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Abstract

At present, quantum entanglement is a resource, distributed to enable a variety

of quantum information applications such as quantum key distribution, superdense

coding, and teleportation. Necessarily, the distribution and characterization of en-

tanglement is fundamental to its application. This dissertation details three research

efforts to enable nonlocal entanglement detection, distribution, and characterization.

Foremost of these efforts, we present the theory and demonstration of a nonlocal

polarization interferometer capable of detecting entanglement and identifying Bell

states statistically. This is possible due to the interferometer’s unique correlation

dependence on the anti-diagonal elements of the density matrix, which have distinct

bounds for separable states and unique values for the four Bell states. Second, we

propose a nonlocal method of interferometrically mapping time-entangled photons

to polarization entangled states, capitalizing on the strengths of both the robust

temporal degree of freedom and the “easy to measure” polarization degree of freedom.

Finally, we propose a method of estimating and representing correlation probabilities

in nonlocal two-photon experiments using Bayes’ rule. Numerical simulations

confirm that a vigorous consideration of the available information offers a correlation

characterization superior to the standard approach.
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Chapter 1

Introduction

Particle A and particle B interact at a common origin and depart in opposite

directions. Some distance west of the origin, a girl, Alice, sees that particle A is

blue. A similar distance east of the origin, a boy, Bob, sees that particle B is red.

More A and B particles depart the origin and Alice and Bob also observe these

particles. Each time Alice sees red, Bob sees blue, and each time Alice sees blue,

Bob sees red. Later, Alice and Bob confer and suggest two possible explanations

for the correlations. The first is that particle A and B leave the origin with different

definite colors determined by their interaction, and these are the colors observed. This

explanation is reasonable, since it agrees with anyone’s everyday experience. Their

second, imaginative, explanation is that the particles are neither red nor blue, but

only become red or blue when observed, with some unknown mechanism assuring the

observed colors are always different. Their first explanation certainly seems that it

must be the correct one. After all, the second explanation suggests the particles do

not have a color until one of them is observed. Furthermore, even if they accept this

reality, there’s another problem. When the particles are separated by a vast distance

and particle A’s color is observed, particle B must instantaneously adopt a different

color. Assuming simultaneous observations and that communication is bounded by

the speed of light, how would particle B know which color it should be? While Alice
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and Bob’s second explanation seems to have problems, quantum mechanics allows for

just such an explanation, entanglement.

The quantum state shared by Alice and Bob may be written as a state or ket in

Dirac notation [1, 2]

|  ⟩ = | ⟩ ⊗ | ⟩ . (1.1)

This separable state describes the case in which particles A and B always leave the

origin with colors red and blue, respectively. Informally, they are separable in the

sense that consideration of the particles as individuals or together is equivalent. If

we assume that half the time Alice observes red, and half blue, we can represent the

total separable mixed state, a probabilistic combination of pure states, as the density

operator

ρs =
1

2
(|  ⟩ ⟨  | + |  ⟩ ⟨  |) . (1.2)

This representation conveys that while the particles definitely have a color leaving

the origin, Alice and Bob simply are unaware as to this color before they observe it.

For instance, an observer, Charlie, at the origin may know the color before Alice and

Bob. However, Alice and Bob’s observations are unaffected by this.

Alice and Bob’s second explantation is that particles A and B have no color until

observed, at which time they always adopt different colors. This entangled state may

be written as

|••••⟩ =
1√
2

(|  ⟩ + |  ⟩) (1.3)

with a denisty matrix

ρe = |••••⟩ ⟨••••| =
1

2
(|  ⟩ ⟨  | + |  ⟩ ⟨  | + |  ⟩ ⟨  | + |  ⟩ ⟨  |) . (1.4)

Alice and Bob still do not know which color the particles are until observed, but now

it seems the particles have no color at all before they are seen. Additionally, the

density operator for the entangled state has “extra” terms compared to the mixed

state operator from Eq. 1.2. These terms are coherences between the two possibilities
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and are largely responsible for the quantum phenomena driving much of quantum

information. Now, what effect does an observer Charlie at the origin have on an

entangled state? If Charlie observes either particle at the origin, he collapses the

wavefunction [3]. If he observes that particle A is red, the state becomes that given

in Eq. 1.1, all coherence amplitudes vanish. A large quantity of scientific thought

and experiment has considered how Alice and Bob might distinguish Eq. 1.3 from

a mixture represented by Eq. 1.2. In that tradition, Chapter 2 of this dissertaion

will investigate a novel apparatus that, in part, allows Alice and Bob to make this

distinction.

Don’t Alice and Bob have something better to do? What value does this

determination have other than scientific curiosity? The determination of particle

color from the state 1.3 is random. Though the particles adopt opposing color

instantaneously, the randomness of this event disallows any sort of superluminal

information exchange between Alice and Bob. However, Alice and Bob do share

a random binary variable,   ≡ 0 or   ≡ 1. If Alice and Bob can confirm that

their state is the entangled state of Eq. 1.3 and not a separable mixture of which

Charlie could have complete information, they share a secret random bit! This can

be leveraged in one time pad cryptography [4], an unbreakable method of encryption.

This idea has become known as quantum key distribtuion (QKD) [5, 6] or quantum

key growing, since Alice and Bob grow or expand an intial shared secret key.

Additionally, if Alice and Bob were able to make the aforementioned distinction

between a separable state and an entangled state, they would confirm that quantum

mechanics [7, 8] gives the correct prediction! This confirmation would lend even more

credibility to quantum mechanics as the true theory of reality, and certainly secure

notable accolades for Alice and Bob. But first things, first. Let us review the history

of entanglement and how it can be used.
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1.1 A Historical Survey of Two Photon Entangle-

ment

As described, quantum theory predicts entanglement. Entangled particles exhibit

nonlocal correlations which seem to defy reasonable ideas of reality and locality. The

implications of entanglement were first discussed in 1935 by Einstein, Rosen, and

Podolsky [9] who presented the now famous EPR paradox of which Alice and Bob

have given us a glimpse. Later in 1935, Schrödinger published his “Shrödinger’s Cat”

paper [10, 11] and famously described entanglement [12] as

...the characteristic trait of quantum mechanics, the one that enforces its

entire departure from classical lines of thought.

In 1964 John S. Bell [13] derived an inequality, now among a collection known as Bell

inequalities, that set statistical bounds on the correlations two spatially separated

particles may have. Bell assumed these particles could have any deterministic

explanation, even those that allow a different result for each local reality at the time

of observation. The variables that allow for a specific outcome for each local reality

are known as hidden variables. These inequalities hold for all hidden variable theories,

but do not hold for quantum mechanics. In 1968 Clauser, Horne, Shimony, and Holt

introduced the CHSH inequality as an alternative to Bell’s with the purported benefit

of being realizable experimentally. In 1974, Clauser and Horne went further deriving

the CH inequality [14] which lowers the detection efficiency required to overcome the

detection loophole. Experiments violating the Bell inequalities have again and again

confirmed entanglement as predicted by quantum mechanics [15, 16, 17, 18, 19]. The

most famous of these being those performed by Alain Apsect in 1981 and 1982. A

common configuration for a CHSH Bell test is shown in Fig. 1.1

Bell’s original paper cited David Bohm who proposed [20] tests of quantum

mechanics based on the spin of electrons. Bell’s inequality was then laid out with

entangled electron spins as the testbed. The shift to Bell tests using polarization
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Figure 1.1: A typical Bell test. An entangled photon pair is shared between Alice
and Bob whose local measurement settings or local realities a0, a1, b0, and b1 are
randomly chosen by a symmetric beamsplitter (BS). HWP ≡ half-wave plate, PBS
≡ polarizing beamsplitter

entangled photons was made by Freedman and Clauser [21] who performed the first

Bell test in 1972. They generated polarization entangled photons from an atomic

cascade. The first Bell test using spontaneous parametric downconversion (SPDC)

was performed by Rarity and Tapster [22], and at present SPDC is still the most

common source of polarization entangled photons.

The simplicity of polarization entanglement makes its use ubiquitous in quantum

information proofs and demonstrations. Two-photon states are relatively easy to

produce from SPDC and are easy to manipulate and measure in the laboratory.

The downside is that polarization entanglement is fragile, especially when distributed

over optical fiber, the most convenient method of long distance photon transport.

This limitation on polarization entanglement led, in part, to proposals to test Bell

inequalities using two photon time entanglement and nonlocal interferometry.

Numerous experiments involving local and nonlocal two photon interferometry

have been carried out. While many of these experiments precede the following,

those mentioned here are both historically significant and also related to the reported

research. A more comprehensive history of two-photon interferometry is given by Ou

[23].
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An experiment carried out by Hong, Ou, and Mandel [24] is local in nature

and involves two identical photons incident on the two input ports of symmetric

beamsplitter as seen in Fig. 1.2.

Figure 1.2: Hong Ou Mandel interference occurs when indistinguishable photons are
incident on the two input ports of a symmetric beamsplitter as seen in a). The output
cases b) and c) are indistinguishable and out of phase by π due to the phase properties
of the symmetric beamsplitter. Thus, these cases perfectly and destructively interfere
leaving only the cases d) and e). The HOM dip is observed as the different port
coincident rate is extinguished.

When temporally overlapped, the two cases in which the photons exit different ports

of the beamsplitter (BS) are indistinguishable. This leads to two photon interference,

which in this case, due to the fixed phase relationship between the photons, is perfectly

destructive for the different port cases. This leaves the photon pair always exiting

the same port of the BS resulting in a HOM dip in the coincidence rate for different

ports. Since the visibility of HOM interference depends on the temporal and spectral

properties of the two photons, it is a versatile tool to characterize photons and sources

[25]. HOM interference is integral to local deterministic Bell state identification [26],

and can also be used to create two photon N00N states [27, 28].

In 1990, Rarity and Tapster [29] performed a two-photon experiment using a

Mach-Zehnder interferometer such that the coincidence rate at the output ports varied

as the phase in the interferometer is changed. This was true beyond a path length

difference greater than the coherence length of the individual photons. Thus, they

demonstrated the biphoton nature of the entangled pair which has a coherence length

in excess of the individual photons.
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In 1989, James Franson proposed an experiment [30] in which time-entanglement

is harnessed to exhibit interference in the correlations observed from two spatially

separated unbalanced Mach-Zehnder interferometers as depicted in Fig. 1.3.

Figure 1.3: Franson’s interferometer consists of two unbalanced Mach-Zehnder
interferometers fed by a shared two-photon source. Correlations are seen in the
detection port coincidence rates. These correlations vary as the phase from the path
mismatch α or β are changed.

The interferometer imbalance is larger than the single photon coherence time,

suppressing single photon interference, but smaller than the biphoton coherence

time. In this configuration, the photon detection ports exhibit correlations under

appropriate choices of the phases α and β. Rarity and Tapster also proposed

a nonlocal experiment [31], though due to spatial considerations it is not as

practical as Franson’s design. Franson’s interferometer was first demonstrated by

Ou [32], though a clever implementation was also demonstrated by Kwiat [33].

While initially proposed to test Bell’s inequality, the prevalence of Franson’s design

has been due to the robust nature of time entanglement, which enables long

distance entanglement distribution over optical fiber. By comparison, distribution of

polarization entanglement is presently greatly limited, though strides are being made

[34]. Robustness aside, Franson’s design is subject to its own problems. One of which

is that half the photon path choices are distinguishable and must be removed using

time discrimination. Strekalov, Pittman, and Kwiat demonstrated an experiment

[35] avoiding this problem, but it requires distribution of polarization entanglement.
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Another problem is that the interferometers must be stabilized. Historically this has

been accomplished using local lasers to separately “lock” the interferometers, by using

especially stable fiber configurations, or in the case of Strekalov, Pittman, and Kwiat

very short interfering paths in a Pockels cell. The last case is only possible due to the

unique nature of the experiment which again uses polarization distribution. Modern

entanglement distribution demonstrations using Franson interferometry have achieved

distances exceeding 300 km [36, 37]. These demonstrations use extremely stable

planar lightwave circuits (PLC) [38, 39] whose phases are adjusted using temperature

regulation. In Chapter 3, a Franson-like design is proposed which is phase-stable and

also maps robust time-entangled states to easy-to-measure polarization entangled

states.

The success, popularity, or boom of quantum information has resulted, in

part, from a few key proposed uses of entanglement, entanglement based quantum

key distribution (QKD) as proposed by Ekert [6], superdense coding [40], and

teleportation [41]. While Ekert’s QKD proposal uses distributed entanglement in

which measurements on the photon pairs are spatially separated, both teleportation

and superdense coding ultimately rely on a local Bell state measurement. However,

both local measurements promise a nonlocal benefit, a teleported state or an effective

increase in the information carried by a single photon. This brief survey of two photon

entanglement history is an insufficient representation of the breadth of two photon

quantum information. More thorough reviews include [42, 43].

1.2 Entanglement Detection

An entangled two-photon state is any that cannot be represented by the density

matrix

ρAB =
∑
i

aiρ
A
i ⊗ ρBi . (1.5)
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For instance, Alice and Bob’s state given in Eq. 1.3 cannot be written in this form.

Actually, there are simpler criteria for pure states, but pure states are not practically

realizable. Thus, I will choose to exclude their discussion. A cornucopia of theoretical

work exists [42, 44] investigating the nature of entanglement and how it may be

detected, verified, or “witnessed”. The typical goal of this research is to find methods

of determining whether or not a quantum state may be described using Eq. 1.5.

One method of ensuring a distributed state is entangled is to perform a Bell test

such as that proposed by Clauser, Horne, Shimony, and Holt (CHSH) [45]. This

is exactly the method Ekert proposed in his 1991 QKD proposal as a verification

of security. By breaking Bell’s inequality the state is confirmed to be inseparable,

entangled, and secure. Bell tests require four measurement settings at which sub-

maximal correlations generate the statistics necessary for entanglement verification.

This is fewer measurements needed than full state tomography which is required for

tests of negativity [46]. Negativity is a quantity calculated from a modified form

of the density matrix. It is based on criteria for a density matrix to be separable

as proposed by Peres [47]. Entanglement may also be revealed via an entanglement

witness W [48, 49] which is an experimentally measurable quantity such that for

all separable states ⟨W⟩ ≥ 0 and for at least one entangled state ⟨W⟩ < 0. For

example, the Bell inequality may be written as an entanglement witness. The first

witness implementation [50] required three experimental settings at which statistics

are generated. Though there are other quantifications and measures of entanglement

[42, 44], Bell tests, negativity, and some witnesses are among a small number of tests

which can presently be carried out by experimental linear optical measurements. In

Chapter 2, a nonlocal interferometer is presented that enables entanglement detection

and statistical Bell state identification.
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1.3 Polarization Entangled Photons

This dissertation focuses on two-photon entanglement. The photons can be entangled

in time, energy, polarization, space, momentum, all of these, or combinations of them.

The experiments described herein involve photon pairs entangled in energy, time,

and polarization. A commonly used source of entangled photon pairs is collinear

spontaneous parametric downconversion (SPDC) [51] which is theoretically described

in [23, 25] and Appendix A. Though this method of pair generation is assumed

throughout this manuscript, the experiments and propositions will carry over to other

sources of entangled pairs as they become available, for instance, from quantum dots

[52, 53].

Photons entangled in polarization have an especially simple description as qubits

in a linear vector space in which all states are representable by the superposition

of the photons’ individual and combined polarizations. In this description, the

quantum mechanical treatment reduces to linear algebra. A photon with a horizontal

polarization H or vertical polarization V is represented as a ket |H⟩ or |V ⟩, but

these are often interchangeable with the computational basis |0⟩ and |1⟩, for instance

|H⟩ ≡ |0⟩ and |V ⟩ ≡ |1⟩. As an example, the maximally entangled Bell states are

abstractly

∣∣Φ±⟩ =
1√
2

(|00⟩ ± |11⟩) (1.6)∣∣Ψ±⟩ =
1√
2

(|01⟩ ± |10⟩) . (1.7)

with |00⟩ ≡ |0⟩ ⊗ |0⟩. In terms of photon polarization the Bell states are

∣∣Φ±⟩ =
1√
2

(|HH⟩ ± |V V ⟩) (1.8)∣∣Ψ±⟩ =
1√
2

(|HV ⟩ ± |V H⟩) . (1.9)
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The gedanken state in Eq. 1.3 from the opening discussion would be a Ψ+ state. Much

of quantum information theory uses these Bell states as an entanglement resource,

including this research.

Polarization entangled photon states retain their entanglement in other polariza-

tion bases. The bases commonly considered are the rectilinear Z, diagonal X, and

circular Y bases. The Z basis is the “starting” basis with

|0⟩Z = |H⟩ |1⟩Z = |V ⟩ . (1.10)

In the diagonal basis, photons are represented as

|0⟩X =
1√
2

(|0⟩Z + |1⟩Z) |1⟩X =
1√
2

(|0⟩Z − |1⟩Z) . (1.11)

Lastly, in the circular basis,

|0⟩Y =
1√
2

(|0⟩Z + i |1⟩Z) |1⟩Y =
1√
2

(|0⟩Z − i |1⟩Z) . (1.12)

The conjugate relations for the diagonal basis are

|0⟩Z =
1√
2

(|0⟩X + |1⟩X) |1⟩Z =
1√
2

(|0⟩X − |1⟩X) (1.13)

and in the circular basis

|0⟩Z =
1√
2

(|0⟩Y + |1⟩Y ) |1⟩Z =
−i√

2
(|0⟩Y − |1⟩Y ) . (1.14)

It is then easy to show that starting with the Bell state Φ+
Z in the Z basis the state

is retained in the X basis Φ+
Z → Φ+

X while a bit is flipped in the Y basis Φ+
Z → Ψ+

Y .

