability of Driving Decisions 

Driving decisions can be altered at any time and frequently when a vehicle is being operated. If 

the frequency of the driving decision alteration is considerably high and the data sampling rate is 

very low, then some driving decisions may be lost. As shown in Figure 2.2(i), the decision 

alteration– “acceleration to deceleration” between n and n+1 second is missed by the 1-Hz 

sampled data (red points), as the speeds at n and n+1 second are identical. In this case, 

undersampling causes information loss of micro driving decisions. The information about going 

from “acceleration to deceleration” between n and n+1 second is lost, while the information –

“deceleration” or “no decision alternation” between n+1 and n+2 second is detected directly by 
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the sampled data. This study uses the 20-Hz simulator driving data to count the number of 

decisions made given a specific time interval, and then computes the possibility of no decision 

made cases, termed Direct Detectability of Driving Decisions. The formula is as follows: 

𝐷𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑁
∑ 𝑤𝑖

0

𝑁

𝑖=1

 Equation 2.1 

Where, 

𝑁 = 𝑇 × 𝑓, the number of time slices during total data duration T in second; 

𝑓 = target sampling frequency/rates, e.g., 1 Hz; 

𝑤𝑖
0 = {

1, 𝑖𝑓 max{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} × min{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} ≥ 0,

0, 𝑖𝑓 max{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} × min{ 𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)} < 0,
, indicator for micro-driving decision 

alternation during ith time interval 𝑡 =
1

𝑓
, i= 1, 2, 3, …, N; 

𝑣𝑖𝑗 = Speed at jth location in ith time interval, j=1, 2, 3, …, n;  

𝑛 =
𝑇

𝑁
=

𝐹

𝑓
, number of available data points in a given time interval; 

𝐹 = sampling rate of original dataset, 20 Hz in this study. 

 

In this study, time intervals without decisions made belongs to Case 0 (this includes constant 

acceleration or deceleration), as shown in Figure 2.2(ii), with one micro-decision made are 

referred to as Case 1, and with two decision alternations are referred to as Case 2. Case 1 will be 

further discussed below.  
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Figure 2.2 Example of information loss in instantaneous driving decisions 

 

2.3.2 Indirect Detectability of Driving Decisions  

Direct detectability tells the chance of detecting micro driving decisions directly with the 

sampled data. Next, this study discusses the chance of detecting driving decisions in Case 1. An 

assumption is made before we discuss the indirect detectability. We assume that driving speed is 

a continuous changing measurement without sharp changes. A sine wave illustrates the example 

of continuous changing measures, while square wave and sawtooth wave are examples of sharp 

changes [47].  

 

With this assumption, using 20-Hz data, this study takes one second interval (corresponding to 1-

Hz sampling rate) as the example for illustrating detection of driving decision alternation. Figure 

2.3(i) presents six possible types of micro driving behavior of Case 1 within one second. Types 

(a) and(c) show that there is a micro-decision made from accelerating to decelerating between n 
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and n+1 second. Types (b) and (d) show that there is a micro-decision made from decelerating to 

accelerating between n and n+1 second.  

 

For Type (a), there is a micro-decision made from accelerating to decelerating between n and 

n+1 second, while the speed measurement at n and n+1 second implies a deceleration during 

that second. Therefore, the missing micro-decision made within this second could be observed 

by using given sampling data points at n and n+1 second, though the amount/intensity of the 

driving decision change is not necessarily accurate. In the same fashion, Type (b) illustrates 

information detection for the micro-decision made from decelerating to accelerating. Therefore, 

for Types (a) and (b), the micro-decision change can be detected but with an error.  

 

Types (c) and (d) do not meet the situations in Types (a) and (b), since the sampled data do not 

show the correct micro-decision made between two sampled observations. Types (c) and (d) also 

include the cases that speed at n second is equal to n+1 second, shown in Figure 2.2(i), since in 

these cases, the sampled observations can also not tell the micro-decision correctly.   

 

Therefore, we move our sight to next second, as shown in Figure 2.3(ii). In Type (c1), the 

sampled speeds at n+1 and n+2 second give a deceleration which uncovers the lost micro-

decision made between n and n+1 second, but with a temporal error. The time stamped for the 

micro-decision using sampled data is at n+1 second, but actually it occurred between n and n+1 

second. Type (d1) is similar to Type (c1), but for detecting a micro-decision from decelerating to 

accelerating.   
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Figure 2.3 Examples of missing information when examining speed data over time 

 

Types (c2) and (d2) illustrate these two types that the micro decision made between two sampled 

observations cannot be detected, since there are two micro-decisions made in two sequential time 

intervals. Besides, for cases with two or more micro-decisions made within one particular time 

interval, there is no way to detect them by above methods. This study mainly discusses Case1 

with one micro-decision made and tries to find the possibilities of having Types (a), (b), (c1) and 

(d1) in Case 1 given a time interval. The measure, Indirect Detectability of Driving Decisions, is 

the sum of the possibilities of having Types (a), (b), (c1) and (d1). The formula is as follows: 
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𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

∑ 𝑑𝑖
1 𝑁

𝑖=1

∑(𝑤𝑖
𝑎+𝑤𝑖

𝑏 + 𝑤𝑖
𝑐1+𝑤𝑖

𝑑1)

𝑁

𝑖=1

                  Equation 2.2 

Where, 

𝑁 = 𝑇 × 𝑓, the number of time slices during the total data duration T in second; 

𝑓 = target sampling frequency/rates, e.g, 1 Hz; 

𝑤𝑖
1 = {

1, 𝑖𝑓 ∑ 𝑧𝑗
𝑛−1
𝑗=1 = 1

0, 𝑖𝑓 ∑ 𝑧𝑗
𝑛−1
𝑗=1 ≠ 1

, indicator for whether there is only one decision change during ith time 

interval 𝑡 =
1

𝑓
, i= 1, 2, 3, …, N; 

𝑧𝑗 = {
1, 𝑖𝑓 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) × (𝑣𝑖(𝑗+1) − 𝑣𝑖𝑗) < 0

0, 𝑖𝑓 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) × (𝑣𝑖(𝑗+1) − 𝑣𝑖𝑗) ≥ 0
, indicator for whether two consecutive driving 

statuses are both acceleration or deceleration; 

𝑣𝑖𝑗 = Speed at jth location in ith time interval, j=1, 2, 3, …, n;  

𝑛 =
𝑇

𝑁
=

𝐹

𝑓
, the number of available data points in a given time interval; 

𝐹 = sampling rate of original dataset, 20 Hz in this study. 

𝑤𝑖
𝑎 = {

1, 𝑖𝑓 𝑑𝑖
1 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) > 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) < 0 𝑎𝑛𝑑 𝑣𝑖𝑗 > 𝑣𝑖(𝑗+𝑛)

0                                                                                                                                                             
, 

indicator for Type (a) error;  

𝑤𝑖
𝑏 = {

1, 𝑖𝑓 𝑑𝑖
1 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) < 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) > 0 𝑎𝑛𝑑 𝑣𝑖𝑗 < 𝑣𝑖(𝑗+𝑛)

0                                                                                                                                                             
, 

indicator for Type (b) error.  

𝑤𝑖
𝑐 =

{
1, 𝑖𝑓 𝑑𝑖

1 = 1 𝑎𝑛𝑑 𝑑𝑖+1
0 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) > 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) < 0 𝑎𝑛𝑑,                           

𝑣𝑖𝑗 < 𝑣𝑖(𝑗+𝑛)                                                                                                                                                         

0                                                                                                                                                                                          

indicator for Type (c1) error;  
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𝑤𝑖
𝑑 =

{
1, 𝑖𝑓 𝑑𝑖

1 = 1 𝑎𝑛𝑑 𝑑𝑖+1
0 = 1 𝑎𝑛𝑑 (𝑣𝑖𝑗 − 𝑣𝑖(𝑗−1)) < 0 𝑎𝑛𝑑 (𝑣𝑖(𝑗+𝑛) − 𝑣𝑖(𝑗+𝑛−1)) > 0 𝑎𝑛𝑑,                           

𝑣𝑖𝑗 > 𝑣𝑖(𝑗+𝑛)                                                                                                                                                        

0                                                                                                                                                                                          

  

indicator for Type (d1) error. 

 

2.3.3 Instantaneous Driving Decision Loss 

With the direct and indirect detectability of driving decisions, we can detect micro-driving 

decision made given a particular sampling rate. The formula for instantaneous driving decision 

loss (MIL1) is as follows: 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 1 − (𝐷𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 +
1

𝑁
 ∑ 𝑑𝑖

1 

𝑁

𝑖=1

× 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐷𝑒𝑐𝑡𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦)  

Equation 2. 3 

 

Empirical results are shown later. Theoretically, higher sampling rates lower the possibility of 

missing critical decisions, but they increase the possibility of “noise” in the data and the data 

storage and processing requirements. The challenge is to not lose decision information while 

reducing the noise in the data.  

 

2.3.4 Measures Concerning Magnitudes 

It is important to know whether sampled values represent the population and the magnitude of 

errors, if any. In other words, whether the one point (e.g., 1 Hz data) can represent the 20 data 

points (20 Hz data) during the same second? If the 20 data points provide only marginally more 
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information (such as constant speed during one second), one data point might be sufficient for 

sampling this second.  

 

Figure 2. 4(i) shows an example using 20 Hz simulator data, along with two 1-Hz sampled points 

at the n and n+1 second. The speed is 10 mph at n second and 12 mph at n+1 second. The 

problem would be whether all speed values between n and n+1 second are within the micro 

speed range 10~12 mph. The example shows given one-second time interval, there are six data 

points, or 30% (6 out of 20) data points with speed values out of range 10~12 mph. In this case, 

two data points with records of 10 and 12 mph cannot fairly represent the driving behavior from 

n to n +1 second. The Percentage of Out-of-Range observation (MIL2) is a measure that captures 

how many data points are out of the sampled micro speed range.  

 

The formula for Percentage of Out-of-Range Observation (MIL2) is:  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑂𝑢𝑡 𝑅𝑎𝑛𝑔𝑒 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 =
1

𝑁
∑

∑ 𝑂𝑅𝑖𝑗  𝑛
𝑗=1

𝑛
                         Equation 2.4

𝑁

𝑖=1

 

Where, 

𝑂𝑅𝑖𝑗 = {
1, 𝑖𝑓 𝑣𝑖𝑗 > max { 𝑣𝑖1,𝑣𝑖𝑛} 𝑜𝑟 𝑣𝑖𝑗 < min { 𝑣𝑖1,𝑣𝑖𝑛} 

0                                                                                        
, indicator for out-of-rang 

observation. 
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Figure 2.4 Quantifying magnitude errors in sampled data 

 

The ratio of sampled micro speed range over actual micro speed range during the same second is 

another measure of information loss and it is termed Ratio of sampled to Actual Range (MIL3). In 

the example, the sampled micro speed range is 12-10=2 mph, while the actual micro speed range 

is 12.3-9.6=2.7 mph. The ratio is 2/2.7=0.74, or 74%.  The formula is as follows:  

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝑡𝑜 𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑎𝑛𝑔𝑒 =
1

𝑁
∑

𝑅𝑖
𝑆𝑎𝑚𝑝𝑙𝑒𝑑

𝑅𝑖
𝐴𝑐𝑡𝑢𝑎𝑙                            Equation 2.5    

𝑁

𝑖=1
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Where, 

𝑅𝑖
𝑆𝑎𝑚𝑝𝑙𝑒𝑑 = |𝑣𝑖1 −  𝑣(𝑖+1)1|, sampled speed range for ith time slice; 

𝑅𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 = max{𝑣𝑖𝑗} − min {𝑣𝑖𝑗}, actual speed range for ith time slice. 

 

A measure of information loss is through speed deviations. The deviations are measured based 

on the linear distance between observed speeds and sampled speeds. Sampled data can be used to 

linearly interpolate the data points in between two timestamps. This can be compared with 

observed data at higher frequency (20 Hz in this case). Figure 2.4(ii) uses 20 Hz driving 

simulator data and measures Observed Speed Deviation, which is the mean of absolute 

deviations within time intervals. Another measure is Relative Speed Deviation (MIL4), which is 

the average deviations over interpolated speed values, providing the extent of deviations. The 

formulas are as follows: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑆𝑝𝑒𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑁
 ∑(

1

𝑛
∑ |𝑣𝑖𝑗 − 𝑗 ×

𝑣𝑖1 − 𝑣𝑖(𝑛+1)

𝑛
|

𝑛

𝑗=1

𝑁

𝑖=1

)      Equation 2.6   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑝𝑒𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑁
 ∑(

1

𝑛
∑

|𝑣𝑖𝑗 − 𝑗 ×
𝑣𝑖1 − 𝑣𝑖(𝑛+1)

𝑛 |

𝑣𝑖𝑗

𝑛

𝑗=1

𝑁

𝑖=1

)        Equation 2.7   

 

2.3.5 An Index for Magnitude of Information Loss (MIL) 

The Instantaneous Driving Decision Loss, Percentage of Out-of-Range Observation, Ratio of 

Sampled to Actual Range, and Relative Speed Deviation quantify the magnitude of information 

loss from different angles. All these measures are finally calculated in terms of percentage of 

information loss. Then, these measures can be combined (weighted equally) to create an index 

capturing the Extent of Information Loss Index, given a sampling rate. The formula is as follows: 
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𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 =  
𝑀𝐼𝐿1 + 𝑀𝐼𝐿2+(1 − 𝑀𝐼𝐿3) + 𝑀𝐼𝐿4

4
   

Equation 2.8 

Where,  

𝑀𝐼𝐿1= Instantaneous driving decision loss; 

𝑀𝐼𝐿2= Percentage of out-of-range observations; 

𝑀𝐼𝐿3= Ratio of sampled to actual range; 

𝑀𝐼𝐿4= Relative speed deviation. 

 

Users of data in the transportation context can either choose a threshold for information loss and 

find the appropriate sampling rate or vice versa.  

 

2.4 RESULTS 

2.4.1 Direct Detectability of Driving Decisions 

To capture alternations between acceleration and deceleration within the given time interval 

(e.g., 1 second) corresponding to a sampling rate (e.g., 1 Hz), the number of alternations was 

counted by using 20 Hz data. All possible alternations within the data, given different time 

intervals and starting locations were counted. If all decisions made occur exactly at the sampled 

points, no information will be lost. For example in Figure 2.1, if the data was just sampled at 

n+0.5 second and n+1.5 second instead of n and n+1 second, then the driving decisions from 

accelerating to decelerating can be detected accurately, even if the data are still sampled at 1 Hz. 

The example in Figure 2.1 shows that there are 20 possible locations to start sampling the 1 Hz 

data.  
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Figure 2.5(i) presents the direct detectability, possibility of no decision made, given a specific 

time interval, and (ii) presents the distribution of the possibilities of the three Cases (discussed 

above) in different time intervals.  

 

  

Figure 2.5 “Direct detectability” in different time intervals 

 

In Figure 2.5(i), the maximum and minimum detectability is also indicated, according to 

observations from the different sampling locations. For short time intervals, the location does not 

have a significant influence on the data sampling. Specifically, for time interval of 1 second, the 

direct detectability is around 89.90%, i.e., no micro decision made during one second intervals.  

The reason is probably related to the driver reaction time, which is usually more than 1 second 
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[48]. Thus, there is a large possibility that drivers do not make decisions during one second (N= 

35,924 intervals out of 20-Hz sampled data).   

 

In Figure 2.5(ii), the percentages of possibilities of the three Cases (i.e., no decision, one 

decision and two and more decisions made within the sample interval) are provided. Shorter time 

intervals (higher sampling rates) are related to the lower information loss in terms of 

instantaneous driving decisions, as expected.   

 

2.4.2 Indirect Detectability of Driving Decisions 

Figure 2.6(i) shows percentages of Types (a), (b), (c1) and (d1) in Case 1 (one decision change). 

Specifically, given a one second time interval (or 1-Hz sampling rate), Types (a), (b), (c1) and 

(d1) constitute 30.99%, 25.37%, 24.42% and 16.14% of the Case 1 where only one micro-

decision made between two sampled data points. These four types of patterns contain detectable 

driving information. The indirect detectability is the sum of these possibilities, shown in Figure 

2.6(ii). For one second time interval (or 1-Hz sampling rate), the indirect detectability is around 

30.99%+25.37%+24.42%+16.14% =93.92%. With the time interval getting longer, this indirect 

detectability decreases. 
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Figure 2.6 Indirect detectability in different time intervals 

 

2.4.3 Instantaneous Driving Decision Information Loss 

The combined results of instantaneous driving decision loss are shown in Table 2.1. There is an 

89.90% chance that there is no micro-decision (Case 0) within one second (1-Hz sampling data, 

highlighted in Table 1) and 9.20% chance that there is one micro-decision (Case 1). For Case 1 

with only one micro-decision, there is a 30.99% chance that the Type (a) decision pattern would 

occur, and 25.37%, 24.42% and 16.14% for Types (b), (c) and (d) respectively. These four types 

include micro-decisions that can be detected. Therefore, in summary, the feasibility of detecting 

micro-driving decisions for 1 Hz sampling data are 89.90% + 9.20% × (30.99% + 25.37% + 

24.42% + 16.14%) = 98.54%, and 1.46% of information about micro-decisions would be lost. 

Data sampled by rates higher than 0.5 Hz can reflect more than 95% of micro-decisions and the 

instantaneous driving decision loss is less than 5%. 
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Table 2.1 Instantaneous Driving Decisions Information Loss  

Sampling 

Rate 

(Hz) 

Time 

Interval 

(second) 

Percentage of total sample Percentage of Case 1 
Feasibility 

of 

detecting 

micro-

decisions 

Instantaneous 

driving 

decision lost Case 0 Case 1 Case 2 Type a Type b Type c1 Type d1 Type c2 
Type 

d2 

10 0.1 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% ^ 

4 0.25 98.16% 1.78% 0.05% 46.53% 37.28% 7.98% 6.16% 0.88% 1.17% 99.91% 0.09% 

2 0.5 95.27% 4.49% 0.24% 34.60% 28.79% 18.96% 14.06% 1.99% 1.60% 99.60% 0.40% 

1.333 0.75 92.53% 6.95% 0.52% 31.91% 26.65% 21.04% 15.40% 2.94% 2.06% 99.13% 0.87% 

1 1 89.90% 9.20% 0.90% 30.99% 25.37% 21.42% 16.14% 3.68% 2.40% 98.54% 1.46% 

0.8 1.25 87.40% 11.22% 1.38% 30.55% 24.55% 21.29% 16.52% 4.44% 2.65% 97.83% 2.17% 

0.667 1.5 85.03% 13.03% 1.94% 30.36% 23.96% 21.00% 16.58% 5.11% 2.99% 97.01% 2.99% 

0.571 1.75 82.77% 14.68% 2.55% 30.28% 23.48% 20.64% 16.50% 5.69% 3.41% 96.11% 3.89% 

0.5 2 80.61% 16.16% 3.24% 30.16% 23.16% 20.42% 16.40% 6.12% 3.74% 95.17% 4.83% 

0.444 2.25 78.54% 17.47% 3.99% 30.09% 22.95% 20.14% 16.20% 6.57% 4.05% 94.16% 5.84% 

0.4 2.5 76.58% 18.63% 4.79% 30.14% 22.69% 19.98% 16.02% 6.81% 4.36% 93.13% 6.87% 

0.364 2.75 74.70% 19.68% 5.63% 30.22% 22.42% 19.89% 15.90% 6.96% 4.62% 92.10% 7.90% 

0.333 3 72.90% 20.59% 6.50% 30.35% 22.20% 19.76% 15.71% 7.10% 4.88% 91.03% 8.97% 

0.2 5 60.97% 25.07% 13.96% 30.98% 21.15% 18.60% 13.68% 9.02% 6.57% 82.13% 17.87% 

0.1 10 42.04% 27.13% 30.83% 30.82% 20.06% 18.36% 12.20% 10.88% 7.58% 64.14% 35.86% 

0.0667 15 30.98% 25.15% 43.88% 29.79% 21.14% 17.47% 12.01% 11.30% 7.96% 51.20% 48.80% 

Note: ^Extremely close to 0%. 

 

2.4.4 Measures Concerning Magnitudes 

Results in Table 2.2 show that lower sampling rates (or longer time intervals) are associated with 

larger percentages of out-of-range points, smaller ratio of sampled to actual range, larger speed 

deviations and relative speed deviations, as expected.  Percentage of out-of-range points 

concerns the sampled micro speed range within a time interval. The sampled micro speed range 

is determined by two sequential recorded data points, as shown in Figure 2.4. The results show 

that, on average, 1.75 points (or 8.75%) are out of the sampled micro speed range for 1-second 

time interval (or 1-Hz data), because there is a large possibility that  there is no micro-decision 

changes during one second. It is consistent with above finding that for the time interval of 1 

second, the average possibility of no micro-decision change is 88.90%, see Figure 2.5. For 1-Hz 

data, the ratio of sampled to actual micro range is 0.957, which means the extent of 

representativeness of the 1-Hz data to 20-Hz data is about 95.7% in terms of magnitude. Though 
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some data points are possibly out of the recorded micro ranges, these points do not deviate 

broadly. Further, 1-Hz data have an observed speed deviation of about 0.076 mph. Note that 1% 

percentile of 718,481 20-Hz speed records is 0.493 mph, thus the deviation of 0.076 mph is not 

substantial in the distribution of speed records. This is consistent with EPA drive cycle data, 

which is based on 10-Hz [49]. Further, the relative speed deviation, ratio of deviation over 

interpolated speeds, shows that 1-Hz data has a relative speed deviation to 20-Hz speed records 

at 0.87%, substantially lower than the 5% threshold.   

 

2.4.5 Extent of Information Loss 

The overall extent of information loss is an equally weighted measure, calculated using Equation 

2.8. The results are shown in Table 2.2. We know if the sampling rate is 1-Hz, the percentage of 

out-of-range points is 8.77%, ratio of sampled to actual range is 95.71%, relative speed deviation 

is about 0.87%, and the instantaneous driving decision loss is about 1.46%. So, the overall extent 

of information loss is (8.77% + (100%-95.71%) + 0.87% + 1.46%)/4 = 3.85%. Thus, overall 

about 3.85% of the driving information, including the micro-driving decisions and speed 

magnitude, might be lost if the sampling rate is 1-Hz instead of 20 Hz.  

 

Figure 2.7 presents the final results quantifying various information loss measures and different 

sampling rates. The results show that different measures have different levels of information loss 

at a given sampling rate and the relationship is non-linear. As sampling rate drops, more 

information about the out-of-range observations (MIL2) is lost. This measure may be critical for 

some purposes, e.g., crash reconstruction and reporting. Therefore, for studies dealing with 

crashes, especially crash reconstruction studies that are highly sensitive to speed magnitude, 



 

29 

higher sampling rates can be beneficial. The curves, including the overall information loss 

measure show that information loss becomes rather high between at 1 to 2-Hz level.   

