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INTRODUCTION

Many of the properties of the ordinary ¥ourier series expansion
of a glven function are shared by the orthogonal expansions in terms of
eigenfunctions of a second order ordinary differential operator. Let
p = p(x) and q = q(x) be real-valued functions such that p , p',
and q are continuous,. and p(x) 2 O, on a finite interval
a £ x €b. Let A be a cc_nn'plex parameter. The classical Sturm-
Liouville theory [9, section 27; L, Chapter 7; 21, Chapter 1]1 is con-

cerned with solutions of the differential equation

~(py')' + @y =2y,

which satigfy certain real boundary conditions whose form need not be
glven here. These solutior}s, the so-called elgenfunctions, exist only
for certain values of R s the corresponding eigenvalues. The Sturm=-
Liouville theory states that the elgenvalues constitute a countable
set of real numbers which cluster only at + oo, 'I'hg corresponding
elgenfunctions constitute an orthogonal system on [a,b] which is com=
plete in Lz(a,b) . | Thus the Parseval relation is also valid.

If now thé possibilities a = « e and b = + °= are allowed,
or if‘the restriction p(x) > O 4is required merely for a € x < b,
the complexity of the situa;tion increases. In these cases the problem

is called singular, in contrast to the fegular case considered above.

1N\xmbera in brackets refer to the bibliography at the end of this
paper.
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To obtaln satisfactory analogues of the completeness and Parseval theorems,
it now becomes necessary to replace the series expansion of an arbitrary
function in Lg(a,b) by an expansion in terms of a Stielt]es integral.
The singular case has been treated exhaustively by Weyl [23;24], by Stone!
[29] who uses the general theory of unbounded symmetric operators, by
Titchmarsh [21] who uses function theoretic methods, by Kodaira [10] who
combines and simplifies the ideas of Weyl and Stone; by Yosida'[25], and
by Levipson [1351)4] who obtains results as 1im ting cases of theorems valid
for compact subintervals of (ayb) .

4 The basic facts in the regnlar case extend verbatim to a formally
se}ffgdjoiht'diffgrential operator L (see Chapter I) of arbitrary order
n , with complex coefficients defined on a compact interval, provided the
coefficient of‘the nth  order dgrivatiye does not vanish on that interval
[@j Chapter 7). Proofs in this case require nothing more than the Hilbert=-
Schmidt theory of integral equations. When the problem is singular,
general results have been obtained only recently. Glazman [5] has general=
ized several important results of Weyl and Stone conce{ning the nature of
the boundary conditions when the coefficients are real, Kodaira [11] has
also discussed boundary conditions in the case of real cOefficignts and
proved the analogues of the completeness and Parseval relations,
Coddington [2] and Levinson [15] have considered these questions when the
coefficients are complex and have obtained the expansion and Parseval
theorems in two important cases. In these cases they also prove the in=
verse transform theorem which is the analogue of the Riesz-Fischer theo-
rem 1n the theory of ordinary Fourier series.

One of the main results of the present paper 1s a proofs; in Chap-
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ter II, of the expansion, Parseval, and inverse transform theorems, by use
o_f the thoory of generalized direct sums of Hilbert spaces, which theory
is due to von Neumann [22], These theorems are most elegantly stated in a
form given them by Kodaira [10]. Let ( fjk) be an Hermitian, non-
c:lecrqasing n by n matrix whose elements are Lebesgue=Stieltjes measures
on the real A axis, /L (see Chapter II). Let X and w be n-vector
valued mpctions of A with 1% component 761( A) and ‘-Ui( 1) res-

pectively., If we introduce the inner product

n

(w,'x)' = 4; %-1 wj(l) zk(;\)d/ojk()) ’

]

1t 1s easy to see that the set L1 of those W for which (W,w) < ©°
becomes a Hilbert space in this inner product. The expansion, Parseval,
and inverse transform theorems may then be stated as the following theorem,
which will be proved in Chapter II.

If L 1s a formally self-adjoint differential operator of order
n, and if _H is a self-adjoint extension of L 1in the Hilbert space
Lz(a,b) s then correspgnding to each system of linearly independent solu=
tions sy(x,A) J =1, .copn, of Ly-= Ay on (a,b) , -there exists
a spectral matrix ( /o;jk) s with the properties described above; such _
that the associated Hilbert space -ﬂ- is unitarily equivalent to L (a,b) .

Thus if u £ Lz(a,b) and W 1is its image in S , the Parseval

equality
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is valid. The fact that to each w 1in (L corresponds a u & Lz(a,b)
is the content of the inverse transform theorem. Finally the expansion
theorem, the analogue of the completeness theorem in the regular case,

states that u and W are related by the specific formulas

/I Y
W, (A) =S s84{xs2) ulx) dx and
] % 4

n
w(x) = f D sylxs2) WM pp(A) 5

Jo k=1

where the first integral converges in the norm of (L and the second in
the norm of L2(a,b) 1

Chapter I cor;tains definitions and facts pertinent to later chap=-
ters.

In Chapter III a generalization, with a different proof, is given
of a theorem of Coddingtog [2, Theorem 3] which characterizes the self-

adjoint extensions of L , when such extensions exist, in terms of cer=

tain boundary conditions,

It is shown in Chapter IV that a theorem of Hartman and Wintner
[7] concerning the eigenvalues of L 1in one of the cases considered by

Weyl is actually valid in a much more general setting,
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: Since the printing of the text of this paper the author has noted
the appearance in the Canadian Journal of Mathematics, Vol. X, No. 3 (1958),
ppo_ﬁg}fhhg, of a paper by F, Brauer in which the eilgenfunction expansion
problem is treated using the method of generalized direct sums of Hilbert
spaces. Brauer's apprdach to the problem is very simllar to the one used
in the present papers3 and in fact he proves the analogues of the main re~
sults of Theorem 2,6l for the eigenvalue problem Lu = A Mua , where L
and M are ordinary self-adjoint differential operators and M 1s semi-
bounded below with positive lower bound. Since we have assumed only that
r > 0, his resulis, as stated, actually(do not include Theorem 2.6M,
Moreover, he does not state equations (2.69) or (2.70). In proving the
analogue of the assertion comnected with (2,h49), Brauer appeals to a
general theorem on weak solutions of partial differential equationsj thus
he 1s able to state that his main results are also valid for certain ellip-
tic partial differential gperators. Also, 1t might be mentioned that he
does not give the Fubini argument on pp. 1lh; 15 or the interchange of sum
and integral on pp. 16, 17. The method glven on pp. 18-20 and 22-25, of
extending the inversion formulas from restricted classes of functions in
9¢ to all of 2/ is merely alluded to as standard in Brauer's paper.

Finally, Brauer discusses boundary conditions associated with

Lu -_;1Mu and gives a theorem which is almost identical in statement and
preof with Theorem 3 in [2]. Our Theorem 3,13, which concerns abstract
operators in an arbitrary Hilbert space, includes both of these theorems.,

Prom Brauer's paper we have also learned that the von Neumann theory

-
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of generalized direct sums had been applied to elliptic partial differen=-
t1az]l operators by L., Girding and published in mimeographed notes through
the University of Maryland in 195k, through the University of Lund in
1956, and through the University of Colorado in 1957. The reader is re=-

ferred to the bibliography of Brauer's paper for references,



CHAPTER I

PRELIMINARIES

Linear Operators; Spectral Representation Of Self=-Adjoint Operators

| A (linear) operator or transformation A in a Hilbert space is a
map from a Jinear'nlanifold D, C 9/ into ¢ which is additive and
homogeneous, For the basic facts about unbounded operators see [20], [19],
or [16]. If D, 1is dense in £/ , there is a well defined operator A% ,
the adjoint of~ A whose domain DA* consists of those v & % corres-

ponding to which there exists a unique v* £ %/ satisfying

(1.1) (Auy, v) = (u, V) for all u & D, .

A® 1s defined on Dy» into ¥ by the equation A*v =+v*. If D, is
not dense in % there will not be a unique v* with the property 1.l; so
that A* will not exist.

If B 1is an operator such that Dg D Dj , and if Bu = Au for
all u £Dy , then B 1s called an extension of A , written A & B,
If Dy is dense in  and if A S B, then B* C &%, We write

A=B if andonlyif A S B and B & A,

If ||Auf| = | a|| for every u & D,, A 1s called isometric.
If Dy 1is dense in % and A & A* , A 1is called symmetric, If Dy
1s dense and A = A" , A 1s called self-adjoint, If Dy is dense and
A S B vwhere B is symmetric, then B & A* . A symetric operator
may or may not have self-adjoint extensions. In Chapter IV, where it is
pertinent, an outline is presented of von Neumann's theory [20, Chap-

ter IX] of the symmetric extensions of .a given symmetric operator, This



theory leads to an elegant necessary and sufficient condition for the
existence of self-adjoint extensions.

