
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2014

Scalable Hardware Efficient Deep Spatio-Temporal Inference Scalable Hardware Efficient Deep Spatio-Temporal Inference

Networks Networks

Steven Robert Young
University of Tennessee - Knoxville, syoung22@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Young, Steven Robert, "Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks. " PhD
diss., University of Tennessee, 2014.
https://trace.tennessee.edu/utk_graddiss/3210

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Steven Robert Young entitled "Scalable

Hardware Efficient Deep Spatio-Temporal Inference Networks." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Computer Engineering.

Itamar Arel, Major Professor

We have read this dissertation and recommend its acceptance:

Jens Gregor, Jeremy Holleman, Xiaopeng Zhao

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

12-2014

Scalable Hardware Efficient Deep Spatio-Temporal
Inference Networks
Steven Robert Young
University of Tennessee - Knoxville, syoung22@vols.utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

http://trace.tennessee.edu
http://trace.tennessee.edu
http://trace.tennessee.edu/utk_graddiss
http://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Steven Robert Young entitled "Scalable Hardware
Efficient Deep Spatio-Temporal Inference Networks." I have examined the final electronic copy of this
dissertation for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Computer Engineering.

Itamar Arel, Major Professor

We have read this dissertation and recommend its acceptance:

Jens Gregor, Jeremy Holleman, Xiaopeng Zhao

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Scalable Hardware Efficient Deep

Spatio-Temporal Inference

Networks

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Steven Robert Young

December 2014

c© by Steven Robert Young, 2014

All Rights Reserved.

ii

Dedicated to my wife Angela. Thank you for your endless support and

encouragement during my academic pursuits.

iii

Acknowledgements

I would like to thank Derek Rose, Andrew Davis, Ben Goodrich, Benjamin Martin,

Aaron Mishtal, Tom Karnowski, and Bobby Coop for providing thought provoking

research discussion in the lab during my studies and Junjie Lu for his great help and

support in helping me understand the effects of analog circuitry upon computation. I

would also like to thank my advisor Dr. Itamar Arel for providing me the opportunity

to pursue my PhD and for his guidance and instruction through my research for the

past six years. My committee dissertation committee members, Dr. Jens Gregor,

Dr. Jeremy Holleman, and Dr. Xiaopeng Zhao, deserve much gratitude for their

time spent reviewing and contributing suggestions to this dissertation. I would like

to thank Dr. Michael Roberts for recommending me for an undergraduate research

position to Dr. Arel. Without that experience, I would have never seen graduate

school as a possibility.

Finally, I must thank my family. My parents, Jay and Teresa, have provided me

with the support, love, and opportunities without which this would not be possible.

My father-in-law and mother-in-law, Kenneth and Teresa Greene, have welcomed me

into their family and provided me with many enjoyable distractions from my work

over the past five years. Most importantly, my wife Angela has supported me through

the entirety of my graduate studies, even when my work has limited the time we have

to enjoy together.

iv

Abstract

Deep machine learning (DML) is a promising field of research that has enjoyed much

success in recent years. Two of the predominant deep learning architectures studied in

the literature are Convolutional Neural Networks (CNNs) and Deep Belief Networks

(DBNs). Both have been successfully applied to many standard benchmarks with a

primary focus on machine vision and speech processing domains.

Many real-world applications involve time-varying signals and, consequently,

necessitate models that efficiently represent both temporal and spatial attributes.

However, neither DBNs nor CNNs are designed to naturally capture temporal

dependencies in observed data, often resulting in the inadequate transformation of

spatio-temporal signals into wide spatial structures. It is argued that deep machine

learning without proper temporal representation mechanisms is unable to extract

meaningful information from many time-varying natural signals.

Another clear emerging need is in growing deep learning architectures with the

size of the problem at hand, suggesting that such architectures should map well to

custom hardware platforms. The latter offer much better performance than that

achievable using CPUs or even GPUs. Analog computation is a unique potential

solution to the scalability challenge offering the benefits of low power consumption

and smaller physical size when compared to digital implementations. However, these

benefits come with the consequence of inaccurate computations and noise.

This work presents an enhanced formulation of DeSTIN - a Deep Spatio-Temporal

Inference Network (DeSTIN) that is inherently designed to capture both spatial and

v

temporal dependencies in the data provided. The regular structure of DeSTIN, its

computational requirements, and local connectivity render it hardware-efficient and

highly scalable. Implementation of DeSTIN using analog computation is studied

in detail, where the architectural robustness to various distortions in its signals is

demonstrated. To the best of our knowledge, this is the first time custom analog

hardware has been developed for deep machine learning. Key enhancements to

previous formulations of DeSTIN are discussed in detail and results on standard

benchmarks are presented. This work helps pave the way for advancing deep learning

to address some of the long-standing challenges in machine learning.

vi

Table of Contents

1 Introduction 1

1.1 Deep Learning . 1

1.2 DeSTIN - A Compositional DML Architecture 3

1.3 Benefits of Analog Architectures . 4

1.4 Contributions . 5

1.5 Publications . 6

1.6 Dissertation Outline . 7

2 Background and Literature Review 8

2.1 Machine Learning . 8

2.1.1 Unsupervised Learning . 9

2.1.2 Supervised Learning . 13

2.1.3 Semi-Supervised Learning . 17

2.2 Feature Extraction . 18

2.2.1 Principal Component Analysis 19

2.2.2 Auto-encoders . 20

2.3 Image Whitening . 20

2.4 Deep Machine Learning . 21

2.4.1 Convolutional Neural Networks 21

2.4.2 Deep Belief Networks . 23

vii

3 The DeSTIN Architecture 25

3.1 Incremental Clustering . 28

3.2 The DeSTIN Node Revisited . 31

3.2.1 Recurrent Clustering . 31

3.2.2 Recurrent Clustering Models a Markov Chain 34

3.2.3 Decay of Temporal Information 37

3.2.4 Enhanced Cortical Circuit . 38

3.3 Supervised Clustering . 41

3.4 Scaling DeSTIN to CIFAR-10 . 44

3.4.1 Sampling more movements nodes does not address shifts in

features . 45

3.4.2 Convolutional DeSTIN . 45

3.4.3 Providing Unique Subsamples to Ensemble Members 46

4 Implications of Analog Computation Inaccuracies 49

4.1 Generic Analog Clustering Model . 50

4.1.1 Input Variation . 51

4.1.2 Update Asymmetry and Variation 51

4.1.3 Memory Adaptation Variation 53

4.1.4 Distance Error . 54

4.1.5 Distance Comparison . 55

4.1.6 Additive Noise . 56

4.1.7 Resulting Generic Clustering Model 56

4.1.8 Belief State Inaccuracy . 57

4.2 Final Design . 58

4.2.1 Errors in Centroid Updates 58

4.2.2 Errors in Belief State Calculation 61

4.3 Effects of Analog Inaccuracies on DeSTIN 62

4.3.1 Effect of Gain Errors . 62

viii

4.3.2 Effect of Belief Normalization Error. 63

4.3.3 Effect of Additive Noise . 64

4.3.4 Effects of Additive Noise on Depth 65

5 Experimental Results 66

5.1 Standard Datasets . 66

5.1.1 MNIST Dataset . 66

5.1.2 PEMS-SF Dataset . 68

5.1.3 CIFAR-10 Dataset . 69

5.2 Demonstrative Results . 69

5.2.1 Recurrent Clustering Temporal Representation Abilities 71

5.2.2 Supervised Clustering . 73

5.3 Maximum Performance on Standard Benchmarks 75

5.3.1 MNIST Results . 75

5.3.2 PEMS-SF Results . 77

5.3.3 CIFAR-10 Results . 78

5.4 System-Level Impacts: Modeling Inaccuracies 80

5.4.1 Generic Clustering Model Results 80

5.4.2 Evaluation of Final Design . 82

6 Discussion and Future work 98

6.1 Discussion . 98

6.2 Future Work . 99

Bibliography 101

Appendix 112

Ensembles Operating on Unique Subsets of DeSTIN Beliefs 113

Vita 117

ix

List of Tables

5.1 Comparison of Results on MNIST . 77

5.2 Comparison of Results on PEMS-SF 77

5.3 Comparison of Results on CIFAR-10 79

5.4 Noise Degradation to Guessing . 94

x

List of Figures

2.1 This dendrogram represents the results of hierarchical clustering. . . . 11

2.2 A support vector machine attempts to find the hyperplane that

maximizes the distance (arrows in figure) between itself and the nearest

training samples. The support vectors are the samples nearest to the

hyperplane and are shown as solid circles and squares in this figure. . 15

2.3 Convolutional Neural Network: This figure is depicts a CNN with two

convolutional layers and two sub-sampling layers. This example has 3

hidden units in the first convolutional layer and 5 hidden units in the

second convolutional layer. 22

3.1 Typical use of DeSTIN in an image classification task. (TOP) The

images are provided to the bottom layer nodes. (MIDDLE) The

bottom layer viewing window is scanned over the image in a specific

pattern. Belief states from specific movements are saved as indicated

by the black dots. (BOTTOM) The belief states must represent the

sequence of inputs provided to each node. 26

3.2 Typical use of DeSTIN in an image classification task. The images are

provided to DeSTIN which generates features that are supplied to a

classifier. 28

xi

3.3 Typical use of DeSTIN in an image classification task. DeSTIN’s

receptive field (bottom layer inputs) is scanned across the image. Belief

states from specific movements are saved to be used as features to

a classifier. Thus the belief states from a specific movement must

characterize the inputs seen before that movement. 29

3.4 In recurrent clustering the previous belief is latched and augmented to

the input over which clustering is performed. 32

3.5 A two-state Markov Chain . 34

3.6 (TOP) The distribution of the input vectors at t = 0. (LEFT)

Distribution and centroids at t � 0 (p=0.5,q=0.5). (RIGHT)

Distribution and centroids at t� 0 (p=0.5,q=0.9). 36

3.7 Two centroids and a subset of input vectors, A, that generate the same

belief state . 38

3.8 A 4-layer DeSTIN architecture illustrating the bottom-up and top-

down signaling that is involved. All nodes operate independently and

in parallel such that each layer is delayed by one unit of time relative

to the layer below it. 40

3.9 A case where supervised clustering improves the clustering model.

(Top) Without labels to drive centroids toward intra-class regularities,

the resulting model does not separate the classes well. (Bottom) Once

labels are used, the centroids are able to discover intra-class regularities

and are able to separate the classes well. 42

3.10 A case where supervised clustering degrades the clustering model.

(Top) Without labels driving the clustering, the data is well represented

and a clustering model is formed that represents the data well.

(Bottom) Once labels are introduced, the none of the resulting

centroids ends up representing only a single class. 43

3.11 Convolutional DeSTIN . 46

xii

4.1 This is a block diagram of an analog clustering circuit courtesy of Junjie

Lu. oi refers to the dimension i of the input. 50

4.2 Input Gain Error: No error versus 4x error. 52

4.3 Centroid Offset Error: Varying amounts of asymmetry in updates. . 53

4.4 Memory Adaptation Bias Error . 54

4.5 Illustration of a distance calculation error within the clustering process. 56

4.6 This figure gives the design of the analog clustering circuit design. It

represents a single dimension of a single centroid. (Top) This diagram

shows the configuration of the circuit during the centroid update phase.

(Bottom) This diagram shows the configuration of the circuit during

the belief state calculation phase. 59

5.1 MNIST Image Examples. There are 10 classes of images, and each

image is a 28x28 gray-scale image. 67

5.2 MNIST ”Z” Movement Sequence: The black dots indicate movements

from which belief states are saved. 68

5.3 CIFAR-10 Image Examples. There are 10 classes of images, and each

image is a 32× 32 RGB image. 70

5.4 Frequency Doubler results: (Top) The target vs. output plot is given

for recurrent clustering and for a case where only the current value

of the input is provided to the clustering algorithm. The period of

the original signal is 24 sample units. (Bottom) The ability of the

algorithm to capture information in long period sine waves is evaluated. 72

5.5 Sequence Detection Results: This plot illustrates the average classifi-

cation accuracy as a function of the length of the sequence of interest.

The recurrent clustering algorithm is resourced with a varying number

of centroids. 73

xiii

5.6 MNIST results using supervised clustering. The classification accuracy

(left) and the average centroid variance (right) are plotted against the

label weight β. 74

5.7 PEMS-SF results using supervised clustering. The classification

accuracy (left) and the average centroid variance (right) are plotted

against the label weight β. 74

5.8 CIFAR-10 results using supervised clustering. The classification

accuracy (left) and the average centroid variance (right) are plotted

against the label weight β. 75 centroids per node were used to obtain

these results. 74

5.9 Large movement sequence used for better performance on MNIST. . . 76

5.10 Clean (left) and noisy (right) synthetic clustering data used for

evaluation of analog computation inaccuracies 80

5.11 Accuracy vs. level of error (σ): Gain Errors on Clean Dataset (left)

and Noisy Dataset (right): This figure illustrates that the update and

input errors have the lowest impact on performance, while noise has

the most significant impact. 82

5.12 Accuracy vs. level of error (σ): Additive Errors on Clean Dataset (left)

and Noisy Dataset (right): the update and input errors have the lowest

impact, while the remaining error components have an impact similar

to that of the additive noise of the same level. 83

5.13 Analog MNIST Classification Results 84

5.14 Analog PEMS-SF Classification Results 85

5.15 Analog CIFAR-10 Classification Results 86

5.16 G4 Error and MNIST: Classification results compared to Second Layer

Centroid Variance . 87

5.17 G4 Error and PEMS-SF: Classification results compared to Second

Layer Centroid Variance . 88

xiv

5.18 G4 Error and CIFAR-10: Classification results compared to Second

Layer Centroid Variance . 89

5.19 Percent non-zero belief elements versus tn 90

5.20 Noise and MNIST: Classification results compared to Second Layer

MDBC . 91

5.21 Noise and PEMS-SF: Classification results compared to Second Layer

MDBC . 92

5.22 Noise and CIFAR-10: Classification results compared to Second Layer

MDBC . 93

5.23 Depth,Noise, and MNIST: Classification results using only upper layer

beliefs compared to using beliefs from all layers. 95

5.24 Depth,Noise, and PEMS-SF: Classification results using only upper

layer beliefs compared to using beliefs from all layers. 96

5.25 Depth,Noise, and CIFAR-10: Classification results using only upper

layer beliefs compared to using beliefs from all layers. 97

A.1 MNIST: Classification accuracy versus percentage of features provided

to each classifier . 114

A.2 PEMS-SF: Classification accuracy versus percentage of features pro-

vided to each classifier . 115

A.3 CIFAR-10: Classification accuracy versus percentage of features pro-

vided to each classifier . 116

xv

Chapter 1

Introduction

In this chapter, the field of deep learning will be introduced and the research to be

presented throughout the remainder of this dissertation will be outlined. The work

presented in this dissertation focuses on a particular deep learning architecture known

as Deep Spatio-Temporal Inference Networks (DeSTIN).

1.1 Deep Learning

Deep learning is a field that is currently receiving a large amount of attention. A

recent article listed it as a “Top Ten Breakthrough Technology”of 2013 (Hof, 2013),

and Google’s success in using it to categorize millions of YouTube videos (Le et al.,

2012) has put the technology in the spotlight of many news sources. While these

success stories have received much attention, deep learning remains a very active

area of research. Some of the key challenges still faced by the research community

include devising methods to train such architectures, establishing their scalability

properties as well as the ability to mapped well to massive parallel architectures.

Moreover, inherently capturing temporal dependencies in natural signals remains

largely unaddressed.

Developing models that allow computers to achieve intelligence has long been a

focus of research. In order to work with problems that demonstrate intelligence, the

1

systems designed must be able to work with the large amounts of features and high-

dimensional data that are associated with these types of problems. In short, these

systems must deal with the “curse of dimensionality”(Bellman, 1957), or the fact that

the complexity of learning problems grows exponentially with the dimensionality of

the data involved. The conventional approach to addressing this challenge involves

utilizing human-domain knowledge to map problems to smaller feature spaces - a

process which is often difficult and has little application outside very specific domains

(Duda et al., 2000).

The definition of a deep architecture is a model that is comprised of multiple layers

of non-linear transformations (Bengio, 2009; Bengio et al., 2013; Schmidhuber, 2014).

While this definition describes the necessary components of a deep learning method,

it does not describe the purpose, use cases, or motivation for deep learning. Deep

learning attempts to remove or reduce the need for domain knowledge in machine

learning tasks and learn features directly from the data. Deep learning methods are

currently the state of the art for many object recognition tasks. They achieve this

without any prior information of the task other than the fact that the task is to

classify images. They do not pre-configured with the knowledge that certain objects

are frequently a particular color or that certain objects contain hard edges. They are

not even pre-configured to detect particular patterns in the images such as edges or

particular shapes.

Deep learning methods seek to learn a hierarchy of features where features at the

higher layers are constructed from features formed at the lower layers (Bengio, 2009).

Automatically learning these features with multiple levels of abstraction is the key to

avoiding the need for human-engineering of features. The depth of the architecture

refers to these layers of increasing abstraction, which are based on recent research

of the mammalian brain suggesting that the brain learns through the construction

of multiple layers of abstraction. This hierarchy of abstraction is the mechanism

that allows deep architectures to learn complex representations with little human

intervention or knowledge of the problem domain (Bengio and LeCun, 2007).

