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ABSTRACT 

Oil and natural gas are major energy sources for modern society. A rotary drilling system 

is the best known technology to extract them from underground. The vibration and 

stability of drilling systems have been studied for decades to improve drilling efficiency 

and protect expensive down-hole components. It is well known that severe drill-string 

vibrations are caused by many different loads: axial loads such as the hook load and the 

self-weight of the drill-string, end torques applied by the surface motor and restrained at 

the bit, the inertial load caused by whirling, the fluid drag force, and the contact force 

between the borehole wall and the drill-string. The drill-string is usually subjected to a 

complex combination of these loads.  

The motivation for this dissertation is the need to understand the complex vibration states 

and the stability of the drill-string in order to better control its constructive and 

destructive potential. A mathematical model is proposed to describe the steady-state 

stability of a long, vertical, rectilinear drill-string. The model accounts for a complex 

combination of constant and variable loads that affect the behavior of drill-strings. The 

first critical values of these loads and the corresponding mode shape are obtained by the 

analytical method and the Rayleigh-Ritz method. COMSOL and ABAQUS are used to 

validate the numerical results for the cases without analytical solutions. With these 

results, we see that the Rayleigh-Ritz method gives accurate results and is a good way for 

us to understand more deeply the dynamics of the drilling process and predict the 

instability of the drilling system.  
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CHAPTER 1 

INTRODUCTION AND GENERAL INFORMATION 

The introduction briefly discusses the drilling system and the mechanical behaviors of the 

drill-string. It also provides a short motivation for the thesis and an outline of the 

organization of the Chapters. 

1.1 Drilling System 

Oil and natural gas are the major energy sources for the modern society. How to extract 

underground oil and gas efficiently and economically has been studied for decades. The 

best known technique used mostly in the oil industry is the rotary drilling system. The 

system can drill a well very deep underground and the world’s longest and deepest well is 

longer than 10 kilometers now. The main process during a deep well drilling is to create a 

borehole by means of a rock-cutting tool, called a bit. The rotary drilling relies on a 

combined mechanical/hydraulic system to support the drilling process. There are two 

flows in this process: energy transport from surface to the bit, and material transport from 

the bit to surface.  

A typical land-based drilling rig is shown in Figure 1.1. The mechanical part of the 

drilling system is composed of a bit, a drill-string, and a rotary drive system. A rotating 

bit consists of a steel body with or without rotating parts to generate the borehole. Bits 

can have a diameter between 0.1 and 0.9 m, where the smaller diameter bits are used for 

the deeper sections of the well. A drill-string consists  
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Figure 1.1 Components of a Rotary Drilling System 
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mainly of drill pipes to rotate the bit. The lowest part of the drill-string is called the 

bottom-hole assembly (BHA), which consists of drill collars with larger stiffness than the 

drill-pipe, stabilizers to stabilize the BHA and the bit to crush rocks. The length of the 

BHA is typically several hundred meters. Typical drill collars have an outside diameter 

up to 250 mm and a wall thickness up to 85 mm. Stabilizers have a blade length up to 1 

m and a diameter that is 5 to 50 mm less than the diameter of the borehole [1]. The rotary 

drive system at the surface usually consists of an electric motor, a gearbox, and a right-

angle reduction gear with a large horizontal disc-shaped gear wheel: the rotary table. The 

rotary table is located directly above the borehole and connected to the drill-string. 

Torque is transmitted from the rotary table to the drill-string via the Kelly to control the 

vertical motion of the drill-string. The hydraulic part consists of the drilling fluid (mud), 

pumps, and a transport channel: the drilling fluid is pumped down through the hollow 

drill-string and flows back through the annulus between the drill-pipe and the borehole 

wall. The drilling fluid aids the cutting process by jetting action: it cools and lubricates 

the bit and transports the cuttings from the hole bottom to the surface. 

1.2 Mechanics of the Drill-string 

The drilling industry has a common problem of severe drill-string vibrations during the 

drilling process. Field observations, in the form of down-hole and surface vibration 

measurements, have clearly indicated that the drill-string, particularly the BHA, generally 

is subjected to severe vibrations in several ways: lateral (bending), torsional (rotational), 

and axial (longitudinal) vibration, or more often, as combinations of these three basic 

modes. A drill-string is an extremely slender structure with a ratio between length and 
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diameter larger than a human hair. Because the drill-string has a smaller diameter than 

the borehole, it is free to vibrate laterally. Torsional vibration is caused by the input 

torque at the top end and the resisting torque at the bottom end because of the cutting. 

Axial vibration is caused by the self-weight of the drill-string, the input hook load at the 

top and the varying support load at the bit. These vibrations are especially important in 

the lower part of the drill-string. Typical frequencies of lateral vibration are from 0.5 to 

tens of Hz. The torsional vibration has a typical frequency of 0.05 to 0.5 Hz. The typical 

frequency of axial vibrations is between 1 and 10 Hz [1].  

These different vibrations of the drill-string are caused by the complex loads applied to it. 

The primary functions of the drill-string are to transmit torque and to transport drilling 

fluid, and as a result a drill-string is loaded by torque and pressure. Torque values at the 

bit are usually between 0.5 and 10 kNm, but due to friction along the borehole wall the 

torque required to rotate the string at the surface may be between 0.5 and 50 kNm [1]. 

Another large load acting on the drill-string is the self-weight of the drill-string. The drill-

string is supported from the surface and hung down in the borehole. In the upper part of 

the drill-string, the state of stress is tension which may be several thousands of kN. In the 

lower part of the drill-string (the lowest few hundred meters of the drill-string), the state 

of the stress is compression due to the weight on the bit (WOB) and the axial reaction 

force at the bottom end of the drill-string. The hook load is the axial supporting force at 

the top end of the drill-string. This load is to hold the drill-string and often almost equal 

to the weight of the drill-string. A drill-string is also subjected to various dynamic forces, 

including: fluid pressure fluctuations, internal and external damping forces, centrifugal 
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forces, and interactions with the wall. The three types of vibration are caused by these 

loads or their combinations. An important cause of lateral vibrations is out-of-balance 

forces in the drill-collars, resulting in a whirling motion, just as in an unbalanced 

centrifuge. Another cause of lateral vibration is the friction between the rotating drill-

string and the borehole wall, which can produce a backward rolling motion of the drill-

string along the wall. The torsional vibration is caused by a nonlinear relationship 

between the torque and the rotary speed at the bit. The axial vibration is caused by the 

variations of axial loads. The drilling fluid flows down through the hollow drill pipe and 

exits from the end of drill-string. That has some effects on the vibrational behavior and 

the stability of drill-string. 

Drill-string vibration is an important cause of premature failure of bits, equipment and 

other drill-string components. When a crack in the drill-string is detected during the 

drilling process, the drill-string has to be removed from the hole to exchange the failed 

component. If the crack is not detected it may result in parting of the drill-string. After 

removing the top part of the drill-string the remaining part has to be fished out of the hole 

with special equipment. In the worst case the bottom part of the drill-string is not 

recovered, expensive equipment is lost, and a part of the hole has to be abandoned. At 

best, costly drilling time is wasted. Drill-string vibration can also cause problems with the 

directional control of the drill-string during the deviated drilling, can reduce the rate of 

penetration, and can cause damage to the borehole wall resulting in a collapsed or vastly 

oversized borehole. Because of the complex loading conditions, the bit may bounce on 

the cutting surface resulting in bit damage; severe bending moments may develop in the 
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BHA leading to fatigue failures; forward whirling may cause wear against the bore hole, 

and backward whirl due to the friction of the wall may result in fatigue failure. These 

phenomena are all hazardous to drilling operations. 

The study of the stability of a drilling system arose from a desire to improve the drilling 

efficiency and protect expensive down-hole components. How to avoid or decrease the 

vibrations of the drill-string has been studied for decades. Traditionally, research into the 

avoidance of drill-string failures has concentrated on the material strength of the drill-

string components rather than on the dynamic loadings. Research into the dynamic 

loadings appears to have started around 1960. Many theoretical analyses and field 

measurements have been performed since then and provided a large amount of 

information on dynamic drill-string behaviors. Control of vibration and dynamics in the 

oil and gas drilling process is very important for the industry to decrease the failures of 

expensive drill-strings and improve the drilling efficiency. But this is very difficult 

because of the system’s inherent non-linearity and other uncertainties involved in the 

problem. The three main steering parameters of the drilling process are related to the rock 

cutting process at the bit: the hook load at the top end of the drill-string, the rotary speed 

at the surface and the flow rate. However, the driller has only partial control over these 

parameters, and instead controls three steering parameters at the surface that to a limited 

extent correspond to their downhole counterparts. Variations in the hook load caused by 

lowering or raising the hook give a crude measure of the WOB. The WOB has a typically 

desired value between 0 and 250 kN. The rotary speed at the surface is the angular 

velocity of the top end of the drill-string. This parameter can be accurately controlled, but 
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it may differ drastically from the instantaneous rotary speed at the bit because of the 

torsional flexibility of the drill-string. The average values of the rotary speed at the 

surface and downhole are, of course, equal. Typically desired rotary speeds are between 

50 and 200 revolutions per minute (rpm) for the conventional rotary drilling. The flow 

rate is the volume of the drilling fluid pumped down through the drill-string. Under 

normal circumstances the flow rate through the pumps at the surface is equal to the flow 

rate through the nozzles at the bit, and can be accurately controlled because it is produced 

by a positive-displacement pump. Typical flow rates are between 10 and 50 L/s [1]. 

The motivation for this dissertation is the need to understand the complex vibration states 

that such a drill-string can exhibit in order to better control its constructive and 

destructive potential. A mathematical model will be proposed to describe the steady-state 

stability of a long, vertical, rectilinear drill-string. An accurate drill-string dynamic model 

can only be described by a set of non-linear differential equations. The model will 

account for a complex combination of static and dynamic loads that affect the behavior of 

a drill-string. Analysis of behaviors of the drill-string is based on the evaluation of 

steady-state stability. We will use a Rayleigh-Ritz method [2] to find the critical load 

combinations of the drill-string for different loading conditions. The mode shape 

corresponding to each loading condition is also computed. The effects of the different 

loads on the stability of the drill-string are also analyzed. With these results, we can 

understand more deeply the dynamics of the drilling process and predict the instability of 

the drilling system. The goal of this dissertation is to identify and describe the most 

important vibration mechanisms in the drill-string, to develop analytical and numerical 
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models of these phenomena and to verify them through the use of a finite element 

analysis. 

1.3 Outline of the Dissertation 

This dissertation concentrates on the understanding of steady-state stability of the drill-

string. Vibrations caused by different loads such as the hook load, the self-weight of the 

drill-string, the whirling of the drill-string, and the end torque are included. These studies 

will help us gain insights into the behaviors of the drill-string and provide information 

about how to improve control and reduce costs of the drilling process. 

In the second chapter, researches into the avoidance of drill-string failures are mentioned 

at first. Several different aspects of the vibration phenomenon of the drill-string are 

studied by different researchers. The problem we are interested in is stated in the next. A 

rotating coordinate system is used to describe vibrations of the drill-string. The equation 

of the motion of the drill-string is provided and the innovations about our study also are 

included. 

