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ABSTRACT 

 

The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) is an RF 

linear accelerator-based neutron source which utilizes various RF cavity resonators to interact 

with a traveling particle beam to transfer energy to the beam.  The RF cavity resonator generates 

a strong electromagnetic modal field specifically shaped at an operating frequency to provide 

good energy efficiency. Having a reliable cavity RF field is therefore, important to sustain 

performance and stable operation of the accelerator system. Although the SNS system is already 

built and in use, some parts still need to be improved to achieve better performance and higher 

operational reliability. Our study can provide potential improvements in existing accelerators as 

well as future ones. For example, the performance and reliability of the radio frequency 

quadrupole (RFQ) and the rebuncher cavities in the low beam energy front-end section of the 

SNS accelerators, have been improved by applying our newly proposed design ideas. In this 

dissertation, we propose four development directions for RFQ and rebuncher cavity to enhance 

its performance and field stabilization.  These include: 1) a practical design method to determine 

RFQ fabrication tolerance based on extensive 3D simulations to help reduce RFQ fabrication 

errors. 2) alternative RFQ designs to improve RFQ mode separation with lower fabrication, 

tuning costs and structural reliability. 3) a multi-section RFQ with new RF coupling scheme 

which is validated with scaled prototyping. This design eliminates spurious electromagnetic 

modes and can decrease manufacturing and tuning costs of long coupled RFQs. 4) a double gap 

rebuncher cavity design instead of a single cavity for decreased gap voltage and peak electric 

field. This design modification can reduce X-ray radiation intensity which can address safety 
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problems in the current accelerator front-end area. A summary of our proposed solutions and 

contributions are presented in this dissertation paper.     
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CHAPTER I 

INTRODUCTION 

In this dissertation, we study the front end section of radio frequency (RF) particle 

accelerators in detail. A few design issues are addressed through simulation and measurements. 

Accurate 3D simulations using Commercial CAD tools have been extensively utilized, and some 

experimental prototypes have been developed to validate our results. The developments process 

presented in this dissertation is applicable to most front-end sections of light ion accelerators 

even though the work is often associated to the front-end in H- ion linear accelerator of the 

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In this chapter, we 

give a brief overview of the SNS, then summarize our research tasks and list our contributions.   

 

1.1 Background  

1.1.1 RF Engineering for Particle Accelerator 

RF and microwave engineering is widely used for advanced scientific and engineering 

research activities. One important application of RF and microwave engineering includes 

charged particle accelerators which require RF technology for acceleration of various charged 

particles; for achieving their high energy states for diverse scientific, industrial, and medical 

uses. They are also used in fundamental particle physics with high energy particle colliders, 

material research through X-ray scattering with generation of synchrotron light and free-electron 

lasers (FEL), and through neutron scattering with neutron source, isotope production with ion 

accelerators, cancer treatment using electron, proton, or carbon particles, and future energy 
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development with nuclear waste treatment. For the above diverse applications and more to come, 

demand for high power accelerator facility is rapidly increasing, but there are still many 

challenges and research opportunities that need to be addressed by RF engineers.     

 

Spallation Neutron Source at ORNL 

The Spallation Neutron Source (SNS) located in Oak Ridge National Laboratory (ORNL) 

[1] is a proton accelerator-based pulsed neutron source. The SNS was built by a collaboration of 

six U.S. national laboratories – Lawrence Berkeley National Laboratory (LBNL), Los Alamos 

National Laboratory (LANL), Argon National Laboratory (ANL), Thomas Jefferson National 

Laboratory (JLAB), Brookhaven National Laboratory (BNL), and ORNL. The H- ions are 

generated by RF induced plasma ion source and accelerated (through RF field in evacuated RF 

cavity resonators) to hit a metallic target to generate neutrons. The surplus electron in the H- ion 

is removed when injected into an accumulator ring accelerator.  
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Figure 1. SNS and SNS Front End System. 

 

RF Cavity in Particle Accelerator 

The RF cavity is an effective tool to deliver RF power to increase the energy of DC particle 

beam as shown in Figure 2. Utilization of RF power source is preferred since it provides higher 

breakdown limit than DC source. An RF cavity can resonate with infinitely many 

electromagnetic resonant modes. Typically, one of the modes that are classified as the transverse 

electric (TE), transverse magnetic (TM), transverse electromagnetic (TEM), and hybrid modes is 

used in a resonant cavity for achieving the goal of transfer of RF energy to particles. A well-

designed RF cavity has high quality factor (Q-factor) that can provide high efficiency [2] for the 

energy transferring task.      
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Figure 2. RF cavity to beam energy transfer process. 

 

1.1.2 Front-end system of SNS 

A) Introduction: 

 
The work of conceptual development presented here deals with RF cavities at the lower 

energy section of a light ion accelerator. More specific examples and discussions are presented in 

this paper using the front-end (FE) section of the SNS H- ion linear accelerator shown in Figure 

3 [3]. The FE contains the ion source, radio frequency quadrupole (RFQ), and medium energy 

beam transport (MEBT) line. The ion source generates H- ion DC beam by plasma reaction. The 

RFQ has two functions: First, it converts this DC beam into RF beam by adiabatic longitudinal 

bunching and acceleration [4]. Second, RFQ also provides a strong quadrupole focusing by 

electric field. The particle beam energy at SNS RFQ outlet is 2.5 MeV, with 7% speed of light 

[5]. The MEBT line matches the beam parameters of the RFQ output beam in order to meet the 

beam physics requirements of the next accelerator section. A number of focusing elements exist 
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in MEBT line for realizing transverse and longitudinal focusing. The longitudinal focusing is 

achieved by four rebuncher cavities in MEBT line [6]. Each cavity spends different power for 

optimized beam dynamics, and the fourth cavity is operated with the highest power as shown in 

Table 1.    

 

 

Figure 3. Overview of the SNS front-end accelerator system – After [3].  

 
 

Table 1. Required gap voltage and power of MEBT cavities. 

 Cavity 1 Cavity 2 Cavity 3 Cavity 4 

Gap voltage (kV) 

Peak power (kW) 

75 

11.0 

45 

6.8 

49.3 

8.1 

120 

28.2 
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In this dissertation we will focus on two sections: RFQ, and MEBT sections. 

I. RFQ 

The RFQ is evolved from the quadruple ridge waveguide, which contains four ridges in a 

cross section. The ridges in the waveguide are equivalent to the vanes in RFQ as it is shown in 

Figure 4. These four vanes are necessary to generate quadrupole mode that is known to be 

effective for particle focusing. The TE electromagnetic mode is used in the RFQ [4].    

 

 

Figure 4. Ridge waveguide and RFQ 

 

RFQ generates about 30 MV/m surface electric field between inter-vane gaps. This strong 

electric field generation is required to provide a good focusing gradient that is important to 

transport non-relativistic particle beam. As a result, very high capacitances are formed at RFQ 

vane gaps. Figure 5 represents how beam particle experiences RFQ focusing field in a 

quadrupole mode. The common notation of quadrupole mode is TE210 (or Q0), and will be 

consistently used in the following discussions.  
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Figure 5. Quadrupole mode and particle focusing. 

 

Inherently, the RFQ TE210 mode does not have an electric field component in the 

longitudinal (axial) direction where particles move along. However, some axial electric fields are 

generated by dimensional modifications; known as vane tip modulations [4] as shown in Figure 

6. Particle bunching and acceleration are realized with this axial field synchronized to the 

accelerating particle velocity. As a result, the real RFQ operating mode is not a pure TE210 

mode but a complex TE210-like mode through this vane tip modulation. However, this axial 

field strength is much smaller than the focusing field. Therefore, for modeling simplicity, a 

uniform transverse geometry with no vane tips modulations will be used in our electromagnetic 

(EM) simulation of RFQs in the following discussion.    
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Figure 6. RFQ vane modulation for bunching and acceleration - After [7]. 

 

II. MEBT 

The MEBT provides beam focusing in transverse and longitudinal directions. Installed 

quadrupole magnets focus a beam in the transverse plane. The longitudinal focusing is achieved 

with four rebuncher cavities as shown in Figure 7. 

 

 

Figure 7. MEBT line and rebuncher cavities – After [8]. 
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Rebuncher cavities in the MEBT operate with -90º RF phase from the electric field 

maximum to focus the ion beam on the axial direction using velocity modulation [8]. The 

principle of bunching by velocity modulation is described in Figure 8. The RF signal phase at the 

MEBT cavity gap is -90º when a reference particle has the exact designed particle speed. Electric 

field at this phase is zero crossing, hence the reference particle does not gain any energy. When a 

slow particle passes this cavity gap, however, the RF signal phase becomes positive and gains 

energy. As a result, the speed of slow particle increases and catches the reference particle. In the 

same way, a fast particle is retarded at this cavity gap because of the minus RF signal phase. 

Therefore, the overall longitudinal particle focusing, i.e. bunching, is realized by MEBT cavity 

gaps.   

 

 

Figure 8. Bunching example. 
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B) Specific Objectives 

In this dissertation, I am presenting the results of our investigation for more reliable and 

simple designs of RFQ and MEBT buncher cavities that can improve accelerator system 

performance, cost effectiveness, and system safety. More specifically, the objectives of our 

research activity include:  

1) Investigate and validate full scale 3D RFQ modeling to decrease RFQ cavity design and 

prototyping costs  

2) Develop a tolerance evaluation method with 3D perturbation study 

3) Investigate and study alternative RFQ designs that increase the separation of harmful 

electromagnetic modes from the operating mode while decreasing the manufacturing 

costs   

4) Develop a new multi-section coupled RFQ design that reduces design and fabrication 

costs of very long RFQ 

5) Design validation of multi-section coupled RFQ with demonstration cavity models 

6) Propose and evaluate another efficient MEBT buncher cavity design that can reduce 

harmful X-ray radiation  

7) Perform RF and microwave measurements for model validation 
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C) Outline of the Dissertation 

The main parts of my dissertation are Chapters 2-4. Chapter 2 and 3 address the RFQ 

analysis and design. Chapter 4 discusses an alternative design of MEBT buncher cavity. All 

chapters are aimed at improving the RF accelerator front-end section.  

Chapter 2 investigates 3D modeling technology for RFQ cavity design. Conventional RFQ 

design was based on 2D modeling and small sized partial 3D simulation methods. The 

advancement in computer and simulation technology has led to large scale 3D modeling that is 

essential to analyze RFQ in detail. Our efforts to develop RFQ modeling, mesh setup, and 

accuracy verification with measurements are discussed in the first part of Chapter 2. In the latter 

part of the chapter, a perturbation study that is carried out with this 3D method is described. The 

perturbation study was determined to be an effective method to analyze the RFQ fabrication 

tolerance.   

Chapter 3 extends the 3D modeling technology to investigate alternative RFQ designs that is 

more cost effective and reliable. The first part of Chapter 3 discusses designs that can address the 

narrow mode separation problem of the RFQ cavity. Various simulations and analytic 

approaches are utilized to evaluate and validate these alternative designs. The second part of 

Chapter 3 deals with another coupled RFQ design, which is typically used in very high energy 

applications. The proposed design solves the previous issues of complicated design and 

generation of unwanted electromagnetic mode. A demonstration model is built to ensure that the 

results of simulation and concepts are applicable to the real world.  
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Chapter 4 investigates a new MEBT rebuncher cavity design to solve the present issues of 

SNS MEBT line. The proposed new design generates less cavity gap voltage and X-radiation, 

therefore can improve safety in high power operation. A scaled microwave cavity model was 

built and tested to validate the results of simulation and analysis. Estimation of X-radiation and 

thermal property was carried out as well.  

Chapter 5 summarizes this dissertation work and reviews our contributions and 

recommendations for future research.  

 

D) My Contributions: 

We have addressed the problems by accomplishing the following tasks:  

1) Developed a full-scale 3D RFQ modeling for accurate computer simulations of various 

developments and validated with experimental work 

2) Developed a tolerance assessment method using a perturbation method 

3) Proposed a simple and cost effective RFQ design process 

4) Investigated the feasibility of alternative RFQ cut-back methods 

5) Proposed design guidelines of the alternative RFQ cut-back methods as function of RFQ 

lengths and recommended various applications 

6) Developed a cost effective RFQ design and fabrication method that eliminate the usage 

of expensive extra circuit elements for mode separation 

7) Developed a new method of RFQ coupling which is simple and cost effective  

8) Proved the new concept of RFQ coupling using a demonstration model  
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9) Suppressed the unwanted electromagnetic mode near operating quadrupole mode by 

adopting the new RFQ coupling method 

10) Proposed a new double gap MEBT rebuncher cavity design that decreases X-ray 

radiation 

11) Developed a design guideline for the double gap cavity with various simulation methods  

12) Validated the proposed double gap cavity design with demonstration model design, 

fabrication, and experimental verification 

13) Estimated X-ray radiation of the double gap cavity 

14) Developed thermal design of the double gap cavity  

 

I believe my significant contributions are as follows: 

1) Developed a tolerance assessment method using a perturbation method 

2) Developed a cost effective RFQ design and fabrication method that eliminate the usage 

of expensive extra circuit elements  

3) Proposed design guidelines for the alternative RFQ cut-back methods as function of RFQ 

lengths and recommended various applications 

4) Developed a new method of coupled RFQ coupling which is simple and cost effective  

5) Proposed a new double gap MEBT rebuncher cavity design that decreases X-ray 

radiation 
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CHAPTER II 

RADIO FREQUENCY QUADRUPOLE (RFQ) AND 3D 

ELECTROMAGNETIC MODELING 

2.1  RFQ Background and Operational Problems 

     2.1.1 RFQ Background: 

 
Since 1970s, development and operation of RFQ have been very successful and proven to be 

effective. They have replaced many electrostatic accelerators that were used in the low energy 

sections of ion accelerators [7]. Both the compact size and efficient RF focusing features make 

RFQ one of the most important accelerator cavity structures in modern linear accelerator 

technology.  

