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The influence of specific edaphic environmental factors on the 

detoxication and subsequent degradation of N-Butoxymethyl-2-chloro-2', 6 ' ­

diethylacetanilide (butachlor) was evaluated under greenhouse and growth 

chamber conditions . Detoxication of butachlor, as measured by bioassay 

with barnyardgrass, was significantly enhanced by increasing tempera­

tures to 32 c, making the soil alkaline, flooding, introducing relatively 

high levels of organic matter and by allowing exposure of more than four 

weeks. Total degradation of butachlor to C02 was enhanced also by high 

temperatures and length of exposure but was inhibited to a certain extent 

by flooding. Soil produced metabolites, of which three were soluble in 

certain organic solvents and five were water soluble, were also influenced 

by environmental factors, temperature and length of exposure being most 

significant. Flooding influenced the for.mation of certain metabolites 

soluble in organic solvent but did not influence the presence or amounts 

of water soluble metabolites. 
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CHAPTER I 

INTRODUCTION 

The overall performance o:r a herbicide is of economic importance 

and may be governed by many interrelated environmental factors. Much 

emphasis during recent years has been placed on the correlation of soil 

and climatic factors with herbicidal activity (70, 91) and to means and 

methods o:r application (45 ) .  Upchurch � al. (91)  measured fourteen 

factors under field conditions in an e:r:rort to correlate soil-environ­

mental relationships with phytotoxic responses. The highest correlation 

was usually between soil organic matter and plant response. 

Losses of herbicides tram the soil may be traced to volatilization, 

chemical assimulation, leaching, photolysis, adsorption and absorption, 

phytoassimulation and microbial degradation (4,  78, 81, 82, 96) . Resis­

tance of herbicides to these degradative processes as well as repeated 

applications would be expected to result in cumulative persistence with 

subsequently serious economic implications . However, very rapid losses 

of a herbicide might lead to failure to control the intended pest and 

result in economic losses. It has been estimated that for effective and 

practical weed control, herbicides should persist in phytotoxic concen­

trations for 1 to 3 months ( 83 ) . 

Microbial degradation provides the major means o:r detoxification o:r 

many classes o:r herbicides ( 13, 50, 52, 65 , 82, 83) .  Environmental fac­

tors that are conducive to increased_microbial activity as increased 

moisture content ( 50, 74, 82) , temperature ( 13, 42, 50, 10, 74, 82, 96), 
organic matter level (42, 50, 82) , pH (4,  17, 42, 82, 96) are just a :few 
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of the factors that tend to reduce persistence of many herbicid�s in 

the soil. The study of the interactions between herbicides, soil­

environmental factors and microflora appears limitless ( 96) . 

Butachlor (N-Butoxymethyl-2-chloro-2 ' , 6 ' -diethylacetanilide ) has 

been shown to be a selective preemergence herbicide which controls a 

wide spectrum of grass and specific broadleaf weeds in transplanted 

2 

rice grown under flooded conditions and direct drilled seeded rice ( 7, 

28 ) . The use of this compound is not restricted to rice as it m� be 

used in many agronomic and horticultural crops. It is currently marketed 

by Monsanto Company under the trademark of MACHETE. 

The objective of this investigation was to determine the influence 

of soil moisture, pH, temperature and organic matter on the detoxication 

rate of butachlor in soil. An attempt was made to determine the influence 

of moisture and temperature on the soil degradation pathw� and metabolic 

products of butachlor. With both studies, emphasis was placed on the role 

of microorganisms in detoxication of butachlor. 

To facilitate the discussion of herbicides in this text, the common 

or designated and chemical names of all compounds referred to are summar­

ized in Table 1. 
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TABLE 1. Common and chemical names of herbicides referred to in. the text 

CoJIDJlon Name or 
Designation 

Amitrole 

Atrazine 

CDAA 

CDEC 

Chloramben 

Chlorpropham 

Dalapon 

Dicamba 

Diphenamid 

Diuron 

EPlC 

Linuron 

Metobromuron 

Monuron 

Neburon 

Prometryne 

Propachlor 

Propani1 

S�azine 

TCA 

Trifluralin 

Chemical Name 

3-amino-!-triazole 

2-chloro-4-( ethylamino)-6-{isoprop,ylamino) -s-
triazine 

-

N,N-diallyl-2-chloroacetamide 

2-chloroally1 diethy1dithiocarbamate 

3-amino-2,5-dichlorobenzoic acid 

isopropyl-!-chlorocarbanilate 

2,2-dichloropropionic acid 

3 ,6-dichloro-£-anisic acid 

N,N-dimethyl-2,2-diphenylacetamide 

3-(3 ,4-dichlorophenyl)-1,1-d�ethylurea 

S-ethy1 dipropylthiocarbamate 

3- (3,4-dichlorophenyl)-l-methoxy-1-methy1urea 

3-( �-bramopheny1) -1-methoxy-1-metby1urea 

3-( �-chloropheny1)-l,l-dimethylurea 

1-butyl-3-( 3,4-dichlorophenyl) -l-methy1urea 

2,4-bis( isopropy1amino) -6-(metby1thio)-s-triazine 

2-chloro-N-isopropylacetani1ide 

3', 4' -dichloropropionanilide 

2-chloro-4,6-bis( ethylamino) -!-triazine 

trichloroacetic acid 

a, a, a-trifluoro-2,6-dinitro-N,N-dipropy1-�­
to1uidine 



Table 1 ( continued) 

Common Name or 
Designation 

2,4-D 

Vernolate 

4 

Chemical Name 

(2, 4-dichlorophenoxy)acetic acid 

!-propyl dipropylthiocarbamate 



CHAPTER II 

REVIEW OF LITERATURE 

I. ENVIRONMENTAL INFLUENCES· ON PESTICIDE DEGRADATION 

Most of the investigations concerned with soil-environmental influ­

ences on pesticide decomposition have been under aerobic conditions and 

degradation of herbicides under anaerobic conditions has not been studied 

extensively (74) . The effective conversion of 1,1,1-Trichloro-2,2-bis 

(�-chlorophenyl)ethane (DDT), to 1,1-Dichloro-212-bis(�-chlorophenyl ) 

ethane (DDD), occurs within three weeks under anaerobic conditions, 

while more than six months are required under aerobic conditions (�4) . 

Furthermore, anaerobic degradation is enhanced by organic matter addi­

tions and thus cultural means are available for aiding the degradation 

of DDT in soils (�4) . Trifluralin has been shown to be lost from flooded 

soils very rapidly (74) . However, losses tram soil under six inches of 

water did not occur until eight and sixteen weeks after application of 

neburon and monuron respectively (29) . Decomposition of propanil is 

favored by increased aeration during the initial seven d�s of exposure 

(59) .  The breakdown of picloram (97) is decreased when soil moisture is 

greater than seventy-seven percent of the moisture holding capacity of 

the soil. Consideration of anaerobic systems under simulated natural 

conditions would also encompass herbicidal effects on algae. Loeppky's 

(61) work indicated that herbicides selective for macroflora in a field 

might also be selective for microflora. Anaerobic studies of herbicide 

detoxification or decomposition need not be restricted to those compounds 

5 



intended for application to flooded crops. Excessively high rainfall, 

low spots or poorly drained fields frequently produce anaerobic condi­

tions for a short period of time. 

Decomposition of picloram (97), atrazine and diuron (67), dalapon 

6 

( 87), simazine ( 38), trifluralin ( 74) and chlorpropham ( 13)  is increased 

With an increase in temperature in the range of biological reactions. 

Atrazine decomposition is doubled ( 76) with each ten degree increase 

from 10 C to 30 c, while that of diuron is tripled (67). Cool, dry 
seasons m� favor residual of long ter.m herbicides (27, 87). Little or 

no decomposition of dalapon occurred within two weeks when soil tempera­

tures were less than 15 c, while decomposition was essentially complete 

at 30 C within two weeks ( 42). Ogle ( 70) concluded after studying the 

influence of several soil factors on the fate of 2,4-D, TCA, chlorpropham 

and monuron, that in general herbicidal breakdown "was found to be pro­

portional to the temperature as would be expected in microbial decomposi­

tion" (70). Of course, loss by volatilization of herbicides such as 

CDEC,CDAA and EPrC is increased With an increase in temperatures (21, 

56, 88). 

Soils of high organic matter content have exhibited a high degree 

of microbial decomposition of dalapon (42, 45), linuron and diphenamid 

(23 ) ,  and !-triazines (38, 76). Amitrole degradation is reduced by 

organic matter and degradation is thought to be largely chemical with 

only indirect microbial involvement (51) . The degradation potential of 

atrazine decreases with increasing depth and m� be directly related to 

organic matter, microbial population and adsorption ( 76). The kind and 

amount of organic matter � also govern degradation ( 76). 
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Increasing the soil pH also increases decomposition of dalapon (17, 

42, 47) , propanil (59), vernolate and amitrole (17) . Bailey � !!· (4) 

showed that adsorption of herbicides occurred to the greatest extent on 

the highly acid montmorillonitic clay as compared to near neutral montmor­

illonite. Reduction of phytotoxicity of prametryne at pH 4.5 rather 

than at pH 6.5  has been attributed to adsorption by organic matter addi­

tives (95) . The distribution of soil microbes as actinomycetes from 

various depths are associated with neutral pH and moderately high soil 

moisture ( 20). 
Photolysis has not been identified as a major degradation factor 

with the majority of herbicides currently in use. 

Photolysis has been shown to be important with metobromuron ( 78), 

prametryne (55) and is implied with fluorodifen (94) and amiben ( 62) . 

Sheets (81) states that photolysis reactions occur much more readily in 

solution than in solid or gaseous states . 

In order to determine the influence of the soil microbial popula­

tion, various techniques have been employed to "sterilize" the media. 

Hance (36) effectively sterilized soil for atrazine studies by electron 

beam irradiation at a dosate of 5 m rad. Autoclaving has generally been 

enplqyed as a means of destroying microbial populations with varying 

degrees of success. A notable weakness of this system is the lack of 

residual sterility. Although the effects of autoclaving on soil systems 

is poorly understood, the known effects include altered structure, 

increased water-soluble organic matter content, toxin fo�ations, in­

creased soluble salts of Ca, Cu, Mg, Mn, K, z, P and Al, decreased Fe 

and N03 salts, modified cation exchange capacity and modified water and 

gas adsorptive capacity (51) . Certain biological toxicants as sodium or 
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potassium azide, sodium arsenite and hydroxylamine have been used as 

means of maintaining residual sterility (51) .  Parochetti and Warren (71) 
studied the behavior of KN3 in soil and found that volatility was impor­

tant in the dissipation of KN3• Soil pH, temperature and soil moisture 

were the major factors influencing dissipation of KN3 (71). 

