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IN 'lRODUC TION 

Many of the properties of the ordinary Fourier series expansion 

of a given function are shared by the orthogonal expansions in terms of 

eigenfunctions of a second order ordinary differential operator. Let 

p • p(x) and q • q(x) be real-valued functions such that p , p' , 

and q are c ontinuous, and p(x) ? 0 , on a .f'ini te interval 

a � x � b • Le� � be a C<?JUplex p�ameter. The classical Sturm­

Liouville theory [9, section 27; 4, Chapter 7; 211 Chapter 1]
1

is con-

cerned with solutions or the differential equation 

-(py•)' + Cf7 • � y , 

which satisfy certain real boundary conditions whose form need not be 

given here. These solutions, the so-called eigenfunctions, exist only 

tor certain values of .A , the corresponding eigenvalues. The Sturm-
Liouville theory states that the eigenvalues constitute a countable 

set of rea1 numbers which cluster only at + oo • The corresponding 

eigenfUnctions constitute an orthogonal system on [a,b] whieh is com-. 
plete in L2':(a,b) • . 'lhus the Parseval relation is also valid. 

It now the possibilities a • - � and b • + oc are allowed• 

or if the restriction p(x) > 0 is required merely for a <: x <: b , 

the complexity of the situation increases. In these cases the problem 

is called singular, in contrast to the regular case considered above. 

lwumbere in brackets refer to the bibliography at the end of this 
paper. 



To obtain satisfactory analogues of the completeness and Parseval theorems, 

i� now becomes necessar.y to replace the series expansion of an arbitrar.y 
2 

function in L (a,b) by an expansion in terms of a Stieltjes integral. 

'lhe singtil_ar·case has been treated exhaustively by Weyl [23J24], by Stone 

[20] who uses the general theory of unbounded symmetric operators, by . . 
Tltchmarsh [21] who uses function theoretic methods, by Kodaira [10] who 

combines and simplifies the ideas of Weyl and Stone, by Yosida_ [2$], and 

b7 Levineon [13Jlh] who obtains results as limi. ting cases of theorems valid - . 
for compact subintervals of (a,b) • 

'!he basic facts in the regular ease extend verbatim to a formally 

se�f��djoint �iff�rent�al operator L (see Chapter I) of arbitrar.y order 

n , with complex coefficients defined on a compact interval, provided the 

coefficient of the nth order derivative does not vanish on that interval 

[�J.. Chapter 7]. Proofs in this case require no�ing more than the �ilbert­

Schmidt theory of integral 'equations . When the problem is singular, 

general results_ have been obtained only recently . Glazman [.5] has general­

ized several important_r�sults of Weyl and Stone conce�ning the nature or 

the boundary conditions when the coefficients are real. Kodaira [11] has 

also discussed boundar,y conditions in the case of real coefficients and 

proved the analogues of the completeness and Parseval relations. . . 
Coddington [2] and Lev.i.nson [15] have considered these questions when the 

co�f.fieients are complex and haTe obtained the expansion and Parseval 

theorems in two important cases. In these cases they also prove the in-

verse transform theorem which is the analogue of the Riesz..;Fiseher theo­

rem in the !heory of ordinary Fourier series. 

One of the mai. n results or the present paper is a proof, in Chap-
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ter II, of the expansion, Parseval, and inverse transform theorems, by use 

of the �eor.y of generalized direct sums of Hilbert spaces, which theory - .�· � 
is due to von Neumann [22]. These theorems are most elegantly stated in a - . .. . 
ro:m g1 v�n them by Kodaira [10]. Let ( fjk) be an Hermitian, non­

decreasing n by n matrix whose elements are Lebesgue-Btieltjes measures - -· -
on the real A axis, ./'). (see Chapter II) • Let "X and w be n-vac tor . - - -
valued fUnctions or A vi th i th component �i (A) and t.Ui (A) res­

pect1Tel7. If we introduce the inner product 

n 
- (w,'X.) • { I... Wj(A.)I\(}I.)d/'jk(�), j,k•1 

it is easy to see that the set -"1- of those uJ for which (w,w) <:. oo 

becomes a Hilbert space in this inner product. The expansion, Parseval 9 
and inverse transform theorems may then be stated as the following theorem, 

which will be proved in Chapter IIo ·- . 
If L is a formally self-adjoint differential operator of order 

n , and if H is a self-adjoint extension of L in the Hilbert space - . . 
L 2 (a, b) , then corresponding to each system of linearly independent sol u-
ti?�• sj ( x, i\) j • 11 o o. 9 n, or Ly·• Ay on (a, b) , ·there exists 

a spectral matrix (/'jk) , with the properties described aboveg· su�h 
. . 2 that the associated Hilbert space -rL is unitarily equivalent to L (a,b) o 

Thus if u £ L2'(a,b) and w is its image in JL 1 the Parseval 

equality 
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is valid. 1he fact that to each w in JL.. corresponds a u E, t2(a,b) 
is the content of the inverse transform theorem. Finally the expansion 

theorem, the analogue of the completeness theorem in the regular c ase, 

states that u and W are related by the specific formulas 

and 

n 

u(x) • f.._ L Bj(·x,A) uJk{l,)dfti'A) 1 
j,k-1 

where the fi rst integral converges in the norm of _n_ and the second in 

the norm of L2(a,b) • 

Chapter I contains definitions and facts pertinent to later chap-

ters. 

In Chapter III a generali zation, with a different proof, is given 

of a theorem of Coddington [-2, 'lheorem 3] which characterizes the self-

adjoint extensions of L , when such extensions exist, in terms of cer-

tain boundary conditions. 

!t is shown in Chapter IV that a theorem of Hartman and Wintner 
·- . 

[7] .concerning the eigenvalues of L in one of the eases considered by 

Weyl is aetua1ly valid in a much more general setting. 
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Since the printing of the text of this paper the author has noted 

the appearance in the Canadian Journal of Mathematics, Vol. I, No. 3 (1958), 
ppo -���-�6, of a paper by F .  Brauer in which the eigenfunction expansion 

problem is treated using the method of generalized direct sums of Hilbert 

spaces. Brauer's approach to the problem is very similar to the one used 

in the present paperJ and in .faet he proves the analogues of the main re-- -
sul ts of Theorem 2.64 tor the eigeDTalue problem Lu • 7\ Mu 1 where L . -- -
and M are ordinar.y s�lf-adjoint differential operators and M is semi-- . � _.. . 
bounded below with positive lower bound. Si nce we have assumed only that 

r > 0, his result�, as stated, actually
_
do not include The�e� 2.6h. 

More�er, he does not state equations (2o69) or (2.70}. In proving the 

analogue of the assertion connected with (2.49), Brauer appeals to a 

general theorem on weak solutions of partial differential equationsJ thus 

he is able to state that his main results are also valid .for certain ellip-

tic partial differential operators. Also, it might be mentioned that he 

does not give the Fubini argument on pp. 14, 15 or the interchange or sllll 

an� integral on pp. 1�, 17. The method g1 ven on pp, 18-20 and 22-25, of 

extending th� inversion formulas from restricted classes o.f functions in 

W to all or ,; is merely alluded to as standard in Brauer 1 s paper. 

Finally, Brauer discusses bound� conditions associated with 

Lu • � Mu and gives a theorem which is almost identical in statement and 

�oot _with 1'heo�
_ 
3 in [2] IJ Our lbeorem 3.13, which cone erne abstract 

operators in an arbitrary Hilbert space, includes both or these theorems. 

!'rom Brauer's paper we have also learned th,t the von Neumann the or)" 



i:x: 
of generalized direct smns had been applied to elliptic partial differen• 

tial operators by L. Garding and published in mimeographed notes through 

the University of Maryland in 1954, through the University of Lund in . . 
1956, and through the Urrl. versi ty of Colorado in 1957. The reader is  re-

!erred to the bibliography of Brauer's paper for references. 



CHAPTER I 

PRELIMINARIES 

Linear Qperators; Spectral Representation Of Self-Adjoint Operators 

A (linear) operator or transformation A in a Hilbert space is a 

map from a �near-manifold DA C 9;/ into � which is additive·and 

homogeneous. For the basic facts about unbounded operators see [20]1 [19]1 

� [1�]. _ If DA is dense in J,l 1 there is a well defined operator A* 1 

the adjoint of
_ 

A whose domain DA* consists of those v S � corres­

ponding to which there exists a unique v* b � satisfYing 

(1.1) (Au, v) • (u, v*) f�r all u e. DA • 

A* �s de�ned on DA* into " by the equation A*v • v* • If DA is 

not dense in '11 there will not be a unique v* with the property 1.1; so 

that A* will not exist. 

If B is an operator such that De ::> D A , and if Bu • Au for 

all u � DA , then B is called an extension or A , written A £ B • 

If. DA is dense in � and if A S B , then B* S l* , We write 

A • B if and only if A � B and B � A • 

If Jl Au [I • II u 11 for every u S DA, A is called isometric. 

�r __ DA is ?ense in W and A £:. A* , A is called symmetric. I.f DA 
. 