An example of real RFQ and its vane part is shown in Figure 9. They usually have four vanes 

that have large gap capacitance and long cavity length while operating in a standing wave. 

Special care should be taken when designing, fabricating, and operating RFQs for the quadrupole 

mode. The mode is formed near waveguide cut-off and the structure is effectively housing 

hundreds of small half wavelength resonant cavities realized with sinusoidal vane tip 

modulations. 
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Figure 9. A real RFQ and vane part – After [9]. 

 

The RFQ as an RF circuit operates in a TE210 mode, which is a transverse electric (TE) 

mode with no Ez component. The modulations on the vane tip generate an Ez accelerating field 

component in addition to the quadrupole-like focusing fields. The modulation periods changes 

along the structure to match the varying speed of the accelerated charged particles. The depth of 

the modulations determines the strength of the longitudinal accelerating field. 

 

The RFQ is an accelerator which is a beam transport device with acceleration added as a 

perturbation 

 

As shown in Figure 10, the TE110 dipole mode is the first observable TE mode in RFQ 

Cavity without vanes. Here, the TE210 quadrupole mode has much higher frequency than TE110 

mode. The vanes inside the RFQ cavity body concentrate the electric fields at the center. By 

imposing four vanes, the TE210 mode frequency becomes lower because of additional inter-vane 

capacitance. The TE210 quadrupole is the desirable RFQ operating mode, since it can focus any 
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particle that is passing through the on-axis. The TE110 dipole mode causes beam deflection, 

hence should be avoided by having its resonance frequency far away from the quadrupole mode. 

 

 

Figure 10. RFQ electromagnetic mode – After [9]. 

 

Figure 11 shows how vane modulation can generate an accelerating Ez field and a 

transversal focusing Eq field. The Lc in Figure 11 represents the distance that a beam particle 

travels in a half RF period and a period in the vane geometry. The Ez field switches from 

positive to negative per each half RF cycle with the vane modulation geometry. Therefore 

charged particles whose velocity is matched to Lc*fRF /2 can be accelerated by the Ez field. The 

transversal field components Eq are all in the same direction between two neighboring vanes 
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(TE210 mode in figure 13) and they change their polarity every half RF cycle to result in a 

quadrupole like field-particle interaction for the particles moving at the right speed.  

 

 

Figure 11. RFQ vane-modulation – After [9]. 

 

The RFQ tangential electric fields goes to zero due to the perfect electric (PEC) boundary 

condition at RFQ end walls. This condition should be avoided to maintain longitudinally uniform 

electric focusing field along the whole RFQ length as much as possible to prevent beam particle 

loss. Previous researchers solved this problem by applying cut-backs at RFQ longitudinal vane 

ends as shown in Figure 12. The cut-back provides open magnetic field path (i.e. no metal 

obstruction) while not imposing a PEC boundary condition. A cut-back capacitance is formed 

between vane end tip to end-wall. Figure 13 shows a comparison between the RFQ 

electromagnetic field with and without a cut-back design. 
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Figure 12. RFQ cut-back – After [9].  

   

 

Figure 13. RFQ field by cut-back: (a) without cut-back, (b) with cut-back. 

 

 
  (a)    

 
       (b) 
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2.1.2 RFQ Operational Problems: 

RFQ can experience various problems such as asymmetric axial field caused by any 

mechanical imperfection, narrow mode separation with adjacent unwanted modes, and high 

dimensional sensitivity due to very low energy flow in the structure because of their operation in 

a standing wave mode.  

 

a) Mode Problem: 

To be specific, RFQ cavity modes are relatively close in the frequency domain and this can 

cause unacceptable mode stability problems in case of any structural deformation. In particular, 

there are two modes: the quadrupole and dipole modes. Their frequency separation decreases as 

the structure length increases in a long four-vane RFQ.  

 

b) Manufacturing errors: 

RFQ provided with quadrupole can have excellent focusing if the size of the four RFQ vane 

gaps has good a mechanical symmetry. However in reality, achieving a perfect mechanical 

symmetry is difficult. For example, RFQ typically contains mechanical errors in its initial 

fabrication. Additional deformation could occur in RFQ operation by thermal expansion, vacuum 

changes, and sectional misalignment. These mechanical errors lead to RFQ field distortion, and 

should be tuned out before the real operation in order to have the desired field pattern.  
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(a)                                                              (b)  

Figure 14. Mode stabilization methods: (a) PISL, (b) DSR, After [9][10]. 

 
c) Stabilizer / Coupling: 

This unfortunately requires extra mode stabilizer design to improve quadrupole to dipole 

frequency mode separation, which adds complexity to the system as shown in Figure 14. Two 

commonly used stabilizing methods are the Pi-mode stabilizing loop (PISL) [11] and dipole 

stabilizer rods (DSR) [12]. The Pi-mode stands for an azimuthal electromagnetic mode with Pi 

phase advance, which is the quadrupole mode. The PISL in Figure 14 (a) induces a current flow 

through adjacent RFQ quadrants by placing multiple stabilizing loops. The current flow 

increases in the dipole modes because the RF phase at each stabilizer loop ends has 180º 

difference compared to 0º difference in the quadrupole modes. As a result, the dipole modes 

experience almost short circuit and the resonant frequency of the dipole modes can be 

significantly higher. More than 30 MHz mode separation could be achieved in a SNS RFQ with 

the PISL method.  
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On the other hand, the DSR in Figure 14 (b) does not make current coupling between RFQ 

quadrants, but simply provides more perturbation on dipole fields at end-plate than on the 

quadrupole mode. One of the two degenerate dipole modes occupies only two opposing 

quadrants and has greater magnetic flux density around a rod compared to the quadrupole mode 

that occupies all four quadrants. Therefore, dipole mode frequencies are moved further out 

resulting in greater mode separation.    

 

d) Low Energy Flow: 

Additional problem is that the electromagnetic energy flow in RFQ is very small because it 

operates in a standing wave mode. The wave group velocity in standing wave is almost zero 

hence very little energy flow can occur. This makes the RFQ structure very sensitive to any 

perturbations. Previous researchers proposed a coupling RFQ design method to improve the 

wave group velocity. Researchers at Los Alamos National Laboratory (LANL) made a 

significant contribution by discovering a method to increase RFQ group velocity [13][14][15].  

 

The theory of wave confluence [2] forms a basic understanding of this coupled cavity design 

concept with dispersion properties of periodic structures. When two cavity modes in two separate 

passbands - one with forward wave and the other with backward wave- have similar resonant 

frequencies, ωa and ωc as shown in Figure 15 (a), these two modes can be connected as seen in 

Figure 15 (b). This phenomenon is called confluence. The abscissa and ordinate of Figure 15 

represent the frequency and phase advance of a cavity. The slope of Figure 15 stands for the 

group velocity. An interesting observation from Figure 15 is that the group velocity has non-zero 
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value in Figure 15 (b) after confluence occurs. Therefore, if an RFQ is designed in sections with 

coupling cells in between these sections, it can have a finite group velocity if operated in the 

standing wave mode to have both forward and backward wave modes at the same operating 

frequency.   

 

 

(a)                                (b)  

Figure 15. Confluence principle: (a) before, (b) with confluence - After [2]. 

 
This confluence could be realized by using coupled RFQ design. The coupling gap created 

between two RFQ sections generates a TM-like forward wave mode. This gap mode couples the 

RFQ mode at cut-back which is a backward wave due to strong magnetic coupling. Figure 16 

shows the detailed design of a RFQ coupling cell. To increase coupling strength, the coupling 

plate needs to be elongated to almost touch the vane overhang as shown in Figure 16 (b). 
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Figure 16. Coupling cell design: (a) perspective view, (b) cut-view - After [13][14]. 

 

An example of the fabricated coupled RFQ in real world is shown in Figure 17. This RFQ 

known as the Low Energy Demonstration Accelerator (LEDA) is an 8 meter long structure with 

four coupling cells. The operation of this RFQ has been successful and proved the idea of using 

RFQ coupling cells.   

 

 
    (a) 

 
(b)  
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Figure 17. The LEDA coupled RFQ - After [16]. 

 
In the following sections, we utilized the 3D RFQ simulation method to solve the real RFQ 

design issues. We addressed the moding problem as well as, the tolerance requirement issue. 

Two main design issues include narrow mode separation and small group velocity and both are 

covered in the next chapter. In this section, we will present the alternative simulation tools 

required for 3D RFQ simulation, discuss its simulation and related accuracy, and use 

perturbation to develop a tolerance guideline for the design of these RFQs.   

 

2.2  RFQ Modeling 

2.2.1 3D simulation tools: 

3D electromagnetic modeling has been the RFQ design mainstream  

 

By the end of the 20th century, computation capacity to solve complex cavity resonators with 

curved boundaries was confined to mostly 2D problems due to processors and memory 

limitations. A well-known 2D electromagnetic (EM) simulation is Superfish [17] that utilizes the 

Finite Element Method (FEM). This method gives very accurate results especially for curved 
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geometry which is the case of accelerating RF cavities. Superfish has been utilized in many RFQ 

designs worldwide [9].  

 

However, the rapid development of computer technology has led to increased use of 3D EM 

simulation, not only to solve a simple object but to analyze a very complex geometry like RFQ. 

It was a milestone work that was accomplished when researchers in Los Alamos Group [13] 

validated the accuracy of the 3D finite difference time-domain (FDTD) EM simulation code 

MAFIA [18] for various RFQ structures.  

 

Following this achievement, another important code validation work was conducted [19] 

with CST Microwave Studio [20] as shown in Figure 18 – an enhanced version of MAFIA – and 

was compared to measurements. Although this work utilizes only one of four RFQ sections for 

simulations and measurements, it contains a complex PISL circuit inside the RFQ body. A 

prototype based on this 3D modeling provided a high level of accuracy, and motivated many 

researchers to utilize 3D EM simulation for future RFQ designs.  
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Figure 18. A CST RFQ model and prototype – After [9][19]. 

 

Other 3D EM simulation tools likewise ANSYS HFSS [21], and COMSOL Multiphysics 

[22] have been used to design RFQs as well as CST, and produced similar results that are in 

excellent agreement with the experimental data [23][24].  

 

2.2.2 Simulation vs. Measurement: 

3D RFQ modeling accuracy is validated with real RFQ measurements 

 

The RFQ simulation is very sensitive to mesh setup because of high capacitance formed at 

RFQ inter-vane. Therefore, a well-defined local mesh setup is required to proceed with any RFQ 

simulation study with good accuracy. Here, we utilized the CST Microwave Studio [20] in all 

simulation work discussed in this dissertation.  
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Figure 19 represents the mesh setup that is utilized in this study. The automatic mesh setup 

has not been satisfactory for this vane perturbation analysis. Hence, a manual mesh setup with 

local fixpoints was used instead. 50 by 50 fixpoints were selected to divide the vane tip area with 

4 µm resolution. To further improve the simulation accuracy, a manual mesh setup was also 

utilized at the end-region cut-back area.   

 

 

Figure 19. Mesh setup around RFQ vanes and end-region area 

 
      To validate the 3D simulated accuracy, an example simulation and measurement study of the 

SNS RFQ was carried out. First, a quarter section of the SNS RFQ that is 1.25 λ long was 

analyzed and measured. This study showed that the discrepancies between the simulated and 

measured frequencies were 0.20% for the fundamental quadrupole mode (Q0), and 1.08% for the 

fundamental dipole mode (D0). Our results are in very close agreement with Reference [19] as 

indicated in Table 2. In this example, the discrepancy in the Q0 frequency is much less than that 
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of the D0 frequency; since this SNS structure contains PISL (shown in Figure 20) that perturbs 

the dipole fields- and it is difficult to model it accurately. 

 

Table 2. Simulations vs. measurement Comparison (1.25 λ, SNS RFQ). 