2

It is important to note that although deep architectures may appear to overcome

the curse of dimensionality that large data presents, in reality they do so by taking

advantage of the fact that some structure or locality exists in natural signals, which

allows sparsity to exist in the architectures. Without taking advantage of this

structure, the problem would still exist. In order to take advantage of the locality,

deep learning methods represent relationships between spatially close signals with

greater detail while letting distant signals be represented with less detail. This is a

direct consequence of the increasing level of abstraction, or decreasing level of detail,

that results as signals move up through the hierarchies used. Though much of the

current research focuses on representing images, deep learning methods can be used

to discover structure of any modality Ngiam et al. (2011) with one successful example

being music signals Hamel and Eck (2010) and another is speech recognition (Hinton

et al., 2012).

1.2 DeSTIN - A Compositional DML Architecture

This work focuses on DeSTIN - a compositional deep machine learning architecture.

Compositional deep learning architectures are a particular family of DML systems

characterized by hosting multiple instantiations of a basic cortical circuit (or node)

that populates all layers of the hierarchy. Every node learns to represent the sequences

of patterns presented to it by a unique subset of nodes in the layer below it. The

nodes at the very lowest layer of the hierarchy operate on input data and construct a

belief state that tries to characterize the sequences of patterns observed in a compact

manner. All the layers above the input layer operate on the belief states of nodes

in the layer below and construct their own belief states that capture regularities

in this space. The learning process in this type of DML architecture aims to form a

hierarchical feature space that can be employed by classification or regression models.

The learning process at each node consists of exposing it to a large set of observations

and allowing the salient attributes of these observations to be captured. The resulting

3

feature space should exhibit invariance to common distortions and variations in the

observations in order for the representations to be robust.

1.3 Benefits of Analog Architectures

The future of deep learning methods will lead to working with datasets of increasing

dimensionality. In order to work with these large datasets, the computational

complexity and storage requirements involved in the training of DML architectures

must be addressed (Erhan et al., 2009). While there has been some work in

implementing CNNs using FPGAs (Farabet et al., 2011, 2009, 2010), current research

has stopped short of actually creating custom hardware implementations in either

analog or digital technology. This research aims to enable deep learning to utilize the

power and speed advantages of analog hardware. Custom analog circuitry provides

a way to address the limitations of general purpose computers and digital VLSI

technology. The physical density of the building blocks of a DML system are critically

important to achieving the largest possible system provided a cost or physical size

constraint. Analog computation circuitry can provide an implementation that uses

one to two orders of magnitude less area than comparable digital technology and often

provides a significant reduction in power consumption. Both of these attributes will

become ever more important to DML architectures, which are designed to work on

large datasets, as they are moved closer to the sensors that provide the data they work

on in order to avoid sending large amounts of data over bandwidth limited networks.

In analog computation the natural physics of the devices provides the mechanism

for achieving this large improvement in density. For example, when using electric

currents to represent values, simple nodal analysis tells us we can perform addition

by just wiring these values together. The benefits that can be achieved in area and

power do come with disadvantages, such as offset errors, gain errors, and various noise.

However, the feedback that exists in most learning systems often helps to naturally

compensate for these inaccuracies. The brain is known to be comprised of highly noisy,

4

inaccurate neuron activations and interconnection signals. Many of the behavioral

responses of animals occur in time periods around 30 ms long (Bialek et al., 1991),

and if neural signals are integrated over comparable time windows, they usually have

a signal-to-noise ratio (SNR) in the range of 1-10 (Bialek et al., 1991; de Ruyter van

Steveninck et al., 1997; van Rossum et al., 2003). SNRs of this level can easily

be achieved in moderate precision analog electronics. The low SNR requirements

of neural systems provide an opportunity to relax the accuracy requirements for

electronic computational primitives in order to allow aggressive optimization for area

and power consumption.

1.4 Contributions

The contributions of this research work include:

• Introduction of a recurrent clustering algorithm that is able to encode temporal

information into the belief states of DeSTIN nodes.

• A supervised training scheme for DeSTIN that drives it to not only discover

regularities, but to focus on regularities relevant to the task at hand.

• A modified DeSTIN architecture - Convolutional DeSTIN - that allows DeSTIN

to be applied to natural images instead of being confined to more structured

handwritten digit images.

• A DeSTIN architecture that maps well to parallel and custom analog circuitry

both in theory, such that nodes can operate in parallel and leverage the benefits

of analog design, and in practice, such that an implementation using these

technologies is a practical task.

• A detailed study of the effect inaccuracies introduced by analog computational

elements have upon custom DeSTIN architecture realizations.

5

1.5 Publications

The following publications have appeared, addressing various parts of the research

conducted in this work.

• S. Young, J. Lu, J. Holleman, I. Arel ”On the Impact of Approximate

Computation in Analog Deep Machine Learning,” IEEE Transactions on Neural

Networks and Learning Systems, May 2014

• S. Young, A. Davis, A. Mishtal, I. Arel, ”Hierarchical Spatiotemporal Feature

Extraction using Recurrent Online Clustering,” Pattern Recognition Letters,

January, 2014

• S. Young, I. Arel, ”Recurrent Clustering for Unsupervised Feature Extraction

with Application to Sequence Detection,” in Proc. IEEE International

Conference on Machine Learning and Applications (ICMLA), December, 2012

• S. Young, I. Arel, T. Karnowski, D. Rose, ”A Fast and Stable Incremental

Clustering Algorithm,” in Proc. 7th International Conference on Information

Technology (ITNG), April, 2010

Additionally, this work has supported the design of an analog clustering chip and

a small-scale analog DeSTIN implementation presented in the following publications.

• J. Lu, S. Young, I. Arel, J. Holleman, ”A 1 TOPS/W Analog Deep Machine-

Learning Engine with Floating-Gate Storage in 0.13 um CMOS,” to appear in

IEEE Journal of Solid State Circuits, January, 2015

• J. Lu, S. Young, I. Arel, J. Holleman, ”A 1TOPS/W Analog Deep Machine

Learning Engine with Floating-Gate Storage in 0.13um CMOS,” in Proc. 2014

IEEE international Solid-State Circuits Conference (ISSCC), February, 2014

6

• J. Lu, S. Young, I. Arel, J. Holleman, ”An Analog Online Clustering Circuit

in 130nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference,

November, 2013

1.6 Dissertation Outline

In Chapter 2, an introduction to machine learning techniques necessary to understand

deep machine learning and DeSTIN is provided along with an overview of the primary

deep learning architectures studied in the literature. Chapter 3 introduces DeSTIN

and the contributions made in enhancing it relative to its previous formulation.

Chapter 4 discusses the implications of implementing DeSTIN in custom analog

hardware. Experimental results are presented in Chapter 5, which highlight the

attributes of DeSTIN and demonstrate the performance capabilities of DeSTIN on

standard benchmarks. Finally, in Chapter 6 a discussion of the impact of the work is

given along with some proposals for future work.

7

Chapter 2

Background and Literature Review

2.1 Machine Learning

Machine learning (ML) can be defined as the field of study surrounding machines

that can learn to perform a task. Learning is the mechanism that distinguishes the

field from others. If a machine can perform a task before it is provided with data just

as well as after it is provided with data, it is not learning. This suggests that ML

algorithms must improve their performance with experience (Mitchell, 1997), rather

than its designers simply creating a system that is limited to their experiences.

Programming computers to learn is an appealing idea, since computers have the

ability to store large amounts of data very precisely, the ability to perform calculations

very quickly, and cost very little to acquire or use. These abilities have successfully

been leveraged to allow computers to perform tasks better than any human can,

such as the chess playing computer Deep Blue (Campbell et al., 2002). ML systems

have also been able to complete tasks very well that no human could reasonably

complete, such as the web search engine Google (Brin and Page, 1998) that spawned

the company of the same name. However, these systems were only designed to perform

very specific tasks, and many of the mechanisms that make them work do not carry

over into general machine learning tasks. The focus of the rest of the work presented

8

here will be on more general ML algorithms that are designed to perform a variety

of tasks.

2.1.1 Unsupervised Learning

Unsupervised learning consists of methods in which there is no explicit teacher (Duda

et al., 2000). This type of algorithm strives to find structure in the dataset it is

provided without the help of any labeled data. While attempting to learn from

data without having context provided via labeled data may seem like an undesirable

goal, there are many benefits to unsupervised learning. The most obvious one being

that labeling large datasets is often prohibitively expensive. Unsupervised learning

algorithms are also able to take a complex, high-dimensional space and map it

to a simpler, lower-dimensional space. Thus, unsupervised learning methods are

often used to make classification a simpler task or to improve classification results

altogether, and not directly for classification. The remainder of this section outlines

some important unsupervised methods.

Clustering

The type of clustering that will be discussed here is unsupervised clustering which

strives to partition the feature space in order to characterize the data without any

labeled data guiding the process. Clustering operates on the premise that similar

data-points share meaning. Thus, it attempts to split the dataset into groups of

data-points that are spatially close to one another in order to assign meaning to a

data-point based on which partition it lies in.

The most widely used method of clustering is k-means clustering (MacQueen,

1967). This method attempts to select a set of centroids (or set means), µ, that

partition the space the observations, o, into k sets, S, in such a manner as to minimize

the within-cluster sum of squares:

9

argmin
S

k∑
i=1

∑
oj∈Si

‖ xj − µi ‖2 (2.1)

The standard algorithm for performing k-means clustering is straightforward:

1. Start with some initial set of centroids µ.

2. Assign each point to the set Si with the nearest centroid µi. (Assignment

Rule)

3. Calculate the means (new centroids) µ of the resulting sets. (Update Rule)

4. Repeat steps 2 and 3 until the assignments do not change.

This process requires that the distance between each centroid and the points in

its set be calculated each time the centroids are updated which causes the method

to be computationally intensive. If the size of the dataset makes these calculations

impractical or the complete dataset is not available such as in a real-time system, an

incremental (or online) update method can be used. Adapting k-means to have an

incremental update rule results in the following algorithm:

1. Start with some initial set of centroids µ.

2. Find the nearest centroid, µj to the current observation, oj.

i← argmin
i

‖ oj − µi ‖ (2.2)

3. Update the winning centroid, µi, towards the current observation, oj, by

some learning rate, η.

µi ← µi + η (oj − µi) (2.3)

4. Repeat steps 2 and 3 until some stopping criteria is met.

10

Figure 2.1: This dendrogram represents the results of hierarchical clustering.

Algorithm 1 Agglomerative Hierarchical Clustering

1: c, ĉ← n,D← xi, i = 1, . . . , n
2: while c < ĉ do
3: ĉ← ĉ− 1
4: find nearest clusters, Dj and Dk

5: merge Dj and Dk

6: end while

This method is known as Winner-Take-All (WTA) clustering, or competitive

learning, since only a single centroid, the one closest to the current observation, is

updated for each data point (Duda et al., 2000). The learning rate, η, is particularly

important. If η is held constant over time, it can cause the centroids to never settle

to a fixed value. If η decays over time in order to force convergence, the centroids

may not be able to represent novel patterns observed later in the sequence or it may

not be able to track gradual, continuing changes in the data.

Another type of clustering often seen is hierarchical clustering (Day and Edels-

brunner, 1983). This method of clustering is based on the idea that clusters have

sub-clusters (Duda et al., 2000). In agglomerative hierarchical clustering, each data

point, xi starts out as its own cluster Di. The nearest two clusters are merged to

form their own cluster and then the process is repeated until the model has been

reduced to the specified number, c, of clusters is produced. This process, outlined in

Algorithm 1, can be represented with a dendrogram as shown in Figure 2.1.

11

Gaussian Mixture Models

A Gaussian Mixture Model uses a weighted sum of Gaussian components to represent

a probability density function (Reynolds, 2008). A GMM made up of M components

is given by

p (x|λ) =
M∑
i=1

wig (x|µi,Σi) (2.4)

where x is a D-dimensional vector, wi is the mixture weight for component i, and

g (x|µi,Σi) is the component density which is modeled as a D-variate Gaussian

distribution,
∑M

i=1wi = 1, and λ = {w,µ,Σ}. With a sufficient number of

components, GMMs can be used to model any continuous distribution.

The goal of training a GMM is to find the most likely model given the set of

training vectors. In order to train the GMM using T training vectors X, the GMM

likelihood

p (X|λ) =
T∏
t=1

p (xt|λ) (2.5)

needs to be maximized, assuming the training vectors are independent. This

independence assumption means only the diagonal elements of Σi will be non-zero.

The optimum parameters can be obtained iteratively using the following special case

of the expectation-maximization (EM) algorithm.

wi =
1

T

T∑
t=1

Pr(i|xt, λ) (2.6)

µi =

∑T
t=1 [Pr(i|xt, λ)xt]∑T
t=1 Pr(i|xt, λ)

(2.7)

σ2
i =

∑T
t=1 [Pr(i|xt, λ)x2t]∑T
t=1 Pr(i|xt, λ)

− µ2
i (2.8)

Pr(i|xt, λ) =
wig(xt|µi,Σi)∑M
k=1wkg(xt|µk,Σk)

(2.9)

12

2.1.2 Supervised Learning

Supervised learning methods use labeled data in order to train a classifier that can

predict the label of unlabeled test data. More formally, they attempt to model the

posteriori probability P (ωi|x) for class ωi and the data point x. Performance of these

classifiers is typically measured as the percentage of correctly labeled data samples

from the test set. Supervised learning methods can be separated into two main types:

parametric techniques and non-parametric techniques. Parametric techniques make

some assumption about the nature of the data (e.g. it obeys Gaussian distributions)

and learns a set of parameters to fit the data. Non-parametric techniques make no

assumption about the nature of the data. Since non-parametric techniques are the

type often paired with DeSTIN and other DML methods, they will be the focus of

the remainder of this section.

k-Nearest Neighbor Classifier

The k-NN classifier operates by assigning the test point x the label most frequently

represented among the k nearest samples (Duda et al., 2000). This rule for

determining the most likely label for test data can be derived rather simply. If k

is the fixed value referring to the number of points in a sphere of volume V and n

is the total number of points in the dataset, then the probability density for x is

p(x) = k
nV

. This means that the joint probability for the data point x and each class

ωi is given by

p(x, ωi) =
ki
nV

(2.10)

where ki is the number of points in V that belong to class ωi. Thus, the posteriori

probability is given by

p(ωi|x) =
p(x, ωi)∑M
j=1 p(x, ωj)

=

ki
nV
k

nV

=
ki
k

(2.11)

13

Thus, the most well represented class among the k nearest neighbors will maximize

the posteriori probability.

Support Vector Machines

Assuming a two class classification problem (ω1 and ω2), support vector machines

are a type of linear discriminant function that attempt to find the hyperplane that

separates the classes with the maximum distance between itself and any points in

either class (Duda et al., 2000) as shown in Figure 2.2. A linear discriminant function,

g(x) = w0+
∑d

i=1wixi, attempts to find a hyperplane defined by wi, i = 0, . . . , d such

that g(x) > 0 if x ∈ ω1 and g(x) < 0 if x ∈ ω2. This assumes that the classes are

linearly separable. If the classes are not linearly separable, then the data points xk

should be mapped to a higher dimensional space using an transform φ(·) such that

yk = φ(xk). Assuming the scalar zk = ±1 indicates the class of the data point yk, a

linear discriminant function is given by

g(y) = aty (2.12)

where both the weight vector and transformed vector have been augmented to

accommodate a bias weight (a0 = w0 and y0 = 1). This means a hyperplane that

separates the classes must satisfy

zkg(yk) ≥ 1, k = 1, . . . , n (2.13)

However, the goal of SVMs is to maximize the margins between itself and the two

classes. Since the distance from the hyperplane to the transformed pattern is given

by
|g(y)|
‖ a ‖

and it is assumed a positive margin b exists

zkg(yk)

‖ a ‖
≥ b, k = 1, . . . , n (2.14)

14

Figure 2.2: A support vector machine attempts to find the hyperplane that
maximizes the distance (arrows in figure) between itself and the nearest training
samples. The support vectors are the samples nearest to the hyperplane and are
shown as solid circles and squares in this figure.

Thus, the goal is to find a weight vector a that maximizes b. Thus, by using

the optimization method of Lagrange undetermined multipliers, the goal becomes to

minimize

L(a,α) =
1

2
‖ a ‖2 −

n∑
k=1

αk[zka
tyk − 1] (2.15)

with respect to a and maximize it with respect to the undetermined multipliers αk ≥

0. This can be reformulated as maximizing

L(α) =
n∑
k=1

αk −
1

2

∑
k,j

αkαjzkzjy
t
jyk (2.16)

subject to the constraints

n∑
k=1

zkαk = 0, αk ≥ 0, k = 1, . . . , n (2.17)

15

Neural Networks

As described in the previous section, linear discriminant functions can be used on

non-linearly separable problems by using a nonlinear transform function yk = φ(xk)

that maps the problem to a linearly separable space. However, determining what this

transform should be relies on having some knowledge relevant to the problem. Multi-

layer feed-forward neural networks approach this problem by learning the non-linear

mapping at the same time they learn the linear discriminant function (Duda et al.,

2000).

The discussion in this section will be limited to single hidden layer neural networks

that take the form

gk(x) ≡ zk = fO

(
nH∑
j=1

wkj fH

(
d∑
i=1

wjixi + wj0

)
+ wk0

)
(2.18)

where zk refers to the kth output of the neural network, fO and FH are the activation

functions of the output layer and hidden layer respectively, nH is the number of

neurons in the hidden layer, d is the dimensionality of the input vector, wkj and wji

refer to the weights of the output and input layer respectively, and wk0 and wj0 refer

to the bias weights. It can easily be seen that this is simply two linear discriminant

functions with an activation function, almost always non-linear, separating them.