Microbial decomposition under laboratory conditions is frequently 

characterized by three phases : initially a lag phase in which little 

decomposition occurs ; secondarily a very rapid decomposition phase and 

last a slow but steady decomposition phase (96). The lag phase is gen­

erallY accepted as the time required for the development of a microbial 

population capable of metabolizing a specific herbicide. The increase 

in population is also correlated with the production of enzymes that 

catalyze the decamposi tion and these enzymes "are formed tram closely 

related enzymes already present" (96). Environmental factors as well as 

the specific herbicide will determine the duration and rate of each phase 

and the definition of each phase is sometimes difficult to determine 

under field conditions (96) . 

II. DEGRADATION OF SPECIFIC HERBICIDE CLASSES 

A large amount of work has been centered on identification of 

organisms responsible for degrading phenoxy acetic acid compounds and it 

has been reviewed and investigated by Audus ( 3 ) and Walker ( 93) .  The 

resistance of aromatic herbicides to microorganism degradation is governed 

by the position of the halogen on the aromatic nucleus and by the linkage 

and type of aliphatic side chain (1) . Dichlorophenol resists destruction 

when Cl is in the meta position to the phenolic hydroxyl; the position 



and not number of halogens governs degradation (65 ) .  However, �he num­

ber of halogens on the aromatic ring will govern degradation of benzo­

ates (65 ) .  Correlation of laboratory results with field studies is not 

al�s feasible. Quite often exceptionally high amounts of herbicide 

9 

are used in laboratory studies. Walker and Newman ( 93)  used an equival­

ent amount of 224o kg/ha of 2,4-D in perfusion studies as compared to 

the 2 kg/ha or less used under normal field conditions. In the perfusion 

tests, the 224o kg/ha was completely decomposed in 7 to 13 days,  while in 

the field 3 to 6 weeks were required with 2 kg/ha ( 93 ) .  Under field 

conditions, the "ideal" conditions prevailing in perfusion tests as 

moisture, aeration and temperature "are not the rule" ( 93) . Conditions 

of warm temperatures, moist environment and organic soils accelerate 

phenoxy acetic acid degradation (54).  

The s-triazines as a herbicide class have been subjected to numer­

ous investigations with varied results from no microbiological breakdown 

( 65 )  to identification of a specific organism, Aspergillus fumigatus (46) 

and others (52) . Dehalogenation is advocated as a chemical degradative 

mechanism for atrazine and microorganisms are not involved {52) .  N­

dealkylation appears to be the major fungal mechanism for degradation 

and with atrazine, the ethyl group is the major route although same de­

gradation of the isopropyl group occurs (52) . Kaufman (52) stated that 

dealkylation by microorganisms does not insure detoxication and the pres­

ence of toxic dealkylated metabolites accounts for inability of bioass� 

techniques to determine progressive dissipation. 

The substituted ureas have been extensively studied and reviewed as 

to their fate and disappearance from soils ( 18, 4o, 69, 82) . Monuron 

(82 )  has been shown to be degraded effectively by many bacteria and fungi 



10 

under laborator.y conditions including Pseudomnas, Aanthomonas, . Scarcina, 

Bacillus, Penicellium and Aspergillus spp. Further work by Murray � al. 

{69) with the fungi Aspergillus on diuron found that � niger degraded 

this urea faster than � tamarii, which in turn was more effective than 

&_ sydowi. Murr&¥ (69)  also found that under laborator.y conditions, 

diuron degraded at a faster pace than neburon which was broken down 

faster than monuron. The rate of disappearance of these ureas was also 

found by Sheets (8o) to be governed by soil moisture, whereby the contin­

uously moist { field capacity) soils produced less phytotoxicity than 

the alternately wet and dr.y soil. One of the residues identified from 

diuron was 3,4-dichloroaniline { 18) and Kearney ( 53 )  identified 3-chloro­

aniline as a product of Pseudomonas spp. degradation of chlorpropham. 

Without the 3-chloro substitution, Arthrobacter and Achromobacter degraded 

propham to the aniline, carbon dioxide and isopropyl alcohol ( 16) . Pro­

panil {8, 9, 10 ) has been shown in laboratory studies to be degraded to 

3,4-dichloroaniline by a microbial enzyme acylamidase (9) . Fusarium 

solani was identified by Lanzilotta and Palmer { 59) as an organism de­

grading propanil to 3,4-dichloroaniline. They further speculate (6o) 

that "a synthetic compound is susceptible to enzymatic attack because it 

bears a structural resemblance to some natural product that is sufficient 

to be mistaken for this substance and used as substrate by the enzyme 

involved. " Lanzilotta and Palmer ( 6o) think that acylamidase is  specific 

to propanil and does not affect other acylanilides as dicryl or karsil 

because it has specificity to acyl chains of limited length. Karsil, 

N-{3,4-dichlorophenyl) -2-methylpentanamide, was found to be degraded to 

3,4-dichloroaniline by Penicillium spp. with the methylpentanamide moiety 

being degraded to carbon dioxide, water and acetic acid (79) . The 
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3,4-dichloroaniline product from propanil. has been shown by Pl.immer et al.. 

( 72) to react with soil. nitrite to form an intermediate diazonium cation 

which in turn eventual.J.y may form l.,3-bis(3,4-dichl.orophenyl.)triazine. 

Tweedy � .!!• ( 90) found that bromine substitutions as with metobramuron 

contrasted to the resul.ts of the degradation of chl.orine substituted 

acyl.anil.ides. Azobenzine was never detected as has been shown with 

chl.oroacyl.anil.ide rates up to 1000 times the recommended fiel.d rates, 

but instead degraded to R-bromoacetanil.ide (90) .  It was noted al.so that 

this work was done at onl.y 10 times the normal. metobramuron field rate 

(90). 

A few alpha hal.oacetamides have been reviewed by Jaworski ( 54 )  

with discussions of the degradation of 2-Chloro-N, N-dial.lyl.acetamide, 

( CDAA) ,  and 2-Chloro-N-isopropylacetanil.ide, propachlor. Soil studies 

of CDAA degradation showed that 14co2 from carbonyl label.ed or al.J.yl. 

l.abeled 14
c CDAA evol.ved about 20 percent of the total 14c trapped. 

Deming (21) attributes same of the rapid loss of CDAA to vol.atility. 

Propachlor is rapidly metabolized by resistant crops to a water-sol.uble 

acidic metabolite whereby the chloro group is suspected of·being dis­

placed by same nucleophilic endogenous phytosubstrate (54 ) .  

Phytotoxic studies with propachlor ( 5 ,  86) ,  laboratory and field 

performance of al.achlor (6, 39, 86) ,  and of anal.ogs ( ll, 43) have indi-

cated the broad spectrum and efficaceous nature of this cl.ass of herbi­

cides.  Under a wide range of soil-environmental. conditions this cl.ass 

has generally exhibited l.imited duration of soil. phytotoxic residues or 

metabolites. Same environmental. and edaphic factors infl.uencing the 

herbicidal performance of butachlor were described by Baird and upchurch 

( 7) .  



In an attempt to find practical as well as a preventive approach to 

reducing pesticide residues, McClure (66) explored degradation accelera­

tion by the application of nutrient broths to soils in greenhouse bio­

ass� studies. The broth treatments did accelerate the normal degrada­

tion rate of most of the herbicides tested. Lanzilotta { 59)  worked with 

additions of glucose and yeast extract and found a substantial increase 

in propanil decomposition, which was reflected in increased cell popula­

tion rather than in increased activity. 



CHAPlER III 

METHODS AND MATERIALS 

I. BIOASSAY STUDIES 

A series of investigations were established during 1970-71 under 

laboratory and greenhouse conditions. Ray silt loam was utilized in 

all tests with specific amendments for pH and organic matter studies .  

Properties of this soil are given in Table 2. 

Butachlor was dissolved in acetone and applied at various rates 

{ six to eight levels ) to the weighed {150 gms) cover l�ers in a belt 

spr�er at a diluent volume of 182 1/ha. Immediately after application, 

the herbicide was thoroughly incorporated and transferred to individual 

10 em x 22.5  em 2 mil polyethylene bags. Flooded treatments were estab­

lished by adding 55 m1 of distilled water to each container and all 

containers were sealed and incubated in illuminated growth chambers 

(500 f. c .  at sample level, 12 hour diurnal period) for specified periods 

of time . Non-herbicide treated cover l�ers were also incubated in the 

same manner and these were used to establish a standard rate response 

curve after each incubation period. The incubated herbicide substrate 

treatments were removed from the incubation chambers at regular inter­

vals, allowed to dry to a workable state by evaporation at room tempera­

ture (24 hrs at 23 C ) ,  applied to pots (9.52 em sq. ) containing 50 seeds 

each of barnyardgrass { Echinochloa crusgalli L. , Beauv. ) at a depth of 

13 mm and placed in the greenhouse for seventeen d�s. Subirrigation 

was employed for all watering requirements. At the end of each forcing 

period, foliage fresh weights were obtained from both the incubated 

13 
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TABLE 2. Properties of Ray silt loam 

pH. • • • • • • 6. 3 

Sand. • • • • • • • • • • • • 6.2% 

Silt. • • • • • • • • • • • 83 .2% 

Clay. • • • • • • 9.6% 

Organic matter. • • • • l.O% 

Cation exchange capacity. • • 12. 9  meg/100 gms 
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herbicide substrate samples and the standard samples. The ass.essment 

for phytotoxicity was determined by comparing growth reduction values 

(referred to as GR50) from incubated herbicide response curves with 

GR50 values from the standard response curves as shown by Corbin and 

Upchurch ( 17) . The GR50 value represents a 50 percent growth reduction 

in foliage fresh weight interpolated from the rate response growth inhi-

bition curve of each replication. The dete�ination of the amount of 

herbicide detoxified is the differential between the standard and incu-

bated rates at GR50• The percent detoxication was then deter.mined by 

the following equation: 

Percent Detoxication = ( treatment GR50 - standard GR50) x 100 
treatment GRso 

The ter.m detoxication used throughout the text represents loss of phyto-

toxicity as bioassayed with barnyardgrass.  The amount of herbicide 

detoxified, the GR50 value and the percent detoxication were analyzed 

statistically with the "Analysis of Variance" as described by Snedecor. 