This is of course not true of a separable state, in the rectilinear basis

|ψs⟩Z = |0A⟩Z |0B⟩Z (1.15)
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will always lead to Alice and Bob observing 0, but in the diagonal basis,

|ψs⟩X =
1

2
(|0A⟩X + |1A⟩X) (|0B⟩X + |1B⟩X) , (1.16)

Alice and Bob will have no correlation.

In Chapter 2, we present the nonlocal polarization interferometer which detects

polarization entangled states and enables statistical Bell state identification. In

Chapter 3, we propose distributing robust time entangled photons and mapping them

to polarization entangled Bell states, allowing polarization measurements in the Z,

X, and Y bases with entanglement preservation.

1.4 Time Entangled Photons

Time entangled photons are robust to decoherence in optical fiber transmission

lines compared to polarization entanglement. This makes the temporal degree of

freedom a convenient choice for entanglement distribution. As mentioned previously,

the Franson interferometer is the most common experimental exhibition of time

entanglement. The Franson interferometer overlaps two temporal components, one

from earlier and one from later, of a long coherence time two-photon state. When the

single-photon temporal information does not reveal which case, earlier or later, the

components are indistinguishable, thereby leading to nonlocal interference. In this

introduction to time entanglement, the Franson interferometer and its theoretical

representation are briefly described.

Unless considerable hand waving is used, representing time entangled states

is more involved than polarization entangled states. A continuous or integral

representation is typically used to represent the coherence properties of the time

entangled two-photon state. For example, the range over which the nonlocal Franson

interferometer may be mismatched and still produce nonlocal correlations [23] or the

width of the Hong-Ou-Mandel dip [25] are both calculated with this treatment. Often,
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the experimental design allows simplification of these calculations, which can become

increasingly complex as the treatment becomes more general or detailed. Thus, where

possible, reasonable approximations are made to simplify the calculation while still

retaining the core predictions.

A detailed description of two-photon pair creation from spontaneous parametric

downconversion (SPDC) is given in Appendix A. From this calculation, we determine

that two-photon states from SPDC may be represented by the state

|ψ⟩ ∝
∫
dωdω′A(ω + ω′)ϕ(ω, ω′)â†H(ω)â†V (ω′) |0⟩ (1.17)

where we have assumed a Type II SPDC process in which the photon pair includes

one horizontal (H) and one vertical (V ) polarization photon. A(ω+ω′) is the spectral

amplitude of the pump photon, which is related to the pump’s power spectrum. In the

case of a narrowband continuous-wave pump, the phase matching function ϕ(ω, ω′) is

responsible for the coherence properties of the downconverted photons. The creation

operator â†(ω) operates on the vacuum state, creating a photon in an infinitely narrow

energy band ω. Consider that from this state the H photon is sent to Alice and the

V to Bob. These photons are then incident to a nonlocal Franson interferometer

as seen in Fig. 1.3. In each interferometer, photons may travel the long or short

paths. We assume that cases where photons take different paths are excluded using

time discrimination. This is possible when the interferometer imbalance is large

enough that single photons are macroscopically separated in time, on the order of

nanoseconds. With these photons disregarded, we are left with photons both taking

the short or both the long paths. These cases are indistinguishable due to the long
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coherence time of the pump. This leaves the post interferometer state

|ψ′⟩ ∝1

4

∫
dωdω′A(ω + ω′)ϕ(ω, ω′)

×
[(
â†A0(ω)â†B0(ω

′) − â†A1(ω)â†B1(ω
′)
)(

1 + e−i(ωTA+ω′TB)
)

+
(
â†A0(ω)â†B1(ω

′) + â†A1(ω)â†B0(ω
′)
)(

1 − e−i(ωTA+ω′TB)
)]

|0⟩ (1.18)

where the irrelevant polarization notation has been replaced by interferometer labels

A ≡ Alice and B ≡ Bob and detection port labels 0 and 1. Times TA and TB

are the temporal delays between Alice and Bob’s unbalanced interferometer arms,

respectively. The probability of a coincidence at Alice port j and Bob port s is found

by integrating the second order correlation function

Γ(2)(t, t+ τ) = |⟨0| âAj(t)âBs(t+ τ) |ψ′⟩|2 (1.19)

with time dependent annihilation operator

âj (t) = (2π)−1/2

∫
dωâj (ω) eiωt (1.20)

over the temporal window of coincidence

Pjs =

∫
T

dτΓ(2)(t, t+ τ). (1.21)

Through involved calculations it can be shown that this probability is approximately

Pjs ∝
1

4
(δj0δs0+δj1δs1)

{
1+ Cos

[ωp
2

(TA + TB)
]}

+
1

4
(δj0δs1+δj1δs0)

{
1− Cos

[ωp
2

(TA + TB)
]}

. (1.22)
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In Chapter 2 and 3, the veil is lifted, and a more rigorous treatment of both

multi-mode polarization and time entangled states in the context of the research

is presented.
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1.5 Research Summary

This dissertation is composed of three research components, the nonlocal polarization

interferometer, time-to-polarization mapper, and correlation estimation with Bayes’

rule. This summary provides a short description, research motivation, and research

results.

Nonlocal Polarization Interferometer

Description

The nonlocal polarization interferometer (NPI) is a composite interferometer con-

sisting of two spatially separated interferometers that share a source of polarization

entangled photons.

Motivation

The NPI enables entanglement detection and characterization for use in quantum

information experiments and applications. This research is also fundamental science.

Results and Prospects

The nonlocal polarization interferometer was successfully implemented in a novel

phase-stable configuration. The NPI was confirmed to detect entanglement for the

four Bell states, a type of entangled state. The NPI also allowed implementation of a

novel Bell inequality test in which bound breaking was confirmed for each of the Bell

states. In addition, the Bell states were concurrently identified from these statistics.
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Time-to-Polarization Mapper

Description

This is a nonlocal interferometric configuration allowing spatially separated time

entangled photons to be mapped to polarization entangled states. The time-

to-polarization mapper (TPM) can be considered a variation on the Franson

interferometer or as a two-photon source, part of which extends to the end users.

Motivation

Time entanglement is robust to decoherence over optical fiber links. Therefore, time-

entangled photons retain their entanglement over longer distances than polarization

entangled states. The TPM uses time distribution, but allows the end users to share

a polarization entangled state.

Results and Prospects

TPM is a phase-stable alternative to current implementations of Franson interferom-

etry, and should be competitive with losses observed in those systems. TPM can be

used to implement quantum information tasks relying on polarization entanglement

over long distances. For example, polarization based Quantum Key Distribution

(QKD). Polarization based QKD has more stringent security proofs than time, and

the TPM allows these to be used without alteration. Generating Bell states in time

is not trivial. TPM simplifies Bell state generation over long distances by mapping

to polarization.

Correlation Estimation with Bayes’ Rule

Description

This a statistical approach using Bayes’ rule, a rule for probability assignment, to

estimate the probability of correlation in nonlocal two-photon experiments.
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Motivation

The standard approach of correlation estimation does not take full advantage of the

information available. It also leads to logical pitfalls when mapping experimental

quantities into probability distributions.

Results and Prospects

Estimating the correlation probability with Bayes’ rule, in which the underlying

physics are more closely modeled, results in superior correlation estimations in numeri-

cally simulated experiments. Additionally, this method of correlation characterization

allows a more logical and useful interpretation of the correlation probabilities.
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Chapter 2

The Nonlocal Polarization

Interferometer

In this chapter a nonlocal interferometer capable of detecting entanglement and

identifying Bell states statistically is discussed and investigated. These capabilities

are possible due to the interferometer’s unique correlation dependence on the anti-

diagonal elements of the density matrix, which have distinct bounds for separable

states and unique values for the four Bell states. The interferometer consists

of two spatially separated balanced Mach-Zehnder or Sagnac interferometers that

share a polarization entangled source. Correlations between these interferometers

exhibit nonlocal interference, while single photon interference is suppressed. This

interferometer also allows for a unique version of the CHSH-Bell test where the local

reality is the photon polarization. The relevant theory and experimental results are

presented.

A brief version of this chapter was published in Physical Review A with special

selection as an Editor’s Suggestion [54].
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2.1 Overview

Entanglement enables a variety of proposed quantum information applications [43]

such as quantum key distribution [6, 55], superdense coding [40], teleportation

[41], and quantum computing [56]. Necessarily, the detection, quantification, and

characterization of entanglement is fundamental to its application [42, 44]. One

method of ensuring a distributed state is entangled is to perform a Clauser-Horne-

Shimony-Holt (CHSH) Bell test [45], with entanglement detected for Bell parameters

|S| > 2. A second method is to measure the negativity [46] of the state, which is

an entanglement measure requiring full state tomography. Entanglement may also

be revealed via an entanglement witness [48, 49] which typically requires significantly

fewer measurements than full state tomography. The broad class includes witness

forms of CHSH-Bell tests and negativity tests. In addition to these quantifications and

measures there are others [42, 44]. We report a nonlocal polarization interferometer

(NPI) that enables entanglement detection and nonlocal statistical Bell state

identification. This form of Bell state identification is nonlocal and statistical.

Therefore, it is distinct from the local and deterministic measurements used for

teleportation and super-dense coding. Instead, nonlocal Bell state identification

permits characterizing entanglement between spatially remote subsystems. This is

possible due to the NPI’s unique correlation dependence on the anti-diagonal elements

of the density matrix, which have separable state bounds and unique values for the

four Bell states. Additionally, we report an NPI based CHSH-Bell test with the

resulting statistics also identifying the Bell state.

The balanced Mach-Zehnder implementation of the NPI is illustrated in Fig.

2.1. Polarization entangled photon pairs are distributed amongst Alice and Bob,

each of whom has a balanced Mach-Zehnder interferometer that includes a half-wave

plate (HWP) in one path. The HWP is oriented so as to rotate horizontal (vertical)

polarization to vertical (horizontal). Upon exiting the interferometers, the photons

are directed to polarizing beam splitters (PBSs) monitored by single-photon detectors.
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Single-photon interference is suppressed by polarization rotation in one path, but two-

photon interference remains observable as the phases α and β are modulated. Though

similar in appearance, the NPI is distinct from the well known Franson interferometer

[30]. Franson’s design harnesses time-bin entangled states to demonstrate nonlocal

interference while the NPI requires only polarization entanglement. In the remainder

of this article we describe the conditions under which correlations are observed, we

put bounds on correlations for separable states, we show that the Bell states produce

unique NPI signatures, we discuss the NPI version of the CHSH-Bell test, and we

present experimental results verifying these predictions using a phase-stable Sagnac

version of the NPI.

Figure 2.1: The two-photon interferometer is composed of two balanced
Mach-Zehnder interferometers sharing a polarization entangled source. Nonlocal
interference effects are observed while single-photon interference is suppressed.

2.2 Nonlocal Interference

Nonlocal two-photon interference occurs when Alice and Bob share a polarization

entangled source such as the Bell state

∣∣Ψ+
⟩

= (1/
√

2) (|HA⟩ ⊗ |VB⟩ + |VA⟩ ⊗ |HB⟩) . (2.1)

Given this source, it is straightforward to show that the probability for a single

photon to exit any given port of Alice or Bob’s Mach-Zehnder interferometer is 1/4,
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regardless of phase. That is, no single-photon interference is observed. However, non-

local interference is observed in the coincidences between Alice and Bob’s detectors.

The probability that the signal and idler exit Alice’s port y and Bob’s port z is

PjAy
sBz

(α, β)=


1
16
{1 + (-1)z+y cos [α+β]} j ̸=s

1
16
{1 + (-1)z+y cos [α−β]} j=s

(2.2)

where A and B indicate Alice and Bob detectors, respectively, indices j, s ∈ {H, V }

indicate the polarization of the detected photons, y, z ∈ {0, 1} indicate the detection

port, and the phases α and β result from the path length mismatch in Alice and

Bob’s interferometers. In Fig. 2.2 the count rate for coincidence event HA0-HB1

is given versus the path length in Alice’s interferometer. As predicted, a sinusoidal

dependence on the phase is observed. This date was taken with a preliminary Mach-

Zehnder based experiment. A similar curve using the final experimental design is

given in Fig. 2.8.
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Figure 2.2: Non-Local Franson Interference for detectors HA0 and HB1 with 99.6±
2.6% corrected visibility and a 89.5 ± 2.3% raw visibility. This date was collected
using a preliminary Mach-Zehnder experiment.

Nonlocal interference in the NPI can be understood with the help of Figs. 2.3

and 2.4, which show four ways that a coincidence can occur. For the input state

given in Eq. 2.1, we see in Fig. 2.3 that orthogonally polarized photons are detected
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Figure 2.3: Nonlocal interference
observed for an orthogonal polar-
ization event VA1HB1 is due to
indistinguishable cases a) and b).

Figure 2.4: Nonlocal interference
observed for an identical polarization
event HA1HB1 is due to indistinguish-
able cases a) and b).

only if the polarizations of the photons are both rotated by 90 degrees or if they are

both left un-rotated, i.e., if both photons take the upper paths or both take the lower

paths. These cases are indistinguishable and equally likely, thereby leading to the

orthogonal (j ̸=s) interference pattern of Eq. 2.2. Likewise, in Fig. 2.4 we see that

the photons are detected with identical polarizations only if one travels the upper

path and one the lower. Interference between these indistinguishable cases leads to

the parallel (j=s) interference pattern in Eq. 2.2.

2.3 A Phase Stable Implementation

The Mach-Zehnder version of the NPI is simple and provides insight into the indistin-

guishable cases leading to interference. However, the Mach-Zehnder interferometer

requires active phase stabilization in order to produce stable nonlocal correlations.

To avoid this difficulty, we use a Sagnac-based device that allows observation of the

same nonlocal interference effects but in a phase-stable configuration. Typically, a

fixed Sagnac or ring interferometer’s phase cannot be adjusted due to the common

path nature of the device. However, our implementation uses directionally dependent

phase modulators (DDPM) as well as directionally dependent polarization rotators.
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The DDPM design is reported in [57] as a polarization independent phase modulator.

This design is indeed polarization independent, but it is also directionally dependent,

i.e. it matters which port the photon is incident. A schematic of our Sagnac NPI

design is given in Fig. 2.5.

Figure 2.5: Sagnac interferometer setup including directionally dependent phase
modulator and dual polarization circulator.

Referencing Bob’s interferometer in this figure, photons pass through a circulator

to the first BS where they randomly choose the reflected, clockwise (CW), path or

they choose the transmitted, counter-clockwise (CCW), path. Photons taking the

CW path are then incident on the upper PBS input port of the DDPM. The vertical

component of these photons travels CW in the DDPM and the horizontal component

travels CCW. In either path, the photons encounter Faraday rotator (FR) and half-

wave plate (HWP) combinations that are configured to rotate the polarization 90◦ in

the direction indicated by the arrow aside the FR-HWP. In the direction opposite

these arrows the photon polarization is not changed. The phase modulation β

is applied only to photons whose polarization is horizontal when they encounter

the modulator indicated by β in the figure. It is clear that photons taking the

reflected (CW) path in Bob’s interferometer gain a phase β, while photons taking the

transmitted (CCW) path gain no phase, no matter the polarization. The additional

FR-HWP combination in the transmitted path of Bob’s interferometer takes on the

role of the HWP in the Mach-Zehnder device; It suppresses single-photon interference

with a 90◦ polarization rotation for CCW propagating photons. Given that Alice and
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Bob share the Bell state Ψ+ as in the Mach-Zehnder description, an orthogonal event,

Alice and Bob measure different polarizations, in the Sagnac NPI could have resulted

from the indistinguishable cases that both Alice and Bob’s photons are transmitted

through the first BS, or both are reflected. Parallel events, Alice and Bob measure the

same polarization, occur from the indistinguishable cases that Alice’s photon takes

the transmitted path and Bob’s the reflected or vice-versa.

2.4 Separable and Entangled States

Assume Alice and Bob share a two-photon state with a density matrix in the

polarization basis

ρ =


a b c d

b∗ e f g

c∗ f ∗ h j

d∗ g∗ j∗ k

 . (2.3)

The NPI includes two input ports per interferometer, with H and V polarization

components. The two-photon state is distributed through one input port of each

interferometer, while the remaining port is vacuum, see Fig. 2.1 or 2.5. The 16x16

density matrix including all of these components is

ρ
′

=



a b 0 0 c d 0 · · · 0

b∗ e 0 0 f g 0 · · · 0

0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 · · · 0

c∗ f ∗ 0 0 h k 0 · · · 0

d∗ g∗ 0 0 k∗ l 0 · · · 0

0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

. . .

0 0 0 0 0 0 0 0



.
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where the zero elements include vacuum components.

