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ABSTRACT 
 

 While a great deal of work has been done to analyze cardiac dynamics and 
mechanics at the organ and tissue levels, there remains much less data regarding these 
metrics at the single cell level.  Additionally, as fields such as regenerative medicine and 
tissue engineering are beginning to demonstrate greater therapeutic potential, the 
study and influence of stem cell mechanics on differentiation has become a major area 
of interest.  For these reasons, along with the continued advancement of molecular 
techniques and assays, there is a growing need to develop functional assays that can 
integrate and bridge the findings from multiple length scales, incorporating important 
physical cues with ongoing molecular studies. 
 In this work, we have utilized various experimental techniques to quantify the 
altered mechanics and dynamics of individual cardiomyocytes and stem cells in 
association with various aspects of pathophysiology, toxin exposure, and stem cell 
differentiation.  Through the completion of single cell studies, we have been able to 
draw significant insight and further relate various components of cellular 
mechanobiology, such as time-dependent mechanical cues and altered dynamics, with 
more physiologically relevant and translational research objectives. 
 Although much more work is still needed, it is clear that this area of research has 
the potential to impact future studies in a variety of biomedical applications, opening up 
the possibilities of what can be accomplished with the use of single cell studies and the 
developing significance of cellular biophysics. 
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CHAPTER I  

INTRODUCTION AND BACKGROUND INFORMATION 

 Cellular biophysics is an interdisciplinary field, combining aspects of physics, 

molecular biology, and chemistry, looking to elucidate the fundamental principles and 

mechanisms that govern cell function and behavior.  Much of this research has been 

driven by the development of novel techniques and instrumentation, providing a direct 

interface between various areas of cellular, structural, and molecular biology.  New and 

ongoing studies in this field offer innovative approaches and directions for answering 

some of the challenging cell biological questions that lie between the molecular and 

macroscopic scales.  It is at this level of organization that cellular biophysics can 

combine and integrate complex genomic, proteomic, and structural information 

regarding some of the basic processes of cell biology in order to better understand their 

importance in a physiological context. 

Cardiomyocyte Mechanobiology 

 The dynamics of the cardiac cycle can be described at various levels and scales, 

ranging from cross-bridge cycling, involving protein interactions, to the resultant 

periodic contractions of the whole heart.  Depending on the parameters of interest and 

the scale that is being considered, an array of scientific perspectives and techniques can 

be used to characterize these events.  The physical demands of the heart, along with the 

complex network of molecular signaling that occurs throughout the cardiac cycle, make 
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this organ especially vulnerable to damage over time.  As the heart relies on several 

mechanisms involving the precise synchronization and coupling of multiple factors, 

there are a number of ways in which small fluctuations in a single component can cause 

perpetual alterations in cardiac dynamics, potentially leading to cardiomyopathy and 

dysfunction.  Consequently, much research has been focused on trying to understand 

the fundamental mechanisms involved in this multifactorial process. 

Following the above discussion, the mechanical properties and stresses 

associated with the dynamic behavior of the heart are closely linked with many of the 

underlying biological functions taking place throughout this highly regulated and cyclic 

process.  Therefore, various physiological and pathological factors can greatly influence 

the mechanobiology of cardiomyocytes, both directly and indirectly eliciting changes in 

cellular biomechanics and cardiac performance.  For example, physiological cardiac 

hypertrophy results from abnormal cardiomyocyte growth in response to intermittent 

increases in work-load such as during exercise training, which has been shown to 

improve cardiovascular performance in an adaptive manner [1].  Conversely, 

pathological cardiac hypertrophy can be caused by a prolonged mechanical stimulus 

such as hypertension or aortic stenosis triggering a maladaptive response, which can 

eventually lead to heart failure [1].  The discrepancies between ventricular remodeling 

that occur in response to a range of physical stimuli illustrates the importance of 

mechanical cues with regard to the mechanobiological properties of cardiomyocytes, 

and the role this plays in cardiovascular dynamics. 
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As shown in the above example, the characterization of mechanobiological 

properties taken from individual cardiomyocytes offers additional possibilities for 

studying cardiomyopathy and related pathologies.  Although some of these dynamic 

properties have been well-studied at the organ and tissue levels, more studies are 

needed to determine the additional parameters that could be elucidated at the level of 

the cardiomyocyte.  Contractility studies have been performed on isolated 

cardiomyocytes and have shown that certain cardiomyocyte dynamics, such as 

contractile force and shortening velocity, can be used to correlate similar performance 

metrics of the whole heart, demonstrating the potential for cellular level studies to 

provide clinically relevant data on the fundamental mechanisms leading to heart failure 

[2-4].  As more datasets are becoming available indicating the molecular distinctions 

between different pathologies, the added level of characterization offered by studies of 

cardiomyocyte mechanobiology could offer additional insights regarding the transition 

from a healthy to a diseased state. 

The field of mechanobiology attempts to address these physical factors occurring 

in conjunction with the genetic and molecular markers that have been identified in an 

effort to better understand the underlying mechanisms associated with 

pathophysiology.  Within this area of research, there are many parameters that can be 

linked with cellular biomechanics such as the force of contraction, the speed of cell 

shortening and relaxation, the stiffness or elasticity of the cell membrane, the frequency 

of beating, and the relationships that exist between all of these parameters in response 
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to various stimuli [5].  Just as molecular or genetic profiling can be used to describe a 

specific cardiomyopathy, a functional assay consisting of the above parameters could 

provide characteristic patterns of behavior resulting from pathological changes [6, 7]. 

As there are many variables that feed into this complex dynamic network that 

regulates the cardiac cycle, it is becoming more and more difficult to isolate and control 

specific parameters of interest.  An advantage of cellular studies comes from the 

enhanced ability to modify and control the environment in a number of different ways 

to better simulate and study in vivo situations in an in vitro setting.  This limits some of 

the inherent variability that is associated with animal or clinical studies in order to target 

the specific changes driving pathophysiology, further making this a viable option for 

mechanistic studies and the development of experimental models.  Additionally, as the 

heart is under a constant state of fluctuating dynamics, it becomes very important to be 

able to monitor the response in real-time throughout the time-course of these changes.  

Cellular studies enable this type of characterization and monitoring, along with the 

sensitivity to detect fluctuations that might be lost at the level of the whole heart. 

In conclusion, much less research has been dedicated towards analyzing the 

physical parameters associated with cardiomyopathy and dysfunction, even though the 

principal function of the heart relies on the coupling of mechanical and molecular 

dynamics.  Cardiomyocytes represent a group of cells that are constantly exposed to 

fluctuating levels of mechanical stress, stemming from various biological factors that 

influence the extent to which these cells must continuously adapt.  In an effort to 
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quantify some of the underlying mechanobiological properties of cardiomyocytes, the 

following research applies a combination of physical and molecular techniques in order 

to elucidate some of the fundamental mechanisms leading to pathophysiology and 

disease. 

Excitation-Contraction Coupling (ECC) 

 Excitation-contraction coupling at the single cell level involves both molecular 

cues from various voltage gated ion channels, in conjunction with cross-bridge cycling 

that generates the physical shortening of cardiomyocytes in response to fluctuating 

currents and the availability of various protein interactions [8]. 

 This fundamental process of cardiomyocytes is initiated by an action potential 

which results in the rapid depolarization of the sarcolemma through t-tubules.  During 

the action potential, a transient increase in cytosolic calcium enables the shortening of 

sarcomeres due to actin-myosin interactions.  Following the subsequent repolarization 

of the cell, calcium is rapidly effluxed from the cytosol, causing the relaxation and re-

lengthening of cardiomyocytes.  Based on this tightly regulated cycle, cardiomyocytes 

are able to quickly respond to external cues in order to meet the physical demands of 

the heart.  This relationship illustrates some of the mechanobiological properties of 

cardiomyocytes that can greatly influence cardiac function. 
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Calcium-Induced Calcium Release (CICR) 

 As previously described, the cardiac cell cycle is a calcium-regulated dynamic 

process relying on calcium-induced calcium release (CICR), in order to generate the 

cyclic and periodic contractions of the heart [9].  Any alterations in the timing or 

molecular kinetics that occur during this process can lead to significant changes in 

contractility and cardiac performance. 