 Measurement 

[19] 

Simulation 

PISL[19] 

Simulation PISL 

[This work] 

Simulation No 

PISL 

Frequency (Q0) 

Frequency (D0) 

402.5 MHz 

432.9 MHz 

403.5 MHz 

437.6 MHz 

403.3 MHz 

437.6 MHz 

413.9 MHz 

401.6 MHz 

 

 

 

Figure 20. SNS RFQ model with PISL, shown after removing the end wall. 

 

Second, we extended our simulation to a real size long SNS RFQ that has four sections. 

Figure 21 shows the measured results of this RFQ, where the Q0 frequency is at 402.57 MHz, 

while the D0 frequency is at 434.91 MHz. Our measurements were made using liquid cooling 
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system for stability and accuracy. A detailed comparison of the mode frequencies of our 

simulated (fS) and measured (fM) results are given in Table 3. They were all in good agreement 

with each other and are within 1% difference. As expected, better accuracy was noted for the Q-

modes. The same mesh and simulation setup were utilized for all simulation work performed in 

this dissertation.  

 

After achieving this high level of accuracy that has been validated experimentally, we gained 

more confidence in our simulation setup for future studies.  

 

 

Figure 21. Measurement results of the 5.0 λ SNS RFQ. 
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Table 3. Simulations vs. measurement (5.0 λ, SNS RFQ model). 

Mode fs [MHz] fM [MHz] fM [Error %] 

1 (TE210) 

2 (TE211) 

3 (TE212) 

4 (TE213) 

5 (TE214) 

6 (TE110) 

7 (TE110) 

8 (TE111) 

401.96 

403.81 

409.29 

418.26 

430.52 

437.65 

438.75 

441.00 

402.57 

404.42 

410.42 

419.46 

432.68 

434.91 

437.17 

443.61 

0.15 

0.15 

0.27 

0.28 

0.50 

-0.63 

-0.36 

0.59 

 

 

2.3 Perturbation Study 

3D simulation example – perturbation study 

 

To address manufacturing errors, a tuning procedure is required. In this tuning process, 

bead-pull measurements [25][26] are usually performed at the four RFQ quadrants near vane 

gaps as indicated in point A in Figure 22. However, because of the narrow gap between the 

vanes (point B in Figure 22), it is hard to pull a bead on the beam-axis. Slug tuners are usually 

used to fine tune the bead-pull measured field at point A to obtain fields similar to the designed 
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field, and this tuned field is used as a reference field to infer the (non-measurable) on-axis field 

at point B. Additionally, magnetic pickup probes are used to measure the magnetic fields near 

the cavity wall (point C or C’ of the quadrant in Figure 22). The magnetic pickup probe 

measurement data usually can serve as the reference field that can be maintained after complete 

tuning.  

 

  

Figure 22. Slug tuners and references of RFQ field measurement. 

 

This tuning process is effective only for RFQs which have global perturbation [27]. 

However, the RFQ structure could have too localized perturbation around the vane due to 

mechanical imperfections such as fabrication errors or structural deformations. Since the beam-

axis field is predicted from the reference field measurements/estimation, it is questionable if the 

reference field still can represent the on-axis field when an RFQ has localized vane perturbation.  

 

Since measuring on-axis field is very difficult, this problem can only be analyzed with 

simulations. A 3D simulation is desirable for applying vane perturbation on any longitudinal 
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location of RFQ. Figure 23 shows an example of our perturbation study that shows vane 

perturbation into RFQ center with 65 µm perturbation size [27] using the 3D simulation. In case 

1, we assumed that the vane tip of RFQ section 3 is moved inward to the RFQ on-axis center in 

order to study such effect.  

 

 

Figure 23. RFQ perturbation example - mechanical imperfection. 

 

Electric field values at two different observation points (A and B of Figure 22) are shown in 

Figure 24. The top and bottom figures represent electric field intensities at vane-to-vane gap (A) 

and on-axis (B), respectively. The reference field before perturbation is shown as the black line. 

Fields are perturbed as shown by the red line, and they can be retuned as indicated by the blue 

line.  

 

The on-axis field at the bottom figure represents more field distortion at the perturbation site. 

This extra field distortion still remains even if the RFQ field is corrected as indicated by the blue 
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line in Figure 24. This retuning is aimed at making the cavity wall field as flat as possible, 

however, the extra field distortion still can be observed on the RFQ beam axis.  

 

Figure 24. Disturbed and retuned RFQ field: (top) on bead-pull axis, (bottom) on beam 

axis. 
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The distorted on-axis field by perturbation can affect the RFQ beam quality and it can be 

shown by an analytic method. The RFQ electric field can be represented by [7] 
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where X represents the focusing efficiency, A represents the acceleration efficiency, and V0 is the 

vane voltage. The second term of Ex and Ey vanishes with Ez term if vane modulation is not 

applied for in our simulation. This equation shows that the focusing field, which is an inverse 

quadratic function of the vane aperture 1/a2 is very sensitive to vane perturbation that changes a. 

The V0/a
2 term is known as the quadrupole gradient A0, which is a measure of its focusing 

strength and directly related to beam dynamics. A0 can be calculated from the electric fields 

distribution in RFQ gaps such as:  
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If a large mechanical perturbation is present, A0 becomes a function of the modified vane 

gap size as well as a vane voltage. A0 can be calculated from the differentiation of the on-axis 
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field distortion. Figure 25 shows how the modified gap distorts RFQ on-axis field. In Equation 

(2), A0 is calculated by differentiating this distorted field with the perturbation direction. 

  

 

Figure 25. Vane gap variation by perturbation and distorted on-axis field. 

 

Based on the field results of Figure 24 and Equation (2), A0 in the transverse plane at the 

perturbation area is calculated in Figure 26 (a) with MATLAB [28]. Y coordinate definition 

follows the definition indicated in Figure 22. All A0 values are scaled by the A0 value of the non-

perturbed reference RFQ. The retuned RFQ has slightly higher focusing gradient in the positive 

Y direction due to the on-axis dipolar field. However, the overall quadrupole gradient is not 

seriously affected by small perturbations if the RFQ is well retuned [27].  
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Figure 26. Quadrupole gradient with vane perturbation and retuning – scaled by reference 

gradient. 

 
As perturbation size increases, A0 mismatches after retuning increase as shown in Figure 27. 

If the perturbation size is over 150 µm, which is 4.2 % of a vane gap size in SNS RFQ, the 

gradient could reach over 5 % mismatch even if the RFQ wall field is well retuned. Hence, the 

desired vane tolerance should be less than 150 µm, since A0 mismatch drastically increases with 

the perturbation size over 150 µm.  
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Figure 27. Quadrupole gradient by the perturbation size (Case 1, section 3). 

 

The desired vane tolerance should be less than 150 µm in SNS RFQ 

 

Given that the RFQ fabrication cost is very expensive and does not allow post-fabrication 

after the vacuum brazing process of the 4 vanes is carried out, it is important to ensure that the 

machining tolerance guarantees a good RFQ field distribution. Since manufacturing cost of a 

long RFQ is expensive (often costs more than $1M dollars), a large amount of money could be 

wasted if the RFQ fabrication does not achieve the desired field due to its errors. In that 

perspective, the perturbation study is valuable for developing RFQ fabrication with a pre-

determined vane tolerance.  
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2.4  3D RFQ modeling for solving RFQ design issues 

In the following section, we utilized the 3D RFQ simulation method to solve the real RFQ 

design issues. The two main design issues are the narrow mode separation and small group 

velocity. Although several attempts have been made by previous researchers, we suggest a more 

simplified engineering design that could provide a reliable and cost effective solution. 

 

To solve the narrow mode spacing problem, we introduced an alternative RFQ cut-back 

design that can have potential advantages of improving the mode separation problem. The mode 

spectrums of these structures are thoroughly investigated as a function of the structure length, 

and discussed in Chapter 3.  

 

To solve the group velocity problem, we proposed another type of coupling cell design with 

four cut-back resonant circuits at the coupling cell. This proposed design decreases the required 

coupling cell fabrication and tuning effort by half. Moreover, the new design suppresses the 

unwanted electromagnetic modes generated at the coupling cell which will be discussed in 

Chapter 3.  
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2.5  Conclusions 

The full-scale 3D RFQ modeling and perturbation study was discussed using a SNS 

example. The achieved simulation accuracies are more than 99 % when compared to the 

measured results of a real RFQ. Investigation of a RFQ on-axis field is also possible with the 3D 

simulation method.     

       

The proposed full-scale 3D RFQ modeling gives several advantages. First, the entire RFQ 

fabrication time and cost can be saved without building an expensive prototype model. Since our 

validation study proves great accuracy of long full-scale RFQ simulation, the real RFQ 

fabrication can directly proceed from the designer’s simulation data. Second, the perturbation 

study can provide a design guideline by imposing a tolerance limit. Given that a malfunctioning 

RFQ could lead to a waste of money, the impact of this perturbation study is considered 

significant.   
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CHAPTER III 

RFQ DESIGN ISSUES AND NEW DESIGN 

The narrow mode separation and RF field flatness are the two main design issues that have 

not been addressed yet. In this chapter we will discuss the impact of designs of vane-end plates 

with various types of vane cut-backs in detail for widening the separation between the 

fundamental quadrupole and neighboring dipole modes, and maintaining RF field flatness. 

 

3.1  Design Issue I – Narrow Mode Separation 

3.1.1 Mode separation: 

Problem Definition: Narrow mode separation between operating and adjacent electromagnetic 

modes   

 
The TE210 quadrupole mode is the operating mode of RFQ. This quadrupole mode, 

however, is not the lowest order mode in RFQ, since each couple of RFQ vanes generates a 

dipole mode as well. The resonant frequency of dipole mode is determined by the capacitance 

sum of inter-vane and opposite vanes [29]. Therefore, the dipole modes are in general the lowest 

order mode in RFQ. Figure 28 shows the electric field plot of quadrupole and dipole modes in 

RFQ cross section. 
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Figure 28. Electric field plot of the dipole and quadrupole modes – After [9]. 

 

Figure 29 shows an illustration of RFQ inter-vane and opposite vanes capacitance. The large 

inter-vane capacitance causes RFQs to have narrow frequency spacing between the quadrupole 

mode and the adjacent dipole modes. In other words, the opposite vanes capacitance in dipole 

mode becomes much smaller than the inter-vane capacitance. As a result, the quadrupole and 

dipole mode frequencies appear fairly close to each other.  

 

 

Figure 29. Vane capacitance of the dipole and quadrupole modes. 
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This narrow frequency spacing (separation) issue becomes more severe as RFQ length 

increases. The cavity higher order electromagnetic modes occur at lower frequencies upon 

increasing the cavity length; hence the frequency spacing between these modes is reduced. Given 

that the RFQ demands a much longer cavity length compared to other cavities to satisfy the 

requirement of very smooth change in the bunching and acceleration fields; hence this narrow 

spacing is a problem. For example, the SNS RFQ length is about 5 λ that is more than 10 times 

longer than the TM mode cavities in other acceleration sections. Hence, these modes are very 

dense and would create operation problems. 

 

Figure 30 describes the associated boundary conditions used to find the TE110+, TE110-, 

and TE210 modes, denoted by D0+, D0-(degenerate), and Q0 respectively. Precisely speaking, 

the fundamental quadrupole mode Q0 is TE210 for the circular-like geometry, and TE110 mode 

are the unwanted dipole mode. Therefore in this dissertation, we will follow the common RFQ 

mode notation of TE110 for D0 and TE210 for Q0 [7]. A realistic RFQ does not have perfect 

rectangular or circular cross section geometry.  

 

The Q0 in an RFQ (TE210) mode is utilized to provide quadrupole focusing on the beam 

moving along the RFQ axis. Meanwhile, both D0’s generate perpendicular dipole E-fields 

(deflecting) that could bend straight moving particles - which should be avoided.  
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(a)                                       (b)                                      (c) 

Figure 30. Symmetry boundary conditions of RFQ modes - (a) TE110+ (D0+) (b) TE110- 

(D0-) (c) TE210 (Q0). 

 

These RFQ modes have longitudinal harmonics, as well, that are denoted by: TE11n+, 

TE11n-(degenerate), and TE21n (n ≥0). Mode spacing between the quadrupole mode harmonics 

is determined by Eq. (3) [30], after replacing the wavenumber kn by the vane length lv that is 

shown in Figure 31.  
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Figure 31. Definition of vane length. 

 

where n is the harmonic mode number, fTE210 is the frequency of Q0, fTE21n is the frequency of Qn. 

Notice here that Equation (2) suggests that the spacing between the harmonic frequencies of the 

quadrupole mode would be narrower for relatively long RFQs.  

 

3.1.2 Methods to Improve Mode Separation: 

 

As explained in the previous chapter, the most popular method to improve RFQ mode 

separation is to include mode stabilizer circuit such as PISL and DSR. Dipole modes are 

significantly affected by stabilizer circuit and can be easily shifted away from the dominant 

mode, hence wider mode separation can be achieved.  

