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Abstract 
 

 Body size of a population is influenced by its environmental conditions and thus 

reflects the standards of living experienced by individuals within a population. In this 

research, for the purpose of investigating the standards of living in the Korean societies for 

the past two millennia, the pattern of secular changes in stature and body mass of the Korean 

populations were examined using both anthropometric and osteometric data. In addition, 

because of the necessity of reconstructing body sizes from the skeletal remains, new Korean-

specific equations for stature and body mass estimation were developed using the hybrid 

method.  

 The newly developed equations presented here provide a better performance in 

accuracy and precision compared to the previous equations that have been used to estimate 

stature and body mass in Korea. In regards to stature, a U-shaped secular change pattern was 

found for both females and males: the average stature decreased after the Three Kingdom 

period and increased again in the 20th century. The average body mass also increased in the 

20th century for both sexes but its pattern of secular change did not exactly follow patterns 

identified with stature. Sexual difference in the pattern of secular changes were also identified 

in the 20th century.   

 The pattern of secular changes in stature and body mass was discussed in terms of 

anthropometric history, occurrence of infectious diseases, quality of life, and cultural 

practices in Korea. Also, caveats to the newly provided equations are explained.  

 This research is expected to have a positive impact not only on the Korean community 

but also on worldwide anthropological and anatomical research, both in regards to 

archaeological and forensic contexts. In archaeology, this research will provide a systematic 

and appropriate basis to assess standards of living of Korean societies in the past. Moreover, 

any anthropological research of which topic is related to human variation, anthropometry, and 

secular changes on a worldwide scale will benefit from the results of this research. Lastly, in 

forensics, the new equations in this research will produce more accurate body size estimates 

for Korean victims not only in Korea but also in other countries. 
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Chapter 1 

Introduction  

  

 The primary purpose of this research is to investigate long-term secular changes in 

body size of the Korean population for the past two millennia in terms of anthropometric 

history. As a size of an organism is generally represented by its stature (i.e., standing height) 

and/or body mass (i.e., weight), both of these biological dimensions were considered in this 

research (Ruff et al., 2012a). As will be reviewed in the following Literature Review chapter, 

studies on stature and body mass have shed light on diverse aspects not only in regards to 

human beings themselves but also of the environments to which they belong. This research is 

particularly based on the premise that  human size is influenced by environmental conditions 

and thus represents a standard of living or a quality of life that an individual experiences (Cha 

and Cho, 2012; Malina et al., 2010; Ulijaszek and Komlos, 2010; Cohen and Crane-Kramer 

2007; Steckel and Rose 2002; Bogin and Keep, 1999). Of course this premise does not rule 

out the genetic influence on a human size but rather acknowledges the significance of  human 

size as a common measure of living conditions as normally stated in anthropometric history 

studies (Ulijaszek and Komlos, 2010; Eveleth and Tanner, 1990). In this regard, it is expected 

that standards of living in Korea for the past two millennia can be successfully explored by 

studying secular changes in stature and body mass of Korean people in the past. According to 

Shin et al. (2012), which is the first and only long-term secular change study in Korea, 

statures of Korean people remained unchanged for almost two millennia before the 20th 

century when stature began rapidly increasing. However, as will be mentioned in the 

following chapters, methodological issues regarding their study raised the necessity to 

reconsider their conclusion. Thus, the primary concern of this research lies in grasping the 

exact pattern of secular changes in stature and body mass with an adequate methodology as 

well as a larger sample size and consequently reappraising the living conditions of Korea in 

the past. 

 Construction of new equations for stature and body mass estimation for Korean 

skeletal remains is the secondary purpose of this research. It was not until the late 19th 

century that Korean anthropometric data (e.g., stature and body mass) was surveyed in a 

systematic manner. Thus, for a long-term secular change study, effort to reconstruct 

antemortem body sizes from skeletal materials (i.e., osteometric data) is inevitable. Yet, as 

will be reviewed in the following chapters, currently available estimation methods, whether 
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Korean-specific or not, are not free from errors and/or limitations to some degree. Moreover, 

a population specific method for body mass estimation has not yet been developed for Korean 

populations. Thus, in this research, Korean-specific equations for stature and body mass 

estimation will be generated based on which the secular changes in stature and body mass 

will be identified.  

 More than anything else, this research is expected to have an impact on the Korean 

community in terms of both archaeological and forensic application. For example, in the field 

of archaeology, accurately reconstructed stature and body mass will provide a systematic and 

consistent basis to assess standards of past Korean societies, which will subsequently have a 

significant influence on related fields such as paleopathology and bioarchaeology. The 

information about body sizes and their secular change pattern may corroborate existing 

archaeological theories, as well as possibly contradict current archaeological evidence and 

thus raise a necessity for a new theory or a paradigm shift. In regards to forensic application, 

the population specific equations developed in this research will produce more accurate 

estimates of stature and body mass of victims of crime, thus increasing the probability of 

positive identification of unidentified individuals. Moreover, this research is anticipated to 

have large ranging significance as well, and provide data that can be used to examine topics 

related to human variation, anthropometry, climatic adaptation, and secular changes on a 

worldwide scale. This research will provide researchers with basic information on the 

physical characteristics (e.g., stature, body mass, and body proportion) of both modern and 

past Korean populations, which provides more insight into the morphological variability 

represented in Asian populations. Lastly, the estimation equations presented in this research 

are applicable to any forensic cases involving people of Korean descent, including American 

born generations. There has been an increasing number of Korean people residing outside of 

Korea and thus also an increase in Korean victims of crime. Given these trends, there is a 

need for Korean-specific equations for stature and body mass estimation to be readily 

available when such cases are encountered (Ministry of Foreign Affairs and Trade, 2013).  

 This research consists of six main chapters: Introduction, Literature Review, Materials 

and Methods, Results, Discussions, and Conclusion. The Literature Review chapter will be 

divided into two separate but related parts: estimation of stature and body mass and secular 

change studies. Part one reviews the history of estimation methods, rationales associated with 

the provided models, including application and limitations. Part two introduces general 

information about secular change and reviews related historical and current research. A 
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review of estimation methods prior to review of secular change studies in this chapter is to 

provide a baseline knowledge that is required to fully understand the discussions and 

conclusions reached in the current study. In the Materials and Methods chapter, descriptions 

of the four independent datasets used are given followed by detailed explanations on 

rationales and processes regarding a hybrid method that was employed to develop new 

estimation equations. In addition, issues regarding a randomization test, which is used as a 

statistical tool for detecting significant changes in stature and body mass by time periods, are 

also described. In the Results chapter, new equations for stature and body mass estimation are 

presented. Then, using stature and body mass data either taken from anthropometric surveys 

or reconstructed by applying the new equations to skeletal remains, the pattern of secular 

changes is described with accompanying statistical assessments. In the Discussion chapter, 

the pattern of secular changes is appreciated particularly in terms of its tentative causes as 

well as is compared to trends identified in other population samples. In addition, issues taken 

into account in the process of equation development as well as caveats in application are 

discussed. Lastly, in the Conclusion chapter, the results and discussions of this research are 

summarized.   
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Chapter 2  

Literature Review 

 

Part 1. Estimation of stature and body mass 

 In this chapter, issues regarding stature and body mass estimation are reviewed, 

followed by an explanation of issues regarding secular changes. A thorough understanding of 

the existing estimation methods is thought to be essential for a proper approach to as well as  

a deeper understanding of the primary purpose of this research (i.e., examining secular 

changes in statue and body mass). Initially provided is a review of the history of stature and 

body mass estimation, general issues to be considered in developing and applying estimation 

methods, descriptions of the previous methods and caveats in using those methods, and 

previous efforts to develop Korean-specific methods. For the sake of convenience, issues 

regarding body mass estimation are provided subsequent to a review of stature estimation 

issues. Following this review, it will be understood what approaches are taken to better 

understand secular changes in stature and body mass and consequently why they are 

considered the most appropriate. In the second part of this chapter, population specific 

secular change studies are reviewed, which provides the general definitions, overall patterns, 

and tentative causes that are identified in the literature. This information provides a baseline 

of knowledge to better understand application of these methods to Korean-specific studies. In 

regards to interpretations of patterns of secular change, a viewpoint of anthropometric history 

is emphasized as this research is based on the premise that a human size, particularly stature, 

reflects a quality of living. As with the part one, issues regarding stature are reviewed prior to 

issues regarding body mass. 

  

1. Estimation of stature 

 Human stature is one of the important biological properties that represent a size of an 

individual. Stature is known to be significantly influenced by genetic factors as well as 

environmental factors such as nutrition status and diseases (Moore and Ross, 2013; Perola et 

al., 2007; Macgregor et al., 2006; Li et al., 2004). Studies on stature have been extensively 

conducted in various fields, such as paleoanthropology, osteoarchaeology, and forensic 

anthropology. In these fields, stature has been often used as an indicator of health (Cohen and 

Crane-Kramer, 2007; Steckel and Rose 2002) and sexual dimorphism (Ruff, 2002; Smith and 

Horowitz, 1984). In addition, a relationship of environments such as subsistence and climate 
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with human body size has often been investigated using stature (Ruff, 1994; Frayer, 1984). 

Recently, it has been suggested that the ebb and flow of socio-economic and political 

conditions of the past as well as contemporary times are reflected within the pattern of 

secular change in stature of a population (Cha and Cho, 2012; Malina et al., 2010; Ulijaszek 

and Komlos, 2010; Bogin and Keep, 1999). Additionally, stature is used as a denominator to 

standardize such biological features as robustness of limb bones, brain size, and organ sizes 

(Rosenberg et al., 2006; Weinstein, 2005; Ruff et al., 1997). In forensic anthropology, it 

provides important information for reconstructing biological profiles of the unidentified 

associated with crimes or wars (Moore and Ross, 2013; Wilson et al., 2010; Lundy, 1988; 

Fully 1956; Trotter and Gleser, 1952).   

 As mentioned early, this section is to provide background knowledge about a broad 

range of issues regarding stature estimation including the history of stature estimation, 

general issues to be considered in developing and applying stature estimation methods, 

descriptions of the previous methods and caveats in using those methods, and previous efforts 

to develop Korean-specific methods.  

 

1.1. History of stature estimation 

 The topic of stature estimation has a long history within the subdiscipline of forensic 

anthropology, which is often said to be rooted in the 18th century (Moore and Ross, 2013; 

Shirley, 2013; Baines et al., 2011; Stewart, 1979; Krogman, 1962). Since then, extensive 

efforts have been made to reconstruct statures from human skeletal remains.  

 In 1775, Jean Joseph Sue (1710-1792), an anatomy instructor at the Louvre, published 

data which contained fourteen cadaver lengths and maximum lengths of their long bones 

(Shirley, 2013; Stewart, 1979; Krogman, 1962). Age of the cadavers ranged from a six-week-

old fetus to an adult of twenty-five years. His work was intended to provide anatomical artists 

with accurate information about body proportion by age, but this data attracted much 

attention of researchers who were interested in stature estimation from the human bones 

(Shirley, 2013; Ubelaker, 2006; Stewart, 1979).  

 Sue's work had been known to the public more widely by Matthieu Joseph 

Bonaventure Orfila (1787-1853), a professor of legal medicine in Paris, who published the 

measurement data in his two medicolegal textbooks (1821-23, 1831) in addition to his own 

data from 51 cadavers and 20 skeletons (Shirley, 2013; Ubelaker, 2006; Stewart, 1979; 

Krogman, 1962). Unlike Sue, who measured bones and cadaver lengths in traditional French 



 

 

6 

units such as pied, pouce, and ligne, Orfila used the metric system and tabulated the statures 

and long bone lengths so that statures could be obtained given bone lengths (Shirley, 2013; 

Stewart, 1979; Krogman, 1962)..  

 Paul Broca (1824-1880), a founder of the Société d'Anthropologie de Paris, which is 

known as the first organization in physical anthropology, contributed to the establishment of 

objective and quantitative research practice by introducing new measuring equipment such as 

an osteometric board, goniometer, and stereograph (Shirley, 2013; Stewart, 1979; Krogman, 

1962). 

 Paul Topinard (1830-1911), Broca's successor of the Société d'Anthropologie de Paris, 

included a chapter regarding stature estimation in his 1885 textbook, and three years later, 

using measurement data from 141 skeletons of combined sexes, he presented the ratios of 

long bones to statures of the skeletons (Stewart, 1979; Krogman, 1962). According to his 

work, the relative ratios of humerus, radius, femur and tibia to stature are 20.0%, 14.3%, 

27.3%, and 22.1% respectively (Krogman, 1962). Using these ratios, one can estimate 

skeletal stature, which then can be converted to a living stature by adding 35 millimeters (mm) 

to it. Topinard's method for stature estimation is said to yield more accurate estimates than 

the Orfila's table (Stewart, 1979; Krogman, 1962).  

 Ètienne Rollet (1862-1937) measured 100 cadaver lengths (50 males and 50 females) 

and their long bone lengths in the dissecting room for his dissertation. In 1889, he published 

his results in a tabular form whereby, given statures, one could estimate corresponding long 

bone lengths (i.e., femur, tibia, fibula, humerus, radius, and ulna) (Shirley, 2013; Moore and 

Ross, 2013; Ubelaker, 2006; Stewart, 1979; Krogman, 1962). Although he found out that 

fresh bone can shrink by nearly a 2mm as they dry out, only fresh bone measurements were 

included in his table.   

 In 1893, Rollet's table was modified by Léonce Manouvrier (1850-1927), Topinard's 

successor of the Société d'Anthropologie de Paris, in the way that one could estimate stature 

from corresponding long bone lengths (Shirley, 2013; Ubelaker, 2006; Stewart, 1979; 

Krogman, 1962). In this table, following Topinard's recommendation, Manouvrier included 

only forty nine samples (24 males and 25 females) of which ages were less than sixty from 

the Rollet's data (Shirley, 2013; Stewart, 1979; Krogman, 1962). In addition, in estimating 

statures from dry bones using this table, it was recommended to consider the 2mm difference 

between fresh and dry bones as well as 2cm difference between cadaver lengths and living 

statures (Krogman, 1962).  
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 In 1899, Karl Pearson, an English statistician, used Rollet's measurement data in 

devising a set of regression equations for stature estimation (Shirley, 2013; Moore and Ross, 

2013; Ubelaker, 2006; Stewart, 1979; Krogman, 1962). Unlike Topinard and Manouvrier, 

Pearson used all samples in the Rollet's data regardless of their ages (Pearson, 1899). Due to 

his truly mathematical approach, Pearson's work is regarded as the first mathematical method 

in stature estimation. He provided sets of sex-specific regression equations for reconstructing 

cadaver lengths and living statures separately (Pearson, 1899). These equations, with the 

Manouvrier's table, were widely used across the world for the first half of the 20th century 

(Shirley, 2013; Moore and Ross, 2013; Ubelaker, 2006).  

 Thomas Dwight (1843-1911), a professor of anatomy at the Harvard Medical School, 

divided stature estimation methods into two categories (i.e., anatomical and mathematical 

method), and presented a guideline for the anatomical method. For example, Dwight 

suggested that stature could be reconstructed by displaying bone elements in an anatomical 

position with the gaps between bony elements (e.g., vertebral discs) filled with clay (Shirley, 

2013; Moore and Ross, 2013; Stewart, 1979; Krogman, 1962). He preferred the anatomical 

method to the mathematical method because the latter could not take into account different 

body proportions between populations as well as stature decline due to aging, and thus would 

be vulnerable to a higher estimation error (Shirley, 2013; Moore and Ross, 2013; Ubelaker, 

2006; Stewart, 1979).  

 Aleš Hrdliča (1869-1943), the first curator of physical anthropology of the 

Smithsonian Institution National Museum of Natural History, also recognized that 

Manouvrier's table could not be applied to diverse populations due to a difference in body 

proportions between populations of different climates (Ubelaker, 2006; Stewart, 1979; 

Krogman, 1962). In 1939, for the purpose of stature estimation, he presented the ratios of 

long bones to the statures of American Whites and Blacks of both sexes where it was noticed 

that American Blacks possessed higher limb-to-stature ratios than American Whites (Stewart, 

1979; Krogman, 1962).    

 In 1929, Paul Stevenson tested the validity of Pearson (1899) equations using Chinese 

samples and signified a need for population-specific formulae for stature estimation 

(Stevenson, 1929). He developed a set of stature estimation equations based on 48 Chinese 

males and compared the results with the Pearson (1899) equations. The results revealed that 

Pearson (1899) equations, which were based on French samples, did not work well for the 



 

 

8 

Chinese samples nor his equations for the French data (Shirley, 2013; Moore and Ross, 2013; 

Stewart, 1979; Krogman, 1962).  

 One of the significant achievements in the field of physical anthropology during the 

first half of the 20th century is the establishment of human skeletal collections with recorded 

antemortem information (Moore and Ross, 2013; Ubelaker, 2006; Stewart, 1979). In the U.S., 

effort to systematically collect human skeletons from dissecting rooms by T. Wingate Todd 

(1885-1938) and Robert J. Terry (1871-1966) resulted in the establishment of the Hamman-

Todd Osteological Collection (Hamman-Todd collection hereafter) at the Cleveland Museum 

of Natural history and the Robert J. Terry Anatomical Skeletal Collection (Terry collection 

hereafter) at the Smithsonian National Museum of Natural History respectively. Also, outside 

of the U.S., the Raymond A. Dart Collection of Human Skeletons was established in the 

School of Anatomical Sciences at the University of the Witwatersrand, Johannesburg, South 

Africa in the early 1920s (Shirley, 2013; Moore and Ross, 2013; Ubelaker, 2006; Stewart, 

1979). Since their establishment, the skeletal collections have served as a critical resource of 

stature estimation research (Shirley, 2013; Moore and Ross, 2013; Stewart, 1979).  

 One of the best known among the studies on stature estimation using the Terry 

collection is Trotter and Gleser's works in the 1950s. They quantified the amount of stature 

reduction due to aging (i.e., by 0.6mm per year after thirty years of age) and regarded secular 

change as one of the factors to influence a temporal change in stature (Trotter and Gleser, 

1951a,b). In 1952, Trotter and Gleser devised sex-specific stature estimation equations for 

American Whites and Blacks using the skeletal samples from the Terry collection as well as 

from World War II casualties (Trotter and Gleser, 1952). Among the equations, the male 

equations based on WWII casualties and the female equations based on the Terry collection 

samples, despite some measurement issues of the radii, ulnae, and tibiae, have been widely 

used across the world since their development (Shirley, 2013; Moore and Ross, 2013; 

Ubelaker, 2006; Stewart, 1979). The errors associated with radii and ulnae measurements in 

American Black females were corrected by the authors in 1977 (Trotter and Gleser, 1977). 

However, it was not until the mid-1990s that an error regarding mismeasurement of tibiae 

was recognized by Jantz et al. (1994, 1995). In 1958, Trotter and Gleser provided a new set 

of equations for males based on the American Korean War casualties (Trotter and Gleser, 

1958). This research was originally designed to re-evaluate the male equations for American 

Whites and Blacks in their previous work but, along with the equations for the American 

Whites and Blacks, they provided the equations for other ancestries (i.e., Asian and Hispanic) 
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as well, which have been popularly applied to a variety of non-European populations (Shirley, 

2013; Moore and Ross, 2013; Ubelaker, 2006; Stewart, 1979). Summing up their results, 

Trotter (1970) recommended using the 1952 equations for American Whites and Blacks of 

both sexes (i.e., the 1958 equations for the American White and Black males were less 

preferred), and using the 1958 equations for Asian and Hispanic males.  

 Resurgence of application of the anatomical method was carried out by George Fully 

by which the anatomical method was resurfaced in the mid-20th century. In the process of 

identification of the French deportees, who had been killed and buried near the concentration 

camp at Mauthausen, Austria, during WWII, Fully could match 102 skeletal remains to their 

antemortem stature records (Shirley, 2013; Moore and Ross, 2013; Ubelaker, 2006; Raxter et 

al., 2006; Stewart, 1979: Krogman, 1962). Based on this information, Fully (1956) suggested 

that a living stature could be estimated by calculating a skeletal height and then adding soft 

tissue correction factors to it. According to Fully (1956), the skeletal height is calculated by 

summing up the heights or lengths of bone elements that contribute to a standing stature (i.e., 

skull height from basion to bregma, body heights of the second cervical vertebra through the 

first segment of sacrum, physiological length of the femur, condylo-malleolus length of the 

tibia, and articulated height of the talus and calcaneus). Then, a living statue is obtained by 

applying one of the three soft tissue correction factors depending on the calculated skeletal 

height: 10cm, 10.5cm, and 11.5cm for the skeletal heights of "less than 153.5cm", "between 

153.6cm and 165.4cm", and "more than 165.5cm" respectively (Fully, 1956). Fully asserted 

that this method produced more accurate estimates than the Rollet-Manouvrier method by 

showing the estimation error of his method did not exceed 2 - 3cm whereas the error by the 

Rollet-Manouvrier method extended to 8 - 9cm (Fully, 1956).  

 A new utility of the Fully method was highlighted by John K. Lundy in the 1980s. 

Advocating for the Fully method rather than the mathematical method, Lundy (1983) states 

that the estimated statures by the Fully method can serve as a basis against which regression 

equations can be developed. This utility of the Fully method is thought to be particularly 

significant when no appropriate reference sample is available for devising stature estimation 

equations (e.g., in the case of archaeological skeletal remains). Lundy's idea has continued on, 

and recently this method (i.e., generating stature estimation equations by regressing one or a 

couple of long bone lengths on the stature estimates by the anatomical method) has been 

named a 'hybrid method' (Ruff et al., 2012a).  
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 Yet, results of validity tests on the Fully method have recently pointed out a tendency 

of underestimation of living statures (Raxter et al., 2006; Bidmos, 2005; King, 2004). For 

example, Raxter et al. (2006) found that statures were systematically underestimated when 

the Fully method was applied to the Terry collection samples. The underestimation was 

thought to be attributed to incorrect soft tissue correction factors, and Raxter et al. (2006), 

instead of providing new correction factors, presented a revised version of the Fully method 

whereby regression analysis is involved. This revised Fully method has an advantage that it is 

broadly applicable to skeletal remains regardless of their ancestry or sex. Thus, recent studies 

where the hybrid method is used for generation of stature estimation equations tend to utilize 

this revised Fully method rather than the original Fully method (Ruff et al., 2012a; Pomeroy 

and Stock, 2012; Auerbach and Ruff, 2010; Raxter et al., 2008; Dayal et al., 2008).  

 

1.2. Issues regarding stature: What stature are we estimating? 

 Before moving on to the current study, it is necessary to technically define a stature. 

In other words, we have to have an understanding of what we aim to estimate in this research. 

In most cases as well as in this research, 'stature' of an individual refers to a 'living stature', 

which means a stature obtained at some point during one's life (Moore and Ross, 2013). This 

section provides background knowledge on some issues and general concepts regarding a 

living stature.  

 A coordinate concept of a living stature is a 'cadaver stature', which means a stature 

measured after one's death (Moore and Ross, 2013; Stewart, 1979; Krogman, 1962). Cadaver 

stature has often been used in stature estimation studies because of the ease of obtaining data 

on both stature and bone sizes from the same individual, mostly in a dissecting room. It is 

known that there exists a discrepancy between a living stature and a cadaver stature due to a 

postural change of a body after death (Maijanen, 2011; Terry, 1938, 1940). Thus, a majority 

of researchers agree that, in stature estimation, any correction to convert a cadaver stature to a 

living stature needs to be applied rather than using an uncorrected cadaver stature (Trotter 

and Gleser, 1952; Pearson, 1899; Manouvrier, 1892; but also see the researchers who argued 

that differences between living and cadaver statures are insignificant and can be ignored: 

Pablos et al., 2013; Dupertuis and Hadden, 1951; Todd and Lindala, 1928). It is generally 

agreed that a cadaver stature is measured taller than a living stature, but the magnitude of the 

discrepancy varies by researchers. For example, Manouvrier (1892) mentioned that there is a 

2cm difference between the two statures but Pearson (1899) reported that the difference is 
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1.2cm and 2cm for males and females respectively, even though both of the researchers had 

used the same dataset provided by Rollet. In 1952, Trotter and Gleser presented 2.5cm as a 

discrepancy between a cadaver stature and a living stature based on the American White male 

samples of the Terry collection and the WWII casualties. However, it is also pointed out that 

the magnitude of stature change after death may vary depending on individual-specific 

factors such as age, body proportion and stature itself of the individual (Ousley, 1995).  

 

Reported stature 

 A living stature is generally obtained in two ways: either by measuring it or by 

reporting it. Whether measured or reported, unfortunately, a living stature is not immune to 

error to some extent.  

 In reference to reported statures, it has been noticed that a reported stature tends to be 

overestimated and the degree of overestimation is related to many factors such as sex, stature, 

age, and time since their last stature measurements (Braziuniene et al., 2007; Engstrom et al., 

2003; Reed and Price, 1998; Himes and Roche, 1982; Damon, 1964). For example, higher 

error rates tend to be more pronounced in older males with shorter statures than population 

averages. Also, the more recently statures were measured or reported, the lower errors were 

associated with the reported statures (Gunnell et al., 2000; Willey and Falsetti, 1991; 

Rowland, 1990; Boldsen et al., 1984). Particularly, Rowland (1990) found an error due to 

aging most influential and thus provided correction factors for a reported stature.  

 The so-called forensic stature outlined by Ousley (1995) can be thought to be a 

variant of a reported stature, as this study utilized stature data obtained from driver's licenses 

within the United States. Pointing out an erroneous and unstable nature of a living stature, he 

insisted that estimating a forensic stature (i.e., stature marked in a driver's license) would be 

of more practical use especially in a forensic context (Ousley, 1995). However, his 

methodological approach has limitations  for application outside of U.S., particularly where 

stature information of an individual is not included in his or her portable personal documents 

such as a driving permit or license (Maijanen, 2011).  

 

Measured stature 

 Even when a stature is directly measured by a technician, errors may occur mostly 

due to measurement methods and/or inter-observer errors between technicians (Maijanen, 

2011; Klepinger 2006; Ousley, 1995; Giles and Hutchinson, 1991). Damon (1964) reported 
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that when individuals measured their statures standing against a wall, taller statures were 

obtained by 0.2 - 0.8 inch than when the individuals were in an unsupported condition though 

the discrepancy became smaller when better laboratory equipment was used. The author also 

found that tilting the head (i.e., Sheldon's technique) produced a 0.08 inch bigger stature than 

the Frankfort horizontal position method (Damon, 1964). Niskanen et al. (2013) also suggest 

multiplying a stature measured against a wall by 0.9964 to produce a free standing stature. 

Ousley (1995) states that an inter-observer error is the most serious problem of measured 

statures by taking a well known example from Snow and Williams (1971), where the statures 

taken on one criminal were differently reported by police as much as 5 inches and by medical 

staff as much as 2 inches.  

 Yet, even when assuming no error due to measurement methods or inter-observer 

errors, defining a living stature is still not simple because of the fact that a living stature 

changes depending not only on the time of a day but also on the age of an individual being 

measured. It is well known that people record the tallest stature of a day right after getting up 

from beds in the morning, with stature decreasing  as the day goes on, unless napping or 

taking a bath has occurred (Ousley, 1995; Kobayashi and Togo, 1993). Diurnal variation in 

stature is known to occur mostly due to compression of intervertebral discs caused by 

reduction of the fluid content inside discs (Maijanen, 2011; Karakida et al., 2003; Ousley, 

1995; Kobayashi and Togo, 1993). The fluid is not recovered while the daytime compression 

applies, which results in a loss of elasticity of the discs (Maijanen, 2011; Krishan and Vij, 

2007). The magnitude of stature loss during a day is reported to reach nearly 0.5 inch and 

0.95 inch for children and for adult males respectively (Damon, 1964). 

 Aside from the diurnal variation, a living stature of an adult declines as one gets older. 

Thus, in theory, two different kinds of living statures can be considered in any stature-related 

studies: a maximum stature and a stature at death. The former refers to the highest stature that 

one attains during his or her entire life and the latter the 'as is' stature at the time of one's 

death. If one dies before stature shrinks due to aging, there should be no difference between 

the two statures, but if one experienced stature shrinkage before death, the maximum stature 

should be always higher than the stature at death. Thus, in any studies on stature, particularly 

in reconstructing statures from the human bones, it should be decided which kind of stature 

definition is going to be estimated. Deciding on the appropriate stature to be estimated may 

depend on the context with which the stature is associated (Ruff et al., 2012a; Maijanen, 2011; 

Maijanen and Niskanen, 2010; Niewenweg et al., 2003). Thus, estimating a stature at death 
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would be more desirable for the purpose of personal identification in a forensic context, while 

a maximum stature would be more appropriate to be used in most bioarchaeological studies 

(e.g., a study that compares statures among populations for the purpose of comparing their 

health status). In this regard, Niskanen et al. (2013) assert that, rather than a stature at death, a 

maximum stature should be used for examining temporal and/or geographical trends because 

the distribution of a stature at death of a society is subject to be biased by the age structure 

specific of the population.  

 Stature loss by aging is understood to be caused by multiple events occurring 

primarily in the vertebral region, such as osteophyte growth in the vertebral bodies, vertebral 

body fractures by osteoporosis, and a loss of water and proteoglycans in the nucleus pulposus 

of the intervertebral discs (Maijanen, 2011; Urban and Roberts, 1995; Galloway, 1988). 

Reduction of the vertebral body height is most commonly observed in the lower thoracic 

region (i.e., 7th-8th thoracic and 11th-12th thoracic) (Hedlund et al., 1989), and is more 

pronounced in post-menopausal females who are subject to higher risks of fractures and 

formation of osteophytes (Old and Calvert, 2004; Nathan et al., 1994; Hedlund et al., 1989).  

 Three general research questions have developed regarding stature decline due to 

aging. The first question to be answered is at what age stature decline begins, followed by 

how fast stature decreases after the age of onset, and finally whether there is sexual 

dimorphism in the onset timing and rate of stature decline. Alphonse Bertillon (1853-1914) 

was the first who discussed the age when stature begins declining (Trotter and Gleser, 1951). 

In 1885, Bertillon reported that stature begins decreasing at the age of 25, which was cited by 

Ernest Hooton (1947). However, this idea was questioned by Ernst Büchi (1950), who states 

that no sign of declining stature could be found until the age of 40 in his study. A year later, 

using the American White and Black samples of both sexes from the Terry collection, Trotter 

and Gleser (1951) insisted that stature decreases after the age of 30 at the rate of 0.06cm per 

year. However, pointing out that the onset age of 30 in Trotter and Gleser (1951) is a more or 

less arbitrary standard, Galloway (1988) suggests that stature declines after the age of 45 at 

the rate of 1.6mm per year. Although Trotter and Gleser (1951) and Galloway (1988) 

assumed that the rate of stature decline is linear by age and does not show sexual dimorphism, 

other researchers did not agree with these findings. In 1969, Hertzog et al. showed that there 

is sexual dimorphism in stature reduction by aging and the rate of decline is accelerated in 

older ages. In their table 3, stature loss in males is shown to be greater than that of females 

after the age of 55, and the magnitude of stature loss in the age group of 75 - 87 years reaches 
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6.47cm in males, while that of females in the same age group is only 3.12cm (Hertzog et al., 

1969, p.113). Borkan et al. (1983) and Cline et al. (1989), who studied 1,212 White males 

and 1,009 White females respectively, reached a conclusion that stature begins decreasing 

around the age of 45 and the decline rate is curvilinear rather than linear (i.e., the rate of 

decline is accelerated in older age groups). They also reported sexual dimorphism in the age 

of onset as well as the rate of decline. Giles (1991) tabulated the results of Borkan et al. (1983) 

and Cline et al. (1989) and stated that this table would work best for the purpose of a forensic 

use. As to the rate of stature decline by Trotter and Gleser (1951) (i.e., 0.06cm per year), 

Raxter et al. (2006) mention that about 2/3 of the stature loss is attributed to a reduction of 

soft tissues, while the other 1/3 attributed to a skeletal height reduction. It is also worth 

mentioning that a skeletal height reduction is said to begin later than a reduction of soft 

tissues (Niskanen et al., 2013). Interestingly, in Korean specific studies, it has been reported 

that a stature loss begins in their 30s and the magnitude of loss differs by age groups (Gill, 

1998; Rha and Chang, 1981).  

 

 The initial question of this section was 'what stature are we going to estimate?'. As 

mentioned earlier, we are basically interested in a living stature. Thus, it can be said that 

estimating a cadaver stature can be useful only when it helps with estimating a corresponding 

living stature with accuracy. The concept of forensic stature appears useful for the purpose of 

forensic identification, but it could not be taken into account particularly in this research 

because of the unavailability of required stature information in Korea (i.e., stature 

information marked in a portable document). Within the category of a living stature, 

measured stature is preferred to a reported stature due to a bigger potential error associated 

with the latter. However, it should be noticed that a measured stature is also subject to some 

errors due to measurement methods, inter-observer errors, and diurnal variation in stature. 

Lastly, we can choose to estimate either a maximum stature or a stature at death depending 

on research purpose. In summary, an ideal stature to be estimated from the human skeleton 

can be said to be a maximum stature or a stature at death directly taken by a skillful 

technician in a laboratory in the morning so that any potential error in measuring stature can 

be minimized.  
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1.3. Stature estimation methods: Anatomical, Mathematical, and Hybrid methods 

 Currently available stature estimation methods are generally subdivided into three 

categories: the anatomical method, the mathematical method, and the hybrid method (Ruff et 

al., 2012a). In this section, background knowledge on these stature estimation methods is 

briefly provided.  

 

1.3.1. Anatomical method 

 In the anatomical method, stature is generally reconstructed using all or most of the 

bone elements that contribute to a standing stature as well as appropriate soft tissue 

correction(s). Since all bones associated with a stature and a body proportion of an individual 

are considered in the process of estimation, unlike the mathematical method, the anatomical 

method does not require any specific assumption regarding a body proportion (Ruff et al., 

2012a). In other words, since an inter-individual variation is intrinsically taken into account 

in this method (Maijanen and Niskanen, 2006), the anatomical method is believed to yield 

more accurate estimates than the mathematical method (Pablos et al., 2013; Ousley, 1995; 

Sciulli et al., 1990; Lundy, 1985; Stewart, 1979). As such, the anatomical method is thought 

to be particularly useful when estimating a stature of an individual with an atypical body 

proportion (Maijanen, 2011, 2009), which is also the reason why it is called a 'personalized' 

method (Ruff et al., 2012a; Raxter et al., 2008). The biggest disadvantage of the anatomical 

method is that the applicability of this method is seriously limited by the preservation status 

of a skeleton. Indeed, this method is applicable only to complete or nearly complete skeletons 

that possess all bone elements contributing to a stature (Ruff et al., 2012a; Maijanen, 2011; 

Raxter et al., 2008, 2006). Komar (2003) reported that about 36% of human remains were 

recovered in a complete condition from forensic anthropology caseworks in New Mexico, 

and Maijanen (2011) mentioned that the anatomical method could be applied to one third of 

skeletons from an archaeological context and one fourth from a forensic context. These 

values appear to illustrate the intrinsic limitation of the anatomical method.  

 As reviewed earlier, there are two researchers who introduced a basic concept of the 

anatomical method in stature estimation: Thomas Dwight and George Fully. Dwight (1894) 

devised a method for stature estimation which he named the anatomical method to contrast 

his own method to the ones suggested by previous researchers such as Rollet and Manouvrier 

(Stewart, 1979). To estimate a stature by Dwight (1894), all bony elements that constitute a 

stature (e.g., skull, vertebrae, and lower limb bones) were displayed in the anatomical 
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position and fixed by clay (Maijanen, 2011; Lundy, 1985; Stewart, 1979). Dwight (1894) 

presented a 9-step procedure for this work as well as the magnitude of space between 

elements (Stewart, 1979). In the process of examining French deportees killed at the 

concentration camp at Mauthausen, Austria, during WWII, Fully (1956) devised a new 

version of anatomical method without recognizing Dwight's (1894) previous work (Stewart, 

1979). In Fully (1956), a stature is reconstructed through two steps. At first, a skeletal height 

is obtained by summing up the heights or lengths of the bones contributing to a standing 

stature (i.e., basion-bregma height of the cranium, vertebral body heights of the second 

cervical through the first segment of the sacrum, femoral physiological length, condylo-

malleolus length of the tibia, and articulated height of the calcaneus and the talus). Bone 

measurements basically followed  Hrdlička's definitions (Lundy, 1985; Hrdlička and Stewart, 

1952). Then, the skeletal height is converted to a living stature by applying given correction 

factors: 10cm, if the skeletal height is 153.5cm or less, 10.5cm, if between 153.6cm and 

165.4cm, and 11.5cm, if 165.5cm or larger. After comparing his method to Rollet's and 

Manouvrier's, Fully (1956) concluded that his method is preferable because an estimation 

error by his method was much smaller (within 2 - 3cm) than those of Rollet and Manouvrier 

(up to 8 - 9cm). As Stewart (1979) mentions, there are two major differences between Dwight 

(1894) and Fully (1956). Unlike Dwight (1894), Fully (1956) summed up the measurements 

of skeletal elements, instead of putting bone elements themselves together. In addition, Fully 

(1956) applied one overall correction factor to an individual, instead of applying multiple 

correction factors to each space between bone elements. As to the correction factors, it is 

worth noting that Fully and Pineau (1960) suggested using a common correction factor, 

10.8cm, regardless of a skeletal height.  

 

1.3.1.1. Issues regarding the Fully method 

Measurement method 

 The Fully method has brought about debates on two issues: measurement methods 

and soft tissue correction factors. At first, debates on the measurement methods in Fully 

(1956) stemmed from his rather brief descriptions on how to measure bone dimensions, 

which allowed several different interpretations. Most controversial has been how to measure 

vertebral body heights and an articulated height of the talus and the calcaneus.  

 As to a vertebral body height, original descriptions are 'la hauteur totale de corps 

vertébraux' (Fully, 1956, p.268) and 'hauteurs maximales de tous les corps vertébraux' (Fully 
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and Pineau, 1960, p.145). The descriptions were interpreted as 'the total height of each 

vertebral body' and 'the maximum height of each vertebral body' respectively by El Najjar 

and McWilliams (1978) (Raxter et al., 2006). Since then, this interpretation was adopted by 

many researchers such as Olivier (1969), Stewart (1979), Lundy (1987) and Ubelaker (1999), 

but no additional explanation was provided regarding where around the vertebral body its 

height was to be taken. As to measuring points of vertebral heights, frequently mentioned 

were a maximum midline height, which is a larger one between anterior and posterior midline 

heights (Formicola, 1993, p.354; Tibbetts, 1981, p.717), and a maximum anterior height 

(Sciulli et al., 1990; Lundy, 1988) (Figure 1 (a) and (b) respectively). However, it should be 

noted that a maximum height of a vertebral body is not necessarily taken at an anterior 

midline because anterior vertebral body is vulnerable to an influence of compression or 

fractures (Maijanen, 2011). Thus, Raxter et al. (2006) suggest taking "the maximum height of 

the vertebral bodies, wherever it occurred anterior to the pedicles and rib facets" (p.380). 

Using the American White and Black samples of both sexes in the Terry collection, Raxter et 

al. (2006) found that the Fully method with vertebral body heights taken by their own method 

yielded a best approximation of a living stature and also removed any sex or ancestry effect 

on stature prediction from a skeletal height.   

 

 

 

(a)                                                                       (b) 

Figure 1. Illustrations about measuring a vertebral body height (a) in Tibbetts (1981, Figure 1, 

p.718) and (b) in Lundy (1988, Figure 2, p.535). 

 

 As to an articulated height of the talus and the calcaneus, Fully's (1956) original 

description is "La hauteur représentée par le calcaneum et l'astragale articulés. Cette hauteur 

est comprise entre la partie supérieure de la surface articulaire tibio-astragalienne et la partie 

extrême des surfaces portantes inférieures du calcaneum…" (p.269). This description has 

been directly translated in the way that "the height of the articulated calcaneus and talus is 
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measured from the most superior point of the talus to the most inferior point of the calcaneus" 

and cited by many researchers (Ubelaker, 1999; Sciulli et al., 1990; Feldesman and Lundy, 

1988; Lundy, 1983, 1985, 1987, 1988; Stewart, 1979; El Najjar and McWilliams, 1978; 

Olivier, 1969). However, this description and its translation still did not remove some 

ambiguity regarding how to position the bones. Raxter et al. (2006) focused on the Fully's 

(1956) wording "portantes" ("bearings" in English). From this word, the authors speculated 

that Fully (1956) would have positioned the bones in the anatomical position, and provided a 

detailed verbal description on the measurement method along with an illustration (Raxter et 

al., 2006, p.383). Their interpretation basically appears same as the graphic illustration of 

Lundy (1988, p.537) though Lundy (1988) did not provide an additional verbal explanation 

(see Figure 2 for comparison between Raxter et al. (2006) and Lundy (1988)). Yet, Raxter et 

al. (2006) also mention that their interpretation could be clouded by the plural term, "surfaces 

portantes inférieures du calcaneum", used in Fully (1956). That is, if an articulated height of 

the talus and the calcaneus is measured in the anatomical position in Fully (1956), since the 

calcaneus has only one weight-bearing point in this position, it would have been appropriate 

to use a singular term, "surface" instead of "surfaces" in Fully (1956). In this regard, 

Formicola (1993) commented that the graphic description of Lundy (1988) does not exactly 

illustrate the Fully's (1956) technique.  

 

 

  

                         (a)                                                 (b) 

Figure 2. Measurement method of an articulated height of the talus and the calcaneus 

illustrated (a) in Raxter et al. (2006) and (b) in Lundy (1988).  

 

Correction factors 

 The Fully method generally has had a good reputation in terms of its accuracy. Snow 

and Williams (1971) reported that the Fully method had yielded an accurate stature estimate 

in a forensic case where a 45-year-old male was involved. Lundy (1983) also demonstrated 

that the Fully method worked well in his research on the South African Black people.  
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 However, recent studies have consistently shown that the Fully method tends to 

underestimate a living stature (Raxter et al., 2006; Bidmos, 2005; King, 2004). For example, 

King (2004) reported a 2.4cm underestimation of a living stature based on 36 American 

White and Black samples at the William Bass Donated Collection, Bidmos (2005), a 4.3cm 

underestimation of a cadaver stature based on 156 South African White and Black samples at 

the Raymond A. Dart Collection, and Raxter et al. (2006), a 2.4cm underestimation of a 

living stature based on 119 American White and Black samples at the Terry collection. This 

underestimation has been thought to be due to the soft tissue correction factors presented in 

Fully (1956) (Raxter et al., 2006; Bidmos, 2005; King, 2004). In Fully (1956), the correction 

factors should be added to a skeletal height to compensate for the thickness of the scalp, sole, 

and cartilages around joints, which is generally thought to be independent of individual 

heights as well as of ancestry and sex (Maijanen, 2011; Raxter et al., 2006; Lundy, 1983, 

1985; Fully, 1956). Although Bidmos (2005) and Bidmos and Manger (2012) suggest a 

possibility that the correction factors are population-specific, their insistence appears rather 

unconvincing for some issues regarding their materials and methods (Ruff et al., 2012b; 

Maijanen, 2011). Raxter et al. (2006) listed all the soft tissue components contributing to a 

stature, some of which were not considered in Fully (1956) (e.g., distances between odontoid 

process of the second cervical and basion of the cranium, and between base of the sacrum and 

acetabular roof). After taking all these components into account, the authors concluded that 

Fully (1956) underestimated the correction factors by about 2.2cm, which is a very similar 

value to the magnitude of underestimation they found (i.e., 2.4cm).     

 Raxter et al. (2006) pointed out aging of an individual as another potential source of 

underestimation when applying the Fully method. As mentioned earlier, in order to obtain a 

stature at death of older people, age correction factors should be applied to an estimated 

maximum stature. As such, some researchers such as Sciulli et al. (1990) and Bidmos (2005) 

estimated statures by applying age correction factors to the estimates obtained by the Fully 

method (Raxter et al., 2006). Yet, some of the factors influencing a reduction in stature in 

older individuals are intrinsically incorporated in the estimated stature by the Fully method 

(Raxter et al., 2006). For example, compression of a vertebral body, which is one of the 

popular characteristics of aging, is taken into account in the process of measuring vertebral 

body heights according to the Fully method. Thus, if age correction factors are applied in this 

case, the resulting stature is likely to be underestimated. For this reason, Raxter et al. (2006) 
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state that smaller age correction factors need to be applied to the statures estimated by the 

Fully method.  

 

1.3.1.2. Modified versions of the Fully method 

 Debates on the Fully method have led to diverse efforts to clarify and modify the 

original method. Among the efforts is Formicola (1993), where he measured maximum 

midline heights of the vertebral bodies followed by Tibbetts (1981), and applied one common 

correction factor, 10.8cm, regardless of a skeletal height as Fully and Pineau (1960) 

suggested. 

 Niskanen and Junno (2004) presented a new version of Fully method whereby the 

number of required bone elements is reduced (Maijanen and Niskanen, 2006). According to 

Niskanen and Junno (2004), the basion-promontory length is obtained by multiplying the 

summed posterior height of the first thoracic through the fifth lumbar by 1.503. In addition, 

by multiplying the summed length of femur and tibia by 1.015, the lower limb length is 

reconstructed excluding foot height. Lastly, sex-specific correction factors are applied to an 

estimate thus far (i.e., sum of the basion-promontory length and the lower limb lenght): 14cm 

for males and 13.55cm for females. These correction factors compensate for three dimensions 

contributing to a stature: scalp thickness (0.5cm for both sexes), promontory-acetabular 

height (6.5cm for both sexes), and foot height (7cm for males and 6.55cm for females) 

(Maijanen and Niskanen, 2006; Niskanen and Junno, 2004).  

