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Abstract 

A new nonlinear control technique was developed by reformulating one of the .;in­

verse problems" techniques in mathematics , namely the reconstruction problem. 

The theory identifies an important concept called inverse dynamics which is always 

a known property for systems already developed or designed. Accordingly, the 

paradigm is called "reconstructive inverse dynamics"' (RID) control. The standard 

state-space representation of dynamic systems constitutes a sufficient foundation 

to derive an algebraic RID control law that provides solutions in one step compu­

tation. The existence of an inverse solution is guaranteed for a limited dynamic 

space. Outside the guaranteed range, existence depends on the nature of the sys­

tem under consideration. Derivations include adaptive features to minimize the 

effects of modeling errors and measurement degradation on control performance. 

A comparative study is included to illustrate the relationship between the RID 

control and optimal control strategies. A set of performance factors were used 

to investigate the robustness against various uncertainties and the sui tability for 

digital implementation in large-scale systems. All of the illustrat ions are based on 

computer simulations using nonlinear models. The simulation results indicate a 

significant improvement in robust control strategies. The control strategy can be 

implemented on-line by exploiting its algebraic design property. 

Three applications to nuclear reactor systems are presented. The objective is 

to investigate the merit of the RID control technique to improve nuclear reactor 

operations and increase plant availability. The first two applications include xenon 

induced power oscillations and feedwater control in conventional light water reac­

tors. The third application consists of an automatic control system design for the 

startup of the Experimental Breeder Reactor-II  (EBR-II). The nonlinear dynamic 

models used in this analysis were previously validated against available plant data. 

The simulation results show that the RID technique has the potential to improve 

reactor control strategies significantly. Some of the observations include accurate 

xenon control, and rapid feedwater maneuvers in pressurized water reactors , and 

successful automated startup of the EBR-II. 
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The scope of the inverse dynamics approach is extended to incorporate artificial 

intelligence methods within a systematic strategy design procedure. Since the RID 

control law includes the dynamics of the system, its implementation may influence 

plant component and measurement design. The inverse dynamics concept is further 

studied in conjunction with artificial neural networks and expert systems to develop 

practical control tools. 
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Chapter 1 

Introduction 

The inverse dynamics concept for the control and identification of complex non­

linear processes was developed in this dissertation. This concept is described as 

follows: The dynamics of a moving object in a fixed reference frame is defined by 

the evolution of its coordinates in time. The "inverse" dynamics of the same object 

is defined by the evolution of its coordinates in time obsen:ed from a hypothetical 
mirror that is placed perpendicular to the plane of motion . . -\n immediate corollary 

is that the inverse dynamics is a property of every dynamic system. This concept 

leads to a control paradigm based on a dynamic cancellation by the inverse prop­

erty and reconstruction of the desired system behavior. Accordingly, t he paradigm 

is called the reconstructive inverse dynamics (RID ) .  The RID paradigm, in turn, 

leads to a procedural design method where the problem solution can be extended 

towards suggesting different control strategies to improve system operations. The 

present research uses an interdisciplinary approach to incorporate mathematics, 

artificial intelligence, and principles from several engineering disciplines. This re­

search includes the description of the concept, development of the theory, and 

applications to nuclear power plants. 

1 . 1  General Motivation 

The main objective of this research was based on a collection of reasons most of 

which are related to the operational problems encountered in conventional large­

scale systems, especially in nuclear power plants. In this section, these reasons are 
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presented in general terms. The discussion focuses on the weaknesses of com·en­

tional control methods in application to complex engineering systems. 

, 
The definition of complex systems within the domain of this analysis may 

include one or more of the following conditions to exist: 

( 1 )  The state of the process at different operational levels/modes 

is loosely correlated in the linear domain, 

(2) System measurements are not complete or accurate to represent 

its dynamic behavior properly, 

(3) System is subjected to frequent disturbances due to its environment, 

(4) System's degree of freedom is too large to allow an exhaustive 

evaluation of every possible control action within a reasonable time frame. 

Especially large-scale systems such as power plants, production facilities, and 

chemical processes are likely to inherit at least one of the conditions stated above. 

The conditions ( 1 ) , (3), and (4) are related to nonlinear behavior of complex 

systems. When linear control methods fail to represent nonlinear behavior, these 

conditions may lead to operational problems. This fact has been the motivation for 

the development of nonlinear methods such as fuzzy control and neural networks. 

Although there is a sizable body of literature in the area of nonlinear analysis, the 

number of useful applications is limited due to the gap between the theory and 

practice. Thus, it is of primary importance to develop a nonlinear paradigm based 

on a well-defined theory as well as to provide a significant margin of feasibility in 

application to conventional systems. 

Condition (2), which implies the lack of enough information from the process, 

often causes problems because of some undetected shift in the state of operation. 

Adaptive control theory is primarily developed to deal with such problems (1) .  The 

time variant parametric changes or uncertainties can be tracked using a set of avail­

able information. The tracking of unknown dynamics, which is also called system 

identification,  is used to update the parameters of the on-line control algorithm. 
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The performance using the standard adaptive control methods depends on the ac­

curacy of the identification capability at various levels. Optimality, stability and 

robustness characteristics may deteriorate due to poor identification. Thus, one of 

the important objectives is to develop a control paradigm that does not strongly 

rely on identification without a significant comprimise in its adaptive performance. 

In general, there are two control approaches. The first approach considers the 

open-loop system as a black-box, and utilizes measurements to estimate, adapt, 

and control the process. Most of the control theory and the conventional control 

systems fall into this category. The second approach takes an extra step to in­

corporate the principles of the process within the control law. This may be the 

right direction to overcome problems arising from the condit ions ( 1 ) , (3 )  and ( 4) ,  

because the control law explicitly carries the properties of the process and its en­

vironment. The chemical process industry has been the most affected sector from 

the lack of such control strategies. As one author puts it ·�understanding of the 

distillation operation is the theme that differentiates dist il lation control from their 

more generalized counterparts" [2) . The rule-based approach such as fuzzy control 

falls into the second category. However, there is no general and systemat ic way 

of creating fuzzy rules besides the pure heuristic approach. Therefore, it is very 

beneficial to develop a control paradigm that allows process-related informat ion to 

be part of the control law in a systematic manner. 

The standard philosophy in conventional systems has been to des ign a process 

using the novel techniques and consider the design of automatic control system 

after the system layout and process design is fixed. In many cases, there is even 

not much room left for the proper instrumention strategy. This tradition has been 

encouraged mistakenly by the comfort of using the black-box control methods 

which yield piece-meal installed control strategies. Considering the recent upsurge 

of interest to renew the traditional philosophy, it is necessary to develop a control 

paradigm that can provide useful guidelines and be part of the overall system 

design. 
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1 .2 Specific Objectives 

An inadequate control strategy constitutes one of the important reasons for poor 

plant availability. Comparing the power plant availability records in \Vestern Eu­

rope, Japan, and the U.S. ,  there is a significant difference in favor of foreign reac­

tors. One obvious reason is that advanced control technologies have significantly 

entered into the design of foreign reactors. Recent automatic control applications 

in Japan (3] and Canada (4] and automatic xenon monitoring system in France [5] 

are a few examples of this trend. 

The specific objective of this work is to investigate the effectiveness of the RID 

control paradigm in application to nuclear power plant operat ions. The inves­

tigation is focused on the improvement in control strategies which increase plant 

availability. Three different cases are considered. These cases refer to control prob­

lems in which the plant operations are most likely to be improved by advanced 

control strategies. 

In pressurized water reactors (P\VRs), one common problem is the build up of 

xenon and iodine isotopes in the fuel as a result of fission reactions. These fission 

products affect the reactor dynamics and result in axial and radial flux oscilla­

tions in the core. Depending upon the conditions of the plant such as burnup and 

boration, the reactor dynamics may show a limit-cycle behavior. In practice, emer· 

gency systems intervene and a reactor trip occurs when the oscillations get out of 

control and exceed a target band (6) . The control of xenon induced power oscilla­

tions (XIPO) in conventional reactors is mainly accomplished by plant operators. 

The most commonly used method is called the half-cycle damping strategy where 

the operator inserts/withdraws control rods in the middle of half-observed half­

anticipated cycle [7) . Operator's decisions are based on experience and heuristic 

reasoning which do not guarantee to prevent unscheduled shutdowns. Therefore, 

the improvement in plant availability depends on an appropriate xenon control 

system which can provide trip avoidance solutions in a consistent manner. 

Another common problem in PWRs is caused by the U-tube steam generator 

4 



dynamics. At low power levels, the steam generator level may swing due to the 

nonminimum phase behavior. The emergence of such behavior in steam genera­

tor dynamics is believed to be related to inaccurate feedwater flow measurement, 

especially during startup [8] . The steam generator related problems also include 

the well-known shrink and swell phenomena [9] . One of the effective ways of trip 

avoidance in the event of such problems is to have a fast maneuvering capability 

in feedwater flow. A typical feedwater flowrate change of 5 % per minute must be 

provided without causing an excessive pressure drop across the feedwater valve. In 

this dissertation, a detailed nonlinear analysis is considered using a model of the 

standard feedwater-train system. The objective is to investigate the possibility of 

improving feedwater flow maneuvers using a multivariable RID control technique. 

The advantage of using an appropriate nonlinear control law is best shown by 

a control task that covers the full envelope operation. A particular emphasis is 

given to the startup control of nuclear reactors in an automatic mode. Startup of 

nuclear reactors include full-scale power levels with varying plant conditions [lOJ. 
The nonlinearities and uncertainties become significant as the reactor power level 

progressively changes. The automatic startup control of the Experimental Breeder 

Reactor-11  (EBR-11) requires a multivariable nonlinear strategy. One of the objec­

tives is to design a RID controller for this task. Simulation results were compared 

with the EBR-11 startup data to determine the effectiveness of the new control 

strategy. 

1 .3 Background 

The theory presented in this dissertation is based on some of the concepts of con­

trol theory, inverse problems in mathematics, and artificial intelligence. However, 

there are very few studies in the literature which are directly related to the inverse 

dynamics concept introduced in this research. 

Inverse problems have been used in many applications over the past fifteen 

years. Recent investigations have been in the following areas: Reconstruction 
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of unknown sources and signals, image reconstruction, computer tomography in 

medicine, geophysics, optics, compartment analysis, identification of static and 

dynamic processes, seismic exploration, electrocardiography and magnetocardiog­

raphy, inverse scattering, radiography, evolution backwards in time, inverse heat 

conduction, inverse melting problems. An extensive bibliography on inverse and 

ill-posed problems is contained in (1 1}. 

One of the earliest attempts to combine the principles of inverse problems used 

in different areas under one discipline was made by Baumeister (12} .  Because any 

backward mathematical or algorithmic solution can be called an inverse approach, 

most of these studies contain the same terminology which often causes confusion. 

Thus, the systematic definition of forward and inverse problems given by Baumeis­

ter has an essential academic importance. 

The definition of inverse problems in the literature consists of solving x from a 

standard matrix equation y = Ax which may pose numerical problems depending 

upon the condition of matrix A. A typical application in the control area is the 

manipulator-arm control in robotics [13). The kinematics of the robot-arm can be 

represented by the matrix equation y = Ax. The definition of inverse kinematics 

in the robotics field refers to a backward solution that determines the coordinates 

of the end-effector x given the final (desired) coordinates y. Compared to the 

forward solution, the inverse kinematics yields several advantages depending on 

the degrees of freedom of the robotic arm. The inverse problems in kinematics is 

investigated extensively in the Russian literature. Krutko (14} has analyzed the 

dynamic behavior of inverse kinematics approach. He has also shown the relation 

between the optimum control and inverse problems in dynamics. 

The inverse dynamics concept introduced in this dissertation is entirely devel­

oped in a nonlinear dynamic form, that is x = f(x, u), where x and u are state and 

control variables, respectively. This approach is not directly related to the stan­

dard inverse problems or inverse kinematics methods described in the literature. 

There are two different areas in control theory which are more directly related 
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to the inverse dynamics concept. The pol�zero cancellation method is one of 

them ( 15) .  However, this method is developed purely in the frequency domain and 

is restricted to linear analysis. In addition, this technique does not specify how 

to rebuild the cancelled dynamics. The pol�placement method is a more direct 

approach for building the desired dynamics (16) . Because a desired pole location 

for a nonlinear process is undefined, the method is not applicable outside the linear 

regime. The second closely related method employs adaptive control using inverse 

modeling. Widrow [17] has suggested this approach to be implemented in the linear 

domain. This method uses an on-line inverse model in an open-loop arrangement 

which causes stability problems for non-minimum systems. Although the inverse 

modeling accomplishes a similar goal as in the RID paradigm, the conceptual 

difference between the model-reference adaptive control (:\lRAC) and the RID 

paradigm remains vivid. In MRAC approach, the control law is a function of the 

error between the plant output and its estimate based on an on- line model (or 

inverse model) ( 1 ) .  The main idea of the RID control is to create inverses within 

the control law rather than employing a model-based strategy. Thus, the RID 

control law is not an on-line model. This difference in the design philosophies can 

also be seen between conventional control and knowledge-based control methods. 

The knowledge-based control has been studied for a long period of time and has 

shown its first successful application in the form of fuzzy-logic control ( 18) .  In 

fuzzy control, the control law embodies the characteristics of the process in the 

form of fuzzy rules. 

1 .4 Original Contributions 

The inverse dynamics concept and the development of the theory presented in 

this dissertation are not based on any previous work in the literature. When the 

inverse dynamics concept is considered from a mathematical point of view, it may 

not seem to be an original contribution because the inverse solutions have been 

implemented in several fields. This concept, however, is original from the system 

science and control perspective. It defines a unique property for dynamic systems 

which yields useful analytical solutions for control and diagnostics problems. The 

summary of contributions is given below. 
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Definition of the inverse dynamics concept was established. 

The reconstruction problem defined in mathematics was adopted for 

trajectory following control. A closed-form solution of the reconstruc­

tive inverse dynamics (RID) control law was derived. The derivations 

were extended to include adaptive and multivariable control design. 

An inverse dynamics component was shown to exist within the LQR 

control law for first order systems. 

Closed-loop performance of the RID control in application to a nonlin­

ear problem was studied. Robustness characteristics were analyzed in 

comparison with the Lagrangian Derivation of Optimal Control. 

The RID control was applied to three different problems. These in­

cluded the xenon oscillations in P\VRs, feedwater control in PWRs, 

and the starup control at the EBR-I I. The control performance was 

verified through simulations. 

A topological method was developed to integrate artificial intelligence 

methods for strategy design. A model for the self-learning control strat­

egy was presented using neural networks and inverse dynamics. 

1 .5 Terminology 

The control of dynamic systems has two basic objectives: ( 1 )  to achieve a desired 

change in system behavior, and (2) to regulate the existing state of a system. 

The first objective is often referred to as the set-point change or less frequently as 

the demand following control whereas the second objective is called the regulation 

problem. Most of the conventional control systems incorporate the regulation and 

set-point change tasks. In reality, none of the control systems can exactly satisfy 

a required set-point change (discontinuity) in system variables. This is due to 
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some inertia inherited by every physical system. Despite this conflict , a set-point 

change requirement is very suitable for the development of control policies using 

performance factors such as overshoot and settling time. A set-point change can 

be represented by a ramp trajectory within some finite (practical) time interval. 

The regulation problem can be represented by a stationary reference trajectory. 

Therefore, the terminology trajectory following used in this dissertation represents 

a general requirement rather than a specific control problem. The terms "reference 

trajectory" and "demand" are used interchangably throughout the dissertation. 

The term reconstruction, close to its syntactic meaning in daily language, means 

rebuilding some process information after it was removed, used out, or deteriorated. 

In the inverse problems literature, the reconstruction problem has been clearly de­

fined as a special type of inverse problems (12) .  The usage of this term has no 

further emphasis in this work beyond the reconstruction of the desired system dy­

namics by control actions. 

Achievability is not a common descriptor in control language. In optimum 

control theory, it is used to identify an achievable performance region (19] .  The 

achievability defines a condit ion for the reference trajectories in the RID paradigm. 

This condit ion determines if the demand is acceptable with respect to the physical 

restrictions and safety regulations of the system. 

The term heuristics, which defines an object oriented search in artificial intel­

ligence, is used in a more flexible manner in this work. In this work, heuristics 

primarily implies the use of process-related knowledge in a non rule-based form. 

The development of the inverse dynamics is partially heuristic which depends on 

the experience of the designer. Its formulation can include definition of unknown 

terms that are best characterized by the knowledge of the system under consider­

ation. 

Strategy is the combination and organization of tasks to achieve a given ob­

jective. It automatically defines the existence of other possible solutions. In the 

control area, a strategy includes selecting important measurements, determining 
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the roles of the actuators , choosing set points, and establishing a set of procedures 

for design and operation. 

1 .6 Organization of the Dissertation 

The introduction of the inverse dynamics concept ,  the development of the theory, 

its relationship to optimum control, and the design procedures are given in Chap­

ter 2. This section provides closed-form solutions for a general problem. 

In Chapter 3, a benchmark problem is considered that includes a typical re­

actor core model with multivariable control possibilities. The primary objective 

here is to test the RID control paradigm extensively to determine its performance 

characteristics. The simulation results are compared with a nonlinear optimum 

control method developed recently [20] . 

Three applications to nuclear reactor systems are considered in Chapter 4. 

These applications include the RID control designs for xenon oscillations in P\VRs, 

feedwater train system of PWRs, and automated startup of the EBR-II .  The sim­

ulation results are evaluated to determine if the RID control strategy improves the 

system operations. 

Chapter 5 describes the inverse dynamics concept from a different perspective 

that leads to providing guidelines for strategy evaluation. The relationship with 

artificial intelligence is also considered. The discussion focuses on the possibility 

of incorporating expert systems and neural networks with the inverse dynamics 

approach to develop useful tools. 

A summary of the dissertation is presented in Chapter 6, including theoretical 

and practical conclusions and suggestions for future research. 
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Chapter 2 

Theory of Inverse Dynamics 

2 . 1  Inverse Problems 

Inverse problems appearing in various fields of applied sciences exhibit differences 

in mathematical formulation. Despite the variations, the similarit ies are significant 

enough to treat them as the same class of problems. The following describes basic 

definitions given in the literature ( 12) . 

Consider a mathematical model representing a physical process. Typical ar­

chitecture consists of principal quantities such as input, system parameters, and 

output. The description of the process is often charaterized by a set of equations 

(ordinary and/or partial differential/integral equations) with bounded parameters. 

The analysis of the given process via the mathematical model may be separated 

into three distinct types of problems. 

(A) The direct problem. Given the input and the 

system parameters, determine the output of the model. 

Also known as the forward problem. 

(B) The reconstruction problem. Given the system 

parameters and the output, determine which input has 

led to this output. 
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(C) The identification problem. Given the input and 

output, determine the system parameters which are in 

agreement with the relationship between input and output. 

The problem of type (B) and (C) are called inverse problems because known 

consequences are used to determine unknown causes. The mathematical represen­

tation of the forward and inverse problems can be carried out by defining: 

X = space of input quantities; 

Y = space of output quantities; 

� = space of system parameters; 

A(p) = system operator from X into Y associated to p E  R. 

Using the terminology above we can formulate the three types of problems. 

(A) Given x E X and p E R, find y := A(p)x. 

(B) Given y E Y and p E R, solve the equation 

Ax = y (x E X) 

where A := A(p) 

(C) Given y E Y and x E X, find p E � such that 

A(p)x = y. 

The reconstruction problem for linear case, that is if A is a linear map, has 

been studied extensively and its theory is well-developed. The situation in the 

nonlinear case is somewhat less satisfactory. Linearization is ·very successful to 

find an acceptable solution to a nonlinear problem but in general this principle 

provides only a partial answer. 
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A typical example of the type (B) inverse problems consists of dynamic forces 

acting on a mechanical system. The problem statement is as follows. 

Determine the unknown dynamic force having a measured 

vibration response of a system, whose parameters are consid­

ered to be known. 

Considering a one-degree-of freedom mechanical system, the dynamics may be 

described by the following ordinary differential equation 

mx(t) + kx(t) = f(t) ( 2. 1 )  

where m and k are the mass and stiffness constant , respectively. The driving force 

f(t ) ,  which is also considered as a control variable, can be solved pro .. ·ided the 

displacement measurement x( t )  exists and is twice different iable. 

f( t )  = mx( t ) + kx(t) 

The solution would not work in practice if the measurement .r (  t ) is contaminated 

by noise fJ for which the derivatives do not exist. Even if v is regular enough mv 
may be a highly oscillating function. 

It is obvious that the existence and uniqueness are required for the solution of 

inverse problems. In parameter identification and signal reconstruction problems, 

stability is of major concern since unstable problems are ill-posed [1 1 ] .  

2.2 Dynamic Equilibrium of Control 

Consider a process dynamics described by 

x(t) = F[x(t), u(t)} , t > 0 (2.3) 
where x and u are state and control variables, respectively. Provided a solution 

exists, control is solved from the above to yield 

u(t) = Q[x(t) ,  ±(t)] (2.4) 
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where g indicates the inverse dynamics with respect to the solution u .  The exis­

tence of such a solution strictly depends on the explicit nature of F. �ote that 

Eq .(2 .4) is the closed form of the inverse dynamics example of Eq. (2 .2 ) .  The 

equilibrium of control for a given time t0 is given by 

u( to) = Q(x(to), .i( to) = 0] (2.5) 

The condition x(t0) = 0 represents a stable solution. In a simi lar fashion , a 

dynamic equilibrium of control is given by 

Ueq (t )  = Q[x(t), x(t) = OJ ' t > 0 (2.6) 

where Ueq denotes the dynamic equilibrium If F is a linear function of state and 

control variables, Ueq corresponds to the standard pole-zero cancellation method 

[15). The dynamic equilibrium of control is used during various stages of control 

design. 

2.3 State Reconstructing Inverse Control Law 

The reconstruction principle defined by Baumeister [ 12] states that Ueq in Eq. (2 .6)  

can be computed provided measurement x( t ) is  available and g is  known. It is 

known from the classical control theory that exact pole-zero cancellation is not pos­

sible in practice due to imperfect measurements and limited knowledge of Q. Thus, 

the primary goal in nonlinear control is to find an appropriate reconstruction 

of u for the trajectory following case where the effect of imperfect mea­

surements and partially unknown g are guaranteed to be insignificant 

for all practical purposes. 

Referring to Eq.(2.3), we define a new dynamics for the process which allows a 

trajectory following in a first-order-transport-lag (FOTL) fashion. The definition 

is given by 

x(t) = k[xr(t ) - x(t)] = E(t) {2.7} 

where k is an adjustable constant, Xr is the reference trajectory and E(t) is the 

dynamic error in trajectory following. Then, the reconstruction problem may be 
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stated as follows: 

Find u(t) such that k[x,.(t) - x(t)] = .F[x(t),  u(t )) 

where x(t) is the solution of x(t) = k[x,.( t ) - x( t)], 

for k > 0 and t > 0. 

Solution to the problem requires combining Eq.(2.3) with Eq. (2.i) .  Eliminating 

±(t) between these two equations gives 

E(t) = F[x(t), u(t)] (2.8) 

The reconstruction of u(t) from the above requires "inverse" 9 such that 

u(t )  = 9[E( t) ,  x(t) ] . (2 .9)  

Thus, Eq.(2 .9) i s  the control design for a system described by Eq. (2 .3) that requires 

the knowledge of 9 and measurement x(t) .  The closed-loop dynamics can be found 

by substituting u(t )  in Eq .(2.3 ) 

.i:(t )  = F{x(t ) , 9[£(t) , x ( t )] } ( � . 10 )  
which further reduces to 

.i:(t) = E(t) = k(x,. (t) - x(t ) ]  

as defined in Eq.(2.7) , because 9 is the inverse dynamics of the forward plant 

dynamics F. Comparing controls given by Eq.(2.6) and Eq. (2 .9) ,  it can be in­

terpreted that the latter is a dynamic equilibrium of control along the bounded 

trajectory ±(t) = E(t) instead of x(t) = 0. 

2.3.1  Demand Law 

The new plant behavior given by Eq.(2. 7) does not accomplish an exact trajectory 

following due to the FOTL behavior. The plant lags k-1 seconds (or other time 

unit) behind the desired trajectory. There may be cases where the selection of 

k can not be made arbitrarily large. For small values of k, the delay may be 

undesirable according to procedures or other system specifications. Regardless of 
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the factors stated above, the RID design includes an exact compensation for the 

time delay. 

The reference trajectory Xr used in Eq.(2.7) can be treated as the delayed 

version of the actual demand X11 • Similar to the definition of Eq.(2.7) ,  a FOTL 

dynamics is defined between the actual demand and reference trajectory. 

X11(t) = k[xr (t ) - xts(t)] 

Solving for the reference trajectory above yields 

Xr (t )  = �Xa(t)  + Xe1( t )  

(2. 1 1 )  

(2 . 12) 

Thus, a desired trajectory x11 (t)  is sent to the RID controller as xr ( t )  calculated 

from Eq.(2 . 12) which is k-1 seconds (or other time unit) ahead of the actual de­

mand. Note that the factor k is the same as the one used in the RID design . .  -\s one 

can easily infer from the above, the effect of time-delay caused by the tuning pa­

rameter k can be fully compensated using Eq. (2 . 12)  which is called the demand-law. 

Another important issue is the achievability of the reference trajectories . They 

cannot be chosen arbitrarily because of the actuator constraints and safety limita­

tions. The following illustrates a trajectory design for a given actuator constraint. 

Consider a first-order system given by 

:i: = ax +  u 

The RID control law is given by 

u = -ax + k(xr - x) 

(2 . 1 :3 )  

(2 . 14 )  

where x,. i s  the reference trajectory. Assume that the trajectory i s  a ramp change 

Xr(t) = mt (2. 15)  

with a slope m .  Suppose the control is  constrained such that the rate of change in 

u per unit time must not exceed Kc. Then 

I U I < Kc 

I -a± + ki,. - k± I < Kc 

I -(a + k):i: + kir I < Kc 
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Since the relationships 

Xr = m 

are true, the slope can be determined by 

1 (-(a + k) + k) m l < I<c 
m < I<c a 

(2 . 19 )  

(2 .20) 

( 2 .2 1 )  

(2 .22) 

Allthough the derivation above does not hold for higher-order systems, the prop­

erties of desired trajectories may be related to the constraints of a given problem. 

The construction of demands is completed by incorporating the demand law. 

2.3.2 Existence 

As one can infer easily, the existence of the closed form solution of control given 

by Eq . (2 .9) depends strictly on 9, or equi velantly :F, which is a property of the 

system under consideration. However, under certain assumptions the existence can 

be guaranteed. The implicit function theorem [2 1 ]  can be used for this purpose. 

Implicit Function Theorem 

Let �1 , · · • 1 �m be of class C(q) on an open set D con taining xo , u·here 

q > 1 and 1 � m < n .  Assume that �(x0) = 0 and that the follo u·ing 

holds: 

8(�1 . . .  �m) I I 
J. O  t r a xo. 8(xr+I 1 • • · ,  x") 

Then there exists a neighborhood U of x0, an open set R C Er contain­

ing Xo, and functions r/J1 , • • • 1 q,m of class C(q) on R such that 

(2 .23) 

(2 .24) 

and 
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{x E U :  t(x) = 0} = {x E U :  x E R, xr+l = tp1(x)  'V l = 1, · ·  · , m } .  (2.25 ) 

Proof of this theorem is given in the literature [21 ) .  The implicit function 

theorem simply states that within some neighborhood of a fixed value of the control 

u and state variable x, the existence can be guaranteed. Rewritting Eq.(2.8) (omit 

t ime dependence for simplicity) 

E = F(x, u) 

we can define a new function 

'lf(x, u, E) = F(x, u) - E = 0 

Then the implicit function theorem can be applied to W(x,  u ,  E) .  

If there exist some neighborhood of x0 and u0 such that 

W(xo, Uo , Eo) = 0 and aw f8u exists 

then there is an open set £, with x0 E £ and a function: 

u :  £ - U with 

'lf [x, u(x)J = 0 for all X E £ 

2.4 Feasibility of Control 

(2 .26) 

It is of primary importance to state the conditions under which the control gh·en 

by Eq. (2.9) is valid. There are two conditions associated with this approach. 

First ,  reconstruction of u(t )  requires the measurement x( t )  to be available and 

regular. Second, the inverse dynamics design g must be an exact-inverse of the 

forward dynamics of the process F. However, as it will be explained later, these 

conditions are flexible enough to be satisfied by some adaptive techniques (some 

conditions are inherently flexible that may not require adaptation) yielding robust 

performance. 

2.4.1 Measurement Problems 

Even though there is no differentiation of x(t) required in Eq. (2.9 ) ,  noise con­

tamination may still deteriorate the closed-loop performance. There are several 
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methods to handle noise problems, one of which simply suggests using a model­

based estimation x(t). Availability of measurements from a process may be another 

limitation. It is clear that the inverse control law strictly depends on a unique set 

of measurements for single-input single-output (SISO) systems. Thus, the flexibil­

ity of selecting process signals encountered in many standard control methods does 

not apply here. Although there may be multiple solutions of the inverse control 

law for multi-input multi-output (MIMO) systems, state variables not available as 

measurements might be unavoidable. The problems stated above suggest that the 

RID control law be implemented as a model-reference technique when it includes 

several unmeasurable system parameters. 

