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CHA.Pl'ER I 

INTRODUCTION AND HISTORICAL 

A. Classical Thermodynamics of Electrochemical Cells 

The &P,plication of classical chemical thermodynamics to reversible 

electrochemical cells is well founded in both theory and experiments. 

The thermodynamics of Gibbs and Nernst provide one with the well lmown. 

equations used in studying and describing reversible electrochemical 

systems: The study" of such systems has provd.ded a multi tude of badly" 

needed thermodynamic data as well as much useful information about the 

physical chemistry of solutions. 

The usual method of conducting such a study is to measure the 

voltages of a reversible electrochemical cell as a function of concen

tration and temperature. From experiments such as these and by using 

the well lmown thermodynamic equations,· one is able to obta.iJ?, val.ues ·for 

the _entha1W change, the free energy ohange, the entropy change, th.e 

standard potential. or the cell, and acti'Vitie� of the solutions involved .. 

Studies such as these are limited. in their application, however, 

as they are valid only' for strictly reversible conditions. In actual.. 

practice, there are only a relatively" few electrodes which are strictly 

reversible. .A.s a further restriction, the condition of reversibility 

requires that the measurements be made under a state or zero current 

now. Thus classical electrochemioa1 thermodynamics is limited to those 
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few electrodes which are reversible and then only under conditions ot 

zero current !low. 

The departure of the potential of an electrode from its reversible 

value under the innuenoe of current fi01r is termed polarization, over-

voltage, or ovez'potential. The total polarization is made up or three 

types of polarisation, the relative magnitudes of which vary- with the 

conditions and the electrode system . ·These are ohmic or resistance 

polarization, concentration polarization, and activation polarization . 

Ohmic polarisation results from the potential drop associated with such 

things as oxide �ers on the electrode, gas bubbles at the ele�trode

eolution interrace, and resistance of the solution in the immediate 

vicinity of the electrode. Concentration polarization results from the 

deficiency (in tbe case of cathodic reactions) or e�ess (in the case 

of anodic reactions) or electroactive ions* in the immediate vicinity 
. . 

of the electrode as compared to the bulk of the solutiQn. Activation 

polarization,. as the name implies, results from the activation energy 

associated with the rate controlling step in the postulated mechanism 

of the electrode reaction. Ot the three types of polarization, acti va-

tion polarization has received the most attention . 

The usual methoQ. or studying polarization is to use a three elec

trode system. One· of these, the working electrode, is the electrode of 

interest tor which polarization values are desired. Another electrode 

*:nectroactive ions are those ions which are directly involved in 
the electrode reactions. 



is the reference electrode which is used in conjunction with the work-

ing electrode to obtain voltage values as a function of current strength. 

Essentially no current is passed between the reference electrode and the 

working electrode� Kl.eotrical. connection between the workillg electrode 

�d the reference electrode is aooompUshed by means of a capillary-

probe, · the· tip of which is placed very near the working electrode. The 

third electrode merely serves as a �eans of passing current through the 

working electrode. The difference between the potential (with respect 

to the reference electrode) of the working electrode ·during current flCM" 

and the potential under conditions of zero current is taken as equal to 

the polarization. One can see that, from the thermodynamic point of 

view, such polarization values are meaningless unless a satisfaotor.y 

reversible value for the potential can be measured. Here again such 

values are thermod;ynamically significant only for those electrodes which 

are reversible. This leaves untouched vast numbers of practical irrevers

ible electrodes �d does not even suggest a �thod for measuring thermo

dynamic properties at electrodes where simultaneous reactions are occur-

ring. 

The preceding serves merely t o  emphas�ze the limitations of classi

cal electrochemical thermociyna.-J.os and to stress the need for a new method 

for the study of electrochemical systems. 



B. Previous Work 

1. Heat Evolved � Electrochemical Cells 

4 

The earliest experiments appearing in the 11 terature concerning 

the heat effects of a cell during electrolYsis were those of .Faure.1 

Faure used a mercury calorimeter of doubtful reliability to obtain his 

results. In addition the current density and temperature are not given. 

However, he does state that the current is so low that the irreversible 

Joule heat due to the ohmic resistance of the cell is negligible. Such 

a statement is highly questionable. 

The phenomenon of a heat effect at a single electrode was first 

reported by Mill.s2 in 1877. His findings were obtained by coating the 

bulb of a mercur.y thermometer with a metal which then served as the 

cathode in an electrolytic cell. Mills interpreted this heat effect as 

a result of the work of the electrode reaction "phenomena". 

Two years later Bouty-3 began a research on a s1milar system. Like 

Mills, his results were obtained by u�in� a metal plated thermometer bulb 

as an electrode. Bouty was the first to draw the analogy between the 

heat effect existing at a single electrode and the Peltier effect which 

occurs at the junction of two dissimilar metals.* Bouty studied copper, 

zinc, and cadmium electrodes and supplamented his work by making measure

ments on electrolytic thermocells.4 

* 'ftrl.,s explains why most of the earlier work appears in the 11 tera-
ture under the title of the "electrolytic Peltier effect". 
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J ahn5 used a Bunsen ice calorimeter to make his measurements on 

the work delivered by a batter;r. He used essentially the same experi

mental technique to make his measurements on heat effects localized at 

the electrodes in electrolytic cells. The metals studied by' J ahn were 

copper, cadmium, zinc, and silver. It is in this article that Jahn 

states that the heat effect is equivalent to the current energy corre

sponding to polarization. Gill, 6 using a copper resistance thennaneter, 

also made some measurements which were in direct disagreement with some 

of Jahn1s earlier work.7 Brauer8 did same work on the so-called •elec-

tro�c Pel tier effect" using non-adiabatic calorimetry. He canpared 

his results with measurements on the corresponding th.ermocells. 

· In 1913 J. W. Hchards9 carried out some experiments to show that 

overvoltage, or polarizatio� did no chemical work but was due to in

creased surface resistance of the e1ectrodes. The reaction studied was 

the e1e.ctr�is of water. The qu.estion he wished to answer was whether 

the overvoltage. increased the theoretical. decomposition voltage or whether 

it appeared as an additional. resistance voltage. To answer this, Richards 

treated an e1ectrochemi.ca1. cell containi n·g dil.u:te sulf'uric acid as a cal-

orimeter and measured the sensible heat given off during the electrolYsis. 

Know� the heat equivalent of the current passed, he subtracted the 

sens1 h] e heat measured and the d.i.r£erence. was_ the heat disappe� in 

chemica] work. From this.., the. deccmpositi.on voltage was calculated_. With

in experimental. error, this was equal_ to the theoretical decomposition 

voltag.e in all.. cases, even when using differ�nt e;.tectrode msterials. 

Using_ R1 chard's data, one can calculate the heat of formation of water. 
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This was done and values of -68.4, -67 .-a, and -70.0 kilocalories per 

mole of water were obtained. All three of the values are in fair agree

ment with the accepted value if one considers the accuracy of his experi

mental measurements. It is interesting to note that Richards never refers 

to an elec�rolytio Peltier effect .  

QuglielmolO made some calorimetric measurements on heat. effects 

occurring between zinc electrodes and a zinc sulfate solution. His 

calorimeter, however, was not· suitable. as it: c�ted. .of;. twO: ijeak:�J.!s;' ·.- , 
for each electrode, connected by a salt bridge, with a mercury thermo�ter 

immersed in each beaker. 

Butler, ll in discussing the seat of electromotive force in a gal

vanic cell, states that the latent heat in a cell is analogous to the 

Peltier effect. However, no statement is made concerning its magnitude 

or its definition in terms of other thermodynamic quantities . 

In 1929 Bruzs12 started making temperature measurements on working 

electrodes . His . apparatus consisted of 240 thermocouples imbedded in a 

nickel electrode which served as an anode . The electrolyte was a mixture 

of nickel sulfate and ammonium sulfate with a little citric acid added . 

The only result recorded with this apparatu� was that the surface t�er

ature of the anode increased as the current density was increased up to 

the current density at which oxygen was evolved . �t this point, there 

was a sudden rise in the anode surface temperature . 

This apparatus. was later modified by Brusal-.3 to enable him to 

measure the difference in temperature between the cathode and anode sur

faces. It was found that during the electrolysis of water, there was a 
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short period during whioh the cathode was at a higher temperature but 

the anode temperature eventually became greater in all oases. The dif'-

ferenoe in temperature of the two electrodes increased with an increase 

in current density". The·re was also a decided temperature rise at the 

cathode when silver ·was deposited from a silver nitrate solution. This 

effect was not nearlJ as great as in the case o£ evolution of oxygen. or 

hytiro�en. The temperature rise during the deposition o£ OJey'gen, hydrogen, 

and silver was found to be in the ratio o£ 7.3:4.9:0 .6, respectively • 

. .  

At no tillle in his first two articles did Bru.zs mention a Pel tier 

effect. However, in a later artiole14 he stated that the temperature 

effe�t at a working electrode may be considered as a Peltier effect, or, 

as the latent heat of the electrode process. He reasoned, therefore, 

that these measurements could lead to a means or detemin,ng the entropy 

of ions. Accordingly, he measured the temperature effect on silver, 

l�ad, cadmium, bismuth, zinc, and copper electrodes. For molar solutions 

or silver, lead, and bismuth as. �trates and cadmium, zinc, and copper as 

sulfates, the following values for the absolute partial molal ionic 

entropies were �btained, respectively& · 19, -1, -111 -26, -19, and -29 

calories per mole per degree • 

. In 1930 Lange and his co-vorkeral-5 b�gan their series or measure

ments or the electrolytic Peltier effect. An adiabatic, differential 

calorimeter was empla.yed to obtain me�ements on. the mercur.y-mercurous 

electrode. The heat values obtained during electrolysis increased in a 

positive direction with increasing metal ion concentration, in agreement 

with their theoretical prediction. Lange arrived at his theoretical in-
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terpretation b.1 relating the heat effect at the electrode to the tempera

ture coefficient· or the electrode potential. Lange stated that .this was 

possible only if' one regards the heats of transfer* as being equal to 

zero. 

�hortly thereafter Bruzal6 completed his study of the mercury

mercurous electrode in both nitrate and perchlorate solutions. Studies 

were done at various concentrations and the results were applied to the 

calculatiQn of the partial molal entropy of the mercurous ion. Bruzs' 

results are in general agreement.with those of Lange and MOnhe�S 

both as to order of magn1 tude �d in variation of the entropy with mer

curous ion concentration. Bruzs reported the par�ial molal entropy of 

the mercurous ion in solutions of unit activity as 29 ! 1 calo�e· per 

mole per degree. He did not, however, explain how he arrived at the con

centration of a solution in which the activity of the mercurous ion is 

unity. 

In a later article Bruz817 gave a rather convincing argument that 

the heats·of transfer of ions can affect the electrolytic Peltier heats 

� in the case of concentration polarization. He postulated that one 

may equate the Peltier heat and the latent heat of tne electrode process 

in those cases where concentration polarization is not significant. In 

the same article he discussed some rather inconclusive measurements on 

the cadmium-cadmium amalgam electrode. Further, he gave an argument, 

�his quantity will be discussed in the section on thermocells. 
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which was rather vague, proposing the use of heat measurements to cal

culate absolute partial speeifio heats of individual ions. 

In his last article in this· series, Bruzal8 described a dynamic 

calorimeter to make measurements on a copper electrode in a copper sul

fate solution. His results were used to calculate the Peltier coefficient 

and partial molal entropy of the copper ion in the solutions used. For 

solutions of mole fraction 0.0180, 0.0040, and 0.0004, the partial molal 

entropy of the copper ion was found to be 27. 8, 25 .1, and 20.1 calories 

per mole per degree, respectively. 

In 1932 Lange and Hes$e19 published an article on the electrolytic 

Peltier heat in the silver-aqueous silver nitrate system. Their discus

sion was based on the assumption that the Thompson relation cannot be re

garded as valid for electrolytic s.ystems because of its derivation for a 

circular proces.s. However, they further assume that it may be applied 

to electrolytic s,ystems if one adds a term involving the molecular heats 

of the substances moving under the influence of the current. Their in

vestigation was started be�ause of the possibility that errors may be 

present in previous measurements on the electrolytic Pel tier heat. A 

comparison of their results With the corresponding electrolytic thermo

power gave satisfactory resul. ts within the limits of experimental error. 

No_ attempt was made to c·orrelate their resul.ts with partial molal ionic 

entropies of ions. 

In their next article Lange and Hesse20 described measurements 

made on the Peltier heats at a silver-silver chloride electrode. Here 

again Lange and Hesse introduced the concept of heats of transport. 
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They stated that these quanti ties are probably about 100-.300 · �alories. 

per mole, almost independent or concentration, but that they are re-

1-.ted. to transport numbers. Lange· and Hesse21 pursued this . idea tur"!". 

ther b,y making measurements on the electrolytic heat ��eat in the 

systems silver-aqueous silver ·nitrate and silver-silver chloride � _t�e 
.. 

presence or potassium, lithium, and hydrogen ions. Their results; were 

interpreted as establishing the existence and necessity for considering 

· heats of transport. However, their results might be int�rpreted just as 

well by considering the variation in activity or the chloride ion in 

aqueous solutions o£ potassium ohloride1 lithium. chloride, an� hydrogen 

chloride. 

Chalmers,22 without making reference to� of the earlier work, 

di�cussed the Peltier effect at metal-electrolyte junctions and at·the 

liquid.junction in ooncentration-ce�ls. This effect was given by him . 

as being equal to the pr.�uct or the absolute. temperature. and the entropy 

change occurring at the junction.· He further stated that measurement o£. 

this effect would give a means of obtaining the absolute entropies or 

ions. 

Tarasov23 has measured the temperature changes at electrodes during 

the electrolysis of aqueous copper sulfate using copper electrodes� He 

made the rather astonishing statement that the Joule heat evolved.has no 

e!�ect on these temperature changes. The observation was made that the. 

temperature change is positive throughout at the anode but that it is 

negative at the cathode at certain· current densities. His reSults were 

expressed in terms of empirical equations and explained in terms of dif-
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fusion and rate of solution rather than on the basis of ionic entropies 

and heats of transport . Reasoning thusly, he arrived at the conclusion 

that curves of temperature change versus current are more revealing in 

electrode processes than curves of current versus voltage . 

Nagaura24 made a theoretical and experimental study of the heat 

balance in a cell for the electrolysis of water . He derived equations 

for the free energy and enthalpy changes in terms of temperature, the 

vapor pressure of water above the solution, and the heat of evaporation 

of water . These equations permitted the calculation of the free energy 

and enthalpy changes as a function of the temperature and the conoentra

tion of the sodium hydroxide solution used. To test this experimentally, 

he' electrolyzed 20 per cent sodium hydroxide solutions and noted the 

final temperature . After this, the same cell was filled with an iden

tical quantity of the sodium hydroxide solution and heated to the same 

final temperature with a measured quantity of electrical energy. Heats 

of formation for water from the three examples given were -68.9, -69.78, 

and -69.82 kilocalories per mole of water . Better agreement with the 

accepted value would have been obtained if a correction had been made 

for the water carried of£ by the gases evolved. 

Antropov25 has compared four different methods for calculating the 

heat evolved by an electrolytic cell. It is interesting to note that all 

four of the methods give different results . His opinion was that the 

correct result would be obtained by taking the difference between the 

energy equivalent of the current passed and the amount of energy neces-

sar,y to bring about the chemical changes involved . 



12 

In 1954 two Russians, Gritsan and Bulgokova,26, 27, 28,29,30 began 

a series of studies on the temperature difference between a cathode and 

the surrounding solution during eleotrodeposition of metal powders. 

The,y found that below a certain current density the temperature difference 

was practically zero but that above this current density, the temperature 

of the- cathode was greater than the temperature of the surrounding solu

tion. It was observed that this temperature difference became progres

sively larger as the concentration of the solution was decreased. The 

The e�fect of certain anions upon this temperature difference was studied 

and it was shown that there was a definite effect . Copper, cadmium, and 

zinc electrodes were studied and empirical equations were developed re

lating the temperature rise in terms of the concentration of the solution 

and the current density used. No theoretical basis was given for the 

equations but it was claimed that they were so exact that the concentra

tion of an unknown metal solution could be determined merely by measur

ing the temperature difference between the cathode and the solution during 

electrolysis. 

In 1954 Sherfe.r. and �renner-'31 at the National Bureau of. Standards 

st��d a program of study of the heat effects of dynamic electrochemical 

systems . This was undertaken to determine the feasibility and types of 

information available from simultaneous electrical and calorimetric 

measurements on the same system. From their studies they have obtained 

heats of reaction, polarization values, and entropy changes for a few 

electrolytic reactions. In cases in which comparison was possible, the,y 

have obtained fair. agreement between their results and the existing data ... 



1.3 

Throughout the literature, there seems to be no general agre�

ment as to the quantities involved in the heat effects occurring at 

electrodes during electrolysis. Some of the quantities which have, at 

various times, been included in these heat effects are: heats of reac-

tion, free energy changes, entropy changes, polariz�tions of all types, 

ohmic resistance, heats of transfer, and the Peltier effect. 

2 .  Thermocells 

a. Definition ,!!!! types of thermocells . The electrolytic thermo

couple, or "thermooell11, is the electro�io counterpart of the metallic 

thermocouple and many of the same relationships are valid for both systems. 

�s is the case of metallic thermocouples, the electrical potential in a 

thermooell is caused by a temper!ture gradient in some portion of the 

cell and not by a difference in the potentials or two electrode reactions 

as is the case with a galvanic Clell. 

All or the thermocells which have been studied may be classified 

into one o£ five general types. These are: 

I. . M I MX (Solid) J M 
T1 T2 

II. M '� (Fused) 'M. 
T:l. T2 · 

III. Electrode I Soluti� I Solution I Electrode 
!1 T1T2 T2 

IV. Electrode I Solution A l Solution B I Solution A I Electrode 
- 'rl. TJ.T 2. �2Tl T]. 

V. Electrode I Solution A I Solution B I Solution A I Electrode 

T]. T�l T�2 �-
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where M is � metal electrode, MI is a metal salt, and T refers to tem

perature . 

Cells in which the electrodes are identical, such as those shown 

above, are often referred to as "pure11 thermocells. Such need not be 

the case as an extension can easily be made to thermocells in which the 

electrodes are different. However, in this case the measured potential. 

difference will contain a net electrode potential difference as well as 

a the:rmopotential. Eastman32 has reserved the name 11thermocell n for 

cells of Type III, but this distinction will not be maintained in this 

dissertation . 

b .  Relationship of thermocells to present work . The connection 

between thermooells and the heat evolved at electrodes lies in two 

quanti ties . These are the entropy change occurring in the electrode 

reaction, and the ionia heats of transfer. Thermoaells such as Type III 

above have been used to calculate the temperature coefficient of single 

electrode reactions . From the temperature coefficient, it is possible 

to calculate the entropy change for the electrode reaction and absolute 

ionia entropies . Therefore, it is of interest to compare entropy values 

obtained from ther.mocells with those obtained from measurement of the 

heat effect at single electrodes during electrolysis. 

The role of heat of transfer in thermooells is fairly well estab

lished, both in theory and experiment. However, as. mentioned previously, 

the effect of ionic heats of transfer on the amount of heat liberated at 

a working electrode is still in dispute. Eastman33 defined the heat of 

transfer of A -a� that "quantity of heat absorbed from the surroundings 
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of the region ( of infinite extent) from which one mole of oonsti tuent 

A is transferred . n In his wonc32 on the entropy of the chloride ion, 

Eastman stated that the entropy of transfer (the heat of transfer 

divided by the absolute temperature) is a result of a temperature dif-

ferenoe between two points in the system. This concept is given further 

strength b,y Holtan1a34 work on thermooells in which the heat of transfer 

always appears multiplied by a temperature gradient . From this, it would 

appear that the heat of transfer would have no effect in an isothermal 

system. 

