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CHAPTER I

INTRODUCTION

A. Vibration-Rotation Spectra

Infrared and Raman spectra furnish one of the most péwerful methods
for studying the internal forces which act in mollecules. The vibrational
frequencies which are obtained from a study of the spectra are functions
of the geometry and masses, which determine the kinetic energy of the
system, and of the forces acting in the molecule, which determine the
potential energy of the system. Therefore, if the geometry of a molecule
is known, the vibrational frequencies of the molecule can be used to ob-
tain information concerning the forces acting during the motions.

The first attempt to interpret infrared spectra in terms of internal
forces was made by Bjermml in 1914. In a study of the spectrum of COp,
Bjerrum concluded tﬁat the observed bands were caused by vibrational motions
of the molecule and that the line broadening was due to simultaneous
rotational transitions. He then attempted to account for the spectrum
in terms of various potential functions. This work marks the first appli-
cation of the central force field and the simple valence force field.

The development of the field was handicapped by the lack of data and
progress was slow during the next few years. However, the theory of di-
atomic molecular spectra was well developed during the period 1918-1930,
and since that time, much progress has been made concerning the theory of

polyatomic molecular spectra. Because of the increasing complexity which
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is encountered as larger molecules are treated, there is still much
work to be done, both experimental and theoretical, before a complete
understanding of the spectra of polyatomic molecules is achieved.

The theory of vibration-rotation spectra falls into three dis-
tinct parts: (1) the assignment of the observed bands, consisting of
the fundamental frequencies and the overtone and combination bands,

(2) the analysis of the rotational structure of the bands and determin-
ation of the rotational constants, and (3) the use of the fundamental
frequencies to study the potential field of the molecule.

Since the fundamental frequencies are necessary in order to study
the internal forces, the frequencies should be assigned with certainty.
If the observed frequencies have been correctly assigned, the remaining
difficulties encountered are (1) in almost all cases, the available data
are insufficient to make anharmonicity corrections possible, and (2) res-
onance interactions may be present causing observéd bands to be shifted
from their unperturbed positions. Conseqnbntly, it is obvious that an
exact potential energy function cannot be determined using the observed
values of fhe fund#mental frequencies. The error introduced by the
failure to make anharmonicity éorrections should not have an appreciable
effect on how well a given potential energy function describes the system,
but rather will cause the force constants determined using the observed
frequencies to be lower than those which would be determined using harmonic
frequencies. Conversely, band shifts arising from resonance interactions
will cause apparent discrepancies in the force field, but these errdrs

should not be large enough to greatly influence the success or failure



of the particular field being used.

The need for accurate structural data for a molecule is an im-
portant requirement which seems to have suffered from a lack of emphasis.
The gecmetrical parameters have an effect on the values of the force
constants, and should be known accurately. Values of bond lengths and
bond angles are obtained from electron diffraction studies, from high
resolution infrared studies, and in recent years from microwave data.
However, recent values which have been determined for these parameters
indicate that many of the older data are questionable. In many cases,
insufficient data requires that a value be assumed for one of the bond
angles or bond lengths of a molecule in order to calculate its geometry.
The errors arising from these inaccuracies in geometry are not very large,
but it is necessary to recognize their presence. Considering the factors
which affect the accuracy with which a suitable potential function will
reproduce the observed frequencies, this author feels that the frequencies
should be reproduced with an average error of less than 1 per cent if the

band centers have been determined accurately.

B. The Potential Function Problem

The study of molecular potential functions is based on the assump-
tion that the motions occurring during the vibrations are harmonic. This
would be expected to be true if the motions in general involve small dis-
placements of the atoms from their equilibrium positions. The success

with which harmonic functions have met in describing the force fields
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of molecules confirms the validity of the approximation of harmonic
motions.

Since a non-linear molecule containing N atoms possesses (3N-6)
vibrational degrees of freedom (3N-5 for linear molecules), the poten-
tial energy of the system can be expressed in terms of (3N-6) independ-
ent coordinates. The remaining six degrees of freedom, the three degrees
of translational freedom of the molecule as a whole and the three degrees
of rotational freedom of the molecule as a whole, do not affect the po-
tential energy. It has been found that the (3N-6) internal coordinates
are most conveniently chosen as displacements of bond lengths and bond
angles from their equilibrium positions, since these coordinates provide
the most physically significant set by which the potential energy may be
expressed. Obviously, these coordinates are unaffected by translations
and rotations of the molecule as a whole.

If the (3N-6) internal displacement coordinates are designated by
Qj, then the potential energy, V, can be expressed in the general quadratic

form
3N-6

2v = E £3 38340y (1)
13=1

where the fij's are the force constants. This expression of the potential
energy represents the most general quadratic potential field which can be
used to describe a molecule. The number of force constants which appear
in the expression is #(3N-6)(3N-5), which means that this many independent
pieces of data would be required to evaluate the force constants of a

molecule. Fortunately, this number of force constants applies only in the
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case of an unsymmetrical molecule, since the presence of symmetry in
a molecule leads to relations between the férce constants and conse-
quently to a reduction in the number of independent  force constants
which have to be evaluated. In order to illustrate this point, the
case of the non-linear XYZ mclecule will be considered. The internal
coordinates for this molecule are conveniently chosen as Aryy, Aryz,
and AY, where A indicates the change in the- bond length or bond angle

from its equilibriuin position. The potential energy for this molecule

Figure 1. The Internal Coordinates of th? Non-linear XYZ Molecule.
can then be written as
2V = £1(argy)? + £5(aryg)? + £ (88)2 + 281 5(Argydryy) + 2fy; (A AD)

+ 2fy(AryzAT) | (2)
where the fi's are the principle force constants and the fi;j's are the
interaction constants. Thus, a total of six independent force constants
are necessary to describe the potential field of this malecule. Now,
assume that atoms X and Z are identiqal. This leads to a symmetrical,
bent X2Y molecule, and the eqv;ivélence of the two bonds leads to the re-
lations ‘

1 = 2 and fiv = fo5 - (3)
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Therefore, only four independent force constants are necessary to de-
scribe the potential field in this case. The simplification brought
about by symmetry is perhaps better illustrated in the case of the
ethylene molecule. If this molecule possessed no symmetry, 78 constants
would be required to describe a general quadratic potential functionj
however, due to the high degree of symmetry, only 18 constants are neces-
sary.

The (3N-6) fundamental frequencies of a molecule furnish just
enough data to determine (3N-6) force constants., Even in view of the
reduction in the numbe: of force constants which symmetry brings about,
the number of force constants arising when a general quadratic field is
used is usually greater than (3N-6) and thus they cannot be determined.
Additional data may be obtained from the frequencies of isotopic mole-
cules,™ however, since it has been shown? that isotopic substitution does
not alter the force field to an-appreciable extent. The use of isotopic
data in the calculation of force constants is most useful when the rela-
tive mass changes occurring are large. This is because the frequencies
are roughly proportional to the square roots of the reciprocal masses of
the atoms which move during the vibrations, and a significant frequency
shift is necessary to make the calculations reliable. For this reason,
studies of hydrogen containing compounds and their deuterium analogs are

of great importance. A comprehensive review on the use of deuterium in

*Ihe term "isotopic molecules® is used to define molecules which
are identical except that one or more of the atoms of one molecule have
been replaced by isotopic  substitutions for example, CH20, CHDO, and CD20.



the analysis of molecular spectra has been given by Halverson.,3

It would appear that if data were available for a series of iso-
topic molecules, for example, the seven CoHpD).n (n =0, 1, 2, 3, L)
molecules, one could determine an unique set of potential constants for a
general quadratic field. However, as will be pointed out in a later chap-
ter, a set of force constants which allows all of the observed frequencies
to be calculated accurately for such a series of molecules is not neces-
sarily unique. One reason for this is the fact that the observed frequen-
cies must be used without being corrected for anharmonicity, or, if an-
harmonicity corrections are made, the correction is largely a matter of
guesswork with the data which are presently available for most molecules.
It should be pointed out that when data are used for such a series of
molecules, the symmetry of the least symmetrical molecule determines the
complexity of the solution for the force -constants, and in general this
increase in complexity makes the solution of the secular equation quite
difficult without the aid of a computer.

The general quadratic potential function is arrived at by makding
no assumptions regarding the force field of the molecule other than re-
quiring that it possess the same symmetry as the molecule. This field,
in addition to usually containing more independent constants than can be
evaluated, also does not give a clear description of the forces giving
rise to the interaction constants. In order to decrease the ﬁumber of
force constants and to permit a clearer interpretation of the forces act-
ing in a molecule to be made, various assumptions concerning the nature
of the force field have been made, leading to a number of special force

fields.



l, The Central Force Field

The central force field is based on the assumption that the forces
acting in a molecule act along the lines connecting pairs of atoms and
that every pair of atoms, both bonded and non-bonded, is connected by such
a force. These forces are assuméd to depend only on the distances between
the atoms. For the non-linear XYZ molecule, the potential energy assuming
a central force field can be written

2V = £1(arpy)? + fo(bryg)? + £3(bryy)?, (L)
where Ary; represents the change in‘the diétance between the non-bonded
X and Z atoms and f3 is the force constant associated with this change in
distance. The number of force constants which are required when central
forces are assumed is usually small compared with the number arising from
a general quadratic force field treatment. The results obtained from the
application of the central force field to a rather large number of mole-
culesh have demonstrated that the field is not a satisfactory one.

The rather poor results obtained using the central force field are
not surprising, since the field is the type that would result if the mole-
cule were held together by purely ionic forces, and this is not the case.
In particular, the field fails to accoﬁnt for the bending vibrations of
linear molecules and the out-of-plane bending vibrations of planar mole-
cules, This is readily seen by considering the bending motion for a
linear XYZ molecule. A small bending motion does not alter any of the
interatomic distances (to first order), and thus the central force field
would predict a frequency of zero for the bending vibration. The dis-

tortion of an angle formed by two valence bonds from its equilibrium posi-
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tion would be expected to involve an increase in potential energy, so

it is necéssary that a suitable potential field include terms to

account for this force.

2. The Simple Valency Force Field

The siﬁple valency force field is similar to the central force
field in its treatment of forces acting between bonded atoms,'bﬁt forces
between non-bonded atoms are not included. However, this field assumes
that there is a force associated with the angle formed by valency bonds
which‘opﬁoses a change in the bond angle and that this force is propor-
tional to the change in the bond angle. In preating the angular changes
in this m;nner, this field can usually account for the bending vibrations
of linear and planar molecules and thus is superior to the central force
field in this respect. The potential energ} for a non-linear XYZ mole-
cule in terms of the simple valence force field is

2V = £ (Argy)? + £2(bryg)? + £,(a7)2, (5)
where AT is the change in the XYZ angle from its equilibrium position.
The simple vaiency force field has been applied to a large number of mole-
cules,5 and although the results obtained are in general superior to those
obtained using the central force field, this field can at best be regarded
as a roughvapproximation. Both the central force field and the simple
valency force field are based on very simplified pictures of the poten-
tial field of a molecule, and the fact that the reqults obtained uéing
these fields are rather poor is no surprise. Because of the simplicity

of the assumed field in these cases, the number of potential constants
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in many cases is smaller than the mumber of fundamental frequencies
which a molecule possesses and it is possible to generalize the field
by including some additional terms in the potential energy expression.

In this manner, a more suitable field should be obtained.

3. The Modified Valency Force Field

The simple valency force field can be looked ,up;on as a special
case of the general quadratic force field discussed earlier. If the
interaction terms which are present in the potential energy expression
based on a general quadratic potential function are neglected, then the
expression for the potential energy reduces to that obtained using the
simple valency force field.

In a.n effort to determine a more suitable potential function, it
was, therefore, natural to modify the simple va_lency force field by in-
cluding certain of the permitted interaction terms in the potential energy
expreséion. This method, in genefal,f allows a set of force constants to
be evaluated which _wili reproduce the fundamental frequencies of a mole-
cule fairly well and has been used rather widely in the determination of
the force constants of molecules. However, it has not been possible to
predict which cross terms should be important or to explain adequately
the importance of those which have been found empirically to be necessary.
The use of certain chosen interaction constants in the potential energy
leads to the possibility that the solution for the force constants is
not unique, since an equally good set of force constants might be deter-
mined by using a different set of interaction constants. Therefore, even

though the modified valency force field will usually enable a suitable
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mathematical descrj.ptioh of the field to be made, it does not provide
a clear understanding of the internal forces and does not insure that

the solution obtained is uniaue.

4. The Urey-Bradley Force Field

- The Urey-Bradley force field may be considered as a simple valency
force fieid modified to include central forces between non-bonded atoms:
or as a central force field modified to include.forces which oppose
changes in the angles foﬁned by valence bonds. The potential energy for
a non-linear XYZ molecule assuning a Urey-Bradley potential function is
27 = £1(argy)? + £a(bryg)? + £, (6F)2 + £3(aryz)2 + £h(brgy) + £h(Ary)

» £3(8F) + £3(argg) (6)
The first three 'terms.\give the poténtial energy for a sim;;le valency
force field, while the fourth term takes into account the force acting
between the non-bonded X and Z atoms. The linear terms are necessary when
a Urey-Bradley force field is ﬁsed because the set of internal coordinates
used are linearly depgndent. If the coordinates form a linearly independ-
ent set, as they do in all of the force fields previously described, the
coefficients of the linear terms must vanish and therefbre these terms
have not been included in these cases .' It should likewise be pointed out
that the relations between the coordinates due to their linear dependence
enables the coefficients of the linear terms to be related. Thus, fj'_,
fé, and z; can all be expressed in terms of fé. These lir;ea.: terms
necessit#‘l;e that expressions for the redundancy condi‘tions be correct

6

to second order,” and when the redundancy is removed, it is found that
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the linear terms contribute to the quadratic portion of the potential
energy eipression. This will be described in more detail in Chapter II.

This type of field was first appliedlby Urey and Bradley7'to
tetrahedral XY), molecules, using a-repulsive potential of Ar~D between
the non-bonded atoms. - A and n are constants, and r is the distance be-
tween the non-bonded atoms. When this type of force field is used, the
interaction terms arise because of the forces acting between non-bonded
atoms. The number of independent force constants which arise when a
Urey-Bradley field is used is smaller than the number when a general quad-
ratic field is used. The Urey-Bradley force field, therefore, accounts
for the interaction terms with a relatively small number of independent
force constants and in a manner which is in accord with molecular struc-
ture, that is, in terms of van der Waals type forces acting between non-
bonded atoms.

The Urey-Bradley force field has been found to be successful in its
application to a considerable number of molecules.8’9 A major difficulty
encountered using the Urey-Bradley force field arises in connection with
bending vibrations. In some cases, it is not possible to fit the bending
frequencies. Consider the two rocking motions of the ethylene molecule
shown below. The Urey-Bradley field requires that the same force constant
describe both vibrations, but this does not permit the frequencies to be
fitted. The fact that the same force constant does not describe both
motions is not hard to understand, but it illustrates the failure of the

field in the treatment of bending vibrations.
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/ S
Figure 2. The Planar Rocking Motions of Ethylene.

5. The Orbital Valency Force Field

In an effort to extend the theory of bending vibrations, Linnett
and Heathl® developed the orbital valency force field. This field,
basically a Urey-Bradley force field, attempts to interpret bending vibra-
tions in terms of the changes in elecfronic overlap of the bonding orbitals
in the “molecule. In order to keep the decrease in electronic overlap at
a minimum during a vibration, the orbitals of any.particular atom are per-
mitted to rotate. No changes. in hybridization are allowed, so the or-
bitals of an atom maintain their positions with respect to each other,
that is, they rotate as a unit. The first application of this field was
to plaila.r XY3 molecules, and it was found that it was unnecessary to in-
troduce a.":separa.te bending constant to account for the out-of-plane bend-
ing motion. Since different consia.nts are necessary to account for the
‘planar and non-planar bending modes if orbital rotation is not considered,
this is strong evidence for the validity of the concept. In extending the
orbital valency force field to tetrahedral XY);, molecules, Linnett, Heath,
and Whea.tlsyu" 12,13 found that it was necessary, in the case of methane,

to take into account changes in hybridization in order to explain the
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force constants. However, for most molecules, it is not possible to
account for changes in hy’bridization.

A very interesting application of the orbital valency field to
molecules Apossessing double bonds followed.u‘ ‘The formaldehyde and
ethylene molecules were treated, but the frequencies which were used for
ethylene were incorrectly assigned and the force constants calculated are
thus in emc;r. The approach is interesting, however, and the application

of the field to molecules possessing multiple bonds shows promise.

6. The Transferability of Force Constants

: _It has long been recognized that molecules possessing like groups
of atoms exhibit similar chemical behavior. It has likewise been found
that like groups in different molecules possess similar vibrational fre-
quencies. This leads to the concept of characteristic frequencies. The

C-H stretching frequency, for example, occurs in the 3000 em. L

region of
the spectrum, regardless of the molecule in which the group is located.
Certainly the frequencies differ somewhat from molecule to molecule, but
all occur in the same region.

The occurrence of characteristic frequencies encouraged considera-
tion of the idea of transferring force constants from molecules for which
they are known to similar molecules whose spectra have not been observed,
thus permitting the calculation of the fundamental vibrational frequenciés
of these molecules. .In comparing force constants determined for similar
vibrational motions occurring in different molecules, it is not expected

that they will be exactly equal. Likewise, when force constants are
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transferred from molecules for which they are known to a similar mole-
cule and the frequencies of this molequle are calculated, the calculated
frequencies are not expected to be exact. This is because the forces
acting in a molecule are determined by the electronic configuration of
the molecﬁle, and the electronic configuration of a portion of a ﬁolecule
will be affected to some extent by the structure of the rest of the mole-
cule. However, when the correct pétential.field'is used, the variation
of force constants should furnish information concerning the electron den-
sities of the bonds. When force constants are transferred from one mole-
cule to another, it is essential that the same type of potential field
be used for both molecules.

‘Bending force constants are much smaller than stretching force con-
stants, and as a consequence are much more sensitive to the interaction
constants employed in the potential function. As a consequence, the trans-
ferring of bending force constants is likely to be less successful than

transferring of stretching force constants.

C. Statement of the Problem

The orbital valency force field has been applied tp sgveralimole-»
cules™ possessing single bonds on].;y,lo-15 but only to formaldehyde and ethyl-

enelh in the case of molecules poésessing double bonds. The treatmént of

*The molecules studied include planar molecules like BF3, tetra-
hedral molecules like CCl), and octahedral molecules like SF4. In addi-
tion, several anions like 003 and 01oh were studied.
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ethylene is not satisfactory, however, because of the use of incorrectly
assigned frequencies.

The purpose of this investigation was to test the orbital valency
force field thoroughly by applying it to ethylene and allene, and to then
apply the field to formaldehyde, ketene, and diazomethane. The ethylene
and allene molecules should furnisﬁ a very real test of the field, for
the two molecules are quite similar. Formaldehyde, ketene, and diagzo-
methane should provide further information with which to determine if the
orbital valency force field adequately describes the bending motions of
molecules possessing multiple bonds.

.In addition to testing the orbital valency force field, it was an
aim of this investigation to determine. whether or not a unique solution
for the force constants is obtained when repulsive forces between non-
bonded atoms are used to account for the interaction terms in the poten-
tiai ~energy expression. This is an important consideration, and one on
which 1ittle work has been carried out. The calculation of the force con-
stants for the ‘ethylene molecule has been reported using a general quad-
ratic :E':l.eld,]'6’17 and a comparison of the force constants obtﬁir;ed in .
this MVesti‘gatibh with those obtained using a general quadratic fi_eld

should be informative.



CHAPTER II

THEORETICAL DISCUSSION

A. Theory of Molecular Vibrations

t

The logical manner in which to account for the observed vivrn-
tional spectrum of a molecule would be to set up the waﬁe.equatior for
the molecular system and solve the equation. Even for the simplest
molecules, this is a difficult job, and as larger molecules are treated,

" 1t becomes necessary to devise a method by which an approximate solu-
tion of the wave equation may be obtained. It has been shown by Born
and Oppenheimert® that a good approximation to the solution of the wave
equation can be obtained by first solving a wave equation for the elec-
trons alone, holding the nuclei in fixed positions, and then solving a
wave equation for the nuclei alone, in which a value of the energy ob-
tained from the electronic ﬁave equation enters as a potential function.
This potential function is-considered to be a function of the intermuclear
distances. . It is apparent that when the vibrational wave equation is de-
termined in this manner, the electronic state of the molecule must remain
unchanged, since the assumed potential function would change if a change
in the electronic state occurred.

The wave equation for the nuclei, when solved, should give the
solution for the vibrational, rotational, and translational motions of
the molecule. However, when no external fields are present, the trans-

lational energy can be separated exactly.l9 Therefore, the wave equa-
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jﬁion'for vib:ation and rotation alone can be considered. The solution
‘Of'this wave equation is difficult, and in studies of potential fields,
the assumptioh that this wave equation can be separated into a vibra-

', tional wa#é‘équation’and a rotational wave equation is usually made.

fhe vibrational wave equation accounts for the vibrational mofion of the
.non-rotating molecule, and the rotational wave equation accounts for the
rotational motion of the molecule considered #s a rigid body. The sepa-
ratioﬁ of rotation and vibration is based on ﬁhe assumptions that the

: momenta‘of inertia of the molecule are constant and that the interaction
of the angular momenta of rotation and vibration is negligible. It is
recogniied that the effective moments of inertia are functions of the
vibrational state, and likewise that the moments of inertia vary with the
rotational quantum number, since thg molecule is not a rigid rotor. The
interaction of angular momenta of vibration and rotation is usually quite
small; however, in some cases, the interaction is significant, and the
inclusion of the vibration-rotation interaction can be used to provide

- further information concerning the nature of the potential field.zo’21
Very accurate data are necessary in order that tﬁis type of calculation

~ be reliable. It should be pointed out that the approximations made in
vorder to separate'vibration and rotation d§ not lead to any error in the
_determiﬁation of the force constants. This is true because the positions

of the band centers, which‘aré used in determining the force constants,

are not affected by the assumptions made in separating rotation and vibra-
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tion.¥ The occurrence of vibrational angular momentum and the changes
in moments of inertia do affect the intensity and rotational line
spacing of a vibration-rotation band, however, and it is these effects
which can be used for a further study of the potential field. However,
we are not concerned with these factors in this investigation.

The problem has now been reduced to that of the vibrational motions
of a group of mass points, the nuclei, which exist in a stable equilibrium
configuration under the influence of a potential field. The wave equation
for the vibrational motions of such a system can be set up, and if it is
assumed that the vibrational motions are harmonic, the wave equation is
easily solved when the potential and kinetic energies of the system are
expressed in normal coordinates. When normal coordinates are used, the
wave equation can be factored to yield (3N-6) wave equations which are
in the form of harmonic oscillator wave equations, each being associated
with one of the normal coordinates. Therefore, the solution of the vibra-
tional wave equation predicts (3N-6) normal modes of vibration which are
harmonic in character.

The solution of the vibrational wave equation is quite easy when
the normal coordinates are known. However, the normal coordinates are
in general not known, and it is necessary to express the kinetic and

potential energies in terms of a known coordinate system in order to

1t is possible that neglecting the changes in moments of inertia
and the coupling of angular momenta would cause the analysis of a band
to be wrong. However, these effects do not cause amy shift in the true
band center, and if the band centers are chosen correctly, the force con-
stants calculated from this information will be correct.
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solve the equations of motion. After the force constants for the molecule
have been determined, the normal coordinates can then be found if desired.

The wave equation can be set up in terms of a chosen coordinate
system and solved. However, the treatment from this point is more
easily carried out using classical mechanics, and since the results are
known to be the same as those obtained using quantum mechanics, classical
,mechanics will be utilized. According to the laws of mechanics, particles
which are held in stable equilibrium by a potential field can carry out
vibrations about the equilibrium positions. If the displacements are
small, the potential energy, V, can be expanded in a power series in the
coordinates chosen to describe the system. Since a non-linear molecule
has (3N-6) degrees of vibrational freedom, (3N-6) independent coordinates
are required to describe the system, The (3N-6) internal coordinates are
chosen in such a manner that they are unaffected by rotations or transla-
tions of the molecule as a whole, that is, they satisfy the Eckart con-
ditions.21

The potential energy for small vibrations of ﬁe atoms about their
equilibrium positions in a molecule containing N atoms can then be ex-

panded in a Taylor series in the (3N-6) internal coordinates, the gji's,

asi
3N-6 N-6 N-6 cubic and
2 ov 3%y
2V = 2V, + 2 z =), u* ;E ‘_S_ (=) 4 higher
q41q (7
i=] on {=1 J=1 2q3dqj‘o 19 7 order . )

terms

The term Vo represents the potential energy of the molecule in its equi-
1librium configuration, and since only changes in potential energy are of

importance, this term can be chosen as zero. In addition, when the atoms
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are all in their equilibrium positions, the potential energy mst be

at a minimum. This requires that the coefficients of the linear terms,
oV

the (x—
S o,

then the cubic and higher order terms will be quite small in comparison

o must all be zero. If the amplitudes of vibration are small,
to the quadratic terms and can be ignored without introducing appreciable
error. By ignoring these forces, we assume that the internuclear forces
are linear functions of the displacement coordinates, which is equivalent
to assuming that the motions are harmonic. Although it is realized that
the vibrations are not truly harmonic since the displacements are finite,
the error introduced should not be large. Inclusion of the higher order
terms would not only introduce additional unknowns in the potential energy
expression, but also greatly increase the complexity of the solution for
the force constants. Furthermore, the evaluation of the additional un-
knowns which are introduced by including these higher order terms is im-
possible in almost all cases because of insufficient data. The potential
energy for small displacements can therefore be written as
oy e (8
- -1 31 4
This expression is usually written in the form
o .

v = & £ f1391q4 (aQ1EQJ)o (9)
and the fij's are called the force constants. The kinetic energy, T, of
the system can be expressed as

N-6 En-é "
2T = 8449193 » (10)
i=1  3=1
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where the aij's are functions of the masses of the atoms and the geometry
of the molecule and the dots indicate the time glerivative.