The operator representing either Alice or Bob’s Sagnac interferometer is

M(ϕ) = (B ⊗ I) ·
(
eiϕZ ⊕X

)
· (B ⊗ I)

where ϕ ∈ {α, β},

I =

 1 0

0 1

 , B =
1√
2

 i 1

1 i

 ,

X =

 0 1

1 0

 , and Z =

 1 0

0 -1

 .

The operator ⊗ indicates the Kronecker product and ⊕ indicates the direct sum. The

operation B ⊗ I expands the BS operation from a single component at each input

and output port to include both horizontal and vertical polarization components.

The operation eiϕZ ⊕ X represents operations for each path in an interferometer.

Photons taking the reflected path in either interferometer have phase modulation

ϕ applied. Vertical photons taking the reflected path gain an additional π phase

resultant from the subtleties of the FR-HWP polarization rotation. Photons taking

the transmitted path have their polarization rotated 90◦ but gain no phase. The

operator for the Mach-Zehnder version of the NPI is found by replacing Z with I.

This subtle difference changes the form of many of the equations to come, though

the same information is extractable from either device. We will use the Sagnac NPI

operator, since our experimental results were taken with this device.

The final density matrix post interferometers is

ρ
′′
(α, β) = U(α, β)ρ

′
U †(α, β)
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where U(α, β) = M(α)⊗M(β). The probability of a coincidence for each combination

of Alice and Bob’s detectors is given by the diagonal elements of ρ
′′
(α, β),

PHA0
HB0

(α, β) = ρ
′′

11(α, β) PHA0
V B0

(α, β) = ρ
′′

22(α, β)

PHA0
HB1

(α, β) = ρ
′′

33(α, β) PHA0
V B1

(α, β) = ρ
′′

44(α, β)

PV A0
HB0

(α, β) = ρ
′′

55(α, β) PV A0
V B0

(α, β) = ρ′′66(α, β)

PV A0
HB1

(α, β) = ρ
′′

77(α, β) PV A0
V B1

(α, β) = ρ
′′

88(α, β)

PHA1
HB0

(α, β) = ρ
′′

99(α, β) PHA1
V B0

(α, β) = ρ
′′
10
10

(α, β)

PHA1
HB1

(α, β) = ρ
′′
11
11

(α, β) PHA1
V B1

(α, β) = ρ
′′
12
12

(α, β)

PV A1
HB0

(α, β) = ρ
′′
13
13

(α, β) PV A1
V B0

(α, β) = ρ
′′
14
14

(α, β)

PV A1
HB1

(α, β) = ρ
′′
15
15

(α, β) PV A1
V B1

(α, β) = ρ
′′
16
16

(α, β).

When the source is a Bell state,

∣∣Φ±⟩ = (1/
√

2) (|HA⟩ ⊗ |HB⟩ ± |VA⟩ ⊗ |VB⟩) or∣∣Ψ±⟩ = (1/
√

2) (|HA⟩ ⊗ |VB⟩ ± |VA⟩ ⊗ |HB⟩) ,

we find the probabilities

PjAy
sBz

(α, β)=


1
16
{1+ ℓ(-1)z+y cos [α+mβ]} j ̸=s

1
16
{1+ ℓ(-1)z+y cos [α−mβ]} j=s

(2.4)

where ℓ,m values for each Bell state are Ψ+:{1,1},Ψ−:{-1,1},Φ+:{1,-1}, and Φ−:{-1,-

1}.

The probability of coincidence for any given port combination depends on the

density matrix elements given in Eq. 2.3. This dependence varies with the phases α

and β. However, the case α=β= π/4 is particularly interesting. It is this case that

the remainder of this paper will focus on. We refer to the NPI configured with α=β=
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π/4 as NPIπ/4 , the standard configuration. With these settings, it is straightforward

to show that for the general density matrix ρ given in Eq. 2.3 that

PjAy
sBz

(π
4
,
π

4

)
=


1
16

[1−(-1)y+z {d+d∗+i(δjH−δjV )(f−f ∗)}+(-1)yσjA+(-1)zσsB] j ̸=s

1
16

[1+(-1)y+z {i(δjH−δjV )(d−d∗)+f+f ∗}+(-1)yσjA+(-1)zσsB] j=s

where

σ
HA

= eiπ/4{−c− g+ i(c∗ + g∗)},

σ
VA

= eiπ/4{c∗ + g∗ − i(c+ g)},

σ
HB

= eiπ/4{−b− k + i(b∗ + k∗)}, and

σ
VB

= eiπ/4{b∗ + k∗ − i(b+ k)}

are proportional to the marginal coherences, i.e. single-photon interference. Defining

the polarization dependent correlation coefficient as

Ejs ≡
PjA0

sB0
(π
4
,π
4
)+PjA1

sB1
(π
4
,π
4
)−PjA0

sB1
(π
4
,π
4
)−PjA1

sB0
(π
4
,π
4
)

PjA0
sB0

(π
4
,π
4
)+PjA1

sB1
(π
4
,π
4
)+PjA0

sB1
(π
4
,π
4
)+PjA1

sB0
(π
4
,π
4
)
, (2.5)

we find the real-valued coefficients

EHH = f + f ∗ − i(d− d∗), (2.6)

EVV = f + f ∗ + i(d− d∗), (2.7)

EHV = −d− d∗ − i(f − f ∗), and (2.8)

EVH = −d− d∗ + i(f − f ∗) (2.9)

where d, d∗, f, and f ∗ are the anti-diagonal elements of the density matrix ρ given in

Eq. 2.3. The correlation coefficients have values −1 ≤ E ≤ 1, with 1(-1) indicating
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perfect correlation(anti-correlation). Clearly, we have the resulting relations

f + f ∗ =
EHH + EVV

2
and (2.10)

d+ d∗ =
−EHV − EVH

2
. (2.11)

These relations indicate that parallel correlations, HH and V V , are proportional to

f + f ∗. Similarly, orthogonal correlations, HV and V H, are proportional to d + d∗.

Referencing Table 2.1, Fig. 2.6, and 2.7 we see that each of the Bell states has a

unique correlation signature in the NPI. As an example, when measurements are

made on the Bell state Ψ+ we expect no correlation for orthogonal events and perfect

correlation for parallel events.

Additionally, it should be clear that the correlation coefficients 2.6, 2.7, 2.8, and

2.9 may also be used to identify the “shifted” Bell states

∣∣Φ±
s

⟩
= (1/

√
2) (|HA⟩ ⊗ |HB⟩ ± i |VA⟩ ⊗ |VB⟩) (2.12)∣∣Ψ±

s

⟩
= (1/

√
2) (|HA⟩ ⊗ |VB⟩ ± i |VA⟩ ⊗ |HB⟩) . (2.13)

Thus, eight maximally entangled states may be uniquely identified, statistically, in

the NPI.

Table 2.1: Bell state signatures for f + f ∗ and d+ d∗.

Ψ+ Ψ− Φ+ Φ−

d+ d∗ 0 0 1 -1

f + f ∗ 1 -1 0 0

For any state, |f + f ∗| ≤ 1 and |d + d∗| ≤ 1. However, if we consider the density

matrix for a separable pure state

ρA ⊗ ρB = |A⟩ ⟨A| ⊗ |B⟩ ⟨B|
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where

|A⟩=

 sin(a)

cos(a)eiθA

 and |B⟩=

 sin(b)

cos(b)eiθB

 ,

we find

f + f ∗ = (1/2) sin(2a) sin(2b) cos(θA − θB)

d+ d∗ = (1/2) sin(2a) sin(2b) cos(θA + θA)

which requires

|f + f ∗| ≤ 1

2
and |d+ d∗| ≤ 1

2
. (2.14)

These inequalities also hold for any separable mixed state of the form

ρmix =
∑
λ

pλρ
λ
A ⊗ ρλB,

since, in this case,

f + f ∗ =
∑
λ

pλ (fλ + f ∗
λ) and

d+ d∗ =
∑
λ

pλ (dλ + d∗λ) .

Thus, the conditions |f + f ∗| > 1/2 or |d + d∗| > 1/2 are required for an entangled

state.

Knowledge of f + f ∗ and d+ d∗ also determine the minimum Bell state fidelities.

The fidelities or overlap of the generic density matrix from Eq. 2.3 with each Bell

state are

FΦ± =
⟨
Φ±∣∣ ρ ∣∣Φ±⟩ = (a+ k ± [d+ d∗]) /2 and (2.15)

FΨ± =
⟨
Ψ±∣∣ ρ ∣∣Ψ±⟩ = (e+ h± [f + f ∗]) /2. (2.16)
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Since all density matrices must be positive semi-definite, ⟨ϕ| ρ |ϕ⟩ ≥ 0, Eq. 2.15 and

2.16 require

a+ k ≥ |d+ d∗| and e+ h ≥ |f + f ∗| .

These inequalities lead to the minimum fidelity values

Fψ+ ≥ (|f + f ∗| + f + f ∗)/2,

Fψ− ≥ (|f + f ∗| − f − f ∗)/2,

Fϕ+ ≥ (|d+ d∗| + d+ d∗)/2, and

Fϕ− ≥ (|d+ d∗| − d− d∗)/2.

Only one of these can exceed 1/2 for a given state.

Experimentally, we determine the expectation value of the correlation coefficient

given in Eq. 2.5 as

⟨Ejs⟩=
CjA0

sB0
(π
4
,π
4
)+CjA1

sB1
(π
4
,π
4
)−CjA0

sB1
(π
4
,π
4
)−CjA1

sB0
(π
4
,π
4
)

CjA0
sB0

(π
4
,π
4
)+CjA1

sB1
(π
4
,π
4
)+CjA0

sB1
(π
4
,π
4
)+CjA1

sB0
(π
4
,π
4
)
,

where CjAy
sBz

(π
4
, π
4
) are accidental corrected and normalized coincidence counts for

detector combinations jAy and sBz. The experimental measurements of f + f ∗

and d+ d∗ made on many copies of an identical state are

⟨f + f ∗⟩ =
⟨EHH⟩ + ⟨EVV⟩

2
and

⟨d+ d∗⟩ =
−⟨EHV⟩ − ⟨EVH⟩

2
.

Entanglement is detected when sufficient experimental statistics are gathered to

indicate that

| ⟨f + f ∗⟩ | > 1/2 or (2.17)

| ⟨d+ d∗⟩ | > 1/2. (2.18)
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Maximally entangled states will have experimental values | ⟨f + f ∗⟩ | → 1 or

| ⟨d+ d∗⟩ | → 1. For any experiment in which the source is static, unchanging, these

simple frequency based statistics will hold, and confirmation of Eq. 2.17 or 2.18 will

indicate an entangled state with high confidence. Experimental results for each Bell

state are plotted in Fig. 2.6 along with a graphical depiction of the bounds given for

separable and entangled states. These results with standard deviations are also given

in Table 2.2. We have also given the expected and observed values for the correlation

Figure 2.6: Separable and entangled
state bounds for parameters f +
f ∗ and d + d∗ with corresponding
measurement values for the four Bell
states indicated by dots and diamonds.

Figure 2.7: Expected and observed
values for the correlation coefficients
EHH, EVV, EHV, and EVH in the standard
configuration for each Bell state. Stan-
dard deviations for these coefficients
are ≤ 0.06.

coefficients EHH, EVV, EHV, and EVH for each Bell state in the standard configuration in

Fig. 2.7. Each of these figures graphically depicts each Bell state’s unique correlation

signature.

To further illustrate that correlations are directly linked to f + f ∗ and d+ d∗, we

vary these values using a phase modulator and experimentally determine their value.

Results for “ψ”-like states ψ(θ) ∝ HV + eiθV H are given in Fig. 2.8 (a), where

cos θ = f + f ∗ and θ varies with voltage. Similarly, the results for “ϕ”-like states
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ϕ(γ) ∝ HH + eiγV V are given in Fig. 2.8 (b), where cos γ = d + d∗ and γ varies

with voltage. The voltages V2π and Vπ are associated with “+” and “-” Bell states,

respectively. The phase dependence on voltage is nonlinear but approaches linearity

in the region between V2π=1.15V and Vπ=1.75V .

Figure 2.8: a) Variation of phase θ in state ψ(θ) ∝ HV + eiθV H using a liquid
crystal waveplate. b) Variation of phase γ in state ϕ(γ) ∝ HH+eiγV V using a liquid
crystal waveplate.

2.5 A Novel Bell Test

CHSH-Bell tests [45] are commonly carried out using a polarization-based experiment

as seen in Fig. 2.9. For states that obey locality constraints, the Bell parameter S

obeys the inequality

|S|= |E(a0, b0) + E(a0, b1) + E(a1, b0) − E(a1, b1)|≤2

where a0, a1, b0, and b1 are local realities such as polarization rotation, and the

correlation coefficient is

E(a, b) =PHH(a, b)+PVV(a, b)−PHV(a, b)−PVH(a, b)
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where Pjs(a, b) is the probability of a coincidence between Alice’s j polarization

detector and Bob’s s polarization detector given the local realities a and b for Alice

and Bob, respectively. The experimental estimate of the correlation coefficient in the

CHSH-Bell test is

⟨E(a, b)⟩=
CHH(a, b)+CVV(a, b)−CHV(a, b)−CVH(a, b)

CHH(a, b)+CVV(a, b)+CHV(a, b)+CVH(a, b)

with coincidence counts Cjs(a, b).

Figure 2.9: A typical Bell test. An entangled photon pair is shared between Alice
and Bob whose local measurement settings or local realities a0, a1, b0, and b1 are
randomly chosen by a symmetric beamsplitter.

Since the polarization of any photon exiting the NPI is random, the final photon

polarization represents a “local reality”. Therefore, a unique CHSH-Bell test may be

performed based on the four random photon polarization outcomes HH, V V , HV , or

V H. To maximize violation of the inequality, Bob applies a π/4 phase to his vertical

photon prior to its entry into his interferometer. We call this configuration NPIBell
π/4

.

34



In this case, the correlation coefficients are

E ′

HH =
1√
2

(f+f ∗−i(f−f ∗)+d+d∗+i(d−d∗)) (2.19)

E ′

VV =
1√
2

(f+f ∗−i(f−f ∗)−d−d∗−i(d−d∗)) (2.20)

E ′

HV =
1√
2

(−f−f ∗−i(f−f ∗)−d−d∗+i(d−d∗)) (2.21)

E ′

VH =
1√
2

(f+f ∗+i(f−f ∗)−d−d∗+i(d−d∗)) . (2.22)

We define the two Bell parameters

Sψ≡E ′

HH+ E ′

VV− E ′

HV+ E ′

VH= 2
√

2(f+f ∗) and (2.23)

Sϕ≡E ′

HH− E ′

VV− E ′

HV− E ′

VH= 2
√

2(d+d∗) . (2.24)

The Bell parameter S is proportional to the anti-diagonal elements of the density

matrix, similar to the results in the last section. As indicated by Eq. 2.14, these Bell

parameters have a separable state bound of |S| ≤
√

2 based on quantum mechanics,

not on arguments of locality. Clearly, the S parameters’ dependence on f + f ∗ and

d + d∗ enable Bell state identification, as was possible in the standard configuration

NPIπ/4 . As in the standard configuration, Bell parameters can be defined for each of

the shifted Bell states. The experimental measurements

⟨Sψ⟩=⟨E ′

HH⟩+ ⟨E ′

VV⟩− ⟨E ′

HV⟩+ ⟨E ′

VH⟩= 2
√

2⟨f+f ∗⟩

⟨Sϕ⟩=⟨E ′

HH⟩− ⟨E ′

VV⟩− ⟨E ′

HV⟩− ⟨E ′

VH⟩= 2
√

2⟨d+d∗⟩

for each Bell state are graphically depicted in Fig. 2.10 and given with standard

deviations in Table 2.2. As they should, the Bell parameters ⟨Sψ⟩ and ⟨Sϕ⟩ exceed

the |S| ≤ 2 bound for the appropriate Bell states. We have also given the expected

and observed values for the correlation coefficients EHH, EVV, EHV, and EVH for each
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Figure 2.10: Separable and entan-
gled state bounds for parameters Sψ
and Sϕ with corresponding measure-
ment values for the four prepared Bell
states indicated by dots and diamonds.

Figure 2.11: Expected and observed
values for the correlation coefficients
EHH, EVV, EHV, and EVH in the CHSH
configuration for each Bell state. Stan-
dard deviations for these coefficients
are ≤ 0.06.

Bell state in the CHSH configuration in Fig. 2.11. Each of these figures graphically

depicts the unique correlation signatures for each Bell state.