In the third chapter, the analytical method is used to solve several cases with simple 

loading conditions applied on the drill-string. These loading conditions include constant 

axial load only, constant whirling only, constant end torque only, constant axial load and 

whirling applied together, constant axial load and end torque applied together. The first 

critical load parameters and the corresponding mode shapes are obtained for these cases. 

In the fourth chapter, the Rayleigh-Ritz method is introduced at the beginning and then 

used to solve the several cases with different loading conditions applied. All cases solved 
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in Chapter 3 are solved again with the Rayleigh-Ritz method. The case with constant 

whirling and end torque, and the case with constant axial load, whirling and end torque 

are also solved. The self-weight of the drill-string is included for several cases and we 

find it changes the performance of stability significantly. 

In the fifth chapter, COMSOL and ABAQUS are used as validation methods to confirm 

the results for several different cases. COMSOL is abandoned because we think 

ABAQUS is better to solve our problem. The analytical solution for a case with fixed-

free boundary conditions is used to verify the ABAQUS result and two other cases with 

different loading conditions are analyzed. 

In the sixth chapter, comparisons between the results from the analytical method and the 

Rayleigh-Ritz method are made. All results have close agreement and show that the 

Rayleigh-Ritz method is a good method to analyze our problem with more complex 

loading conditions. 

In the seventh chapter, the results obtained so far are concluded. Several suggestions are 

made for future research. 
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CHAPTER 2 

PROBLEM STATEMENT 

This chapter briefly introduces the new technologies in the drilling system and reviews 

the historical notes in this field. It also mentions the innovations of our study. 

2.1 Introduction 

As the technology improving over the years, there are two kinds of drilling wells: the 

vertical drilling well and the directional drilling well. A vertical well is one that is 

characterized by a generally vertical wellbore track and is the most widely used well type 

worldwide. Because the risk of vertical well construction is relatively low, the techniques 

for drilling such a well are relatively simple and the maintenance of the subsequent oil 

extraction operation is relatively easy. Directional drilling is the real marvel of 

engineering and scientific innovation. The concept of directional drilling is drilling wells 

at multiple angles, not just vertically, to better reach and produce oil and gas reserves. It 

enables operators to maximize returns from each well and also produces positive results 

for the environment. One type of the directional drilling, the horizontal drilling, is used to 

drastically increase production. A horizontal well is drilled across an oil and gas 

formation, increasing production by as much as 20 times more than that of its vertical 

counterpart. Horizontal drilling is the term used for any wellbore that is inclined more 

than 80 degrees from the vertical, and it can even include more than a 90-degree angle. 

There are also many other technical improvements in the drilling system such as using 

polycrystalline diamond compact (PDC) bit to crush the rock, using a downhole motor to 
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generate rotation of the bit, and using downhole measurement-while-drilling (MWD) 

tools to obtain survey data of the drilling process. To study the stability of the drill-string, 

we simplify the system and view the drill-string as a long shaft (1–8 km). It is intuitive 

that such a long rotating system is subjected to severe vibrations during the drilling 

process. This chapter aims at clarifying the problem we are interested in and reviewing 

the innovations in this field. 

2.2 Historical Notes 

Research into the avoidance of drill-string failures has been the subject of much research 

and many articles in the past. Traditionally, study has been concentrated on the material 

strength of the drill-string components rather than on the dynamic loading. Research into 

the dynamic loading appears to have started around 1960, when the first surface 

measurements were made that indicated the occurrence of torsional and axial vibrations 

[3]. In 1968 a series of downhole measurement were performed which provided a large 

amount of information on dynamic drill-string behavior [4, 5].  

Buckling of the drill-string and drill-string vibrations are common and damaging 

phenomena that have been extensively described. A drill-string can be viewed as a long 

column constrained at both ends, and many researchers have studied the buckling 

problem of columns under different load conditions with different boundary conditions. 

A.G. Greenhill [6] established a formula to describe the buckling phenomenon of shafts, 

which is made to transmit at once a thrust and a twisting moment. He worked out a 

mathematical investigation to get the critical buckling the thrust and the twisting moment. 

Capelushnikov [7] appears to have been one of the first investigators who attempted to 
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explain the possible causes of borehole deviation in terms of analytical investigations into 

beam mechanics and elastic bending theory. Clark [8] presented a qualitative 

categorization of the four main modes of a string of drill pipe and described three states 

of instability which can exist: buckling of the drill column due to the WOB, the spiral 

deformation of the string due to twisting of the pipe, the instability may occur as a result 

of the speed of rotation.  

Work initiated in the 1950s by Lubinski and Woods [9-12] and Rollins and Bachman [13] 

gave the oil and gas industry its first practical methods of analyzing the bending drill-

string. Lubinski [14] applied the theory of elastic stability to analyze a drill string of 

uniform cross section in a vertical hole. He determined the critical conditions which 

cause buckling as a function of the WOB for straight sections of pipe. He found out that 

carrying weights on the bit which are slightly less than the critical value of the third order 

is better than using any smaller value of weight at which the string is already buckled. In 

1956, Rollins [15] converted the Woods and Lubinski data into more useable numerical 

tables which included representative conditions for popular borehole and collar sizes of 

the times for various inclination angles, formation dips, and crookedness classifications.  

Ziegler [16] analyzed a problem of a shaft buckled by end torque only with fixed-fixed 

boundary conditions. He showed that buckling is not caused only by compression and a 

shaft may also become unstable under the action of a torque. The smallest buckling 

moment was obtained by the same method Greenhill used. Timoshenko [17] dealt with a 

vertical beam under its own weight with fixed-free boundary conditions. The critical 

length of the beam was calculated with a method involving Bessel's functions. Mclachlan 
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[18] did a similar research also using Bessel functions a little later and had the same 

results. Tan and Digby [19] determined a number of different equilibrium helical 

buckling configurations for a tubing or drill string confined within a cylindrical casing 

and buckled under static compressive forces. The solutions relating the buckling load and 

the post-buckling configuration were given explicitly for the string of weight and at any 

inclined positions. Tan and Forsman [20] also conducted experiments on laboratory 

buckling tests of strings and the results were compared with theoretical formulas. A 

proposed approximate formula for estimating the friction force provided more accurate 

results. Chen and Li [21] studied the deformation of a thin elastic rod constrained inside a 

cylindrical tube and under the action of an end twisting moment. They presented a 

complete analysis on the deformation when the dimensionless twisting moment was 

increased from zero. The numerical results were found to agree very well with those 

predicted analytically. Coomer [22] discussed the motion of idealized inextensible strings 

and analyzed the equations of motion for closed-loop configurations, free of body forces 

and open hanging strings whirling under gravity. The results provided a useful theoretical 

background for an analysis of a laboratory exploration of whirling chains. Virgin [23] 

found the natural frequencies of a vibrating beam under an axial load, which has 

similarities with a rotary drill-string under axial loads. He analyzed the beam with fixed-

pinned boundary conditions and gave the relation between the axial load and the natural 

frequency.  

Dareing and Livesay [24] discussed longitudinal and angular drill-string vibrations and 

supporting field measurements taken with a special downhole recording instrument. 
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Computer programs were used to calculate vibrations and field measurements were used 

to check computer calculations. Johancsik [25] developed a computer model to predict 

drill-string torque and drag. Sliding friction is concluded to be the major source of torque 

and drag in directional wells. Gulyaev [26-30] analyzed the quasi-static stability of a 

rotating drill-string rotating with constant speed under the longitudinal non-uniform 

preloading, action of torque, inertia forces of rotation and internal flows of the drilling 

fluid. He showed that the buckling mode of the drill-string is helical within a section 

subjected to compressive forces. Techniques for determining the critical rotary speeds of 

drill-strings make it possible to develop measures to prevent accidents during deep 

drilling operations. Tucker [31-34] discussed the vibrational states experienced by the 

active components of a drilling assembly such as that found in the oil or gas industry in 

the context of an integrated mathematical model. The model was used to discuss the 

stability of vertical axis-symmetric drill-string configurations under both coupled 

torsional, axial and lateral perturbations as well as general non-perturbative coupled 

vibrational states under extreme conditions of lateral whirl. Yigit [35-37] presented a 

dynamic model for coupled torsional and bending vibrations of drill-strings. The 

dynamics of actively controlled drill-strings was also studied. Transverse vibrations of 

drill-strings caused by axial loading and impact with the wellbore wall were studied. The 

simulation results agreed well with laboratory and field observations when the stick-slip 

vibrations occur. Zare [38] presented a finite element model using ANSYS software to 

investigate the drill-string lateral vibrations in slightly deviated wells. The model was 

developed in the presence of mud, friction and nonlinear contact between drill-string and 
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wellbore wall. The model was compared with experimental results obtained from several 

BHA configurations giving excellent results. Khulief [39] formulated a dynamic model of 

the drill-string including both drill-pipe and drill-collars. The equation of motion was 

derived using Lagrangian approach together with the finite element method. The 

developed model was integrated into a computational scheme to calculate the modal 

characteristics and to perform time-response analysis of the drill-string system. Chen [40] 

investigated the relationship between the axial critical force under sinusoid bending and 

the maximum speed of drill-string, and then obtained a mathematics model for the speed-

axis critical force. They found that the axis critical force will be obviously less than that 

under the static state. Meng [41] studied the influence of the different well inclination 

angle and stiffness on the buckling load. Their results showed that the buckling load 

increases nonlinearly with the well inclination angle; the larger the stiffness of drill pipes, 

the higher the buckling load. 

Hiddabi [42] presented a non-linear dynamic inversion control design method to suppress 

the lateral and the torsion vibrations of a drill-string. It was found that the designed 

controller is effective in suppressing the torsion vibrations and reducing the lateral 

vibrations significantly. The study of Dunayevsky and Abbasslan [43] centered on 

calculations of stable rotary speed ranges for a given set of drill-string parameters and 

were presented in vibration “severity” vs. rotary speed plots. The critical rotary speeds, 

which correspond to the rapidly growing lateral vibrations, were pinpointed by spikes on 

the severity plots
[43]

. In Hakimi and Moradi’s study [44], the differential quadrature 

method (DQM) was applied to analyze the drill-string vibrations in a nearly vertical hole. 
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The numerical results obtained from a series of case studies confirmed the efficiency and 

accuracy of the method in dealing with drill-string vibration problems. Liao [45] 

developed reduced-order models of a drill-string system and studied the predictions of 

these models, and made qualitative comparisons with experimental studies. Palmov [46] 

analyzed the stability of an drill-string rotation in his study. The drill pipe was 

represented by a one-dimensional continuum in torsion, while the bottom-hole-assembly 

was considered to be a rigid body. Shyu [47] found and discussed mathematical models 

for explaining and predicting the bending vibrations of rotating drill-strings. Experiments 

carried out in the laboratory confirmed the existence of the linear and parametric 

coupling between axial forces and bending vibration.  