 

Table 2.2 Overall Magnitude of Information Loss 

Sampling 

Rate (Hz) 

Time 

Interval 

(second) 

Count of out-

of-range 

observations 

MIL2 

Percentage of 

out-of-range 

observations 

MIL3 

Ratio of 

sampled to 

actual range 

Observed 

speed 

deviation 

(mph) 

MIL4 

Relative 

Speed 

Deviation 

MIL1 

Instantaneous 

driving decision 

loss  

(from Table 1) 

EIL 

Extent of 

information loss 

10 0.1 0.008 0.42% 100.00% 0.001 0.01% 0.00% 0.11% 

4 0.25 0.100 2.00% 99.37% 0.005 0.05% 0.09% 0.69% 

2 0.5 0.442 4.42% 98.11% 0.020 0.23% 0.40% 1.73% 

1.3333333 0.75 1.010 6.73% 96.87% 0.045 0.52% 0.87% 2.81% 

1 1 1.754 8.77% 95.71% 0.076 0.87% 1.46% 3.85% 

0.8 1.25 2.677 10.71% 94.68% 0.115 1.24% 2.17% 4.86% 

0.6666667 1.5 3.847 12.82% 93.38% 0.160 1.66% 2.99% 6.02% 

0.5714286 1.75 5.050 14.43% 92.40% 0.208 2.00% 3.89% 6.98% 

0.5 2 6.345 15.86% 91.66% 0.258 2.35% 4.83% 7.85% 

0.4444444 2.25 7.848 17.44% 90.65% 0.316 2.78% 5.84% 8.85% 

0.4 2.5 9.441 18.88% 89.53% 0.371 3.11% 6.87% 9.83% 

0.3636364 2.75 11.216 20.39% 88.63% 0.426 3.45% 7.90% 10.78% 

0.3333333 3 13.172 21.95% 87.70% 0.491 3.88% 8.97% 11.78% 

0.2 5 30.058 30.06% 81.42% 0.974 6.15% 17.87% 18.17% 

0.1 10 81.855 40.93% 71.10% 2.088 10.57% 35.86% 29.07% 

0.0666667 15 139.545 46.51% 64.73% 3.131 14.52% 48.80% 36.28% 

 

 
Figure 2.7  Extent of information loss with different sampling rates 
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2.5 LIMITATIONS 

The data used in this study comes from a simulator driving test, i.e., they are from a hypothetical 

but controlled test environment. Having few test subjects is recognized as a limitation, though it 

is not very germane to this study. The data was sampled by 20 Hz. It is possible that micro 

driving decisions between the 20 Hz time-stamp data points were lost. This study assumes the 

chance of having micro decision changes within 0.05 second is very small, given a perception 

reaction times of about 1 second. In the future, driving data sampled at even higher sampling 

rates can be used to verify the results of this study. The proposed measures can be used for 

analysis of information loss with any range of sampling frequency.  

 

2.6 CONCLUSIONS 

The key question investigated in this study is: what sampling rates are appropriate to capture 

micro or short-term driving decisions? Oversampling can result in noisy data, and waste storage 

and processing resources. Undersampling can result in loss of information about important 

instantaneous driving decisions. This study developed measures of information loss and 

quantified their relationship with sampling rates. It discussed driving behavior information from 

two angles: instantaneous driving decisions and speed magnitudes. Four main measures were 

created to quantify the magnitudes of driving behavior information loss: a) MIL1 –Instantaneous 

driving decision loss (combined direct and indirect ‘detectability’); b) MIL2 – Percentage of out-

of-range observations; c) MIL3 – Ratio of sampled to actual range; and d) MIL4 – Relative speed 

deviation from linear interpolation of sampled data (based on observed speed deviation over 

interpolated speed). These measures quantify the extent of information loss. With these four 

measures, the overall magnitude of information loss index was generated by equally weighting 
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them. The index, termed by Extent of Information Loss (EIL), simply tells us how much 

information might be lost given a sampling rate.  

 

The results show that shorter time intervals (i.e., higher sampling rates) are associated with larger 

direct detectability of instantaneous driving decisions. In other words, there is a smaller chance 

of having cases with micro-driving decisions between two sampled data points. Drivers typically 

keep constant acceleration/deceleration rates during a short time. Specifically, for the time 

interval 1 second (i.e., 1-Hz sampling rate) the direct detectability is 88.90%. The large 

possibility of no micro-decision in one second may be due to the driver reaction time. The 

reaction time includes the time for driver perception, identification, judgment and reaction [50]. 

The whole process usually takes more than 1 second [48]. This study further observed cases of 

one micro-driving decision made within a particular time interval and discussed the possibility of 

detecting such micro-driving decisions. Through defining the six possible micro driving decision 

patterns, the study found the four of six patterns include the micro-driving decisions that can be 

detected indirectly by using the sampled data points. These four patterns dominate the cases in 

short time intervals (less than 3 seconds). Specifically, the indirect detectability for one second 

time interval (or 1-Hz sampling rate) is around 93.92%. The feasibility of detecting micro-

driving decisions combines direct detectability and indirect detectability. Thus, the feasibility of 

detecting micro-driving decisions by 1-Hz data are 89.90% + 9.20% × 93.92% = 98.54%, and 

100%-98.54%= 1.46% of information about micro-decisions (MIL1) will be lost by 1-Hz data.  

The measures of information loss magnitude reveal that smaller sampling rates or longer time 

intervals are related to more missing data points because of their too large or too small values. 

Though there are some data points out of the micro speed ranges (about 8.77% of points out of 
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the micro ranges for 1-Hz data, MIL2), these points do not deviate broadly when sampling rates 

are equal to or higher than 1 Hz. Specifically, the ratio of sampled to actual ranges (MIL3) is 

95.7% for 1-Hz data. And 1-Hz data has average speed deviation of about 0.076 mph. The small 

deviation supports the assumption that driving behavior within one second shows nearly constant 

acceleration [49]. Further, the relative speed deviation (MIL4) of 1-Hz data to 20-Hz is around 

0.87%. With four measures of Magnitudes of Information Loss (MILs), the overall Extent of 

Information Loss (EIL) can be calculated. For 1-Hz sampling rate, the EIL is about 3.85%.  

 

This study proposed measures to quantify the magnitude of information loss. The measures can 

be used individually or combined to create an index. The results show that lower sampling rates 

are associated with greater information loss, but the relationship is not linear. This study 

contributes by quantifying the relationship between sampling rates and information loss and 

depending on the objective of their study, researchers can choose the appropriate sampling rate 

necessary to get the right amount of accuracy. For some studies, e.g., quantifying energy 

consumption or emissions, 2 Hz sampling rate may be sufficient, whereas for safety studies, 

higher sampling rates may be required.  

 

 

  



 

33 

CHAPTER 3 WHAT IS THE LEVEL OF VOLATILITY IN INSTANTANEOUS 

DRIVING BEHAVIORS? APPLICATIONS FOR SUPPORTING CALMER DRIVING 
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This chapter combines multiple research papers which Jun Liu made extensive contributions to. 

These papers include:  

Paper 1- “What is the Level of Volatility in Instantaneous Driving Decisions?” by Xin Wang, 

Asad J. Khattak, Jun Liu, Golnush Masghati-Amoli and Sanghoon Son [22]. The paper 

was accepted for publication by Transportation Research Part C: Emerging 

Technologies, 2015. DOI: 10.1016/j.trc.2014.12.014. The paper was also presented 

(TRB 14-2780) at The 93rd Annual Meeting of Transportation Research Board in 

Washington, D.C., in January 2014. 

Paper 2- “Generating Real-Time Volatility Information to Support Instantaneous Driving 

Decisions” by Jun Liu, Xin Wang, and Asad J. Khattak [51]. The paper was presented 

(ITSWC Paper #12468) at 2014 Intelligent Transportation Systems World Congress, in 

Detroit, MI, in September 2014. A revised version entitled “Supporting Instantaneous 

Driving Decisions through Trajectory Data” (Co-authors: Asad J. Khattak, Jun Liu and 

Xin Wang) was presented (TRB 15-1345) at The 94th Annual Meeting of 

Transportation Research Board in Washington, D.C., in January 2015 [52]. 

 

ABSTRACT 

Driving styles can be broadly characterized as calm or volatile, with significant implications for 

traffic safety, energy consumption and emissions. How to quantify the extent of calm or volatile 

driving and explore its correlates is a key research question investigated in the study. This study 

contributes by leveraging a large-scale behavioral database to analyze short-term driving 

decisions and develop a new driver volatility index to measure the extent of variations in driving. 

The index captures variation in instantaneous driving behavior constrained by the performance of 
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the vehicle from a decision-making perspective. Specifically, instantaneous driving decisions 

include maintaining speed, accelerating, decelerating, maintaining acceleration/deceleration, or 

jerks to vehicle, i.e., the decision to change marginal rate of acceleration or deceleration. A 

fundamental understanding of instantaneous driving behavior is developed by categorizing 

vehicular jerk reversals (acceleration followed by deceleration), jerk enhancements (increasing 

accelerations or decelerations), and jerk mitigations (decreasing accelerations or decelerations). 

Volatility in driving decisions, captured by jerky movements, is quantified using data collected 

in Atlanta, GA during 2011. The database contains 51,370 trips and their associated second-by-

second speed data, totaling 36 million seconds. Further, this study explores how real-time vehicle 

trajectory data can be used to generate driver feedback through actionable alerts and warnings. 

The study provides a framework for how acceleration and braking monitoring can generate alerts 

and warnings, provided through advanced traveler information systems. Extreme driving patterns 

under seemingly normal conditions are the key to generating actionable personalized feedback. 

Rigorous statistical models explore correlates of volatility that include socioeconomic variables, 

travel context variables, and vehicle types. The implications of the findings and potential 

applications to fleet vehicles and driving population are discussed.  

 

3.1 INTRODUCTION 

As the most dominant transportation mode in USA, automobile driving has significant impacts 

on traffic safety, energy, and emissions. With widespread deployment of emerging information 

and communication technologies, massive amounts of driving data in high resolution are 

becoming available, allowing researchers to scrutinize driving behavior in far more detail than 

was possible before. Insights can be obtained by studying instantaneous decisions made during 
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driving in nearly real-time. Also, such “Big data” provides opportunities that support 

visualization, analysis, and modeling in new ways that could not be imagined before. The 

combination of data and tools can help create new visions that can potentially transform the way 

we monitor and evaluate transportation system performance and potential improvement actions. 

This study takes advantage of large-scale data collected by in-vehicle Global Positioning System 

(GPS) devices and survey data to define instantaneous driving decisions as drivers’ choices of a 

set of options during driving. Such choices include maintaining speed, accelerating, 

decelerating, maintaining acceleration/deceleration, and vehicular jerk, i.e., the decision to 

change marginal rate of acceleration and deceleration. The sequential chaining of these short-

term driving decisions can be volatile because they are intended to respond to the instantaneous 

changes in surrounding circumstances, such as approach of adjacent vehicles, pavement 

conditions, geometric transitions in the roadway, and weather conditions. Fluctuations in traffic 

flow can create challenges for safety, as well as challenges for energy consumption, tailpipe 

emissions and public health [53, 54]. Existing studies have shown that emissions and fuel usage 

vary significantly with different speed ranges [US EPA55]. Additionally larger deviations from 

mean speed can significantly increase crash risk [TRB56]. Accordingly it is important to 

understand and quantify variability in drivers’ instantaneous decisions and explore the 

associations with socioeconomic, vehicular, and contextual variables.  

 

Driving involves making decisions based on information perceived by drivers instantaneously. 

The information perceived while driving can be roughly divided into two sets: a) Driving 

context, such as road condition, traffic flow, and weather, and b) Driving situation, such as 

vehicle speed, engine rotation speed, direction of vehicle, fuel consumption, etc. Currently, 
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modern technologies are able to provide such real-time driving status information, to 

communicate how drivers behave while driving and react to the changing context. 

 

Volatility in instantaneous driving decisions can be quantified by variability in vehicular 

movement, and the variability can be represented by speed and its derivative 

(acceleration/deceleration) as well as its second derivative (vehicular jerk). The questions to be 

answered in this study are:  

1) How to measure driving volatility? 

2) What is the level of volatility in instantaneous driving decisions?  

3) What are the key correlates of driving volatility? 

4) What are the potential applications? 

 

3.2 LITERATURE REVIEW 

Research has linked driving style with crash involvements. West et al. developed a questionnaire 

to investigate the relationships between driving style and traffic crash risk [57]. In their 

questionnaire, the speed limit was highlighted as a critical threshold for driving style. They 

reported a positive correlation between frequency of driving speed exceeding speed limit and the 

number of crashes over a three-year period. Fast driving is normally characterized as an 

aggressive or reckless driving and the speed limits are usually used as thresholds to discriminate 

a driver’s performance. However, the speed choice depends partly on speed limits (or road 

conditions) and traffic conditions. A driver’s compliance with speed limits is affected by traffic 

[58] and drivers cannot always choose their speeds freely [59]. 
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Studies have explored maximum acceleration/deceleration to characterize driving styles and 

used several cutoff points in their study [59]. Thresholds of 1.47 m/s2 (4.82 ft/s2) and 2.28 m/s2 

(7.47 ft/s2) for aggressive and extremely aggressive accelerations in urban driving environments 

were suggested by Kim et al [12]. De Vlieger defined the ranges for driving styles on city 

journeys as 0.45-0.65 m/s2 (1.48 – 2.13 ft/s2) for calm driving, 0.65-0.80 m/s2 ( 2.13-2.62 ft/s2) 

for “normal” driving and 0.85-1.10 m/s2 (2.79-3.61 ft/s2) for aggressive driving [13]. Further, 

the ratio of standard deviation to average acceleration was used to define the aggressiveness and 

aggressive driving was identified when the ratio is greater than 100% [60]. Studies giving cut-

off thresholds apply to all driving practices may ignore the varying driving behaviors under 

various driving contexts. Thus, Han et al. provided multiple critical acceleration values for 

characterizing dangerous driving behaviors at different speeds [61, 62], as shown in Table 3.1. 

These critical values are for identifying highly extreme driving moments, such as sudden hard 

brake or acceleration. These values were obtained based on designed driving tests, which could 

hardly represent real-world driving practices. Further, the value of acceleration also depends on 

the vehicle performance, especially for the peak values [63], and driving needs, e.g., entering the 

interstate from a local road. Therefore, simply focusing on the magnitude of acceleration cannot 

describe the driving style/performance correctly. Murphey et al. analyzed rate of change in 

acceleration/deceleration, which was called jerk, the derivative of the acceleration or the second 

derivative of the speed [64]. Vehicular jerk better captures the change of instantaneous driving 

decisions, such as going from accelerating to suddenly decelerating a vehicle. They focused on 

the ratio of standard deviation to average jerk within a time window to classify driving styles 

[64].They suggested two thresholds for identifying normal and aggressive driving: 0.5 for 

normal driving, 1.0 for aggressive driving.  
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Murphey et al. also used the fuel consumption rate to reflect driving styles, reporting that on 

average 22.35 miles per gallon for calm driving, 20.48 miles per gallon for normal driving, and 

14.93 miles per gallon for aggressive driving [64]. Notably, fuel economy also highly relates to 

the vehicle model and engine efficiency, such as hybrid and electric vehicles [65].  Thresholds 

suggested in literature are summarized in Table 3.1. 

 

Table 3.1 Performance Thresholds for Defining Aggressive or Calm Driving 

Authors Measures Thresholds 

Kim et al. [12] Acceleration 

1.47 m/s
2
 (4.82, ft/s2)  aggressive driving  

2.28 m/s
2 

(7.47 ft/s2)  extreme aggressive 

driving 

Ericsson [21] Acceleration 1.5 m/s
2
 (4.92 ft/s2)  aggressive driving 

De Vlieger et al. 

[13] 
Acceleration 

0.45-0.65 m/s2 (1.48 -2.13 ft/s2)  calm driving 

in city 

0.65-0.80 m/s2 (2.13-2.62 ft/s2) normal driving 

in city 

0.85-1.10 m/s2 (2.79-3.61 ft/s2) aggressive 

driving in city 

Han et al. 

[61]. [62]. 
Acceleration 

Critical values for dangerous driving behaviors 

< 20 km/h (12mph) 2.16 m/s2 (7.1 ft/s2) 

~29 km/h (18 mph) 2.06 m/s2 (6.8 ft/s2) 

~39 km/h (24 mph) 1.96 m/s2 (6.4 ft/s2) 

~49 km/h (30 mph) 1.86 m/s2 (6.1 ft/s2) 

~69 km/h (43 mph) 1.47 m/s2 (4.8 ft/s2) 

~79 km/h (49 mph) 1.37 m/s2 (4.5 ft/s2) 

>80 km/h (50 mph) 1.27 m/s2 (4.2 ft/s2) 

Langari et al. 

[60] 

Ratio of standard deviation 

() to average () of 

acceleration 

If >1 (or 100%) aggressive driving 

Murphey et al. 

[64] 

Ratio of standard deviation 

() to average () of jerk  

If >0.5 (or 50%)normal driving 

If >1 (or 100%)aggressive driving 

Fuel consumption 

22.35 miles per gallon  calm driving 

20.48 miles per gallonnormal driving 

14.93 miles per gallonaggressive driving 

More measures for characterizing driving styles have been discussed in the literature, such as 
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horn honking [66], tailgating and running red traffic lights [67], traffic rule compliance [68, 69], 

frequent or unsafe lane changes, failing to signal, tailgating, failing to yield right of way, and 

disregarding traffic controls [70]. These behaviors also correlate with age [71, 72], gender [73], 

personality in vehicle choice [74], sense of time pressure or value of time [71, 72], and specific 

plan [75].  

 

Aggressive driving behavior can be reflected by capturing various aspects of driving (speed, 

acceleration, jerk, fuel consumption and extreme driving decisions).  However, there is no 

agreement on thresholds for aggressive driving behavior. Meanwhile, the word “aggressive”, in 

its broadest sense, indicates a behavior or a disposition with forceful and somewhat hostile and 

judgmental intonations. In this study, therefore, the term “volatility” is used instead. The 

argument of term difference between “aggressiveness” and “volatility” is similar to the terms 

“accident” and “crash” [76]. Using the term “volatility” to describe a driver’s driving 

performance is a more objective or impersonal practice and better suit our purposes. 

 

3.3 DATA DESCRIPTION 

Data used in this study come from the Atlanta Regional Commission (ARC)— A Regional 

Travel Survey with GPS Sub-Sample conducted in 2011 (survey period covered Feb. 2011 

through Oct. 2011). It was a well-executed regional survey using CATI (Computer-assisted 

telephone interviewing), with 6% final response rate and 34% participate rate. The sample is 

large-scale, covering about 20 counties in the region of Atlanta, representing various land use 

types and populations. Overall, the data quality was reasonable and efforts were made to make 

the sample representative of the region. More details about the survey are available in the report 
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[77]. Similar to a standard travel behavior survey, the instrument relies on the willingness of 

households to 1) provide demographic information about the household, its members and its 

vehicles; 2) have all household members recording all travel-related details for a specific 24-hour 

period on multiple travel days, including their trip purposes, travel modes and other standard trip 

diary questions; 3) in the GPS subsample, data were collected by in-vehicle GPS devices for 

each trip. The device captured travel date, time, latitude and longitude (however this information 

was removed from the public released database), and the speed data. The GPS data points were 

collected at a sampling rate of at least 0.25 Hz and the raw GPS data was fed through a 

processing routine that removed outlying speed values, interpolated missing data and smoothed 

the speed profile [78].  

 

The final database contains different levels of data-personal data; household data, trip data, and 

microscopic second-by-second data for each trip. In all, 51,370 trips made by 1,653 drivers from 

850 households were included in the database, which contained a total of more than 36 million 

seconds of records, covering driving practices on different road types by different type of 

vehicles.  

 

The data was collected professionally, using state-of-the-art methods and upon examination 

show that it is reasonable. Specifically, for driving data, the speed data has reasonable ranges, 

with highest speed of 80 mph, average speed of 37 mph; acceleration changes ranged between -

5.2ft/s2 and 7.64ft/s2, which are consistent with the numbers reported in the literature, e.g., 

7.47ft/s2 as extremely aggressive driving (Kim and Choi 2013). Vehicular jerk changes ranged 

between -5.53 ft/s3 and 8.28 ft/s3. For demographics, again the data are reasonable. Specifically, 
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47.24% of drivers were male; the average age of respondents was 47 years. This fairly represents 

the driving population in Atlanta. Comparing the sampled data with other data sources such as 

the census showed that 47.24% of male drivers in the sample is consistent with 47.4% in the 

Atlanta are population; average age of 47.18 years, this is consistent with Census (49% of 

population is between 25 to 54); and average vehicle age of 7.9 years is consistent with 33.8% of 

vehicles in Atlanta area that are between 6-10 years old.  

 

3.4 METHODOLOGY 

3.4.1 Measures of Instantaneous Driving Decisions 

Distinct from strategic during decisions, instantaneous driving decisions refer to those micro-

decisions to accommodate real-time situational changes during their journeys. These 

instantaneous driving decisions can include: accelerating, decelerating, maintaining constant 

speed (zero acceleration), jerking the vehicle (change in marginal rate of acceleration or 

deceleration), or maintaining constant acceleration and deceleration (zero vehicular jerk). As 

shown in Equation 3.1, vehicular jerk is the derivative of acceleration or the second derivative of 

speed, representing abrupt movement of vehicles. Therefore, while an acceleration profile shows 

how fast a driver speeds up and slows down, a vehicular jerk profile shows how fast a driver 

accelerates and decelerates, which is more suited to capture drivers’ abrupt adjustments in 

speeds. Figure 3.1 represents the speed, acceleration and vehicular jerk profile for a single 

sampled driving trip. 

J = d(a)/d(t)                                                                                                     Equation 3.1 

  = d2(v)/d(t)2  

  = d3(d)/d(t)3  
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Where J is vehicular jerk; a is acceleration; v is velocity; d is distance 

 
Figure 3.1 Comparison between speed, acceleration and vehicular jerk profiles on a trip 

 

While these three profiles represent the same trip, they show significant differences, especially 

when speed fluctuates. The spikes in the vehicular jerk profile occur only when there are large 

changes in the accelerations, negatively or positively. The vehicular jerk profile acts as an 

amplification of speed changes since it is more sensitive to speed changes.  

 

 3.4.3 Patterns of Instantaneous Driving Decisions 

Different patterns of instantaneous driving decisions can be observed based on how acceleration 

and deceleration are chained sequentially. Figure 3.2 shows six different vehicular jerk patterns 

during driving for illustrative purposes. The upper three graphs show vehicular jerks starting 

from acceleration and followed respectively by lower acceleration (a), higher acceleration (b), 

and deceleration (c). The lower graphs show vehicular jerks starting from a vehicle braking and 

followed respectively by a lower deceleration (d), higher deceleration (e), and acceleration (f). In 
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these graphs, there is a decision point at second 10 when the driver has to decide whether he/she 

wants to change the current driving situation.  

 

 
Notes: j=vehicular jerk; ai=acceleration at time i; ai+1=acceleration at time i+1 

Figure 3.2 Different types of vehicular jerk during driving. 