 In 2006, Raxter et al. provided a revised version of the Fully method. Considering 

every issue on debate in Fully's (1956) original paper (e.g., measurement methods, population 

specificity of soft tissue correction factors, and stature loss by aging), the authors presented 

two sets of regression equations (p.378). The difference between the two equations is that 

equation 1 contains an age term (i.e., 0.0426cm per year) whereas equation 2 does not. Later, 

Raxter et al. (2007) recommended using equation 1 rather than equation 2 even when only a 

broad range of age estimates are available, because stature estimates by equation 2 are more 

or less subject to a systematic bias depending on the likely age of a target sample. Maijanen 

(2009) also verified that equation 1 yielded more accurate estimates than equation 2 using 

skeletal samples at the William Bass Donated Collection. Importantly, there are three points 

to be noted regarding Raxter et al. (2006) in comparison with Fully (1956). At first, they 

provided detailed descriptions on how the bone elements are to be measured, particularly for 

the controversial ones (i.e., vertebral body height and articulated height of the talus and the 
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calcaneus). As explained earlier, as to a vertebral body height, Raxter et al. (2006) suggest 

taking "the maximum height of the vertebral bodies, wherever it occurs anterior to the 

pedicles and rib facets" (p.380) because it could produce more accurate estimates without any 

sex and ancestry effects. Secondly, instead of adding correction factors to a skeletal height, 

they devised regression equations whereby skeletal height and soft tissue correction factors 

are incorporated. This appears to be because, unlike Fully (1956), Raxter et al. (2006) 

assumed a linear relationship between an individual skeletal height and correction factors. 

Lastly, age correction factors are intrinsically taken into account in Raxter et al. (2006) (i.e., 

equation 1). Thus, it is unnecessary to apply any other age correction factor to a stature 

estimate by their equation 1 to obtain a stature at death. It is worth noting that the coefficient 

of the age term in equation 1 (i.e., 0.0426cm) is smaller than a magnitude of stature loss per 

year suggested by other researchers because some factors influencing stature loss should 

already be considered in the process of calculating a skeletal height. One can reconstruct a 

stature at death by entering an age at death into equation 1, which would be particularly 

appropriate in a forensic context, while a maximum living stature can be obtained by entering 

an age of 20 into equation 1, which would be more appropriate in a bioarchaeological context 

(Maijanen, 2011; Maijanen and Niskanen, 2006). Comparison of Fully's (1956) original 

method and its modified versions has revealed that equation 1 in Raxter et al. (2006) 

produces the best approximation to a living stature with an average residual error less than 

0.1% (Ruff et al., 2012a; Maijanen, 2009, 2011).  

 

1.3.2. Mathematical method 

 The term “mathematical method” has been generally used as a coordinate concept of 

the anatomical method since Dwight (1894) (Lundy, 1985; Stewart, 1979). In the 

mathematical method, unlike the anatomical method, a stature is reconstructed using one or 

several elements based on a close relationship between the bone element(s) and stature.  

 In the history of the mathematical method, Pearson (1899) stands out due to his first 

use of a regression model for the purpose of stature estimation, which has been extensively 

used by researchers since then. This approach is convenient as a stature can be immediately 

calculated from even an incomplete skeleton by applying a regression equation (Ruff et al., 

2012a). However, to guarantee a high accuracy of the estimates, three issues should be 

considered: appropriateness of a reference sample, bone dimension(s) to be used, and an 

appropriate statistical approach (Ruff et al., 2012a; Kurki et al., 2010; Raxter et al., 2006). In 
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other words, accuracy of an estimated stature depends on whether the regression equation is 

developed from an appropriate reference sample, what bone dimension is used for estimation, 

and what type of regression model is used for equation development. In the following 

sections, each of these issues will be discussed.  

 

1.3.2.1. Appropriate reference sample 

What is an appropriate reference sample? 

 'Reference sample' means a sample consisting of an enough number of individuals 

whose biological information (e.g., sex, age, stature, bone lengths) is known, so that stature 

estimation equations can be developed from it. As such, how can the appropriateness of a 

reference sample be defined? In estimating stature using a regression equation, accuracy of 

the estimate could be doubted if a reference sample of the equation is not closely related to a 

target sample. Equations based on a reference sample, that is not related to a target sample 

geographically, temporally, genetically, and/or culturally, are likely to yield inaccurate 

estimates for a target sample due to a difference in body proportion between the two samples 

(Ruff et al., 2012a; Baines et al., 2011; Lundy, 1985). In other words, when sharing a 

similarity with a target sample, particularly in terms of geographic regions and time periods, 

the reference sample is regarded as an appropriate one that would produce accurate estimates 

for the target sample (Ruff et al., 2012a). Trotter (1970) also emphasizes the importance of 

using an appropriate reference sample by stating that "there is abundant evidence to indicate 

that, in general, the most accurate estimates of stature are obtained when the equation applied 

to the unknown has been derived from a representative sample of the population of the same 

sex, race, age, geographical area, and time period to which the unknown is believed to 

belong" (p.82).  

  Distinct body proportions between populations of different geographic regions have 

been well documented (Holliday and Ruff, 1997; Holliday, 1997; Ruff, 1994; Eveleth and 

Tanner, 1976; Olivier, 1963; Huber and Jowett, 1973), which has often been explained in 

relation to ecogeographic adaptations following the Bergmann's rule and Allen's rule (Temple 

et al., 2008; Weinstein, 2005; Ruff, 1994; Trinkaus, 1983) or with an effect of environmental 

stress on human phenotype (Bogin et al., 2002; Jantz and Jantz, 1999). In fact, the idea that 

equations based on one population may not produce accurate estimates for a different 

population, has a long history dating back to Pearson (1899), who advises to apply his 

equations to other populations only with caution (Lundy, 1985; Pearson, 1899). This idea was 
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confirmed by Stevenson (1929), who concluded that the Pearson (1899) equations based on 

the French samples did not yield accurate estimates for the Chinese samples, and nor the 

equations based on the Chinese samples did for the French samples. Since Stevenson (1929), 

with some exceptions whereby universal equations were favored or presented (Pablos et al., 

2013; Tuck and Albanese, 2007; Feldesman and Fountain, 1996; Sjøvold, 1990; Dupertuis 

and Hadden, 1951), extensive effort has been made to develop population-specific equations 

for various regions of the world (for detailed literature review, see Moore and Ross, 2013; 

Shirley, 2013; Baines et al., 2011; Stewart, 1979; Krogman, 1962).  

 It should be also noted that body proportions may change even within a population 

due to secular changes, which is generally defined as a "long-term systematic or non-random 

change in a wide variety of traits, in successive generations of a population living in the same 

territories" (Cameron et al., 1990, p.53; Tobias, 1985, p.347). Secular change is understood to 

occur due to human plasticity to environmental conditions, which is regarded as one of the 

four levels of human adaptation (i.e., acclimatization, plasticity, population structure, and 

natural selection) (Boldsen, 1995). The reason why the issue of secular change in stature 

should be considered in stature estimation studies is that a change in stature may ultimately 

bring about a change in a body proportion (i.e., the ratio of a bone size to stature), and thus 

would affect the 'appropriateness' of a reference sample (Maijanen, 2011). It is known that 

when a stature changes, body parts including bones may go through allometric changes, 

which means that a rate in a stature change is not always the same as a rate in a body part 

change (Jantz and Jantz, 1999). In general, allometric secular change is attributed to a 

different response of each body part to an environmental change (Jantz and Jantz, 1999). In 

this regard, it has been thought of as ideal that a reference sample and a target sample share a 

common time period (Duyar et al., 2006; Duyar and Pelin, 2003; Pelin and Duyar, 2003; 

Jantz and Jantz, 1999; Krogman and Iscan, 1986; Trotter, 1970; Pearson, 1899; but also see 

Klepinger, 2001 who regards an effect of secular change on a body proportion is marginal).  

 

What if stature estimation equation from an appropriate reference sample is unavailable? 

 What if any stature estimation equations based on an appropriate reference sample are 

not available? Despite huge effort of previous researchers, population-specific equations are 

not available for every global population. Especially, for a population of the past, it is not 

often the case to find an appropriate reference sample of which regional and temporal 

background is overlapped with that of a target sample. In this situation, many researchers 
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have decided to find a second-best reference sample and to utilize estimation equations from 

it. As mentioned earlier, a primary reason that equations from an appropriate reference 

sample can produce accurate estimates for a target sample is because it is likely that both 

samples share a common body proportion. That is, the more a reference sample is related to a 

target sample, the more likely the two samples possess a common body proportion. However, 

it is sometimes observed that two or more different populations can reveal a similar body 

proportion even without an overlapped regional or temporal background between them. In 

such cases, it is expected that a stature of one population can be estimated by the equations 

developed from the other, which we can call a second-best reference sample. Then, at this 

point, this question should be asked: how can we determine a similarity or discrepancy of a 

body proportion between populations?   

 

 Delta parameter of Gini, or just simply Delta of Gini (DG hereafter) is one of the 

standards used for this purpose. Briefly put, DG is calculated by averaging differences 

between estimated statures for an individual which are obtained from a set of equations using 

different bones (Shin et al., 2012; Giannecchini and Moggi-Cecchi, 2008; Formicola, 1983). 

A low DG indicates a small variability between estimates produced by each bone and a high 

DG a large variability (Shin et al., 2012; Giannecchini and Moggi-Cecchi, 2008). This 

interpretation goes one more step in the way that since the extent of variability presumably 

depends upon a similarity or discrepancy in a body proportion between a target sample (i.e., 

the individual whose stature is estimated) and a reference sample. Therefore, a second-best 

reference sample can be said to be the one based on which a set of equations with the lowest 

DG could be developed. For example, suppose that bone lengths of an unknown individual 

are 26.5cm, 19.3cm, and 38.1cm for the humerus, radius, and femur respectively. When four 

sets of Trotter and Gleser (1952) equations are being considered (i.e., equation sets for White 

males, White females, Black males, and Black females), the DGs are calculated to be 0.083, 

1.197, 2.117, and 0.863 for the equation sets of White males, White females, Black males, 

and Black females respectively. Since the lowest DG, 0.083, is obtained from the White male 

equation set, this unknown individual is assumed to have a body proportion most similar to 

that of White males. Moreover, for the same reason, equations for the White males are 

expected to yield more accurate estimates for this individual than any other equations.  

 However, it has been noted that DG does not fully reflect a similarity or discrepancy 

in a body proportion between a reference sample and a target sample (Ruff et al., 2012a; 
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Raxter et al., 2008). Briefly speaking, while what we want to know is whether there is a 

similarity or difference in the ratio of each bone to stature between a reference sample and a 

target sample (e.g., the ratio of humerus to stature, of radius to stature, and of femur to stature 

separately), what DG tells is whether a relationship between bones of a reference sample (e.g., 

ratio of humerus to radius, of humerus to femur, of radius to femur) is similar to that of a 

target sample. In other words, DG reveals only a relationship between bones without taking a 

stature or a trunk length into account. For an extreme example, if an individual possesses 

bone lengths the same as those of a reference sample but a longer trunk length, DG will be 

zero despite their difference in a body proportion. In this case, equations from the reference 

sample will produce systematically underestimated results because DG does not take the 

elongated trunk of this individual into account.  

 

 The cormic index is a standard that reveals an overall body proportion taking a total 

stature into account (Raxter et al., 2008; Ruff, 1994), which is expressed as the ratio of a 

sitting height to a standing height (i.e., sitting height 100 / standing height). As such, cormic 

index is more often interpreted as an estimate of a relative trunk length or of a relative lower 

limb length (Ukwuma, 2010), and can be utilized in comparing body proportions between 

samples. However, as Ruff (1994) points out, it is usually difficult to calculate the cormic 

index from the skeletal remains. It is because of the difficulty in precisely reconstructing an 

actual standing stature from bones without soft tissues, as well as because of a low chance of 

preservation of every bone element necessary for a stature reconstruction. Concerning the 

former issue (i.e., difficulty in reconstructing an actual stature from bones), it has been 

suggested that a skeletal height (i.e., sum of the lengths or heights of all skeletal elements 

contributing to a stature) can be substituted for a standing stature. In a similar way, a proxy of 

a sitting height can also be obtained by subtracting the sum of femur length, tibia length and 

ankle height from a skeletal height (Raxter et al., 2008). Yet, as mentioned earlier, skeletal 

height can be obtained from only complete or nearly complete skeletons, which is not often 

the case in both forensic and bioarchaeological contexts. Thus, in fact, it is not always 

available to obtain the cormic index from a target sample and to compare it to reference 

samples. 

 

 Intralimb indices, such as the brachial index and the crural index, have been popularly 

used in the studies on body proportions (Polk, 2004; Ruff, 2002; Holliday and Ruff, 2001; 
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Holliday, 1999). Particularly, the crural index (i.e., condylo-malleolus length of the tibia 100 

/ femoral physiological length) has received more attention than the brachial index (i.e., radial 

length 100 / humeral length) as a standard reflecting a body proportion (Auerbach and Ruff, 

2010; Ruff, 2007; Ruff 1994). This is because the crural index is produced from lower limbs, 

which directly contribute to a stature and, more importantly, because a significant correlation 

with the relative lower limb length to stature has been well documented (Ruff, 2007; Holliday, 

1999). In fact, in many studies examining secular change and/or allometry, it has been 

observed that an increase in stature is attributed to an increase in the lower limb length rather 

than trunk length (Tanner et al., 1982; Himes, 1979; Udjus, 1964), and that variations in the 

tibiae are more evident than in the femora (Duyar and Pelin, 2003; Holliday and Ruff, 2001; 

Jantz and Jantz, 1999; Ruff, 1994). Maijanen (2011) also found that an increase of skeletal 

height is accompanied by an increase of the crural index in the American White samples from 

the Terry collection and the William Bass Donated Collection. Therefore, despite a reportedly 

low value of the coefficient of determination (R
2
) between limb lengths and intralimb indices 

(Ruff et al., 2002; Holliday, 1999), the crural index appears to function as a general guide 

reflecting an overall body proportion or a relative limb length like the cormic index (Ruff et 

al., 2012a).  

 

 To summarize, when estimating a stature of an unknown individual using a regression 

equation, the best reference sample is the one coming from the population that the unknown 

individual belongs to, which is not often the case particularly in a bioarchaeological context. 

Thus, in many cases, a second-best reference sample needs to be identified, which is expected 

to share a similar body proportion with a target sample. In determining a similarity or 

discrepancy in a body proportion between samples, Delta of Gini, as well as the cormic and 

crural indices have been frequently used. Among these standards, crural index is preferred in 

this research not only because it considers an overall body proportion or a relative limb 

length but also because it can be calculated from an incomplete skeleton.  

 

1.3.2.2. Bone dimensions to be used 

 In many cases, the inclusion of skeletal elements to used in stature estimation depends 

on the preservation status of a skeleton, which is significantly influenced by diverse 

taphonomic factors (e.g., temperature, humidity, animal scavenging, soil pH). Yet, in the case 

that a number of bones are available, we can prioritize them based on several criteria such as 
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completeness of the bones, type of the bones, and most importantly, degree of correlation 

between stature and bone dimensions. 

 

Completeness of bones 

 It is often the case that only fragmentary bones are recovered both in forensic and 

archaeological contexts. In this situation, there has been effort to estimate stature from 

incomplete bones. In 1935, Gertrude Müller introduced a method for reconstructing a whole 

length of a long bone from its fragmentary parts (Stewart, 1970). This method was improved 

by Steele and McKern (1969) in expectation of inserting the reconstructed bone length into 

equations for stature estimation (Moore and Ross, 2013; Stewart, 1970). However, the idea of 

estimating a stature from reconstructed bone lengths has been criticized due to an issue of 

compounding errors (SWGANTH, 2012). Rather, in terms of statistics, it is preferred to 

estimate a stature directly from fragmentary bones themselves skipping the phase of 

reconstructing a whole bone length as Steele (1970) suggested (Pablos et al., 2013).  

 

Type of bones 

 Although there have been many studies presenting estimation equations where non-

long-bones are associated (for a detailed review and history, see Moore and Ross, 2013; 

Baines et al., 2011; Giroux and Wescott, 2008; Stewart, 1979; Krogman, 1962), as far as 

intact bones are available, long bones are always considered prior to other types of bones. 

This is not only because of a higher correlation of long bone lengths with a stature compared 

to other types of bones but also because of close functional relatedness between long bones 

and a stature from an anatomical point of view. Maijanen (2011) also emphasizes that the 

first standard to select a bone to be used in an equation should be the functional relationship 

between stature and bone dimensions. 

  

Degree of correlation between stature and bones 

 In addition to a functional relationship, a high degree of correlation between stature 

and size of a body part is desirable for bone selection. Correlation of body parts to stature 

varies and the higher correlation, the more likely accurate stature estimates can be obtained. 

Degree of correlation and its consequential output, accuracy of an estimate, are frequently 

expressed by such indicators as the correlation coefficient (r), the standard error of the 

estimate (SEE) and the prediction interval (PI) of a regression equation. High correlation 
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between variables is generally linked to a small SEE and a narrow PI. Thus, when deciding 

which bone(s) to be inserted into an equation, those indicators can be considered. Particularly, 

as to long bones, lower limbs are generally known to show higher correlations with a stature 

and thus smaller SEEs compared to upper limbs (Ruff et al., 2012a; Formicola and 

Franceschi, 1996; Sjøvold, 1990; Trotter and Gleser, 1952, 1958; Dupertuis and Hadden, 

1951). Thus, it is recommended to employ lower limbs in stature estimation unless only 

upper limbs are available (SWGANTH, 2012; Trotter and Gleser, 1958). Lastly, it has been 

shown that using multiple bones in equations tend to produce more accurate estimates, 

particularly when lower limbs are associated (SWGANTH, 2012; Krogman, 1962; Dupertuis 

and Hadden, 1951). This is not surprising because more portion of a stature can be explained 

by considering multiple bones at once, compared to considering only one single bone at a 

time.  

As such, researchers often provide various sets of regression equations: simple 

regression equations that includes only a single bone length, simple regression equations 

whereby a sum of multiple bone lengths is associated, as well as multiple regression 

equations whereby multiple bone lengths are considered at a time (e.g., Choi et al., 1997; 

Fujii, 1960; Trotter and Gleser, 1952, 1958; Pearson, 1899). However, it should be noted that 

multiple bones should not be used in the way of averaging the estimates obtained from each 

single bone. Although done in some previous research (e.g., Pearson, 1899; Stevenson, 1929), 

it is generally recommended to avoid this practice because it would increase an estimation 

error of an appropriate equation by compounding errors associated with each equation 

(SWGANTH, 2012; Stewart, 1979; Trotter and Gleser, 1958).  

 

1.3.2.3. Appropriate statistical method 

Five types of regression methods 

 In the mathematical method for stature estimation, regression analysis has been 

adopted as the most popular statistical tool since Pearson (1899). Konigsberg et al. (1998) 

made an extensive review of the five types of regression methods which have been previously 

used for stature estimation: inverse calibration, classical calibration, major axis regression 

(MA), reduced major axis regression (RMA), and using the ratio of long bone to stature. In 

addition to explaining a theoretical background of each method, the authors tested for the 

appropriateness and applicability of the methods in various conditions such as univariate (i.e., 

when a stature is estimated from a single bone) and multivariate regressions (i.e., when a 
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stature is estimated from multiple bones) and inter- and extrapolation. Among the five 

methods, the inverse calibration is understood as a Bayesian approach while the other four 

are a maximum likelihood approach (Konigsberg et al., 1998). According to Konigsberg et al. 

(1998), whether there is an informed prior or not makes a difference in the applicability as 

well as appropriateness of these two approaches. In the following paragraphs, each of the five 

methods will be briefly reviewed.  

 

 The inverse calibration refers to the method where statures are regressed on bone 

lengths so that a stature can be estimated by the ordinary least squares (OLS) regression. 

Slope of the inverse calibration is expressed as follows:  

 

         
        

  
        

  

  
 

(where, X = stature; Y = bone length; COV(X,Y) = covariance of stature and bone length; 

CORRXY = correlation between stature and bone length)  

 

 In the formulae above, it should be noted that stature is denoted by X, and bone length 

by Y, following the traditional usage in allometry and calibration studies (Konigsberg et al., 

1998).  

 Like the inverse calibration, in major axis regression (MA) and in reduced major axis 

regression (RMA), statures are regressed on bone lengths. Yet, the inverse calibration differs 

from the others in that it assumes no error associated with an independent variable of the 

model (i.e., it assumes errors only associated with a dependent variable), while MA and RMA 

assume errors in both dependent and independent variables (Smith, 2009). In addition, 

difference between MA and RMA is that MA assumes the error variances for dependent and 

independent variables are equal each other, while RMA assumes the ratio of error variances 

(e.g., the ratio of the error variance in stature to the error variance in bone length) is equal to 

the ratio of marginal variances (e.g., the ratio of the variance in stature to the variance in bone 

length). The slopes of MA and RMA are calculated as follows:  
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(where, COV(X,Y) = covariance of stature and bone length;  1 = the first eigenvalue of the 

variance-covariance matrix of stature and bone length;   
  = variance of stature;    = 

standard deviation of stature;    = standard deviation of bone length) 

 

 In the formulae above, it is noticeable that the slope of RMA can be easily calculated 

by dividing the slope of the inverse calibration (i.e.,        
  

  
) by the correlation between 

the variables.  

 For the sake of mathematical comparison between the three regression methods 

mentioned thus far, different rationales associated with each method are graphically depicted 

in Figure 3. In the inverse calibration, the regression line forms so that it minimizes overall 

distances between data points and the line in terms of only dependent variables, as 

exemplified by the point 'A' as well as its distance to the line, 'a'. In RMA, the regression line 

minimizes overall distances from data points and the line in terms of both dependent and 

independent variables, as exemplified by the point 'B' and its distances to the line, 'b1' and 'b2'. 

It can also be understood that the RMA line minimizes overall area of the triangles consisting 

of 'b1', 'b2', and the regression line. Lastly, in MA, the regression line minimizes overall 

distances from data points perpendicular to the line, as exemplified by the point 'C' and its 

distance to the line, 'c'. As noticed in Figure 3, regression lines of MA and RMA do not 

change even though the X-axis and the Y-axis are reversed, whereas the regression line of the 

inverse calibration does. In other words, in MA and RMA, unlike the inverse calibration, the 

slope of the regression line when regressing statures on bone lengths is the same as that when 

regressing bone lengths on statures. Due to the reversibility, MA and RMA are regarded as 

more appropriate methods when there exists a bilateral relationship between variables, while 

the inverse calibration when there exists a unilateral relationship between variables (Sjøvold, 

1990; Smith, 2009). 

 The classical calibration refers to the method of regressing bone lengths on statures 

followed by solving for a stature (Konigsberg et al., 1998). Despite a long history of the 

classical calibration in other fields, physical anthropology has seen only a few studies that 
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Figure 3. Graphic comparison of mathematical rationales associated with inverse calibration 

('A' and 'a'), RMA ('B', 'b1' and 'b2'), and MA ('C' and 'c'). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

32 

used this method (e.g., Hens et al., 1998; Aykroyd et al., 1997; Rogers 1996). Slope of the 

classical calibration is obtained by simply inverting the slope of inverse calibration.  

 

                                                     
   

 

 Lastly, in the bone length to stature ratio method, a stature is estimated by dividing a 

given bone length by the ratio of a mean bone length to a mean stature (Feldesman et al., 

1990). 

    
  

  
   

  

  
 

(where, X = stature;    = mean bone length in a reference sample;    = mean stature in a 

reference sample) 

 

 This bone length to stature ratio method is regarded as one of the variants of the 

classical calibration simply passing the origin and the bivariate mean (Konigsberg et al., 

1998). In fact, when bone lengths and statures have an isometric relationship, this method is 

virtually the same as the classical calibration (Hens et al., 1998; Konigsberg et al., 1998).  

 

Choosing an appropriate regression method 

 According to Konigsberg et al. (1998), when deciding upon a regression equation for 

stature estimation, researchers should consider three issues: whether an informed prior for the 

unknown individual exists, how close the stature estimate of the unknown individual is to the 

mean stature of a reference sample, and whether the unknown individual falls into (i.e., 

interpolation) or outside (i.e., extrapolation) of the range of a reference sample.  

 Provided an appropriate informed prior, in both univariate and multivariate situations, 

the inverse calibration works best in the vicinity of the mean stature of a reference sample. 

However, the inverse calibration tends to yield very biased estimates without an appropriate 

informed prior, where the classical calibration should be considered instead. RMA extends a 

useful range farther than the inverse calibration. That is, compared to the inverse calibration, 

RMA produces unbiased estimates for samples in a farther range from the mean stature. 

However, since RMA is virtually a compromise between the inverse and classical calibration, 

the useful range of RMA does not go over that of the classical calibration (Konigsberg et al., 

1998). In addition, RMA does not work well in the case of extreme extrapolation, where 
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classical calibration is relatively robust. In an extreme extrapolation situation, where both the 

inverse calibration and RMA are inappropriate to be use, there is not a reason for the bone-

length/stature ratio method to be preferred either. It is because this method cannot work better 

than the classical calibration (Meadows and Jantz, 1995). Lastly, MA is not preferred either 

because it produces poorer results particularly in a multivariate condition due to its equal 

error variance assumption for divers bone lengths, which is hard to be satisfied in reality 

(Konigsberg et al., 1998).  

 

1.3.3. Hybrid method 

 The hybrid method for stature estimation can be understood as a new version of the 

mathematical method. The difference between the hybrid method and the mathematical 

method is that, to develop estimation equations, the former uses statures reconstructed by the 

anatomical method instead of known statures. That is, in the hybrid method, statures are 

estimated by the anatomical methods from a subset of a target sample, and then new 

equations are derived from these estimated statures (Ruff et al., 2012a; Raxter et al., 2008). 

Using the hybrid method has been advocated primarily due to the fact that it can resolve the 

issue of an appropriate reference sample related to the mathematical method, as well as due to 

a high accuracy of stature estimates by the anatomical method (Lundy, 1983, 1985; Stewart, 

1979; El Najjar and McWilliams, 1978; Olivier, 1960).  

 The idea of the hybrid method dates back to Lundy (1983), where he regressed long 

bone lengths (i.e., femur, tibia, fibula, humerus, radius, and ulna) against skeletal heights 

instead of estimated living statures. In Lundy (1983), to obtain a stature at death, the author 

applied Fully's (1956) soft tissue correction factors and Trotter and Gleser's (1951) age 

correction factors to a skeletal height reconstructed from his new equations. Unlike Lundy 

(1983), most researchers using the hybrid method have regressed estimated statures by the 

anatomical method, not skeletal heights, on bone lengths (Ruff et al., 2012a; Maijanen and 

Niskanen, 2010; Auerbach and Ruff, 2010; Vercellotti et al., 2009; Raxter et al., 2008; Sciulli 

and Hetland, 2007; Formicola and Franceschi, 1996; Feldesman and Lundy, 1988). Also, it is 

noticeable that, since the publication of Raxter et al. (2006), their revised Fully method has 

been popularly used to produce reference statures for equation development (Ruff et al., 

2012a; Auerbach and Ruff, 2010; Kurki et al., 2010; Maijanen and Niskanen, 2010; 

Vercellotti et al., 2009; Dayal et al., 2008; Raxter et al., 2008; Bidmos, 2006, 2008; Chibba 

and Bidmos, 2007).  
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 Since the equations developed by the hybrid method are technically based on 

estimated statures, this method cannot be free from the issue of compounding error. In other 

words, estimation errors associated with the hybrid method may be attributed not only to the 

errors associated with the process of equation development but also to the errors associated 

with the anatomically constructed statures themselves, but unfortunately it is very hard to 

determine how much each source of errors contributes to the final error. In this situation, if 

we consider only the errors associated with the process of equation development, the actual 

errors of the hybrid method is likely to be underestimated by neglecting the error associated 

with the estimated statures by anatomical method.  

 Despite this intrinsic limitation of the hybrid method, particularly in the absence of an 

appropriate reference sample, it has been shown that overall the hybrid method performs 

better than the mathematical method (Ruff et al., 2012a; Auerbach and Ruff, 2010; Maijanen 

and Niskanen, 2010; Raxter et al., 2008). This result does not appear unexpected given a 

limited availability of a second-best reference sample. That is, researchers seeking a second-

best reference sample cannot help but select one within a limited pool of reference samples 

studied by previous researchers (i.e., osteometric data from living people or informed skeletal 

collections from which estimation equations have been developed). In this regard, second-

best reference sample often means nothing more than 'relatively better than the others', not 

implying 'being close enough to a target sample'. Moreover, when applying equations from 

this questionable reference sample to a target sample, it is hard to objectively quantify how 

much potential error would be added to the known error associated with the equations. 

 The greatest advantage of the hybrid method is that estimation equations are 

developed from the sample of which background is shared with a target sample both 

geographically and temporally. In addition, although errors may exist in the stature estimates 

by the anatomical method, considering the SEE of equation 1 in Raxter et al. (2006) (i.e., 

2.2cm), the magnitude of the error does not appear highly influential, especially when 

compared to that of diurnal variation which may reach up to nearly 2.4cm (Damon, 1964). 

For these reasons, the hybrid method is regarded as most appropriate in developing stature 

estimation equations particularly for a population of which informed reference sample is not 

available.  
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1.4. Stature estimation studies in Korea 

 Statures of most skeletons found in Korea have been estimated using either the 

Pearson (1899) equations or the Asian male equations of Trotter and Gleser (1958). In this 

research, a total of 64 articles and reports containing Korean osteometric information since 

the 1970s were randomly selected and examined (Appendix Table A-1). For stature 

estimation, thirty eight out of the 64 papers (59.4.7%) used the Trotter and Gleser (1958) 

equations and twenty three (35.9%) the Pearson (1899) equations. There were only two 

papers where statures were estimated by other stature estimation methods (i.e., in one paper, 

the Choi et al. (1997) equations were applied and in the other paper, statures were estimated 

by a burial size), and the remaining one did not specify the estimation method. Based on this 

simple statistics, it can be roughly concluded that Pearson (1899) and Trotter and Gleser 

(1958) have had a dominant influence in stature estimation in Korea.  

 There have been a handful of stature-related studies conducted by Korean researchers. 

Kim et al. (1983) took scanography of the femora from 50 living Korean people (36 males 

and 14 females), whose age range was 18 - 77, and reported that the femoral shaft length 

occupies about 24% of stature with no sex or side difference. Although stature can be 

estimated from the femoral shaft using the given ratio, it should be noted that the authors 

used their own measurement definition for the femoral shaft length (i.e., the distance between 

the tip of the greater trochanter and the center of the distal subchondral line). In addition, due 

to a potential error in measuring wet bones from radiographic materials (Pak, 2011), it is 

questionable whether their results are directly applicable to dry bones for the purpose of 

stature estimation.  

 Kim et al. (1986) reported the relationship between stature and the femoral maximum 

length using a regression analysis. Yet, as orthopedists, the authors were primarily interested 

in estimating the femoral length from a stature, rather than estimating a stature from the 

femoral length, so that they can estimate a precise nail length before the intramedullary 

nailing surgery. Thus, in their sex-specific equations, the femoral lengths (i.e., maximum 

length of the right femur) were regressed on statures. Yet, since their equations can be 

obviously solved for stature, to my knowledge, this research was the first that provided 

stature estimation equations for the Korean population. However, due to the issues regarding 

bone measurements from radiographic materials, the applicability of their results directly to 

dry bones appears still questionable (Pak, 2011). In addition, since the SEEs associated with 
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converted equations (i.e., equations for stature estimation from the femoral length) are not 

given, it is hard to quantify an estimation error associated with these equations.  

 Im et al. (1993) performed another roentgenographic study on 248 living people (175 

males and 73 females). As part of an effort to provide a methodological basis for human 

identification from limb bones, the authors developed stature estimation equations for pooled 

sex using the total lengths of the femur and the tibia. Indeed, ambiguity in measuring 'the 

total length' arises because the authors did not provide any verbal explanations but 

photographic illustrations about their measuring points. Yet, based on the photographic 

illustrations, by 'the total length', the authors appear to mean the femoral maximum length 

and the spino-malleolus length of tibia. Unlike Kim et al. (1986), where bone lengths were 

regressed on statures, in Im et al. (1993), statures were regressed on bone lengths. However, 

since the magnification effect of the radiographic film was not controlled for, the 

applicability of their equations to dry bones is quite questionable. In addition, the authors did 

not provide any statistical assessment for their equations such as the SEE, thus it is hard to 

compare these equations to others in terms of accuracy.  

 Choi et al. (1997) presented a set of stature estimation equations using 57 male 

cadavers and their dissected limb bones (i.e., humerus, radius, ulna, femur, tibia, and fibula). 

The authors asserted that their equations produced more accurate estimates for Koreans than 

other equations from previous researchers such as Pearson (1898), Trotter and Gleser (1958), 

and Dupertuis and Hadden (1951). This research was the first that developed stature 

estimation equations from direct measurement of dry bones. However, to estimate a stature 

using their equations, some caveats are necessary. Firstly, statures estimated by these 

equations are not representative of a living stature but a cadaver stature, since the authors 

regressed cadaver statures on bone lengths. Thus, in the case that a living stature needs to be 

obtained, the estimate should be converted to a corresponding living stature using some 

correction factors as mentioned earlier (e.g., Trotter and Gleser, 1952; Pearson, 1899; 

Manouvrier, 1892). Secondly, due to a rather biased age structure of the samples (i.e., 

average age of 52.3), without age correction factors, the equations are likely to produce 

biased estimates (i.e., stature is likely to be underestimated when the equations being applied 

to a young individual) (Raxter et al., 2007). Pak (2011) also points out that applying these 

equations to the past populations would be particularly problematic due to different age 

structures between the reference sample of Choi et al. (1997) and the populations in the past. 

Thirdly, lack of a detailed description on the tibia measurement may cause confusion in 
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measuring the tibia. That is, the authors did not specify whether the maximum length of tibia 

means the spino-malleolus length or the condylo-malleolus length or any other else, which 

may eventually limit the applicability of the tibia-related equations. Lastly, female equations 

are not provided in Choi et al. (1997). Due to sexual dimorphism in a body proportion, it is 

shown that male equations would not work well in estimating female statures (Pak, 2011; 

Vercellotti et al., 2011). Thus, researchers should be cautious not to apply these male 

equations to female skeletons. 

  

2. Estimation of body mass 

 Body mass means a weight of an individual, or how heavy an individual is, mostly 

measured in the unit of kg in academia (Stokkom, 2012). Generally, it is said that body mass 

is related to such various factors as bone density, the ratio of muscle to adiposity, and age of 

an individual (Moore and Schaefer, 2011; Miyabara et al., 2007; Wheatley, 2005; Gibson et 

al., 2004).  

 Rather than in the field of forensics, body mass has played an important role in 

paleontology and archaeological studies (Auerbach and Ruff, 2004). As to a usefulness of 

body mass particularly in the fossil hominid studies, Smith (1996) stated that, based on a 

strong statistical relationship between body mass and diverse biological traits in the extant 

species, body mass of extinct fossil remains allows to predict their physiological, behavioral, 

and ecological traits (e.g., home range, life span, basal metabolic rate, and gestation length) 

(Jungers, 1985; Schmidt-Nielsen, 1984; Calder, 1984; McMahon and Bonner, 1983; Peters, 

1983). In addition, Ruff (2000) mentioned that the role of body mass in paleontology and 

archaeology is important for three reasons: (1) body mass is a single most reasonable 'size' 

parameter in evaluating various biological characteristics such as the long bone robusticity 

(Ruff et al., 1993), a metabolic requirement, and relative organ sizes (Aiello and Wheeler, 

1995), (2) body mass allows for comparative studies not only between humans but also 

between animals due to its availability from many living animals (Calder, 1984; Schmidt-

Nielson, 1984), and (3) body mass is useful in comparison of body size or a relative size of 

body parts particularly between partial remains.  

 

2.1. History of body mass estimation 

 Body mass estimation has been regarded as a more complex issue compared to stature 

estimation not only because a contribution of any skeletal dimensions to body mass is not as 
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intuitively decisive as to stature but also because body mass fluctuates during one's life 

(Pomeroy and Stock, 2012). Due to this difficulty, much less effort has been made to develop 

body mass estimation methods compared to stature estimation methods (Stewart, 1979). 

Baker and Newman (1957), which is the only study reviewed in the body mass estimation 

chapter in Stewart (1979), examined a relationship between body mass, skeletal weight, and 

femur weight, and then suggested using the femoral weight to estimate a body mass.  

 In paleontology, efforts for body mass estimation started with comparative studies on 

fossil hominids and living primates (Smith, 1996). Jerison (1970, 1971, 1973) provided a 

bivariate interspecific allometric equation (i.e., the equation of the form        or its log-

transformed form                 ) for body mass estimation using a total body 

length. Yet, McHenry (1975, 1976) realized that equations using a total body length were 

difficult to apply to human paleontology due to an incomplete preservation of fossil hominids, 

and thus devised a new method using a vertebral cross-sectional area and femoral dimensions. 

In 1977, Gingerich demonstrated that tooth size could be used for body mass estimation. 

Since then, such an extensive effort had been made regarding body mass estimation of fossil 

hominids that Damuth and MacFadden (1990) listed over 900 equations in their appendix 

(Smith, 1996).  

 While most methods published prior to 1990 had been primarily based on the effect of 

load bearing and aging on diaphyses of long bones, in the 1990s some researchers focused on 

a relationship between body mass and articular surface sizes of joints. Ruff et al. (1991) 

demonstrated that a femoral head size is correlated with body mass at the onset of adulthood, 

and Porter (1999) and Eckstein et al. (2002) showed that body mass can be reflected on the 

size of ankle and knee joint respectively (Moore and Schaefer, 2011). In the 1990s and 2000s, 

a new approach to estimate body mass was suggested, whereby body mass could be estimated 

by a reconstructed body form (Ruff et al., 1997, 2005; Ruff, 1994, 2000). Details about the 

estimation methods will be discussed in the following section.   

 

2.2. Body mass estimation methods: Biomechanical, Morphometric, and Hybrid 

methods 

 In general, body mass estimation methods are divided into two categories depending 

on whether the method is based on a functional relationship between body mass and skeletal 

dimensions or not. These two categories include the biomechanical method and 

morphometric method (Auerbach and Ruff, 2004; Ruff, 2002). The biomechanical method 
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can be subdivided into two categories depending on the skeletal dimension used: using 

diaphyseal dimensions of long bones (e.g., diaphyseal breadth and cross-sectional dimensions) 

and using articular surface dimensions (Auerbach and Ruff, 2004; Ruff, 2002).  

 

2.2.1. Biomechanical method 

 In the biomechanical method, body mass is reconstructed based on a functional 

relationship between body mass and weight-bearing bone elements (Moore, 2008; Auerbach 

and Ruff, 2004; Ruff, 2002). Due to bipedalism, body mass-related pressure is directly 

applied to the lower limbs in humans, which influences not only the diameter of diaphyses 

but also the articular surface size of the lower limbs (Aiello and Dean, 1990). Based on this 

relationship, skeletal dimensions of the lower limbs have been most often used for body mass 

estimation (Ruff et al., 1997; Damuth and MacFadden, 1990).  

 

2.2.1.1. Body mass estimation using diaphyseal dimensions 

 Since the 1970s, the diaphyseal breadths of the femur and the tibia have attracted 

much attention as predictors of body mass in hominins (Ruff, 2002; Hartwig-Scherer, 1994; 

Oleksiak, 1986; Rightmire, 1986; McHenry, 1976). Particularly, the engineering beam theory, 

where a long bone is modeled as an engineering beam, played an important role to figure out 

the characteristics of long bones corresponding to various strains including body mass: the 

cross-sectional cortical area, the moment of inertia, the polar moments of area of long bones 

are known to reflect a strength to axial compression, bending, and torsion respectively 

(Moore, 2008; Currey, 2002; Frankel and Nordin, 1980). Among the strains, it was found that 

body mass is highly correlated with axial strength, and thus with the cross-sectional cortical 

area of long bones as well (Moore, 2008; Ruff et al., 1991). However, it has been also pointed 

out that the diaphyses of long bones would not be an appropriate bone dimension for a body 

mass estimation due to its sensitivity to a mechanical loading (Moore, 2008; Ruff, 2002; Ruff 

et al., 1991, 1997; Trinkaus et al., 1994). That is, since the long bone diaphyses may change 

their diameters sensitively due to outside factors other than body mass, it would be hard to 

conclude that two long bones of the same diaphyseal breath represent two individuals of the 

same body mass, without any evidence that the mechanical loadings on the two bones were 

the same. Thus, if an overall mechanical loading of a reference sample turns out to be 

different to that of a target sample, the estimated body mass would be systematically biased. 

In this regard, researchers have warned that a body mass estimation method using diaphyseal 
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dimensions of a modern reference sample would produce overestimated results for fossil 

hominins whose diaphyses are systematically larger than those of most modern samples (Ruff, 

1998, 2002; Ruff et al., 1993, 1994).   

 

2.2.1.2. Body mass estimation using an articular surface size 

 Relatively recently, articular surfaces have been favored as a body mass predictor 

because, once the maturation process is finished, articular facet size is known to be less 

affected by an activity level or a muscular loading than the diaphyseal dimensions (Auerbach 

and Ruff, 2004; Leiberman et al., 2001; Ruff et al., 1997; Trinkaus et al., 1994; Ruff, 1988). 

In fact, articular surfaces are composed of mature spongy bone, and respond to the outside 

strains by changing their inner structures (i.e., density) or by generating degenerative 

processes such as osteoarthritis rather than by changing their outer size (Moore, 2008; 

Eckstein et al., 2002; Frost, 1993, 1997; Ruff et al., 1991). Due to this property of spongy 

bone, it is expected that using articular surface size would yield an estimate of body mass 

relatively free from an individual behavioral variation (Ruff, 2002). Among several articular 

surfaces in the lower limb, the femoral head has been most popularly used for the purpose of 

body mass estimation of hominins as well as modern humans, in part, due to a relatively good 

preservation status of the femoral head and the ease of measuring its size (Ruff et al., 1991, 

1997, 2006, 2012a; Ruff, 2010; Kurki et al., 2010; Sládek et al., 2006; Stock and Pfeiffer, 

2001; Grine et al., 1995; McHenry, 1992). Yet, it should be noticed that the femoral head 

diameter does not necessarily have a proportionate relationship with actual body mass not 

only in juveniles but also in adults (Reeves, 2014; Ruff, 2007). Based on  the observation that, 

despite a difference in reported body mass between obese and non-obese people, there is no 

difference in femoral head breadth between the groups, Reeves (2014) states that this body 

mass estimates by femoral head breadth represent more like 'lean mass' or possibly 

'genetically programmed mass' at the time of skeletal maturation. 

 Currently available are three sets of regression equations for body mass estimation 

using the femoral head diameter of modern populations: Ruff et al. (1991), McHenry (1992), 

and Grine et al. (1995). In the following paragraphs, these three studies will be briefly 

reviewed.   

 

 Ruff et al. (1991) found that the femoral head diameter is more correlated with a body 

mass at the onset of adulthood rather than a current body mass. Using radiographic data from 
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80 patients at the Johns Hopkins Hospital in Baltimore (41 males and 39 females), they 

developed three equations for body mass estimation: for males, for females, and for 

combined sexes (Ruff et al., 1991, p.406). In applying these equations, it should be noted that 

the estimated body mass is the likely weight that an individual would have obtained when 

his/her maturation process ceases (i.e., at the age of 18 years). Also, it is worth mentioning 

that the authors recommend adjusting their equations downwardly by 10% by multiplying 0.9  

to each equation to account for increased adiposity in their reference sample which was made 

up of mostly old individuals with a mean age of 52 years (Ruff et al., 1991).  

 

 McHenry (1992) presented descriptive statistics (i.e., mean, standard deviation, and 

sample size) on thirteen skeletal dimensions from four modern human populations and twelve 

primate species along with their corresponding body mass (p.410, 411). Five years later, the 

information about the four modern human populations was utilized by Ruff et al. (1997, 

p.175) whereby an equation for human body mass estimation was developed. In regards to 

population composition in the McHenry study (1992), since the author was primarily 

interested in the body mass of small-bodied hominins, two small-sized populations were 

included: Khoisan people (n = 6) and African Pygmies (n = 2) of which mean body mass are 

46kg and 30.4kg respectively (Auerbach and Ruff, 2004; McHenry, 1992). The other two 

modern human populations consisted of the North Americans of a mixed ancestry (McHenry, 

1992), and were categorized as a medium-sized sample (i.e., the mean body mass of the two 

populations are 54.2kg and 64.9kg) (Auerbach and Ruff, 2004; McHenry, 1992). The 

equation is not sex-specific, and due to a small number of data points (i.e., four population 

means), the correlation coefficient is shown to be high (i.e., r = 0.98) (Auerbach and Ruff, 

2004; Ruff et al., 1997). In addition, it should be noted that the body mass data provided in 

McHenry (1992) were estimated weights except for one Pygmy case. McHenry (1992) stated 

that "body weights for these specimens are estimated by calculating stature using humeral, 

femoral, and tibial lengths following Olivier's (1976) correlation axis and by deriving weight 

from stature using the power curve given in Jungers and Stern (1983)" (p.408).  

 

 As part of analyzing a fragmentary proximal femur excavated at the Berg Aukas mine, 

Namibia, Grine et al. (1995) presented an equation for body mass estimation of large bodied 

fossil hominins (p.178). As to a composition of the reference sample, Grine et al. (1995) 

briefly mentioned that they had used "10 sex-specific means for large-bodied modern human 
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samples (including African Americans, European Americans, and Native Americans) ... from 

data used by Jungers (1990)" (p.177 - 178) without providing additional detailed information 

about the reference sample. However, the original measurement data was not provided in 

Jungers (1990), where the only description about the sample was "modern humans 

(MODHUM, including eastern and western African pygmies)". Yet, Auerbacch and Ruff 

(2004) stated that the body mass of the reference sample in Grine et al. (1995) ranged 54 - 

84kg (p.339) based on a personal communication with William L. Jungers. Like the McHenry 

(1992) equation, the equation is not sex-specific, and show a high correlation coefficient due 

to a small number of data points (i.e., ten population means) (Auerbach and Ruff, 2004). 

 

Comparison of Ruff et al. (1991), McHenry (1992), and Grine et al. (1995) 

 It is known that there is an allometric relationship between body mass and a femoral 

head size (Ruff et al., 2012a; Auerbach and Ruff, 2004). In other words, small-bodied people 

tend to have smaller femoral heads and large-bodied people tend to have larger femoral heads 

than they would be if an isometric relationship existed. Due to this allometric relationship 

between body mass and a femoral head size, the equations provided in the previous studies 

(i.e., Ruff et al. (1991), McHenry (1992), and Grine et al. (1995)) produce estimates with 

differing accuracy rates depending on the size range of a target sample. For example, the 

McHenry (1992) method, where small-bodied populations were associated, works better than 

the others for a small individual (i.e., in the range of 31 - 42.7kg), while the Grine et al. (1995) 

method, where large-bodied populations were associated, for a large individual (i.e., in the 

range of 60.9 - 84.9kg) (Auerbach and Ruff, 2004). For a mid-sized individual (i.e., in the 

range of 40.7 - 60.8kg), both the Ruff et al. (1991) method and the so-called average method 

(i.e., averaging the estimates from the three methods) produce a decent estimate compared to 

the other two methods (Auerbach and Ruff, 2004). For this reason, researchers recommend 

the use different equations depending on the likely size of a target sample: for small-, large-, 

and mid-sized people, the equations of McHenry (1992), Grine et al. (1995), and Ruff et al. 