Alamo and Weber [48] developed a Cosserat model to provide an accurate way of 

modeling long slender beams. Their results showed the linear and nonlinear time 

responses of the system and the high accuracy of the dynamic responses was achieved by 

dividing the system into a few elements which is much less than the traditional FE 

methods and simulation times are greatly reduced through this approach. Heisig [49] 

presented an analytical solution for natural frequencies and the threshold rotary speed of 

a drill-string lying on the low side of hole in a horizontal borehole. Animated time 

domain simulations with this model provided deeper insight into the dynamic behavior of 

the drill-string and showed that a drill-string in a horizontal borehole can vibrate in a 

snaking or in a whirling mode. Voronov [50] analyzed the nonlinear dynamics of a tool 

commonly employed in deep hole drilling. The obtained results allowed the prediction of 

conditions for stable continuous cutting and unstable regions. The time domain 
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simulation allowed determination of the chip shape most suitable for certain work-piece 

material and tool geometry.  

In Huang’s study [51], critical buckling loads and natural frequencies of lateral vibration 

modes were determined for a long vertical pipe, suspended in a fluid, simply supported at 

the top and vertically guided at the bottom. Their findings showed that the magnitude of 

the critical buckling force becomes independent of drill pipe length as drilling depth 

increases. Qian [52] developed a theoretical model for the vibration and stability of a 

vertical pipe subjected concurrently to two axial flows. It was shown that the vibrations 

were closely related to the degree of confinement of the outer annular channel. 

Schmalhorst [53] developed a new drill-string dynamics model taking into account the 

interaction between the drill-string and the instationary mud flow circulation. The 

application helped to avoid critical operating conditions and to select the corresponding 

system parameters.  

Though there is an abundance of literature and research identifying drill-string vibrations 

and some analysis has been carried out through approximated methods, there is limited 

research available on the stability analysis of the drill-string. Most such research targets 

BHA stability or other aspects, not the whole drill-string. Further, no work is found to 

provide a framework for formally analyzing the stability of the drill-string in steady-state 

with axial loads, end torque and whirling together. 
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2.3 Problem Statement 

Depending on drilling conditions, rotating drill-strings are subject to many different 

loads: the axial loads along the axis of the drill-string, the lateral bending moment at any 

cross section of the drill-string, the input torque applied at the top and the resisting 

torques applied to the bit at the bottom, the friction due to the flow of the drilling fluid, 

the forces due to contact with borehole, and so on. All these loads are coupled and 

applied to the system at the same time to cause buckling and complex vibrations. 

Excessive vibrations have been observed to cause damage to the drilling system [54]. As 

a consequence, the drilling process becomes inefficient and costly. Some of these adverse 

phenomena can be avoided through theoretical simulation of the buckling and vibration 

of drill-strings and identification of their critical configurations. Thus, vibrations of the 

drill-strings must be studied and their effects should be controlled for the drilling process 

to be optimal and economical. 

For our problem, we consider a drill-string of length  . To describe the buckling and 

vibrations of the drill-string, we choose an inertial coordinate system (fixed frame) 

      with the origin at the point of suspension (the top end) of the drill-string and a 

coordinate system (rotating frame)       rotating together with the drill-string about 

the   -axis with a constant angular velocity  . The axes    and    coincide with the 

initial axial line of the drill-string when it is straight. The deflections of the drill-string in 

the direction of the axes    and    are denoted by        and        ; the torsional 

twisting deflection of the drill-string about the axis    and the axial displacement along 
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the axis    are not considered in our study. The coordinate system we use is shown in 

Figure 2.1. 

 

Figure 2.1 Definition of the Coordinate Systems 

We use the coordinate system      to describe the deflections of the drill-string. When 

we considered the axial load, the end torque, the whirling and the drag force by the 

drilling fluid, we have the equations of motion of the drill-string [28] in the planes     

and     of the rotating coordinate system      as followed 
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in which    is the flexural stiffness of the drill-string,   is mass per unit length of the 

drill-string,    is the fluid’s mass per unit length of the drill-string’s cross section,    is 

the drag coefficient of the drilling fluid,   is the velocity of the fluid outside the drill-

string,      is the axial force at an arbitrary cross section of the drill-string,   is the 

constant end torque applied to the drill-string at the origin, and   is time. 

The system of equations makes it possible to examine the stability of a drill-string. The 

axial force      is constant for some loading conditions and variable when the self-

weight of the drill-string is considered. The end torque   is assumed to be constant along 

the drill-string. When the drill-string is in the steady state and the drilling fluid is not 

considered, the system of equations become 
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We have the boundary conditions for the drill-string: clamped at both ends but the top 

end can slide in the axis   . So we have the equations: 
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With the constant rotary speed of the drill-string  , we will seek to determine the critical 

loads at which the drill-string buckles. Because of the highly complex governing 

equations, analytic methods fail to solve the system of equations and numerical 

approaches should be used. Here we will use the Rayleigh-Ritz method to solve this 

problem. We will build a mathematical model for the whole drill-string and analyze the 

steady state. We can get the critical load combinations of the steady state for different 

loading conditions of the system to tell if the system is stable or give an advance warning 

to the operator if the system is going to become unstable. Because we do not simulate the 

time-history vibration of the system, the model does not involve severe computational 

difficulties. 

2.4 Innovations 

Because of many factors affecting the vibrations of the drill-string and the complex real-

time situations during the drilling process, the drill-string system has very complex 

vibration behaviors. Simulating the "time history" of a complex dynamic drill-string is 

time-consuming and expensive. For a finite element model in the time domain, it may 

take hours even for a powerful computer to simulate the real drill-string vibrations only 

for a few seconds. Furthermore, we cannot know the specific initial conditions that the 

drill-string system will have in the field. The number of possible combinations of initial 

conditions is infinite. So, any assumed set of different initial conditions used to generate 

some number of simulated time histories for a specified drill-string and drill path may not 



22 
 

capture the specific conditions found in the field. As a consequence of this, simulated 

time histories may fail to predict severe vibration and damage. Because of the long time 

required for computation, it is not practical to use time-domain analysis of the complex 

vibration behaviors of the drill-string system for on-site, real-time monitoring of the 

system’s stability. But simulating a drill-string's time history is not the only way to 

analyze its dynamics and to predict severe vibrations. 

In "steady-state motion", all dynamic quantities are either constant or periodic. For a 

dynamic system operating near a "stable" steady-state motion, small disturbances do not 

cause severe vibration. But for a system operating near an "unstable" steady-state motion, 

vibration can quickly become severe. The actual motion of a drill-string is almost always 

near some steady-state motion. When the drill-string operates without severe vibration, 

the nearby steady-state motion must be stable. As drilling proceeds, it would be useful to 

be able to predict unstable steady-state motions that would occur if drilling proceeded 

without adjusting drilling parameters (torque and WOB). 

Analyzing the stability of a structure's steady-state motion is far less computationally 

intensive than generating its time history and does not require guessing initial conditions. 

By analyzing the stability of the steady-state motion near which a drill-string is operating, 

and by assuming no adjustment in drilling parameters, it should be possible to predict 

whether the string will encounter unstable conditions in the next portion of the planned 

drill path. 

As shown in the literature review, no researcher has published an analysis of the stability 

of the drill-string in the steady state that considers all aspects needed for a realistic model. 
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Previously published analyses of the stability of steady-state motion of a drill-string only 

have treated extremely simple cases. We are developing a computational tool for 

analyzing the stability of more realistic cases. We would treat a straight, vertical, whirling 

drill-string with variable axial load and applied torque at the ends while whirling at the 

same time. This is the originality of this dissertation and is potentially a significant step 

for the study of vibrations of drill-string systems. 
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CHAPTER 3 

ANALYTICAL SOLUTIONS FOR SIMPLE CASES 

This chapter introduces the analytical solutions for some simple cases with different 

loading conditions. The first critical values of different parameters are obtained and the 

corresponding mode shapes are also illustrated. 

3.1 Introduction 

We analyze the stability of a drill-string under different loading conditions with the same 

boundary conditions. We assume that the drill-string has a clamped constraint at the 

bottom end and a clamped constraint (but slide-free in axial direction) at the top end. So, 

for both ends, there is zero deflection and zero slope. For some simple cases, we can get 

analytical solutions. But for other complex cases, it is not possible to solve the 

analytically. Table 1 lists loading cases with analytical solutions.  

Table 3.1 Loading Cases with Analytical Solutions 

 Axial Load Whirl Torsion Distributed Axial Load 

1 Yes No No No 

2 No Yes No No 

3 No No Yes No 

4 Yes Yes No No 

5 Yes No Yes No 



25 
 

To illustrate the analytical method solving this problem, we present some simple cases 

with different loading conditions here. We have the solutions and results below to 

illustrate the analytical methods we use here. 

3.2 Solving Simple Cases with Different Loading Conditions 

3.2.1 Constant Axial Load Only 

With the constant axial load applied only, we have a planar buckling problem. At the 

critical value of the axial load, the system becomes unstable and the drill-string buckles. 

The differential equation of the system for the steady state is simplified and shown as 

below [55] 

   
  

   
      

  

   
        

Define the axial load parameter    
   

  
                                

 

 
, and we 

have the dimensionless differential equation 

  

   
      

  

   
       

for which the general solutions are 

          (√  )       (√  )       

with the boundary conditions: 

                         

Appling the boundary conditions to the dimensionless equation, we get 
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     (√ )       (√ )       

  √     

   √     (√ )    √     (√ )     

  

For non-trivial solution, the characteristic equation is  

||

    
   (√ )    (√ )   

 √   

 √     (√ ) √     (√ )   

||     

This gives the analytical solution of the first critical axial load parameter       at 

which the drill-string buckles. From the definition of the axial load parameter, we have 

the first critical axial load     
     

  . Substituting the first critical axial load parameter 

into the general solution, we can get the function of mode shape for the first critical load:  

                

The mode shape given by the equation above is shown in Figure 3.1.  

 

Figure 3.1 Mode Shape for the Case with Constant Axial Load Only 
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Because we can choose an arbitrary coefficient in front of the function of the mode shape 

to have the deflection function of the drill-string, the maximum deflection is arbitrary. 

We find that the maximum deflection is located at       and we normalize it to 1. The 

function of the deflection is 

                      

The plot of the deflection is shown in Figure 3.2.  

 

Figure 3.2 Deflection for the Case with Constant Axial Load Only 

3.2.2 Constant Whirling Only 

When there is not any external load applied and the drill-string is whirling at a constant 

speed only, we still have a planar buckling problem. At the critical value of the whirling 

speed, the system becomes unstable and the drill-string buckles. The differential equation 

of the system for the steady state is simplified and shown as below 

   
  

   
                

Define the whirling speed parameter    
     

  
                                

 

 
, 

and we have the dimensionless differential equation 
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for which the general solutions are 

           (√   )        (√   )       (√   )       (√   ) 

with the boundary conditions 

                         

Appling the boundary conditions to the dimensionless differential equation, we get 
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For non-trivial solution, the characteristic equation is 
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This gives the analytical solution of the first critical whirling speed parameter   

        at which the drill-string buckles. From the definition of the whirling speed 

parameter, we have the first critical whirling speed     √
          

   . Substituting the 

first critical whirling speed parameter into the general solution, we can get the mode 

shape for the first critical load as 
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The mode shape given by the equation above is shown in Figure 3.3.  

