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ABSTRACT 
 

 Understanding protein and ligand interactions is fundamental to treat disease and 
avoid toxicity in biological organisms. Molecular modeling is a helpful but imperfect tool 
used in computer-aided toxicology and drug discovery. In this work, molecular docking 
and structural informatics have been integrated with other modeling methods and 
physical experiments to better understand and improve predictions for protein and 
ligand interactions. Results presented as part of this research include: 
 
1.) an application of single-protein docking for an intermediate state structure, 

specifically, modeling an intermediate state structure of alpha-1-antitrypsin and using 
the resulting model to virtually screen for chemical inhibitors that can treat alpha-1-
antitrypsin deficiency,  

2.) an application of multi-protein docking and metabolism prediction, specifically, 
modeling the cytochrome P450 metabolism and estrogen receptor activity of an 
environmental pollutant (PCB-30), and 

3.) providing evidence to support the inclusion of anion-pi interactions in molecular 
modeling by demonstrating the biological roles of anion-pi interactions in stabilizing 
protein and protein-ligand structures.  

 
This work has direct applications for mitigating disease and toxicity, but it also 
demonstrates useful ways of integrating computational and experimental data to 
improve upon modeling protein and ligand interactions. 
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INTRODUCTION  

Prologue 

 The structures of any given biological system are organized at different scales, 
and within each scale are various interactions that control how higher-order structure 
forms. In the same way, the structures from any given scale can be rationalized by the 
interactions of its substructures. The interactions between organisms and their 
environment represent the highest-order of biological organization. Cellular structures 
and interactions represent a middle area of organization. At the lowest scale are 
atomistic-level interactions between organic and inorganic molecular structures. One of 
the grand challenges in biology is to understand higher-order life processes from the 
organization of these molecular structures1.  
 

A typical eukaryotic cell contains billions of molecules. There are different 
macromolecules such as DNA, RNA, proteins, polysaccharides as well as many 
bioactive small chemical structures that interact with macromolecules. Proteins 
represent the largest and arguably the most functional group of macromolecules with an 
estimated 7.9x109 molecules per cell.2 These structures are mostly studied in the 
context of interactions that lead to disease and toxicity. In order to approach a more 
complete molecular perspective of biology, new methods to efficiently study challenging 
molecular structures such as proteins and their interactions need to be developed. 

 
All structures, including proteins, can exist in functionally different conformational 

states based on their inter- and intra-molecular interactions. Molecular and biophysical 
experiments can account for the net effects of structural interactions in a molecule or for 
a system of molecules, but they are unable to physically isolate all molecular structures 
or practically manage the evaluation for all of available structures in biology. 
Computational techniques that simulate molecular interactions can assist in expanding 
coverage for structures that are unresolved through experiments, but the sheer number 
of molecules and potential conformational states associated with macromolecular 
structures presents a sampling challenge for the reproducibility and reliability of 
simulations. In order to efficiently sample conformational space for even a single 
macromolecule, simulations rely on approximations of covalent and noncovalent 
molecular interactions and geometrical structural features that are believed to be 
relevant for capturing the energetic and thermodynamic properties of molecules. 
Continued research is needed to improve these approximations through a better 
understanding of biologically relevant inter- and intra-molecular interactions. Also, more 
efficient sampling methods are needed that can quickly and accurately identify 
conformational states of structures that are related to functions of biological interest. 

 
The function of a protein depends on its structure which can be affected by 

interactions with other molecules, especially small chemicals.  Modeling such 
interactions between large and small molecules is an important area of research in 
molecular discovery that is being used to treat diseases and prevent toxicity. Research 
in this area is complicated by structural modifications that occur during the metabolism 
of chemicals. Changes in chemical structure via metabolism affect subsequent 
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interactions within biological pathways of multiple proteins. Improvements in the 
accuracy and speed of predictive and experimental techniques that capture both 
chemical metabolism and activity of small chemicals though multi-protein pathways are 
needed to accommodate the study of many molecules within biological organisms and 
their environments. 

Scope of Dissertation 

 Molecular structures and their interactions are basic components of life that 
continue to guide researchers to new methods for disease treatment and prevention. In 
theory, every disease or adverse health effect can be understood at the lowest atomic-
level of interactions that occur between and within molecules. The research presented 
in this dissertation deals with ongoing challenges needed to improve the state of 
structure-based molecular modeling with respect to interactions within and between 
protein and chemical structures. In particular, this research extends the usefulness of 
structure-based molecular modeling methods to sample the unresolved structure of a 
protein intermediate state and its chemical interactions related to a disease, predict 
chemical interactions and metabolism between multiple proteins in a toxicity pathway, 
and describe a new noncovalent interaction that can be used to better approximate the 
thermodynamic properties of molecular structures.  

 Introduction to Virtual Docking 

 The study of interactions that control molecular structure and function has lead to 
understanding and treating diseases like HIV3, breast cancer4, and obesity5.  Despite 
much success in the field of structure-based discovery, current molecular modeling 
techniques need to still improve in order for the field to reach its anticipated potential of 
describing in detail how any given biological function arises from molecular structures 
and their interactions. It is unlikely that all structures and interactions will ever be 
completely modeled using experimental methods due to the vast number of structures, 
physical limitations of studying some important structures, and complexity of 
understanding increasingly higher-orders of structure. Predictive computational methods 
that simulate molecular interactions can aid experiments in the number of structural 
interactions that can be studied. The continued application, development, and 
integration with experiments of structure-based simulation techniques is an important 
area of research in molecular discovery and is the main focus of this dissertation. 
 
 Virtual docking is a computational modeling technique that allows for the 
structure and thermodynamic properties (i.e., binding) between two or more molecules 
of known structure to be predicted by their molecular interactions. A typical docking 
simulation can be run in a matter of seconds on a single processor, and the scaling 
potential of docking allows for straightforward parallelization across high-performance 
computing clusters and even supercomputing platforms. The usefulness of this 
technique is in the low cost and time efficiency of performing computations compared to 
carrying out physical experiments. Docking can be thought of as a virtual microscope to 
use in complement with experiments or when physical methods are simply unavailable 
or impractical.  
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 Kuntz first described the basic implementation of rigid docking in 19806, 
demonstrating that molecular geometries between independent rigid molecules could be 
sampled algorithmically to reproduce experimentally known binding poses. Since then 
docking has been increasingly used as a tool to study binding between small drug-like 
molecules, proteins, lipids, nucleic acids, and carbohydrates7-11. Rigid docking is based 
on the "lock and key" theory of binding proposed by Fischer in the late 1890s12 and is 
the most basic and widely used implementation of docking. Flexible docking is based on 
the "induced fit" theory proposed by Koshland in the early 1960s13. Docking results are 
often improved through flexible docking schemes, but such methods require better 
theoretical understanding about molecular interactions and require more computational 
time. Relatively fast flexible ligand methods have been used since the mid-1980s14,15. 
Localized protein sidechain flexibility can be simulated much like the induced fit 
scheme16,17. In some cases, protein backbone flexibility can be simulated18,19, but these 
most advanced techniques are limited in the sampling of phase space for large 
macromolecules such as proteins. 
 
 The quality of a docking model is evaluated by its ability to reproduce 
experimental binding geometries, predict experimental binding affinities, and distinguish 
between molecules that bind and do not bind to one another (i.e., binders and non-
binders). The basic docking algorithm involves sampling spatial arrangements between 
two molecules (i.e., generating "poses") and then determining the fitness (i.e., "scoring") 
for each bound configuration.  Pose generation can involve varying degrees of flexibility 
for the atoms of a molecular system and also hierarchical levels of scoring. Knowledge-
based or empirically derived scoring methods, e.g., basic shape and chemical matching, 
are often used to quickly reduce the quantity of poses that are to be further evaluated 
with more flexible and complex scoring methods such as those involving force fields. 
Force fields allow for approximating free energy changes for varying spatial 
arrangements of atoms in a molecular system. Many force field energy functions exist to 
describe both bonded and non-bonded terms that are thought to be important for 
molecular stability, e.g., van der Waals, electrostatics, desolvation, bonds, and angles. 
Inclusion of other relevant energy terms in force fields is an active area of research for 
improving molecular modeling. 

Why Use Predictive Docking? 