 The transient rise in cytosolic calcium concentration is due, in large part, to 

calcium-induced calcium release (CICR) from the sarcoplasmic reticulum (SR).  The bulk 

of calcium originates from the SR, which stores calcium within the cardiomyocyte.  

However, the initial influx of calcium through L-type calcium channels triggers this 

release from the SR.  Additionally, the activation of ryanodine receptors (RyRs) located 

on the SR plays a major role in this process, as alterations to these calcium channels can 

affect the concentration and speed with which calcium is released into the cytosol. 

Multi-Scaled Dynamics and Mechanics 

Cardiomyocyte dynamics and mechanics help to bridge the scale between 

myofibrils within the cell, made up of sarcomeres, to the multi-cellular tissue-level 

coordination seen in the myocardium [10].  It is important to consider the role that 

individual cardiomyocyte mechanics and dynamics have on the same metrics of the 

whole heart. 
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As previously mentioned, correlating the molecular mechanisms driving these 

functional changes at the cellular level will help to elucidate the ways in which 

pathological changes, cardiotoxic drug effects, and genetic alterations cause damage at 

the tissue and organ levels.  The insight provided from cell studies could then offer 

better solutions of translational significance for the preventative, diagnostic, and 

therapeutic strategies used in a clinical setting. 

Stem Cell Mechanotransduction 

 It is well known that biochemical signals play an important role in stem cell 

differentiation and embryonic development.  However, recent evidence has shown the 

effects that mechanical cues can have on a variety of mechanisms that regulate stem 

cell biology [11].  The ability for cells to convert mechanical stresses into biochemical 

signals still holds great potential for many therapeutic applications in the fields of tissue 

engineering and regenerative medicine.  Stem cells are especially vulnerable to these 

effects due to their pluripotency and the array of environmental cues that are known to 

be involved in regulating this fundamental process. 

In the same way that electromechanical coupling in cardiomyocyte 

mechanobiology involves both physical and molecular dynamics, stem cell 

mechanotransduction is the relationship between physical forces and a complex 

network of molecular signaling.  There is a growing amount of evidence that mechanical 

triggers can stimulate and even direct stem cell differentiation, with cell fate showing a 
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preference towards those cell types in vivo that mirror the existing conditions in vitro.  

For example, stem cells grown on very stiff substrates tends to produce greater 

osteogenic differentiation [12], as the stiffness of the in vitro environment more closely 

mimics that of bone in vivo. 

Due to the importance that physical and mechanical cues have demonstrated in 

stem cell biology, the ability to measure and quantify this component of 

mechanotransduction has become increasingly more significant.  Acting as one of the 

toughest challenges facing stem cell use, the ability to control and regulate their growth 

and differentiation relies, at least partly, on the ability to recreate environmental 

conditions similar to those found in vivo.  The following studies regarding stem cell 

mechanics and differentiation will allow for the isolation and quantification of those 

effects resulting from a combination of physical and molecular cues. 

Stem Cell Differentiation 

As mentioned, stem cells are pluripotent in nature and can differentiate into 

multiple cell types depending on several environmental factors, including both 

biochemical signaling and mechanical cues.  Because of the complex dynamics and 

signaling that is involved, there are still many aspects of embryonic development that 

remain unknown.  In order to try and better understand those mechanisms driving the 

process of differentiation, it is important to not only factor in the biochemical cues but 

also quantify the physical components that are involved.  The recent advances in 
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instrumentation and technology have enabled more studies regarding 

mechanotransduction and the ways in which this phenomenon is involved in stem cell 

differentiation.  Not only has mechanical stress been able to stimulate and partially 

direct differentiation, but more recently, a study was able to demonstrate its potential 

role in reprogramming mammalian somatic cells and inducing pluripotency, which could 

have major implications in future disease and pathology research [13]. 

Stem Cell Therapy 

As advances are being made in the fields of regenerative medicine and tissue 

engineering, the safety and efficacy of stem cell therapeutics remains a major challenge.  

Although the regenerative and restorative properties of stem cells offer several 

advantages, these cell types are also difficult to control and can form malignant tumors 

leading to cancer risk when implanted or injected into the body [14].  An application for 

stem cell therapy includes replacing damaged tissue, which could be used to treat 

diseased or injured cells.  The ability for stem cells to self-renew offers potential in 

organogenesis and tissue engineering applications, such as skin grafts and myocardial 

tissue repair where multiple cell types are needed in order to recover functional tissue.  

With all of the potential that stem cell therapy has demonstrated, the challenges 

presented have kept its clinical applications to a minimum. 
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CHAPTER II  

EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION 

This work includes the use of various experimental techniques and microscopic 

platforms in order to quantitatively characterize the mechanobiological properties of 

individual cardiomyocytes and stem cells.  Examples of these instruments include the 

atomic force microscope (AFM), Nanoindenter, Laser Scanning Confocal Microscope 

(LSCM), and Digital Holographic Microscope (DHM), as well as various other 

components used to regulate and control experimental conditions such as an 

environmental chamber and electrical stimulator. 

Atomic Force Microscope (AFM) 

Atomic force microscopy (AFM) is a physical imaging technique that can be used 

to obtain high-resolution topographical images, in addition to characterizing certain 

physical properties of both biological and non-biological samples.  The AFM (Asylum 

MFP-3D BIO) used in this work is mounted on an Olympus IX-81 inverted optical 

microscope, allowing for its potential integration with other imaging modalities.  The 

quantification of various mechanical properties such as stiffness or Young’s modulus can 

be measured using nanoindentation.  In addition to these more traditional techniques, 

this system is capable of performing various other specialized functions such as 

nanomanipulation, force spectroscopy, conductive probe microscopy, and 

nanolithography.  Specific areas in which these techniques can be applied include the 
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real-time monitoring and characterization of beating cardiomyocytes, the 

mechanobiology of stem cells, and long term studies looking at the effects of various 

stimuli.  In addition to the wide range of applications from materials science to biology, 

this technique can also be used under a variety of conditions, including ambient air, 

ultra high vacuum, and in liquids, making this especially useful for biological samples.  

This AFM setup is also equipped with a perfusion chamber allowing for the precise 

control over various environmental factors when performing live cell studies.  Using this 

tool, we are able to characterize morphological and material properties of 

nanostructures, nanomaterials, and biological samples at a level of quantification 

surpassing that of other conventional microscopic techniques. 

Dwell Curves 

 
In order to acquire cardiomyocyte dynamics regarding contractility and the 

associated beating parameters, a similar technique to that previously described was 

utilized [4].  In the previous work, this technique was used at multiple points on 

spontaneously activated stem cell-derived cardiomyocytes in order to generate a “dwell 

map” showing spatial variations in the acquired parameters.  In this work, however, 

measurements were taken from a single point on the cell’s surface (center of 

contraction) and is referred to as a dwell curve, shown in Figure 1. 
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Figure 1. Illustration showing the acquisition of a single dwell curve, along with the equation for 
calculating force from the deflection signal of the AFM cantilever. 

 

In brief, the AFM was used to passively acquire the beating dynamics of 

individual cardiomyocytes [15].  This is accomplished by bringing the AFM cantilever into 

contact with the surface of the cell and fixing the AFM’s z-position.  By doing so, the 

contraction of the cardiomyocyte will cause subsequent deflections in the cantilever 

enabling the monitoring of various beating dynamics as shown in Figure 2. 

 

Figure 2. Beating dynamics from the “dwell” portion of a single dwell curve. A) Labeled parameters of 
interest from force trajectory. B) Parameter definitions.  
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Nanoindenter 

The nanoindenter is among the leaders in advanced indentation and hardness 

testing for small-scale applications. While our MFP nanoindenter is an AFM-based 

indenter, it does not use cantilevers as part of the indenting mechanism, providing a 

substantial advantage in accuracy, precision and sensitivity over other nanoindenting 

systems. This system is ideal for a variety of nanoindenting applications, such as 

characterizing the mechanical behavior of thin films, bone, and biomaterials; time-

dependent mechanical characteristics of soft and hard materials; and combined 

nanoindenting with current-voltage measurements.  This technique is particularly suited 

for the dual acquisition of time-dependent mechanodynamics from single cells. 