 

Figure 3.3 Mode Shape for the Case with Constant Whirling Only 

Because we can choose an arbitrary coefficient in front of the function of the mode shape 

to have the deflection function of the drill-string, the maximum deflection is arbitrary. 

We find that the maximum deflection is located at       and we normalize it to 1. The 

function of the deflection is 

                                                            

                    

The plot of the deflection is shown in Figure 3.4.  

 

Figure 3.4 Deflection for the Case with Constant Whirling Only 
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3.2.3 Constant End Torque Only 

With the constant end torque applied only, we have a non-planar buckling problem. 

Ziegler [16] had studied a similar problem but with different boundary conditions. At the 

critical value of the end torque, the system becomes unstable and the drill-string buckles. 

The differential equation of the system for the steady state is simplified and shown as 

below 

   
  

   
      

  

   
      

   
  

   
      

  

   
      

  

Define the end torque parameter     
  

  
                                

 

 
, and 

introduce a complex deflection                   we have the dimensionless 

differential equation 

  

   
         

  

   
        

The general solutions of the above equation are 

                                                          
        

 

                     

 with the boundary conditions 

                         

Appling the boundary conditions to the dimensionless differential equation, we get 
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For non-trivial solution, the characteristic equation is  
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This gives the analytical solution of the first critical end torque parameter         at 

which the drill-string buckles. From the definition of the end torque parameter, we have 

the first critical end torque     
        

 
. To describe the deflection functions of the 

drill-string, we choose two coefficients    and   . Substituting the first critical end 

torque parameter into the general solution, we can get the mode shape for the first critical 

load. This mode shape has two different functions as 

                                       

                                        
  

The mode shape given by the equations above is shown in Figure 3.5.  
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Figure 3.5 Mode Shape for the Case with Constant End Torque Only 

          are chosen to describe the deflection functions as below 

                     

                    
  

          can be any arbitrary values and the maximum deflection of the drill-string is 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of the two coefficients equal to 1, to check the 

deflections of the drill-string. The maximum deflections have been normalized to ±1 and 

the deflection functions are below as 

                                                                  

                                                                  
  

We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The plot of the deflection is shown in Figure 3.6. 



33 
 

 

Figure 3.6 Deflections for the Case with Constant End Torque Only 

It is obvious that changing the ratio of           changes the deflection functions. But 

we find out that changing this ratio is equivalent to a rigid-body rotation of the mode 

shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of           to check the deflections of the drill-string. Figure 3.7 is the radial deflection 

(the maximum deflection in radial direction at every cross section) plot with 5 different 

ratios of            We can see that all curves are same, which mean that the drill-string 

has same radial deflections at any cross section. 

 

Figure 3.7 Radial Deflections with Different Ratios of            

Figure 3.8 is the 3-D plot of the radial deflections with different ratios of            

Figure 3.9 is the same deflections looking downward from the top end of the drill-string. 
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Figure 3.8  Radial Deflections with Different Ratio of            

 

Figure 3.9 Vertical View of Radial Deflections with Different Ratio of            
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3.2.4 Constant Axial Load and Whirling 

With the constant axial load is applied to the drill-string while whirling, we still have a 

planar buckling problem. At a critical combination of the axial load and the whirling 

speed, the system becomes unstable and the drill-string buckles. The differential equation 

of the system for the steady state is simplified and shown as below [23] 

   
  

   
      

  

   
                

Define the axial load parameter   
   

  
, the whirling speed parameter   

     

  
, and the 

dimensionless coordinate   
 

 
, we have the dimensionless differential equation 
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  , and the general solutions are 

                                                   

with the boundary conditions 

                         

Theses equations lead to 

     

                                       
         

                                               

  

For non-trivial solution, the characteristic equation is  
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|

    
                          

    
                                   

|     

When the axial load parameter    , which is the case with whirling only, we get the 

first critical whirling speed parameter              . When the whirling speed 

parameter      which is the case with the constant axial load only, the first critical 

axial load parameter             For each different axial load parameter smaller 

than     , there is a corresponding whirling speed parameter smaller than      to make 

the drill-string buckle. As the axial load parameter   increased from            , the 

whirling speed parameter   is decreased from           . The two values comprise of a 

critical combination of the axial load parameter and the whirling speed parameter. The 

interaction of critical combinations of the axial load parameter and the whirling speed 

parameter is shown in Figure 3.10. 

 

Figure 3.10 Interaction of   and   

Since the mode shape is different for each critical combination, we choose the specific 

case with                 to check the mode shape of the deflection function. 
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Substituting them into         , we have                     for this specified 

case. The mode shape is 

                                                                      

The mode shape given by the equation above is shown in Figure 3.11.  

 

Figure 3.11 Mode Shape for the Case with                

The maximum deflection of the solution is arbitrary and we normalize it to 1. We found 

the maximum deflection is located at      . We have the function of the deflection as 

below.  

                                                               

                    

The plot of the deflection is shown in Figure 3.12. 
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Figure 3.12 Deflection for the Case with                

3.2.5 Constant Axial Load and End Torque 

With the constant axial load and the end torque applied to the drill-string together, we 

now have a non-planar buckling problem. At a critical combination of the axial load and 

the end torque, the system becomes unstable and the drill-string buckles. The differential 

equation of the system for the steady state is simplified and shown as below 

   
  

   
      

  

   
      

  

   
      

   
  

   
      

  

   
      

  

   
      

  

Define the axial load parameter    
   

  
, the end torque parameter    
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, and introduce a complex deflection      

             we have the dimensionless differential equation for this case 
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with the boundary conditions 

                         

Appling the boundary conditions to the dimensionless differential equation, we get 

          

               

          

              

                                            

                                                    

                                               

                                                   

  

For non-trivial solution, the characteristic equation is  
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When the axial load parameter    , which is the case with the end torque only, we get 

the first critical end torque parameter              When the constant end torque 

parameter    , which is the case with the constant axial load only, the first critical axial 

load parameter               For each different axial load parameter smaller 

than     , there is a corresponding constant end torque parameter smaller than      to 
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make the drill-string buckle. As the axial load parameter   increased from           , the 

constant end torque parameter   is decreased from           . The two values comprise 

of a critical combination of the axial load parameter and the constant end torque 

parameter. The interaction of critical combinations of the constant axial load parameter 

and the constant end torque parameter is shown in Figure 3.13. 

 

Figure 3.13 Interaction of   and   

Since the mode shape is different for each critical combination, we choose the specific 

case with               to check the mode shape of the deflection function. 

Substituting them into        , we have                      for this specified 

case. This mode shape has two different functions as 

                                                               

                                   

                                                             

                             

The mode shape given by the equation above is shown in Figure 3.14. 
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Figure 3.14 Mode Shape for the Case with              

          are chosen to describe the deflection functions as below 

                     

                    
  

          can be any arbitrary values and the maximum deflection of the drill-string is 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of the two coefficients equal to 1, to check the 

deflections of the drill-string. The maximum deflections have been normalized to ±1 and 

the deflection functions are below as 

                                                             

                                  

                                                                

                                   

We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         in the direction of the axis   .  
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The deflection plots are shown in Figure 3.15. 

 

Figure 3.15 Deflections for the Case with              

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 3.16 is the radial 

deflection (the maximum deflection in radial direction at every cross section) plot with 5 

different ratios of            We can see that all curves are same, which mean that the 

drill-string has same radial deflections at any cross section. 

 

Figure 3.16 Radial Deflections with Different Ratios of            

Figure 3.17 is the 3-D plot of the radial deflections with different ratios of            

Figure 3.18 is the same deflections looking downward from the top end of the drill-string. 
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Figure 3.17 Radial Deflections with Different Ratio of            

 

Figure 3.18 Vertical View of Radial Deflections with Different Ratio of            
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CHAPTER 4  

THE RAYLEIGH-RITZ SOLUTIONS FOR COMPLEX CASES 

This chapter introduces the Rayleigh-Ritz solutions for some complex cases with 

different loading conditions. The simple cases solved in Chapter 3 are also solved with 

the Rayleigh-Ritz method. The first critical values of different parameters are obtained 

and the corresponding mode shapes are illustrated. 

4.1 Introduction 

When the loading conditions get more complex, it is difficult, for some cases impossible, 

to analyze the stability of a drill-string system with analytical methods. Table 4.1 lists 

loading cases without analytical solutions.  

Table 4.1 Loading Cases without Analytical Solutions 

 Axial Load Whirl Torsion Distributed Axial Load 

1 No Yes Yes No 

2 Yes Yes Yes No 

3 Yes No No Yes 

4 No No Yes Yes 

5 Yes No Yes Yes 

6 Yes Yes Yes Yes 
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We use the Rayleigh-Ritz energy method to solve these loading cases. We assume that 

the drill-string has the same boundary conditions as before, which a clamped constraint at 

the bottom end and a clamped constraint (but slide-free in axial direction) at the top end. 

So, for both ends, there is zero deflection and zero slope.  

4.2 The Rayleigh-Ritz Method 

As discussed above, analytical solutions exist for several simple cases. But for more 

realistic cases, we must use a numerical method. In what follows, we apply the Rayleigh-

Ritz method to analyze our problem. To illustrate the Rayleigh-Ritz method solving this 

problem, we first use it to get numerical solutions for the simple cases with analytical 

solution. Then we apply the method to more complicated cases. 

When the drill-string whirls at a constant angular velocity  , its kinetic energy is 

  
 

 
∫                      

 

 

  

As a result of its bending, the drill-string's elastic strain energy is 

  
 

 
∫                           

 

 

  

The work done by the constant axial load is [56] 

   
 

 
∫                        

 

 

  

The work done by the applied end torque is [21] 
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∫                                 

 

 

  

By Hamilton's principle, the displacements satisfy all boundary conditions at      

and    , and also minimize the Hamiltonian, which is 

             

In the Rayleigh-Ritz method, we approximate the deflections of the drill-string with a 

linear combination of some chosen functions. For n-term approximation, 

       ∑           {    }  { }

 

 

       ∑           {    }  { }

 

 

 

where   
 

 
  with yet-to-be-determined displacement functions 

{    }  
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and constants  

{ }  
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     { }  

{
 
 

 
 

  

  

  

 
 

  }
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The N-term approximation requires polynomials of order n+3 in  . The complexity of the 

problem requires a relatively high-order Rayleigh-Ritz method for accurate solutions. 

Seven terms are used to generate all of the results discussed below. Functions used for the 

seven-term approximation are 

                

                

                

                

                

                

                  

  

All of these functions satisfy all of the boundary conditions of the problem. The 

minimization of the Hamiltonian implies that 

  

   
            

  

   
            

  

Let the dimensionless Hamiltonian be 

   
  

  
  

It follows that 

   
 

 
{ }      { } 

where 
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{ }  

{
 
 
 

 
 
 
  

 
 

  

  

 
 

  }
 
 
 

 
 
 

 

                          

    ∫              

 

 

    ∫                  

 

 

    ∫                

 

 

    ∫                                   

 

 

  

From left to right, the four terms in the matrix     correspond to the drill-string’s kinetic 

energy, its elastic strain energy, the work done by the axial load and the work done by the 

torque applied at    . 