2.6 Experimental Demonstration

Our experimental results were observed using the apparatus shown in Fig. 2.12. In

this experiment 0.9 mW of 405 nm continuous-wave (CW) diode laser light pumps

a PPKTP crystal generating approximately 1.4 × 106 Type II signal-idler pairs per

second at a wavelength of 810 nm from the spontaneous parametric downconversion

process. The signal and idler pass through a compensation system which removes

the phase resultant from the polarization-dependent walk-off due to the nonlinear

crystal and optical fiber. After passing through the fiber, photons are incident on

a BS which produces a polarization entangled shared state when the signal and
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idler are spectrally indistinguishable∗. This indistinguishability requirement may be

removed by using a true polarization entangled source [58, 59]. Beamsplitters are

used as lossy circulators. Phase modulation in each interferometer is applied using

liquid crystal variable wave plates. At each interferometer output port a PBS routes

each polarization to separate single-photon detectors through single-mode fiber. In

order to determine coincidence rates we time-stamp the detection signal from each

single-photon detector into 5 ns time bins using an FPGA†. Eight Perkin-Elmer, now

Excelitas, SPCM devices are used to count single-photons. Single photon count rates

range from 3-10 kcps and average coincidence rates range from 2-20 cps. Results in

Fig. 2.6, 2.7, 2.10, 2.11, and Table 2.2 were generated from 100 sec counts. Results

of phase variation, seen in Fig. 2.8, were generated from 5 sec counts at each voltage

setting.In order to normalize our coincidence counts, we calibrate the NPI with a

known unentangled source‡ which provides the same flux of photons in each path.

This enables determination of the relative efficiency of each detector combination.

Due to imperfect optics and experimental shortcomings, single-photon interference is

observed with 1% visibility.

∗A non-degenerate signal and idler would destroy the polarization entanglement, since the
photon energy would be associated with a specific polarization. This setup also leads to local
two-photon interference when the photons both go to Alice or Bob’s interferometers. A local effect
observed is Hong-Ou-Mandel (HOM) interference which is maximized when the signal and idler are
spectrally indistinguishable. The visibility of HOM interference was used to tune the signal and
idler indistinguishability.

†See www.zedboard.com and www.xillybus.com.
‡The signal and idler were made spectrally distinguishable by tuning the temperature of the

PPKTP crystal. Distinguishability was verified by vanishing local HOM interference, see * above.
This distinguishability destroys the polarization entanglement.
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Table 2.2: Experimental results for ⟨f + f ∗⟩ and ⟨d+ d∗⟩ and Bell parameters ⟨Sψ⟩
and ⟨Sϕ⟩ using accidental corrected and normalized 100 second coincidence counts.
These results demonstrate unique signatures for each Bell state.

Ψ+ Ψ− Φ+ Φ−

⟨f + f ∗⟩ 0.96±0.01 -0.94±0.05 -0.07±0.05 0.07±0.04
⟨d+ d∗⟩ 0.08±0.05 -0.07±0.05 0.90±0.04 -0.90±0.01
⟨Sψ⟩ 2.46±0.26 -2.51±0.35 0.04±0.36 -0.01±0.23
⟨Sϕ⟩ 0.04±0.26 -0.05±0.35 2.57±0.36 -2.66±0.23

Figure 2.12: The NPI Sagnac experiment includes a polarization entangled source
dependent on the spectral indistinguishability of the signal and idler photons. Bell
states were generated by polarization rotation and phase modulation in the path to
Alice’s interferometer.

Our experimental results qualitatively agree with our theoretical predictions. This

can be seen for the standard configuration by comparing Eqs. 2.6, 2.7, 2.8, 2.9, 2.10,

2.11, and Table 2.1 with Figs. 2.6, 2.7, and Table 2.2. For the CHSH configuration,

compare Eqs. 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 with Figs. 2.10, 2.11 and Table 2.2.

Clearly, these experiments verify the unique correlation signatures predicted for each

entangled Bell state.
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2.7 Local Two-Photon Interference

The experimental source as described in Section 2.6 results in the two-photon pair

(both photons) going to only Alice or only Bob half of the time. Consider the Mach-

Zehnder configuration in Fig. 2.1. When both photons enter Bob’s interferometer,

two types of interference effects can be observed. In the first, the two photons reach

the detectors with orthogonal polarizations. As illustrated in Fig. 2.13(a), this can

happen only if both photons take the same local path, both in the upper path or both

in the lower path. The probability for this type of coincidence is

PjBz
sBy

∝ 1

2

{
1 + (−1)z+y cos [2β]

}
(s ⊥ j) (2.25)

where 2β ≈ 2πc/λp and λp is the pump wavelength. Because the probability of

coincidence depends on the wavelength of the biphoton, a composite particle made up

of the signal and idler with wavelength approximately equal to the pump wavelength

λp, we refer to this as de Broglie interference [60, 61]. As is seen in Eq. 2.25, de Broglie

interference reveals Bob’s local phase β. In this configuration, maximum correlations

are achieved when the signal and idler are spectrally and temporally indistinguishable.

Figure 2.13: a) Indistinguishable cases (i) and (ii) lead to de Broglie Interference
observed in Bob’s interferometer by detectors VB0 and HB0. b) Indistinguishable
photons incident on different ports of a beamsplitter lead to Hong-Ou-Mandel
interference observed as a dip in different port coincidences.
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The second type of local interference is observed when the two photons emerge

from the interferometer with identical polarizations. Because they enter the

interferometer with orthogonal polarizations, this can happen only if the two photons

take different paths, as depicted in Fig. 2.13(b). In this case, the polarization of

one photon is rotated by 90◦, and they meet at the second beam splitter (BS) with

identical polarizations. This results in HOM [24] interference, and the coincidence

rate is predicted to fall to zero when the photons are spectrally and temporally

indistinguishable.

A preliminary experiment based on the the Mach-Zehnder interferometer allowed

observation of both de Broglie and HOM interference as seen in Fig. 2.14 and 2.15.

Additionally, as mentioned in Section 2.6, the visibility of HOM interference was used

to establish indistinguishability in the Sagnac NPI experiment.
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Figure 2.14: Hong-Ou-Mandel Dip
in Bob’s Interferometer with 97.8 ±
0.5% corrected visibility and a 91 ±
0.5% raw visibility.
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Figure 2.15: Local de Broglie
Interference observed in Bob’s inter-
ferometer by detectors VB0 and HB1
with 98 ± 4% corrected visibility and
a 88.8 ± 3.5% raw visibility.

2.8 A Multi-Mode Analysis

In this section a full multi-mode treatment of the NPI is given. One feature made

clear from this calculation is that the coherence properties of the pump photon are

typically insignificant. This can be compared to the Franson interferometer which
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only works if the pump photon’s coherence time exceeds the interferometer imbalance

which in turn exceeds the single photon coherence time. The balanced nature of the

NPI and its single-photon interference suppression using polarization rotation allows

utilization of a pulsed pump or, perhaps, a more economical pumping option with poor

coherence properties. These statements are assuming that the source is not such that

the spectral properties of the signal and idler correlate with the polarization. This

would be the case in the experimental demonstration, described in Section 2.5, using

a short coherence time pump.

As in [23] let us assume an inexhaustible horizontally polarized pump state |αh⟩,

a spectral amplitude A (ω) representing a stationary random process, and a power

spectrum S (ω) such that

âh (ω) |αh⟩ = A (ω) |αH⟩ , (2.26)

⟨A∗ (ω′)A (ω)⟩ = 2πS (ω) δ (ω′ − ω) . (2.27)

If we assume experimental conditions such that the down-conversion interaction is

maximized, the two-photon state is

|ψ0⟩=γ

∫∫
dωdω′ϕ (ω, ω′)A(ω+ω′)â†H(ω)â†V (ω′) |0⟩ (2.28)

with γ defined by Eq. A.46. Integrals without limits of integration will be understood

here and after to be integrated over {−∞,∞}.

The phase-matching function is

ϕ (ω, ω′) = L sinc (∆kL/2) e−i∆kL/2 (2.29)
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with nonlinear crystal length L. The phase mismatch for a Type II process is

approximately [25]

∆k = kp−k −k′ ≈
(
ω − ωp

2

)
γo +

(
ω′ − ωp

2

)
γe (2.30)

with γi = ∂ki(ω)
∂ω

∣∣∣
ω=ωp/2

− ∂kp(ω)

∂ω

∣∣∣
ω=ωp

and i = {o, e} indicating ordinary and

extraordinary, respectively.

Assume that the optical configuration, for example see [58], allows the state given

in Eq. 2.28 to evolve into the polarization entangled state

|Ψ0⟩ =
γ√
2

∫∫
dωdω′A(ω + ω′)ϕ(ω, ω′)

(
â†Ha(ω)â†nb(ω

′) + ℓâ†V a(ω)â†n′b(ω
′)
)
|0⟩ (2.31)

which represents each of the Bell states given specific values for n, n′ and ℓ as seen in

Table 2.3.

Table 2.3: Variables for Bell state representation.

Ψ+ Ψ− Φ+ Φ−

n V V H H
n′ H H V V
ℓ 1 −1 1 −1

The state at the detectors is

|Ψ⟩=
γ√
8

∫∫
dωdω′A(ω + ω′)ϕ(ω, ω′)

V∑
g,h=H

1∑
q,p=0

(-i)q+pFgq
hp

(ω, ω′)â†gaq(ω)â†hbp(ω
′) |0⟩

(2.32)
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with

Fgq
hp

(ω, ω′) =δgHδhn

(
ei(ωtar+ω

′tbr+taH+tbn) + ℓ(-1)q+pei(ωtat+ω
′tbt+taV +tbn′ )

)
−δgHδhn′

(
ei(ωtar+ω

′tbt+taH+tbn) + ℓ(-1)q+pei(ωtat+ω
′tbr+taV +tbn′ )

)
−δgV δhn

(
ei(ωtat+ω

′tbr+taH+tbn) + ℓ(-1)q+pei(ωtar+ω
′tbt+taV +tbn′ )

)
+δgV δhn′

(
ei(ωtat+ω

′tbt+taH+tbn) + ℓ(-1)q+pei(ωtar+ω
′tbr+taV +tbn′ )

)
. (2.33)

where tar(tbr) and tat(tbt) are the time-of-flight for the path reflected and transmitted

from Alice’s(Bob’s) first beamsplitter, respectively. The times taH(tbH) and taV (tbV )

are times-of-flight for horizontally and vertically polarized photons, respectively, from

the source to Alice’s(Bob’s) interferometer. These times in the ideal case are equal

for each interferometer, but effects such as polarization mode dispersion in optical

fiber can create a differential between them.

Using the second-correlation function

Γ
(2)
jAy
sBz

(t,τ)= |⟨0| âsBz(t+τ)âjAy(t)|ψ⟩|2

=

∣∣∣∣⟨0| γ

8π
√

2

∫ ∫ ∫ ∫
dωdω′dΩdΩ′A(ω + ω′)ϕ(ω, ω′)

×
V∑

g,h=H

1∑
q,p=0

(−i)q+pFgq
hp

(ω, ω′)eiΩ
′(t+τ)eiΩtâjay(Ω)âsbz(Ω

′)â†gaq(ω)â†hbp(ω
′) |0⟩

∣∣∣∣∣
2

=

∣∣∣∣ γ

8π
√

2

∫ ∫
dωdω′A(ω + ω′)ϕ(ω, ω′)(−i)y+zFjy

sz
(ω, ω′)ei(ω+ω

′)teiω
′τ

∣∣∣∣2
=

γ2

64π

∫ ∫
dωdω′S(ω + ω′)δ(ω + ω′ − Ω − Ω′)ϕ∗(Ω,Ω′)ϕ(ω, ω′)

× F ∗
jy
sz

(Ω,Ω′)Fjy
sz

(ω, ω′)ei(ω+ω
′−Ω−Ω′)tei(ω

′−Ω′)τ , (2.34)
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the probability that a signal photon exits interferometer port jxy at time t and an

idler photon exits port suz at a relative time between -TR and TR is

Pjxy
suz

(t)=

∫ TR

−TR
dτΓ

(2)
jxy
suz

(t,τ). (2.35)

In an actual experiment more than a single signal-idler pair will be generated and the

experiment occurs over a finite time. We assume there is an average time between

down-conversion events TDC , a timing resolution TR, and a single-photon coherence

time TC . If TDC >> TR >> TC , we can let TR → ∞ in the calculation. In other words,

we have the opportunity to detect each photon pair well before another pair arrives

and the window for a detection is much larger than the single-photon temporal wave

packet. Note that these timing assumptions are less stringent than the comparable

calculation for the Franson interferometer. The NPI calclulation is simpler because

no cases are temporally excluded like they are in Franson’s desgin. Using the relation

∫ ∞

−∞
dtei(ω−Ω)t = 2πδ(ω − Ω) (2.36)

we get the time-independent coincidence probability

PjAy
sBz

=
γ2

32

∫ ∫
dωdω′S(ω + ω′)|ϕ(ω, ω′)|2|Fjy

sz
(ω, ω′)|2

=
γ2

32

∫ ∫
dωdω′S(ω + ω′)|ϕ(ω, ω′)|2

× δjHδsV

(
2 + ℓ(-1)y+z

{
e−iω(∆a−δa)e−iω

′m(∆b+δb) + c.c.
})

+ δjHδsH

(
2 + ℓ(-1)y+z

{
e−iω(∆a−δa)eiω

′m(∆b−δb) + c.c.
})

+ δjV δsV

(
2 + ℓ(-1)y+z

{
eiω(∆a+δa)e−iω

′m(∆b+δb) + c.c.
})

+ δjV δsH

(
2 + ℓ(-1)y+z

{
eiω(∆a+δa)eiω

′m(∆b−δb) + c.c.
})

(2.37)

where ∆a = tar − tat, δa = taV − taH , ∆b = tbr − tbt, δb = tbV − tbH , and ℓ,m values

for each Bell state are Ψ+:{1,1},Ψ−:{-1,1},Φ+:{1,-1}, and Φ−:{-1,-1}. Now we make
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the change of variables

ω =
ωp
2

+ Ω and ω′ =
ωp
2

− Ω (2.38)

the probability may be rewritten

PjAy
sBz

=
γ2

32

∫
dωp dΩ S(ωp) |ϕ (Ω)|2 ×[
δjHδsV

(
2 + ℓ(-1)y+z

{
e−i

ωp
2
(∆a+m∆b−δa+mδb)e−iΩ(∆a−m∆b−δa−mδb) + c.c.

})
+ δjHδsH

(
2 + ℓ(-1)y+z

{
e−i

ωp
2
(∆a−m∆b−δa+mδb)e−iΩ(∆a+m∆b−δa−mδb) + c.c.

})
+ δjV δsV

(
2 + ℓ(-1)y+z

{
e−i

ωp
2
(∆a−m∆b+δa−mδb)eiΩ(∆a+m∆b+δa+mδb) + c.c.

})
+δjV δsH

(
2 + ℓ(-1)y+z

{
e−i

ωp
2
(∆a+m∆b+δa−mδb)eiΩ(∆a−m∆b+δa+mδb) + c.c.

})]
(2.39)

where the phase-matching function square norm is

|ϕ (Ω)|2 = L2 Sinc2
(

Ω

2Ω−

)
, (2.40)

Ω− = (L|γe − γo|)−1, and the power spectrum is assumed to be Gaussian

S(ωp) =
1√

2πσ2
e−

(ωp−ωp0)
2

2σ2 . (2.41)

We use the integral ∫ ∞

−∞
Sinc2 (x) eiax = π∧ (a/2) (2.42)

where the triangular function is defined as

∧ (x) =

1 − |x| if |x| ≤ 1

0 otherwise,

(2.43)
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the integral
1√

2πσ2

∫ ∞

−∞
e−

(ωp−ωp0)
2

2σ2 eiaωp = e−
σ2

2
aeiaωp0 , (2.44)

and, calculating from Eq. A.46, that

γ2 =
1

2Ω−L2
(2.45)

to obtain the result

PjAy
sBz

=
1

16
×

{
δjHδsV

[
1+ℓ(-1)y+ze−

σ2

4
(∆a+m∆b−δa+mδb)∧ (Ω− {∆a−m∆b−δa−mδb})

×Cos
(ωp0

2
{∆a+m∆b−δa+mδb}

)]
+ δjHδsH

[
1+ℓ(-1)y+z∧ (Ω− {∆a+m∆b+δa+mδb})

×Cos
(ωp0

2
{∆a−m∆b+δa−mδb}

)]
+ δjV δsV

[
1+ℓ(-1)y+z∧ (Ω− {∆a+m∆b−δa−mδb})

×Cos
(ωp0

2
{∆a−m∆b−δa+mδb}

)]
+ δjV δsH

(
1+ℓ(-1)y+z∧ (Ω− {∆a−m∆b+δa+mδb})

×Cos
(ωp0

2
{∆a+m∆b+δa−mδb}

)]}
(2.46)
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where ℓ,m values for each Bell state are Ψ+:{1,1},Ψ−:{-1,1},Φ+:{1,-1}, and Φ−:{-1,-

1}. Under typical conditions δa = δb = 0, reducing the probability to

PjAy
sBz

=
1

16
×[

(δjHδsV +δjV δsH)
(

1+ℓ(-1)y+ze−
σ2

4
(∆a+m∆b)

2∧ (Ω− [∆a−m∆b]) Cos
(ωp0

2
[∆a+m∆b]

))
+(δjHδsH +δjV δsV )

(
1+ℓ(-1)y+ze−

σ2

4
(∆a−m∆b)

2∧ (Ω− [∆a+m∆b]) Cos
(ωp0

2
[∆a−m∆b]

))]
.