Nanoindentation 

In order to determine Young’s Modulus for a given sample, a technique termed 

nanoindentation was performed on the cell’s surface (Figure 3), utilizing either the AFM 

or Nanoindenter.  This technique produces force curves that can then be further 

analyzed using Hertz theory to calculate a measure of elasticity or stiffness for the 

individual or aggregated cells of interest.  As the cantilever tip contacts the sample, the 

interaction between the two surfaces produces a force curve (force vs distance) from 

which the slope of this curve can then be used to quantify the relative stiffness of the 

sample. 
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Triggered force curves allow the user to define the maximum force with which to 

apply on the sample before the cantilever is retracted.  This allows for more consistency 

when combining data from several samples, and also minimizes the amount of damage 

to both the sample and the cantilever tip.  For example, by defining a trigger force of 1 

nN, the AFM cantilever would then approach the surface at a given velocity over a pre-

defined distance until contact is made and the deflection signal reaches a value equal to 

1 nN of force. 

The tip geometry and its material properties are very important for accurately 

representing the interaction between the AFM cantilever and the cell’s surface.  For the 

purposes of this work, a spherical tip was used in order to remove some of the 

variability and difficulties in the calculation of Young’s modulus that can come from 

using more complex geometries.  By using a spherical tip, this also ensures a more 

uniform and reproducible interaction without causing damage to the cell, which can 

sometimes be a problem when using a sharp tip on soft biological samples.  Another 

important consideration is the stiffness of the cantilever relative to the sample.  Using a 

softer cantilever provides more sensitivity over a lower range of expected force values 

(101-102 nN).  This also minimizes the damage that might occur to the cell surface by 

using a relatively low spring constant cantilever (0.02 – 2 N/m). 
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Figure 3. An illustration showing the acquisition of a force curve, also known as nanoindentation. The 
equation for calculating Young’s modulus is also shown. 

 

Once the force curves are acquired, the use of a built-in software package can 

then be used to extract the desired parameters of interest.  In this work, a Hertz model 

was used to calculate Young’s modulus from the data, as shown in Figure 4. 

Depending on the sample and the design of the experiment, the contact portion 

of the force curve can be fitted over a specific region of interest.  The stiffness can 

therefore be determined over a confined range of either force or indentation depth.  It 

is also important to perform a range of force curves in order to ensure that the correct 

force and indentation depth are being used to remove any unwanted influences from 

the underlying substrate. 
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Figure 4. The use of built-in software is used to calculate Young’s modulus.  Some of the fitting 
parameters can be manipulated in order to confine the contact portion of the force curve, allowing for 
the calculation to be completed within a desired range of either force or indentation depth. 

 

Laser Scanning Confocal Microscope (LSCM) 

 The FV1000 enables high resolution, multi-dimensional observation and analysis 

of both fixed and living cells and tissues, as well as the ability to perform precise co-

localization studies.  This system is integrated onto the Olympus IX-81 inverted 

microscope, equipped with 6 lasers including 4 gas (multi-line Argon 458nm, 488nm, 

515nm and HeNe 543nm), and 2 diode (405nm and 635nm) lasers.  As with all confocal 

microscopes, this system uses point illumination and a pinhole to eliminate the out-of-

focus signal associated with the unfocused background portion typically seen in 
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conventional wide-field fluorescence microscopes.  This allows for the visualization of 

specifically labeled internal cellular structures, with the ability to perform time-lapse 

imaging over long time scales for tracking intracellular movements with its advanced z-

sectioning (3D) capabilities.  Other features include a motorized z-drive allowing 0.01 

micron step increments for focusing and automated sectioning capabilities built into the 

software.  Some applications of this microscope include visualization of drug delivery 

probes and/or their specific targets, both on the cell surface and/or within the cells of 

interest, tracking of small particles (nanoparticles ~70nm and larger), and the formation 

or reorganization of various cytoskeletal elements or structural proteins of interest. 

Line-scanning 

 As described previously, calcium dynamics are an important aspect of 

cardiomyocyte excitation-contraction coupling.  In order to quantify the intracellular 

calcium dynamics of individual cardiomyocytes, a technique called line-scanning was 

used [16]. 

 This method of imaging restricts the region to be scanned by a laser scanning 

confocal microscope to a single line, enabling the rapid acquisition of fluorescent images 

in sequence with enough temporal resolution to characterize the dynamic fluctuations 

of calcium levels within the cell over the selected region of interest, as shown in Figure 

5. 



 

 18 

 

Figure 5. Confocal line-scanning technique used to quantify intracellular calcium dynamics. A) Confocal 
line-scan of fluorescent intensity, showing distance along the region of interest vs time. B) Profile 
analysis of the confocal line-scan data shown in (A). C) 3D profile of the confocal line-scan data taken 
from (A). 

 

 A calcium-specific fluorescent dye is introduced into the cell medium and is used 

to label the calcium, causing it to emit a fluorescent signal in response to stimulation by 

a laser of a specific wavelength.  Several measurements are taken on controlled buffer 

solutions of known calcium concentration, which then allow for the ratiometric 

comparison and correlation of fluorescent intensity with calcium concentration.  Using 

this technique, the calcium dynamics of individual cells can then be measured and 

analyzed in conjunction with the other parameters of interest.  
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Digital Holographic Microscope (DHM) 

 The DHM T1000 enables nanometer axial resolution in real-time using non-

invasive three dimensional full-field acquisition (no scanning).  This technique uses a 

CCD camera to record a hologram which is then transmitted to a computer in order to 

digitally reconstruct the image in 3D.  The intensity and phase information are 

decoupled in order to generate data for both the morphology and refractive index of 

the sample.  This system also incorporates a fluorescence module which allows the 

simultaneous acquisition of morphological shape changes, co-localization studies, and 

concentration based data generated by the intensity profile of the measured fluorescent 

signal.  Particle or cellular tracking in three dimensions can also easily be monitored, 

aided by the use of digital focusing provided within the Koala software.  There are 

several exciting areas in which this technology can be applied, including the three 

dimensional tracking of motile cells or structures without the need for disturbing the 

natural environment or complex labeling steps, dynamic morphology and/or size/shape 

changes in response to various stimuli, time-lapse monitoring of various cellular 

processes such as cardiomyocyte beating or stem cell differentiation, as well as 3D 

particle tracking in complex fluidic environments, generating 3D velocity profiles. 

Phase Monitoring 

 As both the phase and intensity are collected when capturing an image with the 

DHM, the ability to monitor phase changes over time allows for data other than 3D 

morphology to be extracted and analyzed (Figure 6). 
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Figure 6. Data from a spontaneously active cardiomyocyte, acquired by the DHM. A) Intensity image of 
an adult mouse ventricular myocyte. B) 3D reconstruction of phase image in (C). C) Phase image with 
selected regions of interest (boxes 1-6) for monitoring the phase change over time, as well as a line 
drawn over the cell to generate a profile as shown in (D). D) Phase profile for the line segment shown in 
(C). E) Respective phase monitoring corresponding to the selected regions shown in (C) as a wave was 
propagating along the cell’s length. 

