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Abstract 

 Microbial chemotaxis receptors (chemoreceptors) are complex proteins that sense the 

external environment and signal for flagella-mediated motility, serving as the GPS of the cell. In 

order to sense a myriad of physicochemical signals and adapt to diverse environmental niches, 

sensory regions of chemoreceptors are frenetically duplicated, mutated, or lost. Conversely, the 

chemoreceptor signaling region is a highly conserved protein domain. Extreme conservation of 

this domain is necessary because it determines very specific helical secondary, tertiary, and 

quaternary structures of the protein while simultaneously choreographing a network of 

interactions with the adaptor protein CheW and the histidine kinase CheA. This dichotomous 

nature has split the chemoreceptor community into two major camps, studying either an 

organism’s sensory capabilities and physiology or the molecular signal transduction mechanism. 

Fortunately, the current vast wealth of sequencing data has enabled comparative study of 

chemoreceptors. Comparative genomics can serve as a bridge between these communities, 

connecting sequence, structure, and function through comprehensive studies on scales ranging 

from minute and molecular to global and ecological. Herein are four works in which comparative 

genomics illuminates unanswered questions across the broad chemoreceptor landscape. First, 

we used evolutionary histories to refine chemoreceptor interactions in Thermotoga maritima, 

pairing phylogenetics with x-ray crystallography. Next, we uncovered the origin of a unique 

chemoreceptor, isolated only from hypervirulent strains of Campylobacter jejuni, by comparing 

chemoreceptor signaling and sensory regions from Campylobacter and Helicobacter. We then 

selected the opportunistic human pathogen Pseudomonas aeruginosa to address the question of 

assigning multiple chemoreceptors to multiple chemotaxis pathways within the same organism. 

We assigned all P. aeruginosa receptors to pathways using a novel in silico approach by 

incorporating sequence information spanning the entire taxonomic order Pseudomonadales and 

beyond. Finally, we surveyed the chemotaxis systems of all environmental, commensal, 
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laboratory, and pathogenic strains of the ubiquitous Escherichia coli, where we discovered an 

ancestral chemoreceptor gene loss event that may have predisposed a well-studied 

subpopulation to adopt extra-intestinal pathogenic lifestyles. Overall, comparative genomics is a 

cutting edge method for comprehensive chemoreceptor study that is poised to promote synergy 

within and expand the significance of the chemoreceptor field. 
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Preface 

 In the following dissertation, comparative genomics methods were used to study 

microbial chemoreceptor sequences, structures, and functions. Microbial in this case refers 

primarily to Bacteria, though chemoreceptors are found in Archaea as well (hence the broader 

term in the title). The first chapter will be an introduction, in which I provide a brief overview of 

the motivations behind this work before diving into the scientific discipline (computational 

biology), methods (comparative genomics), and tools (bioinformatics) that are utilized 

throughout. This section covers aspects ranging from the basic (core tenets of biology) to the 

technical (pitfalls and nuances of comparative work). I will then introduce the field of chemotaxis 

with a special emphasis on chemoreceptors. This introductory “review” will be further subdivided 

into two major sections corresponding to the two major communities that study chemoreceptors: 

structure-focused signal transduction work and microbiology-based behavioral/physiological 

studies. The motivations of these two fields are quite different, with the former pursuing more 

fundamental and mechanistic understanding and the latter seeking applied connections, such 

as links to pathogenicity. 

 After the introductory chapter, the main body of the dissertation is divided into four 

additional chapters which correspond to full peer-reviewed publications, manuscripts submitted 

for review, or featured aspects of manuscripts in preparation, all of which have been produced 

during my graduate work. Biology today (especially computational work) is a collaborative and 

highly interdisciplinary endeavor, so for each chapter I provide the contributions of myself and 

the other authors, as well as contributions outside of authorship but still deserving of mention. 

Each chapter will consist of an abstract, introduction, results, and discussion section, and any 

materials and methods specific to that paper or published in the manuscript will accompany 

these chapters as well. Chapter 3 (Assigning Chemoreceptors to Pathways in Pseudomonas 

aeruginosa) represents my most significant independent effort as a graduate student. Beginning 
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with the first chapter, the studies increase in organizational complexity from studying a handful 

of proteins in a limited set of organisms to comparing entire sets of chemotaxis systems across 

broad taxonomic divisions. This serves to illustrate the power of comparative genomics to adapt 

to the scale of the biological problem, and for proteins like chemoreceptors, this is a tremendous 

methodological advantage. 

 After the main body, the concluding chapter will contain my opinions on where the 

chemotaxis field may be heading in the future, especially if comparative genomics can be used 

to tie sequence and structural work to physiological observations and functions. This 

dissertation provides evidence that this type of interdisciplinary synergy is not only possible, but 

has already yielded significant contributions to the chemoreceptor field. I will also present 

specific suggestions for future work that can be used to extend the impact of this dissertation in 

years to come. 
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Chapter 1: Introduction 

Overview 

Three major sources have influenced this dissertation: a rapidly evolving technology 

(genome sequencing), an innovative theory-driven methodology (comparative genomics), and a 

time-tested model system (bacterial chemotaxis). Work like this was not possible even 10 years 

ago, as it relies heavily on great strides made in genome sequencing technology to produce 

sequences for comparative analysis. In order to conduct said analysis, a combination of 

comparative genomics and protein sequence analysis provides the most direct route to 

connecting raw sequences to biological reality. Finally, cutting edge data and methods require a 

well-studied system to probe, and bacterial chemotaxis is one of the most extensively 

characterized systems in all of biology. While genome sequencing technology made this work 

possible, the latter two elements will be the focus of this dissertation. 

The “genomic age” for biology began with the initial sequencing and analysis of the human 

genome in 2001.1,2 The technological capabilities for sequencing genomes has advanced at 

beyond exponential rates, and the resulting eruption of data has been staggering. The shear 

amount of sequence data is a technical challenge unto itself, but taking raw sequence data and 

connecting it to assayable biology is a different matter entirely. The DNA being sequenced in 

these genomes contain coding regions for genes, which in turn can be translated into protein 

sequences of amino acids. Proteins are the prime effectors of biology, serving crucial roles as 

both the structure and the molecular machines for all living cells. By knowing a protein sequence, 

we effectively have a blueprint that provides clues as to how that protein may function. 

Understanding how proteins function is fundamental to our characterization of well-studied and 

novel biological systems. Moreover, many diseases have been connected to protein function (or 

dysfunction), making them highly actionable avenues for therapeutic study. 
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Protein coding sequences are rarely held constant; rather, these sequences are major 

sources of evolutionary adaptation within all life. Essential or beneficial genes are passed on to 

the next generation, and during this process, mutations can occur. Mutations may be neutral, 

exquisitely fine-tune the existing function, or dramatically alter and even break the protein for 

which they code. However, there are positions in sequences that resist the urge to change, in 

some cases staying constant across vast evolutionary distances. These positions are conserved, 

and one of the core tenets of biology is that conserved positions in proteins are essential for their 

structure and function. Thus, by studying how proteins change over time, we gain insight into how 

they work in the present. Furthermore, by comparing how the sequences that encode proteins 

exist in a genomic context, we gain expanded insight on both that protein’s function and its 

potential contribution to observable behavior. 

As for the model system, bacterial chemotaxis is one of the most highly characterized 

systems, where the majority of involved proteins have known functions and assayable phenotypes 

(allowing for productive comparative genomics analysis). Chemotaxis is the phenomenon by 

which motile bacteria with flagella navigate through environments to find those which are suitable 

for their survival and growth. Chemoreceptors are the proteins in this system that sense 

environmental signals such as nutrients, toxins, or compounds from other bacteria, “steering” 

movement toward attractants and away from repellents. Because of this crucial role, the number 

and type of chemoreceptors found in a given organism (the chemoreceptor suite or repertoire) 

serve like a GPS (Global Positioning System). There are several proteins that directly interact 

with chemoreceptors which, along with a multitude of accessory and regulatory proteins, provide 

numerous functional contributions and interactions which can be probed both experimentally and 

computationally. That said, there are still many unanswered questions remaining for chemotaxis 

despite its intensive study, and chemoreceptors tend to be at the center of them all. 
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For the overall structure of the dissertation, we begin with a comprehensive introduction 

to comparative genomics methods including theories, assumptions and justifications that shape 

the overarching scientific philosophy guiding the work. Afterwards, we provide a thorough review 

of chemotaxis from two major viewpoints: first as a mechanistic model system for structural 

biologists, and secondly as a biological system that contributes to overall behavior of microbes 

ranging from commensal organisms to major pathogens. Next, the main body of the dissertation 

comprises four chapters that span a broad range of biological scales, demonstrating how the 

combination of structural information and phenotypic information can potentially provide more 

biological relevance for the study of chemoreceptors than either alone. Finally, we conclude with 

predictions for where the study of chemoreceptors is heading, followed by concrete suggestions 

for future work that may contribute to actualizing these forecasts. 

 

Comparative Genomics Materials and Methods 

 While genes have been inherited and have been mutating since the advent of life, traces 

of these events are visible today. There are patterns and tendencies for genetic change that can 

be observed, analyzed, and probed experimentally. One example for this is that when an 

evolutionary innovation works, it may confer survival advantages and propagate across a wide 

diversity of organisms. Further iterations of this gene become variations on a theme, diverging 

away from a common ancestral gene. These variations may sample a wide space of possibilities, 

but there are natural forces (e.g. chemistry and physics) that shape and constrain this space so 

that we can detect similarities between related sequences. This makes comparative approaches 

extremely powerful methods of biological inquiry when the right tools and perspective meet the 

right sequences. With the maturation of genome sequencing technologies and ever-increasing 

computational power, it is both exhilarating and also an extreme privilege to study biology in this 

era.  
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Computational biology is a large scientific discipline possessing a tremendous range of 

diverse methodologies. As the name implies, the commonality is working in silico rather than in 

the wet lab. At the core, computational biologists use bioinformatics methods and tools to 

interrogate biological questions. Computational biology is often confused with bioinformatics, but 

the distinction is that bioinformatics focuses on method and tool development rather than 

biological analysis (though members from each group often cross this line).  This discipline is 

complementary to traditional experimental methodologies, and can generate and test 

hypotheses as well as inform and guide other experimental disciplines. To be successful, one 

must be able to critically assess bioinformatics tools in addition to providing justifications of 

assumptions and controls, in much the same fashion as traditional experimental work. As such, 

one cannot overlook the necessities of appreciating the work from both communities and 

fostering collaborative interdisciplinary relationships. 

From a computational standpoint, one can study proteins over a range of biological 

scales from the molecular and structural level (biochemistry and biophysics) all the way up to 

the physiological behavior of an organism (microbiology and ecology). When a protein is placed 

within a greater biological context, one may be able to decipher how a given protein interacts 

with other proteins and systems in an organism (systems biology). Doing so often requires an 

understanding of the evolutionary history of the gene encoding that protein (phylogenetics), 

which provides fundamental insight that no other experimental methodology is able to replicate. 

In order to accomplish all of these goals, one can investigate how protein sequences (and the 

genes encoding them) change across different organisms (comparative genomics). 

Comparative genomics, by a broad definition, takes sequence data and uses studied and 

characterized examples or well-established biological theory to explain, predict, or advance our 

understanding of comparable unknowns. 
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This work is guided by several core biological principles and theories. The first and 

foremost of these is that the amino acid sequence of a protein determines its structure, which in 

turn determines its function. Even in the case of unstructured or disordered proteins, they owe 

that very disorder and its functional role to the sequence. Second, despite this fundamental 

understanding, working with only a sequence and arriving at the function of a protein is rarely a 

straightforward process (unless the sequences are almost identical). In doing comparative work, 

one cannot infer function without having witnessed or connected this to previous studies or 

experience. Even so, it stands as a powerful method to answer unanswered biological 

questions, including refining and enhancing previous conceptions of even well-established 

functions. Connecting sequence to function in the most direct, accurate, and reproducible 

manner is a major fundamental question facing biology and is a recurring theme throughout this 

dissertation. This is especially significant in light of the flood of sequences and relative lack of 

characterized structures and functions.  

Therefore, to leverage the vast array of sequences in the most efficient way possible, 

comparative genomics with a focus on protein sequence analysis is the experimental 

methodology of choice to answer this question. In all cases, the most important aspect of 

comparative genomics is choosing the right comparative target for one’s query. To this end, 

there are very few established protocols to accomplish this initial and critical step, and a great 

deal of research and understanding of the relationships between organisms (taxonomy) is 

essential. Furthermore, a firm command of evolutionary events and the potential trajectories and 

fates of protein-coding genes is also invaluable. When one does produce a comparative set, it is 

also important to establish what type of relationship exists between the two groups. Often in 

biology, the term homology is used when one protein is similar to another. However, there are 

multiple levels and classes of homologous relationships, each with potential ramifications for the 
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results of any analyses that would result from a comparison. The following section addresses 

these distinctions in greater detail. 

Basic Guiding Theories and Concepts. The central dogma of biology is that genetic 

information is encoded and transmitted to the next generation through DNA, which is 

transcribed into RNA, which is then decoded into proteins via translation. Proteins are molecular 

machines and effectors of biology, giving life shape, form and function. The amino acid 

sequences encoded by DNA gives rise to protein structure, and another core tenet of biological 

theory is that the structure of a protein determines its function. However, ascribing a function to 

a sequence is anything but straightforward, and there are multiple strategies and levels of 

analysis involved in doing so. 

 Part of these challenges stem from the fact that proteins have multiple levels of 

structural complexity. These levels are products of both the protein sequence and the 

environment in which they are expressed.3 The first of these, primary structure, is the sequence 

of amino acids that is the result of ribosomal translation and is the basis for protein sequence 

analysis. Amino acids are small molecules that share an amino group and a carboxyl group, but 

are defined by a third component: the R (functional) group. The R group determines the 

biochemical properties of that particular amino acid, which in turn influence the formation of 

local structure, catalytic activity, and many other characteristics once it becomes part of a 

protein sequence. There are 20 common amino acids (see List of Abbreviations), and the 

relationships of these to one another form much of the qualitative side of protein sequence 

analysis.  

During the formation of the primary structure of a protein, amino acids are covalently 

linked by peptide bonds, losing either a hydrogen atom from their amino group and/or a hydroxyl 

group from their carboxyl group.4 Once incorporated into a polypeptide chain, amino acids are 

referred to as amino acid residues (or simply residues). The residue at the end of the 
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polypeptide that retains a full amino group becomes the N-terminus and beginning of the 

protein, while the residue that retains a full carboxyl group becomes the C-terminus and end of 

the protein. Both during and after translation of the primary structure, secondary structure 

results from intramolecular associations between amino acid residues that form defined local 

structures via hydrogen bonding such as alpha helices and beta strands. Regions that lack this 

defined structure can form loops of variable lengths, and these can serve no known function, 

serve as functional linkers, or even contribute to catalytic activity that is the main function of the 

overall protein. The next level, tertiary structure, begins to take shape when the hydrophobic 

core of the protein and the elements of secondary structure begin to fold the protein into a 

distinct shape, generally referred to as a globular domain. This is not always the case, and 

some proteins functionally resist forming higher order structures and are intrinsically disordered. 

Finally, quaternary structure forms when two or more proteins associate, and can involve the 

pairing of two identical proteins (homodimers), two distinct proteins (heterodimers), or 

multiplicities of interactions (oligomerization or protein complex formation). In summary, each of 

these levels of structure can contribute to the overall physiological functioning of any given 

protein. 

Protein Domains. The protein domain is a unit of a protein that can fold and function 

independently of the rest of the protein. The average protein domain is 100 amino acids in 

length,5 and the average protein contains 2-3 domains.6 The domain composition of a protein is 

often referred to as its domain architecture. Since protein domains can operate “semi-

autonomously”, domains within the same protein can experience different evolutionary forces. In 

the chemoreceptor, for example, the ligand binding domain (LBD or sensory region) is exposed 

to the extracellular environment and must adapt to diverse environmental conditions. In the 

same protein, the highly conserved signaling domain must maintain multiple simultaneous 

interactions, requiring the right residue in the right position for the vast majority of 
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chemoreceptor space (Figure 1). Even when a domain acquires a new function (like changing 

its sensory specificity), that domain can be shuffled with other domains to make an entirely 

different protein under the right circumstances. Using this information, it is possible and often 

essential to work with “pieces” of proteins individually, so one of the first and foremost skills for a 

protein sequence analyst is to identify domains, their borders, and their contribution to the 

overall function of a given protein. 

Evolutionary History, Homology, and Types of Homologs. There are several major 

mechanisms that can drive evolution. However, in the simplest of cases, a parent passes on a 

gene to their offspring, resulting in vertical evolution. When this occurs, that gene will encode a 

similar protein with the same structure, domain architecture and function as it did in the previous 

generation. There are several events that can cloud these straightforward 1:1 relationships, and 

these events are also major drivers of evolution. Major examples of these events are gene loss, 

gene duplication, and horizontal gene transfer (explanations to follow). In all cases, genetic 

changes can have a dramatic effect on a protein. These events serve to alter or test the 

evolutionary pressure, resulting in selection. While gene loss is difficult to observe, gene 

duplication and horizontal transfer are fairly straightforward to identify with the correct methods. 

Despite relatively simpler detection, their presence can confound results, posing added 

challenge when evolution is not purely vertical. 

Most biologists who are not primarily concerned with evolutionary relationships or 

histories of proteins use the term homolog when referring to any similar version of a protein 

encoded within a different organism. Homolog stems from the term homology, which is a 

measure of similarity or relatedness between two proteins. For instance, there are five 

chemoreceptors present in Escherichia coli, so there are five chemoreceptor homologs. 

However, there is no universal agreement on how to measure similarity in quantitative terms, so 

the percentage of identical amino acids shared in the same position in each sequence is often  
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Figure 1. Protein Domains Can Evolve at Different Rates. This diagram shows a chemoreceptor 

localized to the membrane (far left, bounded by the N and C termini) with two major domains highlighted 

and architecturally represented (red: LBD, blue: HCD). Four other chemoreceptors are shown to the right 

(simplified for illustrative purposes), and these have similar signaling domains due to the homogenous 

intracellular environment of interacting with the proteins CheW and CheA. However, these receptors can 

contain radically different sensory domains (both from adapting an existing domain or using an entirely 

unrelated domain), reflecting the diversity of the environment to which this organism has adapted. 

Comparison of the HCD would be fairly straightforward, whereas comparison of the LBDs may not be 

possible at all. 

 

used. There are conventions that determine cutoffs based on percentage identity for homology, 

but the reliability of using generalized cutoffs varies greatly with the nature of the protein. Other 

schema consist of using similarities in biochemical properties of residues to bolster relatedness 

claims, but again, there is no consensus on quantifying how similar two protein sequences are 

to one another. Thus, conventions were needed to establish different types of homologs, based 
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upon their evolutionary history and genomic context, in order to more reliably and consistently 

compare related sequences. 

 For our purposes, comparative genomics employs terminology to make distinctions 

when comparing protein sequences.7 Homolog, in this discourse, is a broad all-encompassing 

term that must be subdivided into particular classes of homologs: orthologs, paralogs, and 

xenologs. As stated previously, vertical evolution is the simplest fate for any given gene, 

producing homologs that are often almost identical. These cases are termed orthologs, and 

comparison within this group is relatively straightforward. Both Salmonella and Escherichia 

species contain an aspartate-sensing chemoreceptor that has evolved vertically, making the two 

proteins orthologs. However, when a gene is duplicated and two copies are transmitted to the 

next generation, those homologs will now experience very different scenarios. Leading 

evolutionary theories suggest that one possible outcome for gene duplication is that the 

presence of two genes relaxes evolutionary pressure on each, allowing them to mutate and 

explore functional space. Normally, one gene will continue to perform the original function 

(especially when the function is necessary for the survival of the organism), while the other gene 

may acquire a new but related function (neofunctionalization).8 These two homologs are now 

paralogs. If that new function confers a survival advantage, it will be fixed through increased 

evolutionary pressure to maintain the new competitive advantage. Paralogs are not limited to 

single duplication events: chemoreceptors pctA, pctB, and pctC from Pseudomonas aeruginosa 

arose from two duplication events and each senses a different set of amino acids (grouped by 

biochemical properties). Often, these changes necessitate the removal of such sequences from 

datasets in order to maintain assumptions of like evolutionary pressure. 

 To further complicate evolutionary history, genetic information can be exchanged 

between organisms (especially bacteria) through HGT (horizontal gene transfer, or lateral gene 

transfer). Bacteria are particularly adept at exchanging genes through competence systems, 
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plasmid transfer, and bacterial conjugation and will often transfer beneficial genes throughout a 

microbial community. In these cases, the gene transferred will look much more like genes from 

the transferring organism than the new host, though this effect will diminish over time as the 

gene takes on the coding and sequencing preferences of the new host. This type of homolog, 

now a xenolog, can outperform and replace a similar gene (xenologous gene displacement). 

Because of xenologous gene displacement and the aforementioned evolutionary twists and 

turns of paralogy, we must carefully assess the evolutionary history of the proteins that we 

compare before we begin to analyze them, so that we can assure that we are making the most 

direct and biologically relevant comparisons (Figure 2). 

Taxonomy, Phylogenetics, and Evolutionary Distance. Scientists and naturalists have 

attempted to impose classification schemes (taxonomy) on living organisms since the advent of 

biology. While earlier systems were based on physical observations or behavioral characteristics, 

more sophisticated molecular mechanisms have taken their place.  Woese and Fox’s 16s RNA 

classification took advantage of the extreme conservation and subtle variations in ribosomal 

subunits in order to build the first genetically based taxonomic system.9 Many other methods have 

arisen since, including concatenation (stringing together) of numerous conserved housekeeping 

genes, and even whole genome comparisons. The guiding principle behind these systems is that 

the more divergent the sequence, the more time has elapsed between the speciation of any two 

given organisms, as more mutations (which are temporally rare events) have accrued. The major 

caveats to this assumption are that the more important the gene, the less prone it will be to 

mutation, and also that horizontally transferred genes can cross between distantly related 

organisms (uncoupling them from any meaningful temporal comparison). 
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Figure 2. Evolutionary History is Key to Productive Comparative Analysis. This diagram is a basic 

introduction to evolutionary relationships between homologous proteins that may render them fit or unfit 

for comparison. The original receptor on the far left can sense one of two ligands. The uppermost path 

signifies vertical evolution, where the genes encoding this receptor are inherited by the next generation 

and perform the same function with the same protein. These proteins are orthologs, and these are ideal 

candidates for comparison. However, similar genes can be transferred from other organisms (HGT – 

Horizontal Gene Transfer, middle right). The horizontally transferred gene may outperform the original in 

a process termed xenologous gene displacement. Comparisons between the original protein and the 

xenolog are inadvisable as separate evolutionary processes have shaped their sequence, structure, and 

function. The lower pathway signifies a gene duplication event of the original receptor. This scenario is 

usually transient as evolutionary pressure may be relaxed on both copies, allowing for divergence and 

gain of a different but related function (neofunctionalization). These proteins are now paralogs, neither of 

which would be optimal for comparison to the original receptor. 
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In comparative genomics, the sources of the sequences in a comparative dataset are as 

important as the sequences themselves. Bacterial diversity is immense, and the time scales 

separating the most distantly related branches (phyla) of organisms are vast. Thus, knowing the 

relationships between the organisms from which the sequences in your dataset originate helps 

to inform expectations and highlight anomalous findings. For instance, extremely closely related 

enteric Proteobacteria like E. coli and Salmonella enterica are genetic neighbors, so one would 

expect their protein sequences to be very similar. Thus, highly divergent regions from related 

sequences in this case might signal little evolutionary pressure and low functional value. 

Conversely, comparing an organism from a different phylum (i.e. a deep sea hyperthermophile 

from Thermotogae) to E. coli, one would expect extreme levels of divergence, as genes will 

have had numerous opportunities to adapt to their distinct environments and lifestyles. In this 

case, highly conserved elements in protein sequences or structures gain elevated importance, 

as they have stood the test of time.  

Understanding how microbes are related to one another is essential for generating 

hypotheses and interpreting results of all comparative work, and it should be a key factor in 

determining the composition of comparative datasets. Comparisons can be too recent, as 

organisms that are closely related have little time to diverge and may not provide statistically 

significant changes. Any mutations that we observe may just be within the limits of natural 

variance. Conversely, too deep an analysis, and the comparative targets may no longer have 

analogous functions or may even have acquired different regulatory or protein-protein 

interaction partners, creating noise or introducing confounding variables. Because of this issue, 

one of the first and most important steps in any of our analyses is the generation of a 

comparative dataset taking into account an appropriate phylogenetic depth. The rapid 

generation of microbial genomes only stands to make this facet of comparative genomics more 

informative, as more sequences from diverse groups fill in the existing temporal gaps. These 
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measures can also help inform evolutionary histories and contribute greatly toward deciphering 

between the subtypes of homologous relationships discussed in the previous section. 

Phylogenetics and Multiple Sequence Alignment. The multiple sequence alignment 

(MSA) is at the core of the vast majority of comparative work (see Figure 3 for a simplified 

example). At the most basic level, it consists of lining up two proteins, one on top of the other, 

until each given position lines up with the corresponding position on the other protein. When two 

proteins are used, this can be called a pairwise alignment, and is fairly straightforward to do 

using a variety of programs or manually. Comparing sequences in this matter is the foundation 

of phylogenetics, which encompasses all manners of aligning and comparing sequences to 

determine their relative relationships (or common ancestry). The ease of this process depends 

on the distance between the two sequences and the percent amino acid identity, and 

challenging cases may require additional levels of information for clarification (e.g. prior 

taxonomic relationships as discussed in the previous section).  

Automation is required when a large number of sequences are aligned, and the pairwise 

comparisons become a matrix, where each sequence must be compared against all others to 

determine the global best fit for all of the sequences. Again, the relatedness can have a 

dramatic impact on the quality of an alignment. Additionally, the number of sequences can 

complicate this process or require tremendous computing power. There are many alignment 

programs, each of which is best suited for different types of alignments. T-COFFEE10 is one of 

the best programs for aligning smaller, less conserved sets of sequences, while MUSCLE11 is 

best suited for large sets of closely related sequences.12 MAFFT falls somewhere in between, 

and in our experience is the most consistent alignment program across a wide variety of 

alignment types.13 However, while these assessments are based on subjective observation, 

objectively, no alignment program is perfect, as no amount of algorithm training can capture 

every subtle nuance of protein variation that a trained structural biologist can detect. 
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Conversely, no biologist can manually align large datasets of distantly related sequences, so a 

tradeoff must be made.  

Therefore, it is critical that every alignment that is produced is manually curated. Gaps in 

alignments are detrimental to the quality of the alignment, but are often present in areas of low 

conservation such as loop and linker regions. There are many other methods by which to 

assess the quality of alignments, all of which are grounded in protein structural theory. One 

commonly accepted method is to look at the hydrophobic and hydrophilic natures of the aligned 

residues, as both the hydrophobic core and major conserved elements such as beta sheets may 

serve as recognizable landmarks (Figure 3). Mapping secondary structural predictions to an 

alignment can also be an extremely effective quality control step, and additional programs, like 

VISSA, are available for this purpose.14 Finally, the N and C termini of protein sequences can 

perform critical functions, but in many cases these regions show poor conservation even 

amongst closely related sequences. Nevertheless, it is important to establish whether or not 

features such as N-terminal signal peptides or other conserved elements are present before 

discounting poorly aligning termini.  At the N-terminus especially, one of the major unsolved 

problems in gene calling and annotation is the prediction of start sites, so variability in this 

region may be unavoidable.  