An operator A 1is called closed if for each sequence { lln} of
elements of D, which converges, say to U, and for which the sequence
{Au,;} converges, say to v ; it is true that u € Dy and Au=v,
An adjoint operator is always closed. If A 1is closed ar}d Dy dense in
# , then Dy# is also.de'nse in % and K™ =1, [19, p. 302]

~ If A 1is self-adjoint it has a spectral representation which we
proceed to describe., ]

A resolution of unity [19, p. 313] is a one parameter family of

projections E(A) in # , = o <"\ < + ©, satisfying

(a) E(A) S E(M) if A<M

(b) E(A +0) = B(A)

(¢} E(A)—>0 when ) —>- , and E,—>T (the identity opera-
tor) wirem A —> + o,

-

The spectral theorem [19, Section 120] states that if A is a self-
adjoint operator, there exists a resolution of unity E() ) such that

Dp consists of those u & ‘N satlsfying
(1.2) | au ”2 - .[: Xd, || E(2)u )[2 < + ooy

and if uw & Dy, v & ¥ , then

t

(1.3) (h0,7) = /2 Nd,(E(A)u, V) .



Equation 1.3 determines E()A) uniquely. The eigenvalues of A are the

points of discontinuity of E (A) .

Generalized Direct Sums Of Hilbert Spaces

To von Neumann [22] is due the idea of a generalized direct sum of
Hilbert spaces, (A lucid exposition is contained in [17, Section 2].)
For each real A let 7’; M yea separable Hilbert space. Let o~(A)
be a real valued, non-decreasing, ~r:I.ght continuous, bounded function de=
fined on /\., the real A axis. We shall follow vonANeumann [22] in
calling a function with these properties an N-function., Let X denote

5, Pl
the set-theoretic cartesian product X -EW(}) . We use ?1’, ¥ to de-

"~

note elements of X whose respective 7\#’lf coordinates we denote by

~ ~ (o4 nS
u(ﬂ) , v(A) . If B is a subset of X satisfylng the following
~J

axioms, ¥ 1is called a generalized direct sum of the %’(Z) s, and we say

~

that o~ belongs to % .,

(a) 7 & ‘;;Z and ¥ & %7 imply that the immer product (in % (1) )
‘ (@C2) , ¥(2)) 1is a o -measurable function of A .
®) TeH imlies L IF(A) % dc(A) < + oo,

(c). % is maximal with respeét to properties (a) and (b) in the sense
" that if % & T 1is such that (@(A) , ¥())) is & -measurable
for every v £ ¥ , and aflﬁ(ﬂ)l|2d6‘(3) < + oo, then

TeH .

It follows from (a) and (b) that the integral

(1.1) @ ¥ =/ (@2), HaNds () ,
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exists and (using (c) also) that % with this inner product is a Hilbert

space, As usual we identify elements the norm of whose difference
vanishes., In particular completeness is proved [22, Lemma 2] much as is
completeness of the ordinary I.2 spaces, It also follows from the come
pletensss proof that if En—eﬁﬁ in é; as n —> @ , then there
exists a subsequence ?I;k such that %(Z)—.—) a(A) in %(7‘) , ex-
cept possibly for a A set of o~ -measure zero. The linear operations
in %‘J are defined according to the rule that al + b¥ =W 1is equivalent
to au(a) +bu(a) =W (1) .

Let; k(2) ¢ dim # (?')4 (the value + o being allowed); Let
(105) Az'{AQAS k(A) = e} 'g- 1, 2, Rlsrery ¢ ©9

For each A suppose "V;,(_?\), svey '{/\’Jk(a) (A) 1is a baéis in é:ll ()

having the property that if 1u € N - s then (a) and (b) are equivalent

to both the conditions

(at) (5(7\), "?m(}\)) is & -measurable for m =1, 2, eees K(A)

k) g il B
®) L 2_ @), Vtade(d) < + o

m=1

The systems {’Vm( h)} are then said to constitute a measurable family
with respect to 7‘)‘ o Measurable families exist, and k(_}{) is o=
measurable (22, Theorem I], Conversely [22, Theorem II] if b,(A) ,

m=1, ..., k(A1) ;, are o—-measurable and satisfy
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k@) o |
[\ %‘bi(’)\ﬂ doo(A) < + ©° , and if {'\}fm(a)} is a measurable

k(2) -
family, then u(A) = Z:. bm(A) 7’,,(9\) defines an element u £ % .
=

" Let E(A) be a resolution of unity in a Hilbert space %/ . .
E(A) 1is said to be absolutely continuous with respect to an N=function
T(A) if and only if | ECA )| | s considered as a function of A , is
absolutely continuous with respect to T(A) for every u £ % . An
N-function o~(2A) 1s sald to be equivalent to E(A) if and"only & g
for every N-function T(Q) , the absolute continuity of E(A) with
respect to T(A) 1is equivalent to the absolute continuity of o (1)
wlth respect to ;C(_?\) 5

Let 'EJ( 7A) be a resolution of unity in a generalized direct sum
ﬁ to which a~(f\) ‘belongs. E(A) will be said to belong to §7 if
uE ‘#V and "f(/'q)ﬁ;- ¥ together iniply W) = oﬂ(ﬁ Ya(A) , where
%(2) ‘1s the characteristic function of the A set = o0 < 2 =
If-%(f is a Hilbert space unitarily equivalent to % and E(2) the re-
solution of unity in % corresponding to E( 2) 1in 57 , we will also
say that E(A) belongs to 9’:‘ 1r E(A) belongs to 7':/ .

| If E(?\l) is a resqlutiqn of unity in a separable Hilbert space
% and o~ () an N-function, then there exists a generalized direct
sum ?’; which is unitarily equivalent to # and to which E(7) ‘and
o~(A) belong if and only if o~ (A) 1is equivalent to E(A) [22,
Theorem I;I]. As a consequence oi" this theorem and the fact that t_here
always exists a o~(A) equivalent to each E(R) [22, p. 4O7] we may

state the following lemma, which will be fundamental to the proof of the



main theorem in Chapter II.
; 1.6 Lemma. Corresponding to any resolution of unity E(?2) in a

séparable Hilbert space ?/ there exlsts a generalized direct sum % whieh

is unitarily equivalent to 2¢ and to which E(?A) belcngs.

Differential Operators

By a (':I.inear, ordinary) differential operator L is meant an ex=

pression of the form

n n-1
(2.7) L Po@z> *n(@) teetra.
where p; = py(x) 1s a complex valued function of class Cn-i on an in-
terval a < x < b, a=« = and b=+ o0 being allowed. The
domain of L consists of functions u(x) for which u(n=1) (x) 1is abso=
lutely continuous on (a,b) . L 1is called (formally) self-adjoint if it

coincides with its Lagrange adjoint [L, pp. 84=86]
n b S '
s = (D"(F) G ¢ ‘(d—%j‘ (Bas) + ooo + Py o

We suppose po(x) Y0 on (a,b) .

Let r(x)' > 0 be defined and measurable on (a,b) and bounded
on everyAcompact subinterval of (a,b) . We are interested in the eigen=-
value problem Ly = Ary .. [18; 12] . Let & be the Hilbert space of
(equivgflence classes of) complex valued measurable functions u defined

on (a,b) and satisfying



b 2
(1.9) {)u(x)l rx)dx < + °o,
The inner product in H 1is glven by
b ——
(1.10) (uy, v) = .£ u(x)v(x) r(x)dx

Following [18] (compare also [20] and [2]) let D consist of those
u £ N for which the following conditions are satisfied.
(1) u ‘and 1:ts derivatives to order n - 1 are continuous on
(a, b) .
(11) u(n"i) is absolutely continuous on every compact subinterval
. of (a, b) .
(111) %-Lu e M .
Le‘t'; T be the operator in 9% , with domain D = Dp , defined by
Ta = :,—‘Lu for u (S )

If a<x3 < x2<Db and u, v & D, then
Xa ]
(1.11) S (Mu = ufv)ax = [u, v]I(xg) - [u, v1(x1) ,
- X3 ;

where [u, v](x) 4s a certain bilinear form in wu, v, and their deriva-

tives to order n -1 [4, p. 86]). Since v & 2/ and %Lu & A,

1t follows from the Schwarz inequality that viu & L(a, b) . Similarly

ulv & L(a,b) ;so that from (1,11) the limits [u,v](a) = lim [u,v](x)
. - x—>a
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and [u, v](b) = 1im [u, v](x) exist. Define <@,® = [u,v](b) - [u,_v](a);

x—>»b
Define
(1.12) D, = {u €Dt gy vD =0 forall v £ D} g
Let T, be the restriction of T to D, . Then [2, Theorem 1] T, is

2
a closed symmetric operator, To* =T,and T =T,.