 

 

Since vehicular jerk is the second derivative of speed, it can be positive (b, d, f) or negative (a, c, 

e). Where vehicular jerk is zero, the driver operates the vehicle at a fixed 
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acceleration/deceleration rate or simply maintains the speed. However, generally there can be a 

greater chance of collisions when negative vehicular jerk happens compared with positive 

vehicular jerk. In situations where vehicles are followed by other vehicles, negative vehicular 

jerks can result in abrupt shortening of distance between the vehicles and following vehicles, 

possibly creating a shockwave under condition c, e and a (a shockwave from strong to weak). 

Understanding the profiles of different vehicular jerk styles is important for safety and for 

energy and emissions. 

 

3.4.3 Methodological Framework  

Figure 3.3 shows the overall framework. The purpose of this study is to generate knowledge of 

short-term driving decisions by taking advantage of large-scale travel survey data that contain 36 

million second-by-second trajectory records with travel behavioral data from 1,653 drivers. To 

do this, the research first defines different instantaneous driving decision patterns. Speed, 

acceleration, and vehicular jerk are extracted from the (large-scale) raw trajectory data, with 

decision patterns identified by chaining decisions with different sequences. Next, visualizing the 

data provides a complete picture of how drivers spend their time on these different driving 

decisions at different vehicular speeds. Then trip-based measures of short-term driving volatility 

are created based on acceleration and vehicular jerk profiles. Then, statistical models are 

estimated in order to explore the socio-demographic and travel correlates of driving volatility, 

generating new knowledge about volatility. Finally, potential applications for supporting 

calmer/smoother driving behavior and traffic management are proposed.  
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Figure 3.3 Methodological framework 

 

3.5 RESULTS – EXTENT OF VOLATILITY IN DRIVING 

3.5.1 Time Use Distribution 

3.5.1.1 Acceleration/Deceleration  

To understand driving time spent on different instantaneous decisions in a metropolitan 

environment, the frequency of acceleration, deceleration and zero acceleration by speed bin 

in 0.5 mph (mile per hour) increments were calculated based on 36 million driving seconds of 

total 51,370 trips (shown in Figure 3.4). On selection of speed bin, we have conducted 

sensitivity analysis and found that volatility can be somewhat sensitive to the selection of 

different speed bin widths. There is no ideal bin size, but we know that if the bin size is too large 

(e.g., 5 mph), then the data are overly aggregated and there is substantial loss of variability (note 

that there are only 16 bins for speeds ranging from 0 mph to 80 mph). If the bin size is too small 

(e.g., 0.1 mph), then data noise (random fluctuations) can become an issue, obscuring 

interpretation (for 0.1 mph speed bins there will be 800 bins for 0 to 80 mph range). The 0.5 
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mph (equivalent to 0.73 ft/s) speed bin is a reasonable compromise that gives a fairly accurate 

picture of the acceleration and jerk distributions with respect to driving speeds.  

 

 
Figure 3.4 Time use in acceleration, deceleration and constant speed at different speeds (N= 36 

Million) 

 

Given that each sample represents one second of driving, the magnitude of frequency bars 

demonstrate the time used during trips on acceleration, deceleration and maintaining constant 

speed of the vehicle. Notably, very small accelerations or decelerations (0.03 mph, based on the 

5th percentile of speed changes) were considered noise and coded as constant speed. Figure 3.4 
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(i) shows time use distribution and (ii) shows the percent of time spent on acceleration, 

deceleration and constant speed after standardization.  

 

Overall 7% of driving time was spent driving at idling or low speeds (below 5 mph), 47% of 

driving time was spent on acceleration, 41% of driving time was spent on deceleration and 5% 

of driving time was spent maintaining constant speed, based on the massive amount of field data 

from GPS devices. The results can be compared with the Federal Test Procedure (FTP) drive 

cycle test (known as FTP-75 for the city driving cycle), which involves a decelerating drive 

mode for 34.5% of the time, and idling mode for 17.9% of the time [79, 80]. Table 3.2 shows 

major drive cycles designed to represent typical driving practices in order to certify vehicle fuel 

economy. The massive field driving data provides first-hand knowledge of real world driving 

practices, which can inform drive cycle design and provide insights. 

 

Travel time spent at different speeds varies, depending on speed range, with 30-50 mph as the 

most common speed range. Less driving time was spent on driving at speeds higher than 50 

mph. This result depends largely on regional road network structure. Overall greater amounts of 

driving time were spent on acceleration than deceleration, especially when speed was between 

10-50 mph. However, more time was spent on deceleration compared with acceleration in lower 

speed bins (less than 10 mph). When speed is higher than 50 mph the travel time spent on 

acceleration and deceleration was nearly equal.   

 

 

 

http://en.wikipedia.org/wiki/Driving_cycle
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Table 3.2 United States certification drive cycles compared with Atlanta drive cycle [79] 

Drive 

Cycle 
Description 

Data Collection 

Method 

Year of 

Data 

Top 

Speed 

Avg. 

Speed 

Max. 

Acc. 
Distance Time (min) 

Idling 

time 

FTP Urban/City 

Instrumented 

Vehicles/Specific 

route 

1969 56 mph 20 mph 1.48 m/s2 17 miles 31 min 18% 

C-FTP 
city, cold 

ambient temp 

Instrumented 

Vehicles/ Specific 

route 

1969 56 mph 32 mph 1.48 m/s2 18 miles 31min 18% 

HWFET 

Free-flow 

traffic on 

highway 

Specific route 

Chase-car/ 

naturalistic 

driving 

Early 

1970s 
60 mph 48 mph 1.43 m/s2 16 miles 12.5 min None 

US06 

Aggressive 

driving on 

highway 

Instrumented 

Vehicles/ 

naturalistic 

driving 

1992 80 mph 48 mph 3.78 m/s2 13 miles 10min 7% 

SC03 
AC on, hot 

ambient temp 

Instrumented 

Vehicles/ 

naturalistic 

driving 

1992 54 mph 35 mph 2.28 m/s2 5.8 miles 9.9 min 19% 

Atlanta Urban/City 

In-veh. GPS 

devices, Travel 

survey 

2011 80mph 37mph 5.10 m/s2 7.1 mile^ 12.7min^ 7%* 

Note:  

1. FTP: Federal Test Procedure. 

2. HWFET: The Highway Fuel Economy Test.  

3. US06: The US06 Supplemental Federal Test Procedure (SFTP) for High Speed and High Acceleration Driving 

behavior. 

4. SC03:  A Supplemental Federal Test Procedure (SFTP) with Air Conditioning. 

5. C- FTP: Federal Test Procedure under cold ambient temperature. 

6. ^ mean values are used for Atlanta. 

7. *  idling & low speeds (below 5 mph) 

 

Notably, time spent on maintaining constant speed is much less than time spent on speed 

alterations. Relatively higher proportion of time is spent on maintaining constant speed when 

speeds are higher; specifically, more than 10% in speed bins higher than 55 mph and more than 

20% at speeds higher than 70 mph. This is reasonable since less stop-and-go traffic is expected 

on freeways with free flowing traffic, coupled with the use of cruise control on interstates. 

Notably, neither the data on the use of cruise control nor the road types and second-by-second 

geo-codes are available in the public use database. This makes it difficult to link the speed 

profile/bins with specific roadway types, especially when speed is less than 50 mph. For 
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example, the roadway can be a congested interstate or signalized arterial with free flowing 

traffic. Nevertheless, the graphs reveal useful information that helps understand driving time 

use. Specifically, the driving time spent on idling (traveling below 5 mph) is below 10% in 

Atlanta; the time spent on accelerating and braking are roughly equal and substantially higher 

than time spent on maintaining speed during urban journeys. 

 

3.5.1.2 Vehicular Jerk  

To understand how much time drivers spent on different vehicular jerk decisions, the time spent 

for the speed bins was aggregated by different vehicular jerk types. Then the results were 

standardized by calculating the percent of time spent on each vehicular jerk style, shown in 

Figure 3.5. Similar to the time spent on acceleration, the percent of time spent on zero vehicular 

jerks remains a small portion, this is especially true when speed is more than 70 mph. Possible 

reasons are drivers seem to avoid jerks to vehicles at higher speeds, or the use of cruise control 

is more common at higher speeds. However, the cruise control usage information was not 

available in the database, otherwise it would have added valuable information to understand 

instantaneous driving decisions comprehensively.  

 

Different vehicular jerk styles (shown in Figure 3.2) are observed within different speed bins. 

Specifically, for the speeding up behaviors (a, b), Style (a) has a very small share when speed is 

less than 5 mph then reaches its peak (30%) when speed is around 30 mph, after that, it starts to 

shrink slightly but remains at least 20%. While style (b) has its largest share when speed is 

around 10 mph then remains at a 20% share constantly. As for slowing down behavior (d, e), 

style (d) has its largest share (30%) when speed is 5 mph, then  remains relatively constant at 
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20% when speed increases; style (e) has its largest share when speed is close to zero, 

representing the hard braking behavior when coming to a stop. When speed increases, the 

percent of style (e) has peaks at 25% with moderate speeds (between 20 mph and 30 mph) and 

then remains constantly at 20% when speed is higher than 30 mph. As for the other two styles 

when acceleration and deceleration behavior are chained, both of style (c) and style (f) account 

for about 5% and this percentage remains relatively constant at various speeds.  

 

 
Figure 3.5 Time use in vehicular jerk patterns at different speeds (N= 36 Million) 
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3.5.2 Variation Distribution 

3.5.2.1 Acceleration/Deceleration  

Most existing studies have applied a single acceleration value as a threshold for identifying 

aggressive driving. Ahn et al. [80] have fitted a linear regression line showing that higher 

accelerations are associated with lower speeds. However, the nonlinear relationships between 

acceleration and speed in real-life driving situations are largely unexplored. Vehicle engines 

have to do more work in order to maintain the same acceleration at higher speeds to overcome 

the increasing air resistance. Therefore the ability to accelerate or decelerate a vehicle decreases 

naturally at higher speeds.  

 

The speed vs. acceleration/deceleration profile (shown in Figure 3.6) is consistent with the 

above expectations. Upper and lower bands represent the means plus/minus one standard 

deviation bands for accelerations and they denote “typical driving practices.” The (red) points 

that are out of the bands are the “volatile” driving seconds. In general, 15% of the 36 million 

seconds of driving are volatile (15.73% for acceleration and 14.50% for deceleration). This is 

reasonable since approximately 68% of the mass will be within one standard deviation for a bell-

shaped normal speed distribution. Note that in order to separate the typical behaviors of drivers 

from moderately and highly risky behaviors, the use of 1 standard deviation threshold is 

reasonable. Using a 2 or 3 standard deviation threshold instead (i.e., capturing 95% and 99.7% 

of the observations for normally distributed data), will only leave extreme outliers, that are 5% 

or even lower (at 0.3%) portion of the data, i.e., high risk behaviors.  

 

Bandwidth is the difference between the upper band value and the lower band value. A falling 
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bandwidth reflects decreasing variation and rising bandwidth reflects increasing variation in 

speed changes. The largest bandwidth is between 10 mph and 30 mph and it decreases 

substantially when speed is higher than 40 mph. This confirms that at higher speeds (typically 

on freeways with a good level of service) drivers usually do not or simply cannot accelerate and 

decelerate abruptly. When speed is above 55 mph, accelerations scarcely exceed 1.5 feet/sec2, as 

reflected in the upper band.  

 

  
Figure 3.6 Average acceleration/deceleration at different speeds (N=36 Million) 

 

A similar trend is observed in the deceleration profile with minor differences. Compared with 

acceleration, the magnitude of the maximum mean of deceleration is higher. It is -3.0 feet/sec2 

for deceleration while the maximum mean value is less than 3.0 feet/sec2 for acceleration. This 

finding is interesting when combined with information contained in Figure 4. It revealed that in 

the Atlanta area, on average, drivers spend more time braking and they brake harder compared 

with accelerations.   

Bandwidth 
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3.5.2.2 Vehicular Jerk  

Figure 3.7 (i) shows the distribution of the average vehicular jerk by different types and Figure 

3.7 (ii) the mean and standard deviation of vehicular jerk at different speeds. The difference in 

absolute magnitude of vehicular jerk reveals their intensity. Types (c) and (f) show the highest 

absolute magnitudes which is reasonable since both of them represent drivers reversing vehicle 

acceleration, i.e., going from acceleration to deceleration or vice versa. Note that type (f) has a 

higher absolute magnitude than its negative counterpart, i.e., type (c). This means that on 

average drivers jerk their vehicles more forcefully to accelerate after braking compared with the 

opposite. This is especially true when speed is less than 40 mph. The other two positive and the 

two negative jerk types show similar trends and values.  

 

The upper band and lower band (mean plus/minus one standard deviation) are created 

respectively for the aggregated positive and negative vehicular jerk. For speed bins higher than 

40 mph, the lower band of positive vehicular jerk is below zero and the upper band of negative 

vehicular jerk is above zero; hence zero were used in calculating the bandwidth in those cases. 

The upper band of the positive vehicular jerk and lower band of negative jerk collectively create 

a profile of regular practice for vehicular jerk. In other words, it represents the most typical 

driving practice on roadways regardless of road type. The bands can also serve as a critical 

threshold for identifying volatile driving behaviors, which are the red points falling outside the 

bands in Figure 7(b).  
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Figure 3.7 Vehicular jerk distribution by speed bins (N=36 Million) 

 

Based on 36 million seconds of driving data, about 13.36% seconds are identified as volatile 

seconds when using the vehicular jerk profiles. This score represents the average volatility level 

for typical driving practices for the GPS subsample from the Atlanta Metropolitan Area. More 

volatile driving practices are found within at lower speeds, as expected. Specifically, 16.4% of 
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the total time drivers are volatile (above 1 standard deviation) when speed is lower than 20 mph, 

while 13.6% of the time they are volatile when speed is between 20-40 mph. This percentage 

drops to 12.00% for speed range between 40-60 mph and it is 11.9% for speeds larger than 60 

mph. 

 

The critical values of vehicular jerk associated with volatile driving behavior vary by speed. 

There is a peaking of this measure at speeds of 7.5 mph then it decreases gradually as vehicular 

speed goes up, until it reaches a steady line with minor fluctuations at speeds between 45-52 

mph. In general, the bandwidth is larger at relatively low speeds (less than 20 mph) and it is 

relatively narrower at higher speeds. This is to say that lower speeds have a boarder range of 

volatile driving, but this is not the case for higher speeds. 

 

3.5.3 Combined Distribution  

Figure 3.8 shows three dimensional distribution of time use and variations of instantaneous 

driving decisions at different speeds. The height shows the number of driving records with 

corresponding driving status (i.e., speed and acceleration/deceleration or vehicular jerk).  At 

speeds 10 ~30 mph there are fewer driving records with zero acceleration or deceleration (see the 

trough in Figure 5); for higher speeds (> 60 mph), a large portion of time is spent in maintaining 

speed with small acceleration or deceleration (see the ridge in Figure 3.8). Differing from 

acceleration distributions, vehicular jerk distributions are more concentrated at zero. This implies 

that any quantified jerk patterns that are different from zero can be easily identified as abnormal 

micro driving patterns, e.g., sudden braking or accelerating. 
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Figure 3.8 3D distribution of time use and variations of instantaneous driving decisions at 

different speeds (N=36 Million) 

 

3.5.4 Driving Volatility Score  

A new measure, termed driving volatility score was created after identify the volatile seconds. 

The idea is to measure individual volatility for each trip using the acceleration or vehicular jerk 

band. A driver’s volatility score is defined as a percentage of time tagged as volatile seconds 

over the entire trip. In other words, volatility is measured as the percentage of time when the 
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driver’s acceleration or vehicular jerk goes beyond the typical driving thresholds (acceleration or 

vehicular jerk bands). The driving volatility score can be calculated by following equation:  

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 % =  
𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑆𝑒𝑐𝑜𝑛𝑑𝑠  

 𝐸𝑛𝑡𝑖𝑟𝑒 𝑇𝑟𝑖𝑝 𝐷𝑟𝑢𝑎𝑡𝑖𝑜𝑛
× 100 Equation 3.2 

 

Figure 3.9 shows a comparison between the volatility scores generated using acceleration bands 

versus using vehicular jerk bands for a sampled trip. Less volatile seconds were identified using 

jerk bands compared with using acceleration bands; volatility score was 8.5% with jerk bands 

vs. 6.0% with acceleration bands for the trips analyzed. The jerk-based volatile seconds are not 

always in concordance with volatile acceleration-based volatile seconds. That is to say, 

sometimes the driver accelerated at a higher than the upper band level but he/she did not jerk the 

vehicle during this period.  

 

 
Figure 3.9 Volatile driving identified by different methods 

 

Conceptually, it is important to understand and identify key decision points when the driver 
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abruptly changes driving actions, e.g., goes from acceleration to deceleration. Based on the 

observations shown in Figure 3.9, jerk seems to capture critical decision points better than 

acceleration while acceleration has more tolerance for volatility. Vehicular jerk can serve as an 

effective measurement to identify abrupt instantaneous decision changes. Since the volatility 

score is calculated for each trip, when data on multiple trips for a single driver are collected, 

average volatility score can be generated for each driver. This makes it is possible to compare 

both the intra-trip volatility and volatility between different drivers.  

 

3.6 RESULTS – CORRELATES OF DRIVING VOLATILITY 

After calculating the volatility scores (based on vehicular jerk bands) for each trip in the 

database, statistical models were estimated to investigate relationships between the volatility and 

driver demographics, vehicle characteristics and trip specifics. The database contained 51,370 

trips made by 1,653 survey respondents in. After removing observations with missing 

information, the final database sample contained 40,240 trips by 1,486 respondents-—these are 

unique driver-vehicle pairs, labeled as driver-vehicle ID. Table 3.3 presents the descriptive 

statistics for the dependent and independent variables. The average volatility score is 13.84, 

which means that driving was volatile during 13.84% of the travel time (above or below mean 

vehicular jerk plus or minus one standard deviation). Some trips show calm driving (minimum 

score is 0.1%) while some were highly volatile when 55.46% of the time was spent on jerking 

vehicles at a higher level (outside of the bands).  
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Table 3.3 Descriptive statistics for dependent and independent variables 

Variables N Frequency Mean/Percent Std. Dev Min Max 

Dependent Volatility Score 40240 - 13.840 6.701 0.1 55.46 

Independent 

Driver 

Variable 

Gender [Male] 1486 702 47.24% 0.499 0 1 

Driver age (years) 1486 - 47.183 13.319 15 91 

Vehicle 

Age 
Vehicle age (years) 1486 - 7.908 5.417 0 50 

Vehicle 

Type 

Auto-sedan 1486 652 43.88% 0.496 0 1 

Two-seated 1486 58 3.90% 0.194 0 1 

Van 1486 131 8.82% 0.284 0 1 

RV 1486 3 0.20% 0.045 0 1 

SUV 1486 409 27.52% 0.447 0 1 

Station wagon 1486 31 2.09% 0.143 0 1 

Pickup 1486 202 13.59% 0.343 0 1 

Vehicle 

Fuel Type 

Gasoline 1486 1429 96.16% 0.192 0 1 

Diesel 1486 29 1.95% 0.138 0 1 

Hybrid 1486 19 1.28% 0.112 0 1 

Flex fuel 1486 9 0.61% 0.078 0 1 

Trip 

Variable 

Rush hour [Yes] 40240 18616 46.26% 0.499 0 1 

Weekend [Yes] 40240 9805 24.37% 0.429 0 1 

Trip duration (min) 40240 - 14.165 14.738 2.01 374.45 

Commute trip [Yes] 40240 7843 19.49% 0.396 0 1 

Note: * Rush hours are AM (6:00 am-10:00 am) or PM (3:00 pm-7:00 pm) 

 

In the final sample for modeling, 47.24% drivers were male; the mean age of respondent is 

47.18, and a broad age range from 15 to 91. The mean vehicle age is 7.91 years and 43.88% of 

sampled vehicles were auto-sedans, 27.52% SUVs, and 13.59% pick-up trucks. As expected, 

96.16% vehicles were gasoline-powered. 46.26% of trips were made during rush hours (6:00 

am-10:00 am or 3:00 pm-7:00 pm); 24.37% were made on weekends; 19.49% were commute 

trips; the average trip duration was 14.17 minutes with an almost equal standard deviation–

14.73. Overall, the data seems to be reasonable and in accordance with expectations.  

 

The differences of volatility scores between trips can be result of the driving styles of different 

drivers (males vs. females, or young vs. older drivers), vehicle performance (new vehicles vs. 
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older vehicles, body type, fuel type), or trip specifics (longer vs. shorter trips, commute vs. non-

commute trips, and workday vs. weekend trips). Therefore simple Ordinary Least Squares 

(OLS) models were first estimated to test their associations. However, the traditional OLS 

models assume independence of observations and in this case multiple trips were made by the 

same drivers. Therefore, OLS will violate the independence assumption. One way to deal with 

correlated observations is to estimate a mixed-effect model, also called the mixed model. This 

model can capture correlated errors that arise from repeated observations in a group. In this 

study, the group variable is driver-vehicle pair; repeated variables are personal and vehicular 

characteristics; non-repeated variables are the measures for each specific trip. A “Driver-Vehicle 

ID” was created to represent different driver-vehicle pairs in the sample and was used as the 

random term in the mixed-effects model. The random term quantifies the error due to repeated 

variables. The mixed-effects regression model can contain both fixed and random terms, as 

shown in following equations. 

 

𝑌 = 𝛽𝑋 + 𝛾𝑍 + 𝜀                                                                                                Equation 3.3  

𝛾~𝑁(0, 𝐺)  

𝜀~𝑁(0, 𝜎2𝐼𝑛)  

 

Y is the response vector of volatility score for each trip in the data; X is a vector of fixed 

independent variables (age, gender, vehicle body type, fuel type, vehicle age, trip duration, 

commute or not, peak hour or off-peak, weekend or not); β is a vector of estimated fixed effects 

for matrix X; and Z is a vector of random independent variables (Driver-Vehicle ID); γ is a vector 

of estimated random effects for matrix Z; ε is a vector of unknown random errors; G is an 
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diagonal matrix with identical entries for each fixed effect; In is an identity matrix; γ and ε are 

assumed to be independent.  

 

Table 3.4 provides the modeling results for mixed models. Given that the distribution of vehicle 

jerk-based volatility scores is slightly right-skewed, square root transformed volatility score was 

tested as the dependent variable. However, the transformation improved the statistical properties 

of the model only marginally, e.g., significance of variables. Therefore, the original volatility 

score is used as the dependent variable, providing more intuitive parameter interpretation. 

Overall, the modeling results are reasonable, providing insights about a range of volatility 

correlates. 

 

A key advantage of the mixed model over OLS model is that the random terms added into the 

mixed model structure can better model the effects of repeated observations within the group 

(driver-vehicle pair) by allowing various degrees of freedom for different variables according to 

their variations within groups. More specifically, all observations are treated equally in the OLS 

model regardless of their variations within or between groups. In this case, the overall sample 

size is 40,240 (the total number of trips). However, in the mixed model, only the sample size for 

generic variables [81], (i.e., trip characteristics) with variations within groups remains the same 

(40,240), while the sample size for alternative-specific socioeconomic variables (i.e., driver and 

vehicle characteristics) become 1,486, which is the count of unique driver-vehicle pairs. As a 

result, larger standard errors are reported for alternative-specific socioeconomic variables in the 

mixed model. The estimated coefficients in the OLS and mixed models are nearly identical, but 

with different standard errors for driver and vehicle related terms, as expected. The following 
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modeling interpretation is based on the mixed-effects model using the untransformed volatility 

score.  