Regardless of the method(s) used to curate an MSA, this method is not only an 

analytical tool, but also serves as the data input for many deeper and more qualitative 

downstream analyses (like phylogenetic tree construction or structural visualization). Thus, 

quality in both the comparative dataset selection and the initial MSA can greatly influence the 

outcome of an entire project or publication. 
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Figure 3. Sample Multiple Sequence Alignments and Visualization Strategies. This is a sample 

alignment of five fictitious protein sequences. The top alignment shows a raw, unannotated alignment. 

Dashes (-) indicate gaps that must be inserted during the alignment process, and can negatively impact 

the quality of an alignment depending upon their length and their position within the alignment. The 

middle alignment shows a useful binary color scheme that has coded each amino acid according to their 

hydrophobicity. Blue residues are generally hydrophobic, whereas red residues are generally hydrophilic. 

This can be a useful quality control step to manually verify whether or not these properties mesh with the 

alignment, as the hydrophobicity of residues can determine important structural properties of the overall 

protein. Finally, the bottom alignment is coded with multiple colors (CLUSTAL scheme),15 which groups 

the residues by narrower biochemical properties for finer resolution (i.e. polar residues (green), aromatic 

residues (orange), charged residues (red +, purple -), hydrophobic (blue), and small turn-like (black)). 

 

Phylogenetic Tree Reconstruction. Phylogenetic tree reconstruction is a quantitative 

method to analyze and visualize the results of a multiple sequence alignment. Pairwise 

alignments and evolutionary matrix distance estimations result in the topology of the tree, which 

is an attempt (and thus an estimation) at reconstructing the true topology.16 The most widely 
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used and accepted evolutionary distance matrix is the Jones-Taylor Thomson (JTT) method.17 

The overall topology of the tree and the distances between the branches serve as parameters 

that a variety of algorithms use to generate trees guided by certain assumptions. In brief, 

maximum likelihood is a statistical method that selects for the tree most likely to be produced for 

the given dataset,18 minimum evolution produces a tree with the fewest number of branch points 

(e.g. the fewest evolutionary events), and neighbor-joining uses the closest pairs of sequences 

to iteratively cluster like sequences in branches.16  

Since all methods result in estimations, multiple tree algorithms are commonly used on 

the same alignment (independently) in order to assess the consistency of their topologies. 

Furthermore, one can test phylogeny using the bootstrap method, in which the tree is generated 

n number of times (which can be extremely computationally intensive) to evaluate topological 

consistency as well. By generating trees 100 or even 1000 times, this method assesses how 

often branches occur in the same position. Two final considerations for constructing robust 

phylogenetic trees are the addition of an out-group, and rooting the tree. The former technique 

allows for distinguishing that a set of sequences are more closely related than a known 

landmark (often used to localize groups of sequences to certain taxonomic designations). 

Rooting a tree allows for estimation of a least common ancestor in relation to the sequences, 

whereas producing an unrooted tree only shows relative relationships within the dataset.  

Structural Visualization. Structural visualization is not often paired with sequence 

analysis, most likely because the vast majority of proteins have not had crystallographic or NMR 

structures solved. Even when structures are available, proteins are dynamic, so one must 

realize that any given structure is only a snapshot of a single, stable state. Furthermore, 

structures are often generated in organisms that are wholly different from where experimental 

assays were performed. Chemotaxis is a perfect example, where experimental work was 

performed in Escherichia coli, yet crystal structures were obtained using Thermotoga maritima 
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homologs (See Chapter 2).19,20 Often, model organisms like E. coli will have proteins that are 

too dynamic and are refractory to crystallization, whereas extreme hyperthermophiles like T. 

maritima have evolved to produce thermostable proteins that crystallize far more readily. 

Unfortunately, as discussed earlier, homologs from phylogenetically distant organisms are not 

necessarily orthologs and viable comparative targets. In this specific case, the thermostable 

nature of the protein may have drastically altered the sequence as well.  

Additionally, not all structures are of equal quality. Stable protein crystals are difficult to 

produce and may require significant alterations from native expression, including heterologous 

expression systems, truncations, modifications, molecular tagging, mutations, and a wide-

variety of other experimental techniques required to produce stable crystals. Once crystals are 

obtained, the resolution of the crystal structure must also be considered, as this determines 

whether or not one can make conclusions at the amino acid or secondary structure level. 

Currently, 2 Å resolution is a good cutoff for making residue level observations, while at 3-4 Å 

resolution, only backbone atoms are reliably placed. Above this level, only macromolecular 

features may be discernible and sequence visualization is no longer an option. 

 After all of these considerations, x-ray and NMR crystal structures are invaluable 

resources. Pairing structures with evolutionary sequence information is a cornerstone of this 

dissertation work, as it can provide a strategy for relating genomic information to experimental 

results. At the very least, one can gain an idea of whether or not highly conserved residues play 

a role in canonical structural roles (i.e. in the hydrophobic core, glycine and proline residues at 

hairpin turns, etc.), or if these may be mediating protein-protein interactions (i.e. hydrophobic 

residues that are solvent-exposed). Additionally, in the case of co-crystal structures, one gets a 

possible snapshot of interaction between two proteins, though whether or not this snapshot 

makes biological sense may become another matter of debate (more in Chapter 2). 
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Genomic Context. There are two primary methods of using the context of a gene within 

its genome that can prove useful for comparative analyses. The first of which, gene 

neighborhood analysis, simply involves the gene order, and is a peculiarity of prokaryotes. 

Often, genes that are part of the same system or interact are coded next to one another or in 

clusters, which allows for their co-expression. When the number of nucleotides between genes 

in these clusters is exceedingly small (or even slightly overlapping in some instances), the 

cluster is referred to as an operon and co-expression and interaction/involvement are almost 

certainties. Thus, proteins can be “guilty by association”, and by comparing the order of clusters 

or operons of genes between organisms, one can make systems level analyses. Chemotaxis 

systems, for example, often occur in operons or clusters, though they may or may not contain 

chemoreceptors. Conversely, the vast majority of chemoreceptors are found as genomic 

orphans, in which case gene neighborhood analysis offers little to no insight as to their possible 

function or chemotaxis system relationships (see Chapter 4 for more).  

The second method, phylogenetic profiling, consists of comparing the presence or 

absence of genes between two or more organisms in order to make phenotype predictions. 

Most often, pathogens and commensals are compared to identify potential virulence factors or 

biomarkers that can be used to distinguish them from one another. This type of analysis for 

single genes is very difficult, as a single gene may not just have one function, but pleiotropic 

effects within a given organism. Moreover, many diseases are the result of multiple virulence 

factors and other genes, so the odds of a single gene or even a handful of genes switching the 

behavior of an organism are unlikely. However, there are interesting trends that have been 

noticed with chemoreceptor suites, and chemoreceptors are uniquely positioned to heavily 

influence the environmental niche of an organism. Often, pathogenicity occurs when an 

organism colonizes a non-native or non-adapted niche, and this type of phenomenon may have 

contributed to extra-intestinal pathogenicity in Escherichia coli (see Chapter 5 for more). 
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Materials. As with all experimental methods, raw materials (in this case protein 

sequences) must be located and collected. Protein sequences are stored and made publicly 

available by a variety of databases:  NCBI (Non-Redundant (NR), RefSeq), UniProtKB (EMBL), 

and the MiST signal transduction database.21 Both RefSeq and UniProtKB are invaluable 

resources, as they pair experimental data and other valuable information with each sequence. 

While the scope of the non-redundant database is often useful, the quality and assurance that 

curated databases provide is often preferable. MiST improves on this by focusing the content on 

signal transduction and chemotaxis proteins along with providing numerous pre-computed 

analyses (including domain architecture visualization).  As for structures, the Protein Data Bank 

(PDB) is an invaluable resource as a repository for X-ray crystal and solution NMR generated 

structures.22 To work using large computational datasets, scripting is an important and 

necessary ability for any computational biologist or bioinformatician to possess as well. The 

PERL scripting language was utilized for scripts throughout the dissertation, with each major 

project mandating several scripts to parse, process, and manage data. While some scripts may 

be generalized enough to be used on multiple projects (for instance, sequence retrieval using a 

list of accession numbers or gene identifiers from the NCBI Protein database), most projects 

require data from different sources using different techniques, requiring new scripts. 

 Sequence tags are of the utmost importance, and underutilization of these can make 

follow up analyses more difficult when a protein sequence cannot be readily located or verified. 

In closed genomes, the most useful type of sequence tag is the locus tag, which provides the 

genomic location and a species/strain specific identifier to quickly identify where a given 

sequence came from (e.g. PA2573 is gene #2573 in Pseudomonas aeruginosa). Both the 

accession and GI (GenInfo Identifier) numbers are alternative and widely used identification 

methodologies, but these numbers change given the status of a genome, and offer no biological 

information. However, these generic identifiers can be useful for “blinding” the investigator to the 



21 
 

source of a sequence, which can help eliminate biases in certain scenarios. Locus tags are 

preferable for displaying results and figures though as they are shorter and more useful to the 

reader, so throughout this dissertation locus tags are used as unique protein identifiers 

whenever specific gene names are unavailable. 

Bioinformatics Analysis and Tools. Unless stated otherwise, there are several typical 

methods that are used when undertaking comparative genomics work (explanations to follow). 

Domain architecture and membrane topology predictions were pre-computed in MiST using 

PFAM 27.023 and DAS.24 Multiple sequence alignments were built using MAFFT v7.0 using the 

l-ins-i algorithm unless otherwise indicated.13 Visualization of sequences and pairwise 

alignments were conducted using JalView v2.8.25 Phylogenetic trees were constructed using 

MEGA v6.0626 using complete deletion and the JTT substitution matrix.17 While most 

bioinformatics tools can be used on a personal computer, computing clusters and parallelization 

of some tools may be necessary to increase the speed of an analysis or handle large datasets.  

As for the software, Jalview is a sequence visualization suite, and is often used as a 

comparative genomics “workbench”.25 It provides basic pairwise alignment and phylogenetic tree 

construction functions, in addition to sorting sequences based on a number of helpful properties 

such as amino acid length. This program allows for modification of sequences and sequence tags, 

as well as production of alignment figures. Most importantly, it has color coding functions that 

highlight conservation for given positions and provides consensus and quality scores for given 

positions. Using the CLUSTAL coloring scheme, residues with like biochemical properties are 

highlighted, allowing for faster visual recognition of conservation patterns.15 MEGA is a 

phylogenetics analysis suite used primarily for phylogenetic tree construction and figure 

production.26 SeqDepot is an in-house database that contains pre-computed data for protein 

sequences within the database (Ulrich LE). One unique feature of SeqDepot is the ability of using 

a protein sequence without any other identifying numbers.  
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Protein Models. One of the primary tools in our arsenals are Profile and Position-specific 

scoring matrix (PSSM) Hidden Markov Models (HMMs).27 These are models that are based on 

multiple sequence alignments of curated remote homologs. In essence, they capture the most 

conserved positions that relate a given set of proteins for which the model was generated. The 

hidden Markov aspect takes a given set of inputs and a given set of outputs, and generates an 

algorithm to approximate the transition from input to output. In this case, the inputs are a series 

of protein sequences in the form of a multiple sequence alignment, and the outputs are the 

identity conservation of the amino acids for each given position. In generating the model, the 

biochemical properties and the identity conservation for a position weight that position more 

heavily according to conservation of that position as well as the scarcity of residues as well. The 

relative position of each position is also taken into account, so that gaps may be permitted in 

certain instances and highly penalized when no gaps occur in the alignment.  

These models can be used to search a database of proteins and score each, providing 

the most related proteins as matches based on scoring cutoffs that are determined specifically 

for each model (see Figure 4 for an overview on creating a simple HMM). PFAM is a domain 

model database where sequences can be queried against models to identify domains. HMMER 

is a hidden Markov model software package that allows the user to identify domains present in a 

sequence (HMMserach) or construct a Profile HMM from an alignment and search against a 

database with that model (JackHMMER). Hidden Markov Model (HMM) searches in this work 

were performed using the HMMER3 package.28-30 

In producing a final score, positions from an alignment with greater conservation are 

weighted much more highly than non-conserved positions (Figure 4). Non-conserved positions 
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Figure 4. Overview of Producing a Profile HMM and Identifying Matching Sequences. Basic 

concepts behind generating a Profile HMM and using the model to query a database and identify 

matching sequences are briefly presented here. From a raw MSA (top left), two major features of the 

alignment are apparent: residue conservation and gap regions. The middle left alignment highlights these 

features, with residues conserved at equal to or greater than 80%in bold and a horizontal black bar 

denoting a stretch of the alignment that is gapless. This information is then used to create the Profile 

HMM, and a graphical representation is shown in the bottom left (red bar indicates gap penalty region). 

The model is then used to search against a database of sequences (top right) and report matches. 

 

are simplified as “x” to feature the conserved residues, though the residue distribution of these 

positions would also be considered in a full model. Additionally, information on the scarcity of 

these residues is included, as the conservation of a rare amino acid like tryptophan (W) 

provides more predictive power than a common residue such as aspartic acid (D). The overall 

summation of scarcity and conservation are represented in Figure 4 graphically as the size and 

height of the position, though numerical values would ultimately be used in the model. Finally, 

gapless regions will factor into the model as scoring penalties imposed on sequences that will 
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open gaps in that region upon alignment. The final model can then be used to search a 

sequence database, score each sequence, and report matches based on empirical scoring 

thresholds that have been calibrated to maximize sensitivity and specificity. Two example 

sequences are shown in Figure 4, where A appears to have all of the residues from the model 

(bold) and B has fewer. However, closer inspection shows that A has two regions (bracketed 

with red exclamation marks) that will open up extremely large gaps in the gapless region of the 

alignment, which would result in significant penalties to the score. Conversely, B has 

biochemically similar residues in the right positions relative to the model, which should result in 

a substantially higher score than A, as well as a potential match if the score exceeds the 

threshold. 

Complementary Experimental Techniques. Several of the key biological events that 

incorporate chemoreceptors into a chemotaxis complex and allow them to transduce a signal 

involve protein-protein interaction.31 Protein-protein interactions are exceedingly difficult to 

identify, though a leading method for identifying these regions using sequences is co-evolving 

residue and compensatory mutation theory.32 Enzymatic and catalytic activity, by comparison, 

are remarkably easy to recognize from a bioinformatics standpoint, as these processes usually 

require several adjacent and conserved residues and/or motifs that are highly conserved 

relative to the structure of the protein. Protein-protein interaction, on the other hand, can be 

mediated by hydrophobic forces, electrostatic interaction, or van der Waals interactions, none of 

which are amino acid identity specific. When looking at a sequence, factors like solvent-

accessibility and structural context are unavailable, so these regions are variable and difficult to 

locate. Furthermore, allosterism and cooperativity are not detectable in a sequence, so 

complexes are exceedingly difficult to characterize if either of these two phenomena play a role 

in their formation.  
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Experimental techniques that provide protein-protein interaction information are 

numerous.33 The gold-standard is co-crystallization, though this comes with the caveats 

explained previously. Proteins can also be roughly co-localized using fluorescent protein tags 

and observed through confocal microscopy, but this is not evidence of interaction alone and 

more robust methods can be utilized when available. Co-immunoprecipitation is one viable 

method, where one protein is tagged and affixed to a column to serve as a “hook” to “fish” out 

interaction partners from an eluted sample. NMR (Nuclear Magnetic Resonance) spectroscopy 

can be used to observe chemical shifts in functional groups of amino acid residues when two 

proteins interact in a homogenous solution. Yeast 2-Hybrid capture/prey systems are also 

widely utilized, but also require both interaction partners to be known beforehand. Each partner 

is fused to half of a galactose promoter, which in turn controls a lactose operon reporter when it 

is an intact and functional protein. When the partners interact, the full galactose promoter can 

induce lac operon transcription of the reporter genes. Finally, FRET (Fluorescence Resonance 

Energy Transfer) pairs can establish the proximity of two residues within the same protein or 

between two interacting protein pairs and this technique complemented our results through a 

companion paper in Chapter 2.34 Each residue of a FRET pair is tagged with either a 

fluorophore or a quenching group. When close enough in proximity, a fluorescent signature 

change is created by the transfer of the fluorescence energy from fluorophore to quencher.  

Comparative genomics is just one aspect of computational biology; there are many 

computational experimental techniques that provide quantitative means of investigating 

proteins. Molecular dynamics is one such technique that combines computational power with 

experimental structural data. Briefly, this method takes molecular coordinates (obtained from x-

ray crystal or NMR structures) that represent the atoms of a protein, and then subjects these 

virtual atoms to equations that describe the laws of motion.35 Additionally, experimentally 

derived intra and intermolecular forces such as electrostatic interactions and van der Waals 
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forces are also simulated.36 Computing power is necessary, because all simulated atoms are 

subjected to “forces” from all other simulated atoms, including simulated water molecules and 

ions. While there are many experimental parameters that are fairly straightforward to simulate, 

others require special techniques and considerations (e.g. simulating phospholipid membranes 

for transmembrane proteins). Ligand and protein docking simulations are useful subdivisions of 

molecular dynamics, but these require structures with high resolution and minimal synthetic 

alterations in order to yield biologically relevant simulations. This is a growing field, and as 

computing power continues to increase, the complexity of the systems that can be simulated 

increases as well, with cutting edge platforms now limited not by the number of atoms, but by 

the number of proteins. 

As far as ligand recognition is concerned, a co-crystallized ligand within the binding 

pocket of a protein is a gold standard. Unfortunately, co-crystallizing ligands in their binding 

pocket can be extremely difficult and time-consuming, and a variety of co-factors, coordinating 

metal ions, and other conditions may make this an elusive quest. Isothermal titration calorimetry 

(ITC) and surface plasmon resonance (SPR) are alternative methods that utilize different 

techniques to detect binding and quantify binding events, and our bioinformatics results 

complemented ITC/SPR results in Chapter 3. Briefly, ITC measures the free energy change 

when ligand is introduced to substrate, and a change in heat absorbed or released indicates a 

change in free energy (hence binding).37 SPR, on the other hand involves the affixing of a 

receptor to a gold plated chip, flowing ligand over the chip, and detecting electrical oscillations 

(plasmons) triggered by binding events.38  

While many of the aforementioned techniques can be extremely informative by 

themselves, combining targeted mutation studies with these or other techniques is the most 

complementary experimental strategy available to comparative genomics. Often, our alignments 

produce conserved residues that we may hypothesize contribute to a certain aspect of that 
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protein’s physiology. When we are able to systematically substitute amino acids with various 

(and usually opposing biochemical properties), we can validate or disprove our hypotheses 

(provided that there is an observable phenotype to assay and the mutation does not 

dramatically alter the “native” structure). For instance, if we predict that a conserved residue in a 

binding pocket mediates binding, our collaborator can use SPR to confirm binding, mutate that 

residue to an opposing residue, and assess for binding again. 

 

Chemotaxis, Chemoreceptors, and a House Divided 

Before diving into the division facing the current chemoreceptor landscape, one must 

first appreciate the basics of how chemoreceptors were discovered and how these proteins 

function within the context of the chemotaxis system in general. Chemotaxis, the ability of 

bacteria to sense and move toward specific chemical signals, was first recognized and reported 

in the 1960s by Julius Adler.39,40 The discovery of chemoreceptors was instrumental to this 

breakthrough, as these proteins conferred the specificities necessary for systematically probing 

the behavior.41 Using E. coli as a model system, five chemoreceptors were eventually 

discovered and characterized: tsr, tar, trg, tap and aer. After decades of study, these 

chemoreceptors have been shown to be dynamic proteins that respond to multiple different 

signal specificities and can directly or indirectly sense ligands (with indirect mechanisms 

involving carrier proteins). An entire review could be devoted to just the study of these five 

proteins, so only very basic details of these receptors will be outlined here. 

Tsr and tar were characterized by Koshland et al. and shown to mediate taxis toward 

serine and aspartate respectively.42 Tsr is encoded as a genomic orphan, while tar is encoded 

within the chemotaxis gene clusters, but both have been shown to be major receptors that are 

indispensable for chemotactic response. Trg was shown to mediate taxis toward the sugars 
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ribose and galactose, which was later shown to occur through indirect ribose and galactose 

binding proteins respectively.43 Tap is a tandem duplication of tar, as both genes share 

tremendous homology and are adjacently encoded within the genome.44 This chemoreceptor 

was later shown to mediate taxis towards dipeptides and pyrimidines.45,46 Finally, aer encodes 

an aerotaxis transducer that modulates responses to changes in oxygen concentrations through 

redox sensing.47,48  

As for the breadth of chemoreceptor study, the chemotaxis community has investigated 

numerous other model organisms with significant and direct impacts on human health and the 

environment (Salmonella, Rhodobacter, Thermotoga, Pseudomonas, Bacillus subtilis, 

Campylobacter jejuni, and Helicobacter pylori to list a few). Even within these prominent 

systems, only a handful of other chemoreceptors have been characterized. As of August 2014, 

there are over 58,000 predicted chemoreceptors in the RefSeq database,49 which is a 

conservative estimate based only on high quality sequences. We have barely scraped the 

surface across the entirety of chemoreceptor space and there is much more to learn about this 

major class of proteins. 

Fortunately and quite serendipitously though, E. coli still serves as a simple and fairly 

representative chemotaxis system,50 so it is still useful to introduce the chemotaxis system as a 

whole using E. coli. There are five core chemotaxis components: chemoreceptors, the adaptor 

protein CheW, the histidine kinase CheA, the response regulator CheY, and the flagellar motor 

protein FliM.50,51 Traditional chemoreceptors are localized to the periplasmic membrane, where 

they sense ligands or other stimuli and transduce a signal to the chemotaxis complex formed by 

the highly conserved signaling domain of the chemoreceptor, CheW, and CheA. CheA’s kinase 

activity controls the phosphorylation levels of CheY, and phospho-CheY in turn interacts with 

FliM at the flagella motor to control its rotation. CheY. Depending on the clockwise or 

counterclockwise rotation of the flagella, the bacteria will either “run or tumble”, producing a 
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random walk that can be biased towards attractants and away from repellents. Depending on 

the type of chemotaxis system involved, numerous phosphatases (CheC/CheZ), 

methylesterases (CheB), and methyltransferases (CheR) regulate the system downstream from 

the chemoreceptor:ligand interaction. 

Chemoreceptors (MCPs). The methyl-accepting chemotaxis protein (MCP) is a multi-

domain homodimer that is identified by its highly conserved signaling tip region (HCD domain or 

MCPsignal domain). Chemoreceptors are among the most highly variable classes of proteins, 

allowing for almost any conceivable alteration of domain architecture provided that the signaling 

domain remains intact. Tremendous evolutionary pressure on this region is believed to be a 

result of this region modulating multiple structural and functional aspects of the chemoreceptor. 

Structurally, the sequence of this region produces helical heptad secondary structure, tertiary 

folding where the signaling tip makes a hairpin turn at 3 conserved glycine residues and the 

helical heptads form antiparallel stacked helices, and quaternary structure in homodimerization 

to form a four helix signaling bundle.52 This four helix bundle then further complexes with two 

more chemoreceptor dimers to form a trimers of dimers. Functionally, the receptors must 

maintain interactions with the adaptor protein CheW and the histidine kinase CheA, and must 

also transduce signal over several hundred amino acids of length to modulate the 

phosphorylation activity of CheA (see Figure 5). 

Chemoreceptors are often referred to as MCPs, as they can be methylated by the 

methyltransferase CheR and demethylated by the methylesterase CheB. These interactions do 

not occur in all chemoreceptors, but can be detected by the presence of conserved glutamate 

residues, which undergo reversible methylation to become glutamate 5 methyl-esters (gamma 

gluatamyl-methyl esters).53,54 These modifications of the chemoreceptor result in a remarkable 

adaptation system that has been referred to as “molecular memory,” allowing the 
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chemoreceptors to possess a broad dynamic range of sensory capabilities that can tune out 

high concentrations of one signal to detect exceptionally low concentrations of another. 

Other features of the chemoreceptor include the sensory region and the HAMP domain. 

Sensory regions (LBDs) are numerous and varied in size and architecture, as evidenced by the 

diversity of commonly detected signal transduction domains. The vast majority of the known 

sensory specificities will be covered in the section on microbial pathogenicity and various 

chapters in the main body. The HAMP domain is a ubiquitous helical signal transduction domain 

that contributes to the propagation of the signal from the membrane to the conserved signaling 

domain and will not be discussed.55 

Cytoplasmic Receptors. Not all chemoreceptors are localized to the membrane, as many 

chemoreceptors clearly lack predicted transmembrane regions. However, very little is known 

about how these receptors function or how they contribute to chemotaxis as a whole, so their 

presence in many of the projects in this dissertation has been a source of both challenges as 

well as new discoveries and leads. Their solubility alone provides them with the liberty to 

escape the membrane localization and the chemotaxis cluster or array, which creates the 

possibility for mobile chemotaxis sensors (see Figure 5). In fact, soluble chemotaxis clusters 

have been detected in a handful of organisms including Rhodobacter sphaeroides,56 but again 

little is known. One of the best characterized soluble chemoreceptors is AerC from Azospirillum 

brasilense, which dynamically relates the internal metabolic redox state to motility.57 

Cytoplasmic receptors in Thermotoga maritima (Chapter 2) and Pseudomonas aeruginosa 

(Chapter 4) will be discussed in their respective sections, as well as being prominently featured 

in Conclusions (Chapter 6). 

Histidine Kinase CheA. CheA is a homodimer that can be subdivided into 5 domains 

(designated by P1, P2, etc.). The P3 domain serves as the dimerization domain. The P5 domain 

is a structural homolog of CheW, and is the interaction site for the CheA:CheW:Chemoreceptor 
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complex. P1, P2, and P4 are involved in the autophosphorylation and kinase activity of the 

protein: the P4 kinase domain phosphorylates a conserved histidine residue on the P1 

phosphotransfer domain in an ATP-dependent manner, then the P2 CheY-binding domain 

stabilizes CheY, where it is then phosphorylated by phospho-P1.31 P2 is “suspended” between 

P1 and P3, the dimerization domain, by flexible, non-conserved linker regions of varying amino 

acid length. There are many different architectures of CheA (involving the presence or absence 

of the P2 region, additions of CheY-like response regulator domains, and massive expansions 

in the phosphotransfer capabilities (CHP system)), allowing for classification of systems based 

on the CheA protein alone.58 

The Adaptor Protein, CheW. CheW is (typically) a relatively short (100-150 aa) protein 

containing a single domain. There are longer homologs with only one CheW domain, and there 

are also homologs with multiple CheW domains.  It has been labeled as a scaffolding adaptor 

that connects the histidine kinase CheA to the chemoreceptors through protein-protein 

interaction. It has pseudosymmetry, allowing for interaction with other CheW domains. Since 

this pseudosymmetry does not limit it to homodimerization, it oligomerizes and forms hexagonal 

rings.59 As mentioned previously, the P5 domain of CheA is homologous to CheW, allowing for 

incorporation of CheA into the hexagonal ring. As a consequence of this, in vivo chemotaxis 

clusters and in vitro complexes show a stoichiometry60 of 3 Receptors: 2 CheWs: 1 CheA, which 

result in each hexagonal unit containing four CheWs and two CheAs with a trimer of dimeric 

receptors in the middle of the hexagon.60,61 A second major class of adaptor, CheV, consists of 

a CheW domain paired with a response regulator domain, but the full contribution of CheV to 

chemotaxis has not yet been fully elucidated. 