All bioassay data reported herein were the means of three replications . 

The temperature factor was established by incubation in illuminated 

growth chambers at constant temperatures of 16, 24 and 32 c. Soils 

autoclaved for 8 hours at 121 C and 1.05 kg per sq. em. were treated 

with herbicide and incubated at 32 C to determine microbial influence 

on detoxication. The influence of soil pH was dete�ined by using four 

pH levels ; 4 . 5 ,  5 . 9, 1. 1 and 8.5 .  Acidic adjustments were accomplished 

with 1 N �So4, while basic amendments were made with 1 N NaOH. Organic 

matter levels were established by thoroughly blending "muck soils" of 

78 percent organic matter at three ratios with the silt soil resulting 

in organic matter levels of 3, 9 and 27 percent. 
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All studies contained two moisture treatments, flooded and non­

flooded ( 15 percent moisture on an air dried basis ) , and at least three 

incubation intervals of two, four and eight weeks . The temperature and 

sterilization studies also included an incubation period of sixteen 

weeks. The organic matter and soil pH studies were incubated only at 24 c. 

The experiment design of all studies was a randomized block which 

embraced rate levels, incubation time intervals, moisture regimes and 

main factor levels. The respective factorials were 8 x 4 x 2 x 3 in 

the temperature study, 6 x 4 x 2 x 2 in the sterilization study, 6 x 3 x 

2 x 4 in the pH study and 6 x 3 x 2 x 3 in the organic matter study. For 

each experiment, triplicate samples were processed and bioass�ed using 

a single bioassay pot for each sample. 

II. RADIO TRACER STUDIES 

� silt soil as employed with the bioassay studies was also used 

for the isotopic investigations . The incubation vessels used were 

patterned after the Biometer Flasks designed by Bartha (8) . Modifications 

were made by utilizing a center well for the trapping solution and by 

attaching a 100 mm Ascari te filter to the side arm of a 250 ml Kimax 

suction flask fitted with a rubber diaphragm for sampling with a 13 em 

hypodermic needle and syringe. One hundred grams of soil on an air 

dryed basis was adjusted to 15 percent moisture or flooded with one half 

an inch "head" of sterilized distilled water.  In addition to the moisture 

factor, sterilization techniques were studied by comparing nonsterilized 

with steam sterilized soil (121 C at a pressure of 1.05 kg per sq. em. 

for 2 hrs) , as well as with potassium azide treated soil at 4oo ppm as a 

chemical means of inhibiting microbial activity (57, 71) . 



14C ring and carbonyl labeled butachlor (0 .4  JJC/ml and ;.4 JJC/ml 

respectively) were applied to each individual incubator at 24 ppm of 

butachlor which was equivalent to 4.4 kg/ha on a 13 mm depth basis. 

Evolved 14C02 was trapped in 10 m1 ·or 1 N NaOH and one m1 was sampled 

17 

on a weekly basis and placed in scintillation vials. Fifteen milliliters 

of Insta-Gel liquid scintillation solution (manufactured by Packard 

Instrument Company) was added to each vial and the radioactivity of the 

14C02 evolved was determined by liquid scintillation, counting on a 

Nuclear Chicago Mark I counter for 4 minutes, two counts per sample. 

Percentage recovery was calculated using a computerized program which 

converted cpm to dpm from quenching calculations based on external stan­

dardization and comparing the dpn in the sample with the dpm of the total 

original material. All "counts" were corrected for background. Thus, 

results were expressed as percent 14c of initial radioactivity. 

The experimental design of the carbonyl labeled study was a random­

ized block which included a ; x 2 x 2 (temperature x moisture x sterili­

zation) factorial with two replications of one flask each. The ring and 

carbonyl labeled comparison was also a randomized block which included a 

23 (labels x moisture x sterilization) factorial with two replications of 

one flask each. 

Total C02 was also monitored weekly by titration of a 1 ml trapping 

solution sample with 0 .2  N HCL after precipitation with saturated BaC12 

and using o .J.% phenolphthalein as an indicator. 

After two, four, eight and eleven weeks of incubation, the treated 

soils were sampled and organic and aqueous soluble materials were extrac­

ted by using the Bligh and Dyer (57) extraction procedure (2  chloroform, 
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2 methanol, 1.8 water) . The two phases were separated, radioactivity 

counted and the solutions were then concentrated. The chloroform con­

centrates were spotted on silica gel 20 x 20 em Thin Layer Chromatography 

plates (Quantum Industries) and two dimensional chromatographs were dev­

eloped by using initially isooctane-ether (4 :3 )  and secondarily ether. 

Chromatograms prepared in this manner were examined with a Baird-Atomic 

Model 6ooo Beta Camera and the percent distribution of the 14c present 

in each zone was dete�ined by zonal counts per minute. 

Aqueous extracts were characterized by paper electrophoresis on a 

Savant High Voltage Electrophoresis Apparatus with a 30 inch flat plate 

using 3000 volts and sodium acetate buffer at pH 5 . 4  and with 2 N acetic 

acid: 0 .6  N formic acid (1:1) at pH 2 .2  using Whatman 3 .MM paper. The 

b.lue dye visual standard was allowed to migrate 23-25 em from the origin 

when the chromatograms were removed and dried. Each chromatogram was 

divided into one em sections (10 em sections towards the cathode and 

25 em sections toward the anode from the origin ) and placed in scintil­

lation vials . Elution of each section was accomplished with 2 m1 of 

1:1 Ethanol-water eluant oscillating for 30 minutes prior _to the addi­

tion of 15 m1 of Insta-Gel liquid scintillation solution. Four minute 

counts were made, the dpm recovered and the percent of distribution 

determined. Percentage of each major metabolite was determined and the 

metabolite identified by distance from the origin in relationship to the 

standard dyes .  



CHAP.rER IV 

RESULTS AND DISCUSSION 

I. BIOASSAY INVESTIGATIONS 

A series of investigations to determine the rate of detoxication of 

butachlor as influenced by various environmental and edaphic factors 

revealed that conditions pertinent and conducive to micrObial develop­

ment also enhanced detoxication. Bioass� is one of the methods currently 

emplqyed to determine detoxication. It is generally recognized as being 

pertinent because the concentrations of the toxicant are similar to those 

employed in the field. In all the bioass� tests used, it was necessary 

to employ a rather extensive concentration range of butachlor in order 

to be able to establish a relative value from each of several types of 

responses investigated. Within the course of each investigation, the 

role of the herbicide concentration became quite evident as related to 

implied microbial detoxication. The detoxication rate appeared propor­

tional to the toxicant concentration. At low toxicant co�centrations, 

the capacity of the microbes to detoxify is quite large, while as the 

concentrations of the herbicide increases, the capacity of the microbes 

for detoxication may approach saturation as the rate decreases. 

Effect of Temperature, Moisture and E!Posure Duration 

The influence of incubation temperature, lengths of exposure and 

moisture on the detoxication as indicated by barnyardgrass bioassay is  

shown in Table 3. A concentration range of butachlor from 224o to 8. 7 

kg/ha x 10-3 was utilized to determine preemergence inhibition of foliage 
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�3. Influence or temperature and moisture during various incubation periods on preemerg-
ence activity of butachlor on barnyardgrass in R� silt loam 

Incu- Temp. 
bat ion During Moisture 
Period Incuba. Regime* 8. 7 17.5  

2 weeks 16C NF 5 20 
F 15 22 

24C NF 0 4 
F 0 5 

32C NF 0 0 
F 0 0 

4 weeks 16C NF 10 16 
F 13 23 

24C NF 0 0 
F 0 27 

32C NF 0 0 
F 0 0 

8 weeks 16C NF 0 0 
F 0 0 

24C NF 0 0 
F 0 0 

32C NF 0 0 
F 0 0 

16 weeks 16C NF 0 0 
F 0 0 

24C NF 0 . 0 
F 0 0 

32C IF 0 0 
F 0 0 

* NF = nonf1ooded1 F = flooded 

Percent Inhibitiop of Foliage Fresh Weight 

35 

39 
41 
6 
15 
12 
35 
25 
30 
30 
33 
19 
20 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

I -3 Rate of butachlor - kg_ha x 10 
140 280 5b0 70 

70 98 100 100 
66 79 97 100 
49 95 98 99 
21 75 97 99 
45 91 97 99 
54 69 85 98 
35 95 97 100 
22 79 95 98 
42 4o 72 94 
42 59 79 97 
29 54 63 93 
35 69 85 91 
13 73 89 99 
4 38 67 98 
0 0 4 79 
0 0 11 36 
0 1 17 48 
0 0 5 22 
0 14 35 98 
0 8 17 93 
0 0 20 54 
0 0 0 19 
0 0 0 15 
0 0 0 20 

1120 
100 
100 
100 
100 
100 
99 
100 
100 
100 
100 
99 
97 
100 
100 
99 
92 
91 
70 
100 
100 
98 
37 
45 
30 

2240 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
93 
100 
100 
100 
100 
98 
72 
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fresh weight at each temperature, moisture level and incubatio� period. 

This concentration range appeared quite extravagent for determining the 

GR50 value initially as reflected by the two week incubation results.  

However, as incubation tfme was increased, the higher concentrations 

employed became more valuable and critical evaluations of detoxication 

could still be assessed as long as sixteen weeks after initiation. 

Preconditioning the soil to various temperatures, moisture levels 

or incubation periods prior to herbicide application did not significantly 

influence preemergence activity when the herbicide was immediately 

exposed to the bioass� species. This series of evaluations represented 

the standards for the test (Table 4 ) .  