2.4.2 Inexact Inverse Dynamics 

The closed-loop system dynamics given by Eq.(2 . 10 )  does not reduce to the def­

inition given by Eq.(2. 7) if the design knowledge of g is not the exact inverse of 

the forward dynamics :F. In such cases, the closed-loop system is not expected 

to follow the desired trajectory Xr( t) in a first-order transport-lag ( FOTL)  fashion 

and the resultant dynamic behavior is unknown. The FOTL is a l inear dynamics 

with a left-plane pole determined by k. Thus , it is asymptotically stable for any 

positive k. Departure from the FOTL behavior may result in stability problems. 

The uncertainties in the inverse function g can be compensated by an adapt ive 

solution. However, it is important to investigate the effect of such uncertainties on 

the closed-loop system behavior before incorporating any adaptive features. For 

simplicity, consider a linear system given by 

� - A,*. + B,Y. 
lL - C;[ 

where A, and B, are the plant parameters. 

(2.27) 

(2.28) 

Assume a;• exists and all measurements available (i.e. C - /) , then the 

trajectory following control u(t) is solved from Eq.(2.27), 

..  = a-1x - a-1 A x .l::. p - p P-

19 



Using the definition of Eq.(2. 7) , 

the control y is rewritten as 

(2 .29) 

where K is a diagonal, positive-definite gain matrix and ;£.,. is the trajectory vector. 

Note that the reconstruction of y above uses available plant measurement vector 

�· The system matrices A, and B, may not be exactly known. Thus, the control 

vector l! above is reconstructed using the best design parameters. 

(2 .30 ) 

The matrices Am and Bm are the estimates of the system matrices A11 and Bp· 
Substituting Eq.(2.30) into Eq. (2.27) gives the closed-loop dynamics . 

.i = (A, - B11B�1Am - B,B�1 K)� + B,B�1 K,r,. 

Define the following 

�A - A11 - B11B�1 Am 

K. - B a-1K p m 

L - B,B�1 K� .. 

Then the closed-loop dynamics is rewritten as 

( :!  .3 1 )  

(2 .32) 

(2.33) 

(2.34) 

(2.35) 

It is clear from the last equation that the uncertainty �A induces instability for 

positive eigenvalues. However, all of the closed-loop poles can be pushed into 

the left-plane by increasing K•. In practical applications, the choice of K matrix 

largely compensates for the effect of such uncertainties. 
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Definition: 

An n x n matrix A = (ai,j ) is diagonally dominant if 

n 
I ai,i 12: L I ai,i I= Ai (2.36 ) 

J = l #i 

for all 1 < i < n. An  n x n matrix A is strictly diagonally dominant (SDD) if 

strict inequality in Eq. (2.36} is valid for all 1 � i � n [22] .  

Theorem: [22) 

Let A = ( ai,j ) be an n x n strictly diagonally dominant complex matrix. Then the 

matrix A is nonsingular. If all the diagonal entries of A are in addition n egative 

real numbers, then the eigenvalues ).i of A satisfy 

Re ).i < 0, (2 .31) 

Since a Hermitian matrix has real eigenvalues, we have an immediate consequence 

of this theorem. 

Corollary: (22) 

If A = (ai,j ) is a Hermitian n x n strictly diagonally dominant matrix with n egative 
real diagonal entries, then A is negative definite. 

Using the matrix properties stated above, the stability condition of the closed­

loop matrix �A - K• can be investigated . First consider the input uncertainty 

matrix BpB;/ . For all practical purposes, the input uncertainty matrix will be 

close to an identity matrix with small off-diagonal elements. Thus, we assume 

that modeling error in Bp is within some tolerable range such that the matrix 

norm 

(2 .38) 

is satisfied for small E and BpB;1 is positive definite. Then BpB;1 K = K• is 

strictly diagonally dominant. The same argument is valid for the plant uncertainty 

matrix .O.A. Note that the modeling error between Ap and Am is magnified by the 

input uncertainty matrix. Because .O.A reflects this magnification , the tolerable 
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error condition can be restated in a conservative way as 

II uA 11 � 11 Am II (2 .39) 

which roughly implies an error range of almost 100 %. Then the stability robustness 

condition can be given by 

I I K I I>II Am ll 
which, for all practical purposes, can be restated as 

n 
k· · > " I  a · · I  ·� � ·� 

i=l 

where ai,i are the elements of the (n x n) design matrix Am. 

(2.40) 

(2 .4 1 )  

The discussion above shows the robustness property of the "inverse" method 

against possible uncertainties in modeling. Recall that the above illustration is 

valid for the special case where ( 1 )  the measurement vector � is available, ( 2) 

system dynamics is linear, ( 3 )  system matrices are time- in variant , and ( 4) no 

adaptive design is incorporated. A similar illustration of the stability-robustness 

property for nonlinear systems strictly depends on the explicit nature of the forward 

dynamics :F of Eq.(2.3) and cannot be easily developed using analytical methods. 

2.5 Adaptive Control 

The RID control law given by Eq.(2.9) operates on the measurement vector � in a 

unique form defined by the inverse dynamics operator g which yields a feedback­

control structure shown in Fig. 2. 1 .  As described in the previous section, the two 

possible problems ( 1 ) corrupted or lack of measurements, and (2) inexact opera­

tor g may deteriorate the closed-loop performance. Therefore, a model-reference 

adaptive method is employed. Both the problems stated above can be handled by 

incorporating an on-line model where the state variables are estimated. Only the 

estimation of unmeasurable state variables is required. Figure 2.2 illustrates the 

use of an on-line model for this purpose. 
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Figure 2.1 : Feedback arrangement of inverse dynamics control. 
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Figure 2.2: Use of on· line model in RID control. 
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Uncertainties such as modeling errors, time-variant plant parameters, and unan­

ticipated disturbances can be represented by a variable 9, called "unknown dynam­

ics" . Therefore, solution of the uncertainty problem reduces to tracking of 9 by 

some adaptive mechanism. Reconsider the nonlinear process given by Eq. (2.3) 

x = :F:(x, u )  (2 .42) 

where :F:e is partially unknown. Tracking of the unknown dynamics requires an 

on-line model given by 

in = :Fm(m, u, 9) (2.43) 

where 9 is the unknown dynamics. The process dynamics in Eq.(2.42 ) which is 

measured through x can be considered as a reference trajectory to be follo·wed by 

the model. If a particular state variable x is not available as a measurement, a 

substitute (auxiliary state) can be used. This is illustrated in the next section. 

Thus, the statement of the tracking problem is identical to that of the trajectory 

following control problem. First define a FOTL dynamics 

m(t)  = k[x(t ) - m(t )] = E(t)  (2 .-t-l) 
where k i s  an adjustable quantity, and x( t )  is the measurement. The reconstruc­

tion of 9 may be stated as follows: 

Find 9(t) such that k(x( t) - m(t) ]  = :Fm [m(t ) ,  u ( t ) , 9 ( t )] 

where m(t)  is the solution of in(t)  = k(x( t ) - m( t )] 
for k >  0 and t > 0 .  

Note that the treatment of g i s  identical to  any control variable u. Solution to  the 

problem requires combining Eq. (2.43) with Eq. (2.44). Eliminating m(t) between 

these two equations yields 

E(t) = :Fm(m(t) ,  u(t) , 9( t )J .  (2.45) 

The reconstruction of 9(t) from above requires "inverse" 9m such that 

9(t )  = Ym[E(t), m(t), u ( t)J (2.46) 
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The model is corrected by g(t) such that it follows the plant dynamics with k- 1 

seconds (or other time units) time delay. The demand law can be applied to com­

pensate the delay. In this case, the actual measurement xa (t ) is used to calculate 

the "reference" measurement x(t) .  

(2 .47} 

The actual measurement must be noise free. 

2 .6 Auxiliary States 

The design of the RID control law depends on the distribution of control \"ari­

ables versus trajectory assignments. In some cases, a reference trajectory may be 

assigned to a state equation where there is no direct entry of control. 

( 2 .-18 )  

Assume there exists a coupled system with a direct entry of  control. 

(2 . -19 )  

such that the coupled system is controllable. Solution to the trajectory following 

control problem requires an additional reconstruction through an auxiliary state. 

The statement of the problem can be made as follows. 

Find an auxiliary state x;(t ) such that kt [x,.( t )  - .r1 ( t )] = Ft [.rt (  t ). x;( t ) ]  
where x1 ( t )  is the solution of ±1 = k1 [x,. ( t ) - x1 ( t )] 

then, find u(t) such that k2 [x2(t) - x2(t)] = F2[xt ( t) , x2(t) ,  u(t)) 
where x2(t) is the solution of ±2 = k2[x2(t) - x2(t)) 

for k1 > 0, k2 > 0 and t > 0. 

Solution to this problem can be found using the implicit function theorem within 

some fixed neighborhood of u0, x10, x20, and x2o. U an explicit solution exists 

outside this neighborhood, it requires two "inverse" operators 91 and Q2• The 

auxiliary state x2 is solved from Eq.(2.48). 

(2 .50) 
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Similarly the control u(t) is solved from Eq .(2.49) . 

u(t) = 92[x1 (t ) , x2( t ) , ±2 ( t )] . 

The derivatives are replaced by the dynamic errors given by 

X1 (t) - kl [xr (t) - x1 (t)) 

x2(t) - k2 [x2(t) - x2(t)) 

The set of equations (2 .50-2.53) complete the RID control law. 

(2 .5 1 )  

(2 .52) 

(2 .53) 

The use of auxiliary states may be extended to include more coupled systems 

and more " inverse" operators. In the MIMO case, there may be more than one 

"inverse" operator to satisfy the same trajectory following task. Unlike in many 

other control techniques, the abundance of control alternatives is a very useful 

information and can be used to determine the best strategy (see Chap . . ) ) . In 

general, the choice of the best strategy depends on the specifics of the system. 

The auxiliary states can also be used for the adaptive part of the design. As a 

rule of thumb, the number of trajectory assignments must not exceed the number 

of control variables. This is not a specific requirement of the RID des ign since i t  

applies to every control design technique. 

2.  7 Comparison with Optimal Control 

The optimal control theory is well developed for linear systems such as the linear 

quadratic regulator ( LQR), linear quadratic Gaussian compensator ( LQG ) [ 16J 
with Kalman filtering, and the loop-transfer recovery method LQR/LTR for robust 

control [23) . On the other hand the nonlinear optimal control theory encounters 

several problems due to the complex nature of nonlinear system dynamics. Recent 

studies have dealt with the classical dilemma of two-point boundary value problem 

[24). However, the assumptions made often conflict with the optimality criteria. 

Although the RID control is very powerful in the nonlinear domain, there are 

no strong theoretical foundations to compare the two approaches using analytical 

methods. In the nonlinear domain, Lagrangian Derivation of Optimal Control 

(LDOC) method [20) is compared with the RID control using numerical methods. 

The details are included in Chapter-III. 
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2. 7.1 Inverse Dynamics Component of t he LQR 

Consider the Linear Quadratic Regulator ( LQR) problem for a first order system 

x = ax +  1m x(O) = xo (2 .54) 

with 

(·) - - )  - .i).) 

where J is the cost function p is the control weight, respectively. The scalar gain 

g is given by 
b m  

g = ­p2 
where m is the positive root of the algebraic Ricatti equation 

b2m2 
2am - -2- + 1 = 0 p 

The two roots of the quadratic equation are 

p2 ( �) m = b2 a ± V a2 + pi 

(2 .56)  

I •) • -

) \ - · ·) ' 

( 2  .. 58 )  

Since the radical i s  always greater than the absolute value of  a ,  it is ob\·ious that 

the positive sign is the only possible choice for m > 0 (condition for positive definite 

Ricatti matrix) .  The optimal gain is 

9 = H a + �a' + :, ) 
Then the optimal feedback control u071 is given by 

Uop = -gx 

u., - - [Ha + R)] X 

( 2 .59 )  

( 2 .60 ) 

(2 .6 1 )  

(2.62) 

The closed-loop system dynamics using the optimal feedback control reduces to 

X - ax - b gx (2.63) 

X - ax - ax - (/a' + ::) X (2 .64) 

X - - (/a' + ::) X (2 .65) 
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The regulation problem with the RID design assumes the trajectory Xr to represent 

the steady-state value of x. Using the state-space representation with x being a 

deviation from the steady-state, the regulation problem requires Xr = 0. The 

control Urid is given by 
1 Urid = -b (ax + kx) 

where k is an adjustable quantity. The closed-loop system can be stated as 

x = ax - b [ � (ax + kx)] 

which reduces to 

x = ax - ax - kx = -kx 

(2.66) 

(2.6i) 

The second term -ax of the last equation,  which is the inverse dynamics compo­

nent of the RID control, cancels the forward dynamics ax yielding a simple dynam­

ics -kx. It is interesting that the closed-loop system using the optimum control 

given in Eq.(2 .64) has an identical cancellation ax - ax. Thus, i t  is concluded that 

the LQR control contains an inverse component Q(x) for the regulation 

problem of first-order systems. The control laws using both techniques can 

be restated in the following manner. 

ULQR - -(a/b) x - ( 1/bhfa2 + b2/ p2 x ( 2 .68) 

C(z) K op 
URJD - -(ajb) X - ( 1 /b)k X (2 .69 )  

� 
C(.r) Krtd 

Obviously, the optimal control is the combination of the two components of 

ULQR· Note that the inverse operator g as one of the components of ULQR does not 

depend on the weight p. This illustrates the importance of the inverse operator 

for the optimality condition. 

The linear quadratic regulator problem can be converted into a trajectory fol­

lowing control problem by applying the gain Kop to the reference input . This 

creates a FOTL dynamics identical to that of the RID control. Thus the reference 

trajectory must be filtered through the demand law. The LQR control law is given 

by 

ULQR = -(ajb)x - KopX + KopXr 
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[(op - J a + b2 / p2 Xr - (:op) Xa + Xca 

where Xa and Xr are the actual and reference trajectories, respectively. 

2. 7.2 Optimality and Asymptotic Behavior 

(2 .7 1 )  

(2.72) 

An optimum k for the RID design can be found by the condition ULQR = URrD in 

Eqs. (2.68-2.69) 

Krid - Kop 

k = J,....a_+_b_2 f-p-2 
(2 .73) 

\ � .7-l ) 

Since p and k both are adjustable quantities, the solutions are equally optimal only 

for the arbitrary choices of these parameters. However, the weight p is not entirely 
an arbitrary choice because it represents the "cost" of control. Similarly, we can 

conclude that k also respresents the "'cost" of control but in the re\·erse direction. 

That is, k is small for a high cost of control. 

The asymptotic properties of the optimal control law can be examined in com­

parison to the RID control law. 

"As the control weighting p2 tends to zero (i.e. the control becomes 
increasingly " cheap") the closed-loop pole moves out  to infinity along 
the negative real axis as bf p . The feedback gain becomes infinite as 
does the bandwith of the system. This is entirely reasonable. �, [ 16). 

It is seen from Eq. (2.74) that as p2 tends to zero, the RID solution with large 

values of k approaches that of the LQR. 

lim k - oo 
p-0 (2 .75) 

(2.76) 

Thus, if k is chosen to be large (cheap control) ,  its performance approaches that 

of the LQR with a small weight. Note that large k corresponds to a small delay 

between the trajectory and plant responses for the trajectory following case. 
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"As the weight p2 tends to oo (i.e. the control becomes increasingly 

"expensive") the closed-loop pole tends to - I a 1 .  If a < 0 (i.e., the 

open-loop system is asymptotically stable) then ac -+ a as the control 

gain g -+ 0.  Tbis again is reasonable. If control costs a great deal, 

its usage must be minimized. This strategy is obviously unsatisfactory 

when a > 0 (i.e. , open-loop system is unstable). In this case ac -+ -a 

and the gain g -+ 2a which results in high cost of control. " (16] .  

Considering a first order system, i t  is easier t o  show the stability robustness 

characteristics of the RID control. Theoretically, ax - ax cancellation solves the 

instability problem. A problem would arise when the parameter a of the controller 

is mistakenly different from the plant parameter a .  In such a case, �a may be 

positive resulting in instability. Then, the closed-loop system is given by 

x = (Lla - k)x ( •) --) - · 1 I 

If there is no restriction on k, large values will yield a negative eigenvalue and 

restore stability. 'When Lla is positive and k is strongly restricted ( i .e. expensive 

control, actuator limitations) the stability becomes more dependent on model­

ing errors. However, the auxiliary states method allows different strategies with 

cheaper cost of control (larger k) .  

The question of "to what extent do the results for a first-order system carry 

over to a general kth order system" was studied by Kalman (25] and K wakernaak 

[26}. The discussions above also hold for a kth order system except for the effect 

of zeros which complicates the analysis. This is mainly due to the dependence 

between the regulator gain vector and the system matrices. It is obvious that the 

asymptotic behavior of the RID control is not significantly affected by the open­

loop zeros since the inverse operator cancels the forward dynamics. 
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2. 7.3 Implement ing LQR versus RID control 

The solution of the linear quadratic regulator problem for a kth order system 

requires a cost function given by 

(2.78) 

where Q and R are state and input weight matrices, respectively. For an infinite 

terminal time 

J00 = x'Mx (2.79) 

where M satisfies the algebraic Riccati equation (ARE) 

(2 .80) 

and the optimum gain at steady state is given by 

(2.8 1 )  

The matrix equation (2.80) represents a set of k(k + l ) /2 coupled scalar quadratic 

equations. Because each quadratic equation in the set has two solutions, the total 

number of solutions is k(k + 1 ) .  

The algebraic Riccati equation has a unique, positive definite solution .\1 which 

minimizes }00 when the control law u = - B R-1 Jf x is used. This solution depends 

on ( 1 )  the stability of the open-loop system, and (2)  the controllability and ob­

servabili ty of the system defined by A, B, C. Thus, if the above conditions are 

satisfied, one of the k(k + 1 )  solutions (not more than one) is positive-definite. 

Establishing which of the solutions of the Riccati equation, if any, is the correct 

one imposes great difficulty because in most practical cases, the equation must be 

solved numerically and the numerical problem is not an easy one. A computer 

algorithm may not iterate to the correct solution. So it is important to determine 

whether the sought-after solution exists before trying iterative techniques. 

The effort for finding an optimum solution may be unreasonable, especially 

for large-scale systems. In practice, the plant parameters are time-variant which 
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would require the computation to be performed in an on-line computer. This may 

cause problems in real-time solutions. It is obvious that the RID control does 

not include any iterative algorithm. If an on-line model is required, large \"alues 

of k may result in a stiff model. Although there are efficient stiff-system solvers, 

real-time problems may arise. This problem can be resolved by a proper tuning of 

k at the design stage. 

2.8 RID Control Design Steps 

The RID design requires reasonably adequate knowledge of the dynamics of the 

system under consideration. Although the RID method yields very robust control 

strategies against modeling errors, accurate modeling facilitates the task of the 

adaptive part and improves the robustness against other types of anomalies. The 

second reason for an accurate model is related to testing. These tests would not 

yield reliable results unless a set of previously recorded plant data is available. The 

design includes the following steps. 

1 .  Modeling: A nonlinear model must be developed usmg the state 

space representation. The model should include all of the known nonlin­

earities as well as the uncertainties. For example, the thermal-hydraulic 

modeling often suffers from the complicated nature of heat-transfer co­

efficients. In such cases, the nonlinearities can be formulated using the 

best available knowledge, then an uncertainty term may be incorpo­

rated. These uncertainty terms play an important role later during the 

adaptive design. 

2. Control Law Derivation: Using the nonlinear model, the control law 

is derived (provided a solution exists) as shown in Eqs.(2.7), {2.9} ,  

(2.50-2.53) .  These solutions do not include adaptive control, but they 

may include the uncertain terms. The analytical derivations should be 

carried out even if there are more than one solution to satisfy a given 

demand. The abundance of solutions can be a great benefit in select-
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ing the best strategy. The derivation step is completed by assessing 

which state variables are not available as measurements. If any, then 

an on-line model is appended to the control law in order to provide the 

estimations of those missing state variables. 

3. Dynamic Equilibrium Testing(DET): The RID control law contains 

two components. ( 1 )  inverse dynamics, and (2) state reconstruction us· 

ing dynamic error of Eq.(2. 7). The D ET requires the second component 

to be zero. Thus, the RID control law without the state reconstruction 

must yield the dynamic equilibrium of control. The uncertainty terms 

should be set to 1 or zero (whichever ignores the uncertainty ) .  The 

test is implemented using a previously recorded transient data from 

the process. An independent model of the process is driven by the RID 

control law (without the 2nd component) both of which utilize previ· 

ous plant signals. The missing states, if any, are provided from the 

model. The DET must result in a steady-state behavior, otherwise the 

inverse dynamics g is not appropriately designed. Engineering judge· 

ment may be used to determine the tolerable amount of unsteady-state 

D ET output which can be compensated by the adaptive design. For 

MIMO control, the DET outputs clearly indicate which uncertainty 

terms must have a significant contribution to the unsteady-state 0 ET 
output. 

4. Best Strategy Selection: This step is taken if there are multiple solu­

tions for a given demand. For example; consider three pipes in parallel 

that drain liquid from the same tank. H there are three valves incor· 

porated within these pipes, the tank level controller can use any one of 

the valves or all of them. The DET outputs from the multiple control 

laws can be evaluated to determine which inverse dynamics is more 

accurately known. Other factors can include the availability of mea­

surements and the actuator constraints. As one can infer from this 

discussion, the cost of control is partially ( if not completely) deter· 

mined by the D ET. Thus the solution with a minimum cost must be 
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selected. 

5. Adaptive Design: Once the DET outputs are evaluated to identify 

the most significant uncertainties, the adaptive control is derived using 

Eq.(2.47). The uncertain terms of the on-line model are updated by 

the adaptive control law. 

6. Demand Construction: Control tasks are often specified in terms 

of trajectories. Set-point requirements can also be represented using 

steady-state trajectories. If there is no specific reason for the step 

change requirement, a set-point change is converted into a ramp change 

such that the steepness of its slope can be adjusted. The desired tra­

jectories must be evaluated to determine if they are "achievable" . 

7. Tuning: This step includes simulation studies where the complete 

RID control design is appended to the model. Tuning is a straight for­

ward task because the Ks are one directional (only positive values ) .  As 

a rule of thumb ,  large values of K yield better performance. There are 

two restrictions: ( 1 )  the cost of control, and (2) the stiffness condition 

of the on-line model, if used. The tuning takes place mainly to resolve 

these issues. 

8. Final Testing: The final step uses the model in a modified manner. 

The model parameters (previously assumed constant) are made time 

variant to test the robustness of the RID controller. Accordingly, the 

tuning is updated. This test may also include verifying the disturbance 

rejection capability and robustness against unknown dynamics. 
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Chapter 3 

Performance Characteristics 

3.1  Framework for Evaluation 

A systematic approach needs to be taken to evaluate a control technique and to 

study the feasibility of implementing it in a plant. The classical time/frequency 

domain performance characteristics convey meaningful information, however fur­

ther evaluation may be necessary to determine the feasibility in a broader sense. 

Particularly in nonlinear control, the classical measures may not be applicable or 

adequate for a. complete performance evaluation. A previous study (27] has intro­

duced the concept of measures of utility, which defines various performance factors. 

These factors include classical time-domain and frequency-domain characteristics 

as well as more specific "process-related" requirements. A new control strategy 

may be considered as feasible if all the measures of utilities are examined and 

found to be satisfactory. As expected, a. new control method may be feasible for 

one process, but not for another. This fact justifies the necessity of the process­

related performance factors. The measures of performance (or utilities) are shown 

in Fig. 3.1 .  
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a)- TIME-DOMAIN PERFORMANCE 

b)- FREQ UENCY-DOMAIN PERFORMANCE 

c)- ROB USTNESS 

Additive Noise 

Process Parameter Variation 

Sensor and .4.ctuator Failure 

d)- DOWNSTREAM EFFECTS 

e)- ABILITY TO TUNE IN THE FIEL D 

f)- A BILITY TO CONVE Y  .\JEANINGFUL INFORM . ..\TIO.V 

Explanation of Con troller Actions 

Observation of Unmeasurable States 

Tracking of Plant Parameters 

g)- USER U.VDERSTAND.4.BILITY 

Complexity 

h)- RESO URCE REQ UIREMENTS 

Real-time Compu tational Req uiremen ts 

Sensor Count and Accuracy Req uiremen ts 

Figure 3. 1 :  Measures of Utilities 
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Control system performance can be evaluated by measuring rise t ime, over­

shoot, settling time, and integral square error. Generally, closed-loop systems 

should exhibit less than 30 % overshoot to a step change in set point. Graphical 

techniques are mainstay of frequency-domain analysis. Examples include Bode 

plot, Nyquist plot, root-locus and Nichols chart. From the Bode plot, stability 

measures such as gain and phase margins are calculated. For S ISO systems, a 45 

degree phase margin and 6- 12  db gain margins are desired. The classic definition of 

a robust system is one which is insensitive to bounded plant parameter variations, 

disturbances, noise, sensor failures, and design (modeling) errors. Dowstream ef­

fects include actuator integrity and wear-out. Control strategy must minimize the 

actuator usage and eliminate stress factors (mechanical, electrical, thermal, chem­

ical, and radiation) .  Ability to tune in the field is another requirement that must 

be satisfied. The control of large-scale systems requires more informat ion from a 

controller than what the conventional controllers offer. Explanation of controller 

actions, observation of unmeasurable states, and tracking uncertain parameters 

are important information for operators . The availability of such informat ion can 

improve the reliability of control systems. Other requirements may be associated 

with the complexity of control systems. New strategies should invoke an interface 

capability which provides communication with operators on a continuous basis. 

Such an interface must facilitate operator's understanding of the control system. 

Resource requirements determine the feasibility from the hardware point of view. 

This includes computations faster than real-time, and suitability between the con­

trol and measurement systems. 

3.2 A Benchmark Problem 

The pedormance evaluation using the criteria stated above cannot be easily as­

sessed unless the system is defined. This is due to some performance factors that 

would have different importance from one process to another. In addition, the 

theory behind the RID yields a unique control law for every different system, and 

its evaluation is limited using a generalized analytical method. Thus, a benchmark 

problem is considered that represents some basic nuclear phenomena with a variety 

of control problems. The problem is formulated to cover a maximum number of 
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performance issues using a simple nonlinear model. 

3.2.1  Modeling the Benchmark Problem 

A nonlinear, state-space model has been previously developed to represent a com­

pact, high power density nuclear reactor [28] . The plant is modeled by a point 

kinetics model with a single group of delayed neutrons and fuel and coolant temper­

ature feedback terms. Enthalpy balances in the core and coolant lumps determine 

the core and coolant temperatures as a function of the inlet coolant temperature 

and the coolant flow rate. Power P1 and delayed neutron concentration P2 are 

normalized to their respective equilibrium values, whereas fuel temperature P3 
and average coolant temperature P4 are normalized at the steady-state \·alue of 

the inlet temperature. The plant dynamics is described by the following set of 

equations: 

where 

Pt - ;� ((Ut - 1 )Pt + P2] - (o�(P4 - P4o) + a�(P3 - P30))Pt (3 . 1 )  

P2 - ,\�(Pt - P2 ) (3.2 ) 

P3 = ,\:Pt - ,\�(PJ - P4 ) ( :3.3)  

p4 - ,\�(PJ - P4) - U4 -\�( P4 - 1 ) (3 .4) 

U1 = Reactivity control, 

U4 = Flow control, 

o�./ ' ,\�.c,p,J,d,r = Parameters of the plant. 

It is necessary to use a duplicate model to study the robustness properties. 

The parameters of the original model (plant) can be disturbed externally whereas 

the duplicate model is isolated from such effects. The control system utilizes 

state estimation from the duplicate model. With this approach, it is possible to 

evaluate the robustness properties of control systems against unknown dynamics. 

The duplicate model is rewritten below using a new notation to indicate that it is 

the on-line state-estimator (model). 
Nt = ,\� ((Ut - l )Nt + N2) - (o:(N4 - N40) + oj(N3 - N30))Nt (3.5) 

• 
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fv'l - >.';(Nt - N2) 
NJ - >.;:' Nt - >.j(NJ - N4) 
N4 - >.';'(NJ - N4) - U4>.';'(N4 - 1 )  

where 

Nt = Reactor power, 

N2 = Precursor concentration, 

Na = Fuel temperature, 

N4 = Coolant temperature, 

a�,, >-'::c,p,J,d,r = Parameters of the model. 

Note that the model and plant , both are driven by controls U1 and U4 • 

(3.6) 

(3. 7) 

(3 .8) 

It is assumed that the plant state variables, reactor power P1 and coolant 

temperature P4 , are measured. The two remaining plant states ,  precursor concen­

tration P2 and fuel temperature P3, are estimated using N2 and :.V3 of the on-line 

model. 

