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CHAPTER I 

INTRODUCTION 

A. Vibration-Rotation Spectra 

Infrared and Raman spectra furnish one of the most powertul. methods 

for studying the internal forces which act in molecules·. The vibrational 

frequencies which are obtained from a study of the spectra are functions 

of the geometry and masses, which determine the kinetic energy of the 

system, and of the forces acting in the molecule, which
· 

de tennille the 

potential energy of the system. ·
. 

Therefore, if the geometry of a molecule 

is lmown, the vibrational frequencies of the
. 

molecule can be used to ob­

tain information concerning the forces acting during the motions. 

The first attempt to interpret infrared spectra in terms of internal 

forces was made by Bjerrwn1 in 1914. In a stu� o� :the
. 

�eotrum of c�.2' 

Bjerrum concluded that the observed bands were caused by vibrational motions 

of the molecule and that the line broadening was due to simultaneous 

rotational transitions. He then attempted to account for the spectrum 

in terms of various potential functions. This work marks the first appli-

cation of the central force field and the simple valence force field. 

The development of the field was handicapped by the lack of data and 

progress was slow during the next few years. However, the theory of di-

atomic molecular spectra was well developed during the period 1918-1930, 

and since that time, much progress has been made concerning the theory of 

polyatomic molecular spectra. Because of the increasing oomplexi ty which 
I 
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is encountered as larger molecules are treated, there is still much 

work to be done, both experimental and theoretical, before a complete 

understanding of the spectra of pol.yatomic molecules is achieved.· 

The theory of vibration-rotation spectra falls into three dis­

tinct parts: (1) the assigrunent of the observed bands, consisting of 

the fundamental frequencies and the overtone and combination bands, 

(2) the ana1ysis of' the rotational structure of the bands and determin­

ation of the rotational constants, and (3) the use of the fundamental 

frequencies to study the potential field of the molecule. 

Since the fundamental frequencies are necessar,y in order to stu� 

the internal forces, the frequencies should be assigned with certainty. 

If' the observed frequencies have been correctly assigned, the remaining 

difficulties encountered are (1) in almost all cases, the available data 

are insufficient to make anharmonicity corrections possible, and (2) res­

onance interactions may be present causing observed bands to be shifted 

from their unperturbed posi tiona. Consequently, it is obvioU.s that an 

exact potential energy function cannot be determined using the observed 

values of the fundamental frequencies. The error introduced by the 

failure to make anharmonici ty corrections should not have an appreciable · 

effect on how well a given potential energy function describes the system, 

but rather will cause the force constants determined using the observed 

frequencies to be lower than those which would be determined using harmonic 

frequencies. Conversely, band shifts arising from resonance interactions 

will cause apparent discrepancies in the force field, but these errors 

should not be large enough to greatly influence the success or failure 
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of the particular field being us�d. 

The need for accurate structural data for a molecule is an im­

portant requirement which seems to have suffered from a lack of emphasis. 

The geometrical parameters have an effect on the values of the force 

constants, and should be known accmrately. Values of bond le�ths and 

bond angles are obtained· from electron diffraction studies, from high 

resolution infrared studies, and in recent years from microwave data. 

However, recent values which have been determined for these parameters 

indicate that many of the older data are questionable. In many cases, 

insufficient data requires that a value be assumed for one of the bond 

angles or bond lengths of a molecule in order to calculate its geometry. 

The errors arising from these inaccuracies in geometry are not very large, 

but it is necessar,y to recognize their presence. Considering the factors 

which affect the accuracy with which a suitable potential function will 

reproduce the observed frequencies, this author feels that the frequencies 

should be reproduced with an average error of less than 1 per cent if the 

band centers have been determined accurately. 

B. The Potential Function Problem 

The study of molecular potential functions is based on the assump­

tion that the motions occurring during the vibrations are ·harmonic. This 

would be expected to be true if the motions in general involve small dis­

placements of the atoms from their equilibrium positions. The success 

with which harmonic functions ��ve met in describing the force fields 
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o! molecules confirms the validity of the approximation of harmonic 

motions . 

Since a non-linear molecule containing N atoms possesses (3N-6) 

vibrational degrees of freedan (3N-5 for linear molecules) , the poten­

tial energy of the system can be expressed in terms of ( 3N-6) independ-

ent coordinates. The remaining six degrees of freedom, the three degrees 

of translational freedom of the molecule as a whole and the three degrees 

of rotational freedom of the molecule as a whole, do not affect the po-

tential energy. It has been found that the (3N-6) internal coordinates 

are most conveniently chosen as displacements of bond lengths and bond 

angles from their equilibrium positions, since these coordinates provide 

the most physically significant set by which the potential energy m� be 

expressed. Obviously, these coordinates are unaffected by translations 

and rotations of the molecule as a whole. 

If the (3N-6) internal displacement coordinates are designated by 

qj_, then the potential energy, V, can be expressed in the general quadratic 

form 

(1) 

where the lij 1 s are the force constants . This expression of the potential 

energy represents the most general quadratic potential field which can be 

used to describe a molecule. The number of force constants which appear 

in the expression is t(3N-6) (3N-5), which means that this many independent 

pieces of data would be re�ed to evaluate the force constants of a 

molecule. Fortunately, this number .of force constants aPPlies only' in the 



case of an unsymmetrical molecule, since the presence of s.y.mmetr,y in 

a molecule leads to relations between the force constants and conse-

quently to a reduction in the number of independent· force constants 

which have to be evaluated. In order to illustrate this point, the 

case of the non-linear XYZ molecule wil l be considered. The internal. 

coordinates for this m�lecul� are conveniently chosen as 6rxY, �rxz, 

and flO, where ll indicates the change � the bond length or bond .angle 

from its eqt1ilibrium position. The potential energy for this molecule 

Figure 1. The Internal Coordinates of the Non-linear XIZ Mo lecule. 
" 

can then be written as 

(2) 

where the ri 1 s are the principle force constants and the f'ij 1 s .are the 

interaction constants. Thus, a total of six independent force constants 

are necessary to describe the potential. field of this molecule. Now, 

assume that atoms X and Z are identical. This leads to a symmetrical, 

bent X2Y molecule, and the e�ivalenoe of the two bonds leads to the re-

lations 

and (3) 
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Therefore, onlY four independent force constants are necessar,y to de-

scribe the potential field in this case. The simplification brought 

about by symmetr.y is perhaps better illustrated in the case of the 

ethylene molecule. If this molecule possessed no symmetry, 78 constants 

would be re�ired to describe a general quadratic potential �ctionJ 

however, due to the high degree of symmetry, only 18 constants are neoe�-

sary. 

The (JN-6) fundamental frequencies of a molecule furnish just 

enough data to determine (3N-6) force constantso Even in view of the 

reduction in the numbe� of force const�ts which symmetry brings about, 

the number of force constants arising when a general quadratic field is 

used is usually greater than (JN-6) and thus they cannot be determined. 

Additional data may be obtained from the frequencies of isotopic mole­

cules,* however, since it has been shown2 that isotopic substitution does 

not alter the force field to an appreciable extent. The use of isotopic 

data in the calculation of force constants is most useful when the rela-

tive mass changes occurring are large. This is because the frequencies 

a,:re roughly proportional to the square roots of the reciprocal masses of 

the atoms which move during the vibrations, and a significant frequency 

shift is necessar.y to make the calculations reliable. Far this reason, 

studies of hydrogen containing compounds and their deuterium analogs are 
f 

of great importance. A comprehensive review on the use of deuterium in 

*The term "isotopic molecules11 is used to define molecules which 
are identical except that one or more of the atoms of one molecule have 
been replaced b,y isotopic· substitution; for example, CH20, CHDO, and CD20. 



7 

the analysis of molecular spectra has been given by Halverson o3 

It would appear that if data were available for a series of iso­

topic molecules, for example, the seven 02HnD4-n (n = 0, 11 2, .3, 4) 

molecules, one could determine an unique set of potential constants for a 

general. quadratic field. However, as will be pointed out in a later chap­

ter, a set of force constants which allows all of the observed frequencies 

to be calculated accuratelY for such a series of molecules is not nec�s­

sarily unique. One reason for this is the fact that the observed frequen­

cies mu.st be used without being corrected for anha.rmonioity, or, if an­

harmonioity corrections are made, the correction is largely a matter of 

guesswork with the data which are presently available for most molecules. 

It should be pointed out that when data are used for such a series of 

molecules, the �etr,y or the least �etrioal molecule determines the 

complexity of the solution for the force ··constants, and in general this 

increase in complexity makes the solution of the secular equation quite 

diffioul t without the aid of a computer. 

The general �atic potential function is arrived at b.1 making 

no assumptions regarding the force field of the molecule other than re­

quiring that it possess the same symmetr,y as the molecule. This field, 

in addition to usually containing more independent .c_onstants than can be 

evaluated, also does not give a clear description of the forces giving 

rise to the interaction constants. In order to decrease the number of 

force constants and to permit a c�earer interpretation or the forces act­

ing in a molecule to be made, various assumptions conoeming the nature 

of the force field have been made, leading to a number of special force 

fields-. 



1. The Central Foree Field 

8 

The central force field is based on the assumpt ion that the forces 

acting in a molecule act along the lines connecting pairs of atoms and 

that every pair of atoms, both bonded and non-bonded, is oormeoted by suoh 

a force. These forces are assumed to depend only on the distances between 

the atoms. For the non-linear XIZ molecule, the potential energy assuming 

a central force field can be written 

2V = rl(6rzy)2 � r2(6rtz)2 + r3(Arxz)2, (4) 

where llrxz represents the change in the distance between the non-bonded 

X and Z atoms and r3 is the. force constant associated with this change in 

distance. The number of .:f'orce constants which are required when central 

.:f'oroes are assumed is usually small compared with the number arising from 

a general �adratic force field treatment. The results obtained from the 

application of the central force .:f'ield to a rather large number of mole­

cules4 have demonstrate4 that the field is not a satisfaotar.y one. · 

The rather poor results obtained using the central force field are 

not surprising, since the field is the type that ·would result if the mole­

cule were held together by purely ionic forces, and this is not the case. 

In particular, the field. fails to account for the bending vibrations of 

linear molecules and the out-of-plane bending vibrations of planar mole­

cules. This is re� seen by considering the bending motion for a 

linear XYZ molecule. A small bending motion does not alter any of the 

interatomic distances (to first orde!) , and thus
. 

the central force field 

would predict a frequency of zero for the bending vibration. The dis­

tortion of an angle formed � two valence bonds from its equilibrium posi-
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tion would be expected to involve an increase in potential energy, so 

it is necessary that a suitable potential field include terms to 

account for this force. 

2. The Simple Valencz: Force Field 

The simple valency ·force field is similar to the central force 

field in its treatment of forces acting between bonded atoms, bUt forces 

between non-bonded atoms are not included. However, this field assumes 

that there is a force associated with the angle formed by valency bonds 

which·opposes a change in the bond angle and that this force is propor-

tional to the change in the bond angle. In treating the angular changes 

in this manner, this field can usu� account for the bending vibrations 

of linear and planar molecules and thus is superior to the central. force 

field iri this respect; The potential energy for a non-linear XYZ mole-

cule in terms of the simple valence force field is 

2v = t1(Ar.xy)2 + r2(Arxz>2 + r�(Ao)2, (5) 

where AO is the change in the XIZ angle from its equilibrium position. 

The simple valency �orce field has been applied to a large number of mole­

aules,5 and although the results obtained are in general superior to those 

obtained using the central force field, this field can at best be regarded 

as a rough approximation. Both· the central. force field and the simple 

valency force field are bas��· .. on very simplified pictures of the poten­

tial field of a molecule, and the fact that the results obtained u'ing 

these fields are rather poor is no surprise. Because of the simplicity 

of the assumed field in these cases, the number of potential constants 
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in. ManY oases is smaller than the number of fundamental frequencies 

which a molecule p�ssesses and it is possible to generalize the f�eld 

by including some additional terms in the potential energy expressi-ono 

In this manner, a more suitable field should be obtained. 

3. The Modified Valency Force Field 

The simple valency force field can be looked .upon as a special 

case of the general quadratic force field discussed earlier o If the 

interaction terms which are present in the potential energy expression 

based on a general quadratic potential function are neglected, then the 

expression for .. the potential en�rgy reduces to that obtained using the 

simple valency forae field. 

In an effort to determine a more sui table potential. function, it 

was, therefore, natural to modify the simple valency force field by in­

cluding certain of the permitted interaction terms in the potential energy 

expression. This method, in general,· allows a set of force constants to 

be evaluated which will reproduce the fundamental frequencies of a mole­

cule fairly well and has been used rather widelY in.the determination of 

the force constants of molecules . However, it has not been possible to 

predict which cross terms should be important or to explain adequately 

the importance of those which have been found empirica� to be necessar,y. 

The use of certain chosen interaction constants in the potential energy 

leads to the'possibility that the sOlution for the force constants is 

not unique, since an equall.y good set of .force .constants might be deter­

mined �using a different set of int eraction constants. Therefore, even 

though the modified valency force field will usually enabl� a sui table 
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mathematical description of the field to be made, it does not provide 

a clear understanding of the. internal forces and does not insure that 

the solution obtained is unique. 

4. The Ur�y-Bradley. Force Field 

The Urey-Bradley force field may be considered as a simple valency 

force field modified to include central forces between non-bonded atoms; 

or as a central force field modified to include farces which oppose 

changes in the angles formed by valence bonds . The potential energy for 

a non-linear XIZ molecule as� a Ure.y-Bradley potential function is 

2V = r1(Arxr)2 + t2(Aryz)2 + tr(AT)2 � .r3(Arxz)2 + f�(�rxf) + f�(Aryz) 

+ �(Ao) + r)(�rxz) . ( 6) 

The first three terms.·give the potential energy for a simple valency 

force field, while the fourth term takes into account the force acting. 

betwe�n the non-bonded X and Z atoms. The linear terms are necessary when 

a Urey-Bradley force field is used because the set of internal coordinates 

used are linear� dependent. If the o oordi.nates form a linear:cy independ­

ent set, as the,y do. in all of the force fields previously described, the 

coefficients of the linear terms must vanish and therefore these terms 

have not been included in these oases. It should l�kewise be pointed out 

that the relations �etween the coordinates due to their linear dependence 

I enables the cc;>eff'ioienta of the linear terms to be rela�. Thus, r1, 
I I I Th t2, and £.( can all be expressed in .terms of f.3. ese li11-ear terms 

necessitate that expressions for the redundancy conditions b�.correct 

to second order, 6 ani when the redundancy is removed, it is found that 
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the linear terms contribute to the quadratic portion �f the potential. 

energy eipression. This will be described in more detail in Chapter IIo 

This type of field was first applied by Urey and Bradley-7 to 
' 

tetrahedral XY4 molecules, using a-repulsive potential. of Ar-n between 

the non-bonded atoms. ·. A and n are constants, and r is the distance be-

tween the non-bonded atoms. When this type of force field is used,. the 

interaction terms arise because of the .forces acting between non-bonded 

atoms. The number of independent force constants which arise when a 

Urey-Bradley field is used is smaller than the number when a general quad-

ratio field is used. The Urey-Bradley force field, therefore, accounts 

for the interaction terms with a relatively small number of independent 

force constants and in a manner which is in: accord with molecular struc-

ture, that is, in terms of van der Waals type forces acting between non-

bonded atoms. 

The Urey-Bradley force field has been found to be successful in its 

application to a considerable number o£ molecules.8'9 A major difficulty 

encountered using the Urey-Bradle,y force field arises in connection with 

bending vibrations. In some cases, it is not possible to fit the bending 

frequencies. Consider the two rocking motions of the ethylene molecule 

shown below. The Urey-Bradley field requires that the same force constant 

describe both vibrations, but this does not permit the frequencies to be 

fitted. The fact that the same force constant does not describe both 

motions is not hard to understand, but it illustrates the failure of the 

field in ·the treatment of bending vibrations. 



Figure 2. The Planar Rocking Motions of Ethylene. 

5. The Orbital Valency Force Field 

1.3 

In an effort to extend the theory of bending vibrations, Linnett 

and Heath10 developed the orbital valency- force field . This field, 

basicallY a Urey-Bradley force field, attempts to interpret bending vibra-

tiona in te�s of the changes in electronic overlap of the bonding orbitals 

in the molecule . In order to keep the decrease in electronic overlap at 

a minimum during a vibration, the orbitals of any..partioular atom are per­

mitted to rotate. No changes in hybridization are allowed, so the or-

bitals of an atom maintain their positions with respect to each other, 

that is, they rotate as a unit. The first application of this field was 

to planar �3 molecules, and it was found that it was unneces sary to in- . 
.. . 

troduce a separate bending constant to account for the out-of -plane bend-

ing motion. S�ce differe�t constants are necessar.y to account.for the 

planar and non-planar bending modes if orbita;l rotation is not considered, 

this is st�ong evidence for the validity of the concept. In extending th� 
orbital valency force field to tetrahedral IY4 molecules, Linnett, Heath, 

and Wheatlefll,l2,13 found that it was necessary, in the case of methane, 

to take into account changes in hybridization in order to explain the 



force constants. Howev�r, for most molecules, it is not possible to 

account for changes in hybridization. 

A yery interesting application of the orbital valency field to 

molecules 
.
possessing double bonds followed.14 · The formaldehyde and 

ethylene molecules were treated, but the frequencies which were used for 

ethylene were incorrectly assigned and the force constants calculated are 

thus in error. The approach is interesting, however, and the application 

of the field to mOlecules possessing multiple bonds shows promise. 

6. .!!!:. Transferability of Force Constants 

. It has long been recognized that molecules possessing like groups 

of atoms exhibit similar chemical behavior. It has likewise been found 

that like groups in different molecules possess similar vibrational fre-

quencies. This leads to the co�cept of characteristic frequencies. The 

C-H stretching frequency, for example, occurs in the 3000 cm.-1 region of 

the spectrum, regardless of the molecule in which the group is located. . 

Cer� the frequencies differ somewhat from mOlecule to �olecule, but 

all occur in the same region. 

The occurrence of characteristic frequencies encouraged oonsidera-· 

tion of the idea of transferring force constants from mOlecules for which 

they are known to similar molecules whos� spectra have not been observed, 

thus parmi tting the calculation of the fundamental vibrational frequencies 

of these molecules. In comparing force constants deter!ained for similar 

vibrational motions occurring in different molecules, it is not expected 

that they will be exactly equal. Likewise,. when force. constants are 
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transferred from molecules for which they are known to a similar mole-

oule and the frequencies of this molecule are calculated, the calculated 

frequencies are not expected to be exact. This is because the forces 

acting in a molecule are determined by the electronic configuration of 

the molecule, and the electronic configuration of a portion of a molecule 

will be affected to some extent by the structure of the rest of the mole-

cule. However, when the correct potential field is used, the variation 

of force constants should furnish information concerning the electron den-

sities of the bonds. When force constants are transferred from one mole-

cule to another, it is essential that the same type of potential field 

be used far both molecules. 

Bending force constants are much smaller than stretching force con-

stante, and as a consequence are much· more sensitive to the interaction 

constants employed in the potential function. As a consequence, the trans-

£erring of bending force constants is likely to be less successful than 

transferring of stretching farce constants. 

0. Statement of the Problem 

The orbital valency force field has been applied to several mole-. 

cules* possessing single bonds onlY, lO-l5 
but only to formaldehyde and ethyl­

ene14 in the case of molecules possessing double bonds. The treatment of 

*The molecules studied include planar molecules like BFJ, tetra­
hedral molecules like 0014, and octahedral molecules like SF6. In addi-
tion, several anions like co.) and 0104 were studied. 

· 
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etqylene is not satisfactory, however, because of the use of incorrectly 

assigned frequencies. 

The purpose of this investigation was to test the orbital valency 

force field thoroughly by applying it to ethylene and allene, and to· then 

apply' the field to formaldehyde, ketene, and diazomethane. The ethylene 

and allene molecules should furnish a very real test of the field, for 

the two moleoules are quite similar. Formaldehyde, ketene, and diazo-

methane should provide further information with which to determine if the 

orbital valenc.y force field adequate� describes the bending motions of 

molecules·possessing multiple bonds • 

. In addition to testing the orbital valency foroe field, it was an 

aim of this investigation to determine whether or not a unique· solution 

for the force constants is obtained when repulsive forces between non­

bonded atoms are used to account for the interaction terms in the.poten-. 

tial. energy expression. This is an important consideration, and one on 

which little work has been carried out. The calculation of the force con-

stante for the ethylene molecule has been reported using a general quad­

ratio !ield,16,l7 and a comparison of
.
the force constants ob��ed

.
in

. 

this investi�ation with those obtained using a general quadratic fi�ld 

should be informative. 



CHAPTER II 

THEORETICAL DISCUSSION 

A. Theory of Molecular Vibrations 

The logical manner in which to account for the observed vifra­

tional spectrum of a molecule would be to set up the wave .equati'f for 

the molecular system and solve the equation. Even for the simplest 

molecules, this is a difficult job, and as larger molecules are treated, 

it becomes necessar.r to devise � method by which an approximate solu-

tion of the wave equation may be obtained. It has been shown by Born 

and Oppenheimerl8 that a good approximation to th� solution of the wave 

equation can be obtained by first solving a wave equation for the elec-

trona alone, holding the nuclei in fixed positions, and then solving a 

wave equation for the nuclei alone, in which a value of the energy ob-

tained fran the electronic wave equation enters as a potential function. 

This potential function is·· considered to be a function of the internuclear 

distances • . . It is apparent that when the vibrat�onal wave equation is de­

ter.mined.in this manner, the electronic state of the molecule must remain 

unchanged, since the assumed potential function would change if a change 

in the electronic state occurred. 

The wave equation for the nuclei, when solved, shoul4 give the 

solution for the vibrational, rotational, and translatio�al motions of 

the molecule. However, when no external fields are present, the trans­

lational energy can be separated exactly •19 Therefore, the wave equa-
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. tion ·ror vibration and

. 
rotation alone can be considered. The solution 

of 
'this wave equation is difficult, and in studies of potential fields, 

the assumpt�on that this wave equation can be separated into a vibra-

. tional wave equation . and a rotational wave equation is usually' made . 

The vibrational wave equation accounts for the vibrational motion of the 

.non-rotating molecule, and the rotational wave equation accounts for the 

rotational motion of the molecule considered as a rigid body. The sepa-

ration of rotation and vibration is based on the assumptions that the 

momenta.of inertia of the molecule are constant and that the interaction 

of the angular monenta of rotation and vibration is negligible. It is 

recognized that the effective moments of inertia are functions of the 

vibra�ional state, and likewise that the moments of inertia var,y with the 

rotational quantum number, since the molecule is not a rigid rotor. The 

interaction of angular momenta
· 

of vibration and rotation is usually quite 

small; however, in some cases, the interaction is significant, and the 

inclusion of the vibration-rotation interaction can
.

be used to provide 

20 21 further information concerning the nature of the potential field. , 

Very acc.urate data are necessary in order that this type. of calculation 

be reliable .  It should be pointed out that the approximations made in 

order to separate vibration and.rotation do not lead to anY error in the 

determination of the force constants. This is true because the positions 

of the band centers, which ·are used iri determining the force constants, 

are not affected b.y the assumptions made in separating rotation and vibra-
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* tion. The occilrrence of vibrational angular momentum and the changes 

in moments of inertia do affect the intensity and rotational line 

spacing of a vibration-rotation band, however, and it is these effects 

which can be used for a further study of the potential field. However, 

we are not concerned with these factors in this investigation. 

The problem has now been reduced to that of the vibrational motions 

of a group of mass points, the nuclei, which exist in a stable equilibrium 

configuration under the influence of a potential field. The wave equation 

for the vibrational motions of such a system can be set up, ani if it is 

assumed that the vibrational motions are harmonic, the wave equation is 

easily solved when the potential and kinetic energies of the system are 

expressed in normal coordinates. When normal coordinates are used, the 

wave equation can be factored to yield (JN-6) wave equations whioh are 

in the for.m of harmonic oscillator wave e�ations, each being associated 

with one of the normal coordinates. Therefore, the solution of the vibra-

tional wave equation predic1;s (3N -6) normal modes of vibration which are 

harmonic in character. 

The solution or the vibrational wave equation is quite easy when 

the normal coordinates are known. However, the normal coordinates are 

in general not known, and it is necessary to express the kinetic and 

potential energies in tenus of a lmown coordinate system in order to 

*It is possible that neglecting the changes in moments of inertia 
and the coupling of angular manenta would cause the analysis of a band 
to be wrong. However, these effects do not cause any shift in the true 
band center, and if the band centers are chosen c orrectly, the force con­
stants calculated from this information will be correct. 
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solve the equations of motion. ·After the force constants for the moleCil.le 

have been determined, the normal coordinates can. then be found it desired. 

The wave equation can be set up in terms of a chosen coordinate 

system and solved. However, the treatment from this point is more 

easily carried out using classical mechanics, and since the results are 

lmown to be the same as those obtained using quantum mechanics, classical 

, mechanics will be utilized. According to the laws of mechanics, particles 

which are held in stable equilibrium by a potential field can carry out 

vibrations about the equilibrium positions .  If' the displacements are 

small, the potential energy, V, can be expanded in a power series in the 

coordinates chosen to describe the system. Since a non-linear molecule 

has (3N-6) degrees of.vibrational freedom, (3N-6) independent coordinates 

are required to describe the system. The (3N-6) internal coordinates are 

chosen in such a manner that the,y are unaffected by rotations or transla-

tiona of the molecule as a whole, that is, they satisfy the Eckart con­

di tiona • 
21 . 

The potential energy for small vibrations of the atoms about their 

equilibrium positions in a molecule containing N atoms can then be ex­

panded in a Taylor series in the (3N-6) internal coordinates, the qj_ 1s, 

aBf 

The term V0 represents the potential energy of the molecule in its equi­

librium configuration, and since only changes in potential energy are of 

importance, this term can be chosen as zero . In addition, when the atoms 
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are all in their equilibrium positions, the potential energy must be 

B:t a minimum. This requires that the coefficients of the linear terms, 
av the ( -r-) , must all be zero. If the amplitudes of vibration are small, oqi 0 

then the cubic and higher order terms will be qui� small in comparison 

to the quadratic terms and can be ignored without introducing appreciable 

error. By igno�ng these forces, we assume that the internuclear forces 

are linear functions of the displacement coordinates, which is equivalent 

to assuming that the motions are harmonic. Although it is realized that 

the vibrations are not truly harmonic since the displacements are f'ini te, 

the error introduced should not be large. Inclusion of the higher order 

terms would not only introduce additional unknowns in the potential energy 

expression, but also greatlY increase the complexity of the solution f'or 

the force constants. Furthermore, the evaluation of the additional un-

knowns which are introduced by including these higher order terms is im-

possible in almost all oases because of' insufficient data. The potential 

energy for small displacements can therefore be written as 

( 8) 

This expression is usually written in the form 

( 9 ) 

and the f'ij's are called the force constants. The kinetic energy, T, of 

the system can be expressed as 

2T = (10) 
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where the &ij ' s  are functions of the mas ses of the atoms and the geometry 

of the molecule and the dots indicate the time derivative . 