Hamilton's principle then requires that     { }   . Critical combinations of the these 

different parameters occur when 

| |     

And the form of     is different for different loading conditions. 
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When there is a variable axial load (the self-weight of the drill-string) in the system, it is 

again much harder to find the analytical solution for the system. The matrix     will not 

be constant because of the self-weight of the drill-string. Let the WOB be    and the 

tensile load at the top (the hook load) be   . The hook load     is 

    ∫        

 

 

 

and the axial load      at an arbitrary cross section is 

        ∫     

 

 

 

The hook load      and the axial load      are related by 

         

                       
 

The work done by the axial load      is 

   
 

 
∫                               

 

 

  

Define the self-weight parameter   
    

  
, the hook load parameter   

    

  
. Then the 

matrix     becomes 

                            

in which 
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 ∫                  

 

 

    
 ∫                

 

 

 

Obviously, the hook load cannot be larger than the drill-string weight, and this gives   

     The Rayleigh-Ritz method can then be applied as before. 

4.3 Solving Cases with Different Loading Conditions 

4.3.1 Constant Axial Load Only 

With the constant axial load applied only and no other loads applied, the matrix     is 

simplified to 

               

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the first critical axial load 

parameter          and the first critical axial load     
    

  . We can get the mode 

shape for the first critical load as 

                                                                  

               

The mode shape given by the equation above is shown in Figure 4.1. Because we can 

choose an arbitrary coefficient in front of the function of the mode shape to have the 
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deflection function of the drill-string, the maximum deflection of the solution is arbitrary. 

We found the maximum deflection is located at       and we normalize it to 1. 

 

Figure 4.1 Mode Shape for the Case with Constant Axial Load Only 

The function of the deflection is 

                                                             

                                 

The plot of the deflection is shown in Figure 4.2.  

 

Figure 4.2 Deflection for the Case with Constant Axial Load Only 
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4.3.2 Constant Whirling Only 

When the drill-string is whirling only and no other loads applied, the matrix      is 

simplified to 

               

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the first critical whirling speed 

parameter           and the first critical whirling speed     √
    

   . We can get the 

mode shape for the first critical load as 

                                                            

                         

The mode shape given by the equation above is shown in Figure 4.3.  

 

Figure 4.3 Mode Shape for the Case with Constant Whirling Only 

The maximum deflection of the solution is arbitrary because the coefficient in front of the 

function of the mode shape is arbitrary. We found the maximum deflection is located 

at       for this case and we normalize it to 1. The function of the deflection is 
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                           . 

The plot of the deflection is shown in Figure 4.4. 

 

Figure 4.4 Deflection for the Case with Constant Whirling Only 

4.3.3 Constant End Torque Only 

With only the constant end torque applied and no other loads applied, the matrix     is 

simplified to 

               

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the first critical end torque 

parameter          and the first critical end torque      
        

 
. We can get the 

function of mode shape for the first critical load. This mode shape has two different 

functions as 
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The mode shape given by the equation above is shown in Figure 4.5.  

 

Figure 4.5 Mode Shape for the Case with Constant End Torque Only 

          are chosen to describe the deflection functions as below 

                     

                    
  

          are any arbitrary values and the maximum deflections of the solution are 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of the two coefficients equal to 1, to check the 

deflections of the drill-string. The maximum deflections have been normalized to -1 and 

the deflection functions are below as 
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We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The deflection plots are shown in Figure 4.6. 

 

Figure 4.6 Deflection for the Case with Constant End Torque Only 

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.7 is the Radial 

deflection (the maximum deflection in Radial at every cross section) plot with 5 different 

ratios of            We can see that all curves are same, which mean that the drill-string 

has same radial deflections at any cross section. 
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Figure 4.7 Radial Deflections with Different Ratios of            

Figure 4.8 is the 3-D plot of the radial deflections with different ratios of            

Figure 4.9 is the same plot when looking downward from the top end of the drill-string. 

 

Figure 4.8 Radial Deflections with Different Ratios of            
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Figure 4.9 Vertical View of Radial Deflections with Different Ratios of            

4.3.4 Constant Axial Load and Whirling 

With the constant axial load is applied while whirling, the matrix     is simplified to 

                     

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. When the axial load 

parameter    , which is the case with whirling only, we get the first critical whirling 

speed parameter             . When the whirling speed parameter      which is 

the case with the constant axial load only, the first critical axial load parameter      

        For each different axial load parameter smaller than      , there is a 

corresponding whirling speed parameter smaller than       to make the drill-string 
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buckle. As the axial load parameter   increased from            , the whirling speed 

parameter   is decreased from            . The two values comprise of a critical 

combination of the axial load parameter and the whirling speed parameter. The 

interaction of critical combinations of the axial load parameter and the whirling speed 

parameter is shown in Figure 4.10.  

 

Figure 4.10 Interaction of   and   

Since the mode shape is different for each critical combination, we choose for 

convenience the specific case with                to illustrate the mode shape for 

this case. For this specified case, we have the mode shape for the first critical load as 

below 

                                                                  

               

The mode shape given by the solution is shown in Figure 4.11.  
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Figure 4.11 Mode Shape for the Case with                

As before, the deflection has been normalized relative to its maximum deflection which is 

located at      . We have the function of the deflection as below 

                                                              

                               

The plot of the deflection is shown in Figure 4.12.  

 

Figure 4.12 Deflection for the Case with                

4.3.5 Constant Axial Load and End Torque 

With the constant axial load and end torque applied to the drill-string together, the 

matrix     is simplified to 
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Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. When the axial load 

parameter    , which is the case with the end torque only, we get the first critical end 

torque parameter             When the constant end torque parameter    , which is 

the case with the constant axial load only, the first critical axial load parameter      

        For each different axial load parameter smaller than      , there is a 

corresponding constant end torque parameter smaller than      to make the drill-string 

buckle. As the axial load parameter   increased from           , the constant end torque 

parameter   is decreased from            . The two values comprise of a critical 

combination of the axial load parameter and the constant end torque parameter. The 

interaction of critical combinations of the constant axial load parameter and the constant 

end torque parameter is shown in Figure 4.13. 

 

Figure 4.13 Interaction of   and   

Since the mode shape is different for each critical combination, we choose the specific 

case with              to illustrate the mode shape for this case. For this specified 
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case, this mode shape has two different functions. We have the mode shape for the first 

critical load as below 

                                                                   

          

                                                             

                         

The mode shape given by the equation above is shown in Figure 4.14.           are 

chosen to describe the deflection functions as below 

                     

                    
  

 

Figure 4.14 Mode Shape for the Case with              

          can be any arbitrary values and the maximum deflection of the drill-string is 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of the two coefficients equal to 1, to check the 

deflections of the drill-string. The maximum deflections have been normalized to ±1 and 
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the deflection functions are shown as below  

                                                        

                                                

                                                                  

                                    

We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The plot of the deflection is shown in Figure 4.15. 

 

Figure 4.15 Deflections for the Case with              

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.16 is the Radial 

deflection (the maximum deflection in Radial at every cross section) plot with 5 different 

ratios of            We can see that all curves are same, which mean that the drill-string 

has same radial deflections at any cross section. 



63 
 

 

Figure 4.16 Radial Deflections with Different Ratios of            

Figure 4.17 is the 3-D plot of the radial deflections with different ratios of            

Figure 4.18 is the same deflections when looking downward from the top end of the drill-

string. 

 

Figure 4.17 Radial Deflections with Different Ratios of            
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Figure 4.18 Vertical View of Radial Deflections with Different Ratios of            

4.3.6 Constant Whirling and End Torque 

With the constant end torque applied while whirling, the matrix     is simplified to 

                     

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. When the whirling 

speed parameter    , which is the case with the end torque only, we get the first 

critical end torque parameter             When the constant end torque parameter   

 , which is the case with the constant whirling only, the first critical whirling speed 

parameter                For each different whirling speed parameter smaller 

than     , there is a corresponding constant end torque parameter smaller than      to 

make the drill-string buckle. As the whirling speed parameter   increased 
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from           , the constant end torque parameter   is decreased from           . The 

two values comprise of a critical combination of the whirling speed parameter and the 

constant end torque parameter. The interaction of critical combinations of the constant 

whirling speed parameter and the constant end torque parameter is shown in Figure 4.19. 

 

Figure 4.19 Interaction of Interaction of   and   

Since the mode shape is different for each critical combination, we choose the specific 

case with                   to illustrate the mode shape for this case. For this 

specified case, this mode shape has two different functions. We have the mode shape for 

the first critical load as below 

                                                                   

          

                                                            

                         

The mode shape given by the equation above is shown in Figure 4.20.  
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Figure 4.20 Mode Shape for the Case with                   

          are chosen to describe the deflection functions as below 

                     

                    
  

          can be any arbitrary values and the maximum deflection of the drill-string is 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of the two coefficients equal to 1, to check the 

deflections of the drill-string. The maximum deflections have been normalized to ±1 and 

the deflection functions are shown as below 

                                                                 

                                   

                                                                  

                                   

We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 
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The plot of the deflection is shown in Figure 4.21.  

 

Figure 4.21 Deflection for the Case with                   

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.22 is the Radial 

deflection (the maximum deflection in Radial at every cross section) plot with 5 different 

ratios of            We can see that all curves are same, which mean that the drill-string 

has same radial deflections at any cross section. 

 

Figure 4.22 Radial Deflections with Different Ratios of            
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Figure 4.23 is the 3-D plot of the radial deflections with different ratios of            

Figure 4.24 is the same deflections when looking downward from the top end of the drill-

string. 

 

 

Figure 4.23 Radial Deflections with Different Ratios of            
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Figure 4.24 Vertical View of Radial Deflections with Different Ratios of            

4.3.7 Constant Axial Load and End Torque and Whirling 

With the constant axial load and the constant end torque applied to the drill-string while 

whirling at a constant speed, the matrix     is simplified to 

                            

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. The three 

parameters are shown in the system at the same time. When the axial load parameter   

  and the whirling speed parameter    , which is the case with the end torque only, we 

get the first critical end torque parameter              When the whirling speed 

parameter     and the constant end torque parameter    , which is the case with the 

constant axial load only, the first critical axial load parameter              When he 
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axial load parameter     and the constant end torque parameter    , which is the 

case with the constant whirling speed only, the first critical axial load parameter      

         For each different axial load parameter smaller than      , there is a 

corresponding combination of the end torque parameter smaller than       and the 

whirling parameter smaller than       to make the drill-string buckle. We choose 4 

different axial load parameters to run the calculation and get four different curves for the 

end torque parameter and the whirling parameter. The three values comprise of a critical 

combination of the axial load parameter, the constant end torque parameter and the 

whirling parameter. The interaction of critical combinations of these three parameters is 

shown in Figure 4.25. For each axial load parameter, the drill-string is stable when the 

combination of the end torque parameter and the whirling parameter is in the area under 

the curve. 