3.2.2 D iscrepancies Between the P lant and Model 

The plant dynamics is deliberately made different from that of the model to sim­

ulate a realistic case. The control design is not modified accordingly, which would 

be the case in actual practice. However, the design incorporates adaptive features 

in which the primary task is to estimate changes in the plant and update the model 

and control. Using such a methodology, different robustness tests are performed 

by introducing different uncertainties in the plant. Referring to Eqs.(3.2-3.4), the 

plant equations are modified in the following manner: 

pt - >.��t)  [(Ut - 1)Pt + P2] - (�(t)(P4 - P4o) + cr�(t ) (P3 - PJO)]Pt (3.9) 
P2 - >.�(t) (Pt - P2) (3. 1 0) 

P3 - >-:(t)Pt - >.�(t )(P3 - P4) + A cos(P3 - Pt )f(t )  

p4 - >.�(t ) (P3 - P4) - U4>.�(t )(P4 - 1 ) 
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The plant parameters A�(t )  and �(t) ,( i = 1 ,  . . .  , 8  and j = 1 , 2) are made time 

variant whereas the model parameters Af' and oj are constant . The perturbations 

are given by 

Af(t) - Cit + z.cos(wit - 1t'i )  
or(t) - C;t + Z;cos(w;t - 1r; ) 

(3. 1 3) 

(3 . 14 )  

where C,, C; , z, ,  Z; , wi, Wj , 1t'i and 1t'j are arbitrarily selected constants. Note that 

the arbitrary choices are within a normalized range so that the amount of perturba­

tion can be assessed. In Eq.(3. 1 1 ) an additional term is incorporated to represent 

unknown dynamics. The parameter A is a normalized arbitrary constant whereas 

f(t) is a normalized arbitrary oscillation. The model does not include this infor­

mation either. The unknown dynamics is incorporated in the third equation ( fuel 

temperature) deliberately because it is not measurable. This is a very challenging 

task for the control and diagnostic systems. The simulation studies use the per­

turbed plant equations and unpertubed model equations . 

The final form of the plant dynamics described by Eqs. (3.9-3 . 1 -l) corresponds 

to a hypothetical case where the possibility of such discrepancies is almost impossi­

ble. Any plant behavior matching the one above would probably correspond to an 

accident situation. Consequently, if the control system can yield a reasonable per­

formance under such circumstances, it can be considered "robust" for all practical 

purposes. 

3.2.3 Control P roblem Definition 

A control task is described for the given system. It is assumed that the control task 

includes two trajectories (demands) to be followed, one for the reactor power and 

the other for the coolant temperature. The overall target is a power level increase 

of about 25 %. The trajectories designed for this scenario have two distinct parts. 

The first part, which takes place during the first 100 seconds, includes a smooth 

power and coolant temperature increase. Obviously, it is expected that the power 

increase will require a positive reactivity input (control input- 1 ) .  This input will 
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cause the fuel and coolant temperatures to increase, accordingly. However, this 

increase may not match the demand on the coolant temperature. The reactor 

coolant flow (control input-2} is expected to decrease such that the coolant resides 

longer in the active core region resulting in a higher coolant temperature to match 

the demand. Note that the model also includes the reactivity feedback phenomena. 

The second part, which takes place between the 100 and 200 seconds, is em­

ployed to test the extended maneuvering capability of the controllers under inves­

tigation. The reactor power is lowered smoothly to a level higher than the initial 

value. This will require a negative reactivity input (control input- 1 ) . The coolant 

temperature, on the other hand, is required to maintain its level that is reached 

after the first 100 seconds. The effect of lowering reactor power will cause less heat 

production. Thus the coolant flow (control input-2) is expected to decrease again 

to prolong the residence time of the coolant in the core region. 

The scenario described above requires reasonable reactivity and coolant flow 

adjustments, thus it can be considered practical for a power change operation 

from 75 % to 1 00 %. However, the time frame may be prolonged to avoid reaching 

actuator limits. 

3.2.4 Performance Factors 

The benchmark problem defined above is subjected to various performance tests 

to evaluate some of the feasibility characteristics of the RID control. Referring to 

the performance factors given in Fig 3.1 ,  the scope of the framework is modified 

according to the specifics of the benchmark problem. 

a) Time-domain analysis for a nonlinear, demand following 

problem reduces to evaluating the error and time delay between the 

demand and plant transients. Since the demand is not a set-point, factors 

such as overshoot ,  rise-time and settling-time do not apply. 

b) Frequency-domain analysis is not applicable because 

the problem is nonlinear. 
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c) Robustness against parametric variations, sensory 

failure and additive noise. 

d) Downstream effects. 

e) Tuning characteristics. 

f) Ability to convey meaningful information. 

The performance tests evaluate the effectiveness of the parameter 

identification capability incorporated within the RID design. 

g) User understandability. 

h) Resource requirements. 

The optimal control method [20] is incorporated for the purpose of comparison. 

This method uses Lagrangian density and freedom functions to derive a nonlinear 

control law. For the purpose of simplicity, we call this method the " Lagrangian 

Derivation of Optimal Control" (LDOC). Each performance test is also applied to 

LDOC so that the differences between the optimal control and RID control can 

be assessed. The performance tests are labeled for convenience. The prescribed 

trajectories for the reactor power and coolant temperature are shown in Fig. :3.2 . 
Table 3. 1 shows two-digit labels, whereas the proceeding table shows the combi­

nation of the tests performed. 

3.3 Design 

3.3.1 RID Control (DS 1) 

Consider the nonlinear model given by Eqs.(3.5-3.8) .  The "bare" design, which 
assumes that the model exactly represents the plant, is derived from Eqs. (3.5) 

and (3.8). The control law for the pair of reactivity control-power demand is solved 

from Eq.(3.5) 

Vi = 1 + � N1 - Z: + ..\:'[o�(N4 - N4o) + oj(Na - Nao)] (3 . 15)  
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Figure 3.2: Desired trajectories for the reactor power (top) and core-coolant tem­

perature (bottom). 
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Table 3. 1 :  Labels for Control Algorithm Testing 

I ITEM I LABEL I DESCRIPTION 

Testl Tl Model and plant perfectly match 

Test2 T2 Robustness to unknown dynamics 

Test3 T3 Measurement time-delay 

Test4 T4 Actuator constraints 

Design! DSl RID design (bare) 

Design2 DS2 RID design with adaptive features 

Design3 DS3 Optimal Control ( LDOC) 

Definition of dynamic error between the reactor power and demand D1 given 

by 

.V1 = K1 (D1 - Nt ) = £1 

is substituted in Eq. (3. 15) to yield 

( 3 . 1 6 ) 

;\m V Vi = 1 + N6 K1(D1 - Nt ) - .V
2 + ..\;' (a:(N" - .V4o ) + o:j ( .VJ - .VJo ) ] ( :3 . 1  I )  1 i 1 

where K1 is an adjustable quantity. Note that the state variables .V1 and .¥4 are 

available as measurements P1 and P4 from the plant . Thus the reactivity control 

law is updated accordingly to give 

Vi = 1 + � Kt (Dt - Pt ) - ;: + ..\;' (o�(P" - P"o) + o:j(N3 - N30)] (3 . 18 )  

The reactor coolant flow control is  treated in a similar way. The control law for 

the pair of flow control-coolant temperature demand is obtained from Eq.(3 .8) .  

V4 
= 

..\';'(N3 - N .. ) -
N4 

..\';'(N4 - 1 )  ..\';'(N4 - 1 )  

Dynamic error between the coolant temperature and demand is given by 

The substitution of Eq. (3.20) into Eq.(3. 19) yields 

V: _ ..\';'(N3 - N4) 
_ 

K4(D .. - N4) 4 - ..\';'(N4 - 1 }  ..\';'(N4 - 1 )  
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Table 3.2: Tests Performed 

* T l  T2 T3 T4 
DSl X 

DS2 X X X 

DS3 X X X X 

where D4 and K4 are the coolant temperature demand and an adjustable param­

eter, respectively. The control law is updated using the available measurements 

from the plant, in this case P4• 

V 
..\�(N3 - P4 ) K4( D4 - P4) 4 =  ..\�( P4 - 1 ) - ..\:.r'(P4 - l ) ( 3.22) 

3.3.2 Adaptive RID Control Design ( D S2) 

The need for an adaptive design emerges from the fact that the RID control law 

given by Eqs. (3 . 1 8) and (3 .22) use state estimations N2 and N3 generated by the 

model. Modeling errors and inexact inverse dynamics formulation may deteriorate 

the performance. When the RID design is performed on a real system, a set of 

transient data must be available. Thus , the RID control law is modified to yield 

the dynamic equilibrium of control for the dynamic equilibrium testing. 

The dynamic equilibrium of control ( inverse dynamics ) is obtained by setting 

the reconstruction terms (K) equal to zero. Using Eq. (3. 1 8) the equilibrium 

reactivity control is given by 

(3 .23) 

Similarly the dynamic equilibrium of control for the coolant flow is obtained from 

Eq.(3.22) 

(3 .24) 

The model for DET is similar to that of Eqs.(3 .4-3.8) except the available mea­

surements (P1 ,P4) and the equilibrium controls are substituted as forcing functions. 

The DET model is given by 
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1 1 l 
1 � � � 

Nt - Am [(( l.'t )eq - 1 )  Pt +N2] - (o� ( P4 -N.�o) + oj(NJ - N30)) Pt(3 .25 ) 
, 

N2 -

N3 -

N4 -

l 
� 

A:;'( Pt -N2) 
l 1 

� � 
A;' Pt -Aj(N3 - P4 ) 

l 1 
A';(N3 - 'P.J - (V.. )eqA;'(P;' -1 )  

where the arrows indicate data entries. 

(3.26) 

(3 .27) 

(3.28) 

Obviously, the dynamic equilibrium of controls are expected to cancel the for-
. . 

ward dynamics in Eqs.(3.25) and (3.28) and yield N1 = .V4 = 0. Note that these 

derivatives are not equal to zero in practice because the controls used during the 

plant transient are different from (Vt }eq and (V.. )eq · Otherwise, the data would 

represent the steady-state system behavior which is not useful for the DET. The 

DET outputs are evaluated based on these two derivatives for this specific exam­

ple. Examining the deviations from zero and the analytical structure of controls, 

we can easily diagnose the approximate locations of uncertainties in the model. 

Adaptive design starts with identifying the uncertain terms in the model ei­

ther by DET or using heuristic approach. The model (on- line estimator )  is then 

expressed as follows. 

1 Nt - Am [(Vi - 1 )Nt + N2) 
, 

-[a:'(N4 - N•o) + aj(N3 - NJO))Nt + Rat (3 .29) 

N'l - A:f(Nt - N2) (3 .30) 
N3 - A;'Nt - Aj(N3 - N4 )  + RaJ (3 .3 1 )  
fl. - A';(N3 - N4) - V..A;' (N4 - 1 ) (3 .32) 

where Rat and RaJ represent the uncertainties. The placement of Ra3 is necessary 

and an additional Ra4 is avoidable using the auxiliary-states technique. 
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The two uncertain terms associated with the model are treated as new control 

variables that must provide appropriate compensation for the discrepancy between 

the plant and model. Uncertainty terms respresent all unknown effects including 

time varying parameters and unknown disturbances. The uncertainty in reactor 

power Rat is derived from Eq.(3.29). 

where 

Rat = -F4(N, Vi) +  Nl 
Nt - KGI (Pt - Nt ) 

(3 .33) 

(3 .34) 

F4(il, V. )  = >..� [(V. - l )N1 + N2] - [o::"(N4 - N.�o) + aj (NJ - .V30)JN1 (3 .35) 
s 

Similarly, the uncertainty in the fuel and coolant temperatures are solved using 

Eqs. (3.31 )  and (3.32). Using the auxiliary-states technique we define an auxiliary 

state variable Nj in Eq.(3.32) such that it will force the coolant temperature of 

the model N4 to follow its measured value P4 • Thus, from Eq. (3.32) 

(3 .36) 

( 3 .3i) 

The control term RaJ is then designed to force the fuel temperature of the model 

NJ to follow the auxiliary state Nj. From Eq.(3.3 1 )  

where 

RaJ - -FJ(N" NJ, N4)  + 1VJ 
N3 - Kc3(Nj - N3) 

( 3.38) 

(3.39) 

(3 .40) 

The final form of the RID control design includes controls V1 and V4 of Eqs. 

(3. 18)  and (3.22) , adaptive controls Ra1 ,  RaJ, and auixiliary state Nj of Eqs. 

(3.33), (3.36) and (3.38). The adaptive control utilizes state estimations from the 

on-line model given by Eqs. (3.28-3.32). Two measurements P1 and P4 are obtained 

from the plant whereas the two demands D1 and D4 are prescribed and supplied 

by the operator. 

48 



3.3.3 Lagrangian Derivation of Optimal Control (DS3) 
An analytical comparison between the RID and optimal control methods given 

in Chapter 2 was performed in the linear domain. Most of the nonlinear meth­

ods such as Pontryagin's maximum principle suffer from theoretical limitations as 

well as from numerical problems. A recent accomplishment in  nonlinear control 

[20] uses Lagrangian density-freedom function approach to yield a rather simple 

and powerful control technique. The performance evaluation of the RID method 

includes comparisons with the Lagrangian derivation of optimal control (LDOC) 

through simulations. 

The LDOC can be considered as a model-reference adaptive control ( �lRAC) 

method. Its model dependence is somewhat less complicated compared to that of 

the RID. For the benchmark problem, the LDOC method uses a model given by 

{3 .4 1 )  

(3 .42) 

where 1."vf1 and k/4 are reactor power and coolant temperature, }'i and Y4 are 

reactivity and flow controls, and G1 and G4 are unknown dynamics, respectively. 

Comparing Eqs. (3.4 1 ,3.42) with Eqs. (3.9-3. 12) ,  it can be seen that the adaptive 

control in the LDOC design has a more challenging objective than that of the RID 

design. However, it is inherently less model dependent. The model given above is 

redefined in terms of control and state functions. 

c1 - Yi - 1 

F1 
M1 - ).m , 

c .. - -Y.a 
F .. - ).�( J."v/4 - 1 )  

The controls Yi and Y.a are given by 

Y1 - RtaYio + R16 - RtcCtr 

Y.. - R .. aY.to + R .. cC4T 
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where 

RtG 
1 + ln(F10) (3 .50) -
1 + ln(Ft )  

In B.. 
Ru 

Fto (3 .5 1 )  -
1 + ln(Ft )  

Rtc 
Ft (3 .52) - 1 + ln( Ft )  

R4G 
1 + ln(F  .. o) (3 .53) -
1 + ln(F4) 

R4c 
F .. (3.54) -

1 + ln(F4)  

CtT - Pc10 - PtrZts + Rtp(Pt - Dt )  (3.55) 

c .. T - Pc4o - P4rZ .. s + R4p(P4 - D4 )  (3.56) 

Controls given above include tuning parameters Pc1o , Pu, Rtp , Pc4o, P41 and R4p· 
The terms Z1s and Z4s represent integral errors given by 

Zts - lot d;(P1 - Dt )  

z .. s - lo' d;(P4 - D4) 

Adaptive control is designed in a similar fashion and given by 

Gt = Gto + F10 - Ft - 81 T 
G2 = G 40 + F4o - F4 - B4T 

where 

BtT - -KuZIA + Ktp(Mt - Pt ) 

B4T - -K41Z4A + K4p(M" - P") 

( 3 .5i) 

(3 .58) 

(3 .59) 

(3 .60) 

(3.6 1 ) 
( 3.62) 

The adaptive control includes tuning parameters Ku, K1p , K4r, K4p and initial val­

ues Gto, G4o· The terms ZIA , Z4A represent the integral errors given by 

zlA = lot d;(Mt - Pt ) (3 .63) 

z"A - lot d;(M" - P4) ( 3.64) 
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3.4 Simulation Results 

The benchmark problem is applied to three different designs for four different tests 

(see Tables 3 . 1  and 3.2). The computer codes (in ACSL) are given in Appendix 

A. The simulations are performed on a VAX-2000 Work Station using the ACSL 

software. 

3.4.1 Test- 1 (T1 ) :  P lant and Model Perfectly Match 

The performance evaluation of the RID control technique with comparison to the 

LDOC, first includes the case where the plant and its model exactly match. Al· 

though this assumption is never true for real systems, these simulations help un­

derstand if the basic theory is valid. The RID and LDOC controllers are tuned 

through trial and error. The RID control requires tuning .5 parameters whereas 

the LDOC requires 12 parameters . These parameters are given in Sect. :3 . -t..S and 

kept the same in each test. 

The reactor power response using the RID controller is shown in Fig. 3. :3 and 

is compared with the demand. A similar comparison is shown in Fig. 3.-l: using 

the LDOC controller. As it is seen from these figures, the reactor power follows 

the demand very closely such that the difference cannot easily be visualized on 

the graphs. The core coolant temperature responses using the RID and LDOC 

controllers are shown in Fig. 3.5 in comparison with the demand. The responses 

in this figure are also not distinguishable because the controllers perform very ef­

ficiently. 

Figure 3.6 compares the RID control inputs with that of the LDOC. The differ­

ences are consistently negligible. The reactivity input , as expected, increases dur· 

ing the first 100 seconds to match the power with the increasing demand. During 

the second 1 00 seconds, a negative reactivity is introduced to follow the decreasing 

power demand. The core coolant flow is decreased to prolong the residence time to 

match the increasing temperature demand. Although the temperature demand is 

constant during the second 100 seconds, decreasing reactor power causes less heat 

production thus the coolant residence time needs to be prolonged further. 
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Figure 3.3: Reactor power H1 response using the RID controller. Reactor follows 

the demand D1 with a negligible error. In Test-I t  plant and model exactly match. 
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the demand D1 with a negligible error. In Test-1 ,  plant and model exactly match. 
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Figure 3.5: Reactor coolant temperature responses using the LDOC and RID 

controllers (P4, H4). Reactor follows the demand D4 with a negligible error. In 
Test-1 ,  plant and model exactly match. 
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The simulation results of Test- 1 indicate that the RID control law yields efficient 

trajectory following capability when the on-line model matches the plant perfect ly. 

For this specific example, the RID controller performance is almost identical to 

that of the Lagrangian derivation of optimal control. The simulation results can 

be reproduced using the ACSL code given in Appendix A. 

3.4.2 Test-2 (T2 ) :  Partially Unknown P lant Dynamics 

The performance evaluation of the RID method includes robustness testing against 

unknown plant dynamics. The unknown plant dynamics includes all possible de­

teriorating effects such as time-varying parametric changes, unmodeled nonlinear­

ities and measurement problems. In Test-2, the RID and LDOC controllers are 

expected to accomplish the trajectory following task under two effects: ( 1 )  time­

varying parametric changes in the plant, and (2) unknown nonlinear dynamics of 

the plant. The on-line model used in the RID and LDOC designs do not include 

these effects .  Thus, this test also evaluates the robustness property against mod­

eling errors. 

The time-varying parametric changes of the plant are shown in Fig. 3 .7. The 

parameters increase or decrease constantly with different oscillations which are 

generated by arbitrarily chosen constants. At the end of the 200 second period, 

these parameters are about 30 % different from their init ial values. Figure 3.8 
shows the additional nonlinearity introduced to the plant dynamics which is an 

unknown in the on-line model. The constant change in plant parameters and the 

unknown nonlinear dynamics causes instability which is assessed by linearizing the 

"plant" model at the 200th second. The linearized open-loop plant has 2 eigenval­

ues with positive real parts. 

The reactor power and core coolant temperature responses using the RID and 

LDOC controllers show that these methods yield very robust and stable perfor­

mance. Figure 3.9 compares the RID controller performance with respect to power 

demand. Figure 3 .10 shows the power response using the LDOC controller. The 

error in trajectory following is visible in this graph. 
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Time ( sec ) 

Figure 3.7: Time-variant parametric changes in the plant. Maximum deviation is 

about 30 % of the initial value. Parametric changes are initiated at the lOth second 

a.nd generated by arbitrary constants. The 8 parameters of the on-line model are 

constant a.nd equa.l to the initial values of plant parameters. 
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Figure 3.8: Unmodeled nonlinear dynamics incorporated into the plant. The non­

linearity relates the fuel temperature to the reactor power. It is unobservable 

through direct measurements which complicates the diagnostic task of the adap­

tive control. 
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Figure 3 .9: Reactor power response H1 using the RID control paradigm. Reactor 

follows the demand D1 with a negligible error. Test-2 introduces 30% discrepeancy 

between the plant and its model. 
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between the plant a.nd its model. 
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The LDOC performance may be improved by a better tuning. Figures 3 . 1 1  and 

3. 12 show the reactor coolant temperature responses using the RID and LDOC con­

trollers, respectively. Considering the amount of discrepancy introduced between 

the plant and model, the closed-loop performances using the RID and LDOC are 

outstanding. Linearization at the 200th second shows that none of the closed-loop 

poles have a positive real part, thus the stability-robustness property is verified. 

Figure 3.13 shows the control inputs generated by the RID and LDOC paradigms. 

It is clear that the irregular appearence of control inputs is due to the compen­

sation of the disturbance effects externally introduced to the plant. The adaptive 

control inputs are shown in Fig. 3 . 14 .  These graphs illustrate the discrepancy 

captured by the adaptive control paradigm. In case of the model exactly matching 

the plant, the adaptive control inputs would have a steady-state behavior. 

The discrepancy introduced between the plant and its model is increasingly 

magnified to reach a point where the stability no longer holds. These simulat ions 

were performed to observe how much discrepancy these control systems could 

handle without loosing stability. Figure 3. 15  shows the power response us ing the 

RID controller where the plant parameters deviate almost 300 % from their initial 

values at the 200th second. Figure 3 . 16 shows the LDOC performance. The closed­

loop poles have small positive real parts and the stability is lost. The core coolant 

temperature responses using the RID and LDOC paradigms are shown in Figs. 

3. 1 7  and 3 . 18 .  Figure 3 . 19  shows the control inputs. The unstable behavior can 

be seen in Fig. 3.20 where the adaptive terms oscillate with a higher amplitude 

every period. 
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Figure 3.1 1 :  Reactor coolant temperature response H,. using the RID control 

paradigm. Reactor follows the demand D,. with a negligible error. Test-2 in­

troduces 30% discrepeancy between the plant and its model. 
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Figure 3.12: Reactor coolant temperature response P4 using the LDOC paradigm. 

Reactor follows the demand D4 with a significant error. Test-2 introduces 30% 

discrepeancy between the plant and its model. 
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discrepeancy between the plant and its model. 
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Figure 3.15: Reactor power response H1 using the RID control paradigm. Reactor 

departures from the demand D1 as time elapses. The discreapencies between 

the plant and model are ma�ified to reach 300 % at the 200th second. This is 

practically not possible in any nuclear reactor. 
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Figure 3.16: Reactor power response P1 using the LDOC paradigm. Reactor 

departures from the demand D1 as time elapses and shows unstable behavior. The 

discreapencies between the plant and model are magnified to reach 300 % at the 

200th second. This is practically not possible in any nuclear reactor. 
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200th second. This is practically not possible in any nuclear reactor. 

68 



. . 
. N C'.J 

(0 (0 "T "T . . N N 

(' J  ('.J m m 
... -, t-•J CJ r-t  
,_., ::;:: 
� <I ..... -=-' ...:.... ·� UJ 1- 0 
-·· .;.� - o:-

-r ,..,j !l .. .' -:r,...j C::l' 

+ + 0 0 . . •:-..J ('.J 

Fractional Reactor 

Coolant Temperature 

using LDOC 

I .- 7 _ _,.-7 ....... _!� .f'·-tl !-· Demand 

I 
� 

� ��----------------�--------------------�----------------�-----------------r--------------� 
[] . [] []  o . sc 1 . ![] I '"I � ("· I:"' I"' \  ;. w  ... !. �  

l .  6i:J Z. CD 

Figure 3.18: Reactor coolant temperature response P4 using the LDOC paradigm. 

Reactor follows the demand D4 with a significant error. The discreapencies be­

tween the plant and model are magnified to reach 300 % a.t the 200th second. This 

is practically not possible in any nuclear reactor. 
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Figure 3.19: Control inputs using the LDOC and RID control paradigms. Reac­

tivity inputs (Yi with LDOC and Vi with RID) and flow inputs (1'4 with LDOC 

and V. with RID) are consistent between each other. The discreapencies between 

the plant and model are magnified to reach 300 % at the 200th second. This is 

practically not possible in any nuclear reactor. 
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Figure 3.20: Adaptive Control inputs using the LDOC and RID control paradigms. 

LDOC inputs (G1 a.nd G4) and RID inputs (Ra1, RaJ, Nj) a.re diverging as time 

elapses. The discreapencies between the plant and model a.re magnified to reach 

300 % at the 200th second. This is practically not possible in any nuclear reactor. 
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3.4.3 Test-3 (T3 ) :  Measurement Time-Delay Problem 

One of the problems associated with control systems is their robustness against 

abnormalities in measured signals. Sensors often undergo a gradual degradation be­

fore they are completely non-operational. Especially, temperature sensing devices 

such as thermocouples respond increasingly slower as their response characteristics 

degrade. Before a sensor anomaly is detected by any signal validation technique, 

it is important that control systems respond properly during this period. In Test-

3, the simulations include time-delays in reactor power measurement P1 and core 

coolant temperature P4 • The power measurement is a fast process and a lOO mil­

liseconds time delay is quite undesirable. The temperature measurement on the 

other hand becomes significantly bad with a delay in the order of seconds. The 

measurement time delay is modeled using a first-order transport lag dynamics and 

is given by 
. 1 

PJ = -(P - PJ ) 
T 

(3.6.5 ) 
where PJ , P and T are the measured signal, plant state variable, and sensor t ime­

constant , respectively. 

The first simulation introduces a lOO millisecond time delay in the power mea­

surement and a 2 seconds time delay in the temperature measurement. These 

delays are considered to be in addition to the normal time-constants of the sen­

sors. Figure 3.21 shows the reactor power responses using the L DOC and RID 

controllers. The power responses slightly fall behind the demand, however it is in­

significant for all practical purposes . On the other hand, the coolant temperature 

responses shown in Fig. 3 .22 indicate a steep rise as the demand starts increas­

ing. This is a contrary effect since the delayed signals cause early responses. The 

steep rise is due to the accumulation of errors which cannot be detected in time. 

The delayed version of errors are accumulated and magnified, thus the controllers 

respond excessively strong. Figure 3 .23 shows the control signals generated by the 

LDOC and RID paradigms. As it can be seen from this figure, the coolant flow 

has dropped considerably during the first few seconds. 
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Figure 3.21 : Reactor Power responses PhH1 using the LDOC and RID control 

paradigms. Reactor follows the demand D1 with a negligible error. In Test-3, 

measurements from the plant are delayed (0.1 second delay in reactor power, 2 

seconds delay in coolant temperature signals). 
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Figure 3.22: Coolant temperature responses P4,H4 using the LDOC and RID con­

trol paradigms. Reactor follows the demand D4 with a significant error. At the 

beginning of the transient, the accumulation of the error can not be detected. Few 

seconds later, the magnified error causes a steep early response in coolant temper­

ature. In Test-3, measurements from the plant are delayed (0.1 second delay in 

reactor power, 2 seconds delay in coolant temperature signals) .  
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Figure 3.23: Control inputs generated by the LDOC and RlD control paradigms. 

(reactivity Yi,Vi, and coolant flow }'4,\'.) In Test-3, measurements from the plant 

are delayed (0.1 second delay in reactor power, 2 seconds delay in coolant temper­

ature signals) . Delayed sensor signals cause an excessive response in flow control 

signals at the beginning of the transient. 
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The second simulation includes a 5 seconds time delay in the measurement of 

coolant temperature. Figure 3 .24 shows the coolant temperature responses using 

the LDOC and RID paradigms. In comparison with the demand, the temperature 

responses are faster. The effect of longer time delays in the measurement causes 

faster response that may be undesirable for different reasons . Figure 3 .25 shows 

the overshooting behavior of the flow response due to the time delay in measure­

ments .  

It  is  apparent that the low performance observed due to measurement time­

delay is not design dependent since both of the techniques result in  the same 

closed-loop behavior. The accumulation of errors is a common problem for every 

control paradigm. These tests verify that the RID control technique does not 

produce extra problems such as instability due to time delays in measurements. 

However, this statement may not be true when the actuator constraints do not 

allow such a fast response. Thus, further testing is performed for a constrained 

problem. 

3 .4.4 Test-4 (T4):  Actuator Limitations 

Actuator constraints limit the capability of control systems because of electro­

mechanical or safety related limitations. Obviously, the error between the desired 

trajectory and system response should be minimized by modifying the trajectory 

such that the actuator limitations are not exceeded. There is a maximum rate 

for the control-rod motion, coolant pumps, and valve positioning in nuclear reac­

tors where the safety limitations may even impose more restrictive rates. Thus, 

the trajectories must be designed conservatively to avoid violating such limitations. 

Problems arise not during a normal operation with smooth trajectories but in 

case of high-frequency disturbances on the system. The inverse dynamics com­

ponent of the RID control law creates a "mirror image" of the disturbance to 

completely cancel it. This fast component of the control signal may overdrive 

the actuator. Protecting the actuators from an excessive control signal can be 

accomplished by using limited integrators. 
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Figure 3.24: Coolant temperature responses P�,H4 using the LDOC and RID con­

trol paradigms. Reactor follows the demand D� with a significant error. The 

prompt jump at the begining of the transient is more severe as the delay-time 

prolongs. In Test-3, measurements from the plant are delayed (0.1 second delay in 

reactor power, 5 seconds delay in coolant temperature signals) .  
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Figure 3.25: Control inputs generated by the LDOC and RID control paradigms. 

(coolant flow }'4,Vt) In Test-3, measurements from the plant are delayed (0. 1 second 

delay in reactor power, 5 seconds delay in coolant temperature signals). Delayed 

sensor signals cause an excessive response in flow control signals at the beginning 

of the transient. Incresed delay-time causes more severe prompt response. 
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Then the question is "how will the closed-loop system behave with a limited 

inverse-dynamics compensator?" . The stability characteristics of the RID control 

with limited actuators are investigated in Test-4. 

