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ABSTRACT 

 

Graphic Processing Units (GPUs) often employ shared memory to provide 

efficient storage for threads within a computational block. This shared memory includes 

multiple banks to improve performance by enabling concurrent accesses across the 

memory banks. Conflicts occur when multiple memory accesses attempt to 

simultaneously access a particular bank, resulting in serialized access and concomitant 

performance reduction. Identifying and eliminating these memory bank access conflicts 

becomes critical for achieving high performance on GPUs; however, for common 1D and 

2D access patterns, understanding the potential bank conflicts can prove difficult. Current 

GPUs support memory bank accesses with configurable bit-widths; optimizing these bit-

widths could result in data layouts with fewer conflicts and better performance. 

  

This dissertation presents a framework for bank conflict analysis and automatic 

optimization. Given static access pattern information for a kernel, this tool analyzes the 

conflict number of each pattern, and then searches for an optimized solution for all shared 

memory buffers. This data layout solution is based on parameters for inter-padding, intra-

padding, and the bank access bit-width. The experimental results show that static bank 

conflict analysis is a practical solution and independent of the workload size of a given 

access pattern. For 13 kernels from 6 benchmarks suites (RODINIA and NVIDIA CUDA 

SDK) facing shared memory bank conflicts, tests indicated this approach can gain 5%-

35% improvement in runtime. 
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CHAPTER 1 INTRODUCTION 
 

In recent two decades, graphical processing unit (GPU) evolved from a graphics-

oriented processor to a general-purpose parallel processor. NVIDIA CUDA (Compute 

Unified Device Architecture) and OpenCL[1] are two commonly used GPU 

programming models. Through such programing models, many HPC applications and 

libraries can exploit GPU accelerators to obtain performance improvements.  

When developing GPU kernels, optimizing memory access efficiency is one of the 

main schemes for improving execution performance [2]. Among the different memory 

types defined in the CUDA programming model, shared memory plays a key role as a 

software manageable on-chip storage. As figure 1 shows, a shared memory buffer is 

allocated for one thread block and all threads in this thread block have access to it. The 

access latency of shared memory is much less than GPU device memory. Normally, 

shared memory is used for caching data to improve temporal locality [3], holding the data 

shared inside one thread block [4], and being temporary storage for data layout 

transforms to achieve better global memory performance [5]. A primary concerns of 

using shared memory is the penalty of potential bank conflicts for different memory 

access strides [1, 2].   

CUDA shared memory is organized into banks. The bank mapping function is 

based on conventional low-order bank mapping [6], which maps n  successive words to n 

successive banks. To improve bank access efficiency for different data types, it supports 

dynamic configurable bank access bit-width [7]. For example, 32 of 4-Byte elements can 

be uniformly mapped to 32 banks; and 32 of 8-Byte elements can also be uniformly 

mapped to these banks. In addition, multiple accesses to the same layer of the same bank 

cause no conflict. 
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Figure 1.1 CUDA programming model and memory hierarchy [1] 

  

Bank conflict analysis of interleaved memory has been well studied since the 1970s 

[8-14]. When two accesses of the same bank occur inside the period of the bank response 

latency, the conflict happens and the two requests are processed serially. For non-vector 

accesses, by instruction scheduling and adding buffers, bank conflicts can be reduced [15, 

16]. For parallel access, stride analysis is necessary to deal with bank conflicts [15, 16]. 

Based on stride analysis, many solutions have been proposed to obtain better support for 

different strides. CUDA shared memory bank organization is explained in programming 

guide. When designing CUDA kernels, developers should be aware of potential bank 

conflict issue and they can reduce or eliminate conflicts by modifying data layout, or 

changing memory access pattern. Researchers presented different data layout 

transformations to deal with shared memory bank conflict problem [3, 5, 17-19]. Among 

them, array padding is the easiest and most frequently used [5, 18] .  

Array padding has been used to solve varies issues related to memory access 

efficiency. Typical cases include cache conflicts, false sharing, and bank conflicts. There 

are two types of array padding: inter-padding and intra-padding [20]. Inter-padding adds 

dummy space between array variables; intra-padding inserts unused spaces inside one 

array. To deal with bank conflicts problem, intra-padding can be used to change the array 
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access stride and in turn impacts the conflict degree. Normally, CUDA kernel 

programmers try to use different padding sizes and choose the one that causes the least 

bank conflicts. 

The motivation of this dissertation is to improve CUDA shared memory bank 

access efficiency. In the CUDA parallel execution model, since the memory access 

pattern of one grid’s (1D to 3D) access requests is relatively complex, shared memory 

bank conflict analysis is not obvious. A warp is the CUDA hardware parallel execution 

unit; it includes a small group of threads. Based on the shape of a thread block, the 

threads in a warp could be organized in a 1D vector, 2D array, or even 3D array. 

Different transformations of these warp shapes can be mapped to arrays stored in 

memory, resulting in different memory access patterns.  

This thesis analyzes CUDA shared memory bank conflict for 1D and some 2D array 

access patterns, and proposes a heuristic optimization solution. (1) Given an access 

pattern and a hardware-supported mapping function, the bank conflict degree is 

evaluated. (2) To reduce or eliminate bank conflicts, a heuristic scheme seeks an 

improved data layout through optimizing parameters of inter-padding, intra-padding, and 

different bank mapping function configurations. (3) Finally, the source code is 

transformed according to the chosen solution. 

The contribution of this work includes: 

• 1D/2D stride and bank conflict analysis of dynamic bank addressing; 

• A method that calculates the overall conflict number of one pattern within a 

limited period which doesn’t depend on memory access workload size of this 

pattern; 

• Given the shared memory space limitation of one thread block, a model driven 

heuristic parameter optimization method that looks for a solution in a potential 

parameter optimization space:  

o Bank mapping functions supported by hardware dynamic bank addressing; 

o Inter-variable-padding and changing variable definition sequences; and 

o Array intra-padding size. 

This thesis is organized into 8 chapters. Chapter 2 describes the prior work related 

to interleaved memory bank conflict analysis, memory access pattern study, and padding 
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related schemes. Chapter 3 introduces the framework of the proposed approach. Chapter 

4 describes the single vector/warp conflict analysis, which is the kernel module of the 

work. In CUDA programming model, one memory access expression drives concurrent 

threads to access a sequence of data in parallel. Normally these threads belong to multiple 

vectors (warps). Chapter 5 takes single expression as a unit and analysis it bank conflict. 

Chapter 6 presents the parameter optimization strategy for inter-padding, intra-padding, 

and bank access bit-width configuration. Chapter 7 briefly lists the applications used for 

experiments and chapter 8 presents the experimental results.  
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CHAPTER 2 PRIOR WORK 

2.1 Introduction 
 

        This chapter studies three research areas that are related to the proposed project. We 

studied the prior works of interleaved memory bank conflict solutions, and then 

investigated the common 1D and 2D memory access patterns. Finally, we studied the 

prior works of padding.  The proposed tool of this work uses padding as one of the main 

data layout transformation methods.   

 

2.2 Interleaved Memory and Bank Conflict 
 

        Interleaved memory is used to improve memory throughput by dividing memory 

into multiple modules/sections/banks to allow them to work simultaneously. This is 

especially straightforward for vector processors; it enables parallel access to memories. 

[9, 21] 

        Bank conflict is one of the main concerns for designing efficient, interleaved 

memory. It occurs when multiple concurrent memory requests are issued to the same 

module/bank. In such a situation, the bank has to serve one request after another, 

degrading performance. 

        Bank conflicts exist in various system/processor designs. A vector processor has a 

bank conflict when one vector access request operates on data in the same banks. An 

example system is the Cray-1 [9]. It had 16 banks, and each bank was 64-bits wide. This 

design had bank conflicts when the access stride size was 8 or 16 words. Superscalar 

processors such as Intel’s Sandy Bridge [22] also have the same issue when multiple 

memory accesses are grouped together. Normally some software/hardware modules are 

added to reduce or eliminate conflicts. Bank conflicts also impact other types of 

processors. VLIW processors, basically rely on compile time schemes to reduce the 

impact of bank conflict [23]. Multimedia processors and other application driven 
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hardware design also have bank conflict concerns due to their memory access patterns 

[24, 25].  

        Many hardware solutions have been proposed to deal with the memory bank conflict 

problem. Most existing solutions define a better bank mapping function that can support 

as many different strides as possible or provide perfect support for some special access 

patterns. Normally these bank mapping functions are designed based on the knowledge of 

some frequently used access patterns, such as the ones appearing in linear algebra 

calculations. Normally the number of banks is a power of two. Some researchers 

proposed using a prime number of memory banks to reduce bank conflict [10, 11]; 

however, prime number arithmetic is hard to implement in hardware. Some other 

research targets the bank conflict caused by multiple memory access instructions. Some 

well-designed scheduling schemes and extra buffers are used to avoid conflict or reduce 

bank conflict impact[15, 16].  

        In addition to hardware solutions, software solutions can also be used to reduce bank 

conflict. For example, by changing instruction sequences generated by a compiler [22], 

the memory operation instructions that cause bank conflict can be separated. From a high 

level programming perspective, changing memory access patterns in source code can also 

help to avoid or reduce bank conflict. [26] 

Conventional Low-order Bank Mapping Scheme and Analysis 

 

        As shown in Figure 2.1, a conventional mapping function maps array elements 

sequentially on to N banks. The function can be described asbank _ id[i]=mod(i,N ) . 

This function maps the ith word of data on to bank ofbank _ id[i] . The bank conflict 

degree for different 1D access strides can be determined bygcd(S,N ) , in which N is the 

number of banks and S is the constant stride value. For a system which has power-of-two 

banks, the result of gcd(S,N )  equals to 1 for any odd stride. In other words, odd stride 

access of N words has no bank conflicts. However, for even strides, the conflict exists 

because gcd(S,N )  does not equals to 1. For example, when the stride is 2, the conflict is 

2-way conflict sincegcd(2,N ) = 2 . 
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Figure 2.1  Conventional bank mapping 

        The notation “stride family“is defined for stride analysis purposes [4]. Basically, a 

stride family is described as S =σ ×2e , where  is the sequence of odd numbers, and e is 

an integer which denotes a distinct family. For example, S = {2,6,10,14,18,...} is the 

family withe = 2 . For conventional mapping functions on a system with power-of-two 

banks, the stride family indicates the degree of conflict. For example when e = 2 , the 

conflict is always 2. Oed and Lang presented detailed conflict analysis of conventional 

mapping function in [12]. 

        GPU shared memory is based on a conventional low-order bank mapping function 

[2, 18].  The bank number is a power-of-two and the parallel access request number is the 

same as the bank number. To improve flexibility, it supports dynamic bit-width bank 

access. To avoid bank conflicts, programmers need to organize the data in proper ways. 

The most common ways to deal with bank conflict are: (1) choose a proper access mode 

provided by the GPU programming model [27]; (2) add padding to change access strides 

[5, 18]; (3)  change the array index functions to make vector access uniformly mapped to 

every bank; and (4) algorithm level memory layout optimization [3] 

Variant Mapping Schemes 

 

        Various bank mapping functions have been proposed to solve bank conflicts. The 

two main categories are XOR schemes [28] and skewing schemes [10, 29].  

        The XOR scheme was first proposed by Failong [13]. This scheme normally has the 

form of a linear transformation: y = Tx . Its input is an address x  which is represented as 

a bit vector.  This transformation maps x  into another bit vector y  which is the address 

€ 

σ
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to which the data is mapped to. Some bits of such bit vectors indicate the bank index. The 

matrix T  is the transform matrix. Each element in T  is one-bit of data and its value is 0 

or 1. This transform is realized by modulo 2 arithmetic, which is easy for hardware 

implementation.  

        The XOR scheme has better flexibility compared to skewing methods. By changing 

T, XOR can support different mapping strategies. For example, some existing 

transformations are designed to generate pseudorandom numbers to realize uniform data 

distribution across banks [14, 30]; some other transformations produce periodic 

sequences that can avoid bank conflict for some strides or access patterns [31].  

        Based on the XOR scheme, Gou presents SAMS [32] to support some stride families 

for 1D access. This method uses the XOR transform to reduce conflict degree and then 

increase the bank bit-width to remove remaining conflicts. This work also presents a 2D 

scheme 2DSMM, that uses two bank mapping functions, Th  and Tv , to support some 2D 

access patterns such as unit-stride/stride visit of row, column, diagonal, and block.  

        Harper proposed a dynamic strategy based on the XOR method [33]. Given a known 

stride, a proper XOR transform is selected to meet requirements. 

        The Skewing method was presented by Budnick and Kuck [10]. Normally it realizes 

conflict-free access for a subset of strides. Shapiro presented a review of the skewing 

method [29]. Basically a skewing method can be described as a linear mapping that maps 

consecutive data to banks resulting in less bank conflicts. Since no single skewing 

method can eliminate conflict for all different strides, many skewing methods have been 

proposed to support different stride types [29] [34-36].  

        No single skewing method can support all strides. Instead of eliminating all bank 

conflict, Harper proposed a skewing-based solution that optimizes overall performance 

by reducing bank conflict [37]. In addition, Harper presented a dynamic strategy based on 

the skewing method [8]. Based on known stride knowledge, this approach chooses a 

proper skewing scheme to eliminate conflict. Aho et al [38] presented a runtime 

changeable skewing method, which determines the skewing scheme based on runtime 

stride information.  

        Some existing skewing schemes target 2D/3D access patterns [37, 39-41]. Harper et 

al [37] analyzes skewing performance for some commonly existing stride types from 
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linear algebra applications. Kaufman et al [40] presented a skewing method that supports 

3D vector access of 26 different directions. To support different sub-array patterns in 2D 

space, Liu et al [41] uses linear skewing in the horizontal direction and non-linear 

skewing in the vertical direction.  

Bank Conflict for Multimedia Processors 

 

        Multimedia accelerators generally require high memory bandwidth due to parallel 

2D access patterns and fast multimedia processing speed. How to avoid or reduce bank 

conflict for these 2D-stride access patterns has been investigated to improve memory 

system performance. Some solutions are provided based on 2D-stride access analysis. 