 

Full and final models are presented, with the final model containing only the statistically 

significant variables (10% level). The results of the final are discussed. The models have a 

reasonably good fit, explaining 40.3% of the variation in volatility score. As expected, younger 

drivers exhibit higher volatility in driving (5% level). A ten year increase in driver age is 

associated with a decrease of 0.57 in volatility scores. However, there is no statistical evidence 

for association between volatility score and drivers’ gender. Driving volatility varies 

significantly with vehicle characteristics, including vehicle body type, vehicle age and fuel type. 

The results show that two-seat sports cars are associated with higher volatility, possibly due to 

their higher horse power. Trips made by two-seat sports cars drivers have 3.28 higher volatility 

scores, compared with trips made by drivers in the “base” category that includes sedans, RVs, 

station wagons, and SUVs. While van drivers show 1.82 lower volatility compared with drivers 

in the base category, perhaps due to their larger size and more sluggish performance. The use of 

hybrid vehicles shows lower volatility (-1.98) compared with gasoline and diesel vehicles. The 

volatility scores are lower for older vehicles, perhaps due to their engine performance. A year 

added to vehicle age is associated with a 0.10 units decline in the volatility score.  

 

Volatility score also shows significant correlation with trip specific factors, including trip 

duration, time of day, day of the week, and trip purpose. Compared with non-rush hour trips, 

there is a 0.24 units increase in volatility score during rush hours. A further exploration has 

revealed that driving in morning rush hours is more volatile than non-rush hour driving. Driving 
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in lunch and afternoon rush hours is not significantly from non-rush hour driving, in terms of 

driving volatility [51, 52]. Compared with workday trips, the decrease in volatility score for 

weekend trips is 0.30 units; for commute trips, the increase in volatility score is 0.36 units 

compared with non-commute trips; and a one-minute increase in trip duration is associated with 

a 0.04 units lower volatility score.  

 

High levels of correlations among explanatory variables were checked and we did not find them 

to be high. One example is that of commute trips which are typically made during peak hours. In 

the data, 46.28% of the trips were made during rush hours and 19.51% of the trips were for 

commute purposes. While these two variables capture different aspects of travel, i.e., time of day 

and trip purpose, the correlation between them was relatively low (0.156), justifying their joint 

inclusion in the model. 

 

Examination of the random effects, reported as variance component estimates, shows a sizable 

variation (34.84%) in the volatility score across driver-vehicle pairs. This further justifies the use 

of the mixed model. Note that the models presented in this paper show an effort to test whether 

the measurement of volatility can be used to quantify the relationships between instantaneous 

driving decisions and other variables that include personal, vehicular, situational context factors. 

The random effects model confirmed that volatility score varies significantly between different 

driver-vehicle pairs. However, it does not fully disentangle volatility variations between different 

driving trips made by the same driver. A more sophisticated hierarchical modeling framework 

will be needed for answering such questions [82]. 

 



 

65 

Table 3.4 Results of the mixed model using volatility score as the dependent variable 

Dependent = Volatility Score Full model Final model 

Independent Variables   β   P-value β   P-value 

Constant   16.6983 **   <.0001 17.6644 **   <.0001 

Driver Variables 
Gender [Male] -0.0018     0.9871 -   - 

Driver age (years) -0.0573 **   <.0001 -0.0574 **   <.0001 

Vehicle Age Variable Vehicle age (years) -0.1079 **   <.0001 -0.1036 **   <.0001 

Vehicle Body Type Variable 

Auto-sedan  Base     Base       

Two-seated 3.8554 **  <.0001 3.2830 **  <.0001 

Van -1.2621 **  0.0084 -1.8231 **  <.0001 

Recreational Vehicle-RV -2.7353    0.1886 Base    - 

Sports Utility Veh.-SUV 0.3291    0.4249 Base    - 

Station wagon -0.2914    0.6843 Base    - 

Pickup -0.8836  *   0.0522 -1.5596 **   <.0001 

Vehicle Fuel Type Variable 

Gasoline  Base     Base       

Diesel -0.9484   0.1760 Base    - 

Hybrid -1.7512 **  0.0295 -1.9825 **  0.0101 

Flex fuel 1.8594 *   0.0742 1.5765 *   0.0947 

Trip Variables 

Rush hours [Yes] 0.2375 **   <.0001 0.2376 **  <.0001 

Weekend [Yes] -0.3038 **  <.0001 -0.3036 **  <.0001 

Trip duration (min) -0.0356 **  <.0001 -0.0356 **  <.0001 

Commute trip [Yes] 0.3627 **   <.0001 0.3630 **   <.0001 

R2 0.4028 0.4028 

R2 Adjusted 0.4026 0.4027 

Root Mean Square Error-RMSE 5.2672 5.2672 

Mean of Response 13.8397 13.8397 

Observations (or Sum Weights) 40240 40240 

Bayesian Information Criterion-BIC 251937 251900 

Variance Component Estimates 

  Var. Comp. 
Percent  

of Total 

Var. 

 Comp. 

Percent of 

Total 

Variance Between Driver-Vehicle Pairs 14.7136 34.66% 14.8319 34.84% 

Remaining Variance 27.7429 65.34% 27.7430 65.16% 

Total Variance 42.4564 100.00% 42.5749 100.00% 

Note:  

1. Rush hours: AM (6:00 am-10:00 am), PM (3:00 pm-7:00 pm);                                                                

2. ** = significant at a 95% confidence level;  

3. * = significant at a 90% confidence level; 

4. For mixed model, the random term is Driver-Vehicle ID (N=1486); 

5. REML=Restricted Maximum Likelihood; 

6. Statistically significant variables (90% level) are kept in the final model. 
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3.7 POTENTIAL APPLICATIONS 

Regional thresholds (e.g., Atlanta) are used to account for the driving context and highlight 

extreme driving. Two types of driving volatility information can be provided to drivers:  

 Real time driving behavior information: Drivers may be alerted or warned when they 

exceed certain thresholds of acceleration or vehicular jerk, providing them with dynamic 

feedback on their volatility through Advanced Traveler Information Systems (ATIS). 

Displays can be designed to inform drivers their real-time driving volatility, without 

overly distracting them, e.g., through a light on the dashboard that turns yellow or red 

from green. This can also be supplemented via email notifications. 

 Daily/monthly/yearly driving behavior summary information. Long-term advice on 

driving patterns can be provided to the driver based on analysis of their daily, monthly or 

yearly driving performance. Such information can be provided through websites, and 

may contain a record, analysis of driving patterns and customized advice on improving 

accelerations, braking, speeds, and turns, etc.  

 

Thresholds of identifying extreme driving patterns can be based on combinations of 

accelerations, single vehicular jerk, expanded vehicular jerk and variance in these parameters 

[51]. While this study used the mean plus/minus one standard deviation thresholds for 

identifying extreme patterns, other threshold criteria can also be used, e.g., mean plus two or 

three standard deviations. Note that, the thresholds may be further adjusted based on time of day, 

weather, terrain, and roadway classification. They can be personalized based only on trips 

undertaken by the individual or use regional data to calculate thresholds. Adding these functions 

to current mobile devices has the potential for calmer driving.   
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3.8 LIMITATIONS 

This study depends heavily on GPS data collected by in-vehicle devices. To some extent the 

accuracy and availability of location data constrain the analysis. Compared with high industrial 

sampling rates (e.g. 96 kHz), these data are limited by relatively low sampling frequency which 

gives only second-by-second speeds. A reasonable question is whether second-by-second speed 

data are good enough for identifying instantaneous driving decisions. To address this issue, 

additional analyses were conducted by collecting driving data at 20 Hz using a driving simulator 

[83]. This database includes 35,924 seconds speed data made by 24 drivers, generating 718,481 

speed data points, which allows the investigation of micro-driving decision changes within one 

second. The results show that drivers made no change to their speed for 89.9% of the sampled 

seconds, i.e., drivers either kept accelerating, decelerating or just maintained speed during a 

second. Only 10.1% of the sampled seconds involve driver’s decision change. Overall, the 

analysis found that at least 98.5% instantaneous driving decision changes can be detected using 

second-by-second data compared with smaller intervals and that the second-by-second data are 

reasonably accurate for the purposes of this study.  

 

Some other critical information remains unknown to the researchers due to privacy concerns. 

This includes the type of roads and the geo-codes for each second of driving. Missing 

geographically referenced information for trips prevents the researchers from extracting useful 

contextual factors. These include roadway segments used during trips and associated traffic 

counts, road geometry, traffic operations facilities, and surrounding land uses. Therefore, how 

the instantaneous decisions are associated with surrounding traffic, facility and land use can be 

analyzed adding interesting findings. This paper presents an attempt to enhance understanding of 
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volatility in instantaneous driving decisions. More research is needed to investigate the impacts 

of network attributes, environmental attributes on instantaneous decisions, as shown in the 

conceptual framework. Expansion of the study can form the basis of future analysis of driver 

volatility and how it relates to energy, environment and safety. 

 

3.9 CONCLUSIONS 

In the context of using large-scale data for traffic safety improvement, tailpipe emissions and 

energy use reduction in a driving dominant environment, it is essential to understand drivers’ 

instantaneous driving decisions and their associated impacts. The research takes advantage of 

large-scale driving databases coupled by second-by-second GPS data to develop a framework for 

the research agenda in driving behavior studies addressing how to define the instantaneous 

driving decisions in a quantifiable way and how to quantify explicitly volatile driving in a 

defensible manner. The answer is to create a volatility indicator to measure the gap between an 

individual’s driving practice and the typical driving practice in that region. Assuming the typical 

driving practice applied by most people represents the norm of driving culture in that region, the 

driving practices standing out of that norm could be defined as volatile driving. The paper 

demonstrates a methodology to measure the volatility, which is based on variance in vehicular 

jerk between individual drivers and regional sample profiles. The creation of a robust volatility 

score that is able to quantify the extent of volatility, instead of simply labeling a driver as 

aggressive or non-aggressive is a key contribution. 

 

To create a typical driving profile for the study metropolitan area, acceleration or vehicular jerk 

distributions were analyzed using speed bins and enveloped by an upper and lower band (mean 
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plus/minus one standard deviation). While typical driving practices are identified when the 

acceleration or vehicular jerk fall between the bands, volatile driving is defined as accelerations 

or vehicular jerks that fall out of the bands range. A volatility score for each trip or each driver 

can be calculated by the percent of travel time spent on volatile driving. In this sense, developing 

a regional driving profile is critical since this driving profile serves as a “standard” to define 

individual’s driving volatility. Atlanta’s driving profile was developed through an innovative 

visualization of data, the time spent on each driving behavior was calculated. Specifically, 

overall 14% of the travel time spent on high vehicular jerk; 7% of driving time was spent on 

idling or traveling at speeds below 5 mph, 47% of driving time was spent on acceleration, 41% 

of driving time was spent on deceleration and 5% of driving time was spent on maintaining 

constant speed. This information can be useful for designing driving cycle in a local context for 

better emissions estimations. The methodology has great potential to be expanded to measure 

driving volatility on road infrastructures as an indicator of roadway safety. Roads with higher 

risk (those experiencing more hard braking and negative jerks) can be identified and proactive 

strategies can be designed. 

 

The findings are useful for potential applications to fleet vehicles and the general driving 

population. Driving volatility information based on accelerations and vehicular jerk can be 

incorporated in driving assist systems, e.g., advanced traveler information systems (ATIS). 

Current traveler information systems (such as 511) are largely meant to support more macro 

driver decisions (e.g., route choice and route diversion) and do not provide much instantaneous 

information that can help drivers make more micro driving decisions. The real-time driving 

volatility information reflecting driving performance based on performance of fellow fleet 
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vehicles or neighbors or just their own performance can support short-term micro decisions. 

This in turn can benefit the community or fleets in several ways: 1) calmer driving; 2) safer 

driving in general (especially on icy or slippery road surfaces where alert thresholds can be 

lowered); 3) lower fuel consumption and emissions; and 4) identification of dangerous road 

segments (such as poor sight distance) that may result in volatile driving. 
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CHAPTER 4 THE ROLE OF ALTERNATIVE FUEL VEHICLES: USING 

BEHAVIORAL AND SENSOR DATA TO MODEL HIERARCHIES IN TRAVEL 
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This chapter presents a modified version of a research paper by Jun Liu, Asad J. Khattak and Xin 

Wang. The paper was accepted for publication by Transportation Research Part C: Emerging 

Technologies, 2015. DOI: 10.1016/j.trc.2015.01.028.  

 

ABSTRACT 

Greater adoption and use of alternative fuel vehicles (AFVs) can be environmentally beneficial 

and reduce dependence on gasoline. The use of AFVs vis-à-vis conventional gasoline vehicles is 

not well understood, especially when it comes to travel choices and short-term driving decisions. 

Using data that contains a sufficiently large number of early AFV adopters (who have overcome 

obstacles to adoption), this study explores differences in use of AFVs and conventional gasoline 

vehicles (and hybrid vehicles). The study analyzes large-scale behavioral data integrated with 

sensor data from global positioning system devices, representing advances in large-scale data 

analytics. Specifically, it makes sense of data containing 54,043,889 seconds of speed 

observations, and 65,652 trips made by 2,908 drivers in 5 regions of California. The study 

answers important research questions about AFV use patterns (e.g., trip frequency and daily 

vehicle miles traveled) and driving practices. Driving volatility, as one measure of driving 

practice, is used as a key metric in this study to capture acceleration, and vehicular jerk decisions 

that exceed certain thresholds during a trip. The results show that AFVs cannot be viewed as 

monolithic; there are important differences within AFV use, i.e., between plug-in hybrids, 

battery electric, or compressed natural gas vehicles. Multi-level models are particularly 

appropriate for analysis, given that the data are nested, i.e., multiple trips are made by different 

drivers who reside in various regions. Using such models, the study also found that driving 

volatility varies significantly between trips, driver groups, and regions in California. Some 
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alternative fuel vehicles are associated with calmer driving compared with conventional vehicles. 

The implications of the results for safety, informed consumer choices and large-scale data 

analytics are discussed.  

 

4.1 INTRODUCTION 

Automobiles are the dominant mode of personal travel in the United States. While they are 

associated with economic development, automobiles also have adverse impacts on the 

environment, generate greenhouse gases, and result in dependence on petroleum. One solution 

to lowering petroleum dependence and reducing emissions is the wider adoption and use of 

Alternative Fuel Vehicles (AFVs). They are generally more fuel-efficient and environmentally-

friendly compared with conventional fuel vehicles (gasoline and diesel) and fulfill expanding 

individual travel demands of the future [84, 85]. Driving behavior in alternative fuel vehicles is 

of particular interest, if they are to be purchased and used widely. AFVs include plug-in hybrid 

electric vehicles (PHEVs), battery electric vehicles (BEVs), and compressed natural gas (CNG). 

While most hybrid electric vehicles are not necessarily AFVs (i.e., are gasoline-based), they are 

more fuel efficient making use of a smaller engine coupled with electric battery. The key 

research questions are:  

 Whether alternative fuel vehicles and hybrid vehicles have similar use characteristics 

(trip frequency, vehicle miles traveled, etc.) as conventional vehicles?  

 Whether drivers of alternative fuel vehicles are more or less prone to abrupt maneuvers, 

e.g., aggressive accelerations or vehicular jerk? 

 

The main motivation for the study comes from the potential to learn important lessons from 
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examining the behaviors of early AFV adopters who typically have to overcome adoption 

barriers such as higher vehicle acquisition costs, shorter driving ranges, scarcity of refueling 

stations, and potential safety and reliability issues. The study provides a stronger behavioral 

basis for future tools that can be developed to potentially increase the adoption, diffusion, and 

use of AFVs and ultimately a large-scale energy transition to alternative fuels. There is an added 

sense of urgency to examine the use of AFVs as they are gaining greater acceptance and 

popularity.  

 

Behavioral data used in this study are hierarchical, i.e., they are nested with multiple trips made 

by different drivers who reside in various regions. Multi-level models have been used for 

analysis of such data, but not widely in the travel behavior field. This study uses multi-level 

modeling in a novel way to study whether driving volatility (a key measure of driving 

performance) varies significantly between trips, driver groups, and regions in California. 

Relatively new and unique large-scale behavioral data integrated with sensor data from global 

positioning system devices are used to estimate models and learn from expanded data that has 

only recently become available [86-88].   

 

4.2 LITERATURE REVIEW 

Vehicle miles/hours traveled, trip frequency, and travel times/distances are often used as 

measures of performance in transportation. Increasingly, speed and acceleration data are the 

becoming available and these measures are increasingly used to characterize the driving 

behavior. Wang et al. used the average speed, average acceleration and the percentage of time in 

acceleration mode to capture the driving behavior in Chinese cities [89]. Hung et al. viewed the 
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driving characteristics in a similar way and pointed out the associated factors, including land 

use, flow density, road width and road network [90]. Sciarretta et al. investigated the driving 

behavior of hybrid electric vehicle by collecting their speeds and accelerations. They pointed out 

that the driving conditions, driver characteristics and vehicle performance are important for 

understanding the driving experience of hybrid electric vehicle users [91]. Johannesson et al. 

also used the speed and acceleration to quantify driving behavior of hybrid vehicles [92]. 

Furthermore, the rates of fuel consumption and emissions were used to characterize the driving 

behavior of internal combustion engine vehicles [64]. Generally, hybrid vehicles have higher 

fuel economy than conventional vehicles [93, 94] and also there are zero-emission electric 

vehicles in use [95]. In order to be somewhat consistent with previous studies, this study uses 

measures related to the vehicle movement (speed) to characterize the driving behavior.  

 

To understand driving behavior, researchers have defined driving styles, e.g., aggressive driving 

or calm driving. Typically, cut-off thresholds are used to demarcate driving behavior. Kim et al. 

gave 1.47 m/s2 (4.82 ft/s2) and 2.28 m/s2 (7.47 ft/s2) as thresholds for aggressive and extremely 

aggressive accelerations [12]. While De Vlieger et al. pointed out 0.45-0.65 m/s2 for calm 

driving, 0.65-0.80 m/s2 (2.13-2.62 ft/s2) for normal driving and 0.85-1.10 m/s2 (2.79-3.61 ft/s2) 

for aggressive driving [13]. The somewhat arbitrary cut-off points ignore the heterogeneity of 

driving behavior under different speeds, which has been found in some of the previous studies 

by the authors [22, 51]. The results showed that at lower speeds on local/collector roads large 

acceleration/deceleration values are frequent but at higher speeds (typically on freeways with a 

good level of service) drivers often do not (or cannot) accelerate and decelerate abruptly. 

Notably, alternative fuel vehicles may have different performance outcomes because of their 
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different power systems compared with conventional gasoline vehicles [96, 97].  

 

This study uses the term driving “volatility” instead of “aggressiveness” to measure abrupt 

accelerations and decelerations, as mentioned in some of our previous studies [22, 51]. Using 

the term “volatility” is neutral and describes the driving behavior in a more objective and 

impersonal way. The method for measuring driving volatility is discussed in the next section. 

 

A variety of statistical models have been used to explore links between driving behavior and 

associated factors, based on the data structure and research purposes. Analysis of variance 

(ANOVA), Chi-square test and  T-tests are the most commonly used methods comparing 

various groups [98, 99]. Ordinary least square (OLS) models including linear and logistic 

regressions are frequently applied to find the relationships between outcomes and associated 

factors [100-103]. Some studies have noted the hierarchical nature of behavioral data and 

applied multi-level models to explain relationships [104-106]. They reported the possible 

variation of predictor effects across groups but did not clearly report whether there are sizable 

variances at each level. Although data may be structured hierarchically, predictors may not 

necessarily vary substantially across groups. Therefore, it is very important to report the extent 

of variations across groups. In this vein, we examine the variances at each level before modeling 

and report the explained/unexplained variances at each level when predictors are added.  

 

Some studies have applied hierarchical modeling techniques (also called mixed-effects 

modeling) to handle unobserved heterogeneity [107, 108] by adding random effects in addition 

to fixed effects. Notably, mixed-effects models can be characterized as two-level hierarchical 
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models with all predictors (except one random factor) at one level. The data used in this study 

are more complex and structured at three-levels with three sets of predictors. This study applies 

a three-level hierarchical model in a novel way to untangle the complex relationships between 

driving behavior and predictors at various levels.  

 

4.3 METHODOLOGY 

The early AFV adopters are likely to be different from the mainstream consumers in that they are 

willing to accept the difficulties of adopting alternative fuel vehicles, and likely value the social 

benefits of AFVs. The issue of self-selection is recognized as important, given that early AFV 

adopters may represent individuals with higher incomes who are working and traveling longer 

distances. This study focuses on exploring the differences in use (given adoption) by AFV and 

conventional vehicle drivers, and not on exploring if a larger market for AFVs exists based on 

early adopters. Therefore, the issue of self-selection is recognized, but it is not directly addressed 

in the study.  

 

AFVs are innovations that have some advantages (but also disadvantages) and are diffusing 

through the system. This study takes advantage of the wealth of information about AFV and 

conventional vehicle driving contained in behavioral responses coupled with GPS data. It 

accounts for the hierarchical nature of the data, untangling complex relationships at various 

levels. The hierarchical model better accounts for lack of independence in explanatory variables 

and the fact that some independent variables can be different, depending on the level of 

hierarchy. The data, use measures, and hierarchical modeling structure are discussed in more 

detail below. 
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4.3.1 Data Acquisition 

The data used in this study is driving behavioral data collected in a comprehensive travel survey 

- California Household Travel Survey (CHTS) conducted by California Department of 

Transportation California during January 2012 through January 2013[23]. The data are large-

scale, covering 58 counties across the State of California representing various land use types and 

populations. This study partitioned the original data into five subsets, including three 

metropolitan areas (Los Angeles, San Francisco, and Sacramento), California central valley 

south (Fresno-Stockton), and other areas (mainly suburban and rural areas) in California.  

 

In the CHTS survey, the driving behavior was recorded second-by-second by in-vehicle GPS and 

OBD (Global Positioning System and On-Board Diagnostics) devices during each trip. The 

devices captured travel date, time, latitude and longitude (however this geo-code information 

was removed from the public release database), speed and other standard GPS/OBD variables. 

Combined with other survey information, the final released data contains driver social 

demographic data, trip information, and second-by-second driving records for each trip. Table 

4.1 shows the details of the subsets used in this study. The data are structured in a hierarchy—

trips are nested within drivers and drivers are nested in regions. 

