
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2014

Improving GPU Shared Memory Access Efficiency
Shuang Gao
University of Tennessee - Knoxville, sgao3@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Gao, Shuang, "Improving GPU Shared Memory Access Efficiency. " PhD diss., University of Tennessee, 2014.
https://trace.tennessee.edu/utk_graddiss/3126

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Shuang Gao entitled "Improving GPU Shared
Memory Access Efficiency." I have examined the final electronic copy of this dissertation for form and
content and recommend that it be accepted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy, with a major in Computer Science.

Gregory D. Peterson, Major Professor

We have read this dissertation and recommend its acceptance:

Michael W. Berry, Michah Beck, Charles Collins

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Improving GPU Shared Memory Access Efficiency

A Dissertation Presented for the

Doctor of Philosophy

 Degree

The University of Tennessee, Knoxville

Shuang GAO

December 2014

 ii

Copyright © 2014 by Shuang GAO

All rights reserved.

 iii

DEDICATION

I dedicate this dissertation to my family and the faculty and staff who have supported me

on every step of this journey.

 iv

ACKNOWLEDGEMENTS

I would like to thank Greg Peterson for being a fantastic advisor, my committee

members, and NSF for funding much of my graduate career.

 v

Soli Deo Gloria

 vi

ABSTRACT

Graphic Processing Units (GPUs) often employ shared memory to provide

efficient storage for threads within a computational block. This shared memory includes

multiple banks to improve performance by enabling concurrent accesses across the

memory banks. Conflicts occur when multiple memory accesses attempt to

simultaneously access a particular bank, resulting in serialized access and concomitant

performance reduction. Identifying and eliminating these memory bank access conflicts

becomes critical for achieving high performance on GPUs; however, for common 1D and

2D access patterns, understanding the potential bank conflicts can prove difficult. Current

GPUs support memory bank accesses with configurable bit-widths; optimizing these bit-

widths could result in data layouts with fewer conflicts and better performance.

This dissertation presents a framework for bank conflict analysis and automatic

optimization. Given static access pattern information for a kernel, this tool analyzes the

conflict number of each pattern, and then searches for an optimized solution for all shared

memory buffers. This data layout solution is based on parameters for inter-padding, intra-

padding, and the bank access bit-width. The experimental results show that static bank

conflict analysis is a practical solution and independent of the workload size of a given

access pattern. For 13 kernels from 6 benchmarks suites (RODINIA and NVIDIA CUDA

SDK) facing shared memory bank conflicts, tests indicated this approach can gain 5%-

35% improvement in runtime.

 vii

TABLE OF CONTENTS

CHAPTER 1	 Introduction .. 1	

CHAPTER 2	 Prior work .. 5	

2.1 Introduction ... 5	

2.2 Interleaved Memory and Bank Conflict ... 5	

Conventional Low-order Bank Mapping Scheme and Analysis 6	

Variant Mapping Schemes .. 7	

Bank Conflict for Multimedia Processors ... 9	

GPU Bank Conflicts ... 9	

2.3 Memory Access Patterns and Strides .. 10	

2.4 Padding Transformations .. 14	

2.5 Summary ... 16	

CHAPTER 3	 Proposed Approach .. 17	

3.1 Background and Motivation ... 17	

3.2 Project Assumptions ... 19	

3.3 Project Framework .. 20	

3.4 Performance Improvement Expectation ... 21	

3.5 Summary ... 22	

CHAPTER 4	 Single Vector Access Bank Conflict ... 23	

4.1 Bank Mapping Function Descriptions .. 23	

4.2 Data Layout Transform and Bank Conflict .. 25	

4.2.1 Inter-padding .. 26	

4.2.2 Intra-padding .. 27	

4.2.3 Bank Access Bit-width .. 28	

4.3 Single Vector Bank Conflict Analysis .. 29	

4.3.1 1D Access Pattern and Bank Conflict Analysis ... 29	

4.3.2 2D Access Pattern and Bank Conflict Analysis ... 29	

4.4 Algorithm Analysis ... 31	

4.4.1 1D Analysis Algorithm .. 31	

4.4.2 2D Access Analysis Algorithm .. 36	

 viii

4.5 Summary ... 37	

CHAPTER 5	 Single Expression Access Bank Conflict .. 38	

5.1 Basic Bank Conflict Analysis ... 39	

5.1.1 1D Access Analysis and Algorithm ... 39	

5.1.2 2D Access Analysis and Algorithm ... 43	

5.2 “for” Loop Wrapped Single Access Expression ... 44	

5.2.1 Motivation .. 44	

5.2.2 Solution .. 45	

5.3 “If” Condition Wrapped Single Access Expression ... 46	

5.3.1 Motivation .. 46	

5.3.2 Solution .. 47	

5.4 “for-if” Statement Wrapped Single Access Expression .. 49	

5.4.1 Motivation .. 49	

5.4.2 Solution .. 50	

5.5 Summary ... 53	

CHAPTER 6	 Parameter Optimization Strategy ... 55	

6.1 Parameter Optimization Space .. 55	

6.2 Inter-padding Optimization ... 56	

6.2.1 1D Strides... 56	

6.2.2 2D Strides... 59	

6.3 Intra-padding Optimization ... 59	

6.3.1 1D Strides... 60	

6.3.2 2D Strides... 61	

6.4 Parameter Optimization Algorithm ... 62	

6.5 Summary ... 68	

CHAPTER 7	 Application Study .. 69	

7.1 3DFD .. 69	

7.2 ConvolutionSeperable: convolutionRowsKernel .. 70	

7.3 ConvolutionSeperable: convolutionColKernel ... 71	

7.4 Transpose: TransposeCoalesed, TansposeDiagonal, TransposeFineGrained 71	

7.5 Transpose: TransposeCoalesedGrained .. 72	

 ix

7.6 shfl_scan: shfl_vertical_shfl ... 72	

7.7 lud: lud_diagonal .. 73	

7.8 lud: lud_perimeter ... 74	

7.9 NW .. 75	

7.10 Summary ... 77	

CHAPTER 8	 Performance Experiments .. 78	

8.1 Conflict Analysis Time Experiments .. 78	

8.2 Application Optimization .. 85	

8.3 Summary ... 88	

CHAPTER 9	 Conclusion and Future Work ... 89	

List of Reference ... 90	

Appendix ... 96	

Appendix A-1: 1D Single Warp Analysis for Column-major Bank Mapping 97	

ODD STRIDE ANALYSIS .. 97	

Appendix A-2: 2D access bank conflict analysis ... 101	

Appendix A-3: Two-way Conflict for Column-major Bank Mapping with R=2 102	

Vita .. 104	

 x

LIST OF TABLES

Table 4.1 Summary of features of bank mapping functions ... 25	

Table 4.2 Summary of features of bank conflict problem .. 29	

Table 4.3 2D stride pattern calculation ... 30	

Table 8.1 Information of application CUDA kernels ... 86	

 xi

LIST OF FIGURES

Figure 2.1 Conventional bank mapping ... 7	

Figure 2.2 Typical access patterns .. 12	

Figure 2.3 Memory access by 1D warp .. 12	

Figure 2.4 Memory access by 2D Warp ... 12	

Figure 3.1 The relations of this project and related research areas 19	

Figure 3.2 Framework of the project .. 21	

Figure 4.1 1D Array data mapping for different mapping functions. 25	

Figure 4.2 Sample code ... 26	

Figure 4.3 Conflict degree of different offsets for different stride values 26	

Figure 4.4 Impact of offset for different access bit-width setting 27	

Figure 4.5 Impact of intra-padding on bank conflict numbers ... 27	

Figure 4.6 Impact of bank access width on bank conflict degree 28	

Figure 4.7 shape of parallel memory access unit and base memory access patterns 30	

Figure 4.8 Examples of the base 2D access pattern transformation 30	

Figure 4.9 for power-of-two stride .. 32	

Figure 5.1 Conflict Analysis Modules .. 38	

Figure 5.2 an example ... 42	

Figure 5.3 Examples of for loop wrapped memory accesses .. 45	

Figure 5.4 An example of loop which has 10 iterations, and P=3 46	

Figure 5.5 An example of “if” statement used to filter the threads by thread ID 47	

Figure 5.6 Dividing threads into groups ... 48	

Figure 5.7 An example of “for-if “wrapped single expression access 50	

Figure 5.8 the example of “for-if “ wrapped 1D array access .. 51	

Figure 5.9 Analysis of the example of “for-if “scenario for 2D triangular access 52	

Figure 6.1 offset impacts on conflict number ... 56	

Figure 6.2 impact of offset on conflict degree for power-of-two strides 57	

Figure 6.3 Conflict of stride=3, W=8, N=4, M=4 .. 58	

Figure 6.4 Map the conflict pattern of a offset to one of R known distinct cases 59	

Figure 6.5 Conflict degree examples for row-major bank mapping function 60	

 xii

Figure 6.6 Conflict degree examples for column-major bank mapping function 61	

Figure 6.7 Parameter optimization strategy .. 63	

Figure 6.8 Option one: Strategy to reduce workload for intra-padding optimization 65	

Figure 6.9 Candidate solutions in area of two columns .. 65	

Figure 6.10 Option two: Strategy to reduce workload for intra-padding optimization 67	

Figure 7.1 Kernel structure of 3DFD .. 69	

Figure 7.2 Memory access pattern of 3DFD ... 69	

Figure 7.3 Kernel structure of convolutionRowKernel .. 70	

Figure 7.4 Memory access pattern of convolutionRowKernel ... 70	

Figure 7.5 Memory access pattern of convolutionColKernel ... 71	

Figure 7.6 Kernel structure of TransposeCoalesed ... 72	

Figure 7.7 Memory access pattern of TransposeCoalesed .. 72	

Figure 7.8 Kernel structure shfl_vertical_shfl .. 73	

Figure 7.9 Memory access pattern shfl_vertical_shfl ... 73	

Figure 7.10 Kernel structure of lud_diagonal ... 74	

Figure 7.11 Kernel structure of lud_perimeter ... 75	

Figure 7.12 Kernel structure of nw ... 76	

Figure 7.13 Memory access pattern of nw .. 76	

Figure 8.1 analysis module execution time. .. 79	

Figure 8.2 Loops used to test conflict estimation tool .. 80	

Figure 8.3 Original program execution time ... 81	

Figure 8.4 Basic analysis method: enumerate all access and compute conflict number .. 82	

Figure 8.5 Analysis with no “for” loop optimization ... 82	

Figure 8.6 Proposed conflict analysis tool execution time ... 83	

Figure 8.7 Loop used to test conflict estimation tool .. 83	

Figure 8.8 execution time comparison for “for-if” case ... 84	

Figure 8.9 Percentage of bank access replay among total executed instructions 86	

Figure 8.10 Performance experiment of 13 kernels .. 87	

 1

CHAPTER 1 INTRODUCTION

In recent two decades, graphical processing unit (GPU) evolved from a graphics-

oriented processor to a general-purpose parallel processor. NVIDIA CUDA (Compute

Unified Device Architecture) and OpenCL[1] are two commonly used GPU

programming models. Through such programing models, many HPC applications and

libraries can exploit GPU accelerators to obtain performance improvements.

When developing GPU kernels, optimizing memory access efficiency is one of the

main schemes for improving execution performance [2]. Among the different memory

types defined in the CUDA programming model, shared memory plays a key role as a

software manageable on-chip storage. As figure 1 shows, a shared memory buffer is

allocated for one thread block and all threads in this thread block have access to it. The

access latency of shared memory is much less than GPU device memory. Normally,

shared memory is used for caching data to improve temporal locality [3], holding the data

shared inside one thread block [4], and being temporary storage for data layout

transforms to achieve better global memory performance [5]. A primary concerns of

using shared memory is the penalty of potential bank conflicts for different memory

access strides [1, 2].

CUDA shared memory is organized into banks. The bank mapping function is

based on conventional low-order bank mapping [6], which maps n successive words to n

successive banks. To improve bank access efficiency for different data types, it supports

dynamic configurable bank access bit-width [7]. For example, 32 of 4-Byte elements can

be uniformly mapped to 32 banks; and 32 of 8-Byte elements can also be uniformly

mapped to these banks. In addition, multiple accesses to the same layer of the same bank

cause no conflict.

 2

Figure 1.1 CUDA programming model and memory hierarchy [1]

Bank conflict analysis of interleaved memory has been well studied since the 1970s

[8-14]. When two accesses of the same bank occur inside the period of the bank response

latency, the conflict happens and the two requests are processed serially. For non-vector

accesses, by instruction scheduling and adding buffers, bank conflicts can be reduced [15,

16]. For parallel access, stride analysis is necessary to deal with bank conflicts [15, 16].

Based on stride analysis, many solutions have been proposed to obtain better support for

different strides. CUDA shared memory bank organization is explained in programming

guide. When designing CUDA kernels, developers should be aware of potential bank

conflict issue and they can reduce or eliminate conflicts by modifying data layout, or

changing memory access pattern. Researchers presented different data layout

transformations to deal with shared memory bank conflict problem [3, 5, 17-19]. Among

them, array padding is the easiest and most frequently used [5, 18] .

Array padding has been used to solve varies issues related to memory access

efficiency. Typical cases include cache conflicts, false sharing, and bank conflicts. There

are two types of array padding: inter-padding and intra-padding [20]. Inter-padding adds

dummy space between array variables; intra-padding inserts unused spaces inside one

array. To deal with bank conflicts problem, intra-padding can be used to change the array

 3

access stride and in turn impacts the conflict degree. Normally, CUDA kernel

programmers try to use different padding sizes and choose the one that causes the least

bank conflicts.

The motivation of this dissertation is to improve CUDA shared memory bank

access efficiency. In the CUDA parallel execution model, since the memory access

pattern of one grid’s (1D to 3D) access requests is relatively complex, shared memory

bank conflict analysis is not obvious. A warp is the CUDA hardware parallel execution

unit; it includes a small group of threads. Based on the shape of a thread block, the

threads in a warp could be organized in a 1D vector, 2D array, or even 3D array.

Different transformations of these warp shapes can be mapped to arrays stored in

memory, resulting in different memory access patterns.

This thesis analyzes CUDA shared memory bank conflict for 1D and some 2D array

access patterns, and proposes a heuristic optimization solution. (1) Given an access

pattern and a hardware-supported mapping function, the bank conflict degree is

evaluated. (2) To reduce or eliminate bank conflicts, a heuristic scheme seeks an

improved data layout through optimizing parameters of inter-padding, intra-padding, and

different bank mapping function configurations. (3) Finally, the source code is

transformed according to the chosen solution.

The contribution of this work includes:

• 1D/2D stride and bank conflict analysis of dynamic bank addressing;

• A method that calculates the overall conflict number of one pattern within a

limited period which doesn’t depend on memory access workload size of this

pattern;

• Given the shared memory space limitation of one thread block, a model driven

heuristic parameter optimization method that looks for a solution in a potential

parameter optimization space:

o Bank mapping functions supported by hardware dynamic bank addressing;

o Inter-variable-padding and changing variable definition sequences; and

o Array intra-padding size.

This thesis is organized into 8 chapters. Chapter 2 describes the prior work related

to interleaved memory bank conflict analysis, memory access pattern study, and padding

 4

related schemes. Chapter 3 introduces the framework of the proposed approach. Chapter

4 describes the single vector/warp conflict analysis, which is the kernel module of the

work. In CUDA programming model, one memory access expression drives concurrent

threads to access a sequence of data in parallel. Normally these threads belong to multiple

vectors (warps). Chapter 5 takes single expression as a unit and analysis it bank conflict.

Chapter 6 presents the parameter optimization strategy for inter-padding, intra-padding,

and bank access bit-width configuration. Chapter 7 briefly lists the applications used for

experiments and chapter 8 presents the experimental results.

 5

CHAPTER 2 PRIOR WORK

2.1 Introduction

 This chapter studies three research areas that are related to the proposed project. We

studied the prior works of interleaved memory bank conflict solutions, and then

investigated the common 1D and 2D memory access patterns. Finally, we studied the

prior works of padding. The proposed tool of this work uses padding as one of the main

data layout transformation methods.

2.2 Interleaved Memory and Bank Conflict

 Interleaved memory is used to improve memory throughput by dividing memory

into multiple modules/sections/banks to allow them to work simultaneously. This is

especially straightforward for vector processors; it enables parallel access to memories.

[9, 21]

 Bank conflict is one of the main concerns for designing efficient, interleaved

memory. It occurs when multiple concurrent memory requests are issued to the same

module/bank. In such a situation, the bank has to serve one request after another,

degrading performance.