Kuzmanov et al [24, 25] presented a parameterized pattern for a type of 2D parallel 

access; an interleaved memory organization is proposed accordingly. Different parameter 

configuration patterns use different bank mapping functions.  Lentaris et al [42] presented 

a non-linear skewing based method to achieve efficient memory access for some 2D 

access patterns. This work also optimized the bank access efficiency for a typical 

correlation existing among consecutive parallel memory access requests for image 

access.  

GPU Bank Conflicts 

 

        In the past decade, the traditional graphics process unit (GPU) architecture was 

adapted to support general purpose computing and became widely used for massively 

data parallel computing. Memory system efficiency is crucial for this massive parallel 

device. Sung et al [43] presented a bank conflict study of GPU global memory access. 

Using micro-benchmark with different access strides, they studied the bank conflict 

characteristics of global memory. By combining this knowledge with analysis of 

application memory access stride information, they could find optimized data layout 

transforms to improve access efficiency. 

        The bank conflict problem is a primary issue for making efficient use of GPU shared 

memory [1, 2, 27]. This memory is composed of power-of-two banks. Based on the 

conventional low-order mapping scheme, different generations of GPU devices have 
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different mapping functions. The newest improvement is dynamic bank access mode [7]. 

This mode provides different bit-width access mode to all banks. The motivation of this 

design is to support efficient parallel memory access for data types with different bit-

widths. For example, when bank number equals toN , if data type size is 4-Byte, N

sequential elements are mapped to N different banks; if data type size is 8-Byte, N

sequential elements can still be mapped to N different banks. For both cases, there is no 

bank conflict. 

        Like conventional memory module mapping, these consecutive mapping functions 

have similar bank conflict issues. However, since they support different consecutive 

mapping strategies, they have different conflict characteristics regarding different stride 

size [27]. Moreover, unlike conventional mapping methods, these strategies sometimes 

have conflicts due to bank offsets of the base address (the address of the first element that 

is visited). Examples are described in chapter 4. 

        The GPU programming model leaves the shared memory bank conflict problem to 

programmers. With the knowledge of different mapping functions, programmers need to 

design their data layout carefully to achieve efficient data access to the banks. For many 

applications, it is not easy to understand how data are mapped to banks. Generally, 

programmers try to add a small padding to change the access stride, or redesign the data 

organization to improve the efficiency.  

        In chapter 4, we will discuss the stride analysis of this bank mapping solution. 

 

2.3 Memory Access Patterns and Strides  
 

        For scientific computing applications, array access pattern analysis is very helpful 

for improving memory access efficiency. Related compile-time optimizations include 

loop transformation [44], loop prefetching [45, 46], and array padding [47-50]. Besides 

general optimization for various array access patterns, some previous work provides 

automatic analysis and optimization for code that have similar array access patterns [51]. 

Jaejer and Barthou proposed a stencil kernel generator which is based on access pattern 

analysis [50], it searches for better data layout transforms to improve memory access 
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efficiency. Sung et al [43] presented an automatic data layout transform scheme based on 

common access patterns of PDE solvers and structured grids. A source-to-source 

subscript transformation module is designed accordingly. 

        Program level optimizations regarding access pattern and memory efficiency have 

been well studied for different memory systems. Lee et al [52] summarized common 

array access patterns of typical applications. Corresponding optimization advice is 

presented as well.  

        For interleaved memory, bank access stride patterns directly impact the parallel 

access efficiency. Besides bank mapping functions, for linear array data layout (as in 

FORTRAN, C/C++), the knowledge of array access patterns is crucial to obtain the bank 

access stride information. For vector processors and multimedia/graphics accelerators, 

bank access efficiency directly depends on 1D/2D array access patterns.  

        Two aspects determine array access patterns: array definitions and array sub-

indexing functions. Determining how to extract array access patterns from source code 

and properly represent them is the first step. The polyhedral model uses matrices to 

represent the sub-indexing functions that are based on loop iterator variables [18]. Each 

sub-indexing function is linear combinations of iterator variables. Sung et al uses a 

similar way to represent array sub-indexing for GPU parallel thread access [43]. In this 

work, we continue to use their representation for sub-indexing functions. 

        Commonly used array access patterns in linear algebra applications include row, 

column, backward/forward diagonal, and block. These patterns are generally considered 

when designing interleaved memory for vector processors. For multimedia 

processors/accelerators, 2D access patterns are more common. They include different 

block based patterns [25, 42] and even regular sampling patterns [42]. Please refer Figure 

2.2, Figure 2.3, and Figure 2.4.  
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Figure 2.2 Typical access patterns 

 

 

Figure 2.3 Memory access by 1D warp 

 

 

 

Figure 2.4 Memory access by 2D Warp 

 

        The CUDA GPU programming model supports parallel memory access by executing 

one parallel memory instruction for a group of threads. Concurrent threads can be 

organized in 1D to 3D grids. It makes thread execution structure match the array 

dimension and the code becomes easier to be manipulated. Beneath this structured 
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parallel execution model, GPU hardware executes instructions in units of warps, which 

are a thread array of 16 or 32 threads. Each thread block is composed of one or more 

warps. Threads in one thread block are linearly mapped to a sequence of warps, and each 

warp could be mapping to a 1D to 3D array of threads. Figure 2.3 presents two basic 

cases of using thread block to visit arrays. Fig. 2.3 (a) is a 1D thread block composed of 3 

warps; when it visits a 1D array, each warp visits a 1D sub-array. Fig 2.3 (b) is an 

example for 2D warps. Each warp visits a 2× 4  block in the 2D array. From these basic 

examples, it can be seen that for GPUs, the thread grid structure is another factor that 

impacts data access patterns. 

        The CUDA GPU memory system is composed of different types of memory. 

Various constraints are imposed on the programmer to obtain high memory access 

efficiency. GPU global memory is fixed length (such as 32-Byte or 128-Byte) vector 

access depending on cache or related configurations. These memory operations could 

achieve maximum bandwidth when the access patterns guarantee that a sequence of 

threads access consecutive data elements and they are properly aligned. Baskaran et al 

[18] presented code transforms based on Polyhedral models. Che et al [53] designed a set 

of APIs to reorganize the data to improve global memory access efficiency. Extra GPU 

kernels are used for data layout transform and memory access patterns are changed 

accordingly.  

        As previously mentioned, GPU shared memory bank conflict is a primary concern 

when designing GPU kernels and their data access patterns. How to avoid shared memory 

bank conflict is left to programmers to solve. To achieve better access efficiency, array 

access patterns need to be carefully designed to avoid or reduce bank conflict. Baskaran 

et al [18] presented a heuristic searching method to deal with this issue. It searches for the 

best padding width by examining bank conflict with the function 

gcd(stride,bank _number) . However, this solution is not enough. First of all, it only 

considers the basic conventional low-order mapping function.  For mappings that support 

dynamic memory bank access, it requires a broader analysis scheme to estimate the bank 

conflict degree. Secondly, this solution cannot support other memory access 

patterns/strides besides constant 1D stride. This is not practical regarding the various 

access patterns used in GPU kernels [54].  
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        Based on analysis of single parallel memory access patterns, the correlation 

information among consecutive parallel accesses can also be used to achieve better 

efficiency. In [42], after presenting the design of the bank-mapping scheme, Lentaris and 

Reisis also presented the definition of “MacroSquares”, the area visited by a sequence of 

correlated memory accesses. He demonstrated that the proposed schemes work well for 

such a group-access pattern.  

        Beside memory access optimization for each GPU memory type, Jiang et al [54] 

proposed a scheme to choose among different memory types according to memory access 

pattern analysis.  

 

2.4 Padding Transformations 
 

        Array padding is a commonly used method for data layout transformation. It is very 

useful for dense numerical algorithms such as linear algebra and iterative solvers. 

Padding is also a common optimization scheme adopted by compilers[55] . By adding 

unused spaces, the related memory access patterns are changed to improve memory visit 

efficiency. There are two types of padding: inter-padding and intra-padding [20]. Inter-

padding adds dummy space between array variables; intra-padding inserts unused spaces 

inside one array. 

        Padding is commonly used for improving memory usage efficiency. Cache/TLB 

conflict is one of the problems that array padding can be applied to [56-62]. By adding 

extra blank space at proper locations, the cache conflict due to memory accesses can be 

reduced. False sharing is another example. By adding padding, data near each other that 

cause the false sharing can be separated [63, 64]. Array padding is also an important 

method to deal with the memory bank conflict problem [26, 47-49]. By adding padding in 

one of the inner array dimensions, the memory access stride is changed, which has direct 

impact on concurrent bank access patterns. Taking conventional bank mapping as an 

example, when padding is added to make a stride change from an even number to an odd 

one, gcd(stride,bank _number)  equals to 1 and conflicts are eliminated. By adding 

padding before an array definition, it changes the offset of the array’s base address. For 
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some bank mapping functions such as the ones supported by GPU dynamic bank access 

scheme, changing this offset might impact the bank conflict degree.    

        Array padding is easy to apply and it is practically efficient. In addition, unlike some 

other data transform methods, padding normally involves no extra source code 

transformation for array sub-indexing functions.  Although it consumes some extra 

spaces, many problems can be solved with a relatively modest padding. Padding is 

generally used combined with other optimization schemes such as tiling [65-69], and 

prefetching [20, 70]. For example, Rivera et al presented a combination solution, which 

use tiling and padding to improve memory efficiency for some 3D iterative solvers [65]. 

In [68], a method combining intra-padding and tiling is used and proved to be efficient 

for matrix multiply.  In [70] padding is used to avoid or reduce prefetching conflict.  

        Various automatic padding solutions are proposed for different purposes. Many of 

them are based on problem modeling [49, 57, 58, 65, 67], and then use heuristic methods 

[20, 71] or other searching methods [47, 60, 69] to find optimized solutions [66]. In [71] 

the author raised concerns with the relation between applying intra and inter padding; 

their solution always applies intra-padding prior to inter-padding.  

        Array padding is also commonly used for GPU program optimization. The two main 

purposes include improving global memory efficiency and reducing shared memory bank 

conflict. Based on the coarse-access principle for global memory access, padding could 

be used to transform data layout in global memory and coarse global memory access 

requests [72, 73]. Based on the GPU shared memory bank organization knowledge, small 

amounts of padding could be used to change memory access stride and in turn reduce or 

eliminate potential bank conflict [18, 19]. 

        A compiler auto-padding solution for shared memory is proposed in [18]. A 

heuristic searching algorithm is used to search for a proper padding. For each candidate 

padding size, gcd(stride,bank _number)  is evaluated to get the conflict degree for each 

parallel array access. The padding size that results in the least conflict number will be 

used. Some other auto-padding schemes are developed for application-domain related 

optimizations. Jaeger et al [50] proposed an auto-padding scheme for stencil calculations. 

This work extends the usual padding into a multi-padding method, which uses non-
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uniform but periodic padding at different locations. This extended padding method is 

shown to be efficient for alignment issues on different CPU/GPU architectures.  

  

2.5 Summary 
 

        This chapter presents three areas of previous research that are related to this 

dissertation. First of all, since this work target GPU shared memory bank conflict, we 

studied the prior work on solving interleaved memory bank conflict solutions. Secondly, 

we investigated common 1D and 2D memory access patterns, which is widely studied for 

automatic optimization techniques. In order to transform source code to obtain better 

efficiency, the proposed tool needs to be able to recognize common patterns and find 

proper data layout solution.  Finally, we studied the prior work on padding. Although it is 

a basic and simple optimization, it is commonly used for data layout transform, especially 

for GPU shared memory optimizations. The proposed tool uses padding as one of the 

main data layout transformation methods.   
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CHAPTER 3 PROPOSED APPROACH 
 

3.1 Background and Motivation 
 

        CUDA shared memory is software manageable on-chip storage, it is faster than 

device memory and its size is limited. Shared memory is commonly used for the 

following purposes: (1). Caching data to improve temporal locality. For the data which 

are visited multiple times, they can be cached in shared memory to avoid the long latency 

of global memory access. (2). Hosting data shared among threads of one thread block. An 

example is producer-consumer warps inside one thread block; they can communicate 

through shared memory. (3). Temporary storage for improving global memory access 

efficiency. In the kernel of matrix transpose, by using shared memory, access pattern of 

global memory can be changed to unit-stride row-major access. This helps to improve the 

performance by optimizing global memory access efficiency.   

        Bank conflict is a primary concern when using CUDA shared memory. 

Programmers are responsible to reduce or avoid bank conflict given the bank 

organization information [1, 2]. In earlier generations, CUDA shared memory used 

conventional low-order mapping; the value of bank number (denoted as bank _num ) 

equals to the vector access length (denoted as vec_ length ). Programmer could use 

gcd(stride,bank _num)  to calculate the bank conflict degree and use array padding or 

other data layout transformation to avoid bank conflicts. However, the NVIDIA Kepler 

GPUs enables dynamic bank access mode, which is designed to improve efficiency for 

different bit-width accesses. This makes the bank conflict issue more complex for 

programmers. Traditional analysis methods of conventional mapping are not enough to 

solve the bank conflict problem for new bank access modes. Generally it is not obvious to 

understand how data layout causes bank conflicts; people just try different padding sizes 

or choose different mapping access bit-width settings. On the other hand, shared memory 

space is limited. When changing data layout to solve the bank conflict issue, the space 

constraint needs to be considered. Otherwise, device occupancy might decrease and 

performance might drop significantly. Based these observations, we believe more effort 
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should be invested to reduce the difficulty of improving shared memory access 

efficiency.  

        This dissertation studies bank conflict issues of CUDA shared memory that supports 

dynamic bank access. Based on a generalized description of the bank organization and its 

access policy, the bank conflict analysis method is presented. Given bank conflict 

estimation results, a heuristic perimeter optimization algorithm is presented to find an 

efficient data layout solution. The first dimension of the searching space is bank mapping 

function options provided by the programming model; the second dimension is intra-

variable padding solutions; and the third one is the storage sequence of variables and 

potential inter-variable padding solutions. The heuristic perimeter optimization method 

looks for optimal or sub-optimal solution with the following two questions: (1). Does it 

reduce the overall bank conflict of one kernel? (2). How much extra space is needed?  

Does it exceed the space limitations?  

