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ABSTRACT 

Photosystem I (PSI) is a membrane protein involved in the photosynthetic 

cycle of plants, algae, and cyanobacteria that is of specific interest due to its 

ability to harness solar energy to generate reducing power. This work seeks to 

form an in vitro hybrid protein fusion between the membrane integral PSI protein 

and the membrane-bound hydrogenase (MBH) enzyme, in an effort to improve 

electron transport between these two proteins. 

Small-angle neutron scattering (SANS) was used to characterize the 

detergent-solubilized solution structure of trimeric PSI from the cyanobacterium 

Thermosynechococcus elongatus, which showed that the detergent interacts 

primarily with the hydrophobic periphery of PSI. The SANS results were used as 

a guide to constructing a model of trimeric PSI embedded in a detergent belt. 

Subsequent all-atom molecular dynamics (MD) simulations of the PSI-detergent 

complex suggested that the detergent environment could negatively impact the 

long-term stability of PSI, but is not likely to affect PSI activity or hinder its ligation 

to the MBH. 

Having verified that the solution structure of the PSI-detergent complex will not 

affect formation of PSI-MBH fusions, the membrane-bound [NiFe]-hydrogenase 

of Ralstonia eutropha was genetically engineered to express a Gly3 [Gly-Gly-Gly] 

tag on the N-terminus of the small subunit to allow for site-specific ligation to the 

psaE subunit of PSI. H2 [hydrogen] uptake activity results show a complete loss 

of activity in the mutant R. eutropha strain, possibly due to mutations introduced 

during previous genetic engineering work. In parallel, MD simulations of the PSI-

MBH fusion protein indicate this ligation strategy is not optimal for electron 

transport between these proteins. This MD approach can be used to evaluate 

other PSI-MBH fusion strategies, possibly targeting other stromal subunits of 

PSI. Finally, MD simulations of previously studied PSI-[FeFe]-hydrogenase 

fusions were conducted, revealing significant distortion of the protein structure 

that could limit their long-term stability. 
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shown in green ribbons, with detergent shown in lines format with carbon 
atoms in cyan and oxygen atoms in red, and water molecules and 
counterions omitted for clarity. ..................................................................... 63 

Figure 25. Crystal structure of monomeric PSI from T. elongatus shown from (A) 
side view with the stromal side up, and (B) lumenal side up. The protein is 
shown in ribbons with the reaction center subunits (psaAB) in green, the 
terminal electron acceptor psaC in red, the peripheral stromal subunits 
(psaDE) in blue, and the peripheral transmembrane helices (psaFIJKLMX) in 
orange. The starting structure for the PSI/DDM void-filled ring model shown 
from (A) lumenal side up and (B) side view along the transmembrane 
domain with the stromal side up. Protein is shown in blue ribbons, detergent 
molecules in lines format, and water molecules and counterions are omitted 
for clarity. ..................................................................................................... 65 

Figure 26. Cα RMSD versus time for the PSI/DDM void-filled ring model 
simulation. Lines show the Cα RMSD values for: all residues (black 
continuous line), the reaction center subunits psaAB (gray continuous line), 
the terminal electron acceptor psaC (black dotted line), the ferredoxin 
docking subunits psaDE (black dashed line), and the peripheral 
transmembrane helices psaFIJKLMX (gray dotted line). All curves were 
generated from the simulation starting structure. (Figure from Harris et al. 
2014) ........................................................................................................... 66 

Figure 27. MD snapshots of the peripheral transmembrane helix psaK (A) prior to 
simulation and (B) after 200 ns of MD simulation. PsaK is shown in blue 
ribbons with the surrounding detergent molecules in surface format. 
Snapshots of the core subunits psaA and psaB (C) prior to simulation and 
(D) after 200 ns of MD simulation. The protein is shown in blue ribbons with 
the surrounding detergent molecules in licorice format. (Figure from Harris et 
al. 2014) ....................................................................................................... 68 

Figure 28. (A) Broken-line plot of Cα RMSF values versus residue number for PSI 
(solid black line), averaged over the last 100 ns of the PSI/DDM void-filled 
ring MD simulation. RMSF values based on the temperature values from the 
X-ray structure (dotted black line) are shown for comparison. RMSF values 
were averaged over all three monomers of the PSI trimer, with error bars 
representing the standard deviation. Residues corresponding to the reaction 
center (RX CTR), stromal (S), and peripheral transmembrane (PT) domains 
are labeled. (B) Zoomed-in view of time-averaged Cα RMSF values versus 
residue for the stromal domain. (Figure from Harris et al. 2014).................. 69 

Figure 29. (A) Top view of trimeric PSI shown in blue ribbons, with the psaL 
subunits shown in red and their N-termini highlighted in boxes. Side view of 
the psaA (blue) and psaL (red) subunits shown (B) after 40 ns of MD 
simulation with the associated lipids identified in the crystal structure present 
(shown as VDW spheres) and (C) after 200 ns of MD simulation without the 
associated lipids included. (Figure from Harris et al. 2014) ......................... 71 
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Figure 30. Side view of the PSI/DDM complex (A) prior to MD simulation and (B) 
after 200 ns of MD simulation. Side view of the pure DDM micelle (C) prior to 
MD simulation and (D) after 100 ns of MD simulation. The protein is shown 
in red ribbons, and the detergent in blue in low resolution surface 
representation. Water and counterions are omitted for clarity. Note that these 
images are not to scale. (Figure from Harris et al. 2014) ............................. 72 

Figure 31. Radial atomic density profiles for (A) the PSI/DDM complex, and (B) 
the pure DDM micelle. In each case the atomic densities of the system 
components (protein = solid black line; detergent tails = dotted black line; 
detergent heads = dotted gray line; water = solid gray line) are plotted as a 
function of the distance from the center of mass of the system. Note that the 
water atomic density curve is plotted on a separate scale in (B). (Figure from 
Harris et al. 2014) ........................................................................................ 73 

Figure 32. Radial atomic density distributions before and after MD simulation for 
(A) the PSI/DDM complex, and (B) the DDM micelle. In each case, the 
atomic densities of the various components (hydrophilic heads before 
simulation = dark blue line; hydrophilic heads after simulation = light blue 
line; hydrophobic tails before simulation = dark red line; hydrophobic tails 
after simulation = light red line) are plotted as a function of the distance from 
the center of mass of the system. (Figure from Harris et al. 2014) .............. 75 

Figure 33. Detergent SASA versus time for (A) the PSI/DDM complex, and (B) 
the DDM micelle. SASA values are shown for: all detergent atoms (black 
solid line), the first head group (black dotted line), the second head group 
(gray dotted line), the upper tail group (black dashed line), and the lower tail 
group (gray dashed line). (Figure from Harris et al. 2014) ........................... 77 

Figure 34. Schematic of overlapping PCR for introduction of Gly3 tag to N-
terminus of hoxK from Ralstonia eutropha HF387H. ................................... 93 

Figure 35. A) Strategy for introducing the Gly3 tag to R. eutropha via conjugation 
(the green portion represents the Gly3 tag and the purple portion the His6 
purification tag), and (B) the accompanying screening process (Figure from 
Iwuchukwu et al. 2011). ............................................................................... 94 

Figure 36. (A) Top view from the stromal side of monomeric PSI surrounded by a 
belt of DDM detergent molecules. (B) Side view of the PSI-MBH fusion 
complex, with PSI in blue ribbons and MBH in red ribbons. (C) Side view of 
the PSI-FeFe H2ase fusion complex, with PSI in blue ribbons and FeFe 
H2ase in red ribbons. In all cases, detergent molecules are shown in lines 
format, and water and counterions are omitted for clarity. ........................... 99 

Figure 37. (A) pHoxKG plasmid resulting from T/A cloning of hoxKG PCR 
fragment into pGEM-T Easy. (B)  Ethidium bromide-stained agarose gel 
electrophoresis results. Lanes are as follows: (1) MW marker, (2) GlyUP 
PCR fragment, (3) GlyDOWN PCR fragment, (4) Gly PCR fragment, (5) 
SacI-digested pHoxKGmod, and (6) SacI-digested pLO3-HoxKGmod. ..... 101 

Figure 38. (A) pLO3-HoxKGmod plasmid resulting from ligation of SacI-digested 
Gly3 fragment from pHoxKGmod into the suicide vector pLO3. (B) 
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Electeropherograms showing sequence verification of the N-terminally Gly3 
tagged hoxK gene R. eutropha mutant. The upper electropherogram was 
obtained via DNA sequencing using the HoxKG_Reverse primer (see Table 
10), with the orange region corresponding to the hoxK gene, the green 
region representing the N-terminal Gly3 tag, and the blue region 
corresponding to the flanking sequence. The lower electropherogram was 
obtained via sequencing with the TriGly_Upper primer, with the orange 
region again representing the hoxK gene, the purple region the His6 
purification tag, and the red region corresponding to the hoxK stop codon.
 ................................................................................................................... 103 

Figure 39. Subcellular localization of MBH in WT R. eutropha H16. (A) Soluble 
and pelleted fractions after low-speed centrifugation of lysed cells at 4,000 x 
g for 20 min at 4°C, (B) Soluble and membrane fractions after 
ultracentrifugation of low-speed centrifugation supernatant at ~130,000 x g 
for 45 min at 4°C. (B) Western blot analysis of WT MBH purification steps 
using anti-hoxG antibody. Lanes are as follows: (1) MW marker, (2) Low-
speed centrifugation (4,000 x g for 20 min at 4°C) supernatant, (3) Low-
speed centrifugation pellet, (4) Ultracentrifugation (130,000 x g for 45 min at 
4°C) supernatant, (5) Ultracentrifugation pellet (a.k.a. membrane fraction), 
(6) Ultracentrifugation supernatant after detergent solubilization (a.k.a. 
solubilized membrane extract), and (7) Ultracentrifugation pellet after 
detergent solubilization. ............................................................................. 104 

Figure 40. Schematic of membrane-bound hydrogenase of R. eutropha H16 
depicting organization of individual subunits (Figure adapted from Burgdorf 
et al.). ......................................................................................................... 105 

Figure 41. (A) Coomassie-stained SDS-PAGE gel electrophoresis results for the 
purification of MBH from the mutant R. eutropha strain NGLY. Lanes are as 
follows: (1) MW marker, (2) Lysed cells, (3) Low-speed centrifugation 
supernatant, (4) Low-speed centrifugation pellet, (5) Ultracentrifugation 
supernatant, (6) Ultracentrifugation pellet, (7) Ultracentrifugation supernatant 
after detergent solubilization, and (8) Ultracentrifugation pellet after 
detergent solubilization. (B) Western blot analysis of purification of MBH 
from the mutant R. eutropha strain HF387H using an anti-hoxG antibody. 106 

Figure 42. (A) Crimped GC vial containing reaction buffer with methylene blue for 
H2 uptake activity assay being flushed with H2. (B) Qualitative activity results 
for partial purification of MBH from WT R. eutropha H16. Samples are as 
follows: (1) Low-speed centrifugation supernatant, (2) Low-speed 
centrifugation pellet, (3) Ultracentrifugation supernatant, (4) 
Ultracentrifugation pellet, (5) Ultracentrifugation supernatant after detergent 
solubilization, and (6) Ultracentrifugation pellet after detergent solubilization.
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Figure 43. Absorbance versus time for H2-dependent reduction of methylene blue 
via partially purified MBH from WT R. eutropha H16. Experimental data is 
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shown in black dots, with the black trendline representing the four points 
chosen for determination of the maximum slope. ...................................... 110 

Figure 44. Cα RMSD versus time for the PSI-FeFe H2ase OD model MD 
simulation, calculated for (A) PSI monomer relative to the crystal structure 
(PDB ID: 1JB0). The lines shown the Cα RMSDs for: all residues (black solid 
line), reaction center subunits psaAB (gray solid line), terminal electron 
acceptor psaC (black dotted line), ferredoxin docking subunits psaDE (gray 
dotted line), and the peripheral transmembrane helices psaFIJKLMX (black 
dashed line). Also Cα RMSDs for (B) all residues of the FeFe H2ase relative 
to the crystal structure (PDB ID: 3RGW). .................................................. 113 

Figure 45. Time-averaged Cα RMSF versus residue number, calculated over the 
final ~60 ns of the FeFe H2ase OD model MD simulation, shown for (A) the 
PSI monomer (solid black line), with residues of the reaction center (RX 
CTR), stromal (S), and peripheral transmembrane (PT) domains labeled 
accordingly, and (B) the FeFe H2ase (solid black line). In both cases, RMSF 
values calculated from the temperature factors of the X-ray crystal structures 
are included for comparison (black dotted line). ........................................ 115 

Figure 46. The initial configuration of the PSI-FeFe H2ase OD model shown from 
(A) side view, and (B) zoomed-in view of the stromal surface of PSI and the 
FeFe H2ase. The PSI-FeFe H2ase OD model after ~30 ns of MD simulation 
shown from (C) side view, and (D) zoomed-in view of the stromal surface of 
PSI and the FeFe H2ase. In all cases, PSI and the FeFe H2ase are shown in 
red and green ribbons, respectively, the detergent is shown in low-resolution 
surface representation in blue, and the iron-sulfur clusters of psaC from PSI 
as well as the iron-sulfur clusters and active site of the FeFe H2ase are 
shown in VDW format. In (B) and (D), the FB cluster of psaC from PSI and 
the distal [4Fe4S] cluster of the FeFe H2ase are labeled accordingly. ....... 117 

Figure 47. The PSI-FeFe H2ase DD model (A) before MD simulation and (B) after 
170 ns of MD simulation. PSI and the FeFe H2ase are shown in red and 
green ribbons, respectively, and the iron-sulfur clusters of PSI as well as the 
iron-sulfur clusters and active site of the FeFe H2ase are shown in VDW 
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Figure 48. Cα RMSD versus time for the PSI-MBH MD simulation, calculated for 
(A) PSI monomer relative to the crystal structure (PDB ID: 1JB0). The lines 
shown the Cα RMSDs for: all residues (black solid line), reaction center 
subunits psaAB (gray solid line), terminal electron acceptor psaC (black 
dotted line), ferredoxin docking subunits psaDE (gray dotted line), and the 
peripheral transmembrane helices psaFIJKLMX (black dashed line). Also Cα 
RMSDs for (B) MBH relative to the crystal structure (PDB ID: 3RGW). Lines 
are for: all residues (solid black line), hoxG (dotted gray line), and hoxK 
(dotted black line). ..................................................................................... 120 

Figure 49. Time-averaged Cα RMSF versus residue number, calculated over the 
final 125 ns of the PSI-MBH MD simulation, shown for (A) the PSI monomer 
(solid black line), with residues of the reaction center (RX CTR), stromal (S), 
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highlighted box corresponds to (B) a zoomed-in view of the fusion complex 
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ribbons) after 250 ns MD simulation of PSI-MBH protein fusion. Arrow 
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CHAPTER I  
INTRODUCTION 

 

Proteins are large, complex molecules and their interactions within even the 

simplest of microorganisms are complex and intriguing processes. Gaining 

insight into proteins and their interactions is crucial to our understanding of the 

biological world, and could provide technological advancement in a wealth of 

areas. Here, we are interested in studying hybrid protein fusions of photosystem I 

(PSI) and hydrogenase enzyme, a unique complex capable of light-driven H2 

evolution in vitro, in order to improve electron transport between these proteins. 

This chapter will include introductory information on PSI and hydrogenase, as 

well as a discussion of previous research that has motivated this study. The 

scope of work and specific goals of this study will then be discussed. 

1.1 Background   

Proteins mediate many biological functions and can possess a diverse set of 

features, including overall pH-dependent charge, hydrophobic/hydrophilic 

interactions, highly reactive moieties, metal complexes, etc., all of which affect 

their interactions with other proteins, inorganic molecules, and surfaces. 

Membrane proteins are of particular interest, as the membrane surrounding a 

biological cell is responsible for mediating all cell-environment interactions, and 

therefore contains a myriad of proteins involved in such processes as cellular 

recognition, signal transduction, and the transportation of ions and molecules 

across the membrane. In eukaryotic cells, the internal compartments are also 

surrounded by their own membranes, each containing their own unique set of 

membrane proteins. Furthermore, many bacteria have an outer membrane 

surrounding the inner cell membrane, which provides protection from the 

environment and is distinctly different in composition from the inner membrane. 

As a result, membrane proteins comprise approximately 30% of open reading 

frames, highlighting their biological importance [1]. And yet they represent only a 

small, although rapidly increasing, fraction of known protein structures, reflecting 
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the difficulties of both membrane protein expression and crystallization [2]. This 

problem is partially due to the need for solubilization of the transmembrane 

surface via a detergent or lipid assembly. These detergents disrupt the native cell 

membrane and solubilize the membrane proteins in mixed micelles that prevent 

aggregation by mimicking the native membrane environment [3, 4]. 

Unfortunately, little is known of the aqueous structure and protein-detergent 

interactions of solubilized membrane proteins, and how these detergents may 

interfere with the structural and functional properties of the protein [5, 6].  

Photosynthesis is an interesting process that occurs in the thylakoid 

membranes of plants and organisms, wherein light energy is converted to 

chemical energy via a macromolecular complex of several metalloproteins 

(Figure 1) [7], and the efficient transfer of electrons between these dissimilar 

proteins is accomplished through very specific interactions. Oxygenic 

phototrophs such as green plants, algae and cyanobacteria transfer electrons 

generated via water splitting through photosystem II (PSII), to the cytochrome b6f 

(Cyt b6f) complex, a redox mediator, then to photosystem I (PSI), and eventually 

to ferredoxin (Fd) where it is used by Fd-NADP+ reductase (FNR) to reduce 

NADP+ to NADPH [8]. The combined activity of PSII, PSI, and the electron  

Figure 1. Photosynthetic electron transport chain (Figure adapted from Taiz and Zeger 
1998) 
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transfer chain (ETC) results in the reduction of NADP+ and the transfer of protons 

across the thylakoid membrane. The translocated protons drive ATP synthesis 

and the resultant ATP and NADPH drive CO2 fixation through the Calvin cycle. 

Photosystem I (PSI) is one of the three membrane-bound metalloproteins 

involved in cyanobacterial, algal, and plant photosynthesis. It provides both large 

antennae for harvesting solar energy and a reaction center for accomplishing 

stable charge separation. In the cyanobacterium Thermosynechococcus 

elongatus (T. elongatus), PSI is located in the thylakoid membrane and exists 

primarily as a homotrimer of the 12-subunit monomer, which contains several 

membrane-spanning domains. The crystal structure of trimeric PSI from the 

thermophilic cyanobacterium T. elongatus has been resolved at 2.5 Å (Figure 2) 

[9] as a large complex (~1 MDa) containing the reaction center pigments, light 

harvesting chlorophyll a (chl a), carotenoids, quinones, and iron-sulfur clusters 

that mediate electron transport to support carbon fixation and other redox 

reactions [10]. The PsaA and PsaB proteins (shown in green and blue, 

respectively) form the photoreactive core of the protein, where excitation of the 

primary electron donor, P700, leads to charge separation stabilized by spatial 

displacement through a series of redox centers. The electron from excited P700 is 

transferred to the primary acceptor A0, a Chl a monomer, then to the 

phylloquinone molecule A1, and onto the [4Fe-4S] cluster FX. From there, the 

electron travels through FA and FB, the [4Fe-4S] clusters bound to PsaC (shown 

in red), the terminal acceptor located on the stromal side that donates electrons 

to Fd. PsaD and PsaE (shown in orange and cyan, respectively) are believed to 

facilitate docking of and interaction with Fd. On the oxidizing side, PsaF (shown 

in magenta) forms a docking site for cytochrome c6. PsaI, PsaJ, PsaK, PsaL, 

PsaM and PsaX (shown in yellow, olive, wheat, teal, lime and pink, respectively) 

coordinate the Mg2+ ions of antenna Chl a molecules directly or through water 

molecules. In addition, PSI exists naturally as a homotrimer, and PsaL is 

believed to facilitate this trimerization process [11]. 
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PSI accomplishes the unique biological function of converting solar energy into 

reducing power, and has been the subject of many studies investigating in vitro 

applications for alternative energy solutions, such as hydrogen or direct electricity 

production as part of devices or materials [12-21]. Greenbaum et al. 

demonstrated that PSI vectorial arrays prepared on derivatized gold surfaces 

could function as a biomolecular photovoltaic device, and furthermore that the 

nature of the derivatized surface (i.e. negative, positive, or hydrophilic) influenced 

PSI orientation [17]. Researchers continue to investigate various surfaces and 

PSI deposition methods in an effort to understand the factors that influence PSI 

surface coverage and orientation [19-22]. Greenbaum and co-workers also 

demonstrated that colloidal platinum could be precipitated directly onto 

photosynthetic thylakoid membranes in aqueous solution, and that the resulting 

suspension was capable of sustained photoevolution of hydrogen and oxygen 

[12, 23]. This concept has since been extended to isolated PSI, in which the 

hexachloroplatinate salt is precipitated directly onto its reducing end, thereby 

substituting negatively charged [PtCl6]
2- for negatively charged Fd and enabling 

light-driven hydrogen evolution [13, 14, 24]. 

Figure 2. The crystal structure of monomeric PSI from T. elongatus (PDB ID: 1JB0): (A) 
side view along the membrane plane with the stromal side up; (B) top view from the 
stromal face 
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 Another possibility for hydrogen evolution via photosynthetic microorganisms 

involves the coupling of PSI with a hydrogenase enzyme. Hydrogenases are 

metalloproteins that are found in Archaea, obligate and facultative anaerobic 

bacteria, and some eukaryotes that catalyze the reversible oxidation of molecular 

hydrogen. Hydrogenases can be largely classified into three groups based on the 

metals present in the active site: (1) the nickel-iron [NiFe]-hydrogenases, (2) the 

iron only [FeFe]-hydrogenases, and (3) the iron-sulfur-free [Fe]-hydrogenases. 

These three classes of hydrogenases catalyze the same reaction using very 

different metal active sites, and are found to be phylogenetically distinct and 

utilize a completely different set of regulatory and assembly processes [25]. The 

crystal structures of both the [NiFe]-hydrogenase and the [FeFe]-hydrogenase 

have been determined, and reveal that these two enzymes are structurally 

different [26].  

The [NiFe]-hydrogenases are heterodimeric periplasmic membrane enzymes. 

The large subunit (Figure 3A, shown in green) houses the nickel-iron active site 

and electrons are delivered to this center via three iron-sulfur [FeS] clusters 

located in the small subunit (Figure 3A, shown in blue) [27]. The [NiFe] active site 

binds four coordinating cysteine residues, two carbon monoxide (CO) ligands, 

and one cyanide (CN) ligand. [FeFe]-hydrogenases possess only [FeS] clusters  

 

Figure 3. (A) Crystal structure of the [NiFe]-hydrogenase from Ralstonia 
eutropha (PDB ID: 3RGW); (B) Crystal structure of the [FeFe]-hydrogenase 
from Clostridium pasteurianum (PDB ID: 1FEH) 
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and an iron-iron active site (Figure 3B). The [FeFe] active site binds one 

coordinating cysteine residue, three CO, two CN, and two sulfur ligands. [FeFe]-

hydrogenases are irreversibly inactivated by the presence of oxygen while 

[NiFe]-hydrogenases are reversibly inactivated [28]. [Fe]-hydrogenases (not 

shown), as opposed to the [NiFe]- and [FeFe]-hydrogenases, lack iron-sulfur 

clusters and are only found in a small group of methanogenic archaea [29]. The 

active site contains a labile light sensitive cofactor [30] with a single iron, most 

likely Fe(II), which binds two CO ligands [31-33]. 

The majority of hydrogenases, which operate under anaerobic conditions in 

vivo, are inactivated by trace amounts of O2. The membrane-bound hydrogenase 

(MBH) of Ralstonia eutropha (R. eutropha), however, belongs to the class of so-

called “oxygen-tolerant” [NiFe]-hydrogenases which can exhibit high H2 oxidation 

activity for sustained periods under aerobic growth. The crystal structure for the 

MBH of R. eutropha has been solved (Figure 3A) [34], and confirms experimental 

evidence suggesting the conserved presence of two supernumerary cysteine 

residues around the [FeS]-cluster proximal to the active site. These results 

support a model for O2 tolerance of [NiFe]-hydrogenases that stresses that the 

enzyme, upon attack by O2, can immediately furnish all four electrons needed to 

avoid reactive oxygen species that damage or block the active site [35]. 

Several photosynthetic organisms possess native hydrogenases of the NiFe 

class, and can evolve hydrogen gas under anoxic conditions. Unfortunately, in 

vivo cyanobacterial hydrogen production falls well below the theoretical 

maximum due to two factors: (1) the general oxygen sensitivity of hydrogenases 

and the specific tendency of [NiFe]-hydrogenases to favor the hydrogen uptake 

reaction, and (2) the electron transfer from PSI to hydrogenase must compete 

with electron transfer to the Calvin cycle [36]. As a result, numerous studies have 

investigated in vitro systems in which hydrogenase enzymes are coupled to PSI 

to enable light-driven H2 production [15, 16, 37, 38].   

As PSI-based technologies have great potential in the field of energy 

conversion, it is important to develop robust, reproducible techniques to control 
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the orientation of PSI molecules on conductive substrates or in complexes with 

other proteins. Better knowledge of protein-detergent interactions is crucial to 

retaining activity and addressing solution-phase aggregation for biophotovoltaic 

applications, in order to avoid denaturation and/or random orientation of PSI [39]. 

These interactions could also prove important in the engineering of genetic 

modifications, such as binding motifs necessary for highly specific binding of PSI 

to surfaces or in complexes with other proteins, in order to ensure they are not 

hindered by the presence of detergent. Furthermore, studying the effects of 

solution dynamics and protein-protein interactions in PSI-hydrogenase fusions 

could yield new insights into electron transport in redox proteins. Overall, better 

understanding of protein-detergent and protein-protein interactions could prolong 

the lifetime of PSI-based energy conversion devices by helping to reduce 

unbound or inactive protein. 

1.2 Scope of this work 

In this work, the objective was to form an in vitro hybrid protein fusion between 

the membrane integral photosystem I (PSI) protein and the membrane-bound 

hydrogenase (MBH) enzyme in an effort to improve electron transport between 

these two proteins. Because PSI is a membrane-spanning protein and requires 

solubilizing detergents to isolate it from its native environment, we began by 

studying the solution structure of this protein to understand the size and shape of 

the overall PSI-detergent complex, and the orientation of the detergent around 

PSI. This will help us to understand if the presence of detergent will hinder the 

ligation of the MBH to the stromal surface of PSI. Therefore, the structure of 

trimeric PSI from T. elongatus stabilized in n-dodecyl-β-D-maltoside (DDM) 

detergent solution was investigated using small-angle neutron scattering (SANS) 

[40]. Scattering curves were collected at 18% D2O, the contrast match point for 

the detergent, and 100% D2O, allowing characterization of the structures of both 

the protein and protein/detergent complex. We found that the maximum 

dimension of the PSI/DDM complex was consistent with a monolayer belt of 
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detergent around the hydrophobic transmembrane domain of PSI, and a dummy 

atom reconstruction of the complex based on the SANS data shows that the 

detergent envelope has an irregular shape around the periphery of PSI rather 

than a uniform, toroidal belt. These results indicate that the presence of 

detergent will not hinder ligation of the MBH to the stromal surface of PSI, as 

detergent molecules interact primarily with the transmembrane periphery of the 

PSI protein. 

We then constructed a computational model of the PSI/DDM complex for 

comparison to the experimental SANS data, and to gain atomic-level insight into 

the structural changes occurring in PSI in the detergent environment. This was 

necessary because SANS is a low-resolution technique and cannot tell us if 

detergent-solubilized conditions induce changes in the atomic structure of PSI 

that could impact its stability and activity, or obstruct its ligation to the MBH. We 

performed 200 ns molecular dynamics (MD) simulations of the PSI/DDM complex 

for in-depth analysis of the structure and dynamics of the PSI trimer embedded in 

a detergent environment as well as the molecular level protein-detergent 

interactions [41]. A theoretical scattering curve based on this model provided a 

reasonable fit to the experimental SANS data. Evaluation of root-mean-squared 

deviation (RMSD) relative to the known crystal structure shows that the protein is 

stable within this complex, and root-mean-squared fluctuation (RMSF) analysis 

indicates regions of high local mobility correspond to solvent-exposed regions 

such as turns in the transmembrane α-helices and flexible loops on the stromal 

and lumenal faces. Comparing the protein-detergent complex to a pure detergent 

micelle, the detergent is less densely packed and the detergent tail regions are 

more ordered based on analysis of solvent-exposed surface area, dihedral angle 

order parameters, and diffusion and fluctuation of the detergent. We found that 

the observed conformational dynamics and protein-detergent interactions also 

have functional implications, resulting in interesting structural changes in the 

domains associated with maintaining the trimeric structure of the protein; 

however, the docking of soluble electron mediators such as cytochrome c6 and 
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ferredoxin was not impacted. These findings indicate that the detergent 

environment could have an adverse effect on the long-term stability of PSI, but 

that it is unlikely that the detergent will impact PSI activity or induce structural 

changes that would hinder its ligation to the MBH. 