When the expressions given in ( 9) and (10) are introdueed 

for the potential energy and the kinetic energy in the equations of motion 

in Lagrangian form, a series of (3N-6) differential equati ons of the form 

(11) 

are obtained . These equations · are in the f orm of the differential e�ation 

for an harmonic oscillator, and the solutions of these equations yield � · 

(3N-6) equations of the form 

qj = Aj sin (Aft + Oj ) , (12 ) 
where A = 4�.v2, V being the frequency of oscillation, Aj is the ampli­

tude of the motion, and 6 j is simply a phase constant . Now, if this 

value of Qj is substituted into E�ation (11) ,  the following equations 

are obtained .  

(13 ) 

This is a set of (.3N-6) simultaneous , linear, hanogeneous e quations in 

terms of the {3N-6) unknown amplitudes Aj , . and for s_olution to exist 

which are non-trivial, that is, the Aj ' s  not all equal to zero, it is 

necessar.y that the determinate of the coefficients must vanish . There-

fore 

(14) 
This is the secular determinant of order (3N-6) , and is the equation 

which is used in order to calculate the force constants when the fre-
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quencies are !mown. This secular determinant can be expanded to give 

a polynomial equation in A of the general form 

A.(.3N-6) + 01 (A) (3N-7) + 02A(3N-8) + - - --- + 0(.3N-7 ) A + 0(.3�-6) = 0 (15) 

where the 011 s are functions of the &ij 1 s and the f'1j 1 s . Once the secular 

equation has been obtained, several standard methods are available for 

solving the equation for the force constants . 2.3 However, the solution 

of this equation is quite difficult when . the order of the equation is 

large. In order to .factor the secular equation to the ma.ximum possible 

extent and thus simplit,y the solution of the equation for the force con­

stants, group theoretical methods are utilized . 

1. Group Theory 

The application of group theory to the problem of molecular vibra-

tiona is based on the symmetry properties of molecules. Many common 

molecules, for example, H20 and CHJCl, possess some symmetry. The geo­

metrical structures of these two molecules are shown in Figure 3 .  Con-

(a) (b) 

Figure 3 .  (a) The Structure of the H20 Molecule; (b) The Structure of 
the OH3Cl Molecule. 
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aider the H 20 molecule . It is readily seen that this molecule has two 

planes of symmetry, one coinciding with the plane of the molecule, and 

the other perpendicular to the plane of the molecule . In addition, the 

axis passing through the oxygen atom and the mid-point of the line con­

necting the hydrogen atoms is a twofold axis of symmetry, since a rota-

' tion of the molecule through 180° about this axis produces a configura­

tion which is indistinguishable from the original configuration . The two 

planes of symmetry and the twofold axis of symmetry are examples of sym­

metry elements, and the reflection through a plane of symmetry or rota­

tion about an axis of symmetry, which produce configurations which are 

indistinguishable from the original configuration, are the corresponding 

symmetry operations . The particular elements of symmetry which a mole­

cule possesses determine the point group to which the molecule belongs, 

and every molecule can be assigned to one of a small number of point 

groups . The H20 molecule belongs to the point group C2v' since it possesses 

two planes of symmetry and a twofold axis of symmetry. The CHJCl molecule, 

shown iri Figure 3 (b) , possesses three planes of symmetry and a three-fold 

axis of symmetry, and belongs to the point group, C3v ·  NH3 and CH3CN are 

examples of other molecules belonging to this point group . 

The s.ymmetry operations, when carried out on a molecule in its 

equilibrium configuration, produce configurations which are indistinguish­

able from the original configuration. Now, in order to detennine the 

effect of the symmetry operations on the potential energy, the effect of 

the symmetry operations on a molecule in a given distorted configuration 

:nm.st be considered • When a symmetry operation is carried out on a molecule 
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in a distorted configuration, the resulting configuration may be dif­

ferent from the original one, but the same interatomic distances and 

angles will occur in both configurations . Therefore, since the poten­

tial energy is assumed to depend o� on the interatomic distances and 

angles, it must be invariant with respect to the s.y.mmetr,y operations . 

By a similar argument, it is readily shown that the kinetic energy is 

likewise ·invariant under the s,y.mmetr.y operations . 

It has been pointed out previously that it is most convenient to 

express the potential energy in terms of changes in bond lengths and 

bond angles . However, in order to factor the secular equation to the 

maximum extent, it is necessar,y to use linear combinations of these inter­

nal coordinates .  These linear combinations of the internal coordinates 

are called s.y.mmetry coordinates, and are chosen in such a manner that 

they are either unaltered ( symmetric) or changed in sign (anti symmetric ) 

by a given symmetry operation of the point group . The symmetry coordin­

ates can then be divided into sets, or species, by determining how they 

transform under the group operations . The s,y.mmetry coordinates belonging 

to a particular species all trS:I'lsfonn in the same way under the group 

operatio�s, while coordinates belonging to other species are transformed 

in a different way by at least one of the group operations . Therefore, 

no cross terms occur in either the kinetic or potential energies involv­

ing coordinates of different species, since if these terms were present, 

the kinetic and potential energies would be changed by one or more of the 

group operations . 
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The different species are designated by symbols such as Al, A2, 

.BJ.., and B2 for point group C2v, and Al, A2 and E for point group C3v . 

The letters A and B represent non-degenerate species, while E represents 

a doubly-degenerate species . Species designated by the symbol A are 

symmetric with respect to a principle axis of s.ymmetry, and the symbol B 

represents species which are antisymmetric with respect to a principle 

axis . Numerical subscripts are used to indicate whether the species are 

symmetric or antisymmetric with respect to either a two-fold axis per-

pendicular to the principal axis or to a vertical plane of symmetry. In 

addition, when a molecule possesses a center of �etry, for example, 

C2H!v the subscripts . g and u are employed to designate whether the species 

are s.y.mmetric or antisymmetric with respect to the center of symmetry. 24 

To illustrate the simplification of the secular equation which is 

brought about by the use of symmetr.y coordinates, consider the OHJCl mole­

cule . The secular equation is of order nine, but when the proper sym-

metry coordinates are used, the equation is factored into three third-

order factors, two of which are degenerate . The amount of work required 

to evaluate the force constants is therefore reduced greatlY by the fac-

taring of the equation . 

In addition to factoring the secular equation, the application of 

group theory to molecular vibrations also . enables the selection rules for 

infrared and Raman spectra to be determined, as well as further · informa­

tion concerning the nature of . the vibrational modes . For a more general 

and detailed treatment of these subje�t�, the reader is referred to 

11Moleoular Vibrations, 11 by Wilson, Dec ius, and Cross .  
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The familiar 3- and b matrix method due to WUson25, 26 was used · 

to obtain the factored secular equation . The secular equation is given 

by 

1 �1 - A i j = o ,. (16) 

where 

(17 )  

and 

3 = UFU. (18) . 
rl is the inverse of the diagonal matrix where elements are the atomic 

masses, B is the transformation matrix relating the internal coordinates 

to the Cartesian displacement coordinates, � is the orthogonal trans­

formation relating the s,y.mmetr.y coordinates to the internal coordinates, 

and F is the potential energy matrix whose elements are the force con-

stants . The roots of the secular equ:ation, the � i, are related to the 

fundamental frequencies b,y 

"A1 = 4t2c 2vf , (19 ) 

where V is the -frequency in cm . -1 . 

Rather than evaluating the transformation matrix B, it is usually­

more convenient to determine the JJ matrix by expressing the internal co­

ordinates in terms of S vectors . The S veotors are defined in the follow­

ing manner . For a given internal coordinate Rk, a vector Skt is defined 
-+ 

for each atom t of the molecule so that for an arbitrary displacement .Pt 
for each atom 

� - -2_ 3rt . .Pt • { 20) 
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The physical meaning of the vector Skt can be simply illustrated . If 

all of the atoms in the molecu.le are in their equilibrium positions , 
.... 

then the direction of skt is the direction in which a given displacement 

of atom t will produce the greatest change in Rk, and the magnitude or . 
-Skt is equal to the increase in Rk which is b�ought about by a unit . dis-

placement of the atom in this direction . The vectors can usually be 

written down by inspection . The transfonnation to symmetry coordinates 

yields 

( 21) 

and the elements of the � matrix are then given by 

l5 ki = � Pt�·�t . ( 22 ) 
t=l 

where �t is tle recipro cal mas s of the atom t . 

B .  Interaction Terms in the Potential Energy Expression 

In the discussion of potential fields in Chapter I, it was pointed 

out that it is usual�· necessary to introduce interaction terms into the 

potential energy expression in order to obtain a suitable description of 

the potential field of a mol ecule . When a valency force field is used, 

the nature of these cros s terms is not well understood, and it is diffi-

cult to decide which of the permitted interaction terms should be in-

eluded . The inclusion of the interaction terms can be justified on a 

physical basis by observing that a change in a bond length or a bond 

angle in a molecule w;Il change the electronic .configurati on, and this 

may lead to changes in the other bond lengths and bond angles in the mole-
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oule . Thompson and Linnett27 have explained the positive sign of the 

bond-bond interaction term in 002 in terms of resonance theory . Accord­

ing to their argument, if one o� the bonds is lengthened, there is a · 

tendency for the other bond to decrease in length and became stronger . 

Therefore, the interaction constant would be positive . ·,. A study26 of the 

bond-bond interaction term in YXY mol�cules showed that the sign of the 

interaction term could be explained in terms of the change in one XY 

bond when the other XY bond was broken . If the bond length in the XY 

molecule is greater than the bond length in the YXY molecu+e, then the 

interaction constant would be expected to be negative, while if the bond 

length in the XY molecule is less than the bond length in the IXY mole­

cule, the interaction constant would be expected to be positive . This 

relationship was found to exist in ever,y case in a stu� of 10 molecules . 

However, in larger molecules, it is not possible to make such a simple 

interpretation of the interaction constants . 

When a modified valency force field is used to describe the poten­

tial field of a molecule, the assumption that the interaction terms in­

volving coordinates which are far ap� from each other in a molecule 

are very small and can be neglected is usually employed.  In add.i tion, 

when molecules possessing C-H bonds are considered, the interactions in­

volving the C-H stretching motions and other motions in the molecule 

are often ignored . This is due to the fact that when a frequency is 

widely separated from the other frequencies belonging to the same sym­

metr,y species, the interaction constants connecting this �otion with the 

other motions have relatively little effe ct on the frequencies . When 
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this reasoning is used in selecting the interaction constants to in-

elude in the potential energy expression, the resulting potential func-

tion usually furnishes an acceptable description of the potential field; 

that is, a set of force constants can be determined which will reproduce 

the observed frequencies of the molecule rather well. However, it is de-

sirable to account for the interaction terms in a manner which would per-

mit a more complete understanding of the forces acting in a molecule o 

1 . Interaction Terms. U.isih§ . Fr� Forces Between Non-bonded Atoms 

The proposal by Urey and Bradley that forces between non-bonded 

atoms be included in the potential energy expression furnishes a method 

by which interaction terms can be introduced which is consistent with 

theoretical considerations and which permits the interaction constants to 

be interpreted more ��early. As a first approximation, the interaction 

between two non7bonded atoms in a molecule may be considered the same as 

the interaction between two corresponding inert gas atoms . For example, 

in the etqylene molecule, the forces acting between a carbon atom and a 

hydrogen atom to which it is not bonded can be considered in terms of the 

forces acting between a helium atom and a neon atom separated by the same 

distance as the carbon and hydrogen atoms in the molecule . It is recog-

nized that this is a ver,y rough approximation, but the forces acting in 

the two cases should be of essentially the same form . 

It has been found29, 30 that the potential energy between two like 

inert gas atoms can be expressed by 

V = R�2 
-

R� ' ( 23 ) 
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where a and b are positive constants and R is the distance between the 

two atoms 
o 

The first term corresponds to a repulsion between the two 

atoms, while the second term corresponds to an attraction between the 

atoms . Although later work?1 .. has led to the expression of the repulsion 
term in the form of an exponential in R, the above �xpres sion is exact 

enough for the present work . In the molecules which are studied in this 

problem, the distances between the non-bonded atoms are of the order of 

2R, and at this distance, the repulsive term in the potential energy ex-

pression, R�2 , is the predominant one . �erefore, the potential energy 

can be writ ten approximately as 

V • R�2 .
o . ( 24) 

The contribution to the potential energy for a small change in the 

equilibriwn distance between two non-bonded atoms in a molecule can be 

written as 

( 25) 

where 
av 

B = - (-) a R  ' ( 26) 

and R is the distance between the two atoms .. .  Utilizing the expression 

for the potential energy. given in Equation (2)') , it is found that 
)" 

� = 
2 A ( 27 )  Re 1J , 

where Re is the equilibrium distance between the non-bonded atoms . The 

use of the potential energy in the form given by Equation ( 24) · enables 

the constants B and A to be related1 and thus only one constant is intro-
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duced into the potential energy expression for the molecule for each 

pair of non-bonded atoms which are assumed to repel each other . 

The necessity of including the linear term, -BAR, in the poten­

tial energy expression has been questioned . Torkington-32 states that 

the constant B cannot appear in the secular equation because the linear 

terms in the internal coordinates must vanish in order that the equilib­

rium configuration of the molecule be stable . The re quirement that the 

linear terms must vanish is correct; however, when the coordinates which 

are used to describe the repulsions between non-bonded atoms are ex­

pressed in terms of the set of independent internal coordinates of the 

molecule, the linear term is found to introduce quadratic contributions 

to the potential energy. In order to illustrate this point, the non­

linear XIZ molecule will be considered . The geometry of the XYZ molecule 

is shown in Figure 4. The potential energy of the molecule, based on a 

X -

Figure 4 .  The Geometry of the Non-linear XYZ Molecule . 

Urey-Bradle.y force field, is 

?V = kt(A�) 2 + k2 (Ar2 ) 2 + kT(Ao) 2 + B1(A�) + B2 (Ar2 ) + By(Ao) -2B(AR1) 

+ 2A(�l) 2 , ( 28 ) 

where the last two terms account for the repulsion between the non-bonded 

X and Z atoms . The coordinate AR is a function of the other coordinates, 
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and in order to remove this redundancy, the transformation expressing 

AR as a function of AIJ., Ar2, and A o is desired . The important point 

to be observed is that the transformation must include second-order 

tenns, because of the presence of the linear tenn -2B(AR1) .  Employing 

the 1� of cosines, the equilibrium distance between the two non-bonded 

atoms can be written as 

2 2 2 Re = 1j_ + r2 - 21J. r2 cos o , ( 29 )  
where the subscript e indicates the equilibrium value . The change in the 
dist�ce R produced by infinitesimal changes in the bond lengths and 

bond angle .is then given by 

(R8 + AR)2 = (� + A�) 2 + (r2 + Ar2)2 - 2 (rt + A�) (r2 
+ Ar2) 

cos (o + Ao) . (30) 

For small changes in 'l) , the tenn cos (o + AO) can be expressed in the 

form 

cos 0 2 cos (o + AO) = cos 1f - -�2-- AO - sin o �o , (31) 

which is correct to second order in 6 1f • When this value is substituted . 
into Equation (30) , the equation becomes 

2ReAR + AR2 = ( 2� - 2r2 cos o ) A� + ( 2r2 - 2� cos o ) 6r2 

+ 2I-]_ r2 sin l" A o + At{ + Ar� + IJ.er2 cos o (A 1f) 2 - 2 cos o AIJ. Ar2 

+ 2� sin o AI-lAO + 2rs sin o Ar2A o .  (32) 
1.- / 

The cubic terms which arise have been ignored . When Equation (32 ) is 

solved ·for AR, and the resulting expression is simplified, AR is found 

to be 
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sin o �o + 1 sin2 · 16 Ax{ 2R8 g 

+ ie r2 sin 16 cos Q �rJ.A o + R
l
e lJ. sin Q cos ¢ �r2� 0 o (33)  

When this value of �R is substituted into the potential energy expression 

given by Equ�tion (28 ) ,  the potential . energy becomes 

2V = [ k]_ ;  * sin2 ¢ + 2A oos2 ¢ J t.zi + �2 - :e sin2 g + 2A cos2 Q J 
t.r� + [ k0 + � lJ. r2 cos ¢ .cos g + 2A lJ. r2 sin ¢ sin g ]t.o2 

+ t i! 
sin ¢ sin Q + 4A cos ¢ cos g J t.r:L t.l2 

+ . [- i! r2 sin ¢ cos Q + 4A IJ.e sin ¢ cos
.
¢ ] AIJ.A'! 

+ [- :: l'J. sin Q cos ¢ + 4A r2 sin f cos Q J t.r2t.O 

+ [ B:!. - 2B cos ¢ J t.l'J. + [&.! - 2B cos Q ] t.r2 

+ [ a.r - i! 1'1 r2 sin 0 J t.1f • (.34) 
? 1 • 

The last three terms in Equation (11) must vanish in order that the equi-

librium configuration be stable, and this cozt�tion allows B1, B2, and B0 

to be evaluated in terms of B .  These �are
. 
not important in the .XIZ 

molecule, but in more complicated molecules such as ethylene, they must 

be determined in order that their contribution to the potential energy 

during the out-of-plane vibrational motions can be determined . '!'his con-

t�ibution during non-planar modes arises because the changes in the �r ' s  

and the AR 1 s are not in the same ratio for p�anar and non-planar motions . 
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Equations (33 ) and (34) show how the quadratic contributions to 

the potential energy arise from the linear term -&R, and it is apparent 

that Tarkington : is wrong in his statement that such terms do not occur. 

The problem of including linear terms in the potential energy expression 

when redundant coordinates are used is discussed by Wilson, Deeius and f· I 7 t.­

Cross .33 These authors point out that when a completely general quadratic 

field is used, it appears to be unnecessar,y to introduce linear terms in-

to the potential energy expression when redundant coordinates are used, 

since the lack of data makes it impossible to evaJ.uate the constants aria-

ing from these terms . However, when forces between non-bonded atoms are 

considered, it is possible to relate the coefficients of the linear terms 

to the coefficients of the quadratic terms, and these terms should be in-

eluded � 

2 . Repulsive Forces Between Non-bonded Hydrogen Atoms 

The molecules which are studied in this investigation, C2H4, C3H� 

CH20, CH2CO, and OH2N2, all possess hydrogen atoms between which repulsive 

forces would be predicted on the basis of the potential field assumed ." 

The hydrogen atoms are small, and the force of repulsion between non-

bonded hydrogen atoms might be expected to be smallo Linnett and Wheat­

le,IJ found that it was possible to ignore the hydrogen-hydrogen repulsion 

in OHq_, and it was likewise found that this repulsion could be ignored in 

treating CH20 .14 Further evidence that the hydrogen-hydrogen repulsion 

is small compared to the repulsion between a hydrogen atom and a carbon 

or oxygen atom is obtained from a consideration of the magnitude of the 

helium-helium and neon-neon repulsion forces . Considering onlY the re-
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pulsive portion. of the potential energy between inert gas atoms, 34 it . . a� is found that the contribution to the potential energy, t( 2 ) 1 for a 
. . o R  

small change in the distance between two neon atoms is 10 times as great 

as that for two helium atoms which are the same distance apart as the 

neon atoms . The · potential. energy contribution when a neon atom and a . 

helium atan are considered will lie between these two values, and .will 

be considerably greater than the value for the helium-helium case . 

For these reasons, it has been assumed that the repulsive force be-

tween non-bonded hydrogen atoms can be ignored . It is desirable to ignore 

this repulsion because when this is done, only one type of repulsion must 

be considered in each of the molecules treated . This leads to a simple 

secular determinant which can be solved in a straightforward manner, 

whereas if �other constant is introduced into the potential energy ex­

pression, the solution of the secular equation beoomes much more difficult . 

C .  Theory of Bending Vibrations in Terms of the Orbital Valency Force Field 

The orbi�al valency force field was proposed by Heath and Linnettl0 

in 1948 i� an attempt to extend the theory of bending vibrations . The 

field is based on the assumptions that the bond-forming orbitals of an 

atom are 'fixed at definite angles with respect to each other, and that 

the most stable bond is formed between two atoms when the overlap of the 

bonding orbitals is a maximum. Using such a picture, it is possible to 

consider an angular distort�on in terms of the ohange . in overlap of the 

bonding orbi tala which is brought about by the distortion . Furthermore, 

\ use or this concept accounts tor · the fact that during sons or the vibra-
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tional motions, rotation of the bonding orbitals of an atom will lead 

to a decrease in the potential energy, and this rotation must be taken 

into account in determining the potential energy expression. 

When this field was appli'ed to a group of planar n3 molecules, 

it was found that only one force constant was necessar.y to describe the 

planar bending mode . and the non-planar bending mode . This is a con­

sequence of the fact that if the bending orbitals of the molecule are 

s.y.mmetrical about the bond axes, then the restoring force associated 

with a given angular distortion in the plane is the same as the restor-

ing force associated with an equivalent distortion out of the plane . 

When a valency force field is used, it is necessar,y to introduce a sepa-

rate bending constant for the out-of -plane motion, and the fact that the 

orbital valency force field is able to account for both motions using 

only one constant indicates that the concept is valid . The orbital 

valency force field was next applied to a group of eight tetrahedral 

11 halides, and the results obtained were quite good. However, when the 

field was applied to CH� 13 it was found to be unsatisfactory. The force 

constant associated with the bending of a C-H bond was found to be 1.35 x 

105 dynes cm. -1 when the doubly-degenerate bending frequency was used 

and 0 . 86 x 105 dynes cm. -1 when the triply degenerate bending frequency 

was used . The orbital valency force field requires that these constants 

be the same, and is unable to account for the large difference .  In an 

attempt to explain this difference, the possibility of changes in hybrid-

ization of the carbon orbitals during the vibrations was considered. If 

changes in hybridization of �e carbon orbitals can occur during a vibra-
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tion in such a manner that the orbitals can follow the movements of 

the hydrogen atoms, then the change in hybridization may lead to a de-

crease in the potential energy. An examination of the wave functions 

of the carbon orbitals revealed that a change in hybridization which 

would permit orbital following can occur during the triplY-degenerate 

bending motion, but that no change in hybridization is possible during 

the doubly-degenerate bending motion. This explains why the bending 

constant associated with the doubly-degenerate vibration is larger than 

the bending constant associated with the trip�-degenerate vibration . 

It should be emphasized that orbital following arises from a change in · 

hybridization, and is quite different from the orbital rotation which 

is permitted in using the orbital valency force field . Orbital follow­

ing involves a change in the angles between the bonding orbitals of an 

atom, while orbital rotation involves a rotation in which the bonding 

orbi tala of an atom rotate as a unit, retaining their original configura­

tion with respect to each other . In general, it is not possible to 

account for changes in hybridization because of lack of sufficient data, 

but it is necessar.y to realize that such changes may occur . 

The orbital valency force field was then applied to formaldehyde 

and ethylene, 14 molecules which contain double bonds . Unfortunately, the 

frequencies which were used for e�lene were incorrectly assigned, and 

the force constants obtained . were incorrect . No further applications of 

the orbital valency force field to molecules possessing multiple bonds 

have been reported. 
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In this investigation, the orbital valency force field has been 

applied to ethylene, allene, formaldehyde, ketene, and diazomethane . 

The manner in which the potential energy expressions for the bending 

motions of these molecules were obtained will now be presented . 

1.  Ethylene 

The ethylene molecule, 02H!p belongs to the point group Vh. It 

possesses 12 fundamental vibrational modes, 7 of which involve bending 

motions . The bending vibrations are shown in Figure 5, along with the 

species to which they belong . Now 1 t is necessary to consider the' struc­

ture of the bonding orbitals in the molecule . The carbon-carbon double 

bond is made up of a cr bond and a - TT bond, while only <:r bonds are 

formed between the carbon and hydrogen atoms . It is desired to associate 

force constants with the changes in orbital overlap which occur during 

the bending motions, and in order to accomplish this, the molecular or­

bitals are considered as being formed by the overlapping of the directed 

atomic orbi tala of the atoms comprising the molecule � The ethy'lene mole­

cule, based on this model, is shown in Figure 6. The teardrop-shaped 

orbitals represent cr orbi tala .and these are cylindrically symmetric with 

respect to the bond axes . The circular orbi tala represent 1T orbitals, 

and these orbitals are also cylindrically symmetric with respect to their 

axes .  The orbital valency force field constants are determined on the 

basis of the changes in orbital overlap which would occur in this model 

when orbital rotation is permitted . It is recognized that this model 

does not give a true picture of the orbital structure of a molecule, but 
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Figure 5 .  The Bending Vibrations of Ethylene . 
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it is as close an approximation as can be made at this time . 

Figure 6. The Orbital Model of Ethylene . 

The variation of the potential energy when a C-H bond is dis-

torted is defined as 

(.35) 
F� 

where 6� is the angle found by the C-H bond axis in its equilibrium posi-

tion and the line connecting the carbon and hydrogen atoms in the dis-

torted position. The cr- bonds are symmetrical about their axes, so the 

potential energy change produced by a bending of the C-H bond in th.e 

plane of the molecule is the same as that for the bending of the bond 

through the same angle perpendicular to the plane· of the molecule . The 

bending vibrations are pictured in Figure 5, and the potential energy 

associated with each of the motions will now be determined. 

a.  The Ag and BJu bending vibrations . From an examination of 

the orbital structure shown in Figure 6, it is clear that no orbital rota-

tion can occur in the Ag and BJu bending modes . Therefore, the potential 

�energy expression for these motions can be written as 
4 

2V = KH L (11�i)2 ' i•l 
(36 ) 
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where f1� represents the change in an HOC angle . It is clear that f1� 

is equal to the angular distortion of the C-H bond, so it is correct 

to express the potential energy in terms of the f1� 1 s .  

b .  ,!!!! B2u bending vibration. In the B2u rocking motion, or-· 

bital rotation may occur . If the orbitals of the carbon atoms are 

allowed to rotate in the direction in which the hydrogen atoms to whioh 

they are bonded have been displaced, the potential energy of the motion 

will be decreased if the increase in orbital overlap of the C-H a- bonds 

is greater than the decrease in · orbital overlap of the C-C <r bond . The 

magnitude of the angle through whioh the orbitals rotate is determined 

in the following manner . The potential energy of the vibrational motion 

before orbital rotation is permitted is 

2V = KH � (A�i) 2 

i=l 

and is seen to be the same as the potential energy fo� the Ag 

(37) 

and BJu 

vibrations . This expression would be correct if the carbon-carbon 

bond were so strong that no orbital rotation would occur . This bond is 

not infini tezy strong, however, so orbital rotation will occur . The or-

bitals of each carbon atom are now allowed to rotate through an angle, 

l1 �  , in order to minimize the potential energy. The orbital picture 

after this rotation occurs is shown in Figure 7 .  

The overlap of the TI bond is unaffected by this rotation. The 

overlap of the carbon-carbon a- bond is decreased, however, and this will 

cause an increase in potential energy. The potential energy after the 

orbital rotation is 
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(38 )  

wh�re �� is .t�e force constant associated with the bending of the_ carbon­

carbon a- bond in the manner sh� in · Figure 7 .  �e orbitals will rotate 

b{3� 
<%� 

'· 

� - t< J  .. ·� ·  v. <.. 