        Figure 3.1 presents the relation between this work and related research areas. First of 

all, it is a project dealing with bank conflict issues of interleaved memory. It targets 

CUDA dynamic bank access mapping functions. In future, it could be used for other 

interleaved memory types with similar features. Secondly, it is based on memory access 

pattern knowledge of different data layouts. Thirdly, it tries to find an efficient solution 

based on intra-padding, inter-padding, and bank mapping function configuration. The 

goal is to make an automatic software solution that works at the programming level, and 

it realizes optimization through source code transformation.  
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Figure 3.1 The relations of this project and related research areas 

 

3.2 Project Assumptions 
 

        The following list is assumptions of this project: 

        (1). This is a static analysis.  

        (2). The bank number equals to the vector access length and its value is power-of-

two. 

        (3). The target application uses dense memory access only. Indirect accesses (such 

as those used in sparse matrix and irregular mesh processing) are not included. 

        (4). This project targets C/C++ CUDA programming. By default array data is stored 

in row-major style.  Any array used in this work is based on row-major data layout.  

        (5). Some typical 2D patterns are supported, but not all. For loops, the assumption is 

that the consecutive memory access requests have similar patterns. 
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        (6). Based on the situation that programmers are responsible for solving bank 

conflict, here we don’t assume the existence of any particular shared memory bank 

conflict related compiler optimizations.   

        (7). When an auto transformation tool looks for an optimal/sub-optimal solution, it 

will consider using less extra space, but it cannot guarantee that extra space chosen to be 

added will not cause decreasing device occupancy. To avoid such penalty, programmers 

should give a space limitation for each thread block. 

        (8). The current implementation targets at transforming C/C++ CUDA programs. 

Implementation for OpenCL can be added in similar way. 

 

3.3 Project Framework 
 

        Figure 3.2 is the description of proposed approach. The work starts from a kernel 

source code and its memory access pattern description including: (1). Shared memory 

variable definitions; (2) Bank mapping functions defined by the programming model; (3) 

GPU thread block definitions; (4) array access stride; (5) other control information 

related to memory accesses. Basically, for different bank access bit-width settings, the 

tool analyzes the conflict replay number for each array, and then optimized the intra-

padding size to obtain the optimal or sub-optimal solution. Among different bank access 

bit-width settings, the best option is the one that has the least conflict number and uses 

less memory. If the total conflict replay number is not zero, the tool looks for a proper 

inter-padding size for each array. Finally, according to the data layout solution, a source 

code transform is performed to modify the source code accordingly. 
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Figure 3.2 Framework of the project 

 

3.4 Performance Improvement Expectation 
 

        The tool is designed to be able to improve GPU shared memory efficiency under 

following circumstances:   

        For a certain application kernel that uses 1D or 2D common shared memory access 

patterns, if its bank conflict problem can be eliminated or reduced by a combination 

optimization of (1) bank mapping function selection, (2) inter-padding, (3) intra-padding, 

then this tool can find an optimal or suboptimal solution automatically and transform data 

layout accordingly.  

        For an optimal/sub-optimal solution that can reduce the conflict degree from N to M, 

the memory access instruction replay number is reduced by N −M
N

×100% . It means that 

fewer cycles will be used for same purpose shared memory access. For applications that 

has bottleneck caused by shared memory bank conflicts, this transform may improve 

overall execution time.  
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3.5 Summary 
 

        This chapter introduces the background of GPU shared memory conflict issues, as 

well as the framework of this research. Due to the importance of shared memory access 

efficiency in GPU kernel performance tuning, and the difficulties of investigating the 

bank conflict for common access patterns, we made this effort to achieve automatic bank 

conflict optimization. The proposed work performs automatic source code transformation 

to optimize the data layout. This work includes a static bank conflict analysis and a 

heuristic parameter optimization method to find optimal or sub-optimal solutions.  
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CHAPTER 4 SINGLE VECTOR ACCESS BANK CONFLICT 
 

        This chapter analyzes the bank conflict of single vector (warp) access. Firstly, the 

bank mapping functions are introduced, and the impacts of inter-padding, intra-padding, 

and bank access bit-width on bank conflict are presented. Then the bank conflict analysis 

module is designed to estimate the degree of 1D stride and 2D stride access patterns. The 

work in this chapter is the core in the proposed framework. Any bank conflict 

optimization task will finally be divided into sub-tasks of single vector conflict analysis.  

 

4.1 Bank Mapping Function Descriptions 
 

        Based on bank mapping functions supported for current commercial GPU shared 

memory, we define a generalized description. N  is the bank access mapping width in 

bytes, M  is the instruction access data type size in bytes, and W  is the layer width size 

of one bank in bytes. We call N  the N-Byte mode, and M  the M-Byte element. To 

describe the target problem we add the following constrains:  

1. Values ofM , N , and W  are power-of-two.  

2. 4 ≤M ≤W , 4 ≤ N ≤W   

3. W is constant in one system 

4. vec_ length >> W
M

 

There are following four different mapping functions as following: 

• Case One: M = N  andM <W . M = N  means that the instruction access bit-width 

matches the bank mapping access bit-width. M <W means that this instruction access 

bit-width is smaller than the size of one layer of one bank. An example is M = N = 4
,and W = 8 .  In this dissertation we call it case row-major mapping. 

• Case Two: M = N =W . M = N means that the instruction access bit-width matches 

the bank mapping access bit-width. M =W  means that this instruction access bit-

width equals to the size of one layer of one bank. An example is M = N = 8 , W = 8 .  
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• Case Three: M>N, M=W. M>N means that the instruction access bit-width is larger 

than the bank mapping access bit-width configuration. M=W means that the 

instruction access bit-width equals to the size of one layer of one bank. An example is 

N=4, M=W=8.  

• Case Four: M<N, N=W. M<N means that the instruction access bit-width is smaller 

than the bank mapping access bit-width. N=W means that the bank access bit-width 

equals to the size of one layer of one bank. An example is M=4, N=W=8. This case is 

called column-major mapping. 

Table 4.1 describes features of these four bank-mapping functions. When we describe the 

stride analysis, following definitions are used: 

• vector (or warp): execution unit of parallel memory access; 

• vector length: the element number visited by each vector (warp) access; 

• offset: the memory offset of the first element visited by a single vector access. 

• stride family: a stride can be described as stride=  (σ is an odd, and,  ). 

For all strides that have same e, they belong to the same stride family. For example, 

stride = {2, 4, 6,10,14,...}  is the stride family that has e = 2 . 

• layer: One layer of a bank is a unit of space that multiple simultaneous accesses of it 

will cause no conflict. For example, for a layer size of 8B, the access of the upper 4B 

and the access of the lower 4B cause no conflict.  

• row: For case one, two, and three, a layer of a bank has R = W
M

 rows. For example, 

for a layer size of 8B and a bank mapping access width of 4B, there are two rows in 

each layer.  For case four, a layer of a bank has R = W
M

  rows.  

         Figure 4.1 is array data mapping examples for these bank mapping functions (Bank 

number is 4, W=8). This literature focuses on the row-major data mapping (case one) 

and column-major data mapping (case four). Case-three is similar to row-major 

mapping function; case-two is conventional low-order bank mapping function.  

€ 

σ × 2e

€ 

e∈Z
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Figure 4.1 1D Array data mapping for different mapping functions.  

Table 4.1 Summary of features of bank mapping functions 

Case Example Architecture Bank 

Num 

N M W 

One NVIDIA Kepler 32 4B 4B 8B 

Two NVIDIA Tesla 16 4B 4B 4B 

NVIDIA Fermi 16 4B 4B 4B 

NVIDIA Kepler 32 8B 8B 8B 

Three NVIDIA Kepler 32 4B 8B 8B 

Four NVIDIA Kepler 32 8B 4B 8B 

 

4.2 Data Layout Transform and Bank Conflict 

 

        In this section some basic experiments is used to exam the impact of data layout on 

bank conflict degree. The platform information is as following: 

• GPU device: Tesla K20c,  

o Shared memory:  

§ Bank number is 32;  

§ W=8B. 

o Warp size: 32 threads. 

o Compute capability: 3.5 

• Programming model: CUDA 5.0 

• Profiler: NVIDIA NVVP, release 5.0 



 26 

4.2.1 Inter-padding  

        Inter-padding is a method used to change the memory access offset. This experiment 

shows the impact of access offset on bank conflict degree for the row-major data 

mapping function. Basically, the program reads shared memory by stride = 2e . When the 

offset varies, the conflict number changes. In the example code in Figure 4.2, by inserting 

dummy variable of different sizes, we can change the offset. Figure 4.3 shows the impact 

of offset for different strides: the effect of changing offset is “+0” or “+1” to the existing 

conflict degree. It means that for larger strides, the impact of offset is smaller. Figure 4.4 

compares the offset impact for two different bank access bit-width configurations. For 

this example, when offset is larger than 3, column major data mapping scheme is better 

than row-major data mapping scheme. Similarly, for the column-major data mapping 

function, the offset also could change the conflict degree. The detail will be discussed in 

chapter 6. 

 
Figure 4.2 Sample code 

 

Figure 4.3 Conflict degree of different offsets for different stride values 
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Figure 4.4 Impact of offset for different access bit-width setting 

 

4.2.2 Intra-padding  

        This experiment exams the impact of array intra-padding. When the padding varies, 

the conflict degree changes. For example code in Figure 4.5 (a) and (b), we change the 

value of the macro PAD and check the conflict degree Figure 4.5  (c) and (d) shows the 

impact of intra padding on bank conflict degree.  

 

Figure 4.5 Impact of intra-padding on bank conflict numbers 
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4.2.3 Bank Access Bit-width  

        This experiment shows the impact of bank access bit-width on bank conflict degree. 

When access bit-width changes, the conflict degree changes. In the example code in 

Figure 4.6 (a), we change bit-width through the API provided by the CUDA 

programming toolkits. Figure 4.6 (b) shows the difference of the conflict degree when 

offset=32B. Figure 4.4 also shows the difference when offset > 3  and stride ≥ 4 : when 

N = 8  it has better efficiency. 

 

Figure 4.6 Impact of bank access width on bank conflict degree 
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4.3 Single Vector Bank Conflict Analysis 
 

4.3.1 1D Access Pattern and Bank Conflict Analysis 

        Table 4.2 describes the features of bank conflict problem for row-major bank 

mapping function and column major bank mapping function.  Basically, the bank 

conflict analysis module realizes following function: 

bank_conflict_degree = func(bank_num, W, N, M, stride, offset) 

        Based on the input parameters, the bank mapping type is determined, and the task is 

assigned to the routine that perform the analysis. Detailed analysis description of each 

type can be found in appendix A-1.  

Table 4.2 Summary of features of bank conflict problem 

Type Conflict analysis features 

Row-major 

data 

mapping 

Analysis process is based on gcd(stride, bank_number). However, since one layer 

of all banks has multiple rows, only accesses to different layers cause bank 

conflict. The analysis routine take offset and result of gcd(stride, bank_number) 

to calculate the bank conflict number.  

Column-

major data 

mapping 

Since each layer of all banks has multiple rows, and data are mapped in column 

major direction, both odd stride and even stride could cause bank conflict.  A 

routine is designed for odd stride bank conflict analysis. Even stride analysis can 

be transformed to either odd stride problem or conventional bank mapping 

problem. 

 

4.3.2 2D Access Pattern and Bank Conflict Analysis 

        For 2D parallel memory access, we can describe a parallel execution unit by two 

types: a 1D vector, or a 2D rectangular grid (Figure 4.7 (a)). When such a vector accesses 

data in an array, we describe access pattern as:  

< stride_ x, repeat _ x, stride_ y, repeat _ y >  
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(a) 1D vector and 2D grid (b) Basic memory access patterns  

Figure 4.7 shape of parallel memory access unit and base memory access patterns 

        By defining an affine transform matrix in Homogeneous Coordinates, we can get the 

transformed 2D access patterns based on the basic access pattern in Figure 4.7 (b). We 

describe this transform matrix T as: 

 
        When the width of the 2D memory access execution unit is less than vec_ legnth, the 

2D stride pattern can be obtained from the functions in Table 4.3. In these functions, the 

blockDim.x denotes the width of execution unit; width denotes the width of 2D array. 

Figure 4.8 shows some examples of the transformed access patterns. 

Table 4.3 2D stride pattern calculation 

stride_ x  repeat _ x  stride_ y  repeat _ y  

a21 × array_width+ a11  blockDim.x  a22 × array_width+ a12  vec_ length
blockDim.x

 

 

 

Figure 4.8 Examples of the base 2D access pattern transformation 
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When we shift the offset of current parallel access, an observation is that the bank 

mapping of all visited elements repeat after a certain number of steps. For example, when 

row-major mapping function is in use, for  

offsetnew = offset original+
W ×bank _num

M  
it has  

conflictnew = conflictoriginal . 

This means that we can firstly calculate bank conflict for a small and fixed number of 

offset values, and then for other offsets, get the conflict degree by mapping it to a known 

offset value. We call this small group as base_ set . In many GPU kernels, one parallel 

memory operation is executed for many times with different offsets. By computing the 

conflict for a smallbase_ set , this method can obtain the overall conflict in a limited time 

period which is independent of vector access number. For detail information about 2D 

bank conflict analysis, please refer appendix A-3.  

 

4.4 Algorithm Analysis 

 

        The single vector analysis is the basic component of the proposed framework. It 

works at the center of this work in that other modules are built upon it. This section 

introduces the algorithms used to realize single vector analysis; their time complexities 

are discussed as well. 

4.4.1 1D Analysis Algorithm 

 

Row-major Bank Mapping Function 

        For row-major bank mapping function, when stride is odd, for anyW ,N , andM , 

there is no bank conflict. For even strides, we divide them into two categories: (1) stride 

is power-of-two, (2) Other even stride. 

When stride is power-of-two, the algorithm (algorithm 4.1) uses the result of 

gcd(stride,bank _num)  and the vector access offset to calculate the conflict degree. Since 
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the time complexity of gcd(stride,bank _num)  is O(stride) , this function’s time 

complexity is alsoO(stride) . Basically, (1) when stride is larger than the element number 

that can be stored by one layer of all banks, all visited elements lie in different layers of 

the same bank, and any pair of them has conflict. (2) Otherwise, if the stride can be 

divided bybank _num , all visit sites lines in same bank of one or multiple layers. Based 

on the value of offset, the conflict degree can be deduced from the result of

gcd(stride,bank _num) . (3). Otherwise, it means that the bank _num can be divided by 

stride, the result of gcd(stride,bank _num)  and the offset is used to calculate the conflict 

degree. Figure 4.9 describes this in details.  