Having determined that the solution structure of the PSI/DDM complex is not 

likely to obstruct formation of PSI-hydrogenase fusions, we were interested in 

generating fusions of PSI and the MBH enzyme using a simpler, more direct 

approach than currently established methods. Using genetically engineered PSI 

from Synechocystis sp. PCC 6803 and the MBH from R. eutropha, we planned to 

generate site-specific fusions of these proteins via sortase-mediated ligation 

(SML) as a general, straightforward approach to studying electron transport in 

PSI-hydrogenase protein fusions. In this work, MBH from R. eutropha was 

genetically engineered to express a Gly3 tag on the N-terminus of the small 

subunit. This mutation was re-introduced to R. eutropha and verified by DNA 

sequencing. Isolated membrane fractions and solubilized membrane extracts 

were purified from both the wild-type and mutant R. eutropha strains, which 

exhibited significant differences in terms of MBH localization and H2 uptake 

activity. Therefore, lacking experimental data on PSI-MBH fusions, we performed 

MD simulations on previously developed nanoconstructs of PSI attached to an 

[FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum (C. 

pasteurianum), which are known to have high electron transfer rates, to see if we 

could provide an atomic-level explanation for differences in electron transfer 

observed in these fusion complexes experimentally. This approach can then be 

applied to the study of fusions of PSI and MBH in order to identify an optimal 

linkage strategy for electron transport between these proteins and guide 

experimental construction of PSI-MBH fusion proteins. We have found that 

longer linker lengths result in greater structural drift and require longer simulation 

times to reach a stable complex, likely due to the increased conformational space 

that complexes with longer linkers are able to explore. We also noted 

unfavorable interactions occurring in the PSI-FeFe H2ase fusions that may result 
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in significant strain in these complexes. We then conducted similar MD 

simulations on a model of the PSI-MBH protein fusion that we were attempting to 

generate experimentally, and found that conditions were not optimal for electron 

transport between PSI and the MBH.  
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CHAPTER II  
LITERATURE REVIEW 

 
The focus of this research is the generation of PSI-hydrogenase fusion 

complexes for improved electron transport between these proteins. In order to 

ensure that detergent-solubilized solution conditions will not hinder the formation 

of PSI-hydrogenase fusions, we need an experimental method for studying 

membrane protein structure in solution. Here, we will review several methods for 

studying membrane protein structure experimentally, and highlight why SANS is 

ideal for our study of the solution structure of PSI. Because SANS is a low-

resolution technique, we also need to conduct atomic-level analysis of PSI to 

ensure that any structural changes in this protein resulting from the detergent 

environment will not hinder its ligation to hydrogenase. Therefore, we will also 

discuss how MD simulation can be used to study the dynamics of membrane 

proteins and multi-protein complexes. Lastly, we also provide an overview of the 

current state of research on PSI-hydrogenase protein fusions. 

2.1 Scattering techniques for studying proteins 

Experimental scattering techniques take advantage of the diffraction properties 

of incident beams of X-rays, electrons, neutrons, etc. to provide valuable 

structural information for a wide range of substrates, including 

biomacromolecules. For the purposes of this literature review, we will focus on 

the following methods as they pertain to the study of membrane proteins and 

multi-protein complexes: (1) X-ray crystallography, (2) nuclear magnetic 

resonance (NMR) spectroscopy, and (3) small-angle scattering (SAS), including 

small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). 

2.1.1 X-ray crystallography 

X-ray crystallography is a technique that utilizes the measured angles and 

intensities of a diffracted beam of incident X-rays upon a crystallized substance 

to produce a three-dimensional picture of the electron density within the crystal, 

thus providing information on the atomic and molecular structure of the 
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substance. A broad range of molecular dimensions (1-1000 Å) can be studied, 

although high resolution becomes more difficult to achieve as the size of the 

molecule increases. The proton pump bacteriorhodopsin was the first membrane 

protein whose low resolution structure was solved by Richard Henderson and 

Nigel Unwin in 1975 [42], and subsequently the 3 Å resolution structure of the 

photosynthetic reaction center of the purple bacterium Rhodopseudomonas 

viridis (R. viridis) was solved by Deisenhofer et al. in 1985 [43]. In the 29 years 

since, more than 450 unique structures of membrane proteins have been solved, 

resulting in over 850 publications [2]. The 1.9 Å resolution structure of 

bacteriorhodopsin from Halobacterium salinarum (H. salinarum), solved using X-

ray crystallography by Pebay-Peyroula and colleagues in 1999 [44] (Figure 4), 

showed that the transmembrane α-helix is the fundamental structural motif of 

plasma membrane proteins. Outer membrane proteins, in contrast, generally 

have a β-barrel motif [45, 46]. Furthermore, X-ray crystal structures have 

revealed that proteins involved in proton and electron transport, such as 

bacteriorhodopsin, form very tight bundles that are nearly impermeable to water, 

whereas ion/molecule transporters have large, water-filled cavities that span 

nearly the entire membrane [47-49]. 

For one such ion transporter, the potassium channel KscA from Streptomyces  

 

Figure 4. Crystal structure of bacteriorhodopsin (Figure adapted from Edman et al. 1999) 
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lividans, solving the X-ray crystal structure showed that four identical monomeric 

subunits create an inverted cone with a 12 Å long selectivity filter at its outer end. 

The remainder of the pore was found to be wider and lined with hydrophobic 

amino acids, with a large water-filled cavity and helix dipoles positioned so as to 

overcome electrostatic destabilization of an ion in the pore at the center of the 

bilayer. Overall, the architecture of the pore was found to support selective K+ 

conduction [47].  

 X-ray crystallography has also been used to solve ligand-bound protein 

structures. The crystal structure of the bovine mitochondrial ADP/ATP carrier in 

complex with the inhibitor carboxyatractyloside revealed six α-helices in a 

compact transmembrane domain with a deep depression at the surface towards 

the space between the inner and outer mitochondrial membranes. This structure 

revealed a possible conformational change as transport substrates bind to the 

bottom of the cavity, resulting in a transient transition from a ‘pit’ to a ‘channel’ 

conformation [48]. 

 In a similar case, the crystal structure of the molecular transporter Escherichia 

coli (E. coli) lactose permease LacY was solved by Abramson et al. in 2003 [49]. 

They found this protein to be comprised of symmetrically positioned N- and C-

terminal domains, each with six transmembrane helices, with a large internal 

hydrophilic cavity. By solving the structure with a bound lactose homolog, they 

were able to locate the sugar-binding site in the cavity and identify residues 

involved in substrate recognition and proton translocation (Figure 5). Polar 

surfaces are colored blue (positively charged) and red (negatively charged); the 

black spheres represent the lactose homolog. 
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Coupled transporters are another important class of membrane proteins, so-

called because they couple the energetically costly movement of one solute to 

the energetically favorable movement of another. In the case of sodium-coupled 

transporters, the energy gained from the movement of sodium ions down an 

electrochemical gradient is used to concentrate substrates, such as aspartate 

[50] and leucine [51]. X-ray crystallography has revealed that these proteins 

display pseudo-two-fold symmetry and also exhibit deep water penetration. Their 

two-fold symmetry allows them to operate as ‘rocker switches’, alternating 

access to the two sides of the membrane; these features have been found to be 

shared by a broad range of transporters [52]. 

 Another class of coupled transporters is referred to as G-protein-coupled 

receptors (GPCRs). These couplers exhibit the tightly packed ‘waterproof’ bundle 

typical of proton/electron transporters, consisting of seven transmembrane α-

helices, a remarkably conserved motif also found in bacteriorhodopsin. GPCRs 

receive an optical or chemical signal on the extracellular surface which initiates 

signaling cascades in the cytoplasm, and form the largest single class of 

eukaryotic membrane proteins [53]. The first GPCR crystal structure to be solved  

 

Figure 5. The internal hydrophobic cavity of the E. coli lactose permease LacY. (A) 
View parallel to the membrane; (B) View along the membrane normal from the 
cytoplasmic side. (Figure adapted from Abramson et al. 2003) 
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was that of bovine rhodopsin bound to its agonist, the ground-state chromophore 

11-cis-retinal, by Palczewski et al. [54]; rhodopsins are a member of the largest 

subfamily of GPCRs, and activated by light to turn on the signaling pathway that 

leads to vision. This structure identifies key residues whose interactions with the 

11-cis-retinal chromophore facilitate color discrimination, and also gives 

information on the mechanism of GPCR activation. 

The case of the human β2 adrenoceptor (β2AR) GPCR reflects the difficulty of 

membrane protein crystallization. This and other GPCRs for diffusible hormones 

and neurotransmitters are conformationally complex, exhibiting basal activity that 

appears to cause structural instability. To overcome this difficulty, β2AR had to be 

crystallized when bound to an inverse agonist and in complex with a monoclonal 

antibody fragment, allowing new insights into this little studied subfamily of 

GPCRs [55]. 

Adenosine triphosphate (ATP) synthase is an interesting example of a proton 

transporter. This protein produces ATP from adenosine diphosphate (ADP) and 

inorganic phosphate via energy from respiration or photosynthesis. The enzyme 

consists of an extramembranous F1 catalytic domain linked by means of a central 

stalk to a transmembrane domain F0. The globular F1 domain is known to consist 

of five different subunits with stoichiometry α3β3ϒ1δ1ε1. The X-ray crystal 

structure of a subcomplex of this protein extracted from yeast mitochondria 

shows that the F0 domain is composed of ten transmembrane two-helix c 

subunits (Figure 6), and the extensive contact between this ring and the stalk 

suggests they may rotate as an ensemble during catalysis [56]. The proton 

motive force generated as protons pass down the electrochemical gradient 

through F0 drives the F1 rotor to produce ATP. 
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 The crystal structure of T. elongatus PSII, the first membrane-bound protein 

complex in the light-dependent reactions of oxygenic photosynthesis (Figure 1), 

was first solved at 3.8 Å resolution in 2000 by Zouni et al. [57], and further refined 

to 2.9 Å by Saenger and co-workers in 2009 [58]. This protein captures photons 

of light to energize electrons provided through water-splitting, transferring these 

electrons across the membrane to reduce the soluble electron mediator 

plastoquinone to plastoquinol; protons generated in this process are also shuttled 

across the membrane by ATP synthase to generate reducing equivalents in the 

form of ATP. These structures provided insight into the arrangement of the PSII 

subunits and cofactors, but could not refine the detailed structure of the water-

splitting catalytic center. In 2011, Kamiya and colleagues reported the 1.9 Å 

resolution crystal structure of PSII from the related thermophilic cyanobacteria 

Thermosynechococcus vulcanus (T. vulcanus) [59]. They were able to locate all 

of the metal atoms of the Mn4CaO5 cluster, the water-splitting catalytic center, 

together with all of their ligands. They found five oxygen atoms that served as  

 

Figure 6. Side view of electron density map of the yeast F1c10 
complex. Inset is a model of this enzyme with F1 subunits α in 
orange, β in yellow, ϒ in green, ε in pink, and the c subunits of F0 in 
blue. (Figure adapted from Stock et al. 1999) 
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oxo bridges linking the five metal atoms, and found four water molecules bound 

to the cluster that may serve as substrates for dioxygen formation. They further 

identified 1,300 water molecules associated with each PSII monomer that form 

hydrogen-bonding networks that could serve as channels for the reactants and 

products of the water-splitting process. This information provides key insight on 

the function of this photosynthetic protein. 

The crystal structure of T. elongatus PSI, one of the focuses of this study, was 

solved at 2.5 Å resolution by Jordan et al. in 2001 (Figure 2) [60]. This protein is 

the second photosystem in the photosynthetic light reactions, using light energy 

to mediate the transfer of electrons from plastocyanin to ferredoxin (Figure 1). 

These electrons will eventually be used by ferredoxin-NADP+ reductase to 

generate reducing equivalents in the form of NADPH. The overall generation of 

NADPH and ATP from photosynthesis is used to drive carbon fixation in the 

Calvin cycle. This crystal structure provides atomic level detail of trimeric PSI and 

the 96 chlorophylls and 22 carotenoids that coordinate with this complex, serving 

as light-harvesting antennae, as well as the two phylloquinone and three iron-

sulfur cluster cofactors that serve as the electron transport chain through this 

membrane-bound protein. Interestingly, they also were able to identify four lipids 

associated with PsaA/PsaB. The locations of two of these lipids close to the core 

to PSI, and the binding of antenna chlorophyll to a third, indicate that they are 

functionally important in the PSI complex and not mere preparation artifacts [60]. 

In rare instances, X-ray crystal structures of multi-protein complexes have also 

been obtained. In 2011, Rasmussen et al. solved the X-ray crystal structure of a 

ternary complex composed of nucleotide-free Gs heterotrimer, the stimulatory G 

protein for adenylyl cyclase, and agonist-occupied monomeric β2AR [61]. In order 

to crystallize this complex, they had to mix purified GDP-Gs with a molar excess 

of purified β2AR bound to a high-affinity agonist in DDM solution, and 

subsequently add apyrase to hydrolyze GDP released from Gs during complex 

formation with β2AR. This crystal structure represented the first atomic resolution 

view of transmembrane signaling by a GPCR. 
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Whorton and MacKinnon recently reported the 3.5 Å resolution crystal 

structure of the mammalian G-protein-gated inward rectifier K+ (GIRK) channel in 

complex with βϒ G-protein subunits, the central signaling complex that links 

GPCR stimulation to K+ channel activity (Figure 7) [62]. As was the case for 

Rasmussen et al., their efforts to purify a stable GIRK-Gβϒ complex in detergent 

solution were unsuccessful. Instead, crystallization of the complex in DDM 

required combining individually purified GIRK and Gβϒ proteins at twofold to 

threefold molar excess of Gβϒ and in the presence of tenfold molar excess of the 

lipid PIP2. They found the resultant structure to be consistent with previous 

explanations of GIRK activation by G proteins, and gained new insights into 

understanding how PIP2 and intracellular Na+ ions participate in multi-ligand 

regulation of GIRK channels. 

 

Figure 7. Overall structure of the GIRK-Gβϒ complex. Top-
down view of GIRK (blue), Gβ (red) and Gϒ (green). (Figure 
adapted from Wharton and MacKinnon 2013)  
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In summary, X-ray crystallography is capable of providing not only atomic level 

detail of the overall structure of proteins, but also key insights into transport 

pathways, ligand binding, unique conformational changes, and the chemical 

makeup of catalytic binding sites. However, there are several limitations to this 

method as well. The case of β2AR illustrates the complicated measures 

sometimes needed to overcome the difficulties of membrane protein 

crystallization. X-ray crystallography also provides little to no information on 

protein-lipid and protein-detergent interactions, as most lipid/detergent molecules 

are either lost in solution or are not sufficiently ordered to be resolved [63]. 

Bacteriorhodopsin and PSI serve as rare cases in which information regarding 

associated lipids has been identified. Similarly, crystallization of multi-protein 

complexes presents a difficult challenge, with technological advances only 

recently enabling determination of X-ray structures of multiple associated 

proteins such as G-protein complexes. Perhaps most importantly, X-ray 

structures provide only a static snapshot of the protein structure at cryogenic 

temperatures required for crystallization, failing to capture the dynamics of 

conformational changes and also leaving open the question of whether or not 

they are representative of the protein structure under typical conditions.  

2.1.2 Nuclear magnetic resonance (NMR) spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is a research technique that 

exploits the magnetic properties of certain atomic nuclei to provide detailed 

information on the structure, dynamics, reaction state, and chemical environment 

of molecules. For example, a simple NMR spectra can provide information on the 

degree of folding of a protein, its thermal and temporal stability, and its 

aggregation propensity. Unlike X-ray crystallography, NMR is a technique that 

can be applied both in solid-state and in solution, and approaches have been 

developed to probe proteins that have proven difficult for X-ray diffraction 

methods, such as inherently flexible or membrane-spanning proteins. Solution 

NMR enables the study of membrane protein-detergent complexes, whereas 

solid-state NMR is used to study the structure and dynamics of molecules without 
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isotropic mobility, such as membrane proteins in lipid bilayers. Furthermore, the 

analysis of protein interactions, both with small molecule ligands or peptides and 

with other proteins, is a particular strength of NMR [64].  

One of the earliest NMR studies of membrane proteins was conducted by 

Brown et al., wherein they used solid-state NMR to characterize interactions 

between the photoreceptor protein rhodopsin and phospholipids in the retinal rod 

outer segment disc membrane [65]. More recent studies have focused on the use 

of solid-state NMR to investigate retinal dynamics during light activation of 

rhodopsin [66-70], and determine how retinal isomerization choreographs 

intricate changes of the transmembrane helices and loops [71-74]. Results from 

solution NMR studies of GPCRs have been relatively modest due to difficulties 

stemming from the size and complexity of these proteins. However, a recent 

study was conducted on bacterial phototaxis sensory rhodopsin, a GPCR 

structural analog, in dihexanoylphosphatidylcholine (DHPC) micelles [75], and 

preliminary studies of  CC chemokine receptor 5 and the thromboxane A2 

receptor have been reported [76-78]. 

NMR techniques have also advanced our understanding of ion channel 

proteins, such as the potassium channel protein KcsA. Baldus and co-workers 

examined the conformational dynamics of KcsA under different pH, K+ 

concentration, and inhibitor binding conditions using a combination of 

electrochemical experiments and solid-state NMR [79-82]. They identified 

chemical shift changes in the selectivity filter residues that corresponded to 

transitions of the channel from the high pH closed state to the low pH inactivated 

state, and found that the conformational changes of the selectivity filter and 

intracellular activation gate are coupled. Furthermore, they were able to show 

that two known channel blockers inhibit KcsA in different ways. 

Another interesting channel protein, the M2 proton channel of the influenza A 

virus, has also been extensively investigated using NMR [83]. Schnell and Chou 

used solution NMR to study tetrameric M2 in DHPC micelles, carefully examining 

changing in protein dynamics as a function of pH and identifying a potential 
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mechanism for acid-induced activation of the channel (Figure 8) [84]. Similarly, 

Hong and co-workers used solid-state NMR to investigate the conformation and 

dynamics of the M2 inhibitors amantadine and spiro-piperidine [85-87], and even 

attained atomic-level insight into its proton conduction mechanism by measuring 

the protonation state, rotameric structure, side-chain dynamics, and pH-

dependent hydrogen bonding of the crucial proton-selective His37 residue [88].  

NMR studies have also been conducted on multi-protein complexes. In 1997, 

Ubbink et al. used NMR to characterize a complex of plastocyanin and 

cytochrome c [89], and studied of a variety of similar transient redox protein 

complexes have since been reported [90-93]. More recently, Shimada and co-

workers used a combination of isothermal titration calorimetry and solid-state 

NMR to study the multi-protein GPCR complex of GIRK and Gβϒ, finding that the 

Gβϒ binding site spans two neighboring subunits of the GIRK tetramer. This 

work yielded new insights into conformational rearrangements between GIRK 

monomers and a potential mechanism for the binding of these two proteins and 

the gating of GIRK [94]. 

In summary, NMR is a powerful experimental technique for studying 

biomacromolecules that enables analysis of the structure and dynamics of 

membrane proteins, both in lipid bilayers (solid-state NMR) and in detergent 

micelles (solution NMR), as well as multi-protein complexes. However, although 

technological advances continue to be made, the size and complexity of 

structures that can be studied using NMR is limited. Solution NMR becomes 

increasingly difficult for complexes over 30 kDa [95], and while solid-state NMR 

can be used to study biomacromolecules larger than 100 kDa, the abundance of 

anisotropic features present can potentially limit the features observable in the 

spectra [96].    

2.1.3 Small-angle scattering (SAS)   

Small-angle scattering (SAS) techniques, using X-rays or neutrons, provide 

another approach for investigating the structural properties of proteins. In 

contrast to X-ray crystallography and NMR, which provide atomic resolution 
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structural details of substrates, SAS techniques involve the analysis of small-

angle (0.1-10°) deflections of collimated radiation to yield lower resolution (10-

10,000 Å) information on the size and shape of materials in solution. Although it 

provides limited data on internal structure, SAS is ideal for characterizing large-

scale shape changes of macromolecules and is a powerful tool for studying the 

structures of biomacromolecules and their complexes in solution [97].  

SAS measurements can be conducted via either small-angle X-ray scattering 

(SAXS) or small-angle neutron scattering (SANS). The key difference is that X-

rays are scattered by electrons, therefore X-ray scattering amplitudes increase 

monotonically with the number of electrons. In contrast, neutrons are scattered 

by atomic nuclei with no systematic dependence on atomic number, resulting in 

unique properties that will be further explained later in this section. 

An early SAXS study of bovine rhodopsin in complex with the detergent 

dodecyldimethylamine oxide gave a first look at how solubilizing detergents 

interact with membrane proteins, finding that rhodopsin existed in a compact, 

monomeric form with the detergent forming a monolayer belt around the 

membrane-spanning portions of the structure [98].  

A comprehensive study of three membrane proteins in detergent conducted by 

Heller et al. serves as an example of the interpretation of scattering data and how 

theoretical curves can be generated for comparison based on known crystal 

structures. In it, they studied the detergent-solubilized conformations of 

bacteriorhodopsin (bR) from H. salinarum in octyl glucoside (OG), the Ste2p 

GPCR from the yeast Saccharomyces cerevisiae (S. cerevisiae) in DDM, and the 

E. coli porin OmpF in octyl polyoxyethylene (OPOE) [99]. OG and OPOE were 

the detergents used for previously conducted X-ray crystallography studies of bR 

and OmpF, respectively; the high-resolution structure of Ste2p had not yet been 

determined. SAXS data sets are typically represented by plotting the intensity 

distribution (I) versus the scattering vector length q, where q = 4π(sinθ)/λ, 2θ is 

the scattering angle between the incident and scattering beam, and λ is the 

wavelength. They found this curve to be consistent with the expected compact 
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conformation in the case of OmpF, and that the data was well fit by a theoretical 

scattering curve generated for a model of the known crystal structure embedded 

in disk-like detergent micelle. In the case of the seven transmembrane α-helical 

(7TM) proteins bR and Ste2p, however, the SAXS data sets were not consistent 

with a natively folded protein surrounded by a belt of detergent. These results 

demonstrated that detergent-solubilized membrane proteins may not be properly 

folded with their hydrophobic segments encapsulated in a belt of detergent as is 

typically envisioned, but rather that the detergent may instead induce a non-

native conformation. 

SAS data can also be used to reconstruct a low resolution shape of the 

scattering particles in solution using ab initio modeling tools [100], thus providing 

an average structural envelope for a given system. In 2004, Hong et al. used 

SAXS to study the integral membrane protein light-harvesting complex LH2 from 

the photosynthetic bacteria Rhodobacter spheroides (R. spheroides) in an n,n 

dimethyldodecylamine n-oxide (LDAO) detergent solution [101]. Using ab initio 

shape determination methods, they found that the shape of detergent-solubilized 

LH2 clearly deviated from the previously reported crystal structure, deforming 

from a ring structure in the crystal to an ellipsoid in detergent solution (Figure 8).  
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Greenbaum et al. used SAXS to investigate the structure of isolated spinach 

PSI complexes stabilized in detergent solution [102]. They investigated two 

different types of purified PSI preparations: in the first, thylakoid membranes 

were solubilized using Triton X-100 detergent and purified by density gradient 

centrifugation; in the second, PSI was isolated as before but was further purified 

by anion exchange chromatography, resulting in isolated PSI-detergent 

complexes. Data analysis and model fitting indicated that the first preparation 

resulted in large scattering objects or microphases with ~68 Å thickness, which is 

in reasonable agreement with a typical membrane thickness (~60 Å) and the 

transmembrane thickness of PSI (80-90 Å), and virtually infinite lateral extension. 

These results suggested a sheetlike structure similar to a bilayer membrane.  

SAXS can also be used to study multi-protein complexes. In 2008, Xu et al. 

demonstrated the use of a combination of SAXS and solution NMR to study the 

Figure 8. Restored shape envelope of LH2 complex with crystal structure (Figure adapted 
from Hong et al. 2004) 
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formation of the short-lived complex of adrenodoxin (Adx) and cytochrome c (Cc) 

[103], using a cross-linked counterpart to study the conformational freedom of the 

native complex. Based on molecular envelope reconstructions of the SAXS data, 

they found that Cc sampled approximately half the surface area of Adx in the 

native complex. Interprotein paramagnetic effects were observed in NMR studies 

of the cross-linked system, while extensive averaging occurred in the case of the 

native complex, consistent with a sampling of multiple orientations. 

Small-angle neutron scattering (SANS) is another SAS technique useful for 

studying the solution structures of biomacromolecules. The advantage of using 

neutrons over X-rays, as discussed previously, is that the amplitude of X-ray 

scattering is proportional to the atomic number, whereas neutron scattering is 

not. This means that neutron scattering lengths of heavier elements can be of 

similar magnitude to that of lighter elements, and there can be large isotope 

effects; the most prominent of these is that of hydrogen vs. deuterium [97]. This 

unique property allows for solvent or contrast matching, wherein the H2O/D2O 

ratio of the solvent is tuned to match the scattering density of one or more 

components of a complex, thus masking its scattering contribution and allowing 

study of those components with different scattering densities. In terms of 

solubilized membrane proteins, one could imagine matching out the scattering 

contribution of the detergent in order to study the solution structure of the protein 

without disturbing the overall protein-detergent complex. 

One of the earliest SANS studies of membrane proteins was conducted on 

bovine rhodopsin by Chabre and colleagues, in which they used contrast 

matching and perdeuteration of the detergent in order to eliminate the detergent-

solvent contrast and study the structure of rhodopsin within a detergent micelle 

[104]. Santonicola et al. used contrast variation SANS to enable measurement of 

the composition of bacteriorhodopsin-detergent complexes and determine the 

thickness of the detergent shell bound to the protein [105]. Using a similar 

approach in their study of the structure of spinach light-harvesting complex II 

stabilized in n-octyl-β-D-glucoside (BOG) detergent solution, Cardoso et al. used 
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SANS with contrast variation to investigate the properties of the protein-detergent 

complex at 15% D2O (BOG match point), 42% D2O (protein match point) and 

100% D2O. They found the restored topological shape of LHCII based on their 

data to be consistent with the previously determined crystal structure, and further 

demonstrated the use of a model LHCII/BOG complex to interpret the 100% D2O 

data (Figure 9) [106]. 

Kendall and co-workers showed that SANS can be used to investigate 

conformational changes induced by ligand binding in their study of the E. coli 

membrane protein SecA in lipid vesicles [107]. A proposed role of SecA is that of 

membrane protein insertion through ATP hydrolysis, and they found that in the 

absence of nucleotide SecA exists in dimeric form, while in contrast the presence 

of either ADP or a non-hydrolyzable ATP analog induces conversion to a 

monomeric form.  

SANS techniques have also been used to characterize multi-protein systems. 

Comoletti et al. demonstrated the usefulness of selective perdeuteration in their  

 

Figure 9. (A) Superior and (B) lateral views of LHCII protein surface embedded in a dislike 
detergent micelle belt. (C) SANS data from the LHCII/BOG mixture in 100% D2O (open 
circles) with the theoretical scattering curve for the belt model (dashed green line). (Figure 
adapted from Cardoso et al. 2009) 
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analysis of the postsynaptic cell-adhesion protein neuroligin associated with its 

presynaptic partner neurexin. By collecting SANS data at 42% D2O on the 

neuroligin/neurexin complex with protonated neuroligin and deuterated neurexin, 

they were able to show that two neurexin monomers bind at symmetric locations 

on opposite sides of the long axis of the neuroligin dimer. This allowed 

development of structural models of different neuroligin domains and their 

partnering molecules, providing a framework for understanding altered 

recognition by these proteins in neurodevelopmental disorders [108]. 