Table 4.1 Sample Characteristics 

Region Abbreviation 
Drivers 

/Vehicles 
Trips 

Driving Records  

(Seconds) 

Los Angeles Metropolitan Area  LA 1,258 29,373 24,185,380 

San Francisco Metropolitan Area SF 636 14,417 12,579,345 

Sacramento Metropolitan Area SAC 315 6,468 5,229,874 

California Central Valley (south) CCV 289 6,878 5,204,840 

Other California regions Other 410 8,516 6,844,450 

Total  2,908 65,652 54,043,889 
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4.3.2 Driving Volatility Score 

In addition to various conventional travel measures, this study uses a relatively new measure of 

driving volatility to understand how AFVs and conventional vehicles are being used. The driving 

volatility score is defined as the percentage of abnormal driving seconds (i.e., large vehicular 

jerk values) over the duration of one entire trip. The value of vehicular jerk is the derivative of 

acceleration or the second derivative of speed, and is able to capture the instantaneous change of 

driving decisions (e.g., from accelerating to decelerating). Large values imply abnormal 

variability of instantaneous driving decisions. To generate the thresholds for recognizing 

abnormal driving seconds, 54 million driving records collected in CHTS survey are 

disaggregated in to 0.5 mph speed increment bins. For example, all driving records with speeds 

from 29.75 ~ 30.25 mph are gathered in the 30 mph bin to generate the mean and standard 

deviation of vehicle jerk values at 30 mph. If one driving second around 30 mph has a vehicular 

jerk value greater than the mean +/- 1 standard deviation of this speed range, this second is 

labeled “volatile driving second”. Thus volatile driving seconds reflect more abrupt driving 

behavior compared with the majority of driving behavior in the same speed range. Thus, the 

driving volatility score is a measure of driving behavior during one trip and can be calculated by 

following equation:  

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 % =  
𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝑜𝑓 "Vehicular Jerk" >  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

𝑆𝑒𝑐𝑜𝑛𝑑𝑠 𝑜𝑓 𝐸𝑛𝑡𝑖𝑟𝑒 𝑇𝑟𝑖𝑝 
× 100  Equation 4.1 

Where, threshold = (mean) +/-   (standard deviation) of vehicular jerk values within a speed 

range k. 

𝑉𝑒ℎ𝑖𝑐𝑢𝑙𝑎𝑟 𝐽𝑒𝑟𝑘, 𝑗 =  
𝑑𝒂

𝑑𝑡
=

𝑑2𝒗

𝑑𝑡2
=

𝑑3𝒓

𝑑𝑡3
 Equation 4.2 
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Vehicular jerk is the first derivative of acceleration (a) with respect to time, the second derivative 

of speed (v) and the third derivative of distance (r). The calculated score is the dependent 

variable for all models in this study. More details about the driving volatility score calculation 

are available in previous papers [22, 51].  

 

4.3.3 Hierarchical Linear Modeling 

Automobile driving behavior has been linked with a number of factors. Those factors influence 

driving behavior from different perspectives and form a hierarchical structure of associated 

factors. For instance, drivers in the same area face similar road network, terrain, and are 

potentially influenced by the similar driving cultures [109]. However, drivers also have their own 

characteristics, such as gender, age, education, income, employment, etc. Further, while drivers 

are making different trips, their driving behavior is associated with trip features, such as time of 

day, trip length, trip purpose, etc. Thus, putting these levels (region, driver, and trip) together 

regardless of the hierarchical features to understand their associations with driving behavior will 

miss important relationships. 

 

The data used in this study are hierarchical, as shown in Figure 4.1. Level 1 is the trip level with 

65,652 observations; Level 2 is driver level with 2,908 records, and Level 3 has 5 regions. Three 

levels are involved with three means and variances explained by associated factors in three 

levels. Level 1 has variables related to trips, such as trip lengths, trip duration, trip average 

speed, trip purpose, time of day and day of week. Level 2 has variables associated with driver 

and the vehicle used, such as driver age and gender, vehicle body type, age and fuel type. Note 
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that, since one vehicle corresponds to one driver, the driver level includes both driver- and 

vehicle- related variables. Level 3 has indicator variables to indicate the region in California.  

 

Figure 4.1 Hierarchical data structure used to understand driving behavior 

 

Since the trips made by the same driver are not independent from each other, assumption of 

independent observations required for traditional OLS (Ordinary Least Squares) regression 

models is violated [110]. Therefore, the inter-driver difference and inter-trip difference cannot be 

estimated accurately without considering the multilevel nature of data and group differences. 

One method to statistically account for hierarchical structure of data is to use multi-level or 

hierarchical linear modeling. Hierarchical linear modeling can accommodate non-independence 

of observations and the heterogeneity of variance across repeated measures (i.e., the same driver 

made multiple trips). Using hierarchical linear modeling, both the within and between group 

associations are simultaneously taken into account.  The modeling structures are further 

discussed along with the modeling outputs in next section.  
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4.4 RESULTS 

4.4.1 Descriptive Statistics 

4.4.1.1 Socio-Demographics and Travel Characteristics 

Tables 4.2 and 4.3 present the statistics structured at each level of the hierarchy. Notably, 

observations with missing information (e.g., no driver age or gender) were removed. The final 

dataset contains 50,399 trips made by 2,356 drivers from five California regions. Specifically, 

there are 22,801 trips made by 1,030 drivers from LA, 10,736 trips made by 500 drivers from SF, 

5,106 trips made by 255 drivers from SAC, 5,661 trips made by 245 drivers from CCV and 

6,095 trips made by the rest of 326 drivers from other areas. For level-1, the trip level, there are 

no specific clusters. For level-2, driver level, there are 2,365 groups (or drivers); on average each 

driver made 21 trips (min = 1, max = 79). For level-3, the regional level, the distribution of 

observation is show in Table 4. 

 

Table 4.2 Distributions of Observations at Each Hierarchy 

Level No. of Groups 
Trips per Group 

Minimum Average Maximum 

Level 1 50,399 trips 1 - 1 

Level 2 2,356 respondents 1 21.4 79 

Level 3 5 regions 5,106 10,080 22,801 

 

Table 4.3 Distributions of Observations at Level-3 

Region Trips in Region Percentage Drivers in Region Percentage 

LA 22,801 45.24%   1,030   43.72% 

SF 10,736 21.30%   500   21.22% 

SAC 5,106 10.13%   255   10.82% 

CCV 5,661 11.23%   245   10.40% 

Other CA 6,095 12.09%   326   13.84% 

Total 50,399 100.00%   2,356   100.00% 

 

 



 

83 

4.4.1.2 Descriptive Statistics of Hierarchical Linear Model 

Descriptive statistics of key variables are shown in Table 5. The numbers seem reasonable and 

were error checked. Volatility score is measured for 50,399 trips in the database. The average 

volatility score is 14.31%. The average trip distance was 9.02 mile (min = 0.07 mile, max = 

342.78 mile), corresponding to average trip duration of 14.57 minutes and average speed was 

29.13 mph; 46.2% of trips were made during rush hours, 22.9% were made on weekends and 

16.4% were commute trips (between home and school/work).  

 

Among 2,365 respondents, the mean driver age was 48.9 years, ranging from 16 to 87 years; 

48.7% were males. The mean vehicle age in the final dataset was 7 years. Trips were made with 

vehicles with various body types, fuel uses, transmissions and power systems. 42.6% of vehicles 

were auto sedans, 77.1 % of vehicles were of gasoline fuel type, 85.7% were automatic and 53% 

were front-wheel drive. Hybrid electric vehicles (HEV) were 13% of the sample, while AFVs 

were collectively about 5.5%, i.e., PHEV were 0.8%, CNG 1.0%, and BEV 3.7%.  

 

The covariates at level-3 model are dummy variables for CA regions. Notably, for hierarchical 

modeling, in addition to the fixed-effects parameters in Table 4.4, there are random-effect 

parameters (or group variables) which are based on driver ID for level-1 observation groupings 

and region ID for level-2 observation groupings.  
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Table 4.4 Descriptive Statistics for Behavioral Data 
Covariates N Mean Std. Dev. Min Max 

Dependent 
Volatility Score 50,399 14.305 7.534 0.000 67.969 

√Volatility Score 50,399 3.648 1.000 0.000 8.244 

Level-1 

Predictors 

Trip Distance (Mile) 50,399 9.015 15.259 0.077 342.477 

Trip Duration (Minute) 50,399 14.570 17.097 2.000 363.100 

Trip Average Speed (MPH) 50,399 29.129 12.718 2.213 71.255 

*Rush Hour [Yes=1, No=0] 50,399 0.462 0.499 0 1 

Weekend [Yes=1, No=0] 50,399 0.229 0.420 0 1 

Commute Trip  [Yes=1, No=0]  50,399 0.164 0.370 0 1 

Level-2 

Predictors 

Gender [Male=1, Female=0] 2,356 0.487 0.500 0 1 

Driver Age (years) 2,356 48.907 13.387 16 87 

Vehicle Age (years) 2,356 7.048 4.722 0 52 

Body Type 

Auto-Sedan  2,356 0.426 0.495 0 1 

Two Seated  2,356 0.059 0.235 0 1 

Van  2,356 0.057 0.232 0 1 

Hatchback 2,356 0.081 0.272 0 1 

SUV  2,356 0.193 0.395 0 1 

Station Wagon  2,356 0.040 0.196 0 1 

Pickup  2,356 0.131 0.337 0 1 

Convertible 2,356 0.014 0.118 0 1 

Fuel Type 

Hybrid Elec. Vehicles 2,356 0.130 0.337 0 1 

Gasoline Vehicles 2,356 0.771 0.420 0 1 

Diesel Vehicles 2,356 0.037 0.190 0 1 

Plug In Hybrid Elec. Veh. 2,356 0.008 0.089 0 1 

CNG (C. Natural Gas) 2,356 0.010 0.098 0 1 

BEV (Electric) Vehicles 2,356 0.037 0.188 0 1 

Unknown Vehicle type 2,356 0.007 0.082 0 1 

Trans-mission 

Automatic 2,356 0.857 0.350 0 1 

Manual 2,356 0.103 0.304 0 1 

Both 2,356 0.035 0.184 0 1 

Unknown 2,356 0.005 0.071 0 1 

Power Train 

Front-Wheel 2,356 0.530 0.499 0 1 

Rear-Wheel 2,356 0.174 0.379 0 1 

Four-Wheel 2,356 0.190 0.392 0 1 

Unknown 2,356 0.107 0.309 0 1 

Level-3 

Predictors # 

Region 

Indicator 

LA 5 - - 0 1 

SF 5 - - 0 1 

SAC 5 - - 0 1 

CCV 5 - - 0 1 

Other 5 - - 0 1 

Note: 

*: Rush hours are AM (6:30 am-10:00 am) or PM (3:30 pm-7:00 pm); 
#: Level-3 predictors are regional indicators that are indicator variables (0 or 1). They provide information about the 

region of the driver/vehicles at level-2.  
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4.4.1.3 Comparisons of Alternative Fuel Vehicles with Conventional Vehicles 

Several comparisons of AFV and conventional vehicle use are shown in Table 4.5, along with t-

tests with conventional vehicles. While the results show some differences, they suggest that 

AFVs cannot be viewed as monolithic. There are important differences within AFV use and 

performance that need to be explored, i.e., there are subtle but important differences within 

AFVs (e.g., PHEV vs. BEV and PHEV vs. CNG).  

The key results are summarized below:  

 No statistically significant differences (p<0.05) were observed between AFVs and 

conventional vehicles in terms of total daily trips, except drivers of BEVs made 

significantly fewer trips (p<0.01).  

 The daily distances traveled are shorter for some AFVs (BEV and PHEV) and longer for 

other AFVs (HEV and CNG) compared with gasoline vehicles.  

 Drivers spent significantly longer time traveling daily in their HEV or CNG vehicles 

compared with conventional vehicles.  

 While slightly more time was spent on deceleration by some AFVs (BEV and PHEV) 

compared with gasoline vehicles, clear trends did not emerge in terms of time spent on 

accelerations or deceleration.  

 The differences between AFVs and conventional vehicles were not in the same direction 

when it comes to vehicular jerk.  

 HEVs and BEVs had relatively smaller volatility score compared with gasoline vehicles, 

but PHEV and CNG showed higher volatility scores.  

These comparisons have revealed important behavioral differences. A key measure of driving 

practices-the driving volatility is selected for further modeling. The next step is to use the 
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hierarchical structure of the data to explore associations of AFVs and volatility, while controlling 

for other factors. 

 

Table 4.5 Comparisons between Conventional Gasoline Vehicles and AFVs (plus Hybrid) 

 Conventional Vehicles Alternative Fuel Vehicles 

Travel Attributes 
Gasoline 

Vehicle 

Diesel 

Vehicle 
Hybrid EV PHEV Battery EV 

CNG 

(Natural 

Gas) 

Vehicle 

Number of vehicles in dataset 1817 88   307   19  86  23   

% of large passenger vehicles ^  43.60% 50%   16%   0  2.30%   4.30%   

Total trips in dataset 38563 2011   6904   391  1708  484   

Mean daily trips  4.23 4.46 * 4.2   4.03  3.72 *** 4.4   

Total VMT (mile) 334418 23257.3   70669.57   2984.99  14477.14  5004.41   

Mean daily VMT (mile) 35.47 49.14 *** 43.54 *** 29.25 * 30.73 ** 47.98 *** 

Total duration (hour) 9054.31 579.64   1876.37   88.6  421.47  129.81   

Mean daily duration (hour) 0.96 1.23 *** 1.14 *** 0.87  0.9  1.25 *** 

% of short trips (< 3 miles) 41.63% 35.20%   35.81%   37.60%  34.37%  35.96%   

% of long trips (> 25 miles) 7.43% 11.79%   9.57%   3.58%  6.85%  9.71%   

Mean % time on idling per trip 9.50% 8.99% *** 8.77% *** 9.06%  8.60% *** 8.85% ** 

Mean % time on extended stable driving  per trip # 5.16% 7.03% *** 5.61% *** 4.82%  6.92% *** 6.19% *** 

Mean % time on acceleration per trip 44.89% 44.02% *** 44.81%   44.88%  43.46% *** 45.08%   

Mean % time on deceleration per trip 39.59% 39.21% *** 39.81% *** 40.50% *** 40.22% *** 39.13% ** 

Mean speed (mph) 28.59 30.06 *** 29.51 *** 28.85  28.94  31.19 *** 

Maximum speed (mph) 80.16 80.06   80.07   80.01  80.05  80.05   

Mean acceleration (ft/s2) 1.47 1.36 *** 1.42 *** 1.49  1.44 ** 1.48   

Maximum acceleration (ft/s2) 14.37 13.57   12.11   11.95  12.42  9.54   

Mean deceleration (ft/s2) -1.60 -1.46 *** -1.54 *** -1.60  -1.49 *** -1.65 * 

Maximum deceleration (ft/s2) -16.00 -13.26   -13.76   -12.97  -12.18  -12.48   

Mean positive vehicular Jerk  (ft/s3) 0.54 0.48 *** 0.52 *** 0.55 * 0.52 *** 0.54   

Maximum positive vehicular Jerk (ft/s3) 13.09 13.57   12.11   9.38  12.42  9.54   

Mean negative vehicular Jerk (ft/s3) -0.41 -0.38 *** -0.40 *** -0.43 ** -0.40 *** -0.41   

Maximum negative vehicular Jerk (ft/s3) -5.84 -6.51   -5.17   -4.94 *** -5.42  -4.49   

Mean driving volatility score (%) 14.46 12.92 *** 13.86 *** 15.49 *** 13.69 *** 15.43 *** 

Maximum driving volatility score (%) 67.97 57.7   51.64   46.33   56.34   48.48   

Notes:  

1. ^: Large passenger vehicles are VAN, SUV and Pickups, compared with auto-sedan, convertible, hatchback, etc.;  

2. #: Extended stable driving was defined by speed is above 30 mph and acceleration is less than 0.088 (ft/s2).  

Acceleration threshold was calibrated using test driving data; 

3. Variable in Italics show results of t-tests, for comparisons between vehicle group vs. conventional vehicles;    

4. *** = t-test significant at a 99% confidence level; ** = t-test significant at a 95%confidence level; * = t-test 

significant at a 90% confidence level. The base for comparative t-tests are conventional Gasoline Vehicles (GV). 
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4.4.2 Multi-Level Modeling 

Figure 4.2 shows the distributions of driving volatility score at each level. At the region level, 

Los Angeles has a relatively larger mean volatility score than other regions. The driver-level 

distribution is the distribution of mean volatility scores of 2,356 drivers, since on average one 

driver made 21 trips in the CHTS survey (as shown in Table 2). At the trip-level, the distribution 

is right-skewed, as shown in the figure at the top right. While other transformation were tested, a 

square-root transformation shifted the shape closer to normal, as shown in the bottom right 

figure. The dependent variable for the hierarchical model was the square-root of volatility score.  

 
* Driver-level distribution is the distribution of mean volatility scores of 2,356 drivers 

Figure 4.2 Distributions of volatility scores at trip, driver, and regional levels 

 

4.4.2.1 Variance-Component Model 

Before considering all correlates, which can have both fixed and random effects, this study 

examined the variances of responses (i.e., square-root driving volatility score) at each level by 

applying a simple Variance-Component Model, i.e., a constant only model. The model structure 

used for this is as follows: 

𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝑒𝑖𝑗𝑘                                                              
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𝛽0𝑗𝑘 = 𝜋00𝑘 + 𝑟0𝑗𝑘                                     

𝜋00𝑘 = 𝛾000 + 𝜑00𝑘                    

Or,                   

𝑌𝑖𝑗𝑘 = 𝛾000 +  𝜑00𝑘 + 𝑟0𝑗𝑘 + 𝑒𝑖𝑗𝑘                                                                      Equation 4.3 

Where,  

𝑌𝑖𝑗𝑘 = driving volatility score for trip (i) made by driver (j) in region (k);  

𝛾000 = grand mean (of transformed) driving volatility score of 50,399 trips; 

𝜑00𝑘 = standard deviation at level-3 (regional level); 

𝑟0𝑗𝑘  = standard deviation at level-2 (driver level); 

𝑒𝑖𝑗𝑘 = standard deviation at level-1 (trip level). 

 

Note that the output of hierarchical modeling generally has three components: 1) fixed-effects 

parameters, 2) variance estimation of random-effects parameters, and 3) summary statistics. Since 

the second component is the major focus before the final hierarchical modeling step, the 

coefficients of fixed-effects parameters are not presented until the last modeling step owing to 

space limitations.  

 

The outputs of Variance-Component Models are shown in Table 4.6. Results show that 3.526 is 

the estimate of grand mean (of the square-root) of driving volatility for 50,399 trips. Averaging 

across drivers and regions, the expected volatile driving time accounts for 3.526*3.526 =12.43% 

of the trip duration. The estimates of variance components reveal that there are 0.047 (4.6%), 0.452 

(44.5%) and 0.517 (50.9%) variances at regional, driver and trip levels respectively. The standard 
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deviations at each level are 0.216, 0.672 and 0.719 respectively. Clearly, driver level has a sizable 

variance (44.5%) component, so the use of hierarchal modeling is valuable. 

 

Table 4.6 Outputs of Variance-Component Model 

Effect Type Terms Coef. Std. Err. P-value 
95% Conf. Interval 

Lower Upper 

Fixed-Effects  Constant, 𝛾 3.526 0.098 0.000 3.334 3.718 

Random-

Effects 

Region ID: Identity           

Variance (Constant) , 𝜑2 0.047 0.030   0.013 0.166 

Driver ID: Identity           

                     Variance (Constant), 𝑟2 0.452 0.014  0.425 0.481 

Variance (Residual), 𝑒2 0.517 0.003   0.511 0.524 

SUMMARY 

STATISTICS 

Number of Observations 50399 

Number of Groups (Driver ID) 2356 

Number of Groups (Region ID) 5 

Log Likelihood -58188.6 

Wald 𝜒2 - 

Prob > 𝜒2 - 

 

4.4.2.2 Random Intercept Model 

Covariates can be added to explain these variances. Level-related predictors can explain the 

corresponding variances estimated by variance-component model, as shown in Table 4.6. At this 

step, the predictors at higher level explain the variance of the intercept in the lower level model. 

In other words, only the intercepts are random and coefficients of predictors are fixed. The Random 

Intercept Model’s formulation is as follows:  

𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽𝑖𝑗𝑘(𝐿𝑒𝑣𝑒𝑙 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑒𝑖𝑗𝑘  

𝛽0𝑗𝑘 = 𝜋00𝑘 + 𝜋01𝑘(𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑟0𝑗𝑘          

𝜋00𝑘 = 𝛾000 + 𝛾001(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑00𝑘                          

Or,  
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𝑌𝑖𝑗𝑘 = 𝛾000 + 𝛾001(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑00𝑘 + 𝜋01𝑘(𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑟0𝑗𝑘  +

𝛽𝑖𝑗𝑘(𝐿𝑒𝑣𝑒𝑙 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑒𝑖𝑗𝑘                                                                      Equation 4.4 

Where, 

𝑌𝑖𝑗𝑘 = driving volatility score for trip (i) made by driver (j) in region (k);  

𝛾000 = grand mean (of transformed) driving volatility score of 50,399 trips; 

𝛾001 = coefficients for level-3 predictors (i.e., dummy variable); 

𝜋01𝑘= coefficients for level-2 predictors (i.e., driver and vehicle characteristic); 

𝛽𝑖𝑗𝑘= coefficients for level-1 predictors (i.e., trip-related factors); 

𝜑00𝑘 = root of unexplained variance at level-3 (regional level); 

𝑟0𝑗𝑘  = root of unexplained variance at level-2 (driver level); 

𝑒𝑖𝑗𝑘 = root of unexplained variance at level-1 (trip level). 

 

Table 4.7 presents the unexplained variances at the three levels from the Random Intercept Model. 

Since the focus is on unexplained variances at three levels, only the random-effects part is 

presented. The results in Table 4.7 show that the variances at three levels became smaller from 

those reported in Table 4.6, with predictors explaining some of the variation. Notably, the variance 

at level-3 (regional level) was explained nearly 100% by the level-3 predictors (nearly zero 

variance remains). Thus, level-1 and level-2 predictors have constant effects across regions and 

there is no need to add predictors to explain variances at level-3.  
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Table 4.7 Outputs of Random Intercept Model 

Effect Type Terms Coef. Std. Err. 
P-

value 

95% Conf. Interval 

Lower Upper 

Fixed-Effects 

Constant, 𝛾000 3.947 0.073 0.000 3.804 4.090 

Level-1 Predictors, 𝛽𝑖𝑗𝑘  - - - - - 

Level-2 Predictors, 𝜋01𝑘 - - - - - 

Level-3 Predictors, 𝛾001  - - - - - 

Random-

Effects 

Region ID: Identity           

Variance (Constant) , 𝜑2 1.25E-

12 

2.47E-

11 
  1.62E-29 9.57E+0

4 Driver ID: Identity              

                     Variance (Constant), 

𝑟2 

0.388 0.012   0.365 0.414 

Variance (Residual), 𝑒2 0.509 0.003   0.502 0.515 

SUMMARY 

STATISTIC

S 

Number of Observations 50399 

Number of Groups (Driver ID) 2356 

Number of Groups (Region ID) 5 

Log Likelihood -57627.017 

Wald 𝜒2 1409.78 

Prob > 𝜒2 0.000 

 

4.4.2.3 Random Intercept and Slope Model 

There is a sizable unexplained variance (0.388, 43.3%) at level-2. Two ways to reduce unexplained 

variance are: 1) by adding level-2 predictors (driver- and vehicle-related factors); 2) by adding 

random effects for level-1 (trip level) predictors. For this study, additional level-2 predictors are 

not available. Random effects of level 1 predictors can be revealed through hierarchical modeling. 