The simulations include previously stated demand following requirement and 

limited integrators that bound the control signal rates within some prescribed 

range. For this specific example, the reactivity insertion/withdrawal and coolant 

flow rates are chosen ±0.1  and ±0.005 per second. The actuator dynamics can be 

expressed as 

dz 
dt = kv(u - z) ,  Rmu > kv(u - z) > Rmin 

Rmin ,  kv( U - Z ) � Rmin 

( 3 .66) 

( :J .6i)  

( :3 .68) 

where Rmaz and Rmin represent the upper and lower boundaries of the actuator 

signal rate :; , and kv is the time-constant of the actuator. 

The constained problem when applied to the demand following reactor results in 

plant responses similar to that of the unconstrained problem. Figure 3 .26 shows the 

reactor power responses using the LDOC and RID control paradigms. Compared 

with the demand, the error in trajectory following is negligible. The reactor coolant 

temperature responses in comparison with the demand are shown in Fig. :J.2i. 

The LDOC and RID controllers perform efficient demand following task with a 

negligible error. The reactivity control inputs (Y1 with LDOC, Vt with RID) shown 

in Fig. 3.28 are compared with the constrained inputs (YY1 of LDOC, VVt of RID) 

which are not allowed to change faster than ±0. 1 $  per second. This requirement 

is more restricted in power plants such as ±0.01 $  per second. This figure shows 

that the original control signals were within the prescribed speed limit. On the 

other hand, the flow inputs generated by these controllers ( Y4 with LDOC, V4 with 

RID) violate the rate limit of ±0.005 fraction per second.  Figure 3.29 shows the 

constrained flow VV.. versus unconstrained flow V.. generated by the RID control 

paradigm. 
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Figure 3.26: Reactor power responses Ph H1 using the LDOC and RID control 

paradigm. Reactor follows the demand D1 with a negligible error. In Test-4, 

reactivity insertion rate and coolant flow rate are constrained. 
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Figure 3.27: Reactor coolant temperature responses P4,H4 using the LDOC and 

RID control paradigms. Reactor follows the demand D4 with a negligible error. 

In Test-4, reactivity insertion rate and coolant flow rate are constrained. 
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Figure 3.28: Reactivity inputs using the LDOC and RID control paradigms. Fig­

ure compares the unconstrained control signals (Y1 ,  Vi)  with the constrained ones 

(YYi, VVi). In test-4, reactivity insertion rate and coolant flow rate are con­

strained. 
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Figure 3.29: Constrained and unconstrained coolant How inputs generated by the 

RID control paradigm. Speed rate is violated by the unconstrained control signal. 

However, constrained input is capable of efficient demand following control. 
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Simi lar comparison is shown in Fig. 3.30 illustrating the constrained flow }··}·� 

and unconstrained flow Y4 generated by the LDOC paradigm. Referring back to 

Fig. 3.27, it is seen that the effects of constrained inputs are negligible. 

The second part of Test-4 includes a step disturbance on the reactor power 

which is similar to dropping a fuel rod inside the core that is worth 20 cents posi­

tive reactivity. The step reactivity of 20 cents causes a ��mirror image"' dynamics 

of -20 cents step reactivity with the RID control law. Obviously, this violates the 

actuator limitations. Thus, Test-4 investigates the control performance when the 

actuation capability is limited. Figure 3.31 shows the disturbance applied to the 

plant. 

The reactor power response in comparison with the demand is shown in Fig. 

3 .32 where the RID controller is constrained. The demand is followed efficiently 

before and after the disturbance. �ote that the peak in this figure cannot be 

compensated due to the limited rod speed. Figure 3.33 sho\\"S the reactor power 

response using the LDOC paradigm for the same scenario. Figures 3.3-t and 3.35 

show the coolant temperature responses using the RID and LDOC paradigms, 

respectively. From these figures it is clear that the reactor follows the demand 

before and after the perturbation in an efficient way. .\gain, the peak cannot be 

compensated due to the limitation on the coolant flow rate. 

The reactivity control inputs generated by the RID control paradigm are shown 

in Fig. 3.36. The closed-loop plant uses the constrained input. The reactivity 

control inputs with the LDOC paradigm is shown in Fig. 3 .37. Constrained and 

unconstrained flow inputs generated by the RID control and LDOC paradigms 

are shown in Figs. 3.38 and 3.39, respectively. Figures 3.40 and 3.41 show the 

speed of control signals which are bounded during operation (±0. 1$per sec for the 

reactivity, ±0.05/raction per sec for the flow rate) . 
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Figure 3.30: Constrained and unconstrained coolant flow inputs generated by the 

LDOC paradigm. Speed rate is violated by the unconstrained control signal. How­

ever, constrained input is capable of efficient demand following control. 
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Figure 3.32: Reactor power response H1 using the RID control paradigm. The re­

actor is subject to a +20 cents step disturbance where the controls are constrained. 

Reactor follows the demand D1 before and after the disturbance. 
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Figure 3.33: Reactor power response P1 using the LDOC paradigm. The reactor 

is subject to a +20 cents step disturbance where the controls are constrained. 

Reactor follows the demand D1 before and after the disturbance. 
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Figure 3.34: Reactor coolant temperature response H4 using the RID control 

paradigm. The reactor is subject to a +20 cents step disturbance where the 

controls are constrained. Reactor follows the demand D 4 before and after the 

disturbance. 
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Figure 3.35: Reactor coolant temperature response using the LDOC paradigm. 

The reactor is subject to a +20 cents step disturbance where the controls are 

constrained. Reactor follows the demand D4 before and after the disturbance. 
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Figure 3.37: Constrained YYi and unconstrained Y1 reactivity inputs generated by 

the LDOC paradigm. The closed-loop plant uses the constrained control signal. 

The reactor is subject to a +20 cents step disturbance. 
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the LDOC paradigm. The closed-loop plant uses the constrained control signal. 

The reactor is subject to a +20 cents step disturbance. 
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Figure 3.40: Rod speed with the LDOC and RID control paradigms during the 

demand following reactor. Reactor is subject to a +20 cents step disturbance. Rod 

speed is constrained ±0.1$ per second. 
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the demand following reactor. Reactor is subject to a +20 cents step disturbance. 
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3.4.5 Overall Performance Evaluation 

Refering to the performance factors listed in Fig.3 . 1  and their interpretation given 

in Sect. 2.4, the simulation results are evaluated and the characteristics of the RID 

control paradigm are summarized below. 

Time-Domain Characteristics: The RID control paradigm in .\11�10 
application is observed to yield practically insignificant errors between 

the prescribed trajectories and plant responses. The errors during the 

transients and steady-state are both negligible and cannot be seen in  

the time plots. The same performance is observed in different tests 

(TI ,T2,T3,T4) for cases where the deteriorating effects are tolerable or 

physically possible. 

Frequency-Domain Characteristics: Because the problem is a non­

linear one, the frequency-domain tools are not applicable in general. 

However, the models are linearized at the 200th second to check the 
eigenvalues and to determine the stability. In Test-2, the open-loop 

plant shows two eigenvalues with a positive real part, thus indicat­

ing unstable plant regime. Upon appending the RID controller, the 

closed-loop eigenvalues are all in the left side of the complex plane. 

This shows the restoration of stability by the RID control paradigm. 

Further analysis using the eigenvalue method is not useful because the 

nonlinearities may change the pole-zero locations. 

Robustness: Although the real plants are not made of parameters or 

state variables, we refer to these terms to identify a reference point with · 

respect to our modeling knowledge. Thus, a time-varying parametric 

change or an unknown nonlinearity both represent the same class of dis­

crepancy between the plant and its model. Simi larly, unexpected time­

delays in sensor signals also fall into this class. Tests T2 and T3 show 

that the RID control paradigm is extremely robust against unknown 

97 



events of the plant. In Test-2, despite the unusually large discrepancy 

introduced, the RID controller is capable of providing stable and effi­

cient plant behavior. This scenario can be converted such that the plant 

behaves reasonably whereas its model is extremely "bad" .  Obviously, 

the RID performance would be the same, may be even better since the 

controller mostly uses plant measurements. It can be concluded that 

the RID control paradigm allows modeling errors and almost guaran­

tees robust performance when such errors are tolerable. It is observed 

that the measurement time-delays may cause an accumulated reaction 

and magnify the control signal superficially. However, the constrained 

control inputs , as explained below, are observed to maintain the high 

performance characteristics of the unconstrained control. 

Downstream Effects: Because the ongoing discussion focuses on the 

evaluation of a control law, the downstream effects are only considered 

in this domain. One of the most important issues is to avoid the ex­

cessive and harsh usage of actuators that may shorten their a':erage 

life-time. Preventing actuators from such deteriorating effects requires 

the assignment of constraints on control inputs. Constraints may also 

be assigned to provide safe operations. The simulations in Test 4 in­

clude constraints on control inputs. It is observed that the RID control 

paradigm retains high performance characteristics even with a limited 

actuation capability. 

Tuning Characteristics: One of the most useful properties of the 

RID control paradigm is related to its tuning. Figure 3 .42 shows 

the RID tuning compared with the LDOC paradigm. Obviously, the 

RID tuning task can be reduced to tuning of only two parameters 

(K = 1000, Ka = 10) for the benchmark problem. The range of tuning 

parameters often lies between positive numbers 1 and 1000. 
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/(4 = 1000 

Kat = 10 
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Kc4 = 10 

LDOC 'lUning 

Pcto = 0. 

Pc4o = 0. 

Ku = -0.5 

[(41 = -4.2 

KtP = 0.5 

RtP = 4.0 

R4P = 0 . 1  

Pu = -0.5 

p4l = -0.04 

Figure 3.42 :  Tuning parameters used in the RID and LDOC designs. 
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The control gains (K) when selected larger than 1000 may cause the 

on-line model, if any used, to become stiff which may impose com­

putational problems. It is observed that the sensitivity to the tuning 

parameter K is low whereas the adaptive term Ka is slightly higher. 

On the other hand, the LDOC paradigm requires careful tuning of pa­

rameters that can have negative and positive values. The simplicity of 

the RID tuning suggests that it will impose no problems for the in-situ 

tuning task. 

Ability to Convey Meaningful Information: The RID control paradigm 

uses adaptive features that are verified to be efficient through tests T2 
and T3. The adaptive control signals constitute a useful tool to monitor 

the unanticipated plant behavior. Depending on the design , d ifferent 

adaptive control signals represent anomalies of different nature. In the 

benchmark problem for example, the adaptive term Ra1 represents the 

anomalies with respect to reactivity feedback (or disturbance) ,  whereas 

the terms RaJ and Nj are related to the heat transfer mechanism be­

tween the fuel and core coolant. In MIMO applications where a cross-

talk between the control inputs exist, the identification of the anomaly 

may require further analysis for tightly coupled mechanisms. 

User Understandability: Compared to other control methods, the 

RID control paradigm clearly states how its control law is derived. 

A user who is familiar with the design characteristics of the system 

can understand the control law, thus would be able to interpret con­

trol actions if they are monitored on-line in the plant. This faci li tates 

the on-line tuning task. In the RID design, it is clear that higher 

gains provide stronger control actions similar to that of a simple pro­

portional controller tuning. The concept of inverse dynamics (mirror 

image dynamics) may be much easier for a plant operator to under­

stand compared to the cost function approach of the LQR method or 
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the Lagrangian density method of the LDOC. 

Resource Requirements: The RID control paradigm uses an algabraic 

control law that is easy to implement in a digital or analog environ· 

ment .  If an on·line model is needed for adaptation, the digital tech· 

nology is more appropriate. It is clear that the RID computations do 

not require solving ordinary differential equations except for the on·line 

model. Thus, the real·time problem is not worse than using any other 

model·reference adaptive control (MRAC) method. 

The simulation results show that the performance of the RID control paradigm 

is very close to that of the LDOC's .  By analyzing the control signals generated by 

the two paradigms throughout the tests Tl ,  T2, T3, and T4, it can be concluded 

that the RID control paradigm is as optimal as the LDOC paradigm within the 

accuracy of tuning parameters. 
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Chapter 4 

Application to Nuclear Systems 

4.1 Introduction 

Advances in nuclear power plant technology depends upon improvements in  its op­

erating philosophy and related systems. The future generation of nuclear reactors 

will definitely require extended operational envelope using fault-tolerant strategies. 

In large-scale systems, automation frees operators from vigilance over routine and 

tedious tasks by emulating the human expertise in a faster and reliable fashion. 

Thus, the improvement in nuclear reactor operations hinges on an automatic con­

trol capability that functions efficiently under various operating conditions. 

The existing operating philosophy in nuclear power plants is primari ly depen­

dent on plant operators because the conventional technology is not completely 

suitable for automatic control. In addition, the history of power plant operations 

indicates that the conventional control systems may fail when plant nonlineari­

ties become significant. Typical examples in  P\VRs include the power oscillations 

due to nonlinear xenon behavior, and large swings in steam generator level dur­

ing startup. When such problems arise, operators can maneuver to shutdown the 

plant if the emergency systems have not already intervened. The issues such as 

the trip avoidance and extended maneuverability, therefore, require new control 

technologies to be developed for improved plant availability and reliability. 

The RID control paradigm can be incorporated within the automatic control 
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strategies because it provides robust nonlinear control for a wide range of opera­

tions. The high performance characteristics of the inverse dynamics concept were 

illustrated in Chapter 3, where a low order nuclear reactor model was used . The 

next step is taken to investigate the effectiveness of the RID control paradigm in 

applications to some of the typical control problems in nuclear reactors. These 

applications use detailed models that are validated against plant data. 

The first application is the control of xenon induced axial power oscillations 

in PWRs. This problem often arises in conventional plants and it is primarily 

controlled by operators unless the oscillations exceed safety limits. Thus, an ap­

propriate nonlinear controller would be useful for t rip avoidance purposes. The 

main objective here is to investigate if the RID control paradigm is a potential 

candidate for this task. 

The steam generator level in PWRs is known to swing during low power le\·els, 

particularly during startup. This problem often causes reactor trips. One of the 

most effective ways of improving steam generator control is to have rapid maneu­

vering capability of feedwater flow. The second application in this chapter includes 

a RID control design for the feedwater-train system. 

Plant nonlinearities become very dominant during the startup phase of nuclear 

plants. It is not always possible to use linear controllers for the automation of 

startup. This constitutes another potential area where an appropriate nonlinear 

control technique may be very useful. The third application includes a RID con­

trol design for the Experimental Breeder Reactor- I I  (EBR-11) startup task. The 

simulation results include comparison with two other nonlinear control methods, 

namely, the fuzzy logic and neural network paradigms [29] . 

4.2 Xenon Oscillation Control in PWRs 

The on-line control of core dynamics in large pressurized water reactors (P\VRs) 

is known to degrade due to xenon induced power oscillations (XIPOs) during dif­

ferent modes of day-to-day reactor operations. Although the routine operational 
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decisions can avoid violating the safety requirements , the XIPO may cause un­

scheduled shutdowns or mandatory maneuvers which reduce the plant availability 

and trigger several other complications. 

The xenon oscillation in large PWR.s is a highly nonlinear phenomenon which 

is a function of several time-variant parameters such as the fuel cycle, boron level, 

rod position and power level. The physics involved in XIPO is particularly related 

to the fission product xenon-1 35 isotope which has high thermal neutron absorp­

tion cross section and relatively large fission yield. There is a small fraction of this 

isotope produced directly by fission, but the major portion is formed indirectly by 

the Te-Ba decay chain. Axially non uniform build-up and removal of the xenon-

135 causes the power distribution in the core to oscillate between the top and the 

bottom with a period of 20 to 30 hours. The power distribution in the core is often 

indicated by the axial shape index (ASI) .  The steady-state reactor operation re­

sults in an equilibrium xenon concentration with significant absorption of neutrons 

(xenon poisoning). Thus, the reactors are designed to contain excessive amount 

of fuel or high fuel enrichment to compensate for possible xenon poisoning. In the 

dynamic phase, the use of control rods or boration for power maneuvers may dis­

turb the equilibrium xenon concentration which causes a possible ASI oscillation. 

This situation is magnified in the case of a reactor trip, as it affects the tirrUng and 

complexity of restarting the reactor. 

The xenon distribution in a reactor core is detected through changes in the 

axial and radial power distribution, and core reactivity. The fact that there is no 

direct way of monitoring the xenon concentration often causes operators a great 

deal of difficulty in anticipating the amplitude, direction, and rate of change of the 

xenon imbalance. Once it is detected, the selection of the best strategy to recover 

from xenon oscillations also constitutes a complicated problem. The minimization 

of the detrimental transient thermal effects on the fuel rods often requires a slow 

change in the axial power shape which may interfere with the axial shape control. 

Optimal fuel utilization is best achieved by unrodded operation. The capability of 

borating or deborating the primary system coolant via the charging pumps may 

be limited. Even for high level soluble borons, the insertion of control rods, with 
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compensation by boron generates waste water causing high costs for the cleanup.  

Thus, a control action against XIPO requires the resolution of several conflicts and 

the use of optimized strategies. 

4.2.1 Previous Accomplishments in Spat ial Control 

The most widely used form of effective XIPO control in PWRs employs the half­

cycle damping strategy (30) . The operator inserts and withdraws control rods 

during the half cycle of the oscillation when the axial power shape is shifted to­

ward the top of the core. With this strategy, the amplitude of the oscillation can 

be maintained within the limits determined by the technical specifications. How­

ever, the lack of direct measurements complicates the anticipat ion of the expected 

xenon behavior and the target axial offset (TAO) .  Thus the trajectory of the rod 

movement is often determined by analyzing the past behavior of the reactor. 

There are several operating reactors using some form of automat ic power dis­

tribution control system. Among them, gas-cooled reactors (AGR) , presurrized 

heavy water reactors {PHWR) and boiling water reactors (B\VR) employ com­

puterized control schemes (31 ) .  In these schemes , the core is axially divided into 

several imaginary control zones where each zone has a single-input single-output 

{SISO) proportional controller loop, and is equipped with its own detector and 

actuator. In one of the Swedish PWR.s (32] , three partially coupled set-point con­

trol loops are used for both axial and azimuthal oscillations. This system allows 

load following operation of the reactor with fast changes in power level. The latest 

applications in  French PWRs (5) also include spatial control with an on-line micro 

computer where the tuning takes place. 

The automatic spatial control systems already in use in plants often consist of 

SISO control loops where their interactions are adjusted by simply tuning the pro­

portional gains provided the overall system performs well. The implementations 

in other fields (aerospace and chemical process) have shown that the closed-loop 

performance using systematic advanced control techniques can be several times 
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more efficient than that of simple proportional controllers. As Karpinnen [3 1 ]  

indicated in his collective study on proposed control methods for spatial reactor 

control, the practical implementation of most of the optimal control methods is not 

likely to take place due to major simplifications in problem formulation , core and 

controller modeling, and optimization methods. Particularly, most of the mod­

ern control theory methods require linear or linearized models which constitute a 

major handicap in representing the nonlinearities involved. The existing nonlin­

ear optimal techniques also require simplifications as specific problems ( like the 

two-point boundary value problem) are encountered. 

4.2.2 Axial Xenon Oscillation Model 

The control design and simulation studies include a previously developed xenon 

oscillation model (33) . The test results of Oconee Unit #2 (Duke Power Com­

pany,l974) were accurately estimated using the model including the limit cycle 

oscillations for spatial oscillations of the first harmonic. The validity of the model 

was also demonstrated for parameter identification and control purposes [34] . 

The two-point model employs the nonlinear xenon and iodine balance equations 

and one group, one-dimensional, neutron diffusion equation having nonlinear power 

reactivity feedback. A two-term spatial, harmonic-series solution was assumed for 

the flux, xenon and iodine distributions. The reactor model is made as nearly criti­

cal as possible using a variational estimate of the eigenvalue of the one-dimensional 

diffusion equation. The xenon and iodine equations are then directly solved. The 

cylindrical core of a pressurized water reactor is reduced to a slab geometry, which 

is further reduced to a two point representation by dividing the slab into two equal 

halves and integrating over each half to find the average values for the flux, xenon, 

and iodine spatial distributions. The total power of the reactor core is held con­

stant even though the power density varies as a function of both time and position. 

The spatial average of the normalized flux for the lower half of the core is 

- 2 
tPt( t )  = -(1 - A(t)J. 

1r 
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Similarly, the normalized xenon and iodine concentrations are 

2 
X t  = -[1 - B(t )] 1r 

2 
Yt = -(1 - C(t)J 

1r 

( 4 .2)  

(4 .3) 
where A(t), B(t) and C(t) are the amplitude functions of the flux, xenon, and 

iodine concentrations. The equations for the upper half of the core are 

- 2 
t/J2 = -[1 + A(t )] 

1r 

? 
X2 = .:.(1 + B(t)] 

7r 
? 

Y2 = .:.[1  + C(t)]. 1r 
The dynamics of the amplitude functions given in the literature [:33) are 

:t B(t) = ("frEt i:) A(t) + ( >-.1 .�) C( t ) - ,\E D ( l )  

(4 .4) 

(4 .5) 

( 4 . 6 )  

( -l . i )  

- (<TrcPo) (�( .4(t ) + B(t ) )  + �.4( t )B( t )) ( 4 .8 )  

and the xenon amplitude A(t) satisfies a quadratic equation given by 

(4 .9 )  

where 

( 4 . 1 0) 

(4 . 1 1 )  

(4 . 12 )  
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The one group diffusion parameters of the dynamic equations stated above are 

listed in Table 4 . 1 .  Note that the parameters aF, Ur, and D are the optimized 

estimates obtained in a parameter identification study [34) . The Ea is the space 

averaged macroscopic absorption cross-section and is given by 

- l lH/2 
Ea = H 

Ea(z)dz 
-H/2 

(4. 13)  

The E11 (z) i s  expressed as the combination of absorption cross sections of the 

fuel, moderator, structure, and control poison. The control poison regulates each 

half of the core externally. In the model, this is represented as 

Ea ( z) = { Eat z E (-� , 0) } 
Ea2 z E (o, �) 

The peak steady-state values are calculated using the following equations. 

Io -
Xo -

"'IE J¢Jo 
>-.r 

br + 1'r )EJ¢o 
\ 1r • 

' r + 4u zq>o 

(4 . 1 -l ) 

( -1 . 1 5) 
( -1 . 1 6) 

The results of the model in comparison with the test results of Oconee Unit 

#2 (Duke Power Company, 1974) were found to be [33] very accurate inspite of 

the simplicity of the model. Figure 4 . 1  shows the normalized flux amplitude in 

the lower half of the core as a function of time for both the model and Oconee 

plant. The reactor had been at 75 % power level with steady-state xenon before 

the perturbation was applied. The perturbation was implemented using control 

rods and lasted 2.5 hrs. The simulation results included accurate estimations of 

the period (28.5 hrs) and average offset (3.0%).  
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Table 4. 1 : One group diffusion parameters of the axial xenon oscillation model. 

Parameter Unit Value 

<Po cm-2sec-1 2 . 1  X 1 013 

u:E cm2 2.6 X 1 0-18 

CXF cm2sec 3.6 X 10-16 

"Yl - 0.06 1 

"Yr - 0.003 

>.. r sec-• 2.87 X IQ-5 
).,r sec- 1 2.09 X 10-s 

D em 0.375 

b em-2 0.0085 

H em 365.8 

r.., cm-1 0.65 

II 'f..J cm- 1 1 .56 

'f.. a cm- 1 1 .53 

uEa percent 0 . 18  
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Figure 4. 1 :  Limit cycle behavior due to xenon buildup in Oconee Unit #2 plant. 

The xenon oscillation estimated by the model is in agreement with the plant data. 
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4.2.3 RID Control Design 

The primary task in this application is to design a RID controller to regulate 

the flux, xenon, and iodine oscillations in case of limit cycle behavior at 100 % 

power level. The generated control signal actuates partial-length rods. The reac­

tor is assumed to be kept critical at all times using boron. The implementation 

of the control is made similar to the half-cyle damping strategy by act ivati ng the 

controller several hours after the initiation of the oscillations. This strategy was 

deliberately selected for two reasons. The first reason is to verify the control action 

regardless of how late the oscillations are detected. The second reason is to ob­

serve the rod motion in comparison with the bang-bang type strategies commonly 

studied in the literature. 

The design phase starts with the formulation of the desired trajectories (de­

mands) that must be achievable. Fortunately, the XIPO problem does not require 

any achievability calculations since the specific control task is a regulation prob­

lem around the initial states. Thus, the control task includes demands that are 

the valid initial conditions of the plant prior to the oscillation. The achievability 

is retained provided the controller is activated before the oscillations exceed the 

ASI band. The only other constraint within the definition of this problem is the 

limitation of the rod speed. A typical value of 30 inches per minute is adequate to 

satisfy the fuel integrity considerations (7] . However, the simulation results that 

are presented in the following, indicate that the rod speed using the RID design is 

far slower than the speed limit. 

The control law is formulated using the inverse dynamics and state reconstruc­

tion principles explained earlier. Reconsidering the system of Eqs. (4.7-4.9), the 

demands are given 

Cd(t) - C(to) 
Bd(t) - B(to)  

( 4 .17) 

( 4 . 18) 

where to is the initial time. The two demands above are the translations of a single 

demand (set-point axial offset) .  it can be easily seen that the RID control law will 

be of the indirect path type since the control ( i.e. �Ea ) appears in {32 and the 

1 1 1  



demands are assigned to the amplitude functions C(t) and B(t) .  

The control law derivation starts from the xenon amplitude equation ( 4.8 ) . An 

auxiliary state variable c· is defined which imitates the equilibrium behavior of 

the iodine amplitude C. The solution of C (call this as c;q) from Eq. ( 4.8) is given 

by 

c;. = ( Ar ;.) _ ,  [(a,¢o)(�(A" + B) +  �A" B) + .\,B - ( -y,E, �) A"] (4. 19) 

where 
d 
dt B(t ) = 0 

and where A• is another auxiliary variable which imitates the equilibrium behavior 

of the amplitude function A. Before the treatment of A· , we complete the definition 

of c· by 

(4 .20 ) 

Note that if the dynamics of the iodine amplitude C matches c· , substitut ing c· 
in Eq.(4.8) yields 

(4.2 1 ) 

where the xenon amplitude is forced to follow the demand Bd with a t ime- lag of 

k8 which is adjustable. Simi larly, the definition of A· obtained from Eq. (  4. 7 )  is 

given 

where 

The definition is completed by 

d -C = O dt 

( 4 .22) 

( 4.23) 

( 4 .24) 

Carrying out the substitutions in Eq. (4.24) and solving for A• yields the following 

final algebraic equation. 

A• _ (�� + �) B - � (kB(B - Bd )) - kc(C - Cd) 
-

1 _ l 11rXQ _ !!: 11rXp B + l!. 3 -rt'EJ 4 -rr'EJ -rr 
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The above equation describes the desired dynamic behavior of the flux amplitude 

A(t). Returning to Eq. (4.9) and solving for /32 yields 

1 -2(/31 - .33 )A• 
{32 = E, 

(0.848u + 1 .358urXoB] = 
1 _ A•2 

where u is the control ( u = �Eca)· The u is obtained from above to yield 

which is the final RID control law used in conjuction with Eq. (4.25). 

(4 .26 ) 

( 4 .27) 

The implementation of the control law given by Eqs. ( 4.25) and ( 4.27) requires 

the estimation of the amplitudes and diffusion parameters. In a computer envi­

ronment, this is done by an on-line model and other estimation routines appended 

to the RID control routine. The model and the controller are continuous ly up­

dated by using on-line power measurements in an adaptive routine. The controller 

output of �Eca is converted to the rod posit ion units . Figure 4 .2 shows the block 

diagram of the RID controller in application to the XIPO problem. 

4.2.4 Closed-loop Simulation Results 

The RID controller given by Eqs. (4.25) and (4.27) is appended to the axial xenon 

oscillation model. The control signal is the change in ilEa from its equilibrium 

value which is directly proportional to the change in partial- length rod position. 

The axial flux, xenon, and iodine oscillations first simulated without any control 

action. The normalized oscillations in the lower half of the core as shown in  Fig. 

4.3, are initiated by a step change in the absorber at t=O. The amount of step 

change in AEca is 0.0076 cm-1 which approximately corresponds to 0.25 % change 

of absorber from its equilibrium position. Since the perturbation is a reactivity 

shift towards upper half of the core (rod withdrawal) ,  the flux in the lower half 

first increases. The axial offset is shifted to approximately 1 .05 due to the step 

reactivity insertion. 
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Figure 4.2: Block diagram of the RID controller in application to the xenon­

oscillation control problem of PWRs. 
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Figure 4.3: Normalized flux, xenon, and iodine oscillations in the lower half of the 

core. Oscillations are initiated by a step reactivity shift at t=O. 
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The RID controller is first activated 23 hours after the initiation of the oscilla­

t ion which is close to the half-cycling time. The closed-loop responses in the lower 

half of the core as shown in Fig. 4.4 indicate that the oscillations are damped 

smoothly and the axial-offset is retained. Note that the new equilibrium is slightly 

different compared to the initial steady-state value due to the s tep reactivity at 

t=O. 

The dynamic behavior of the control 6.E11 is shown in Fig. 4.5 The initial 

constant value of 0.0076 em-• corresponds to the perturbation applied to init iate 

the oscillations at t = 0. The control represents a dynamic equilibrium trajec­

tory architectured by the inverse of the original dynamics. As it can be seen from 

the figure, the transition becomes very smooth compared to the bang- bang type 

strategies. The transition shown indicates that the absorber should be shifted 

towards the upper core region ( i.e,l:112 increases and/or Ea1 decreases) since the 

corresponding flux is going to increase during the second half-cycle period. Thus. 

the rod motion is s imilar to the half-cycle damping technique. 