When the expressions given in (9) and (10) are introduced
for the potential energy and the kinetic energy in the equai’.ions of motion

in Lagrangian form, a series of (3N-6) differential equations of the form
N-6 :
t (ag3dy + fijq3) = O (11)
J=1 .
are obtained. These equations are in the form of the differéntia.l equation
for an harmonic oscillator, and the solutions of these equations yield.
(3N-6) equations of the form
aj = Aj sin (W + 64) , (12)
where A = hﬂzva, Vbeing the frequency of osecillation, A4 is the ampli-
tude of the motion, and 63 is simply a phase constant. Now, if this
value of qaj is substituted into Equation (11), the following equations
are obtained.
N-6 _
i (fij - 8.13?\) Aj =0 . (13)
i=1 ;
This is a set of (3N-6) simultaneous, linear, homogeneous equations in
terms of the (3N-6) unknown amplitudes Aj, and for solution to exist
which are non-trivial, that is, the Aj's not all equal to zero, it is
necessary that the determinate of the coefficients must vanish. There-
fore
fi3 - aj3A|=0. (14)
This is the secular determinant of order (3N-6), and is the equation

which is used in order to calculate the force constants when the fre-
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quencies are known. This secular determinant can be expanded to give

a polynomial equation in A of the general form

?\(3N-6) + 01(7\)(3N-7) * 027\(3N"8) ¢ ki + 0(3N_7)?\ + G(3N,"6) =0 (15)
where the C4's are functions of the aj4y's and the f34's. Once the seculér
equation has been obtained, several standard methods are available for
solving the equation for the force cons‘l;an‘l;s.z3 However, the solution

of this equation is quite difficult when the order of the equation is
large. In order to factor the secular equation to the maximum possible
extent and thus simplify the solution of the equation for the force con-

stants, group theoretical methods are utilized.

1. Group Theory

The application of group theory to the problem of molecular vibra-
tions is based on the symmetry properties of molecules. Many common
molecules, for example, H20 and CH3Cl, possess some symmetry. The geo-

metrical structures of these two molecules are shown in Figure 3. Con-

(a) | (b)

Figure 3. (a) The Structure of the H20 Molecule; (b) The Structure of
the GH3Cl Molecule.
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sider the H20 molecule. It is readily seen that this molecule has two
planes of symmetry, one coineciding with the plane of the molecule, and
the other perpendicular to the plane of the molecule. In addition, the
axis passing through the oxygen atom and the mid-point of the line con-
necting the hydrogen atoms is a twofold axis of symmetry, since a rota-
"tion of the molecule through 180° about this axis produces a configura-
tion which is indistinguishable from the original configuration. The two
planes of symmetry and the twofold axis of symmetry are examples of sym-
metry elements, and the reflection through a plane of symmetry or rota-
tion about an axis of symmetry, which produce configurations which are
indistinguishable from the original configuration, are the corresponding
symmetry operations. The particular elements of symmetry which a mole-
cule possesses determine the point group to which the molecule belongs,
and every molecule can be assigned to one of a small number of point
groups. The H20 molecule belongs to the point group Coy, since it possesses
two planes of symmetry and a twofold axis of symmetry. The CH3Cl molecule,
shown in Figure 3 (b), possesses three planes of symmetry and a three-fold
axis of symmetry, and belongs to the point group, C3y. NH3 and CH3CN are
examples of other molecules beionging to this point group.

The symmetry operations, when carried out on a molecule in its
equilibrium configuration, produce configurations which are indistinguish-
able from the original configuration. Now, in order to determine the
effect of the symmetry operations on the potential energy, the effect of
the symmetry operations on a molecule in a given distorted configuration

mst be considered. When a symmetry operation is carried out on a molecule
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in a distorted configuration, the resulting configuration may be dif-
ferent from the original one, but the same interatomic distances and
angles will occur in both configurations. Therefore, since the poten-
tial energy is assumed to depend only on the interatomic distances and
angles, it must be invariant with respect to the symmetry operations.
By a similar argument, it is readily shown that the kinetic energy is
likewise invariant under the symmetry operations.

It has been pointed out previously that it is most convenient to
express the potential energy in terms of changes in bond lengths and
bond angles. However, in order to factor the secular equation to the
maximum extent, it is necessary to use linear combinations of these inter-
nal coordinates. These linear combinations of the internal coordinates
are called symmetry coordinates, and are chosen in such a manner that
they are either unaltered (symmetric) or changed in sign (antisymmetric)
by a given symmetry operation of the point group. The symmetry coordin-
ates can then be divided into sets, or species, by determining how they
transform under the group operations. The symmetry coordinates belonging
to a particular species all transform in the same way under the group
operations, while coordinates belonging to other species are transformed
in a different way by at least one of the group operations. Therefore,
no cross terms occur in either the kinetic or potential energies involv-
ing coordinates of different species, since if these terms were present,
the kinetic and potential energies would be changed by one or more of the

group operations.
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The different species are designated by symbols such as A3, Ap,
B), and By for point group C2y, and A}, A2 and E for point group C3y.
The letters A and B represent non-degenerate species, while E represents
a doubly-degenerate species. Species designated by the symbol A are
symmetric with respect to a principle axis of symmetry, and the symbol B
represents species which are antisymmetric with respect to a principle
axis. Numerical subscripts are used to indicate whether the species are
symmetric or antisymmetric with respect to either a two-fold axis per-
pendicular to the principal axis or to a vertical plane of symmetry. In
addition, when a molecule possesses a center of symmetry, for example,
CoH),, the subscripts g and u are employed to designate whether the species
are symmetric or antisymmetric with respect to the center of symmetry.zh

To illustrate the simplification of the secular equation which is
brought about by the use of symmetry coordinates, consider the CH3Cl mole-
cule. The secular equation is of order nine, but when the proper sym-
metry coordinates are used, the equation is factored into three third-
order factors, two of which are degenerate. The amount of work required
‘l"‘o evaluate the force constants is therefore reduced greatly by the fac-
toring of the equation. ‘

In addition to factoring the secular equation, the application of
group theory to molecular vibrations also. enables the selectipn rules for
infrared and Raman spectra to be determined, as well as further informa-
tion concerning the nature of the vibrational modes. For a more general
and detailed treatment of these subjects, the reader is referred to

"Molecular Vibrations," by Wilson, Decius, and Cross.
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2. The Form of the Secular Equation

The familiar F and b matrix method due to Wilsonzs’ 26 was used -

to obtain the factored secular equation. The secular equation is given

by
8% -a1| =0, (16)
where
¥ =UBMlBT (7)
and
3 = UFU. (18)

ML is the inverse of the diagonal matrix where elements are the atomic
m'asses, B is the transformation matrix relating the internal coordinates
to the Cartesian displacement coordinates, U is the orthogonal trans-
formation relating the symmetry coordinates to the internal coordinates,
and F is the potentia;l energy matrix whose elements are the force con-
stanli'.s. The roots of the secular equation, the ) 4, are related to the
fundmnentéi frequencies by
PVIERT LV (19)

where V is the -frequency in cm.-1l. '

Rather than evaluating the transformation matrix B, it is usually
more convenient to determine the ¥ matrix by expressing the internal co- X
ordinates in terms of S vectors. The § vectors are defined in the follow-
ing manner. For a given internal coordinate Rk, a vector §kt is defined

—

for each atom t of the molecule so that for an arbitrary displacement Pt

N-6
Ry = i .S.kt. P‘b . (20)

t=1

for each atom
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The physical meaning of the vector gkt can be simply illustrated. If
all of the atoms in the molecule are in their equilibrium ﬁositions b
then the direction of gkt is the direction in which a given displacement
of atom t will produce the greatest change in Ry, and the magnitude of
gkt is equal to the increase in Ry which is brought about by a unit dis-
placement of the atom in this direction. The vectors can usually be

written down by inspection. The transformation to symmetry coordinates

- N-6
‘gkt = i: UkiSit (21)

i=1

yields

and the elements of the ¥ matrix are then given by

N-6 3
B = i /"tzkt"gﬁ, ’ - (22)

t=1
where py is the reciprocal mass of the atom t.

B. Interastion Terms in the Potential Energy Expression

In the d.isdussion of potential fields in Chapter I, it was pointed
out that it is usually necessary to introduce interaction terms into the
potential energy expression in order to obtain a suitable description of
the potential field of a.molecule. When a valency force field is used,
the nature of these cross terms is not well understood, and it is diffi-
cult to decide which of the permitted interaction terms should be in-
cluded. The inclusion of the interaction terms can be justified on a
physical basis by observing that a change in a bond length or a bond
angle in a molecule will change the electronic configuration, and this

may lead to changes in the other bond lengths and bond angles in the mole-
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cule. Thompson and Linnett27 have explained the positive sign of the .
bond-bond interaction term in CO2 in terms of resonance theory. Accord-
ing to their ax;gument, if one of the bonds is lengthened, there is a
tendency for the other bond to decrease in length and become stronger.
Therefore, the interaction constant would be positive.. A atﬂdyze of the
bond-bond interaction term in YXY molecules showed that 1;he sign of the
interaction term could be expléined in terms of the change in one XY
bond when the other XY bond was broken. If the bond length in the XY
molecule is greater than the bond length in the ¥XY molecule, then the
interaction constant wéuld be expected to be negative, while if the bond
length in the XY molecule is less than the bond length in the YXY mole-
cule, the interaction constant would be expected to be positive. This
relationship was found to exist in every case in a study of 10 molecules.
However, in larger molecules, it is not possible to make such a simple
interpretation of the interaction constants.

When a modified wvalency force field is used fo describe the poten-
tial field of a molecuie, the assumption that the interaction terms in-
volving coordinates which are far apart from each other in a molecule
are very small and can be neglected is usually employed. ;[n addition,
when molecules possessing C-H 5onds are considered, the interactions in-
volving the C-H stretching motions and other motions in the molecule
are often ignored. This is due to the fact that when a frequency is
widely separated from the other frequencies belonging to the same sym-
metry species, the interaction constants comécting this motion with the

other motions have relatively little effect on the frequencies. When
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this reasoning is used in selecting the interaction constants to in-
clude in the potential energy expression, the resulting potential func-
tion usually furnishes an acceptable description of the potéhtial fields
that is, a set of force constants can be determined v;hich will reproduce
the observed frequencies of the molecule rather well. However, it is de-
sirable to account for the interaction terms in a manner which would per-

mit a more complete understanding of the forces acting in a molecule.

l. Interaction Terms A;'isﬁxg_From Forces Between Non-bonded Atoms

The proposﬂ by Urey and Bradley that forceé between non;bonded
atoms be included in the potential energy expression furnishes a method
by which interaction terms can be introduced which is consistent with
theoretical considerations and which permits the interaction constants to
be interpreted more clearly. As a first approximation, the interaction
between two non-bonded atoms in a molecule may be considered the same as
the interaction between two corresponding inert gas atoms. For example,
in the ethylene molecule, the forces acting between a carbon atom and a
hydrogen atam to which it is not bonded can be considered in terms of the
forces acting between a helium atom and a neon atom separated by the same
distance as the carbon and hydrogen atoms in the molecule. It is recog-
nized that this is a very rough approximation, but the forces acting in
the two cases should be of essentially the same form.

It has been found29’ 30 that the potential energy between two like

inert gas atoms can be expressed by

a b
L~ SR (23)
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where a and b are positive constants and R is the distance between the
two atoms. The first term corresponds to a repulsion between the two
atoms, while the second term corresponds to an attraction between the |
atoms. Although later workjlu has led to the expression of the repulsion
term in the form of an exponential in R, the above expression is exact
enough for the present work. In the molecules which are studied in this
problem, the distances between the non-bonded atoms ' are of the order of

22, and at this distance, the repulsive term in the potential energy ex-

pression, fﬁ s is the predominant one. Therefore, the 'potential energy

can be written approximately as

V’ﬁ? * (2L)

The contribution to the potential energy for a small change in the

equilibrium distance between two non-bonded atoms in a molecule can be

written as
AV = -BAR + AAR? (25)
where
AT Y
B=-GR)  A-35E), (26)

and R is the distance between thée two atoms.. Utilizing the expression
for the potential energy given in Equation (23), it is found that
y
s . 2
e I3 A (21)
where Re is the equilibrium distance between the non-bonded atoms. The
use of the potential energy in the form given by Equation (2L) enables

the constants B and A to be related, and thus only one constant is intro-
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duced into the potential energy expression for the molecule for each
pair of non-bonded atoms which are assumed to repel each other.

The necessity of including the linear term, -BAR, in the poten-
tial energy expression has been questioned. Torkington32 states that
the constant B cannot appear in the secular equation becauée the linear
terms in the internal coordinates must vanish in order that the equilib-
rium configuration of the molecule be stable. The requirement that the
linear terms must vanish is correct; however, when the coordinates which
are used to describe the repulsions between non-bonded atoms are ex-
pressed in terms of the set of independent internal coordinates of the
molecule, the linear term is found to introduce quadratic contributions
to the potential energy. In order to illustrate this point, the non-
linear XYZ molecule will be considered. The geometry of the XYZ molecule

is shown in Figure L. The potential energy of the molecule, based on a

Figure L. The Geometry of the Non-linear XYZ Molecule.
Urey-Bradley force field, is
2V = ky (ar)2 + kp(ar2)2 + ky(a¥)2 + By (Ary) + Bp(Arp) + B,(AY) -2B(AR;)
+ 2A(AR7)2, (28)
where the last two terms account for the repulsion between the non-bonded

X and Z atoms. The coordinate AR is a function of the other coordinates,
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and in order to remove this redundancy, the transformation expressing
AR as a function of Ary, Arp, and AT is desired. The important point
to be observed is that the transformation must include second-order
terms, because of the presence of the linear term -2B(AR1). Employing
the law of cosines, the equilibrium distance between the two non-bonded

atoms can be written as

R§=r]2_ +r§-211r2 cos ¥ , (29)

where the subscript e indicates the equilibrium value. The change in the
distance R produced by infinitesimal changes in the bond lengths and
bond angle is then given by
(Rg *+ AR)2 = (y + Arl)2 + (rp + Ar2)2 -2(ry +Anr)(ry + Ar2)

cos (¥ + AY) . (30)
For small changes in ‘T, the term cos (¥ + AT) can be expressed in the

form

1)
cos (§ +# AT) =cos § - LA’Gz - sin ¥ AY, (31)

2
which is correct to second order in AT . Wl}en this value is substituted
into Equation (30), the equation becomes
2ReAR + AR2 = (2r; -2rp cos ¥ ) Arp + (2r3 - 2r) cos ¥ ) Arp
+2r) rp sin¥ AY + Ar]2_ + Ar% + rjery cos § (AU)Z - 2 cosT ArjArp
+ 2@7’ sin ¥ ArjAT + 2rg, sin T ArpA Tl . (32)
The cubic terms which arise have been ignored. When Equation (32) is
solved -for AR, and the resulting expression is simplified, AR is found

to be
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r
AR = cos @ Ary + cos 6 Arp + ..r..}K;g._ sin¥ AT + _ﬂ]f'e— sin? @ Ar%_ g
1 2 2 _ ]
+ —p— 8in° 0 Arp —ge— cos § cos @ AT° - =— sin @ ArArp
+ lli-e ro sin § cos 6 ArmaAY 4+ ;; r, sin 6 cos # Arzﬂro (33)

When this value of AR is substituted into the potential energy expression

given by Equétion (28); the potential energy becomes

- B , B
2V=[k11f-§e—s:l.n2¢ +2A0032¢]Ar§+ [kg- Re sin® @ +2Acosze]

Arg"[ky ..._g_e..qrz cos¢ cos © +2A11r2 sin¢ sinG:lA’tY2

n
o

rp sinf cos @ + LA rg sin cos¢]Ar1Af

["121—'2"31“¢ sin © + LA cos ¢ 0039]511“5

[
[

+ |B] - 2B cos ¢]Arl +[132 - 2B cos Q]Arz

+

+ Re
2B

% p—

r, sin6 cos @ + LA r) sin? cos GJArQAT

"'[B‘o"% rLTo sinT]AU. (3L)

(7%

The last three terms in Equation (li) must vanish in order that the eqt'xi-
librium configuration be stable, and this cthion allows By, Bp, and By
to be evaluated in terms of B. These tdfﬁ/ are not important in the XYZ
molecule, but in more complicated molecules such as ethylene, they must
be determined in order that their“contribution 'to the potential energy
during the out-of-plane vibrational motions can be determined. This con-
tribution during non-planar modes arises because the chapges in the Ar's

and the AR's are not in the same ratio for planar and non-plana.f motions.
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Equations (33) and (34) show how the quadratic contributions to
the potential energy arise from the linear term -BAR, and it is apparent
that Torkington:is wrong in his statement that such terms do not occur.
The problem of including linear terms in the potential energy expression
when redundant coordinates are used is discussed by Wilson, Decius and f,lﬂ/
Cross.33 These authors point out that when a completely general quadratic
field is used, it appears to be unnecessary to introduce linear terms in-
to the potential energy expression when redundant coordinates are used,
since the lack of data makes it impossible to evaluate the constants aris-
ing from these terms. However, when forces between non-bonded atoms are
considered, it is possible to relate the coefficients of the linear terms
to the coefficients of the quadratic terms, and these terms should be in-

cluded.

2. Repulsive Forces Between Non-bonded Hydrogen Atoms

The molecules which are studied :Ln. this investigation, C2H), C3H),
CH20, CH2CO, and CH2N2, all possess hydrogen atoms between which repulsive
forces would be predicted on the basis of the potential field assumed.
The hydrogen atoms are small, and the force of repulsion between non-
bonded hydrogen atoms might be expected to be small. Linnett and Wheat-
leyn found that it was possible to ignore the hydrogen-hydrogen repulsion
in CH), and it was likewise found that this repulsion could be ignored in
treating CH20.:Lh Further evidence that the hydrogen-hydrogen repulsion
is small compared to the repulsion between a hydrogen atom and a carbon
or oxygen atom is obtained from a consideration of the magnitude of the

helium-helium and neon-neon repulsion forces. Considering only the re-
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pulsive portion. oi; ﬁhe potential energy between inert gas atoms,3h it
is found that tpe dontribut.ion to the potential energy; %(—g—;g—), for a
small change in the distance between two neon atoms is 10 times as great
as that for two helium atoms which are the same distance apart as the
neon atoms. The poﬁential energy contribution when a neon atom and a
helium atom are considered will lie between these two values, and will
be considerably‘ greater than the value for the helium-helium case.
For these reasons, it has been assumed that the repulsive force be-
tween non-bonded hydrogen atoms can be ignored. It is desirable to ignore
* this repulsibh because when this :i:s done, only one -type of repulsion must
be considered in each of the molecules treated. This leads to a simple
secular determinant which can be solved in a straightforward manner,
whereas if another constant is introduced into the potential energy ex-

pression,' the solution of the secular equation becomes much more difficult.

C. Theory of Bending Vibrations in Terms of the Orbital Valency Force Field

The orbital valency force field was proposed by Heath and Linnett10
in 1948 in an attempt to. extend the theory of bending vibrations. v The
field is based on the assumptions that‘ the bond—forming orbitals of an
atom are 'fixed at definite angles with respect to each other, and that
the most stable bond is formed between two atoms when the overlap of the
bonding orbitals is a maximmum. Using such a picture, it is possible to
consider an angular distortion in terms of the change-in overlap of the
bonding orbitals which is brought about by the distortion. Furthermore, -

\‘use of this concept accounts for the fact that during some of the vibra-
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tional motions, rotation of the bonding orbitals of an atom will lead

to a decrease in the potential energy, and this rotation must be taken
into account in determining the potential energy expression.

When this field was applied to a group of planar XY3 molecules,
it was found that only one force constant was necessary to describe the
planar bending mode and the non-planar bending mode. This is a con-
sequence of the fact that if the bending orbitals of the molecule are
symmetrical about the bond axes, then the restoring force associated
with a given angular distortion in the plane is the same as the restor-
ing force associated with an equivalent distortion out of the plane.
When a valency force field is used, it is necessary to introduce a sepa-
rate bending constant for the out-of-plane motion, and the fact that the
orbital valency force field is able to account for both motions using
only one constant indicates that the concept is valid. The orbital
valency force field was next applied to a group of eight tetrahedral
halides,11 and the results obtained were quite good. However, when the
field was applied to CHh,l3 it was found to be unsatisfactory. The force
constant associated with the bending of a C-H bond was found to be 1.35 x
105 dynes em.~L when the doubly-degenerate bending frequency was used
and 0.86 x 10° dynes em.™L when the triply degenerate bending frequency
was used. Ihe orbital valency force field requires that these constants
be the same, and is unable to account for the large difference. In an
attempt to explain this difference, the possibility of changes in hybrid-
ization of the carbon orbitals during the vibrations was considered. If

changes in hybridization of the carbon orbitals can occur during a vibra-
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tion in such a manner that the orbitals can follow the movements of |
the hydrogen atoms, then the change in hybridization may lead to a de-
crease in the potential energy. An examination of the wave functions
of the carbon orbitals revealed that a change in hybridization which
would permit orbital following can occur during the triply-degenerate
bending motion, but that no change in hybridization is possible during
the doubly-degenerate bending motion. This explains why the bending
constant associated with the doubly-degenerate vibration is larger than
the bending constant associated with the 'triply-degenerate vibration.

It should be emphasized that orbit&i following arises from a change in
hybridization, and is quite different from the orbital rotation which

is permitted in using the orbital valency force field. Orbital follow-
ing involves a change in the angles between the bonding orbitals of an
atom, while orbital rotation involves a rotation in which the bonding
orbitals of an atom rotate as a unit, retaining their original configura-
tion with respect to each other. In general, it is not possible to
account for changes in hybridization because of lack of sufficient data,
but it is necessary to realize that such changes may occur.

The orbital valency force field was then applied to formaldehyde
and ethylene,lh molecules which contain double bonds. Unfortunately, the
frequencies which were used for ethylene were incorrectly assigned, and
the force constants obtained.were incorrect. No further applications of
the orbital wvalency force field to molecules possessing multiple bonds

have been reported.
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In this investigation, the orbital valency force field has been
applied to ethylene, allene, formaldehyde, ketene, and diazomethane.
The manner in which the potential energy‘expressions for the bending

motions of these molecules were obtained will now be presented.

1. Ethylene
The ethylene molecule, C2H), belongs to the point group V. It

possesses 12 fundamental vibrational modes, 7 of which involve bending
motions. The bending vibrations are shown in Figure 5, along with the
species to which they belong. Now it is necessary to consider the struc-
ture of the bonding orbitals in the molecule. The carbon-carbon double
bond is made up of a o bond and a- T bond, while only 6~ bonds are
formed between the carbon and hydrogen atoms. It is desired to associate
force constants with the changes in orbital overlap which occur during
the bending motions, and in order to accomplish this, the molecular or-
bitals are considered as being formed by the overlapping of the directed
atomic orbitals of the atoms comprising the molecule. The ethylene mole-
cule, based on this model, is shown in Figure 6. The teardrop-shaped
orbitals represent o- orbitals .and these are cylindrically symmetric with
respect to the bond axes. The circular orbitals represent T orBitals,
and these orbitals are also cylindrically symmetric with respect to their
axes. The orbital valency force field constants are determined on the
basis of the changes in orbital overlap which would occur in this model
when orbital rotation is permitted. It is recognized that this model

does not give a true picture of the orbital structure of a molecule, but
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Figure 5. The Bending Vibrations of Ethylene.



it is as close an approximation as can be made at this time.

Figure 6. The Orbital Model of Ethylene.