3 . Review of Work Done � Thermocells 

Holtan's thesia34 gives an extensive review of the earlier work 

which has been done on themooells . In addition, Holtan did a thorough 

theoretical analys.is of therm.ooells and supplemented th�s theoretical 

work with a few experiments .  His theoretical treatment is by far the 

most complete and most general of arry appearing in the literature . His 

experimental systems consisted of silver and thallium thermooells. He 

also did some interesting work on thermocells with colloidal solutions 

and on thermopotentials in nerve fibers� His results plus those of the 

earlier workers indicate that his equations are valid. 

Previous to Holtan, Eas�2,35, 36 did considerable work on the 

theory of thermocells . However, Eastman 1 s approach followed the line 

of classical thermodynamics .  It was somewhat arbitrary in that some of 

the processes occurring in a thermooell are assumed to be irreversible 

and are therefore disregarded. The first and second laws of thermo-
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dynamics were then applied to the remaining processes, the suppos� 

reversible parts. Eastman arrived at a themocell equation which was 

consistent with the experimental results but which did not give an 

accurate picture of the system. Eastman's students.37 have published 

some o£ their results from experiments on thermocells. In their paper 

the a l:Bolute partial molal entropy of the hydrogen ion was calculated. 

to be -2.1 ! 0. 4 calories per mole per degree from the Eastman thermo-

cell equation • 

. BonnemqlB made a study of mercury, cadmium, and cadmium amalgam 

electrodes in thermocells from which he concluded that the enthalpy 

ohange o£ the ele ctrode process is independent o£ temperature. Bonne� 

and Fairbank'9 studied copper amalgam thermooells. From their results, 

they ca lculated the entropy change for the anodio dissolution of copper 

at unit activit.y and obtained a value of -37 calories per mole per 

degree. Bonn� also studied thermooells in which hydrogen, zinc, 

zinc amalgam, and copper electrodes were used . The basis for his cal

culation of single electrode reactions was his assumption41 that the 

thermopotentia:L :for the non-isothermal liquid junction in his cells was 

equ.al to zero. 

Hasse42, 43, 44 has done considerable theoretical work on the subj ect 

of ther.mooells, p� particular attention to heats of transfer. Hasse's 

method was similar to that of Hol ttm34 in that he employed the thermo-

dynamics of irreversible processes. It is interesting to note that in 

one of Hasse's articles42 he gave an explicit equation for the Peltier 

heat in a thermocell but that no mention was made of a Peltier heat in 

an isothermal cell. 



The general cons ensus at the present time seems to be that 

measurements on thermocells cannot be used to determine absolute 

ionic entropies. 

C. Statement o£ The Problem 
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There exists a recognized need for a new method tor the study of 

eleotroo hemioal phenomena, particular� in the fields of polarization 

and in investigations o! the thermoQynamios ot si�le electrode proc ess es . 

It was !elt that a combination of simultaneous electrical and 

calorimetric measurements on the same system might supply this need. 

Such measurements would provide one vi th. current, voltage, heat, and 

temperature values for the same system, 

A theoretical investigation was undertaken to determine what quan

tities, if a.ny, might be measured b7 such a combination ot electrochem

istry and calor:Lmetry and to provide a basis for the experimental inves

tigation. Recourse was taken to the thermodynamics of irreversible 

processes as applied to electrochemical process since classical thermo- . 

dynamics is unable to treat irreversible electrochemical cells. · 

It was neoessar.y that extensive instrumentation be used to make 

siJmll taneous measurements of both eleotrical and heat quanti ties. A 

preliminar.y determination of t he magnitude of the temperature changes 

at electrodes during e lectrolysis provided the basis for the completion 

of the experimental apparatus. 
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The syatems chosen for study were the well lmown copper-aqueous 

copper sul.!ate and silver- aqueous silver nitrate systems. It was hoped 

that these two systems wou ld provide a check with each other and, in 

addition, also turnish a link with the quanti ties obtainable by classical 

thermodynamic methods. 

It was desirable that the accuracy of the calorimetric techniques 

be checked by determining the enthalpy change involved for a reaction 

for which this quantity is well known. To prove this point, the enthalpy 

change involved in the decomposition of water was determined by the 

method described in this dissertation. 



CHAPrER II 

THEORETICAL DISCUSSION 

A. Classical Thermodynamics as Applied to Electrochemical Cells 

The limited discussion of classical electrochemical thermodynamics 

which is given here is covered thoroughly in most physical chemistr.r 

textbooks. This material is included to serve as a comparison to mate-

rial which will be given in a later section and also to emphasize the 

limitations and restrictions which are imposed upon the classical thermo-

dynamic methods. Historically speaking, the classical thermodynamics of 

electrochemical cells has its foundations in the brilliant work of such 

men as Nernst, Gibbs, and Helmholtz. 

Before introducing electrode potentials as definite quantities, 

it would be well to indicate some of the well known relations between 

enthalpy, H, free ene�gy,* F, and entrop7, S. The total free energy has 

its basic definition in the equationa 

F = H - TS, {1) 

or, in terms of finite changes at constant temperature& 

llF =- llH - TllS. (2) 

Equation { 2 )  is one of the most general relationships of classical thermo-

dynamics and is valid for any isothermal process. This is a direct re-

*-Free energy" as used in this dissertation denotes the Gibbs free 
energy as defined by equation (1). 
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sult of F, H, and S, all being thermodynamic quantitiesJ th.at is, they · . .  

are dependent only on the state of the system and changes in these 

quantities are entirely- independent of the path taken between initial 

and final states. 

The change in free energy for a process is related to the net 

useful work, W!let, rev., at constant temperature and pressure by the fol

lowing equationr 

�F = - Wnet, rev. • (3) 

Note that the work must be that obtainable under reversible conditions 

and at constant temperature and pressure. Another very u�eful equation 

is that for the temperature coefficient of the free energy. This equa-

tion is: 

( 0 AF \ • _ �S 
aT }p , (4) 

where T is the absolute temperature, and the subscript p indicates a 

constant pressure process .  Here again equation (4) is valid only for a 

reversible transformation at constant pressure . Equations (2) and (4) 

may be combined to give one form of the Gibbs-Helmholtz equations 

($) 

Although this is a ver,y useful equation. it is restricted to reversible 

processes occurring under conditions of constant pressure and tempera-

ture. 

The relationships between electrochemical processes and thermo

.
dyn$Mics stems from equation (3) which, when written in terms of elec-

·, . .  
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trical energy becames t 

�F = - n J f.  (6) 

where n is the number of electrons involved in the process, :f is the 

Faraday, and E is the reversible electrode potential . It should be 

emphasized that the electrode potential as represented in equation · (6) 

is that which would be obtained under striot� reversible conditions . 

Combining equation (6) with (5)  gives the more familiar form of· the 

Gibbs-Helmholtz equation: 

(7 )  

This also gives the relation between the entropy and the electrode po-

tential as being 1 

�s :: n'J (_L \ 
OT)p . 

One other very important equation in electrochemistry is the Nernst 

(8 ) 

equation. This equation, which may be defived from either thermodynamics 

or kinetics, is : 

(9) 

for a reaction such as 

aA + bB + • • • = cO + dD + • • • • (10) 

In eqUation (9) the superscript o refers to the standard state reversible 

potential, R is the gas constant, and a: is the activity of A. raised to 

the appropriate power a .  
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Thus it may be seen that measurement of electrical potential and 

its variation with temperature will yield values of AH, AF, and As·, all 

of which are very important thermodynamic quanti ties . It should also be 

pointed out that thermo�ami.c activities are readily available from 

equation ( 9) • 

The use of the above equations is limited by the conditions under 

which they are applicable . The conditions of constant temperature and · 

pressure, although limiting, are not too stringent . All of the above 

equations, with the exception of (1) and ( 2 ) ,  are limited to stTictly 
. .  

reversible conditions . It
.
�s this restriction which imposes the most 

serious handicap on the use of classical therm�amics to solve electro-

chemical problems . 

It should be noted that no distinction has been made between cell 

potentials and single electrode potentials . This is because the given 

equations are applicable to both potentials provided suitable reversible 

potentials can be measured. This last provision explains why so many 

electrochemists have spent so much time in quest of the elusive absolute 

single electrode potential . 

The preceding paragraphs are intended to stress not onlY the im-

portanoe of classical therm�amics as applied to electroohem;ical systems, 

but also some of the more serious shortcomings of the classical line of 

attack . In view of these shortoardngs, several attempts at a new method 

for the stuw of electrochemical problems have appeared in the literature . 

These same . shortcomings have led to the method of attack which is de-

scribed in this dissertation . 



B. Electrochemical O�lls From an Energetic Viewpoint 

A concept which attempts to be more general than traditional 
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thermodynamics is that of energetics . The most important work in this 

field is Bronsted 1 s monograph. 4.5 According to Bronsted ' s energetics, 

the first and second laws of thermodynamics may be replaced by- two new 

principles ; (a ) the work principle and (b) the heat and equivalence 

principle . The work principle is restricted to reversible processes 

while the heat and equivalence principl e may be used in considering 

irreversible processes. Entrop,y is introduced without defining it in 

terms of heat . All process are considered 'as having a 11potential 

difference" as the motivating force. Another important concept of 

energetics involves relationships between entropy productio�, entropy 

change due to reversible processes, and entropy change due to irrevers-

ible processes. 

In a consideration of electrochemical cells, energetics holds to 

the tenet that irreversible pr�cesses mus� always be present even though 

their extent may be small when compared to the cell process �hich is 

generallY considered to be reversible. Electrode reactions are taken as 

analogous to Peltier heats in thermoelements. Peltier heats, however, 

are not identical with the reactions as thermoelements and galvanic cells 

have different energetic mechanisms . In the thermocell the electron is 

associated with a certain amount of entropy while in a galvanic cell the 

electron is associated with an eleotroactive substance . One of the main 

differences is that the classical method is based on electrical potentials 

while the energetic mechanism is based on the electrochemical potential . 
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Another striking difference between the . olassical and energetic �ew-

point is in the locati on of the " seat11 of the electromotive force . 

From the classical standpoint, the " seat" is taken as the metal-electro-

1yte boundary. The energetic mechanism holds that the " seat" is located 

at some region of 11disequilibrium11 in the electrolyte, ! ·  _&. , at the 

liquid junction in a concentration cell . 

In spite of these widely different concepts, the equations deriv-

able from the energetic mechanism are entirely equivalent to those ob-

tained fran the classical method of attack and therefore will not be re-

peated here . 

C. Irreversible The:modynamics of Electrochemical Cells 

1 .  The Work of de Groot 

The thermodynamics of irreversible thermodynamics as developed by 

de Groot in his boo�6 is based on Onsager ' s  reciprocal reiations . 47 As 

a matter of fact, most of the work on i�eversib�e thermodynamics is 

based on Onsager 1 s  relations . Onsager ' s  theorem is essentially a state

ment that, provided a proper ch�ice is made of the 11fiux�s 11 ( or 11 flows�' ) 

and "forces " ,  the phenomenological coefficients of two mutually inter-

£erring irreversible processes are e qual. 

A fundamental tenet in de Groot ' s  treatment of irreversible ther.mo-

dynamics is the concept of entropy balance . In this entropy balance, the 

total entropy change of a system is 09nsidered as being made up of two 

parts . One p art is d.ue to the entropy exchange with the surroundings . 
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The second part is the internal entrop,y production due to the irrevers-

ible processes occurring inside the system. The calculation of the 

entropy production is based on two fundamental assumptions . The first 

of these is that the entropy producti9n is positive . The other funda

mental assumption is that Gibbs 1 relation is valid in systems not at 

thermodynamic equilibrium. This is equtvalent to assuming that entropy · 
depends only on energy, volume, and concentration. 

Using these basic ideas, de Groot gives a brief description of 

electrochemical s.ystems . In these derivations, he takes recourse to the 

concepts of electrochemical potential and electrochemical affinit.y, 

terms which are not unique to his method . By proper choice of "flux" 

and "force", de Groot arrives at the conclusion that the entropy pro-

duction may be formulated in terms of the electrochemical affinity. At 

the conclusion of de Groot ' s  treatment of electrochemical systems, he 

demonstrates that all of his generalizations reduce to the classical re-

aults for the special case of thermodynamic equilibrium. 

2 .  The Work of Prigogine 

Except for his rather elegant treatment of stationar,y non-equilibrium 

states as being states of minimum entropy production, Pr1gogin�1 s  treat

ment48 of the thermoqynamics of irreversible processes is identical to 

that of de Groot . 46 His results were identical also and, therefore, will 

not be considered further . 
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The work of Pierre Van Rysselberghe49, 50 is the most complete of 

the work on irreversible thermodynamics in relation to electrochemical 

cells . In his treatment, Van Rysselberghe considers not only galvanic 

and electrolytic cells, but also the phenomena occurring . at single 

electrodes . The first l� of thermodynamics is essentiallY the same as 

that obtained from the classical treatment.  The second l� for irrevers-

ible electrochemical cells is introduced on the basis of the uncompensated 

heat and the power of irreversibility. This treatment also has a strong 

basis in the concept of electroch�cal affinit,y. 

Van Rysselberghe considers the causes of irreversibi+ity in an 

electrochemical cell as being due to the Joule effect and to polarization. 

According�, he introduces equations which relate these two terms with 

the · other quanti ties governing the behavior of electrochemical cells . 

This generalization is extended to the single electrode processes and 

the· concept of anodic and cathodic currents . Simultaneous half-reaction 

reactions at the same electrode may be shown to foUow the same laws as 

single reactions . 

D .  Irreversible Thermodynamics as .A.pplied to Thermocells 

1.  The Work of Hol t,an-34 
The basic method of attack used b.1 Holtan in his derivation of 

working equations applicable to thermocells is identical with that used 

by de Groot46 and Prigogin� . 48 Holtan ' s  derivation will not be given 
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here but the final results and some special oases are of importance 

and will be considered. 

The general equation for the thermopotential., ll c.p.t, of a thenno

cell is z 

" C  �
n t:k Q* llT 

Ll j - -
Zk k T -

Q: - -- llT - llSilT • T (11)  

In this equation, tk is the transference number of the kth component, 

Zk is the charge on the kth component, uk is the chemical potential of 

k, Cj is the concentration of j ,  Q: is the molar heat of transport or k 

and Q: is the molar heat of transport or the . electron. The other symbols 

have their usuU meaning . Thus it· may be seen that the total thermo-

potential is made up of four separate te:nns .  The first term .on the right 

hand side of equation (11) is the thermal diffusion potential due to con

centration gradients (the Soret effect) . The second term is the oontri-

bution caused by the transport of heat by the �harged species moving 

under the influence of the current . The influence of the electron is 

given by the third term. The last term gives the olassical contribution 

to the thermopotential, !• !• ' the entropy change of the electrode reac

tions . 

For the special case of a metallic thermocouple, equation (11) re-

duces to 

:JM.p t • ( AQ:f'r - BQ!/T ) AT + ( ASa - BS8 ) AT (12) 
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where A and B refer to the two metals of which the · thermocouple is made . 

Equation ( 12)  is equivalent to the expression derived b,y de Groot . 4
6 

For thermooells with tused or solid electrolytes and with two 

. charged components, the general equation reduces to 

{13 )  

For thermocells in which the Soret effect is present, the general equa

tiOn {11) must be used. If the Soret effect is hindered and only two 

charged species are present, the general equation again reduces to {13) . 

It is interesting to note in connection with heats of transfer that Lange 

and Hesse20 had previously noted that these quantities are related to 

the transport number. That their conclusion was correct is obvious from 

Holtan 1 s generaJ. the_rmocell equation {11) • 

In all cases in which the necessary experimental data are avail-

able, the above equations accurately describe the behavior of all types 

of thermocells . 

2 .  The Wor� of Hasse42, 43, 44 
- -- -

The general. method of attack used by Hasse is the same as that 

employed by Holtan. However, in Hasse 1 s study much more emphasis was 

placed on heat an� entropies of transport. Making allowance for the 

solvation of ions, Hasse shows that it may be possible to determine the 

entropy of transport from electromotive force measurements on thermo

cells . 44 His . 
·
study still leaves the concentration and temperature de-

pendence of heats of transport open to question . 



E .  Development of the Working Equation 

29 

The line of reasoning used to develop the working equat!on is 

essentially that given by Van Ry8selberghe.49, 50 The first and second 

laws of thermodynamics for operating electrochemiaal cells are combined 

to give a final working equation. The system considered here is the 

same as that used by Van Rysselberghe and is shown in Figure 1 .  In 

this system a" and a •  are identical. As an alternative, the contact to 

the electrodes a and a' could have been made by two pieces of a third 

metal. The reason for this precaution is given later . 

The potential differences consider� here are differences in in-

tarnal potentials or Galvani potenti� differences . These are related 

to the outer (or Volta.) potentials, 'IJ , and the surface potentials, X, 

(/J = VJ + I (14) 

where lp is the Gal.vani potential. This is in accordance with the 

definitions proposed by LangeSl in his work on the different types of 
4 

electrical potentials present in an electro�hemical system. 

The thermodynamic system dealt with here is ct8C£�� ' a ' . 'This con-

stitutes a closed system since the same number of electrons leave C£11 as 

enter a 1 • The contkc� between a and � and between a • and � 1 oonsti tutes 

what is usually termed the electrochemical double layer. In the absence 

of an electric current, the layer. a '� '  ( or a� ) i� only a few mole�ular 

diameters thick . The passage of an electric current results in an ex

tension of the l�er a1 � '  to a considerable distance (in compar�son to 
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Figure 1 . Model Used in Development of Working E�ation. 49 
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a rew· molecular diameters ) from the electrode a 1 • 

The electrodes are composed of a metal M. The electrolyte is 
·' 

an aqueous solution of the metal salt MX in which X is not electro-

active . If the current is flowing in the direction indicated, the 

reaction 

M • �( ) + e( ) aq . . a 

is taking place at a and the reaction 

M{aq. ) + � ( a • ) = M 

(15 ) 

(16) 

is occurring at a • . The electrode a is then functioning as an anode 

and a •  is a cathode . It is not necessary to assume the electrode reac-

tion (lS) and {16) are the reverse of each other as the rel�tionships 

given below are valid for aqy electrolytic reactions . 

The positive current, I, is given by 

I = ':Jdne 
dt (17 ) 

where dn8 is the moles of electrons fiowing from a" to a • in time dt. 

Using modern conventions, the now or electrons and the fiolf of positive 

current are in opposite directions . 

During the time dt the intemal energy of the system increa_ses ' by 

an amount dE .  In the same time interval, the system receives an amount 

of heat, <Q, from its surroundings and does a corresponding amount of 

work dW .  The relation between these three quantities is 

dE = dQ - dW (18 ) 

This is merely a statement of the first law of thermodynamics .  The term 

dW' may be broken up into several parts . The system does an amount of 
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mechanical work, dW'JD.I against the surroundings . This is given by the 

equation 

dWm = pdV . (19) 

Equation (19) restricts the system to operation at co�stant pressure, 

which is the condition under which most electrochemical reJCtions are 

carried out. An amount o! electrical work, cJW81, is done by the systeiil. 