(2.47)

The NPI is “balanced” such that the path length mismatches approach 0, ∆a → 0

and ∆b → 0. Assuming that the spectral properties of the photon pair do not correlate

with their polarization, the visibility of nonlocal interference has little dependence on

the bandwidth of the pump, proportional to σ. Certainly for any continuous wave

sources, linewidths 1 kHz - 1GHz, the pump bandwidth is insignificant. The pump

bandwidth becomes significant only when the pump pulse length becomes comparable

to the central wavelength of the pump, in the greater than 1 THz regime. Thus, pulsed

sources of pulse duration greater than 1 ps, or spectral widths less than 1 nm, should

be suitable to produce high visibility nonlocal interference in the NPI.

Equation 2.47 can also be rewritten to resemble previous expressions as

PjAy
sBz

= (1/16)×[
(δjHδsV +δjV δsH)

(
1+ℓ(-1)y+ze

− σ2

ω2
p0

(α+mβ)2∧ (2Ω− [α−mβ] /ωp0) Cos(α+mβ)

)

+(δjHδsH +δjV δsV )

(
1+ℓ(-1)y+ze

− σ2

ω2
p0

(α−mβ)2∧ (2Ω− [α+mβ] /ωp0) Cos(α−mβ)

)]

(2.48)

where the variables α = (ωp0/2)∆a and β = (ωp0/2)∆b. This prediction then agrees

qualitatively with the continuous-wave cases given by Eq. 2.4 with the additional
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triangle and exponential functions representing the temporal and spectral properties

of the two photon state. Eq. 2.4 is recovered exactly as ∆a,∆b → 0.
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Chapter 3

Time-To-Polarization Mapper

A phase-stable nonlocal interferometer based on optical birefringence and temporal

discrimination is proposed which maps robust time entangled states to polarization

entangled states allowing implementation of the BB84 or 6-state quantum key

distribution protocols. The interferometer is common path and copropagating which

simplifies alignment and encourages entanglement retention.

3.1 Overview

Distributing entanglement in time is robust to decoherence relative to polarization

entanglement. However, polarization is easy to manipulate and measure experimen-

tally. Additionally, quantum key distribution (QKD) security proofs for BB84 [5] and

6-state [62] protocols are given in the polarization basis [63, 64]. We propose a phase-

stable interferometer that maps time-entangled photons to polarization entangled

states, capitalizing on the strengths of both the temporal and polarization degrees of

freedom.

Alice and Bob share a time entangled source which is robust to decoherence over

long distances [36], this state is mapped to polarization using a phase-stable nonlocal

interferometer based on the two modes of 0.25 km spools of telecom polarization

maintaining fiber (PMF) as seen in Fig. 3.1. Phase stability is achieved due to the
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copropagating common path configuration in which the birefringence of the PMF

provides a stable temporal delay between the horizontal (H) and vertical (V ) photon

paths. These paths can be compared to the long and short paths of the Franson

interferometer [30]. To maintain the desired phase in the Franson’s original design,

active stabilization or highly stable interferometers such as planar light wave circuits

(PLC) [36] must be used. Our phase-stable design does not require active stabilization

and also maps the time-entanglement to polarization which simplifies the execution of

QKD protocols compared to common interferometric designs, including those utilizing

PLC interferometers.

Figure 3.1: Alice and Bob share a time-entangled two-photon source. The two
modes of two polarization maintaining fibers, one held by Alice and one by Bob,
realize a phase-stable nonlocal interferometer. This interferometer maps the time-
entangled state to a polarization entangled state within the coincidence window. Alice
and Bob make standard polarization measurements to carry out the BB84 or 6-state
protocol.

3.2 Mapping

A source shared by Alice and Bob produces Type II photon pairs from a spontaneous

parametric downconersion (SPDC) process which is pumped by a laser with a

coherence time exceeding the birefringence delay in the PMF. After propagating

through the single-mode transmission fiber, photons are incident on a polarizing beam

splitter (PBS) which transmits only a single polarization mode. This polarizer ensures
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the correct probability amplitudes in the interferometer. Polarization correction of

the photons received by Alice and Bob only affects the overall bit rate, but not the

error rate or degree of entanglement ∗. Photons transmitted through the PBS are

rotated 45◦ and then pass into the PMF which randomizes their path selection, H or

V , long or short. A 0.25 km spool of telecom PMF adds a 1 ns propagation delay

between the H and V photons due to the birefringence in the PMF. After exiting the

PMF, the photons pass through a polarization dependent phase modulator (PDPM),

which could be implemented using a static Babinet-Soleil compensator or an active

liquid crystal waveplate. The PDPM allows fine phase tuning. The state shared by

Alice and Bob after this propagation is

|ψ⟩ =
1

2

(
|HAHB⟩ + ei(ϕA+ϕB) |VAVB⟩ + eiϕB |HAVB⟩ + eiϕA |VAHB⟩

)
. (3.1)

The phases are

ϕA =
ω∆nLA

c
− α and ϕB =

ω∆nLB
c

− β

where LA and LB are the lengths of the PMF spools, LA≈LB †, ∆n is the optical fiber

birefringence, ω is the single-photon angular frequency, and α and β phases are from

the PDPM. When the coincidence time resolution and single photon temporal packet

are smaller than the birefringence delay ∆t ≈ ∆nLA

c
, the |HV ⟩ and |V H⟩ components

in Eq. 3.1 are excluded, leaving

|ψ′⟩ =
1√
2

(
|HAHB⟩ + ei(ϕA+ϕB) |VAVB⟩

)
. (3.2)

∗Polarization correction may be carried out by maximizing the single detector count rates. This
is due to phase flips being irrelevant during transmission of the single polarization mode from source
to user. Additionally, polarization correction can be slow and ongoing since it only affects the raw
key rate and not the entanglement quality or error rate.

†The fibers held by Alice and Bob should have lengths approximately the same LA ≈ LB . The
tolerance for mismatched fibers is higher for our interferometer than a Mach-Zehnder style fiber
interferometer since it is common path and the birefringence is small, ∆n ≈ 1E − 3. A tolerance
in the cm range should be sufficient. This can be compared with a fiber interferometer requiring
tolerances in the micron range. The free space path lengths are irrelevant due the common path
nature of the interferometer.
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For time entangled photon pairs with a biphoton coherence length much greater than

the birefringence delay and a suitable choice of the phases α and β, Alice and Bob

share the Bell state ∣∣Φ+
⟩

=
1√
2

(|HAHB⟩ + |VAVB⟩) , (3.3)

as is more rigorously shown in the last section of this Chapter. This will be a stable

phase selection and will not need frequent adjustment. Thus, the time-entanglement

shared between Alice and Bob is mapped to a polarization entangled state. Ideally,

this is the only state leading to coincidences. However, due to decoherence, accidental

coincidences, and imperfections other states will also be measured.

3.3 BB84 with Time-to-Polarization Mapping

In Fig. 3.2, a practical BB84 implementation using a pulsed pump and time-

multiplexed measurement configuration is shown. Measurement in the rectilinear

or diagonal basis is random. Alice’s rectilinearly measured photons take the long

measurement path and the diagonally measured photons take the short path. Bob’s

measurement paths are the opposite. Therefore, coincidences separated by ∆T , the

delay between short and long measurement paths, are those from the state given in

Eq. 3.3. Whether Alice or Bob’s photon is early or late identifies which basis was

chosen. Photons arriving at other times are excluded. The figure illustrates that

much of the configuration can utilize inline optics and splices to reduce transmission

losses. After initial coupling at the source, the photons remain in optical fiber until

the measurement process, only making low loss splice transitions between elements.

All fiber photon pair sources have been demonstrated [65] which would remove these

coupling losses, but these sources are still complex and require cryogenics.
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Figure 3.2: A practical BB84 implementation using a pulsed source and time-
multiplexed measurement in the rectilinear and diagonal bases.

3.4 Loss and Bit Flips

Franson interferometry produces a 50% bit loss by design due to the excluded paths.

However, in return for this loss, we predict a reduction in the bit flip dependent

error rate in the BB84 and 6-state protocols. It is sufficient for QKD security to

assume that Alice and Bob share a state diagonal in the Bell basis [64]. With this

assumption, bounds on the security of a shared raw key can be made by estimating

the contribution from each Bell state. This is done by measuring in the diagonal

and rectilinear basis for BB84, or these bases as well as the circular basis for the

6-state protocol. Assume post-interferometer and pre-measurement Alice, Bob, and

an adversary Eve share the purification

|ψABE⟩=
√
λ1|Φ+⟩|e1⟩+

√
λ2|Φ−⟩|e2⟩+

√
λ3|Ψ+⟩|e3⟩+

√
λ4|Ψ−⟩|e4⟩ (3.4)

where the Bell states are held by Alice and Bob while Eve holds the orthogonal states

|ei⟩. Alice and Bob hold the density matrix

ρAB = λ1|Φ+⟩⟨Φ+| + λ2|Φ−⟩⟨Φ−| + λ3|Ψ+⟩⟨Ψ+| + λ4|Ψ−⟩⟨Ψ−|, (3.5)
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while Eve holds the density matrix

ρE = λ1|e1⟩⟨e1| + λ2|e2⟩⟨e2| + λ3|e3⟩⟨e3| + λ4|e4⟩⟨e4|. (3.6)

Applying Holevo’s bound to the Bell diagonal purification given in Eq. 3.4, a

lower bound on the secret key rate in the limits of perfect error correction for the

BB84 and 6-state protocols is found to be dependent on Eve’s Shannon information

[63, 64],

Rsecret ≥ 1−H (ρE) = 1+
4∑
i=1

λi log (λi) . (3.7)

Estimation of the parameters λi is done by measuring the error rates in the rectilinear

basis ϵz, diagonal basis ϵx, and circular basis ϵy. These error rates are

ϵz = λ3 + λ4, ϵx = λ2 + λ4, and ϵy = λ2 + λ3. (3.8)

For the 6-state protocol it is usually assumed that the state is acted on by a

depolarizing channel which assigns the same probability to bit flips, phase flips, and

bit-phase flips. In the BB84 protocol one parameter is undetermined, in which case,

the parameter λ4 is optimized for Eve. Unlike a direct measurement on distributed

polarization entangled states, with our device, bit flipped states are suppressed in the

coincidence window. Thus, the error rate due to bit flips will be reduced to accidental

coincidences. When the probability of an accidental is less than the probability of a

phase flip the usual error estimates are inappropriate for our interferometer. Instead,

we assume a bit flip suppressed channel. In Table 3.1 we have assigned expected

values for the depolarizing channel and the bit flip suppressed channel to the state

in Eq. 3.4 and matrices given in Eq. 3.5 and 3.6 in terms of the bit or phase flip

probability p and the accidental coincidence probability ϵ.
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Table 3.1: Predicted eigenvalues for the depolarizing and bit flip suppressed channels
for the 6-state and BB84 protocols.

Depolarizing Channel Depolarizing Channel Bit Flip Suppressed Bit Flip Suppressed

6-state BB84 6-state BB84

λ1 1-3(p+ϵ) (1-2(p+ϵ))2 1-p-3ϵ (1-2ϵ)(1-p-2ϵ)

λ2 p+ϵ 2(p+ϵ)(1-2(p+ϵ)) p+ ϵ (1-2ϵ)(p+2ϵ)

λ3 p+ϵ 2(p+ϵ)(1-2(p+ϵ)) ϵ 2ϵ(1-p-2ϵ)

λ4 p+ϵ (p+ϵ)2 ϵ 2ϵ(p+2ϵ)

Figure 3.3: Secret key rates in the limit of perfect error correction versus the flip
dependent error rate ϵx for the 6-state and BB84 protocols given the depolarizing
channel or with bit flip suppression. A fixed accidental error rate ϵ = 0.01 has been
assumed.

In Fig. 3.3, the secret key rate from Eq. 3.7 is plotted versus the flip dependent

error rate in the diagonal basis for the depolarizing channel and the bit flip suppressed

channel. In this plot the accidental coincidence rate is fixed to ϵ = 0.01. As can

be seen from the plot, our interferometer trades half the key for a reduction in

the flip dependent error rate. All this is to say, that the 50% photon pair loss
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due to the excluded interferometer paths is partially compensated by a reduction

in the predicted error rate. In the limit of long distance QKD the accidental rate

ϵ dominates, ϵ > p, due to a decreasing signal to noise ratio. In this case, the

advantage of bit flip suppression disappears. However, as the distribution distance

grows, the time entangled photons will outperform polarization entangled photons in

entanglement retention. In this case, equating their phase flip probability, p, is overly

generous.

3.5 Discussion

The longest demonstration of time-entanglement distribution over optical fiber to

date, over 300 km, [37] has used planar light wave circuit (PLC) Mach-Zehnder

interferometers which exhibit excellent phase stability. The phase in these devices

is changed by temperature adjustment. Thus, in order to carry out the BB84

protocol each user must have two PLC interferometers each set for a basis, or

they must modulate the PLC interferometers by tuning the temperature. Our

implementation avoids the complication of multiple interferometers and modulation

of the phase by mapping the time-entanglement to polarization, for which, the two

basis measurements may easily be time-multiplexed as seen in Fig. 3.2. Furthermore,

the insertion and transmission losses for the spliced fibers and optics given in Fig.

3.2 should be competitive with the 2-2.64 dB loss reported using PLC interferometers

[38, 39].

In summary, a phase-stable interferometer has been proposed that maps time-

entangled photons to polarization entangled states, capitalizing on the strengths

of both the temporal and polarization degrees of freedom. The phase-stable

configuration, fiber based design, and polarization based measurement scheme offers

a ruggedized solution to long distance QKD. In case the “hand waving” argument

given prior is unconvincing, we give a multi-mode analysis of the time-to-polarization

mapper in the next section.
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3.6 Multi-Mode Analysis for the Z, X, and Y

Bases

In this calculation we show that the distributed time-entangled state is mapped to

the Bell state ∣∣Φ+
⟩

=
1√
2

(|HAHB⟩ + |VAVB⟩) , (3.9)

assuming suitable time discrimination and choices of the phases α and β. This

is shown by evolving the time-entangled state through Alice and Bob’s optics and

deriving measurement probabilities in the rectilinear, diagonal, and circular basis.

Assume Alice and Bob share a two-photon source with near perfect spectral

entanglement. For instance, this could be a spontaneous parametric downconversion

(SPDC) source with a narrowband pump. The SPDC could be a Type I process in

which the signal and idler have the same polarization, or Type II SPDC where the

signal and idler have different polarizations. What is important is that the photon pair

may efficiently be split amongst Alice and Bob using either polarization or frequency.

We will assume Type II SPDC as it simplifies the derivation. We also assume that

the pump is narrowband with an approximate spectral amplitude

A(ω + ω′) = δ(ω + ω′ − ωp). (3.10)

This approximation makes the representative state unnormalizable. This will not

affect the predictions qualitatively and will greatly reduce the complexity of the

derivation, see Ou [23]. After generation, the photon pair is split amongst Alice

and Bob by polarization. Photons then pass through single-mode fiber, polarization

correction, and a polarizer. The state at this point may be written

|Ψ0⟩ ∝
∫
dωdω′δ(ω + ω′ − ωp)ϕ(ω, ω′)â†HA(ω)â†HB(ω′) (3.11)
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where â†jx(ω) is a photon creation operator for polarization j ∈ {H,V } and user

x ∈ {A,B} ≡ {Alice,Bob}.The phase-matching function is

ϕ (ω, ω′) = L sinc (∆kL/2) e−i∆kL/2 (3.12)

with nonlinear crystal length L. The phase mismatch for a Type II process is

approximately [25]

∆k = kp−k −k′ ≈
(
ω − ωp

2

)
γo +

(
ω′ − ωp

2

)
γe (3.13)

with γi = ∂ki(ω)
∂ω

∣∣∣
ω=ωp/2

− ∂kp(ω)

∂ω

∣∣∣
ω=ωp

and i = {o, e} indicating ordinary and

extraordinary, respectively.

After propagation through the polarization maintaining optical fiber and applica-

tion of the polarization dependent phases α and β the state is given in the rectilinear

basis as

|Ψr⟩ ∝
∫
dωdω′δ(ω + ω′ − ωp)ϕ(ω, ω′)

(
â†HA(ω)â†HB(ω′) + ei(ωTA+ω′TB)â†V A(ω)â†V B(ω′)

+eiωTA â†V A(ω)â†HB(ω′) + eiω
′TB â†HA(ω)â†V B(ω′)

)
.