 Bank conflicts exist in various system/processor designs. A vector processor has a

bank conflict when one vector access request operates on data in the same banks. An

example system is the Cray-1 [9]. It had 16 banks, and each bank was 64-bits wide. This

design had bank conflicts when the access stride size was 8 or 16 words. Superscalar

processors such as Intel’s Sandy Bridge [22] also have the same issue when multiple

memory accesses are grouped together. Normally some software/hardware modules are

added to reduce or eliminate conflicts. Bank conflicts also impact other types of

processors. VLIW processors, basically rely on compile time schemes to reduce the

impact of bank conflict [23]. Multimedia processors and other application driven

 6

hardware design also have bank conflict concerns due to their memory access patterns

[24, 25].

 Many hardware solutions have been proposed to deal with the memory bank conflict

problem. Most existing solutions define a better bank mapping function that can support

as many different strides as possible or provide perfect support for some special access

patterns. Normally these bank mapping functions are designed based on the knowledge of

some frequently used access patterns, such as the ones appearing in linear algebra

calculations. Normally the number of banks is a power of two. Some researchers

proposed using a prime number of memory banks to reduce bank conflict [10, 11];

however, prime number arithmetic is hard to implement in hardware. Some other

research targets the bank conflict caused by multiple memory access instructions. Some

well-designed scheduling schemes and extra buffers are used to avoid conflict or reduce

bank conflict impact[15, 16].

 In addition to hardware solutions, software solutions can also be used to reduce bank

conflict. For example, by changing instruction sequences generated by a compiler [22],

the memory operation instructions that cause bank conflict can be separated. From a high

level programming perspective, changing memory access patterns in source code can also

help to avoid or reduce bank conflict. [26]

Conventional Low-order Bank Mapping Scheme and Analysis

 As shown in Figure 2.1, a conventional mapping function maps array elements

sequentially on to N banks. The function can be described asbank _ id[i]=mod(i,N) .

This function maps the ith word of data on to bank ofbank _ id[i] . The bank conflict

degree for different 1D access strides can be determined bygcd(S,N) , in which N is the

number of banks and S is the constant stride value. For a system which has power-of-two

banks, the result of gcd(S,N) equals to 1 for any odd stride. In other words, odd stride

access of N words has no bank conflicts. However, for even strides, the conflict exists

because gcd(S,N) does not equals to 1. For example, when the stride is 2, the conflict is

2-way conflict sincegcd(2,N) = 2 .

 7

Figure 2.1 Conventional bank mapping

 The notation “stride family“is defined for stride analysis purposes [4]. Basically, a

stride family is described as S =σ ×2e , where is the sequence of odd numbers, and e is

an integer which denotes a distinct family. For example, S = {2,6,10,14,18,...} is the

family withe = 2 . For conventional mapping functions on a system with power-of-two

banks, the stride family indicates the degree of conflict. For example when e = 2 , the

conflict is always 2. Oed and Lang presented detailed conflict analysis of conventional

mapping function in [12].

 GPU shared memory is based on a conventional low-order bank mapping function

[2, 18]. The bank number is a power-of-two and the parallel access request number is the

same as the bank number. To improve flexibility, it supports dynamic bit-width bank

access. To avoid bank conflicts, programmers need to organize the data in proper ways.

The most common ways to deal with bank conflict are: (1) choose a proper access mode

provided by the GPU programming model [27]; (2) add padding to change access strides

[5, 18]; (3) change the array index functions to make vector access uniformly mapped to

every bank; and (4) algorithm level memory layout optimization [3]

Variant Mapping Schemes

 Various bank mapping functions have been proposed to solve bank conflicts. The

two main categories are XOR schemes [28] and skewing schemes [10, 29].

 The XOR scheme was first proposed by Failong [13]. This scheme normally has the

form of a linear transformation: y = Tx . Its input is an address x which is represented as

a bit vector. This transformation maps x into another bit vector y which is the address

€

σ

 8

to which the data is mapped to. Some bits of such bit vectors indicate the bank index. The

matrix T is the transform matrix. Each element in T is one-bit of data and its value is 0

or 1. This transform is realized by modulo 2 arithmetic, which is easy for hardware

implementation.

 The XOR scheme has better flexibility compared to skewing methods. By changing

T, XOR can support different mapping strategies. For example, some existing

transformations are designed to generate pseudorandom numbers to realize uniform data

distribution across banks [14, 30]; some other transformations produce periodic

sequences that can avoid bank conflict for some strides or access patterns [31].

 Based on the XOR scheme, Gou presents SAMS [32] to support some stride families

for 1D access. This method uses the XOR transform to reduce conflict degree and then

increase the bank bit-width to remove remaining conflicts. This work also presents a 2D

scheme 2DSMM, that uses two bank mapping functions, Th and Tv , to support some 2D

access patterns such as unit-stride/stride visit of row, column, diagonal, and block.

 Harper proposed a dynamic strategy based on the XOR method [33]. Given a known

stride, a proper XOR transform is selected to meet requirements.

 The Skewing method was presented by Budnick and Kuck [10]. Normally it realizes

conflict-free access for a subset of strides. Shapiro presented a review of the skewing

method [29]. Basically a skewing method can be described as a linear mapping that maps

consecutive data to banks resulting in less bank conflicts. Since no single skewing

method can eliminate conflict for all different strides, many skewing methods have been

proposed to support different stride types [29] [34-36].

 No single skewing method can support all strides. Instead of eliminating all bank

conflict, Harper proposed a skewing-based solution that optimizes overall performance

by reducing bank conflict [37]. In addition, Harper presented a dynamic strategy based on

the skewing method [8]. Based on known stride knowledge, this approach chooses a

proper skewing scheme to eliminate conflict. Aho et al [38] presented a runtime

changeable skewing method, which determines the skewing scheme based on runtime

stride information.

 Some existing skewing schemes target 2D/3D access patterns [37, 39-41]. Harper et

al [37] analyzes skewing performance for some commonly existing stride types from

 9

linear algebra applications. Kaufman et al [40] presented a skewing method that supports

3D vector access of 26 different directions. To support different sub-array patterns in 2D

space, Liu et al [41] uses linear skewing in the horizontal direction and non-linear

skewing in the vertical direction.

Bank Conflict for Multimedia Processors

 Multimedia accelerators generally require high memory bandwidth due to parallel

2D access patterns and fast multimedia processing speed. How to avoid or reduce bank

conflict for these 2D-stride access patterns has been investigated to improve memory

system performance. Some solutions are provided based on 2D-stride access analysis.

Kuzmanov et al [24, 25] presented a parameterized pattern for a type of 2D parallel

access; an interleaved memory organization is proposed accordingly. Different parameter

configuration patterns use different bank mapping functions. Lentaris et al [42] presented

a non-linear skewing based method to achieve efficient memory access for some 2D

access patterns. This work also optimized the bank access efficiency for a typical

correlation existing among consecutive parallel memory access requests for image

access.

GPU Bank Conflicts

 In the past decade, the traditional graphics process unit (GPU) architecture was

adapted to support general purpose computing and became widely used for massively

data parallel computing. Memory system efficiency is crucial for this massive parallel

device. Sung et al [43] presented a bank conflict study of GPU global memory access.

Using micro-benchmark with different access strides, they studied the bank conflict

characteristics of global memory. By combining this knowledge with analysis of

application memory access stride information, they could find optimized data layout

transforms to improve access efficiency.

 The bank conflict problem is a primary issue for making efficient use of GPU shared

memory [1, 2, 27]. This memory is composed of power-of-two banks. Based on the

conventional low-order mapping scheme, different generations of GPU devices have

 10

different mapping functions. The newest improvement is dynamic bank access mode [7].

This mode provides different bit-width access mode to all banks. The motivation of this

design is to support efficient parallel memory access for data types with different bit-

widths. For example, when bank number equals toN , if data type size is 4-Byte, N

sequential elements are mapped to N different banks; if data type size is 8-Byte, N

sequential elements can still be mapped to N different banks. For both cases, there is no

bank conflict.

 Like conventional memory module mapping, these consecutive mapping functions

have similar bank conflict issues. However, since they support different consecutive

mapping strategies, they have different conflict characteristics regarding different stride

size [27]. Moreover, unlike conventional mapping methods, these strategies sometimes

have conflicts due to bank offsets of the base address (the address of the first element that

is visited). Examples are described in chapter 4.

 The GPU programming model leaves the shared memory bank conflict problem to

programmers. With the knowledge of different mapping functions, programmers need to

design their data layout carefully to achieve efficient data access to the banks. For many

applications, it is not easy to understand how data are mapped to banks. Generally,

programmers try to add a small padding to change the access stride, or redesign the data

organization to improve the efficiency.

 In chapter 4, we will discuss the stride analysis of this bank mapping solution.

2.3 Memory Access Patterns and Strides

 For scientific computing applications, array access pattern analysis is very helpful

for improving memory access efficiency. Related compile-time optimizations include

loop transformation [44], loop prefetching [45, 46], and array padding [47-50]. Besides

general optimization for various array access patterns, some previous work provides

automatic analysis and optimization for code that have similar array access patterns [51].

Jaejer and Barthou proposed a stencil kernel generator which is based on access pattern

analysis [50], it searches for better data layout transforms to improve memory access

 11

efficiency. Sung et al [43] presented an automatic data layout transform scheme based on

common access patterns of PDE solvers and structured grids. A source-to-source

subscript transformation module is designed accordingly.

 Program level optimizations regarding access pattern and memory efficiency have

been well studied for different memory systems. Lee et al [52] summarized common

array access patterns of typical applications. Corresponding optimization advice is

presented as well.

 For interleaved memory, bank access stride patterns directly impact the parallel

access efficiency. Besides bank mapping functions, for linear array data layout (as in

FORTRAN, C/C++), the knowledge of array access patterns is crucial to obtain the bank

access stride information. For vector processors and multimedia/graphics accelerators,

bank access efficiency directly depends on 1D/2D array access patterns.

 Two aspects determine array access patterns: array definitions and array sub-

indexing functions. Determining how to extract array access patterns from source code

and properly represent them is the first step. The polyhedral model uses matrices to

represent the sub-indexing functions that are based on loop iterator variables [18]. Each

sub-indexing function is linear combinations of iterator variables. Sung et al uses a

similar way to represent array sub-indexing for GPU parallel thread access [43]. In this

work, we continue to use their representation for sub-indexing functions.

 Commonly used array access patterns in linear algebra applications include row,

column, backward/forward diagonal, and block. These patterns are generally considered

when designing interleaved memory for vector processors. For multimedia

processors/accelerators, 2D access patterns are more common. They include different

block based patterns [25, 42] and even regular sampling patterns [42]. Please refer Figure

2.2, Figure 2.3, and Figure 2.4.

 12

Figure 2.2 Typical access patterns

Figure 2.3 Memory access by 1D warp

Figure 2.4 Memory access by 2D Warp

 The CUDA GPU programming model supports parallel memory access by executing

one parallel memory instruction for a group of threads. Concurrent threads can be

organized in 1D to 3D grids. It makes thread execution structure match the array

dimension and the code becomes easier to be manipulated. Beneath this structured

 13

parallel execution model, GPU hardware executes instructions in units of warps, which

are a thread array of 16 or 32 threads. Each thread block is composed of one or more

warps. Threads in one thread block are linearly mapped to a sequence of warps, and each

warp could be mapping to a 1D to 3D array of threads. Figure 2.3 presents two basic

cases of using thread block to visit arrays. Fig. 2.3 (a) is a 1D thread block composed of 3

warps; when it visits a 1D array, each warp visits a 1D sub-array. Fig 2.3 (b) is an

example for 2D warps. Each warp visits a 2× 4 block in the 2D array. From these basic

examples, it can be seen that for GPUs, the thread grid structure is another factor that

impacts data access patterns.

 The CUDA GPU memory system is composed of different types of memory.

Various constraints are imposed on the programmer to obtain high memory access

efficiency. GPU global memory is fixed length (such as 32-Byte or 128-Byte) vector

access depending on cache or related configurations. These memory operations could

achieve maximum bandwidth when the access patterns guarantee that a sequence of

threads access consecutive data elements and they are properly aligned. Baskaran et al

[18] presented code transforms based on Polyhedral models. Che et al [53] designed a set

of APIs to reorganize the data to improve global memory access efficiency. Extra GPU

kernels are used for data layout transform and memory access patterns are changed

accordingly.

 As previously mentioned, GPU shared memory bank conflict is a primary concern

when designing GPU kernels and their data access patterns. How to avoid shared memory

bank conflict is left to programmers to solve. To achieve better access efficiency, array

access patterns need to be carefully designed to avoid or reduce bank conflict. Baskaran

et al [18] presented a heuristic searching method to deal with this issue. It searches for the

best padding width by examining bank conflict with the function

gcd(stride,bank _number) . However, this solution is not enough. First of all, it only

considers the basic conventional low-order mapping function. For mappings that support

dynamic memory bank access, it requires a broader analysis scheme to estimate the bank

conflict degree. Secondly, this solution cannot support other memory access

patterns/strides besides constant 1D stride. This is not practical regarding the various

access patterns used in GPU kernels [54].

 14

 Based on analysis of single parallel memory access patterns, the correlation

information among consecutive parallel accesses can also be used to achieve better

efficiency. In [42], after presenting the design of the bank-mapping scheme, Lentaris and

Reisis also presented the definition of “MacroSquares”, the area visited by a sequence of

correlated memory accesses. He demonstrated that the proposed schemes work well for

such a group-access pattern.

 Beside memory access optimization for each GPU memory type, Jiang et al [54]

proposed a scheme to choose among different memory types according to memory access

pattern analysis.

2.4 Padding Transformations

 Array padding is a commonly used method for data layout transformation. It is very

useful for dense numerical algorithms such as linear algebra and iterative solvers.

Padding is also a common optimization scheme adopted by compilers[55] . By adding

unused spaces, the related memory access patterns are changed to improve memory visit

efficiency. There are two types of padding: inter-padding and intra-padding [20]. Inter-

padding adds dummy space between array variables; intra-padding inserts unused spaces

inside one array.

 Padding is commonly used for improving memory usage efficiency. Cache/TLB

conflict is one of the problems that array padding can be applied to [56-62]. By adding

extra blank space at proper locations, the cache conflict due to memory accesses can be

reduced. False sharing is another example. By adding padding, data near each other that

cause the false sharing can be separated [63, 64]. Array padding is also an important

method to deal with the memory bank conflict problem [26, 47-49]. By adding padding in

one of the inner array dimensions, the memory access stride is changed, which has direct

impact on concurrent bank access patterns. Taking conventional bank mapping as an

example, when padding is added to make a stride change from an even number to an odd

one, gcd(stride,bank _number) equals to 1 and conflicts are eliminated. By adding

padding before an array definition, it changes the offset of the array’s base address. For

 15

some bank mapping functions such as the ones supported by GPU dynamic bank access

scheme, changing this offset might impact the bank conflict degree.

 Array padding is easy to apply and it is practically efficient. In addition, unlike some

other data transform methods, padding normally involves no extra source code

transformation for array sub-indexing functions. Although it consumes some extra

spaces, many problems can be solved with a relatively modest padding. Padding is

generally used combined with other optimization schemes such as tiling [65-69], and

prefetching [20, 70]. For example, Rivera et al presented a combination solution, which

use tiling and padding to improve memory efficiency for some 3D iterative solvers [65].

In [68], a method combining intra-padding and tiling is used and proved to be efficient

for matrix multiply. In [70] padding is used to avoid or reduce prefetching conflict.

 Various automatic padding solutions are proposed for different purposes. Many of

them are based on problem modeling [49, 57, 58, 65, 67], and then use heuristic methods

[20, 71] or other searching methods [47, 60, 69] to find optimized solutions [66]. In [71]

the author raised concerns with the relation between applying intra and inter padding;

their solution always applies intra-padding prior to inter-padding.

 Array padding is also commonly used for GPU program optimization. The two main

purposes include improving global memory efficiency and reducing shared memory bank

conflict. Based on the coarse-access principle for global memory access, padding could

be used to transform data layout in global memory and coarse global memory access

requests [72, 73]. Based on the GPU shared memory bank organization knowledge, small

amounts of padding could be used to change memory access stride and in turn reduce or

eliminate potential bank conflict [18, 19].

 A compiler auto-padding solution for shared memory is proposed in [18]. A

heuristic searching algorithm is used to search for a proper padding. For each candidate

padding size, gcd(stride,bank _number) is evaluated to get the conflict degree for each

parallel array access. The padding size that results in the least conflict number will be

used. Some other auto-padding schemes are developed for application-domain related

optimizations. Jaeger et al [50] proposed an auto-padding scheme for stencil calculations.