In proving these facts Coddington introduces a function K(x, y)
defined for a < x { b, a < y < b, which he shows to have the
property that if Jd = [c,d] 1is a compact subinterval of (a, b) and
v(x) € 12(§) , then the function w defined on S by

(1.13) w(x) = {"r«x, Yv(y)dy

is such that B=1) S absolutely continuous on ¢4 , and on 4°,

the interior of 4 , w satisfies

(1.1h) Iw=v,

in the sense that (ILw)(x) exists for almost all x and is equal to
v(x) for almost all x , ¥rom an expression [2, formula 2.10] glven by

Coddington for the derivatives of w 1t follows that

(1.-15) ) =0, 3281, voisn=1



K(x,y) has the explicit form

n
(1.16) K(x,y) = iZT_ 21481 (0)s3(y) ,
s J=1

where Siy ...y 8p 18 a set of linearly independent solutions of Ly = O,

and 4o i, =1 ..., n, are certain numbers,



CHAPTER II
THE EXPANSION THEOREM AND PARSEVAL EQUALITY

In this Chapter we show how von Neumann's theory of generalized
direct sums of Hilbert spaces leads in a natural way to the expansion and
Parseval theorems, |

Let L be a formally self-adjoint differential operator on (a,b)
with nonvanishing leading coefficient p, . We follow the notation of the
last section ‘of Chapter I. Suppose that the operator T, in W has &
gelif-gdjoint extension H . This coﬁdition is always satisfied if L has
real coefficients [19, p., 325]. Conditions for the existence of self-
adjoin@. extensions of a closed symmetric operator are described in Chap-
ter IV, where referer_lces are also givwen,

Let E(?2A) be the resolution of unity corresponding to H which
occurs in the spectral theorem. By (1.6) there exists a generalized di-
rect’ sum 5‘7 which is unitarily equivalent to % and to which E()) be-
longs. If u g % , let U be its correspondent in % . Denote by
£(A) and H the operators in ?’; corresponding to E(A) and H res-
pectively. According to Chapter I, the assertion that E(A) belongs to

nS

2/ means that
(2.1) E(,A)?'W implies W(A) = e/,(a)n(ﬁ) ’

where eﬂ(?\) is the characteristic function of (-~ oo ,/44] . By (1.h)
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(2.2) * ) '.[\(5(?\), “';(A))df(ﬂ) .
From 2,1 and 2.2

Eu)E, ) = £ (el AR, TA)de (D)
(2.3)
= LM @), ¥(A)ac(2) 3

or, in terms of the Radon=Nikodym derivative,

d,(E(u)T, 9)
do=(y)

(20)4) - ('E(/A)J AVJ(/‘)) o

From the spectral representation (1.3) of H and (2,4) we conclude that

~J

1r 3 & Df{and?rla%t then

2.9 @ W = LI E W D) = LA, T ta) o

(2.6) HE = ¥ 1s equivalent to W(A) = AG(A) .

Simllarly we find, using (1.2) and (2.k4), that

(2.1 NE = £7 )20 (BO0% %) = L2 420500 1Pac(a) -
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A

Hence Dy 1s the set of % £ ® for which the last written integral is
finite,

Let ¢ satlsfy a < ¢ < b, and define
(2.8) D, = {u € Dy ul® () = 0 9 J=0,1; co0y n-]} o
Let d be a non-degenerate compact subinterval of (a, b) with one end=

point: at ¢ . Let K(x, y) be the function mentioned in the last section
of Chapter I, Define the function K*(x, y) on (a, b) x (a, b) by

K(x, y) if ¢ £ 5y < x
(2.9) K*(x, y) ={K(x,y) if x < 7 < ¢ >

' LO for all other x,y in (a,b)
For any x & S° an;i v £ L2(J )‘ :l:t follows that
(2.i0) {; xK(x,y)‘V(y).dy = [ K (x,y)v(y)dy .
Thus the function w defined by (1.13). may also be expressed in the form
(2.11) wix) = / K*(x,y)v(y)dy -

By (1.14) it follows that

(2.12) if w(x) satisfies (2.11), where v & LZ(d) , then Iw = v ,
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Let D be the manifold defined in the last section of Chapter I,

Startingwith u € D form
(2013) Lu=+v °

By property (i1ii) in the definition of D , :-f € A 3 that is

v 2
(2.14) {;b e < 5k

Since T 1s bounded on every compact subinterval of (ay b) , (2,1k) ime
plies v £ L2(S) . Thus, 1f we define w by (2.11) in terms of this
v ,mby‘(2.12) w satisfies Lw = v 3 and furthermore w satisfies the
initial conditions (1.1h), Hence if, in addition, we assume u £ D,
of (2.8), u(x) and w(x) satisfy the same linear differential equation
(2.13) for almost all x £ § and the same initial conditions (1.l}).

We conclude that u(x) = w(x) for almost all x £ & . That is, using
(2.11) and (2.13), | |

(2.15) if u €& D,, then for almost all xed, u(x) -'4 x* (x,y) (Lw) (y)dy .
LY ; '
Define fx(y) = £ (y) by

- Clx,y) if x&§ and ¥ €6
(2.16) £ (y) = % |
’ : 0 it xS or y &5 .

Then if w & Dy, using ( , ) todenote the immer product in both



# and g ’
" L b e
[ () (K x, Pay = L (1) 5y = L () DG =()ay

= (Hu,fx) = (85, = [2EG),5())de(D) ,

the last equality following from (2.5), Hence we see from (2,15) that

if u € Dg , then for almost all x € 4 ,
(2.17)

ulx) =/ A (@2), T(A))do~(A) .

We now make some estimates so that we may apply the Fubini theorem

later. Let u ¢ Dg, v £¢ % . Applying first the Schwarz inequality

in ¥ (2)_ » then the Schwarz inequality for integrals, then (2.7), (1.L),
and the unitary equivalence of % and 3/ we see that

(2.18) [ {L | 2@Em, Fan| -

v(x) |* rmac() ax
= .é_' {&ll?ﬁ'x(ﬂ) I' '“ 'i\"x(ﬂ)“ dm(h)}‘l v(x)! » r(x)dx
2 \ 2 }- ¥ 3 R, = i
= [ {LaTim) eem 2 {45 || aom} | v(x) |-r (R)ax

el [ 1o |- s
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Application of Schwarz's integral inequality to the last integral yields

§ LLIAG AN ] v@ |+ xe) a0t} ax
(2.19)

~ 2 X %_
<) % 0 {2 e} (41760l <@ax

Since v £ @ , the last written factor is finite. As for the other
fmmnnmneﬁmtmnIuﬂzngﬂgﬁﬂﬂyaéu&gﬂﬂy;m
that the séuare of the first factor is j; r(x) {,/‘; .[K(x,y)ledy} dx
- 4’1JIK.(x,y)| 2r(zy:)fixdy , which is finite since K(x, y) 1is piecewise
continuous by (1.16). Thus the integral on the left side of (2,19) is
finite.

Let uw € Dy, v & D; , where DS is defined by
(2.20) DS = {v & D3 v(x) =0 for almost all x & d’} .
Then by the unitary equivalence of % and 37 and by (2017)_

& 9 = (v - {bu(x)_mr(x)dx - [ (VTR r(x)ax

: 4{47\(6(7\),?,:(7.)) dd‘(ﬂ)} vir(x)ax .

Because of the finiteness of the left side of (2.19),’ we may apply the

Fubini theorem to conclude that

(2.21) (@9 =/ {47. E(2), £x(2)) v r(x)dx} da{) .



16
According to Chapter I we may introduce a measurable family
{x’,v" (2 )} in % , in terms of which it is evident that if ¥,

~ [
v & ¥ , then

X(2)
m=

Thus (2.17) states that

if u £ D, then for almost all x £ d ,
(2.23)

: k(n)
u(x) = 2.0 u(?s) 1/’(71))(1‘,:(71) 7(2))} aa(72) ;

m=1

and (2.21) states that

x(7)
(2.20)  (@¥)=/ {Z G0, V(a)xmx)r(x) (a),ﬁ(a))}d% dc(7) .
m=1

If we may interchange summation and integration in (2.24) we may write

k(2)

(2.25) (W)= [{ Z (u(a),’f;(n))f (av(x)r(x)?’ Q) ¥ (a))%da\(m
me=3

To justify the interchange we use the dominated convergence theorem,

Since the interchange takes place within a o~(A) integral,it is suffi-

cient to show domlnance by an x-integrable function for almost all
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2[0~] . (This notation shall mean almost all A with respect to o~,)

Thus we estimate by the Cauchy inequality

%{)l (ﬁ(ﬂ),fm(w)- (A?x(ﬂ) Wma)) I . ] v(x)| « r(x)
m=1 ‘

X
T L - I L
(2.26) =|v(x)|* r04 2 |G0), Ya®)| > 1GEQ) V]
m=1 m=3

-lv(x),' r(x) 'H (’ﬁ'(h)' Fx('ﬂ)“ .