.·* is dense �d A • A_ , A is called self-adjoint. If DA is dense and 

A C B where B is s��tric, then B S .t.t • A symmetric operator 

may or may not have self-adjoint extensions, In Chapter IV, where it is 

pertinen�, an outline i� presente� or von Neumann's theory [201 �ap­

ter IX] of the symmetric extensions of �a given symmetric operatoro 'nlia 



theory leads to an elegant pecessar.y and sufficient condition for the 

existence of self-adjoint extensions. 

An operator A is called closed if_ ror each sequence { Un} of 

el�ments o�_ DA which con�erges, say to u , and for which the sequence 

{A� converges 1 say to T 1 it is ta-ue that u e D A and Au • v • 

An adjoint operator is always closed. If A is· closed and DA dense in 
. ** 'f , then D .1* is also . dense in � and A • A • [19 9 p. .302) 

If A is self-adjoint it has a spectral representation whieh we 

proceed to describe. 

A resolution of unity (19, p. 313] is a one parameter .family of 

projections E(/t ) in 't , - oo c::. ·A <: + o:> , satisfying 

{a) E( 1\ ) S: E(f) i� it < � 
(b) E( i\ + 0) � E(;\) 

{c) E( ?t)---+ 0 wh�n ). -+- CD , and E ��I {the identity opera­

tor) whea :::\ � + r:>o. 

'lhe spectral theorem [19, Section 120] states that i.f A is a self- ·· 

adjoint operator, there exists a resolution of unity E(� ) such that 

D A consists of those u e., � sat;i.stying 

(1.2) 

and i.f u €J n, , v E, "' , then 

(1.3) CD {Au,v) . • {.tD'"J\ d�(E(�)u, v) • 



Equation 1.3 determines E( 1\) uniquely. lhe eigenvalues of A are the 

points of discontinuity of E (A ) o 

Generalized Direct Sums Of Hilbert Spaces 

To von Neumann [2Z] is due the idea of a generalized direct sum of 

Hilbert spaces. (A lucid exposition is contained in [17, Section �'].) 
For each real A. let W. (It) be a separable Hilbert space. Let a-- (A) 
be a real valued, non-decreasing, right continuous, bounded function de­

fined on A, the _real A axis. We shall follow von 
_
Neumann [22] in 

call�n g a function vi th these properties an N-function. Let X denote 

the set-theoretic cartesian product X • tTj/(}.) . We use u, 'V to de-
. . ��-

� t� note elements or X whose respective A. coordinates we denote by 
� rV 

u((\) , v( ?\) • If '):+ is a subset of X sati.s.fying the following 

axioms, i/ is called a generalized direct smn or the f; (!l) , and we say 
� 

that cr- belongs to Cf:l. • 

(a) u C. ;!. and � & ;;/ imply that the inner product (in ;;f (A.) ) 
(u{ �) , v{ ?t ) ) is a (J -measurable function of A. • 

-v . . 2' 
(b) u 8 "' implies � tl u( �) , , ' 

do--( .A) <. + .CXJ • 
"""'""' . 

(c) '#- is maximal with respect to properties (a) and (b) in the sense 

that if � £ X is such that \u( A) , �( 1\)) is tS -measurable 

for every v S t# , and {lfuC�) If 2 dC3'(�) < + 0o, then 
..v � 

u �� • 

It follows from (a) and (b) that the integral 



4 
� 

exis ts and (using (c) also) that o;f with this inner product is a Hilbert 

space. As usual we iden ti.f'y elements the norm of vhose difference 

vanishes. In particular comple teness is proved [ 22, Lemma 2'] much as is 

completeness of the ordinar.y L2 sp aces � It also follows from the com• 
� 

pl�teness l?roo:r that �f 11n � li in 9-f, as n � � 1 then there 
� f"'*J ;-.J ""J (?!) exists a subsequence Untc such that � ( �) � u( it) in "' 1 ex-

cept possibly for a A set of a-- -meas ure zero . lhe linear operations 
. -

AJ 

in ,. are defined &�cording to the rule that au + bv • v is equivalent 

to au { i\ ) + bu. { 1\ ) • � { i\ ) • 

(le5') 

,..J ' 

Let k{i\.) • dim 'fol ('-) (the value + � being allowed).  Let 

b...e, • 0 � L\_ I k(i'l.) � .e} f. • 1, 2, , • , , + 0<:> , 

having the property that if - tf'.J • 
• 

u e � ·, then (a) and (b) are equivalent 

to both the conditions 

{a') 

. (b') 

� 

�u{ 1\), 'fmC i\)) is 6" -meas urable for m • 1, 2, ••• . , " k( /\.) 
k(7i) . 'V • 2' 

I L:. . ' (u( ·'A ) I Ym< �" ) I d 6'( a) < + (;10 • 

A m•1 · 

'lhe systems {Ym< a>} are the� said to cons titute a meas urable family 
� 

with res pee t to 'f . Meas urable families exist, and k(�) is a--
. - -

me�urable [22, 'lbeorem I]. Conversely [22, 'lheorem II] if bm(;,) , 
m • 1, • • •  , k{l\) , are a--measurable and s atisfy 



k(�) - 2 
l 2_ 'b1 ( 'A ) I d C!' ( 'A ) < + 00 , and if :f\. m•1 

k(i\) 
� 

family, then u( A) == .L ba( A.) Ymc It) defines an element U' E.� • m-1 

Let E( A) be a resolution of unity in a Hilbert space � ., • 

E( �) is said to be absolutely continuous with respect to an N-funetion 

c; (A) if and only it II E(/\ ) uJI , considered as a function of A , is - - ' 

absolutely continuous with respect to 7: ( ll) for every u t.. ,;. • An 
.. 

N-fUnction (5" ( �) is said to be equivalent to E( t1 ) if and' only if 

for every N-function "C ( �) , the absolute continuity of E( It) with 

respect to 'L{ �) is equivalent to the absolute continuity of 0' (I\) 

w1 th respect to T ('A) • 

,..J 

Let E( '.A) be a resolution of unity in a generalized direct sum 
rv · rv � 

<7J:I to which cr-{ i\) . belongs�-
E( ?I) will be said to belong to 1:1 if 

u e # and _E{�)� • -; together i�ly �( 1\) • � (11 )u( ?t) , where 

�(,i\) __ is th� characteristic function of the A set - oo <:.. 71 � • 

- . -.J 

If 11. is a Hilbert space unitarily equivalent to 'N and E(/l ) the re-
,..; ,_ 

solution of unity in � corresponding to E( A) in � , we will also -
,.,J - � 

say that E{l\ )  belongs to r:;:t if' E(i\) belongs to " • - - -
If E(?\. ) is a resolution of unity in a separable Hilbert space 

and � (i\) 
"'-" 

. . 
an N•function, then there exists a generalized direct " 

sum ?I which is unitarily equivalent to 11 and to which E ( � ) and 

0"'( A) belong it and only if (j' ( ?\) is equivalent to E(?t. ) [ 221 

Theorem III]. As a consequence of this theorem an� the fact that there 

always erl s�s a 0' ( i1 ) �qui valent to each E { i1 ) [ 2 2, p. 407] we may 

state the following lemma, vhich will be fundamental t o  the proof of the 
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main theorem in Chapter TI o 

1.6 Lemmae Corresponding to any resolution of unity E(.�) in a 
� 

separable Hilbert space 'H there exists a generalized direct sum '* which 

is uni taril:y equivalent to 'J¥ and to which E ( 7\ ) belongs. 

Differential Operators 

By a (linear, ordinary) differential operator L is meant an ex-

pression of the form 

(1. 7) L - Po(� J n 
+ P1� J n-1 

+ • • • + Pn • 

where pi • p1(x) is a complex valued function of class cn•i on an in­

terval a <. x � b , a • - c::>o and b • + � being allowed. The 

domain of L consists of functions u (x) for vhich uCn-1)(x) is abso­

lutely continuous on (a,b) • L is called (formally) self-adjoint if it 

coincides with its Lagrange adjoint [4, pp. 84-86] 

(1.8) 
n ( d) n 

· n•Jf: d�1 . 
(-1) \.di (p0.) + (-1) \..di) CP1•) + ••• + Pn• • 

We suppose p0(x) � 0 on (a,b) • 
Let r(x) "> 0 be defined and measurable on (a,b) and bounded 

on every compact subinterval of (a,b) • We are interested in the eigen-

value problem Ly • i\ rt • . , [18J 12] • Let " be the Hilbert space of 

(equiva�ence classes of) complex valued measurable fUnctions u defined 

on (a,b) and satisfYing 



(1.9) 
b 2 I t u (x) I r(x) dx < + 0o , 

a 

'!he inner product in 9:/ is given by 

(1.10) 
b -

(u, v) • / u(x)v(x) �(x)dx a 

Jbllowing [18] {compare also [20] and [2)) let D consist of those 

u e 94 for which the following condi tiona are satisfied. 