 Docking has been used as a popular tool for structure-based virtual 
screening20,21. Virtually screening of chemical libraries aims to find new chemical 
architectures that can modulate the structure and function of proteins involved in 
disease and/or toxicity. The scaling and efficiency of docking allows for virtual querying 
of large datasets. Libraries available for virtual screening can be in the order of millions 
of compounds which is something that experiments cannot test on their own. Virtual 
screening is likewise aided by experiments which provide an initial set of small 
molecules with known activities to be used for optimizing a model's predictive accuracy. 
This process involves choice of initial structures, degree of structure flexibility, 
robustness of sampling procedures for generating new poses, and choice of scoring 
methods to evaluate the energetic likelihood of new poses. Once optimized to agree 
with experiments, a docking model can then be used to more reliably predict binding 



 4 
 

affinities for new compounds with unknown activities. This computational prioritization 
and experimental validation scheme lowers the costs and time associated with testing a 
large number of compounds. Docking has traditionally been used to find chemicals that 
bind to a single protein target, but the concept of reverse screening is also possible 
whereby many proteins are assessed for their binding to a single or several chemical 
targets22.  
 
 Over 100,000 three-dimensional structures have been deposited in the Protein 
Data Bank (PDB)23 and the growth of this database is correlated with the growth of 
molecular docking since structure is essential for docking. In the post-genomic era, the 
PDB continues to grow by thousands of entries each year. Alongside this growth is an 
increasing pool of sequenced genes and proteins that can be paired with homologous 
protein structures from the PDB to build homology models which are suitable for 
docking24,25. Homology models are validated for use in virtual screening in the same 
way as experimental structures, i.e., by showing their predictive power on a training set 
of chemicals with known binding affinities. 
 
 Despite the current usefulness and success of docking, there is still a need for 
improving its accuracy, scaling, and application. The work within this dissertation 
provides novel applications and developments which improve the field of molecular 
docking and structural modeling in general. It is demonstrated that docking can be 
integrated with in vitro and other in silico techniques to overcome several structural 
modeling challenges such as identifying an intermediate state structure that is 
experimentally unresolved, and modeling chemical interaction and metabolism in multi-
protein pathways. In addition, a better understanding of an unconventional noncovalent 
interaction between aromatic and anionic functional groups in biological molecules is 
presented for improving protein and ligand modeling. 

Introduction to Chapter 1: Modeling of an Intermediate State Structure 

 Chapter 1 reports an application that uses virtual docking to create a model that 
predicts the binding of chemicals to a single protein target of medicinal interest. The 
specific target, alpha-1-antitrypsin, represents a traditional single-protein application of 
docking; however it also presents a unique docking challenge since the desired 
conformation of the protein structure is a theoretical intermediate state for which no 
experimental structure exists. The targeted intermediate state is a suspected transition 
structure between two stable states which are represented in the PDB, so a unique 
homology modeling strategy is used to merge the two stable state structures together in 
such a way as to represent the desired intermediate state. The resulting homology-
based docking model is validated using an initial training set of compounds with known 
experimental binding affinities, and the modeled structure is then applied to virtually 
screen a chemical library for new drug candidates to treat the disease associated with 
alpha-1-antitrypsin deficiency. 
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 Introduction to Chapter 2: Multi-Protein Modeling and 
Metabolism Prediction 

 An important aspect of understanding biological function is modeling the 
interactions and structural changes that occur to a chemical during cellular transport 
through multi-protein pathways which ultimately affect a compounds bioavailability, 
bioactivity, and toxicity. Chapter 2 of this dissertation presents a biologically significant 
application of docking which involves integrating several docking models with other 
predictive and experimental techniques in order to model the metabolism and 
augmented bioactivity of an environmental toxin, PCB-30. The resulting model correctly 
predicts the metabolism of PCB-30 by two cytochrome P450 enzymes and the relative 
bioactivities for the primary metabolites with the estrogen hormone receptor. 

Introduction to Chapter 3: Anion-pi Interactions in Molecular Modeling 

 Biological structures and functions are the result of a complex network of weak 
and strong molecular interactions within and between the constituent atoms of 
molecules. Virtual docking works on the principle of being able to account for the 
relevant interactions which affect the three-dimensional structure and binding between 
molecules. In chapter 3 of this dissertation, the theory of anion-pi interactions, an 
emerging noncovalent interaction, is introduced along with work demonstrating the 
significance of anion-pi interactions in biological protein and protein-ligand structures 
from the PDB. This work is organized into three sections (3.1, 3.2, 3.3). The results of 
this work may lead to the development of additional forcefield energy terms for 
improving protein and ligand modeling. 
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CHAPTER 1.1. 
DISCOVERY OF A POTENT INHIBITOR OF Z-ALPHA1 ANTITRYPSIN 

POLYMERIZATION 
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Abstract 

 Polymerization of the Z variant alpha-1-antitrypsin (Z-1AT) results in the most 

common and severe form of form of 1AT deficiency (1ATD), a debilitating genetic 
disorder whose clinical manifestations range from asymptomatic to fatal liver or lung 

disease. As the altered conformation of Z-1AT and its attendant aggregation are 
responsible for pathogenesis, the polymerization process per se has become a major 

target for the development of therapeutics. Based on the ability of Z-1AT to aggregate 

by recruiting on its s4A cavity the reactive center loop (RCL) of another Z-1AT, we 
developed a high-throughput screening assay that uses a modified 6-mer peptide 

mimicking the RCL to screen for inhibitors of Z-1AT polymer growth. A subset of a 
commercially available library of small compounds with MWs ranging from 300 to 700 
Da was used to test the assay‘s capabilities, and the inhibitor S-(4-nitrobenzyl)-6-
thioguanosine was found. To validate S-(4-nitrobenzyl)-6-thioguanosine, an in silico 

strategy was pursued and the intermediate 1AT M* state modeled to allow molecular 
docking simulations, which explore various potential binding sites. Docking results 
predict that S-(4-nitrobenzyl)-6-thioguanosine can bind at the s4A cavity or at the edge 
of β-sheet A. The former binding site would block RCL insertion whereas the latter site 
would prevent β-sheet A from expanding between s3A/s5A, and thus indirectly impede 
RCL binding. Altogether, our investigations have revealed a novel compound that 

specifically inhibits the formation of Z-1AT polymers, as well as in vitro and in silico 

strategies for identifying small molecules for treatment of 1ATD. 

Introduction 

 Human 1-antitrypsin (1AT) is the most abundant member of the serine 
protease inhibitor (SERPIN) family. It is a soluble 52-KDa glycoprotein synthesized 
primarily by hepatocytes and delivered to the lungs to accomplish its critical function: 
inactivation of the proteinase neutrophil elastase (NE), a mediator of alveolar 

destruction.1 Defective folding, trafficking and secretion into the plasma of 1AT are 

responsible for 1AT deficiency (1ATD).2,3  
 



 10 
 

 The structural flexibility of 1AT is important for it to perform its anti-protease 

function and ensure lung integrity. With a core domain composed of 3 -sheets A, B and 

C, and 9 -helices, 1AT features an exposed and flexible reactive center loop (RCL) 
that serves as bait for NE. Upon binding to the proteinase, a dramatic conformational 

change occurs as RCL is cleaved and translocates into -sheet A to form the new 
central and fourth strand, s4A. The translocation event carries along NE from one side 

to the other of 1AT, causing its inactivation by forming an irreversible, higher molecular 
weight suicide complex.4,5 A reduction or lack of this inhibition through loop-sheet 
insertion and proteolytic cleavage is thought to be the underlying mechanism 

responsible for 1ATD.6,7 
 

 Over 100 genetic variants of 1AT have been identified with the Z-type being 
responsible for the most common and severe form of the disease in homozygous 

patients8. The punctual mutation E342K in Z-1AT renders the anti-protease prone to 
aggregation and unable to be secreted into the blood stream resulting in a 90% 

decrease in NE inhibition within the lungs. Accumulation of polymers of Z-1AT in the 
endoplasmic reticulum (ER) of hepatocytes leads to proteotoxic stress and associated 
liver diseases.9–11 In addition to sequestration of polymers in the ER of hepatocytes, the 

E342K mutation has two additional disease-causing effects. It causes Z-1AT to be 5-
fold less effective in accomplishing its inhibitory function12,13 and it promotes the 

spontaneous formation of Z-1AT polymers within the lungs, thereby further reducing 

the already depleted levels of 1AT that are available for alveola protection.14 

Moreover, the conversion of Z-1AT from a monomer to a polymer renders it a 
chemoattractant for human neutrophils.15,16 To summarize, emphysema associated with 

Z-1ATD results from a combination of (1) loss of function of the anti-protease, which 

leads to the absence of circulating 1AT, decrease of its inhibitory activity, and intra-
alveolar polymerization, and (2) gain of toxic function from the neutrophil chemotactic 
properties of intra-alveolar polymers. 
 

