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Abstract

We calculate gauge theory one-loop amplitudes with the aid of the complex shift used

in the Britto- Cachazo-Feng-Witten (BCFW) recursion relations of tree amplitudes.

We apply the shift to the integrand and show that the contribution from the limit of

infinite shift vanishes after integrating over the loop momentum, with a judicious

choice of basis for polarization vectors. This enables us to write the one-loop

amplitude in terms of on-shell tree and lower-point one-loop amplitudes. Some of the

tree amplitudes are forward amplitudes. We show that their potential singularities

do not contribute and the BCFW recursion relations can be applied in such a way

as to avoid these singularities altogether. We calculate in detail n-point one-loop

amplitudes for n = 2, 3, 4, and outline the generalization of our method to n > 4.

In addition to scattering amplitudes in flat space, we studied amplitudes in Anti-

de Sitter (AdS) space, which is equivalent to conformal correlators in the boundary

of the Anti-de Sitter space. We discuss the use of the embedding formalism and

Mellin transform in the calculation of tree-level correlators of scalar and vector fields

in AdS/CFT. We present an iterative procedure that builds amplitudes by sewing

together lower-point off-shell diagrams. Both scalar and vector correlators are shown

to be given in terms of Mellin amplitudes. We apply the procedure to the explicit

calculation of three-, four- and five-point correlators.
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Chapter 1

Introduction

Quantum field theory is the framework that describes our present understanding of

high-energy particle physics. Scattering amplitudes are crucial objects in quantum

field theory and they are essential in connecting theories and experiments. Using

scattering amplitudes one can construct cross-sections that will determine the

probabilities for scattering processes to occur at collider experiments. At high-

energies the theory that are most interesting are the Yang-Mills theory and its close

cousin Quantum Chromodynamics (QCD). These theories are necessary frameworks

for describing interactions between elementary particles such as quarks and gluons. To

compute scattering amplitudes in a quantum field theory, we customarily take a local

Lagrangian from which we extract the corresponding Feynman rules for gauge fields,

fermions, and scalars. We can use the same prescription, which is derived from the

Einstein-Hilbert Largrangian, to calculate graviton amplitudes. At tree level, we add

up all the diagrams constructed out of the Feynman rules to obtain the amplitude.

Similarly, to calculate the loop contribution, we add up all the possible diagrams

and finally integrate over the internal momenta. With the loop amplitudes, we may

find that the integrals are divergent, which can be handled by the method known as

regularization. Moreover, ultraviolet divergences that occur at high-energies lead to

renormalization. While the steps outlined above are elaborate, the prescription for
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calculating observables in quantum field theory is very well understood and extremely

fruitful in our study of fundamental interactions.

But over the years, physicists have discovered that amplitudes in gauge theories

and gravity have remarkable features and striking simplicity that cannot be found by

merely looking at the symmetries of the Lagrangian or the corresponding Feynman

rules. This is specially true for scattering amplitudes involving quarks, gluons, and

gravitons. Parke and Taylor had the first glimpse of this simplicity and conjectured

a general form for tree-level scattering amplitudes of gluons [1]. In a similar spirit,

Dewitt calculated gravitational amplitudes, which also had striking simplicity [2].

While it is indisputable that the Feynman diagrammatic approach has traditionally

been the most useful method, it is fair to ask why such an immensely cumbersome

process produces such simple results. The following table illustrates the complexity

of this method.

Table 1.1: Feynman diagrams needed to compute tree-level n-gluon scattering.

n− point 4 5 6 7 8 9 10
Feynman diagrams 4 25 220 2, 485 34, 300 559, 405 10, 525, 900

It is clear from this table that the Feynman prescription is too convoluted to

calculate amplitudes of any but the few simple cases. As external particles increase,

the number of Feynman diagrams contributing to gluon amplitude grows faster than

the factorial rate. Even more surprisingly, in many cases the answers obtained

after such cumbersome calculations tend to be strikingly simple, and can even be

written in a closed form. Such simplicity suggests that Feynman diagrams hide

interesting structures. One of the earliest calculations to exploit this powerful

structure was provided by the Berends-Giele recursion relation [3]. In addition, it

became evident through the unitarity-based method that scattering amplitudes at

loop level have interesting factorization properties [48]. In 2003, Witten made an

important conceptual development in the study of scattering amplitudes. He observed
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that the structure of scattering amplitudes of massless gauge theories are very simple

in twistor space. For instance, a tree-level n-point amplitude with q−negative helicity

gluons is zero unless it lies on a curve of degree = q − 1. Witten constructed twistor

string theory, where the calculation of amplitudes involved curves in twistor space,

which manifested these geometric properties [9].

It is instructive to reflect on why the the Feynman diagrammatic method is so

inefficient. Each of the Feynman diagrams are dependent on the choice of the gauge.

The scattering amplitude, on the other hand, which is the physical observable of the

theory, is gauge invariant. It is interesting to wonder whether there could be an on-

shell method which avoids this unphysical degree of freedom. Moreover, besides the

inherent gauge variance of individual Feynman diagrams, scattering amplitudes have

hidden symmetries such as color kinematic duality, dual conformal symmetry, and

Yangian symmetry, just to name a few (see for instance [5, 6]). These symmetries

are not evident from merely studying the Lagrangian of the theory. Such interesting

symmetries form part of the motivation to study scattering amplitudes and their

striking properties.

One of the successful methods in this direction has been the use of an on-

shell method known as the Britto-Cachazo-Feng-Witten (BCFW) recursion relation.

This method provides an on-shell recursion relation for calculating the scattering

amplitudes of gauge theory and gravity. The BCFW method complexifies the

momenta, which allows the study of the analytic structure of the function. Finally,

we can reconstruct the physical amplitudes through the analysis of the singularities

that appear after we complexify the momentum. Recently this procedure divulged

a recursive structure not only for Yang-Mills tree-level amplitudes but also for tree-

level amplitudes in general relativity. There has been much progress in theories with

supersymmetry. For instance, scattering amplitudes in the gauge theory with the

largest possible supersymmetry—known as N = 4 super Yang-Mills theory— admit

a dual description as a supersymmetric Wilson loop (see [7, 8]). As a consequence,

supersymmetric amplitudes manifest other symmetries mentioned earlier, namely
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dual (super) conformal and Yangian symmetries. Such symmetries of the theory again

are not manifest in the standard Feynman diagrammatic method. With detailed

studies of the properties of N = 4 super Yang-Mills theory, we now know that

it is characterized by loop amplitudes which have BCFW-like recursive structure.

It has also been found that recursive structures of the theory are connected to a

structure in algebraic geometry known as the positive Grassmannian. We now know

that the BCFW-construction of the theory provides an on-shell representation of

supersymmetric theory [10, 11, 12, 13, 14, 15, 16, 17]. Part of the goal of the present

work is to go beyond the supersymmetric case and generalize the recursive structure

to pure Yang-Mills theory.

We might be tempted to think that a sufficiently powerful computer would

make these calculations trivial. While it would be unwise to understate the role

of computers in physics, in calculating amplitudes we often encounter poles that

cancel between diagrams, and numerical errors are common. With computers it

is extremely difficult to obtain the simple, compact answers given by the modern

methods. Besides their theoretical value, the most obvious use for these amplitudes is

to develop efficient and accurate ways of understanding the standard model processes

that occur in high-energy accelerators such as the Large Hadron Collider (LHC). For

instance, background to new physics such as supersymmetry is very large because of

strong dependence on renormalization and factorization scales. It is therefore useful

to understand leading order and next-to leading order QCD backgrounds to expose

any hidden physics, such as supersymmetry, that could emerge in high-energy particle

colliders.

Concurrently, we investigate whether the success of scattering amplitudes in flat

space can be extended to the study observables in a theory of quantum gravity. The

so-called Anti-de Sitter /Conformal Field Theory (AdS/CFT) is a concrete example

of the holographic principle of quantum gravity [35, 36]. It defines quantum gravity

for certain classes of geometries characterized by asymptotic conditions, such as

asymptotically flat or Anti-de Sitter spacetimes. The correspondence concerns type
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IIB string theory in an asymptotically AdS5 × S5 spacetime, often referred to as

the bulk, with N = 4 super Yang-Mills theory. More explicitly, the theory includes

gravity and is non-perturbatively defined by a dual conformal field theory without

gravity, namely 3+1 dimensional supersymmetric Yang-Mills theory with gauge group

SU(N). The S-matrix happens to make sense in the asymptotic geometries, and we

can compute its matrix elements, which are the conformal correlators at the boundary.

After significant interest and progress in scattering amplitudes, it is natural to wonder

BCFW recursion could be used study AdS amplitudes. In AdS we need to integrate

over the different points where this interaction can occur. While some progress has

been made in writing down higher-point AdS amplitudes in terms of lower-point

AdS amplitudes, it is important to find efficient ways of computing these amplitudes.

The correlators calculated using the BCFW-like recursion relation are not useful in

exploiting powerful conformal symmetry. The goal of the present work is to explore

the proper basis of calculating these AdS scattering amplitudes.

The outline for the thesis is as follows. In chapter 2, we briefly review non-Abelian

gauge theory and perturbation theory. We also review the BCFW recursion relation

at tree-level. Furthermore, we will give a heuristic derivation of Anti-de Sitter space

and Conformal Field using the stacked D3 brane which is a source for gravitational

backreaction.

In chapter 3 we present a computational step taken to generalize the BCFW

recursion relation to one loop amplitudes. We demonstrate that after integrating

over the loop momenta, the contribution of the pole vanishes at large complex shift.

This requires choosing an appropriate basis for the polarization vectors. Finally, we

are able to express one-loop amplitudes in terms of tree amplitudes and lower-point

one-loop amplitudes. In general, the tree amplitudes obtained from the loop include

forward amplitudes that are plagued by divergences. We show that these potential

divergences do not contribute, and discuss how the BCFW recursion relations can be

applied so as to avoid the divergences, reducing the one-loop amplitudes to three-point

tree amplitudes.

5



In chapter 4, we discuss how we have used a new tool to study scattering

amplitudes in AdS space. While we have made dramatic progress in S-Matrix theory

in a flat space by using hidden symmetries, recursion relations, and well-chosen bases,

we need a new formalism with which to study amplitudes in AdS. This new formalism

is of interest for formal reasons, for what it teaches us about both quantum gravity in

asymptotically Anti-de Sitter spaces and about conformal field theories with gravity

duals. We argue that the Mellin representation is a natural framework for gauge and

scalar theory AdS amplitudes, or equivalently, correlation functions in conformal field

theory; and that the Mellin represntation is structurally similar to the momentum

representation used to calculate flat-space S-matrix elements.
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Chapter 2

Preliminaries

In a textbook example of quantum field theory, we write a Lagrangian and using

Feynman path integral, and we consequently quantize the theory. Moreover,

by perturbatively expanding the path integral we obtain Feynman rules and the

corresponding Feynman diagrams. The classical Yang-Mills Lagrangian is given by

the following [21],

L = Ψ̄(i/∂ −m)Ψ− 1

4
(∂µA

a
ν − ∂νAaµ)2 + gAaµΨ̄γµtaΨ

−gfabc(∂µAaν)AµbAνc −
1

4
g2(f eabAaµA

b
ν)(f

ecdAµcAνd) (2.1)

where A is the gauge field, ψ is a fermion field, and g is the coupling constant.

Similarly, terms such as fabc are the structure constants and ta are the generators. In

this convention Greek letters are spacetime indices and Roman letters identify gauge

indices. We can derive the Feynman rules using perturbation theory. While the

actual derivation is technical (but straightforward), we can see how these interactions

are sensible by simply looking at the Lagrangian. The first term in equation 2.1

corresponds to the fermion propagator, and the second term corresponds to the boson

propagator. The term containing two fermion fields, Ψ and a gauge field A will

correspond to a vertex where a gluon interacts with a fermion. Similarly, the fourth

7



and fifth term in the second line of the Lagrangian respectively correspond to three

and four gluon vertices. The explicit rules are given in table 2.1.

Table 2.1: Feynman Rules for Yang Mills Theory in Feynman Gauge

Description Diagram Rules

Three Gluon Vertex

p1, µ, a p2, ν, b

p3, ρ, c

= −gfabc(gµν(p1 − p2)ρ +

gνρ(p2 − p3)µ +

gρµ(p3 − p1)ν)

Quark Gluon Vertex

µ, a

= −igγµta

Gluon Propagator
a b

=
igµνδab
p2 + iε

Fermion Propagator i j =
i(/p+m)δj̄i
p2 −m2 + iε

Four gluon vertex

a, µ b, ν

d, σ c, σ

= 2ig2
(
fabef ecdgµ[ρgσ]ν +

fdaef ebcgµ[νgσ]ρ +

f caef ebdgµ[νgρ]σ
)

8



2.1 Color Decomposition

In Yang Mills, fields of theory contain more than spacetime indices, but also indices

relating their transformation under the gauge group. The gauge group of our interest

is SU(3), but let us work more generally with SU(N). The color algebra for the group

is generated by N × N traceless hermitian matrices ta, where a is the adjoint color

index that runs from 1 to N2 − 1. Similarly, the quarks and the anti-quarks carry

N and N indices, where i and j̄ run from 1 · · ·N . The generators are normalized by

Tr(tatb) = δab. Similarly, the structure constants fabc are defined by,

[ta, tb] = i
√

2fabctc , (2.2)

where fabc are the structure constant, and they satisfy the Jacobi identity:

fadef bcd + f bdef cad + f cdefabd = 0. (2.3)

One can use the normalization of the generators of SU(3) in the following way:

Tr
(
tatb
)

=
1

2
δab. (2.4)

Here, we will consider tree-level Feynman diagrams, pick a vertex, and replace the

color structure function using,

fabc = − i√
2
Tr
(
tatbtc − tctbta

)
. (2.5)

Now we can see how there are many strings of generators ta which are traced in

our expression for amplitudes, which are in the form Tr(· · · ta · · · )Tr(· · · ta · · · ).

In addition, there are possibilities of external quarks, which means strings of ta’s

terminate by fundamental indices and hence can be written as (ta1 · · · tan)ī1i2 .The traces
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in the fabc at the vertices can be merged by the Fierz identity:

∑
a

(ta)ji (t
a)lk = δliδ

j
k −

1

Nc

δji δ
l
k . (2.6)

This will ensure that for gluon scattering amplitudes at tree level, all color factors

combine to form a single-trace factor for each term, where 1
N
cancel among themselves.

Hence,

Atree
n =

∑
σ∈(Sn)/(Zn)

Tr (taσ(1) · · · taσ(n))A(tree)(pσ(1), εσ(1) . . . pσ(n), εσ(n)), (2.7)

where Sn is the permutation group of n elements, and the sum runs over all

permutations modulo cyclic permutations. We can also sum over all permutations and

divide the result by n. The color-stripped amplitudes Atree are cyclically symmetric.

Also, these amplitudes are still gauge invariant. Furthermore, these amplitudes have

the following property upon reflection:

A(1, 2, . . . , n) = (−1)nA(n, . . . , 2, 1). (2.8)

Here, we have denoted A(ε1, p2; · · · ; εn, pn) = A(1, 2 · · · , n). The color ordered

amplitudes obey dual Ward identity:

A(1, 2, . . . , n) + A(2, 1, 3, . . . , n) + A(2, 3, 1, . . . , n) +

A(2, 3, . . . , 1, n) = 0 . (2.9)

In chapter 3, we study color-ordered partial amplitudes for one loop. By using the

completeness relation for the generators ta and color-decomposition properties, we

can decompose the one-loop amplitudes over a color basis of the maximum of two

traces. The general form can be written as follows:
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A1-loop
n =

∑
σ∈Sn/Zn

N Tr (taσ(1) · · · taσ(n))A1-loop
n;1 (σ(1), . . . , σ(n))

+

bn
2
c+1∑
c=2

∑
σ∈Sn/Sn;c

Tr (taσ(1) · · · taσ(c−1))

Tr (taσ(c) · · · taσ(n))A1-loop
n;c (σ(1), . . . , σ(n)) (2.10)

The leading contribution for N →∞ is the single trace contribution.

2.1.1 Warmup Example I: Tree level amplitudes involving

gluons

In this example, we will see how color ordering works for four-point tree-level

amplitudes. Often in our calculations we will encounter the product of structure

constants such as fa1,a2,bfa3,a4,b. As mentioned before, we are interested in writing

them as a string of generators. Using equation 2.5, we write down,

fa1,a2,bfa3,a4,b = − i√
2
Tr
[
ta1ta2tb − ta1tbta2

]
fa3,a4,b

= −1

2
Tr[ta1ta2ta3ta4 − ta1ta2ta4ta3 − ta1ta3ta4ta2 + ta1ta4ta3ta2 ] .

(2.11)

When we compute the four point amplitude, we realize that this amplitude contributes

to four different color structures and four different color-ordered partial amplitudes.

For simplicity, we will choose an amplitude with two negative polarization and two

positive polarization. These amplitude are known as Maximal Helicity Violating

(MHV) amplitudes. It is also interesting to note that amplitudes with one negative

(positive) helicity and remaining positive (negative) helicities and amplitudes with

all positive and all negative helicities are identically zero. Moreover, after this

decomposition, each color stripped amplitude is still gauge invariant. Once we have
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Figure 2.1: Feynman Diagrams in the four-point all gluon tree amplitudes

a representative amplitude we can construct the full amplitude by merely permuting

the amplitude by permuting the generators. This is the first important simplification

that we make to study scattering amplitudes. Many times, the calculation becomes

quite simple if we choose a method known as spinor helicity (see A.1 for details). For

simplicity we will chose the reference momenta to be q1 = q2 = k4 and q3 = q4 = k1.

This will lead to significant degree of simplification. For the four-point scattering

amplitudes, we can immediately write the full amplitude:

A4(ε1, k1; · · · ; ε4, k4) = g2 [ta1ta2ta3ta4 − ta1ta2ta4ta3 − ta1ta3ta4ta2 + ta1ta4ta3ta2 ]

A4(ε1, k1; · · · ; ε4, k4) (2.12)

Using Feynman rules from table (2.1), we calculate the four point amplitude with two

negative helicities and two positive helicities:

A4(ε−1 , k1; ε−2 , k2; ε+3 , k3; ε+4 , k4) =
i

2

[
ε−1 · ε−2 (k1 − k2)µ + (ε−2 )µε−1 · (2k2 + k1) +

(ε−1 )µε−2 · (−2k1 − k2)
] gµν

(k1 + k2)2

[
ε+3 · ε+4 (k3 − k4)ν

+(ε+4 )µε
+
3 · (2k4 + k3) + (ε+3 )νε

+
4 · (−2k3 − k4)

]
=

i

2〈1 2〉[2 1]

[
− 4ε−2 · ε+3 k2 · ε−1 k3 · ε+4

]
=

〈1 2〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉
(2.13)

We have used simple spinor helicity identities to simplify the expressions in the last

line (see A.1). Amplitudes with two negative (positive) polarization and other positive

12
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Figure 2.2: Feynman diagrams needed to compute four point quark-gluon
interaction

(negative) polarization are known as Maximal Helicity Violating (MHV) amplitudes.