This work extends the usual padding into a multi-padding method, which uses non-

 16

uniform but periodic padding at different locations. This extended padding method is

shown to be efficient for alignment issues on different CPU/GPU architectures.

2.5 Summary

 This chapter presents three areas of previous research that are related to this

dissertation. First of all, since this work target GPU shared memory bank conflict, we

studied the prior work on solving interleaved memory bank conflict solutions. Secondly,

we investigated common 1D and 2D memory access patterns, which is widely studied for

automatic optimization techniques. In order to transform source code to obtain better

efficiency, the proposed tool needs to be able to recognize common patterns and find

proper data layout solution. Finally, we studied the prior work on padding. Although it is

a basic and simple optimization, it is commonly used for data layout transform, especially

for GPU shared memory optimizations. The proposed tool uses padding as one of the

main data layout transformation methods.

 17

CHAPTER 3 PROPOSED APPROACH

3.1 Background and Motivation

 CUDA shared memory is software manageable on-chip storage, it is faster than

device memory and its size is limited. Shared memory is commonly used for the

following purposes: (1). Caching data to improve temporal locality. For the data which

are visited multiple times, they can be cached in shared memory to avoid the long latency

of global memory access. (2). Hosting data shared among threads of one thread block. An

example is producer-consumer warps inside one thread block; they can communicate

through shared memory. (3). Temporary storage for improving global memory access

efficiency. In the kernel of matrix transpose, by using shared memory, access pattern of

global memory can be changed to unit-stride row-major access. This helps to improve the

performance by optimizing global memory access efficiency.

 Bank conflict is a primary concern when using CUDA shared memory.

Programmers are responsible to reduce or avoid bank conflict given the bank

organization information [1, 2]. In earlier generations, CUDA shared memory used

conventional low-order mapping; the value of bank number (denoted as bank _num)

equals to the vector access length (denoted as vec_ length). Programmer could use

gcd(stride,bank _num) to calculate the bank conflict degree and use array padding or

other data layout transformation to avoid bank conflicts. However, the NVIDIA Kepler

GPUs enables dynamic bank access mode, which is designed to improve efficiency for

different bit-width accesses. This makes the bank conflict issue more complex for

programmers. Traditional analysis methods of conventional mapping are not enough to

solve the bank conflict problem for new bank access modes. Generally it is not obvious to

understand how data layout causes bank conflicts; people just try different padding sizes

or choose different mapping access bit-width settings. On the other hand, shared memory

space is limited. When changing data layout to solve the bank conflict issue, the space

constraint needs to be considered. Otherwise, device occupancy might decrease and

performance might drop significantly. Based these observations, we believe more effort

 18

should be invested to reduce the difficulty of improving shared memory access

efficiency.

 This dissertation studies bank conflict issues of CUDA shared memory that supports

dynamic bank access. Based on a generalized description of the bank organization and its

access policy, the bank conflict analysis method is presented. Given bank conflict

estimation results, a heuristic perimeter optimization algorithm is presented to find an

efficient data layout solution. The first dimension of the searching space is bank mapping

function options provided by the programming model; the second dimension is intra-

variable padding solutions; and the third one is the storage sequence of variables and

potential inter-variable padding solutions. The heuristic perimeter optimization method

looks for optimal or sub-optimal solution with the following two questions: (1). Does it

reduce the overall bank conflict of one kernel? (2). How much extra space is needed?

Does it exceed the space limitations?

 Figure 3.1 presents the relation between this work and related research areas. First of

all, it is a project dealing with bank conflict issues of interleaved memory. It targets

CUDA dynamic bank access mapping functions. In future, it could be used for other

interleaved memory types with similar features. Secondly, it is based on memory access

pattern knowledge of different data layouts. Thirdly, it tries to find an efficient solution

based on intra-padding, inter-padding, and bank mapping function configuration. The

goal is to make an automatic software solution that works at the programming level, and

it realizes optimization through source code transformation.

 19

Figure 3.1 The relations of this project and related research areas

3.2 Project Assumptions

 The following list is assumptions of this project:

 (1). This is a static analysis.

 (2). The bank number equals to the vector access length and its value is power-of-

two.

 (3). The target application uses dense memory access only. Indirect accesses (such

as those used in sparse matrix and irregular mesh processing) are not included.

 (4). This project targets C/C++ CUDA programming. By default array data is stored

in row-major style. Any array used in this work is based on row-major data layout.

 (5). Some typical 2D patterns are supported, but not all. For loops, the assumption is

that the consecutive memory access requests have similar patterns.

 20

 (6). Based on the situation that programmers are responsible for solving bank

conflict, here we don’t assume the existence of any particular shared memory bank

conflict related compiler optimizations.

 (7). When an auto transformation tool looks for an optimal/sub-optimal solution, it

will consider using less extra space, but it cannot guarantee that extra space chosen to be

added will not cause decreasing device occupancy. To avoid such penalty, programmers

should give a space limitation for each thread block.

 (8). The current implementation targets at transforming C/C++ CUDA programs.

Implementation for OpenCL can be added in similar way.

3.3 Project Framework

 Figure 3.2 is the description of proposed approach. The work starts from a kernel

source code and its memory access pattern description including: (1). Shared memory

variable definitions; (2) Bank mapping functions defined by the programming model; (3)

GPU thread block definitions; (4) array access stride; (5) other control information

related to memory accesses. Basically, for different bank access bit-width settings, the

tool analyzes the conflict replay number for each array, and then optimized the intra-

padding size to obtain the optimal or sub-optimal solution. Among different bank access

bit-width settings, the best option is the one that has the least conflict number and uses

less memory. If the total conflict replay number is not zero, the tool looks for a proper

inter-padding size for each array. Finally, according to the data layout solution, a source

code transform is performed to modify the source code accordingly.

 21

Figure 3.2 Framework of the project

3.4 Performance Improvement Expectation

 The tool is designed to be able to improve GPU shared memory efficiency under

following circumstances:

 For a certain application kernel that uses 1D or 2D common shared memory access

patterns, if its bank conflict problem can be eliminated or reduced by a combination

optimization of (1) bank mapping function selection, (2) inter-padding, (3) intra-padding,

then this tool can find an optimal or suboptimal solution automatically and transform data

layout accordingly.

 For an optimal/sub-optimal solution that can reduce the conflict degree from N to M,

the memory access instruction replay number is reduced by N −M
N

×100% . It means that

fewer cycles will be used for same purpose shared memory access. For applications that

has bottleneck caused by shared memory bank conflicts, this transform may improve

overall execution time.

 22

3.5 Summary

 This chapter introduces the background of GPU shared memory conflict issues, as

well as the framework of this research. Due to the importance of shared memory access

efficiency in GPU kernel performance tuning, and the difficulties of investigating the

bank conflict for common access patterns, we made this effort to achieve automatic bank

conflict optimization. The proposed work performs automatic source code transformation

to optimize the data layout. This work includes a static bank conflict analysis and a

heuristic parameter optimization method to find optimal or sub-optimal solutions.

 23

CHAPTER 4 SINGLE VECTOR ACCESS BANK CONFLICT

 This chapter analyzes the bank conflict of single vector (warp) access. Firstly, the

bank mapping functions are introduced, and the impacts of inter-padding, intra-padding,

and bank access bit-width on bank conflict are presented. Then the bank conflict analysis

module is designed to estimate the degree of 1D stride and 2D stride access patterns. The

work in this chapter is the core in the proposed framework. Any bank conflict

optimization task will finally be divided into sub-tasks of single vector conflict analysis.

4.1 Bank Mapping Function Descriptions

 Based on bank mapping functions supported for current commercial GPU shared

memory, we define a generalized description. N is the bank access mapping width in

bytes, M is the instruction access data type size in bytes, and W is the layer width size

of one bank in bytes. We call N the N-Byte mode, and M the M-Byte element. To

describe the target problem we add the following constrains:

1. Values ofM , N , and W are power-of-two.

2. 4 ≤M ≤W , 4 ≤ N ≤W

3. W is constant in one system

4. vec_ length >> W
M

There are following four different mapping functions as following:

• Case One: M = N andM <W . M = N means that the instruction access bit-width

matches the bank mapping access bit-width. M <W means that this instruction access

bit-width is smaller than the size of one layer of one bank. An example is M = N = 4
,and W = 8 . In this dissertation we call it case row-major mapping.

• Case Two: M = N =W . M = N means that the instruction access bit-width matches

the bank mapping access bit-width. M =W means that this instruction access bit-

width equals to the size of one layer of one bank. An example is M = N = 8 , W = 8 .

 24

• Case Three: M>N, M=W. M>N means that the instruction access bit-width is larger

than the bank mapping access bit-width configuration. M=W means that the

instruction access bit-width equals to the size of one layer of one bank. An example is

N=4, M=W=8.

• Case Four: M<N, N=W. M<N means that the instruction access bit-width is smaller

than the bank mapping access bit-width. N=W means that the bank access bit-width

equals to the size of one layer of one bank. An example is M=4, N=W=8. This case is

called column-major mapping.

Table 4.1 describes features of these four bank-mapping functions. When we describe the

stride analysis, following definitions are used:

• vector (or warp): execution unit of parallel memory access;

• vector length: the element number visited by each vector (warp) access;

• offset: the memory offset of the first element visited by a single vector access.

• stride family: a stride can be described as stride= (σ is an odd, and,).

For all strides that have same e, they belong to the same stride family. For example,

stride = {2, 4, 6,10,14,...} is the stride family that has e = 2 .

• layer: One layer of a bank is a unit of space that multiple simultaneous accesses of it

will cause no conflict. For example, for a layer size of 8B, the access of the upper 4B

and the access of the lower 4B cause no conflict.

• row: For case one, two, and three, a layer of a bank has R = W
M

 rows. For example,

for a layer size of 8B and a bank mapping access width of 4B, there are two rows in

each layer. For case four, a layer of a bank has R = W
M

 rows.

 Figure 4.1 is array data mapping examples for these bank mapping functions (Bank

number is 4, W=8). This literature focuses on the row-major data mapping (case one)

and column-major data mapping (case four). Case-three is similar to row-major

mapping function; case-two is conventional low-order bank mapping function.

€

σ × 2e

€

e∈Z

 25

Figure 4.1 1D Array data mapping for different mapping functions.

Table 4.1 Summary of features of bank mapping functions

Case Example Architecture Bank

Num

N M W

One NVIDIA Kepler 32 4B 4B 8B

Two NVIDIA Tesla 16 4B 4B 4B

NVIDIA Fermi 16 4B 4B 4B

NVIDIA Kepler 32 8B 8B 8B

Three NVIDIA Kepler 32 4B 8B 8B

Four NVIDIA Kepler 32 8B 4B 8B

4.2 Data Layout Transform and Bank Conflict

 In this section some basic experiments is used to exam the impact of data layout on

bank conflict degree. The platform information is as following:

• GPU device: Tesla K20c,

o Shared memory:

§ Bank number is 32;

§ W=8B.

o Warp size: 32 threads.

o Compute capability: 3.5

• Programming model: CUDA 5.0

• Profiler: NVIDIA NVVP, release 5.0

 26

4.2.1 Inter-padding

 Inter-padding is a method used to change the memory access offset. This experiment

shows the impact of access offset on bank conflict degree for the row-major data

mapping function. Basically, the program reads shared memory by stride = 2e . When the

offset varies, the conflict number changes. In the example code in Figure 4.2, by inserting

dummy variable of different sizes, we can change the offset. Figure 4.3 shows the impact

of offset for different strides: the effect of changing offset is “+0” or “+1” to the existing

conflict degree. It means that for larger strides, the impact of offset is smaller. Figure 4.4

compares the offset impact for two different bank access bit-width configurations. For

this example, when offset is larger than 3, column major data mapping scheme is better

than row-major data mapping scheme. Similarly, for the column-major data mapping

function, the offset also could change the conflict degree. The detail will be discussed in

chapter 6.

Figure 4.2 Sample code

Figure 4.3 Conflict degree of different offsets for different stride values

 27

Figure 4.4 Impact of offset for different access bit-width setting

4.2.2 Intra-padding

 This experiment exams the impact of array intra-padding. When the padding varies,

the conflict degree changes. For example code in Figure 4.5 (a) and (b), we change the

value of the macro PAD and check the conflict degree Figure 4.5 (c) and (d) shows the

impact of intra padding on bank conflict degree.

Figure 4.5 Impact of intra-padding on bank conflict numbers

 28

4.2.3 Bank Access Bit-width

 This experiment shows the impact of bank access bit-width on bank conflict degree.

When access bit-width changes, the conflict degree changes. In the example code in

Figure 4.6 (a), we change bit-width through the API provided by the CUDA

programming toolkits. Figure 4.6 (b) shows the difference of the conflict degree when

offset=32B. Figure 4.4 also shows the difference when offset > 3 and stride ≥ 4 : when

N = 8 it has better efficiency.

Figure 4.6 Impact of bank access width on bank conflict degree

 29

4.3 Single Vector Bank Conflict Analysis

4.3.1 1D Access Pattern and Bank Conflict Analysis

 Table 4.2 describes the features of bank conflict problem for row-major bank

mapping function and column major bank mapping function. Basically, the bank

conflict analysis module realizes following function:

bank_conflict_degree = func(bank_num, W, N, M, stride, offset)

 Based on the input parameters, the bank mapping type is determined, and the task is

assigned to the routine that perform the analysis. Detailed analysis description of each

type can be found in appendix A-1.

Table 4.2 Summary of features of bank conflict problem

Type Conflict analysis features

Row-major

data

mapping

Analysis process is based on gcd(stride, bank_number). However, since one layer

of all banks has multiple rows, only accesses to different layers cause bank

conflict. The analysis routine take offset and result of gcd(stride, bank_number)

to calculate the bank conflict number.

Column-

major data

mapping

Since each layer of all banks has multiple rows, and data are mapped in column

major direction, both odd stride and even stride could cause bank conflict. A

routine is designed for odd stride bank conflict analysis. Even stride analysis can

be transformed to either odd stride problem or conventional bank mapping

problem.

4.3.2 2D Access Pattern and Bank Conflict Analysis

 For 2D parallel memory access, we can describe a parallel execution unit by two

types: a 1D vector, or a 2D rectangular grid (Figure 4.7 (a)). When such a vector accesses

data in an array, we describe access pattern as:

< stride_ x, repeat _ x, stride_ y, repeat _ y >

 30

(a) 1D vector and 2D grid (b) Basic memory access patterns

Figure 4.7 shape of parallel memory access unit and base memory access patterns

 By defining an affine transform matrix in Homogeneous Coordinates, we can get the

transformed 2D access patterns based on the basic access pattern in Figure 4.7 (b). We

describe this transform matrix T as:

 When the width of the 2D memory access execution unit is less than vec_ legnth, the

2D stride pattern can be obtained from the functions in Table 4.3. In these functions, the

blockDim.x denotes the width of execution unit; width denotes the width of 2D array.

Figure 4.8 shows some examples of the transformed access patterns.

Table 4.3 2D stride pattern calculation

stride_ x repeat _ x stride_ y repeat _ y

a21 × array_width+ a11 blockDim.x a22 × array_width+ a12 vec_ length
blockDim.x

Figure 4.8 Examples of the base 2D access pattern transformation

€

v'= Tv =

a11 a12 c1
a21 a22 c2
0 0 1

"

$
$
$

%

&

'
'
'

threadIdx.x
threadIdx.y

1

"

$
$
$

%

&

'
'
'

 31

When we shift the offset of current parallel access, an observation is that the bank

mapping of all visited elements repeat after a certain number of steps. For example, when

row-major mapping function is in use, for

offsetnew = offset original+
W ×bank _num

M
it has

conflictnew = conflictoriginal .

This means that we can firstly calculate bank conflict for a small and fixed number of

offset values, and then for other offsets, get the conflict degree by mapping it to a known

offset value. We call this small group as base_ set . In many GPU kernels, one parallel

memory operation is executed for many times with different offsets. By computing the

conflict for a smallbase_ set , this method can obtain the overall conflict in a limited time

period which is independent of vector access number. For detail information about 2D

bank conflict analysis, please refer appendix A-3.

4.4 Algorithm Analysis

 The single vector analysis is the basic component of the proposed framework. It

works at the center of this work in that other modules are built upon it. This section

introduces the algorithms used to realize single vector analysis; their time complexities

are discussed as well.