(3.14)

The temporal delays are

TA =
∆nLA
c

− α and TB =
∆nLB
c

− β (3.15)

with LA ≈ LB and polarization dependent phase modulations α and β. At this point

Alice and Bob choose their basis, rectilinear, diagonal, or circular. In the rectilinear
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basis nothing changes and we may write the second order correlation function

Γ
(2)
js (t,τ)= |⟨0| âjA(t+τ)âsB(t)|Ψr⟩|2

∝
∣∣∣∣∫ dωdω′δ(ω + ω′ − ωp)ϕ(ω, ω′)eiω(t+τ)eiω

′t

×
(
δHAδHB + ei(ωTA+ω′TB)δV AδV B + eiωTAδV AδHB + eiωTBδHAδV B

) ∣∣∣∣2
(3.16)

with the annihilation operator

âj (t) = (2π)−1/2

∫
dωâj (ω) eiωt. (3.17)

Making a change of variables ω = ωp

2
+ Ω and ω′ = ωp

2
− Ω we may rewrite this

Γ
(2)
js (t,τ)= |⟨0| âjA(t+τ)âsB(t)|Ψr⟩|2

∝
∣∣∣∣L∫ ∞

−∞
dΩ Sinc

(
Ω

2σ

)
ei

Ω
2σ eiΩτ

(
δHAδHB + ei

ωp
2
(TA+TB)eiΩ(TA−TB)δV AδV B

+ei
ωp
2
TAeiΩTAδV AδHB + ei

ωp
2
TBe−iΩTBδHAδV B

) ∣∣∣∣2
(3.18)

where σ = (L|γe − γo|)−1. Carrying out the integral

∫ ∞

−∞
dΩ Sinc

(
Ω

2σ

)
ei

Ω
2σ
x = 2πσΠ (x/2) (3.19)

with rectangle function

Π (x) =

1 if |x| ≤ 1/2

0 otherwise,

(3.20)
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we simplify the second-order correlation to

Γ
(2)
js (t,τ)= |⟨0| âjA(t+τ)âsB(t)|Ψr⟩|2

∝
∣∣∣2πLσ (δHAδHBΠ

(
1/2+στ

)
+ ei

ωp
2
(TA+TB)δV AδV BΠ

(
1/2+σ(τ + TA − TB)

)
+ei

ωp
2
TAδV AδHBΠ

(
1/2+σ(τ + TA)

)
+ ei

ωp
2
TBδHAδV BΠ

(
1/2+σ(τ − TB)

)) ∣∣∣∣2 .

(3.21)

The probability of detecting a coincidence between Alice’s photon with polarization

j and Bob’s photon with polarization s is

P r
js = N(2πLσ)2

∫ Tr/2

−Tr/2
Γ
(2)
js (t,τ) (3.22)

where N is a normalization to ensure
∑

js Pjs = 1. If the path length difference

TA ≈ TB >> 1/σ = 2π/∆ωs where ∆ωs is the single-photon coherence time and the

timing resolution is TR << TA, the rectangle functions for the V H and HV cases in

Eq. 3.21 are zero over the interval of integration. With these terms removed

P r
js = N(2πLσ)2

∫ Tr/2

−Tr/2

(
δHAδHBΠ2

(
1/2+σ(τ)

)
+ δV AδV BΠ2

(
1/2+σ(τ + TA − TB)

))
.

(3.23)

The time integral is the convolution of two rectangle functions

∫
dτΠ

(
1/2+στ

)
Π
(
1/2+σ [τ+X]

)
=

1

σ
∧ (σX) (3.24)

with

∧ (x) =

1 − |x| if |x| ≤ 1

0 otherwise.

(3.25)

In this case, the rectangle functions completely overlap leaving the normalized

probability

P r
js =

1

2
(δHAδHB + δV AδV B) . (3.26)
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As expected, in the rectilinear basis Alice and Bob will both receive H photons or

both will receive V photons no matter what phases α or β are chosen. This of course

does not demonstrate that the state is polarization entangled. This is easily seen

by measuring in the diagonal basis in which case we expect the same outcome, both

receive H or both V . Returning to Eq. 3.14, measurement in the diagonal basis is

performed by rotating each of the photons 45◦. In this case the state is

|Ψd⟩ ∝
∫
dωdω′δ(ω + ω′ − ωp)ϕ(ω, ω′)

×
{(
â†HA(ω) + â†V A(ω)

)(
â†HB(ω′) + â†V B(ω′)

)
+
(
â†HA(ω) − â†V A(ω)

)(
â†HB(ω′) − â†V B(ω′)

)
ei(ωTA+ω′TB)

+
(
â†HA(ω) − â†V A(ω)

)(
â†HB(ω′) + â†V B(ω′)

)
eiωTA

+
(
â†HA(ω) + â†V A(ω)

)(
â†HB(ω′) − â†V B(ω′)

)
eiω

′TB
}

. (3.27)

With the same temporal and bandwidth arguments given above this generates the

probability

P d
js = N(2πLσ)2×∫ Tr

−Tr
dτ
{

(δHAδHB + δV AδV B)
(
Π2
(
1/2+στ

)
+ Π2

(
1/2+σ(τ + TA − TB)

)
+2Cos

(ωp
2

[TA+TB]
)

Π
(
1/2+στ

)
Π
(
1/2+σ [τ+TA−TB]

))
+ (δV AδHB + δHAδV B)

(
Π2
(
1/2+στ

)
+ Π2

(
1/2+σ(τ + TA − TB)

)
−2Cos

(ωp
2

[TA+TB]
)

Π
(
1/2+στ

)
Π
(
1/2+σ [τ+TA−TB]

))}
.

(3.28)

Unlike before, we now have cross terms due to the coherence between the two paths.

The integral of integration again covers the range of the rectangle functions in the

first two terms. However, the coherence terms are unity only when TA = TB. This is

related to the distinguishability of the two path cases, HH or V V in the PMF. This
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makes the triangle function nonzero for TA ̸= TB. This is, in effect, the “visibility”

term. After temporal integration, the probability is

P d
js =

1

4

{
1 + (δHAδHB + δV AδV B − δV AδHB − δHAδV B) ∧ (σ∆) Cos

(ωp
2

[TA+TB]
)}

(3.29)

where ∆ = TA-TB. With ωp

2
(TA + TB) = 2nπ, which is the case for the Bell state Φ+,

and mismatch ∆ ≈ 0,

P d
js =

1

2
(δHAδHB + δV AδV B) , (3.30)

which agrees with the probability in the rectilinear basis, Eq. 3.26.

Measurement in the circular basis is carried out by applying a −π/2 phase to

the vertical component of the state held by Alice and Bob and then rotating both

components 45◦. The resulting state starting with Eq. 3.14 is

|Ψc⟩ ∝
∫
dωdω′δ(ω + ω′ − ωp)ϕ(ω, ω′)

×
{(
â†HA(ω) + â†V A(ω)

)(
â†HB(ω′) + â†V B(ω′)

)
−
(
â†HA(ω) − â†V A(ω)

)(
â†HB(ω′) − â†V B(ω′)

)
ei(ωTA+ω′TB)

− i
(
â†HA(ω) − â†V A(ω)

)(
â†HB(ω′) + â†V B(ω′)

)
eiωTA

−i
(
â†HA(ω) + â†V A(ω)

)(
â†HB(ω′) − â†V B(ω′)

)
eiω

′TB
}

. (3.31)
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With the same temporal and bandwidth arguments given above this generates the

probability

P c
js = N(2πLσ)2×∫ ∞

−∞
dτ
{

(δHAδHB + δV AδV B)
(
Π2
(
1/2+στ

)
+ Π2

(
1/2+σ(τ + TA − TB)

)
−2Cos

(ωp
2

[TA+TB]
)

Π
(
1/2+στ

)
Π
(
1/2+σ [τ+TA−TB]

))
+ (δV AδHB + δHAδV B)

(
Π2
(
1/2+στ

)
+ Π2

(
1/2+σ(τ + TA − TB)

)
+2Cos

(ωp
2

[TA+TB]
)

Π
(
1/2+στ

)
Π
(
1/2+σ [τ+TA−TB]

))}
.

(3.32)

We again have cross terms due to the coherence between the two paths. With the

same integration as before this reduces to

P c
js =

1

4

{
1 − (δHAδHB + δV AδV B − δV AδHB − δHAδV B) ∧ (σ∆) Cos

(ωp
2

[TA+TB]
)}

(3.33)

where ∆ = TA-TB. With ωp

2
(TA + TB) = 2nπ, which is the case for the Bell state Φ+,

and mismatch ∆ ≈ 0, the probability is

P c
js =

1

2
(δHAδV B + δV AδHB) , (3.34)

which agrees with the expected bit flip when measuring in the circular basis, Φ+
Z →

Ψ+
Y . These probabilities demonstrate that Alice and Bob’s shared time-entangled

state is mapped to a polarization entangled state in a suitable window of coincidence.

This Φ+
Z Bell state behaves as it should, retaining its form in the diagonal basis, and

transforming to the state Ψ+
Y in the circular basis. In each measurement basis, Alice

and Bob can reliably predict the other’s outcome due to the mapping of their time

entangled state to a polarization entangled state.
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Chapter 4

Estimating Correlations with

Bayes’ Rule

In this Chapter, a method of estimating correlations with Bayes’ rule is proposed.

We present theory that through logical steps results in a method of estimation

using distributions that outperforms the traditional “ratio” method. Surprisingly, we

even find different, better, estimations of the most likely probability of correlation.

This approach also allows comparison of relative likelihoods between probabilities.

For instance, experimental data may suggest an entangled state as the most likely

explanation. If there is a known maximum probability for separable states, the relative

likelihood of these probabilities may be determined. With this approach all quantities

of interest are calculated from the distribution including the standard deviation.

This avoids needing a separate theoretical approach to estimating uncertainties.

Additionally, this approach avoids pitfalls found when using the Gaussian distribution

to represent the probability estimation and uncertainty. These pitfalls include

exceeding the probability bounds, 0 < p < 1, having “soft tails”[66], no logical basis

for determining the aforementioned entangled-separable likelihood ratio, and poor

most likelihood estimation when experiments include asymmetries. The basis for this

Chapter’s comparisons is numerical simulation of two-channel photon experiments in
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which determining the probability of correlation is challenged by transmission losses,

asymmetric detector efficiencies, and low count rates.

4.1 Overview

Correlation coefficients, security parameter estimation, and probabilities are at the

statistical heart of quantum information. The term “correlation coefficient” was

coined at least by 1978 [67] where it was used by Clauser, Shimony, and Abner

in their review and discussion of work related to Bell’s theorem prior to that time.

In 1982, it was used by Aspect [16] in reference to the quantity

E(a, b) =PHH(a, b)+PVV(a, b)−PHV(a, b)−PVH(a, b) (4.1)

which is an expectation value describing the nature of spatially separated quantum

correlations given local independent parameters a and b, as defined by Bell. In the

experiment shown in Fig. 4.1, PHH(a, b) is the probability that there is a horizontal-

horizontal (HH) coincidence.

If PHH(a, b)=PVV(a, b) ≈ 1/2, the correlation coefficient E(a, b) ≈ 1, the events are

correlated. Likewise, it could be that PHV(a, b)=PVH(a, b) ≈ 1/2, E(a, b) ≈ −1, and

the events are anti-correlated. The correlation coefficient is a well known quantity as

it is fundamental to expressing the Bell parameter

|S|= |E(a0, b0) + E(a0, b1) + E(a1, b0) − E(a1, b1)|≤2

in the case of two-channel Bell tests [15, 16].
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Figure 4.1: A typical Bell test. An entangled photon pair is shared between Alice
and Bob whose local measurement settings or local realities a0, a1, b0, and b1 are
randomly chosen by a symmetric beamsplitter (BS). HWP ≡ half-wave plate, PBS
≡ polarizing beamsplitter

Aspect measured the correlation coefficient using the ratio of coincidence counts

⟨E(a, b)⟩=
CHH(a, b)+CVV(a, b)−CHV(a, b)−CVH(a, b)

CHH(a, b)+CVV(a, b)+CHV(a, b)+CVH(a, b)
. (4.2)

It is not clear if Aspect used a normalization procedure on this quantity, but it

is common to do so for proof of principle experiments demonstrating entanglement

distribution or quantifying experimental quality. If unnormalized, Eq. 4.2 is a poor

measure of correlation when the detector and transmission efficiencies vary between

detector pairs. Conveniently, the singles counts Sij, i ∈ {A,B} and j ∈ {H, V }, can

typically be used to normalize the coincidence count rate since

SAH ≈ ηAHF

2
and CHH ≈ ηAHηBH p F

2
(4.3)

where p is the probability of correlation, etaij are the combined transmission and

detection efficiencies, and F is the flux of photon pairs. These proportionalities make

the normalized coincidence count

NHH =
CHH

SAHSBH

(4.4)
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a convenient choice in expressing the correlation coefficient,

⟨E(a, b)⟩=
NHH(a, b)+NVV(a, b)−NHV(a, b)−NVH(a, b)

NHH(a, b)+NVV(a, b)+NHV(a, b)+NVH(a, b)
. (4.5)

In quantum information applications, this type of “correlated/anti-correlated”,

“either/or”, or “+/-” quantity shows up any many variations. In Chapter 2, the

nonlocal polarization interferometer’s ability to detect entanglement and statistically

identify Bell states relies completely on the estimation of correlations coefficients.

The form of Eq. 4.5 is a lot like another common quantity in quantum information,

the visibility

V =
max−min

max+min
. (4.6)

The max and min quantities are typically the maximum and minimum values in

an interference pattern. When that pattern is from two photon correlations it is

representing the same quantity as the correlation coefficient, albeit at the maximal

points whereas Bell tests are done at submaximal points. In quantum key distribution,

measurement of the error rate q is necessary to quantify the security of the system

and determine the amount of privacy amplification [68, 69] needed. The error rate

is simply the percentage of uncorrelated events measured out of the total. For

instance a two-channel polarization setup that is intended to produce the correlated

measurements HH and V V would have a count dependent error rate

q =
CHV + CV H

CHH + CV V + CHV + CV H
. (4.7)

As is, this represents what component of the measured bits are useful to the end

users. However, to estimate the true security, this error rate must be represented

as a probability for which the unnormalized ratio given in Eq. 4.7 may be a poor

estimator. After normalization, the conservative approach would be to take the higher

of the two error rates as the estimation.
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Is there a better way to make these estimates, or is the “ratio” method the

best we can do? In this Chapter we suggest an alternative approach using Bayes’

rule which has found applications in quantum state [70] and entanglement [71]

estimation. Additionally, Asher Peres proposed Bayesian methods in evaluations

of Bell inequalities [72]. In this Chapter, we apply Bayes’ rule to derive a probability

distribution from which all quantities of interest may be calculated. We show that this

approach leads to better correlation predictions on average. Surprisingly we also find

different maximum likelihood predictions than the ratio method. These predictions

are, on average, closer to the true value. In addition to outperforming the ratio

method in simulations, our approach avoids logical pitfalls found when translating

the ratio method results into a distribution, specifically the Gaussian distribution.

Instead of concerning ourselves with the correlation coefficient E ∈ {−1, 1}. We

may equivalently consider the probability of correlation p ∈ {0, 1}. Knowledge of

either is equivalent to knowing both. Necessarily, the probability of anti-correlation

is 1 − p. These quantities have the simple relations

E = 2p− 1, p =
1 + E

2
, and 1 − p =

1 − E
2

. (4.8)

Unfortunately, this Chapter deals with probability distributions for the probability of

correlation, i.e. probabilities of probabilities! The probability distribution as a whole

will be referred to as capital P with lower case p as the variant. The maximum point

of the distribution P is the most likely estimate for the probability of correlation pml.

The goal is to determine pml, the most likely probability, and the uncertainty

or standard deviation of that estimate. Let us consider a traditional approach to

this estimation. An experiment similar to Fig. 4.1 is performed, and a physicist

would like to measure pml. With local settings appropriate for maximal correlation,

he counts for some time to ensure sufficient statistics and plugs the singles counts

and coincidence counts into Eq. 4.1. From this he gets a most likely estimate

pml=
1+Eml

2
. The common approach [73] in determining the uncertainty is to determine
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the variation of the quantity of interest, pml, with respect to the variables used in

its calculation, and multiply these variations by the uncertainty of those variables.

These are then summed in quadrature. The uncertainty for all counts, assuming a

Poisson distribution, is simply their square root. The resultant standard deviation

estimate is

σp =

√√√√( B∑
i=A

V∑
j=H

∂p

∂Sij

)2

Sij +
V∑

ℓ,k=H

(
∂p

∂Cℓk

)2

Cℓk. (4.9)

The derivatives will not be carried out, but, as one can see, there are many terms in

the full estimate. The physicist finds a value pml = 0.995 with σp = ±0.005 and pats

himself on the back. He decides a nice Gaussian probability distribution plot would

look great in his paper, and he plugs his data into his plotting software, disaster! As

can be seen in Fig. 4.2 a significant portion of his distribution lies above p = 1. In

other words, according to his distribution there is a 15.8% chance that the true value

of p is more than 1. This is of course nonsensical.

Figure 4.2: The Normal distribution does not conform to the probability upper
bound of 1. This distribution suggests that there is a 15.8% chance the probability
is greater than 1! This behavior is undesirable.

Our physicist decides the plot isn’t such a great idea, after all. He then remembers

that in his theoretical prediction unentangled states have a definite upper bound

for the correlation probability ps = 0.75. He decides to instead use his probability

distribution to compare the likelihood of his measured pml and the best case scenario
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for a separable state ps. At first, he plans to use a probability ratio with values from his

Gaussian distribution, but is confounded when he remembers that a large portion of

that distribution is over p=1. How should this be accounted for? Additionally, there

seems to be no logical reason to use a Gaussian distribution other than conformity

to tradition. After some consideration, he decides that these correlations are really a

lot like coin flipping. For example, the probability that a coin with unknown fairness

has a probability of heads ph is flipped n times gives heads k times is given by the

binomial distribution (
n

k

)
pkh(1 − p)n−k. (4.10)

He figures that he can compare the likelihood of his pml and ps using the ratio

pkml(1 − pml)
n−k

pks(1 − ps)n−k
(4.11)

where k is the number of correlations and n − k is the number of anti-correlations.