In addition to the intercepts at level-1 the slopes at level-1 also become the dependent variable at 

level-2. In this case, the effects of level-1 predictors have two components: fixed effects that 

explain level-1 variance and random effects that explain level-2 variance. The Random Intercept 

and Slope Model’s formulation is as follows:  

𝑌𝑖𝑗𝑘 = 𝛽0𝑗𝑘 + 𝛽𝑖𝑗𝑘(𝐿𝑒𝑣𝑒𝑙 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑒𝑖𝑗𝑘  

𝛽0𝑗𝑘 = 𝜋00𝑘 + 𝜋01𝑘(𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑟0𝑗𝑘    

𝛽𝑖𝑗𝑘 = 𝜋𝑗0𝑘 +  𝜋𝑗1𝑘  (𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑟𝑖𝑗𝑘     
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𝜋00𝑘 = 𝛾000 + 𝛾001(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑00𝑘                                     

𝜋𝑗0𝑘 = 𝛾𝑗00 + 𝛾𝑗01(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑𝑖0𝑘      

Or,  

𝑌𝑖𝑗𝑘 = 𝛾000 + 𝛾001(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑00𝑘 + 𝜋01𝑘(𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑟0𝑗𝑘 + (𝛾𝑗00 +

𝛾𝑗01(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑𝑖0𝑘  +  𝜋𝑗1𝑘  (𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) +

𝑟𝑖𝑗𝑘) (𝐿𝑒𝑣𝑒𝑙 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑒𝑖𝑗𝑘                                                                     Equation 4.5  

 

From Table 4.7, we know that there is nearly zero unexplained variance left at level-3, the level-2 

predictors, i.e., driver and vehicle characteristics, have only fixed effects across regions. Only 

level-1 predictors, i.e., trip attributes, have both fixed effects and random effects that need to be 

tested further. Thus, Equation 4.5 can be simplified to: 

𝑌𝑖𝑗𝑘 = 𝛾000 + 𝛾001(𝐿𝑒𝑣𝑒𝑙 3 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝜑00𝑘 + 𝜋01𝑘(𝐿𝑒𝑣𝑒𝑙 2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑟0𝑗𝑘 + (𝛽𝑖𝑗𝑘 +

𝜏𝑖𝑗𝑘) (𝐿𝑒𝑣𝑒𝑙 1 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) + 𝑒𝑖𝑗𝑘                                                                     Equation 4.6 

Where, 

𝑌𝑖𝑗𝑘 = driving volatility score for trip (i) made by driver (j) in region (k);  

𝛾000 = grand mean (of transformed) driving volatility score of 50,399 trips; 

𝛾001 = coefficients for level-3 predictors (i.e., dummy variable); 

𝜋01𝑘= coefficients for level-2 predictors (i.e., driver and vehicle characteristic); 

𝛽𝑖𝑗𝑘= coefficients for level-1 predictors (i.e., trip-related factors); 

𝜏𝑖𝑗𝑘= root of variance of level-1 predictor coefficients across drivers; 

𝜑00𝑘 = root of unexplained variance at level-3 (regional level); 

𝑟0𝑗𝑘  = root of unexplained variance at level-2 (driver level); 
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𝑒𝑖𝑗𝑘 = root of unexplained variance at level-1 (trip level). 

 

Table 4.8 presents the results of Random Intercept and Slope Model, including estimates of fixed- 

and random- effects parameters with a reasonable goodness of fit. The results show noticeable 

variances of level-1 slopes i.e., the variances for weekend vs. weekday travel and commute vs. 

non-commute trip are relatively large. Finally, the percentage of explained variance is 13.3 % (1-

0.448/0.517) at Level-1, 14.8% (1-0.385/0.452) at Level-2, and close to 100% at Level-3.  

 

4.4.3 Variable Selection 

Outputs of the model with all plausible variables (shown in Table 4.8) show that the factor of 

transmission does not have a significant estimate and the factor of gender does not show a 

significant correlation with driving volatility. Thus, the variable selection was conducted to 

eliminate insignificant variables. Considering the massive computation of multi-level model with 

a large number of observation as well as the fact that most variables show significant correlations 

with driving volatility, the backward elimination method is applied for the variable selection 

[111].  

 

Further, we notice that, some levels of attributions of categorical variables, such as body type, 

fuel type and power train are not statistically significant. Insignificant levels are combined with 

the base level. The final model shows all selected variables have statistically significant 

correlates with driving volatility. 
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Table 4.8 Outputs of Random Intercept and Slope Model  

Model  Full model 

Model after  

backward  

elimination  

Final model after  

bases combined 

Y = √𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 Coef. P-value Coef. P-value Coef. P-value 

Fixed-effects Parameters 

Constant, 𝛾000 3.958 *** 0.000 3.954 *** 0.000 3.928 *** 0.000 

Level-1 

Predictors 

𝛽𝑖𝑗𝑘 

Trip Distance (Miles) -0.008 *** 0.000 -0.008 *** 0.000 -0.008 *** 0.000 

Rush Hour [Yes=1, No=0] 0.042 *** 0.000 0.042 *** 0.000 0.042 

0.042 
*** 0.000 

Weekend [Yes=1, No=0] -0.077 *** 0.000 -0.077 *** 0.000 -0.077 *** 0.000 

Commute Trip  [Yes=1, No=0]  0.093 *** 0.000 0.093 *** 0.000 0.093 *** 0.000 

Level-2 

Predictors 

𝜋01𝑘 

Gender [Male=1, Female=0] 0.006  0.836             

Driver Age (years) -0.008 *** 0.000 -0.008 *** 0.000 -0.007 *** 0.000 

Vehicle Age (years) -0.019 *** 0.000 -0.020 *** 0.000 -0.018 *** 0.000 

Body Type 

Auto-Sedan  Base               

Two Seated  0.191 *** 0.002 0.179 *** 0.004 0.208 *** 0.001 

Van  -0.309 *** 0.000 -0.302 *** 0.000 -0.286 *** 0.000 

Hatchback -0.103 * 0.068 -0.106 * 0.061      

SUV  -0.114 *** 0.008 -0.111 *** 0.009 -0.074 *** 0.007 

Station Wagon  -0.024  0.750 -0.028  0.712      

Pickup  -0.407 *** 0.000 -0.409 *** 0.000 -0.374 *** 0.000 

Convertible 0.287 ** 0.017 0.278 ** 0.020 0.323 *** 0.007 

Fuel Type 

Hybrid Elec. Vehicles -0.166 *** 0.000 -0.162 *** 0.000 -0.174 *** 0.000 

Gasoline Vehicles Base            

Diesel Vehicles -0.119  0.122 -0.117  0.125      

Plug In Hybrid Elec. V. -0.107  0.499 -0.099  0.530      

CNG (C. Natural Gas) -0.136  0.336 -0.129  0.363      

BEV (Electric) Vehicles -0.315 *** 0.000 -0.300 *** 0.000 -0.325 *** 0.000 

Unknown Vehicle type 0.046   0.788 0.051   0.764       

Trans-mission 

Automatic Base               

Manual -0.070  0.145           

Both 0.010  0.896           

Unknown 0.125   0.535           

Power Train 

Front-Wheel Base                 

Rear-Wheel 0.071 * 0.097 0.071 * 0.099      

Four-Wheel -0.119 *** 0.007 -0.118 *** 0.007 -0.149 *** 0.000 

Unknown 0.002   0.966 0.002   0.973       

Level-3 

Predictors 

𝛾001 

Region Indicator 

LA 0.529 *** 0.000 0.531 *** 0.000 0.528 *** 0.000 

SF 0.358 *** 0.000 0.359 *** 0.000 0.352 *** 0.000 

SAC 0.368 *** 0.000 0.371 *** 0.000 0.370 *** 0.000 

CCV 0.227 *** 0.000 0.231 *** 0.000 0.236 *** 0.000 

Other Base               
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Table 4.8 Outputs of Random Intercept and Slope Model (Continued) 

Model  Full model Model after  

backward  

elimination  

Final model after  

bases combined 

Y = √𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 Coef. P-value Coef. P-value Coef. P-value 

Random-effects Parameters 

Region ID: Identity                 

Variance (Constant), 𝜑2 1.90E-19     1.89E-19    1.87E-19    

Driver ID: Identity                      

                   Variance (Distance), 𝜏1
2 0.000   0.000    0.000    

Variance (Rush Hour), 𝜏2
2 0.039   0.039    0.039    

Variance (Weekend), 𝜏3
2 0.110   0.110    0.110    

Variance (Commute Trip), 𝜏4
2   0.107   0.107    0.107    

Variance (Constant), 𝑟2 0.385   0.385     0.387     

Variance (Residual), 𝑒2 0.448     0.448    0.448    

Goodness of Fit             

Number of Observations 50399 50399 50399 

Number of Groups (Driver ID) 2356 2356 2356 

Number of Groups (Region ID) 5 5 5 

Log Likelihood -56580.394 -56581.697 -56586.955 

Wald 𝜒2 919.89 916.760 903.550 

Prob > 𝜒2 0.000 0.000 0.000 

*** = significant at a 99% confidence level; ** = significant at a 95%confidence level; * = significant at a 90% 

confidence level. 

 

4.4.4 Discussion of Key Predictors 

In the final hierarchical linear model reported in Table 4.8, Level-1 predictors about trip 

characteristics have significant associations (95% confidence level) with the driving volatility but 

the associations vary across drivers, i.e., same trip level factors may have different estimated 

coefficients in different groups of drivers. Level-2 predictors, including driver demographics and 

vehicle features show significant associations with driving volatility except driver gender and 

vehicle transmission. Slopes of level-2 predictors do not vary substantially across the CA regions. 

Among level-2 predictors, the fuel types vehicles consume are of particular interest of this study, 

especially the driving volatility of alternative fuel vehicles. The examination of driving volatility 

between regions at Level-3 shows significant differences between regions. Note that, interactions 
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among explanatory variables were tested, such as fuel type and gender, fuel type and age, etc., but 

none were found to be statistically significant (95% confidence level). 

 

4.4.3.1 Vehicle Fuel Type 

The volatility of several alternative fuel vehicles (PHEV, BEV, and CNG), and hybrid vehicles 

was explored in comparison with gasoline vehicles, which served as the “base.” Results show 

that hybrid electric vehicles are associated with lower volatility scores, by 0.174 units (square-

root of driving volatility score). The marginal effects show 8% lower the volatility score 

magnitude. Note that, one unit lower/higher in volatility score refers to one percent 

decrease/increase in time spent on volatile/abnormal driving. This result is consistent with an 

EPA report pointing out that hybrid vehicle drivers tend to be more calm and are able to get 

better fuel economy [112]. The lower volatility score in this study corresponds to less variability 

of instantaneous driving behavior meaning calmer or smoother driving. In addition to driver 

attributes and preferences, special vehicle power systems may be part of the reason for the 

observed lower volatility, i.e., in eco-driving mode, the same acceleration pedal depression for 

hybrid vehicles generates smoother torque and traction [113]. Further, special driving 

instructions for hybrid vehicles are often provided to drivers. For example, Toyota suggests that 

when encountering a delay (intersection signal or congested traffic) drivers should release the 

brake pedal to allow the vehicle to move forward slightly while avoiding overuse of the 

acceleration pedal [113].  

 

Among AFVs, battery electric vehicles are statistically significantly (95% confidence level) 

associated with lower volatility scores by 0.325 units (15% lower in terms of volatility score 
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magnitude). While AFV drivers may be less aggressive compared with the same group of 

conventional vehicle drivers, it is also possible that the engine power of such vehicles may be 

lower in some instances. Specifically, the engine power of electric vehicles (including plug-in 

vehicles) depends on the battery level. Depending on the charge in batteries, they cannot always 

provide full power to the engine required by drivers to do hard accelerations [114]. Overall, there 

are clear differences between driver performance (volatility) of conventional and alternative fuel 

vehicles as revealed by analysis of large-scale behavioral data. While controlling for other 

factors the results from real-life data show that hybrid vehicles and BEV are associated with 

calmer driving patterns.  

 

4.4.3.2 Vehicle Body Type 

Vehicle type shows relatively large associations with the driving behavior in this study. 

Compared with the base including sedans, two-seated vehicles are associated with a 0.208 unit 

higher (square-root) volatility score average. Convertibles are also linked to an increased score, 

by 0.323 unit. All other types of vehicles are associated with lower levels of volatility score. 

Surprisingly, SUVs and pickups are associated with lower scores. The mass of vehicle may have 

impact on driving behavior. Compared with sedans, two-seated vehicles and convertibles, 

pickups and SUVs have greater weights and may not be maneuvered as easily as sedans. 

 

4.4.3.3 Other Vehicle-Related Factors 

Older vehicles are also associated with a decreased (square-root) volatility score of 0.018 unit. 

Vehicles using different transmissions do not show significant differences in terms of volatility. 
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Four-wheel drive vehicles are related to lower driving volatility by 0.149 unit, compared with 

other vehicles.  

 

4.4.3.4 Driver Demographics 

Older drivers are seen to be less volatile than younger drivers. One year increase in driver age is 

associated with a 0.007 unit decrease in (square-root) driving volatility score. There is no 

significant difference between male and female drivers, in terms of driving volatility. 

 

4.4.3.5 Trip Factors 

The negative coefficient of trip distance implies a reverse relationship with driving volatility. 

Drivers are expected to be less volatile during longer trips and every 1 mile increase in trip 

distance is associated average 0.008 unit lower (square-root) volatility score with a variance less 

than 0.001 (standard deviation also less than 0.001). Compared with trips made during non-rush 

hours, trips made during rush hours are with an increased (square-root) driving volatility score 

by 0.042 with a variance of 0.039 (or standard deviation 0.198). Commute trips are expected to 

be with more volatile driving time, average by 0.093 with a variance of 0.107 (or standard 

deviation 0.327), compared with non-commute trips. Owing to lack of data availability, this 

study was unable to directly model the association of traffic congestion on driving volatility. 

However, commute trips and rush-hour trips are often made under congested driving conditions 

compared with non-commute or non-rush hour trips. This study captures congested driving 

through proxies of commute and rush hour trips, which are positively associated with higher 

driving volatility, as expected. Weekend trips are associated with a lower score by 0.077 with a 

variance of 0.11(or standard deviation 0.332). In short, only trip distance has a clearly negative 
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association with the driving behavior across drivers and the associations of other predictors vary 

substantially between drivers (i.e., coefficients can be positive or negative across drivers).  

 

4.4.3.6 Regional Comparisons 

At level-3, the results showed that trips made in LA have a 0.528 unit higher (square-root) 

volatility score than the base (other regions of the CA). The SF and SAC regions have close 

expected volatility scores. Trips made in the Central Valley areas seem to be more volatile than 

the base areas, but are less volatile than the three metropolitan areas (i.e., LA, SF and SAC). 

Overall the magnitude of differences shows particularly volatile driving in LA.   

 

4.5 LIMITATIONS 

The data quality needs to be considered carefully. The response variable, driving volatility score, 

depends heavily on the second-by-second speed records. The records were generated from in-

vehicle GPS and OBD devices and then processed by a professional survey research firm. Thus, 

the extent of measurement errors in the data is unknown.   

 

Owing to the privacy issues related to driver information, the data sharing system does not 

release critical information that might help explain some of the variances between trips or 

drivers. The information includes geo-codes, roadway types used, traffic conditions when 

traveling, and surrounding land uses, etc. Self-selection in surveys is also a limitation of this 

study. This is a sample-based study, so reporting and coverage errors may be present.  
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4.6 CONCLUSIONS 

This study contributes by exploring the use of alternative fuel vehicles by early adopters and 

comparing their use patterns with conventional vehicles. Firstly, the study uses a large-scale 

integrated behavioral and sensor database to explore use patterns, especially the short-term 

decisions made by drivers. Such databases have only recently become available, and also require 

substantial computing capability. Secondly, the challenge of simultaneously extracting valuable 

information from complex hierarchically structured data is achieved by the application of 

hierarchical modeling. Specifically, such modeling better controls for various associated factors, 

while exploring differences in driver behavior at three levels, i.e., trip level, driver/vehicle level 

and regional level.  

 

The study answers important research questions about AFV use patterns and driving practices as 

they gain greater acceptance and popularity.  In terms of use, AFV drivers make the same amount 

of trips as conventional vehicle drivers do, except that drivers of BEV make statistically 

significantly fewer trips (5% level).  The daily distances traveled were shorter for some AFVs 

(BEV and PHEV) but longer for other AFVs (HEV and CNG) compared with conventional 

vehicles. Drivers spent significantly longer time traveling daily in their HEV or CNG vehicles 

compared with conventional vehicles. 

 

The study also found important differences within AFV use patterns and driving practices. 

Specifically, the daily distances traveled are shorter for BEV and PHEV drivers and longer for 

HEV and CNG drivers compared with gasoline vehicles. HEV and BEV were found to be 

associated with calmer driving compared with conventional vehicles, i.e., they are less prone to 
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aggressive accelerations and vehicular jerks. This result is consistent with an EPA study showing 

that hybrid vehicle drivers tend to be less aggressive. While there is statistical evidence that some 

AFVs are driven with lower volatility, conclusive evidence that all alternative fuel vehicles are 

associated with lower driving volatility compared with conventional vehicles was not found.  

The implications of this research include:  

 Potential benefits from improved safety. By studying driving volatility of individuals who 

use different vehicle types, implications for safer driving can be anticipated. Aggressive 

driving has been linked (statistically significantly) to higher injury severity, given a crash 

[15]. With AFVs driven less aggressively (especially HEV and BEV), safety benefits are 

expected to accrue. This information can be helpful to public agencies and also to the 

insurance industry that may offer different rates for AFVs. 

 More informed vehicle use decisions. Findings from this study can help potential AFV 

users make more informed vehicle ownership and use choices. Based on the differences in 

behaviors highlighted in this study, the AFV industry can make customized marketing plans 

for promoting the use of AFVs in specific regions. Furthermore, potential buyers can see 

for themselves how the vehicles purchased are being used by early adopters. For example, 

this study found that users of BEV made fewer trips. Such information can be provided to 

potential buyers of BEVs.  

 Improvements in accuracy of travel demand models. The study analyzes vehicle miles 

traveled, and daily trip frequency, etc. for various vehicle types. This has implications for 

travel demand models and their accuracy. If more AFVs are expected to diffuse through 

the system in the future then the forecasts can be adjusted accordingly. Specifically, trip 

generation can be adjusted based on AFV versus non-AFV vehicle ownership. Also, 
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automobile ownership models are used to anticipate demand by regional planning agencies, 

international organizations (such as the World Bank), and the private sector (automobile 

manufacturers and oil companies). They are useful in forecasting tax revenues, energy use, 

and emissions. The results from this study can suggest that automobile ownership models 

should consider various AFV options available to consumers. The results also inform 

alternative fuel vehicle policies, given their usage, especially in communities that have (or 

are considering) favorable local and regional policies toward AFVs. 

 Advancing large-scale data analytics. With an explosion in real-world large-scale 

behavioral and sensor/global positioning system data, this study comprehensively 

compares the performance of AFVs with conventional vehicles and suggests a timely 

methodology for analysis of such data.    

Finally, more research is needed to further explore differences in AFV purchase and use patterns 

and how information about such decisions might be used to inform consumers’ future adoption 

decisions.   
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CHAPTER 5 CUSTOMIZING DRIVING CYCLES TO SUPPORT COST-EFFECTIVE 

VEHICLE CHOICES: A MORE ACCURATE FUEL ECONOMY ESTIMATION USING 

LARGE-SCALE TRAJECTORY DATA 
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This chapter presents a revised version of a research paper by Jun Liu, Xin Wang and Asad J. 

Khattak. An early version entitled “Generating Fuel Economy Information to Support Cost-

effective Vehicle Choices: Comparing Standard and Customized Driving Cycles” (Co-authors: 

Xin Wang, Jun Liu and Asad J. Khattak) was presented (TRB 15-4548) at The 94th Annual 

Meeting of Transportation Research Board in Washington, D.C., in January 2015.  

 

ABSTRACT  

Wider deployment of alternative fuel vehicles (AFVs) helps with increasing energy security and 

transitioning to clean vehicles. Ideally, adopters of AFVs are able to maintain as the same level 

of mobility as users of conventional vehicles while reducing energy use and emissions. Greater 

knowledge of benefits of using AFVs can better customers’ choices. The Environmental 

Protection Agency’s fuel economy ratings are a key source of potential benefits of using AFVs. 

However, the ratings are based on pre-designed and fixed driving cycles applied in laboratory 

conditions, neglecting the attributes of drivers and vehicle types. Ratings using pre-designed and 

fixed driving cycles may be with some bias across vehicle groups, given the assumption that 

drivers from various groups using different types of vehicles may behave differently. Thus, to 

better predict fuel economy for a specific groups of customers targeting a specific type of 

vehicles, it is important to find driving cycles that can well represent customers’ real-world 

driving practices instead of using pre-designed standard driving cycles. This paper presents a 

methodology for customizing driving cycles to provide convincing fuel economy predictions that 

are based on drivers’ characteristics and contemporary real-world driving. The methodology 

takes into account current micro-driving practices in terms of maintaining speed, acceleration, 

braking, idling, etc., on trips. Specifically, using a large-scale driving data collected by in-vehicle 
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Global Positioning System as part of a travel survey, a micro-driving library for California 

drivers is created using 54 million seconds of vehicle trajectories on more than 60,000 trips, 

made by nearly 3,000 drivers. To generate customized driving cycles, a new tool, known as Case 

Based System for Driving Cycle Design, is developed. These customized cycles can better 

predict fuel economy of a conventional vehicle vis-à-vis AFV for a customer, based on a 

customer’s similarity in terms of vehicle, driver, and geographical characteristics, with a sample 

of micro-trips from the case library. The AFV driving cycles, created from real-world driving 

data, show significant differences from conventional driving cycles currently in use. This further 

highlights the need to enhance current fuel economy estimations by using customized driving 

cycles, helping customers make more informed vehicle purchase and use decisions. 

 

5.1 INTRODUCTION 

An alternative fuel vehicle (AFV) is a vehicle that runs on a fuel (e.g., battery electric) other than 

conventional petroleum fuels (gasoline or diesel) and also refers to any technology of powering 

an engine that does not involve solely petroleum (e.g., hybrid electric) [115]. Options for AFVs 

in market are vast but their penetration in fleets is still small, compared with conventional 

vehicles consuming gasoline or diesel. Enhanced energy security and cleaner travel are the major 

benefits that attract potential customers to transition from conventional vehicles to AFVs [116-

119]. One of the most essential vehicle aspects concerned by customers is the fuel economy. 