Signal Transduction - Chemoreceptors from a Structural and Mechanistic Viewpoint 

In the early years of chemoreceptor study, fundamental mechanisms of how chemotaxis 

proteins functioned were a major area of investigation. However, DE Koshland Jr. brought major  
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Figure 5. Diagram of Canonical and Non-Canonical Chemoreceptor Localization. The canonical 

transmembrane receptor homodimer (dimer partner colored in gray) is shown localized to the periplasmic 

membrane along with its defined domain architecture. The ligand binding domain senses extracellular 

small ligands in this case. Interacting proteins (adaptor CheW, histidine kinase CheA (a homodimer), 

methyltransferase CheR, and methylesterase CheB) are simplified and not to scale. The insert is a top 

down view of the trimer of dimers positioned within a hexagonal array of CheW domains (some of which 

belong to CheA).59-62 Two soluble chemoreceptor paradigms are also shown (as monomers). Soluble 

receptors can have defined LBDs, but this is not always the case. Soluble receptors without LBDs may be 

paired with a partner sensory protein to form a bipartite chemoreceptor.63 Non-canonical receptors from 

either case are poorly characterized and understood. 

 

awareness to the potential for chemoreceptors to also serve as a model signal transduction 

system, as they function analogously to eukaryotic neurotransmitter receptors (i.e. G-protein 

coupled receptors).64 One of his major contributions to this type of work was the development of 

a piston-shift model relating to how the ligand binding domain signals through the 

transmembrane (demonstrating that the transmembrane alpha helices shift 3-4 Å down, like a 
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piston).65 For many in the chemotaxis field, the mechanisms involved in transmembrane 

signaling, methylation and adaptation, and protein-protein interactions between the 

chemoreceptor signaling domain, CheW, and CheA would quickly overshadow how these 

systems connected to the organism’s behavior outside of chemotaxis. This work was quickly 

confined to E. coli, Salmonella enterica, Bacillus subtilis, and T. maritima, four organisms with 

single chemotaxis systems and relatively small numbers (5-11) chemoreceptors, producing high 

quality structural and molecular models of chemoreceptor signaling function. 

Further Signal Propagation Domains and Models. While the piston movement model 

served as a starting point, it only focused on transmembrane signaling. In most 

chemoreceptors, several hundred amino acids must be involved in signaling as well to reach the 

conserved signaling domain at the receptor tip. JS Parkinson’s work on the helical HAMP 

domain (which directly precedes the transmembrane region), has expanded our understanding 

of how the signal propagates further down the receptor.66 Additionally, the Parkinson lab has 

been instrumental in performing mutational and cross-linking studies that contributed to 

modeling the trimer of dimers concept (including highlighting critical conserved positions for this 

process).67-69 JJ Falke has also been instrumental in investigating the interactions of 

chemoreceptor signaling, including FRET based and cross-linking studies that have suggested 

numerous interaction sites.70 He also has done major work examining the chemoreceptor 

structure and theoretically modeling signal propagation as a “yin-yang” mechanism that 

highlights the tendency of chemoreceptors to conserve knob-in-socket residues involved in 

helical packing as a potential signal propagation vehicle.71  

Chemotaxis Complex Stoichiometry. A few of GL Hazelbauer’s recent contributions to 

the field include deciphering the global organization of the chemotaxis array, as well as 

determining the stoichiometry of the smallest functional chemotactic unit. First, after the 

establishment of the trimer of dimer organization of chemoreceptors, his group reported that a 
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trimer of dimer unit could drive chemotaxis as effectively as an entire receptor cluster.72 Then, 

by utilizing tar trimer of dimers embedded in innovative nanodisc constructs (to approximate 

membrane localization), the Hazelbauer lab determined that two trimers of dimers and two 

CheW proteins are required to allow the histidine kinase activity of a single CheA homodimer.60  

Residue Level Interactions. FW Dahlquist utilizes NMR to probe the chemical shifts of 

residues involved during chemoreceptor binding to CheA and CheW. DE Ortega (a member of 

the Zhulin Lab) collaborated with the Baudry lab and the Dahlquist lab, and by using conserved 

positions in the CheW protein and molecular dynamics simulations, they were able to show that 

a conserved salt bridge stabilized the interaction between the chemoreceptor and CheA.73 This 

was significant because CheW’s role as an adaptor and scaffold protein had little mechanistic 

explanation before this work. Recently, the Dahlquist lab has also published two additional NMR 

studies that illuminated multiple possible contact sites for both the Chemoreceptor:CheW 

interface and the Chemoreceptor:CheA interface.74,75  

Visualization and Chemotaxis Complex Model Development. Visualizing both the 

subcellular context and the protein-protein interaction events themselves have also been the 

subject of several productive pursuits. GJ Jensen has employed cryo-electron tomography and 

microscopy to show both the universal hexagonal structure of the chemotaxis array across 

multiple phyla of bacteria as well as many other localization studies in Caulobacter crescentus 

and Vibrio cholerae.61,76 BR Crane has produced numerous x-ray crystal structures of 

chemoreceptors, as well as several co-crystal structures of chemotaxis proteins from the 

hyperthermophile, Thermotoga maritima.77 This includes two crystal structures containing all 3 

interacting partners (CheW:CheA:MCP, PDBID: 3UR1, 4JPB).61,78 Additionally, cryo-electron 

tomography and crystallographic structures have been combined by Manson et al. and the 

Jensen and Crane labs to produce full scale models of the chemotaxis array.61,79  
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Recent Insight into the Signal Transduction Mechanism. Recently, DR Ortega, JS 

Parkinson and IB Zhulin used molecular dynamics simulations and mutational studies to 

interrogate the most conserved residue in the signaling domain.80 This residue is a 

phenylalanine that forms a parallel stacking interaction with its mirroring residue (from the other 

receptor monomer) inside the bottom of the four-helix bundle just before the hairpin tip. 

Molecular dynamics simulations indicate that this region undergoes a cis-trans ring flip that 

correlates with the on and off states of the methylation and adaptation region. This was probed 

computationally by mutating conserved glutamate residues to glutamine residues to simulate 

different methylation states, mirroring an experimental approach conducted by JJ Falke.81 The 

phenylalanine residue was then mutated (in the wet lab) to amino acids with different 

biochemical properties (non-bulky, non-aromatic), where kinase switching activity was no longer 

observed while expression and structure were unaltered by the mutations. This rotameric switch 

may drive kinase activity on and off, as it appears to influence how tightly the four helical bundle 

of the chemoreceptor dimer is clustered. A more robust molecular mechanism may soon result 

from this and related works including recent findings from Pedetta et al.82, making this a major 

discovery in the long history of using chemoreceptors as a model for signal transduction. 

Microbial Behavior and Pathogenicity 

Both a number of pathogens and non-pathogens have had chemotaxis systems 

characterized to varying degrees. The paradigm for this work is more concerned with 

observable phenotypes such as correlating ligand sensing to chemotaxis system output to 

behavior. However, many pathogens are non-motile, so chemotaxis is often overlooked for 

other virulence factors such as adhesins, pili, toxins, etc. A common theme of pathogenesis is 

that of a well-behaved commensal moving from its favored location in the body to a new location 

where it then proceeds to wreak havoc. Chemotaxis is a likely suspect for influencing the 

transition of motile organisms from commensal-favoring environments to pathogen-favoring 
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environments, and it is surprising how poorly understood this connection is in most diseases. 

Pathogens with an established link between chemotaxis and virulence/pathogenicity are 

Pseudomonas aeruginosa,83,84 Vibrio cholerae,85 Campylobacter jejuni,86 Helicobacter pylori,87 

Treponema pallidum,88 and Borrelia burgdorferi.89 Work from this dissertation in Chapter 5 also 

illuminates chemoreceptors’ potential contribution to extra-intestinal pathogenicity in E. coli (see 

Figure 6 for a brief overview of chemotaxis, pathogenic organisms, and sites of infection).  

Starting from the left of Figure 6 and working down, Borrelia burgdorferi, the causative 

agent of Lyme Disease, resides in Ixodes spp. ticks and infects humans through tick saliva 

during prolonged bites.89 MNEC (meningitis-associated Escherichia coli) infects the meninges 

(often in neonates),88,90 while Spirochete pathogens that cause syphilis (Treponema pallidum) 

and present numerous clinical manifestations including late-stage invasion of meningeal and 

cardiovascular tissue.88 Pseudomonas aeruginosa PAO1 is an opportunistic pathogen that 

complicates respiratory infections, resulting in especially dire prognoses in the young, elderly, 

immunocompromised, or those suffering from cystic fibrosis. In the stomach, Helicobacter pylori, 

which is a causative agent of gastric ulcers, relies on flagellar motility to colonize the upper 

region of the stomach, where the environment is amenable to its survival. Additionally, Vibrio 

cholerae and Campylobacter jejuni are gastrointestinal pathogens whose chemoreceptors have 

been linked to contributing to or enhancing pathogenicity. Finally, urinary pathogenic 

Escherichia coli (UPEC) infect the urinary tract by ascending the urethra and ureters and can 

cause life-threatening infections in severe cases when the kidneys become involved. 

 Unfortunately, two major factors have complicated this type of research: 

chemotaxis systems control other systems than just flagella, and there can be multiple 

chemotaxis systems, both flagellar and non-flagellar. This obscures which receptors talk with 

which system, as well as what the contribution of these systems is to the overall observed 

pathogenic behavior. 
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Chemotaxis Systems Control More Than Just Flagella. Chemotaxis systems have been 

repurposed in nature to moderate several different behaviors distinct from flagellar motility. The 

best studied examples of these are type-four pilus mediated twitching motility, alternative 

cellular function associated with c-di-GMP turnover and biofilm formation, social motility, and 

fruiting body formation.91-94 

Type-four pilus motility (TFP or twitching/surface motility), involves the secretion of pili 

through the periplasm and into extracellular space.95 In stark contrast to the rotary propulsion of 

the flagella, the pilus acts through hydrophobic subunits, which allow for tight adhesion to 

surfaces. Through retraction of the pilus, the bacteria can essentially drag itself in the direction 

of the retraction (as the pilus is still attached). The chemotaxis system is involved with 

modulating pilus synthesis and retraction. The chemoreceptor involved with this system, PilJ, 

does not have a known ligand specificity though several physicochemical signals (including 

light) are known to mediate twitching motility.91 

The WSP system from Pseudomonas aeruginosa is an example of an alternative cellular 

function (ACF) chemotaxis system, as its output is not directly related to motility. Harwood et al. 

were the first to characterize this system along with its operon-encoded chemoreceptor, 

WspA.92 This system regulates cyclic-di-GMP turnover. Cyclic-di-GMP is a small molecule 

unique to bacteria that is used to regulate biofilm formation along with many other signals 

associated with bacterial virulence.96 It does not require the Wsp system for synthesis or control 

of biofilms, though many organisms have adapted a chemotaxis system to do so.  

Multiple Receptors for Multiple Systems. Multiple chemotaxis systems are the exception, 

not the rule.50 However, most of our knowledge of chemotaxis comes from studying the single 

F7 flagellar system in E. coli and Salmonella, the single F1 flagellar system in B. subtilis, or the  
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Figure 6. Established Roles of Chemotaxis Systems Contributing to Pathogenicity in Humans. 

Multiple strains of motile bacteria have had chemotaxis systems, proteins, or behaviors directly linked to 

pathogenesis in experimental models of infection. The best characterized examples are illustrated above 

showing strains and their general site of pathogenicity within the body (anatomical illustrations from 

Gray’s Anatomy).97  

 

single F3 flagellar system of H. pylori and C. jejuni. In all of these cases, one predicted CheA 

gene implies one chemotaxis system, so there is only one option for chemoreceptor to 

chemotaxis system connectivity. In cases with multiple chemotaxis systems and a multitude of 

chemoreceptors, this question becomes much more complicated (Chapter 4).  

Fortunately, chemotaxis genes tend to cluster together in the genome, and many of the 

experimentally studied chemotaxis systems in organisms with multiple chemotaxis systems have 

operons to pair homologs with their cognate system. Even more fortunate, several of these 

operons contain a receptor (or multiple receptors), which provides a starting point for assigning 
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pathway connectivity. However, the vast majority of chemoreceptors are genomic orphans, and 

as such have remained uncharacterized. Pathogens such as V. cholerae and P. aeruginosa 

contain 45 and 26 chemoreceptors split between 3 and 4 chemotaxis systems respectively, 

illustrating the problem that faces the chemotaxis community. As it stands, the gold standard for 

assigning a receptor to a pathway requires enough experimental work to constitute one paper in 

itself, and at this pace, the majority of chemoreceptors will remain unstudied.  

What follows is a comprehensive review of the state of the art in experimentally 

investigating organisms with multiple chemotaxis systems. Due to the number of studies covered, 

these are organized by organism, and these sections illustrate both the progress that has been 

made in assigning receptors to pathways and also the difficulties in doing so with current 

experimental methods. Vibrio cholerae, a gram-negative member of γ-Proteobacteria and human 

pathogen (cholera), serves as an example where little had been reported on the multiple 

chemotaxis system question until very recently,98 because prior in vitro work in Vibrio cholerae 

had focused primarily on one chemotaxis system (operon 2).99,100 Pseudomonas aeruginosa is 

covered here, but will also be covered in greater detail in Chapter 4. 

Rhodobacter sphaeroides is a purple, non-sulphur member of α-Proteobacteria that grows 

aerobically, anaerobically, or photoheterotrophically.101 This organism has multiple chemotaxis 

systems, making it difficult to assign CheA, CheW, and MCP homologues to pathways.101,102 

McpG in Rhodobacter sphaeroides is a membrane-spanning chemoreceptor that localizes to the 

cell pole and depends on Che proteins encoded by Operon 2, but not homologues encoded by 

Operon 1.103 In order to investigate this, McpG-GFP fusion construct was introduced in place of 

the McpG gene. Then, a strain lacking the chemotaxis operon was created with the McpG-GFP 

chemoreceptor. The Operon 1 deletion strain maintained the wild-type localization, while the 

Operon 2 deletion strain resulted in dispersed localization. Therefore, the authors concluded that 
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CheW2, CheW3, and CheA2 from Operon 2 are required for proper localization of McpG, 

successfully assigning one chemoreceptor to one specific chemotaxis system. 

For a second chemoreceptor, TlpC in Rhodobacter sphaeroides is a soluble receptor that 

localizes to a cytoplasmic cluster and electronic dense region, not the polar localization shown by 

McpG. This receptor was shown to depend on CheW3, CheW4, and CheA2 using a slightly 

different methodology.56 In brief, a TlpC-GFP fusion took the place of the original TlpC gene. 

Then, insertions were created in all of the CheA and CheW homologues. Fluorescence 

localization intensity and placement were compared to the wild-type for each case, and both 

CheW3 and CheW4 mutants abolished fluorescence while a CheA2 mutant showed an 

intermediate fluorescence. In this instance, the authors went a step further by using immunogold 

electron microscopy to establish that the localization state was truly cytoplasmic and not 

membrane bound. In each case, the rationale was that the GFP fusion protein showed the true 

localization. This was done over a variety of growth conditions for robustness.  

Chemoreceptor to kinase connectivity is not the only combinatorial problem facing multiple 

system organisms: there can be multiple CheY homologs as well. In 2009, a mathematical 

modeling and control systems theory based approach was used to invalidate models of 

CheA:CheY signaling connectivity. The models were fit to experimental data, and one model was 

unable to be invalidated. However, chemoreceptors did not factor into this work.104 In 2010, a 

computational method using clustering techniques was used to sort and pair chemotaxis clusters 

and genes (CheABRWY). Chemoreceptors were also not used in this analysis.105 Thus, assigning 

chemoreceptors to pathways can be a tremendous endeavor that may not end even once a 

CheA:CheW:Chemoreceptor association is achieved. 

Geobacter spp. are gram-negative members of δ-Proteobacteria classified as facultative 

anaerobes.106 In Geobacter, Weis et al. used bioinformatics methods to describe 6-7 chemotaxis 

clusters in 3 different Geobacter spp. They obtained homologues using BLAST and PSI-BLAST107 
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against the 3 genomes, using queries from E. coli, B. subtilis, and T. maritima. Several of the 

clusters contained MCPs, but there were more MCPs outside of chemotaxis clusters than inside. 

They used multiple-sequence alignments to assign helical heptad classes to chemoreceptor 

based on the work of Alexander and Zhulin,108 and postulated that MCPs with like heptad 

classes/lengths cluster together to diminish unwanted crosstalk.106 

Pseudomonas aeruginosa is a gram-negative γ-Proteobacteria that is an opportunistic 

pathogens of many eukaryotic species including humans.91,109 Pseudomonas aeruginosa has four 

chemotaxis systems: Wsp92 (ACF), Chp/Pil91 (TFP), and flagellar systems F6/F7.110,111 The F6 

system is associated with flagellar motility, and it was linked to a cheV cheR cluster.112 The F7 

system has been shown to be preferentially expressed during periods of stress, and F7 and F6 

systems do not appear to co-localize (CheA-YFP from F6 and CheY2-YFP from F7 do not co-

localize).111 That said, in a previous paper, CheB2 from the F7 system has been shown to 

complement CheB1 deletion strains, shows general chemotaxis deficits when CheB2 is deleted, 

and has been linked to pathogenicity.83 The first two of the previous findings led Harwood et al. 

to posit that the polar cluster is remodeled during periods of stress.111  

Three paralogous (Cache_1 containing) transmembrane receptors, PctABC, were 

determined to mediate taxis towards amino acids.112-115 PctABC localize to the cell pole. WspA, 

conversely localizes to the sides of the organism. In order to probe the localization of WspA and 

PctABC receptors, the chemoreceptor HCD was swapped between the two types, and their 

localizations reversed, showing that this broad region was necessary and sufficient to localize 

each to their wild-type position.116 As such, there seems to be little doubt that PctABC work with 

F6 and WspA and PilJ work with the ACF and TFP systems respectively. The major factor that 

has not been researched here is how the F6 and F7 systems share control of the flagella. 

Additional Chemoreceptor Work from Pseudomonads. Two aerotaxis chemoreceptors 

were identified and found to depend on Che Cluster 1 and a cheR that is in its own cluster (5) with 
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cheV. All 5 Che Clusters were assayed with deletion-insertion mutations in order to arrive at a 

specific system designation.117 A malate receptor (PA2652) in Pseudomonas aeruginosa was 

identified through double knockout mutants, swarm plate assays, capillary tube assays, and 

complementation. No association with chemotaxis systems was directly assessed in this work.118 

Pput_0623 was demonstrated to provide chemotaxis towards cytosine and pyrimidines through 

capillary assays, complementation, and cross-species knock-in (Pseudomonas aeruginosa 

PAO1).119 Again, no association with chemotaxis systems was experimentally explored (though it 

stands to reason that it can function with a system shared by the two organisms). 

In Pseudomonas aeruginosa, a soluble chemoreceptor, BdlA, controls biofilm dispersion. 

The phenotype was established using 3D structural analysis of the biofilm, and mutants defective 

in both twitching motility and swimming motility did not appear to affect the dispersion 

phenotype.120 While it makes sense that this chemoreceptor could be involved with the WSP 

system, to the best of our knowledge it has not been experimentally demonstrated yet that it 

interacts or localizes with this or any other system. Another soluble receptor, McpS (PA1930), 

was shown to localize to the polar chemotaxis array (unlike TlpC in Rhodobacter). Overexpression 

caused loss of polar clustering of general MCP population in a dose-dependent negative effect. 

Cell fractionation confirmed solubility, indicating that another mechanism localizes the receptor to 

the array aside from the TM regions.121 Multiple systems were not experimentally investigated in 

this work as well.  

Myxococcus xanthus is a gram-negative soil dwelling δ-Proteobacteria with 8 chemotaxis 

systems and a complex lifestyle, serving as an extreme example.122 Through bioinformatics 

(MSA/Trees), Moine et al. phylogenetically clustered this organism’s chemoreceptors. They then 

conducted co-localization experiments to determine if receptors that branched together localized 

together in the cell.123 Two receptors in M. xanthus have been further experimentally 

characterized (FrzCD and DifA). FrzCD is a cytoplasmic, bipartite chemoreceptor that was 
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confirmed to participate in the Frz system using in-frame deletion mutants for all Frz genes. 

Furthermore, the C-terminal region was deleted, which locked the signaling in a constitutive state 

that abolished movement.94 Its dynamic localization profile has been experimentally reported as 

well.122 As for DifA, both a Tn5 deletion, an in-frame deletion, and another separate in-frame 

deletion in the CheA homolog of the Dif system resulted in the same social motility defects.93  

Sinorhizobium meliloti is a gram-negative, nitrogen-fixing symbiont that dwells in soil and 

is a member of α-Proteobacteria.124 In Sinorhizobium meliloti, there are two chemotaxis systems, 

eight transmembrane receptors, and one cytoplasmic receptor. These receptors have been 

deleted and various chemotactic deficits occurred.124 Furthermore, all of the receptors have been 

shown to localize to the pole, except McpS, which is generally distributed throughout the organism 

and is encoded in the che2 operon on the symbiotic plasmid pSymA. Three of the transmembrane, 

polar receptors and the cytoplasmic receptor were co-localized with the major chemotaxis 

operon’s CheA, which the authors took as evidence for this being the cognate system.125  

Synechocystis PCC6803 is a photosynthetic and phototactic Cyanobacterium.126 In 

Synechocystis sp. PCC 6803, mutation of a chromophore containing chemoreceptor (along with 

mutations in several of the Che genes in an operon with it), all resulted in diminished phototaxis.126 

These results were confirmed in a slightly later paper that described the chemotaxis system 

involved in phototaxis to be a type IV pili system.127 Cyanobacterial chemoreceptors served as 

one of the first model systems to explore chemoreceptors in their genomic context within multiple 

chemotaxis systems, as there are a limited number of diverse chemoreceptors that are encoded 

within chemotaxis system operons.128  

Chemoreceptors, Behavior, and Physiology Conclusion. To summarize, there are two 

pathways currently available to experimentally connect a receptor to a chemotaxis system: 1) if a 

chemoreceptor is in the operon and there is an observable phenotype, one can conduct deletion 

studies and then co-localize the proteins. However, this does not rule out cross-talk (especially 
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with soluble receptors). This approach is also condition-dependent (which many labs take into 

account, though they could never assay all possible conditions). 2) In a far more likely scenario, 

if the chemoreceptor is outside of an operon, in addition to doing the above steps, one must 

include deletion strains of every other CheW, CheA, or Che cluster/operon. The second and much 

more labor and resource intensive option (evidenced by the work of Armitage et al. and Kuroda 

et al. in Rhodobacter and Pseudomonas respectively) serve as the gold standard for assigning 

receptors to pathways. It is also important to note that even in the first case, the receptor can be 

shown to localize to a different system (P. aeruginosa McpA PA0180).111 Therefore, the 

experimental cost for assessing orphan receptors is at best a combinatorial exercise, where, for 

each receptor, each CheW and CheA must be mutated/deleted to establish selectivity. For 

example, P. aeruginosa PAO1 has 20 unassigned receptors, 4 CheAs, 8 adaptor proteins (7 

CheWs and 1 CheV), even as one of the best studied organisms on the planet. This problem 

serves as the impetus for Chapter 4. The organisms in Chapters 2, 3, and 5 all come from single 

chemotaxis organisms, illustrating in a very tangible manner the skew to which research favors 

the simpler model systems.  
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Chapter 2: Refining Chemoreceptor Interactions in Thermotoga maritima 
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Abstract 

Bacterial chemosensory arrays are composed of extended networks of chemoreceptors (or 

methyl-accepting chemotaxis proteins, MCPs), the histidine kinase CheA, and the adaptor 

protein CheW.  Models of these arrays have been developed from electron cryotomography, 

crystal structures of binary and ternary complexes, NMR spectroscopy, mutational data and 

biochemical studies. A new 3.2 Å resolution crystal structure of a T. maritima MCP protein 

interaction region (PIR) in complex with the CheA kinase-regulatory module (P4-P5) and 

adaptor protein CheW provides sufficient detail to define residue contacts at the interfaces 

formed among the three proteins. As in a previous 4.5 Å resolution structure, the paralogs 

CheA-P5 and CheW interact through conserved hydrophobic surfaces at the ends of their 

barrels to from pseudo six-fold symmetric rings in which the two proteins alternate around the 

circumference. The interface between P5 subdomain 1 and CheW subdomain 2 was 

anticipated, whereas the related interface between CheW subdomain 1 and P5 has only been 

observed in these assemblies. The receptor PIR forms an unexpected structure in that the 

helical hairpin tip of each subunit has “unzipped” to form a continuous -helix; four such helices 

associate into a bundle and the tetramers bridge adjacent rings in the lattice through 

interactions with both P5 and CheW. P5 and CheW bind a receptor helix in a groove of 

conserved hydrophobic residues between subdomains 1 and 2. P5 binds the helix N-terminal to 

what would be the tip region (lower site), whereas CheW binds the same helix near the bundle 

end (upper site), but with inverted polarity compared to P5. Computational genomics 

demonstrates that residues in the CheW and P5 recognition surfaces, and at the lower, but not 

upper, receptor binding site, are highly conserved and that binding partners undergo correlated 

changes in residue identity when comparing different evolutionary classes of chemotaxis 

proteins. Evolutionary sequence analyses reveal that two distinct CheW adaptors in 

Thermotogae utilize the analogous recognition motifs to couple different receptor classes to the 

same CheA kinase. Key residue positions identified by mutagenesis, chemical modification and 

biophysical approaches also map to these same interfaces. The CheW receptor interactions are 

well anticipated by existing data and the companion paper (Piasta et al. (2013); Companion 

paper)34 demonstrates that the P5 receptor contact as defined in this structure forms in native 

arrays.  Known mutational sites further indicate that structural perturbations about these defined 

interfaces are involved in the regulation of CheA kinase activity by receptors.  



48 
 

Introduction 

Bacterial chemotaxis,129 the tendency of bacteria to swim toward attractants and away from 

repellants,  has long served as a model system for understanding transmembrane signaling, 

motility and cellular behavior.31,130,131 Moreover, the underlying sensory pathways of chemotaxis 

are essential for the infectivity of many prokaryotic pathogens such as Helicobacter pylori 

(gastric ulcers and stomach cancers),132-135 Vibrio cholerae (cholera),135-137 and several types of 

pathogenic Spirochetes (Lyme diseases, dental disease, syphilis).138-140  It has become 

increasingly apparent that the receptors responsible for binding chemoattractants form 

extended, ordered structures in the cytoplasmic membranes of cells. These chemosensory 

arrays are primarily composed of the chemoreceptors themselves, also called methyl-accepting 

chemotaxis proteins (MCPs), the histidine kinase CheA, and the adaptor protein CheW.141-145 

Electron cryotomography (ECT) has revealed a hexagonal arrangement for these receptor 

clusters62,146-150 that is based upon a conserved trimeric assembly of chemoreceptors131 found in 

species that range from Proteobacteria to thermophilic Thermotogae.59 

 Although sensing domains differ among MCPs, the receptors all have a similar 

construction and are exemplified by the four E. coli chemoreceptors, Tar, Tsr, Trg, and 

Tap.131,151-153 Dimeric MCPs span the membrane with four helices (TM1, TM2, TM1’, and TM2’), 

bind ligands through a variable amino-terminal extracellular domain and interact with cellular 

components through a well-conserved carboxy-terminal cytoplasmic domain (MCPC). MCPC is 

linked to TM2 by a short cytoplasmic HAMP domain that is key to transducing signals across the 

membrane.66,154-156 Each MCPC subunit folds as two long anti-parallel helices that dimerize into 

a four-helix bundle.52,157,158 The region most distal to the membrane (the tip of the bundle) known 

also as protein interaction region (PIR) or the kinase control module (KCM) interacts with CheA 

through CheW. At sites ~140-195 Å away from the receptor tip in the so-called “adaptation 

region”, specific glutamate residues undergo reversible methylation/demethylation (by CheR 
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and CheB or/and CheD, respectively) to tune receptor activation of CheA.159-162 Regulation of 

the CheB methyl-esterase activity by CheA generates feedback control (known as adaptation).  