 

Another approach to increase RFQ mode separation is utilizing alternative RFQ cut-back 

scheme [31][32]. Conventionally, the RFQ cutback scheme is applied to all four RFQ vanes (4C) 

[4] to achieve both field uniformity and all quadrants symmetry. This scheme which assures the 
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transversal symmetry, with no doubt, has been the standard for most RFQ structures. Other 

possible cutback methods [31] are the double dipole (DD) and the folded dipole (FD), which 

have only two vane undercuts on each end. The DD RFQ employs undercuts at both ends of only 

two opposing vanes (Figure 32(a)) while the other two vanes are short circuited at both ends; 

meanwhile the FD RFQ employs an undercut on one end of each vane interleaved with the vanes 

with the cut-back in the other end (Figure 32(b)).  

 

 

Figure 32. RFQ cut-back alternatives and end-region geometry: (a) the DD RFQ, (b) the 

FD RFQ, (c) end-plate design. 

 

 

 
 

                   (a)                                       (b)           

               (c)                                                                  
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With DD or FD, complexity, manufacturing cost and tuning effort of these structures can be 

reduced since the required cut-back numbers are halved and the separation of dipole modes is 

readily achieved without extra effort. Although two vane-ends are short-circuited to end wall in 

DD and FD geometries, the transverse fields of quadrupole mode do not go to zero on vane ends 

because of the existence of open field path between the other two vane-ends with undercut and 

the end-plate. Figure 32 (c) shows end-plate design examples to realize DD and FD RFQs with 

minimizing the non-zero transverse E-field. The gaps between vane ends and end-plate provide 

open magnetic field path. The generation of an axial field at end region is a drawback of these 

schemes; however, Ref. [31] expected that the axial field effects could be reduced if a few input 

transition cells are utilized in the RFQ.  

Previous Approach: Mode stabilizer designs and alternative cut-back methods have been 

developed and installed 

 

3.1.3 Mode Stabilizer Limitations and Alternative Design: 

 

The mode stabilizer circuits for mode separation improvement increases the design and 

fabrication costs. Although PISL method promises wide mode separation, it demands adding 

plenty of holes and rods. About 8% of power is dissipated in PISL rods, and it imposes a 

necessity of using a cooling channel design as well [5]. Moreover, the PISL rods generate 

parasitic capacitance near RFQ vane. Therefore, the quadrupole frequencies are also slightly 

shifted. The DSR decreases design and fabrication costs over PISL with drawback of reduced 
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mode separation. However, it still adds some design and tuning complexity beyond the baseline 

design.  

 

In view of cost therefore, an alternate cut-back method could be useful for mode separation 

improvement. The previous work [31] is however, only done with 0.74 λ length short RFQ as 

shown in Figure 33. Therefore, more detailed mode separation analysis up to the common longer 

high power RFQ length (5 λ for SNS RFQ case) needs to be performed. Furthermore, the 

previous work did not give a qualitative explanation on how DD and FD RFQ dipole modes are 

generated and have unique mode spectrum. Understanding of these dipole properties can open 

new application areas of DD and FD RFQs.   

 

    

Figure 33. A short 0.74 λ length RFQ model. 

 

Limitation of Previous Solutions: Mode stabilizer increases manufacturing and tuning costs / 

Alternative cut-back methods have been only demonstrated in a short length 
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3.1.4 Feasibility of Cut-back Methods for Long RFQs: 

 

      Here, we investigate the alternative cut-back structure up to 5 λ lengths. From this study, we 

will explore if these cut-back methods could even provide additional RFQ EM design options. 

Further discussions on dipole mode properties are also covered in this study, which are important 

to understand the mode spectrum that was not previously well discussed. Finally, fundamental 

properties of the cut-back methods are compared.    

  

 Figure 34 describes the RFQ simulation model utilized for this study. Here, we use the CST 

tool to calculate cavity eigen frequencies and field results. The same transverse RFQ geometry 

and mesh setup that was previously used for on –axis field study of SNS RFQ with good 

accuracy, are utilized in this study. However, in our analysis, dipole mode suppressors are not 

used in all the three models studied to simplify our performance prediction calculations. Based 

on our calculations, the SNS RFQ with a length of 5λ without a mode stabilizer has 413.9 MHz 

and 401.6 MHz for the Q0 and D0 frequencies, respectively. Several RFQ models with different 

longitudinal lengths have been simulated to obtain more detailed mode separation information. 

Figure 35 shows the details of an end-region geometry with a cut-back for this simulation. 
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Figure 34. A 5 λ length long RFQ model. 

 

 

Figure 35. RFQ End-region geometry for simulation: (a) 4C, (b) DD / FD.  

 

      In the analysis, a coupling factor kc that represents the mode separation of the RFQ structure 

is defined as given by [33]. kc defines the coupling between Q0 and D0 modes and is given by the 

following expression: 

 

 
(a)                                       (b) 
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where fH and fL represent the highest and lowest frequency utilized for kc definition, which are 

the Q0 and D0 mode frequencies. fc is the center frequency of the passband. Based on the 

prediction of these frequencies, the coupling factor kc is estimated to be approximately 3%. 

 

Typically, the measured Q0 and D0 resonant frequencies of RFQs with similar Q0 frequency 

and length are comparable whenever their mode separations are similar. This 3 % coupling factor 

is widely adopted in many 4-vane RFQs [29][34]. Therefore, a mode distribution (dispersion) 

study as a function of RFQ length can provide a useful design guideline for these alternative 

designs.   

  

      Detailed dispersion results of 4C, DD, and FD RFQs as function of their structure lengths are 

presented in Figure 36, Figure 37, and Figure 38. TE11n+ and TE11n- dipole modes have the 

same frequency (degenerate) for FD and 4C RFQs, but different in DD RFQ. Higher TE110+ 

mode frequencies can be observed in the DD RFQ compared to the 4C and FD RFQs; however 

in all cases, the TE110- frequency of DD RFQ is lower than the TE110+ frequency and they are 

not degenerate.  
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Figure 36. Resonant frequencies of the 4C RFQ modes. 
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Figure 37. Resonant frequencies of the DD RFQ modes. 
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Figure 38. Resonant frequencies of the FD RFQ modes. 

 

Wider mode spacing is always preferred since it improves field stability [2]. With a kc ≈ 3 %, 

the DD design could have wider mode spacing than the 4C RFQ with ≤1.5λ, 3λ, and 5λ structure 

lengths. For example, a 5λ long DD RFQ provides a 4.43MHz separation between the Q0 

adjacent to the TE112- dipole mode, which is 1.07% of the Q0 frequency. Meanwhile, a 4C 
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structure gives only 0.49MHz separation which is merely 0.12% of the Q0 frequency. Therefore, 

an additional dipole mode stabilizer may not be required for a 5λ long DD RFQ; thus simplifying 

the mechanical structure.  

Applications: Some RFQs for proton accelerators are commonly built with about 5λ length, 

a DD RFQ design may be a good candidate for this application. For short structures ≤1.5λ, the 

DD design also provides excellent mode separation. So, this short DD RFQ can also be a useful 

design option for a short RFQ. 

 

Meanwhile, the FD RFQ mode spectrum does not show significant difference compared to 

the 4C RFQ spectrum with structure length ≥1.0λ. Therefore, the FD design does not give 

obvious benefits over 4C RFQ for long structures. One possible application for the FD RFQ is 

for a very short RFQ of ≤0.5λ. As it is expected from Ref. [31], the D0 frequency is located more 

upward from the Q0 frequency than that for 4C in this short FD RFQ. This short RFQ ≤0.5λ is 

usually not used for accelerators, but still suitable for other applications.  

Applications: One interesting application can be an RFQ type rebuncher cavity [35]. In a 

very short RFQ like this RFQ rebuncher, the FD scheme may provide better mechanical strength 

with good mode separation. 

         

The mode spectrum results in previous figures can be more meaningful if mode properties 

are understood as well. The main difference of DD and FD RFQs on dipole mode is caused by 

the difference in end-wall boundary conditions and the axial capacitance at end region. The short 
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circuit to the end-plate induces different boundary conditions to the dipole modes forming an 

axial capacitance; i.e. capacitive loading.  

Proposed Solution and Innovation: Alternative cut-back methods in long RFQ structures 

 

3.2  Design Issue II – Impact of Cut-backs on End Plates and DSRs 

on Field Distribution 

 

3.2.1 Effect of DD and FD Scheme on Field Distribution: 

The short circuit end-plate affects DD and FD RFQ dipole mode boundary conditions. Figure 

39 shows end-region field plots of D0 mode in 4C, DD, and FD RFQs. Without short circuit 

plate, the 4C RFQ dipole fields are formed in two diagonal RFQ quadrants as shown in Figure 39 

(a). The FD RFQ dipole fields in Figure 39 (b) are similar to 4C RFQ fields, however, they are 

also distributed in other diagonal quadrants. Two FD RFQ end regions do not provide symmetric 

boundary condition to each other, hence the impedance changes like in the case of an unbalanced 

transmission line. This unbalanced line generates common mode currents through magnetic 

coupling in the cut-back region and excites fields in the other RFQ diagonal quadrants. Given 

that the RFQ experiences magnetic coupling in the cut-back area and electric coupling at the 

vane tips along the whole structure length, subsequently this magnetic coupling effect decreases 

as RFQ length increases. Therefore, the FD RFQ mode spectrum becomes similar to that of the 

4C RFQ mode spectrum for long RFQs. From Figure 38, the FD RFQ can provide unique 

spectrum in ≤1.0λ structure length.  
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The DD RFQ dipoles have symmetric boundary conditions, but do not degenerate as shown 

in Figure 39 (c)-(d). The DD dipole modes can be understood as a combination of two dipoles 

with electric coupling through the RFQ vane gap. As a result, dipole fields are excited in all four 

RFQ quadrants with similar field intensity. The TE110- and TE210 modes in DD RFQ are 

equivalent to the modes oscillating with 0 and π phase advances in two electrically coupled 

dipole cavities, respectively.   

 

3.2.2 Effect of DSR on Field Distribution: 

 

End region dipole fields can be significantly affected by utilizing DSR in 4C RFQ. DSR 

provides an additional load in the end-cell of dipole modes, while introducing a small 

perturbation to quadrupole modes [12]. This additional capacitance by DSR decreases the 

equivalent cut-back frequency at the end region for dipole modes. Hence, dipole field 

distribution can be more uniform and changes dipole frequency. Figure 39 (e) describes how the 

dipole field profile changes by the DSR stabilization method. 
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Figure 39. Fields at D0 mode- E field / H field / H field at cut-back: (a) 4C (TE110-), (b) FD 

(TE110-), (c) DD (TE110-), (d) DD (TE110+), (e) 4C with DSR (TE110-). 

 

  
    (a) 

  
    (b) 

 
    (c) 

 
    (d)  

 
(e) 
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In DD RFQ, TE110- has open circuit-like condition while TE110+ experiences a short 

circuit-like condition at both ends. As a result, these two dipoles have different mode 

frequencies. One interesting observation from Figure 37 is that the mode frequency of open 

dipoles (TE11n-) has about a harmonic order difference from the frequency of short dipoles 

(TE11n+) in DD RFQs. In other words, 
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The open circuit dipole TE110- is equivalent to the waveguide mode, while the short circuit 

dipole TE110+ is comparable to the cavity mode with a short end wall. Therefore, this condition 

of Eqn. (4) generally holds unless the TE110- field distribution is not generally uniform. Because 

of this relation, the mode spectrum in DD RFQ is not complex though the two dipoles are not 

degenerate.   

 

A simulation is performed for shortened version of the SNS RFQ model for one λ length. The 

simulated result in Figure 40 verifies the mode spectrum observation. It was found that the two 

degenerate 4C dipoles have the same distribution pattern, while FD dipoles do not have a 

symmetric pattern. As expected before, DD open dipole (TE110-) shows rather flat field 

distribution while short dipole (TE110+) exhibits sinusoidal-like distribution. However, the 4C 

dipole field distribution becomes uniform with DSR utilization.   
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Figure 40. Dipole field distribution in 0.7 m (1 λ) RFQ length. 

 

In a 4C RFQ, the end-plate longitudinal potential on beam axis of Q0 is almost zero if all four 

vanes have perfect electrical field symmetry [26]. On the end-plate beam axis, the RF voltage 

induced by one vane pair is cancelled by the RF voltage produced by the other vane pair with 

180º out of phase. This cancellation also occurs in D0 that has 90º phase difference as well; hence 

the 4C RFQ does not have significant axial capacitance in both Q0 and D0.  