Figure 7 .  The Effect of Orbital Rotation During the B2u Vibration of 
· E�lene . 

until the potential energy is a· minimum. Therefore, � � can be deter­

mined by rrrl.nimizing V with respect to � � 

a(�( ) = o = .,'H t (t.Pi-t. t ) + k� (t.E, ) • 

When this expression is solved for � � , one _. obtains 

. t. � = KH. � .  (t.pi } • 4KH + k�- - i•l 
. . 

(39) 

( 40)  

It is readily seen that if the carbon-carbon cr bond were infinitely · 

strong (k� = oo ) , � � would be zero and no orbital rotation would occur o 

Substitution of �he value of � £,  given by Equation (40) into Equation 

(38 ) , followed. by a strdghtforward simplification, gives the potential 

·energy as 
2 u 3Kg + KHka-

2V = . �H + k� 4KH + k� (41) . . .  
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This expression gives the potential energy for the B2u rocking motion 

in terms of the A�i 1 s, the changes in the H-0-C angles . In order to 

obtain the :1 matrix element for this mode, the potential energy matrix 

determined by: Equation (!a,) must be symmetrized ;_ The correct symmetry 

coordinate for the B2u . motion, in terms of the A�i ' s, is t(A�i - A�• + 

A�.3 - A�4) . However, be cause of the fact that the potential energy .is 

written as a sum of squares before orbital rotation is taken into account, 

arry sign associated with the angular displacements disappears and is not 

recovered in subsequent manipulations . Consequently, the proper sym­

metry coordinate to use in order to obtain the B21} ':1 matrix element is 

the sum of the A�i ' s, i(AJ31 + A�2 + A�.3 + l1�4) .  When the s,mmetrization 

is carried out, the diagonal '3- matrix element for the B2u �nding vib�a­

tion is found to be 

4KH + k� 
(42) 

Symmetrization of the matrix determined by Equation ( 42) using the other 

three orthogonal linear combinations of the A�i ' s, which correspond .to 

the Ag, B3u, and BJ.g bending vibrations, yields three diagonal. 1- elements 

which are just KH · This fact indicates that the rotation of the orbitals 

in the manner permitted during the B2u vibration cannot occur during the 

Ag, B/u_, or BJ..g vibrations . The correct elements for .Ag and B.3u is Kg, 

because no orbital rotation in � manner is possible during these motions . 

However, in :tfle BJ..g rocking motion, the orbitals can rotate in a different 

manner from the motion or the B2u rocking vibration, and this rotation 

must be considered independently in order to determine the correct 3 matrix 
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element !or the Big rocking motion . 

c .  � Blg bending vibrationo . The B1g bending _ vibration is also 

a rooking motion of the CH2 groups . However, in this case, the two ends 

rock in the same circular direction . Again it is possible for orbital 

rotation to occur, but the effect on the carbon-carbon a- bond is dif-

ferent from that in the B2u vibrationo The potential energy for the 

motion before orbital rotation is taken into account is 

(43 ) 

The orbitals of each carbon atom are now allowed to rotate through an 

angle 6 t . The orbital picture after rotation is shown in F:l,gure 8 .  

Figure 8 .  The Effect of Orbital Rots:tion During the BJ.g Vib�ation 
o! Ethylene.. · 

�e potential energy after the rotation .is 

2Y. = KH ± (A�i - ���. )2  + � (21.� ) 2 

i•l 
(44) 

k!- is· defined as the force constant which is associated with the change 

in .  overlap which occurs when one of the· carbon c:r orbitals is rota�ed 

through a unit angle . Therefore, when each of the carbon cr orbitals is 
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rotated. through an ailgle, llt 1 in the same circular direction, the po-

. tential energy is kg (U� ) 2 • Figure 9 illustrates this point . k� is 

. 

(a) (b ) 
Figure 9 • The Change in Overlap of the cr Orbi tala During the Blg 

Vibration of Ethylene · . . 
defined as the constant which is associated with the change .in overlap 

occurring during the motion shawn in Figure 9 (a) . Therefore, the poten­

tial energy for this motion is 2V = � (ll� ) 2 . Figure 9 (b ) shows the . . 
change in orbital overlap which occurs in the B2u motion, and if the 

force associated with the change in orbital overlap is linear, the po-

tential energy for �s motion, assuming infinitesinal displacements, is 

2V = k!- (Ut ) 2 • This co�stant was defined in this maimer so that it · 

would be the . same as the corresponding constant in allene, which will 

be discussed later . This definition of k§.. differs from the way k� 

w�s defined by Linnett, l4 and the constant defined in this investiga­

tion is equal to t of the constant as defined by Linnett . 

When the potential energy given in Equation ( 44) is minimized 

with respect to ll� , the value of ll �  is found to be 

When this value of ll � is substituted into Equation (44), the potential 

energy becomes 



K 
2 

H 

47 

±. (t.flit.flj ) ' (46) 
i, j i,j 

When the matrix determined by this expression is s:vmmetrized, the J 
matrix element for the B3u rooking motion is foUnd to be 

· xak!- (47 ) 

d .  · The B1u and B2g bending vibrations . These vibrational motions 

involve out-of-plane distortions, and the 1T bonds have to be considered. 

The B1u wagging motion is one in which all four hydrogen atoms move in the 

same direction, perpendicular to the plane of the molecule . In the B2g 
wagging motion, the hydrogen atoms all move perpendicular to the plane 

of the molecule, but the two ends wag in opposite directions . The co-

ordinates used in expressing the potential energy are the two angles 

formed by the CH2 planes and the axis of the molecule . Figure 10 shows 

the change in overlap in the a- and Tf bonds brought about by the orbital 

Figure 10 .  The Effect of Orbital Rotation During the B1u and B2g Vibra-
. tiona of Ethylene . 
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rotation ooaurring during the motions . 

Consider the B.I.u vibrational motion. The potential . energy for 

the bending of the C-H bonds before taking orbital rotation into account 

is 

{48) 

Inspection of Figure 10 shows that the change in orbital overlap occurring 

in the carbon-carbon a- bond · is the same as it was in the B2u vibrationJ 

therefore, k� is the constant associated with the change in overlap of 

the � bond. A new constant must be introduced to account for the over-

lap change occurring in the 1T bond. In order to . express this constant 

in such a way that it will be the same as the corresponding constant in 

allene, it is defined in the following manner. k� is the force con�tant 

associated with the change in overlap of the 'tr bond when the orbi tala 

of one of the carbon atoms rotates through a unit angle . Therefore, if' 

the orbi tala of both the carbon atoms are now permitted to rotate through 

an angle t. E.  , in the manner shown in Figure 10, the potential energy for 

the B1u vibration becomes 
2 

2V = 2KH 2: ( cosoe A tV i - cosoc At:, ) 2 + k! (At:, ) 2 + � (2A� ) 2 , (49 )  
i•l 

The manner in which k� has been defined differs from the way LinnettL4 

defined this constant, the constant defined here being equal to t of 

thft .constant as defined by Linnett . When the potential energy is mini­

mized with respec t to A t_  , one obtains 



2KH oos2«: 
�� :: ---=-------

laKH cos2cx: + (k� + �) 
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� 
i=l 

(5o_) 

When this value of fl t is substituted into Equation ( 49) ,  the potential 

i.= A'¥ 1 A <+l j . 
i, j  
i,lj 

(51) 

When the above expression is symmetrized, th� � matrix element for the 

B1u vibration is found to .be 

2KH cos2«. (k� + �) 
ijKH cos2 eX + (� + hie�) ' (52) 

The potential energy for the bending of the C-H bonds in the B2g 

vibrational motion before orbital rotation is taken into account is the 

same as that for the Biu vibration given in Equation (48) , -

2V = 2KH t ( COSO( A <Vii . 
i=l 

(53) 

Now, the orbitals of the two carbon atoms are allowed to rotate as shown 

in Figure 10 . The constant associated with the change in overlap of the 

a- orbitals between the carbon atoms is k§.. , the same as the constant 

associated with the a- orbitals in the B1g motion . The overlap change 

of the 1\ bond is different ii1 this case than in the B1u motion, and. a 

new constant Dm.st be introduced to account for this motion . � is de­

fined as the force constant associated with the change in overlap of the 
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rr orbitals which occurs when the orbitals of each carbon atom rotate 

through equal angles in the same circular direction, as shown in Figure 

10 .  

The orbi tala of the carbon atoms are now permitted to rotate 

through an angle fl � , and the potential energy for the B2g vibrational 

motion becomes 
2 

2V = 2KH � ( cos � A 4)i - oostX. flt,  ) 2 + � ( 2flE, )2 + l4 (flt ) 2  • (54) 
i•l 

When the potential energy is �zed, fl 't is found to be 

4KH oos20(. . + (� + Ic!) 
tr lT' 

(55) 

When this val.ue of fl � is substituted into Equation (54),  the potential 

energy becomes 

(56) 

The 1 matrix element for the B2g vibrational mode, determined by symmet­

rizing the above expression, is 

(57 )  

e .  � A� vibration. The vibrational motion belonging to Au 

is the torsional motion, or twisting, of the CH2 groups about the carbon­

carbon axis . The coordinate u�ed to describe this motion is the angle, 'r ,  
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formed by the intersection of the two .CH2 planes . The potential energy 

for this motion before orbital rotation is taken into account is 

�'i 2 2V = hKH ( sin o<. -,--) • 

Now, each set of carbon . orbitals · are allowed to rotate about the carbon­

. carbon axis through an angle fl � • Only the 11' orbi tala are atfected by 

this rotation, and the potential energy after rotation is 

2V = 4KH (sin <X 4. - sino{ A t )
2 + k� (�� )2 , ($9) 

where k; is defined as the force constant associated with the change in 

overlap of the 1T orbitals when one of the orbitals rotates through a 

unit angle . In the torsional motion, both Tt' orbitals rotate, and the con­

tribution of this m<>tion to the potential energy is k � (U'E, ) 2 . A t. ,  

evaluated by minimizing the potential energy with respeot to ·fl E, ,  is found 

to be 

( 6o )  

When this value of � � i s  substituted into Equation (59 ) ,  the potential 

energy for the Au vibration becomes 

2V = 
KH sin2oe. k; 

(A1'") 2 
• 

KH sin2ot + k ;  ( 61) 

Since ll 't is a symmetry coordinate, the ';- matrix element for the Au 

vibrational motion is given by Equation (61) .  

2 . Allene 

The allene moleoule, CJH4, is similar in some respectS to ethylene . 

However, the CH2 groups · lie in planes which are perpendicular to each 
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other in allene, while they are � the same plane in the ethylene mole­

cule . In addition, allene possesses adjacent doubl:e bonds, whereas 

e�lene has only one double bond. The model of allene based on directed 

atomic orbitals is shown in Figure 11 . 

Figure 11 .  The O:rbi tal. Model of Allene . 

There are four vibrational modes, one non-degenerate and three 

doubly-degenerate, in which orbital rotation can ease the bending motions . 

However, � three of these motions, the CH2 rooking, the CH2 wagging, . 

and the torsion, can be considered as vibrations involving bending of the 

C-H bonds . The other vibration, the degenerate C-0-C chain bending 

motion, cannot be considered as a motion involving bending of the C-H 

bonds . As a consequence, the concept pf orbital rotation cannot be applied 

to this motion . in a simple manner .  

a. The degenerate rocking and wagging vibrations of allene . The 

d-egenerate rooking and wagging vibrations of allene are shown in Figure . 

12 . As for e�lene, KH is defined as the force constant associated with 

the change in over1ap which occurs when a C-H bond is distorted . There-
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fore, the potential energy for the degenerate rooking motion, shown 

(a) (b ) 

Figure 12 . (a) The Degenerate Rooking Motion of Allene .· 
(b) The Degenerate Wagging Motion of Allene . 

in Figure 12 ( a) , before orbital rotation is taken into account, is 

2V = lq{ ± (11�1) 2 
• 

1•1 
(62) 

Now, the
· 
orbitals of the carbon atoms are permitted to rotate so as to 

minimize the potential energy. .Examination of Figure 11 shows that rota-

tion of the orbitals of the terminal carbon atoms in this case would not 

affect the TT bond overlap, but would decrease the overlap of the C-0 cr 

bonds • If the orbi tala of the central carbon atom are allowed to rotate, 

then the .rr bond overlap would be affected . If this rotation were per­

mitted, then there would be two constants associated with the motion, and 

since neither can be determined from other vibrational motions, these 

constants could not be evaluated. Furthermore, allowing the orbitals or· 

the central carbon atom to rotate would require that the ma.gni tude of the 

angle of rotation would have to be assumed, since it cannot be evaluated 

directly. For these 
·
reasons, the orbitals of the central carbon atom 

are assumed to remain fixed during the vibrational motions . 
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The orbi tal.s of the terminal carbon atoms are now allowed to 

rotate through an angle, �� , about axes perpendicular to the respec­

tive OH2 planes . The potential energy for the rocking motion then be-

comes 

t (63 ) 
i=1 

where k<r is defined as the force constant associated with the change 

in overlap occurring in the carbon-carbon <r bond when the orbitals of 

one or the carbon atoms are allowed to rotate through a unit angle . 

This constant is equivalent to the constant I4- used for ethylene . When 

the potential energy is minimized with respect to �� , it becomes 

2V • (64) 

The "; matrix element, obtained by symmetrizing the above expression, is 

2Ka + ka- (65) 

The degenerate wagging motion �f the CH2 groups is illustrated in 

Figure 12 {b) . The potential energy for this motion, before orbital ro­

tation is taken into account, is 

2 
2V = 2KH .2: (cosO( � 4)1)2 

• 

1•1 
(66) 

Now, the orbi tala of the central carbon are · assumed to remain fixed, but 

the orbitals or each of the terminal carbon atoms are allowed to rotate 

through an angle, 6E. • Figure 13 shows the configuration of the orbitals 
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Figure 13 .  The Effect of Orbital Rotation. During the Degenerate Wagging 
Motion of Allene . 

of one of the end carbon atoms and the central atom after orbital rotation · 

has occurred. The changes in orbital overlap are the same on both ends 

of the molecule . The potential energy after the orbital rotation is 
2 

2V = 2KH L { cos o<. AIVi - cos"' A� } 2 
+ 2ka- (A � }2 + 2kn (A t }2, ( 67) 

i=l 

where k,_ is the same as in the rocking motion just described, ' and k TT' 

is defined as the force constant associated with the change in overlap 

in the 1f' bond which occurs when one of the Tr orbi t�s is rotated through 

a unit angle, as shown in Figure 13 .  After minimizing with respect to f). �  , 
the potential energy for the degenerate wagging motion becomes 

2KH oos� [KH oos2<>' + (kcr + k1r ) ]  � ( )2 2V = 2 L � <+> i 2KH cos eX. + (kcr + k1r _) i=l 

. (68) 

The � matrix element for the degenerate wagging motion, obtained by 



symmetrizing the above expression, is 

2Kg cos2o<. (k<r + k'TT ) 
2KH cos2 ex + (ka- + k1T" ) 
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(69)  

b.  � B]_ vibration. Th� B]_ vibration in allene is the torsion, 

and is quite similar to the torsional motion in ethylene . The potential 

energy for this motion, before taking orbital rotation into aocount, is 

61"' 2 2V = 4KH ( sin o<.  -r ) , (70) 

where 6 'l is the change in the angle formed by the intersection of the 

tw'o CH2 planes . If the carbon orbitals of the terminal atoms are now per­

mitted to rotate through an angle, 6� , the potential energy becomes 

where k� is defined as the force constant associated with the change in 

overlap of the 1T" orbi tala when one· set of carbon orbi tala rotate through 

a unit angle . 
. T � This definition of k,. is the same as that for krr in 

ethy�ene . It should be noted, however, that there are two sets of over­

lapping "'T orb� tals in allene . When the potential energy is minimized 

with respect to Il l. , it becomes 

KH sin2ot k � 
2V = --�:r---�- (ll'\ ) 2 

• 

2Ka sin2o(.. + k; (72) 

Since A 't is a symmetry coordinate, the 'J matrix element fo:r the B1 

vibrational motion appears directly in Equation (72) . 



57 

.3 .  Formaldehyde 

In the formaldehyde molecule, CH20, there are only two vibrational 

motions in whieh orbital rotation can lead to a decrease in the potential 

energy. These motions are the planar rocking motion and the out-of-plane 

bending motion, and are shown in Figure 14 . The orbital model of formaJ.de-

( a) (b) 

Figure 14. {a) The Planar Rocking Motion of Formaldehyde . 
(b) The Out-of -Plane Bending Motion of Formaldehyde . 

b.Yue is shown in Figure 15 . The potential energy for the planar rocking 

Figure 15 . The Orbital Model of F ormal.dehyde . 

motion, before orbital rotation is taken into account, is 

2V = KH � (��i) 2 
i•l ' ( 7.3 )  
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where KH is the force constant associated with the bending of a C-H 

bond . The orbitals of the carbon atom are now permitted to rotate 

through an angle, �� , and the potential energy becomes 

2 
2V = KH � (APi - AE, ) 2 + ko- (A � ) 2 (74) 

The constant, ko- , is defined as the constant associated with the change 

in overlap in the 0-0 a- bond which oc.curs when the orbi tala of the car-

bon atom are rotated . When the potential energy is minimized with re­

spect to � � ,  it becomes 

2V = 
KH (KH + kcr ) 

2KH + ka- (75) 

Symmetrization of this expression gives the :f matrix element for the 

planar rocking motion, which is 

( 76) 

The behavior of the orbitals of the oxygen atom when the orbitals 

of the carbon atam rotate must be considered. The rotation of the carbon 
. . 

orbitals during the planar rocking motion does not affect the overlap of 

the 'IT orbitals, but the overlap of the o:...o cr bond is affected . The 

orbitals of the oxygen atom would be expected to rotate in such a way as 

to lninimize the change in overla� . Therefore, the oxygen orbi tala would 

be expected to rotate through the same angle as the orbi tala of the car­

bon atom, as shown in Figure 16 . The behavior of the oxygen orbitals is 

of im.p�rtance because the k a- which �a detemined f'rom the planar rooking 
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motion could be transferred to the out-of-plane motion if the C-0 a- orbi-

�s. ¥b.a� · . in the same manner during the tw vibrations and tm ref are k'tT 

cOllld be determined . 

Figure 16 . The Effect of Orbital Rotation During the Planar Rocking 
Vibration in Formaldehyde . 

The potential energy for the out-of-plane bending vibration, be-

fore orbital rotation is taken into account, is 

2V = 2KH · { cos<X. 6'V )2_, ( 77 ) 

where Y is the angle formed by the intersection of the CH2 plane and 

the C-0 bond axis . The orbitals of the carbon atom are now permitted 

to rotate through an angle, 6 E, , so as to minimize the potential energy. 

The orbital picture after this rotation has occurred is shown in Figure 

17 . Now, the orbitals of the oxygen atom are free to rotate so as to 

Figure 17 . The Effect of Orbital Rotation of the Carbon Orbi tala Dtlring 
the Out-of -Plane Bending Vibration of Formaldehyde . 
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minimize the decrease in overlap of the a- and 1T orbitals, but the way 

in which this rotation would occur is not clear. For this reason, the 

constant associated with the change in overlap occurring in the a- bond 

during the out-of-plane bending motion cannot be assumed to be the same 

as the constant associated with the 
.chang� � . overlap of the cr- bond . 

during the planar rocking motion. The potential energy for the oot-or..;. 

plane vibration, after orbital rotation occurs, is 

2V = 2KH { cos a( llf..¥ - C OB ol  � �  ) 2 + (k!r + k1T ) (ll £, ) 2 ( 78) 

where k-� and kli are defined as the constants associated with the change 

in overlap of the a- and 1T orbitals which is brought about by the rota-

tion of the carbon and oJcy"gen orbitals • When the potential energy is 

minimized with respect to 6 � , it becomes 

2KH oos2o( (k·!r + k1r ) . 
2 2V = --��------ (A<V )  , 2KH cos2 o(. + (k:r + kl1' ) 

( 79 ) 

and sinee fl � ·is a symmetry coordinate, the � matrix element is given 

directly by (79) . 

Linnett, Heath and Wheatley have applied the orbital valency force 

field to formaldehyde, 14 and these authors assumed that the constants 

associated with the change in a- bond overlap in the planar and non-planar 

vibrational motions were the same. It is necessary to make this assump-

tion in order to determine k� , but the assumption does not appear to be 

justified. This means that the sum, k:r + krr , can be determined, but 

the values of k:r and kn cannot be obtained.  
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,. - -----
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�etene, CH2CO, and diazomethane, CH2N2, are planar molecules be­

longing to the point group 02v. Each molecule has . f'our vibrational 

motions, the CH2 rocking, the CH2 wagging, the planar skeletal banding, 

and th� non-planar skeletal bending, in which orbital rotation m.ay ... lead 

.. to a decrease in the potential energy. However, the skeletal bendi� 

modes are e�valent to the degenerate skeletal bending vibration of' 

allene, and ·the concept of' orbital rotation cannot be sucoes�f'ully 

applied to these motions . Therefore, the concept of' orbital rotation 

has been applied to the CH2 rocking and CH2 wagging motions only. 

The orbital model of the CH2CO molecule is shown in Figure 18 . 

The bonding structure or ketene and diazomethane are similar, and the 

Figure 18 . The Orbital Model of' Ketene . 

same model was used f'or diaz<?Dtethane . The CH2 rocking motion and the 

CH2· vagging motions are shown in Figure 19 . These vibrational motions 

are �te similar to the corresponding motions in formaldehyde . As was 

pointed out in the discussion of' the CH20 molecule, the orbitals of the 

oxygen atom are free to rotate when the orbitals of the carbon atom 



(a) (b) 

Figure 19 . (a) The CH2 Rocking Motion or Ketene and Diazomethane . 
{b) The CH2 Wagging Motion of Ketene and Diazometbane . 
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rotate . However, it is impossible · to determine how the oxygen orbitals 

rotate when the carbon orbitals rotate . In a similar mann.er, the r�� 

tion or the orbitals or the terminal carbon atom in ketene and diazo-

methane may cause a rotation or the orbitals or the central C and 0 atoms 

in ketene and of the N atoms in diazomethane . However, it is likewise 

impossible to take this rotation into account quantitative�. Therefore, 

the treatment or the CH2 rocking and wagging motions in CH2CO and CH2N2 

is identical with that previously described for CH20, and the 'J matrix 

elements will be the same as those obtained for CH20 .  The 'J matrix 

element tor the CH2 wagging motion is given by Eqnation (76)" as 

Kakcr 
---:------ , 2KH + kcr ( 80) 

and . the s matrix element for the CH2 wagging motion, given by Eqnation 

(79), is 

2KH cos2ol (k� + . krr ) 
2KH cos2cx. + (k:r ··• k,. ) .. ' 

( 81) 

where KH is the force constant associate� with the bending of a C-H bond, 
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k a- is the constant associated with the change in the C-0 or C-N cr-

orbi � ov�rlap during the CH2 rocking motion, . and k� and k 11 are 

the constants associated with the change in the � and 1T orbital 

overlaps during the CH2 wagging motion . 

It should be pointed out that .the use of different �onstants to 

describe the change iit a- orbital overlap in the rocking Qd wagging 

motions makes it impossible to evaluate k,.. , but it appear� that this 

distinction is necessar.y for CH2CO and CH2N2, just as it was in the 

case or CH20 . Furthermore, it should be noted . that the neglect o:r the 

effect o:r the rotation o! the orbitals o:r the central carbon and oxygen 

atoms in ketene and the two nitrogen atoms in d.iazomethanEJ make� this 

treatment a very approximate one, and this . !act must be b�rne in mind 

in interpreting the results for these molecules .  



CHAPI'ER III 

EVALUATION OF THE FORCE CONSTANTS 

Ao Anhannonioity Corrections 

The force constants of a •olecule are functions of the normal 

vibrational frequencies of the •olecule, and these frequencies should 

be used in evaluating the fore� constants . The observed fundamental 

frequencies ditrer from the n�rmal frequencies, primarily because of 

the cubic and higher order terms in the potential energy expression. 

In order to determine the normal frequencies, however, it is necessar.r 

to knC7tl the observed values of many combination and overtone bands . In 

general, not enough data are available to enable the normal frequencies 

of a polyatomic molecule to be determined, and this necessitates using 

the observed frequencies in evaluating the force constants o 

Although the data tor the molecules treated in this investigation 

are insufficient to permit precise anharmonicity- corrections to be made, 

an attempt was made to correct the frequencies of ethylene and allene 

in order to enable better sets of force constants to be determined. 

Hansen and Dennisoul5_ have determined the nonnal .frequencies of C2H6 

and C2D6, using the knowp anharmon:f.ci ty constants or CHL. in conjunction 

vi th the available data .for C2H6 and C2D6. The anharmonic constants 

which were determined tor ethane were . used as a guide in this investiga­

tion in determining anharmonic constants for ethy-lene and allene . Hov­

ever, it was found that the normal frequencies determined in this manner 
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did not permit a better solution for the force constants to be obtained .  

The assumption was then made that all of· the anhar.monicity was present 

in the C-H and C-D stretching modes; but again it was found that no im.-

provement in th� solu�ion for the force constants over that obtained using 

the observed frequencies could be achieved. One ot the reasons why an­

harmonic! ty correc.tions do not lead to a better solution for the force 

constants for the ethylene molecule is the fact that the frequencies or 

species B]_g al:most obey-the-pi oduc t; ·rttle .  This means that the- C-H and 

C-D stretching frequencies or this species will be raised very little by 

making anharmonic! ty corrections, while the C-H and C-D stretching fre-

qnencies belonging to the other species are raised �eral per cent . 

This makes it impossible to :f'i t the C-H and C-D stretching frequencies --
. - � 

as well when anha.rmonici ty corrections are made as they are fitted using 

the observed frequencies . Therefore, the values of the observed tre-

quencies have been used in all or the . calculations carried out in this 

investigation .  

It should be emphasized that if the correct anharmonic constants 

coUld be obtained, the normal frequencies would permit a set of force con-

stants to be obtained which would reproduce the normal frequencies exact-

ly if a general quadratic field were used. The fact that making anhar-

monicity corrections for ethylene and allene does not permit a better set 

of force constants to be obtained can be attributed to the fact that we 

do not know the correct values or the anharmonic constants and to the 

restricted nature of the potential field assumed for these molecules . 
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B .  Ethylene 

The force constants for e�lene were determined using the rre-

quencies of C2H4 and C2D4 . The frequencies of the other isotopic 

e�lenes were then calculated using the force constants which were 

obtained from C2H4 and C2D4 in order to verit,y that the potential field 

was correct tor all or the molecules . The frequencies of �-, trans-, _ 

or asym . -�H2D2 could have been utilized directly in the calculatioD:S, but 

be cause or the reduction in symmetry brought about by the isotopic sub-

sti tutions, the factored secular eqnations for the planar vibrations 

or these molecules contain a fifth-order and a fourth-order block, and 

the solution or these blocks was not practicable . 

The 1" and lJ matrices for C2H4 and C2D4 are given in Appendix I. 