It suffices, therefore, to show that thi:s last expression is an integrable
function of x for almost all A (o] . But this expression is the inte-
grand in the second term of (2.18), and we have already shown that the
integral appearing there is f‘inité . As a consequence of the Fubini theo=
rem the integrand is integrable in x for almost all A [oc~] . Thus
(2.25) is validated if u & D, and v & D_ .

Now D, is dense in % 3 soif v £ D. , the U for which

£)
(2.25) is true are dense in QZ » Also it is clear that if ¥ &%,
W% determines % (A) uniquely for almost all A [o~] , and %( 7} has
a unique Feurier expansion in é}‘;(h) » Thus, comparison of (2.25) and

(2,22) shows that if v & D, 5 then for almost all ) [c~]

(220 @A), Fa)) =/, (Av@r@F(A), T2 )ex .

k(A) ey .y
Using (2.27) in the equality ¥(2) = Z (#(?\),IFM(Z))VM(Z), and then
L - m=1 : B !
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writing u instead of v , ylelds'the important result that if u & Dé_ »
then

for almost all A [c]
a(A) = Z 4u(x)r(x)(]fx(h),ym(/'\))dx} Vm(h) °
me1 L : :

This equation is an inverse formula to (2.23). Our next task is to ex-
tend these formulas to all u £ % . When the extended formulas have
been derived, a simple change of measures will yleld the main theorem.

Notice that (2.23) may be written in the form

(2.29) u(x =4 (A%(2), Tx(A)dc(2) ,

valid for almost all x €& 4 when u & D, » Also (2.28) may be writ-

ten symbolically in the form
(2.30) A(A) = AL u(@) @), (A)dx .

The symmetry of (2.29) and (2.30) is quite evident if we introduce the
expression ‘F' (x, A) - ?\'f\;(h) ‘and write (2.29) and (2.30) symbolically
as inner products in the forms u(x) = ('fl',’i\_'l (x, ')) and

2(A) = (u,ii( sA)) . Of course, -in general ’\f“(x, ) g é}‘u; so
these formulas have c;nly heuristic value, |

If u g % which vanishes almost everywhere outside J , there
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exists a sequence {nn} s With uy & Dy N Dg , for which u, —> u
in & . Since ||up - upll = |8y - x| » {i’n} is a Cauchy sequence
in % , converging say to ¥ . But since | T =F| < | ¥ = Ay + fip - Tl
={i¥ =%, || + luy - u|| , which approaches O as n —> oo, we see that
¥ =33 that is 'i'n——)rﬁ'.
Since uw, & D , (2328)_ holds for each w; § that is, for almost

all A[o] and each n=1; 2, ...,

k(n) A - ~
{2.31) () = % L up (x)r (x) (£,( ), Vo ?\))dx} m(?\) .

Since 'ﬁ"n —> W , as remarked in Chapter 1 there exists a gubsequem?e
T‘J'nk such that %(7\ ) —> A(A) for almost all Alc~] . We may, and

shall, suppose this subsequence chosen from the beginning so that

(2.32) ¥p(A) —>U(2) 1if A belongs to a certain set 2 whose -

complement i8 of o—~=measure zero,

Thus if ) &2 _every Fourier coefficient of ’&’n( A) approaches the

corresponding Fourier coefficient of (7 ) § that is, by (2.31),
(2.33) [ A g Gr@ E(A), Va(ANax, n =1, 2 ..., k(2),

approaches the mtB Fourier coefficient of u()) with respect to the
basis {Y’B(h)} o 'Thus when we show that the integral in (2.33) ap=-

proaches
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(230 [ au@r@Eln), Fu(ANax, me1, 2, .., k2),

we will know that (2.3L) is the m'™™ Fourler coefficient of JA(7) ;

that is that

(2.35) (2.28) holds for every u € 9 which vanishes almost every-
where outside § ,

not merely for u & Ds .

. It remains to show that the integral (2.33) approaches the inte-
gral (2.34) as n —> oo, The square of the modulus of the difference

of these integrals is

- L 2
(230 | £ ot - @} 22 En), Voanax |

Applying the Schwarz integral inequality and then the Schwarz inequality

Y
in ()  we see that (2.36) does not exceed

, : - L 5 -
]7\12 {[3 o, (x) - u(x)lzd%g. [¢x(x) Ixf(h).‘}fm(?\))‘ dx}

(2.37) R
L P LR 1) E e PP

The last written integral is finite by the argument following (2.19),

wherein r is now replaced by rl 3 and || u, - ul] = 0. (2.35) is
therefore proved, '

Recall that, according to (2.16), the fx(2) = £3(7) which oc~
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curs in (2.28) depends on § ., We wish now to find ‘f;(?() which is
independent of any particular compact subinterval, and for which (2.28)
holds, at least under the restrictions which we hawve thus far placed on
u . Recall that we know (2.28) to be valid for every u € %  vanish-
ing outside S and almost all ) [0~) . Let Jd5, Iz 5 and cr3
= d 1 11 d2 be non-degenerate compact subintervals of (a, b) . Let
u & % and vanish almost everywhere outside & 3. Since u also
vanishes almost everywhere outside &3 and J% , (2.28) holds when
S 1is replacedby d5 orby dz provided f”x(h) i replaced by

}'il('}\) or f?(?) respectively. Since equality of two elements of

~ (2)
‘/’4 implies equality of their Fourier coefficients, we find for al-

most all A [o]

(2.38) 2 utr() G0, Tnt0lax = £ Autirt & o0, F0)ex
2 :

Since u vanishes almost everywhere outside J3 , (2.38) is equivalent
to

239 f @@ E @06 = ruxto G W, R,

The validity of (2.39) for almost all A [&°) for each member of a count=
able set of u which 1s dense in the space of all u which vanish almost

everywhere outside [3 implies that for almost all A [o~] and almost all

X&J3
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y b - ; .
(.00 @), Vo= G2, T (A0, mn=1, 2 ..., K2) .
Since {?3(7\)} is a basis in g () , we conclude that

(2.11) AEX(A) = ATS2(A) for almost all A[~] and almost all

x e .

Thus there exists ?1(3) defined for a & x < b such that if o
is a compact subinterval ‘of {a, b] and x & o , then 7\?;,(2)
= 7\?1(7() for almost all 2A[o~] . We refrain from cancel]_.ing. A in
this equality since &> may have a jump at A = 0 , However, since the
product 7\?1(7\) occurs in (2.28), we conclude that (2.35) is true if
the ’f;(?\) occurring in (2.28) is now interpreted as the extended funce
tion, ‘

In general if u 1s an arbitrary element of % , the integral
in (2.23) does not converge. However, we may still prove that if uce P,

and if, for a compact interval AC A\ ,

k() =
w(x) = Zl'(a'ﬁ(mﬁrmm)(fx(m.ﬁ(m) a0 (A)
n= L
(2.42)
= [, (A8(2), Fx(2))da(D) ,
then

(2.43) u,—>u in Y as A expands to (-o=, o) .,
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To begin the proof let w be an element of % which vanishes al=-

most everywhere outside a compact subinterval ¢ of (a, b) . By the

unitary equivalence of % and j;{u

(2.48) /PRl r@dx = [ @A), #(2)ao(A) .
a

On the other hand, using (2.42),

fbuA(x);G)r(x)dx = fS u,(x)w(x)r(x)dx
A ,

= x(7) » ' ¥
- [ux)r@ / ET (AT 5 FnlA)) (T (A), V(7 )} do~(A)dx

k(7) » 2 -
-/ 7 [@(a 1 Vu(2)) £ (Aw@r(x),(2), V{2 Nax] ; d6M(A) 3
m=3 )

where the interchange of order of integration is justified by (2,19)
and the comments followlng that equation, and the interchange of order of
of summation and integration by (2.26) and the comments which follow it.

Applying (2.28) now to the integrand in the last written integral we con-
clude that

(245 [ u w@rtax = £ G AA(7)

Subtracting (2.45) from (2.4k4) results in
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(216) Lt -} ¥@r@ex = £, GAFHANAAR)

where A' = A-A,

Hence, by the Schwarz inequality and unitary equivalence of #F
and ﬁ 9
‘ ety 2
I {b{u(X) - uA(X)}~ ir(x)r(x)dx,
~ 2 z
= 4l () ao(A) £, || () | ao ()
~ 112 = 2
| ¥/ l\u(Z)_ Iaota) =« IF L 1= 1Pa0-C) .

If we now let w(x) = % r (:_:) {u(x) s n-'A('x)-} s it follows £hat
it 2405 1%t , or

: ;
flaw -w@ax= Ll ®< 71800 150 .