 

In DD RFQ, the same RF potential cancellation appears in D0, but not in Q0. In Q0, the end-

plate potential becomes similar to the potential of electrically shorted vanes. As a result, the 

shorted vane pair cannot generate much RF capacitance and the net capacitance on beam axis has 

a finite value. Figure 41 shows the z-direction on-axis electric field (Ez) maps of 4C and DD 

RFQ end region. The red and blue color represent the Ez phase of the positive and negative 
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maxima. The green color represent the zero field area. As shown in the Figure 41 (b) right, the 

phases of vertical vanes and horizontal vanes - represented with red and light blue color, 

respectively - are not symmetrical in DD Q0 mode.  

 

 

Figure 41. End-region Ez field in D0 / Q0 mode: (a) 4C, (b) DD. The red and blue colors 

represent the Ez phase of the positive and negative maxima. 

 
 
 
 
 

    
           (a) 

             
            (b) 
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3.2.3 Effect of End-Plate Cutback Axial Field Capacitance on Field 

Flatness: 

 

Due to the finite axial capacitance in DD RFQ Q0 mode, it was pointed out [31] that axial 

field generation is expected. Here, we will discuss this axial capacitance and how it can affect on 

field flatness and mode spectrum.      

 

Figure 42 shows the equivalent circuit view of RFQ end-region with vane cut-back. The axial 

capacitance Caxis is zero in 4C RFQ Q0, and the cut-back frequency is determined by the cut-back 

inductance L and the cut-back capacitance C in both Q0 and D0. On the other hand, Caxis is not 

zero in DD RFQ Q0. Therefore, the cut-back capacitance in Q0 is actually determined by 

subtraction of Caxis from C while the cut-back capacitance in D0 (TE110- open dipole) is 

equivalent to C. The results are summarized in Table 4.  

 

 

Figure 42. Cut-back equivalent circuit with axial capacitance. 
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Table 4. Axial capacitance and cut-back frequency. 
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In 4C RFQ, once the cut-back frequency is matched to the body Q0 frequency ωQ, this cut-

back obviously still does not provide a uniform field profile in D0 because of the frequency 

difference between the two modes.  

 

In DD RFQ, the cut-back frequency is matched to the body Q0 frequency ωQ with the 

effective capacitance Ceff, but in D0 (TE110-) the cut-back capacitance changes to C. Since Ceff < 

C, this cut-back frequency becomes lower in D0 (TE110-). For most RFQs with Q0 frequency > 

D0 (TE110-) frequency, this capacitance difference can provide a flatter dipole field distribution 

in the DD case. Obviously, DD dipole frequencies do not have the same frequencies as the 4C 

dipole frequencies.    
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3.3  Impact of the Study 

The Results of this Study can decrease RFQ design and fabrication cost 

 

      In long RFQ structures, DD can have two advantages compared to stabilizer designs. First, 

DD scheme is obviously simpler hence we can save design time, fabrication and tuning costs. 

Second, DD may enhance the mechanical reliability in the long term operation due to its 

simplicity. Therefore, the potential DD RFQ applications could be: 1) a low cost RFQ, 2) a 

continuous wave (CW) RFQ or pulsed wave RFQ with low peak electric field, 3) an RFQ that 

requires a long term reliability. For these purposes, DD can be utilized if DD gives superior 

mode separation over 4C cut-back method in a given RFQ length. Table 5 shows a comparison 

between the three RFQ cut-back schemes in view of mode separation and the applicable length 

range.  

 

Table 5. Comparison of RFQ cut-back schemes. 

 4C DD FD 

Mode separation at  

fQ0 ≈ 413MHz,  

kc ≈ 3% 

Length Acceptable 

Good for 

≈2λ, 4λ 

 

Long 

Good for 

<1λ,≈3λ, 5λ 

 

Long / Short 

Good for 

<1λ, ≈2λ, 4λ 

 

Short 
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Table 6. Comparison of DD and 4C + DSR schemes. 

 DD 4C + (DSR) 

Design complexity 

Tuning effort 

Power dissipation 

On-axis field 

Peak electric field 

Rod modes 

Applicability (By length) 

Low 

Low 

Moderate 

High 

High 

N/A 

Length dependent 

Moderate 

Moderate 

Moderate 

Low 

Low 

Exist (N/A if no DSR) 

All RFQ lengths 

 

      Table 6 shows a comparison between the DD and 4C with DSR RFQs. DD RFQ has 

advantages of a simple design, fabrication and tuning. Meanwhile, it also has disadvantages of 

increasing on-axis field and peak electric field slightly. For low cost applications, DD method 

can be considered with a superior mode separation above 4C RFQ.  

 

3.4  Conclusion 

The alternative cut-back design is simple and cost effective / It also mechanically more stable 

 

      The alternative cut-back structures are investigated and analyzed in detail to solve the narrow 

mode separation problem of long RFQs with providing simple and cost effective design 
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guidelines. The simulation and analysis results clearly show that extra mode stabilizer circuit is 

not necessary with the proposed designs at some specific lengths. Therefore, the traditional 4C 

and alternative FD and DD can be selectively utilized based on our proposed design guideline 

that clarifies the expected mode separation by RFQ length. 

 

The proposed DD RFQ design is promising because it is able to eliminate the extra stabilizer 

circuit design in most applications where the 4C design is not. Moreover, DD structure is 

mechanically simpler and reduces the tuning and high-precision fabrication costs around the cut-

back area by half. Furthermore, our analysis clearly proves that the non-degenerating dipole 

modes in DD RFQ are not a practical design concern at all.  

 

The FD design is useful and interesting solution for short RFQ and RFQ buncher cavity. Our 

work demonstrates that this design can provide the largest mode separation in a short RFQ 

structure (< 0.7 λ). Also it adds mechanical strength of short RFQ that could not be achieved by 

4C method.  

 
 

3.5 Design Issue II – Small Group Velocity 

The RFQ is designed to operate in a standing wave with reduced group velocity. Such 

condition may make the design very sensitive to fabrication tolerance. In this Chapter we 

proposed a modified coupling scheme between the different RFQ sections to reduce such 

sensitivity.  
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3.5.1 Coupling Problem between Beam Particles and RF Field: 

 

RFQ is by far the only accelerating cavity operating with TE mode with respect to the 

particle beam axis. The required TM mode for the acceleration is formed microscopically at only 

around the vane tip area. The TE mode operation enables the overall field uniformity without 

wavelength dependency and strong focusing field formation. The SW cavity design is required in 

RFQ system because the field uniformity cannot be obtained in a travelling wave with the TE 

mode operation near waveguide cutoff frequency [2][36].  

 

However, SW resonant cavities tend to have small group velocity of electromagnetic wave 

that becomes almost zero in long RFQ structures. Since the group velocity is a measure of 

energy flow velocity, near zero group velocity means that perturbed local field is not 

compensated by electromagnetic energy flow quickly. As a result, SW cavities are very sensitive 

to local perturbations.   

 

In SW cavity the RFQ can be considered as a quadruple ridge waveguide operating at the 

cutoff frequency of its TE quadrupole mode. The waveguide wavelength λg is given by [36] 
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where βg is the operating mode propagation constant, fc is its cutoff frequency, and when the 

RFQ operates at the cutoff frequency that is the case of the standing wave operation, the mode 

has an infinite guided wavelength λg.  

Energy velocity is small, hence very sensitive to perturbation  

 

In an RFQ structure, an infinitesimal βg translates to a large phase velocity, and a very small 

group velocity – i.e. standing wave. The cutoff frequency depends on the transverse dimensions 

of the waveguide geometry, and is very sensitive to any dimensional errors.  Hence, any slight 

perturbation in the mechanical structure could cause significant field non-uniformity along the 

RFQ structure thus leading to mode instability.       

 

3.5.2 State-of-the Art Approaches and their Limitations: 

 

An example of the very long coupled RFQ constructed previously was introduced in Chapter 

2 (shown in Figure 17). This RFQ was for the Low Energy Demonstration Accelerator (LEDA) 

project and had 8 meter length with four coupling cells. The designers came up with the idea of 

each coupling cell with 8 vane cut-backs on RFQ coupling cell area. However, the coupling cell 

design is rather complex because the fabrication and tuning of 8 cut-backs around the coupling 

cell is not simple. As a result, the manufacturing and tuning costs can be expensive. Figure 43 

shows the complexity of coupling cell design.     
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Figure 43. Coupling cell design: (a) perspective view, (b) cut-view - After [13][14]. 

 

RFQ coupling cell which requires 8 cut-backs is designed and realized. However it increases 

manufacturing and tuning costs. Also it generates unnecessary modes 

 

In addition to increasing the design complexity, the coupling cell also generates an unwanted 

electromagnetic coupling gap mode near the operating quadrupole mode. Upon adding the 

coupling gap there are three TM-like modes those can be generated in the RFQ as described in 

 
    (a) 

 
(b)  
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Figure 44 [26]: end mode, coupling gap mode, and coupling plate mode. The end mode in Figure 

44 (a) appears at RFQ end plate. The coupling plate mode in Figure 44 (c) is the degenerate 

forward wave mode with the operating mode of coupled RFQ. Meanwhile, the coupling gap 

mode in Figure 44 (b) is an unnecessary mode that is our concern. Unfortunately, this coupling 

gap mode frequency can show up close to the operating quadrupole frequency. Therefore 

separation of this mode put another limitation on coupled RFQ design.   

 

 

        (a)                            (b)       (c) 

Figure 44. Extra RFQ modes generated at: (a) end, (b) coupling gap, (c) coupling plate 

[degenerate] - After [26]. 
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3.5.3 Proposed Solution and Innovation: 

 

The complexity of coupling cell design could be significantly reduced if the number of 

required cut-back decreases. Based on this, we propose another coupling cell design with DD 

cut-back. As shown in Figure 45, the required cut-back numbers are halved by this design. 

Another expected advantage from this proposed design is that this design can be mechanically 

more stable. Since a vane pair does not need undercut, the possibility of mechanical deformation 

by manufacturing could be reduced. Moreover, the unwanted coupling gap mode discussed in 

Figure 44 (b) can be suppressed by a DD coupling cell. Because of the short circuit condition of 

two vanes at the coupling plate in the middle, this coupling gap mode frequency moves to much 

higher frequency.  

Utilize a new simple coupling cell design 

 

One potential drawback of this design is that the coupling is realized with only two vanes at 

the coupling cell. Naturally, the required coupling strength becomes smaller than 4C coupling 

RFQ. Therefore, the coupling gap size needs to be smaller in DD coupling cell design.  
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Figure 45. DD coupling cell. 

 

3.6  Proposed Design Concept Validation: 

 

To verify this proposed idea, a simulation of RFQ model with a compact model of 36in 

length is created and is shown in Figure 46. The coupling cell design in Figure 45 is located in 

the middle of this RFQ model. To reduce fabrication cost of this model, the vane to vane 

capacitance of this model is intentionally designed to have smaller value than SNS RFQ to 

relieve the requirement of very precise machining. Given that the tolerance requirement of real 

RFQs are in the µm range, this low capacitance model helps to relieve the tolerance requirement 

significantly. However, the expected operating quadrupole frequency is 1363 MHz that is about 

three times higher than SNS RFQ.    
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Figure 46. A conceptual model with DD coupling cell. 

 

3.6.1 Mode Separation Advantages: 

 

Table 7 shows mode frequencies of the 36in model without utilizing the coupling cell design 

that was calculated using CST tool. The dipole separation of 4C RFQ is good with this length, 

however, only 3 MHz separation is obtained in DD RFQ. The second harmonic of the short 

circuit dipole (Dipole S) is the nearest mode to the DD quadrupole mode. Open dipole modes 

(Dipole O) are not a concern in this case.  
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Table 7. Mode frequencies distribution - 4C and DD, uncoupled. 

Mode 

number 

4C [MHz] 

(Quadrupole) 

4C [MHz] 

(Dipole) 

DD [MHz] 

(Quadrupole) 

DD [MHz] 

(Dipole O) 

DD [MHz] 

(Dipole S) 

0 

1 

2 

3 

1363 

1374 

1402 

1447 

1288 

1309 

1344 

1394 

1364 

1374 

1401 

1445 

1285 

1299 

1329 

1376 

1291 

1320 

1367 

1429 

 

The results of the coupled DD RFQ are summarized in Table 8. Similar to the 4C coupled 

RFQ design, DD RFQ quadrupole mode separation is improved from 11 MHz to 19 MHz with 

the coupling cell. Better dipole separation could be also observed from 3 MHz to 36 MHz. As 

expected, no coupling gap mode is observed around RFQ operating mode.  
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Table 8. Mode frequency distribution - DD, coupled. 