 The histidine kinase CheA complexes with receptors and transduces ligand binding 

events into initiation of an intracellular phosphorelay that ends by regulating rotation of the 

flagellar motor.163-165 CheA is a dimer with each subunit containing five separate functional units 

(P1 to P5), strung together as distinct domains over the length of the polypeptide.19,166-171 P1 

contains the substrate histidine autophosphorylated by the kinase domain (P4). P2 docks CheY 

for phosphotransfer from P1. The last three domains (P3-P4-P5), comprise dimerization, kinase 

(ATP binding) and receptor-coupling modules, respectively, and their structures have been 

determined together for Thermotoga maritima CheA (CheAΔ289).19  

The final core component of the signaling ternary complex is the adaptor protein 

CheW.172,173 CheW has the same tandem SH3-domain-like fold as the CheA P5 regulatory 

domain and conserves two intertwined 5-stranded β-barrels (designated subdomains 1 and 

2).19,174 The P3-proximal barrel of P5 (subdomain 1) binds CheW through a pseduosymmetric 

contact that involves conserved hydrophobic residues on each domain.157,174-178 Kinetic and 

genetic studies suggest that CheW and CheA P5 may compete for binding receptors,179,180 in 

keeping with early observations that CheW is required for kinase activation but not 

inhibition.181,182 The structural similarity of CheW and CheA-P5 would support such an assertion 

and provide a possible mechanism for switching structural states of the assembly.   

We produced a model of the Receptor:CheA:CheW cytoplasmic ternary complex by 

application of site-specific spin labeling with nitroxides and pulsed-dipolar ESR spectroscopy 

(PDS) to soluble complexes of MCPC, CheA and CheW from T. maritima.20 Overall, the data 

revealed that the receptor tip binds CheW but also interacts between the P4 and P5 domains of 

CheA. The PDS structure is surprisingly asymmetric with the receptor stalk aligning along the 
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CheA dimerization domain and the P1 substrate and P4 kinase domains projected away from 

the receptor tips.20   

More recently we determined the crystallographic structure of a complex between CheA 

(P4-P5) :CheW and a truncated MCPC from the T. maritima soluble receptor Tm14 (PDB Code 

3UR161). This structure was fit to electron density from ECT maps of native receptor arrays in 

the cytoplasmic membranes of cells.61 The original crystals diffracted to only 4.5 Å resolution but 

their high solvent content enabled placement of the proteins and domains. The receptor PIR 

interacts with the surface of CheW expected from our PDS studies,20 but remarkably, the 

regulatory domain of CheA and CheW form rings of pseudo-hexagonal symmetry that are 

consistent with the honeycomb receptor lattice observed by ECT and predicted by the domain 

arrangements found by PDS.20,61 The combined methods describe a complex P6 lattice 

symmetry for the receptor arrays where networked rings of CheA and CheW associate receptor-

trimers-of-dimers into a hexagonal lattice that suspends the kinase domains below CheW-P5 

rings. We have modeled and refined crystallographic structures against the ECT data and 

confirmed that the crystallographic assembly states are consistent with the native arrays in the 

range of 20-30 Å resolution. NMR studies verify interfaces implied by the extended 

structure74,183 and a very similar model has been subsequently published based on independent 

ECT data.79 

Despite these advances, the low resolution of the ternary complex structure prevents a 

detailed description of the molecular interactions within the chemosensory arrays. Indeed, 

electron density for side chains could not be resolved in the maps, and although the topology of 

CheA and CheW allow for a largely unambiguous placing of their secondary structure, the 

register and rotational orientation of the receptor helices was uncertain.61  Furthermore, the 

interaction between the receptor tip and the CheA-P5 domain could only be modeled on the 

CheW receptor interaction because in the crystals P5 interacts with the receptor at a position 
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that was only assumed to mimic the native association. Greater structural detail is necessary to 

not only refine the overall architecture of the arrays, but also understand the mechanism for 

switching activity states. With the aim of improving the ternary complex crystals we have 

reengineered the receptor fragments by perturbing helix termini involved in lattice contacts. One 

of these altered fragments consistently produced crystals that diffracted to better than 3.5 Å 

resolution.  The resulting higher resolution structure maintains the P5:CheW rings of the 

previous structure, but the receptor itself displays an unusual unzipped conformation in which a 

tetramer of subunits associates the CheA P5 domains and CheW.  Although this unzipped 

structure is not likely found in the membrane arrays, evolutionary analysis of sequence 

conservation and mutation patterns suggest that the contacts among the receptor, CheA and 

CheW displayed by the structure are relevant to the native chemosensory system. For CheA, 

these assertions have largely been confirmed by a companion report to this study.34 

Experimental Procedures. Constructs of T. maritima Tm14S with altered termini (residues 

107-192, 107-193, 107-194,106-191, 106-192) compared those that produced the previous 

3UR1 structure (107-191) were  PCR cloned into vector pET28a (Novagen) and expressed with 

an N-terminal Histidine6 tag in E. coli strain BL21 (RIL DE3) (Novagen) after induction with IPTG 

at 18°C and overnight growth for 21 hours. The Tm14s fragments were purified first with Ni-NTA 

chromatography, followed by overnight thrombin digestion, and then size-exclusion 

chromatography (Superdex 75 Hi-load FPLC column in 50 mM NaCl, 100 mM Tris 7.5, 10% 

glycerol).  T. maritima CheW and CheA Δ354 (P4P5 domain, residues 355-671) were 

expressed and purified as described previously.157 

Cubic shaped crystals (50x50x50 µm3) were grown from a mixture of 520 µM Tm14s, 457 

µM CheA Δ354 and 121 µM CheW after 1 month by vapor diffusion from a 2 μl drop (1:1 

mixture of protein and reservoir: 500 μl reservoir of 0.2 M sodium acetate trihydrate, 0.1 M Tris 

(pH 8.5), 15% w/v polyethylene glycol 4,000). Crystals with a similar shape and size as those 
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derived from Tm14S (107-191) were grown after 1 month. Among the new crystals (residues 

107-192) consistently diffracted to 3.5 Å resolution. Crystals were soaked briefly in 

cryoprotectant that consisted of 85/15% (v/v) reservoir solution with glycerol prior to data 

collection in a N2 cold stream. Diffraction data were collected at 100K with synchrotron radiation 

at beamline A1 at the Cornell High Energy Synchrotron Source (CHESS). Selenomethionine 

was also incorporated into the Tm14S (107-192) to aid in efforts to determine the helical registry, 

but unfortunately, the selenomethionine incorporated protein did not produce crystals.  

Crystal Structure determination and refinement. Diffraction data were processed with 

HKL2000.184 Initial phases were obtained with molecular replacement in PHASER185 employing 

the 4.5 Å ternary complex structure with Tm14S (107-191) (PDB 3UR1) as a search model. The 

Tm14S subunits were manually unfolded and built into the resulting electron density with 

XFIT.186 The resulting structure was refined with PHENIX.187 B-factor sharpening188 and 

composite omit-map calculation in PHENIX approved maps and allowed for proper 

interpretation of the Tm14S unzipping.  

Bioinformatics software and data sources. Sequences of CheA, CheW and MCP proteins 

were retrieved from the MiST2 database21 using sets of domain definitions that are specific for 

each protein, as described previously.12 MCP sequences were classified using custom hidden 

Markov models.153 Pairwise sequence alignments were built using BLAST v.2.2.17189 with 

default parameters. Multiple sequence alignments were constructed in MAFFT v.6.0190 with its 

L-INS-I algorithm. The conservation pattern was analyzed in Jalview25 using underlying tools. 

Minimum evolution and maximum-likelihood phylogenetic trees of CheW protein sequences 

were constructed from the corresponding multiple sequence alignment and analyzed using the 

MEGA5 package.191 Operons were predicted based on inter-genic distances.192 A protein cutoff 

scanning technique193 with a beta carbon distance of 6 Å was used to prospect contact sites 

from PDB files of the co-crystal structures. Measurements were carried out using a custom Perl 
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script, which compares every other beta carbon’s coordinates to the query atom in all-against-all 

matrix analysis. The distance is computed according to the following equation:   Distance = 

SQRT ( (x1-x2)2 + (y1-y2)2 + (z1-z2)2); where x, y, and z are their respective orthogonal 

coordinates. 

 

Results 

Crystal lattice engineering. In efforts to improve the diffraction resolution of the original 

ternary complex crystals (PDB code 3UR1), modifications were made to the termini of the 

shortened Tm14 receptor (Tm14S). The 4.5 Å resolution structure indicated that these termini 

contacted each other on the symmetry axes of the crystal lattice, and thereby allowed the 

receptor dimers to stack “end-to-end” with aligned helices (Figures 7 and 8). Several new 

constructs were generated with shifted termini to perturb this principal lattice interaction during 

crystallization (see Experimental Procedures). One of these (residues 107-192) produced 

crystals that consistently diffracted to ~3.5 Å resolution (Table 1). Ultimately, a new 3.2 Å 

resolution structure was determined from these crystals by molecular replacement (MR) with the 

previous 4.5 Å structure as a probe (Table 1). MR revealed that the general placement of the 

CheW, P5 and Tm14S units were quite similar in the two crystals. Indeed, refinement of the 

original model against the new data gave Rfactor/Rfree values of 0.231/0.272 to 3.5 Å resolution. 

However, examination of the higher resolution electron density revealed that the helix register in 

the MR model was not compatible with the side-chain electron density, particularly in the bundle 

core, where two invariant Phe154 residues at the receptor tip could not be placed without 

offsetting their side chains relative to their position in the mostly complete structure of Tm14 

(PDB Code 3G67). This consideration led to a new interpretation of the receptor structure, 

where the subunits had become unzipped and then associated to form a tetramer of antiparallel 

helices (Figure 7). Refinement of the new configuration gave significantly improved refinement  
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Figure 7. Molecular Composition of the 3.2 Å Resolution Ternary Complex Crystals. (A) Molecular 

interactions generated by the R32 crystal symmetry. CheW (green) and the CheA P5 domain (blue) form 

rings of three fold symmetry, with the two proteins alternating around the circumference. The P5-CheW 

rings are held together by extended 4-helix bundles formed by the Tm14S receptor (pink and purple). Four 

Tm14S subunits have unzipped into continuous helices and associated into a tetrameric 4 helix bundle; 

each bundle binds two P5 domains near its center (lower site), and two CheW domains at its periphery 

(upper site). If the pink helices were joined at the middle of the bundle, and the purple helices were 

similarly joined, they would produce end-to-end MCP hairpin tips as reported in the previous 4.5 Å 

resolution structure (see Figure 8). Tm14S tetramers interact with every P5 or CheW domain around the 

ring, although the complete tetramer is only shown for the boxed receptor. The CheA P4 domains (grey) 

project in large solvent channels above and below the rings although their electron density is not well 

defined.   (B) Close-up of the Tm14S tetramer and its interaction with one P5 domain near its center and 

one CheW at its end. The region that would normally form a helical hairpin instead folds as a continuous 

helix (boxed). (C) View down the central receptor bundle as designated in (A). Two of the four rings 

associated by the Tm14S tetramer are shown. 
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 statistics (Rfactor/Rfree = 0.203/0.225; Table 1). The unzipped tetramer is surprising because 

Tm14S is largely dimeric on purification, as judged by multi-angle light scattering coupled to 

size-exclusion chromatography (Figure S1 in Appendix A). In addition, related constructs of 

Tm14S have been studied in complex with CheA and CheW by solution NMR, where they are 

also dimeric.74,194  One possible explanation for the unzipping may be linked to construct design. 

In addition to the native residues of the receptor, the expression vector introduced four non-

native residues at the N-termini (Gly-Ser-His-Met-Ser107-). Assuming that Ser107 holds the 

same position in the helical heptad repeat as it does in the structure of the mostly complete 

Tm14 (3G67), the non-native His would reside in a “d” position, internal to the hydrophobic core 

of the bundle.  Two His side chains (one from each subunit) directed at each other from across 

from the bundle core would clash, and perhaps their introduction destabilized the Tm14S dimer 

under the crystallization conditions.  

Molecular arrangements within the ternary complex crystal. Despite the switch from a 

dimeric to a tetrameric Tm14S, the arrangement of components in this new structure and 3UR1 

are quite similar. The conformational changes in the tip that allow for the unzipping of the helical 

hairpin and the switch from two end-end dimeric hairpins (as would be found in a typical MCP) 

to an antiparallel tetramer of unzipped helices are centered in Gly148, and to lesser extent 

Gly151 (Figure 8).  The Gly148  angles change from an otherwise disallowed region of 

Ramachandran space, to the helical region; Gly151 changes conformation more slightly to allow 

for an i to i+4 main-chain hydrogen bond between Ala150 and Phe154.  The Gly 

rearrangements in the extended tip (residues 147-153) produce a typical heptad repeat of 4-

helix coiled-coils with Ala147 and Phe154 residing in the most buried “d” position (Figure 8).  
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Figure 8. Unzipping of the Tm14S Helical Hairpin. (A) Superposition of one subunit of the Tm14 

structure (3G67, grey) and two subunits of the unzipped Tm14S (pink). Most of the residues in the 

transition region maintain similar backbone conformations in both structures, with the exception of Gly 

148, whose ϕ/ψ angles change from values disallowed for Cβ-containing residues to α-helical. Grey 

arrows map residues in the hairpin turn conformation to the extended conformation. The two Tm14S 

helices are antiparallel and offset from one another by two helical turns (note the position of Phe154 and 

its symmetry mate Phe154* in the opposing subunit). (B) Schematic depicting the relationship between 

two end-to-end hairpins to a tetrameric 4-helix bundle. Color saturation of the helices decreases from N- 

to C- termini. 

 

Adjacent antiparallel helices of the tetramer pack similarly as in Tm14 or other MCP structures 

(3G67, 2CH7, 1QU7, 3ZX6) but the symmetry-related helices from the other two subunits are 

shifted by approximately one helical turn relative to the first pair.  This produces a ladder of the 

four Phe154 residues from each subunit at the center of the bundle. Importantly, the structure 

presents a pair of antiparallel helices to CheW and P5 as would be found in other MCP receptor 
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structures, but the two sides of the bundle (colored purple and pink in Figs. 7-11), which can be 

considered as independent binding surfaces, are offset from one another. 

The crystallographic asymmetric unit contains one subunit of CheW and one subunit of the 

CheA P5 domain, each interacting at a different position on the tetrameric receptor (Figure 7B), 

with P5 close to the center (lower position; Figure 7B), and CheW at the end (upper position; 

Figure 7B). Like in the low-resolution structure, the R32 crystal symmetry generates rings of 

alternating CheW and P5 domains (Figure 7AC). Each ring contains 3 copies of CheW and 3 

copies of P5 (Figure 7C). The paralogs interact through the ends of their -sheets, with 

subdomain 1 of P5 binding subdomain 2 of CheW, as previously characterized in complexes of 

CheA with CheW.61,157,174 However, to complete the ring, CheW subdomain 1 also interacts with 

P5 subdomain 2 in a contact pseudosymmetric to the first (Figure 9). Given that CheW and P5 

are themselves paralogs, the rings have pseudo six-fold symmetry. A receptor helix associates 

with the groove between the two -barrels of each domain and thereby produces pseudo-six-

fold symmetric arrangement of receptor bundles. ECT in concert with the low resolution 

structure suggested that in native membrane arrays, one trimer-of-receptor-dimers associates at 

each P5 or CheW binding site.61,79 Due to membrane incorporation of the native receptors, all of 

the tips would engage the CheW/P5 rings from the same direction, rather than with the 

alternating polarity found in these crystal structures. In the unzipped receptor configuration, the 

Tm14S helix that primarily binds CheA-P5 does so in a region that would normally be N-terminal 

to the hairpin tip (this binding helix will henceforth be referred to as the “N-terminal helix”).  

CheW binds the N-terminal end of this same helix, but does so with the binding groove flipped 

over relative to that of P5 (Figure 10). Thus, in the extended crystal lattice, two CheW/P5 rings, 

related by twofold rotation, are bound at their edges by six receptor tetramers that alternate their 

orientation around the ring from “up” to “down” (Figure 7).  
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Table 1. Data Collection and Refinement Statistics for Ternary Complex Crystal Structure 

 

wavelength (Å)              0.97700 

spacegroup                                                     R32 

cell parameters                        a= 213.99 b=213.99 c=208.19 

resolution   (Å)                                              46.2−3.2 (3.3-3.2)a 

no. of observations               169251 

no. of unique reflections         30554 

redundancy        5.5 (3.9) a 

completeness (%)                                         99.7 (99.2) a 

Rmerge
b

                          0.105 (0.513) a 

I/σ(I)               20.3 (1.4) a 

Refinement statistics  

resolution range  (Å)                          46.2−3.2 (3.3-3.20) a 

R factor, %                                                      19.6  (33.6) a 

Rfree, %                                                             22.0  (36.9) a 

molecules/ asym unit                          1 P4-P5, 1 CheW, 2 Tm14S (107-192) 

residues/ asym unit                                                  576 

solvent content (%)     84 

overall B-value (Å2)      36.1 

main-chain B-value (Å2)     32.9 

side-chain B-value (Å2)     39.5 

Wilson B-value (Å2)       40.5       

Geometry 

bonds rmsd   (Å)                                                              0.01 

angles rmsd (°)                                                                 1.33 

Ramachandran plot, % 

most favored                                                           89.6 

additionally allowed                                                   9.5 

generouslly allowed                                                  0.7 

disallowed                                                                  0.2 

a Highest resolution range for compiling statistics. bRmerge = ∑ ∑ i |Ii - <I>| / ∑∑  Ii. cP5 residue 550 and CheW residue 

87 are in disallowed ϕ/ψ regions but have well-defined electron density. 
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CheW interaction with CheA-P5. The homology between and pseudosymmetry within P5 

and CheW produce rings composed of twelve -barrels, each -barrel representing a 

subdomain from either P5 or CheW (Figure 8). At the interfaces formed between subdomains of 

opposing proteins, three anti-parallel -strands (3’-4’-5’ for subdomain 1, and 3-4-5 for 

subdomain 2) wrap conserved, hydrophobic surfaces against each other in an anti-parallel 

fashion (i.e. the 3’-4’ loop of P5 subdomain 1 interacts with the 4-5 loop of CheW 

subdomain 2 and 3’-4’ loop of CheW subdomain 1 interacts with the 4-5 loop of P5 

subdomain 2; Figure 9) Although the Val, Leu, and Ile residues projecting from 3(‘)-4(‘) on all 

four unique surfaces are quite conserved, the loops connecting the strands differ considerably 

between the two proteins and also between the two subdomains (Figure 9). The sequence and 

structural variation within these loops likely gives rise to specificity for ring assembly. In 

agreement with experiments,157,174,195 the interface between P5 subdomain 1 and CheW 

subdomain 2 is predicted to be stronger (880 Å2 buried surface area per subunit; G of 

formation = -13.6 kcal/mol; Specificity P= 0.024196) compared to that between CheW subdomain 

1 and P5 subdomain 2 (591 Å2 buried surface area per subunit; G of formation = -4.3 kcal/mol; 

Specificity P= 0.282). The latter, “weaker” interaction has not been observed outside of the 

crystallized ternary complexes, although some mutational and modification data suggests that 

positions on this surface do have a functional role (vide infra).177  

MCP interactions with P5 and CheW. The junction between the two subdomains of 

either P5 or CheW harbor conserved, branched hydrophobic residues (Kinase P5/CheW: 

kI560/wV27, kI563/wI30, kL457/wL14, kI566/wV33, kL623/wV98) that form a groove to bind the 

receptor N-terminal helix (Figure 10AB). The receptor helix binds into this region on P5 with a 

row of exposed hydrophobic residues (rIle135, rLeu138, rIle142) as well as rAsn139, which 

provides two key hydrogen bonds to the peptide backbone of kIle566 on the extension of 2 that 

connects the subdomains (417 Å2 buried surface area per subunit; G of formation = -5.2  
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Figure 9. Pseudosymmetric Contacts Made by the CheW and P5 Subdomains. (Top) Half of one P5-

CheW ring viewed from the center. (Bottom) The interfaces formed between CheW-subdomain 2 (SB2) 

and P5-subdomain 1 (SB1) or P5-SB2 and CheW SB1 rotated 90° relative to their orientation above. The 

two contacts are very similar, both involving close associations of the β3- β4- β 5 to β3’- β4’- β5’ strands 

on the respective domains and the conserved hydrophobic residues conserved therein. Nonetheless, 

substantial differences in the β2(‘)-β3(‘) loops produce specificity for the interactions. 

 

kcal/mol; P= 0.287). Mutagenesis studies have strongly implicated Asn139 in chemoreceptor 

array structure and function67 and the hydrogen bonding interactions it makes likely serve as an 

anchor for P5 relative to the receptor tip (Figure 10A).  Another potential anchoring contact 

involves the side-chain to main-chain hydrogen bonds between rArg146 and the kAsp546 at the 

periphery of the interface. Mutants of the corresponding Arg residue in Tsr (residue 366) were 

found to impair or abrogate chemotaxis responses in E. coli.197   

The interface between CheW and Tm14S involves the analogous residues on CheW as on 

P5 (Figure 10B), but the receptor contact forms from a stretch of hydrophobic side chains 

(rIle109, rLeu113, rIle116) three heptads N-terminal to the P5 contact (331 Å2 buried surface 

area per subunit; G of formation = -4.7 kcal/mol; P= 0.247). Moreover, Glu114, which follows 

the central hydrophobic residue also makes side-chain to main-chain hydrogen bonds  
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Figure 10. Interactions Between Tm14S and P5 or CheW. (A) Contact between the N-terminal helix of 

Tm14S (magenta, N-terminus up) and the grove between subdomain 1 and 2 of CheA P5 (blue). Residues 

in the interface (yellow bonds) are primarily hydrophobic, with the exception of Tm14S rAsn139 which 

hydrogen bonds with the main-chain of P5 kIle566 on the connection between β2 and β3 and the kThr565 

side chain. Binding spots on MCP for CheA predicted by evolutionary information are given below. White 

circles represent low sequence conservation in a given position (<80% consensus, no functional 

conservation); grey circles represent strong sequence conservation (>95% consensus, functional 

conservation); black circles represent the strongest sequence conservation (100% consensus, identical 

residues or the same charge conservation); red circles represent positions with correlated mutations. 

Solid lines identify contacts whose evolutionary history is consistent with the correlated mutation 

hypothesis; dashed lines identify contacts whose evolutionary history is inconsistent with the correlated 

mutation hypothesis. (B) Contact between the N-terminal helix of Tm14S and CheW. The Tm14S helix 

(pink) runs in the same direction as in (A), but CheW (green) is rotated ~180° relative to P5. Due to the 

pseudosymmetry of the P5/CheW domains the contact is very similar as in (A), with hydrophobic packing 

central to the interface and a side-chain-to-main-chain hydrogen bonds between rAsn114, and wVal98, 

which resides on the connection between β2’ and β3’. Evolutionary analysis below suggests that this 

structure does not represent a conserved interaction. (C) Superposition of CheW on to P5 demonstrates 

that CheW conserves chemical character of the residues (grey) at many of the key positions that mediate 

the contact between Tm14S and P5.  

 

with the extension of 2’, in close analogy to Asn139 with 2 in the P5 contact. Thus, the upper 

CheW binding surface of Tm14S has a similar chemical character compared to the lower surface 
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that engages P5, but the receptor helix runs across the binding groove in the opposite direction. 

Nonetheless, the intrinsic pseudo-twofold symmetry of CheW that relates the subdomains 

essentially compensates for the reversed helix and produces an interaction that is quite similar 

to that seen with P5 at the lower position. 

The upper binding site of CheW, and hence the second P5/CheW ring is not accounted for 

by the current models of array structure, which indicate all of the CheW:P5 units are found in 

one plane, at the tip of the receptors.61,79  It is then likely that the upper CheW binding site 

facilitated lattice formation by mimicking the natural site and is actually located at the lower 

position as with P5 (residues r135-r146). In support of this notion, rIle135, rIle136, rLeu138, and 

rIle142 and all undergo chemical shifts in solution NMR studies of CheW binding,74 PDS 

measurements of spin-labeled proteins localize CheW to the lower site20 and genetic and 

biochemical experiments are consistent with this docking arrangement.176,198-200 Indeed, 

superposition of CheW onto P5 indicates an excellent fit with the Tm14S 135-146 motif into the 

CheW groove (Figure 10C). However, the strong similarity between the upper and lower 

receptor binding motifs should not be completely dismissed and raises the possibility of mutli-

layered rings in other contexts, perhaps involving receptor systems that are not membrane 

associated. 

Computational genomics. We sought to apply a computational genomics approach to 

independently predict CheW and P5 binding sites on MCP and project the relevance of the 

interactions found in the ternary complex structure to the greater genomic landscape. Rapid 

accumulation of genomic data in recent years allows productive comparative sequence 

analyses to identify evolutionary conserved residues that are important for structure and 

function including protein-protein interactions sites. A “correlated mutation” hypothesis states 

that destabilizing changes in one position can be evolutionary fixed by a compensatory 

modification nearby.32 The relationship between correlated mutations can be derived from 
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multiple sequence alignments of protein sequences; however, due to the complexity of protein-

protein interactions (e.g. mutually dependent residues may not necessarily be in direct contact) 

there is no single method or approach to successfully predict contact sites. In the case of the 

chemotaxis system, interacting proteins (MCPs, CheA and CheW) evolve in various subclasses 

with different protein interaction networks.50 This essentially prohibits applying statistical 

methods, such as “direct coupling analysis”201 that rely on very large datasets of uniformly 

interacting proteins. To circumvent this problem and provide direct correlations to the available 

structural data, we have carried out comparative genomic analysis of the chemotaxis system of 

T. maritima within the well-defined limits of its specific subclass F150 and taxonomic position 

(phylum Thermotogae).   

First, we retrieved sets of CheA, CheW, and MCP protein sequences from all available 

genomes of organisms from Thermotogae. A comprehensive list of these proteins can be found 

in Table S1 of Appendix A. Satisfactorily, all genomes of Thermotogae contained a single CheA 

protein that was confidently assigned to the F1 class.  

Two distinct CheW proteins are present in Thermotogae genomes. We have analyzed 

the sets of CheW and MCP sequences to reveal potential diversification within these protein 

families in Thermotogae. Phylogenetic trees constructed from a multiple sequence alignment of 

CheW protein sequences revealed two distinct sets of orthologs exemplified by T. maritima 

TM0701 (termed CheW1) and TM0718 (termed CheW2): The longest branches on both 

minimum evolution and maximum likelihood trees separate the two classes (Figure 11). This 

classification is independently validated by the fact that all cheW1 genes were found in operons 

together with cheA genes, whereas none of the cheW2 genes were a part of these operons. 

Strong conservation of sequence and structure of the CheW2 protein suggests that although it 

has not been successfully experimentally characterized, this protein is functional in T. maritima 

and all its relatives. 
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Figure 11. (Minimum Evolution and Maximum Likelihood) Phylogenetic Trees Showing Two 

Groups of CheW Orthologs from Thermatogae. CheW1 group is shown in green and CheW2 group is 

shown in purple. Sequences are represented by their locus tag numbers. Sequences from T. maritima are 

labeled by circles. 