(i) u and its derivatives to order n - 1 are continuous on 

(a,-b) • 

7 

(ii) u(n•1) is absolutely continuous on every compact subinterval 

of (a, b) • 

(iii) !. Lu t. W 
r 

• 

Let T be the operator in �- , with domain D • DT , defined by 

Tu = !. Lu for u e D • r 

(1.11) 

If a < x1 <. x2 < b and u, v e D, then 

X ;a 
f (VLu w utV}dx • [u, v](x2) - [u, v)(x1) 
X1 

, 

where [ u, v] (x) is a certain bilinear form in u, v, and their deri va­

tives to order n - 1 [4., p. 86]. Since v c W and � Lu f, � , 

it follows from the Schwarz inequality that VLu E, L(a, b) • Similarly 

utV E, L(a,b) ; so that from (1�11) the limits [u,v](a) • lim [u,v)(x) 
x � a 
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and [u, v ](b) • lim [u, v](x) exist. Define <Ql,y.= [u,v](b) - [u,y](a). 
x�b 

Define 

(1.12) D0 -- { u e D s· �� v> • 0 for all v f., n} o 

Let T0 be the restriction of T to D0 • Then [2, Theorem 1] T0 is 

a closed symmetric operator, 

In proving these facts Coddington introduces a function K(x, y) 

defined for a < x < b , a < y < b , which he shows to have the 

property that if tf. • [c,d] is a compact subinterval of (a, b) and 

v(x) t. L2 ( b ) , then the function w defined on b by 

(1.13) 
X 

w(x) • / K(x, y)v(y)dy 
c 

is such that w(n-1) is absolutely continuous on { , and on t[0 , 

the interior of cr , w satisfies 

in the sense that (Lv)(x) exists for almost all x and is equal to 

v�x) for almost all x • Jrom an expression [2, formula 2.10] given by 
Coddington for the derivatives of w it follows that 

(1.15) j • 0, 1, • • •  , n - 1 • 



K(x,y) has the explicit form 

n 

(1.16) K(x,y) • � &ijsi(x)sj(y) , 
i,j•1 

9 

where s1, • • • , sn is a set of liuearly independent solutions of Ly • o, 

and �j , i, j = 1, • • • , n ,  are certain numbers. 



CHAPTER II 

THE EXPANSION THEOREM AND PARSEVAL EQUALITY 

In this Chapter we show how von Neumann's theory of generalized 

direct sums of Hilbert spaces leads in a natural way to the expansion and 

Parseval theorems. 

Let L be a formally self-adjoint differential operator on (a,b) 

with nonvanishing leading coefficient p0 • We follow the notation of the 

last. section �of Chapter I. Suppose that the operator T0 in J.f has a 

self-adjoint extension H • This condition is always satisfied if L has 
. .. - .. 

real coefficients [19, p. 325]. Conditions for the existence of self-

adjoint extensions of a closed symmetric operator are described in Chap-� . -

ter IV, where references are also gi van. 

Let E( 1\) be the resolution of unity corresponding to H which 

occurs in the spectral theorem. By (1.6) there exists a·generalized di­
,.,.J 

rec t sum 'I which is unitarily equivalent to 1¥- and to which · E ( ,1 ) be-
,-...J 

longs. If u f., #)::i , let li' be its correspondent in "# • Denote by 
-.J ii"J 

and H the operators in "' corresponding to E ( � ) and· H res-

pecti vely. According to Chapter I, the assertien that E( ;:t) belol'lgs to 
� 'J,I means that 

where e14( �) is the characteristic function of (- � 1jf] • By (1.4) 



(2.2) 

From 2.1 and 2.2 

(E� )�, v) • { (ef'( ?\ )�("), v( i\) )d()('A) 
(2.3) 

or, in terms of the Radon-Nikodym derivative, 

(2o4) 
f\J ,.J V) dt<(E()1 )u, v 

• (u(M >.' �'0 >.> • 
do-(}4 ) . 7 . 

11 

Jrom the spectral representation (lo3) of H and (2o4) we conclude that 

if ';{ 0 ,.J I"J c.. Df( and v £, Cj:f then 

Thus 

(2. 6) ,.J� ,.._, Hu • w is equivalent to 'i( �) • ?\ 11 (?.) • 

Similarly we find, using (1.2) and (2.4), that 



1� 
� ,...�u � qJ Hence DR is the set of v � for which the last written integral is 

finite. 

Let c satisfy a < c < b 1 and define 

(2 . 8) j • o, 1, •• o1 n-1} o 

Let r:f be a non-degenerate compact subinterval of (a, b) with one end­

point at c : Let __ K{x, y) be the function me�tioned in the last section 

of Chapter I. Define the function K*(x, y) on (a, b) x (a, b) by 

{2.9) 

(icx, y) ir c ::: 7 < x 
I"*(x, y) • � -K{:x:�y) if x <::.. y � c 

lo for all other x,y in (a,b) 

For any x 6 6"0 and v � L2
(6") it follows that 

(2 .10) 
- x 
{ K(x,y)v(y)dy • fK*(x,y)v(y)dy • 

• 

'lhus the function w defined by (1.13) may also be expressed in the form 

(2 .ll) 

By (1.1.4) it follows that 

w(x) • /K*(x,y)v(y)dy. . cr 

{2.12) if w(x) satisfies {2.11) I where v e L2( a) , then Lw - v • 
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Let D be the manifold defined in the last section of Chapter I. 

Starting with u e D form 

Lu • v • 

By property (iii) in the definition or D I ? e � . J that is 

(2.lh) • 

Since -r is bounded on every compact subinterval or (a, b) 1 (2.14) im-
� . . 

plies v e L ·(cf) • Thus, if we define v by (2.11) in terms of this 
-- .. 

v � � (2.12) v satisfies Lw • v J and fUrthermore w satisfies the 
. . 

initial conditions (l.lh). Hence if1 in addition, we assume u & D0 

of (2.8)1 u (x) and w(x) satisfy the same linear differential equation 

(2.13) for almost all � � tf and the same initial conditions (l.lh). 
We c�clude that u(x) • w(x) for almost all :x: c 6' • That is, using 

(2.11} and (2.1.3), 

(2.16) 
if X C &" and 1 E S 

if xt� or y ��. 

'!hen if u e DH , using ( , ) to·-denote the inner product in both 



9f and fl. , 
. 

* ! - b -

l (Lu) (y)K (x, y)dy • (Lu) (y)fx (y)dy • I (Hu)(y)fx(y) r (y) dy 
o a a 

the last equality following from (2.5). Hence we see from (2.15) that 

(2 .17) 

if u e De , then for almost all X e J , 

,v 

u(x) • � ?t (u( i\ ) , fx ( �) )dcr-(7\) • 

We now make some estimates so that we may apply the Fubini theorem 

later. Let u t DJi , v c. t?p/. • Applying first the Schwarz inequality 

in_ iJ. (�)_ , then the Schwarz inequality for integrals-! then (2. 7), (1.4) 1 
;"(J 

and the unitary equivalence of W and 1:1 we see that 

(2.18) 

< { {�II Au(�) IJ ·J1 fxV\>JJ do--(�)} .J v(x) J • r(x)dx 

� { {1411211 �(�)\\2dcr-(ll)} t {!Jifxbl) l\ 2 d<l"{;;))} t j v(x) J ·r (x)dx 



Application of Schwarz's integral inequality to  the last integral yields 

� {t-.1 i\ (ii( 71) ,fxC�)) I ·I v(x) I • r(x) do-(�)} dx 
(2.19) 

<II 'Hii 1l {" \1 fx 1/ 2r(x)dx} !- {� \ v(x)l r(x)dx} t . 

Since v E, '# , the last written factor is tini te. As for the other 
� b { 2 2 f'actor, not�ce first that II fx II • { J fx(y) dy • J; \ K (x,y) r dy ; so 

that the square or the first factor is �. r(x) {J;.JK(x,y) 12dy} dx 

• L IK(x, y) l 2r (x)dxdy , which is finite since K(x, y) is piecewise 
dX/ . _ 

continuous by (1�16). Thus the integral on the left side of (2.19) is 

finite. 

Let u e De , v & DJ , where Db is defined by 

(2.20) D S • { v � D 8 v (x) • 0 for almost all x $ o} • 

� 
'!hen by the unitary equivalence or ,., and � and by (2 ol 7) 

(U, V)_ • (u, v)_ • { b u(x)_v{xlr(x)dx • � u(x)v(�) r(x)dx 

Because of the finiteness or the left side of (2.19); we may apply the 

Fubini theorem to conclude that 

(2 .21) 



According to Chapter I we may introduce a measurable family 

{ -{jJ m( � >} in iJ , in terms of which it is evident that if u, 
� � 
v e "" , then 

(2. 22) 

Thus (2.17) states that 

if u £ Dc then for almost all x & cf , 
(2.23) 

and (2. 21) states that 

If we may interchange summation and integration in (2.24) we may write 

(2. 25) 

16 

To justify the interchange we use the dominated convergence theorem� 
Since the interchange takes place within a O'(i\) integroa]., it is suffi-

cient to show dominance by an x-integrable function for almost all 
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7\ [ <r) • ('Ibis notation shall mean almost all It vi th res pee t to 6'.) 
'Ihus we estimate by the Cauchy inequality 

• 

It suff1ces9 therefore, to show that this last expression is an integrable 

function of x for almost all /i [ <5'] o But this expression is the inte­

grand in the second term of (2.18) � and we have already shown that the 

integr-al appearing there is .finite. As a consequence of the Fubin1 theo- . 

rem the integrand is integr'able in x for almost all 1\ [0'] • 'nlus 

(2. 25) is validated if u €.- D0 and v e, D6 • 

� 
Now De is dense in '#- � so if v E., DJ � the u for whieh 

-"\J rv 
� . 