One of the mysterious properties of the amplitudes is that using the right basis and the

appropriate technique helps one to express scattering amplitudes in terms of simple

expressions like the one above. The use of proper technique and the correct basis is a

very important part of calculating scattering process in both flat space and Anti-de

Sitter space, and it will be a recurrent theme of in our work.

2.1.2 Warmup Example II: Tree level amplitudes involving

quarks and gluons

In this section we look at the process that involves quark-gluon interactions. Such

a process is useful in the study of, for instance, J/ψ production in colliders. We start

by looking at the four-point calculation, where the expression for the amplitude can

be written using 2.1

A4 = ig2εµε
∗
ν ū(p1)γµ

−/k1 − /p1
+m

−2p1 · k1

γνtatbv(−p2) (2.14)
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The analysis here is similar to one carried out in [20]. We can write down the

amplitude for gg 7→ qq

ig2A(1−q̄ , 2
+
q , 3

+, 4−) =

(
ig√

2

)2
1

i
[2| /ε3

(
−/
p

5

p2
5

)
/ε4|1〉+

(
ig√

2

)
[2|/ε5|1〉i(

ε+3 · ε−4 ε+5 · k3 + ε−4 · ε5ε3 · k4 + ε5 · ε+3 ε−4
) ∣∣∣

εν5ε
µ
5 7→

igµν

s12

.(2.15)

There are special ways to choose the polarization vectors [24, 20]

/ε+(k; q) =

√
2

〈qk〉
(|k]〈q|+ |q〉[k|) , /ε+(k; q) =

√
2

[qk]
(|k〉[q|+ |q]〈k|) (2.16)

By using the reference vectors q3 = k4 and q4 = k3 we can completely get rid of the

last term. Hence we write the partial amplitude as

ig2A(1−q̄ , 2
+
q , 3, 4) =

1
2
[2|/ε3+(/p1

+ /k4)/ε4− |1〉
−s14

(2.17)

We can use the identity /p = −|p〉[p| − |p]〈p| This equation becomes:

A(1−q̄ , 2
+
q , 3, 4) =

[23]〈41〉[13]〈41〉
〈43〉[34]s14

. (2.18)

After massaging this expression a bit, we write down:

A(1−q̄ , 2
+
q , 3, 4) =

〈21〉〈13〉3

〈12〉〈23〉〈34〉〈41〉
. (2.19)

Hence, by choosing the right basis one can simplify amplitudes involving quarks and

gluons to a compact and a simple form.

2.2 BCFW Recursion Relation

In this section, we review the so-called Britto-Cachazo-Feng-Witten (BCFW) recur-

sion relation. It is also worth noting that even though the BCFW recursion relation
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in the present work has been applied to gauge theories it is not specific to a particular

theory and can be applied to a wide class of theories with some modification. The

construction is based on shifting two arbitrary external momenta using complex on-

shell momenta. Consider a color-ordered amplitude A as a function of momentum,

i.e. A = A(ε1, k1; ε3, k3; · · · , εn, kn). In the BCFW prescription, we linearly shift two

external momenta in a complex variable z. Hence, we pick two momenta,

k1 7→ k1(z) = k1 + z q , k2(z) = k2 − z q . (2.20)

We also require the on-shell condition, i.e., k1(z)2 = 0 and k2(z)2 = 0, which means

that the particles are still massless. This can be easily satisfied using conditions such

as q·k1,2 = 0. We may choose q = ε1,2 where ε1,2 are the polarization vectors associated

with shifted momenta, k1 and k2. This setup transforms the scattering amplitude into

the analytic function of z, so that A 7→ A(z). At tree level, A(z) has an extremely

simple analytic structure.∗ All the singularities come from the propagator of the

following form:

1

P (z)2
=

1

P (0)2 − 2 z q · P
(2.21)

It turns out that all the singularities are located at zp = P (0)2

2q·P . All singularities are

simple poles. The remarkable thing is that for certain amplitudes in some theories,

A(z) vanishes for large z. Since meromorphic functions that vanish at infinity are

completely characterized by their poles,

1

2πi

∮
dz

z
A(z) = A(0) + Infinities . (2.22)

∗While the idea behind using BCFW recursion relation is to avoid usage of Feynman diagrams,
readers who know about Feynman diagrams are probably aware that singularities in Feynman
diagrams come from its propagator, which, at tree level, leads to simple poles.
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Now, if A(z) vanishes in the limit z 7→ ∞, then the sum of all residues is zero and

the expression gives us the BCFW recursion relation:

A(0) =
∑
zp

Resz=zp
A(z)

z
=
∑ AL(zp)AR(zp)

P (0)2
(2.23)

where A(0) is the original, unshifted amplitude, and AL and AR are the factorized

left and the right amplitudes.

In chapter 3 we investigate the applicability of the complex shifts in the recursion

relation in order to calculate loop level amplitudes.

2.2.1 Physical Interpretation of the BCFW relation

In this section we discuss the physical interpretation of BCFW. The discussion here

will be at a heuristic level, and for more details we ask the reader to look at [39].

One might naively imagine that any individual Feynman diagrams at the level of tree

diagrams in gauge and gravity amplitudes grow with energy because their associated

interactions are coupled with derivatives. Hence in this naive analysis, it is surprising

that summing these diagrams can yield an on-shell amplitude that actually vanishes

at large momenta. However z 7→ ∞ is crucial for the validity of the BCFW recursion.

In [39], the authors provide a physical description of this remarkable vanishing

behavior by considering gauge and gravity amplitudes at large complex momenta.

They illustrate that the external legs which have been complex-deformed can be

interpreted as a hard particle propagating through a background of the gas of soft

particles corresponding to the remaining external legs. Thus, in the case of gauge

theory, one can compute the large z structure of amplitudes using the background field

method†. At this stage we would like to briefly digress and emphasize the difference

between the old S-matrix program and its modern renaissance, which is propelled
†The background field method is a useful gauge invariant procedure to calculate the effective

action where gauge potential is split into a background potential and a high momentum potential.
One expands the potential around a "background" value and the Green’s functions are evaluated as
a function of the background. For the original paper, please refer to [58]
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by BCFW and similar discoveries. While the spirit of the old S-matrix program was

similar (i.e determining amplitudes directly from their singularities), the scattering

was mostly restricted to 2 7→ 2 scattering‡. In contrast to the BCFW, where the two

external momenta are complexified, in the old S-matrix program, one complexified

the Mandelstam variables. Hence, it was not clear how one could understand higher-

point amplitudes. The BCFW recursion relations beautifully realizes the old S-matrix

dream of computing scattering amplitudes using an on shell quantity without referring

to the off-shell Lagrangian. As stated earlier, BCFW ideas do not rely on twistors

or the spinor-helicity formalism. It is in fact a general property of quantum field

theory in any number of dimensions. One of the interesting ideas about the BCFW

recursion relation is that one would naively imagine that a simple theory leads to

simpler perturbation. The increasing use and study of the BCFW recursion relation

shows that while such a recursion relation can completely determine S-matrix for

gauge theories, it is not easy to extend it to scalar theories. In fact the gravitational

amplitudes exhibit the best UV behavior at infinite complex momentum.

2.3 AdS/CFT Correspondence

In this section, we will discuss the so-called AdS/CFT correspondence, which is also

often referred to as the gauge gravity duality. The salient idea of the correspondence

is that a UV complete theory of quantum gravity, i.e. string or M-theory in d + 1

dimensions, is exactly equivalent to gauge theory in d dimensions [26]. First we

will think about the idea heuristically, and more details can be found in [28]. An

interesting question one can ask is whether it is possible to construct a massless spin-

2 particle, i.e. a graviton, as a bound state of massless spin-1 gauge bosons. The

naive answer to the question is that it would be impossible to make a graviton as a

compositie particle of spin-1, which was demonstrated in the famous and beautiful
‡S-matrix theory had failed to explain pion to pion scattering. In the BCFW, we are mostly

concerned with massless particles.
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result of Weinberg and Witten [37]. However, we know that this no-go theorem has

flaws. It turns out that the assumptions imposed in the Weinberg-Witten theorem

violates one of the most crucial properties of any consistent theory of quantum gravity,

the holographic principle. The hint for the holographic principle originates from the

classic result of black hole thermodynamics [33, 34]. We know that the entropy of a

black hole known as the Hawking-Bekenstein entropy is proportional to its area in

Planck units, and this is the largest possible entropy for a system with given surface

area.

SBH =
A

4G
. (2.24)

This is radical idea is in sharp distinction with generic non-gravitational systems, e.g.

a bathtub full of water. The hidden assumption in the Weinberg-Witten theorem is

that the gauge boson constituents live in the same spacetime as the graviton. Now

we know that the graviton should actually live in one more spacetime dimension than

where the gauge boson lives. This idea is a crucial insight for understanding the

correspondence between gauge theory and the theory of gravity. The most studied

and well-known example of this equivalence is the duality between conformal field

theory and gravity on Anti-de Sitter space. In this thesis, we will study observables

in the AdS/CFT duality. In the following, we will briefly outline the duality which

will follow the usual treatment to introduce the subject. However, the outline here

is not meant to be self contained. The reader interested in learning the AdS/CFT

duality is referred to a beautiful review [28] full of conceptual details and physical

insights. Other excellent reviews include [29, 32].

The original conjecture of the AdS/CFT correspondence can be summarized in

the following:

Type II B string theory in AdS5 × S5 ↔ N = 4, D = 4 super YM theory .

Since this is the most studied example, we will briefly outline the derivation. As

in figure 2.3, we will consider a stack of N coincident parallel D3-branes in flat
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Figure 2.3: Stacked N D3 branes in flat Minkowski space and the string coupling
gs is weak

Minkowski space. At weak string coupling with fixed N such that λ = gsN << 1, the

gravitational backreaction of the D3 brane is small. In this background, the theory

contains two types of excitation: open strings, which are the excitation of D3 branes,

and closed strings, the excitation of ten-dimensional bulk spacetime. If we then take

the string length to be small, there is a decoupling between the remaining massless

open string modes on the stack of branes and the remaining massless closed string

modes in the bulk.

2.3.1 The Near Horizon Limit

The massless modes on the brane are described by d = 4, N = 4 super Yang-Mills

theory. The D3 branes act as the source of the bulk fields. When λ = gsN >> 1, the

string theory is described by the black 3-brane in the supergravity background:

ds2 =
1√
h(r)

ηµνdx
µdxν +

√
h(r)dxadxb (2.25)

where,

µ, ν = 0, 1, · · · 3 a, b = 4, · · · 9 and, h(r) = 1 +
R4

r4
= 1 +

4πgNα′2

r4
. (2.26)
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R3,1

AdS5 × S5

Figure 2.4: Near horizon geometry of AdS representing the throat area where r <<
R and 10-dimensional flat Minkowski r >> R

Here, xaxa = r2. If we take the limit where α′ 7→ 0 fixing λ, we obtain the following

metric:

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dxadxb +R2dΩ2

5 , (2.27)

which decouples from the asymptotically flat region. The first two terms are the Anti-

de Sitter space and AdS5 metric, and the last term is the metric for the five-sphere,

S5. Despite R 7→ 0 and α′ 7→ 0, the string sigma model in the near-horizon region

retains a finite coupling set by the ratio R
α′

= λ
1
4 . Finally, we are left with type IIB

closed string theory in the AdS background, which is described by equation 2.27. The

stunning observation of AdS/CFT is that for two decoupled theories, i.e N = 4 super

Yang-Mills theory and the type IIB super string theory on AdS5× S5, are equivalent

for all values of couplings. The two couplings of the theories are related by:

gs =
g2
YM

4π
. (2.28)

When the field theory is weakly coupled, the dual string theory geometry

is strongly curved, which makes computations hard. On the other hand, when

the string-theory geometry is weakly curved, and a supergravity approximation is

justified, the dual gauge theory is strongly coupled. While we have presented a
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specific case, it is important to emphasize that it is only one of many dualities

between gravitational theories and gauge theories. The equality also means that

the symmetries and the spectrum of the two sides of the theory are equivalent. In

this thesis, we study the equality between correlation functions. So what are the

reasons for the duality? The evidence of the duality are discussed in review such as

[28].

• The correlation functions are the same in both sides.

• The symmetries on the gravity side and the gauge theory match.

• The predictions of the duality for strongly coupled gauge theories can be

compared with numerical calculations as well as analytical calculations

• The predictions have helped us study many aspects of strongly coupled systems

such as condensed matter systems and heavy ions (see [30, 31] references

therein).

2.4 AdS Scattering Amplitudes

The AdS/CFT correspondence maps the bulk field and the gauge theory operators.

The quantitative form of this matching can be written in the following way:

〈
ed

4xφ0(x)O(x)
〉

= Z[φi(x, u)|u=0 = u4−∆φi(x)] . (2.29)

The left-hand side in the above equation corresponds to the expectation value taken

in the gauge theory, where φi(x) is the source for an operator O. This expectation can

be computed by expanding the exponential and evaluating the off-shell correlation

functions in the gauge theory. The right-hand side corresponds to string theory in

AdS5 × S5, which calculates the S-matrix elements for the AdS amplitudes.
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2.4.1 Scalar Fields in Anti-de Sitter space

Here we will give a terse discussion on scalar fields on Anti-de Sitter space in the

Poincare patch . For detail, we will refer readers to [19]. The wave equation is given

by
z2

R2

[
∂z

2 − d

z
∂z − ∂t2 + ∂ · ∂

]
φ = m2φ . (2.30)

One can take the Fourier transform of the scalar field,

φ(z, x) =

∫
dp+1q

(2π)p+1
φ(z, q)eq·x . (2.31)

Then we obtain: [
∂z

2 − d

z
∂z − q2 +

m2L2

z2

]
φ(z, q) = 0 . (2.32)

This gives us a solution in terms of the Bessel function:

φ(z, q) ∼ zd+1Zν(
√
q2z) , where, ν =

1

2

√
(d+ 1)2 + 4m2L2, (2.33)

where Zν represents the two linearly independent solutions of the Bessel function.

The solution scales as

φ± ∼ z∆
± ,∆± =

1

2
(d+ 1)± ν . (2.34)

2.4.2 Propagators in Anti De Sitter space

Now in AdSp+2 we can write down the propagator for for two bulk-to-bulk points

(�−m2)G(z, x, x′) = z5δ(z − z′)δ4(x− x′) (2.35)

where we have used the Poincare coordinates. The explicit expression can be written

as

G∆(z, x; z′, x′) =
Γ(∆)

2∆+1π2Γ(∆− 1)
η−∆F

(
∆

2
,
∆ + 1

2
; ∆− 1;

1

η2

)
, (2.36)
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where

η2 =
z2 + z′2 + (x− x′)2

2zz′
. (2.37)

As one of the two bulk points move to the boundary, the bulk-to-bulk propagator

approaches the bulk to boundary propagator.

lim
z 7→0

η2 =
z∆

2∆− 4
K∆(x; z′, x′) (2.38)

In chapter 4, we will develop a formalism to succinctly write down both the bulk

to bulk propgator and bulk to boundary propagator in an embedding formalism for

propagation of scalar as well as spin particles.
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Chapter 3

Loop Amplitudes in Flat Space for

Yang Mills Theory

3.1 Introduction

As we have discussed, there are several reasons to improve on our understanding of

scattering amplitudes in gauge theories, ranging from the development of an efficient

and accurate calculation of standard model processes that occur in high energy

accelerators such as the Large Hadron Collider (LHC), to formal developments, such

as understanding the properties of quantum field theory and quantum gravity.

In the last few years, there has been extraordinary progress in the study of

scattering amplitudes. We learned that the scattering amplitudes of gravity and gauge

theories have more structure and symmetries than are manifest in the Lagrangian.

One of the first extraordinary properties of scattering amplitudes was discovered in

the mid-eighties by Parke and Taylor who found an extremely simple and compact

expression for Maximally-Helicity-Violating (MHV) amplitudes [1]. The modern

renaissance in the study of scattering amplitudes was led by an important conceptual

development due to Witten [9] who observed that the structure of gauge theory
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scattering amplitudes is very simple in twistor space. For recent reviews of scattering

amplitudes, see, e.g., [22, 23].

Witten’s seminal work inspired an important contribution by Cachazo, Svrcek,

and Witten [25] and its extension, the Britto-Cachazo-Feng-Witten (BCFW) recur-

sion relations (for tree-level discussion see the discussion in 2.2). In the BCFW

prescription, a pair of the external momenta in a tree amplitude are analytically

continued into the complex plane, turning the amplitude into a meromorphic function.

Thus, these amplitudes are shown to be determined by the residues of their poles.

The BCFW technique exploits this property in order to recursively construct physical

amplitudes from irreducible three-point amplitudes. However, in order to effectively

use recursion relation, the residue of the pole at infinity must vanish. This is the case

in gauge theories and gravity, but not in generic field theories [39]. In the last few

years much progress has been realized in our understanding of scattering amplitudes

based on the BCFW recursion relation. For example, the BCFW recursion relations

have been applied to amplitudes involving gravitons [40, 41, 42, 43], string theory

[44, 45, 46], and anti-de Sitter (AdS) space [68].

The extension of the BCFW recursion relations to loop amplitudes is not

straightforward. Loop amplitudes receive, in general, a non-vanishing contribution

from the pole at infinity. They also possess cuts, in addition to poles, which makes

the application of Cauchy’s theorem more cumbersome. In the mid-nineties, powerful

on-shell unitarity methods were developed for the calculation of scattering amplitudes

[48, 49] (for a review, see [50]). A generalization of the BCFW recursion relations

and the unitarity method to loop amplitudes was then considered [51, 52, 53, 54].

An alternative approach, in which one applies the BCFW recursion relations to the

integrand of the loop amplitude, was recently discussed [55]. In the case of N = 4

super Yang-Mills gauge theory, all loop amplitudes were thus obtained in the planar

limit [57].

In this work, we re-visit the application of BCFW recursion relations to the

integrand of gauge-theory loop amplitudes. We concentrate on one-loop amplitudes,
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although our results can be generalized to higher loop order. We show that the

contribution of the pole at infinite complex shift can be made to vanish, after

integrating over the loop momentum, by a judicious choice of basis for the polarization

vectors. This enables us to express one-loop amplitudes in terms of tree amplitudes

and lower-point one-loop amplitudes. The tree amplitudes include forward amplitudes

which are plagued by divergences, in general. We show that these potential

divergences do not contribute and discuss how the BCFW recursion relations can

be applied so as to avoid the divergences, thus reducing the one-loop amplitudes

to three-point tree amplitudes. This work was published in [56]. We perform the

calculation in detail for two-point (section 3.2), three-point (section 3.3), and four-

point (section 3.4) one-loop amplitudes. In section 3.5, we outline the generalization

of our method to one-loop amplitudes with n > 4. In section 3.6, we summarize

our conclusions. We work with color ordered amplitudes throughout, to simplify the

discussion.