 

Two distinct MCP classes are present in Thermotogae genomes. All 116 MCP 

sequences from Thermotogae were matched against hidden Markov models (HMMs) 

constructed for specific MCP signaling classes.153 Eighty sequences were confidently assigned 

to the 44H (forty-four helical heptads) class (Table S1 of Appendix A), which is the main MCP 

class within the F1 chemotaxis system.50 Further sequence similarity analyses revealed a highly 

conserved group of twelve MCPs exemplified by the Tm14 protein from T. maritima (TM0014) 

and twenty-four MCPs that were sporadically distributed among Thermotogae genomes 

(indication of horizontal gene transfer) remained unassigned. The TM0014-type sequences 

were all composed of a signaling domain of 36 helical heptads, contained no other domains, 

and showed a very high degree of similarity. On the other hand, in sequence composition they 

did not match the previously described 36H MCP signaling class;153 therefore, we termed the 

new class T36H. 
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One CheW for each class of MCPs.  We established that genomes of Thermotogae 

contain two different classes of CheW proteins and MCPs that also belong to two different 

classes, whereas there was only one CheA protein per genome. Based on this finding we 

hypothesize that each of the two CheW proteins helps associating MCPs from each of the two 

classes with the same CheA protein. If so, which CheW is specific for which MCP class? The 

structure presented herein along with other substantial experimental evidence suggests that 

CheW1 (TM0701) interacts with the T36H MCP (TM0014).61,74 Therefore, if our hypothesis is 

correct, then 44H MCPs should interact with CheW2. There is no experimental evidence to 

support this claim, because the CheW2 protein from T. maritima has been recalcitrant to 

recombinant production (data not shown). However, we can offer the following computational 

evidence in support of this hypothesis. It is a well-established fact in evolutionary molecular 

biology that if two proteins interact they co-evolve.32 Indeed, CheW1 and T36H proteins appear 

to be confined to the phylum Thermotogae, whereas CheW2 and 44H proteins are widely 

distributed throughout the prokaryotes.50 For example, the sequence similarity score between 

CheW1 from T. maritima and CheW protein from E. coli is only 42.4 bits (26% identity), whereas 

that between CheW2 and the E. coli protein is 97.4 bits (37% identity) (Figure S3 of Appendix 

A). 

 If CheW1 interacts with T36H MCPs and CheW2 interacts with 44H MCPs, then class-

specific residues in both protein families (CheW1 versus CheW2 and T36H versus 44H) are 

candidates for the given interaction. Analysis of the multiple sequence alignments constructed 

from CheW1 and CheW2 sequences (Figure S4 of Appendix A) and T36H and 44H MCPs 

(Figure S5 of Appendix A) revealed several positions in both sets of proteins where correlated 

mutations have occurred. For example, a position corresponding to Glu12 in TM0701 is 100% 

conserved as a negative charge in CheW1 orthologs (in one sequence Glu is changed for Asp); 

however, the same position in CheW2 orthologs is a positive charge (Lys, 100% conserved). 
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Similarly, the only position where a reciprocal change is seen in the MCP set is Arg131 in 

TM0014, which is invariably conserved in all T36H MCPs, whereas all 44H MCPs have a 

negative charge (Glu, 100% conserved). Thus, according to the correlation mutation hypothesis, 

corresponding positions in CheW and MCP are mutually dependent, e.g. they may interact. The 

direct interaction between these two residues is not seen in the ternary complex structure 

because CheW binds at the upper site in the lattice; however, the superposition of CheW onto 

P5 (Figure 10C) predicts that both residues should reside at the periphery of the CheW MCP 

interface. The CheW-MCP interactions are likely to be dynamic and involve more residues than 

seen in a single snapshot provided by the crystal structure. The Arg131-Glu12 interaction may 

participate in recognition of specific receptors by specific adaptors (vide infra). Satisfactorily, this 

finding is further supported by recent NMR studies, where some of the residues showing 

significant chemical shift changes upon MCP-CheW binding were identified in a very close 

proximity: rGlu132 (next to rArg131) in Tm14S and wLeu14 (next to wGlu12) in CheW1.74 Other 

positions with correlated mutations in CheW (wAsp28, wLys36, wAsp38, wGly100, wLys121) 

and MCP (rThr141, rAsn159, and rGlu162) are also located in the vicinity of residues that 

showed significant chemical shift changes upon MCP-CheW binding (Figures S4 and S5 of 

Appendix A). Most importantly, all predicted CheW-binding sites are located at the MCP tip, in 

agreement with the 3UR1 structure.  

“Top-down” comparative genomic analysis. “Bottom-up” correlated mutation analysis 

that predicted CheW-MCP interaction sites cannot be used for predicting CheA-MCP interaction 

sites, because there was only one set of orthologous CheA proteins available for Thermotogae. 

However, we employed a “top-down” approach, where the evolutionary history of the interaction 

sites prospected from the crystal structure was analyzed for consistency with the correlated 

mutation hypothesis. For example, if a pair of residues in two proteins is predicted to be an 

interaction site, they should be either well conserved (e.g. invariable, charge preservation, etc) 
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or show a correlated mutation pattern. This approach can be equally applied to MCP-CheA and 

MCP-CheW interactions and we therefore analyzed all four putative binding interfaces revealed 

in two co-crystal structures. Contact sites in interacting proteins were assigned using a protein 

cutoff scanning technique193 and are shown in Table S2 of Appendix A. We then used multiple 

sequence alignments to trace the evolutionary history of each residue in proposed contacts and 

analyzed it for consistency with the correlated mutation hypothesis. For example, if both 

residues in a proposed contact pair are invariably conserved, this is consistent with the 

correlated mutation hypothesis. If one of the residues in the proposed contact is changing in 

evolution, but another remains conserved, this is inconsistent with the hypothesis. If both 

residues change and there is a correlation pattern, this is again consistent; however, if both 

residues change, but there is no correlated pattern, this is inconsistent with the correlated 

mutation hypothesis. Summarized results are shown in Figure 10 in reference to the predicted 

interfaces. Strikingly, the evolutionary history of all 6 MCP-CheA contact pairs and all 4 MCP-

CheW pairs prospected on the top spot of the MCP is inconsistent with the correlated mutation 

hypothesis. In a similarly striking contrast, all 6 MCP-CheA contact pairs and all 4 MCP-CheW 

pairs identified at the tip of MCP have evolutionary history fully consistent with the correlated 

mutation hypothesis. Furthermore, in both MCP-CheW and MCP-CheA interactions at the tip, 

there were true correlated mutations. While the Arg146 in all MCPs remains fully conserved, its 

interacting residues in CheW show a correlated mutation pattern. Glu12 and Gly100 are 

mutually dependent (Figure S4 of Appendix A): Glu12 in CheW1 becomes Lys in CheW2, and 

Gly100 in CheW1 becomes Glu in CheW2. These residues are mutually dependent, most likely 

because they both interact with the positively charged invariable positive charge (Lys146) in 

MCPs. The pattern of co-variance in MCP-CheA interaction is different, but similarly convincing: 

rIle135 in Tm14 is mutually dependent with kIle566 and kThr565 in CheA (Figure S6 of 

Appendix A). rIle135 and kIle566 are in direct contact within the crystal structure (Figure 10). 
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Taken together, the evolutionary history of contact sites assigned from the co-crystal structures 

strongly suggests that: (i) both CheW and the P5 domain of CheA bind to the tip of MCP and (ii) 

MCP contact sites for CheW and CheA binding are not the same, although there is a substantial 

overlap. 

 

Discussion 

Comparing the current higher-resolution structure of the T. maritima ternary complex to the 

lower resolution 3UR1 structure previously published reveals important differences that all stem 

from modeling of the Tm14S receptor. Firstly, the 3UR1 structure contains four end-to-end 

hairpin dimers instead of a tetramer of continuous helices. Secondly, the register of the 

CheW/P5 binding region is shifted roughly one turn of a helix relative to the current structure. In 

the higher resolution structure, this placement is certain due to clear side-chain density, 

whereas in the lower resolution structure, the lack of side chain density prevented an 

unambiguous positioning of the receptor fragment, which was placed based on the apparent 

positions of the termini.61 Finally, the polarity of the helical bundles are switched between the 

structures, which effectively changes the engagement of the lower binding motif from CheW to 

CheA P5. This all raises the question as to whether the lower resolution data would be better 

modeled by the new structure derived from the higher-resolution data.  Agreement statistics 

derived from refinement of both models against the lower resolution data does not significantly 

distinguish the two models (Figure S2 in Appendix A). Difference Fourier maps between the 

experimental amplitudes from the two data sets show the largest peaks at the junctions where 

the hairpins have unzipped (Figure S2 in Appendix A). This indicates that the two structures 

may indeed be different in this region, perhaps due to the change in receptor construct. 

Nonetheless, we must conclude that the lower resolution data does not distinguish the two 

models.  
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There is a growing consensus over the structure of membrane associated bacterial 

chemotaxis receptor arrays, which appear to be universally based on a hexameric assembly of 

receptors that form trimers-of-receptor dimers, with the greatest ordering at their membrane 

distal tips where CheA and CheW bind.61,76,141,149,202 Recent electron cryotomographic data 

combined with the modeling of crystallographic structures suggest that CheA and CheW form 

ring structures of pseudo-hexagonal symmetry that template the receptors, for at least some 

states of the arrays.61,79  Interdigitated assembly states of overexpressed chemoreceptors, 

where antiparallel dimers associate through their tips have also been described, but are unlikely 

to be functional.148 The “unzipped” tetrameric assembly for an MCP subunit described here has 

not been previously observed, and may well result from the shortened Tm14S fragment that 

contains several N-terminal non-native residues at its termini. A similar Tm14S fragment has 

been used in NMR studies, where the subunits form helical hairpins and behave as typical MCP 

dimers.74,194 Nonetheless, it is worth noting that full-length Tm14 is a naturally “soluble” receptor, 

in that it has no transmembrane region.158 Computational genomics indicates that CheW1 is 

specific for this class of receptor (T36H). Soluble MCPs have been observed in other settings, 

where they have important functions.102,56,121,203 In some cases these receptors localize to the 

receptor arrays, whereas in others, they appear to form cytoplasmic clusters.56,102,121,203  Given 

the relatively modest conformational changes in the tip that allow for the switch between dimeric 

and tetrameric states, the possibility that some classes of soluble receptors form extended 

unzipped structures should not be ruled out.  Notably, virus membrane fusion proteins undergo 

large-scale conformational changes where hairpin-like helical structures morph into long 

extended coiled-coil trimers to mediate membrane fusion and viral entry.204-207 For these viral 

fusion proteins, new helical regions form in addition to the extension of the turns, and overall the 

changes are much greater than what we observe in the structural swap of Tm14S, where only a 

few residues change conformation to accommodate the switch. However, the viral proteins 
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underscore that there is not a prohibitive thermodynamic barrier to the drastic repacking of 

coiled-coils that accompanies such changes in oligomeric state.  

Despite the unusual tetrameric assembly of Tm14S, we believe that the interfaces found 

among CheA, CheW and MCPs in this ternary complex structure are representative of those 

found in the transmembrane chemosensory arrays. Sequence conservation, as well as the co-

evolution of interacting sites strongly supports the groove between subdomain 1 and 2 on both 

P5 and CheW as being the primary binding location for CheA and CheW on MCPs. The 

evolutionary analysis only supports the lower, tip-proximal binding site as being the recognition 

motif for both CheW and P5. Although the current high-resolution structure does not have CheW 

bound at this position, superposition of CheW with P5 generates an interface that was predicted 

by computational genomics (Figure 10), consistent with the hexagonal symmetry of the native 

receptor arrays, and anticipated by a large body of additional experimental data.  NMR chemical 

shift perturbations implicate residues on both CheW and Tm14S that are found within this 

contact (Figure 12AD).74,194 Pulsed dipolar ESR experiments of spin-labeled ternary complexes 

of Tm14S, CheA and CheW combined with targeted disulfide crosslinking also place CheW at 

the tip of the receptor in close proximity of the lower binding site.20 In addition, allele-specific 

mutations of CheW that suppress defective Tsr receptors with mutations near or in the lower 

binding site map to the CheW binding groove (Figure 12A).200 Allele-specific suppressor 

mutations on two genes can imply that the derived proteins interact with one another. 

Nonetheless, there are other coupling mechanisms possible between suppressors and hence, it 

is quite remarkable how closely sets of allelic specific Tsr/CheW suppressor mutations localize 

to the predicted interface between Tm14S and CheW (Figure 12A). Although mutational 

studies198-200 and chemical modification / protection176,208 also support the subdomain1-2 grove  
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Figure 12. Structure-Function Analysis of Ternary Complex Interfaces. (A) Residue positions known 

to report on or affect the interaction between CheW and receptors shown on the model of CheW bound to 

Tm14S based on superpositioning CheW onto P5 bound at the receptor tip (Figure 10C). Mutations of 

CheW residues known to suppress Tsr mutations in E. coli are shown as side chains (T. maritima 

numbering).  Residue color associates allelic specific suppressors, i.e. mutations at CheW sites that 

rescue function of mutations at only similar colored sites in the receptor, while at the same time being 

relatively defective in a wt receptor background (r132 with w98; r133 with w79,w81; r158 with w98, w101; 

r160 with w57, w58, w101; r171 with w32,w56).200 Orange (and red) ribbons represent CheW mutations 

or modifications defective in receptor interactions (w27, 30, 31, 32, 33, 35, 80, 81, 98, 101).198-200,208 

Residues identified as mediating Tm14S-CheW contacts in solution NMR studies shown as red ribbons 

(w27, 98, 14, 30, 99; R132, 137, 139, 140, 141, 142, 143, 145, 146, 156).74 R146 (yellow bonds) resides 

at the tip of the MCP hairpin and different residue substitutions at this site can produce locked “on” or “off” 

kinase behavior.  (B) Residues found by solution NMR studies to mediate Tm14-P5 interactions are 

shown as red ribbons (k563, k566; r135, r138, r142).194 (C) Sites of mutation or modification in P5 

subdomain 2 that affect function. Residue positions depicted upon mutation or modification produce 

chemotaxis defects (red side chains; k573, k586, k580, k611, k622) that curtail CheW binding (orange 

side chain r586 and rG587 - not shown) or prevent ligand from deactivating kinase (yellow side chains; 

k575, k579, k564, k593, k620).176-178 (D) Correlation between bioinformatics and NMR data for predicting 

CheW interaction with MCP. Left, CheW binding sites on MCP (solvent accessible surface and ribbon 

representations). Right, MCP binding sites on CheW. Residues predicted by “bottom-up bioinformatics” 

are in red. Residues identified by NMR are in yellow. Overlapping residues are shown in orange. 
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on CheW as being the primary MCP binding site (Figure 12A), the suppressor studies 

genetically link this recognition motif directly to the corresponding surface on the MCP tip.200  It 

should also be noted that there is one set of CheW / Tsr allelic suppressors that map closest to 

one another when only the upper binding site on Tm14S is considered (Figure S7 of Appendix 

A).  Although it is tempting to interpret this data as evidence for functional relevance of the 

upper binding site, it is more likely that longer-range structural coupling through the receptor 

propagates the effects of this mutation to CheW binding at the lower position.  

Several lines of evidence suggest that the lower binding site on Tm14S of the current 

structure represents the primary association mode of CheA with receptors. Specific residues on 

the receptor tip, where substitutions greatly perturb chemotaxis in E. coli, play critical roles in 

the interface with P5 at the lower site.  For example, rAsn139 makes key hydrophilic contacts 

with partner proteins by hydrogen bonding directly with the main chain of kAle566 and wVal33 

(Figure 10). Substitutions of the analogous residue in Tsr (Asn381) have dramatic functional 

effects, with all but a Gly substitution destroying chemotaxis.67 In the context of the hexagonal 

arrays Asn381 is also predicted to mediate receptor trimerization.67 Thus, the near essential 

nature of this residue results from its participation in three distinct interfaces: those with CheA, 

CheW and two other receptor subunits. In another case, rArg146, which resides at the base of 

the lower interface (and at the boundary of the tip; Figure 10), hydrogen bonds with the main-

chain of the connection to subdomain 2 and is close to forming a salt-bridge with kAsp564 

(wGlu31). Substitutions to large residues at this site in Tsr (Arg388) produce either “lock-on” 

(Trp, Tyr) or “lock-off” (Phe, His) kinase activity.197 Due to its potential to also mediate receptor 

trimer contacts on the adjacent subunit, these phenotypes also likely result from combined 

effects at multiple interfaces. Nonetheless, the mutational studies do suggest that alterations in 

structure at the interfaces resolved by the current structure could be critical for controlling kinase 

activity.  
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Despite considerable genetic and biochemical studies of CheA there has been less direct 

functional data implicating the P5 surface that binds Tm14S in function.176-178 This is probably 

because mutations or modifications at many sites affect P5 structure and CheW binding, and 

these properties are coupled to receptor interactions.176-178 Nonetheless, NMR studies that rely 

on Methyl-TROSY experiments of Thermotoga proteins isotopically labeled at select residues 

identify the same interface defined by the structure and predicted by computational genomics 

(Figure 12BD). Most importantly, the companion paper to this report34 has taken a targeted 

disulfide cross-linking and mutagenesis (TAM-IDS) approach to define the CheA-receptor 

contacts in both isolated and cellular chemosensory arrays. These methods were able to 

distinguish the current interface from the one modeled on the 4.5 Å resolution structure and 

verify with considerable detail that the interface defined by the higher resolution structure 

functions in native arrays.  Thus, P5 binds at the lower site on receptor tip in a similar orientation 

to CheW and this at least partially explains the competition of CheA and CheW for overlapping 

sites on receptors.179,209  

Both ternary complex crystal structures contain large rings formed by the P5 and CheW 

subdomains that have been presumed to template receptor trimers in hexagonal arrays.61,79 The 

ring contact between P5 subdomain 1 and CheW subdomain 2 contact has been characterized 

by a variety of approaches.157,174,176-178,208 The secondary contact that completes the ring 

structures (subdomain 1 of CheW to subdomain 2 of CheA), has not been previously observed 

outside of crystal structures; however, mutational data and chemical modification experiments 

have implicated residues near this interface in function (Figure 12C). There are numerous sites 

in P5 subdomain 2 that when modified produce chemotaxis defects or affect CheW binding; 

however, many other modifications in subdomain 1 produce similar outcomes.177,178  Notably, 

some Cys-substitutions (and subsequent modification) in subdomain 2 generate phenotypes in 

which CheA does not deactivate properly with chemoattractant.177 Such behavior results only 
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from subdomain 2 substitutions and several reactive sites localize directly to the interface 

between subdomain 2 and CheW subdomain 1 (Figure 12C). Thus, modulation of this ring 

contact may play an important role in kinase regulation.  

Despite our advancing understanding of the overall architecture and interactions within 

chemosensory arrays, there are many details to be resolved. Array function must involve 

transitions among different structural states that produce different levels of kinase activity. 

Recent computational work suggests that hexagonal lattice models may correlate with the active 

state of CheA, although this remains to be verified.194 Given what we know about the assembly 

modes and the large amount of biochemical and genetic data available on the chemotaxis 

system, can we infer additional interactions not visualized in the current structures? Although 

caution must be taken in the interpretation of mutational data due to the networked, potentially 

redundant nature of molecular interactions within the arrays, a few observations deserve note. 

For example, substitutions or modifications of wArg62 (E. coli CheW Arg56) dramatically affect 

MCP binding and chemotaxis;198 however, this residue does not directly contact the receptor 

bundle, despite being oriented towards the C-terminal helix (Figures 10 and 13). Furthermore, 

mutations of Tsr that suppress CheW mutations at Arg62 and residues on the same 4-5 loop 

map to exposed residues on the C-terminal helix of Tm14S (Figure 12A).200
 Notably, Arg62 is 

also conserved as an Arg on P5 subdomain 2 (kArg586).  Thus, it may be possible that in some 

states of the array, a relative rotation engages the end of subdomain 2 from CheW and/or P5 

with the C-terminal helix of the receptor (Figure 13A). Indeed, the companion paper 

demonstrates that targeted disulfide crosslinks between kT565 (S. typhimurium E550C) and 

rI156 (Tsr V398C) increase in the presence of chemoattractant.34 This change in reactivity is 

consistent with a closer association of subdomain 2 and the receptor C-terminal helix when 

ligand inhibits CheA.  
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Figure 13. Hypothetical Alternate Interfaces in Chemosensory Clusters. (A) wArg62 (kArg586) is a 

mutational hotspot on CheW, but does not directly engage the receptor, which binds mainly through the 

N-terminal helix (HN). A relative rotation of CheW/P5 or receptor could engage subdomain 2 with the C-

terminal helix (HC) in some states of the ternary complex. (B) wGlu12 (kQ545) and rArg131 show 

correlated changes in residue identity. If CheW subdomain is superimposed with P5 subdomain 1 to 

maintain a similar directionality of helix binding these residues both participate in the interface, but do not 

contact. However, if subdomain 1 of CheW is superimposed with P5 subdomain 2, wGlu12 corresponds 

to kGlu611 and would be positioned to salt-bridge with Arg131. 

 

The correlated residue changes at w12 and r131 identified by bioinformatics in the two 

classes of T. maritima CheW/receptor classes also reveal an intriguing structural relationship. 

The equivalent residue to wGlu12 in P5 is kGln545, but the pseudo symmetric residue on 

subdomain 2 is kGlu611. kGlu611 makes a direct salt bridge with Arg131, which is the position 

that undergoes a correlated switch to Glu when w12 changes to Lys. Thus, if the lower binding 

site were to engage CheW with the N-terminal helix running in the opposite direction, w12 and 

r131 would salt bridge (Figure 13B). Note that this is the orientation that the N-terminal helix 

takes with respect to CheW at the upper non-conserved site (Figure 10B). At least for CheW 

and Tm14 in solution, PDS and targeted disulfide crosslinking favors the CheW orientation that 
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aligns like subdomains with P5.20 Nonetheless, in a cellular context it may be possible for a 

receptor helix to run across the binding groove with both polarities. An inverted arrangement 

that satisfies the w12-r131 pair would not be compatible with a membrane-associated array, 

where the receptors all project toward CheA/CheW from the same direction, but such 

constraints are not present for naturally soluble receptors clusters. Thus, the symmetry of their 

architectures could be different than those of the membrane arrays and may involve 

elaborations of the interfaces found in the current structures. 
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Chapter 3: Investigating a Novel Chemoreceptor in Campylobacter jejuni 
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Abstract 

Campylobacter jejuni is a gram-negative member of ε-Proteobacteria that typically causes self-

limiting gastrointestinal illnesses in humans. Foodborne C. jejuni infection is often attributed to 

contaminated poultry products. This pathogen exhibits flagella mediated chemotactic behavior, 

and two of its chemoreceptors have been characterized. A third chemoreceptor was recently 

isolated from strains involved in cases where patients were hospitalized due to C. jejuni infection. 

This chemoreceptor was shown to specifically bind galactose via its periplasmic ligand binding 

domain, and knockout of this chemoreceptor reduced the mutant strain’s ability to both mediate 

chemotaxis toward galactose and also to colonize in vitro and in vivo models of gastrointestinal 

infection. Here we show that the Campylobacter chemoreceptor for Galactose (CcrG) is a recent 

innovation of Cache_1 domain-containing chemoreceptors. Through comparative genomics and 

bioinformatics, we also highlight key differences between the receptor regions in this receptor and 

closely related receptors in C. jejuni in order to identify regions and specific amino acid residues 

that are potentially involved in the sensing capabilities of three major receptors in C. jejuni. While 

the biological ramifications of a chemoreceptor specifically sensing galactose are currently 

unclear for C. jejuni, the ligand specificity remodeling exhibited by this group of receptors provides 

a unique opportunity for further study which may have implications for sensory domain adaptation 

throughout bacterial chemotaxis. 
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Introduction 

We are currently collaborating with the Korolik lab on computationally characterizing 

three receptors for which they have acquired experimental data. These chemoreceptors were 

CcmL, which is a multi-ligand sensor which senses several amino acids and other 

compounds,86 CcaA, which is specific for aspartate,210 and CcrG, which is specific for 

galactose.(Korolik et al., submitted for review) CcrG ultimately shows evidence of gene 

duplication, adaptation of a novel sensory specificity, and entire domain swap events (large 

scale recombinations). Though many questions remain unanswered, this work shows one 

example of how new chemoreceptors potentially originate, how they acquire new sensory 

specificities, and how they might influence behavior or pathogenicity of an organism. 

Campylobacter jejuni is the world’s leading cause of bacterial gastroenteritis.211 Through 

Dr. Korolik’s work, one C. jejuni chemoreceptor, CcmL, has already been determined to be a 

requirement for invasion and colonization of chicken and human intestinal epithelium in 

experimental models of infection.86 Dr. Korolik’s lab has demonstrated that CcrG contributes to 

intestinal colonization in experimental models of chicken gastrointestinal infection.(Korolik et al., 

unpublished data) CcrG is significant not only for this reason, but also because it is a rare 

receptor that has only been identified in hypervirulent clinical cases requiring 

hospitalization.(Korolik et al., unpublished data) CcmL or CcmL homologs by contrast are 

common features in sequenced Campylobacter spp. Both understanding the phylogenetic 

distribution and origin of CcrG are critical for the further characterization of this chemoreceptor. 

Furthermore, a better understanding of the molecular mechanisms by which chemoreceptor 

ligand binding domains evolve specificities for and distinguish between different small ligands 

will greatly enhance our fundamental understanding of signal transduction. Finally, 

chemoreceptors are druggable, so chemoreceptors potentially involved with pathogenicity like 

CcrG may one day prove to be valuable therapeutic targets or diagnostic biomarkers.  
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Results 

For the first comparative genomics analysis of CcrG, we established that the C. jejuni 

chemoreceptors characterized by the Korolik Lab share the same chemosensory domain 

(Cache_1). Cache_1 was not a significant hit when searching CcaA against the Pfam 

database,23 and it was a weak or insignificant hit in both CcmL and CcrG (e-9 and e-4 

respectively, default significance threshold is e-5) (see Table 2). However, through manual 

multiple sequence alignment, it was clear that these three chemosensory domains were related. 

Therefore, we employed a more sensitive search method, HHpred,212 which detected Cache_1 

in the predicted ligand binding regions of all three sequences with >99.7% probability (see 

Table 3). 

 With the comparative rationale for our analysis solidified, we then investigated the origin 

and potential mechanism of CcrG’s novel ligand sensing domain. Reciprocal BLAST and 

pairwise alignment methods quickly revealed that the N-terminal half of CcrG is most similar to 

 

Table 2. Pfam Domain Results for Campylobacter and Helicobacter Chemoreceptors 

Gene Top Hit** E-Value Residues 

CcrG Cache_1 1.1e-04 199-263 

CcaA - - - 

CcmL Cache_1 1.1e-09 163-231 

tlpA - - - 

tlpC - - - 

Default values* (Raising from E=1 to maximum, E=10, did not improve sensitivity). Pfam 27.0 (March 

2013, 14831 families). *This is excluding HAMP and MCPsignal domains, which are common features of 

methyl-accepting chemotaxis proteins/tlps. 
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Table 3. HHpred Domain Results for Campylobacter and Helicobacter Chemoreceptors 

Gene Top Hit** Probability Reported 

Residues 

Actual 

Residues* 

CcrG* Cache_1 99.8 154-237 186-269 

CcaA* Cache_1 99.8 150-233 181-264 

CcmL* Cache_1 99.7 121-192 163-234 

tlpA Cache_1 99.7 118-197 118-197 

tlpC Cache_1 99.7 119-197 119-197 

Default settings. Database queried: CDD_19Feb14. *For improved accuracy, ligand binding domains only 

were assayed in these cases. As such, reported residues must be transformed from the starting residue 

(32, 31, and 42 respectively). *In both cases, this is excluding HAMP and MCPsignal domains, which are 

common features of methyl-accepting chemotaxis proteins/tlps. 