(1991) (or the average method) are preferred respectively (Ruff et al., 2012a; Kurki et al., 

2010; Ruff, 2010; Auerbach and Ruff, 2004).  

 

2.2.2. Morphometric method 

 The morphometric method is based on a relationship between the overall body form 

and body mass. This approach assumes a relatively less significant variation in body density 
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between individuals (or between populations), and body mass of an individual is estimated by 

his or her body form based on a high correlation between them. Although stature was 

sometimes regarded as a body form to be used for this purpose (Mathers and Henneberg, 

1995; Porter, 1995), this approach did not produce a satisfactory result since stature alone 

could not reflect a significant variation in a body breadth (Auerbach and Ruff, 2004; Ruff, 

1994, 2002).  

 Ruff (1991) demonstrated that the relationship between various body shapes and body 

mass seen in diverse modern human populations can be effectively explained by modeling a 

human body as a cylinder. In this cylindrical model, the stature and the bi-iliac breadth (i.e., 

the maximum mediolateral breadth of the pelvis) are regarded as the height and the width of a 

cylinder respectively. The author states that using the bi-iliac breadth as a measure of body 

width has some advantages over other width dimensions such as the biacromial, 

bitrochanteric, or chest breadth (Ruff, 1991, 1994). Most importantly, the bi-iliac breadth can 

be obtained from both living people and skeletal remains in a reliable way and thus, the 

measurements from living people and skeletal remains are directly comparable each other 

with a simple correction procedure (i.e., living bi-iliac breadth = 1.17 skeletal bi-iliac breath 

- 3) (Ruff et al., 1997; but also see De Greef et al. (2009) who state that the amount of soft 

tissues around standard landmarks vary by populations as well as by individuals). In addition, 

due to its well-defined landmarks, measurement errors associated with taking the bi-iliac 

breadth are known to be smaller than other trunk breadth (Bennett and Osborne, 1986). The 

bi-iliac breadth is also known to be less affected by variations in soft tissues, joints or limb 

bone morphology. Lastly, the bi-iliac breadth has a practical usefulness as a research material, 

because it has been relatively well documented in the various literature and less sexually 

dimorphic (Ruff, 1991, 1994; Hiernaux, 1985).  

 Important in the cylindrical model is that, as far as the cylinder width remains 

constant, the ratio of the surface area to body mass (SA/M) does not change regardless of a 

change in the cylinder height (for a detailed explanation, see Ruff (1991, 1994)). On the other 

hand, if the cylinder width changes, the SA/M ratio changes accordingly even though the 

cylinder height does not change. In general, the surface area (SA) of an organism is known to 

be related to a heat dissipation while its body mass (or volume) to a heat production 

(Feldhamer, 2007; Ruff, 1991, 1994, 2002; Holliday, 1997; Roberts, 1978). Thus, a body 

form with a higher SA/M ratio can be thought to be more beneficial to survive in the warm 

climate since the body would dissipate heat more efficiently than a body with a lower SA/M 
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ratio. On the contrary, in a cold climate, where preservation of heat is a critical issue for 

survival, a body form with a lower SA/M ratio would be more advantageous. In fact, the 

clinal distribution of a body shape by climate (or by latitude) has been empirically observed 

in diverse modern human populations (Temple et al., 2008; Ruff, 1991, 1994, 2002; Holliday, 

1997, 1999; Ruff and Walker, 1993; Yamaguchi, 1989; Trinkaus, 1981).  

 Based on the cylindrical modeling, Ruff (1994) devised a set of equations for body 

mass estimation taking both stature and body width (i.e., bi-iliac breadth) into account. For 

developing these equations, the author used 56 world-wide population means of stature, body 

mass, and the bi-iliac breadth, which had been published in eight references (for details of the 

references, see Ruff (1994)). Due to a sex difference in the proportion of shoulder breadth to 

hip breadth (Hiernaux, 1985), sex-specific equations are recommended when available 

(Moore, 2008; Ruff, 2000). Yet, three years later, Ruff et al. (1997) corrected an error 

incorporated in the female equation and presented a new equation for females (p.175). The 

accuracy of the new female equation improved as shown in the change of SEE from 6.1kg in 

the previous equation to 4.1kg in the new equation. In addition, in the case where it is 

difficult to determine sex from the skeletal material, the authors recommended taking the 

average of the estimates from the male and the female equations rather than applying the 

combined sex equation to the skeleton (Ruff, 2000; Ruff et al., 1997). Ruff (2000) 

demonstrated that the morphometric method works well for both 'normal' and 'highly athletic' 

individuals, though the method is based on population means. Yet, Ruff et al. (2005) found 

out that the equations produced biased estimates when applied to wide-bodied populations of 

a high latitude (i.e., Alaskan Inupiat and Finnish). That is, when one had a high shoulder to 

hip breadth ratio (i.e., the ratio of the biacromial breadth to the bi-iliac breadth), the equations 

tended to underestimate his or her body mass, because the equations did not take the 

particularly broad shoulder breadth into account. Thus, the authors provided a new set of 

equations where two additional populations from high latitudes were considered. As with 

Ruff (2000), Ruff et al. (2005) did not provide a combined-sex equation, so in the case that a 

sex of a skeleton  is indeterminable it is advised to take the average of the estimates from the 

male and the female equations. The authors also recommend using the most recent set of 

equations provided rather than the previous versions because the former covers a more 

extended range of morphological variations than the latter. Indeed, recent studies appear to 

have followed this recommendation of Ruff et al. (2005) in body mass estimation (e.g., 
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Pomeroy and Stock, 2012; Ruff et al., 2012a; Kurki et al., 2010; Ruff, 2010; Rosenberg et al., 

2006).  

 Limitations of the morphometric method are obvious as it requires more skeletal 

elements than the biomechanical method, particularly complete or nearly complete pelvic 

bones for the bi-iliac breadth reconstruction (Pomeroy and Stock, 2012; Kurki et al., 2010; 

Auerbach and Ruff, 2004). Thus, application of morphometric method is more limited than 

the biomechanical method particularly in the archaeological samples. In addition, the 

morphometric method is not free from the issue of an artificial reduction of biological 

variation as well the risk of compounding error because it is based on estimated dimensions 

(i.e., reconstructed stature and the living bi-iliac breadth) (Pomeroy and Stock, 2012; 

Auerbach and Ruff, 2004; Smith, 1996).  

 However, most researchers agree that the morphometric method produces more 

accurate and unbiased estimates compared to the biomechanical method (Ruff et al., 2005, 

2012a; Pomeroy and Stock, 2012; Kurki et al., 2010; Auerbach and Ruff, 2004; Ruff, 2000). 

Thus, even though the biomechanical method was demonstrated to produce comparable 

results (Auerbach and Ruff, 2004), given sufficient bone elements, the morphometric method 

has been preferably applied in many of previous studies (Ruff et al., 1997, 2006, 2012a; 

Kurki et al., 2010; Rosenberg et al., 2006; Ruff, 1994, 1998; Arsuaga et al., 1999; Trinkaus 

and Ruff, 1999; Trinkaus et al., 1999; Ruff and Walker, 1993). Better performance of the 

morphometric method is often attributed to the fact that this method is based on worldwide 

samples encompassing diverse morphological characteristics (Ruff et al., 2005, 2012a; Kurki 

et al., 2010; Auerbach and Ruff, 2004; Ruff, 1994, 2000), and more importantly, it does not 

assume any relationship between body mass and bone dimensions.  

 

2.2.3. Hybrid method 

 As with stature estimation, the hybrid method has been proposed as part of an effort to 

develop a population-specific method for body mass estimation (Ruff et al., 2012a; Pomeroy 

and Stock, 2012; Kurki et al., 2010). In the hybrid method for body mass estimation, 

regression equations are developed by regressing any bone dimension (e.g., the femoral head 

size) on the body mass estimated by the morphometric method from a subsample of a target 

population. The basic rationale underlying the hybrid method is that the estimate by the 

morphometric method is accurate enough to be used as a baseline for equation development 

and that using a population-specific equation would remove some methodological limitations 
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associated with the previous equations (i.e., Ruff et al. (1991), McHenry (1992), and Grine et 

al. (1995)). 

 

2.3. Body mass estimation studies in Korea 

 To my knowledge, there has been no published literature dealing with reconstructing 

body mass from the human skeleton in Korea. This appears to be in part because of the idea 

that body mass is a very complex and fluctuating property in one's life, and more realistically 

because of a lack of a skeletal collection available for body mass estimation. Therefore, this 

research will be the first trial to estimate body mass of Korean populations using the Korean 

osteometric data.  

 

Part 2. Secular changes in stature and body mass  

 Examining the pattern of secular change in stature and body mass of the Korean 

population is the primary topic of this research. In the second part of the Literature Review 

chapter, general issues regarding secular change (e.g., the concept, direction, and cause of 

secular change) are outlined, followed by stature-specific as well as body mass-specific 

issues.   

 

1. Secular changes in general 

 The term 'secular trend' or 'secular change' can be defined as a "long-term systematic 

or non-random change in a wide variety of traits, in successive generations of a population 

living in the same territories" (Cameron et al., 1990; Tobias, 1985). Despite the vagueness of 

the concept of 'population' due to its usage in various contexts, in this research, a population 

is simply defined as 'a group of objects or organisms that share something in common' 

following Lanfear (2012). As such, based on the commonality of geographic, linguistic, 

cultural, and genetic background (Jung et al., 2010; Kim et al., 2010; Lee, 2003), it appears 

reasonable to regard the whole Korean people as one population which can be treated as a 

subject of secular change research. In addition, it is worth mentioning that, the territorial 

restriction in the definition of secular change (i.e., 'living in the same territories') "might be 

considered to exclude, as examples of secular effects, changes associated with migration of a 

people from one territory to another, including changes that may accompany urbanization of 

previously rural members of a population or community" (Tobias, 1985, p,348). Although the 

two terms 'secular trend' and 'secular change' have been often used interchangeably, the latter, 
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secular change, is primarily used in this research, since the former implies a unidirectional 

course of change which is not necessarily the case (Danubio and Sanna, 2008; Cole, 2000, 

2003; Tobias, 1985). 

 The range of the biological traits that have been considered within secular change 

research have gradually expanded. Secular change research has traditionally focused on 

stature along with the age at menarche (Danubio and Sanna, 2008; Fubini et al., 2001; 

Thomas et al., 2001; Ulijaszek, 2001; Cavelaars et al., 2000; Hermanussen et al., 1995; Floud, 

1994; Tobias, 1985). Yet, since the 1990s, the range of research extended to different body 

parts such as head dimensions, relative leg length, sitting height, shoulder breadth, hip 

breadth, and dental root (Jantz and Logan, 2010; Cardoso et al., 2010; Sanna and Palmas, 

2003; Sparks and Jantz, 2003; Kromeyer-Hauschild and Jaeger, 2000; Sanna and Soro, 2000; 

Ali et al., 2000) and the onset of secondary sexual characteristics (Herman-Giddens, 2006; 

Kaplowitz, 2006; Herman-Giddens et al., 1997, 2001; Bodzsar, 2000; Lindgren, 1996). More 

recently, some researchers have reported secular change in physical fitness and performance 

of adolescents and elite athletes (Matton et al., 2007; Lozovina and Pavicic, 2004; 

Wedderkopp et al., 2004; Westerstahl et al., 2003; Norton and Olds, 2001; Olds, 2001).  

 Regarding the direction of secular change, three types of secular changes have been 

discussed: positive (i.e., a change toward an increased size or an improved growth rate), 

negative (i.e., a change toward a smaller size or a retarded growth rate), and absent secular 

change (i.e., no systematic change detected) (Bogin, 1999; Cameron et al., 1990; Tobias, 

1985). Tobias (1985) listed 22 biological traits with their expected direction of change under 

a favorable living circumstance (p.348-349). In fact, most studies published in the early 20th 

century regarded positive secular change as a universal phenomenon largely based on the 

growth and stature data of in Europe and North America (see Tanner (1962) for a list of such 

studies). However, findings of an absent or a negative secular change in pastoral and 

agricultural societies since Kark's (1954) study on Zulu people at Pholcla in Natal, proved 

that this hypothesis cannot be generalized. As an effort to generalize the pattern of secular 

changes, Tobias (1985) divided world's human populations into four categories depending on 

their socio-economic status (i.e., "have-most", "have-ample", "have-little", and "have-least") 

and provided an anticipated direction of secular changes in stature in each category (p.353).  

 In discussing a cause of secular changes, some researchers stress the combinatory 

effect of genetic and environmental factors (Khudaverdyan, 2011; Stinson, 2009; Bailey et al 

2007; Bogin et al., 2002; Wolanski, 1967) For example, the trade-off model, suggested by 
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Bailey et al. (2007), explains that, in the population of a high altitude, the genome strives to 

minimize hypoxemia by trade-offs between cell oxygen tension and cell energy utilization. 

Since the more an individual adapts to hypoxia, the more energy can be used for bone growth, 

particularly in the tibia, more adapted people tend to have taller statures with longer tibiae 

compared to less adapted people given a similar level of nutrition (Bailey et al 2007). Greiner 

and Gordon (1992) also assert that a combinatory effect of the population mixture (i.e., 

genetic effect) and nutrition (i.e., environmental effect) plays an important role in a change of 

bones.  

 However, in a majority of secular change studies, environmental factors have been 

discussed as a primary determinant of secular change (Bielecki et al., 2012; Cardoso and 

Caninas, 2010; Malina et al., 2010; Cardoso, 2008; Cole, 2000; Garn, 1987; Susanne, 1985; 

Tobias, 1985). Also, human plasticity is thought to be the key to a modification in the 

phenotype of people in response to an environmental change, which eventually leads to 

secular change (Lanfear, 2012; Spradley, 2006). Plasticity is regarded as of one of the four 

biological adaptation types to an environment in addition to acclimatization, population 

structure, and natural selection (Boldsen, 1995). Plasticity produces a modification in a 

permanent phenotype of an individual, and thus differs from acclimatization, which is defined 

as a prompt physiological or behavioral response to an environmental condition which is not 

permanent (e.g., sweating in hot temperature). Also, plasticity is distinguished from the 

population structure and the natural selection in that the former is not necessarily associated 

with gene frequency modification (Boldsen, 1995; Bogin, 1995; Lasker, 1969). 

 The environmental factors most often reported as correlates to secular change 

encompass mainly socio-economic and political conditions. For example, such factors as 

nutritional status, dietary variety, hygiene, water supply, sanitation, medical system, housing, 

education, population density, infant mortality, diseases, remittances from emigrants, 

economic crisis, as well as war or regional conflicts, have been discussed in relation to 

secular changes in a variety of populations (Bielecki et al 2012; Malina et al., 2010; Malina 

and Little, 2008; Bailey et al., 2007; Malina, 2004; Cole, 2000; Frongillo and Hanson, 1995; 

Tanner, 1992; Takamura et al., 1988; Tobias, 1985; Susanne, 1985; but also see Webb et al. 

(2008) who claimed that secular change could be observed even after controlling for the 

socioeconomic influences). Environmental conditions during the early stages of growth 

including the period of fetal growth have been cited as an especially critical determinant of  

secular change (Jantz, 2001; Jantz and Jantz, 1999; Alberman, 1991; Bock and Sykes, 1989; 
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Clark et al., 1986). An abundance of secular change studies have been conducted in relation 

to social transformation and subsequent improvements in socio-economic circumstances (e.g., 

developing countries in the late 20th century) (Malina et al., 2010; Ji and Chen, 2008; Malina, 

2004). Yet, recently researchers have also paid attention to a pattern of secular changes in 

developed countries in terms of an inequality within a population. Since the privileges of a 

socio-economic improvement is likely to be allotted to the people of a high class first, people 

of different social status do not show a homogeneous pattern of secular change even in one 

contemporary population (Blum, 2013; Cardoso and Caninas, 2010; Cardoso, 2008). Zong et 

al. (2011) also found a distinctive difference in the pattern of secular change between urban 

and rural areas in China. This difference between different socio-economic groups is often 

attributed to a different sensitivity of each group to an environmental condition. That is, 

people of a low socio-economic status tend to be more sensitive to environmental changes, 

presumably because they are more likely to be more easily affected by such variables as 

changes in food price which in turn can affect the variety of diet. Consequently,  

physiological mechanisms can be greatly influenced by the nutritional status of an early 

developmental stage (e.g., individuals experiencing under-nutrition during a fetal and early 

development period are supposed to an overweight and over-body fat accumulation (Olszowy 

et al., 2012; Caballero 2006). Thus, gauging a level of a social inequality is said to be one of 

the important issues in recent secular change research (Cardoso and Caninas, 2010; Steckel, 

2009).   

 

2. Secular changes in stature 

2.1. Anthropometric history 

 Since the 1970s, the issue of secular changes in stature has been extensively studied in 

many populations in terms of anthropometric history, which is regarded as the third phase of 

anthropometry research (Ulijaszek and Komlos, 2010). Anthropometry, which is defined as 

the "conventional art or system of measuring the human body and its parts", aims to provide 

"absolutely correct data on such dimensions of the body, organs, or skeleton, as might be of 

importance to those who are to use the measurements" (Hrdlička, 1920, p.7). Due to its 

repeatability, unbiased approach, simplicity, and affordability compared to a visual inspection 

or descriptions, anthropometry has been popularly applied in human variation studies, 

whether it is for the skeletal measurements (i.e., osteometrics) or for the measurements of the 

living (i.e., anthropometrics) (Lanfear, 2012; Ulijaszek and Komlos, 2010).    
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 In the history of anthropometry, where it has served as a basic approach to human 

variation studies, the use and interpretation of anthropometric data has significantly changed. 

Ulijaszek and Komlos (2010) reviewed that anthropometry has gone through three phases in 

its interpretation or usage: racial classification, international health, and anthropometric 

history. During the first phase, anthropometry contributed to creation and validation of the 

typology, racism, and eugenics along with the interest in a biological and cultural variation as 

well as with the colonial expansion of the Western countries in the 18th - 19th century. The 

role of anthropology of this time period was simply "taking careful measurements, computing 

indices, and defining type specimens for static classification" (Mielke et al., 2006). The 

second phase of anthropometry began in the mid-20th century. Subsequent to the publication 

of Washburn's (1951) New Physical Anthropology, where more dynamic perspectives with a 

mechanism of evolutionary changes is emphasized (Mielke et al., 2006), anthropometric data 

began to be used more identify the mechanisms and/or processes resulting in human 

biological variations from an evolutionary and ecological perspective. At that time, various 

anthropometric traits such as human growth and its final result, stature, were shown to be 

highly correlated with socioeconomic conditions, and as such the plastic nature of stature 

began to be recognized (Lanfear, 2012; Bogin, 1999; Tanner, 1962). With an understanding 

of the plastic nature of human biological traits as well as the public health campaign of World 

Health Organization (WHO) after World War II, anthropometry was utilized in auxological 

epidemiology not only as a tool for examining social welfare but also as a basis to establish a 

guideline for future welfare policy (Ulijaszek and Komlos, 2010; Bogin, 1995; Tobias, 1985). 

The high correlation of anthropometric traits with quality of life attracted economic 

historians' attention, which led anthropometry into the third phase in its utility in the mid-

1970s (Ulijaszek and Komlos, 2010). From the 1970s, there has been continuous effort to 

quantify a standard of living in various fields. For example, economists used income or GNP 

per capita; historians used health, longevity, or happiness; biologists used nutritional status as 

a proxy of a standard of living (Floud, 2004; Komlos, 1992). However, information on these 

traditional measures could be obtained only from limited sources and sometimes hardly 

represented an actual standard of living for some social groups within a population (e.g., 

children, housewives, subsistence peasants, aristocrats, and slaves) (Komlos, 1992). In this 

situation, anthropometric data, particularly stature, was thought to be a complement or an 

alternative to the traditional measures, and eventually, a new discipline, exploring an impact 

of economic processes on humans of the past using anthropometric data, was established 
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under the name of 'anthropometric history'. In the anthropometric history, stature is thought to 

be a proxy of economic variables representing a dietary intake, nutrient utilization, and 

energy expenditure (Bogin, 1995; Komlos, 1992). Thus, people in a favorable condition are 

believed to attain tall statures, and in this regard, stature is regarded as a barometer of a living 

condition of an individual or of the entire society (Cardoso and Gomes, 2009; Floud, 2004; 

Cole, 2000; Tanner, 1992; Tobias, 1985; Eveleth and Tanner, 1976; Villermé, 1829). At the 

beginning stage of the anthropometric history, the stature information was frequently 

obtained from the conscript data of many countries (Staub et al., 2011; Cardoso, 2008; 

Larnkjær et al., 2006; Arcaleni, 2006). However, the source of stature information extended 

to the records of patients and prisoners later on (Floud, 2004). Moreover, due to continuous 

effort to estimate statures from the human skeletons in anthropology, the temporal limitations 

of the anthropometric history research have been dramatically overcome and thus long-term 

secular change studies became available (Lukacs et al., 2014; Arcini et al., 2012; Kaupová et 

al., 2013; Cardoso and Gomes, 2009; Bogin and Keep, 1999). Importantly, secular change 

research on stature has also raised meaningful debates on the status of biological welfare 

around some historical events (e.g., the 'early industrial growth puzzle' related to the 

industrial revolution in Europe, and the 'antebellum puzzle' in U.S. related to the American 

civil war (Komlos, 1996; Margo and Steckel, 1983), which contributed to a reinterpretation 

of the living conditions of those times (Ulijaszek and Komlos, 2010; Komlos, 1992). The 

interest in stature as a research material kept growing in the anthropometric history, and 

Steckel (2009) reported that the number of the stature-related publications increased between 

1995 - 2008 four times as many as those between 1977 - 1994.   

 

2.2. Secular change studies on stature 

 Since Villermé (1829), who states that people in a good environment tend to be tall 

and grow up fast, stature has been frequently regarded as an indicator of the overall living 

condition of individuals or a population (Floud, 2004; Komlos, 1992; Eveleth and Tanner, 

1976). As such, the pattern of secular change in stature has been thought to reveal a health 

status, welfare, or the living condition of a population over time (Cardoso and Gomes, 2009; 

Cole, 2003; Tanner, 1992; Tobias, 1985).  

 In secular change studies on stature, the cause of a change has been discussed mostly 

in terms of socioeconomic and political circumstances. As to the socioeconomic factors, the 

quality of nutrition (e.g., animal protein) rather than its quantity is thought to be the most 
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influential determinant of stature (Webb et al., 2008; Hossain et al., 2005; Cole, 2000; Ducros, 

1980). Infection or health status is also regarded as influential to one's terminal stature 

because infection can cause health problems such as a digestive disturbance and/or nutrient 

loss, which is more likely to end up with a shorter stature (Malina et al., 2010; Padez and 

Rocha, 2003; Cole, 2000; Garn, 1987; Susanne, 1985; Angel, 1976). In addition, other socio-

economic factors such as an improvement of medical care system and hygiene, population 

density, relationship between mothers and children, number of siblings, and social inequality, 

have been discussed in relation to either increase or decrease of stature (Blum and Baten, 

2011; Malina et al., 2010; Malina, 2004; Cole, 2000, 2003; Tobias, 1985). As to a political 

factor, political instability, particularly wars, has been related to a negative or a slow secular 

change in stature, followed by a quick recovery to the previous status as conditions improve 

(Bielecki et al., 2012; Cardoso, 2008; Malina, 2004; Dubrova et al., 1995; Schmidt et al., 

1995; Garn, 1987; Relethford and Lees, 1981; but also see Webb et al. (2008) who argued 

that the impact of WWII on secular change in stature was not distinctive in the Eastern 

European countries).  

 Overall, stature has been reported to increase since the mid-19th century in the 

Northern Europe and U.S., with a greater rate after WWII than before, due to the improved 

living standards of early life (Webb et al., 2008; Komlos and Kriwy, 2003; Cole, 2000, 2003; 

Jantz and Jantz, 1999; Floud, 1989; Komlos, 1985; Trotter and Gleser, 1951b). Susanne 

(1985) and Jantz and Jantz (1999) emphasize that the increased stature reflects the improved 

circumstances during the prenatal period and the first three years of life. Similarly, Bock and 

Sykes (1989) and Cole (2000, 2003) point out that the magnitude of secular change in stature 

is determined by the gains of the first two years of life. The other parts of the world also have 

experienced a positive secular change in stature during the 20th century though the onset 

timing varied by their socioeconomic and political situations: Eastern Europe (Bielicki et al., 

1986, 2005; Bielicki and Szklarska, 1999), Poland (Bielecki et al., 2012; Woronkowicz, 2012; 

Krawczynski et al., 2003), Czech (Vignerová et al., 2006), Russia (Van Leer et al., 1992; Kuh 

et al., 1991), Ireland (Relethford and Lees, 1981), Mayan Americans (Bogin et al., 2002; 

Bogin, 1995), Mexican (Malina et al., 2010; Malina, 2004), Japanese (Takamura et al., 1988; 

Shapiro and Hulse, 1939), Portugal (Cardoso, 2008; Padez, 2003), China (Zong et al., 2011; 

Ji and Chen, 2008), and Columbia (Olszowy et al., 2012). However, the increasing pattern of 

secular change is not always observed even in the favorable circumstances. Since the end of 

the 20th century, it has been reported that the tempo of the positive secular change in stature 
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ceased or slowed down in some developed countries (e.g., Croatia, Czech, Hungary, Italy, 

Netherlands, Norway, Spain, Sweden, Russia, Scandinavia, and Germany) (Larnkjær  et al., 

2006; Zellner et al 2004; Hauspie et al., 1997) or in the upper social status of a population 

(e.g., the Whites in South Africa and urban children in China) (Zong et al., 2010; Jones et al., 

2009; Ji and Chen, 2008). Some researchers explain that this stabilized trend is due to the 

ceiling effect, which means that the population reaches its genetic potential (Tobias, 1985; 

Ducros, 1980). However, other researchers state that this trend is due to the stabilization or 

stagnation of the current living conditions (Zellner et al., 2004). As to the latter point, 

Danubio and Sanna (2008) point out that, despite the overall affluence and wealth in U.S., the 

positive secular change in stature ceased due to such social issues as a social inequality, 

inferior health care system, and fewer social safety net of U.S.  

 

2.3. Secular change studies on Korean statures 

 In Korea, like in other countries, stature has been regarded as a measure of biological 

standard of living by economic historians, pediatricians, and anthropologists (Pak et al., 2011; 

Komlos and Baten, 1998). Yet, efforts to identify secular changes in stature within Korean 

population have begun relatively recently. To my knowledge, Lim's (1985) Ph.D. dissertation 

is the first study dealing with secular change in Korean statures, which is not published in a 

public journal. Since the mid-1980s, research on secular change in Korean statures has shed 

light on the socioeconomic aspect of Korea in the past as well as in contemporary times. 

Most secular change studies on Korean statures have based on samples from one of the three 

time periods: late Joseon period (i.e., 17th century - 1910), Japanese colonial period (i.e., 

1910 - 1945), and post-war period (i.e., 1953 - present). Only one study explored a long term 

secular change in stature from 460 B.C. to the 20th century using both osteometric evidence 

and historical records (Shin et al., 2012). In the following sections, secular change studies in 

Korea are reviewed by the time periods of the samples in those studies.  

 

2.3.1. Secular change studies of Korean statures during the late Joseon period 

 The Joseon Dynasty was established in 1392 and lasted until 1910 when Japan put 

Korea under its colonial rule. Although there still exists a debate on the chronological 

subdivision of the Joseon period, most economic historians regard the late Joseon period as 

the time period after the two wars in the Korean peninsula in the late 16th through the early 

17th century: the Imjin war (i.e., the invasion of Japan in 1592 - 1598) and the Manchu war 
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(i.e., the invasion of China in 1636 - 1637) (Lewis et al., 2012, 2013; Cha, 2009; Jun et al., 

2008; Park and Yang, 2007).  

 Recently, efforts to investigate a long term fluctuation of standards of living during 

the late Joseon period have been made using various socio-economic indicators. Park and 

Yang (2007), examined various economic variables such as a tilled acreage per capita, land 

productivity, real wages, and price fluctuation between 17th and 19th century, and concluded 

that the standards of living in the Joseon dynasty had deteriorated in the 19th century 

compared to the proceeding centuries. The authors also state that the overall quality of life in 

the Joseon dynasty was lower than that of China or Japan in the same time period because of 

a poor irrigation system, deforestation-related disasters, and fertilizer shortage (Park and 

Yang, 2007). Debates continued on to the issue of how to define the overall socioeconomic 

status of the late Joseon period. That is, while some researchers define the 17th, 18th, and 

19th century as the times of expansion, stability, and decline respectively in terms of an 

economic productivity measured by a consumption of non-food (Jun et al., 2008), others, 

based on a decreasing trend in factor and asset prices (e.g., unskilled male wages and slave 

prices), assert that the standards of living in the late Joseon period gradually deteriorated 

from the 17th century to the 19th century (Cha, 2009). This debate led the researchers to an 

interest in the stature data obtained from the literature during the Joseon period. Using the 

male stature data from diverse judicial and military records between 1540 - 1880, Cha and 

Cho (2012) found that males of the 16th and 17th century were taller than those of the 19th 

century with a rapid decrease in stature observed in the 18th century. The authors state that 

this result corroborates the conclusion of Cha (2009) who asserted that the living standards 

gradually deteriorated in the late Joseon period (Cha and Cho, 2012). However, Lewis et al. 

(2012, 2013), using the stature data from military records, showed that the male stature 

decreased between the late 17th century and the early 18th century and then remained 

constant until the late 19th century, which would more corroborate the conclusion of Jun et al. 

(2008). It is worth mentioning that, unlike Cha and Cho (2012) and Lewis et al. (2012) where 

a Korean traditional measurement unit, ch'ok (尺), was used, Lewis et al. (2013) used the 

metric system instead of the ch'ok, so that their results can be directly compared to other 

countries.  
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2.3.2. Secular change studies on Korean statures during the Japanese colonial period 

 Among the studies published in international journals, Kimura (1993), a Japanese 

economist, is the first who examined secular change in Korean stature (Choi and 

Schwekendiek, 2009). Japan had put Korea under its colonial rule for 35 years in the early 

20th century (i.e., 1910 - 1945). As early as the colonial period, assessing the effects of 

Japanese rule on the colonized countries was one of the interests of researchers, and as the 

biggest colony of Japan, Korea was frequently researched on this topic (Kimura, 1993). 

Interestingly, economic indicators of Korea during the colonial period show rather confusing 

results regarding the effect of Japanese rule on the Korean people. For example, Terasaki 

(1984) insists that, based on the increase of per capita consumption and expenditures for food, 

the standards of living in Korea improved during the colonial period (Kimura, 1993). 

However, Tohata and Ohkawa (1935) state that the quality of Korean life deteriorated despite 

an introduction of modern technologies by Japan and increased GDP per capita (Kimura, 

1993). Odaka (1975) and Mizoguchi (1975) also claim that the wages per capita declined in 

farming and manufacturing in the late 1920s through the early 1930s (Choi and 

Schwekendiek, 2009). Continuing this interest, Kimura (1993) examined the secular change 

of Korean statures along with various economic variables such as farming income, 

agricultural wages, calorie intake from staple food, diffusion rates of primary education, 

mortality rates, and survival rates. Despite a decreasing trend in the calorie intake per capita 

from rice, barley, millet, and soybean by 0.43% per year, Kimura (1993) concluded that the 

Japanese colonization had made a positive influence on the overall quality of life of Korean 

people based on the increase in literacy and survival rates. The observation that no secular 

change in stature had been detected between 1910 and 1940, except a marginal increasing 

trend in females, was also interpreted as an evidence of 'no deterioration of nutritional status 

of Korean people during this period' (Kimura, 1993).  

 The pattern of secular changes in Korean stature during the Japanese colonial period 

was re-examined by Choi and Schwekendiek (2009) using a different set of data from those 

of Kimura (1993). The authors found an increasing trend in the people born during the early 

colonial period (i.e., in the 1910s and early 1920s) but a stagnating trend was found in those 

born between the mid-1920s and the mid-1940s, which is a similar trend observed in other 

Japanese colonies such as Taiwan (Morgan and Liu, 2007; Olds, 2003). The increase of 

stature in those born between the 1910s and the mid-1920s was thought to be related to an 

increase in the per-capita income and real wages, introduction of health-care reforms, and a 
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ripple effect from the Japanese industrial boom of the previous decades (Choi and 

Schwekendiek, 2009; Joo, 2006; Jeong, 2003; Shin and Seo, 2002). On the other hand, the 

stagnation of stature in those born between the mid-1920s and the mid-1940s was attributed 

to a stagnation in per-capita expenditures and a decline in real wages due to a consequence of 

Japan's economic depression in 1927 and then preparation for the Pacific war in the late 

1930s through the mid-1940s (Choi and Schwekendiek, 2009; Cha, 1998; Gill, 1996; Heo, 

1981; Suh, 1978). 

 

2.3.3. Secular change studies on Korean statures during the post-war period 

 Korea regained independence from the Japanese occupation in 1945. After a three-

year military administration by U.S. and the Soviet Union, the Korean peninsula was divided 

into the South and North parts and two separate governments (i.e., the Republic of Korea and 

the Democratic People's Republic of Korea) were established in each part of Korea in 1948. 

Soon after the division of Korea, Korea experienced the Korean war (1950-1953) in which 

the two Koreas have subsequently gone their separate ways in terms of political, social, and 

economic policies.  

 In the secular change studies on stature after the Korean war, there have been two 

separate but related interests among researchers: assessing how much secular change in 

stature has occurred in South Koreans in relation to the improvement of socio-economic 

conditions of South Korea, and comparing the pattern and magnitude of secular changes in 

stature between the South and North Korea counterparts.  

 Using the nationwide pediatric surveys published in 1965, 1975, 1984, 1997, 2005, 

and 2010, Moon (2011) observed that the average stature of the 20-year-old males has 

increased by 4.6cm for the last 45 years (i.e., from 168.9cm in 1965 to 173.5cm in 2010). The 

average stature of average 20-year-old females has also increased by 4.7cm during the same 

period (i.e., from 155.9cm in 1965 to 160.6cm in 2010) (Moon, 2011). Yet, the author points 

out that most of the increase occurred between 1965 and 1997 (i.e., increase by 4.5 cm for 

both sexes), and the stature change after 1997 was marginal. This pattern of stature change 

was also noted by Kim et al. (2008) and Choi and Kim (2012) where the survey data from 

1965 to 2005 had been examined, though Choi and Kim (2012) state that the stagnation in 

stature has already begun since 1984. The increase of stature was mostly discussed in relation 

to the improvement of socioeconomic variables such as a life expectancy, infant mortality, 

public health status, hygienic conditions, and GDP per capita during this period (Choi and 
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Kim, 2012; Moon, 2011; Kim et al., 2008). Schwekendiek and Jun (2010) examined the 

secular change in stature of South Korean males by their birth years instead of the survey 

years. Using another source of nationwide survey data (i.e., nationwide anthropometric 

surveys conducted by the Korean Research Institute of Standard and Science (KRISS) in 

1979, 1986, 1992, 1997, and 2003 and anthropometric data collected by the Korean Medical 

Insurance Corporation (KMIC) in 1990 and 1994), they demonstrated that the average stature 

of the South Korean males had increased by 6cm for thirty years (i.e., from 169cm in those 

born in 1953 to 175cm born in 1983). The authors also state that South Koreans are currently 

among the tallest in Asia and the increase in stature reflects the rapid economic growth of 

South Korea between the 1960s and the 1980s (Schwekendiek and Jun, 2010).  

 Recently, secular change in stature of the North Koreans has attracted attention of 

researchers whose interest targets the living conditions of North Korea. Yet, since North 

Korea did not publish an official statistical yearbook, anthropometric data measured from the 

North Korean defectors have played an important role in this type of studies (Pak et al., 2011; 

Eberstadt, 2007). Studies on the North Korean defectors showed that the stature of the North 

Koreans nearly stagnated during the latter half of the 20th century (Pak et al., 2011; Pak, 

2004). When comparing those born in the 1950s to those born in the 1970s, the stature 

increase in North Koreans was quite marginal (i.e., increase by 0.8cm and 0.6cm in males and 

females respectively), contrary to the rapid increase in South Koreans by 3.8cm and 2.6cm in 

males and females respectively (Pak, 2004). In fact, North Koreans born in the early 1940s 

were taller than the South Korean counterparts (Pak et al., 2011; Pak, 2004). However, the 

pattern was reversed in those born in the late 1940s and the divergence between the North 

and South Korean statures became increasingly pronounced such that the South Koreans born 

in the 1980s are taller than the North Korean counterparts by 8.3cm and 5.2cm in males and 

females respectively (Pak et al., 2011). Comparing various socioeconomic indices between 

South and North Koreas, the authors attributed this phenomenon to the different socio-

economic circumstances between two Koreas (Pak et al., 2011; Pak, 2004).  

 

2.3.4. A long term secular change study of Korean statures (B.C. 460 - 20th century) 

 Although there existed some efforts to compare estimated statures of skeletal remains 

either between archaeological sites or to the 20th-century anthropometric records, systematic 

research on a long term secular change in stature is rare in Korea. To my knowledge, Shin et 

al. (2012) is the first and the only study dealing with a long term secular change in Korean 
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statures using osteometric data in addition to documented anthropometric data. In Shin et al. 

(2012), the stature of a skeleton was estimated by the Fujii (1960) equation and the pattern of 

secular change was examined by the linear regression analysis. The authors observed that the 

Korean statures had remained nearly unchanged until the 19th century due to isolation of pre-

industrial Korea, but began rapidly increasing since the 20th century due to modernization 

and industrialization (Shin et al., 2012). The authors also mention that the sexual dimorphism 

in stature (i.e., a ratio of the male stature to the female stature) became smaller in the 20th 

century (i.e., 1.08) compared to the proceeding centuries (i.e., 10085) (Shin et al., 2012).  

 

3. Secular changes in body mass 

3.1. Secular change studies on body mass 

 As a growth measure, body mass, along with a stature, has been regarded as a mirror 

of the condition of a society (Cole, 2000; Tanner, 1992). That is, like stature, body mass 

functions as an indirect indicator of the intake, utilization, and expenditure of diet, nutrition 

and energy, which is the reason why public health workers have been interested in body mass 

as well as its secular change (Bogin, 1995).  

 Researchers point out that stature and body mass are affected by independent factors 

and mechanisms both at a genetic and environmental level (Susanne, 1985). Observing that 

the rate of secular change in stature was slower than that of body mass in Mayan American 

children, Bogin (1995) speculated that one's stature reflects an overall history of health and 

nutrition of the individual, whereas body mass is mostly influenced by recent events. In 

review of secular change in growth in Europe, Cole (2000) attributed the different pattern of 

secular change between stature and body mass to the difference in the causal mechanisms 

under them.  

 In Northern Europe and in U.S., a positive secular change in body mass has reportedly 

occurred since the 1960s, and this trend continued after stature showed a stabilizing pattern in 

the mid-1970s (Cole, 2000, 2003). Although the onset timing varied, most developing 

countries, such as Portugal, Poland, China, and Columbia, have also experienced a positive 

secular change in body mass in the latter half of the 20th century (Olszowy et al., 2012; 

Woronkowicz, 2012; Zong et al., 2011; Cardoso and Caninas, 2010; Ji and Chen, 2008; 

Padez et al., 2004). Yet, Zong et al. (2011) assert that the effect of secular change within a 

population may vary due to social inequalities by demonstrating an increased difference in 
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body mass between urban and rural Chinese children during the period of economic 

development and urbanization in China.  

 In most secular change studies on body mass, the issues of above average body 

weights and obesity have attracted much attention of researchers (Ogden et al., 2003, 2010). 

An increase in body mass beyond a certain standard (i.e., obesity) has often been regarded as 

a kind of pathological condition or a disease. Due to this reason, the term 'epidemiology' has 

been often used to describe the increasing ratio of obese people in a population (Ogden et al., 

2003, 2007; Flegal, 2005; Reilly, 2005). The body mass index (BMI), which is defined as a 

ratio of the body mass to the square of stature (i.e., 
               

               
), has been used most 

commonly as a standard to determine levels of obesity. According to the Center for Disease 

Control and Prevention (CDC) in U.S., one is categorized into an obesity group when his or 

her BMI is 30 or higher (Ogden et al., 2010). Yet, due to the intrinsic limitation of BMI in 

that it cannot differentiate  muscle mass from the fat mass, some researchers suggest to use an 

alternative such as the skinfold thickness or the abdominal circumference to measure the true 

fatness (Kim et al., 2005; Thompson et al., 2002; Sarría et al., 1998). Thompson et al. (2002) 

state that while the skinfold thickness of the trunk and extremities is a composite indicator of 

individual fatness, BMI is just an overall indicator of obesity for a group. Apart from an 

interest in obesity rates and levels, secular change studies on body mass have also been 

conducted in relation to other growth indicators, particularly the age at menarche or 

maturation timing. Although Cole (2000) states that the mechanisms affecting secular change 

would differ depending on the associated growth indicators (e.g., stature, body mass, and 

menarcheal age), many researchers suggest a potential relationship between body mass, 

obesity status and maturation timing (Ong et al., 2006; Himes, 2006; Herman-Giddens et al., 

1997). Indeed, empirically observed is the trend that an increased BMI follows an early 

menarche in many countries (Woronkowicz, 2012; Himes, 2006; Koprowski et al., 1999; 

Petridou et al., 1996; Maclure et al., 1991; Moisan et al., 1990; Meyer et al., 1990). In 

addition, one of the hypotheses to explain the onset of menarche, the 'critical weight 

hypothesis', says that one's BMI at the age of seven can be a predictor of her menarcheal age 

even though the genetics associated with maturation and body size are independent each 

other (Cole, 2000; Power et al., 1997).  
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3.2. Secular change studies on Korean body mass 

 In Korea, the range of subjects for research on secular change in body mass has been 

limited to modern individuals. The nationwide pediatric surveys between 1965 and 2005 

show that, presumably due to an improvement in nutrition, socio-economic status, and quality 

of healthcare, the body mass of children and adolescents increased during this time period. A  

rapid increase in body mass could especially be observed between 1984 and 2005, during 

which the overall pattern of stature change was stabilized (Choi and Kim, 2012; Kim et al., 

2008). The change in body mass at the pubescent age (i.e., at the age of 14 and 13 for boys 

and girls respectively) was most pronounced though the magnitude of increase varied by 

sexes (Choi and Kim, 2012; Kim et al., 2008). For example, in 14-year-old boys, body mass 

was increased by 21.2kg from 39.7kg in 1965 to 60.9kg in 2005, and in 13-year-old girls by 

14.7kg from 36.2kg in 1965 to 50.9kg in 2005. The increase in body mass of 20-year-old 

males during the same period was larger than that of female counterparts as well: the male 

increment was 12.8kg from 58.2kg in 1965 to 71kg in 2005, while the female increment was 

just 4.1kg from 51.5kg in 1965 to 55.6kg in 2005 (Choi and Kim, 2012; Kim et al., 2008). As 

a result of the increasing trend of body mass and the stabilizing trend of stature, BMI, as well 

as a prevalence of obesity in Korean children and adolescents has increased since the mid-

1980s. For example, Oh et al. (2008) reported that the prevalence of obesity in children and 

adolescents increased from 5.8% in 1997 (6.1% in boys and 5.5% in girls) to 9.7% in 2005 

(11.3% in boys and 8% in girls).  

 Despite a large body of secular change research on Korean body mass with a focus on 

the issue of obesity and overweight, to my knowledge, there has been no effort to examine a 

long term trend of Korean body mass covering more than a hundred years in terms of 

anthropometric history. This appears to be, in part, due to an absence of an appropriate 

methodology. Namely, body mass information was hardly recorded in the literature prior to 

the 20th century and any Korean-specific method to estimate a body mass from the human 

skeleton was not developed. Thus, secular change studies on Korean body mass could not 

extend its boundary to the time periods where body mass information from archaeological 

skeletal remains should be critical.  
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Chapter 3  

Materials and Methods 

 

1. Materials 

 In this research, four different datasets were used. Dataset 1 contains osteometric data 

of Korean skeletons directly measured by the author in Korea. Dataset 2 is comprised of 

osteometric data of American skeletons directly measured by the author in the William Bass 

Donated Collection of the University of Tennessee, Knoxville. Dataset 3 contains osteometric 

data of Korean skeletons published in the Korean literature (i.e., articles and reports on the 

skeleton analysis). Finally, dataset 4 contains the Korean anthropometric data published in 

the Korean literature.   

 In all datasets, only the adults' data were included for further analyses. In the case of 

skeletons measured by the author, a skeleton was regarded as an adult when the epiphyses of 

its limb bones were completely fused with diaphyses. Also, in the published data, any 

specimen, whose age was reported to be 18 years or higher in the literature, was regarded as 

an adult.  

 To develop equations for stature and body mass estimation, only dataset 1 was used. 

Yet, to investigate the secular changes in stature and body mass, all datasets except dataset 2 

were used. Dataset 2 was only used to test for the measurement errors in bone measurements.  

  

1.1. Dataset 1: Korean osteometric data measured by the author 

 Dataset 1 consists of the osteometric data taken from a total of 357 Korean skeletons, 

which are housed in eight different institutions in Korea (Table 1). Although the institutions 

are located in one of the three cities (i.e., Seoul, Busan, and Cheonju), as indicated in Figure 

4, the origins of skeletons vary. Figure 4 shows the map with the number of skeletons coming 

from the corresponding regions. As seen in Figure 4, the skeletons of dataset 1 can be said to 

represent most of the regions in South Korea. As to the temporal backgrounds of the 

skeletons, seventy-nine (22.1%) out of 357 skeletons were from the 20th century and the rest 

were from the Joseon period (i.e., late 14th - late 19th century).  

 Sex and age of all but five skeletons were estimated by the author. The five remaining 

skeletons were those whose antemortem information (i.e., sex, age, and stature) was known. 

For sex estimation, features on the pelvic bones such as the subpubic angle, greater sciatic  
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Table 1. Institutions housing the skeletal samples of dataset 1 and the temporal background 

and demographic composition of the samples.   