 

 One of the built-in functions provided by the Koala software package includes 

phase monitoring.  This can be accomplished by selecting a region of interest from a 

recorded image sequence.  An average phase value is then reported for the selected 

region of interest, and is plotted versus time in a separate graph.  This allows for highly 

localized dynamics to be recorded using this non-invasive technique, providing useful 

time-course data. 
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CHAPTER III  

MATERIALS AND METHODS 

Cardiomyocytes 

Adult Mouse Ventricular Myocyte Isolation 

 Single ventricular myocytes were obtained from adult mice using an enzymatic 

digestion technique adapted from previous reports [17].  The animals were first 

heparinized and anaesthetized with methoxyflurane.  Upon cervical dislocation, hearts 

were removed and mounted on a Langendorff apparatus where they were perfused for 

5 min with normal Tyrode’s solution containing (mM): 130 NaCl, 5.4 KCl, 1 CaCl2, 1 

MgCl2, 0.6 NaH2PO4, 10 Hepes and 5 glucose (pH adjusted to 7.4 with NaOH).  The 

hearts were then perfused for 10 min with Ca2+-free Tyrode’s solution, followed by a 30 

min perfusion with Ca2+-free Tyrode’s solution containing 73.7 U/ml type II collagenase 

(Worthington Biochemical Corp.), 0.1% bovine serum albumin (Sigma-Aldrich), 20 mM 

taurine and 30 µM CaCl2. This was followed by 3 min of perfusion with a KB solution 

containing (mM): 100 potassium glutamate, 10 potassium aspartate, 25 KCl, 10 KH2P04, 

2 MgSO4, 20 taurine, 5 creatine base, 0.5 EGTA, 5 Hepes, 1% BSA and 20 glucose (pH 

adjusted to 7.2 with KOH). The hearts were then removed from the Langendorff 

apparatus and the ventricles were excised.  Following removal of the ventricles, the 

tissue was gently triturated with a Pasteur pipette for 10-15 min. Rod-shaped single 
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myocytes were then collected and either plated immediately or stored in KB solution at 

4 °C until use. 

Electrical Stimulation 

 Adult mouse ventricular myocytes are quiescent upon isolation, and therefore 

need electrical stimulation to induce contractions in vitro.  A Grass SD9 

neurophysiological stimulator was used to generate short pulses (10-30 V @ 4 msec) 

while connected to platinum stimulation electrodes submerged within the 

environmental chamber or petri dish housing the isolated cardiomyocytes.  Depending 

on a combination of parameters from the experimental setup, the minimum threshold 

voltage and pulse duration was found to induce contractions while minimizing the 

effects and disturbances to the AFM cantilever. 

Stem Cells 

Cell Culture 

 For Mg53 treatment studies, primary rat mesenchymal stem cells (MSCs) were 

isolated from the bone marrow of healthy male rats (220‐250 g). Cells already at 

passage 3 were aged in normal growth medium consisting of α‐Minimal Essential 

Medium (MEM, Gibco), penicillin (50U/ml) (all from Sigma–Aldrich), platelet-derived 

growth factor (PDGF) (10ng/ml, R&D), epidermal growth factor (EGF) (10ng/ml, R&D) 

and 2% fetal bovine serum (FBS) (Hyclone) maintained at 37°C in a humidified (5% 

CO2:95% air) atmosphere.  
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 For matrix encapsulation studies, R1 murine embryonic stem cells (ESCs) with 

and without green fluorescence protein (GFP) were purchased from ATCC (Manassas, 

VA, USA) and cultured in feeder-free medium made of Knockout® DMEM supplemented 

with 15% Knockout® serum, 1000 U/ml leukemia inhibitory factor, 4 mM l-glutamine, 

0.1 M 2-mercaptoethanol, 10 μg/ml gentamicin, 100 U/ml penicillin, and 100 μg/ml 

streptomycin in gelatin coated tissue culture flasks with daily medium change. 

Mg53 Treatment 

 To study the effects of Mg53 on fresh stem cell differentiation, stem cells were 

subsequently seeded at a density of 400,000/per well in 6-well culture plates and grown 

in DMEM medium without PDGF and EGF in the presence or absence of Mg53 

(50μg/mL) (Cayman chemical, Cambridge Bioscience). Phosphate buffered saline (PBS) 

was used as the control solution. Cells were then maintained in continuous culture for 7 

to 14 days, before being removed for studies to assess differentiation and membrane 

stiffness/elasticity. 

Matrix Encapsulation 

 To encapsulate the ESCs in microcapsules with a liquid core and hydrogel shell, 

they were detached from the flasks using 1x trypsin/EDTA, following a wash in PBS, and 

then suspended at 5 × 106 per ml in 0.25 M aqueous mannitol and 1% (w/v) sodium 

carboxymethyl cellulose as the core solution. A coaxial electrospray system was used, 

including coaxial needle, pumps, voltage generator and collecting bath.  In brief, the 
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core solution was pumped through the inner lumen (28G) of the coaxial needle at 47 

μl/min, while the shell solution consisting of 2% purified alginate (w/v) in 0.25 M 

aqueous mannitol solution was pumped through the outer lumen (21G) at 60 μl/min. 

Concentric drops generated by core and shell fluids are then broken up into 

microdroplets under a 1.8 kV electrostatic field and sprayed into the gelling solution 

made of 100 mM calcium chloride in deionized water. The high viscosities of core and 

shell solutions, as well as the instant gelling kinetics of alginate, ensured negligible 

mixing between the two aqueous solutions and therefore resulted in the formation of 

core-shell microcapsules. After encapsulation, the microcapsules with ESCs were 

washed with 0.5 M mannitol solution and cultured in ESC medium requiring a daily 

medium change. All cells were cultured at 37 °C in a humidified 5% CO2 incubator. 
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CHAPTER IV  

PLATFORM INTEGRATION AND DEVELOPMENT 

 The initial platform integration and development was designed for studies on 

cardiomyocyte mechanobiology and were, therefore, conducted on the HL-1 

spontaneously active cardiomyocyte culture.  Due to several differences between 

preliminary experiments using cultured cardiomyocytes and the eventual use of isolated 

adult ventricular myocytes, further development was needed in order to enable the use 

of the previously described techniques.  The next few sections will address the changes 

that were made, along with the optimization of the protocols used for the remainder of 

these studies. 

Cardiomyocyte Selection Criteria 

 One of the major differences between the HL-1 cell line and isolated adult 

ventricular myocytes is their size.  While HL-1 cells are much smaller and grow in 

clusters, adult ventricular myocytes are much larger and can be easily isolated as single 

cells.  Preliminary experiments comparing adult rat cardiomyocytes were designed to 

look at whether size could be used to predict the relative force of contraction.   Two 

spontaneously active cells were found side by side and each cell was monitored in order 

to compare the average force of contraction produced in response to variable loading 

conditions.  One cell was much larger than the other, while the smaller cell’s sarcomeric 

organization was visibly enhanced relative to that of the larger cell (Figure 7). 
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Figure 7. Experiment looking at the influence of size, trigger force, and striation patterning on the force 
of contraction. The larger cell had no clear striations, while the smaller cell had much better sarcomeric 
organization. 

 

 The results were able to show that sarcomeric organization had a much greater 

influence on the force of contraction compared to size.  As shown in Figure 8, on 

average, the smaller cell was able to generate nearly twice the amount of force 

compared to the larger cell regardless of the loading conditions.  Another conclusion 

from this study was that there is a positive correlation between the applied force and 

the resulting force of contraction.  This relationship is illustrated in Figure 9.   
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Figure 8. Graph showing the force of contraction at varying applied loads. A) The resulting “dwell” 
portions of dwell curves from the larger cell in response to varying loading conditions (1-100 nN). B) 
Results from the smaller cell under the same loading conditions in (A). 

 

 

Figure 9. Graph showing trend of applied load versus the resulting force of contraction for both cells 
from Figure 8. 
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Optimization and Analysis 

Another component that had to be integrated into this system was electrical 

stimulation.  While the HL-1 culture was spontaneously active, adult ventricular 

myocytes are typically quiescent or can have unpredictable spontaneous activity.  Due 

to the variability in the range of forces produced from cell to cell, and the 

inconsistencies in beating frequency, using an electrical stimulator to induce 

contractions was able to remove some of the inconsistencies by generating a much 

more stable response as shown in Figure 10. 

 

Figure 10. Comparison of the response from a spontaneously active cell versus an electrically stimulated 
cell. A) The force of contraction at varying loads showing a high standard deviation. B) The results from 
a stimulated cell showing a much lower standard deviation relative to the spontaneous cell in (A). 
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 In addition to the dynamic characterization of cardiomyocytes, the mechanics of 

the cell membrane over time were also of interest.  An initial study was designed to look 

at the effects of stimulation on membrane rigidity using the nanoindenter, as shown in 

Figure 11.  These results emphasize the importance and advantages of real-time 

monitoring for performing single cell studies on cardiomyocyte mechanobiology. 