The last written integral does not depend on J j so we may let d ex-

pand to (a, b) and obtain

o= ua 7 = Plate) = w0 % = 25 Baocr)

~

Since u £ %’ we conclude that Ilu - uAu —> 0 as A expands to
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(-0, ) . Hence (2.43) is proved,
We now extend (2,.28) to all u & ¥ in the following way. De-

fine ué(x) = 'X.J(x)u(x) . By (2.35), for almost all A [c]

. k(2) N
(2.47) T(A) = Z;. [ zu(x)r(x)(%*x(a),“f’m(z))dx} Y,
< .

Let §' be the complement of & in (a, b). Then

I R O L ANSIE

so that ?18 —>1 in ¥ as § expands to (a, b) .
We summarize what we have proved in the following lemma,
2,18 Lemma, If u € # , (2.47) defines an element -?{S in

~ T ;
@/  which converges in Y o Y as 4 expands to (a, b) , and I wll

= |41l . If u,(x) is defined by (2.42) in terms of this ¥ , then u,
converges in ® to u as A expands to (-oo, o) , For each 1 & ¥
there exists a unique u & ¥ , the limit of u, defined by (2.42),

having the properties just described.
We show next that for almost al1 A[o], k(A) < n, the or-
der of L . In fact we shall prove that for almost all A[S] , each of

the functions

(2.L9) ?m(x) - %(x’h) = (?;‘:(?[),?m(ﬂ)) » m=1,2, ..., k(A) ’

satisfies L = Ar Py for almost all x &4 , and that for almost
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all Alo), Palx), cecos ?91((7.) (x) are linearly independent,
According to (2.35), with u( ) replaced by ff:( ) , for almost

all Alo]
k(2) . o
) - Z; {4 LGOI FICPRS AT S I ME IR
me
or

E), Fal2) = £ 50 ), Fatana ety s
that is, by (2.49) and (2.16)

T = § O EW, L0y = £ 0 T sty

-/ K*(x.y)’ ‘}’m(y)'h r(y)'dy '

Taking conjugates and applying (2.12) with v=2Ar ¢  and w = P s

we see that
(2.50) L, = Arq, me=1l, 2, ..., k(2) ,

2
since by (2.119) (V(x)l = | r(x) ?m(x)\2 = {r(x)} 2”f§ “2 , and the
latter function is integrable by the statements following (2.19).

To prove the linear independence for almost all ) [g~] of
Cﬁ(xﬂ\ 1o wens ka(h) (x, 2) 1t suffices, in view of the ¢ -measurabi-
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lity of 4y of (1,5), to show that Fa(x, A)s ey ¥ (X, ) are 1li-
nearly independent on gach compact r_mn-degenerate interval J for almost
all )[o] in AJ ’ L= 1, 2, ..., 0o « We wish to show that for
almost all A [0] in L\L

! £ :
(2051) Zcm(;\ )?m(x’ 2 ) .. 0
m=1

imp].!.es cm(ﬂ) =0, m=1, ..., f. ‘Suppose - first that £ is 1‘.'L_n:1.‘l'.er
We construct a O -measurable solution vector C(7A) of (2.51) which is
not null for each A for which (2.51) has a non-trivial solution, Once

this construction is completed, the remainder of the proof is easy.

Since

£
Zcmmfm( .m\l Z .i,q(m@’ﬁ) ,

m=1

(2,52) l

where ('ij) = (a5(7)) 1is the Gramlan matrix whose elements are

(2.53) , ajy = (?1 :993) )

the inner product being formed in L2(§) , (aij) is positive semi-
definite; so that, by (2. 52) - Tl 51) is equivalent to the system of equa=

tions

(2.5h4) 2113(7\ )03(3) =0, 1= 1, ;--y ’Zo..

=
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By (a') in the definition in Chapter I of a measurable family, (2.h49),
(2.53), and the Fubini theorem, each aj4(A) 1s G -measurablej so that
the rank O (A7) of (aij(h)) is also g-=-measurable, In fact, if we

define
(2.55) B ={ne8: A2 2 1},

then E, = 4 when r >.€ 3 E.= Q&g when r < 03 and
E. = {71 € Ny s some r xr mnor of (a13(7\)) is not zero} when
1< r <4 . Tus /0( A) 1is g~-measurable, and hence, for each

r=0,1, ..., £, the set
(2.56) Fro= (D€ 87 1 p(2) = 1)
is &~ =measurable,

£
(2057) Fog 0ocey 12 are diSJOint and qur < Aj .
r =

Suppose A £4,, and is such that (2.54) has a non-trivial solution,
Then )€ F. , where r € f -1, Choosean r+1 by r + 1 sub-
matrix a of (aij( A)) . Consider a fixed 1 satisfylng 1 < 124,
Define an A =vector D(A) so that the j™' component of D is 0 if

a4 is not an element of a , but the jth component is the cofactor of

844 in o when a3y 1is an element of a . Consider all such £ —vectors
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D(7) which can be obtained in this way by letting i wvary from 1 to
£ and o varyoverall r +1 by r + 1 submatrices of 213(7) .
List these /£ ~vectors in some order, say D;'(P\), cees DP¥(A) . At

least one Di(}) 1is not null since /0(7]) = r , Thus if we define
r

(2.58) o= {ne ms MM F0}, 1=, .,

then each G;' is & -measurable and

(2.59) U6 = Fyp

i=1
Define a solution vector C(A) of (2.54) in the following way:
(a) If At Fr, T =0y eoay ‘e"' s,

pl(n) it A € o
let c(p) = 4 s 1-1
D (A) if A e_ Gi = j\;)l G!J>, 'i Ll 2, 099 prn

According to (2.59), (a) defines C(A) on all of Fn .

(b) I 2 EF , let c(a) =0.

According to (2.57) (a) and (b) define C(7A) on all of Dy .
() It A £y et 6A) =0,

Clearly, since all sets mentioned in (a), (b), and (c) are ¢ ~

measurable, C(7) 1s o~-measurable. C(A) 1is a solution vector of
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(2.54), that is, of (2.51); and C(7A) ¥ O for each A for which (2,51)
has a non-trivial solution., We shall now prove that C(p) = O for al=-
most all A[c~] , and that A, 1is of g~-measure zero. When these two
facts have been proved, the desideratum mentioned in connection with
(2.51) will be attained. '
To prove that C(A) = 0 for almost all A[o~] , define

¥
{

1
: TEGYT C(7A) it c(A) # o
(2.60) B(7) = J ! '

0 if c(A) =0

—

where |C(7)| means the Fuclidean length of C(7) . B(A) 1is o -
measurable. We wish to show that B(x) =0 for almost all A [ .

By the definition in Chapter I of an N=function

4‘_‘3(7\)\2&10*(7\) 2 [fdor(h) & + 0

-o

that is, if we let by3(7) , 1 =1, ..., £, be the components of B(7) ,

k&) ;
(2.61) L ZN\u | a2 < oo,

the justification for summing to "k(7d) being the fact that B(A) = 0

k()

if A ¢ A,l‘ Thus, according to Chapter I, B(A) = iZ 'bi(z) -'/Ji(‘;\)
. ! =7
NS

determines an element b & H . By (2,51), (2,60), and (2,L9),
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k() k(2)
0= iZ by (2) Pulxs A) = 121 by () (F( ), P(2)). Thus
=l =

(2), E‘;(?t)) = 0, and so by (2,42) b,(x) = 0. Hence by (2.43) ,
b=0 in @4 , which implies b = O in % , which implies BA) =0
for almost all A[g-] . Thus by(A) = O for almost all Al ,
i=1, ..;, k(A) . That is, B(A) = ‘O for almost all A, so that, by
(2,;’30), C(A) =0 for almost all A .

It remains to show that A, 1s of o~-measure zero, The argument
is quite similar to the one just completed. Let A e A_. Since by
(2.50), the CPm(x,Z) are, for almost all A[g-], solutions of an ordinary
linear differential equation of degree n, there exist for almost all
A% A”[O‘] s €1(A)s eees Cpea(A) , not all zero such that

n+1

(2.62) | Z- 01(7\) ?1(192‘) =0,

im

The previous argument shows that (2.62) implies

(2.63) 0= 01(A) = calP) = vus = pyg(PA) for almost all A £A_[o] .

We must conclude that A, has o~-measure zero., Thus the assertion made

in connection with (2.L49) is proved.
We now derive the fundamental theorem. Let /0(7\) = (/Ojk(a)) p
j» k=1, ooy n , be an Hermitian matrix function of 2 defined on A\,

and non-decreasing in the sense that ) 7/4-1 implies that (V) - /0(/4)
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is positive semli=definite, Let " denote the famlily of n=vector func=
tions of A, w(P) = (Wi(A), .eoy Wp(A)) which are P-measur-
able in the sense that LUJ(7\) is measurable with respect to /031 and
/013 s 1=1, .s0p B . Introduce an inner product in [7 according to
the formula

( sK) = Z
0B+ f Z oM ED @ .