The variation of the potential energy when a C-H bond is dis-

torted is defined as
2V = Ky (ax)2, (35)

where AK is the angle fm by the C-H bond axis in its equilibrium posi-
tion and the line connecting the carbon and hydroéen atoms in the dis-
torted position. The G- bonds are symmetrical about their axes, so the
potential energy change produced by a bending of the C-H bond in the
plane of the molecule is the same as that for the bending of the bond'
through the same angle perpendicular to the plane of the molecule. The
bending vibrations are pictured in Figure 5, and the potential energy
associated with each of the motions will now be determined.

a. The Ag and B3, bending vibrations. From an examination of

the orbital structure shown in Figure 6, it is clear that no orbital rota-
tion can occur in the Ag and B3, bending modes. Therefore, the potential

.energy expression for these motions can be written as
N

2V =Ky > (8B1)?, (36)
11
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where AP represents the change in an HCC angle. It is clear that AB
is equal to the angular distortion of the C-H bond, so it is correct

to express the potential energy in terms of the AB's.

b. The Bp, bending vibration. In the Bp, rocking motion, or-
bital rotation may occur. If the orbitals of the carbon atoms are
allowed to rotate in the direction in which the hydrogen atoms to which
they are bonded have been displaced, the potential energy of the motion
will be decreased if the increase in orbital overlap of the C-H ¢ bonds
is greater than the decrease in'orbital overlap of the C-C o bond. The
nmagnitude of the angle through which the orbitals rotate is determined
in the following manner. The potential energy of the vibrational motion

before orbital rotation is permitted is

2V = Kg ﬁ (881)° (37)
i1

and is seen to be the same as the potential energy foxj the A; and B3y
vibrations. This expression would be correct if the carbon-carbon
bond were so strong that no orbital rotation would occur. This bond is
not infinitely strong, however, so orbital rotation will occur. The or-
bitals of each carbon atom are now allowed to rotate through an angle,
A , in order to minimize the potential energy. Tﬁe orbital picture
after this rotation occurs is shown in Figure 7.

The overlap of the T bond is unaffected by this rotation. The
overlap of the carbon-carbon o— bond is decreased, however, and this will
cause an increase in potential energy. The potential energy after the

orbital rotation is
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o= sl

where k‘j‘_ is the force constant associated with the bending 61‘ the carbon-

carbon o~ bond in the manner shown in Figure 7. The orbitals will rotate
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Figure 7. The Effect of Orbital Rotation During the Bpy Vibration of
Ethylene.

until the potential energy is a minimum. Therefore, A% can be deter-

mined by minimizing V with respect to A%, .

oV ' u
=Gy - © - *a i (0B1-0% ) + K& (% ). (39)
| olA ’ = ' i
When this expression is solved for Af , one obtains |
. Ky '
Al = e § (884) . (Lo)
AR ) A

It is rea.dily seen that if the cérbon-ca.rbon o~ bond were infinitely
strong (k2 = 00 ), .AE would be zero and no orbital rotation would occur.
Substitution of the value of A%, given by Equation (40) into Equation
(38), followed by a stré.ightforward simplification, gives the potential

energy as

3KZ + Kkl

2V = gy + kg_a- g; (884)? - m{ Z ku E ABiABj (k1)
: . | 17‘:) v
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This expression gives the potential energy for the By, rocking motion

in terms of the ABji's, the changes in the H-C-C angles. In order to
obtain the J matrix element for this mode, the potential energy matrix
determined by Equation (41) mst be symmetrized. The correct symmetry
coordinate for .the Boy motion, in terms of the APy's, is 3(AB4 - ABg +
AB3 - 4B h) . However, because of the fact that the potential energy is
written as a sum of squares before orbital rotation is ‘l;,aken into account,
any sign associated with the angular displacements disappears and is not
recove:ed in subsequent manipulations. Consequently, the proper sym-
metry coordinate to use in order to obtain the Bgu'} matrix element is
the sum of the ABj's, 3(ABy + AB2 + AB3 + AB)). When the symmetrization
is carried out, the diagonal 'J matrix el et Bor ¥k Bpy bending vibra-
tion is found to be
Kpke
LKy + kg

Symmetrization of the matrix determined by Equation (L42) using the other

(42)

three 6rﬂxogonal linear combinations of thé AB4's, which correspond to

the Ag, B3y, and Bg bending vibrations, yields three diagonal F elements
which are just Kg. This fact indicates that the rotation of the orbitals
in the manner permitted during the B2y vibration cannot occur 'durlng the
Ag, B}m or B)g vibrations. The correct elements for Ag and B3y is Kp,
Because no orbital rotation in any manner is possible during these motions.
However, in the B)g rocking motion, the orbitals can rotate in a different
manner from the mction of the Bp, rocking vibration, and this rotation

must be considered independently in order to determine the correct 3 matrix
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element for the By, rocking motion.

c. The Bjg bending vibration. The Bjg bending vibration is also

a rocking motion of the CHp groups. However, in this case, the two ends
rock in the same circular direction. Again it is possible for orbital
rotation to occur, but the effect on the carbon-carbon o~ bond is dif-
ferent from that in the Bgu vibration. The potential energy for the

motion before orbital rotation is taken into account is
2
2V = Ky (Ag1)° . (43)
i=1
The orbitals of each carbon atom are now allowed to rotate through an

angle A%, . The orbital picture after rotation is shown in Figure 8.

Figure 8. The Effect of Orbital Rotation During the B1g Vibration
of Ethylene.

The potential energy after the rotation is
2V = Ky ﬁ (ap1 - 4% )% + 18 (k. )2 . (L)
i=]
k%. is defined as the force constant which is associated with the change
" in overlap which occurs when one of the carbon o~ orbitals is rotated

through a unit angle. Therefore, when each of the carbon o~ orbitals is
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rotated. through an angle, Af , in the same circular direction, the po-

‘tential energy is kg ( ZAE )2 Figure 9 11lustrates this point. k&

%%

(a) | (b)

Figure 9. The Change in Overlap of the o~ Orbitals During the Big
- Vibration of Ethylene

defined as the constant which is associated with the change in overlap
occurring during the motion ‘shdwn in Figure 9 (a). Therefore, the poten-
tial energy for this motion is 2V = k%. (82 )2. Figure 9 (b) shows the
change in orbital overlap which occurs in the Boy motion, and if the
force associated with the change in orbital overlap is linear, the po-
tential energy for this motion, assuming infinitesinal displacements, is
2v = k8 (2%, )2, This constant was defined in this manner so that it
would be the same as the corresponding constant in allene, which will
be discussed later. This definition of k%_ differs frorﬁ the way k§_
waé defined by Linnett,lh and the constant defined in this investiga-
tion is equal to % of the constant as defined by Linnett.

When the potential energy given in Equation (lLk) is minimized
with respect to A%, the value of AE 4is found to be

LY = — hKH A th é (8B1). -~ (45)

When this value of AE, is substi tatsd dnto Equation (L), the potential

energy becomes
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When the matrix determined by this expression is symmetrized, the ?

matrix element for the B3, rocking motion is found to be

KpicG-

s (u7)

d. The ..ll‘.l. and _'12.5 bending vibrations. These vibrational motions
involve out-of-plane distortions, and the TV bonds have to be considered.
The By, wagging motion is one in which all four hydrogen atoms move in the
same direction, perpendicular to the plane of the molecule. In the ng
wagging motion, the hydrogen atoms all move perpendicular to the plane
of the molecule, but the two ends wag in opposite directions. The co-
ordinates used in expressing the potential energy are the two angles
formed by the CH2 planes and the axis of the molecule. Figure 10 shows

the change in overlap in the o~ and T bonds brought about by the orbital

Figure 10, The Effect of Orbital Rotation During the Bjy and Bpg Vibra-
4 tions of Ethylene.
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rotation ocourring during the motions.
Consider the By, vibrational motion. The potential energy for
the bending of the C-H bonds before taking orbital rotation into account
is

. N _
WKz > () = 2K i (comex 893)2 . (L8)

i=1 i=1

Inspection of Figure 10 shows that the change in orbital overlap occurring
in the carbon-carbon 6~ bond is the same as it was in the By, vibrationj
therefore, k* is the constant associated with the change in overlap of
the o~ bond. A new constant must be introduced to account for the over-
lap change occurring in the Tl bond. In order to.express this constant
in such a way that it will be the same as the correéponding constant in
allene, it is defined in the following manner. k,ilr is the force constant
associated with the change in overlap of the T bond when the orbitals

of one of the carbon atoms rotates through a unit angle. Therefore, if
the orbitals ‘of both the carbon atoms are now permitted to rotate through
an angle A% , in the manner shown in Figure 10, the potential enery for

the By vibration becomes
: 2

2V = 2Ky Z (coset AWy - cosot AE )2 + k2 (af )2 + k?‘, (2a%, )2. (L9)
i=] ‘

The manner in which k‘rl‘ has been defined differs from the way L'Lnnettu‘
defined this constant, the constant defined here being equal to ’} of |
the constant as defined by Linnett. When the potential energy is mini-

mized with respect to A£ , one obtains
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2Ky cosloc ¥ 5
A = My cosc + (v L) g (A931)” . (50)

When this value of AZ, is substituted into Equation (L49), the potential

energy becomes

: 2KH cosZoc [ZKH cosoc + (KU + hk“)
av = 9 u (A q)i)
LKy cosCoc + (kr-!- K3)

hKH2 oosl‘oc
" UKy cos®ot + (KU + KU) % PRIy i
17

When the above expression is symmetrized, thé F matrix element for the
Byy vibration is found to be

2Ky cos2at (k2 + L)
UKy cosot + (K2 + Lk%) °

(52)

The potential energy for the bending of the C-H bonds in the ng
vibrational motion beforé orbital rotation is taken into account is the

same as that for the Bjy vibration given in Equation (L8),

2V = 2Ky i (cose AGY)2, (53)

&=l
Now, the orbitals of the two carbon atoms are allowed tb rotate as shoﬁn
in Figure 10. The constant associated with the change in overlap of the
o~ orbitals between the carbon atoms is k& , the same as the constant
associated with the o~ orbitals in the Bjg motion. The overlap change
of the T bond is different in this case than in the By motion, and a

new constant must be introduced to account for this motion. k&

o is de-

fined as the force constant associated with the change in overlap of the
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T orbitals which occurs when the orbitals of each carbon atom rotate

through equal angles in the same circular direction, as shown in Figure

10.
The orbitals of the carbon atoms are now permitted to rotate

through an angle AL s and the potential energy for the ng vibrational

motion becomes

2
2V = ZKHZ (coset AWy - coset AE, )2 + k§_ (28¢, )2 * k%. (A%, )2 . (5h)
i=1

When the potential energy is minirdzed, A% is found to be

2Ky 00820¢
A%, = LKy cosloL + (hk%_# lc%_) i (894) - (55)

When this value of AE, is substituted into Equation (5h), the potential

energy becomes

2Ky 0082 [2KH ;082& * (}-'lk%-"' lﬁ)] i (A({)i)z

v =

UKy cosor + (LkE + kB) =)
LKy costot i
& hKH eORist (hkg." k%) 3 (At&)i.A(f)j)- (56)
| 173

The J matrix element for the Bog vibrational mode, determined by symmet-

rizing the above expression, is

2Ky cos?x (Lk& + k8 ) (57)
Mg oosZoc + (WG + KD ]

e. The Ay vibration. The vibrational motion belonging to Ay
is the torsional motion, or twisting, of the CH2 groups about the carbon-

carbon axis. The coordinate used to describe this motion is the angle, T,
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formed by the intersection of the two CH2 planes. The potential energy

for this motion before orbital rotation is taken into account is

AT 2 (o o 'T'
2V = bRy (sin —5—)2 . (58) o 4
Now, each set of carbon orbitals are allowed to rotate about the carbon-
" carbon axis through an angle AE, . Only the T orbitals are affected by

this rotation, and the potential energy after rotation is

2V = by (stnoe 25— - sinx 8%)% + kG (28)%,  (59)
where k;‘; is defined as the force constant associated with the change in
overlap of thé T orbitals when one of the orbitals rotates through a
unit angle. In the torsional motion, both T orbitals rotate, and. the con-
tribution of this motion to ‘t;he potential energy is kT (2a% )2. A "
evaluated by minimizing the potential energy with respect to A& s 1s found

to be

" 2Ky sin? o
= " *
R e (60)

When this value of AE is substituted into Equation (59), the potential

energy for the A, vibration becomes

Ky sin®x kq
2V = —H =T (a2, (61)
Ky sin®ot#+ k¢ :

Since AT is a symmetry coordinate, the T matrix element for the Ay

vibrational motion is given by Equation (61).

2. Allene
The allene molecule, C3H), is similar in some respects to ethylene.

However, the CH2 groups-lie in planes which are perpendicular to each
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other in allene, while they are in the same plane in the ethyléne mole-
cule. In addition, allene possesses adjacent double bonds, whereas

ethylene has only one double bond. The model of allene based on directed

K

atomic orbitals is shown in Figure 11.

i
//

\

el

Figure 11. The Orbital Model of Allene.

There are four vibrational modes, one non-degenerate and three
doubly-degenerate, in which orbital rotation can ease the bending motions.
However, only three of these motions, the CH2 rocking, the CHo wagging,
and the torsion, can be considered as vibrations involving bending of the
C-H bonds. The other vibration, the degenerate C-C-C chain bending
motion, cannot be considered as a motion involving bending of the C-H
5onds. As a consequence, the concept ._o'f orbital rotation cannot be applied
to this motion.in a simple manner.

a. The degenerate rocking and wagging vibrations of allene. The

degenerate rocking and wagging vibrations of allene are shown in Figure
12. As for ethylene, Ky is defined as the force constant associated with

the change in overlap which occurs when a C-H bond is distorted. There-
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fore, the potential energy for the degenerate rocking motion, shown

¢
g

(a) (v)

Figure 12. (a) The Degenerate Rocking Motion of Allene.
(b) The Degenerate Wagging Motion of Allene.

in Figure 12 (a), before orbital rotation is taken into account, is
2V = kg i (a81)% . (62)
i=1
Now, the orbitals of the carbon atoms are permitted to rotate so as to
minimize the potential energy. Examination of Figure 11 shows that rota— |
tion of the orbitals of the tenninai carbon atoms in this case would not
affect the T bond overlap, but would decrease the overlap of the C-C o~
bonds. If the orbitals of the central carbon atom are allowed to rotate,
then the T bond overlap would be affected. If this rotation were per-
| mitted, then there would be two constants associated with the motion, and
since neither can be determined from other vibrétiona.l motions, these
constants could not be evaluated. Furthermore, allowing the orbitals of
the central carbon atom to rotate would require that the magnitude of the
angle of rotation would have to be assumed, since it cannot be evaluated
directly. For these reasons, the orbitals of the central carbon atom

are assumed to remain fixed during the vibrational motions.
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The orbitals of the terminal carbon atoms are now allowed to
rotate through an angle, A?, , about axes perpendicular to the respec-
tive CH2 planes. The potential energy for the rocking motion then be-

comes

2V = Ky (88 - 8% )2 + 2Ky (8%, )2, (63)
i=1

where k. is defined as the force constant associated with the change
in overlap occurring in the carbon-carbon ¢- bond when thé orbitals of
one of the carbon atoms are allowed to rotate through a unit angle.

This constant is equivalent to the constant k% used for ethylene. When

the potential energy is minimized with respect to AE , it becomes

3Kg? + 2Kk, b 9 : KHZ i
o Thg v ke g L (kg + 2kg) i;f o A
' 3

The 5 matrix element, obtained by symmetrizing the above expression, is

The degenerate wagging motion of the CH2 groups is illustrated in
Figure 12 (b). The potential energy for this motion, before orbital ro-

tation is taken into account, is
2

2V = 2y D (cose 89y) . (66)
i=1

Now, the orbitals of the central carbon are assumed to remain fixed, but
the orbitals of each of the terminal carbon atoms are allowed to rotate

through an angle, A% . Figure 13 shows the configuration of the orbitals
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Figure 13. The Effect of Orbital Rotation During the Degenerate Wagging
Motion of Allene.

of one of the end carbon atoms and the central atom after orbital rotation
has occurred. The changes in orbital overlap are the same on both ends

of the molecule. The potential energy after the orbital rotation is
2

2V = 2Ky z (cosxAYy - cosx A, )2 + 2k (A )2 + 2kq (A )2, (67)
i=1

where ky- is the same as in the rocking motion jJust described, and k
is defined as the force constant associated with the change in overlap
in the T bond which occurs when one of the T orbitals is rotated through

a unit angle, as shown in Figure 13. After minimizing with respect to AZ,

the potential energy for the degenerate wagging motion becomes

2Ky 008%x [KH cosloc + (kc,- + ke ) i a9y )2
2Ky cos?o + (ks + k“-

2V =
i=-1
2K1{2 coshoc 2

- s > (awgwy) . (68)
2Ky cos®ox + (ko + k“-) 1,

The F matrix element for the degenerate wagging motlon, obtained by
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symmetrizing the above expression, is

2Ky cos?ot (kg + Ky ) (69)
2Ky coslec + (ko * kg

b. The B] vibration. The By vibration in allene is the torsion,

and is quite similar to the torsional motion in ethylene. The potential

energy for this motion, before taking orbital rotation into ascount, is

2V = Lky (sinee 27 )2 (70)

where AT is the change in the angle formed by the intersection of the
two CH2 planes. If the carbon orbitals of the terminal atoms are now per-

mitted to rotate through an angle, A , the potential energy becomes

2V = LKy (sinocé-} - sine AE )% + 2T (AE)2, (71)

where k,T.' is defined as the force constant associated with the change in
overlap of the T orbitals when one set of carbon orbitals rotate through
a unit angle. This. definition of k-: is the same as that for k:r in
ethylene. It should be noted, however, that there are two sets of over-
lapping o orbitals in allene. When the potential energy is minimized
with respect to A% , it becomes

2 -

Ky sin“t k1
2V = - T)2 2
2Ky sinoc + Kar @) (72)

Since AT is a symmetry coordinate, the FJ" matrix element for the By |

vibrational motion appears directly in Equation (72).
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3. Formaldehyde
In the formaldehyde molecule, CH20, there are only two vibrational

motions in which orbital rotation can lead to a decrease in the potential

energy. These motions are the planar rocking motion and the ocut-of-plane

bending motion, and are shown in Figure 1. The orbital model of formalde-

®
=Y

(a) (b)

Figure 14. (a) The Planar Rocking Motion of Formaldehyde.
(b) The Out-of-Plane Bending Motion of Formaldehyde.

l"wde is shown in Figure 15. The potential energy for the planar rocking

e

Figure 15. The Orbital Model of Formaldehyde.

motion, before orbital rotation is taken into account, is

2V = Ky %ﬁl (8B1)2, (73)
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where Ky is the force constant associated with the bending of a C-H
bond. The orbitals of the carbon atom are now permitted to rotate
through an angle, Af , and the potential energy becomes

2V =Ky > (8B1 - 08 )% + ko (8E)% (7L)

The constant, ks, is defined as the constant associated with the change
in overlap in the C-O ¢ bond which occurs when the orbitals of the car-
bon atom are rotated. When the potential energy is minimized with re-

spect to AE,, it becomes

2V = ; = B
1¥3

Symmetrization of this expression gives the 3‘ matrix element for the
planar rocking motion, which is
Kyk o~
Xyt Es (76)

The behavior of the orbitals of the oxygen atom when the orbitals
of the carbon atom rotate must be consi&ered. The rotation of the carbon
orbitals ciuring the planar rocking motion does not affect the overlap of
the T orbitals, but the overlap of the C.'-O o~ bond is affected. The
orbitals of the oxygen atom would be expected to rotate in such a way as
to minimize the change in overlap. Therefore, the oxygen orbitals would
be expected to rotate through the same angle as the orbitals of the car-
bon atom, as shown in Figure 16. The behavior of the oxygen orbitals is

of importance because the k  which is determined from the planar rocking
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motion could be transferred to the out-of-plane métion if the C-O o~ orbi-
. @a;.s'. bahave in the same mammer during the two vibrations and therefare k.

could be determined.

Y
X1/

Figure 16. The Effect of Orbital Rotation During the Planar Rocking
Vibration in Formaldehyde.

The éotential energy for the out-of-plane bending vibration, be-
fore orbital rotation is taken into account, is
2V = 2Ky -(coset AW )2, ' (77)
where ¢) is the angle formed by the intersection of the CH plane and
the C-0 bond axis. The orbitals of the carbon atom are now permitted
to rotate through an angle, A%, so as to minimize the potential energy.
The orbital picture a.fter this rotation has occ;urred is shown in Figure

17. Now, the orbitals of the oxygen atom are free to rotate so as to

Figure 17. The Effect of Orbital Rotation of the Carbon Orbitals During
the Out-of-Plane Bending Vibration of Formaldehyde.
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ninimize the decrease in overlap of the o= and T orbitals, but the way
in which this rotation wouid occur is not clear. For this reason, the
constant associated with the change in overlap osccurring in the ¢~ bond
during the out-of-plane bending motion cannot be assumed to be the same
as the constant associated with the ’changg in overlap of the o~ bond
during the planar rocking motion. The potential energy for the ocut-of-
plane vibration, after orbital rotation occurs, is

2V = 2Ky (cost AQ - cosx AE, )2 + (ki + kg ) (A& )2 (78)
where k",. and k¢ are defined as the constants associated with the change
in overlap of the o~ and TU orbitals which is brought about by the rota-
tion of the carbon and oxygen orbitals. When the potential energy is
minimized with respect to A% , it becomes

2Ky cos?e (kY- + k)
2Ky cosiec + (K- + Ky )

2V = BY)2,  (19)

and since AY is a symmetry coordinate, the F matrix element is given
directly by (79).

Iinnett, Heath and Wheatley have applied the orbital valency force
field to formaldehyde ,lh and these authors assumed that the constants
associated with the change in o~ bond overlap in the planar and non-planar
vibrational motions were the same. It is necessary to make this assump-
tion in order to determine k., but the assumption does not appear to be

ustified. This means that the sum, k' + k_, can be detérmined, but
’ m

a

the values of k; and k; cannot be obtained.
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L. EKetene and Diazomethane

Ketene, CH2CO, and diazomethane, CH2N2, are planar molecules be-
longing to the point group C2y. Each molecule has four vibrational
‘motions, the CH2 rocking, the CH2 wagging, the planar skeletal banding,
and the non-planar skeletal bending, in which orbital rotation may lead
~to a decrease in the potential energy. However, the skeletal bending
modes are equivalent to the degenerate skeletal bending vibration of
allene, and the concept of orbital rotation camnot be successfully
applied to these motions. Therefore, the concept of orbital rotation
has beén applied to the CH2 rocking and CH? wagging motions only.

The orbital model of the CH2CO molecule is shown in Figure 18.

The bonding structure of ketene and diazomethane are similar, and the

Figure 18. The Orbital Model of Ketene.
same model was used for diazomethane. The CH2 rocking motion and the
CH2 wagging motions are shown in Figure 19. These vibrational motions
are quit_e similar to the corresponding motions in formaldehyde. As was
pointed out in the discussioﬁ of the CH20 molécule, the orbitals of the

oxygen atom are free to rotate when the orbitals of the carbon atom
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< :
gy o SRR
“ ’
(a) | (b)

Figure 19. %a% The CH» Rocking Motion of Ketene and Diazomethane.
b) The CH2 Wagging Motion of Ketene and Diazomethane.

rotate. However, it is impossible to determine how the oxygen orbitals
rotaté when the carbon orbitals rotate. In a similar manner, the rota-~
tion of the orbitals of the terminal carbon atom in ketene and diazo-
methane may cause a rotation of the orbitals of the central C and O atoms
in ketene and of the N atoms in diazomethane. However, it is likewise
impossible to take this rotation into account quantitatively. Therefore,
the treatment of the CH> rocking and wagging motions in CH2CO and CH2N2
is identical with that previously described for CH20, and the J matrix
elements will be the same as those obtained for CH20. The F matrix
element for the CHo wagging motion is given b& Equation (76) as

Kgk :
et (80)
2KH + ko
and the F matrix element for the CH> wagging motion, given by Equation
(79), is
2Ky cos2ct (k! + k)
2Ky cosloc + (k! + ki)’

(81)

where Ky 1s the force constant associated with the bending of a C-H bond,



63
k ~ is the constant associated with the change in the C-C or C-N o
orbital overlap during the CH2 rocking motien,. and k. and k. are
the constants associated with the change in the o~ and T orbital
overlaps during the CH> wagging motion;

It should be pointed out that the use of different constants to
describe the change in o orbital overlap in the rocking amd wagging
motions makes it impossible to evaluate k“., but it appear# that this
distinction is necessary for CH2CO and CH2N2, Just as it was in the
case of CH20. Furthermore, it should be noted that the neglect of the
effect of the rotation of the orbitals of the central carbon and oxygen
atoms in ketene and the two nitrogen atoms in diazomethane makes this
treatment a very approximate one, and this{fact must be borne in mind

in interpreting the results for these molecules.



CHAPTER III

EVALUATION OF THE FORCE CONSTANTS

A, Anharmonicity Corrections

The force constants of a molecule are functions of the normal
vibrational frequencies of the molecule, and these frequencies should
be used _in evaluating the force constants. The observed fundamental
frequencies differ from the normal frequencies, primarily because of
the cubic and higher order terms in the potential energy expression.

In order to determine the normal frequencies, however, it is necessary

to know the observed values of many combination and overtone bands. In
general, not enough data are available to enable the normal frequencies

of a polyatomic molecule to be determined, and this necessitates using

the observed frequencies in evaluating the force constants.