 

Figure 4.9 for power-of-two stride 

        When stride is other even numbers, the time complexity is alsoO(stride) . For an 

even stride in stride familyσ ×2e , the visited sites can be divided into 2e  groups, each 

groups occupies σ rows. For the ith row of all groups, they visit same banks. So there 

must be conflict if not all of them lie in same layer. Inside each group, there is no conflict 

possibility. Based on such observation, the task becomes to check the conflict among ith 

rows of all groups (algorithm 4.2).  
 
Algorithm 4.1  func_row_major_power_of_two_stride 
Input: bank_num, W, N, M, stride, offset 
Output: res -- bank conflict degree. 
//--------------------------------------------------------- 
gcd_res = gcd(stride, bank_num); 
R = W/N; res=1; 
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layer_size = bank_num * W; 
vec_length = bank_num; 
offset = offset % layer_size;  //calculate offset in one layer. 
If (stride >= bank_num * R)  
    res = vec_length;  
else 
    If(stride % bank_num == 0) 
        res = (gcd_res*(stride/bank_num) + (R-1)) / R; 
    else 
        res = (gcd_res + (R-1)) / R; 
    end if 
    if(offset_impact==true) 
        res += 1; 
    end if 
end if 

 

Algorithm 4.2  func_row_major_other_even_stride 
Input: bank_num, W, N, M, stride, offset 
Output: res -- bank conflict degree. 
//--------------------------------------------------------- 
gcd_res = gcd(stride, bank_num); 
R = W/N; res=1; 
layer_size = bank_num * W; 
vec_length = bank_num; 
offset = offset % layer_size;  //calculate offset in one layer. 
tau = tau(stride);   //calculate stride family parameter tau  
e=e(stride);  //calculate stride family parameter e. 
if(2^e >= bank_num) 
    if(stride > W*bank_num/M) 
        res = bank_num; 
    else 
        res = ceil(offset/M + (vec_length-1) * stride + 1, bank_num*W/M) / (bank_num * W / M); 
    end if 
end if 
for row I in {0,..,tau-1} 
    for group in {0,…, 2^e-1} 
        if current_layer(group) != previous_layer(group) 
            conflict = true; res++; 
        end if 
    end for 
end for 
 

 

Column-major Bank Mapping Function  

        For this bank mapping function, no matter stride is odd or even, there could be 

potential conflict, and we need to calculate conflict degree (algorithm 4.3). The time 
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complexity of this method is O(R× vec_ length ). Compares to enumerating every visit 

site of one vector access, this time complexity is worse because the later one has O(

vec_ length ). However, it doesn’t mean that this method is not helpful. Actually, it gives 

useful clues to take short cut for some cases. One important conclusion based on this 

method is about current commercial GPU shared memory. In appendix A, it is approved 

that the conflict is always 2-way when R = 2 , with R = W
M

. For other R ≠1 , the 

condition about layer _ scope  could terminate the loop and help to avoid unnecessary 

calculations for non-valid pairs.  

 
Algorithm 4.3  func_column_major_odd_stride 
Input: bank_num, W, N, M, stride, offset 
Output: res -- bank conflict degree. 
   //---------------------------------- 
        For vector visit start from r in 0 to R-1 
        //initialize bank_layer_info 
 For i=0 to bank_num-1 
  std::pair<unsigned, std::set<unsigned int> > curr_pair; 
  curr_pair.first = i; 
  curr_pair.second.clear(); 
  bank_layer_info.push_back(curr_pair); 
 Endfor 
 
 //.........................................................  
 //step 1:  
 row_idx = (offset % W) / M; 
 
 //......................................................... 
 //step 2:  
 For i = 0 to R-1 
  calculate row_offset[i] 
 Endfor 
 
 For i = 0 to R-1 
  calculate imm_col_offset[i] 
 Endfor 
  
 //......................................................... 
 //step 3:  
 For i = 0 to R-1 
  calculate row_scope_num[i]; 
 Endfor 
  
 //......................................................... 
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 //step 4 (CASE-A): check every row-pair of CASE-A 
 For i=0 to R-2 
  For j=i+1 to R-1 
   //For each pair of rows, check existence of conflicts. 
   bool conflict = false; 
   For diff_y_x = 0 to vec_length/R-1 
    calculate dist: the offset difference between visit x and visit y 
    If ((dist > 0) && ((dist % bank_num) == 0)) 
     layer_scope = dist / bank_num; 
     If (layer_scope <= (row_scope_num[i] - 1)) 
      diff_res = diff_x_y; 
      conflict = true; 
      break; 
     Endif 
    Endif 
   Endfor 
   If (conflict) 
    For each pair of x and y that has difference of diff_res 
     calculate bank_id;   
     calculate layer_y;  
     calculate layer_x;  
     save these conflict information to bamk_info[bank_id]; 
    Endfor 
     
   Endif 
  Endfor 
 Endfor 
 
 //......................................................... 
 //step 4 (CASE-B): check every row-pair of CASE-B 
  
 For i=0 to R-2 
  For j=i+1 to R-1 
   //For each pair of rows, check existence of conflicts. 
   bool conflict = false; 
   For diff_y_x = 0 to vec_length/R 
   { 
    calculate dist: the offset difference between visit x and visit y 
    If ((dist > 0) && ((dist % bank_num) == 0)) 
     int layer_scope = dist / bank_num; 
     If (layer_scope <= (row_scope_num[j] - 1)) 
      diff_res = diff_y_x; 
      conflict = true; 
      break; 
     Endif 
    Endif 
   Endfor 
 
   If(conflict) 
    For each pair of x and y that has difference of diff_res, 
     calculate bank_id;   
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     calculate layer_y;  
     calculate layer_x;  
     save these conflict information to bamk_info[bank_id]; 
    Endfor 
   Endif 
  Endfor 
 Endfor 
 
 For I in 0 to bank_num-1 
                         If bank[i].layer_num > max; 
                             Max = bank_info[i].layer_num; 
                         Endif 
 Endfor 
 Endfor 
 

        For even stride, the problem can be transformed either to odd stride problem or 

directly to conventional bank access problem.  Then the time complexity is either as same 

as the one for odd stride problem, or the one for conventional bank conflict problem. The 

table A-1-5 describes the rules of problem transformation.  

4.4.2 2D Access Analysis Algorithm 

 

        When array is visited through a 2D stride, there are two cases: (1). Each warp 

accesses array in 2D pattern; (2). Each warp accesses array in 1D pattern. A simple 

example of the first case is 8x4 access by a warp of 32 threads. It means that for the first 

stride the repeat times is 8 and for the second stride it is 4. For the second case, even the 

access of a whole thread block is 2D, but since the repeat time of the first stride can be 

divided by vector length, then the problem can be transferred to a 1D cases for each warp.  

The algorithm 4.4 is the bank conflict calculation for row-major bank mapping. For 

column-major bank mapping function, the algorithm is similar except that different 

functions are used to calculate the bank indices and layer indices. This is a simple and 

straightforward solution. At the beginning, an array of bank information are defined and 

initialized, it is used to store the bank access information. Then, for each visited element, 

calculate its bank index and its layer offset, and record the distinct layer indices of same 

bank. Finally, it goes through all banks and finds the bank that has maximum distinct 

layer number. This number is the bank conflict degree of the current single warp 2D 

access.  
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Algorithm 4.4  2D_row_major_stride 
Input: bank_num, W, N, M, stride, offset 
Output: res -- bank conflict degree. 
//--------------------------------------------------------- 
For I in 0 to bank_num-1 
        Initialize bank_info [i] 
Endfor 
 
For I in 0 to rep_y-1 
        For j in 0 to rep_x-1 
                 Calculate bank_idx and layer_idx based on row-major bank mapping function  
        Done. 
Done. 
 
For I in 0 to bank_num-1 
        If bank[i].layer_num > max; 
                   Max = bank_info[i].layer_num; 
        Endif 
Endfor 
 

        For this algorithm the time complexity is composed of three parts are: 

O(bank _num) . O(vec_ length) O(bank _num) . Since we assume vec_ length  equals to 

bank _num , the overall time complexity of this algorithm is O(bank _num) .  

 

4.5 Summary 
 

        In this chapter we describe the bank conflict problem of single vector access, and 

introduced the method for bank conflict analysis. Section 4.1 introduces the information 

of bank mapping functions. In section 4.2, experimental evidences are used to show the 

impact of data layout on bank access efficiency. By changing bank access bit-width, 

adding inter padding, or adding intra padding, the data layout transformations reduce or 

eliminate the bank conflict. In section 4.3 and 4.4, the conflict analysis algorithms are 

presented.  

        Based on this single vector analysis module, in chapter 5, the analysis method of 

single expression memory access is constructed; in chapter 6, a heuristic parameter 

optimization method is built to look for the optimal or sub-optimal data layer solution.  
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CHAPTER 5 SINGLE EXPRESSION ACCESS BANK 
CONFLICT 

 

        In GPU programming model, one memory access expression drives concurrent 

threads to access a sequence of data in parallel. Normally these threads belong to multiple 

vectors/warps. In this chapter, we take single expression as a unit and analysis its bank 

conflict. Given an array access expression, the tool analyzes the overall bank conflict 

number of multiple warps that execute the memory operation. This work is based on the 

single vector bank conflict analysis presented in chapter 4. Since programmers determine 

the warp number, the ideal solution should be able to estimate conflict number and its 

time complexity shouldn’t depend on the warp number. In this chapter, section 5.1 

analyzes the bank conflict of basic array access expression. Section 5.2 analysis the “for” 

wrapped memory access, which is normally used to increase workload of each thread. 

Section 5.3 and 5.4 analyze “if” and “for-if” wrapped memory access expression, they are 

normally used to filter the threads and control the memory access ranges/patterns. Figure 

5.1 presents the relations of these conflict analysis modules.  

 

Figure 5.1 Conflict Analysis Modules 
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5.1 Basic Bank Conflict Analysis 
 

5.1.1 1D Access Analysis and Algorithm 

 

        This section explains how to calculate the bank conflict number of single memory 

access expression when multiple warps are involved. This work is based on the algorithm 

for 1D single vector analysis presented in section 4.3. After the bank conflict of the first 

warp is obtained, the conflict result of other warps could be different from it in that their 

access offsets could be different. The memory access offset of the ith warp is: 

offset[i]= offset[0]+ i× stride× vec_ length , i = [1, 2,...,warp_num_ per _block)  

This formula shows that the offset of warp i is linear to the warp index i . In one layer of 

all banks, the in-layer offset is: 

offset _ in_ layer[i]=mod(offset[i],bank _num×W
M
)
 

 This formula shows that the relative offset is periodic. For example, for all warp i  that 

havemod(offset[i],bank _num×W
M
) = 0 , they have same relative offset which is the 

beginning of a layer. Based on this observation, we design the conflict analysis for row-

major bank mapping function and column-major bank mapping function as following.  

 

Row-major bank mapping function 

        For row-major bank mapping function, when the stride is odd, there is no bank 

conflict. For even strides, they can be divided into two categories and each uses a 

different analysis method. The first group is stride values that are power-of-two; the 

second group includes all other even strides.  

 

Stride is power-of-two 

 

1. When , since each of them is power-of-two, then mod(stride,R) = 0 . And 

since vec_ length  equals tobank _num , we have: 

€ 

stride ≥ R



 40 

 
Based on this equation, for warp i , the in-layer offset is: 

offset _ in_ layer[i]=
mod(offset[0]+ i× stride× vec_ length,R×bank _num) =

offset _ in_ layer[0]
 

with i = [1, 2,...,warp_num_ per _block) . Since all these warps have same value of in-

layer offset, they have same bank conflict estimation result. The total conflict number can 

be obtained through multiplying single warp conflict number by the warp number.  

 

2. When , since both R  and stride are power-of-two, R  can be divided by 

stride. Let’s defineP = R
stride

, it has: 

 
Since vec_length equals to bank_num, it has: 

offset _ in_ layer[i+P]=
mod(offset[i+P],R×bank _num) =mod(offset[i],R×bank _num) =

offset _ in_ layer[i]
 

This equation shows that after every P  warps, the in-layer offset repeats. Based on this 

observation, the algorithm goes through following three steps to obtain the final conflict 

number: 

• CalculateP . 

• Obtain the conflict number for the P  distinct warps. To get the offset of each 

cases, variable sub_offset is defined as: 

sub_offset =mod(offset,R×bank _num)  
Then relative offset in one layer can be obtained by: 

offset _ in_ layer[k]=
mod(sub_offset + k × stride× vec_ length,R×bank _num)

 
with k = [0,...,P)  

• Calculate the warp number that belongs to each case k , k = [0,...P) . 

• Get the overall conflict number by: 

€ 

mod(i × stride × vec _ length,R × bank _ num) = 0

€ 

stride < R

€ 

offset[i + P] = offset[i]+ P × stride × vec _ length = offset[i]+ R × vec _ length
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Other even strides 

 

        When stride is other even number, it can be described as a member of stride family 

€ 

σ × 2e  with σ = [3, 5, 7...)  and e = [1, 2,3,...) . Then the offset of warp i can be calculated 

as: 

€ 

offset[i] = offset[0]+ i × stride × vec _ length = offset[0]+ i ×σ × 2e × vec _ length  

1. When 2e is larger than or equal to R : 

€ 

mod(offset[i],R × bank _ num) =mod(offset[0],R × bank _ num) 
It means that for all warps, they have same in-layer offset, and have same conflict 

number. 

2. When 

€ 

2e is smaller thanR , we need to find the value of P  for which it has: 

mod(offset[i+P],R×bank _num) ≡mod(offset[i],R×bank _num)  
First of all, since vec_length equals to bank_num, it has: 

€ 

P ×σ × 2e × vec _ length = N × R × bank _ num  
This equation can be simplified as: 

€ 

P ×σ = N ×
R
2e  

with P  and N are non-zero positive integers. 