 

Figure 11. Stiffness comparison for adult ventricular myocytes with and without stimulation. A) Force 
curves taken over time showing a stable trend in Young’s modulus for a quiescent, non-stimulated cell. 
B) Resulting force curves taken from a stimulated cell, showing an increase in stiffness over time as can 
be seen by the reduced indentation depth using a fixed trigger force. 

 

 With stimulation, there is a steady increase in stiffness of the sarcolemma over 

time, coupled with more variability.  Without stimulation, the resulting stiffness values 
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are more consistent and stable over the same time period.  This might be the result of a 

gradual increase in intra-cellular calcium over time due to potential electroporation or 

damage to the cell membrane caused by electrical stimulation.  This could also be due 

to potential cytoskeletal remodeling or enhanced sarcomeric organization occurring in 

response to continuously eliciting contractions.  

Further optimization and preliminary studies led to the integration and 

development of each component used for the remainder of these studies.  A sample 

data set following the optimized procedure is shown in Figure 12. 

 

Figure 12. Sample data set using optimized protocol. A) Stiffness data was collected from the initial 
contact (approach) portion of the dwell curve. B) AFM tip alignment and positioning on the center of 
contraction. C) Full dwell curve demonstrating where stiffness and beating dynamics are extracted. 
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 Additionally, data extraction from the “dwell” portion of dwell curves was 

performed using a multi-peak analysis package in the Igor software.  An initial decay can 

be seen upon initiating stimulation, therefore the last 30 peaks were selected and fit 

individually to analyze the stable portion of the observed beating dynamics, 

automatically calculating the parameters of interest.  This process can be seen in Figure 

13, and allowed for statistical averaging to be done on each data set. 

 

Figure 13. Multi-peak analysis of the last 30 peaks from the “dwell” portion of a dwell curve. Individual 
peaks are fit using the Igor software package, followed by the generation of peak statistics which 
allowed for the statistical averaging of each data set. 
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CHAPTER V  

CARDIOMYOCYTE MECHANOBIOLOGY 

 In the following studies, we propose various experimental techniques to quantify 

the altered dynamics and mechanics associated with either a specific cardiomyopathy, 

in response to toxin exposure, or the eventual dysfunction caused by various stimuli 

including genetic modifications.  Analyzing the cardiac cycle from the cellular level 

opens up new opportunities for characterizing pathophysiology, as well as enabling 

targeted studies of altered function in conjunction with previously known molecular 

variations representative of disease.  The field of cardiomyocyte mechanobiology has 

clearly demonstrated the role that these physical parameters have on overall cardiac 

performance and cardiovascular health. 

 From a clinical perspective, the ability to prevent, diagnose, or treat patients 

suffering from a particular cardiomyopathy relies on an in-depth understanding of the 

different components involved.  As more and more information is becoming available 

due to the advancement of genetic and molecular assays, some of the critical 

components involved in the molecular biology of different pathologies have provided 

enhanced therapeutic potential and better treatment options.  Through this work, we 

aim to contribute to this understanding by quantifying the mechanobiological properties 

of cardiomyocytes with respect to various other factors, while examining these effects 

during cardiomyopathy, disease, pathophysiology, and toxin exposure.  Upon combining 

the findings from this research with other well-established molecular techniques and 
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biomarkers, we can then further relate cellular studies with more physiologically 

relevant and translational research objectives. 

Doxorubicin-Induced Cardiotoxicity 

 Doxorubicin is a known cardiotoxic agent, causing unwanted side effects when 

being used to treat various types of cancer.  Because of this, it is important to determine 

the ways in which this and other drugs induce myocardial complications.  The specific 

aim for this study was to analyze the effects of doxorubicin when introduced to 

individual cardiomyocytes.  Using our advanced experimental platform, we were able to 

monitor the effects brought on by clinically relevant doses of this cardiotoxic compound.  

By monitoring the functional changes of individual cardiomyocytes upon the 

administration of drugs, we were then able to determine which aspects of the cardiac 

cycle are most vulnerable to this treatment in a time-dependent manner. 

 For this study, an integrated AFM/nanoindenter platform was used to study the 

pathophysiological effects that are associated with doxorubicin exposure.  Using adult 

mouse ventricular myocytes, both control samples and doxorubicin treated samples 

were monitored over time for comparisons between each group of individual 

cardiomyocytes.  As the changes were further analyzed, we were then able to look at 

which factors were ultimately affected in order to help identify which mechanisms are 

involved in doxorubicin-induced cardiotoxicity. 
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 Anthracyclines, including doxorubicin, are among the most effective 

chemotherapeutic agents available for the treatment of several human cancers; 

however, their cardiotoxicity limits their clinical use.  It has been reported that up to 

60% of pediatric cancer patients will receive anthracycline treatment and that 

approximately 10% of those patients will develop symptomatic cardiomyopathy up to 

15 years after the end of chemotherapy [18].  Due to the high incidence of associated 

cardiomyopathy, much work has been done to try and determine the specific 

mechanisms that are involved in doxorubicin cardiotoxicity, both acute and long-term. 

 There are several potential mechanisms that are thought to contribute to 

doxorubicin-induced cardiotoxicity, including ROS production, calcium overload, and 

metabolite toxicity.  Most supporting evidence is able to address individual components 

of doxorubicin cardiotoxicity separately, but there remains to be a unifying accepted 

hypothesis that incorporates and explains all of the aspects of both acute and long-term 

damage occurring within the myocardium. 

 Initial experiments were performed by collecting beating dynamics using the 

AFM platform in order to monitor the response of individual cardiomyocytes to 

doxorubicin exposure.  Ventricular cardiomyocytes were isolated from adult wild-type 

mice and immediately plated on petri dishes to maintain adult morphology and 

minimize the effects of long-term culture.  Cells were stimulated at 1 Hz using platinum 

electrodes submerged within the petri dish and the threshold for inducing contractions 

was determined separately for each experiment (typically 4 ms pulse @ <20 V).  At least 
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10 min of stable baseline measurements were collected and then 10 µm doxorubicin 

was added to the sample without altering the setup or the positioning of the AFM on 

the cell. 

 Data was collected as force versus time, with indentations being acquired at set 

intervals between beating data sets.  Beating data was collected at 60 sec dwell intervals 

and the cantilever retracted between every data set.  Stimulation was turned off 

between every dwell in order to ensure a reproducible contact force on the cell surface. 

 Initial results showed an increase, followed by a decrease, in the contraction 

force over a short time period (Figure 14).  These initial findings helped to explain 

previous reports claiming either an increase or no change in contractility occurring in 

response to doxorubicin, which based on these results, could vary depending on 

experimental conditions and when the measurements were taken.  However, the 

majority of studies have reported lowered contractility upon exposure to doxorubicin, 

which is more representative of the long-term physiological damage seen in vivo in 

animal studies and in human patients.  This led to extending the time of exposure 

beyond 30 min to determine if other time-dependent changes could occur leading to an 

overall decrease in contractile force as seen from longer time studies. 
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Figure 14. Initial contraction force data showing the response to 10 µm doxorubicin for up to 30 
minutes of exposure, with stiffness data shown in inset. 

 

 A total of 10 mice were then used to gather both control (6 mice) and 

doxorubicin exposure (4 mice) data over an extended time period.  The time taken for 

each experiment was approximately 2 hours and cells were only used within 6 hours of 

isolation, as it has been shown that changes can begin to occur after this time period 

which alter the adult cardiomyocyte morphology and could obscure the resulting data.  

Both control and doxorubicin samples were examined under identical settings and 

conditions for the same period of time, after which data was then combined and 

averaged for each group.  To remove variations and allow comparisons to be made 

between cells, normalization for each cell was used to generate relative values for all of 

the parameters measured.  Statistical analysis was then used at each time point to 

determine the significance between both data sets. 
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 The relative force for samples treated with doxorubicin generated an average 

initial increase of +35% after 20 min of exposure (40 min), followed by an eventual 

average decrease of -39% after 90 min of exposure (110 min).  Control samples 

maintained a relatively stable average force throughout the same duration of testing, 

only varying ±11% over time (Figures 15-16). 