 

CcaA (35% amino acid identity, which is substantial within a ligand-binding domain that can be 

hypervariable), while the c-terminal portion including the signaling domain was 90% identical to 

CcmL. This is highly suggestive of a domain swap event, which may have been the result of 

recombination initiated by the tremendous homology of the chemoreceptor signaling domains 

(see Figure 14). 

While these preliminary analyses gave us a local view from the perspective of C. jejuni, 

we needed further phylogenetic depth of comparison to place CcrG in a broader context. To do 

this, we constructed phylogenetic trees to assess the relationships between representative 

Cache domain containing chemoreceptors from sequenced ε-Proteobacteria: C. jejuni, C. coli, 

C. upsaliensis, and Helicobacter spp.. This analysis was necessary to show that CcrG was not 

more closely related to any other chemoreceptors than it was to CcaA and CcmL. In order to do 

so, multiple trees were necessary. These trees used the ligand binding domain, signaling 
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domain, and full length sequences as separate queries. Unsurprisingly, the LBD tree showed 

CcrG branching with CcaA, and the signaling domain tree unequivocally showed CcrG 

branching with CcmL. The full length tree is shown in Figure 15 in order to place the 

chemoreceptors that were studied in this analysis in the context of Campylobacter and 

Helicobacter. This figure also shows that full length CcrG clusters tightly and confidently within a  

 

 

Figure 14: Pairwise Comparisons of CcrG/Tlp11 to Aspartate and Multi-Ligand Receptors in C. 

jejuni.  BLAST107, multiple sequence alignment with MAFFT l-ins-i,13 and pairwise alignment in Jalview213 

were utilized to produce these results. 
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Figure 15: Maximum Likelihood Tree of Campylobacter and Helicobacter Chemoreceptors. This is 

a maximum likelihood phylogenetic tree of the ligand binding domain regions of the best BLAST107 hits to 

the CcrG ligand binding domain. This shows that CcrG and CcaA ligand binding domains are significantly 

more closely related to one another than they are to CcmL. This also puts the Campylobacter 

chemoreceptors in the context of experimentally investigated Helicobacter pylori chemoreceptors, 

indicating that they have diverged significantly despite sharing the same sensory domain (HHpred 

predictions support this as well). Finally, a red “X” indicates a hypervirulent or multi-drug resistant strain or 

clinical isolate, correlating the presence of CcrG with enhanced pathogenicity (though no causality can be 

inferred from this data alone). 
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clade enriched for hypervirulent pathogens, bolstering the connection between pathogenicity 

and the presence of this chemoreceptor and potentially enhancing the impact that the 

emergence of CcrG has had on the lifestyle of these organisms. 

Campylobacter Cache_1 Receptors Differentially Align to CcrG LBD. To produce a 

sequence and secondary structural alignment of the ligand binding domain and assess how 

binding specificity may have been altered, we selected representatives of CcaA-type and CcmL-

type receptors from the prototypical strain C.jejuni subsp. jejuni NCTC 11168 = ATCC 700819, 

CcrG from hypervirulent C. jejuni subsp. jejuni 84-25, and representative sequences from more 

distantly related organisms  (C. upsaliensis, H. canadensis, and H. cinaedi) in order to show 

conservation beyond C. jejuni for CcaA-type ligands. This alignment was then re-aligned with 

MAFFT LINS-I alongside the closest available crystal structure to CcmL, which comes from a V. 

cholerae chemoreceptor LBD (PDB:3C8C, Chain A).214 Actual crystal secondary structure (2D) 

alongside consensus 2D predictions from Quick2D (Max Planck Institue) for CcmL and 

CcaA/CcrG were manually mapped to the alignment (Figure 16). Quick2D utilizes multiple 

secondary prediction algorithms, including PSIPRED, JNET, Prof (Ouali), and Prof (Rost).215-217  

CcaA/CcrG and homologs’ periplasmic Cache_1 domain region were manually clustered 

according to the results of pairwise sequence alignment (Figure 16). Red rectangles indicate 

alpha helices and yellow arrows are beta sheets. Residues are colored blue according to 

identity conservation, with darker blue indicating higher percent conservation. The two types of 

receptors are clearly related as reflected by the structural and sequence conservation at the 

start and bottom half of the alignment, yet the two types share a variable region that introduces 

large gaps in the alignment (Figure 16). This region is located in the membrane proximal 

sensory domain of the LBD and may thus affect ligand specificity. Red boxes highlight positions 

indicated as in contact with co-crystallized amino acid ligand alanine in 3C8C, with the vast 

majority only engaging in electrostatic interaction with the amino and carboxyl groups of the 
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ligand (see Figure 17 for 3C8C structural visualization). Horizontal black bars demarcate the 

two types of receptors at these points to highlight that these positions are tremendously 

conserved with either 100% ID or 100% biochemical property for CcmL-type, whereas in CcaA-

type these positions are both relatively non-conserved as well as not containing residues 

conserved in CcmL-type (see discussion). 

 

 

Figure 16. Sequence and 2D Structural Alignment of Cache_1 Chemoreceptors. This clearly shows 

that there are CcaA type receptors (of which CcrG is one) and there are CcmL type receptors. Though 

they are all related by the same overall structure (recognized by the Cache_1 domain model in sensitive 

HHpred searches), they are two distinct lineages that are the result of recent paralogy. 
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Discussion: 

There are four Cache_1 containing methyl-accepting chemotaxis proteins (MCPs) in 

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819. Three of these (Cj0144c, 

Cj0262c, and Cj1564c (CcmL)) have predicted Cache_1 domains through PFAM 23, whereas 

the aspartate receptor, CcaA, has a much weaker Cache_1 hit (8.3E-4). The non-aspartate 

receptors are all of similar length, while the aspartate receptor is 35-41 amino acids longer. 

Beyond the second transmembrane region, non-aspartate receptors are 100% identical, 

indicating that they are most likely paralogs that are the result of recent duplications, whereas 

the aspartate receptor aligns well but has noticeably diverged. To focus on the ligand-binding 

region, the sequences from all four receptors between the two transmembrane regions were 

removed and aligned using the MAFFT L-INS-I 13 algorithm (see alignment centered on ligand 

binding residues and the Cache_1 domain in Figure 16).  

Outside of Campylobacter, Cache_1 containing MCPs have been characterized in 

Bacillus subtilis 218,219, Pseudomonas aeruginosa 220,221, Pseudomonas fluorescens 222, Vibrio 

cholerae 85, and most recently McpU from Sinorhizobium meliloti.223 These MCPs often appear 

in paralogous groups (i.e. PctABC in Pseudomonas aeruginosa PAO1), and have been 

experimentally determined to be amino-acid binders. In the case of Pseudomonas aeruginosa, 

out of all three receptors, 18 of 20 amino acids were recognized as chemoattractants, yet none 

bound aspartate or glutamate. One of these, PctB, was largely specific for glutamine. For 

Bacillus subtilis, another specialized receptor, McpB, was required to recognize asparagine, 

glutamine, glutamate, and aspartate. For a set of 3 receptors in Pseudomonas fluorescens, 

aspartate again was not sensed though 18 of 20 amino acids were recognized.222  

 One example of Cache_1 receptors from V. cholerae was co-crystallized with alanine as 

the ligand (PDB ID:3C8C 214). In this structure, a tyrosine residue and two aspartate residues 

from the Cache_1 domain are seen to interact with the ligand’s amino group. These residues 
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are highly conserved over a large set of Cache_1 containing proteins (Fleetwood AD and Zhulin 

IB, unpublished data). In a recent publication from Webb et al., the corresponding aspartate 

residues in Sinorhizobium meliloti McpU were determined to be necessary for proline binding 

and mutation (even to glutamate) abolished proline recognition. Tryptophan and arginine 

residues in the “Pre-cache” motif (mentioned by Kawagishi et al. in work on Mlp24)85 directly N-

terminal to the start of Cache_1 form hydrogen-bonds with the carboxyl group, and these 

residues also show tremendous conservation over a large set of Cache_1 containing sequences 

(Fleetwood AD and Zhulin IB, unpublished data). This region has been determined to be a 

globular region that is associated with the Cache domain and should be incorporated in refined 

domain models (Uphadhyay A and Zhulin IB, manuscript in preparation). Taken as a whole, 

these five residues recognize the shared structural features of amino acids, leaving the rest of 

the interacting residues in the binding pocket to potentially serve as determinants of specificity 

(see Figure 17). The non-aspartate Cache_1 receptors show conservation of identity or 

biochemical properties with all five of these residues, whereas the aspartate residue does not 

(see Figure 16). 

The two conserved aspartate residues warrant additional consideration when 

considering the general inability (or need for a specialized variant) of characterized multi-amino 

acid binding Cache_1 receptors to bind negatively charged residues and their cognate polar 

residues. It is possible that electrostatic repulsion excludes aspartate from the binding pocket 

(whereas the longer sidechain of glutamate might allow for greater charge separation.) When 

considering other chemotaxis proteins and systems, the aspartate receptor in E. coli (Tar) is just 

one of 5 MCPs, yet this receptor is widely distributed throughout diverse bacterial phyla and is a 

major driver for motility in these organisms. Aspartate sensing is critical to many bacteria, but in 

these cases it is sensed through a 4-helical bundle domain, not Cache. We hypothesize that the 

Cache_1 domain is most suited to bind non-negatively charged amino acids, but through 
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duplication and neo-functionalization, paralogs (like CcaA) have arisen to compensate. 

However, in order to sense ligands like aspartate, substantial remodeling of the binding pocket 

must occur both within specific residues of the Cache_1 domain and also significantly in the 

structures and loops directly N-terminal to Cache_1.  

 

Figure 17: Structural Visualization of LBD with Implications for Amino Acid Specificity Change. 

There are two distinct regions of ligand binding residues (a conserved region in green and a variable 

region in magenta). A co-crystalized amino acid, alanine, is rendered in ball and stick representation (light 

blue: carbon, blue: nitrogen, red: oxygen). Residues from both regions contribute to ligand recognition in 

the Vibrio crystal structure. Conserved residues (green) visualized above are highly conserved within 

CcmL-type receptors but show less conservation and even avoidance of the biochemical properties of the 

conserved residues in CcaA/CcrG. The “remodeling” of these sensory residues may explain the 

difference between aspartate, galactose, and multi-ligand/multi-amino acid sensing. 
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Further evidence to the uniqueness of CcrG (and CcaA) can be seen through 

phylogenetic approaches. To accomplish this, all five Cache LBDs from C. jejuni receptors were 

aligned with a large, phyletically diverse set of Cache_1 containing ligand binding regions from 

other MCPs (data not shown). Then, a maximum likelihood phylogenetic tree was constructed. 

In agreement with domain architecture and alignment analyses, CcmL-type receptors are more 

closely related to sequences from other phyla (e.g. Spirochetes) than to CcaA and CcrG. A 

BLAST-based approach also confirmed that CcrG in particular has few sequences that can 

readily be identified as orthologs, possibly none of which are outside of Campylobacteriaceae 

(data not shown). However, a much more extensive analysis must be conducted to validate that 

divergent homologs are not orthologs before more can be said. 

In sum, many changes in sequence and structure were required for the Cache domain to 

discriminate negatively charged ligands like aspartate or sugars like galactose. First and 

foremost, the conserved Cache_1 aspartate residues that are implicated in sensing multiple 

ligands in CcmL type receptors must be mutated, and in CcaA, these residues have indeed 

changed to methionine and threonine (M186 and T216). The conserved tyrosine has also 

changed to isoleucine (I184), so the biochemical properties of this region have changed 

dramatically (and no longer contain a negative charge). This region of Cache_1 aligns extremely 

well across all four receptors, and both the observed secondary structure in 3C8C from Vibrio 

cholerae the predicted secondary structure of CcaA are also in agreement. Therefore, these 

residues are prime targets for mutational studies to probe aspartate sensing in this protein. 

However, the remodeling of the same region in CcrG is too extensive to pinpoint how aspartate 

sensing was adapted to galactose sensing without further experimentation. Future work in 

characterizing the sensory capabilities of C. jejuni will expand our understanding of how this 

organism behaves, as well as having profound implications for sensory domains in signal 

transduction in chemotaxis and beyond. 
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Chapter 4: Assigning Chemoreceptors to Pathways in Pseudomonas aeruginosa 
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Abstract 

Methyl-accepting Chemotaxis Proteins (MCPs or chemoreceptors) are the myriad sensors 

that prokaryotes employ to relay physicochemical signals which influence and control motility. 

Chemotaxis has, like many biological phenomena, been best characterized in simple systems like 

E. coli, S. enterica, and B. subtilis, in which a handful of receptors and only one chemotaxis 

system are present. However, in several important human pathogens, including P. aeruginosa 

and V. cholerae, there are multiple chemotaxis systems (4 and 3) and a multitude of receptors 

(26 and 45), creating a tangled combinatorial nightmare intractable to a priori assignment with 

current experimental methodologies (e.g. co-localization or chemotaxis phenotype linked mutant 

studies). As more microbes have been completely sequenced, examples of complex systems like 

these are in the majority, posing a substantial barrier to deeper characterization of chemotaxis 

and related signal transduction systems. Therefore, in this work we propose a novel genomic 

approach to call attention to this issue, aide experimentalists, and expand our understanding of 

“chemotactically complex” pathogens. In order to in silico assign receptors to pathways, this 

method leverages general features of microbial genome biology using gene neighborhood 

analyses, nuances of structural biology unique to chemotaxis (helical heptad class assignment 

and phylogenetic analysis of conserved domains), and phylogenetic profiling. We selected P. 

aeruginosa PAO1 as a test organism, as it is well studied, significantly impacts human health, 

and has chemotaxis components linked to virulence and pathogenicity. Despite being one of the 

most highly studied organisms in any kingdom of life, 13 of the 26 chemoreceptors have yet to be 

experimentally investigated and 16 of the 26 chemoreceptors have yet to be concretely linked to 

a specific chemotaxis system.  
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Introduction 

Complex Chemotaxis Systems and Receptors. Chemotaxis is a specialized two-

component signal transduction system that couples sensory information from chemoreceptors 

(Methyl-accepting chemotaxis proteins or MCPs) to a histidine kinase, CheA, resulting in a variety 

of outputs traditionally linked to flagellar motility.224  Much of the fundamental knowledge of 

chemotaxis comes from studying flagellar systems in Escherichia coli, Salmonella spp., Bacillus 

subtilis, Campylobacter jejuni, and Helicobacter pylori.87,225-227 These organisms only possess one 

chemotaxis system. However, organisms with multiple chemotaxis systems (indicated by the 

presence of multiple CheA homologs) outnumber those with only one.50 In these cases, the 

coupling of chemoreceptors to specific chemotaxis systems is anything but straightforward. Core 

chemotaxis genes composing these systems tend to cluster together in the genome, and 

occasionally these gene clusters contain a chemoreceptor in the operon as well, making limited 

wet lab characterization that is system-driven possible. However, the vast majority of 

chemoreceptors are located outside of these tidy gene clusters, often occurring as genomic 

orphans. As a result, these receptors are refractory to experimental methods, requiring months of 

time- and resource-intensive trial and error labor that are not guaranteed to produce results. 

State of the Art in Receptor to System Assignment. Despite the difficulties, several 

organisms with multiple chemotaxis systems have been investigated. One example, Rhodobacter 

sphaeroides, is a model system that illustrates the difficulty of assigning chemoreceptors to 

CheAs.102 Only two chemoreceptors out of eleven (McpG and TlpC) have been co-localized and 

rigorously linked to specific CheA and CheW homologs, in each case requiring numerous mutant 

strains to rule systems in or out.56,103 While other techniques for sorting chemotaxis interactions 

have been explored in Rhodobacter, chemoreceptor system assignment has not been further 

addressed.104,105 In Pseudomonas aeruginosa PAO1, aerotaxis chemoreceptors were determined 

to be dependent on 1 out of 4 potential chemotaxis systems, which required not only deletion-
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insertion mutations of all five chemotaxis clusters, but also functional characterization of their 

sensory specificity (known only for a handful of receptors and accompanied by its own plethora 

of experimental challenges).117 A final example, Sinorhizobium meliloti, has two chemotaxis 

systems and nine chemoreceptors, yet localization of these receptors required 33 distinct mutant 

strains and were not pathway specific, as the second system was not included in the 

analysis.124,125  

Bioinformatics and Comparative Genomics Role in Complex Chemotaxis Systems. In 

silico methods have already played a critical role in further elucidating experimental observations 

for chemoreceptors. However, experimental observations (confocal microscopy and cryo-EM 

data first showed that chemoreceptors differentially localize to universal, polar membrane-

associated clusters.76,141,228 Large scale protein sequence analysis of chemoreceptor sequences 

linked the distance from the inner membrane to the chemotaxis chemoreceptor:CheA:CheW 

complex by classifying receptor lengths based on detecting helical heptad repeats.153 At the 

systems level, chemoreceptors from Cyanobacteria served as one of the first model systems to 

explore chemoreceptors in their genomic context within multiple chemotaxis systems.128 Later, 

Weis et al. used comparative genomics to predict the general function of multiple chemotaxis 

systems in 3 Geobacter spp., in which they observed chemoreceptors from different helical 

heptad classes and suggested this might diminish unwanted crosstalk between receptors from 

different systems.106 In 2010, Wuichet et al. conducted a large scale genomic analysis of 

chemotaxis systems which, aided by recent increases in the number of completely sequenced 

genomes, was able to identify a large extent to which chemotaxis system variants are conserved 

and dispersed throughout the known prokaryotic world. By placing these systems within a broader 

genomic context, clues to their roles and relative importance within organisms can be decoded. 

Most recently, and concurrent with this work, a large scale experimental study in Myxococcus 

xanthus attempted to reconcile 8 chemotaxis systems and 21 chemoreceptors (seven of eight 
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operons containing a chemoreceptor), where they showed that receptors and chemotaxis 

systems that are phylogenetically related (within M. xanthus) co-localize experimentally and 

interact within three major groups (without disentangling receptor:CheA pairs within the larger 

groups).123  

Pseudomonas Chemotaxis. Pseudomonas aeruginosa PAO1 is an opportunistic human 

pathogen that causes a significant number of complicated respiratory and medical device (e.g. 

catheter) associated infections.109 Both multi-drug resistance and robust virulence factors 

contribute to P. aeruginosa posing a substantial threat to the immune-compromised and those 

suffering from cystic fibrosis.109  

Systems. There are four chemotaxis systems and 26 chemoreceptors in Pseudomonas 

aeruginosa PAO1.229 Che cluster I (PA1456-PA1464), an F6 flagellar system, was described to 

be essential for chemotaxis as CheY and CheZ mutants were deficient in flagellar-mediated 

motility/chemotaxis.230 Che cluster 5 (PA3348-PA3349), containing a CheV and CheR protein, 

was linked to Che cluster I soon after.112 Che cluster II (PA0173-PA0180), a divergent F7 system, 

was partially characterized and determined to have higher homology with the F7 system in E. coli 

than with other Pseudomonad systems, with potentially analogous systems in Vibrio cholerae and 

Shewanella oneidensis MR1.110 Che cluster III (PA3702-PA3708) was characterized and 

renamed WSP and determined to regulate biofilm formation through control of c-di-GMP turnover, 

and it has since been categorized as an ACF (Alternative Cellular Functioning) system and is 

associated with the MCP WspA (PA3708).92 Finally, Che cluster IV (PA0408-PA0417), the CHP 

system, is a system in control of twitching motility (a TFP or Type IV Pilus system) and is 

associated with the PilJ MCP (PA0411).91  

Chemoreceptors and Localization Progress. Three paralogous transmembrane receptors, 

PctABC, have been determined to mediate taxis towards amino acids.112-115 PctABC localize to 

the major chemoreceptor cluster at the cell pole. Two cytoplasmic chemoreceptors (BdlA/PA1423 
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and McpS/PA1930) have been investigated, with the former linked to nitric oxide sensing and 

biofilm dispersion phenotypes and the latter having been localized to the polar chemotaxis 

array.120,121,231 While the exact relationship is unclear, both soluble receptors appear to be 

homologs of AerC, a cytoplasmic chemoreceptor shown to link metabolic changes to chemotaxis 

in Azospirillum brasilense.57 In order to probe the determinants for localization of receptors from 

different systems, the highly conserved MCP signaling domain was swapped between the 

PctABC and WspA receptors, showing that this region was necessary and sufficient to localize 

each to their wild-type position (WspA, unlike PctABC, is located laterally).116 McpA (PA0180) and 

McpB (PA0176) were characterized and demonstrated generalized flagellar-motility defects, yet 

while McpB was determined to preferentially localize with the F7 flagellar system, McpA (which is 

in the F7 gene cluster alongwith McpB) instead co-localized with the F6 system.111 The two 

systems do not appear to co-localize, and the entire F7 system (along with four chemoreceptors 

– McpS/PA1930, PA2573, PA2920, and PA4915) has been shown to be induced by RpoS,232 

leading Harwood et al. to posit that the polar cluster is remodeled during periods of stress. Both 

CheB2 (PA0173) from the F7 system and PA2573 have been implicated in pathogenicity in 

experimental models of infection.83,84 

Localization Progress. While great strides have occurred in this field since 2005, only 

incremental progress has been made in fully characterizing both the F7 system and the 

uncharacterized MCPs. P. aeruginosa chemotaxis was reviewed in 2008, and an even more 

recent review was published at the time of writing this article, both of which provide more 

comprehensive overview of Pseudomonas chemotaxis.233,234 While half of the 26 chemoreceptors 

in P. aeruginosa PAO1 and a few examples from other Pseudomonads have had a sensory 

specificity investigated or have been otherwise studied, only 10 receptors have been localized or 

experimentally assigned to a pathway (see Figure 18).118,235,236 
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Results 

Gene Neighborhood Organization. In bacteria, gene neighborhood analyses can provide 

a good starting point for characterizing protein systems, complexes and enzymatic pathways 

due to the tendency for genes to be grouped in operons that are co-transcribed and co-

expressed.237 In a previous study from our lab, the gene neighborhoods of chemotaxis systems 

from 450 prokaryotic genomes were extensively studied and catalogued.50 From this dataset, 

out of 487 chemotaxis systems (identified by the presence of CheA), there are 302 instances of 

an MCP either directly in the operon or in a chemotaxis system operon within 3 genes of CheA 

or a CheA containing operon. Thus, 67% of all chemotaxis operons or systems are paired with 

an MCP, indicating significant enrichment vis a vis the rest of the genome. 

For PAO1, gene neighborhood analysis has been previously exploited to characterize 

five chemotaxis clusters. In Figure 18, we have visualized the core chemotaxis proteins CheA, 

CheW (CheV), CheB, and CheR from these clusters. 26 chemoreceptors, along with their 

predicted membrane or cytoplasmic localization are also present. From gene neighborhood 

analysis alone, only 4 receptors out of 26 have links to a particular system. However, four 

additional receptors (PctABC and Aer) have also been linked to Che Cluster I (F6). The 

remainder are genomic orphans with no evidence for assignment, leaving 18 MCPs unassigned.  

HMM Analysis for Heptad Class Heptad Length. Wuichet et al. noticed a tendency of 

chemoreceptors from specific heptad classes to associate with chemotaxis systems based upon 

the chemotaxis system classification scheme designated in that work (see Table 4). The 

sequence of the highly conserved MCP signaling domain (the CheW:CheA:MCP interface), the 

region directly N-terminal up to the methylation and adaptation region (where CheB/CheR 

interface), and the C-terminal region can be easily recognized due to a consistent helical heptad 

repeat. This structural signature is mirrored at the hairpin tip of the chemoreceptor, creating a 

situation in which an HMM can classify and cluster chemoreceptors by heptad (H) length.153 
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Figure 18. A Priori Chemotaxis Systems and Chemoreceptors in Pseudomonas aeruginosa. 

Pathways encoded by P. aeruginosa PAO1 gene clusters I and V (beige) and cluster II (green) control 

flagellar motility. Pathways encoded by cluster III (magenta, WSP system) and cluster IV (blue, CHP 

system) control cyclic di-GMP turnover and Type IV pili motility. Chemoreceptors are shown as long vertical 

rectangles. Characterized/named chemoreceptors grouped by horizontal brackets. Chemoreceptors linked 

to particular pathways through gene neighborhood analysis are shown in corresponding color. Key 

components for each chemotaxis pathway are shown: CheW/CheV adaptor proteins (ovals), CheA histidine 

kinases (horizontal rectangles), CheB methylesterases and CheR methyltransferases (rounded 

rectangles). Proteins implicated in pathogenesis are marked by an asterisk.83,84 

 

Chemoreceptors with different heptad classes are present in a number of organisms 

including Geobacter spp., where it was suggested that the differing lengths might diminish 

unwanted crosstalk between chemotaxis systems.106 This view of the relationship of 
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chemoreceptor length to chemotaxis complex array is biologically relevant, as cryo-EM images of 

chemotaxis arrays have shown the CheA layer of the array as a line that is roughly equidistant 

from the periplasmic membrane.76 This indicates that the receptors which span from membrane 

to CheA within the same array are the same length. That said, we make two assumptions for this 

analysis: 1) the chemoreceptor belongs to a chemotaxis array and 2) that the chemoreceptor has 

canonical transmembrane receptor architecture of a ligand binding domain bounded by two 

transmembrane domains. This concept guides our second analysis, in which we investigate the 

correlation of heptad lengths of PAO1 chemoreceptors to the four systems and their known 

associations. 

To examine whether or not the heptad class association with specific systems from Table 

4 continue to hold with the massive increase in sequences generated between 2010 and now, we 

searched the Mist 2.2 database (2,756 complete genomes) for all organisms with only 

 

Table 4. Chemotaxis Systems, System Designation, and Heptad Class Association. 

Chemotaxis System 

Cluster 

Chemotaxis System 

Designation 

Associated Heptad 

Class 

CheI/CheV(5) F6 ? 

CheII F7-Divergent 36H 

CheIII Tfp 40H 

CheIV Acf 40H 

This table summarizes trends of MCP enrichment within specific chemotaxis operons that were noted by 

Wuichet et al.50 No trend was reported for the F6 system, likely because major representatives of the F6 

system like P. aeruginosa’s F6 system do not contain any chemoreceptors. This necessitated our analysis 

in Figure 19. 
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one chemotaxis system and asked one question: what was the heptad class of the receptors in 

these genomes (Figure 19 shows results for P. aeruginosa PAO1)? The results of the heptad 

class distribution of chemoreceptors from organisms with only a single chemotaxis system (F6, 

F7, ACF, or TFP) are presented in Figure 20. 

By this analysis, we predict the 36H receptor to preferentially associate with the F7 system. 

This is consistent with gene neighborhood analysis results, because the 36H receptor is in the F7 

operon (Che cluster II). However, there are 21 40H chemoreceptors which are strongly associated 

with the F6 system (Che cluster I). Two of these 40H receptors (PilJ and WspA), were previously 

assigned (see Figure 18) due to their presence in the TFP and ACF operons respectively. While 

we cannot rule out crosstalk between systems that prefer 40H receptors based solely on the  

 

 

Figure 19. Heptad Class Distribution for Pseudomonas aeruginosa PAO1 (26 MCPs). In order to 

obtain the heptad length information for the 26 PAO1 receptors, the sequences were searched with Profile-

HMMs for all known heptad classes. Uncategorized (Uncat) MCPs do not conform to the canonical TM-

LBD-TM-HAMP-MCPsignal domain architecture with symmetric heptad profiles reflecting at the MCP tip as 

previously described. Distribution: 40H: 21 receptors, 36H: 1 receptor, 24H: 2 receptors, Uncategorized: 2 

receptors. 