An analysis of the effect of incubation duration and temperature 

(Table 5 )  revealed several important relationships. The amount of buta­

chlor detoxified was related to both incubation duration and temperature 

(Figure 1) . A period of eight weeks was required to significantly 

detoxif,y butachlor at 24 or 32 c. The amount detoxified was increased 

significantly with an increase in temperature only after eight weeks of 

incubation. At the lowest temperature of 16 c, significant differences 

in the amount detoxified did not occur until sixteen weeks . Thus there 

appears to be a function of temperature relative to time in detoxif,ying 

butachlor. The data indicate that the higher the temperature ( 32 C ) ,  

the shorter the time required for substantial detoxication whereas the 

cooler the temperature the longer the time required for similar detoxica­

tion. Burnside et !!· ( 12) found that temperature was one of the most 

important factors in regulating simazine detoxication. Further work by 

Harris ( 38)  indicated that the rate of conversion of simazine to hydroxy-

simazine was enhanced by increasing the temperature, and the detoxication 



TABLE 4 .  Preemergence activity of butachlor controls during specific 
periods on barnyardgrass in Ray silt loam 

Rate of 
butachlor 

I -s kgha x lO 

56o 

28o 

140 

70 

35 

17.5 

8 . 7  

Percent Inhibition of Foliage Fresh Weight 
during SEecific Control Periods 

Period 
2 wks .  4 wks . 8 wks .  16 wks . Avg. 

100 100 100 100 100 

100 100 100 100 100 

98 98 99 96 98 

94 86 94 93 92 

61 73 59 62 64 

4 15 10 12 10 

4 11 0 0 4 

22 
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TABLE 5 .  In:f'luence of incubation temperature and duration on detoxica­
tion of butachlor in Ray silt loam* 

_3 _3 
Incubation kg/ha x 10 kgjha x 10 

Period Tem;2erature Detoxified GR5g 
2 weeks 16C 19a 50 a 

24C 43a 84a 
32C 57 a 89a 

4 weeks 16C 58 a 88a 
24C 13lab 162ab 
32C 148ab 176ab 

8 weeks 16C 127ab 16lab 
24C 519b 553b 
32C 764c 798c 

16 weeks 16C 333b 364b 
24C 894c 925c 
32C 1419d 1433d 

* Values followed by the same letter in the same column do not differ 
at the .05 level (Duncan' s  Multiple Range) . 
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Figure 1. Kg ha x 10 of butachlor detoxified as influenced by 
incubation temperature and duration. 
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of atrazine is  also accelerated by high temperatures (38 ) .  It. has been 

generally accepted that 2-hydroxy derivatives of �-triazines in the soil 

are generated by a non-biological hydrolysis mechanism ( 38) . Thus it is 

apparent that temperature is an important factor in either microbial 

or chemical detoxication. 

There is a significant difference in detoxication at the various 

temperatures with non-flooded moisture levels and between 16 C and 24 C 

under flooded conditions (Table 6 ) .  Moisture influenced the amount of 

butachlor detoxified to a greater extent at 24 C than at 16 or 32 c. 

Although not at a significant level, there was a definite tendency 

towards greater detoxication under flooded conditions and this factor 

would imply shorter residual under tropical and subtropical cultural 

systems. The triazines are detoxified at faster pace in aqueous solutions 

than in "moist" soil ( 38) at different temperatures. 

The matter of increased volatilization with increased temperature 

during the detoxication study was not considered important due to the 

method of incubation of samples in sealed polyethylene bags. 

Autoclaving Influence on Herbicide Detoxication 

Microbial activity appears to be one means of substantial detoxica­

tion of butachlor, although perhaps not the only means. Autoclaving 

(Table 7) of the soil media prior to herbicide application did not result 

in appreciable differences when the herbicide was immediately exposed to 

the bioass� species; i . e. , standard response. However, after an incuba­

tion period of the herbicide prior to bioass� exposure, there was a 

comparatively substantial difference in detoxified amounts with nonauto­

claving at incubation periods from two to eight weeks. There was also 
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TABLE 6. Detoxication of butachlor as influenced by incubation moisture 
and temperature in Ray silt loam* 

Moisture Incubation Percent kg/ha x lo-s 
Resime Tem,eerature Detoxication Detoxified 

Nonflood 16C 63 a 114 a 
24C 75 b 265 b 
32C 83 c 496 c 

Flood 16C 70 ab 154 ab 
24C 84 c 528 c 
32C 86 c 698 c 

* Values followed by the same letter in the same column do not differ 
at the .05 level ( Duncan's Multiple Range). 



TABLE 7. Influence of sterilization and incubation periods on pre­
emergence activity and detoxication of butachlor* 

Autoclaved soil 2 weeks 

4 weeks 

8 weeks 

Nonautoclaved soil 2 weeks 

4 weeks 

8 weeks 

I -3 kg ha x 10 butachlor 
Rate Req. of 
Standards for AmoWlt 
GRso 

32.5a  

33.4a 

32.8a 

32. 7a 

31. 2a 

29. la 

Detoxified 

113a 

153ab 

174ab 

244b 

425c 

768d 

* Values followed by the same letter in the same column do not dif­
fer at the .05 level ( DWlcan's Multiple Range ) .  

27 
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apparently a trend, although non-significant, of an increase in detoxica­

tion over time with autoclaved treatments. Whether this was due to 

microbial activity or to chemical degradation is strictly speculative. 

However, the lack of residual sterility with autoclaved material is 

recognized and the possibility of this factor contributing towards the 

increasing trend is acknowledged. With time the relative increase of 

the detoxified amounts is relative constant with the autoclaved samples 

(21 kgjha x 10-3) while with time there was an increasing amount ( lBo-

340 kg/ha x 10-3) of the nonautoclaved samples. This would support the 

proposition that microbial detoxication is of primary importance and 

nonbiological detoxication of secondary importance. 

Flooded or nonflooded moisture levels within each sterilization 

treatment did not influence the standard response (Table 8) indicating 

prior preconditioning by autoclaving and moisture levels did not influence 

subsequent butachlor activity. However, moisture levels during incuba­

tion of butachlor prior to exposure to the bioassay species did not sig­

nificantly influence detoxication. Under non-autoclaved conditions, 

there was a substantial increase in detoxication with flooding while 

under autoclaved conditions the difference was not significant. 

Detoxication as Influenced by Organic Matter, Moisture and Length of 

ExpOsure 

Soil organic matter has often been identified as a soil factor 

influencing herbicidal behavior. An increase in soil organic matter 

has been known to increase microbial population and/or organic matter 

treatments may be interpreted as a possible reduction in residue level 

as a result of a particular rate of microbial degradation. Organic matter 



�LE 8. Influence of steam sterilization and moisture regimes on pre­
emergence activity and detoxication of butachlor* 

Rate Req. of 
Soil Moisture Standards Amount 
Treatment Regime for GR30 Detoxified 

Autoclaved soil Non-flood 32. 7a 107a 

Flood 33. 2a 198a 

Nonautoclaved soil Non-flood 31. 2a 33lb 

Flood 30 .9a 627c 
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tends to increase the granular and porous structure of soil media and 

the change in structure would be expected to increase microbial activity 

and in turn aid in detoxication (66) . 

Preconditioning factors (Table 9)  influencing the activity of 

butachlor as a preemergence herbicide appeared to be primarily organic 

matter content and secondarily flooding over a long period of time (8  

weeks ) at a high organic matter level. Incubation of butachlor at the 

various organic matter levels (Table 10 ) ,  moisture regimes and exposure 

time required substantial herbicide concentration ranges in order to 

achieve a bioassay response. Organic matter adsorption was likely the 

rate determination factor. 

This adsorption was clearly evident with the controls when the GR50 

level was determined (Table 11) .  With an increase in organic matter 

content above 9 percent, there was a required increase in concentration 

of butachlor to achieve a relative or prescribed amount of activity. In 

conjunction with the high organic matter influence, the greater the 

moisture level ( flooding ) , the greater the amount of butachlor required 

for control. 

Significant detoxication was an apparent function of organic matter 

as with an increase in O.M. levels, there was an increase in the amount 

detoxified. Although not at a significant level, there appeared to be a 

tendency to increased detoxication with an increase in moisture level. 

Incubation periods exerted significant degrees of influence on activ­

i t y and detoxication (Table 12, Figure 2 ) .  Relatively little difference 

in activity of the standard was noted with prior conditioning over time 

at the two lowest organic matter levels . However, when prior conditioning 



31 

TABLE 9. Influence of organic matter and moisture levels during 
various incubation peri ods prior to butachlor applications 

Incu-
bation 
Period 

2 weeks 

4 weeks 

8 �'leeks 

* Values 
at the 

as expressed by subsequent preemergence activity on 
barnyardgrass in Ray s i lt loam* 

Organic 
Percent Inhibiti on Fol ia�e Fresh Weight 

Matter Moisture 
Content Regime 70 

3 Nonflood 57 
Flood 47 

9 Nonflood 
Flood 

2�( Non flood 
Flood 

3 Non flood 48 
Flood 46 

9 Nonflood 
Flood 

27 Non flood 
Flood 

3 Nonflood 69 
Flood '•5 

9 Non flood 
Flood 

27 Non flood 
Flood 

Rate kgLha x 10 
140 280 

-3 
butachlor 

500 1120 

72 ab 93 ab 99 a 100 
78 ab 96 a 99 a 100 
32 c 81 b 85 b 99 
5 4  b 93 ab 99 a 99 

70 c 89 
73 be 92 

66 ab 96 a 97 ab 100 
76 ab 93 ab 100 a 100 
65 b 79 b 99 a 100 
52 b 92 ab 97 ab 100 

82 be 95 
87 ab 95 

85 a 95 ab 100 a 100 
·r9 ab 93 ab 98 ab 100 
6h b 81 b 97 ab 98 
51 b T5 b 95 ab 99 

70 c 82 
52 d 69 

2240 

100 
100 

99 
98 

100 
100 
100 
98 

100 
100 
98 
95 

followed by the same letter in the same c olumn do not d iffer 
. 05 level ( Duncan ' s  Multiple Range ) . 