 Preventing formation and accumulation of Z-1AT polymers could be crucial to 

treat 1ATD.17 For this reason, the mechanisms by which Z-1AT form polymers have 
been under intense investigation. As the substitution of the glutamic acid residue at 
position 342 by a lysine provokes a perturbation in the native structure by opening the 

-sheet A, biochemical evidence reveals the formation of an unstable and 
polymerogenic intermediate M* with its own RCL partially inserted.18 The opening of the 

s4A cavity allows the creation of a sequential -strand linkage between the RCL of one 

serpin and -sheet A of another, leading to the formation of a dimer and then 

polymers.6,19–21 Additional models for Z-1AT polymerization have also recently been 
proposed based on the crystal structures of a dimer of the serpin antithrombin22 and a 

trimer of a disulfide mutant of 1AT,23 suggesting that assembly pathways of Z-1AT 
could be diverse and therefore arising from structurally and/or dynamically distinct 
polymerogenic intermediates. 
 
 Various strategies have been pursued in order to prevent or even attenuate Z-

1AT polymerization such as increasing the mutant protein secretion with the use of 
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osmolytes24–26 or by blocking Z-1AT polymerization by either filling the s4A cavity with 

peptides18 or crowding another hydrophobic pocket of Z-1AT with small compounds 
screened virtually.27 While extensive progress has been made, none of these strategies 
has been entirely successful so far.  To achieve this goal, we developed a set of novel 
and integrated in vitro and in silico screenings methods; the in vitro, being a high-
throughput screening assay using a modified small peptide previously reported as a s4A 
cavity filler,18 and the in silico being a virtual docking model able to predict and help 

rationalize the binding of compounds to 1AT, including in the S4A cavity.  Here, we 
present how using these two combined methods we were able to identify, rationalize 

and validate S-(4-nitrobenzyl)-6-thioguanosine as a specific inhibitor of Z-1AT 
polymerization. 

Materials and Methods 

General Materials and Methods 

 The peptide acetyl-FLEAIGGG-Q-GKKG containing the 6-mer sequence of the 
RCL was synthesized by custom solid-phase from the Keck Biotechnology Center at 
Yale University (http://info.med.yale.edu/wmkeck/).  A biotinylated version of the peptide 
(bPEG-peptide) was obtained by appending a biotinyl-polyethylene glycol spacer on the 

-amide group of the glutaminyl residue. The presence of the Lys residues confer a 
positive net charge to the peptide at neutral pH, enhancing its general solubility. The 

wild type and Z-1AT proteins, prepared according to published protocol,28 were 
graciously provided at a concentration of 1 mg/ml by Professor Lomas, Cambridge 
Institute for Medical Research, University of Cambridge, UK, and stored at 4 ºC.  
 

 The rabbit anti-human 1AT antibody (serum fractions IgG) was purchased from 
Abcam, Cambridge, MA. 
 
 The test group RK-001 of the LOPAC library (Library of Pharmacologically Active 
Compounds, Sigma-RBI, Natick, MA) containing 80 lyophilized chemical compounds 
was prepared in a 96-well plate format. All compounds were resuspended in 2 ml 
DMSO at a concentration of approximately 4 mM, based on an estimated MW average 
of 500 g/moles, and stored at 4 ºC.  

Preparation of the bPEG-peptide 

 The synthesized bPEG-peptide was first solubilized in 50% formic acid at a 
concentration of ~1mg/ml, injected onto a Zorbax C3 Column and purified by RP-HPLC 
at a rate of 4ml/min. The resulting purified peptide was then lyophilized, resuspended 
into H2O and stored at -20 ºC. After amino acid analysis of the peptide (Commonwealth 
Biotechnologies Inc., Richmond, VA), various amounts were injected onto RP-HPLC in 
order to establish a standard curve, allowing us to determine the exact concentration of 
each new batch of purified peptide that we prepared. 

Preparation of Working Compound Plates  

 LOPAC compounds were transferred from their original 96-well plates to new 96-
well working plates with low evaporation lid (BD Falcon plates non treated, Becton 

http://info.med.yale.edu/wmkeck/
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Dickinson Labware, San Jose, CA) in respect to their initial location, and adjusted to a 
concentration of 1 mM in PBS 1X containing 50% DMSO. First and last columns were 
filled only with PBS 1X/DMSO (50/50). Working plates were sealed with an adhesive 
overlay, covered and stored at 4º C until further utilization. 

Set up of the Microplate Screening Assay 

 The assay is based on the principle of a competitive ELISA.29 Wells were coated 

by passive adsorption with a 1/1000 solution in PBS 1X of capture 1AT Ab. The 
screening microplate was sealed with an adhesive overlay and incubated for 2 h at 37 
ºC. The wells were then washed three times with extension buffer (PBS 1X and 0.01% 
Tween 20), blocked for 1 h at 37 ºC with 0.3 % gelatin and washed again. Screening 
results described in this paper were carried out with screening microplates freshly 
made. However, screening microplates can be filled with PBS 1X, hermetically sealed 
and stored at 4 ºC for one week prior to use. 

Z-1AT Polymerization Inhibition Assay 

 In parallel with the preparation of the microplate screening assay, polymerization 
reactions were carried out in 96-well plates with or without the LOPAC small 

compounds. A 100 molar excess of bPEG-peptide was used with 4 g/well of Z-1AT.  
  
 Each polymerization reaction plate was organized as follows: the first column 
contained only bPEG-peptide (background control); the second to eleven columns 

contained Z-1AT, compounds and bPEG-peptide; and the last column contained Z-

1AT, bPEG-peptide and no compound (reaction control). Assay wells were set up by 

adding to each well 20 l of protein and 20 l of compound from a working plate. After 3 

min, 160 l of bPEG-peptide at 48 M was added. The plate was then sealed, shaken 
on a microplate shaker gently for 5 s to ensure homogeneity of the different reactants, 
and placed at 37 ºC for 16 h. All wells contained 5% DMSO. 
 

 At the end of the 16 h incubation time, 100 l from each well were transferred 
into the corresponding well of the microplate screening assay. One hour later, the 
screening plate was washed three times and then incubated in the dark for 1 h at room 

temperature with 100 l/well of 1 ng/l of europium streptavidin (Perkin Elmer, Boston, 
MA) in 0.5% BSA-extension buffer. Three final washes in extension buffer were carried 

out and the europium was released from streptavidin by the addition of 100 l of 
enhancement solution (Perkin Elmer). After 5 min, europium fluorescence was 
measured by time-resolved fluorometry in a Victor 2 counter (Perkin Elmer) and then 

converted to fmoles of bPEG-peptides recruited into Z-1AT. Assays were conducted in 
triplicate by processing three identical plates in parallel. 

Determining IC50 Values of Inhibitors 

 As described above, 4 g/well of Z-1AT were incubated for 3 min with various 
concentrations of a compound identified as an inhibitor, the highest concentration 

starting at 400 M. The concentrations of the compounds were revised according to the 
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true MW of the molecule. Following the 3 min incubation, 160 l of 48 M bPEG-peptide 
were added and the rest of the protocol was applied as described above. 

Z-1AT Polymerization Sedimentation Assay 

 A solution of 0.1 mg/ml of Z-1AT in PBS 1X was incubated at 37 ºC with or 

without 100 M of S-(4-nitrobenzyl)-6-thioguanosine. Progress of the polymerization 
reaction was followed by quantitative RP-HPLC on centrifugation supernatants (20 min, 

20,000 × g) of reaction aliquots. Quantitative determination of the Z-1AT monomer 
disappearance was calculated according to a pre-established standard curve. 

Preparing Protein Structures for Homology Modeling and Docking Simulations 

 The crystal structures of the mutant Z-1AT (PDB code: 3T1P) and the wild type 

M-1AT  (PDB codes: 3CWM and 1QLP) were obtained from the RCSB Protein 
Database.23,30,31 Initial preparation of the receptor structures was carried out with the 
program MOE32 (Molecular Operating Environment). Co-crystallized water molecules 
were deleted from both structures. For the polymerized mutant (3T1P), only the first 
monomer was retained and the s4A binding cavity was created between the s3A/s5A by 
deleting residues 345-356, which correspond to the inserted residues of the RCL. The 
protonation state of atoms was assigned using Protonate 3D33 utility in MOE at pH 7, 
300 K and 0.1 M salt concentration. Solvent effects were implicitly included by using a 
distance-dependent dielectric. Partial charges were assigned to receptor atoms using 
MMFF94s34 force field parameters as implemented in MOE.  