The algebraic equations obtained from expansion of the secular equations 

or C2H4 and C2D4 are 

A.g: 02114 

1.0335773 !1 + 0 .1666138 !2 + 0 . 9737090 !3 - o.931S'736 A = t A1 
i•l 

o.1652682 r1r2 + 1.0016657 fl.t3 + o.1h4o622 t2t3 - o.$'401301 Ar1 

- 0 .41105429 At3 - 1.9533690 A2 • � A 1A j 
i,j•l . 113 

r1r�3 - 4.0839156 A2fl - o.62524Sl A2t2 - 9 .348795S A2t3 

+ 11. 2263264 A.3 & 6. 9969850 tr A1 
i•l 

( 82 )  

(83 ) 

(84) 
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C2D4 

0 .5379967 f1 + 0 .1666138 f2 +. 0.5416577 t3 - 0 . 9315736 A 

= 
t�i 

�.0826976 r1r2 + o .2868723 r1r3 + o.0720965 r2r3 - o .8oo4645 A2 

- 0 .2702728 Arl - 0 .2204hll Af) - t A I A I 

i�-1 i j 

r1r2r3 - 4.0839156 A2r1 - o .8252451 A2t2 - 9 .3487955 A2t3 . 

+ 11. 2263264 A3 = 27 . 9449039 
-� A ' I · L 1 
i•l 

B3u: �H4 12 
1.0335773 r1 + o . 973709o r3 + 0 .1223893 A = � A1 

i•ll 

r1� - o .8252161 A2 • o .99Bl378' ' ¥r A1 
J i•ll 

C2D4 

o .5379967 r1 + o .5416577 r3 • o.1223893 A • �111\i 
12 . 

r1r3 - o .8252451 A2 
• 3 .4858728 J.I

1 
A 1 

B2u: C2H4 , 

1 .1168842 r1 + o .9010B14 r4 - o.1223893 A • f>1 

10 . 
t1t4 - 0 .82.5'2451 A2 • 0 . 9981378 fT :A i 

1•9' . 

1•9 

C2D4 

o . 6213036 r1 + o .4690300 r4 - o.1223893 A • t A� 
. lA. 

r1r4 - o .82.524.51 A2 = 3 .4858728 I I Ai 1•9 

(85) 

(86) 

( 88) 

(89) 

(90) 

(91) 

(92) 

(93 ) 

( 94) 

( 95) 



Bigt C2H4 
. 

Lll68642 r1 + 1.49Slo41 rs - o.so9910l A .. "t.A.1 
i•S 

Blu s 

B2g : 

Au s 

6 
t1t5 - o .  8252451 A 2 

= o .  6284995 n i\1 
1•5 

C2D4 6 
o . 6213o36 r1 + 1.o63o528 r5 - o .5o991o1 A - �"i 

1;5 
6 

t1t5 - 0 .8252451 A2 • 1. n906$2 n Ai_ 
1•> 

�114 
t6 = o .4950384 ( A7) 

C2D4 
. f6 = 0.8650947 ( .A-7> 
�H4 

· f7 · · o .3756S77 c )\8> 
C2D4 
t7 · • o.S562o6o ( Aa) 
C2H4 
ra = o . 8672844 ( A4) 

C2D4 . 
f'8 = 1 .  7332392 < · A4> . 

68 

(96) 

(97)  

(98 )  

(99 )  

(100) 

(101) 

(102) 

(103 ) 

(104) 

(105) 
. The unprimed A1.s refer to C2H4, and the primed A 1 s  refer to C2D4.* 

* ( V1 ) 2 <\..( · 
Ai • 1302 • 93 • The -u matrix was computed in ataaic weight-

Angstrom units and the force constants in these equations are expressed 
1ri dynes/em. x 105 or in ergs/radian2 x lo-ll . The raotor, 1302 . 93s in­
cludes all or the constants involved in using these factors, when the vi 
are expressed in em. -1 . 

· . . 
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The £1 ' s  in the above equations are the diagonal 3 matrix elements and 

are defined by the following relations : 

r1 = leu + 1.33196 A 

r2 = Kcc + 6.32571 A 

· r3 • Ia + o . 87773 A 

KHk� 
f4 • --- + 0. 87773 A 

hKH + k� 

2Ia cos2a(k� + �) 
f6 = + 0. 05573 A 

WCH cos2a .+ (k� + 4k�) 

2KH cos2a(4k§. + J4) 
r7 = •-� 2 ( '-'..2 �) + o . o5573 A 

qAH cos ct + � + -,. 

(106) 

(107 ) 

(108) 

(109) 

(110) 

(lll ) 

(112) 

(11.3) 

There are nine constants to be evaluated, and twenty-four equations 

involving these constants . However, because Qf t'!le produ.ot rule .. relation-

ship, only seventeen of the equations are independent. In theory, nine 

of these equations should permit the co�tants to be calculated. However, 

due to inconsistencies in the equations, which are primarily" caused by an-

harmonici ty in the frequencies, all of the equations mus-t be used in order 

to determine the best values for the constants . 

The potential field assumed in this investigation is of such a 

nature that all of the off-diagonal elements in the 3 matrices are either 

zero or contain terms which are .:f"unctions of the constant A .  This con-
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stant, A, is the force constant associated with the repulsive force be-

tween hydrogen atoms and carbon, oxygen, or nitrogen atoms to which they 

are not bonded. This points out the reason why it was desirable to 

neglect repulsive forces between two hydrogen atoms, because it these 

forces had been taken into account, the orr -diagonal 3- matrix elements 

would have contained two or three independent constants . This would have 

made it impractical to evaluate the force constants by the method which 

has been used . Fortunately, the hydrogen-hydrogen repulsions are indeed 

negligible .  

The number or independent force constants in a species or order n 

is therefore (n + 1) . These (n + 1) constants are the n diagonal 1- matrix 

elements and the constant A. This means that it the value or A is fixed, 

the other n constants can be calculated using the frequencies or one mole-

cmle . Now, if data are ava:Uable for an isotopic molecule, the constants 

can be evaluated in a similar fashion. The values or the constants ob-

tained fran both molecules can then be plotted against A, and the values 

o! the constants which fit both molecules are easily determined from ob-

serving where the values or the constants coincide or lie close together. 

The range or solutions for the !orce constants or species B3u, E2u, 

and BJ..g were determined ini ti�. Since each or these species is or 

order two, the solution of the equations was quite straightforward. �he 

solution or the equations of speci�s B3u ' of C2H4 will be described to il­

lustrate the way in which the solutions were obtained . Solution or Equa-

tion (88)  for rl yields 

r1 • o. 9675135 � :>-1 - 0 . 9420166 t3 - o.nB4133 'A. 
1•11 

(114) 
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This value of .t1, when substituted into Equation ( 89) , gives 

tl - 1.0270009 � /1.1 (t3 ) + 0.1256939 At3 + 0.8759852 A2 
i•ll 

12 
+ 1.0.59.5081 n A i = o .  

i•ll 
(115) 

When the numerical values or the J\ 1 '  s are substituted into Equations 

(114) and (115) ,  they become 

r1 = 6 . 2809899 - o.ll84133 A - o .9420766 r3 (116) 

r32 - 6 .6671754 r3 + o.l2.56939 Ar3 + o. 87.598.52 A2 + 6. 8462166o = o .  · (117) 

, For a given value or A, Equation (ll7 ) can be solved for !3 . . Two values 

or r3 are obtained, and the corresponding values of rl are then ·obtained 

trom Equation (116) . When the V:alues of !1 and !3 are plotted . against A, 

one obta.:f.ns ellipses which permit rl and !3 to be determined tor arrr 

value or A tor which real solutions exist. Similar calculations were 

carried out tor species B3u or C2D4, and for species B2u and Big or C2B4 

and C2D4. The results of these calculations tor representative values 

of A are given in Table I .  

The constant, r1, is present in the equations tor each of the three 

species . Therefore, six values of !1 were obtained for each value of A .  

In Figure 20, the values of !1 obtained from species B3u, B2u and B:l_g of 

C2H4 an� C2D4 are plotted against A. It . the rrequencies are harmonic and 

the force tield assumed was exact, the six ellipses would intersect in a 

point. Al thou� the ellipses do not intersect in a point, it is seen that 

tor values of A between 0.00 and 0.10, the ellipses lie close together. 



TABLE I 

FORCE CONSTAJTS* FOR SPEniES B.3u, B2u AND B]_g OF C2Hh, AND C2D4 
FOR ARBITRARY VALUES OF A 

C2H4 C2D4 
Species A r1 t3 A f1 £3 

-2.40 3 . 7530 2 . 9851 -2 .50 4 .4114 2 .n14 
2 . 8122 3.9837 2 .7299 4.3815 

-1 .00 5 .0395 1.4436 -1.50 5 .2543 1 . 6482 
1 .36o1 5 .3493 1 . 6594 5 . 2188 

B3u 0 .00 5.o86o 1.2685 0 .00 5. 2737 1 . 2900 
1 .1950 ' -�l987 � . 2988 5 . 2360 

1 .00 5.0215 1. 2685 1 .00 4.  7167 1 .6173 
1 . 223'9 5 .3987 1 .6283 4.6848 

1.80 4. 7064 1 .5458 1 . 75 · 3 .4573 2 .6988 
1 . 4562 4. 9957 2 .  7171 3.4339 

A fl fh ,J. tl t� 
-2.00 4.1439 1.32$8 -2 .00 4.1233 1.3507 

1 .0696 5 .1363 1 .0197 5 .4620 
-1.00 4. 8177 0 .6265 -1 .00 4.8594 0 .6367 

0 .5055 5 .9n5 0.4806 6 .4370 
B2u o.oo 5.oB47 0 .431.3 o .oo 5 . 2082 0 .4356 

0 .3480 6 • .3025 0.3288 6 .8990 
1 .50 4. 9350 0. 8207 1 .50 $.2379 D.7876 

0 .6621 6.1169 0 .5946 6 . 9384 
3 .14 2. 8885 3 .5803 3 .S9Z 3 .1223 4.1359 

J. fl rs J. � rs 
-1 .502 2 �'6o74 1 . 9478 -0 .95.3 2.6124 1.5268 
-0.50 4.6958 0 . 7293 -o.so 4.1883 0.8228 

0 .9762 3 .5079 1 .4079 2 .4479 
B].g o.oo s.o467 0 .6377 o.oo 4.8677 0. 6656 

0 . 8536 3 .7790 1.1388 2 .8449 
1.50 5.3044 0 . 9568 l .So 5 .710S 0.8925 

1. 2808 3 .9625 1.5271 3 .3375 
2 .781 3 .5850 2 .6781 2 .935 4.2o7S 2 .4591 

*The units or A and r� are dnJ.,es/cm. X lOS, and the units or 
£3, f4 and f5 are ergs/radid X 10-11. . 
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Therefore, the value of A should lie in this range . The graphs of £3, 

f}v and .t 5 against A are not reproduced in :full . H011ever, the two 

ellipses- for each of these constants lie close together for A values 

fran 0.00 to o. 70 . 

After the value of A was found to lie between 0 .00 and 0 .  70, the 

equations for species Ag of C2H4 and C2D4 were solved . This species is 

third-order, and the solution �or £1, t2, and !3 for a given value of A 

is more difficult than the solution of the equations of species of second­

order . Consider Equations (a2 ) ,  (83) ,  and ( 84) , which are for species 

Ag of C2H4· When Equation ( 82 )  is solved for .t1, one obtains 

r1 - o.9675'135 i=_ ;>..1 + o . 90l31oo A - 0 .1612011 r2 - o .942o766 r3 .  (118 ) 
1•1 

This value of r1, when substituted into Equation ( 83) ,  yields a second-

order equation involving the constants t2, t3, and A .  This equation was 

solved as a quadratic in f3, yielding 

where 

P =  

!3 • 0 .5135005 t ;>..1 + 0 .51.45462 A. - 0.0917084 !2 :: p '  
1•1 

(119) 

0 .2636827 (± A1)2 
- 1.0595081 �1 A1 Aj - o.0252hl7 � A1 A 

1•1 �- � 
(120) 

.3 
+ 0.0752299 LAi r2 - 2 .32o6472 A2 + Ool556967 Af2 - 0 .0198164 f� 

• 1•1 

Equations (119) ,  (120),  and (84) were then used to solve for t1, f2, and 

fJ for selected values of A.  After a value of A had been chosen, an ar-



7S 

bitr817' value or !2 was selected, and Equation (120) was solved for :t3 . 

Equation (119) was then solved for !1 . The values of :t1, !2, f), and A 

were then substituted into Equation ( 84) , and the value of the left side 

of the equation, determined by the constants, was compared with the value 

of the right side of the equation, which is determined by the frequencies . 

Further values or f 2 were chosen until -a set of constants was obtained 

which fit Equation (84) . It was usually necessary to solve the equations 

for four or five values of t2 for a given value of A before a satisfac­

tory solution was obtained . The equations for species .Ag of C2D4 were 

solved in the same manner . The results of the calculations are given in 

Table II . 

.Although there are six possible sets or solutions for rl, r2, and 

!3 for a given value of A, it was not necessar,y to evaluate all of these 

sets . In general, only one set of constants could be obtained which was 

reasonable . However, in species Ag of C2H4, it was found that below an 

A value of 0.265, the solutions for the constants were imaginary. Thus, 

at A = 0 . 265, two sets of solutions coincided, and it was necessar,y to 

evaluate two sets o£ constants at ·higher A vaJ.ues .  The results given in 

Table II, along with the values of the constants determined fran the other 

species which are given in Table III, are shown in graphical form in 

Figures 21, 22, and 23 . In addition, the magnitude of the change in the 

force constant which will produce a change of approximately 1 per cent 

in the corresponding frequencies is shown by a vertical line on the graphs . 

This enables a prediction of how well the frequencies will be fit by a set 

of force constants for aqy value of the constant A .  



TABLE II 

FORCE CONSTANTS* FOR SPECIES Art. OF C2H4 AND C2D4 FOR ARBITRARY 
VALuES OF A 

Molecule A rl r2 f3 

0 .2701 5 . 218 8 . 873 1.400 
5 . 220 8 .414 1.475 

0.300 5 . 225 9 .337 1.339 
C2% 0.35'0 5 . 238 9 . 758 1.302 

0 .5'00 5 . 269 10 .523 . 1 . 282 
5 . 268 7 . 705 1 .764 

0 . 700 5 . 283 ll. 240 1.336 

0.100 5 .317 8 . 020 1.536 

0 .200 5 . 416 8 .5'10 1 .448 

C2D4 0.300 5.517 8 .899 1.399 

0 . 400 5 . 6o8 9 . 231 1 .378 

0.700 5 . 802 10 .153 1 .417 

*The units of A, t1, and !2 are d:yne/cm. x 1cP, and the 
un1 ts or f3 are ergs/radian2 x lo-11. 
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TABLE TII 

FORCE CONSTANTS* FOR SPECIES B3u, B2u, AND B1g OF C2H4 AND C2D4 
FOR ARBITRARY VALUES OF A BE'1VEEN 0.00 AND 0 . 80 

cz��& C2D� 
Species A .rl .r3 A :rl r3 

o.ooo .5.0860 1 .268.5 o .ooo .5 . 2738 1 . 2900 

0.300 .5 .021.5 1. 2992 0 .300 .5 .1631 1.3320 
B3u o .soo 4.9.568 1 .3428 o.soo .5 . 06.56 1 .3837 

0 . 700 4.8731 1 .4o65 0 .700 4 . 9461 1.4572 

.l tl ta A tl fJ,. 

0 . 000 .5 .0847 0 .4313 o.ooo .5 . 2082 0 . 43.56 

0 .300 .5 .1074 0 .4109 0 .300 5 . 2.598 0 . 44.54 
B2u 

0 • .500 .5 .1086 0 .4699 o.soo .5 . 2817 0 . 4686 

0 .700 .5 . 0984 0 • .509.5 0 .700 .5 . 2937 0 • .5049 

A rl rs A r1 rs 

o.ooo .5.0467 0 .6377 o .ooo 4 .8677 0 . 6656 

0.300 .5 .1877 0 .6347 0 .300 5 .1.521 0 . 6433 
BJ.g 

o.soo .5 . 2.56.5 0 .651.5 0 • .500 5 . 30.5.5 0.6496 

0.700 .5 . 3o6o 0.6827 0 .700 .5 .4334 0 .6707 
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*'rhe units or A, f]., and� are �s/cm. x lo5, and the units 

or t3, t4, and t5 are ergs/radi . x J.O- • 
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From inspection of Figures 21, 22, and 23, it is apparent that 

the best set of force constants occurs for a value of A between 0 . 27 

and 0.33 .  Furthermore, the solution in this range of A is unique, 

because at higher and lower values of A, the differences in the force 

constants are considerably larger. From inspection of the figures, 

the best value of A was found to be 0 .317 . The values of the other 

force constants were obtained by taking the average value of each con­

stant at A :a 0 .317 .  This set or constants was then substituted into 

the secular equations of C2H4 and C2D4, and the frequencies of these 

molecules were calculated .  Very slight adjustments were made in the 

constants in order to improve the agreement between caleulated and ob­

served frequencies .  The constants f6, f7, and ra, associated with the 

one-dimensional species, were calculated quite simplY using Equations 

(100) -(105) . The values of the constants are given in Table IV, desig­

nated as Set I .  

The limited range of A for which an acceptable solution for the 

force constants can be obtained is determined primarily by rl, r2, and 

!3, since the values of f4 and r5 for C2H4 and C2D4 remain close to ­

gether throughout the range of A from 0 . 00  to o. 10 . It was observed 

f"rom Figure 22b .  that if !3 were different in species Ag and B3u, a 

better set of constants could be obtained. Such a difference would 

occur if a repulsive force were included between hydrogen atoms on 

opposite ends of the molecule . Although this force was assumed to be 

negligible, a set or force constants, designated as Set II, were chosen 

assuming .t3 for species Ag and B.3u to be different. The best value of A 
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TABLE IV 

FORCE CONSTANTS FOR ETHYLENE 

Constant Set I Set II 

A 0 .3170 x 1oS dynes/em. 0 . 2680 x 1oS dynes/em. 

:rl 5 .1673 5.1550 

:r2 9 . 2550 8 . 8489 

�g 
3 1 .3-370 x lo-11 ergs/radian2 1.4030 x 10-11 ergs/radian2 

,rB3u 1.3370 1.3094 
3 

:r4 0 .4462 0 . 4421 

:r5 0 .6394 0 . 6384 

:r6 0 . 2635 0 . 2635 

:r7 0 .1995 0.1995 

:r8 0 . 5389 0 .5389 

KcH 4.7451 x 105 dJnes/cm. 

Icc 7 . 2498 

KH 1.0588 x lo-ll ergs/radian2 

ku cr 0 .7985 

� 0 .5481 

ku 
1T 0.0298 

� -1.6385 

k 1" 
TT 1 .4087: 
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for this set of constants was found to be 0 .  268 . This set of constants 

is given in Table IV, and in Table V, the calculated frequencies of the 

isotopic ethylenes for both sets of constants are given, along with the 

observed frequencies . The frequencies of C2H3D and C2HD3 were obtained 

for the Set I constants only. The sec.ular determinants of these mole-

cules contain a 9 x 9 block, and the roots or these determinants were 

obtained by use of a digital computer . The roots ( frequencies) of the 

secular determinants or the other molecules were obtained by direct ex-

pansion when the detenninant was thi� or lower order. For determinant 

of higher order, the iteration procedure described by Fletcher and Craw­

ford36 
was used. 

The constants of Set II reproduce the frequencies somewhat better 

than those or Set I,  but the improvement is not great enough to justifY 

including a force or repulsion between hydrogen atoms on opposite ends 

of the molecule . It is interesting to note that the best possible fre­

quency fit for C2H4 and C2D4 would have an average error of 0 . 28 per cent 

in each frequency, due to the failure of the observed frequencies to fit 

the product rule . The average error in the frequencies calculated for 

C2H4 and C2D4 using the Set II constants · is 0.40 per cent, so these con­

stants are almost as good as the best possible set of constants which 

could be determined using a completely general quadratic field. 

The overall agreement of the calculated frequencies with the ob-

served frequencies is slightly better than that obtained by Lancaster, 

Inskeep,-· and Crawford. 16 These investigators used a completely general 

quadralio field, and the fact that tm results presented in this disserta-



TABLE V 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE 
ISOTOPIC ETHILENES 

Species Obs . Calc . Calc . 
and Freq. Freq. Freq. 

Molecule Freq. f{o . (em.-1) Set I % Diff. Set II 

1 .3018 .5  .3000 .1 -0.60 .3000 .5  
Ag 2 1622.5 1607 . 8  -0.91 162.3 .6  

.3 1.34.3 .5  1344.6 +0 .08 1.34.3 . 2 

Au 4 1027a 1027 .0  o.oo 1027 .0  

B]_g 5 .3108 .3099 . 8  -0.26 .3102 .0  
C2H4 6 12.36b 12.39 . 8  +0 • .31 1240 . 9  

BJ.u 7 949 . 2 950 .5  +0 .11 950 .5 

�g 8 950 949 .6  -0.04 949 .6  

B2u 9 .3105 .5 .312.3 .5  +0 .58 .3120 • .3 
10 810 • .3 811 .0 +0 . 09 811 • .3 

.: 

BJu ll 2989 .5 .30.3.3 . 2  +1.46 .3102 .0  
12 144.3 . 5  146.3 .6 +I.39 �.o 

Average Per Cent Error 0 . 49 

1 2260 2186. 7  -.3 . 24 2192 .6  
Ag 2 1.517 • .5 1.531 .0 +0 . 89 1.516�8  

.3 984.5  969 • .3 -1.54 . 984.5 

Au 4 c 726 .�  726 .5  

BJ.g 5 2305 2305 . 1  o.oo 2.311 .6  
6 1011 .1d 1008.1  -0 • .30 1006.9  

C2D4. B1u 7 720 719 .0  -0.14 719 .0  

B2g 8 780 780 .4 +0.05 780 .4 

B2u . 9 2.345 232.3 .6  -0 .91 2.322.3 
10 . 584 58.3 . 4  -0.10 583 .3 

B:3u 11 2200 . 2  2200 .6 +0 .12 2195 .5 
12 1077 . 9  1078 .5 +0 .06 1071;2 

Average Per Cent Error 0.61 
.;' 

84 

% Di!f . 

-0.61 
+0 .07 
-0 .02 

0 .00 

-0 .19 
+0 . 40 

+0 .11 

-0 .04 

+0.48 
+0.12 

�.19 
+6 :40 

0 • .32 

-2 .98 
-0 . 0.5 
+0 . 01 

+0. 29 
-0.41 

-0.14 

+0;�05 

-0� 97 
-0.12 

-0. 21 
-0 .62 

0 .48 



TABLE V 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE 
ISOTOPIC ETHILENES (Continued) 

Species Obs . 
and Fre� 

Molecule Freq. No. {em.- ) 

1 .3019 
2 1585 

A1 .3 10.32 
11 2231 
12 1384 

5 2.335 
6 ll508 

� · - 9 .3095 
C2H2D2 10 676e 

B2 7 752 
8 944 

A2 4 8� 

Average Per Cent Error 

1 2.300 
2 1567� 

A1 .3 1215 
9 3058 .7 

10 646 

5 .3056 
cis- B]_ 6 1039 .,3 
C2H2D2 11 2254 

12 1342 

A2 4 
8 

c 
76.3b 

112 7 842 .5  

Average Per Cent Error 

Calc . 
Freq. 
Set I 

.3016 . 9  
1584. 2  
1017 • .3 
2194 • .3 
1394 . 9  

2.314 . 6  
1149. 2 
3lll .7 

67.3 .0 

75o .4 
950 .0 

889 . 5  

2248 .9  
1566.1 
1209 .7  
3o67 .4 
651.3 

.3067 .8  
. 1048 . 0  

225.5 .7  
1348 .5 

�... � J • 

985 .1 
159 .0  

842 .7 

Calc . 
Freq. 

% n1rr. Set II 

-0.10 .3013 • .3 
-0.05 1583 .4 
-1.42 1025 . 8  
-1.64 ' 2194.0 
+0.79 1.387 .0  

-0. 87 2317 .4 ' 
-0.06 1149.4 
+0.54 .31U.2 
-0.4.3 672 . 9 

-0 . 21 Same 
+0.6.3 Same 

-0.05 Same 

0.56 

-2 . 22 2251. 8  
-0.06 156.3 • .3 
-0.44 · 1219 .4 
+0. 28 3065 . 6  
+0 . 82 652 .1  

+0 • .39 3065 . 8  
+0 .83 1045 . 9  
+0 .08 2254 .8  
+0 .50 1341.5 

Same 
-0.5.3 Sane 

+0 .0.3 Same 

0.52 
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% Diff . 

-0 .,19 
-0.10 
-0.59 
-1.66 
+0 .21 

-0.75 
�0.05 
+0.52 
-0.46 

0 .45 

-2 .10 
-0. 24 
+0 .36 
+0.23 
+0 .95 

+0.32 
+0 .6.3 
+0 .04 
-0.04 

0.46 
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TABLE V 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE 
ISOTOPIC ETHYLENES (Continued) 

Species Obs . Calc . Calc . 
and Freq. Freq. Freq. 

Molecule Freq. No . ( cm.-1) Set I % Diff . Set II % Diff . 

1 2284.5 224.3 .6  -1 .79 2250 . 2  -1.50 
2 1570 . 8  1565 .1 -0.36 1562 .5  -0.53 
3 1285 .7  1286 . 2  +0 .04 1291.5 +0 .45 
5 3045 3053 . 4  +0 . 28 3054. 8  +0 .32 
6 1003 . 5  1003 .1 -0.04 1007 .7 +0 .42 

trans - 9 3064 .9  3081.4 +0 .53 3076 .4 +0 .37 
C2H2D2 10 660e 661.9 +0.30 661.8 +0 .27 

Bu 11 2271 2261 .0 -0.44 2256 .4 -0 .64 
12 1:298.8  1307 .9 +0'�69: 1299 .0  +0 .01 

Au 4 988 989. 9  +0 .20 Same 
7 726 .3 722 .1 . -0 .59 Same 

Bg 8 864b 869 .1 +0.58 Same 

Average Per Cent Error 0.48 0 .49 

1 2280 2252 . 8  -1 .19 
2 1547 1549 .7· +0 .17 
3 1046 .9  1045.2 -0 .17 
5 2.3.32 2315 .1 -0 .72 
6 999 992 .7 -0 .63 

A' 9 3047 '3067 . 7 +0.62 
10 6o9 . 7 618 .3 +1 .40 
11 2222 219.3 . 8  -1.27 

C21ID.3 12 . 1289· 1292 .0 +0.23 

4 764 763 . 7 -0 .04 
A" 7 723 .4 722 . 0  -0 .15 

8 918 .0 922 .4 +(}.40 

Average Per Cent· · Error 0 .58 



TABLE V 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF THE 
ISOTOPIC ETHILENES (Continued) 

Species · Obs . Calc . 
and Freq. 

Molecule Freq. No . 
Fre� 

{em. - ) Set I 

1 3002 
2 1605 
3 1290 
5 3061 .3  

A' 6 1128 .5 
9 3103 

10 713.e 

�HJD 11 2276.1 
12 1401.5 

4 1000 .4 
A" 7 807 .6 

8 943 . 7  

Average Per Cent Error 

&calculated by Arnett and Crawford . 

l?Liquid phase Raman data. 

0Not observed . 