Although the data for the molecules treated in this inwvestigation
are insufficient to permit precise anharmonicity corrections to be made,
an attempt was made to correct the frequencies of ethylene and allene
in order to enable better sets of force constants to be determined.
Hansen and De.nn.isou35 “have determined the normal frequencies of C2Hg
and C2Dg, using the known anharmonicity constants of CH), in conjunction
with the available data for C2HS and C2D4. The anharmonic constants
which were determined for ethane were used as a guide in this investiga-
tion in determining anharmonic constants for ethylene and allene. How-

ever, it was found that the normal frequencies determined in this manner
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did not permit a better solution for the force constants to be obtained.
The assumption was then madé that all of the anharmonicity was present
in the C-H and C-D stretching modes, but again it was found that no im-
provement in the solution for the force constants over that obtained using
the observed frequencies could be achieved. One of the reasons why an-
'harmonicity corrections do not lead to a better solution for the force
constants for the ethylene molecule is the fact that the frequencies of
species B); almost obey the product rule. This means that the C-H and
C-D stretching frequencies of this species will be raised very little.by ‘
making anharmonicity corrections, while the C-H and C-D strétching fre-
quencies belonging to the other species are raised several per cent.
This makes it 1mpossibié to fit the C-H and C-D stretching frequenciest
as well when anharmonicity corrections are made as they are fitted using
the observed frequencies. Therefore, the values of the observed‘fre-
quencies have been used in all of the calculations carried out in this
investigation. : |

It should be emphasized that if the correct anharmonic constants
could be obtained, the normal frequencies would permit a set of force con-
stants to be obtained which would reproduce the normal frequencies exact-
ly if a general quadratic field were used. The fact that making anhar-
monicity corrections for ethylene and allene does not permit a better set
of force constants to be obtained can be attributed to the fact that we
do not know the correct values of the anharmonic constants and to the

restricted nature of the potential field assumed for these molecules.



B. Ethylene

The force constants for ethylene were determined using the fre-
quencies of C2H), and C2D),. The frequencies of tfhe other isotopic
ethylenes were then calculated using the force constants which were
obtained from C2H), and C2D); in order to verify that the potential field
was correct for all of the molecules. The frequencies of cis-, trans-,
or asym.-CoHpD2 could have been utilized directly in the calculations, but
because of the reduction in symmetry brought about by the isotopic sub-
stitutions, the factored secular equations for the planaf vibrations
of these molecules contain a fifth-order and a fourth-order block, and
the solution of these blocks was not practicable.

The J and ¥ matrices for C2H); and C2D), are given in Appendix I.
The algebraic equations obtained from expansion of the secular equations
of C2H) and C2D), are
Ag: % ,
1.0335773 £ + 0.1666138 f2 + 0.9737090 f3 - 0.9315736 A = 37\1 (82)

i=1

0.1652682 f£1f> + 1.0018657 rlf3 + 0.1h)0822 faf3 - 0.5401301 Afy
- 0.4405)29 Af3 - 1.9533690 A2 = A1Aj - (83)

T

£1£5f3 - 1.0839156 A2fy - 0.8252451 A%y - 9.3487955 A2f3

+ 11,226326h A3 = 6.9969850 j’l’lxi (8k)
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C2D),
0.5379967 £1 + 0.1666138 £2 + 0.5416577 £3 - 0.9315736 A

= gy\i (85)

0.0826976 £1£, + 0.2868723 £1£3 + 0.0720965 £2£3 - 0.80046L5 A2

- 0,2702728 Afy - 0.220L4J11 Af3 = i P, o (86)
{31 13
£1£5f3 - 14.0839156 A%y - 0.8252451 A%fp - 9.3487955 A2f4
+ 11.226326l A3 = 27.9LL9039 'ﬁ?\i (87)
i=]
B3u: CpH), 5
1.0335773 £3 + 0.9737090 £3 + 0.1223893 A = > A4 (88)
111
e 32
£127 - 0.8252U51 A2 = 0.9981378 || Ay (89)
E 1=11
CgDh
0.5379967 £1 + 0.5416577 £3 + 0.1223893 A = %117\; (90)
i=
12
£1£3 - 0.8252451 A2 = 3.1858728 || Ay (91)
1=11
Bo2u: CoH), :
1.1168842 £ + 0.901081) f), - 0.1223893 A = i?\i (92)
| 1=9
10,
£1£), - 0.8252451 A% = 0.9981378 [[ Ay (93)
i=9 .
C2D),
0.6213036 £1 + 0.4690300 £), - 0.1223893 A = . 9>\i (94)

| 0
£1£), - 0.8252451 A2 = 3.1,858728 ill}\; (95)



Blg’ CoH),
1.1168842 £7 + 1.49510l1 fg5 - 0.5099101 A = isxi
i=

6
£1£5 - 0.8252451 A2 = 0.6284995 T Ay
i=5

Dy

0.6213036 £7 + 1.0630528 fg - 0.5099101 A = > A

Ve

!
i
6
£125 - 0.8252L51 A2 = 1.7190652 TTsAi
i=

Biu: CpH,

£g = 0.495038L (Aq)

CaD)y

£6 = 0.8650947 (Aq)
Bog: _Cg@

£7 = 0.3756577 (Ag)

CaD)

£7 = 0.5562060 ( Ag)
My CoHy |

£g = 0.86728LL ( A))

ooy

£8 = 1.7332392 (A]) .
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(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(10L4)

(105)

. The unprimed Als refer to CoH);, and the primed Ats refer to CgDh.*

Vi 2

*Ng = ( 30 .93) . The ¥ matrix was computed in atomic weight-

Angstrom units and the force constants in these equations are expressed
in dynes/cm. x 10° or in ergs/radian? x 10-11. The factor, 1302.93, in-
cludes all of the constants involved in using these factors, when the

are expressed in cm. -1,

Yy
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The f4's in the above equations are the diagonal 3 matrix elements and

are defined by the following relations:

£, = Koy + 1.33196 A (106)

£2 = Kgg + 6.32571 A (107)

‘£3 = Ky + 0.87773 A | (108)
Kyk3-

f), = R 0.87773 A (109)

fg = -i&%fg'—kg— + 0.87773 A (110)
H* ks

2Ky cos2a(k2 + 1Y)
6 = Ky pe. 0+ L) + 0.05573 A (1)

2Ky cos a(hkg + k8)

e LKy cos®a + (LkE + kE) A s
Ky sinZakX
fg = - = +0.08361 4 . (13)

Ky sin®a + ky«

There are nine constants to be evaluated, and twenty-four equations
involving these constants. However, because of the product rule relation-
ship, only seventeen of the equations are independent. In theory, nine
of these equations should permit the constants to be calculated. However,
due to inconsistencies in the equations, which are primarily caused by an-
harmonicity in the frequencies, all of the equations must be used in order
to determine the best values for the constants.

The potential field assumed in this investigaf,ion is of such a
nature that all of the off-diagonal elements in the J matrices are either

zero or contain terms which are functions of the constant A. This con-
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stant, A, is the force constant associated with the repulsive force be-
tween hydrogen atoms and carbon, oxygen, or nitrogen atoms to which they
are not bonded. This points out the reason why it was desirable to
neglect repulsive forces between two hydrogen atoms, because if these
forces had been taken into account, the off-diagonal ? matrix elements
would have contained two or three independent constants. This would have
made it impractical to evaluate the force constants by the method which
has been used. Fortunately, the hydrogen-hydrogen repulsions are indeed
negligible.

The number of independent force constants in a species of order n
is therefore (n + 1). These (n + 1) constants are the n diagonal '} matrix
elements and the constant A. This means that if the value of A is fixed,
the other n constants can be calculated using the frequencies of one mole-
cule. Now, if data are available for an isotopig molecule, the constants
can be evaluated in a similar fashion. The values of the constants ob-
tained from both molecules can then be plotted against A, and the values
of the constants which fit both molecules are easily determined from ob-
serving where the values of the constants coincide or lie close together.

The range of solutions for the force constants of species B3y, Bpy,
and Blg were determined initially. Since each of these species is of
order two, the solution of the equations was quite straightforward. The
solution of the equations of species B3y of C2H), will be described to il-
lustrate the way in which the solutions were obtained. Solution of Equa-

tion (88) for £ yields

f1 = 0.9675135 g?‘i - 0.9420766 £3 - 0.1181133"A. (11k)
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This value of f], when substituted into Equation (89), gives

£32 - 1.0270009 g Ay (f3) + 0.1256939 Af3 + 0.8759852 A2
=11

12
+1.0595081 [ Ay = 0. (115)
1=11

When the mumerical values of the Aj's are substituted into Equations
(114) and (115), they become

£y = 6.2809899 - 0.118l133 A - 0.9L420766 £3 (116)

£32 - 6.667175k £3 + 0.1256939 Af3 + 0.8759852 A2 + 6.84621660 = 0. (117)
_ For a given value of A, Equation (117) can be solved for f3.  Two values
of f3 are obtained, and the corresponding values of f; are then obtained
from Equation (116). When the values of f] and f3 are plott';ed" against A,
one obtains ellipses which permit f; and f3 to be determined for amy
value of A for which real solutions exist. Similar calculations were
carried out for species B3, of C2D), and for species B2y and Blg of CpH),
and CpD),. The results of these calculations for representative values

of A are given in Table I.

The constant, fy, is present in the equa.fions for each of the three
species. Therefore, six values of f; were obtained for each value of A.
In Figure 20, the values of f; obtained from species B3y, By, and Blg of
CoH), and CpD), are plotted against A. If the frequencies are harmonic and
the force field assumed was exact, the six ellipses would intersect in a
point. Although the ellipses do not intersect in a point, it is seen that

for values of A between 0.00 and 0.70, the ellipses lie close together.



TABLE I

FORCE CONSTANTS® FOR SPECIES B3y, By, AND Blg OF C2H), AND C2D),

FOR ARBITRARY VALUES OF A

CoH), C2D)
Species A 1 f3 A f f3
2.0 3.7530 2.9851  -2.50 Ly 2.711k
2.8122  3.9837 2.7299 4.3815
-1.00 5.0395  1.LL36 -1.50 5.25L3 1.6482
1.3601  5.3493 1.6594  5.2188
B3u 0.00 5.0860 1.2685 0.00 5.2737  1.2900
1.1950 5.3987 1.2988 ©.2380
1.00 5.0215 = 1.2685 1.00 L. 7167 1.6173
1.223%9  5.3987 1.6283 L .6848
1.80 L.7064  1.5L458 1.75 -3.4573 2.6988
1.4562  4.9957 2.717T1  3.14339
A 5 #4 A 1 £,
-2.00 L.1439  1.3258 -2.00 4.1233 1.3507
1.0696  5.1363 1.0197 5.4620
-1.00 L4.8177 0.6265  -1.00 L.8594 0.6367
0.5055 5.9715 0.4806  6.4370
B2 0.00 5.0847 0.4313 0.00 5.2082 0.4356
0.3480  6.302% 0.3288 . 6.8990
1.50 4.9350 0.8207 1.50 5.2379 0.7876
0.6621 6.1169 0.5946  6.938)
3.1y  2.8885  3.5803  3.592  3.1223  }.1359
e ——
A 1 5 A 1 fs
-1.502 2.607hs  1.9478 -0.953 2,612l 1.5268
-0.50 L4.6958 0.7293 -Q.50 }4.1883 0.8228
0.9762  3.5079 1.4b079  2.4479
Big 0.00 5.0467  0.6377 0.00 4.8677  0.6656
0.8536  3.7700 1.1388 2.8LL9
1.50 5.30LL 0.9568 1.50 5.7105 0.8925
1.2808  3.9625 1.5271  3.3375
2,781 3.5850 2.6781 2,935  L.2075 2.4591

*The units of A and f1 are ctynea/cm x 105, and the units of

f3, f), and fg are ergs/radi

an® x 10-11
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Therefore, the value of A should lie in this range. The graphs of f3,
f),, and f5 against A are not reproduced in full. However, the two
ellipses for each of these constants lie close together for A values
from 0.00 to 0.70.

After the value of A was found to lie between 0.00 and 0.70, the
equations for species Ag of Czﬂh and C2D), were solved. This species is
third-order, and the solution for fj, f2, and f3 for a given value of A
is more difficult than the solution of the equations of species of second-
order. Consider Equations (82), (83), and (8L), which are for species

Ag of CoH). When Equation (82) is solved for fj, one obtains

£7 = 0.9675135 i;\i + 0.9013100 A - 0.1612011 f2 - 0.9L420766 £3. (118)
i=1 -

This value of £, when substituted into Equation (83), yields a second-
order equation involving the constants f2, £3, and A. This equation was

solved as a quadratic in f3, yielding

f3 = 0.5135005 ﬁ:xi + 0.5145462 A - 0.091708L £2 X P, (119)
i=1

where ~%

i 2
0.2636827 ( i ?\1) - 1.0595081

2 M Ay - 0.0252017 i})\i A
i1

1 1=

3
+ 0.0752299 > Ay fp - 2.3206472 A2 + 0.1556967 Afp - 0.019816) £5

fomrs

Equations (119), (120), and (8k4) were then used to solve for fj, f2, and

f3 for selected values of A. After a value of A had been chosen, an ar-

(120)

i=1 1 A
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bitrary value of f, was selected, and Equation (120) was solved for 3.
Equation (119) was then solved for fj. The values of £, fs, f3, and A
were then substituted into Equation (8L), and the value of the left side
of the equation, determined by the constants, was compared with the value
of the right side of the equation, which is determined by the frequencies.
Further values of f, were chosen until a set of constants was obtained
which fit Equation (8L4). It was usually necessary to solve the equations
for four or five values of f2 for a given value of A before a satisfac-
tory solution was obtained. The equations for species Ag of C2D) were
solved in the same manner. The results of the calculations are given in
Table IT.

Although there are six possible sets of solutions for £, f2, and
f3 for a given value of A, it was not necessary to evaluate all of these
sets. In general, only one set of constants could be obtained which was
reasonable. However, in species Ag of CpH),, it was found that below an
A value of 0,265, the solutions for the constants were imaginary. Thus,
at A = 0.265, two sets of solutions coincided, and it was necessary to
evaluate two sets of constants at higher A values. The results given in
Table II, along with the values of the constants determined from the other
species which are given in Table III, are shown in graphical form in
Figures 21, 22, and 23. In addition, the magnitude of the change in the
force constant which will produce a change of approximately 1 per cent
in the corresponding frequencies is shown by a vertical line on the graphs.
This enables a prediction of how well the frequencies will be fit by a set

of force constants for any value of the constant A.



TABLE IT

FORCE CONSTANTS* FOR SPECIES OF C2H), AND C2D), FOR ARBITRARY

VALUES OF A
Molecule A 1 £2 f3
0.2701 5.218 8.873 1.400
5.220 8.4k 1.475
0.300 5.225 [ 9.337 1.339
CoH), 0.350 5.238 9.758 1.302
0.500 5.269 10.523 1.282
5.268 7.705 1.764
0.700 5.283 11.240 1.336
0.100 5.317 8.020 1.536
0.200 5.l06 8.510 1.LL8
CoD), 0.300 5.517 8.899 1.399
0.400 5.608 9.231 1.378
0.700 5.802 10.153 1.417

*he units of A, f£1, and f2_ are dyne/cm. x 105, and the
units of f3 are ergs/radian® x 10-11,
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TABLE III

FORCE CONSTANTS* FOR SPECIES B3y, B2y, AND Byg OF C2H), AND CzD),

FOR ARBITRARY VALUES OF A BETWEEN 0.00 AND 0.80

7

C2H) C2Dy

Species A gl £3 A 1 £3
0.000 5.0860 1.2685 0.000 5.2738  1.2900
0.300 5.0215 1.2992 0.300 5.1631  1.3320

s 0.500 L.9568 1.3428  0.500  5.0656  1.3837
0.700  L4.8731  1.4065  0.700  L.9461  1.L572

A £y £), A n £),
0.000 5.0847 0.4313 0.000 5.2082  0.4356
0.300 5.107L4  0.4W39  0.300 5.2598  0.LASL
e 0.500 5.1086 0.469  0.500  5.2817  0.4686
0.700  5.0984  0.5095  0.700  5.2937  0.50L9

A £ fg A £ fc
0.000  5.0467  0.6377  0.000  L.8677  0.6656

0.300 5.1877 0.6347  0.300 5.1521  0.6433
e 0.500  5.2565  0.6515  0.500  5.3055  0.6496
0.700 5.3060 0.6827  0.700  S5.433L4  0.6707

*The units of A, f3, andmfé are dﬁ 8/cm. x 105, and the units

of £3, f),, and fg are ergs/radi

~x 10~
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From inspection of Figures 21, 22, and 23, it is apparent that
the best set of force constants occurs for a value of A between 0.27
and 0.33. Furthermore, the solution in this range of A is unique,
because at higher and lower values of A, the differences in the force
constants are considerably larger. From inspection of the figures,
the best value of A was found to be 0.317. The values of the other
force constants were obtained by taking the average value of each con-
stant at A = 0.317. This set of constants was then substituted into
the secular equations of C2H), and C2D);, and the frequencies of these
molecules were calculated. Very slight adjustments were made in the
constants in order to improve the agreement between calculated and ob-
served frequencies. The constants fg, f7, and fg, associated with the
one-dimensional species, were calculated quite simply using Equations
(100)-(105). The values of the constants are given in Table IV, desig-
nated as Set I.

The limited range of A for which an acceptable solution for the
force constants can be obtained is determined primarily by f3, f2, and
£3, since the values of f); and fs for C2H), and C2D), remain close to-
gether throughout the range of A from 0.00 to 0.70. It was observed
from Figure 22b. that if f3 were different in species Ag and B3y, a
better set of constants could be obtained. Such a difference would
occur if a repulsive force were included between hydrogen atoms on
opposite ends of the molecule. Although this force was assumed to be
negligible, a set of force constants, designated as Set II, were chosen

assuming f3 for species Ag and B3y to be different. The best value of A
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TABLE IV

FORCE CONSTANTS FOR ETHYLENE

Constant Set I Set IT
0.3170 x 10° dynes/cm. 0.2680 x 105 dynes/cm.
5.1673 5.1550
9.2550  8.8489

1.3370 x 10™11 ergs/radian® 1.L4030 x 10-11 ergs/radian?

1.3370 1.3094
0.LL62 0.L421
0.639L 0.638L
0.2635 0.2635
0.1995 0.1995
0.5389 0.5389

4.7451 x 105 dymes/cm.
7.2498

A A

;va =§g

1.0588 x 10~11 ergs/radian?
0.7985
0.5L481
0.0298
-1.6385
1.L087°
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for this set of constants was found to be 0.268. This set of constants
is given in Table IV, and in Tgble V, the calculated frequencies of the
isotopic ethylenes for both sets of constants are given, along with the
observed frequencies. The frequencies of C2H3D and C2HD3 were obtained
for the Set I constants only. The secular determinants of these mole-
cules contain a 9 x 9 block, and the roots of these determinants were
obtained by use of a digital computer. The roots (frequencies) of the
secular determinants of the other molecules were obtained by direct ex-
pansion when the determinant was third or lower order. For determinant
of higher order, the iteration procedure described by Fletcher and Craw-
fort:l3 6 was used.

The constants of Set II reproduce the frequencies somewhat better
than those of Set I, but the improvement is not great enough to justify
including a force of repulsion between hydrogen atoms on opposite ends
of the molecule. It is interesting to note that the best possible fre-
quency fit for C2H), and C2D), would have an average error of 0.28 per cent
in each frequency, due to the failure of the observed frequencies to fit
the product rule. The average error in the frequencies calculated for
C2H), and C2D), using the Set II constants is 0.LO per cent, so these con-
stants are almost as good as the best possible set of constants which
could be determined using a completely general quadratic field.

The overall agreement of the calculated frequencies with the ob-
served frequencies is slightly better than that obtained by Lancaster,

Inskeep,” and Cram.‘ord.l6 These investigators used a completely general
quadratic field, and the fact that the results presented in this disserta-



TABLE V

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE

ISOTOPIC ETHYLENES

8l

il

Species Obs.  cale. Calc.
and Freq.  Freq. Freq.

Molecule Freq. No. (cm.™l) set I % Diff. Set I % Diff.
1 3018.5 3000.1 -0.60  3000.5 -0.61

A; 2 1622.5 1607.8  -0.91  1623.6  +0.07

3 1343.5  134k.6  +0.08  1343.2  -0.02

Ay L 10272 1027.0 0.00  1027.0 0.00

Bjg 5 3108 3099.8  -0.26  3102.0  -0.19

CoH), 6  1236°  1239.8  +0.31  1240.9  +0.Lo0
By 7 9L9.2 950.5  +0.11 950.5  +0.11
Byg 8 950 949.6  -0.0L 949.6  -0.04

Boy 9 3105.5  3123.5  +0.58  3120.3  +0.L8

10 810.3 - 811.0  +0.09 811.3  +0.12

B3y 11 2989.5  3033.2  +1.46  3102.0 <0.19

12 1L43.5  1b63.6  +I.39 @10 . +0.L0

Average Per Cent Error 0.49 0.32
1 2260 2186.7 -3.24  2192.6  -2.98
Ag 2 1517.5  1531.0 +0.89  1516.8  -0.05
3 98L.5 969.3  -1.54 9845  +0.01

Ay L c 726.5 - 726.5 - -

Big 5 2305 2305.1 0.00 2311.6  +0.29
6 1011.19 1008.1 -0.30 1006.9  -0.L1
CoD) Biu 7 720 719.0  -0.1k 719.0  -0.1h
Byg 8 780 780.4 +0.05 780.4 . +0.05

Boy 9 2345 2323.6 -0.91  2322.3  -0.97

10 . 58l 583.h  -0.10 583.3  -0.12
By, 11 2200.2  2200.6  +0.12 . 2195.5 -0.21

12 1077.9 1078.5  +0.06  1071.2  -0.62

Average Per Cent Error 0.61 0.L48




OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE

TABLE V

ISOTOPIC ETHYLENES (Contimued)
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o

I

Obs.

Species Calc. Calc.
and F‘x'eql Freq. Freq.
‘Molecule Freq. No. (em.”™) SetI & Diff. Set II % Diff.
1 3019 3016.9 -0.10 3013.3 -0.19
2 1585 1584.2  -0.05 1583.4 -0.10
o 3 1032 1017.3  -l.42  1025.8  -0.59
11 2231 2194.3  -1.6h  2194.0 -1.66
12 1384 1394.9  +0.79  1387.0  +0.21
5 2338 2314.6  -0.87  2317.k  -0.75
6  1150° 149.2 -0.06 1149.4  -0.05
asym.- By 9 3095 3.7  +0.54  3111.2  +0.52
CoHoD2 10 676° 673.0 -0.43 672.9  -0.46
Bo 7 752 750.4  -0.21 Same
8 9kl 950.0  +0.63 Same
A2 L 890f 889.5  -0.05 Same
Average Per Cent Error 0.56 0.45
1 2300 2248.9  -2.22  2251.8 -2.10
2 1567P 1566.1  -0.06  1563.3  -0.24
Ay 3 12152 1209.7  -0.hh  1219.  +0.36
9  3058.7 3067.4 +0.28  3065.6  +0.23
10 6L6 651.3  +0.82 652.1  +0.95
5 3056 3067.8 +0.39 3065.8 +0.32
cis- B 6 1039.3 -1o48.0 +0.83  1045.9  +0.63
CoHoD2 11 2254 2255.7 40,08  2254.8  +0.0L
12 13hk2 1348.5  +0.50 13l1.5  -0.0k
As L c 555.1 - - Same
8 763P 759.0 -0.53 Same
By 7 842.5 842.7  +0.03 Same
Average Per Cent Error 0.52 0.46
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TABLE V

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE
ISOTOPIC ETHYLENES (Contimmed)

Obs.

Species Calc. Calc.
and Freq. Freq. Freq.
Molecule Freq. No. (cm.™l) Set I % Diff. Set II % Diff.
1 2284.5 2243.6  -1.79 2250.2 -1.50
2 1570.8  1565.1 -0.36 1562.5 -0.53
A, 3 1285.7 1286.2  +0.04  1291.5 +0.45
[ 3045 3053.4  +0.28 3054.8 +0.32
6 1003.5  1003.1 -0.0L 1007.7 +0.42
trans- 9 306L.9 3081.4  +0.53 3076.4  +0.37
Bj a1 227 2261.0  -0.Lh  2256.4  -0.6L
12 1298.8 1307.9 +0.69° 1299.0 +0.01
Ay L 988 989.9 +0.20 Same
7 726.3 722.1 -0.59 Same
Bg 8 86LP 869.1 +0,58 Same
Average Per Cent Error 0.L8 0.L49
1 2280 2252.8 -1.19
2 1547 1549.7  +0.17
3 10L46.9 1045.2 -0.17
5 2332 2315.1 -0.72
6 999 992.7 -0.63
A 9 3047 '3067.7 +0,62
10 609.7 618.3 +1.40
g 2222 2193.8 -1.27
C2HD3 12 1289 1292.0  +0.23
b 764 763.7 -0.0L4
A" 7 723.4 722.0 -0.15
8 918.0 922.L4,  +Q.Lo0
Average Per Cent Error 0.58




TABLE V

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE

ISOTOPIC ETHYLENES (Continued)
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Species .~ Obs. Calc.
and mq.l. Freq.
Molecule Freq. No. (em.™+) Set I ¢ Diff.
1 3002 3014.7 +0.42
2 1605 1590.5 -0.90
3 1290 1289.1 -0.06
5 3061.3 3068.0 +0.23 -
At 6 1128.5 1129.5 +0.09
9 3103 3113.7 +0.34
10 3= T719.7 +0.94
CoH3D 1n 2276.1 2252.L -1.04
12 1401.5 1a7.4 +1.13
N 1000.4 1002.6 +0,22
An 7 807.6 806.7 -0.12
8 943.7 950.0 +0.66
Average Per Cent Error 0.51

8Calculated by Arnett and Crawford.
I?Liquid phase Raman data.