24H
36H

40H

Uncat
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criteria of heptad class, to the best of our knowledge there is no evidence from the literature that 

the TFP or ACF systems interact with MCPs other than those within their operon. Furthermore, 

Harwood et al. swapped the C-termini of 40H receptors (PctABC with WspA) and found that they 

localize separately, providing experimental evidence against their inclusion into the polar F6 

chemotaxis array.116 Thus, 19 40H chemoreceptors are linked to the F6 system, leaving only 3 

receptors (2 24H and one uncategorized) with no pathway links. 

 

 

Figure 20. Helical Heptad Length of Chemoreceptors in 1 System Organisms. Strikingly, the trends 

continue to hold, especially in the case of F7 exclusive systems, which preferentially contain 36H class 

receptors vs. 40H class receptors (one exception out of >2000 sequences). Satisfactorily, F6 exclusive 

systems do not contain a single 36H receptor. TFP and ACF, which are highly diverse systems that do 

not modulate flagellar-mediated motility, do not show heptad exclusivity. Interestingly, 24H receptors are 

present in both F6 and F7 exclusive systems, indicating that they may potentially interact with both 

systems. 
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Genomic Subtraction Analysis. After looking at the chemotaxis system gene 

neighborhoods, as well as the helical heptad class of the chemoreceptors, we decided to employ 

phylogenetic profiling to assist our search. For this analysis, we chose the order 

Pseudomonadales for our dataset, because it provides a cohort of the organisms closest to PAO1 

while also allowing enough evolutionary distance within which major changes to chemotaxis 

system organization could have occurred. This group also contains numerous completely 

sequenced organisms. In Figure 21, a phylogenetic tree of 16S RNA from those genomes 

completely sequenced from order Pseudomonadales as of May 2013 is paired with the 

chemotaxis systems present in each genome (as detected by profile HMM search). 

Our logic for the analysis of this data was as follows: if receptors in PAO1 are specific to 

a chemotaxis system, then orthologous receptors should be present in closely related organisms 

with CheA orthologs for that system and absent when that CheA is not detected. Interestingly, in 

all genomes from our dataset except Moraxella cattarhalis and Pseudomonas stutzeri ATCC 

17588 = LMG 11199, the TFP system is present (Figure 21). This system appears to have been 

present in the common ancestor of Pseudomonadales, and its retention belies its importance to 

all of the organisms in this group aside from Moraxella. The chemoreceptor in the PAO1 operon 

with this system, PilJ, has been experimentally characterized,91 and we observed orthologs in all 

of these organisms (including the P. stutzeri lacking the system). On manual inspection of the 

gene neighborhood of the PilJ ortholog in this organism, the CHP system CheA ortholog (ChpA) 

has a stop codon in the nucleotide reading frame for the CheA that appears to have created a 

non-functional gene/pseudogene (which was undetected as a CheA homolog by any CheA-

specific HMM). This was verified against the nucleotide sequence of the other P. stutzeri (str. 

RCH2) from our dataset, which does not contain a stop codon and whose ORF contains a full 

length CheA protein. Acinetobacter spp., including A. baumannii, an emerging nosocomial 

pathogen,238 only possess one MCP (PilJ) and one TFP chemotaxis system, illustrating the 1:1 
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Figure 21. 16S RNA Tree for Order Pseudomonadales with Chemotaxis Phylogenetic Profiles. P. 

aeruginosa PAO1 denoted by star. TFP (purple) and ACF (pink) are non-flagellar systems.  F6 (orange), 

F7 (cyan), and F8 (green) are flagellar systems. F8 is not present in PAO1 but is evolutionary related to the 

F7 system.58 Organisms were chosen as representatives at the species level and/or when completely 

sequenced genomes were available. Number of chemoreceptors detected in complete genomes present 

in MiST 2.2 database shown on far right. *P. stutzeri strain with only F6 system yet more chemoreceptors 

than PAO1. **Possible sequencing error in PilJ homolog of an organism where twitching motility has been 

studied.239 
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relationship of this specialized chemotaxis system as a sharp contrast to other cases that are not 

as simple.  

Since the WSP/ACF system has also been experimentally paired with its operon-MCP 

(WspA), we looked for WspA orthologs in all organisms as well. We found orthologs only in 

organisms with a predicted ACF system with one exception, a hypervirulent cystic fibrosis 

epidemic strain, P. aeruginosa LESB58.240 Upon manual inspection of the gene neighborhood of 

the WspA ortholog, the WSP system CheA ortholog (WspE) was detected with a frameshift 

mutation that rendered the N-terminal half (including the HPT phosphor-transfer domain) 

completely abolished, while the C-terminal half was intact. Whether or not this mutation in the 

ACF system (which could affect biofilm regulation) contributes to the hypervirulent phenotype of 

this strain may be worth further consideration. This may also provide fundamental insight into 

the contribution of WspE to the ACF system (specifically the HPT domain) if the truncated 

mutant is expressed lacking a major regulatory domain. 

We next observed that all organisms in this dataset from Pseudomonadales with 

flagellar motility systems have the F6 system (Figure 21). While all other flagellar organisms 

possess more than one chemotaxis system, serendipitously, P. stutzeri 17588 contained only 

the F6 system. This created an opportunity for comparison to PAO1, as F6 exclusive receptors 

could be identified in PAO1. P. stutzeri, despite having two fewer chemotaxis systems, contains 

31 putative chemoreceptor genes, which is more than PAO1, further supporting its role as the 

major flagellar system. From this analysis, 17 chemoreceptors had orthologs in P. stutzeri (as 

determined by manual alignment, pairwise alignment, and reciprocal BLAST, data not shown), 

15 of which were 40H, one of which was 24H (PA1423), and one of which was uncategorized 

(PA4290). 

Robust Chemoreceptor Ortholog to Chemotaxis System Co-Occurrence. The next step 

that we took to link remaining receptors to pathways was to identify high-confidence orthologs of 
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these receptors at deeper taxonomic levels in order to expand our phylogenetic profile of which 

systems and chemoreceptors co-occur. The initial input into our robust, manually curated 

workflow was a BLASTp query. Multiple sequence alignments, maximum likelihood phylogenetic 

trees, domain architecture prediction, and reciprocal BLAST were all employed to produce a 

conservative set of orthologous sequences (methods as previously described). A tightly 

controlled, conservative set was necessary due to the high levels of gene loss, duplication, and 

horizontal gene transfer demonstrated in chemoreceptors.152 While, only one receptor lacked a 

line of evidence for pathway assignment at this step (McpS/PA1930), we included BdlA/PA1423, 

McpA/CttP/PA0180, and PA4290 as they either lacked canonical transmembrane architecture 

(precluding them from heptad analysis) or had conflicting experimental and genomic data (McpA). 

The resulting distributions were then analyzed (data not shown). 

PA4290 is a unique chemoreceptor in this set, as it is the only instance of a receptor with 

a putative ligand binding domain on the c-terminal side of the highly conserved MCP signaling 

domain. While a search against the PFAM database detected no significant domain hits to this 

region, a more sensitive domain detection tool, HHpred,212 predicted the Cache_3 domain, a 

known signal transduction and chemoreceptor sensory domain, with greater than 97% 

probability. In the robust ortholog:system co-occurrence analysis, 47 organisms contain high 

confidence orthologs, four of which have only one system (all F6). Additionally, only 1 of 47 

organisms is missing the F6 system, and that organism contains an F3 system which is 

phylogenetically related to F6.50 Coupled with its earlier presence in the F6 exclusive P. stutzeri 

strain, multiple lines of evidence point to PA4290 interacting with the F6 system over any other. 

McpA/CttP (PA0180) orthologs do not occur in any organisms with only one chemotaxis 

system, and in every case where there are only 2 systems present, the systems are F6 and F7. 

Out of 54 ortholog-containing organisms, there are only 4 cases where F6 and F7 are not jointly 

present. It is interesting to note that a divergent homolog of McpA is also present in the same 
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gene neighborhood of the F8 system in other Pseudomonadales. These could not be 

characterized as high-confidence orthologs as they only share ~27% amino acid identity over 

the full length (390aa) of the sequence with McpA ,whereas most of the other sets of high-

confidence predicted orthologs in this work share roughly 60-70% amino acid identity over the 

same length. While domain architecture, multiple sequence alignment, and gene neighborhood 

similarities indicate that this receptor could potentially perform a similar function, the mechanism 

and nature of McpA and its divergent homologs require additional experimental characterization. 

Finally, the 24H cytoplasmic AerC homologs, BdlA (PA1423) and McpS (PA1930) are 

ostensibly the two most difficult to analyze using sequence information. Both have identical 

domain architecture, yet they only share ~39% amino acid identity over 417aa. While it is 

tempting to speculate that they are recent paralogs, both the low identity percentage and 

BLASTp of each against the NCBI NR database suggest different evolutionary lineages instead. 

PA1423’s closest hits are in the Pseudomonadales, yet PA1930 hits Shewanella and Vibrio spp. 

before other Pseudomonads outside of the aeruginosa group. While BdlA orthologs appear to 

be enriched in F7 exclusive organisms, it is also present in multiple system organisms without 

F7 as well as in the F6 P. stutzeri analyzed earlier, suggesting that it can interact with both 

systems. PA1930 is present in F6, F7, and F3 exclusive organisms, so while no conclusions can 

be drawn as to exclusivity, it also appears possible that it could interact with both systems. 

Phylogenetic Clustering of Pseudomonadales Chemoreceptors by Signaling Domain 

(Figure 22). As a final step, we manually constructed an alignment of the MCP signaling 

domain for all 696 predicted chemoreceptors within complete genomes from order 

Pseudomonadales in the MiST database21 from the same organisms in our genomic subtraction 

analysis. The highly conserved MCP signaling domain serves as the interface for interaction 

with CheA, making it the most likely region to provide MCP:CheA information. Approximately 4 

heptad lengths mirrored at the hairpin tip residues constituted a gapless alignment for all 696 

sequences. This final alignment region was 59 amino acids in length. A phylogenetic-based 
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Figure 22. 696 Chemoreceptor Signaling Regions from Pseudomonadales. Black circles indicate 

40H receptors with multiple lines of evidence for interaction with F6. Open circles indicate receptors both 

predicted and known to not interact with F6 (WspA, PilJ, McpB). Red diamonds indicate uncategorized or 

soluble 24H receptors. Asterisk denotes PA2573, which is one orphan chemoreceptor implicated in 

pathogenicity.84  

 

 

approach was recently used on a limited scale for Myxococcus xanthus chemoreceptors 

(though the MCP set was confined to only M. xanthus).123 We then built a maximum likelihood 

phylogenetic tree from this alignment (see Figure 22). We also constructed minimum evolution 

and neighbor-joining trees using the same alignment to ensure that similar topology was 

achieved through each method (data not shown). In agreement with our previous findings, TFP 
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associated chemoreceptor PilJ and ACF associated chemoreceptor WspA both form distinctly 

separate clades. McpB, which is present in the F7 operon and has been localized with the F7 

system also forms a separate clade. McpA, which is uncategorized and has conflicting 

experimental and genomic data, clusters in the most divergent branch of the tree. All other 

chemoreceptors form branches that are clearly distinct from the aforementioned groups but 

related to one another. It appears that this large set contains primarily 40H receptors and 24H 

receptors, which by this analysis cluster more closely with F6 system receptors. This further 

supports the notion that F6 is the major system in Pseudomonadales and by extension, PAO1. 

 

Discussion: 

Since this is a well-studied system, P. aeruginosa PAO1 is less of a discovery model and 

more of a proof of concept than many other microbes might have been. However, we provide the 

first lines of evidence for numerous orphan receptors associating with any given pathway. We 

also provide additional lines of genomic data that support experimental work and the conclusions 

reached in previous work. We were able to assign all of the chemoreceptors to pathways, though 

cytoplasmic receptors and McpA still have lines of evidence that support interaction with F6 and 

F7 (leaning in favor of F6). Residue level analysis may provide better resolution for these cases. 

TFP is the ancestral system for Pseudomonadales, and the F6 system is the predominant flagellar 

system that lays claim to the lion’s share of chemoreceptors. While the assumption that the first 

chemotaxis system characterized was the major one, there is now genomic evidence for this, 

which in and of itself will greatly expedite the characterization of the remaining PAO1 receptors. 

Additionally, we observed several trends that may provide insight into Pseudomonad 

biology. First, there are systems that are specific to the P. aeruginosa clade (e.g. F7) and to the 

P. syringae clade (F8). P. aeruginosa is an opportunistic human, animal, and plant pathogen, 

while P. syringae is a well-known specialist plant pathogen. The receptors coded within these 
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corresponding operons may be key components for niche colonization. Even within the 

aeruginosa group, two strains (PA7 and LES) show markedly different behaviors (PA7 is a non-

infectious environmental sample and LES stands for Liverpool Epidemic Strain).240,241 PA7 and 

Pseudomonas denitrificans (not known to cause disease to the best of our knowledge) are 

missing several chemoreceptors that the other two more infectious strains possess, including 

PA2573 and PA4915 which were either implicated in pathogenicity and/or upregulated by RpoS 

stress. Chemoreceptors serve as the “GPS” for the cell, biasing its movement towards favorable 

environments and away from those that are unfavorable. However, the chemoreceptor suites can 

be highly variable, as they are subject to constant duplication, gene loss, and horizontal gene 

transfer. Therefore, these receptors should not be overlooked as potential virulence factors, as 

their role in shaping the movement and flow of organisms between environments (even within the 

body) may lead to unintended pathogenicity consequences. We observed a similar correlation 

between receptor loss and pathogenicity in the B2 pathotype of E. coli, where two key 

chemoreceptors were lost in an ancestral event and the resulting clade was highly enriched in 

extra-intestinal pathogens (Chapter 5).242 

The bulk of receptors are predicted to preferentially associate with the major F6 system 

(Figure 23), and the more specialized systems have very limited chemoreceptor suites, often 

limited to one receptor contained within the operon. It will be interesting to see if this trend holds 

in other organisms with complicated chemotaxis pathways. While CHP and WSP have been 

studied extensively, the small specialized flagellar systems have not, and these may hold the key 

to understanding the dynamics of these complex chemotaxis systems and their role in the 

behavior of these organisms. Moine et al. recently showed in M. xanthus that related chemotaxis 

systems and chemoreceptors co-localize and may form complex, interconnected groups, so a 

similar scenario may occur in Pseudomonadales between the F6, F7, and F8 systems.123 Both 

the mechanism of their co-existence and their ability to differentiate closely related homologous  
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Figure 23. New Look: Multiple Chemotaxis Systems in PAO1 Disentangled. All receptors now have 

genomic, phylogenetic, or other comparative data linking them to at least one specific system. Our view of 

the chemotaxis landscape agrees with the experimental consensus that the F6 Che Cluster I system is the 

major flagellar system. However, it has not yet been shown that the vast majority of uncharacterized, mono-

cistronic chemoreceptors are predicted to interact with this system, and the presence of another flagellar 

system (F7 Che Cluster II) had previously complicated this picture. The fact that both specialized flagellar 

systems and orphan receptors contribute to pathogenicity (in addition to previously known systems like 

WSP and CHP) has expanded the impact of chemotaxis as a source of virulence and avenue for therapeutic 

targeting. Our analysis and methods provide the first steps towards making whole-scale systems 

characterization of multiple chemotaxis systems and multiple chemoreceptors an attainable reality. 

 

components will be the focus of future work in this area. If these specialized flagellar systems are 

enriched in pathogens vs. non-pathogens, they, like the CHP and WSP systems, along with their 
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associated chemoreceptors may provide excellent candidates for specific, novel classes of 

antibiotics with lower side effect profiles against commensal flora. 

 In silico assessment of chemotaxis components before experimental investigation will 

save labs planning to do future work in chemotaxis a tremendous amount of time and resources, 

and may serve as a starting point for less studied and as yet wholly unstudied chemotaxis 

systems. These complicated cases comprise over half of sequenced chemotactic organisms, and 

there are over 58,000 non-redundant chemoreceptors in the current RefSeq database.49 Thus, 

this method stands to make a significant impact on the global characterization of chemoreceptors 

across a wide variety of plant, animal, and human commensals and pathogens alike. 
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Chapter 5: Chemoreceptor Gene Loss and Pathogenicity in Escherichia coli 
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Publication (reproduced with permission from):  

Chemoreceptor Gene Loss and Acquisition via Horizontal Gene Transfer in Escherichia 

coli. Borziak K, Fleetwood AD, and Zhulin IB. Journal of Bacteriology (2013). 

195(16):3596-3602.242 Copyright 2013, American Society for Microbiology. 

Author Contributions: 

 K Borziak and AD Fleetwood contributed equally to the article. AD Fleetwood was 

responsible for elements of the paper related to pathogenicity types, physiology, and estimation 

of the divergence of the primarily extra-intestinal pathogen clade B2. This involved preliminary 

analyses, a comprehensive literature review, the sSNP molecular clock analysis, and 

investigation of a putative sucrose chemoreceptor gain event. Additionally, AD Fleetwood initially 

constructed and manually curated concatenated multiple sequence alignments of chemotaxis 

proteins.  K Borziak obtained house-keeping gene and chemotaxis datasets, constructed 

phylogenetic trees, and analyzed the presence or absence of chemotaxis genes across all strains 

(including quality control for sequencing artifacts). K Borziak also investigated aer and tsr 

acquisition events. IB Zhulin initially observed the loss of trg and tap genes in Escherichia coli 

chemoreceptor sequences.  

*Mobley Lab (University of Michigan) independently published experimental observations 

that trg and tap were missing from a urinary pathogenic E. coli strain and posited that these were 

lost due to a lack of selective pressure for their ligands.243 Upon discovery of this work, we 

consulted with the Mobley lab, who provided helpful experimental insight and suggestions. 

Supplementary figures and tables from this publication are located in Appendix B and 

“Dataset B1.xlsx”.In addition to being reproduced and formatted for this dissertation, the 

publication has been revised with the addition of a section at the end of the results further 

addressing sSNP molecular clock analysis conducted by AD Fleetwood.  
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Abstract 

Chemotaxis allows bacteria to more efficiently colonize optimal microhabitats within their larger 

environment. Chemotaxis in Escherichia coli is the best-studied model system and a large 

number of E. coli strains have been sequenced. The Escherichia/Shigella genus encompasses 

a great variety of commensal and pathogenic strains, but the role of chemotaxis in their 

association with the host remains poorly understood. Here we show that the core chemotaxis 

genes are lost in many, but not all, non-motile strains, but are well preserved in all motile 

strains. The genes encoding the Tar, Tsr and Aer receptors that mediate chemotaxis to a broad 

spectrum of chemical and physical cues are also nearly uniformly conserved in motile strains. In 

contrast, the clade of extra-intestinal pathogenic E. coli apparently underwent an ancestral loss 

of Trg and Tap chemoreceptors that sense sugars, dipeptides and pyrimidines. The broad range 

of time estimated for the loss of these genes (1-3 million years ago) corresponds to the 

appearance of the genus Homo. 
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Introduction 

Escherichia coli are ubiquitous colonizers of the intestines of mammals and birds.90 

There are several highly adapted E. coli clones that have acquired virulence traits and cause a 

broad spectrum of disease including enteric/diarrheal disease, urinary tract infections (UTIs), 

and sepsis/meningitis.244 Depending on the site of infection, pathogenic strains are classified as 

intestinal (IPEC) and extraintestinal (ExPEC) pathogenic E. coli, and distinct pathotypes (based 

on clinical manifestation) are recognized within both categories. The most common ExPEC 

pathotypes include uropathogenic (UPEC), meningitis-associated (MNEC), and avian 

pathogenic (APEC) E. coli strains.244,245 Motility was shown to be important for the colonization 

of both commensal and pathogenic E. coli, as well as the pathogenesis of the latter:246,247 

however, the exact role of motility and the underlying chemotaxis system in these processes 

remains poorly understood. Molecular machinery that controls chemotaxis in E. coli has been 

the subject of intensive investigation.31,131 Its components include chemoreceptors, also known 

as methyl-accepting chemotaxis proteins (MCPs), a histidine kinase CheA, an adaptor protein 

CheW, a methyltransferase CheR and a methylesterase CheB, as well as a response regulator 

CheY and its phosphatase CheZ.  E. coli has five chemoreceptors.  Tsr mediates attractant 

responses to serine and quorum autoinducer AI-2,248,249 as well as responses to oxygen, redox 

and oxidizable substrates.48,250 It was also recently shown to mediate taxis to 3,4-

dihydroxymandelic acid, a metabolite of norepinephrine that is produced by  human cells (Mike 

Manson, personal communication). Tar mediates attractant responses to aspartate and 

maltose249,251 and negative responses to metal ions.252 Trg mediates attractant responses to 

ribose and galactose,253 while Tap does so for dipeptides and pyrimidines.45,46 Aer mediates 

responses to oxygen and energy taxis.47,48 The majority of the chemotaxis proteins are encoded 

in two adjacent operons, mocha (motA, motB, cheA, cheW) and meche (tar, tap, cheR, cheB, 

cheY, cheZ), whereas the remaining three chemoreceptors (Tsr, Trg, and Aer) are encoded 

elsewhere on the chromosome.  On a large evolutionary scale, the chemotaxis system, which 
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appeared in a common ancestor of Bacteria, underwent drastic changes displaying a wide array 

of variations in component design.50 Even the closest relatives of E. coli show substantial 

differences in the chemotaxis machinery. In Salmonella enterica, the majority of chemotaxis 

components are orthologous to those of E. coli, but it lacks Tap, and contains additional 

chemoreceptors and the second adaptor protein, CheV.254 However, the driving forces that 

shape the chemotaxis system on a small evolutionary scale remain unknown.  

E. coli is the most sequenced bacterium to date and phylogenetic studies provided 

important insights into the processes of its genome evolution.255-257 E. coli strains are too closely 

related to each other to be resolved by classical 16S- and ribosomal protein-based phylogeny. 

Based on several other independent methods including multi-locus enzyme electrophoresis, 

multi-locus sequence typing, feature frequency profiles, and whole genome phylogeny E. coli 

strains are classified into several phylogenetic groups: A, B1, B2, D, E, and F.255,257-259 The 

phylogenetically defined E. coli clade260-262 also includes Shigella clones that have been 

historically considered a separate genus due to distinct phenotypic features, such as loss of 

motility. Chemotaxis has been studied extensively using derivatives of a single E. coli strain, K-

12 (the A group), and the functionality and conservation of the chemotaxis system has not been 

specifically studied in members of other E. coli groups. Several studies suggested the 

dispensability of both core and accessory chemotaxis components in E. coli. The core genome 

of E. coli contains nearly 2,000 genes.256 Interestingly, only a subset of the chemotaxis genes 

belongs to the core genome according to this study. Key components of the chemotaxis system, 

CheW and CheB as well as two major chemoreceptors, Tar and Tsr, are missing from this core 

set suggesting that chemotaxis might be a dispensable function in E. coli. Furthermore, several 

uropathogenic E. coli strains were shown to lack Trg and Tap receptors, and it was postulated 

that the gene loss was a result of a lack of selective pressure on sugar and peptide sensing 

receptors in the urinary tract, which is void of these substrates.243  Here, we analyzed the 

chemotaxis system of E. coli by comparing genomes of more than 200 strains that included 
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commensals and pathogens from all known phylotypes. We show that the chemotaxis system is 

well-preserved in E coli, even among some strains that have lost motility and that the major 

evolutionary event was the loss of Trg and Tap receptors that occurred not only in some 

uropathogenic strains, but in the common ancestor of the B2 phylotype. We propose that losing 

the ability to sense sugars, peptides and nucleotides contributed to the emergence of extra-

intestinal clones including pathogens. 

 

Materials and Methods 

Data sources and bioinformatics software. The following software packages were used 

in this study: HMMER v3.0,27 Jalview,25 MAFFT v6.847b,263 MEGA v4.0,264 PhyML v3.0,265 and 

BLAST+ v2.2.4+.266 All multiple sequence alignments were built in MAFFT with its l-INS-i 

algorithm. All maximum likelihood phylogenetic trees were built in PhyML with standard 

parameters and subtree pruning and regrafting topology search. Genomes, proteomes, and 

genome annotations of all distinct Escherichia and Shigella strains available in the NCBI nr 

database as of 12th January, 2012 were collected (219 genomes). Pathotype information was 

retrieved from primary literature and public databases including PATRIC and GOLD.267,268 

Construction of a phylogenetic tree for Escherichia. Escherichia phylogenetic tree was 

constructed using the arcA, aroE, icd, mdh, mtlD, pgi, and rpoS genes.269 The nucleotide 

sequence sets for each gene were aligned individually in MAFFT. The alignments were 

concatenated, and the resulting alignment was used to build a maximum likelihood tree in 

PhyML.  

Identification of chemotaxis and accessory proteins in genomic data sets. Chemotaxis 

and accessory genes and proteins were retrieved from the genome of E. coli W3110 (model 

wild type for chemotaxis) and used as BLAST queries against the genome set. Protein and 

nucleotide searches were performed to ensure retrieval of missing and partial genes. Gene 

neighborhoods were extracted from NCBI genome feature files. 
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Multiple sequence alignment and phylogenetic analyses. The nucleotide and protein 

chemotaxis sequence sets (MotA, MotB, CheA, CheW, Tar, Tap, CheR, CheB, CheY, CheZ, 

Tsr, Trg, and Aer) were individually aligned by MAFFT. The alignments of the chemotaxis 

operons, mocha and meche, were concatenated and used to build a maximum likelihood tree in 

PhyML. 

sSNP molecular clock calculation: All of the chemotaxis genes (except for trg and tap) 

and recA from clades B2 and A were individually aligned and concatenated to produce a 

gapless alignment. After removing sequences with errors, the final set consisted of 58 

sequences (Table S1 of Appendix B). The alignment spanned 4,360 codons. The equation 

(Equation 1) used to calculate time of divergence is: (number of sSNP sites) / (potential sSNP 

sites x mutation rate x generations per year x 2) Potential sSNP sites were determined using the 

parsimonious assumption that each codon has only one potential sSNP site. Generations per 

year were estimated at a range from 100 to 300 to allow for a broad estimation.270-273 The 

experimentally determined synonymous mutation rate of 1.4 x 10-10 was used.274 

 

Results 

Phylogenetic tree of Escherichia. We analyzed 219 (55 complete and 164 draft) 

genomes of Escherichia and Shigella. This set included genomes of E. fergusonii and E. albertii, 

to serve as outgroups in the phylogenetic analysis. In order to assign newly sequenced strains 

to the established phylogenetic groups, we have constructed a phylogenetic tree of all 219 

strains in our dataset. Because relationships between such closely related strains cannot be 

resolved using traditional ribosomal trees, we built a maximum-likelihood tree from 

concatenated alignments of the arcA, aroE, icd, mdh, mtlD, pgi, and rpoS genes, as previously 

suggested 269. The tree (Figure S1 of Appendix B) is in good agreement with previously 

published data, including whole genome-based phylogeny.256 Detailed classification of all 
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Escherichia genomes based on pathotype and phylogenetic groups is shown in “Dataset 

B1.xlsx”. 