3014. 7  
1590 .5 
1289 .1 
3068 .0 
1129 .5 
3l13 . 7  

719 .7 
2252 .4 
1!Q.7 .4 

1002 .6  
806 .7 
950 .0 

dc�ted. from 'J6-· + \)10 = 1595 .. 1 cm . -1 • 
eBand center uncertain. 

fca.lcul.ate.d from ).) 4 + ).)"6 a 2040 em . -1
. 
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% Diff. 

+0 .42 
-0.90 
-0 .06 
+0. 23 . 
+0 .09 
+0 .34 
+0 .94 
-1.04 
+1.13 . 

+0 . 22 
-0 .12 
+o . 66  

0 .51 
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tion are better than the results obtained ·USing a general quadratic 

field points out the difficulty of' obtaining the best solution f'or the 

force constants by direct solution of the equations involving the force 

constants and frequencies . It should be pointed out that Lancaster, 

Inskeep, and Crawford corrected the frequencies f'or anharmonicity by' 

assuming all of the anharmonic! ty oc curred in the C-H and C-D stretching 

modes . Their resUlts were presented in terms of' the observed frequencies,  

however, and could be compared directly with the reSults obtained in this 

investigation . SYerdlovl7 has also reported a determination of' the force 

constants f'or e�lene using a general quadratic field . The overall 

agreement between observed and calculated frequencies obtained by' Sverdlov 

is slightl;y better than the results obtained in this investigation, but 

the difference. is. smal 1 •- It can theref.ore be concluded that the force 

.field assumed for the etby'lene. molecule. in_ the present investigation is 

quite satisfactorr, and.. li.ttl.e. improvem.ent is possible using a more 

g�al.. field� _ 
The. frequencies calculated f'or C2HJD and C21ID3, given in 

Table V, are the first reported . for_ these molecules, and confirm the 

assignment o�. the. fundamental frequencies . 
- - . 

An .  interesting_ . .  p.atterll.. '!� noted in the dif'ference in the calculated 

and observed C-H. and C-D. stre_tch1 ng .trequ._en.ci.es .  In alm<?st aJ.l cases, the 

calculated values for C -H stretching modes were higher than the observed 

values, while the calculated values f'or C-D stretching modes were lower 

than the observed values . In particular, the calculated values of' sym­

metric C-D stretching modes were much lawer than the observed values . 

This pattern is in line with the expectation that the C-H stretching vibra-

tiona would be more a.nb.amonic than the C-D stretching vibrations . 
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C .  Allene 

The secular equations of C3H4 and CJD4 factor into two third-

order blocks , one daub� degenerate fourth-order block, and one first­

order block . The J and .2J matrices for these molecules are given in 

Appendix I .  The aJ.gebraic equations obtained by expansion of the . sec­

ular equations for species A1, B]_, and B2 of C3H4 and CJD4 are : 

Al: CJH4 

1.0375398 !]. + 0. 0833o69 f2 + 0. 9738883 fJ - 0 . 4075018 A = t_ A1 (121) 
i=l 

0 .0826341 f1f2 + 1. 0056180 fl!3 + 0.0723109 f2f3 - 0. 2556926 Af1 -

0 . 2350480 Af3 - 0 . 8133496 A2 = f._ � A j  (122) 
i, j =l 
iJ'j 

r1r2r3 - 1 . 8832896 A2r1 - o.758624o A2r2 - 4.8240414 A2r3 + 

3 
5.2505789 A3 

= 13 . 9427816 TT .Ai (123 ) 
1•1 

C3D4 - 3 
0 .5�9592 !1 + 0 .0833069 f2 + 0.5402188 f3 - 0 .4075018 A = �/\� (124) 

I 1•1 

o .o413488 r1r2 + o . 2879466 r1r3 + o .o361833 r2r3 - 0.1279445 A£1 -

) I I 

0.1176143 A.f'J - 0. 2436946 A2 = � :A1 A.j (125) 
i, j•l 
i�j 

r1r2r3 - 1.8832896 A2r1 - o.  7586236 A2r2 - 4. 8240411 A2r3 + · "  

5 .  2505192 A3 
= 55 . 68ll474 fr � (126) 

i•l 
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' 1 .0375398 r1 + o .24992o7 r2 + o .9738883 r3 - o .4o75o18 A = 

7 � A1 (127)  

t . I o. 2555o26 r1r2 + 1.oo56180 r�r3 + o .2345742 r2r3 - o . 2556925 A£1 + 

7 
0 .0201709 Af'2 - 0 .235048o At) - 2 .0226665 A2 

= L A1 Aj (128) 
i, j•5 
ifj 

r1r2r3 - 1 .8832896 A2r1 - o .758624o A2t2 - 4 .824o414 A2r3 + 

5 . 2505789 A3 • 4.1792582 n A1 (129) 
1•5 

' o .5419592 r1 + o . 24992o7 r2 + o .54o2188 r3 - o .4o75018 A = 

(130) 

o.l316467 r1r2 + o .2879466 r1r3 + 0 .1261912 r2r3 - 0.1279445 A£1 + 

0. 0201709 Ar2 - 0.117614.3 At3 - 0 .9186097 A2 = t A� Aj (131) 
. i, j•5 

ifj 

r1r?r3 - 1.8832896 A2r1 - 0 .7586236 A2r� - 4. 8240411 A2r3 + 
7 

5 .  2505792 A3 • 15 .1664058 n Ai (132) 
1•5 

B1: C3H4 

r4 = o . 8366495 ( A4) (133 ) 
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CJD4 

f'4 Ill 1 .6720135 ( A-4> . (134) 

The r1 1 s in the above equations are the diagonal 'J matrix elements 

and are defined by the following relations: 

f1 = KcH + 1 .37978 A 

r2 • Kcc + kgg + 3 .17241 A 

r; = Kcc - kgg + 3 .17241 A ' 

f'3 = XH + 0 . 82139 A 

KH sin"2a; k; 
t4 = + 0 .08179 A .  

· · '2KH sin2a; + k� 

(135) 

(136) 

(137 ) 

(138) 

(139) 

The equations for the fourth-order degenerate block were not obtained ex-

plicitly because the solution of' a fourth-order set is impractical . The 

diagonal elements or this block are: 

(CH stretching) (140) 

• 0. 81239 A ( CH 2 rocking) (141) 

f'6 = K (CCC bending) (142) · 

2KH cos2 a (kcr + k1r ) 
f7 = 2 + 0 .06155 A .  (CH2 wagging) (143) 2KH COS C1 + (kcr + k1T ) 

The �quations for spe�ies A1 contain four independent constants, · f'1, 

:t2, :t3, and A. The equations or species B2 likewise contain four inde­

pendent constants, t1, r2, t3, and A .  Thus, if the value of A is  f'ixed, 

the three frequencies or C3H4 or C3D4 belonging to each species enable 

the values of' the other three constants to be determined. The equations 
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for each species were solved for the fi ' s  for values of A ranging from 

0 .00 to 0 .10, since the results obtained for ethylene indicated that 

the best solution for the constants would lie in this range . The equations 

were solved in the same manner as has been described for the equations of 

species Ag of C2H4 . The values of the constants obtained are given in 

Table VI .  In Figures 24 and 25, the values of £1, f2, r2, and f3 are 

plotted against A .  The vertical lines indicate the change in the force 

constant which will cause a change of' approximately 1 per cent in the 

corresponding frequencies . 

From inspection of' Figure . 25 (a) and (b ) ,  it is apparent that the 

value of A lies close to 0.30, because in this region, the curves lie 

closest together. At lower and higher values of' A, the curves rapidly 

diverge, so the solution for the constants at an A value close to 0.30 

is unique. An interesting point is illustrated by Figure 25 (a) . The 

dif'ferenCf! in f'2 and f'� is 2k8g, where k88 is the interactio� constant 

between the two CC double bonds . If' Ic8g were zero, the four curves would 

be expected to lie close together at some value of' A .  It was found that 

this . .  did not occur . However, the values or r2 for spe�iea A1 o:f CJH4 and. 
I C3D4 intersect at almost the same value of' A at which the values of' r2 

for species B2 of' C3H4 and CjD4 intersect . The values of' £2 and £2 differ 

by about .9 . 86, leading to a value of Ic8§ of' about 0.43 . This confirms 

the fact that the interaction constant must be included in the potential 

energy expression. 

The value of' A which. would yield the best set of' force constants 

was determined to be 0 . 290 . The values of' the other force constants for 
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TABLE VI 

FORCE CONSTANTs* FOR SPECIES Al AND B2 OF C.3H4 AND CJD4 PUR 
ARBITRARY VAWES OF A 

CJB4 �31>4 
SE!cd.ee I !i lz !3 I l� l2 � 

0 . 150 5 .0620 10 . 9650 1.116o 0 . 26o No real solutions 

0 . 260 5.0752 10 . 2500 1 . 2087 0 . 270 5. 1265 8 . 9591 1.4100 
5.1153 9. 7850 1 . 29.38 

.&.1 0 • .300 5 .0784 10. 1052 1 .  2.345 
0 . ,300 5 . 1177 10 .2701 1. 2.392 

0.400 5. 08.31 9 . 8768 1. 2908 5 . 1400 8 . 5.3.32 1 .4847 

0 .500 5 .08.37 9 . 77.30 1 • .3409 o .4oo 5.1)58 ll.0961 1. 169 
5. l694 7- 9520 1. 620 

0 .700 5 . 0726 9. 8113 1.4320 
o.  700 5 .191 12 . 3.39 . 1 .145 

5 . 211 7 .5.3.3 1.869 

A t:L ti f) A fl. :t� f) 
o .ooo 5 . 068 8 . 940 1 . 280 0 . 000 No real soluti ons 

0.300 5.1175 9 • .3211 1. 2556 0 .150 4 . 994 9. 570 1. 282 

B2 o.4oo 5 .1156 9.4340 1.2705 0 . 250 5.1926 . 9. 2972 1. 2871 

0 .500 5 . 10.35 9 .5551 1 . 2940 0 .300 5. 2498 9. 24.3.3 1� 2924 

o. 700 5.0478 9 . 8470 1. ,362,3' 0 . 350 5. 2932 9 . 2149 1 .2997 

0.500 5 -3597 9 . 2455 1 . 3319 

0 . 700 5 • .3202 9 .5180 1 . 39&. 

*'rbe units o£ A, fl, t2, and f2 are dynes/em . x 10S, and the 
units of f.3 are ergs/:radian2 x lo-ll . · 
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species A1 and B2 �ere obtained with the aid or. the figures, and are 

given in Table VII . The value of f4 was obtained quite simply by sol v­

ing Equations (133) and (134) .  

Species E is fourth-order, and it would be quite difficult to solve 

the equations of a �ourth -order species in the way the equations of the 

third-order species were solved. However, the C-H stretching frequency 

in C3H4 and the C-D stretching frequency in CJD4 are both much higher 

than the other frequencies in the species, and therefore these frequencies 

can be factored off without appreciable effect on the force constants . 

After the C-H and C-D stretching frequencies were factored off b,y Wilson ' s  

method, 37 it was found that the reduced third-order J matrix was diagonal, 

with elements f5, f6, and f7 . These. constants were evaluated for C3H4 and 

C3D4. Two sets of real solutions. were obtained for each molecule, and 

these sets are given in Table VIII.. Fran inspection of Table VIII, it is 

clear that the two se.ts of constants for C3H4 agree equally well with the 

�o sets . for �304, so. that either set could be considered as correct . An 

approximate average of each of these sets are given in Table VII , designated 

as Set I and Set II . 

When the frequencies of species B1 and B2 of CH2CCD2 were calculated, 

it �as found that the calculated frequencies were divided between the two 

· spe.ci..e.s. differently for the two sets of constants . The observed and cal­

�ted frequenc�es for C3H4, OjD4, and CH2CCD2 for both sets of force _ 

constanta are given in .Tables IX and X .  It is seen from inspection of 

Tables IX and. X. that the. two sets of constants yield frequencies which 

agree with the .observed rre.quencies equ.al.l.y well. However, using the 



TABLE VII 

FORCE CONSTANTS* FOR ALLENE 

Constant Set I Set II 

A 0 . 2900 
f'l 5.1350 
r2 10.1450 Same 

r2 9 .2820 
r3 1. 2550 

f'4 0 . 3707 

r5 0 . 3420 0 .5070 

f6 
= � 

0 .3130 0 .3683 

r7 · o . 28oo 0 .1880 

KcH 4. 7349 

Kcc 8 . 1935 

�g 0 .4315 Same 

KH 1 .0168 

k,. 1 . 3090 

k(r 0 . 2312 0 .7308 

kv 0 . 2642 -0 .4857 

� I The units or A� £]_, f2, £2, KcH, Kcc, and : 
kgg are dynes/em. x 10 , and the units or f'J.,  f4, 
£5, f£i f7, KH, � '  Jr.,.., ko-, and k.n- are ergs7rad1� 
x 1o- . 
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TABLE VIII 

FORCE CONSTANTS* FOR SPECIES E OF C3H4 AND CJD4 OBI'AINED 
FROM REDUCED SECULAR DETERMINANT 

Molecule r5 r6· 

CJH4 0 .3391 0 .3685 

o .5o8o 0 .3660 

. .C.JD4 0.3315 0 .3781 

o .5o6o 0.3706 

*The units Of £5, f6, and £7 are ergs/radian2 X lQ-11 . 
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f7 

0 � 2828 

0 .1905 

0 . 2776 

0 .1855 



TABLE IX 

OBSERVED AND CALCULATED FUNDAMENTAL �UENCIES OF C3Hh, C3D4, AND CH2CCD2 {SET I )  

Specie&: 
dG.- a,, bb.·. 

C.]D� CIIOOD2 
or Obi. 

D2d ·and Fre� Calc . % Fre� Calc . % Fre� Calc . % 
Freq. No . ( em. - ) Freq. Di.ff . ( em. - ) Freq. Diff . ( em. - ) Freq. Diff . 

-- - - . .  

� 2996 3012 . 9  +0 .56 2195 2198 .
"
9 +0 .18 3011 3012 . 4 +0 .05 

A1 2 1440 1454.1 +0 . 98 1228 1228 . 7  +0. 06 1418 1429.3  +0 .80 
3 1076 1077 . 8  +0 .17 874 874.6 +0 .06 924 926 .3 . +0 . 25 

. .  

B1 4 865 867 . 2 +0. 26 615 613 .4 . -0 . 26 a 150 . 0  

5 3006 . 8  3011 . 9  +0 . 17 2230 2209 .9  -0 .90 2226 2204 .7  -0 . 96 
B2 6 1957 1957 .1 +0 .01 1921 1921.1 0.00 1942 1939 . 1  -0 .15 

7 1398 1398 .3 +0 . 02 1034 1019 . 1  -1 .. 44 ll76. 1170 . 6 -0 . 46 

8 3089 . 9  3096 .0  +0 . 20 2325 2295 . 7 -1.05 2334 2295 . 7  -1 . 66 
9 1037 . 9 1033 .0  -0 . 47 843 .3 846 .5 +0 .38 1022 1031 .0 +0. 88 E 10 845 . 2  838 . 9 -0 . 15 668 .1 . 673 .1 +0 . 15 670 688 . 0 +2 . 68 

lL 35� .0 353 . 4 +O . hl. 306 304.1 -0 . 61 327 319.8  -2 . 20 

12 3100 · 3095 . 9  -0 .13 
E 13 858 880 .1  +2 .58 

14 825 195 .0  -3 .63 . 
15 336 335 .5 -0.16 

·-· 

Average Per Cent Error 0.)6 0.53 1 .ll 
-

aNot observed. 
. '0 '0 



TABLE X 

OBSERVED AND CALCULA� . FUNDAMENTAL mEQUENCIES OF C.3H4, C.3D4, AND CH2CCD2 (SET II)* 

Species 
or ·D2d 

and 
Freq. llo . 

8 
E 9 

l.O 
11 

12 
E 1.3 

14-
15 

Obs .  
Fre� 

(em. - ) 

3089 . 9 
1037 .9  

845 . 2  
3.52 .0  

Average Per Cent Error 

0)114 Obs .  
Calc . % Fre� 
Freq. Ditt . (em.- ) 

3096 .7  +0 . 22 232.5 
1031 .1 -0 .6.5 8h3 .3 

839 .8  -0 .64 668 .1 
3.52 .7 +0 . 20 . 3o6 

0 .35 

C.3D4 . ' OH2CCD2 
Obs .  

Calc . % Fre�a Calc . 
Freq. Dit.t . (ca . - · ) �q. 

l 
2298 . 2  -1 .1.5 2334 2298 . 2  

842 . 9  -0 .0.5 8.58 878 . 2  
671 • .5 +0 • .51 82.5 794 . 4  
305 . 0  -0 .32 327 .324 . 0  

3100 3096 . 7  
1022 1029 . 2  

670 686 • .3 
336 .331 .4 

0 .4.5 

% 
Di.tt. 

-1 • .5.3 
+2 .3.5 
-3 .71 
-0 . 92 

-0 .11 
+0 . 71 
+2 .43 
-1.38 
l.OS 

*The frequencies for species Ai, Ba,, and B2 for Set II are identical with those given .for 
Set I .  

ait should be noted that the observed frequencies for species Bt and B2 of CH2CCD2 are 
·assigned differen� from the assignment used in Table IX. 

I-' ' 
8 
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Set I constants, the observed frequencies of species B1 and B2 of CH2CCD2 

must be assigned as follows : 

I. 
Six 2334 cm . -1, 1022 cm . �1, 6ro cm.-1, 327 cm. -1 

When the constants of Set II are used, the frequencies must be assigned 

as f ollaws : 

B1: 2334 cm . -1, 858 cm. -1, 825 cm . -1, 327 cm. -1 
II. 

B2: 3100 cm. -1, 1022 cm.-1, o70 cm . -1, 336 _cm.-1 . 

The assignment given by Schuler and FletchexJB is that shown in Set I o  

This assignment was made by use or the product rule and utilizing the 

frequencies calculated from a normal-coordinate treatment . The 1- matrices 

of �pecies B1 and B2 are identical, so the product of the frequencies or 

species B]_ divided by' the product of the frequencies of species B2 should - l. 
be equ.al to the ratio [ 1 )j �/ I11 IB2r ' which is 0 . 71662 . The ratio of 

�e prod�ts of the frequencies of Assignment I was found to be 0 .72832, 

while that obtained using_ the freqnencies of Assignment II was 0 .75747 . 

The ratio using. the observed frequencies was expected to be larger than 

that predicted by theory, and this is seen to be true for both assign­

ments . However, the value using. Assignment I is 1.4 per cent higher than 

theory predicts, while. the value using Assignment II is 5 .  8 per cent higher 

than predic.ted . On this basis alone, Assignment I would be favored.  It 

should ?e noted, hOilever, that the band centers or the 336 em. -1 and 327 

em.. -1 bands. are not known with certainty, and a change of a few wave 

numbers in the. values of.. these. observed band centers could . alter the 

ratio or the frequency products in such a manner as to favor Assignment 
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II . It should � pointed out that Assignment II was likewise ruled out 

in Schuler and Fletcher 1 s work because only one set of force constants 

were determined b,y these investigators . This set of constants was equiv-

alent to the Set I constants detenni.ned in the present work, and the fact 

that another set of constants would permit the frequencies t'o be assigned 

according �o Assignment II was not apparent . 

There are several reasons which favor Assignment II . The C-H 

stretching frequency and the CH2 rocking frequ.enc:r belong to species B2 . 

The CH2 rocking _frequ.enc:r would be expected to occur at a high�� frequ.enc:r 

than the CD2 rocking or the CH2 or CD2 wagging frequencies . This leads 

to the assignment of the 1022 cm . -1 band as the CH2 rocking frequency, 

and in Assignment II, this frequenc:r is assigned to species B2 .  Another . 

po�t which favors Assignment II is ill.�strated b,y a comparison of the · 

diago� J matrix elements correspon� to rocking and wagging vibrations . 

� .. ��th C2H4 and CH20, :lt was found that the elements corresponding to 

rocking motions were about 2 .5  times those corresponding to wagging motions . 

This indicated that the ratio of l$ to !7 would be about 2 . 5 .  Inspection 

of Table vn shows that the ratio is 1 . 2  in Set I, and 2 .  70 in Set II, 

which 1nd1 cates. that the cons.tants of Set II, associated with Assignment 
- - . 

� are correct. In addition, it was noted that f6 is essentiall.:y the 

same in Set I and Set II, while large _ changes oc� _in- f5 and�-�7 · I:t �s 

believed that the two sets of constants arise be cause of the interchange or 

the frequencies assigned to the CH2 rocking and CH2 wagging frequencies . 

Based on this idea, which will be discussed in more detail in Chapter IV, 

the set .or constants in which t5 is larger and !7 smaller would be favored, 
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and this is Set II . 

The values of the orbital valency force constants, kcr and k 1T ,  

which were obtained have been interpreted to favor the Set I consta�ts . 

However, this evidence is questionable, and does not constitute a strong 

point . On the basis of the points discussed ab�e, the assignment of 

the frequencies of species B}_ and B2 of CH2CCD2 given by Assignment II is 

preferred, along with the force constants of Set II . The frequencies 

calculated for C3H4, Cj04, and CH2CCD2 using the constants of Set II are 

given along with the observed frequencies in Table I .  

D .  Formaldehyde 

The 3- and lJ matrices for CH2() and CD20 are given in Appendix I .  

The algebraic equations ob�ed from expansion of the secular equations 

are : 

A.1 : CH2() 

1.0294386 fl + 0.1458069 f2 + 0 . 9773168 f3 - 0 .3869376 A = 

. 1;;. A1 (144) 

0 .1469742 flf2 + 1.0018655 flf) + 0 .1331234 f2f3 - 0 . 2614682 Af1 + 

3 
0 . 0072278 Af2 � 0 . 2066674 Af'3 - 1.25�6544 A2 

= 2:= Ai- �j (145) 
i, j•l 

ifj 

r1r2r3 - 1.8526558 A2tl - o .7918953 A2r2 - 4 . 5690lo6 A2r3 + 

3 

5 .1781226 A3 a 7 . 4585343 n A 1 (146) 
i•l 
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0 .5338580 t1 + 0.1458069 f2 + 0 .5452658 f3 - 0 .3869376 A • 

f>� (147) 
1•1 
0 . 0747151 f1f2 + 0. 2868724 !1!3 + 0. 0701274 f2f3 - 0 .1j08350 At1 + 

0.0072276 Af2 - 0 .1034130 Af3 - 0 . 4806560 A2 = t >,1 Aj (146 ) 

i, j•l 
ifj 

r1r2r3 - 1 . 8526558 A2t1 - o. 7918953 A2r2 - 4.5690106 A2r3 -

3 
5 .1781226 AJ = 27 . 9159617 n A� 

i•l 

1 .1210226 r1 + 1 . 2123195 r4 - 0.3267272 A = �A1 
5 i-4 

f1f4 - o .  7918953 A2 = 0 . 75476o9 TI Ai 
i-b 

CD20 !) 

(149 ) 

(150) 

(151) 

o .62S4422 r1 + o . 780268o r4 - o .3287272 A =  �I\� (152 ) 

1•4 
5 

f1f4 - o .  7918953 A2 = 2 .2031396 n Ai (153) 1•4 
B2 : CH20 

r5 = o .383465o < A-6> 
CD20 

t5 • o.6o66758 C/\6> . 

(154) 

(155) 

The fi are the diagon� elements or the J matrix and are defined by the 

following relations : 



r1 = Kca + 1.35662 A 

f2 • Kco + 3 .01644 A 
f3 • KH + 0 .83374 A 

+ 0 . 83374 A 

105 

(156) 

(157 ) 

(158 ) 

(159) 

f
5 

= 2Ka cos2o: + (k!- + krr ) + 0 .04.313 A . (16o) 

The equations for each species were solved for arbitrary values 

of A between 0 .00 and 1 .00 . The results of these calculations for species 

Al and B:1. of CH20 and �D20 are giv:en in Table II, and in Figures 26 and 

27, the values of the constants are plotted against A.  The vertical lines 

in the figures indicate the change in the force constants which will 

cause a change or approximatelY 1 per cent in the corresponding frequencies . 

It was found that for � A value between 0 .39 and 0.51, the overall fre-

. qu.ency f'i.t. was essentially' the same . Varying A in this range causes the 

errors in the calculated frequencies to change, but the average error re-

mains essentiaJ.ly the same . An A value of 0.470 was chosen to use in the 

aalcula.ti.ons because this value of A would divide the error among all the . l 

.treqwmcies . The values of the other constants were then obtained by 

taking. the average. values from. the graphs at A = 0 .470 . The value of f'5 

was determined by solving. Equations (154) and (155) • 
. . 

j 

The values of_ the. force. ·c.onstants are g:i. ven in Table ni , and in 

T� . � the �bserved frequencies of CH20, CD20, and CHDO are given, 

along with the. calculated frequencies obtained using the force constants 

giv� _in Table XII. The frequency fit is quite good, a1 though the. fre­

qu.encie.s of C.HDO are not fitted as well as those of CH20 and _CD20 . 



TABLE XI 

FORCE CONSTANTs* FOR SPECIES A1 AND B1 OF CH20 AND CD20 FOR 
ARBITRARY VALUES OF A 

CH20 CD20 
Species I fl. f2 f) A t:t t2 

0.300 No real s olutions 0. 200 4.210 12 . 850 
0 .370 4 .382 11 . 900 1 .607 o .4oo 4 .424 12 .577 
0. 400 4.380 12 .087 1 .592 0 .500 4.480 12 . 576 

A1 0.450 4.376 12 .336 1 .579 0 .600 4 .513 12. 633 
o.5oo 4.370 12 .538 1.575 0.800 4.524 12 . 857 
o.60o 4.353 12 . 864 1.584 
0 .700 4.328 13 .136 1.609 

A - .t1 f4 A .t1 

0 .100 4.324 0.7J60 0.100 4 .369 
0. 200 4.351 0. 7782 0 . 200 4.429 
0 .300 4.377 o. 7810 0.300 4.482 

B1 0 .400 4.397 0 .7902 0.400 4.530 
o . 5oo 4.411 0. 8037 0 .500 4.572 
0.600 4.421 0 . 8216 q . 6oo 4. 609 
1 . 000 4.Ia.o 0 . 9405 1.000 4. 706 
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t3 
1.594 
1.600 
1 .616 
1.639 
1.711 

f4 

0. 8018 
0.7965 
0.7958 
0.7997 
0. 8079 
0 . 8203 
0 .9110 

*The units of A, .t�, and .t� are d1nes/cm. x 105, and the units o£ 
f3 and f4 are ergs/radian x 10-1 • · 
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Figure 27 . ( a) f3 vs . A for Species Al of CH20 and CD20 .  
(b) r4 vs . A for Species Bl of CH20 and 0�20 .  

o, A1, CH20; ¢ , Al, CD20; o , B]., CH20; 
Q , B:I., CD20 . 

108 

0 . 70 



TABLE XII 

FORCE CONSTANTS FOR FORMALDEHYDE 

Constant 

KcH 
Kco 

KH 
ko-
(k ' + k ) rr 1T 

Value 

0. 4700 x 1o' dynes/em. 
4.4500 

12 .4950 

1 .5935 x lo-ll ergs/radian2 
0 . 8022 
0.3ll03 

3 . 8124 x 1oS dynes/cmo 
11.0773 

1. 2016 x lo-ll ergs/radian2 
1 . 2463 
0 .6284 
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TABLE ll!I 

O&�VED AND CALCULATEir"FUNDAMENTAL . FREQUEHCIES OF CH20, CD20, AND CHDO 

Species . CB2<> 
or Oba .  