3.2 Two-point loop amplitude

In this section, we consider a two-point one-loop amplitude. Ignoring group theory

factors, it can be written as an integral over the loop momentum,

A1−loop
2 (k1, ε1;−k1, ε2) =

∫
d2ωl

(4π)2ω
A1−loop

2 (k1, ε1;−k1, ε2) , (3.1)

where ω is a dimensional regularization parameter, and the two polarization vectors

are null, with ε1 · k1 = ε2 · k1 = 0. The momentum k1 is off shell. To apply the

BCFW recursion relations, we shift k1 7→ k1 + zε1. Consequently, we shift the second

polarization vector,

ε2 7→ ε′2 ≡ ε2 − z
ε2 · ε1
k2

1

k1 . (3.2)

We will use the background gauge [58] in order to compute this amplitude. There is

only one diagram that contributes to this amplitude (figure 3.1).
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k1 + zǫ1

−k1 − zǫ1

l

Figure 3.1: Diagram contributing to the two-point one-loop amplitude.

At large z, the integrand behaves as

A1−loop
2 =

1

2

ε1 · ε2
l2

+
5

2

ε1 · ε2
k2

1

k1 · l
l2

+O
(

1

z

)
. (3.3)

Upon integration over the loop momentum, the leading O(1) term becomes a linear

combination of tadpole tensor integrals,

Iµ1µ2... =

∫
d2ωl

(4π)2ω

lµ1lµ2 · · ·
l2

, (3.4)

which vanish. Therefore, we have no contribution from z → ∞ and the entire

contribution to the two-point diagram comes from the residue of the pole of the

integrand at

z = z1 =
(l − k1)2

2ε1 · l
(3.5)

From Cauchy’s theorem, we obtain for the integrand

A1−loop
2

∣∣∣
z=0

= − 1

z1

Resz→z1A
1−loop
2 + . . . (3.6)
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where the dots represent contributions that vanish upon integration over the loop

momentum. Explicitly, for the integral we obtain

A1−loop
2 = +5εµ1ε

ν
2Iµν(k1) +

5

2
ε1 · ε2k2

1I(k1)− ε1.ε2kµ1 Iµ(k1) (3.7)

in terms of the two-point tensor integrals,

Iµ1µ2...(k1) =

∫
d2ωl

(4π)2ω

lµ1lµ2 · · ·
l2(l − k1)2

, (3.8)

which is in agreement with the result of a direct calculation of the loop integral.

Evidently, the residue contributing to the loop amplitude is a four-point tree diagram

contributing to the forward amplitude (see figure 3.2),

Atree
4 (k′1, ε1;−k′1, ε′2; l′, ε3;−l′, ε4) (3.9)

where ε′2 is given by (3.2) with z = z1 (defined in (3.5)), and we have defined

k′1 = k1 + z1ε1 , l′ = l − k1 − z1ε1 , (3.10)

to simplify the notation. Two legs are on-shell, since (l′)2 = 0. For the two-point loop

amplitude, we expect

A1−loop
2 =

∫
d2ωl

(4π)2ω

1

(l − k1)2

∑
ε3

Atree
4

∣∣∣
ε4=ε∗3

. (3.11)

However, the forward amplitude is singular. To regulate it, introduce a small

momentum pµ orthogonal to the polarization vector ε′2,

p · ε′2 = 0 (3.12)
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and consider the amplitude

Atree
4 (k′1, ε1;−k′1 − p, ε′2; l′ + p, ε3;−l′, ε4) (3.13)

in the limit pµ → 0.

Since we are working with color-ordered amplitudes, to avoid ordering the legs

carrying the loop momentum, we shall average over this amplitude and the one

obtained by interchanging the two legs carrying the loop momentum.

The contribution of diagram (a) of figure 3.2 is regular. In the limit pµ → 0, we

obtain

∑
ε3

A
tree , (a)
4

∣∣∣
ε4=ε∗3

=
ε1 · ε′2(5

2
k2

1 + k′1 · l′) + 5ε1 · l′ε′2 · l′ + 5
2
ε1.k

′
1ε
′
2.l
′

l2
. (3.14)

The contribution of the diagram (b) of figure 3.2 is singular,

∑
ε3

A
tree , (b)
4

∣∣∣
ε4=ε∗3

=
ε1 · ε′2(3

2
p2 + 3p · k′1 − 3p · l′ − 6k′1 · l′)− 3ε1 · l′ε′2 · p

p2
(3.15)

Finally, the contribution of diagram (c) is regular,

∑
ε3

A
tree , (c)
3

∣∣∣
ε4=ε∗3

= −3

2
ε1 · ε′2 . (3.16)

The singular contribution is easily seen to vanish after removing the color ordering on

the legs carrying the loop momentum. This is done by averaging with the expression

obtained by replacing l′ → −l′+p (or, equivalently, replacing l 7→ 1
2
p in (3.15)). Then

the numerator on the right-hand side of (3.15) vanishes after using (3.12).

We obtain the finite forward tree amplitude

∑
ε3

Atree
4

∣∣∣
ε4=ε∗3

=
−5ε1 · ε2ε1 · l k1·l

k2
1
z1 + ε1 · ε2ε1 · lz1 + 3

2
ε1 · ε2k2

1 + ε1 · ε2k1 · l + 5ε1 · lε2 · l
l2

(3.17)
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q4

q1

q3

q2

l

(a)

q4

q1

q3

q2

p

(b)

q4

q1

q3

q2

(c)

Figure 3.2: Four-point tree diagrams contributing to a two-point one-loop diagram.
The external momenta are q1 = k′1 + p, q2 = −k′1, q3 = −l′, q4 = l′ − p. pµ is a
momentum regulator.

Substituting this expression in (3.11), we recover our earlier result (3.7) for the

two-point one-loop amplitude. The forward tree amplitude can also be obtained by

applying the BCFW recursion relations. In fact, by an appropriate choice of complex

momentum shifts, the singularity can be avoided and no need for a regulator arises.

Indeed, under the shift,

k′1 7→ k′1 + wε1 , −k′1 7→ −k′1 − wε1 , ε′2 7→ ε′′2 ≡ ε′2 − w
ε1 · ε2
k2

1

k′1 (3.18)

the resulting amplitude vanishes as w →∞, and we obtain a pole at

w = w1 = − l2

2l · ε1
. (3.19)

The residue of the pole yields the entire four-point forward tree amplitude,

Atree
4 =

1

l2

∑
ε3,ε′

Atree
3 (k′1 + w1ε1, ε1;−l′ − w1ε1, ε

′; l′, ε3)

×Atree
3 (−k′1 − w1ε1, ε

′′
2;−l′ + w1ε1, ε

∗
3; l′ + w1ε1, ε

′∗) (3.20)
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which is a finite expression. After some straightforward algebra, we obtain

Atree
4 =

ε1 · ε2
[

3
2
w1ε1 · l − 7

2
z1ε1 · l + 5

2
k2

1 − k1 · l + l2
]
− 5

2
ε1 · lε′′2 · k1 + 5ε1 · lε′′2 · l

l2

(3.21)

Using the explicit expressions (3.5), (3.19), and (4.20) for z1, w1, and ε′′2, respectively,

we recover our earlier result (3.17), which was obtained by a direct calculation using

a regulator, up to terms which vanish upon integration over the loop momentum.

Thus, we have shown that an application of the BCFW recursion relations reduces

the two-point loop amplitude to three-point tree amplitudes. Even though there are

potential singularities from forward amplitudes, these were avoided by a judicious

choice of complex momentum shifts.

3.3 Three-point loop amplitude

Next we consider a three-point one-loop color-ordered amplitude

A1−loop
3 (k1, ε1; k2, ε2; k3, ε3) =

∫
d2ωl

(4π)2ω
A1−loop

3 (k1, ε1; k2, ε2; k3, ε3) , (3.22)

with k1 +k2 +k3 = 0. Two of the momenta, k1 and k2, will be on-shell. We shall keep

the third momentum k3 off shell to facilitate explicit calculations. This is necessary

also for kinematical reasons, but k2
3 = 0 is allowed if momenta are complex, which is

a case that will be useful for the calculation of higher-point amplitudes.

For the polarization vectors, we choose ε1 and ε2 such that ε1 ·ki = 0 and ε2 ·ki = 0,

where i = 1, 2, 3. This is always possible. Indeed, if ε1 · k2 6= 0, then we may shift

ε1 7→ ε1 − ε1·k2

k1·k2
k1, and the new polarization vector satisfies ε1 · ki = 0. Similarly, we

arrange ε2 · ki = 0. For the third polarization vector, since k3 is off-shell, there are

three independent polarizations. Notice that, since ε3 · (k1 + k2) = 0, they can be

chosen as the set {ε1, ε2, k1 − k2}. To apply the BCFW recursion relations, we shift

31



k3 − zǫ2

k2 + zǫ2

k1

l

(a)

k3 − zǫ2

k2 + zǫ2

k1

l

(b)

Figure 3.3: Diagrams contributing to a three-point color-ordered one-loop
amplitude.

k2 7→ k2 + zε2 , k3 7→ k3 − zε2 , ε3 7→ ε3 + z
ε2 · ε3
k2

3

k3 . (3.23)

There are two diagrams that contribute to the amplitude (figure 3.3) and we discuss

them separately. First we evaluate the triangle diagram (a) in figure 3.3 using the

background gauge. After the shift (3.23), the large z behavior of the integrand is of

the form

A1−loop , (a)
3 =

1

l2(l + k1)2

[
− 4zε1 · ε2ε2 · ε3 +

16ε1 · lε2 · ε3k2 · l
k2

3

− 4ε1 · ε2ε2 · ε3k2 · l
ε2 · l

−

4ε1 · ε2ε2 · ε3l · k3

ε2 · l

]
+

2ε1 · ε2ε2 · ε3
ε2 · l

+ 4ε1 · ε2ε3 · k1

]
+

O
(

1

z

)
. (3.24)

Evidently, it does not vanish, in general, as z → ∞. Upon closer inspection, when

ε3 = ε2, or ε3 = k1 − k2, all terms except the last one at leading order (O(1)) in

the above expression vanish. The last term vanishes after integration over the loop

momentum, because it is proportional to a two-point tensor integral (3.8) with k2
1 = 0.

Therefore, in the limit z →∞, there is no contribution.
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If ε3 = ε1, we need to interchange legs 1 and 2 before shifting the external momenta

as in (3.23).

It turns out that the choices ε3 = ε1 and ε3 = ε2 yield vanishing amplitudes, so we

shall concentrate on the polarization

ε3 = k1 − k2 (3.25)

for which, as we just showed, there is no contribution to the diagram from the pole

at z →∞.

It follows that the entire contribution to this diagram comes from the pole at

z = z1 ≡ −
(l − k3)2

2ε2 · l
. (3.26)

Explicitly, for the integral we obtain

A
1−loop , (a)
3

∣∣∣
z=0

= −8ε1 · ε2ε3 · k1k3 · I(k1, k2) + 4ε1 · ε2ε3 · k1I
µ
µ (k1, k2)−

4k2
3ε1 · ε2ε3 · I(k1, k2) + 16εµ1ε

ν
2ε
λ
3Iµνλ(k1, k2) (3.27)

in terms of three-point tensor integrals,

Iµ1µ2... =

∫
d2ωl

(2π)2ω

lµ1lµ2 · · ·
l2(l + k1)2(l + k1 + k2)2

(3.28)

After standard manipulations, we arrive at

A
1−loop , (a)
3 =

1

16π2
ε1 · ε2ε3 · k1

(
− 20

3(2− ω)
+

40

3
+O(2− ω)

)
. (3.29)
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Next we compute diagram (b) in figure 3.3 using the background gauge for the loop

and the Gervais-Neveu gauge for the tree part of the diagram. At large z, we obtain

A1−loop , (b)
3 = ε1 · ε2ε2 · ε3

[
− 16k2 · l

k3
4l2

z − 16k1 · lk2 · l
k4

3l
2ε2 · l

− 16k2 · lk3 · l
k4

3l
2ε2 · l

+

4k2 · l
k2

3l
2ε2 · l

+
k2 · l
k4

3ε2 · l

]
+

8ε1 · ε2ε3 · l
k3

2l2
+O

(
1

z

)
. (3.30)

All O(z) and O(1) terms except the last one in the above expression vanish for the

choice of polarization (4.42). The last O(1) term also vanishes after integration over

the loop momentum (being proportional to a tadpole tensor integral (3.4)).

Proceeding as with the triangle diagram, we find that the residue of the pole at

z = z1 (3.26) is the sole contribution. We obtain

A
1−loop , (b)
3 =

4ε1 · ε2εµ3
k2

3

[
− 2k2

3k1µI(k3)− 4k1
νIµν(k3)−

4k3
νIµν(k3) + 2I ν

µν (k3) + k2
3Iµ(k3)

]
(3.31)

written in terms of two-point tensor integrals (3.8).

After integrating over the loop momentum, we arrive at

A
1−loop , (b)
3 =

1

16π2
ε1 · ε2ε3 · k1

(
20

3(2− ω)
− 12 +O(2− ω)

)
. (3.32)

Adding the contributions of the two diagrams, (3.29) and (3.32), we obtain a finite

three-point one-loop amplitude,

A1−loop
3 = A

1−loop , (a)
3 + A

1−loop , (b)
3 =

1

12π2
ε1 · ε2ε3 · k1 , (3.33)

as expected [59].

Recall that this is valid for a choice of polarization vectors ε1 and ε2 obeying

ε1 · ki = ε2 · ki = 0 (i = 1, 2, 3). It is easily generalized to arbitrary polarization
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vectors,

A1−loop
3 = A

1−loop , (a)
3 +A

1−loop , (b)
3 =

1

12π2
Atree

3 , Atree
3 = ε1·ε2ε3·k1+ε2·ε3ε1·k2+ε3·ε1ε2·k3 .

(3.34)

This form is also valid in the limit in which all three legs are on shell (k2
i = 0,

i = 1, 2, 3), which is kinematically allowed if the momenta are complex, and will be

useful in the calculation of higher-order diagrams. On shell k3 has two polarizations

which can be chosen as the set of null vectors {k1−k2 , ε2 ·k1ε1−ε1 ·k2ε2−ε1 ·ε2 k1−k2

2
}.

Once again, only polarizations that have non-vanishing components along ε3 = k1−k2

give non-vanishing amplitudes.

Evidently, the residue contributing to the loop amplitude consists of two five-point

tree diagrams contributing to the forward amplitude (diagrams (a) and (b) in figure

3.4),

Atree
5 (k2 + z1ε2, ε2; k1, ε1; k3 − z1ε2, ε3; l − k3 + z1ε2, ε4;−l + k3 − z1ε2, ε5) (3.35)

with z1 given by (3.26). All legs are on-shell, but we shall keep the momentum k3 off

shell for convenience, taking the limit k2
3 → 0 at the end of the day. The contributions

of the first two diagrams in figure 3.4, Atree , (a)
5 and Atree , (b)

5 , respectively, match our

earlier result after we identify ε5 = ε∗4 and sum over the polarization vectors ε4. We

conclude

A1−loop
3 =

∫
d2ωl

(4π)2ω

1

(l − k3)2

∑
ε4

(
A

tree , (a)
5 + A

tree , (b)
5

)∣∣∣
ε5=ε∗4

. (3.36)

However, the forward tree amplitude is singular. To regulate it, introduce a small

momentum pµ and consider the amplitude with shifted legs k3− z1ε2 7→ k3− z1ε2 + p,

l − k3 + z1ε2 7→ l − k3 + z1ε2 − p (figure 3.4), in the limit pµ → 0. As with the two-

point loop amplitude, it can be checked that the singular terms do not contribute
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l − k3 + z1ǫ2 − p

k3 − z1ǫ2 + p

−l + k3 − z1ǫ2

k2 + z1ǫ2k1

(a)

l − k3 + z1ǫ2 − p

k3 − z1ǫ2 + p

k2 + z1ǫ2

k1

−l + k3 − z1ǫ2

(b)

p

k3 − z1ǫ2 + p

k1

l − k3 + z1ǫ2 − p

−l + k3 − z1ǫ2k2 + z1ǫ2

(c)

k2 + z1ǫ2 − p

k3 − z1ǫ2 + p

k1

−l + k3 − z1ǫ2

k2 + z1ǫ2

l − k3 + z1ǫ2 − p

(d)

Figure 3.4: Some of the five-point tree diagrams contributing to a three-point color-
ordered one-loop amplitude. pµ is a momentum regulator.

after integration over the loop momentum. We conclude

A1−loop
3 =

∫
d2ωl

(4π)2ω

1

(l − k3)2

∑
ε4

Atree
5

∣∣∣
ε5=ε∗4

. (3.37)

The calculation of the forward amplitude Atree
5 can be done by applying the BCFW

recursion relations. By appropriate shifts of momenta, it can thus be reduced to

three-point tree amplitudes avoiding the singularities. Indeed, let us shift

k1 7→ k1 + wε2 , k2 + z1ε2 7→ k2 + z1ε2 − wε2 (3.38)
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The contribution from w →∞ is easily seen to vanish. There is a pole at

w = w1 = −(l + k1)2

2l · ε2
. (3.39)

Its residue gives the entire five-point tree amplitude (3.35),

Resw→w1

w1

=
∑
ε4

Atree
5

∣∣∣
ε5=ε∗4

=
1

(l + k1)2

∑
ε4,ε′

Atree
3 (−l + k3 − z1ε2, ε4; k2 + z1ε2 − w1ε2, ε2; l + k1 + w1ε2, ε)×

Atree
4 (l − k3 + z1ε2, ε4

∗; k3 − z1ε2, ε3; k1 + w1ε2, ε1;−l − k1 − w1ε2, ε
∗). (3.40)

The four point amplitude in the above expression is a forward amplitude. It can be

reduced to a finite expression involving three-point tree amplitudes, as before (see

discussion in the case of the two-point loop amplitude leading to eq. (3.20)). After

some straightforward algebra, we arrive at the finite expression

∑
ε4

Atree
5

∣∣∣
ε5=ε∗4

=
4N

l2(l + k1)2(l − k3)2
(3.41)

where

N =
4ε1 · ε2ε3 · l(l + k1)2k2 · l

k2
3

− 2ε1 · ε2ε3 · k1(l − k3)2 + k2
3ε1 · ε2ε3 · (l + k1)−

2ε1 · ε2ε3 · k1(l + k1)2l − 4ε1 · lε2 · lε3 · l (3.42)

which indeed yields the sum of (3.27) and (3.31) (via (3.37)), and therefore the correct

(finite) value of the three-point loop amplitude (3.33).
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3.4 Four-point loop amplitude

In this section, we consider the four-point color-ordered one-loop amplitude,

A1−loop
4 (k1, ε1; k2, ε2; k3, ε3; k4, ε4) =

∫
d2ωl

(4π)2ω
A1−loop

4 (k1, ε1; k2, ε2; k3, ε3; k4, ε4)

(3.43)

where k1 + k2 + k3 + k4 = 0 and all momenta are on shell (k2
1 = k2

2 = k2
3 = k2

4 = 0).