The peak observed in Fig. 4.5 is in fact a ramp change which is shown in Fig. 
4.6 with a magnified time axis. The total ramp is a change from 0 .2.50 % to 0.2.54 
% in six minutes approximately corresponding to a 0.4 cent reacti\·ity shift per 

minute which is far slower than the rod speed limit of 30 inches per minute at 100 
% power level. The rest of the dynamics is even slower than the ramp as it can 

be seen from the Fig. 4 .5 .  The reason for the slow response is because the control 

follows the inverse of the inherently slow original dynamics. 

1 16 



0 
. -

• .... 
:::::: ::.;: 0 :::::::1 

_J :::::: 

C• (' j  . 

Ln -. .... 

0 
. -

0 (\J . 

. ..... 

c 
. -• 

LU :z 
....... 
0 

. 

U.. IO w ·:-.: Ul tW (,Q  0 - 0 t-40 . . ...... - .... 

- - -
0 0 0 

. . 
c c 

, ...... 

I 
/ J / 

'f\. ' \ I 

'-,_/ 

/---\{,_ .\ 

/-............._ I 

0 . 00 0. 20  

' 

I 

I 
o .  �a . T • to2 

' 

I 

I 

' 
0 . 60 

HOURS 

' I 

I I 

I 

I • 
0 . 80 1 .  co 

Figure 4.4: Normalized flux, xenon, and iodine oscillations in the lower half of the 

core. RID controller is activated at the 23rd hour. 

1 17 



-
'::c u 

U:.: 
cu ....... 
.....J u:. =:- .:w  
;=;. r  ... 
w 
·�·-· I 0::• 

. 

·:. IJ') . ,..., 

f[l 

I 0. 01) 

(' 1 \  
\ I 

I 

\ 
\ I \ 

I \ 

I 
0 . 20 

\ \ 

"--
I 

I I 
o. -+0 0.  6i] T 7to2 HoURs 

I 
I 

I 

I 
0 . 60 l . OO 

Figure 4.5: Control trajectory of the absorber shift towards the top of the core. 

RID controller is activated at the 23rd hour. 

1 18 



,., I ·=-
;:S; o,Ci 

,__, 
� r-· 

. " 

. 

/ ! 

./' 
./ 

! 
.i I I ,. 

/ I 

I/ 

I 
2. 265 Z . Z90 

I I 
I I 

/ 

I 

,-

II 

I Z. 300 
HOURS 

I 

. Z . 305 

Figure 4.6: First 20 minutes of the control rod trajectory. 

1 19 

I 

I 

Z . 3 10  



In the second application, the controller is activated 8 hours after the initiation 

of the oscillations. The normalized flux, xenon and iodine oscillations are shown 

in Fig.4. 7. The oscillations are again damped very smoothly and the axial offset 

is retained. The control action is shown in Figs. 4.8 and 4.9, from the same two 

different perspectives. 

Figures 4 .10 and 4. 1 1  show the xenon-iodine phase plane plots in two different 

cases where the controller was activated at the 8th and 23rd hours, respectively. 

Note that the final equilibrium points are different than the initial point due to 

the step reactivity change at t=O. 

4.2.5 Conclusions 

The analytical derivation of the reconstructive inverse dynamics ( RID) control law 

and its application to the control of axial xenon oscillations are presented. The 

closed-loop simulation results using a previously validated model [33) show that 

the technique provides successful compensation with no residual oscillations until 

the desired axial offset is achieved. The control rod speed and the amount of in­

sertion are far below the standard limits. 

The RID performance is compared with the half-cycle damping method used 

in commercial plants. Figure 4 . 12  shows an example of the half-cycle damping 

strategy using full- length control rods [7) . Despite the fact that the oscillations in 

Fig. 4 . 12  and the oscillations produced in this study belong to different reactors 

under different operational conditions, the rod movements exhibit a major concep­

tual difference. In RID applications, control rods follow the inverse of the plant 

dynamics which yields a smooth overall transient behavior whereas the half-cycle 

method employing discrete rod movements suffers from residual oscillations. Note 

that the representations in Fig. 4 .12 include the axial-shape-index and full-length 

rod withdrawal. The bang-bang strategy using optimal control methods [35] also 

exhibits some residual power oscillation. 
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The results obtained in this study along with the performance of the RID design 

should be evaluated at the conceptual level since the application in this study is 

limited by the complexity of the model used. The scope of RID design can easily 

be extended using different codes and incorporating additional tasks. Provided all 

the demands are well defined (i .e, desired level of boron waste, rod positions) ,  a 

multi-input multi-output RID design may accomplish more global control tasks. 

The inconsistencies between the plant and its model can be handled using the 

adaptive features of RID design. The RID design of this application is assumed 

to use flux measurements and the estimation of the xenon and iodine amplitudes 

using an on-line model. Because the oscillations occur in the time scale of hours, 

it is assumed that the model predictions can be easily corrected in the course of 

oscillations. 

4.3 Feedwater-Train Control in PWRs 

The p rimary function of the feedwater-train system is to provide the necessary 

feedwater flow into the four steam generators in a standard four- loop PWR. The 

system consists of a pump turbine, feedwater pump, feedwater piping, and valves 

for regulating steam and feed water flow. This arrangement is shown in Fig.4. 13. 

A typical control problem in turbine driven feedwater pumps is to maintain 

the pressure difference (�P) variation across the feedwater valve constant. In 

routine operations, the feedwater valve is opened to satisfy feedwater demand. 

This results in a change in pressure difference across the valve. If the governer valve 

on feedwater driven turbine is not adjusted properly the l:J.P across the valve may 

change unreasonably and damage the valve structure. It is also necessary to be able 

to satisfy rapid feedwater demands for quick maneuvers which is known to have 

vital importance in controlling the steam generator dynamics. The final design 

specification includes robustness against oscillatory steam generator pressure. 
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4.3.1  Nonlinear Modeling of PWR Feedwater-Train 

The model used in simulations consists of subroutines for the pump turb ine, turbine 

valve, main pump, piping, feedwater valve, valve actuators and pipe connectors. 

The model includes a detailed, nonlinear representation of the physics involved 

in feedwater dynamics. Four state variables of the model are the turbine speed, 

feedwater valve inlet and outlet pressures, and the actuator dynamics. Equal per­

centage valve dynamics is used in the model. Two control signals are the turbine 

and feedwater valve positions. The simulations are performed using the l\'lMS code 

written in ACSL environment. 

The pump turbine model includes physical effects such as \'ariable speed and 

steam turbine driver with single or dual pressure source whereas the windage losses 

are not included. The module does not allow negative speed and the operation 

depends on limited steam properties. The feedwater pump model includes vari­

able speed pump head-flow characteristics as well as the pump power input to the 

system. Limitations of the pump model include cavitation, leakage, seal injection. 

seal cooling, windmilling and reverse flow. The feedwater pipe is a resistive-storage 

type that includes the following physical effects : pressure losses from friction and 

elevation, inertia, energy storage in fluid and pipe metal , fluid expansion, trans­

port delay, and heat loss to ambient. It is assumed that the flow is one phase only, 

with no significant compressibility effects. Reverse flow is not allowed. The \'alve 

module used in the simulations includes frictional pressure losses for single phase 

water due to valve and associated piping and valve modulation with optional valve 

characteristics (linear). It is an adiabatic valve with quasi-steady state operation. 

Flashing, cavitation, packing effects and reverse flow are not included. The valve 

actuators employ first order lag type response with a limited rate. 

The pump turbine speed is given as 

dN 
= 2936 { Pin - Pout } 

dt I N  
where 

N = Turbine speed (rpm) 

�n = Net power input from steam (ft-lbf/sec) 
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Pout = Net power output to load (ft-lbf/sec) 

I = Load-turbine combined mass moment of inertia ( Ibm-f t2/ rad) 

Net power input is calculated from the energy balance and given by 

Pin - 0.21616 W,e(h,e - h,t )  

W,e - YLPCLP p,elpP.telp 

where 

W,e = Total steam flow rate (lbm/hr) 

h,e = Bulk enthalpy of steam entering (Btu/Ibm) 

h,1 = Enthalpy of steam leaving (Btu/Ibm) 

YLP = Low pressure steam valve position ( fraction open) 

CLP = Low pressure valve conductance 

P.telp = Density of low pressure steam entering ( Ibm/ ft3) 
P,elp = Pressure of low pressure steam (psi) 

The pressure at the outlet of the pipe connecter is given by 

dPfre 1 
( -d- = -K �Vmfpl - Wfre ) t dp 

where 

Pfre = Feedwater pipe inlet pressure (psi) 

Wmfpl = Main feedwater pump outlet flow (Ibm/hour) 

Wfre = Feedwater pipe entrance flow ( Ibm/hour) 

and the physical meaning of K dp is 

K = V ( Bp ) ( 144) 3600 dp 8P 118 
(lbmfpsi) (secf hour) 

( 4 .29) 

( 4 .30) 

( 4.3 1 )  

The density deviation with respect to the operating pressure is evaluated at con­

stant enthalpy. Similarly the outlet pressure of the feedwater pipe is expressed 

as 
( 4.32) 

where 
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Pcule = Feedwater pipe exit pressure (psi) 

Wfre = Feedwater pipe entrance flow (Ibm/hour) 
Wcule = Feedwater pipe exit flow (Ibm/hour) 

and kdu is a tabulated physical constant same as kdp·  Feedwater pipe exit flow also 

represents the flow across the feedwater valve. The flow across the valve is given 

by 

W cule = Cq J Pwe ( P cule - Pcull ) 
where tl.H across the valve is assumed zero and 

C9 = Valve conductance 

Pwe = Water density (lbm/ ft3) 

Pcull = Valve outlet pressure (psi). 

( 4 .33) 

Since the flow stream is incompressible, the valve conductance is combined with 

that of any pipe or valve with which it is associated. Combining the resistance of 

the pipe, C11, and the valve, the resistance is 

where 

C�m�ar = Maximum valve conductance 

C11 = Resistance of the pipe 

Yact = Actuator signal 

( -! .:3-l )  

Note that Cumar'Yact represents linear valve. The actuator dynamics is given by 

d'Yaet 1 (  
dt = Tc Ybd - 'Yact) (4.35) 

where Yw and Tc represent the bounded actuator signal and valve time-constant, 

respectively. The feedwater pipe inlet flow is derived from the pressure drop across 

the pipe and given by 

( 4 .36) 
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where c, and Po.v are the pipe conductance and average density. The pump outlet 

How can be related to the pump speed and pump-head How characteristics as 

follows. 

Wmfpl = 8 .02 N Pwe(QpfN) (4 .37) 

where the normalized head curve ( Qpf N) is related to the ratio of the pump volu­

metric flow rate Q,, to the pump speed N, to the ratio of the developed head :lH 
to the square of the pump speed f(t1HfN2). 

4.3.2 RID Controller Design 

The control requirement associated with the feedwater- train system includes main­

taining t1P across the feedwater valve reasonably small while following a feed water 

How demand. The control should yield large band-width since the rapid feedwater 

demand following capability is highly desired. In order to formulate the problem 

easily, the complete model given by Eqs.( 4.28) through ( 4.3i) is rewritten in a 

compact form with all the substitutions yielding four differential and one algebraic 

state equations . 

dN 
-

dt 
dPfze 

-

dt 

dPcvle 
-dt 

dYace 
-

dt 

Wcvle -

2936 
{ 0.21616 YLPCLP p,.,,P,.,,(h,. - h,,) - p""' } 

I N  

k:P { 8 .02N Pwe(QpfN) - CJ\f Pfze - Pcde)Pav } 

L { Crj(PJ., - P",, )p .. -

1 
-(Y,d - Yacc) 
Tc 
J Pwe ( P cvle - Pcvll ) 

( Cvm� Yact ) 2 + ( J,.) 2 

J Pw•( P"'' - P"11 ) } (cv.,.�YacJ 2 + (dJ 2 

( -! .38 )  

( 4 .39 ) 

(-l .-10 )  

(4 .4 1 )  

( 4.42) 

The feedwater-train system given by Eqs.( 4.38-4.42) is subject to boundary con­

ditions (BCs). The variables representing the BCs are 

Pouc = Net power output to load (ft-lbf/sec) 

p6elp = Density of low pressure steam entering (lbm/ ft3) 
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Pur, = Pressure of low pressure steam (psi) 

h6e = Bulk enthalpy of steam entering (Btu/Ibm) 

h6r = Enthalpy of steam leaving (Btu/Ibm) 

Pcvll = Steam generator pressure (psi) 

The MMS routines provide parameters such as ( Q,/ N), Pwe 1 Pov1 kd, ,  kdv and I 
from its library. 

The control requirements can be translated into trajectories using the compact 

model stated above. The t::.P regulation task is formulated by assigning a pressure 

demand D, to the valve inlet pressure that follows the steam generator pressure 

(boundary condition). If the demand following is efficient , the pressure drop will 

be small. From the model given above, the pressure demand can be assigned to 

any state equation containing P Cl!le using an adequate auxiliary RID technique. 

The second trajectory is the feedwater How demand that can be assigned to state 

equations ( 4.40) or ( 4.42). These two assignments has to be accomplished by de­

signing controls YLP and Yact · 

The RID control design problem looks complex at first , but there are only two 

possibilities that include designing ( 1 ) YLP (turbine governer valve) to fol low the 

How demand and l'bd (feedwater valve) to follow the pressure demand or (2 )  vice 

verse. Thus, this problem requires strategy evaluation that can be performed by 

the RID technique. 

RID Control Design: Strategy-! 

The formulation of the first strategy (governor valve adjustment to follow feedwater 

demand, and feedwater valve adjustment to follow pressure demand) using the RID 

control method requires the auxiliary states technique. The desired setting for the 

l':ct in the algebraic state equation ( 4.42) is defined to be the auxiliary state Yo�t· 
This auxiliary state is designed to yield trajectory following of pressure demand 

D,. Solving for Yace* in Eq.( 4.42) yields 
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(4 ..13 )  

The demand following assignment on the algebraic state equations do not re­

quire a FOTL dynamics. The solution above directly represents the desired state 

of Yact· Thus the assignment Pevle = D, is substituted above to give 

1 v;, = -----.============= (Dp-Pcvu)P..,e _ 1 w:vle c; 
( 4.44) 

Note that the pressure demand D, is selected such that it is always greater than 

the steam generator pressure P evil with a small fixed amount f. This guarantees �·ct 
to be a real variable at the cost of creating some small �P across the feedwater 

valve. As long as the pressure measurement P evil is available and the pressure 

demand is Dp = P evil + f with an appropriate selection of f, the auxiliary state 

variable ��t will never be a complex variable. It is also obvious that �p = 0 is not 

desired to avoid the complex region. Thus, this small 6P is vi tally important and 

the control performance strictly depends on the resonable select ion of f. Refering 

to the state equation (4.4 1 ) , the feedwater valve position 'Ybd is solved such that 

the actuator dynamics Y�ct follows the auxiliary state ��c · 

where 
dYacc K (Y• ov· ) dt = 5 act - l act 

(4 .45) 

( 4 .46) 
The second assignment requires use of multiple auxiliary states in the RID 

control design.  Among the state equations (4.38, 4.39, 4.40), the governer valve 

control YLP has to be related to the flow demand Dwt·  It is clear that the last 

term in Eq. (4.40) gives Wet1le of Eq. (4.42). Thus, the derivation must start from 

Eq. ( 4.40) and continue up to Eq.(  4.38). First, we select an auxiliary state P:V1e 
in Eq.( 4.42) that results in W evle = Dwf.  

( 4.4 7) 
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The auxiliary state P;vle then represents a desired trajectory for the state variable 

Pcvle · Second, we select another auxiliary state variable Pjze in Eq. ( 4.40 ) and 

solution yields 
• 1 (k dPcvle W ) 2 p Pj:&e = PllvC} dv ---;It + cvle + cvle ( 4 .48) 

where the trajectory following requires 

(4 .49) 

K1 is an adjustable parameter. The problem is converted into establishing the 

desired dynamics for P/ze which will follow Pjze · Then we select an auxilary state 

N• in Eq. (4.39) such that 

( 4 .. jQ ) 
with the substitution 

( 4.5 1 )  

where K2 is an adjustable parameter. 

Finally, the control YLP is solved from Eq. (4.38) such that the state variable 

N follows the desired dynamics N·. 

( 4.52) 

where 

( 4 .53 ) 

and K1 is an adjustable quantity. Note that the two controls YLP and Ybtt cross 

talk through the coupling in Eq. (4.47). 

RID Control Design: Strategy-2 

The second strategy can be designed in a similar fashion. In this case, the feed water 

valve is used to satisfy the feedwater demand and governor valve is used to keep 

f::.P constant. Most of the control equations presented for the first strategy remain 
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unchanged except Eqs.(4.43, 4.47, 4 .49) . In Eq.(4.43) feedwater flow is replaced 

by the demand Dwf to give 

( 4: .5-!} 

The auxiliary state P:V1e is required to follow the pressure demand Dp in Eq. {4.47), 

thus this equation is no longer valid. Thus, the other auxiliary variable Pjze is 

designed to accomplish this task. Equation (4.49) is rewritten as 

( 4 .55) 

The second strategy is widely employed in conventional PWRs using linear 

controllers. However, the RID control derivation indicates that this strategy is 

vulnerable to severe changes in the steam generator pressure. This can be seen 

from Eq. ( 4.54) that a sudden pressure increase in the steam generator may result 

in Ya·ct to shift towards the complex region. Note that Pcvll > Pcvle (re\'erse flow) 

is not necessarily required for Ya�t to be complex. If the pressure drop gets small. 

the division by D!1 can make the first term become smaller than the second term 

inside the square root term. In the first strategy, the complex region is a\·ioded 

by designing the pressure demand, appropriately (always greater than the steam 

generator pressure signal with a fixed amount) .  It is not possible to modify the 

feedwater demand Dwf in the second strategy to avoid the complex region because 

of two reasons. First, i t  is not clear what kind of modification is necessary to the 

feedwater demand as a function of steam generator pressure for this particular 

case. Second, any modification to the feedwater demand violates the basic control 

requirement {prescribed trajectory) since the effect of such a modification may 

cause a significant departure from the desired trajectory. The problem of complex 

variables is not a concern in the first strategy using the auxiliary state Pi:.ce of 

Eq.( 4 .48) because the direct measurement of feed water flow �V cvle is used. 
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4.3 .3 Implementation 

Implementation of the RID design presented above requires digital technology in­

cluding an on-line computer where various system parameters are updated with 

respect to the nature of the operation. Figure 4. 14 shows the RID controller and 

its interaction with the plant and on-line model. The control uses three measure­

ments from the plant and one state estimation from the model. Other important 

parameters are either measured or calculated. 

The RID control design presented above makes use of a very detailed system 

model. In general, this may not be necessary since the adaptive control yields high 

performance even with significant modeling errors. It may be possible to design 

an adaptive RID controller to implement the second strategy presented abO\·e by 

using a reduced order model. In such an application, the uncertainty terms can be 

selected to avoid complex variables. 

4.3.4 S imulation Results 

The simulations are performed using the ACSL package on the ICE�ET VAX 

mainframe located at the I&C Division, ORNL. The feedwater-train model is con­

structed by appending the MMS modules for each component . 

A typical feed water demand in a four-loop P\VR is around 5 %  per minute ramp 

change. The control task consists of maintaining a small ilP across the feedwater, 

that is not more than 80 psi. However, rapid feedwater maneuvers are needed 

to improve the control capability of steam generators. Thus, the simulations pre­

sented here include a feedwater demand that is 10  times faster than the standard 

operation. The feedwater demand has three distinct features: ( 1 )  50 % per minute 

ramp increase, (2) steady-state, and (3) 50 % per minute ramp decrease. These 

features are deliberately employed to investigate the closed-loop performance dur­

ing various maneuvers. The simulations also include a disturbance in the form 

of an exponential and oscillatory pressure drop in the steam generator pressure 

(boundary condition) that causes 200 psi pressure drop across the feedwater valve 

without any control action. 
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The feedwater flow response in comparison with the demand is shown in Fig 

4 . 15 .  The demand is followed with a negligible error that is not visible in the figure. 

The external disturbance is shown in Fig 4 .16 where the steam generator pressure 

is lowered almost 25 %. Figure 4. 17  compares the two control inputs that are the 

percent openings of the governor valve and the feedwater valve. The feedwater 

valve opening illustrates the compensation for the disturbance in Cl.P whereas the 

governer valve primarily satisfies the flow demand. The change in Cl.P is shown in 

Fig 4. 18. The amount of change in tl.P (about 5 psi) clearly indicates the power of 

the RID control paradigm. The simulations are repeated with higher oscillations 

in the external disturbance. Higher frequency oscillations are observed to cause 

no deterioration on the closed-loop performace although the actuator dynamics is 

constrained. Figure 4 . 19 shows the external disturbance (steam generator pres­

sure change) with reasonably high frequency oscillations. The feedwater response 

in comparison with the demand is shown in Fig 4.20 . The demand is followed 

with a negligible error that is again not visible. Feedwater valve and governer 

valve positions are compared in Fig 4 .21 . The comparison shows more clearly that 

the feedwater valve control primarily compensates for the external disturbance 
to achieve a reasonable tl.P. Although a cross talk exists between the two con­

trol inputs, the governor valve posit ion is almost entirely dedicated to follow the 

feedwater demand. Figure 4.22 shows �p response that is again within .j psi range. 

The effect of inaccurate state estimation on the closed-loop performance is in­

vestigated by introducing a local error to the feedwater pipe inlet pressure Pfre · 
Although the RID controller does not include any adaptive features in this partic­

ular design, a desirable robustness is observed. Figure 4.23 shows the feedwater 

response in comparison with the demand in case of 10 % error in the estimation of 

P/z:e· Note that other state variables are available as measurements. Figure 4.24 

compares the feedwater flow response with the demand in case of 25 % state esti­

mation error. These results indicate that the RID control paradigm is inherently 

robust against tolerable estimation errors. 
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is followed with a. negligible error that is not visible in the figure. As a.n external 

disturbance, the steam generator pressure (boundary condition) is lowered 25 % 
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Figure 4.24: Feedwater flow response in comparison with the demand. A 25 % 

error is introduced to the model based state estimation. Responses verify the 

robustness against estimation errors. 
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4.3.5 Conclusions 

The given control problem is of a multi-input mult i-output ( :\11:\[0) form in which 

the RID design requires state reconstruction among four state \·ariables. The for­

mulation yielded a strategy where the turbine valve provides the feed water demand 

and the feedwater valve controls the flP. This strategy is a reverse choice com­

pared to the standard designs. The RID requires the estimation of the feedwater 

valve inlet pressure using an on-line model. Other three state variables are nor­

mally available as measurements from the plant. 

Simulation results showed an outstanding performance for demands up to 40 

percent per minute, which is eight times faster than the allowable maneu\·ering 

rate. The demand is followed with less than one percent error and the �p variation 

is maintained within 5 psi at the maximum. :-.Iote that a ll.P variation up to 80 psi 

is considered reasonable in current designs where the target demand is a flowrate 

of 5 percent per minute. The simulations included an external disturbance in the 

form of a 30 psi oscillatory change in the steam generator pressure. It is observed 

that the RID controller, without any adaptive features, is inherently robust against 

state estimation errors that can reach upto 25 % .  

4.4 EBR-11 Startup Control 

The startup of EBR-II  includes a complicated procedure for calibration, status 

verification, and configuration validation. The automation of the EBR-I I  startup, 

therefore, requires a computer based information system as an operator aid. :\ 
recent study (36) presents a startup procedure-prompting system developed in an 

expert system environment. Once the procedure is appropriately followed, the con­

trol of the EBR-II startup is a straight forward task. However, the plant nonlin­

earities over the startup range and the multitude of control variables indicate that 

advanced, nonlinear multivariate control techniques may perform more efficiently 

than the conventional, linear methods. Furthermore, a supervisory, intelligent sys­

tem is required to maneuver around abnormal process conditions or provide safe 

routes to shutdown. 
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4.4 .1 Plant Description 

Experimental Breeder Reactor- II is a liquid metal fast breeder reactor located at 

the National Reactor Testing Station in Idaho. The original purpose of this facility 

was to demonstrate the feasibility of fast reactors for central station power plant 

applications. The purpose was later redirected to provide irradiation services for 

the development of fuels and structural materials. Changes were made in operat­

ing philosophy from that of an engineering test facility to that of a high-priority 

neutron producer. 

The plant consists of a heterogoneous, unmoderated, sodium-cooled reactor 

(62.5 MWth); an intermediate sodium coolant loop; a steam plant which produces 

20 MW of electrical power through a conventional turbine generator; and a fuel pro­

cessing system consisting of systems for disassembly, decontamination, fabrication . 

and assembly of fuel elements and subassemblies. Both the reactor and the associ­

ated fuel recycle facilities were designed with the philosophy of providing a highly 

flexible installation that would permit the investigation and evaluation of various 

core configurations, types of fuel, fuel element design, and processing techniques. 

The reactor, primary cooling system, and the fuel-handling system components 

are submerged in  a large primary sodium tank. This concept is also sometimes 

refered to as the pool-type design (such as the Phoenix and Super-Phoenix liquid 

metal reactors in France). 

4.4.2 Existing Control Capabilities 

The EBR-11 control systems are distributed over the subsystems and are mostly 

coordinated from the central control room by plant operators. These controllers 

are designed to function locally and the global control decisions are made by the 

operators. The following describes the local controllers usedin the EBR-II plant. 

EBR-11 reactivity control is maintained using 12 control rod and two safety 

rod subassemblies. A computer controlled rod drive system is capable of control­

ing reactor power during steady-state and power change. An error signal from 

the reactor power reading is the input to the digital computer. The on- line com-
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puter implements a proportional control action to minimize the error reading. The 

permanent automatic control rod drive system (ACRDS) provides a fast speed au­

tomatic mode plus two slow-speed modes, manual and automatic. 

The primary sodium How (loop between core and IHX) is controlled by the pri­

mary pumps where the pumping rate is variable from 0 to 100 % in a continuous 

stepless manner. There are no valves or other control devices in the main sodium 

loop. Secondary sodium loop is controlled by an electro-magnetic (EM) pump. 

Flow is adjustable from 0 to 100 % of full flow capacity by varying the voltage 

applied to the pump windings. The actuation signal is adjusted manually from 

the sodium recirculating pump panel. The control task of this actuator includes 

controlling reactor inlet temperature by means of controlling the bulk temperature 

in the sodium tank. Since the secondary sodium loop constitutes the coupling be­

tween the primary and secondary systems, the flow adjustment also directly affects 

the steam pressure and other system variables in the secondary side. 

The feedwater temperature is controlled by bypassing some feedwater around 

the last heater, mixing a portion of 480 F feed water with the 568 F water to main­

tain 550 F input. The bypass valve is manually controlled from the steam panel 

in the control room. 

Turbine generator is controlled by two circuits. The primary circuit controls 

the speed and load of the turbine whereas the secondary circuit controls the tur­

bine stop valve to trip the turbine when an abnormal condition occurs. 

The main control of the steam generator is performed by means of the drum 

level control. The control system is capable of single-element, four-element, or 

manual control. The controller accepts four analog signals: steam drum level, 

feedwater flow, steam flow, and blowdown flow. The actuator is the feedwater 

valve. A schematic of the EBR-I I  plant is shown in Fig. 4.25. 
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Figure 4.25: EBR-Il Plant Schematic 
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4.4.3 EBR-11 Operations 

There are eleven identified modes of operation at the EBR-1 1 ,  classified as normal 

or non-routine operations. The normal operations include plant startup, plant 

standby, reactor restart, steady power, changing power, plant shutdown, and fuel 

handling. The non-routine operations include reactor scram, anticipatory reac­

tor shutdown, plant cooldown, and plant heatup. The startup of the EBR- I I  

i s  performed in  two modes (plant startup, reactor restart) which distinguish the 

condi tions prior to startup. The terminology "reactor restart" emphasizes that 

the last shutdown was within the 24 hours and no reactor loading change has been 

made. In plant standby situation, all of the auxiliary systems meet the pre-startup 

requirements. Unless the plant standby conditions exist, no startup is allowed. 

The startup procedures (37] include raising the safety rods into the core and 

moving control rods in the order specified in the Reactor Run Plan and Autho­

rization. The control rods in the EBR- I I  contain fuel at the bottom and poison 

at the top. The core is subcritical when the fuel section of the rods are removed 

from the core. Therefore, the criticality is achieved by withdrawing the rods which 

removes the poison section out from the top of the core and replaces the fuel from 

the bottom. After the control rods are calibrated at about 50 K\V, power is in­

cremented until the desired power level is reached. The primary pumps operate 

at full power throughout the startup. The secondary pump flow is adjusted to 

maintain a normal steam pressure in the drum. The steam header is pressurized 

when the primary sodium reaches 620 F. Increase of reactor power is regulated to 

maintain a 10 F per hour rise in bulk sodium temperature. The secondary sodium 

flow adjustments also aim at maintaining the primary bulk sodium at 700 F. When 

the reactor power is stable at 30 MW, and adequate steam is available, the steam 

system is operated and the turbine-generator is started. A brief summary of the 

startup procedure including validity checks is shown in Fig .4.26 . 
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Figure 4.26: EBR-II Startup Procedure. 
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4.4.4 Startup Control Strategy 

EBR-II startup is primarily controlled by two actuators. These are the control rod 

bank and EM pump (sodium-loop between the secondary side of IHX and sodium 

side of the steam generator) .  There are several discrete-event control actions on 

the steam-side of the reactor, most of which consist of one-time actions. These 

actuators are not remotely controlled and the control action is taken manually by 

a plant technician who in some cases walks to the physical location of the actuator. 