Institution 
Location of 

institution 
Time period 

Sex 
Total 

Female Male Indet.
1
 

Catholic Univ. of Korea Seoul 20C 5 6 40 51 

Chungbuk National Univ. Cheongju Joseon + 20C 54 65 - 119 

Dong-A Univ. Busan Joseon 4 10 - 14 

MAKRI
2
 Seoul 20C - 23 - 23 

SNU
3
: Medical School Seoul Joseon 44 45 - 89 

SNU: Anthropology Seoul Joseon 18 28 - 46 

SNU: Archaeology and 

Art History 
Seoul Joseon 7 6 - 13 

Konkuk Univ. Seoul 20C 1 1 - 2 

Total   133 184 40 357 

1 
Indeterminable.  

2
 MND Agency for KIA Recovery and Identification. 

3
 Seoul National University. 
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Figure 4. Number of samples in dataset 1, coming from the corresponding regions, which are 

divided by the black lines. The number '60', marked on the East Sea, represents the number of 

skeletons of which origins are not known.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

64 

notch, and preauricular sulcus were preferentially examined (White and Folkens, 2005; 

Phenice, 1969). Only in the absence of the pelvic bones, sex was estimated by cranial 

morphology such as the supraorbital ridges, external occipital protuberance, and the mastoid 

process (White and Folkens, 2005). When neither pelvic bone nor cranium was present, sex 

was not estimated and the skeleton was categorized as 'indeterminable'. Dataset 1 consists of 

133 females, 184 males, and 40 indeterminable skeletons (Table 1). To estimate the age of a 

skeleton, when available, various aging indicators such as the pubic symphysis, auricular 

surface, tooth wear, and degenerative changes in joints were considered in combination 

(White and Folkens, 2005; Brothwell, 1981). Age of a skeleton was originally estimated by 

range, but for the sake of analysis, the median value of the age range was regarded as a point 

estimate of the age for the skeleton. The mean age of the total sample is 39.4 years (SD = 

13.2), and the mean age of females, males, and indeterminable skeletons are 40.3 years (SD = 

13.7), 40.5 years (SD = 12.9), and 30.3 years (SD = 8.3) respectively.  

 For each skeleton in dataset 1, effort was made to measure 32 bone dimensions 

regarding stature estimation (i.e., cranial height, vertebral height of the second cervical 

through the first segment of sacrum, maximum length and physiological length of femur, 

spino-malleolus length and condylo-malleolus length of tibia, talus-calcaneus height, humeral 

maximum length, and radial maximum length), and two dimensions regarding body mass 

estimation (i.e., bi-iliac breath and anterior-posterior femoral head breadth). In measuring 

bone dimensions, the instructions provided by Raxter et al. (2006) were followed (p.382 - 

383). For the dimensions not indicated in Raxter et al. (2006), Wood (1920), Moore-Jansen et 

al. (1994), and Auerbach (personal communication) were referred to. Table 2 lists the bone 

dimensions and measurement instructions used in this research.  

 Not all dimensions could be measured when a skeleton had missing element(s). As to 

the dimensions for stature estimation, one hundred and thirteen out of 357 skeletons (31.7%) 

possessed all elements required to reconstruct stature by the anatomical method (50 females 

and 63 males). In other words, only for the 113 skeletons could the skeletal heights be 

obtained directly from the existing elements without estimating any dimensions of missing 

elements. The number of skeletons available for body mass estimation using the 

morphometric method was 106 (47 females and 59 males). Since the stature information is 

required to apply the morphometric method, the 106 skeletons also possessed all bone 

elements needed for application of the anatomical method. Among the incomplete skeletons, 

the number of missing bone(s) varies. The status of missingness in dataset 1 is summarized in  
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Table 2. Bone dimensions used with abbreviations and measurement instructions.  

Bone dimension Measurement instruction 

Basion-bregma height
1
 

(BBH) 
Cranial height. The maximum length between bregma and basion. 

Body height of 2nd 

cervical
1
 (C2) 

The most superior point of the odontoid process (dens) to the most 

inferior point of the anterior-inferior rim of the vertebral body. 

Body height of 3rd - 

7th cervical
1
 (C3-C7) 

The maximum height of the vertebral body, measured in its anterior 

third, medial to the superiorly curving edges of the centrum. 

Body height of 

thoracic
1 

(T1 - T12) 

The maximum height of the vertebral body, anterior to the rib 

articular facets and pedicles. 

Body height of lumbar
1
 

(L1 - L5) 

The maximum height of the vertebral body, anterior to the pedicles, 

not including any swelling of the centrum due to the pedicles. 

Body height of 1st 

segment of sacrum
1
 

(S1) 

The maximum height between the anterior-superior rim of the body 

and its point of fusion/articulation with the second sacral vertebra. 

This most commonly occurs in the midline. Measure with the 

calipers parallel to the anterior surface of S1. 

Femoral maximum 

length
2
 (FeL1) 

The distance from the most superior point on the head of the femur 

to the most inferior point on the distal condyles. 

Femoral physiological 

length
1
 (FeL2) 

Place the condyles on the stationary end of the osteometric board, 

flat against the horizontal plane. Set the mobile end against the 

most superior aspect of the femoral head, parallel to the stationary 

end. Measure at maximum length. 

Spino-malleolus length 

of tibia
3
 (TiL1) 

The distance from the tip of the intercondyloid eminence to the tip 

of the medial malleolus. 

Condylo-malleolus 

length of tibia
1
 (TiL2) 

Place the medial malleolus on the stationary end of the osteometric 

board, with the shaft of the tibia parallel to the long axis of the 

board. Set the mobile end against the most superior aspect of the 

lateral condyle of the tibia, parallel to the stationary end. 

Humeral maximum 

length
2
 (HuL) 

The maximum distance from the most superior point on the head of 

the humerus to the most inferior point of the trochlea. 

Radial maximum 

length
2
 (RaL) 

The maximum distance from the most proximal point on the head 

of the radius to the tip of the styloid process. 
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Table 2. Continued. 

Bone dimension Measurement instruction 

Talus-calcaneus height
1
 

(TCH) 

Articulate the talus and the calcaneus, using the right hand for the 

left tarsals and vice versa. Use one hand to stabilize the 

articulation, point the distal articulations away from your palm, 

with a thumb holding the bones together superior to the peroneal 

tubercle, and index finger on the opposite side lateral to the 

trochlea of the talus, and a middle finger in the sustentacular 

sulcus. Place the trochlea against the stable end of the osteometric 

board, with both lateral and medial edges of the trochlea contacting 

the board. Position the trochlea of the talus so that the stable end of 

the board forms a tangent to the midpoint of the trochlear surface. 

Place the mobile end of the osteometric board against the most 

inferior point of the calcaneal tuber, parallel to the stable end. 

 

(photo by courtesy of Auerbach) 

Bi-iliac breadth
4
 (BIB) 

The widest measure of the pelvis between the outer edges of the 

upper iliac bones. Dry pelvic bones (sacrum and innominate bones 

of both sides) are put together with two rubber bands in anatomical 

position and then the width of the assembled pelvis is measured 

using the osteometric board.  

Anterior-posterior 

breadth of femoral 

head
4
 (FeHB) 

The antero-posterior diameter of the femur head measured on the 

boarder of the articular surface. 

1 
Referred to Raxter et al. (2006).  

2 
Referred to Moore-Jansen et al. (1994).  

3
 Referred to Wood (1920). 

4
 Referred to Auerbach (personal communication). 
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Table 3. In Table 3, it is noticeable that only 42.58% of individuals possessed the complete 

vertebral column from the second cervical to the fifth lumbar, which implies that the 

applicability of the anatomical method is mostly limited due to the missingness of the  

vertebrae (Ruff et al., 2012a; Auerbach, 2011; Maijanen, 2011). Also, the missing percentage 

of the femora and tibiae is relatively lower than those of other bone elements because the 

skeletons with both of these bones were preferentially selected in the process of bone 

measurement. Thus, it should be noted that the missing ratios of bone dimensions presented 

in Table 3 does not directly represent that of the archaeological skeletal collection in general. 

Basically, whether complete or incomplete, all available skeletons were used in further 

analyses as far as relevant parts existed. For example, when comparing the crural indices 

between time periods (i.e., 20C vs. Joseon period) or between sexes, any skeletons were 

incorporated in the analyses as far as they possessed both femur and tibia regardless of the 

existence of the other bones. Thus, the number of skeletons used in each analysis varied.  

 

1.2. Dataset 2: American osteometric data measured by the author 

 Testing for measurement error (i.e., reliability or replicability of measurements) is one 

of the critical issues in the anthropometric studies, and various methods have been suggested 

to judge the measurement error (Auerbach, 2011; Krishan et al., 2010; Johnston et al., 1972). 

In order to test for measurement error in this research, a total of 39 American skeletal remains 

(21 females and 18 males) in the William Bass Donated Collection at the University of 

Tennessee, Knoxville were used. For each skeleton, all the bone dimensions listed in Table 2 

were measured twice within a one-month interval, which made up dataset 2. The mean ages 

of males and females were 49.7 years (SD = 5.2) and 54.8 years (SD = 7.9) respectively. 

Since dataset 2 consists of American samples which are not of interest in this research, it was 

not used in any other analyses but testing for measurement error.  

 

1.3. Dataset 3: Korean osteometric data from the literature  

 Dataset 3 consists of the osteometric data of Korean skeletons which have been 

published in 64 references (i.e., articles and reports on the excavated skeletal remains) 

(Appendix A-1). Each reference contains measurement data for at least one skeleton and a 

total of 879 skeletons were included in dataset 3. Unfortunately, since neither the vertebral 

body height nor the bi-iliac breadth has been reported in any reference, the stature and body 

mass of the skeletons in dataset 3 could not be estimated using the anatomical method or the  
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Table 3. Missing element frequency in the samples of dataset 1 (n = 357). 

Bone 

dimension 

Number missing Percent missing (%) 

Female Male Indet.
1
 Total Female Male Indet.

1
 Total 

BBH 12 37 - 49 9.02 20.11 - 13.73 

Complete 

vertebral 

column 

64 75 13 152 48.12 40.76 32.50 42.58 

Complete 

C-column 

91 111 17 219 68.42 60.33 42.50 61.34 

C2 29 50 17 96 21.80 27.17 42.50 26.89 

C3 32 56 18 106 24.06 30.43 45.00 29.69 

C4 32 56 17 105 24.06 30.43 42.50 29.41 

C5 30 53 17 100 22.56 28.80 42.50 28.01 

C6 30 46 14 90 22.56 25.00 35.00 25.21 

C7 30 50 13 93 22.56 27.17 32.50 26.05 

Complete 

T-column 

77 107 23 207 57.89 58.15 57.50 57.98 

T1 31 50 8 89 23.31 27.17 20.00 24.93 

T2 32 49 10 91 24.06 26.63 25.00 25.49 

T3 32 47 7 86 24.06 25.54 17.50 24.09 

T4 35 45 9 89 26.32 24.46 22.50 24.93 

T5 31 45 8 84 23.31 24.46 20.00 23.53 

T6 30 49 7 86 22.56 26.63 17.50 24.09 

T7 33 45 7 85 24.81 24.46 17.50 23.81 

T8 31 45 7 83 23.31 24.46 17.50 23.25 

T9 33 43 9 85 24.81 23.37 22.50 23.81 

T10 35 46 7 88 26.32 25.00 17.50 24.65 

T11 31 50 7 88 23.31 27.17 17.50 24.65 

T12 31 47 9 87 23.31 25.54 22.50 24.37 

Complete 

L-column 

93 119 28 240 69.92 64.67 70.00 67.23 
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Table 3. Continued. 

Bone 

dimension 

Number missing Percent missing (%) 

Female Male Indet.
1
 Total Female Male Indet.

1
 Total 

L1 34 48 7 89 25.56 26.09 17.50 24.93 

L2 29 50 8 87 21.80 27.17 20.00 24.37 

L3 28 51 7 86 21.05 27.72 17.50 24.09 

L4 28 49 9 86 21.05 26.63 22.50 24.09 

L5 30 46 10 86 22.56 25.00 25.00 24.09 

S1 22 48 - 70 16.54 26.09 - 19.61 

FeL1 7 15 17 39 5.26 8.15 42.50 10.92 

FeL2 7 19 17 43 5.26 10.33 42.50 12.04 

TiL1 9 24 17 50 6.77 13.04 42.50 14.01 

TiL2 9 25 17 51 6.77 13.59 42.50 14.29 

TCH 41 44 - 85 30.83 23.91 - 23.81 

HuL 34 54 - 88 25.56 29.35 - 24.65 

RaL 34 53 - 87 25.56 28.80 - 24.37 

BIB 13 23 - 36 9.77 12.50 - 10.08 

FeHB 4 8 17 29 3.01 4.35 42.50 8.12 

1 
Indeterminable.  
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morphometric method respectively. However, since most of the references contained 

information on the long bone lengths and/or femoral head breadths, stature and body mass 

could be estimated using the newly developed equations in this research, and afterwards be 

used for investigating secular changes in stature and body mass.  

 Sex and age of the skeletal samples in dataset 3 were reported in the original 

references. In terms of sex, dataset 3 consists of 142 females and 737 males. The mean ages 

of females and males were 44.0 years (SD = 17.1) and 28.5 years (SD = 11.6) respectively 

and the mean age of the total sample was 31.2 years (SD = 14.0). The mean age of males as 

well as of the total sample appears to be biased. It is because of the fact that dataset 3 mostly 

consists of male data, a significant portion (i.e., 618 out of 737 male skeletons or 83.9%) of 

which was obtained from the reports on the Korean War casualties or the victims of 

massacres in the late 1940s through the early 1950s, most of which were killed in their 

twenties. If excluding those reports, the mean age of males was 42.3 years (SD = 15.1), 

which is close to the mean age of females.  

 The regions where the skeletons were originally found vary. Figure 5 shows the map 

with the numbers of skeletons coming from the corresponding regions. As seen in Figure 5, 

dataset 3 consists of the skeletons representing most of the regions in South Korea. In 

addition, the skeletons included in dataset 3 represent a broad range of time periods from the 

Three Kingdom period (i.e., B.C. 1st - A.D. 7th century) to the 20th century. However, 

inconsistency in the standards of subdividing and reporting time periods of the skeletons was 

noticed among the original references. For example, some authors indicated the 'Joseon 

period (i.e., late 14th - late 19th century)' as a time period to which their specimens belonged, 

while others subdivided the Joseon period into a subset of categories such as the 'early 

Joseon' and 'late Joseon' periods. Thus, it was necessary to newly define the time periods to 

consistently describe the whole skeletons in dataset 3. In this research, the time period of the 

past two millennia was subdivided into 6 mutually exclusive categories: Three Kingdom 

period (i.e., B.C. 1st - A.D. 7th century), Goryeo period (i.e., early 10th - late 14th century), 

Joseon period (i.e., late 14th - late 19th century), early 20th century (i.e., 1901 - 1945), mid 

20th century (i.e., 1945 - 1959), and modern period (i.e., 1960 - present). Table 4 shows the 

number of skeletons in dataset 3 assigned to each time period.  
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Figure 5. The number of skeletons in dataset 3 coming from the corresponding regions, which 

are divided by black lines.  
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Table 4. Number of skeletons and references in dataset 3 by time periods.  

Time periods Number of skeletons Number of 

original 

references 

Female Male Total 

Three kingdom (B.C. 1st - A.D. 7th century) 33 25 58 18 

Goryeo (early 10th - late 14th century) 16 16 32 6 

Joseon (late 14th - late 19th century) 80 115 195 29 

Early 20th century (1901-1945) - - - - 

Mid 20th century (1945-1959) 6 561 567 10 

Modern (1960 - present) 7 20 27 1 

Total 142 737 879 64 
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1.4. Dataset 4: Korean anthropometric data from the literature  

 Dataset 4 contains the Korean anthropometric data on stature and body mass in the 

20th century. Some researchers found stature information in the literature of the late Joseon 

period (i.e., early 17th - late 19th century) (e.g., Lewis et al., 2013; Cha and Cho, 2012), but 

that data is not incorporated in dataset 4 because the interpretation of the traditional 

measuring unit, ch'ok, which was used in the original data, is still controversial. That is, 

various versions of ch'ok existed depending on the time periods and the regions in Korea, and 

moreover, it is unclear how each version of ch'ok can be converted into the metric system 

(Cha and Cho, 2012). To avoid any potential error regarding interpreting and converting the 

traditional unit, only the anthropometric data measured in centimeters or millimeters for 

stature and in kilograms for body mass is included in dataset 4.  

 The Korean anthropometric data of the early 20th century was obtained from various 

surveys conducted mostly by Japanese researchers during the Japanese colonial period, 

though the geographic backgrounds and age distributions of the subjects in the surveys varied 

(Table 5). Among various measurements documented in those surveys, only the mean stature 

and the mean body mass were incorporated in dataset 4. In selecting the information on the 

stature and body mass from the surveys, two criteria were taken into account. Firstly, any 

data representing only North Korea were excluded. In other words, dataset 4 includes the 

anthropometric data which represent either only South Korea or the entire Korean peninsula. 

This is due to the fact that during the colonial period, people from North Korea were reported 

to be significantly taller than those from South Korea (Kimura, 1993 and references therein). 

Thus, if any data representing only North Korea during the colonial period were included in 

dataset 4, the overall size of the colonial period would be rather biased (i.e., overestimated). It 

was thought that this possibly biased size would cause confusion particularly when 

investigating the long term secular change with other datasets combined because, as 

explained earlier, dataset 1 and 3 consist of skeletal data collected only from South Korea. 

For this reason, when the anthropometric data were reported separately by regions in a survey, 

the average stature and body mass of the South Korean samples were recalculated based on 

the given data and then incorporated in dataset 4. Yet, when researchers reported data for the 

entire Korean peninsula without indicating specific regions, the data were incorporated in 

dataset 4 with no modification.  

 The second criterion for selecting data for dataset 4 was the age of the subjects. When 

anthropometric data in the surveys were provided by age groups, data from the young  
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Table 5. Anthropometric data from the references between 1901 and 1942.   

Researcher 
Mean stature (cm) Mean body mass (kg) 

Male (n) Female (n) Male (n) Female (n) 

飯島 (1901)
2,6

 163.41 (1847) 151.87 (54) 55.99 (-)
*
 43.92 (54) 

Chauter and Bourdaret 

(1902)
2
 

162 (113) - - - 

久保 (1913)
2
 161.37 (550) 147.31 (169) 55.62 (550) 45.95 (169) 

久保 (1917)
2
 163.93 (3719) - - - 

姬野 and Lee (1930/31)
1
 165.98 (868) - - - 

高橋 (1931,32)
5
 162.6 (-)

*
 - 56.6 (-)

*
 - 

荒賴 et al. (1934) 162.7 (915) 149.5 (475)  - - 

小濱 and 佐藤 (1935)
1
 164.33 (245) - - - 

五木田 (1935) 164.7 (49) - - - 

文部省 (1936)
5
 163.6 (-)

*
 - 55.6 (-)

*
 - 

五木田 and 池田 (1936) - 149.3 (86) - - 

Takakusu and Sin (1937)
6
 - 151.62 (500) - - 

三鴨 (1937) 160.578 (230) - 59.077 (230) - 

Choi et al. (1938) 166.82 (113) - - - 

Lee (1938)
6
 166.25 (831) - - - 

Official Survey in 1938
6
 162.3 (1953) - - - 

三鴨 (1940) 160.81 (19) - 53.96 (19) - 

KTDEC (1940)
6,**

 161.55 (74) 149.72 (148) - - 

Lee (1940) 166.51 (277) 154.53 (53) 57.91 (277) 52.42 (53) 

上田 et al. (1942) 161.795 (672) 148.664 (342) - - 

文部省
3,***

 160.9 (-)
*
 149.7 (-)

*
 - - 

生保協會
3,***

 159.8 (-)
*
 149.2 (-)

*
 - - 

竹內
3,***

 - 148.9 (-)
*
 - - 
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Table 5. Continued.   

Researcher 
Mean stature (cm) Mean body mass (kg) 

Male (n) Female (n) Male (n) Female (n) 

田原
4,***

 161 (-)
*
 - - - 

1
 Recited from 三鴨 (1937). 

2
 Recited from Pak (2011). 

3
 Recited from 五木田 and 池田 (1936). 

4
 Recited from 五木田 (1935). 

5
 Recited from 三鴨 (1940). 

6
 Recited from Kimura (1993).  

*
 The sample size is not indicated in the reference.  

** 
Keijo Teikoku Daigaku Eisei Chosabu (The Working Group for Public Health 

Investigation at Keijo Imperial University). 

***
 The publishing year was not indicated. 
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subjects in the early twenties were preferentially incorporated into dataset 4. This is because 

the individual of that age range are more likely to achieve maximum living stature without 

experiencing a decline in stature due to aging, which is the type of stature we aim to estimate 

from the skeletal samples in datasets 1 and 3. In addition, as explained earlier, body mass 

estimates from the femoral head are likely to represent the body mass at the onset of 

adulthood (i.e., around 18 years old) rather than the current body mass (Ruff et al., 1991). 

Since the body mass of the most skeletal remains in datasets 1 and 3 was estimated by their 

femoral heads, it can be said that the estimates of the samples in datasets 1 and 3 represent 

the body mass of young adulthood. Thus, for the sake of consistency and comparability with 

other datasets, it was thought to be appropriate for dataset 4 to include anthropometric data of 

the young subjects.    

 Dataset 4 also contains the anthropometric data after the independence from the 

Japanese colonial rule in 1945 (Table 6). Since the 1950s, many surveys have been conducted 

mainly due to the need for size standardization in industries and due to the interest in the 

development and health status of children and adolescents. For example, Park et al. (1953) 

conducted an anthropometric survey on 12,081 military recruits for the purpose of size 

standardization of the military supplies. The first cross-sectional nationwide anthropometric 

survey in Korea was conducted by the Korean Pediatric Society and Korea Ministry of Health 

and Welfare (KPSKMHW) in 1965 (Moon, 2011). This survey contained the anthropometric 

data including stature and body mass of children and adolescents at the age of zero through 

twenty. KPSKMHW has conducted four more surveys in 1975, 1984, 1997, and 2005. From 

the successive surveys of KPSKMHW, the information of 20-year-old males and females was 

incorporated in dataset 4. In addition, for the purpose of size standardization in various 

industries, more nationwide anthropometric surveys on people of all age groups have been 

conducted by the Korean Agency for Technology and Standards (KATS) (Lee, 2011). Since 

the first survey in 1979, a total of six surveys have been conducted by KATS in 1979, 1986, 

1992, 1997, 2003, and 2010. From the surveys of KATS, the information of the males and 

females in the age group of 20 - 24 was incorporated in dataset 4.  

 Finally, dataset 4 contains  mean stature and the mean body mass of both sexes from a 

total of 39 references among which twenty four were published between 1901 and 1942, and 

fifteen between 1953 and 2010. Of the twenty four references published between 1901 and 

1942, the anthropometric information (i.e., mean value) including male stature, male body 

mass, female stature and female body mass could be obtained from the 21, 7, 11, and 3  
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Table 6. Anthropometric data from the references between 1953 and 2010. 

Researcher 
Mean stature (cm) Mean body mass (kg) 

Male (n) Female (n) Male (n) Female (n) 

Park et al. (1953) 162.7 (11,741) - 56.8 (11,741) - 

Kim (1956)
1
 166.81 (473) 155.1 (334) 58.85 (473) 53.23 (334) 

Kim (1961) 166.58 (824) 157.94 (707) - - 

Lee (1973) 167.95 (100) 158.43 (100) 60.29 (100) 51.76 (100) 

KPSKMHW (1965)
2,*

 168.9 (16,213) 155.9 (16,612) 58.2 (16,213) 51.5 (16,612) 

KPSKMHW (1975)
2,*

 168.7 (40,149) 157.1 (37,865) 59.3 (40,149) 52 (37,865) 

KATS
**

 (1979) 167.7 (3,641) 155.5 (1,106) 61.3 (3,641) 52.7 (1,106) 

KPSKMHW (1984)
2,*

 170.2 (1,515) 157.6 (1,807) 61.9 (1,515) 51.8 (1,807) 

KATS (1986) 167.7 (1,475) 155.4 (438)  60.8 (1,475)  51.2 (438)  

KATS (1992) 169.6 (157) 158.8 (176) 63.6 (157) 52.5 (176) 

KPSKMHW (1997)
2,*

 173.4 (1,013) 160.4 (872) 66.6 (1,013) 55.7 (872) 

KATS (1997) 171.3 (228) 160.2 (237) 65.6 (228) 51.7 (237) 

KATS (2003) 173.8 (344) 160.7 (352) 69.5 (344) 53.5 (352) 

KPSKMHW (2005)
2,*

 174.2 (231) 161.3 (145) 71 (231) 55.6 (145) 

KATS (2010) 173.5 (378) 160.4 (298)  69.2 (378)  53.1 (298) 

1
 Recited from Lee (1973). 

2
 Recited from Choi and Kim (2012). 

*
 Korean Pediatric Society and Korea Ministry of Health and Welfare. 

**
 Korean Agency for Technology and Standards. 

 

 

 

 

 

 

 

 

 

 



 

 

78 

surveys respectively. Also, among the fifteen surveys conducted between 1953 and 2010, the 

information on the male stature and body mass, and the female stature and body mass was 

obtained from 15, 14, 14, and 13 surveys respectively. The information on the mean stature 

and the mean body mass from the surveys is summarized in Tables 5 and 6. 

 

2. Methods 

2.1. Bone measurements 

 In datasets 1 and 2, bone dimensions were measured by the author following the 

instructions listed in Table 2 using an osteometric board (Paleo-Tech light weight field 

osteometric board), spreading calipers (GPM, model# 106) to the nearest mm, and sliding 

calipers (Mitutoyo co., resolution of 0.01mm) to the two places of decimals. All skeletons in 

dataset 1 were measured between December 2012 and January 2013, and those in dataset 2 

between March 2013 and April 2013.  

 Any skeletal elements that could not be measured due to damage, fractures, or 

pathological conditions (e.g., osteophytosis, fused bones, and lytic lesions) were excluded 

from the analysis. Yet, the individuals with slightly compressed vertebral bodies were 

included in this research as far as the vertebral body height could be measured by the method 

of Raxter et al. (2006). Also, individuals with a sixth lumbar were included in this research.  

 For paired bones (i.e., humerus, radius, femur, tibia, talus, and calcaneus), it is 

important to identify potential sources of asymmetry. Some researchers used the average 

bone dimensions of both sides with a comment that no significant asymmetry between sides 

was detected (Sarajlić et al., 2006; Trotter and Gleser, 1952; Telkkä, 1950), while others 

selected only one side of a pair because of the issue of bilateral asymmetry (Petrovečki et al., 

2007; Munoz et al., 2001; De Mendonca, 2000; but see Choi et al. (1997) who used only the 

right side bones even though no asymmetry between sides was found in their sample). 

Obviously, a significant level of bilateral asymmetry - both statistically and biologically - is 

likely to cause bias in generating stature and body mass estimation equations to some degrees. 

Thus, in this research, paired bones were examined for evidence of asymmetry before 

deciding whether to include one anatomical side or the average of the two when developing 

the new equations. The symmetry/asymmetry of each bone dimension was determined using 

the paired t-test.  
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2.2. Measurement error 

 In anthropometric studies, it is a critical issue to examine measurement error because 

it is directly related to the reproducibility of the measurements and thus, to the reliability of 

the data used in a study. In this research, to test for measurement error, a total of 39 skeletons 

in the William Bass Donated Collection were used and error was assessed in two different 

ways: the concordance correlation coefficient (CCC) test and the percentage measurement 

error. 

 The CCC test has been devised by Lin (1989) to overcome the limitations of the 

previous methods to test for the reproducibility such as "the Pearson correlation coefficient, 

the paired t-test, the least squares analysis of slope (= 1) and intercept (= 0), the coefficient of 

variation, or the intraclass correlation coefficient" (p.255). Simply put, the CCC represents 

the "correlation between the two readings that fall on the 45° line through the origin" (Lin, 

1989, p.255). According to the rationale of the CCC, if two sets of measurements are 

perfectly identical, each pair of measurements per individual should lie on the 45° line. 

Accordingly, the higher the measurement error is, the more dispersed the pairs of 

measurements are from the line, and vice versa. In this research, the CCC test was performed 

for each of the bone dimensions measured in this research using the statistical software 

RStudio (package: 'epiR', macro: "epi.ccc(x,y,ci="z-transform", conf.level=0.95)").  

 Auerbach (2011) took independent bouts of measurements for each individual and 

calculated the measurement error "as the mean absolute deviation from the average of the 

bouts for each individual" (p.71). Then, the percentage measurement error (%ME) was 

calculated by dividing the measurement error by the average for each dimension (Auerbach, 

2011). In this research, the %ME for each bone dimension was calculated following the 

description of Auerbach (2011) to quantify the degree of the measurement error in each bone 

dimension.  

 

2.3. Stature estimation 

 In this research, the equations for stature estimation were developed using the hybrid 

method which consisted of two phases. In the first phase, the living statures of the skeletons 

were estimated by the anatomical method, and then in the second phase, the limb bone 

lengths were regressed on these anatomically reconstructed statures.  
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2.3.1. First phase: reconstructing living statures using the anatomical method 

 As mentioned earlier, the biggest limitation in applying the anatomical method is that 

it requires complete or nearly complete skeletons that possess all the skeletal elements 

contributing to a standing stature: cranium, the second cervical through the first segment of 

the sacrum, femur, tibia, talus, and calcaneus. In general, since a large number of skeletons 

are found with some missing elements within forensic and archaeological contexts, 

researchers have made an effort to estimate the dimensions of the missing ones prior to 

reconstructing a stature of a skeleton (Ruff et al., 2012a; Auerbach, 2011; Maijanen and 

Niskanen, 2010). However, in this research, only the individuals, possessing all bone 

elements required to calculate the skeletal height, were used in reconstructing statures by the 

anatomical method. That is, any individuals who had missing element(s) required to apply the 

anatomical method were excluded from developing the stature estimation equations. This was 

because of the concern that using the estimated dimensions for reconstructing a stature might 

produce compounding errors in the estimates (SWGANTH, 2012). In addition, the 

preliminary analysis demonstrated that estimating missing elements did not make a big 

difference in the final results of this research (i.e., the accuracy of the stature estimation 

equations) (results are not reported in this research). Thus, it was decided that, despite the 

reduced sample size, excluding any individuals with missing elements from the process of 

equation development would avoid the tentative risk of compounding errors possibly 

associated with the final equations without compromising their competence in estimating 

statures. As a result, statures of a total of 113 individuals (50 females and 63 males) could be 

estimated by the anatomical method.  

 Among several versions of the anatomical method (e.g., Fullly (1956), Fully and 

Pineau (1960), Formicola (1993), Niskanen and Junno (2004), and Raxter et al. (2006)), the 

method of Raxter et al. (2006) was used in this research because of its advantages over the 

other methods. First of all, the method of Raxter et al. (2006) is said to be applicable to any 

skeleton regardless of their sex or ancestry. Also, in terms of methodology, since Raxter et al. 

(2006) clarified some issues regarding bone measurements, it was assumed that the intra- and 

interobserver error would be minimal. Lastly, equation 1 in Raxter et al. (2006) has been 

demonstrated to produce an excellent approximation to a living stature relative to other 

methods (Ruff et al., 2012a ; Maijanen, 2009, 2011). Raxter et al. (2007) also recommended 

use of equation 1 rather than equation 2 because the age structure of the reference sample 
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might cause a bias in the target sample due to a relatively right-skewed age distributions. 

Equation 1 in Raxter et al. (2006) is as follows.  

 

Living stature = 1.009 Skeletal height - 0.0426 age + 12.1 (r = 0.956, SEE = 2.22) 

(where, living stature and skeletal height are in cm, r = Pearson correlation coefficient, SEE = 

standard error of the estimate) 

 

 Despite the advantages, verification that equation 1 would work properly for the 

samples of this research was necessary as no validation test had been performed on the 

Korean skeletal remains. Thus, it was tested whether equation 1 of Raxter et al. (2006) would 

produce any systematic bias in stature estimates using the five individuals in dataset 1, of 

which antemortem information (i.e., sex, age, and stature) was known. Namely, the known 

living statures of the five individuals were compared to the estimated statures by equation 1.  

 Lastly, it should be noted that the statures reconstructed by the anatomical method in 

this research are the maximum living statures before one experiences age related stature 

reduction. It is said that whether the maximum living stature or the stature at death should be 

estimated depends on the context in which the target sample belongs. That is, in the forensic 

context, it would be appropriate to estimate the stature at death because the purpose of the 

stature estimation is primarily to identify unknown individuals as they are at the time of death. 

On the contrary, in the archaeological context, it is thought to be appropriate to estimate the 

maximum living statures of skeletons because "the estimation is aiming at a general picture 

of the population, and the maximum stature will represent this better than the stature at death" 

(Maijanen, 2011, p.13). Niskanen et al. (2013) also agree to this point by saying that "the 

maximum adult stature is adequate for most archaeological individuals, who generally died 

before experiencing much stature decline due to age" (p. 9). Thus, in applying the equation 1 

of Raxter et al. (2006), the number 20 was entered into the age term so that the maximum 

living stature could be produced (Maijanen, 2011).  

 

2.3.2. Second phase: regressing limb bone lengths on stature  

 As mentioned earlier, statures of a total of 113 (50 females and 63 males) individuals 

were reconstructed using equation 1 of Raxter et al. (2006). Yet, there were three issues to be 

considered before regressing limb bone lengths on these anatomically reconstructed statures: 
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body proportions of the individuals, bone dimensions to be regressed, and type of regression 

method.  

 

Body proportion 

 Even within a population, body proportions of individuals may vary depending on the 

regions and/or time periods to which the individuals belong. Since heterogeneous body 

proportions within a reference sample may lower the accuracy of the stature estimation 

equations, it is desirable for a reference sample to consist of the individuals that exhibit 

homogeneous body proportions.  

 Since the 113 individuals in dataset 1 were originally from different time periods and 

regions, it was necessary to assess possible differences among body proportions before 

pooling the individuals together for equation development. Also, it should be noted that since 

the individuals in dataset 1 were from either the Joseon period (i.e., late 14th - late 19th 

century) or afterwards (i.e., the 20th century), the applicability of the newly developed 

equations to the samples of the pre-Joseon period would be questioned. Therefore, the 

homogeneity of body proportions between the pre-Joseon period and other time periods also 

needed to be tested using the samples in dataset 3 (i.e., osteometric data from the literature). 

The tests were conducted for dataset 1 and 3 separately without combining the individuals in 

those datasets.  

 Homogeneity or heterogeneity of body proportions between sexes, different regions 

and time periods was determined by comparing the cormic and crural indices. The cormic 

index originally means the ratio of a sitting height to a standing height (Ghosh and 

Bandyopadhyay, 2005), but in this research, for the sake of convenience in calculation, it was 

modified as the ratio of the summed femoral physiological length and condylo-malleolus 

length of tibia to the skeletal height (i.e., (FeL2+TiL2) 100/skeletal height) (Raxter et al., 

2008). Yet, the cormic index of the individuals in dataset 3 could not be calculated because 

skeletal heights could not be reconstructed due to the lack of reported vertebral body heights 

in the original references. Thus, comparisons of the cormic index between sexes, regions and 

time periods were made only for the individuals in dataset 1. The crural index was calculated 

as the ratio of the condylo-malleolus length of tibia to the femoral physiological length (i.e., 

TiL2 100/FeL2) for the individuals in dataset 1 (Davenport, 1933). However, for the 

individuals in dataset 3, it was modified into the ratio of TiL2 to FeL1 to maximize the 
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sample size (i.e., FeL2 was reported much less frequently than FeL1 in the original 

references).  

 Comparisons of the indices between sexes, regions and time periods were conducted 

using the randomization test due to an insufficient number of samples in some categories. 

Unlike traditional parametric tests to compare group means such as the t-test or the analysis 

of variance (ANOVA), the randomization test does not require most assumptions about the 

populations from which samples are drawn (e.g., normal distribution and randomness in the 

sample selection) (Basu, 2011; Hayes, 2000; Lunneborg, 2000). Rather, the randomization 

test calculates a statistic (e.g., mean difference, t statistic, or F statistic) from currently 

observed samples and then compares it to a number of statistics calculated from the newly 

organized samples by random permutations of the current samples (Hayes, 2000; Lunneborg, 

2000). Through this process, it provides the probability of the 'as extreme' or 'more extreme' 

cases than the current samples. As such, since the probability is calculated directly from a 

given sample, as far as the assumption of equal variance is satisfied, it can be free from the 

traditional assumptions and can be particularly useful in dealing with small-sample-sized 

groups. Prior to conducting the randomization test on the cormic and crural indices, the equal 

variance assumption was checked. Since both the cormic and crural indices were normally 

distributed in each subcategory (i.e., sex, region, and time period), a parametric test (i.e., 

Levene's test) could be used for comparing variances between groups. The results showed 

that the equal variance assumption was met for all groups compared (Appendix A-2), which 

meant that the randomization test could be applied to compare the indices of those groups.  

 

Bone dimensions  

 In this research, new equations were developed using the length/height of femur, tibia, 

humerus, radius, and lumbar column. For the femur and tibia, both FeL1 (femoral maximum 

length) and FeL2 (femoral physiological length) and both TiL1 (spino-malleolus length of 

tibia) and TiL2 (condylo-malleolus length of tibia) were considered respectively. The height 

of the lumbar column was calculated as the sum of the body heights of all lumbar vertebrae. 

When a 6th lumbar vertebra was present, the body height of the 6th lumbar was also included 

in calculating the height of the lumbar column (Raxter and Ruff, 2010; Lundy, 1988b).  

 Equations were developed using the simple regression analysis with either a single 

bone dimension or the sum of two or three bone dimensions. Equations using the multiple 

regression analysis with multiple bone dimensions were not presented in this research, 
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because the preliminary test showed that they did not perform better than the simple 

regression analysis using the sum of the same bone dimensions (results are not presented in 

this research). As a result, a total of 19 regression models were developed for males and 

females separately. The predictor variable (i.e., independent variable) of each model is listed 

in Table 7.  

 

Regression method 

 In this research, bone dimensions were regressed on the anatomically reconstructed 

statures using the ordinary least squares (OLS) regression method or the inverse calibration in 

the terminology of Konigsberg et al. (1998). Some researchers advocate the use of the 

reduced major axis (RMA) instead of OLS (e.g., Maijanen, 2011; Formicola and Franceschi, 

1996; Aiello, 1992; Aiello and Dean, 1990; Sjøvold, 1990), but OLS was preferred in this 

research for several reasons. At first, it was thought that, as Smith (2009) points out, the 

choice between RMA and OLS should be based on the relationship between the variables 

rather than the pattern of errors in the data. That is, using RMA is regarded as appropriate for 

the variables of a symmetric relationship while using OLS for the variables of an asymmetric 

relationship. Pablos et al. (2013) stated that comparing two variables would fall into the 

category of the 'symmetric relationship', while estimating one variable from the other would 

fall into the category of the 'asymmetric relationship'. Since the purpose of the regression 

analysis in this research is to estimate statures from bone dimensions, the relationship 

between variables was thought to be asymmetric, where OLS would be a more appropriate 

method. Secondly, although RMA is known to produce more accurate estimates for extreme 

cases, this should not be the reason for preferring RMA to OLS because OLS is most robust 

for the samples around the mean (Konigsberg et al., 1998) and, in fact, most target samples 

would fall around the mean. Lastly, it is known that OLS tends to yield smaller standard 

errors compared to RMA (Konigsberg et al., 1998; Sjøvold, 1990). For these reasons, OLS 

was thought to be more appropriate than RMA as a regression method in this research.  

 Some researchers suggested the use of a robust regression method such as the least 

trimmed squares (Pablos et al., 2013). Generally, the robust regression method is used when 

outliers are likely to be incorporated in the data, because it minimizes the outlier effect by 

reducing the weights for outliers. In this research, to decide whether the robust regression 

method would be necessary outliers were identified in the dataset in two ways: the graphical  

examination by drawing scatter plots between the predictor variables and statures, and 
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Table 7. Predictor(s) associated with each regression model.  

Model 

No. 

Predictor Model 

No. 

Predictor 

1 Femoral maximum length 

(FeL1) 

11 Sum of humeral maximum length and 

radial maximum length (HuL+RaL) 

2 Femoral physiological elgnth 

(FeL2) 

12 Sum of femoral maximum length and 

height of lumbar column (FeL1+Lum
1
) 

3 Spino-malleolus length of tibia 

(TiL1) 

13 Sum of femoral physiological length and 

height of lumbar column (FeL2+Lum) 

4 Condylo-malleolus length of 

tibia (TiL2) 

14 Sum of spino-malleolus length of tibia 

and height of lumbar column 

(TiL1+Lum) 

5 Sum of femoral maximum 

length and spino-malleolus 

length of tibia (FeL1+TiL1) 

15 Sum of condylo-malleolus length of tibia 

and height of lumbar column 

(TiL2+Lum) 

6 Sum of femoral maximum 

length and condylo-malleolus 

length of tibial (FeL1+TiL2) 

16 Sum of femoral maximum length, spino-

malleolus length of tibia, and height of 

lumbar column (FeL1+TiL1+Lum) 

7 Sum of femoral physiological 

length and spino-malleolus 

length of tibia (FeL2+TiL1) 

17 Sum of femoral maximum length, 

condylo-malleolus length of tibia, and 

height of lumbar column 

(FeL1+TiL2+Lum) 

8 Sum of femoral physiological 

length and condylo-malleolus 

length of tibia (FeL2+TiL2) 

18 Sum of femoral physiological length, 

spino-malleolus length of tibia, and 

height of lumbar column 

FeL2+TiL1+Lum 

9 Humeral maximum length 

(HuL) 

19 Sum of femoral physiological length, 

condylo-malleolus length of tibia, and 

height of lumbar column 

FeL2+TiL2+Lum 

10 Radial maximum length (RaL)   

1
 The height of the lumbar column was calculated by summing up the vertebral body heights 

of all lumbar vertebrae. 



 

 

86 

statistical examination by comparing the parametric (i.e., Pearson's correlation coefficient) 

and non-parametric correlation coefficients (i.e., Spearman's rank correlation coefficient) 

between the predictor variables and statures. Any significant outliers were not detected from 

the scatter plots, and both parametric and non-parametric correlation coefficient tests revealed 

consistent results (i.e., significant correlation between the predictor variables and statures) 

(results are not presented in this research). That is, any issue regarding outliers was not 

noticed. Thus, it was decided not to use the robust regression method in this research.  

 In addition, two assumptions regarding regression residuals were checked. At first, 

independence of residuals was checked using the Durbin-Watson statistic. Since the statistic 

was close to 2 in all equations, it was concluded that the assumption of independent errors 

was satisfied (detailed results are not presented in this research) (Field, 2009). Then the 

normality of residuals was checked by looking at the shape of histogram and normal 

probability plot of standardized residuals as well as by performing the Kolmogorov-Smirnov 

test (K-S test) for the residuals for each equation. Overall, residuals revealed bell-shaped 

curves in all equations and the K-S test confirmed that the residuals were normally distributed 

in all equations (detailed results are not presented in this research) (Field, 2009). Thus, it was 

concluded that there was not issue in the new equations presented in this research regarding 

residual-related regression assumptions.   

 In this research, all regression equations are presented with the 90% and 95% 

prediction interval (PI) as well as the standard error of the estimate (SEE) and the %SEE (i.e., 

SEE 100/mean stature). The prediction interval indicates the chance of a true stature of an 

individual to belong to a given range. For example, if the predicted stature of an individual 

with a maximum femoral length of 40cm is 160cm and the 95% prediction interval is 10cm, 

we can anticipate that 95 out of 100 individuals with a femoral length of 40cm would have 

statures between 155 cm (i.e., 160 - 
 

 
   ) and 165 cm (i.e., 160 + 

 

 
   ). The SEE is an 

overall measure of dispersion of the true values around the regression line, which in turn 

implies the accuracy of an equation. The SEE is presented along with each corresponding 

equation for the purpose of comparison to other equations.  

 

2.3.3. Validation test for the hybrid method 

 Although the validation test was conducted on the anatomical method (i.e., the 

equation 1 of Raxter et al. (2006)), it appeared necessary to conduct one more test on the final 

results of the stature estimation (i.e., the new equations developed by the hybrid method). 
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This was for confirming that no serious bias was produced in the two-fold steps of the hybrid 

method. For the validation test, part of dataset 3 (i.e., osteometric data from the literature) and 

dataset 4 (i.e., anthropometric data from the literature) were used. Dataset 3 includes the 

osteometric data on a total of 440 Korean War casualties, among which statures of 365 

individuals could be estimated by the new equation using the femoral maximum length 

(FeL1). Then the average stature estimated from these 365 individuals was compared to the 

results of Park et al. (1953) where the average living stature of 11,741 Korean conscripts 

during the Korean War was reported. Since the 365 Korean War casualties in dataset 3 and 

the conscripts in Park et al. (1953) had the same background in terms not only of the time 

period (i.e., during the Korean War) but also of the job (i.e., combat soldiers), it was highly 

expected that the mean statures of both samples would be close each other. Indeed, the results 

showed that the average of the estimated statures in dataset 3 (162.23cm) was so close to the 

average of the reported statures in dataset 4 (162.7cm). Thus, it was concluded that the 

equations developed by the hybrid method would yield highly precise approximations of 

living stature in this research.   

 

2.3.4. Comparison to previous stature estimation equations 

 Literature review in this research revealed that statures of the most Korean skeletal 

remains have been estimated mainly by four techniques introduced by Pearson (1899), 

Trotter and Gleser (1958), Fujii (1960), and Choi et al. (1997). Using 100 French individuals 

(50 females and 50 males), Pearson (1899) presented two sets of sex-specific equations: one 

for estimating a cadaver stature (p.186 - 187) and the other for a living stature (p.196). In this 

research, only the latter was of interest where a total of ten equations were included for each 

sex. Trotter and Gleser (1958), using the American casualty data from the Korean War, 

presented four sets of male equations one of which was for Asian stature estimation (p.120). 