TABLE 10. Influence of incubation of butachlor in soil of different 
organic matter and moisture levels as expressed by 

subsequent pre emergence activity on Echinochloa 
crusgalli in Ray silt loam 

32 

Incu- Organic Percent Inhibition Foliage Fresh l-Teight 

bat ion Matter Moisture 
Period Content Regime 70 

2 weeks 3 Non flood 32 
Flood 11 

9 Non flood 
Flood 

27 Nonflood 
Flood 

h weeks 3 Nonflood 19 
Flood 5 

9 Nonflood 
Flood 

27 Nonflood 
Flood 

8 weeks 3 Nonflood 11 
Flood 9 

9 Non flood 
Flood 

27 Non flood 
Flood 

Rate kg,ha x 10-
lqO 2 0 5 60 

69 96 96 
61 92 99 
32 81 85 
26 83 88 

5 5  
48 

65 96 g·r 
69 97 98 
30 88 96 
25 8o 90 

63 
57 

33 77 87 
17 62 84 
4 7 32 

11 29 39 
27 
21 

butachlor 
1120 22qo 

100 
100 
99 100 
99 100 
77 98 
81 98 

100 
100 
100 100 
98 100 
79 100 
91 99 

99 
95 
90 100 
84 99 
5 9  90 
29 88 



TABLE 11. Influence of organic matter and moisture levels 
on performance and detoxication of butachlor * 

kgLha x 10 
_3 

Percent butachlor 
Organic Control 

Moisture Matter Standard Amount 
Regime Content GR�Q Detoxified 

Nonflood 3 64 a 81 a 

" 9 124 a 244 b 

II 27 395 b 311 be 

Flood 3 77 a 89 a 

II 9 129 a 212 ab 

II 27 428 c 474 c 

* Values followed by the same letter in the same column do not 
differ at the . 05 level (Duncan ' s  Multiple Range) .  
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TABLE 12. Influence of organic matter and incubation periods on 
preemergence activity �d detoxica�ion of butachlor* 

Percent butacblor !§Lha x 10-3 

Incu- Organic Control 
bat ion Matter Standard Amount 
Period Content GRso Detoxified 

2 weeks 3 7la 37a 
II 9 113a . 70a 
II 27 405b 181a 

4 weeks 3 74a 50 a 
II 9 106a 9la 
II 27 326b 158a 

8 weeks 3 66a 168a 
II 9 134a 52lb 
II 27 5llc 838c 

* Values followed by the same letter in the same column do not differ 
at the .05 level (Duncan ' s  Multiple Range) . 
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Figure 2. Influence of organic matter and incubation period 
at different moisture levels on the detoxication of butachlor. 
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at the high organic matter level over time, there appeared to be a sig­

nificant difference in response after four weeks with less activity at 

eight weeks . 

This effect was evident when the amount of butachlor detoxified 

was calculated. Only after eight weeks was the detoxified amount sig­

nificantly different and the difference was apparent at all organic 

matter levels.  This time effect could be considered as the lag period 

and at least four weeks were required for microbial adjustments and 

increases to exhibit differences at all organic matter levels.  Conjuga­

tions with various organic acids would be more apparent over time and 

with an increase in organic matter levels, and thus would reflect detoxi­

cation. Thus metabolism by active and presumably large microbial popula­

tions in high organic matter soils might in fact offset the effects of 

adsorption upon availability in the soil solution and the consequential 

reduced inactivation (82) . 

Moisture level differences (Figure 2) were not evident until eight 

weeks and only at the high organic matter level did flooding enhance 

detoxication. This may reflect an increase in soluble amounts, in a 

specific organism or group of organisms, or organic matter itself m� be 

a catalytic agent in de-alkylation or hydrolysis of butachlor. Kaufman 

et al. ( 51)  working with amitrole found that degradation was less in 

muck soil than in sandy or silty clay loam, even though total C02 evolved 

was greater in muck soils. Kaufman also did not observe a lag period 

with amitrole and he concludes degradation of amitrole was largely a 

chemical process with indirect involvement of soil microbes . 
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Influence of Soil pH, Moisture and Length of Exposure on Detoxication 

The response of butachlor to preconditioning of the media by vary­

ing pH, moisture and incubation periods on barnyardgrass is shown in 

T b I -3 
a le 13. Rates of from 3 .7  to 302 kg ha x 10 were utilized in estab-

lishing a standard response as well as to determine the effect of pre-

conditioning. 

The effect of soil pH alone (Figure 3 )  indicates a rather substan-

tial influence on preemergence activity of butachlor. At threshold 
_3 

concentration levels or less { 33 .6  kg/ha x 10 ) ,  the greatest degree 

of preemergence activity was achieved at pH 5 . 9  and the least activity 

at pH 7.1 and 8 . 5 .  At rates of butachlor greater than this threshold 

I -3 
level as 100.9 kg ha x 10 , the pH effect was nullified. When the GRso 

level was calculated (Table 14) ,  the amount of butachlor required at 

pH 5 .  9 was one half of the amount at pH 4 .  5 and one third the amounts 

at pH 7.1  and 8. 5 .  

When butachlor was incubated at the various pH levels, moisture 

regimes and for prescribed durations, the degree of subsequent control 

of barnyardgrass {Table 15 ) was also influenced as reflected by the 

percentage inhibition of foliage fresh weight. The reduction of foliage 

fresh weight inhibition by various pH treatments also reflected the 

rate and amount of detoxication (Table 16) .  The greatest amount of 

butacblor detoxified occurred at pH 7.1 and 8. 5 ,  and the amount at pH 

8.5  increased with time. The amount also increased from incubation at 

two weeks to four weeks at pH 7 .1 .  At the end of the eight week cycle, 

there was significantly more butachlor detoxified at pH 8. 5 than at any 

other pH level tested. The apparent lag period in detoxication was gen-

erally evident for a two or four week period depending on the soil pH level. 



TABLE 13. Influence of soil treatment prior to preemergence 
application of butachlor as expressed by percent inhibition 

of foliage fresh weight of barnyardgrass * 

Incu- Percent Inhibition of Foliage Fresh Wt. 
bat ion Soil Moisture Rate kglha x 10- butachlor 
Period EH Regime 3.7 11 33 100 

2 weeks 4 . 5  Nonflood 4 ab 31 b 72 ab 98 ab 
Flood 10 ab 29 b 72 ab 98 ab 

5 . 9  Nonflood 14 ab 45 be 75 ab 95 ab 
Flood 19 ab 52 be 79 ab 97 ab 

7. 1 Non flood 15 ab 16 ab 61 b 99 a 
Flood 1 a 3 ab 56 b 99 a 

8 . 5  Nonflood 3 ab 2 a 5 7  b 97 ab 
Flood 9 ab 5 ab 62 b 99 a 

4 weeks 4 . 5  Nonflood 7 ab 26 ab 79 ab 95 ab 
Flood 7 ab 23 ab 71 ab 91 b 

5 . 9 Honflood 18 b 61 c 8o ab 94 ab 
Flood 21 b 56 c 87 a 95 ab 

7. 1 Nonflood 0 a 14 ab 55 b 82 c 
Flood 0 a 3 ab 54 b 88 be 

8 . 5  Nonflood 0 a 1 a 59 b 94 ab 
Flood 0 a 9 ab 54 b 95 ab 

8 weeks 4 . 5  Nonflood 11 ab 20 ab 74 ab 98 ab 
Flood 16 ab 31 b 77 ab 96 ab 

5 . 9  Nonflood 17 b 54 be 84 a 99 a 
Flood 19 b 59 c 79 ab 96 ab 

7. 1 Non flood 1 a 10 ab 59  b 94 ab 
Flood 6 ab 14 ab 53  b 93 ab 

8. 5 Nonflood 2 ab 15 ab 59 b 91 b 
Flood 4 ab 3 ab 56 b 88 be 

* Values followed by the same letter in the same column do not differ 
at the . 05 level {Duncan ' s  Multiple Range) .  
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TABLE 14. Influence of soil pH on preemergence activity 
of butachlor on barnyardgrass in Ray silt loam soil* 

Soil pH 

4 .5  

5 . 9 

7. 1 

8 . 5  

kgjha x 10-
3 

required of 
butachlor for GR50 on 

barnyardgrass 

22.0  b 

10. 6  a 

31. 1  c 

31. 6  c 

* Values followed by the same letter do not differ at 
the .05 level (Duncan ' s  Multiple Range ) . 
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TABIE 15 . Influence of soil pH and moisture levels during various incu-
bation periods on the subsequent preemergence activity of butachlor on 

barnyardgrass in Ray silt loam soil as expressed by percent 
inhibition of foliage fresh weight 

Percent Inhibition 
Soil Rate 2 weeks 4 weeks 8 weeks 
J2H �Lhaxl0-3 Nonflood Flood Nonflood Flood Nonf1ood Flood 

4.5  302 100 100 100 100 100 95 
100 97 96 83 69 62 54 
33 69 68 6o 39 47 21 
11 41 49 38 7 6 10 
4 0 9 3 2 4 1 

5 . 9  302 100 100 100 85 97 90 
100 98 97 79 68 87 68 
33 84 50 64 52 59 39 
11 56 20 48 10 47 14 
4 15 18 10 0 11 8 

7. 1 302 100 97 93 52 94 39 
100 88 43 41 0 24 22 
33 55 4 9 0 4 14 
11 10 0 0 0 0 10 
4 3 0 0 0 0 10 

8 .5  302 100 100 90 54 66 23 
100 66 39 33 4 4 7 
33 10 6 6 0 8 6 
11 7 3 0 0 11 4 
4 2 1 0 0 8 3 



Soil 

TABLE 16. Influence of soil pH and incubation periods on 
preemergence activity and detoxication of butachlor 

in Ray silt loam soil* 

kgLha x lo-s butachlor 
Incu- Control 
bation Standard Amount 

42 

;eH Period GR:zg Detoxified 

4 . 5  2 weeks 21. 2  b 5 a 
II 4 II 22. 4 be 15 ab 
II 8 I I  21. 9 be 54 ab 

5 . 9  2 weeks 10. 9  ab 9 a 
II 4 II 11. 1 ab 26 ab 
II 8 II 9 .7  a 41 ab 

7.1 2 weeks 28. 1  be 48 ab 
" 4 If 35 .0 c 179 c 
II 8 If 30. 9  be 225 c 

8. 5 2 weeks 32. 5  c 76 b 
II 4 II 30 . 8  be 200 c 
II 8 " 31. 4 c 321 d 

* Values followed by the same letter in the same column do not differ 
at the . 05 level (Duncan ' s  Multiple Range ) . 



When moisture was a factor with soil pH detoxication (Ta�le 17) ,  

then only at pH 7. 1 and 8 .5  was there any significant difference in the 

amount detoxified. At these levels, flooding substantially increased 

the amount of herbicide detoxified. 

A discussion of the effect of media pH on detoxication must embrace 

consideration of pH influences on microbial species, populations and 

activity, influence on the ionic character of the toxicant and the media 

colloids, the cation exchange capacity and the adsorption-dissociation 

relationships. 