It suffices to consider amplitudes in which

ε1 = ε2 . (3.44)

This is because they form a basis: all amplitudes can be expressed as linear

combinations of amplitudes with two identical polarization vectors. To see this, first

recall that for general momenta k1 and k2, the corresponding polarization vectors

can be chosen to be common to both. Indeed, if ε1 · k2 6= 0, then by shifting

ε1 7→ ε1 − ε1·k2

k1·k2
k2, we satisfy ε1 · k2 = 0 (in addition to ε1 · k1 = 0). There are

two linearly independent choices for ε1 obeying ε1 ·k2 = ε1 ·k1 = 0. Similarly, we have

two linearly independent choices of ε3 such that ε3 · k2 = ε3 · k3 = 0. Then a basis

for the polarization vector ε2 can be {ε1, ε3}. Thus, we need only consider amplitudes

with ε2 = ε1 or ε2 = ε3. Without loss of generality, we adopt (3.44).

To apply the BCFW recursion relations, we shall shift the two adjacent legs,

k1 7→ k1 + zε1 , k2 7→ k2 − zε1 . (3.45)

An explicit calculation shows that for polarization vectors obeying (3.44), the

integrand of the four-point one-loop amplitude (3.43) vanishes in the limit z →∞,

A1−loop
4 (ε1, k1 + zε1; ε2, k2 − zε1; ε3, k3; ε4, k4) = O

(
1

z

)
(3.46)
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Therefore, only the poles contribute to the amplitude. To calculate their residues, it

is advantageous to consider the basis for the remaining polarization vectors, ε3 and

ε4,

ε3 =

{
ε1 −

k3 · ε1
k3 · k1

k1 , ε2 −
k3 · ε2
k3 · k2

k2

}
, ε4 =

{
ε1 −

k4 · ε1
k4 · k1

k1 , ε2 −
k4 · ε2
k4 · k2

k2

}
.

(3.47)

3.4.1 Choice (A) of polarization vectors

First, consider the case

(A) : ε3 = ε1 −
k3 · ε1
k3 · k1

k1 , ε4 = ε1 −
k4 · ε1
k4 · k1

k1 . (3.48)

Notice that with this choice of polarization vectors, the corresponding four-point tree

diagram vanishes.

The entire contribution to the box diagram in figure 3.5 comes from the pole at

z = z1 = − l2

2ε1 · l
. (3.49)

Explicitly,

A
1−loop , (a)
4

∣∣∣
z→z1

= 16εµ1ε
ν
1 [αρσIµνρσ(k2, k3, k4) + βρIµνρ(k2, k3, k4)] (3.50)

written in terms of the four-point tensor integrals,

Iµ1µ2...(k2, k3, k4) =

∫
d2ωl

(2π)2ω

lµ1lµ2 · · ·
l2(l + k2)2(l + k2 + k3)2(l + k2 + k3 + k4)2

(3.51)
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where

αρσ = −ερ1εσ1 +
ε1 · k3(k2 − k1) · k3ε

ρ
1k

σ
1 + (ε1 · k3)2kρ1k

σ
1

k1 · k3k2 · k3

βρ = ε1 · k3
k1 · k2

k1 · k3

ερ4 . (3.52)

After we integrate over the loop momentum, we obtain a finite expression,

A
1−loop , (a)
4

∣∣∣
z→z1

= − 1

24π2

(ε1 · k3)4k1 · k2

k1 · k3(k2 · k3)2
. (3.53)

There is one more diagram that contributes to this amplitude (diagram (b) in

figure 3.5). The other diagrams vanish for the choice of polarization vectors under

consideration (eqs. (3.44) and (3.48)).

Diagram (b) in fig. 3.5 has two poles, one given by (4.35), and a new pole at

z = z2 = −k2 · k3

ε1 · k3

. (3.54)

The residue of the pole (4.35) gives a contribution to the amplitude,

A
1−loop , (b)
4

∣∣∣
z→z1

= 16εµ1ε
ν
1 [αρσIµνρσ(k2, k3, k

′
4) + βρIµνρ(k2, k3, k

′
4)] (3.55)

where we introduced the on-shell momentum (it is easy to see that k′24 = 0),

k′4 =
k2 · k3

ε1 · k3

ε1 − k2 − k3 (3.56)

and the coefficients αρσ and βρ are as before (eq. (3.52)). It is easily seen to vanish

(by a direct calculation, or, e.g., by replacing k1 7→ z2ε1 in (3.53)),

A
1−loop , (b)
4

∣∣∣
z→z1

= 0 . (3.57)

Therefore (3.53) is the entire contribution of the pole (4.35).
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Working as above with the second pole (3.54), after some straightforward algebra

we find that the residue of the pole (3.54) gives a finite contribution to the amplitude,

A
1−loop , (b)
4

∣∣∣
z→z2

=
(ε1 · k3)4(k1 · k2)2

24π2k1 · k3(k2 · k3)3
. (3.58)

Notice that each pole contribution can be written as a single term and the two poles

lead to different kinematical expressions.

Combining the contribution of the two poles, (3.53) and (3.58), we obtain the

four-point amplitude

A1−loop
4 =

(ε1 · k3)4k1 · k2(k1 − k3) · k2

24π2k1 · k3(k2 · k3)3
, (3.59)

which is the same expression (with appropriate identifications) as in [60].

The residue at z = z1 (4.35) can be expressed in terms of a six-point forward tree

amplitude. As in the case of a three-point one-loop amplitude, we can introduce a

momentum regulator pµ by shifting the legs l + z1ε1 7→ l + z1ε1 − p, k3 7→ k3 + p (see

figure 3.6). An explicit calculation shows that singularities of the forward amplitude

do not contribute (in the limit pµ → 0) after integration over the loop momentum.

Thus, the contribution to the pole at z = z1 can be written as

A1−loop
4

∣∣∣
z→z1

=

∫
d2ωl

(4π)2ω

1

l2

∑
ε5

Atree
6

∣∣∣
ε6=ε∗5

(3.60)

As with the five-point tree amplitude involved in the calculation of a three-point loop

amplitude, the six-point amplitude can be reduced to lower-point amplitudes by a

judicious application of the BCFW recursion relations. It is convenient to shift

k1 + z1ε1 7→ k1 + z1ε1 + wε4 , k4 7→ k4 − wε4 . (3.61)
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There is no shift in the polarization vectors, because ε1 ·ε4 = 0 because of (3.48). One

can easily check that the amplitude vanishes in the limit w →∞. There is a pole at

w = w1 =
(l − k1)2

2ε4 · l
. (3.62)

The corresponding residue is given by

Resw→w1

w1

=
∑
ε5

Atree
6

∣∣∣
ε6=ε∗5

=
1

(l − k1)2

∑
ε5,ε′

Atree
5 (l + z1ε1, ε

∗
5; k2 − z1ε1, ε1; k3, ε3; k4 − w1ε4, ε4;−l + k1 + w1ε4, ε)

×Atree
3 (l − k1 − w1ε4, ε

′; k1 + z1ε1 + w1ε4, ε4;−l − z1ε1, ε5) . (3.63)

The five-point tree amplitude is a forward amplitude containing potential singu-

larities. However, it can be calculated in the same way as the five-point forward

amplitude encountered in the calculation of the three-point loop amplitude (see eqs.

(3.37) through (3.42)). Thus, by a repeated application of the BCFW recursion

relations, it is reduced to on-shell three-point amplitudes. After some algebra, and

using (3.60), we obtain agreement with our earlier result (3.53), which was obtained

by a direct diagrammatic calculation.

Turning to the other pole that contributes to the amplitude, at z = z2, we obtain

the residue

A1−loop
4

∣∣∣
z→z2

=
1

k2 · k3

∑
ε′

A1−loop
3 (k2 − z2ε1, ε1; k3, ε3;−k2 − k3 + z2ε1, ε

′)

×

Atree
3 (k1 + z2ε1, ε1;−k1 − k4 − z2ε1, ε

′; k4, ε4) . (3.64)

It is already written in terms of on-shell amplitudes with no singularities. Using our

earlier results on three-point amplitudes, and integrating over the loop momentum,
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after some algebra, one can show that the contribution of the second pole (3.64)

agrees with our earlier result (3.58) obtained by a direct diagrammatic calculation.

Thus, we have shown that the four-point one-loop amplitude with the choice of

polarization vectors (3.48) can be expressed in terms of three-point on-shell tree-

amplitudes and a three-point one-loop on-shell amplitude (4.46). The latter also

reduces to three-point tree-amplitudes, as was shown in the previous section.

3.4.2 Choice (B) of polarization vectors

Next, we consider the case of polarization vectors

(B) : ε3 = ε1 −
k3 · ε1
k3 · k1

k1 , ε4 = ε2 −
k4 · ε2
k4 · k2

k2 (3.65)

Unlike with the previous choice (3.48), the corresponding four-point tree diagram is

non-vanishing,

A
tree , (B)
4 = − (ε1 · k3)4k1 · k2

(k1 · k3)2k2 · k3

. (3.66)

One obtains a simple expression because only the t-channel contributes to the color-

ordered amplitude.

For the loop amplitude, we obtain eight non-vanishing graphs which contribute

for our choice of basis (3.65) shown in figure 3.5. A direct calculation shows that

the pole at z = z2 (3.54) gives a vanishing contribution. This is confirmed by an

application of the BCFW recursion relations (eq. (3.64)). Therefore, the amplitude

is determined solely by the pole at z = z1 (4.35). A calculation of the residue of the

pole, using diagrams as before, leads to an expression which is in agreement with the

one obtained by a direct diagrammatic calculation. After integrating over the loop

43



momentum, we obtain a divergent expression,

A1−loop
4 =

1

8π2
A

tree , (B)
4

Γ2(ω − 1)Γ(3− ω)

Γ(2ω − 3)

(
4πµ2

s

)2−ω

×[
− 2

(2− ω)2
− 1

2− ω

(
11

3
− 2 ln

t

s

)
+

11

6
ln
µ2t

s2
+
π2

2
− 32

9
+

O(2− ω)
]
, (3.67)

where s = 2k1 · k2, t = 2k2 · k3. This expression agrees with the ones derived in [60]

(see also [61]) with appropriate kinematical identifications, after setting the arbitrary

momentum scale Q2 = s.

The contribution to the pole at z = z1 can be written in terms of a six-point

forward tree amplitude as in (3.60). The latter can be reduced to lower-point

amplitudes by a judicious application of the BCFW recursion relations (avoiding

the potential singularities). To this end, instead of the shift (3.61), it is convenient

to shift

k3 7→ k3 + wq , k4 7→ k4 − wq , q = ε1 −
ε1 · k3

k1 · k3

(k1 + k3) . (3.68)

There is no shift in the polarization vectors, because ε3 · q = ε4 · q = 0, where we

used (3.44) and (3.65). In fact εi − q is along the direction of the corresponding

momentum ki (i = 3, 4). Since the amplitude is on shell, we could replace both

polarization vectors ε3 and ε4 by q, to simplify the calculation.

One can easily check that the amplitude vanishes in the limit w →∞. There is a

pole at

w = w1 = −(l + k2 + k3)2

2q · (l + k2)
(3.69)

The corresponding residue is given by
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Resw→w1

w1

=
∑
ε5

Atree
6

∣∣∣
ε6=ε∗5

=
1

2(l + k2) · q
∑
ε5,ε′

Atree
4 (l + z1ε1, ε

∗
5; k2 − z1ε1, ε1; k3 + wq, q;−l − k2 − k3 − wq, ε′∗)

×Atree
4 (l + k2 + k3 + wq, ε′; k4 − wq, q; k1 + z1ε1, ε1;−l − z1ε1, ε5) . (3.70)

The two four-point tree amplitudes are on-shell amplitudes and can be reduced to

three-point amplitudes by an application of the BCFW recursion relations. Thus,

by a repeated application of the BCFW recursion relations, the six-point amplitude

is reduced to on-shell three-point amplitudes. After some algebra, and using (3.60),

we obtain agreement with our earlier result (3.67), which was obtained by a direct

diagrammatic calculation.

The remaining two choices of polarization vectors can be tackled similarly and

will not be discussed explicitly here.

Summarizing, we have shown that four-point one-loop amplitudes can be expressed

in terms of three-point on-shell tree-amplitudes.

3.5 Higher-point loop amplitudes

The calculation of the four-point color-ordered one-loop amplidute can be straight-

forwardly generalized to high-point amplitudes,

A1−loop
n ({ki, εi}) =

∫
d2ωl

(4π)2ω
A1−loop
n ({ki, εi}) (3.71)

As explained in section 3.4, it suffices to consider amplitudes with two identical

polarization vectors. Without loss of generality, we shall choose (3.44) for the adjacent

legs with momenta k1, k2.
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To apply the BCFW recursion relations, we shift the momenta k1, k2 as in (4.88).

Using the Ward identity,

A1−loop
n (k1 + zε1, k1 + zε1; . . . ) = 0 (3.72)

we deduce

A1−loop
n (k1 + zε1, ε1; k2 − zε1, ε1; k3, ε3; . . . ; kn, εn) =

−1

z
A1−loop
n (k1 + zε1, k1; k2 − zε1, ε1; k3, ε3; . . . ; kn, εn) . (3.73)

It is easy to see that the amplitude on the right-hand side of (3.73) has a finite limit

as z → ∞. Indeed, e.g., diagram (a) in figure 3.7, is a rational function of z. There

are two O(z) vertices that contribute to the numerator, and one O(z) propagator

that contributes to the denominator. The O(z) contribution is the leading term,

A1−loop , (a)
n

∣∣∣
ε1=k1

=

· · · kµ1

1 [−ηρνε1µ1 − 2ηνµ1ε1ρ + 2ηµ1ρε1ν ] η
ρσεµ2

1 [−ησλε1µ2 + 2ηλµ2ε1σ − 2ηµ2σε1λ] · · ·
2ε1 · l

z

+O(1) . (3.74)

Evidently, the numerator of the leading O(z) term vanishes, showing that the

contribution of this diagram is O(1). Similarly, one can show that the O(z) terms

in all other diagrams, such as (b) and (c) in figure 3.7 vanish, therefore all diagrams

contributing to the amplitude on the right-hand side of (3.73) (with ε1 = k1) are

finite in the limit z → ∞, and the amplitude we are interested in (left-hand side of

(3.73)) is

A1−loop
n (k1 + zε1, ε1; k2 − zε1, ε1; k3, ε3; . . . ; kn, εn) = O

(
1

z

)
. (3.75)
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Thus, only poles contribute to the integrand. The pole in the one-particle irreducible

part of the amplitude has a residue which is a forward tree amplitude with n + 2

legs. The extra two legs have momenta ±(l + z1ε1) and corresponding polarization

vectors εn+1 and εn+2, with εn+2 = ε∗n+1 and we need to sum over εn+1. Additional

poles exist on propagators which lead to a factorized amplitude when cut. Putting

these together, we obtain for the loop amplitude

A1−loop
n =

∫
d2ωl

(2π)2ω

1

l2

∑
εn+1

Atree
n+2

∣∣∣
εn+2=ε∗n+1

+
∑
I

1

(
∑

i∈I ki)
2

∑
ε

A1−loop
m

(
{ki, εi}i∈I ;−

∑
i∈I

ki, ε
′

)

Atree
n−m

(
−
∑
j∈J

kj, ε
′∗; {kj, εj}j∈J

)
(3.76)

where the second term consists of the contributions of the residues of the poles z = zI ,

where

zI =
K2

2ε1 ·K
, K =

∑
i∈I

ki , (3.77)

and we sum over all poles, i.e., all possible partitions of the set of external momenta,

I and J with m and n − m elements, respectively (I ∪ J = {k1 + zIε1, k2 −

zIε1, k3, . . . , kn}), and k1 + zIε1 ∈ I, k2 − zIε1 ∈ J .

All amplitudes are on shell, however, the tree amplitude in the first term is a

forward amplitude and care must be exercised in calculating it. The method we

applied in the case of n = 4 can be generalized to n ≥ 4 straightforwardly. Thus,

we can reduce the amplitude to three-point amplitudes by a judicious application

of the BCFW recursion relations avoiding the singularities. The contribution of the

singularities can also be seen to vanish after integration over the loop momentum by

a direct calculation, after introducing a momentum regulator.
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To define appropriate complex momentum shifts, choose the basis for the

polarization vector εn,

εn ∈
{
ε1 −

ε1 · kn
k1 · kn

k1 , εn−1 −
εn−1 · kn
kn−1 · kn

kn−1

}
. (3.78)

For the choice εn = ε1 − ε1·kn
k1·knk1, shift

k1 + z1ε1 7→ k1 + z1ε1 + wεn , kn 7→ kn − wεn , (3.79)

whereas for the choice εn = εn−1 − εn−1·kn
kn−1·knkn−1, shift

kn−1 7→ kn−1 + wεn , kn 7→ kn − wεn . (3.80)

Notice that there is no need to shift polarization vectors, because εn · ε1 = 0, and

εn · εn−1 = 0, respectively. The contribution from w →∞ vanishes in both cases and

only poles contribute. Thus the n+ 2-point tree amplitude is reduced to lower-point

on-shell tree amplitudes. A repetition of this step leads to a reduction to on-shell

three-point tree amplitudes.

The final expression (before integrating over the loop momentum) is finite. It

should be emphasized that the above reduction process works, and the potential

singularity of the forward amplitude is absent, because of the contraction of

polarizations of the collinear legs (eq. (3.76)), without which the forward amplitude

would be singular.

3.6 Conclusion

We discussed the applicability of the BCFW recursion relations to the integrand of

loop amplitudes in gauge theories. Working with color-ordered amplitudes, we showed

that, with an appropriate choice of basis for the polarization vectors, the contribution

from an infinite complex shift can be made to vanish. Thus, only poles contribute
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to the loop amplitude. Their residues can be factorized into products of on-shell

lower-point loop amplitudes and tree amplitudes. By repeatedly applying the BCFW

recursion relations, one thus reduces the loop amplitude to on-shell three-point tree

amplitudes.