In the Asian male equation set, ten equations were included: six equations using single bones 

and four equations using multiple bones. Fujii (1960), using 192 Japanese samples (27 

females and 165 males), presented a total of 86 sex-specific and side-specific equations (24 

for females and 62 equations for males). The male equations included both simple and 

multiple regression equations (32 and 30 respectively), while the female equations included 

only simple regression equations. Choi et al. (1997), using 57 Korean male samples, 

presented a total of ten equations where only right-side bones were associated. Among the ten 

equations, six used single bones and four multiple bones.  
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 Among the equations presented in the previous studies, only those using the bone 

dimension(s) that were used for this research were selected, and their performance was 

compared to that of the new equations developed in this research. For males, six equations 

from Pearson (1899) and Trotter and Gleser (1958), eight from Fujii (1960), and five from 

Choi et al. (1997) were selected for comparison and for females, six equations from Pearson 

(1899) and Fujii (1960) were selected. For the sake of consistency, the average lengths of 

long bones were entered into all available equations though side-specific bones were 

recommended to be used for some equations. Also, for the equations of Fujii (1960), only the 

right-side equations were tested.  

 For the purpose of assessing and comparing equations, three criteria were used: the 

standard error of the estimate (SEE), %SEE, and %prediction error (%PE) (i.e., [true stature - 

predicted stature]  100/predicted stature) (Ruff et al., 2012a; Smith, 1984). In calculating 

SEE, %SEE and %PE for each technique, the stature reconstructed by the anatomical method 

was assumed to be the true living stature. While SEE and %SEE measure the random error 

(i.e., overall dispersion of the true values from the predicted values), %PE measures the 

directional bias (i.e., over- or underestimation of the true values) (Ruff et al., 2012a). In other 

words, SEE and %SEE can be said to be a measure of precision, and %PE a measure of 

accuracy. Since the accuracy of the equations was a bigger concern for this research, %PE 

was emphasized in assessing different techniques.  

 

2.4. Body mass estimation 

 As with the stature estimation equations, the equations for body mass estimation were 

developed using the hybrid method in this research. The hybrid method for body mass 

estimation also consisted of a two phase process. In the first phase, the body mass of the 

skeletons were estimated by the morphometric method, and then in the second phase, the 

articular surface size (i.e., anterior-posterior femoral head breadth, FeHB) was regressed on 

these morphometrically reconstructed body mass.  

 

2.4.1. First phase: reconstructing body mass using the morphometric method 

 Two biological dimensions are needed to reconstruct body mass using the 

morphometric method, which include living stature and body breadth. For living stature, only 

the statures reconstructed by the anatomical method were used in this research. The statures 

estimated by the new equations were not used because of the concern of potential 
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compounding errors, though it was shown earlier that the hybrid method yielded very good 

approximations to living stature. Also, the preliminary analysis showed that including the 

stature estimates yielded by the new equations did not improve the overall performance of the 

body mass estimation equations (results are not presented in this research). For body breadth, 

the living bi-iliac breadth (BIB) was used following Ruff (1994). The skeletal BIB was 

converted to the living BIB using the formula presented by Ruff et al. (1997) as follows:  

 

Living BIB = 1.17 skeletal BIB - 3 

(where both living and skeletal BIBs are measured  in cm) 

 

 As a result, a total of 106 individuals (47 females and 59 males) exhibited statures that  

could be estimated by the anatomical method as well as whose BIB could be obtained, were 

used for developing the equations for body mass estimation. The body mass of the 106 

individuals was estimated by the morphometric method suggested by Ruff et al. (2005) as 

follows:  

 

Male body mass = 0.422 Stature + 3.126 Living BIB - 92.9 (r = 0.913, SEE = 3.7) 

  Female body mass = 0.504 Stature + 1.804 Living BIB - 72.6 (r = 0.819, SEE = 4.0) 

(where body mass and SEE in kg, stature and BIB in cm) 

 

2.4.2. Second phase: regressing articular surface sizes on the body mass 

 In regards to the bone dimensions used in the biomechanical method with the articular 

surface size, the femoral head size has attracted most attention although the knee joint and the 

ankle have been studied as well (e.g., Eckstein et al., 2002; Porter, 1999). In this research, the 

anterior-posterior femoral head breadth (FeHB) was used for developing the regression 

equations for body mass estimation. As to the regression method, as with the stature 

estimation, OLS regression was preferred to RMA. Also, the standard error of the estimate 

(SEE) and the 90% and 95% prediction interval (PI) were calculated to assess the precision 

and accuracy of the newly developed equations.  

 

2.4.3. Validation test for the hybrid method 

 As with the stature estimation section, validation tests were conducted on the final 

estimates of body mass to check if any serious bias was produced in the process of estimating 
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body mass using the hybrid method. For the validation test on the body mass estimates, the 

same datasets used for the validation test for stature estimates (i.e., osteometric data of the 

Korean War casualties in dataset 3 and the anthropometric data from the Korean conscripts 

reported by Park et al. (1953) in dataset 4) were used. The body mass of 54 out of 440 

Korean War casualties in dataset 3 could be estimated by the new equation using the femoral 

head breadth (FeHB).  

 The results of the one-sample t-test showed that the average body mass estimates 

from these 54 individuals (61.3kg) was significantly higher than the average of the reported 

body mass in dataset 4 (56.8kg) by 4.5kg (t = 7.383, p < 0.001). Yet, since the individuals of 

these two datasets were supposed to represent the same population (i.e., Korean conscripts 

during the Korean War in the early 1950s), no difference in body mass between the datasets 

was anticipated. Thus, it was concluded that overall the new equation using FeHB 

overestimated the true body mass by 4.5kg. After reviewing the body mass estimates, this 

amount of difference was thought to be produced in the first phase of body mass estimation 

(i.e., reconstructing body mass using the morphometric method). Thus, the body mass 

estimates by the morphometric method were adjusted downwardly by 4.5kg and then FeHB 

was regressed again on these adjusted body mass estimates. In this research, only the adjusted 

equations are provided.  

 

2.4.4. Comparison to previous body mass estimation equations 

 There have been three sets of body mass estimation equations using the femoral head 

diameter described in the literature: Ruff et al. (1991), McHenry (1992), and Grine et al. 

(1995). In addition to these equations, Auerbach and Ruff (2004) mentioned that the average 

of the estimates from these three equations can yield a reasonable approximation of body 

mass, which is called the 'average method' in this research. Although the body mass equation 

of McHenry (1992) was actually developed by Ruff et al. (1997) using the data provided in 

McHenry (1992), in this research, the equation is still called the 'McHenry (1992) equation' 

instead of the 'Ruff et al. (1997) equation' because previous researchers have consistently 

referred the equation in this way.  

 As with stature estimation, the performance of the new equations were compared to 

that of the previous equations using three criteria: the standard error of the estimate 

(SEE), %SEE, and % prediction error (%PE) (Ruff et al., 2012a; Smith, 1984). In calculating 

SEE, %SEE and %PE for each equation, the body mass reconstructed by the adjusted 
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morphometric method (i.e., subtracting 4.5kg from the estimates by the morphometric 

method) was assumed to be the true body mass. Among the three criteria, the %PE, which is 

a measure of accuracy, was most emphasized in comparing different equations.  

 

2.5. Secular changes in stature and body mass 

2.5.1. Combining data 

 To investigate secular changes in stature and body mass of the Korean population, all 

data on stature and body mass included in datasets 1, 3, and 4 were combined. Since datasets 

1 and 3 consist of osteometric data, the living stature and body mass of each individual had to 

be estimated first. For the individuals in dataset 1, one of the four methods was applied: for 

stature estimation, either the anatomical or the hybrid method (i.e., the new equation for 

stature estimation developed in this research), and for body mass estimation, either the 

morphometric or the hybrid method (i.e., the new equation for body mass estimation 

developed in this research). Yet, for those in dataset 3, neither the anatomical nor the 

morphological method could be applied because the required bone dimensions for the 

methods (e.g., vertebral body height, talus-calcaneus height, and bi-iliac breath) were not 

provided in the original references. In estimating statures using the hybrid method, only one 

equation using the femoral maximum length (FeL1) was applied to the available skeletons to 

avoid inconsistency in the estimates possibly caused by involvement of different equations. 

The reason why the femoral maximum length (FeL1) was used as a predictor variable was 

that it maximized the sample size compared to any other bone dimension(s). For body mass 

estimation using the hybrid method, the femoral head breadth (FeHB) was used. It should be 

noted that the reported femoral head diameters in the literature were regarded as the anterior-

posterior breadth as far as the authors did not specify how the diameters had been taken.    

 In dataset 1, statures of 295 individuals were estimated. The anatomical method was 

applied to 113 (50 females and 63 males) out of 295 individuals and the hybrid method using 

the femoral maximum length (FeL1) to 182 individuals (76 females and 106 males). In 

dataset 3, statures of 761 individuals (124 females and 637 males) were estimated by the 

hybrid method using FeL1. Thus, when combining datasets 1 and 3, the stature estimates of a 

total of 1,056 individuals (250 females and 806 males) could be obtained. As to the body 

mass, dataset 1 included 305 individuals (129 females and 176 males) whose body mass was 

estimated. Body mass of 106 (47 females and 59 males) out of 305 individuals was estimated 

by the morphometric method and that of the rest (82 females and 117 males) by the hybrid 
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method using the femoral head breadth (FeHD). In dataset 3, body mass of 163 individuals 

(31 females and 132 males) was estimated by the hybrid method using FeHD. Thus, the total 

number of individuals in datasets 1 and 3,whose body mass could be estimated, was 468 (160 

females and 308 males).   

 

2.5.2. Comparing statures and body mass between time periods 

 Every single individual in datasets 1 and 3, whose stature and/or body mass could be 

estimated, was categorized into one of the six time periods: Three Kingdom period (B.C. 1st - 

A.D. 7th century), Goryeo period (early 10th - late 14th century), Joseon period (late 14th - 

late 19th century), Early 20th century (1901 - 1945), mid 20th century (1945-1959), and 

modern period (1960 - present). In addition, the mean stature and mean body mass of the 

surveys published in the literature of dataset 4 were categorized into corresponding time 

periods based on their publication years. Table 8 shows the number of individuals as well as 

the number of reported means representing the corresponding time periods.  

 

Table 8. Number of samples used for examining secular changes. 

Time periods Stature estimation Body mass estimation 

Female Male Female Male 

Three kingdom (B.C. 1st - A.D. 7th century) 29 24 1 2 

Goryeo (early 10th - late 14th century) 15 14 0 0 

Joseon (late 14th - late 19th century) 190 241 152 186 

Early 20th century (1901 - 1945) 0/11
1
 0/21

1
 0/3

1
 0/7

1
 

Mid 20th century (1945 - 1959) 5/1
1
 503/2

1
 3/1

1
 116/2

1
 

Modern (1960 - present) 11/13
1
 24/13

1
 4/12

1
 4/12

1
 

Total 250/25
1
 806/36

1
 160/16

1
 308/21

1
 

1
 The first number represents the number of individuals in datasets 1 and 3, whose stature and 

body mass could be estimated. The second number represents the number of means of stature 

or body mass published in the references in dataset 4.    

 

 To seek the overall pattern of secular changes, mean stature and mean body mass of 

each time period were calculated. Yet, since the Three Kingdom and Goryeo period had very 

small number of samples whose body mass could be estimated, these two periods were 
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excluded from assessing the secular change of body mass. In the case that multiple aggregate 

means (i.e., mean stature or mean body mass) were represented for one time period (i.e.,  

Early 20th century, Mid-20th century, Modern period), the grand mean (i.e., the weighted 

mean) was regarded as the mean value of the time period. The grand mean was calculated as 

follows:  

 

            
       

   
 

(where,     is the reported mean value in the i th reference, and    is the sample size used in 

the i th reference.) 

 

 In addition to reporting the mean stature and body mass of each time period, 

statistically significant differences were assessed in the mean values between time periods 

using the randomization test. As explained earlier, the randomization test is thought to yield 

more robust results compared to the traditional tests particularly in the case of a small sample 

size. The mean values associated with only skeletal remains (i.e., Three Kingdom period, 

Goryeo period and Joseon period) were compared either to each other or to the grand means 

of the early 20th, mid 20th, and modern period. Also, when there were more than ten 

aggregate means (i.e., mean values reported in more than ten surveys) for a time period (i.e., 

early 20th century and modern period for stature and modern period for body mass), each 

aggregate mean was treated as a single data point so that the randomization test could be 

applied. The equal variance assumption for the randomization test was not checked as the 

aggregate means for combined time periods did not reflect the variance in the original 

samples (i.e., the variance of the aggregate means was much smaller than the variance in the 

original samples), and thus the variance of the aggregate means and the original samples 

could not be directly compared.  

 

2.6. Statistics 

 In this research, multiple statistical software packages were utilized for analysis. At 

first, to test for the measurement error in skeletal measurements, the concordance correlation 

coefficient (CCC) test was conducted using RStudio (free download available from the 

website " http://www.rstudio.com/"). Specifically, in RStudio, the CCC test can be performed 

using the macro "epi.ccc(x,y,ci="z-transform", conf.level=0.95)" after installing the package 
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'epiR'. Secondly, NCSS v.8 (Number Cruncher Statistical System version 8) was used to 

conduct the randomization test and to test for equal variance. As explained earlier, the 

randomization test was performed to compare the body proportions between sexes, time 

periods, and regions as well as to compare the estimated stature and body mass between time 

periods. The results of the randomization test using NCSS were compared to the results 

obtained using another software "Resampling procedures" which is designed specifically for 

the randomization test and bootstrapping procedures by Howell (2000) (free download 

available from the website "http://www.uvm.edu/~dhowell/StatPages/Resampling/ 

Resampling.html#Return1"). Since there was no significant difference in the results between 

the two softwares, only the results of NCSS are presented in this research. Lastly, SPSS v.20 

(Statistical Package for the Social Sciences version 20) was utilized for the rest of the 

statistical analyses such as developing the equations for stature and body mass estimation 

using the ordinary least squares regression, testing for its assumptions (e.g., linearity between 

variables and normality of residuals), calculating descriptive statistics, and drawing graphic 

plots. 

 

3. Chapter summary 

 In this research, four different datasets were used. Dataset 1 contains osteometric data 

of Korean skeletons directly measured by the author in Korea. Dataset 2 is comprised of 

osteometric data of American skeletons directly measured by the author in the William Bass 

Donated Collection of the University of Tennessee, Knoxville. Dataset 3 contains osteometric 

data of Korean skeletons published in the Korean literature (i.e., articles and reports on the 

skeleton analysis). Finally, dataset 4 contains the Korean anthropometric data published in 

the Korean literature. Equations for stature and body mass estimation were developed using 

only dataset 1, but patterns of secular change in stature and body mass were examined using 

datasets 1, 3, and 4. Dataset 2 was used only for the measurement error test. 

 Equations for stature and body mass estimation were generated by the hybrid method. 

In developing stature estimation equations, statures of 113 complete skeletons were 

reconstructed by equation 1 of Raxter et al. (2006) and then nineteen bone dimensions were 

regressed on these reconstructed statures. In developing body mass equations, body mass of 

106 complete skeletons were reconstructed by Ruff et al.(2005) equations and then the 

anterior-posterior femoral head breadth was regressed on these reconstructed body mass. For 



 

 

95 

both stature and body mass equations, sex-specific equations were generated using the 

ordinary least squares method after verifying that its statistical assumptions were satisfied.  

 To examine the patterns of secular change in stature and body mass, all the samples in 

datasets 1, 3, and 4 were assigned into one of the six time period categories. For both stature 

and body mass, grand means (i.e., weighted means) of each time period were calculated and 

then compared between time periods using the randomization test to find any statistical 

differences in grand means between time periods. Due to a small sample size, body mass of 

the Three Kingdom period (B.C. 1C - A.D. 7C) and the Goryeo period (early 10C - late 14C) 

could not be included in the analysis.   
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Chapter 4  

Results 

 

1. Descriptive Statistics 

 Descriptive statistics of bone dimensions (i.e., the number of samples, mean, standard 

deviation, and the minimum and maximum values of the measurements) that were used for 

developing equations for stature and body mass estimation are presented in Table 9. It was 

mentioned earlier that the new equations developed in this research were based on OLS 

regression, which is likely to yield a biased estimate for extrapolated target samples. The 

information given in Table 9 can be used when one determines if a target sample, of which 

stature or body mass is estimated, is an extrapolated case or not. For example, if one tries to 

estimate the stature of a male skeleton of which maximum femoral length is 36cm, it should 

be noticed that the estimated stature may be biased because 36cm is far below the range of 

the reference sample in this research (i.e., 38.8cm - 46.6cm).  

 

2. Bilateral Asymmetry in paired bones 

 As mentioned earlier, symmetry and asymmetry were examined in paired bones 

before deciding whether only one side of a bone or the average of the two sides should be 

used in developing the new equations. The results of the paired t-tests are presented in Table 

10. According to Table 10, the long bone lengths (FeL1, FeL2, HuL, and RaL) were 

asymmetric between sides except tibiae (TiL1 and TiL2), following the so-called 'crossed 

symmetry' pattern (i.e., right side dominance in the upper limbs and left-side dominance in 

the lower limbs) (Auerbach and Ruff, 2006; Plochocki, 2004; Schaeffer, 1928). In the talus-

calcaneus height (TCH), only females showed a significant asymmetry though the right side 

tended to be bigger than the left side for both sexes. As to the dimension related to breadth, 

significant bilateral asymmetry was detected in the femoral head diameter (FeHB) for both 

sexes.  

 In this research, despite the bilateral asymmetric nature in most of the long bone 

dimensions, the average values of the dimensions of a pairs were used when both sides were 

present. This was because the absolute differences between sides were too small to make a 

significant impact on the final estimates of stature and body mass, regardless of their 

statistical significance. As shown in Table 10, the mean differences between the right and left 

side of bone dimensions were less than 2mm except the humeral maximum length. Moreover, 
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Table 9. Descriptive statistics of bone dimensions in mm.  

Bone 

dimension
1
 

Female Male 

n Mean SD Range n Mean SD Range 

BBH 50 133.1 4.88 121-143 63 138.5 5.50 125-155 

C2 50 35.3 1.91 19.8-40.8 63 38.2 1.76 33.5-41.6 

C3 50 12.8 1.00 10.9-15.3 63 14.4 1.03 11.3-16.3 

C4 50 12.3 1.03 9.6-14.6 63 13.7 1.04 11.3-16.2 

C5 50 12.1 1.06 9.5-14.7 63 13.4 1.03 11.0-15.5 

C6 50 12.3 0.91 10.1-15.1 63 13.5 0.97 11.4-15.6 

C7 50 14.1 0.88 12.4-15.9 63 15.2 1.11 11.9-17.7 

T1 50 15.6 0.96 13.3-18.0 63 17.5 0.90 16.0-20.4 

T2 50 17.0 1.07 15.1-20.7 63 18.8 1.04 15.9-21.1 

T3 50 17.0 0.89 14.8-19.5 63 18.7 0.94 16.3-20.6 

T4 50 17.4 0.82 16.0-19.4 63 19.1 1.01 16.3-20.9 

T5 50 17.9 0.83 16.3-19.9 63 19.6 0.90 17.2-21.5 

T6 50 18.3 1.01 16.0-21.1 63 20.2 1.01 17.7-22.6 

T7 50 18.6 1.07 15.7-22.0 63 20.7 1.16 16.4-22.8 

T8 50 19.1 1.16 16.1-22.4 63 20.9 1.15 18.0-23.6 

T9 50 19.5 0.95 17.7-21.6 63 21.6 1.04 19.0-24.5 

T10 50 20.1 1.09 17.6-23.0 63 22.1 1.15 18.6-24.2 

T11 50 20.9 1.16 17.7-23.5 63 22.8 1.17 20.7-25.7 

T12 50 22.7 1.43 18.1-25.7 63 24.2 1.30 21.2-27.2 

L1 50 23.8 1.49 19.6-27.8 63 25.6 1.21 22.9-29.3 

L2 50 24.8 1.42 20.8-27.8 63 26.0 1.62 21.0-29.5 

L3 50 25.3 1.34 22.4-28.5 63 27.0 1.41 24.0-30.0 

L4 50 25.7 1.59 22.4-30.1 63 27.6 1.44 23.2-30.7 

L5 50 25.3 1.80 21.0-29.5 63 27.5 1.61 22.5-90.9 

S1 50 28.6 2.56 22.2-33.7 63 31.3 2.19 26.9-35.5 

FeL1 50 384.6 16.95 345-440 63 427.7 17.03 388-466 

FeL2 50 381.0 16.98 344-438 63 424.3 17.14 383-459 

TiL1 50 313.3 16.90 287-368 63 347.8 16.16 304-388 

TiL2 50 309.7 16.87 283-365 63 343.3 15.78 300-382 
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Table 9. Continued. 

Bone 

dimension
1
 

Female Male 

n Mean SD Range n Mean SD Range 

TCH 50 62.4 3.72 55-72 63 70.5 3.60 62-81 

HuL 45 275.3 11.45 252-301 55 306.5 12.28 281-334 

RaL 44 204.1 9.17 187-226 59 231.6 11.05 204-255 

BIB 47 253.2 13.54 225-277 59 264.0 13.63 236-296 

FeHB 49 40.4 2.12 35.7-46.1 62 46.6 2.06 41.2-51.8 

1
 Refer to Table 2 for abbreviations.  
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Table 10. Bilateral asymmetry in the bone dimensions.   

Bone 

dimension
1
 

Female Male 

n 
Asymmetry in 

mm (%)
2
 

p n 
Asymmetry in 

mm (%)
2
 

p 

FeL1 110 -1.02 (0.26%) 0.001 138 -1.58 (0.37%) < 0.001 

FeL2 107 -1.25 (0.33%) < 0.001 136 -1.65 (0.39%) < 0.001 

TiL1 97 -0.13 (0.04%) 0.641 123 -0.50 (0.14%) 0.079 

TiL2 98 -0.01 (< 0.01%) 0.974 123 -0.10 (0.03%) 0.727 

HuL 77 3.73 (1.3%) < 0.001 103 3.20 (1.04%) < 0.001 

RaL 72 1.97 (0.96%) < 0.001 100 1.86 (0.80%) < 0.001 

TCH 64 -0.69 (1.1%) 0.005 107 -0.15 (0.21%) 0.461 

FeHB 100 0.17 (0.42%) 0.003 143 0.19 (0.41%) 0.017 

1
 Refer to Table 2 for abbreviations. 

2
 Left dimensions were subtracted from the right dimensions, thus positive values indicate 

that the right side is bigger than the left side and vice versa. 
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if the average values being used, the effect of asymmetry could be reduced by half. Thus, 

when the new equations developed in this research are applied, even the most asymmetric 

bone dimension (i.e., the maximum length of humerus in females) would make a difference 

as small as 5 - 6mm in the final stature estimates, which is much smaller than the diurnal 

variation of stature (Damon, 1964). In addition, for the sake of methodological consistency 

with previous studies of which methods were referred to in this research (e.g., Fully (1956) 

and Raxter et al. (2006)), averaging the left and right sides was thought to be reasonable. Yet, 

when only one side of a pair of bones was available, the bone dimension of the measureable 

side was included in the analyses without any modification. This did not appear to cause a 

serious bias because the left and right side were almost equally represented in all bone 

dimensions as shown in Table 11.  

 

Table 11. The number of individuals in dataset 1 whose bone dimensions could be measured.  

Bone 

dimension
1
 

Female Male 

Left side 

only 

Right side 

only 
Both sides 

Left side 

only 

Right side 

only 
Both sides 

FeL1 11 5 110 18 13 138 

FeL2 13 6 107 16 13 136 

TiL1 17 10 97 23 14 123 

TiL2 17 9 98 22 14 123 

HuL 15 7 77 11 16 103 

RaL 13 14 72 9 22 100 

TCH 21 7 64 20 13 107 

FeHB 21 8 100 14 19 143 

1
 Refer to Table 2 for abbreviations. 

 

3. Measurement error 

 As mentioned earlier, the measurement errors were appreciated by two independent 

methods: the concordance correlation coefficient (CCC) and the percentage measurement 

error. The results of the CCC test showed that, for all bone dimensions, both the concordance 

correlation coefficient (ρc) and the bias correction factor (Cb), which are the measures of 

precision and accuracy respectively (Lin, 1989), were close to 1 (Table 12). This indicates  
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Table 12. Results of the concordance correlation coefficient test.  

Dimension n ρc
1
 Cb

2
 Dimension n ρc

1
 Cb

2
 

BBH 38 1.00  1.00  L3 39 0.99  1.00  

C2 36 0.96  1.00  L4 39 1.00  1.00  

C3 36 0.97  1.00  L5 38 1.00  1.00  

C4 38 0.96  1.00  S1 39 0.94  1.00  

C5 38 0.91  0.99  FeL1 (left) 39 1.00  1.00  

C6 38 0.96  1.00  FeL2 (left) 39 1.00  1.00  

C7 37 0.98  1.00  FeHB (left) 39 1.00  1.00  

T1 39 0.97  0.99  FeL1 (right) 38 1.00  1.00  

T2 39 0.98  0.99  FeL2 (right) 38 1.00  1.00  

T3 38 0.99  1.00  FeHB (right) 38 1.00  1.00  

T4 37 0.99  1.00  TiL1 (left) 39 1.00  1.00  

T5 37 0.99  1.00  TiL2 (left) 39 1.00  1.00  

T6 38 0.99  1.00  TiL1 (right) 39 1.00  1.00  

T7 39 0.98  1.00  TiL2 (right) 39 1.00  1.00  

T8 38 0.99  1.00  TCH (left) 37 0.90  0.98  

T9 37 0.99  1.00  TCH (right) 37 0.90  0.98  

T10 37 1.00  1.00  BIB 39 1.00  1.00  

T11 37 0.99  1.00  HuL (left) 39 1.00  1.00  

T12 37 0.98  0.99  HuL (right) 39 1.00  1.00  

L1 39 0.99  1.00  RaL (left) 39 1.00  1.00  

L2 39 0.99  1.00  RaL (right) 39 1.00  1.00  

1
 Concordance correlation coefficient with a z-transformation, which is the measure of 

precision (Lin, 1989, p.258). 

2
 Bias correction factor which is the measure of accuracy (Lin, 1989, p.258). 
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only a marginal departure of the pairs of the first and the second measurements from the 45° 

line, which, in other words, indicates a high reproducibility in all bone dimensions. 

 As to the percentage measurement error, the errors were less than 1mm and the %ME 

did not exceed 1% for all bone dimensions except the talus-calcaneus height (TCH) (Table 

13). Yet, the measurement error and %ME for TCH were still as small as 1.026mm and 1.47% 

for the left side and 1.013mm and 1.43% for the right side. Thus, it was regarded that the 

measurements of all bone dimensions were highly reliable and reproducible.  

 

Table 13. Measurement error (ME) and percent measurement error (%ME). 

Bone 

dimension 
n ME (mm) 

%ME 

(%) 

Bone 

dimension 
n ME(mm) 

%ME 

(%) 

BBH 38 0.103 0.08 L3 39 0.075 0.26 

C2 36 0.159 0.40 L4 39 0.066 0.22 

C3 36 0.116 0.83 L5 38 0.060 0.20 

C4 38 0.130 0.97 S1 39 0.218 0.67 

C5 38 0.197 1.49 FeL1 (left) 39 0.300 0.07 

C6 38 0.125 0.93 FeL2 (left) 39 0.350 0.08 

C7 37 0.081 0.55 FeHB (left) 38 0.059 0.13 

T1 39 0.115 0.69 FeL1 (right) 38 0.410 0.09 

T2 39 0.099 0.55 FeL2 (right) 38 0.385 0.09 

T3 38 0.064 0.35 FeHB (right) 38 0.074 0.17 

T4 37 0.067 0.35 TiL1 (left) 39 0.138 0.04 

T5 37 0.066 0.34 TiL2 (left) 39 0.300 0.08 

T6 38 0.079 0.39 TiL1 (right) 39 0.125 0.03 

T7 39 0.099 0.49 TiL2 (right) 39 0.275 0.07 

T8 38 0.070 0.34 TCH (left) 37 1.026 1.47 

T9 37 0.067 0.32 TCH (right) 37 1.013 1.43 

T10 37 0.058 0.26 BIB 39 0.563 0.21 

T11 37 0.091 0.40 HuL (left) 39 0.100 0.03 

T12 37 0.107 0.43 HuL (right) 39 0.138 0.04 

L1 39 0.057 0.22 RaL (left) 39 0.113 0.05 

L2 39 0.069 0.25 RaL (right) 39 0.138 0.06 
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4. Stature estimation 

4.1. Validation test of the anatomical method 

 The validity of equation 1 in Raxter et al. (2006) was tested using five modern 

skeletal remains with documented antemortem information (i.e., sex, age, and stature), which 

were donated to the department of Anatomy at the Catholic University of Korea. The results 

showed that the average prediction error (PE) and the average %prediction error (%PE) were 

as small as 0.72cm and 0.44% respectively (Table 14). Thus, it was regarded that overall 

equation 1 produced unbiased estimates for the Korean skeletal samples. Yet, it was also 

noticed that the standard error of the estimate (SEE) in these five samples (i.e., calculated as 

the square root of the mean of the squared prediction errors,  
                    

 
) was bigger 

(i.e., 4.12cm) than that presented in Raxter et al. (2006) (i.e., 2.22cm), presumably due to the 

small number of Korean samples used. 

 

Table 14. Results of the validation test of the equation 1 in Raxter et al. (2006) on the known 

Korean samples.  

Sample Sex Age Skeletal 

height (cm) 

Predicted 

stature (cm) 

Reported 

stature (cm) 

PE
1
 

(cm) 

%PE
2 

(%) 

1 Female 43 155.661 167.330 170 2.67 1.6 

2 Female 87 135.286 144.897 142 -2.897 -2.0 

3 Male 76 155.965 166.231 170 3.796 2.3 

4 Male 91 160.577 170.225 165 -5.225 -3.1 

5 Male 50 156.377 167.754 173 5.246 3.1 

Mean - 69.4 152.773 163.287 164 0.718 0.439 

1
 Prediction error calculated by [reported stature - predicted stature]. 

2
 Percent prediction error calculated by [(reported stature - predicted stature) 100/predicted 

stature]. 

 

4.2. Comparing body proportions between sex, regions, and time periods  

 According to the results of the randomization tests, there was no difference in both 

cormic and crural indices between time periods (Table 15), so the samples from the Joseon 

period and the 20th century were pooled for developing new equations. As to the geographic 

difference in a body proportion, slight differences in the crural index between the Eastern and 
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Table 15. Comparison of body proportions between sexes, time periods, and regions in 

datasets 1 and 3. 

Dataset Comparison n 
Cormic

1
 Crural

2
 

Index t p Index t p 

Dataset 

1 

Sex Female 50 50.7 
-3.107 0.002

*
 

81.3 
0.783 0.435 

Male 63 51.3 80.9 

Time 

period 

20C 6 51.6 
1.044 0.342 

80.8 
-0.314 0.754 

Joseon 107 51.0 81.1 

Region

1 

Middle
3
 99 51.0 

0.597 0.552 
81.1 

1.116 0.267 
Southern

4
 8 50.8 80.2 

Region

2 

Eastern
5
 9 51.5 

-1.326 0.188 
79.5 

2.089 0.044
*
 

Western
6
 98 51.0 81.2 

Dataset 

3 

Sex Female 19 - 
- - 

80.6 
0.152 0.896 

Male 208 - 80.5 

Time 

period 

20C 175 - 

- - 

80.4 

-0.880 0.638 Joseon 48 - 80.8 

Pre-Josen 4 - 80.0 

Region

1 

Middle 150 - 
- - 

80.7 
1.815 0.073 

Southern 77 - 80.0 

Region

2 

Eastern 132 - 
- - 

80.6 
-0.445 0.675 

Western 95 - 80.4 

1
 The ratio of the sum of the femoral physiological length (FeL2) and the condylo-malleolus 

length of tibia (TiL2) to skeletal height. 

2
 The ratio of the condylo-malleolus length of tibia (TiL2) to the femoral physiological length 

(FeL2) [Dataset 1], or the ratio of the condylo-malleolus length of tibia (TiL2) to the femoral 

maximum length (FeL1) [Dataset 3]. 

3
 Middle part of South Korea: Seoul, Gyeonggi, Gangwon, Chung-nam, Chung-buk. 

4
 South part of South Korea: Jeon-buk, Jeon-nam, Gyeon-buk, Gyeong-nam, Jeju. 

5
 Eastern part of South Korea: Gangwon, Chung-buk, Gyeong-buk, Gyeong-nam. 

6
 Western part of South Korea: Seoul, Gyeonggi, Chung-nam, Jeon-buk, Jeon-nam, Jeju.  

*
 Significant at an alpha level of 0.05 
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Western parts of Korea were detected (p = 0.44) in dataset 1. However, this result was 

thought to be simply due to the big difference in the sample size representing each part (i.e., 9 

and 98 individuals for the Eastern and Western part). Hayes (2000) points out that the type I 

error rate for the randomization test is affected by many factors such as the distribution of 

populations, sample size, as well as differences in population variances. In particular to 

differences in sample sizes, the more the sample size differs, the lower the type I error rate is, 

therefore, the more conservative results will be (i.e., more likely to reject the null hypothesis). 

In fact, when the crural index was compared again using dataset 3, where the sample size of 

each part is relatively similar (i.e., 132 and 95 individuals for the Eastern and Western part), 

no difference in body proportions was detected between the Eastern and Western part of 

Korea (p = 0.675). In addition, there was no difference in the cormic index between the 

Eastern and Western part. Thus, it was concluded that there was not a geographic difference 

in the body proportion of Korean people and the samples from different regions were pooled 

for equation development. Lastly, as to sexual differences in body proportion, the cormic 

index revealed sexual dimorphism (p = 0.002) though the crural index did not (p = .435). 

Thus, females and males were not pooled and sex-specific equations were developed as with 

most previous studies (Ruff et al., 2012a; Raxter et al, 2006; Trotter and Gleser, 1952, 1958).  

 

4.3. Developing stature estimation equations 

 In this research, nineteen equations for stature estimation were developed for each sex. 

The equations and associated statistics (i.e., correlation coefficient, standard error of the 

estimates, the total width of the 90% and 95% prediction intervals) are presented in Table 16.  

 When calculating and reporting the range estimates of stature by applying the 

equations in Table 16, one would need to focus on the prediction interval (PI) which is the 

total range of predictions. Namely, one can expect that the actual stature of a target sample 

would lie within the total width of PI around the point estimate with a 90% or 95% certainty. 

The total width of PI can be calculated as a range between [point estimate - 
 

 
 PI] and [point 

estimate + 
 

 
 PI] because PI is generally assumed to be symmetric around a point estimate. 

For example, if the estimated stature of an unknown male skeleton using the femoral 

maximum length (FeL1) is 160cm, we can say that it is 90% certain that the actual stature of 

this individual lies between 155.89cm (i.e., 160- 
 

 
 (8.22)) and 164.11cm (i.e., 160 + 

 

 
 (8.22)) 

because the 90% PI of the male equation using FeL1 is 8.22cm. It should be noted that the PI
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Table 16. Stature estimation equations. 

Sex Bone dimension (cm) n Slope Intercept r SEE 90% PI 95% PI 

Male FeL1 63 2.167 69.544 0.838 2.38 8.22 9.84 

FeL2 63 2.139 71.48 0.833 2.42 8.34 9.99 

TiL1 63 2.321 81.488 0.852 2.28 7.89 9.44 

TiL2 63 2.348 81.594 0.842 2.35 8.13 9.73 

FeL1+TiL1 63 1.22 67.649 0.882 2.20 7.11 8.52 

FeL1+TiL2 63 1.247 66.056 0.884 2.04 7.05 8.44 

FeL2+TiL1 63 1.215 68.447 0.880 2.08 7.16 8.58 

FeL2+TiL2 63 1.243 66.836 0.882 2.06 7.09 8.49 

HuL 55 2.514 85.23 0.701 3.11 10.82 12.97 

RaL 59 2.631 101.243 0.658 3.30 11.41 13.66 

HuL+RaL 55 1.553 78.598 0.739 2.94 10.22 12.24 

FeL1+Lum 63 1.83 59.179 0.907 1.84 6.34 7.59 

FeL2+Lum 63 1.816 60.592 0.903 1.87 6.45 7.72 

TiL1+Lum 63 1.845 73.087 0.899 1.91 6.59 7.90 

TiL2_Lum 63 1.859 73.242 0.891 1.98 6.83 8.18 

FeL1+TiL1+Lum 63 1.13 59.317 0.928 1.63 5.61 6.71 

FeL1+TiL2+Lum 63 1.151 57.916 0.930 1.60 5.53 6.62 

FeL2+TiL1+Lum 63 1.126 60.014 0.927 1.64 5.66 6.78 

FeL2+TiL2+Lum 63 1.148 58.593 0.929 1.62 5.58 6.68 
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Table 16. Continued.  

Sex Bone dimension (cm) n Slope Intercept r SEE 90% PI 95% PI 

Female FeL1 50 2.591 49.062 0.877 2.38 8.32 10.88 

FeL2 50 2.625 48.693 0.890 2.59 7.89 10.35 

TiL1 50 2.579 67.939 0.870 2.44 8.52 11.14 

TiL2 50 2.571 69.096 0.866 2.48 8.64 11.31 

FeL1+TiL1 50 1.406 50.635 0.911 2.04 7.14 9.4 

FeL1+TiL2 50 1.406 51.101 0.910 2.06 7.18 9.47 

FeL2+TiL1 50 1.41 50.864 0.916 1.99 6.94 9.15 

FeL2+TiL2 50 1.412 51.213 0.915 2.00 6.96 9.19 

HuL 45 3.372 56.357 0.778 3.09 10.87 14.61 

RaL 44 4.128 64.83 0.765 3.15 11.10 14.23 

HuL+RaL 41 2.16 45.684 0.837 2.71 9.59 12.86 

FeL1+Lum 50 2.197 36.607 0.930 1.83 6.38 8.42 

FeL2+Lum 50 2.194 37.501 0.935 1.76 6.14 8.12 

TiL1+Lum 50 2.169 53.483 0.920 1.94 6.78 8.94 

TiL2_Lum 50 2.174 54.064 0.919 1.96 6.83 9.02 

FeL1+TiL1+Lum 50 1.305 41.252 0.947 1.60 5.57 7.38 

FeL1+TiL2+Lum 50 1.307 41.536 0.946 1.60 5.59 7.42 

FeL2+TiL1+Lum 50 1.303 41.834 0.950 1.55 5.42 7.19 

FeL2+TiL2+Lum 50 1.307 42.017 0.950 1.55 5.42 7.2 
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varies depending on the size of a bone dimension of a target sample with the smallest PI 

obtained around the mean of a bone dimension and a bigger PI obtained as a target sample 

departs from the mean. However, since the individual variation in the PIs in the reference 

sample was marginal for all regression equations, the average PIs for each equation are 

presented in Table 16. The 90% PIs were between 5.42cm (i.e., in the equation using 

FeL2+TiL1+Lum) and 11.1cm (i.e., in the equation using RaL) for female equations and 

between 5.53cm (i.e., in the equation using FeL1+TiL2+Lum) and 11.41cm (i.e., in the 

equation using RaL) for male equations. Also, the 95% PIs were between 7.19cm (i.e., in the 

equation using FeL2+TiL1+Lum) and 14.61cm (i.e., in the equation using HuL) for female 

equations and between 6.62cm (i.e., in the equation using FeL1+TiL2+Lum) and 13.66cm 

(i.e., in the equation using RaL) for male equations.  

 Figures 6 through 43 show the scatter plots with the regression lines and the 95% PIs. 

It can be observed that the data points are more dispersed around the line in the equations 

with high SEEs as well as wide PI, and vice versa. Also, the PI lines in all scatter plots appear 

roughly parallel to each other rather than hyperbolic because, as mentioned earlier, the 

individual variation in the PIs were marginal in the reference sample for all equations. 

 

 

Figure 6. Female stature estimated by the anatomical method against femoral maximum 

length (r = .877). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval.  
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Figure 7. Female stature estimated by the anatomical method against femoral physiological 

length (r = .890). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 

 

 

Figure 8. Female stature estimated by the anatomical method against spino-malleolus length 

of tibia (r = .870). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 
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Figure 9. Female stature estimated by the anatomical method against condylo-malleolus 

length of tibia (r = .866). Solid line represents the regression equation and the dashed lines 

the 95% prediction interval. 

 

 

Figure 10. Female stature estimated by the anatomical method against the sum of femoral 

maximum length and spino-malleolus length of tibia (r = .911). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 
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Figure 11. Female stature estimated by the anatomical method against the sum of femoral 

maximum length and condylo-malleolus length of tibia (r = .910). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 12. Female stature estimated by the anatomical method against the sum of femoral 

physiological length and spino-malleolus length of tibia (r = .916). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 
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Figure 13. Female stature estimated by the anatomical method against the sum of femoral 

physiological length and condylo-malleolus length of tibia (r = .915). Solid line represents 

the regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 14. Female stature estimated by the anatomical method against humeral maximum 

length (r = .778). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 
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Figure 15. Female stature estimated by the anatomical method against radial maximum length 

(r = .765). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 

 

 

Figure 16. Female stature estimated by the anatomical method against the sum of humeral 

maximum length and radial maximum length (r = .837). Solid line represents the regression 

equation and the dashed lines the 95% prediction interval. 
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Figure 17. Female stature estimated by the anatomical method against the sum of femoral 

maximum length and lumbar column height (r = .930). Solid line represents the regression 

equation and the dashed lines the 95% prediction interval. 

 

 

Figure 18. Female stature estimated by the anatomical method against the sum of femoral 

physiological length and lumbar column height (r = .935). Solid line represents the regression 

equation and the dashed lines the 95% prediction interval. 
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Figure 19. Female stature estimated by the anatomical method against the sum of spino-

malleolus length of tibia and lumbar column height (r = .920). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 20. Female stature estimated by the anatomical method against the sum of condylo-

malleolus length of tibia and lumbar column height (r = .919). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 
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Figure 21. Female stature estimated by the anatomical method against the sum of femoral 

maximum length, spino-malleolus length of tibia, and lumbar column height (r = .947). Solid 

line represents the regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 22. Female stature estimated by the anatomical method against the sum of femoral 

maximum length, condylo-malleolus length of tibia, and lumbar column height (r = .946). 

Solid line represents the regression equation and the dashed lines the 95% prediction interval. 



 

 

117 

 

Figure 23. Female stature estimated by the anatomical method against the sum of femoral 

physiological length, spino-malleolus length of tibia, and lumbar column height (r = .950). 

Solid line represents the regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 24. Female stature estimated by the anatomical method against the sum of femoral 

physiological length, condylo-malleolus length of tibia, and lumbar column height (r = .950). 

Solid line represents the regression equation and the dashed lines the 95% prediction interval. 
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Figure 25. Male stature estimated by the anatomical method against femoral maximum length 

(r = .838). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval.  

 

 

Figure 26. Male stature estimated by the anatomical method against femoral physiological 

length (r = .833). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 
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Figure 27. Male stature estimated by the anatomical method against spino-malleolus length of 

tibia (r = .852). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 

 

 

Figure 28. Male stature estimated by the anatomical method against condylo-malleolus length 

of tibia (r = .842). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 
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Figure 29. Male stature estimated by the anatomical method against the sum of femoral 

maximum length and spino-malleolus length of tibia (r = .882). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 30. Male stature estimated by the anatomical method against the sum of femoral 

maximum length and condylo-malleolus length of tibia (r = .884). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 
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Figure 31. Male stature estimated by the anatomical method against the sum of femoral 

physiological length and spino-malleolus length of tibia (r = .880). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 32. Male stature estimated by the anatomical method against the sum of femoral 

physiological length and condylo-malleolus length of tibia (r = .882). Solid line represents 

the regression equation and the dashed lines the 95% prediction interval. 
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Figure 33. Male stature estimated by the anatomical method against humeral maximum 

length (r = .701). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 

 

 

Figure 34. Male stature estimated by the anatomical method against radial maximum length 

(r = .658). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 
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Figure 35. Male stature estimated by the anatomical method against the sum of humeral 

maximum length and radial maximum length (r = .739). Solid line represents the regression 

equation and the dashed lines the 95% prediction interval. 

 

 

Figure 36. Male stature estimated by the anatomical method against the sum of femoral 

maximum length and lumbar column height (r = .907). Solid line represents the regression 

equation and the dashed lines the 95% prediction interval. 
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Figure 37. Male stature estimated by the anatomical method against the sum of femoral 

physiological length and lumbar column height (r = .903). Solid line represents the regression 

equation and the dashed lines the 95% prediction interval. 

 

 

Figure 38. Male stature estimated by the anatomical method against the sum of spino-

malleolus length of tibia and lumbar column height (r = .899). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 



 

 

125 

 

Figure 39. Male stature estimated by the anatomical method against the sum of condylo-

malleolus length of tibia and lumbar column height (r = .891). Solid line represents the 

regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 40. Male stature estimated by the anatomical method against the sum of femoral 

maximum length, spino-malleolus length of tibia, and lumbar column height (r = .928). Solid 

line represents the regression equation and the dashed lines the 95% prediction interval. 
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Figure 41. Male stature estimated by the anatomical method against the sum of femoral 

maximum length, condylo-malleolus length of tibia, and lumbar column height (r = .930). 

Solid line represents the regression equation and the dashed lines the 95% prediction interval. 

 

 

Figure 42. Male stature estimated by the anatomical method against the sum of femoral 

physiological length, spino-malleolus length of tibia, and lumbar column height (r = .927). 

Solid line represents the regression equation and the dashed lines the 95% prediction interval. 
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Figure 43. Male stature estimated by the anatomical method against the sum of femoral 

physiological length, condylo-malleolus length of tibia, and lumbar column height (r = .929). 

Solid line represents the regression equation and the dashed lines the 95% prediction interval. 

 

4.4. Comparison of the new equations to previous studies 

 Stature estimation equations developed from four previous studies (i.e., Pearson, 1899; 

Trotter and Gleser, 1958; Fujii, 1960; Choi et al., 1997), which have been often used in Korea, 

were compared to each other as well as to the newly developed equations in this research. 

Since Trotter and Gleser (1958) and Choi et al. (1997) did not provide female equations, 

these two studies were used only for comparison of male equations. In comparing the 

equations, the anatomically reconstructed stature was assumed to be the true living stature. 

The four criteria used for comparison are presented in Table 17: mean difference (i.e., 

average difference between true statures and predicted statures), standard error of the 

estimate (SEE), %SEE (i.e., SEE 100/mean stature), and percent prediction error (%PE) (i.e., 

[true stature - expected stature]  100/expected stature).  

 

4.4.1. Female equations 

 The new equations produced the most accurate and unbiased estimates as shown in 

the %PEs which were close to zero. Both Pearson (1899) and Fujii (1960) equations tended to 

underestimate the true statures except the Pearson (1899) equation using the maximum radial 
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Table 17. Comparison between new and previous study equations. 