To summarize, SAS techniques offer advantages for the study of proteins 

compared to X-ray crystallography in that they enable determination of the time-

averaged structure of the protein complex in solution rather than a static structure 

under crystallization conditions, and can resolve the scattering contribution of the 

detergent to provide structural information on the protein-detergent complex as a 

whole. Furthermore, SAS techniques can be used to study large protein-

detergent micelles and multi-protein complexes in solution, whereas size is a 

limitation for NMR studies. Experimental SAS data can provide insight on 

structural details of the protein and can be compared to theoretical curves 

generated based on model fits or known structures, and ab initio shape 

restoration techniques are available for determining the structural envelope of the 

protein complex. SANS is a particularly useful tool for studying membrane 

proteins, as the unique properties of neutrons enable the use of contrast 

matching and/or selective perdeuteration to mask the scattering contributions of 

individual system components such as the detergent [106] or particular protein 

subunits [108] without disturbing the overall protein-detergent complex. The 

drawback is that these techniques are low resolution (10-10,000 Å), preventing 

atomic level analysis of protein-detergent interactions and their effects on the 

structure of the protein of interest. Also, SAS studies of solubilized membrane 

proteins typically require a structural model of the protein-detergent complex in 

order to interpret the experimental data. 
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2.2 Molecular dynamics simulations for in-depth analysis of 
protein-environment, protein-protein interactions 

Molecular dynamics (MD) is a computer simulation of the trajectories of atoms 

and molecules determined by numerically solving Newton’s equations of motion 

for a system of interacting particles, where the potential energy of the system and 

the forces between particles are determined by molecular mechanics force fields. 

MD simulation has proven to be a useful computational technique for the study of 

proteins and other biomacromolecules [109-111], including detergents, lipids, 

and membrane proteins [112]. Theoretical scattering curves can also be 

generated based on MD models for comparison to experimental SAS data [113]. 

For the purposes of this review, we will focus on recent developments in the use 

of MD simulation for the study of (1) membrane proteins in lipid bilayers, (2) 

detergent-solubilized membrane proteins, and (3) multi-protein complexes. 

2.2.1 MD simulations of membrane proteins in lipid bilayers 

MD simulation has been used for over a decade to study the structural 

properties and conformational dynamics of pure lipid bilayers under a variety of 

conditions including constant pressure [114-116], constant volume [117, 118], 

and constant surface tension [119-121]. Recent technological advances in 

computation have enabled all-atom MD studies of several classes of membrane 

proteins that span lipid bilayers, such as porins [122-126], ion channels [127-

133], G-protein-coupled receptors (GPCRs) [134-136], and even PSII [137-139]. 

One of the earliest of these studies was that of the E. coli OmpF porin in a 

palmitoyl-oleoyl-phosphatidylethanolamine (POPE) bilayer conducted by 

Tieleman and Berendsen in 1998 [122]. Their system consisted of an OmpF 

trimer embedded in a bilayer of 318 POPE lipids solvated in water (Figure 10). 

After equilibration and a short nanosecond MD production run, they found the 

OmpF trimer to be stable with Cα RMSD of 0.23 nm relative to the crystal 

structure, and also noted that regions of high local mobility corresponded to loops 

and turns of this β-barrel protein based on RMSF analysis. They further 
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examined properties of the OmpF channel protein, including pore size, 

conductance, and the diffusion of water inside the pore. 

MD simulations of ion channel proteins in lipid bilayers, a large class of 

proteins linked to a wide range of biological processes, further demonstrate the 

unique insights that computational techniques can provide concerning protein 

dynamics and function. Berneche and Roux performed a 4 ns MD simulation of 

the potassium (K+) channel KcsA from the bacterium Streptomyces lividans in a 

dipalmitoylphosphatidylcholine (DPPC) bilayer, during which they observed a 

concerted dynamic transition of three K+ ions in the pore. They determined this 

transition to be coupled to fluctuations of known selectivity filter residues within 

the channel, suggesting that a mechanical response of the channel structure 

could play an important role in K+ transport. They further observed that a single  

 

Figure 10. Visual depiction of OmpF in a POPE bilayer after MD simulation: (A) View 
perpendicular to the membrane; (B) Transmembrane view. Monomer one is colored grey, 
two yellow, and three magenta, with lipids in green and water in blue. (Figure adapted from 
Tieleman and Berendsen 1998) 



30 

 

water molecule was stabilized between each pair of ions during this transition, 

which agreed with experimental measurements [129]. Similar studies have found 

that the exit of the K+ ion from the channel is enabled by a transient increase in 

the diameter of the intracellular mouth of the pore, suggesting that such 

“breathing” motions may form the molecular basis of experimentally observed 

channel gating [130]. A recent MD simulation of KcsA in a lipid bilayer by Jensen 

et al. has demonstrated the transition of the K+ channel from activated to 

deactivated states on longer µs timescales [131]. 

Recent MD studies of GPCRs provide new insights on how protein-lipid 

interactions can affect the structure and function of membrane proteins. In a 15 

ns MD simulation conducted on the GPCR rhodopsin with covalently bound 

retinal in a 2-oleoyl-1-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC) 

bilayer, Huber et al. found that the lipid environment induced significant 

fluctuations in the conformational state of a cytoplasmic loop C2 that is preceded 

by the highly conserved ERY motif essential to receptor activation. They found 

that changes in the conformation of this C2 loop could alter the protonation state 

and hydrogen-bonding environment of the ERY motif, thus suggesting a possible 

mechanism for lipid effects on rhodopsin function [134]. More recently, Kobilka 

and colleagues used a combination of nuclear magnetic resonance (NMR) 

spectroscopy and MD to show that in the case of β2AR, unlike rhodopsin, the link 

between the agonist and the GPCR is flexible, allowing for conformational 

heterogeneity that may be important for β2AR’s ability to engage multiple 

signaling and regulatory proteins [136].  

MD simulations have also been used to study the photosynthetic reaction 

center PSII in lipid bilayers. In 2006, Vasil’ev and Bruce conducted a 1 ns MD 

simulation of PSII in a pre-equilibrated lipid bilayer to study how protein dynamics 

affects energy transfer and electron transport efficiency in photosynthesis [137]. 

Combining MD with quantum mechanical (QM) calculations, they were able to 

accurately predict the experimental absorbance of the PSII core complex, 

whereas QM calculations based on the x-ray structure did not. In subsequent 
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work, Bruce and co-workers used MD to identify channels for water entrance to 

the water-splitting catalytic center of PSII, also known as the oxygen-evolving 

complex (OEC). They were able to identify a system of branching pathways of 

water diffusion in PSII leading to the OEC that connected to distinct entrance 

points on the lumenal surface [138]. A recent 10 ns MD study of PSII embedded 

in the thylakoid membrane conducted by Ogata et al. has further suggested that 

the entrance of water and subsequent exit of protons and oxygen from the OEC 

occur through distinctly different pathways [139]. 

2.2.2 MD simulations of membrane proteins in detergent micelles 

Purification of membrane proteins from their native environment typically 

requires the use of detergents that disrupt the native cell membrane and 

solubilize the membrane proteins in mixed micelles that prevent aggregation by 

mimicking the native membrane environment [3, 4]. MD studies have been 

conducted on a variety of detergent micelle types including anionic [140, 141], 

cationic [142], non-ionic [143, 144], and zwitterionic [145-147]. MD simulations 

have also been used to study the solution structure and dynamics of several 

membrane protein-detergent complexes. 

Braun et al. conducted 2.5 ns MD studies of wild-type and mutant glycophorin 

A (GpA), an α-helical membrane protein, embedded in a pre-formed sodium 

dodecyl sulfate (SDS) micelle. They also performed a 32 ns MD simulation 

showing the formation of a complete micelle around wild-type GpA from an 

initially random placement of SDS molecules, the first such study of spontaneous 

lipid organization in the presence of protein, and found its properties to be 

indistinguishable from that of the pre-formed protein-detergent micelle [148]. 

Similarly, Sansom and co-workers conducted 50 ns MD simulations of pre-

formed and spontaneously formed protein-detergent micelles for both GpA and 

the β-barrel membrane protein OmpA in dodecylphosphocholine (DPC) detergent 

(Figure 11) [149]. They found the end structures for self-assembled OmpA and 

GpA to be very similar to their preformed counterparts, with the time constant for 

micelle formation for OmpA being about double that of GpA. These works 
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validated the established protocols for generation of protein-micelle models, 

demonstrating their ability to capture the solution structure of protein-detergent 

complexes and analyze protein-detergent interactions. 

MD has also been used to study differences in membrane proteins in a lipid 

bilayer versus a detergent micelle. In 2004, Bond and Sansom performed two 10 

ns MD simulations of OmpA: one in a DPC micelle and one in a dimyristoyl-

phosphatidylcholine (DMPC) bilayer. They found the dynamic fluctuations of the 

protein structure to be ~1.5 times greater in the micelle environment than in the 

lipid bilayer. They further identified subtle differences in the nature of OmpA-

detergent and OmpA-lipid interactions that may explain experimentally observed 

channel formation by OmpA [150]. In 2012, Rodriguez-Ropero and Fioroni 

performed 50 ns MD simulations of the membrane channel protein FhuA from E. 

coli in both a lipid bilayer and a detergent micelle. They found significant 

differences in protein structural and dynamical behavior between the two 

environments, in particular noting enhancements of the ellipticity of the open 

state and its fluctuations in the detergent environment that could have 

implications for further engineering and optimization of FhuA in nanodelivery or 

nanoreactor technology [151]. 

Figure 11. MD snapshots of spontaneous protein-micelle formation for 
OmpA (top) and GpA (bottom) (Figure adapted from Bond et al. 2004) 
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MD can also be used in conjunction with experimental techniques for 

conformational studies of transmembrane proteins in solution, as demonstrated 

by Koutsioubas et al. [152]. In order to better interpret experimental SAXS data of 

aquaporin-0 tetramers in DDM detergent solution, they constructed a model 

based on a 10 ns all-atom MD simulation of the aquaporin-0 tetramer embedded 

in a corona of DDM molecules. This MD model closely resembled the expected 

elliptical toroid shape of the protein-detergent complex, and was able to 

accurately fit the SAXS data and reproduce experimentally-determined 

parameters such as the radius of gyration and detergent aggregation number. 

2.2.3 MD simulations of multi-protein complexes 

Fully unrestrained computational MD simulations of the formation and 

dynamics of multi-protein complexes is not yet entirely feasible in many cases, 

due to the computational cost of simulating such large systems and the relevant 

timescales that need to be attained. However, there have been a few 

computational approaches developed to study multi-protein systems that 

artificially bypass these restrictions. 

In 2006, Bui and McCammon used targeted MD (TMD) simulation to study 

protein complex formation of the neurotoxin fasciculin-2 (FAS2) and its high-

affinity binding protein, acetylcholinesterase (AChE) [153]. In TMD, a subset of 

atoms in the simulation is guided towards a final target structure by means of 

steering forces. In this case, TMD was used to describe the binding of AChE to 

FAS2 using the previously reported crystal structure of the FAS2/AChE complex 

as a target [154, 155]. Bui and McCammon found that formation of this complex 

followed a pathway that begins with an encounter complex of one of the apo 

forms of FAS2 and AChE, followed by rapid conformational rearrangements into 

an intermediate complex that subsequently converts to the final complex as 

observed in crystal structures [153]. They also found that FAS2 transitions were 

significantly faster in the presence of AChE, with the energy barrier between the 

apo and liganded conformational states being reduced by half. 
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In 2008, Gsponer et al. demonstrated the use of restrained ensemble-

averaged MD simulations to study the free and bound states of calmodulin 

(CaM). Using structural information and relaxation data obtained via NMR as 

constraints, they studied the structure and dynamics of CaM in the calcium-

bound state (Ca2+-CaM) and in the state bound to myosin light chain kinase 

(CaM-MLCK) [156]. They found that calcium binding to CaM directs structural 

fluctuations towards complex-like substrates, enabling initial ligation of MLCK to 

the C-terminal domain of CaM, which subsequently facilitates binding to the N-

terminal domain. These results corroborated previous experimental studies that 

indicated cooperative binding of MLCK [157], and suggest that a coupled 

equilibrium shift mechanism controls the efficient binding of CaM to a wide range 

of ligands (Figure 12) [156].  

In summary, MD simulations offer atomic level information on the structure and  

 

Figure 12. Free energy landscape of CaM illustrating cooperative binding mechanism. 
Binding of calcium ions shifts equilibrium from the apo to the holo state (Ca

2+
-CaM). 

Binding of MLCK then takes place first at the C-terminal domain, which increases the 
likelihood of binding at the N-terminal domain (highlighted in yellow). (Figure adapted from 
Gsponer et al. 2008) 
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conformational dynamics of membrane proteins, whether in a lipid bilayer 

environment or under detergent-solubilized conditions. MD offers the ability to 

study the stability and local mobility of these proteins in complex with a variety of 

lipid or detergent moieties, and in many cases has yielded unique insights into 

membrane protein function. As membrane proteins mediate a myriad of 

biologically important processes, and solubilization of these proteins from their 

native lipid environment via a detergent or lipid assembly is a necessary step in 

their purification, computational techniques such as MD simulation that can 

identify the impact of protein-detergent interactions on protein structure and 

function will be essential to furthering our understanding of the biological world. 

Furthermore, recent developments have also enabled MD studies of the structure 

and dynamics of multi-protein complexes. However, these methods typically 

require artificial constraints, and there are limits concerning the size of the 

complex to be studied and the timescales attainable.  

2.3 PSI-hydrogenase fusions as a novel system for studying 
multi-protein complexes 

As has been stated previously, gaining insight into protein-environment and 

protein-protein interactions is crucial to our understanding of the biological world, 

particularly in the case of integral membrane proteins such as PSI that mediate a 

variety of processes within the cell. Studying the effects of solution dynamics of 

redox protein complexes like PSI-hydrogenase fusions could yield new insights 

into electron transport in redox proteins, and the structure/function relationship of 

multi-protein complexes in general. 

Cell-free photoproduction of H2 has been demonstrated in a variety of PSI-

based systems. For the purposes of this review, we will focus on (1) catalyst-

based methods, and (2) PSI-hydrogenase fusion systems. 

2.3.1 Catalyst-based methods for photocatalytic H2 production 

It has been demonstrated that chemically platinized thylakoid membranes can 

photocatalytically split water into H2 and O2 [12, 23]. This concept can also be 
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applied to isolated PSI, in which hexachloroplatinate salt ([PtCl6]
2-) is photo-

precipitated directly onto its reducing end (Figure 13) [13, 14, 24], with a 

maximum reported rate of 5.5 µmol H2/h/mg Chl [13]. It has also been shown that 

metals such as osmium and ruthenium can be photo-precipitated onto 

photosynthetic membranes, thus enabling light-driven hydrogen production [158]. 

Photocatalytic hydrogen production has also been demonstrated using 

PSI/molecular wire/metal nanoparticle bioconjugates [159-161]. Having 

previously established that a C13G/C33S mutant of PsaC from the 

cyanobacterium Synechococcus sp. PCC 7002 that lacks a native cysteine 

ligand at a solvent-exposed position on the FB cluster can be chemically rescued 

by a thiolated organic molecule [162], Golbeck and co-workers used this method 

to covalently link gold (Au) and platinum (Pt) nanoparticles to PSI via a 1,6-

hexanedithiol molecular wire. They reported H2 production rates of 3.4 µmol 

H2/h/mg Chl for the PSI/1,6-hexanedithiol/Au bioconjugates, and 9.6 µmol 

H2/h/mg Chl for the PSI/1,6-hexanedithiol/Pt bioconjugates. Furthermore, they 

found that addition of 5 µM cytochrome c6 (cyt c6) increased the rate of H2 

production for the Pt nanoparticles to 49.3 µmol H2/h/mg Chl, indicating that H2 

evolution was rate-limited by donor-side reduction of P700+ [159]. In subsequent  

 

Figure 13. Schematic of electron flow in the PSI-Pt system (Figure adapted from 
Iwuchukwu et al. 2010) 
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work, they sought to maximize H2 production by cross-linking plastocyanin (PC) 

with mutant PSI, both from spinach, and testing a variety of dithiol linker lengths, 

reporting a onetime H2 evolution rate of 312 µmol H2/h/mg Chl using a 1,4-

benzenedithiol molecular wire [160]. Golbeck and co-workers have also 

incorporated a napthoquinone-molecular wire-Pt nanoparticle into the A1A and 

A1B sites of PSI from Synechocystis sp. PCC 6803 (Synechocystis), tapping into 

the electron transport pathway ahead of the iron-sulfur clusters, and reported a 

H2 production rate of 67.3 µmol H2/h/mg Chl [161].  

2.3.2 PSI-hydrogenase fusions for photocatalytic H2 production 

PSI-hydrogenase complexes have also been studied as a means for 

photoproduction of H2 [16, 37, 38, 163-165]. Ihara et al. genetically fused the 

stromal subunit PsaE of PSI from T. elongatus to the MBH of R. eutropha, finding 

that this PsaE-hydrogenase fusion protein spontaneously self-assembled with 

PsaE-free PSI in aqueous solution and that the resulting complex was capable of 

light-driven H2 production at a rate of 0.58 µmol H2/h/mg Chl [37]. However, H2 

evolution activity in this system was completely suppressed by the addition of Fd 

and FNR. In order to establish a H2 photoproduction system that was not 

interrupted by Fd and FNR, PsaE from Synechocystis was cross-linked with 

cytochrome c3 from Desulfovibrio vulgaris and subsequently self-assembled with 

PsaE-free PSI from Synechocystis. Consequently, in the presence of 

hydrogenase, Fd, and FNR, this system exhibited a H2 evolution rate of 0.30 

µmol H2/h/mg Chl, suggesting the possibility of its use for H2 production in vivo 

[163]. Krassen et al. subsequently extended this technique to PSI attached to a 

gold electrode. By genetically engineering a decahistidine tag on the PsaF 

subunit of PSI, they were able to orient PsaE-free PSI from Synechocystis 

lumenal side down on the gold surface via histidine/Ni-NTA interactions, which 

subsequently self-assembled with the PsaE-MBH fusion protein. Electrons were 

supplied to PSI from the gold electrode via a soluble electron carrier, and 

subsequently transferred to the hydrogenase upon light excitation of P700. This 

PSI-MBH complex exhibited a H2 photoproduction rate of 4500 µmol H2/h/mg Chl 
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[164]. Drawbacks to this self-assembly method include the generation of a PsaE-

free mutant of PSI in T. elongatus, which poses significant difficulty in terms of 

implementing the appropriate genetic modification without affecting the synthesis, 

maturation, and stability of the overall PSI complex. Furthermore, the PsaE gene 

occurs at multiple sites on the genome, making it quite difficult to knock out. This 

approach also requires the synthesis of a cyanobacterial protein in R. eutropha, 

which presents considerable challenges, such as the ability of the existing cell 

machinery to accurately synthesize the foreign protein, codon optimization, etc. 

These difficulties likely contribute to the poor H2 evolution rates reported in the 

absence of a constant electron source such as a gold electrode. 

Golbeck and co-workers developed a PSI-hydrogenase complex (Figure 14) 

wherein the terminal [4Fe-4S] cluster FB of PSI from Synechococcus sp. PCC 

7002 was directly tethered to the distal [4Fe-4S] cluster of the [FeFe]- 

 

Figure 14. H2 producing bionanoconstruct consisting of cyt c6 cross-linked PSI connected 
via a dithiol molecular wire to an FeFe hydrogenase (Figure adapted from Lubner et al. 
2010) 
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hydrogenase from Clostridium acetobutylicum (Hyd) via a thiol “molecular wire” 

as demonstrated previously with Pt nanoparticles [165]. PSI was reconstituted 

from P700/FX cores and recombinant PsaC and PsaD overproduced in E. coli, 

cross-linked to cyt c6 also overproduced in E. coli, and tethered to the [FeFe]-

hydrogenase using a 1,6-hexanedithiol ligand. The optimized system evolved H2 

at an average rate of 2,200 µmol H2/h/mg Chl, exceeding the electron throughput 

rate of natural photosynthesis [16]. Difficulties associated with this approach 

stem from the fact that the [4Fe-4S] clusters from both PsaC and Hyd are 

genetically modified in the same fashion by replacing a coordinating cysteine 

residue with a glycine, in order to accomplish the ligand exchange. As a result, 

this method is non-specific and therefore results in the undesirable formulation of 

PSI-PSI and H2ase-H2ase homodimers. In addition, the [FeFe]-hydrogenase from 

C. acetobutylicum is extremely oxygen sensitive, hence this system is only 

functional in an anoxic environment. 

In summary, cell-free biological hydrogen production is an active area of 

research. Significant research advances have recently been made in improving 

the H2 evolution rates of PSI-hydrogenase complexes for photocatalytic H2 

production. However, a lack of understanding of the effects of solubilizing 

detergents on the stability and activity of integral membrane proteins like PSI, as 

well as the effects of solution dynamics on electron transport in these fusion 

complexes, presents a barrier to further advancement of this technology. This 

review has presented a variety of experimental and computational approaches 

for studying membrane proteins and mutli-protein complexes, highlighting the 

successes of small-angle scattering techniques in providing insight into the 

average structural envelope of protein-detergent and multi-protein complexes in 

solution, as well as the complementary use of MD simulation to provide atomic 

level detail on protein-environment and protein-protein interactions in these 

systems. The work of Koutsioubas et al. and Gsponer et al. in particular 

demonstrate the effectiveness of a combination of experimental and 
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computational techniques to comprehensively study protein-detergent complexes 

[152] and multi-protein systems [156]. 

In this work, we endeavor to address the lack of knowledge concerning 

detergent-solubilized membrane proteins and multi-protein complexes. First, we 

characterize the structure and dynamics of PSI under detergent-solubilized 

conditions using a combination of SANS and MD in an effort to provide new 

insights into improving the stability and activity of this integral membrane protein 

in vitro. Second, we present an experimental method for the site-specific ligation 

of PSI and MBH as an approach for the optimization of H2 photoproduction via 

this fusion protein. We also demonstrate the use of a combination of SANS and 

MD to characterize the solution structure of this multi-protein complex, and 

attempt to gain atomic level insight into the protein-environment and protein-

protein interactions that govern electron transport in this and other previously 

reported PSI-hydrogenase systems.   
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CHAPTER III 
ANALYSIS OF THE SOLUTION STRUCTURE OF PHOTOSYSTEM 

I IN DETERGENT USING SMALL-ANGLE NEUTRON 
SCATTERING AND MOLECULAR DYNAMICS SIMULATION 

 

A version of this chapter was originally published by Le, Rosemary K., Harris, 

Bradley J., et al.: 

Le, R. K.; Harris, B. J.; Iwuchukwu, I. J.; Bruce, B. D.; Cheng, X.; Qian, S.; 

Heller, W. T.; O'Neill, H.; Frymier, P. D., Analysis of the Solution Structure of 

Thermosynechococcus elongatus Photosystem I in n-Dodecyl-beta-D-Maltoside 

using Small-Angle Neutron Scattering and Molecular Dynamics Simulation. 

Archives of Biochemistry and Biophysics 2014. 550-551: p. 50-57 (DOI: 

http://dx.doi.org/10.1016/j.abb.2014.04.005). 
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3.1 Introduction 

As discussed earlier, there has been considerable interest in investigating in 

vitro applications of the photosynthetic protein PSI for alternative energy 

solutions towards hydrogen [12-16, 37] or direct electricity production [17-21]. 

PSI is a membrane-bound protein complex involved in the photosynthetic cycle 

of plants, algae, and cyanobacteria that uses solar energy to mediate electron 

transfer from plastocyanin to ferredoxin, thereby furnishing reducing power for 

use in carbon fixation [10]. In the cyanobacterium T. elongatus, PSI exists as a 

trimeric complex containing the quinones and iron-sulfur clusters necessary for 

stable charge separation as well as the chlorophylls and carotenoids that make 

up its light-harvesting antennae [9].   

Isolation of PSI from the thylakoid membrane requires the use of non-ionic 

detergents which disrupt the membrane and solubilize PSI in mixed micelles that 

prevent aggregation by mimicking the native environment. Although detergents 

permit the solubilization of membrane proteins in aqueous solution, they can 

often interfere with analysis of the structural and functional properties of these 

proteins [5, 6], and little is known of the aqueous structure of solubilized 

membrane proteins. It is important to understand the effect of protein-detergent 

interactions on PSI stability and activity in order to advance photosynthesis-

based alternative energy solutions, as this knowledge could prove important for 

retaining PSI activity and addressing issues related to solution-phase 

aggregation of PSI at a surface. 

Small-angle neutron scattering (SANS) is a useful technique for studying the 

solution structures of membrane proteins complexes [104, 106-108]. Unlike X-

rays, neutron scattering lengths of heavier elements can be of similar magnitude 

to that of lighter elements, and there can be large isotope effects such as that of 

hydrogen vs. deuterium [97]. This unique property allows for solvent or contrast 

matching, wherein the H2O/D2O ratio of the solvent is tuned to match the 

scattering density of one or more components of a complex, thus masking its 
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scattering contribution and allowing study of the remaining components without 

disturbing the overall complex. The naturally occurring difference in scattering 

length densities of proteins and detergent molecules make SANS with contrast 

matching an excellent tool for studying protein-detergent complexes [106]. 

Molecular dynamics (MD) simulation is a useful computational technique for 

the study of biomacromolecules [109-111], and has been applied to a variety of 

detergent micelles [140-147] and protein-detergent complexes [148-152]. 

Additionally, simulations of protein complexes can be used to generate 

theoretical scattering curves for comparison to experimental SANS data [113], 

and low-resolution structural envelopes can be predicted based on SANS data to 

compare against simulated structures [100]. This allows for a greater 

understanding of protein-detergent interactions and the structure of the overall 

complex. 

In this chapter, we have used a combination of contrast variation SANS and 

MD simulation to study the structure of PSI from T. elongatus solubilized in DDM 

detergent solution. SANS data from PSI/DDM complexes with and without 

detergent contrast matching provides detailed structural information on the 

protein-detergent complex. The SANS results were used as a guide to 

constructing an MD model of trimeric PSI in DDM detergent. A theoretical 

scattering curve based on a 50 ns MD simulation of trimeric PSI in DDM provides 

a reasonable fit to the experimental SANS data. Structural insights gained here 

not only improve our understanding of membrane protein-detergent interactions, 

but also guide strategies for incorporating PSI onto surfaces and in complex with 

other proteins for energy conversion applications. 

3.2 Materials and methods 

3.2.1 Isolation and purification of trimeric PSI from T. elongatus 

Trimeric PSI used in this study was purified from the cyanobacterial strain T. 

elongatus BP-1 [166] using a previously established protocol [13, 14]. 

Transmission electron microscopy analysis of complexes purified in this manner 
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confirmed the uniformity and purity of the trimeric PSI nanoparticles [13]. Purified 

PSI trimers were stored in 20 mM MES buffer with 0.03% DDM (GLYCON 

Biochemicals, D97002-C). The chl a concentration of PSI used for the SANS 

experiments was 0.59 mg/ml and 0.64 mg/ml for the 18% D2O and 100% D2O 

samples, respectively. The concentration of chlorophyll a (chl a) present in the 

samples was determined by Eq. (1): 

 
µ𝑔 𝑐ℎ𝑙 𝑎

𝑚𝐿
= 𝐴𝑏𝑠665 × 13.9 (1) 

as done previously [13]. Trimeric PSI concentration was then approximated by 

using the following stoichiometric conversion factors: 893 g chl a per mol chl a, 

96 mol chl a per mol P700, and 3 mol P700 per mol trimer.  

3.2.2 Small-angle neutron scattering 

SANS experiments were performed on the Bio-SANS beamline [167] located 

at the High Flux Isotope Reactor (HFIR) facility of the Oak Ridge National 

laboratory. Samples were measured at 20°C in 1 mm path length quartz cells 

(Hellma U.S.A., Plainview, NY). Scattered neutrons were collected with a 1 m by 

1 m two-dimensional position-sensitive detector with 192 by 192 pixel resolution 

(ORDELA, Inc., Oak Ridge, TN). The 2D data were corrected for detector pixel 

sensitivity, as well as the dark current from ambient background radiation and the 

detector’s electronic noise. The 2D reduced data were azimuthally averaged to 

yield the 1D scattering intensity I(q) vs. q, where q is the scattering vector 

described by Eq. (2): 

𝑞 =
4𝜋sin (𝜃)

𝜆
 (2) 

and 2θ is the scattering angle from the incident beam and λ is the neutron 

wavelength (6 Å; Δλ/λ ≈ 0.15%). SANS data were taken at sample-to-detector 

distances of 1.1, 6.8, and 15.3 m for each sample to cover the expected q range. 

The 1D profiles from these different detector distances were merged to produce 

a complete scattering intensity plot. Trimeric PSI samples in 0.12% (w/v) DDM 

were measured at both 18% D2O, the contrast match point for the detergent 
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[168], and 100% D2O. A 0.12% DDM solution was also measured at 100% D2O. 

All buffers used were also measured for background correction. The radius of 

gyration (Rg) was determined from the Guinier region of the SANS data using the 

Guinier approximation [169], Eq. (3): 

𝐼(𝑞) = 𝐼(0)𝑒
𝑞2𝑅𝑔

2

3  (3)   

as described previously [106], where I(0) is the forward scattering intensity, a 

shape-independent function of the total scattering power of the sample. A linear 

fit of ln[I(q)] vs. q2, known as a Guinier plot, provides I(0) and Rg from the y-

intercept and slope, respectively [170]. Rg was also calculated from P(r), as 

mathematically it is the second moment of P(r) [171]. The data were processed 

using the small-angle scattering (SAS) data analysis package PRIMUS [172]. 