Homology Modeling Procedure 

 Modeling of the M* intermediate state as described below was performed using 

the Homology Model facility in MOE. The wild type crystal structure of 1AT (PDB code 
1QLP) was used as a template for modeling i) the position of the RCL when not inserted 
into β-sheet A and ii) the position of the c-terminal loop within β-sheet B when it is not 
participating in a domain swap. The polymerized Z-mutant structure (PDB code: 3T1P) 
was used to model the expanded position of β-sheet A but omitting s4A to leave a cavity 
between s3A/s5A where the RCL would otherwise be found. Fragments from each 
template structure were joined at transition points selected by superimposing the 
structures and choosing those residues between fragments with near overlapping atom 
positions. A total of 25 homology models were generated with unique carbon backbone 
positions, and for each of those 25 models, 5 additional models (i.e. a total of 125 
models) were created with alternate side chain positions. These initial models were 
energy minimized to a gradient of 0.1 kcal/mol·Å. A final M* model (Model 126) was 
created using the Generalized Born / Volume Integral (GB/VI) energy scoring method35 
to select the best initially packed structure and then further energy minimizing it to a 
gradient of 0.01 kcal/mol·Å. 

Docking Simulation Procedure 

 Three-dimensional structures of the 80 in vitro tested chemicals, including S-(4-
nitrobenzyl)-6-thioguanosine, were obtained in SDF format from the electronic LOPAC 
library, test group RK-001. Partial charges were added to each ligand atom using 
MMFF94s forcefield parameters and the structures were energy minimized to a gradient 
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of 0.1 kcal/mol·Å. The energy-minimized ligands were docked into three structural 

variations of 1AT: M* intermediate (Homology Model 126), mutant Z-1AT (PDB: 

3T1P) and wild type M-1AT (PDB: 3CWM) using the docking function built into MOE. 
Binding sites were identified using the MOE Site Finder facility. Separate docking 
simulations of the 80 compounds were carried out for each receptor and at each 
potential binding site. Initial placement of ligand atoms was done with the Triangle 
Placement method (seeds in 3 atoms at time). The predicted free energy of binding for 
each initially docked ligand pose was calculated using the London dG32 scoring method 
from within MOE. The top five scoring poses were further energy minimized using the 
MMFF94s force field, allowing ligand atoms and protein side chains within 6 Å of each 
docked ligand to be treated as flexible. A tethering weight of 10 kcal/mol/Å2 was applied 
to partially restrain flexible atoms around their original location. A final docking score for 
each energy-minimized pose was calculated using the Affinity dG32 scoring method. 

Virtual Screening the NCI Diversity Database 

 The M* Model was used to assess the binding of 1596 compounds from the 
September 2013 NCI Diversity Set 
(http://dtp.nci.nih.gov/branches/dscb/div2_explanation.html) and the original 80 
compounds from the LOPAC library, test group RK-001. The same methods for docking 
preparation and scoring found in the Docking Simulation Procedure were used in the 
virtual screening.  

Results 

Principal Characteristics of the Z-1AT Polymerization Inhibitor Screening 
Assay 

 Previous studies have shown that a 6-mer peptide whose amino acid sequence 
contains the RCL sequence FLEAIG can specifically bind the Z-mutant at its opened 

s4A pocket, but not the wild type. 18 The Z-1AT high-throughput microplate screening 
assay is based on this concept. Thus, we designed a similar peptide and added a biotin-
polyethylene glycol (bPEG) tag at the Cterm of the reactive loop sequence as well as 
some hydrophilic amino acids to increase peptide solubility. The insertion of a PEG-
based spacer prevents possible steric hindrance between the peptide and the biotin 
molecule, resulting in better avidin binding and therefore, a more accurate 
measurement of the biological activity.   
 To assess the ability of small molecules to inhibit the recruitment of the bPEG-

peptide into Z-1AT, microtiter plate wells containing attached Z-1AT are subjected for 
3 min to library compound before addition of bPEG-peptide. The amount of bPEG-
peptides incorporated into the mutant protein is then determined by a europium-
streptavidin treatment and time-resolved fluorescence measurements. The inhibition 
effect of a compound is calculated as a percentage with respect to a reaction control – 

i.e. Z-1AT that has only been exposed to the biotinylated peptide and not to a 
compound. Any compound showing an inhibitory effect of at least 50% is considered as 
a hit. 
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Figure 1.1.1  Kinetic diagram of bPEG-peptide binding to 1AT. (A) Four 

micrograms per well of attached () Z-1AT or () M-1AT were incubated for 

various times in presence of 38.4 M bPEG-peptide. (B) Z-1AT was incubated in 
presence of 5% DMSO and bPEG-peptide for 16 h. Errors bars reflect the standard 
deviation of three replicates. 

 
 
 

 Regarding its ability to bind Z-1AT, we found the bPEG-peptide association 
kinetics to be in favor of the mutant proteinase with an initial association rate of 0.22 ± 
0.08 fmoles·h-1 vs. 0.042 ± 0.1 fmoles·h-1 for the wild type (Figure 1.1.1A). We also 

found that an incubation period of 16 hrs for the peptide with Z-1AT is an adequate 
screening end-point for the screening assay as this time period is associated with a high 
signal-to-noise ratio. In addition, the presence of 5% DMSO in the wells does not affect 
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the bPEG-peptide binding kinetics (Figure 1.1.1B).  Since compound libraries are 
generally stored in DMSO, this feature makes the assay well suited for a high-
throughput screening assay 
 
 Finally, this screening assay exhibits very good reproducibility as reflected by the 
error bars shown in Figure 1.1.2. It requires only small amount of protein and low 
concentrations of bPEG-peptide, which make it both economical and physiological.  
 
 
 
 

 

Figure 1.1.2. Pattern of inhibition resulting from the screening of 80 unknown 

LOPAC compounds. A 96-well plate was coated with 4 g/well of Z-1AT and 

incubated for 16 h with 100 M of various compounds and 38.4 M of bPEG-
peptide. The black arrow indicates the compound that corresponds to S-(4-
nitrobenzyl)-6-thioguanosine and gives an inhibition effect of 67 ± 2 % and. The 
error bars are the standard deviation of three individual experiments. 

 
 
 

S-(4-nitrobenzyl)-6-thioguanosine Identified as Inhibitor of Z-1AT Polymerization 

 The test group RK-001 (80 compounds) of the small commercially available 
LOPAC library containing drug-like molecules was used to test the performance of the 
screening assay. Figure 1.1.2 shows a typical screening result. As indicated in the 
figure, only one compound of the tested compound plate appears as a hit, exhibiting a 

67 ± 2 % inhibition activity at 100 M. This compound is S-(4-nitrobenzyl)-6-

thioguanosine. To confirm its ability to inactivate Z-1AT polymerization, dose-
responses curves were carried out and an IC50 of 73 ± 0.12 µM calculated (Figure 
1.1.3A). The IC50 value obtained is in the micromolar range and matches well with the 
screening results.  
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Figure 1.1.3. S-(4-nitrobenzyl)-6-thioguanosine inhibits bPEG-peptide binding to 

Z-1AT. (A) Dose-response curves were assayed for various concentrations of  
() S-(4-nitrobenzyl)-6-thioguanosine and () its homologue S-(4-nitrobenzyl)-6-
thioinosine. (B) Chemical structures of (left) S-(4-nitrobenzyl)-6-thioguanosine 
and (right) S-(4-nitrobenzyl)-6-thioinosine. The errors bars are the standard 
deviation of an experiment conducted in triplicate. 

 
 
 
 To define a better pharmacophore, and therefore to identify any additional 

structural element required for inhibiting Z-1AT polymerization, we then compared our 
compound to the entire database that regroups all of the LOPAC molecules. 
Interestingly, we found that S-(4-nitrobenzyl)-6-thioanosine possesses a very similar 
structure, differing by a single amino group, but did not show any inhibitory effect, 
neither during the original screening nor in the validation assay (Figures 1.1.3A and 
1.1.3B). 

Validation of the Action of S-(4-nitrobenzyl)-6-thioguanosine 

 A polymerization reaction was set up in presence or absence of 100 µM of S-(4-

nitrobenzyl)-6-thioguanosine and the disappearance of the Z-1AT monomer monitored 
B B 
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by RP-HPLC – a diminution in monomer concentration indicates that the protein has 

been recruited into polymers. We found that Z-1AT has its polymerization rate 
decreased 33 times in presence of the compound and that its effect is long lasting 
(Figure 1.1.4).  
 