 

Figure 4.25 Interaction of            

Since the mode shape is different for each critical combination, we choose the specific 

case with                        to check the mode shape of the deflection 

function. For this specified case, this mode shape has two different functions. We have 

the functions of the mode shape for the first critical load as below 
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The mode shape given by the equation above is shown in Figure 4.26.  

 

Figure 4.26 Mode Shape for the Case with                        

          are chosen to describe the deflection functions as below 

                     

                    
  

          are any arbitrary values and the maximum deflections of the solution are 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of the two coefficients equal to 1, to check the 

deflections of the drill-string. The maximum deflections have been normalized to -1 and 

the deflection functions are shown as below 
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We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The plot of the deflection is shown in Figure 4.27 

 

Figure 4.27 Deflection for the Case with                        

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.28 is the Radial 

deflection (the maximum deflection in Radial at every cross section) plot with 5 different 

ratios of            We can see that all curves are same, which mean that the drill-string 

has same radial deflections at any cross section. 
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Figure 4.28 Radial Deflections with Different Ratios of            

Figure 4.29 is the 3-D plot of the radial deflections with different ratios of             

 

Figure 4.29 Radial Deflections with Different Ratios of            

Figure 4.30 is the same plot when looking downward from the top end of the drill-string. 
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Figure 4.30 Vertical View of Radial Deflections with Different Ratios of           

 

4.3.8 Constant and Variable Axial Loads  

When there is a variable axial load (the self-weight of the drill-string) in the system, no 

analytical solution exists. Instead, we use the Rayleigh-Ritz method to solve the problem. 

The matrix     will not be constant because of the self-weight. When the constant axial 

load is applied to a drill-string with the self-weight included, the matrix     becomes 

                       

The hook load cannot be larger than the drill-string weight, and this gives 0 . The 

Rayleigh-Ritz method can then be applied as before. Substituting the predefined 

polynomial function into this equation and then solving the equation | |    by the 

Hamilton's principle gives the critical loads. When the hook load parameter    , which 
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is the case with the self-weight only and no hook load presented, this gives the first 

critical buckling self-weight parameter            . With the hook load parameter 

increased, the self-weight parameter   will become larger. Because when the hook load 

become larger, we need a larger self-weight to make the drill-string buckle. We do not 

treat the condition that 0  which means that hook load becomes compression. A 

combination of critical loads makes the drill-string buckle. The interaction of critical 

combinations of the hook load parameter and the self-weight parameter is shown in 

Figure 4.31. The drill-string is stable when the combination of the hook load parameter 

and the self-weight parameter is in the area under the curve. 

 

Figure 4.31 Interaction of         

Since the mode shape is different for each critical combination, we choose the specific 

case with                to illustrate the mode shape. For this specified case, it is 

a planar problem and this mode shape has one function. We have the mode shape for the 

first critical load as below and the mode shape given by the equation is shown in Figure 

4.32. 
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Figure 4.32 Mode Shape for the Case with                

Because we can choose an arbitrary coefficient in front of the function of the mode shape 

to have the deflection function of the drill-string, the maximum deflection of the solution 

is arbitrary. We found the maximum deflection is located at         and we normalize 

it to 1. The function of the deflection is as below and the plot of the deflection is shown 

in Figure 4.33. 

                                                         

                                                  

 

Figure 4.33 Deflection for the Case with                
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4.3.9 Self-weight and Constant End Torque 

When the constant end torque is applied to the drill-string with the self-weight included, 

the matrix     becomes 

                       

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. When the self-

weight parameter    , which is the case with the end torque only, this gives the first 

critical buckling end torque parameter            . When the end torque 

parameter    , which is the case with the self-weight only, this gives the first critical 

buckling self-weight parameter            . A combination of critical loads makes 

the drill-string buckle. The interaction of critical combinations of the hook load 

parameter and the self-weight parameter is shown in Figure 4.34. 

 

Figure 4.34 Interaction of         

For each different end torque parameter   smaller than     , there is a corresponding 

self-weight parameter    smaller than       to make the drill-string buckle. The drill-
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string is stable when the combination of the end torque parameter and the self-weight 

parameter is in the area under the curve. 

Since the mode shape is different for each critical combination, we choose the specific 

case with                  to illustrate the mode shape. For this specified case, 

this mode shape has two different functions. We have the functions of mode shape for the 

first critical load as below 

                                                                  

                      

                                                          

                                                  

The mode shape given by the equation above is shown in Figure 4.35.  

 

Figure 4.35 Mode Shape for the Case with                  

          are chosen to describe the deflection functions as below 

                     

                    
  

          are any arbitrary values and the maximum deflections of the solution are 
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arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape.  We 

set        , which makes the ratio of two coefficients equal to 1, to illustrate the 

mode shape. The arbitrary maximum/minimum deflections have been normalized to 1 

and the deflection functions are shown as below 

                                                        

                                                

                                                         

                                                 

We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The plot of the deflection is shown in Figure 4.36 

 

Figure 4.36 Deflection for the Case with                  

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.37 is the radial 
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deflection (the maximum deflection in radial direction at every cross section) plot with 5 

different ratios of            We can see that all curves are same, which mean that the 

drill-string has same Radial deflections at any cross section. 

 

Figure 4.37 Radial Deflections with Different Ratios of            

Figure 4.38 is the 3-D plot of the Radial deflections with different ratios of             

 

Figure 4.38 Radial Deflections with Different Ratios of            
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Figure 4.39 is the same plot when looking downward from the top end of the drill-string. 
 

 

Figure 4. 39 Vertical View of Radial Deflections with Different Ratios of            

4.3.10 Variable Axial Load and Hook Load and Constant End Torque 

When the hook load and the constant end torque are applied to the drill-string with the 

self-weight included, the matrix     becomes 

                              

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. The three 

parameters are shown in the system at the same time. When the self-weight 

parameter     and the hook load parameter     , which is the case with the end 

torque only, we get the first critical end torque parameter. When the hook load 
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parameter     and the constant end torque parameter    , which is the case with the 

self-weight only, the first critical self-weight parameter              When the self-

weight parameter     and the constant end torque parameter    , which is the case 

with the hook load only, the hook load has to be a compression to make the drill-string 

buckle. We do not consider this case here. For each different self-weight parameter 

smaller than     , there is a corresponding combination of the end torque parameter and 

the hook load parameter to make the drill-string buckle. We choose 4 different axial load 

parameters to run the calculation and get four different curves for the end torque 

parameter and the whirling parameter. The three values comprise of a critical 

combination of the axial load parameter, the constant end torque parameter and the 

whirling parameter. The interaction of critical combinations of these three parameters is 

shown in Figure 4.40.  

 

Figure 4.40 Interaction of           

With the self-weight parameter   increased, the hook load parameter   will become 

larger. For self-weight parameter, the drill-string is stable when the combination of the 

end torque parameter and the hook load parameter is in the area under the curve. 
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Since the mode shape is different for each critical combination, we choose the specific 

case with                            to illustrate the mode shape. For this 

specified case, this mode shape has two different functions. We have the functions of 

mode shape for the first critical load as below 

                                                         

                                    

                                                           

                                                  

The mode shape given by the equation above is shown in Figure 4.41. 

 

Figure 4.41 Mode Shape for the Case with                            

          are chosen to describe the deflection functions as below 

                     

                    
  

          are any arbitrary values and the maximum deflections of the solution are 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 
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set        , which makes the ratio of two coefficients equal to 1, to illustrate the 

mode shape. We found the maximum deflections are located at         in the x-axis 

and         in the y-axis. The arbitrary maximum/minimum deflections have been set 

to ±1 and the deflection functions are shown as below  

                                                           

                                                 

                                                         

                                                  

We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The plot of the deflection is shown in Figure 4.42. 

 

Figure 4.42 Deflection for the Case with                            

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.43 is the radial 

deflection plot with 5 different ratios of            
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Figure 4.43 Radial Deflections with Different Ratios of            

We can see that all curves are same, which mean that the drill-string has same radial 

deflections at any cross section. Figure 4.44 is the 3-D plot of the radial deflections with 

different ratios of             

 

Figure 4.44 Radial Deflections with Different Ratios of            
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Figure 4.45 is the same plot when looking downward from the top end of the drill-string. 

 

Figure 4.45 Vertical View of Radial Deflections with Different Ratios of            

4.3.11 Self-weight and Hook Load and Constant End Torque and Whirling 

When all these four loads are considered in the system, all matrices can be obtained as 

before and we have the following matrix equation 

                                    

Substituting the predefined polynomial function into this equation and then solving the 

equation | |    by the Hamilton's principle gives the critical loads. The four parameters 

are shown in the system at the same time. We have same critical values as before when 

each load applied separately. We chose the case with the self-weight parameter 

629.74 and four different hook load parameters to illustrate the mode shape. A 
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combination of four critical loads makes the drill-string buckle. The interaction of critical 

combinations of these three parameters is shown in Figure 4.46 

 

Figure 4.46 Interaction of             

For each hook load parameter, the drill-string is stable when the combination of the end 

torque parameter and the whirling parameter is in the area under the curve. 

Since the mode shape is different for each critical combination, we choose the specific 

case with   
      

 
   

      

  
                   to check the mode shape of 

the deflection function. For this specified case, this mode shape has two different 

functions. We have the functions of the mode shape for the first critical load as below 

                                                                 

                      

                                                         

                                                

The mode shape given by the equation above is shown in Figure 4.47. 
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Figure 4.47 Mode Shape for the Case with 

  
      

 
   

      

  
                   

          are chosen to describe the deflection functions as below 

                     

                    
  

          are any arbitrary values and the maximum deflections of the solution are 

arbitrary. We found the maximum deflection is located at         for the first function 

of the mode shape and          for the second function of the mode shape. We 

set        , which makes the ratio of two coefficients equal to 1, to check the 

deflections of the drill-string. We found the maximum deflections are located at    

      in the x-axis and          in the y-axis. The arbitrary maximum/minimum 

deflections have been normalized to 1 and the deflections functions are shown as below 
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We found the maximum deflection is located at          for the deflection in the 

direction of the axis    and         for the deflection in the direction of the axis   . 

The plot of the deflection is shown in Figure 4.48 

 

Figure 4.48 Deflections for the Case with 

  
      

 
   

      

  
                   

We know that changing the ratio of           is equivalent to a rigid-body rotation of the 

mode shape relative to the coordinate system O-XYZ. We choose 5 different ratios 

of            to check the deflections of the drill-string. Figure 4.49 is the radial 

deflection (the maximum deflection in radial direction at every cross section) plot with 5 

different ratios of            We can see that all curves are same, which mean that the 

drill-string has same radial deflections at any cross section. 



90 
 

 

Figure 4.49 Radial Deflections with Different Ratios of            

Figure 4.50 is the 3-D plot of the Radial deflections with different ratios of             

 

Figure 4.50 Radial Deflections with Different Ratios of            

Figure 4.51 is the same plot when looking downward from the top end of the drill-string. 
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Figure 4.51 Vertical View of Radial Deflections with Different Ratios of            
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CHAPTER 5  

COMSOL AND ABAQUS SIMULATION 

5.1 Introduction 

In former chapters, we have discussed the stability of a drill-string system for different 

loading cases with analytical and numerical methods. We know that there are some 

complex cases for which it is difficult, even impossible to find the analytical solutions. 