This work corresponds to the transfer of dne moles or electrons from an 

to a ' and is given by 

(20) 

If et11 and a •  had �ot beep. identical, the system could also have done an 

amount of chemical work, �c' which �s given by 

(21) 
et ' e" in which u8 and u8 represent the molar chemical potentials of the elec-

tr�n in a �  and a", respectively. Since ex" and a1 are identical, dW0 

need not be considered. Insertion of (�9) and ( 20) into (16) · gives 

as the statement of the first 1� . 

From tile second taw of thermodynamics 

� dS - -y- · 

(22) 

( 23 ) 

for � reversible process . However, this is not true for any real 

process . For a real isothermal process, one may introduce the uncompen-

sated heat, dQ ' ,  as 

dQ t = TdS - cQ ., 0 • (24) 
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The uncompensated he at may be related to P.rigogine ' s  concep t or 

entropy production. 48 The total entropy p roduction, dS, may be regarded 

as the sum of two contributions: deS, due to heat exchange with the . 

surroundings, and diS, resulting fran irreversible p henomena within the 

system. Thus one has 

dS = deS + clj_S • 

By comparison with ( 24) one sees that 
c:Q de�. = ,... 

and 
dQ' 

diS = T � 0 . 

( 26) 

( 27 )  

Following �gogine, the entropy production is the rate or increase of 

entropy due to the internal irreversible phenomena. This gives 

diS 
dt 

dQ '  
T<it (28) 

The ratio of c:Q '  to dt is lmown as 
. 
the power of irreversibill ty, 49 P, 

and ! is related to the other quanti ties by 

p dj_S dQ '  � = = 
T dt Tdt 

By substitution of these quanti ties into ( 24) ,  one obtains 

c:Q � TdS - Pdt � 

This may then be inserted into ( 22)  to give 

dE = TdS - Pdt - pdV - J. ( cpa '  -<(f'11 ) dn8 • 

Rearranging ( 31) yields 

- � ( tna. •  - t/Ja,11 ) ...:T I T cine = dE + pdV - TdS + Pd.t . . 

( 29)  

(30) 

(31) 

(32) 



From classical thermodynamics ( for a eonst�t pressure process ) 

dH = dE + pdV • 

Therefore equation (32 ) becomes 

-3<'{Ja ' 
- �"" ) " cine = dH - TdS + Pdt • 

The term dne may be eliminated by rearranging (17 )  to give · 

Idt 
dne ·  y ,  

which, when substituted into (34) gives 
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(33 )  

(34) 

(35) 

- ( t.p" ' - 'f ast )  Idt = dH - TdS + Pdt • (36) 

However <cpa ' 
- t.p""). is the measurable potential difference, £ , between 

a1 and C£11 • '!his gives 

- £ Idt = dH - TdS + Pdt • (37 ) 

The power of irreversibility, P, may be divided into two terms, the 

irreversibility due to the Joule heat, and the irreversibility due to 

polarization. Therefore 

p = RI2 + p, p (38) 

where R is the ohmic resistance of the system and Pp is the power of 

polarization . Since 1 t is a power term,· Pp . may be set eqUal to· the 

product of the polarization, � , and the current. This gives 

- f idt a dH - TdS + RI2dt + � Idt (38) 

in place of (37 ) .  This equation may be integrated to give 

- £ It a AH - TAS + RI2t • � It 

for finite changes .  

In the integration of (38) , a few assumptions have been made 

(39) 

which should be mentioned . The assumption of constant temperature and 



pressure has previously been made in the preliminary equations . It 

has also been assumed that E ,  I, R, and � do not vary with time . 

Such is not necess� the case . This � be circumvented by speci

fying that (39) is valid only under conditions of constant current . 

The value of E. is then fixed by Ohm • s law while � is also known to 

be constant at a constant current. � will vary with t for a short time 

after the current is turned on . This corresponds to the time necessary 

to build up the transition layers a.' � '  and a.� . However, such variations 

will be small in comparison to the total product of � It . 

AH and AS are not necessarily molar quantities . The magnitude of 

these quanti ties will be governed by the product It, that is, the extent 

of the electrolytic reactions . The negative sign in the term £ It 

appears because the equation refers to the ability of the system to do 

work . The heat, Q, given � by the system is given by 

Q = -TAS + RI2t + � It • (40) 

This arises because of the · definition of the uncompensated heat given in 

equation ( 24) • 

The polarization, � , incl'Q.des any ·and all tn>es of polarization 

in the system regardless of whether they are ohmic, activation, or con

centration. In this respect, it should be repeated that Richards9 has 

definitely proven �hat polarization appears as a heat effect and does no 

chemical work. Bru.zs17 also noted in his experiments that concentration 

polarization had an effect on the Peltier heat at a working electrode . 

From a classical thermodynamic point of view, equation (39) 

appears to be of the correct form. The corresponding equ,ation for a 
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completely reversible s75tem is 

-E It • 6H - TllS • ll'F • (41) 

Now if the system is not reversible 

-£ It f �H - TAS • b.F • (42) 

However, one c an  simp� add �rms to the equation to make it correct 

again. The logical choice would be to add a term corresponding to re-

sistance and one corresponding to polarization to give the correct re-

sult . Such a treatment does not, however, bring out su.ch facts as :  

(a) that the degree of irreversibility is related to the react�on rate 

and (b) that the entropy production due to internal irreversible proc-

eases is given by 

- =  
dt 

RI� + � I  
T (4.3) 

It would be helpful now to look at some of the quanti ties which 

may be obtained by the experimental application of equ.ation (39) • Ex-

perimentally the two quanti ti�s to be measured would be the energy input, 

- E.  It, and the heat given off by the system. The d.if'ference between 

the se two quantities would give a value of 6H directly. A knowledge of 

� two of the three terms involved in the sensible heat effect would 

give the remaining one . Thus it should be theoretically pos sible to ob

tain values of A H, 6S, and � from combined electrical and thermal meas

urements on a working electrochemical system. A knowledge of �H and AS 

would allow one to obtain a· v�ue of AF . From this, one could calculate 

the reversible potential corresponding to the reaction taking place . It 

should be noted that values of � obtained by the above method would not 
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be referred to a statio potential as is the case with all of the values 

obtained by EMF studies of polarization. 

If equation (39)  is assumed to be valid for a single electrode 

system, some interesting results could be obtained . Thus measurements 

such as the above should lead to a value for the absolute potential of 

a single electrode reaction. The absolute electrode potential is a 

quantity which has been in dispute since the beginning of electrochemistry. 

Guggenhetm?2, 53 has taken the position that such potentials have no physi

cal meaning and therefore cannot be ·measured . Recently, theoretical 

eleetrochemists have taken the viewpoint that s�ch absolute electrode 

potentials could be calculated in principle . However, in his work on the 

electrochemical double l�er, Grahame54 has defended the older point of 

view as taken by Guggenheim. 

Single electrode potentials are not necessar.y to describe a complete 

electrochemical cell from a thermodynamic viewpoint . However, in studies 

on electrode kinetics and in all cases where interfacial electrical fields 

are investigated, absolute single electrode potentials are 1mporian� .55 

F. The Relationship Between Thermocells and Isothermal Cells 

The maj ority of the work which has been done on the correlations 

between thermocells and isothermal cells has been reported by Holtan .34, 56, 57 

Consider the isothermal galvanic cell 

MJ MA(aq. ) J A , (44) 
in which MA is a univalent salt . The temperature coefficient of this 



� ·  

38 

cell is given by 

J ( g� )p • SA_ + � - SA - SM • (45) 
The pure thermocells corresponding to  ( 44) are s 

A; _MA.( aq. ) J A (46) 
T T + t.T 

. and 

MJ MA( aq. ) J M • ( 47 ) 
T T + t.T  

If the Soret effect is �dered and one neglects the transport of water . . 

by the ions, th�. the:rmopotentials of (46) and (47) are given bys · 

:J ( �; )p = - t-�- - t+� - As: + SA_ - SA 

for cell (46) and 

for cell ( 47 ) . If one now subtracts (49)  from (48) one obtains 

(48) 

( 49)  

_7 (*) - 1(�) = SA.- + SM4" - SA - � + �: - As: • (50) 
Pb6 P47 . 

This result is identical with equation (45) except for the entropies of 
. * transfer of the electrons . However, according to Holtan, �e - As: is 

simply the thermoelectric power of the thermocouple which would be formed 

from M and A .  Relationships such as (50) have been tested experimentally 

� Holtan and Krogh-Moe57 and found to be true within expe�ental error . 

This indicates that the entropies of transfer of ions and electrons 

have no effect on the operation of isothermal · cells . 

. . · 



CHAPrER III 

EXPERIMENTAL 

A. Materials 

1. Copper Sulfate 

.All o_f the oopper solutions used in this work were prepared from 

the pentabydrate of oopper sulfate . Baker and Adamson reagent grade 

oopper sulfate was used without further purifioation. 

2 .  Potassium Sulfate 

Baker and Adamson reagent grade �ous potassium sulfate was 

used for the preparation of all potassium solutions . 

3 .  Sodium Sulfate 

All sodium solutions were prepared from anhydrous Baker and Adamson 

reagent grade sodium sulfate . 

4.  Sulfurio Acid 

Du Pont C .  P. reagent grade sulfurio acid was used in the prepara

tion of all solutions whioh contained sulfurio aoid. 

5 .  Silver Nitrate 

Baker and Adamson reagent grade silver nitrate was �sed for pre

paring the necessar,y silver solutions . 
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6. Gelatin 

Chemically pure gelatin (E . H .  Sargent and Company) was used 

for the preparation of all gelatin solutions . 

7 . Solutions 

Solutions of copper, potassium, sodium, and silver were prepared 

by weighing the required quantity of the appropriate salt, dissolving 

in distilled water, and diluting to volume in volumetric flask . Com-

meroial.ly available su.l.furic acid was diluted to volume to obtain the 

necessary sulfuric acid solution . Gelatin solutions were prepared by 

weight from solid gelatin. The gelatin was dissolved in previously 

boiled distilled water and used within twenty-four hours to prevent con-

tamination by bacteria . 

B . · PreliminarJr Experiments on the Temperature Rise at Electrodes 

During Electrolysis 

1.  Apparatus 
.. 

. Two copper electrodes, separated by plastic spacers, and oon�ed 

in a 500 ml. cork-stoppered Dewar nu.k served as an electrolysis cell. 

A 110 volt A. C. power supply, equipped with transformer and rectifier, 

served as a source of electrolysis current . ·This supply, had a maximum 

voltage output of 12 volts D .  C .  and the output current contained a 

large amount of ripple . This was subsequently replaced by a D .  C .  gener-

ator operated by a three phase 220 volt A. C .  motor . This generator had 

a maximum output of 15 amperes at 75 volts D .  C .  and contained a smaller 
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amount of ripple . This allowed electroqsia at a much higher current 

density than was possible with the prerious power supply . In either 

case the D .  C.  voltage source was connected to the electrolysis cell 

through a 100 ohm variable resistance and a 0-1000 milliampere ammeter . 

This permitted manual control of the electrolysis current at a pre

selected vaJ.ue . 

To detect the temperature change, a Beckmann thermometer was 

placed behind each electrode . These thermometers were held in place by . 

the cork stopper of the Dewar flask . A stop watch was used to time the 

duration of the electrolysis runs . 

2 .  Procedure 

All of the preliminary experiments were carried out using copper 

electrodes and copper sulfate solutions . Two hundred milliliters of the 

copper sulfate solution was pipetted into the Dewar flask which contained 

the electrodes and thermaneters .  The system was then allowed to stand 

until thermal equilibrium had been attained, as evidenced by the constancy 

of the Beclonann thermometer readings . The current was switched on at 

time zero and quickly adjusted to the preselected value . Readings or the 

two Beckmann thermometers were taken at two minute intervals throughout 

the duration of the electrolysis . The period of electrolysis was usual.J.y 

thirty minutes .  

Results from these experiments showed that a much more sensitive 

temperature sensing device was needed, preferably a differential arrange

ment with a short time lag . It was also recognized that a much more rigid 

and reproducible electrode arrangement was needed . 
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C .  Temperature Difference Measurements on the Copper-Aqueous Copper 

Sulfate System 

1. Apparatus 

a .  Thermistors . Thermistors were chosen as the temperature sens-

ing devices in order to meet the requirements or stability, sensitivity, 

size, and small time lag. A matched set or Victory Engineering Corpora-
I 

tion number 32Al thermistors was chosen for the differential temperature 

measurements . These thermistors have the following characteristics : 

Resistance at 25° 2000 ohmB � 20 per cent 

Dissipation constant 1.0 milliwatts/00 · • 

Time constant 25 seconds 

This thermistor is commercially available as a glass-enclosed . probe whioh 

is 2 inches long and 0 . 100 inches in diameter. Electrical connection to 

the thermistor is accomplished by leads or 0.012 - tinned Dumet. 

Prior to incorporating these thermistors into the eleotrical cir

cuit, they were aged for two weeks at 16.0°, then current of twice the 

amperage used in the actual experiments was passed through the thermistors 

for two to three days . This aging treatment completely stabi�ized the 

thermist�rs and prevented any drift during actual operation . 

To protect the themistors against mechanical shock, they were 

enclosed in a protective shield which consisted or a piece or glass tubing 

9 em . in length and 5 mm. diameter. The glass shield was sealed at both 

ends with deKotinsky cement in such a way that only the tip Qr the· 

thermistor and the leads protruded . The seal served another u�eful pur-

pose . It prevented the accidental shorting o£ the . thermistor by moisture. 



Two matched sets of these thermistors were prepared in the above 

manner as it was desired to make simultaneous measurements of two dif-

ferent temperature differences . 

b .  Power suppl.y. It was desired that the thermistor be incorpor

ated into a Wheatstone bridge circuit and the output voltage of the 

bridge be the quantity measured. Further, it was essential that the 

bridge output voltage be a function of temp erature difference between 

the thermistors . To make these temperature difference measurements pre

cise and accurate, it was mandatory that the voltag� source to the bridge 

be a constant value . 

The first attempt in this direction was the use of three 1.5 volt 

dry cells connected in parallel . Power was then applied to the bridge 

through a potential divider . This proved entirely unsatisfactory becaus e 

of the lack of stability and the necessity or making frequent adjustments 

of the potential divider . A 2 volt lead storage cell was then connected 

to the bridge oircui t through a Leeds and Northrup K potentiometer . This 

gave excellent stability but it was necessar.y to restandardize the 

potentiometer quite frequentlY. These two attempts showed that it was 

highly desirable to have a continuously regulated low voltage power supply 

of excellent stability. 

To meet this demand, the low vol ta.ge power supply described by 

Greenough, Williams, and Tay-lorSB 
was constructed . * This instrument 

proved to be ideal.ly suited for the above applic ation . It was found that 

*constructed by Gerald Raine o£ this laboratory. 



somewhat better voltage contrOl could be obtained b.Y shunting the out

put terminals with a So ohm resistance. The output voltage could be 

set at � preselected value from 0 to 8 volts and could be checked 

with a potentiometer. Output of this instrument had a ripple content 

of only 0 .1 per cent and long term variations in the output voltage were 

less than 1 mv for a 1 volt output . The power supply was alw�s allowed 

to warm up for a period of about thirty minutes before use . 

c .  Bridge circuits . Two separate bridge circuits were used for 

the temperature difference measurements . The thermistors were connected 

in opposite arms of Wheatstone bridge oiroui ts as shown in Figure 2 .  

One of these circuits (No . 1) was · used to measure the temperature dif

ference between the anode and the cathode . By moving the thermistor from 

the anode into the solution, it was also possible to measure the dif

ference in temperature of the cathode and the bulk of the solution . The 

other bridge circuit (No. 2 )  was used to measure the temperature dit

ference between the anode and the solution. R2 and R1 were 2200 ohm, 

1/2 watt radio resistances, while R1 and a3 were Heathkit decade resis

tance boxes (0 to 99, 999 ohms) .  R3 was the 50 ohm, 2 watt radio resis

tance used to shunt the output terminals of the voltage supply. T]., T21 

TJ1 T4 were the thermistors . T1 and T2 were one matched set while T3 

and T4 were the other matched set . 

R1 and a3 were used to adjust the initial unbalance potentials as 

close to zero as possible . This permitted the use of a lower range on 

the Leeds and Northrup K-3 potentiometer, thereby increasing the sensi

tivity of the circuits . This potentiometer was used to measure the un-
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Figure 2 .  Bridge Circuits Used in Temperature Difference Measure -
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balance potentials to 0 .  001 mv. A Kin Tel Model 204! electronic gal-

vanometer was used as a null detector. This instrument was idea.lly' 

suited for this purpose because of its high sensitivity ( 2  x lo-ll amps o 

per scale division) , fast response, and excellent stability. The same 

potentiometer was also used to set and check the output ·voltage of the 

power supply · at 1.000 volts . 

The unbalance potential of a Wheatstone bridge circuit may be 

represented by' the equation, 

E • li'... ( !� 
0 .w:�.. T]. + T2 (1) 

where Eo is the unbalance potential, Ei is the bridge input voltage, 

and the other symbols refer to Figure 2 .  From (1) and the negative 

temperature coefficient of resistance of the thermistor ( approximately 

4 per cent per degree ) the bridge circuits were calculated to have �en

sitivities of approximately 10 mv. per degree temperature cli!ference be-

tween the thermistors . As the unbalance potentials were measured to 

0.001 mv, this corresponded to temperature differences .. of approximately 

0.0001° . 

IdeallY the calibration of the thermistors should be carried out 

using platinum resistance thermometers . Since these were not available, 

the sensitivity and linearity of the bridge circuits were checked using 

Beclonann thermometers . The two themistors were placed in separate 

water-filled, cork-stoppered Dewar fiasks . A Beolanann thermometer was 

then placed in each Dewar, anQ. the unbalance potential of the bridge was 

measured as a fupction of the temperature difference as determined by' 
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the Beclanann thermometers . By this method the senai ti vi ty of bridge 

No . l was found to be 9 .65 mv per degree while the sensitivity of 

bridge No . 2 was 9 .  25 mv per degree as accurately as could be measured 

by the Beckmann thermometers . The· change in bridge unbalance potential 

was found to be linear with temperature difference over the range of 

temperature dif'ferences •asured in this work . The sensitivity and 

linearity are shown in Figure 3, . in which the lUlbalanoe potentials of 

bridge No . l and bridge No. 2 are plotted as a .function of temperat�e 

difference as determined by the Beolanann thermaaeters .  

d.  Cell �d electrode . In order to obtain reproducible results, 

it was necessary that (a) the electrodes be maintained at a fixed posi

tion with respect to each other, and (b) that a definite reproducible 

electrode area be exposed to the solution. With this aim in mind, the 

electrolysis cell shown in Figure 4 was constructed. Luci te of l/8 irich 

thiclmess was used for the construction. The cell was cemented together 

with a solution of lucite in acetic acid . The cell was constructed to 

fit snugly into a 50.0 ml .  Dewar fiask. Th� exposed area of each electrode 

was 19 .35 sq. em. 

The copper electrodes were hollow, rectangular parallelopipeds 

(3 x 1-5/8 x 5/16 inches ) and contained an aluminum well to position the 

thermistors . These aluminum wells provided for reproducible placing of 

the thermistor probes and afforded good thermal contact with the elec

trodes .  This arrangement also made it a simple task to move a thermistor 

from the electrode into the solution whenever it was neoessar,y to measure 

the difference of temperature between an electrode and the solution. The 
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Figure 3 . Sensitivity and Linearity of Bridge Circuits Shown 
in Figure 2 .  
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same two electrodes were used for all of the temperature difference 

measurements . 