Then, based on this equation, P  can be calculated as: 

€ 

P =
LCM(σ, R

2e
)

σ  

€ 

total_conflict = conflictk × warp_ numk
k=0

P −1

∑
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Figure 5.2 an example  

Figure 5.2 is an example. After replacing i  with P , the offset[P]  becomes: 

offset[P]= offset[0]+ LCM (σ , R
2e
)×2e × vec_ length

= offset[0]+ N × R
2e
×2e × vec_ length

 

with N × R
2e
= LCM (σ , R

2e
) . This indicates that: 

€ 

mod(offset[0],R × bank _ num) ≡mod(offset[P],R × bank _ num) 
Based on this observation, the algorithm uses three steps to obtain the final conflict 

number: 

• Obtain the conflict estimation of the P  distinct cases. To get the offset of each 

cases, it defines sub_offset as: 

sub_offset =mod(offset, stride×bank _num)  
Then each offset can be obtained through: 

offset[k]= sub_offset + k × stride×bank _num , with k = [0,...,P)  

Then the in-layer offset can be obtained by: 

offset _ in_ layer[k]=
mod(sub_offset + k × stride×bank _num,R×bank _num)

 
with k = [0,...,P)  

• Calculate the warp number that belongs to each case k, k = [0,...,P) . 

• Get the overall conflict number by: 
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Column-major Bank Mapping Function 

        For column-major bank mapping function, when an offset makes a vertical shifting 

among different rows in a layer, it impacts the conflict number. Horizontal shift only 

moves conflicts from one bank to the other bank, so it doesn’t change the conflict 

number. We define vertical row offset as: 

€ 

offset _ row[i] =mod((offset _ row[0]+ i × stride × vec _ length),R) 
Since vec_length and R  are power-of-two and vec_length is larger than R , we have 

€ 

mod(i × stride × vec _ length,R) ≡ 0  
This indicates that for any value of i  and any value of stride, it has 

€ 

mod(offset _ row[i],R) ≡mod(offset _ row[0],R) 
Then, the overall conflict number can be obtained by: 

total _ conflict = conflicto ×warp_num  

5.1.2 2D Access Analysis and Algorithm 

 

        Similar to 1D solution, for multiple warps that access memory in 2D patterns, it goes 

through these steps to obtain the overall conflict number. In section 4.4, when we 

calculate conflict number for 2D single vector access, the conflict degree is calculated for

offset ∈ [0,W
M
×bank _num) , and the results are stored in a table. This table can be 

reused here to look up the conflict number for a certain offset. Here we divide 2D access 

patterns into two categories, and then discuss the solution for each of them. 

1. for a 2D access pattern <stride_x, repeat_x, stride_y, repeat_y>, when repeat_x is less 

or equals to vec_length, we use four steps to obtain overall conflict number: 

Calculate P as:  

P = lcm(scope_of _single_warp_ access,R×bank _num)
scope_of _single_warp_ access  

€ 

total_conflict = conflictk × warp_ numk
k=0

P −1

∑
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• Then for each distinct k ∈ [0,...,P) , calculate the offset _ in_ layer[k]  and look up 

the conflict table to get the conflict. 

• Calculate the warp numbers that belongs to case k = [0,...,P)  

• Sum up the overall conflict number: 

 
 

2. When repeat_x can be divided by vec_length:  

• For each warp i  in the first dimension stride access, i ∈ [0,..., repeat _ x
vec_ length

) , use 

following four steps to calculate the total _ conflict[i] : 

o Calculate P  which is the number of distinct offset cases; 

o Calculate conflict for each k = [0,...,P) ,  

o Calculate the warp number that belong to case k = [0,...,P)  

o Summary the conflict numbers and save as total _ conflict[i] : 

total _ conflict[i]= conflictk ×warp_numk
k=0

P−1

∑
 

• Finally, use a reduction to get the summary of elements in array total_conflict, 

which is the total conflict number. 

  

5.2 “for” Loop Wrapped Single Access Expression 

 

5.2.1 Motivation          

 

        “for” loops are frequently used to increase the workload of each thread. Figure 5.3 

shows two loop examples. In each of them, iterate variable i  is used to change the 

memory access offset for current iteration. In case (a), the offset increment of each 

iteration is the first dimension length of array A; in case (b), it is the value of blockDim.x. 

€ 

total_conflict = conflictk × warp_ numk
k=0

P −1

∑
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Figure 5.3 Examples of for loop wrapped memory accesses 

        Given the solution for single expression conflict estimation, a basic method is to 

estimate conflict for each iteration, and then get overall conflict number through a 

reduction. However, the workload of this solution depends on the loop iteration number. 

For kernels that have large number of iterations, it is not a practical static processing. The 

ideal solution should be able to complete the analysis within a certain period which 

doesn’t depend on the iteration number. 

5.2.2 Solution  

        Given the solution of multiple warp analysis, similar solution could be used to deal 

with memory access with “for” loop wrappers. We use function lcm() to find distinct 

iterations that have different offset from one another, and then calculate the overall 

conflict. This helps to optimize the workload from O(iteration_number) to 

O(elem_number_per_layer). The first one depends on application kernel design, and the 

later one depends on memory bank architecture. The algorithm uses four steps to obtain 

the final result:  

• Obtain the number of distinct iterations as P : 

• 
P = LCM (iter _offset _ increment,bank _num×R)

iter _offset _ increment  
• iter_offset_increment denotes the offset increment for each iteration.  

• For P  distinct cases, get the offset of each cases.  

• Calculate the iteration number that belongs to each case. 

• Get the overall conflict number by: 

€ 

total_conflict = conflictk × iter _ numk
k=0

P −1

∑
 

        Figure 5.4 is an example. There are totally 10 iterations, and P  is 3. Then, for k = 0

, there are 4 iterations; for k =1 , there are 3 iterations; and for k = 2  there are 3 
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iterations. For row-major bank mapping function and col-major bank mapping function, 

the methods used to calculate offset[k]  ( k = [0,...,P) ) are different.  

 

 

Figure 5.4 An example of loop which has 10 iterations, and P=3 

        For 2-level nested loops, this solution can be extended in similar way. Firstly, the 

conflict of the inner loop is calculated by the introduced method. Then, the P for the outer 

loop is calculated, and conflict of each case k = [0,...,P)  is calculated. Finally, the overall 

conflict number of the 2-level nested loop is calculated. For other multi-level loops, as 

long as the iterate variable has similar impact on the memory access offset, they can be 

analyzed in the same way. The execution time depends on Loop level number and one 

layer size of all banks: the single expression analysis is executed for P0 ×P1 ×...×Pi−1

times, with Pi ≤ bank _num×
W
M

 ( i ∈ [0,..., l) ), and l is the loop level number.  

 

5.3 “If” Condition Wrapped Single Access Expression 

 

5.3.1 Motivation          

 

        In GPU kernels, “if” statement is sometimes used to filter threads and only some 

threads are allowed to execute.Figure 5.5  is an example: the code has a branch and two 

groups of threads do different jobs: the first group visits array A, and the second group 

visits array B. 
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Figure 5.5 An example of “if” statement used to filter the threads by thread ID 

 

        These thread filter conditions are designed according to the purpose of the program. 

It means that the boundary of work threads and idle threads could be anywhere and it is 

not guaranteed to be aligned to vec_length. When this happens, the proposed conflict 

estimation method is not applicable any more. One basic problem is related to gcd(stride, 

bank_num). In chapter 4 the result of this function is used to estimating conflict degree. 

When vector access length is random instead of equal to bank number, gcd(stride, 

bank_num) cannot be used for this purpose any more. To design a proper method, we 

need to study row-major bank mapping function and column-major bank mapping 

function separately. For each of them, a routine is designed for bank conflict estimation. 

5.3.2 Solution 

 

Divide Threads into Groups 

 

        First of all, for a “if” statement that allows m threads to execute, these threads could 

be divided into 3 potential groups: 

• 1st group (G1): thread number is less than vec_length and the threads belong to 

the later part of a vector.  (Figure 5.6 (a)) 

• 2nd group (G2): thread number can be divided by vec_length, and thread index of 

the first thread is aligned to vec_length (Figure 5.6 (b)) 

• 3rd group (G3): thread number is less than vec_length and the threads belong to 

the first part of a vector. (Figure 5.6 (c)) 

For example, when a thread group’s thread number is less than vec_length, and the first 

thread’s index is vec_length aligned, it has one group which is G3. For a thread group 

that has thread number more than vec_length and the first thread’s index is not aligned to 
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vec_length, it could have two groups {G2, G3}, or three groups {G1, G2, G3}. For a 

thread group that has more thread number than vector length and starts from an aligned 

thread ID, it has two groups {G2, G3}. 

 

Figure 5.6 Dividing threads into groups 

Bank conflict for groups G2 can be calculated by existing solutions. For the group G1 

and G3, solutions are designed as following.  

 

Estimating Conflict for G1 and G3.  

 

        For row-major bank mapping function, when stride is odd, there is no conflict. 

When stride is even, the offset in current layer is calculated, and then the stride family 

parameters σ and 2e  are calculated.  

1. When thread number is smaller than bank _num
2e

, the scope of the visit can be 

calculated as: 

€ 

visit _ scope = stride × thread _ num =σ × 2e × thread _ num
<σ × 2e × bank _ num /2e =σ × bank _ num  

As we know, for a stride

€ 

S =σ × 2e , the visited layers can be divided into chunks each of 

which has σ rows. Inside each chunk there is no conflict. Since this visit_scope has only 

σ rows, it has no conflict.  

2. When thread number is larger or equals to bank _num
2e

, there could be conflicts.  

1) When bank number can divide the stride, it means that all visited sites lie in the same 

bank:  
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a) If the stride can be divided by bank _num×R , it means that all visited elements 

lie in different layers, and the conflict number equals to the thread number.  

b) Otherwise, there is at least one visit in each layer. For this case, we can calculate 

the layer number that contains visited sites.  

2) When bank number cannot divide the stride, we calculate the layer number that has 

been visited.  Combined with the value ofσ, we can calculate the conflict degree. 

        For column-major bank mapping function, as introduced in appendix A, the 

existence of conflict is calculated between every two rows that have different indices, 

when there is conflict, an index difference of x and y exists (x and y are the indices of 

visit sites in each row). The value of this difference needs to be smaller than the visiting 

scope of a vector access. Here, when the thread group has less thread number than 

vec_length, after the index difference is obtained, it needs to be inside the scope of 

current visiting area. In conclusion, after the condition for the visiting scope check is 

changed accordingly, the original algorithm can be reused. For even stride, the problem 

can be transformed to either the odd stride problem, or the conventional low-order bank 

mapping problem,  

 

5.4 “for-if” Statement Wrapped Single Access Expression 

 

5.4.1 Motivation 

 

        In some kernels, “for-if” combination is used to allow different amount of threads 

work in different iterations. Basically, the iterate variable is used as the condition in the 

“if” statement which filter the threads by thread indices. An example is shown in Figure 

5.7. Such code is normally used to process array data by an increasing/decreasing number 

of threads. 
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Figure 5.7 An example of “for-if “wrapped single expression access 

        A basic method is to estimate the conflict number of each iteration one after another. 

With existing solutions, for each iteration, estimating conflict number does not depend on 

the thread number. However, the time complexity for processing all iterations depends on 

iteration number. Since the iteration number is determined by kernel design, this solution 

is not practical. The ideal solution should have relatively bounded execution time no 

matter how many iterations the loop has. 

5.4.2 Solution 

 

        By studying the threads activities of all iterations, we can find clues to reduce the 

workload of conflict estimation. Figure 5.8 is a figure of thread activities across all 

iterations. The Y direction is the iteration index. The X direction is the thread index. In 

this example, since the iterate variable ( i = [0,...,15] ) is used as the boundary of active 

thread index, the maximum index of active threads is 15.  

        For this example, assume the bank number and vec_length is 4, there are: 

• 28 vec_length aligned accesses (In the figure, the start point of each aligned 

vector access is marked by “*”). 

• 4 of single-thread accesses; 

• 4 of double-thread accesses; 

• 4 of triple-thread accesses. 
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Figure 5.8 the example of “for-if “ wrapped 1D array access 

Through this example, we know that by counting the number of vector accesses which 

have same length x  ( x = [1,...,vec_ length] ), the final conflict result can be obtained by a 

reduction: 

€ 

total_conflict = Ci × conflicti
i=1

vec _ length

∑
 

conflicti  is the conflict number of the vector access that has i  active threads. Ci  is the 

number of vector access which length is i . The time complexity of this method doesn’t 

depend on the iteration number; it is only related to the vec_length which is determined 

by hardware design. This method requires a preprocess procedure to calculate Ci   (

i = [1,...,vec_ length] ). As shown in Figure 5.8, there are certain distribution patterns for 

these vector accesses, and it is not hard to calculate.  Algorithm 5.1 describes the method: 
algorithm 5.1 for_if_analysis 
Input: bank_num, W, N, M, stride, offset 
Output: res -- bank conflict number. 
//--------------------------------------------------------- 
        if  iter_num <=vec_length) 
                conflict_sum = frac_1D_single_block();  //calculate fractional warp access conflict 
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         else 
//calculate max warp aligned access number for one iteration. 
 int line_max_aligned_num = iter_num/vec_length - 1;  
 //calculate distinct offset case number 
 sample_num = distinct_case_num (vec_length, stride, W,  
elemSize, bank_num, line_max_aligned_num); 
//calculate repeat number of each case:  
 for (int i=0; i<sample_num; i++) 
         num_per_case[i] = get_case_repeat_num(line_max_aligned_num, sample_num); 
 end for 
 
 for (int i = 0; i < sample_num; i++) 
        cur_conflict=single_block(bankNum, W, N, gridInfo, blockInfo,  
       arrayInfo, pad); 
         total_conflict_num = get_case_conflict(cur_conflict, num_per_case); 
 end for 
end if 
 

 

Figure 5.9 Analysis of the example of “for-if “scenario for 2D triangular access 

        When array is 2D, and the “for-if” filter is used access a triangular area, it becomes 

more complex to calculate the number of vector accesses that have same thread number. 

Figure 5.9 shows an example for this case (The vertical direction is the iteration index, 

the horizontal direction is the active thread index). In this figure, the vector accesses that 

use part of a vector/warp are marked in blue, light blue, and purple. For each of these 
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colors, the distance between consequential two vector accesses is constant. It means that 

we can find a P (distinct case number) and then get the total conflict number.  

        For the vector accesses that use all threads of a warp, they appear periodically in two 

dimensions: one is in the diagonal direction, the other is in the vertical direction. 