Feed forward neural networks are frequently trained using the backpropagation

method that is based on gradient descent. The training error for a neural network

with c output neurons is defined as

J(w) ≡ 1

2

c∑
k=1

(tk − zk)2 =
1

2
‖ t− z ‖2 (2.19)

where t and z are the target and output vectors respectively. The weights of the

network are initialized randomly and then updated in a direction that reduces the

16

error using gradient descent

∆wpq = −η ∂J

∂wpq
(2.20)

where η is a the learning rate that regulates the size of the change in weights. From

the equations given the following equations can be derived that allows the neural

network in Equation 2.18 to be trained. First, it is denoted that:

netj =
d∑
i=1

wjixi + wj0 ≡ wt
jx (2.21)

and

netk =

nH∑
h=1

wkjyj + wk0 ≡ wt
ky (2.22)

Using this notation it can be shown that the output layer weights should be

updated as

∆wkj = η(tk − zk)f ′(netk)yj (2.23)

and the hidden layer weights should be updated as

∆wji = η

[
c∑

k=1

wkj(tk − zk)f ′(netk)

]
f ′(netj)xi (2.24)

Neural networks are often trained until they begin to overfit the data. This is

generally performed by using a labeled validation set to detect when the problem is

no longer generalizing the problem well. The number of hidden neurons nH is typically

chosen heuristically based on knowledge of the problem at hand, and the number of

output neurons c typically corresponds to the number of classes in a classification

problem.

2.1.3 Semi-Supervised Learning

Semi-supervised learning is a subset of supervised learning methods that use both

labeled and unlabeled data for training. These methods are particularly useful for

17

tasks where obtaining labeled data is expensive but unlabeled data is plentiful.

Semi-supervised learning methods rely on assumptions about the nature of the

dataset that is being used (Chapelle et al., 2006). These assumptions include the

smoothness assumption, the cluster assumption, and the manifold assumption. These

assumptions depend on the idea that points that lie near each other, in the same

cluster, or on the same manifold share the same label. If the data does not meet

one of these assumptions, then semi-supervised learning methods will not be able to

improve over purely supervised methods. Semi-supervised methods leverage these

assumptions in order to form a model that increases performance on the learning

task.

Two-step learning algorithms are closely related to semi-supervised learning

(Chapelle et al., 2006). These perform an unsupervised step on all data such as

a change of representation or construction of a new kernel. Then, supervised learning

is uses this new representation of the data. DeSTIN is closely related to this class

of algorithm since it performs a transformation of the data into a new feature space

before utilizing tradition supervised classifiers.

2.2 Feature Extraction

Feature extraction is a process whose goal is to make classification an easier task.

An ideal feature extractor would only require a simple classifier, while an ideal

classifier would need no feature extractor at all (Duda et al., 2000). A feature can

be thought of as a measurement of the characteristics of the data. It is important

that the characteristics the features measure aid in differentiating between classes, or

performance will suffer. Early development of feature extractors consisted of hand-

engineered processes, such as locating points of interest in an image and measuring

the distance between them (Gonzalez and Woods, 1992). Much of the literature

that exists in the field of feature extraction revolves around domain-specific methods

such as feature extractors that work with human faces (Yuille et al., 1992), Arabic

18

handwritten digits (Abdelazeem, 2009), fingerprints (Ratha et al., 1995), and tumor

diagnosis (Street et al., 1993). However, the methods developed for these very specific

domains are often not helpful in others. Jiang (2009) defines four categories of

feature extraction for images: human expert knowledge based methods, image local

structure based approaches, image global structure based techniques and machine

learning based statistical approaches (Jiang, 2009). The first type, human expert

knowledge based methods, typically have no application outside the domain they were

designed for. The second type, local image structure approaches, include methods

designed to locate edges, lines, ridges, and similar characteristics while the third type,

global image structure approaches, includes methods such as histograms and Fourier

transforms. The final type, machine learning based statistical approaches, are the

most general and have the broadest application ability, and this type of approach is

the kind the work presented here can be categorized as. The remainder of this section

will outline a couple of machine learning type feature extraction processes.

2.2.1 Principal Component Analysis

Principal component analysis, first introduced by (Pearson, 1901), is often used to

map a dataset X of dimensionalityD to a new feature set TL of dimensionality L ≤ D.

The first dimension of TL will correspond the the direction of greatest variation in

the dataset X, while the second dimension will correspond the direction orthogonal

to the first dimension with the greatest variance. This process continues until all the

dimensions of TL are constructed in order of rank by direction of maximum variation.

Singular value decomposition (SVD) can be used to produce TL (Gerbrands, 1981).

In order to retrieve the directions of greatest variation rather than just the directions

with the greatest average magnitude, a dataset X̂ must be created from X such that

the mean of each dimension of X̂ is zero. The SVD of X̂ is given by:

X̂ = USVT (2.25)

19

then TD can be calculated as

TD = US (2.26)

TL is then simply the first L columns of TD. In this wasy, PCA attempts to map

the data onto a smaller space while preserving as much information about the data

as possible. Assuming that the L directions of greatest variation hold most of the

information about the problem, this is true. There is a tradeoff between the reduction

in complexity and the loss of information caused by reducing L.

2.2.2 Auto-encoders

Auto-encoders, or auto-associators, are neural networks that are trained with targets

that are the same as the input (Bengio, 2009). It has been shown that if the number of

hidden units nH is less than the dimensionality D of the input and the hidden layer has

a linear activation function, then the hidden layer learns to project the input onto the

span of the first nH principal components (Bourlard and Kamp, 1988). This makes

sense since the output of the hidden layer is a projection onto an nH dimensional

space from which the output layer is trying to minimize the reconstruction error.

This error can only be minimized, when the hidden layer is capturing the directions

of maximum variation. Thus, auto-encoders can be used as a feature extractor.

Although it may seem that auto-encoders with nH ≥ D would simply learn some

meaningless projection, such as learning an identity weight matrix, it has been shown

in practice that they can yield useful representations for classification (Bengio and

LeCun, 2007).

2.3 Image Whitening

The work presented later will include classifying natural images. In order to

accomplish this, it is important to whiten the image patches. Whitening is a process

whereby the pixels that make up an image are normalized such that they have unit

20

variance and are uncorrelated (Hyvrinen et al., 2009). In order to accomplish this,

principal component analysis (PCA) can be utilized.

First, the image patches are normalized to have zero mean. Then the covariance

matrix, Σ, of the image patches is calculated. SVD is then performed on this matrix.

A whitened image patch XPCA can then by calculated from an image patch X as

shown in Equation 2.27. ε is a small constant used to guarantee numeric stability.

XPCA = (S + ε)−
1
2 UTX (2.27)

However, this whitening process can be further improved. Zero-phase component

analysis (ZCA) (Bell and Sejnowski, 1996) whitens the data in such a manner as to

minimize the squared error between the original image and the whitened image. This

means the whitened image preserves the spatial structure of the original image. A

ZCA whitened image patch XZCA can then be calculated as given in Equation 2.28.

XZCA = U(S + ε)−
1
2 UTX (2.28)

2.4 Deep Machine Learning

In Section 1.1 the motivation behind DML methods was discussed. In this section a

couple of well-known DML methods will be described. Deep Belief Networks (DBN)

(Hinton et al., 2006) and Convolutional Neural Networks (CNN) (Lee et al., 2009a)

are two of the mainstream DML paradigms that have been successfully demonstrated

in addressing pattern recognition problems in high dimensional data (e.g. images)

(Arel et al., 2010).

2.4.1 Convolutional Neural Networks

Although deep (many layered) neural networks have been found difficult to train,

Convolutional Neural Networks (CNNs) have been an exception (Bengio, 2009).

21

Figure 2.3: Convolutional Neural Network: This figure is depicts a CNN with two
convolutional layers and two sub-sampling layers. This example has 3 hidden units
in the first convolutional layer and 5 hidden units in the second convolutional layer.

Inspired by the human visual system structure, they are based on the local

connectivities between hierarchically organized transformations of the input image.

Because of this nature of this system, it is designed for data that can meaningfully be

structured into a two-dimensional grid such as an images. CNNs take advantage of

three architectural ideas in order to attain some degree of shift, scale, and distortion

invariance: local receptive fields, shared weights (or weight replication), and spatial

subsampling (LeCun et al., 1998). These methods also enforce sparsity in the

architecture and small-fan in at each neuron which has been hypothesized to aid

in credit assignment in such a deep neural network (Bengio, 2009).

The CNN process can be summarized as follows. The input image is convolved

with a set of N hidden units. Each hidden unit has a d × d receptive field. Thus,

all positions in the convolution share a common set of hidden units. The output

of this convolutional layer is N -channel feature map. This process is equivalent to

a convolution of N filters with the input image. This layer is then followed by a

subsampling (or pooling) layer. This layer performs a subsampling process in order to

reduce the dimensionality of the feature map output of the convolutional layer. This

is typically performed with a 2x2 averaging or max operation. This also increases the

22

shift, rotation, and distortion invariance of the system. Then, successive convolutional

and subsampling layers alternate until finally the output of the final subsampling

layer is used as the input to a locally connected layer. A locally connected layer

is functionally identical to a convolutional layer except each position in the image

has a unique set of hidden units. Locally connected layers are not followed with

subsampling layers since that would entail pooling feature map values from hidden

units with different learned parameters. The final locally connected layer is then

connected to a fully connected MLP. Convolutional Neural Nets currently have the

best performance results on the MNIST handwritten digit dataset (Lecun and Cortes,

2009) and the CIFAR-10 object classification dataset (Krizhevsky and Hinton, 2009).

2.4.2 Deep Belief Networks

Deep Belief Networks (DBNs) are probabilistic generative models which separates

them greatly from traditional neural nets which are discriminative in nature (Hinton

et al., 2006). Generative models estimate a joint probability distribution over

observable data and labels, facilitating the estimation of both P (Obs.|Label) as

well as P (Label|Obs.), while discriminative models can only estimate the posterior

probability P (Label|Obs.). This means that DBNs can not only predict a label given

an observation, but it can predict an observation given a label. Thus, if a DBN

is trained to recognize handwritten digits, that DBN can generate a representative

image of a ’7’ if the label ’7’ is provided to the network.

DBNs were designed to avoid the need for a substantial labeled dataset, the slow

learning caused by backpropagation, and avoid poor parameter initialization that

leads to the system being stuck in poor local optima. Although there has been some

success in training DBNs in a completely unsupervised manner (Lee et al., 2011), most

current work also performs supervised training after this unsupervised step. DBNs

also are not designed to naturally represent temporal information, although there

has been some similar work in which a type of RBM designed to capture temporal

23

features have been arranged in a stack in order to naturally learn sequences (Lockett

and Miikkulainen, 2009). The most common application for DBNs is static images

and DBNs have been competitive on the MNIST benchmark (MarcAurelio Ranzato

et al., 2007; Lee et al., 2009b).

DBNs consist of several layers of Restricted Boltzmann Machines (RBMs) which

are restricted to a single visible layer and a single hidden layer where units within

a layer are not connected to one another. The hidden units are trained to capture

correlations observed at the visible units. During the initial training phase, these

layers are connected only by top-down generative weights. The ease of learning

these weights as compared to more traditional neural networks is what makes RBMs

more attractive as building blocks for deep layered networks. In order to learn these

generative weights, the initial training consists of an unsupervised, greedy layer-by-

layer method called contrastive divergence (Hinton, 2002). To summarize this process,

a vector v̂ is presented to the visible units of the RBMs. The visible unit inputs are

then stochastically found going backwards through the RBM in such that the original

input is reconstructed. Then, the resulting visible neuron activations are forwarded

in order for one step reconstruction hidden unit activations v̂ to be obtained. These

forward and backward process is called as Gibbs sampling. The resulting weight

update is based on the difference in the correlation of the hidden activations and

the visible inputs (Arel et al., 2010). The top two layers of the network form an

associative memory. The weights of these layers are tied together in order for the lower

layer output to provide a reference clue the top layer can associate with its memory

contents. DBNs can be further trained after this unsupervised process using labels

and backpropagation to improve results. Finally, a set of labels is connected to the

associative memory and the bottom-up recognition weights (previously unconnected

during the unsupervised pre-training) are learned.

24

Chapter 3

The DeSTIN Architecture

This chapter describes the Deep Spatio-temporal Inference Network (DeSTIN)

architecture, first introduced in Arel et al. (2009), and details efforts to improve

its performance and scalability. DeSTIN offers some advantages over other deep

learning methods. Compared to the most successful DL method, convolutional

neural networks, it offers three primary advantages: faster convergence, more feasible

implementation in alternate technologies such as analog circuitry, and the ability to

naturally capture spatio-temporal features. DL architectures often contain millions of

learned parameters and multiple layers. Back-propagating an error through 5+ layers

and millions of parameters in order to correctly adjust each of those parameters takes

many iterations over a dataset. DeSTIN uses an incremental clustering algorithm

as its basic building block which is able to converge much quicker. The winner take

all clustering algorithm used does not have the credit assignment problem of back-

propagation since one input only causes one centroid to be updated and thus takes

many fewer iterations to converge. DeSTIN is also a more feasible architecture to

implement in analog circuitry. Implementing an architecture that consists of series

of clustering nodes sparsely connected together like DeSTIN is more feasibility than

CNN’s which contain many types of layers, large feature maps between layers, and

much more dense connections between layers. This increased feasibility comes from

25

Figure 3.1: Typical use of DeSTIN in an image classification task. (TOP) The
images are provided to the bottom layer nodes. (MIDDLE) The bottom layer viewing
window is scanned over the image in a specific pattern. Belief states from specific
movements are saved as indicated by the black dots. (BOTTOM) The belief states
must represent the sequence of inputs provided to each node.

26

less design work (one type of layer), less connectivity between layers, and decreased

memory requirements on the chip (no feature maps between layers).

DeSTIN consists of multiple instantiations of an identical functional unit called

a node which learns to generate features via a completely unsupervised learning

process, unlike most of the previously discussed DML methods that rely on labeled

information. These nodes are arranged in layers, where each node is assigned children

nodes from the layer below and a parent node from the layer above as shown in Figure

3.1. Nodes at the lowest layer receive as input a subset of the raw sensory data while

nodes at all other layers receive the belief states, or outputs, from their children

nodes as input. This subset, or receptive field, will be unique for each node. The

receptive fields are disjoint in the work presented here, but could be overlapping

depending on the application. Each node attempts to capture the salient spatio-

temporal regularities contained in its input and continuously update a belief state

meant to characterize the input and the sequences thereof. The belief state (or

belief) is a probability vector that indicates the probability of each possible state

given the information we know about the system. The beliefs formed throughout the

architecture can then be used as rich features for a classifier that can be trained using

supervised learning. Beliefs extracted from the lower layers will characterize local

features and beliefs from higher layers will characterize global features. Thus, DeSTIN

can be viewed as an unsupervised feature extraction engine that forms features from

data based on regularities it observes as shown in Figure 3.2. This stands in contrast

to the user-engineered features based approach, which relies on previous knowledge

of the problem at hand. The unsupervised nature of DeSTIN renders it much simpler

to train than other DML architectures (Karnowski, 2012). It also suggests that the

features generated by DeSTIN need not be unique in the sense that they converge to

singular values in order to be meaningful to a given application.

As outlined above, the core function of each node is to form a belief state that

characterizes the inputs observed. This belief state is expressed through the following

27

Figure 3.2: Typical use of DeSTIN in an image classification task. The images are
provided to DeSTIN which generates features that are supplied to a classifier.

conditional probability function

bt(st|a) =

Pr(o|st)
{∑
st∈S

Pr(st|st−1, at−1)b(st−1)
}

∑
s′t∈S

{
Pr(o|s′t)

∑
s′′t ∈S

Pr(s′′t |st−1, a)b(st−1)

} (3.1)

which serves as an update equation, as the system transitions from one time step

to the next. This function maps the input o from the layer below, belief state b

(which is a function of the system state s), and parent’s belief state(i.e. advice)

a from the layer above to an updated belief state bt(st). The denominator of this

equation is a normalization factor. This equation should be viewed as two parts: (1)

a posterior over the observations, Pr(o|st), that is modulated by a (2) construct that

reflects the system dynamics,
∑
st∈S

Pr(st|st−1, at−1)b(st−1). These building blocks of

the architecture are the pieces of information which must be learned from the data.

Figure 3.3 demonstrates how this temporal mechanism is used to capture information

as DeSTIN’s viewing window is scanned across an image.

3.1 Incremental Clustering

Since DeSTIN was designed as a system that is scalable using simple hardware,

an incremental clustering algorithm is employed for learning Pr(o|st) in order to

minimize memory requirements. Young et al. (2010) introduced the winner-take-

all incremental clustering algorithm used as the core of each DeSTIN node, though

several modifications have been made to the clustering algorithm itself in order to

28

Figure 3.3: Typical use of DeSTIN in an image classification task. DeSTIN’s
receptive field (bottom layer inputs) is scanned across the image. Belief states
from specific movements are saved to be used as features to a classifier. Thus the
belief states from a specific movement must characterize the inputs seen before that
movement.

eliminate unnecessary computation and help generate richer features. The algorithm

finds centroids which are represented by a mean µ and variance σ2 in each dimension.

Based on the centroids formed and their relationship to the input vector o, Pr(o|st) is

obtained where st corresponds to a particular centroid in the set of centroids. A key

idea of this algorithm was the introduction of the starvation trace which addressed

centroids that happen to be initialized far from any dense regions of the observation

space and thus would never be selected for update. The starvation trace is used

to shrink the apparent distance of a starved centroid to all input vectors until it is

selected for update. A starvation trace value, ψ, is maintained for each centroid and

is decayed by a constant, γ, each time that centroid is not updated and increases once

the centroid is selected, as reflected by

ψc = γψc + (1− γ)1x=c (3.2)

29

where x represents the chosen centroid. Starvation trace is utilized to weigh the

distances used to select the centroid to be updated, such that

x = argminc∈C [ψc ‖o− µc‖] (3.3)

where x is the centroid to be updated and C is the set of all centroids.