4.4.1 1D Analysis Algorithm

Row-major Bank Mapping Function

 For row-major bank mapping function, when stride is odd, for anyW ,N , andM ,

there is no bank conflict. For even strides, we divide them into two categories: (1) stride

is power-of-two, (2) Other even stride.

When stride is power-of-two, the algorithm (algorithm 4.1) uses the result of

gcd(stride,bank _num) and the vector access offset to calculate the conflict degree. Since

 32

the time complexity of gcd(stride,bank _num) is O(stride) , this function’s time

complexity is alsoO(stride) . Basically, (1) when stride is larger than the element number

that can be stored by one layer of all banks, all visited elements lie in different layers of

the same bank, and any pair of them has conflict. (2) Otherwise, if the stride can be

divided bybank _num , all visit sites lines in same bank of one or multiple layers. Based

on the value of offset, the conflict degree can be deduced from the result of

gcd(stride,bank _num) . (3). Otherwise, it means that the bank _num can be divided by

stride, the result of gcd(stride,bank _num) and the offset is used to calculate the conflict

degree. Figure 4.9 describes this in details.

Figure 4.9 for power-of-two stride

 When stride is other even numbers, the time complexity is alsoO(stride) . For an

even stride in stride familyσ ×2e , the visited sites can be divided into 2e groups, each

groups occupies σ rows. For the ith row of all groups, they visit same banks. So there

must be conflict if not all of them lie in same layer. Inside each group, there is no conflict

possibility. Based on such observation, the task becomes to check the conflict among ith

rows of all groups (algorithm 4.2).

Algorithm 4.1 func_row_major_power_of_two_stride
Input: bank_num, W, N, M, stride, offset
Output: res -- bank conflict degree.
//---
gcd_res = gcd(stride, bank_num);
R = W/N; res=1;

 33

layer_size = bank_num * W;
vec_length = bank_num;
offset = offset % layer_size; //calculate offset in one layer.
If (stride >= bank_num * R)
 res = vec_length;
else
 If(stride % bank_num == 0)
 res = (gcd_res*(stride/bank_num) + (R-1)) / R;
 else
 res = (gcd_res + (R-1)) / R;
 end if
 if(offset_impact==true)
 res += 1;
 end if
end if

Algorithm 4.2 func_row_major_other_even_stride
Input: bank_num, W, N, M, stride, offset
Output: res -- bank conflict degree.
//---
gcd_res = gcd(stride, bank_num);
R = W/N; res=1;
layer_size = bank_num * W;
vec_length = bank_num;
offset = offset % layer_size; //calculate offset in one layer.
tau = tau(stride); //calculate stride family parameter tau
e=e(stride); //calculate stride family parameter e.
if(2^e >= bank_num)
 if(stride > W*bank_num/M)
 res = bank_num;
 else
 res = ceil(offset/M + (vec_length-1) * stride + 1, bank_num*W/M) / (bank_num * W / M);
 end if
end if
for row I in {0,..,tau-1}
 for group in {0,…, 2^e-1}
 if current_layer(group) != previous_layer(group)
 conflict = true; res++;
 end if
 end for
end for

Column-major Bank Mapping Function

 For this bank mapping function, no matter stride is odd or even, there could be

potential conflict, and we need to calculate conflict degree (algorithm 4.3). The time

 34

complexity of this method is O(R× vec_ length). Compares to enumerating every visit

site of one vector access, this time complexity is worse because the later one has O(

vec_ length). However, it doesn’t mean that this method is not helpful. Actually, it gives

useful clues to take short cut for some cases. One important conclusion based on this

method is about current commercial GPU shared memory. In appendix A, it is approved

that the conflict is always 2-way when R = 2 , with R = W
M

. For other R ≠1 , the

condition about layer _ scope could terminate the loop and help to avoid unnecessary

calculations for non-valid pairs.

Algorithm 4.3 func_column_major_odd_stride
Input: bank_num, W, N, M, stride, offset
Output: res -- bank conflict degree.
 //----------------------------------
 For vector visit start from r in 0 to R-1
 //initialize bank_layer_info
 For i=0 to bank_num-1
 std::pair<unsigned, std::set<unsigned int> > curr_pair;
 curr_pair.first = i;
 curr_pair.second.clear();
 bank_layer_info.push_back(curr_pair);
 Endfor

 //...
 //step 1:
 row_idx = (offset % W) / M;

 //...
 //step 2:
 For i = 0 to R-1
 calculate row_offset[i]
 Endfor

 For i = 0 to R-1
 calculate imm_col_offset[i]
 Endfor

 //...
 //step 3:
 For i = 0 to R-1
 calculate row_scope_num[i];
 Endfor

 //...

 35

 //step 4 (CASE-A): check every row-pair of CASE-A
 For i=0 to R-2
 For j=i+1 to R-1
 //For each pair of rows, check existence of conflicts.
 bool conflict = false;
 For diff_y_x = 0 to vec_length/R-1
 calculate dist: the offset difference between visit x and visit y
 If ((dist > 0) && ((dist % bank_num) == 0))
 layer_scope = dist / bank_num;
 If (layer_scope <= (row_scope_num[i] - 1))
 diff_res = diff_x_y;
 conflict = true;
 break;
 Endif
 Endif
 Endfor
 If (conflict)
 For each pair of x and y that has difference of diff_res
 calculate bank_id;
 calculate layer_y;
 calculate layer_x;
 save these conflict information to bamk_info[bank_id];
 Endfor

 Endif
 Endfor
 Endfor

 //...
 //step 4 (CASE-B): check every row-pair of CASE-B

 For i=0 to R-2
 For j=i+1 to R-1
 //For each pair of rows, check existence of conflicts.
 bool conflict = false;
 For diff_y_x = 0 to vec_length/R
 {
 calculate dist: the offset difference between visit x and visit y
 If ((dist > 0) && ((dist % bank_num) == 0))
 int layer_scope = dist / bank_num;
 If (layer_scope <= (row_scope_num[j] - 1))
 diff_res = diff_y_x;
 conflict = true;
 break;
 Endif
 Endif
 Endfor

 If(conflict)
 For each pair of x and y that has difference of diff_res,
 calculate bank_id;

 36

 calculate layer_y;
 calculate layer_x;
 save these conflict information to bamk_info[bank_id];
 Endfor
 Endif
 Endfor
 Endfor

 For I in 0 to bank_num-1
 If bank[i].layer_num > max;
 Max = bank_info[i].layer_num;
 Endif
 Endfor
 Endfor

 For even stride, the problem can be transformed either to odd stride problem or

directly to conventional bank access problem. Then the time complexity is either as same

as the one for odd stride problem, or the one for conventional bank conflict problem. The

table A-1-5 describes the rules of problem transformation.

4.4.2 2D Access Analysis Algorithm

 When array is visited through a 2D stride, there are two cases: (1). Each warp

accesses array in 2D pattern; (2). Each warp accesses array in 1D pattern. A simple

example of the first case is 8x4 access by a warp of 32 threads. It means that for the first

stride the repeat times is 8 and for the second stride it is 4. For the second case, even the

access of a whole thread block is 2D, but since the repeat time of the first stride can be

divided by vector length, then the problem can be transferred to a 1D cases for each warp.

The algorithm 4.4 is the bank conflict calculation for row-major bank mapping. For

column-major bank mapping function, the algorithm is similar except that different

functions are used to calculate the bank indices and layer indices. This is a simple and

straightforward solution. At the beginning, an array of bank information are defined and

initialized, it is used to store the bank access information. Then, for each visited element,

calculate its bank index and its layer offset, and record the distinct layer indices of same

bank. Finally, it goes through all banks and finds the bank that has maximum distinct

layer number. This number is the bank conflict degree of the current single warp 2D

access.

 37

Algorithm 4.4 2D_row_major_stride
Input: bank_num, W, N, M, stride, offset
Output: res -- bank conflict degree.
//---
For I in 0 to bank_num-1
 Initialize bank_info [i]
Endfor

For I in 0 to rep_y-1
 For j in 0 to rep_x-1
 Calculate bank_idx and layer_idx based on row-major bank mapping function
 Done.
Done.

For I in 0 to bank_num-1
 If bank[i].layer_num > max;
 Max = bank_info[i].layer_num;
 Endif
Endfor

 For this algorithm the time complexity is composed of three parts are:

O(bank _num) . O(vec_ length) O(bank _num) . Since we assume vec_ length equals to

bank _num , the overall time complexity of this algorithm is O(bank _num) .

4.5 Summary

 In this chapter we describe the bank conflict problem of single vector access, and

introduced the method for bank conflict analysis. Section 4.1 introduces the information

of bank mapping functions. In section 4.2, experimental evidences are used to show the

impact of data layout on bank access efficiency. By changing bank access bit-width,

adding inter padding, or adding intra padding, the data layout transformations reduce or

eliminate the bank conflict. In section 4.3 and 4.4, the conflict analysis algorithms are

presented.

 Based on this single vector analysis module, in chapter 5, the analysis method of

single expression memory access is constructed; in chapter 6, a heuristic parameter

optimization method is built to look for the optimal or sub-optimal data layer solution.

 38

CHAPTER 5 SINGLE EXPRESSION ACCESS BANK
CONFLICT

 In GPU programming model, one memory access expression drives concurrent

threads to access a sequence of data in parallel. Normally these threads belong to multiple

vectors/warps. In this chapter, we take single expression as a unit and analysis its bank

conflict. Given an array access expression, the tool analyzes the overall bank conflict

number of multiple warps that execute the memory operation. This work is based on the

single vector bank conflict analysis presented in chapter 4. Since programmers determine

the warp number, the ideal solution should be able to estimate conflict number and its

time complexity shouldn’t depend on the warp number. In this chapter, section 5.1

analyzes the bank conflict of basic array access expression. Section 5.2 analysis the “for”

wrapped memory access, which is normally used to increase workload of each thread.

Section 5.3 and 5.4 analyze “if” and “for-if” wrapped memory access expression, they are

normally used to filter the threads and control the memory access ranges/patterns. Figure

5.1 presents the relations of these conflict analysis modules.

Figure 5.1 Conflict Analysis Modules

 39

5.1 Basic Bank Conflict Analysis

5.1.1 1D Access Analysis and Algorithm

 This section explains how to calculate the bank conflict number of single memory

access expression when multiple warps are involved. This work is based on the algorithm

for 1D single vector analysis presented in section 4.3. After the bank conflict of the first

warp is obtained, the conflict result of other warps could be different from it in that their

access offsets could be different. The memory access offset of the ith warp is:

offset[i]= offset[0]+ i× stride× vec_ length , i = [1, 2,...,warp_num_ per _block)

This formula shows that the offset of warp i is linear to the warp index i . In one layer of

all banks, the in-layer offset is:

offset _ in_ layer[i]=mod(offset[i],bank _num×W
M
)

 This formula shows that the relative offset is periodic. For example, for all warp i that

havemod(offset[i],bank _num×W
M
) = 0 , they have same relative offset which is the

beginning of a layer. Based on this observation, we design the conflict analysis for row-

major bank mapping function and column-major bank mapping function as following.

Row-major bank mapping function

 For row-major bank mapping function, when the stride is odd, there is no bank

conflict. For even strides, they can be divided into two categories and each uses a

different analysis method. The first group is stride values that are power-of-two; the

second group includes all other even strides.

Stride is power-of-two

1. When , since each of them is power-of-two, then mod(stride,R) = 0 . And

since vec_ length equals tobank _num , we have:

€

stride ≥ R

 40

Based on this equation, for warp i , the in-layer offset is:

offset _ in_ layer[i]=
mod(offset[0]+ i× stride× vec_ length,R×bank _num) =

offset _ in_ layer[0]

with i = [1, 2,...,warp_num_ per _block) . Since all these warps have same value of in-

layer offset, they have same bank conflict estimation result. The total conflict number can

be obtained through multiplying single warp conflict number by the warp number.

2. When , since both R and stride are power-of-two, R can be divided by

stride. Let’s defineP = R
stride

, it has:

Since vec_length equals to bank_num, it has:

offset _ in_ layer[i+P]=
mod(offset[i+P],R×bank _num) =mod(offset[i],R×bank _num) =

offset _ in_ layer[i]

This equation shows that after every P warps, the in-layer offset repeats. Based on this

observation, the algorithm goes through following three steps to obtain the final conflict

number:

• CalculateP .

• Obtain the conflict number for the P distinct warps. To get the offset of each

cases, variable sub_offset is defined as:

sub_offset =mod(offset,R×bank _num)
Then relative offset in one layer can be obtained by:

offset _ in_ layer[k]=
mod(sub_offset + k × stride× vec_ length,R×bank _num)

with k = [0,...,P)

• Calculate the warp number that belongs to each case k , k = [0,...P) .

• Get the overall conflict number by:

€

mod(i × stride × vec _ length,R × bank _ num) = 0

€

stride < R

€

offset[i + P] = offset[i]+ P × stride × vec _ length = offset[i]+ R × vec _ length

 41

Other even strides

 When stride is other even number, it can be described as a member of stride family

€

σ × 2e with σ = [3, 5, 7...) and e = [1, 2,3,...) . Then the offset of warp i can be calculated

as:

€

offset[i] = offset[0]+ i × stride × vec _ length = offset[0]+ i ×σ × 2e × vec _ length

1. When 2e is larger than or equal to R :

€

mod(offset[i],R × bank _ num) =mod(offset[0],R × bank _ num)
It means that for all warps, they have same in-layer offset, and have same conflict

number.

2. When

€

2e is smaller thanR , we need to find the value of P for which it has:

mod(offset[i+P],R×bank _num) ≡mod(offset[i],R×bank _num)
First of all, since vec_length equals to bank_num, it has:

€

P ×σ × 2e × vec _ length = N × R × bank _ num
This equation can be simplified as:

€

P ×σ = N ×
R
2e

with P and N are non-zero positive integers.

Then, based on this equation, P can be calculated as:

€

P =
LCM(σ, R

2e
)

σ

€

total_conflict = conflictk × warp_ numk
k=0

P −1

∑

 42

Figure 5.2 an example

Figure 5.2 is an example. After replacing i with P , the offset[P] becomes:

offset[P]= offset[0]+ LCM (σ , R
2e
)×2e × vec_ length

= offset[0]+ N × R
2e
×2e × vec_ length

with N × R
2e
= LCM (σ , R

2e
) . This indicates that:

€

mod(offset[0],R × bank _ num) ≡mod(offset[P],R × bank _ num)
Based on this observation, the algorithm uses three steps to obtain the final conflict

number:

• Obtain the conflict estimation of the P distinct cases. To get the offset of each

cases, it defines sub_offset as:

sub_offset =mod(offset, stride×bank _num)
Then each offset can be obtained through:

offset[k]= sub_offset + k × stride×bank _num , with k = [0,...,P)

Then the in-layer offset can be obtained by:

offset _ in_ layer[k]=
mod(sub_offset + k × stride×bank _num,R×bank _num)

with k = [0,...,P)

• Calculate the warp number that belongs to each case k, k = [0,...,P) .

• Get the overall conflict number by:

 43

Column-major Bank Mapping Function

 For column-major bank mapping function, when an offset makes a vertical shifting

among different rows in a layer, it impacts the conflict number. Horizontal shift only

moves conflicts from one bank to the other bank, so it doesn’t change the conflict

number. We define vertical row offset as:

€

offset _ row[i] =mod((offset _ row[0]+ i × stride × vec _ length),R)
Since vec_length and R are power-of-two and vec_length is larger than R , we have

€

mod(i × stride × vec _ length,R) ≡ 0
This indicates that for any value of i and any value of stride, it has

€

mod(offset _ row[i],R) ≡mod(offset _ row[0],R)
Then, the overall conflict number can be obtained by:

total _ conflict = conflicto ×warp_num

5.1.2 2D Access Analysis and Algorithm

 Similar to 1D solution, for multiple warps that access memory in 2D patterns, it goes

through these steps to obtain the overall conflict number. In section 4.4, when we

calculate conflict number for 2D single vector access, the conflict degree is calculated for

offset ∈ [0,W
M
×bank _num) , and the results are stored in a table. This table can be

reused here to look up the conflict number for a certain offset. Here we divide 2D access

patterns into two categories, and then discuss the solution for each of them.

1. for a 2D access pattern <stride_x, repeat_x, stride_y, repeat_y>, when repeat_x is less

or equals to vec_length, we use four steps to obtain overall conflict number:

Calculate P as:

P = lcm(scope_of _single_warp_ access,R×bank _num)
scope_of _single_warp_ access

€

total_conflict = conflictk × warp_ numk
k=0

P −1

∑

 44

• Then for each distinct k ∈ [0,...,P) , calculate the offset _ in_ layer[k] and look up

the conflict table to get the conflict.