Following steps can be used to calculate the total conflict:  

1) Calculate Pd , calculate Pv . 

2) For each case j  ( j = [1,...,Pv ]) 

a) Calculate conflict for Pd  cases; 

b) Calculate repeat times of case k  ( k = [1,...,Pd ] ) 

c) Calculate conflict summary of k  cases and save in conflict _ d[ j]   

3) Calculate summary of array conflict_d, which is the final result. 

        The proposed method calculates Pd  which denotes the distinct case number in 

diagonal direction, and Pv  which denotes the distinct case number in vertical direction. 

For the example in figure 5.12, the Pd in this direction is 2, and Pv  is 3. In the second 

step, for each k in [1,.., Pv ], calculate the conflict summary in diagonal direction.  In the 

final step, add up all the conflict numbers and get the final conflict result. For the 

example in figure 5.12, all of the dark orange warps have same access pattern and same 

conflict number; all the green warps have same access pattern and same conflict number. 

The repeat number of each color can be calculated given Pd , Pk , and iter_num. 

 

5.5 Summary 

 

        This chapter presents the conflict analysis of single array access expression. In the 

GPU programming model, one expression can drive many threads from different warps 

to visit memory. In addition, by using “for” loops, “if” condition thread filter, or “for-if” 

combination wrapper, the program can control the working thread number and control the 

area to be visited. This chapter presents the solutions for these scenarios. By studying 

how the access offset varies for different vectors/warps and for different iterations, the 
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proposed methods can realize conflict analysis while its time complexity is independent 

of warp number and iteration number. With these solutions, now we can process the array 

access expressions in a kernel one after another. 
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CHAPTER 6 PARAMETER OPTIMIZATION STRATEGY 
 

        In this chapter, the parameter optimization strategy is presented to obtain the optimal 

or sub-optimal inter-padding size, intra-padding size, and bank access bit-width. Based 

on the conflict analysis modules introduced in chapter 4 and chapter 5, this parameter 

optimization procedure looks for an optimal or sub-optimal data layout solution for all 

arrays in a kernel. Section 6.1 introduces the parameter optimization space. In this space 

each solution could have different value of inter-padding size, intra-padding size, and 

bank mapping functions. Section 6.2 studies the impact of offset on conflict number; this 

information is helpful for inter-padding size optimization. Section 6.3 studies the 

potential intra-padding size searching boundaries. It helps to clarify the maximum 

workload size for intra-padding size optimization. In section 6.4, the overall framework 

of parameter optimization engine is presented, and some related optimizations are 

discussed.  

 

6.1 Parameter Optimization Space 
 

        As mentioned in chapter 3, this space is three-dimensional in that the bank mapping 

function, the inter-padding size, and the intra-padding size varies. Each of these 

parameters is related to one another and could have impact on each other. For example, 

for different bank mapping function, to eliminate conflict, the optimal intra-padding and 

inter-padding size could be different; by changing the intra-padding size of one array, the 

base address of other arrays could be changed and in turn the inter-padding size for them 

could be different.  

         There are limitations related to this parameter optimization space. First of all, bank-

mapping function is unique for a whole kernel. In other word, all arrays of same kernel 

share the same bank access bit-width. Secondly, intra-padding of an array impacts all 

accesses of this array. So the decision of intra-padding size needs to be made based on 

the overall conflict number of this array. The available memory size is limited, which sets 
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a limitation for inter-padding and intra-padding size optimization. These limitations 

impact the structure of parameter optimization engine. 

 

6.2 Inter-padding Optimization 

 

6.2.1 1D Strides 

 

        Inter-padding changes the array base address by adding dummy space in front of the 

array. As mentioned in chapter 4, for the conventional mapping function, offset has no 

impact on conflict degree. However, for dynamic bit-width bank access, offset could 

cause extra bank conflict.  Figure 6.1shows the impact of offset. The vertical axis is 

conflict degree number; horizontal axis is even stride value, and depth axis is offset 

varies from 0 to 40. As shown in this figure, for some strides, conflict degree changes 

when offset value increases. In this section, the offset impact for row-major bank 

mapping function and column-major bank mapping function are briefly described. The 

purpose is to (1). Figure out the cases for which the inter-padding doesn’t change conflict 

number; (2). Understand the potential padding size boundary. This is helpful to 

understand the inter-pad optimization workload and to reduce the workload. 

 

Figure 6.1 offset impacts on conflict number 
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Row-major Bank Mapping Function 

        For this mapping function, odd strides cause no conflictfor any offset. For even 

strides, we divide them into two categories: power-of-two strides, and other even strides.  

 

Power-of-two strides 

 

        When stride ≥W
N

, the scope of current vector access is layer-size aligned. This can 

be proved bymod(vec_ access_ scope, layer _ size) = 0 . Figure 6.2 (a) is how conflict 

degree changes with increasing offset. In this figure, layer _ size =W
N
×bank _num , and 

conflict0 is the conflict degree when offset = 0 . When stride <W
N

, the vector visiting 

scope is smaller than a layer. Then there are three ranges (as Figure 6.2 (b)).  

 

Figure 6.2 impact of offset on conflict degree for power-of-two strides 

Other even strides 

 

        For other even strides, we calculate the parameters in stride family expression 

σ ×2e , with e > 0 , and σ = {3,5, 7, 9,11,...} . It has following features: 

• Its visit scope across σ ×2e  rows; among every σ rows, there is no conflict.  

• The shortest distance between a conflict pair is: 

o  vec_ length
2e

× stride = vec_ length×σ in unit of element; 

o and σ  in unit of row;  



 58 

• Each element conflicts with 2e −1other elements.  

Figure 6.3 is an example. When stride = 6 , the first three rows has no conflict, and the 

next three rows also have no conflict. Whenσ >
W
N

, each of the visited sites that conflict 

in the same bank is located in a different layer. It means that applying any offset cannot 

change the conflict degree. Otherwise, the conflict needs to be calculated. 

  

 

Figure 6.3 Conflict of stride=3, W=8, N=4, M=4 

In conclusion, for even strides, when it is power-of-two, the offset impacts the conflict 

number, and the conflict need to be calculated for each different offset. For other even 

strides, when σ >
W
N

, the offset has no impact on conflict degree; otherwise, the conflict 

needs to be calculated for each different offset.  Whenever inter-padding size 

optimization is necessary, the maximum padding size is layer _ size−1  (layer_size is the 

number of elements that can be stored in one layer of all banks). 

 

Column-major Bank Mapping Function: 

        For this bank mapping function, in each layer, the data is mapped to banks in 

column-major direction. Each column is one layer of one bank, which can host W
M

 

elements. For each pair of elements that conflict, when an offset is added, two elements 

might get different shifting distances in column direction and in horizontal direction. 

Remember in chapter 4, when calculate bank conflict for column-major bank mapping 

function, we consider R = W
M

cases: case i  starts its visit from ith row. For each case i , 

the first R  visited sites are calculated as saved for further usage. Here, when an offset is 

added, we can obtain the new start row index as i ' =mod(offset + i,R) . Then the conflict 
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result becomes as same as the case i except that conflicts is shifted in horizontal direction. 

Figure 6.4 is an example withR = 4 . After adding an offset, it has: 

i ' =mod(i+offset,R) =mod(i+ c,R) i=3,c=2! →!! i ' =1  
The new conflict pattern is of i ' =1  and is shifted to the right. This means the maximum 

offset we need to check isR . 

 

Figure 6.4 Map the conflict pattern of a offset to one of R known distinct cases 

6.2.2 2D Strides 

 

        For both row-major mapping function and column major bank mapping function, the 

solution is to reuse the single vector conflict table (introduced in section 4.3.2) to 

calculate conflict for different offset values.  

 

6.3 Intra-padding Optimization 

 

        Intra-padding optimization is looking for a stride that causes no conflict or least 

conflicts. With padding, the array layout is changed, and the memory access stride is 

changed as well.  

        In this procedure, one of the concerns is about the upper bound of the intra-padding 

size searching. Normally the padding size is small when it reaches the goal. In this 
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section, we briefly discuss the padding size upper bound. This is helpful to understand the 

workload of the intra-padding optimization. 

6.3.1 1D Strides 

 

 Row-major Bank Mapping Function: 

        Figure 6.5 is how conflict degree varies when stride changes. As mentioned, when 

the stride is odd, there is no conflict. For any even stride, by replacing it with the first odd 

stride that is larger than it, the conflict degree is reduced to “1”.  

 

Figure 6.5 Conflict degree examples for row-major bank mapping function 

 

Column-major Bank Mapping Function: 

        Figure 6.6 shows how conflict degree changes while stride increases. Different from 

row-major bank mapping functions, both even and odd strides could cause conflict. 

However, in chapter 4, we mentioned that there are even strides that only access elements 

that are located in the first row of each layer. In table A-1-5, this case is described and its 

conflict estimation method is presented. Basically, when stride is larger than σ ×R  (

M
WR = , andσ = {1,3, 5, 7, 9,11,...} ), the visits locations are fall into the first row of all 

layers, and the problem is transformed to the one of conventional bank mapping function, 
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with stride is replaced by stride
R

. An example is R = 2 , stride = 6  andσ = 3 : all visited 

sites lie in the first row of layers, and it becomes an odd stride access on conventional 

interleaved banks. 

        This knowledge helps to determine the intra-padding size searching upper bound. 

For any stride, we can locate the next stride equals toσ ×R , for which the conflict degree 

is 1. The distance between two such zero-conflict strides is  

σ 2 ×R−σ1 ×R
σ 2−σ1=2# →### 2×R  

        It means that when current stride causes conflict, the maximum padding size upper 

bound is2×R−1 . In figure 6.6, the case (a) has R = 2  and the padding upper bound is 3; 

(b) has R = 4  and padding upper bound is 7; (c) has R = 8  and the padding upper bound 

is 15.  

 

Figure 6.6 Conflict degree examples for column-major bank mapping function 

6.3.2 2D Strides 

 

        Basically, for row-major bank mapping function, the intra-padding size upper bound 

equals to bank_num. Given a 2D stride <stride_x, repeat_x, stride_y, repeat_y>, we 
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denote the index of one element as <idx_x, idx_y> ( idx _ x = [0,..., repeat _ x −1] , and

idx _ y = [0,..., repeat _ y−1] ). When the conflict happens between a pair of elements that 

belong to different idx_y, the horizontal distance between these two elements is periodic 

and the period is bank_num. For example, when the horizontal difference of two sites is 

3, andbank _num = 32 , after adding 32 to the distance between them, the horizontal 

difference of these two sites becomes the same. Intra-padding size optimization is to find 

the padding size that eliminates a conflict pair by changing the horizontal distance. This 

means that the maximum intra-padding size should be less than bank_num. 

        For column-major bank mapping function, the upper-bound isbank _num×W
M
−1 . 

The reason is similar. After the stride is added by bank _num×W
M

 (which is also the 

number of elements that can be stored by one layer), the horizontal distance between a 

pair of conflict elements remains the same. So, the maximum padding size should be less 

than this.  

6.4 Parameter Optimization Algorithm 

 

        Figure 6.7 is the framework of the parameter optimization procedure. The outer 

most loop iterates over different bank access bit-width. Then, for each array, an initial 

investigation is used to collect information, which will be used for inter-padding and 

intra-padding size optimization. When optimize the intra-padding size, a range of 

padding sizes are applied to this array, and the corresponding conflict number is 

calculated and stored the in the intra-padding option list of this array. (If multiple arrays 

have same access pattern, only the first one is processed, and other array can share the 

same padding size.) After obtained the intra-padding option lists for all arrays, the next 

step is to find a solution that meet following requirements: 

1) The total memory size used by intra-paddings of all arrays is within the maximum 

free memory size.  

2) For each array, this solution gives an optimal or sub-optimal intra-padding solution.  
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The procedure is in the left-bottom part of Figure 6.7. Normally the option number for 

each array is relatively small, and we can calculate the final solution by exhaustive 

enumeration. Otherwise, extra strategies need to be adopted to reduce the workload.  

 

Figure 6.7 Parameter optimization strategy 

 

        After intra-padding sizes of all arrays are determined, the inter-padding is used to 

reduce the remaining conflict. This intra-first-inter-second padding strategy was 

mentioned in [54], and it is adopted here. Before intra-padding optimization, a certain 

size of memory is reserved before intra-padding size optimization. After intra-padding, 

following steps are used to determine the optimal offset for each array:  

1) Get an array,  

a) If it is the first array, apply the intra-padding and update the variable 

overall_offset to denote the first position after this array. If there is any array left, 

go to 1; otherwise, go to 5. 

b) Otherwise, apply the intra-padding, and go to 2. 
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2) Update array’s offset based on the current value of overall_offset;  

3) Looking for the optimal offset for this array, which is the dummy variable size need 

to be inserted before it;  

4) Update the value of overall_offset (including intra-padded size of current array and 

dummy variable size inserted for this array). If there is any array left, go to 1; 

otherwise, go to 5. 

5) Terminate. 

        When generating intra-padding option list for each array, if the conflict number of 

the current padding size is larger than the previous one, it is ignored; otherwise, the 

padding size and the conflict number are stored by pending it to the end of the option list. 

This strategy guarantees that the option list has following two features:  

1) The conflict number decreases while node index increase;  

2) The padding size increases while node index increase. 

These features can be used to reduce the workload of intra-padding size optimization. 

Following two methods use of this information to find optimal or sub-optimal intra-

padding solution for all arrays from their option lists.  

 

Method One 

 

        Figure 6.8 is an example illustrating the first method. In this figure, there are three 

arrays: A, B, and C. for each array there are multiple padding options saved in a list. The 

first step is to find the array that has maximum number of options, and save this option 

number as max_option_num. For other arrays, by repeating the last (optimal) option, 

extend their list to have max_option_num elements. In figure 6.9, the horizontal direction 

is the option index. For each index i, there is a column in which there is one option for 

each array. Here we denote this column as a set G. If any option in G moves to the left, 

then the total conflict of G increase, and the total pad size decrease; if any options in G 

move to the right, the conflict number of G decrease and the total pad size increase.   
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Figure 6.8 Option one: Strategy to reduce workload for intra-padding optimization 

Based on this observation, we start from i =max_option_num−1  to i = 0 to find the first 

column G (column in green in Figure 6.8) that can be satisfied by available memory size. 