When a centroid is selected for an update, its mean is updated in the direction of

the input vector and its variance estimate is updated as follows:

µx = µx + α(o− µx) (3.4)

σ2
x = σ2

x + β
[
(o− µx)2 − σ2

x

]
(3.5)

Upon updating the selected centroid, the posterior distribution, Pr(o|s′), is obtained

using the normalized Euclidean distance between the input and each centroid c, such

that

nc =
d∑
i=1

(oi − µc,i)2

σ2
c,i

(3.6)

pc =
n−1c∑

c′∈C
n−1c′

(3.7)

where pc represents the probability the observation belongs to the centroid c.

This is a departure from previous work (Karnowski, 2012; Karnowski et al.,

2010), where the posterior distribution was calculated as either a simple function

of the Euclidean distance or by sampling an exponential probability density function

centered at the centroid mean. The former method is lacking because it does not

take into account the variance of the data a centroid represents. The latter method

is lacking because it tends to form unreasonably confident beliefs for input vectors

30

that are not near any centroid. It also complicates the calculation without adding

any more information content to the belief construct.

3.2 The DeSTIN Node Revisited

Here, several changes to previous implementations of DeSTIN are presented. Previ-

ously, each node was performing several dissimilar tasks in order to model the system

dynamics. The memory and/or computation requirements of these methods dwarfed

the resource requirements of the clustering algorithm that is supposed to be the core

of each DeSTIN node. Even without the resource requirements imposed by these

methods, the fact that there are many dissimilar operations required renders mapping

the architecture to a parallel platform rather challenging. The changes presented here

aim to include this functionality into the core clustering algorithm in order to lessen

these resource requirements and make the process of implementing DeSTIN in parallel

platforms a more attainable task.

3.2.1 Recurrent Clustering

In order to more easily map the DeSTIN architecture to a parallel implementation,

the mechanism used by the original DeSTIN architecture to capture temporal

information, reflected by the construct Pr(st|st−1, at−1), needed to be revised. The

philosophical approach taken was to integrate the feedback/recurrence mechanism as

an inherent part of the clustering process. In previous work, the temporal regularities

Pr(st|st−1, at−1) were captured by maintaining a table populated with the likelihoods

of transitioning between states or through a function approximation method that

attempted to predict the next state given the current state. Though keeping a table

of transition probabilities seems simple enough, the manner in which it was being

used necessitated that an array be kept for every movement made across the image

and for every possible belief state provided by the parent node. This results in a

31

 Calculation

Figure 3.4: In recurrent clustering the previous belief is latched and augmented to
the input over which clustering is performed.

table that has a memory requirement for a single node of Mtab = K2AL , where

K is the number of centroids for the node, L is the number of movements, and A

is the number of belief states from the parent. In addition to the large memory

requirement, using this table mandated an additional set of operations outside of the

core node functionalities of clustering and calculating Pr(o|st). The other previously

used mechanism to estimate Pr(st|st−1, at−1) is function approximation (Karnowski

et al., 2011). While this method has a more modest memory footprint, it requires an

extensive set of operations outside the core functionality of the node. These additional

operations make it incredibly difficult to map the DeSTIN architecture to a parallel

platform like a GPU or custom analog circuitry. For this reason, it is desired to

couple the learning of temporal regularities and parent advice more closely with the

clustering mechanism.

To address this problem, recurrent clustering is proposed as illustrated in Figure

3.4. Recurrent clustering takes as input the external input augmented by the node’s

previous time step belief. This allows the clustering to form beliefs that are based

on both spatial and temporal attributes. Consequently, µ and σ2 have dimensions

K × (N + K), where K is the number of centroids and N is the number of input

32

dimensions. It is important to note that in addition to allowing the clustering

mechanism to capture temporal dependencies, this method facilitates the formation

of centroids that represent relationships between the spatial and temporal features

of the data. During the clustering process, the centroids will converge to values that

represent spatial and temporal regularities in the data. Previously, the clustering

algorithm could only observe the input vector and characterize it’s similarity to

other input vectors. In this revised formulation, the clustering results in belief states

that represent information about transitions between belief states or, more generally,

about a sequence of transitions between belief states, since each belief depends on the

preceding belief.

There are many hazards to consider in designing the recurrent clustering

mechanism due mainly to the introduction of a feedback loop. The most important

aspect to consider is the method used for determining which centroid is to be updated,

and the derivation of its respective belief state. It is imperative that the clusters

formed characterize both the temporal and spatial attributes of the data. As a result,

it is key to balance the contributions of the spatial and temporal components of the

input structure when selecting the centroid to update. This means that a selection

method that uses the centroid variances to weight the importance of each dimension

can not be used because it encourages the recurrent clustering algorithm to form very

confident beliefs that only consider temporal attributes. The result is a system that

can only act as a counter and provides no information about the inputs it observes.

For this reason, the selection method used is based solely on the Euclidean distance

between the centroid means and the combined input/belief vector, as suggested by

the selection rule of eq. (3.3). If the variances in the beliefs are expected to be

much different than the variances in the input data, it might be necessary to use

a distance measure that balances the spatial and temporal dimensions in order to

prevent either from improperly dominating the clustering process. However, this has

not been necessary in DeSTIN or any other applications explored thus far. Once the

33

Figure 3.5: A two-state Markov Chain

winning centroid has been updated, the belief state is calculated as outlined in eq.

(3.6) and (3.7).

3.2.2 Recurrent Clustering Models a Markov Chain

In this section, the properties of recurrent clustering that allow it to model a Markov

chain are explained. For the purposes used here, the extrensic input will refer to the

value that a state in the Markov Chain emits. This value will be unique for each

state.

Definition 3.1. (Centroids). A clustering model is defined by a set of k centroids.

The centroids means, µ1 . . . µk, define the center of the data clusters.

Definition 3.2. (Input Vectors). Each input vector, Xi,n, comprises elements

originating from an external source (i.e extrensic input) and elements of the previous

belief state (i.e. intrinsic input). Xi,n refers to the nth input vector belonging to the

ith centroid.

Definition 3.3. (Clustering Error). Clustering error, ε(µ,X), is defined as the

sum of the distances between each input vector and its corresponding centroid,∑k
i=1

(∑Ni

n=1 ‖µi −Xi,n‖
)

. Winner-take-all clustering seeks to minimize this error.

When the centroids are randomly initialized, elements of the input vectors,

corresponding to the intrinsic input, will tend to have greater variance as no

34

regularities have yet been discovered. This holds until such time as the extrensic

regularities are modeled by the centroids. Hence, during this period, the extrenisic

regularities will dominate the clustering algorithm since they have lower variance than

that of the intrinsic regularities. This suggests that the clustering error can only be

minimized in the space comprised of the extrensic inputs. If the means, Me, of the

extrensic input clusters are known and the elements of U ∈ Rkxk are all set equal to

1/k, then the centroids that would minimize the clustering error at t = 0 are given

by Equation 3.8. The uniform distribution of U is a result of the lack of regularity

exhibited by the intrinsic inputs.

µ̂ = argminµ ε(µ,X) ' [Me U] , t ' 0 (3.8)

Once the extrensic elements of the centroids are found, the intrinsic dimensions can

begin to be learned. The intrinsic elements of the input vector denote the probability

that the previous input vector belonged to each centroid. With the extrensic

regularities anchoring them, each centroid will minimize its clustering error when

its intrinsic dimensions are equal to the expected value of the intrinsic dimensions of

its inputs.

µ̂i,j = argminµi,j(
N∑
n=1

‖µi,j −Xi,n,j‖) 1 ≤ i ≤ k, j ∈ intrinsic dimension (3.9)

µ̂i,j = E[Xi,1:Ni,j] (3.10)

Thus, the value of a belief element j of a centroid i that will minimize the distance

between the centroid and its claimed samples is the probability that the previous state

was j given the current state was i,

µi,j = P (St−1 = j|St = i) (3.11)

35

Figure 3.6: (TOP) The distribution of the input vectors at t = 0. (LEFT)
Distribution and centroids at t � 0 (p=0.5,q=0.5). (RIGHT) Distribution and
centroids at t� 0 (p=0.5,q=0.9).

36

The above clearly implies that the centroids represent the states of a Markov chain

in the extrensic components and the transition probabilities between these states in

the intrinsic components.

3.2.3 Decay of Temporal Information

In this section, the ability of recurrent clustering to capture temporal information

will be investigated.

Definition 3.4. (Belief State). A Belief State is a probability mass function over the

likelihood of a sample to belong to each of the centroids. Thus, all samples generating

the same belief state will hold a similar distance relationship to each of the centroids.

Assumption 3.1. Similar vectors have similar meanings. A basic assumption of

clustering is that samples which are spatially close to one another have similar

meaning. Thus, any samples belonging to the same cluster should have similar

meaning. Furthermore, any samples similar enough to produce the same belief state

should share even greater similarity in meaning.

Axiom 3.1. If a belief state contains all spatio-temporal information about the system

it is attempting to characterize, then it should be able to determine all previous input

vectors (extrensic input + previous belief) or input vectors with the same meaning.

However, from any belief state, the previous input vector cannot be uniquely

determined from the current belief state. Only the subset, A, of vectors that could

produce that belief state can be determined. If some of these vectors don’t have the

same meaning, F (x), information about previous states of the system is lost.

Assumption 3.2. It is assumed that all vectors in this subset have the same meaning

as the vector of interest with probability λ.

P (F (a) = F (b)) = λ ∀ a, b ∈ A (3.12)

37

Figure 3.7: Two centroids and a subset of input vectors, A, that generate the same
belief state

This implies that with probability λ an input vector with the same meaning as

the previous input vector can be determined. Since a portion of this previous input

vector is the belief state, this can then be used to attempt to determine its previous

input vector. Theorem 3.1 is the result of combining the idea of calculating the input

vectors backwards in time with Assumption 3.2, which states that this calculation

can only be performed accurately at each time-step with probability λ.

Theorem 3.1. Bt, the belief state at time t, can be used to determine a vector ît−k

that contains the same meaning as the input vector it−k with probability γ, such that

γ ∝ λk (3.13)

3.2.4 Enhanced Cortical Circuit

Examining eq. (3.1) reveals that the system needs to be able to estimate the

probability of the subsequent state given the information received from the parent

38

Algorithm 2 DeSTIN Pseudocode: This process is performed at every node in the
pipelined hierarchy each when an example is presented to the hierarchy.

1: o← [child1.pc . . . childN .pc self.pc parent.pc]
2: if TRAINING then
3: x← argminc∈C [ψc ‖o− µc‖]
4: µx ← µx + α(o− µx)
5: σ2

x ← σ2
x + β [(o− µx)2 − σ2

x]
6: ψc ← γψc + (1− γ)1x=c
7: end if
8: nc ←

∑d
i=1

(oi−µc,i)2
σ2
c,i

9: {Synchronize Nodes}
10: pc ← n−1

c∑
c′∈C

n−1
c′

node. This may be achieved simply by providing the belief state of the parent node as

an additional input to the clustering algorithm of the child node, as depicted in Figure

3.8. Thus, parent belief is handled much like the node’s own previous belief and hence

harmful feedback is avoided using the same mechanisms already employed inside the

recurrent clustering algorithm. The system is now able to form beliefs based on local

spatial information (the input), local temporal information (the node’s previous belief

state), and a more global form of advice in the form of the parent node’s belief state.

The revised DeSTIN architecture is greatly simplified relative to its predecessor.

The memory footprint has been reduced and consolidated into a simple set of two-

dimensional matrices. Taking into account the dominating constructs involved,

namely the centroid means, variances, starvation traces, and previous belief state,

the memory requirement for a single node becomes Mnode = 2K(K +N) + 2K where

K is the number of centroids and N is the number of input dimensions. There are

only two core processes taking place at each node and those are very similar and share

the same data structure. This reduced architecture, outlined in Algorithm 2, makes

implementing DeSTIN on a GPU a far more realistic undertaking. It also suggests

that larger topologies, which would be needed for larger problems (e.g. streaming

video data), can fit onto a single GPU.

39

Figure 3.8: A 4-layer DeSTIN architecture illustrating the bottom-up and top-down
signaling that is involved. All nodes operate independently and in parallel such that
each layer is delayed by one unit of time relative to the layer below it.

40

3.3 Supervised Clustering

While unsupervised clustering methods strive to capture regularities in a dataset,

they do not necessarily capture the most relevant regularities in order to classify the

samples. In order to better represent the differences between classes, the class labels

can be used to help ensure that the clustering model captures regularities that help

discriminate the classes. By appending the label, y, to the input vector, o, a new input

vector, ô = [o y], is formed that allows improved centroids to be formed (Chen et al.,

1993; Pedrycz, 1998; Uykan et al., 2000). In some cases, the original input vector and

the label can have very different scales or distributions and cause an imbalance in the

importance attributed to the original input vector, o, and the label, y. In this case, a

scaling factor, β, can be used to modify the range of the output variable, ô = [o βy]

(Chen et al., 1993; Pedrycz, 1998; Uykan et al., 2000). The centroids, µ̂ = [µ µy],

that are learned during this supervised training can then be projected onto the space

consisting of only the the original input vectors for testing.

Previous work provides little insight into selecting a proper value for β other than

to say that it is not overly critical and should be experimentally chosen (Pedrycz,

1998). If the chose value of β is too small, then the labels will not have an effect

on the resulting clustering model. A larger β value will result in a clustering model

where each cluster is more likely to represent a single class. It is important to note

that these more homogeneous clusters do not always provide more information for

the purpose of classification. Since the clusters must be projected onto the space that

excludes the label, this could result in many identical or greatly overlapping clusters.

At best, this results in clusters that add no information. For example, if the model

consists of K clusters and two clusters overlap greatly, then K − 1 clusters could

represent the same model. At worst, these near identical clusters can result in highly

different representations of near identical data points.

Since it is obvious that neither β = 0 nor β =∞ are the optimal choice, deciding

on an optimal choice of β is a concern. A large enough value should be chosen such

41

Figure 3.9: A case where supervised clustering improves the clustering model. (Top)
Without labels to drive centroids toward intra-class regularities, the resulting model
does not separate the classes well. (Bottom) Once labels are used, the centroids are
able to discover intra-class regularities and are able to separate the classes well.

42

Figure 3.10: A case where supervised clustering degrades the clustering model.
(Top) Without labels driving the clustering, the data is well represented and a
clustering model is formed that represents the data well. (Bottom) Once labels are
introduced, the none of the resulting centroids ends up representing only a single
class.

43

that each cluster is encouraged to represent points from a single class, but the value

should be small enough to avoid forming clusters that are near identical in the space

that does not include the label. Figure 3.9 demonstrates a case where supervised

clustering can improve discrimination between classes, while Figure 3.9 demonstrates

a case where it results in identical clusters. It can be observed that when identical

clusters are formed the average variance of the centroids that make up the clustering

model increases. Thus, a value for β can be chosen by selecting the largest value such

that the average variance of the centroids in the clustering model is not increased. In

Section 5, experimental results on standard benchmarks indicate that this method of

choosing the β results in the the best classification results.

3.4 Scaling DeSTIN to CIFAR-10

The naive approach to applying DeSTIN to larger, more complex problems (e.g. the

CIFAR-10 dataset which is widely used as a benchmark in deep learning) is sampling

belief states from more DeSTIN nodes and/or movements. Since simply sampling

more belief states to produce a larger feature vector does not scale, it was proposed

to provide unique sub-samples of this belief data to each classifier in an ensemble of

classifiers. However, there is a fundamental reason this approach cannot be successful.

Scanning over an image using movements and sampling belief states from positions

in this movement sequence does not allow DeSTIN to be invariant to the large shifts

in low-level features that exist in CIFAR-10. The following sections discuss why the

sub-sampling approach does not address the problem and how the problem can be

addressed.

44

3.4.1 Sampling more movements nodes does not address

shifts in features

The above problem of number of large feature vectors, however, was not the barrier

to good performance on the CIFAR-10 dataset. The barrier was solving the problem

of DeSTIN, as previously used, not being invariant to large shifts in the location of

features in the image. In datasets like the MNIST handwritten digit dataset, large

shifts in feature locations do not occur. While the segments of the digits might not be

located in the exact same location, the expected shifts are small. Thus, as DeSTIN’s

viewing window is scanned over the image and belief states from specific movements

are saved, it is not required that DeSTIN be invariant to these large spatial shifts

(or temporal shifts when viewing movements as time) or to the changes in the order

that features are scanned. In order to provide DeSTIN with this shift invariance,

inspiration is drawn from Convolutional Neural Networks.

3.4.2 Convolutional DeSTIN

Previous work in applying DeSTIN to more complex image datasets such as CIFAR-

10 (Krizhevsky and Hinton, 2009) had been unsuccessful. With the MNIST dataset

(Lecun and Cortes, 2009), temporality is structured into the movement sequence.

This is suitable for MNIST since the location of features in the handwritten digits

is subject only to small shifts. However, in datasets like CIFAR-10, the location of

features in an image are often much less important than what features occur in the

image. Thus, scanning across the image and forcing ”temporality” on the data inhibits

classification. Thus, Convolutional DeSTIN is introduced to solve this problem.