3.2.3 Shape restoration and MD simulation 

Pair distance distribution function (P(r)) analysis of the SANS data was carried 

out using the indirect Fourier transform method for a monodisperse arbitrary 

particle implemented in GNOM [171]. The low-resolution shape of the scattering 

particles was reconstructed from the SANS data in the range of q ≤ 0.10 Å-1 

using the ab initio modeling tool DAMMIF [100]. The results of 50 DAMMIF runs 

using P3 symmetry for the trimeric complex were used to determine the average 

structure using the program DAMAVER [173], and were aligned to the crystal 

structure of PSI (PDB ID: 1JB0) via the program SUPCOMB [174]. The resulting 

overlaid structures were rendered in a low-resolution surface representation 

using VMD [175]. 

PSI/DDM models were constructed using the crystal structure of trimeric PSI 

from T. elongatus (Figures 15A and 15B; PDB ID: 1JB0) as a starting point and 

equilibrated using MD simulation for comparison to the experimental SANS data. 

For the first model (designated the DDM ring model; Figure 15C), a toroidal ring 

of approximately 800 DDM molecules was built around the peripheral 

transmembrane region of the PSI trimer complex. An additional 200 DDM 

molecules were added into the voids within the PSI trimer in a bilayer-like 
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configuration to create the second model (referred to as the void-filled DDM ring 

model; Figure 15D). MD simulations were performed using NAMD [109] with an 

extended version of the CHARMM27 force field for biomacromolecules [176-

180]. Additional CHARMM parameters for the PSI cofactors chlorophyll a (chl a), 

Figure 15. Crystal structure of trimeric PSI (PDB ID: 1JB0) from (A) top view and (B) side view 
stromal side up. Top view of initial configurations for (C) PSI/DDM ring model and (D) PSI/DDM 
void-filled ring model. All images are shown stromal side up, with protein in green ribbons. For 
the MD models, detergent molecules are shown in lines format with carbon atoms in cyan and 
oxygen atoms in red, and water molecules and counterions omitted for clarity. 
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beta-carotene (BCR), and the iron-sulfur clusters (SF4) were obtained from 

parameterization of cofactors associated with PSII (chl a and BCR) [181] and 

hydrogenase enzymes (SF4) [182]. CHARMM parameters for DDM were taken 

from previous MD simulations of pure DDM micelles [144]. MD simulations of 

both models were equilibrated for 5 ns in a water box using an isothermal-

isobaric ensemble (310 K, 1 atm). Theoretical scattering curves for both models 

were generated using ORNL_SAS [113], and were found to be nearly identical. 

Subsequently, a simulation of the void-filled DDM ring model was run for 50 ns 

and the MD trajectory was saved every 20,000 fs, resulting in 2,500 frames for 

final analysis. All simulations were performed on the Kraken supercomputer at 

the National Institute for Computational Sciences, co-located at the University of 

Tennessee – Knoxville and Oak Ridge National Laboratory campuses. 

3.3 Results and discussion 

3.3.1 SANS analysis of pure DDM micelles 

SANS data of pure DDM micelles was collected for comparison to the 

PSI/DDM complex. The resulting scattering profile is shown in Figure 16A. The 

radius of gyration (Rg) of the DDM micelles in 100% D2O was determined to be 

2.04 ± 0.30 nm by the Guinier approximation (Table 1; Figure 17A). This result is 

consistent with the value of 2.01 nm determined by Abel et al. [180]. Rg is a 

summary measure of the distribution of distances of atoms from the center of the 

molecule, and is representative of the size of a scattering particle in solution. 

Therefore, considering that the fully extended length of a DDM molecule, as 

determined by Auer et al. [183], is ~2.3-2.8 nm, these Rg results suggest a 

micellar structure. Rg can be used to calculate the radius R of a spherical micelle 

using Eq. (4) [184]: 

𝑅𝑔
2 =

3𝑅2

5
 (4) 

Based on an Rg of 2.04 nm (Table 1), a spherical DDM micelle would have a 

radius of 2.63 nm and an approximate surface area of 87.2 nm2. Using a DDM 

monomer headgroup area of 0.63 nm2 (assuming an ellipsoidal projected area  
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Figure 16. Guinier analysis (ln[I(q)] vs. q
2
) for (A) 0.12% (w/v) DDM at 100% D2O; (B) PSI in 

0.12% DDM at 18% D2O; (C) PSI in 0.12% DDM at 100% D2O. In all cases, SANS data is 
shown in open circles with the red line representing a linear fit in the low-q regime (qRg < 
1.3). (Figure from Le et al. 2014) 

Figure 17. Scattering profiles for: (A) 0.12% DDM in 100% D2O; (B) PSI in 
0.12% DDM in 18% D2O; (C) PSI in 0.12% DDM and 100% D2O. (D) P(r) curves 
for 0.12% DDM in 100% D2O (red curve), PSI in 0.12% DDM and 18% D2O 
(black curve), and PSI in 0.12% DDM and 100% D2O (blue curve). (Figure 
from Le et al. 2014) 
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 Table 1. Structural parameters of pure DDM and PSI/DDM samples from SANS analysis 

 with a = 1.05 nm and b = 0.76 nm as measured in PyMOL [185]) and assuming 

densely hexagonal-packed headgroups (𝜂 =
𝜋

2√3
) yields an aggregation number 

of ~126 DDM molecules per micelle, which is consistent with previously reported 

values [186-189]. The micelle concentration can then be calculated from Eq. (5):  

[total detergent] = [monomer] + [micelles] x ANDDM (5) 

where [total detergent] = 2.35 mM DDM (0.12% (w/v)), [monomer] = 0.17 mM 

DDM (critical micelle concentration (CMC) for DDM), and ANDDM = 126 

monomers per micelle. This yields a micelle concentration of 1.73 x 10-2 mM, and 

the distribution of DDM in this system is therefore 92.8% in micelles and 7.2% as 

non-associated monomer, effectively a monodisperse system. For this reason we 

used the monodisperse arbitrary particle model for calculating the P(r) 

distribution in GNOM [171]. The P(r) function represents the probable distribution 

of distances between the scattering centers within the scattering particle and 

goes to zero at the maximum particle dimension, Dmax. In our case, the P(r) curve 

can provide information on the size and shape of DDM micelles (or PSI/DDM 

complexes) in solution. An Rg value of 2.03 ± 0.02 nm was obtained from the P(r) 

fitting (Table 1; Figure 16D, red curve). The agreement between the Guinier and 

P(r)-derived Rg values further indicates that the DDM micelles are well-behaved, 

monodisperse particles in solution. However, the assumption of a spherical 

micelle is not ideal, as the value of the maximum particle size (Dmax) from the 

GNOM fit is 6.4 ± 0.5 nm, which is greater than twice the length of a DDM 

Sample [D2O] % 
[PSI trimer] 

(mM) 

[DDM] 

(mM) 

Guinier 

Rg (nm) 

P(r) Rg 

(nm) 

Dmax 

(nm) 

DDM 100 0 2.35 2.04±0.30 2.03±0.02 6.4±0.5 

PSI/DDM 18 2.27x10-3 2.35 7.79±2.86 7.59±0.09 21.5±1.0 

PSI/DDM 100 2.48x10-3 2.35 9.49±2.32 9.31±0.11 28.0±1.0 
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molecule, and the P(r) curve is not symmetric, indicating that the micelles are not 

spherical. This is not unexpected, as MD studies of pure DDM micelles indicate 

an ellipsoidal micelle structure [144].  

3.3.2 SANS analysis of PSI at DDM match point 

SANS data of PSI/DDM at 18% D2O, the contrast match point for DDM, was 

collected to study the structure of trimeric PSI under detergent-solubilizing 

conditions. The scattering profile and P(r) curve for PSI in 0.12% DDM and 18% 

D2O are shown in Figures 16B and 16D (black curve), respectively. Rg values for 

PSI/DDM in 18% D2O (Table 1) are 7.79 ± 2.86 nm from Guinier analysis (Figure 

17B) and 7.59 ± 0.09 nm from P(r) fitting, which agree well with each other. The 

P(r) curve is asymmetric, which has been seen previously in membrane proteins 

[106-108]. It peaks at 8.6 nm and has a Dmax of 21.5 ± 1.0 nm, suggesting a disk-

shaped structure that has been observed in previous SAS studies of PSI 

solubilized in DDM [102], as well as other membrane protein - detergent 

complexes [101, 105, 106]. These dimensions are in good agreement with the 

crystal structure of trimeric PSI (Figures 15A,B) [9].     

3.3.3 SANS and MD analysis of PSI/DDM complex 

The structure of the PSI/DDM complex was probed by collecting neutron 

scattering data of PSI in 0.12% DDM at 100% D2O (Figure 16C), the point at 

which there is maximum contrast between scattering particles and the solvent, 

with both protein and detergent contributing to scattering. An Rg value for the 

PSI/DDM complexes of 9.49 ± 2.32 nm was determined by Guinier analysis 

(Table 1; Figure 17C). To calculate the DDM aggregation number for the 

PSI/DDM system, we approximate the complex as a squat cylinder comprising 

two concentric cylinders, the inner being PSI and the outer DDM (Figure 18); we 

further assume that DDM exists with the hydrophilic headgroups oriented on the 

periphery of the cylinder. The radius of this cylinder can be determined based on 

Eq. (6) [184]: 

𝑅𝑔
2 =

𝑅2

2
+

𝐿2

12
 (5) 
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where R and L represent the cylinder radius and height, respectively. For the 

PSI/DDM complex, L can be approximated as the height of the membrane-

spanning domain of PSI (6.7 nm, as measured using the crystal structure in 

PyMOL). Therefore, for an Rg of 9.49 nm (Table 1), the PSI/DDM cylinder would 

have a radius of 13.1 nm and a peripheral surface area (excluding the top and 

bottom of the cylinder) of 553 nm2. Again using the projected surface area of 

0.63 nm2 for a DDM headgroup and assuming dense hexagonal packing, we 

calculate an aggregation number of ~796 DDM monomers per PSI trimer. The 

concentration of free DDM micelles can then be calculated using Eq. (6): 

[total detergent] = [monomer] + [PSI] x ANDDM-PSI + [micelles] x ANDDM (6) 

where [total detergent] = 2.35 mM DDM, [monomer] = [CMC] = 0.17 mM DDM, 

[PSI] = 2.48 x 10-3 mM PSI trimer, ANDDM-PSI = 796 DDM monomers per PSI 

trimer, and ANDDM = 126 DDM monomers per micelle. This yields a free micelle 

concentration of 1.63 x 10-2 mM. The resulting distribution of DDM monomer is 

thus 84% associated with PSI trimer, 8.8% in micelles, and 7.2% as non-

associated monomer. We therefore assume that the scattering due to DDM 

micelles is effectively negligible compared to that of the PSI/DDM complexes and 

use the monodisperse arbitrary particle model for P(r) analysis. P(r) fitting yielded 

an Rg of 9.31 ± 0.11 nm (Table 1); the agreement of the Guinier and P(r)-derived 

values as before indicates a monodisperse system. The P(r) curve (Figure 16D, 

blue curve) has an asymmetric parabolic shape, peaking at 10.1 nm and tapering 

off to a Dmax of 28.0 ± 1.0 nm, which is again suggestive of a disk-like structure 

[101, 102, 105, 106]. The P(r) curve also has a shoulder feature at vector lengths 

below 5 nm; this feature has not been previously seen in SAS studies of 

Figure 18. Cylindrical approximation of PSI/DDM complex 
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membrane proteins and cannot yet be explained. Comparing to PSI/DDM in 18% 

D2O, Dmax increases from 21.5 ± 1.0 nm to 28.0 ± 1.0 nm. This difference of 6.5 

nm is slightly larger than twice the length of an extended DDM molecule (~5 nm), 

which supports the existence of detergent around the peripheral transmembrane 

α-helices of the trimer also reported in previous studies of detergent-solubilized 

membrane proteins [190-194].  

To visualize the structural envelope of the PSI/DDM complex, low-resolution 

shape restoration was performed based on the SANS data from PSI in 0.12% 

DDM at both 18% and 100% D2O for q ≤ 0.1 Å-1 using DAMMIF [100]. The 

superposition of the resulting average structure with the PSI crystal structure can 

be seen in Figures 19A-C. Due to the low-resolution surface rendering in VMD, 

the dummy-atom reconstruction of PSI/DDM at 18% D2O appears slightly larger 

than the crystal structure (blue ribbons); however, the calculated Dmax of 21.5 nm  

 

Figure 19. Trimeric PSI crystal structure (blue ribbons) superimposed with dummy-
atom reconstruction of PSI/DDM at 18% D2O (green) shown from (A) stromal side up, 
(B) lumenal side up, and (C) side view lumenal side up. Reconstruction of PSI/DDM 
at 18% D2O (green) superimposed with reconstruction at 100% D2O (gray) shown 
from (D) stromal side up, (E) lumenal side up, and (F) side view lumenal side up. 
(Figure from Le et al. 2014) 
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(Table 1) is consistent with the expected diameter of PSI from the crystal 

structure. The reconstructed shape from the SANS data of PSI/DDM at 100% 

D2O (gray), overlaid with the reconstruction at 18% D2O (green) in Figures 19D-

F, suggests that DDM interacts with PSI in a non-uniform envelope around the 

exposed periphery of the trimer. In particular, the detergent appears localized to 

the peripheral transmembrane α-helices of the individual PSI monomer lobes and 

the interstitial spaces between these monomers (Figures 19D,E), with very little 

DDM on the stromal and lumenal faces as can be seen clearly in Figure 19F. 

This is expected, as analysis in VMD shows no significant hydrophobic patches 

present on these faces (Figures 20A,B), while the exposed surface of the 

transmembrane region is a uniform distribution of hydrophobic α-helices (Figure 

20C).  

Atomic-resolution PSI/DDM models were constructed and equilibrated using 

MD simulation for comparison to the experimental SANS data. Starting structures 

for the DDM ring model and void-filled DDM ring model are shown in Figures 21A 

and 21D, respectively. In both models, the detergent molecules surrounding the 

periphery of PSI quickly evolve from a uniform belt to conform to the individual 

monomer lobes and fill the interstitial voids after 5 ns of MD simulation (Figures 

21B,C,E,F). Structures of the PSI/DDM complex after 5 ns of simulation for both 

the ring and void-filled ring models were used to generate theoretical scattering  

 

Figure 20. Crystal structure of trimeric PSI rendered according to residue type 
(non-polar = white, polar = green, acidic = red, basic = blue) shown from (A) 
stromal side up, (B) lumenal side up, and (C) side view stromal side up. 
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Figure 21. The DDM ring model shown (A) lumenal side up prior to MD simulation, (B) 
lumenal side up after 5 ns of MD simulation, and (C) side view lumenal side up after 5 ns of 
MD simulation. The DDM void-filled ring model shown (D) lumenal side up prior to MD 
simulation, (E) lumenal side up after 5 ns of MD simulation, (F) side view lumenal side up 
after 5 ns of MD simulation, (G) lumenal side up after 50 ns of MD simulation, and (H) side 
view lumenal side up after 50 ns of MD simulation. In all cases, the protein is shown in 
green ribbons and the detergent in gray in low-resolution surface representation. (Figure 
from Le et al. 2014) 
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curves using ORNL_SAS for comparison to the SANS data; the curves for these 

two models were nearly identical when superimposed (Table 2). Therefore, a  

subsequent 50 ns MD simulation was conducted for only the void-filled ring 

model to allow further equilibration of the PSI/DDM complex. The Cα root-mean-

square deviation (RMSD) of PSI was calculated relative to the simulation starting 

structure throughout the 50 ns MD trajectory to analyze the stability of this 

complex; this value represents an average over all three monomers of the PSI 

trimer. The RMSD quickly rises to ~2.2 Å after 10 ns, drifting to 2.4 Å after 30 ns 

and remaining there for the duration of the simulation (Figure 22). Additionally, 

there was little discernible change in the theoretical scattering curves generated 

after 5 and 50 ns of simulation time (Table 2). Therefore, the 50 ns MD simulated 

structure of the DDM void-filled ring model was deemed sufficient for comparison  

Table 2. Theoretical scattering data for PSI/DDM MD models 

  

  
Ring 

Void-Filled Ring   
5 ns 

Void-Filled Ring 
50 ns 

q (Å-1) I(q) (a.u.) q (Å-1) I(q) (a.u.) q (Å-1) I(q) (a.u.) 

0.0050 14.53 0.0050 14.63 0.0050 14.65 

0.0101 12.17 0.0101 12.23 0.0101 12.24 

0.0150 9.17 0.0152 9.05 0.0150 9.18 

0.0202 6.09 0.0202 6.08 0.0202 6.07 

0.0251 3.82 0.0251 3.80 0.0251 3.80 

0.0304 2.35 0.0304 2.33 0.0304 2.33 

0.0409 1.31 0.0409 1.29 0.0409 1.29 

0.0510 0.97 0.0510 0.95 0.0510 0.95 

0.0615 0.73 0.0615 0.72 0.0615 0.72 

0.0720 0.65 0.0720 0.65 0.0720 0.65 

0.0803 0.62 0.0803 0.63 0.0803 0.63 

0.0915 0.61 0.0915 0.61 0.0915 0.62 

0.1009 0.61 0.1009 0.62 0.1009 0.61 

0.1113 0.59 0.1113 0.60 0.1113 0.60 

0.1227 0.59 0.1227 0.60 0.1227 0.60 

0.1398 0.59 0.1310 0.60 0.1310 0.60 

0.1444 0.58 0.1444 0.60 0.1444 0.59 

0.1492 0.58 0.1492 0.59 0.1492 0.59 
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to the SANS data.  

The experimental scattering data for PSI/DDM at 100% D2O is plotted in 

Figure 23, overlaid with theoretical scattering curves based on the PSI crystal 

structure (green curve) and the equilibrated PSI/DDM void-filled ring model (red 

curve). The MD model results in a reasonable fit to the SANS data, with 

deviations occurring in the high q regime. The theoretical curve based on the 

crystal structure yields a χ2 = 8.85 compared to the experimental data, compared 

to a χ2 = 3.83 for the equilibrated PSI/DDM MD model curve. Taken together with 

the DAMMIF dummy-atom reconstructions (Figures 19D-F), these results 

suggest that the idealized geometry of trimeric PSI embedded in a uniform 

detergent belt surrounding the peripheral transmembrane domain is an 

oversimplification of this system. It should be noted that the initial uniform 

detergent ring continued to conform to the PSI trimer throughout the simulation 

time, as can be seen in comparing the structure of the PSI/DDM complex after 5 

ns of MD simulation (Figures 21E,F) to that after 50 ns (Figures 21G,H). Future 

work will be focused on achieving longer simulation times to determine whether 

or not this redistribution of DDM progresses towards the trilobal structure seen in 

the DAMMIF reconstructions. 
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Figure 22. Cα RMSD values versus time for the PSI/DDM void-
filled ring model simulation. 

Figure 23. Comparison of scattering data for PSI in 
0.12% DDM (w/v) at 100% D2O (open circles) with 
theoretical scattering curves based on the DDM void-
filled ring model (red continuous line) and the crystal 
structure of trimeric PSI (green continuous line). 
(Figure from Le et al. 2014) 



58 

 

3.4 Summary 

The solution structure of trimeric PSI under detergent-solubilized conditions 

was investigated using contrast variation SANS and produced results that have 

not been seen previously. Analysis of the SANS data and subsequent shape 

restoration both with and without the scattering contributions of DDM suggests 

that the detergent exists as a belt surrounding the transmembrane periphery of 

the PSI complex. MD simulations of trimeric PSI embedded in a uniform belt of 

DDM were developed based on the SANS shape restoration results. Theoretical 

scattering profiles generated based on these models demonstrate that the 

inclusion of a DDM belt produces a reasonable fit to the SANS data, but fails to 

reproduce key structural features in the high q regime. These results suggest that 

the conventional notion of membrane proteins as being suspended in solution 

within a uniform detergent structure is an idealization and an oversimplification. 

This new information changes our understanding of protein-detergent complexes, 

and in the particular case of PSI from the thermophilic cyanobacterium T. 

elongatus can be utilized in designing detergent solutions that minimize instability 

and aggregation, thus leading to enhanced performance and longer useful 

lifetimes for biorenewable energy applications. The MD simulations conducted 

here will need to be extended to allow for in-depth analysis of the stability and 

mobility of this PSI/DDM complex and the effects of protein-detergent 

interactions on the structure and function of PSI.   
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CHAPTER IV  
IN-DEPTH ANALYSIS OF PHOTOSYSTEM I – DETERGENT 

COMPLEX STABILITY AND INTERACTIONS USING ALL-ATOM 
MOLECULAR DYNAMICS SIMULATION 

 

A version of this chapter was originally published by Harris, Bradley J. et al.: 

Harris, B.J., Cheng, X., Frymier, P.D. All-Atom Molecular Dynamics Simulation 

of a Photosystem I/Detergent Complex. Journal of Physical Chemistry B 2014. 

118 (40): p. 11633-11645 (DOI: http://dx.doi.org/10.1021/jp507157e). 

 

Bradley Harris was the primary writer of the original manuscript, and 

conducted the MD simulations and subsequent data analyses described therein. 

Dr. Xiaolin Cheng was a collaborator on this work and offered his expertise in 

computational modeling. Dr. Paul D. Frymier was the principle investigator of this 

work. 

4.1 Introduction 

The biological importance of membrane proteins is reflected in the fact that 

they comprise approximately 30% of open reading frames [1], yet they represent 

only a small fraction of known protein structures [2]. As discussed earlier, this 

knowledge barrier is caused by difficulties in membrane protein expression and 

crystallization, most often arising from the need for solubilization of these 

proteins from the transmembrane surface via a detergent or lipid assembly [3, 4]. 

Little is known of the aqueous structure of protein-detergent complexes and how 

the presence of detergents can impact the stability and activity of membrane 

proteins [5, 6]. PSI represents an interesting test case for the study of membrane 

protein complexes, as it is capable of generating reducing power via solar energy 

and as such has been the subject of much research regarding potential 

alternative energy applications, as reviewed before. Enhanced understanding of 

the effects of protein-detergent interactions on the functional properties of PSI 

could improve the performance and prolong the useable lifetimes of PSI-based 

energy conversion devices.  

http://dx.doi.org/10.1021/jp507157e
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In the previous chapter, we discussed our study of the solution structure of PSI 

from T. elongatus using a combination of SANS and MD simulation [195]. We 

were able to determine that the dimensions of the PSI/DDM complex were 

consistent with trimeric PSI embedded in a disk-like detergent micelle, and shape 

restoration based on the SANS data indicated that the detergent conformed to 

the transmembrane periphery in a non-uniform, trilobal orientation rather than a 

uniform toroidal belt. MD simulations based on a starting structure of trimeric PSI 

surrounded by a monolayer DDM belt were used to generate theoretical 

scattering curves that produced a reasonable fit to the experimental SANS data. 

However, they failed to produce key structural features in the high q regime, 

suggesting further work might be necessary to verify that these models had 

reached an equilibrated conformation and better analyze protein-detergent 

interactions and their implications in this system.  

In this chapter, we have conducted extensive simulations of the PSI/DDM 

complex for in-depth analysis of the structure and dynamics of the PSI trimer 

under detergent-solubilized conditions. With this work, we are able to examine 

the following to a level of detail not previously possible: stability and flexibility of 

PSI in a detergent environment; detailed protein-detergent interactions and their 

mutual effects on each other’s behavior; and possible implications of the 

observed conformational dynamics for the function of this photosynthetic protein 

complex. 

4.2 Materials and methods 

4.2.1 Setup of pure DDM micelles 

Pure DDM micelles were initially constructed using Packmol [196] in a 

spherical orientation with the hydrophobic tails pointed inward and the hydrophilic 

head groups pointed outward. A base case of 132 DDM molecules was chosen 

based on the reported aggregation number [144], with micelles of 70 and 200 

DDM molecules also simulated as extreme cases. All systems were subjected to 

20 ps of MD equilibration in vacuo, and subsequently solvated with TIP3P water 
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molecules. Solvated systems were then subjected to an additional 20 ps of MD 

equilibration. These equilibration steps were carried out to remove clashes 

between the atoms, heat the system gradually to the target temperature and 

reach a kinetic energy equi-partition. This is meant to ensure that the systems do 

not explore unrealistically high-energy conformational spaces prior to MD 

production runs. Equilibrated, solvated systems were then simulated for 100 ns, 

and the resulting trajectories used for subsequent data analyses. 

4.2.2 Setup of PSI/DDM micelle systems 

The starting structure for all PSI/DDM models was based on the 2.5 Å 

resolution crystal structure of trimeric PSI from T. elongatus (PDB ID: 1JB0) [9]. 

There are 91 out of a total of ~2,300 residues which were not resolved in the PSI 

crystal structure and were not included in the simulations. These unresolved 

regions span less than 15 successive residues except in the cases of psaF and 

psaK, which are missing 23 and 20 amino acids, respectively. These terminally 

located, intrinsically disordered regions are expected to play a role in PSI-

mediator interactions, but are unlikely to significantly affect the global dynamics 

of the PSI/DDM complex during simulation. Phylloquinone molecules located in 

the reaction center core (two per PSI monomer) were not included in the 

simulations. 

A monolayer belt of DDM detergent was constructed around the periphery of 

PSI consisting of semi-circular planes of DDM densely packed around the 

hydrophobic exterior transmembrane surface of the protein (Figure 15C). 

Additional DDM molecules were inserted into the interstitial voids between 

individual PSI monomers in a bilayer-like orientation, resulting in the so-called 

void-filled ring model which is the focus of this paper (Figure 15D). An alternative 

random model was generated by randomly placing DDM molecules around the 

PSI trimer using Packmol [196], and subsequently removing all those lipids which 

overlapped with the protein complex. For the associated lipids model, the 

structure and coordinates of included lipids were based on 1,2-distearoyl-

monogalactosyldiglyceride (LMG) and 1,2-dipalmitoyl-phosphatidylglycerol (LHG)  
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lipids resolved in the crystal structure, and atom types and parameters were 

taken from the updated CHARMM force field for lipids [179]. All systems were 

subjected to 50 ps of MD equilibration in vacuo, and subsequently solvated with 

TIP3P water molecules. Sodium and chloride counterions were then added by 

random replacement of water molecules in order to neutralize each system. The 

solvated, neutralized systems were subjected to an additional 50 ps of MD 

equilibration, and then MD production runs were carried out. 

4.2.3 Simulation details 

All simulations were carried out using NAMD [109], with an extended version 

of the CHARMM27 force field [176-180]. Parameters for chlorophyll a and beta-

carotene were taken from the work of Zhang et al. on the parameterization of 

PSII cofactors [181], and those of the iron-sulfur clusters based on the work of 

Smith and co-workers [182]. Parameters for DDM were taken from MD studies of 

pure DDM micelles conducted by Abel et al. [144]. All simulations were 

performed at constant temperature (300 K), pressure (1 atm), and number of 

particles. Electrostatics were calculated using particle mesh Ewald [197], with a 1 

nm cut-off for the real space calculation; a 1  nm cut-off was also used for van 

der Waals interactions. System temperature was maintained by controlling the 

kinetic energy of the system using Langevin dynamics, with a damping coefficient 

of 10 ps-1, and system pressure was controlled using the Langevin piston method 

[198], with an oscillation time constant of 200 fs and a damping time constant of 

100 fs. The time step for integration was 2 fs for all simulations, and coordinates 

and velocities were saved every 20 ps. Data analyses used either VMD [175] or 

locally written code; all images were rendered in VMD. 

4.2.4 Predicted docking of soluble electron mediators 

The ZDOCK online server [199] was used to generate predicted docked 

structures for the soluble electron mediators cytochrome c6 (PDB ID: 1C6S) and 

ferredoxin (PDB ID: 2CJN) to PSI. Model predictions were generated for every 

monomer of trimeric PSI using snapshots of the MD trajectory taken for every 20 
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ns of simulation, with predictions based on the PSI crystal structure also 

generated for comparison. In the case of cytochrome c6, only the psaAB subunits 

of PSI were considered for predicted docking, with W655A and W631B specified 

as contact residues [200]. For ferredoxin, only the psaCDE subunits were 

considered, and I11C, T14C, Q15C, K34C, K104D, and R39E were specified as 

contact residues [201]. Cα RMSD values of the top ten predicted bound mediator 

structures (if available) were calculated for each time step relative to the crystal 

structure predictions for each of the three monomers of the PSI trimer, with the 

minimum Cα RMSD for each time step being reported. 

4.3 Results and discussion 

In an initial model of randomly placed DDM molecules around the PSI trimer, 

the system had not begun to converge after >20 ns of MD simulation (Figure 24). 