Therefore, the steam side of the EBR-II is not suitably equipped for automation 

by any means. System upgrading for remote control on the steam-side is consid­

ered unnecessarily costly since EBR-11 is a small-scale test reactor and the existing 

operations are considered to be efficient. This reduces the automation control task 

to a somewhat limited scale and consists of controling the two actuators as stated 

above (29) . 

When the automation task is constrained to one part of the system, the con­

trol task may become quite complicated or sometimes impossible according to the 

nature of subsystem couplings. Fortunately, the coupling between EBR-II subsys­

tems does not impose any difficulty for the startup task. The automation strategy 

consists of imitating a previous startup that is considered as the reference. The 

imitation simply means that the state variables of the EBR-1 1  primary-side should 

follow the trajectories of the reference startup (desired behavior). In addition, the 

output from the primary-side to the steam-side should agree with the demand ( the 

reference trajectory) This agreement must hold in case of time-varying boundary 

conditions that represent the down-stream effects on the primary system. 

The corresponding coupling in the EBR-II  reactor takes place in the piping 

between the IHX and steam generator. The IHX secondary outlet piping carries 

liquid-sodium to the steam generator. Accordingly, the requirement includes the 

demand following that represents the energy output of the primary system. En­

ergy is characterized by temperature and mass-flow rate. Thus, demand is stated in 

terms of the secondary sodium temperature and flow rate. Other important state 

variables include the reactor power, core-exit temperature, bulk sodium tempera­

ture, IHX primary outlet temperature and primary flow. According to the control 
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technique, some of these variables are selected for trajectory following. Howe\·er, 

the controllers are expected to perform such that all of the state \'ariables are 

within the desired boundaries. 

4.4.5 RID Control Design 

The EBR-11 startup control task consists of a MlMO design with control rod po­

sition and secondary sodium flow as the actuating signals. The RID controller 

design uses two trajectories to be followed: reactor power and the IHX secondary 

sodium outlet temperature. These trajectories are obtained from the available 

startup data [38) . 

A previously developed linear model [39] is modified by including nonlineari· 

t ies using an adaptive modeling technique described in Chapter-2. The nonlinear 

model is used for the derivation of the RID control law. This model was previously 

validated against the EBR-I I  startup data (40) . 

The EBR-11 model includes seven state variables represent ing t he reactor core 

and eleven state variables representing the IHX and primary sodium tank.  Re· 

actor power is modeled using point reactor kinetics formulation with a precursor 

concentration averaged over six delayed-neutron groups. The core heat t ransfer is 

represented by the Mann's model (39] . Active core region dynamics is given by 

dP 
= 

dt 
dC 

-dt 
dT1 

-dt 
dTb 

-

dt 
dTc 

-

dt 
dT1 

-dt 

_ f3t p + XP + L Oi ]i + Pe3:t + Gp 
A i A A 

{3, P - XC A 
E, P - T, - n) 

(MC,)J Rt (MC,), 
(T, - n) Tr, - Tc) 
Rt (MC,)11 R2(MC,)b 
(Tb - Tc) (Tc - Tt 
R2(MC,)11 RJ(MC,)c 
(Tc - Tt ) 2 
RJ(MC,)c 

+ ;(lin - Tt ) 
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(4 .62) 

where the seven state variables are fractional power P. precursor concentartion 

C, fuel temperature T1 ,  blanket temperature T11, cladding temperature 'Fe, coolant 

inlet-node temperature T1 • and coolant outlet-node temperature T2• The reactiv­

ity feedback terms ai and 1i in Eq. (4.56) correspond to the contributions from 

fuel and coolant temperatures given above. There are two adaptive terms G P and 

GT2 that are corrections for the uncertainties in reactivity and core heat transfer 

at the outlet, respectively. Reactor power is controlled by external reactivity Pert · 
The adaptive RID control design includes derivations for Pert ,  GP and GT1 for the 

demand following reactor. 

The IHX model includes 'Mann's heat-transfer model using l 0 state variables. 

The primary and secondary sides of the IHX are divided up to 4 lumps whereas 

the tube material is represented by 2 axial nodes. The state variables of the model 

correspond to average temperatures in these 10 axial nodes. The secondary outlet 

node temperature Tout is given by 

dTout _ lV,, (T.· _ T. ) ( Qnu + Gq ) 
dt - .i.\'/8 "' out + (.\fC.,) .. ( -1.63) 

where 7in is the inlet temperature to the node. The heat transfer from the tube 

wall to the secondary sodium Qm• is corrected by the adaptive term Gq . The 

control input is the secondary sodium flow w • .  

The derivation of RID control laws for reactivity Pert and secondary sodium 

Bow W. is carried out using Eqs.( 4.56) and ( 4.63) .  The reactivity control is given 

by 
dP - � 

where 

Pert = Adt + {3P - >.AC - � ai7i - Gp (4 .64) 
' 

( 4.65) 

K1 is an adjustable constant and Dp is the startup tajectory of reactor power. 

Note that reator power P, and coolant outlet and inlet temperatures Tout �  1in are 

available as direct measurements. The remaining state variables are estimated by 
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an on-line model. In order to clearify the usage of measurements and model based 

estimations, the control law is rewritten with a new notation where the subscript 

m denotes the estimations. 

( 4.66) 

where 
dP dt = K1(D, - P) ( 4 .67) 

Then the uncertainty term Gp is designed to match the plant and model dy-

namtcs. 

where 

dPm . - � GP = A-d + f3Pm - -\ACm - L.. a:iTim - pext 
t . I 

dPm = KG (P - p ) dt 1 m 

KG1 is an adjustable constant. 

( 4 .68) 

( 4 .69 ) 

The uncertainty in the outlet coolant node is designed in a similar way. From 

Eq.(4.62) 

where 
dT2m G dt = K 2 (T2 - T2m ) 

with an adjustable constant KG2. 

The secondary sodium flow control is designed using Eq.( 4.63}. 

W _ (Q, + Gq) K (Dr - Tout ) l\1, 
, - + 2 �=---=-�-(C,).(Tin - Tout ) (Tin - Tout )  

( 4 .70) 

( 4 .i l )  

(4 .72) 

where K2 is an adjustable constant and Dr is the startup trajectory for the sec­

ondary sodium outlet temperature. The flow control law uses only one measure­

ment from the plant that is the outlet temperature of the secondary sodium Tout· 
The remaining state variable Tin is estimated by an on-line model. S imilar to the 
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reactivity control, the control law is rewritten to clarify the model based estima­

tions using subscript m .  

W 
_ (Qpm + Gq ) K (Dr - Tout)i.\16 

6 - + 2 �=-----=:--:-
(Cp)6(1inm - Tout ) (Tinm - Tout ) 

( 4 .73} 
The uncertainty term Dq is designed such that the model and plant behavior 

match. 

where 

dToutm W6 
) Q Gq = (MCp), 

dt 
-

(C)6 
(Ttnm - Toutm - pm (4.74) 

dToutm 
( dt 

= J<GJ(Tout - Toutm ) 4.75 ) 
KG3 is an adjustable constant. The RID control system for the EBR- I I  startup 

task is shown in Fig 4.27. 

4.4.6 S imulation Results 

The EBR-II  startup simulations are performed using �lATRIXx/SYSTE�l-13CILD 

software on a VAX 3100 Work Station (41 ] .  The plant is driven by three different 

control paradigms (RID, Fuzzy Logic, and Neural Network (42] )  in three separate 

simulations. The results of these three simulations are compared with plant data. 

Figure 4.28 shows the power response controlled by three different controllers 

and the operator during startup. The plant follows the power trajectory (plant 

data) very efficiently. The following figures include core-exit temperature ( Fig.4 .29 ) ,  

bulk tank temperature (Fig.4.30), IHX secondary sodium outlet temperature (Fig. 

4.3 1 ,  in-core sodium temperature (Fig.4.32), control rod position (Fig.4.33), and 

secondary sodium flow rate (Fig.4.34). The plant responses indicate that the three 

controllers accomplish the startup task with desirable performance, the RID strat­

egy being closest to the actual plant control. 
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Figure 4.29: Core exit temperature responses during startup at EBR-11. Reactor 
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Figure 4.31: IHX secondary-outlet temperature responses during startup at EBR­

II. Reactor controlled by RID, Fuzzy, and NNET controllers. Simulation results 

compared with plant data. 

165 



� 

7�0 --1 
745 

740 

-- IUD Ccnc:. 
735 rnec: ecnc:. 

------ Fu.:.:y Cone. 

730 Open car 

725 

720 

715 

7 10 

705 

·-· ·---------------

700 
0 0.2 0.4 0.6 0 . 6  1 1 .2 1 . 4  

Time (hr) 
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Figure 4.33: Control rod position (control input-1} during startup at EBR-ll. Reac­

tor controlled by RID, Fuzzy, and NNET controllers. Simulation results compared 

with plant data. 
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The control rod motion generated by the RID control paradigm is very close 

to the operator's actions. However, the secondary sodium flow is controlled more 

abruptly. The difference in flow control between the operator and RID controller is 

reflected in the power response as a small delay. This is caused by the deviation in 

reactor inlet temperature and tank temperature. It is important to note that the 

RID controller is tuned extra tightly to accomplish efficient trajectory following. 

The fuzzy control results show a strong agreement with the RID and operator 

actions. The system responses are also very consistent with the startup data. The 

trajectory of the IHX secondary outlet temperature is followed with more error 

compared with the RID performance. However, this error is negligible for all prac· 

tical purposes. The fuzzy controller is not dependent on a model and it is \'ery 

simple to implement. Thus, the trade-off between the RID and fuzzy controllers 

represents a bargain between the performance and complexity. 

The neural network controller yields the least preferable strategy due to de\·ia­

tions in system responses with respect to the desired behavior. HO\•.rever. t he neural 

network design was restricted to a very simple structure due to the difficulty in 

implementing control design in this particular simulation environment . Although 

the performance is the poorest among the others , the commands generated by this 

controller lie in the valid region and the overall performance is reasonable. 
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Chapter 5 

Integration of Artificial 

Intelligence Tools 

This chapter is dedicated to the analysis of the inverse dynamics ( 10 )  concept in 

relation to Artificial Intelligence (AI) ,  and development of tools for strategy design 

and adaptive modeling. 

5 . 1  Significance of the "Inverse" Approach 

In order to incorporate AI methods such as expert systems and neural networks 

with the RID paradigm, it is important to review the inverse dynamics concept. 

The concept is best understood by considering the mirror image dynamics of a 

mass-spring system shown in Fig 5. 1 .  Assume a hypothetical mirror placed per­

pendicular to the plane of motion. The dynamics of the mass is described by its 

coordinates in a fixed frame and by their evolution in time. The coordinates rep­

resent the physical world. The mirror-coordinate frame represents the imaginary 

world. Apparently, the force vector acting upon the mass in the "mirror" space is 

in the opposite direction and is equal to that of the real system. Thus, it represents 

the equilizer effect in a dynamic fashion. Since it is not possible to couple the phys­

ical world with the imaginary world, the control objective is to emulate the force 

acting upon the mass in the imaginary world. The origin of the coordinate frame 

can be shifted to a desired position for cases where there is a demand for the final 

equilibrium point. The RID control paradigm is developed with this approach. 
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The inverse dynamics concept, therefore, yields a very simple principle for con­

trol. The goal is to convert the description of the mass motion from the real 

coordinate frame into the imaginary one. Once the state space representation in 

real frame is available, the inverse solution of control in  the real frame yields the 

dynamics in the imaginary frame. This was illustrated in Chapter 2. Thus, the 

only required knowledge to create an inverse is the state space representation of 

the system under consideration. The following corollary summarizes this dist inct 

fact .  

The knowledge of open-loop system dynamics automatically represents 

the knowledge of control when the inverse property is used. 

Comparing with some of the criteria used in standard control theory (cost func­

tion, output error minimization, desired pole-zero locations, desired gain/phase 

margins, Hamiltonian, Lyapunov function, Lagrangian mechanics , fuzzy-rules) ,  

the RID control paradigm may be viewed as a straight forward approach. 

5.2  Strategy Design 

Although the conventional control systems are general purpose devices, t heir im­
plementation requires a strategy development. The strategy de\·elopment involves 

selecting important signals, determining control system arrangement ( feedback, 

feedforward, cascade arrangements) and set-points, choosing actuators. tuning, 

and other modifications according to system specifications. Thus, a complete con­

trol design scenario involves considerable amount of knowledge about the system. 

In standard control theory, the development of control law is limited to shaping 

the transient behavior of actuator signals to implement a pre-selected strategy. 

Therefore, if the strategy is inappropriate, control will fail . 

A control law which can explicitly identify the reasonable strategies is of great 

value. This can be achieved if the control law reflects an important part of the 

system dynamics. The inverse dynamics can be used for this purpose. Forward and 

inverse operators F and g are appropriate representations to develop a new, high 
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level control language in which the strategy problem is formulated. This allows 

using an expert systems to solve the strategy problem. �ote that a need for such 

an approach would emerge for systems with high degrees of freedom (large number 

of assignments and control variables).  

5.2.1 Representation of the Control P roblem 

The operators g and :F are based on the standard state-space representation of 

dynamic systems. Consider the following nth order system. 

where Xi and Ui ( i  = 1 ,  · · · ,  n ) are state and control variables, respectively. Suppose 

that there is a set of control tasks 'R. that are described by set points or trajectories 

ri , (j = 1 ,  · · · ,  m ) where m 5 n .  The control problem representation is made with 

reference to the set 'R.. Thus , the problem can not be represented if 'R. is empty 

(no assignments, m=O) . This system can be redefined by n forward operators 

:Fl ! :F2, '  ' '  ' :Fn. 

Refering to the control entries, we can define inverse operators 91 , 92 , • • • , 9n· 
Note that the existence of each inverse control yet to be determined. The inverse 

operator by a. direct control entry is denoted by 3. 
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The control problem representation starts from the assignment r i to the forward 

dynamics :Fi and denoted as follows: 

Then a possible solution is 

r · -. -r:. J .r} 

r · -. :F·3 g . J J J 

The statement (5 . 1 )  is the control problem solution for the j th task. 

(5. 1 )  

Refering t o  the auxiliary states technique described in Chapter 2 ,  the problem 

definition can be expanded to yield more than one solution . This requires the 

selection of an auxiliary state to accomplish the given control task. For the j th task, 

it is possible to use control variables other than Uj · Then. the inverse operator 9i 
will be indirectly coupled to other forward operators. The indirect entry is denoted 

by 3. 

r .  -�> :F· � f"! .  
J J ;;7 '::1] 

The problem is to provide all possible couplings which will satisfy gi · :\ coupling 

between each forward operator is denoted by a membership J.l.1r One di rectional 

coupling, that is the state equation j has an entry of the ith state variable but vice 

verse is not true, is denoted by ilii · Suppose the kth forward operator has a direct 

control entry uk.  Then the j, k strategy will require: 

Similarly, another strategy for the k+ 1 th control entry will require: 

Finally, the two strategies for the j th task are given by 

The representation above is called the stable-inverse map (SIM). The number 

of lines on the right hand side indicate the number of possible strategies. Big curly 
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bracket identifies couplings between the subsystems. The solution above suggests 

that there are two couplings of F1 yielding two distinct strategies using either Qk 
or 9k+I ·  

The symbols used in a S IM analysis are summarized below. 

3 = direct entry of control 

3= indirect entry of control 

J.' = membership (strength and nature of coupling) 

-+= decision (assignment of demand) 

5.2.2 Potent ial Advantage of the SIM Analysis 

In large-scale systems (or systems with high degrees of freedom) , the abundance 

of possible strategies may complicate the control design, unless a systematic ap­

proach is taken to evaluate all the possibilities exhaustively. Such an attempt may 

be considered unreasonable using control techniques such as the P ID .  Because the 

error based techniques do not include process-related dynamics within the control 

law, the criteria for evaluation is not control law dependent .  The RID control 

paradigm is suitable for such analysis due to unique solutions. 

The primary goal of the stable inverse maps is to provide a foundation for sym­

bolic computations which may be performed in an expert system environment. It 

is apparent that the membership /Jij between forward operators Fs, Fi represents 

a rule in the form " IF subsystems i-j are coupled" . Similarly, the operators 3 and 

3 translate into " IF subsystem j is controllable" and " IF subsystem j has a direct 

control entry" , respectively. The assignment denoted by -+ gives the predicate 

"THEN task r is achievable" . 

When the IF-THEN querries yield possible solutions, the problem must be re­

solved considering low-level problems. For example, the controllability statements 

correspond to the auxiliary-states method of control law derivation whereas the 

membership statements deal with the existence of inverses. Solving these problems 

clearly indicates the necessary signals, required parameter estimations, desired ac· 
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tuator characteristics and other requirements. Refering to the availability of such 

requirements, the cost of control can be determined. Once the costs are deter­

mined, the best strategy is found. 

The SIM procedure offers a systematic way to d istinguish between the high 

and low level problems. The solution of high level problem yields possible 

strategies, whereas the solution of low level problems determines the 

best. The overall solution yields a global control capability. The assignment 

set 'R. can be made a matrix, each column containing reference trajectories of a 

prescribed mode of operation. This approach is analogous to the hierarchical and 

supervisory control methods. Figure 5.2 illustrates the topological representation 

of SISO, MISO, and MIMO control strategies. 

5.2.3 SIM Analysis for Previous Applications 

Although the applications presented in Chapters 3 and 4 do not include a large 

combination of control possibilities, the topology of solutions are given below as 

examples. Refering back to the feedwater-train system, the SIM can be developed 

as follows. The system described by Eqs.( 4.38- 4.42} is rewritten in terms of SI�l 
operators where the subscripts 1 ,  2, 3, 4, 5 indicate the state equations in the order 

they are presented previously. The problem definition is given with reference to 

two tasks (demands) denoted by D3 and D5•  

F2P.21Ft 
F31'32F2 
F•J'•s:Fs 
Fsp53F3 

where P.21 indicates one directional coupling that is :F2 has an input from F1 
whereas vice verse is not true. If the coupling is mutual, t he order of the terms is 

not important. The SIM solutions are given by 
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M I MO 
S trateg i e s  

Figure 5.2: Topological representation of SISO, MISO, and MIMO control strate­

gies (high level problems).  These solutions may be obtained using symbolic com­

putations for systems with large degrees of freedom. 
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(:F2P.2t:F1 ) } :Ft 3 9t 
(:Fsp.s":F") :F" 3 Y4 

(:F3P.32.F2) (F2P.2t:Ft )  } :Ft 3 9t 
(5.4) 

:F.. 3 g .. 
The strategy selected for feedwater-train control is given by 

Ds -+ :Fs 3 9s - { (:FsP.s3F3) (:FJJ.'J2:F2)  (:F2JL2t:Fd }:Ft 3 Yt ( .j.5) 

D3 -+ :F3 3 93 - {(:F3 P.3s :Fs) (Fs JLs4 :F")}  :F" 3 94 (5.6) 
The benchmark problem presented in Chapter 3 is considered next. Problem 

definition uses subscript letters 1 ,  2, 3, 4 corresponding to the order of the state 

equations. 

:Ft P.t2 :F2 
:Ft Jlt3 :F3 
:Ft Jlt4 :F4 
:F3 P.34 :F4 

The SIM solution for the first demand yields 

Dt -+ :Ft 39t 

Dt -+ :Ft 3 9t = { (:Ft Jl.t4 :F .. ) }  F4 3 94 

Similarly, the second demand is satisfied by 

D4 -+ :F4 394 

D4 -+ :F4 3 9" = { (:F4 P.t4 :Ft ) }  :Ft 3 9t 

Between the two strategies, the following was selected: 

Dt -+ :Ft 39t 

D4 -+ :F4 39" 

( .j ,  i) 
( -iS )  

( 5.9) 

(5 . 1 0) 

(5 . 1 1 )  

(5 . 12) 

The xenon oscillation problem is defined through S IM operators where sub­

scripts 1 ,  2 ,  3 correspond to Eqs. (4.7, 4.8, 4.9 ) .  
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:Fl P.l3 :F3 
:F2 il21 :Fl 
:F2 1'23 :F3 

:F3 3 g3 

Since the xenon oscillation control is a regulator problem rather than a trajectory 

following problem, the demands Dt, D2 represent initial conditions . This allows a 

cascade solution given by 

(5 . 13) 

Obviously, the startup problem of the EBR-II  and the benchmark problem 

given above have similar SIM solutions provided the subscripts are appropriately 

selected . 

5 .3 Fuzzy Control and Inverse Dynamics 

It is important to investigate the relationship between the model-reference and 

rule-based control strategies. One of the similarities between these approaches is 

the use of process related knowledge within the control law, whereas in conventional 

analog control systems (which are based on the classical control theory) ,  control 

law is a function of errors determined by set points. In this section, the merit 

of inverse dynamics concept is investigated in relation to fuzzy control paradigm. 

The main objective is to provide a systematic approach for the rule-based ( fuzzy 

control) strategy using the inverse dynamics concept which is a model-reference 

strategy. 

The concept of fuzzy logic is best characterized by a linguistic variable [18] 

whose values are words or sentences in a synthetic language. A linguistic variable 

includes an adjective-like term (and its antonym), a modifier, and a connective. 

The modifier is a measure of intensity which is associated with a possibility distri­

bution. This is often refered to as the membership function in the literature. 
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The fuzzy control policy is represented as a finite collection of rules of the form 

if (X1 is AD and · · · (Xn is A�) then 

(5 . 14 )  

where A� is a linguistic value of  Xi in the ith rule, Yi i s  the control variable, and 

a� are adjustable parameters. The truth value of the antecedent is gi,:en as 

(5 . 15) 

where A� is the grade of membership of Xj in A� . The aggregated value of control 

Y may be a normalized linear combination given by 

Y = Wl yt + . . .  + \Vn yn 

�V1 + · · · Wn 
( 5 . 16)  

There are two distinct places in the design stated above where a heuristic ap­

proach is required. The first heuristic task is to determine the set (X1 ,  • • · Xn ) for 

control yi in Eq. (5 . 14) .  This task determines: which state variables should 

contribute to the decision of Yi . The second heuristic task is to determine the 

boundaries and the shape of membership functions given in Eq. ( 5. 1 -5 ) .  Depend­

ing upon the specific application , these tasks may be qui te difficult for complex, 

nonlinear processes . 

Considering the benchmark problem presented in Chapter 3 ,  the reactivity and 

flow control given by Eqs. (3. 18, 3 .2 1 )  were found using the following im·erse 

functions. 

VI - Yoo(Pt , P2, P3, P4, Dt , Aj , Oj ) 

V.. - YLl-(PJ, P4, D4, >..i )  

(5. 1 7) 

(5. 18) 

There are three different applications of the inverse dynamics concept to pro­

vide a systematic tool for fuzzy control design. 

( 1 )  As shown in the benchmark problem, the inverses g'XI and Q[), clearly 

indicate the important state variables and parameters. Thus , the set 
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of fuzzy variables can be systematically determined. An important 

conclusion is that the requirement of an operational experience can be 

minimized for this purpose. 

(2) The explicit forms of the inverses provide a preliminary founda­

tion to create fuzzy rules. For example, it is clear from Eq. (3 . 1 7) 

that the reactivity Vi should be increased if the coolant temperature 

P4 gets higher than its equilibrium value. Another rule can be com­

posed to increase the reactivity V. if the error between the reactor 

power P1 and demand D1 increases. The inverses above also indicate 

the dependence of the controls on plant parameters ).i , O:j . This in­

formation allows plant diagnostics to be incorporated within the fuzzy 

control paradigm. Again, these inferences can be drawn without an 

operational experience. 

(3) The third application includes the determination of membership 

boundaries and shapes. The explicit form of the inverse dynamics can 

be used within a parametric study. Since the inverse dynamics has an 

algebraic solution, it is possible to assign values to state variables and 

determine the control boundaries. For example, a low-level operation 

can be characterized by intervals (0-0 . 1  % for the reactor power, 600-700 

degrees F for the coolant temperature, etc.) The corresponding reactiv­

ity values can be calculated from the inverse dynamics. Similarly, the 

behavior of control can be determined by changing the state variables 

in an iterative algorithm. This would yield a preliminary idea about 

the shape of the membership function (as a function of state variables) 

for each interval or universe defined by a linguistic statement. 

The use of inverse dynamics in three forms stated above does not necessarily 

mean that the fuzzy control would imitate an RID controller. This is due to the 

flexibility of fuzzy rules which can include more variables, exclude unnecessary 

ones, and incorporate unique logic. However, the inverse dynamics can be a useful 

systematic tool to provide a foundation. 
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5.4 Artificial Motor-Learning 

One of the objectives in the AI area is to study biological information systems 

and explore the principles such that these principles can be emulated in the engi­

neering field to improve system operations. Artificial Neural �etworks (AN:\"s) is 

such an approach (42]. The objective o{ this analysis is to discuss the possibility 

of incorporating the inverse dynamics and ANNs to create a model for motor­

control/motor-learning capability of biological systems. 

Although there is no direct evidence that the biological intelligence systems 

make use of Q, the inverse dynamics concept may constitute a basis to model the 

motor-control capability. Among the many different definitions of control in bi­

ology, "motor-control" is used to identify the control mechanism of moving body 

parts in mammals that do not strongly rely on decision making [43] . ?\lotor-control 

is analogous to hard-wired control systems where the reaction time is a function 

of signal transmission path rather than a decision process. 

One of the examples of motor control includes controlling the eye movement 

with respect to the position of the head. The basic anatomic circuitry for eye-head 

coordination in humans involves only a three-neuron arc from the inner ear to the 

extraocular muscles (43] . If the head is moved during the observation of a fixed 

object, motor control provides "locked-on-target" eye movement for a stable image 

on the retina. Because head movement with respect to the eye is the mirror im­

age dynamics of eye movement with respect to the head, we can suggest that the 

corresponding motor control can be modeled by the inverse dynamics approach. 

Then a legitimate question may arise "how do we create the inverse dynamics of 

a complex biological system?" . 

It is well known that motor control skills are developed through training. Cere­

bellum is known to have a role in  motor learning as well as in the sensory guidance 

of movement. Most of the recent explanations of the motor control of eye-head co­

ordination are based on motor learning phenomena. The three-neuron arc between 

the inner ear and extraocular muscles is a vestibuloocular reflex (VOR) circuitry 
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where motor learning is believed to take place (44) . 

To complete the model, we can suggest that the inverse dynamics can be learned 

using ANNs analogous to motor-learning in biological systems. Such a model in­

cludes two cascaded neural networks. The first neural network is dedicated for 

mapping (learning) between the forcing function f and state vector x whereas the 

other is dedicated for inverse mapping, that is between x and f. The equilibrium 

is achieved by -f within the domain of the training set. When an input vector x 

is applied to a fully trained network, the corresponding forcing f is known, so is 

the equilibrium control -f. Figure 5.3 shows a functionally symmetric, coupled 

neural networks as a model for motor-control. Similar studies were performed in 

the area of robotics [45] where neural networks are trained to learn the inverse 

kinematics property for control purposes. 

The merit of modeling motor-learning in application to engineering systems 

is yet to be investigated. However, a few comments may be made at this stage. 

This approach offers the capability of self-control through on-line learning without 

the need for an off-line control design procedure. It may be considered as an 

extended version of adaptive control where the system derives its own control law at 

different situations rather than adapting time-varying parameters. Obviously, the 

implementation of artificial motor-learning in engineering systems heavily depends 

on the speed and convergence characteristics of learning algorithms. 
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Figure 5.3: Functionally symmetric neural networks for modeling motor·control 

phenomena of biological systems. Model is based on the inverse dynamics ap­

proach. Network (A) leacns the dynamics of the body through routine movements 

whereas network (B) learns the inverse dynamics fot' the purpose of control 
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Chapter 6 

Concluding Remarks 

The emergence of microprocessor technology has offered new possibilities in the 

area of control. Traditional analog systems are being replaced by their digital coun­

terparts in many recent industrial applications . Because on-line computations are 

possible with the new technology, a number of advanced control algorithms has 

found feasible grounds for implementation. In addi tion , the recent computer simu­

lation capabilities have improved our understanding of the gap between t heory and 

practice. As a result , there is a considerable amount of effort to renovate previous 

theoretical accomplishments and derive new theories such that they can be digi­

tally applied to actual systems within a reasonable CPU requirement. The main 

objective of this work was to use the oppurtunity offered by digital technology, to 

develop a robust nonlinear control method without relying on number crunching 

algorithms. This section includes a list of accomplishments in theory and appli­

cation, most of which may be considered as the direct evidence for improvement 

in complex systems operations. Nevertheless, the specific designs presented here 

require further testing before application to actual systems. This is because com­

puter simulations yield a limited capability to anticipate what type of problems 

may arise during actual implementation. 

6 . 1  Accomplishments 

Theoretical derivations and applications are summarized in this section. 
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1.  The reconstruction problem defined in the mathematics literature 

was adopted to create an inverse dynamics paradigm for the purpose 

of trajectory following control. 

2. The closed-form nonlinear control law was stated. Formulation 

was extended to include adaptive control features. The auxilary states 

method was outlined that makes the multi-input control option possi­

ble. A set of design procedures was presented. 