Mode number 

(π phase advance) 

[MHz] 

Quadrupole 

[MHz] 

Dipole O 

[MHz] 

Dipole S 

-0.5 

0 

+0.5 

+1 

+1.5 

+2.0 

1341 

1363 

1382 

1399 

1479 

1499 

1274 

1285 

1314 

1327 

1418 

1433 

 

1318 

1319 

1421 

1427 

1578 

 

3.6.2 Electric Field Distribution: 

 

The expected electric field distribution of the operating quadrupole mode is shown in Figure 

47. This simulation assumes a perfect transverse symmetry of the RFQ quadrants, hence the real 

measurement may contain some errors due to vane misalignment, surface roughness, and 

fabrication errors. Practically, no serious discontinuities of the electric field at the coupling gap 

area should be observed to ensure that these two RFQ sections are actually coupled.  
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Figure 47. Simulated field profile - quadrupole mode. 

 

3.7  Experimental Validation 

 

A test DD coupled RFQ model is designed and built with the same internal geometry that 

was utilized for the calculations above. But, the finalized structure contains several holes to place 

slug tuners and couplers as shown in Figure 48. Because of the existence of these holes, the 

expected resonance frequency is decreased from 1363 MHz to 1355 MHz as they were not 

accounted for. Table 9 shows the shifted mode frequencies with holes. These frequencies are 

expected to be seen when we carry out real measurements. 
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Figure 48. A Finalized model with DD coupling cell. 

 

Table 9. Mode frequency with holes. 

Mode number 

(π phase advance) 

[MHz] 

Quadrupole 

[MHz] 

Dipole O 

[MHz] 

Dipole S 

-0.5 

0 

+0.5 

+1 

1329.32 

1354.81 

1373.18 

1389.84 

1264.84 

1277.54 

1305.14 

1318.83 

 

1310.64 

1312.37 

1414.47 
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A detailed mechanical design of this RFQ is performed with the 3D mechanical CAD tool 

Solidworks [37]. Figure 49 describes the key parts and assembly design. As explained, extra 

surface holes for RF coupler and tuner ports are also created for low power RF measurement. 

End plate holes are utilized for bead-pull measurement.    

 

 

Figure 49. Detailed mechanical design of coupled DD RFQ model. 

 

The fabricated RFQ parts are shown in Figure 50. These pieces are fabricated with 

Aluminum material to save fabrication costs. Two RFQ body assemblies are connected together 

via coupling plate.  
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Figure 50. Fabricated coupled DD RFQ model. 

 

The previous simulation results are validated with RF measurements. First, the frequency 

measurement is done to see that the designed coupled RFQ has similar resonance points to the 

simulated results. Second, the bead-pull measurement is performed to check if the RFQ 

operating mode is the real coupled quadrupole mode.  

 

The S-parameter measurement system setup is shown in Figure 51. S21 is measured through 

two SMA connector ports to determine the resonant frequency. Several tuner bolts are inserted to 

tune non-ideal RFQ fields, which is mainly caused by vane misalignments and fabrication errors.    

 

The measured frequency results are shown in Table 10 and Figure 52. All measured 

frequencies have less than 0.65% error. The first coupled quadrupole mode – Quadrupole (1) in 

Table 10 – gives more error than other coupled quadrupole modes such as Quadrupole (2) and 
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(3). Ideally, the operating mode ‘Quadrupole (2)’ should have the same mode spacing from the 

adjacent ‘Quadrupole (1)’ and ‘Quadrupole (3)’ modes. This is because the ‘Quadrupole (2)’ 

mode is the coupled mode at which two electromagnetic dispersion curve combines. 

‘Quadrupole (1)’ and ‘Quadrupole (3)’ lies on the dispersion curve of coupling cell and RFQ 

body mode.  

 

However, the measured mode spacing result is not very symmetric. This implies that the 

combined dispersion curve of RFQ body and coupling cell is not ideal due to fabrication and 

assembly errors. Due to the bolt and nut joint of two metal pieces that were utilized in this 

coupling cell demonstration model, the surface gap and RF loss between metal pieces decreased 

the coupling strength than ideal simulation model. 

 

 

Figure 51. Measurement setup - frequency. 
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Table 10. Simulation vs. Measurement - coupled DD RFQ mode frequency. 

Mode Simulation [MHz] Measurement [MHz] Error [%] 

Dipole O (1) 

Dipole O (2) 

Dipole O (3) 

Dipole S (1) 

Dipole S (2) 

Dipole O (4) 

Quadrupole (1) 

Quadrupole (2) 

Quadrupole (3) 

Quadrupole (4) 

1264.84 

1277.54 

1305.14 

1310.64 

1312.37 

1318.83 

1329.32 

1354.81 

1373.18 

1389.84 

1271.73 

1279.84 

1302.26 

1304.26 

1311.06 

1321.47 

1337.88 

1352.29 

1373.50 

1387.51 

0.54 

0.18 

0.22 

0.49 

0.10 

0.20 

0.64 

0.18 

0.02 

0.17 
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Figure 52. Measured mode frequency - coupled DD RFQ. 

 

The bead-pull measurement is also performed to make sure that the ‘Quadrupole (2)’ mode 

is the real operating mode. The system setup is shown in Figure 53 and Figure 54. A metallic 

bead on the fishing line is pulled off from the RFQ upstream to downstream. The bead 

movement is realized by a step motor, which is controlled by LabView [38] program. A metal 

bead perturbation changes electric stored energy in RFQ [39], and it results in the frequency and 

phase changes. Here, phase changes are measured and they are utilized to calculate the electric 

stored energy and field in RFQ. More details of bead-pull measurement can be found in 

APPENDIX A.     
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Figure 53. Measurement setup - bead-pull. 

 

 

Figure 54. Bead perturbation. 
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The measured electric field profile at the operating quadrupole mode is shown in Figure 55. 

The profile is normalized by the reference field of uniform distribution. The field profile is not 

very uniform due to fabrication and assembly errors. It is clearly seen, however, the electric field 

does not have a discontinuity at the coupling cell area. In other words, this RFQ mode is 

obviously the coupled quadrupole mode. Because of unideal coupling gap, the field notch at the 

coupling cell is larger than the ideal simulation result in Figure 47.  

 

 

Figure 55. Measured field profile - quadrupole mode. 
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3.8  Conclusion 

 

The new coupling cell design is simple and cost effective / It also separates unwanted modes 

 

The coupled RFQ design study with an example model verifies that this type of RFQ design 

can be used in future coupling RFQ design. The measurement results are in good agreement with 

simulations. Therefore, this coupling RFQ design with two vane cut-back can be considered as a 

potential high energy RFQ structure. 

 

The proposed coupled RFQ design could be promising because it decreases the required cut-

back and tuning efforts in half. Moreover, it suppresses the unwanted coupling gap mode far 

away from the operating quadrupole mode.  

  



85 
 

CHAPTER IV 

MEDIUM ENERGY BEAM TRANSPORT “MEBT” SECTION 

 

   Currently the rebuncher cavity utilized at 400 MHz with 2.5MeV energy- which is located at 

the front end section of the 1 GeV energy H- ion accelerator- suffers from relatively high gap 

voltage and peak electric field which may create X-ray radiation. A double gap microwave 

rebuncher cavity is proposed here to eliminate the possibility of any X-ray radiation.   

 

   A detailed electromagnetic model of the proposed double-gap microwave rebuncher cavity is 

presented here and validated by extensive simulations. This design is intended to decrease both 

the gap voltage and peak electric field. For model validation, a low cost 1/2 scaled aluminum 

cavity double gap model was built and tested. Mode frequencies and quality factors of the model 

were also measured and compared to our simulation. Additionally, bead perturbation method was 

used to measure the para-axial electric field. Simulation of the single and double gap cavities 

were compared to measurements and were in good agreement. Subsequently, guidelines have 

been developed to design the double gap rebuncher and optimize its gap size for lower electric 

field and subsequently reduced X-ray radiation.  
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4.1 MEBT Background 

Some MEBT cavities emit X-radiation under poor vacuum because of high gap voltage and 

field. 

 

In SNS accelerator, the front-end section which is comprised of ion source, LEBT, RFQ, 

and MEBT systems is not shielded and placed outside the concrete tunnel for easy access. 

Although initial system design assessed the area and concluded that it was safe with negligible 

radiation, some unsafe radiation was detected randomly. As a result, the area was designated as a 

radiation area with controlled access and the radiation was routinely surveyed according to the 

accelerator operating protocols since the section was directly exposed in the building. X-ray 

radiation with non-negligible level could occur if cavities are not under good vacuum conditions 

[40] likewise in post-maintenance period, or due to RF breakdown that appears in the cavities 

while in operation.  

 

The MEBT RF system is comprised of four rebuncher cavities and four RF amplifiers 

driving the cavities individually. The X-ray radiation may occur in the fourth rebuncher cavity in 

the SNS MEBT that typically operates with the highest gap voltage and field [41][42].  The gap 

voltage Vo is an important parameter that determines the bunching efficiency of the velocity 

modulation device. To increase Vo for a given power, this cavity requires a reentrant geometry 

[43] which can reduce the particle transit time [44] along the cavity gap. The reentrant geometry, 

however, increases the peak electric field and may cause field emission with electron discharge. 

The narrow gap increases power efficiency, but raises peak electric field as well.  This can lead 
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to a field breakdown and X-ray radiation unless the cavity maintains high vacuum with, 

minimized gas desorption from wall, and gas flow from the ion source.  

 

Typically, however, in MEBT line design, a tight longitudinal size limitation is required 

which is 13 cm [6] for the SNS MEBT as shown in Figure 56. This constraint comes from the 

fact that the beam optics design recommends to keep this cavity length as short as possible to 

minimize beam size growth. At the same time, the cavity design should be kept simple with good 

power efficiency. Therefore, a more conservative cavity design is sought for minimizing X-ray 

radiation. 

 

 

Figure 56. Cavity length limitation in MEBT line (13 cm). 

 

4.2 MEBT Reference Design (Single Gap) 

The requirements of a simple design with high power efficiency led to a single gap TM mode 

cavity design shown in Figure 57. For the SNS MEBT RF frequency of 402.5 MHz, the usual 



 

TM mode cavity design gives good power eff

cavity length is 11.5 cm, which is within

 

 

Figure 57. Single gap MEBT rebuncher design.

 

However, slight X-ray radiation was detected and it was measured 

Which is a problem that need to be addressed

future accelerator designs. 

 

gives good power efficiency and reasonable cavity size. The designed 

is within the 13 cm length constraints [6]. 

. Single gap MEBT rebuncher design. 

ray radiation was detected and it was measured as shown in 

problem that need to be addressed and finding a solution to it, that 

88 

iciency and reasonable cavity size. The designed 

as shown in Figure 58.  

 can be useful for 
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Figure 58. Radiation measurement of a single gap Klystron cavity - After [45]. 

 

Maintaining high RF efficiency with no degradation of beam performance while reducing the 

X-radiation is important 

 

For the current SNS MEBT section, beam energy at a single gap elliptical buncher is 2.5 

MeV with H- light ion. The maximum cavity length L and bore radius a are determined to be 

13.00 cm and 1.5 cm respectively by beam line requirement and beam simulation [8] in cavity 1 

and 4. Meanwhile, for cavity 2 and 3, a = 1.8 cm is used. 

 

Within the constraints of L and a, the gap length g is selected to optimize particle transit 

efficiency. The transit time factor T represents the RF efficiency [7]. The designed T value in 
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SNS elliptical cavity is 0.445 for a =3.0 cm cavity with g = 1.23 cm [8]. Typically, peak electric 

field can be reduced by increasing g, however, T and RF efficiency will be reduced as well.  

 

Subsequently, to realize a new MEBT section design beyond the level of the state of the art, 

the new design should provide similar T and RF efficiency while decreasing its peak electric 

field.  

 

Other cavity parameters need to be evaluated as well and used for efficiency prediction, first 

the cavity shunt impedance sR  is calculated from the gap voltage 0V , which can be obtained 

from the integration of longitudinal on- axis gap field E(z). For convenience, the average 

integration value of ( )E z is expressed as 0E  as (3) [7]:  

 

( ) ( )
2

2 2
0

0 0

( )
( ) ( )

L

s

E z dz T
V T E T L
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P P P

⋅ ⋅
⋅ ⋅ ⋅

= = =
∫

       (3) 

 

where P  is the dissipated power on cavity wall.  

 

The second parameter is /R Q  [7] defined using Equation (4) below from the measurements 

of /R Q - Meanwhile, Measurement of Q as well can be used to calculate sR  as   indicated by 
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where U  is the cavity stored energy, and ω  is the angular RF frequency. 

 

4.3  Complexity of X-Ray Radiation Issue 

Field emission mechanism can facilitate X-radiation mechanism 

 

The X-ray radiation mechanism is rather complex as indicated by [46-47]. A general radiation 

intensity XJ  dependence on the gap RF voltage ( )V t , and the discharge current ( )i t is given by:  

 

)()( tVtiKJ n
X ⋅⋅=

            (1) 

 

where K  is a constant and can be determined experimentally. The constant n commonly has a 

value in the range of 1.8~3.0 [46-47].  Lowering ( )V t can directly decrease XJ  with a quadratic to 

cubic dependence; which is significant.  