P
Let L be the set of elements w & " for which lwl = (w, w)2
is finite, where as usual we identify elements of |7 the norm of whose

difference vanishes. The main theorem may be stated as follows [113 2],

2,64 Theorem., Let sj(x,'/\), J=15 .co5 n, be a system of li-

nearly independent solutions of Ly = Ary . Then there -exists an

Hermitian, non-decreasing spectral matrix /0( /A) and the associated

Hilbert space | of n-vectors (o such that if u ¢ ¥  and we de=-

fine.
(2.65) w§(A) =/ 83 7) ur(xax ,

then the vector w? = (UJ{, eoey u)‘r) £ L%}y and wé converges

in the norm of €L as S expands to (d, ®) , say

(2.66) W sw w.n .
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If W= (W, ..., W) ; u(x) may be recovered according to the formula

5 n
(2.67) ulx) =/, % o (x5 2) @Wy(2)d Py (A) 5
Jsk=1

where the integral converges in mean in 'N « The Parseval relation is

also valid,

(2.68) fwll = il qf

Reciprocally, if w & (L the integral (2.67) exists in mean, the u

which i_s;_ defined thereby belongs to 9/ , and in terms of u, W may

be recovered by (2.65), (2.66). Moreover, if E(7) 1is the resolution

of unity corresponding to H , the self adjoint extension of T, of

(1.12), then for almost all x

1 » n
(260 @O -/ J’%isktx,mwjm LY INEN

where we have used E(A) to mean E(v) -E(/u) if A= (/4,,‘2)]3

and if u & DH,thenforalmosta.ll X,

n

(2.70) (Hu) (x) =/ J’%‘,k(x,y\)wd(a)zd/ojk(m ,

where the integral converges in mean in P ., Thus H has the spec-
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tral (diagonal) formin _N ,

Proof. According to (2.50), for almost all ?2[c]

(Tx(A)s ;m(ﬂ )) is a solution of Ly = Ary ; so that for almost all
AlsS] we may write

(2.71) (FA), Pt AN =2 cng(A)sy(mA) , m=1, ..., K(A),
: j"a

Differentiation of the r' one of these equations n -1 times with
respect to x 1leads; for fixed x , to a system of n 1linear equations
for the cr;) Cr = =, ., n, whose coefficient matrix has for
determinant the Wronskian of 815 .ees Sn whiéh is independent of A

and not zero. . Thus the °rj(7‘) are polynomials in the x-derivatives

of (?x(?l )s ;Vm(?‘)) and S35 ...y 8y of order not exceeding n -1,
Thus by standard theorems [L, Chapter 1, Theorem 8.4 and following re=-
marks] on the analyticity of solutions with respect to a parameter

which occurs analytically,

(2.72) cmj(?\) is anrentire function of A for each m = 1,...,k(?),

j’l, seey NI

Substitute (2,.71) in (2.L47) to obtain

k(M (| n o~
T = 2 | Z Aoy wr(s @ Maxy Vala)
m=1 J=

or by (2.65)
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| k(A) n L
(2.73) () = s ZAcijmw;‘,m} Ya(2)
m=1 J=
for almost all A[d™] o
Define

k(p)
(2.7) Pt = 1N M2 2 S Tnepastu)

m=1

The existence of this integral is assured by (2,72). Clearly (/%k(“z))
is Herml tian, That it is non-decreasing follows from the equalities

+k(A)

n n
- 7 S ey Y
4,2;-'1 {,ojk(v) - /ij(/«;} Taty jZ tyty /[;7\ m-Z:Lc"‘-" A)epy (2)do=(2)

sk=1

4 kO\) n n .
\)"'2 : -
- [°Z {(élcmkmz,)(% cmj(n)tD}dr(A) & 8

m=1
Using (2.73) and (2.7h) we now may write

2 L3 >
2.1 \T0° =L NT (M1 ac )

k() n n
2 § :
" 4 ; 2 ;cmjth)wj("‘)zlcmkm)“’z(m} dei)

n k(h) '
A Z_ wé(?\)wi(?\) Z hzcmjlz)cmk(z)} do(A) =
Ay, k=1 m=q
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n
§ea) wECA
3,%-1 wi(7) wE(A) d Py (A) .

i 4
The finiteness of the last written integral shows w‘ & L . More-

over it follows from (2.64) that

3 ~
(2.76) Il “s" » ”wS” .
~ o a7
By (2.48) T, —> % in M as & expands to (a, b) 3 and now
that we have the Parseval relation (2.76) for elements of the form 'ﬁ's 9
the argument just above (2.31) shows that w? converges in _\_ , say

to W , and hence, applying (2.76) again,
(2.77) leoll = 12N = {lull .

By the third sentence following (1l.4) and what we have just proved we
may allow S to expand to (a, b) through a suitable sequence of com-
pact intervals,thus seeing from (2.73) that for almost all 2A[c , and

hence, by (2.7h), for almost all A [Py ], J, k=1, ..., n, that

“ k() ((n "
(2.78) WD) = 7 4 Zhegg(m e[ Yoa) .
. . m=1 =

We now find from (2,71) and (2,78) that
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k(2) / n n
(AR F,0) = 7 { 2 Nopg i, iZcmi(h)si(x,Z)
=3

m=1 J=1
(2.79)
n ; k()
- Zsi(x,?\)wj(h) Z 7\2 Cpy(Aemt (A) .
1,3m m=1

Thus, from (2.42) and (2.7h) we find that

0, (x) = £ (2%(2),5.(2 ()

n k(a) ‘
=4 2 s MW (A) 2 Hen M (2) [ do(1)
1,j=1 ] - m=1 :
n
-/ iij_:Isi(x,mwjm)a,oJim :

According to (2,48) u,—>u 1in ¥ as A expands to (a, b) , and
the assertion connected with (2.67) 1is proved.

According to (2.77) 37 is mapped isometrically onto a subspace
L' of L , and (2.78) glves the explicit mapping if e« € L1t ,
Consider now an arbitpary e € L. Define u 1in terms of this ()
by (2.78). Then the chain of equalities (2.75), read in reverse and
omltting 'the d's s shows that T E éi s and moreover that the map
frgm () onto ‘;/«:J so defined 1s an isometry. Thus there exists an 1so-

~

metry of - onto % which 1s an extension of an isometry of (L' on-

to ¥ . We conclude that L = (Lt , and (2.78) provides the expli-
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cit unitary map of L onto é;f . Since (2.78) was originally proved
to hold for an arbitrary T e @Z ., and since W cannot correspond
to two different elements of ()2 , we see that u bears the relation
to w which is asserted in the theorem,

- To prove (2,69) apply (2.k2) to E(A)u , remembering (2.1). The
result is

(2.80) (E(A)m), (x) = [, (A % (DE(A), T(ADs( ) .
By (2.48) the left side of (2.80) tends in % to (E(4A)u)(x) as
A' —> (-2, o) , but it is clear that when A' O A the right
side of (2.80) is [ (A%, £:(2))ds(7) . Thus by (2.79) and
(2.7h)

(E(A)) (=) =/ (AT(A), Te(A Do (P)

m=1

n k(2)
(2.81) = 4 ﬁ% i(x,?;)wj(h) Z fcmj(l)cmi(ﬂ)} do(P)
5 s J=2
. n

-/ %lsi(x,mwjmm,oﬁ(m :

This equality proves (2.69). To prove (2.70) we notice that by (2.42)
and (2.6)

(Hu), () =/ (2°2A%(7), £(A))de(2) ,
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and, just as in (2.81), we conclude that

n

(fa), (x) = /[ Z 81 (x,2)wy(A)Ad Ly (7)

i,j=2

An application of (2.48) proves (2.70) and completes the proof of the
theorem,

The spectrum s(H) of a self-adjoint operator H in an arbi-
trary Hilbert space may be defined as the set of points of non-constancy
of the resolution of the identity E(A) of H . The points of s(H)
a@nwhich E(2A) 1s continuous constitute the continuous spectrum of H 3§
the ;emaining points of s(H) constitute the point spectrum, Te point
spectrum consists of the eigenvalues of H [19, pp. 356, 357).

The spectrum of a self-gdjgint extension H of a differential
operator is usually defined [L, p. 2525 21, p. 583 T8 23] as the set of
points of non-constancy of_the spectral matrix /0( 2A) 5 when /0 is
uniquely determ%neq by H. (Sufficient conditions for uniqueness of /A
are given in [2, Theorem Tj 4, Chapter 10, sectién 3].) The continuous
spectrum is then defined to be those points of the spectrum at which /A
is continuous and the point spectrum to be the remaining points.