These cases include the loading conditions with the constant axial load, the constant end 

torque and whirling at same time, and all cases with the self-weight of the drill-string 

considered. So we need a method to validate the results from the Rayleigh-Ritz method 

and check the method’s accuracy. Computer simulation has become an essential part of 

science and engineering and we choose it as our validating method for the problem. 

Today a broad spectrum of options for simulation is available. Researchers use 

everything from basic programming languages to various high-level packages 

implementing advanced methods. There are many commercial CAD/CAE software can 

help us with this problem. Two programs available on campus are COMSOL and 

ABAQUS. Attempts to use each of these to validate results obtained with the Rayleigh-

Ritz method are described below. 

5.2 COMSOL Simulation 

COMSOL Multiphysics is a finite element analysis; solver and simulation 

software package for various physics and engineering applications, especially coupled 

phenomena, or multiphysics. COMSOL Multiphysics is an integrated environment for 
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solving systems of time-dependent or stationary second order in space partial differential 

equations in one, two, and three dimensions. Moreover, such equations may be coupled 

in an almost arbitrary way. COMSOL Multiphysics also offers an extensive interface 

to MATLAB and its toolboxes for a large variety of programming, preprocessing and 

post-processing possibilities. The packages are cross-platform (Windows, Mac, and 

Linux). In addition to conventional physics-based user interfaces, COMSOL 

Multiphysics also allows for entering coupled systems of partial differential 

equations (PDEs). The PDEs can be entered directly or using the so-called weak form. 

COMSOL provides a simulation environment that includes the possibility to add wide 

variety physical effects to the model. It is a flexible platform that allows even novice 

users to model all relevant physical aspects of their designs. Advanced users can go 

deeper and use their knowledge to develop customized solutions, applicable to their 

unique circumstances. Compatibility and adaptability are the most important 

characteristics of COMSOL.  

We use COMSOL to simulate a drill-string buckling problem with a fixed-free boundary 

condition. The drill-string has a length of 100 m with a circular cross section which has a 

Radial of 0.1 m. The material of the drill-string is structural steel from the COMSOL 

library with the density of 7850 kg/m
3
 and the Young’s modulus of 200E9 Pa. A constant 

vertical load is applied at the top free end to cause the drill-string buckling. The analytical 

solution of the first critical buckling load is from equation     
    

     
 [57]. We have the 

first critical load of 3875.8 N for this problem. The simulating result from the COMSOL 

is 3526.3 N. There is a 9% of error between these two results. And we found that the 



94 
 

accuracy would be different when we use different shape of the cross section. Figure 5.1 

is the diagram of the problem we study.  

 

Figure 5.1 Buckling Drill-string with Fixed-free Boundary Conditions 

Figure 5.2 is the simulation results from COMSOL for this problem. The difficulty we 

had is that when we tried to use different boundary conditions and loading conditions, 

COMSOL did not give us reasonable results as for this simple case. So we moved on to 

use ABAQUS as our simulation tool to solve our problem. 
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Figure 5.2 COMSOL Simulation Result with Fixed-free Boundary Conditions 

5.3 ABAQUS 

ABAQUS FEA is a software suite for the finite element analysis and computer-aided 

engineering. The ABAQUS suite of software for finite element analysis (FEA) is known 

for its high performance, quality and ability to solve many kinds of challenging 

simulations. ABAQUS is used in the automotive, aerospace, and industrial products 

industries. The product is popular with academic and research institutions due to the wide 

material modeling capability, and the program's ability to be customized. ABAQUS also 

provides a good collection of multiphysics capabilities, such as coupled acoustic-

structural, piezoelectric, and structural-pore capabilities, making it attractive for 

production-level simulations where multiple fields need to be coupled. 
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The ABAQUS product suite consists of five core software products and we use 

ABAQUS/CAE to analyze our problem. It is a software application used for both the 

modeling and analysis of mechanical components and assemblies (pre-processing) and 

visualizing the finite element analysis result. ABAQUS/CAE provides a complete 

modeling and visualization environment for ABAQUS analysis products. With direct 

access to CAD models, advanced meshing and visualization, and with an exclusive view 

towards ABAQUS analysis products, ABAQUS/CAE is the modeling environment of 

choice for many ABAQUS users. 

5.3.1 Buckling Drill-string for Fixed-Free Boundary Conditions 

We use ABAQUS to simulate a drill-string buckling problem with a fixed-free boundary 

condition as shown in Figure 5.1 at first. The drill-string has a length of 45 m with a 

circular cross section which has a Radial of 0.05 m. T There is a critical length for a drill-

string under gravity only. For the drill-string we used, it is 49.49 m as calculated by 

Mclachlan [18]. When we chose a length over this critical length, ABAQUS could not 

give a reasonable result. We did a lot work to figure out the reason but not success. That 

is why we use 45 m as our length of the drill-string. This could be a further topic for the 

next step. The material of the drill-string is structural steel with the density of 7850 kg/m
3
 

and the Young’s modulus of 200E9 Pa. A constant vertical load is applied at the top free 

end to cause the drill-string buckling. The analytical solution of the first critical buckling 

load is from equation     
    

     
 and we have the first critical axial load of 1196.23 N for 

this problem. The simulated result from ABAQUS is 1196.2 N as shown in Figure 5.3. 

Two results from different methods are very close.  
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Figure 5.3 ABAQUS Simulation Result with Fixed-free Boundary Conditions 

5.3.2 Buckling Drill-string for Fixed-Fixed Boundary Conditions 

We use ABAQUS to simulate a drill-string buckling problem with a fixed-fixed boundary 

condition as these cases solved by the Rayleigh-Ritz method. The drill-string is the same 

as the one from the above case. A constant vertical load is applied at the top end to cause 

the drill-string buckling. The analytical solution of the first critical buckling load is from 

equation     
     

   [57] and we have the first critical axial load of 19139.68 N for this 

problem. The simulated result from the ABAQUS is 19140.0 N as shown in Figure 5.4. 

We can have the axial load parameter          from its definition. Two results from 

different methods are very close.  
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Figure 5.4 ABAQUS Simulation Result with Fixed-Fixed Boundary Conditions 

5.3.3 Buckling Drill-string with Self-weight for Fixed-Fixed Boundary Conditions 

When the self-weight of the drill-string is included in the system, the drill-string is under 

a variable axial load for each cross section. We use ABAQUS to analyze this case and 

got the first critical axial load 49848.6 N as shown in Figure 5.4. We can have the axial 

load parameter          from its definition. The analytical solution for this case is not 

available and we only have the numerical solution from the Rayleigh-Ritz method. The 

comparison of these results is displayed in the next chapter.  
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Figure 5. 5 ABAQUS Simulation Result with Self-weight Included 
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CHAPTER 6  

VALIDATION OF RESULTS FROM DIFFERENT METHODS 

6.1 Introduction 

To demonstrate the validity and the accuracy of the Rayleigh-Ritz method detailed in 

previous chapters, comparisons of these results for different loading conditions from 

different methods are carried out here. These comparisons are conducted also with the 

purpose of better understanding the effects of different parameters on the stability of the 

drill-string. From these results, we also learn to recognize that including or neglecting the 

self-weight of the drill-string has a significant effect on the drill-string’s stability.  

6.2 Result Validation for Different Loading Cases 

6.2.1 Constant Axial Load Only 

For this case, we have three solutions from three methods. The first critical axial load 

parameter from the analytical solution is        and the one from the Rayleigh-Ritz 

method is         . The analytical solution of the first critical buckling load is from 

the equation     
    

     
 and we have the first critical load of 1196.23 N for this problem.  

The simulated result from ABAQUS is 1196.2 N. The critical loads from the three 

methods are very close and we could say that the error is negligible. And for this case, the 

deflection is obtained by setting the coefficient in front of the mode shape an arbitrary 

value. Comparing the mode shape can tell us the difference among them. Figure 6.1 

shows the comparison of the mode shapes of three deflections from the three methods. 



101 
 

The red solid line is from the analytical method, the blue dashed line is from the 

Rayleigh-Ritz method and the green long-dashed line is from ABAQUS. From the figure, 

we see that two mode shapes from the analytical method and the Rayleigh-Ritz method 

are essentially the same while the one from ABAQUS is a little different from other two. 

It shows that the Rayleigh-Ritz method gives a slightly better result than that from 

ABAQUS. The maximum deflections are normalized to 1 and occur at the middle of the 

drill-string, which is       . The mode shapes are symmetric because the boundary 

conditions and the applied load are symmetric. 

 

Figure 6.1 Comparison of Mode Shapes with Constant Axial Load Only 

6.2.2 Constant Whirling Only 

For this case, we have two solutions from two methods. The first critical whirling speed 

parameter from the analytical solution is           and the one from the Rayleigh-

Ritz solution also is          . The critical load parameters from the two methods are 

identical and we could say that the error is negligible. Figure 6.2 shows the comparison 

of the mode shapes from the two methods. The red solid line is from the analytical 

method and the blue dashed line is from the Rayleigh-Ritz method. From the figure, we 



102 
 

see that the two mode shapes are essentially the same. The maximum deflections are 

normalized to 1 and both occur at the middle of the drill-string, which is      . The 

mode shapes are symmetric because the boundary conditions and the effect of whirling to 

the drill-string are symmetric. 

 

Figure 6.2 Comparison of Mode Shapes with Constant Whirling Only 

6.2.3 Constant End Torque Only 

For this case, we have two solutions from two methods. The first critical end torque 

parameter from the analytical solution is         and the one from the Rayleigh-Ritz 

solution also is        . The critical end torques from the two different methods are 

identical and we could say that the error is negligible. Figure 6.3 shows the comparison 

of the first function of the mode shapes from the two methods. The red solid line is from 

the analytical method and the blue dashed line is from the Rayleigh-Ritz method. 

The comparison of the second function of the mode shapes from the two methods is 

shown in Figure 6.4. The red solid line is from the analytical method and the blue dashed 

line is from the Rayleigh-Ritz method. From the figures, we see that two mode shapes are 

a little different. 
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Figure 6.3 Comparison of the First Function of the Mode Shapes with Constant End 

Torque Only 

 

Figure 6.4 Comparison of the Second Mode Shapes with Constant End Torque Only 

The maximum deflection is normalized to 1 but occur at different cross sections of the 

drill-string. For the first mode shape, it happens at         from the analytical method, 

and         for the Rayleigh-Ritz method. For the second mode shape, it happens 

at         from the analytical method, and         for the Rayleigh-Ritz method. 

The comparisons of the deflections in the axis           from the two methods are 

shown in Figure 6.5.  
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Figure 6.5 Comparison of the Deflection in the Axis    with Constant End Torque 

Only 

 

Figure 6.6 Comparison of the Deflection in the Axis    with Constant End Torque 

Only 

From the figures, we see that two deflections are a little different. The maximum 

deflection is normalized to 1 but occur at different cross sections of the drill-string. For 

the deflection in the axis    , it happens at          from the analytical method, 

and         for the Rayleigh-Ritz method. For the deflection in the axis   , it happens 

at         from the analytical method, and         for the Rayleigh-Ritz method. 