 
 

 

Figure 1.1.4.  Effect of S-(4-nitrobenzyl)-6-thioguanosine on Z-1AT 

polymerization. The protein was incubated with () or without () 100 M of S-(4-
nitrobenzyl)-6-thioguanosine for various time at 37 ºC. The error bars are the 
standard deviation of three separate experiments. 

 
 
 
 An additional approach to validate the action of S-(4-nitrobenzyl)-6-thioguanosine 
was to carry out an in silico molecular modeling and simulation strategy with the intent 
to gain mechanistic insights into how this small molecule may interact with the protein 
structure and prevent polymerization. Therefore, virtual docking and homology modeling 
were used to explore hypothetical binding sites and their putative molecular interactions.  

Structural Modeling of 1AT and the M* Intermediate 

 In order to investigate all of the potential binding sites of S-(4-nitrobenzyl)-6-

thioguanosine on 1AT, including the ones located in the s4A cavity at the RCL 
insertion site, we used two PDB crystal structures, 1QLP and 3T1P, which respectively 

correspond to the wild type M-1AT and polymerized Z-1AT states. However, as the 

s4A cavity does not exist in any crystal structure of 1AT, a theoretical model 
comparable to M* had to be created. The M* intermediate state is described to have the 
following three structural features: i) an expanded β-sheet A with a s4A cavity between 
s3A/s5A, ii) an RCL at the precipice of inserting between s3A/s5A, and iii) the Cterm loop 
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inserted within β-sheet B and not participating in a domain swap with another protein. 
These important features of the M* model are represented in the homology model built 

from the two available crystal structures of 1AT (Figure 1.1.5). 
 
 
 
 

 

Figure 1.1.5. The three models of 1AT protein. (Top left) Structure of wild type 
(PDB: 1QLP) with the RCL not inserted and β-sheet A not expanded. (Top right) 
Structure of Z-mutant (PDB: 3T1P) with the RCL inserted and β-sheet A expanded. 
(Bottom middle) Intermediate M* model with an expanded β-sheet A (retained 
from structure 3T1P), RCL not inserted into the RCL cavity (retained from 
structure 1QLP), and Cterm loop inserted into β-sheet B (retained from structure 
1QLP). (Purple) Strands 3 and 5 from β-sheet A. (Dark blue) Cterm loop within β-
sheet B. (Light blue) RCL. (Orange) Residues of the RCL corresponding to the 
analogous 6-mer peptide. (Black arrows) s4A cavity. 

 
 
 
 To build the M* state homology model, a total of five protein fragments of the two 
crystal structures, 1QLP and 3T1P, were merged. Figure 1.1.6 shows that fragment 1 
consists of residues 1-105 (1QLP) which model the right side of β-sheet B, with respect 
to beta strands adjacent to the right side of the Cterm loop. Fragment 3 consists of 
residues 205-291 which constitute the left side of β-sheet B, with respect to beta strands 
adjacent to the left side of the Cterm loop. Together these two fragments model the 
position of β-sheet B so that the RCL residues from fragment 5 (residues 345-394 from 
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1QLP) can be placed on the outside of the s4A pocket along with the Cterm loop buried 
within β-sheet B. The position of strands s1A, s2A, and s3A in β-sheet A are modeled 
from fragment 2 (residues 106-204 from 3T1P), and fragment 4 (residues 292-344 from 
3T1P) models the position of strands s5A and s6A. Together, the positions of fragments 
2, 4 and 5 create the cavity s4A between s3A/s5A, which would otherwise be the site of 

RCL insertion. This opened conformation of 1AT represents one of the possible 
structures of the unstable M* intermediate state for which experimental methods such 
as crystallography cannot reproduce. 
 
 
 

 

Figure 1.1.6. The fragments of structures 1QLP (green) and 3T1P (red) used to 

homology model the M* intermediate state of 1AT. β-sheet A is the red beta 
sheet across the top half of the model and β-sheet B is the green beta sheet 
across the bottom of the model. Residue numbers at the start and end of each 
fragment transition are labeled with an arrow in the Nterm to Cterm direction. 
Shades of green and red distinguish discontinuous fragments from the same 
initial crystal structure (light/dark green for 1QLP fragments and light/dark red for 
3T1P fragments). 

 
 
 

Analysis of 1AT Structures and their Potential Binding Sites 

 All of the 80 in vitro screened compounds, including S-(4-nitrobenzyl)-6-
thioguanosine, were docked into every potential binding site to assess if the 



 21 
 

computational result is comparable to the in vitro screening. A binding site able to dock 
S-(4-nitrobenzyl)-6-thioguanosine with a lower binding energy than the 79 other 
compounds would be a promising site for further experimental investigations.  
 
 Six putative binding sites were predicted among the three available protein 

models: M-1AT, Z-1AT and intermediate M* (Figure 1.1.7). SITE1 and SITE5 were 
both exclusively available in the M* model and are located in the RCL insertion site. 
SITE2 was found in all three models. It is also where the compound citrate, previously 
reported to lower polymerization rates30 has been observed to bind in the 3CWM wild 
type structure. Also found in all three models are: SITE3, a large cavity adjacent to 
SITE2; SITE4 situated near the Cterm edge of β-sheet A; and SITE6 located near the 
Nterm edge of β-sheet A. SITE6 is partially occluded in the M* model due to the 
expansion of β-sheet A.  

S-(4-nitrobenzyl)-6-thioguanosine Binds at the RCL Insertion Site or on the Edge 
of β-sheet A 

 Docking of all 80 small molecules was performed with each model and at each 
putative binding site in order to compare how strongly S-(4-nitrobenzyl)-6-thioguanosine 
binds relative to the 79 other experimentally tested compounds. These results are 
summarized in Table 1.1.1 and present two possible binding sites where S-(4-
nitrobenzyl)-6-thioguanosine can favorably bind to block RCL insertion. Results from 
docking at SITE5, the RCL insertion site, show S-(4-nitrobenzyl)-6-thioguanosine 
ranking first among the other 79 ligands which may suggest a mechanism where the 
RCL is directly blocked at the RCL insertion site. Interestingly, S-(4-nitrobenzyl)-6-
thioguanosine is also found to rank first in the wild type model when docked at SITE6. 

Figure 1.1.8 compares the location of SITE6 in both the M- and Z-1AT structures 
which illustrates how binding of S-(4-nitrobenzyl)-6-thioguanosine at SITE6 may prevent 
the expansion of β-sheet A and possibly prevent RCL insertion. Lesser sites of interest, 
which only rank S-(4-nitrobenzyl)-6-thioguanosine in the top 10% of ligands, are SITES 
1 and 2. SITE1 is also part of the RCL insertion site. SITE2 has been previously 
reported as the binding site for citrate which can also prevent polymerization and whose 
mechanism of action has yet to be determined.30  

Residue Interactions with S-(4-nitrobenzyl)-6-thioguanosine 

 Nearby residues that interact with S-(4-nitrobenzyl)-6-thioguanosine at the top 
ranking sites (SITE1, SITE2, SITE5) from the M* intermediate model and the single site 
(SITE6) from the wild type model are described in Table 1.1.2. This information provides 
the basis for guiding further validations of these binding sites using techniques such as 
mutagenesis and molecular dynamics. Supplemental Figures 1.1.S1-1.S4 contain 
additional details about the type of interactions formed between individual atoms of S-
(4-nitrobenzyl)-6-thioguanosine and the nearby residues listed in Table 1.1.2.  
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Figure 1.1.7. Binding Sites for S-(4-nitrobenzyl)-6-thioguanosine. Two protein 
ribbon models are shown for each structure: (A) 3CWM, (B) 3T1P and (C) M* 
Model. The left model and right representations in each panel are rotated 90° with 
respect to one another. The best binding poses for S-(4-nitrobenzyl)-6-
thioguanosine at each available binding site are shown with space filling atoms 
with the carbon atoms colored green. (Purple) Strands 3 and 5 from β-sheet A. 
(Dark blue) Cterm loop within β-sheet B. (Light blue) RCL. (Orange) Residues of the 
RCL corresponding to the analogous 6-mer peptide.  
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Figure 1.1.8. Two crystal structures for 1AT are superimposed and represented 
in ribbon diagram. S-(4-nitrobenzyl)-6-thioguanosine is represented with space 

filling atoms and positioned at SITE6 for the M-1AT structure (1QLP). (Dark blue) 

Z-1AT structure (3T1P) with an expanded β-sheet A. (Dark grey) Wild type 
structure 3CWM with β-sheet A not expanded into SITE6. (Light blue) expanded β-
strand s2A in structure 3T1P, which occupies SITE6. (Light grey) β-strand s2A in 
structure 1QLP adjacent to SITE6.  
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Virtual Screening 

 Figure 1.1.9 shows the ranking of B9 in a virtual screening of the 80 LOPAC set 
and 1598 NCI Diversity set of compounds. The results of the screening place B9 in the 
top 1% of predicted binders which suggests that the screening model can work to find 
lead compounds. There were 16 compounds (unlisted at this time) binding better than 
B9 which are now prioritized to be experimental screened. Lead compounds found in 
the NCI Diversity dataset will be useful in producing several unique drug candidates to 
treat alpha-1-antitrypin deficiency. Identification of additional hit compounds from these 
leads will also offer support for improving the modeling and binding site location for 
future screening efforts. 
 