Therefore, in order to obtain an equilibrated PSI/DDM complex on an attainable 

time scale, we chose to use a pre-formed protein-detergent assembly as our  

 

Figure 24. Model of trimeric PSI surrounded by randomly placed DDM molecules (A) 
prior to MD simulation, and (B) after 20 ns of MD simulation. Protein is shown in green 
ribbons, with detergent shown in lines format with carbon atoms in cyan and oxygen 
atoms in red, and water molecules and counterions omitted for clarity. 
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starting structure. Based on results from dynamic light scattering, the PSI/DDM 

complex is known to be disk-like, 30 nm in diameter by 9 nm height [202]. 

Therefore, using the characteristic hydrophobic belts of membrane proteins as a 

guide, we constructed a uniform, toroidal belt of DDM detergent around the 

peripheral transmembrane domain of the PSI trimer. In order to fill the interstitial 

hydrophobic voids between individual PSI monomers, we added additional DDM 

molecules into the interstitial spaces of the PSI trimer, in a bilayer orientation with 

the hydrophobic tails pointed inward. Based on our previous SANS study, the 

aggregation number has been estimated to be ~796 DDM molecules per PSI 

trimer, assuming uniform packing of detergent around the peripheral 

transmembrane region [195]. Because this aggregation number does not account 

for the interstitial voids between PSI monomers, we chose to use 1,000 DDM 

molecules in our simulations, with 800 detergent monomers in a toroidal belt 

around the transmembrane domain and 200 in the interstitial voids. The initial 

configuration is shown in Figures 25C and 25D. This system was energy-

minimized, solvated, and equilibrated (please refer to Materials and methods), 

and subsequently subjected to a 200 ns MD production run. A theoretical 

scattering curve generated based on this PSI/DDM complex after 50 ns of MD 

simulation yielded a χ2 = 3.83 when compared to experimental SANS data [195]. 
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4.3.1 Protein dynamics 

Protein stability 

In order to determine the stability of PSI in the DDM detergent environment, 

we calculated the root-mean-squared deviation (RMSD) of the PSI trimer relative 

to the initial crystal structure throughout the course of the simulation (Figure 26). 

The Cα RMSD calculated for all residues climbed to ~2.5 Å after 50 ns, drifting to 

~2.6 Å after ~100 ns and stabilizing there for the remainder of the simulation. 

This extended drift phenomenon has also been observed in a previous MD study 

of the membrane protein OmpA in a DPC micelle [150], and a comparable 

backbone RMSD value of ~2.0 Å has previously been reported in a 50 ns MD 

simulation of the membrane channel protein FhuA in N-octyl-hydroxyethyl 

sulfoxide (OES) detergent [151]. However, these values fall within the same 

Figure 25. Crystal structure of monomeric PSI from T. elongatus shown from (A) side view 
with the stromal side up, and (B) lumenal side up. The protein is shown in ribbons with the 
reaction center subunits (psaAB) in green, the terminal electron acceptor psaC in red, the 
peripheral stromal subunits (psaDE) in blue, and the peripheral transmembrane helices 
(psaFIJKLMX) in orange. The starting structure for the PSI/DDM void-filled ring model 
shown from (A) lumenal side up and (B) side view along the transmembrane domain with 
the stromal side up. Protein is shown in blue ribbons, detergent molecules in lines format, 
and water molecules and counterions are omitted for clarity. 



66 

 

range as those reported from MD studies of membrane proteins in lipid bilayers. 

For example, Cα RMSD values of 2.0 and 2.3 Å were obtained from 15-20 ns MD 

simulations of OmpA in a dimyristoyl phosphatidylcholine (DMPC) bilayer and 

KcsA in a POPC bilayer, respectively [203]. Similar results were also seen in a 

10 ns simulation of PSII embedded in the thylakoid membrane [139]. 

For detailed analysis of the protein structural drift, we decomposed the RMSD 

values into those of the various individual structural components of PSI, which 

are highlighted in Figures 25A and 25B. These domains are as follows: subunits 

psaA and psaB, which house the light-harvesting reaction center and associated 

pigments; psaC, found on the stromal face and housing the terminal electron 

acceptors, the iron-sulfur clusters FA and FB; subunits psaD and psaE, which are 

Figure 26. Cα RMSD versus time for the PSI/DDM void-filled ring model simulation. 
Lines show the Cα RMSD values for: all residues (black continuous line), the 
reaction center subunits psaAB (gray continuous line), the terminal electron 
acceptor psaC (black dotted line), the ferredoxin docking subunits psaDE (black 
dashed line), and the peripheral transmembrane helices psaFIJKLMX (gray dotted 
line). All curves were generated from the simulation starting structure. (Figure from 
Harris et al. 2014) 
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also located on the stromal face and are postulated to facilitate the docking of the 

soluble electron mediator ferredoxin [204]; and the peripheral transmembrane α-

helices psaI, psaJ, psaK, psaL, psaM, and psaX, as well as psaF, an exterior 

helix which traverses the membrane and is believed to be involved in the docking 

of ferredoxin on the stromal face as well as of electron carriers such as 

cytochrome c6 and plastocyanin on the lumenal face [10]. The reaction center 

subunits psaA and psaB were found to display the lowest structural drift with a 

final Cα
 RMSD of ~1.8 Å (Figure 26, gray solid line). This is to be expected, as 

these subunits represent the core of the protein complex and thus have little 

exposure to the solvent, an explanation which is consistent with root-mean-

squared fluctuation (RMSF) analysis discussed below. The terminal electron 

acceptor psaC also exhibits Cα RMSD values in the range of 1.5-2.5 Å (Figure 

26, black dotted line), albeit with larger fluctuations. This can be explained by the 

fact that this subunit is located on the stromal surface and therefore has little 

interaction with the detergent but is highly exposed to the solvent. In contrast, the 

peripheral transmembrane helices exhibit the greatest drift with a maximum Cα 

RMSD of ~4.0 Å (Figure 26, gray dotted line), a plateau which is reached after 

125 ns of MD simulation and is stable for the remainder of the 200 ns simulation 

time, indicating this region has reached equilibrium. This substantial structural 

drift is likely due to interactions with the surrounding detergent molecules in the 

protein-detergent complex, an environment that is quite different from the low 

temperatures and tight helical packing necessary for obtaining the high-resolution 

crystal structure which these RMSD values were generated relative to. As is the 

case for psaK, these protein-detergent interactions can cause the 

transmembrane helices to bend and contort during the simulation, becoming 

more compact and kinked as the detergent molecules surrounding them evolve 

from the initial uniform belt (Figures 27A and 27B). Chandler et al. observed a 

similar disparity in their study of purple bacterial chromatophores, wherein they 

conducted a 20 ns MD simulation of a model chromatophore complex of light 

harvesting complex LH1 and the reaction center (RC) embedded in a lipid bilayer 
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and reported RMSD values of ~4 Å for the core RC protein and ~8 Å for the 

peripheral LH1 domain [205]. Cα RMSD values in the range of 5-9 Å have also 

been obtained in MD studies of the membrane proteins Mistic [206] and 

aquaporin[152] in detergent micelles. The outer stromal subunits psaD and psaE 

show unique behavior, with the Cα RMSD rising quickly to ~2.5 Å, climbing to 

~3.0 Å after 50 ns and fluctuating between 2.5-3.5 Å for the remainder of the 

simulation (Figure 26, black dashed line). This can be explained by the thinning 

of the detergent belt over the course of the simulation as it conforms to the 

hydrophobic periphery of the PSI trimer, a rearrangement that results in 

detergent molecules moving farther away from these stromal subunits (Figures 

27C and 27D). In terms of detergent behavior, it should be noted that individual 

Figure 27. MD snapshots of the peripheral transmembrane helix psaK (A) prior to 
simulation and (B) after 200 ns of MD simulation. PsaK is shown in blue ribbons with the 
surrounding detergent molecules in surface format. Snapshots of the core subunits psaA 
and psaB (C) prior to simulation and (D) after 200 ns of MD simulation. The protein is 
shown in blue ribbons with the surrounding detergent molecules in licorice format. (Figure 
from Harris et al. 2014) 
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detergent molecules displayed significant translational mobility in both the 

protein-detergent complex and pure detergent micelle simulations, but that no 

loss of detergent was observed in either case. 

Protein flexibility 

 To characterize local protein mobility, we calculated the time-averaged root-

mean-square fluctuation (RMSF) during the simulation for each residue of PSI 

(Figure 28). RMSF is a measure of the deviation of backbone atoms (N, Cα, and 

C atoms) from their average positions during the MD simulations, and provides 

insight into the thermal fluctuations and atomic mobility of proteins and protein  

 

Figure 28. (A) Broken-line plot of Cα RMSF values versus residue number for PSI (solid black 
line), averaged over the last 100 ns of the PSI/DDM void-filled ring MD simulation. RMSF values 
based on the temperature values from the X-ray structure (dotted black line) are shown for 
comparison. RMSF values were averaged over all three monomers of the PSI trimer, with error 
bars representing the standard deviation. Residues corresponding to the reaction center (RX 
CTR), stromal (S), and peripheral transmembrane (PT) domains are labeled. (B) Zoomed-in view 
of time-averaged Cα RMSF values versus residue for the stromal domain. (Figure from Harris et 
al. 2014) 
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complexes. For comparison, we also converted the crystallographic B-factors of 

the 2.5 Å resolution PSI crystal structure to equivalent RMSF values (Figure 28, 

black dotted line). Qualitatively, the trends of the experimental and simulated 

curves are remarkably similar, with a clear correlation between local atomic 

mobility and protein structure. Regions of low local mobility are primarily located 

in the core of the reaction center subunits which are not solvent-exposed. The 

RMSF values calculated from the simulation are virtually identical in these 

regions when compared to the crystal structure-derived values. In contrast, the 

RMSF values obtained from the simulation for turns in the transmembrane 

helices of both the reaction center and peripheral transmembrane domains are 

significantly higher than those obtained from experiment. This is also the case for 

solvent-exposed loops found on the stromal face (Figure 28B). Overall, the 

RMSF results show that regions confined to the interior of the protein complex or 

shielded by detergent exhibit low local mobility, with higher fluctuations seen in 

solvent-exposed loops and turns. The noticeably high maximum RMSF value of 

~7.4 Å corresponds to the N-terminus of psaL, the occurrence of which is due to 

the extension of this flexible region from the confines of the interstitial void out 

into the solvent over the course of MD simulation (as shown in Figure 29). This 

may be due to the absence of associated lipids from the simulation, and will be 

discussed in detail below. Comparable RMSF values for N- and C-terminal 

regions of transmembrane helices were observed in an MD study of aquaporin-0 

in a lipid bilayer [207]. 

4.3.2 Micelle dynamics 

Micelle shape 

We were also interested in comparing the behavior of the detergent in the 

PSI/DDM complex to that of a pure DDM micelle, in order to elucidate the effects 

of the protein on detergent behavior and vice versa. Therefore, a 100 ns MD 

simulation was conducted for a pure DDM micelle using 132 DDM monomers, 

the previously reported aggregation number for DDM [144]. Simulation details for 

all cases are shown in Table 3. Visually inspecting changes in the shape of the 
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each system throughout the course of MD simulation, we note that in the case of 

the PSI/DDM complex, the thickness of the detergent belt shrinks during 

dynamics as it conforms to the non-uniform hydrophobic periphery of the PSI 

trimer (Figures 30A and 30B). Overall, the protein-detergent complex becomes 

more ellipsoidal in shape over the course of the simulation. Initially constructed in 

a spherical configuration, the pure DDM micelle also transitions to an ellipsoid 

over the course of MD simulation (Figures 30C and 30D). 

Interfacial properties  

Another interesting aspect of these systems is the packing of detergent 

molecules and the resulting extent of water penetration, as it can influence the 

 

Figure 29. (A) Top view of trimeric PSI shown in blue ribbons, with the psaL subunits shown in 
red and their N-termini highlighted in boxes. Side view of the psaA (blue) and psaL (red) 
subunits shown (B) after 40 ns of MD simulation with the associated lipids identified in the 
crystal structure present (shown as VDW spheres) and (C) after 200 ns of MD simulation without 
the associated lipids included. (Figure from Harris et al. 2014) 
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 Table 3. Simulation details for PSI/DDM models 

 

System Components 
No. of 
water 

molecules 

No. of 
detergents 

No. of 
lipids 

No. of 
ions 

No. of 
atoms 

Box size 
(nm) 

Simulation 
time (ns) 

PSI/DDM 
void-filled 

ring 
model 

PSI, DDM 248,861 1,002 - 44 Na
+
 977,756 

28.0 x 
28.0 x 
13.5 

200 

PSI/DDM 
w/ lipids 
model 

PSI, DDM, 
LMG, LHG 

245,775 1,002 
3 LHG,  
1 LMG 

283 Na
+
, 

230 CL
-
 

970,497 
28.0 x 
28.0 x 
13.5 

40 

PSI/DDM 
random 
model 

PSI, DDM 912,442 997 - 44 Na
+
 2,986,094 

35.0 x 
35.0 x 
25.0 

20 

DDM 
micelle 

DDM 26,116 132 - - 89,040 
10.0 x 
10.0 x 
10.0 

100 

Figure 30. Side view of the PSI/DDM complex (A) prior to MD simulation and (B) after 200 ns of MD 
simulation. Side view of the pure DDM micelle (C) prior to MD simulation and (D) after 100 ns of MD 
simulation. The protein is shown in red ribbons, and the detergent in blue in low resolution surface 
representation. Water and counterions are omitted for clarity. Note that these images are not to 
scale. (Figure from Harris et al. 2014) 
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internal dynamics of the micellar aggregate as well as the protein complex 

embedded in the micelle. Therefore, we generated radial density profiles relative 

to the center of mass for both the pure DDM micelle and the PSI/DDM complex 

(Figure 31). In both cases, the detergent atom distributions and solvent-detergent 

interface are quite broad, as has been observed in previous studies. In the case 

of the PSI/DDM complex, there is a shift in the distributions of the detergent head 

and tail atoms compared to the pure DDM micelle, presumably due to protein- 

 

Figure 31. Radial atomic density profiles for (A) the PSI/DDM complex, and (B) the pure 
DDM micelle. In each case the atomic densities of the system components (protein = solid 
black line; detergent tails = dotted black line; detergent heads = dotted gray line; water = 
solid gray line) are plotted as a function of the distance from the center of mass of the 
system. Note that the water atomic density curve is plotted on a separate scale in (B). 
(Figure from Harris et al. 2014) 
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detergent interactions. In the pure detergent micelle system, the density profile of 

the detergent tail atoms is asymmetric, peaking sharply at 1.0 Å before gradually 

decreasing toward the center of the micelle, and displaying a width of ~30 Å 

between minima (Figure 31B, dotted black line). The non-zero density at the 

center of the micelle illustrates the tightly packed nature of the detergent tails in 

this system. In the protein-detergent complex, the tail atomic density profile is 

more symmetric, with a peak at 100 Å that reduces to zero by 80 Å due to the 

presence of the protein at the center of the complex; the width of the curve also 

broadens to ~40 Å (Figure 31A, dotted black line). A comparison of the detergent 

head atom densities for both systems reveals the opposite trend, with the DDM 

micelle system exhibiting a symmetric head atomic density profile with a peak at 

29 Å (Figure 31B, dotted gray line), while the PSI/DDM complex displays an 

asymmetric curve with a peak at 119 Å (Figure 31A, dotted gray line). The width 

of the head atom distribution broadens from ~35 Å for the detergent micelle to 

~50 Å for the protein-detergent system. In both the pure DDM and PSI/DDM 

systems, the detergent tails are more localized with high peak atomic densities, 

whereas the head group peak densities are less pronounced; this trend was also 

observed in MD simulations of aquaporin-0 in a lipid bilayer [207].  

We also plotted the atomic density curves before and after MD simulation for 

both the pure DDM micelle and PSI/DDM complex to observe how the 

component profiles are changing (Figure 32). In the case of the detergent 

micelle, the tail atomic density profile sharpens over the course of MD simulation 

as the detergent tails re-arrange from the initial configuration to become more 

densely packed. Meanwhile, the head atomic density curve shifts outward, 

possibly due to the transition from a spherical to an ellipsoidal micelle. For the 

PSI/DDM complex, a similar sharpening of the tail atom density profile is 

observed, while changes in the head atomic density curve are minimal. Table 4 

contains the atom densities at various time points for both systems, showing that 

the radial distances corresponding to the maximum head and tail atomic 

densities are stable over the course of MD simulation.  
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The water atomic density curve is similar in both the DDM micelle and 

PSI/DDM systems (Figure 31, solid gray line), approaching the bulk density value 

before the detergent head atom density has reached zero, indicating solvation of 

the hydrophilic detergent headgroups. This means that water significantly 

penetrates the detergent in both systems. Solvation of the DDM headgroups was 

also observed in an MD study of pure DDM micelles in water [144]. In the case of 

the PSI/DDM complex, the non-zero water atomic density throughout the protein 

is due to penetration of water into cavities on the stromal and lumenal faces. We 

also analyzed the distance between the head and tail atomic density peaks for 

Figure 32. Radial atomic density distributions before and after MD simulation for (A) the 
PSI/DDM complex, and (B) the DDM micelle. In each case, the atomic densities of the 
various components (hydrophilic heads before simulation = dark blue line; hydrophilic 
heads after simulation = light blue line; hydrophobic tails before simulation = dark red line; 
hydrophobic tails after simulation = light red line) are plotted as a function of the distance 
from the center of mass of the system. (Figure from Harris et al. 2014) 
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Table 4. Radial distances for maximum atomic densities of detergent head and tail atoms  

PSI/DDM complex DDM micelle 

Time (ns) 
Detergent 
Head (Å) 

Detergent 
Tail (Å) 

Time (ns) 
Detergent 
Head (Å) 

Detergent 
Tail (Å) 

0 117.0 100.3 0 32.0 10.7 

50 120.8 100.3 25 28.0 1.3 

100 117.8 99.8 50 28.0 8.0 

150 117.3 101.5 75 26.7 2.7 

200 119.3 100.8 100 26.7 1.3 

both systems. This value decreases from 28 Å for the pure DDM micelle to 19 Å 

in the case of the PSI/DDM complex, which suggests that the head-to-tail length 

of the detergent molecules is shrinking in order to match the detergent belt 

thickness to that of the exposed hydrophobic transmembrane region of the PSI 

trimer. This thinning of the detergent belt is clearly visible in both Figures 27C 

and 27D and Figures 30A and 30B, where DDM molecules depart from the initial 

uniform belt configuration as they shrink and conform to the transmembrane 

periphery of PSI over the course of MD simulation. 

Another interesting aspect of these systems is the solvent-accessible surface 

area (SASA) of the detergent atoms (Table 5). Calculating the SASA requires 

drawing a mesh of points extended by extending the known radius of each 

specified atom by the radius of a water molecule, and checking these points 

against the surface of neighboring atoms to determine if they are buried or 

accessible. The number of accessible points is then multiplied by the surface 

area that each point represents to determine the SASA. This value can be used 

as a measure of water accessibility and thus detergent packing. We have also 

plotted the SASA versus time for both systems (Figure 33), which shows that the 

SASA quickly reaches an equilibrium value in each case and further confirms the 

stability of these systems during MD simulation. The higher SASA value of 285.7 

± 9.6 Å2 for the PSI/DDM complex, versus 247.6 ± 12.3 Å2 for a pure DDM 

micelle, indicates a slightly more diffuse packing of detergent molecules for the 

protein-detergent system. Analyzing the SASA of the individual detergent head 
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and tail groups (Table 5) reveals that the SASA for the head atoms is actually 

lower for the PSI/DDM complex than the pure DDM micelle, while the tail atoms 

exhibit the reverse trend (see Table 6 for single DDM molecule schematic). This  

Table 5. Solvent-accessible surface area per detergent 

System Total (Å
2
) 1

st
 Head

a
 (Å

2
) 2

nd
 Head

b
 (Å

2
) Upper Tail

c
 (Å

2
) Lower Tail

d 
(Å

2
) 

PSI/DDM 

complex 
285.7 ± 9.6 213.7 ± 1.3 195.9 ± 1.5 154.1 ± 1.7 125.9 ± 1.7 

DDM 

micelle 
247.6 ± 12.3 224.0 ± 3.1 201.7 ± 3.7 148.2 ± 4.0 98.1 ± 3.3 

For each system, SAS was calculated using the VMD plugin with a probe radius of 1.4 Å 

a
 The first six carbon and five oxygen atoms (first glucose ring) 

b
 The second six carbon and oxygen atoms (second glucose ring) 

c
 The first six carbon atoms of the hydrocarbon tail 

d
 The last six carbon atoms of the hydrocarbon tail 

Figure 33. Detergent SASA versus time for (A) the PSI/DDM complex, and (B) the DDM 
micelle. SASA values are shown for: all detergent atoms (black solid line), the first head 
group (black dotted line), the second head group (gray dotted line), the upper tail group 
(black dashed line), and the lower tail group (gray dashed line). (Figure from Harris et al. 
2014) 
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Table 6. Comparison of the properties of the detergent tail 

 

Dihedral Angle Order 
Parameter (S

2
) 

MSD of Tail Hydrogen 
Atoms (Å

2
) 

 

Carbon #
*
 PSI/DDM DDM PSI/DDM DDM 

 

1 0.057 ± 0.012 0.026 ± 0.036 58.0 ± 22.5 84.7 ± 33.4 

2 0.049 ± 0.014 0.020 ± 0.033 56.6 ± 21.9 86.0 ± 33.8 

3 0.050 ± 0.014 0.019 ± 0.035 56.0 ± 21.6 85.5 ± 33.6 

4 0.052 ± 0.012 0.025 ± 0.033 55.6 ± 21.4 86.1 ± 33.8 

5 0.047 ± 0.013 0.021 ± 0.033 55.5 ± 21.2 86.6 ± 33.8 

6 0.045 ± 0.013 0.021 ± 0.031 55.8 ± 21.2 88.0 ± 34.3 

7 0.042 ± 0.013 0.018 ± 0.037 56.4 ± 21.3 89.4 ± 34.7 

8 0.037 ± 0.012 0.015 ± 0.032 57.6 ± 21.7 91.7 ± 35.7 

9 0.027 ± 0.012 0.016 ± 0.030 59.2 ± 22.4 94.3 ± 36.8 

10 0.020 ± 0.011 0.006 ± 0.032 61.5 ± 23.7 97.7 ± 38.7 

*Numbered from the first (closest to the head group) to last CH2 group of the detergent tail 

These values are time-averaged for the last 100 ns and the last 50 ns of MD simulation for the 

PSI/DDM and DDM micelle systems, respectively. 

indicates that the head groups are more tightly packed in the protein-detergent 

complex compared to the detergent micelle, while the tail groups are more 

loosely arranged. This suggests that the detergent belt surrounding PSI is 

becoming more like a bilayer structure than a micellar aggregate over the course 

of MD simulation. 

Internal structure and dynamics 

To determine the effect of protein-detergent interactions on the internal 

dynamics of the detergent, we calculated the dihedral order parameter (S2) for 

the detergent tail groups of both the PSI/DDM and DDM micelle systems (Table 

6). S2 is a measure of the equilibrium distribution of the orientation of 

hydrocarbon chains and gives insight into the chain conformations and 
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fluctuations in the detergent micelle interior [208]. Values for S2 can vary from 0.0 

to 1.0, spanning a range from random, uninhibited fluctuations to rigidly fixed 

conformations. Time-averaged S2 values of tail CH2 groups (a single DDM 

molecule is shown with Table 6 for reference) are consistently higher for the  

PSI/DDM complex compared to pure DDM, suggesting that the presence of 

protein results in more ordered detergent tail structures. This is in agreement with 

the favorable interactions we have noted throughout this chapter between the 

detergent and the hydrophobic transmembrane region of PSI, such as the visible 

thinning of the detergent belt as it conforms to the protein as well as the shrinking 

of the average head-to-tail length of a DDM molecule for the PSI/DDM complex 

compared to a pure DDM micelle. We also note that the variance (standard 

deviation) of the time-averaged S2 values is roughly equal to the mean in the 

case of the DDM micelle, possibly due to the greater fluctuations in this system 

compared to the PSI/DDM complex, whose S2 standard deviation equates to 

~20% of the mean. We also studied the diffusion of the detergent tail by 

analyzing the time-averaged mean-square displacements (MSDs) of the 

hydrogen atoms of each tail CH2 group (Table 6). The MSD values for the 

PSI/DDM complex are lower than those obtained for the pure DDM micelle, again 

indicating that the detergent tails are more ordered (less diffusive) in the protein-

detergent system. The results of the order parameter calculations and detergent 

tail diffusion analysis, combined with the SASA results, indicate that the 

detergent is overall more loosely arranged in the PSI/DDM complex compared to 

the DDM micelle, but that the detergent tails are more ordered. This is contrary to 

what is usually seen in lipid bilayer models, wherein the liquid disordered phase 

is more loosely packed than the liquid ordered phase [209, 210]. 

4.3.3 Implications for function 

As discussed previously, PSI is an integral membrane protein involved in the 

photosynthetic cycle of plants and microorganisms, utilizing solar energy to 

accomplish electron transfer across the thylakoid membrane and generate 

reducing power for carbon fixation. Having established that our MD model of 
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trimeric PSI embedded in a DDM detergent ring is a stable complex, we also 

wanted to discern any potential effects of solution dynamics and protein-

detergent interactions on the superstructure and function of this protein. 

Changes in Trimeric Structure of PSI 

It is known that PSI adopts a trimeric structure in cyanobacteria, but exists as 

a monomer in algae and higher plants. In the case of plant PSI, the peripheral 

interfaces of the PSI monomer participate in interactions with peripheral antenna, 

including the light-harvesting complex II (LHCII) [211]. As these organisms are 

typically found in land surface and shallow water environments, LHCII 

recruitment is necessary for regulation and protection from high light intensity 

and photodamage common to these environs. In contrast, cyanobacterial PSI 

does not possess an external antenna system and the peripheral interfaces of 

individual PSI monomers function primarily to maintain the trimeric superstructure 

of this protein. Cyanobacterial PSI may exist as a trimer in order to provide a 

larger antenna system for optimal capture of dim light in order to combat the low 

light conditions common to the natural habitat of these species [212]. The 

individual psaL subunits and their associated chlorophylls are hypothesized to be 

central to this process by serving as sites for excitation energy transfer between 

adjacent monomers in the PSI trimer. Experimental studies have shown that the 

growth of T. elongatus psaL deletion mutants under low light conditions was 

decreased by a factor of ten relative to wild type, and these mutants were also 

unable to form trimers [213]. 

A particularly intriguing result of this simulation study is the high fluctuations of 

the N-termini of the psaL subunits of the PSI trimer, resulting from the extension 

of these flexible regions out of the trimer voids into the solvent (Figure 29C). This 

extension is seen in two of the three psaL subunits of trimeric PSI and is a 

relatively fast event, occurring after ~20 ns of MD simulation. The X-ray crystal 

structure of cyanobacterial PSI contains several associated lipids, with one 

particular phospholipid identified as being bound to psaA and in close proximity 
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to psaL and the monomer-monomer interface [9]. We therefore conducted MD 

simulations of the PSI/DDM complex with the identified lipids included (see 

Materials and methods) in order to ascertain if this might have an effect on the 

observed extension of psaL, and found that the N-termini of all three psaL 

subunits remained in the trimer voids without extending into the solvent for the 

entirety of a 40 ns MD simulation (Figure 29B). The absence of these lipids from 

our MD model of the PSI/DDM complex could therefore contribute to the 

extension of the psaL N-termini during dynamics, and could also result in further 

destabilization of the trimeric superstructure of PSI on longer timescales, as the 

psaL subunits are vital to the trimerization process and these integral lipids are 

believed to be functionally important to PSI and not mere preparation artifacts. 

For comparison, similarly associated phospholipids have been found to be 

functionally important in the case of the yeast cytochrome bc(1) complex [214], 

as well as that of the photosynthetic reaction center of the purple bacterium 

Rhodobacter sphaeroides [215]. 

Docking of Soluble Electron Mediators 

The particular role of PSI in photosynthesis is to use solar energy to 

accomplish the transfer of electrons provided by soluble electron carriers on the 

lumenal side of the thylakoid membrane to electron mediators on the stromal 

side. These transferred electrons will be used to reduce NADP+ to NADPH, thus 

providing reducing power for the cell [10]. Researchers have thoroughly 

investigated these docking processes, including the docking of cytochrome c6 

(cyt c6) and plastocyanin (PC) on the lumenal face of PSI, as well as of ferredoxin 

(Fd) on the stromal face. Sommer et al. determined the major interaction site for 

cyt c6/PC docking to be a hydrophobic lumenal indentation formed by psaA and 

psaB, and also identified two tryptophan residues crucial to this docking process 

[200]. In terms of Fd docking, mutagenesis studies conducted by several 

research groups have identified residues of the stromal ridge subunits (psaCDE) 

that are involved in Fd docking on the stromal face through electrostatic 
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interactions [201]. Additionally, all-atom MD studies have previously been used to 

study the docking of cytochrome c6 and plastocyanin to PSI monomer in vitro 

[216].  