5o 

e .  Electrolysis circuit . A 32 volt battery pack { lead storage 

cells ) was used as a source of direct current for most of the electrolYses .  

A few o£ the experiments required such a high current density that the 

D .  0 .  generator used in the prelimin&r)" experiments was substituted for 

the battery paok . The current source was connected to the electrolysis 

cell through a 25 ohm potential divider and a 100 ohm variable resistance . 

This enabled one to manually control the electrolysis current at any 

selected value . This was found to be sufficientlY constant to give repro

ducible results . 

2.  Procedure 

For all of the measurements, 200 ml .  of copper sulfate solution was 

used . A preciselY constant volume of solution was not necessary to obtain 

reproducible results for determinations of temperature differences between 

the two electrodes as long as the entire electrode area was covered . How

ever, when the te:mperature of the solution w�s involved in t�e measurements, 

it was necessar.y to use a constant volume of solution . Because of this, 

the same volume of solution was used in all of the exPeriments . 

For measurements of the temperature differences between the elec

trodes and the solutions, the solutions mu.st be brought to the same tem

perature before the start of electrolysis .  This was also the case when 

measuring the temperature difference between the cathode and the anode 

whenever room temperature varied more than 2 or 3 degrees during the course 



of the experiment . For these measurements, the solutions were · 

placed in a water bath ( set at 30 .0° "! 0 .02°) before being pipetted 

into the Dewar fiask (which was also contained in the water bath)- . 

Before insertion into the solution, the cathode· was cleaned by 

rubbing it with emery cloth and then dipp� it into concentrated potas

sium cyanide solution for fifteen seconds . In cleaning the anode, . it 

was found necessar,y to dip it into the cyanide solution for fifteen 

seconds . This procedure was necessary to obtain reproducible results 

on the temperature difference measurements • . 

After the solution was pipetted into the Dewar fiask, the clean 

and dry electrode, cell, and thermistor assembly' was inserted into the 

flask and the electrode and thermistor leads connected . The bridge 

voltage supply' was connected at this point . The entire · assembly was 

then allowed to stand for fifteen minutes after inserting the cell . 

assembly before starting the electrolysis . This period was neoessar.y 

for two reasons . One, thermal equilibrium must be attained in the solu-

tion . This was determined by the . constancy of the �balance potential . 

Two, polarization ·characteristic of the electrodes change with time and 

become co�stant after about ten minutes . 59 

After this initial waiting period, the electrolysis current was 

turned on and the current manually adjusted to the selected value (usuall7 

300 ma) . The current was manually controlled at this value for the entire 

electrol.y'sis period . This period was ten minutes in nearly' all cases . 

Readings of the unbalance potential of the bridge circuit were taken every 

thirty seconds for the first two minutes and then . at two minute intervals 
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for the remainder of the electrolysis period . T he difference between 

these potentials and the steady unbalance potential before the start 

of electro:cysis gives the temp erature difference in mv . This value can 

be divided by the bridge sensitivity to obtain the temperature difference 

in degrees .. Sinc e the primary interest Wl;l.S . in the relative valu�s of the 

temp erature differences, the temperature differenc es w ere recorded in mv .. 

D. Calorimetric Studies 

1 ..  Apparatus 

T he design and construction of the apparatus used in the calori

metric studi es w ere governed by the quanti ties which were desired to be 

measured. T hese �titi es were the heat liberated at each electrode, 

the heat capacity of the calorimeter, the voltage drops across the elec

trodes and probe, the electrolysis current, the heating curt-ent, and 

heating and electrolYsis times. It was also necessar.y that both elec

trodes remain isothermal with respect to each other in order to avoid 

any ef:feots due to temperature· gradients . 

a ..  Thermistors. The two thermistors used in the temper$.ture con

trol circuit were the same two us ed in bridge No. l
.
in the prec eding sec

tion and will not be discussed here. 

The thermistor which functioned as a temp erature sensing element 

was a Carboloy D503 . This thermistor had a resistance of .500 ohms at 2$0 

and a dissipation constant of 16.0 milliwatts _per degree . T he aging pro

cedure carried out on this thermistor was the same as that described pre-
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viously. As the thermistor was supplied with no protective coating, it 

was necessary to provide the thermistor with an inert covering . The pur

pose of this covering was to prevent shorting of the leads . This was 

done by applying four coats of glyptal resin to the thermistor, each coat 

being followed by baking in a 16o0 oven for twenty-four hours . The 

themistor was then sealed in a 9 em. length of 6 mm .  (diameter) . glass 

tubing with deKotinsky cement so that only the thermistor and the in

sulated leads were exposed. The result was a thermistor probe approxi

mately ll em. in length which served as the temperature sensing element 

in all of the calorimetric experiments . 

b .  Standard resistances . Since the most convenient and precise 

method for determination of current strength is by measuring the potential 

drop acr�ss a resistance, it was necessary to have reliable and accurate 

resistances available .  These were constructed from Advance resistance 

wire which had a resistance of 2 .  94 ohms per foot . Advance was selected 

because it has an extremely small temperature coefficient of resistance . 

The resistances were constructed by winding the appropriate length of 

Advance wire on buss fuses from which the conducting strips had been re

moved . Contact was _made by soldering the ends of the Advance wire to 

the metal ends ' of the buss fuses . This afforded a convenient means of 

mounting the resistances by soldering them in .fuse clips . 

Each resistance was coated a number of times With glyptal resin, 

each coating being followed by baking in a 16o0 oven. After mmmting, 

the resistance value of each was measured with a four decade Leeds and 

Northrup D. 0. Wheatstone bridge . From observations of the extent of the 
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galvanometer defiection, the f'i.tth digit in the resistance values could 

be estimated . The resistance values were repeatedly' checked throughout 

the course of this work and showed no deViation on aging or heating . 

Seven such resistanc es were prepared and their values will be given in 

the discussion of the. various oircui ts .•  

c .  Temper�ture control circuit . The temperature control circuit 

was the Wheatstone bridge No . 1 shown in Figure 2 .  The only difference 

between this bridge and the Wheatetone bridge previously described was 

that in this case the unbalance potential was measured by a Leeds and . 

Northrup K-2 potentiometer using a Rubicon galvanometer as a null point ' . 

detector . Using the 0.1 range on the potentiometer, the sensitivity of 

the galvanometer was such that a deflection of 1 mm . corresponded to a 

temperature di.fference of approximately 0.001° . 

The term "heater control oircui t" may be somewhat misleading . The 

deflection of the galvanometer onlY served . to indicate whether the heater 

in the outer section of the calorimeter should be turned on or off . Thus . . . 
the actual task of keeping the tWo sections of the o&lorimeter · at the · 
same temperature was accomplished by the manual operation of a switch con.

trolling the heater. 

. d. .Temperature measuring circuit . The temperature sensing circuit 

was designed . for the purpose of obtaining an automatic record of the tem-

perature of the calorimeter as a function o£ time . The final oiraui t de

sign is shown in Figure S. This circuit was used for all of the calori-

metry experiments . 
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Figure 5 .  Temperature Measuring Circuit. 



In this circuit R1 and R2 were 500 ohm, l/2 watt radio · resis

tances while R.3 was a 470 ohm, 1/2 watt radio resistance . A Heathkit 

decade resistance box, R� was used to adjust the unbalance potential 

or the bridge to approximately 14 mv · at bath temperature ( .30°) . · This 

was accomplished by setting R4 at 5300 ohms, a value which was not 

changed throughout the course of · the experiments . T was the Carboloy 

D503 thermistor described previously . The input voltage, Ei1 was from 

the regulated low voltage power supply which was set at 1.000 volts 

with the K-3 potentianeter . 

The unbalance potential was f'ed to P, a Leeds and Northrup K 

p�tentiometer where a portion of the potential was bucked out B.nd the 

remainder fed to R, a Leeds and Northrup Mioromax recording potentiometer . 

This recorder originally had a range of 40 mv but this was altered so 

the recorder had an effective range of 0-10 mv full scale . 

The range of the recorder and th� output and linearity of the 

Wheatstone bridge circuit were tested extensively with the K-3 poten- : .  

tiometer and a Beckmann thermometer . These tests showed that recording 
. 

. 

errors were neg.ligible . They also showed that the bridge had a sensi

tivt. ty of approximately 10 mv per degree and that · a plot of mv versus 

.temperature was linear over a 4° range { 29-33°) • . Thus the temper�ture 

measuring circuit provided an automatic record of the temperature · of the 

calorimeter which could be read to approximately '! 0.  001° . Temperatures 

were recorded in millivolts, however� . as there was no advantage to be 

gained by converting them to degrees .  
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e .  HeatinS ciryurits . Heating in the calor1J11eters was aooom-

(." "  . . . . 
plished by the use or �o essenti� independent heating oircui ts 

(Figure 6) . The definitions of' the symbols used in Figure 6 are given 

in Table I. 

T.he heaters and dUliiDIY heaters were constructed from the same 

Advance resistance wire used in the f'abJ"i,oation or the standard resis-.,. 
tanoes . The heaters were constructe� by winding the appropriate length 

ot Advance wire on a 3 mm. diameter- glass rod and seating w1 th Sauereisen 

( a  liquid porcelain cement) . The heaters ·were provided with appropriate 

current carrying leads · or Qopper :magnet wire (B. and S .  gauge 20) • The 

heating coils were then inserted tnto 9 em .  ( for inner compartment heater) 

and .14 em. (for outer C<XIJP�nt heater) lengths of 8 mm .  diameter Pyrex 

tubing which had been dlosed at one end with a �st ·tube bottan . Li_ght 

trP.ner4l]. oU was polU'ed into these tu'bes until the heating ooUs were 

covered . 'J:his canpleted construction of the wo calorimeter hea:ters . 

The resistance value• of the heaters were measured with tJ:le same. D .  C .  

Wheatstone bndge u='ed for measuring the resistances of the stan�rd :re .... 

sistors • These values were checked �riodic� during �e course o£ this 

work. It was found that the resistances did. not deviate from their orig-

inal values . 

The � heaters were made by winding the necessar,y lengths or 

Advance on porcelain cores and seating with Sauereisen . This was tol-

lowed by four coatings of glyptal resin. Each coating was baked in a 

16o0 oven before applying the next ooat . With the exoeptiop. of the cal-

orimeter heaters, all resistances �d the d� �eaters were mounted on 
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Figure 6 .  Heating Oircui t. 
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Symbol 

Do 

B 

T 

TABLE I 

DEFINITION OF SYMBOLS USED IN FIGURE 6 

Definition 

25 ohm, 4 . 5 amp . Rheostats 

65 ohm, 3.2  amp. Rheostat 

100 ohm, 25 watt Variable Resistance 

1. 0394 ! 0.0002 ohm Standard Resistance 

4. 7442 ! O .OOo4 om Standard Resistance 

8 • .3474 ! 0 .0006 ohm Standard Resistance 

1 . 0623 � 0. 0002 ohm Standard Resistance 

4 . 7907 ! o . ooo4 ohm Standard Desistance 

8. 3610 � 0.0006 ohm Standard Resistance 

15 ohm Dummy Heater 

5. 0388 : 0 .0005 otm Hea1;er 

30 ohm DlinJey' Heater 

10 . 168 � 0.002 obn Heater 

30 volt D .  C. Belay 

32 volt Batter.y Pack 

Timer 

Leeds and Northrup K-2 Potentiometer 

leeds and Horthra.p K-3 Pote�tiometer 
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Note : Subscript 1 refers to inner section of calorimeter while 
o refers to outer section . 
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the same panel to provide compactness and easy aacessibili ty of these 

components . 

The two heaters were designed to operate in the following manner : 

the inner , compartment heater would be left on continuously during a heat 

oapaoity run while the outer compartment heater would be operated inter

mittently to provide just enough heat to kee� the outer C?J��Partment at 

the same temperature as the inner compartment . Whether the two compart

ments were at the same temperature would be indicated by the temperature 

control circuit . The inner compartment heater could easily be timed 

with an ordinar.y stop watch while the outer calorimeter heater required 

a timer which would measure the total time during which the . outer calo

rimeter heater was on. This requirement was met by obtaining a 110 volt 

6o cycle electric timer . The time was actuated by a 30 volt D.  c . relay 

which in turn was activated by the' outer compartment heater switch as 

shown in Figure 6.  This was done to  prevent the possibility of _inducing 

strq emf' ' s in the heater ciroui t.  The electric timer was checked 

. against a stop watch and no significant d4£ference was found. 

The switching arrangement between the v8rious potentials made it 

possible to use the K-3 potentiometer for heat capacity calibrations and 

the K-2 for calorimetric runs as the K-3 was then being used for other 

purposes . 

f .  Electrol.ysis oiroui t. The working equation (�9) in Chapter II 

was derived for the oondit1:.on of' constant current . This condition could 

be satisfied. by (a) manual control of the current or (b) having an eleo

tro�c device which would deliver a constant current irrespective �f the 
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load . Because of the practical limitation on the number of functions 

which on� operator can satisfactorily perform, the latter course wa� 

chosen . 

To meet these requirements, · the automatic coul.ometrio titration 

device described by Wise, Gille, and Re)'nolcl86o was constructed .
* 

Under 

the condition� used in �s work, this instrument furnished a constant 

current with a maximum deviation or o.oo4 per cent and an average devia

tion of 0 .002 per cent . 

The electrolysis ·ciroui t is shown in Figure 7 .  The reistance Rs 

was a standard resistance prep�d as previously described and having a 

value of 5 .1274 ! 0 .0005 ohms . The switching arrangement made it possi-

ble to measure the potential drop be�een the probe and either eleotrod� 

or the :potential drop across Rs to obtain a value for the current . The 

electrodes and probes will be discussed in a later section . 

g. The calorimeter. As 1 t was desired to measure the amount of 

he�t liberated or a�sorbed �or a single electrode re•ction, it was neces

sary to have the calorimeter divided into two sections . Thus the two 

sections should be the� insulated from each other as well as possi

ble but should offer no appreciable barrier to the passage of current 

between the electrodes .  I t  was �so necessar,r that the two sections of 

the calorimeter be isothermal rl th respect to each other . This was 

necessary to prevent such effects as the thermal diffusion ·potential, 

the Soret effect, heats of transfer, and other thermocell phenomena . 

*Constructed by Gerald Raine of this laboratory. 
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Figure 7 .  Electrolysis C�ouit. 
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The above were the basic requiraments kept in mind while designing the 

calorimeter . 

The basic part or the calorimeter was a Soo ml .  Dewar flask . Al

though Dewar nasks are not very precise calorimeters, the restriction 

of having no metal parts, other than the electrodes, exposed to the solu

tion automatical.ly" limited the ohoioe to a glass apparatus . In order to 

provide the best possible thermal insulation, a silvered, vacuum j acketed 

glass cylinder was chosen for the innermost compartment or the calorimeter . 

This cylinder was 10 em. long, had an inside diameter or 2 . 1 o�. ,  and was 

open at both ends . 

In order to isolate the two compartments or the calorimeter, one 

end or the inner cylinder had to .be closed with some material which would 

afford free passage or an electrolYtic current and still maintain a fair 

degree or thermal insulation. The first material tried for this was 

porous Vycor glass . However, for some unknown reason, this material in

variably cracked on extended contact with the solution. This et,'fect had 

been noted previouslY by other workers .31 The next material tried proved 

to be very suitable for the partition . This was a Watman ' s filtering 

pad. Not only did this material provide a reasonable amount or thermal 

insulation, it ·also offered negligible resistance to the passage or 

current . The filtering pad was fastened to one end or the cylinder with 

glyptal resin . This proved to be a suitable cement in that the partition 

remained intact during a series �r runs . The partition was changed o� 

when a different electrolyte was used . 
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It was necessar.y that the calorimeter be provided with a cover, 

support for the inner compartment, and entr.r tor the electrical leads 

and stirrers . This was effected by three machined brass plate s, each 

ot which was 1/8 inch thick . The bottom plate was machined to fit 

snugly over the top of the 500 ml .  Dewar fiask and was cemented to the 

fiask with 113M" cement* as shown in Figure 8 .  The middle plate was de-

signed .to provide support for the inner canpartment while not blocking 

entry into the outer compartment . The plate was cemented to the inner 

compartment with 113M" cement and had the shape shown in Figure 9 .  The 

top plate provided a cover for, and ports for entry into, the calorim-

eter . The ports for entry into the calorimeter were made by soldering . 

4 in . lengths of 3/8 inch copper tubing to the top plate . These tubes 

provided openings for the electrical leads and the stirrers . The bottom 

and top plates were grooved to provide seats for the 11011 rings . The 

110" rings served to seal the calorimeter against leakage of water from 

the water bath into the calorimeter . The three plates were fastened 

togeth�r with four bolts . This is illustrated in Figure 10 . 

Stirring for the calorimeter was provided by two stirrers fashioned 

from 6 mm .  diameter glass ro� . The blade of the inner compartment stirrer 

was 1 em . in diameter while the blade of the outer compartment stirrer 

was 2 em . in diameter . Both stirrers were driven by the same Sargent 

stirring motor at a constant speed of approximately 150 rpm , While 

providing a fairly uniform taperature, this rate of stirring was not 

enough to add a measurable quantity of heat to the calorimeter during an 

�eatherstripping adhesive manufactured by Minneapolis and Minnesota 
Mining qo . 



Holes for 
Bolts 

Measuring---1-o�---.......__-.. 
Thermistor 

Control 
Thermistor 

�---t--+-......,_Heate.r 

Dewar 

Figure 8 .  Section View of Calorimeter (Outer Compartment ) . 

6$ 



Opening to 
Outer 

Compartment 

He ate�----�+-�� 

Control 
Thermist�--u-� 

Lead to 
Probe 

Jaoketed 
Cyiinder 

ectrode 

Figure 9 . Section View of Calorimeter ( Inner Compartment) . 

66 



Bath· Level 

non Rings 

Dewar 1 ,.. 
Flask 

side View 
opper 
Tubes 

Bras s 
Plates 

Figure ]J) .  Assembled Calorimeter . 

Top View 

Eleotrodes 
· and Probes 

� 



68 

experiment. This was demonstrated- by the fact that the calorimeter 

reached the same steady state regardless of whether it was stirred or 

not . This is in agreement w1 th the experiment of White 61 which showed 

that a stirrer with a 4 em. diameter propeller operated at 500 rpm. 

causes a temperature rise of � 0.00006° per minute . 

The arrangement and posi tiona of the components of the calorim-

eter are illustratm in Figures B, 9, and 10 . The heaters, thermistors, 

and electrodes were fastened to the sides of the calorimeter with "3M11 

cement . This was necessary to insure a rigid position of these components 

throughout an experiment. 

A water bath was used as the constant temperature . jacket for the 

calorimeter. This bath was set at 30.0° and had fluctuations of no more 

than 0 .  001° during the course of a series of experiments . This water · 

bath was a canmeroial unit obtained· from E .  H .  Sargent and Oo. Some al-

te�ations were carried out to obtain the desired perfonnance . A quartz 

infrared heater was substituted for the off-on control heater in the 

camnercial un1 t. This quartz heater was id�al in that the 'time lag was 

very small. The mercury thermoregulator was placed downstrefiUil from the 

control heater to reduce overshoot of the bath temperature . The thermo-
;. . 

regulator was mounted off center from the stirring motor in order to im-

part a vertical vibration to the thermoregulator . This had 1;he effe�t of 

being more like a continuous control instead of a simple ofr ... on switch. 