 
 

 

Figure 1.1.9. Virtual Screening. Shown is the virtual screening result of docking 
the NCI Diversity Set of 1598 compounds and 80 LOPAC Set of compounds into 
SITE 5 of the M* model. The M* model and SITE 5 are depicted in protein ribbon 
format with red and white spheres at SITE 5. The RCL is colored green. B9 is 
shown to rank within the top 1% of screening compounds. 

 

 
 

Discussion 

 Currently, the only available and effective treatment to correct for the loss of 

1AT function in 1ATD associated with liver disease is orthotropic liver transplantation. 
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For lung disease, augmentation therapy is the only specific regiment that is thought to 
slow down disease progression, although this still requires formal proof through well-
controlled clinical trials.36 As these treatments are expensive, labor intensive and 
associated with side effects, the need for novel treatments are indeed in high-demand. 

With Z-1AT polymerization being responsible for the development of the disease, 
blocking its aggregation by small molecules 27,30 appears to be a promising strategy to 

cure Z-1ATD.  
 
 Here we report an integrated in vitro and in silico approach which allows 
discovering and characterizing potent small molecules that disrupt the pathological 

polymerization of Z-1AT. The in vitro microplate assay which enables the identification 
of small molecules able to block the insertion of a modified 6-mer peptide into the s4A 
cavity, provides quantitative data with reproducibility, sensitivity and rapid throughput. 
Our results validate the utility of the in vitro screening assay and identify S-(4-

nitrobenzyl)-6-thioguanosine as inhibitor of Z-1AT polymerization. With a molecular 
weight of 434.43 Da, 4 H-bond donors, 11 H-bond acceptors and a low lipophilicity 
coefficient (XLogP3 =1.1), this compound presents a strong drug-like profile according 
to the Lipinski rule of five.37 From IC50 determination and structure-activity relationship 
studies, we also found one of its structural homologues which differs by a single amino 
group and does not prevent aggregation. This suggests that an interaction with the 
amino group may be important to counteract the insertion of the modified 6-mer peptide.  
The microplate assay has been designed to identify any inhibitor that can impede the 
insertion of the RCL into the s4A cavity, but it does not exclude the discovery of small 
molecules that can bind outside of the s4A cavity, causing a conformational 
rearrangement that still precludes RCL insertion. Molecular docking experiments were 
carried out to investigate binding of S-(4-nitrobenzyl)-6-thioguanosine at several 
potential binding locations, in addition to the s4A cavity. A chimera homology model of 
the intermediate state, M* model, was built in order to allow investigation of the s4A 
cavity. Until now, previous studies have only used molecular docking to investigate the 
binding of small molecules into experimentally resolved structures and only at sites 
other than the s4A cavity.27 

 
  The development for the first time of an atomistic M* model reveals a 

mechanism through which S-(4-nitrobenzyl)-6-thioguanosine may inhibit Z-1AT 
polymerization by either competing with the RCL at the s4A insertion site (SITE5) or by  
blocking the s4A cavity from forming by binding at a nearby location (SITE6). To 
definitely discriminate between these two binding sites, additional structural studies will 
need to be carried out beyond the scope of the present work which will include selected 
mutagenesis and molecular dynamics (MD). MD simulations, which provide an 
ensemble of various conformations of M*, will account for the protein flexibility38,39 and 
will aid in refining the docking results. 
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Table 1.1.1. Docking results from M-1AT, Z-1AT, and M* model with S-(4-
nitrobenzyl)-6-thioguanosine and the 79 other small molecules. 

Structure SITE
α
 

Lowest Energy
 β

 
(kcal/mol)

 
B9 Energy

 γ
 

(kcal/mol) 
B9 Rank

δ
 

M-1AT (3CWM) 

SITE1 n/a
 Θ

 n/a n/a 
SITE2 -7.0 -5.6 19

th
 

SITE3 -6.2 -5.3 8
th
 

SITE4 -6.4 -3.4 25
th
 

SITE5 n/a n/a n/a 
SITE6 -7.6 -7.6 1

st
 

Z-1AT (3T1P) 

SITE1 n/a n/a n/a 
SITE2 -6.5 -3.9 34th 
SITE3 -9.0 -5.8 13th 
SITE4 -4.6 -3.6 19

th
 

SITE5 n/a n/a n/a 
n/a SITE6 n/a n/a 

M* Model 

SITE1 -10.7 -7.9 7
th
 

5
th
 SITE2 -10.7 -8.8 

SITE3 -5.1 -4.6 9
th
 

SITE4 n/a n/a n/a 

SITE 5 -8.4 -8.4 1
st
 

SITE6 -6.2 -4.22 12
th
 

α Site number where S-(4-nitrobenzyl)-6-thioguanosine (B9) was docked. β Lowest 
observed binding energy (kcal/mol) for any of the 80 docked compounds. γ 

Predicted binding energy (kcal/mol) for B9. δ Rank of B9 relative to the binding 
energies for all 80 docked compounds. Θ Site numbers that are not found in a 
given model are noted by a not applicable symbol (n/a). 

 
 

 

 

Table 1.1.2. Residues interacting with S-(4-nitrobenzyl)-6-thioguanosine in top 
scoring binding sites. 

M* Model 

SITE 1 
S34, I35, A37, F38, L41, L149, T157, F159, A160, L161, V162, N163, Y164, 
L276, F289, L304, K305, L306, K308, A309, V310, H311 

SITE 2 
W171, E172, R173, P174, F175, R200, M203, F204, N205, L218, M219, 
K220, Y221, F229, E256, D257, R258, L263, L265, I317, D318, F329, E331 

SITE 5 
F28, K145, I146, I165, F166, F167, K168, V314, L315, C316, I 317, D318, 
E319, K320, G321, T322, E323, A324, M351, F361 

M-1AT 
(3CWM) 

SITE 6 
S56, T59, A60, M63, L100, N104, Q105, L112, T113, T114, G115, N116, 
G1117, Y138, H139, S140, E141, Y160, G164, N186, Y187, I188 
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Figure 1.1.S1. 2-D contour and interaction map generated in MOE for S-(4-
Nitrobenzyl)-6-thioguanosine at SITE1 in the M* intermediate state structure 
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Figure 1.1.S2. 2-D contour and interaction map generated in MOE for for S-(4-
Nitrobenzyl)-6-thioguanosine at SITE2 in the M* intermediate state structure 
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Figure 1.1.S3. 2-D contour and interaction map generated in MOE for S-(4-
Nitrobenzyl)-6-thioguanosine at SITE5 in the M* intermediate state structure 
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Figure 1.1.S4. 2-D contour and interaction map generated in MOE for S-(4-
Nitrobenzyl)-6-thioguanosine at SITE6 in the 3CWM structure 
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CHAPTER 2.1 
A COMPUTATIONAL APPROACH PREDICTING CYP450 METABOLISM 

AND ESTROGENIC ACTIVITY OF AN ENDOCRINE DISRUPTING 
COMPOUND (PCB-30)  
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Abstract  

 Endocrine disrupting chemicals (EDCs) influence growth and development 
through interactions with the hormone system, often through binding to hormone 
receptors such as the estrogen receptor. Computational methods can predict EDC 
activity of unmodified compounds, but approaches predicting activity following 
metabolism are lacking. This study uses a well-known environmental contaminant, 
PCB-30 (2,4,6-trichlorobiphenyl), as a prototype EDC and integrates predictive 
(computational) and experimental methods to determine its metabolic transformation by 
CYP3A4 and CYP2D6 into estrogenic byproducts. Computational predictions suggest 
that hydroxylation of PCB-30 occurs at the 3- or 4-phenol positions and leads to 
metabolites that bind more strongly than the parent molecule to the human estrogen 
receptor alpha (hER-α). GC/MS experiments confirmed that the primary metabolite for 
CYP3A4 and CYP2D6 is 4-hydroxy-PCB-30, and the secondary metabolite is 3-
hydroxy-PCB-30. Cell-based bioassays (bioluminescent yeast expressing hER-α) 
confirmed that hydroxylated metabolites are more estrogenic than PCB-30. These 
experimental results support the applied model's ability to predict the metabolic and 
estrogenic fate of PCB-30, which could be used to identify other EDCs involved in 
similar pathways.  