• Calculate the warp numbers that belongs to case k = [0,...,P)

• Sum up the overall conflict number:

2. When repeat_x can be divided by vec_length:

• For each warp i in the first dimension stride access, i ∈ [0,..., repeat _ x
vec_ length

) , use

following four steps to calculate the total _ conflict[i] :

o Calculate P which is the number of distinct offset cases;

o Calculate conflict for each k = [0,...,P) ,

o Calculate the warp number that belong to case k = [0,...,P)

o Summary the conflict numbers and save as total _ conflict[i] :

total _ conflict[i]= conflictk ×warp_numk
k=0

P−1

∑

• Finally, use a reduction to get the summary of elements in array total_conflict,

which is the total conflict number.

5.2 “for” Loop Wrapped Single Access Expression

5.2.1 Motivation

 “for” loops are frequently used to increase the workload of each thread. Figure 5.3

shows two loop examples. In each of them, iterate variable i is used to change the

memory access offset for current iteration. In case (a), the offset increment of each

iteration is the first dimension length of array A; in case (b), it is the value of blockDim.x.

€

total_conflict = conflictk × warp_ numk
k=0

P −1

∑

 45

Figure 5.3 Examples of for loop wrapped memory accesses

 Given the solution for single expression conflict estimation, a basic method is to

estimate conflict for each iteration, and then get overall conflict number through a

reduction. However, the workload of this solution depends on the loop iteration number.

For kernels that have large number of iterations, it is not a practical static processing. The

ideal solution should be able to complete the analysis within a certain period which

doesn’t depend on the iteration number.

5.2.2 Solution

 Given the solution of multiple warp analysis, similar solution could be used to deal

with memory access with “for” loop wrappers. We use function lcm() to find distinct

iterations that have different offset from one another, and then calculate the overall

conflict. This helps to optimize the workload from O(iteration_number) to

O(elem_number_per_layer). The first one depends on application kernel design, and the

later one depends on memory bank architecture. The algorithm uses four steps to obtain

the final result:

• Obtain the number of distinct iterations as P :

•
P = LCM (iter _offset _ increment,bank _num×R)

iter _offset _ increment
• iter_offset_increment denotes the offset increment for each iteration.

• For P distinct cases, get the offset of each cases.

• Calculate the iteration number that belongs to each case.

• Get the overall conflict number by:

€

total_conflict = conflictk × iter _ numk
k=0

P −1

∑

 Figure 5.4 is an example. There are totally 10 iterations, and P is 3. Then, for k = 0

, there are 4 iterations; for k =1 , there are 3 iterations; and for k = 2 there are 3

 46

iterations. For row-major bank mapping function and col-major bank mapping function,

the methods used to calculate offset[k] (k = [0,...,P)) are different.

Figure 5.4 An example of loop which has 10 iterations, and P=3

 For 2-level nested loops, this solution can be extended in similar way. Firstly, the

conflict of the inner loop is calculated by the introduced method. Then, the P for the outer

loop is calculated, and conflict of each case k = [0,...,P) is calculated. Finally, the overall

conflict number of the 2-level nested loop is calculated. For other multi-level loops, as

long as the iterate variable has similar impact on the memory access offset, they can be

analyzed in the same way. The execution time depends on Loop level number and one

layer size of all banks: the single expression analysis is executed for P0 ×P1 ×...×Pi−1

times, with Pi ≤ bank _num×
W
M

 (i ∈ [0,..., l)), and l is the loop level number.

5.3 “If” Condition Wrapped Single Access Expression

5.3.1 Motivation

 In GPU kernels, “if” statement is sometimes used to filter threads and only some

threads are allowed to execute.Figure 5.5 is an example: the code has a branch and two

groups of threads do different jobs: the first group visits array A, and the second group

visits array B.

 47

Figure 5.5 An example of “if” statement used to filter the threads by thread ID

 These thread filter conditions are designed according to the purpose of the program.

It means that the boundary of work threads and idle threads could be anywhere and it is

not guaranteed to be aligned to vec_length. When this happens, the proposed conflict

estimation method is not applicable any more. One basic problem is related to gcd(stride,

bank_num). In chapter 4 the result of this function is used to estimating conflict degree.

When vector access length is random instead of equal to bank number, gcd(stride,

bank_num) cannot be used for this purpose any more. To design a proper method, we

need to study row-major bank mapping function and column-major bank mapping

function separately. For each of them, a routine is designed for bank conflict estimation.

5.3.2 Solution

Divide Threads into Groups

 First of all, for a “if” statement that allows m threads to execute, these threads could

be divided into 3 potential groups:

• 1st group (G1): thread number is less than vec_length and the threads belong to

the later part of a vector. (Figure 5.6 (a))

• 2nd group (G2): thread number can be divided by vec_length, and thread index of

the first thread is aligned to vec_length (Figure 5.6 (b))

• 3rd group (G3): thread number is less than vec_length and the threads belong to

the first part of a vector. (Figure 5.6 (c))

For example, when a thread group’s thread number is less than vec_length, and the first

thread’s index is vec_length aligned, it has one group which is G3. For a thread group

that has thread number more than vec_length and the first thread’s index is not aligned to

 48

vec_length, it could have two groups {G2, G3}, or three groups {G1, G2, G3}. For a

thread group that has more thread number than vector length and starts from an aligned

thread ID, it has two groups {G2, G3}.

Figure 5.6 Dividing threads into groups

Bank conflict for groups G2 can be calculated by existing solutions. For the group G1

and G3, solutions are designed as following.

Estimating Conflict for G1 and G3.

 For row-major bank mapping function, when stride is odd, there is no conflict.

When stride is even, the offset in current layer is calculated, and then the stride family

parameters σ and 2e are calculated.

1. When thread number is smaller than bank _num
2e

, the scope of the visit can be

calculated as:

€

visit _ scope = stride × thread _ num =σ × 2e × thread _ num
<σ × 2e × bank _ num /2e =σ × bank _ num

As we know, for a stride

€

S =σ × 2e , the visited layers can be divided into chunks each of

which has σ rows. Inside each chunk there is no conflict. Since this visit_scope has only

σ rows, it has no conflict.

2. When thread number is larger or equals to bank _num
2e

, there could be conflicts.

1) When bank number can divide the stride, it means that all visited sites lie in the same

bank:

 49

a) If the stride can be divided by bank _num×R , it means that all visited elements

lie in different layers, and the conflict number equals to the thread number.

b) Otherwise, there is at least one visit in each layer. For this case, we can calculate

the layer number that contains visited sites.

2) When bank number cannot divide the stride, we calculate the layer number that has

been visited. Combined with the value ofσ, we can calculate the conflict degree.

 For column-major bank mapping function, as introduced in appendix A, the

existence of conflict is calculated between every two rows that have different indices,

when there is conflict, an index difference of x and y exists (x and y are the indices of

visit sites in each row). The value of this difference needs to be smaller than the visiting

scope of a vector access. Here, when the thread group has less thread number than

vec_length, after the index difference is obtained, it needs to be inside the scope of

current visiting area. In conclusion, after the condition for the visiting scope check is

changed accordingly, the original algorithm can be reused. For even stride, the problem

can be transformed to either the odd stride problem, or the conventional low-order bank

mapping problem,

5.4 “for-if” Statement Wrapped Single Access Expression

5.4.1 Motivation

 In some kernels, “for-if” combination is used to allow different amount of threads

work in different iterations. Basically, the iterate variable is used as the condition in the

“if” statement which filter the threads by thread indices. An example is shown in Figure

5.7. Such code is normally used to process array data by an increasing/decreasing number

of threads.

 50

Figure 5.7 An example of “for-if “wrapped single expression access

 A basic method is to estimate the conflict number of each iteration one after another.

With existing solutions, for each iteration, estimating conflict number does not depend on

the thread number. However, the time complexity for processing all iterations depends on

iteration number. Since the iteration number is determined by kernel design, this solution

is not practical. The ideal solution should have relatively bounded execution time no

matter how many iterations the loop has.

5.4.2 Solution

 By studying the threads activities of all iterations, we can find clues to reduce the

workload of conflict estimation. Figure 5.8 is a figure of thread activities across all

iterations. The Y direction is the iteration index. The X direction is the thread index. In

this example, since the iterate variable (i = [0,...,15]) is used as the boundary of active

thread index, the maximum index of active threads is 15.

 For this example, assume the bank number and vec_length is 4, there are:

• 28 vec_length aligned accesses (In the figure, the start point of each aligned

vector access is marked by “*”).

• 4 of single-thread accesses;

• 4 of double-thread accesses;

• 4 of triple-thread accesses.

 51

Figure 5.8 the example of “for-if “ wrapped 1D array access

Through this example, we know that by counting the number of vector accesses which

have same length x (x = [1,...,vec_ length]), the final conflict result can be obtained by a

reduction:

€

total_conflict = Ci × conflicti
i=1

vec _ length

∑

conflicti is the conflict number of the vector access that has i active threads. Ci is the

number of vector access which length is i . The time complexity of this method doesn’t

depend on the iteration number; it is only related to the vec_length which is determined

by hardware design. This method requires a preprocess procedure to calculate Ci (

i = [1,...,vec_ length]). As shown in Figure 5.8, there are certain distribution patterns for

these vector accesses, and it is not hard to calculate. Algorithm 5.1 describes the method:
algorithm 5.1 for_if_analysis
Input: bank_num, W, N, M, stride, offset
Output: res -- bank conflict number.
//---
 if iter_num <=vec_length)
 conflict_sum = frac_1D_single_block(); //calculate fractional warp access conflict

 52

 else
//calculate max warp aligned access number for one iteration.
 int line_max_aligned_num = iter_num/vec_length - 1;
 //calculate distinct offset case number
 sample_num = distinct_case_num (vec_length, stride, W,
elemSize, bank_num, line_max_aligned_num);
//calculate repeat number of each case:
 for (int i=0; i<sample_num; i++)
 num_per_case[i] = get_case_repeat_num(line_max_aligned_num, sample_num);
 end for

 for (int i = 0; i < sample_num; i++)
 cur_conflict=single_block(bankNum, W, N, gridInfo, blockInfo,
 arrayInfo, pad);
 total_conflict_num = get_case_conflict(cur_conflict, num_per_case);
 end for
end if

Figure 5.9 Analysis of the example of “for-if “scenario for 2D triangular access

 When array is 2D, and the “for-if” filter is used access a triangular area, it becomes

more complex to calculate the number of vector accesses that have same thread number.

Figure 5.9 shows an example for this case (The vertical direction is the iteration index,

the horizontal direction is the active thread index). In this figure, the vector accesses that

use part of a vector/warp are marked in blue, light blue, and purple. For each of these

 53

colors, the distance between consequential two vector accesses is constant. It means that

we can find a P (distinct case number) and then get the total conflict number.

 For the vector accesses that use all threads of a warp, they appear periodically in two

dimensions: one is in the diagonal direction, the other is in the vertical direction.

Following steps can be used to calculate the total conflict:

1) Calculate Pd , calculate Pv .

2) For each case j (j = [1,...,Pv])

a) Calculate conflict for Pd cases;

b) Calculate repeat times of case k (k = [1,...,Pd])

c) Calculate conflict summary of k cases and save in conflict _ d[j]

3) Calculate summary of array conflict_d, which is the final result.

 The proposed method calculates Pd which denotes the distinct case number in

diagonal direction, and Pv which denotes the distinct case number in vertical direction.

For the example in figure 5.12, the Pd in this direction is 2, and Pv is 3. In the second

step, for each k in [1,.., Pv], calculate the conflict summary in diagonal direction. In the

final step, add up all the conflict numbers and get the final conflict result. For the

example in figure 5.12, all of the dark orange warps have same access pattern and same

conflict number; all the green warps have same access pattern and same conflict number.

The repeat number of each color can be calculated given Pd , Pk , and iter_num.

5.5 Summary

 This chapter presents the conflict analysis of single array access expression. In the

GPU programming model, one expression can drive many threads from different warps

to visit memory. In addition, by using “for” loops, “if” condition thread filter, or “for-if”

combination wrapper, the program can control the working thread number and control the

area to be visited. This chapter presents the solutions for these scenarios. By studying

how the access offset varies for different vectors/warps and for different iterations, the

 54

proposed methods can realize conflict analysis while its time complexity is independent

of warp number and iteration number. With these solutions, now we can process the array

access expressions in a kernel one after another.

 55

CHAPTER 6 PARAMETER OPTIMIZATION STRATEGY

 In this chapter, the parameter optimization strategy is presented to obtain the optimal

or sub-optimal inter-padding size, intra-padding size, and bank access bit-width. Based

on the conflict analysis modules introduced in chapter 4 and chapter 5, this parameter

optimization procedure looks for an optimal or sub-optimal data layout solution for all

arrays in a kernel. Section 6.1 introduces the parameter optimization space. In this space

each solution could have different value of inter-padding size, intra-padding size, and

bank mapping functions. Section 6.2 studies the impact of offset on conflict number; this

information is helpful for inter-padding size optimization. Section 6.3 studies the

potential intra-padding size searching boundaries. It helps to clarify the maximum

workload size for intra-padding size optimization. In section 6.4, the overall framework

of parameter optimization engine is presented, and some related optimizations are

discussed.

6.1 Parameter Optimization Space

 As mentioned in chapter 3, this space is three-dimensional in that the bank mapping

function, the inter-padding size, and the intra-padding size varies. Each of these

parameters is related to one another and could have impact on each other. For example,

for different bank mapping function, to eliminate conflict, the optimal intra-padding and

inter-padding size could be different; by changing the intra-padding size of one array, the

base address of other arrays could be changed and in turn the inter-padding size for them

could be different.

 There are limitations related to this parameter optimization space. First of all, bank-

mapping function is unique for a whole kernel. In other word, all arrays of same kernel

share the same bank access bit-width. Secondly, intra-padding of an array impacts all

accesses of this array. So the decision of intra-padding size needs to be made based on

the overall conflict number of this array. The available memory size is limited, which sets

 56

a limitation for inter-padding and intra-padding size optimization. These limitations

impact the structure of parameter optimization engine.

6.2 Inter-padding Optimization

6.2.1 1D Strides

 Inter-padding changes the array base address by adding dummy space in front of the

array. As mentioned in chapter 4, for the conventional mapping function, offset has no

impact on conflict degree. However, for dynamic bit-width bank access, offset could

cause extra bank conflict. Figure 6.1shows the impact of offset. The vertical axis is

conflict degree number; horizontal axis is even stride value, and depth axis is offset

varies from 0 to 40. As shown in this figure, for some strides, conflict degree changes

when offset value increases. In this section, the offset impact for row-major bank

mapping function and column-major bank mapping function are briefly described. The

purpose is to (1). Figure out the cases for which the inter-padding doesn’t change conflict

number; (2). Understand the potential padding size boundary. This is helpful to

understand the inter-pad optimization workload and to reduce the workload.

Figure 6.1 offset impacts on conflict number

 57

Row-major Bank Mapping Function

 For this mapping function, odd strides cause no conflictfor any offset. For even

strides, we divide them into two categories: power-of-two strides, and other even strides.

Power-of-two strides

 When stride ≥W
N

, the scope of current vector access is layer-size aligned. This can

be proved bymod(vec_ access_ scope, layer _ size) = 0 . Figure 6.2 (a) is how conflict

degree changes with increasing offset. In this figure, layer _ size =W
N
×bank _num , and

conflict0 is the conflict degree when offset = 0 . When stride <W
N

, the vector visiting

scope is smaller than a layer. Then there are three ranges (as Figure 6.2 (b)).

Figure 6.2 impact of offset on conflict degree for power-of-two strides

Other even strides

 For other even strides, we calculate the parameters in stride family expression

σ ×2e , with e > 0 , and σ = {3,5, 7, 9,11,...} . It has following features:

• Its visit scope across σ ×2e rows; among every σ rows, there is no conflict.

• The shortest distance between a conflict pair is:

o vec_ length
2e

× stride = vec_ length×σ in unit of element;

o and σ in unit of row;

 58

• Each element conflicts with 2e −1other elements.

Figure 6.3 is an example. When stride = 6 , the first three rows has no conflict, and the

next three rows also have no conflict. Whenσ >
W
N

, each of the visited sites that conflict

in the same bank is located in a different layer. It means that applying any offset cannot

change the conflict degree. Otherwise, the conflict needs to be calculated.