In Convolutional DeSTIN, the bottom layer viewing window of DeSTIN is

convolved with the input image and the belief states from each quadrant of the image

are pooled (averaged) together and provided to an MLP. To more directly compare

this method to CNNs, DeSTIN’s bottom layer viewing window is convolved with the

image to form a set of feature maps. The number of feature maps is equivalent to the

45

Figure 3.11: Convolutional DeSTIN

number of centroids in the architecture. Sub-sampling by averaging is then performed

on each of the quadrants of the resulting feature maps.

Since the higher layers of DeSTIN preserve larger scale features, DeSTIN can take

advantage of much larger pooling regions than CNNs. This pooling serves the same

purpose as that of CNNs; it provides the architecture with both shift invariance and

a reduction in the dimensionality of the features.

Results using this method, without using translations of the training set to increase

the number of training examples, are vastly improved over results using the previous

”temporal sampling” method.

3.4.3 Providing Unique Subsamples to Ensemble Members

Previous work (Bryll et al., 2003; Ho, 1998) in providing unique subsets of features

to members of an ensemble focuses on the problem of over-fitting when when the

number of samples is small compared to the dimensionality of the data. However,

my goal for using unique subsets in this work was simply to solve the computational

complexity problem of large feature vectors that would be required if more nodes or

centroids are used. In the 4:1 child to parent ratio architecture that is often used

with DeSTIN, the size of the feature vector would grow by a factor of four with each

layer added to the architectures. The resulting high-dimensional belief space causes

46

computational resource problems and over-fitting problems. A better approach in

this situation would be to select a subset of the belief states from all layers of the

architecture and provide these to the classifier. However, when using Convolutional

DeSTIN, feature vectors too large to provide to a single classifier are not a problem.

The classifier used in this research is a negatively correlated ensemble of neural

networks (Mishtal and Arel, 2012). With ensemble methods, it is important that the

learners do not all produce the same result for each of the inputs. In other words,

if every member of the ensemble produces the same output all the time, resources

are wasted. One approach to promoting diversity among the learners is negatively

correlated learning which enforces diversity by adding an explicit diversity term to

the cost function of the neural network learners.

Another way to encourage diversity, while also letting the ensemble work with

more information from the DeSTIN hierarchy, is to let each learner work on a

unique subset of the belief states. By providing each member of the ensemble

with a different subset of the belief states, each learner will naturally form unique

hypothesis. Assuming this new source of diversity is strong enough, no communication

between the learners is necessary and the training process becomes embarrassingly

parallel. Similar methods have been used to not only reduce the dimensionality of the

problem each classifier works on for computation purposes, but to boost the overall

performance of the ensemble result versus using the entire feature subspace when

using simpler classifiers such as decision trees and kNN classifiers (Bryll et al., 2003;

Ho, 1998). This result is not expected when using more complex classifiers, but it

does speak to the ability of unique subsets to drive diversity in ensembles.

Providing unique subsets of the features to members of an ensemble can certainly

drive diversity in the ensemble, but this is not as powerful as using negatively

correlated ensemble members (Mishtal and Arel, 2012). Using unique subsets of

features was proposed to reduce the number of features provided to the MLP classifier,

however is not necessary since it was falsely assumed that saving more movements or

adding more nodes to the DeSTIN architecture would be required to apply DeSTIN

47

to the CIFAR-10 dataset. Some results using unique subsets of features generated by

DeSTIN with ensembles are provided in the Appendix.

48

Chapter 4

Implications of Analog

Computation Inaccuracies

The possibility of an implementation of DeSTIN in analog circuitry has been an

important factor in many design decisions that have been made in this work. In

this chapter, the concerns of implementing the core functions of DeSTIN in analog

circuitry will be discussed. The primary sources of inaccuracies that occur are

mismatch and noise. Mismatch occurs due to random variation in manufacturing

circuit components (Tsividis and McAndrew, 2011, sec. 9.7). The manufacturing

error that dominates this mismatch error is the variation in the threshold voltages of

MOS transistors. When a value is represented with a voltage, known as voltage-mode

signaling, this mismatch error manifests as an additive error. However, when current-

mode signaling is used it manifests itself as gain error. The standard deviation of these

errors is inversely proportional to the area of the transistor (Young et al., 2014b).

Thus, reduction a reduction errors results in decreased density and a decrease in

computational throughput due to increased capacitance. It is important to note that

there is a trade-off between minimizing the mismatch and the power consumed, the

physical size of the transistor, and the speed at which calculations can be performed.

The errors will not be correlated across the dimensions of the input space or across

49

Centroid 0 Centroid 1

Distance

Comparison

Analog

Memory

Analog

Memory

Analog

Memory

Analog

Memory

o
0

o
1

Dist.

Dist.

Dist.

Dist.

Update

Logic Cluster Probabilities

Analog

Memory

Analog

Memory

o
N-1

Dist. Dist.

Analog

Memory

Analog

Memory

Dist.

Dist.

Analog

Memory
Dist.

Centroid M-1…

…

Figure 4.1: This is a block diagram of an analog clustering circuit courtesy of Junjie
Lu. oi refers to the dimension i of the input.

the centroids since the errors are generated by independent transistors. Thus, the

error term for each unit may be modeled by an i.i.d random variable.

4.1 Generic Analog Clustering Model

A generic clustering architecture is illustrated in Fig. 4.1, showing an N -dimensional

input and M centroids. The functions of our incremental clustering algorithm can be

implemented by the following four functions in analog circuitry.

di,j = (oi − µi,j)2 (4.1)

Dj =
N∑
i=1

di,j (4.2)

µi,j[t+ 1] =

µi,j[t] + α(oi − µi,j) ifDj = min(D1:M)

µi,j[t] otherwise.

(4.3)

σ2
i,j[t+ 1] =

σ
2
i,j[t] + β

(
di,j − σ2

i,j[t]
)

ifDj = min(D1:M)

σ2
i,j otherwise

(4.4)

50

nj =
N∑
i=1

(oi − µi,j)2

σ2
i,j

(4.5)

In the following sections the effects of transistor mismatch on the clustering process

will be described and a generic analog clustering model based upon the effects that

can be expected to be seen in any analog clustering circuit will be constructed.

4.1.1 Input Variation

Each dimension of the input signal must be copied to each of the centroids. In

current-mode signaling, this will be accomplished via a current mirror, and the input

will be multiplied by a gain error. With voltage signaling, the same input can be

physically shared between centroids without explicit copying, and this error source is

avoided. This results in modifications to (4.1) and (4.3) such that for a gain variation

di,j = f(εi,joi, µi,j) and ci,j[t + 1] = g(µi,j[t], εi,joi[t]). The error term εi,j is the same

in both equations, but is different for every centroid and for every dimension within

a centroid.

When modeled as a gain error, input variation error will have the effect of giving

certain dimensions of the input more or less weight in the distance calculations and

in the calculation of the belief state. The impact of this error will be dependent on

the characteristics of the true data clusters. If they are well separated, no significant

impact should be expected. If they are not, the system could characterize the input

in a different manner than expected if each input dimension were given equal weight

as demonstrated in Figure 4.2. Gain errors can cause the input to form centroids in

a skewed space. This figure demonstrates the effect of a gain error that is too large,

4x, in the second dimension of each centroid versus a case with no gain error.

4.1.2 Update Asymmetry and Variation

Mismatch in the update mechanisms may result in asymmetric updates, such that

increments to a given memory are of a different magnitude than decrements. Also due

51

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

Data

1x

4x

Figure 4.2: Input Gain Error: No error versus 4x error.

to variation in the update mechanism, the update rate may vary from one memory

cell to another.

An asymmetric error will have some system level impact. During the transient

stage of centroids moving towards their clusters, this error will simply cause the

learning rate to be modified. During the steady state stage of centroids learning the

mean and variance of their clusters, this will cause the mean to be offset within the

cluster and the calculated variance to be larger. The expected offset is expected to

be proportional to the mismatch between increments and decrements. Assuming the

increment is larger than the decrement, if the number of increments and decrements

are equal the centroid will move upwards. However, as the centroid moves upwards

the number of decrements will increase and cause the centroid to reach equilibrium.

λiPr(X > µ) = λdPr(X < µ) (4.6)

A demonstration of this effect can be seen in Figure 4.3. As the size of the increments

relative to the decrements becomes larger, the centroid becomes more offset from the

true center of the data. Depending on the nature of the data being clustered over, the

amount of error that is acceptable may vary. It is also important to remember that

extremely accurate clustering is not needed, and even with fairly inaccurate clustering,

52

0.95 1 1.05
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

x

y

Data

1x

10x

100x

1000x

10000x

Figure 4.3: Centroid Offset Error: Varying amounts of asymmetry in updates.

meaningful beliefs can be calculated. Variation in the update rate between memory

cells will have the effect of some centroids converging towards their equilibrium faster

than others. This will have no effect on the equilibrium state of the centroids and no

significant effect on the learning transient except in extreme cases.

4.1.3 Memory Adaptation Variation

Each analog memory cell will tend to converge towards the inputs applied to it when it

is updated. Input-referred offset or gain error here will cause the memory to converge

to a value different than the actual mean of the cluster it is learning. This error can

be represented by modifying the error term applied to the observation for the update

equation with respect to that applied for the distance measurement.

µx,gain = µx + αεx,gain(o− µx) (4.7)

µx,bias = µx + α(εx,bias + (o− µx)) (4.8)

If the memory adaptation variation is modeled as a gain error as in equation

4.7, it will have the effect of increasing or decreasing the learning rate. Much like

53

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Data

True Centroids

Centroid A

Centroid B

Figure 4.4: Memory Adaptation Bias Error

the update variation error, it will have little to no effect except in extreme cases.

However, if this error is modeled as an additive error as in equation 4.8, it will have

the effect of shifting the learned centroid by the amount of the error. For small errors,

this will have a small effect on the calculation of the belief state. When the error

becomes larger, it can cause a centroid to walk far away from the data cluster it is

supposed to represent and possibly towards another data cluster. The effect of such

a case is demonstrated in Figure 4.4. This figure demonstrates what happens when

one centroid has a bias error in the memory adaptation. In this figure, Centroid B

has a bias error toward the top right of the plot. As it moves towards the other data

cluster, it swaps positions with Centroid A before reaching a steady state position

offset from its data cluster by approximately the magnitude of the bias error.

4.1.4 Distance Error

The distance measurement circuits may exhibit gain and/or offset errors. Variation

within a given centroid could result in one dimension contributing disproportionately

to the overall distance between an observation and an input. Circuitry accepting

the individual one-dimensional inputs will contribute to error uncorrelated across

54

dimension within a given centroid. Circuitry operating on the aggregated distance

will contribute to an error that affects each dimension identically.

For reasonable error levels, distance error has the effect of giving one dimension

more or less importance is the centroid selection process much like the case of the

input gain error demonstrated in figure 4.2.

4.1.5 Distance Comparison

There may be input-referred offset in the distance comparison block, typically

implemented as either a winner-take-all (WTA) circuit for similarity or a loser-take-

all (LTA) for difference. The effect of this can be expected to be similar to a distance

error that is identical for all dimensions of a given centroid, but that varies across

centroids.

On a system level, distance comparison error will have the effect of causing

inaccurate belief state calculations and making a centroid appear artificially further

from (or closer to) all inputs in the selection algorithm. If this error is small, it will

have no effect since the distance comparison is only used to select the centroid to

update. If the error is larger, a centroid could become starved until this distance

comparison error comes into equilibrium with the starvation trace. Once this

equilibrium is reached, the centroid will still claim fewer input vectors than it should,

since its starvation trace cannot remain small enough to claim input vectors without

allowing other centroid to claim more input vectors. This effect is demonstrated in

Figure 4.5. In this figure, Centroid B has an error causing it to appear artificially more

distant from any input. This results in Centroid A to claiming some observations that

should belong to Centroid B.

55

0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

Data

True Centroids

Centroid A

Centroid B

Figure 4.5: Illustration of a distance calculation error within the clustering process.

4.1.6 Additive Noise

Each of the signals is an analog current or voltage and is thus subject to additive

noise. The noise is typically Gaussian. It may be spectrally white such as shot noise

and thermal noise, or pink concentrated at low frequencies, such as flicker noise.

Noise should have no effect on the calculated centroid means since it is a zero

mean process. For clusters with a smaller variance than the noise level, the calculated

variance will be similar to the noise level rather than similar to the true variance. If

the true variances are less than the noise level for all centroids, then the beliefs will

be calculated based on a distance measure that is approximately Euclidean distance

than normalized Euclidean distance because of the inaccurate calculated variances.

The beliefs will then have less information than they otherwise would, but the beliefs

will still be meaningful because of the accurate mean values.

4.1.7 Resulting Generic Clustering Model

Assuming current-mode signaling is the only type used, incorporating the non-ideal

effects into ((4.1)-(4.5)) yields the following relationships:

56

di,j =
(εai,jε

b
i,joi − µi,j + nai,j[t])

2

εci,j
+ nbi,j[t] (4.9)

Dj =
N∑
i=0

εdi,jdi,j + nci,j[t] (4.10)

δi,j = (εai,jε
e
i,joi − µi,j) (4.11)

µi,j[t+ 1] =

µi,j[t] + α+

i,jδi,j ifDj = min(D1:M) & δi,j > 0

µi,j[t] + α−i,jδi,j ifDj = min(D1:M) & δi,j < 0

µi,j[t] otherwise.

(4.12)

γi,j = (εfi,jdi,j − µi,j) (4.13)

σ2
i,j[t+ 1] =

σ2
i,j[t] + β+

i,jγi,j ifDj = min(D1:M) & γi,j > 0

σ2
i,j[t] + β−i,jγi,j ifDj = min(D1:M) & γi,j < 0

σ2
i,j[t] otherwise.

(4.14)

nj =
N∑
i=1

(εai,jε
b
i,joi − µi,j + nai,j[t])

2

σ2
i,j[t]

+ nbi,j[t] (4.15)

4.1.8 Belief State Inaccuracy

While the prior sections focus on the inaccuracies that exist in the core clustering

algorithm, this section focuses on an inaccuracy exclusive to the belief state

calculation. When the belief state is being calculated, it is necessary to take a vector

of normalized euclidean distances, invert them, and normalize the result to sum to 1.

The analog circuitry used for this process can result in inaccurate calculations of the

belief state vector. During this normalization process, small belief state values are

calculated incorrectly. This effect can be modeled by setting any belief state element

bc smaller than a threshold tn to zero and renormalizing as shown in equation 4.16 to

get the resulting belief state element with this inaccuracy berrc .

57

berrc =
bc1bc>tn∑

c′∈C
bc′1bc′>tn

(4.16)

As tn grows, information from more centroids will be lost. However, a smaller

value of tn will require more power and area on the analog chip. The error model

given in Equation 4.16 is guaranteed to be stable as long as tn is less than 1
K

where

K is the number of centroids in the clustering model. For this reason, only values of

tn less than 1
K

will be explored in this work since larger values of tn could introduce

instabilities into the system.

4.2 Final Design

Using the results gathered by investigating the generic analog clustering model

heretofore, a specific implementation and design was proposed. The proposed design

is given in Figure 4.6 on a per dimension per centroid basis. Current-mode signaling

is being used for all signals in this circuit. This results in a system where mismatch

only arises as gain errors. On a per dimension per centroid basis, six gain errors are

inherent to the design.

4.2.1 Errors in Centroid Updates

The first diagram in Figure 4.6 demonstrates the circuit configuration used to update

the centroid values. In this section, the effect each of the errors have upon the

resulting learned centroids is discussed. The first error, G1, is an input variation

error and will have the effect of altering the importance of each dimension, as was

previously discussed in Section 4.1.1. The second error, G2, will have the effect of

an update asymmetry error as discussed in Section 4.1.2 when updating the centroid

mean. It will also have an effect on the calculation of the centroid variance. The

centroid variance will be miscalculated as shown in Equation 4.17.

58

Figure 4.6: This figure gives the design of the analog clustering circuit design.
It represents a single dimension of a single centroid. (Top) This diagram shows the
configuration of the circuit during the centroid update phase. (Bottom) This diagram
shows the configuration of the circuit during the belief state calculation phase.

59

(σ2)G2 ≈ 1+G2

2
σ2 (4.17)

The errors G3 and G4 will also result in a miscalculation of the centroid variances

as shown in Equations 4.18 and 4.19. These errors will also have exhibit the same

effects as the distance errors described in Section 4.1.4.

(σ2)G3 = G3σ
2 (4.18)

(σ2)G4 = 1
G4
σ2 (4.19)

The error G5 has the effect of a memory adaptation variation as presented in

Section 4.1.3, and it will have the effect of altering the learning rate of the centroid

means on a per dimension per centroid basis. The error G6 is an update asymmetry

in the calculation of the centroid variance. Thus, it will result in a shift in the

centroid variances. This shift will depend on the magnitude of G6 and will be bound

by between the maximum and minimum input provided to the non-ideal absolute

circuit. The effect this has on the calculated centroid variance is illustrated in the

Equations 4.20 - 4.22.

δ = (memoryµ − inputo)2 (4.20)

FX(y) = Pr(x < y), (CDF) (4.21)

(σ2)G6 ≈ F−1δ (1
1+G6

) (4.22)

60

4.2.2 Errors in Belief State Calculation

Figure 4.6 shows the circuit configuration for both of the tasks at the heart of

the DeSTIN node: updating the centroids and calculating the belief state. It

demonstrates how the same components are utilized for both of these operations.