Then, denote the next column on the right as Gb (column in orange in Figure 6.8), which 

is the last column that needs memory space larger than the free memory size. 

• Option one: Between Ga and Gb, there are some candidates that can be used as the 

final solution. An example is shown in Figure 6.9. In this figure, there are 3 

arrays. Between Ga and Gb and including Ga, there are 7 options.  

• Option two: Start from padding options in Gb, always chooses the pad that is 

acceptable (not exceed the available memory size) and can reduce conflict 

number most.  

 

Figure 6.9 Candidate solutions in area of two columns 

For both options, by including more neighbor columns in the candidates’ area, the 

number of solution candidates increases. It helps to avoid missing the solutions in which 

the options are far away from each other in horizontal direction. We need to consider the 
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balance between choosing the width of candidates’ area and the execution time. The 

simplest solution is to directly take Ga as the final solution. It is the fastest, and good for 

the case that intra-paddings for all arrays can be accepted. However, for other cases, it 

has higher risk of missing better solutions.  

 

Method Two 

        The second option is a greedy method. Figure 6.10 is an example illustrating the 

procedure. It starts from the left most column and take it as the front edge of 

optimization. The options in the column are called the nodes on the front edge. At the 

beginning, in the first column, it looks for the array that can reduce maximum number of 

conflict, and accept it. For this array, move the front edge node one step ahead. Then for 

this updated front edge, repeat the same action, until either the conflict numbers of all 

arrays are zero, or the free memory space is used up.  This procedure also can be refined: 

for current front edge, after find the best step, it can hold to see whether there is any 

option combination that is better than this option. “Better” means that it uses less memory 

space but reduces more conflicts. For the example in Figure 6.10, after step 0, the next 

option for array A can reduce conflict by “7”, which is the maximum number among “7”, 

“5”, and “4”. However, since the combination of options for array B and C is “9” which 

is better than A’s, the front edge nodes for B and C will be moved ahead instead of taking 

the option for A. Here the combination size (array number in one combination) is the key 

fact that impacts computing time. If more combinations are considered, then the 

workload increases dramatically.  
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Figure 6.10 Option two: Strategy to reduce workload for intra-padding optimization 

 

Optimization by Progressive Strategy  

 

        As mentioned in this section, the outer most loop iterates over all bank access bit-

width. This could be a fact that hurt the intra-padding size optimization efficiency. An 

example is the application 3DFD (This application is described in section 7.1). Using the 

introduced padding size optimization method, we found the first option with zero-conflict 

is< N = 4, pad = 24 > . It means that 24 different padding sizes are tested to get this result. 

The second option is< N = 8, pad = 0 > , which the first option is when bit-width is 8B. 

Between these two candidates, the second one is normally more preferred than the first 

one because:  

• It is the first option for N = 8  which is easy to find when N equals to 8,  

• It needs no extra memory.  

        To reduce the workload, one optimization is to divide the padding size lookup scope 

into pieces [range0… ranget], and progressively looks for the solution. Firstly, for 

different N, calculate the conflict for each padding size in range0. If the final intra-

padding solution for all arrays can be found, then the parameter optimization procedure 

ends. Otherwise, calculate conflict for each padding size in range1 and look for solution 

in range0 and range1. If no solution is found, extend to next padding range until the 

solution is found or the padding exceeds the valid range. Since normally the padding size 

is small, then the padding = [0,1, 2]  can be used as the first range. 
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6.5 Summary 
 

        This chapter describes the parameter optimization procedure. Different bank access 

bit-widths are enumerated one by one in the outer most loop of this procedure. Intra-

padding size is optimized inside a valid padding size range, and multiple candidates are 

stored a list for each array. From these lists final intra-padding solution for the whole 

kernel is derived. After that, inter-padding is used for further conflict optimization. Intra-

padding size optimization is realized by two strategies. The first one looks for a potential 

candidate’s area and select final solution from it; the second one reduces conflict step by 

step by always choosing the best-known option. Finally, the valid intra-padding range is 

divided into pieces. By looking for the solution progressively, it can found small intra-

padding solutions more quickly.  
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CHAPTER 7 APPLICATION STUDY 

7.1 3DFD 

 

        In this kernel, there is a 2D array allocated in shared memory.  This buffer is used to 

save intermediate calculation results. The code structure is as in Figure 7.1. The code 

accesses array data in 2D rectangular access pattern, and warp accesses a 2D data block. 

The different array accesses in the code have different offsets in X and Y direction. 

Figure 7.2 is an example of this access pattern. 

 

Figure 7.1 Kernel structure of 3DFD 

 

Figure 7.2 Memory access pattern of 3DFD 

 



 70 

7.2 ConvolutionSeperable: convolutionRowsKernel 

 

        This kernel allocates a 2D rectangular array in shared memory.  Firstly, through a 

“for” loops data are read from global memory to shared memory. After thread 

synchronization, a 2-level nested loop computes the results. In the loop body, the array in 

shared memory is used as input for the calculation. The code structure is shown in Figure 

7.3, and the access pattern is shown in Figure 7.4. The loop in this application is different 

from the one in 3DFD: the iteration variable is used in array sub-index function. For 

different iterations, the access offsets are different. As mentioned in section 5.4, conflict 

numbers of the P distinct iteration cases are calculated, then the finally conflict number 

are calculated through a reduction.  

  

Figure 7.3 Kernel structure of convolutionRowKernel 

 

Figure 7.4 Memory access pattern of convolutionRowKernel 
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7.3 ConvolutionSeperable: convolutionColKernel 
 

        Similar to the kernel in 7.2, this kernel allocates a 2D array in shared memory and 

uses 2D warps to access the array data (Figure 7.5). The code structure is also similar to 

the kernel in section 7.2. The main difference lies in the nested computation loop: the 

column-major access pattern is used to get data. 

 

 

Figure 7.5 Memory access pattern of convolutionColKernel 

 

7.4 Transpose: TransposeCoalesed, TansposeDiagonal, 
TransposeFineGrained 

 

        In these kernels, a 2D array is allocated in shared memory.  This array is read and 

written in a 2-level nested loop. The iteration variable of the outer loop has no impact on 

array access addresses. For the inner loops, the iteration variable is used in array sub-

indexing expression. The 2D array is mainly used to avoid the penalty of un-coalesced 

global memory access. For the first inner loop, the 2D warp reads 2D block of data in 

row-major pattern, which causes no conflict. For the second inner loop, the array is read 

in column-major direction, and it causes conflicts. The code structure is shown in  Figure 

7.6 the main features of these kernels.   
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Figure 7.6 Kernel structure of TransposeCoalesed 

 

Figure 7.7 Memory access pattern of TransposeCoalesed 

 

7.5 Transpose: TransposeCoalesedGrained 

 

        As same as kernels in section 7.4, a 2D array is read and written inside a 2-level 

nested loop. This array has a pad which size is 1. The outer loop’s iteration variable has 

no impact of array access; for the inner loop, the iteration variable is used in array sub-

indexing expression to change offset. For both the first and the second inner loop, the 2D 

warp read 2D block of data in row-major direction.  

 

7.6 shfl_scan: shfl_vertical_shfl 

 

        In this kernel, a 2D array is allocated in shared memory. This array is read and 

written inside a loop body, the iteration variable has no impact of array access. There are 
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multiple access patterns used to visit the array elements (Figure 7.9). 1D warps access 

data in column-major direction (pattern A), and 2D warps access data in row-major 

direction (pattern B). The code structure is shown in Figure 7.8. 

  

Figure 7.8 Kernel structure shfl_vertical_shfl 

 

Figure 7.9 Memory access pattern shfl_vertical_shfl 

 

7.7 lud: lud_diagonal 

 

        In this kernel, a 1D thread block visits the columns of a 2D array in shared memory. 

Memory operations are warped by “for” loops, and “if” condition statement. For the “for” 

loops, their iteration variable could have or not have impact on sub-indexing functions. 

The “if” statement impacts the conflict number by allowing different set of threads to 

access the data in shared memory. The code structure is shown in  Figure 7.10 lists the 

main features of this kernel. 
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Figure 7.10 Kernel structure of lud_diagonal 

7.8 lud: lud_perimeter 

 

        In this kernel, a 1D warp is used to visit rows or columns of a 2D array allocated in 

shared memory. The thread block has only one warp:  an “if” condition statement divides 

it into a group of the first 16 threads and a group of the remaining 16 threads. Each group 

visits array rows or columns. The code structure is shown in  Figure 7.11 lists the main 

features of this kernel. 
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Figure 7.11 Kernel structure of lud_perimeter 

7.9 NW 

 

        In this kernel, multiple 2D arrays are allocated in shared memory. Shared memory 

operations are warped by “for” loop, “if” condition statement, and “for-if” combination. 

For the “for-if” wrapped cases, the data is accessed in diagonal directions (Figure 7.13). 

The code structure is shown in Figure 7.12 lists the main related features of this kernel. 
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Figure 7.12 Kernel structure of nw 

 

 

Figure 7.13 Memory access pattern of nw 
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7.10 Summary 

 

        This chapter introduces the applications that are used to test the proposed 

optimization tool. These applications are selected from RODINIA and NVIDIA CUDA 

SDK. Some of them are commonly used benchmarks that are helpful for understanding 

typical computation workload and testing devices such as GPUs. The performances of 

these kernels are suffered from shared memory bank conflict penalty. Basically, these 

kernels perform 1D/2D accesses to arrays, and some kernels have multiple arrays. They 

also include cases that uses “for” loop, “if” condition thread filters, and “for-if” 

combination to control the memory accesses.  
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CHAPTER 8 PERFORMANCE EXPERIMENTS 
 

        In this chapter we test the performance and efficiency of proposed analysis tool. 

Section 8.1 includes three basic experiments that test the execution time of conflict 

analysis modules. Section 8.2 presents the optimization results of 13 kernels by using 

proposed analysis tool.  The platform info is as following: 

 

• GPU device: Tesla K20c,  

o Shared memory:  

§ 49152B per SM;  

§ Bank number is 32;  

§ W is 8B. 

o Warp size: 32 threads. 

o Compute capability: 3.5 

• Programming model: CUDA 5.0 

• Profiler: NVIDIA NVPROF, release 5.0 

 

8.1 Conflict Analysis Time Experiments 

 

        In GPU programming model, many threads execute in parallel according to one 

GPU kernel. When memory bank conflict is the bottleneck, it would be helpful to have a 

static bank conflict analysis tool that can find an optimization solution within a limited 

period. In this section, three experiments are used to test the conflict analysis time. 

        The first experiment exams the analysis execution time of multi-warp memory 

access.  Figure 8.1 (a) is single warp 1D stride analysis execution time. The x-axis is the 

stride value, and the y-axis is the execution time. As it shows, the analysis time is related 

to stride value. For existing GPU devices that support dynamic bank access width 

(W=8B), when multiple warps share same 1D even stride, they have the same in layer 

offset. It means that the overall conflict number can be obtained by 

conflict0 ×warp_num  (conflict0 is the conflict number of warp 0). Then we don’t need 
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to test 1D stride multi-warp analysis time. Figure 8.1 (b) is an experiment of 2D stride 

analysis efficiency. The x-axis is the thread number (the increasing step is 32, which is 

the thread number per warp); the y-axis is the execution time. For 2D stride cases, each 

warp might have different in-layer offsets. The distinct case number P  needs to be 

calculated and then the final conflict number is obtained. As it shows, the execution time 

remains relatively constant. The reason is that the value of P  remains the same no matter 

how warp number increases.  

        Normally GPU kernels are executed by many thread blocks. Each block has its own 

shared memory space and usually uses shared memory in similar way. For such kernels, 

the proposed tool only needs to analysis one block, and other blocks can share the 

solution to improve performance.  

 

Figure 8.1 analysis module execution time.  

 

        The second experiment tests the analysis efficiency of “for” loop wrapped memory 

accesses (To simplify the experiment, we use strides that are power-of-two. For other 
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even stride and 2D strides, the loop analysis routine works in same way.). Two loop 

examples are shown in Figure 8.2. In the first example memory accesses are warped by a 

“for” loop and the iteration variable has no impact on memory addressing. For this case, 

the bank conflict analysis is performed once for the first iteration and then the overall 

bank conflict number can be calculated.  

 

Figure 8.2 Loops used to test conflict estimation tool 

        In the second example, the iteration variable impacts the memory access address by 

adding an offset which depends on the iteration variable. For example, for iteration 

variable i , the extra offset could bea× i+ b . For this case, since different in-layer offset 

could make conflict number different, the tool use the function lcm() to calculate the 

number of iterations each of which has distinct in-layer offset. Then the overall conflict 

number is calculated without enumerating all iterations.  

        The test result is shown in Figure 8.6, Figure 8.4, Figure 8.5, and Figure 8.6. The 

chart in Figure 8.3 is the original program execution time. The x-axis is the loop iteration 

number; the y-axis is execution time in ms, the execution time increases linearly to 

iteration number. Charts in Figure 8.4 are the performance of conflict estimation 

reference code, which calculates conflict number by calculating bank index and layer 

index of every single memory access. As expected, the time consumed is linear to 

iteration number, and it is up to 60ms when iteration number is 1000. Charts in Figure 8.5 

are similar to charts in Figure 8.4 except that the proposed conflict analysis method is 

used to analysis each iteration. Compares to Figure 8.4, the execution time is obviously 

shorter. However, since it still goes through all iterations one by one, its execution time is 

linear to iteration number.  Charts in Figure 8.6 are the performance of final solution used 
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in proposed tool. As it shows, the execution time is relatively constant when the iteration 

number increase. The reason is that the distinct case number is constant and it is up 

bounded by bank _num×W
M

. The time consumed in the final proposed solution is less 

than 0.05ms, which is much more efficient than two previous bank conflict estimation 

methods, and also comparable to execution time of the original program.  

 

Figure 8.3 Original program execution time 
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Figure 8.4 Basic analysis method: enumerate all access and compute conflict number 

 

Figure 8.5 Analysis with no “for” loop optimization 
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. 

Figure 8.6 Proposed conflict analysis tool execution time  

        The third experiment is for memory accesses with “for-if” wrapper. The example 

code in use is shown in Figure 8.7. As introduced in chapter 5, for such cases, the 

memory access expression is warped by a “for” loop, and the iteration variable is used to 

filter the threads that are allowed to access the memory.  