 

Figure 15. Time-course of force versus time for control and doxorubicin treated samples. Student’s two-
tailed t-test assuming an unequal variance was calculated using Microsoft® Excel to determine the 
statistical significance between control and doxorubicin treated samples at each time point.  In all 
cases, a p value less than 0.05 was considered to be statistically significant (٭ p < 0.05). 

 

 

Figure 16. Individual representative peaks illustrating the relative force changes at the maximum and 
minimum time points in Figure 15. A) Representative peak and average data after 20 min of exposure. 
B) Representative peak and average data after 90 min of exposure.  



 

 38 

 The relative FWHM for samples treated with doxorubicin began generating a 

significant average increase after 35 min of exposure (55 min), peaking after around 80 

min of exposure (100 min) at +14%.  Control samples maintained a relatively stable 

FWHM, only varying ±4% over time (Figures 17-18). 

 

Figure 17. Time-course of FWHM versus time for control and doxorubicin treated samples. Student’s 
two-tailed t-test assuming an unequal variance was calculated using Microsoft® Excel to determine the 
statistical significance between control and doxorubicin treated samples at each time point.  In all 
cases, a p value less than 0.05 was considered to be statistically significant (٭ p < 0.05). 

 

 

Figure 18. Individual representative peaks illustrating the relative FWHM changes at the maximum and 
close-to-baseline time points in Figure 17. A) Representative peak and average data after 10 min of 
exposure. B) Representative peak and average data after 80 min of exposure. 
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 The relative stiffness for samples treated with doxorubicin showed an average 

initial increase by +21% over the first 30 min of exposure (50 min), matching control 

samples, but dropped back down to a stable value of only ±4% for the remainder of 

their exposure.  Control samples, however, maintained a relatively steady average 

increase in stiffness over time peaking at +72%, when measurements were stopped 

(Figures 19-20). 

 

Figure 19. Time-course of stiffness versus time for control and doxorubicin treated samples. Student’s 
two-tailed t-test assuming an unequal variance was calculated using Microsoft® Excel to determine the 
statistical significance between control and doxorubicin treated samples at each time point.  In all 
cases, a p value less than 0.05 was considered to be statistically significant (٭ p < 0.05). 

 

 

Figure 20. Individual force curves illustrating the relative stiffness changes from the maximum and 
close-to-baseline time points in Figure 19. A) Representative peak and average data after 15 min of 
exposure. B) Representative peak and average data after 90 min of exposure. 
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 The initial acute response of cardiomyocytes is thought to be associated with 

doxorubicin exposure, but the eventual long-term response could point towards the 

increased accumulation and production of the major metabolite doxorubicinol within 

the cell.  Other studies have shown that the long-term response appears to be unrelated 

to doxorubicin levels as it peaks very quickly, whereas doxorubicinol levels have been 

shown to increase significantly after 45 min of doxorubicin administration [19].  

Intramyocardial metabolism of doxorubicin to doxorubicinol would help to explain the 

time-dependent response of cardiomyocytes, and the long-term effects seen in patients 

receiving treatment. 

 Other studies have reported inducing opposing effects on isolated 

cardiomyocytes when either doxorubicin or doxorubicinol was administered [20].  

Doxorubicin-caused prolongation of action potential duration (APD) was thought to be 

the result of reduced Ca2+ extrusion via the Na+/Ca2+ exchange and/or the prolonged 

Ca2+ influx via opening of Ca2+ channels.  The doxorubicinol-caused shortening of APD 

was reported to be due to activation of Ik and partial depletion of sarcoplasmic 

reticulum (SR) Ca2+ content, both reducing the amount of Ca2+ available for myofilament 

activation during depolarization. 

 Results from the previous study also found opposing effects on cell shortening 

when cardiomyocytes were exposed to either doxorubicin or doxorubicinol [20].  Due to 

doxorubicin’s inhibition of Ik tail currents and doxorubicinol’s stimulation of Ik tail 

currents, APD was found to correlate directly with cell shortening.  Therefore, 
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doxorubicin prolonged APD, increasing contractility and doxorubicinol decreased APD, 

reducing contractility. 

 Reactive oxygen species (ROS) production is also believed to play an important 

role in long-term doxorubicin-induced cardiotoxicity.  Free radicals are known to impair 

sequestration of Ca2+ by the SR [21].  By promoting calcium release and the depletion of 

SR calcium stores, this action leads to impaired contractility by decreased supply of 

activator calcium and impaired cardiac relaxation by increased calcium at the myofibrils.  

An increase in Ca2+ concentration in the interior of myocardial fibers can cause damage 

to cell and organelle membranes by doxorubicin-generated oxygen radicals, leading to 

increased lipid peroxidation and membrane damage with the loss of membrane 

selective permeability.  Additionally, increased oxidative stress is thought to promote 

apoptosis, as antioxidants have been shown to help inhibit this process.  Mitochondrial 

injury and dysfunction are also key components involved in ROS damage [22].  

Cardiomyocytes are rich in mitochondria, representing up to 50% of cardiomyocyte 

mass which serve as both source and target of ROS.  Overall, depressed contractility is 

believed to be linked with malfunctioning SR Ca2+ release.  As ryanodine receptors 

(RyRs) have a direct binding site for anthracyclines, this may interfere with proper Ca2+ 

handling and lead to inhibition.  Other damage thought to be induced by ROS 

production include the degradation of myofilament and cytoskeletal proteins, and 

myofibrillar structural damage from doxorubicin-induced oxidative stress. 
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 From this study, we were able to show a distinction between the initial and time-

delayed response of individual cardiomyocytes upon doxorubicin exposure, illustrating 

the importance of time-dependence on the results and the improved monitoring 

capabilities of this platform over the time-course of exposure.  It is proposed, and 

further supported by our findings, that the initial increase in force is likely due to the 

acute effects resulting from exposure to doxorubicin, while the eventual decrease in 

force, prolonged FWHM, and membrane damage are caused by the accumulation of the 

major metabolite doxorubicinol and its increased production of free radicals leading to 

oxidative stress.  Based on supporting evidence from other studies, the likely causes for 

changes in contractility are linked to an increase or decrease in APD.  Other mechanisms 

involved in the degradation of the cell membrane and an overall loss in contractility 

include SR Ca2+ dysfunction caused by anthracycline binding, mitochondrial damage 

both stemming from and propagating ROS production, and the deterioration of 

myofibrils due to an increase in free radicals within the cardiomyocyte. 

 While other studies are still needed to conclude the effects from both acute and 

long-term exposure to doxorubicin, these findings illustrate the potential for future 

treatment strategies aimed at targeting the eventual metabolism and downstream 

effects of doxorubicin.  It was previously hypothesized that the mechanism of action 

which gives doxorubicin its cancer-fighting efficacy in cancer cells is separate from the 

mechanisms causing its cardiotoxicity in the heart.  This work also supports this 
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hypothesis and points towards alternative strategies for mitigating the cardiotoxic 

effects of this drug without suppressing its chemotherapeutic potential. 

Simulated Hypoxia 

 The goal for this specific aim was to quantitatively characterize the time-course 

of altered beating dynamics of adult mouse cardiomyocytes in response to simulated 

hypoxia.  The resulting pathology associated with this event occurs when the level of 

oxygen drops below physiological levels, such as in ischemia, which causes myocardial 

damage upon an infarction.  As this triggers a cascade of events which can lead to the 

loss of viable myocardial tissue and oxidative stress, it is important to determine both 

the time-course of degeneration and the underlying changes in cardiomyocyte 

mechanobiology as a result of these events. 

 In order to study the pathogenesis incurred during this process, an 

environmental chamber was used to regulate oxygen levels exposed to isolated adult 

mouse cardiomyocytes.  The cells were subjected to hypoxic conditions (0.5% O2), as the 

beating dynamics were constantly monitored in real-time throughout this process.  