°No1; _observed.

dGaloulated from Vg + Vqg = 1595.1 em.”L.

eBanc} center uncertain.

foalculated from vh * v.é. = 2040 cm.L.
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tion are better than the results obtained using a general quadratic
field points out the difficulty of obtaining the best solution for the
force constants by direct solution of the equations involving the force
constants and frequencies. It should be pointed out that Lancaster,
Inskeep, and Crawford corrected the frequencies for anharmonicity by
assuming all of the anharmonicity occurred in the C-H and C-D stretching
modes. Their results were presented in terms of thg observed frequencies,
however, and could be compared directly with the results obtained in this
inv;astigation. vaerdlov17 has also reported a determination of the force
constants for ethylene using a general quadratic field. The overall
agreement between observed and calculated frequencies obtained by Sverdlov
is slightly better than the resultsA obtained in this investigation, but
the difference is small. It can therefore be concluded that the force
field assumed for the ethylene molecule in the present investigation is
quite satisfactaory, and little improvement is possible using a more
general field. The frequencies calculated for CpH3D and CpHD3, given in
Table V, are the first mporte.dﬂfor"these‘ molecules, and confirm the
assignment of the fundamental frequenciesf

An interesting pattern was noted in the difference in the calculated
and observed C-H and C-D. stretching frequencies. In almost all cases, the
calculated values for C;H stretching modes were hiéher than the observed
values, while the calculated values for C-D stretching modes were lower
than the observed values. In particular, the calculated values of sym-
metric C-D stretching modes were much lower than the observed values.
This patterm is in line with the expectation that the C-H stretching vibra-

tions would be more anharmonic than the C-D stretching vibrations.
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C. Allene

The secular equations of C3H), and C3D), factor into two third-
order blocks, one doubly degenerate fourth-order block, and one first-
order block. The J and J matrices for these molecules are given in
Appendix I. The algebraic equations obtained by expansion of the sec-
ular equations for species Aj, B}, and Bp of C3H), and C3D), are:

Ay: .0_3_H;h
1.0375398 £1 + 0.0833069 f2 + 0.9738883 £3 - 0.4075018 A = i?\i (121)
i=1

0.08263k1 £1f2 + 1.0056180 £1£3 + 0.0723109 £2£3 - 0.2556926 Afy -

0.2350480 Af3 - 0.8133L496 A? = ixm 3 (122)
1,3=1
1A

£1£5f3 - 1.8832896 A2f; - 0.7586240 A2f, - L.82LoL1l A%f3 +

3
5.2505789 A3 = 13.9427816 || Ay (123)

1=1 |
C3D),

3 1
0.5419592 £1 + 0.0833069 £ + 0.5402188 £3 - 0.4075018 A = Z Ay (12L)
| i=1

0.0113488 f£1f, + 0.2879466 £1£3 + 0.0361833 faf3 - 0.1279UL5 Af; -

0.1176143 Af3 - 0.2436946 A2 = i Ag 2y (125)
1,3°1
143

£1£2f3 - 1.8832896 A2fy - 0.7586236 A2f, - L4.82L0l11 A2f3 +

5.2505792 43 = 55.6811L7) ﬁ ¥ (126)
L=y



Bo:

C3H),

1.0375398 £1 + 0.2499207 £2 + 0.9738883 £3 - 0.4075018 A =

7
A
j%;; i (127)

0.2555026 £1£2 + 1.0056180 £1£3 + 0.23457h2 £2£3 - 0.2556925 Af) +

7
0.0201709 Af3 - 0.2350480 Af3 - 2.0226665 A% = > g A (128)
i i, j-g
143

£1£523 - 1.8832896 A2f; - 0.7586240 A2} - L.8240kL) AP35 +
5.2505789 A3 = 14.1792582 fﬁ Aq (129)

i=5
C3D),

0.5419592 £1 + 0.2499207 £5 + 0.5402188 £3 - 0.4075018 A =

xl
;%; i (130)

0.1316L67 £1£3 + 0.2879466 £1£3 + 0.1261912 £2f3 - 0.1279LLS Afy +

0.0201709 AfH - 0.11761L3 Af3 - 0.9186097 A2 = j§§:>g_x3 (131)
' 1,J=5
1£3
£155f3 - 1.8832896 A2fy - 0.7586236 A°f, - L.82L0l11 A2f3 +
. 7
5.2505792 A3 = 15.1664058 [] Ay (132)
i=5
C3H),

£), = 0.8366L95  ( L) (133)
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EQEE
£), = 1.6720135 (X)), (13L)
The fy's in the above equations are the diagonal J matrix elements

and are defined by the following relations:

f) = Kgg + 1.37978 A (135)
£2 = Kgg + kg + 3.1721 A § (136)
£y = Koo - KOG + 3.17200 A . (137)
f3 = Kg + 0.82139 A (138)

Ky sina k|

oy oinla + 0.08179 A. (139)
w

£}, =

The equations for the fourth-order degenerate block were not obtained ex-
plicitly because the solution of a fourth-order set is impractical. The

diagonal elements of this block are:

£1 = Kog *+ 1.37978 A (CH stretching) (140)
Kgk,-

fg = —ﬁm——— + 0.81239 A (CH rocking) (1)

£6 = K (CCC bending)  (1L2)

2Ky cosla (k. + k)
2Ky cosca + (k_+ k)

£ = + 0.06155 A. (CHp wagging)  (143)

The equations for species A} contain four independent constants, fj,
f2, £3, and A. The equations of species B2 likewise contain four inde-
pendent constants, fj, fé, f3, and A. Thus, if the value of A is fixed,
the three frequencies of C3H), or C3D), belonging to each species enable

the values of the other three constants to be determined. The equations
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for each species were solved for the f£i's for values of A ranging from
0.00 to 0.70, since the results obtained for ethylene indicated that
the best solution for the constants would lie in this range. The equations
‘were solved in the same manner as has been described for the equations of
species Ag of C2H). The values of the constants obtained are given in
Table VI. In Figures 2l and 25, the values of fj, fp, f5, and f3 are
plotted against A. The ve;tical lines indicate the change in the force
constant which will cause a change of approximately 1 per cent in the
corresponding frequencies.

From inspection of Figure 25 (a) and (b), it is apparent that the
value of A lies close to 0.30, becausé in this region, the curves lie
closest together. At lower and higher values of A, the curves rapidly
diverge, so the solution for the constants at an A value close to 0.30
is unique. An interesting point is illustraééd by Figure 25 (a). The
difference in fo and fé is 2k88, where kgg is the interactiop constant
between the two CC double bonds. If kgg were zero, the four curves would
be expected to lie close together at some value of A. It was found that
this did not occur. However, the values of f, for species Ay of C3H), and
C3D) intersect at almost the same value of A at which the values of fé
for species Bp of C3H), and C3D), intersect. The values of f2 and fé differ
by about 0.86, leading to a value of kgg of about 0.43. This confirms
the fact that the interaction constant must be included in the potential
energy expression.

The value of A which would yield the best set of force constants

was determined to be 0.290. The values of the other force constants for



TABLE VI

FORCE CONSTANTS® FOR SPECIES A AND Bp OF C3H), AND C3D), FOR

ARBITRARY VAIUES OF A

93

b
Species A Q fz_ 2 . 4 31 ?:g 3
0.150 5.0620 10.9650 1.1160 0.260  No real solutions
0.260 5.0752 10.2500 1.2087 0.270 5.1265 8.9591 1.L4100
5.1153 9.7850 1.2938
A 0.300 5.0784 10.1052 1.2345
_ 0.300 5.1177 10.2701 1,2392
0.400 5.0831 9.8768 1.2908 5.1400 8.5332 1.L8L7
0.500 5.0837 9.7730 1.3409 0.400 5.1358 11.0961 1.169
5.1694  7.9520 1.620
0.700 5.0726 9.8113 1.4320
0.700 5.191 12.339 .1.145
5.211 7.533 1.869
0.600 5.068 8.940 1.280 0.000 No real solutions
0.300 5.1175 9.3211 1.2556 0.150 L.99L 9.570 1.282
Bo 0.400 5.1156 9.43k0 1,2705 0.250 5.1926 9.2972 1.2871
0.500 5.1035 9.5557 1.2940 0.300 65.2498 9.2433 1.2924
0.700 5.0478 9.8470 1.3623 0.350 5.2932 9.2149 1.2997
0.500 5.3597 9.2455 1.3319
0.700 5.3202 9.5180 1.3944

Sem——

iz
mea——

*The units of A, f], £2, and £ are dynes/cm. x 105, and the

units of £3 are ergs/radian? x 10-11.-
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species Ay and B2 were obtained with the aid of the figures, and are
given in Table VII. The value of f); was obtained quite simply by solv-
ing Equations (133) and (13}).

Species E is fourth-order, and it would be quite difficult to solve
the equations of a fourth-order species in the way the equations of the
third-order species were solved. However, the C-H stretching frequency
in C3H) and the C-D stretching frequency in C3D), are both much higher
than the other frequencies in the species, ‘a.nd therefore these frequencies
can be factored off without appreciable effect on the force constants.
After the C-H and C-D stretching frequencies were. factored off by Wilson's
method,37 it was found that the reduced third-order J matrix was diagonal,
with elements fo, fé, and £7. These constants were evaluated for C3H) and
' C3D)y. Two sets of real sohltioﬁs, were obtained for each molecule, and
these sets are given in Table VIII. From inspectidn of Table VIII, it is
clear that the two sets of constants for C3H), agree equally well with the
two sets. for C3D), so that either set could be considered as correct. An
appro:_dma‘be average of each of these sets are given in Table VII, designated
as Set I and Set II.

; When the fféqueqcies of species By and B2 of CHoCCD2 were calculated,
it was found that the calculated frequehcies were divided between the two
species differently for the two sets of constants., The observed and cal-
culated frequencies for C3H), C3D), and CH2CCD2 for both sets of force
constants are given in Tables IX and X. It is seen from inspection of
Tables II and X that the two sets of constants yleld frequencies which

agree with the observed frequencies equally well. However, using the



TABLE VII

FORCE CONSTANTS* FOR ALLENE
{

Constant Set I Set II
A 0.2900

1 ~ 5.1350

) 10.1450 Same
) 9.2820

f3 1.2550

£, 0.3707

fo 0.3420 0.5070
£ = K¢ 0.3730 0.3683
£q '0.2800 0.1880
KCH L. 7349

Kece 8.7935

kgg 0.4315 Same
Ky 1.0168

k, . 1.3090

k- 0.2312 0.7308
Ko 0.26)2 -0.L4857

*Mhe units of A, £, f2, £2, Koy, Koo, and

kg% are dynes/cm. x 10°, and the units of f3, fh,anz
fc, fﬁ. £7, Ky, K, Ky, k-, and kg are ergs/radi
x 10~+Li.
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TAELE VIII

FORCE CONSTANTS™ FOR SPECIES E OF C3H}, AND C3D), OBTAINED
FROM REDUCED SECULAR DETERMINANT

Molecule | fg £6' . ff
C3H), 0.3397 0.3685 0.2828
0.5080 0.3660 0.1905
C3D), 0.3315 0.3781 0.2776

0.5060 0.3706 0.1855

*The units of f5, f6, and f7 are ergs/radian? x 10-11.



TABLE IX

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF C3H), C3D), AND CHpCCD2 (SET I)

Species . C3H), j C3Dl CH2CCD2 t
Of m; L & T m’. il m. -
Dpq and Freq, Calc. £ F&*eql Calec. % Freca Calc. 3
Freq. No. (em.-1) Freq. Diff. (em.-1) Freq. DLEE:. (em.-1) Freq. Diff.
n 2996 — 3612.9 '40.56 2195 2198.9 40.18 3011 3012.4  +0.05
4 2 140 14541 +0.98 1228 1228.7  +0.06 118 1429.3  +0.80
3 1076 1077.8 +0.17 874 87h.6  +0.06 92l 926.3 +0.25
By L 865 867.2 +0.26 615 613.4 . -0.26 a 750.0 -
5 3006.8 3011.9 +0.17 2230 2209.9 -0.90 2226 2204.7 -0.96
Bp 6 1957 1957.1 +0.01 1921 1921.1 0.00 1942 1939.1  -0.15
7 1398 1398.3 +0.02 1034 1019.1 -1.LY 1176. 1170.6 -0.46
8 3089.9 3096.0 +0,20 2325 2295.7 -1.05 2334 2295.7 -1.66
9 1037.9 1033.0 -0.47 843.3 846.5 +0.38 1022 1031.0 +0.88
E 10 8L4S.2 838.9 -0.75 668.1 . 673.1  +0.75 670 688.0 +2.68
1 352.0 353.4  +0.J1 306 3041  -0.61 327 319.8  -2.20
12 3100 -3095.9  -0.13
E 13 858 880.1 +2,58
1L 825 795.0 -3.63
15 N 336 335.5  -0.16
Average Per Cent Error 0.36 0.53 = 1.11

aNot observed.

66



TABLE X

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF C3H), C3D), AND CHpCCDp (SET II)*

e e S T Y o i ez o am———
. s et

Species ‘ C3H), C3D),

: GHEEEDZ}
of Dogq Ubs. : Obs. Obs.,
and Freql Calc. 3 Freq].' Calec. y 4 Freqia Calc. ) 4

Freq. No. (cm."t) Freq. Dise. (cm.-1) Freq. Dife. (cm.-1) Preq. Diff.
8 3089.9 3096.7 +0.22 2325 2298.2 -1.15 233l 2298.2 -1.53
E 9 1037.9 1031.1  -0.65 843.3 8l42.9 -0.05 858 878.2 +2.35
10 8L5.2 839.8  -0.6L 668.1 671.5  +0.51 825 ™44 -3.71
1 352.0 352.7 +0.20 306 305.0 -0.32 327 324.0 -0.92
12 3100 3096.7 -0.11
E 13 1022 1029.2 +0.71
i 0/% 670 686.3 +2.43
15 . 336 331.4 -1.38
Average Per Cent Error 0.35 0.L45 ;'--05

*The frequencies for species 4, By, and B2 for Set II are identic;&l with those given for

Set I. ’

8T+ should be noted that the observed frequexicies for species By and B2 of CH2CCD2 are
-assigned differently from the assignment used in Table IX.

00T
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Set I constants, the observed frequencies of species B and B2 of CH2CCD2
must be assigned as follows:
By: 2334 em.”l, 1022 cm.71, 670 cm.~1, 327 cm.-1
t Bo: 3100 cm.~L, 858 em.-l, 825 cm.-1, 336 cm.-l.
When the constants of Set II are used, the frequencies must be assigned
as follows:
By: 2334 em.”l, 858 cm.-1, 825 em."L, 327 cm.”l
= Bp: 3100 cm.”l, 1022 em.-1, 670 em.”l, 336 cm.7l.
The assignment given by Schuler and Fle'bcher38 is that shown in Set I.
This ;ssigxment was made by use of the product rule and utilizing the
frequencies calculated from a normal-coordinate treatment. ‘1‘he‘ F matrices
of species B and B2 are identical, so the product of the frequencies of
species By divided by the product of the frequencies of species B2 should
be equal to the ratio Db lbl / l b|32] %, which is 0.71662. The ratio of
the products of the frequencies of Assignment I was found to be 0.72832,
while 4_?1’}8.1’.‘ obtained using the frequencies of Assignment II was 0.757L7.
The ratio using the observed frequencies was expected to be larger than
that predicted by theory, and this is seen to be true for both assign-
ments. However, the value using Assignment I is 1.4 per cent higher than
theory predicts, while the value using Assignment II is 5.8 per cent higher
than predicted. On this basis alone, Assigmment I would be favored. It
should be noted, however, that the band centers of the 336 cm.-1 and 327
cm.-l bands are not known with certainty, and a change of a few wave
numbers in the values of these observed band centers could alter the

ratio of the frequency products in such a manner as to favor Assignment
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II. It should be pointed out that Assignment II was likewise ruled out
in Schuler and Fletcher's work because only one set of force constants
were determined by these investigators. This set of constants was equiv-
alent to the Set I constants determined in the present work, and the fact
that another set of constants would permit the frequencies to be assigned '
according ‘to Assigmment II was not apparent.

’ There are several reasons which favor Assigmment II. The C-H
stretching_ﬁ'equency and the CH2 rocking frequency belong to species Bj.
The CH2 rocking_frequency would be expected to occur at a higher frequency
than the CD2 rocking or the CH2 or CD2 wagging frequencies. This leads
to the assigment of the 1022 cm.~l band as the CHp rocking frequency,
and in Assigment II, this frequency is assigned to species Ba. Another |
point vhich favors Assigmment II is illustrated by a comparison of the
diagog&l J matrix elements corresponding to rocking and wagging vibrationms.
In both CQH}_; and CH20, it was found that the elements corresponding to
r_qqlc'mg motions were about 2.5 times those corresponding to wagging motions.
This indicated that the ratio of fg to f7 would be about 2.5. Inspection
of Table VII shows that the ratio is 1.2 in Set I, and 2.70 in Set II,
which indicates that the constants of Set II, associp.ted with Assigmment
IT, are correct. In addition, it was noted that fg is essentially the
same in Set I and Set II, while large changes occur in fg and fg. It is
believed that the two sets of constants arise because of the interchange of
the frequencies assigned to the CH2 rocking and CHy wagging frequencies.
Based on this idea, which will be discussed in more detail in Chapter IV,

the set of constants in which fg is larger and f7 smaller would be favored,
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and this is Set II.

The values of the orbital valency force constants, k. and k.,

-
which were obtained have been interpreted to favor the Set I constants.
However, this evidence is questionable, and does not constitute a strong
point. On the basis of the points discussed above, the assignment of
the frequencies of species B} and B2 of CH2CCD2 given by Assignment II is
preferred, along with the force constants of Set II. The frequencies
calculated for C3H);, C3D), and CH2CCD2 using the constants of Set II are

given along with the observed frequencies in Table X.

D. Formaldehyde

The '3/ and I3 matrices for CH20 and CD20 are given in Appendix I.
The algebraic equations obtatped from expansion of the secular equations
are:
Ay: CH20

1.0294386 £3 + 0.1458069 f2 + 0.9773168 £3 - 0.3869376 A =

g; Aq (14k)

0.1L469742 f1fp + 1.0018655 f1£3 + 0.133123L fof3 - 0.2614682 Afy +

0.0072278 Afp - 0.206667h Af3 - 1.,25265L) A2 = i AL A (1L5)
’ i, j=1
1£)

) fof3 - 1.8526558 A2f) - 0.7918953 A2f5 - 15690106 A2f5 +

3
1781226 3 = 7.1585303 [[ 2, (116)



Ba:

CD20

0.5338580 £; + 0.1458069 £2 + 0.5452658 £3 - 0.3869376 A =

>

i=1

104

(147)

0.07L7151 f£1£2 + 0.286872L £1£3 + 0.0701274 faf3 - 0.1308350 Afy +

0.0072278 Afp - 0.1034130 Af3 - 0.L4806580 A2 = i M A3
i,3=1

143

£1£2f3 - 1.8526558 A%f) - 0.7918953 A%fp - 4.5690106 A%f3 -

3
5.1761226 &3 = 27.9159617 || A,
1=1

1.1210228 £ + 1.2123195 £}, - 0.3287272 A =i Ay
tel

5
£1£), - 0.7918953 A2 = 0.7547609 [T A4
i=}

CD20 5
1

0.625Li22 £1 + 0.7802680 £}, - 0.3287272 A = > A}

i=]
£18), - 0.7918953 A% = 2.2031396 ﬂ %

i=l

CH20
fg = 0.3834650 (Ag)
CD20

£5 = 0.6066758 (AY).

(148)

(149)

(150)

(151)

(152)

(153)

(15L)

(155)

The fj are the diagonal elements of the 3: matrix and are defined by the

following relations:
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£ = Kog + 1.35662 A ‘ (156)

fé..= Kgo + 3.0164L A (157)

f3 = Kg + 0.8337L4 A (158)
K e

£), = —2-1??-:“'—1-{-—- + 0.83374 A (159)

2Ky cos?a (k. + ky )
T 2Ky cosa + (k;_ + k) + 0.04313 A. (160)

The equations for each species were solved for arbitrary values
of A between 0.00 and 1.00. The results of these calculations for species
A) and B) of CH20 and CD20 are given in Table XI, and in Figures 26 and
27, the values of the constants are plotfed against A. The vertical lines
in the figures indicate the change in the force constants which will
cause a change of approximately 1 per cent in the corresponding frequencies.
It was found that for any A value between 0.39 and 0.51, the overall fre-
-quency fit was essentially the same. Varying A in this range causes the
errors in the calculated frequencies to change, but the average error re-
mains essentially the same. An A value of 0.470 was chosen to use in the
calculations because this value of A would divide the error among all the
frequencies. The values of the other constants were then obtained by
taking the average values from the graphs at A = 0.470. The value of fo
was determined by solving Equations (15L4) and (155).

The values of the force "c,onstants are given in Table XII, and in
TableXI_II the qbserved frequencies of CH20, CD20, and CHDO are given,
élong with the. calculated frequencies obtained using the force constants
given in Table XII. The frequency fit is quite good, although the fre-

quencies of CHDO are not fitted as well as those of CH20 and CD20.



TABLE XI

FORCE CONSTANTS™ FOR SPECIES A] AND By OF CH20 AND CD20 FOR

ARBITRARY VALUES OF A

106

CH20 CD20
Species A [ o} £2 £3 A f £> f3
0.300  No real solutions  0.200 L.210 12.850 1.594
0.370 L.382 11.900 1.607 o0.400 L.k2h 12.577 1.600
o.hoo L4.380 12.087 1.592 0.500 L.4BO 12.576 1.616
A 0.450 L.376 12.336 1.579 0.600 L.513 12.633 1.639
0,500 L4.370 12.538 1.575 0.800 L4.524 12.857 1.7T11
0.600 L4.353 12.864 1.58L
0.700 L4.328 13.136 1.609
A £, f), A 1 £),
0.100 L.324 0.7760 0.100 L.369 0.8018
0.200 L.351 0.7782 0.200 L. 429 0.7965
0.300 L.377 0.7810 0.300 L. 482 0.7958
B 0.L00 L.397 0.7902 0.Loo L.530 0.7997
0.500 h.b11 0.8037 0.500 L.572 0.8079
0.600 Lh.h2a 0.8216 0.600 L.609 0.8203
1.000 k.h1o 0.9405 1.000 L.706 0.9110
*The units of A, f], and

f{ are dynes/cm. x 109, and the units of
£3 and f), are ergs/radian? x 10-1I. -
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Figure 26. éag £ vs. A for Species A1 and B of CH20 and CD20.
b) f2 vs. A for Species A] of CH20 and CD20.

g]’)ggl’ CH20; o , A1, CD20; O, By, CH20; [:] s Bl,
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Figure 27. (a) f£3 vs. A for Species A] of CH20 and CD20.
(v) £) f_é_. A for Species B] of CH20 and CD20.
o, Ay, CH20; ¢ , A1, CD20; O, Bl, CH20;

LJ, B1, CD20.
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TABLE XII

FORCE CONSTANTS FOR FORMALDEHYDE

Constant Value

A 0.4700 x 105 dynes/cn.

f2 12.4950

£3 1.5935 x 10~ ergs/radian®

1, 0.8022

fe 0.31103

Kch 3.8124 x 105 dynes/cm.