Currently, the fuel economy is predicted by U.S. Environmental Protection Agency (EPA) using 

pre-designed standard driving cycles in a lab controlled condition. The accuracy of fuel economy 

estimation heavily relies on whether the driving cycle can represent the real-life driving 

practices. EPA has designed various driving cycles, such as FTP (Federal Test Procedure, often 
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called EPA75), HWFET (Highway Fuel Economy Driving Schedule), SFTP (Supplemental 

Federal Test Procedure), US06 (representing aggressive driving on highway), SC03 

(representing hot ambient when AC on) and C-FTP (representing city driving conditions in cold 

ambient temperature) [79, 120], to account for various travel needs and driving contexts. The 

question is - Can a limited number of driving cycles represent trillions of vehicle trips in real-

world, especially for real-world driving of AFVs? If driving practices in real-world are 

inconsistent in different vehicle groups (i.e., conventional vehicles vis-à-vis AFVs), the answer 

would lean to be no.  

 

The use of standard driving cycles in a lab controlled condition to test all vehicles has its own 

drawback. One issue is that the standard test is based on deterministic driving cycles-it basically 

assumes all driving activities to be similar irrespective of drivers’ individual characteristics. But 

in real-world traffic condition, vehicles could be driven differently depending on individual’s 

driving styles. Another issue is that the current driving cycles do not consider the use of 

advanced driving aid technologies, e.g. cruise control. While in reality, a greater portion of 

drivers has applied these technologies to ease them from driving tasks. Moreover, there is 

substantial uncertainty about whether AFV users drive differently given AFVs having different 

engine performance, which can impact their fuel economy. How to design a customized driving 

cycle in an appropriate manner, which can overcome the issue caused by deterministic driving 

cycle, are thus of interest for encourage customers transitioning to AFVs. The customized 

driving cycles for AFV transition should be able to  

1) Represent real-world driving practices according to customers’ individual characteristics; 

and  
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2) Compare the fuel economy for customers when they are driving AFVs versus 

conventional vehicles.  

 

Previously, limited-scale data restrained the diversity and customization of driving cycles. Using 

“one-fit-all” pre-designed driving cycles was a good option. However, with increasing amounts 

of data generated by electronic sensors from various sources that include travelers, vehicles, 

infrastructure and the environment, referred to as “Big Data”, customizing driving cycles for 

individuals using gasoline vehicles or even AFVs has become feasible. Using large-scale 

trajectory data merged with travel behavioral information, this study aims to construct a practical 

methodology to customize driving cycles based on real-world driving data for various users and 

vehicles using different power systems. These customized driving cycles can be used to better 

estimate fuel economy for customers based on their own driving style instead of using a “one-fit-

all” pre-designed driving cycle. A more accurate fuel economy estimation could potentially help 

customers choose a more energy-efficient and cleaner vehicle to them. This study also provides 

instructions for manufacturer, environmental protection agencies, and energy related industries to 

optimize their driving cycles based on local or regional characteristics.  

 

5.2 LITERATURE REVIEW 

Other than vehicle purchase costs, energy use costs are what costumers are concerned with when 

making vehicle choices [121-123].. Driving cycles specified by DDS (Dynamometer Drive 

Schedule) are often used to estimate vehicle fuel economy which is highly associated with 

energy costs. Delucchi et al. compared the costs, including initial vehicle cost, operating and 

maintenance costs, and battery replacement costs, of Battery-powered Electric Vehicles (BEVs) 
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with conventional vehicles (CVs) consuming gasoline [124]. They calculated vehicle energy use 

(a big component of operating costs) over a specified driving cycle - Federal Urban Drive 

Schedule (FUDS) which is used in conjunction with other driving cycles by the U.S. 

Environmental Protection Agency. They reported that though BEVs have advantages in energy 

security and environment protection, the manufacturing cost for batteries must be lowered 

enough, in order for BEVs to be cost-competitive with gasoline CVs [124]. Lave et al. compared 

the fuel economy of hybrid vehicles (HEVs), the Toyota Prius, with conventional vehicles 

(CVs), Toyota Corolla, based on both urban and highway driving cycles [125]. They found 

significant smaller energy costs and emissions among HEVs. However, the HEVs’ benefits from 

reduced energy costs and emissions are only a small fraction of the total cost including 

manufacturing costs. Prius would have a difficult time competing with Corolla given Corolla’s 

already high fuel economy and lower emissions [125].  

 

Markel et al. examined the fuel consumption rates of conventional vehicles (CVs), hybrid 

electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) over two standard driving 

cycles – UDDS and HWFET [126]. UDDS (Urban Dynamometer Driving Schedule) is designed 

for testing light-duty vehicles under city driving conditions and HWFET (Highway Fuel 

Economy Driving Schedule) represents the free-flow traffic condition on highway. They 

compared the costs (vehicle purchase and fuel consumption) and benefits (i.e., reduced fuel 

consumption) of PHEVs relative to CVs. Though there are higher retail costs for PHEVs 

compared with CVs, PHEVs with a big amount of reduced lifetime energy costs offer still 

significant benefits to customers. Markel et al. also mentioned that the fuel consumption rates on 

standard driving cycles may vary with actual in-use driving cycles [126]. Fontaras et al. realized 
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the using standard driving cycles may under- or over-estimated the fuel economy and emissions, 

if driving cycles tested cannot represent the real-world driving practices [94]. They conducted 

fuel economy estimations for HEVs over pre-designed driving cycles, including cold New 

European Driving Cycle—NEDC (the combined legislated driving cycle), one hot Urban Driving 

Cycle—UDC (urban sub-cycle of NEDC) and flowingly the Artemis driving cycles [127], and 

real-world simulation driving cycles accounting for transient driving conditions.  Compared with 

CVs, HEVs were found to have a substantial fuel economy benefits in addition to reduced 

emissions under urban driving conditions, thus HEVs have the potential to attract the interests of 

all stakeholders [94, 128].  

 

Except those driving cycles abovementioned that were designed for estimating fuel economy 

(mpg-ratings) and vehicles emissions, U.S. Environmental Protection Agency provides more pre-

designed driving cycles to test vehicles running under different driving conditions [49]. FTP 

(Federal Test Procedure, often called EPA75) simulates the city driving conditions. Three 

additional SFTP (Supplemental Federal Test Procedure) are used to adjust the city and highway 

estimates to account for higher speeds, air conditioning use, and colder temperatures. They 

include US06 (representing aggressive driving on highway), SC03 (representing hot ambient 

when AC on) and C-FTP (representing city driving conditions in cold ambient temperature). To 

account for more driving conditions, driving cycles to better represent local driving practices are 

also developed by U.S. Environmental Protection Agency [49]. The New York City Cycle 

(NYCC) features low speed stop-and-go traffic conditions. The California Air Resources Board 

LA92 Dynamometer Driving Schedule (often called the Unified driving schedule), was 
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developed as a driving cycle having  a higher top speed, a higher average speed, less idle time, 

fewer stops per mile, and a higher maximum rate of acceleration compared with FTP. 

 

Researchers realized that driving cycles should show different characteristics in different regions, 

given different contextual conditions coming from roadway geometry, land use and culture of 

driving. More studies were conducted to develop driving cycles to better represent their local 

driving practices.  Lin et al. constructed robust driving cycles for Los Angles, called LA01 [129, 

130]. They used a maximum likelihood estimation (MLE) partitioning algorithm Markov process 

theory to construct driving cycle for three companion freeway cycles representing different level-

of-service. Tong et al. develops a driving cycle for Hong Kong, extracting parts of the on-road 

speed data such that the summary statistics of the sample are close to that derived from the data 

population of the test runs [131]. Following Tong et al., Hung et al. constructed Hong Kong 

driving cycles through a random selection process. They focused on getting reasonable cycle 

length and more stringent criteria for selection of best driving cycles from the candidate cycle. 

Cycle was selected by ensuring assessment parameter was less than 5% different from the target 

mean values [37]. Saleh et al. applied a similar methodology that Hung et al. used to select a 

representative driving cycle from multiple driving cycles collected in Edinburgh. Parameters 

they used include speed, percentage time spent in cruise, accelerations, decelerations and idling, 

and their statistical validity over trip lengths [132]. Kamble et al. developed a driving cycle for 

Pune city in India [133] and André et al. collected driving data from France, the UK, Germany 

and Greece, to construct real-world European driving cycles [127, 134].  
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In above studies, assessment parameters were usually calculated to quantify driving 

characteristics of a cycle. Those parameters include the average speed, average running speed, 

average acceleration and deceleration, and proportions of idling, acceleration, cruising and 

deceleration, average number of acceleration–deceleration changes, etc. Driving cycle were 

selected according to these parameters, using various methods such as a random selection 

process [37], Markov process [129, 130], micro-trips analysis [133], etc. However, real-world 

driving practices cannot be represented by a set of pre-designed driving cycles, because of the 

complexity of real-world driving owing to uncertain engine performance, vehicle age, transient 

driver behaviors and various driving contexts [126, 135]. Most previous studies were limited by 

the sample size of data used. Some of them only targeted on certain trip purposes, e.g. commute 

trip during peak hours. Further, the test vehicles selection can be problematic, e.g. not randomly 

sampled, or vehicle types in the sample (body type and fuel type) are not diverse. All these issues 

may impact the representativeness of driving data used to construct driving cycles. Thus these 

pre-designed driving cycles may not represent real-world driving practices very well. Using 

large-scale trajectory data coupled with travel behavioral information, this study provides a 

practical methodology to customize driving cycles based on real-world driving data for various 

users and vehicles using different power systems. 

 

5.3 DATA DESCRIPTION  

The data used in this study is a GPS sub-sample from a large travel survey – California  

Household Travel Survey (CHTS) conducted by California Department of Transportation during 

January 2012 through January 2013 [23]. The sample from CHTS covers 58 counties across the 

State of California representing various land use types, roadway network conditions and 
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population. The final database contains information for driver, household, trip, and more 

importantly, second-by-second speed tract data. The speed trajectory data were processed and 

separated into micro-trips (defined as a continuous driving activity between two stops, one trip 

can contain one or multiple micro-trips). The trip data were collected by in-vehicle GPS as well 

as OBD (On-Board Diagnostic) Sensors. The OBD device used in the study only provides five 

engine parameters at the five-second interval so they are not used in speed profile analysis, 

which requires second-by-second data.  

 

The sample trips cover various driving practices on different road types, made by vehicles of 

varied body types as well as different fuel types. Specifically, the database includes 54 million 

seconds of driving tract records, including 236,404 micro trips and 65,652 trips made by 2,908 

vehicles. These vehicles include 2,253 conventional vehicles (CVs) consuming gasoline, 364 

hybrid electric vehicles (HEVs), 109 battery electric vehicles (BEVs), 110 diesel vehicles and a 

small portion of vehicles consuming other alternative fuel types, such as natural gas, biofuel, etc. 

These broad and diverse driving samples, with highly detailed operating information, constitute a 

rich large-scale database which allows for in-depth comparison and analysis through multiple 

lenses, e.g. vehicle fuel type, vehicle body type, micro-trip type, and many others.  

 

5.4 COMPARISONS OF REAL-WORLD DRIVING PRACTICES 

5.4.1 Equivalent User Groups  

To have a general idea of how trips made by AFVs (i.e., BEVs and HEVs) are different from 

trips made by CVs consuming gasoline on roads, this study compares real-world driving 

practices by BEVs, HEVs and CVs in equivalent groups of users. Using equivalent groups given 
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similar characteristics helps minimize the influences of other factors (e.g., driver demographics), 

and highlight the effects of vehicle types on driving practices. Since there are only 109 BEVs in 

our database, the same number of vehicles are randomly selected from 364 HEVs and 2253 CVs 

by one-to-one matching the demographics with BEV drivers. Eventually, each of the group has 

106 vehicles, because some information are missing in three BEV observations. Table 5.1 shows 

the descriptive statistics of driver demographics in three selected vehicle groups and the total 

sample 

 

Table 5.1 Demographics of Groups Segmented by Vehicle Type 

Vehicle Group Demographics N 
Mean 

Percent  
Std. Dev. Min Max 

BEV 

(Battery Electric Vehicle) 

Age (years) 106 49.415 10.403 16 71 

Gender [Male] 106 57.50% 0.497 0 1 

Household 

Income 

< 74,999 106 3.80% 0.191 0 1 

75,000 - 99,999 106 12.30% 0.33 0 1 

100,000 - 149,000 106 26.40% 0.443 0 1 

>150,000 106 57.50% 0.497 0 1 

HEV 

(Hybrid Electric Vehicle) 

Age (years) 106 49.394 9.767 20 68 

Gender [Male] 106 57.50% 0.497 0 1 

Household 

Income 

< 74,999 106 3.80% 0.191 0 1 

75,000 - 99,999 106 12.30% 0.33 0 1 

100,000 - 149,000 106 26.40% 0.443 0 1 

>150,000 106 57.50% 0.497 0 1 

CV 

(Conventional Gasoline Vehicle) 

Age (years) 106 49.415 10.403 16 71 

Gender [Male] 106 57.50% 0.497 0 1 

Household 

Income 

< 74,999 106 3.80% 0.191 0 1 

75,000 - 99,999 106 12.30% 0.33 0 1 

100,000 - 149,000 106 26.40% 0.443 0 1 

>150,000 106 57.50% 0.497 0 1 

All drivers 

Age (years) 2908 48.804 13.49 16 88 

Gender [Male] 2908 48.00% 0.5 0 1 

Household income 

< 74,999 2908 31.20% 0.216 0 1 

75,000 - 99,999 2908 18.70% 0.39 0 1 

100,000 - 149,000 2908 23.20% 0.422 0 1 

>150,000 2908 26.90% 0.443 0 1 
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The age, gender and household income in three selected groups have similar distributions 

indicating the samples are controlled nicely. CVs are the control group in this study. Compared 

with all drivers in our database, higher percent of BEV drivers are female with similar average 

age (close to 50 years old), but BEV drivers have higher income (beyond one-half of BEV 

drivers earn more than $150k per year, while this percent for all drivers is below 30%).  

 

5.4.2 Comparison of Driving Performance  

After controlling driver demographics, driving performance is compared across BEVs, HEVs 

and CVs. Figure 5.1 presents the time spent on acceleration or deceleration by speed range in 0.5 

mph increments, as well as the standardized time allocation percentages by speed bins. Time 

spent on accelerating or braking varies with speeds. Acceleration and deceleration are nearly 

equal in terms of time spent at all speed ranges. Major findings on comparison include: 

 BEV trips have less time spent at high speeds (>60 mph) than peer groups. 

 There are distinct spikes in BEV time use distribution (occur at near 55 mph, 60 mph 

and 65 mph). That implies those are speeds at which cruise control is used. This 

confirms our previous finding that BEV users are more likely to use cruise control 

during driving. 

 With speed increasing, more time is spent driving at constant speed. This is more 

distinct for BEV and HEV groups compared with CV groups. 
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Figure 5.1 Comparisons of acceleration-speed cross time use 

 

Given driving cycle is essential to fuel economy estimation and emissions modeling, key 

parameters representing real-world driving cycle were selected as measurements to compare 

driving performance of each driving cycle (i.e., real-world vehicle trip). These include: 

 Parameters describing the range and average magnitude of driving activities: 

maximum acceleration, maximum deceleration, average deceleration, average 

acceleration, root mean squared acceleration, maximum speed, total average speed, 

driving average speed, total cycle duration, driving duration;  
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 Parameters representing time use during a trip: percent of time spent on idling, 

percent of time on acceleration, percent of time on deceleration, percent of time on 

cruise control; 

 Events parameters: average number of acceleration/deceleration events per mile, and 

kinetic intensity. 

 Volatility parameters to capture how drivers instantaneous driving decision changes 

during a trip: percentage of outlier acceleration or deceleration time (acceleration 

volatility score), maximum positive vehicular jerk (derivative of acceleration rate), 

average positive vehicular jerk, maximum negative vehicular jerk, average negative 

vehicular jerk and percentage of extreme vehicular jerk time (also called jerk 

volatility score). The calculation of volatility score using acceleration and jerk is 

based on previous studies [22, 25, 51, 119]. Note that the driving volatility score, 

defined as the percentage of outlier acceleration events or vehicular jerk events during 

one trip. The threshold for identifying outlier events is established based on all 54 

million seconds driving records collected in CHTS.  

 

Table 5.2 shows the comparison of major parameters used to quantify driving cycles. The driving 

cycles (i.e., real-world trips) in three equivalent groups are compared along with four EPA 

specified driving cycles as well as California Driving Cycle (LA92) and New York City Cycle 

(NYCC). As a result, significant differences are found between BEVs, HEVs and CVs. Key 

findings include: 
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 BEV-involved trips are shorter (both in total duration and driving duration) compared 

with HEV- and CV- involved ones made by similar drivers. The total duration and 

driving duration are nearly half of FTP, even shorter than LA92 but close to HWY. 

 BEVs have a lower (statistically significant at 95% level) total average speed and 

driving average speed compared with HEVs and CVs. They are close to LA 92 but 

still show statistically significant differences (95% level).  

 The maximum speed of BEV trips is near 50 mph, which is lower than HEVs and 

CVs. This value is also lower than four EPA standard driving cycles as well as LA92.  

 BEV trips show higher average acceleration compared with HEVs, but lower than 

CVs. Maximum acceleration for BEVs is higher than that of HEVs and CVs, 

indicating BEVs are associated with higher variance in acceleration. However on 

average, BEV trips show less average deceleration magnitude and less maximum 

deceleration magnitude compared with HEVs and CVs.  

 Average jerking level is similar for BEVs, HEVs and CVs. But BEV group has higher 

maximum positive vehicular jerk. 

 The average acceleration/deceleration events per mile are similar for BEVs, HEVs 

and CVs. This is close to US06 but significantly higher than other existing driving 

cycles except NYCC. 

 BEV trips have similar time on idling compared with HEVs and CVs. But there is 

more time on stable driving. The percent time on outlier acceleration/deceleration is 

lower for BEV trips compared with HEVs and CVs.  

 BEV group shows similar kinetic intensity level compared with HEV and CV groups. 
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Table 5.2 Comparisons of Real-World Driving Performance  

Vehicle Groups BEV (N=2371) HEV (N=2652) CV (N=2397) 
Regional (all vehicles) 

Existing Drive Cycles 
(N=65,652) 

Drive Cycle Parameters Mean S.D. Mean S.D. Mean S.D. Mean S.D. FTP HWY US06 SC03 LA92 NYCC 

Total duration (hrs) 0.26 0.23 0.30 0.30 0.27 0.31 0.26 0.30 0.17 0.40 0.52 0.21 0.17 0.17 

Driving duration (hrs) 0.22 0.21 0.26 0.27 0.24 0.29 0.23 0.28 0.15 0.33 0.42 0.21 0.13 0.11 

Total average speed (mph) 26.89 10.91 28.07 12.61 27.80 12.16 27.28 12.37 47.97 24.61 21.20 48.20 21.44 7.09 

Driving average speed (mph) 27.22 10.89 28.38 12.59 28.14 12.13 27.62 12.35 51.85 29.40 26.20 48.58 26.62 10.92 

Maximum speed (mph) 49.30 15.83 51.96 17.83 51.45 17.11 50.22 17.43 80.30 67.20 56.70 59.90 54.80 27.70 

Average acceleration (ft/s2) 2.13 0.68 2.07 0.65 2.22 0.71 1.46 0.47 2.20 2.21 1.68 0.64 1.65 2.04 

Average deceleration (ft/s2) -2.19 0.64 -2.24 0.68 -2.38 0.76 -1.58 0.50 -2.39 -2.47 -1.89 -0.72 -1.98 -1.99 

Maximum acceleration (ft/s2) 9.34 2.24 8.84 1.84 8.82 1.92 5.91 1.31 12.32 10.12 4.84 4.69 7.48 8.80 

Maximum deceleration (ft/s2) -9.94 2.36 -10.25 2.47 -10.37 2.47 -6.91 1.70 -10.12 -12.91 -4.84 -4.84 -8.95 -8.65 

Root mean square acceleration (ft/s2) 1.47 0.43 1.46 0.44 1.56 0.48 1.03 0.32 3.24 2.61 2.07 0.98 2.26 2.21 

Average positive vehicular jerk (ft/s3) 0.77 0.29 0.77 0.30 0.80 0.30 0.54 0.21 1.32 1.25 0.78 0.28 1.02 1.41 

Average negative vehicular jerk (ft/s3) -0.60 0.20 -0.60 0.20 -0.63 0.20 -0.42 0.14 -1.22 -1.19 -0.66 -0.27 -0.80 -1.28 

Maximum positive vehicular jerk (ft/s3) 6.48 2.08 6.35 2.05 6.40 2.19 4.25 1.51 11.15 9.53 5.13 2.93 6.31 8.21 

Maximum negative vehicular jerk (ft/s3) -2.94 0.81 -2.92 0.72 -2.94 0.76 -1.97 0.52 -8.65 -12.32 -3.81 -2.35 -4.11 -6.16 

Root mean square jerk (ft/s3) 0.69 0.18 0.69 0.19 0.71 0.19 0.47 0.13 1.82 1.52 0.93 0.37 1.18 1.50 

Acceleration/deceleration events (no. per mile) 16.90 14.39 16.86 14.55 16.84 15.33 17.62 17.12 16.73 10.90 9.56 2.24 15.64 39.44 

Percent time on idling  20.64% 13.06% 20.00% 13.02% 21.03% 13.46% 20.85% 13.93% 11.15% 24.58% 23.84% 1.57% 24.46% 51.75% 

Percent time on acceleration 37.89% 6.82% 39.50% 6.84% 38.97% 7.21% 39.10% 7.33% 44.09% 34.96% 37.28% 43.86% 40.27% 24.87% 

Percent time on deceleration 40.71% 9.27% 39.75% 8.64% 39.25% 8.85% 39.26% 9.21% 39.27% 28.76% 31.47% 38.12% 31.45% 21.87% 

Percent time on stable driving 5.60% 7.85% 4.76% 6.16% 4.41% 6.16% 4.57% 6.34% 5.49% 7.38% 3.52% 16.45% 2.16% 0.00% 

Percent time on extreme accel./decel. 4.46% 3.75% 4.69% 3.96% 5.59% 4.77% 5.15% 4.52%             

Percent time on extreme vehicular jerk 4.79% 4.11% 4.80% 3.91% 5.32% 4.30% 5.00% 4.18%             

Kinetic Intensity 3.29 8.53 3.35 5.50 3.30 5.36 3.68 22.88             

 Note:  *: N ＝ number of sample trips in groups. 
              **: stable driving was defined by speed is above 30 mph and acceleration is less than 0.088 (ft/s2).  
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Overall, by controlling for driver demographics, BEV trips are shorter and calmer shown by less 

driving volatility and more stable driving, and HEV trips are longer and calmer. None of the 

existing driving cycle represents BEV and HEV driving characteristics well. 

 

5.5 DRIVING CYCLE DESIGN  

5.5.1 Micro-Trip 

In current travel surveys, a trip is usually defined as people moving from an origin to a 

destination. Focusing on vehicular trips, driving can be interrupted several times during one trip, 

e.g. stops at intersections or stopped by traffic congestion. This makes it possible to further 

separate out one single trip into several micro-trips. Each micro-trip is a continuous driving 

practice. Drivers often idle between two stops. Given each micro-trip is a driving activity without 

interruption; it shows more homogeneous driving characteristics than an entire vehicular trip. 