But when we use different ratios of           for the two methods, we can have a better 

result for them. We use                    for the analytical method and     
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           for the Rayleigh-Ritz method. The comparison of the deflection in the 

axis    is shown in Figure 6.7. 

 

Figure 6.7 Comparison of the Deflection in the Axis    with Different Ratios of 

          

The comparison of the deflection in the axis    is shown in Figure 6.8. 

 

Figure 6.8 Comparison of the Deflection in the Axis    with Different Ratios of 

          

From the figures, we can see that the deflections in the axis    from the two methods are 

very close and the deflections in the axis    from the two methods are still a little 

different but better than the former results. We can say that the different ratios of  

          used give us a better result.  
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6.2.4 Constant Axial Load and Whirling 

When more than one load is applied to the system, critical combinations of loading 

parameters make the system unstable. For this case, the constant axial load is applied at 

the top end while the drill-string is whirling at a constant angular velocity. Choosing any 

arbitrary axial load, we can find a corresponding critical whirling speed above which the 

system is unstable. The maximum value of the critical axial load is the critical load in the 

absence of whirling, and vice versa. We have two solutions from two methods. The 

maximum first critical axial load parameter from the analytical solution is        and 

the one from the Rayleigh-Ritz solution also is         . The maximum first critical 

whirling speed parameter from the analytical solution is           and the one from 

the Rayleigh-Ritz solution also is           . Figure 6.9 shows the interaction of 

critical combinations of the axial load parameter and the whirling speed parameter.  

 

Figure 6.9 Comparison of Interaction of   and   

The red curve is the analytical solution and the blue one is the Rayleigh-Ritz solution. All 

combinations of the axial load and the whirling speed under the line make the drill-string 

stable, while it is unstable when they are above the line. The plot tells us that the results 

from the two methods are very close and the Rayleigh-Ritz energy method gives an 



107 
 

accurate result.  

We choose a specific case with                to compare the mode shapes for 

the two methods. Figure 6.10 shows the comparison of the mode shapes from the two 

methods.  

 

Figure 6.10 Comparison of Mode Shapes from Two Methods 

The red solid line is from the analytical method and the blue dashed line is from the 

Rayleigh-Ritz method. From the figure, we see that the two mode shapes are essentially 

the same. The maximum deflections are normalized to 1 and both happed at the middle of 

the drill-string, which is 5.0 . The mode shapes are symmetric because the boundary 

conditions and the applied load are symmetric. The effect of whirling also is symmetric 

to the drill-string. We can say that the Rayleigh-Ritz method gives an accurate result for 

this case. 

6.2.5 Constant Axial Load and End Torque 

For this case, the constant axial load and the end torque are applied at the top end at the 

same time. Choosing any arbitrary axial load, we can find a corresponding critical end 

torque which makes the drill-string stable. The maximum value of the critical axial load 
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is the critical load in the absence of end torque, and vice versa. The maximum first 

critical axial load parameter from the analytical solution is        and the one from the 

Rayleigh-Ritz solution also is          . The maximum first critical end torque 

parameter from the analytical solution is         and the one from the Rayleigh-Ritz 

solution also is        . The critical loads from the two different methods are identical 

and we could say that the error is negligible. Figure 6.11 shows the interaction of critical 

combinations of the axial load parameter and the end torque parameter. The red curve is 

the analytical solution and the blue one is the Rayleigh-Ritz solution. All combinations of 

the axial load and the end torque under the line make the drill-string stable, while it is 

unstable when they are above the line. The plot tells us that the results from the two 

methods are very close and the Rayleigh-Ritz energy method gives an accurate result. 

 

Figure 6.11 Comparison of Interaction of   and   

We choose a specific case with              to compare the mode shapes for the 

two methods. Figure 6.12 shows the comparison of the first function of the mode shapes 

from the two methods. The red solid line is from the analytical method and the blue 

dashed line is from the Rayleigh-Ritz method. 
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Figure 6.12 Comparison of the First Function of the Mode Shapes with        

      

The comparison of the second function of the mode shapes from the two methods is 

shown in Figure 6.13. The red solid line is from the analytical method and the blue 

dashed line is from the Rayleigh-Ritz method. From the figures, we see that two mode 

shapes are a little different. The maximum deflection is normalized to 1 but occur at 

different cross sections of the drill-string.  

 

Figure 6.13 Comparison of the Second Mode Shapes with              

The comparisons of the deflections in the axis           from the two methods are 

shown in Figure 6.14 and Figure 6.15.  
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Figure 6.14 Comparison of the Deflection in the Axis    with              

 

Figure 6.15 Comparison of the Deflection in the Axis    with              

From the figures, we see that two deflections are different. The maximum deflection is 

normalized to 1 but occur at different cross sections of the drill-string. But when we use 

different ratios of           for the two methods, we can have a better result for them. 

We use                   for the analytical method and                for 

the Rayleigh-Ritz method. The comparison of the deflection in the axis    is shown in 

Figure 6.16. 
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Figure 6.16 Comparison of the Deflection in the Axis    with Different Ratios of 

          

The comparison of the deflection in the axis    is shown in Figure 6.17. 

 

Figure 6.17 Comparison of the Deflection in the Axis    with Different Ratios of 

          

From the figures, we can see that the deflections in the axis    from the two methods are 

very close and the deflections in the axis    from the two methods are still a little 

different but better than the former results. We can say that the different ratios of  

          used give us a better result. 
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6.2.6 Hook Load and Self-weight 

When the self-weight of the drill-string is included in the system, it significantly changes 

the performance of the drill-string. We use ABAQUS to validate the results from the 

Rayleigh-Ritz method for the case with the hook load and the self-weight. For this case, 

the weight of the drill-string is included and the performance is very different.  

Because we know the drill-string used in ABAQUS, the self-weight parameter is 56.12 

calculated by the equation   
    

  
. Then we can find the axial load parameter    

      . The critical axial load is 4938.576 N calculated by the equation   
   

  
. The 

critical axial load from ABAQUS simulation is 4948.6 N. the error is 0.2%, which is very 

good. Figure 6.11 is the comparison of mode shapes from the two methods. 

 

Figure 6.18 Comparison of Mode Shapes with                       

The maximum deflections were normalized to 1 and not happed at the middle of the drill-

string because of the gravity. For Rayleigh-Ritz energy method, the maximum deflection 

happed at          For ABAQUS simulation method, the maximum deflection happed 

at          The red curve is the Rayleigh-Ritz solution and the blue one is the 

ABAQUS simulation solution as shown in Figure. From the figure, we can say that the 
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mode shapes are very close from two different methods and the Rayleigh-Ritz energy 

method gives a very good result for this case. 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

The goal of this dissertation is to provide insights into the stability of a drill-string. 

Various types of vibrations appear in a rotary drill-string system and limit the 

performance of this system. Moreover, more than one type of vibration is present at the 

same time and complex loading conditions make the system harder to understand. In this 

dissertation, we address the steady-state stability analysis of a drill-string with different 

analyzing methods and find the effects of different loads. 

For this purpose, we have built a mathematical model of a drill-string with MAPLE to 

describe its steady state. The boundary conditions for the drill-string are fixed at both 

ends, but the top end can slide in the axial direction. Analytical methods, the Rayleigh-

Ritz energy method and CAE software are used to calculate the critical load values and 

mode shapes for different loading conditions. Results are compared among different 

methods and validate that the Rayleigh-Ritz energy method is accurate and efficient. 

In this chapter we present general conclusions of this dissertation and recommendations 

for further research. 

7.2 Conclusions 

The system has analytical solutions for some simple cases. When different loads are 

applied at the same time, analytical solutions do not exist, which requires us to use 

numerical methods to solve the problem. The Rayleigh-Ritz energy method and 
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commercial software are used for these cases. As a result, several conclusions, as 

summarized in the next section, can be drawn. 

1. When there is a constant axial load applied only at the ends of the drill-string, an 

analytical solution and a Rayleigh-Ritz solution can be found. The critical load and 

the mode shape from the two methods are very close, which shows the accuracy and 

correctness of the Rayleigh-Ritz method.  

2. When the only load is the inertial load resulting from whirling around the original 

vertical axis, there are an analytical solution and a Rayleigh-Ritz solution. The 

critical load and the mode shape from the two methods are very close, which shows 

the method works good for this case.  

3. When there is only an end torque applied to the drill-string, we have an analytical 

solution and a Rayleigh-Ritz solution. The critical loads from two methods are very 

close but the mode shapes are a little different. When we use different ratios of the 

two coefficients for the two methods, we can have a closer result from the two 

methods.  

4. When a constant axial load is applied to the drill-string while whirling, the analytical 

method and the Rayleigh-Ritz method still give solutions which agree very well, 

which shows the method works well for this case.  

5. When the drill-string is loaded with a constant axial load and an end torque, the 

analytical method and the Rayleigh-Ritz method give the critical combinations of 

loads which agree very well but there is a little difference between the mode shapes. 
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6. When the drill-string is loaded with a constant axial load and an end torque while 

whirling, there is no analytical solution because of the complexity of loading 

conditions. We get the reasonable results from the Rayleigh-Ritz method. 

7. When the self-weight of the drill-string is included in the system, no analytical 

solution is available. Commercial software COMSOL and ABAQUS are used to 

validate the Rayleigh-Ritz method. The results with the case of the self-weight only 

and the case of the self-weight and a hook load agree well with the Rayleigh-Ritz 

energy method. 

8. When the hook load and the end torque are applied to a drill-string with self-weight 

included while whirling, the motion is a very complex. We have not solved this case 

with ABAQUS but the Rayleigh-Ritz method gives a reasonable result. 

7.3 Recommendations 

A good understanding of the vibrations and the interaction between them in a rotary 

drilling system is very important. The collection of measurement data of the rotary 

drilling system is very expensive and time consuming. The knowledge obtained here 

provides an improved understanding of the effects of different parameters on the stability 

of a drill-string. Moreover, based on this knowledge, various control strategies can be 

designed to improve the performance of the drilling process and prevent the occurrence 

of component failures during the process. 

This research indicates that further work needs to be done in the following problems. 

Further research should lead towards an improved understanding of various vibrations in 
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the drilling system and can support the development of methods aiming at the 

improvement of the stability. 

1. Use an independent numerical method to analyze loading cases that cannot be treated 

by COMSOL and ABAQUS. These two programs have very limited the ability to 

analyze stability of a drill-string. They were able to solve only a few of the many 

cases of interest. 

2. Consider the contact force from the borehole wall with different loads and 

parameters present. Real drill-strings are enclosed in solid-walled boreholes that limit 

their lateral motion and showed significantly affect stability under most conditions. 

3. Investigate the influence of the drilling fluid on the stability of the drill-string. Real 

drill-strings have drilling fluid (mud) streamed continuously both inside and outside 

the string. This may have a significant effect on stability. 
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