 

The generation of ( )i t follows the field emission (FE) [17] mechanism because of the 

presence of high RF fields in the cavities. Assuming ( )i t  generation due to FE mechanism, the 
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emission current can be determined by the cavity RF electric field likewise using Fowler-

Nordheim formula [48] :      

 

2.5 ( )( ) ( )

B

E ti t A E t e
−

≅                         (2) 

 

where A  and B  are constants, and E  is the applied RF electric field. Therefore, to decrease X-

ray radiation, both ( )i t and the electric field E  should be reduced. Accurate results can be 

obtained using (2). 

 

However, in a real system, the field emission mechanism usually starts even faster because 

of the existence of surface micropoints. These micropoints may lead to X–ray radiation 

multiplication, i.e. enhancement. The enhancement of the field emission due to the micro-

emitters (micropoints) on the material surface is more specifically from various surface 

imperfections such as tiny spikes, impurities, austerities, scratches etc. The field on these 

emitters can be higher by 40-100 times than the average field on the surface. However, this 

enhancement (beyond what is predicted by formula (2)) is always unknown, that is why this 

Fowler-Nordheim FE formula is so hard for use in practice. Nevertheless, the surface roughness 

should be controlled and minimized as much as possible to minimize this field enhancement 

mechanism, i.e. a very smooth surface will reduce the effects of micropoints. Figure 59 shows 

the field direction of single gap cavity and FE micropoints concept.  
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(a)                                               (b) 

Figure 59. Electric field at rebuncher cavity gap: (a) field direction, (b) field emission 

mechanism. 

 

4.4 Proposed Double Gap Cavity Design: 

4.4.1 Comparison of Design Parameter 

 

Use TM double gap design to decrease gap voltage and field while supporting similar cavity Q 

factor 

 

      To resolve the X-ray radiation problem, we propose a double gap TM mode cavity design 

called “DTL type” as shown in Figure 60 (b). DTL stands for a cavity with multi-gap those are 

made by the connecting tubes on the beam axis called “drift tube” [7] interleaved with open gaps 

that can support an axial RF field. The drift tube is suspended by a stem that attaches to the 
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larger cylindrical body. Figure 60 shows a comparison of the existing and proposed designs. 

Figure 60 (b) shows a single drift tube cavity design. From the discussion in the previous section, 

we conclude that decreasing the gap voltage and peak electric field can be effective in decreasing 

the radiation intensity. The DTL type design divides a gap voltage that is half of the single gap 

design likewise a voltage divider circuit. Moreover, this design can avoid sharp cavity gap 

geometry and utilize smoother surfaces to improve the RF efficiency. Although slightly more RF 

losses occurs through drift tube, this power loss can be well compensated by slightly decreasing 

the gap size of the DTL cavity or extending the cavity length beyond 13 cm.   

 

 

          (a)                                  (b) 

Figure 60. Electric field in the paraxial direction: (a) single gap elliptical, (b) double gap 

DTL type cavity.  

 

      We analyzed our new design using CST, but for validating our models we used the elliptical 

cavity (2D) simulation data shown in Table 11 (the manufacturer’s Superfish [17] tool results of 

the existing structure at SNS [41]) as a reference. Since Superfish is a 2D tool, the 3D CST tool 
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was used [20] first to validate our 3D model of the single gap design, and results turned out to be 

in good agreement with the 2D case as shown in Table I, which is a good indication of CST 

capabilities.  

 

The proposed DTL type cavity designs parameters are summarized in Table 11 and 

compared to the results of the single gap elliptical cavity. Subsequently, the two proposed DTL 

type (A, B) designs were simulated with CST tool. The DTL type (A) has a similar gap size like 

the elliptical cavity, while the DTL type (B) has a slightly wider gap to further decrease the peak 

field. 

      As noticed in Table 11, the simulated peak electric field (Epk) in DTL type (B) cavity is about 

54 % lower than that of the elliptical cavity-- this is a great advantage for reducing X-ray 

radiation. As a result, the power efficiency of the DTL type cavity is expected to be slightly 

lower compared to that of the elliptical cavity.  

 

      Meanwhile, there is a slight increase in the power loss by surface current in the DTL type 

cavity due to the addition of the drift tube as shown in Figure 61.  This additional power loss is 

responsible for its Q  and sR degradation. Additionally, the peak magnetic field ( pkH ) increases 

by 30 ~ 40 % in the DTL type cavity because of its higher magnetic field intensity around the 

drift tube stem. As a consequence, more surface current is formed and an adequate cooling 

channel need to be used into the drift tube stem. 
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Table 11. Elliptical vs. DTL type - at 28.2 kW peak power. 

 Elliptical (2D) Elliptical (3D) DTL Type (A) DTL Type (B) 

Frequency f0 (MHz) 

Cavity length L (cm) 

Gap size g (cm) 

 

Q (unloaded, Copper) 

R/Q 

Rs (Mohm) 

V0 (kV) 

T 

E0 (MV/m) 

Epk (MV/m) [Kilpatrick] 

Hpk (A/m)  

402.5 

11.48 

1.230 

 

21542 

 

29.44 

0.638 

120.00 

0.445 

2.35 

30.8 [1.58] 

 

6516 

401.9 

11.48 

1.230 

 

21413 

 

29.35 

0.629 

119.08 

0.447 

2.32 

29.9 [1.54] 

 

6565 

400.3 

13.00 

1.224 

1.224 

20773 

 

29.17 

0.592 

116.93 

0.459 

1.94 

16.75 [0.86] 

 

9323 

400.1 

13.00 

1.423 

1.423 

20903 

 

27.83 

0.581 

114.55 

0.452 

1.93 

13.26 [0.68] 

 

8644 
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          (a)                                  (b) 

Figure 61. Surface current distribution: (a) single gap elliptical, (b) double gap DTL type 

cavity.  

 

4.4.2 Finalized Design Parameter 

The detailed mechanical design of the DTL type cavity is shown in Figure 63 with 

Solidworks [37]. To validate the DTL type cavity design and simulation, a scaled-down model 

based on the DTL type design was utilized. The scaled model that can operate at 800 MHz are 

listed in Figure 62. This scaled prototype can be built inexpensively but useful for studying of 

RF properties accurately. Figure 62 shows some important cavity internal dimensions and 

perspective view.      
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Figure 62. Mechanical design of the double gap cavity. 

 

The exploded view representing cavity assembly process is shown in Figure 63. Two cavity 

pieces are connected together with bolts and nuts with washers. Drift tube assembly and tuner 

part are to be connected to the major cavity piece. 

 

 

Figure 63. Mechanical design of the double gap cavity: exploded view. 
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Aluminum material is relatively inexpensive, and has been used in the DTL type cavity 

prototype design. Meanwhile, two RF couplers are attached for RF measurement.  

 

The Q and Rs are typically different in the scaled cavity relative to the full size one. 

However, the R/Q is frequency independent and should be the same for both full and scaled 

cavities. Therefore, Rs can also be found from R/Q and Q measured results of the scaled cavity. 

Figure 64 shows the fabricated 800 MHz ½ - scaled DTL type cavity components and assembly. 

AL 6061 T6 material with 42% of copper conductivity is used to reduce manufacturing cost 

while having good electrical conductivity. A drift tube with a stem is attached to the cavity shell 

as shown in Figure 64, and assembled to another piece. The transmission method of S21 

measurement is utilized for the frequency and Q measurements in this paper with two wire-loop 

antennas for coupling power in and out of the system. The isolation between these two magnetic 

loop couplers is about 60dB in the TM010 mode. The simulated tuning sensitivity of the 400MHz 

DTL type cavity is 95 kHz/cm with a 32 mm diameter circular slug tuner. For the same size 

tuner, the tuning sensitivity of the 400 MHz elliptical cavity is 120 kHz/cm, hence the DTL type 

cavity needs slightly larger tuner diameter of about 36mm to achieve similar sensitivity.  
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Figure 64. Fabricated double gap rebuncher cavity and assembly. 

 

4.5 Validation of Solutions and Experimental Results: 

 

To validate the DTL type cavity simulation, a scaled-down model based on the DTL type 

(B) design was utilized.  The scaled model operates at 800 MHz.  The model dimensions are 

listed in Figure 62. In this scaled prototype, the designed cavity length L is 6.5 cm to meet the 

system dimensional requirements; but it is a 13% longer than the scaled elliptical cavity 

parameter L of 5.74 cm.  
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4.5.1 Simulation vs. Measurement 

Table 12 and Table 13 show the simulated fs and measured fM results of the DTL type cavity 

operating mode frequency and its Q. Conductivity of aluminum is utilized in our simulation. 

Only the TM010 operating mode and its next adjacent modes are listed.    

 

The measured resonance frequencies of the modes are in excellent agreement with the 

simulated ones of all modes of interest with a discrepancy of < 0.05 %. Meanwhile, the 

disagreement rises up to around 6~19 % in the Q measurements due to an extra power loss that 

appears on the cavity seam plane, stem, surface roughness, and coupler ports. The measured 12% 

difference in the TM010 mode Q is quite acceptable compared to other cavity design experiments 

[41-42] which usually demonstrate about 20 % disagreement. 

 

Table 12. Simulation vs. measurement - frequency 

Mode fs [MHz] fM [MHz] fM [Error %] 

TM010 

TM110 

TM110 

800.49 

1427.19 

1439.61 

800.56 

1427.04 

1439.19 

0.01 

0.01 

0.03 
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Table 13. Simulation vs. measurement - Q (unloaded) 

Mode Qs [MHz] QM [MHz] QM [Error %] 

TM010 

TM110 

TM110 

9286 

9474 

10567 

8179 

7667 

9974 

12 

19 

06 

 

Figure 65 describes a configuration of the bead pull measurement system setup. A 3mm 

diameter spherical metal bead on a fishing line is advanced by a motor-driven pully. A computer 

based motor control system is used to vary the speed and direction of the motor movement, while 

S21 is measured with a vector network analyzer (VNA). 

 

 

Figure 65. Bead-pull measurement setup. 

 



 

      The result of the bead-pull phase shift

 

Figure 66. Measured phase shift of S

 

      Two phase shifting cycles are observed because of the double gap. This result is integrated 

along the axis by using (3)-(4) to calculate 

 

      Table 14 summarizes the calculated 

was about 6.1% differences in R/Q

slightly higher than the expected results of 4~5% of Ref. [25

a 12% difference in the Q measurement from Table III, the 

discrepancy. 

 

phase shift measurements is shown in Figure 66. 

 

. Measured phase shift of S21 by bead perturbation. 

Two phase shifting cycles are observed because of the double gap. This result is integrated 

(4) to calculate R/Q.  

summarizes the calculated R/Q and Rs based on the previous measurements. There 

R/Q results between simulation and measurements;

ed results of 4~5% of Ref. [25], however fairly close. Considering 

measurement from Table III, the Rs result shows approximately

103 

 

Two phase shifting cycles are observed because of the double gap. This result is integrated 

previous measurements. There 

een simulation and measurements; which was 

], however fairly close. Considering 

result shows approximately 17.4% 
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Table 14. Simulation vs. measurement - cavity parameters (Parameters assumed at 28.2 

kW peak power). 

 Simulation Measurement Error 

R/Q 

Rs (MOhm) 

27.83 

0.258 

26.12 

0.213 

 6.1 % 

17.4 % 

 

      Measured results reported in the previous section validated the accuracy of our 3D simulation 

of the DTL type cavities at 800 MHz. Therefore, this experiment can be extended to develop 

DTL type cavity at 400 MHz.     

 

4.5.2 Parametric Study 

      Figure 67 shows a comparison of the cavity parameters as a function of the gap size from 

0.80 cm to 2.05 cm (for each DTL type cavity gap). Peak field comparison is also shown in 

Figure 68. Parameters are normalized to the values of the elliptical cavity.   
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Figure 67. Simulated Eo, R/Q, T, Vgap, Rsh, and Q vs. gap size. 
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Figure 68. Simulated on-axis E field vs. gap dimension. 

 

      For greater than 1.2 cm gap, both R/Q and Rs decrease rapidly, although Q increases. 

Meanwhile, the peak EM field rapidly increases for < 1.4 cm gap. Therefore, from Figure 67 and 

Figure 68, an optimum gap size can be selected around 1.2 ~ 1.4 cm. Definitely, the effect of gap 

size needs to be considered to achieve higher efficiency or lower peak field goals as well.  

 

4.6 Thermal Analysis and Estimation of X-Radiation 

4.6.1 Thermal Analysis 

 
      The high surface current around drift tube stem can be a concern of DTL type cavity design. 

The estimated total power dissipation is 1.72 kW in cavity 4 of SNS MEBT system. Here, 

thermal analysis with CST Multiphysics [20] is presented and discussed. The temperature 
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gradient in the cooling channel is not considered in this simulation. Therefore, the simulated 

result of the temperature gradient in cavity wall can be expected slightly less than simulations 

with full physical consideration. For example, the simulated gradient of elliptical cavity with 

Copper plated Steel structure is 7.5 K as shown in Figure 69, which is less than 1.7 K from the 

manufacturer’s simulation data of 9.2 K [49]. 