(2 o 25) is true are dense in ?f. o Also it is clear that if w E. 'W, 

y deterndnes v (A) uniquely for almost all � [d""'] I and w( ?i) has 
-

a unique Fcurier exp�ion in fl.(�) o 'lhus ,· comparison of {2 o 25) and 

(2.22) shows that if v €. Db 11 then for almost all II [c:J"] 

-"J ,.._, ""'"' 

(v( A), YmC� ) ) .. J; (i\ v(x) r(:x:) fx(A ) , YmC�) )dx • 

k(�) . "-1 � 

Using {2.27) in the equality �(A) e Z (i(i\)1 lfmC� >)1'm< /l), and then 
1JP!I1 
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writing u instead of v , yields '·the important result that if u e, Dcf, 

then 

(2 . 28) 

for almost all A [00] 

U(n} • k � u(x}r(x}( llfxC?I> �-ifm<ll }}dx} -lpm( �} • 

This equation is an inverse formula to (2 . 23). Our next task is to ex­

tend these formulas to all u E.. 9:1 • When the extended formulas have 

been derived, a simple chan ge of measures will yi�ld the main theorem. 

Notice that (2 . 23) may be written in the form 

(2.29) 

valid for almost all x � 6' when u e. D0 o Also (2�28) may be writ­

ten symbolically in the form 

'lhe symmet'l7 of (2 . 29) and (2.30) is quite evident if we introduc� the 
� . "'-- � 

expression r (x, A) • rtf'x(A) and write (2o29) and (2.30) symbolically • - AJ 

as inner products in the forms u (x) • (li, r (x, ) ) and 

it( it) • (u, fi ( , i\)) • or course, 
.
in general � � (x, ) ¢ ;;;; J so 

these formulas have only heuristic value. 

It u E 11 whieh vanishes almost everywhere outside d 1 there 
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erlsts a sequence fun} , with Un � De n Ds , for which Un � u 

in ?:1-- • Since II un - Um 1/ • II un - U. tl , [11n} is a Cauchy sequence 

in ?/ , converging say to v . But since n v- u II� II v- ·li'n II+ lt-un -till 
• U v - 1tn It + tf un - u II , which approaches 0 as n .-.,. oo , we see that 

- � � ,...J 
v • u ; that is Un � u • 

Since 11n E.. DO' , (2�28� �olds for each 11n J that is, for almost 

all ,/) [0'\] and each n • 1, 2, • • •  , 

(2.31) 

Since Un � u , as remarked in Chapter 1 there exists a subsequence 

,.J /"'J 
( 

� l1nt such that � � ) --7 u( l\) for almost all 

. -
?! [c:r-J • We may, and 

shall, suppose this subsequence chosen from the beginning so that 

(2.,32) ltnC�) � u(�) if ?l belongs to a certain 
.
set 2:. whose -

complement is of a--measure zero� 

Thus if A e.. Z. every Fourier coefficient of � ( ;:, ) approaches the 

corresponding Fourier coefficient of u(�} J that is, by (2 .Jl), 

(2.33} 

approaches the m th Fourier coefficient of u ( 1\ ) with respect to the 

basis {fj ( 1\ >} b 'lhus when we show that the integral in (2 .33) ap­

proaches 



(2.3h) m • 1, 2, . . .  , k( A), 

we will know that (2. 34) is the mth Fourier coefficient or 'it(/\) ; 
that is that 

20 

(2 .35) (2.28) holds for every u � � which vanishes almost every­

where .outside [ 1 

not merely for u t D� • 

It remains to show that the integral (2 .33) approaches the inte­

gral {2.34) as n � ac. lhe square of the modulus or the difference 

or these integrals is 

{2. 36) 

Applying the Schwarz integral inequality and then the Schwarz inequality 

in � (�) we see that (2 .36) does not exceed 

Ll {IS I nn (x) - u(x) 12 u} � I (r Cx_> i'"'(i'l) • 'f-mC fl)) \2 dx} 
( 2 • 3 7) 2 2 2 ,_ 2 -�\.A l I( � - u II £- { r (x)} II rx<i\ >II dx o . . 

'lbe last written integral is finite by the argument following (2.19) ,. 

wherein r is now replaced by r2 ; and \\ un - u fl � 0 • (2 .35) is 

therefore proved, 
- -0' Reeall that, according to (2 .16) 1 the fx ( /\) • tx( 7\) which oc-
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curs in (2.28) depends on o o We wish now to find fx( A) which is 

independent or any particular compact subinterval, and for which (2.28) 
holds, at least under the restrictions which we have thus far placed on 

u • Recall that we know (2 .. 28) to be valid for every u e. 9f vanish­

ing outside d and almost all � [o-) • Let d1, cf� � and d"3 
= d 1 n d2 be non-degenerate compact subintervals of (a, b) • Let 

u c � and vanish almost everywhere outside o 3 • Since u also 

vanishes almost everywhere outside d'1 and d2 , (2.28) holds when 

6 is replaced by tf 1 or by 0 2 provided fx( i\) is replaced by 
�c-1 -J'.. fx (A) or rx2(�) respectivelya. Since equality of two elements of 

._ (�) 
- . 

� implies equality of their Fourier coefficients, we find for aJ..;. · ,  
most all 

(2.38) 

Since u vanishes almost everywhere outside cf3 , (2 .. 38) is equivalent 

to 

The validity of (2 .39) for almost all � [ (J') for each member or a count-

able set of u which is dense in the space of all u which vanish almost 

everywhere outside ,(3 implies that for almost all 1\ [<1"'-] and almost all 

X C., d3 



(2.40) 

Since {"fj ( 71 )} is a basis in '# (II) , we e one lude that 

(2 .. 41) i\f!1(7\) • �r!2('A) for almost all ?\[c-] and almost all 

X � d3 • 

-
Thus there exists rx(� ) defined for a <.. x < b sueh that if b 

�s a compact subinterval of [a, b] and x e, c{ , then �tr4( ,1) 
,w 

• )\ fx(� ) for almost all 7t [0"'] • We refrain from cancelling A in 

this equality sinee fS" may have a jump at 7\ • 0 o However, since the 
,.J 

product 7\fx(/\) oeeurs in (2.2��� we conclude that (2.35) is true if 
,._ 

the rx ( i\) occurring in (2 .28) is now interpreted as the extended func-

tion. 

In general if u is an arbitrary element of '?¥ , the integral 

in (2.23) does not converge. However, we may still prove that if u s:..11, 
and if', for a compact interval �C.../':._ , 

(2.42) 

then 

(2.4.3) u � u in fl as 6 expands to (- oo , oo ) • 
6 



2.3 

To begin the proof let w be an element of " which vanishes al­

most everywhere outside a compact subinterval 6 of (a, b) • By the 

unitary equivalence of ,.;. and j; . 

(2.44) I b u(x)w(x) r(x)dx • I (u("}, 'i( � } }d cr( �} • 

a A. 

On the other hand, usi�g (2.42)1 

where the interchange of order of integration is justified by (2.19) 

and the comments following that equation, and the interchange of order of 

of summation and integration by (2. 26) and the comments which follow it .• 

Applying (2. 28) now to the integrand in the last written integral we con-

elude that 

{2 .45) 
b -{ u6(x)v(x)r(x)dx • � (u(� ),w( 7l))dcr-(�) 

Subtracting (2.45) from (2.44) results in 
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where A' • A-A . 

Hence, by the Schwarz inequality and unitary equivalence of .,_. 
,..,_, 

and ew 1 

,..J 112 \\ N t\ 2 2 2' 
� II w I' u ( A ) d c:r( A ) • 1\ W" II I' ll u (A ) 11 d o-( i\) 0 A . . 6 

If we now let w(x} _ X tf (�) {u(x).- uo_(x)} , 1 t, follaws that 

\\ w \� 4 � f/1 w {/ 2 /, ti u( � ) If 2d cri �) · , or A 

1he last written integral does not depend on cf J so we may let 6' ex­
pand to {a, b) and obtain 

we conclude that 
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(- oo, co) • Hence (2. 4)) is proved. 

We now extend ( 2. 28) to all u e. � in the following way. De­

fine uJ(x) =. "X-cr(x)u(x) • By (2.35), for almost all � (o-] 

(2.47) 

k(�) . 
11'/A) • � � ?�u(x)r(x)(fxC� ), 'fmCIJ))� "Spm(/1) ' 

Let S' be the complement of & in (a, b). 'lhen 

� 

so that 1t8 � 1i in � as ,S expands to (a, b) • 

We summarize what we have proved in the following lemma. . .. 
g.48 Lemma. If u E., ';I , (2o47) defines !!!_ element .� in 

91, which converges � fj � � !! tf .expands � (a, b) , � II u II 
• I) 'U 'II • If uA(x) !!, defined !>z (2.42) in terms 2£ � 1i' , � uA 
converges � W to u !! A expand-s � (- O<J, 010 ) • � !.!£!! u C. fl. 
there exists ! unique u f., opf , .!!!!, limit E.£ uA defined 2l (2 .42) 1 

having �properties just describede 

We show next that for almost all A [c::r] , k(�) � n , the or­

der of L • In fact we shall prove that for almost all {\ [ o-] , each of 

the functions 

(2.49) 

satisfies L cfm • ?tr fm for almost all x � � , and that for almost 



all ii [ o-] , cr'1(x), •• " ' ?k(i') (x) are linearly independent. 