Sex Researcher Comparison Bone dimension (cm) 

FeL1 FeL2 TiL1 TiL2 FeL1+TiL1 FeL1+TiL2 HuL RaL HuL+RaL 

Female Present 

study 

Mean diff.
1
 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

SEE 2.38 2.59 2.44 2.48 2.04 2.06 3.09 3.15 2.71 

%SEE
2
 1.60 1.74 1.64 1.67 1.37 1.38 2.08 2.12 1.82 

%PE
3
 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Pearson 

(1899) 

Mean diff. 1.104 - - 1.0725 - 1.36 1.4202 -0.5956 0.921 

SEE 2.91 - - 2.70 - 2.63 3.61 3.44 3.20 

%SEE 1.96 - - 1.81 - 1.77 2.43 2.31 2.15 

%PE 0.73 - - 0.72 - 0.91 0.95 -0.41 0.61 

Fujii 

(1960) 

Mean diff. 1.5364 0.5981 1.9327 1.4623 - - 2.3559 2.2575 - 

SEE 2.8951 2.3924 3.1791 2.8998 - - 4.043 3.9807 - 

%SEE 1.95 1.61 2.14 1.95 - - 2.72 2.68 - 

%PE 1.04 0.42 1.31 0.99 - - 1.59 1.53 - 

Male Present 

study 

Mean diff. < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

SEE 2.38 2.42 2.28 2.35 2.20 2.04 3.11 3.30 2.94 

%SEE 1.47 1.49 1.41 1.45 1.36 1.26 1.92 2.03 1.81 

%PE < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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Table 17. Continued.  

Sex Researcher Comparison Bone dimension (cm) 

FeL1 FeL2 TiL1 TiL2 FeL1+TiL1 FeL1+TiL2 HuL RaL HuL+RaL 

Male Pearson 

(1899) 

Mean diff. 0.7356 - - 2.1658 - 2.0057 2.3759 0.3551 1.769 

SEE 2.45 - - 3.21 - 2.75 4.06 3.27 3.47 

%SEE 1.51 - - 1.98 - 1.70 2.50 2.01 2.14 

%PE 0.45 - - 1.36 - 1.25 1.50 0.23 1.11 

Trotter and 

Gleser 

(1958) 

Mean diff. -2.2984 - - -1.2825 - -2.2097 -3.0479 -1.8049 -2.524 

SEE 3.31 - - 2.68 - 3.01 4.36 3.89 3.88 

%SEE 2.04 - - 1.65 - 1.86 2.69 2.40 2.39 

%PE -1.40 - - -0.78 - -1.35 -1.84 -1.09 -1.53 

Fujii 

(1960) 

Mean diff. 1.6858 1.2465 2.3164 2.0239 1.494 - 3.5286 3.0787 3.0043 

SEE 2.96 2.74 3.26 3.12 2.60 - 4.72 4.56 4.22 

%SEE 1.83 1.69 2.01 1.92 1.60 - 2.91 2.81 2.60 

%PE 1.06 0.78 1.45 1.27 0.94 - 2.23 1.95 1.89 

Choi et al. 

(1997) 

Mean diff. 0.0349 - 0.0501 - - - -2.8309 -2.031 - 

SEE 2.71 - 2.36 - - - 4.73 4.11 - 

%SEE 1.67 - 1.46 - - - 2.92 2.53 - 

%PE 0.05 - 0.32 - - - -1.68 -1.22 - 

1
 Mean of [true - expected]  

2
 SEE 100/mean stature  

3
 (true - expected)  100/expected. 
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length. In the Pearson (1899) equations, the %PEs ranged between -0.41% and 0.95%, and in 

the Fujii (1960) equations, between 0.42% and 1.59%. In terms of the precision, which is 

represented by the SEEs and %SEEs, the %SEEs of the new equations ranged between 1.37% 

and 2.12%, while those of the previous studies ranged between 1.77% and 2.43% and 

between 1.61% and 2.72% for Pearson (1899) and Fujii (1960) respectively. That is, the 

lowest 'upper and lower boundaries' of the SEE and %SEEs could be found in the new 

equations. In addition, when considering each bone dimension (or a combination of bone 

dimensions), the new equations yielded the lowest %SEEs for all bone dimensions among the 

three equations under comparison with only one exception (i.e., the equation using the 

femoral physiological length (FeL2) where the Fujii (1960) equation revealed a lower %SEE 

(i.e., 1.61%) than the new equation (i.e., 1.74%)). Thus, it could be concluded that the new 

equations produce the best approximation of living statures of the Korean population  

 When comparing the equations of Pearson (1899) and Fujii (1960), the former yielded 

more accurate estimates than the latter. Namely, the Pearson (1899) equations showed 

relatively lower %PEs than the Fujii (1960) equations. As for the Pearson (1899) equations, 

the lowest %PE and mean difference were obtained in the radial maximum length (RaL) 

equation (i.e., -0.41% and -6.0mm respectively) followed by the equation using the sum of 

the humeral maximum length (HuL) and radial maximum length (RaL) (i.e. 0.61% and 

9.2mm respectively). However, the SEEs were lower in the lower-limb equations (i.e., 

2.63cm - 2.91cm) than in the upper-limb equations (i.e., 3.2cm - 3.61cm). As to Fujii (1960) 

equations, the lowest %PE and SEE (i.e., 0.42% and 2.39cm respectively) were obtained in 

the femoral physiological length (FeL2) equation. Also, both the %PEs and SEEs were lower 

in the lower-limb equations (i.e., 0.42% - 1.31% and 2.39cm - 3.18cm respectively) than in 

the upper-limb equations (i.e., 1.53% - 1.59% and 3.98cm - 4.04cm respectively).  

 

4.4.2. Male equations 

 As with the female equations, the new equations for the males produced more 

accurate and unbiased estimates as shown in the %PEs which were close to zero. While 

Pearson (1899) and Fujii (1960) equations tended to underestimate the true statures, Trotter 

and Gleser (1958) equations overestimate them. Choi et al. (1997) equations both 

underestimated and overestimated the true statures depending on the bone dimensions used. 

In the Pearson (1899) equations, the %PEs ranged between 0.23% and 1.50%, in the Trotter 

and Gleser (1958) equations between -0.78% and -1.84%, in the Fujii (1960) equations 
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between 0.78% and 2.23%, and in the Choi et al. (1997) equations, between 0.05% and -

1.68%. In terms of the precision, the %SEEs of the new equations ranged between 1.26% and 

2.03%, while those of the previous studies ranged between 1.51% and 2.50%, 1.65% and 

2.69%, 1.60% and 2.91%, and 1.46% and 2.92% for Pearson (1899), Trotter and Gleser 

(1958), Fujii (1960), and Choi et al. (1997) respectively. That is, the lowest 'upper and lower 

boundaries' of the SEE and %SEEs could be found in the new equations. In addition, when 

considering each bone dimension (or a combination of bone dimensions), the new equations 

yielded the lowest %SEEs for all bone dimensions among the five equations under 

comparison with only one exception (i.e., the equation using the radial maximum length (RaL) 

where the Pearson (1899) equation revealed a lower %SEE (i.e., 2.01%) than the new 

equation (i.e., 2.03%)). Thus, it could be concluded that the new equations produce the best 

approximation of living statures for the Korean population  

 Among the previous equations, Choi et al. (1997) equations using the femoral 

maximum length (FeL1) and spino-malleolus length of tibia (TiL1) produced the most 

accurate and unbiased estimates among the four previous studies. The mean differences 

between the true statures (i.e., anatomically reconstructed statures) and the predicted statures 

(i.e., estimates by the Choi et al. (1997) equations) were less than 1mm and the %PEs were 

0.05% and 0.32% for the femoral maximum length (FeL1) equation and the spino-malleolus 

length of tibia (TiL1) equation respectively. The SEEs were also slightly higher than those of 

the present study (i.e., 3.3mm and 0.8mm for the FeL1 equation and TiL1 equation 

respectively). However, the equations of Choi et al. (1997) using the upper limbs (i.e., 

humeral maximum length and radial maximum length) tended to overestimated true stature. 

The magnitude of overestimation was about 2.8cm and 2cm with the %PEs of -1.68% and -

1.22% for the humeral maximum length (HuL) equation and the radial maximum length (RaL) 

equation respectively.  

 Overall, the Trotter and Gleser (1958) equations produced most biased estimates. All 

equations of Trotter and Gleser (1958) overestimated the true statures and the magnitude of 

overestimation was between 1.28cm and 3.05cm. The %PEs ranged -0.78% and -1.84%. 

Interestingly, the equation using the condylo-malleolus length of tibia (TiL2) showed 

less %PE and SEE (i.e., -0.78% and 2.68cm respectively) than the equation using the sum of 

the femoral maximum length (FeL1) and condylo-malleolus length of tibia (TiL2) (i.e., -1.35% 

and 3.01cm respectively). Similarly, the %PE of the equation using the radial maximum 

length (RaL) (i.e., -1.09%) was less than the equation using the sum of the humeral maximum 
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length (HuL) and radial maximum length (RaL) (i.e., -1.53%), which means that the former 

(i.e., the equation using a lower segment of a limb) yielded more accurate estimates than the 

latter (i.e., the equation using multiple bones of a limb). 

 Unlike Trotter and Gleser (1958), the Pearson (1899) and Fujii (1960) equations 

tended to underestimate the statures. Among Pearson (1899) equations, the equations using 

the radial maximum length (RaL) and femoral maximum length (FeL1) produced relatively 

accurate estimates with the %PEs of 0.23% and 0.45% respectively. Especially, the SEE of 

the equation using the radial maximum length (RaL) (3.27cm) was only slightly lower than 

that of the present study (i.e., 3.3cm). Except for these two equations, the %PEs and SEEs of 

the Pearson (1899) equations were rather high ranging 1.11% - 1.5% and 2.75cm - 4.06cm 

respectively. As to the Fujii (1960) equations, the lowest %PE was 0.78% in the femoral 

physiological length (FeL2) equation, which is lower than that of the equation using the sum 

of the femoral maximum length (FeL1) and spino-malleolus length (TiL1) (0.94%). 

The %PEs and SEEs of the lower-limb equations (i.e., 0.78% - 1.45% and 2.6cm - 3.26cm 

respectively) were much lower than those of the upper-limb equations (i.e., 1.89% - 2.23% 

and 4.22cm - 4.72cm respectively).   

 Figures 44 through 79 show the scatter plots of the predicted statures by the previous 

studies against the anatomically reconstructed statures. The more closely the data points 

gather around the 45° line, the smaller SEE would be obtained for the corresponding equation. 

Also, if the equations tend to underestimate the statures, data points should gather above the 

45° line and vice versa. In theory, if an equation produces the estimates identical to the true 

statures (i.e., anatomically reconstructed statures), all data points should lie exactly on the 

line. Figures 44 through 79 also show the dashed lines which indicate the actual relationship 

between the two statures. If the slope of a dashed line is bigger than 1 (i.e., the slope of the 45° 

line), and the two lines intersect each other (e.g., Figures 44, 56, 48-49, 54-56), it can be 

understood that the stature larger than the intersection point will be underestimated by the 

previous equations while the stature smaller than the intersection point will be overestimated. 

If the slope of a dashed line is bigger than 1, but there is no intersection point (e.g., Figures 

45, 47, 50, 52-53, 57-59, 61, 69-71, 73-75), it indicates that the previous equations 

consistently underestimate (when a dashed line is above the 45° line) or overestimate (when a 

dashed line is under the 45° line). In the case that the slope of a dashed line is smaller than 1, 

the opposite interpretation should be made.   
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Figure 44. Female stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using femoral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 45. Female stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using condylo-malleolus length of tibia. The 45° line represents the 

line of identity and the dashed line the actual relationship between two statures. 
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Figure 46. Female stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using the sum of femoral maximum length and condylo-malleolus 

length of tibia. The 45° line represents the line of identity and the dashed line the actual 

relationship between two statures. 

 

 

Figure 47. Female stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using humeral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 48. Female stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using radial maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 49. Female stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using the sum of humeral maximum length and radial maximum 

length. The 45° line represents the line of identity and the dashed line the actual relationship 

between two statures. 
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Figure 50. Female stature estimated by the anatomical method against predicted stature by 

Fujii (1960) equation using femoral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 51. Female stature estimated by the anatomical method against predicted stature by 

Fujii (1960) equation using femoral physiological length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 52. Female stature estimated by the anatomical method against predicted stature by 

Fujii (1960) equation using spino-malleolus length of tibia. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 53. Female stature estimated by the anatomical method against predicted stature by 

Fujii (1960) equation using condylo-malleolus length of tibia. The 45° line represents the line 

of identity and the dashed line the actual relationship between two statures. 
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Figure 54. Female stature estimated by the anatomical method against predicted stature by 

Fujii (1960) equation using humeral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 55. Female stature estimated by the anatomical method against predicted stature by 

Fujii (1960) equation using radial maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 56. Male stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using femoral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 57. Male stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using condylo-malleolus length of tibia. The 45° line represents the 

line of identity and the dashed line the actual relationship between two statures. 
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Figure 58. Male stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using the sum of femoral maximum length and condylo-malleolus 

length of tibia. The 45° line represents the line of identity and the dashed line the actual 

relationship between two statures. 

 

 

Figure 59. Male stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using humeral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 60. Male stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using radial maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 61. Male stature estimated by the anatomical method against predicted stature by 

Pearson (1899) equation using the sum of humeral maximum length and radial maximum 

length. The 45° line represents the line of identity and the dashed line the actual relationship 

between two statures. 
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Figure 62. Male stature estimated by the anatomical method against predicted stature by 

Trotter and Gleser (1958) equation using femoral maximum length. The 45° line represents 

the line of identity and the dashed line the actual relationship between two statures. 

 

 

Figure 63. Male stature estimated by the anatomical method against predicted stature by 

Trotter and Gleser (1958) equation using condylo-malleolus length of tibia. The 45° line 

represents the line of identity and the dashed line the actual relationship between two statures. 
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Figure 64. Male stature estimated by the anatomical method against predicted stature by 

Trotter and Gleser (1958) equation using the sum of femoral maximum length and condylo-

malleolus length of tibia.. The 45° line represents the line of identity and the dashed line the 

actual relationship between two statures. 

 

 

Figure 65. Male stature estimated by the anatomical method against predicted stature by 

Trotter and Gleser (1958) equation using humeral maximum length. The 45° line represents 

the line of identity and the dashed line the actual relationship between two statures. 
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Figure 66. Male stature estimated by the anatomical method against predicted stature by 

Trotter and Gleser (1958) equation using radial maximum length. The 45° line represents the 

line of identity and the dashed line the actual relationship between two statures. 

 

 

Figure 67. Male stature estimated by the anatomical method against predicted stature by 

Trotter and Gleser (1958) equation using the sum of humeral maximum length and radial 

maximum length. The 45° line represents the line of identity and the dashed line the actual 

relationship between two statures. 
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Figure 68. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using femoral maximum length. The 45° line represents the line of identity 

and the dashed line the actual relationship between two statures. 

 

 

Figure 69. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using femoral physiological length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 70. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using spino-malleolus length of tibia. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 71. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using condylo-malleolus length of tibia. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 72. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using the sum of femoral maximum length and spino-malleolus length of 

tibia. The 45° line represents the line of identity and the dashed line the actual relationship 

between two statures. 

 

 

Figure 73. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using humeral maximum length. The 45° line represents the line of identity 

and the dashed line the actual relationship between two statures. 
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Figure 74. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using radial maximum length. The 45° line represents the line of identity and 

the dashed line the actual relationship between two statures. 

 

 

Figure 75. Male stature estimated by the anatomical method against predicted stature by Fujii 

(1960) equation using the sum of humeral maximum length and radial maximum length. The 

45° line represents the line of identity and the dashed line the actual relationship between two 

statures. 
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Figure 76. Male stature estimated by the anatomical method against predicted stature by Choi 

et al. (1997) equation using femoral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 77. Male stature estimated by the anatomical method against predicted stature by Choi 

et al. (1997) equation using spino-malleolus length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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Figure 78. Male stature estimated by the anatomical method against predicted stature by Choi 

et al. (1997) equation using humeral maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 

 

 

Figure 79. Male stature estimated by the anatomical method against predicted stature by Choi 

et al. (1997) equation using radial maximum length. The 45° line represents the line of 

identity and the dashed line the actual relationship between two statures. 
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5. Body mass estimation 

5.1. Body mass estimation equations 

 In this research, sex-specific body mass estimation equations were developed using 

the anterior-posterior femoral head breadth (FeHB). The equations and associated statistics 

(i.e., correlation coefficient, standard error of the estimates, 90% and 95% prediction interval) 

are presented in Table 18. 

 

Table 18. Body mass estimation equations using the anterior-posterior femoral head breadth 

(FeHB) (in mm). 

Sex n Slope Intercept r SEE 90% PI
1
 95% PI

1
 

Male 59 1.861 -28.273 0.637 4.67 16.16 19.36 

Female 47 1.343 -8.275 0.632 3.49 12.22 14.66 

1
 Total width of prediction interval. 

  

 As with stature estimation, when calculating and reporting the range estimates of 

body mass by applying the equations in Table 18, one would need to refer to the prediction 

interval (PI). For example, if the estimated body mass of an unknown male skeleton is 60kg, 

we can say that it is 90% certain that the actual body mass of this individual lies between 

51.92kg and 68.08kg because the total width of 90% PI in the male equation is 16.16kg 

(Table 18). As mentioned earlier, only the average PIs for the equations are presented in 

Table 18 because the individual variation in the PIs in the reference sample was marginal. 

The average 90% and 95% PIs are smaller in female equation (i.e., 12.22kg and 14.66kg 

respectively) than in male equation (i.e., 16.16kg and 19.36kg). As with the PIs, the SEE, the 

indicator of the overall dispersion of the data points around the regression line, was lower in 

the female equation (i.e., 3.49kg) than in the male equation (i.e., 4.67kg), even though the 

femoral head bread (FeHB) of males is slightly more correlated to the body mass (i.e. r = 

0.637) than females (i.e., r = 0.632).  

 Figures 80 and 81 show the scatter plots with the regression lines of each body mass 

estimation equation and their 95% PIs. It can be observed that the data points are more 

dispersed in the male plot compared to the female plot which indicates the higher SEE and 

wide PI in the male equation. It is also observed that the PI lines in the scatter plots appear 

roughly parallel to each other rather than hyperbolic because, as mentioned earlier, the 

individual variation in the PIs were marginal in the reference sample. 
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Figure 80. Female body mass estimated by the morphometric method against femoral head 

breadth (in mm). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 

 

 

Figure 81. Male body mass estimated by the morphometric method against femoral head 

breadth (in mm). Solid line represents the regression equation and the dashed lines the 95% 

prediction interval. 
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5.2. Comparison of the new equations to previous studies 

 The new equations for body mass estimation were compared to the equations 

developed from three previous studies (i.e., Ruff et al., 1991; McHenry, 1992; Grine et al., 

1995) and to the average of the estimates by the three previous equations (i.e., the so-called 

'average method'). Since the McHenry (1992) and Grine et al. (1995) provided only pooled-

sex equations, those equations were applied to both males and females. In comparing the 

equations, the morphometrically reconstructed body mass with a 4.5kg downward adjustment 

was assumed to be the true body mass. As with the stature estimation, the four criteria were 

used for comparison which are presented in Table 19: mean difference (i.e., average 

difference between true body mass and predicted body mass), SEE, %SEE, and %PE (i.e., 

[true body mass - expected body mass] 100/expected body mass).  

 

Table 19. Comparison between new and previous study equations. 

Comparison Sex Present 

study 

Ruff et al. 

(1991) 

McHenry 

(1992) 

Grine et al. 

(1995) 

Average 

method 

Mean diff.
1
 Male -0.0081 -7.0593 -5.9667 -10.7159 -7.9140 

Female -0.0159 -10.6637 -4.6006 -9.1762 -8.1456 

SEE Male 4.67 8.56 7.62 11.72 9.24 

Female 3.49 11.36 6.08 10.01 9.06 

%SEE
2
 Male 7.44 13.63 12.13 18.66 14.71 

Female 6.91 22.50 12.04 19.82 17.94 

%PE
3
 Male -0.02 -10.72 -9.25 -15.52 -11.91 

Female -0.03 -18.69 -8.81 -16.44 -14.85 

1
 Mean of (true - expected) (in kg) 

2
 SEE 100/mean stature 

3
 (true - expected)  100/expected 

 

 The new equations produced accurate and unbiased body mass estimates as shown in 

the %PEs which were close to zero (i.e., -0.03% and -0.02% for females and males 

respectively). On the contrary, the equations from the previous studies turned out to produce 

significantly biased estimates. They all overestimated the true body mass (i.e., the 

morphometrically reconstructed body mass). Even the McHenry (1992) equation, which is 

known to be appropriate for body mass estimation of relatively small-sized people, 
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overestimated the body mass by 4.6kg and 6kg on average with the %PEs of -8.81% and -

9.25% for females and males respectively. In Grine et al. (1995) equation, which was based 

on the large-sized populations, the %PEs were as large as -16.44% and -15.52% for females 

and males respectively. The %PEs of the average method were between those of McHenry 

(1992) and Grine et al. (1995) equations, and the magnitude of overestimation was greater 

than 10% (i.e., %PEs were -14.85% and -11.91% for females and males respectively). Except 

the McHenry (1992) equation, the female body mass tended to be more overestimated than 

male body mass (i.e., %PEs were higher in female equations than in the male equations). As 

for the SEE, previous equations showed significantly bigger SEEs compared to that of the 

present study (i.e., 3.49kg and 4.67kg for females and males respectively). Thus, it could be 

concluded that the new equations produce most precise estimates as well compared to the 

previous equations. The smallest and biggest SEEs among the previous studies were obtained 

in MeHenry (1992) (i.e., 6.08kg for females and 7.62kg for males) and Grine et al. (1995) 

equation (11.36kg for females and 11.72kg for males) respectively. 

 Figures 82 through 89 show the scatter plots of the predicted body mass by the 

previous studies against the morphometrically reconstructed statures. As with the stature 

estimation, the more closely the data points gather around the 45° line, the smaller SEE 

would be obtained for the corresponding equation. Also, if the equations tend to overestimate 

the statures, data points should gather below the line and vice versa. In theory, if an equation 

produces the estimates identical to the true statures (i.e., anatomically reconstructed statures), 

all data points should lie exactly on the line. Yet, in Figures 82 though 89, it can be observed 

that most data points gather under the line, which indicates that the previous equations 

overestimate the body mass for both sexes. Figures 82 through 89 also show the dashed lines 

which indicate the actual relationship between the two statures. If the slope of a dashed line is 

smaller than 1 (i.e., the slope of the 45° line), and the two lines intersect each other (e.g., 

Figures 83-85), it can be understood that the body mass larger than the intersection point will 

be overestimated by the previous equations while the body mass smaller than the intersection 

point will be underestimated. If the slope of a dashed line is smaller than 1, but there is no  

intersection point (e.g., Figures 82, 86-89), it indicates that the previous equations 

consistently overestimate (when a dashed line is under the 45° line) the actual body mass.  



 

 

155 

 

Figure 82. Female body mass estimated by the morphometric method against predicted body 

mass by Ruff et al. (1991) equation. The 45° line indicates the line of identity and the dashed 

line the actual relationship between two body mass estimates. 

 

 

Figure 83. Female body mass estimated by the morphometric method against predicted body 

mass by McHenry (1992) equation. The 45° line indicates the line of identity and the dashed 

line the actual relationship between two body mass estimates. 
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Figure 84. Female body mass estimated by the morphometric method against predicted body 

mass by Grine et al. (1995) equation. The 45° line indicates the line of identity and the 

dashed line the actual relationship between two body mass estimates. 

 

 

Figure 85. Female body mass estimated by the morphometric method against predicted body 

mass by the average method. The 45° line indicates the line of identity and the dashed line the 

actual relationship between two body mass estimates. 
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Figure 86. Male body mass estimated by the morphometric method against predicted body 

mass by Ruff et al. (1991) equation. The 45° line indicates the line of identity and the dashed 

line the actual relationship between two body mass estimates. 

 

 

Figure 87. Male body mass estimated by the morphometric method against predicted body 

mass by McHenry (1992) equation. The 45° line indicates the line of identity and the dashed 

line the actual relationship between two body mass estimates. 
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Figure 88. Male body mass estimated by the morphometric method against predicted body 

mass by Grine et al. (1995) equation. The 45° line indicates the line of identity and the 

dashed line the actual relationship between two body mass estimates. 

 

 

Figure 89. Male body mass estimated by the morphometric method against predicted body 

mass by the average method. The 45° line indicates the line of identity and the dashed line the 

actual relationship between two body mass estimates. 
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6. Secular changes in stature and body mass 

 Table 20 presents the mean statures and body mass of each time period by sex. For 

the Three Kingdom, Goryeo, and Joseon period, the mean values were calculated from only 

the osteometric data in the dataset 1 and 3. Yet, for the 20th century data, not only the 

osteometric data in the dataset 1 and 3 but also the anthropometric data from various surveys 

in the dataset 4 were all combined to calculate the grand means (i.e., the weighted means). 

Since the grand means of the subcategories of the 20th century represent the combined 

samples (i.e., samples used in the surveys as well as the skeletal samples), the sample sizes of 

these time periods are much bigger than those of the previous time periods (i.e., Three 

Kingdom, Goryeo, and Joseon period).  

 

Table 20. Mean stature and body mass of each time period. 

Sex Time 

period 

Stature (cm) Body mass (kg) 

n mean SD n Mean SD 

Female Modern 7101
1
 157.85 - 6457

1
 52.68 - 

Mid 20C 339
1
 155.06 - 337

1
 53.20 - 

Early 20C 2511
1
 149.76 - 276

1
 46.80 - 

Joseon 190
2
 149.66 5.00 152

2
 45.86 3.22 

Goryeo 15
2
 149.3 4.54 - - - 

Three 

Kingdom 

29
2
 154.13 4.24 - - - 

Male Modern 11348
1
 169.20 - 10600

1
 62.33 - 

Mid 20C 12717
1
 162.84 - 12330

1
 56.88 - 

Early 20C 16375
1
 163.10 - 1883

1
 56.55 - 

Joseon 241
2
 162.25 4.63 186

2
 58.13 5.03 

Goryeo 14
2
 161.56 4.30 - - - 

Three 

Kingdom 

24
2
 164.75 4.46 - - - 

1
 Combined number of the number reported in the literature and the number of skeletons. 

2
 The number of skeletons only. 
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6.1. Descriptive trend 

 The results showed that the mean statures of the Three Kingdom period were about 

154.1cm and 164.8cm for females and males respectively (Table 20) Yet, both females and 

males experienced a rapid decline in stature in the Goryeo period (i.e., 149.3cm and 161.6cm 

for females and males respectively) and then a slight but gradual increase until the early 20th 

century (i.e., 149.8cm and 163.1cm for females and males respectively). In the second half of 

the 20th century, the statures of Korean population dramatically increased up to 157.9cm and 

169.2cm for females and males respectively.  

 Due to insufficient data for the Three Kingdom and Goryeo period, the secular change 

in body mass could be examined only for the Joseon period and afterward. For females, the 

mean body mass was 45.9kg in the Joseon period and tended to increase through time until 

the mid 20th century. Particularly, as with the stature, the increase in body mass between the 

early and mid 20th century was pronounced (i.e., from 46.8kg to 53.2kg). Yet, female body 

mass showed a slight decline since 1960s despite the increasing trend in stature. Unlike 

females, the male body mass in Joseon period (i.e., 58.1kg) was higher than that of the early 

and mid 20th century (i.e., 56.6kg and 56.9kg respectively) despite the smaller average 

stature in the former time period. Yet, after experiencing a decline in body mass between the 

Joseon and early 20th century, the male body mass tended to increase until recently. 

Particularly, as with the stature, the increase in male body mass since 1960s was noticeable 

(i.e., from 56.9kg to 62.3kg).  

 The secular changes in stature and body mass is graphically demonstrated in Figures 

90 and 91 respectively. In Figure 90, an overall bowl-shaped trend in stature is noticed for 

both females and males because of the rapid decline between the Three Kingdom and Goryeo 

period and the rapid increase between the Joseon and 20th century. Difference between sexes 

is that the rapid increase in female statures was initiated rather earlier (i.e., between the early 

and mid 20th century) than males (i.e., between the mid- and late 20th century). In Figure 91, 

it is also noticeable that rapid increase in female body mass was initiated between the early 

and mid 20th century, while that of male body mass between the mid and late 20th century. 

Also, while the male body mass shows an increasing trend until recently, the female body 

mass reveals a rather stagnating trend since 1960s.    
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Figure 90. Secular change in stature from the Three Kingdom period to the modern period.  
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Figure 91. Secular change in body mass from the Joseon period to the modern period.  
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6.2. Statistical comparison between time periods 

 The differences in the mean values of statures and body mass between time periods 

were statistically tested using the randomization test. That is, when each pair of time periods 

was compared separately using the randomization test and the statistical significance was 

assessed at an alpha level of 0.05. 

 

6.2.1. Secular change in stature 

 For females, the mean stature of the Three Kingdom period (i.e., 154.1cm) was 

significantly taller than the Goryeo and Joseon periods, and the early 20th century (Table 21). 

Only the mean stature of the late 20th century was taller than that of the Three Kingdom 

period, and there was not found a significant difference between the Three Kingdom period 

and the mid 20th century (i.e., 155.1cm). The mean statures of the Goryeo (i.e., 149.3cm), 

Joseon (i.e., 149.7cm), and the early 20th century (i.e., 149.8cm) did not statistically 

significantly differ from each other. Yet, the mean statures of these three time periods differ 

from those of all the other time periods (i.e., the Three Kingdom, mid-20th century, and late 

20th century). Lastly, the mean stature of the late 20th century (i.e., 157.9cm) was taller than 

those of any other time periods with statistical significance. In sum, after significant decline 

in the Goryeo period, female statures stagnated for almost a millennium (i.e., from the early 

10th to the early 20th century) and then drastically increased since the mid 20th century, of 

which increasing trend has still continued.  

 As with the female statures, male statures went through a significant decline between 

the Three Kingdom period (i.e., 164.8cm) and the Goryeo period (i.e., 161.6cm) (Table 21). 

The mean stature was recovered up to the extent of the Three Kingdom period (i.e., 163.1cm, 

p = 0.084) in the early 20th century, because of the significant increase between the Joseon 

and early 20th century. After a minor fluctuation between the early and mid 20th century, 

male statures drastically increased again during the late 20th century (i.e., 169.2cm). In sum, 

as with the female statures, after significant decline in the Goryeo period, male statures 

stagnated for almost a millennium (i.e., from the early 10th to the late 19th century), and then 

significantly increased since the early 20th century, of which trend accelerated since the late 

20th century.  
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6.2.2. Secular change in body mass 

 For females, the mean body mass of one time period differed from those of the other 

time periods except between the mid and late 20th century (p = 0.319) (Table 22). Although 

statistical comparison between the early and mid 20th century was not made due to the small 

number of original references, it appeared reasonable to assume significant difference in body 

mass existed between those time periods given the big difference in the mean body mass of 

those time periods (i.e., 46.8kg and 53.2kg for the early and mid 20th century respectively). 

Thus, it could be concluded that the female body mass significantly increased since the 

Joseon period, but the trend halted during the late 20th century.  

 Unlike the female body mass displaying a gradual increase until the mid 20th century, 

the male body mass revealed a bowl-shaped trend. That is, the body mass of the Joseon 

period (i.e., 58.1kg) and the late 20th century (i.e., 62.3kg) was significantly higher than 

those of the early and mid 20th century (i.e., 56.6kg and 56.9kg respectively) (Table 22). 

Although statistical appreciation could not be made on the body mass between the early and 

the mid 20th century, it is clear that the absolute difference in body mass of those time 

periods is marginal (i.e., 56.6kg and 56.9kg for the early and mid 20th century). Thus, it 

appears reasonable to conclude that the male body mass declined in the early 20th century 

and then drastically increased again since the late 20th century.  

 

7. Chapter summary 

 Nineteen stature estimation equations were presented for each sex. For each equation, 

90% and 95% prediction interval, standard error of the estimate, and percent standard error of 

the estimate were also presented. According to the validation tests for the new equations as 

well as comparison of the new equations with other equations from previous studies, it turned 

out that these new equations produce very accurate and precise estimates for Korean samples. 

In addition, sex-specific body mass estimation equations were presented along with 

associated statistical properties (i.e., 90% and 95% prediction interval, standard error of the 

estimate, and percent standard error of the estimate). Since the validation test revealed that 

the morphometric method produced overestimated body mass for Korean samples, body mass 

estimates by the morphometric method were adjusted downwardly.  

 As for the secular change in stature, U-shaped pattern was observed where the 

average stature decreased in the second millennium and then increased again in the third 

millennium. Interestingly, between early and mid 20th century, different pattern was  
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Table 21. Statistical comparison of female stature between the time periods.  

Sex Time 

Period 

Three 

Kingdom 

Goryeo Joseon Early 

20C 

Mid-20C Modern 

Female Three 

Kingdom 

 0.001
1,*

 <0.001
1,*

 <0.001
2,*

 0.236
2
 <0.001

2,*
 

Goryeo   0.787
1
 0.704

2
 <0.001

2,*
 <0.001

2,*
 

Joseon    0.790
2
 <0.001

2,*
 <0.001

2,*
 

Early 20C     0.001
3,*

 <0.001
4,*

 

Mid-20C      <0.001
5,*

 

Modern       

Male Three 

Kingdom 

 0.038
1,*

 0.013
1,*

 0.084
2
 0.042

2,*
 <0.001

2,*
 

Goryeo   0.581
1
 0.202

2
 0.286

2
 <0.001

2,*
 

Joseon    0.004
2,*

 0.056
2
 <0.001

2,*
 

Early 20C     0.729
3
 <0.001

4,*
 

Mid-20C      <0.001
5,*

 

Modern       

1
 Comparison between osteometric data.  

2
 Comparison between osteometric data of the time period in the column to the grand mean of 

the time period in the row. 
 

3
 Comparison between anthropometric data of the time period in the column to the grand 

mean of the time period in the row.  

4
 Comparison between the anthropometric data. 

5 Comparison between the grand mean of the time period in the column to the 

anthropometric data of the time period in the row. 

*
 Significant at an alpha level of 0.05.  
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Table 22. Statistical comparison of female body mass between the time periods.  

Sex Time period Joseon Early 20C Mid-20C Modern 

Female Joseon  < 0.001
1
 < 0.001

1
 < 0.001

1
 

Early 20C   - < 0.001
2
 

Mid-20C    0.319
2
 

Modern     

Male Joseon  < 0.001
1
 < 0.001

1
 < 0.001

1
 

Early 20C   - < 0.001
2
 

Mid-20C    < 0.001
2
 

Modern     

1
 Comparison between osteometric data.  

2
 Comparison between the anthropometric data of the time period in the column to the grand 

mean of the time period in the row.  

*
 Significant at an alpha level of 0.05.  
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observed between sexes in the way that only female stature rapidly increased while male 

stature seldom changed. As for the secular change in body mass, although its pattern before 

the 14th century could not be examined, overall body mass revealed an increasing pattern 

since the 20th century. However, different pattern was observed between sexes in the 20th 

century in the way that between the early and mid 20th century, only female body mass 

increased, while after the 1960s, only male body mass showed an increasing pattern.  
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Chapter 5  

Discussion 

 

1. Secular changes in stature and body mass of Korean populations 

1.1. Homogeneity of genetic composition in Korean populations 

 Body size of a population may change over time due to either genetic or 

environmental factors (Shin et al., 2012). In particular, the temporal change in body size due 

to environmental factors without a change in the genetic composition or in a population 

structure has been extensively studied under the title of secular change. Recently, secular 

changes in body size, particularly in stature, have attracted much attention in terms of 

anthropometric history, where the anthropometric data is thought to be a good complement or 

alternative to the traditional measures to explore the impact of economic processes on 

humans of the past (Ulijaszek and Komlos, 2010). At this point, it should be noted that results 

from any anthropometric history studies can be interpreted directly in association with an 

influence of environmental factors only under the assumption of homogeneity of genetic 

composition in a population over time. That is, given a change in body size in a population, in 

order to insist that the changes are correlated with shifts in circumstances associated with a 

population, it should be assumed that no change in a genetic composition of the population 

occurs (e.g., population migration).  

 Although there is still debate about 'when' and 'from where' Korean ancestors 

migrated into the Korean peninsula, it is generally agreed by historians that the Korean 

ancestors continued inhabiting the Korean peninsula without replacement or mass migration 

of new populations since the Three Kingdom period (i.e., B.C. 1st century) at the latest (Lee, 

2002). In fact, recent studies using Korean mtDNA and the Y chromosome provide evidence 

on the homogeneous genetic composition within the Korean population (Jung et al., 2010; 

Kim et al., 2010). In addition, the fact that body proportions (i.e., cormic and crural indices) 

of the skeletal remains in this research remained constant through time periods can be thought 

of as an indirect evidence that corroborate the homogeneity of genetic composition of the 

Korean population. Therefore, it was concluded that there has not been a significant change 

in the genetic background in the populations that inhabited the Korean peninsula since the 

Three Kingdom period, and thus it could be justifiable that a change in body size of Korean 

populations is attributed  largely to environmental conditions.  
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1.2. Limitations in using skeletal materials for secular change studies  

 In studying secular changes in body size, it would be an ideal situation that exact time 

period to which each sample belongs (e.g., birth year), and exact body size of each sample 

(i.e., stature and body mass) are known. In Europe, this kind of documented data has been 

available from the so-called "institutionalized populations" such as conscripts, orphans, 

school children, and slaves since the early 18th century, among which the conscript data has 

been most frequently used for secular change studies (Steckel, 2004; Haines, 2004; Federico, 

2003; López-Alonso and Condey, 2003; Komlos, 2003, 1998; Kunitz, 1987). However, in 

fact, anthropometric data have been seldom found in the literature prior to the 18th century, 

which is the biggest limitation in long-term secular change studies. To overcome this 

methodological limitation, researchers have used osteometric data in addition to the 

anthropometric data available. That is, much effort has been made to reconstruct  body size, 

particularly stature, of people in the past from the skeletal remains and then to investigate 

secular changes using the reconstructed body size (Gerhards, 2005; Koepke and Baten, 2005; 

Maat, 2005; Steckel, 2004; Schweich and Knüsel 2003; Steckel and Rose, 2002; Bogin and 

Keep, 1999; Formicola and Giannecchini, 1999; Lalueza-Fox, 1998; Kunitz, 1987). In Korea, 

since reliably documented anthropometric data is only available since the 20th century, 

utilizing the osteometric data is indispensable for secular change study for the people prior to 

the 20th century.  

 Yet, there are still some caveats associated with using oseometric data for secular 

change studies. One caveat is that the comparability of the estimates from skeletal remains 

should be ensured (Cardoso and Gomes, 2009). Body size of an archaeological skeleton is 

normally estimated from the skeleton itself and even the estimates from one individual 

skeleton may vary depending on the estimation technique used as well as on the bone 

dimensions used for estimation. For example, different stature estimates can be produced for 

an individual depending on, say, whether Trotter and Gleser (1958) equations or Pearson 

(1899) equations are applied as well as depending on, say, whether the femur or humerus is 

utilized. For this reason, in secular change studies, even though difference in body sizes was 

detected over time, if the body sizes were estimated using diverse techniques or various 

skeletal elements, the difference could not be thought to be solely attributed to secular change 

due to lack of comparability between estimates. For this reason, researchers emphasize the 

consistency in the method as well as in the type of bone(s) used in the process of body size 

estimation (Cardoso and Gomes, 2009; Waldron, 1998). The notion that long bones may have 
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more advantages over reconstructed body sizes in secular change studies can also be 

understood in this regard (Jantz and Jantz, 1999; Trotter and Gleser, 1951b). In this research, 

however, long bones were not used as a proxy for body size because only anthropometric 

data was available for most of the 20th-century samples in dataset 4, which could not be 

directly compared to the osteometric data. In this research, stature was estimated by applying 

either the new femur equation or the anatomical method, and the body mass by applying 

either the new femoral head breadth equation or the morphometric method. Although two 

different methods were ostensibly used for both stature and body mass estimation (i.e., the 

new equation and the anatomical/morphometric method), there should not be any significant 

difference in the results because the new equations were essentially derived from the 

anatomical/morphometric methods themselves. Namely, the body sizes estimated by the new 

equations, in theory, should be comparable to those by the anatomical/morphometric methods. 

Therefore, it could be concluded that the comparability is ensured through the body size 

estimates in this research.  

 An additional caveat is that the estimates from the skeletal remains should also be 

comparable to the anthropometric data. This caveat is related to the issue of the accuracy of 

body size estimates and has an importance particularly when researchers use both 

anthropometric and osteometric data for secular change studies. Yet, in most secular change 

studies, researchers appear to have simply assumed the comparability of the reconstructed 

body sizes using osteometric data to the anthropometric data without performing any 

independent validity test as far as the estimation method was chosen by their theoretical 

criteria (Shin et al., 2012; Cardoso and Gomes, 2009; Steckel, 2004; Bogin and Keep, 1999; 

Kunitz, 1987; Hiramoto, 1972). In fact, this is mostly due to lack of appropriate samples (i.e., 

samples from which osteometric as well as anthropometric data are available) with which the 

accuracy of the estimation method could be verified. However, without a validity test for the 

estimation method, when a discrepancy in body sizes is found between relatively ancient 

samples (from which only osteometeic data is available) and relatively recent samples (from 

which only anthropometric data are available), the interpretation regarding the discrepancy 

should be made with caution because most or part of the discrepancy may be attributed to the 

error associated with the estimation method rather than secular change itself. In this research, 

the comparability of the estimates from osteometric data to the anthropometric data could not 

be tested in a direct way but, fortunately, by an indirect way using conscripts data during the 

Korean War. As mentioned earlier, although both types of data (i.e., osteometric and 
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anthropometric data) were not taken from the same individuals, the averages of stature and 

body mass calculated from the two data sources could be assumed to be nearly identical 

because the samples shared the same background in terms of time periods, regions, and sex 

(i.e., the nationwide male conscript data during the Korean War). In fact, the mean stature 

calculated from the skeletal samples was nearly identical to that from the anthropometric data 

with a discrepancy less than 0.5cm, and so was the mean body mass after the downward 

adjustment of 4.5kg. Based on this result, it was concluded that the estimates from the 

osteometric data were comparable to the anthropometric data in this research. In addition, 

since there was no significant difference in a body proportion over time, it appeared 

reasonable to assume the comparability of the body size estimates from skeletal remains to 

the anthropometric data regardless of time periods.   

 

1.3. Representativeness of the skeletal samples 

 Skeletal samples used for the study of secular change should be able to represent the 

corresponding time periods without bias. In fact, archaeological materials are subject to bias 

for several reasons including excavation of burials of a specific region or social status, 

different preservation status of skeletal remains due to different climates or soil conditions, 

and cultural practices (e.g., infants may not be buried in a general fashion of funeral) (Kunitz, 

1987; Fogel et al., 1983). Especially, in studying a long term secular change, a small sample 

size often restricts the researcher to the examination of short-term fluctuations as well as 

causes a doubt on the representativeness of the time periods (Steckel, 2004; Kunitz, 1987). In 

this research, sampling bias due to excavation of a specific region, different climate or soil 

condition was thought to be marginal because, as mentioned in the Materials and Methods 

chapter, data was collected from various regions in South Korea, instead of any specific 

location. As to the bias due to any cultural practice it could be inferred that infants and 

juveniles were not likely to be buried following the general fashion in the past in Korea, 

based on a low frequency of their skeletons in cemeteries (Ahn, 2009). This kind of practice, 

however, was not thought to bring about a significant bias to the results of this research 

because only adult samples were included in this research. Yet, sampling bias due to an 

excavation of a specific-social-status samples is likely to cause a significant bias to secular 

change studies particularly when the samples belonged to hierarchical societies which is the 

case in this study. In fact, a positive relationship between social status and body size, 

particularly stature, has frequently been reported from samples of diverse regions and time 
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periods (Zakrzewski, 2003; Komlos an Kriwy, 2002; Robb et al., 2001). For example, Bogin 

and Keep (1999) state that a difference in stature between Mayan samples excavated from 

different types of burials (i.e., tomb, mid-sized home grave, and small-sized home grave) 

reflected wealth and social status of the occupants. Schweich and Knüsel (2003) also mention 

that social status affects not only stature but also body shapes in a way that high status 

population possessed a stocky build while lower status population a linear build in medieval 

England. Since the hierarchical system has long been established in Korean societies since 

the Three Kingdom period until the beginning of the 20th century (Cho, 1994), there was a 

possibility that the samples of this research were biased if they had been taken from any 

specific social status.  

 Thus, to avoid a bias due to an unintentional social status-specific sampling, it was 

intended to collect data of both upper and lower social statuses, which were roughly 

determined by burial types reported in the literature. For example, for the Joseon-period 

samples, skeletal remains from the lime-soil-mixture-barrier (LSMB) tombs were regarded as 

upper-class nobles while those from the pit tombs as lower-class ones (Shin et al., 2012; Min, 

2008). Also, for the Three Kingdom period, some samples were known to be from the loyal 

family tombs (e.g., samples from the Imdang site), while others from the shell mounds or pit 

tombs of a relatively lower social status (e.g., samples from the Neukdo and Yean-ri site), 

both of which were included in this research (Ha, 2011; Lee, 2009; Kim et al., 1981). 

Unfortunately, the social status of Goryeo-period samples could not be determined because 

their burial types were not specified in the literature reviewed in this research.  

 Even though the samples were randomly taken from both upper and lower social 

statuses, it was found that the upper and lower class samples were unevenly represented in 

the dataset. Namely, among the Joseon-period samples, the frequency of the upper class 

samples (n = 99) was much higher than that of the lower class ones (n = 22), while among the 

Three Kingdom period samples the frequency of the lower class samples (n = 29) exceeded 

that of the upper class ones (n = 10). For this reason, more direct comparison of body sizes 

between classes appeared necessary to be made. That is, it was thought that, despite uneven 

presentation of each social status (i.e., upper and lower statuses), if body sizes of the upper 

and lower class samples did not differ, the results of this research would not be biased. Thus, 

for the 160 samples, of which social status could be determined, statures were compared 

between the two social statuses using the randomization test. Comparison was made for each 

sex as well as for each time period separately (i.e., Three Kingdom period and Joseon period). 