Koo 11.0773

Ky 1.2016 x 10-11 ergs/radian?®
1.2463

Kk
(k! + k) 0.628l




TABLE XIII

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CHp0, CD20, AND CHDO

: + =
Species : . CH20 GD20 - _ CHDO
of Obs. A ; 0bs. : Obs. . =
C2y and F;mqi Calc. 4 Freql Cale. 4 Freql Calo. p 4
Freq. No. (cm.™ Freq. Diff. (em.”t) Freq. Diff. (cm.-1) Freq. Dife,
1 2781.6  280L.2 +0.82 2086 2051,6 -0.22  2844.1  2843.8 -0.01
a4y 2 1743 1753.7 +0.62 1700 1694.7 -0.31  2120.7 2093.3  -1.29
3 1500 1502.1 +0.3L4 1106 1100.5 -0.50 1723.L4 1720.0 -0.26
B, L 28662 2880.0  +0.L49 2160 2132.8 -1.26 1400 1397.6 -0.18
5 1247.4 1250.1 +0.18 990 988.0 -0.20 1ol 1029.2 -1.13
Average Per Cent Error 0.0 : 0.51 b 0.70

aBand center uncertain.

oTt
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E. Ketene

The secular equations of CH2CO and CD2CO contain factors of
fourth, third, and second order. The F and ¥ matrices for these mole-
cules are given in Appendix I. Rather than g;ve fhe algebraic equations
for each species, only the diagonal force constants of the ¥ matrix

will be given. These constants are:

Aj: £ = Koy + 1.3088L A (CH stretching) (161)
f2 = Kgg + 3.10229 A (CC stretching) (162)
£3 = Kgo (Co stretching) (163)
f), = Kg + 0.89672 A (CH2 deformation) (16L)
By: fs = _Kike + 0.89672 A (CH» rocking) (165)
e 0 2 g
£
f6 = K (CCO bending) (166)
Bp: f7 =K, (cCco bending) (167)
2Ky cos’a (k. + ke )
fg = 5 - + 0,04682 A .
, 2Ky cosa + (k- * k)
[ (CHz wagging) (168)

The equations of species B} were solved initially for CH>CO and
CD2CO. However, it was found that ho reasonable solutions for the con-
§tants could be-obtained for species By of CD2CO for A values between -0.20
and 0.70. Reasonable solutions for the constants for species By of CH2CO
were gbtained for A values from 0.20 to 0.50, howevef. Because of this
difficglty, species A} was then considered. In order to reduce the fourth-
order-block to a third-order block, the CH and CD stretching frequencies

were factored off by Wilson's method.37 The resulting third-order sec-



n2
ular determinants were expanded and the equations were solved for fo,
f3, and f), for values of A between 0.20 and 0.45. It was found that
below an A value of 0.30, the solutions for the equations for CH2CO be-
came imaginary, while above an A value of 0.25, the solutions for the
equations of CDoCO became imaginary. ~ However, at an A value of 0.30, a
set of constants was determined for CD2CO which almost satisfied the
equa.tions} and which agreed quite well with the constants found using
the CHgCO_data at A = 0.30. Therefore, the value of A was chosen as
0.30, which agrees with the A values obtained for ethylene and allene.
The values of the diagonal constants of species A were then obtained
from graphs of the constants versus A.

After the value of A had been fixed by the results of species 4,
the constants fo; specles By were evaluated using the data for CH2CO only.
When the frequencieé for CD2CO were calculated, it was found that an
appreciable error occurred only in \)6 and \)7, which belong to species
Bl. It is clear that these observed frequencies cannot be fitted better
without generalizing the potential field. The constants involved in
species By, £7 and fg, were evaluated quite easily, since the species is
second-order and the off-diagonal '3 element is zero. The force constants
obtained are given in Table XIV, designated as Set I.

It was noted during the calculations that the values of fj and f3
could be changed considerably without appreciably altering the frequency
fit. Another set of force constants was obtained by trial and error in
which the only significant changes were in f2 and f3. This set of con-

stants is designated as Set II, and is given in Table XIV. By compari-
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TABLE XIV

FORCE CONSTANTS FOR KETENE

s it pm—— o
——— o — = mmm——

Constant Set I Set II

A 0.300 x 105 dynes/cm. 0.300 x 105 dynes/cm.

1 5.3800 5.3800

£2 11.0LoL 9.2500

£3 = Kgo 12.3161 1k.3000

f), 1.1671 x 10-11 ergs/radian? 1.1600 x 1011 ergs/radian®
f5 0.4230 0.4230

£6 = K 0.9110 0.9110

£7 = K, 0.71529 0.71529

£8 0.114436 0.11436

Koy 4.9874 x 105 dynes/cm.  L4.987h x 105 dynes/cm.

Ky 0.8981 x 10711 ergs/radian® 0.8913 x 10-11 ergs/radian?
k.- 0.3717 0.3723

(k! +k_ ) 0.1338 - - 0.1334
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son with the Set I constants, it is seen that f2 has been lowered about
16 per cent and f3 has been raised about 16 per cent. In Table XV, the
observed frequencies of CH2CO, CD2C0, and CHDCO are compared with the
frequencies calculated using both sets of force constants. The constants
of Set I are seen to yield somewhﬁt better frequencies than those of Set
IT, but the difference is small. |

The reason that f2 and f£3 can be varied so much without affecting
the frequency fit significantly is because the diagonal 5 matrix elements
corresponding to f2 and f3 are nearly the same, 0.16661L and 0.1L45807.
This fact, along with the fact that the values of f2 and f3 are rather
close, means that as long as the sum and product of fy and f3 remain
essentially constant, the frequency fit will remain essentially the same.
Using the Set I constants, the sum and product of f» and f3 are 23.36 and
135.97, while for the Set II constants, the sum and product of f» and f3
are 23,55 and 132.28. The changes in the sum and product of f2 and f3 are
small, so the calculated frequencies using the two different sets will
differ only slightly. Therefore, the value of f2 can be chosen fromf9.25
to 11.0L, with a corresponding value of f3 from 1L.30 to 12.32 without

causing a significant change in the calculated frequencies.



TABLE XV

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CH2CO,

CD2CO, AND CHDCO

115

Species Obs. Calc. Calc.
and Freq.I Freq. Freq.
Molecule Freq. No. (em.”™) SetI & Diff. Set II ¢ Diff.
1 3069 3072.1 +0.10 3070.4 +0.0L
g 2 251  2161.5 +0.k9  2173.3  +1.0L4
3 1388 1392.5 +0.33 1383.8 -0.30
L 1120 1121.1  +0.10 1102.5 -1.56
CH2CO
5 3166  3181.5  +0.50
By 6 978 976.9  -0.10 Same Same
T 588 588.7  +0.10 -
8 788 765.8 -1.80
9 528 5u3.9  +2.70
Average Per Cent Error 0.69 0.90
| 2265 2260.8 -0.18 2240.7 -1.08
o 2 2119  2122.4  +0.16  2153.2  +1.60
3 1228 1216.8 -0.92 1195.1 -2.69
L 890 909.5  +2.19 903.8  +1.55
CD2CO 5 2375  2368.1  -0.35
By 6 7982  85L.5  +7.00 Same Same
Bo 8 712 695.8 -2.21
9 L50¢  L460.3  +2.50
Average Per Cent Error 2:73

2.35




TABLE XV

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CH»CO,
CD2C0, AND CHDCO (Continued)

116

Species Obs. Calc. Calc.
and Freqi Freq. Freq.
Molecule Freq. No. (em.”1) Set I % Diff. Set II % Diff.
1 3115 3131.3 +0.52 3130.6 +0,50
2 2150 2a47.4h  -0.12 2167.7 +0.82
A 3 1293 1292.1 -0.07 1278.3 ~l.1L4
N 1046  1086.5 +3.87 1073.3 +2.23
5 2309 2305.4 -0.16 2296.2 -0.55
CHDCO 6 d 869.4 - - 868.6 - -
7 d S34.0 - - 534.0 e
A® 8 d 726.3 - - 726.3 - -
9 508 511.6 +0.71 511.6 +0.71

8Calculated from product rule.

bCalculated from 2Vq = 1060 cm."l.

®Calculated from 2Vg = 900 em. L,

dNot observed.
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F. Diazomethane

The secular equations of CH2N2 and CD2N2 contain factors of
fourth, third, and second-order, Jjust as those of CH2CO and CD2CO.
The J and IJ matrices for CH2N2 and CD2N2 are given in Appendix I.

The diagonal elements of the ‘3’ matrix are:

Aj: £ = Koy + 1.27825 A (CH stretching) (169)
£2 = Koy + 3.04253 A (CN stretching) (170)
£3 = Ky (NN stretching) (171)
£), = Kg + 0.93149 A (CHp deformation) (172)
Bl: fg = 5—%—-—%— + 0.931L49 A (CH2 rocking) (173)
f6 = K (CCO bending) (17L)
Bps £7 =K, (CCO bending) (175)
fg = 2y o (k:,-"' k) + 0.03879 A. (CHp wagging) (176)

2Ky cos2a + (kg + k)

The frequencies of species B] and B2 of CD2N2 have not been deter-
mined satisfactorily, and this means that the value of the constant A
mst be determined from species Aj. The C-H and C-D stretching frequencies
were factored off by Wilson's me1’.hod,37 and the resulting third-order de-
terminants were solved for f2, f3, and f), for both CHoN2 and CD2N2. It
was found that the constants did not agree at all well for positive values
of A, In view of this, it was thought that factoring off the C-D stretch-
ing frequency was causing an error to be introduced into the equations,

since the C-D stretching frequency is very close to the N-N stretching
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frequency. In order to check this, both of these frequencies were
factored off, ylelding a second-order determinant containing the con-
stants f2 and f),. However, the values obtained were very nearly the
same as those obtained when only the C-D stretching frequency was fac-
tored off.

The calculations were then extended to negative wvalues of A,
since it appeared that a satisfactorw'solutiop could be obtained at a
' negative value of A. It was found that at an A value between -0.25 and
-0.30, the best solution could be obtained. In this region of A values,
it was noted in the case of CD2N2 that the values of f2 and f);, obtained
from the third-order determinant differed considerably from those ob-
tained from the éecond—order determinant. The best value of A was de-
termined to be -0.287, and because of the disagreement in f2 4nd f),
obtained from the third-order and second-order determinants, it was
necessary to adjust the values of the other constants which were obtained
from the graphs in order to obtain the best solution. The constants
obtained are given in Table XVI, designated as Set I. The constants for
species B) and Bp were obtained by solving the equations of these species
for CH2N2 only, since the correctness of the reported frequencies for
CD2N2 is questionable.

In order to i1lustrate the impossibility of fitting the frequencies
when a positive value of A is used, the values of the constants obtained
from the CHoN2 equations for an A value of 0,35 are given in Table XVI,
designated as Set II. In Table XVII, the calculated frequencies of CH2N2

and CD2N2 using both sets of constants are compared with the observed
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Constant Set T Set II
A -0.2870 0.3500
£1 5.2000 5.3800
) 5.7000 L.3L80
£3 = Ky 16.3800 16.9153
£), 0.9800 1.2922
£e 0.6U475 0.6279
f7 = K, 0.3669 0.3669
£8 0.1615 0.1615
Kog 5.5669 L.9326
KN 6.5732 3.2831
Ky 1.2L73 0.9662
K, 6.8638 0.8781
(k! + k) 0.26L45 0.2402

- *he units of A, f1, £2, Kyy, Kcg, and Kgy are dynes/em. x 105,

and the units_ of f),, fg, K

radian? x 1011,

s ’

K. , £8, KH, k-, and (k'  + k_)

are ergs/



TABLE XVII

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CHoN2 AND CD2No
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Species Obs. Calc. Calc.
and Freqi Freq. Freq.
Molecule Freq. No. (cm.-l) Set I @ Diff. Set II ¢ Diff.
¥ 3076 3032.h -1l.031  3062.6  -0.Lh
p 2 2102 2110.4, +0.4,0  2100.4L  -0.08
3 1ah 1409.5 -0.32 1y11.5 -0.17
N 852 832.3 -2.32 850.3 -0.20
CHoNo 5 3185  3190.6  +0.18  3184L.6 -0.01
BB 6 1 1111.0 0.00 1111.0 0.00
4 u22 422.0 0.00 422.0 0.00
B, 8 898 898.0 0.00 898.0 0.00
9 408 408.0 0.00 408.0 0.00
1 2211 2251.5 +0.47  2206.3  -1.55
2 2088 2058.5  -1.42 2097.0 0.43
A 3 1213 1209.7 -0.27 1060.9 -12.6
L 662 685.8 +3.60 805.8 +21.7
CDoN» 5 2l,06 2lnL.2  +0.34  2371.9  -1.L3
By 6 a 874.9 - - 889.8 - -
7 a 390.9 - - 390.4 - -
9 a 387.6 - 387.6

aNot observed.
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frequencies. From inspection of Table XVII, it is seen that the fre-

quencies agree well for the Set I constants, while for the Set II con-
stants, the calculated values of V3 and Vh of CD2N2 do not agree with
the observed frequencies.

It should be pointed out that the negative value of A indicates
that there is an attractive force acting between the hydrogen atoms and
one of the nitrogen atoms in the molecule. The force field was set up
assuming that a repulsive force exists between the central nitrogen atom
and the hydrogen atoms. Therefore, the '3 matrix is strictly correct
only fof positive values of the constant A, since the form of the repul-

sive potential differs from that for an attractive| potential.



 CHAPTER IV
DISCUSSION OF RESUITS

The' discussion of the force constants which have been obtained
can be divided into two parts. The first part deals with the evaluation
of the J matrix elements s and the second part deals with the interpreta-

tion of the values obtained for the constants comprising the F elements.

A. The 3 Matrix Elements

The potential field which has been assumed in this investigation
is of such a form that all of the off-diagonal J matrix elements are
either zero or are functions of a single constant, A. Therefore, in an
T matrix of order n, there are (n + 1) independent constants which mst
be evaluated. Consider the F matrix for a third-order species of a mole-
cule, If the value of one of the four independent constants in this matrix
is fixed, then the three frequencies of the molecule belonging to this
species furnish sufficient data to enable the other three constants to be
evaluated. However, there are six possible sets of solutions for the three
constants, and the question as to which one of these sets of solutions is
the correct one is of interest. It should be pointed out that the sets
of solutions may be real or imagimary, but the sets of imaginary solutions
will occur i.n pairs.

- As an example, consider the CO2 molecule. This molecule possesses

two non-degenerate vibrational modes and one doubly-degenerate vibrational
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mode. Since each vibrational mode belongs to a different species, the
JF and ¥ matrices for this molecule are diagonal. The three frequenciss
of the molecule are known, but it will be assumed that the frequencies
have not been assigned to their respective species. If the elements of
the J matrix are designated f), f2, and £3, and the elements of the byf

matrix are designated g1, g2, and g3, the secular determinant will be

f159- A 0 0 .
0 f2go-A O = 0. (177)
0 0 fig3- A

The six sets of solntions for the f4i's in this simple case are all real,

and are given below.

Set Number
I II III v v VI
fl A 1 7\1 7\2 7\2 7\3 A3
g1 g1 g1 g1 g1 g1
£ A2 A3 Ay N3 AL .. A2
g2 g2 g2 g2 g2 g2
£ 2 DA B A 22 A
3 g3 &3 3] g3 g3 &3

From inspection of the six sets of solutions, it is seen that in this
case, each constant is determined by one of the three frequencies, and
that the six sets of solutions arise because of the six ways in which
the three frequencies can be permuted. The correct solution is deteminsd
by properly assigning the frequencies to the different modes of motion.

In a third-order species, there will usually be off-diagonal ele-

ments in both the = and b matrices, and therefore the off-diagonal ele-
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ments of the secular determinant will not vanish. This neans that a
diagonal force constant is no longer determined by one of thé frequencies,
but is influenced to same extent by all of the frequencies belomging to
the species. This is expected, since it is recognized that the symmetry
coordinates are usually only approximafions of the normal coordinates.
However, in spite of the fact that all of the frequencies are affected
at least a little by each of the diagonal elements, there is, still a one-
to-one correspondence between frequencies and symmetry coordinates, and
in a specieé “with three vibrations there are six wéys of farx‘ﬁing ‘this one-
to-one correspondence. This reasoning applies to ‘3" matrices of any order.
Thus, if the matrix is of order n, there will be n! possible sets of solu-
tions for the‘ diagoéal constants when the values of the off-diagonal con-
stants are fixed. When the off-diagonal elements are small and the sym-
metry coordinates do not mix appreciably in the normal coordinmates, this
one -to-one corrq_spondence has the same significance as in the case of car-
bon dioxide. If, however, two of the symmetry coordinates are mixed
strongly in the normal coordinates, the significance of permting the
frequency assigmments becomes difficult to interpret.

In many cases, one of the frequepcies :Ln a species can be assigned
unambigiously to a motion described by a symmetry coordinate which approxi-
mates a normal coordinate closely. This is gemerally true when the species
contains a C-H .stretch:{.ng vibration, and is responsible for the success of
the factoring off of éuch frequencies. It is interesting to note that if
a frequency 1is fagtored off from a third-order species, the number of sets

of solutions far the diagonal cbnstants is reduced from six to two. This
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reduction is brought about because the frequency which has been factored
off has been associated with one of the force constants, and the two re-
maining frequencies can be permted only two ways.

An indication of how well symmetry coordinates approximate the
normal coordinates can be obtained from a study of the isotope shift .
which occurs when the hydrogen atoms in a molecule are replaced by deuterium
atoms. If a vibrational mode is essentially a motion in which only the hy-

drogen atoms move, the band should be shifted by approximately when

1
V2

the hydrogen atoms are replaced by deuterium atoms. On the other hand, if
the vibrational mode is predominately a motion of other atoms or groups
of atoms in the molecule, the isotope shift would be small. By inspection
of the frequencies, it can be quickly determined whether the”observed isotope
shifts are close to that which would occur if the symmetry coardinates were
the normal coordinates. If the isotope shifts are in the range which one
would expect from a consideration of the symmetry coordinates, then these
coordinates should be good approximations of the normal coordinmates for
both the light and heavy molecules.

Inspection of the frequencies of spécies Ag of CgH), and C2D); on page
84 reveals tint the isotope shift is very nearly what one would expect if :
the symmetry coordinates were edual to the normal coordinates, while the
frequencies of species A] of C3H), and C3D), given on page 99, indicate that
the symmetry coordimates do not approximate the normal coordimtes very
well for at least ome of the molecules.

The calculations carried out in determining the T matrix elements

of species A] of ketene illustrate an interesting point. If the product
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of one of the diagonal 3 matrix elements and the corresponding baf
matrix element is approximately the same as the prodnct of another x
matrix element and the corresponding ¥ matrix element s then it is
not possible to determine these diagomal F elements accurately. In
species A] of ketene, it was found that two of the diagonal J matrix
elements could be changed 15 per cent (one raised, the other lowered)
without apmreciable affect on the calculated frequencies. In orde:;' to
determine the correct values of these constants, further independent
data must be obtained, such as centrifugal distortion constants.

B. Results and Conclusions

1. Repulsive Forces Between Non-bonded Atoms

The resﬁlts obtained for ethylene, allene, formaldehyde and ketene
show that there is an appreciable repulsion between the non-bonded carbon
and hydrogen atoms in ethylene, allene, and ketene, and between the non-
bonded oxygen and hydrogen atoms in formaldehyde. The repulsive forces
between non-bonded hydroge_n atoms has been found to be negligible, in
agreement with the results obtained by Linnett, Heath and Wheatleyl3s1l
in their wofk on methane, formaldehyde, and ethylene. The results ob-
tained for diazomethane indicate that there is a force of attraction
rather than repulsion acting between the hydrogen atoms and one of the

nitrogen atoms. This point will be discussed later.

[ N2
The values of the constant, A = %( sag ) , which were obtained for

ethylene, allene, formaldehyde, ketene, and diazomethane are 0.317, 0.290,
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0.471, 0.300, and -0.287 x 105 dynes/cm., respectively. If the hydrogen
atoms are considered as He atoms and the Icarbon and oxygen atoms are con-
sidered as Ne atoms, the foree of repulsion based on a Lennard-Jones
potential can be approximaf,ed by éalculating the geometric mean of the
He-—He repulsion and Ne-—Ne repulsion at the distances which separate
the atoms in the molecules.39 The results obtained for ethylene, allene,
formaldehyde, ketene, and diazomethane are 0.26, 0.31, 0.65, 0.3h, and
0.40 x 105 dynes/cm. , respectively. The only s ignificant fact obtained
from these calculations is that the value of A for farmaldehyde is ex-
pected to be coﬁsiderably higher than the values for the other molecules,
and this was found to be the case. The close agreement between the A
values which were determined in this investigation and the célbuléted
values obtained based on a lLennard Jones potential may be rather for-
tuitous, because of the approximations involved, but it is interesting that
the figures obtained from two entirely different sources agree as well
as they do.

’It was pointed out in Chapter II that it was necessary to include
linear terms in the potential energy expression, because these terms give
rise to quadratic terms when the redundancies in the coordinates are
eliminated. These quadratic contributions, expressed in terms of B in
the .potential ensrgy expreésions , are quite small, and calculatiéns carried
out for ethylene, allene, and formaldehyde show that these terms can be
neglected without appreciabiy affecting the best numerical falnes of the
? matrix elements. However, if these terms -involving B are neglected,

the values of the orbital valency force field constants are changed con-
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s:[déré.bly in some instances, and it is therefore necessary to include
these terms.

The negative value of the constant A which was obtained for diazo-
methane indicates that there is a net force of attraction between the hy-
drogen atoms and one .of the nitrogen atoms. Therefore, the potential
field used for diazomethane is incorrect, because terms accountj.zg for
an electrostatic interaction should be included. However, the fact that
the potential field used is incorrect does not alter the conclusion that
the attractive force exists. The explanation of the electrostatic attrac-
tion between the hydrogen atoms and one of the nitrogen atoms is not very

clear. The two resonance forms which have been proposed for K diazomethane

are
E_ ee N
C=N=N: -and C-N=N: .
0 7
(1) - AmL)

In order to account for an eiectrosta.tic attraction between the hydrogen
atoms and one of the nitrogen atoms based on these resénance forms, one
must conclude that the positive charges which are indicated are shielded
quite well by the surrounding electrons, and the hydrogen maclei are
attracted by the net negative charge. Based on such a picture, structure
(I) would be expected to be decidedly predominant..

. It is interesting to note that although ketene and diazomethane
are isoelectronic, no indication of attractive forces between the hydrogen

atoms and the central carbon or oxygen atom in ketene was found. Although

/
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the electron distribution in ketene is the same as that shﬁwn in struc-
ture I of diazomethane, it is not surprising that no force of attraction
between the hydrogen atoms and the central carbon or axygen atom in
ketene exists, because little localization of charge like that predicted
for diazomethane is expected. Thus, even though diazomethane and keterne
are similar in structure, it is understandable that the attrac¢tive force
is found in diazomethane only. Further calalations using a potential
function which takes this force into account should be carried out for

diazomethane.

2. The Orbital Valency Force Constants

The force constants which were obtained in this investigation are
summarized in Table XVIII. In the following discussion of these constants,
the values obtained for diazomethane are not considered, since the values
of the constants would be changed appreciably if the electrostatic attrac-
tion between the nitrogen atom and the hydrogen atoms had been taken into
account. The values of the constants obtained for formaldehyde agree
well with those obtained by Linnett, Heath, and Wheatleyllh However, the
values obtained for ethylene do not agree with the results obtained by
these authors, due to revisions which have been made in frequency assign-
ments and our redefinition of some of the force constants. |

a. The stretching vibrations. The C-H bond stretching constant

was found to be almost the same in ethylene and allene, and only slightly
higher in ketene. For formaldehyde, the constant was found to be about
20 per cent lower than for the other molecules. This low value was ex-

pected, however, because the C-H stretching frequency in formaldehyde is
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TABLE XVIII

SUMMARY OF FORCE CONSTANTS

MOLECULE

Constant CoH)y C3H)y - CH20 CH2CO 03232

A 0.317 0.29%0 0.hk70 0.300 -0.287

Keg LE LT3 3812 L.987 5.567

Kce 7.250 8.794 10.1-8.3

K3S 0.432

Kco 11.077 12.3-14.3

Kcn 6.573

kNN 16.380
x 105 dynes/cm.

Kg 1.059 1.017 1.202 0.895 1.247

K 0.799

K& 0.5L8

k- 0.731 1.2h6 0.372 6.86k4

k§r “1.639

K2 0.030

- -0.486

(g *+ k) 0.628 0.133 0.265

k;— 1.k09  1.309

K¢ 0.911 0.429

K 0.368 0.715 0.367

x 10711 ergs/radian?

N
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mch lower than in the other molecules. The C=C bond stretching con-
stant for allene is larger than that for ethylene. For ketene, the
value is about the same as that found in allene. The C=0 bond stretch-
ing constant is larger in ketene than in formaldehyde, .as was expected.

b. The torsional vibrations. The torsional modes in ethylene

and allene are quite similar, even though there are two set;s of over-.
lapping TV orbitals in allene and only one set in ethylene. The values
- of k% for ethylene and allene were found to be 1.409 and 1,309 x 10-11
ergs/radianz, respectively.  Although these constants differ by about 7
per cent, they would be brought into exact agreement by raising the
frequency of the vibration in allene 1.8 per cént or by lowering the
frequenoy in ethylene 1.'8 per cent. Thus, the values of kf,‘; for ethylene
and allene are in excellent agreement. It should be pointed out that
the torsional vibration is the mqst clearly defined vibration in terms
of the orbital valency force field, and the results‘ indicate that the
concepts are valid. |

c. The planar and non-planar bending vibrations. The C-H bond

bending const;ant, Ky, was found to be about the same in ethylene and
allene. The value found for ketene is considerably lower than that for
ethylene and allene, while the value for formaldehyde is much higher.
It is interesting to note that when a large value of Kgg is obtaiﬁed,
the value of Ky is small. This can be explained qualitatively by a con-
sideration of the effect of bond stretching and bending on the orbital
overlap in g~ bonds. The o— orbitals have cylindrical symmetry, and if

the charge is concentrated near the bond axis, it may be expected to ex-
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tend farther along the axis than if the charge is not concentrated near
the bond axis. A long; thin g~ orbital on the carbon atom would result
in a smaller stretching constant than for a shorter but fattexj orbital
because the decrease in overlap is less for a given mclear displacement
in the case of the long thin orbital. When this same reasoning is
applied to the angular distortion, we see that the long, thin orbital
should indeed pi-oduce the larger force constant for a.n angular distor-
tion. |

The constants designated by kg are associated with the change
in overlap of o~ bonds during planar rocking vibrations. It was assumed
that the TT orbital overlap is not affected by these vibrations. This
would be true if the P, atomic orbitals retained their axial symmetry
in the molecizl_e, but they certainly do not do this. How much error this
introduces in kg is impossible to tell.