 

 

Figure 69. Thermal simulation result of elliptical cavity. 

 

      The DTL type cavity inner wall can be made of Copper to provide good electrical and 

thermal conductivity. Ref. [50] suggests utilization of Stainless Steel at the cavity outer wall to 

withstand the vacuum pressure. In our simulation, 15.5 mm of internal Copper cavity wall and 

12.7 mm of outer Steel wall are used for the 400 MHz DTL type cavity. Meanwhile, the drift 

tube and stem assembly should be made using Copper, because of the intense heat dissipation 

around it [51].  
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      Cooling channels are imported at the cavity wall and drift tube assembly as shown in Figure 

70. The channel diameter in tube assembly is assumed to be 6.3 mm that leads to a heat transfer 

coefficient of 6585 W/(m2
·K).    

 

      The simulation results are shown in Figure 70 with cooling water and ambient temperatures 

set to 300 K. The simulated temperature gradient is 4.8 K. Considering similar water temperature 

gradient as seen in Figure 69 simulation, the maximum gradient with full physical consideration 

can be expected as 6.5 K.  

 

 

Figure 70. Thermal simulation result of DTL type cavity. 
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4.6.2 X-radiation Estimation 

Double gap design can decrease the gap voltage, field, and X-radiation 

 

      Although direct X-ray radiation measurement with high power is not possible with aluminum 

test cavity, a relative comparison of radiation intensity in the elliptical and the DTL type cavities 

is possible with Eqs. (1)-(2) assuming the same surface and vacuum conditions. Since the X-ray 

radiation occurs in a pre-breakdown stage in general [45], equation (1) is expected to be slightly 

non-linear. But the K and n values in equation (1) are assumed to be constant in all calculations.  

 

      Two scenarios can exist as shown in Figure 71.  
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Figure 71. Electron emission and hitting scenario: (1) electrons hitting cavity half gap with 

Voltage = Vgap/2, (2) electrons hitting cavity end to end with Voltage = Vgap. 

  

      The ratio of radiation intensity JX in DTL type cavity to that of the elliptical cavity is 

presented in Figure 72 and Figure 73 assuming n = 2 in equation (1). The results shown by the 

black line assumes the same 28.2 kW peak operating power in all cavities. Meanwhile, the ones 

shown by the blue line presume all cavities generate the same 120 kV net gap voltage with 

different power levels. Since the gap voltage is the key parameter of the rebuncher cavity, the 

blue line result represents a practical JX for comparison.    
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      From these calculations, the estimated JX in DTL type cavity can decrease considerably to 

only 24 % of the elliptical cavity value with a 1.2cm gap size (for both). Even lower JX can be 

achieved with a 1.4 ~ 1.6 cm gap size. JX rather increases with a larger gap > 1.6cm because of 

the drastic decrement of RF efficiency. Regarding both RF efficiency and JX, the 1.2 ~ 1.4 cm 

gap size can be considered as the optimum.  

 

 

Figure 72. Estimated normalized radiation intensity as function of gap size - assuming n = 2 

in Eq. (1), Scenario (1) in Figure 71. 
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Figure 73. Estimated normalized radiation intensity as function of gap size - assuming n = 2 

in Eq. (1), Scenario (2) in Figure 72. 

 

4.7 Conclusions 

 
      The proposed double gap rebuncher cavity for SNS MEBT section as an example case has 

been studied with various 3D simulations and measurements. The proposed design gives similar 

cavity power efficiency while decreasing the gap voltage and field. A ½ scaled Aluminum 

demonstration model was built and tested. S-parameter and bead-pull measurement show 

excellent agreement with simulations. Based on the design parameters, thermal simulation and 

X-radiation calculations were performed as well. The simulation shows that this design can be 
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thermally stable with three cooling channels and usage of copper drift tube. The estimated X-

radiation is less than a quarter of previous single-gap design.  

 

      The proposed double gap design has a great potential to relieve safety issues that SNS has 

been suffered for several years and potentially for any future accelerator facilities. Controlled 

access to the accelerator area by X-radiation causes huge waste of time and labor cost. Due to the 

complexity of the accelerator system, it is difficult to accurately measure the savings in time and 

labor costs resulted from using this double gap design. However, there is no doubt that its 

positive impact in time and labor costs is unquestionably significant. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

5.1 Summary of Dissertation 

 
Table 15 summarizes the technical challenges, our proposed solutions, and efforts to address 

these challenges.  

 

There are three major technical challenges in addressing the RFQ problem. These challenges 

made it difficult for scientists to find ways to decrease RFQ design cost and potential fabrication 

errors. The first challenge is that it is not feasible to be directly measure the RFQ on-axis field 

which may be investigated using our perturbation study with extensive 3D EM simulation. The 

simulation accuracy was well verified with the measured results of the unperturbed RFQ first, 

then it was extended to investigating RFQ on-axis field in this credible perturbation study [27]. 

The second technical challenge is that the RFQ bandwidth is too narrow; which has been 

remedied by using alternative cut-back RFQ structures. We also carried out an in-depth analysis 

of such structures. These simulations were found to be in excellent agreement with the 

measurements [52]. The third challenge in addressing the RFQ problem is that RFQ energy 

velocity is too low and this has been resolved by our proposed new coupling cell design that 

brings more simplicity in coupled RFQ designs. The measurement results using a demonstration 

model were in good agreement with the simulation results.   

 



115 
 

In MEBT, the generation of X-ray radiation has been a main technical challenge. Our approach 

to build a double gap cavity structure addressed this X-ray radiation problem and the proposed 

solutions could drastically reduce the level of radiation. All EM simulations have been validated 

with measurements of a prototype Aluminum model [53].     

 

Table 15. Summary of the Proposed Solutions. 

Topic Technical Challenge Proposed Solution Validation Method 

RFQ 

 

 

On-axis field cannot be measured 3D EM perturbation Study Simulation 

Measurement 

Bandwidth is narrow Alternative cut-back RFQ Simulation  

Measurement 

Energy velocity is low New coupling cell design Simulation 

Measurement 

MEBT X – ray radiation is generated Double gap cavity design  Simulation 

Measurement 

 

 

5.2 Outcome and Impact of the Proposed Solutions 

 
The outcome and impact of our proposed solutions are summarized in Table 16. Compared to 

the previous solutions, our proposed solutions have several advantages and represent the main 

research contributions of this dissertation.  
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Table 16. Outcome and Impact of the Proposed Solutions. 

Topic Previous Solution Proposed Solution Outcome and Impact 

RFQ 

 

 

Measured Cavity wall field 3D EM perturbation Study 1. On-axis field can be 
accurately estimated 

2. Tolerance assessment 

3. Accuracy validation 

Stabilizer Circuit is used Alternative cut-back RFQ 1. Decrease RFQ design cost  

2. Design guideline by length 

3. Mode analysis and study 

Coupling cell design New coupling cell design 1. Reduce coupling cell cost 

2. New idea verification 

3. Spurious mode suppression 

MEBT Single gap design  Double gap cavity design  1. Decrease gap voltage 

2. Develop design guidelines 

3. New idea verification 

4. Decrease X-ray radiation 

5. Develop thermal design 

 

5.2.1 RFQ – Perturbation Study 

• The details of the RFQ on-axis field can be estimated by the proposed 3D EM 

perturbation study with great accuracy. 

• The RFQ fabrication tolerance can be determined using a perturbation study, which can 

prevent RFQ fabrication errors. RFQ fabrication mistakes could waste up to 2 million 

dollars of research funding.  

• Simulation of the full sized RFQ models has been validated showing high level of 

accuracy. This observation simplifies the RFQ fabrication process without building an 
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Aluminum demonstration model. As a result, the overall project time and labor 

expenses can be reduced by more than 10%.      

 

5.2.2 RFQ – Alternative RFQ cut-back designs 

• The proposed alternative cut-back RFQ can decrease the high cost of mode stabilizer 

designs in RFQ fabrication. Both design time and tuning costs can be reduced as well.  

• Our work established a design guideline for the RFQ by structure length. An optimum 

RFQ cut-back design can be selected from this design guideline, which is simplified in 

Table 17.  

• The analysis work performed in this dissertation answers why alternative RFQ cut-back 

structures generate unique mode spectrum in detail. Moreover, the spectrum relation 

between non-degenerating DD dipole modes are clarified through our analysis. 

 

Table 17. RFQ Design Options by RFQ Length (O – Good mode separation, X – Poor mode 

separation, i.e. requires mode stabilizer). 

 4C DD FD 

RFQ Rebuncher 

RFQ (L<1λ)  

RFQ (L=2λ) 

RFQ (L=3λ) 

RFQ (L=4λ) 

RFQ (L=5λ) 

X 

X 

O 

X 

O 

X 

O 

O 

X 

O 

X 

O 

O 

O 

O 

X 

O 

X 
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5.2.3 RFQ – Coupling cell designs 

• The proposed coupling cell design reduces the required tuning effort of the coupling 

cell in half. Therefore, the coupling RFQ design is considered more frequently in high 

energy RFQ applications over 5 MeV.  

• The new coupling RFQ design idea has been verified with the measurements derived 

from a real RFQ demonstration model.  

• The coupling gap spurious mode is suppressed in the new coupling cell design. 

Therefore, more flexibility is given when choosing coupling gap size.  

 

5.2.4 MEBT – Double gap designs 

• The proposed double gap design decreases the gap voltage by 50 %, therefore less than 

25 % of X-ray radiation is expected.  

• A design guideline for the proposed double gap design has been developed. Cavity 

parameters are estimated with respect to the gap size.   

• A ½ scaled prototype model has been measured, and the results are in excellent 

agreement with simulation results.  

• A thermal design has also been pursued, and it has been proven that the double gap 

design does not cause any thermal issues.  
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5.3 Implementations and pursue of the proposed solutions 

Table 18 presents the detailed implementation plan for the proposed solutions. The 3D EM 

perturbation study has already been performed in the SNS RFQ analysis and in the spare part 

design. Implementation of a double gap design has been positively considered since it can be a 

direct solution to the current X-radiation issues. Politically, development of the high power 

alternative cut-back RFQ and coupled RFQ design may require further approval until it reaches 

the final stage of implementation. Given the high cost of RFQ fabrication, implementation of the 

new RFQ structures including finalizing all design verifications will take more time.     

 

Table 18. Implementation Plan for the Proposed Solutions. 

Topic Proposed Solution Implementation Plan / Status Decision 

RFQ 

 

 

3D EM perturbation Study Immediately  Designer 

Alternative cut-back RFQ In the future ORNL Laboratory / 
DOE 

New coupling cell design In the future ORNL Laboratory / 
DOE 

MEBT Double gap cavity design Under consideration  ORNL Laboratory 

 

5.4 Future work 

The research presented in this dissertation provides basis for future research in several areas. 

These areas include: successfully implementing and operating the proposed RFQ with high 

power, performing a direct measurement of X-ray radiation from double gap rebuncher cavity, 

and making some design modifications to realize the proposed cavities in high power operation.  
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A1. Measurements of /R Q using perturbation Theory  

Typically, /R Q  is used as the cavity figure of merit that has no dependence on the 

power or the material but only on the geometry. Since both sR  and Q are material related, direct 

measurement of the two is not very precise in general. However, /R Q is a function of the cavity 

geometry only. /R Q can be measured from the frequency or phase variation while the cavity is 

under controlled perturbation. Thus, based on perturbation theory [22], a change in the stored 

energy is comparable to the associated frequency shift if the energy variation is small. Typically, 

in this perturbation method, we use a bead movement through the cavity on-axis and, the 

resonance frequency is measured as a function of the bead position [23].  

 

Equation (1) represents an analytic expression of both frequency and phase when a 

perturbing object with a spherical geometry is used [23]. The magnetic fields at the bead 

location, bH , can be approximated as zero for the TM010 mode if the bead radius r  is very 

small. From the measured phase φ , the frequency difference f∆  with respect to the frequency 0f  

can be calculated using   
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where U  is the stored energy in cavity, LQ  is the loaded Q , 0ε  and 0µ  are the permittivity and 

permeability in the air respectively, and bE  is the electric field at the bead location.  

 

The frequency shift f∆  = 0f  – ( )f z  is measured where 0f  is a resonance frequency of 

unperturbed cavity and ( )f z is the resonance frequency of the cavity when a bead is inside the 

cavity at position z. Researchers usually prefer to measure a phase shift instead of the frequency 

difference [24].   

 

R/Q result can then be obtained from the integration of this / of f∆ along the cavity axis 

using the well-known relation (2) [24].  
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where k is the wavenumber, and z  is the longitudinal coordinate. The V∆  in the denominator 

term stands for the volume of the perturbing object. 
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