It might be expected that the separate definitions would agree,
at least under fairly general conditions on L , but we have seen no
proof of this fact in the literature. 'Stone indicates [20, p. 530)] that
the problem had not been investigated at that time, While we have not
been abie to prove the uniqueness of /9 » we can prove that the spec trum,

continuous spectrum, and point spectrum defined in terms of the spectral
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matrix A constructed in the proof of Theorem 2.6k, agree with the cor=-
responding concepts defined in terms of H as an abstract operator, at

least for all points except A =0,
(2.82) Corollary to Theorem 2,6h, The real mmber Ao ¥ 0 is

(1) a point of constancy,

(11) a point of continuous increase,

(111) a point of discontinuity

of E(A) 1if and only if it satisfies the same condition with respect

to o(7) .
Proof: By the construction of % given at the beginning of this

chapter and the paragraph preceding Lemma 1.6, o&~(2) 1is equivalent

to E(A) . Define

~7) , 1f 3 <O
& (7) =
s oA) - {ol0") -0} 1£ A 20 .

Then it suffi_ces o prove that &~ and /0 are equivalent; that is that
each 1s absolutely contlnuous with respect to the other. The absolute
continuity of each /?jk > Js k=1, ..., n, with respect to &~ 1is
immediate from (2,74). On the other hand the functions appearing on the
left of the k(7)) equations (2.71) are linearly independent for almost
all A[o~] ; so that in particular for almost all A[S] not every co-

efficient ¢33(A)s ..., c1n(?2) 1s zero. Thus every A ~set M of

positive &-measure, and hence of positive ¢ -measure, contains a sub-



-
gset of positive o -measure on which one, at least;, of these functions,

say cii 1s not zero, Application of (2.7h) with j =k = i ylelds

k() v
LM ’.{ 72 mZ:: ‘cmi(?\)lz ao(A) o

Since the non-negative integrand 1s positive on a set of positive o~=-
measure, 31(7") > 0 . Thus 8~ 1is sbsolutely comtinuous with res-

pect to (0 . The corollary is thereby proved.



CHAPTER ITI

BOUNDARY CONDI TIONS

7 Coddington [2, Theorem 3] has characterized the self-adjoint ex-
tensions of T, (Chapter I). His method uses the facts that % 1is a
function space and T, a differentlal operator, The theorem in ques-
tion may be proved quite abstractly for closed symmetric oiperat-ora in an
arbitrary Hilbert space; using nothing deeper than the simplest facts
about finite dimensional spaces. |

Let T, be a symmetric operator in a Hilbert space % with do-
main D, and with adjoint T=T," , Let D= Dy. If u, v € D,
define {u, v’} = (Tu, v) = (u, Tv) . Si_.nce {v, u} = —-{n_,—vT 3

_{Y’ u} = 0 1if and only if {u, v} = 0, We are interested in condi-
tions which characterize the self-adjointness of an extension H of T,
Let &0 = Dy, and A* = DH* . Suppose that T, 1is closed so that
T =Ty (Chapter I)., Since all self-adjoint extensions of T, are
contained in T we —need (and shall) consider only those H satisfying
To & H S T . Taking adjoints shows that T, & X¥* & T ; since
™ =1T,. Tus H is self-adjoint if and only if A = A* . Now by
definition of adjoint it follows that

A*- {u g.ng(gv, u) = (v, Tu) for all vez_\}

" {ua D (Iv, u) = (v, Tu) for all vaA} .
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Thus

(3.1) A*- {u&Ds{v,u}aO forallveA},

Let us suppose dim D/Do to be finite (a condition which is
satisfied in the case of differential operators). (3.1) shows that N
is obtained from D by imposing conditions on u &€ D of the form
{v, u} =0 for v £ A . Such conditions, because of thg way in
which they arise in connection with differential operators [2, p..194
-and 'p, 198], will be called boundary conditions, A finite set of such
'lgoundaryfonditions on elements u & D , say {vi, u} =0,
i-= ]_,,_3.. s k s will be qalled dependent with respect to D 1if there
exist co_mplex numbers €15 ..oy €y , not all zero, such that :
ﬁ oy {vi, u} =0 for all u & D, Otherwise the boundary condi-
=1 :
tions will be called independent. In general not all the boundary condi-
tions occu?ring in the characterization (3,1) of A* will be indepen-
dent, In fact, we prove the following lennna..;

3.2 Lerma, The maximum number of boundary conditions of the form

{v, u} =0, with v ¢ A , which are independent with respect to D

and which suffice to characterize A* as in (3.1) 1is equal to

¢im D/A*  (which is finite since dim D/p, is finite).

Proof, Let dim D/A™ =k , Suppose that there exist

Viy eees Vm £ A such that the boundary conditions

(3-3) {v;j’ u} =0, J=1, coopmy
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are independent with respect to D, and that m <k. Let wi, ..., W) be
in D and linearly independent modulo A% 5 so that A* and wy, ..., Wy
together span D . There exists a non=trivial solution c3, ...y 6y of
the equations

m

(3.4) Zc:’ {vj’ wi} -9, 1 =1, eoey k 1

J=

Moreover, by (3.1), every element w £ A satisfies

m -

(3.5) Z c';] {v‘, w}. =0 .,

J=

From (3.h) and (3.5) it follows that every u & D satisfies

o _
ch{vj,n}-O; ‘

=

that is, the boundary conditions are dependent with respect to D . This
is a contradiction; so that we must contlude m < k .

Now let m denote the maximm rmmber of independent boundary con-

ditions of the form (3.3) such that A¥* may be represented in the form

(3.6) A= {ugns{n,vj}-o,ngA,j-l,...,m} .

Suppose m < k . Let Wi, ...y Wy € D be linearly independent modulo
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3
4L . There exists a non-trivial solution e¢3, ..., ¢ of the equations

k ,
(3.7 Zc Wy, V4 =0, =1 cehpm s
et { 12 J}
80 that.
k ;
(3.8) {Z_ Ciwj_’ vj} - o 9 j = 1’ ecoy m,
{=1 |
k
By (3.6) we conclude that Zciwi e A* , contradicting the indepen=
i=3 ,

dence of Wiy eeey Wi modulo A . We therefore have k = m s and the
lemma is proved.

3.9 Lemma, ﬁ Vis eceey Vn t A , Then Vis eees ¥V are 1i=-

nearly independent modulo D, if and only if the boundary conditions

{vj, u} =0,J=1, ..., n, are independent with respect to D .

Proof, If w & D, application of (3.1) to D in place of A

shows that

(3.10) w5 D*-Do if and only if {w, u} =0 forall u £D,

n :
This fact, applied to w = Z cjvj s proves the lemma,
=

Lemmas 3,2 and 3,9 imply that

A
(3.11) dim /Do = aim O/ .
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3.12 Definition., let a3, ...» @ € D. If the boundary condi-

tions {u, ai} =0,1=1, ..., k, on elements u €& D are indepen=-
dent with respect to D and if {q_, aj} =0, 1, J =1, cees k , the

boundary conditions will be called self-adjoint [2, p. 198].

3.13 Theorem, Let T, be a closed symmetric operator in C).(

*
; = % P 5 = d D, = A
with adjoint T 1A (See Chapter I.) Let D Dr an o DTo

Suppose that dim D/D, is finite, Let H be an operator satisfying

TS HS T3 o8 A =0Dy and A" = Dy . Then H is self-

adJoint if and only if dim I)/Dc, = % and there exist a1y eecy ax £ D

such that the boundary conditions {u, aj} = 0 are self=-adjolnt,

J =1, eees k , and
(3.1L) A-{u&DSCu,aj}-O, j-l,...,k}.

Proof, Necessity: Assume H = H*; so that
(3.15) A=A .

Let din®/D, = k . By (3.11) and (3.15) dimD/Dy = dim D/A%* + atm &' /b,
= ain O/, + ain®fo = 2%k. Let a1, eep axe A and be linearly inde-
pendent module D, ., If u, v & A, then by (3.1) and (3.15), {u,v} = 0,
In particular {ai, aj} =0 5 4y I . l, .ces k . By Lemma 3.9 the boun-
dary condltions {u,aj} =0, J=1, ceo5 ky are independent with respect

to D ;3 hence they are self-adjoint. Finally, it follows from (3.10) that

u £ D implies {u, v} =0 for all v £ D, . We see therefore, using
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(3.1) and the fact that D, and a1, ..., @y span (\ , that

A= A -{u 8‘Ds{v,u} =0, allvE,A} =
-{u&Ds{u,v}-O,allng}
= fu g Dr{n.aj} =0, =1, ...,k}.

, ‘Sqff:l_.ciencys' Suppose that dim D/D, = 2%k and that A is defined by k
self-adjoint boundary conditions as in (3.1}3). By Lemma 3.9,
Q1s eees @y are linearly independent modulo D, . Let Z be the 1li-

near manifold spanned by D, and a3z, .eey ax o Then
(3.16) din &M, = x .