C2"f' 8Di Fra� Calc . 
Freq. lo . (Clll.- ; )  Freq. 

1 278�. 6 2804 . 2 
A1 2 1743 US3 . 7 

3 1.500 1.502. 1  

B:1. 4 2866a 2880 . 0  
s 1247 . 4 12so.1 

· -

Bt 6 ll67 ll73.4 
- . . 

Average Per Cent. Error 
- - ... 

aBand center uncertain. 

% 
Dift . 

' 

+0 . 82 
+0 .62 
+0 . 34 

+0 .49 
+0.18 

+O.S5 

o.so 

.. .  

CD!O 
bba . 
Fre� Calo . 

(em.- ) Freq. 

2�6 20�1.6 
1700 1694.7 
llo6 1100 ., 

216o 2132 . 8  
990 988.0  

938 932 .9 

• 
Dif£9 

' ' 

-0 . 22 
-0 .31. 
-0 .50 

-1. 26 
-0 . 20 

-o . S4 

o .. St 

r. 

Obi. 
he� 

(em.- ) 

284h.l 
2120 . 7 
1723 .4 

1400 
1041 

1074 

CBDO 

Calo. 
Freq. 

2843 .8 
2093 .3 
1720 . 0  

1397 . 6  
1029 . 2  

1o6o . o  

' . .. ·� 

� 
Dirt . 

-0.01 
-1. 29 
-0. 26 

-0 .18 
-1. 13  

-1.30 

o.?O 

� 



111 

E .  Ketene 

The secular equations of CH2CO and CD2CO contain factors of 

fourth, third, and second order. The 1 and 1J matrices for these mole-

cules are given in Appendix I .  Rather than give the aJ.gebraic equations 

for each species, only the diagonal force constants of the s matrix 

will be given. These constants are : 

A1: f1 = KcH + lo.30884 A 

. f2 = Kcc + .3 .1o229 A 

t.3 = Kco 
f'4 = KH + 0.89672 A 

(CH stretching) 

( CG stretching)· 

(CO stretching) 

(CH2 deformation) 

f$ = KHk cr 
2fH + ka- + 0 . 89672 A (CH2 rocking) 

f, 
f6 = K6 

r7 • K€ 

(ceo bending) 

(ceo bending) 

( CH2 wagging) 

(161) 

(162) 

(16.3 )  

(164) 

(16.5) 

(166) 

(167 )  

(168 ) 

The equations of species B1 were solved initially for CH2CO and 

CD2CO .  However, it was found that no reasonable solutions for the con-

stants coul.d be - ·obtained for species B1 of CD2CO for A values between -0 . 20 

and 0.70. Reasonable solutions for the constants for species B1 of CH2CO 

were obtained for A values from 0. 20 to o.5o, however . Because of this 

difficulty, species A1 was then considered.  In order to reduce the fourth-

order-- -�!ock to a third-order block, the CH and CD stretching frequencies 

were factored off by �son ' s  method • 
.37 The resul�ing third-order sec-
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ular determinants -were expanded and the equations were solved for t2, 

r3, -�d r4 for values of A between 0.20 and o.4S.  It was found that 

below an A value of 0.30, the solutions for the equations for CH2CO be­

came imaginary, while above an A value of 0.25, the solutions .fo.r �e . 

equations of CD2CQ became imaginary. However, at an A value of 0.30, a 
. . . ' ' . .  

set of constants was determined for CD2CO which almost satisfied the 

equations; and which agreed quite well with the con.stants found using 

the CH200 data at A = 0 .30 . Therefore, the value of A was chosen as 

0 .30, which agrees with the A values obtained for ethylene and allene . 

The values of the diagonal constants of apecies A1 were then obtained 

from graphs of the cons�ts versus A • 
.. 

After the value of A had been fixed by the results of species A1, 
� constants ro:: �pec�es � we.re evaluated using the data for CH2CO only. 

When the frequencies for CD2CO were calcUlated, it was found that an 

appreciable error occurred only in ).)6 and v7, which belong to _species 

B]. .  It is clear that these observed frequencies cannot be fitted better 

without generalizing the potential. f'ield. The constants involved in 

species B2, f7 and £5 , were evaluated quite easily, since the species is 

second-order and the off -diagonal 3 element is zero. The force constants 

obtained are given in Table XIV, designated as Set I .  

It was noted during the calculations that the values of £2 and !3 

could be cl;langed considerably without appreciably altering the frequency 

fit. Another set of force constants was obtained by trial . and error in 

which the only significant changes were in f2 and f3 . This set of con­

stants is designated as Set II, and is given in Table XIV .  By compari-
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TABLE XIV 

FORCE CONSTANTS FOR KETENE 

Constant Set I Set II 

A 0.300 x 105 dynes/em . 0 .300 x 105 dynes/em. 
f'l 5 .3800 5 .,3800 
f'2 11 .0404 9 . 2500 
r3 • Kco 12 .3161 14.3900 

f'4 1.1671 x 10-ll ergs/radian2 1·.1600 x lo-ll ergs/radian2 
f5 0.4230 0 .4230 
f6 = K� 0 . 9110 0.9110 
!7 = K� 0 �71529 0 .71$29 
f8 0.11436 0 .11436 

. � 

KcH 4. 9874 x lo5 dynes/em . 4. 9874 x 105 dynes/em. 
Kcc 10.1097 8 .319.3 

KH 0 . 8981 x lo-ll ergs/radian2 0 . 8913 x lo-ll ergs/radian2 
kcr 0 . 3717 0 .3723 
(k ' 

o- + klT ) . 0.1338 . 0 .1334 
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son with the Set I constants, it is seen that r2 has been lowered about 

16 per cent and f3 has been raised &bout 16 per cent . In Table XV, the 

observed frequencies o:t CH2CO, CD2CO, and CHDCO are compared with the 

frequencies calculated using both sets of' force constants . The constants 

of Set I are seen to yield somewhat better frequencies than those of Set 

II, but the difference is small. 

The reason that f'2 and f'J can be varied so much without affecting 

the frequency f'i t significantly is because the diagonal l:J matrix elements 

corresponding to f'2 and f3 are nearly" the same, 0 .166614 and 0 .145807 . 

This fact, along with the fact that the values of f2 and f'3 are rather 

close, means that as long as the sum and product of' f 2 and f'3 remain 

essentially constant, the frequency fit will remain essentially the same . 

Using the Set I constants, the sum and product of . f2 and �3 are 23 .36 .and 

135 . 97, while for the Set II constants, the sum and product of f'2 and f'3 

are 23 .55 and 132 . 28 .  The changes in the sum and product of f2 and f'3 are 

small, so the calculated frequencieS" using the two different sets will 

differ only slightly. Therefore, the value of f'2 can be chosen from · 9.25 

to 11 .04, with a corresponding value of f3 .from 14.30 to 12 .32  without 

causing a significant change in the calculated frequencies . 



TABLE XV 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CH2CO, 
CD2(}0, AND CHDCO 

Species Obs .  Calc . Calc . 
and Freq. Freq.  

Molecule Freq. No . (��) Set I % Diff . Set II % Dif'f. 

1 3069 3072 . 1  +0 .10 3070 . 4  +O o 04 
Al 2 2151 2161 . 5  +0 .49 2173 .3 +l o04 

3 1388 1392 . 5  +0 .33 1383 . 8  -0 .30 
4 1120 1121 .1 +0 .10 1102 .5 -1 .56 

CH2CO 
5 3166 3181 .5 +0.50 
6 978 976 . 9  -0 .10 Same Sane 
7 588 588 .7  +0 .10 

8 788 765 . 8  -1. 80 
9 528 543 . 9  +2 . 70 

Average Per Cent Error 0 . 69 0 . 90 

1 2265 2260 . 8  -0 .18 2240 . 7  -1 . 08 
Al 2 2119 2122 . 4 +0 .16 2153 . 2  +1. 60 

3 1228 1216. 8  -0. 92 1195 .1 -2 .69 
4 890 909 . 5  +2 .19 903 . 8  +1 .55 

CD2CO 5 2375 2368 .1 -0 .35 
6 7988 854.5 +7 . 00 Same Same 
1 .5Job 498 • .5 -�.6o 

B2 8 712 695 . 8  -2 . 21 
9 450° 460 .3 +2 .50 

Average Per Cent Error 2 .35 2 .73 
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TABLE XV 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CH2CO, 
CD2(:0, AND CHDCO (Continued) 

Species Obs . Calc . Calc . 
and Freq. Freq. 

Molecule Freq. No. 
Fre� ( em . - ) Set I % Diff . Set II % Diff . 

1 3115 3131.3  +0.52 3130 . 6  +0 .50 
2 2150 2147 . 4  -0 . 12 2167 . 7  +0 . 82 

A' 3 1293 1292 . 1  -0 . 07 1278 .3 -1.14 
4 1046 1086. 5  +3 . 87 1073 • .3 +2 . 23 
5 2309 2305 . 4  -0 . 16 2296 . 2  -0 .55 

CHDCO 6 d 869 . 4  868 . 6 
7 d 534. 0 5.34 . 0  

A" 8 d 726.) 726 • .3 
9 508 511.6  +0 . 71 511 . 6  +0 . 71 

8cal.culated from product rule . 

bcalcula ted .from Z ·\)1 = 106o em . -1 . 

°Calcul.a ted from 2 }) 9 = 900 em .  -1 • 
dHot observed . 
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F .  Diazomethane 

The secular equations of CH2N2 and CD2H2 contain factors of 

fourth, third, and second-order, just as those or CH200 S:lld CD2CO. 

The 'J and l:5 matrices for CH2N2 and CD2N2 are given in Appendix I o 
The diagonal elements of the :1 matrix are :  

A1:  f1 = KcH + 1. 27825 A (CH stretching) 

f2 = KeN + 3 . 04253 A (CN stretching) 

f) = KNN ( NN stretching) 

f4 = Ka + 0 . 93149 A (CH2 deformation) 

B]_ :  KHko-f$ 
= 2IH + ka- + 0 .93149 A (CH2 rocking) 

f6 • Kb (ceo bending) 

B2 : f7 = K€. (ceo bending) 

2Ku cos2a (k!- + k,. ) 
(CH2 wagging) fa = 2Ka cos2a + (kc!- + � ) + 0.03879 A .  
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(169) 

(170) 

(171) 

(172) 

(173 ) 

(174) 

(175) 

(176) 

The frequencies or species B1 and B2 or CD2N2 have not been deter-

mined satisfactorily, and this means that the value of the constant A 

must be determined from species A1 . The C-H and C-D stretching frequencies 

were factored off by Wilson' s method,37 and the resulting third-order de-

terminants were solved for r2, f3, and .f4 for both CH2N2 and CD2N2 .  It 

was found that the constants did not agree at all well for positive values 

of A .  In view of this, it was thought that factoring off the C-D stretch-

1ng frequency was causing an error to be introduced into the equations, 

since the C-D stretching frequency is very close to the N-N stretching 
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frequency. In order to check this, botn of these frequencies were 

factored of£, yielding a second-order �eterminant containing the con­

stants t2 and f'4. However, the values obtained wer.e very nearly the 

same as those obtained when onl.7 the C-D stretching frequency was fac­

tored off. 

The calculations were then extended to negative values of A ,  

since it appeared that a satisfactory solution could be obtained at a 

negative value of' A .  It was found that at an A va;Lue between -0 .. 2$ and 

-0.30, the best solution could be obtained . In this region of A values, 

it was noted in the case of CD2N2 that the values of t2 and f'4 obtained 

from the third-order determinant differed considerably from those ob­

tained from the second-order determinant. The best value of A was de­

termined to be -0 .287, and because of the disagreement in f2 and f4 

obtained from the third-order and second-order determinants, it was 

necessar.r to adjust the values of the other constants which were obtained 

from the graphs in order to obtain the best solution. The constants 

obtained are given in Table XVI, designated as Set I .  The constants for 

species B1 and B2 were obtained b,y solving the equations of these species 

for CH2N2 only, since the correctness of the reported frequencies for 

CD2N2 is questionable . 

In order to illustrate the impossibility of f'i tting the frequencies 

when a positive value of A is used, the values of the constants obtained 

from the CH2N2 equations for an A value of 0.3.5 are giv�n in Table XVI, 

designated as Set II . In Table XVII, the calculated frequencies of CH2N2 

and CD2N2 using both sets of constants are compared with the observed 



Constant 

A 
r1 
f2 

f3 = KNN 

r4 
r5 
f6 = K b 
r7 = Kf 

ra 

KcH 
KeN 

KH 
ko-

(k ' 
a- + klT" ) 

TABLE XVI 

FORCE CONSTANTS* FOR DIAZOMETHANE . 

Set I' 

-0. 2870 
5 . 2000 

5 . 7000 

16 . 3800 

0 . 9800 
0 . 6475 
0.4286 
0.3669 

0.1615 

5.5669 
6.5732 

1 . 2473 
6. 8638 
0 . 2645 
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Set II 

0.3500 
5.3800 
4.3480 

16 . 9153 

1 .·2922 
0 .6279 
0 . 4298 
0.3669 

0 .1615 

4 . 9326 
3 . 2831 

0 . 9662 
0 . 8781 
0 . 2402 

· *-rhe units of A, t1, t2, KNN, Kc!b · and KeN are dynes/em. x 105, 
and the units or t� t5, K& , K€ , !8, KH, k(T"' , and (k� + k-rr ) are ergs/ 
radian2 X 10-11. 
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TABLE XVII 

OBSERVED AND CALCULATED FUNDAMENTAL FREQUENCIES OF CH2N2 AND CD2JJ2 

Species Obs .  Calc . Calc . 
and Fre� Freq. Freq. 

Molecule Freq. No . (em. - ) Set I % Dif'f . Set II % Diff. 

1 3076 3032 . 4 -1 .41 3062 . 6 -0.44 
A1 2 2102 2110 . 4 +0 . 40 2100 .4 -0 .08 

3 1h14 1409 . 5 -0 .32 1411 .5 -0 .17 
4 852 832 .3 -2 .32 850 .3 -0. 20 

CH�2 5 3185 .3190 . 6 +0 .18 3184 . 6 -0 .01 
6 ll1l 1111 .0 0 . 00  llll . O  o.oo 
7 42 2  422 .0 0 .00 422 . 0  o.oo 

B2 8 898 898 .0 o.oo 898 .0 o . oo 
9 408 408 . 0  o.oo 408 .0  0 . 00 

1 2241 2251 .5 +0 .47 2206 .3 -1 . 55 
2 2088 2058 .5 -1.42 2097 .0  0.43 

A1 3 1213 1209 . 7 -0. 27 1060 . 9  -12 .6 
4 662 685 . 8 +3 .6o 805 . 8 +21 .7 

CD2N2 5 2406 2414. 2  +0.34 2371 . 9  -1 .43 
6 a 874. 9  889 . 8 
7 a 390 . 9  390 . 4 

B2 8 a 726.3 726.3  
9 a 387 . 6 387 .6 

aNot observed. 
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frequencies . From inspection of Table XVII, it is seen that the fre-

quencies agree well for the Set I constants, while for the Set II con-· 

stants, the calculated values of V3 and V4 or CD2N2 do not agree with 

the observed freqnencies .  

It should be pointed out that the negative value of A indicates 

that there is an attractive force acting between the hydrogen atans and 

one of the nitrogen atoms in the molecuJ.e . The force field was set up 

assuming that a repulsive force exists between the central nitrogen atom 

and the hydrogen atoms . Therefore, the 3 matrix is strictly correct 

onlY. for positive values of the constant A, since the form of the repul-
I 

sive potential differs from that for an attractive potential . 



. CHAPTER IV 

DISCIJSSION OF RESUI:rS 

The discussion or the force constants which have been obtained 

can be divided into two parts . The first part deals with tts · evaluation 

of the :J matrix elements , and the second part deals with the interpreta­

tion or the values obtained tor the constants comprising tb! 1' elements . 

A. The 'J Matrix Elements . .  

The potential field which bas been asSUJJed in this investigat ion 

is of such a form that all or the ott-diagonal 3 matrix elements are 

e ither zero or are fUnctions of a single constant, A. Therefore ; in an 

J matrix of order n, there are (n + 1) independent constants which rust 

be evaluated.  Consider the J matrix for a third-order specie s of a mole ­

cule . If' the value of one of the four independent constants in this matrix 

is fixed, then the three frequencies or tb3 molecule belonging to this 

species furnish sufficient data to enable the other three constants to be 

evaluated. However, the�e are six possible sets of oo lutions for the three 

constants, and the question as to which one of these sets or solutions is 

the correct ore is of interest . It should be pointed out that t_!J,e- sets 

ot solutions may be real · or :bnaginary , . bu.t the sets or :imaginary solutions 

will occur· in pairs . 

. As an example , consider the C02 molecule. This mole cu.le possesses 

two non-degenerate vibrational modes and one doubly-degenerate vibrationai 
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mode . S ince each vibrational mode belongs to a different spe cie s ,  the 

'J and � matrices for th is molecule are diagonal . Tm three :frequenc:ie s 

ot the mole cule are known , but it will be assumed tha t the fl"equencie s 

have not b een assi gned to the ir respe ctive spe c ie s . If the elements of 

the s matrix are designated t1, t2 , and £3 , and the elements or the tJ 

matrix are des ignated g1, g2 , and g3, the se cular determinant will be 

r1�- :A 0 0 

0 f2g2 - "A 0 = 0 . (177) 

0 0 f,Jgj - )\ 
The six sets or solutions for the fi 1 S  in this s imple case are all real, 

and are given below. 

Set Number 
I II III IV v VI 

;..1 /\1 A2 A2 AJ AJ 
gl gl gl gl gl gl 

£2 
A2 /\J A l /\3 /\ 1 A2 
g2 g2 g2 g2 g2 g2 

fJ 
AJ .A2 i\3 Al A2 .Al 
g.3 . g3 g.3 g.3 g3 g.3 

From inspe ction or the six sets or solutions , it is seen that in this 

case , each constant is determim d by one ot tle three frequencies 1 and 

that the six sets or s olutions arise be cause or t:te six ways in which 

the three frequencie s can be permted . The corre ct solut ion is detenn ined 

by properly as signing the f'requenc:is s to tb3 different modes or motiono 

In a third -order specie s ,  there will usually be off -diagonal ele ­

ments in both the 'J an� lJ mat�ices, and the re fore t he  �!£-diagonal ele -
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menta of the se cular determinant will not vanish. This nea� tpat a 

diagonal force constant is no longer determined by one or the frequencie s ,  

but is influenced to sane extent by all or the frequencies bttlonging to 

the specie s.  This is expected, since it is recognized that the symm.etey 

coordinates are usually. only approximations of the normal coordinates .  

Howeyer, in spite or tba fact that a�l or the frequencies are affected 

at least a little by each of the diagonal elements, there is . still a one -, 
to-one correspondence between frequencies and s:ymmetry coordinates,  and 

in a specie� with three vibrations tmre are six ways or rUing ·this one­

to -o�e correspondence . This reasoning applies to 3 matrices of any order . 

Thus, if the matrix is of order n, tlEre will be n ! possible sets of solu­

tions for the diago� constants when the value s of the off-diagonal con­

stants ·are f'i:xed . When the off-diagonal elements are small and the sym-

metr,y coordinates do not mix appreciably in the normal coordinat�s,  this 

one -1io-one correspondence has the same significance as in the case or car-

bon dioxide . If, however, two of the symmetry coordinates are mixed 

strongly in the normal coordinates ,  the significance of � rmu.ting the 

frequency assigmaents becomes difficult to interpret.  

In many cases,  om or the frequencies in a species can be assigned 

unambigious� to a motion described by a symmetr.y coordinate which approxi� 

mates a normal coordinate closely. This is gemrally tru.e when tm spe cies 

contains a C-H .stretching vibration, and ·is responsible for the success of 

the factoring off of' such frequencie s .  It is interesting to  note ·that if 

a frequency is factored off from a th::frd-order S p3 Cie s ,  the number Of sets 

or solutions far the d:iagonal constants is reduced from six to two . This 



reduction is brought about because the frequency which bas been factored 

orr has been associated with om of the force constants, and tb:i two re-

maining frequencies can be perm ted only two ways . 

An indication of how well sylllnetry coordinates approximate tre 

normal coordinates can be ootamed from a study of the isotope sh� . 

which occurs when the hydrogen atoms in a mole oule are replaced by deuterium 

atoms . If a vibrational mode is essentially a motion in which only the hy­

drogen atoms move , the band should be shifted by appro:z:i:matel;r · � when 

tre h,Urogen atoms are replaced by deuterium atoms. On the other hand, if 

the vibrational mode is predominately a motion of other atoms or groups 

of atoms in the molecule, the :isotope shift would be small . By inspection 

of the frequencies , it can be quickly determimd whether the�observed isotope 

shifts are close to that which would occur if the symmetry coordinates we re  

the normal coordinates . If the isotope shifts are in the range which one 

would expect from a cons ideration of tre syn'lretry coordinates ,  then these 

coor�ina tes should be good approximations of tM nomal coordinates for 

both the light and heavy molecules .  

Inspe ction of the frequencies or species  Ag of  C2H4 and ·c2D4 on page 

84 reveals tba t the isotope shift is very nearly what om w�ld ext:e ct if 

the symnstry coordinates were equal to the normal coordinates,  while the 

frequencies of spe cie s  Al of CJH4 and CJD4, given on page 99; indiCate that 

the symmetry coordinates do not approximate the normal coordimtes very 

well for at least om of the molecules . 

Too calculations carried out in determining the S matrix elements 

of spe cies Al of ketene illustrate an interesting point . If too product 
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or one or tm diagonal 1 matrix elements and the c orrespoming tl 

matrix e l.enent is approximately the sane as the product of another ; 

matrix element and t'M corresponding l:J matrix element, then it :is 

not possible to determine these d:iagonal J elements accurately.· · In 

species Al of ketene, it was found that two of the diagonal '3 matrix 

elements could be changed 15 per cent (one raised, tm other lowered) 

without ap!X'eciable affect on the calculated frequencies .  In order to 

detemim the corre ct values or these constants , fu.rtbar independent 

data must be obtained,_ such as centrifugal distortion const�ts . 

B .  Besults ani Conclusions 

1. Repulsive Forces Between Non-bonded Atoms 

The results obtained for ethylene, allene , formaldehyde and ketene 

show that there is an appreciable repulsion between the non�ond&d carbon 

and hydrogen atoms in ethylem , allene , and ketene , and between tm non­

bonded oxygen am hydrogen . a tans in formaldehyde . Tm repnlsi ve forces 

between non-bonded h,C.rogen atoms has been foUDi to be negligible, in 

agreement with tm results obtained by Linnett , Heath am Wheatleyl.3,14 

in their work on methane, .tormaldeby'de ,  and ethylene . Tba results ob-

tai:ned for diazomethane indicate that there is a force of attraction 

rather than repulsion acting between the h�rogen atoms and one of .the 

nitrogen atoms . This point will be discussed later. 

The VallE S of the constant, A :: i(' a2v ) ' which were obtained for 
a a2 

ethylene , allene , formaldehyde, ketene, and diazomethane are 0 . 317, 0 . 290, 
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o.4n, 0 • .300, and -o.�87 x lo5 dynes/em. ,  respectively. If tts· hydrogen 

atoms are considered as He atoms and the carbon and oxygen atoms are con­

sidered as Ne atoms, the force of repu.lsion based on a Iennard-Jones 

potential can be appro:xima�d by calculat� the geometric tnean or the 

He --He repulsion and Ne --lle re·pulsion at the distances which separate 

the atoms in the mole cules .39 Tm results obtained for ethy�ene , allene , 

formaldehyde, ketene , and diazomethane are 0 . 26, 0 • .3i, 0.6.5 , 0 • .34, and 

o.4o x lo5 dynes/em. , respectively. The only s :igni!icant fact obtaimd 

f'rom these calculations is that the value of A for formaldehyde is ex ­

pected to be considerably higher than the values for tiE othe r molecules ,  

and this was f'ourd to be the· case. The close agreement between the A 

values which were determined in this investigation and the c8.leu�ted 

values obtained based · on a Iennard ,Jones potential may be ra�mr for­

tuitous , because or the approximations involved, but it is interesting that 

the figures obtained from two entirely dif'f'erent sources agree as well 

as they do. 

It was pointed out in �hapter II that it was necessaey to include 

limar terms in the potential energy expression, because these terms give 

rise to quadratic terms when tte redundancies in the coordi.Jll.tes are 

eliminated. These quadratic contributions, expressed in te%11JS of B in 

the .potential emrgy expressions , are quite small, and calculations carried 

rut f'or ethylene , allene , and formaldehyde show that these terms can be 

negle cted without appreciably affecting tb! best numerical values or the 

1 matrix elements . However, if' these terms ·involving B are negle cted, 

the values of the orbital valency force field oonstants are changed con-
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siderably in some instances , aXJi it is therefore ne cessary to include 

these tenns . 

The negative value of the constant A which wa s  obtained for diazo -

methane indicates that there is a net force of attraction betwee n t:te by-

drogen atoms and one of the nitrogen atoms . Therefore , the potential 

field used for diazome thane is incorrect, because ·terms accounting for 

an ele ctrostatic interaction should be included . Howeve r, the fact that 

tm potential fie ld used is incorrect does not alter the con�usion that 

the attractive l'oroe exists . 'The expianation or tm electrostatic attrao-

tion between the h�rogen atoms and one of the nitrogen atoms is no� very 

clear. The two resonance forms which have been proposed for , diazonsthane 

are 

· am 

(I) (II ) · 

In order to account for an ele ctrostatic attracti on betwee n the hydrpgen 

atoms and one of the nitrogen atoms based on tb9 se resonance forms , one 

must conclude that the positive charges which are indi cated are shielded 

quite well by the Sllrrounding electrons , and the hydrogen nucle i are 

attracted by the net negative charge . · Based on such a picture , stl'Ucture 

(I) �ould be expected to be de cidedly predominant . 

. It is interesting to note that although ketene and diazometbane 

are isoele ctronic, no indication of attractive forces between the hydrogen 

atoms and the central carbon or oxygen atom in ketene was found . A�tbough 
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the electron distribution in ketene is th� sane as that shown in struc­

ture I of diazomethane , it is not surprising that no force or attraction 

between the hydrogen atoms and the central carbon or oxygen atom in 

ketene exists , because little localization or charge like that predicted 

for diazomethane is expected. Thus , even though d:iazomethane and ketem 

are similar in structure , it is understandable that the attractive ' force 

is found in diazometham only. Further cal.cnlations using a potential 

.function which takes this force into account should be carried out for 

diazomethane . 