Therefore micro-trips can suitably become cases representing base elements of a complete 

driving cycle. Only when several micro-cycles are chained together, a complete driving cycle 

can be created. Therefore it is critical to create a collection of cases and then to design the 

mechanism of how micro-trips can be chained together. 

 

As mentioned previously, CHTS database contains a large number of samples, including 236,404 

micro-trips from 65,652 trips. This provides a large-scale source to developing micro-trip case 

systems. It also allows us to learn how micro-trips are chained together for a complete trip. 
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5.5.2 Micro-Trip Clustering 

After extracting the driving parameters to quantify driving characteristics, qualitative analyses 

are also needed for better structuring the micro-trips in the case system so they can be ready to 

select as elements for driving cycle design. To this end, rigorous clustering techniques were 

applied to group these micro-trips based on the various driving parameters extracted. The 

principle is to cluster micro-trips that are similar to each other into one category meanwhile 

differentiating categories that are more different from each other. 

 

Using the 23 driving cycle parameters extracted, all micro-trips were analyzed using K-means 

clustering algorithm [136]. The basic idea is: Given 236,404 observations (i.e., micro-trips) with 

a 23-dimentional real vector (i.e., 23 driving cycle parameters), K-means clustering aims to 

partition the all observations into k (<=236,404) clusters so as to minimize the within-cluster sum 

of squares. The objective function is  

𝐽 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑘
∑ ∑ ‖𝑥𝑖

(𝑗)
− 𝑐𝑗‖

2
𝑛
𝑖=1

𝑘
𝑗=1                                                               Equation 5.1                       

Where, 

𝑥𝑖
(𝑗)

= an observation (i.e., micro-trip) i in cluster j, i=1, 2, …, n, j=1, 2, …, k. Note that x is a 23-

dimential real vector; 

n = the number of observations, equal to 236,404; 

k = the number of clusters, between 1 and 236,404; 

𝑐𝑗= the center of cluster j; 

 ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

= the distance between an observation 𝑥𝑖
(𝑗)

 and the cluster center 𝑐𝑗.  
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The method of Cubic Clustering Criterion (CCC) was used to compare the fit statistics of 

different numbers of clusters [137]. Results shows the 5-cluster structure (Largest CCC= -

4.6172) has the best fit statistics (i.e., largest CCC= -4.6172). Figure 5.2(i) shows the result of 5-

cluster structure illustrated by micro-trip root mean square acceleration across micro-trip mean 

driving speed. Note that, since the micro-trip data are 23-dimentional (i.e., 23 parameters), the 

boarders between clusters are not very clear if the data are shown in two dimensions. Cluster 1 

contains micro-trips of low speeds with large acceleration/deceleration. Abrupt 

acceleration/deceleration events from/to stopping status are possibly frequent in Cluster 1 micro-

trips. Cluster 2 micro-trips are low speed driving but with small acceleration/deceleration. These 

trips may occur on roads that serve the neighborhoods. Cluster 3 micro-trips are driving on local 

roads with larger acceleration/deceleration than those in Cluster 4. Compared with Cluster 3, 

micro-trips are more possibly in fluent traffic on local roads. Micro-trips in Cluster 5 are possible 

freeway or arterial driving in high speeds with small acceleration or deceleration.  

 

 
Figure 5.2 Clustering results  

 

To better understand the characteristics of these five clusters, PCA (Principle Component 

Analysis) was applied. PCA is capable of sorting out parameters that are more determinative in 
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forming a micro-trip cluster. PCA provides a smaller independent linear combinations (principal 

components) of 23 variables. Figure 5.2(ii) shows the 5-cluster structure illustrated by first two 

principle components, explaining sizeable variance across observations (36.9% and 21.8%, 

respectively). The boarders between clusters are clearer than those in Figure 5.2(i). The 

variables/parameters that have a large weight on the first two components are used to represent 

one cluster. Figure 5.3(i) presents the weight of each parameter on the first two components 

through their load matrix. Predictors having similar weights on the same principle are highly 

correlated, e.g., driving average speed, total average speed and maximum speed. Percent times 

on acceleration and on idling have the largest magnitudes (positive and negative) of weights on 

the first principle component. Root mean square acceleration and average deceleration have the 

largest weight on the second principle component. Therefore, these four parameters will be used 

to characterize the four micro-trip clusters. Besides these four parameters, two intuitive 

parameters, trip duration and maximum speed, are also used to represent the characteristics of 

five clusters. The relative mean magnitudes of these six parameters in five clusters are shown in 

Figure 5.3(ii) also. Figure 5.4 demonstrates a sample trip having five different micro-trips 

identified and labelled by the corresponding cluster number. 

 

Micro-trips in Cluster 1 have the lowest maximum speed and shortest duration, together with 

longer idling percent of time (partially because of their low speed and short duration). Cluster 2 

micro-trips also have a low speed but higher than cluster 1. The duration is also longer than those 

in Cluster 1. Cluster 1 and 2 micro-trips usually are the start or end leg of a trip. Cluster 3 has 

higher speeds than Cluster 1 and 2 but their speeds are still lower than 40 mph with medium 

idling time. Cluster 3 has the highest average acceleration/deceleration among five clusters. 
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Cluster 4 has higher speeds than first three clusters. Cluster 3 and 4 micro-trips are mostly driven 

on arterials or collectors under different driving conditions. Cluster 5 has the highest average 

speed, limited 4 idling driving, largest deceleration and longest durations. 

 

 
Figure 5.3 Results of principle component analysis (PCA) 
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Figure 5.4 Micro-trip cluster identified 

 

With the clustered micro-trips and their general characteristics, we can encode each driving 

cycle: 1 denotes the cluster with the lowest average speed and 4 denotes the cluster with the 

highest average speed. Then a trip can be represented by a code sequence indicating the order of 

micro-trips in the chain. For instance, the trip shown in Figure 5.4 has a code sequence 24351. 

 

5.5.3 Case Based System for Driving Cycle Design 

A Case Based System for Driving Cycle Design (CBDCD) is developed as a computer-aided 

machine learning tool. The system can take advantage of advanced modeling techniques to 

review, rank and synthesize micro-trip cases into a customized driving cycle by taking into 

account the qualitative (micro-trip cluster) and quantitative (performance parameter) information 

for each micro-trip. The designed driving cycle is selected by the degree of similarity between 

the result and the input. This methodology has the advantage of retaining the richness of 

historical large-scale data of individual micro-trip cases, synthesizing new candidate driving 
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cycles from existing cases, and eventually finding the best candidate driving cycle closest to the 

input from the user. Figure 5.5 shows the framework of the CBDCD. 

 

The CBDCD can be used to design two types of driving cycles: 1) a customized driving cycle 

based on user information given the user provide detailed information such as demographics, 

commute trip information, etc., and 2) a default typical driving cycle based on regional average if 

customer’s information is not detailed enough. The system has the capability to switch between 

using user’s individual information versus using regional average information to design driving 

cycles.  

 

 
Figure 5.5 Case based system for driving cycle design (CBDCD) 
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The system has a rich background historical case collection that contains the real-world micro-

trips collected by CHTS. These micro-trips can be clustered into different categories representing 

different driving condition, e.g. high-speed free flow driving, low-speed stop and go driving. 

Then the background case collection are processed by a set of CBDCD algorithms, that can read 

input information, rank and match historical micro-trip cases with input information,  and display 

matching results and detailed information of each historical case. The output information 

includes: 1) structured information of candidate micro-trips based on calculated similarity scores 

and 2) detailed information of each candidate case including their driving performance 

parameters, e.g. a speed profile graph, average speed, time spent information on 

acceleration/deceleration, etc. Then the system tests different combinations of micro-trips. The 

combination are tested based on their chaining probability. For instance, if a certain micro-trip is 

more likely to be chained with another type of micro-trip, their combination may be tested first. 

Doing this can reduce computation time and enhance the efficiency of CBDCD.  

 

After a trip is created, the trip level driving parameters are calculated and a similarity score can 

be calculated based on the trip-level driving performance parameters. If the combination of 

micro-trips results in a high similarity score compared with the input trip information, this 

combination can be regarded as the most representative driving cycle for the given driving 

information (e.g., trip length, maximum speed, number of stops). This trip combined by CBDCD 

can be accepted as a driving cycle for this user.  
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5.5.4 Similarity Score 

Given the input information, appropriate micro-trips were selected and chained together 

randomly as candidate cycles. Then, a similarity score was calculated for each candidate cycle. 

The similarity score is based on the sum of relative error between the parameters of the candidate 

cycle and the target driving cycle. Given the values of target cycle parameters, the relative error 

of each parameter of the candidate cycle was calculated as following: 

ε𝛽𝑘 = |
(𝑀𝛽𝑘−�̅�𝑘)

�̅�𝑘
| × 100%                                                                                Equation 5.2 

Where,  

ε𝛽𝑘 = the relative error for the kth parameter (e.g., total average speed) of the candidate cycle β, β 

is the number of candidate cycles and k=1,2,…,N, N is the total number of driving cycle 

parameters; 

𝑀𝛽𝑘 = the magnitude of the kth parameter of the candidate cycle β; 

�̅�𝑘 = the magnitude of the kth driving cycle parameter of a target cycle.  

  

Then, the similarity score of a candidate cycle can be calculated as follows: 

𝑆𝛽 =  100% −
∑ 𝜀𝛽𝑘

𝑁
𝑘=1

𝑁
         Equation 5.3 

Where, 𝑆𝛽 is the similarity score for candidate driving cycle β.  The similarity score is calculated 

by using 100% minus the average relative errors coming from the parameters of candidate 

driving cycle β. The score ranges from zero to 100% (100% means no errors and it matches with 

target cycle completely). The candidate cycle with the largest score is the best driving cycle that 

matches with the provided input information to its largest extent. Note that, the driving 

performance parameters were treated equally in the calculation. It could be reasonable to 
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consider using weights in the calculation of similarity score. As in certain studies with purpose of 

investigating the hard acceleration impacts, some parameters (e.g., maximum acceleration) may 

be weighted more when calculating the sum of relative errors. The driving cycles that best match 

with the trip-level parameters were selected as the final driving cycles. 

 

5.6 CASE STUDY 

A case study of creating regional driving cycle for vehicle by different fuel types was conducted 

using the CBDCD system. Figure 5.6(i) presents representative driving cycles for BEVs, HEVs 

and CVs produced by CBDCD, given micro-trip pattern as 25432 and trips lasting 15~20 

minutes. There are thousands of micro-trip pattern combinations. Driving cycles with the same 

pattern code represent those driving trips have the same number of stops, similar time spent on 

acceleration/deceleration, has gone through similar roads. Eventually, three representative 

driving cycles were selected for BEVs, HEVs and CVs.  

 

Figure 5.6(ii) presents further comparisons of these three driving cycles given specified micro-

trip patterns. Controlling the same micro-trip patterns for driving cycles could provide a better 

comparison of driving performance using different vehicles for the similar use (i.e., trip duration 

and number of stops). BEV cycle has a relatively larger average speed than HEV and CV cycles. 

Notably, BEV cycle has a significantly higher percentage of time spent on stable driving than 

HEV and CV. CV cycle has a highest percentage of time spent on idling and BEV has the 

smallest percentage. HEV cycle has the most acceleration/deceleration events while BEV has the 

least acceleration/deceleration events. As for the average root square acceleration and maximum 

acceleration, CV cycle has the largest magnitudes while HEV cycle has the smallest magnitudes.  
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Figure 5.6 Driving cycles given specified micro-patters  

 

Possibly, a more customized driving cycle can be generated given more potential user 

information. For instance, to compare the driving cycle of high-income drivers. Annual 
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household income>$150k, and age is between 40-50 were set as input, the system automatically 

searches the micro-trip database for sorting and ranking candidate micro-trip cases (give 

similarity scores). Figure 5.7 shows the cauterized driving cycles for target user groups making 

trips coded as 543 and 54.  

 

 
Figure 5.7 Customized driving cycles for target user groups 

 

5.7 FUEL ECONOMY ESTIMATION 

After customizing driving cycles for one type of vehicles given a target user group, fuel economy 

can be estimated specifically for this type of vehicles driven by a narrowed group of drivers. 

There are two options for using customized driving cycles to estimate fuel economy: 1) Applying 

Vehicle Specific Power (VSP) equation to calculate fuel consumption. VSP is defined as the 

instantaneous power per unit mass of the vehicle and is function of vehicle speed, acceleration, 

road grade, aerodynamic drag, and tire rolling resistance [138-140]. How to obtain fuel 
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consumption using VSP equation can be found from many studies [36, 138-141]; and 2) Using 

the customized driving cycles to predict MPG ratings based on dynamometer tests [94, 124-127]. 

Estimated by non-customized driving cycles, the fuel economy of driving (e.g., 18 MPG for city 

and 22 MPG for highway, given a specific vehicle brand) may be applicable as an average 

performance of one type of vehicles running in one region. Using the customized driving cycle, 

BEV, HEV and CV users can obtain different MPG or MPGe (equivalent MPG) because of the 

differences between driving cycles of these three types of vehicles. The customized driving 

cycles can provide better information for customers when they are deciding which type of 

vehicles are better for them.   

 

5.8 LIMITATIONS 

This study depends heavily on trajectory data collected by in-vehicle GPS. To some extent the 

accuracy and availability of location data constrain the analysis. Some other critical information 

remains unknown to the researchers due to privacy concerns, e.g., the geo-codes for each 

second. Missing geographically referenced information for trips prevents the researchers from 

extracting accurate contextual factors, e.g., whether the road is interstate or arterial. Therefore 

the micro-trip clustering completely depends on using driving performance data without 

considering the surrounding contextual factors. 

 

5.9 CONCLUSIONS AND CONTINUING RESEARCH 

Knowledge about how AFVs perform in real-world is important for assessing their real fuel 

economy and for the realization of their benefits in terms of fuel saving and emissions reduction. 

A critical component of modeling fuel economy and emissions is the driving cycle. Given the 
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shortcoming of using existing one-fits-all driving cycles for all types of vehicles, this paper 

creates a practical tool based on a comprehensive case-based reasoning system which can design 

customized driving cycles based on users’ inputs. The input information can be highly flexible, 

depending on different needs. The system takes advantage of emerging data mining and machine 

learning techniques to create driving cycles and relies heavily on a large-scale trajectory data 

collected.  

 

Before proposing the methodology for customizing driving cycles, this study compares real-

world driving performance of BEVs, HEVs and CVs in equivalent groups. Results shows 

heterogeneous driving performance across these three types of vehicles. Further, the real-world 

driving performance is clearly different from the characteristics of existing standard driving 

cycles. Thus, customizing driving cycles based on large-scale real-world driving practices could 

improve the accuracy of estimating fuel economy of vehicles powered different energy.   

 

Given the high diversity of real-world driving performance made by various drivers and vehicles, 

this study extracts the information of micro-trips described by 23 driving performance 

parameters. The micro-trips are further grouped through machine learning techniques, such as 

principle component analysis and cluster analysis. Clustering of micro-trips helps separate a 

complete driving cycle into several sub-driving tasks facing various driving contexts (e.g., local 

roads and freeway). These micro-trips come into being a highly competitive micro-trip case 

collection which is the basis of designing high-quality driving cycles. A Case Based System for 

Driving Cycle Design (CBDCD) is then designed by embedding the case collection with 

algorithms which have the capability to review, sort cases and eventually synthesize micro-trip 
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cases into different candidate driving cycles. A final driving cycle is selected according to how 

similar it is in terms of driving characteristics of a specific user/customer. In this way, a cycle is 

customized to respond to a user’s request as well as represent the real-world driving 

performance.  

 

An application of CBDCD system is to customize driving cycles for potential users of BEV, HV 

and CV. Customizing driving cycle to show the uniqueness of each type of vehicle can be a good 

complement for transitioning out of one-fit-all driving cycles. A customized driving cycle 

through CBDCD given detailed user information, such as age, gender, income, commute trip 

distance and duration, etc. can be used to estimate fuel economy of a target vehicle, by applying 

VSP equation or using dynamometer tests.  

 

The CBDCD can also provide default driving cycle design using regional average data without 

detailed customer information. Therefore, auto manufactures can use the driving cycle to provide 

customers with more accurate estimation of fuel economy information which could potentially 

help customers understand benefits of AFVs and help them make more informed vehicle 

purchase decisions. 

 

In the future, a validation study is first needed to evaluate the accuracy of fuel economy 

estimated using customized driving cycles through field tests. The micro-trip database should be 

expanded to cover more population. This study uses a database from California travel survey 

[23]. Trajectory data from other regional surveys, e.g., Atlanta regional survey [78], can also be 

merged into the current micro-trip database, as well as other data sources which are increasingly 
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available publically or privately, e.g., Naturalistic Driving Study (NDS) Data from the second 

Strategic Highway Research Program [35]. Further research should also do an in-depth 

exploration of the relationships between fuel economy, micro-trip patterns, vehicle types and 

user characteristics, and how the fuel economy estimated according to personal information 

influences vehicle purchase decisions.  
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CHAPTER 6 CONCLUSIONS 

 

Given the fact that automobile driving is the most dominant transportation mode in the United 

States, understanding automobile driving behavior serves as one of the critical keys to 

improvements of life quality, including safety, mobility and sustainability. With widespread 

deployment of emerging information and communication technologies, massive amounts of 

driving data in high resolution, referred to as “Big Data”, are becoming available, allowing 

researchers to scrutinize driving behavior in far more detail than was possible before. Short-term 

driving behavior is of a particular interest in the dissertation. Through digging large-scale 

second-by-second trajectory data coupled with travel behavioral information, the dissertation 

contributes a fundamental understanding of instantaneous driving behaviors under “Big Data” 

environments. “Driving volatility” is the core concept conveyed in the dissertation, describing 

the variability of instantaneous driver behaviors.  

Trajectory data used in the dissertation were sampled in fairly high frequency of 1-Hz. However, 

there is still a possibility that the second-by-second trajectory data are undersampling for 

identifying instantaneous driving decisions. Compared with high industrial sampling rates (e.g. 

96 kHz), data used in the dissertation may be limited by relatively low sampling frequency which 

gives only second-by-second speeds. Undersampling can result in loss of information about 

important instantaneous driving decisions. On the other hand, oversampling can also result in 

noisy data, and waste storage and processing resources. To address this issue, a study was 

conducted to answer the question: what sampling rates are appropriate to capture micro or short-

term driving decisions? Analyses were conducted by collecting driving data at 20 Hz using a 
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driving simulator. The study developed measures of information loss and quantified their 

relationship with sampling rates. It discussed driving behavior information from two angles: 

instantaneous driving decisions and speed magnitudes. The results showed that drivers made no 

change to their speed for 89.9% of the sampled seconds, i.e., drivers either kept accelerating, 

decelerating or just maintained speed during a second. Only 10.1% of the sampled seconds 

involve driver’s decision change. Overall, the analysis found that at least 98.5% instantaneous 

driving decision changes can be detected using second-by-second data compared with 20-Hz 

data and that the second-by-second data are reasonably accurate for the purposes of the 

dissertation.  

Given the high acceptability of the sampling frequency of 1-Hz, a study for quantifying driving 

volatility in instantaneous driving behaviors using a large-scale trajectory data was conducted. 

The study takes advantage of large-scale travel behavioral data coupled by second-by-second 

GPS data. A framework was established to define driving style in instantaneous driving 

decisions. The study provided a quantifiable way to answer how to quantify explicitly volatile 

driving in a defensible manner. The answer is to create a volatility indicator to measure the gap 

between an individual’s driving practice and the typical driving practice in that region. Assuming 

the typical driving practice applied by most people represents the norm of driving culture in that 

region, the driving practices standing out of that normal driving could be defined as volatile 

driving. The paper demonstrated a methodology to measure the volatility, which is based on 

variation in vehicular jerk between individual drivers and regional sample profiles. The creation 

of a robust volatility score that is able to quantify the extent of volatility, instead of simply 

labeling a driver as aggressive or non-aggressive is a key contribution. The study then proposed a 
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potential application to support calmer instantaneous driving decisions. Driving volatility 

information based on accelerations and vehicular jerk can be incorporated in driving assist 

systems, e.g., advanced traveler information systems (ATIS). Current traveler information 

systems (such as 511) are largely meant to support more macro driver decisions (e.g., route 

choice and route diversion) and do not provide much instantaneous information that can help 

drivers make more micro driving decisions. The real-time driving volatility information 

reflecting driving performance based on performance of fellow fleet vehicles or neighbors or just 

their own performance can support short-term micro decisions. This in turn can benefit the 

community or fleets in several ways: 1) calmer driving; 2) safer driving in general (especially on 

icy or slippery road surfaces where alert thresholds can be lowered); 3) lower fuel consumption 

and emissions; and 4) identification of dangerous road segments (such as poor sight distance) 

that may result in volatile driving. 

 

Following the study on quantifying driving volatility in instantaneous driving behaviors, another 

study was conducted to disentangle the hierarchical nature of driving volatility embedded in 

travel survey data, using a sophisticated multi-level modeling framework. Further, the study 

highlighted the role of alternative fuel vehicles (AFVs) in travel. The study answered important 

research questions about AFV use patterns and driving practices as they gain greater acceptance 

and popularity. In terms of use, AFV drivers make the same amount of trips as conventional 

vehicle drivers do, except that drivers of BEV make statistically significantly fewer trips (5% 

level). The daily distances traveled were shorter for some AFVs (BEV and PHEV) but longer for 

other AFVs (HEV and CNG) compared with conventional vehicles. Drivers spent significantly 

longer time traveling daily in their HEV or CNG vehicles compared with conventional vehicles. 
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The study also found important differences within AFV driving practices. HEV and BEV were 

found to be associated with calmer driving compared with conventional vehicles, i.e., they are 

less prone to aggressive accelerations and vehicular jerks. To sum up, the challenge of 

simultaneously extracting valuable information from complex hierarchically structured data was 

achieved by the application of multi-level modeling. Specifically, such modeling better controls 

for various associated factors, while exploring differences in driver behavior at three levels, i.e., 

trip level, driver/vehicle level and regional level. 

 

Drivers using different types of vehicles under various driving conditions behave differently, in 

terms of many driving performance measures including driving volatility. A study was further 

conducted to compare real-world driving performance of BEVs, HEVs and CVs in equivalent 

groups. Result consistently showed the heterogeneous driving performance across these three 

types of vehicles. Thus, to predict the accurate fuel economy for an individual and a specified 

vehicle type, the study constructed a Case Based System for Driving Cycle Design (CBDCD) 

system to customize driving cycles based on real-world driving data for various users and 

vehicles using different power systems. These customized driving cycles can be used to better 

estimate fuel economy for customers based on their own driving style instead of using a “one-fit-

all” pre-designed driving cycle. A more accurate fuel economy estimation could potentially help 

customers choose a more energy-efficient and cleaner vehicle to them. This study also provided 

instructions for manufacturer, environmental protection agencies, and energy related industries to 

optimize their driving cycles based on local or regional characteristics. 
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The dissertation contributes to establishing a framework for research using large-scale behavioral 

data integrated with sensor data, e.g., trajectories from global positioning system devices, 

representing advances in large-scale data analytics.  
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