By (3.14) and the self-adjointness cgr}dition, ay B, 3=, coes ¥ &

~Y

Thus A (C A . We shall show that
(3.17) A w s

It suffices, in view of (3.16), to prove dima/bo = k , By the defini=-
tion (3.1h4) of & and the inciependence of the k boundary conditions
occurring in that definition; it follows, exactly as in the proof of
Lemma 3.2, that ﬁdim D/a = k ., Using this fact we are able to write

2k = dim D/‘Do = dim D/A. + dimA/Do =k + dim A/l'.)o 3 from which we con=

clude that
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(3.18) dim &/ = k

Thus (3.17) is proved, From (3.16) and the definition of A i1t follows

k
that each u £ D can be written in the form u'= ug+ > biai , where
: teg

U & Do and bay oses by are icalars. If v ¢ A has the correspon=

ding representation v = v, + Z cyay » We find that
J=a

i=a

K K
{vsu} = {vos ug} + %cj {330 g} + 2 B1{v ot}

By (3.10) any brace with u;, or v, inside 1s zeroj and by the self-
adjqintne.ss property, the last sum vanishes. Thus for each pair of ele-
ments uw, v £ A {u,v} =0, Hence 1f u € A , u also
satisfies the condition expressed in (3,1) that it be in A* ; that is,

A C A", On the other hand, by (3.11) and (3.18) we see that dim D/A*
dim 8/py = k3 so that 2k = dim D/p = dim D/A% + atn B/ + an S/,

= k + dim Q*/A +kx, Tus A% = A, Since H and E* have a common ex=
tension T, this equality implies H® = H . The theorem is thereby

profved °



CHAPTER IV

SPECTRA OF SELF-ADJOINT EXTENSIONS OF A SYFMETRIC OPERATOR

Von Neumamn's Theory of Symmetric Extensions

l?roofg of statements made in this section may be found in [20, Chap=-

ter IX], [16, Chapter VI], [1, Sections 67 and 78=80], and [19, Section 123],

- As in Chapter T let A be a closed, symmetric operator in a Hilbert
space N— . If R. and R4 denote the respective ranges of A -1 and
A+ i_ , then R. and R4 are closed subspaces of % , Since the eigen-
values_ of a symmetric operator are realy A + 1 maps D, 1in a one to one
manner onto R+ . Thus (A + i)']' exists, The operator
V= (a-1)(a+1)7], the Cayley transforn of A , is an isometry with do-
main R, and ran_gé R. . V determines A uniquely according to the for-
mula Au = 1T +V)(T - V).ln for u € D, . Moreover, there is a one to
one correspondence between the isometric extensions ”\; of V and the
symmetric extensions T of A s which is such that v corresponds to 1
Lt ant_i only if 7; is the Cayley transiorm of g . K is self=adjoint,
moreover, if and only if ? is uﬁitary, that is, 1f and only if Dﬁ - X
and the range Ry - # . From these facts it follows-that in order to de-
termine the self-adjoint extensions of A , it is sufficlent merely to de-
termine the unitary extensions of V , But every unitary extension of V
can clearly be obtained by mapping the orthogonal complement R...J' of the
domain R4+ of V isometrically onto the orthogonal complement R.1 of
the range R. of V., If V' is an operator effecting this map, then a

uni tary extension %’J of Vv is obtained by defining T to agree with V
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on Rs and to agree with V' on R.,J' o« Of course, a necessary and
sufficient condition for the existence of such a V' is that
m = dim Ry" [6, Section 16] and n = dim E_ + be. equal, not neces- P
sarily finite, cardinal numbers. m and n are known as the defect num=
bers of A , The ordered pair (my n) is known as the defect index of
A . Notice that m = n = O 1is a necessary and sufficient condition for
A to be self=adjoint,

We assume henceforth that m = n, Von Neumann has given an ex-
plicit expression for the domain Dy of the self-adjoint extension T
of A whose Cayley transform is the v described above, First, D,s

can be written as a direct sum

(k.1) Dpp=Dy @ ) rt .

- Moreover, ‘R..,J' is the elgenspace of ™ corresponding to the
eigenvalue 1 and R-J' the eigenspace of A* corresponding to the
eigenvalue =i . Turthermore, if u £ Dyu 1is represented according

to the decomposition (L.l) in the form

(4.2) U=y tu, fu.,

then [20, Po 311}4]

(k.3) In(A®u,u) = || w, "2 -l “-“2 ‘



If 1 is a self-adjoint extension of A , then [1, p. 2L2]
(h.k) Dy =Dy ® (I -VR?: ,

where V! is the isometry occurring in the description of ff .

The Spectrum Of A Self=Adjoint Operator

et H bea selfﬁadjoint operator in a Hilbert space c}( ¢ The
resolvent set of H [19, Section 132] consists of those complex numbers
£ such that (H - 4)-1 is defined and bounded on %~ . The complement
in the gomplex plane of the resolvent set is the spectrum s(H) of H ,
This definition agrees with the one given in Chapter II [20, Theorem S,11].
s (H) 1s a non-em?ty subset of the real axis and contains all the eigen=-
values of H [19, Section 132), The limlt spectrum, or essential spec-
trum, of H consists of all points in the derived set s(H)' (% oo
being included when appropriate), as well as the eigenvalues of H of
infinite multiplieity., Such eigenvalues cannot occur with differential

operators,

Spectra Of Self-Adj oint Extensions

Weyl showed [23] for the second order real differential operator
mentioned in the introduction, defined on a half-axis, and in the limit °

point case, that the essential spectrum is independent of the particular
selfeadjoint extension of the operator. Recently, Heinz [8] showed that
the independence of the essential spectrum of a self-adjoint extension of a

closed symmetric operator A with respect to the particular self-adjoint
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extension 1s actually a property shared by all A having equal and firite
defect numbers., Heinz derives his result by use of the spectral represen=-
tation of self=-adjoint operators,

Hartman and Wintner [7] have complemented Weyl's result by proving
that, in the case considered by Weyl, every real number not in the essen=
tlial spectrum of L 1is an eigenvalue of some self-adjoint extension of
L . Their argument uses differential equations. See also (3], where a
different p;joof i1s given,

Actually the theorem of Hartman and Wintner is true in the situation
considered by Heinz, We prove the following theorem,

4.5 Theorems Let A be a closed symmetric operator with equal

defect numbers m=n > 0O, Let 2 be a real number not 1!_1 the esgen-

tial spectrum of some self-adjoint extension B of A ., Then there exists

a self-adjoint extension 1 of A such that A 1s an eigenvalue of fi-

nite multiplicity of T .

Proof. If A & s(B) , we may take A = B , since the only points
of &(B) which are not in thefnessential spectrum are eigenvalues of
finite n;ultiplicity of B [19, Section 133]. Suppose then that
72 & s(8), sothat (B =7)"1 is defined and bounded on all of % .
Since m ¥ 0 there exists a non-gero element v € R...'L s Which therefore

satisfies
(4. 6) A = iv,

Clearly (B -7))'1(1 -A)w #0, and 1 is not an eigenvalue of B § so
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that u , defined by

(4. 7) u= (B-1)(B-2)"21 -2)v,

is not zero. Since (B -ﬂ)"l is a right [19, p. 295] (though not in

general a left) inverse of B=A, (B=A)(B=3)" v = v ; from which
(L.8) BB- MW= a6 -NN+v,

Subtracting 1i(B -ﬂ)dv from both sides of (L.8) leads to

B-D@-N"v=(A=-0)@B-N)"v+v,

or

(1.9) ve@-DE-DIr=-1E- 0T,

Since the right side of (L4.9) belongs to Dg , the left side does also,

and
1) G- {F-6E-DE-NN}=-E-DE-NTA-Av=u,

where we have used (L.7). Again using (4.7) in the term in braces in

(4.10), one obtains

(4.11) (B -1) {v + (A - 1)‘1u} =u,
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Since in general v ¢ Dg , we may not distribute B -1 in the braces.,
However, since B < A% , (4.,11) implies

(L.12) (A% = 1) {v + (A - 1)'1u} =u,

Thus v+ (A = i)']ﬁu € Dy . Since v ¢ R,,,-‘- C Dy*, we find that

U & Dy*; (4.12) and (L.6) then imply

(A - D)(A=-DTumu,

Thus

(a* - 1u = (A = Du,
or finally
(h.13)‘ A*u= Au,

This equation implies first that (A™s, u) = A\ (u, u) 1is real; so that
by (k.3)

(b 11) Tl = Nl

Since m = n there exist isometries of R.,.‘L onto R-L 3 and
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according to (h.lls), we may choose one, say V! , such that V'u, = -u_ ,

Thus u , as expressed in (4.2), has the obvious representation
u.uo"' (I-V')u.', 9

with uy, £ Dy . By virtue of (L.L4), this equation implies u & Dy .
Since 1 < A" , (4,13) then shows that Au = Au ., The theorem is

thereby proved.
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