2 .  The Orbital Valency Force Constants 

The force constants which were obtained in this investigation are 

summarized in Table XVIII . In tne following discussion of these constants, 

the values obtained for diazomethane are no� considered, since the values 

of the constants· would be changed appreciably if the electrostatic attrac-

tion between the nitrogen atom and the �drogen atoms had been taken into 

account. The values of the constants obtained for form.al.dehyde agree 

well with those obtained by Linnett, Heath, and Wheatley·. l4 However, the 

values obtained for ethylene do not agree with the results obtained by 

these authors, due to revisions which ha�e been made in frequency assi�n­

ments and our redefinition of some of the force constants . 

a. The stretching vibrations . The C-H bond stretching constant · 

was found to be almost the same in ethylene and allene, and only slightly 

higher in ketene . For formaldehyde, the constant was found to be · about 

20 per cent lower than for the other molecules . This low value was ex-

pected, however, because the C-H stretching frequency in formalde�de is 
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TABLE XVIII 

SUMMARY OF FORCE CONSTANTS 

M O L E C U L E 
Constant C2!!S C.l!!l CH2() CH2CO CH2K2 

A 0 . 317 0 . 29() 0 .470 0 .300 -o. 287 

KcH 4 .145 4. 735 3 . 812 4 . 987 5 .567 

Kcc 7 . 250 8 . 794 10 .1-8 . 3  

Ic88 0 .432 

Kco 11. 077 12 . 3-14 . 3  

KeN 6 . 573 

KNN 16. 380 

x 10.5 dynes/em. 

KH 1 . 059 1. 017 1. 202 0 . 89.5 1. 247 

� - 0 . 799 

� o. $48 

kcr 0. 731 1. 246 0. 372 6. 864 

� -1 . 639 

� . 0 .030 

k1T" -o.486 

(k!- + klT ) 0 . 628 0 . 133 0 . 265 

k.,.. 't1" 1 .409 1 . 309 

K s  0. 911 0.429 

K� 0. 368 o . 11S 0 . 367 

x toe-ll ergs/radian2 
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:mnch lower than in the other molecules .  The C� bond stretching con� 

stant for allen� is larger than that for ethylene . For ketene, the 

value is about the same as that found in allene . The CeO bond · stretch-

ing constant is larger in ketene than in formaldehyde, as was expected. 

b .  The . torsional vibrations . The torsional modes in ethylene · 

and allene are quite similar, even though there are two sets of over- . 

lapping 1T orbi tala in allene and only one set in ethylene . The values 

of k� for ethylene and all�e were found to be 1.409 and 1.309 x lo-ll 

ergs/radian2, respectively . . Although these constants differ by about 7 
0 • 

per cent, they would be brought in.to exact agreement by raising the . 

frequency or the vibration in allene 1.8  per cent or by loweririg the 

fre�enay in ethylene 1 ._8 per cent . ThUs, the values of k� for ethylene 

and allene are in excellent agreement . It �hould be pointed out· �at 

the- torsional vibration is the most clear� defined vibration in terms 

or the orbital valency force field, and the results indicate that the 

concepts are valid. 

c � !!!_ planar � �-planar bending vibrati ons . ThE7 . c-� bond 

bending constant, KH, was found to be about the same in ethylene �d 

allene . The value found for ketene is considerably lower than that for 

ethylene and allene, while the value for formal.dehyde is much higher . 

I� i� interest�- �o note that �en a ·large value pf KcH is obtained, 

the value of KH is smallr. This can be explained qualitatively by a con­

sideration of the effect or b�nd stretching and bending on the orbital 

overlap in (J bonds . The cr orbitals have cylindrical symmetry, and if 

the charge is conc entrated near the bond axis, it may be expected to ex-
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tend farther along the axis than if the charge is not concentr�ted near 

the bom axis . A long, thin cr orbital on the carbon atom �ould resu.l t 

in a s�ler stretching constant than far a shorter but fatter orbital 
, . 

because the decrease in overlap is less for a given nuclear displacement 

in the case of the l�ng thin orbital. When this same reasoning i� 

applle.� to the angular distortion, �e see that the long, thin orb� tal. 

should indeed produce the larger force constant for an angular distor-

tion. 

The constants designated by kor are associated with the change 

in overlap of a- bonds during planar rocking vibrations . It was assumed 

that the .,. orbital overlap is not affected by these vibrations . This 

would be true if the Pz atomic orbi tala retained their axial symmetry 

in the molecUle, but they certainly do not do this . How much error this 

introduces in lea- is impossible to tell . 

The values which were f ound for k� and �<r for ethylene are 0•799 

and 0 .548 x lo-ll ergs/radian2, respectively. The valu�s are ·reasonable, 

.
although the value of � seems rather high,

_ 
because th� overlap change 

with which this constant is associated is small. However, the values of 

the rocking frequencies for species B2u and BJ.g are . 810 .3 cm .-1 and 1236 

cm.-1, respectively, an� the fact that the B2u rocking frequency is 

fairly high shOW's that � is fairly large . It should be pointed out 

that kt- was defined so that the potential energy change arising frdm 

rotation of the cr orbitals during the B:l.g rocking vibration is k� (�� ) 2, 

where � E,  is the angle through which each of the cr orbitals rotate . On 

the basis of the change in orbital overlap, the value of k} w�d be ex-
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:pected to be

. 
smaller than 4.k� , but not necessarily smaller than k%­

i tselt . This is just what is found and · the relative magnitudes are 

quite reasonable in terms of the physical picture . 

In deriving the orbi� valency force constants for allene . which 

involve kcr and k1T , the assumption was made that the orbitals of the cen­

tral carbon atom remain fixed during the vibrational _motions . Using 

this model, the value of ko- for allene would be expected to be close to 

the value of kib- for ethylene, and the value of k,r for allen�.
·�ouid be 

e�ected to be close to the value of k} .�or ethylene . However, ko- is 

consid�ably larger than �o- ' while Icrris · considerably smaller than k} . 

The fact that kcr of allerie is larger than k� in ethylene is difficult 

to explain, because the possibility of a rotation of the orbitals of 

the central c arbon atom in allene, whicll was not taken into account, 

would lead to the conclusion that lea- would be equal to or less than k� 

in ethy-lene . However, the a- orbitals on the central carbon in allene 

arise from sp hybridization, while those in ethylene rise fr.om sp2 hy'-
bridization, and this may infl�ence the values of �he constant�. . It 

should be pointed out that although k o- in allene is about 3.5 per oent 

larger than k� in ethylene, the values could: be brought into exact 

agreement by rais� .the ethylene rocking frequency 8 per cent or lower­

ing the allene rooking frequency 8 per cent . This illustrates the fact 

that the orbital valency f.orce constants are much more sensitive to the 

values of the frequencies than are the g, matrix elements or valence 

force constants . This must be borne in mind in concluding how well the 

orbital valency force constants for different molecu1es agree . The 
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value of ko- for formaldehyde, 1 . 25 x lo-ll ergs/radian2, is quite high 

in c omparison to the other value s or kcr . It is s trange that the value 

is higher for formaldehyde than for the other molecules, because when 

the orbitals or the carbon atom rotate, the orbitals or the oxygen atom 

are complete]Jr free to . rotate so as :to minimize the potential energy. 

In ketene, ko- was found to pe 0 . 372 x lo-ll ergs/radian2, considerab]Jr 

lower than the values for ethylene and allene . 

The values or � and kun- far ethylene are -1.639 and 0.030 x 

10-11 ergs/radian2, respectively-, while the value or k7T" for allene is 

-0 . 486 x lo-ll ergs/radian2 . If we consider the allene model in ·which 

no rotation or the central carbon atom is permitted, ktrwould be expected 

to have a value close to the value of k} . _ However, the numerical values 

indicate that k1f' .f'or allene is more readily associated with the k§.- than 

with k� in ethylene . This appears to be anomalous and the significance 

or the results is not clear . However, if the orbitals or the central 

carbon atom in allene do rotate during. the vibrational motions, then the 

assumption that ka- is the same in the rocking and wagging motions will 

not be valid, and the true �alue or 1c;r cannot be determi_ned. 

Although the values of �for formaldehyde and ketene c ould not 

be determined, the results strongly indicate that 1c.rr- is negati:ve for both 

molecules, because the value of (k :,... + k1r ) is considerably smaller than 
. 

ka- , and the difference in k<:r and k� · is probably not large enough to 

all.ow k1T _to be positive . These negative values of Ic,r are interest:lng, 

since they ind�cate that the rotation or the tr orbitals decreases the 

potential energy and therefore stabilizes the mole cule . 



135 . 

It does not seem profitable to speculate further on the signifi­

cance of the orbital valency force cons tants obtained for the four mole­

cules dis�ussed above . Although the values obtained for some of the 

constants appear to be anam.olous, it is very likely that a definite 

pattern and a clear interpretation can be deduced if more data for 

similar molecules are studied . Further work on this point is in progress 

at this time in this laboratory, although not by this author . 

3 . Ketene and Diazomethane 

It is interesting to compare the electronic structure of ketene 

and diazomethane . The se two mol ecules are isoelectronic and therefore 

must have the same orbital configu.rati ons o The bonding structure 'of 

ketene is clear. The terminal carbon atom has a set of trigonal sp2 

orbitals and one pz orbital. perpendicular to these . This atom forms a 

c:r ani a 1(' bond with the central carbon atom, which has a set of digonal . 

- �sp) orbitals and pz and Py orbitals perpendieular to the di.go:nal._ . .axis • .  

The central carbon atom forms a c:r and a 1f bond with the Px and Py orbitals 

of the oxygen atom .  The P z  orbital of the oocy-gen atom is already filled 

with its own electrons . 

These same molecular orbitals can be constructed for diazomethane 

if an electron is shifted from the central nitrogen atom to the terminal 

nitrogen atom . This produces a formal negative charge on the terminal 

nitrogen atom, which can easily account for the attractive force which 

causes the value of the constant A to be negative . It is �ecessary tc:> 

assume that the net positive charge on the central nitrogen atom is well 
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shielded, so that there will be essentially no ele ctrostatic. repu.lsion 

between this atom and the hydrogen atoms . This is not unreasonable, 

and c ould be accounted for by the fact that the nitrogen atom is more 

electronegative than the c arbon atom . 

The agreement or the calculated frequencies with the observed 

frequencies was excellent for all of the molecules studied . The largest 

errors occurred in V 6 and V 7 of CD2CO, which differed
. 
by 7 and 5. 6 per 

cent .from the "observed n frequencies . However, these large errors are 

not distressing, because of the uncertainty in the posi tiona of · V 6 and 

v1 . The value of v1 was obtained from a band located at 1060 cm.-1, 
assigned as 2 V7, and the value of V 6 was then calculated using the 

product rule . .  Thus, neither band has been obse�ed directlY, and the 

possibility of a change of 6 per cent in the assigned positions or the 

band centers is not unreasonable . Errors of -2.3 per cent in V4 of 

CH2N2 and +3 .6  per cent in V4 of CD2H2 were found . The assigned posi ­

tions of these bands are reliable, and a better fit of the se frequencies 

should be obtained . It is probable that if the electrostatic interaction 

between the hydrogen atoms and one of the nitrogen atoms were taken into 

account in the potential energy expression, better agreement would be 

obtained, because this would introduce of�-diagonal terms in species Al 

of the J matrix 11nk1ng the N-N stretching frequency with the other rre-

quencies, as well as change the relative magnitudes of the other off­

diagonal J elements . 



CH.API'ER V 

SUMMARY 

The orbital valency force field, 14 which is essenti� a Ure.y­

Bradley force fi�ld modifie� to interpret bending vibrations in terms 

or the changes in bonding orbital overlap which occur during the bend-

ing motions , has been applied to ethylene, allene, formaldehyde, ketene, 

and diazomethane . Each of these molecules possesses double bonds, and 

it was hoped that the bending force constants could be correlated with 

the chimges in orbital overlap based on a model in which the molecular 

orbitals were assumed to be formed by overlapping directed atomic or-

bitals . 

The vibrational potential energy expressions were simplified by 

assuming that the H----H repulsions in the molecules were negligible, 

and the results obtained show that this assumption was justified . There-

tore, only the van der Waals repulsions between the H atoms and the 

nearest non-bonded C, N or 0 atoms were necessary. The fact that all 

of the off -diagonal elements in the f matrix of a molecule were either 

zero or functions of the same constant permitted a range of solutions 

for th� force constants to be obtained in�ependently for both the light 

molecule and the heavy molecule . The best solution for the force con­

stants was obtained by plotting values or the diagonal j matrix elements 

��rs�� the constant in the off�agonal elemen�s and determining the 

value of the constant in the off-diagonal elements for which the best 

agreement in the values or the diagonal elements for the light and heavy 

molecules was obtained . 
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It was shown that when the values of all but n independent force 

constants in a species of order n are f"ixed, the n f  sets of solutions­

which exist tor the n independent force constants arise because of the 

n f ways in which the n frequencies belonging to the species can be per­

muted. This correlation can be used to choose the correct set or force 

constants (if' all but n of the constants have been fixed) when data are 

available for only one isotopic species .  

The repulsive force between the non-bonded carbon and hydrogen 

atoms in ethylene, allene, and ketene, and the non-bonded oxygen and 

hydrogen atoms in formaldehyde were in agreement with the calculated 

repulsion based on a Lennard-Jones potentia129, 30 in which the hydrogen 

atoms were considered as helium atoms and the carbon and oxygen atoms 

were considered as neon atoms . However, in diazomethane, it was found 

that an electrostatic attractive force exists between the hydrogen atoms 

and one of the nitrogen atoms (probably the terminal nitrogen atom) which 

is stronger than the repulsive force between the hydrogen atoms and the 

central nitrogen atom. 

The agreement between the calculated frequencies and the observed 

frequencies for all the molecules is excellent, the average error in 

general being c�nsid�rably less than 1 per cent . 

The orbital valency force constants obtained for ethylene, al.lene, 

formaldehyde, and ketene were correlated in terms of the structures of 

the mOlecules . The r�rce constants associated with the torsional vibra­

tions of ethylene and allene were found to be quite similar, indicating 

that the concept or orbital_ overlap is quite good for this type of motion . 



139 

The agreement between the constants associated with the changes in or­

bital overlap of the o- and 1/bond orbitals which occur during planar 

and non-planar bending modes was not as good as in the case of the 

torsions . However, the agreement is as good as that found when corre­

sponding bending force constants of different molecules obtaine� using 

a valency force field are compared. It is felt that the orbital valency 

force field provides a means of' increasing our understanding · or th� 

nature of the forces acting during bending vibrati ons, and that further 

calculations utilizing data f'or similar molecules, in ad�tion to re­

finements in the theol7, will lead to a clear picture or bending vibra­

tions . 
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APPENDIX I 

DETERMINATION OF THE J AND l::) MATRICES 

The J and lj matrices for the molecules studies in this investi-

gation were determined b,y the method of Wilson, which has been described 

briefly in Chapter II, Section B.  The determination of the 3: matrix 

elements corresponding to motio�s during which orbital rotation occurs 

has been described in detail in Section C of Chapter II . In Section B 

of Chapter II, the way in which the contribution or the repulsive forces 

between non-bonded atoms to the potential energy is determined has been 

discussed . The 1J matrices were determined using both the B and S 
matrices, in order to insure the accuracy of the results . In the follow­

ing section, the determination of the :f and lJ matrices is discussed.  

A .  Ethylene 

The ethylene molecule, C2Ht., belongs to the point group Vh. The 

internal coordinates and geometry of the molecule are shown in Figure 28 • 

The potential energy or the molecule, before orbital rotation is taken 

into account, is 

4 . 
4 

(Ar1)2 + Kcc <�z;)2 + KH L (�JSi)2 
+ BcH � (�ri) + 

i=l i•l 

(A-:J-) 

where A� is defined as the angular distortion" of a C-H bond !rom i� 
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equilibrium position in any direction. · KcH and Kcc are the stretching 

force constants for the C-H and C-C bonds, respectively. The last two 
terms account for the repulsive forces between the non-bonded hydrogen 

and carbon atoms . Repulsive forces between hydrogen atoms have been 

assumed to be negligible . The linear terms in Ari and A� are necessary 

in order to balance the linear term in ARi, so that the equilibrium con-

figuration will be stable . 

It is desirable to express the potenti� _energy in terms of the 

following set of internal coordinates (see Figure 28 ) : 

f.lj_ Ar5 APl 

A%'2 AY l AP2 

Ar3 AY 2 APJ 

Ar4 A'T AP4 . 

The meaning of the coordinates, except for A T ,  is clear. AT is defined 

as the change in the angle formed by the intersection or the CH2 planes 

caused by" a twisting of the CH2 groups about the symmetry axis of the 

molecule • . In terms of these coordinates, the potential energy becomes 

4 
'lV • KcH L (t.r1) 2 + Kcc (ArS)2 

1•1 
4 4 

+ KH sin2a (AT )2 + .BcH _L" (Ari) + Bee (t.rS) + � L (APi) 
1•1 1•1 . 

2 4 4 
+ B'f) L (A<V 1) + B,.. (AI ) - 2B � (Allj_) + 2A L (AR1)2 

i•l i•l i•l 
1A-2) 

Again, it must be stressed that this expression gives the potential energy 
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for the system before orbital rotation is taken into account. The modi-

fic��ion in the potential energy brought about by orbital rotation . must 

be determined for each vibrational motion during which orbital rotation 

occurs . · 

. The symmetlj" coordinates, determined with. the aid of group theory, 

are : 

Ag: sea • t(A� + Ar2 + Ar3 + Ar4) 

sec • Ars 
s� • i(A�l + A�2 + A�3 + A�4) 

B3u: sea • t(A� + Ar2 - Ar3 - Ar4) · 

� • t(A�l - A�2 + A�3 - A�4) 

B2u: sea = f(Ali - Ar2 - Ar3 - Ar4) 

sp • i-(A�l - A�2 + A�3 - A�4) 

Blg : s'" 
eH = i(Ari - Ar2 - Ar3 + Ar4) 

s"' 
� = t(A�1 - A�2 - A�3 + A�4) 

B].u: s� 1 
(A<t> 1 + A �2)  -

'rl" 
B2g: s ' = 

1 (A4) 1 - A � 2) � ff 
Au: s"t • AT .  

The coordinate� which are used in describing the repulsion of the 

non-bonded · hydrogen and carbon atoms , the ARi, are eJC;pressed in terms of 

the internal coordinates in the manner described in Chapter II . The con­

tribution of the repulsion terms to the potential energy for the planar 

motions is 
�
given in tel'II!:s of the internal coordinates on page 145. After 

the modification of the potential energy brought about by orbital rota-
- . .  

tion � determined, the 3 matrix is obtained by symmetrization. · The 



MATRIX OF CONTRIBUTION OF H---0 RERJLSION TO THE POTENTIAL ENERGY FOR FYNAR MOTIONS OF ETHTI,ENE 
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- -- ------

A{32. 
2Ar,� s•n1� 
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llS� 
2Arc� sm�p 

+R; YCwYtt cos�kose 

2. A r;2 sm2.¢ 
A/34 CH 

+i;fc.,.f"cc c.ospk.ose 
........ 
6;: 



146 

derivation or these elements has been given in detail in Chapter �' 
Section C .  The complete J matrix for ethylene is given on pages 148-

150 . 

The lJ matrices for C2H4, C2D� cis-, trans-, �d �· -C2H2D2, 

C2H.)D ; and C211DJ have been determined . C2H4 and C2D4 belong to the point 

group Vru and the t! matrices for these molecules will factor in the same 

way as the 3 matrix. These t} matrices will factor into a 3 x 3 block, 

three 2 x 2 blocks, and three 1 x 1 blocks . Due to the reduction in sym­

metry brought about by isotopic substitution, the � matrices for the 

other molecules will not factor so completely. Cis-C2H2D2 and �- ­
C2H2D2 belong to the point group C2v, trans-C2H2D2 belongs to the point 

group C2h, and C2HJD and C2HD3 belong to the po�t group Cs . On the 

following page, the correlation table showing h� the species of the point 

groups or lower symmetry are related to the species of Vb is given . In­

spection of this table shows how the .lJ matrices for the molecules factor . 

The lJ matrices for the ethylene molecules are given on· pages 152-155 . 

In order to give the necessary elements to form. l:J matrices for all of 

the isotop�c ethylenes in a minimum space the 12 x 12 matrix has been 

split into sub-matrices as follows . 

lJI I ��� 
0 

tl:l.l l:Ju. 
0 lJ33 

For those molecu]_es with a high degree of symmetry, many of the off-

diagonal elements vanish . 



TABLE XVIII 

NUMBER, SPECIES, AND ACTIVITY OF THE FUNDAMENTALS OF THE ISOTOPIC 
ETHYLENES AND THE CORRELATION TO POINT GROUP Vh 

Group Species Correlation to Vh 

02h 5Ag (R . ) 3Ag (R . )  + 2B1g (R . )  

(trans . -C2H2D2) 
2Au (I . R. ) Au (In . ) + Blu (I . R. ) 
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�(R. ) 
(I. R . ) 

B2g (R . )  
2B2u (I . R . )  + 2Bju (I . R . ) 

5Al (I .  R . , R . )  .3Ag + 2B2u 
C2v 2A2 (R . )  Au + B2� 

( cis . -C2H2D2 ) 
hB1 (I • R. , R . ) 2Blg + 3u .. 
2B2 (I. R. , R • ) Blu 

5Al (I . R . ,  R . ) JAg ,+ 2BJu 
C2v A2 (R .· ) Au 

4Bl (I . R . ,  R . ) 2Blg + 2BJu 
(�. -C2H2D2 ) 2B2 (I • R. , R • ) Blu + B2g 

Cs 9A ' (I . R . ,  R . ) 3Ag + 2Bju + 2B2u + 2BJ.g 
C2HJD JA" (I .  R . ,  R . ) Au + Blu + B2g . 

· ' and 
C2IID3 
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Sp 
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Re 
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2B ¢ _ Re rcHsin9cos 

2 2 KH + 2AroHsin ¢ + 

., .1!... rcarccoos¢cose 
Re . 

8CH 

KcH + �Hoos2¢ 
B 2 

_ R; sin ¢ 

s ' 
� 

-

2ArcH sin ¢ cos ¢ 

.- :e rcc sin¢ cos e 

Kfi + 2Ar�USin2¢ + 
._. 
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Re rcHrcccos¢cos 9 g; 



:f su 
CH 

KcH + 2Aoos2¢ 
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· 
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s" 
� 

� 
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gE 

�: 

_$MATRIX FOR ETHYLENE (SPECIES B2u AND B1g) 

s� 

2AroHs�ooa� 
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Wclf� 

CH 
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-

srt' 
CH 

KcH + 2Acos2¢ 

_ .1!.. sin2¢ 
Re 

' •  

s'" 
� 

2ArcHsin¢oos.¢ 

- _.!!_ rccsin¢oos 9  Re 

g 
leak� 2 2 + 2Ar �in ¢ 

ka+kJ c 

:. rcarcocos¢oose 

+ 

1-' 
� 



---

3 

scv 

s '  � 

8-r 

/ 

-1MATRIX FOR ETHYLENE (SPECIES B1u, B2g AND Au) 

s<+> 

2KHaos2C>( (k� + 4k�) 
4KHcos2o<. + (k�· + 4lc�) 

2B 3 + - rCHrcc cos oe 
Re -

s •  cv 

2Kaoos�(� + k�) 
4KJi008� + (� + �) a- 1f 

2B oaJ +- R; rcHrcco oc 

8 1"'  

KH sin2 ex: .k� 
KH sin2� .+ k1" + 

� • ' TT' 
. . . . . . . .. . 

� :rCHrcc-:· sin2 o' cos ot. 
Re 

� \ 
0 
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The matrices given are � 11, lJ 22, lJ33, and lJ 12 · The matrix lJ 21 is 

easily obtained by taking the transpose of lj 12 . The symbols used in the 

lJ matrices are defined as follows: 

Pi = reciprocal mass or ith atom 

o< • equilibrium H-C-H angle 

L • sin a 

r - cos a 

r • equilibrium bond 'length 

y -

The geom.etrical. parameters used ror ethylene were those reported by Gallo­

way and Barker, 40 and are given in Table XII, along with the calculated 

values or other parameters which were used in the determination or the J 
and .lJ matrices . Arter the work on the ethylene molecule had been com­

pleted, Allen41 reported a new determination or the dimensions of the 

ethylene molecule based on high-resolution infrared studies .  Allen · re-

ported the dimensions as :  
0 

rcH • 1 .086 A 

roc = 1 .337 R 
� - 117°22 ' • 

These results differ from those given by Galloway and Barker, but the re-

sults obtained in this investigation using Galloway and Barker' s  dimen-

sions should be close to those which would be obtained using the dimensions 

given by Allen. However, it should be emphasized that using the newer 

data would cause slight changes in the force c'onstants . 