Ten per cent of the 200 ohm heater in the commercial un1 t was left on 

continuously. This provided enough heat to keep the bath to within 1 to 

2° of the desired bath temperature . The bath was also provid-ed with a 
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leveling device by means of which water was constantly added to compen

sate for evaporation. All of the above factors are known to greatly 

improve the performance of constant temperature baths . 62 The water 

level of the constant temperature bath with respect to the calorimeter 

is indicated in Figure 10 . 

h .  Kl.ectrodes � probes .  The copper and ail ver electrodes were 

made from electrolytic sheet metal . All electrodes used were circular 

discs .  All of the anodes had an area of 3 . 93 om . 2 . The area of each 

cathode was 15 .53 em . 
2 with the exoeption of the platinum and a few of 

the copper cathodes . These had an area of 3 .  93 om . 2 . The back sides 

of the electrodes were always coated with gl.yptal and baked . 

The center probes were fashioned from small wires of the same 

material as the electrodes . These probes were attached to the filtering 

pad partition as shown in Figure 9 .  The potential difference between the 

probes and the electrodes was zero in all oases under condition of zero 

current now. 

i .  CoUJ>lete apparatus . The relationship of all the ooia.ponents 

to each other is shown in the block diagram of the canplete apparatus 

(Figure 11) • All leads and switches were mounted on a cent;roal control 

board to provide for compactness and ease of operation . 

2 .  Procedure for Calorimetry Experiments 

Prior to the assembling of the calorimeter, all of the components 

were checked for shorts and breakage of seal s .  The electrodes were 

cleane� as desoril:;>ed previously. The various components we�e then ass em-
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bled as . shown in Figures 8 and 9. The calorimeter was filled with 

enough solution (approxiDiately 3.50 ml. ) to submerge the components � 
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Stirrers were inserted and top bolted on to give the canpletely assem-
, 

bled calorimeter as shown in Figure 10 . The calorimeter was then placed 

in the constant temperature bath and the electrical leads and the stir-

ring motor connected . 

The calorimeter was brought to within approximately 0.3° of bath 

temperature with the heaters . With a few exceptions, the bath tempera-

ture was approximately halfway between the initial and final tempera-

tures of the calQrimeter for all of the experiments . At this point, 

final adjustment was made or the power supply, current source, and all 

of the potentiometers were standardized . At the beginning of the fore 

rating period, which was approximately thirty minutes in all cases,  it 

was necessary to make sure that the inner and outer compartments were at 

the same temperature . This was done by noting the deflection or the. gal-

vanometer associated with the potentianeter in the temperature control 

circuit and manually regulating the heater in the outer compartment . 

Up to this point, the procedure was the same for both heat capacity an� 

electrolysis runs . 

To initiate the heat capacity measurements, · the inner compartment 

heater was turned on . Simultaneously, the stopwatch was started. Values 

of the potential drop across a standard resistance in the inner compart-

ment heating circuit were measured. When the temperature or the inner 

compartment rose to 0.003 to 0.00.5° higher than the temperature or the 

outer compartment, the outer compartment heater was turned on . Since 



7 2  

there was a small amount of lag in the heater, the outer compartment 

heater was turned off when the galvanometer indicated that the two 

compartments were at the same temperature . By this procedure, it was 

possible to keep the two compartments at the same temperature within 

approximately o.oo5° . Large deviations were seldom greater than 0.01° 

and never greater than 0.02° . Turning on the outer compartment heater 

automatically activated the electric timer in the outer compartment 

heating circuit and this timer recorded the total time that the outer 

oaupartment heater had been on . During the time that the outer compart-

ment heater was on the potential drop across standard resistances in 

both heater circuits were measured and recorded . This process was re-

peated as often as possible during a heat capacit.y run .  

When the desired temperature rise had been attained (usually 0 .4  

to o .  7°),  the electrical heating was terminated. This was accomplished 

by tuming off the inner compartment heater with the outer compartment 

approximately 0.003° warmer than the inner compartment . The heat left 

in the inner compartment heating coil would then bring the two compart

ments to very nearly the same temperature (usually less than o'.OOl. 0 dif

ference) . Heating t�es were recorded fram the stop watch and the elec-

trio timer . A thirty minute rating period completed the data necessar.y 

for a heat capacit.y determination .* 

In the electrotysis experiments, the atilY source of heat supplied 

to the inner compartment was the heat effects caused b.r the passage of 

*Trea�ent of both the heat capacity and electrolysis data will 
be given in the Appendix. 
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current through the solution . In addition to the heat effect of the 

eleotrolfsis current through the solution, it was necessar.y to add heat 

from the heater in the outer compartment to maintain all parts of the 

calorimeter at the same temperature . The outer compartment heater was 

manipulated in the manner described above in order to keep the two 

compartments at the same temperature . 

The eleotro]Jrsis experiments were initiated by turning on the 

electrolysis current, the constant current source having previously been 

set at the desired current strength . Throughout the course of the elec

trolysis, the potential difference between the cathocle and the probe, and 

between the anode and the probe were measured and recorded . Each time 

the outer compartment heater was turned on, the potential drop across a 

stand.al"d. resistance in the outer compartment heating oircui t was measured 

and recorded . At some convenient time during the electrolysis, usually 

about hal! -way through the electrolysis, the . current strength was measured 

by measuring the potential drop across the standard resistance in the 

eleotrolysi� ciroui t (Figure 7 ) • When the desired temperature rise had 

been achieved, the electrolysis was terminated . In this case, the elec

trolysis current was turned off only at a time at which both compartments 

of the calorimeter were at the same temperature . Electrolysis and heat

ing times were recorded and a thirty minute rating period completed the 

data for an electrolysis experiment. This is, of course, in addition to 

the preliminar.y rating period. 

In nearly all cases, the above two runs were followed by a heat 

capacity run, an electrolysis run, and another heat oapaoi ty run before 
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removing and tearing down the calorimeter . . 

3 .  Current Efficiency Studies 

It was essential that the current efficiency be 100 per c�nt in 

all cases for the working equation to applY to. a single reaction . In 

view of this, it was decided to ascertain if the electrode reactions 

were proceeding in a quantitative manner. 

To test thi s by experiment, copper and silver electrodes were pre

pared in the same manner as previously described . The se were then weighed 

and immersed in the same solutions as used in the calorimetric experimentE:S1 

!• !· , copper elec trodes in copper sulfate and silver electrodes � silver 

nitrate . The two electrolysis cells were e quipped with the same stirrers 

used in the calorimetric experiments and connected in series in the elec

trolysis ciroui t in place of the calorimeter . The electrolysis current 

was then turned on and timed with the stop watch . The current was con

tinuously monitored by measuring the potential drop across the standard 

reeistance in the electrolysis circuit . This care proved entirely unneces

sary as all detectable deviations in the current were much less than the 

error in. weighing the electrodes .  At the end of about a thirty minute 

electrolysis period, the electrodes were removed, rinsed, dried, �d 

weighed . Knowing the current strength, time of electrolysis, and loss or 

gain of weight in the electrodes, the current efficiency was easi� cal

culated . 



CHAPl'ER IV 

RESULTS 

A. Preliminarr Experiments 

The preliminar,y experiments served merely to indicate same of the 

important concepts to be kept in mind for tbe design of the apparatus 

which was to be used eventually for the calorimetric measurem�fltS . 

Attempts to repeat the results . or Gritsan and Bu.lgokova3° on the tempera

ture differences between electrodes and solution during electrolysis were 

entirely unsuccessful. As expected, it was found that the temperature 

rise at an electrode during electro�sis increased with decreasing con

centration and increasing current density. These temperature effects 

were also highly dependent on the geometry of the electrolysis cell . 

Results from a typical experiment with the preliminary apparatus 

�ascribed in Chapter In are g1 ven in �gure 12 . In this figure, the 

temperature rise in each electrode caapartment as indicated by Beckmann 

thermometers is plotted as a function of time. The interesting part of 

the figure is . the time lag or the anode temperature as compared to 

cathode temperature during the first part of the electrolysis . It was 

felt, however, that the Beckmann thermometers were not accurate enough 

and �d not respond rapidly enough to give accurate measurements of the 

heat effects . 
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Figure 12 . Temperature Rise at the Electrodes for the Electrolysis 
of 0.012$ M Copper Sulfate . 
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B .  Temperature Difference Measurements on the Copper-Aqueous Copper 

Sulfate System (Thermal Electro8.na.:Lysis) 

The results reported here were obtained using the apparatus which · 

is described in Chapter III. Data for the pure copper sulfate solutions were 

obtained for .the . concentration ra� from 0 .02 to 0 . 20 molar. In addition 

to this, results are reported for 0 .08 · molar copper sulfate to which po

tassium, sodium, or hydrogen sulfate had been added at a concentration 

of 0.02 molar . The effect of gelatin (40 mg . /liter) was also studied. 

The results given here are expressed in terms of three tempera

ture variables J  To J TA, and Tg, where Tc is the temperature of the · . .  · 

cathode, T.A. is the temperature of the anode, and Ts is the temperature 

of the solution. Some typical plots of Tc-'l'A versus time of electrolysis 

at a current of 300 ma* are shown in Figure 13 .  This is the tYJ>e of 

curve expected in all oases, with the steady state temperature of the 

anode higher than the steady state temperature of the cathode . The spe-

oifio shape of the curves, however, did vary with the current and, as can 

be noted from Figure 13, the concentration o£ the solution being electro

lyzed . After an electrolysis time of approximately two minutes, To-TA 

becomes more negative at a faster rate in the case of the les s conoen-

trated solutions than with the more concentrated solutions . The curve .. 

for 0 .  20 M copper sulfate is completely smooth and no maximum appears 

in this curve . A maximum in each curve was observed in solutions contain-

*Total current is given rather than current density as Tc-TA de
pends on many other factors in addition to current density . 
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Figure 13 . Tc-TA versus Time of Electrolysis for the Electrolysis 
of Copper Sulfate at .300 ma . 
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1ng 0.04, 0.08, and 0 .12 M copper sulfate . It was found, in general, 

�a� with concentrations above 0.12 M, the curves were smooth, the 

slopes were negative over the entire time period, and there was· little 

variation of To-!A with concentration. lf.ith solutions of concentrations 

below 0 . 12 M, the curves always exhibited a portion with a positive 

slope and shCMed wide variation with concentration. 

In Figure 14 the value of Tc-!A at the end of ten minutes of 

electrolysis is plotted versus the molar concentration of copper sul

fate . All values were obtained at a constant current of 300 ma . The 

maximum in this curve at approximately 0.10 M copper sulfate corresponds 

to the point above which a portion of the copper plated on the cathode 

is darker in appearance than the base metal . From 0.16 to 0 .  20 M," the 

horizontal portion of the curve, the copper plated over the entire 

cathode was dark, indicating a high degree of subd.i vision of the de

posit . Up to a concentration of 0.10 M, no plating was evident since the 

copper was deposited in the form of a finely divided metal powder. 

The values of Tc -TA at the end of one minute of electrolysis . at a 

current of 300 ma are shown in Figure 15 . The effect of concentration 

appears to be opposite to that observed for the ten minute values . The 

slope in this case is opposite in sign. The one minute values of Tc-TA 

were not as reproducible as the ten minute values and are probably more 

closely associated with polarization effects . 

The Tc -Ts and TA-Ts versus time plots are shown in Figure 16. Ts 

is in both oases the temperature of the solution. These curves were ob

tained to check the Tc-TA values obtained previously. The difference · 
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Figure 14. Ten Minute Values of To -TA versus Molar C oncentration 
of Copper Sulfate . 
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Figure 15 . One Minute Values of Tc-TA versus Concentration of 
Copper Sulfate . 
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Figure 16 . Tc-Ts and TA-Ts versus Time for the Electrolysis or 
Copper Sulfate . 
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between the two curves, To-Ts and TA-Ts, should reproduce the experi

mentally obtained To-TA curve .  Within experimental error, this was 

true in all cases .  !fhe check, therefore, was exceeding:cy good, par- . 

ticularly in view of the fact· that two different bridge circu�ts were 

used. In no case was a negative value or TA-Ts or To-Ts observed after 

about one minute of electro�sis . 

In Figure 17 the ten minute values of To-Ts and TA-Ts are plotted 

versus the molar concentration of copper sulfate for electrolTSiS at 300 

ma . Although both of these curves show the same general . trend with con

centration, their difference reproduces quite well the variation of Tc-TA 

. with molar concentration as shown in Figure 14. Figure 17 also demon

st�ates conclusively" that both the cathode and the anode are warmer than 

the surrounding solution. 

Figure 18 illustrates the effect of current variation on the shapes 

and magnitudes of the Tc-TA values when plotted as a function of time . 

These curves were obtained using the same concentration of copper sulfate 

(0 .08 M) for all of the experiments . This set of curves shows a striking 

resemblance to the family of curves shown in Figure 13 in which ' th� 

current was held constant and the copper concentration was varied. · From 

these two sets of curves it appears that decreasing the current has the 

same effect on the To-TA versus time curves as does . increasing the con

centration. In Figure 19 the ten minute values of To-TA for the elec

trolysis of o.o8 M copper sulfate are shown plotted as a function of 

the electrolYsis current . This curve shows the great need for maintain

ing a constant electrolysis current if one wishes to obtain reproducible 

and accurate values of To-T.A.. 
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Figure 20 shows the effect of the addition of potassium sulfate 

to copper sulfate on the Tc-TA., To-Ts, and TA-Ts curves . From a compari

son of Figures 20 and 16, it can be seen that the major effect of the 

addition of potassium sulfate to the s,ystem is a reduction of the heat 

evol� at the anode . This gives rise to a more positive Tc-TA !lurve 

while the To-Ts curve remains relatively unchanged . 

Figures 21 and 22 show the effect of . the �dition of sodium· sulfate 

and sulfuric acid, respectively, on the Tc-TA, TA -Tg,  and To-Ts values 
). 

obtained during the electrolYsis of o.o8 M copper sulfate at a current 

of 300 ma. As is the case with potassium sulfate, , the maj or effect is 

at the anode . A comparison of Figures 16, 20, 21, and 22 shows that 

the effect of sodium, potassium, and hydrogen sulfates on the TA-Ts versus 

time curves is in the increasing order of sodium, potassium, and hydrogen. 

In Figure 23, results are shown for 0.08 M copper sulfate 
'
solution 

to which gelatin (40 mg ./liter) has been added.  In this case, however, 
\ 

the evolution of heat at the anode is increased . This results in a 

slightl:y more negative To-TA curve than in the oase of pure copper sulfate 

solutions . 

Figure 24 shows the effect of increased potassium sulfate concen-

tration., �n the ten minute val.ues of To-T.A obtained from the electrolysis 

of o.oB copper sulfate at 300 ma .  This plot indicates that further ad�-

tion of potassium sulfate has no effect on e�ther To-TA, TA-Ts, or To-Ts 

after a certain limiting concentration of potassium sulfate has been 

attained. 
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Repeats of runs on 0.08 M copper 8Ul£ate solutions over several 

weeks showed the average deviation of the ten minute values of To -TA to 

be � o.o25 mv. This corresponds to an uncertainty of 't o.ooo5' in the 

molarity of the copper sulfate solution for the curve shown in Figure 14. 

0 .  Calorimetric Measurement of the Heat Effects at Single Electrodes 

During nectrolysis 

The equipment - and procedure used for obtaining the results reported 

here are tully described in the section on calorimetric experiments in 

Chapter III . Three different sy-stems we�e studied i� the calorimetric 

part o� this work. They were : copper I aqueous copper sulfate l copper, 

ail ver l aqueous sU ver nitrate I silver, and platinum I aqueous sulfuric 

acid I platinum. Thus for each of the two metal salt systems, the anodic 

and cathodic reactions were the exact reverse of each other. For the 

aqueous sulfuric acid system, the electrode reactions were not the reverse 

of each other and the cell reaction was the electrolytic decomposition of 

water . · 

Thr.ee different concentrations were used in the studies on each · of 

the metal salt s.ystems while two different concentrations were used for 

the aqueous sulfuric acid study. These conoentra tiona are given w1 th the 

results . 

1.  Copper-Aqueous Copper Sulfate System 

All of the data taken in the calorimetric experiments were treated 

as outlined in the Appendix. From this treatment, values were calculated 
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for the enthalp7 ohange for the total cell reaction and also for the 

entropy change tor eaoh electrode reaction. 

Pertinent calorimetric data obtained by the electrolysis of the 

copper-aqueous copper sulfate system are summarized in Table II . The 

meaning of the variou.s S1!11bols used in T.able II are given below . Qi+� � 
0 

and QR+� were the heat eqQivalen�s of resistance and polarization in 

the inner and outer compartments of the caloriin.eter, respectively. Q� 

was the heat added to the outer oompar�ent with the electric heater in 

order to maintain isothermal conditions • .  Qi, Q�, and � refer to the 

heat equivalent to the temperature rise in the inner and outer compart-

menta and the total heat, respectively. It should be mentioned here 

that the anode was always contained in the inner compartment and the 

cathode was always in the outer compartmento The values in Table II are 

tabulated in j oules as this was the unit for· the electrical calibration 

of the calorimeter . In most cases, more significant figures than neces-

sar.r are given as they were not rounded off until the conversion to 

thermodynamic quantities . 

A few remarks about the quanti ties listed in Table II would serve 

to clar:L.fY the data. The sum of Q§ ... � and QR+� was, in all cases, equal 

to the electrical energy input to the cell. This, of course, was a 

necessity as the potential difference between the cathode and the anode 

was equal to the sum or the potential differences between the cathode 

and the probe and between the probe and the anode o The sum of Q� and Qi_ 

was always equal to Q! as the total heat capacity of the calorimeter was 

the sum of the heat capacities of the two canpartments o It is interest-



TABLE II 

CALO�TRIG DATA OBTAINED ON THE ELECTROLYSIS OF THE Ou( s )  I CuSOI,.( aq. ) I Cues) SYSTEM AT .30°0 

Eleotrioal 
Moles of Energy Input 1 0 

Q� Q� Q� Q: Run Cu to Gell QR+� QR+l'\ 
No . Reacting (Joules) (Joules) (Joules) (Joules) (Joules ) (Joules ) (Joules ) 

1 4.9204do-4 103 . 41  6o . 77 42 .64 431 . 45 68 . 92 466 .14 535 .06 

2 5 . 4670xlo-4 1.09 . 44 79 .77  29 .67 585 . 69 89 .56 6o5 . 73 695 . 29 

3 7 . 0570xl.0-4 136 .73 52. 45 84. 28 456 . 16 71 . 29 521.90 593 . 19 

4 7 .n9oxlo-4 146 .15 52 . 64 93 . 51 452 .53 72 . 02 527 . 21 599 . 23 

5 5 .0905xlo-4 94. 57 66 . 73 27 . 84 . 583 . 54 79 . 96 598 .18 678 .14 

6 1 . 0784xlo-3 41 . 21 17 . 71 23 . 50 267 . 98 41 .1.3 255 . 00 296.13 

7 l.. 2240xl.o-3 54.63 21 .38 33 . 25 399 . 76 63 .18 391 . 70 454 . 88 

\0 
\J"l 
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1ng to note that the sum. of Q� and the electrical energy input to the 

cell is very nearly equal to � ( except for Run No . 6) • This is a 

direct consequence of the enthalpy change for the cell reaction being 

equal to zero and would not be true if' the enthalpy change were dif

ferent from zero . Details of the calorimetric calculations are given 

in the Appendix . 