Techniques illustrated above for acquiring cardiomyocyte beating dynamics through the 

utilization of DHM provided indicators of cell damage and altered performance.  Various 

fluorescent markers indicative of ROS production were also used in additional 

experiments performed in conjunction with these to develop an understanding of the 

physio-chemical relationship that is induced upon this increased oxidative stress. 
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 The results from this study show that there is an initial and gradual increase in 

both phase amplitude and the duration of contractions (Figure 21).  The cardiomyocytes 

were only responsive to stimulation over the first 20 minutes of hypoxia.  After 20 

minutes, the contractions became erratic and spontaneous, without responding to 

stimulation as can be seen in the resulting phase versus time plots at the remaining time 

points (30-60 min).  Another interesting result was the gradual increase in resting phase 

values over time as shown in Figure 22. 

 

Figure 21. Phase monitoring of stimulated adult ventricular myocyte in response to simulated hypoxia. 
A) Phase versus time plots taken over the boxed region shown in (B). B) Phase image with region of 
interest selected for phase monitoring. C) Data analysis showing the average values for phase 
amplitude and peak duration over 60 minutes of exposure to hypoxic conditions. 
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Figure 22. Average baseline phase value over time showing a gradual increase over 60 minutes of 
exposure to hypoxic conditions. 

 

 The gradual increase in average baseline phase could be due to the loss of 

selective permeability and altered calcium handling caused by membrane damage due 

to oxidative stress, along with the increased build-up and production of ROS.  The 

initiation of arrhythmias and spontaneous activity also occurred between periods of 

quiescence, eventually leading to cell death.  This represents the first study applying this 

phase monitoring technique to individual cardiomyocytes in response to hypoxic 

conditions.  The mechanodynamic response coupled with the measured increase in ROS 

production along a similar time-scale illustrate the utility of this technique and also 

propose alternate strategies for detecting the increased production of ROS by 

monitoring phase changes within individual cardiomyocytes. 

Wild-type vs Knockout 

 Genetic mutations for different proteins and components of excitation-

contraction coupling can have a significant impact on the cardiac cycle and the overall 
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performance of the heart.  While many studies have identified specific mutations 

leading to various types of cardiomyopathy, the exact mechanisms with which these 

changes cause damage can be difficult to identify.  By using a knockout mouse model for 

a specific gene or protein of interest, we have been able to further characterize the 

changes that occur at the level of the cardiomyocyte and provide additional insight 

regarding the underlying mechanisms driving these changes.  Analyzing isolated 

cardiomyocytes from both wild-type and transgenic mice, comparisons relating calcium 

dynamics and contractility were made to better assess the resulting altered 

mechanobiology. 

 Using our integrated AFM/LSCM platform, we performed a side-by-side 

comparison of cardiomyocytes from both wild-type and transgenic mice.  Similar metrics 

were used to characterize the mechanobiological properties of each cell type in relation 

to calcium dynamics, while quantitative analyses of these metrics were then used to 

help identify those areas that were most effected by the induced alterations.  As various 

molecular techniques have already provided data that can be used to help correlate 

these two components of cardiomyocyte behavior, we were able to utilize this 

information to help relate our findings with previous reports. 

 The resulting correlation between Ca2+ concentration and the contraction peak 

show that the alterations in beating dynamics are directly related to altered Ca2+ 

dynamics (Figures 23-25).  Both parameters see a slight decrease in amplitude and a 

prolonged time-to-peak and time-to-relaxation in the knockout mouse model.  These 
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results are able to confirm the overall effects that this particular mutation (an RyR 

specific protein) induces in this experimental mouse model.  Mice suffering from this 

mutation exhibit impaired heart function showing dilated cardiomyopathy-like 

symptoms, such as decreased contractility, as well as the development of arrhythmias. 

 

Figure 23. Dwell curves from wild-type and knockout cardiomyocytes. A) Wild-type dwell curve. B) 
Knockout dwell curve. C) Comparison of individual wild-type and knockout contraction peaks, along 
with statistics regarding average data taken from 5 cells of each type. 

 

 These results illustrate the advanced capabilities for this integrated platform to 

quantify mechanobiological changes in correlation with intracellular calcium dynamics.  

This also provides direct evidence for the cellular level changes associated with a 

specific mutation, opening up the potential for future studies and experimental mouse 

models of known genetic alterations of clinical importance. 
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Figure 24. Calcium line-scan images from wild-type and knockout mice. A) 3D profile comparison of 
both cell types. B) Wild-type calcium line-scan. C) Knockout calcium line-scan. D) Comparison of wild-
type versus knockout calcium line-scan profiles. 

 
 

 

Figure 25. Contraction and calcium peaks showing a positive correlation. A) Contraction peaks of both 
cell types. B) Calcium dynamics from both cell types. 
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CHAPTER VI  

STEM CELL MECHANOTRANSDUCTION 

 Stem cell applications with clinical significance have shown great potential for 

treating a variety of conditions.  However, their limited success in clinical trials and the 

growing safety concerns associated with their use have stalled the development of new 

techniques and their overall impact in the medical field.  As previously mentioned, some 

of the many challenges for this technology remain in the low cell retention rates upon 

implantation/injection and the inability to regulate and control their 

differentiation/integration within the host tissue.  Although many studies have had 

success under in vitro conditions, the inability to recreate those results with in vivo 

applications has slowed the progress of this field, calling for a better understanding of 

the mechanisms responsible in regulating stem cell behavior.   

Of the many areas currently under investigation, the role of 

mechanotransduction in stem cell biology has made several contributions.  By 

quantifying the mechanical properties of these cells in response to various 

environmental conditions, we have been able to assess the importance of stiffness and 

physical cues upon stem cell differentiation and their potential influence for in vivo 

applications. 
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Mg53 Treatment 

The role of physical stress on stem cell differentiation has drawn much interest 

and carries great potential for applications in tissue engineering and regenerative 

medicine.  Varying levels and ranges of physical forces are present in vivo under 

physiological conditions depending on the cell types present within the tissue of 

interest.  Recent studies have begun demonstrating the degree to which stem cells in 

particular respond to these mechanical cues.  By quantifying the mechanical properties 

of these cells under varying conditions, we have been able to utilize membrane stiffness 

as a potential indicator of differentiation potential. 

 Using our integrated AFM/Nanoindenter platform, we have performed side-by-

side comparisons of stem cell membrane stiffness upon exposure to Mg53 protein 

treatment.  As this treatment is known to have a role in membrane repair and has been 

hypothesized to stimulate stem cell differentiation, we analyzed the resulting changes in 

membrane mechanics associated with this treatment.  These studies have helped to 

further demonstrate the validity and relevance of studies regarding 

mechanotransduction, while utilizing a platform to better isolate the desired mechanical 

properties of interest and enabling future studies on this important relationship. 

 Mg53, a muscle-specific tripartite motif family protein of the membrane repair 

machinery, has a prominent in membrane repair [23], and has recently been linked with 

the stimulation of differentiation pathways.  This study was interested in determining 
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whether or not this treatment affected membrane elasticity and differentiation 

potential in individual stem cells.  A side-by-side comparison using nanoindentation was 

performed and preliminary data is shown in Figure 26.  At both time points, Mg53 

treated cells were found to have reduced stiffness and increased elasticity, although the 

difference becomes much more significant after 14 days in culture.  Also, the percentage 

of differentiated cells undergoing Mg53 treatment was much larger than that of control 

samples. 

 

Figure 26. The effects of Mg53 treatment on differentiation and stiffness. A) Increased differentiation 
percentage between treated and non-treated cells. B) Stiffness measurements between treated and 
non-treated samples at 7 and 14 days. 
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Matrix Encapsulation 

 Using our integrated AFM/Nanoindenter platform, we have performed side-by-

side comparisons of membrane stiffness for stem cell aggregates under encapsulation 

and those of bare aggregates in order to quantify the effects of a micromatrix coating on 

the resulting stiffness.  These samples were further analyzed on their efficacy for 

treating myocardial infarction upon injection into the infarct zone by monitoring cell 

retention and successful integration within the host tissue.  These studies also help to 

validate the significance of studies regarding mechanotransduction, while utilizing an 

advanced quantitative technique to better understand this important relationship. 