 

 

173 

Unfortunately, body mass between social statuses could not be compared due to an 

insufficient number of samples in the lower class of the Joseon period and in the upper class 

of the Three Kingdom period. Unlike some of the previous research (Schweich and Knüsel, 

2003; Zakrzewski, 2003; Robb et al., 2001; Bogin and Keep, 1999; Komlos, 1990), the 

results showed that there was not a significant difference in stature between social statuses, 

though the upper class samples tended to be taller than the lower class ones except the Three 

Kingdom period males (Table 23). It should be noted that there is a possibility that small 

sample size of the upper class in the Three Kingdom period (i.e., n = 5 for both females and 

males) reduced the power of the test to some degree. However, since the type I error rate is 

known to remain constant in the randomization test (i.e., close to 0.05) as far as the equal 

variance assumption is satisfied (Hayes, 2000), it was thought that the tentatively reduced 

power would not have a significant effect on the overall results. Therefore, it was concluded 

that the stature difference between social statuses was marginal in the hierarchical Korean 

societies of the past, and thus any bias due to uneven sampling from different social statuses 

would not be influential in the results of this research.  

 

Table 23. Comparison of stature between social statuses.  

Time 

period 

Sex Social status n Stature 

(cm) 

Levene's 

test p
1
 

Randomization test 

t p 

Three 

Kingdom 

Female Upper 5 153.9 0.457 0.0421 0.967 

Lower 17 153.8 

Male Upper 5 164.6 0.554 -0.7415 0.468 

Lower 12 165.9 

Joseon Female Upper 42 149.4 0.567 0.9133 0.369 

Lower 11 147.8 

Male Upper 57 161.5 0.834 0.6394 0.520 

Lower 11 160.5 

1
 The equal variance assumption is violated when p < 0.05.  

 

1.4. Definition of time periods 

 In studying secular changes using archaeological skeletal remains, the issue of how to 

divide time periods for analysis is often reconciled by the samples under study (Shin et al., 

2012; Steckel, 2004; Bogin and Keep, 1999; Kunitz, 1987). For the pre-20th-century samples 
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of this research, division of time periods was made in a rough manner based on the duration 

time of the previous dynasties in Korea. Thus, nearly 500 - 700 years were categorized into 

one time period: B.C. 1st - A.D. 7th century as the Three Kingdom period, early A.D. 10th - 

late A.D. 14th century as the Goryeo period, and late A.D. 14th - late A.D. 19th century as 

the Joseon period. Although obscuring short term fluctuations to some degree, dividing time 

periods in this way appeared most appropriate to maximize the sample size of each time 

period as well as to get around the issue of inconsistent reporting systems found in the 

original references regarding time periods. Short term secular changes within each dynasty 

will be a topic to be discussed in the future research where more samples with detailed time 

period information are available.   

 Although anthropometric data for modern Koreans was available every five to six 

years since the 1960s, these were pooled to calculate grand mean values (i.e., weighted 

means). It was not only because affluent discussions have already been made on the secular 

change during this time period from diverse socio-economic perspectives (e.g., GDP per 

capita, infant mortality rate, life expectancy) (Moon, 2011; Pak et al., 2011; Kim et al., 2008; 

Moon et al., 2008; Pak, 2004) but also because this research was intended to focus more on 

seeking a general trend of secular changes over a long period of time rather than to discuss 

short term changes within a specific time period.  

 According to the previous secular change studies in Korea, it has been well 

demonstrated that the second half of the 20th century saw drastic increase of body size in 

Korean people, particularly in South Korean people, along with rapid economic growth after 

the Korean War (Pak et al., 2011; Pak, 2004). Yet, there is still debate about whether the 

drastic and positive secular changes in the late 20th century Korea can be regarded as a 

continuation of gradual increase beginning in the early 20th century (i.e., the period of 

Japanese colonization) or as a new phenomenon stimulated by the new socio-economic 

environments after the Korean War (Choi and Schwekendiek, 2009; Kim, 2006; Heo, 2005; 

Cha, 1998; Kimura, 1993). This research has attempted to answer these questions by 

partitioning the post-20th century into three time periods (i.e., early 20th century, mid-20th 

century, and modern period) and comparing body sizes of each time period. 
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1.5. Secular changes in stature 

1.5.1. Overall trend 

 One of the main impacts of this research is that accurate and unbiased body sizes 

estimates are provided for both extant and extinct Korean populations. By identifying 

particular morphological trends in specific time periods, it is easier to provide more specific 

and accurate estimates. Previously, there has often been effort to compare estimated statures 

of groups of skeletal remains excavated from one specific region to those of other regions or 

to modern anthropometric data mainly published in the 1930s by Japanese researchers (e.g., 

Kim, 2010; Park and Lee, 1997; Kim et al., 1981; Chang and Kim, 1976; Son et al., 1976). 

However, these previous works often used a quite small number of samples for comparison 

and/or made comparisons between statures estimated by different techniques without 

considering their comparability. To my knowledge, the work of Shin et al. (2012) was the 

first and subsequently the only study where a long term secular change in stature was 

systematically investigated in Korea. Namely, to compare the statures of archaeological 

skeletal remains, the authors applied Fujii's (1960) femur equation (i.e., using the right 

femoral maximum length) to all osteometric data (i.e., femur length data) that were either 

measured directly by the authors or were obtained from the literature. When only estimated 

statures were reported without raw long bone lengths, femoral maximum lengths were 

recalculated by 'reversing' stature estimates using the estimation equations applied in the 

original references, and then the Fujii (1960) equation was applied to the 'recalculated' bone 

lengths (Shin et al., 2012).  

 Two differences were noticed between the results of this research and Shin et al. 

(2012). One is that Shin et al. (2012) underestimated statures of the skeletal samples to some 

degree. For example, in Shin et al. (2012), the weighted mean stature of the Three-Kingdom-

period samples (i.e., samples from the Yean-ri and Jisan-dong sites) could be calculated to be 

l50.79cm and 163.31 cm for females and males respectively (p. 436). Comparing those 

values to the results of this research, it can be said that the authors underestimated statures by 

3.34cm and 1.44cm for females and males respectively (Table 20). The average statures of 

the Joseon-period samples were also found to be underestimated by 0.76cm and 1.15cm for 

females and males respectively in Shin et al. (2012). The underestimation of statures in Shin 

et al. (2012) was likely stemmed from the fact that the Fujii (1960) method, which had been 

based on Japanese samples, was applied to Korean samples. In fact, the Fujii (1960) equation 

using femoral maximum lengths was found to produce underestimated statures by 1.5cm for 
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females and 1.7cm for males on average (Table 17). Thus, considering the similarity between 

the magnitude of underestimation in Shin et al. (2012) and the average estimation errors 

associated with Fujii's (1960) femur equation, except for the female samples of the Three 

Kingdom period, underestimation of stature in Shin et al. (2012) appears to be attributed to 

the intrinsic limitation of the estimation technique used in their research. Yet, the reason why 

the stature of the Three-Kingdom-period females was greatly underestimated is still unclear 

at this moment and thus may require additional research in the future.  

 The other difference is that while Shin et al. (2012) asserted that statures of Korean 

people in the past remained unchanged since the Three Kingdom period until the 20th century, 

this research could observe a rapid decline in stature after the Three Kingdom period (Table 

20 and Figure 90). This phenomenon could be found for both sexes and the decreased statures 

were associated with the level of the Three Kingdom period in the mid or early 20th century 

for females and males respectively (Table 20). In fact, the stature decline after the Three 

Kingdom period appears to be manifested in the Shin et al. (2012) data. That is, their data 

revealed that female and male statues decreased from 150.79cm to 148.9cm and from 

163.31cm to 161.1cm respectively between the Three Kingdom period and the Joseon period. 

The magnitude of decrease between the Three Kingdom period and the Joseon period was as 

much as 1.89cm (1.3%) and 2.21cm (1.4%) for females and males respectively. Yet, the 

authors did not pay attention to this obvious declining pattern presumably because they used 

linear regression analysis to find an overall trend of secular change. In other words, since the 

assumption of linearity between variables (i.e., time periods and stature) was violated, the 

regression analysis leveled out the decreasing trend after the Three Kingdom period and the 

increasing trend after the 20th century, and finally ended up with a rather misleading 

conclusion that there was not a significant change in stature before the 20th century. However, 

as presented in Table 20 and Figure 90, the U-shaped trend is clearly observed in stature of 

the past two millennia in Korea. Tentative reasons for both positive and negative trends 

observed in the past will be discussed in separate sections below.  

 

1.5.2. Negative trend in the Goryeo period 

 Both male and female statures declined in the Goryeo period when compared to the 

Three Kingdom period: female statures by 4.83cm (3.1%) and male statures by 3.19cm (1.9%) 

(Table 20). Interestingly, a similar pattern of secular change (i.e., a negative trend in the 

second millennium compared to the first millennium) could be found in other parts of the 
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world: for example, in England (Schweich and Knüsel, 2003; Kunitz, 1987), Germany 

(Jaeger et al., 1998), Portugal (Cardoso and Gomes, 2009), Netherland (Maat, 2005), Latin 

America (Bogin and Keep, 1999), and Japan (Hiramoto, 1972). To explain the stature decline 

in these countries, socio-economic, epidemiological, and demographic factors have been 

frequently taken into account. For example, researchers point out that various factors such as 

population growth, decrease in food production/consumption/incomes per capita/nutritional 

status, warfare, expansion of trade and commerce, and epidemic diseases could cause a 

negative secular change in stature in the past (Steckel, 2004; Schweich and Knüsel, 2003; 

Bogin and Keep, 1999; Kunitz, 1987).  

Given these observations, how can the negative secular change in Korea be explained? 

Unfortunately, detailed historical aspects of the ancient societies in Korea, particularly in the 

Three Kingdom period and the Goryeo period, are not well understood due to a limited 

number of ancient documents available. For example, Samkuk-saki (三國史記), written by 

Kim Busik in 1145, is the only official document currently available for research on the 

history of the Three Kingdom period. The Annals of the Goryeo Dynasty (高麗王朝實錄), a 

series of official historical narratives published and managed by the government during the 

Goryeo period, was destroyed during the Japanese invasion in the late 16th century. Despite 

efforts to reconstruct the Annals of the Goryeo Dynasty during the Joseon period, much of 

the information about the early and mid Goryeo Dynasty was lost. In other words, due to a 

poor preservation of the historical literature documenting information on the ancient Korea, it 

is difficult to grasp or make a temporal comparison of detailed aspects of society such as 

population size, food production, and nutritional status, which have been frequently discussed 

as factors associated with stature fluctuation in other secular change studies. Therefore, even 

though the results of this research suggest that the standards of living would have deteriorated 

in the Goryeo period compared to the Three Kingdom period, in fact, it appears cumbersome 

to determine exact reasons for this phenomenon. However, in this research, I suggest that the 

stature decline in the Goryeo period through the Joseon period could be explained in terms of 

epidemic diseases as a proxy for standard of living for two reasons.  

 Firstly, the occurrence of epidemic diseases is well known to be closely related to the 

living conditions and/or nutritional status of people (Steckel, 2004; Kunitz, 1987). In general, 

decrease in food production for diverse reasons such as abnormal climate changes, disasters, 

and wars tend to cause a deterioration in the nutritional condition and a lower level of 
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immunity to infection, which in turn exposes people to a higher chance of infectious diseases 

(Lee, 2008; Kim, 2007; Steckel, 2004). In addition, once an epidemic disease spread in the 

past, the hygienic condition was likely to be seriously deteriorated by inappropriate treatment 

of the infectious people or dead bodies for either psychological or superstitious reasons (Lee, 

2008; Lee and Kwon, 2007). Moreover, particularly in a agricultural society, high mortality 

due to a spread of epidemic diseases can result in low productivity, and consequently have a 

negative influence on the nutritional condition and health of people, which can result in a 

vicious circle between the quality of life and epidemic diseases (Lee, 2008; Kim, 2007). In 

other words, whether as a cause or as a result, outbreak of epidemic diseases can be thought 

to be closely associated with a deteriorated standard of living in the past.  

 Secondly, in many past societies, epidemic diseases were one of the primary events 

that had a serious impact on population size, which has frequently been regarded as an 

important reason for secular change in stature (Steckel, 2004; Schweich and Knüsel, 2003; 

Kunitz, 1987). Once epidemics broke out, due to lack of valid remedy, they were likely to 

spread fast and result in a mass mortality of infected people, which sometimes paralyzed 

growth of a society. For example, nearly 30% of the European population died of the Black 

Death in the 14th century, and nearly 25-35% of Japanese population of smallpox in 735 A.D. 

(Ziegler, 2013; Lee, 2008; Kim, 2007). It is also well known that the Aztecan civilization was 

disintegrated due to smallpox transmitted by Spanish troops in the 16th century. Korea was 

not free from the effect of disastrous epidemics either. It was documented that, in 1110, 

streets were full of corpses and skeletons due to epidemic diseases, and even three kings out 

of thirty four died of endermosis such as smallpox or measles in the Goryeo period (Lee, 

2008). Loss of life due to epidemics has been relatively well documented in the Joseon period. 

For example, an epidemic that occurred in 1699 ended up with a mass fatality of more than 

250,000 (i.e., nearly 4.3% of the entire population), and moreover, between 1749 and 1750 

the number of fatalities reached more than 1.04 million (i.e., nearly 14% of the entire 

population) (Kim, 2001). Epidemic diseases continued to cause a mass fatality until the early 

20th century so that, between 1910 and 1930, the number of average annual fatalities due to 

epidemics was nearly 3,300 (Shin, 2006).  

 For these reasons, the outbreak of epidemic diseases can be said to reflect the quality 

of life of the ancient societies significantly, however indirectly. In fact, Kunitz (1987) 

acknowledged the effect of epidemics on people's life more seriously than other socio-

economic factors such as wages, price of food, and nutritional status particularly before the 
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turn of the 19th century. In this regard, some researchers discussed the decline of European 

stature in the second millennium in terms of the influence of the Black Death (Steckel, 2004; 

Schweich and Knüsel, 2003).   

 A total of eighteen outbreaks of epidemic diseases were documented in the history of 

the Three Kingdom period (B.C. 1st - A.D. 7th century) (Kim, 2004; Kim, 2001). Even 

though more epidemics may have occurred than recorded during this time period, considering 

the agriculture-oriented socio-economic system of those times, the diseases were likely to be 

local and/or temporary and mostly caused by poor harvests and famines and exasperated by 

lowered immunities (Kim, 2004). This means that the effects of epidemics could be 

attenuated once the people recovered from the famines and maintained a certain level of 

nutritional status. This assertion can be corroborated by the fact that most epidemics broke 

out between the winter and the spring while no outbreak was reported during fall harvest 

seasons (Kim, 2004). Moreover, during the Three Kingdom period, since most wars broke 

out between the three nations in the Korean peninsula and long-distance trades were limited, 

it was less likely that new epidemic diseases could be introduced from foreign countries (Kim, 

2004). Therefore, it is unlikely that mass fatalities on a nationwide scale frequently occurred 

or standards of living were seriously deteriorated due to epidemics in those times.  

 Unlike the Three Kingdom period, the Goryeo Dynasty is famous for its active trades 

with foreign countries. In fact, the current official name of Korea was derived from the 

Goryeo dynasty which was known to other countries through commercial trades during this 

time period. It is well known that expanded trades with other countries increased the chance 

of outbreaks of epidemic diseases (Steckel, 2004). In addition, the Goryeo Dynasty went 

through a number of wars against China and Japan: for example, invasion of the Kitan 

between 993 - 1018, conquest of the Jurchen between 1104 - 1109, invasion of the Mongol 

between 1231 - 1259, conquest of Japan between 1274 - 1281, and invasion of Japanese 

raiders in the 14th century (Kim, 2007). Wars against foreign countries not only caused 

famines due to the decreased human labor and destruction of infrastructures, but also 

introduced new epidemic diseases into the Korean peninsula (Kim, 2007). In fact, researchers 

found out that war periods were closely related to the outbreaks of epidemics. For example, 

Kim (2007) mentions that out of 27 outbreaks of epidemics during the Goryeo period, twenty 

occurred during the war periods. In addition, two new epidemics – the Miasma epidemic and 

acute epidemic fever - are known to have been introduce into Korea through the wars against 

the Kitan in 1018 and against the Jurchen in 1100 respectively, and continued to cause a mass 
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fatality afterwards (Lee, 2008; Lee and Kwon, 2007). That is, due to the expanded 

international trades and more frequent wars against other countries, epidemic diseases appear 

to have broken out more frequently and deteriorated standards of living more seriously during 

the Goryeo period. Moreover, due to lack of valid remedy to newly introduced epidemics, it 

took a long time for the society to recover from their disastrous effects, which resulted in a 

vicious cycle of epidemics and deteriorated living conditions. As a result, the negative living 

conditions did not improve in successive generations and the cumulative effects in the 

population appeared to end up with congenital short statures in the Goryeo period (Cole, 

2003; Schweich and Knüsel, 2003; Bogin and Loucky, 1997; Eveleth 1979).   

 Although governmental institutions for treatment of the contagious people were 

established and medical textbooks were imported from China during the Goryeo period, 

epidemics were not effectively prevented nor properly cured in the Joseon period either (Lee, 

2008; Lee and Kwon, 2007; Kim, 2007; Kim, 2001). Outbreaks of epidemics during the 

Joseon period were relatively well documented compared to the Goryeo period. According to 

the Annals of the Joseon Dynasty (朝鮮王朝實錄), a total of 147 epidemics broke out during 

the Joseon period, which can be said that epidemics occurred every three years on average 

(Kim, 2001). Out of the 147 occurrences, ninety two (62.6%) broke out between the mid 16th 

and mid 18th century, which indicates that the wars against Japan (i.e., Japanese invasion in 

1592 through 1998) and the Quing (i.e., Chinese invasion in 1627 through 1637) had a 

considerable influence on the outbreak and expansion of epidemic diseases of those times 

(Kim, 2001). Also, considering the fact that nearly 13.6% of epidemics spread across the 

nation and moreover nearly 8.8% of them resulted in mass fatalities of more than 100,000, 

the effect of the epidemic diseases on the living conditions of the Joseon period appeared as 

significant as the Goryeo period (Kim, 2001). In sum, even though serious epidemic diseases 

frequently broke out during the Joseon period as well, valid remedies or proper treatments 

were still unavailable and thus the living conditions were inveterately deteriorated, which 

appeared to end up with the unchanged stature from the Goryeo period to the Joseon period.  

  

1.5.3. Positive trend in the 20th century 

 Female stature remained nearly unchanged since the Goryeo period (between 149.3 

and 149.76cm) until it drastically increased in the mid-20th century (155.06cm) (Table 20). 

The increasing trend continued after the 1960s as well, but the increment rate after the 1960s 
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was found to be lower compared to that between the early and mid 20th century. Thus, it can 

be concluded that the average stature of Korean females rapidly increased among those 

roughly born between 1920s and 1930s, and the increasing trend could still be found among 

those born after the 1940s, though the increment rate slowed down.   

 Unlike females, male stature was observed to increase in the early 20th century 

(163.1cm) compared to the Goryeo (161.56cm) or the Joseon period (162.25cm) (Table 20). 

However, since the amount of increment was as small as 0.85cm between the Joseon period 

and the early 20th century, it appears more appropriate to conclude that male statures, that 

had remained nearly unchanged since the Goryeo period, began increasing drastically since 

the 1960s. Considering that the average stature of 20-year-old males was 174.3cm in 2005, it 

can be said that males born in the mid 1980s were taller than those born in the 1920s and 

1930s by 11.46cm (7.0%) on average (Moon, 2011). In other words, male stature has 

increased at the rate of more than 2cm per decade for the last 50 years, which is similar to or 

higher than the rate observed in other parts of the world such as Europe (e.g., Netherlands, 

Norway, Denmark, Sweden, Belgium, France, Italy, Spain, and Portugal) and East Asia (e.g., 

China and Japan) (for European countries, reviewed in Danubio and Sanna, 2008; Ji and 

Chen, 2008; Kouchi, 1996).  

 In terms of biology, males are known to be more sensitive or plastic to the quality of 

environment compared to females, which was corroborated by empirical research such as 

prenatal experiments where the male fetus is more likely to express patterns of stunted 

growth and/or higher rates of mortality in  stressful conditions (Shin et al., 2012; Pak, 2011; 

Jantz and Jantz, 1999; Leonard, 1991; Stinson, 1985; Stini 1969). Clinical studies also reveal 

sex-dependent susceptibility and resistance/immunity to parasitic diseases, which is 

presumably attributed to sex hormones (e.g., androgens, oestrogens, glucocorticoids, and 

progestins) and host genes (Klein, 2004, 2000; Roberts et al., 1996; Wedekind, 1992; Folstad 

and Karter, 1992; Alexander and Stimson, 1988). For example, pregnancy/ovulation-

associated hormones such as oestrogens are known to lower the susceptibility to parasitic 

infections whereas male-related hormones such as testosterons are known to increase the 

susceptibility as well as decrease healing capacity (Benten et al., 1992). Size sexual 

dimorphism (SSD, calculated as the ratio of male size to female size) is often explained in 

this regard. Namely, the so-called nutrition-environment hypothesis asserts that, given a 

nutritionally favorable condition, the male size tends to increase more than the female size 

due to the male's higher sensitivity to environments, which results in the increased SSD, 



 

 

182 

while SSD would decrease in a stressful condition (Nikitovic and Bogin, 2014; Pak, 2011; 

Cole, 2000; Kuh et al., 1991; Eveleth and Tanner, 1990; Frayer and Wolpoff, 1985; Stinson, 

1985).  

 According to this rationale, it appears contradictory that Korean female stature 

drastically increased between the early and mid 20th century without an increase of male 

stature. How did females, born in the 1920s and 1930s, become taller even though males did 

not? To answer this question, cultural aspects of the Korean society, particularly male-

favored nurturing tradition, should be taken into account. In fact, male-preference culture can 

be frequently observed in various societies over the world and, in such a culture, even family 

members of a household may experience a different quality of diet depending on their sex 

(Pak, 2011; Stinson, 1985). It is well known that, due to the effect of a strong Confucian 

culture, male-favored sex discrimination pervaded most aspects of the Joseon society 

including nurturing children, which would expose females with to more stressful conditions 

in terms of nutrient intake and growth (Kim SH, 2002; Ko JJ, 1984; Jung JS, 1983). For this 

reason, as a series of modernization processes began in Korea since the late 19th century and 

thus as females moved up in social standing, females in a unfavorable condition could be 

more heavily influenced by the newly introduced environment compared to males who used 

to be in a better condition. Elevation of female status in those times can be evidenced by a 

change in the school enrollment rate and literacy rate of females. Basically, prior to the late 

19th century, Korean females were allowed to be educated only at home and were not 

permitted to benefit from public education (Son IS, 1977; Lee MK, 1974; Lee KL, 1969). Yet, 

the first public institute for women's education, the Ewha women's school, was founded in 

1886, which was followed by an establishment of several more institutes for women's 

education. During the Japanese colonial period, the education of women was more 

emphasized, and particularly between the 1920s and the mid 1930s females were provided 

better opportunities for education due to the effects of Enlightenment campaign (Lee MK, 

1974; Lee KL, 1969). As a result, the primary school enrollment rate of females had 

increased from nearly 0% in 1912 to over 20% in 1940 (Kimura, 1993). In addition, the 

literacy rate of females in 1930 significantly varied depending on the age groups (i.e., 16.4% 

for the 15-19 year-old group vs. 4.7% for the 60+ group), which indicated that educational 

opportunities for females had expanded in the early 20th century (Kimura, 1993). Although 

there was still evidence of sex discrimination, what is important to note is that the status of 

women increased during the early 20th century, and thus females could receive benefits that 
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had not been available to them in the past. Given this pattern, it is observed that the actual 

standards of living became highly improved for females relative to males.  

 In fact, slight increases in male stature in the early 20th century may be interpreted  as 

improvement of standards of living as a fruit of modernization that occurred in the late 19th 

century through the beginning stage of Japanese colonial rule. However, the effect of 

improvement, if any, appears to have been marginal when considering the fact that female 

stature did not increase during this period and moreover male stature, which supposedly 

responds more sensitively to an improved environment than females, increased no more than 

one centimeter. On the contrary, as demonstrated by the change in the educational 

opportunities and literacy rate, it is obvious that the quality of living was highly improved for 

females when compared to the Joseon period. Therefore, despite its marginal effect on the 

overall standards of living, the modernization process is thought to have contributed to the 

weakening of sexual discrimination in the early-20th-century Korea, and eventually to have 

led to a drastic increase of stature among females born in the 1920s and 1930s.  

 In regards to size sexual difference (SSD), SSD remained nearly unchanged between 

1.082 and 1.089 from the Goryeo period to the early 20th century, but declined to 1.05 in the 

mid 20th century (calculated from Table 20). As explained earlier, the rapid decline in SSD 

in the mid 20th century was due to the drastic increase in female stature without a change in 

male stature during the same time period. SSD increased again after the 1960s, during which 

socio-economic conditions of South Korea have unquestionably improved as presented in 

Table 24. Both females and males have become taller since the 1960s but the magnitude of 

increase was much higher in males than in females, which resulted in the increased SSD 

compared to the mid 20th century.  

 Ultimately, the nutrition-environment hypothesis depends on the rationale that males 

are more plastic and sensitive to the quality of surrounding environments than females. 

According to this hypothesis, SSD is anticipated to get larger in a nutritionally favorable 

condition and vice versa (Nikitovic and Bogin, 2014; Pak, 2011; Cole, 2000; Kuh et al., 1991; 

Eveleth and Tanner, 1990; Frayer and Wolpoff, 1985; Stinson, 1985). In this research, the 

nutrient-environment hypothesis is thought to be appropriate to explain the increased SSD 

after the 1960s (Pak, 2011). However, the applicability of this hypothesis appears 

questionable when it comes to the decreased SSD in the mid 20th century, where only female 

statures increased with male statures unchanged. In fact, more successful explanation on the 

SSD change would require consideration on the cultural components of a society such as a 
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Table 24. Socio-economic indices of South Korea since 1960. 

Year Real GDP per 

capita ($)
1
 

Infant 

mortality rate 

per 1000
1
 

Life expectancy
2
 Nutritional supply  

per capita per day
2
 

Female Male Total calorie 

(Kcal) 

Proteins 

(g)
 3

 

1960 300.36 90 53.7 51.1 - - 

1970 691.43 43 66.7 59.8 2,370 65.1 [10.6] 

1980 2,532.50 16 69.1 62.7 2,485 73.6 [20.1] 

1990 8,612.24 8 75.4 67.4 2,853 89.3 [33.2] 

2000 15,702.27 5 78.6 71.0 2,952 96.8 [41.0] 

1 
Recited from Pak (2011). 

2 
Recited from Pak (2004). 

3 
Numbers in parentheses represent animal proteins only.  
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male-preferred tradition. In this regard, Pak (2011) also points out that explanations by the 

nutrient-environment hypothesis may not be always successful due to cultural variation in 

human populations.  

 

1.6. Secular changes in body mass 

 In this research, among the samples of the pre-Joseon period, body mass could be 

estimated from only one female and four males. Due to the small sample size for this time 

period, secular change in body mass was examined only for the Joseon period and onward. 

Despite exclusion of the trend of the pre-Joseon period from discussion, considering that 

most secular change studies on Korean body mass have focused on the past 50 years, it still 

appears to signify to extend the temporal boundary of research to the Joseon period using 

osteometric data. 

 To summarize the trend of body mass in Table 20 and Figure 91, average body mass 

of males declined in the early 20th century, compared to the Joseon period, and remained 

unchanged until the mid 20th century, but rapidly increased since the 1960s. Unlike males, 

average female body mass kept increasing until the mid 20th century, but declined since the 

1960s though the decline was not statistically significant. Sex difference in the pattern of 

body mass change becomes more distinct when subdividing time periods into 'prior to the 

1960s' and 'after the 1960s'. That is, from the Joseon period to the mid 20th century, while 

males revealed decreasing or unchanged body mass, females gained on average as much as 

7.34kg (16.0%) (Table 20). On the contrary, since the 1960s, while males experienced a rapid 

increase in body mass from 56.88kgn to 62.33kg (6.1%), females revealed a slightly 

decreasing trend from 53.2kg to 52.68kg (1.0%). Based on these results, tentative reasons for 

secular changes in Korean body mass will be discussed for the 'prior to the 1960s' and 'after 

the 1960s' separately in the following sections. 

  

1.6.1. Secular change in body mass prior to the 1960s 

 Why did the average body mass of males decline in the early 20th century while that 

of females revealed an increasing trend? At first glance, this trend of body mass in the early 

20th century appears contradictory to the trend of stature in the same time period (i.e., 

compared to the Joseon period, average stature of males slightly increased whereas that of 

females did not change). However, to understand the pattern of body mass changes in the 

early through the mid 20th century, it should be taken into account the notion that one's body 
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mass is likely to reflect the quality of his or her recent living conditions, while one's stature is 

indicative of the cumulative history of living conditions since birth, particularly during the 

early stages of growth and development (Staub and Rühli, 2013; Staub et al., 2011; Bogin, 

1995). For example, provided that standards of living deteriorated in the 1930s compared to 

the 1920s, surveys on body mass in the 1930s observed a decrease in body mass compared to 

the body mass in the 1920s, while shortened stature due to the deteriorated environments 

would be observable in the surveys of the 1950s instead of in those of the 1930s.  

 Therefore, the fact that male body mass declined in the early 20th century appears to 

imply that living conditions of Korea deteriorated during this time period (i.e., the Japanese 

colonial period) compared to the Joseon period. The increased male stature in the early 20th 

century can also be understood in this regard. The average stature of the early 20th century 

can be thought to reflect the standards of living in the late 19th century through the mid 

1920s, during which the subjects in the early-20th-century surveys were in their early stage of 

life. Thus, increased male stature in the early 20th century can be interpreted as indicative of 

relatively favorable living conditions in the late Joseon period through the beginning of the 

Japanese colonial period compared to subsequent time periods. In fact, researchers have 

shown evidence that socio-economic conditions of Korea had seriously deteriorated since the 

1930s as plundering carried out by Japanese colonies intensified and Japan plunged into a 

war (Choi and Schwekendiek, 2009). In addition, based on the same rationale, it can be said 

that the assertion, that deterioration of living standards during this time period, can be 

corroborated by the fact that the average male stature slightly declined in the mid 20th 

century (Table 20). To summarize, all observations in this research (i.e., decreased male body 

mass in the early 20th century, increased male stature in the early 20th century, and decreased 

male stature in the mid 20th century) appear consistent in the conclusion that the standards of 

living in Korea were seriously deteriorated during the Japanese colonial period, particularly 

since the 1930s. However, unlike males, average female body mass revealed an increasing 

trend until the mid 20th century, which, as discussed earlier, may be explained from a cultural 

point of view. That is, despite an overall deterioration of living standards, females in the early 

and mid 20th century appeared to benefit more from a series of modernization process in 

Korea, which had not been available to them in the previous periods. Elevated women's rights 

and positions in a society led to a relatively better quality of life for females, which 

eventually resulted in an increase of female body mass during this time period.  
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1.6.2. Secular change in body mass since the 1960s 

 Since a steep increase in the stature of males has been observed in Korea after the 

1960s, it appears intuitionally reasonable to relate the increase of male body mass during the 

same time period to the increased stature. Actually, in most cases, it is true that a positive 

secular change in body mass has occurred along with a rapid increase in stature over the 

world in the 20th century and onward (Woronkowicz, 2012; Cardoso and Caninas, 2010; 

Cardoso, 2008; Ji and Chen, 2008; Marques-Vidal et al., 2008; de Castro et al., 1998; 

Susanne, 1985). Then, it must be asked why female body mass did not change since the 

1960s while female stature increased by 2.79cm (1.8%)? This seemingly contradictory 

pattern of change in female body mass implies that secular change in body mass cannot be 

entirely explained by secular change in stature. In fact, researchers have frequently reported 

that stature and body mass can reveal different pattern of secular change. For example, as 

reviewed in the Literature Review chapter of this research, stature has been reported to reach 

a plateau in many developed countries particularly since the 1970s, while body mass still 

revealed an increasing trend, which resulted in an increased BMI or the so-called 'obesity 

epidemic' of present time (Staub and Rühli, 2013; Staub et al., 2011; Sanna and Soro 2000; 

Sungthong et al., 1999; de Castro et al., 1998; Lewis et al., 1997). The disparity in the pattern 

of secular change between stature and body mass stems from the fact that body mass consists 

of both fat free mass (e.g., muscle, bone, and organs) and fat mass. Thus, it is evident that 

secular change in body mass is influenced not only by a change in stature, mostly related to a 

fat free mass change, but also by a change in fat mass (Hruschka et al., 2013; Burton, 2010; 

Cole, 2003). Keeping this notion in mind, the fact that the stature of Korean males increased 

by 3.9% while their body mass by 6.1% for the past 50 years can be interpreted that both 

stature and fat mass of Korean males have changed in a positive way during this time period. 

In addition, given positive trends in female stature, it can be said that the unchanged body 

mass in females since the 1960s is attributed to their decreased fat mass.  

 Then how can the decreasing trend of the fat mass in females be explained? In fact, 

the decreasing trend of the fat mass or the seemingly unchanged trend in body mass is 

thought to be due to polarization of body mass among females, particularly since the 1990s 

when negative effects of obesity were actively studied and known to public. In other words, 

the current trend in female body mass (i.e., stabilized trend) appears to be simply masked by 

the two extremes;  one of which gains weight as much as males while the other extreme loses 

weight. The polarization of body  mass can be evidenced by the fact that the prevalence of 
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overweight individuals and general trends of obesity gradually increased among Korean 

females (Kim et al., 2012; Khang and Yun, 2010). For example, Khang and Yun (2010) 

reported that between 1998 and 2007 the prevalence of adult females with a BMI ≥ 30 kg/m
2
, 

BMI ≥ 27.5 kg/m
2
, and BMI ≥ 25 kg/m

2
 had increased from 3.0% to 4.1%, from 9.9% to 

11.0%, and from 27.0% to 27.4% respectively. A similar trend could also be observed among 

female adolescents though the increments were overall less than those of adults: between 

1998 and 2008, the prevalence of overweight people and obesity increased from 11.1% to 

11.2% and from 5.1% to 5.9% respectively (Kim et al., 2012). Given this increasing 

prevalence of obesity, the fact that there was not a change in the average female body mass 

during this time period implies that the prevalence of underweight individuals has also 

increased among females. Indeed, during the same time period, it was reported that the 

prevalence of underweight (i.e., BMI < 18.5kg/m
2
) increased from 8.2% to 13.2% and from 

5.7% to 7.0% among adults and adolescents respectively (Kim et al., 2012; Khang and Yun, 

2010). This trend in females contrasts the trends observed in males. For example, among 

males in their 20s and 30s, the prevalence of underweight people (i.e., BMI < 18.5 kg/m
2
) 

decreased from 4.5% to 3.2% between 1998 and 2007, while the prevalence of BMI ≥ 25 

kg/m
2
 increased from 23.8% to 36.6%. (Khang and Yun 2010). Similar trends were also 

observed for male adolescents: between 1998 and 2008, the prevalence of overweight and 

obese males increased from 6.3% to 14.7% and from 4.6% to 8.2% respectively, while that of 

underweight decreased from 6.3% to 5.8% (Kim et al., 2012). In conclusion, while the 

average male body mass revealed an increasing trend, the average female body mass, of 

which polarization has been intensified, seemingly did not change.  

 Some researchers regard a different socio-economic status (SES) as one of the factors 

that cause polarization of body mass. For example, it has been reported that in developed 

countries female body mass is negatively correlated to SES (i.e., body mass of higher-class 

females tends to be lower than that of lower-class females), while in developing countries 

they have a positive relationship (Olszowy et al., 2012; Cardoso and Caninas, 2010; Sobal 

and Stunkard, 1989). However, it should be noted that the relationship between male body 

mass and SES is often weaker or sometimes opposite to that of females (Kim et al., 2012; 

Olszowy et al., 2012; Gupta et al., 2011; Esquivel and Gonzalez, 2010; Cardoso and Caninas, 

2010). In Korea, Yoon et al. (2006) reported that females of a higher educational background  

tend to possess lower body mass, while male body mass was higher in a high SES class. 

Despite plenty of evidence of a different response of body mass to environmental conditions 
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between sexes, the exact reason for this sex difference is not yet fully understood (Olszowy et 

al., 2012; Susanne, 1985). Nevertheless, explanations from a cultural point of view appear to 

have gained ground recently. That is, researchers state that, along with a social atmosphere 

emphasizing appearances and well-being in Korea since the 1990s, females, compared to 

males, tend to pay more attention to their body shape as well as their health, which leads 

them to make more effort for weight-control and balanced diet (Kim et al., 2012; Khang and 

Yun, 2010; Kang and Choue, 2010; Park et al., 2003; Kang et al., 1994).  

 In conclusion, based on the observations in this research, it could be said that the 

pattern of secular change in body mass does not simply follow that of stature but represents 

its own path (Kunitz, 1987). This is because, compared to stature, body mass has more room 

for fluctuation due to environmental factors in nature which appear to include not only socio-

economic status but also a cultural or even a psychological component. This complex 

property of body mass may cause confusion in the interpretation of secular change patterns, 

but at the same time, secular change studies on body mass appear still significant because 

they can supplement and enrich interpretation available from the secular change studies on 

stature.     

 

2. Stature estimation 

 In this section, some issues in the process of generating the new stature estimation 

equations are reviewed, and then discussions on 'how to apply the new equations' and 'how 

good the new equations are' are made.  

 

2.1. Issues in the process of equation development 

2.1.1. Missing bone elements 

 In both archaeological and forensic contexts, it is a natural process that skeletons are 

subject to such various taphonomic factors that may damage or disturb the skeletons and 

consequently result in missingness of bone elements (Maijanen, 2011; Cox and Bell, 1999; 

Haglund, 1997; Henderson, 1987; Waldron, 1987). Maijanen (2011) reported that only 34.1% 

of the medieval skeletons from the Westerhus collection possessed all bone elements required 

to apply the anatomical method. In addition, in examining a total of 2,717 archaeological 

skeletons in America, Auerbach (2011) reported that only 37.2% of them (i.e., 1012 

individuals) possessed complete lumbar vertebrae, which implied that the frequency of 

complete skeletons (i.e., possessing all bone elements required to apply the anatomical 
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method) would be less than 37.2%. The preservation status of skeletons found in forensic 

contexts is likely to be poorer than that in archaeological contexts mainly due to animal 

activities (Maijanen, 2011). According to the forensic case reports from the Forensic 

Anthropology Center's archives at the University of Tennessee, Knoxville, among the 59 

cases reported between 1972 and 2008, only 23.7% (i.e., 14 cases) were found in a complete 

condition without missing bone elements contributing the skeletal height (Maijanen, 2011).   

 In this research, out of 357 skeletons included in dataset 1, about 31.7% of individuals 

(i.e., 113 individuals) were in a complete condition so that their statures could be estimated 

by the anatomical method (Table 3). Considering the pattern and frequency of missing 

elements provided in the previous studies (e.g., Maijanen, 2011; Auerbach, 2011), the 

missingness of bone elements in this research does not appear to reflect any systematic bias 

but appears to be the result of the natural and random taphonomic process. Due to this 

randomness in the missingness of bone elements, the exclusion of individuals with missing 

bone elements was not anticipated to cause any systematic bias or to affect the overall results 

of this research. Thus, only the 113 individuals in a complete condition were used to develop 

stature estimation equations.   

 

2.1.2. Body proportion 

In regards to body proportions, sexual dimorphism was found in the cormic index, 

which represents the relative lower limb length to stature (Table 15). Females revealed a 

lower cormic index (i.e., ranging between 47.8 and 52.8 with the mean of 50.7) than males 

(ranging between 49.0 and 53.9 with the mean of 51.3). This indicates that females had 

shorter legs relative to stature compared to males. Thus, if sex-combined equations or male-

specific equations using lower limb bones are applied to females, the estimates are likely to 

underestimate the female statures. For this reason, male and female samples were not pooled 

in the process of equation development. Except for the sexual differences, there was not 

found any regional or temporal difference in the cormic index. One thing to note here is that 

the cormic index presented in this research (i.e., the ratio of the sum of the femur and tibia 

lengths to the skeletal height) is not directly comparable to the cormic index generally used in 

the anthropometric studies which is calculated as the ratio of the sitting height to the standing 

height. It is because the ways of calculating the indices differ to each other although both 

indices can be eventually interpreted as the relative limb length to stature.   
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 As for the crural index, the relative tibia length to the femur length, there was not 

found a difference between time periods, regions, and even sexes (Table 15). The crural 

index did not show a wide variation across time periods or regions ranging between 80.0 and 

81.3 except one group (i.e., the samples coming from the Eastern part in the dataset 1), of 

which crural index was 79.5. However, as mentioned earlier, this exceptionally low index 

appears to be simply due to a small sample size of the group (i.e., n = 9). In fact, the relative 

stable crural index in the Korean populations was not unexpected. As Auerbach and Ruff 

(2010) state, the crural index is known to be robust to environmental conditions such as 

nutrition and subsistence as far as population structure does not change, and as genetic 

studies showed, the genetic variation within the Korean population is marginal (Jung et al., 

2010). In other words, due to the homogeneous genetic background, the body proportion 

represented by the crural index has remained constant across time periods and regions. Lastly, 

although some researchers have raised the need to develop the stature estimation equations 

for tall people and short people separately due to the difference in crural index depending on 

their statures (i.e., tall people tend to have higher crural index and vice versa) (Maijanene, 

2009, 2011; Duyar and Pelin, 2003; Jantz and Jantz, 1999), such trends were not detected in 

the Korean sample (i.e., Spearman's rank correlation coefficients, p = 0.377 and p = 0.163 for 

females and males respectively). Thus, stature-group-specific equations were not generated in 

this research.  

 Homogeneous body proportion allowed for the pooling of samples of different time 

periods and regions together in order to develop equations for stature estimation. Also, it 

allows for the application of the new equations to a wide range of Korean skeletons 

regardless of their time periods and regions, which will be discussed in more detail in a later 

paragraph.   

 

2.1.3.Validity test of the new equations 

 In this research, the stature estimation equations could not be developed by directly 

regressing bone dimensions on the living statures due to a small number of skeletons of 

which antemortem information is documented. Instead, it was decided to regress the bone 

dimensions on the anatomically reconstructed statures, which is known as the hybrid method 

(Ruff et al., 2012a). Since the equation derived by the hybrid method is not developed based 

on the 'actually known stature' but on the 'estimated stature', the accuracy of the equation is 

less accurate than the equation derived directly from the known living statures. Thus, in 
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developing equations using the hybrid method, it is critical to verify that the final estimates 

by the equations are accurate without bias. In this research, the validity of the new equations 

was verified in two ways. At first, using the five skeletons of which antemortem statures were 

known, it was confirmed that the anatomical method (i.e., the equation 1 of Raxter et al. 

(2006)) produced unbiased estimates with as small %PE as 0.44% (Table 14). To confirm the 

accuracy of the anatomically reconstructed statures is important because if the estimated 

statures are biased, the equations which are based on those statures will also be biased. Since 

it was verified that the anatomical method produced unbiased estimates for Korean skeletons, 

it could be justified to apply the equation 1 of Raxter et al. (2006) to the Korean skeletons to 

make up the reference sample, from which the new equations could be derived. Secondly, the 

accuracy of the final estimates by the new equations were also verified by comparing the 

mean stature of the Korean War casualties reconstructed by the new equations to the reported 

mean stature of the conscripts during the Korean War. Although the former consisted of the 

osteometric data from the skeletal remains and the latter of anthropometric data from living 

people, both data were regarded to come from the identical population because both of them 

represented the Korean male conscripts in the early 1950s. In fact, the results showed only a 

marginal discrepancy (i.e., less than 0.5cm) between the mean stature estimated by the new 

equations and the reported mean stature. Thus, it was concluded that the estimates by the new 

equations were highly accurate.  

 

2.2. Employment of the new stature equations 

2.2.1. Applicability of the new equations 

 Trotter (1970) emphasized that, to obtain an accurate stature estimate of an unknown 

skeleton, one should choose the equation "derived from a representative sample of the 

population of the same sex, race, age, geographical area, and time period to which the 

unknown is believed to belong" (p.82). The factors that Trotter (1970) listed are understood 

as the ones that might cause a difference in body proportions. Thus, it can be thought that the 

applicability of stature estimation equations is limited primarily due to the difference in the 

body proportion between a reference sample and a target sample. In other words, as far as 

two samples share the same body proportions, stature estimation equations devised from one 

sample can produce appropriate estimates for the other.  
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Temporal applicability of new equations 

 In terms of the time period to which the new equations can be applied, the new 

equations are thought to be applicable not only to the 20th century and the Joseon period, 

from which the reference sample was drawn, but also to the pre-Joseon period such as the 

Goryeo period and the Three Kingdom period. This is because, as seen in the Table 15, there 

is not a significant difference in body proportions, represented by the cormic and crural 

indices, between time periods. The relative lower limb length to stature (i.e., cormic index) 

and the ratio of the lower leg to thigh (i.e., crural index) has remained constant within the 

range of 51-51.6 and 80-81.1 respectively in the Korean population through time.  

 

Geographical applicability of new equations 

 In terms of the geographic regions, the new equations are thought to be applicable to 

skeletal remains found anywhere in South Korea. No difference in the body proportions 

between the middle and Southern part of Korea was found. Yet, when dataset 1 being used, 

there found a slightly significant level of difference (p = 0.44) in the crural index between the 

samples of the Eastern and Western part of Korea, though not in the cormic index. However, 

as explained earlier, the difference appears to be simply due to the big difference in the 

sample size representing each part (i.e., nine and 98 individuals for the Eastern and Western 

part respectively). Hayes (2000) points out that the type I error rate for the randomization test 

is affected by several factors such as the distribution of populations, sample size, and 

difference in the sample size as well as in population variances. In particular, the difference 

in sample size, the more the sample size differs, the lower the type I error rate is, thus the 

more conservative the results will be (i.e., more likely to reject the null hypothesis). In fact, in 

dataset 3, where the sample size of each part is relatively similar (i.e., 132 and 95 individuals 

for the Eastern and Western part respectively), no difference in body proportion was detected 

between the Eastern and Western part of Korea. Thus, it was concluded that there is not a 

geographic difference in the body proportion of Korean population, and thus the new 

equations can be applied to the skeletons from any part of South Korea.  