3. The existence of inverse solutions and robustness against inexact 

inverses were investigated. Existence is guaranteed within a limited 

dynamic range and is based on the implicit function theorem. The 

stability characteristics in case of inexact inverses were illustrated by 

considering an Nth order linear system. 

4. The RID control was compared with the LQR method. It was 

shown that the LQR design for the first-order systems yields a similar 

analytical solution to that of the RID paradigm. It was verified that 

optimal control in the form of LQR utilizes an inverse dynamics com­

ponent which is independent of the cost adjustments. 

5. An exhaustive robustness testing was performed in a simulated 

environment using a benchmark problem. The definition of the bench­

mark control problem included a nonlinear model of a compact nuclear 

reactor core with two control variables: rod reactivity and coolant flow. 

The tests consisted of modeling errors , unknown dynamics, time-delay, 

and actuator constraints. Robustness tests showed that the RID con­

troller yields stable performance even for extreme cases such as 200 % 

modeling errors and uncertainties. Same tests were applied to the La­

grangian derivation of optimal control ( LDOC). The simulation results 

indicate that the RID and LDOC methods produce almost identical 

results .  
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6. The RID control was applied to specific nuclear reactor problems: 

Xenon oscillation in P\VR.s, feedwater control in P\VR.s, and automatic 

startup at EBR-II .  The simulation results showed that the RID control 

significantly improves reactor operations and has a potential to increase 

plant availability. 

7. The possibility of incorporating Artificial Intelligence methods was 

investigated. A systematic strategy design procedure was developed for 

the RID control. Stable-inverse-maps (SIM) technique allows a topo­

logical representation of all possible strategies for a given system. An 

expert system environment is appropriate to produce SIM given the 

state-space representation, and select the best strategy. :\ model for 

self-learning control system is proposed. The model is developed using 

artificial neural networks, analogous to the motor-learning in biological 

systems. 

6.2 Comparison with Similar Methods 

Fuzzy control and the RID control paradigms have some similarit ies because they 

both depend on process related information. This similarity also holds between 

other rule-based and model-reference techniques. The RID Control method re­

quires the state-space representation of dynamics systems, whereas fuzzy control 

is more flexible, and does not require any specific format. Regardless of the sim­

plicity of the system under consideration, a unique inverse solution may not exist. 

Since the fuzzy control does not rely on such existence, the correponding fuzzy 

rules may be available through pure heuristic approach. On the other hand, the 

development of membership functions in fuzzy control is not based on a system­

atic method. For example, the xenon oscillation in P\VR.s shows a complicated 

nonlinear behavior. Even the most experienced plant operator may fail to control 

XIPO. Thus, representing operator's expertise in the form of fuzzy rules will not 

resolve this control problem. The inverse dynamics concept serves a great deal of 

purpose in such cases by explicitly providing the necessary dynamic information 

which is ambiguos to human j udgement. 
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The inverse dynamics component of the RID control paradigm funct ions in a 

similar way to that of the Lyapunov function. One of the conclusions of t he Lya­

punov's stability theorem states that if control tends to yield a. negative gradient of 

the Lyapunov function then the dosed-loop system is asymptotically stable. The 

problem with this approach is to find an appropriate Lyapunov function for a given 

process. Theoretically, the Lyapunov function defines the minimum energy states 

of a given system. On the other hand, the inverse dynamics is a function which 

continuously defines the dynamic equilibrium of the closed-loop system. Because 

the stable equilibrium points represent a minimum energy path, the inverse dy­

namics can be viewed as a special form of the Lyapunov function. 

Comparing the RID control with the inverse modeling adaptive technique of 

Widrow (1 7) ,  several important differences are noticed. Instead of the open-loop 

cancellation by inverse modeling, the RID control synthesis with a feedback ar­

rangement yields robust and stable performance. One important consequence is 

that the delay time between the trajectory and plant improves the stab ility when 

it is decreased. This is contrary to Widrow's method. The RID paradigm yields 

a nonlinear algebraic control law, thus the inverse cancellation is not based on 

an inverse model. This eliminates the stability problems in case of non-minimum 

systems. 

6.3 Advantages 

The following are some of the advantages of the RID control technique in applica­

tion to large-scale complex systems. The advantages are distinguished as compared 

to traditional methods. 

1 .  Through the simulation studies presented in Chapters 3 and 4, it 

is found that the RID control paradigm offers a high degree of flex­

ibility in tuning. With other standard methods, the tuning problem 

has a. greater level of difficulty. The optimal control allows adjustment 

of costs by tuning. However, the tuning task may become difficult in 
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application to complex systems when costs are ambiguous. 

2.  The RID control performance is found to be impressively robust 

against uncertainties of the plant. Modeling errors ( inexact inverses) .  

unknown (unmodeled) dynamics, measurement time-delay, and actua­

tor constraints do not deteriorate the closed-loop performance unless 

these effects are unreasonably large. 

3. The RID control law development requires only the state-space rep­

resentation of a given system. Therefore, the control law is relatively 

user-friendly. Some standard criteria used in other control techniques 
(cost function, Hamiltonian , Lagrangian densi ty, desired pole locations, 

minimum distance, phase/gain margins ) are not required but can be 

incorporated . 

4. Using a set of available transient data, the inverse dynamics compo­

nent of the RID control law can be validated off-line during the design 

stage. S imilar to validating dynamic models for signal ••alidation. this 

capability is a distinct advantage for safety purposes. 

5. The RID control has a solid feedback structure. There are no other 

possibilities such as cascade, feedforward or open-loop arrangements 

which simplifies the design procedure. If all the state variables used in 

the RID control law are available as measurements, analog technology 

is applicable. 

6. The RID control law is an algebraic equation. Thus, the control 

is not generated by a complex iterative algorithm. This significantly 

eliminates the rea.l time problems. In case of incorporating an on-line 

model for state estimations, real-time problems may arise. However, 

because the RID control is highly robust against modeling errors, on­

line models can be simplified and reduced. 
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6.4 Limitations 

Although computer simulations indicate the high performance ch aracterist ics of 

the RID control method,  a number of limitations have been addressed. 

1 .  Inverse solutions may be ambiguous or may not exist for certain 

types of systems. Although the implicit function theorem yields linear 

solutions, a nonlinear RID controller may not be feasible for every sys­

tem. This is a distinct limitation of this approach, since none of the 

nonlinear methods of the literature imposes such a restriction. How­

ever, nonexistence of inverses in actual systems is very rare. 

2. The RID control law is strongly dedicated to the system it is de­

signed for. An RID controller may not be implemented in two similar 

systems without major differences. A similar limitation holds for fuzzy 

control and MRAC methods. 

3. The design of a RID controller requires extensive knowledge of 
the open-loop system. Since the RID control receives a considerable 

amount of heuristic input, its performance depends upon the experi­

ence of the designer. Between the two designers, the same control prob­

lem may be formulated differently. Although this seems like a freedom 

rather than a limitation, the lack of consistent modeling principles may 

be viewed as a negative factor. Except the conventional analog control 

systems, this limitation holds for most of the advanced control methods. 

4. Controling large-scale complex systems is an economical problem as 

well as a technical one. The cost requirement of the RID control al­

gorithm strictly depends on the system specifics and task requirement. 

In some cases, the RID control law may require an excessive number of 

system parameters (many auxiliary states) to be known or estimated. 

Thus, the application of the RID control will make sense only if the re­

quired complexity and cost results in a higher return. The cost-benefit 
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issue of the RID paradigm is a limitation compared with the simple 

conventional control techniques. Note that the same l imitation holds 

for the MRAC and optimal control methods. 

5. Some RID applications may require an on-line model for state es­

timations. Similar to the MRAC methods of the literature, the imple­

mentation of the RID control will suffer from long sampling intervals 

of the measurements. When a process undergoes a fast transient, long 

sampling interval may cause a large phase difference between the plant 

and model which may result in stability problems in the on-line model. 

6. All the set-point change requirements of a given problem must 

be represented by continuous trajectories. Large step changes in the 

reference signal may deteriorate the closed-loop performance. 

6.5  Recommendations for Future Research 

This dissertation has introduced a new approach which is open to further analysis 
in theory and practice. The potential areas for future research are outlined. 

1 .  The significance of the inverse dynamics is yet to be analyzed in a 

broader sense. It is shown here that the optimal control for the first­

order systems (LQR solution) has a distinct inverse dynamics compo­

nent in the control law. It will be an interesting task to investigate if 

other control methods contain an inverse dynamics component. This 

will help clarify whether the inverse dynamics is a universal criterion 

or a particular approach. 

2. The difference between the optimal control and RID control paradigms 

is not fully established in this work because of the extreme similarities 

in  the simulation results. It is important to illustrate analytically as to 

what extent the RID control yields optimal solutions. 
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3. Although the robustness test against measurement time delays have 

resulted satisfactory performance, a discrete-domain analysis would be 

useful. Because the RID control law is algebraic, numerical solutions 

will not be affected by large sampling intervals. However, the on-line 

model estimations if used, can be deteriorated. 

4. During any transient , the inverse dynamics component of the RID 

control law always points out the equilibrium point. This may be 

closely related to the properties of the Lyapunov function. A system­

atic analysis may yield interesting and useful results. 

5. Extending applications to different nuclear reactor systems would 

certainly improve our understanding of the inverse dynamics approach 

and its feasibility. Future research must focus on more global control 

tasks such as satisfying grid-power demand in multi-modular reactors. 

6. The systematic solution of the strategy problem presented here 

represents a challenging topic for scientists in the A I  area. The strat­

egy solutions using the SI�l method is a typical expert systems problem 

and is worth applying to complex systems with high degrees of freedom. 

7. The development of tools for a systematic fuzzy control design may 

be possible using the inverse dynamics concept. The general form of the 

RID control, presented in Chapter 2,  can be used for this purpose. Such 

a study should focus on determining the most important set of fuzzy 

variables, fuzzy rule production, and the characteristics of membership 

functions. 
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APPENDIXES 



Appendix A 

ACSL Code of the Benchmark Problem 

The following pages include the computer code of the benchmark problem pre­

sented in Chap 3. It is written using the Advanced Computer Simulation Language 

(ACSL) .  The code contains a compact nuclear core model, and two controllers 

(RID, LDOC) described in Chap 3. Parameters FLA.Gxx control the simulation 

( 1  for discrepancy, 0 for perfect match) corresponding to the 8 parameters of the 

model. There are different codes for each test shown in Table 3.2. �lore informa­

tion is provided within the command lines in each program. 
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* * *  PROGRAM LISTING * * *  

PROGRAM PWR Model Us ing 4 state variables . 
1 LAGRANGIAN DERIVATION OF OPTIMAL CONTROL 1 
1 AND ADAPTIVE RID CONTROL COMPARED 1 

INITIAL 

' +++++++++++++++++++++++++++++++++++++++ ' 
' PARAMETERS I 
· ----------- · 

CONSTANT LSPO=O . l2 18 , LDP0=0 . 06 8 6 , LRPO= l l 5 . 87 9 6 5  
CONSTANT BETA=0 . 007 2 l , ALFF=l . E-5 
CONSTANT AH=2 . 7 559E5 , CC=4 . 18 4 5 , MC=2 . 4 16 J E4 
CONSTANT TH= . 0002 , P0=2 . 8E8 , CP= . 5 6 5 , MP=0 . 67 8 5 E4 
CONSTANT TIN=49 . , ALFC=l . lE-4 , WDOT= l . 4 E6 

' RUN CONTROL ' 
' ----------- · 

CONSTANT TMAX=2 00 . 

CONSTANT FLAGl=l , FLAGll=l , FLAG2 = l , FLAG2 2=1 
CONSTANT FLAG3=l , FLAG3 3=l , FLAG4=l , FLAG44=1 
CONSTANT FLAG5=l , FLAG55=l , FLAG6=l , FLAG66=1 
CONSTANT FLAG7=l , FLAG7 7=1 , FLAG8=l , FLAG88=1 

CONSTANT FLAGD=l . 

' PLANT DEVIATIONS ' 
' ---------------- · 

CONSTANT GOTIME=lO , DVRAMP=O . O l , FREQ=S . O , DVMAX=l 
CONSTANT BRl=lO , BR2=3 0 , BR3=5 0 , BR4=70 

' DEMANDS ' 
' ------- · 

CONSTANT Tl=lOO . , DECAYl=0 . 08 , DECAY2 =0 . 05 

' ( PERDl= percentage increase in demand 1 ) ' 
' ( PERD12=AMOUNT of decrease in demand 1 after t=TAU ) ' 
' ( PERD4=percentage incerase in demand 4 ) ' 

CONSTANT PERD1=0 . 2 5 , PERD12=0 . 2 , PERD4=0 . 2  

' ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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++ ' 
' PARAMETERS OF LAGRANGIAN DYNAMICS ' 

Z 1BO=O . 
Z4BO=O . 
Z 1AO=O . 
Z4AO=O . 
PC10=0 . 
PC4 0=0 . 

' LOOP TUNING PARAMETERS ' 
· ---------------------- ' 

CONSTANT K1I=-0 . 5  
CONSTANT K4 I=-4 . 2  
CONSTANT K1P=0 . 5  
CONSTANT K4P=0 . 1  
CONSTANT R1P=4 . 0  
CONSTANT R4P=0 . 1  
CONSTANT P1 I=-0 . 5  
CONSTANT P4 I=-0 . 04 

' RID TUNING PARAMETERS ' 
· --------------------- ' 

CONSTANT K1=1000 . 
CONSTANT K4=1000 . 
CONSTANT KG1=1000 . 
CONSTANT KG3=1000 . 
CONSTANT KG4=1000 . 

' +++++++++++++++++++++++++++++++++++++ ' 

CINTERVAL CINT=1 . 
IALG=2 

HP=1 . / ( . 0649+4 4 . 44 *TH) 
040=1 . 9 7 5 4 2  
010=1 . 
OMAX1=010* ( 1+PERD1)  
DMAX4=04 0* ( 1+PER04 ) 
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' ++++++++++++++++++++++++++++++++++++++ + + ' 
1 STATE VARIABLES INITIAL VALUES ' 

N lO=l . 
N2 0= 1 .  
N3 0=3 . 50 5 3 9  
N4 0=1 . 97 54 2  
P lO=l . 
P2 0=1 . 
P 3 0=3 . 50 5 3 9  
P4 0=1 . 97 5 4 2  
MlO=l . 
M4 0=1 . 97 5 4 2  
H l O=l . 
H20=1 . 
H3 0=3 . 5 0 5 3 9  
H4 0=1 . 97 54 2  

' - - - - - - - - - - - - - - - - - - ' 
LSM=LSPO 
LDM=LDPO 
LPPO=PO/ ( CP*MP*TIN) 
LPM=LPPO 

LFPO=AH*HP/ ( CP*MP ) 
LFM=LFPO 

AFPO=ALFF*TIN/ ( BETA*LSP) 
AFM=AFPO 

LCPO=AH*HP/ ( CC*MC) 
LCM=LCPO 

LRM=LRPO 

ACPO=ALFC*TIN/ ( BETA*LSP) 
ACM=ACPO 

CONSTANT YlO=O . O  
CONSTANT Y4 0=0 . 5  

UlO=Yl O  
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U4 0=Y4 0 

GlO=- ( UlO-l) *KlO/LSPO 
G4 0=U4 0*LRPO* (M4 0 - 1 )  

F l O=Ml O / LSPO 
F 4 0=LRPO* (M4 0-1 ) 

END 

' ++++++++++++++++++++++++++++++++++++++++ ' 

DYNAMIC 
DERIVATIVES 

' +++++++++++++++++++++++++++++++++++++++++ ' 
' TRAJECTORIES ' 
· ------------ ' 

PROCEDURAL (TAU , GOD=T , Tl )  
TAU=O 
GOD=O 
I F (T . GE . Tl }  TAU=T-Tl 
I F ( T . GE . T l )  GOD=l 
END 

' MISMATCH BETWEEN PLANT AND MODEL ' 
• - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' 

PROCEDURAL ( GO , OS l , OS2 , 0S3 , DVA, DVE=T , GOTIME , DVMAX , DVRAMP 
, FREQ) 

DVA=O 
DVE=O 
051=0 
052=0 
053=0 
GO=O 
I F (T . GE . GOTIME) GO=l 
DVA=DVA+DVRAMP*T 
DVE=DVE-DVRAMP*2*T 
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OSl=OSl+SIN ( FREQ*T) 
OS2=0S2+COS ( FREQ* 0 . 2 *T) 
OS3=0S3+COS ( FREQ*3 . 7 *T)  
END 

' LOGI C  CONTROL PARAMETERS ' 
· ---------- -------------- · 

LSP=LSPO+ ( FLAGl*DVA+FLAGl l*OS l ) *LSPO / lO *GO 
ACP=ACPO+ ( FLAG2 *DVE+FLAG2 2 *0S2 ) *ACP0/ 10 *GO 
AFP=AFPO+ ( FLAG3 *DVE+FLAG3 3 *0S3 ) *AFP0 / 10*GO 
LDP=LDPO+ ( FLAG4 *DVA+FLAG4 4 *0Sl ) *LDP0 / 10 *GO 
LPP=LPPO+ ( FLAGS*DVA+FLAG55 *0S2 ) *LPP0/ 10 *GO 
LCP=LCPO+ ( FLAG6*DVE+FLAG66*0S3 ) *LCP0/ 10*GO 
LFP=LFPO+ ( FLAG7*DVA+FLAG77 *0S2 ) *LFP 0 / 10*GO 
LRP=LRPO+ ( FLAG8 *DVA+FLAG88 *0S3 ) *LRP0 / 10 *GO 

' +++++++++++++++++++++++++++++++++++++++ ' 
' PLANT DRIVEN BY LOOP CONTROL ' 

DPl= ( Yl-l . ) *Pl/LSP+P2 / LSP- (ACP* (P4-P4 0 ) +AFP* ( P3-P3 0 ) ) *Pl 
DP?=LDP* ( Pl-P2 ) 
DP��LPP*Pl-LFP* ( P3 -P4 ) +FLAGD*DISTP 
DP4=LCP* ( P3 -P4 ) -Y4 *LRP* ( P4 - 1 . )  

' +++++++++++++++++++++++++++++++++++++++ ' 
' PLANT DRIVEN BY RID CONTROL ' 

DHl= (Vl-l . ) *Hl/LSP+H2 / LSP- (ACP* (H4 -H4 0 ) +AFP* {H3 -H3 0 ) ) *Hl 
DH2=LDP* (Hl-H2 ) 
DH3=LPP*Hl-LFP* {H3 -H4 ) +FLAGD*DISTH 
DH4=LCP* (H3 -H4 ) -V4 *LRP* (H4 - l . )  

' UNKNOWN DYNAMICS I 
· -- --------------- · 

DISTP=GO*COS (P4-P3 ) *SIN ( P l ) *OS2 
DISTH=GO*COS (H4-H3 ) *SIN ( H l ) *OS2 

' ++++++++++++++++++++++++++++++++++++++++ ' 
1 MODEL FOR RID CONTROL ' 
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DNl= (Vl-l . ) *Nl/LSM+N2 / LSM- (ACM* (N4-N4 0 ) +AFM* (NJ-N3 0 ) ) *N 
l+RGl 

DN2=LDM* ( Nl-N2 ) 
DN3=LPM*Nl-LFM* (N3-N4 ) +RG3 
DN4=LCM* (N3 -N4 ) -V4 *LRM* (N4 - l . )  

1 ++++++++++++++++++++++++++++++++++++++ 1 
1 MODEL FOR LAGRANGIAN CONTROL 1 

DMl=Cl*Fl+Gl 
DM4=C4 *F4+G4 

Cl=Ul-1 
C4=-U4 

F l=Ml/LSM 
F4=LRM* (M4 - 1 )  

I +++++++++++++++++++++++++++++++ '  
' DEMAND ' 

D l=DMAXl+ ( DlO-DMAXl) *EXP ( -DECAYl *T) -EK 
EK=GOD* ( PERD12 -PERD12*EXP ( -DECAY2 *TAU) ) 
D4=DMAX4 + ( 04 0-DMAX4 ) *EXP ( -DECAYl*T )  

' +++++++++++++++++++++++++++++ ' 
' RID CONTROL ' 

Vl=l+LSM*Kl* ( Dl-Hl) /Hl-N2 /Hl+EK1 
EKl=LSM* (ACM* (H4-H4 0 ) +AFM* ( N 3 -N3 0 ) ) 

V4=LCM* ( N 3 -H4 ) / ( (H4-l . ) *LRM) -K4 * ( D4-H4 ) / ( ( H 4 - l . ) *LRM) 

RGl=KGl* ( Hl-Nl) - (Vl-l . ) *Nl/LSM-N2 / LSM+EKGl 
EKGl= (ACM* (N4-N4 0 ) +AFM* ( N3 -N3 0 ) ) *N l  

N3S=LRM*V4 * (N4 -1 . ) / LCM+KG4 * (H4 -N4 ) /LCM+N4 
RG3=KG3 * (N3S-N3 ) -LPM*Nl+LFM* (N3 -N4 ) 

' +++++++++++++++++++++++++++++++++++++++ I 
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' LAGRANGIAN CONTROL 1 

Y l=Ul 
Y4=U4 

Ul=RlA*UlO+RlB-RlC*ClT 
U4=R4A*U4 0+R4C*C4T 

RlA= ( l+ALOG ( Fl O ) ) / ( l+ALOG ( Fl ) ) 
RlB=ALOG ( Fl / F lO ) / ( l+ALOG ( F l ) ) 
RlC=Fl/ ( l+ALOG ( Fl ) ) 
R4A= ( l+ALOG ( F4 0 ) ) / ( l+ALOG ( F4 ) ) 
R4C=F4 / ( l+ALOG ( F4 ) ) 

ClT=PClO-Pli*Z lB+RlP* ( Pl-0 1 )  
C4T=PC4 0-P4 I * Z4B+R4P* ( P4 -D4 ) 
DZ lB=Pl-01 
DZ4B=P4 -D4 

' +++++++++++++++++++++++++++++++++ ' 
' UNKNOWN DYNAMICS ' 

Gl=GlO+FlO-Fl-BlT 
G4=G4 0+F4 0-F4 -B4T 

BlT=-Kli * Z lA+KlP* (Ml-Pl ) 
B4T=-K4 I * Z4A+K4 I * (M4-P4 ) 

DZ lA=Ml-Pl 
D Z4A=M4-P4 

' ++++++++++++++++++++++++++++++++++++++++ ' 
P l=INTVC ( DPl , PlO)  
P2=INTVC ( DP2 , P2 0 )  
P3=INTVC ( DP3 , P3 0 )  
P4=INTVC ( DP4 , P4 0 )  
Nl=INTVC ( DNl , NlO)  
N2=INTVC ( DN2 , N2 0 )  
N3=INTVC ( DN3 , N3 0 )  
N4=INTVC ( DN4 , N4 0 )  
H l=INTVC ( DHl , Hl O )  
H2=INTVC ( DH2 , H2 0 )  
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H3=INTVC ( DH3 , H3 0 )  
H4=INTVC (DH4 , H4 0 )  

Z lB=INTVC ( DZ lB , Z lBO ) 
Z4B=INTVC ( DZ 4 B , Z4BO ) 
Z lA=INTVC ( DZ lA , ZlAO ) 
Z4A=INTVC ( DZ4A , Z4AO ) 
Ml=INTVC ( DMl , Ml O )  
M4=INTVC ( DM4 , M4 0 )  

' +++++++++++++++++++++++++++++++++++++++ ' 

END 

END 
TERMT (T . GE . TMAX ) 
END 
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PROGRAM PWR Model Usinq 4 state variables . 
' LAGRANGIAN DERIVATION OF OPTIMAL CONTROL ' 
' AND ADAPTIVE RID CONTROL COMPARED 1 

' ++++++++++++++++++++++++++++++++++++++++ ' 
' ++++++++++++++++++++++++++++++++++++++++ ' 
• CAS E :  D isturbance rej ection us inq 
1 Limited Actuators 
' ++++++++++++++++++++++++++++++++++++++++ ' 
' ++++++++++++++++++++++++++++++++++++++++ ' 

INITIAL 

' +++++++++++++++++++++++++++++++++++++++ ' 
' PARAMETERS ' 
, _ _ _ _ _ _ _ _ _ _ _  , 
CONSTANT LSP0=0 . 12 18 , LDP0=0 . 06 8 6 , LRPO=l 1 5 . 8 7 9 6 5  
CONSTANT BETA=0 . 007 2 l , ALFF=l . E-5 
CONSTANT AH=2 . 7 5 59ES , CC=4 . 18 4 5 , MC=2 . 4 16 3 E4 
CONSTANT TH= . 0002 , P0=2 . 8E8 , CP= . S6 5 , MP=0 . 67 8 5E4 
CONSTANT TIN=4 9 . , ALFC=l . lE-4 , WDOT=l . 4E6 

' RUN CONTROL ' 
' --------- -- '  
CONSTANT TMAX=60 . 

CONSTANT FLAGl=O , FLAGl l=O , FLAG2=0 , FLAG2 2 =0 
CONSTANT FLAG3=0 , FLAG3 3=0 , FLAG4=0 , FLAG4 4 =0 
CONSTANT FLAGS=O , FLAGSS=O , FLAG6=0 , FLAG6 6=0 
CONSTANT FLAG7=0 , FLAG7 7=0 , FLAGS=O , FLAG88=0 
CONSTANT DISCON=l . 

' PLANT DEVIATIONS ' 
• ---------------- ' 
CONSTANT GOTIME=lO , DVRAMP=O . O l , FREQ=S . O , DVMAX=l 
CONSTANT BR1= 1 0 , BR2=3 0 , BR3=SO , BR4=7 0 

' DEMANDS ' 
· -- - - - - - ' 

209 



CONSTANT Tl�lO O . , DECAYl=0 . 08 , DECAY2=0 . 0 5  

' (PERDl= percentage increase in demand l ) ' 
' (PERD12=AMOUNT of decrease in demand 1 after t=TAU) ' 
' ( PERD4=percentaqe incerase in demand 4 ) ' 

CONSTANT PERD1=0 . 2S , PERD12=0 . 2 , PERD4=0 . 2  

' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' 
' PARAMETERS OF LAGRANGIAN DYNAMICS ' 

Z lBO=O . 
Z 4BO=O . 
Z lAO=O . 
Z4AO=O . 
PClO=O . 
PC4 0=0 . 

' LOOP TUNING PARAMETERS ' 
' - - - - - - - - - - - - - - - - - - - - - - ' 

CONSTANT Kli=-0 . 5  
CONSTANT K4 I=-4 . 2  
CONSTANT KlP=0 . 5  
CONSTANT K4P=O . l  
CONSTANT RlP=4 . 0  
CONSTANT R4P=O . l  
CONSTANT Pli=-0 . 5  
CONSTANT P4 I=-0 . 04 

' RI D  TUNING PARAMETERS ' 
' - - - - - - - - - - - - - - - - - - - - - • 

CONSTANT Kl=lOOO . 
CONSTANT K4=1000 . 
CONSTANT KGl=lOOO . 
CONSTANT KGJ =lOOO . 
CONSTANT KG4=1000 . 