Low acidic soil pH has generally been known to favor fungi develop­

ment due to lapk of competition from bacteria or actinamycetes, whereas 

soil pH ranges of neutral to alkaline favor bacterial and actinamycetes 

development. The actinamycetes are usually inferior in numbers to 

bacteria; however, they constitute a very important and physiologically 

active group capable of degrading numerous organic molecules ( 20) .  The 

most frequently isolated member of the group belongs to the genus Strep­

tomyces.  Davies (20), in a soil stu�, determined that various Strepto­

mocces species were increased in numbers with neutral or alkaline soil in 

comparison to acidic soil and where the soil moisture was relatively 

high at 6 percent level. 

The magnitude of the adsorption of organic compounds is  governed 

by the pH of the total system, both the solution and surface phases, 

the cation exchange capacity, the chemical character of the compound 

and its water solubility. Adsorption and cation exchange capacity of 

soils high in organic matter is high; and of the clay minerals, the order 

of magnitude decreases tram montmorillonite to illite to kaolinite, due 



TABLE 17. Influence of soil pH and moisture levels on preemergence 
activity and detoxication of butachlor in 

Soil Moisture 

Ray silt loam soil* 

Control 
Standard 

kgLha x 10-3 butachlor 

Amount 

44 

,12H Reslme GR:;ic Detoxified 

4 . 5  Nonflood 21.8  a 14 a 
II Flood 22. 6 a 34 a 

5 . 9  Nonflood 9. 9 a 12 a 
II Flood 11. 3 a 38 a 

7.1 Nonflood 30.6  a 79 a 
If Flood 32. 8 a 222 c 

8 .5  Nonflood 31.0 a 138 b 
II Flood 32.1  a 26o c 

* Values followed by the same letter in  the same column do not differ 
at the . 05 level (Duncan ' s  Multiple Range ) . 
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to the respective decrease in cation exchange sites. With mon�moril­

lonite clays, adsorption is greatest with acidic pH than basic, adsorp­

tion of basic organic compounds are dependent more on surface acidity 

than solution pH, while the converse is true of acidic organic cam­

pounds (4 ) . The surface pH of montmorillonite is 3-4 pH units lower 

than the suspension pH (4) . With organic matter, Corbin and Upchurch 

(17) related the increase in cation exchange capacity with increases in 

alkalinity "within limits".  They further relate the compound charge 

with exchange capacity, implicating detoxication regulation. Positive 

charged herbicides would be more readily adsorbed and "presumably might 

be less available to microbes",  while anionic herbicides would be re­

pelled by the negatively charged colloids and should be available for 

detoxication ( 17) . The relative detoxication increase of butachlor at 

the alkaline pH range plus the increased amount under flooding would 

substantiate the ionic repulsion theory (van der Waals forces ) . However, 

there are several mechanisms of adsorption, and the specie mechanisms 

and stage of compound detoxication would be expected to have certain 

relationships . For compounds which are basic in chemical character and 

contain one N-H group, adsorption can occur by an important adsorption 

mechanism known as hydrogen bonding ( 4) . Adsorption of an N-deal.kyl­

ated butachlor could occur by formation of a hydrogen bond between the 

amino group and the oxygen of the colloid surface. Such a reaction is 

the prime mechanism of adsorption of basic organic compounds and is 

reported to di-ethylamine and aliphatic amines (4 ) . Adsorption of 

aniline is either by protonation at or near the particle surface and 

by base saturation due to dissociation of the proton in residual water 
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on the clay surface and subsequent protonation ( 4) . The carbowl oxygen 

would be another hydrogen bonding site. Adsorption of acidic compounds 

is  primarily due to van der Waals forces and to proton association­

hydrogen bonding from carboxyl groups. 

Evidence of a Lag Period 

The factors held relatively constant throughout all the bioassay 

tests were the moisture levels and the incubation period. During the 

course of each of the various tests, it became evident that the time 

factor was of increasing importance in assessing the detoxication rate 

or amount (Table 18) .  The moisture level also appeared to consistently 

influence detoxication at a relatively uniform and predictable pace. 

Although the amounts detoXified within each test were different due 

undoubtedly to other test variables, the response to moisture and incu­

bation periods were quite similar. The lag period was quite evident 

through the initial four weeks of incubation and detoxication increased 

from four to eight weeks ( and to sixteen weeks with the temperature 

test) . Flooding for a period of eight weeks also consistently increased 

the detoxified amount of butachlor after the first four week lag period. 

This flooding factor undoubtedly influenced the total amount in a 

soluble state in relation to adsorption and subsequently microbial 

detoXication. The consistent evidence of lag period supports the theory 

of microbial detoxication as a primary mechanism with butachlor. 

One can conclude from these sets of experiments that the temperature, 

pH, organic matter and moisture level of the soil environment has a signi­

ficant effect on the intrinsic capacity of microbes to assume a pertinent 

role in the partial or total inactivation of butachlor. 



Moisture 
Re�ime 

Nonflood 
II 

It 

It 

Flood 
" 

II 

It 

TABLE 18. Influence of moisture levels and incubation 
periods on detoxication of butachlor during various 

greenhouse tests * 

Incu- ksLha x 10-3 detoxified 
bat ion Temperature Sterilization 
Period Test Test 

2 weeks 66 a 138 a 
4 It 137 a 185 a 
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pH 
Test 

15 a 
62 ab 

8 II 385 b 333 b 106 b 
16 It 708 c 

2 weeks 81 a 239 ab 53 ab 
4 II 146 a 392 b 148 b 
8 " 622 c 6o4 c 214 c 

16 It 1105 d 

* Values followed by the same letter in the same column do not differ 
at the .05 level (Duncan' s  Multiple Range ) . 



II. TRACER STUDIES 

14 Recovery of Ring and Carbonyl Labeled Butachlor as C02 as Influenced 

by Environmental Factors 

The recovery of radioactivity from butachlor 14C treated soils as 

14C02 is shown in Table 19 on a weekly, cumulative basis .  The maximum 

amount of 14C02 evolved of the total carbonyl labeled butachlor applied 

was 13 percent at the end of 11 weeks at 32 C under non-flooded condi­

tions, while only 4.5 percent of the ring label was recovered as 14C02 

in eleven weeks . Less of both labeled materials was recovered as 14C02 

from flooding, autoclaving, KN3 treatments of 4oo ppm and temperatures 

of 24 and 16 c. 

The amount of 14C02 evolved frem carbonyl labeled butachlor on a 

per week basis (Figure 4)  increased until the fifth week of incubation, 

then there was a varied and slight decrease for the next six weeks . 

The most significant increases and decreases in amounts of 14C02 evolved 

was at 32 c. 

The percentage of the total amount of carbonyl labeled butachlor 

that was degraded and measured as 14co2 as a function of temperature 

and time is  shown in Table 20. There was no difference in the amount 

of 14C02 evolved during the eleven weeks of incubation at the cool tem­

perature of 16 c. As the temperature was increased to 24 and 32 c, 

then significant differences were observed after six and eleven weeks 

of incubation. 

When incubation moisture levels and duration are considered 

(Table 21) ,  there is a significant difference in the amount of 14C02 

evolved under nonflooded levels at seven and eleven weeks. Flooding 
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TABLE 19. Percent �4C of total amount of carbonyl or ring labeled butachlor applied recovered as 
�4C02 on a cumulative basis at three incubation temperatures, moisture levels and with 

various sterilization methods 

Tempera­
ture Sterilization 1st 2nd 3rd 4th 5th 6th 7th 8th 9th lOth lith 

c Moisture* Method Week Week Week Week Week Week Week Week Week Week Week 

16 NF 
II 

II 

Fl 
II 

II 

24 NF 
" 

II 

Fl 
II 

II 

32 NF 
II 

II 

Fl 
II 

II 

NF** 
II 

II 

Fl** 
II 

II 

Autoclave 
KN3 

Autoclave 
KN3 

Autoclave 
KN3 

Autoclave 
KNs 

Autoclave 
KN3 

Autoclave 
KNs 

Autoclave 
KNs 

Autoclave 
KNs 

* NF = Non-flooded, Fl = flooded 
** Ring label only 

0 .52 o.65 o.Bo 1.25 1. 70 2.03 2. 38 2. 68 2. 90 3 .11 3. 22 
o .18 o .24 0 .26 0 .28 0. 32 0. 35 o. 38 o.4o o. 43 o.44 o.46 
o.o9 0. 15 0 .18 o .22 0.26 o. 30 o. 34 0. 36 o .4o o. 42 o. 45 
0 .90 1. 11 1. 31 1.41 1.52 1. 64 1. 72 1 .78 1. 83 1. 88 1. 91 
0 .12 0. 15 0. 18 0. 20 0.22 0 .24 0. 26 0 .28 0. 29 0 . 33 0 .32 
0.07 0.12 0 .18 0 .20 0 .24 0 .27 0 . 30 0 . 32 0 .35 0 . 36 0 .39 

0 . 57  0 .77 1. 27 2. 19 2. 88 3 .67 4. 48 5 . 23 6. 22 6 . 96 7. 78 
o. l4 0 .16 o. 25 0 . 31 0 .38 o .45 o. 5o 0. 56 o .64 0 .81 1 .33 
0. 18 0 .21 0 .28 0. 31 o.49 o.53 o .58 o .61 0. 10 0. 11 o. 98 
1. 31 1. 57  l. Bo 2.00 2 .17 2 . 32 2 . 48 2 . 58 2 .72 2 .83 2. 96 
o . l4 0. 18 o .24 0.26 o. 49 o. 61 o .66 o.68 o. 76 o .Bo o.84 
0 . 24 0 . 35 0 .44 0 .61 0 .86 1.02 1 .14 1. 20 1. 36 1 .51 1. 57 

0 .88 1. 94 3. 15 4. 78 6.52 8.01 9 .42 10. 38 ll. 42 12. 31 13. 14 
0. 36 0 . 46 0.57 0. 72 0 .88 1.06 1. 21 1. 28 1. 39 1.48 1.54 
0 .27 0. 39 0 . 51 0 . 58 o.68 0. 81 o .95 l.o4 1. 15 1. 21 1. 30 
1. 47 1. 90 2.32 2. 64 2. 90 3 . 13 3. 33 3 .46 3 .68 4. 20 4 . 34 
0. 21 0.28 0 . 35 o. 47 o .57  o. 68 o. 78 o .88 1. 16 1. 16 2 .32 
0 .38 0.62 0. 99 1 .35 1. 68 1. 86 2.02 2. 14 2. 26 2. 38 2.01 

0. 17 0. 32 o .63 0. 99 1. 52 · 2.01 2.64 3 .08 3.62 4 .o6 4.54 
o . 15 o. 20 o.46 o .6o 0 . 16 o. 91 l.o4 1. 12 1. 21 1. 28 1. 36 
o . l4 0 .18 o. 26 0 . 30 o. 41 o. 45 o.48 0. 50 o.52 o . 54 o.58 
0.20 o. 34 o.49 o.64 0 .11 o .Bo o.88 o. 94 o.o1 o.o8 o .l4 . 