An obstruction to this reduction procedure is due to one of the poles whose residue

is given in terms of a forward amplitude which, in general, contrains singularities.

We showed explicitly that the singularities do not contribute to the amplitude, after

integrating over the loop momentum. Moreover, by a judicious application of the

BCFW recursion relations that we described, potential singularities can be completely

avoided. The resulting contribution to the loop amplitude is then written entirely

in terms of on-shell three-point tree amplitudes. It would be interesting to see if

our results can be generalized to higher-loop gauge theory amplitudes as well as

supergravity.
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l + zǫ1

k4

k1 + zǫ1

k3

k2 − zǫ1

(a)

l + zǫ1

k4

k1 + zǫ1

k3

k2 − zǫ1

(b)

k4

k1 + zǫ1

k3

k2 − zǫ1

(c)

k4

k1 + zǫ1

k3

k2 − zǫ1

(d)

k4

k1 + zǫ1

k3

k2 − zǫ1

(e)

k4

k1 + zǫ1

k3

k2 − zǫ1

(f)

k4

k1 + zǫ1

k3

k2 − zǫ1

(g)

k4

k1 + zǫ1

k3

k2 − zǫ1

(h)

Figure 3.5: Diagrams contributing to a four-point color-ordered one-loop amplitude.
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p

−l − z1ǫ1

l + z1ǫ1 − p

k1 + z1ǫ1

k4

k3 + pk2 − z1ǫ1

Figure 3.6: A six-point tree diagram that contributes to the four-point color-ordered
one-loop amplitude. pµ is a momentum regulator.

l + zǫ1

k1 + zǫ1

k2 − zǫ1

(a)

k1 + zǫ1

k2 − zǫ1

(b)

k1 + zǫ1

k2 − zǫ1

(c)

Figure 3.7: Diagrams contributing to higher-point amplitudes.
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Chapter 4

Scalar and Vector Amplitudes in

Anti-de Sitter Space

4.1 Introduction

The Anti-de Sitter / Conformal Field Theory correspondence (AdS/CFT) has

revealed important connections between quantum gravity and gauge theory [26, 27].

Even though AdS/CFT provides a prescription for the holographic computation of

correlation functions in a strongly coupled gauge theory with a gravity dual, in

practice, computing these correlation functions is quite difficult. The conformal

correlators are related to scattering amplitudes in AdS space. The latter are not

defined in a standard fashion, as in Minkowski space, because AdS space does not

admit asymptotic states which are needed for the standard definition of the S-matrix.

Nevertheless, creation and annihilation operators can be defined in AdS space by

changing the boundary conditions in the conformal boundary [62]. The resulting

scattering amplitudes in AdS space are then related to CFT correlation functions.

AdS scattering amplitudes are derived from Witten diagrams which are difficult

to calculate in coordinate space [63, 64, 65, 66, 67]. There have been some interesting

developments in the computation of such diagrams in momentum space [68, 70, 69, 71].
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Working in momentum space entails taking a Fourier transform of the amplitude,

which is well-suited for flat Minkowski space, but does not appear to be advantageous

in AdS space. Another approach using the Mellin representation of conformal

correlation functions was proposed in [72, 73, 62]. In more recent work [75, 74], it was

shown that CFT correlation functions factorize on poles in a Mellin representation,

which suggests that Witten diagrams can be computed via a set of Feynman rules,

as is the case with correlation functions of field theories on Minkowski space in the

momentum (Fourier) representation.

In the case of scalar fields, by taking the Mellin transform, one trades coordinates

for Mandelstam invariants of the scattering amplitude. This does not extend

straightforwardly to vector or general tensor fields because of the index structure.

After taking a Mellin transform, one is still left with expressions which involve

coordinates, as well as Mandestam invariants. The index structure complicates

calculations which involve integrals over coordinates in AdS space. Our aim is to

extend the results of [75] and provide a general procedure for the calculation of Witten

diagrams involving fields of arbitrary spin. We shall show that diagrams of vector

fields can be written in terms of the same Mellin functions as scalar field diagrams.

Our method is an iterative procedure that calculates a diagram of a certain order by

sewing together lower-order diagrams. The index structure is dealt with by taking

advantage of the conformal properties of the correlation functions. This work was

published in [80].

The outline of our discussion is the following. In section 4.2, we review the basic

ingredients in the embedding formalism which seems to be the most natural framework

for the Mellin representation. In sections 4.3, 4.4, and 4.5, we calculate explicitly

three-, four-, and five-point amplitudes, respectively, for scalar fields with a cubic

interaction as well as vector fields. In section 4.6, we discuss the calculation of a

general N -point diagram from lower-order constituents. Finally, in section 4.7, we

summarize our conclusions. Appendix C.1 contains all necessary integrals over AdS

space together with their derivation.
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4.2 Basics

In this section, we review the basic ingredients to be used in our discussion. We adopt

the notation used in [75], where further discussion can be found.

It is natural to use the embedding space formalism, which goes back to Dirac

[76](also see [78]), as it provides a convenient framework for the computation of

Witten diagrams. The embedding is a (d + 2)-dimensional flat Minkowski spsace

(Md+2) with metric given by

ds2 = dXAdX
A = −(dX0)2 + (dX1)2 + · · ·+ (dXd)2 + (dXd+1)2 . (4.1)

The Euclidean AdSd+1 space is defined as the hyperboloid X2 = −R2, where

X0 > 0 , XA ∈ Md+2. Henceforth, we set R = 1. In this formalism, it is convenient

to think of the conformal boundary of AdS as the space of null rays PA (with P 2 = 0,

and P ∼ λP ). Then a correlation function of the dual CFT of weight ∆ scales as

F∆(λP ) = λ−∆F∆(P ). We will be interested in n-point correlation functions of the

form F(P1, P2, . . . , Pn), and frequently use the notation

Pij = −2Pi · Pj . (4.2)

We will use XA, Y A, etc., for points in the bulk, and PA, QA, etc., for points on

the boundary of AdS space. We have briefly discussed the propagators in AdS in the

introduction (2.4.1). The bulk to boundary propagator for a scalar field is given by

E(X,P ) =
Γ(∆)

2πd/2Γ(1 + ∆− d/2)
(−2P ·X)−∆ . (4.3)
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The bulk to bulk propagator for a scalar field can be written as an integral over the

boundary point Q [62],

G(X, Y ) =

∫ +i∞

−i∞

dc

2πi
fδ,0(c)Γ(d/2+c)Γ(d/2−c)

∫
∂AdS

dQ(−2X·Q)−d/2−c(−2Y ·Q)−d/2+c ,

(4.4)

where

fδ,0(c) =
c sin πc

2πd+1[(δ − d/2)2 − c2]
. (4.5)

These expressions for the propagators are crucial for the factorization of amplitudes

into lower-point diagrams. We are interested in calculating the N -point scalar

amplitude

A(N,s) = 〈O∆1(P1)O∆2(P2) · · · O∆N
(PN)〉 , (4.6)

where O∆ is a conformal operator of scaling dimension ∆.

Similarly, the bulk to boundary propagator for a vector field can be written as

[75],

EMA(X,P ) = DMA(∆, P )E(X,P ) =
Γ(∆)

2πd/2Γ(1 + ∆− d/2)
JMA(−2P ·X)−∆ (4.7)

where,

DMA(∆, P ) =
∆− 1

∆
ηMA +

1

∆

∂

∂PM
PA (4.8)

and JMA = ηMA − PAXM
P ·X has the property, PMJMA = JMAX

A = 0. DMA is an

extremely convenient operator as it organizes and simplifies the index structure of

vector amplitudes, allowing us to relate them to amplitudes of scalar fields. In this

regard, a useful identity is

DMA(∆, P )
∂

∂PA
F∆−1(P ) = 0 , (4.9)

where F∆−1 is a function of weight ∆ − 1, i.e., F∆−1(P ) = λ−(∆−1)F∆−1(P ), and

therefore P · ∂
∂P
F∆−1 = −(∆− 1)F∆−1.
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The bulk to bulk propagator for a vector field can be written as an integral over

the boundary point Q, as in the scalar case,

GAB(X, Y ) =

∫ +i∞

−i∞

dc

2πi
fδ,1(c)Γ(d/2 + c)Γ(d/2− c)

×
∫
∂AdS

dQηMNDMA(d/2 + c,Q)DNB(d/2− c,Q)

(−2X ·Q)−d/2−c(−2Y ·Q)−d/2+c , (4.10)

where,

fδ,1(c) = fδ,0(c)
d2

4
− c2

(δ − d
2
)2 − c2

. (4.11)

We are interested in calculating the N -point vector amplitude

A(N,v)M1...MN ,a1...aN = 〈JM1,a1(P1)JM2,a2(P2) · · · JMN ,aN (PN)〉 , (4.12)

where ai (i = 1, . . . , N) are gauge group indices. It should be pointed out that all

current operators have dimension ∆ = d− 1. However, we need to calculate off-shell

amplitudes as well, because we are interested in sewing diagrams together in order to

form higher-point amplitudes. The two legs to be sewn must be off shell, and have

dimensions d
2
± c, on account of (4.10). Therefore, we will be generally working with

arbitrary dimensions of the external legs of a N -point vector amplitude.

The Mellin transform of the above N -point amplitudes will be given in terms of

Mandelstam invariants δij (i, j = 1, . . . , N). They are defined with the properties

δii = 0 , δij = δji ,

N∑
j=1

δij = ∆i . (4.13)

4.3 Three-point Amplitudes

Having introduced all necessary ingredients, we now proceed to the explicit calculation

of amplitudes, starting with the simplest amplitude.
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4.3.1 Scalar amplitudes

The three-point amplitude for scalar fields of scaling dimensions ∆i interacting via a

cubic interaction of coupling constant g is (Fig. 4.1)

A(3,s)(∆1, P1; ∆2, P2; ∆3, P3) =
g∏

i 2π
hΓ(∆i + 1− d/2)

A3(∆1, P1; ∆2, P2; ∆3, P3)

(4.14)

where

A3({∆i, Pi}) ≡
∫
AdS

dX
3∏
i=1

Γ(∆i)(−2Pi ·X)−∆i . (4.15)

P1

X

P2

P3

Figure 4.1: The three-point scalar amplitude (4.14)

The integral over the bulk vector XA is of the form (C.12). Using (C.16), we obtain

A3(∆1, P1; ∆2, P2; ∆3, P3) =
πd/2

2
M3Γ(δ12)Γ(δ23)Γ(δ13)(P12)−δ12(P23)−δ23(P13)−δ13

(4.16)

where

M3 = Γ

(
∆1 + ∆2 + ∆3 − d

2

)
(4.17)

is the Mellin transform of the scalar three-point amplitude. There are no remaining

integrals, because the constraints (C.11) completely fix the integration variables,

δ12 =
∆1 + ∆2 −∆3

2
, δ23 =

∆2 + ∆3 −∆1

2
, δ31 =

∆1 + ∆3 −∆2

2
(4.18)

which are the Mandelstam invariants (4.44) for a three-point amplitude.
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P1

X

P2

P3

Figure 4.2: The three-point vector amplitude (4.20).

The three-point scalar amplitude is

A(3,s)(∆1, P1; ∆2, P2; ∆3, P3) =
gπd/2

2
∏

i 2π
d/2Γ(∆i + 1− d/2)

M3

∏
i<j

Γ(δij)P
−δij
ij .

(4.19)

4.3.2 Vector amplitudes

Similarly, a three-point vector amplitude is given by (fig. 4.2)

A(3,v)M1M2M3,a1a2a3(∆1, P1; ∆2, P2; ∆3, P3) = fa1a2a3

3∏
i=1

DMiAi(∆i, Pi)AA1A2A3 (4.20)

where,

AA1A2A3 =

∫
AdS

dXIA1A2A3

3∏
i=1

(−2Pi ·X)−∆i , (4.21)

and the index structure is similar to a gauge theory three point vertex in flat space,

IA1A2A3 = ηA1A2 (K1A3 −K2A3) + · · ·+ · · · , (4.22)

with

KA = (−2P ·X)∆ ∂

∂XA
(−2P ·X)−∆ = −∆

PA
P ·X

(4.23)
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We can express the three point with one leg off-shell that we can use in four and

higher point diagrams in the following way,

AA1A2A3 = −
∫
AdS

dX

[
ηA1A2∆1

P1A3

P1 ·X
+ ηA2A3

(
∆2

P2A1

P2 ·X
−∆3

P3A1

P3 ·X

)
− (1↔ 2)

]
3∏
i=1

Γ(∆i)(−2Pi ·X)−∆i . (4.24)

As in the scalar case, the integral over the bulk vector XA is of the form (C.12).

Using (C.16), we obtain

AA1A2A3 = ηA1A2P1A3A3(∆1 + 1, P1; ∆2, P2; ∆3, P3)

+ηA2A3

[
P2A1A3(∆1, P1; ∆2 + 1, P2; ∆3, P3)−

P3A1A3(∆1, P1; ∆2, P2; ∆3 + 1, P3)
]
− (1↔ 2) (4.25)

Thus, the vector amplitude is written in terms of scalar amplitudes.

As in the scalar case (Eq. (4.16)), we may write this in terms of a Mellin amplitude,

AA1A2A3 =
πd/2

2
MA1A2A3

∏
i<j

Γ

(
δij +

1

2

)
P
−δij+ 1

2
ij (4.26)

where

MA1A2A3 = Γ

(
∆1 + ∆2 + ∆3 − d+ 1

2

)
[I(1, 2, 3) + I(2, 3, 1) + I(3, 1, 2)] (4.27)

and

I(1, 2, 3) =
ηA1A2

P12

(
1

δ23 − 1
2

P1A3

P13

− 1

δ13 − 1
2

P2A3

P23

)
(4.28)
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The above expressions are simplified if all legs are on shell. Setting ∆1 = ∆2 = ∆3 =

d− 1, we obtain

A(on shell)
A1A2A3

= πd/2Γ (d− 2) [ηA1A2 (P23P1A3 − P13P2A3) + · · ·+ · · · ]
∏
j<j

Γ(d/2)P
−d/2
ij .

(4.29)

In order to use this amplitude in a higher-point diagram, it is convenient to eliminate

terms that contain the coordinate that corresponds to the leg which is to be sewn

(off-shell) with a free index (i.e., not in a dot product). Without loss of generality we

choose the last leg, a practice that we will follow throughout.

Thus, we wish to eliminate terms containing PA
3 . To this end, we will use the

identity (4.9). Choosing ∆ = ∆3, PA = PA1
1 , and F∆1−1(P1) =

∏
i<j(Pij)

−δij+ 1
2 , we

obtain [(
δ12 −

1

2

)
PA1

2

P12

+

(
δ13 −

1

2

)
PA1

3

P13

]∏
i<j

(Pij)
−δij+ 1

2 = 0 (4.30)

Therefore,

I(2, 3, 1) =
2ηA2A3P2A1

(δ13 − 1
2
)P12P23

(4.31)

up to terms which vanish upon acting with DM1A1 , and similarly for I(3, 1, 2).

There are more terms in the amplitude involving PA
3 , due to the action of DM3A3

on the off-shell leg, which also need to be eliminated. We have

P3A3I(1, 2, 3) + · · ·+ · · · = 1

(δ13 − 1
2
)P12

(
−ηA1A2 +

2PA1
2 PA2

3

P23

)
− (1↔ 2) (4.32)

Using the identity (4.9) again, the second term on the right-hand side of (4.32) is

easily seen to be symmetric, and therefore vanishes. We arrive at an expression

which is independent of P3,

P3A3I(1, 2, 3) + · · ·+ · · · = ∆1 −∆2

(δ23 − 1
2
)(δ13 − 1

2
)

ηA1A2

P12

. (4.33)

60



Notice that in the case of ∆1 = ∆2 (on-shell legs), this vanishes, so the action of

DM3A3 is simple in this case.

Differentiating with respect to P3, we obtain an additional factor,

∂

∂PM3
3

∏
i<j

(Pij)
−δij+ 1

2 =

[
(2δ13 − 1)

PM3
1

P13

+ (2δ23 − 1)
PM3

2

P23

]∏
i<j

(Pij)
−δij+ 1

2 . (4.34)

It follows that

DM3A3AA1A2A3 =
πd/2

2
Γ

(
∆1 + ∆2 + ∆3 − d+ 1

2

)
[(D3I)(1, 2)− (D3I)(2, 1)]∏

i<j

Γ

(
δij +

1

2

)
(Pij)

−δij+ 1
2 (4.35)

where

(D3I)(1, 2) =
(∆3 + ∆1 −∆2 − 1)ηA1A2P1M3 − 2(∆3 − 1)δA1

M3
PA2

1

∆3(δ23 − 1
2
)P12P13

. (4.36)

In this form, the three-point vector amplitude can be used in higher-point amplitudes

in much the same way as its scalar counterpart (4.16).

4.4 Four-point Amplitudes

In this section, we calculate scalar and vector four-point amplitudes by sewing

together two three-point amplitudes calculated in section 4.3. Using the results in

appendix C.1, the integrals over AdS space are performed with little effort. In the

vector case, there is an additional type of diagram contributing due to the existence

of a four-point vertex. A quartic interaction can also be added in the scalar case.

The calculation proceeds as in the vector case.
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P1

X

P2

Y

P4 P3

∫
dQ Q

Figure 4.3: The four-point scalar amplitude (4.37).

4.4.1 Scalar amplitudes

The four-point scalar amplitude reads (Fig. 4.3)

A(4,s)(∆1, P1; ∆2, P2; ∆3, P3; ∆4, P4) =
g2∏

i 2π
d/2Γ(∆i + 1− d

2
)

∫
dc

2πi
fδ,0(c)

A4(∆1, P1; ∆2, P2; ∆3, P3; ∆4, P4|c)(4.37)

where

A4(∆1, P1; ∆2, P2; ∆3, P3; ∆4, P4|c) =

∫
∂AdS

dQA3(∆1, P1; ∆2, P2; d/2 + c,Q)

A3(∆3, P3; ∆4, P4; d/2− c,Q) (4.38)

and A3 is given by (4.16). To integrate over Q, we need to calculate

∫
∂AdS

dQ

4∏
i=1

Γ(λi)(−2Q · Pi)−λi , (4.39)

where

λ1 =
∆1 −∆2 + d/2 + c

2
, λ2 =

∆2 −∆1 + d/2 + c

2
, λ3 =

∆3 −∆4 + d/2− c
2

,

λ4 =
∆4 −∆3 + d/2− c

2
(4.40)
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Notice that λ1 + · · ·+ λ4 = d. Using the result (C.10) in the Appendix, we obtain

∫
∂AdS

dQ

4∏
i=1

Γ(λi)(−2Q · Pi)−λi =
πd/2

2

∫ ∏
i<j

dδ̃ijΓ(δ̃ij)P
−δ̃ij
ij (4.41)

where the integration variables are constrained by

∑
j 6=i

δ̃ij = λi . (4.42)

The integration variables are related to the Mandelstam invariants by

δ12 =
∆1 + ∆2 − d/2− c

2
+ δ̃12 , δ34 =

∆3 + ∆4 − d/2 + c

2
+ δ̃34 , (4.43)

and δij = δ̃ij, otherwise. The constraints (4.42) in terms of the standard Mandelstam

variables read ∑
j 6=i

δij = ∆i (4.44)

as expected (Eq. (4.44)).