Figure 6.3 Conflict of stride=3, W=8, N=4, M=4

In conclusion, for even strides, when it is power-of-two, the offset impacts the conflict

number, and the conflict need to be calculated for each different offset. For other even

strides, when σ >
W
N

, the offset has no impact on conflict degree; otherwise, the conflict

needs to be calculated for each different offset. Whenever inter-padding size

optimization is necessary, the maximum padding size is layer _ size−1 (layer_size is the

number of elements that can be stored in one layer of all banks).

Column-major Bank Mapping Function:

 For this bank mapping function, in each layer, the data is mapped to banks in

column-major direction. Each column is one layer of one bank, which can host W
M

elements. For each pair of elements that conflict, when an offset is added, two elements

might get different shifting distances in column direction and in horizontal direction.

Remember in chapter 4, when calculate bank conflict for column-major bank mapping

function, we consider R = W
M

cases: case i starts its visit from ith row. For each case i ,

the first R visited sites are calculated as saved for further usage. Here, when an offset is

added, we can obtain the new start row index as i ' =mod(offset + i,R) . Then the conflict

 59

result becomes as same as the case i except that conflicts is shifted in horizontal direction.

Figure 6.4 is an example withR = 4 . After adding an offset, it has:

i ' =mod(i+offset,R) =mod(i+ c,R) i=3,c=2! →!! i ' =1
The new conflict pattern is of i ' =1 and is shifted to the right. This means the maximum

offset we need to check isR .

Figure 6.4 Map the conflict pattern of a offset to one of R known distinct cases

6.2.2 2D Strides

 For both row-major mapping function and column major bank mapping function, the

solution is to reuse the single vector conflict table (introduced in section 4.3.2) to

calculate conflict for different offset values.

6.3 Intra-padding Optimization

 Intra-padding optimization is looking for a stride that causes no conflict or least

conflicts. With padding, the array layout is changed, and the memory access stride is

changed as well.

 In this procedure, one of the concerns is about the upper bound of the intra-padding

size searching. Normally the padding size is small when it reaches the goal. In this

 60

section, we briefly discuss the padding size upper bound. This is helpful to understand the

workload of the intra-padding optimization.

6.3.1 1D Strides

 Row-major Bank Mapping Function:

 Figure 6.5 is how conflict degree varies when stride changes. As mentioned, when

the stride is odd, there is no conflict. For any even stride, by replacing it with the first odd

stride that is larger than it, the conflict degree is reduced to “1”.

Figure 6.5 Conflict degree examples for row-major bank mapping function

Column-major Bank Mapping Function:

 Figure 6.6 shows how conflict degree changes while stride increases. Different from

row-major bank mapping functions, both even and odd strides could cause conflict.

However, in chapter 4, we mentioned that there are even strides that only access elements

that are located in the first row of each layer. In table A-1-5, this case is described and its

conflict estimation method is presented. Basically, when stride is larger than σ ×R (

M
WR = , andσ = {1,3, 5, 7, 9,11,...}), the visits locations are fall into the first row of all

layers, and the problem is transformed to the one of conventional bank mapping function,

 61

with stride is replaced by stride
R

. An example is R = 2 , stride = 6 andσ = 3 : all visited

sites lie in the first row of layers, and it becomes an odd stride access on conventional

interleaved banks.

 This knowledge helps to determine the intra-padding size searching upper bound.

For any stride, we can locate the next stride equals toσ ×R , for which the conflict degree

is 1. The distance between two such zero-conflict strides is

σ 2 ×R−σ1 ×R
σ 2−σ1=2# →### 2×R

 It means that when current stride causes conflict, the maximum padding size upper

bound is2×R−1 . In figure 6.6, the case (a) has R = 2 and the padding upper bound is 3;

(b) has R = 4 and padding upper bound is 7; (c) has R = 8 and the padding upper bound

is 15.

Figure 6.6 Conflict degree examples for column-major bank mapping function

6.3.2 2D Strides

 Basically, for row-major bank mapping function, the intra-padding size upper bound

equals to bank_num. Given a 2D stride <stride_x, repeat_x, stride_y, repeat_y>, we

 62

denote the index of one element as <idx_x, idx_y> (idx _ x = [0,..., repeat _ x −1] , and

idx _ y = [0,..., repeat _ y−1]). When the conflict happens between a pair of elements that

belong to different idx_y, the horizontal distance between these two elements is periodic

and the period is bank_num. For example, when the horizontal difference of two sites is

3, andbank _num = 32 , after adding 32 to the distance between them, the horizontal

difference of these two sites becomes the same. Intra-padding size optimization is to find

the padding size that eliminates a conflict pair by changing the horizontal distance. This

means that the maximum intra-padding size should be less than bank_num.

 For column-major bank mapping function, the upper-bound isbank _num×W
M
−1 .

The reason is similar. After the stride is added by bank _num×W
M

 (which is also the

number of elements that can be stored by one layer), the horizontal distance between a

pair of conflict elements remains the same. So, the maximum padding size should be less

than this.

6.4 Parameter Optimization Algorithm

 Figure 6.7 is the framework of the parameter optimization procedure. The outer

most loop iterates over different bank access bit-width. Then, for each array, an initial

investigation is used to collect information, which will be used for inter-padding and

intra-padding size optimization. When optimize the intra-padding size, a range of

padding sizes are applied to this array, and the corresponding conflict number is

calculated and stored the in the intra-padding option list of this array. (If multiple arrays

have same access pattern, only the first one is processed, and other array can share the

same padding size.) After obtained the intra-padding option lists for all arrays, the next

step is to find a solution that meet following requirements:

1) The total memory size used by intra-paddings of all arrays is within the maximum

free memory size.

2) For each array, this solution gives an optimal or sub-optimal intra-padding solution.

 63

The procedure is in the left-bottom part of Figure 6.7. Normally the option number for

each array is relatively small, and we can calculate the final solution by exhaustive

enumeration. Otherwise, extra strategies need to be adopted to reduce the workload.

Figure 6.7 Parameter optimization strategy

 After intra-padding sizes of all arrays are determined, the inter-padding is used to

reduce the remaining conflict. This intra-first-inter-second padding strategy was

mentioned in [54], and it is adopted here. Before intra-padding optimization, a certain

size of memory is reserved before intra-padding size optimization. After intra-padding,

following steps are used to determine the optimal offset for each array:

1) Get an array,

a) If it is the first array, apply the intra-padding and update the variable

overall_offset to denote the first position after this array. If there is any array left,

go to 1; otherwise, go to 5.

b) Otherwise, apply the intra-padding, and go to 2.

 64

2) Update array’s offset based on the current value of overall_offset;

3) Looking for the optimal offset for this array, which is the dummy variable size need

to be inserted before it;

4) Update the value of overall_offset (including intra-padded size of current array and

dummy variable size inserted for this array). If there is any array left, go to 1;

otherwise, go to 5.

5) Terminate.

 When generating intra-padding option list for each array, if the conflict number of

the current padding size is larger than the previous one, it is ignored; otherwise, the

padding size and the conflict number are stored by pending it to the end of the option list.

This strategy guarantees that the option list has following two features:

1) The conflict number decreases while node index increase;

2) The padding size increases while node index increase.

These features can be used to reduce the workload of intra-padding size optimization.

Following two methods use of this information to find optimal or sub-optimal intra-

padding solution for all arrays from their option lists.

Method One

 Figure 6.8 is an example illustrating the first method. In this figure, there are three

arrays: A, B, and C. for each array there are multiple padding options saved in a list. The

first step is to find the array that has maximum number of options, and save this option

number as max_option_num. For other arrays, by repeating the last (optimal) option,

extend their list to have max_option_num elements. In figure 6.9, the horizontal direction

is the option index. For each index i, there is a column in which there is one option for

each array. Here we denote this column as a set G. If any option in G moves to the left,

then the total conflict of G increase, and the total pad size decrease; if any options in G

move to the right, the conflict number of G decrease and the total pad size increase.

 65

Figure 6.8 Option one: Strategy to reduce workload for intra-padding optimization

Based on this observation, we start from i =max_option_num−1 to i = 0 to find the first

column G (column in green in Figure 6.8) that can be satisfied by available memory size.

Then, denote the next column on the right as Gb (column in orange in Figure 6.8), which

is the last column that needs memory space larger than the free memory size.

• Option one: Between Ga and Gb, there are some candidates that can be used as the

final solution. An example is shown in Figure 6.9. In this figure, there are 3

arrays. Between Ga and Gb and including Ga, there are 7 options.

• Option two: Start from padding options in Gb, always chooses the pad that is

acceptable (not exceed the available memory size) and can reduce conflict

number most.

Figure 6.9 Candidate solutions in area of two columns

For both options, by including more neighbor columns in the candidates’ area, the

number of solution candidates increases. It helps to avoid missing the solutions in which

the options are far away from each other in horizontal direction. We need to consider the

 66

balance between choosing the width of candidates’ area and the execution time. The

simplest solution is to directly take Ga as the final solution. It is the fastest, and good for

the case that intra-paddings for all arrays can be accepted. However, for other cases, it

has higher risk of missing better solutions.

Method Two

 The second option is a greedy method. Figure 6.10 is an example illustrating the

procedure. It starts from the left most column and take it as the front edge of

optimization. The options in the column are called the nodes on the front edge. At the

beginning, in the first column, it looks for the array that can reduce maximum number of

conflict, and accept it. For this array, move the front edge node one step ahead. Then for

this updated front edge, repeat the same action, until either the conflict numbers of all

arrays are zero, or the free memory space is used up. This procedure also can be refined:

for current front edge, after find the best step, it can hold to see whether there is any

option combination that is better than this option. “Better” means that it uses less memory

space but reduces more conflicts. For the example in Figure 6.10, after step 0, the next

option for array A can reduce conflict by “7”, which is the maximum number among “7”,

“5”, and “4”. However, since the combination of options for array B and C is “9” which

is better than A’s, the front edge nodes for B and C will be moved ahead instead of taking

the option for A. Here the combination size (array number in one combination) is the key

fact that impacts computing time. If more combinations are considered, then the

workload increases dramatically.

 67

Figure 6.10 Option two: Strategy to reduce workload for intra-padding optimization

Optimization by Progressive Strategy

 As mentioned in this section, the outer most loop iterates over all bank access bit-

width. This could be a fact that hurt the intra-padding size optimization efficiency. An

example is the application 3DFD (This application is described in section 7.1). Using the

introduced padding size optimization method, we found the first option with zero-conflict

is< N = 4, pad = 24 > . It means that 24 different padding sizes are tested to get this result.

The second option is< N = 8, pad = 0 > , which the first option is when bit-width is 8B.

Between these two candidates, the second one is normally more preferred than the first

one because:

• It is the first option for N = 8 which is easy to find when N equals to 8,

• It needs no extra memory.

 To reduce the workload, one optimization is to divide the padding size lookup scope

into pieces [range0… ranget], and progressively looks for the solution. Firstly, for

different N, calculate the conflict for each padding size in range0. If the final intra-

padding solution for all arrays can be found, then the parameter optimization procedure

ends. Otherwise, calculate conflict for each padding size in range1 and look for solution

in range0 and range1. If no solution is found, extend to next padding range until the

solution is found or the padding exceeds the valid range. Since normally the padding size

is small, then the padding = [0,1, 2] can be used as the first range.

 68

6.5 Summary

 This chapter describes the parameter optimization procedure. Different bank access

bit-widths are enumerated one by one in the outer most loop of this procedure. Intra-

padding size is optimized inside a valid padding size range, and multiple candidates are

stored a list for each array. From these lists final intra-padding solution for the whole

kernel is derived. After that, inter-padding is used for further conflict optimization. Intra-

padding size optimization is realized by two strategies. The first one looks for a potential

candidate’s area and select final solution from it; the second one reduces conflict step by

step by always choosing the best-known option. Finally, the valid intra-padding range is

divided into pieces. By looking for the solution progressively, it can found small intra-

padding solutions more quickly.

 69

CHAPTER 7 APPLICATION STUDY

7.1 3DFD

 In this kernel, there is a 2D array allocated in shared memory. This buffer is used to

save intermediate calculation results. The code structure is as in Figure 7.1. The code

accesses array data in 2D rectangular access pattern, and warp accesses a 2D data block.

The different array accesses in the code have different offsets in X and Y direction.

Figure 7.2 is an example of this access pattern.

Figure 7.1 Kernel structure of 3DFD

Figure 7.2 Memory access pattern of 3DFD

 70

7.2 ConvolutionSeperable: convolutionRowsKernel

 This kernel allocates a 2D rectangular array in shared memory. Firstly, through a

“for” loops data are read from global memory to shared memory. After thread

synchronization, a 2-level nested loop computes the results. In the loop body, the array in

shared memory is used as input for the calculation. The code structure is shown in Figure

7.3, and the access pattern is shown in Figure 7.4. The loop in this application is different

from the one in 3DFD: the iteration variable is used in array sub-index function. For

different iterations, the access offsets are different. As mentioned in section 5.4, conflict

numbers of the P distinct iteration cases are calculated, then the finally conflict number

are calculated through a reduction.

Figure 7.3 Kernel structure of convolutionRowKernel

Figure 7.4 Memory access pattern of convolutionRowKernel

 71

7.3 ConvolutionSeperable: convolutionColKernel

 Similar to the kernel in 7.2, this kernel allocates a 2D array in shared memory and

uses 2D warps to access the array data (Figure 7.5). The code structure is also similar to

the kernel in section 7.2. The main difference lies in the nested computation loop: the

column-major access pattern is used to get data.

Figure 7.5 Memory access pattern of convolutionColKernel

7.4 Transpose: TransposeCoalesed, TansposeDiagonal,
TransposeFineGrained

 In these kernels, a 2D array is allocated in shared memory. This array is read and

written in a 2-level nested loop. The iteration variable of the outer loop has no impact on

array access addresses. For the inner loops, the iteration variable is used in array sub-

indexing expression. The 2D array is mainly used to avoid the penalty of un-coalesced

global memory access. For the first inner loop, the 2D warp reads 2D block of data in

row-major pattern, which causes no conflict. For the second inner loop, the array is read

in column-major direction, and it causes conflicts. The code structure is shown in Figure

7.6 the main features of these kernels.

 72

Figure 7.6 Kernel structure of TransposeCoalesed

Figure 7.7 Memory access pattern of TransposeCoalesed

7.5 Transpose: TransposeCoalesedGrained

 As same as kernels in section 7.4, a 2D array is read and written inside a 2-level

nested loop. This array has a pad which size is 1. The outer loop’s iteration variable has

no impact of array access; for the inner loop, the iteration variable is used in array sub-

indexing expression to change offset. For both the first and the second inner loop, the 2D

warp read 2D block of data in row-major direction.

7.6 shfl_scan: shfl_vertical_shfl

 In this kernel, a 2D array is allocated in shared memory. This array is read and

written inside a loop body, the iteration variable has no impact of array access. There are

 73

multiple access patterns used to visit the array elements (Figure 7.9). 1D warps access

data in column-major direction (pattern A), and 2D warps access data in row-major

direction (pattern B). The code structure is shown in Figure 7.8.

Figure 7.8 Kernel structure shfl_vertical_shfl

Figure 7.9 Memory access pattern shfl_vertical_shfl

7.7 lud: lud_diagonal

 In this kernel, a 1D thread block visits the columns of a 2D array in shared memory.

Memory operations are warped by “for” loops, and “if” condition statement. For the “for”

loops, their iteration variable could have or not have impact on sub-indexing functions.

The “if” statement impacts the conflict number by allowing different set of threads to

access the data in shared memory. The code structure is shown in Figure 7.10 lists the

main features of this kernel.

 74

Figure 7.10 Kernel structure of lud_diagonal

7.8 lud: lud_perimeter

 In this kernel, a 1D warp is used to visit rows or columns of a 2D array allocated in

shared memory. The thread block has only one warp: an “if” condition statement divides

it into a group of the first 16 threads and a group of the remaining 16 threads. Each group

visits array rows or columns. The code structure is shown in Figure 7.11 lists the main

features of this kernel.

 75

Figure 7.11 Kernel structure of lud_perimeter

7.9 NW

 In this kernel, multiple 2D arrays are allocated in shared memory. Shared memory

operations are warped by “for” loop, “if” condition statement, and “for-if” combination.

For the “for-if” wrapped cases, the data is accessed in diagonal directions (Figure 7.13).

The code structure is shown in Figure 7.12 lists the main related features of this kernel.