 
Figure 8.7 Loop used to test conflict estimation tool 
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(a) Original program execution time. 

 
(b) Basic analysis method: enumerate all access and check conflict 

 
(c) Analysis with no “for-if” optimization 

 

 
(d)  Proposed conflict analysis tool 

Figure 8.8 execution time comparison for “for-if” case 
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        The executing time result is shown in Figure 8.8.  The chart in (a) shows the original 

program execution time. The x-axis is the thread number; the y-axis is execution time in 

ms. According to the code in Figure 8.7, the workload ratio between n−1  and n  is

(n−1)× (n− 2)
n× (n−1)

=
n2 − n

n2 −3n+ 2
. It becomes “1” when n is large enough. Charts in (b) is the 

performance of the conflict estimation reference code which calculates conflict by 

calculating bank index and layer index of all single vector memory access. As expected, 

the time consumed is linear to iteration number, and it is up to 20ms when iteration 

number is 512. The chart in (c) is similar to the one in (b) except that the basic single 

expression conflict analysis module is used to analyze each iteration. Compares to (b), 

the execution time is obviously reduced. However, since it still goes through all iterations 

one after another, its execution time is linear to the iteration number.  Chart in (d) is the 

performance of final solution used in proposed tool. As it shows, the execution time is 

relatively constant when the iteration number increases. The reason is that the distinct 

case number is constant and it is up bounded bybank _num×W
M

. The time consumed in 

the final proposed solution is less than 0.5ms, which is much more efficient than two 

other methods. 

 

8.2 Application Optimization 

 

        We select 6 applications (13 kernels) from RODINIA benchmark [73] and NVDIA 

CUDA SDK. These six benchmarks has bottleneck of shared memory bank conflict, and 

Figure 8.9 shows the instruction replay overhead caused bank conflict. These kernels can 

be optimized manually by changing bank access width, and array padding. The detail 

information of these kernels can be found in chapter 7.  Table 8.1is a summary of their 

feature. 
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Table 8.1 Information of application CUDA kernels 

 
 

 

Figure 8.9 Percentage of bank access replay among total executed instructions 
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         Figure 8.10 is the performance improvement of these kernels. The chart of Figure 

8.10 (a) is the rate of bank access instruction number before and after optimization. The 

smaller the rate, the better the optimization effect on reducing access instruction replay. 

Figure 8.10 (b) is the speedup after optimization. Comparing Figure 8.9 and Figure 8.10 

(b), for these 13 kernels, the kernels that have higher instruction percentage of replay get 

better improvement of execution time.  

 

Figure 8.10 Performance experiment of 13 kernels 
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8.3 Summary 

 

        This chapter presents experiment results of this analysis tool. Section 8.1 includes 

experiments test the conflict analysis execution time. It shows that the proposed static 

analysis module is a practical solution in that its execution time is not related to warp 

number and for loop iteration number. Section 8.2 exams applications’ performance 

improvement after accepts the solutions provided by proposed tool. As it shows, for 

applications that have bottleneck of shared memory bank conflict, this tool can help to 

improve efficiency by providing a solution which causes less or zero conflict number.  
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CHAPTER 9 CONCLUSION AND FUTURE WORK 
 

        In this dissertation, we explore how to improve GPU processing efficiency by 

reducing shared memory bank conflicts. We analyzed conflict patterns, then developed 

algorithms to perform inter and intra padding as well as configuring the shared memory 

bank bit width. Using this approach, we obtain an average 19% improvement for a set of 

benchmark applications. 

        The contributions of this work include analysis of shared memory bank conflicts, 

followed by techniques for selecting memory bank bit widths and applying inter and intra 

padding to optimize access patterns. This work can impact a broad spectrum of 

applications targeting GPUs. 

        We also developed the GPU Accelerated Scalable Parallel Random Number 

Generator (GASPRNG) library [74, 75] based on the previous SPRNG [76] and 

HASPRNG [77, 78] work. 

        For future work, the techniques from this dissertation could be integrated into a GPU 

compiler suite. Additionally, one could explore detailed modeling of GPU performance 

that includes the bank conflict analysis developed here [79-82]. 
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Appendix A-1: 1D Single Warp Analysis for Column-major Bank 
Mapping  

 

         Figure A-1 is an example of column-major bank mapping when R = 4  and

stride =11 . When stride is smaller thanR , there is no potential bank conflict. The reason 

is that the bank scope of the vector access is less than the total bank number. So here we 

only consider the strides that is larger thanR .  

Figure A-1: An example of column-major data mapping. The data are layout in column major 

direction. Each column is one layer of one bank; the whole grid is one layer of all banks. Blue blocks 

are elements accessed when stride=11 

 

ODD STRIDE ANALYSIS 

 

        Firstly, we consider the visited sites in ith rows of all visited layers. When stride is 

odd, the visited elements are uniformly distributed in these rows. Each row has  

vec_ length
R

 visited sites, and the distance of any two consecutive elements is as same as 

the stride. As the example in Figure A-1, the blue blocks are evenly distributed into four 

rows, and in each row the distance between two neighbor blue blocks are 11, which is the 

value of the stride.  

        To analyze bank conflict, we study the distance between the visited sites that cause 

conflict. For the example in Figure A-1, figure A-2 shows the four cases with different 

offset. In Figure A-2 (a) the current vector visit starts from the first row; the first four 

visited elements are in <0th row, 0th col>, <3rd row, 2nd col>, <2nd row, 5th col> and <1st 

row, 8th col>. Figure A-2 (b), (c), (d) have start points in 3rd row, 2nd row and 1st row. To 

locate first R visited elements, array imm_col_offset and array row_offset are calculated 

as following:  
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                                                  (A.1.1)-a,b 

row_idx is the row index of the first visited elements. For example, in Figure A-2 (a), 

row_idx=0. Variable i denotes the ith visited elements and  (the four orange 

elements in Figure A-2 (a)). Table A-1 lists the locations of the orange elements in Figure 

A-2 (a) to (d).  

Figure A-2 a vector access could start from different rows. 

Table A-1 Location of the visited elements shown in figure A-2. stride=11. row_num=4 

row_idx 

of the 1st 

element 

1st elem (i=0) 

<imm_col_offset, 

row_offset> 

2nd elem (i=1) 

<imm_col_offset, 

row_offset> 

3rd elem (i=2) 

<imm_col_offset, 

row_offset> 

4th elem (i=3) 

<imm_col_offset, 

row_offset> 

0 <0, 0> <2, 3> <5, 2> <8, 1> 

1 <0, 1> <3, 0> <5, 3> <8, 2> 

2 <0, 2> <3, 1> <6, 0> <8, 3> 

3 <0, 3> <3, 2> <6, 1> <9, 0> 

 

Given a certain value of row_idx, based on elem_per_row, imm_col_offset and 

row_offset, we can define row_scale_num as following: 

 (A.1.2) 

€ 

imm_col_offset[i] =
row _ idx + stride × i

R
# 

$ # 
% 

& % 

row _offset[i] =mod(row _ idx + stride × i,R)

' 

( 

) 
) 

* 

) 
) 

€ 

0 ≤ i < R

€ 

row _ scale_ num[i] =
imm _col_offset[i]+ (elem _ per_ row −1) × stride +1

bank _ num
$ 

% % 
& 

' ' 
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In arrays of row_scale_num, imm_col_offset and row_offset, the ith element is the info of 

ith visited site. We use following functions to transform these arrays; the ith element 

becomes the info of the visited site in ith row. Then we set row_offset[i] = i for . 

                               (A.1.3) 

        For odd strides, the visited sites in ith row of all layers cannot cause any conflict due 

to the reason that gcd(stride,bank _num) =1  for odd strides. However, visited sites lie in 

different rows of different layers might cause conflict. For an interleaved memory that 

has R rows in each layer, there are  conflict possibilities between different rows 

(Table A-2). For the example in figure A-1, the potential conflict row index pair are listed 

in table A-2.  

Table A-1-2 Possibilities of conflicts between rows from different layers 

 Row 0 Row 1 Row 2 Row 3 

Row 0 X V V V 

Row 1 V X V V 

Row 2 V V X V 

Row 3 V V V X 

 

    When the xth element in row i of layer m conflict with the yth element in row j of layer 

n, if i < j and m ≥ n , we have: 

dist = (imm_ col _offset[i]+ stride× x)− (imm_ col _offset[ j]+ stride× y)
dist = layer _ scale×bank _num

layer _ scale×R ≤ (row_ scale_num[i]−1)×R

$

%
&

'
&

 
(A.1.4) – a,b,c   

with layer _ scale =m− n . dist is used to denote the difference between the offsets of 

conflict elements in its own row. It can be calculated through equation A.1.4 (a), and it 

also need to meet the requirement of equation A.1.4 (b). Table A-3 is an example used to 

show the meaning of dist and layer_scale. In this example, bank_num=32, row_num=4, 

€ 

0 ≤ i < R

€ 

i'= row _offset[i]
row _ scale_ num[i'] = row _ scale_ num[i]
imm_col_offset[i'] = imm _col_offset[i]

" 

# 
$ 

% 
$ 

€ 

R2 − R
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n=0, m={0,1,2}, i=1, and j=3. Green block is xth element in row i of layer m; red block 

is yth element in row j of layer n.  

Table A-1-3 “dist” and “layer_scale” between conflict elements. 

Layer Description 

Layer 0: 

 

In the same layer: the dist 

between red and green is:

, layer_scale=0 

Layer 1: 

 

In the 2nd layer: the dist 

between red and green is: 

, layer_scale=1 

Layer 2: 

 

In the 3rd layer: the dist 

between red and green is: 

, layer_scale=2 

 

Table A-1-4 “dist” and “layer_scale” between conflict elements. 

Layer Description 

Layer 0: 

 

In the same layer: the dist 

between red and green is:

, layer_scale=0 

Layer 1: 

 

In the 2nd layer: the dist 

between red and green is: 

, layer_scale=1 

Layer 2: 

 

In the 3rd layer: the dist 

between red and green is: 

, layer_scale=2 

 

€ 

dist = 0 × 32

€ 

dist =1× 32

€ 

dist = 2 × 32

€ 

dist = 0 × 32

€ 

dist =1× 32

€ 

dist = 2 × 32
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When the xth element in row j of layer n conflict with the yth element in row i of layer m, 

with i < j and m ≤ n . The dist can be calculated in similar way. Table A-1-4 is an 

example when bank_num=32, row_num=4, m=0, n={0, 1, 2}, i=1, and j=3. Green block 

is xth element in row j of layer n; red block is yth element in row i of layer m. 

dist = (imm_ col _offset[ j]+ stride× y)− (imm_ col _offset[i]+ stride× x)
dist = layer _ scale×bank _num

layer _ scale×R ≤ (row_ scale_num[ j]−1)×R

$

%
&

'
&

 
(A.1.5)-a.b.c 

The constrain of x and y is: 

                   (A.1.6) 

With equations in (A.1.4), (A.1.5), and (A.1.6), we can find the (x, y) pairs that cause 

conflicts. Particularly, when W=N=8 and M=4, it has R = 2 , and the following 

conclusion can be made: When R = 2 , for odd strides, if there is at least one conflict, 

then the conflict degree is always 2. The proof can be found in appendix B. 

 

Appendix A-2: 2D access bank conflict analysis  
 

      For 2D stride access, denote the base access address of current warp as offset, it has: 

 
This means that the conflict degree for offset = {0,1,......MAX _VALID_OFFSET}  

periodically repeat the conflict degree for base_ set{0,1,...,bank _num×R−1} . We 

calculate the bank conflict of each offset in base_set. For other offset values not belong to 

base_set, we map it to an offset in base_set to get the bank conflict degree. Figure A-4 is 

an example  with 2D stride is <stride_x=1, repeat_x=2, stride_y=3, repeat_y=4> 

€ 

x,y( ) x > 0,x ≤ vec _ access_ length
R

,y > 0,y ≤ vec _ access_ length
R

# 
$ 
% 

& 
' 
( 

€ 

bank _conflict _ dgr(offset) = bank _conflict _ dgr(mod(offset,bank _ number × R))
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Figure A-4 a 2D stride example with different access offset. 

 

 

Appendix A-3: Two-way Conflict for Column-major Bank 
Mapping with R=2 

 

 

Observation: When , for odd strides that have at least one bank conflict, it is 

always 2-way conflict. 

Proof: 

        For odd stride stride = 2× l +1  with , the pair of visit sites that cause bank 

conflict must be from different rows: one from upper row and one from lower row. We 

describe it as c =< ur, lr > , ur  is the offset of the visit site in upper row, and lr  is the 

offset of the visit site in lower row. 

        When it has bank conflict, if there is only one conflict, then it is 2-way conflict since 

one conflict cannot visit more than 2 layers of same bank. 

€ 

R = 2

€ 

l ≥1
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        If there are more than one bank conflicts, for any two of them c1 =< ur1, lr1 >  and 

c2 =< ur2, lr2 > , we need to proof : 

        The distance of between them on the upper row is can always be divided by stride .  

        Reason: For any conflict ci =< uri, lri > , its visited site in the upper row always has 

distance of N × stride  (N ∈ [1,..., vec_ length
2

−1] ) from other visited sites in the upper 

rows.  

        For a conflict ci  that has upper row offset uri , its neighbor pairs ci−1 =< uri−1, lri−1 >  

and ci+1 =< uri+1, lri+1 >  must cause conflict as long as uri−1 = uri − stride , uri+1 = uri + stride , 

lri−1 = lri − stride , lri−1 = lri + stride  are inside the range of current parallel access. 

        Reason:   

         uri ≡ lri mod(vec_ length)   

         uri + stride ≡ lri + stride mod(stride)   

            uri − stride ≡ lri − stride mod(stride)  

Now we can conclude that when there is M  (M >1 ) conflicts, they can be described as  

ci =< uro + i× stride, lro + i× stride >  with i ∈ [0,M ) . c0 =< ur0, lr0 > is the first conflict 

which has the smallest value of ur .  This means that the conflicts are mapped to banks in 

the 1D odd stride pattern, and total number of conflict is less or equal to vec_ length
2

. So, 

there are no two conflicts that appear in same bank, and bank conflict degree is always 2. 

  

€ 

∵

€ 
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