The four-point function (4.38) becomes

A4({∆i, Pi}|c) =
πd/2

2

∫ ∏
i<j

dδijΓ(δij)M4(δij|c)P
−δij
ij (4.45)

where

M4 =

∏
σ=± Γ(∆1+∆2−d/2+σc

2
)Γ(∆3+∆4−d/2+σc

2
)Γ(δ12 − ∆1+∆2−d/2+σc

2
)

Γ(δ12)Γ(δ34)
(4.46)

Notice that the Mellin transform (4.46) is a function of a single Mandelstam invariant,

δ12, because δ34 and δ12 are related through δ12 − δ34 = ∆1+∆2−∆3−∆4

2
.
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P1, A1, a1

X

P2, A2, a2

P4, A4, a4 P3, A3, a3

Figure 4.4: The four-point vector amplitude contact diagram (4.47).

4.4.2 Vector amplitudes

In the vector case, there are two types of diagrams, and we consider them separately.

First we discuss the four-point diagram due to the four-point gauge interaction (Fig.

4.4). The amplitude is

A(4,v,(a))M1M2M3M4,a1a2a3a4 =

∫
AdS

dX Ia1a2a3a4
A1A2A3A4

4∏
i=1

EMiAi(X,Pi) , (4.47)

where

Ia1a2a3a4
A1A2A3A4

=
(
fa1a4bfa2a3b + fa1a3bfa2a4b

)
ηA1A2ηA3A4 + · · ·+ · · · (4.48)

is independent of the points Pi (i = 1, 2, 3, 4) and X.

The integral over the bulk vector X is of the form (C.12). Using the result (C.16),

we obtain

A(4,v,(a))M1M2M3M4,a1a2a3a4 =
πd/2

2
∏

i 2π
d/2Γ(1 + ∆i − d

2
)

4∏
i=1

DMiAi(∆i, Pi)Aa1a2a3a4
A1A2A3A4

(4.49)

where

Aa1a2a3a4
A1A2A3A4

=

∫
Ma1a2a3a4

A1A2A3A4
(δij)

∏
i<j

Γ(δij)P
−δij
ij dδij (4.50)
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where,

Ma1a2a3a4
A1A2A3A4

= Γ

(∑
i ∆i − d

2

)
Ia1a2a3a4
A1A2A3A4

. (4.51)

On shell (∆i = d− 1, i = 1, 2, 3, 4), this amplitude reads

Aa1a2a3a4
A1A2A3A4

= Γ

(
3d− 4

2

)
Ia1a2a3a4
A1A2A3A4

∫ ∏
i<j

Γ(δij)P
−δij
ij dδij . (4.52)

To use it in a higher-point diagram, we need to act with DM4A4 and eliminate P4 with

a free index. By using the identity (4.9) with ∆ = ∆3, PA = PA3
3 , and F∆3−1(P3) =

P34

∏
i<j P

−δij
ij , we obtain

[
δ13

P34

P13

PA3
1 + δ23

P34

P23

PA3
2 + (δ34 − 1)PA3

4

]∏
i<j

P
−δij
ij = 0 , (4.53)

up to terms which vanish upon acting with DM3A3 . We deduce

PA4
4 ηA3A4 = − 1

δ34 − 1

[
δ13

P1A3

P13

+ δ23
P2A3

P23

]
P34 . (4.54)

Differentiation with respect to P4M4 has the effect of multiplication by a factor given

by

∂

∂P4M4

P34

3∏
i=1

P−δi4i4 = 2

[
δ14

PM4
1

P14

+ δ24
PM4

2

P24

+ (δ34 − 1)
PM4

3

P34

]
P34

3∏
i=1

P−δi4i4 (4.55)

It follows that in the amplitude (4.49),

DM4A4ηA3A4 =
∆4 − 1

∆4

δM4
A3
− 2

∆4

(
δ13

P1A3

P13

+ δ23
P2A3

P23

)
(

δ14

δ34 − 1

P34

P14

PM4
1 +

δ24

δ34 − 1

P34

P24

PM4
2 + PM4

3

)
. (4.56)
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P1, A1, a1

X

P2, A2, a2

Y

P3, A3, a3 P4, A4, a4

∫
dQ Q

Figure 4.5: The four-point vector amplitude with gluon exchange(4.57).

This expression allows us to use this amplitude in the calculation of a higher-point

amplitude in which the leg corresponding to P4 is internal.

Next, we calculate the four-point vector amplitude depicted in Fig. 4.5. We have

A(4,v,(b))M1M2M3M4,a1a2a3a4 = g2fa1a2bfa3a4b

∫
dc

2πi
fδ,1(c)

4∏
i=1

DMiAi(∆i, Pi)AA1A2A3A4({∆i, Pi}|c) (4.57)

where

AA1A2A3A4({∆i, Pi}|c) =

∫
∂AdS

dQηNN ′D
NC(d/2 + c,Q)

AA1A2C(∆1, P1; ∆2, P2; d/2 + c,Q)

×DN ′C′(d/2− c,Q)

AA3A4C′(∆3, P3; ∆4, P4; d/2− c,Q) (4.58)

Using (4.35), we can express this in terms of the scalar functions (4.38). The integral

over Q corresponding to the product of (4.35) and its counterpart in the second
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amplitude (with 1→ 3 and 2→ 4) is

∫
∂AdS

dQ

4∏
i=1

Γ(λi)(−2Pi ·Q)−λi =
πd/2

2

∫ ∏
i<j

dδ̃ijΓ(δ̃ij)P
−δ̃ij
ij (4.59)

where

λ1 =
∆1 −∆2 + d

2
+ c+ 1

2
, λ2 =

∆2 −∆1 + d
2

+ c− 1

2
,

λ3 =
∆3 −∆4 + d

2
− c+ 1

2
, λ4 =

∆4 −∆3 + d
2
− c− 1

2
. (4.60)

The Mandelstam invariants are

δ12 = δ̃12 +
∆1 + ∆2 − d

2
− c+ 1

2
, δ34 = δ̃34 +

∆3 −∆4 − d
2

+ c+ 1

2
, δ13 = δ̃13− 1 ,

(4.61)

and δij = δ̃ij, otherwise.

Thus, the four-point vector amplitude (4.58) can be put in the form (4.45), as in

the scalar case,

AA1A2A3A4({∆i, Pi}|c) =
πd/2

2

∫
MA1A2A3A4(δij|c)

∏
i<j

Γ(δij)P
−δij
ij dδij (4.62)

where

MA1A2A3A4(δij|c) =
(d

2
− 1)2 − c2

d2

4
− c2

[
δ13I(1, 2, 3, 4)− δ14I(1, 2, 4, 3)

−δ23I(2, 1, 3, 4) + δ24I(2, 1, 4, 3)
]
×

M4 , (4.63)

67



M4 is as in the scalar case (Eq. (4.46)), but with the replacements ∆1 → ∆1+1,∆3 →

∆3 + 1, and

I(1, 2, 3, 4) = −
(d

2
+ c−∆1 + ∆2 − 1)(d

2
− c−∆3 + ∆4 − 1)

2[(d
2
− 1)2 − c2]

ηA1A2ηA3A4

−2
d
2

+ c−∆1 + ∆2 − 1
d
2

+ c− 1
ηA1A2

P1A3P3A4

P13

− 2
d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

ηA3A4
P1A2P3A1

P13

+ 4ηA1A3

P1A2P3A4

P13

(4.64)

The above expressions simplify for on-shell amplitudes. Setting ∆i = d − 1 (i =

1, 2, 3, 4), we obtain

MA1A2A3A4(δij|c) =
(d

2
− 1)2 − c2

d2

4
− c2

[
− ηA1A2ηA3A4 − 2ηA1A2

(
P1A3P3A4

P13

+
P2A4P4A3

P24

)
−2ηA3A4

(
P1A2P3A1

P13

+
P2A1P4A2

P24

)
+ 4ηA1A3

P1A2P3A4

P13

+

4ηA2A4

P2A1P4A3

P24

]
δ13M4 − (3←→ 4) , (4.65)

where

M4 =

∏
σ=± Γ2(

3d
2
−1+σc

2
)Γ(δ12 −

3d
2
−1+σc

2
)

Γ2(δ12)
. (4.66)

To use this function in higher-point amplitudes, it is convenient to eliminate all terms

with PAi
4 (i = 1, 2, 3).

By using the identity (4.9) with ∆ = ∆1, PA = PA2
1 , and F∆1(P1) =

PA2
1

∏
i<j P

−δij
ij , we obtain

[
1

2
ηA1A2 +

∑
k 6=1

δ1k
PA1
k PA2

1

P1k

]∏
i<j

P
−δij
ij = 0 . (4.67)
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We deduce from (4.53) and (4.67),

I(1, 2, 4, 3) = −
(d

2
+ c−∆1 + ∆2 − 1)(d

2
− c+ ∆3 −∆4 − 1)

2[(d
2
− 1)2 − c2]

ηA1A2ηA3A4

− 2

δ34 − 1

(
2ηA1A4P1A2 −

d
2

+ c−∆1 + ∆2 − 1
d
2

+ c− 1
ηA1A2P1A4

)
(
δ13

P1A3

P13

+ δ23
P2A3

P23

)
P34

P14

+
2

δ14

d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

ηA3A4

(
1

2
ηA1A2 + δ12

P2A1P1A2

P12

+ δ13
P3A1P1A2

P13

)
(4.68)

and similarly for I(2, 1, 4, 3). I(1, 2, 3, 4) and I(2, 1, 3, 4) are unaltered.

Next we act with DM4A4 . We have

PA4
4 I(1, 2, 3, 4) = −

(d
2

+ c−∆1 + ∆2 − 1)d
2
− c−∆3 + ∆4 − 1)

2[(d
2
− 1)2 − c2]

ηA1A2P4A3

+
d
2

+ c−∆1 + ∆2 − 1
d
2

+ c− 1
ηA1A2P1A3

P34

P13

− 2
d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

P4A3P1A2P3A1

P13

+ 4ηA1A3P1A2

P34

P13

(4.69)

and

PA4
4 I(1, 2, 4, 3) = −

(d
2

+ c−∆1 + ∆2 − 1)(d
2
− c+ ∆3 −∆4 − 1)

2[(d
2
− 1)2 − c2]

ηA1A2P4A3

− 1

δ34 − 1

(
4P4A1P1A2 +

d
2

+ c−∆1 + ∆2 − 1
d
2

+ c− 1
ηA1A2P14

)
(
δ13

P1A3

P13

+ δ23
P2A3

P23

)
P34

P14

+
2

δ14

d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

P4A3(
ηA1A2 + δ12

P2A1P1A2

P12

+ δ13
P3A1P1A2

P13

)
(4.70)

and similarly for PA4
4 I(2, 1, 3, 4) and PA4

4 I(2, 1, 4, 3).
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P4 with a free index is eliminated from (4.69) using (4.53) and

[
1

2
ηA1A3 + (δ13 + 1)

PA1
3 PA3

1

P13

+ δ23
PA1

3 PA3
2

P23

+ (δ34 − 1)
PA1

3 PA3
4

P34

]
P34

P13

∏
i<j

P
−δij
ij = 0 .

(4.71)

We obtain

P13

P34

PA4
4 I(1, 2, 3, 4) =

(d
2

+ c−∆1 + ∆2 − 1)(d
2
− c−∆3 + ∆4 − 1)

2(δ34 − 1)[(d
2
− 1)2 − c2]

ηA1A2(
δ13P1A3 + δ23

P13

P23

P2A3

)
+

d
2

+ c−∆1 + ∆2 − 1
d
2

+ c− 1
ηA1A2P1A3

+4ηA1A3P1A2 +
2

δ34 − 1

d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

P1A2(
1

2
ηA1A3 + (δ13 + 1)

P3A1P1A3

P13

+ δ23
P3A1P2A3

P23

)
. (4.72)

Notice that P4 only enters through an overall factor of P34.

Similarly, P4 is eliminated from (4.70) using (4.53), (4.67), (4.71), and

[
1

2
ηA1A2PA3

1 +
1

2
ηA1A3PA2

1 +

(
δ12

PA1
2

P12

+ (δ13 + 1)
PA1

3

P13

+ δ14
PA1

4

P14

)
PA2

1 PA3
1

]
1

P13

∏
i<j

P
−δij
ij = 0 . (4.73)
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We obtain

P13

P34

PA4
4 I(1, 2, 4, 3) =

(d
2

+ c−∆1 + ∆2 − 1)(d
2
− c+ ∆3 −∆4 − 1)

2(δ34 − 1)[(d
2
− 1)2 − c2]

ηA1A2

(
δ13P1A3 + δ23

P13

P23

P2A3

)
+

4δ13

δ14(δ34 − 1)

[1

2
ηA1A2P1A3 +

1

2
ηA1A3P1A2 +

(
δ12

P2A1

P12

+ (δ13 + 1)
P3A1

P13

)
P1A2P1A3

]
+

4δ23

δ14(δ34 − 1)

P2A3

P23

P13

(
1

2
ηA1A2 + δ12

P2A1P1A2

P12

+ δ13
P3A1P1A2

P13

)
− 1

δ34 − 1

d
2

+ c−∆1 + ∆2 − 1
d
2

+ c− 1
ηA1A2

(
δ13P1A3 + δ23

P13

P23

P2A3

)
− 2

δ14(δ34 − 1)

d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

(
ηA1A2 + δ12

P2A1P1A2

P12

)
(
δ13P1A3 + δ23

P13

P23

P2A3

)
− 2δ13

δ14(δ34 − 1)

d
2
− c−∆3 + ∆4 − 1

d
2
− c− 1

P1A2(
1

2
ηA1A3 + (δ13 + 1)

P3A1P1A3

P13

+ δ23
P3A1P2A3

P23

)
(4.74)

Again, P4 only enters through an overall factor of P34. It follows that the part of the

amplitude involving P4 is P34

∏3
i=1 P

−δi4
i4 . Therefore, differentiation with respect to

P4M4 has the effect of multiplication by an overall factor,

∂

∂P4M4

P34

3∏
i=1

P−δi4i4 = 2

[
δ14

PM4
1

P14

+ δ24
PM4

2

P24

+ (δ34 − 1)
PM4

3

P34

]
P34

3∏
i=1

P−δi4i4 (4.75)

The amplitude with DM4A4 acted upon is given by

DM4A4AA1A2A3A4({∆i, Pi}|c) =
πd/2

2

∫
(D4M)M4

A1A2A3
(δij|c)

∏
i<j

P
−δij
ij Γ(δij)dδij (4.76)

71



where

(D4M)M4
A1A2A3

=
[∆4 − 1

∆4

ηM4A4 +
2

∆4

(
δ14P

M4
1

P34

P14

+ δ24P
M4
2

P34

P24

+ (δ34 − 1)PM4
3

)
P4A4

P34

]
MA1A2A3A4(δij|c) . (4.77)

In the above expression, the only dependence on P4 is through the ratios P34

P14
and

P34

P24
. This expression will be used in the calculation of five- and higher-point vector

amplitudes.

4.5 Five-point Amplitudes

In this section, we calculate scalar and vector five-point amplitudes by sewing together

three- and four-point amplitudes. The integrals over AdS space that are involved are

similar to the ones encountered in the case of four-point amplitudes in section 4.4

and can be performed using the results of appendix C.1 without additional effort.

The Mellin amplitudes are found as integrals over the Mandelstam invariants of the

constituent four-point amplitudes. These integrals can all be performed, resulting

in expressions involving generalized Hypergeometric functions. Thus, our approach

provides an alternative to integration over Schwinger parameters [75].

4.5.1 Scalar amplitudes

The five-point scalar amplitude (Fig. 4.6) reads

A(5,s)(∆1, P1; . . . ; ∆5, P5) =
g3∏

i 2π
d/2Γ(∆i + 1− d/2)

∫
dcdc′

(2πi)2
fδ1,0(c)fδ2,0(c′)

A5({∆i, P1}|c, c′) (4.78)
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P2
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Z

Y

P3

∫
dQ Q

Figure 4.6: The five-point scalar amplitude (4.107).

where

A5({∆i, Pi}|c, c′) =

∫
∂AdS

dQ A4(∆1, P1; ∆2, P2; ∆3, P3; d/2 + c′, Q|c)

A3(∆4, P4; ∆5, P5; d/2− c′, Q) (4.79)

The integral over Q involves

∫
∂AdS

dQ
5∏
i=1

Γ(λi)(−2Q · Pi)−λi (4.80)

where

λ1 = δ′14 , λ2 = δ′24 , λ3 = δ′34 , λ4 =
∆4 −∆5 + d

2
− c′

2
, λ5 =

∆5 −∆4 + d
2
− c′

2
(4.81)

and δ′ij are the Mandelstam invariants for the four-point function constrained by

δ′12 + δ′13 + δ′14 = ∆1

δ′12 + δ′23 + δ′24 = ∆2

δ′13 + δ′23 + δ′34 = ∆3

δ′14 + δ′24 + δ′34 = h+ c′ (4.82)
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Working as before, we obtain

∫
∂AdS

dQ
5∏
i=1

Γ(λi)(−2Q · Pi)−λi =
πd/2

2

∫ ∏
i<j

dδ̃ijΓ(δ̃ij)P
−δ̃ij
ij (4.83)

where the integration variables are constrained by

∑
j 6=i

δ̃ij = λi . (4.84)

The part of the amplitude involving the vectors Pi is

P
−δ′12
12 P

−δ′13
13 P

−δ′23
23 P

−∆4+∆5−d/2+c′
2

45

∏
i<j

P
−δ̃ij
ij =

∏
i<j

P
−δij
ij (4.85)

where δij are the Mandelstam invariants defined by

δ12 = δ̃12 + δ′12 , δ23 = δ̃23 + δ′23 , δ13 = δ̃13 + δ′13 , δ45 = δ̃45 +
∆4 + ∆5 − d/2 + c′

2
,

(4.86)

and δij = δ̃ij, otherwise. It is easily seen that they obey the standard constraints

(4.44).