The values which were found for kg- and k%_ for ethylene are 0.799
and 0.548 x 10-11 ergs/radianz, respectively, The values are reasonable,
'although the value of k1 seems rather high, because the overlap change |
with which this constant is associated is small. However, the values of
the rocking frequencies for species Boy and Blg are 810.3 cm.~l and 1236
cm.'l, respectively, and the fact that the Bp, rocking frequency is
fairly high shows that kg_ is fairly large. It should be pointed out
that k%_ was defined so that the potential energy change arising from
rotation of the g orbitals during the Blg rocking vibration is kg_(2AE. )2 s
where A is the angle through which each of the g orbitals rotate. On

the basis of the change in orbital overlap, the value of kg_ would be ex-
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pected to be smaller than Lk& , but not necessarily smaller than k&.
itself. This is just what is found and the relative magnitudes are
quite reasonable in terms of the physical picture.

In deriving the orbital valency‘ force constants for allene. which
involve k. and kq, the assumption was made that the orbitals of the cen-
tral carbon atom remain fixed during the vibrational motions. Using
this model, the value of ko for allene would be expected to be close to
the value of k& for ethylene, and the value of k1rfof ‘allene ‘would be
expected to be close to the value of k‘f;r ‘ifor ethylene. Howeve;', k-1is
considerably larger than k%, while kis "considerably smaller than kY- .
The fact that k, of allene is larger than kgc. in ethylene is difficult
to explain, because the possibility of a rotation of the orbitals of
the central carbon atom in allene, which was not taken into account,
would lead to the conclusion that k- would be equal to or less than k&
in ethylene. Howéver, the o~ orbitals on the central carbon in allene
arise from sp hybridization, while those in ethylene rise from sp2 hy-
bridization, and this may ini'lgence the values of the const,antsl.. It
should be pointed out that altixough ko in allene is aboﬁt 35 per cent
larger than kgc_ in ethylene, the values could'. be brought into exact
agreement by raising the ethylene rocking frequency 8 per cent or lower-
ing the allene rocking frequency 8 per cent. This illustrates the fact
that the orbital valency force constants are much more sensitive to the
values of the frequencies t.ha.n are the \? matrix elements or valence
force constants. This must be borne in mind in concluding how well the

orbital valency force constants for different molecules agree. The
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value of k5 for formaldehyde, 1.25 x 10-1 ergs/ radianz, is quite high
in comparison to the other values of kg-. It is strange that the value
is higher for formaldehyde than for the other molecules, because when
the orbitals of the carbon atom rotate, the orbitals of the oxygen atom
are completely free to 4rotate so as to minimize the potential energy.
In ketene, kg was found to be 0.372 x 10-11 ergs/radianz, considerably
lower than the values for ethylene and allene.

The values of k&, and k%- for ethylene are -1.639 and 0.030 x
1071 ergs/ radianz, respectively, while the value of k. for allene is
-0.h8“6 x 10-11 ergs/radian?. If we consider the allene model in which
no rotation of the central carbon atom is pérmitted, kﬂwould be expected
to have a value close to the value of k‘}r . However, the numerical values
indicate that k. for allene is more readily associated with the k%.. than
with k2. in ethylene. This appears to be anomalous and the significance
of the results is not clear. However, if the orbitals of the central
carbon atom in allene do rotate during. the vibrational motions, then the
assumption that k, is the same in the rocking and wagging motions will
not be valid, and the true value of k.frca.ﬁnot be determined. »

Although ‘l",he values of k.ﬂ—for formaldehyde and ketene could not
be determined, the results strongly indicate that k. -is negative for both
molecules, because the value of (k- + k‘tf) is considerably smaller than
ko, and the difference in ko and-kc',-' is probably not large enough to
allow ko to be positive. These negatilve values of kﬂ—are interesting,
since they indicate that the rotation of the 77 orbitals decreases the

potential energy and therefore stabilizes the molecule.
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It does not seem profitable to speculate further on the signifi-
cance of the orbital valency force constants obtained for the four mole-
cules discussed above. Although the values obtained for some of the
constants appear to be anamolous, it is very likely that a definite
pattern and a clear interpretation can be deduced if more data for
similar molecules are studied. Further work on this point is in progress

at this time in this laboratory, although not by this author.

3. Ketene and Diazomethane

It is interesting to compare the electronic structure of ketene
and diazomethane. These two molecules are isoelectronic and therefore
must have the same 6rbital configurations. The bonding structure of
ketene is clear. The terminal carbon atom has a set of trigonal sp2
orbitals and one pz orbital perpendicular to these. This atom forms a
o-and a7 bond with the central carbon atom, which has a set of digonal
A(sp) orbitals and pz and py orbitals perpendicular to the digonal axis. .
The central carbon atom forms a - and a 77 bond with the py and py orbitals
of the oxygen atom. The pz orbital of the oxygen atom is already filled
with its own electrons.

These same molecular orbitals can be constructed for diazomethane
if an eiectron is shifted from the central nitrogen atom to the terminal
nitrogen atom. This produces a formal negative charge on the terndnél
nitrogen atom, which can easily account for the attractive force which
causes the value of the constant A to be negative. It is necessary to

assume that the net positive charge on the central nitrogen atom is well
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shielded, so that there will be essentially no electrostatic. repulsion
between this atom and the hydrogen atoms. This is not unreasonable,
and could be accounted for by the fact that the nitrogen atom is more
electronegative than the carbon atom.

The agreement of the calculated frequencies with the observed
frequencies was excellent for all of the molecules studied. The largest
errors occurred in ’)6 and V? of CD2C0, which differed'by 7 and 5.6 per
cent from the "observed" frequencies. However, these large errors are
not distressing, because of the uncertainty in the positions of \76 and
\77. The value of ‘77 was obtained from a band located at 1060 em.'l,
assigned as 2 ‘77, and the value of l)é was then calculated using the
product rule. . Thus, neither band has been observed directly, and the
possibility of a change of 6 per cent in the assigned positions of the
band centers is not»unreasonable. Errors of -2,3 per cent in l}h of
CH2N2 and +3.6 per cent in t) ), of CD2N2 were found. The assigned posi-
tions of these bands are reliable, and a better fit of these frequencies
should be obtained. It is probable that if the electrostatic interaction
between the hydrogen atoms and one of the nitrogen atoms were taken into
account in the potential energy expression, better agreement would be
obtained, because this would introduce off-diagonal terms in species A}
of the f matrix linking the N-N stretching frequency with the other fre-

quencies, as well as change the relative magnitudes of the other off-
diagonal .ffr elements.



CHAPTER V
SUMMARY

The orbital valency force field, 14 which is essentially a Urey-
Bradley force field modified' to interpret bending vibrations in terms
of the changes in bonding orbital overlap which occur during the bend-
ing motions, has been applied to ethylene, allene, formaldehyde, ketene,
and diazomethane. Each of these molecules possesses double bonds, and
it was hoped that the bending force constants could be correlated with
the changes in orbital overlap based on a model in which the molecular
orbitals were assumed to be formed by overlapping directed atomic or-
bitals.

The vibrational potential energy expressions were simplified by
assuming that the H----H repulsions in the molecules were negligible,
and the results obtained show that this assumption was justified. There-
fore, only the van der Waals repulsions between the H atoms and the
nearest non-bonded C, N or O atoms were necessary. The fact that all
of the off-diagonal elements in the f matrix of a molecule were either
zero or functions of the same constant permitted a range of solutions
for the force constants to be obtained independently for both the 1light
molecule and the heavy molecule. The best solution for the force con-
stants was obtained by plotting values of the diagonal f matrix elements
versus the constant in the off-diagonal elements and determining the
value of the constant in the off-diagonal elements for which the best
agreement in the values of the diagonal elements for the light and heavy

molecules was obtained.
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It was shown that when the values of all but n independent force
constants in a species of order n are fixed, the n! sets of solutions:
which exist for the n independeﬁt force constants arise because of the
n! ways in which the n frequencies belonging to the species can be per-
muted. This correlation can be used to choose the correct set of force
constants (if all but n of the constants have been fixed) when data are
available for only one lisotopic species.

The repulsive force between the non-bonded carbon and hydrogen
atoms in ethylene, allene, and ketene, and the non-bonded oxygen and
hydrogen atoms in formaldehyde were in agreement with the calculated
repulsion based on a Lennard-Jones potentia129’30 in which the hydrégen
atoms were considered as helium atoms and the carbon and oxygen atoms
were considered as neon atoms. However, in diazomethane, it was found
that an electrostatic attractive force exists between the hydrogen atoms
and one of the nitrogen atoms (probably the terminal nitrogen atom) which
is stronger than the repulsive force between the hydrogen atoms and the
central nitrogen atom.

The agreement between the calculated frequencies and the observed
frequenéies for all the molecules is excellent, the average error in
general being considerably less than 1 per cent.

The orbital valency force constants obtained for ethylene, allene,
formaldéhyde, and ketene were correlated in terms of the structures of
the molecules. The force constants associated with the torsional vibra-
tions of ethylené and allene were found to be quite similar; indicating

that the concept of orbital overlap is quite good for this type of motion.
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The agreement between the constants associated with the changes in or-
bital overlap of the o and 77 bond orbitals which occur during planar
and non-planar bending modes was not as good as in the case of the
torsions. However, the agreement is as good as thgt found when corre-
sponding bending force constants of different molecules obtained using
a valency force field are compared. It is felt that the orbital valency
force field provides a means of increasing our understanding of the
nature of the forces acting during bending vibrations, and that further
calculations utilizing data for similar molecules, in addition to re-
finements in‘the theory, will lead to a clear picture of bending vibra-

tions.
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APPENDIX I
DETERMINATION OF THE 3 AND Ij MATRICES

The '5(' and ¥ matrices for the molecules studies in this investi-
gation were determined by the method of Wilson, which has been described
briefly in Chapter II, Section B. The determination of the T matrix
elements corresponding to motions during which orbital rotation occurs
has been described in detail in Section C of Chapter II. In Section B
of phapter II, the way in which the contribution of the repulsive forces
between non-bonded atoms to the potential energy is determined has been
discussed. The 10 matrices were determined using both the B and 3
matrices, in order to insure the accuracy of the results. In the follow-;

ing section, the determination of the F and IS matrices is discussed.

A. Ethylene

The ethylene molecule, C2H), belongs to the point group Vj,. The
internal coordinates and geometry of the molecule are shown in Figure 28.
The potential energy of the molecule, before orbital rotation is taken

into account, is

L L ' N
2V = Kgg % (ar3)? + Koo (arg)? + Ky Z (aK1)° + Bgy Z(Ari) +

i=1 i=1
L b L .
Bog (Arg) + By >  (AKy)- 2B > (aRg) + 24> (aRy)°, (a-1)
i=] i=1 i=1

where AK is defined as the angular distortion’of a C-H bond from its
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Figure 28. The Geometry of the Ethylene Molecule.
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equilibrium position in any direction. Kgy and Kgg are the stretching

force constants for the C-H and C-C bonds, respectively. The last two
terms account for the repulsive forces between the non-bonded hydrogen
and carbon atoms. Repulsive forces between hydrogen atoms have been
assumed to be negligible. The linear terms in Ary and A{ are necessary
in order to balance the linear term in ARj, so that the equilibrium con-
figuration will be stable.

It is desirable to express the potential energy in terms of the

following set of intermal coordinates (see Figure 28):

AT Arg AB1
Arp AY4 AB2
Ar3 AQ 2 AB3
ATy AT ABY, -

The meaning of the coordinates, except for AT, is clear. AT is defined
as the change in the angle formed by the intersection of the CH2 planes
caused by a twisting of the CHp groups about the symmetry axis of the
molecule. In terms of these coordinates, the potential energy becomes

L k 2
2 =Ko » (ary)® + Koo (ar5)? + Kg > (a81)% + 2Ky cos’a > (a9y)?
i=1 i=1 | i=1

- L A
+ Ky sin% (AT )? + Bgy 2 (ar1) + Bgg (Ars) + By > (a3)
=1 1=1

2 L h
+By > (89g) + B, (AT) - 28 » (aRy) » 24 > (ary)? -2)
i=1 i=1 i=1

Again, it must be stressed that this expression gives the potential energy
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for the system before orbital rotation is taken into account. The modi-
ficaffion in the potential energy brought about by orbital rotation must
be determined for each vibrational motion during which orbital rotation
occurs.

The symmetry coordinates, determined with the aid of group theory,

are:
Ag:  ScH = 3(Ary + Arp + Ar3 + Ar))
Scc = Arg
Sg = #(aBy + AB2 + AB3 + ABY)
B3u: Sig = 3(Ar1 + Arp - Ar3 - Ar))
s = (8B - A2 + AB3 - 8B)
Bpy: S = 3(Ar1 - Ar2 - Ar3 - Amy)
S3 = %(apy - 8B2 + AB3 - ABL)

Big: SE'}'H = 3(Ar] - Arp - Ar3 + Ar))

Sg = 3(aB1 - aB2 - AB3 + 8BY)
Blu: S¢ = ;‘_2_ (A¥q + AW2)
Bog: S, = % (A9 - 89 2)

Aqy: Sy =AT.

The coordinates which are used in describiné the repulsion of the
non-bonded hydrogen and carbon atoms, the ARj, are expressed in terms of
the internal coordj.nates in the manner described in Chapter II. The con-
tribution of the repulsion terms to the potential energy for the planar
motions is given in terms of the internal coordinates on page 145. After
the modification of the potential energy brought about by orbital rota-

tion is determined, the 3 matrix is obtained by symmetrization. ‘The



MATRIX OF CONTRIBUTION OF H---C REPULSION TO THE POTENTIAL ENERGY FOR PLANAR MOTIONS OF ETHYLENE

A AR INE! AV, Al A8, aB; aBs aBy
- 2Acos*p 2Rcosgeosd | 2ty sndeos
e --ae— sin‘@ +%sm¢sme -S—erccsmykose
Af RAcos*d 2Rcos@cos 2Ary singcosd
3 “Ra sm’~¢ +%sm¢s\n6 -PB_er“'- singcos®
- RRAcos*d 2RcosPcos® RN sin g cosd
A
- —%sm% +,§;sm¢sme -%r&; singcoso
¥ 2Acos*d |2Rcos@coso 2, Smfcosgf
als -& sin% +&singsing -B ¢ singcas®
Re Re Re
8Rcos?0 | 2Ry SINPcosB | 2R sindcos® | 2Rvcy SInBcosd | 2AvcySindcos ©
A
[ —%E—&nze -g;rmmnecosqs —%er;,. smecos¢ - Rercﬂgnecosgﬁ -%EH 51N 6 cosg
2Ar2sin?g
ARy +§;Tc“r“cos Pcos8
A8 o 2Ark sin?g
A SYMMETRIC ;%r“r“m,awse
2R sin?g
ABS +-g; TeuYec COSPcosO
28 2ArE sin2g
4

‘WE;Vcnroc Cosgcos®

SNt
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derivation of these elements has been given in detail in Chapter II,
Section C. The complete F matrix for ethylene is given on pages 1l8-
150.

The 1 matrices for CoH), CoD), cis-, trans-, and asym.-CpHpDp,
C2H3D, and CpHD3 have been determined. C2H); and C2D), belong to the point
group Vy, and the ¥ matrices for these holecules will factor in the same
way as the JF matrix. These g matrices will factor into a 3 x 3 block,
three 2 x 2 blocks, and three 1 x 1 blocks. Due to the reduction in sym-
metry brought about by isotopic substitution, the ¥ matrices for the
other molecules will not factor S0 completely. Cis-C2H2D2 and asym.-
CoH2D2 belong to the point group C2y, trans-CoH2D2 belongs to the point
group C2n, and C2H3D and CHD3 belong to the point group Cs. On the
following page, the correlation table showing how the species of the point
groups of lower symmetry are related to the species of Vh is given. In-
spection of this table shows how the X matrices for the molecules factor.

The ¥ matrices for the ethylene molecules are given on pages 152-155.
In order to give the necessary elements to form IS matrices for all of
the isotopic ethylenes in a minimum space the 12 x 12 matrix has been

split into sub-matrices as follows.

B, | B

Uu nzz
O |8

For those molecules with a high degree of symmetry, mamy of the off-

diagonal elements vanish.
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TABLE XVIII

NUMBER, SPECIES, AND ACTIVITY OF THE FUNDAMENTALS OF THE ISOTOPIC
ETHYLENES AND THE CORRELATION TO POINT GROUP Vp

Group Species Correlation to Vy
Con SAg (R.) 34 (R.) + 2B1, (R.)
245 (1.'R.) e A r)
(trans.-C2H2D2) Bg (R.) Bog (R.)
e hﬁu (I. R.) 2B3y (I. R.) + 2B3y (I. R.)
SA]_ (I- R. R.) + 232n
Cov 20 (R.) i:g+ By
4By (I. R., R.) 2B1g + §B3u,
(cis.-C2H2D2) 2B> (I. R., R.) Bin
5A; (I. R., R.) 345+ 2B3y
Cov A2 (R.) Ay
4B (I.R., R.) 2B1g + 2B3y
(asym.-C2H2D2) 2B2 (I. R., R.) Blu * B2g
Cs 9A!' (I. R., R.) 3Ag + 2B3y + 2B2u + 2B)g
CoH3D 3a" (I. R., R.) Ay + Bly * B2g
© ‘and -

C2HD3




?HATRIX FOR ETHYLENE (SPECIES Ag AND B3y)

T Scy Scc SB SéH Sé
Koq + ucosagé LAcosgcose + 2Argysingcos g
ScH B | 2 2B B singcoso
o AR b - — B1ngo
S sin¢g s singsine Re roc
Kgg + 8Acos?8 lArgysingcose
S¢d ! E sin? O 2B rcysinbcos
= R TOH ¢
KH + 2Ar§H81n2¢ +
I8 {B_ rcgrogeosgcose
Re 3
ol KcH + Ml‘&{coszng 2Argy sing cosg
s (!JH (Symmetric) B 2 B
| - | sin’g - &g Toc sing cos®
; Ky + 2ArZpsin®g +
B
s rggrogcosdcos ©

gt



FMATRIX FOR ETHYLENE (SPECIES Bp, AND Blg)

"! "
o ScH S ScH i
; Koy + 2Acos?g 2Argysingcosd
il B _, .2 - 1ngcose
X - & sin ¢ " g rogsingdcos
-
Hk"'u + 2Arg sin2g +
. Lerics
5p
1" B
o cosgcos®
Re TCHTCC
Kep + 2A0082¢ wCHSin¢cOB¢
Sﬂl
CH _ B sin’g o rgcsingcosd
Re
ke 2Ar?. sin?
e +
s el

——— ICHYGCeosscosd

6Nt



JFMATRIX FOR ETHYLENE (SPECIES B)y, Bpg AND Ay)

= Sy S Sr
ZKHooszoc(kE. + k7))
S LKyoos2oc + (K2 + LkW)
2B 3
+ 2 royrge ©0s” o<
Re CH*CC .
: ZKHooazu(hkg_ + k)
Sy LEgoos%c + (L& + 1E)
B
+ E rcnrcc°033 ol
K sin?oc Xy £
Kg sinZoZ + ki
. AR A . -

% reprec sin?oc coset

0ST
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The matrices given are ’Ull’ B 22, 1533, and 1512. The matrix 0 o1 is
easily obtained by taking the transpose of ﬁlg. The symbols used in the
U matrices are defined as follows:

py = reciprocal mass of 1 atom

oK = equilibrium H-C-H angle

Z = gin a

[" = cos a

r = equilibrium bond length

P W
Too

The geometrical parameters used for ethylene were those reported by Gallo-
way and Barker, Lo and are given in Table XIX, along with the calculated
values of other parameters which were used in the determination of the 3’
and )3 matrices. After the work on the ethylene molecule had been com-
pleted, Allenhl reported a new determination of the dimensions of the
ethylene molecule based on high-resolution infrared studies. Allen re-
ported the dimensions as:

rgg = 1.086 2

roc = 1.337 )

¥ = 117%2' .

These results differ from those given by Galloway and Barker, but the re-
sults obtained in this investigation using Galloway and Barker's dimen-
sions should be close to those which would be obtained using the dimensions
glven by Allen. However, it should be emphasized that using the newer

data would cause slight changes in the force constants.
The mmerical X matrices for the seven isotopic ethylene molecules

are given on pages 157-160.



SYMBOLIC 15 MATRIX FOR ETHYLENE (qu)

bg ¥ ScH Sce 8 S .
sq |2 ()11'7;2')13*71&)'._’“* _aryq i’é; % (raspampzeny) 0
2‘_ :
PO

Sce % E. f’iﬂ Fe q :

s —g—(pLspep3epl) P el

B LGy 0 gy |
) . :zz J

- .
SCH (Symetric) b (eppst) | g
= 2rdpg TR 7 °
1
2 (Papepspl)

P i 2
s s B R

i - Tcu

est



SYMBOLIC B MATRIX FOR ETHYLENE (\3 29)

m

Vi SEH Sg Scy Sg
e | ¥prpasp )+ 2 g -Z Hpaipepapl) 0
2 upepa * ' g
2 4 ] o
: el - L (urepoga)
2 Ly
TCH 2
0 2(" + 2f)
s |
1
(1 + y) +
o Iy PRI
B (Symmetric) 2(2f 4T )2
2 Fo
TCH

€91



SYMBOLICB MATRIX FOR ETHYLENE (812)

Y saH SS S;H s;'

ch %9& - )mé +p3 - }lh? 6 }(}11 -p2-p3e }“*) o

. S ° ° °

s; 5 ﬁa(ﬁl'ﬁznu-ph) 0 hrl_é.n(}ll_),z_ﬁvm)
3&3 i - p2 - 3 0 0 20m -2+ p3 - A 0

Sﬁ 0 ;]g?{(f’l’}‘z‘)ﬁ*}‘h) 0 ﬁgl;ﬁ}ll-}lz")g—}xw

st



SYMBOLIC 2‘5 MATRIX FOR ETHYLENE (o] 33)

)j“ S S¢ St
e = 1
- = ' (m - - + )
g [8Crm? P * P2+ p3 + m) Brrem)? P2 Y P28 P (el T P2 TP P
) _
1
X (FI‘CH) 2 )lc
1l -
8(rgm? L * P2 * 3 * ) o (- p2 + p3 - py)
i (2 + 8NP+ 8r2r2)
+
2("rgy)? i
et "5 (n + pa + 3 *)lh5 |

ast
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TAELE XIX

GEOMETRICAL PARAMETERS AND CONSTANTS FOR ETHYLENE

Bond Lengths Bond Angles

rog = 1.071 & ¥ = 120° C  12.00380L
rgg = 1.353 A o = 60° H  1.008142
D 2.014735

Other Parameters

-
]

= 33%50!
= 2691

D
I

(o]
2.104 A

R 3
" n

cos a = 0.50000

M

sin a = 0.86603
sin@d = 0.55692
cos@ = 0.83057
sin© = 0,44083
cos© = 0.89759

_ TcH
P == o = 0.79157k




NUMERICALB MATRICES FOR THE ISOTOPIC ETHYLENES

X | Scm Scc Sp ScH S8 Sch S ScH S8
1.0335713 | _ 6
SCH| o 2379067 | ~00833069] 0.0673631
Sce 0.1666138| -0.1347261
; 0.9737090
Sg 0.5116577
_ 1.03357173
B 0.9737090
B 0.5416577
n 1.1168842
" , The matrix is symmetric. In 0.9010814
B blocks where two figures 0.4690300
i - appear, the first is for S
™ C2H);, the second for C2D). 1.11 2
Sce 0.6213036 |~0-28065L6
m 1.4951041
58 1.0630528

LST



NUMERICAL B MATRICES FOR THE ISOTOPIC ETHYLENES (Continued)

S¢H

%

SCH

gt

"

e} SCH Sce Sp 8 scH g
0 -0.2477903
Scu| 0.7857890 |-0.0833069] 0.0673631 0 0 o.2u779o3
0.2477903 0 0
Sce 0,1666138 -0.1347261
0 -0.2160257 0
Sp 0.7576833 0 0 0.2160257
0.2160257 0 0
0 -0.2477903
Sey 0.7857890 |0.0673631 | 0.2477903 0
0 0
0 -0.2160257
sé 0.7576833 0.2160257 0
- 0 0
) : 0 .
SeH 0,8690939 |-0.0673631 0
_ 0.2477903
5
Sg The matrix is symmetric. In 0.6850556 0
- blocks where three figures 0.2160257
appear, the first is for cis-
: C2H2D2, the second for trans-
Sgi{ 32}12])2; ang xeoréhirgrfoian 0.8690939| -0.2806546
ik asym.-C2H2oD2.
Sg 1.279078l

8sT



NUMERICAL/B MATRICES FOR THE ISOTOPIC ETHYLENES (Continued)

Scn Scg Sy Sg SCx 53 Seu | sg
gozgiggi; -0.0833069 0.0673631 | 0.1238952 0.1238952 -0.1238952
0.1666138 -0.1347261
g"gigz?gf 0,1080129 0.1080129 -0,1080129
g’zgigﬁj 0.0673631 -0.1238953 0.1238952
Ouf650962 -0.1080129 0.,1080129
0.6L496705
0.9929891
0 31945:?.938_0’0673631 0.1238952
The matrix is symmetric. O°7930685 0.1080129
In blocks where two figures 0.5770428
appear, the first is for
02H3D,’the second for C2HD3. 0.9929891 02806504
y 0.7451988 ~°
1.3870913

1,1710656

65T
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NUMERICAL /ﬁ MATRICES FOR THE ISOTOPIC ETHYLENES (Continued)

B | Sy Sy Sy
2.0200L53%
1.1559428

2.6619976
s;, 1.7978951

' 1.1530243
T (Symnetric) 0.576954k

8Tn blocks where two figures appear,
the first is for C2H), the second for

C2D).
B S¢ S§ S
02 0
s, | 1-587991 0 0.3527685
¥ 0.4320512 0
Sy 2.2299L6M g
S (Symmefric) 0.8649899

8Tn blacks where three figures appear, the:
first is for cis-C2H2D2, the second for

trans-C2H2D2, and the third for asym.-G2H2D2.

o Sy 5% -
1.80401962

S . =Ve 8
") 13719680 0.2160256 |-0.1763843
sy 2.LU59719 | 1743813

2.0139203

3 | 1.0090073

T, - e 0.7209727

8In blocks where two figures appear, the
first is for CpH3D, the second for C2HD3.
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B. Allene

C3H), -and C3D), belong to point group D24. The geometricél struc-
ture and coordinates are shown in Figure 29. The potential energy was

expressed in terms of the following set of internal coordinates:

Ay Arg ARy
Ar2 8¢, ABo
Ar3 AEp AB3
Ar), AWy ABY,
Arg AQ 2 AT . I

AT is defined as the change in the angle formed by the intersection of
the two CH2 planes caused by a twist:ing of the CH2 groups about the
symmetry axis of the molecule. The potential energy, before orbital ro-
tation is taken into account, is

2v = KGHZ (ar1)? + Koo }; (arg)? + 258 (Arshrg) + Kn Z (ap1)?