By reusing the same circuitry for both operations, area on the chip is saved, and

the mismatch errors in computation are consistent between the two stages with the

exceptions of the error labeled G4 in Figure 4.6 and to a lesser degree the error

labeled G6. This inconsistency can result in inaccurately calculated centroid variances

compared to the distance they are compared to as shown in Equation 4.26. This is

in contrast to an error like the one labeled G3 that exists in both the centroid update

process and the belief state calculation process. While G3 results in a miscalculated

centroid variance, its reuse in the belief calculation has results in this error having

no impact as long as linearity assumptions on the circuit are still valid. This is

demonstrated in Equation 4.25. The following equations demonstrate the effect each

error will have upon the normalized euclidean distance calculation for each dimension

of each centroid. G5 is not included because it only has an effect on the learning rate

of the centroid means. G2 can affect a shift in the centroid mean, but this effect is not

included below since the focus here is the effect on belief state calculation independent

of the centroid means.

(
X2

Y
)G1 =

(G1X)2

G2
1σ

2
=
G2

1X
2

G2
1σ

2
=
X2

σ2
(4.23)

(
X2

Y
)G2 ≈

((1+G2)
2

X)2

((1+G2)
2

)2σ2
=

((1+G2)
2

)2X2

((1+G2)
2

)2σ2
=
X2

σ2
(4.24)

(
X2

Y
)G3 =

X2

G3σ2
G3 =

X2

σ2
(4.25)

(
X2

Y
)G4 =

X2

1
G4
σ2

=
G4X

2

σ2
(4.26)

61

δ = (memoryµ − inputo)2 (4.27)

FX(y) = Pr(x < y), (CDF) (4.28)

(
X2

Y
)G6 ≈

X2

F−1δ (1
1+G6

)
(4.29)

4.3 Effects of Analog Inaccuracies on DeSTIN

Discussion heretofore has focused on the effects analog inaccuracy has upon the

learned centroid parameters or upon the calculation of the belief state. In this section,

the effect these inaccuracies have upon the learning ability of DeSTIN is discussed.

DeSTIN does not rely upon convergence to a specific set of centroid values. It only

needs to capture regularities that exist in the data, and map these to belief values

that serve as good features for classification. The remainder of this chapter discusses

what constitutes a major distortion that will degrade DeSTIN’s ability to produce

good features.

4.3.1 Effect of Gain Errors

In Section 4.2.2, the effects of the gain errors on the belief state calculation were

discussed. Many of these errors had no effect effect on the belief state calculation

outside of the effect they have on the learned centroid means, which was discussed

in Section 4.2.1. G1 simply distorts the importance of each dimension in choosing

the winning centroid. G2 causes a shift in the location of the centroid mean. These

two errors can result in different centroid locations in the centroid mean locations.

G3 has no effect on the centroid mean and also has no effect on the belief state

calculation as shown in Equation 4.25. G5 simply alters the learning rate for the

centroid mean, and thus only has an effect on the rate of convergence. This leaves

62

two gain errors errors that are more likely to have an impact on meaningful belief state

calculation. G6 has an effect such that an inaccurate centroid variance is calculated.

This inaccurate centroid variance is then used to calculate the normalized euclidean

distance. However, this miscalculated centroid variance is bound between the largest

and smallest squared distance between the centroid mean and the input. Thus, while

this results in a miscalculated centroid variance, it is still bounded by the actual

distances observed. G4, however, is not exhibit this type of behavior. G4 can result

in centroid variances that are artificially small (or large) and are only bound by the

size of the error. If this error grows too large, the calculated normalized distances

are not based on the variances that are actually occurring. When this happens, the

centroid variances don’t capture which dimensions are highly varying and which are

not. Thus, two points that should produce different belief states since they are very

different in a low-variance dimension produce more similar belief states. This results

in lower-variance centroids being produced in the next layer than should be produced.

This is reflected in experimental results presented in Chapter 5.

4.3.2 Effect of Belief Normalization Error.

The belief normalization error presented in Section 4.1.8 could also have an effect

on the classification performance of DeSTIN. As the threshold is increased, the

information gained from from the centroids further away from the current point will

be lost. Without this error, the belief state formed will be based on the relationship

between the input and allK centroids. With this error, the belief state will not contain

information on the relationship between the input and the furthest centroids. As the

threshold tn grows larger, the belief state will lose information about the relationship

between the input and the centroids furthest from it. However, the most important

belief state elements are the one based on the closest centroids which means DeSTIN

should be relatively insensitive to this error. The error is explored experimentally in

Chapter 5.

63

4.3.3 Effect of Additive Noise

Noise in the system is undoubtedly going to cause information in the belief state to

be lost. However, as state previously, there is not a correct belief state, and what

an acceptable change in the belief state is must be determined. All information is

expected to be lost if the variance of the noise is larger than the variance of the

clusters that would be formed without noise. At this point, any difference between

two inputs is going to be a result of noise and not a result of a meaningful difference

between the points. In other words, as the variance of the noise grows larger than

the variance of the clusters, the signal to noise ratio (SNR) approaches 0dB.

SNR =
σ2
centroid

σ2
noise

(4.30)

However, information will be lost before the noise grows that large. It is

more useful to know how much noise can be withstood without losing significant

information. As the noise level rises compared to the variance of the centroids,

it will begin to have an effect on the belief states produced. This will result in

the next clustering layer operating in an altered space. In recurrent clustering, this

increased noise will lead to the more regularities existing in the intrinsic dimensions

comparatively to the extrensic dimensions. As a result, all points will produce more

similar belief states and the mean distance between centroids (MDBC) in the next

layer will decrease. This results in increased overlap in the space represented by

the centroids as shown in Equation 4.31 where Ac gives the area that is less than

one standard deviation from the mean of centroid c. In Convolutional DeSTIN, this

recurrence does not exist and the added noise will simply result in more wildly varying

belief states and the mean distance between centroids in the next layer will increase.

As the MDBC increases, the closest centroid will begin to dominate the belief state

resulting in a belief state the holds less information. As the MDBC decreases, there

will increased overlap and centroids are less able to characterize meaningful differences

in the input. Experimental results obtained in Chapter 5 demonstrate this.

64

Overlap =
∑
c∈C

∑
c′ 6=c∈C

Ac ∪ A′c (4.31)

4.3.4 Effects of Additive Noise on Depth

DeSTIN is a multi-layered architecture which makes it important to understand

how noise interacts with higher layer features. The higher layers operate on the

belief states of the lower layers. Thus, as the belief states from the lower layers

degrade with increasing noise, the regularities captured at the higher layers will

be less meaningful. This results in belief states from the higher layers being less

meaningful for classification since clustering assumptions begin to fail (i.e. points in

the same cluster share meaning). This means that as the belief states from the first

layer begin to significantly degrade as the amount of noise increases, the belief states

from the upper layers will not be able to capture any meaningful information from

the layers below. Thus, as the MDBC for the second layer beliefs begin to change as

described in Section 4.3.3, the information contained in the upper layer beliefs will be

minimal, and classification performance will be near guessing. Thus, it is expected

that performance using beliefs from only the upper layers will approach guessing

at the same point classification using beliefs from all layers begins to significantly

decrease. This is reflected in results from Chapter 5. This is an important effect to

understand, since future work will focus on using only belief states from the upper

layers unlike current work that performs classification based on belief states collected

from all layers of DeSTIN.

65

Chapter 5

Experimental Results

In this Chapter experimental results for the methods introduced in Chapter 3 and

and of the effect of the analog inaccuracies presented in Chapter 4 are presented.

5.1 Standard Datasets

In this section the standard datasets used in the research will be introduced. The

reasons for their use will be explained, and their characteristics will be detailed.

5.1.1 MNIST Dataset

One of the benchmarks presented here is the MNIST handwritten digit dataset (Lecun

and Cortes, 2009). While current literature in the field of deep learning focuses largely

on the CIFAR-10 dataset, results on MNIST are also frequently presented. This

dataset is also used here as a tool to compare the results of the improved DeSTIN

architecture to that of previous implementations. This dataset is used in such a

manner as to create ”synthetic” temporal data by scanning a viewing window over

the images such that the images are viewed as a sequence of smaller images. Thus,

the recurrent clustering mechanism must characterize the series of small images it is

presented with. This dataset has been used extensively in the literature and contains

66

Figure 5.1: MNIST Image Examples. There are 10 classes of images, and each
image is a 28x28 gray-scale image.

60, 000 training images of digits 0-9 and 10, 000 testing images. The images are

28 × 28 pixels in size, roughly centered, and are gray-scale. It is important to note

that although the images are gray-scale, most values are near saturated to black or

white. A random sampling of images from each class is provided in Figure 5.1.

Unless stated otherwise, DeSTIN is configured as described here. The scanning

sequence in Figure 5.2 is used with 3 movements being saved. There are 3 layers

of DeSTIN nodes with 1, 4, and 16 nodes in each layer respectively. Each node is

67

Figure 5.2: MNIST ”Z” Movement Sequence: The black dots indicate movements
from which belief states are saved.

resourced with 25 centroids. Each node in the bottom layer is provided with a 4× 4

pixel patch from the image. Recurrent clustering is used.

5.1.2 PEMS-SF Dataset

The proposed method was also tested on the PEMS-SF database (Cuturi, 2011). This

dataset is used because it contains natural temporal features. Unlike the MNIST

dataset where temporal features are generated by scanning a viewing window across

an image, this dataset contains sensor data that varies over time. This dataset gives

the relative occupancy rate of many lanes of traffic on the San Francisco area freeways

collected over 15 months. Public holidays and two days that were missing data were

not included in the dataset. The data from 963 sensors was collected over 440 days

every 10 minutes and the task is to classify each day as the correct day of the week

(e.g. Monday). The dataset consists of 267 training samples and 173 testing samples.

For use in this work, the data from each sensor was normalized to have zero mean

and unit variance. Only 576 (24 × 24) of the 963 sensors were used in our tests to

accommodate the 24 × 24 ”viewing window” of the bottom layer and only 33 time-

steps, every 4th starting from the beginning, were provided to the system. Now,

68

instead of using the next movement over an image, the input layer is provided with

data from the next time-step. Then, a feature vector was produced from the belief

state of every node for every 11th time-step. This resulted in a feature vector made

up of belief states that characterized each third of the day. The DeSTIN hierachy is

configured in the same manner as for the MNIST dataset, with the exception that

each node has a 6× 6 dimensional input.

5.1.3 CIFAR-10 Dataset

The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) is the most widely used

benchmark for deep learning. It contains 50, 000 training examples and 10, 000 test

examples. Each example is a 32 × 32 color image. There are 10 classes: airplanes,

automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks. These images

are a subset of the 80 million tiny images dataset (Torralba et al., 2008). A random

sampling of images from each class is provided provided in Figure 5.3.

Unless otherwise stated, when using the CIFAR-10 dataset DeSTIN is resources

similarly to when using the MNIST dataset. The major difference is that Convolu-

tional DeSTIN is used instead of the temporal sampling scheme. With this dataset,

the normalization and ZCA whitening scheme outlined in Section 2.3 is performed on

each 4× 4 pixel path provided to the bottom layer nodes. As previously stated, this

preprocessing step is performed in order to account for the strong correlation between

neighboring pixels.

5.2 Demonstrative Results

In this section demonstrative results verifying the methods and statements presented

in Chapter 3 are presented.

69

Figure 5.3: CIFAR-10 Image Examples. There are 10 classes of images, and each
image is a 32× 32 RGB image.

70

5.2.1 Recurrent Clustering Temporal Representation Abili-

ties

In this section, experiments that demonstrate the ability of recurrent clustering

to capture temporal information are presented. First, its capabilities will be

explored in depth in order to demonstrate its contribution in extracting temporal

information from data even when the time scales of the important information is

large. Consequently, the performance of the algorithm within a fully-hierarchical

structure, as applied to a standard benchmark, will be presented.

A key attribute expected of recurrent clustering is recognition of patterns across

time. As means of demonstrating this capability, the proposed recurrent clustering

algorithm is applied to time-series prediction tasks. The first task explored is a

frequency doubler where the objective is for system to take as input a sampled sinusoid

signal with a period of N and to produce belief states that can be used as features

to a simple feed-forward neural network whose output should be a sinusoid with half

the period. This problem requires that the belief state captures information that at

least spans the current and previous inputs.

Figure 5.4 depicts the results of the frequency doubler test case. The algorithm

was run with 24 centroids and the feed-forward neural net is resourced with 32 hidden

neurons. As can be seen, the incremental algorithm was easily able to create features

capturing temporal dependencies even for fairly slow, small changes taking place in

the input, as reflected by larger periods. When the input signal period became too

large, prediction error began to grow as a result of the small differences between

samples which are challenging to represent using limited centroids. However, the

resulting prediction remains consistently better than a random guess.

The second experiment was targeted at the algorithm’s ability to capture temporal

attributes, particularly in the context of detecting a binary sequence of interest within

a general stream of binary inputs. The goal was to demonstrate the property of

latching on to long-term temporal regularities. The length of the sequence of interest

71

0 5 10 15 20 25
−2

−1

0

1

2

Time (in sample units)

O
u
tp

u
t/
T

a
rg

e
t
S

ig
n
a
l

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

Input Signal Period (in samples)

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Target

Recurrent Clustering

Single Input NN

Recurrent Clustering

Single Input NN

Figure 5.4: Frequency Doubler results: (Top) The target vs. output plot is given
for recurrent clustering and for a case where only the current value of the input is
provided to the clustering algorithm. The period of the original signal is 24 sample
units. (Bottom) The ability of the algorithm to capture information in long period
sine waves is evaluated.

was varied in order to observe the impact of long sequences on the accuracy of the

algorithm. The sequence of interest was a randomly chosen binary sequence of specific

length. To further increase the challenge at hand, the overall input sequence was

generated by randomly selecting (with probability 0.5) either the sequence of interest

or the sequence of interest with the first binary element inverted. The belief states for

the sequences of interest and the sequence with only the first bit altered were provided

to a feed-forward neural network for the purpose of classifying each sequence. If the

belief states accurately learn to represent regularities in the sequences presented, the

classifier should be able to achieve a classification rate of 100%. A purely random

selection (i.e. guessing) is represented by a classification rate of 50%.

Classification results for the sequence detection task are presented in Figure 5.5

for varying sequence lengths and number of centroids. The classification rate observed

decays exponentially with the length of the sequence, which is anticipated as a result

of the unsupervised nature of the algorithm. Since there is no supervision that guides

the algorithm to best identify a sequence of any specific length, the beliefs will always

72

0 5 10 15 20 25 30 35
0.4

0.5

0.6

0.7

0.8

0.9

1

Length of Sequence

A
v
e

ra
g

e
 C

la
s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

1 centroids

2 centroids

4 centroids

8 centroids

16 centroids

32 centroids

64 centroids

128 centroids

Figure 5.5: Sequence Detection Results: This plot illustrates the average
classification accuracy as a function of the length of the sequence of interest. The
recurrent clustering algorithm is resourced with a varying number of centroids.

hold more information about more recent observations. The results indicate that there

is an optimal range for the number of centroids used where the algorithm performs

best. In the case of too few centroids, the belief state may not capture long time

spans, while if there are too many centroids, the belief state may represent features

in the data that are not relevant for identifying the sequence of interest. However,

the algorithm exhibits weak sensitivity to the number of clusters, which is a desired

property.

5.2.2 Supervised Clustering

In Section 3.3, the importance of selecting a proper label weight was discussed. It was

explained that a label weight that was too large would cause overlap in centroids since

centroids would be formed that contained no differences in the non-label dimensions.

This would manifest itself in increased centroid variances. Figures 5.6 - 5.8 illustrate

the classification performance and average centroid variance for each of the standard

benchmarks.

73

Figure 5.6: MNIST results using supervised clustering. The classification accuracy
(left) and the average centroid variance (right) are plotted against the label weight
β.

Figure 5.7: PEMS-SF results using supervised clustering. The classification
accuracy (left) and the average centroid variance (right) are plotted against the label
weight β.

Figure 5.8: CIFAR-10 results using supervised clustering. The classification
accuracy (left) and the average centroid variance (right) are plotted against the label
weight β. 75 centroids per node were used to obtain these results.

74

These figures demonstrate that the increase in cluster variance is indicative of

declining classification performance. This increase in cluster variance is the result

of the label weight, β, placing too much importance on the creating centroids that

represent a single class. This results in centroids that are near duplicates of each other

in the non-label dimensions and thus fewer unique centroids must represent the same

space that was previously represented with more unique centroids. Thus, the average

centroid variance increases. The PEMS-SF dataset appears to benefit the most from

this supervised clustering technique with a increase in classification performance of

1.5% over using unsupervised clustering, while the other datasets observe a smaller

increase in performance. The MNIST dataset saw a 0.5% increase in performance,

while the CIFAR-10 dataset saw only an 0.25% increase in performance.

5.3 Maximum Performance on Standard Bench-

marks

In this section, the best results obtained on the standard benchmarks are presented.

These results are then compared to other state of the art methods and previous results

using DeSTIN.

5.3.1 MNIST Results

The 60, 000 training images were elastically deformed(Simard et al., 2003) in order

to form an additional 120, 000 training images.

The DeSTIN hierarchy employed consisted of 3 layers with 4 × 4 nodes in the

bottom layer, 2 × 2 nodes in the middle layer, and 1 node at the top layer. The

movement sequence used is shown in Figure 5.9. Each of the nodes in the bottom

layer received a different 4 × 4 pixel patch of the input image, which results in the

bottom layer viewing a 16× 16 window during each movement. Nodes in every layer

hosted a different number of centroids with the bottom, middle, and top layers having

75

Figure 5.9: Large movement sequence used for better performance on MNIST.