The five-point function simplifies to

A5({∆i, Pi}|c, c′) =
πd/2

2

∫ ∏
i<j

dδijΓ(δij)M5(δij|c, c′)P
−δij
ij (4.87)

where

M5(δij|c, c′) =

∫ ∏
i<j

dδ′ij
Γ(δ12 − δ′12)Γ(δ′12)Γ(δ23 − δ′23)Γ(δ′23)Γ(δ13 − δ′13)Γ(δ′13)

Γ(δ12)Γ(δ23)Γ(δ13)

×
Γ(δ45 − ∆4+∆5−d/2+c′

2
)Γ(∆4+∆5−d/2+c′

2
)

Γ(δ45)
M4(δ′12|c)M3 (4.88)
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and

M3 = Γ

(
∆4 + ∆5 − d

2
− c′

2

)
(4.89)

M4(δ′12|c) =

∏
σ=± Γ(∆1+∆2−d/2+σc

2
)Γ(∆3+c′+σc

2
)Γ(δ′12 −

∆1+∆2−d/2+σc
2

)

Γ(δ′12)Γ(δ′34)
(4.90)

with δ′34 = δ′12 −
∆1+∆2−∆3−d/2−c′

2
, δ′23 = ∆1+∆2+∆3−d/2−c′

2
− δ′12 − δ′13.

The two integrals in (4.88) are performed as follows. From Barnes first lemma,

we have

∫
dδ′13

2πi

Γ(δ′23)Γ(δ23 − δ′23)Γ(δ′13)Γ(δ13 − δ′13)

Γ(δ13)Γ(δ23)
=

Γ(δ13 + δ23 − ∆1+∆2+∆3−d/2−c′
2

+ δ′12)Γ(∆1+∆2+∆3−d/2−c′
2

− δ′12)

Γ(δ13 + δ23)
. (4.91)

Next, we need

F =

∫
dδ′12

2πi

Γ(δ′12 + δ13 + δ23 − ∆1+∆2+∆3−d/2−c′
2

)

Γ(δ13 + δ23)

Γ(∆1+∆2+∆3−d/2−c′
2

− δ′12)Γ(δ12 − δ′12)

Γ(δ′12 −
∆1+∆2−∆3−d/2−c′

2
)

×
∏
σ=±

Γ

(
δ′12 −

∆1 + ∆2 − d
2

+ σc

2

)
. (4.92)

This is calculated with the aid of the identity

∫
ds

2πi

Γ(a+ s)Γ(b+ s)Γ(f − c+ s)Γ(e− a− b− s)Γ(−s)
Γ(f + s)

=

Γ(a)Γ(b)Γ(e− a)Γ(e− b)Γ(f − c)
Γ(e)Γ(f)

3F2

 a, b, c

e, f

 . (4.93)
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where 3F2

 a, b, c

e, f

 = 3F2(a, b, c; e, f ; 1). We obtain

F =
Γ(δ45 − ∆4+∆5−d/2−c′

2
)Γ(∆3+c−c′

2
)
∏

σ=± Γ(δ12 −
∆1+∆2− d2 +σc

2
)

Γ(δ45 − ∆4+∆5−∆3−d/2−c
2

)Γ(δ12 − ∆1+∆2−∆3−d/2−c′
2

)

×3F2

 δ45 − ∆4+∆5−d/2−c′
2

, δ12 −
∆1+∆2− d2−c

2
, ∆3+c′+c

2

δ45 − ∆4+∆5−∆3−d/2−c
2

, δ12 − ∆1+∆2−∆3−d/2−c′
2

 . (4.94)

where we used δ12 + δ13 + δ23 − ∆1+∆2

2
= δ45 − ∆4+∆5

2
. Therefore,

M5(δij|c, c′) =
Γ(∆3+c−c′

2
)
∏

σ=± Γ(δ12 − ∆1+∆2−d/2+σc
2

)Γ(δ45 −
∆4+∆5− d2 +σc′

2
)

Γ(δ12)Γ(δ12 − ∆1+∆2−∆3−d/2−c′
2

)Γ(δ45)Γ(δ45 − ∆4+∆5−∆3−d/2−c
2

)

×
∏
σ=±

Γ

(
∆3 + σc+ c′

2

)
Γ

(
∆1 + ∆2 − d

2
+ σc

2

)

Γ

(
∆4 + ∆5 − d

2
+ σc′

2

)

×3F2

 δ45 − ∆4+∆5−d/2−c′
2

, δ12 −
∆1+∆2− d2−c

2
, ∆3+c′+c

2

δ45 − ∆4+∆5−∆3−d/2−c
2

, δ12 − ∆1+∆2−∆3−d/2−c′
2

 . (4.95)

4.5.2 Vector amplitudes

In order to avoid an unnecessarily long calculation, we restrict attention to the case

of on-shell amplitudes by setting ∆i = d − 1 (i = 1, . . . , 5). There are two different

diagrams which we need to consider separately.

The diagram depicted in figure 4.7 has amplitude

A(5,v,(a))M1...M5,a1...a5 = g3

∫
dc

2πi
fδ,1(c)

5∏
i=1

DMiAi(∆i, Pi)Aa1a2a3a4a5
A1A2A3A4A5

({∆i, Pi}|c)

(4.96)
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Y
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Figure 4.7: An example of the five-point vector amplitude (4.96).

where

Aa1a2a3a4a5
A1A2A3A4A5

({∆i, Pi}|c) =

∫
∂AdS

dQηNN ′D
NC(h+ c,Q)

Aa1a2a3b
A1A2A3C

(∆1, P1; ∆2, P2; ∆3, P3; d/2 + c,Q)

×DN ′C′(d/2− c,Q)fa4a5b

AA4A5C′(∆4, P4; ∆5, P5; d/2− c,Q) . (4.97)

The three-point amplitude in (4.97) simplifies to

DN ′C′(d/2− c,Q)AA4A5C′ =
2

d
2
− c

Γ

(
3d
2
− c− 1

2

)
Γ

(
3d
2

+ c− 1

2

)
Γ2

(
d
2
− c+ 1

2

)

×
[
ηA4A5P

N ′

4 − 2δN
′

A4
P4A5

]
P
−

3d
2 +c+1

2
45 (−2P4 ·Q)−

d
2−c+1

2

(−2P5 ·Q)−
d
2−c−1

2 .− (4←→ 5) (4.98)
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The four-point amplitude in (4.97) simplifies to

DNC(d/2 + c,Q)Aa1a2a3b
A1A2A3C

=
(
fa1bb′fa2a3b′ + fa1a3b′fa2bb′

)
∫

(D4M)NA1A2A3
(δ′ij|c)

∏
i<j

P
−δ′ij
ij Γ(δ′ij)dδ

′
ij +

· · ·+ · · · (4.99)

where

(D4M)NA1A2A3
= Γ

(
5d
2
− 3 + c

2

)
ηA1A2

[ d
2

+ c− 1
d
2

+ c
δNA3

− 2
d
2

+ c

(
δ′13

P1A3

P13

+ δ′23

P2A3

P23

)
(

δ′14

δ′34 − 1

P3 ·Q
P1 ·Q

PN
1 +

δ′24

δ′34 − 1

P3 ·Q
P2 ·Q

PN
2 + PN

3

)]
. (4.100)

The integral over Q involves

∫
∂AdS

dQ
5∏
i=1

Γ(λi)(−2Q · Pi)−λi =
πd/2

2

∫ ∏
i<j

dδ̃ij
2πi

Γ(δ̃ij)P
−δ̃ij
ij (4.101)

where

λ1 = δ′14 + n1 , λ2 = δ′24 + n2 , λ3 = δ′34 + n3 , λ4 =
d
2
− c+ 1

2
, λ5 =

d
2
− c− 1

2
(4.102)

and δ′ij are the Mandelstam invariants for the four-point function, as in the scalar

case. The various terms have ni ∈ {−1, 0,+1}, with
∑

i ni = 0 (i = 1, 2, 3). The

integration variables are constrained by

∑
j 6=i

δ̃ij = λi . (4.103)
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In terms of the Mandelstam invariants,

δ̃12 = δ12 − δ′12 , δ̃23 = δ23 − δ′23 , δ̃13 = δ13 − δ′13 , δ̃45 = δ45 −
3d
2

+ c− 3

2
,

δ̃i4 = δi4 + ni (i = 1, 2, 3) , (4.104)

and δ̃ij = δij, otherwise.

We arrive at

AA1A2A3A4A5 =
πd/2

2

∫ ∏
i<j

dδ̃ij
2πi

Γ(δ̃ij)P
−δ̃ij
ij

×
[ (
fa1b′bfa2a3b + fa1a3bfa2b′b

)
f b
′a4a5MA1...A5 +

permutations of (123)− (4←→ 5)
]

(4.105)

where

MA1...A5 =
d
2
− c− 1
d
2
− c

Γ

(
3d
2
− c− 1

2

)
Γ

(
3d
2

+ c− 1

2

)
Γ

(
5d
2
− 3 + c

2

)
ηA1A2 [ηA4A5P4N − 2ηA4NP4A5 ]

×
∫ ∏

i<j

dδ′ij
Γ(δ12 − δ′12)Γ(δ′12)Γ(δ23 − δ′23)Γ(δ′23)Γ(δ13 − δ′13)Γ(δ′13)Γ(δ45 −

3d
2

+c−3

2
)

Γ(δ12)Γ(δ23)Γ(δ13)Γ(δ45)

×

[
d
2

+ c− 1
d
2

+ c
δNA3
− 2

d
2

+ c

(
δ′13

P1A3

P13

+ δ′23

P2A3

P23

)(
δ14

δ34 − 1
PN

1 +
δ24

δ34 − 1
PN

2 + PN
3

)]
(4.106)

The integrals over the four-point Mandelstam invariants δ′ij can be performed as in

the scalar case.
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Figure 4.8: Another example of five-point vector amplitude (4.107).

Next, we turn to the diagram depicted in figure 4.8. It is given by (suppressing

standard group theory indices)

A(5,v,(b))M1M2M3M4M5 = g3

∫
dcdc′

(2πi)2
fδ,1(c)fδ,1(c′)

5∏
i=1

DMiAi(∆i, Pi)

AA1A2A3A4A5({∆i, Pi}|c, c′) (4.107)

where

AA1A2A3A4A5({∆i, Pi}|c, c′) =

∫
∂AdS

dQηNN ′D
NC(d/2 + c,Q)

AA1A2A3C(∆1, P1; ∆2, P2; ∆3, P3; d/2 + c,Q|c′)

×DN ′C′(h− c′, Q)

AA4A5C′(∆4, P4; ∆5, P5; d/2− c,Q) (4.108)

The three-point amplitude in (4.108) is given by (4.98). The four-point amplitude

simplifies to

DNC(d/2 + c,Q)AA1A2A3C =

∫
(D4M)NA1A2A3

(δ′ij|c′)
∏
i<j

P
−δ′ij
ij Γ(δ′ij)dδ

′
ij (4.109)
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where

(D4M)NA1A2A3
=

d
2

+ c− 1
d
2

+ c
ηNCMA1A2A3C −

1
d
2

+ c

(
δ′14P

N
1

P3 ·Q
P1 ·Q

+ δ′24P
N
2

P3 ·Q
P2 ·Q

+ (δ′34 − 1)PN
3

)
QC

P3 ·Q
MA1A2A3C (4.110)

MA1A2A3C =
(d

2
− 1)2 − c′2
d2

4
− c′2

[I(1, 2, 3, 4)δ′13 + I(1, 2, 4, 3)δ′14 − (1←→ 2)]

×
∏

σ=± Γ(
3d
2

+σc′−1

2
)Γ(d+c+σc′

2
)Γ(δ′12 −

3d
2

+σc′−1

2
)

Γ(δ′12)Γ(δ′12 + 1−
d
2

+h−c+1

2
)

(4.111)

I(1, 2, 3, 4) =

− c− c′

d− 2(c′ + 1)
ηA1A2ηA3C − 2ηA1A2

P1A3P3C

P13

+ 4ηA1A3

P1A2P3C

P13

− 2
c− c′

d
2
− c′ − 1

ηA3C
P1A2P3A1

P13

(4.112)

I(1, 2, 4, 3) =

c+ c′ − d+ 2

d− 2(c′ + 1)
ηA1A2ηA3C −

2

δ′34 − 1
(2ηA1A4P1A2 − ηA1A2P1C)

(
δ′13

P1A3

P13

+ δ′23

P2A3

P23

)
P3 ·Q
P1 ·Q

− 2

δ′14

c+ c′

d
2
− c′ − 1

ηA3C

(
1

2
ηA1A2 + δ′12

P2A1P1A2

P12

+ δ′13

P3A1P1A2

P13

)
(4.113)
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P13

−2P3 ·Q
QCI(1, 2, 3, 4)

=
c− c′

(δ′34 − 1)(d− 2(c′ + 1))
ηA1A2

(
δ′13P1A3 + δ′23

P13

P23

P2A3

)
+ ηA1A2P1A3 + 4ηA1A3P1A2

+
2

δ′34 − 1

c− c′
d
2
− c′ − 1

P1A2

(
1

2
ηA1A3 + (δ′13 + 1)

P3A1P1A3

P13

+ δ′23

P3A1P2A3

P23

)
(4.114)

and

P13

−2P3 ·Q
QCI(1, 2, 4, 3) =

− c+ c′ − d+ 2

(δ′34 − 1)(d− 2(c′ + 1))
ηA1A2

(
δ′13P1A3 + δ′23

P13

P23

P2A3

)
− 1

δ′34 − 1
ηA1A2

(
δ′13P1A3 + δ′23

P13

P23

P2A3

)
+

4δ′13

δ′14(δ′34 − 1)

[
1

2
ηA1A2P1A3 +

1

2
ηA1A3P1A2 +

(
δ′12

P2A1

P12

+ (δ′13 + 1)
P3A1

P13

)
P1A2P1A3

]
+

4δ′23

δ′14(δ′34 − 1)

P2A3

P23

P13

(
1

2
ηA1A2 + δ′12

P2A1P1A2

P12

+ δ′13

P3A1P1A2

P13

)
− 2

δ′14(δ′34 − 1)

c− c′
d
2
− c′ − 1

(
ηA1A2 + δ12

P2A1P1A2

P12

)(
δ′13P1A3 + δ′23

P13

P23

P2A3

)
− 2δ′13

δ′14(δ′34 − 1)

c− c′
d
2
− c′ − 1

P1A2

(
1

2
ηA1A3 + (δ′13 + 1)

P3A1P1A3

P13

+ δ′23

P3A1P2A3

P23

)
(4.115)

The integral over Q is of the same form as before (Eq. (4.101) with exponents given by

(4.102)). However, this case is slightly more complicated because ni ∈ {0,±1,±2},∑
i ni = 0 (i = 1, 2, 3). The integration variables are constrained by (4.103), and are

given in terms of the Mandelstam invariants by (4.104).
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4.6 Higher-point amplitudes

In this section, we suppress group theory indices, as they are not involved in the

calculations except as constant factors. Thus, but amplitude we mean a sub-

amplitude with a given group theory structure.

Higher point amplitudes can be calculated recursively by sewing together dia-

grams. Consider two scalar diagrams with N1 and N2 external legs, respectively.

Suppose they have been calculated and put in the form

AN1s(∆1, P1; . . . ; ∆N1 , PN1) =
gN1−2∏

i 2π
d/2Γ(∆i + 1− d

2
)

∫
[dc′]AN1({∆i, Pi}|[c′])

(4.116)

with

AN1({∆i, Pi}|[c′]) =
πd/2

2

∫
MN1(δ′ij|[c′])

∏
i<j

Γ(δ′ij)P
−δ′ij
ij dδ′ij ,

∑
i 6=j

δ′ij = ∆i (4.117)

and similarly

AN2s(∆
′
1, P

′
1; . . . ; ∆′N2

, P ′N2
) =

gN2−2∏
i 2π

d/2Γ(∆′i + 1− d
2
)

∫
[dc′′]AN2({∆′i, P ′i}|[c′′])

(4.118)

with

AN2({∆′i, P ′i}|[c′′]) =
πd/2

2

∫
MN2(δ′′ij|[c′′])

∏
i<j

Γ(δ′′ij)(P
′
ij)
−δ′′ijdδ′′ij ,

∑
i 6=j

δ′′ij = ∆′i .

(4.119)

After sewing together the last two legs in the respective diagrams, we create a N -point

diagram with N = N1 +N2 − 2. Its amplitude is given by

ANs(∆1, P1; . . . ; ∆N , PN) =
gN−2∏

i 2π
d/2Γ(∆i + 1− d

2
)

∫
[dc′][dc′′]

dc

2πi
fδ,0(c)

AN({∆i, Pi}|[c′], [c′′], c) (4.120)
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with

AN =

∫
∂AdS

dQAN1(∆1, P1; . . . ; ∆N1−1, PN1−1; d/2 + c,Q|[c′])

AN2(∆N1 , PN1 ; . . . ; ∆N , PN ; d/2− c,Q|[c′′]) . (4.121)

The integral over Q involves

∫
∂AdS

dQ
N∏
i=1

Γ(λi)(−2Q · Pi)−λi =
πd/2

2

∫ ∏
i<j

dδ̃ijΓ(δ̃ij)P
−δ̃ij
ij (4.122)

with
∑

j 6=i δ̃ij = λi, and

λi = δ′iN1
(i = 1, . . . , N1 − 1) , λN1+i = δ′′iN2

(i = 1, . . . , N2 − 1) . (4.123)

Then the part of the amplitude involving the vectors Pi is(
N1−1∏
i<j

P
−δ′ij
ij

)(
N2−1∏
i<j

P
−δ′′ij
N1+i−1N1+j−1

)(
N∏
i<j

P
−δ̃ij
ij

)
=
∏
i<j

P
−δij
ij (4.124)

where δij are the Mandelstam invariants for the N -point amplitude given by

δij = δ̃ij + δ′ij (i, j = 1, . . . , N1 − 1) ,

δN1+i−1N1+j−1 = δ̃N1+i−1N1+j−1 + δ′′ij (i, j = 1, . . . , N2 − 1) , (4.125)

and δij = δ̃ij, otherwise. They obey the constraints
∑

i 6=j δij = ∆i, as can easily be

checked.