Introduction 

 
 Endocrine disrupting chemicals (EDCs) can influence growth and developmental 
processes in humans and animals[1,2] which has led to a sustained effort toward 
identifying and characterizing potential endocrine disrupting compounds[3-5] including  

polychlorinated biphenyls (PCBs). PCBs are environmentally widespread and 
recalcitrant pollutants with multiple mechanisms for endocrine disruption, including 
interfering with estrogen hormone signaling[6-10] and are of particular concern due to 
their bioaccumulation through the food chain to relatively high concentrations within the 
adipose tissues of top predators.[11-13] One of the most estrogenic metabolites of all 
PCBs is 4-hydroxy-PCB-30.[14] Its parent molecule, PCB-30, is one of 209 
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polychlorinated biphenyl (PCB) congeners which has been used as a prototypic 
molecule for many other metabolite and estrogenic studies.[15,16,3]  
 
Cytochrome P450s are primarily responsible for metabolizing PCBs and other EDCs, 
most often by adding hydroxyl groups to their aromatic rings. Hydroxylation serves to 
make exogenous compounds more polar and thereby more easily expelled from cells 
through active transport mechanisms.[17] In many cases, hydroxylation of a compound 
gives the corresponding metabolites a higher binding affinity to estrogen or other 
hormone receptors than the parent molecule.[18-24] This process is known as 
bioactivation and experimental methods able to detect it are prohibitively costly and time 
consuming. Predictive approaches are needed in order to screen a large number of 
chemicals that may have EDC properties or obtain them through P450 metabolism.[1,5] 
Ryberg[25] has produced a program dubbed SMARTCyp which pre-calculates reactivity 
rules for atoms in P450 active sites and uses 2D structural similarity rules to assign 
reactivity scores to new molecules. Virtual docking has been shown to provide useful de 
novo predictions about compound accessibility and binding affinity to a target protein 
which is directly relatable bioactivity. Virtual docking has for instance been successfully 
used to identify active EDCs toward hormone receptor target [26,27] and CYP450 
ligands[28-30]. Ginex[31] and colleagues presented recent work where the primary P450 
metabolites of a compound were predicted using a computational 2D method, similar to 
SMARTCyp, and followed by bioactivity predictions using virtual docking to the 
androgen receptor. 
 
 In this work, an integrated computational and experimental approach (outlined in 
Figure 2.1.1) has been developed to identify chemicals that exhibit EDC properties 
following metabolic processing by specific cytochrome P450 enzymes. This approach is 
currently modeled with PCB-30 as a prototype molecule and applied to the estrogen 
receptor and specific P450s 3A4/2D6. Our model differs most notably from Ginex‘s 
scheme by including the use of docking in 3D P450 structures as a means to better 
assess atom accessibilities, a point noted by Ryberg as a limiting factor in 2D predictive 
methods. 
 
 Predicting the P450 metabolites of a ligand requires knowledge about i) the 
reactivity for each ligand atom and ii) the accessibility for each ligand atom within the 
active site of specific P450 enzymes. In the outlined model (Figure 2.1.1), 
SMARTCyp[25] is used to predict the relative reactivity for each ligand atom, with respect 
to specific P450 enzymes, and molecular (virtual) docking is used to predict the 
geometry (accessibility) of a ligand atom within a specific P450‘s active site. Any 
predicted P450 metabolites are then docked into the ligand binding domain of the 
human estrogen receptor alpha (hER-α) to assess binding affinity to this nuclear 
hormone receptor, and hence gauge any potential estrogenicity.  
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Figure 2.1.1. Computational and Experimental Approaches. Potentially reactive 
carbon atoms on the parent molecule are labeled by atom type (4, 3, 3', 2). (Left 
Side) Computational steps; (Right Side) Experimental steps. Comparable 
methods between the left and right sides of the diagram are coordinated by color 
(Purple, Blue, Green). 
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 Metabolite predictions for PCB-30 were based on two specific CYP450 isoforms, 
CYP2D6 and CYP3A4, which together metabolize ~50% of known drugs[32,33] including 
other estrogen-like compounds.[34,35] CYP3A4 is known to metabolize a diverse range of 
compounds due to its large and flexible ligand binding site.[36,37] These two specific 
CYP450s are both involved in converting a notable EDC, tamoxifen, to more highly 
estrogenic 3- and 4-hydroxy species.[38] Part of the metabolic process involves the 
hydroxylation of a resonant ring, a functional group shared by both tamoxifen and PCB-
30.  
 
 Computational predictions were validated using a series of complementary 
experimental techniques (Figure 2.1.1, right column). First, microsomal reaction 
mixtures (MRMs), obtained by exposing PCB-30 to human liver microsomes, were used 
to generate hydroxylated metabolites. The hydroxylated products in the MRMs were 
then structurally characterized using GC/MS and also functionally (i.e., assessing their 
estrogenic activities) in a recombinant bioluminescent yeast assay (BLYES)[39,40] which 
measures binding of chemicals to hER-α. The BLYES bioassay consists of 
Saccharomyces cerevisiae with the human estrogen receptor (alpha form) expressed 
continually from its genome as well as plasmid-based lux operon (luxCDABE) 
bioreporter genes under the control of human estrogen response elements.[40] The 
engineered yeast strain produces bioluminescence when exposed to estrogenic 
compounds and does not need exogenous substrates. These assays have been used 
extensively to measure endocrine responses to polychlorinated biphenyls (PCBs) and 
hydroxylated derivatives[41-43], polynuclear aromatic hydrocarbons (PAHs)[44], 
pesticides[45] and other compounds[43] as well as detection of estrogens in natural 
samples[41,46-49]. 
 
 Using the integrated approaches outlined in Figure 2.1.1, two specific P450 
enzymes (CYP2D6 and CYP3A4) are identified for the first time as responsible for 
producing the potent estrogenically active metabolites of PCB-30. Detailed biochemical 
predictions observed as a part of these findings indicate a potential to use this modeling 
approach to screen additional compounds through multi-protein biochemical pathways. 
A future full-scale use of this method could screen large databases of chemicals against 
many different protein targets. Such a massive virtual screening approach is becoming 
more feasible as recent technology improvements are able to better scale docking 
simulations on supercomputers, allowing millions of compounds to be screened against 
multiple protein targets.[50] Complex system-level predictions for toxicity and 
therapeutics will continue to develop over the next decade as simulation technologies 
and computational power continue to improve,[51] and this work offers a contribution 
toward moving the field of molecular modeling in this forward direction of predicting 
biochemical pathway interactions. 

Materials and Methods 

Ligand Preparation  

 The structure for PCB-30 was obtained from the PubChem database (Compound 
CID: 37247). Metabolite structures were built using the program MOE version 2010[52] 
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and the PCB-30 parent molecule as a template. Hydrogen atoms were added using the 
Protonate-3D[53] facility in MOE with a pH condition of 7. Inclusion of pH conditions in 
determining protonation states is important since functional groups may be either 
ionized or neutral, affecting a molecules predicted bioactivity during docking 
simulations.[54] All structures were energy-minimized to a 0.05 kcal/mol·Å RMS (root 
mean square) energy gradient using the MMFF94s force field (Merck Molecular Force 
Field 94)[55] as implemented in MOE.  

P450 Docking  

 To represent the active iron-oxygen intermediate state of the P450 heme, the 
crystal structures for cytochrome P450s CYP3A4 (PDB: 1TQN)[56] and CYP2D6 (PDB: 
2F9Q)[57] were used following the protocol described in Baudry et al., 2003.[30] Docking 
calculations were performed using MOE. Water molecules were deleted from the crystal 
structures. Hydrogen atoms and charges were assigned using Protonate-3D facility in 
MOE (pH 7) which estimates the individual pKa of every residue. The Site Finder facility 
in MOE was used to identify binding site locations. The default placement method, 
Triangle Matcher (matching 3 atoms at a time), was used to quickly sample 3000 ligand 
poses. Ligand bonds were allowed to be rotatable during placement. The returned 
poses were scored by their approximate free energies of binding using the Affinty dG[52] 
scoring method which estimates the binding free energy of a ligand in a given 
conformation inside the protein‘s active site. The top 100 scoring poses were retained 
for further calculations. Duplicate orientations were removed from these 100 returned 
poses. The ligand atoms and binding pocket residues (6 Å away) were refined with 
forcefield energy minimization (0.01kcal/mol·Å RMS energy gradient) using the 
MMFF94s forcefield. Side chains atoms were allowed to be partially flexible (6 Å away 
from the ligand pocket atoms) with a tethering weight set to 10kcal/mol/A2. Final binding 
energy calculations for each of the remaining poses were calculated using the London 
dG[58] scoring method. 