0. 18 0. 32 0.46 0.58 0 .68 0 .73 0 .84 0. 92 1.01 1 .08 1 .12 
0 . 17 o. 30 0. 39 o .49 o.6o o .68 o . 78 o .85 0 .92 0. 98 1.05 
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TABLE 20. Inf'luence of' incubation temperature and duration on 
degradation of' carbonyl labeled butachlor to 14C02 on a 

weekly cumulative basis in Ray silt loam* 

Incu-

51 

bat ion Percent of' Total 14C Recovered as 14COg 
16 c 24 c Period �2 c 

1 week 0 .32 a 0 .43 ab 0 .59 ab 

2 weeks o .4o ab 0 . 54 ab 0 .94 ab 

3 II 0.48 ab 0. 74 ab 1.32 ab 

4 II 0.59 ab 0 .95 ab 1. 76 be 

5 II 0. 71 ab 1.21 ab 2. 20 be 

6 II 0.81 ab 1. 43 b 2.59 c 

7 II 0.89 ab 1.65 be 2. 95 cd 

8 " 0.95 ab 1. 81 be 3 .20 cd 

9 If 1.03 ab 2.07 be 3 . 51 de 

10 II 1.10 ab 2.29 be 3 .89 de 

11 " 1. 12 ab 2.57 c 4. 17 e 

* Values f'ollowed by the same letter do not dif'f'er at the . 05 level 
{Duncan ' s  Multiple Range) . 



52 

TABLE 21 . Influence of moisture level and duration during 
incubation on the degradation of carbonyl labeled buta­

chlor to 14C02 on a cumulative weekly basis 
in Ray silt loam n 

Incubation Percent of �otal 14c Recovered as 14co2 
Period Nonflood Flood 

1 week 0 .36 a 0 .54 ab 

2 weeks 0.55 ab o .69 ab 

3 II o.83 ab 0 .87 ab 

4 II 1.18 ab 1.02 ab 

5 II 1.56 be 1 .18 ab 

6 II 1.91 be 1 .31 b 

7 II 2.25 c 1 .41 be 

8 II 2. 49 cd 1 .48 be 

9 II 2. 8o cd 1.6o be 

10 II 3.07 cd 1 .78 be 

11 II 3. 35 d 1 .89 be 

* Values followed by the same letter do not differ at the .05 level 
(Duncan • s Multiple Range) • 
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appears to inhibit the degradation of carbonyl labeled butachlor in 

comparison to nonflooding. The difference between moisture levels did 

not become significant until an incubation temperature of 32 C was 

maintained {Table 22) . Within each moisture regime, the differences 

due to temperature are apparent at each level under nonflooded condi­

tions, while under flooded environment, the difference of 14C02 is only 

between 16 and 32 c. 

Sterilization treatments of autoclaving and KN3 (Table 23) signi­

ficantly inhibited 14Co2 evolution of carbonyl labeled b�tachlor treated 

soils at both moisture levels. There was no difference between sterili-

zation methods during the eleven weeks of testing, although it was 

observed that there was a greater tendency for an increase in 14C02 with 

the flooded KN3 treatment than with the nonflooded. 

Degradation of the ring labeled butachlor was significantly slower 

than the carbonyl labeled butachlor (Table 24) • Significant differences 

in the percentage of the total amount of radioactivity applied that was 

14 recovered as C02 was apparent after three weeks. In turn, this dif-

ference was also apparent for each following week through to the eleventh 

week. 

The degradation of the carbonyl labeled butachlor was also signifi-

cantly greater and faster under both moisture levels than the ring label 

{Table 25 ) .  There was essentially no difference between labels as to 

the amount evolved as 14C02 with the different sterilization techniques 

(Table 26) .  

The resistance of the phenyl ring to degradation by microbes is 

well known. Recent work by Chis aka and Kearney ( 15 ) with propanil, 



TABLE 22. Moisture levels and incubation temperatures influencing 
the production of �4C02 from carbonyl labeled butachlor 

in Ray silt loam soil* 
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Percent of Total �4C Recovered as �4C02 
Temperature 

16 c 

24 c 

32 c 

Nonflood Flood 

0.85 a 

1. 62 b 

3.09 c 

o.68 a 

1 .24 ab 

1.84 b 

* Values followed by the same letter do not differ at the .05 level 
(Duncan' s  Multiple Range} .  



TABLE 23. Effect of soil media sterilization treatments 
at the two incubation moisture levels on the degra­

dation of carbonyl labeled 
butachlor 

Sterilization 
Method 

l.4 
·Percent Total C Recovered as l.4C02 

Non sterile 

Autoclaved 

Nonflood Flood 

4 .41 a 

0 .62 c 

0.54 c 

2. 28 b 

0 .53 c 

0 .95 c 

* Values followed by the same level do not differ at the .05 level 
(Duncan' s Multiple Range ) • 

.. 
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TABLE 24. Comparison of degradation of the two labeled 
butachlor treatments as a function of time in 

Ray silt loam* 

Percent of Total �4C Recovered as �4co2 

Incubation 
Period in 

Weeks 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

o.6o ab 

0. 94 ab 

1. �2 be 

1. 76 be 

2. 20 c 

2. 59 cd 

2. 95 cd 

3. 20 d 

3 .51 de 

3.89 de 

4 .17 c 

0. 16 a 

0. 29 ab 

0.45 ab 

o.6o ab 

0. 78 ab 

0 .94 ab 

1 .10 b 

1.23 be 

1. 38 be 

1 . 51 be 

1.63 be 

* Values followed by the same letter do not differ at the . 05 level 
(Duncan ' s  Multiple Range) . 

• Indicates position of 14C label 



TABLE 25 . Comparison of percent �4C of the total labeled 
amount of butachlor applied recovered as �4C02 in 

R� silt loam under two moisture levels * 
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�4 
Percent of Total C 

1.4 Recov�red as C02 

Moisture 
Regime 

Nonflood 

Flood 

3.09 a 

1. 84 b 

1. 12 be 

o. 71 c 

* Values followed by the same letter do not differ at the . 05 level 
( Duncan ' s  Multiple Range ) .  

1.4 
• Indicates position of C label 



TABLE 26. 

Sterilization 
Method 

Nonsterilized 

Autoclaved 

Influence of sterilization techniques on 
degradation of butachlor* 

Percent of Total 14C Recovered as 14C02 

5 . 24 a 1. 45 b 

0 .92 be 0. 77 be 

1.23 be 0. 52 c 

* Values followed by the same letter do not differ at the .05 level 
(Duncan' s  Multiple Range ) . 

14 
• Indicates position of C label. 
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3 ' , 4 ' -dichloropropionanilide, showed that more than 6o percent .of the 

initial carbonyl 14c added to soil was evolved as 14C� within five days. 

However, 14C02 evolution from ring labeled propanil was very much slower 

and amounted to less than 3 percent after twenty-five days. Both of these 

anilines, propanil and butachlor, have been evaluated with labeling of 

the ring or carbonyl group and reports are not available on the fate of 

alkyl labeling and subsequent 14C02 evolved. Kaufman and Blake (52),  

working with 14C-ethyl or 11chain labeled11 and ring labeled atrazine, 

found that 14C� was evolved from the alkyl label, but found essentially 

no 14C02 tram ring labeled atrazine in solution cultures.  Labeling of 

the alkyl does not insure fast 14C02 evolution, since the 14C evolved as 

14C02 of the ethyl moiety of EPTC was very slow after four weeks exposure 

in the studies of MacRae and Alexander (65 ) .  

Parochetti and Warren ( 71)  and Chisaka and Kearney ( 15 )  have used 

and evaluated autoclaving and KN3 as controls for microbial degradation. 

The lack of residual activity with autoclaving adds emphasis to using 

azides as sterilizing agents. Parochetti and Warren ( 71) found that 

KN3 was converted rapidly to HN3 in acid soils and decomposed quite 

readily. Temperatures of 24 to 32 C also influenced volatilization of 

KN3 and its subsequent loss. During the test (Table 19) from the second 

14 to the ninth week, there appeared to be more C02 evolved With KN3 treat-

menta than with autoclaving at the high temperature of 32 C under flood-

ing. This difference between sterilization techniques was not observed 

under nonflooded conditions. 

The role of specific environmental influences on the microbial 

degradation of butachlor to C02 has been shown to be indicative of con-

ditions most suitable for microbial activity. With an increase in 
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temperature there is an increase in degradation; however, with .flooding, 

. there is an apparent inhibition in degradation as compared to moisture 

of the 15 percent level. It has been demonstrated that detoxication of 

butachlor is  favored by flooding and high temperatures as revealed by 

plant bioassay. The data would indicate that the initial detoXified 

product of butachlor is not necessarily a decarbonylated product, but 

rather may be an N-dealkylated or an alpha hydroxylated product. The 

presence or absence of these products has not been proved with the 

methods employed; however, the data does indicate that detoxication of 

butachlor can proceed and occur under conditions not as relatively 

suitable for total degradation to C02• 

Environmental Effects on Production in Soil of Extractable Organic and 

Aqueous Soluble Metabolites 

Betagrams of the applied carbonyl labeled butachlor, laboratory 

standards of butachlor and the N-dealkylated and bydroxylated butachlor 

with respective Rf values as developed on two dimensional thin silica 

gel chromatograms are shown in Figure 5 .  