26 

According to (2.35), with u( ) replaced by f�( ) , for almost 

a11 A [ 0"" J 

that is, by (2.49) and (2.,16) 

Taking conjugates and applying ·(2.12) with v • A r fm and w • 'Pm , 
we see that 

(2.50) m • 1, 21 ••• , k(;;,) , 

since by (2.49) ( v(x) 12 •J r(x) 'fl!l(x) \2 � { r(x) }
2
11 :ri\1 2 , and the 

latter functi on is integrable by the statements following (2.19)� 

To pr�ve the linear independence for almost all /) [o-] of 

'f1 (x, A. ) , ., •• , cfk (�) (x, �) it suffices, in view or the 0 -measurabi-
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li ty of � of (1. 5), to show that 1'1 (x, )t)), • • •  , � (x, �) are li­

nearly independent on each compact non-degenerate interv81 cr tor almost - . 
all ,1 [&] in �..t , �- 11 2, • • •  , 0o • We wish to show that· ror 

almost all " [ cr] in A 1. 

1?, . 
(2.51) Lcm(/\) 'fm(x, �) • 0 

:m-1 

-

imp�es em(/\) • 0 , m • 1, . .. , -/!,. ·suppose· first that � is f'l:ni t� t 

We construct a a--measurable solution vector C( I') or (2.51) whieh is .. 
not null for each A for which (2.51) has a non-trivial solution; Once 

this construction is completed, the remainder of the proof is eaB,Y: 

Since 

(2,52) 

where (Afj) • (&ij ( i\)) is the Ch-andan matrix whose elements .are 

the inner product being formed in L2(cf) , (aij) is positive semi.-. 
- -

definiteJ so that, by (2.$2), (2.51) is ·equivalent to the system or · equa-
tions 

(2.54) 

.t 
L �j (7\ ) cj ( il ) • 0 , 
j•1 . . 

1 • 1, c ... , ,e · 9 



28 

By (a t ) in the definition in Chapter I of a measurable family, {2 .h9) , 

(2 . 53) , and the Fubini theorem, each �j (A ) is c--measurable j so that 

the rank f' ( ;1 )  of (�j ( 7l ) )  is also a- -measurable . In fac t, if' we 

define 

then Ez. • rj when r ::> ,l ; E;_. • � when r � 0 J and 

Er a {7\ E., f::l....t t some r x r minor of (&ij ('A ) )  is not zero} when 

1 <::: c:. - /) - r - � • 'lhus f'(;, ) "is a- -measurable , and hence, for each 

r a 0, 1, • • o 1 ..e 1 the Set 

{2 .56) 

is cr--measurable . 

(2 . 57) "F OJ • o . , � 
.t 

are disjoint and U Fr • 4£ . 
r = 0 

Suppose /\ e. .Ll..t ,  and is such that (2. 54) has a non-trivial solution. 
'lhen )j €... Fr , where r � P. - 1 • Choose an r + 1 by r + 1 sub­

matrix a of (Sfj Ci\ ) )  • Consider a fixed i satisfying 1 -: i � � • 

Defi ne an }._ -vector D (  i\ )  so that the jth component of D is 0 if 

&tj is not an element or a , but the jth component is the cofactor of 

&j_j in a when &.ij is an element of a • Consider all such -l-vec tors 
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D ( 7\ ) which can be obtained in thi s way by letting i vary from l to 

_,t and a vary over all r + 1 by r + 1 submatrices of aij � /) )  • 

List  these � -vec tors in s ome order, say nfc A ) ,  • • • , D�(/\ ) • lt 

le as t one ni (  � )  is not null since ,1'(/t ) = r • Thus if we define 

(2 • .58) 0� D {A e F r : n1 ( A )  .; 0} I i = 1, • • •  , pr , 

then each G� is cs -measurable and 

Pr 
U of • Fr o 

i=1 
(2 • .59) 

Define a s olution vec tor C ( /1 )  of (2 • .54) in the following ways 

(a) If A t. Fr, r = 01 • • ft..l .e- 1, 

[;l(ll ) � 
r 

if e.. G1 
let C (i\ ) ::  

c-1 � • _i • '2. ... , Pr .. D1 (A ) if /) E- oi - U 
j•]. 

According to (2.59) , {a) defines c ( /l ) on all of Fr 
• 

(b) If � t, �  , let C (/\ ) = 0 • 

According to (2 . 57) (a) and (b) define C ( � ) on all of IJ...e, • 

(c) If . /t .  t 4t, let c (� ) = 0 • 

Cleaz:ly, since all sets mentioned in (a) , (b) ,  and (c) are a- -

measurable, C (;1 ) is 0'-measurable . C ( � )  is a solution vector of 
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(2. 54) , that i s ,  of (2o 5l) ; and C (� ) r/ 0 for each ?\ for which ( 2 .51) 

has a non-trivial solution. We shall now prove that C ( � )  m: 0 for al­

mos t all /\ [ (S"] , and that dq:, is of cr -measure zero o When these two 

fac ts have been proved, the desi deratum mentioned in c onnec ti on wi th 

(2 ,  51) 'trlll be attained . 

(2 . 60) 

To prove that C( ?t )  ::: 0 for almost all ?\ [a-] , define 

( 1 cf.m C ( 71 ) if C { ?\) .j 0 
B ( 7\) • \ , I 0 i f  C ( A) = 0 

'-

w�ere I C ( � ) I means the Euclidean length of C ( � ) • B ( 1\ ) · is cr -
mea�urable •

. 
We wish to show that B ( f\ ) = _0 

_
for a�os t all /) (a-] � 

By the definition in Chapter I of an N-tunction 

that is, if we let bi (� ) , i = 1, • • •  , ./, , be the componen ts of B (7\ ) , 

( 2 .  61) 
kV,)  2 

� z:. ' b1 ( 1\ ) \ d 6'( 7l) � OQ I 
1=1 . 

the justific ati on for sunmdng to : k(� ) being the fact that B (?t ) = 0 

k {7\) . 
if � t JJ.L . 'lhus , according to Chapter I, b( " )  ::::.. L ·b1 (It) }i'1 (7\) 

. . 1=1 
,...., ;'\J 

det,ermi nes an element b e 'f:l • By (2 o 51) ,  ( 2 o 60) ,  and {2.,49) , . 



k(il) k (N 
0 • L.. b1 (?\ ) �i(x , � )  • L b1 ( 7\) (fx( � ) ,  1mC?t )) • Thus 

i•1 i•1 . 

Cb( 'A ) , fx( /\ ) )  1'1 0 , and so by (2. 42) bA(x) n 0 • Hence by (2.43) , 
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b • 0 in '# , which implies b • 0 in fl , which implies b (?t ) • 0 -
for almost all :1 [ o-] • Thus b1 ( i\ )  • 0 for almost all ?\ [c:r"J , 
i • 1, • • •  , k (  �)  • That is, B (  � )  • 0 for almost all il , so that, by 

( 2 o 00) , C ( it ) • 0 for almost all � � 
It remains to show that A�» is of 0"-measure zero . The argument 

is quite similar to the one just completed. Let A � tlf!JD • Since by 

(2. 50) , the <rm(x.,?\) are . for almost all �'A:( o-J .. solutions �:r an ordinary 

linear differential equation of degree n, there exist for almost all 

" ct:, A [ a--] , c1 ( � ) , • • • , Cn+1 ( � ) , not all zero such that 
, GO  

n+1 
(2. 62) L_ c1 ( � ) 9'1 (x, i\ ) • 0 • 

i•1 

'!he previous argument shows that (2. 62) implies 

We must conclude that 6 �  has 0'-measure zero. n,.us the assertion made 

in connection with {2.49) is proved. 

We now derive the fundamental theorem. Let I'( � ) = C,.Pjk( i\ )) , 

j , k • 1, • • •  , n , be an Hermitian matrix function of � defined on A ,  
and non-decreasing in the sense that ·1) /)i implies that f'(�) - f�) 



is positive semi-definite o Let r den.ote the family of n-vector .func­
tions of i\ , w (� ) • (uJ1(� ) , • • • , Wn( � ) ) which are ,f>--asur­

able in the sense that t.Vj ( A ) is measurable with respfltct to ;tJ ji and 
/'ij , i • 1, • • •  , n • Introduce an inner product in r according to 

the formula 

n 

( w , 'J.) • {. L. I.Qj ( fl ) /t k(/1 ) d/jk( � )  • j ,k•1 

... 
Let ..1l.. be the set of elements W � r for which 1\ w \\ • (w, u>) 2 
is finite, where as usual we identi� elements of r the norm of whose 

difference vanishes . 'lhe main theorem may be stated as follows [llJ 2] . 