It follows that the N -point amplitude can be cast in the form

AN =
πd/2

2

∫
MN

∏
i<j

Γ(δij)P
−δij
ij dδij (4.126)
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where

MN =
πd/2

2

∫
dδ′ij

∫
dδ′′ij

N1−1∏
i<j

Γ(δij − δ′ij)Γ(δ′ij)

Γ(δij)

N2−1∏
i<j

Γ(δN1+i−1N1+j−1 − δ′′ij)Γ(δ′′ij)

Γ(δN1+i−1N1+j−1)
MN1MN2 (4.127)

The above procedure can be applied to the the case of vector amplitudes which can

thus be written in the form (4.126). In the vector case, a N1-point diagram is given

by

A
M1···MN1
N1v

(∆1, P1; . . . ; ∆N1 , PN1) =

∫
[dc′]

N1∏
i=1

DMiAi(∆i, Pi)AA1···AN1
({∆i, Pi}|[c′])

(4.128)

with

AA1···AN1
({∆i, Pi}|[c′]) =

πd/2

2

∫
MA1···AN1

(δ′ij|[c′])
∏
i<j

Γ(δ′ij)P
−δ′ij
ij dδ′ij . (4.129)

Similarly, a N2-point diagram is given by

A
M1···MN2
N2v

(∆′1, P
′
1; . . . ; ∆′N1

, P ′N1
) =

∫
[dc′′]

N2∏
i=1

DMiAi(∆′i, P
′
i )AA1···AN1

({∆′i, P ′i}|[c′])

(4.130)

with

AA1···AN1
({∆′i, P ′i}|[c′′]) =

πd/2

2

∫
MA1···AN1

(δ′′ij|[c′′])
∏
i<j

Γ(δ′′ij)(P
′
ij)
−δ′′ijdδ′′ij . (4.131)

By sewing together these two diagrams, we obtain a N -point vector diagram of

amplitude

AM1···MN
Nv (∆1, P1; . . . ; ∆N , PN) =

∫
[dc′][dc′′]

dc

2πi
fδ,1(c)

N∏
i=1

DMiAi(∆i, Pi)

AA1···AN ({∆i, Pi}|[c′], [c′′], c) (4.132)
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with

AA1···AN =

∫
∂AdS

dQηMM ′D
MC(d/2 + c,Q)

AA1···AN1−1C(∆1, P1; . . . ; ∆N1−1, PN1−1; d/2 + c,Q|[c′])×DM ′C′(d/2− c,Q)

AA1···AN2−1C′(∆N1 , PN1 ; . . . ; ∆N , PN ; d/2− c,Q|[c′′]) . (4.133)

The integration overQ can be performed in the same way as in the scalar case provided

Q only appears in dot products (as in Pi ·Q, and no terms with Q with a free index

exist). This can be ensured by the repeated application of the identity (4.9), as we

have already demonstrated. This leads to expressions for the two factors in (4.133),

DMCAA1···AN1−1C and DM ′C′AA1···AN2−1C′ , respectively, containing no Q with a free

index.

After integrating over Q, we arrive at an expression for the amplitude of the form

AA1···AN =
πd/2

2

∫
MA1···AN

∏
i<j

Γ(δij)P
−δij
ij dδij (4.134)

whereMA1···AN is given in terms of the same functions as in the scalar case.

To complete the iteration, we need to apply the identity (4.9) again, as many times

as needed, on DMiAiAA1···AN , in order to eliminate all occurrences of Q with a free

index. The resulting expressions can then be used for the calculation of higher-point

amplitudes.

4.7 Conclusion

We discussed an iterative method of calculation of Witten diagrams in AdS space

based on the formalism developed in [75]. We applied our method to scalar and

vector fields and showed that they can both be written in terms of Mellin amplitudes

which can be computed explicitly. We showed how this is done in detail for three-

, four-, and five-point diagrams. We demonstrated that the index structure in the
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vector case did not present additional difficulties in the calculation of integrals over

AdS space, by taking advantage of the conformal structure of the amplitudes.

Our method can be straightforwardly generalized to higher-spin fields (calculation

of correlators of stress-energy tensors, etc). As it provides a systematic way of

calculating diagrams, which appears to be uniformly applicable to fields of any spin, it

would be interesting to use our method toward the development of general Feynman

rules for the calculation of Witten diagrams. Work in this direction is in progress.
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Chapter 5

Discussion and Outlook

In chapter 3 we studied scattering amplitudes in flat space. The loop integrand

is a rational function of both the internal momenta and the external kinematical

variables. Just as the BCFW recursion relation allows us to compute a rational

function from its poles under a complex shift, our goal was to treat loop integrands

as tree amplitudes, which could then be calculated efficiently with the on-shell

recursion relation. We encountered three subtle obstacles. First, the unintegrated

internal momenta in integrands of loop amplitudes are merely dummy variables, and

shifting them by arbitrary momenta yields the same answer after integration. It

was therefore important for us to choose unambiguous internal momenta appropriate

for our analysis. Second, after a single cut of internal momentum, loop amplitudes

expressed as tree amplitudes often present a singularity known as a forward limit.

We can see this in a Feynman diagram: if adjacent legs are attached to the same

external line, conservation of momentum produces a 1/p2 singularity when p 7→ 0.

We needed to ensure that singularities resulting from the forward limit did not affect

our analysis. Third, we intended to use the BCFW on-shell recursion relation to

express loop integrands as products of lower-point amplitudes. To do so, we needed

to ensure vanishing large z behavior by avoiding poles at infinity. The solutions to

these problems were as subtle as the problems themselves. We resolved the ambiguity
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of loop momenta by cutting the integrand with two adjacent shifts. We then checked

the large z behavior to ensure the integrand had no poles from infinity. To obtain

a good large z behavior, we chose an appropriate basis for polarization vectors. We

found that divergences from the forward limit can be eliminated after integration

over the loop momenta. ∗ We can now treat loop integrands as factorized lower-point

integrands using the on-shell recursion relation. We found explicit recursion relations

for two-, three-, and four-point one-loop gauge theory amplitudes. As most of our

analysis should work for higher-loop amplitudes as well, in the future we would like

to calculate specific examples. This analysis can also be used to compute leading and

next-to-leading order corrections to QCD backgrounds in high-energy colliders.

There has been considerable work in the calculation of tree-level scattering

amplitudes for gravitons, in which we see structures that are not transparent at

the level of the Lagrangian. [39, 40, 41, 42]. It is an intriguing aspect of on-shell

recursion relations that they eliminate the need for infinitely many interaction terms.

We would like to use recursive techniques to study graviton loop amplitudes. The

first step in this exploration will be to calculate one-loop graviton amplitudes. Many

of the methods developed in the present work are transferable to such an exploration.

Our construction of one-loop Yang-Mills amplitudes as a sum over elementary

building blocks will, beside its use with graviton amplitudes, help build more

complicated on-shell processes for theories with less-than-maximal supersymmetry.

Over the years, physicists have made remarkable progress in expressing amplitudes

in terms of geometric structures such as twistors, the positive Grassmanian, and the

amplituhedron [14, 17, 84], but most of this progress has been in specialized theories

containing maximum possible supersymmetry. It would be extremely interesting to

investigate whether we could express pure Yang-Mills theory and QCD amplitudes in

terms of such nifty geometric structures.
∗ In general, loop amplitudes can be written in terms of rational functions of kinematical terms

and scalar integrals such as box integrals, triangle integrals, and bubble integrals. The bubble-
integral basis does not contribute to the amplitudes, and the forward limit corresponding to these
bubble diagrams vanishes after integration over loop momenta.
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In chapter 4, we presented a new tool for studying scattering amplitudes in AdS

space. We were inspired by the dramatic progress in S-Matrix theory in flat space,

which was made possible by the study of hidden symmetries, recursion relations, and

well-chosen representations such as twistors. We began our investigation in a similar

spirit by studying Mellin representation of AdS amplitudes in embedding space. This

new formalism teaches us about both quantum gravity in asymptotically Anti-de

Sitter spaces and conformal field theories with gravity duals. We found it a very

useful framework for AdS amplitudes, which are correlation functions in conformal

field theory. We also discovered that the Mellin representation is structurally identical

to the momentum representation used to calculate flat-space S-matrix elements.

Mellin space is a very exciting representation with which to do calculations, and it

seems the value of this space will be explored in different contexts in the coming the

years. Already there has been renewed interest in studying supergravity amplitudes

in terms of Mellin representations [82]. Furthermore, some study of Mellin space

and Grassmanian has been done in [83], which suggests Mellin space has broader

application in physics than the calculation of AdS amplitudes.

We are eager in future work to explore the fascinating similarities between

Mellin space for Anti-de Sitter space and momentum space in flat- space scattering

amplitudes. We have already seen structures remarkably similar to Mandelstam

invariants in flat-space scattering amplitudes. It is natural to ask whether we could

use this formalism to compute scattering amplitudes in AdS space for higher-spin

particles. Some work in calculating AdS amplitudes for gravitons has been done in

[68, 70], wherein computation is done in momentum space. But we would like to use

the analytical tools developed in this work to investigate graviton scattering in AdS,

which are correlators of stress tensors in CFT. Recently there has been significant

progress in higher-spin massless theories (see [90] and the references therein). These

higher-spin theories could be plausibly written in terms of Mellin space.

Futhermore, Penedones has conjectured that in the high-energy limit, where the

δij parameters become large, the Mellin amplitudes reduce to flat-space amplitudes
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of massless particles [62]. In this sense, AdS space can be thought of as naturally

providing an IR cut-off for flat-space amplitudes. Penedones’s work is still in progress,

but our results seem to agree with it. The obvious next step is to see if curvature of

AdS space can be thought of as a regulator. We also hope to address the problem of

bulk locality [86, 87, 88, 89]. Is the interaction that occurs inside the Anti-de Sitter

space local? This is an interesting and important question. We believe that Mellin

representation will illuminate these matters.
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Appendix A

Computational tools

A.1 Spinor Helicity Formalism

Momentum can be written as a four-vector, i.e.,

pαα̇ = pµ(σµ)αα̇ = (p0I − piσi)αα̇ =

 p0 − p3 −(p1 − ip2)

−(p1 + ip2) p0 + ip3

 (A.1)

Hence, one can write down momentum in a 2× 2 matrix. Then, one can write down

a determinant of the matrix in the following way:

det(pµp
µ) = 0 (A.2)

In terms of the linear algebra, the matrix is rank 1 and hence can be written as a

two- component spinor.

pαα̇ = λαλ̃α̇ (A.3)

Without any loss of generality let’s consider the following. Say p0 = E > 0 and p is

pointing in the third direction. Then,
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pαα̇ =

E − p 0

0 E + p

 (A.4)

Then one can write,

p = 2E

0 0

0 1

 (A.5)

Then, one can write,

p = 2E

0 0

0 1

 = 2E

0

1

(0 1
)

(A.6)

One can write the spinor as:

λ = λ̃ =
√

2E

0

1

 (A.7)

One can think of the Pauli spinors as a square root of the four-vector. Two spinors of

the same chirality can be contracted with the epsilon tensors. We use different shapes

of brackets for the two chiralities, and define antisymmetric spinor products as:

〈λµ〉 = εabλaµb (A.8)

and similarly,

[λµ] = εȧḃλȧµḃ (A.9)

Similarly, one can write down:

p.q =
1

2
〈λµ〉

[
µ̃λ̃
]

(A.10)
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〈ij〉 [ij] = sij (A.11)

where sij is the well known Mandelstam invariant. In the same way, we can express,

polarization vectors in terms of spinors. For instance, one can write down

ε−aȧ = −
√

2
λaµ̃ȧ[
λ̃µ̃
] (A.12)

Similarly one can write down,

ε+aȧ = −
√

2
µaλ̃ȧ
[µλ]

(A.13)
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Appendix B

Anti-de Sitter Space

Anti-de Sitter space is a space of Lorenzian signature, i.e. (−,+,+,+,+) and has a

constant negative curvature (as opposed to de-Sitter space which has constant positive

curvature). One can write down the de Sitter space embedded in a d+ 1 dimensions

in the following way

ds2 = −dz2 +
d−1∑
i=1

dx2
i + dx2

d+1

−z2 +
d−1∑
i=1

x2
i + x2

d = R2 (B.1)

The space is invariant under SO(1, d)

ds2 = −dz2 +
d−1∑
i=1

dx2
i − dx2

d+1

−z2 +
d−1∑
i=1

x2
i − x2

d = R2 (B.2)

It is invariant under the group SO(2, d − 1) that rotates the coordinates by x′µ =

Λµ
νx

ν . Sometimes the metric can be conveniently written using the so called Poincare
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coordinates:

ds2 =
R2

z2

(
−dt2 +

d−2∑
i=1

+dz2

)
(B.3)

where −∞ < t, xi < +∞ and 0 < z < ∞. In the Poincare coordinates, the AdS

space looks like a three-dimensional Minkowski space up to a conformal factor. In

Poincare coordinates one does not cover all of space. In the finite coordinates τ , θ one

finds that one can analytically continue to the whole space. The space that covers

the whole space is the global coordinates whose metric can be written in the following

way:

ds2
d = R2(−cosh2ρ dτ 2 + dρ2 + sinh2ρ dΩ2

d−2) (B.4)
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Appendix C

Various Integrals

C.1 AdS integral

Here we derive integrals over AdS space (bulk or boundary) that are used in our

discussion.

Integrals on the boundary are often of the form

I =

∫
∂AdS

dQ
∏
i

Γ(λi)(−2Pi ·Q)−λi (C.1)

where Q, Pi are all points on the boundary and the exponents λi are constrained

∑
i

λi = d (C.2)

To perform the integral over the vector QA, use the Mellin transform,

Γ(λi)(−2Pi ·Q)−λi =

∫ ∞
0

dvi
vi
vλii e

2viPi·Q (C.3)

to write the integral I in the form

I =

∫ ∞
0

∏
i

dvi
vi
vλii

∫
∂AdS

dQe2T ·Q , TA =
∑
i

viP
A
i (C.4)
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Going to the rest frame of TA in which TA = (T0, 0, . . . , 0) with T0 ≥ 0, and

parametrizing the null vector QA by

QA =

(
x2 + 1

2
,
x2 − 1

2
, xµ
)

(C.5)

we obtain ∫
∂AdS

dQe2T ·Q =
πd/2

T
d/2
0

e−T0 (C.6)

After rescaling vi → viT0, we obtain

I = πd/2
∫ ∞

0

∏
i

dvi
vi
vλii e

T 2

, T 2 = −
∑
i<j

vivjPij , (C.7)

where we used T 2 = −T 2
0 .

This expression can be simplified further by using the inverse Mellin transform

e−y =

∫ c+i∞

c−i∞

ds

2πi
Γ(s)y−s (c > 0) (C.8)

We obtain

I = πd/2
∫ ∞

0

∏
i

dvi
vi
vλii

∫ c+i∞

c−i∞

∏
i<j

dsij
2πi

Γ(sij)(vivjPij)
−sij . (C.9)

Each integral over vi yields a δ-function. We deduce

I =
πd/2

2

∫ ∏
i<j

dsij
2πi

Γ(sij)P
−sij
ij , (C.10)

where the integration variables are constrained by

∑
j

sij = λi (C.11)

and we have defined sji = sij, sii = 0.
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Integrals in the bulk are of a similar form,

J =

∫
AdS

dX
∏
i

Γ(∆i)(−2Pi ·X)−λi =

∫ ∞
0

∏
i

dvi
vi
vλii

∫
AdS

dXe2T ·X (C.12)

where this time the exponents λi are not constrained.

Parametrizing the bulk point XA by

X =
1

x0

(
x2

0 + x2 + 1

2
,
x2

0 + x2 − 1

2
, xµ
)

(C.13)

we obtain ∫
AdS

dXe2T ·X = πd/2
∫ ∞

0

dx0

x0

x
−d/2
0 e−x0+T 2/x0 (C.14)

After rescaling vi → vi
√
x0, the integral over x0 can be performed, and we obtain

J = πd/2Γ

(∑
i λi − d

2

)∫ ∞
0

∏
i

dvi
vi
vλii e

T 2

. (C.15)

The remaining integrals are simplified, as before,

J =
πd/2

2
Γ

(∑
i λi − d

2

)∫ ∏
i<j

dsij
2πi

Γ(sij)P
−sij
ij , (C.16)

where the integration variables are constrained by (C.11).
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Appendix D

Conformal Field Theory

D.1 Conformal Algebra

The conformal group in d dimensions preserves the space-time metric, gµν up to a scale

factor. Here µ, ν ∈ 1 · · · d. For d > 2 the generators corresponds to Lorentz rotations

(Mµν), translations (P µ), dilations D and so called special conformal transformations

(Kν).

P µ : xµ + αµ

D : xµ 7→ (1 + ε) xµ (D.1)

Kν : xµ + εν(g
µνx2 − 2xµxν). (D.2)

One can check that they obey the following relation:

[D,Kµ] = iKµ

[D,Pµ] = iPµ

[Pµ, Kν ] = 2iMµν − 2igµνD (D.3)
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D.2 Local Field Operators in Conformal Field The-

ory

In quantum field theories, local field operators O(xµ) is classified by local field

operators. Using Euclidean signature and radial quantization, the SO(d) group is

the irreducible representation of the field and SO(2) is the scaling dimensions of the

field,

O(λxµ) = λ−∆O∆(xµ) (D.4)

This statement is the same as saying:

[D,O∆(0)] = −i∆O∆(0) (D.5)

Primary operators are annihilated by special conformal generators, Kµ,

[Pµ,O∆(x)] = i∂µO∆(x)

[Mµν ,O∆(x)] =
[
i(xµ∂ν − xν∂µ) + ΣR

µν

]
O∆(x)

[D,O∆(x)] = i(xµ∂µ −∆)O∆(x)

[Kµ,O∆(x)] = i[(xµ∂µ − 2xµx
ν∂ν − 2xµ∆)− 2xνΣR

µν ]O∆(x) (D.6)

Here ∆ is the conformal dimension of the primary operator, ΣR
µν are the representation

matrices of the irreducible spin R of the primary which acts on its spin indices.

D.3 Conformal Correlator

The scalar primary operators for conformal correlator for primary, 2-, 3-, and 4-

〈O∆1(x1)O∆2(x2)〉 = δ1,2

2∑
i≤j

x−∆
ij (D.7)
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Similarly,

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 = c1,2,3

2∑
i≤j

x
∆−2∆i−2∆j

ij (D.8)

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 = c1,2,3,4(u, v)
2∑
i≤j

x
1/3∆−∆i−∆j

ij (D.9)

In the above u and v are conformal invariant cross-ratios:

u =
x12x34

x13x24

, v =
x14x23

x13x24

(D.10)

Then,

O∆i
(x)O∆j

(0) =
∑
k

cijk|x|−∆i−∆j+∆k(O∆k
(0) + descendants) (D.11)

where the sum on the right side is over all descendants. Then,

〈O∆1O∆2(x2) · · · 〉 =
∂nZ[φ∆i

]

∂∆1(x1)∂∆2(x2) · · ·

∣∣∣
φ∆i

= 0 (D.12)

Then,

∫
ddxφ∆(x)O∆(x) =

∫
dd(λx)φ∆(λx)O∆(λx) = λd−∆

∫
ddxφ∆(λx)O∆(x) (D.13)

so Z is invariant under the following scaling transformations

φ∆(x) 7→ λd−∆φ∆(λx) (D.14)

In general Z[φ∆] in an invariant combination of these fields.
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