32, 24, and 32 centroids, respectively. For training purposes, a random sampling of

15, 000 of the training set images was used. Only 15,000 images are used since the

clustering algorithm only needs to be able to accurately calculate the mean and

variance of each centroid. Thus, as long as there are enough samples to accurately

characterize the regularities in the data, no benefit will be gained by training on

additional samples. Next, all 180, 000 training images and 10, 000 testing images

were provided to the DeSTIN network in order to generate feature vectors for each

image. A feature vector for each image consisted of the belief state of every node

in the hierarchy sampled at every 12th movement. These feature vectors were then

provided to an supervised classifier in order to obtain classification results.

The supervised classifier consisted of an ensemble of 11 feed-forward neural

networks trained with negative correlation learning . Each network hosted two hidden

layers with 128 and 64 hidden neurons respectively and was trained to predict the

posterior probability distribution over the classes. The cross-entropy error function

was used in conjunction with a softmax output activation function, which ensured

that the network outputs were within the range [0,1] and summed to one. All 180, 000

training feature vectors (both elastic and non-elastic) were used in training, and inputs

76

Table 5.1: Comparison of Results on MNIST

Method Classification Accuracy

DeSTIN (previous) (Karnowski,
2012)

98.55%

DeSTIN (this work) 98.71%
Single Deep Neural Network (no
width normalization) (Schmidhu-
ber, 2012)

99.53%

Multi-Column Deep Neural Net-
work (committee of 35 net-
works each trained on data with
different width normalization)
(Schmidhuber, 2012)

99.77%

Table 5.2: Comparison of Results on PEMS-SF

Method Classification Accuracy

AR-Kernel (Cuturi and Doucet, 2011) 75%
AR-Kernel using k (Cuturi and Doucet, 2011) 81%

BOV Kernel (Cuturi and Doucet, 2011) 82%
GA Kernel (Cuturi and Doucet, 2011) 79%
SS Kernel (Cuturi and Doucet, 2011) 81%

Kernels in Reservoir Space (Chen et al., 2013) 86%
DeSTIN 86%

to the networks were scaled to the range [-1, 1]. Using this experimental setup, a

classification accuracy of 98.71% was achieved which is comparable to previous work

involving the first-generation DeSTIN architecture which involved an additional layer

and more complex computations. These results are compared to results obtained for

this benchmark achieved with other state of the art methods (Kégl and Busa-Fekete,

2009; Salakhutdinov and Hinton, 2007; Simard et al., 2003; Schmidhuber, 2012) in

Table 5.1.

5.3.2 PEMS-SF Results

In this section, results on the PEMS-SF traffic sensor dataset are presented. The

DeSTIN hierarchy used was the same as before, except it had 50, 30, and 20 centroids

77

in the nodes in the three layers respectively. A classification accuracy of 86% was

achieved, which is comparable to other state of the art methods (Cuturi, 2011; Cuturi

and Doucet, 2011; Chen et al., 2013) as can be seen in Table 5.2. This method

performed on par with state of the art results on this dataset and has demonstrated

an ability to perform well on two very different types of datasets without any complex

preprocessing or any significant changes in the method to handle these differences.

This ability to discover structure in many different types of data without significantly

altering the dataset to fit the method being used is important to the proliferation of

DML methods into new problem domains. In particular, it demonstrates DeSTIN’s

ability to capture temporal features that exist in data.

5.3.3 CIFAR-10 Results

For this test, DeSTIN was configured as before with the exception of the number of

centroids per node. 100 centroids per node were used. A classification accuracy of

76% was reached on the test set. This is compared to other methods in Table 5.3.

Horizontal reflections of the training set are used to augment the training set, but no

scaling or shifts are performed on the data.

While DeSTIN performs comparable to earlier convolutional neural network

results (Ngiam et al., 2010), it is still behind current state of the art results (Wan

et al., 2013). A discussion of some possible causes for this difference is discussed in

Chapter 6 along with some paths forward to improving DeSTIN’s performance. It

is important to note DeSTIN’s much faster training time. In a single threaded CPU

implementation, DeSTIN’s centroids can be trained 25x faster than a CNN model

can be trained. This is largely a factor of DeSTIN’s convergence speed.

78

Table 5.3: Comparison of Results on CIFAR-10

Method Classification
Accuracy

Single
Thread CPU
Runtime

GPU
Runtime

DeSTIN (Non-
Convolutional; No
Translated Images)

49% n/a n/a

Tiled Convolutional Neural
Networks (Ngiam et al.,
2010)

73% n/a n/a

DeSTIN (Convolutional; No
Translated Images)

76% 1.6 hours † n/a

Convolutional Deep Belief
Network (Krizhevsky, 2010)

79% n/a 81 hours

CNN + DropConnect (Sin-
gle Network; No Translated
Images) (Wan et al., 2013)

81% 41 hours †† 25 minutes

CNN + DropConnect (12
Networks; Translated Im-
ages) (Wan et al., 2013)

91% n/a n/a

†Time to train DeSTIN centroids
††Estimated time based on GPU run time and a comparison between GPU

implementation and single threaded CPU implementation of CNNs (Scherer et al.,
2010).

79

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

y

x
0 0.5 1

0

0.5

1

1.5

x

y

Figure 5.10: Clean (left) and noisy (right) synthetic clustering data used for
evaluation of analog computation inaccuracies

5.4 System-Level Impacts: Modeling Inaccuracies

This section focuses on experimental results when simulating the effects of analog

circuitry as presented in Chapter 4. Results from both the generic analog clustering

model and the specific implementation used are presented.

5.4.1 Generic Clustering Model Results

In this section the impact of error sources on the belief state calculation using the when

using the generic analog clustering model presented in Section 4.1. First, a metric

for algorithmic performance must be defined. Since the common method for using

DeSTIN in pattern recognition tasks is to extract the beliefs as features, performance

is defined as the mean absolute error (MAE) between what the ideal belief values

should be and those calculated considering errors in the system. It is important to

note that this means performance is not directly tied to the numerical accuracy of

the calculated centroid means and variances, which are being calculated in a space

altered by the error sources. It is only tied to the ability to produce the correct belief

state. In the remainder of this section, the effects of the analog error sources on a

synthetic dataset in order to demonstrate the effect on calculated belief states when

the true centroids are known are explored.

80

To demonstrate the effect of the various errors and mismatches, a simple clustering

problem is considered. The data shown in Figure 5.10 is clustered using a single

DeSTIN node with varying levels of error and noise. The noise is always additive

Gaussian noise, while Gain errors and additive errors are implemented according

to Equations (5.1) and (5.2), respectively, where rx is the difference between the

maximum and minimum values x can take. Noise is added to select signals in the

system in the same manner as additive error. The use of currents to represent variables

generally leads to gain errors, while voltage-based signals lead to offset errors. The

system was modeled as full current-mode signaling and full voltage-mode signaling to

explore the different effects. The impact of gain and offset errors on a system using

mixed-mode signaling can be expected to fall between these two cases.

x′ = xN (1, σ) (5.1)

x′ = x+ N (0, σ)rx (5.2)

The resulting error in the belief is calculated as the mean absolute error between

the ideal belief vector and that obtained using analog computation. Figures 5.11 and

5.12 illustrate the effect of the errors discussed in this section on a single node’s belief

values. As can be observed, none of the errors introduce any notable degradation

below a standard deviation value of 10−3.

When modeling all errors as gain errors, additive noise in the system has a much

larger impact than even the rest of the errors combined. Thus, it is demonstrated that

the inconsistency caused by noise is much more harmful than the consistent gain and

bias errors. The most destructive gain errors are the distance comparison, distance,

and memory adaptation variation errors. The update asymmetry, input, and update

variation errors have much less impact.

81

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

B
e
lie

f
M

A
E

Input

Memory Adapt.

Update Asym.

Update Var.

Distance

Distance Comp.

Noise

All w/o Noise

All w/ Noise

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

B
e
lie

f
M

A
E

Input

Memory Adapt.

Update Asym.

Update Var.

Distance

Distance Comp.

Noise

All w/o Noise

All w/ Noise

Figure 5.11: Accuracy vs. level of error (σ): Gain Errors on Clean Dataset (left)
and Noisy Dataset (right): This figure illustrates that the update and input errors
have the lowest impact on performance, while noise has the most significant impact.

When all errors are modeled as bias errors, additive noise has much the same effect

as the distance comparison, distance, and memory adaptation variation errors. The

update asymmetry, input, and update variation errors still have much less impact.

In conclusion, the results presented here provide a comparison between the

mismatch errors that are expected along with noise in the system. This allowed

work to focus on the errors expected to have the largest impact when the final analog

circuit was designed. In the next section, the final implementation proposed by the

analog design team is evaluated.

5.4.2 Evaluation of Final Design

Results in the previous section were used to design a specific analog implementation

of the clustering circuit as described in Section 4.2. In this section, the sensitivity

of that specific implementation to error and noise is examined. The results in this

section focus on classification accuracy on the standard benchmarks. This is a more

useful tool for evaluation, since correct clustering is not necessary for DeSTIN to

produce meaningful beliefs. DeSTIN need not converge to a specific set of centroids.

Figures 5.13 - 5.15 contain the classification results on the three standard benchmarks

with each of the individual gain errors, all gain errors, noise, and all gain errors

82

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

B
e
lie

f
M

A
E

Input

Memory Adapt.

Update Asym.

Update Var.

Distance

Distance Comp.

Noise

All w/o Noise

All w/ Noise

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

B
e
lie

f
M

A
E

Input

Memory Adapt.

Update Asym.

Update Var.

Distance

Distance Comp.

Noise

All w/o Noise

All w/ Noise

Figure 5.12: Accuracy vs. level of error (σ): Additive Errors on Clean Dataset
(left) and Noisy Dataset (right): the update and input errors have the lowest impact,
while the remaining error components have an impact similar to that of the additive
noise of the same level.

with noise. The classification results are plotted against the standard deviation of

the errors/noise in nano-amperes in order to relate the inaccuracies to a physical

value. This is calculated by converting the dynamic range of the signals to the typical

dynamic range of the signals on an analog chip.

The results from these classification tests on the three standard datasets allow

some important conclusions to be drawn. A significant amount of error and noise can

be introduced to the DeSTIN architecture without having a destructive effect upon

performance. It is particularly noteworthy that noise is the most harmful source of

inaccuracy by a significant margin. This is intuitively reasonable, as noise represents

a dynamic distortion to which the learning system cannot adapt. In contrast the

other error sources distort the signals in a static way, leaving relationships in the

underlying data intact.

Effect of Gain Errors

As seen in Figures 5.13 - 5.15, the only gain error with a significant impact on

classification accuracy is G4. As discussed in Section 4.3.1, this is a result of this

error only existing in the centroid training phase and not in the belief state generation

83

Figure 5.13: Analog MNIST Classification Results

84

Figure 5.14: Analog PEMS-SF Classification Results

85

Figure 5.15: Analog CIFAR-10 Classification Results

86

Figure 5.16: G4 Error and MNIST: Classification results compared to Second Layer
Centroid Variance

phase. Figures 5.16 - 5.18 demonstrate the low-variance centroids produced in upper

layers as a result of the inaccurately calculated belief states from lower layers as this

error grows too large.

Effect of Belief Normalization Error

In this section the belief normalization error previously discussed in Section 4.3.2 is

explored experimentally. The threshold tn was varied in the range [1.0 × 10−6, 1
K

]

where the the model for this error is guaranteed to be stable. In this range there was

no degradation in classification accuracy. Figure 5.19 demonstrates what percentage

of belief state elements are non-zero for varying values of tn.

Since there is no degradation in results in this range, Figure 5.19 demonstrates

that the belief states from only 30% of centroids need to be calculated as non-zero.

87

Figure 5.17: G4 Error and PEMS-SF: Classification results compared to Second
Layer Centroid Variance

88

Figure 5.18: G4 Error and CIFAR-10: Classification results compared to Second
Layer Centroid Variance

89

Figure 5.19: Percent non-zero belief elements versus tn

90

Figure 5.20: Noise and MNIST: Classification results compared to Second Layer
MDBC

This means that in a typical DeSTIN configuration consisting of 25 centroids per

node, the belief state elements for only 8 centroids need to be correctly calculated as

non-zero.

Effect of Additive Noise

As seen in Figures 5.13 - 5.15, noise is has the most significant impact upon

classification accuracy on all three datasets. This dynamic distortion of the signals

cannot be learned by the system in any meaningful way. Figures 5.20 - 5.22

demonstrate the changes in the mean distance between centroids in the upper layers

along with the decrease in classification performance as the amount of noise increases

as described in Section 4.3.3. The ”elbow” in the classification accuracy curves occurs

when the MDBC experience 2x change from the MDBC with no noise.

91

Figure 5.21: Noise and PEMS-SF: Classification results compared to Second Layer
MDBC

92

Figure 5.22: Noise and CIFAR-10: Classification results compared to Second Layer
MDBC

93

Table 5.4: Noise Degradation to Guessing

Dataset σcentroids (First Layer) σnoise (Guessing First
Observed)

MNIST 1.0× 100 nA 1.0× 101 nA
PEMS-SF 8.0× 10−2 nA 2.5× 10−1 nA
CIFAR-10 2.5× 100 nA 2.5× 101 nA

Additionally, Table 5.4 demonstrates when classification degrades to guessing. As

predicted in Section 4.3.3, this occurs once the standard deviation of the noise is

larger than the average standard deviation of the learned centroids when no noise

is present. While the results presented in Figures 5.20 - 5.22 are undoubtedly more

important, these results explain the upper limit of noise that can be tolerated while

still retaining any information at all.

Effect of Additive Noise on Depth

It is important to understand the effect of noise upon the features generated in higher

layers of DeSTIN. Figures 5.23 - 5.25 compare classification results using just the

upper layer belief states and using belief states from all layers. As explained in

Section 4.3.4, classification based only on the belief states from the upper layers

will decrease to guessing before classification based on belief states from all layers.

Guessing is reached at approximately the point that MDBC centroids significantly

changes as seen in Figures 5.20 - 5.22.

94

Figure 5.23: Depth,Noise, and MNIST: Classification results using only upper layer
beliefs compared to using beliefs from all layers.

95

Figure 5.24: Depth,Noise, and PEMS-SF: Classification results using only upper
layer beliefs compared to using beliefs from all layers.

96

Figure 5.25: Depth,Noise, and CIFAR-10: Classification results using only upper
layer beliefs compared to using beliefs from all layers.

97

Chapter 6

Discussion and Future work

6.1 Discussion

In this work, a new temporal feedback scheme for DeSTIN was introduced. This

new method allows DeSTIN to be more easily mapped to alternative hardware by

condensing more functionality into the incremental clustering algorithm that is the

basic function of each node. A method for using class labels to form centroids more

relevant to the classification task being performed was introduced. The label weight,

β, given to the class label in the clustering process had previously not been explored

in related work. This work demonstrated the effect β has upon classification and

provided a method for determining the proper value of this parameter based purely

on clustering statistics.

This work presented a method for achieving meaningful results on natural images

(CIFAR-10) by borrowing the ideas of convolution and sub-sampling in order to gain

shift invariance. Providing meaningful results on the CIFAR-10 dataset was very

important since it is the most widely used benchmark for deep learning methods,

and MNIST’s use as benchmark in deep learning has declined since human-level

performance has been achieved.

98

Finally, this work explored the feasibility of a DeSTIN implementation in analog

circuitry and explored the effects of analog inaccuracies on DeSTIN’s ability to

produce good features for classification. This work was used to guide the design of

an analog chip that contains a small-scale DeSTIN hierarchy for proof of concept

purposes. The large computation requirements of deep learning methods make

implementations in custom architecture very attractive, and analog hardware provides

an opportunity to drastically decrease the power consumption of deep learning which

has heavily relied on GPUs in recent years.

6.2 Future Work

DeSTIN’s classification performance on the CIFAR-10 is still short of state of the art

results. DeSTIN relies upon clustering to generate good features for a classifier. Using

supervised clustering, the centroids can be forced to correlate with the classes in order

to create features that better separate the data for classification. However, CNNs are

not simply using the labels to make features correlate with classes. They use the

actual classification error to adjust the weights of the network. Future work should

include a scheme to leverage classification error to modulate the learned centroids

in order to improve classification. This could take the form of a back-propagation

method to fine-tune the centroids, or some other form of modulating the clustering

process based on the clustering error.

DeSTIN has demonstrated an ability to perform classification on datasets with

spatial features (CIFAR-10) and datasets with temporal features (PEMS-SF). The

next frontier will be video datasets. Applying DeSTIN to video would likely require

convolution across a frame and recurrence of beliefs between frames. Some work

has been done applying convolutional neural networks to video classification tasks

(e.g. football game vs. track meet), but results using multiple frames versus a single

frame on this task were mixed (Karpathy et al., 2014). This is likely because a

single frame is all that is required to recognize most of these scenes. Video datasets

99

that contain more important temporal features should be explored. The videos used

should not be able to be classified based on a single frame and the order of events

should be important. One interesting application to explore would be sign language

gesture recognition. Gesture recognition tasks contain strong spatial and temporal

information, and it would be very impactful to accomplish for sign language what has

been accomplished in deep learning already for spoken language.