2 .64 lheorem. Let sj (x,}\), 
j • 1, • o . , n , £!_ !. system 2£ ];!­

nearly in�ependent solutions of Ly • A ry : � there · exists !!! 
Ijermi tian, �-decreasing spectral matrix fl( 1\ )  and the associated _,_ _ ___ _ 
Hilbert space .11. � n-vectors u> � � !!. u � 1J 
fine · 

and we de-- - -

(2 . 65) 

then the vector cJ • (u.>{, • • . , t.V�) � __()._ , � Cc.J o  converges 

!!:. � � of _{'\_ as � expands to (a, b) , say --

(2. 66) --')1 w � _n_ • 

,f . 



If W • (w1, o • •  , Wn) , u (x) !!!l. be �ecovered according to the formula 

(2 . 67) 
n 

u(x) • � L_ sk(x., � )  wj ( � ) d /'jk(/l ) , 
j ,k-1 

where -� integral converges � � !.!!_ � • !!!.!, Parseval !elation is 

also valid, 

I I  w I I  • I I  u 11 • 

Rectprocally, _ !! . W f., _()_  � integral (2 o 67) exi sts in mean, � u 

which !!., defined thereby belongs � � , � !!!., terms � u , W may 

� recovered 2z (2. 65) , (2 . 66) . Moreover, !! E( � )  is !!!! resolution 

£!.. unity corresponding .!2_ H _, � !!!!f adjoint extension of T 0 � 

(1 .12) , � � almost all x 

(2 .69) (E ( �)u) (x) • I 
6 

n 

L BJr (X, 11 )  I.Vj ( II ) d_.f>jk( 7\ )  j,k-1 

where !!, � � E ( 6) � �  E(v') - E(f ) if A • (jA , V ] ; 
� !!  u e DH , � � almost !.!!. X I 

(2 .  70) 
n 

(Hu) (x) • I L sk (x, 1\ ) wj ( i\ ) � d �jk ( A ) , 
:A j ,k-1 I , 

where E:.! ,!ntegral :onverges in � in 1+ • 'lhus H � � spec-



!!.!!_ (diagonal) � in __()_ • 

Proof . Ace ording to ( 2 .  50) , for almos t all I\ [ a-- ] 
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(fx( ?\) ,  1.C � ) ) is a solution of Ly • � ry ; so that for almost all 

7l [ c:5'-] we may write 

(2 . n> , m = 1, 0 • � , 

Differenti ation of the rth one of these equations n - 1 times with 

respect to x leads, for fixed x , to a sys tem of n linear equations 

for the crj (i\ ) , j = 1, • •  � �  n , whose coefficient matrix has for 

de terminant the Wronskian of s 1, • • •  , sn which is independen t· of � 

and not zero . . Thus the orj ( A )  are polynomials in the x-deri vati ves 

of (?'x{� ) , Ym(� ) ) and s 1 1  • • •  , Bn of order not exceeding n - 1 • 

'Ihus by standard theorems [4, Chapter 1, 'lheorem 8.4  and following re­

marks ] on the analyticity of solutions with respec t to a parameter 

which occurs analytically, 

(2 . 72) Cmj ( A )  is an entire func ti on of 7t for each m • 1, • • • ,k(�) ,  
j • 1, • • • , n • 

Substitute ( 2 o 71) in ( 2 . 47} to obtain 

or by (2 . 65) 



far almost all 71 [a-] o 

Define 

The exis tence or this inte gr>al is assured by (2.  72) . Clearl7 (,ljkO,) ) 
is Hermi tian� That it is non-decreasing follows from the equalities 

Using (2 o 73) and (2 o 74) we now may write 
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The finiteness of the last written integral shows More-

over it follows from (2 . (:h) th·at 

(2 . 76) • 

By (2 . 48) � ,..J ""'-' 

u� � u in � as 8 expands to (a, b) J and now 

that we have the Parseval relation ( 2 o 76) for elements of the form 

the argument just above (2 . 31) shows that w d  converges in ...(\.. , say 

to W , and hence, applying (2. 76) again, 

(2 . 77) l l w ll • ll u ll • l t u ll . • 

By the third sentence following (1.4) and what we have j ust proved we 

may allow $ to expand to (a, b) through a sui table sequence o:f com­

pact intervals, thus s eeing from ( 2 .  73) that for almost all . /l [C7'] 1 and 

hence, by (2. 7h)1 for almost all ;;, [fjk l � j ,  k · 1� ;. � , n 1 that 

(2 . 78)  

We now find from (2. 71) and (2 .  78) that 



(2 .  79) 
n . k (/)) 

. '2. Bi (x, �  ) OJ  j (il ) Z 71
2 

cmj{� )C-Jirl. ( � )  • 

i, j•1 m•1 

'lli.US_p from (2 o 42) and (2 • 74) We find that 

n 

= I L. s1 (x, i\ )  c.Uj ( 'A  )d fji ( II ) • 

A iJ j•1 

According to (2 .48) u A � u  in <tf as A· expands to (a, b) , and 

the assertion connected wi th  (2. 67) is proved. 
1"'\,J 

According to (2 . 77) ,; is mapped isometric ally onto a subspace 

-D- '  of _fL , and (2. 78) gives the explicit mapping if w e ..L1. '  • 

Consider now an arbi tra.ry w e _f"L • Define u in ·terms of this UJ 

by {2.�) . Then the chain of equalities (2 . 7S) , read in reverse and 

omitting the J 1 s , shows that U' E, c;/, .P and mreover that the map 
� 

from ....(L onto 94 so defined is an isometry o 'lhus there exists an iso-
� 

metry of ....('\_ onto "- which is an extension of an isometry of __r'L1 on-
"""-

to � • We conclude that ..!1.. = ....n... r , and ( 2 .  78) provides the expli-
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� 

cit unitary map of ..11. onto � • Since (2o  78) was originally' proved 
r-J 

to hold for an arbitr� u 
rJ 

i and since u cannot correspond 

to two different elements of ....D... , we see that u bears the relation 

to w which is asserted in the theoremo 

To prove (2. 69) apply (2 .h2) to E (� ) u , remembering (2 .1) . The 

result is 

By (2 o48) th� left side of (2 . 80) tends in t?J:I. to (E(a ) u) (x) as 

A!. � (- oo ,  �) , but it is  clear that when A8 � lJ. the right 

side of (2� Bo) is I ( " u( � ) ,  �C� ) )do- ( �) o Thus by (2 o 79) and 
'6. 

(2. 74) 

(2.81) 

n 

• .{ L_ Si (x, il )  u.lj ( .71 )  d /'ji ( � ) • 

i, j•1. 

!his equality proves (2o 69) . To prove (2 . 70) we notice that by (2 .42) 
and (2. 6) 



and, just as in (2 o 81) , we conclude that 

n 
(Hu) A 

(x) • � L_ si (x, 'A ) w j ( i\ ) A d f ji ( /) ) • 

i, j•1 

An application of ( 2 . 48) proves (2 o 70) and completes the proof of the 

theorem. 

The spectrum s (H) of a self-adjoint operator H in an arbi-
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trar,y Hilbert space may be defined as the se t of pointe of non-constancy 

of the resolution of the identity E (  � )  of H o 'Ihe ·points of s (H) 

at which E ( 7l ) is continuous constitute the continuous spec trwn of H J 

the remaining points of s (H) constitute the point spec trum. �e point 

spectrttm consists of the eigenvalues of H [191 pp . 3.56, 3 .57 ] .  - . 
The spectrum of a self-adj oint extension H of a differential 

operator is usually defined [4, p.  252J 21, P o  58 J 7J 23 ] as the set of 

points of non-const�cy of 
"
the spec tral matrix f'(�)  , when (J is 

uniquely determined by H • (Sufficient condi tipns for uniqueness of f 

are - �ven in [2, 'l'heorea 7� h, Chapter 10, section 3 ] . )  The continuous 

spectrum is then defined to be those points of the spectrUll at which /' 

is continuo�s an� the point spectrum to be the remaining points . 