The enthalpy and entropy values obtained, together with the current 

densities and the oonoentrations of copper sulfate solutions used are 

given in Table III . The 6H value given for the total cell reaction may 

be taken as equal to zero within. experimental error . Theoretically the 

enthalpy ohange for the total cell reaction should be exactly zero since 

the anodio reaction is the opposite of the cathodic reaction . Deviation 

from zero is due to experimental error . The entropy changes are tabu

lated in terms of the anodic value for each concentration as the cathodic 

and anodic reaction are the exact reverse of each other . These values 

decrease (become more negative ) by approximately 6.8 cal . /mole/degree 

for each doubling of the concentration . Variation of the current density 

seemed to have no effect on the entropy value s .  This is a good indication 

that the electrode reaction proceeded at 100 per cent current efficiency 

at all of the current densities emplo.yed in the experiments . The values 

obtained by the electrolYsis of 0 . 40 M copper sulfate which had been made 

1.00 M in sulfuric acid indicates that the sulfuric acid had little or 

no effect on the entropy values which would have been obtained had a pure 

0 . 40 M copper sulf'ate solution been used . This is supported by the fact 

that approximatelT the same decrease in entropy was observed between the 



TABLE III 

RESULTS OF CALORlMETRIC MEASUREMENT� oN THE ���LYSIS OF THE Cu( s ) I CuS04( a�. )  l eu( s )  SYSTEM 

Run 
No . 

1 
2 
3 
4 
5 
6 
7 

Current D�nsity Corio . CuS04 Cone . H2S04 �HtotBJ. 
AS anodic 

rna/om . Moles/Liter Moles/Liter Cal ./Mole Cal ./Mole/Deg . 

2 .30 0.10 0 -fT1 -13 . 1  2 . 29 0.10 0 +66 -14.1 17 . 8  0. 20 0 -7 -20 . 6  18 . 1  0.20 0 -24 -20 . 0 
3 .55 0 . 20 0 +14 -20 .5 

28 :1 0.40 1 .00 -3, 374* -19 .9* 
28 . 8 0 .40 1 .00 +88 -26 . 9 

• 
For Ou( s) • Cu(s) �H • +7 oal . /mole (Average value ) .  

Reaction--
Ou( �) • �u++ ( aq. , 0.10 M) + 2e-(Cu) 

Ou( s)  � cu++(�. �  � . 2� M) + 2e-
(Cu) . . Cu(·- )- a Cu++ L � .. )� .f. 2e- ( ). s . . _ (aq., O . q.O M . Cu 

*Not · tilc1uded in · av:erages • � 

�s 
-13 .5 ! 0 .6  oal ./mole/deg.  

-20 .2  � 0 .4 oal ./mole/deg . 

-27 .4 ! 0 .3 cal ./mole/deg . 

· � Soathodic 
Cal. /Mole/Deg . 

+12 .7  
+14. 0  +20 .7 
+19 . 2  +20 .4 +27 . 7  
+27 . 6  

\0 � 
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0. 20 M and the 0 .40 M soluti on as was observed bet�n the 0.10 M and 

0 . 20 M solutions . The average deviation or the entropy values is ap 

proximately correct . The expected deviation ( !  0 . 5 cal . /mole/deg . )  was 

calculated from the known uncertainty in the calorimetric data . 

2 .  Silver -Aqueous Silver Nitrate System 

The data obtained from the electrolysis of tre silver -aqueous 

silver nitrate system are summarized in Table IV in the same manne r as 

was done with the copper system . The sane statements made in re gard to 

Table II are equall7 applicable to Table IV and will not be repeated here . 

The data for the silver system were treated in the same manne r as 

the data tor tb3 copper system. Results or the se calculations are sum

marized in Table V.  

Here again the enthalpy change fo r t m  total cell reacti on may 

be taken as equal to zero within exper:imental error · since the react ion 

at the anode is opposite to that at the cathode . The entropy chan ges 

are tabulated, as was done with the copper system, in terms of t:te anodic 

reaction . Howeve r, the decrease in entrop7 in the s ilver system is ap 

proximatelY' 5 cal . fi.nole/degree each tim9 that the concentration was 

doubled instead of the 6 . 8  cal . /mole/degree de crease observed with the 

copper system. The tabulated deviation of ; 0.1 cal . /mole/degree for 

the 0. 80 M silver nitrate appe ars to be too low in view of e s timated 

unaertaint7 of ± 0.5 cal . /mole/degree . This may be fortuitous . 



TABLE IV 

CALORIMETRIC DATA OBTAINED ON THE ELECTROLYSIS OF THE Ag{ s )  l .&gH03( aq. ) I Ag(s) SYSTEM AT 30°0 

Eleotrioal. · 
·Energy· Input 

Run Moles � of- .Ag To Cell �·� Qa·� Q� Qi Q� Q: 
No . Reacting (Joules) (Joules ) {Joules ) {Joules) {Joules ) (Joules) (Joules) 

1 7 . 34BBxlo-4 59 . 6o  51. 69 7 . 91 99 . 23 17 . 99 140 . 54 158 . 53 
2 7 . 6547xlo-4 59 .38 51. 82 1 . 56 77 .83 15 .50 12l .o6 136 .56 
3 1 . 9294xlo-3 145 .16 113 . 74 - 31.42 131 .63 35 .22 241.10 276.32 
4 1 . 8335xlo-3 186.54 166.36 20 .18 550.65 93 . 99 643 .40 737 .39 
5 3 . 3557xlo-3 192 . 02 163 . 52 28 .50 192 . 83 49 .64 335. 48 385. 12 
6 2 . 1202xlo-3 124.09 112 .31 11 . 78 260 .71 40 . 22 345 . 24 385 . 46  

\0 
\0 



TABLE V 

RESULTS OF CALORIMETRIC MEASUREMENTS ON THE ELECTROLYsiS OF THE Ag(·s ) 1 AgN0.3 { aq ) I Ag( ) . . . . . SYSTEM AT 30°0 • s 

Run 
�o . 

1 
2 
3 
4 
5 
6 

Ourrent"'Density 
ma/cJtl . 2 

Corio . AgN03 
Moles/Liter 

3 .30 0 . 20 
3 . 29 0 . 20  
7 . 72 0 .40 
9 . 43 0 .40 
9 . 48 0 . 80 
9 .50 0 . 80 

.For Ag( s )  • Ag( s) 
Reaction 

Ag( s) � Ag"' (aq. , 0 . 2  M) + 9- (Ag) 
- ·  . 

+ + e-Ag{ s) • Ag ( aq. , 0 .4 M) (Ag) . . 
+ . + $-Ag(s }  • Ag (aq.,  o . a  M) (Ag) 

�Htotai �Sanodio �Scathodio 
Oal ./Mole Oal ./Mole/Deg . Oal ./Mole/Deg . 

+98 +36.1 -3.5 .8  
+203 +37 .4 -36 . 7 
+56 +32 .1 -31 . 9  
-27 +3�. 1  -.31 . 2  
-19 +26 . 8  -26. 8 
-74 +26. 8  -27 .1  

AH = +40 o&l./mole ( average value) 

�s 

+36 • .5 ! 0 • .5 oal ./mole/deg. 

+31. 6 ! 0.4 oal . /mo1e/deg . 

+26 .9 ! 0 .1 oa1. /mole/deg . 

8 
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Table VI summarizes the data and the results obtained by calor!-

metric measurements on the electroly"sis or the platinum-aqueous sul.f'u.rio 

acid system. The same gem ral rema.rks under Table n are applicable to 

the data portion ot Table VI except for one instance . In this case , Q� · 

is not equal to the sum of the ele ctrical energy input to tm cell and 

Q� . As mentione d before , this is because the enthalpy change for the 

cell reaction is not equal to ze ro . The enthalpy value obtained for the 

total cell reaction is in verr good agreement with the accepte9, value of 

-68 . 3174 kcal . /mqle tor the heat ot formation of water at 25° . 63 The 

average deviation listed in Table IV for �H for the cell reaction is 

probably too low. Estimates from the calorimetric data places the un

certainty in this value at about 200 cal . /mole . 

The listed values tor t:t"s ent ropy changes occurring at the cathode 

and anode appear· to be in error . * There are two reasons tor making this 

statement; (a ) tbe magnitudes of the se entropy changes are not correct as 

compared to the copper and silver systems and (b) the sum of the entropy 

changes at the cathode and at the anode doe s not give a reasonable entropy 

change tar the cell reaction . 

D . Current Efficiencie s ot tle Copper and Silver Systens . � 

As stated in Chapter II , it is necessary that t he  electrode reac -

tiona proceed with 100 per cent current efficiency if the calculated 

*Reasons for this will be explained in Chapter V .  



TABLE VI 

CALORIMETRIC DATA AND RESULTS OBTAINED BY THE ELECTiiOLYSIS OF THE pt( s) I H2S04(aq. ) I pt( s )  SYSTEM 
. . . . AT 30°0 

Run 
No . 

1 
2 
3 

Run 
No . 

1 
2 
3 

Electrical 
Moles of Energy Input i 

-H2 -
To Ce.ll QR+t} 

Lib.erated - (Joules ) (Joules) 
- - .. 

3 . 46o3xlo-t 118 . 98 78 . 52 
2 . 2o24x1o- 88 . 19 44.13 
8 . 882xlo-5 41. 03 26.82 

Current ·nensity Cone·: H2S04 ma/om t2 · Moles/Liter 

13 . 01 0.50 
12 . 80 o.5o 

3 . 28 4.0 . .  

F<;>r H20(1) = H2(g) + i<J2 (g) 

Calorimetric Data 

QR•'l 
(Joules )  

· -
40 . 46 
44 . 06 
14. 21 

Results 

6Htotal 
Cal ./Mole 

+68, 280 
+68, 150 
'!'68, 430 

Q� 
(Joules) 

418 . 45 
200 .03 
117 .31 

Q� 
(Joules) 

50 . 62 
26 . 02 
17 .53 

AS anodic 
Cal . /Mole/Deg . 

+63 .6 
+64. 8 
+82 . 4 

Q� Q� 
(Joules) (Joules)  

387 .96 }U8 .58 
199 . 40 225 . 42 
115 .38 132 . 91 

AScathodic 
Cal ./Mole/Deg . 

+161 . 6  
+16o . l  
+144 . 2  

AH • +68, 300 ! 6o cal ./mole or H20 

b 1\) 
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quantities are to have a meaningfUl reference to a single reaction. 

This appeared to be true but it wa s ne cessary to be absolutely sure of 

100 per cent current efficiency by making an expe rimental determination 

of current efficiencie s on the coppe r and silver systems . 

The au.rrent density, 15 .6 ma/c:m. 2 , used in the se exper jme nts were 

comparable to, or higher than, the current densitie s used in the oalori-

metrio expe r:iments . The results of these expe riuents are given below. 

Current Etfioienoy 
Reaction (Per Cent )  

Ag (s ) • Ag+(aq. )  + e -(A.g) 

Ag+(aq. ) + e -(aq. ) • Ag(s ) 

Cu(s )  Ill cu++(aq. ) + 2e-(Ou) 

eu
++(aq. ) + 2e-(cu ) • Cu(s)  

100 .00 

99.68 

100.27 

99.46 

Wit hin experimental error* the current efficiencies are all 100 

pe r  cent . It can be safely concluded that . no e rror in the calorimetric 

results were introdu ced be cause of s ide reaction at tm ele ctrodes . 

*A weighing error of o. 2 mg .  would account for all of tm devia 
tions from 100 per cent . 
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DISCUSSION 

A . Preliminary Experiments 

The preliminary experiments gaTe no reliable quantitative data . 

They did serve to point out some important factors to bear in mind 

during the planning of the later experiments . One of the important 

points indicat�d by the preliminary experiments was the lag · in the 

anode temperature as canpared to the cathode temperature in the initial. 

part of the electrolysis . Further, it was demonstrated that, at some 

time during the electrolysis, the anode temperature invariably rose 

above that of the cathode {see Figure 12) . 

The Beckmann thermometers used in these first experiments were 

not sensitiye enough to give a sufficien� accurate value for the 

temperature difference between · the anode and the cathode . The second 

undesirable feature of the Beckmann thermometers was their slCM re

sponse time . This is due to the high heat capaoi ty of the thermometers 

and rather slow heat transfer. These two objections were quite satis

factorilY circumvented by the use of thermistors as the temperature 

sensing elements . 

Another very important point which the preliminary experiments 

seemed to stress was that the position and area of the electrode must 

be fixed and reproducible from experiment tQ experiment. This was a 

necessity for the procedure of obtainjng reproducible, accurate results o 
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This fact had a direct bearing on the design of the electrolysis oell 

for the subsequent sets of experiments . •  
Attempts t o  correlate the preliminary results with those of Gri tsan 

and Bulgakova3° were entirely unsuccessful . The only conclusive relation

ship between the results reported here and those of Gritsan and Bulgakova 

was that t�ere was a definite temperature rise at each electrode . 

B .  Temperature Difference Measurements on the Copper-Aqueous Oopp�r 

Sulfate System (Thermal Electroanalysis ) 

1.  Pure Copper Sulfate Solutions 

In Chapter II (Equation 39)  it was shown that the heat effect of 

an electrochemical reaction is made up of three terms . Thus the heat, 

Q ,  given off by an electrochemical reaction is given by: 

Q = - TaS + RI2t + � It (1) 

where the symbols are defined as in Chapter II . Since each of the three 

terms involved in the heat effect varies with the concentration of the 

solutions being electrolyzed, it was expected that the heat effect should 

also show a variation with concentration. Gri tsan and Bu.lgakcwa3° have 

stated that this variation of the heat effect with concentration is so 

exact that one may determine the concentration of the solution being 

electrolYzed merely b,y measuring the temperature difference between an 

electrode and the electrolyte during electrolysis . 

In view of this, it was decided to direct the experiments in such 

a manner as to furnish design data for the calorimetric experiments and, 

at the same time, attempt to work out an analytical method based on 
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thermal electrochemical measurements . With this in mind, it was thought 

that measurement of the temperature difference be�een the cathode and 

the anode would be the most worthwhile .  By measuring the temperature dif

ferences of the electrodes rather than a measurement involving the tempera

ture of the solution, it was thought that the effect of inert ions on the 

resistance of the solution could be minimized . It was later found that 

such inert ions do have an effect on the temperature rise at a working . 

electrode . However, the effect does not lie in an alteration of the re 

sistance of the solution but is due to factors which will be discussed 

in a later secti on. 

As can be noted from the plots of To -TA versus time (Figure 13 )  

the anodic electrode reaction i s  more exothermic . This is true in every 

case and is due to a difference in sign of the entropy change at the 

anode as compared to the entropy change at the cathode . Since the elec

trode reactions are equal but opposite in direction, the entropy change 

at the electrodes will be equal in magnitude but opposite :in s� . . This 

was verified by the calorimetric results gi veri in Chapter IV ( a  negative 

entropy change for the anodic dissolution of copper which corresponds to 

an evolution of heat and a positive entropy change for the cathodic 

deposition of copper which corresponds to the absorption of heat) . 

The positive portion of the plot of Tc-TA as a function of time is 

caused by c oncentration polarization at the cathode . This is indicated 

by three experimental observ-ations . First, there is a short time lag be

fore the temperature of the cathode rises above that of the anode . This 

corresponds to the time neoessar,y to deplete the copper ions in the 
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vicinity of the cathode . When the copper ions are depleted by the 

plating �action, a concentration gradient will be set up, resulting 

in a conoentratio� polarization effect, and a heat effect due to this 

concentration polarization. The second bit of experimental evidence 

tor the above statement is obtained by observing the effect of concan- · 

tration on the shape of the Tc -TA versus �ime curve . The portion of 

the curve at which �a-TA is positive ·is decreased by increasing the con

. oentration and final.ly no positive �values or Tc-TA are observed at the 

higher concentrations (Figures 13 and lS) . This is in line· with the 

rae� that concentration polarization will be minimized· in concentrated 

solutions . The third . effect observed which is consistent with the above 

reasoning deals with experimental results obtained by holding the. con

centrati�n constant and decreasing the current (Figure 18) . In this 

case, the concentration polarization effect will not be present if �he 

current is sufficiently low to allow the ·copper ions to migrate to th� 

cathode as fast as the7 are plated out. These last two observations ·are 

consistent with experimental· observations of other workers dealing with 

concentration polarization . 64 
· . . 

\, . . . 
In order to use temperature Ciif'ferenoe measurements as an a.n.alyticaJ. 

method, S9Jil8 relationship must be established between Tc -TA and the con

centration of the solution being eleotrol.yz8d. No attempt was .made in 
-- � 

this phase or the work to obtain a rigid theoretical relationship between 

these two quantities . Instead, an empirical calibration curve was ob

tained . T�s curve is shown in Figure 14, and is a plot of :tJle ten minute 

�ues of Tc-TJ. versus concentration. The uncertainty" in . that portion 

of the curve up to about 0 .  09 M is equivalent to an uncertaint7 of 
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:o .oooS M in the concentration . That portion of the curve above 0.10 M 

is, of course, entire� unsuitable for use as a calibration curve to 

determine concentrations . This can easily be avoided by the construe-

tion of another calibration curve at a higher current . 

Theoretically the one minute values of Tc-T.A could also be used as 

a basis for an analytical method . This would be based on a calibration 

curve such as shown in Figure 15 . However, since the one minute values 

of To-T A are much smaller than the corresponding ten minute values, the 

accuracy would be smaller ·than that obtained by the use of the ten minute 

values .  · Also, as pointed out in Chapter IV, the one minute valu�s of Tc

TA are not as reproducible as the ten minute values of Tc-TA · 

Figure 16 shows Tc-Ts and TA-Ts as a function of time of electrolysis 

for two different concentrations of copper sulfate . These curves lend ad-

ditional experimental proof to the Tc-TA curves which were obtained in a 

direct manner . Again it may be seen from these curves that, in the early 

part of the electrolysis, the temperature of the cathode is higher than 

the temperature of the anode • . 

· Figure 17 is an example of a type ?f plot which might also be used 
. . . 

as a calibration curve for an analytical detenrdnation. However, this is  

not to be recommended as this type of plot involves the temperature of 

the $Olution and is therefore not as reproducible as the To-TA determina-

tions . 

The effect of the magnitude of the electro�sis current on the ten 

minute values of Tc-TA is clearly illustrated in Figur
.
e 19 . At the lower 

current values plating was observed on the cathode . The appearance of 
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the plate was ver,y similar to those obtained during the electrolysis 

using higher concentrations of copper · sulfate when the current was main

tained constant . It thus appears that the horizontal portions of Figures 

14 and 19 are quite analogous to each other. 

This type of measurement is interesting in that, as a method of 

a.na.lysis, it could lend itself quite well to instrwnentation. The un

balanoe signal of the bridge could easily be amplif'ied or recorded !or 

either automatic or control operations . It should be emphasized that 

the magnitude of the temperature dii'ferences, but not the shape of the 

curves, will be changed if the equipment is changed. That is, there will 

be a difference in the values or Tc-TA if the electrodes, bridge oirouits, 

thermistors, or geometry of the cell is changed. 

2 . Copper Sulfate Solutions to Which Potassium Sulfate, Sodium Sul.f'ate, 

or Sulfuric � Has Been Added 

The effect of the addition of the above electrolytes to the copper 

· sulfate solutions as shown in Figures 20, 21, and 22 is interpreted as 

follows. The chief .effect or these eleotrolytes is to alter the heat 

effect at the anode . This is supported by a cauparison or the TA-Ts 

versus time curves shown in Figures 16, 20, 21, and 22 . A canparison 

or the Tc-Ts versus ttme curves in these same figures shows little effect 

due to the addition o£ these electrolytes whereas the effect at the anode 

is considerable . 