The extractable organic soluble products were chromatographed and 

resulting radioactive zones were measured as shown with the standards 

in the betagrams in Figure 5 .  The Rf value and percentage of amount of 

each aliquot was calculated for samples of eight and eleven weeks incu­

bation (Table 27 ) . Three organic soluble products other than butachlor 

were extracted. Two of these products were tentatively identified by 

Rr values as N-butoxymetbyl-2-bydroxy-2 ' , 6 '  -dietbylacetanilide ( "B" ) and 

2-Chloro-2 ' , 6 '  -dietbylacetanilide ("A'? , while the third was unknown origin 

material. The percentage of the aliquot that was butachlor tended to 



AI!Elied Material Lab Standard I 2 Lab Standard # 1 
CP 2M* ::£ .k_ CP 2M* L � � 2M* L � 

Butachlor 86o68 93.8 .66/.44 393 1.9 .66/.44 966o 56.8 .66/.44 
NH " 3265 3. 6 .53/.21 7745 38. 4  .53/. 21 7126 41.9  -53/.21 
oCOH II 1332 1.4 . 24/.05 ll899 59.0 . 24/.05 71 0.2  . 24/.05 
Origin 1094 1.2 .02/.00 144 0.7  . 20/.00 102 0 .6  .02/.00 

Figure 5 .  Betagrams** of applied butachlor and standards of  thin layer silica gel chrom.ato-
grams. 

* top to bottom., left to right 

** Betagram is the term used by Baird-Atomic Manufacturers of the Model 6ooo Beta Camera. 



TABLE 27. Relative percentages o� extractable organic soluble compounds from various butachlor 
soil treatments as determined on two dimensional thin layer chromatograms 

( silica gel) * 

9H.20C4He 
Percent of Soil Aliguote 

Jf 
R-N R-N 

COCH2Cl 'cocHcl 
Incubation Moisture Incubation 
Temperature Regime Period butachlor "A• 

16C No�lood 8 weeks 83. 6  6. 9 
Flood " 87. 8 4 . 6  

24C Nonflood " 73. 6  7. 4 
Flood " 72. 9  7. 6 

32C Non�lood II 53. 7 8 .6  
Flood " 59. 9 20. 4 

16C Nonflood 11 weeks 68. 4  8 .8  
Flood II 89. 4 5 . 0  

24C Non�1ood " 62. 3 18. 4  
Flood II 82. 0  7. 2 

32C Nonf1ood II 33. 2 19. 1 
Flood II 17. 7  19.6 

Applied Material 93. 0  4. 6 
Standard mixtures, No. 1 56. 8 41. 9 

No. 2 1. 9 38. 4 

* First development : 4 isooctane 3 ether. Second development : ether 

R = 2 '  , 6 •  -diethylphenyl 

9H20C4He 
R-N 

'cOCH20H 

"B" 

2. 8 
2 .4  
4 . 7  
4 . 5  
8. 8 
6. 2 
4 . 5  
2. 1 
5 . 1  
4 . 1  

15 . 5  
14 . 9  
1 .4  
0 . 2  

59. 0 

Unknown 
Origin 

4 .4  
3 .2  

11.0  
13.0  
26. 7 
10. 8  
18.0  
3 . 5  

14 . 2  
6.6 

32. 0  
47. 8 
1.0 
0 .6  
0. 7 
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decrease with temperature and incubation duration. The origin material, 

however, tended to increase with temperature and exposure duration. At 

eight weeks, the amount of the N-dealkylated product increased with tem­

perature and was especially prominent under flooded conditions. There 

appeared to be less on a percentage of the aliquot basis of the alpha­

hydroxy product than the N-dealkylated product initally at eight weeks 

and at the lower two temperatures at eleven weeks. A substantial in­

crease in the alphahydroxyl product was observed at ;2 C after eleven 

weeks under both moisture regimes. 

The N-dealkylated, alphahydroxylated and origin materials appeared 

to be slightly more prominent under non-flooded than flooded conditions 

at 16 and 24 C after eleven weeks exposure. The origin material was 

most prominent at 32 C and flooded after eleven weeks while the N­

dealkylated and hydroxylated products were relatively similar between 

both moisture regimes after · eleven weeks at 32 c. This data tends to 

indicate that temperature, moisture and exposure duration influenced the 

development of the organic soluble degradation products of butachlor. 

High temperatures, ample moisture and long term exposure enhanced the 

relative production and concentration of these degradation products. 

Complete submersion of the substrate tended to initially enhance the 

relative increase of the N-dealkylated product and eventually of the origin 

material. The most significant increase of a degradation product with 

time, temperature and moisture appears to be with the origin material and 

this relative increase coincides with a similar decreasing pattern of 

butachlor itself. The increasing trend of the origin material also did 

not appear to be at the expense of the N-de�lated or alphahydroxylated 



product which would indicate that each degradation product cou�d be 

produced simultaneously and possibly independently. The environmental 

conditions eXisting at a given time would appear to dictate the relative 

proportions and assumed rate of production of these organic soluble 

degradation products of butachlor. 

The extractable aqueous soluble metabolites from various butachlor 

soil treatments for eleven weeks as developed electrophoretically with 

a buffer of pH 5 . 4  is shown in Figure 6. From three to five metabolites 

were evident when developed at buffer pH 5 . 4  electrophoretically. With 

an increase in incubation temperature, there appeared to be an increase 

in the percentage of more ionized metabolites .  However, the same number 

of metabolitic products appeared at all three temperatures and both mois­

ture regimes. The predominance of these aqueous soluble metabolites did 

not appear to be influenced by moisture levels during incubation. 

A comparison of the incubation periods of eight and eleven weeks 

at 24 and 32 C (Figure 7) did not reveal a substantial shift or change 

in the type of aqueous soluble metabolite produced. One product did 

develop at 32 C under flooded conditions at eleven weeks ( 4-6 em) that 

was not evident or as prominent at eight weeks . The lack of prominence 

of the relative amount of origin material was also observed at 32 C at 

eleven weeks. 

When the aqueous soluble metabolites were electrophoretically de­

veloped at a buffer pH of 2. 2 (Figure 8 ) ,  there appeared to be less mi­

gration of the metabolites than witnessed at pH 5 . 4. This might indicate 

that the metabolites were acidic and in turn were not as highly ionized 

by increasing the acidity of the buffer solution. The same number of 

metabolites were apparent at pH 2. 2 as at pH 5 . 4 .  
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Figure 6. Electrophoretic distribution patterns of aqueous sol­
uble 14C metabolites (developed at buffer pH5 .4)  of butachlor treated soils 
at three temperatures and two moisture levels after eleven weeks incubation. 
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Figure 7. Comparative electrophoretic distribution of aqueous sol­
uble metabolites of butachlor from two incubation durations at two temperatures. 
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Figure 8. Electrophoretic distribution of aqueous soluble meta­
bolites of butacblor {developed with buffer pH 2.2)  from soils treated 
for eleven weeks at two temperatures. 
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Environmental factors that generally enhance microbial act!vity 

also tend to enhance the degradation of butachlor to at least three 

organic soluble and three to five aqueous soluble metabolites. Tempera­

ture and exposure duration were prime factors, while moisture levels 

especially flooding did not appear to have any substantial effect on 

production of aqueous metabolites, but did effect production of specific 

organic soluble metabolites. 

There was no attempt made in this study to identify the aqueous 

soluble metabolites . Recent work by Lamoureux, Stafford and Tanaka ( 58) 

with propachlor, N-isopropylacetanilide, indicated that in plants such as 

corn and sorghum, the metabolism of propachlor and subsequent detoxication 

was by conjugation with the amino acid, glutathione. The mechanism in­

volved is the displacement of the 2-chloro group by a peptide sulfhydryl 

group ( 58) . Two products have been identified from this displacement, 

glutathione and �-glutamylcysteine conjugates of propachlor. The conjug­

ates were water soluble and of an acidic nature. Glutathione conjugation 

of atrazine has been identified as the maJor mechanism of detoxication 

in corn (84)  and is catalyzed by an enzyme identified as glutathione-S­

transferase ( 25 ) .  This soluble enzyme was found to be present in species 

tolerant to atrazine, but not in susceptible species ( 31) . 

The data presented in the present investigation do not support iden­

tification of certain aqueous metabolites as glutathione conjugates nor is 

the author aware of any data presenting acetanilide soil evolved conjuga­

tions . However, conjugations with various soil amino acids and/or carbo­

hydrates would not appear impossible and it is expected that the prevail­

ing environmental conditions would significantly influence the rate and 

kind of metabolites evolved. 



CHAPTER V 

SUMMARY 

This investigation of environmental factors influencing the detoxi-

cation and subsequent degradation of butachlor was initiated in September, 

1970, and involved two phases. One phase dealt with factors effecting 

detoxication as bioassayed by barnyardgrass under greenhouse conditions. 

The second phase involved tracer studies determining the influence of 

environmental factors on 14C02 evolution from two labeling samples of 

butachlor and the presence and transitory patterns of organic and aqueous 

soluble metabolites. 

Detoxication of butachlor was significantly influenced by the exposure 

duration to different moisture levels, temperatures, soil pH and organic 

matter content. The conditions conducive to microbial developnent, and 

more specifically to bacteria and actinomycetes, significantly enhanced 

detoxication and the primary detoxication mechanism of butachlor appeared 

to be microbial in nature. However, chemical detoxication was not elim-

inated as a probable, but definitely secondary, means of detoxication. 

14C02 evolution was influenced by environmental factors with the 

most significant amounts being evolved at high temperatures for the 

initial five weeks of incubation. After this time there was a decrease 

for the next six weeks with a total amount of 13 percent of the original 

applied material of 24 ppm ( equivalent to 4 lb/A, 1/2'� a. i .  or 4 . 4 kgjha 

) • 14 em be1ng evolved as C02 from carbonyl labeled butachlor and only 4.5  

percent of ring labeled butachlor. Although flooding enhanced detoxi-

14 cation of butachlor after eight weeks exposure, the evolution of C02 
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from carborzy-1 or ring labels was inhibited by flooding in comparison to 

nonflooded moisture levels of 15 percent . 

Electrophoretic and thin layer chromatograms of soil produced 

aqueous and organic soluble metabolites further emphasized the role of 

the environment and the intrinsic capacity of microbes to contribute to 

the degradation of a pesticide. Three organic soluble and five aqueous 

soluble metabolites of butachlor were separated. Two of the organic 

soluble compounds were tentatively identified as the N-dealkylated and 

the alpha hydroxy derivatives. Flooding only at high temperatures 

influenced the relative concentration but not the existence of the 

organic soluble metabolites while the presence of flooding or of non­

flooding did not appear to effect the existence or concentration of the 

aqueous soluble metabolites. 
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