It might be expected that the separate definitions would agree, 

at leas t under fairly general conditions on L , but we have seen no 

proof �f this fact in the 11 terature o Stone indicates [ 20, p. .530 ] that 

the problem had not been investigated . at that time o While we have not 

been able to pro-ve the uniqueness of f' i we can prove that the spec trum, 

continuous spectrum, and point spectrum defined in terms of the spec ;t;ral 
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matr�x � c�structed in the proof of 'lheorem 2o64, agree w:i th the cor­

responding concepts defined in terms of H as an abstract operator, at 

least for all points except A a o o 

( 2. 8 2) Corollary � 'lheorem 2. 64. !!!! real number /\0 r 0 is 

(i) !. point of constancy, 

(ii) ! poin t � oontinuou!. increase, 

(iii) ! point � discontinuitz 

of E( 'A ) if � only !f. it satisfies the � condition � respect 

� 
Proof s By the construction of " given at the beginning of this 

chapter and the paragraph preceding Lemma 1. 6, 0' ( 1\ ) is equivalent 

to E(:1 ) • Define 

if � < 0 
&- ( �)  -

Then it suffice s  to prove that &- and {J are equivalent; that is that 

eac� is absolutely continuous wi � respect to the other . 'lhe absolute 

continuity of each ('jk , " j , k • 1, • • •  , n , with respect to (7- is 

immedi ate from (2". 74) . On the other hand the functi ons appearing on the 

left of the k('i) ) equations (2 . n) are linearly independent for almost 

all ·n [ c:r--) ; so that in particular for almost all � [ C"'] not every co­

efficient c11 { /\ ) ,  • • •  , C 1n ( � )  is zero o 'lhus every A .-set r of 
""' positive cs- -measure, and hence of positive a- - measure, contains a sub-
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set of posi tive 0' -measure on which one.s� at least, o! these fumtione, · 
s� c11 i s  not zero . Applic ation of (2. 7h) with j . •  k • 1 yields 

Since the non-negative integrand is positive on a set of positive 0"­

measure, fii ( r � > 0 0 Thue a- is absolu�ely continuous with re.s­

pect to f . 'Ihe c orollary is thereby proved o 



CHAPTER III 

BOUNDARY CONDI TIONS 

Coddington [ 2, nteorem 3 ]  has charac terized the self-adj oint ex­

�n�ions of T0 (Chapter I) e His method uses the facts that '91 is a 

function space and T0 a differential operator e The theorem in ques­

tion may be proved quite abstractly for closed symmetric operators in an 

arbitrar,y Hilbert space, using nothing deeper than the simple st  facts 

about finite dimensional spaces o 

Let T0 be a symmetric operator in a Hilbert space � with do-
* main D0 and with adjoint T • T0 ., Let D =-- D.r • If u, v E, D 1 

define {u, v} = (Tu, v) - (u, Tv) ., Sinc e {v, u} • - {u, v} 1 

_{!, u} • 0 it and only if {u, v} • 0 • We are interested in condi­

ti?ns which characterize the selt-adj ointness of an exte�sion H of T 0• 

Let 6 E DH , and �* =::::: Dg* • Suppose that: T 0 is closed so · that 

T* � To (Chapter I) . Since all self-adj oint extensions of T 0 are 

contained in T we need (and shall) consider only those H satisfying 

T0 C. H S T • Taking ad�oints shows that T0 S. H* � T , since 

T"' • _ _ To • Th.us H is sel.f-adj oint if and only if f:j, • 6 * . Nov by 
definition of adj oint it .follows that 

tt • Cu e . D 8 {Hv, u) • (v, Tu) tor all v e. A] 

• { u €, D t (Tv, u) • (v, Ttl) for all v c, A} • 



Thus 

(3 .1) � • {u � D s { v, u} • 0 for all v E. 6.} • 
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Let us suppose dim Dfn0 to be finite (a condi tion which is 

satisfied in the case of differential _operators) .  (3 ol) shows that A* 
is obtained from D by imposing conditions on u � D of the form 

{ v, u} • 0 for v c, � • Such condi ti ona , because of the way in 

which they arise in connection with differential operators [ 2, p • . 194 

. and ·p.  198 ] , will be called boundary conditions o  A fini te se t of such 

· �o�ary M�onditions on elements 
·
u E, D , say {vi, u} • 0 ,  

1 • 1, • • •  , k , will be called dependent with respect to D if there 

exist co_mplex numbers c·11 • • •  , ck , not all zero, such that 

tt oi { �i • u} • 0 r.or all u S D • Otherwise the boundary condi-

tiona will be called independent. In general not all the boundar.y condi� 

tiona occurring in the characterization (3.1) of 6* will be indepen-

dent. In .fac t, we prove �e following lennna.: 

3 . 2 Lemma. !!!!_ maximum number 2f boundary c onditions 2!_ � � 
{ v, u} • � , � v f A , whieh !::! independent � respe ct � D 

and which suffice to charac terize 6 * � in (3 .1) is equal to 

dim D /6 * (which !! f'ini te since .dim D ID0 is finite) • 

Proof . Let dim D/ {l *. • k • Suppose tl)at there exist 

v1, • • • , vm e ,6. such that the boundary c ondi tions 

(3 . 3) j • 1, o o o 1 m ,  
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are independent vi th respect to D, and that U1 < k . Let w1, • • • , vk be 

in D and linearly independent modulo �* J so that 6* and w1, • • •  , •t 

together span D • 'lhere exists a non-trivial solution e 1 ,  • • •  , em of 

the equa tiona 

(3 .4) 

m 

Lcj {vj, •1} • 0 ,  
j•1 

1 • 1, • • •  , k r 

Moreover, by (3 .1) , every element w €. l::l. * satisfies 

(3.5) • 0 . • 

From (J.h) and () . S) it follows that every- u c D satisfies 

that is, the bound� conditions are de�endent vi th respec t to D • 1his 

is a contradiction) so that we must con6lude m � k • 

Now let m denote the maximum number of independent boundary con­

ditions of the form (.3 � .3) such that 6. * may be represented in the forJil 

Suppose m <. k • Let Y11 • • • , vk €, D be linearly independent modulo 



• '!here exists a non-trivial solution c1, • • •  , ek of the equations 

(3 . 7) 

so that 

(3 .8) 

k 
By (3 .6) we conclude that 2._ ciwi S 1•1 

j • 1, • • •  , m J 

j • 1, • • •  , m • 

* 6 , contradicting the indepen-

denoe of v1, • • •  , vk modulo 6 * . We therefore have · k • m 1 and the . - � 
lemma is proved: 

C, � • '!hen v1, • • • , Vn are 11-
. .  -- - --

nearly independe�t modulo D0 !f. � only !!. � boundary condi ti�s 

{ vj , u} • � , j • 1, • • • , n , !!:!_ indepenqent !!!!! respect � D : · 
Proof' . If w � D , application of (3.1) to D in place or 6 

shows that 

(3 . 10) w E. D* • D0 if and only if' {w, u} • 0 :for all u f., D • 

n 
This fac t, applied to w • .� cjvj , proves the lemma. j•1 

Lemmas ) . a and 3.9 imply that 

(3.11) dim �/Do • dim Df6* • 
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3.12 Definition. Let �1, • • • , (\: E. D . If the boundary condi­

tions �� Cl:l.} • 0 , i • 1, • • •  , k , on elements u e D are indepen-

dent with respect to D and if { CI.J., <Xj} = o ,  i,  j = 1, . . . , k , the 

boundary condi tions will be called self-adj oint [ 2, p.  198 ] .  

3 .13 Theorem. Let T0 be ! closed symmetric operator !]! /{ 
� adj o:tnt T = T0* . (See Chapter I . )  � D = Dr  and D0 == tlr0 • 

Suppose that dim D /Do .!! finite . Let H be !!!. operator sati sfying 

T9 � _ H C:: T J !.!! 6 =- DH � 6 * :::::::. DH* • � H is self­

adjoint i:t � only g dim D /D0 • 2k � there exist a1, • • • , <lie C. D 

� that � bo1mdary c onditions {u, aj} • 0 .!::! self�adjoint, 

j • 1, • • •  , k , and 

(3.14) 

Proof . Necessi tys Assume 

(3. 15) 

M­H • H ; so that 

Le� dim .6/D0 :r k • By (3.11) and (3 .15) dim D /Do = dim D /6 * + dim !!' /D0 

= �m � /D0 + dim 6/Do • 2k . Let a1, • • •  , ak f, {;j, and be linearly inde­

pendent _modulo, D0 • If u, v t, � , then by (J.l) and (3 .15) , { u, v} • o. 

In particular {Of, aj} • 0 , i ,  j ,  • 1, • • •  , k • By Lemma 3.9 the boun­

d� c?nd�tions {u,Oj} • o, j • 1, • • •  , k, are independent with respect 

to D ; hence they are self .. adj oint. Finally, it  follows from (3.10) that 
. . 

u � D impli es { u, v} • 0 for all v E- D0 • We see therefore, using 
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(3 .1) and the fact that D0 and a1 , ,JO . , Clk span 6 , that 

6 ·  .l:l * • {u e n g {v, u} = 0 , all v E, .6 } = 

• {u t D  : { u, v} • 0 , all v s 6} 
• . (u e D t { u, aj} • 0 ,  j a �� . . .  , k} . 

_ S�f�eieneyt Suppose that dim D /D0 • 2k and that 6 is defined by k 

self-adj oint boundary conditions as in (3 .14) . By Lemma ).9, 
_., 

a1, • • •  , ctk are linearly independent modulo D0 • Let � be the 11-

ne ar  manifold spanned by D0 and a1, • • •  , ak • Then 

(3 �16) 

By (3 el4) and the self-adjointness eondi tion, aj & .6 , j • 1, o • •  , k • 

'lhus 6 C 6 . We shall show that 

(3 .17) 

It suffices, in view of (3 .16) , to prove dim �/Do • k • By the defini­

tion (3 .14) or 6 and the independence or the k boundary conditiou 

occurring in that definition, it follows , exac tly as in the proo.r or 

Lemma 3 . 2, that dim Df6 • k • Using this fact we are able to write 
2k • dim DfDo • dim Dff:l. + dim 6/D0 • k + dim h./Do J from which we con-

elude that 
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dim Afno • k • 

� 'lhus (3.17) is proved. From (3.16) �d the deftnition of Ll it follows ' ' 
k 

that each u E D c an  be written in· the form 1r\• u0 + L. biai , where 
i•1 

Uo £ D0 and b� o , , , � are scalars. If v cc, !:::, has the correspon-ia 
k 

ding representation v • v0 + 2.._. cj <lj ., we find that 
j•1 

• 

By (3 .10) any brace with u0 or v0 inside is zero � and by the self• 

adj ointness propert.y, the last sum vanishes. Thus ror. each pair or ele­

ments u, v C, 6 , [ u, v} • 0 • Hence if u €: 6 , u also 

satisfies the condition expressed in (3 .1) that it be in �* J that �s, 
i1 C d * . � the other hand, by (3 .11) and (3 .18)  we see that dim D/� * 

. . •. � dim �/Do • k J  so that 2k • dim D ,1:>0 • dim Df6 * + dim .� /6 + dim 6/D0 
• k + dim l:l* lA + k • !hue 6 * • � .  Since H and H* have a connnon· -ex­

tension T, this equality implies g'f' • H • 'l'he theorem is thereby 

proved. 