100

Bibliography

101

Abdelazeem, S. (2009). A novel domain-specific feature extraction scheme for arabic

handwritten digits recognition. In Wani, M. A., Kantardzic, M. M., Palade, V.,

Kurgan, L. A., and Qi, Y., editors, International Conference on Machine Learning

and Applications, ICMLA 2009, Miami Beach, Florida, USA, December 13-15,

2009, pages 247–252. IEEE Computer Society. 19

Arel, I., Rose, D., and Coop, R. (2009). Destin: A scalable deep learning architecture

with application to high-dimensional robust pattern recognition. In Proc. AAAI

Workshop on Biologically Inspired Cognitive Architectures, pages 1150–1157. 25

Arel, I., Rose, D. C., and Karnowski, T. P. (2010). Deep machine learning–a

new frontier in artificial intelligence research. IEEE Computational Intelligence

Magazine, 5(4):13–18. 21, 24

Bell, A. J. and Sejnowski, T. J. (1996). Edges are the” independent components” of

natural scenes. In NIPS, pages 831–837. 21

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton,

NJ, USA, 1 edition. 2

Bengio, Y. (2009). Learning deep architectures for ai. Foundations and Trends R© in

Machine Learning, 2(1):1–127. 2, 20, 21, 22

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A

review and new perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8):1798–1828. 2

Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards ai. Large-Scale

Kernel Machines, 34. 2, 20

Bialek, W., Rieke, F., Ruyter, D., and Warland, D. (1991). Reading a neural code.

Science, 252(5014):1854–1857. 5

102

Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and

singular value decomposition. Biological cybernetics, 59(4-5):291–294. 20

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search

engine. Comput. Netw. ISDN Syst., 30(1-7):107–117. 8

Bryll, R., Gutierrez-Osuna, R., and Quek, F. (2003). Attribute bagging: improving

accuracy of classifier ensembles by using random feature subsets. Pattern

recognition, 36(6):1291–1302. 46, 47, 113

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial

intelligence, 134(1):57–83. 8

Chapelle, O., Schölkopf, B., Zien, A., et al. (2006). Semi-supervised learning,

volume 2. MIT press Cambridge. 18

Chen, C.-L., Chen, W.-C., and Chang, F.-Y. (1993). Hybrid learning algorithm

for gaussian potential function networks. Control Theory and Applications, IEE

Proceedings D, 140(6):442–448. 41

Chen, H., Tang, F., Tino, P., and Yao, X. (2013). Model-based kernel for efficient time

series analysis. In Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’13, pages 392–400, New York,

NY, USA. ACM. 77, 78

Cuturi, M. (2011). Fast global alignment kernels. In Getoor, L. and Scheffer, T.,

editors, Proceedings of the 28th International Conference on Machine Learning

(ICML-11), ICML ’11, pages 929–936, New York, NY, USA. ACM. 68, 78

Cuturi, M. and Doucet, A. (2011). Autoregressive Kernels For Time Series. ArXiv

e-prints. 77, 78

103

Day, W. and Edelsbrunner, H. (1983). Efficient algorithms for agglomerative

hierarchical clustering methods. Forschungsberichte: Institute für Informationsver-

arbeitung. Inst., TU, Computerges. 11

de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R., and

Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science,

275:1805–1809. 5

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd

Edition). Wiley-Interscience. 2, 9, 11, 13, 14, 16, 18

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. (2009). The

difficulty of training deep architectures and the effect of unsupervised pre-training.

pages 153–160. 4

Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod,

P., and Talay, S. (2011). Large-scale fpga-based convolutional networks. Machine

Learning on Very Large Data Sets. 4

Farabet, C., Martini, B., Akselrod, P., Talay, S., LeCun, Y., and Culurciello, E.

(2010). Hardware accelerated convolutional neural networks for synthetic vision

systems. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, pages 257–260. IEEE. 4

Farabet, C., Poulet, C., and LeCun, Y. (2009). An fpga-based stream processor

for embedded real-time vision with convolutional networks. In Computer Vision

Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on,

pages 878–885. IEEE. 4

Gerbrands, J. J. (1981). On the relationships between svd, klt and pca. Pattern

recognition, 14(1):375–381. 19

Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition. 18

104

Hamel, P. and Eck, D. (2010). Learning features from music audio with deep belief

networks. In Proceedings of the 11th International Society for Music Information

Retrieval Conference (ISMIR), pages 339–344. 3

Hinton, G. E. (2002). Training products of experts by minimizing contrastive

divergence. Neural computation, 14(8):1771–1800. 24

Hinton, G. E., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T. N., and Kingsbury, B. (2012). Deep neural

networks for acoustic modeling in speech recognition: The shared views of four

research groups. IEEE Signal Process. Mag., 29(6):82–97. 3

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for

deep belief nets. Neural Comput., 18(7):1527–1554. 21, 23

Ho, T. K. (1998). Nearest neighbors in random subspaces. In Lecture Notes in

Computer Science: Advances in Pattern Recognition, pages 640–648. Springer. 46,

47

Hof, R. D. (2013). Deep learning. MIT Technology Review, 116(3). 1

Hyvrinen, A., Hurri, J., and Hoyer, P. (2009). Principal components and whitening.

In Natural Image Statistics, volume 39 of Computational Imaging and Vision, pages

93–130. Springer London. 21

Jiang, X. (2009). Feature extraction for image recognition and computer vision. In

Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE

International Conference on, pages 1–15. 19

Karnowski, T., Arel, I., and Rose, D. (2010). Deep spatiotemporal feature learning

with application to image classification. In Machine Learning and Applications

(ICMLA), 2010 Ninth International Conference on, pages 883 –888. 30

105

Karnowski, T. P. (2012). Deep Machine Learning with Spatio-Temporal Inference.

PhD thesis, The University of Tennessee, Knoxville, Tennessee. 27, 30, 77

Karnowski, T. P., Arel, I., and Young, S. (2011). Modeling temporal dynamics with

function approximation in deep spatio-temporal inference network. In BICA, pages

174–179. 32

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L.

(2014). Large-scale video classication with convolutional neural networks. In

Proceedings of International Computer Vision and Pattern Recognition (CVPR

2014). 99

Kégl, B. and Busa-Fekete, R. (2009). Boosting products of base classifiers. In

Proceedings of the 26th Annual International Conference on Machine Learning,

ICML ’09, pages 497–504, New York, NY, USA. ACM. 77

Krizhevsky, A. (2010). Convolutional deep belief networks on cifar-10. 79

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny

images. Master’s thesis, Department of Computer Science, University of Toronto.

23, 45, 69

Le, Q. V., MarcAurelio Ranzato, R. M., Matthieu Devin, K. C., and Greg Corrado,

J. D. (2012). Andrew ng (2012b).building high-level features using large scale

unsupervised learning. In International Conference in Machine Learning (cit. on

p. 131). 1

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. 22

Lecun, Y. and Cortes, C. (2009). The MNIST database of handwritten digits. 23,

45, 66

106

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009a). Convolutional deep

belief networks for scalable unsupervised learning of hierarchical representations.

In Proceedings of the 26th Annual International Conference on Machine Learning,

ICML ’09, pages 609–616, New York, NY, USA. ACM. 21

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009b). Convolutional deep

belief networks for scalable unsupervised learning of hierarchical representations.

In Proceedings of the 26th Annual International Conference on Machine Learning,

pages 609–616. ACM. 24

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2011). Unsupervised learning

of hierarchical representations with convolutional deep belief networks. Commun.

ACM, 54(10):95–103. 23

Lockett, A. J. and Miikkulainen, R. (2009). Temporal convolution machines for

sequence learning. Technical Report AI-09-04, Department of Computer Sciences,

the University of Texas at Austin. 24

Lu, J., Young, S., Arel, I., and Holleman, J. (2013). An analog online clustering

circuit in 130nm cmos. In Solid-State Circuits Conference (A-SSCC), 2013 IEEE

Asian, pages 177–180.

Lu, J., Young, S., Arel, I., and Holleman, J. (2014). 30.10 a 1tops/w analog deep

machine-learning engine with floating-gate storage in 0.13 um cmos. In Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International,

pages 504–505.

Lu, J., Young, S., Arel, I., and Holleman, J. (2015). 30.10 a 1tops/w analog deep

machine-learning engine with floating-gate storage in 0.13 um cmos. to appear in

IEEE Journal of Solid State Circuits.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations. In Cam, L. M. L. and Neyman, J., editors, Proc. of the fifth Berkeley

107

Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.

University of California Press. 9

MarcAurelio Ranzato, Y., Boureau, L., and LeCun, Y. (2007). Sparse feature learning

for deep belief networks. Advances in neural information processing systems,

20:1185–1192. 24

Mishtal, A. and Arel, I. (2012). Jensen-shannon divergence in ensembles of

concurrently-trained neural networks. In Machine Learning and Applications

(ICMLA), 2012 11th International Conference on, volume 2, pages 558–562. 47

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA,

1 edition. 8

Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., and Ng, A. Y. (2010). Tiled

convolutional neural networks. In Lafferty, J., Williams, C., Shawe-Taylor, J.,

Zemel, R., and Culotta, A., editors, Advances in Neural Information Processing

Systems 23, pages 1279–1287. Curran Associates, Inc. 78, 79

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal

deep learning. In International Conference on Machine Learning (ICML), Bellevue,

USA. 3

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space.

University College. 19

Pedrycz, W. (1998). Conditional fuzzy clustering in the design of radial basis function

neural networks. Neural Networks, IEEE Transactions on, 9(4):601–612. 41

Ratha, N. K., Chen, S., and Jain, A. K. (1995). Adaptive flow orientation-based

feature extraction in fingerprint images. Pattern Recognition, 28(11):1657 – 1672.

19

108

Reynolds, D. (2008). Gaussian mixture models. Encyclopedia of Biometric

Recognition, 2(17.36):14–68. 12

Salakhutdinov, R. and Hinton, G. E. (2007). Learning a nonlinear embedding by

preserving class neighbourhood structure. Journal of Machine Learning Research

- Proceedings Track, 2:412–419. 77

Scherer, D., Schulz, H., and Behnke, S. (2010). Accelerating large-scale convolutional

neural networks with parallel graphics multiprocessors. In Artificial Neural

Networks–ICANN 2010, pages 82–91. Springer. 79

Schmidhuber, J. (2012). Multi-column deep neural networks for image classification.

In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), CVPR ’12, pages 3642–3649, Washington, DC, USA. IEEE

Computer Society. 77

Schmidhuber, J. (2014). Deep learning in neural networks: An overview. CoRR,

abs/1404.7828. 2

Simard, P., Steinkraus, D., and Platt, J. (2003). Best practices for convolutional

neural networks applied to visual document analysis. In Document Analysis and

Recognition, 2003. Proceedings. Seventh International Conference on, pages 958 –

963. 75, 77

Street, W. N., Wolberg, W. H., and Mangasarian, O. L. (1993). Nuclear feature

extraction for breast tumor diagnosis. In SPIE’s Symposium on Electronic Imaging:

Science and Technology, pages 861–870. International Society for Optics and

Photonics. 19

Torralba, A., Fergus, R., and Freeman, W. (2008). 80 million tiny images: A large

data set for nonparametric object and scene recognition. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 30(11):1958–1970. 69

109

Tsividis, Y. and McAndrew, C. (2011). Operation and Modeling of the MOS

Transistor. Oxford University Press. 49

Uykan, Z., Guzelis, C., Celebi, M., and Koivo, H. (2000). Analysis of input-output

clustering for determining centers of rbfn. Neural Networks, IEEE Transactions

on, 11(4):851–858. 41

van Rossum, M., O’Brien, B. J., O’brien, B. J., and Smith, R. G. (2003). Effects

of noise on the spike timing precision of retinal ganglion cells. Journal of

Neurophysiology, 89:2406–2419. 5

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of

neural networks using dropconnect. In Proc. International Conference on Machine

learning (ICML’13). 78, 79

Young, S., Arel, I., Karnowski, T. P., and Rose, D. (2010). A fast and stable

incremental clustering algorithm. In Information Technology: New Generations

(ITNG), 2010 Seventh International Conference on, pages 204–209. 28

Young, S., Davis, A., Mishtal, A., and Arel, I. (2014a). Hierarchical spatiotemporal

feature extraction using recurrent online clustering. Pattern Recognition Letters,

37:115–123.

Young, S., Lu, J., Holleman, J., and Arel, I. (2014b). On the impact of approximate

computation in an analog destin architecture. Neural Networks and Learning

Systems, IEEE Transactions on, 25(5):934–946. 49

Young, S. R. and Arel, I. (2012). Recurrent clustering for unsupervised feature

extraction with application to sequence detection. In Machine Learning and

Applications (ICMLA), 2012 11th International Conference on, volume 2, pages

54–55. IEEE.

110

Yuille, A. L., Hallinan, P. W., and Cohen, D. S. (1992). Feature extraction from faces

using deformable templates. International journal of computer vision, 8(2):99–111.

18

111

Appendix

112

Appendix A

Ensembles Operating on Unique

Subsets of DeSTIN Beliefs

Although using ensembles that operate on unique subsets of DeSTIN’s belief states

was not necessary as outlined in Section 3.4, some results are presented here. An

ensemble of 11 MLP classifers as used in Chapter 5 is used. Each ensemble member

operates on a random subset of the belief states. Figures A.1 - A.3 demonstrate

the classification accuracy achieved on the three standard datasets as the size of

the random subset of features provided to each classifier is varied. In these results,

no increase in performance is seen by providing fewer features to each classifier as

was seen when using simpler classifiers (decision trees) and domain specific features

(Bryll et al., 2003). However, on the MNIST and CIFAR-10 tasks these results

indicate an opportunity to decrease the number of features provided to each classifier

and maintain comparable performance to using all features which would reduce the

computational complexity of each classifier. On the PEMS-SF task, ensembles do

not offer any improvement over a single network. This is a result of this dataset only

containing 267 training examples, while the other datasets contain at least 50, 000

training examples.

113

Figure A.1: MNIST: Classification accuracy versus percentage of features provided
to each classifier

114

Figure A.2: PEMS-SF: Classification accuracy versus percentage of features
provided to each classifier

115

Figure A.3: CIFAR-10: Classification accuracy versus percentage of features
provided to each classifier

116

Vita

Steven Robert Young was born in Flint, Michigan in 1986 to parents Jay and Teresa

Young. In 2005 he graduated as the valedictorian from Marshall County High School

in Lewisburg, Tennessee. He received his Bachelor of Science in Electrical Engineering

from the University of Tennessee in 2010. Steven began his pursuit of the PhD

degree in Computer Engineering in 2010 at the University of Tennessee. His graduate

studies were supported by the J. Wallace and Katie Dean Graduate Fellowship. He

has worked as a teaching assistant and received the Outstanding Graduate Teaching

Assistant award from the Electrical Engineering and Computer Science department

in 2013. He has also worked as a research assistant in the Machine Intelligence Lab

supporting multiple funded projects. He began working in the Machine Intelligence

Lab at the University of Tennessee as an undergraduate in 2008 and has participated

in several summer research opportunities at Oak Ridge National Laboratory. He

graduated with a Doctorate of Philosophy in Computer Engineering in December

2014 and has accepted a post-doctoral position at Oak Ridge National Laboratory.

He has been married to Angela Young since 2011.

117

	Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Deep Learning
	1.2 DeSTIN - A Compositional DML Architecture
	1.3 Benefits of Analog Architectures
	1.4 Contributions
	1.5 Publications
	1.6 Dissertation Outline

	2 Background and Literature Review
	2.1 Machine Learning
	2.1.1 Unsupervised Learning
	2.1.2 Supervised Learning
	2.1.3 Semi-Supervised Learning

	2.2 Feature Extraction
	2.2.1 Principal Component Analysis
	2.2.2 Auto-encoders

	2.3 Image Whitening
	2.4 Deep Machine Learning
	2.4.1 Convolutional Neural Networks
	2.4.2 Deep Belief Networks

	3 The DeSTIN Architecture
	3.1 Incremental Clustering
	3.2 The DeSTIN Node Revisited
	3.2.1 Recurrent Clustering
	3.2.2 Recurrent Clustering Models a Markov Chain
	3.2.3 Decay of Temporal Information
	3.2.4 Enhanced Cortical Circuit

	3.3 Supervised Clustering
	3.4 Scaling DeSTIN to CIFAR-10
	3.4.1 Sampling more movements nodes does not address shifts in features
	3.4.2 Convolutional DeSTIN
	3.4.3 Providing Unique Subsamples to Ensemble Members

	4 Implications of Analog Computation Inaccuracies
	4.1 Generic Analog Clustering Model
	4.1.1 Input Variation
	4.1.2 Update Asymmetry and Variation
	4.1.3 Memory Adaptation Variation
	4.1.4 Distance Error
	4.1.5 Distance Comparison
	4.1.6 Additive Noise
	4.1.7 Resulting Generic Clustering Model
	4.1.8 Belief State Inaccuracy

	4.2 Final Design
	4.2.1 Errors in Centroid Updates
	4.2.2 Errors in Belief State Calculation

	4.3 Effects of Analog Inaccuracies on DeSTIN
	4.3.1 Effect of Gain Errors
	4.3.2 Effect of Belief Normalization Error.
	4.3.3 Effect of Additive Noise
	4.3.4 Effects of Additive Noise on Depth

	5 Experimental Results
	5.1 Standard Datasets
	5.1.1 MNIST Dataset
	5.1.2 PEMS-SF Dataset
	5.1.3 CIFAR-10 Dataset

	5.2 Demonstrative Results
	5.2.1 Recurrent Clustering Temporal Representation Abilities
	5.2.2 Supervised Clustering

	5.3 Maximum Performance on Standard Benchmarks
	5.3.1 MNIST Results
	5.3.2 PEMS-SF Results
	5.3.3 CIFAR-10 Results

	5.4 System-Level Impacts: Modeling Inaccuracies
	5.4.1 Generic Clustering Model Results
	5.4.2 Evaluation of Final Design

	6 Discussion and Future work
	6.1 Discussion
	6.2 Future Work

	Bibliography
	Appendix
	Ensembles Operating on Unique Subsets of DeSTIN Beliefs

	Vita