Liking the logic behind this process, he decides to use a normalized binomial

distribution for his probability plot, voila!

Figure 4.3: Unlike the Normal distribution, the Beta distribution naturally conforms
to the probability bounds.
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He has plotted the Beta distribution

P (p|n, k) =
pkh(1 − p)n−k

Beta [1 + k, 1 + n− k]
(4.12)

and, as can be seen in Fig. 4.3 it is well behaved at the probability boundary.

In fact, the Beta distribution is a common approach when representing probability

distributions [74, 75, 66]. The key leap our physicist has made is that embedded

in all the counts, coincidences, efficiencies, ports, and detectors, it is ultimately a

single quantity he seeks to know, the probability of correlation. Our physicist has

approached the problem logically, and lucky for him his experiment had perfectly

symmetric detection efficiencies. In general, just using the Beta distribution doesn’t

outperform the ratio method. If his experiment had included asymmetries, he would

have predicted the wrong answer. This is because his raw counts would not have

been proportional to just the probability of correlation, but also the probability the

photon is lost. Clearly, a more systematic approach is needed.

4.2 Bayes’ Rule

Bayes’ rule is

P (A|B) =
P (B|A)P (A)

P (B)
(4.13)

the probability of A given B, P (A|B), is given by the probability of B given

A, P (B|A), weighted by the prior probability of A, P (A), divided by the total

probability of B over all A, P (B) =
∑

i P (B|Ai)P (Ai). The denominator on the

right hand side (RHS) of the rule is just the numerator summed or integrated over

all values of A. Thus the RHS is a distribution.

The utility of the rule is made clear with the following familiar example. Consider

that we want to know the fairness of a coin. We flip the coin n times getting heads

k times and we want to know the probability p that the coin lands on heads. Using

Bayes’ rule and our knowledge that such probabilities obey the binomial distribution
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we find the distribution

P (p|n, k) =

(
n
k

)
pk(1 − p)n−kP (p)(

n
k

) ∫ 1

0
dppk(1 − p)n−kP (p)

(4.14)

where P (p) is probability of heads prior to flipping the coin. If we expect a fair coin,

we would choose P (p) = p(1− p). If we have no prior information, we could just pick

a uniform prior P (p) = 1. Assuming a uniform prior, Eq. 4.14 reduces to

P (p|n, k) =
pk(1 − p)n−k

Beta [1 + k, 1 + n− k]
(4.15)

which is the Beta distribution. The most likely value for p coincides with what we

expect

pml =
k

n
. (4.16)

If we want to know the standard deviation of p,

σ =

√
⟨p2⟩ − ⟨p⟩2, (4.17)

we calculate it from the distribution, using

⟨
p2
⟩

=

∫ 1

0

P (p|n, k)p2dp (4.18)

and

⟨p⟩ =

∫ 1

0

P (p|n, k)p dp. (4.19)

This results in the simple expression

σ =

√
k(n− k)

n2(n+ 1)
. (4.20)

This is a very nice example that results in simple answers. Perhaps Bayes’ rule

was not even needed to validate this approach. However, the answers we find
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in our approach to correlation estimation, while nice looking, do not permit such

simple algebraic execution. In addition to having a more complex model for

the probability distribution, estimating most likelihoods and uncertainties requires

numerical computation. However, compared to the traditional approach, we get

better answers.

4.3 Estimating Correlations

As a model for our derivation, consider a two channel experiment as seen in Fig. 4.4.

A source generating photon pair flux F is shared between Alice and Bob. Alice and

Bob each have a measurement apparatus consisting of a half-wave plate, a polarizing

beamsplitter, and a pair of detectors. Here we have equated the horizontal port to 0

and the vertical to 1. For example, with this configuration they could carry out the

QKD Ekert protocol [6]. For a series of measurements, let the individual detector

counts be A0, A1, B0, and B1 for Alice and Bob, respectively. Let the coincidence

count for two detectors Ai and Bj be cij, or c00, c11, c01, and c10. The last parameters

we will need are the efficiencies of detection, transmission and detector dependent,

ηa0, ηa1, ηb0, and ηb1.

Figure 4.4: A two-channel experiment using polarization. Alice and Bob each have
two possible detection outcomes, H ≡ 0 or V ≡ 1.
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In preparation for the full treatment we first consider the treatment of detection

probabilities. If n photons are incident through an experimental pathway “destined”

to arrive at detection port 0, but subject to the probability of loss 1 − η0, the

probability we detect k0 of these events is

P (k0) =

(
n

k0

)
ηk00 (1 − η0)

n−k0 , (4.21)

the binomial distribution, again. Next, consider that in addition to the efficiency

of detection, the photon is no longer destined to this specific detector, but has a

probability p of going to detector 0 and a probability 1 − p of going to detector 1

with its own path efficiency. What is the probability of k0 counts in detector 0 and

k1 counts in detector 1? The probability is

P (k0, k1|p)

=

n−k1∑
m=k0

(
n

m

)(
n−m

k1

)(
m

k0

)
(pη0)

k0(p(1 − η0))
m−k0((1 − p)η1)

k
1((1 − p)(1 − η1))

n−m−k1

=

n−k1∑
m=k0

(
n

m

)(
n−m

k1

)(
m

k0

)
pm(1 − p)n−mηk00 (1 − η0)

n−k0ηk11 (1 − η1)
n−m−k1 .

(4.22)

This is considerably more complex, since now we have to account for all the ways

that things can happen. We now ask, given that we count k0 and k1 what is the

probability p of the photon choosing the detector 0 pathway? We use Bayes’ rule,

P (p|k0, k1) =
P (k0, k1|p)∫ 1

0
dpP (k0, k1|p)

(4.23)

where we have assumed a uniform prior probability P (p) = 1 and P (k0, k1|p) is given

by Eq. 4.22. We now have a distribution from which we can predict the most likely

probability pml the photon goes to detector 0 and any other quantities we want to
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calculate such as the standard deviation. This is the basic procedure we will use

albeit with more possibilities.

We pose the problem in the following manner. Consider that Alice has made

a detection, she has heralded a photon pair. What is the probability that the

photon Bob measures is correlated? Posing the problem in this manner removes

the unknown parameter F , the true photon flux, from the problem. We could, of

course, equally consider the problem from Bob’s perspective, but A’s come before B’s.

The distribution we seek represents the probability that Bob’s photon is correlated

or anti-correlated given that Alice has detected at either her 0 or 1 port. Let the

probabilities of a 00 coincidence be p0, 11 is p1, 01 is p2, and 10 is p3. Considering all

the possibilities simultaneously gives the distribution

P (p|A, C) =

∫∫∫∫
dp0dp1dp2dp3δ(p−p0−p1)δ(1−p−p2−p3)P (P|A, C)∫ 1

0

∫ ∫ ∫∫
dpdp0dp1dp2dp3δ(p−p0−p1)δ(1−p−p2−p3)P (P|A, C)

(4.24)

where a uniform prior P (p) = 1 is assumed, P = {p0, p2, p2, p3}, A = {A0, A1}, and

C = {c00, c11, c01, c10}. The delta functions ensure that the probability of correlation

is the sum p = p0 + p1, the sum of the probability of measuring 00 and 11, and

the probability of anti-correlation is 1 − p = p2 + p3, the sum of the probability of

measuring 01 and 10. Let us consider the numerator alone, remembering that in

order to normalize the distribution we will ultimately have to divide through by the

denominator. Again, the denominator is simply the numerator integrated over the

range of p ∈ {0, 1}.

The integrand in the numerator is

P (P|A,C)=

A0−c01∑
n=c00

(
A0

n

)(
A0−n
c01

)(
n

c00

)
pn0p

A0−n
2 ηc00b0 (1−ηb0)n−c00ηc01b1 (1−ηb1)A0−n−c01

×
A1−c10∑
m=c11

(
A1

m

)(
A1−m
c10

)(
m

c11

)
pm1 p

A1−m
3 ηc11b1 (1−ηb1)m−c11ηc10b0 (1−ηb0)A1−m−c10

(4.25)
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with the first sum corresponding to photon pairs heralded by Alice detecting at her

0 port and the second sum corresponding to Alice detecting at her 1 port. Given

that Alice has made a detection, the probability Bob detects a photon at either of

his ports is related to both the probability of correlation, but also the efficiency of

that port. Each of the two sums includes components of the correlation probability,

p = p0 + p1, and anti-correlation probability, 1 − p = p2 + p3. Thus, they cannot be

treated independently, the integrations must include the product of these sums.

Using the binomial theorem

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n, (4.26)

Eq. 4.25 can be reduced to

P (P|A, C)=
ηc00+c10b0 ηc11+c01b1 A0(c00+c01)A1(c11+c10)

c00!c11!c01!c10!
pc000 pc111 pc012 pc103

× (p0(1−ηb0)+p2(1−ηb1))A0−c00−c01 (p1(1−ηb1)+p3(1−ηb0))A1−c11−c10 (4.27)

where x(y) = Γ(x+y)
Γ(x)

is the Pochammer symbol and Γ(x) the Gamma function. The

ratio in the first line of Eq. 4.27 is a constant and in principle can be disregarded, it

would be removed anyway when the normalization procedure is carried out. However,

it turns out that keeping it is best for the numerical computation which works with

very small or very large numbers. Retaining this constant keeps the magnitude of the

numbers in check. Integrating p1 and p3 over delta functions simplifies Eq. 4.24 to

P (p|A, C) =

∫ p
0
dp0
∫ 1−p
0

dp2P (p0, p2|A, C)∫ 1

0
dp
∫ p
0
dp0
∫ 1−p
0

dp2P (p0, p2|A, C)
(4.28)

76



where

P (p0, p2|A, C)

=
ηc00+c10b0 ηc11+c01b1 A0(c00+c01)A1(c11+c10)

c00!c11!c01!c10!
pc000 (p−p0)c11pc012 (1−p−p2)c10

× (p0(1−ηb0)+p2(1−ηb1))A0−c00−c01 ((p− p0)(1−ηb1)+(1−p−p2)(1−ηb0))A1−c11−c10 .

(4.29)

Unfortunately, no further simplification appears possible. Though, this doesn’t

mean a simpler form cannot be found. Integrating over p0 and p2 leads to

hypergeometric series representations that only slow the numerical calculation. It

may be worth considering that choosing Bob as the herald instead should lead to the

same distribution. The distribution from Bob’s perspective is similar to Eq. 4.28

with dependence on Bob’s detections and Alice’s efficiencies. Some computational

simplification may result from this seeming equality, but this has not yet occured.

Thus, the probability distribution given in Eq. 4.28 is the main result of this Chapter.

This result takes as its inputs the singles counts A0, A1, and coincidence counts

c00, c11, c01, and c10. Additionally, the efficiencies ηb0 and ηb1 are required. This

was not a requirement in the ratio method, since in that normalization procedure

the efficiencies factor out. Thus, these efficiencies can either be experimentally

determined, or they can be determined through the following minimization procedure.

The efficiencies of detections obey the proportionality relations

c00
ηb0

+
c01
ηb1

≈ ηa0ηb0p(F/2)

ηb0
+
ηa0ηb1(1 − p)(F/2)

ηb1
= ηa0(F/2) = A0. (4.30)

The other relations are

A1 ≈
c11
ηb1

+
c10
ηb0

, B0 ≈
c00
ηa0

+
c10
ηa1

, B1 ≈
c01
ηa0

+
c11
ηa1

. (4.31)
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The approximate efficiencies are

ηa0(C,B) =
c01c10 − c00c11
c10B1 − c11B0

, ηa1(C,B) =
c01c10 − c00c11
c01B0 − c00B1

,

ηb0(C,A) =
c01c10 − c00c11
c01A1 − c11A0

, ηb1(C,A) =
c01c10 − c00c11
c10A0 − c00A1

, (4.32)

where A = {A0, A1}, B = {B0, B1}, and C = {c00, c11, c01, c10}. In addition to these

relations, we use the approximate efficiency ratios

ηij
ηmℓ

≈ ij
mℓ

, (4.33)

for example, ηa0/ηb0 ≈ A0/B0.

Combining all these relations, we minimize the function

M =
∑

i,j∈A0,A1,B0,B1

[(
i

j
xj − ηi (C,J )

)2
]

=

[
(xa0 − ηa0 (C,B))2 +

(
A0

A1

xa1 − ηa0 (C,B)

)2

+

· · · +

(
B1

B0

xb0 − ηb1 (C,A)

)2

+ (xb1 − ηb1 (C,A))2
]

(4.34)

where J = B for j = a0, a1 and J = A for j = b0, b1. Note that ηa0 ≈ A0

A1
ηa1,

thus, the first two terms above are both constraints on ηa0. The value of the variables

xa0, xa1, xb0, and xb1 at the function minimum are taken as the efficiencies. The

M function is proportional to the difference amongst all the relationships given

prior. This is an effective procedure, as the final numerical results suggest. In

the next section, we use Eq. 4.28 and 4.33 in numerical simulations. We compare

the estimations to the traditional ratio method and a complimentary traditional

distribution, the Gaussian distribution.
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4.4 Numerical Simulation Results

We simulate a two-channel experiment as seen in Fig. 4.4. The simulation uses

random numbers to initialize a “true” probability of correlation ptrue ∈ {0.05, 0.95}

and the efficiencies ηi ∈ {0.1, 0.9}. In a computational loop of length F , the photon

pair flux, more random numbers decide the final detection and coincidence results.

In each iteration, four random numbers r0, r1, r2 and r3 are generated. If r0 < ptrue

the pair adopts a correlation pathway, else an anti-correlation pathway. The number

r1 decides with a 50:50 probability between the two possible cases of correlation, 00

or 11, or anti-correlation, 01 or 10. If the number r2 or r3 is less than the efficiency

of the selected ports, a detection is registered. If both detections are registered, a

coincidence is counted.

The following mathematical forms are used in the calculations. The Gaussian

distribution

G(p) =
1√

2πσr
e
− (p−prml)

2

2σ2
r (4.35)

is given using the most likely estimate from the ratio method

prml =
n00 + n11

n00 + n11 + n01 + n10

with nij =
cij
AiBj

(4.36)

and the standard deviation

σr =

√√√√( B∑
i=A

1∑
j=0

∂pml
∂ij

)2

ij +
1∑

ℓ,k=0

(
∂p

∂cℓk

)2

cℓk. (4.37)

The probability contained in the interval from a to b has the closed form

Ga,b =

∫ b

a

dpG(p) =
1

2

(
Erf

[
prml − a√

2σr

]
− Erf

[
prml − b√

2σr

])
. (4.38)
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The proposed distribution P (p|A, C) is given by Eq. 4.28. The most likely value is

that which maximizes the distribution

ppml = argmax
p∈{0,1}

[P (p|A, C)] . (4.39)

The probability contained in the interval a to b must be numerically integrated,

Pa,b =

∫ b
a
dpP (p|A, C)∫ 1

0
dpP (p|A, C)

. (4.40)

The proposed standard deviation is also found numerically,

σp =

√√√√∫ 1

0
dpP (p|A, C) p2∫ 1

0
dpP (p|A, C)

−

(∫ 1

0
dpP (p|A, C) p∫ 1

0
dpP (p|A, C)

)2

. (4.41)

This simulation is carried out in Mathematica 9.0 [76] with and without

determination of the efficiencies using minimization in the proposed method. The

figures of merit we will be using for comparison are the following. First, we compare

the probability given for ptrue by the Gaussian distribution with ratio method

parameters prml and σr and that given using the proposed distribution. Next, the

distance of the most likely probability from the true d =Abs(pml− ptrue) is compared

for the ratio and proposed methods. This simply represents which most likely

estimation is closer to the true value. Last, the probability for ptrue is compared with

increasingly asymmetric efficiency choices as represented by the standard deviation of

these choices ση. This comparison is focused on the hypothesis that the ratio method

is a poor estimator when detection efficiencies are asymmetric.

The first set of data resulted from 2837 simulations of particle flux F = 1000,

with detection efficiencies determined by minimizing the function M given in Eq.

4.34. Regarding the probability of ptrue given by the distributions, the proposed

distribution (PD) beats the ratio-Gaussian distribution (RGD) 68.6% of the time.

On average, PD gives a 14.3% higher probability to ptrue than RG. The proposed
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most likely value ppml is closest to ptrue 56% of the time. On average ppml is 5% closer

to ptrue than prml. To compare the estimation performance versus the asymmetries

in the efficiencies, we plot the ratios Pp/(Pp + Prg) and Prg/(Pp + Prg) where Pp

and Prg are the probabilities given ptrue by PD and RGD, respectively. PD gives a

better performance trend as the efficiency asymmetry, as measured by the efficiency

standard deviation ση, increases as seen in Fig. 4.5.

Figure 4.5: Estimating the efficiency, the proposed distribution outperforms the
ratio-Gaussian distribution, on average, as asymmetries in the efficiencies increase, as
measured by the efficiency standard deviation ση.