CHAPTER IV 

SProm.A OF SELF-ADJOINT EXTENSirns OF A SYMME'lRIC OPERA'IDR 

Von Newnam's  'Iheory of Symmetric Extensions 

Proofs of statements made in this section � be found in [20, Chap-

ter II ] ,  [161 Chapter VI ], [1, Sections 67 and 78-80 ],  and [19, Section 123 ] .  

As in  Chapter I let A be  a closed, s.ymmetric operator in a Hilbert 

spac� ,.. • If R_ and R+ denote the respective ranges of A - i and 

A + i , then R.. and R+ are closed subspaces of ')/. • Since the eigen-

values of a symmetric operator are real, A + i maps DA in a one to one 

manner onto R+ • Thus (A + i) -l exists . The operator 

V_ • (A - i) (A + i) -l , the Cayley transform of A , is an isometry with do­

main R+ and range R- • V deternd.nes A uniquely according to the for­

mula Au • i (I + V) (I - V) -lll for u 8 D A • Moreover, there is a one to 
,.J 

one correspondence between the isometric extensions V of V and the 
-.J - � 

symmetric extensions A of A , which is such that V corresponds to A 
� r-J if an� only if V is the Cayley tranB1·orm of A • A is self-adjoint, 

moreo�er, if and only if V is urd tary, that is, if and only if ·:ov • '):l­
and the range Rv · �  '#- • From these :facts it follows---that . in order to de­

termine the self-adjoint extensions of A , it is sufficient merely' to de­

termine the unitary extensions of V • But every unitary extension of V 

can clearly be obtained by mapping the orthogonal complement I4 .J.. o:f the 

dcimain R+ of V isometrically_ onto the orthogonal complement R- ..l of 

the range R- of V • If V' is  an operator effectin� this map, �en a 
� � 

unitary e��nsion V of V is obtained by defining V to agree wi th  V 
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on 14 and to agree with V' J.. on R+ • Of course, a necessar,y and 

sufficient condition for the existence of such a V 1  i s  that 

m • dim R...L [6, Section 16 ] and n • dim K_ J. be. equal, not neces.;. 

earily .finite, cardinal numbers . m and n are known as the defect num­

bers of A • '!he ordered pair (m, n) is known as the de.fec t index ot 

A • Notice that m • n • 0 is a necessary and sufficient condition for 

A to be self-adjoint. 

We assume henceforth that m • n • Von Neumann has g1 ven an ex-
,..., 

plicit ��ress�on .for the domain Df of the self-adjoint extension A 
,...J 

of A whose Cayley transform is the V described above . First, DA* 
aan be wri tten as a direct sum 

(4 .1) 
..L R- • 

Moreover, B+� is the eigenspace or A* corresponding to the 

eigenvalue i and R--'- the eigenspace of A* corresponding to the 

ei genvalue -1 • Furthermore, if u e DA* is represented according 

to the decomposition (4.1) in the form 

(4. 2) 

then [20, p. 344] 

(4 .3) Im(A*u,u) u 11 11+ 11 2 - J t  u.. II 2 • 
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It A is a self-adj oint extension of A , then [1, p. 24�] 

(4.4) 

,..,J 
where V' is the isometry occurring in the description of V ._ 

'lhe Spectrum Of A Self-Adjoint Operator 

Let H be a self-adj oint operator in a Hilbert space If , 'lhe 

resolvent set of H [19, Section 132 ] c onsists of those complex numbers 

£ such that (H - t)  -l is  defined and bounded on "' • '!he c omplement 

in the c omplex plane of the resolvent se t is the spectrum s (H) of H • . - . � 

�is definition agrees vi th the one given in Chapter II [20, 'lheorem 5.11 ) •. - - . 

s (H) . is a non-e�ty subset of �e real axis and c ontains all the eigen­

values of H [19, Sec tion 132 ] .  The limit spec trum, or essential spec­

trum, of H c onsists of all points in the derived set a(H) 1 ( t 00 

being included when appropriate) , as well as the eigenvalues of H of 

infinite multiplicity. Such eigenvalues cannot occur with differential 

operators , 

Spec tra Of" Self-A?.' oint
_ 
,Extensions 

We.yl showed [ 23 ]  for the second order real differential operator 

�entioned �n the introduction, defin�d on a half-axis, and ip the limit · 

point -�ase, · tha� the essent�al sp�c� is i,ndep.endent of the particular 

s�lf'�..adj oint extension of the ope�ator . Rec�n�ly, Heinz [8 ] showed that 
the independence of the essential spectr� of a self-adjoint extension of a 
closed symmetric operator A with respec t to the particUlar self-adj oint 



extension is actually a property shared by all A having equal and fir.i te 

defect numbers . Heinz derives his result by use of the spectral represen-

tation or self-adj oint operators . 

Hartman and Wintner [ 7 ]  have complemented Weyl' s result by proving 

that, in the case considered by Weyl, every real number not in the essen-

ti al spectrum of L is an ei genvalue of some self-adj oint extension of 

L • '!heir argument uses differential equations . See also [.3 ], where a 

different proof is given . 

Actually the theorem of Hartman and Wintner i s  true in the situation 

considered by Heinz . We prove the following theorem. 

4 • .5 Th.eoremt Let A )�!. ! closed symmetric operator � equal 

defect n'UIIlbers m • n > o.  Let ?\ be ! real number not � � e ssen­

tial spectrum
_
� � !!!£-adjoint extension B � A • � there e:xists 

,.., 
! �-adjoint extension A of A � � � is � eigenvalue � £-

,_, 

nite multiplici ty £! A • 

,.., 
Proof. If A � s (B) , we may take A • B , since the onl7 points a;. • •• � --

or •(B) which are not in the essential spectrum are eigenvalues of 

finite multiplicity of B [19, Section 133"] . Suppose then that 

7) f{ s (B) , so that (B - /l  ) -1 is defined and bounded on all of ,;. • 

Since .1. there exists a non-zero element v . £ R+ , which therefore 

sati sfies 

(4.6) A*v • iv • 

Clearly (B - � ) -1(i - � )v r/ 0 , and i i s  not an ei genvalue or B ; so 



53 

that u , defined by 

(4 . 7) u • (B - i) (B - � ) -1(1 - � )v 1 

is not zero . Since (B - fi ) -1 is a right [191 P o  295] (though not in 

general a left) inverse of B - i\ , (B - it )  (B - A )  •ly • v J from which 

(4.8)  B (B - /1 ) -1.,. • � (B - ) ) -1,. + v • 

Subtracting i (B - �)-ly from both sides of (4.8)  leads to 

or 

(4. 9) 

( ( 
-1 -1 

B - i) .!3 - 'A) v • ( A - i) (� - 'A ) v + v , 

v - (B - i) (B - "A) -1.,. • (i - 71 )  (B - ,/) )  -l
v • 

Since the right side of (4 . 9) belongs to DB , the left side does also, 

and 

(4 .10) (B - i) {v - (B - i) (B - I' )-1v} • (B - i) (B - /l) -1(i. - �)v • u 1 

where we have used (4. 7) . Again using (4 . 7) in the term in braces in 

(4 .10) , one obtains 

(4 .11) (B - 1) {v + ( ?\ - 1) -lu} • u � 



Since in general v t DJ3 , we may not distribute B - 1 in the braces �  

However, since B C. A* , (4 .11) implies 

(4 .12) 

1hus v + ( 1\ - i)-lu E:, DA* • Since v S R+ .J.. C DA* , we find that 

u E. DA* J (4.12) and (4 .6) then imply 

Thus 

or finally 

(4 .13) 

(A* - i)u • ( �  - i)u 1 

A*u • � . f\ U  • 

'!his equation implies first that (A*u, u) • A. (u, u) is real; so that 

b:y (4 . 3) 

(4.14) 1 1 � 1 1 - Jl u.. /1 . 

Since m • n there exist isom�trle• of R+ J.. onto R_ .L J and 



'' 

ac cording to (4.14) , we may choose one, s� V '  , sueh that V'U+ • -u. • 

Thus u • as expressed in (4 .2) 1 has the obvious representation 

u • llo + (I - v•)u+ , 

wi th  11o E., n1 • By virtue of (4 .4) , this equation implies · u � Dr • 

Since A <:; A* , (4.13) then shows that · !u • � u  • '!he theorem is 

thereby proved. 
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