 

Bone size to which the new equations are applicable  

 The applicability of the new equations can also be limited by the bone size of the 

target sample because of the issue of extrapolation. One of the important assumptions in 

applying the linear regression equation is to avoid extrapolation (Zar, 2010; Field, 2009). 
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Extrapolation indicates the situation where a Y value is estimated from an X value that is out 

of the range of the reference sample. The reason that extrapolation should be avoided is 

because the relationship between X and Y variables may not be linear outside of the reference 

sample any more. Figure 92 depicts two variables of a curvilinear relationship, and the 

rectangle denotes the range of the reference samples for a regression equation. Despite the 

true relationship between the two variables (i.e., curvilinear relationship), it appears that the 

two variables have a nearly linear relationship within the rectangle area. Thus, it would not be 

problematic to estimate a Y value corresponding to X1 using the equation derived from the 

data within the rectangle area. However, there will be a significant error if a Y value 

corresponding to X2 is estimated using the same equation. This is because the two variables 

do not have a linear relationship outside of the rectangle area. 

 

 

Figure 92. An exemplified diagram showing a tentative problem regarding extrapolation. 

 

 In particular, the estimation of statures using bone dimensions may be more 

susceptible to issue of extrapolation due to the allometric relationship between stature and 

bone dimensions (Auerbach and Sylvester, 2011; Hens et al., 2000; Jantz and Jantz, 1999; 

Meadows and Jantz, 1995; Aiello, 1992; Jungers, 1982). Simply put, allometry describes the 

relative size changes in different body parts to the overall body size (Hens et al., 2000; 

Jungers, 1982). For example, an increase of one's stature by 10% is not necessarily 
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accompanied by 10% increase in size of the individual's every bone element. Some bone 

elements may exhibit more than 10% increase (i.e., positive allometry) and other bone 

elements less than 10% increase (i.e., negative allometry). In fact, all major limb elements 

(i.e., humerus, radius, femur, and tibia) reveal a positive allometry in the relationship to 

stature (Auerbach and Sylvester, 2011), which means that tall people tend to possess longer 

limbs than expected under the assumption of an isometric relationship between stature and 

the limbs and vice versa. Figure 93 shows the regression lines exemplifying the positively-

allometric relationship between stature and bone size. It should be noted that the slopes of the 

regression lines differ depending on the overall body size. That is, due to the positive 

allometric nature, when bone dimensions are regressed on stature, the slopes of the small and 

large-sized people are bigger than that of the medium-sized people ((a) in Figure 93), and 

when stature is regressed on bone dimensions, the slopes of the small and large-sized people 

are smaller than that of the medium-sized people ((b) in Figure 93).  

 Thus, when a reference sample consists of any specific-sized individuals, applying the 

equations from the reference sample to the extrapolated sample is likely to result in a serious 

bias in the estimate due to the allometric relationship between stature and bone dimensions. 

Because of this risk of extrapolation, one should ascertain whether the target sample belongs 

to the range of the reference sample prior to applying the equation. For example, since the 

maximum femoral lengths of males ranged 38.8 - 46.6cm in the reference sample of this 

research, it is not recommended to apply the new equations to a femur of which length is less 

than 38.8 cm or larger than 46.6cm. The descriptive statistics presented in the Table 9 should 

be referred to for this purpose. 

 

2.2.2. Age correction 

Estimating the maximum living stature at the age of 20 

 When estimating stature of a skeleton, one may want to obtain the maximum living 

stature or the stature at death. These two types of stature may differ because adult stature 

begins to decline at some point of one's life due to aging. Which type of stature needs to be 

estimated depends primarily on the purpose of stature estimation (Niskanen et al., 2013; Ruff 

et al., 2012a; Maijanen and Niskanen, 2010). In general, estimating the stature at death is 

aimed for the skeletons found in forensic contexts, because the primary purpose of stature 

estimation in forensics is to reconstruct the biological profile of an unidentified individual at 

the time of death through which the individual can be identified. Yet, for the skeletal remains  



 

 

196 

 

(a) 

 

 

(b) 

Figure 93. Diagram showing the positively-allometric relationship between stature and bone 

size (a) when bone dimension are regressed on stature, and (b) when stature is regressed on 

bone dimensions. Note that the slopes differ depending on the body size (i.e., small, medium, 

and large-sized people).  
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excavated in the archaeological context, estimating the maximum living stature is generally 

regarded as more appropriate (Niskanen et al., 2013; Maijanen, 2011).  

 Although it was possible to develop the equations for each type of stature estimation 

separately, since the preliminary test showed that there was not a significant 

differencebetween the equations (results not presented in this research), only the equations 

for the maximum stature estimation were provided in this research. In other words, the new 

equations were developed by regressing bone dimensions on the stature at the age of twenty, 

when people are likely to attain their maximum statures without experiencing stature loss due 

to aging. Thus, in theory, when estimating one's stature using the new equations, the 

estimated stature should represent the maximum stature that the individual would attain 

during his or her life.  

 Yet, at this point, it appears necessary to ask this question: are the new equations 

really based on the maximum living stature? As explained earlier, in this research, the 

maximum living statures (i.e., stature at the age of 20) of the reference sample was obtained 

by entering the number, 20, in the age term of equation 1 of Raxter et al. (2006). It was 

expected that the whole stature loss by aging could be compensated for by this process, but, 

in fact, substituting '20' for the actual ages can compensate for only the stature loss in the soft 

tissues not in the skeletal height. It is because, in equation 1 of Raxter et al. (2006), the 

skeletal height reduction should be intrinsically incorporated in the process of bone 

measurements, and thus, is not considered again by the age term. Thus, for example, when we 

are to estimate the maximum stature of a 60-year-old individual using the equation 1 of 

Raxter et al. (2006), entering '20' in the age term does not help with compensating for the 

skeletal height reduction, and thus, the estimated stature is likely to be the 'underestimated 

maximum stature at the age of 20' without consideration of the stature loss in the skeletal 

height. As such, in theory, since the anatomically reconstructed statures (i.e., presumably the 

maximum stature at the age of 20) are underestimated, the stature estimates by the new 

equations based on these underestimated statures will also be underestimated. It is anticipated 

that the more aged individuals are involved in the reference sample, the bigger the degree of 

underestimation would be.  

 However, it was believed that the effect of not considering the skeletal height 

reduction in calculating the maximum statures was trivial in this research for three reasons. 

At first, the reference sample of this research consisted of relatively young individuals who 

were less likely to experience a severe stature loss in the skeletal height. The mean age of the 
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reference sample is 39.5 years (SD = 11.6) and 42.3 years (SD = 10.6) for females and males 

respectively. As mentioned earlier, there still exist debates on the initial timing of stature 

shrinkage. For example, Trotter and Gleser (1951) reported that stature loss could be 

observed at the age of 31 or higher, but Giles (1991) states that stature begins to decline in 

the mid 40s (i.e., 48 years and 46 years for females and males respectively). Thus, it appears 

uncertain whether the individuals in the reference sample experienced stature loss and, if so, 

how many of them experienced it. In addition, it has been known that the skeletal height 

reduction commences later than the reduction in the soft tissues (Niskanen et al., 2013). That 

is, even though an individual experiences a stature loss, it does not directly mean that the 

skeletal height of the individual declines too. Thus, given the relatively young age structure in 

the reference sample, it appears unreasonable to assume that there was a significant level of 

skeletal height reduction in this reference sample.   

 Secondly, even when some individuals in the reference sample actually experienced 

the skeletal height reduction to a degree, the effect of reduction on the reconstruction of the 

anatomical stature would have been minimized due to the current method of measuring the 

vertebral body heights, which primarily contributes to the skeletal height reduction. This is 

because the reduction of vertebral body heights is known to be most evident at the anterior 

midline (Maijanen, 2011), but the current method does not necessarily measure the vertebral 

body heights around the anterior midline but anywhere between the anterior midline to the 

pedicles. Thus, even when the skeletal height reduction occurs (i.e., when vertebral bodies are 

compressed around their anterior midlines), its effect might not be noticeable in calculating 

the skeletal heights for the skeletons of most age ranges. 

 Lastly, even when the skeletal height reduction occurred in the reference sample and 

the reduction could be reflected in the skeletal height calculation, its effect on the final 

estimate would be marginal. Based on the age correction factor of Trotter and Gleser (1951a) 

(i.e., decline at the rate of 0.06cm/year), Raxter et al. (2006) speculated that about 2/3 of 

stature reduction (i.e.,      
 

 
 = 0.0426cm/year) is attributed to the reduction in the soft 

tissues and the remaining 1/3 (i.e., 0.06 - 0.0426 = 0.0174cm/year) attributed to the reduction 

in the skeletal height. Assuming that the speculation of Raxter et al. (2006) is correct, since 

the magnitude of skeletal height reduction is conjectured as small as 0.0174cm per year, even 

if we do not take into account the skeletal height reduction, say, for 30 years, it only makes 

an as small difference as 0.522cm in the final stature estimates. This magnitude of effect does 

not appear to have a practical significance.  
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 For these three reasons, it was concluded that the anatomically reconstructed statures 

by entering '20' into the age term could be regarded as the maximum living statures one 

would have attained at the age of 20, and thus the new equations based on these statures 

would produce the maximum statures.  

 

Applying age adjustment factor to obtain the stature at death 

 Since the new equations in this research produce maximum living statures, if one 

wants to obtain maximum statures, the new equations can be applied without any other 

consideration. If the stature at death should be obtained, however, some age adjustment 

factors should be considered. Yet, as explained in the Literature Review chapter, there still 

exist debates on the age when stature shrinkage begins, the magnitude or the rate of shrinkage, 

and whether or not sexual difference exists in the timing and the rate of shrinkage. In fact, the 

age adjustment factors suggested by previous researchers have their own strong and weak 

points (e.g., Giles, 1991; Cline et al., 1989; Galloway, 1988; Borkan et al., 1983; Trotter and 

Gleser, 1951a), so researchers tend to choose a certain criteria depending on the theoretical 

backgrounds or materials used in their own research (Ruff et al., 2012a; Pak et al., 2011; 

Raxter et al., 2008; Raxter et al., 2006). In this research, when an age adjustment being 

necessary in applying the new equations (e.g., in the forensic context), I suggest to apply the 

age adjustment factor of 0.0426cm per year for any skeletons of which age is older than 20 

years. In other words, the stature at death can be obtained as below.  

 

StatureDeath = Stature20 - 0.0426 (age - 20) 

(where StatureDeath is the stature at the time of death with the actual age taken into account 

and Stature20 is the stature at the age of twenty obtained by simply applying the new 

equations in this research)   

 

 The magnitude of age adjustment (i.e., 0.0426cm/year) is the same as the coefficient 

of the age term in the equation 1 of Raxter et al. (2006). Yet, it should be noted that Raxter et 

al. (2006) explained that the coefficient of the age term indicates the stature shrinkage only 

attributed to the soft tissue reduction because the reduction in the skeletal height (e.g., 

vertebral body height depression), as mentioned above, is intrinsically taken into account in 

the process of measuring bone dimensions of the anatomical method. Then, when the age 

adjustment factor of 0.0426cm/year is applied to the maximum living stature, obtained by the 
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new equations, it can be said that the final estimate (i.e., the stature at death) considers only 

the stature loss in the soft tissues not in the skeletal height. Yet, using the age adjustment 

factor of 0.0426cm can be still justifiable for three reasons.  

 At first, as stated above, it appears controversial to determine exactly when the 

skeletal height reduction commences. What has been reported is that the skeletal height 

reduction contributes to stature shrinkage much later than the soft tissue reduction (Niskanen 

et al., 2013). Thus, even though stature loss occurs, we may conclude that there is no 

reduction in the skeletal height for a time being, as such only reduction in the soft tissues 

needs to be considered.  

 Secondly, not to consider the skeletal height reduction in estimating stature at death 

does not appear to have a practical meaning in terms of the final estimates. It was mentioned 

earlier that Raxter et al. (2006) speculated that the magnitude of skeletal height reduction is 

conjectured as small as 0.0174cm per year assuming that the age correction factor of Trotter 

and Gleser (1951a) was correct. Thus, even if we do not take into account the skeletal height 

reduction, say, for 30 years, it only makes a as small difference as 0.522cm in the final stature 

estimates, which does not appear to have a practical meaning .  

 Lastly, most importantly, we can obtain the stature closest to the anatomically 

reconstructed stature at death by applying the age adjustment factor of 0.0426cm/year (i.e., 

by subtracting '0.0426cm (age - 20)' from the maximum living stature). This is because, in 

theory, the maximum living statures in the reference sample, against which bone dimensions 

were regressed, were obtained by adding '0.0426cm (age - 20)' to the stature at death (i.e., 

by substituting '20' for the age at death when calculating the anatomical statures using the 

equation 1 of Raxter et al. (2006)). As seen in Table 17, the %PEs of the new equations were 

less than 0.001% when the predicted statures were compared to the maximum living statures. 

However, when the predicted statures estimated by the new equations were compared to the 

anatomically reconstructed stature at death (i.e., when the equation 1 of Raxter et al. (2006) 

being applied with the actual age at death), the %PEs of the new equations varied between -

0.5588% and -0.597% (Table 25).  

 Since the %PE was calculated by the formula, '[(true stature - expected stature) 

 100]/expected stature', the negative sign of %PE indicates that the new equations 

overestimated the stature at death. Also, the absolute values of %PEs indicates the magnitude 

of overestimation due to not considering the age adjustment. If the %PEs in Table 25 were  
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Table 25. Percent prediction error of equations when compared to the stature at death.  

Bone dimension used in equation Female Male 

n %PE
1
 n %PE

1
 

Femoral maximum length 50 -.5857 63 -.5589 

Femoral physiological length 50 -.5855 63 -.5588 

Spino-malleolus length of tibia 50 -.5861 63 -.5609 

Condylo-malleolus length of tibia 50 -.5861 63 -.5608 

Sum of femoral maximum length and 

spino-malleolus length of tibia  
50 -.5860 63 -.5600 

Sum of femoral maximum length and 

condylo-malleolus length of tibia 
50 -.5860 63 -.5599 

Humeral maximum length 45 -.5953 55 -.5610 

Radial maximum length 44 -.5970 59 -.5916 

Sum of humeral maximum length and 

radial maximum length 
41 -.5958 55 -.5944 

1
 (true - expected)  100/expected 
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recalculated after applying the age adjustment factor of 0.0426cm/year to the estimates 

obtained by the new equations, the %PEs become close to zero again (i.e., less than 0.001%) 

(results not presented here). Thus, it can be said that applying the age adjustment factor of 

0.0426cm/year to the maximum living stature yields the best approximation of the 

anatomically reconstructed stature at death.  

 

2.3. Accuracy rates of the new stature equations 

2.3.1. Comparison of new equations to previous ones 

 In this research, the accuracy of the new equations was compared to that of the 

equations developed from four previous studies: Pearson (1899), Trotter and Gleser (1958), 

Fujii (1960), and Choi et al. (1997). These four sets of equations were selected because they 

have been used for stature estimation of Korean skeletons in the literature at least once. As 

mentioned earlier, since Trotter and Gleser (1958) and Choi et al. (1997) did not provide 

female equations, the new equations for female skeletons were compared to only those of 

Pearson (1899) and Fujii (1960).  

 The results showed that the new equations produced most accurate and precise 

estimates among the equations under comparison, though the estimates produced by the 

previous equations also showed a decent level of accuracy and precision. The %PEs of the 

new equations were all less than 0.001%, which meant that the estimates provided by the new 

equations were very accurate and unbiased (Table 17). The %SEEs were less than 2% except 

for the equation using the humeral maximum length (HuL) and the radial maximum length 

(RaL) (Table 17). Particularly the %SEEs of the equations using the lower limb bones were 

1.37 - 1.74% and 1.26 - 1.49% for female and male equations respectively, which indicated 

that the estimates by the new equations were very precise. Any equations from the previous 

studies did not reveal lower %PEs or %SEEs than the new equations. These results were not 

unexpected because the new equations are the "customized" equations for the Korean 

samples of this research in the terminology of Raxter et al. (2008). Therefore, the conclusion 

is that the new equations developed in this research are the most appropriate equations for 

stature estimation of Korean skeletal remains. In the following paragraphs, detailed 

comparison of the performance between the previous studies are made to provide the 

magnitude of errors associated with each equation set when they are applied to Korean 

samples.   
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Female equations 

 Overall, the female equations from the previous studies produced decent results not 

only in accuracy but also in precision. In both Pearson (1899) and Fujii (1960), the mean 

differences between true stature and predicted statures were less than 2.5cm, and the SEEs 

were less than 4cm except for the Fujii (1960) equation using the humeral maximum length 

(4.043cm) (Table 17). 

 When comparing the two studies, the results showed that the equations of Pearson 

(1899) produced, overall, more accurate estimates compared to those of Fujii (1960). Namely, 

the %PEs of the Pearson (1899) equations tend to be lower than those of Fujii (1960) 

equations (Table 17). The equations of Pearson (1899) tend to underestimate the true statures 

(i.e., positive %PE) except for the radius equation, but the magnitude of error was less than 1% 

with the %PEs ranging between -0.41% and 0.95% (Table 17). The highest and the 

lowest %PEs were found in the humerus equation and the radius equation respectively. The 

equations using the femoral maximum length (FeL1) and the condylo-malleolus length of 

tibia (TiL2), which have been frequently used in the literature, showed an almost 

identical %PEs (i.e., 0.73% and 0.72% respectively). Thus, for example, if a female stature 

estimated by the femur equation (i.e., equation using FeL1) of Pearson (1899) is 160cm, we 

may think that the true stature would be 161.168cm (i.e., 160 + 160 0.0073). The Fujii (1960) 

equations showed all positive %PEs which indicated that the equations systematically 

underestimated the true statures. Except for the equations using the femoral physiological 

length (FeL2) and the condylo-malleolus length of tibia (TiL2), of which %PEs are 0.42% 

and 0.99% respectively, the magnitude of the underestimation was bigger than 1% in Fujii 

(1960) equations. The highest (i.e., 1.59%) and the lowest (i.e., 0.42%) %PEs were found in 

the equations using the femoral physiological length (FeL2) and the humeral maximum 

length (HuL) respectively. In addition to the %PE, the %SEEs of the Pearson (1899) 

equations were similar to or lower than those of the Fujii (1960) equations (Table 17). For 

example, the %SEEs of the equations using the femoral maximum length (FeL1), the 

condylo-malleolus length of tibia (TiL2), the humeral maximum length (HuL), and the radial 

maximum length (RaL) were 1.96%, 1.81%, 2.43% and 2.31% in Pearson (1899), while 

1.95%, 1.95%, 2.72% and 2.68% in Fujii (1960). It means that the stature estimate by 

Pearson (1899) is expected to be not only more accurate but also more precise than that by 

Fujii (1960). Thus, if one is to choose an equation between Pearson (1899) and Fujii (1960) 

for stature estimation of Korean female skeletons, it appears appropriate to choose the former.  
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Male equation 

 As with the female equations, overall, the male equations from the previous studies 

revealed a decent level of accuracy and precision. The mean differences between the true 

statures and the predicted statures were less than 3cm except for four equations (i.e., one from 

Trotter and Gleser (1958) and three from Fujii (1960)) (Table 17). It means that most male 

equations do not over- or underestimate the mean stature of a population by more than 3cm. 

In terms of the %PE, the magnitude of the over- or underestimation was less than 2% except 

for one equation (i.e., the humerus equation of Fujii (1960)). The SEEs were 4.73cm or less, 

which were overall higher than those of the female equations, but when considering that the 

highest SEE of the new male equation was 3.3cm, the SEEs of the previous studies could be 

thought of as decent.  

 Comparing the four studies, the most accurate estimates could be obtained from the 

femur equation (i.e., using the femoral maximum length) of Choi et al. (1997). The %PE of 

the equation was as small as 0.05%, which indicated that the equation almost completely fit 

the samples used in this research. The tibia equation (i.e., using the spino-malleolus length of 

tibia) of Choi et al. (1997) revealed a bit larger %PE (i.e., 0.32%) than the femur equation but 

it is still lower than the %PEs of any other equations using lower limb bones. Contrary to the 

lower limb equations, the upper limb equations of Choi et al. (1997) did not yield accurate 

estimates compared to other studies. As to the upper limb equations, the Pearson (1899) 

equations produced the most accurate estimates with the %PEs of 1.5% and 0.23% in the 

humerus and the radius equations respectively. The good performance of the Choi et al. (1997) 

equations using the lower limb bones was not surprising because they were based on the 

Korean skeletal samples. Rather, it appears necessary to investigate the reason why the upper 

limb equations of Choi et al. (1997) produced such biased estimates with the %PEs of -1.68% 

and -1.22% in the humerus and the radius equations respectively. When comparing the 

accuracy of the methods of Trotter and Gleser (1958) and Fujii (1960), it was found that the 

former systematically overestimated the true statures whereas the latter systematically 

underestimated them. In addition, generally, the former produced more accurate estimates 

than the latter except for the equation using the femoral maximum length (FeL1). The %PEs 

of the Trotter and Gleser (1958) equations ranged between -0.78% (in the equation using the 

condylo-malleolus length of tibia) and -1.84% (in the equation using the humeral maximum 

length), while those of Fujii (1960) equations between 0.78% (in the equation using the 

femoral physiological length) and 2.23% (in the equation using the humeral maximum 



 

 

205 

length). The %SEEs were also lower in the Trotter and Gleser (1958) equations than in the 

Fujii (1960) equations except for the equation using the femoral maximum length (FeL1). In 

sum, if one is to choose an equation among the four studies for stature estimation of Korean 

male skeletons, it is recommended to choose the lower limb equations of Choi et al. (1997). 

Yet, if only upper limbs are available, the Pearson (1899) equations are expected to produce 

less biased and more precise estimates than other studies.  

 

2.3.2. Issue of applying the male equations to female samples 

 While reviewing the literature, it could be often observed that the female statures were 

estimated by the Trotter and Gleser (1958) equations. Yet, as mentioned earlier, Trotter and 

Gleser (1958) provided the stature estimation equations only for males and not for females. 

Although it was suspected that unexpected errors would be produced in the process of 

applying the male equations to female samples, there has not been effort to verify the errors 

thus far. Thus, in order to quantify the hidden errors involved in applying the male equations 

to female samples, the %PEs of the Trotter and Gleser (1958) equations, when they were 

applied to female samples, were calculated.  

 The results revealed that the Trotter and Gleser (1958) equations all significantly 

overestimated the female statures. The mean difference between the true statures and the 

predicted statures ranged between -5.2cm (in the radius equation) and -7.8cm (in the humerus 

equation), which means that the equations would overestimate the female statures by 5.2 - 

7.8cm on average (Table 26). Even the equation using the femoral maximum length, which 

has been most frequently used in the literature, overestimates the female statures by about 

6.5cm. The %PEs of the equations ranged between -3.4% (in the equation using the sum of 

the humeral maximum length and the radial maximum length) and -5.0% (in the equation 

using the humeral maximum length), which also implied a significant level of overestimation.  

 Figures 94 - 99 show the relationship between the true female statures and the 

predicted statures by the Trotter and Gleser (1958) equations. In each diagram, two 

regression lines are present, one of which (i.e., solid line) is that of Trotter and Gleser (1958) 

equation and the other which (i.e., long-dotted line) is that of the new equation. With a couple 

of exceptions, in Figures 94 - 99, data points are located under the regression line of Trotter 

and Gleser (1958), which indicates that the Trotter and Gleser (1958) equations 

systematically overestimate the true statures. In Figures 93, 94, 96, and 97, the vertical small-

dotted lines represents the 95% range of bone size used in Trotter and Gleser (1958). The 95%  
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Table 26. Errors produced by applying the Trotter and Gleser (1958) equations to female 

samples.  

Bone dimension n Mean difference (cm)
1
 %PE

2
 

Femoral maximum length 50 -6.529 -4.2182 

Condylo-malleolus length of tibia 50 -6.7357 -4.3399 

Sum of femoral maximum length and 

condylo-malleolus length of tibia 
50 -6.3430 -4.1019 

Humeral maximum length 45 -7.7918 -4.9748 

Radial maximum length 41 -5.1758 -3.6562 

Sum of humeral maximum length and 

radial maximum length 
44 -5.6430 -3.3636 

1
 True stature - expected stature. 

2
 (true - expected)  100/expected. 
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Figure 94. Relationship between true female stature and the predicted stature by the Trotter 

and Gleser (1958) equation using the femoral maximum length. The solid line represents the 

regression equation of Trotter and Gleser (1958), and the long-dotted line the new equation 

fit to the sample. The two vertical short-dotted lines indicates the 95% range of the referenced 

bone size used in Trotter and Gleser (1958).  

 

 

Figure 95. Relationship between true female stature and the predicted stature by the Trotter 

and Gleser (1958) equation using the condylo-malleolus length of tibia. The solid line 

represents the regression equation of Trotter and Gleser (1958), and the long-dotted line the 

new equation fit to the sample. The two vertical short-dotted lines indicates the 95% range of 

the referenced bone size used in Trotter and Gleser (1958).  
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Figure 96. Relationship between true female stature and the predicted stature by the Trotter 

and Gleser (1958) equation using the sum of the femoral maximum length and the condylo-

malleolus length of tibia. The solid line represents the regression equation of Trotter and 

Gleser (1958), and the long-dotted line the new equation fit to the sample.  

 

 

Figure 97. Relationship between true female stature and the predicted stature by the Trotter 

and Gleser (1958) equation using the humeral maximum length. The solid line represents the 

regression equation of Trotter and Gleser (1958), and the long-dotted line the new equation 

fit to the sample. The two vertical short-dotted lines indicates the 95% range of the referenced 

bone size used in Trotter and Gleser (1958).  
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Figure 98. Relationship between true female stature and the predicted stature by the Trotter 

and Gleser (1958) equation using the radial maximum length. The solid line represents the 

regression equation of Trotter and Gleser (1958), and the long-dotted line the new equation 

fit to the sample. The two vertical short-dotted lines indicates the 95% range of the referenced 

bone size used in Trotter and Gleser (1958).  

 

 

Figure 99. Relationship between true female stature and the predicted stature by the Trotter 

and Gleser (1958) equation using the sum of the humeral maximum length and the radial 

maximum length. The solid line represents the regression equation of Trotter and Gleser 

(1958), and the long-dotted line the new equation fit to the sample.  
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range of bone size was reconstructed using the mean and standard deviation of each bone 

dimension (i.e., mean  1.96 SD) which are provided in the original paper (Trotter and Gleser, 

1958, p.84-85). For the sake of convenience, only the information of the right side was used. 

It is noticeable that most of the data points lie outside of the 95% range of the referenced 

bone size, which implies that Korean females are mostly the extrapolated cases. Also, the 

slopes of the Trotter and Gleser (1958) regression lines are all smaller than those of the new 

equations, which reflects the allometric relationship between stature and bone size. As 

explained earlier, in the case of positive allometry, the slope for the large-sized people (i.e., 

the reference sample of Trotter and Gleser (1958)) is smaller than that of the medium-sized 

people (i.e., the Korean female sample) (Figure 93 (b)). Due to the positive allometry, the 

relationship between stature and limb bones in the reference sample of Trotter and Gleser 

(1958) did not hold same to the extrapolated Korean female samples, which resulted in the 

seriously large %PEs. In sum, it can be concluded that applying the Trotter and Gleser (1958) 

equations to Korean female samples should be avoided because it produces significantly 

biased estimates due to the combinatory effect of extrapolation and allometric relationship 

between stature and bone size.  

 

3. Body mass estimation 

 In this section, an issue in the process of generating the new equations for body mass 

estimation is reviewed, and then discussions on 'how to apply the new equations' and 'how 

good the new equations are' are made.  

 

3.1. Issues in the process of equation development 

 In this research, the body mass estimation equations could not be generated by 

directly regressing the bone dimension (i.e., femoral head breadth) on the actual body mass 

due to the lack of the documented information on the body mass of skeletal remains. Thus, 

the hybrid method was used to develop the new equation for body mass estimation in this 

research. Namely, the new equations were developed by regressing the femoral head breadth 

on the body mass estimated by the morphometric method (i.e., the method in Ruff et al. 

(2005)), which was assumed to be the actual body mass. Yet, it appeared necessary to verify 

that any serious bias did not occur in this process because any validity test for the hybrid 

method has not been conducted for the Korean skeletal remains. Due to the lack of the 

informed samples, the validity test was performed in an indirect manner: comparing the mean 
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body mass of the Korean War casualties estimated by the new equations to that of the Korean 

conscripts during the Korean War. Although the former was based on  osteometric data while 

the latter based on anthropometric data, it was expected that mean values would be quite 

similar because both samples shared the same background in terms of sex (i.e., males), time 

period (i.e., during the Korean War), and regions (i.e., across the South Korea). However, it 

turned out that the mean body mass calculated from the osteometric data (i.e., 63.1kg) was 

significantly higher than that from the anthropometric data (i.e., 56.8kg) by 4.5kg. That is, the 

new equations overestimated the true body mass by 4.5kg. Since the hybrid method consists 

of two phases (i.e., reconstructing body mass by the morphometic method and then regressing 

the femoral head breadth on the morphometrically reconstructed body mass), the discrepancy 

might occur either in the first or the second phase of the process. In order to seek a way to 

deal with this discrepancy, it was necessary to determine the phase which caused the 

discrepancy as well as the reason for the discrepancy. In this research, the overestimation of 

4.5kg of the new equations appeared to be due to the overestimation in the morphometrically-

reconstructed body mass (i.e., in the first phase of the hybrid method) for the following 

reasons. Namely, it was thought that since the morphometric method produced the 

overestimated body mass for the Korean population, the new equations, which were based on 

the overestimated body mass, also overestimated the true body mass of the Korean skeletal 

remains as much as the morphometric method did.  

 As mentioned earlier, the morphometric method, suggested by Ruff et al. (2005), is 

based on the cylindrical model, where the weight of the cylinder can be calculated from the 

shape of the cylinder, which is represented by its height (i.e., stature) and breadth (i.e., bi-

iliac breadth). Yet, there is an important assumption for the world-wide applicability of the 

morphometric method or the cylindrical model, which is that the density of the cylinder or the 

body composition of people should be constant across populations. Since the weight of a 

cylinder is calculated by multiplying its density by its volume, even though two cylinders 

have the same volume (i.e., same height and breadth), if the density differs each other, their 

weight cannot be the same. Yet, a difference in the body composition between populations, 

particularly between Asians and non-Asians, has been reported. Deurenberg et al. (2002) 

reported that the body fat percent (BF%) of Asians are higher than that of Caucasians of the 

same BMI by 3 - 5% points, and thus, for the same BF%, the BMI of Asians is lower than 

that of Caucasians (Deurenberg et al., 2002). For this reason, if there are Asian and non-

Asian people of the same shape (i.e., same stature and body breadth), the body mass of the 
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Asians should be lower than that of the non-Asians because the former possesses higher 

percentage of fat which is lighter than the muscle mass. In this regard, the International 

Obesity Taskforce of World Health Organization (WHO) provided different BMI standards 

of obesity for the Europids and Asians : BMI ≥ 30 for the Europids and BMI ≥ 25 for the 

Asians (Inoue et al., 2000). Due to the difference in the body composition, in theory, if the 

morphometric method devised from the non-Asian samples is applied to the Asian samples, 

the body mass of the Asians is anticipated to be overestimated. Then, can we say that the 

morphometric method by Ruff et al. (2005) was based on non-Asian samples? Although it is 

true that the world-wide samples were used in developing the morphometric method, it was 

noticed that the Asian region was represented by only one population, Japanese (Ruff et al., 

2005; Ruff, 1994), which means that the method was based mostly on non-Asian samples. 

Moreover, when the morphometric method was applied to the referenced Japanese sample 

using the stature and bi-iliac breadth data provided in Ruff (1994), interestingly, the body 

mass was overestimated by 6.2kg and 4.7kg for females and males respectively. For these 

reasons, it was concluded that when the morphometric method suggested by Ruff et al. (2005) 

was applied to the Korean samples, the body mass of Korean people tended to be 

overestimated. In addition, as to the amount of overestimation, as explained above, it was 

assumed that there was 4.5kg of overestimation based on the discrepancy between the two 

sets of Korean War-related samples (i.e., discrepancy between the mean body mass 

calculated from the osteometric data (i.e., 63.1kg) and the mean body mass reported from the 

anthropometric data (i.e., 56.8kg)), although it appears necessary to examine the exact 

discrepancy again in the future.  

 To correct the overestimation issue, the body mass estimates by the morphometric 

method were adjusted downwardly by subtracting 4.5kg from original estimates. Then, the 

new equations were generated again based on these adjusted estimates and presented in Table 

18. Thus, it is expected that the new equations presented in Table 18 produce unbiased 

estimates for the Korean samples. However, when one is to apply the morphometric method 

of Ruff et al. (2005) directly to the Korean samples, it should be noted that the body mass is 

likely to be overestimated.  

 

3.2. Employment of the new body mass equations 

 Body mass of an individual fluctuates during his or her life. Generally, body mass 

increases as one gets older due to increasing adiposity, but tends to decrease again after 
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around the age of 60 years with a redistribution of the fat mass (Seidell and Visscher, 2000; 

Ruff et al., 1991). Yet, unlike the long bone diaphysis dimensions, the articular surface does 

not respond to the outside mechanical stresses by changing its size once the maturation 

process is finished (Ruff et al., 1991). Therefore, the body mass estimation method using the 

articular surface size, especially the femoral head breadth, cannot help but avoiding the 

criticism that it cannot reflect the current body mass of an individual, but at the same time, 

the articular surface has been regarded as a reliable indicator of body mass particularly at the 

onset of adulthood. The new equations developed in this research used the femoral head 

breadth for body mass estimation. Thus, it should be noted that the estimates by the new 

equations are likely to be the body mass of an individual at his or her early adulthood (i.e., 

around the age of 18 years). For this reason, it is thought that the practicability of the new 

equations in forensic contexts, particularly where old-aged victims are involved, is limited to 

some degree. However, the new equations are expected to provide more appropriate and 

reliable approximation to body mass in archaeological contexts, where relatively young 

individuals are associated and high level of mechanical stresses are anticipated. 

 Lastly, as with the stature estimation, the applicability of the new equations are 

limited by the bone size of the reference sample due to the issue of extrapolation. As 

presented in Table 9, the femoral head breadth of the reference sample ranged 35.7 - 46.1mm 

and 41.2 - 51.8mm for females and males respectively. Thus, when using the new equations, 

one needs to double-check if the femoral head breadth of the target sample falls between the 

given range.  

 

3.3. Accuracy rates of the new body mass equations 

3.3.1. Comparison of new equations to previous ones 

 In this research, the accuracy of the body mass estimates by the new equations were 

compared to that of the three previous studies (Ruff et al., 1991, McHenry, 1992, and Grine 

et al., 1995) and to that of the average method (i.e., the average of the estimates by the three 

previous studies). All these methods use the femoral head breadth as a predictor for body 

mass estimation. As mentioned earlier, among the three previous studies only Ruff et al. 

(1991) provided sex-specific equations while the others pooled-sex equations.  

  The results showed that the new equations produced the most accurate and precise 

estimates when compared to the equations from the previous studies. The %PEs of the new 

equations were less than 0.01% for both females and males, which meant that the estimates 
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by the new equations were very accurate and unbiased (Table 19). The SEEs (%SEEs) were 

3.49kg (6.91%) and 4.67kg (7.44%) for females and males respectively (Tables 18 and 19). 

The %SEEs for body mass estimation are much higher than those for stature estimation, most 

of which are less than 2%, but this appears to be due to the fluctuating nature of body mass 

itself. In fact, the SEEs of this research tend to be similar to or lower than those of recent 

studies where the hybrid method was used: for example, 3.156kg and 5.142kg for Andean 

females and males in Pomeroy and Stock (2012), and 4.44kg and 6.84kg for Holocene 

European females and males in Ruff et al. (2012a). Thus, it was concluded that the estimates 

by the new equations are more precise compared to the previous studies.  

 Any equations from the previous studies did not reveal lower %PEs or %SEEs than 

the new equations. In fact, the estimates by the previous studies were significantly biased as 

seen in Table 19 and Figures 82 - 89. Therefore, the conclusion is that the new equations 

developed in this research are the most appropriate equations for stature estimation of Korean 

skeletal remains. In the following paragraphs, detailed comparisons of the performance 

between the previous studies are made to provide the magnitude of errors associated with 

each equation when they are applied to Korean samples.   

 

3.3.2. Comparison between previous studies 

 Due to the allometric nature of the femoral head size when scaled to body size (Ruff, 

1988) as well as the differences in the body size of the reference samples in the previous 

studies, the applicability of the previous equations is thought to be limited by the body size of 

a target sample. Auerbach and Ruff (2004) stated that McHenry (1992) equation would be 

most appropriate for a small-bodied population (i.e., 31kg - 42.7kg), Grine et al. (1995) 

equation for a large-bodied population (60.9kg - 84.9kg), and Ruff et al. (1991) equations or 

the average method for a mid-sized population (i.e., 40.7kg - 60.8kg). In this research, since 

the means of the morphometrically reconstructed body mass were 46.0kg and 58.3kg for 

females and males respectively, it was expected that, overall, either the Ruff et al. (1991) 

equations or the average method would produce more accurate estimates compared to the 

other methods. However, the results showed that all methods produced significantly biased 

body mass estimates and that relatively less biased was obtained in McHenry (1992). 

Specifically speaking, the lowest %PEs were obtained from the McHenry (1992) equation for 

both sexes (i.e., -8.81% and -9.25% for females and males respectively), while the 

highest %PEs were obtained from different equations: the Ruff et al. (1991) equation (i.e., -
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18.69%) and the Grine et al. (1995) equation (i.e., -15.52%) for females and males 

respectively (Table 19). The %PE of the average method was in between for both sexes. As 

to the precision of the equations, the same pattern was observed. Namely, for females, the 

lowest (i.e., 12.04%) and the highest %SEEs (i.e., 22.50%) were obtained from the McHenry 

(1992) and Ruff et al. (1991) equations, while for males, the lowest (i.e., 12.13%) and the 

highest %SEEs (i.e., 18.66%) from the McHenry (1992) and Grine et al. (1995) equations. 

Therefore, if one is to choose one of the previous body mass estimation methods, the 

McHenry (1992) equation should be picked up. However, due to the significant bias and 

imprecision of the estimates by the McHenry (1992) equation, it is concluded that applying 

any one of the previous equations or the average method to Korean samples would be 

problematic.  

 

4. Chapter summary 

 For the last two millennia, U-shaped pattern was manifested in secular change in 

stature, which was also observed in other parts of the world. The negative trend between the 

Three Kingdom and the Goryeo periods appeared to be attributed to deterioration of living 

conditions due to introduction and frequent outbreaks of new infectious diseases in the 

Goryeo Dynasty, which is known for its active trades with foreign countries and frequent 

wars against China and Japan. Due to lack of effective remedies to the infectious diseases 

before the 20th century, the living conditions of Korean people was seriously affected by the 

epidemics until the end of the Joseon Dynasty, which resulted in the absent secular change 

between the Goryeo and Joseon periods. Between the early and mid 20th century, female 

stature rapidly increased, but it did not appear to be due to an improvement of living 

standards considering the fact that male stature did not increase during the same time period. 

Rather, increase in female stature appeared to be attributed to the fact that the traditional 

practices of sexual discrimination were weakened due to the influence of modernization 

during the early 20th century. In other words, without an overall improvement of living 

conditions, as women moved up in the social position as a result of modernization and the 

sexual discrimination practices were weakened, women could obtain what had not been 

allowed in the previous societies, and eventually these relative gains allowed female stature 

to increase. Since the 1960s, Korea experienced a rapid economic growth and drastic 

industrialization, which resulted in a rapid increase in stature for both males and females.  
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 The fact that only female body mass increased between the early and mid 20th 

century appears to corroborate the view that, women could obtain relative gains due to 

weakened sexual discrimination practices in Korea even without an overall improvement of 

living conditions during this time period. Since the 1960s, average female body mass did not 

change while male body mass rapidly increased. This phenomenon is due to polarization of 

female body mass (i.e., increase in the number of both over-weighted and under-weighted 

women), which is presumably attributed to socio-cultural factors.  

 New equations for stature and body mass estimation are applicable to any Korean 

skeletal remains regardless of their time periods or regions because there is no difference in 

body proportions between time periods and regions. When the stature equations are applied, 

it should be noted that since the new equations are for reconstructing the maximum living 

stature at the age of 20, age correction factor (i.e., 0.0426cm/year) should be applied to obtain 

a stature at death. Also, it is worth noticing that the body mass estimates by the new 

equations are not ideal for the forensic purpose because these equations are just for 

reconstructing the body mass of an early adulthood.  
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Chapter 6  

Conclusion 

 

 Body size of a population is influenced by its surrounding environmental conditions 

and thus represents the standards of living that the population experiences. This research 

investigated the standards of living of Korean societies in the past with a consistent and 

objective methodology, as well as examined secular changes in body size (i.e., stature and 

body mass) during the past two millennia. In addition, as a critical part of methodology, since 

it was necessary to estimate body sizes from the skeletal remains, new Korean-specific 

equations for stature and body mass estimation were developed by employment of the hybrid 

method. The results of this research are summarized as follows:   

 

 For both females and males, the average stature revealed a U-shaped pattern of 

secular change. That is, the average stature declined after the Three Kingdom period 

and then remained nearly unchanged until the turn of the 20th century, after which an 

increase in stature was observed.  

 Decreased stature in the Goryeo period through the Joseon period is attributed to the 

fact that, compared to the Three Kingdom period, 1) new infectious diseases were 

introduced into the Korean peninsula due to frequent wars against other countries as 

well as expanded trades with foreign countries, but 2) due to lack of appropriate 

remedies, the frequency of outbreaks of such infectious diseases increased with a 

huge impact on the societies, and 3) eventually the overall quality of life during these 

time periods was deteriorated.   

 The sexual dimorphism observed in the pattern of secular changes in stature of the 

early and mid 20th century (marginal increase in male stature vs. drastic increase in 

female stature) can be explained in part by cultural practices, such as the sexual 

discrimination against women in the past Korean societies. That is, despite the 

marginal effect of the modernization during the Japanese colonial period (i.e., 1910 - 

1945) on the overall standards of living of the Korean people, the modernization 

process is thought to have contributed to weaken the practice of sexual 

discrimination in the early-20th-century Korea, and eventually to have led to a 

drastic increase of stature among females born in the 1920s and 1930s. This 

interpretation could be corroborated by the pattern of secular changes in body mass 
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during the same time period.  

 Both female and male statures increased gradually since the 1960s due to a rapid 

industrialization.  

 Since the 1960s, while male body  mass revealed a pattern of gradual increase, female 

body mass did not increase as a result of the intensified polarization of body mass 

among females.   

 The pattern of secular changes in body mass does not necessarily follow that of 

stature because body mass consists of not only fat free mass but also fat mass and, 

compared to stature, the cultural and/or psychological factors have a bigger influence 

on the fluctuation of body mass.  

 The new equations for stature and body mass estimation developed in this research 

turned out to be more accurate and more precise compared to any other equations 

that have been previously used in Korea.  

 The new equations are applicable to any Korean skeletal materials regardless of the 

regions or the time periods to which skeletons belonged. That is, as far as the caveats 

mentioned in this research are followed, these new equations will produce most 

appropriate results in estimating the size of Korean skeletons in both archaeological 

and forensic contexts.  

   

 This research is expected to have a positive impact on the Korean community in terms 

of both archaeological and forensic application. For example, in the field of archaeology, 

accurately reconstructed stature and body mass will provide a systematic and consistent basis 

to assess standards of living of Korean societies in the past, which will subsequently have a 

significant influence on related fields such as paleopathology and bioarchaeology. The 

information related to body sizes and associated secular change patterns may corroborate 

existing archaeological theories, as well as possibly contradict current archaeological 

evidence and thus raise a necessity for a new theory or a paradigm shift. In addition, in terms 

of forensics, the equations newly developed in this research will produce more accurate 

estimates of stature and body mass of crime victims, which will increase the chance of 

positive identification of unidentified individuals. Moreover, this research is anticipated to 

have an international impact as well. For example, any anthropological research related to 

human variation, anthropometry, climatic adaptation, and secular changes on a worldwide 

scale will benefit from the results of this research. This research will provide researchers with 
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a base line of knowledge on the physical characteristics (e.g., stature, body mass, and body 

proportion) of Korean people both in the past and present time. Thus, this study provides 

multi-faceted information on the Korean population, which is distinct from but also 

representative of an overall Asian population that is often referred to in the literature. Lastly, 

it can be stated that the new equations presented in this research are applicable to any forensic 

cases outside of Korea, when Korean  individuals are encountered. 
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Three Kingdom period 
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Table A-1. Continued.  

Three Kingdom period 
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Table A-2. Testing for the equal variance assumption using the Levene's statistic. 

Dataset Comparison
1
 Cormic index

2
 Crural index

3
 

Levene 

statistic 

p Levene 

statistic 

p 

Dataset 1 Sex Female (50) vs. Male (63) 0.0415 0.84 0.0099 0.92 

Time 

period 

Modern (6) vs. Joseon (107) 0.6135 0.44 2.59 0.11 

Region1 Middle
4
 (99) vs. Southern

5
 (8) 1.5768 0.21 0.4392 0.51 

Region2 Eastern
6
 (9) vs. Western

7
 (98) 0.0175 0.90 0.3495 0.56 

Dataset 3 sex Male (208) vs. Female (19) - - 3.2566 0.07 

Time 

period 

Modern (175) vs. Joseon (48) 

vs. Pre-Josen (4) 

- - 1.843 0.162 

Region1 Middle (150) vs. Southern (77) - - 0.0085 0.93 

Region2 Eastern (132) vs. Western (95) - - 0.4803 0.49 

1 
Numbers in the parentheses represent the sample size in each category. 

2
 The ratio of the summed length of FeL2 and TiL2 to the skeletal height. 

3
 The ratio of TiL2 to FeL2 [Dataset 1], or the ratio of TiL2 to FeL1 [Dataset 3]. 

4
 Middle part of South Korea : Seoul, Gyeonggi, Gangwon, Chung-nam, Chung-buk. 

5
 South part of South Korea : Jeon-buk, Jeon-nam, Gyeon-buk, Gyeong-nam, Jeju. 

6
 Eastern part of South Korea : Gangwon, Chung-buk, Gyeong-buk, Gyeong-nam. 

6
 Western part of South Korea : Seoul, Gyeonggi, Chung-nam, Jeon-buk, Jeon-nam, Jeju. 
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