The second set of data resulted from 2000 simulations of particle flux F = 1000,

with detection efficiencies given. Regarding the probability of ptrue given by the

distributions, the proposed distribution (PD) beats the ratio-Gaussian distribution

(RGD) 71.9% of the time. On average, PD gives a 20% higher probability to ptrue than

RG. The proposed most likely value ppml is closest to ptrue 59% of the time. On average

ppml is 20% closer to ptrue than prml. To compare the estimation performance versus the

asymmetries in the efficiencies, we plot the ratios Pp/(Pp + Prg) and Prg/(Pp + Prg)

where Pp and Prg are the probabilities given ptrue by PD and RGD, respectively. PD

gives a better performance trend as the efficiency asymmetry, as measured by the
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efficiency standard deviation ση, increases as seen in Fig. 4.6. A summary of the

most relevant data is given in Fig. 4.7.

Figure 4.6: Given the efficiencies, the proposed distribution outperforms the ratio-
Gaussian distribution, on average, as asymmetries in the efficiencies increase, as
measured by the efficiency standard deviation ση.

Figure 4.7: For the efficiency minimization method, the proposed distribution
has the probability of correlation ptrue as more probable 68.6% of the time, with
a 14% higher probability on average. In the case that the efficiencies are known, the
proposed distribution has ptrue as more probable 71.9% of the time, with a 20% higher
probability on average.
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4.5 Discussion

The results in the preceding section confirm our hypotheses regarding correlation

estimation using the traditional approach. As a first pass, this research suggests

further consideration of Bayes’ rule in estimating the probabilities associated with

quantum information tasks. In addition, the model presented simplifies comparison

with known theoretical results. For example, the nonlocal polarization interferometer

from Chapter 2, predicts that separable states cannot have a probability of correlation

exceeding 75%. Thus, upon experimentally determining the probability of correlation

and using this model to produce a distribution P (p|A, C), the relative likelihood of

the most likely probability pml can be compared to the best case for a separable state

ps = 0.75,

relative likelihood =
P (pml|A, C)

P (ps|A, C)
. (4.42)

With this comparison, physicists may weigh the likelihood of their entanglement

prediction. While a large number is more indicative of an entangled state, the

appropriate “lines in the sand” are debatable. This idea is discussed further by Blume-

Kohout [77]. Use of a Gaussian distribution for this ratio would not be appropriate,

since it does not model the physics.

Future research into estimating correlations with Bayes’ rule will focus on

simplifying or approximating the results to overcome computational cost and

interpreting model predictions in a appropriate, sensible, and useful way.
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and Hugo Zbinden. Faithful entanglement swapping based on sum-frequency

generation. Physical review letters, 106(12):120403, 2011. 95

[83] Thiago Guerreiro, Enrico Pomarico, Bruno Sanguinetti, Nicolas Sangouard,

JS Pelc, C Langrock, MM Fejer, Hugo Zbinden, Robert T Thew, and Nicolas

Gisin. Interaction of independent single photons based on integrated nonlinear

optics. Nature communications, 4, 2013. 95

[84] Robert W Boyd. Nonlinear optics. Academic press, 2003. 96

[85] Leonard Mandel and Emil Wolf. Optical coherence and quantum optics.

Cambridge university press, 1995. 101

93



Appendix

94



Appendix A

The Two-Photon State from

Downconversion

In this appendix, we derive unitary operators for downconversion and upconversion

as approximations of the true nonlinear processes, spontaneous parametric down-

conversion (SPDC) and frequency upconversion, SPDC’s conjugate process. This

derivation is a conglomeration of methods and results from [78, 25, 23, 79]. As

implied by the citations, this is not a new result. However, it combines a sufficient

description of the origin of the two photon state from SPDC sufficient to describe the

states in the presented and similar research. The similarities between downconversion

and upconversion also allow adoption of an operational approach that should ease

theoretical descriptions involving both downconversion and upconversion. The most

simple case being upconversion of a previously downconverted pair in an identical

crystal [80, 81]. Theoretical treatments upconverting previously unentangled photons,

such as entanglement swapping [82, 83], may also benefit from this description.

Once the downconversion and upconversion operators have been approximated, the

downconversion operator is used to generate a two-photon state whose variants are

applied in Chapter 1 and 2.
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A.1 Downconversion and Upconversion Operators

The Hamiltonian for the electric and magnetic fields in a medium is given by

H =
1

2

∫
V

d3r

[
D (r, t) · E (r, t) +

1

µ0

B2 (r, t)

]
(A.1)

with the displacement field

D (r, t) = ϵ0E(r, t) + P(r, t) (A.2)

and polarization P(r, t). Combining (A.1) and (A.2)

H =
1

2

∫
V

d3r

[
ϵ0E

2 (r, t) +
1

µ0

B2 (r, t)

]
+

1

2

∫
V

d3r [E (r, t) ·P (r, t)] (A.3)

Let us write the free electric field as a sum of discrete mode plane waves, see [84] , as

E (r, t) =
∞∑

n=−∞

E (ωn) e−iωnt (A.4)

E (ωn) = Ane
ikn·r (A.5)

The polarization must be expanded into linear relationships with individual modes

and components of the applied field. This results in the proportionality factor χ, the

susceptibility, being a tensor. The polarization is then

Pi(ωn) = lim
N→∞

ϵ0

N∑
n=1

∑
m1··mN

∑
j1··jN

δωn(
∑

n ωmn )χij1··jN(ωn, ωm1 , ··, ωmN
)Ej1(ωm1)··EjN(ωmN

)

(A.6)
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from which we are concerned only with the second-order contribution

P
(2)
i (ωn) = ϵ0

∞∑
m,u=−∞

3∑
j,ℓ=1

δωn(ωm+ωu)χijℓ(ωn, ωm, ωu)Ej(ωm)Eℓ(ωu) . (A.7)

In the experiment of interest χ does not change appreciably over the frequency

range. With this key approximation Eq. A.7 reduces to

P (r, t) = ϵ0χijℓEj (r, t)Eℓ (r, t) ei (A.8)

We can now rewrite (A.3)

H =
1

2

∫
V

d3r

[
ϵ0E

2 (r⃗, t) +
1

µ0

B2 (r⃗, t)

]
+
ϵ0
2

∫
V

d3rχijℓEi (r, t)Ej (r, t)Eℓ (r, t) (A.9)

This Hamiltonian represents the energy stored in electromagnetic field and it’s

interaction with the medium. Next we will quantize the electric field, see [79], in

order to evolve our downconversion and upconversion system/state.

E (r, t) → Ê (r, t) = Ê
+

(r, t) + Ê
−

(r, t) (A.10)

B (r, t) → B̂ (r, t) = B̂
+

(r, t) + B̂
−

(r, t) (A.11)

Ê
+

(r, t) = i
∑
k

∑
λ=1,2

ekλ

√
~ω

2ϵ0V n (ω)
âkλe

i(k·r−ωkt) (A.12)

B̂
+

(r, t) = i
∑
k

∑
λ=1,2

(κ× ekλ)

√
~ωn (ω)

2ϵ0V c2
âkλe

i(k·r−ωkt) (A.13)

where κ = k/k.

Ĥ (t) = Ĥ0 + ĤI (t) (A.14)
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Ĥ0 =
∑
k

∑
ν

~ωk
[
â†kλâkλ +

1

2

]
(A.15)

ĤI (t) =
ϵ0
2

∫
V

d3rχijℓÊi (r, t) Êj (r, t) Êℓ (r, t) (A.16)

At each crystal interaction we can assume only downconversion or upconversion are

occurring, since the unwanted processes either have negligible contribution or can be

filtered out post-interaction. We will assume the fields interacting are all linearly

polarized and have real polarization vectors.

ĤI (t) = Ĥ↓ (t) + Ĥ↑ (t) (A.17)

Ĥ↑ (t) = Ĥ†
↓ (t) (A.18)

Ĥ↓ (t) =
ϵ0
2

∫
V

d3rχijℓÊ
−
j (r, t) Ê−

ℓ (r, t) Ê+
i (r, t) (A.19)

Ĥ↑ (t) =
ϵ0
2

∫
V

d3rχijℓÊ
−
i (r, t) Ê+

ℓ (r, t) Ê+
j (r, t) (A.20)

where Ĥ↓ represents the downconversion process and Ĥ↑ represents the upconversion

process. For these second order processes the nonlinear susceptibility χijℓ is in units

of m · volt−1.

We also will make the approximation that our experiment involves collinear

propagation for the pump, signal, and idler. Note that the conjugate process, up-

conversion, would have signal and idler collinear and coincident with an upconverted

photon resulting. The coincident and collinear requirements make the upconversion

process orders of magnitude less efficient than downconversion. We will discuss the

downconversion case since it is easier, but the upconversion case is the same as long as

the temporal properties of the signal and idler are emphasized. In this case, we assume

a paraxial path for the nonlinear interaction. This paraxial region will include a cross-

section A = V/L as seen in Fig. A.1. This will reduce our theoretical discussion to
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one-dimension for the propagation and two polarization directions λ = {h, v}. Our

positive electric field operator is then given by

Ê+
λ (z, t) = i

∑
k

√
~ω

2ϵ0LAn (ω)
âkλe

−i(ωt−kz) (A.21)

with k ≡ kz. We will now move to the continuous representation, L → ∞. In this

case
∑

k →
1
∆

∫
dω and âk → ∆1/2â (ω) with ∆ = 2πc

L
, see [79].

Ê+
λ (z, t) = i

∫
dω

Eω√
n(ω)

âλ (ω) e−iωteikz (A.22)

where Eω =
√

~ω
4πϵ0Ac

.

We can now rewrite (A.14) and (A.15) as:

Ĥ↓ (t) =
ϵ0χijℓ

2

∫
dA

∫ L/2

−L/2
dz
[
Ê−
j (z, t) Ê−

ℓ (z, t) Ê+
i (z, t)

]
= − iAϵ0χijℓ

2

∫
dωdω′dω′′ EωEω′Eω′′

√
n(ω)n(ω′)n(ω′′)

â†j (ω) â†ℓ (ω′) âi (ω
′′) ei∆ωt

∫ L/2

−L/2
dze−i∆kz

= − iAϵ0χijℓ
2

∫
dωdω′dω′′ EωEω′Eω′′

√
n(ω)n(ω′)n(ω′′)

â†j (ω) â†ℓ (ω′) âi (ω
′′)ϕ (∆k) ei∆ωt

(A.23)

Ĥ↑ (t) =
iAϵ0χijℓ

2

∫
dωdω′dω′′ EωEω′Eω′′

√
n(ω)n(ω′)n(ω′′)

â†i (ω′′) âℓ (ω′) âj (ω)ϕ (∆k) ei∆ωt

(A.24)

ϕ (∆k) = L sinc (∆kL/2) e−i∆kL/2 (A.25)

where ∆k = k + k′ − k′′ and ∆ω = ω′′ − (ω + ω′). The spatial integral is taken

over the length L of the interaction region.The phase matching of the interaction is

represented by ϕ (∆k).
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Figure A.1: The spatial integration is over the interaction region. In the paraxial
case we simply integrate along the z-axis.

The evolution operator for our Hamiltonian (A.10) in the interaction picture is

given by:

Ûχ (t, t′) = exp

(
1

i~

∫ t

t′
dτĤI (τ)

)
= exp

[
1

i~

∫ t

t′
dτ
(
Ĥ↓ (τ) + Ĥ↑ (τ)

)]
(A.26)

In an approximately lossless energy conserving process ∆ω → 0. In this case the

interaction time t− t′ >> ∆ω and the limits of integration may be taken to infinity.

∫ ∞

−∞
dτĤ↓ (τ) = −i~γijℓ

2π

∫ ∞

−∞
dτ

∫
dωdω′dω′′h (∆k) â†j (ω) â†ℓ (ω′) âi (ω

′′) e−i∆ωτ

(A.27)

γijℓ =
Aπϵ0χijℓE2

ωp0
2

Eωp0

~n(ωp0)n2(ωp0/2)
(A.28)

∫ ∞

−∞
dτe−i∆ωτ = 2πδ (∆ω) (A.29)

∫ ∞

−∞
dτĤ↓ (τ) = −i~γijℓ

∫
dωdω′dω′′h (∆k) â†j (ω) â†ℓ (ω′) âi (ω

′′) (s) δ (∆ω) (A.30)
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∫ ∞

−∞
dτĤ↓ (τ) = −i~γijℓ

∫
dωdω′h (∆k) â†j (ω) â†ℓ (ω′) âi (ω + ω′) (A.31)

∫ ∞

−∞
dτĤ↑ (τ) = i~γijℓ

∫
dωdω′h (∆k) â†i (ω + ω′) âℓ (ω) âj (ω′) (A.32)

Using the Campbell-Baker-Hausdorff theorem, see [85], the unitary evolution

operator for downconversion and upconversion is

Ûχ = e
1
i~

∫ t
t′ dτ(Ĥ↓(τ)+Ĥ↑(τ)) = e

1
i~

∫ t
t′ dτĤ↓(τ)e

1
i~

∫ t
t′ dτĤ↑(τ)e[

1
i~

∫ t
t′ dτĤ↓(τ),

1
i~

∫ t
t′ dτĤ↑(τ)]. (A.33)

Since, χ2
ijℓ → 0 in the exponential containing the commutator

Ûχ ≈ e
1
i~

∫ t
t′ dτĤ↓(τ)e

1
i~

∫ t
t′ dτĤ↑(τ) = Û↓Û↑ (A.34)

To the first order the unitary upconversion and downconversion operators are

Û↓ ≈ N

[
Î − iγijℓ

∫
dωdω′ϕ (ω, ω′) â†j (ω) â†ℓ (ω′) âi (ω + ω′)

]
(A.35)

and

Û↑ ≈ N

[
Î + iγijℓ

∫
dωdω′ϕ (ω, ω′) â†i (ω + ω′) â (ω′)ℓ â (ω)j

]
. (A.36)

We need to normalize Û↓ such that

⟨αν | Û †
↓ Û↓ |αν⟩ = 1. (A.37)

We will leave χijℓ general where i, j, ℓ ∈ {H,V } are the polarizations for the signal,

idler, and pump photon, respectively.
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Û↓ |αν⟩ = N

[
Î − iγijℓ

∫
dωdω′ϕ (ω, ω′) â†j (ω) â†ℓ (ω′) âi (ω + ω′)

]
|αν⟩

= N

[
Î − iδiνγijℓ

∫
dωdω′ϕ (ω, ω′)A (ω + ω′) â†j (ω) â†ℓ (ω′)

]
|αν , 0si⟩ (A.38)

where |αν , 0si⟩ is the pump state αν and the vacuum state around the signal and idler

frequencies 0si.

⟨αν | Û †
↓ Û↓ |αν⟩ = N2

[
1 + δiνγ

2
ijℓ

∫
dωdω′ |ϕ (ω, ω′)|2 S (ω + ω′)

]
= 1 (A.39)

N =

[
1 + δiνγ

2
ijℓ

∫
dωdω′ |ϕ (ω, ω′)|2 S (ω + ω′)

]−1/2

(A.40)

The efficiency of downconversion is

η↓ =
δiνγ

2
ijℓ

∫
dωdω′ |ϕ (ω, ω′)|2 S (ω + ω′)[

1 + δiνγ2ijℓ
∫
dωdω′ |ϕ (ω, ω′)|2 S (ω + ω′)

]1/2
≈ δiνγ

2
ijℓ

∫
dωdω′ |ϕ (ω, ω′)|2 S (ω + ω′) (A.41)

Normalization of the upconversion operator is similar. The normalization constant

N ensures that Û↓ and Û↑ are unitary. In instances where the conditions are

appropriate for downconversion and not upconversion Û↑ → Î and when conditions

are appropriate for upconversion and not downconversion Û↓ → Î.
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A.2 The Two-Photon State

We will assume an inexhaustible macroscopic pump with a power spectrum S (ω) and

linear polarization ν. The pump state |αν⟩ is such that

âλ (ω) |αν⟩ = A (ω) δλν |αν⟩ (A.42)

with the spectral amplitude A (ω) being related to the power spectrum S(ω) by [23]

⟨A∗ (ω′)A (ω)⟩ = 2πS (ω) δ (ω′ − ω) . (A.43)

We now apply the downconversion operator from Eq. A.35 to the pump photon

which we assume has horizontal polarization, ν = H. We also apply a filter operation

F̂ which removes the remaining pump components.

F̂ Û↓ |αν⟩ =
1

√
η↓

[
Î − iδiνγijℓ

∫
dωdω′ϕ (ω, ω′)A (ω + ω′) â†j (ω) â†ℓ (ω′)

]
|αH , 0si⟩

=
γHjℓ√
η↓

∫
dωdω′ϕ (ω, ω′)A (ω + ω′) â†j (ω) â†ℓ (ω′) |0si⟩ (A.44)

We assume Type II SPDC in this dissertation, since its phase matching function

is easier to handle mathematically. As a starting point in Chapter 2 and 3, we assume

variations on the state

|ψ⟩ = γ

∫
dωdω′ϕ (ω, ω′)A (ω + ω′) â†H (ω) â†V (ω′) |0⟩ (A.45)

with the constant

γ =
γHHV√
η↓

(A.46)

typically irrelevant to the derivations.
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