Two explanations have been devised to interpret the effect o£ in

ert electrolytes such as potassium sulfate. One explanation proposes 
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that the potassium sulfate decreases the anodic polarization oi' copper 

in a copper eultate · solution . This wo�d have to be tested by aperi

ment as no literature was found on this subject . 

The other explanation lies in the theory ot irreversible thermo

�os as applied to thermooella34, 42 since this is a non-isothermal 

system. This interpretation invol vee ionic heats of transfer and trans

port numbers of the current-carrying species as shown in Equation (11) 

in Chapter II .  In this equation the ionic heats of transfer, Qf, is 

nmltiplied by the transport number, · tt; ot the species to which it refers . 

This is independent of the electrode reaction. A comparison of the et!eot 

of hydrogen, potassium, and sodium sulfate on the heat effect at the 

anode shows that 1 t is in the order It:> K+ > Na + .  This is the exact order 

of the transference numbers of these three ions . A simple physical pic

ture of the above interpretation is that the faster moving cation carries 

more heat gq from the anode . 

Another piece of experimenta;J. evidence in line with the above 

reasoning comes from the work of Lange and Hesse . 21 They measured the 

"Peltier heatsn of the systems Ag j AgNOJ and Ag l AgCll 01- in the presence 

or potassium, hydrogen, and 11 thium ions . Here again the values were in 

the same order as the transference numbers of the three ions . 

Gri tsan, Bu.lgakova 1 and Zolotareva 27 have studied the effect o.f' 

certain anions on the temperature rise at zinc, copper, and cadmium 

cathodes. Their results showed that the temperature rise at the cathode 

varied if the anion of the metal salt were changed . A comparison of 

their results with existing transference number data indicates that the 
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effect is directly proportional to the transference number of the anion. 

All of the above results indicate that the temperature rise at an elec

trode definitely depends on the ionic heats of transport and the trans

ference numbers of all of the ions in solution . 

It is obvious that from the above discussion that one cannot . use 

a calibration aurve such as Figure 14 for the determination of the copper 

concentration of a solution which contains extraneous ions . · Figure 24 

shows the effect of potassium sulfate · on the measured temperature dif-

· ferenoes as a function of the concentration of added potassium sulfate . 

It may be seen from this figure that the effect of potassium sulfate ·- on · 

the temperature differences approaches a constant value if the potassium 

sulfate concentration is large enough . This points the way to a possible 

method to avoid the interference of inert electrolytes such as potassium 

sulfate . That is; enough of the inert electrolyte could be �ded to the 

standards and the unlmowns to " swamp" the solution and produce a · constant 

effect. This constant effect would be expected if the inert electrolyte 

were carrying practio� ·a11 of the current . These ideas are based, of 

course, on the interpretation that the effect due to the inert electro-

. lytes �e based on the ionic heats of transport and the transference 

numbers . 

3 .  Copper Sulfate Solutions to Which Gelatin � Been Added 

The effect of gelatin as shown in Figure 23 is smaller than that 

of the inert electrolytes discussed in the previous section . It is some

what surprising that the effect of gelatin on the heat production at the 

anode is opposite to that of the electrolytes . Although the increase in 
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the evolution of heat at the anode may be due whol:cy- to an increase in 

anodio polarization, it is quite pos sible that a large part of the 

·effect ID.q be caused by a decrease in the mobility of the cation . This 

would have the effect of decreasing the amount of heat carried away from 

the anode . 

Although no quantitative comparison is possible, the results ob� 

tained here are consistent with those obtained by Pars ons and Winkler59 

for the cathodic polarization of copper in the presence of gelatin . 

4. Suggestions for Further � 

It would be interesting and intormati ve to extend this type of 

study to another system. A partioularl7 good system for this work would 

be the silver-aqueous silver nitrate system. This system is somewhat dif

ferent from the copper system in that the cathodic reaction is more exo

thermic as shown by the calorimetric measurements . 

More work needs to be done on the measurements in the presence of 

inert electrolytes . This would do much toward putting the analytical 

aspects on a firmer foundation and also aid in correlating these resul. ts 

with existing thermocell data . 

Examination of Figure 24 shows that the ten minute value of Tq-TA 

approaches zero as the potas sium sulfate concentration is increased . 

The se data are for 0.08 M copper sulfate only, however . In view of this, 

ten minute values for Tc-TA need to be measured for solutions of different · 

copper sulfate concentration with each having a large concentration of 

potassium sulfate . Although it is thought that the ten minute values of 

Tc -TA would still shOW' a variation with concentration of copper s�ate, 
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this needs to be proven experimentally. If the ten minute values or 

Tc-TA were zero in all cases, recourse could still be taken to the one 

minute values or Tc -TA as a basis for an ana.J.ytioal teclmique. 

C .  Calorimetric Measurements of Heat Effects at Single Electrodes 

During Electrolysis 

The discussion given here is based on the assumption that Equation 

(39) in Chapter II is valid for a single electrode system. Prelimin817 

work has indicated that the equation is valid for a single electrode 

system although no rigorous theoretical derivation has been worked out . 

At present, there seems to be no obvious reason for the equation not 

being valid for a single electrode s.ystem. 

1 .  The Copper-Aqueous Copper Sulfate System 

The most striking feature of the results presented in Table III � 

is their rather wide variation of entropy change during electrolysis with 

the concentration of the solution . As shown below, . this variation is 

11111ch more than would be expected if ideal behavior were observed. Ideal 

behavior, a.S used here, means that the thermodynamic activity of a single 

ionic species is equal to its concentration . 

The entropy of an ion ( or arr:y substance), S11 in a solution of 

activity, all may be represented as 

S1 • 8° - R ln a1 , ( 2 ) 

where S0 is the entropy at unity activity and R is the gas constant. In 

a like manner, the entropy in a solution in which the ionia activity· is 
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82 = S0 - R ln a2 . 

If (2 )  is subtracted from (3 ) ,  one obtains 

&l �s = s2 - s1 = R 1n -&2 • 

(3 )  

(4) 

Equation (4) gives the entropy change accompanying the transfer o£ one 

mole of the ions from a solution in which the activity is a1 to a solu

tion where the activity is a2 . If one now assumes that a1 is twice as 

large as a2, the entropy change would be 

�S = (1.987 ) (ln 2 ) • 1.377 cal ./mole/degree • (5) 

If one assumes that activ:l. ties are equal to conoentration* then this is 

the entropy change which should be observed on passing from one solution 

to another which is � halt as concentrated . 

One oan obtain an experimental val.ue for this from Table III . For 

the 0.1 M copper sulfate, the reaction is 

(6) 

for which . 

6 s • -13 .5 oal./mole/degree (7) 

The corresponding reaction for the 0 .  2 M copper sulfate is 

(8) 

*'rhis, of course, is not correct, particularly at the concentra
tions worked with here . In this connection it is interesting to look at 
the mean activity coefficients for aqueous copper sulfate . These are 
0.1,0, 0.104, and 0.071 for solutions in which the concentrations are 0.1, 
0 . 2, and 0�4 molal respectively. 65 .Although these are mean activity co
efficients, it is still obvious that it is incorrect to assume that the 
ionic activity is equal to the concentration. 



for which 

�s = -20.2  cal ./mole/degree • 

If one now subtracts (8)  from (6),  the reaction 

eu•• = eu++ 
( 0 . 2  M) (0 .1 M) 

11$ 

(9) 

(10) 

is obtained . The entropy change for (10) is obtained by subtracting · 

( 9 ) from ( 7 )  which gives 

�s a 6 .7 cal ./deg ./mole , (11) 

a value which is very much larger than the 1 .377 ca.l ./mole/de�e cal

culated for the ideal case. Although the experimental value obtained 

does not seem to be compatible with the ideal case, the experimental 

values cannot be ruled invalid on this basis alone as nothing is lmown 

about the activity of a single ionic species .  In fact, a considerable 

portion of the present day chemists hold that the activity o
.
f a single 

ionic species cannot even be defined, much less measured. 

In this connection it would be of interest to calculate the ab-

solute entropy of the copper ion for comparison with values which have 

been obtained by other inve�tigators . The absolute entropy of solid 

copper is given by Stull �d S�el?6 �s 8 . 01 cal. �imole/degree at 
.
300° K .  

This value may- be subtracted · from the · tabulated values in Table III to 

give the absolute entropy of the copper ion plus two electrons . If one 

disregards the entropy of the two electrons*,. the resulting value may be 

taken as equal to the absolute entropy of the copper ion.  The values 

obtained are tabulated in Table VII together with some values obtained 

later . 

*This. is probably not valid. A discussion of this point is given 
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TABLE VII 

ENTROPY OF THE COPPER ION 

Cone . Copper Tempe rature Seu++ Electro].yte Moles/Liter OK Cal./)!ole@sree Bete renoe 

�4 0 . 10 . 303 . 2 -s.s This Work 

CuS04 0.20 303 . 2. -12 . 2  This Work 

CuS04 + H2S04 (1 M) o.4o 303 . 2  -19 .4 This Work 

CuS04 a•1 ( ?) Thermocel1 -37 Bonnemay-39 

�4 0 . 018* Not Given +27 . 8 Bruzs18 

Co.S04 o.o04* Not Given +25. 1  Bruzs18 

Oaal4 o.ooo4* Not Given +20 . 7 B:Nza18 

CnSl4 1 290-297 -29 Brussl4 
CuS04 + H2S04 (1 M) 0 . 15 298 -24. 9  Sherfey and 

Brenner31 

a•1 298 . 16 -26.5 Latimer67 

Cu (N03 )2 1 . 8  ,-.J 285 -26. 0  Bou.ty-3 

CuS04 0 . 625 · � 298 -19 .5 · Gill6 

CuS04 0 .55 273 +2 . 8  Jahn7 

CuS04 o.ss ( ?) 273 ,. -26.3 JabrP 
Cns:l4 + H2S04 0 . 5 297 -298 -22 Brauer8 

(o. oos M) 

*xole traction . 
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by other investigators . 

Table VII indicates some of the wide variations found in the 

literature in an attempt to arrive at a value for the absolute entrop,y 

of a single ionic species . Latimer 1 s  value
67 has been included only 

for comparison as it is a relative value based on the assumption that 

the absolute entropy of the hydrogen ion is zero at unit activity. 

Bonnel1l81' 1 s value is based on thermooells and thus is probably not valid 

for the reasons indicated by Holtan.34 

Sinoe there is such a wide variation in the values given in Table 

VII, the easiest manner ot comparison would be to plot all of the values 

as a tunotion of the oonoentration of the copper ion. This is done in 

Figure 25 . 

The normal procedure in constra.cting a graph of this type is to 

plot these values as a function of the square root of the ionic strength . 

This has its basis in the theory of Debye and Ruckel . However, the De bye-

Buckel theory is good only as a limiting law and then only with solutions 

of ionic strength below 0 .1.  A plot of this type did not provide a sat-

isfaotory means for testing the agreement of the values given in Table 

VII . 

It was found that a plot of the entropy values versus the logarithm 

of the molarity gave a satisfactory straight line . No theoretical explana

tion was attempted for Figure 25 . The equation for the straight line in 

Figure 25 is 

Bau++ = -28 . 51 - 23 .07 log M (12) 

as calculated by the method of least squares from the data obtained in 
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Figure 25 •.. 1 Entropy of the Copper Ion as a Function of the Con
centration of Copper . 
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this work. 

It can be seen that the results of this work and those obtained 

by Sherfe,y and Bre�er; 3l Bruzs, 14 and Brauer8 agree quite well accord-

ing to this correlation. Some of the earlier results are in fair agree-

ment with the results obtained here while sane of the values in Table 

VII disagreed so badly' that they were omitted from Figure 25 . 

At the beginning of this research it was hoped that this type of 

attack would provide a value of the absolute electrode potential . The 

method by which this quantity was to have been obtained is outlined be-

law . The general working equation may be written as 

- Eit = �H + · Q {13) 

where the terms are defined as before . Measuring Q and Eit will permit 

the calculation of �H . As �S may be obtained from Q, it would be an 

easy matter to obtain �F from the relation 

flF = �H - TllS • {14) 

Knowing llH, the electrode potential may easily be obtained as 

.. £ = (15) 

This may easil.y be done for the total oell reaction. However, when one 

attempts to apply the same procedure to a single electrode, he .finds that 

the data are not sufficient. Although the heat given off a single elec-

trode may easily be measured, this is not the case with the energy in-

put, tit. Attempts to get around this by dividing the total energy input 

.. . .  

into two parts by a trial and error method met with failure . This was be-

cause the necessary number of independent equations are not available 

from the data. 
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The same general remarks made for the copper system are also 

applicable to the silver system and will not be repeated here . 

The data in Table V may be used to calculate an entropy change 

accompanying a concentration change in the same manner as was done with 

copper. 

Ag( s ) = Ag+(0 . 2  M) + 8-(Ag) 
�s = +36 .5 cal ./mole/deg . 

Ag( s) = Ag+ (0 .4 M) + ·e- (Ag) 
· 6S = +31 .6 cal./mole/deg . 

Subtracting (18) from (16) gives 

Ag+ (o.4 M) • Ag+(o .2 M) . 

(16) 

(17 ) 

(18) 

(19)  

( 20) 

�S for this reaction is obtained by subtracting (19) from (17) and is 

equal to +4.9 cal./mole/degree . Again this value is IIDlch greate_r than 

would be expected for the ideal case (1.377 cai./aole/degree) but is 

somewhat less than the corresponding value for copper. Once again this 
. . 

· value depends on the activity of a single ionic species which has not · 

been evaluated. 

As was the case with the copper system, one can calucate the en-

tropy associated with a silver ion and one electron for each of the three 

concentrations studied. The neoessar,y piece of datum is the entropy of 

solid silver . This is given by Stull and Sinke68 as 10.24 cal./mole/Q.egree 

at 300° K .  This value, along with some previous values for the entropy 

of the aqueous silver ion, are tabulated in Table VIII . It may be noted 

that, for the purpose of comparison, the entropy of the electron �as been 

neglected. 
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TABLE VIII 

ENT!l>PI OF THE SILVER ION 

Cone . Si1 ve r Temperature SAg+ 
11eotro].zte Moles /J4 ter ox Cal . h!ola fD!g:ree Be :terence 

AgN03 0 . 20 303 .2  46 . 7 This Work 

AgN03 0.40 303 . 2  41. 8  This Work 

AgN03 0 . 80 303 . 2  37 . 1 This Work 

A gN03 1 290-297 19 BfU,zsl4 

AgN03 1 . 6  290-297 19. 2  Bru.zal4 

AgN03 0.8 290-297 19.5  Bru.zal4 

AgN03 0.1 290-297 30. 3 Bzuzsl4 

AgN03 o . ss 273 37 . 6 Jahn7 

AgN03 0.17 -.J 298 20 . 8  Gi116 

a•1 298 . 1  17 .54 Lat�r67 
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Figure 26 shows the various values given in Table VIII plotted 

as a function of the concentration. This plot was constructed in the 

same marmer as Figure 25 for the copper system. The equation for this 

line, as obtained by the method of least squares, is · · 

SAg+ = 35 .51 - 16.04 log M • ( 21) 

Again the values obtained in this work tall _on a very satisf.fl,ctory . 

straight line . Very little agreement was obtained with any of the 

previous results except for the fair agreement with the early result of 

Jabn.7 

3 .  The ElectroJ.ysis of Water 

.. . 

The only' significant datum obtained by calorimetric measurements 

on the e�ectrolysis of aqueous ·.sul.turio - acid using platinum electrode 

was the enthalpy change accompanying the deocmtposi tion of water . This 

value was eomp&red with the accepted value and found to be in very good 

agreement. The validity of all of the calorimetric measurements was en-

hanced by' this agreement . In addition, this demonstrates that the method 

employed in this work is a very conveni'ent way . to determine the . enthalpy 

change for � reaction which � be carried out in a �antitative manner 

by' an electrochemical method . 

It was stated in Chapter IV that the entropy values obtained for 

this system were invalid.  This is }larticularly true in view of the fact 

that the sum of the calculated entropy changes for the electrode reactions 

is very much is disagreement with the accepted value for the entropy change 

for the cell reaction . If one refers � the method used to calculate these 
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entropy values, it is not difficult to see why the results do not cor-

respond to the entropy changes occurring at the electrode . The method 

of calculation is based on the assumption that the statio potentials of 

the probe versus the electrodes are equal to the reversible potential 

of the cell reaction. For the copper and silver systems, this was true 

and the statio potential of the probe versus either electrode was �ero 

in all oases . The statio potential of the probe versus eitber electrode 

was also zero for the platinum-aqueous sulfuric acid system. This had 

to be true as the probe and both electrodes were oonstruote<i of platinum 

and were dipping into the same sol-q.tion. However, ·this is not the l'&-

versible potential corresponding to the deoomposi tion of water . In view 

of this, the entropy values calculated as in the appendix cannot be taken 

as - corresponding to the entropy changes occurring at the electrode . This 

difficulty co�d be avoided by using reversible electrodes .  

This situation is quite analogous to the direct current method for 

measuring electrolytic c onductance. Conductance data of the highest order 

of accuracy are obtainable by this method but only if' strictly revers.ible 

69 
electrodes are used as potential measuring probes . 

The above · statements have nothing to do with the enthalpy values 

obtained by this method since they are not dependent upon the reversi-

bUity of the electrodes . These values may be obtained for a:n:y quanti-

tative eleotroohemioal reaction regardless of whether the reversible po-

tential corresponding to the reaction oan be measured or not . 



4. Canparison o� the C$Pl'er .!!!! Silver Systems 

It is possible to calculate tile value of the entropy change for 

the reaction 

Ou( s)  + 2Ag+ ( aq. ) ::a • au++ ( aq. ) + 2Ag ( s )-·. ( 22 ) 

The necessar.y data are readily available in the literature .�' 67, 6B  The 

ionic values are based on the standard state entropy of the hydrogen ion 

being equal to zero . In the subtraction of relative entropies, an absolute 

entropy change is obtained .  

The entropy values for each ion is given below: 

CU( s)  + 2Ag+ (a=l) = eu++ (a=l) + 2Ag( s) 

8=7 . 97 S=l7 . 54 8=26.5  8=10 . 20 

( 23)  

The entropy values are written beneath the species to which they refer 

and are given 1n cal./deg ./mole . The entropy change for this reaction 

is then 

�8 = 
-26 .5 + 2 X 10 .20 - 7 . 97 - 2 X 17 .54 (24) 

�S = -49 .15 oal./deg ./mole of Cu at 29� .16° K. 

One can also calculate the entropy change for a like reaction 

from Table III and V. This may be done in the following manner . 

Ou(s)  • ?n++ (0. 2 M) + 28- (Cu) 

Ag( s) = Ag+ ( 0 . 2  M) + e- (Ag)  

�s . = -20 . 2  cal ./mole/deg .  ( 25) 

�s _::a +36 .5 oal ./mole/deg .  (26) 

Mu1 tiplying � 26 ) by 2 and subtracting from ( 25) one obtains 

Ou(s )  + 2Ag+(0 . 2 M) + 2e-(Ag) = �u++(0 . 2 M) � 2Ag(s)  + 28-(Cu) 

�s = -93 . 2  oal ./deg ./mole . ( 27 )  

Using the data for the 0.4 M solution in exactly the same manner, one 
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2Ag+ 2 -
++ Cu( s) + (0 .4 M) 

+ e {Ag ) = Ou (0.4 M) + 2Ag{ s ) + 2e-
( Ou) 

�s = -90 .6 cal . /deg ./mole ( 28 )  

Except for tw o  reasons, the � S  for reactions ( 27 )  and ( 28 )  should be 

exactly the same* as the 6S for reaction ( 23 ) . 