Core chemotaxis genes. The presence and absence of eleven chemotaxis genes (cheA, 

cheW, cheY, cheB, cheR, cheZ, tsr, tar, trg, tap and aer) in all 219 genomes is shown as a bird-

eye view in Figure S2 of Appendix B. The picture looks like a mildly used shooting target: while 

concentric rings representing the presence of each of the chemotaxis proteins are well 

preserved, there are visible holes of different sizes showing the absence of particular genes. 

Many of the missing proteins can be found as pseudogenes resulting from single-nucleotide 

frameshifts. Sequencing errors (rate of 1% for some next-generation sequencing 

methodologies) appear to be the main source of missing proteins (e.g. cheB split as 

ECH7EC4401_1543 and ECH7EC4401_1544 in E. coli O157:H7 str. EC4401). Another 

common cause of missing genes in draft genomes is a split between different contigs (e.g. cheA 

split between ZP_04536326 and ZP_04536327 in Escherichia sp. 3_2_53FAA). An additional 

cause is erroneous gene calling (e.g. a complete cheA gene in E. coli str. K-12 substr. DH10 is 

missing). We have analyzed each and every potential mutation in all chemotaxis genes, 

assigning them to obvious sequencing, assembly, and annotation errors or potentially true 

mutations (“Dataset B1.xlsx”). Completely sequenced, closed genomes served as the main 

internal control. Distribution of chemotaxis genes in closed genomes only is shown in Figure 24. 

To better discriminate between potential sequencing/assembly errors and true 

mutations, we analyzed the nature of mutations in Shigella genomes. Shigella are non-motile 

due to inactivation of their flagellar genes,275,276 therefore accumulation of mutations in their 

chemotaxis genes was expected. Indeed, 30% of Shigella strains had significant deletions and 

insertions in the mocha/meche operons (“Dataset B1.xlsx”). Deletions were present not only in 

draft, but also in complete genomes of Shigella, reducing the chance of these results being 

attributable to sequencing errors. Only 33% of Shigella strains contained complete sets of intact 
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chemotaxis genes. In a striking contrast, none of the E. coli strains has accumulated insertions 

or deletions in their core chemotaxis genes (cheA, cheW, cheY, cheB, cheR, and cheZ). Single 

frameshift mutations in these genes were identified only in nine E. coli genomes, all of which 

were in draft status and could be due to sequencing errors. All completely finished E. coli 

genomes had their core chemotaxis genes intact. No events of gene duplication or horizontal 

gene transfer have been found among core chemotaxis genes. 

Chemoreceptor loss. In contrast to core chemotaxis genes, chemoreceptor loss was 

observed not only in Shigella, but also in some E. coli strains. In Shigella, all five 

chemoreceptors (Tar, Tsr, Trg, Tap, and Aer) have a nearly equal chance to be eliminated, 

whereas in E. coli chemoreceptor loss was strongly biased toward Trg and Tap (Table 5). Most 

strikingly, this loss was observed in specific phylotypes. All B2 group strains and the majority of 

F group strains underwent a deletion in the tap gene. The identical nature of the deletions 

(Figure 25) suggests that the event occurred prior to the B2 clade divergence. The majority (33 

of 38) of B2 strains have also undergone a deletion in the trg gene. Similarly to the deletion of 

tap, the symmetrical nature of the trg deletion (Figure 25) suggests that the loss was an 

ancestral event. Another four B2 group strains possess an identical frameshift mutation within 

the trg gene. The symmetrical nature of this frameshift and its presence in a completely 

sequenced genome of the E. coli 536 strain (Figure 25) indicate that it is not a sequencing 

artifact. Thus, it appears that trg and tap deletions occurred in a common ancestor of a clade, 

which approximately corresponds to the B2 phylogroup. Using molecular clock calculations, we 

estimated a time period during which the ancestral chemoreceptor loss event occurred. We 

compared the number of synonymous mutations in the B2 clade in which the loss took place 

with the A clade that contains the chemotaxis wild-type strains K12. The B2 clade has overall 

and on average more sSNPs than the A clade, indicating a longer time period of divergence 

from respective common ancestors. Our estimates indicate that B2 diverged from ~1 to 3 million  
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Figure 24. Presence of Chemotaxis Genes in Completely Sequenced Escherichia/Shigella 

genomes. Full strain names and properties are listed in “Dataset B1.xlsx”. Phylogenetic relationships 

are shown in the center. Branches are color coded according to previously established phylotypes. E. coli 

K-12 strain W3110 (model for chemotaxis) is marked with an asterisk. Outer ring denotes pathogenicity 

types of each strain.  
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Table 5. Loss of Chemoreceptor Genes in E. coli and Shigella Genomes. 

Lost gene* E. coli genomes Shigella genomes 

 All (183) Finished (46) All (28) Finished (8) 

tar 0 0 12 2 

tsr 4 2 4 1 

aer 1 1 12 4 

trg 34 16 7 3 

tap 41 18 10 2 

*Excluding detected sequencing/assembly/annotation errors (see Dataset S1 for details) 

 

years ago (Ma), whereas the A clade did so from ~0.4 to 1.2 Ma (300 and 100 generations per 

year respectively). 

Chemoreceptor acquisition. While no chemoreceptor gene duplication was observed in 

any analyzed genome, we detected several receptor acquisition events (Table 6). All acquired 

MCPs were plasmid-borne. In E. fergusonii ECD227 an acquired MCP is 99% identical to the 

MCP from Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188, which is also 

located on a plasmid. These plasmids are similar and were implicated in antimicrobial 

resistance in Salmonella and virulence in E. fergusonii.277 This chemoreceptor is significantly  

different from canonical E. coli MCPs in sequence, although it belongs to the same class 36H153 

and has the same predicted membrane topology. E. coli O157:H7 str. EC4024 acquired a MCP 

that was identified from its N-terminal portion (residues 1-350) located at a contig end. This 

fragment was 99% identical to an MCP from an Enterobacter hormaechei (GI: 334124148) and 

showed limited similarity to Trg (less than 30% identity). The MCP is found neighboring a 

sucrose metabolism gene cluster both on the plasmid and in the Enterobacter genomes, 

suggesting a possible role as a sucrose sensor. Finally, seven E. coli genomes were found to 

possess an aer-like MCP likely acquired from Aeromonas caviae, which is also known to cause 
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gastroenteritis.278 In six genomes, these MCPs are identical, suggesting a single recent 

acquisition event.  

(Begin Additional Section: Text and Equation 1 only) sSNP Molecular Clock Analysis. 

Both the authors and the Mobley Lab were interested in determining when the ancestral gene 

loss event occurred. The Mobley Lab had independently theorized (based on the lack of 

receptors in a urinary pathogenic strain) that lack of exposure to the ligands due to the new 

environment of the urinary tract relaxed selection pressure. However, since our study 

determined that the loss was unequivocally ancestral and resulted in the generation of a variety 

of extra-intestinal pathogens (not just urinary pathogens), we concluded that the loss may have 

initially decreased competitiveness for resources in E. coli’s preferred habitat (the 

gastrointestinal tract), which forced these strains to adapt to either more efficiently colonize the 

intestines or move to new niches. 

 

 

Figure 25. Deletions in tap and trg Genes in B2 Group Strains. Gene neighborhoods in representative 

genomes are shown. Full strain names and genomic locations of deletions are listed in “Dataset 

B1.xlsx”. 
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Table 6. Horizontally Transferred Chemoreceptor Genes in Escherichia Genomes 

Genome Acquired gene Closest BLAST hit 

  
Name 
GI 

Sequence Identity 
with  
E. coli K-12 
homolog 

 
Organism 
GI 

 
Sequence 
Identity 

E. fergusonii ECD227 Tsr (MCP I) 
424819104 
 

37% S. enterica 
194447140 

99% 

E. coli O157:H7 str.  
EC4024 

Trg (MCPIII) 
195941089 

29% E.hormaechei 
334124148 

99% 

E. coli 101-1  AER (MCPV) 
19443928 

33% A. caviae 
51470604 

99% 

E. coli E1520 AER (MCPV) 
19443928 

33% A. caviae 

51470604 
100% 

E. coli G58-1 AER (MCPV) 
19443928 

33% A. caviae 
51470604 

100% 

E. coli MS 84-1 AER (MCPV) 
19443928 

33% A. caviae 

51470604 
100% 

E. coli MS 85-1 AER (MCPV) 
19443928 

33% A. caviae 
51470604 

100% 

E. coli MS 124-1 AER (MCPV) 
19443928 

33% A. caviae 

51470604 
100% 

E. coli TA007 AER (MCPV) 
19443928 

33% A. caviae 
51470604 

100% 

 

 

In order to estimate a timeline for this event, we needed to establish a comparison, as 

estimations are only relative. Thus, we chose to compare the B2 group with the ancestral gene 

loss to the A group, which are comprised primarily of human commensal strains. Our 

justification for this comparison is that the A group appears to be the evolutionarily youngest 

(fewest number of synonymous mutations), implying that it has had the least amount of time to 

diverge since it branched off from the rest of E. coli. Since this group is primarily composed of 

commensal organisms, this looks to be the most recent branch of human specialist E. coli, 

providing a perfect contrast to the most highly specialized pathogenic group, B2. 

The basic theory behind the molecular clock calculation hinges on the concept of sSNPs 

(synonymous mutations/nucleotide polymorphisms).270-273 Synonymous mutations are 

nucleotide changes that change the codon but not the protein for which it codes (most amino  
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__(# of synonymous Single-Nucleotide Polymorphisms [sSNP] sites)__          

(# of potential sSNP sites X mutation rate X generations per year X 2) 

Where:  # of potential sSNP sites (4,360) 

mutation rate = 1.4x10-10 

generations per year = 100, 200, or 300 

Equation 1. sSNP Molecular Clock Analysis for B2 and A Group Diversification 

 

acids are encoded by 4 codons, though this is variable). These are important because they do 

not alter the structure or function of the protein (which is a valid assumption, though certain rare 

instances of nucleotide changes can alter translation rates or other properties of the protein that 

result in altered function). Since synonymous mutations aren’t dramatically altering function, 

they are not changing evolutionary pressure on the gene, and they will naturally accrue over 

time at a somewhat predictable rate. This rate is based on the error rate of DNA polymerases, 

experimentally observed in E. coli.274 

Turning to the equation itself, the key data on which the quality of the molecular clock 

estimation relies is the number of sSNPs. In order to detect these events, all of the chemotaxis 

genes for each group were separately aligned (nucleotide sequences, not amino acid 

sequences) using MAFFT. Thus, chemoreceptor orthologs were aligned together, CheA genes 

were aligned together, and then these individual high quality alignments were concatenated. 

When genes were missing or divergent (i.e. the missing trg and tap chemoreceptors in B2 

group), these were removed from the alignment so that the comparison would not be biased by 

genes that were no longer under the same evolutionary pressure (the pseudogene remnant of 

these genes would have accrued mutations at greatly accelerated rates since there was no 

longer a protein to function). The final datasets consisted of two concatenated nucleotide 
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alignments of 13,890 nucleotides (4,630 codons) each (one for B2 and one for A). The 

imbalance in the number of sequences is controlled for by normalizing the number of sSNPs by 

the number of potential sSNP sites (see Equation 1), which simplified is the number of codons 

multiplied by the number of sequences within the alignment. 

Other factors in the analysis include factoring in the number of generations per year 

(estimated conservatively at 100 and less strictly at 300), providing the range for the estimation. 

This is important, as various generation times have been observed under an assortment of 

environmental and experimental conditions. The number of mutations increases as the 

generational time decreases, creating a broad estimation as opposed to a pinpoint result (which 

would be specious). Finally, the fact that bacterial doubling produces two new strands of each 

gene, and thus two chances for each mutation, is also factored into the equation. Our resulting 

estimate was ~1-3 million years ago. (End of Additional Section) 

 

Discussion 

 Despite a relatively short timeline of divergence, the chemotaxis system in the genus 

Escherichia has undergone substantial changes. First, the loss of the entire chemotaxis function 

manifested as severe mutations in core chemotaxis genes was observed. This event was 

unambiguously detected only in non-motile, intracellular Shigella. All E. coli genomes contain 

intact core chemotaxis genes indicating that chemotaxis is critical for motile strains. On the 

other hand, not all Shigella lost their chemotaxis genes. For example, in the S. flexneri K-671 

the entire chemotaxis system appears to be intact, whereas flagella are absent due to mutations 

in the flhDC flagellar master operon.279 Several Shigella strains retain intact mocha and meche 

operons. Thus, the chemosensory apparatus in these strains might be used for other functions. 

This is a common trend in the evolution of the chemotaxis system on a larger evolutionary 

scale: it was co-opted to control such processes as gene expression in many bacterial 
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species.50,280 Second, we detected changes in the chemoreceptor repertoire caused by gene 

loss and, to a lesser extent, by horizontal gene transfer, but not gene duplication. The major 

chemoreceptors Tar and Tsr are well preserved in E. coli. This is consistent with their roles as 

modulators of important behaviors that in addition to sensing various attractants and repellents 

include energy taxis,48 thermotaxis,281 and pH taxis.282 Tar and Tsr are equally important for 

commensal and pathogenic strains. These chemoreceptors are also necessary and sufficient for 

chemotaxis toward urine in the pathogenic E. coli strain CFT073.283 Although the aerotaxis 

receptor Aer has been categorized as a minor receptor according to its low abundance in the 

cell,284 it is also well preserved in E. coli, likely due to its role in energy taxis and thermotaxis. 

Consequently, we propose to refer to Aer as a major chemoreceptor, in addition to Tar and Tsr. 

We have found evidence for at least three independent events of new chemoreceptor 

acquisitions by E. coli strains. A Trg-like chemoreceptor was found to be encoded in a sucrose 

metabolism gene cluster. Both gene order conservation for this receptor (together with 

fructokinase) in Enterobacteriaceae plasmids and the known role for Trg to mediate chemotaxis 

to ribose and galactose suggest that it might sense sucrose. Sucrose and fructose metabolism 

gene clusters have been reported in several E. coli extra-intestinal strains.285,286 Another 

interesting case is an additional Aer-like chemoreceptor, which is present in several E. coli 

strains, but appears to be a result of a single acquisition event. Multiple copies of Aer are not 

uncommon among Gammaproteobacteria. For example, they are present in such pathogens as 

Vibrio cholerae287 and Pseudomonas aeruginosa.203 

Unambiguously, loss can be established only for Trg and Tap, where large deletions 

were identified in corresponding genes in many E. coli genomes. The overwhelming majority of 

these strains belong to the B2 clade, which contains major extra-intestinal pathogens. The 

deletions occurred in the same chromosomal position in all B2 strains strongly suggesting a 

single ancestral event. This instance of gene loss from the chemotaxis system was a significant 

evolutionary event that had the potential to affect and shape the phenotypic behavior (including 
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emergence as a pathogen) that differentiates the B2 clade from those that still possess the 

canonical chemoreceptor genes. While there are several reported differences between B2 and 

other clades, extra-intestinal pathogenicity is the most striking, and its major impact on human 

well-being and the substantial associated costs of healthcare merits further investigation. 

As to the evolutionary context of this gene loss, it does not appear to be a result of 

relaxed selective pressure on sensors to sugars and dipeptides that are exceedingly rare in 

urine from individuals with healthy kidneys. Genomes that lost trg and tap contain intact genes 

coding for ribose, galactose/glucose, and dipeptide periplasmic-binding proteins that mediate 

the sensing of these compounds through Trg and Tap. This suggests continuing importance of 

these metabolites (and therefore significant exposure to them), which is not in line with a 

selection driven loss due to minimal or non-exposure. Furthermore, B2 strains colonize the 

intestines very effectively288 and function as commensals until they are outside of the intestinal 

tract, so they are not exclusively under selection pressure from the urinary environment. Finally, 

once they have exited the intestinal tract, some extra-intestinal B2 strains are not found in the 

urinary tract but preferentially migrate elsewhere (hence MNEC and APEC strains). Thus, it is 

likely that the ancestral loss of trg and tap predisposed gut-inhabiting strains to seek other 

niches to occupy (either in the form of a new adaptive strategy in the gut or colonization 

elsewhere).  

The molecular clock analysis of the chemotaxis system of the B2 strains suggests that 

they branched off fairly early (relatively speaking), which provides the ancestral receptor loss a 

long period of divergence over which its effects would be present. Even with as broad an 

estimation as ~1 to 3 Ma, this places the divergence of the B2 clade in the ballpark of the 

estimated appearance of the genus Homo (2.3-2.4 Ma)289 and provides an intriguing temporal 

link to human specialization and pathogenicity. Taken as a whole, we hope that this message 

encourages further discussion on the evolutionary history of Escherichia coli and also highlights 
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a potentially significant and novel method through which chemotaxis receptors might influence 

new pathogen emergence. 
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Chapter 6: Conclusions 

 Chemotaxis is a mature field; it has been studied for almost fifty years and has been highly 

characterized from every experimental angle. Both the signal transduction and microbiology 

communities have made great strides recently, but more can be achieved by more comprehensive 

study of chemoreceptors. The molecular lessons of signal transduction work may ultimately 

translate into therapeutic intervention for chemotactic pathogens, while the wealth of experimental 

observations across different chemotaxis systems may likewise better refine our understanding 

of how biological signals are transduced in bacteria and human receptors alike. Confronting 

microbial pathogens is a dire necessity in light of rising global antibiotic resistance, and better 

insight into our own receptors will further rationalize the field of drug discovery and design 

(improving safety and efficacy). Already, comparative genomics studies have rapidly expanded 

and accelerated our understanding of chemoreceptors and chemotaxis at a systems level.50,153  

This dissertation work has contributed to the study of chemoreceptors by using the theory 

and insight gained from comparative techniques. Specifically, we first refined molecular 

interactions in Thermotoga maritima by comparing the evolutionary histories of interacting 

proteins in conflicting Chemoreceptor:CheA:CheW co-crystal structures. Our results provide 

genomic evidence that both CheW and CheA compete for the same region of the receptor tip, 

and highlight which elements of each crystal structure agree with evolutionary information. Next, 

we assisted in the characterization of a novel galactose-sensing chemoreceptor from 

Campylobacter jejuni and demonstrated that it was a recent innovation that was the result of 

duplication and domain swapping of two closely related Campylobacter receptors. Third, we 

pioneered a novel genomic approach for disentangling multiple chemoreceptors and multiple 

chemotaxis, showing for the first time a comprehensive model for the relationships between 

chemotaxis systems in Pseudomonas aeruginosa using phylogenetic and comparative analyses. 

Finally, we investigated evolution at the species level in Escherichia coli and connected ancestral 
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loss of chemoreceptor genes with extra-intestinal pathogenicity. The significance of this finding 

may not be limited to E. coli, but serves as an example of the potential for chemoreceptor 

repertories to influence commensal to pathogen transitions in motile bacteria. 

 There are three major open questions facing the chemoreceptor community. First, how 

can we use bioinformatics methods to computationally predict the sensory specificity of a 

chemoreceptor? Without this information, most chemoreceptors are biologically irrelevant. 

Second, what is the function of soluble chemoreceptors in the context of the chemotaxis system, 

and where do they fit with respect to the prototypical transmembrane system? Soluble receptors 

have been largely disregarded until the last few years, and were all together written off by the 

signal transduction community (until our work in Chapter 2.) Now there are several examples that 

have been partially characterized, opening the doors for large scale comparative work. Finally, 

how do multiple chemotaxis systems co-exist within an organism, and how do these systems 

regulate one another so that conflicting motility signals do not jeopardize the survival of the 

organisms (especially with multiple flagellar systems)? Already, we have seen chemoreceptors 

located in one chemotaxis gene cluster but localized to another,111 and this may only be the tip of 

the iceberg as to the complex interchange and cross-talk that may be possible between systems. 

Conversely, if there is no cross-talk, the mechanisms of system specificity may reveal untold 

additional layers of regulation that will have general implications for localizing cells to the 

membrane, partitioning systems, and the overall molecular logistics of microbial organisms. We 

conclude with possible solutions for future comparative genomics work on chemoreceptor 

sequence, structure, and function. 

With respect to predicting chemosensory capabilities, current domain models face 

shortcomings in both sensitivity and specificity. In the first case, our lab has had success using 

profile-profile comparisons (as opposed to searching sequences with a profile), which greatly 

increases the sensitivity of protein domain identification (see Figure 26 for an example from  
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Figure 26. Filling in the Gaps of Chemoreceptor Sensory Capabilities. Of the 26 chemoreceptors in P. 

aeruginosa PAO1, almost half (12/26) have significant portions of their sequence not covered by current 

domain models using Pfam profile-sequence searches. By using more sensitive profile-profile searching 

methods (HHpred, Max Planck Institute), the vast majority of these regions can be linked to known sensory 

domain models (colored in Red). Already, advances in comparative methods are capable of filling in these 

gaps that riddle protein space. These models may one day be refined to the point where specificity may be 

heavily suspected (e.g: Cache: Amino Acids, 4HB: Pyrimidine Nucleotides, etc.). The NIT domain is a 

perfect example of one of the few domains that currently deliver this level of information (see PA4520, red 

domain fifth from the bottom), as we now know through our analysis that this chemoreceptor most likely 

senses nitrites and nitrates. Nitrite and nitrate sensing has been reported in P. aeruginosa, but no 

chemoreceptor was ever implicated before this type of analysis. 
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work on P. aeruginosa). As for the second problem, we contend that we have the tools and 

resources available to further sub-divide current domain models until they provide concrete 

functional predictions. Sequence alone may not initially be enough, but the addition of 

experimental binding data (i.e. crystal structures or mutational studies) from a few key examples 

will pave the way for progress in this respect. Accomplishing this feat would have profound 

signal-transduction-wide implications for drug design, drug delivery, bio-remediation, bioenergy, 

environmental carbon cycling, and a host of other applications.  

However, before this can be done in silico and en masse, a proof of concept will be 

necessary, and our work with the Korolik Lab in Campylobacter jejuni could provide the perfect 

set of receptors with which to do so. In addition to having five chemoreceptors with related 

sensory domains (3 of which have ligands identified), one of these, the C. jejuni aspartate 

receptor CcaA, is a very interesting evolutionary case. Aspartate is a critical metabolite and 

building block, as it is the precursor for a wide variety of compounds including other amino acid 

biosynthesis, so acquiring specificity for aspartate is not an insignificant biological 

accomplishment.  As mentioned in earlier sections, aspartate receptors are prevalent in model 

organisms (like Tar in E. coli and Salmonella enterica), yet CcaA and Tar have done so with 

different ligand binding domains, which have arisen from completely distinct structural lineages. 

The aspartate receptor CcaA appears to be widely disseminated through Epsilonproteobacteria, 

and may be related to characterized H. pylori chemoreceptors, whereas Tar is widely distributed 

throughout enteric Gammaproteobacteria. An analysis of these two groups of chemoreceptors 

may lead to a better understanding of how different sensory mechanisms can converge to 

sense the same signal, allowing for the eventual creation of highly specific, curated models. 

As for the function of soluble chemoreceptors, the answer may be closer than one might 

expect. Cytoplasmic chemoreceptors AerC, BdlA, hemAT, and McpB all sense metabolic/redox 

signals.57,231,290,291 These chemoreceptors are found across diverse phyla (Proteobacteria and 



135 
 

Firmicutes), and their sensory domains are wholly unrelated (double PAS vs. Protoglobin). In 

our work on T. maritima from Chapter 2, we also worked with a soluble chemoreceptor from a 

deeply branching phylum, but this receptor (TM0014) had no predicted function and not enough 

unknown sequence to house a hidden sensory domain. Dr. Zhulin noticed a trend in this 

receptor’s gene neighborhood: a close-association with a predicted redox-sensing beta-

lactamase. Bipartite (split into two genes) chemoreceptors are not without precedent, as the 

signaling domain can associate with the sensory domain when they are co-expressed.63 We 

investigated this putative beta-lactamase, and our preliminary results indicate that this gene 

neighborhood connection is present for the vast majority of easily identifiable TM0014 orthologs. 

The beta-lactamase from also appears to match known structures of di-iron redox sensors. 

Therefore, there appears to be a universal need for using soluble chemoreceptors for internal 

metabolic sensing (see Figure 27). These chemoreceptors are not bound to the membrane, 

and may be free to shuttle between systems and couple system activity, serving as global 

regulators. These proteins offer a compelling evolutionary story (convergent evolution), made 

even more intriguing by protoglobin’s further ancestral link to hemoglobin.290 On the applied 

side, these potential master regulators may also provide a novel class of antibiotic targets. 

Finally, returning to the last question facing chemotaxis, the multitude of chemoreceptors 

and multiple chemotaxis systems, the next clear step is to apply our comparative methodology 

to other organisms. The pathogen Vibrio cholerae (3 chemotaxis systems and 45 

chemoreceptors) will offer an increased challenge with more chemoreceptors; however, if the 

trend from P. aeruginosa holds, there will be one major system with an associated class of 

receptors and two highly specialized systems. Both a future Vibrio study and the current 

Pseudomonas study can be combined and extended further to include increasingly deeper 

taxonomic levels (e.g. Vibrionales/Pseudomonadales, Gammaproteobacteria, Proteobacteria). 

In doing so, we can identify orthologs, divergent homologs, horizontal acquisitions, and novel  
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Figure 27. Convergent Evolution of Soluble Metabolism-Sensing Chemoreceptors? 

Representatives of characterized or partially characterized soluble chemoreceptors. Domain architecture 

obtained from MiST 2.2 database. (*Protoglobin domains not present in MiST but are significant domain 

hits with experimental confirmation). BdlA, AerC, and hemAT are all experimentally confirmed redox 

sensors. McpB is a homolog of hemAT. Both BdlA and McpB have experimental evidence of proteolytic 

post-processing. TM0014 has been co-crystallized, but no sensory domain is predicted and the 

uncovered portion of the sequence is likely too short for a full domain. TM0013 is a divergent beta-

lactamase domain containing protein whose orthologs are co-encoded in adjacent to TM0014’s orthologs 

in phylum Thermotogae. This correlation holds for a wide diversity of bacterial phyla, but more robust 

analysis is needed. (Fleetwood and Zhulin, unpublished data) 

 

innovations. This type of study would approach the scale of a chemoreceptor pan-genome, 

which would elucidate the importance of chemoreceptors in the context of different microbial 

lifestyles (plant, animal, and human pathogens and non-pathogens alike). This type of 

comparative analysis may also yield core ancestral chemoreceptors that could serve as broad 



137 
 

spectrum antibiotic targets, as well as individual chemoreceptors that could serve as species 

and even strain specific targets or biomarkers. 

Comparative genomics of microbial chemoreceptors stands to greatly expand our 

understanding of their sequence, structure and function. Chemoreceptors serve as models for 

many of our own receptors (i.e. GPCRs), and they also show evidence of general features of 

protein evolution. Mechanistic studies of chemotaxis system formation have improved our 

understanding of the system, but we have yet to see many connections to the lifestyle of the 

organism. Conversely, lifestyle focused works have shown the potential impact and importance 

of chemoreceptors for health and the environment, but without deeper molecular and 

mechanistic understanding there are few options for application and intervention. 

Chemoreceptors are under-appreciated virulence factors, as altered chemoreceptor suites can 

serve as corrupted GPS systems, directing commensals from favored niches to sites of novel or 

enhanced pathogenicity. As such, they are a major untapped sources of a novel antibiotic class 

in a world plagued by rising antibiotic resistance. By bridging the chemoreceptor signal 

transduction/microbiology gap, comparative genomics may usher in a new era of expanded 

significance to the field of chemotaxis, and may further the field’s already storied contributions to 

the biological sciences as a whole. 
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