' +++++++++++++++++++++++++++++++++++++ ' 
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CINTERVAL CINT=l . 
IALG=2 

HP=1 . J ( . 0 6 4 9+44 . 44 *TH) 
040=1 . 97 5 4 2  
010= 1 .  
OMAX1=0 1 0 * ( 1+PERD 1 )  
OMAX4=04 0 * ( 1+PERD4 ) 

' ++++++++++++++++++++++++++++++++++++++++ ' 
' STATE VARIABLES INITIAL VALUES ' 

N10= 1 .  
N2 0= 1 . 
N3 0=3 . 50 5 3 9  
N4 0=1 . 9 7 5 4 2  
P10= 1 . 
P2 0=1 . 
P3 0=3 . 50 5 3 9  
P40=1 . 97 54 2  
M10=1 . 
M4 0=1 . 9 7 54 2  
H10=1 . 
H20= 1 .  
H3 0= 3 . 5 0 5 3 9  
H4 0=1 . 97 54 2  

' - - - - - - - - - - - - - - - - - - ' 
LSM=LSPO 
LDM=LOPO 
LPPO=PO / ( CP*MP*TIN) 
LPM=LPPO 

LFPO=AH*HP/ ( CP*MP) 
LFM=LFPO 

AFPO=ALFF*TIN/ (BETA*LSP) 
AFM=AFPO 

LCPO=AH*HP/ ( CC*MC) 
LCM=LCPO 

. 
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LRM=LRPO 

ACPO=ALFC*TIN/ ( BETA*LSP) 
ACM=ACPO 

CONSTANT Y l O=O . O  
CONSTANT Y4 0=0 . 5  

UlO=YlO 
U4 0=Y 4 0  

YYlO=Yl O  
YY4 0=Y4 0 
VVlO=Y l O  
VV4 0=Y 4 0  

G l O=- ( U l O - l ) *MlO/LSPO 
G4 0=U4 0 *LRPO* ( M4 0 - l )  

F l O=MlO / LSPO 
F 4 0=LRPO * ( M4 0 - l )  

END 

' ++++++++++++++++++++++++++++++++++++++++ ' 

DYNAMIC 
DERIVATIVES 

' +++++++++++++++++++++++++++++++++++++++++ ' 
' TRAJECTORIES ' 
· ---------- -- ' 

PROCEDURAL ( TAU , GOD=T , Tl )  
TAU=O 
GOO=O 
I F ( T . GE . Tl )  TAU=T-Tl 
I F ( T . GE . Tl )  GOD=l 
END 
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' MISMATCH BETWEEN PLANT AND MODEL ' 
• -------------------------------- ' 

PROCEDURAL ( FLAGD , OSl , OS2 , 0S3 , DVA , DVE=T , GOTIME , DVMAX , DVRAMP , F  
REQ) 

DVA=O 
DVE=O 
051=0 
052=0 
053=0 
GO=O 
FLAGD=O 
I F ( T . GE . GOTIME) FLAGD=l 
DVA=DVA+DVRAMP*T 
DVE=DVE-DVRAMP*2*T 
OS1=051+5IN ( FREQ*T) 
OS2=0S2+COS ( FREQ*0 . 2 *T) 
OS3=0S3 +C05 ( FREQ* 3 . 7 *T) 
END 

' LOGIC ;NTROL PARAMETERS ' 
· - - - - - - - - - - - - - - - - - - - - - - -- · 
LSP=LSP O + ( FLAGl*DVA+FLAGl l*OS l ) *LSPO / lO*GO 
ACP=ACPO+ ( FLAG2*DVE+FLAG2 2 *052 ) *ACP0 / 1 0 *GO 
AFP=AFPO+ ( FLAG 3 *DVE+FLAG3 3 *053 ) *AFP0 / 10 *GO 
LDP=LDPO + ( F LAG4*DVA+FLAG4 4 *0S l ) *LDP0 / 10 *GO 
LPP=LPPO+ ( FLAGS*DVA+FLAG55*052 ) *LPP0 / 10 *GO 
LCP=LCPO+ ( FLAG6*DVE+FLAG66 *053 ) *LCP0/ 1 0 *GO 
LFP=LFPO+ ( FLAG7 *DVA+FLAG77 *052 ) *LFP0/ 10*GO 
LRP=LRPO+ ( FLAG8 *DVA+FLAG88 *053 ) *LRP0 / 10*GO 
' +++++++++++++++++++++++++++++++++++++++ ' 
1 PLANT DRIVEN BY LOOP CONTROL ' 

DPl= ( YY l - l . ) * P l / L5P+P2 / LSP- (ACP* ( P4 -P4 0 ) +AFP* ( P 3 -P3 0 ) ) *Pl+di 
stp 

DP2=LDP* ( Pl-P2 ) 
DP3=LPP*Pl-LFP* ( P3 -P4 ) 
DP4=LCP* ( P 3 -P4 ) -YY4*LRP* ( P4 -l . ) 

' +++++++++++++++++++++++++++++++++++++++ ' 
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' PLANT DRIVEN BY RID CONTROL ' 

DHl= (VVl- l . ) *Hl/LSP+H2 /LSP- (ACP* (H4 -H4 0 ) +AFP* ( H3 -H3 0 ) ) *Hl+di 
sth 

DH2=LDP* ( H l -H2 ) 
DH3=LPP*Hl-LFP* (H3 -H4 ) 
DH4=LCP* ( H3 -H4 ) -VV4 *LRP* (H4 - l . )  

' UNKNOWN DYNAMICS ' 
' --------- - -- - - - - - ' 
DISTH=DISCON*FLAGD 
DISTP=DISTH 
' ++++++++++++++++++++++++++++++++++++++++ ' 
I MODEL FOR RID CONTROL I 

DN1= (VV1-l . ) *Nl/ LSM+N2/LSM- (ACM* (N4-N4 0 ) +AFM* (N3-N3 0 ) ) *Nl+RG1 
DN2=LDM* ( Nl-N2 ) 
DN3=LPM*Nl-LFM* (N3-N4 ) +RG3 
DN4=LCM* ( N 3 -N4 ) -VV4*LRM* (N4 -l . )  

' +++++++++++++++++++ +++++++++++++++++++ ' 
1 MODEL FOR LAGRANGIAN CONTROL 1 

DMl=Cl *F l +Gl 
DM4=C4 * F 4 +G4 

C l=Ul-1 
C4=-U4 

F l=Ml/ LSM 
F4=LRM* ( M4 -1 )  

' +++++++++++++++++++++++++++++++ ' 
I DEMAND I 

Dl=DMAX l+ ( Dl O -DMAX l ) *EXP ( -DECAYl*T ) -EK 
EK=GOD* ( PERD12 -PERD12*EXP ( -DECAY2 *TAU) ) 
D4=DMAX4 + ( D4 0-DMAX4 ) *EXP ( -DECAY1*T) 

' +++++++++++++++++++++++++++++ ' 
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. .  

' RID CONTROL ' 

Vl=l+LSM*Kl* (Dl-Hl) /Hl-N2 /Hl+EK1 
EK1=LSM* ( ACM* ( H4 -H40 ) +AFM* (N3 -N3 0 ) ) 

V4=LCM* ( N 3 -H4 ) / ( (H4-l . ) *LRM) -K4 * ( D4 -H4 ) / ( ( H 4 -l . ) *LRM )  

RGl=KGl * ( Hl-Nl ) - (Vl-l . ) *Nl/LSM-N2 /LSM+EKG1 
EKG1= ( ACM* ( N4 -N4 0 ) +AFM* (N3-N3 0 ) ) *N l  

N3 S=LRM*V4 * ( N4 - 1 . ) / LCM+KG4 * (H4 -N4 ) / LCM+N4 
RG3 =KG 3 * ( N 3 S-N3 ) -LPM*Nl+LFM* ( N3 -N4 ) 

' CONSTRAINED CONTROL RID ' 
· - - - - - - - - - - - - - - - - - - - - - - - · 

C 0 N S T A N T 
BB1=-0 . l , TBl=O . l , BB4=-0 . 005 , TB4=0 . 00 5 , KVl=lO O , KV4 = 1 00 

DVVl=CONRl 
CONRl=BOUND ( BBl , TBl , CONS lV) 
CONS lV=KVl* ( Vl-VVl ) 

DVV4=CONR4 
CONR4=BOUNO ( BB4 , TB4 , CONS4V) 
CONS4V=KV4 * ( V4 -VV4 ) 

' CONSTRAINED CONTROL LDOC ' 
' - - - - - - - - - - - - - - - - - - - - - - -- · 

CONSTANT KYl=lOO , KY4=100 

DYYl=CONYl 
CONYl=BOUNO ( BBl , TB l , CONSlY ) 
CONSlY=KY l * ( Yl-YY l )  

DYY4=CONY4 
CONY4=BOUNO ( BB4 , TB4 , CONS4Y) 
CONS4Y=KY 4 * ( Y4 -YY4 ) 
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' +++++++++++++++++++++++++++++++++++++++ ' 
' LAGRANGIAN CONTROL I 

Y l=Ul 
Y4=U4 

Ul=RlA*UlO+RlB-RlC*ClT 
U4=R4A*U4 0+R4C*C4T 

RlA= ( l+ALOG ( Fl O ) ) / ( l+ALOG ( F l ) ) 
RlB=ALOG ( Fl / F lO ) / ( l+ALOG ( Fl ) ) 
RlC=Fl/ ( l+ALOG ( Fl } ) 
R4A= ( l+ALOG ( F4 0 ) ) / ( l+ALOG ( F4 ) ) 
R4C=F4 / ( l+ALOG ( F4 ) ) 

C lT=PClO-Pli*Z lB+RlP* (Pl-01 ) 
C4T=PC4 0 -P4 I * Z4 B+R4 P* ( P4 -D4 ) 
DZ lB=Pl-Dl 
DZ4B=P4 -D4 

' +++++++++++++++++++++++++++++++++ ' 
' UNKNOWN DYNAMICS ' 

Gl=GlO+F l O - Fl-BlT 
G4=G4 0+F4 0-F4 -B4T 

B lT=-Kli* Z lA+KlP* (Ml-Pl)  
B4T=-K4 I * Z4A+K4 I * (M4-P4 ) 

DZ lA=Ml-Pl 
DZ4A=M4 -P4 

' ++++++++++++++++++++++++++++++++++++++++ '  
P l=INTVC ( DP l , PlO ) 
P2=INTVC ( DP2 , P2 0 )  
P 3 =INTVC ( DP3 , P3 0 )  
P4=INTVC ( DP4 , P4 0 )  
N l=INTVC ( DNl , Nl O )  
N2=INTVC ( DN2 , N2 0 )  
N3=INTVC ( DN3 , N3 0 )  
N4=INTVC ( DN4 , N4 0 )  
Hl=INTVC ( DH l , Hl O )  
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END 

. 

H2=INTVC ( DH2 , H2 0 )  
H3=INTVC ( DH3 , H3 0 )  
H4=INTVC ( DH4 , H4 0 )  

Z lB=INTVC ( DZlB , ZlBO ) 
Z4B=INTVC ( DZ4B , Z4BO ) 
Z lA=INTVC ( DZ lA , ZlAO ) 
Z4A=INTVC ( DZ4A, Z4AO ) 
Ml=INTVC ( DMl , Ml O ) 
M4=INTVC ( DM4 , M4 0 )  

VVl=INTVC ( DVVl , VVlO ) 
VV4=INTVC ( DVV4 , VV4 0 )  
YYl=INTVC ( DYY l , YYlO ) 
YY4=INTVC ( DYY4 , YY4 0 )  

' +++++++++++++++++++++++++++++++++++++++ '  

END 
TERMT ( T . GE . TMAX) 
END 
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PROGRAM PWR Model Using 4 state variables . 
1 LAGRANGIAN DERIVATION OF OPTIMAL CONTROL 1 
' AND ADAPTIVE RID CONTROL COMPARED 1 

' ++++++++++++++++++++++++++++++++++++++++ ' 
' ++++++++++++++++++++++++++++++++++++++++ '  
' CASE : Time-de lay in measurements 
' ++++++++++++++++++++++++++++++++++++++++ ' 
' ++++++++++++++++++++++++++++++++++++++++ ' 

INITIAL 

' +++++++++++++++++++++++++++++++++++++++ ' 
' PARAMETERS I 
· -- - - - - - - - - - · 

CONSTANT LSPO=O . l2 18 , LDP0=0 . 06 8 6 , LRPO= l l 5 . 8 7 9 6 5  
CONSTANT BETI =0 . 0072 l , ALFF=l . E-5 
CONSTANT AH=2 . 7 5 59ES , CC=4 . 18 4 5 , MC=2 . 4 1 6 3 E4 
CONSTANT TH= . 0002 , P0=2 . 8 E8 , CP= . 5 6 5 , MP=0 . 67 8 5 E 4  
CONSTANT TIN=4 9 . , ALFC=l . lE-4 , WDOT=l . 4 E6 

' RUN CONTROL ' 
• - - - - - - - - - - - ' 

CONSTANT TMAX=2 00 . 

CONSTANT FLAGl=O , FLAGll=O , FLAG2=0 , FLAG2 2=0 
CONSTANT FLAG3=0 , FLAG3 3=0 , FLAG4=0 , FLAG4 4=0 
CONSTANT FLAG5=0 , FLAG55=0 , FLAG6=0 , FLAG6 6=0 
CONSTANT FLAG7=0 , FLAG7 7=0 , FLAGS=O , FLAG88=0 

CONSTANT FLAGD=O . 

' PLANT DEVIATIONS ' 
• - - - - - - - - - - - - - - - - · 

CONSTANT GOTIME=lO , DVRAMP=O . O l , FREQ=S . O , DVMAX=l 
CONSTANT BR1= 10 , BR2=3 0 , BR3=5 0 , BR4=7 0 

' DEMANDS ' 
• -- ----- ' 

CONSTANT T l= l O O . , DECAYl=0 . 08 , DECAY2=0 . 05 

' ( PERDl= percentage increase in demand 1 )  1 
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' ( PERD 12=AMOUNT of decrease in demand 1 after t=TAU) ' 
' ( PERD4=percentage incerase in demand 4 ) ' 

CONSTANT PERD1=0 . 2 5 , PERD12=0 . 2 , PERD4 =0 . 2  

' ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ' 
' PARAMETERS OF LAGRANGIAN DYNAMICS 1 

Z lBO=O . 
Z4BO=O . 
Z lAO= O . 
Z4AO=O . 
PCl O=O . 
PC4 0=0 . 

' LOOP TUNING PARAMETERS ' 
' - - - - - - - - - - - - - - - - - - - - -- ' 

CONSTANT K li=-0 . 5  
CONSTANT K4 I=-4 . 2  
CONSTANT K lP=0 . 5  
CONSTANT K4P=O . l  
CONSTANT RlP=4 . 0  
CONSTANT R4P=O . l  
CONSTANT P l i=-0 . 5  
CONSTANT P4 I=-0 . 04 

' RID TUNING PARAMETERS ' 
' - - - - - - - - - - - - - - - - - - - - - · 

CONSTANT Kl=lO OO . 
CONSTANT K4=1000 . 
CONSTANT KGl= l O O O . 
CONSTANT KG3=1000 .  
CONSTANT KG4=1000 . 

' +++++++++++++++++++++++++++++++++++++ ' 

CINTERVAL CINT=l . 
IALG=2 

HP=l . / ( . 0 6 4 9 +4 4 . 4 4 *TH) 
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040=1 . 9 7 5 4 2  . 
010=1 . 
DMAX1=D 1 0 * ( 1+PERD 1 )  
DMAX4=D4 0 * ( 1+PERD4 ) 

' ++++++++++++++++++++++++++++++++++++++++ ' 
1 STATE VARIABLES INITIAL VALUES ' 

N10=1 . 
N20= 1 . 
N 3 0=3 . 5 0 5 3 9  
N40=1 . 97 54 2  
PlO= l . 
P2 0=1 . 
P3 0=3 . 50 5 3 9  
P40=1 . 9 7 5 4 2  
MlO=l . 
M4 0=1 . 97 5 4 2  
HlO=l . 
H2 0=1 . 
H3 0=3 . 50 5 3 9  
H40=1 . 97 54 2  
PlSO= l . 
P4SO=l . 9 7 54 2  
H lSO= l . 
H450= 1 . 97 54 2  

I - - - - - - - - - - - - - - - - - - 1 
LSM=LSPO 
LDM=LDPO 
LPPO=P O / ( CP*MP*TIN) 
LPM=LPPO 

LFPO=AH*HP / ( CP*MP )  
LFM=LFP O  

AFPO=ALFF*TIN/ ( BETA*LSP) 
AFM=AFPO 

LCPO=AH*HP / ( CC*MC )  
LCM=LCPO 

LRM=LRPO 
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ACPO=ALFC*TIN/ ( BETA*LSP) 
ACM=ACPO 

CONSTANT Y lO=O . O  
CONSTANT Y4 0=0 . 5  

UlO=Y l O  
U4 0=Y 4 0  

GlO=- (Ul O - l ) *MlO / LSPO 
G4 0=U4 0*LRPO* (M4 0 - l )  

F lO=MlO/ LSPO 
F4 0=LRPO* ( M4 0 - l )  

END 

' ++++++++++++++++++++++++++++++++++++++++ ' 

DYNAMIC 
DERIVATIVES 

' +++++++++++++++++++++++++++++++++++++++++ ' 
' TRAJECTORIES ' 
• - - - - - - - - - - - - · 

PROCEDURAL (TAU, GOD=T , Tl )  
TAU=O 
GOD=O 
I F ( T . GE . T l )  TAU=T-Tl 
I F ( T . GE . Tl )  GOD=l 
END 

' MISMATCH BETWEEN PLANT AND MODEL ' 
' ----- -- - -- - - - - -- - - - - - - - - -- - - - - - - ' 

PROCEDURAL ( GO , OS l , OS2 , 0S3 , DVA, DVE=T, GOTIME , DVMAX , DVRAMP , FREQ) 
DVA=O 
DVE=O 
OS l= O  
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052=0 
053=0 
GO=O 
I F (T . GE . GOTIME) GO=l 
DVA=DVA+DVRAMP*T 
DVE=DVE-DVRAMP * 2 *T 
OSl=OSl+SIN ( FREQ*T) 
OS2=0S2+COS ( FREQ*0 . 2 *T) 
OS3=0S3 +COS ( FREQ*3 . 7 *T )  
END 

' LOGIC CONTROL PARAMETERS ' 
· - - - - - - - - - - - - - - - - - - - - - - - - ' 

LSP=LSPO+ ( FLAGl*DVA+FLAGll*OS l ) *LSP O / l O *GO 
ACP=ACPO+ ( FLAG2*DVE+FLAG2 2 *0S 2 ) *ACP0 / 10 *GO 
AFP=AFPO+ ( FLAG3 *DVE+FLAG3 3 *0S3 ) *AFPO/ l O*GO 
LDP=LDPO+ ( FLAG4 *DVA+FLAG4 4 *0S l ) *LDPO / lO *GO 
LPP=LPPO+ ( FLAG5 *DVA+FLAG55*0S2 ) *LPP0 / 1 0 *GO 
LCP=LCPO+ ( FLAG6*DVE+FLAG66 *0S3 ) *LCPO/ l O *GO 
LFP=LFPO+ ( FLAG7 *DVA+FLAG77 *0S2 ) *LFP 0 / 1 0 *GO 
LRP=LRPO+ ( FLAG8*DVA+FLAG8 8 *0S3 ) *LRP0 / 10 *GO 

' +++++++++++++++++++++++++++++++++++++++ ' 
1 PLANT DRIVEN BY LOOP CONTROL ' 

DPl= ( Y l - l . ) *Pl/LSP+P 2 / LSP- (ACP* (P4-P4 0 ) +AFP* ( P 3 -P3 0 ) ) *Pl 
DP2=LDP* ( Pl-P2 ) 
DP3=LPP*P l -LFP* ( P3 -P4 ) +FLAGD*DISTP 
DP4=LCP* ( P3 -P4 ) -Y4 *LRP* ( P4 - l . )  

' ++++++++++++++++++++++++++++++++++++++++ ' 
1 Measurement System • 

' De lay problem ' 
• ------------- · 

CONSTANT TPl=O . l , TP4=0 . 1  
DPlS=TP l * ( P l-PlS) 
DP4S=TP4 * ( P4 -P4S)  

CONSTANT THl=O . l , TH4=0 . l 
DHlS=TH l * ( Hl-HlS ) 
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DH4S=TH4 * (H4--H4 S )  

' +++++++++++++++++++++++++++++++++++++++ ' 
' PLANT DRIVEN BY RID CONTROL ' 

DHl= (Vl- l . ) *Hl/ LSP+H2 /LSP- (ACP* (H4 -H4 0 ) +AFP* ( H3 -H3 0 ) ) *Hl 
DH2=LDP * ( Hl -H2 ) 
DH3=LPP*Hl-LFP* (H3-H4 ) +FLAGD*DISTH 
DH4=LCP* ( H 3 -H4 ) -V4 *LRP* (H4 - l . )  

' UNKNOWN DYNAMICS ' 
· - - - - - - - - - - - - - - - - - ' 

DISTP=GO*COS ( P4 -P3 ) *SIN ( P l ) *OS2 
DISTH=GO*COS ( H4 -H3 ) *SIN ( H l ) *OS2 

' ++++++++++++++++++++++++++++++++++++++++ ' 
1 MODEL FOR RID CONTROL 1 

DNl= ( Vl-l . ) *Nl / LSM+N2/ LSM- ( ACM* (N4-N4 0 ) +AFM* (N3-N3 0 ) ) *Nl+RG1 
DN2=LDM* ( Nl-N2 ) 
DN3=LPM*Nl-LFM* (N3-N4 ) +RG3 
DN4=LCM* ( N 3 -N4 ) -V4 *LRM* ( N4 - 1 . ) 

' ++++++++++++++++++++++++++++++++++++++ ' 
1 MODEL FOR LAGRANGIAN CONTROL 1 

DMl=Cl * F l+Gl 
DM4=C4 *F4+G4 

C l=Ul-1 
C4=-U4 

F l=Ml /LSM 
F4=LRM* (M4 - l )  

' +++++++++++++++++++++++++++++++ ' 
I DEMAND I 

D l=DMAXl+ ( Dl O -DMAX l ) *EXP ( -DECAYl*T) -EK 
EK=GOD * ( P ERD12-PERD12*EXP ( -DECAY2*TAU) ) 
D4=DMAX4 + ( D4 0-DMAX4 ) *EXP ( -DECAYl*T) 
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. 

B4T=-K4I * Z4A+K4 I * (M4 -P4 S )  

DZl.A=Ml.-Pl.S 
D Z4A=M4-P4S 

' ++++++++++++++++++++++++++++++++++++++++ ' 

P l.S=INTVC ( DPl.S , Pl.SO ) 
P4S=INTVC ( DP4 S , P4SO ) 
Hl.S=INTVC ( DHl.S , Hl.SO)  
H4S=INTVC ( DH4 S , H4 S O )  
P l.=INTVC ( DPl. , Pl. O )  
P2=INTVC ( DP2 , P2 0 )  
P3=INTVC ( DP3 , P3 0 )  
P4=INTVC ( DP4 , P4 0 )  
Nl.=INTVC ( DNl. , Nl.O ) 
N2=INTVC ( DN2 , N2 0 )  
N3=INTVC ( DN3 , N3 0 )  
N4=INTVC ( DN4 , N4 0 )  
Hl.=INTVC ( DHl , Hl.O ) 
H2=INTVC ( DH2 , H2 0 )  
.,3=INTVC ( DHJ , H3 0 )  
H4=INTVC ( DH4 , H4 0 )  

Z l.B=INTVC ( D Z lB , Z lBO ) 
Z 4 B=INTVC ( DZ 4 B , Z4BO ) 
Z lA=INTVC ( D Z lA , Z lAO ) 
Z4A=INTVC ( DZ4A , Z4AO ) 
Ml.=INTVC ( DMl , Ml O )  
M4=INTVC ( DM4 , M4 0 )  

' +++++++++++++++++++++++++++++++++++++++ ' 

END 

END 
TERMT ( T . GE . TMAX )  
END 

2 24 



Appendix B 

ACSL Code of the Xenon Oscillation Problem 

The following pages include the computer code of the xenon oscillation problem 

presented in Chap 4 .  It is written using the Advanced Computer Simulation Lan­

guage (ACSL) . The code contains the xenon model of P\.YR, and the RID controller 

described in Chap 4. 
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PROGRAM XENON OSCILLATION RID CONTROL USING ONEGA MODEL 
" CONTROL MOUNTED , MODELING ERROR INTRODUCED 11 
" ADAPTIVE CONTROL MOUNTED " 

INITIAL 
CONSTANT GAMMAX=0 . 003 , SIGF=0 . 6 S , CROSSX=2 . 72 E - l 8  
CONSTANT GAMMAI=0 . 06 l  
CONSTANT P=2 S OO , D=0 . 3 9S , H=3 6 5 . 8  
CONSTANT V=3 . 07 9 E+7 , SIGA=l . S3 
CONSTANT U0=0 . 0076 
CONSTANT FLAG=-1 
CONSTANT KICK=O 
CONSTANT Kl=l , K2=l 

11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "  
1 1  CONVERTABLE PARAMETERS " 
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "  

CONSTANT LAMIC=2 . 87 E-5 , LAMXC=2 . 09 E-5 
CONSTANT ALFAFC=3 . 64 E-l 6 , GC=8 . 4 56E-2 l , FIOC=2 . 1E+l 3  
CONSTANT T lC=3 6000 , TMAXC= 3 6 0 0 0 0  
CONSTANT ALFMFC=3 . 6E-l6 , DM=0 . 3 7 5 , CROSMX=2 . 6E- l8 

" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11 
11 CONVERSIONS l MEANS SECOND SCALE 11 
11 60 MEANS MIN SCALE 11 
" 3 60 0  MEANS HR SCALE " 
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - "  

CONSTANT CONV= 3 6 0 0  
LAMI=LAMIC*CONV 
LAMX=LAMXC*CONV 
ALFAF=ALFAFC/CONV 
ALFMF=ALFMFC/ CONV 
G=GC/ CONV 
FIO=FIOC*CONV 
T l=TlC/ CONV 
T2=T2C/ CONV 
TMAX=TMAXC/ CONV 

CINTERVAL CINT=O . l  
IALG=2 

. 

I O=GAMMAI * S IGF*FIO/LAMI 
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XO= ( GAMMAI+GAMMAX ) *SIGF*FIO/ ( LAMX+0 . 7 8 5 *CROSSX*FIO )  
XOM= ( GAMMAI+GAMMAX ) *SIGF*FI O / ( LAMX+0 . 7 8 5 *CROSMX * FI O ) 
BK=3 . 14 15 / H  

EK1=1 . 3 58* CROSSX*XO 

CONSTANT A0=-0 . 13 95SS , B0=-0 . 100589 
C O=AO*GAMMAI *SIGF*FIO/ (LAMI * I O ) 

CONSTANT BM0=-0 . 10058900 
CONSTANT CM0=-0 . 13 9 555 
CONSTANT AFLAG=O 

END 

DYNAMIC 
DERIVATIVES 

PROCEDURAL 
U=UO 
CFLAG=1 
I F ( T . GE . T1 )  CFLAG=O 
END 

" --------- - -- - - -- -- - - -- - - - - - "  
" MODEL h 
" --------------- - - - -- - - - - - - - - "  

DC=A*GAMMAI * SIGF*FIO/ IO-LAMI *C 
DCM=AM*GAMMAI *SIGF*FI O / I O-LAMI *CM 

DB=A*GAMMAX*SIGF*FIO/ XO+C*LAMI * I O / XO+EK 
DBM=AM*GAMMAX*SIGF*FIO/XOM+CM*LAMI * I O / XOM+EKM 

EK=-LAMX*B- ( CROSSX*FI0 ) * ( 0 . 6 6 6 7 * (A+B ) +0 . 7 8 5*A* B )  
EKM=-LAMX*BM- ( CROSMX*FI 0 ) * ( 0 . 6 6 6 7 * (AM+BM) +0 . 7 8 5 *AM*BM) 

A=BETA13 /BETA2+FLAG* (SQRT ( 1+ ( BETA13 / BETA2 ) ** 2 ) ) 
AM=BETAM3 / BETM2+FLAG* (SQRT ( 1+ ( BETAM3 / BETM2 ) * * 2 ) ) 

BETA1 3 = ( 3 *D*KB** 2 - 0 . 169 *CROSSX*X0+1 . 18 8 *ALFAF * FI O *SIGA) / SIGF 

BETAM3 = ( 3 *DM*KB* *2-0 . 169 *CROSMX*XOM+1 . 188*ALFMF*FIO *SIGA) / SIGF 
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BETA2= ( 0 . 8 4 &*UC+ l . 3 5 8 *CROSSX*XO *B} / SIGF 
BETM2= ( 0 . 8 4 8 *UC+l . 3 5 8 *CROSMX*XOM*BM) / S IGF 

KB=3 . 14 1 5 / H  
UC=CFLAG*U+ ( l-CFLAG) *Ul 

PL=0 . 63 6 * ( 1 -A)  
PLM=0 . 63 6 * ( 1-AM) 

XL= ( l-8 ) * 0 . 6 3 6  
XLM= ( l-BM) * 0 . 6 3 6  

IL= ( l-C) *0 . 6 3 6  
ILM= ( l-CM} * 0 . 6 3 6  

FLUX=PL/ 0 . 6 9 9 6 8 4  
FLUXP=PLM/ 0 . 6 9 9 6 8 4  

XENON=XL/ 0 . 6 9 9 9 7 5  
XENONP=XLM/ 0 . 6 9 9 9 7 5  

IODINE=IL/ 0 . 7 2 4 7 57 
IODINP=ILM/ 0 . 7 2 4 7 57 

II CONTROLS II 
•• - - - - - - - - - - - - - - - - - - - - - - - - - - - - '' 

BD=BO 
CD= CO 
AST=AS+AFLAG*F*K5 
CONSTANT K5=100 
F=1 . 57 07 * ( PLMS-PLS ) 
DPLMS=K3 * ( PLM-PLMS ) 
DPLS=K4 * ( PL-PLS ) 
AS=UST/ALT 
UST=UST1+UST2+UST3 
USTl=XO*B* ( 0 . 667 *CROSSX+LAMX/ F I O ) / ( GAMMAI *S IGF) 
UST2=-Kl*LAMI * I O * ( B-BD) / (GAMMAI *SIGF*FI O )  
UST3 =-K2 * ( C-CD) 
ALT=l+ALT1+ALT2+ALT3 
ALT1=-0 . 66 7 *CROSSX*XO / (GAMMAI *SIGF) 
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ALT2=-0 . 78 S �CROSSX*XO*B/ (GAMMAI *SIGF ) 
ALT3=GAMMAX/ GAMMAI 

Ul=BIR+IKI 
BIR=-2 . 3 58 S *BETA13 *SIGF*AST/ ( 1-AST** 2 )  
IKI=- 1 . 6 0 14 *CROSSX*XO *B 

"ONLY FOR OBSERVATION THE PARTIAL CONTROL BEHAVIOR 11 
EQLBRM= ( USTl-LAMI * IO / (GAMMAI*SIGF*FI O ) ) /ALT 
RECNS l=K l* ( BD-B) 

END 

RECNS2=K2 * ( CD-C) 

CONSTANT PLMS0=0 . 69 9 684 , PLS0=0 . 69 63 3 5 , K3=100 , K4=100 

PLS=INTVC ( DPLS , PLSO )  
PLMS=INTVC ( DPLMS , PLMS O )  
B=INTVC ( DB , BO )  
BM=INTVC ( DBM , BMO ) 
C=INTVC ( DC , CO )  
CM=INTVC ( DCM , CMO ) 

END 
TERMT ( T . GE . TMAX) 
END 
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