Using the docking prediction server ZDOCK [199] and our MD model of 

detergent-solubilized PSI, we have attempted to investigate the docking of the 

electron mediators cyt c6 and Fd to PSI in vitro (see Materials and methods). 

Comparing docking predictions based on snapshots of the PSI/DDM MD 

simulation trajectory to those obtained using the PSI crystal structure, we were 

able to determine the effects of solution dynamics and protein-detergent 

interactions on cyt c6 and Fd docking to PSI. In general, we found that the 

presence of detergent had little effect on the docking of soluble electron carriers, 

as the predicted docking based on the MD snapshots did not differ significantly  

Table 7. Cα RMSD values for mediator docking to PSI/DDM MD trajectory 

Time (ns) 
Cyt c6 

Docking 
RMSD (Å) 

Fd Docking 
RMSD (Å) 

20 1.50 5.25 

40 3.58 1.98 

60 1.21 2.60 

80 2.20 3.07 

100 1.55 3.18 

120 3.81 3.07 

140 3.72 4.28 

160 2.11
*
 3.38 

180 1.63 2.83 

200 1.77 2.14 

*
Predicted docking of cyt c6 was successful for only two of three PSI monomers for the 160 ns 

MD snapshot 
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the predicted docked structures based on the PSI crystal structure are shown in 

Table 7. Cyt c6 docking to MD simulation snapshots differed by an average of 

from that based on the crystal structure. Cα RMSD values of predicted docked 

mediator structures based on the PSI/DDM MD simulation trajectory relative to 

2.31 ± 1.01 Å relative to that based on the crystal structure, while Fd docking 

differed by an average of 3.18 ± 0.97 Å. We propose that these slight differences 

in binding can be attributed to fluctuations in the key binding residues referenced 

previously, which is indicative of an induced-fit mechanism for mediator docking. 

For the case of ferredoxin, the difference in mediator docking can probably be 

attributed to the ~3.0 Å structural drift of the stromal ridge psaDE subunits 

relative to the crystal structure over the course of MD simulation (Figure 26, black 

dashed line), which results in conformational changes that alter Fd docking. Also 

of note is the fact that several key residues associated with Fd binding display 

high fluctuations during the simulation, specifically residues T14 and Q15 of 

psaC and residue K104 of psaD (Table 8). Experimental studies involving 

mutations of these residues in PSI are known to affect the charge of the binding 

pocket for Fd [201]. Also, the triple mutation I12V/T15K/Q16R of psaC in PSI 

from the green algae Chlamydomonas reinhardtii, which corresponds to 

I11V/T14K/Q15R in T. elongatus PSI, has been shown to reduce Fd binding by 

two orders of magnitude [217]. As such, fluctuations in these residues could also 

contribute to the altered binding of Fd to PSI under detergent-solubilized 

conditions. 

The root cause of differences in the docking of cytochrome c6 to PSI is not so 

clear, as this mediator binds to a hydrophobic indentation on the lumenal face 

formed by the psaAB subunits, which represent the reaction center of PSI and 

display the lowest structural drift during MD simulation of the PSI/DDM complex 

relative to the PSI crystal structure (Figure 26, gray solid line). Additionally, the 
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Table 8. RMSF values for PSI-mediator binding site residues 

 Residue
*
 

PSI/DDM MD 
Model RMSF 

(Å) 

Crystal 
Structure RMSF 

(Å) 

S
tr

o
m

a
l 

T14C 1.96 ± 0.02 1.26 

Q15C 2.00 ± 0.03 1.25 

K104D 2.74 ± 1.13 1.13 

L
u

m
e
n

a
l 

R627B 1.61 ± 0.69 1.07 

D628B 1.64 ± 0.50 1.13 

Y629B 1.89 ± 0.56 1.17 

L630B 1.60 ± 0.55 1.13 

*
Format for residue identifier is one-letter amino acid symbol, residue number, subunit name 

key residues believed to be involved in cyt c6 binding, W655 from psaA and 

W631 from psaB, do not fluctuate noticeably. However, there are several 

residues of the lumenal helix l of psaB, specifically R627 through L630, that 

exhibit unusually high RMSF values (Table 8). Experimental studies involving 

mutations of helix l have shown that this loop is essential for binding and 

subsequent electron transfer with the soluble electron donors cytochrome c6 and 

plastocyanin [218]. As such, it is possible that fluctuations in this luminal helix 

could contribute to the altered binding of cyt c6 to PSI under detergent-solubilized 

conditions that we have observed. 

4.4 Summary 

We have conducted MD simulations of DDM detergent-solubilized trimeric PSI, 

one of the largest membrane protein complexes known to have so far been 

studied. RMSD analysis relative to the crystal structure has shown it to be a 

stable complex, with Cα RMSD values in a range that suggests the behavior of 

PSI in a DDM micellar environment is similar to that observed in MD studies of 

membrane proteins in lipid bilayers. Also, we identified the largest contributors to 

the structural drift of this protein to be the peripheral transmembrane subunits, 
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which are in close contact with detergent molecules and in general become more 

compact and kinked during the MD simulations. Investigating protein local 

mobility based on RMSF, we observe that regions of low atomic mobility are 

confined to the core residues of the reaction center which are not solvent-

exposed, while regions of high fluctuation correspond to flexible loops of the 

stromal domains and turns in the transmembrane helices, all of which are 

exposed to solvent. 

We further examined differences in detergent behavior in the protein-detergent 

complex relative to a pure detergent micelle. We observe a thinning of the 

detergent belt thickness over the course of MD simulation for the PSI/DDM 

complex as the detergent conforms to the non-uniform hydrophobic periphery of 

the protein. The complex as a whole becomes more ellipsoidal in shape over the 

course of MD simulation, a transition that was also observed in MD studies of the 

pure detergent micelle. Radial atomic density profiles for various system 

components indicates that the presence of the protein results in a broadening of 

the detergent head and tail atom density curves relative to the micelle system, 

but results in little change to the extent of water penetration. We also note that 

the distance between the peaks of the head and tail atom densities decreases 

from 28 Å for the pure DDM micelle to 19 Å for the PSI/DDM complex, indicating 

that favorable protein-detergent interactions involving the hydrophobic 

transmembrane region of PSI result in the shrinking of the detergent molecules. 

Solvent-exposed surface area (SASA) analysis of the detergent atoms suggests 

that the DDM detergent is more loosely arranged in the presence of protein 

compared to a pure detergent micelle, but with differing trends in the detergent 

head and tail groups. Based on evaluation of the dihedral angle order parameters 

(S2) of the detergent tail CH2 groups and MSD values for the associated 

hydrogen atoms, we have further concluded that the detergent tails are more 

ordered in the PSI/DDM complex compared to the DDM micelle. Taken in its 

entirety, we believe the behavior of the transmembrane domain of PSI and the 

surrounding detergent molecules in our simulations suggests a degree of 
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plasticity in the structure of the in vivo complex. The membrane-shielded region 

of the protein can adapt to the bilayer thickness and vice versa via kinking and 

tilting motions of the peripheral transmembrane helices and the rearrangement of 

surrounding lipid molecules, thus enabling PSI to adapt to different bilayer 

environments, such as different lipid types or phases, etc. 

We have also attempted to ascertain any functional consequences for this 

photosynthetic protein complex as a result of solution dynamics and protein-

detergent interactions. We believe the extension of the N-termini of the psaL 

subunits from the trimer voids out into the solvent during MD simulation is due to 

the absence of integral lipids identified in the PSI crystal structure from our 

model, and believe this behavior could have an impact on the trimeric structure of 

PSI on longer timescales. We have determined that docking of the soluble 

electron mediators cytochrome c6 and ferredoxin is not hindered by the presence 

of detergent, differing only slightly for predictions based on our MD trajectory of 

detergent-solubilized PSI relative to predictions based on the known crystal 

structure of PSI. We propose that the slight changes in binding are due to 

fluctuations in key binding site residues during the MD simulation, which may 

imply an induced-fit mechanism for mediator docking. These results yield new 

insights into the structural integrity and activity of PSI in vitro. 

In conclusion, the use of all-atom molecular dynamics simulation and 

subsequent analyses conducted herein demonstrate a novel approach to 

understanding the solution structure and dynamics of detergent-solubilized 

membrane proteins at the atomic level. Furthermore, the results yielded by this 

study in particular offer a solid starting point for understanding the in vitro 

structure and dynamics of the photoactive pigment-protein complex photosystem 

I, an integral membrane protein that functions as a key component in the 

photosynthetic cycle of plants and microorganisms. Of particular significance is 

the indication that integral lipids may be crucial to maintaining the stability of 

trimeric PSI in detergent solution. Also, the presence of DDM detergent does not 

appear to interfere with PSI activity.  
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Having established our ability to computationally model PSI, we can easily 

translate this MD simulation approach to studying complexes of PSI and other 

proteins, such as hydrogenase enzyme. Such work can yield new insights into 

solution dynamics and protein-protein interactions in multi-protein systems, and 

in the particular case of PSI-hydrogenase fusions, potentially allow us to predict 

optimal conditions for electron transport between these two proteins.   
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CHAPTER V 
ENGINEERING OF PHOTOSYSTEM I – HYDROGENASE PROTEIN 

FUSIONS USING SORTASE-MEDIATED LIGATION 
 

5.1 Introduction 

As stated previously, gaining knowledge of the effects of protein-environment 

and protein-protein interactions on the stability and activity of proteins and multi-

protein complexes will advance our scientific understanding of the biological 

world and could have a significant impact for applications in a wealth of areas 

such as alternative energy, drug delivery, etc. This is especially true in the case 

of integral membrane proteins such as PSI, which mediate a variety of functions 

within the cell. 

PSI accomplishes the unique biological function of converting solar energy into 

reducing power, and as such is actively researched as an alternative energy 

solution, as has been reviewed before. In particular, cell-free photoproduction of 

H2 has been demonstrated in a variety of PSI-based systems, including 

chemically platinized thylakoid membranes [12, 23] and isolated PSI trimers [13, 

14, 24], as well as complexes of PSI and hydrogenase enzyme [16, 37, 38, 163].  

In previous chapters, we presented our study of the solution structure of DDM 

detergent-solubilized cyanobacterial PSI using a combination of SANS and MD 

simulation [195], and our in-depth analysis of this system using all-atom MD 

simulations of trimeric PSI embedded in a DDM detergent ring. Our SANS study 

revealed that the dimensions of the PSI/DDM complex were consistent with 

trimeric PSI embedded in a disk-like detergent micelle. Conducting MD 

simulations on a PSI/DDM complex constructed based on these SANS results, 

we have shown this to be a stable system, and have gained new insights into the 

effects of protein-detergent interactions on detergent organization and packing 

that suggests a degree of plasticity in the in vivo complex of PSI embedded in the 

thylakoid membrane. Furthermore, this simulation study has revealed new 

information on the structural integrity and activity of PSI in vitro that could prove 
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important in PSI-based energy conversion devices. Applying a similar 

combination of experimental and computational approaches to the study of PSI in 

complex with other proteins could provide new insights on electron transport in 

redox proteins and the structure and function of multi-protein complexes in 

general, and the study of PSI-hydrogenase fusions in particular could provide 

new insights for alternative energy solutions via the photoproduction of H2. 

In this chapter, we present our work towards experimentally generating a site-

specific fusion of PSI from T. elongatus and the membrane-bound [NiFe]-

hydrogenase (MBH) from R. eutropha. We accomplish this ligation using sortase, 

a transpeptidase enzyme found in most Gram-positive bacteria whose in vivo 

function is the covalent anchoring of a variety of surface proteins to the cell wall 

envelope [219]. The particular isoform used here, Staphylcoccus aureus sortase 

A (SrtA), has been demonstrated as a viable option for a wide variety of protein 

engineering and bioconjugation applications [220, 221]. In parallel, we have also 

conducted MD simulations of this PSI-MBH fusion protein, as well as of PSI-

molecular wire-[FeFe]-hydrogenase complexes previously studied experimentally 

by Golbeck and co-workers [16, 38], to allow for atomic-level analysis of the 

effects of solution dynamics and protein-protein interactions on the structure and 

function of multi-protein complexes, and potentially predict optimal linkage 

strategies for electron transport between PSI and hydrogenase. 

5.2 Materials and methods 

5.2.1 Strains and plasmids 

The strains and plasmids used in this study are listed in Table 9. Ralstonia 

eutropha H16 (ATCC 17699, DSM 428) is the wild-type strain harboring the 

endogenous megaplasmid pHG1, a large operon containing all the structural, 

accessory, and regulatory genes necessary for the synthesis of active MBH 

[222]. R. eutropha HF387 is a derivative of wild-type R. eutropha H16 that lacks 

the NAD+-dependent soluble hydrogenase (SH) because of an in-frame deletion  
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Table 9. Relevant bacterial strain/plasmid information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the structural gene hoxH [223]. This strain was a kind gift from Dr. Oliver Lenz 

(Institute for Biology, Humboldt University of Berlin). R. eutropha HF387H is a 

derivative of R. eutropha HF387 containing a six histidine (His6) purification tag 

on the C-terminus of the MBH small subunit hoxK, and was previously 

constructed in our lab by Iwuchukwu et al. [224]. 

Strains and plasmids Relevant characteristic(s) Source 

R. eutropha 

H16 

HF387 

HF387H 

NGLY3 

 

Wild-type 

Derivative of H16, ΔhoxH 

Derivative of HF387H, hoxK-His6 

Derivative of HF387H, Gly3-hoxK-His6 

 

[222] 

[223] 

[224] 

This work 

Synechocystis 

PCC 6803 

CLPETG 

DLPETG 

ELPETG 

 

Wild-type 

Derivative of 6803, psaC-LPETG 

Derivative of 6803, psaD-LPETG 

Derivative of 6803, psaE-LPETG 

 

[225] 

[226] 

[226] 

[226] 

E. coli 

JM109 

 

 

S17-1 

 

endA1 gyrA96 hsdR17 Δ(lac-proAB) 

recA1 relA1 supE44 thi-1 

F’[lacI
q
lacZΔM15 proAB

+
 traD36] 

Tra+ recA pro thi hsdR, chr.:RP4-2 

 

Promega 

[227, 228] 

Plasmids 

pLO3 

pGEM-T Easy 

 

pHoxKG 

 

pHoxKGmod 

 

pLO3-HoxKGmod 

 

Tet
R
 sacB RP4 OriT colE1 ori 

Amp
R
, lacZ, f1 ori, T7 gene promoter, 

Sp6 gene promoter 

6078 bp fragment containing hoxKG 

genes in pGEM-T Easy vector 

Derivative of pHoxKG containing Gly3 

tag on N-terminus of hoxK 

Derivative of pHoxKG in pLO3 

 

[229] 

Promega 

 

This work 

 

This work 

 

This work 
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Synechocystis sp. PCC 6803 was also used for this study. Synechocystis 

CLPETG, DLPETG and ELPETG are derivatives of Syn. 6803 containing an 

LPETG tag on the C-terminus of the psaC, psaD, and psaE subunits, 

respectively. These strains were constructed in our lab by Rosemary Le [226]. 

Escherichia coli JM109 was used as the recipient in standard cloning 

procedures, and E. coli S17-1 was used as the donor in conjugative gene 

transfer [227, 228].   

5.2.2 Isolation of R. eutropha megaplasmid DNA 

The megaplasmid DNA of R. eutropha HF387H was isolated as described 

previously [230]. Briefly, 1.5 mL of R. eutropha HF387H was grown in FGN 

minimal media for ~30 h. Cells were harvested via centrifugation at 8,000 x g for 

1 min, and the cell pellet was gently resuspended in 500 µL of lysis buffer (0.3 M 

sucrose, 25 mM Tris-HCl pH 8.0, 25 mM EDTA pH 8.0). 5 mg of lysozyme and 

25 µg of RNase A were added and the mixture incubated at 37°C for 20 min 

without shaking. 250 µL of 2% SDS was added, mixed by inverting and then 

incubated for 5 min at room temperature. 250 µL of phenol/chloroform/isoamyl 

alcohol (25:24:1) was then added and the mixture emulsified by tube inversion. 

The aqueous and phenol phases were subsequently separated via centrifugation 

at 12,000 x g for 5 min. The aqueous phase (~700 µL) was transferred to a clean 

DNase-free tube, and 0.1 vol. of 3 M sodium acetate pH 4.8 followed by 1 vol. of 

isopropanol were then added. The mixture was incubated at room temperature 

for 5 min, and the precipitated DNA recovered via centrifugation at 12,000 x g for 

10 min. The supernatant was removed, leaving ~50 µL in the tube, and 500 µL 

ice-cold (-20°C) 70% ethanol was added. The tube was kept at -20°C for 30 min 

and the precipitated DNA recovered via centrifugation at 12,000 x g for 30 min at 

-2°C. The supernatant was discarded and any residual ethanol evaporated by 

speed vacuum, and the pellet was then dissolved in 50 µL of nuclease-free 

distilled water. 
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5.2.3 Genetic construction of N-terminally Gly3-tagged hoxK 

A Gly3 tag fusion to the N-terminus of the MBH small subunit hoxK was 

constructed as follows. Using primers 1 and 2 (Table 10) and the megaplasmid 

DNA of HF387H as template, a 3 kbp fragment containing the hoxKG genes with 

~1 kbp of homology on either side was amplified by PCR (TaKaRa Ex Taq DNA 

polymerase, Clontech) and subsequently T/A cloned into the cloning vector 

pGEM-T easy (Promega) to form pHoxKG. The resulting pHoxKG plasmid was 

transformed into chemically competent E. coli JM109 cells (Promega), and 

successful inserts selected using blue-white screening on ampicillin-containing 

media, as pGEM-T Easy contains the lacZ promoter as well as the ampicillin 

resistance gene ampR. These cells were inoculated in LB/ampicillin media, and 

the plasmid DNA isolated using the PureYield™ plasmid miniprep system 

(Promega) and the nucleotide sequence confirmed by sequencing. 

The Gly3 tag was subsequently introduced at the N-terminus of the matured 

protein, in order to account for cleavage of the membrane translocation signaling 

peptide [25, 231], via overlapping PCR. First, using primers 1 and 3 and pHoxKG 

as template, a 1 kbp fragment containing the hoxK gene modified to include the 

Gly3 tag at its N-terminus was amplified by PCR (designated GlyUP in Figure 34). 

Second, using primers 2 and 4 and again using pHoxKG as template, a 2 kbp 

fragment also containing N-terminally Gly3 tag modified hoxK was amplified by 

PCR (designated GlyDOWN in Figure 34). Finally, using primers 1 and 2 and the 

GlyUP and GlyDOWN PCR fragments as template, the complete hoxKG gene  

Table 10. Oligonucleotide primers used for targeted mutagenesis of hoxK gene 

Primer 

# 
Designation DNA Sequence 5’-3’ 

1 HoxKG_Forward TTAGAGCTCAGCGCTTCGATCTGCAAGAACTAC 

2 HoxKG_Reverse TTACTCGAGGGCCTGTTTATACAGTGTGCCGATGG 

3 TriGly_Upper GGAGGTGGAATGGAAACCAAGCCGCGTACACCA 

4 TriGly_Lower GGCTTGGTTTCCATTCCACCTCCCGCGTGCGCGATCTGC 
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fragment with the desired Gly3 tag was amplified via PCR and T/A cloned into 

pGEM-T Easy to form pHoxKGmod. As before, this plasmid was transformed into 

E. coli JM109 and the plasmid DNA harvested via PureYield™ and sequence 

verified. 

5.2.4 Conjugative plasmid transfer and gene replacement 

In order to introduce the mutated enzyme back into R. eutropha via 

homologous recombination, SacI restriction enzyme digested fragments from 

pHoxKGmod were ligated into pLO3 to form pLO3-HoxKGmod. Conjugal gene 

transfer was then accomplished as follows (a schematic of this process is shown 

in Figure 35). Donor (E. coli S17-1) and recipient (R. eutropha HF387H) strains 

were grown to late exponential phase. 1 mL of the donor 3 mL of the recipient 

strains were concentrated via centrifugation (3,500 x g for 5 min) and washed 

three times with LSLB-MOPS media and then resuspended in 100 µL of LSLB-

MOPS media. Mobilizable plasmids were transferred from E. coli S17-1 to R. 

eutropha HF387H via conjugation by spot mating 200 µL of the donor/recipient 

mixture on D-medium. After 16 h of incubation at 30°C in the dark, cells were re-

suspended with 700 µL of FGN media and washed once by centrifugation at 

Figure 34. Schematic of overlapping PCR for introduction of Gly3 tag to N-terminus of 
hoxK from Ralstonia eutropha HF387H. 
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3,500 x g for 5 min. Several dilutions of the cell suspension were spread onto 

FGN plates containing 15 µg/mL tetracycline, with transconjugants appearing 

after 3-5 days incubation at 30°C. Tetracycline-resistant transconjugants were 

picked and purified twice by streaking onto FGN/Tet plates, then inoculated in 2 

mL LSLB-MOPS and incubated overnight at 30°C. 100 µL of cells were then 

spread onto LB plates with 15% sucrose, and sucrose-resistant survivors picked 

for screening by isolation of the megaplasmid DNA and verification of the 

presence of the Gly3 tag by DNA sequencing.  

5.2.5 Purification of MBH from R. eutropha 

R. eutropha strains were grown micro-aerobically as described previously 

[232], and the MBH was purified according to the method of Wisitruangsakul et 

al. [233]. Briefly, cells were grown in a modified FGN minimal medium containing 

0.05% (w/v) fructose and 0.4% (w/v) glycerol. Four baffled 2 L Erlenmeyer flasks 

were filled with 1.6 L culture and shaken at 120 rpm and 30°C for approximately 

one week. Cells were harvested via centrifugation at 5,000 x g and 4°C for 15 

min, and washed once with phosphate buffer (71 g L-1 Na2HPO4•7H2O, 15 g L-1 

Figure 35. A) Strategy for introducing the Gly3 tag to R. eutropha via conjugation (the green 
portion represents the Gly3 tag and the purple portion the His6 purification tag), and (B) the 
accompanying screening process (Figure from Iwuchukwu et al. 2011). 
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KH2PO4). Resulting cell pellets were flash frozen in liquid N2 and stored at -80°C. 

Cells were re-suspended in lysis buffer (50 mM KH2PO4 pH 8.0, 300 mM NaCl, 

20 mM imidazole, 25 µL DNase I (Thermo Scientific), and 1 pellet of EDTA-free 

protease inhibitor cocktail (PIC, Roche)) at a ratio of 12 g cells (wet weight) to 60 

mL lysis buffer. Cells were disrupted via three passages through a chilled French 

press (Aminco SLC) at a cell pressure of ~30,000 psi. Cell debris was removed 

via low-speed centrifugation at 4,000 x g and 4°C for 20 min. The pale brown 

pellet was discarded, and the cloudy reddish brown supernatant was 

subsequently ultracentrifuged at 36,000 rpm (ice-cold Beckman Type 60 Ti rotor) 

and 4°C for 45 min. The clear red supernatant was discarded, and the reddish 

brown membranes were resuspended in solubilization buffer (50 mM KH2PO4 pH 

8.0, 300 mM NaCl, 20 mM imidazole, 2% Triton X-114, and 1 PIC pellet) at a 

ratio of 1.0 g membranes (wet weight) to 10 mL solubilization buffer. This mixture 

was then stirred at 4°C for 2 hours to solubilize the membrane proteins out of the 

native membrane, and subsequently ultracentrifuged at 36,000 rpm (ice-cold 

Beckman Type 60 Ti rotor) and 4°C for 45 min. The loose brown pellet was 

discarded, and the supernatant loaded onto a HisPur Ni-NTA column (3 mL bed 

volume (BV), Thermo Scientific) equilibrated with 20 mL of solubilization buffer. 

The column was then washed with 50 mL of solubilization buffer without 

detergent. Purified MBH was then eluted dropwise using 500 µL of elution buffer 

(50 mM KH2PO4 pH 8.0, 300 mM NaCl, 250 mM imidazole) until the A280 

absorbance (NanoDrop spectrophotometer) reached zero. All purification steps 

were performed at 4°C. Fractions were pooled and concentrated using a 

centrifugal filter (Amicon Ultra-15 (30,000 MWCO), Millipore), buffer exchanged 

and stored at -20°C in storage buffer (50 mM KH2PO4 pH 5.5, 150 mM NaCl, 

20% glycerol). 

5.2.6 SDS-PAGE and immunoblot analysis 

 Protein concentrations were determined using the BCA method with bovine 

serum albumin as standard (Pierce). The purity of samples was estimated via 

visual inspection by SDS-PAGE electrophoresis of polyacrylamide gels and 
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subsequent staining with Coomassie Brilliant Blue G-250 (Fisher). For the 

detection of protein samples containing hoxK/G, the respective samples were 

resolved on pre-cast 10% Bis-Tris polyacrylamide gels (NuPAGE Novex, Life 

Technologies) and subsequently transferred to polyvinylidene fluoride (PVDF) 

membranes (Immobilon, Millipore). For immunological detection of MBH-related 

proteins, antisera were applied in the following dilutions: anti-hoxK serum 

(1:20,000) and anti-hoxG serum (1:1000). HoxK antiserum was a kind gift from 

Dr. Oliver Lenz (Institute for Biology, Humboldt University of Berlin), and hoxG 

antiserum was a kind gift from Dr. Carrie Eckert (Energy Sciences Division, 

National Renewable Energy Laboratory (NREL)). Secondary detection was 

accomplished via chemiluminescence of a horseradish peroxidase conjugate 

using the Clean-Blot IP Detection Kit (Thermo Scientific).  

5.2.7 Hydrogenase activity assays 

Hydrogen evolution activity using reduced methyl viologen as electron donor 

Hydrogenase activity was measured in two ways: hydrogen (H2) evolution and 

hydrogen uptake. The H2 evolution activity assay was carried out in a 2 mL GC 

vial containing 1.5 mL of 50 mM KH2PO4 (pH 7.0 for cell lysates/membrane 

extracts, and pH 5.5 for solubilized membrane proteins/purified MBH), 3 mM 

methyl viologen, and the hydrogenase sample (50-200 µL), as described 

previously [37]. The headspace was flushed with N2 for 10 min, and the reaction 

was catalyzed by the anaerobic addition of 20 mM sodium dithionite (prepared in 

a glove box under inert atmosphere). H2 evolution was measured every 50-60 

min over the course of ~3 h by withdrawing 100 µL from the headspace and 

analyzing it with a gas chromatograph (GC) calibrated with H2, and the activity 

was measured as the slope of the time-dependent reaction. A 5890 Series III 

(HP) GC equipped with a thermal conductivity detector and Supelco Carboxen 

1000 column was used for these measurements. One unit of activity was defined 

as 1 µmol H2 evolved/min/mg protein. 

Hydrogen uptake activity using methylene blue as electron acceptor  
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Hydrogenase activity was also measured by monitoring H2-dependent 

methylene blue reduction spectrophotometrically using a modified version of the 

protocol of Schink and Schlegel [234]. This method was used qualitatively for the 

monitoring of MBH purifications, and quantitatively for characterization of MBH 

enzyme. In this assay, 50 mM KH2PO4 buffer at pH 7.0 was used as the reaction 

buffer for membrane fractions, whereas for soluble extracts, solubilized 

membrane proteins, and purified MBH samples 50 mM KH2PO4 at pH 5.5 was 

used. A gas-tight cuvette containing 2.9 mL of reaction buffer with 200 µM 

methylene blue was flushed with H2 for 30 min at room temperature. The protein 

sample (50-200 µL) was then injected to start the reaction, and the reaction was 

followed by monitoring the absorbance at 570 nm at room temperature for 10-20 

min using a spectrophotometer (Thermo Scientific BioMate 3S). Using the molar 

extinction coefficient of methylene blue (ε570 = 13.1 cm2 µmol-1) and the protein 

concentration of the sample, the H2-dependent methylene blue reduction activity 

was then calculated based on the slope of the time-dependent reaction. One unit 

of activity was defined as 1 µmol H2 oxidized/min/mg protein. 

5.2.8 Sortase-mediated ligation of PSI and MBH 

Fusions of PSI and MBH were generated via site-specific ligation of the C-

terminus of the stromal psaC, D, or E subunits of PSI to the N-terminus of the 

small subunit hoxK of MBH using the sortase enzyme SrtA [219]. Reactions were 

carried out in 1X TBS pH 8.0, 60 mM CaCl2 and 0.04% DDM, using a 10:1 

excess of MBH:PSI and a 1:1 ratio of sortase to total reactants (e.g. 10 µM PSI-

LPETG, 100 µM GGG-MBH, and 110 µM sortase). Reactions were incubated at 

38°C for 4 h, and then the reaction was stopped by the addition of EDTA to a 

final concentration of 10 mM to inactivate the sortase enzyme.  