-1t §

2
+ 2Ky cos? ¢ Z (A(Pi)z + Ky sin? o« (AT)Z + K ; (a€4)
| i=1

b 6
+ Bog Z (Ary) * Bge (Ary) + Bﬂi (8B4) + sz (Ap4)

1=1 i= i=1 i=1
+ B Z (Acy) + By (AT ) - 2B Z (ARy) + 2A i (aRg)2. (a-3)
1=1 i=1 =1

KcH and Kgg are the C-H and C-C bond stretching constants, Ky is the con-

stant associated with the angular distortion of a C-H bond from its equilib-
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Figure 29. The Geometry of the Allene Molecule.
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rium position, and K. 1is the constant associated witﬂ the bending of |
the C-C-C chain. '.l'he last two terms account for the repulsive forces
between the hydrogen atoms and the central carbon atom. The constant
kCC has been included to account for the interaction between the two

cc

C-C bonds, since this term was expected to be necessary, as indeed it is.
The symmetry coordinates which were used are:¥

A1: Sgg = 2(Ary + Arp + Ar3 + Ar))
Sge = —715- (Ars + Arg)
Sg = 2(8B1 + A2 + 8B3 + ABY)

Bp: Sby = 3(Ar1 + Arp - Ar3 - Ar))

S&¢ = __\},{_ (Arg - Are)
S3 = 3(8BL + 8B2 - AB3 - ABY)

By:s S, = AT

E: Sgg = —%— (Ary - Arp) Sox ° E_ (Ar3 - Ar),)
B 7 (8R1 4B2) Sg = (ap3 ABY)
Se =4€4 : S¢ = A€
8, =A9q Sy =4y

*The symmetry coordinates given for species E are actually those
for point group C2y. It is necessary to use these coordinates in order
to factor the ¥ matrix of C3H2D2. Although the correct symmetry co-
ordinates for point group Dsq are made up of linear combinations of the
coordinates given here, the Y matrices for C3H), and C3D), obtained using
the above set of coordinates are correct.
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After the ARj's have been expressed in terms of the intermal co-
ordinates and the modification of the potential energy brought about by
orbital rotation has been determined (see Chapter II), the F matrix is
obtained by symmetrization. The '3' matrix for aJ.lgne is given on pages
165-167.
The 1J matrices for C3HY, C3DY, and H2CCCD2 were determined using
both the B and S matrices. The S matrix is given on page 168 in order

to illustrate the form of the matrix. The vectors _'Ei and ?5 are defined

by

S O 1 o B 1
tig(rcn ¥ rcc)ﬁ = vs=(I‘c:c: 3 rcﬂ)?s'

C3H), and C3D), belong to point group D2q, while H2CCCD2 belongs to point

group C2y. The correlation of the species of the two groups is

Do Cov

341 (R.) + 3B2 (I. R., R.) éa; (R.)

By (R.) A2 (R.)

L4E (I. R., R.) 4By (I. R., R.) + B2 (I. R., R.),

and it is readily seen that the ﬁ matrices for C3H), and C3D) will factor
into one 1 x 1 block, two 3 x 3 blocks, and two (degenerate) L x L blocks,
while for HoCCCD2, the matrix will factor into one 1 x 1 block, two L x L
blocks, and one 6 x 6 block. The symbolic {5 matrices are given on pages
169-171, and the numerical )j matrices are given on pages 172-173. The
symbols used in the F and ig matrices, along with the geometrical para-

meters, are given in Table XX.



FMATRIX FOR ALLENE (SPECIES A1 AND B2)

3 SoH Sco s ScH Sce S8
2 .
Kcy*2Acos“g Vli AcosgcosHd 2Arpgpsingcosgd -
Re - E&iﬂ¢81n6 i 1‘0031119‘?089
Ko~ LAcos2o Tlé‘-*ron'mwﬂe -
200 - 2B gyn? 2B
RO 8in®0 m rcH.ineo°8¢
Ky + Ar2.sing +
Sp H cH® g
B—rcgrcccosgicose
Re
! KOB"“°°32¢ L AcosgcosO+|2Archsindcosd -
SGH B 81!12¢ V2
: " Re = = ingeoso
e e singsind e rogs @co
! i Ké& + liacos2o %Amgum&oose -
S (Symmetric) 37
‘ i “ Ko ol . rgpsindcosd
K§g = Kgg + kOO ;
8 e Ky + 2Arfysin®g +
Y AT BTy B
s l{CC ' ch kcc Ercgrccoosgiooae

991



F MATRIX FOR ALLENE (SPECIES E)

3 Sch S o S
Koy + 2acos?g - 2Arggsingcosd -
1 )
ScH _gT sinzgf % rgo8ingcoso
| EHke 502 ain2y
. TR
SB B n cospcos O
- + —R—e CHYCC
S €
2Kpoosdx(k+ kq)
2Kpeosett (ko+ ky)
) Symmetri T
) ( | yome c? _g_l;_ rcHch3083 [=d

99T



}MATRIX FOR ALLENE (SPECIES Ap)

£ ] Sy
Ky sin2x(kT)

St| 2Ky sinl«+ kT
-—?R-e-— TCHTCC sin a cos a
,Zf MATRIX FOR ALLENE

B Sv

Sy Tl (r1 * p2 * p3 *+ AL
he H

167
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S MATRIX FOR ALLENE

S 1l Mi M; M;x, ‘ M4 C5 C6 C'I
on Ty =
- -
Aavn, P} ; =12
— —
AG . T-3 - rg,
— —>»
ya\p} T_4 -Y;
. — >
N <=Vg s
—_—
Al ‘ '?:3 Tq
i - - 4 e z i
8 sl +Te) (6% Zrcc(ﬁ*r'@)
i — — P oY —
I Haw) [l
1 = = 1t (P_r2)\1/7 =
OB ):rcﬁ(‘rﬁ*rS) v (rZa rrS) f{ 3” 5)
1 ( ny e =\ L
OBy Yeu "r‘ﬁ*'fé> Tl (ﬂ r‘rs) ‘{('tc’ Vs)
/. L= S v 4R
Af Yeo Tce Yec
‘ -3 | 2.7 S Sy
A€, r.::i Yeeo 2 cC 9‘
L 3 L IS T
AQ)| “FPEL b | T (riee ) 1| v
i — 2 —» e - 3 .- .
AY, 2M ren o AN e ™ (PrCN+ EG)M
1 2 i = R 1 —
atll 22l 55z 4 5y ™ 53z W

891




SIMBOLIG,B MATRIX FOR AILENE

B ScH Sce Sg S¢H Sec Sé
% (p1#p2+p3epl) 25 :
ScH _2n b ( S )
+ g Z T ) BOARE
25
Scc oY - N2 rcH Je
E‘r%_()lr}lz*m*)lh) *
% w | L (m tp2-p3-py)
232 gy
= e
Saq Y(pepo*pstpl) | 2r - 23r
+ 2 pg V2 TCH e
Séc (Symmetric) 3 had - -\'-'?;Eﬁ }10
Eo-(pLspospatl) *
Sp A i
252

691



SYMBOLIC ,B MATRIX FOR ALLENE* (Continued)

2z(M+f) 2L o
soa| H(prpe) + 2P0 - “rn PO Toreg o
- oy = ); " . :
,  JLrtRe 27
2TGH 2(7+3F) e SR
3 " Teroarce /° CH
% 2(Cs9)? + 2F2
- 2 »c
e
6 o REel) Bo
Sc (Symmetric) rgc_ Fe Trearac
P R ( ) +
S (Creg)? P3P
LY ‘ (1+ﬂ~)2 ,,_g;r)Z o
(Mrcy)?

¥3ee footnote on page 163.

0LT



SY_MBOLIC/b MATRIX FOR AILENE* (Continued)

m

3 SGi 58 S s
23(r+f) 22 0
s $(p3*py) + 222}‘0 - T reg  JC g /°
1
—— + ) +
oy o
: 2(C+p)2 + 2 2 - Yeromree v’a‘réﬁ
" T
6 (1+37T
: — - ;e
s(_': (Symmetric) !'gc e TOHT0C
1
' Wrg? (patpa) +
Sy

(+r9)2 + ()2
(Prog)®

Fe

#3ee footnote

on page 163.

AT



NUMERICAL ,!1 MATRICES FOR C3H), C3D), AND H2CCCD2

3 ScH Sac Sg SoH 84 s
1.0375398 > of 0
ScH 0.7897L495 -0.0616L51 0.069L4976 0.2l477903
0.5L19592 0
Scc 0.0833069 -0.0939185
0.9738883 0
Sp 0.7570536 0.2168347
0.5402188 0
1.0375398
Séy 0.7897L95 -0.0616451 0.069L4976
. 0.5419592
s! The matrix is symmetric. In
cC M | 0.2499207 -0.0939185
blocks where three figures appear,
the first is for C3H), the second
, \ third £ 0:75708%
S for H20CCD2, and the third for C J o
R i B?h 0.5L02188

elt



NUMERICALA MATRICES FOR C3H),, G3D), AND HoCCCDp (Continued)

L] ]

A | sty sB B, Sy SeH Sg' U S B
. [1.1129216
Sgy |0-6173L10 | -0.1779829| 0.0767107 0
" 10.6173110
1.2270786
sg 0.7934091| -0.2503943| 0.068778C
F 0 ° 793)4091
8, 0.2918003| -0.2596961
; 2.17633L9
8 2.17633L9
1.3843400
1.1129216
SGx 1.1129216 |-0.1779829| 0.076T107 0
0.6173410
o - 1.2270786
SB The matrix is symmetric. In 1.2270786 ~0.25039L3 ©.0687780
- blocks where three figures 0,7934091
, appear, the first is for C f
Se the second for HaCCCD2, angggie 0.2918003| -0.2596961
third for C3Dj..
, 2.,17633L9
Sy 1.38L43k0d
1.38L340d
1.1952437
Se 0,8966626

0.5980813

€LT
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TABLE XX

GEOMETRICAL PARAMETERS FOR ALLENE

Bond I.,engt'.hsh2 Bond Angles’-l2 Other Parameters

rog = 1069 & ¥ = 116%)! g = 320271
rog = 1.309 A = = 589711 e = 26%0"
Re = 2.078L3 &

™ =cos @ = 0.5232
> =sin a = 0.85218
singd = 0.53662
cos@® = 0.84382
sin® = 0.43831
cos® = 0,89882

- JCH_ . 0.816779
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5108 Formaidehyde, Ketene; and Diazomethane
\ CH20, CH2C0, and CH2N2 all belong to the point group Coy. The
geometrical structure of CH2CO and CH2N2 is shown in Figure 30. If

atom 5 is neglected, one obtains the CH20 model. The internal coor-

dinates used for CH2CO and CHpN» are:

Ary Ar) A
Aro ARy A€
Ar3 AB2 AY

The potential energy for CH2CO before orbital rotation is taken
into account is

2
2v = Kcy i (ar3)? + Kgg (ar3)% + Koo (Ary))% + Ky > (a84)?
=1 =1

+ K. (a6 )2 + K, (8€ )2 + 2Ky cos? o (A )2 + BGHi (ary) + Bgg (4r3)
i=1

+ Bgo (Ary) + Bﬂi (aB1) * By (a6 ) + B, (A€ ) + By (A )
S i=]

2
- 2B Z (ARg) + 24 i (ARy)2 (A-L)
i=] i=1 .
where Kcg, Kgg, and Kgg are the C-H, cfc, and C-0 bond strefching con-
stants, Ky is the constant associated with the angular distortion of a
C-H bond from its equilibrium position, and K, and Kq, are the constants
associated with the planar and non-planar C-C-O bending. The last two

terms account for the repulsive forces between the hydrogen atoms and the



® ©
7
"‘\\
4‘)\5 _— @ ¢
B
A
A i
Ru / \ Raa
/ N
/ ,31/, e L

Figure 30. The Geometry of Ketene and Diazomethane.
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central carbon atom. The potential energy expressions for CH2N2 and

CH20 can be obtained quite easily from Equation (A-k).

The symmetry coordinates used for CH2CO are:
Ay: Sgg = —= (Ary + Arp)
1+ Sen = = (ary + Ar2
Scc = Ar3
Sco = Arh
1
Sp =~z (8B1 *+ 2B2)

i
By: ScH = —E (Ary - Ars)

1 1
Sg V= (AB1 - AB2)
A6

[92]
on
n

Bps S, = A€

S¢ =4
After the ARj's have been expressed in terms of the internal coordinates
and the modification of the potential energy brought about by orbital ro-
tation has been determined (see Chapter II_), the 3 matrix is obtgined by
symmetrization. The F matrix for CH2CO is given on pages 178-179.

 The F matrix for CHpN2 can be obtained fram the J matrix of ketene

by changing rgg to gy, Tgp to ryy, Koo to Kgy, and Koo to Kyy. The J
matrix for CH20 can likewise be obtained from the 3’ matrix of ketene by

deleting the rows and columms associated with Sgq, SS » and S , and by

changing rgg to rgg and Kgg to Kgo.



F MATRIX FOR KETENE (SPECIES A1)

£ ScH Scc Sco 5
-
2 Ky + 2Acos“d - é‘_ Acosgcoso + : 2Arppsingoosy -
2 0
sin ¢ 2B sj_n¢sj_ne _g: rccsin¢ooae
Kgg * Mcosze - ..%_- Arcgsingeose-
Scc 2B ain2g ’
Re B rggsindcosd
I2Re
Soo (Symmetric) Ego 9
i Ky + 2Ar@gein?y +

B
g = TCHYgoC08pc080

8Lt



jMATRIX FOR KETENE (SPECIES By AND Bs)

: S ]
F Scx i 4 € ¥
, | Keu * 2Ac032d - 2Argusingcosg -
ScH ' :
: B 2 B
— 8in - ingcos®
5 ¢ g Tcosing
_Kgks
' 2Kyl
SB Zhragﬂin2¢ #
- ..:.B...rggrcccosﬁcose
Re
5
Se (Symmetric) K 0
2Kgco82.(k.+ k)
i 2Kgo0sur (ky+ ko)
(3]

. 2B
+ ﬁ-e- l‘cn!'cccOSBO(

6LT
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The symbolic U matrices for formaldehyde, kstene amd diazomethane
are given on pages 181-18lL, and the mmericalrj matrices are given on
pages 185-187. The symbols used in the J and I; matrices, along with
the geometrical parameters for formaldehyde, ketene, and diazomethane,
are given in Table XXI. The geometrical parameters used for formalde-
hyde were thosé reported by Davidson, Stoicheff, and Berxrxe;t.ein.,"3 The
values used for the bond lengths and angles in ketene were those reported
by Arendale and Fletcher,u" and the values used for diazomethane were taken
from the values given by Fletcher and Ga.rr‘e‘l'.th5 and by Cox, Sheridan, and
L6

Thomas.



SYMBOLIC /& MATRIX FOR FORMALDEHYDE

Trop)2 70 (Frcg)

_A ScH Sco 58 Sca . S
$(p1wp2) + 251
ScH 2% - z—rz': Jo |m= Jo %()11-)12} 0 0
23
Sco Fo * jo " Vergg /C y : 5
XL
—5—(p1402)
Bf, T L — (upo) 0
Sg 232 X 2xCy
"y ¢
st JA*()=1%):) |- B po 0
) 25!
il 2pe
| | =g PP
2 }10 + )]c
H
|ty
SLP h(rrca)
+ 012 1+T)2 g

. 18T



SYMBOLIC ,b MATRIX FOR KETENE

Py ScH Sco Sco ScH 55 S
25T
Sor | B(p1ap2)+erdng -%—g}lc 0 YR #(p1-p2)
S 2 po - B 4= ————éfcﬂ yo
5C0 Pc * Po 0
1
SB -é;%;l' (PI*P'Z) _2%3; (}11"}12)
, 232 Y
o
% (uy+u2)
; 25(r+5) 2%
1
Sé (Symmetric) 218y (pap) * 5 _\75_2 r+ 2P , f'\uc
2(+£) %0282 TR
TCH
(_1_ + 1\ pc*
Sg TGC  TCO
1 po* L-Fe
% %

egt



SYMBOLIC /é MATRIX FOR DIAZOMETHANE

Ny SCH ScN SNN 53 S¢H S8 S¢
or 231
Sor | #(p1spe)+2r? pg - = Mo 0 o $(p1-p2)
A 2%
CN RC*AN PN |7 Vapgg M
SNN 2 PN 0
i 1
(p1+p2)
. gy R
e -1 ngy TP
g
St Hure) | gy g
- + 252 o YCH VZreN
: 1 2(r+f)
SB' (Symmetriic) Era; (rwpa) + |- \2rgpren he
2r+f)2 o |_2° 1 .1
_ ol ) ™
A Y 1 1
Sg o P Pc . PN +
-3 148
¥ * o)

€9T



SYMBOLIC /A MATRIX FOR DIAZOMETHANE (Continued)

ha] Se S
Se;é;}lc";%;}lhl : l;:gu Je +
T 7,108 e G
*\Tox * zm«) PN | FrcE\Toy * rNN)P

! S¢ (Symmetric)

I(F:-—.)-g (}11*}12) *

1+P1)2

(rrOH) PC

rcH)

STMBOLIC Y MATRIX FOR KETENE (Continued)

b Se Sy
1 1 e
| m— Pc + N [ ] oL
S | e 8o L (Ls2fr | pr)g
(_1‘_+_1_)?Pc Fros \7oc— ~ 7o)’
rCC TGO

S (Symmetric)

I

ML (pr+p2) +

@aur)2 s gry2
1

(Crog

18}



MICAL,A MATRICES FOR CHp0, CD20 AND CHDO

1
boj - ScH Sgo Sg ScH S Se
1.0294386 : 0
0.7816483 -0,0559026 0.06L9778 0.2477903
ScH| 0.5338580 0
Sco ~0.1458069 -0.0968306
0.9773168 0
0.7612914 0.2160257
Sp 0.5452658 0
1.1210228
g! 0.8732325 -0.1847021
CH 0.6254422
sé '];he matrix is symmetric. In blocks where %,g;gg;gg
three figures appear, the first is for CHp0, 0.7802680
the second for CHDO, and the third for
L 2.6078002
S¢ CD20. 2.1280636
. 1.6483269

et




NUMERICAL /BMATRICES FOR CH2C0, CD2CO AND CHDCO

b} ScH Scc Sgo Sp SCH 54 S¢ Se S¢
1.0294536 * : 0
gy [0-7816633 [-0.05591Lk| O 0.0649875| 0.2L77903
CH |0.5338730 0
Sce 0.1666138| -0.0833069|-0.0968251
Sco 0.1458069 0
0.97730LY 0
S 0,761278) 0.2160257
0.552528 0
: 1.1210078
Sch 0.8732175|-0.1753363| 0.0780283
' 0.6254272
1.1972607
89 0.9812350| -0.2L97752
' - I i 0.765209L
The matrix is symmetric. In
Ss blocks where three figures 0.3135988
appear, the first is for CH2CQ,
the second for CHDCO, and the
Se third for CD2C0. . 0.3135988 (-0,2721616
2,5830277
Sy 2.103L493L

1.6239587

98T



NUMERICAL ,8 MATRICES FOR CH2N2, CD2N2 AND CHDN2

hp| Scy SCN SNN Sg SCH Sg S¢ Se Sy
1.0250966 0
ScH| 0.7773063 | -0.0525685 0 0.0618901 | 0.2477903
0.5295160 0
SeN 0.1546972 -0.0713903( -0.098079]
SNN 0.1427804 0
0.9738198 0
S 0.7593938 | 0.21L4210
0.5Ll9728 -0
1.125364L8
ScH 0.954978L |-0.17L8505 | 0.0798750
0.6297842
1.169399L
Sh 0.95L978L |-0.230896L
0.7L05573
S The matrix is symmetric. In 0.2991858
blocks where three figures
g - appear, the first is for
. e A o oty 0.2991858 | ~0.2686L466
yE R ST TR 2.8695534
S 2,331078¢
¥ 1.7926020

L8T




TABLE XXI

188

GEOMETRICAL PARAMETERS FOR FORMALDEHYDE, KETENE, AND DIAZOMETHANE

Jo = O 0625000

Parameter CHp0 CHoCO CHoNo
Bond Lengths (X) rcg = 1.071 rcH = 1.071 reg = 1.075
rgo = 1.225 rog = 1.329 roy = 1.320
roo = 1.150 rgy = 1.120
Bond Angles ¥ = 123921 ¥ = 123°20! ¥ = 127°
< = 61°)0* o< = 61°40" o< = 639301
o 33°08¢ 34°30°! 359221
S/ 28°33! 27910t 28%07"
Re 1.973 & 2065 A 2.041 A
I e cos 0.47450 0.L47460 0.44620
Y = sin o 0.88025 0.88020 0.89493
sing 0.5L4654 0.566U8 0.57888
cosg ' 0.837L3 0.82408 0.815l1
sin 6 0.47783 0.45650 0.47145
cos © 0.878L5 0.88772 0.88189
v ToH TcH
f rco P = rcc f = rCN =
0.87429 0.80587 0.81439

py = 0.0713903



APPENDIX II
FREQUENCY DATA

The values of the fundamental frequencies of the isotopic ethylene
molecules which were used in this investigation are, for the most part,
the same as those given by Crawford, Lancaster and Inskeep.l6 However,
slight changes in some of the band centers have been made on the basis
of later valuss given by Courtoy and de Hemptinne,h7 Charette, Courtoy
and de Hemptinne,t8 Stoichess,’d and by de Hemptimme and Charette.>0

The frequencies of the isotopic allene molecules have been sum-
marized by Fletcher and Shuler.38 Slight adjustments in several band
centers have been made on the basis of values reported by Rao, Nielsen
and Fletcher,h2 by Overend and Thompson,sl and by Evans, Wilmshurst and
Bernstein.s2

The frequencies of the isotopic formaldehyde molecules were taken
from the valuss reported by Ebers and Nielsen,>3 by Davidson, Stoicheff
and Bernstein,h3 and by Blau and Nielsen.Sh The frequencies of the iso-
topic hketene molecules which were used in this investigatién are those
given by Arendale and Fletcher,* and the frequenciss of the isotopic
diazomethane molecules whicﬁ were used are those given by Fletcher and

Garrett.hs
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