 As mentioned, one of the challenges facing stem cell therapy for myocardial 

infarction (MI) is the ability to maintain high cell retention in vivo.  By encapsulating 3D 

stem cell aggregates in a biocompatible/biodegradable hydrogel micromatrix, 

researchers have been able to significantly enhance animal survival upon injection into 

the infarct zone. 

Myocardial infarction (MI) is one of the leading causes of death [24, 25], due in 

part to the fact that the human heart has a very limited capacity to regenerate 

functional cardiac tissue after the loss of viable cells, particularly cardiomyocytes, 

following MI [26-28]. Several stem cell applications have shown promise as an option for 

treating MI, however, the reported retention percentages of stem cells in the infarct 

zone have been disappointing with as low as 1% of viable cells in the heart within a few 
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hours to days post injection [28-31].  The use of a core-shell architecture provided by 

matrix encapsulation mimics the physical configuration of embryos during the early 

stages of development and was an inspiration for the development of this coating 

procedure [32, 33].  

 Along with the obvious chemical factors and the optimization of diffusive 

properties of the matrix involved in accomplishing this effort, there was also an interest 

in seeing whether the physical properties of the matrix (or its stiffness) could play a role 

in successfully recreating physiological conditions for the injectable stem cell 

aggregates.  By performing nanoindentation on prepared samples, we were able to 

show a significant difference between control groups without matrix encapsulation, and 

those cell aggregates that were subjected to matrix encapsulation (Figure 27). 

These results offer an interesting hypothesis, suggesting that the mechanical 

cues supplied by the matrix could play a significant role in the successful implantation of 

stem cell aggregates in the heart, leading to a better overall integration within the host 

tissue and stimulating the differentiation of both cardiomyocytes and endothelial cells. 

Supporting data collected in conjunction with this work was able to further show 

that the molecular dynamics of the stem cell aggregates were also altered upon matrix 

encapsulation, leading to the enhanced cell survival and retention upon injection.  One 

of the additional components thought to provide increased efficacy was the temporary 

systemic immunosuppression provided by matrix encapsulation up to 6 days upon 
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injection, mitigating the potential for immune rejection during long-term studies [34-

36]. This was thought to be due to the afforded immuno-isolation provided by the 

biodegradable matrix, leading to enhanced animal survival.  Additionally, matrix 

encapsulation also significantly reduced fibrosis and improved cardiac function 

compared to control samples 15 days after injection. 

 

Figure 27. Comparison of Young’s modulus between coated and non-coated stem cell aggregates. 

 

Additional studies using GFP labeled cells also showed the ability of the injected 

cells to migrate through the MI zone while promoting their successful integration within 

the host tissue.  The differentiation of a small percentage of injected cells towards 

endothelial cells was also shown to stimulate vasculogenesis and angiogenesis at the 

injection site.  In summary, micromatrix encapsulation demonstrated its potential for 

clinical applications utilizing stem cell therapy, such as the successful treatment of MI, 

while illustrating the influence of physical cues on stem cell biology. 
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CHAPTER VII  

FUTURE WORK AND CONCLUSIONS 

Cardiomyocytes 

Doxorubicin-Induced Cardiotoxicity 

 Through this study we were able to quantitatively characterize the time-

dependent response of individual cardiomyocytes to doxorubicin exposure.  We 

observed an acute increase in the force of contraction followed by an eventual decrease 

in contractility, a time-dependent increase in FWHM, and a relative decrease in 

membrane stiffness over time.  These time-dependent responses appear to be due to 

the metabolism of doxorubicin into doxorubicinol, along with the increased production 

of ROS and subsequent membrane damage. 

 Future studies of doxorubicin-induced cardiotoxicity will incorporate additional 

components and inhibitors to try and further isolate the time-dependent effects in 

response to doxorubicin/doxorubicinol exposure.  This includes the time-course of 

cardiomyocyte exposure to doxorubicinol, as well as, the combined treatment with an 

antioxidant such as Vitamin C. 

Simulated Hypoxia 

 Through this study we were able to monitor the time-dependent dynamic 

response of individual cardiomyocytes to hypoxic conditions.  We observed a slight 

initial increase in contractility and beat duration, followed by the generation of 
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spontaneous activity and the inability to stimulate periodic contractions.  An overall 

increase in the baseline phase between contractions was also observed, potentially 

correlating with an increase in ROS and an altered intracellular refractive index. 

 Future work using the DHM to study simulated hypoxia will utilize the integrated 

fluorescence module, along with the dynamic characterization of cardiomyocyte 

contractility.  Combining the detection and calculation of ROS production directly with 

altered mechanodynamics will help to better represent the time-course of damage, 

along with the potential for combining various therapeutic strategies and treatments 

aimed at mitigating this response.  Altering the time of exposure to hypoxic conditions, 

followed by its subsequent reoxygenation, will allow for the determination of the time 

window for optimizing cell recovery in combination with potential treatments. 

Wild-type vs Knockout 

 Through this study we were able to perform a side-by-side comparison of 

individual cardiomyocytes in order to directly measure the effects of a specific mutation 

on cardiomyocyte contractility.  We observed a decrease in the force of contraction and 

an increase in beat duration in the knockout cells relative to wild-type cardiomyocytes.  

A comparison of the calcium-contraction relationship further supported these findings, 

illustrating the capabilities of this platform to quantify and relate subtle changes in 

cardiomyocyte contractility and calcium dynamics. 
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 Extending studies towards a variety of genetically altered mouse models opens 

up the possibilities for mapping out the direct effects for a particular protein, or group 

of proteins, having a known association with a specific cardiomyopathy of interest.  

While initial results have demonstrated the potential for these types of studies, there 

still remains a large percentage of genetic mutations that have not been traced to their 

influence regarding a specific mechanism at the cellular level. 

Stem Cells 

Mg53 Treatment 

 With this study we were able to investigate the effects of Mg53 treatment on 

stem cell differentiation, and the potential role that membrane elasticity has on this 

relationship.  We observed a slight decrease in membrane rigidity upon 7 days of 

treatment with Mg53; however, a much more significant reduction in this measurement 

was attained after 14 days in culture relative to control samples.  Using 

nanoindentation, the increased differentiation of stem cells treated with Mg53 showed 

a direct correlation with membrane elasticity.  These findings lead to the hypothesis 

that membrane stiffness could serve as a potential indicator of differentiation potential 

in stem cells, with increased elasticity enabling the differentiation of stem cells by 

stimulating rapid attachment and promoting phenotypic changes upon treatment in 

culture. 
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 Additional studies on stem cell mechanics include the effects of a freeze-thawing 

cycle.  While cryopreservation is a commonly used method for storing and culturing 

various cell types, the effects that this process may have on membrane stiffness, and 

ultimately stem cell differentiation, have not been examined. 

Matrix Encapsulation 

 Through this study, we were able to demonstrate that stem cell aggregates 

treated by matrix encapsulation leads to an increase in Young’s modulus compared to 

bare stem cell aggregates.  Further studies completed by collaborators found an overall 

enhancement in cell retention and tissue integration upon injection of the matrix 

encapsulated aggregates into the infarct zone of MI mouse hearts.  This correlation in 

stiffness and successful implantation leads to the hypothesis that the physical cues 

imposed by the matrix better mimic in vivo conditions, which could lead to the 

improved efficacy of stem cell treatments. 

 Further quantification of the physiological forces that occur during 

embryogenesis could lead to the optimization of this technique, enabling the recreation 

of specific mechanical cues in vitro by tailoring the material properties of the hydrogel 

matrix and better mimicking those found in vivo.  These studies will also be extended to 

various other tissue regeneration applications and stem cell therapeutics. 
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Summary 

In conclusion, this work includes the use of new and innovative techniques to 

quantitatively analyze cardiomyocyte mechanodynamics and the role of stem cell 

mechanics under various experimental conditions.  This research addresses key 

components of cardiovascular research that are currently still largely unknown, and has 

the potential for clinical implications regarding prognosis, treatment, and the 

prevention of various cardiomyopathies.  Also, as stem cell therapies become more 

advanced, there will be a growing need for the development of similar techniques in 

order to quantify the physical mechanisms of differentiation in association with the 

complex network of molecular signaling. 
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