One of these reasons for the large difference between ( 28) and ( 23 )  

or ( 27) and ( 23 )  is that the ent�opy changes for re�tions ( 27 )  and ( 28 )  

involve the activity of the copper and silver ions while the 6S for �ac

tion ( �3 )  is under the strict conditions of unit activity.. It is unfor-

tunate that, at the present time, these ionic activities cannot be evalu-

ated . In this respect, mention should be made of the mean ionic activity 

coefficients for aqueous silver nitrate in order that they may be compared 

with the values given previously for copper sulfate . For solutions o� 0 . 2, 

0 .4, and 0 . 8  molal silver nitrate, the mean activity coefficients are 
70 . 

0 .651, 0 .561, and 0.464, respectively . It can be seen that these values 

are much larger than the corresponding values for copper sulfate . . In . fact, 

a 6.0  molal solution of silver nitrate has a larger mean io�o activit.Y 

coefficient than does a 0.1 molal solution of copper sulfate . However, 

this cannot explain the differences in entropy values listed above as 

these · are mean ionic aotivi ty coefficients . It does, however, emphasize 

that fact that there is a vast difference between copper sulf'ate and sil-

ver nitrate . 

*There is also a small temperature difference between the reactions 
but this would have a very small effect . 
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The second reason is that, as one may note, the electrons appear

ing in reactions ( 27 )  and ( 28) are in two different metals . The subject 

of the entropy of an electron in a metal is far from settled. One group 

holds that the entropy of an electron in a.ny metal may be taken as equal 

to zero .37 Howev�r, this is vigorously opposed by the second group who . 

believe that this entropy is not zero but is variable from metal to metal. 

and is responsible for a number of the:rmoe1eotric phenomena.34, 7l 
71 Latimer · has shown that the thermopotential. of a metallic themo-

couple may be represented as a function of the difference in entropy of 

the electrons in the two different metals . His treatment gives fair 

agreement with the data in existence a� that time . . Bronsted4S also 

attributes the thermopotential of a thermocouple to the entropy associated 

w1 th the electrons in the metal . Other authors who also consider the en

tropy of electrons in metals are Hol tan34 and Van Rysselberghe . 49, $0 

It should be pointed out, however, that all of the above treat-

ments are tor conditions of zero current now . It � be that the mag

nitude of the current flow oould have a considerable effect on the amOunt 
* of entropy associated �th an electron in � given metal . 

The results given here · are not in definite disagreement w1 th vaJ.ues 

which may be obtained from literature data. However, in view of the above 

reasons, no definite statement can be made concerning the degree of agree-

*This would seem to be in disagreement w1 th the modern theories of 
electrical. conduct� on in meta;l.s in that it would involve a ·change in the 
energy level of the el.ectron . However, there does not seem to be su:fficient · 
experimental evide�ce available to defini tel;y prove that a change in the 
energy l.evel of an electron does not occur when a flow of electrons exist . 
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ment. While Latimer71 has suggested that the difference between the 

entropy of an electron in copper and the entropy of an electron ·in 

silver is probably very small, one still has the problem of activities 

of single ionic species to contend with. In view of the above state

ments, the absolute acceptance of the values given in this dissertation 

must, of necessity, await further research along this same line . 

5. Suggestions £or Further � 

In view of the statement made in the preceding section concerning 

further research, it is only fitting that a few remarks be made concern

ing the direction of such research . 

Experience has shown that the most desirable, if not actually 

necessar.y, improvement to acqnire before continuing this type of research 

would be a much more sensitive calorimeter . Several suggestions for 

attaining this increased sensitivity are enumerated below . 

1. The reasons for choosing a Dewar flask for the calorimeter are 

given in the Experimental section. However, a metal calorimeter, which 

is more desirable, could be made by having the walls of the calorimeter 

serve as the electrodes . The electrodes could be separated and insulated 

by the partition used to isolate the anode and cathode compartments . A 

metal calorimeter, in addition to allowing the us� of larger electrodes, 

would give a measurable, reproducible heat leak . 

2 .  Increasing the electrode area would give a greater ratio of 

reversible to irreversible heat which would result in more accurate values . 
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3 .  A more sensitive temperature sensing sys tem would be ex

tremely advantageous . Use of a thermistor with a higher resistance 

and an electronic rec order with a one mv . range . would give an auto

matic recording s.ystem accurate to 0.0001° . 

4. Automatic control of the temperature difference between the 

two electrode compartments would be necessar,y if the first three improve

ments were made . Further, it would be desirable to record the amount of 

heat added to the cooler compartment . The instrumentation involved would 

be extensive but not prohibitive in cost . 

Once the above improvements had been made and the system was oper

ative, there are a number of highly desirable experiments to perform . 

Perhaps one of the most promising routes would be to continue worldng 

with the copper and sU ver system except at much lower concentrations 

than used in the present work . This would permit the extrapolation of 

the data to zero concentration . It is probable that this technique would 

give the absolute standard state entropy of an ion as well as information 

�bout the activity of a single ionic species . 

It would also be . very worthwhile to us e the techni ques of electro

chemical calorimetr,y to determine �H values for a number of reactions . 

In some cases, it is very difficult to obtain these �H values by other 

methods . 

F�, it would be highly desirable to make some measurements 

on a s.ystem which consisted of two different reversible electrodes plus 

a reversible probe . 



CHAPI'ER VI 

SUMMARY 

Temperature difference measurements were made during the elec

trolysis of aqueous copper sul.fate between copper electrodes . The 

temperature differences measured were those between the cathode and the 

anode, the cathode and the solution, and the anode and the solution . 

These. values were obtained as a function of the time of the electrolYsis .  

The variation of these differences with time and their magnitudes were 

explained in terms of the entropy changes occurring at the electrodes, 

resistance, and polarization . 

The effect of some inert electrOlytes on these temperature dif

ferences was determined as was the effect of gelatin . Explanations for 

these effects were given in terms of polarization and the therm�amics 

of irreversible processes as applied to thermocells . 

It was found that these temperature differences were extremely 

dependent on, and had a definite relationship to, the concentration of 

the copper sulfate solutions . Accordingly, a method was proposed whereby 

such temperature differences could be used as an analytical method . This 

method was given the name, 11Thermal Electroanalysis . "  

A theoretical analysis was made of the quantity of heat evolved by 

an electrochemical reaction during electrolYsis . This an�sis was made 

from the standpoint of the ther.m�amics of irreversible processes and 

its relationship to classical thermodynamics was indicated. 
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A calorimetric method was developed which made it possible to 

measure the amount of heat liberated at a single electrode during an 

electrochemical reaction . It was also pos sible to measure the total 

amount of heat liberated by the same eleotroohemical reaction . These 

data, coupled with the theoretical analysis , made it pos sible to calculate 

the enthalpy change for the total reaction as well as the entropy change 

occurring at each electrode . This was done for the copper-aqueous copper 

sulfate-copper and silver-aqueous silver nitrate-silver systems at three 

different concentrations of electrolyte for each system . 

The values obtained for these systems were compared with the 

existing literature data where pos sible . Certain differences were pointed 

out in the case of the entropy values, espeoia.l.l.y their variation with 

concentration . Explanations were postulated for these differences and 

further work was proposed to clarit.Y the se points . 

Iil order to test the oal.orimet�c technique and to prove the valid

ity of the method, the enthalpy change for the decomposition of water was 

measured by this combination of calorimetric and electrochemical techniques . 

The v�ues obtained were in vert good agreement with the accepted value 

for this quantity. This was considered to be sufficient proof that this 

techniqne is a valuable tool for obtaining therm�c data which is 

extremely' di:tfioul t to obtain by other means . 



APPEND II 



TREATMENT OF CALORIMETRIC DATA 

A . Time-Temperature Curve and the Method for Evaluating f1T 

A t,ypical time-temperature curve obtained from either heat 

capacity or electrolysis runs is shown in Figure 27 • The variation 

of temperature with time during the rating periods has been exaggerated 

to show the method for evaluating l1T . In an actual run, the tempera

ture of the calorimeter remained nearly constant during the rating 

periods . The irregularities in the curve during the reaction period 

were periods when the heater in the outer compartment was off .  During 

a run there were a number of these irregularities but they were usually 

not as pronounced as indicated in Figure 27 . 

A time-temperature curve !rom a calorimetric experiment usually · 

approximates an exponential �e quite closely. Because of this, the 

most precise method of treating a time-temperature curve is to inte

grate the area under the curve and evaluate the thermal leak constant 

of the calorimeter . However� heat leakage through glass, such as the 

Dewar nask used in this work, is not reproducible . This automatically 

prevents one from obtaining highly precise data . Because of this a 

muoh simpler method was used to evaluate the temperature use . This 

method is illustrated graphically in Figure 27 . The time on the experi

mental time-temperature curve corresponding to 63 per cent of the dis

tance between the extrapolated lines from the rating periods was found. 

This distance was then taken as equal to l1T as shown in Figure 27 . This 
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Figure 27 . Typical Time -Temperature Curve and Method of · Evaluat

ing A T  •
. . 



method presupposes an exponential temperature rise and is capable of 

a precision of 1 part in 1000 . 72 

B .  Heat Capacity of the Calorimeter 

The calculation of the heat capacity of the calorimeter is best 

explained by reproducing an actual calculation performed during this 

work . This is done here for a heat capacity run on the calorimeter con-

taining aqueous silver nitrate . Unless otherwise specified, the symbols 

used correspond to those defined previously. 

In this particular run, Hi was on for a total of 721.3 seconds 

while H0 was on for a total of 2.58 .6 seconds . Thus Hi was on alone for 

462 . 7 seconds . It was necessar.y to separate the time that Hi was on 

alone because the voltage drop across al with both heaters on was con

siderably different from the voltage drop
. 

acros� Hi when only one heater 

was on . Several readings of the voltage
. 

drops across Rt and R� were 

taken during the course of the run .  These voltage drops were averaged 

to give the value used in the calculations . Theoretically, these values 

should have been integrated as a function of time but deviation from the 

average were les s than o .o.5 per cent . This was much less than the tem

perature measurement errors . The average voltage drop across ai while 

1 only Hi was on was 0.18371 volts . The average voltage drop across R1 

while both Hi and H0 was on was 0.14735 volts . The corresponding value 

for R� was 0 .51818 volts . These values, coupled with the values for 

the resistances of Ri and R�, were then used to calculate a value for 



the heating current, Ih, from Ohm 1 s law. 

Th * 0 .18371 � (� Hi on) = 1 . 0623 

h 0.14735 li (Hi and Ho on) = 1 .0623 

h 0 .51818 
Io = 1.0394 

1.36 

(1) 

( 2 )  

(3 ) 

These values for the heating current were used to calculate the 

heat added, Q (in Joules) from 

Q = RI2t , (4) 

where R is the resistance of the heater in ohms, I is the current in 

amperes, and t is the heating time in seconds . Thus 1 

( 0.18371 )2 . 
Qi (onlY Hi on) = 5.0388 1•0623 (462 . 7 )  = 69 . 73 Joules, 

. ( 0.14735 )2 
Qi ( Hi and H0 on) = 5 . 0388 1�062) ( 258 . 6) = 25 . 07 Joules, 

( 0.51818 )2 
Qo a 10 .168 1 .0394 ( 258 . 6) - 653 . 52 Joules , 

and Qi ( total) = 69 . 73 + 25.07 = 94. 80 Joules . 

(5)  

(6 )  

( 7 )  

(8 )  

The remaining datum necess8.1'7 to calculate the heat capacity is 

the temperature rise . The temperature rise for this run, evaluated as 

shown in Figure 27 and expressed as the unbalance potential of the Wheat

stone bridge, was 4.58 mv .  The heat capacities, ch, were then calculated 

by dividing the energy input by the temperature rise . 

*The subscripts i and o refer to the inner and outer compartments 
of the calorimeter, respectively. 



cr = 9�:;g = 20 .70 Joules/mv. 

h 653 .52 
00 = 4.5B = 142 .69 Joules/mv. 
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(9) 

(10) 

The total heat capacity of the calorimeter, at was taken as the sum of 

cr and cg. The average of three heat capaoi ty runs for this system gave 

the results a 

oi = 20. 84 � 0.15 Joules/mv. 

cg = 142 .66 � 0 . 25 Joules/mv. 

c� = 163 .50 � 0.25 Joules/mY. 

(11) 

(12 )  

(l3) 

These are the heat capacity values which are used for the calculations 

in the next section. 

C .  Calorimetric Data From Electrolysis Runs 

The calculations given here are for calorimetric measurements on 

the electrolYsis of 0 .40 M silver nitrate using silver electrodes (Run 

No. 4 in Tables IV and V) . The necessary data for making the calcula-

tiona are tabulated below. 

Average voltage drop between cathode and probe = 0.11409 volts . 

Average voltage drop between anode and probe = 0.94024 volts . 

Voltage drop across R8 (the standard resistance in the eleo-

trolysis circuit) = 0.75030 volts . 

Average voltage drop across R� = 0 .52935 vOlts . 

Duration of electrolysis = 1209 .1 seconds . 

Total time Ho on = 208 . 8  seconds . 



Here again average voltage drops have been used instead of 

integrated
. 
values . Airy error due to the use of an aver�ge value is 

small in comparison with the error associated with the calorimetric 

measurements . 
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It was shown in Chapter II that the heat, Q, given off by an elec-

trolytic reaction is given b,y 

Q • -T6S + RI2t + � It (14) 

in which the symbols have the defini tiona given in Chapter II . Instead 

of treating R and � as separate terms, they were combined into a single 

term. Since the electrodes and probe were constructed of the same metal. 

(silver in this case ) � deviation from zero potential between the 

probe and either electrode was due to resistance and polarization. There-

fore the total heat effect due to resistance and polarization can be cal-

culated directly from the average voltage drop between the probe and the 

electrode, the electrolysis current, I, and the time . 

The electrolysis current was calculated from Ohm' s law by 

I voltage drop across Rs 0 .75030 4633 = 

Rs = 5.1274 = 0 .1 amperes .  (15) 

The extent of the reaction was easily calculated from Faraday' s law. 

Equivalents • �t 
= (O.l46�1�4�209 •1� = 1.8335 x lo-3 moles of Ag. (16} . 

The heating current for the outer compartment was calculated from Ohm' s 

law and is given by 

Ih 
= 

0.52935 
0 1.0394 (17) 



The heat added to the outer compartment, Q�, to maintain isothermal 

condition is then 

o · o .  293S ( )2 
Qa = 10 .168 1•0 9 ( 208 . 8) = 550 .65 Joules . 
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(18) 

Heat produced in the inner compartment by resistance and polarization is 

equal to the product, of the voltage drop between tbe . anode and the probe, 

the electrolJ&is current, and the time of e1ectrolfsis. 

�+� = (0 . 94029) ( 0 . 14633) (120 . 91) = 166.36 Joules. (19) 

In like manner 

�+� = (0 .11409)  (0.14633) (120 . 91)  = 20 .18 Joules . ( 20) 

The electrical energy input is , of course, the sum of Q�+� and QR+� since 

the voltage applied to the cell is equal to the sum of the vol tage drops 

between the probe and the e lectrodes and is equal to 186.54 Joules . The 

total energy input to the calorimeter is then equal to the sum of 186 .54 
0 

and Qa or 737 . 19 Joules . 

The temperature
. 

rise for this run, evaluated as shown in Figure 27 , 

was 4.51 mv .  The heat evolved in each compartment is then equal to the 

product of 
'
the heat capacity of the compartment and the temperature rise . 

� = ( 20 . 84) (4.51)  = 93 . 99 Joules 

Q� = (142.66) (4.51) = 643 . 40 Joules 

� = (163 .50) (4.51 ) = 737 .39 Joules 

From the working equation developed in Chapter II, 

llH = -£It - Q • 

llH = 737 .19 - 737 .39 = -0. 20 Joules 

This can be converted to calories per mole . 

( 21) 

( 22 )  

(23) 

( 24) 

( 25) 
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l1H = 
0.20 

(4 .184o)  (1 .833 x lo-3) = -26 oal./mole . ( 26)  

Eit has been inserted as a positive quantity in ( 25) because the 

negative sign in ( 24) refers to work done b,y the system. _ 

The heat evolved in each compartment is given b.y 
Q • -Tl1S + RI2t + l'\ It . 

Rearranging ( 27 ) gives 

TllS = RI2t + � It - Q , 

or, in terms of the heat due to resistance and polarization 

TllS = QR+f\ - Q_ • 
Thus, for the inner compartment ( the anode reaction) 

(TAS )i • 166.36 - 93 .99 = +72 .37 Joules .  

( 27 ) 

( 28 )  

( 29 )  

(30) 

This oan be converted into the conventional units for llS by dividing the 

absolute temperature, the moles of silver reacting, and the conversion 

factor for Joules to calories .  

llS = +72•37 
= +31 .11 cal./mole/deg . (31) 

(303 . 2) (4.184o) (1.8333 x lo-3) 

This entropy value is for the reaction 
. + . -

Ag( s) = Ag {aq. , o.4o M) + e {Ag) • (32 ) 

The entropy change for the cathodic reaction may be calculated in exactly 

the same manner except that the energy added from the heater must be in-

eluded . 

0 0 0 . 
(Tl1S )0 = QR+� + Qa - Qm 

(Tl1S ) 0 = 20 .18 + 55o . 65 - 643 .40 = -72 .57 Joules 

(33) 

(34) 
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-72.$7 �s a 
(303 .2) (4.18b0) (1.833S X lo-5) = -31. 20 cal,/mole/deg . 

(35') 

This �S value is for the reaction, 

(36) 

Within experimental error, the entropy values calculated in (31) and (35) 

are equal but opposite in sign . This is the correct relationship since 

reactions {32) and (36) are the reverse of each other. 

The uncertainty in the entropy value is approximately ! 0 . 5 cal ./ 

mole/deg.  as estimated from the deviation in the heat capacity data and 

the uncertainty in the temperature rise . 

Finally it would be helpful to indicate the calculation for the 

enthalpy change for the electrolysis of water . This is in contrast to 

the �H value calculated in equation ( 26) • 

The data and calculation below are for Run No . l in Table VI .  The 

total energy input to the cell is given by the sum of the electrical 

energy added and the heat added by the outer compartment heat . This is 

equal to 

418. 45 + 118 .98 = 537.43 Joules . (36) 

The measured heat given off in the calorimeter was 438 .58 Joules . Thus, 

from (24) �H is given by' 

�H = 537 .43 - 438 .58 = +98 . 85 Joules . . (37 ) 

The extent or the reaction was such that 3 . 4603 x 10-4 moles of hydrogen 

were liberated. This corresponds to the decomposition or 3 .46o3 x lo-4 

moles of water. The �H per mole of water is then 



1� 

AH = + 
98 . 85 

(J .46o3 x lo-4) ( 4•1840) = +68, 280 .cal ./mole of H20 . 

(38) 

This calculation was included in order to show the difference be-

tween reactions in which there is a net AH (decomposition of water in 

this· case) and those reactions in which the net AH is zero ( suoh as silver 

in the preceding calculation) . 
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