5.2.9 Hydrogen evolution activity using reduced DCIP as electron donor 

The activity of the PSI-MBH protein fusions was assayed via light-induced H2 

evolution. Reactions were carried out in a 2 mL GC vial containing 1.5 mL of 

reaction buffer (50 mM KH2PO4 pH 5.5) with 0.04% (w/v) DDM, 100 mM sodium 
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ascorbate (NaAsc), 1.7 mM dichlorophenolindophenol (DCIP), 30 µM methyl 

viologen (MV), and the sortase reaction mix (100-250 µL). The reaction buffer 

and the NaAsc, DCIP, and MV stocks were flushed with N2 for 10 min. NaAsc, 

DCIP, and MV were then anaerobically injected into the reaction vial, and the 

protein sample was then injected. Samples were illuminated under 240 

µEinsteins/m2/sec of white light for ~3 hours at room temperature. 100 µL was 

then withdrawn from the headspace and analyzed on a GC to quantify the 

amount of H2 produced. 

5.2.10 MD models of PSI-hydrogenase protein fusion complexes 

Monomer-monomer PSI-hydrogenase fusions were built based on the known 

crystal structures of PSI from T. elongatus [9] (PDB ID: 1JB0), MBH from R. 

eutropha [34] (PDB ID: 3RGW), and the [FeFe]-hydrogenase (FeFe H2ase) from 

C. pasteurianum [235] (PDB ID: 1FEH). As was the case in the previous chapter, 

the 91 out of ~2,300 residues missing from the PSI crystal structure, including the 

flexible N-termini of psaF and psaK, were not included in these simulations. 

Additionally, there are 70 out of 942 residues not resolved in the MBH crystal 

structure that were also not included in the simulations, including the final 65 

residues of the C-terminus of the small subunit hoxK. These terminally located, 

intrinsically disordered regions are expected to play a role in PSI-MBH 

interactions, but are unlikely to significantly affect the global dynamics of the PSI-

MBH fusion complex during simulation. Phylloquinone molecules located in the 

reaction center core of PSI were also not included in the simulations. 

As PSI is a membrane-integral protein, a monolayer belt of DDM detergent 

was built around the transmembrane periphery of the PSI monomer in a similar 

manner to that described in the previous chapter (Figure 36A). For the PSI-MBH 

fusion model, a predicted structure for the LPETGGG linker located on the N-

terminus of hoxK from MBH was generated using MODELLER [236], and PSI 

and MBH were ligated via a user script in VMD [175] (Figure 36B). For the PSI-

FeFe H2ase fusion models, PSI and FeFe H2ase were ligated via either an 

octanedithiol (Figure 36C) or decanedithiol molecular wire with a user script in 
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VMD. This was done according to the experimental method of Lubner et al., in 

which cysteines coordinating the FB cluster of PSI (residue C13 from psaC) and 

the distal [4Fe4S] cluster of the FeFe H2ase (residue C97) were mutated to 

glycines, and subsequently chemically rescued via a dithiol molecular wire to 

form a fusion complex [16]. All systems were subjected to 50 ps of MD 

Figure 36. (A) Top view from the stromal side of monomeric PSI surrounded by a belt of 
DDM detergent molecules. (B) Side view of the PSI-MBH fusion complex, with PSI in blue 
ribbons and MBH in red ribbons. (C) Side view of the PSI-FeFe H2ase fusion complex, with 
PSI in blue ribbons and FeFe H2ase in red ribbons. In all cases, detergent molecules are 
shown in lines format, and water and counterions are omitted for clarity. 
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equilibration in vacuo, and subsequently solvated with TIP3P water molecules. 

Sodium and chloride counterions were then added by random replacement of 

water molecules in order to neutralize each system. The solvated, neutralized 

systems were subjected to an additional 50 ps of MD equilibration, and then MD 

production runs were carried out.   

5.2.11 MD simulation details 

MD simulation details were as described in the previous chapter, with one 

important addition. Parameters for the active site and iron-sulfur clusters of the 

FeFe H2ase were based on the work of Chang and Kim [237]. 

5.3 Results and discussion 

5.3.1 Targeted mutagenesis of hoxK 

The complete nucleotide sequence of the R. eutropha megaplasmid pHG1 has 

been determined, and contains all the necessary structural, accessory, and 

regulatory genes for the synthesis of active MBH [222]. This enzyme is 

accessible to genetic engineering, and its biosynthesis and biochemical 

properties have been extensively studied [35, 229, 232, 238, 239].  

The megaplasmid DNA (mpDNA) of R. eutropha HF387H was isolated, and an 

~3 kbp fragment containing the hoxKG genes was amplified from the mpDNA via 

PCR and subsequently T/A cloned into pGEM-T Easy (Promega) to form 

pHoxKG (Figure 37A). pGEM-T Easy contains both an ampicillin-resistance 

cassette (ampR) and the lacZ promoter, allowing for easy selection of successful 

inserts via blue-white screening on ampicillin-containing media. The forward 

primer used, HoxKG_Forward, contains the GAGCTC sequence (shown in red in 

Table 10), thus allowing for future transfer of the DNA fragment via a SacI 

restriction enzyme digest. The Gly3 tag was then introduced to the N-terminus of 

hoxK as follows. Primers HoxKG_Forward and TriGly_Lower were used to 

amplify the GlyUP fragment from pHoxKG via PCR. TriGly_Lower is a reverse 

primer targeting the N-terminus of hoxK but also containing the additional nine 

codons for the Gly3 tag (shown in green in Table 10). Separately, primers 
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TriGly_Upper and HoxKG_Reverse were used to amplify the GlyDOWN fragment 

from pHoxKG via PCR. TriGly_Upper contains a complementary sequence to 

that of TriGly_Lower, including the nine codons for the Gly3 tag (shown in green 

in Table 10). Then, using primers HoxKG_Forward and HoxKG_Reverse and 

both the GlyUP and GlyDOWN PCR fragments as template, the Gly PCR fragment 

was amplified by PCR to produce the modified hoxK gene. The Gly PCR 

fragment was then T/A cloned into pGEM-T Easy to produce pHoxKGmod. A 

schematic of this overlapping PCR approach is shown in Figure 34. Ethidium 

bromide-stained agarose gel electrophoresis results are shown for various 

stages of this process in Figure 37B. The expected sizes of 1 kbp for GlyUP 

(Figure 37B, lane 2) and 2 kbp for GlyDOWN (Figure 37B, lane 3) were obtained 

after PCR amplification of pHoxKG using the aforementioned primers. 

Subsequent PCR amplification of these fragments using primers 

HoxKG_Forward and HoxKG_Reverse yields the 3 kbp Gly fragment (Figure 

37B, lane 4). A SacI double digest of pHoxKGmod, the plasmid resulting from 

T/A cloning of the Gly PCR fragment into pGEM-T Easy, results in a double band 

Figure 37. (A) pHoxKG plasmid resulting from T/A cloning of hoxKG PCR fragment into pGEM-T 
Easy. (B)  Ethidium bromide-stained agarose gel electrophoresis results. Lanes are as follows: (1) 
MW marker, (2) GlyUP PCR fragment, (3) GlyDOWN PCR fragment, (4) Gly PCR fragment, (5) SacI-
digested pHoxKGmod, and (6) SacI-digested pLO3-HoxKGmod. 
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at ~3 kbp corresponding to the sizes of the original vector and the Gly PCR 

fragment. For a complete explanation of mpDNA isolation, PCR reactions and 

cloning, see Materials and methods.  

5.3.2 Conjugal gene transfer in R. eutropha 

Bacterial conjugation is the transfer of genetic material between bacterial cells, 

either by cell-cell contact or bridge-like connections. As with transformation and 

transduction, conjugation is a mechanism of horizontal gene transfer. During 

conjugation, the donor strain provides a conjugative (mobilizable) genetic 

element, usually a plasmid or transposon. In this case, the mobilizable (suicide) 

vector pLO3 was used to facilitate the gene exchange procedure. pLO3 is a 

ColE1 replicon outfitted with the RP4 transfer origin (oriT) and a conditionally 

lethal Bacillus subtilis sacB gene in addition to a tetracycline resistance gene 

[229]. This vector is competent for mobilization in R. eutropha but incapable of 

autonomous replication in this bacterium [239]. Suicide vectors are used for 

allelic exchange of a non-selectable marker.  The TetR phenotype of the plasmid 

provides a direct selection for integration of the plasmid into the chromosome. 

Expression of the sacB gene is toxic for gram-negative bacteria when grown in 

the presence of 5% sucrose, providing a direct selection for loss of the plasmid 

[240]. E. coli S17-1 was used as the mobilizable (donor) strain, as it can carry the 

transfer genes of the broad host range IncP-type plasmid with chromosomally 

integrated RP4 derivative to promote mobilization, and can utilize any gram-

negative bacterium as a recipient for conjugative DNA transfer [227, 228].  
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In order to introduce the Gly3 tag mutation back into R. eutropha HF387H via 

conjugation, the Sac I-digested Gly fragment from pHoxKGmod was sub-cloned 

into pLO3 to form pLO3-HoxKGmod (Figure 38A). This plasmid was then 

transformed into E. coli S17-1 for conjugal transfer, and the modified hoxK 

sequence was introduced into R. eutropha via allelic exchange. Conjugation was 

initiated by spot-mating donor and recipient strains. Heterogenote (single 

crossover) recombinants were selected by screening for tetracycline resistance. 

TetR segregants were picked and purified by streaking. In a subsequent step, 

homogenote (double crossover) recombinants which have lost the vector 

sequence, including the sacB gene, were selected as sucrose-resistant 

survivors. A schematic of this process is shown in Figure 35B. The megaplasmid 

DNA of the resulting mutant strain (designated NGLY3 in Table 9) was isolated,  

 

Figure 38. (A) pLO3-HoxKGmod plasmid resulting from ligation of SacI-digested Gly3 fragment 
from pHoxKGmod into the suicide vector pLO3. (B) Electeropherograms showing sequence 
verification of the N-terminally Gly3 tagged hoxK gene R. eutropha mutant. The upper 
electropherogram was obtained via DNA sequencing using the HoxKG_Reverse primer (see Table 
10), with the orange region corresponding to the hoxK gene, the green region representing the N-
terminal Gly3 tag, and the blue region corresponding to the flanking sequence. The lower 
electropherogram was obtained via sequencing with the TriGly_Upper primer, with the orange 
region again representing the hoxK gene, the purple region the His6 purification tag, and the red 
region corresponding to the hoxK stop codon. 
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and the presence of the Gly3 tag on the N-terminus of hoxK, as well as the 

continued presence of the His6 purification tag on its C-terminus, was verified by 

DNA sequencing (Figure 38B). For the complete bacterial conjugation protocol, 

please refer to Materials and methods.  

5.3.3 Purification of the wild-type and mutant MBH 

  R. eutropha strains were grown micro-aerobically using the method of Lenz et 

al. [232]. This method involves growing cell cultures in flasks filled four-fifths full 

with a modified FGN minimal medium containing 0.05% (w/v) fructose and 0.4% 

(w/v) glycerol, which has been shown to increase the level of hydrogenase 

expression. Solubilized membranes containing wild-type MBH from R. eutropha 

H16 were isolated as described previously (Figures 39A,B) [233]. SDS-PAGE gel 

electrophoresis and subsequent Western blot analysis using an antibody against  

 

Figure 39. Subcellular localization of MBH in WT R. eutropha H16. (A) Soluble and pelleted 
fractions after low-speed centrifugation of lysed cells at 4,000 x g for 20 min at 4°C, (B) 
Soluble and membrane fractions after ultracentrifugation of low-speed centrifugation 
supernatant at ~130,000 x g for 45 min at 4°C. (B) Western blot analysis of WT MBH 
purification steps using anti-hoxG antibody. Lanes are as follows: (1) MW marker, (2) Low-
speed centrifugation (4,000 x g for 20 min at 4°C) supernatant, (3) Low-speed 
centrifugation pellet, (4) Ultracentrifugation (130,000 x g for 45 min at 4°C) supernatant, (5) 
Ultracentrifugation pellet (a.k.a. membrane fraction), (6) Ultracentrifugation supernatant 
after detergent solubilization (a.k.a. solubilized membrane extract), and (7) 
Ultracentrifugation pellet after detergent solubilization. 
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hoxG (67 kDa) revealed the presence of MBH throughout the purification 

process, including in the membrane fraction (Figure 39B, lane 5) as well as in the 

solubilized membrane extract (Figure 39B, lane 6). 

The MBH of R. eutropha consists of a large subunit, hoxG, that houses the 

active site, and a small subunit hoxK, which contains three iron-sulfur clusters. 

The MBH is tethered to the periplasmic side of the membrane via a C-terminal 

“anchor” region of hoxK that is connected to the membrane-integral b-type 

cytochrome hoxZ (Figure 40) [238]. The hoxZ gene product is not required for 

MBH translocation, but is essential for H2-dependent electron transfer in vivo 

[241]. It has been shown that recombinant strains lacking the C-terminal anchor 

region of hoxK do not sustain H2-dependent autotrophic growth due to the fact 

that the mutant MBH is incapable of establishing a proper connection to hoxZ 

[15]. Due to the fact that the C-terminal anchor region is still present in the 

mutated hoxK gene of the R. eutropha NGLY strain (Table 9), we expected to 

find both the hoxG and hoxK subunits in the membrane fraction and detergent-

solubilized membrane extract of this strain, as was the case for WT R. eutropha 

H16. However, Coomassie-stained SDS-PAGE gel electrophoresis results for 

several steps throughout the purification process (Figure 41A) indicated that the  

 

Figure 40. Schematic of membrane-bound hydrogenase of R. eutropha H16 depicting 
organization of individual subunits (Figure adapted from Burgdorf et al.). 



106 

 

MBH large subunit hoxG (67 kDa) was not present in the membrane fraction of 

the mutant strain as expected. There were also bands throughout the purification 

process at ~52 and ~110 kDa that could not be explained, the latter of which 

might be the non-denatured hoxKG heterodimer. The explanation may lie in the 

maturation and membrane translocation of the MBH enzyme. 

The MBH is transported to the periplasmic side of the membrane via a specific 

protein translocation pathway known as the membrane targeting and 

translocation (Mtt) [231] or twin-arginine translocation (Tat) pathway [242]. The 

cytoplasmic, premature hoxK subunit (designated prehoxK) contains a long 

signaling peptide (43 amino acids) on its N-terminus with a conserved 

(S/T)RRxFxK motif that serves as signal recognition to target the fully-folded 

heterodimer to the membrane and the periplasm [25]. It has been demonstrated 

by Bernhard et al. through experimental mutagenesis studies that the immature 

MBH small subunit prehoxK co-purifies with the accessory proteins hoxO and 

Figure 41. (A) Coomassie-stained SDS-PAGE gel electrophoresis results for the 
purification of MBH from the mutant R. eutropha strain NGLY. Lanes are as follows: (1) 
MW marker, (2) Lysed cells, (3) Low-speed centrifugation supernatant, (4) Low-speed 
centrifugation pellet, (5) Ultracentrifugation supernatant, (6) Ultracentrifugation pellet, (7) 
Ultracentrifugation supernatant after detergent solubilization, and (8) Ultracentrifugation 
pellet after detergent solubilization. (B) Western blot analysis of purification of MBH from 
the mutant R. eutropha strain HF387H using an anti-hoxG antibody. 
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hoxQ, a protein complex that was also isolated from a strain in which the large 

subunit hoxG had been deleted [243]. These results suggest that hoxO and hoxQ 

serve to stabilize the hoxK precursor prior to oligomerization with hoxG, possibly 

serving as chaperones which control MBH assembly and prevent premature 

MBH from being tagged to the membrane and prematurely delivered to the Tat 

apparatus [238]. After transport and insertion into the membrane, the signaling 

peptide is removed by specific processing peptidases. Experimental mutagenesis 

studies of the processing peptidase cleavage sites of several thylakoid 

membrane Tat substrates conducted by Frielingsdorf and Klӧsgen have shown 

that both the C-terminal segment of the signaling peptide and the N-terminal part 

of the mature protein play an important role in the maturation process [244]. 

Efficient cleavage of the signal peptide requires the presence of charged or polar 

residues in at least one of these regions, while increased hydrophobicity in either 

segment impairs the process. However, Frielingsdorf and Klӧsgen also found 

membrane complexes of high molecular mass, presumably representing Tat 

complexes, which contained fully translocated passenger proteins that had not 

yet been terminally processed by peptidases. These results suggest that 

membrane transport and terminal processing of Tat substrates are independent 

processes. Therefore, although it is entirely plausible that the introduction of the 

non-polar Gly3 tag to the N-terminus of hoxK may interfere with efficient cleavage 

of the signaling peptide, this does not mean that the mutation will prevent 

translocation of the fully-folded, active heterodimer to the membrane and 

periplasm. Furthermore, the presence of an intense band in the size range of 

hoxK (35 kDa), rather than that of prehoxK (40 kDa), in the cell debris and 

membrane fractions of partially purified MBH from the mutant R. eutropha NGLY 

strain (Figure 41) suggests that the presence of the Gly3 tag does not interfere 

with cleavage of the signaling peptide at all. 

Due to the fact that similar issues were encountered when isolating 

membranes from the mutant strain expressing a C-terminal His6 purification tag 

on hoxK (HF387H in Table 9) from which the NGLY strain was derived, the 
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absence of the MBH may be due to problems associated with this original mutant 

strain. Interference with membrane translocation due to mutations associated 

with the C-terminal anchor region of hoxK has been seen in previous work on 

self-assembling PSI-MBH protein fusions conducted by Schwarze et al. [15]. 

Generating MBH-psaE hybrid proteins by replacing the C-terminal membrane 

anchor of the R. eutropha MBH small subunit hoxK with the psaE subunit of PSI 

from Synechocystis, they found that the mature hoxK-psaE protein was not 

detectable in the membrane or the periplasm. Instead, they found that prehoxK-

psaE was present in the cytoplasm and in considerable amounts in the 

membrane, and therefore concluded that modification of the C-terminus of hoxK 

strongly affected the Mtt/Tat-dependent transport of the hybrid protein.  

The mutant R. eutropha HF387H strain was originally constructed in our lab by 

Ify Iwuchukwu in 2011 [224]. The absence of hoxG from the membrane fraction 

could be the result of unnoticed mutations introduced during the genetic 

engineering of hoxK to express the His6 purification tag, or during subsequent 

homologous recombination to transfer the mutation to the host R. eutropha 

HF387 strain. Additionally, the ~52 kDa band observed in Figure 41 was also 

identified in Western blots against hoxG for purification preps of both the HF387H 

(Figure 41B) and NGLY strains, indicating a point mutation may be present in this 

gene, as it should run much higher (~67 kDa). Therefore, it is recommended that 

future work troubleshooting this problem begin with sequencing the hoxG gene. 

5.3.4 H2 uptake activity of the WT and mutant MBH   

The H2 uptake activities of the wild-type and mutant R. eutropha strains were 

determined using methylene blue as the electron acceptor (Figure 42A). For 

qualitative determination of the presence of MBH activity, GC vials containing 1 

mL of reaction buffer (see Materials and methods) were flushed with H2 and 

monitored for color change after injection of the protein sample for various steps 

throughout the purification process. For the case of WT R. eutropha H16 (Figure 

42B), as well as for the soluble hydrogenase-free mutant R. eutropha HF387, a 

rapid color change (<5 min) from blue to colorless was observed for the low-
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speed centrifugation supernatant after cell lysis, as well as for the membrane 

fraction and solubilized membrane extract. This is expected, as these fractions 

should contain the fully-folded, active MBH heterodimer. However, there was no 

observable activity in any fraction tested for both the HF387H and NGLY mutant 

R. eutropha strains. This serves as further evidence that introduction of the His6 

purification tag to the C-terminus of hoxK, or some overlooked undesirable 

mutation introduced to hoxKG during construction of this mutant, has interfered 

with the proper assembly and/or membrane translocation of the active MBH 

heterodimer. For specific activity, the change in absorbance at 570 nm (A570) 

over time was measured via a spectrophotometer (Thermo Scientific BioMate 

3S). Using the molar extinction coefficient of methylene blue (ε570 = 13.1 cm2 

µmol-1) and the protein concentration of the sample (determined using the BCA 

method), the H2 uptake activity was calculated based on the slope of the time-

dependent reaction. A sample kinetic absorbance curve for partially purified MBH 

Figure 42. (A) Crimped GC vial containing reaction buffer with methylene blue for H2 
uptake activity assay being flushed with H2. (B) Qualitative activity results for partial 
purification of MBH from WT R. eutropha H16. Samples are as follows: (1) Low-speed 
centrifugation supernatant, (2) Low-speed centrifugation pellet, (3) Ultracentrifugation 
supernatant, (4) Ultracentrifugation pellet, (5) Ultracentrifugation supernatant after 
detergent solubilization, and (6) Ultracentrifugation pellet after detergent solubilization. 
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from WT R. eutropha H16 is shown in Figure 43. Using the maximal slope 

obtained from this curve and the total protein concentration as determined using 

the BCA assay (Pierce), we obtain an activity of 0.24 μmol H2/min/mg protein. 

This is lower than the expected value of 1-3 μmol H2/min/mg protein predicted by 

Dr. Oliver Lenz (personal communication), an expert in hydrogenase research. 

However, we obtain a value of 2.37 μmol H2/min/mg protein for the soluble 

hydrogenase-free R. eutropha HF387 mutant strain, which is in agreement with 

the value of 1.7 μmol H2/min/mg protein obtained by Lenz et al. [239], indicating 

that we are able to successfully isolate membranes containing active MBH. 

5.3.5 MD modeling of PSI-FeFe H2ase and PSI-MBH protein fusions 

We elected to conduct MD simulations on three distinct monomer-monomer PSI-

hydrogenase fusion complexes for in-depth analysis of complex stability and 

protein-protein interactions: (1) PSI from T. elongatus connected to the FeFe 

H2ase from C. pasteurianum via a 1,8-octanedithiol (OD) molecular wire 

Figure 43. Absorbance versus time for H2-dependent reduction of methylene blue via 
partially purified MBH from WT R. eutropha H16. Experimental data is shown in black dots, 
with the black trendline representing the four points chosen for determination of the 
maximum slope. 
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(designated the PSI-FeFe H2ase OD model), (2) PSI from T. elongatus 

connected to the FeFe H2ase from C. pasteurianum via a 1,10-decanedithiol 

(DD) molecular wire (designated the PSI-FeFe H2ase DD model), and (3) PSI 

from T. elongatus ligated to the MBH from R. eutropha via a sortase linkage 

(LPETGGG) between the C-terminus of psaE from PSI and the N-terminus of 

hoxK from the MBH (designated the PSI-MBH model). Constructs corresponding 

to the PSI-FeFe H2ase OD and DD models have been assayed experimentally 

for light-induced H2 evolution activity by Golbeck and co-workers [16], and the 

PSI-MBH model serves as a direct comparison to our experimental fusion 

complex. Based on our previous experience with MD simulations of trimeric PSI 

in detergent solution, we chose to use a pre-formed structure of PSI monomer 

embedded in a toroidal belt of DDM detergent. A monolayer belt of 666 DDM 

detergent molecules was built around the periphery of monomeric PSI consisting 

of semicircular planes of DDM densely packed around the hydrophobic periphery 

of the protein. A higher detergent-to-protein ratio relative to the trimeric PSI/DDM 

model was necessary to adequately cover exposed hydrophobic regions that had 

previously been shielded by neighboring PSI monomers. Structures for the dithiol 

linkers were freely available via the Protein Data Bank, and an initial structure for 

the flexible LPETGGG linker of the PSI-MBH fusion model was predicted using 

MODELLER [236]. Starting structures for the PSI-FeFe H2ase and PSI-MBH 

models are shown in Figure 36, and Table 11 contains simulation details for each 

system. Each system was energy-minimized, solvated, and equilibrated (see 

Materials and methods), and subsequently subjected to an MD production run. 
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Table 11. Simulation details for PSI-hydrogenase fusion models 

System Components 

No. of 

water 

molecules 

No. of ions 
No. of 

atoms 

Box size 

(nm) 

Simulation 

time (ns) 

PSI-MBH 

model 

PSI, MBH, 

DDM 
214,282 

96 Na
+
,  

201 Cl
-
 

760,805 
20.5 x 20.5 

x 20.0 
250 

PSI-FeFe 

H2ase OD 

model 

PSI, H2ase, 

OD, DDM 
198,076 

96 Na
+
,  

186 Cl
-
 

707,532 
20.5 x 20.5 

x 18.5 
115 

PSI-FeFe 

H2ase DD 

model 

PSI, H2ase, 

DD, DDM 
198,074 

96 Na
+
,  

186 Cl
-
 

707,532 
20.5 x 20.5 

x 18.5 
170 

 

Stability and local mobility of the PSI-FeFe H2ase fusion complexes 

The PSI-FeFe H2ase OD model was simulated for ~115 ns. Analysis of the 

root-mean-squared deviation (RMSD) of the Cα atoms of both the PSI monomer 

and the FeFe H2ase indicates that these proteins have reached a stable complex 

(Figure 44). Similar to what was seen previously in MD simulations of trimeric 

PSI in DDM [41], the Cα RMSD of all residues of PSI reaches a maximum value 

of ~2.5 Å (Figure 44A, black solid line). Backbone RMSDs of ~2.0 Å were 

previously reported in an MD study of the channel protein FhuA in OES detergent 

[151], but values in this range are typically associated with MD studies of 

membrane proteins in lipid bilayers [139, 203]. The FeFe H2ase exhibits a final 

Cα RMSD of ~4.0 Å (Figure 44B). This value is much higher than the ~0.8 Å 

RMSD previously reported by Chang and Kim for MD simulations of this FeFe 

H2ase [237]. The high structural drift of the FeFe H2ase relative to the crystal 

structure, exceeding that which is expected due to aqueous solution conditions, 

indicates that this protein is undergoing substantial structural changes in this 

complex. This is not unexpected, as the octanedithiol (OD) linker closely tethers 

this protein to PSI, the implications of which will be discussed in detail below. 

We again decomposed the Cα RMSDs of PSI into four domains: the reaction 

center subunits psaAB, the terminal electron acceptor psaC, the ferredoxin-

docking stromal subunits psaDE, and the peripheral transmembrane α-helices 
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psaFIJKLMX. As seen before, the reaction center subunits psaA and psaB 

(Figure 44A, gray solid line) display the lowest structural drift with a final Cα 

RMSD of ~2.0 Å. The slight rise seen here compared to the 1.8 Å Cα RMSD 

value seen for these subunits in our MD simulations of trimeric PSI in DDM could 

Figure 44. Cα RMSD versus time for the PSI-FeFe H2ase OD model MD simulation, 
calculated for (A) PSI monomer relative to the crystal structure (PDB ID: 1JB0). The lines 
shown the Cα RMSDs for: all residues (black solid line), reaction center subunits psaAB 
(gray solid line), terminal electron acceptor psaC (black dotted line), ferredoxin docking 
subunits psaDE (gray dotted line), and the peripheral transmembrane helices psaFIJKLMX 
(black dashed line). Also Cα RMSDs for (B) all residues of the FeFe H2ase relative to the 
crystal structure (PDB ID: 3RGW). 
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be due to the exposure of a larger portion of these residues to the solubilizing 

detergent, which were previously shielded by adjacent monomers of the PSI 

trimer. As seen previously, the peripheral transmembrane helices exhibit the 

highest structural drift of ~4.0 Å (Figure 44A, black dashed line). The stromal 

subunits show remarkably different behavior from previous work, with psaC 

(Figure 44A, black dotted line) reaching a maximum RMSD of ~2.5 Å and the 

psaDE subunits (Figure 44A, gray dotted line) rising as high as 3.5 Å, both of 

which are much higher than what was seen for trimeric PSI in DDM [41]. Again, 

this is likely due to the fact that the stromal surface of PSI is in close contact with 

the FeFe H2ase throughout the simulation.  