 76

Figure 7.12 Kernel structure of nw

Figure 7.13 Memory access pattern of nw

 77

7.10 Summary

 This chapter introduces the applications that are used to test the proposed

optimization tool. These applications are selected from RODINIA and NVIDIA CUDA

SDK. Some of them are commonly used benchmarks that are helpful for understanding

typical computation workload and testing devices such as GPUs. The performances of

these kernels are suffered from shared memory bank conflict penalty. Basically, these

kernels perform 1D/2D accesses to arrays, and some kernels have multiple arrays. They

also include cases that uses “for” loop, “if” condition thread filters, and “for-if”

combination to control the memory accesses.

 78

CHAPTER 8 PERFORMANCE EXPERIMENTS

 In this chapter we test the performance and efficiency of proposed analysis tool.

Section 8.1 includes three basic experiments that test the execution time of conflict

analysis modules. Section 8.2 presents the optimization results of 13 kernels by using

proposed analysis tool. The platform info is as following:

• GPU device: Tesla K20c,

o Shared memory:

§ 49152B per SM;

§ Bank number is 32;

§ W is 8B.

o Warp size: 32 threads.

o Compute capability: 3.5

• Programming model: CUDA 5.0

• Profiler: NVIDIA NVPROF, release 5.0

8.1 Conflict Analysis Time Experiments

 In GPU programming model, many threads execute in parallel according to one

GPU kernel. When memory bank conflict is the bottleneck, it would be helpful to have a

static bank conflict analysis tool that can find an optimization solution within a limited

period. In this section, three experiments are used to test the conflict analysis time.

 The first experiment exams the analysis execution time of multi-warp memory

access. Figure 8.1 (a) is single warp 1D stride analysis execution time. The x-axis is the

stride value, and the y-axis is the execution time. As it shows, the analysis time is related

to stride value. For existing GPU devices that support dynamic bank access width

(W=8B), when multiple warps share same 1D even stride, they have the same in layer

offset. It means that the overall conflict number can be obtained by

conflict0 ×warp_num (conflict0 is the conflict number of warp 0). Then we don’t need

 79

to test 1D stride multi-warp analysis time. Figure 8.1 (b) is an experiment of 2D stride

analysis efficiency. The x-axis is the thread number (the increasing step is 32, which is

the thread number per warp); the y-axis is the execution time. For 2D stride cases, each

warp might have different in-layer offsets. The distinct case number P needs to be

calculated and then the final conflict number is obtained. As it shows, the execution time

remains relatively constant. The reason is that the value of P remains the same no matter

how warp number increases.

 Normally GPU kernels are executed by many thread blocks. Each block has its own

shared memory space and usually uses shared memory in similar way. For such kernels,

the proposed tool only needs to analysis one block, and other blocks can share the

solution to improve performance.

Figure 8.1 analysis module execution time.

 The second experiment tests the analysis efficiency of “for” loop wrapped memory

accesses (To simplify the experiment, we use strides that are power-of-two. For other

 80

even stride and 2D strides, the loop analysis routine works in same way.). Two loop

examples are shown in Figure 8.2. In the first example memory accesses are warped by a

“for” loop and the iteration variable has no impact on memory addressing. For this case,

the bank conflict analysis is performed once for the first iteration and then the overall

bank conflict number can be calculated.

Figure 8.2 Loops used to test conflict estimation tool

 In the second example, the iteration variable impacts the memory access address by

adding an offset which depends on the iteration variable. For example, for iteration

variable i , the extra offset could bea× i+ b . For this case, since different in-layer offset

could make conflict number different, the tool use the function lcm() to calculate the

number of iterations each of which has distinct in-layer offset. Then the overall conflict

number is calculated without enumerating all iterations.

 The test result is shown in Figure 8.6, Figure 8.4, Figure 8.5, and Figure 8.6. The

chart in Figure 8.3 is the original program execution time. The x-axis is the loop iteration

number; the y-axis is execution time in ms, the execution time increases linearly to

iteration number. Charts in Figure 8.4 are the performance of conflict estimation

reference code, which calculates conflict number by calculating bank index and layer

index of every single memory access. As expected, the time consumed is linear to

iteration number, and it is up to 60ms when iteration number is 1000. Charts in Figure 8.5

are similar to charts in Figure 8.4 except that the proposed conflict analysis method is

used to analysis each iteration. Compares to Figure 8.4, the execution time is obviously

shorter. However, since it still goes through all iterations one by one, its execution time is

linear to iteration number. Charts in Figure 8.6 are the performance of final solution used

 81

in proposed tool. As it shows, the execution time is relatively constant when the iteration

number increase. The reason is that the distinct case number is constant and it is up

bounded by bank _num×W
M

. The time consumed in the final proposed solution is less

than 0.05ms, which is much more efficient than two previous bank conflict estimation

methods, and also comparable to execution time of the original program.

Figure 8.3 Original program execution time

 82

Figure 8.4 Basic analysis method: enumerate all access and compute conflict number

Figure 8.5 Analysis with no “for” loop optimization

 83

.

Figure 8.6 Proposed conflict analysis tool execution time

 The third experiment is for memory accesses with “for-if” wrapper. The example

code in use is shown in Figure 8.7. As introduced in chapter 5, for such cases, the

memory access expression is warped by a “for” loop, and the iteration variable is used to

filter the threads that are allowed to access the memory.

Figure 8.7 Loop used to test conflict estimation tool

 84

(a) Original program execution time.

(b) Basic analysis method: enumerate all access and check conflict

(c) Analysis with no “for-if” optimization

(d) Proposed conflict analysis tool

Figure 8.8 execution time comparison for “for-if” case

 85

 The executing time result is shown in Figure 8.8. The chart in (a) shows the original

program execution time. The x-axis is the thread number; the y-axis is execution time in

ms. According to the code in Figure 8.7, the workload ratio between n−1 and n is

(n−1)× (n− 2)
n× (n−1)

=
n2 − n

n2 −3n+ 2
. It becomes “1” when n is large enough. Charts in (b) is the

performance of the conflict estimation reference code which calculates conflict by

calculating bank index and layer index of all single vector memory access. As expected,

the time consumed is linear to iteration number, and it is up to 20ms when iteration

number is 512. The chart in (c) is similar to the one in (b) except that the basic single

expression conflict analysis module is used to analyze each iteration. Compares to (b),

the execution time is obviously reduced. However, since it still goes through all iterations

one after another, its execution time is linear to the iteration number. Chart in (d) is the

performance of final solution used in proposed tool. As it shows, the execution time is

relatively constant when the iteration number increases. The reason is that the distinct

case number is constant and it is up bounded bybank _num×W
M

. The time consumed in

the final proposed solution is less than 0.5ms, which is much more efficient than two

other methods.

8.2 Application Optimization

 We select 6 applications (13 kernels) from RODINIA benchmark [73] and NVDIA

CUDA SDK. These six benchmarks has bottleneck of shared memory bank conflict, and

Figure 8.9 shows the instruction replay overhead caused bank conflict. These kernels can

be optimized manually by changing bank access width, and array padding. The detail

information of these kernels can be found in chapter 7. Table 8.1is a summary of their

feature.

 86

Table 8.1 Information of application CUDA kernels

Figure 8.9 Percentage of bank access replay among total executed instructions

 87

 Figure 8.10 is the performance improvement of these kernels. The chart of Figure

8.10 (a) is the rate of bank access instruction number before and after optimization. The

smaller the rate, the better the optimization effect on reducing access instruction replay.

Figure 8.10 (b) is the speedup after optimization. Comparing Figure 8.9 and Figure 8.10

(b), for these 13 kernels, the kernels that have higher instruction percentage of replay get

better improvement of execution time.

Figure 8.10 Performance experiment of 13 kernels

 88

8.3 Summary

 This chapter presents experiment results of this analysis tool. Section 8.1 includes

experiments test the conflict analysis execution time. It shows that the proposed static

analysis module is a practical solution in that its execution time is not related to warp

number and for loop iteration number. Section 8.2 exams applications’ performance

improvement after accepts the solutions provided by proposed tool. As it shows, for

applications that have bottleneck of shared memory bank conflict, this tool can help to

improve efficiency by providing a solution which causes less or zero conflict number.

 89

CHAPTER 9 CONCLUSION AND FUTURE WORK

 In this dissertation, we explore how to improve GPU processing efficiency by

reducing shared memory bank conflicts. We analyzed conflict patterns, then developed

algorithms to perform inter and intra padding as well as configuring the shared memory

bank bit width. Using this approach, we obtain an average 19% improvement for a set of

benchmark applications.

 The contributions of this work include analysis of shared memory bank conflicts,

followed by techniques for selecting memory bank bit widths and applying inter and intra

padding to optimize access patterns. This work can impact a broad spectrum of

applications targeting GPUs.

 We also developed the GPU Accelerated Scalable Parallel Random Number

Generator (GASPRNG) library [74, 75] based on the previous SPRNG [76] and

HASPRNG [77, 78] work.

 For future work, the techniques from this dissertation could be integrated into a GPU

compiler suite. Additionally, one could explore detailed modeling of GPU performance

that includes the bank conflict analysis developed here [79-82].

 90

LIST OF REFERENCE

 91

1. NVIDIA, OpenCL Programming Guide for CUDA Architecture 3.1. 2011.
2. Nvidia, C., Nvidia cuda c programming guide. NVIDIA Corporation, 2011. 120.
3. Cecilia, J.M., J.M. García, and M. Ujaldón, Cuda 2D stencil computations for the

Jacobi method, in Applied Parallel and Scientific Computing. 2012, Springer. p.
173-183.

4. Harris, M., S. Sengupta, and J.D. Owens, Parallel prefix sum (scan) with CUDA.
GPU gems, 2007. 3(39): p. 851-876.

5. Ruetsch, G. and P. Micikevicius, Optimize matrix transpose in CUDA. 2009,
Nvidia.

6. Flynn, M.J., Computer Architecture Pipelined and Parallel Processor Design,
1995. Jones and Bartlett Publishers, Inc. p. 360.

7. Fetterman, M., et al., Dynamic bank mode addressing for memory access. 2012,
Google Patents.

8. Harper III, D.T. and D.A. Linebarger, Conflict-free vector access using a dynamic
storage scheme. Computers, IEEE Transactions on, 1991. 40(3): p. 276-283.

9. Russell, R.M., The CRAY-1 computer system. Communications of the ACM,
1978. 21(1): p. 63-72.

10. Budnik, P. and D.J. Kuck, The Organization and Use of Parallel Memories.
Computers, IEEE Transactions on, 1971. C-20(12): p. 1566-1569.

11. Park, J.W., Multiaccess memory system for attached SIMD computer. Computers,
IEEE Transactions on, 2004. 53(4): p. 439-452.

12. Oed, W. and O. Lange, On the effective bandwidth of interleaved memories in
vector processor systems. Computers, IEEE Transactions on, 1985. 100(10): p.
949-957.

13. Frailong, J.M. XOR-Schemes: A flexible data organization in parallel memories.
in 1985 International Conference on Parallel Processing. 1985.

14. Rau, B.R. Pseudo-randomly interleaved memory. in ACM SIGARCH Computer
Architecture News. 1991. ACM.

15. Raghavan, R. and J.P. Hayes, Reducing interference among vector accesses in
interleaved memories. Computers, IEEE Transactions on, 1993. 42(4): p. 471-
483.

16. Valero, M., et al., Conflict-free access for streams in multimodule memories.
Computers, IEEE Transactions on, 1995. 44(5): p. 634-646.

17. Ryoo, S., et al. Optimization principles and application performance evaluation
of a multithreaded GPU using CUDA. in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming. 2008. ACM.

18. Baskaran, M.M., et al. A compiler framework for optimization of affine loop nests
for GPGPUs. in Proceedings of the 22nd annual international conference on
Supercomputing. 2008. ACM.

19. Yang, Y., et al. A GPGPU compiler for memory optimization and parallelism
management. in ACM Sigplan Notices. 2010. ACM.

20. Rivera, G. and C.-W. Tseng. Data transformations for eliminating conflict misses.
in ACM SIGPLAN Notices. 1998. ACM.

21. Watanabe, T., Architecture and performance of NEC supercomputer SX system.
Parallel Computing, 1987. 5(1): p. 247-255.

 92

22. Coorporation, I., Intel 64 and IA-32 architectures optimization reference manual.
2009, May.

23. Rau, B.R., M.S. Schlansker, and D.W. Yen. The Cydram 5 Stride-Insensitive
Memory System. in ICPP (1). 1989. Citeseer.

24. Kuzmanov, G., G. Gaydadjiev, and S. Vassiliadis, Multimedia rectangularly
addressable memory. Multimedia, IEEE Transactions on, 2006. 8(2): p. 315-322.

25. Vitkovski, A., G. Kuzmanov, and G. Gaydadjiev. Memory organization with
multi-pattern parallel accesses. in Proceedings of the conference on Design,
automation and test in Europe. 2008. ACM.

26. Shan, H. and E. Strohmaier. Performance characteristics of the Cray X1 and their
implications for application performance tuning. in Proceedings of the 18th
annual international conference on Supercomputing. 2004. ACM.

27. Micikevicius, P. GPU Performance Analysis and Optimization. in GPU
Technology Conference, http://developer. download. nvidia.
com/GTC/PDF/GTC2012/PresentationPDF/S0514-GTC2012-GPU-Performance-
Analysis. pdf. 2012.

28. Harper, D. and Y. Costa, Analytical estimation of vector access performance in
parallel memory architectures. Computers, IEEE Transactions on, 1993. 42(5): p.
616-624.

29. Shapiro, H.D., Theoretical limitations on the efficient use of parallel memories.
Computers, IEEE Transactions on, 1978. 100(5): p. 421-428.

30. Sohi, G.S., High-bandwidth interleaved memories for vector processors-a
simulation study. Computers, IEEE Transactions on, 1993. 42(1): p. 34-44.

31. Harper, D.T., Block, multistride vector, and FFT accesses in parallel memory
systems. Parallel and Distributed Systems, IEEE Transactions on, 1991. 2(1): p.
43-51.

32. Chunyang, G., Customizable Memory Schemes for Data Parallel Accelerators.
2011.

33. Harper, D., Increased memory performance during vector accesses through the
use of linear address transformations. Computers, IEEE Transactions on, 1992.
41(2): p. 227-230.

34. Lawrie, D.H., Access and alignment of data in an array processor. Computers,
IEEE Transactions on, 1975. 100(12): p. 1145-1155.

35. Lawrie, D.H. and C.R. Vora, The prime memory system for array access. IEEE
transactions on Computers, 1982. 31(5): p. 435-442.

36. Wijshoff, H.A. and J. Van Leeuwen, The structure of periodic storage schemes
for parallel memories. Computers, IEEE Transactions on, 1985. 100(6): p. 501-
505.

37. Harper, D.T. and J.R. Jump, Vector access performance in parallel memories
using a skewed storage scheme. Computers, IEEE Transactions on, 1987.
100(12): p. 1440-1449.

38. Aho, E., J. Vanne, and T. Hamalainen. Parallel memory architecture for arbitrary
stride accesses. in Design and Diagnostics of Electronic Circuits and systems,
2006 IEEE. 2006. IEEE.

 93

39. Trenas, M.A., et al. A memory system supporting the efficient SIMD computation
of the two dimensional DWT. in Acoustics, Speech and Signal Processing, 1998.
Proceedings of the 1998 IEEE International Conference on. 1998. IEEE.

40. Kaufman, A. and D. Cohen-Or, A 3D skewing and de-skewing scheme for
conflict-free access to rays in volume rendering. IEEE Transactions on
Computers, 1995. 44(5): p. 707-710.

41. Liu, C., X. Yan, and X. Qin. An optimized linear skewing interleave scheme for
on-chip multi-access memory systems. in Proceedings of the 17th ACM Great
Lakes symposium on VLSI. 2007. ACM.

42. Lentaris, G. and D. Reisis, A graphics parallel memory organization exploiting
request correlations. Computers, IEEE Transactions on, 2010. 59(6): p. 762-775.

43. Sung, I.-J., J.A. Stratton, and W.-M.W. Hwu. Data layout transformation
exploiting memory-level parallelism in structured grid many-core applications. in
Proceedings of the 19th international conference on Parallel architectures and
compilation techniques. 2010. ACM.

44. Pop, S., et al. GRAPHITE: Polyhedral analyses and optimizations for GCC. in
Proceedings of the 2006 GCC Developers Summit. 2006. Citeseer.

45. Mowry, T.C., M.S. Lam, and A. Gupta. Design and evaluation of a compiler
algorithm for prefetching. in ACM Sigplan Notices. 1992. ACM.