The numerical )j matrices for the seven isotopic ethylene mole cules 

are given on pages 157-16o. 
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s u 
)� SUI 

CH 

_ 

2!r )lc 
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CH 
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0 
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� �1+)12-)1.3:)14) 
4raH 

-:-
2��r + 2f) 

rcH ·· )1o 

1 
4rBH (Jll +J12+.Jl.3?4> + 

2(2.f + r >2 
2 )1c rcH ....... 
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SoH 
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- - -
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� 

� _ H  

a
·· 
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-
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- -

� 

t(}ll - )12 + )13 - .)14) .. � 

0 

0 

�<jt1 - )12 - )13 + )14) 
� 

0 

SYMBOLIC Jj MATRIX FOR ETHYLENE (if 12) 
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ScH .... ' 

0 ��1 .- )1.2 - )13 + )14> 

0 0 

1 
---r- (pl. - )12 + )13 -)14) 0 
4rca 

0 t(J.1 - )12 + }'-3 - ]14) 

--\- (pl. - Jl2 - )13 + )14) 0 
4rcH - · 

� 

s:' 

0 

0 

1 ( ' - �1 - )12 - )13 + )l4J 
4r&i 

0 

-\- (p.l - )12 + )l-3 - Jl4) 
4rcH t-' 
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1:13� 
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s i 
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s,.. 
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8(rr0Hj 2 C,1 + Jl2 + ]13 + )14) 
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-

_, 

(Symmetric) 
-

SYMBOLICJ$ MATRIX FO� .�THYLENE (f:j 33) 
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1 1 
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. .  1 
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� 
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TABLE XIX 

GEOMETRICAL PARAMETERS AND CONSTANTS FOR ETHYLENE 

Bond Lengths 

rcH = 1.071 j 
0 

roo = 1 .353 A 

Other Parameters 

fi = 33°50 1 

e = 26°9 ' 
0 

Re = 2 .104 A 

r = cos a = 0.50000 

L = sin a a o . 866o3 

sin ¢ = 0.55692 

cos ¢ = 0. 83057 

sin e = 0.44083 

cos e = o .B9759 

J 
r cH . - . r cc a 0 . 791574 

Bond Angles Atomic Masses 

-r = 120° c 12 . 003804 

o( = &:JO H 1.008142 

D 2 .014735 



NUMERICALh MATRICES FOR THE ISOTOPIC ETHYLENES 

� SoH sec Sf3 3cH s� s" 
CH sn 

� S
UI 
CH s"' � 

1 .0335773 -0 . 0833069 o.p673631 
I 

SOH o . 5379967 

sea 0 .1666138 -0 .1347261 

�-- · 
0 . 9737090 

s� 0. 5416577 
---

s ' . 1.0335773 
0.0673631 OH 0 .5319961 

s ' · 0.9131090 
- � o .5la.6577 

ll 1.1168842 
5ca 0. 6213036 -0 .067363., 

su The matrix is symmetric . In 0 . 90108lL 
� - blocks where two figures Oo 469030C 
-. j 

· appear, ·the first is for I 

s"' C2H4, the second for C2D4 . 1 .1168842 
CH 0. 6213036 -0 . 2606546 
... � : 

s"' 1 . 49510la. 
� I l o0630528 � -J 



NUMERICAL,bMA.TRICES FOR THE ISOTOPIC ETHYLENES (Continued) 
' 

tl ScH sec � SQH 8{! SOH s n 
J(3 s"' 

CH sa' 
0 -0 . 2477903 0 

ScH 0 . 7857890 -0 .0833069 0.0673631 0 0 0 . 2477903 
0 . 2477903 0 0 

sec 0 .1666138 -0 . 1347261 

0 -0 . 2160257 0 s� 0.7.$76833 0 0 0 . 216o2.$7 
0 . 216o257 . 0 0 

0 -0 . 2477903 
t 0 . 7857890 0 . 0673631 0 . 2477903 0 3CH 0 0 

0 -0 . 216o2.$7 
s '  0 . 7.$76833 0 . 216o2.$7 0 � 0 0 

0 I 

3cH a·. 8690939 r-0 .0673631 0 
0 . 2477903 

su o-
The matrix is symmetric . In 0 . 68505.$6 0 � blocks where three figures 0 •. 2160257 
appear, the first is for cis-

s'" C2H2D2, the second for trans- 0 .. 8690939 -0 . 2806546 CH C2H2D2, and the third for -
asvm -C' .. � · ·-= ' _.,;:;,._ . 

s"' -
� 1 . 2790784 1-' 

� -



tl SoH 

�CH 0 . 9096822 
0 . 6618919 

Sec 

� 
I 

3CH 

�· 

" 
8cH 

� 

Sau OH -
s•" 
� 

NUMERICAL,b MATRICES FOR THE ISOTOPIC ETHYLENES (Continued) 

sea s� 3ca s '  � s" CH � s'" CH 

-0 . 0833065 0 .0673631 0 .1238952 0 .1238952 -0 .1238952 

0 . 166613€ -0 .1.34726] 

0 . 865696� 
O o1080J29 0.1080129 

0 . 649670; 

0 .9096822 
0 .0673631 -0 .123895� 0.1238952 

0 . 6618919 

0 . 8656962 
-0 .1080129 

0 . 6496705 

0 . 9929891 
0 .745198E -0.0673631 0 .1238952 

-
The matrix is symmetric . 0.7930685 

In blocks where �o figures 0 .5770428 
appear, the first. is for 

O o 992989J C2H3D, the second £or C 2HD 3 . 
o .  745198E 

sa' 

-0 . 1080129 

0.1080129 

0.1080125 

-0 . 280654� 

1 .3870913 

1.171065t 
....... 
\1\ '0 
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NUMERICAL,.B MATRICES FOR THE ISOTOPIC ETHYLENES (Continued) 

)j scv s • 
IV s,.. 

2 .02004.538 

s<V 1 .1.5.59428 

2 .6619976 
s • 

\t) 1.7978951 

1 .1.530243 
s,., (Symmet rio ) 0 .5169544 

ain blocks where two figures appear,· 
the first is for C2H4, the second for 
C2D4. 

)j s ·  � s� s ,.. 
oa 0 

s� 1 .5879941 0 0 .3527685 
0.4320512 0 

-0.3527685 
s • 2 . 2299464 0 � 0 

s'i ( Symme �ric) 0 . 8649899 

ain blocks where three figures appear, the · 
first is for ois-C2H2D2, the second for 
trans-C2H2D2, -and the third for �. -02H2D2 . 

�- S<+J s • 
<+.l s 'i  

s� 1 .80401968 
0 . 2160256 -0 .1763843 

1.3719680 

s • 2 .4459719 0 .1763843 <t> 2 .0139203 

s'r 1 .0090073 
{Symm �tric ) O o7209727 

arn blocks where two figures appear, the 
first is for C2HjD, the seoond for C2HDJ . 



B .  Allene 

C3H4 . and CJD4 belong to point group ·D2d · The geometric81 struc­

ture and coordinates are shown in Figure 29 .  The potential energy was 

expressed in terms of the following set of internal coordinates � 

Ar:t. Ar6 APl 

Ar2 A€1 AP2 

Ar3 AE2 AP.3 

Ar4 A<¥1 AP4 

Ars A<V 2 A 1'" . 

A\ is defined as the change in the angle formed by the intersection of 

the two CH2 planes caused by a twisting of the CH2 groups about the 

symmetry axis of the molecule. The potential energy, before orbital ro-

tation is taken into account, is 

4 6 4 

2V = KcH� (Ari) 2 + Kcc ) (Arj_)2 
+ 2�g (Ar5fir6) + KH L (A�i) 2 

1•1 i-s . ial 

KcH and Kcc are the C-H and C-C bond stretching constants, KH is the con­

stant associated with the angular distortion of a C-H bond from its equilib-
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\ 
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\ R2, ' 
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Figure 29 . The Geometry of the .Allene Molecule . 
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rium position, and K �  is tpe constant associated with the bending or 

the C-C-C chain. �e last two terms account for the repulsive forces 

between the hydrogen atoms and the central carbon atom. The constant 
• ' t  • 

kgg has been included to account for the �teraction between the two 

C-C bonds, since this term was expected to be neoessar.y, as indeed it is . 

The symmetry coordinates which were used are:* 

AI : ScH = i(ArJ. + Ar2 + Ar3 + Ar4) 
1 . sec = '12 (A� + Ar6) 

S� = i(A�l + A�2 + A�3 + A�4) 

B2 : SoH = i(Ar]. + Ar2 - ArJ - Ar4) 

s ' = 1 (Ar5 - .  Ar6) cc \f2 
s ' p = i(A�l + A�2  - A�3 - A�4) 

B]_: ST = Ai' 

E:  s• = 1 (Alj_ - dr2) CH 'f1 
s" 

= 1 {A�l - A�2) � � 
SE: = A€. 1 
s� = A<¥ 1 

s"'  = 1 
CH '{2 

s"' 1 = 
� 'ff 

s ' 
E = At  2 

S ' � 
= A�. 2 

(Ar3 - �r4) 

(A�3 - A�4) 

*The symmetry coordinates given for species E a;re actually those · 
for point group C2v. It is necessar.y to use these coordinates in order 
to factor the 1:1 matrix of C3H2D2 . Although the correct symmetry co­
ordinates for point group D2d are made up of linear combinations of the 
coordinates given he�e, the � matrices for C3H4 and C3D4 obtained using 
the above set or coordinates are correct . 
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Arter the Mti ' s have been expressed in terms or the internal co-

ordinates and the modification or the potential energy brought about by 

orbital rotation has been determined ( see Chapter II ) , .t�e· 1- matrix is 

obtained by symmetrizationo -rhe 3- matrix for allene is given on · pages 

165-167 . 

The lJ matrices for CJlJ4, CJD4.t and H2CCCD2 were determined using 

both the B and S matrices . The S matrix is given on page 168 in order . 
_. . 

to illustrate the rom or the matrix. The vectors ti and vs are defined 

by 

t:t = { r + 
rca 

and 

C3H4 and C,3D4 belong to point group D2d, while H2CCCD2 belongs to point 

group C2v. The correlation of the species or the two groups is 

D2d 

.3Al (R. )  + 3B2 (I o  R . ,  Ro ) 

B]. (R. )  

4E ( I .  R. ,  a . ) 

C2v 

6A1 (R . )  

A2 (R . )  

laB1 ( I  • R .  , R .-) + 4B2 (I .  R • , R .  ) , 

and . it is readily seen that the }::! matrices for C3H4 and C3D4 will factor 

into one 1 x 1 block, two 3 x 3 blocks, and two (degenerate) 4 x 4 bl�cks, 

while for H2CCCD2 , the ma tru will factor into one 1 x 1 :block, two 4 :x 4 

blocks, and one 6 x 6 block. The symbolic � matrices are given on pages 

169-171) and the numerical .)j matrices are given on pages 172-173. The 

symbols used in the '3 and � matrices, along with the geometrical para-

meters, are given in Table XX. 
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:} MATRIX FOR ALLENE (SPECIES E) 

sa � 
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sMATRIX FOR ALLENE (SPECIES A2) 
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SYMBOLic,k MATRIX FOR AILENE 

J:j SOH sec Sp SoH 
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1 
4r2 {f1?2•)13,.4) + 

� 
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2I.2 
2 roa 

)1c 

I t()ll +p2"'Jl 3?4> 
5cH + 2r2 JlC 

I 8cc (Symme .,rio) 
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p 

' 

8oc 

2 r 
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s ' �� 

1 �1 +)12713714) �2 
CH 
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21: 
- ff rcH JlC . 

1 
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GH · 
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2 roH 
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SYMBOLIC h MATRIX FOR ALLENE* {Continued) 
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'*See footnote on page 163 . 
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SD'JBOLIC /J r1ATRIX FOR AILENE* (Continued) 

._in · sOH I s;· I s� I s� I 

s�� i{y-J+J14) + 2r7<: 
2r(r+f) 

rcH JlO 

" '  
sp 

s� 

s� 

-� 

_..!.__ (]13 + )14) + 
2 2rcH 

2 2(r+!)2 + 2 Jlc 
rSu 

( Symme1ri.c ) 

*see footnote on page 163 . 
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2(r+f) JlC 
- �CHrcc 
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�c JlC 

0 

2?2 

V2r2 J1c 
CH 

Jlc 

1 
4(rrcH)2 YtlofJ12) . + 

(l+r/)2 + or>2 
(rrca>2 

)1c 
1-' -J 
1-' 



.jj 

sea 

sec 

.ap 

8CH -

' Sec 

s '  � 

NUMERICAL )j MATRICES FOR C.)H4, CJD4 AND H2CCCD2 

SoH soc s� 

l.037S398 
- . 

0.0694976 o .789749S -O.o61.64S1 
0 .541.9592 

0 .083.3069 

The matrix is symmetric . - . 

-0 .09.39185 

0 . 9738883 
0 . 7570536 
0 .54021.88 

In 

blocks where three figures appear, 
. � -

the first is for C3Ji4, the second 

for H2CCCD2, and the tq.ird for CJD4· 
I 

� � 

� 

t S '  50H 00 
0 

0.2477903 
0 

1.0375398 
o .  7897495 -0 .0616451 
0 .5419592 

0 . 2499207 

s� 

. 

0 
0. 2168347 

0 

0.0694976 

-0 .0939185 

0 .9738883 
0 .. 7570536 
0 .5402188 

� -.1 1\) 



h 
s" OH 

sa 
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SE. 

s'i' 

s•• 
CH 

�I 

s� 

s' Cf> 

s-r-

NUMERICAL,6 MATRICES FOR CJIJ4, CJD4 AND H2CCCD2 (Contin�ed) 

s" CH s� s€ 

1.1129216 
0 . 6173410 -0 .1779829 0 .0767107 
6 . 6173410 

1. 2270786 
0 . 79.34091 -0. 2.503943 
0.7934091 

0 . 2918003 

The -matrix is symmetric . 

s<Y 

0 

o.o68778c 

-0 . 259696l 

2 .1763349 
2 .176334� 
1 .38434oc 

In 
l:>1ocks where three figures 
appear; the first is for C.)H� 
the second for H2CCCD2, and the 
third for 03D4 • .  

5tu 
CH 

1.1129216 
l .ll292:L6 
0 . 617.3410 

sa' 

-0 .1779829 

1 . 2270786 
l.��j�786 
o .  091 

s •  E s� 

0 .0767107 0 

-0 . 2$03943 0 . 0687780 

0 . 2918003 -0 . 2596961 

2 .1763.345 
1 .38434oc 
1.38434oc 

s1" 

1.1952437 
0 . 8966626 
0 . 5980813 

1-' -.J \N 



Bond Lengths 42 
0 

reg • l.o69 A 
0 

rcc • 1.309 A 

TABLE XX 

GEOMETRICAL PARAMETERS FOR ALLENE 

Bond Angles 42 
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Other Parameters 

¢ = . 32°27 ' 

9 = 26°00 ' 
0 

Re = 2 . 07843 A 

r = cos a = 0 . 52324 

2: = sin a = 0 ·. 85218 

sin ¢ = 0.53662 

c os ¢ = 0 . 84382 

sin e = 0 . 43831 

cos e = o. 89882 

J = 



i75 

. C. Formaldehyde, Ketene,' and Diazomethane 

CH20, CH2CO, and CH2N2 all belong to the point group C2v. The 

geometrical structure of CH2CO and CH2N2 is shown in Figure 30 . I! 

atom 5 is neglected, one obtains the CH20 model . The internal coor-

A €. 

The potential energy for CH2CO before orbital rotation is taken 

into account is 

2V = KcH f._ (6ri) 2 
+ Icc (6l)) 2 

.+ Itco (6r4)2 
+ x:H t (6�1)2 . 

1•1 i•l 

+ K6 (60 ) 2 
+ KE (6E )2 + 2KH oos2 o: (6<tJ ) 2 + BcH f. (6ri) + Bee (6r,) )  

i•l 

+ Bco (6r4) + � f (6fli) + B � (60 ) + B.,_ (6E ) + B<t> (6(j) ) 
. i•l 

- 2B f. (Mij_) + 2A t (Mij_)2 
1•1 -i=l 

(A.-4) 

where KQH, Kcc, and Kco are the C-H, 0-:-0, and C-O bond stretching con­

stants, KH is the constant associated with the angular distortion of a 

C-H bond from its equilibrium position, and B.:E and x<t> are the constants 

associated with the planar and non-planar C-C-0 bending . The last two 

terms account for t�e repulsive forces between the hydrogen atoms and the 
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central carbon atom. The potential energy expressions for CH2N2 and 

CH2(> can be obtained quite easily from Equation (A-4) • 

Al: 

Bl: 

B2 : 

The symmetry coordinates used for Cli2CO are : 

SCH • _.l_ (A!j_ + Ar2) 
f2 

sec = Ar.3 

Sco • Ar4 

1 Sp - ---- (APl + AP2) '{2 
1 ScH = V2 (AlJ. - Ar2) 

s ' 1 
p • . V:2 (APl - AP2) 

so • A6 

s� • AE  
sctJ = ACV 

After the ARi r s have been expressed in terms of the internal coordinates 

and the modification of the potential. energy brought about by orbital ro­

tation has been determined ( see Chapter I�) ,  the :J matrix is obt�ed by 

symmetrization. The 1 matrix tor CH2CO _is given on pages 178-179 .  

The J matrix for CH2N2 can be obtained from the ·:r matrix or ketene 

by changing rcc t� rCN, r00 to rNN, Kcc to KeN, and Kco to KNN· The J _ _  

matrix for CH20 can likewise be obtained from the J matrix of ketene by 

deleting the rows and columns associated with Sea, Ss , and SE , and by 

changing rcc to reo and Kcc to Kco . 



� MATRIX FOR KETENE ( SPECIES Al) 

� SoH Sec sao � 
� - . 

2 4 2Arcasinpoos¢ -KcH + 2Acos ¢ - Aoos;oose + SeE 
� sin2 ¢ 

� 0 
2B sin¢s1n9 

...!_ r00sin¢oose Re Re · V2Re 

� 

Kco + 4Aoos2e - � ArQHBin¢ooaa-
0 sec 2B -- 2 

Re.Jd.n e 2B roHsin9oos� 
V2Re 

-

sco (Symmetric) Koo 0 
� � -.. 

�-
KH + �st'in2¢ � 
. 

- :. raarocoos¢cose 

� 
CD 



J 
I 

5CH 

5CH KcH + 2Acos2rJ -

-
_!_ 81n2¢ 

Re 

� 
- - ..... . ... 

so 

SE 

Sit> 

�MATRIX FOR KETENE ( SPECIES B]_ AND B2) 

� - "' 
s& SE 

T 
2AroHsin�oaEf' -

- 0 

:. rcosin;oos6 

KHka- + 
2KH+ka-
2JraH�in2�- -. 0 

:
. 

roiP'cooos$Zfcos e -

Kf> 

(Symmetric) · Ke 
-

,..-

s<r 

0 

2Kaoos2oe(k;_+ . k,.) 
2KHoo,f)2o.+ (�:,_-.. 1trr) 
. 2B · sJ + 'R; rcal'CC00 o< ....... •-.:J \,() 
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The symbolic ):j matrices for formaldehyde , ketene am diazomethane 

are given on pages 181-184, and the mun.erical lj matrices are g iven on 

pages 185-187 . The symbols used in the J and tf matrices , along with 
1 

the geometrical parameters for formaldehyde , ketene , and diazomethane , 

are given in Table XXI . The geometrical parameters used £or formalde ­

hyde were thos� reported by Davidson, Stoicheff, and Bernstein . 43 The 

values used for the bond lengths and angles in ketene were those re'ported 

by Arendale and Fletcher, 44 and the values used for diazomethane were taken 

from the values g iven by Fletche r and Garrett45 and by Cox, Sheridan, and 

Thomas . 46 



:.::.ld_-;=.. ---========:· --�- ·- - . 

_ _ _ _  __ 
SOH Sco 

sea 
t{jll +]12) + 

- 2!:.. yo 2r� '{2 

� - --'- --

sao JlO ir )lo 
-

� 

I SCH 

• SQO (Symmetr:l.o) 
� 

s� 
- -

SYMBOLIC jJ MATR� FOR FORMALDEHYDE 

---·· 

5t3 
2�:r 
rCH JlO 

,.. _ __ 

2 l: 

... . .. . 

- )lO ffi-ca 
-r·· 

2 2 (J1l+J12) rOH 

·-f.--

· �  r J1c 
. .  

• I 
I 

� sea I 

t{JllJ12) 0 

0 0 

1 
{Jl1"'12) 0 2 2rcB 

t{Jll +]12) + 21: - . <r•J> JlO 
2I.7c 

rCH 
1 �1�2)+ 2.P2 

2r�H rSa 
Jlo + 2�:)2 Jlc 

8� 

0 

0 

0 

0 

0 

1 
�<rrcx>* {Jq"']l2) 

I 
• I I 

• crr>2 c1+fr>2 
(frau)2 )10• (rrcu)2 )1d 

1:-' 
:?1 



b' sea sec sao 

�CH t(}ll+)l2)+2r?a - _gr JlC '12 
0 

sec 2 )1C - )lC  

�co JlC + JlO 

� 

s�H 

�� (Symmei !rio ) 

so -

SYMBOLIC h MATRIX FOR KETENE 

s� 
r SoH � 

2i:r 
rQH )lc  t<p.l-]12) 

- 2L 
V2"rCH }10 

0 

2�gH (J1l+J12) __!_ ()11-}12) 
+ 2I.2 J1C 2� 

raM 
i(ul+u2) 

_ 2r�+ Y) J1C . 
+ 2L2 

JlC 
CH 

� ()11"')12) + 
H 

2 <r +f) 2+2f2 pc 
r3H 

- ------- ------- ----- -

so 

2 L.  
"Prca JlC 

2 r· 2P + .P� 
� WrcH reo reo 

(: .J:_ + �j Jlc + 
reo roo 

1 JlO + 1 JlC 
� rac --

I 

t-' CD 1\) 



� SoH SeN --
ScH i(p1+p2)+2r2 pc _ 2r Jlc 

'12 

3CN Jle+JlN 

SNN -- -
s� 

ScH 

s '  � (Symmeti �c ) 

1--

so 
1--

SYMBOUC� MATRIX FOR DIAZOMETHANE 

SNN 

0 

- JlN . 

2 JlN  

� 
2�:r 
rcH JlC 

2!:  
- V2rcH JlC 

0 

1 
2r6a 

(J11 +]12) 

+ 2I.2 
;g; JlC  

t ScH 
t(pl-]12)  

t(J11 +]12) 
+ 2!.2 JlC 

s� 

2rSH 
( ]11 -p.2) 

2i:(r +.P)  
- r.cH Jlc 

1 
" �B: <J11 +J12 ' • 
�r H 
2(r+.P)2 2?2 
rai 7JC�J1N 

1' :;  � 
ru e.. 

s6 -

2� 
'"rcN JlC 

_ 2�r+f) JlC 'f2rcarcN 
2f  ( l 1 ) - �rGli rQN + TNN )lN 

1 1 
;g; JlC � P.N + 

It 1 1 y � + - JlN 
CN TNN 

f-1 (X) _\A) 



SYMBOLIC ,h MATRIX FOR DIAZOMETHANE (Continued) 

� 

St 

! �  
I 

Se. 

:} pc  + t JlN raN ( 1 1 t + raN + 1'NN 
JlN 

(Symmetric) 

S<p ·Jg•!r) 
HrCN .)lc 

+ 

)'r ( 1 1 ) rrcH roN + rrrn 
PN 

4<r�H)2 <p1�2> + 

�1+fr�2 
(rrcH)2 JlC + 'J'r / JlN 

. (rrcH)� 

SYMBOLICfo MATRIX FOR KETENE (Continued) 

tl 

s� 
! 

sv 

SE 

� po + 1 po +  
rgc ;eo ( 1' 1 t roc + reo · )10 

(Symmetric) 

s �  ., . . . 
__i_ { 1 +2J'r + fr ) J1C r rcH 1'00 roo . . 

l 
(]11+]12) + 

4(rrCH)2 

�1+Jrl2 + {fr l2 
-

(rrcH)2 J1C 

184 



l:1 

ScH 

sao 

Sp 

1 8cH 

s' p 

sct> 

mOOitrCAr..b MA'l'RICES FOR 
-
CH2'), CD20 AND CIIDO 

· sea .sao 
1 . 0294.366 
0 .7816483 -o.o$$9026 
o . SJ3858o 

'0 .14$8069 

. 

·--

The matrix is symmetrio . 

s� 

0.0649776 

-0 .09683o6 

0 . 977.3166 
0 .7612914 
o .$452656 

In b1ooks where 
- · ·• 

three �i�es appear, the �irst is f?r CH20, 

the seoond for CHDO, and the third for 
-I 

CD20 .  

I I 

sea sp 
0 

0 . 247790.3 
0 

. 

0 
0 . 216o257 

0 

1.1210226 
o . 87.32.32S -0 .1847021 
o . 62S4422 

1 . 212.319S 
0 . 9962922 
0 . 7802660 

Scy 

2 .6o78002 
2 .12806.36 
1.648.3269 ...... co \.1\ 



)j SoH 
1 .0291636 

SoH 0 . 7816633 
0 . 5338730 

5cc 

sao 

� 

_soH 

� 
ss 

Se. 

s<V 

NUMERICAL /:J MATRICES FOR CH200, CD200 AND CliDCO 

sec sao Sp ScH s w 
� s� 

0 
-o .o559144 0 0.0649875 0 . 2477903 

0 

0 .1666138 -0 .083.3069 -0 .0968251 

0.1458069 0 

0 . 9773041 0 
0 .761278� 0 . 2160257 
0 . 5452528 0 

1.1210078 
0 . 87.32175 -0 .1753363 O o0780283 
0 . 6254272 

1.19726o7 
0 .9812350 -0.2497752 
0 .7652094 - ... - - ·  

The matrix is symmetric . In 0.313598€ blocks where three figures 
appear; the first is for CH2CO... _ 

the second for CHDCO, and the 
third for CD2CO . � 

s£ s� 

0 .3135988 -0 . 2721616 

2 .5830277 
2 .1034934 
1 .6239587 

I 
I 

1-' CD 
()'\ 



t5 ScH 
1 . 0250966 

ScH o .  7773063 
0 . 5295160 

SeN 

SNN 

Bt3 

s(m 

s' 13 

sd 

s€ 

s<t> 

NUMERICAL /!J MATRICES FOR CH2N2, eD2N2 AND CHDN2 
-1-- (' 

SeN SNN s� SoH s '  s �  � 
0 

-0 .0525685 0 0 . 0618901 0 . 247790.3 
0 

0 . 1546972 -0 .0713903 -0 .098079� 

O.l42780t 0 

0 . 9738198 0 
0 . 7593938 0. 2144210 
o • .$449728 0 

1 . 1253648 
0 . 9549784 �0 .1748505 0 . 0798750 
0 . 6297842 

1 .1693994 
0 .9549784 -0 . 2308964 
0 .7405573 

The matrix is symmetric . In 0. 2991858 
_ blocks where three figures 

appear, the first is for 
eH2N2, the second for CHON2, 
and the third for CD2N2 . 

s� 

-

0 . 2991858 

S C¥ 

-0 . 268646� 

2 . 869553c 
2 .331078C 
1 .  7926o2C 

t-' (l) -.1 
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TABLE IXI 

GEOMETRICAL PARAMETERS FOR FORMALDEHYDE, KETENE, AND DIAZOMETH.ANE 

Parameter CH2<) CH2CO CH2N2 

Bond Lengths (i) rcH = 1.071 rcH • 1 .071 rcH = 1 .075 

reo = 1.225 reo = 1 .329 rcN = 1.320 

reo = 1 .l5o 11m = 1 .120 

Bond Angles 0 = 123°21 1 0 = 123°20 1 0 = 127° 

o<. = 61 °40 ' ex = 61°401  o<. = 63°30 1 

¢ 33°08 ' 34°30 1 35°22 1 

e 28°33 1 27<>:to • 28°d7 ' 
., 

0 0 0 
� 1.973 A 2p65 A 2 . 0!Q. A 

r • cos 0( 0 .47450 0 .47460 0 .44620 

L z= sin 0< 0. 88025 0 . 88020 0 . 89493 

Sin � 0 .54654 0 . 56648 0 . 57888 

cos ¢ 0 . 83743 0 . 82408 0 . 81541 

sin e 0 . 47783 0 .45650 0 .41145 

cos 9 0 . 87845 0 . 88772 0 . 88189 

j = 

rCH f =  
rCH 

f .  
rCH :s - Ill 

reo roc roN 

0 .87429 0 . 80587 0 . 81439 

)10 = 0. 0625000 PN = o .o713903 



APPENDIX II 

FREQUENCY DATA 

The values of the tu.ndamental frequencies �r the isotopic ethylene 

molecules which were used in this investigation a� , tor the most part, 

the sane as those g iven by Crawford, Lancaster and Inskeep . 16 However, 

slight changes in some or the band centers have been made on the basis 

or later values given by Oou.rt;oy and de Hemptinne ,47 Charette, Cou.rtoy 

and de Hemptinne , 48 Stoicheff, 49 and by de Hemptinne and Charette . 50 
The frequencies of the isotopic allene mole cules have been sum­

marized by Fleteher and Shuler . 38 Slight adjustments . ;in several band 

centers have been made on tm basis of values repor ted by Rao, Nielsen 

and Fletcher ,42 by Overend and Thompson,51 arxl by Evans , Wilmshurst and 

Bernstein . 52 

The frequencie s of tb! isotopic f'onnaldehyd.e moleculE!s we re  taken 

from the value s reported by Ebers and Nie lsen,53 by Iavidson, Stoicheff 

and Bernstein,43 and by' Blau and Nielsen. 54 The rrecluencie s of the iso _: 

topic ketene molecules which were used in this investigation are those 

given by Arendale and Fletcher, 44 and tm frequencies of the isotopic 

diazomethane mole cule s  which were used are those given by Fletcher and 

Garrett .45 
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