We calculated the time-averaged Cα RMSF values for each residue of PSI and 

the FeFe H2ase for the final ~60 ns of the OD model MD simulation to analyze 

the local atomic mobility of the protein fusion (Figure 45). For PSI (Figure 45A), 

the trend is much the same as that seen in our previous MD study of trimeric PSI 

in detergent solution, with regions of low atomic mobility primarily confined to the 

core residues of the reaction center and those of high mobility corresponding to 

turns in the peripheral transmembrane helices and flexible loops of the stromal 

subunits [41]. However, higher Cα RMSFs than seen previously were obtained for 

detergent-exposed regions such as the peripheral α-helices, possibly due to the 

higher detergent-to-protein ratio. Most noticeably, the N-terminus of psaL does 

not extend out into the solvent and exhibit the high RMSFs seen previously. This 

may also be due to the higher detergent-to-protein ratio used in this study 

compared to the trimeric PSI in DDM simulations. The maximum Cα RMSF of 

~4.3 Å corresponds to the C-terminus of psaD, possibly due to interactions with 

the hydrogenase. For the FeFe H2ase, the observed Cα RMSFs for the MD 

simulation (Figure 45B, black solid line) are in the range of ~2-5 Å, which is much 

higher than the values of ~1 Å determined from the crystal structure (Figure 45B, 

black dotted line). This provides further evidence, along with the structural drift 

observed for the FeFe H2ase and the stromal residues of PSI, that the tethering 

of this protein to PSI has resulted in significant structural changes. 
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Figure 45. Time-averaged Cα RMSF versus residue number, calculated over the final ~60 
ns of the FeFe H2ase OD model MD simulation, shown for (A) the PSI monomer (solid black 
black line), with residues of the reaction center (RX CTR), stromal (S), and peripheral 
transmembrane (PT) domains labeled accordingly, and (B) the FeFe H2ase (solid black 
line). In both cases, RMSF values calculated from the temperature factors of the X-ray 
crystal structures are included for comparison (black dotted line). 
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The PSI-FeFe H2ase DD model was simulated for ~170 ns, at which point the 

complex had stabilized based on Cα RMSD analysis. Maximum Cα RMSD values 

of 2.6 Å and 6.5 Å were obtained for PSI and the FeFe H2ase, respectively 

(Table 12). Comparing these results to that obtained for the PSI-FeFe H2ase, we 

see that linker length has a significant effect on the structural drift of the 

hydrogenase relative to its crystal structure, resulting in an increase from 4.4 Å 

for the OD model to 6.5 Å for the DD model. This is likely due to the fact that the 

increase in linker length from octanedithiol to decanedithiol allows the FeFe 

H2ase to explore a larger conformational space during the simulation, resulting in 

greater structural drift. This also means that longer simulation times will be 

required in order for the system to reach equilibrium, as the DD model had to be 

simulated for 170 ns in order for the Cα RMSD to stabilize, while the OD model 

only had to be simulated for 115 ns (Table 11). Cα RMSF results for the DD 

model were similar in overall trend to what was seen for the OD model, with 

higher values in the range of 2-7 Å for the FeFe H2ase (Table 12), reflecting the 

greater structural changes occurring in the hydrogenase in this system. 

Protein-protein interactions of PSI-FeFe H2ase fusion complexes 

Snapshots of the PSI-FeFe H2ase OD model in its initial configuration and 

after ~30 ns of MD simulation are shown in Figures 46A and 46C, respectively. 

The DDM detergent belt has quickly conformed to the hydrophobic periphery 

Table 12. Maximum Cα RMSDs for PSI-hydrogenase fusion MD simulations 

System 
Maximum PSI 

Cα RMSD (Å) 

Maximum H2ase 

Cα RMSD (Å) 

Maximum H2ase 

Cα RMSF (Å) 

PSI-FeFe H2ase 

OD model 
2.6 4.4 5.3 

PSI-FeFe H2ase 

DD model 
2.6 6.5 6.9 

PSI-MBH model 2.8 4.6 8.1 
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of the PSI monomer, as was the case in MD simulations of trimeric PSI in DDM; 

this behavior is also seen in the PSI-FeFe H2ase DD and PSI-MBH simulations. 

Interestingly, the distance between the FB cluster of psaC from PSI and the distal 

[4Fe4S] cluster of the FeFe H2ase shrinks substantially after just ~30 ns of 

simulation (Figures 46B and 46D). This is due to the octanedithiol molecular wire 

connecting these two species (not shown), and enables the high light-driven H2 

Figure 46. The initial configuration of the PSI-FeFe H2ase OD model shown from (A) side 
view, and (B) zoomed-in view of the stromal surface of PSI and the FeFe H2ase. The PSI-
FeFe H2ase OD model after ~30 ns of MD simulation shown from (C) side view, and (D) 
zoomed-in view of the stromal surface of PSI and the FeFe H2ase. In all cases, PSI and the 
FeFe H2ase are shown in red and green ribbons, respectively, the detergent is shown in 
low-resolution surface representation in blue, and the iron-sulfur clusters of psaC from 
PSI as well as the iron-sulfur clusters and active site of the FeFe H2ase are shown in VDW 
format. In (B) and (D), the FB cluster of psaC from PSI and the distal [4Fe4S] cluster of the 
FeFe H2ase are labeled accordingly. 
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evolution rates seen experimentally for this fusion complex [16]. However, the 

shrinking of this distance is accompanied by significant structural drift of the 

associated proteins. In particular, the majority of the FeFe H2ase pulls away from 

those residues surrounding its distal iron-sulfur cluster over the course of the 

simulation. Furthermore, the main body of the hydrogenase moves away from 

the stromal surface of PSI, possibly due to unfavorable electrostatic interactions. 

This combined behavior is particularly obvious in the case of the PSI-FeFe H2ase 

DD model MD simulation, as shown in Figure 47, and implies that there may be 

significant strain in these complexes. However, there are favorable electrostatic 

interactions occurring as well, most notably between the negatively charged D79 

residue of psaD from PSI and the positively charged K117 and R119 residues of 

the hydrogenase, as well as between the negatively charged D31 residue of 

psaD from PSI and the positively charged K389 residue of the FeFe H2ase.  

 

Figure 47. The PSI-FeFe H2ase DD model (A) before MD simulation and (B) 
after 170 ns of MD simulation. PSI and the FeFe H2ase are shown in red and 
green ribbons, respectively, and the iron-sulfur clusters of PSI as well as 
the iron-sulfur clusters and active site of the FeFe H2ase are shown in VDW 
format. 
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MD simulations of a PSI-FeFe H2ase fusion connected via a 1,6-hexanedithiol 

(HD) ligand were unsuccessful due to molecular overlaps as the initial 

configuration changes rapidly to accommodate the short alkane linker. Future 

simulations of this fusion, if successful, could shed light on why this shorter linker 

leads to lower electron transfer rates. Implications for electron transport based on 

the PSI-FeFe H2ase OD and DD model results will be discussed in detail below, 

after analysis of the PSI-MBH MD simulation. 

Stability and local mobility of the PSI-MBH fusion complex 

The PSI-MBH model was simulated for 250 ns; the Cα RMSDs versus time of PSI 

and MBH for the PSI-MBH model are shown in Figures 48A and 48B, 

respectively. Similar to what was seen in MD simulations of trimeric PSI in DDM 

detergent solution [41], the Cα RMSD calculated for all residues of PSI (Figure 

48A, black solid line) rose to ~2.4 Å after ~25 ns of MD simulation before drifting 

to ~2.6 Å after ~75 ns and stabilizing there for the remainder of the simulation. 

The MBH displayed much different behavior, with the Cα RMSD of all residues 

(Figure 48B, black solid line) rising quickly to ~3.0 Å after only ~10 ns, drifting all 

the way to ~4.5 Å after ~200 ns and remaining there for the duration of the MD 

simulation. These values are significantly higher than the Cα RMSD values of 

~1.5 Å seen in MD simulations of [NiFe]-hydrogenases from Desulfovibrio gigas 

[245] and Desulfovibrio fructosivorans [182] in aqueous solution. As mentioned 

for the FeFe H2ase, the high structural drift of the MBH relative to its crystal 

structure suggests that this protein is undergoing significant structural changes in 

the PSI-MBH complex. This is not unexpected, as the sortase linkage brings the 

MBH in close proximity to the stromal surface of PSI, resulting in interactions 

between charged residues of both of these proteins that will be discussed in 

further detail below. 
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We also decomposed the structural drift of both PSI and the MBH into those of 

various individual structural components. As with the PSI-FeFe H2ase 

simulations, the main differences concern the stromal subunits. The psaC 

subunit exhibits Cα RMSDs in the range of 1.5-2.5 Å (Figure 48A, black dotted 

Figure 48. Cα RMSD versus time for the PSI-MBH MD simulation, calculated for (A) PSI 
monomer relative to the crystal structure (PDB ID: 1JB0). The lines shown the Cα RMSDs 
for: all residues (black solid line), reaction center subunits psaAB (gray solid line), 
terminal electron acceptor psaC (black dotted line), ferredoxin docking subunits psaDE 
(gray dotted line), and the peripheral transmembrane helices psaFIJKLMX (black dashed 
line). Also Cα RMSDs for (B) MBH relative to the crystal structure (PDB ID: 3RGW). Lines 
are for: all residues (solid black line), hoxG (dotted gray line), and hoxK (dotted black line). 
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line); this value fluctuates considerably over the course of the simulation. This is 

likely due to protein-protein interactions with the MBH subunits, which are in 

close proximity to the stromal surface of the PSI monomer. The Cα RMSD of the 

stromal psaD and psaE subunits (Figure 48A, gray dotted line) also fluctuates 

noticeably in the range of 2.0-3.0 Å during MD simulation. These subunits are 

likewise in close proximity to the MBH, and also interact with the detergent belt 

as was discussed in the previous chapter. Looking at the behavior of the 

individual MBH subunits, we see that hoxG exhibits lower structural drift with a 

final Cα RMSD of ~3.0 Å (Figure 48B, gray dotted line), while hoxK has a much 

higher final Cα RMSD value of ~6.2 Å (Figure 48B, black dotted line). This may 

be due to the fact that hoxK is tethered to the stromal surface of PSI via the 

sortase linkage, resulting in substantially different behavior relative to the 

unrestrained conditions under which the crystal structure of the MBH was 

determined, the base case from which these RMSD values were derived. 

We calculated the time-averaged Cα RMSF values for each residue of PSI and 

the MBH for the final 125 ns of MD simulation to analyze the local atomic mobility 

of the fusion complex. The trend for PSI (Figure 49A) was much the same as 

seen for MD simulations of trimeric PSI in DDM and the PSI-FeFe H2ase 

complex. However, higher Cα RMSFs than seen previously were obtained for all 

residues of PSI, indicating that the PSI protein is more mobile in this complex 

compared to PSI in DDM alone. The highest observed Cα RMSF of ~5.1 Å 

corresponds to the C-terminus of psaL. This flexible region, which had previously 

been shielded by neighboring PSI monomers in the trimeric PSI/DDM MD 

simulations, now closely interacts with adjacent detergent molecules and the 

surrounding solvent.  For the case of the MBH, the Cα RMSFs of ~2-8 Å 

observed during MD simulation (Figure 49B, black solid line; Table 12) are much 

higher than those of ~1 Å obtained from the crystal structure (Figure 49B, black 

dotted line). This further serves to demonstrate that the tethering of the MBH to 

PSI via the sortase linkage, and the consequential protein-protein interactions 

between the MBH and the stromal subunits of PSI, results in substantial 
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structural deviations and fluctuations relative to the crystal structure. 

Interestingly, however, the highest Cα RMSF values observed for the MBH 

Figure 49. Time-averaged Cα RMSF versus residue number, calculated over the final 125 
ns of the PSI-MBH MD simulation, shown for (A) the PSI monomer (solid black line), with 
residues of the reaction center (RX CTR), stromal (S), and peripheral transmembrane (PT) 
domains labeled accordingly, and (B) the MBH (solid black line), with residues of the large 
subunit hoxG and small subunit hoxK labeled correspondingly. In both cases, RMSF 
values calculated from the temperature factors of the X-ray crystal structures are included 
for comparison (black dotted line). 
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correspond not to residues in close proximity to PSI, but rather to flexible loops 

and termini exposed to the solvent. This suggests that the behavior of this protein 

during MD simulation can partly be explained by its exposure to aqueous solution 

conditions. It is recommended that future work include simulations of 

hydrogenase alone to confirm this. 

Protein-protein interactions of PSI-MBH fusion complex 

Inspecting the MD trajectory, there is a visually observable contact surface 

occurring between PSI and the MBH, as shown in Figure 50. This is due to 

electrostatic interactions occurring between several polar and charged residues 

of the psaC and psaD subunits of PSI and the hoxG subunit of the MBH over the  

 

Figure 50. (A) Low-resolution surface representation of the PSI-MBH fusion after MD 
simulation, colored according to residue type (non-polar = white, polar = green, acidic = 
red, basic = blue). PSI and the MBH are labeled accordingly, with an arrow indicating the 
sortase linkage of the fusion complex. The highlighted box corresponds to (B) a zoomed-
in view of the fusion complex with an arrow indicating the contact surface of several 
interacting residues of the stromal subunits of PSI and the MBH. (C) Zoomed-in view of 
hoxG (red ribbons) and hoxK (blue ribbons) of MBH, and stromal surface of PSI (green 
ribbons) after 250 ns MD simulation of PSI-MBH protein fusion. Arrow denotes distance 
between distal iron-sulfur cluster of MBH and FB cluster of PSI (shown in VDW format). 
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course of the simulation. In particular, the negatively charged D31 residue of 

psaC and positively charged K107 residue of psaD from PSI continually interact 

with the positively charged K138 and negatively charged D140 residues of hoxG 

from the MBH, respectively, during MD. Unfortunately, there do not appear to be 

any protein-protein interactions between PSI and the small subunit hoxK of the 

MBH which would bring the FB cluster of psaC, the terminal electron acceptor in 

the electron transport chain of PSI, in close proximity to the distal iron-sulfur 

cluster of hoxK from the MBH (Figure 50C). These results suggest that the 

formation of a PSI-MBH fusion complex using a hoxK N-terminal to psaE C-

terminal attachment scheme will not provide conditions optimal for electron 

transport between these two proteins and thus for light-driven H2 evolution via 

this fusion complex (see below for details).  

Implications for electron transport between PSI and hydrogenase 

As a gauge for the efficiency of electron transport, we calculated the average 

distance between the FB cluster of PSI and the distal [4Fe4S] cluster of the 

hydrogenase (FeFe H2ase or MBH) over the course of the simulation for each 

system (Table 13). The substantial difference between the average distance for 

the PSI-FeFe H2ase OD and PSI-MBH models, 14.5 Å vs. 69.2 Å, serves to 

demonstrate the effectiveness of the method of Lubner et al. [16] for generating  

Table 13. Average cluster-to-cluster distances for PSI-hydrogenase fusion complexes 

System 
Average cluster-to-cluster 

distance (Å) 

PSI-FeFe H2ase OD 

model 
14.5 ± 0.5 

PSI-FeFe H2ase DD 

model 
16.8 ± 0.5 

PSI-MBH model 69.2 ± 1.9 



125 

 

optimal fusions of PSI and hydrogenase for electron transport. However, as 

noted above, interactions between PSI and the FeFe H2ase in these complexes 

results in a pulling away of the main body of the hydrogenase from the residues 

surrounding the distal iron-sulfur cluster, which could result in significant strain in 

these complexes. No such unfavorable interactions were noted for the PSI-MBH 

MD simulation. This could be because the interacting surfaces of PSI and the 

MBH are more compatible than that of PSI and the FeFe H2ase, or because the 

sortase-mediated linkage puts less strain on the system than the dithiol 

molecular wire.  

To further analyze the dynamics of these multi-protein complexes, we 

calculated the autocorrelation function (ACF) of the cluster-to-cluster distance for 

each system. Correlation functions provide a measure of the disorder introduced 

into a system over time, and the time decay of the ACF of a dynamic variable of 

interest can provide information on relevant dynamical processes. This analysis 

has aided in the discovery of collective motions and long-range conformational 

changes in a variety of protein complexes [246-250]. The rapid initial decay of the 

ACF for the OD model (Figure 51A, black solid line) is indicative of a fast 

dynamical process that can be reasonably fit by an exponential decay function 

(Figure 51A, black dashed line). However, the continued oscillations of the ACF 

suggest longer timescale dynamics that are not captured by the simulation times 

studied here. The ACF for the DD model (Figure 51B, black solid line) exhibits an 

initial decay that is somewhat slower than that seen for the OD model, again with 

continued oscillations. This strengthens the argument that longer linker lengths 

allow these proteins to explore a larger conformational space, resulting in longer 

timescale dynamics. In the case of the PSI-MBH fusion (Figure 51C), the ACF 

shows substantial oscillations during the simulation, appearing anti-correlated. 

This suggests that the sortase linkage results in longer timescale dynamics that 

were not captured in the simulation time evaluated here. These dynamics could 

potentially lead to favorable conformations with the distal [4Fe4S] cluster of hoxK 

quite close to the FB cluster of PSI, which were not seen here. 
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Figure 51. Autocorrelation function (ACF) results versus time for (A) the PSI-FeFe H2ase 
OD model and (B) the PSI FeFe H2ase DD model, and (C) the PSI-MBH model. In all cases, 
ACF data = black solid line, exponential decay fit = black dashed line. 
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5.4 Summary 

We have genetically engineered the small subunit hoxK of the MBH from R. 

eutropha HF387H to express an N-terminal Gly3 tag, with the goal of enabling 

sortase-mediated ligation of this enzyme with mutants of PSI from Synechocystis 

containing C-terminal LPETG tags on either the psaC, psaD, or psaE stromal 

subunits. This should enable the fusion of hydrogenase via hoxK to 

complementarily engineered subunits of PSI via sortase-mediated ligation. These 

protein fusions would be simpler to make than methods based on cysteine 

replacement and dithiol ligand rescue chemistry, and would also enable the study 

of a greater variety of fusion complexes. 

The mutant hoxK gene has been re-introduced to R. eutropha HF387H via 

homologous recombination and the presence of the N-terminal Gly3 tag verified 

by DNA sequencing, resulting in the new mutant R. eutropha NGLY strain. We 

have demonstrated our ability to isolate solubilized membrane extracts 

containing the fully active MBH heterodimer from wild-type R. eutropha H16, 

confirmed both through Western blot analysis and H2 uptake activity using 

methylene blue as the electron acceptor. However, the large subunit hoxG was 

found to be conspicuously absent from the membrane fraction and solubilized 

membrane extracts isolated from cell cultures of both R. eutropha HF387H and 

R. eutropha NGLY, and instead was located in the soluble fraction at ~52 kDa, 

instead of its known molecular weight of ~67 kDa. There was also no observable 

H2 uptake activity in any fraction tested for either of these mutant strains. We 

believe this loss of activity most likely stems either from the introduction of an 

undesirable mutation to the hoxG gene during the design of the original R. 

eutropha HF387H construct containing a His6 purification tag on the C-terminus 

of hoxK, or is the result of interference with the Mtt/Tat membrane translocation 

pathway.  

We have also performed MD simulations of PSI-FeFe H2ase constructs, as 

well as of the PSI-MBH fusion complex, in order to analyze the stability and 

protein-protein interactions of these protein fusions and investigate potential 
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atomistic explanations for observed experimental activity. We have found that 

longer linker lengths result in greater structural drift and require longer simulation 

times to reach a stable complex, likely due to the increased conformational space 

that complexes with longer linkers are able to explore. We also noted highly 

distorted tertiary structure in the PSI-FeFe H2ase fusions that could result in 

significant strain on these complexes. Lastly, autocorrelation analysis suggests 

that there are dynamics occurring in these multi-protein complexes that are on 

timescales longer than the simulation times evaluated here, which indicates that 

coarse-graining may be necessary to capture dynamics relevant to electron 

transport between these proteins.  

  



129 

 

CHAPTER VI 
CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Conclusions 

This work represents an attempt to form hybrid protein fusions between 

cyanobacterial photosystem I (PSI) and the membrane-bound hydrogenase 

(MBH) from Ralstonia eutropha via a new method using sortase-mediated 

ligation. This approach, if successful, has the advantage of being simpler and 

more versatile than current methods that involve cysteine replacement and dithiol 

ligand rescue chemistry between the iron-sulfur clusters of the two proteins. 

Although ultimately unsuccessful in forming these fusion complexes, a number of 

significant secondary objectives were met. 

We conducted a comprehensive study of the solution structure and function of 

detergent-solubilized trimeric PSI from the cyanobacterium 

Thermosynechococcus elongatus, a membrane integral protein capable of light-

driven electron transport with enormous potential for use in biorenewable energy 

conversion devices. The structure of PSI trimer solubilized in n-dodecyl-β-

maltoside (DDM) detergent was analyzed using contrast variation SANS and 

yielded results not previously seen. Pairwise distance distribution function (P(r)) 

analysis of the SANS data and subsequent shape restoration both with and 

without the scattering contributions of DDM suggests that the detergent exists in 

a non-uniform trilobal orientation that conforms to the hydrophobic periphery of 

the PSI trimer.  

The SANS results were used as a guide to developing a computational model 

of trimeric PSI embedded in a disk-like detergent belt. Extensive all-atom MD 

simulations of trimeric PSI from T. elongatus in DDM detergent were conducted 

for an in-depth analysis of the structure and dynamics of the PSI trimer 

embedded in the detergent environment, one of the largest membrane protein 

complexes known to have so far been studied. RMSD analysis of Cα atoms 

relative to the known crystal structure showed PSI to be stable in the DDM 

environment, with the largest contributors to the structural drift of this protein 
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being the peripheral transmembrane helices. We observed a thinning of the 

detergent belt over the course of the MD simulation as it conforms to the non-

uniform hydrophobic periphery of the protein and attribute this to favorable 

interactions with the hydrophobic transmembrane domain of PSI result in the 

shrinking of the DDM molecules. Solvent-exposed surface area (SASA) 

calculations showed that the detergent molecules were less densely packed in 

the protein-detergent complex relative to a pure detergent micelle, but 

interestingly dihedral angle order parameter (S2) and mean-square-displacement 

(MSD) analyses indicated that the detergent tails were more ordered. These 

results are contrary to what is seen in most lipid bilayer models, and suggest a 

degree of plasticity in the in vivo complex of PSI embedded in the thylakoid 

membrane. Lastly, we found interesting implications for the stability of the 

trimeric superstructure of cyanobacterial PSI in vitro due to high fluctuations of 

trimer-maintaining subunits in the absence of associated lipids. However, the 

docking of soluble electron mediators, and thus the activity of PSI, was not 

hindered by the presence of the detergent. These results represent a significant 

step in atomic-level analysis of the solution structure and conformational 

dynamics of detergent-solubilized membrane proteins. In particular, this work 

offers a solid starting point for analyzing the in vitro structure and function of PSI, 

and provides a computational approach that is easily translatable to studying 

complexes of PSI and other proteins, such as hydrogenase enzyme. 

Lastly, this work represents a foundation for the study of PSI-hydrogenase 

protein fusions, an intriguing multi-protein complex that is capable of light-

induced H2 evolution. We have genetically engineered the MBH of R. eutropha to 

express a Gly3 tag on the N-terminus of the small subunit hoxK, and have re-

introduced this mutation into R. eutropha and verified its presence via DNA 

sequencing. The presence of the N-terminal Gly3 tag makes possible the site-

specific fusing of the MBH with PSI from Synechocystis sp. PCC 6803, which is 

being engineered to express an LPETG tag on the exposed C-termini of several 

stromal subunits by researchers in our lab, via sortase-mediated ligation (SML). 



131 

 

We have demonstrated a reliable method for the partial purification of the 

membrane fraction and solubilized membrane extract from wild-type R. eutropha 

H16, verified both through Western blot analysis against the hoxG and hoxK 

subunits and through assaying for H2 uptake activity using methylene blue as the 

electron donor. However, active MBH could not be isolated from the mutant 

strain expressing an N-terminal Gly3 tag for sortase-mediated ligation on the 

MBH small subunit hoxK (designated NGLY in Table 9). Due to the fact that the 

same result was obtained when working with the mutant strain expressing a C-

terminal His6 purification tag on hoxK (HF387H in Table 9) from which the NGLY 

strain was derived, we attribute the absence of active MBH to problems 

associated with this original mutant strain. This may be the result of overlooked 

undesired mutations to the hoxG gene introduced during construction of the R. 

eutropha HF387H mutant strain. It could also be due to interference of this C-

terminal tag with the Mtt/Tat pathway, which serves to target the fully-folded 

heterodimer to the periplasmic side of the membrane [251]. Interference with 

membrane translocation due to mutations associated with the C-terminal anchor 

region of hoxK has been seen in previous work on self-assembling PSI-MBH 

protein fusions conducted by Schwarze et al. [15]. In parallel, the computational 

approach demonstrated for trimeric PSI in DDM was applied towards conducting 

all-atom MD simulations of PSI-FeFe H2ase and PSI-MBH protein fusions. MD 

simulations of the PSI-FeFe H2ase fusions were conducted to attempt to explain 

the relationship between the length of the dithiol linker and the observed electron 

transfer rates. These simulations revealed significant distortion of the tertiary 

structure of the hydrogenase that could limit the stability of these complexes. MD 

simulations of a PSI-FeFe H2ase connected via a HD linker were unsuccessful 

due to molecular overlap caused by rapid structural changes associated with this 

very short linker. Future simulations of this fusion complex will be interesting, if 

successful, as they may show why this shorter linker leads to lower electron 

transfer rates. MD simulations of the PSI-MBH fusion indicated that this ligation 

strategy did not result in conditions optimal for electron transport. Overall, longer 
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simulation times may be necessary to adequately capture the dynamics 

occurring in these systems. 

6.2 Future directions 

Future research regarding the study of trimeric PSI under detergent-solubilized 

conditions should be focused on the influence of associated lipids on the 

structure and function of this photoactive pigment-protein complex. Few, if any, 

lipids are typically resolved in crystal structures of membrane proteins, with those 

that are presumably being tightly bound. As is the case for PSI, these lipid 

molecules (sometimes referred to as non-annular or cofactor lipids) are often 

located at protein-protein interfaces and are essential for activity [63, 252]. This 

has been the case for similarly associated phospholipids found to be functionally 

important in the case of the yeast cytochrome bc(1) complex [214], as well as 

that of the photosynthetic reaction center of the purple bacterium Rhodobacter 

sphaeroides [215]. Contrast variation SANS of trimeric PSI isolated from T. 

elongatus cell cultures grown in cofactor lipid-containing media could provide 

unique insights on conformational changes induced by the presence of these 

lipids and any associated changes in the long-term stability of the PSI trimer. 

Extending the PSI/DDM with associated lipids MD simulation until a stable 

complex is reached could also provide new information, such as the binding 

affinity for these phospholipids to PSI. Also, the contribution to scattering 

resulting from the presence of DDM micelles in the PSI/DDM SANS data needs 

to be re-evaluated. The presence of an unexplainable shoulder in the P(r) curve 

of trimeric PSI in 0.12% (w/v) DDM at vector lengths below 5 nm, as well as the 

inability of PSI/DDM computational models to reproduce the experimental data in 

the high q regime, suggests that the scattering contribution of DDM micelles may 

not be negligible as has been assumed. Collecting SANS data of trimeric PSI 

solubilized in a lower concentration of DDM may reduce the concentration of free 

DDM micelles and resolve this issue, giving a clearer picture of the structural 

envelope of the PSI/DDM complex. 
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In terms of future work focused on the PSI-hydrogenase protein fusions, the 

groundwork has been laid for the experimental generation and characterization of 

sortase-ligated fusions of PSI from Synechocystis to the N-terminally Gly3 tagged 

hoxK subunit of the MBH from R. eutropha. First and foremost, the original 

mutant strain HF387H needs to be re-visited to ensure that the His6 purification 

tag is inserted onto the C-terminus of hoxK in such a way that does not interfere 

with translocation of the mature heterodimer to the membrane, and that no 

additional undesired mutations, particularly in the hoxG subunit, are incurred. 

Also, MBH proteins display very low protein expression levels, making it difficult 

to characterize the protein due to limited materials. Design of an overexpression 

vector for the MBH protein in its native host or possibly in E. coli would be 

extremely useful, although previous work has demonstrated the difficulty of this 

endeavor [239]. Also, FTIR and EPR spectra of wild-type and mutant MBH 

proteins could provide useful information on the redox states and transitions and 

intermolecular interactions within the catalytic center [35, 232]. The protocols 

referenced in this work for sortase-mediated ligation of PSI and MBH, and for 

assaying the resulting protein fusion for light-induced H2 evolution, should then 

provide a solid starting point for experimental characterization of PSI-MBH 

complexes. SANS analysis of successful fusion complexes can be interpreted 

using the MD models presented herein. Furthermore, the development of coarse-

grained models of all possible permutations for generating PSI-MBH fusions 

(Figure 52) could provide a simple method for determining the optimum linkage 

of these two proteins. These coarse-grained models can be developed using a 

previously demonstrated Brownian dynamics approach [253-256], and may even 

result in an optimal PSI-MBH fusion with electron throughput rates exceeding 

that of previously constructed PSI-FeFe H2ase fusion complexes [16]. 
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Figure 52. Exposed termini for sortase-mediated ligation of PSI (left) and MBH (right). 
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