46. Vanderwiel, S.P. and D.J. Lilja, Data prefetch mechanisms. ACM Computing
Surveys (CSUR), 2000. 32(2): p. 174-199.

47. Wang, Y., et al. Memory partitioning for multidimensional arrays in high-level
synthesis. in Proceedings of the 50th Annual Design Automation Conference.
2013. ACM.

48. Lin, H. and W. Wolf. Co-design of interleaved memory systems. in Proceedings
of the eighth international workshop on Hardware/software codesign. 2000.
ACM.

49. Zhang, Q., et al. Reducing memory bank conflict for embedded multimedia
systems. in Multimedia and Expo, 2004. ICME'04. 2004 IEEE International
Conference on. 2004. IEEE.

50. Jaeger, J. and D. Barthou. Automatic efficient data layout for multithreaded
stencil codes on CPU sand GPUs. in High Performance Computing (HiPC), 2012
19th International Conference on. 2012. IEEE.

51. Weiß, C., et al. Memory characteristics of iterative methods. in Proceedings of
the 1999 ACM/IEEE conference on Supercomputing (CDROM). 1999. ACM.

52. Lee, V.W., et al. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. in ACM SIGARCH Computer
Architecture News. 2010. ACM.

53. Che, S., J.W. Sheaffer, and K. Skadron. Dymaxion: optimizing memory access
patterns for heterogeneous systems. in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
2011. ACM.

54. Jang, B., et al., Exploiting memory access patterns to improve memory
performance in data-parallel architectures. Parallel and Distributed Systems,
IEEE Transactions on, 2011. 22(1): p. 105-118.

 94

55. Bacon, D.F., S.L. Graham, and O.J. Sharp, Compiler transformations for high-
performance computing. ACM Computing Surveys (CSUR), 1994. 26(4): p. 345-
420.

56. Kowarschik, M. and C. Weiß, An overview of cache optimization techniques and
cache-aware numerical algorithms, in Algorithms for Memory Hierarchies. 2003,
Springer. p. 213-232.

57. Ghosh, S., M. Martonosi, and S. Malik. Precise miss analysis for program
transformations with caches of arbitrary associativity. in ACM SIGPLAN Notices.
1998. ACM.

58. Ghosh, S., M. Martonosi, and S. Malik, Cache miss equations: a compiler
framework for analyzing and tuning memory behavior. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1999. 21(4): p. 703-746.

59. Ishizaka, K., M. Obata, and H. Kasahara, Cache optimization for coarse grain
task parallel processing using inter-array padding, in Languages and Compilers
for Parallel Computing. 2004, Springer. p. 64-76.

60. Bacon, D.F., et al. A compiler framework for restructuring data declarations to
enhance cache and TLB effectiveness. in Proceedings of the 1994 conference of
the Centre for Advanced Studies on Collaborative research. 1994. IBM Press.

61. Torrellas, J., M.S. Lam, and J.L. Hennessy. Share Data Placement Optimizations
to Reduce Multiprocessor Cache Miss Rates. in ICPP (2). 1990.

62. Bailey, D.H., Unfavorable strides in cache memory systems (RNR Technical
Report RNR-92-015). Scientific Programming, 1995. 4(2): p. 53-58.

63. Jeremiassen, T.E. and S.J. Eggers, Reducing false sharing on shared memory
multiprocessors through compile time data transformations. Vol. 30. 1995: ACM.

64. Bolosky, W., R. Fitzgerald, and M. Scott. Simple but effective techniques for
NUMA memory management. in ACM SIGOPS Operating Systems Review. 1989.
ACM.

65. Rivera, G. and C.-W. Tseng. Tiling optimizations for 3D scientific computations.
in Supercomputing, ACM/IEEE 2000 Conference. 2000. IEEE.

66. Hsu, C.-h. and U. Kremer, A quantitative analysis of tile size selection algorithms.
The Journal of Supercomputing, 2004. 27(3): p. 279-294.

67. Qasem, A., Automatic tuning of scientific applications. 2007, Rice University.
68. Rivera, G. and C.-W. Tseng. A comparison of compiler tiling algorithms. in

Compiler Construction. 1999. Springer.
69. Fursin, G., M.F. O’Boyle, and P.M. Knijnenburg, Evaluating iterative

compilation, in Languages and Compilers for Parallel Computing. 2005,
Springer. p. 362-376.

70. Badawy, A.-H.A., et al. Evaluating the impact of memory system performance on
software prefetching and locality optimizations. in Proceedings of the 15th
international conference on Supercomputing. 2001. ACM.

71. Rivera, G. and C.-W. Tseng. Eliminating conflict misses for high performance
architectures. in Proceedings of the 12th international conference on
Supercomputing. 1998. ACM.

72. Cano, A., J.M. Luna, and S. Ventura, High performance evaluation of
evolutionary-mined association rules on GPUs. The Journal of Supercomputing,
2013. 66(3): p. 1438-1461.

 95

73. Cano, A., A. Zafra, and S. Ventura, Speeding up the evaluation phase of GP
classification algorithms on GPUs. Soft Computing, 2012. 16(2): p. 187-202.

74. Gao, S. and G.D. Peterson, GASPRNG: GPU accelerated scalable parallel
random number generator library. Computer Physics Communications, 2013.
184(4): p. 1241-1249.

75. Gao, S. and G.D. Peterson. GPU accelerated scalable parallel random number
generators. in Proc. 2010 Symposium on Application Accelerators in High
Performance Computing (SAAHPC’10). 2010.

76. Scalable Parallel Pseudo Random Number Generators Library. Available from:
http://sprng.fsu.edu

77. Lee, J., G.D. Peterson, and R.J. Harrison, Hardware accelerated scalable parallel
random number generators. Proceedings of the 3rd Annual Reconfigurable
Systems Summer Institute, 2007.

78. Lee, J., et al., Implementation of hardware-accelerated scalable parallel random
number generators. VLSI Design, 2010. 2010: p. 12.

79. Hong, S. and H. Kim. An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. in ACM SIGARCH Computer
Architecture News. 2009. ACM.

80. Smith, M.C. and G.D. Peterson, Optimization of shared high-performance
reconfigurable computing resources. ACM Transactions on Embedded
Computing Systems (TECS), 2012. 11(2): p. 36.

81. Peterson, G.D. and R.D. Chamberlain, Parallel application performance in a
shared resource environment. Distributed Systems Engineering, 1996. 3(1): p. 9.

82. Peterson, G.D. and R.D. Chamberlain, Beyond execution time: Expanding the use
of performance models. Parallel & Distributed Technology: Systems &
Applications, IEEE, 1994. 2(2): p. 37-49.

 96

APPENDIX

 97

Appendix A-1: 1D Single Warp Analysis for Column-major Bank
Mapping

 Figure A-1 is an example of column-major bank mapping when R = 4 and

stride =11 . When stride is smaller thanR , there is no potential bank conflict. The reason

is that the bank scope of the vector access is less than the total bank number. So here we

only consider the strides that is larger thanR .

Figure A-1: An example of column-major data mapping. The data are layout in column major

direction. Each column is one layer of one bank; the whole grid is one layer of all banks. Blue blocks

are elements accessed when stride=11

ODD STRIDE ANALYSIS

 Firstly, we consider the visited sites in ith rows of all visited layers. When stride is

odd, the visited elements are uniformly distributed in these rows. Each row has

vec_ length
R

 visited sites, and the distance of any two consecutive elements is as same as

the stride. As the example in Figure A-1, the blue blocks are evenly distributed into four

rows, and in each row the distance between two neighbor blue blocks are 11, which is the

value of the stride.

 To analyze bank conflict, we study the distance between the visited sites that cause

conflict. For the example in Figure A-1, figure A-2 shows the four cases with different

offset. In Figure A-2 (a) the current vector visit starts from the first row; the first four

visited elements are in <0th row, 0th col>, <3rd row, 2nd col>, <2nd row, 5th col> and <1st

row, 8th col>. Figure A-2 (b), (c), (d) have start points in 3rd row, 2nd row and 1st row. To

locate first R visited elements, array imm_col_offset and array row_offset are calculated

as following:

 98

 (A.1.1)-a,b

row_idx is the row index of the first visited elements. For example, in Figure A-2 (a),

row_idx=0. Variable i denotes the ith visited elements and (the four orange

elements in Figure A-2 (a)). Table A-1 lists the locations of the orange elements in Figure

A-2 (a) to (d).

Figure A-2 a vector access could start from different rows.

Table A-1 Location of the visited elements shown in figure A-2. stride=11. row_num=4

row_idx

of the 1st

element

1st elem (i=0)

<imm_col_offset,

row_offset>

2nd elem (i=1)

<imm_col_offset,

row_offset>

3rd elem (i=2)

<imm_col_offset,

row_offset>

4th elem (i=3)

<imm_col_offset,

row_offset>

0 <0, 0> <2, 3> <5, 2> <8, 1>

1 <0, 1> <3, 0> <5, 3> <8, 2>

2 <0, 2> <3, 1> <6, 0> <8, 3>

3 <0, 3> <3, 2> <6, 1> <9, 0>

Given a certain value of row_idx, based on elem_per_row, imm_col_offset and

row_offset, we can define row_scale_num as following:

 (A.1.2)

€

imm_col_offset[i] =
row _ idx + stride × i

R

$ #
%

& %

row _offset[i] =mod(row _ idx + stride × i,R)

'

(

)
)

*

)
)

€

0 ≤ i < R

€

row _ scale_ num[i] =
imm _col_offset[i]+ (elem _ per_ row −1) × stride +1

bank _ num
$

% %
&

' '

 99

In arrays of row_scale_num, imm_col_offset and row_offset, the ith element is the info of

ith visited site. We use following functions to transform these arrays; the ith element

becomes the info of the visited site in ith row. Then we set row_offset[i] = i for .

 (A.1.3)

 For odd strides, the visited sites in ith row of all layers cannot cause any conflict due

to the reason that gcd(stride,bank _num) =1 for odd strides. However, visited sites lie in

different rows of different layers might cause conflict. For an interleaved memory that

has R rows in each layer, there are conflict possibilities between different rows

(Table A-2). For the example in figure A-1, the potential conflict row index pair are listed

in table A-2.

Table A-1-2 Possibilities of conflicts between rows from different layers

 Row 0 Row 1 Row 2 Row 3

Row 0 X V V V

Row 1 V X V V

Row 2 V V X V

Row 3 V V V X

 When the xth element in row i of layer m conflict with the yth element in row j of layer

n, if i < j and m ≥ n , we have:

dist = (imm_ col _offset[i]+ stride× x)− (imm_ col _offset[j]+ stride× y)
dist = layer _ scale×bank _num

layer _ scale×R ≤ (row_ scale_num[i]−1)×R

$

%
&

'
&

(A.1.4) – a,b,c

with layer _ scale =m− n . dist is used to denote the difference between the offsets of

conflict elements in its own row. It can be calculated through equation A.1.4 (a), and it

also need to meet the requirement of equation A.1.4 (b). Table A-3 is an example used to

show the meaning of dist and layer_scale. In this example, bank_num=32, row_num=4,

€

0 ≤ i < R

€

i'= row _offset[i]
row _ scale_ num[i'] = row _ scale_ num[i]
imm_col_offset[i'] = imm _col_offset[i]

"

$

%
$

€

R2 − R

 100

n=0, m={0,1,2}, i=1, and j=3. Green block is xth element in row i of layer m; red block

is yth element in row j of layer n.

Table A-1-3 “dist” and “layer_scale” between conflict elements.

Layer Description

Layer 0:

In the same layer: the dist

between red and green is:

, layer_scale=0

Layer 1:

In the 2nd layer: the dist

between red and green is:

, layer_scale=1

Layer 2:

In the 3rd layer: the dist

between red and green is:

, layer_scale=2

Table A-1-4 “dist” and “layer_scale” between conflict elements.

Layer Description

Layer 0:

In the same layer: the dist

between red and green is:

, layer_scale=0

Layer 1:

In the 2nd layer: the dist

between red and green is:

, layer_scale=1

Layer 2:

In the 3rd layer: the dist

between red and green is:

, layer_scale=2

€

dist = 0 × 32

€

dist =1× 32

€

dist = 2 × 32

€

dist = 0 × 32

€

dist =1× 32

€

dist = 2 × 32

 101

When the xth element in row j of layer n conflict with the yth element in row i of layer m,

with i < j and m ≤ n . The dist can be calculated in similar way. Table A-1-4 is an

example when bank_num=32, row_num=4, m=0, n={0, 1, 2}, i=1, and j=3. Green block

is xth element in row j of layer n; red block is yth element in row i of layer m.

dist = (imm_ col _offset[j]+ stride× y)− (imm_ col _offset[i]+ stride× x)
dist = layer _ scale×bank _num

layer _ scale×R ≤ (row_ scale_num[j]−1)×R

$

%
&

'
&

(A.1.5)-a.b.c

The constrain of x and y is:

 (A.1.6)

With equations in (A.1.4), (A.1.5), and (A.1.6), we can find the (x, y) pairs that cause

conflicts. Particularly, when W=N=8 and M=4, it has R = 2 , and the following

conclusion can be made: When R = 2 , for odd strides, if there is at least one conflict,

then the conflict degree is always 2. The proof can be found in appendix B.

Appendix A-2: 2D access bank conflict analysis

 For 2D stride access, denote the base access address of current warp as offset, it has:

This means that the conflict degree for offset = {0,1,......MAX _VALID_OFFSET}

periodically repeat the conflict degree for base_ set{0,1,...,bank _num×R−1} . We

calculate the bank conflict of each offset in base_set. For other offset values not belong to

base_set, we map it to an offset in base_set to get the bank conflict degree. Figure A-4 is

an example with 2D stride is <stride_x=1, repeat_x=2, stride_y=3, repeat_y=4>

€

x,y() x > 0,x ≤ vec _ access_ length
R

,y > 0,y ≤ vec _ access_ length
R

$
%

&
'
(

€

bank _conflict _ dgr(offset) = bank _conflict _ dgr(mod(offset,bank _ number × R))

 102

Figure A-4 a 2D stride example with different access offset.

Appendix A-3: Two-way Conflict for Column-major Bank
Mapping with R=2

Observation: When , for odd strides that have at least one bank conflict, it is

always 2-way conflict.

Proof:

 For odd stride stride = 2× l +1 with , the pair of visit sites that cause bank

conflict must be from different rows: one from upper row and one from lower row. We

describe it as c =< ur, lr > , ur is the offset of the visit site in upper row, and lr is the

offset of the visit site in lower row.

 When it has bank conflict, if there is only one conflict, then it is 2-way conflict since

one conflict cannot visit more than 2 layers of same bank.

€

R = 2

€

l ≥1

 103

 If there are more than one bank conflicts, for any two of them c1 =< ur1, lr1 > and

c2 =< ur2, lr2 > , we need to proof :

 The distance of between them on the upper row is can always be divided by stride .

 Reason: For any conflict ci =< uri, lri > , its visited site in the upper row always has

distance of N × stride (N ∈ [1,..., vec_ length
2

−1]) from other visited sites in the upper

rows.

 For a conflict ci that has upper row offset uri , its neighbor pairs ci−1 =< uri−1, lri−1 >

and ci+1 =< uri+1, lri+1 > must cause conflict as long as uri−1 = uri − stride , uri+1 = uri + stride ,

lri−1 = lri − stride , lri−1 = lri + stride are inside the range of current parallel access.

 Reason:

 uri ≡ lri mod(vec_ length)

 uri + stride ≡ lri + stride mod(stride)

 uri − stride ≡ lri − stride mod(stride)

Now we can conclude that when there is M (M >1) conflicts, they can be described as

ci =< uro + i× stride, lro + i× stride > with i ∈ [0,M) . c0 =< ur0, lr0 > is the first conflict

which has the smallest value of ur . This means that the conflicts are mapped to banks in

the 1D odd stride pattern, and total number of conflict is less or equal to vec_ length
2

. So,

there are no two conflicts that appear in same bank, and bank conflict degree is always 2.

€

∵

€

∴

 104

VITA
Shuang GAO got her Degree of Bachelor in Biomedical and Engineering in 2001,

and Degree of Master in Computer Science in 2005, both from Zhejiang University,

Hangzhou, China. After graduated from Zhejiang University, she worked as a software

engineer for 4 year. In 2009, she started her PhD study in University of Tennessee at

Knoxville. After 5 years of study, she finished her research and graduated.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2014

	Improving GPU Shared Memory Access Efficiency
	Shuang Gao
	Recommended Citation

	Microsoft Word - revised--susan-11-19-final2.docx