Estrogen Receptor Docking 

 The crystal structure for hER-α protein (PDB: 1L2I)[59] was used to dock PCB-30 
and its predicted metabolites because it represents the agonist form of the receptor at a 
resolution of less than 2 angstroms. The docking protocol was developed using a test 
set of 2636 compounds from the DUD-ER[60] (Directory of Useful Decoys- Estrogen 
Receptor) database containing 67 known active molecules (i.e. ligands) and 2569 
known decoys. Supplemental Figure 2.1.S1 shows that docking statistically 
distinguishes active from inactive compounds. Most of the active compounds could be 
recovered in a small fraction of this database after prioritization with docking scores. For 
example, 10% of the scored database was enriched to contain 85% of the original 
actives. Experimental testing of this top 10% would only include 8.1% of the original 
decoys (false positives), exhibiting significant enrichment over the database ratio of 38 
decoys for every 1 active molecule. In the docking protocol, all atoms were removed 
except for chain A residues and the associated water molecules. Water molecule 10 is 
known to coordinate interactions within a hydrogen bond network involving GLU 353, 
ARG 394 and the binding of various hydroxylated ligands.[61, 62] Hydrogen atoms were 
added to the protein using the Protonate-3D facility in MOE (pH 7). The Site Finder 
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utility in MOE was used to identify the binding site in the structure of hER-α. For docking 
calculations, the Triangle Matcher placement method was used for initial ligand 
positioning. This was set to return 1000 poses. Ligand bonds were allowed to be 
rotatable during placement. MOE‘s internal scoring function for the placement of each 
conformer (E_place) was used to determine the best initial ligand pose, based on 
geometric fit. The ligand and binding pocket atoms for the best placed pose (within 6 Å 
from the ligand) were refined through energy minimization to a 0.01kcal/mol·Å RMS 
energy gradient using the MMFF94s forcefield and a tethering weight set to 
10kcal/mol/A2. A dielectric constant of 1 was used in the forcefield potential setup. Final 
energy scores were calculated using MOE's default scoring method, London dG. 

SMARTCyp 

 The SMARTCyp web server (version 2.2) was used to assess the reactivity of 
individual atoms on PCB-30. SMARTCyp bases its reactivity predictions on a set of pre-
calculated activity rules for chemical functional groups. The specific transformations that 
occur at a given atomic location are assigned from a list of the most commonly known 
transformations observed for particular functional groups and P450s.[25] More direct 
approaches, up to and including quantum approaches, can be used to more accurately 
evaluate reaction products than statistical methods, although such calculations are 
extremely time consuming and are not adequate for use in screening models.[63] In the 
case of PCB-30, the only functional group to consider is a phenolic ring for which 
hydroxylation is the most common transformation known to be catalyzed. Other 
transformations could in theory be assigned for molecules with different functional 
groups, though none are included in the scope of this current work. SMARTCyp also 
estimates an accessibility score for each possibly reactive atom to account for the size 
and shape of a specific P450's active site. For CYP3A4's active site, which is larger 
than that of CYP2D6 and allows free molecular rotation, atoms farthest from a 
molecule‘s center are considered to be more accessible. In the case of CYP2D6, atoms 
on the farthest ends of a molecule are treated as more accessible since CYP2D6's 
active site is narrower than that of CYP3A4, not allowing the molecules to freely rotate. 
Benchmarks for SMARTCyp accuracy are reported to be 91% for CYP2D6 and 76% for 
CYP3A4 with regards to identifying the top two sites of metabolism in sample sets of 
compounds.[25,64] The lower accuracy rate for CYP3A4 predictions is due to the larger 
and less restrictive binding cavity. 

Yeast Bioassays 

 Strains Saccharomyces cerevisiae BLYES and BLYR[43] were grown in Yeast 
Minimal Media (YMM) without leucine and uracil overnight at 30oC and with shaking to 
an OD600 of 1.0. All chemicals for the assay were initially suspended in 4% DMSO at a 
concentration of 10 mM. The standard (17β-estradiol) was serially diluted to generate a 
concentration range from 0.2 µM to 0.5 pM, while 4-hydroxy-PCB-30 was diluted from 2 
µM to 5 pM and PCB-30 was diluted from 2 mM to 5 nM. Then 100 µl of each dilution 
(standards and samples) were spotted into the wells of 96-well plates. A 100-µl aliquot 
of culture was placed into each well of the 96-well plate, generating a concentration 
range from 0.1 µM to 0.25 pM for 17β-estradiol, 1 µM to 2.5 pM for 4-hydroxy-PCB-30, 
and 1 mM to 2.5 nM for PCB-30. For each test assay, plates were made in duplicate 
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such that one strain was added per plate (BLYR and BLYES), including controls. 
Bioluminescence was measured every 60 min for 6 h in a Perkin-Elmer Victor2 
Multilabel Counter with an integration time of 1 s/well. Negative controls included wells 
with (i) medium + cells and (ii) medium + cells + DMSO. Log bioluminescence (counts 
per second) versus log sample dilution or chemical control concentration (M) were 
plotted, generating a sigmoidal curve for hormonally active compounds. A 50% effective 
concentration (EC50) value was determined from the midpoint of the linear portion of the 
sigmoidal curve. The mean and standard deviation values were calculated from 
replicate EC50 values for standards to determine the variability between assays. The 
detection limit was determined by calculating the concentration of chemical at 
background bioluminescence plus three standard deviations of bioluminescence.  

Microsomal Reaction Mixture  

 A stock solution (1x10-2 M) of each chemical was prepared in DMSO and 
incubated with microsome mixtures according to the manufacturer‘s protocol. Three 
types of microsomal mixtures were used: a pool of microsomal extracts from 50 pooled 
human donor livers, microsomal extracts that were enriched for CYP2D6, and 
microsomal extracts that were enriched for CYP3A4 (Life Technologies, Grand Island 
NY). Pooled human microsomes contained the cytochromes CYP1A2, CYP2A6, 
CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. Briefly, 2 µl 
of 20 mM NADPH, 5 µl of microsome solution, and 183 µl of phosphate buffer were 
mixed with 2 µl of chemical stock solution in DMSO and incubated for 5 minutes with 
shaking at 37oC. NADPH (10 µl of 20 mM) was added and the reaction mixture was 
incubated at 37oC with shaking for 24 hours. The reaction was stopped by the addition 
of 200 µl of DMSO, yielding a final concentration of test chemical 1x10-4 M in 50% 
DMSO. Test chemical-microsome mixtures were then diluted and processed in the 
yeast assays as described in the methods section of Sanseverino et al. 2009. Three 
types of microsome mixtures were tested with both PCBs: 1) a pool of human liver 
microsomes from 50 people, 2) a pool of human liver microsomes with high CYP2D6 
activity, and 3) a pool of human liver microsomes with high CYP3A4 activity. 

Gas Chromatography/Mass Spectrometry 

 MRM extracts were analyzed using an Agilent gas chromatograph (Model 6890) 
equipped with a mass spectrometer detector (MSD, Model 5973N) with an inert source 
and auto sampler. Standards included: 3-hydroxy-PCB-30 (98.1% purity, purchased 
from AccuStandard, Inc., New Haven, CT), 4-hydroxy-PCB-30 (100 µg/ml in isooctane, 
Accustandard), and PCB-30 (100 µg/ml in hexane, Ultrascientific, Kingstown, RI). A ZB-
5MS Guardian column (30 m x 0.25 mm i.d., film thickness 0.25 µm, Phenomenex, 
Torrance, CA) was used for sample separation with Helium as carrier gas at a constant 
flow rate (1.0 mL/min) maintained by an electronic pressure control module. Mass 
spectrometric measurements with electron ionization (EI) at 70 eV were performed in 
selected ion monitoring (SIM) mode. The molecular and fragment ions used for SIM 
recording were 272 (base peak), 202, 173, and 139. The temperature for MS source 
and MS Quad were set at 250 and 200 ˚C, respectively. The temperature program 
started at 190 ˚C and increased to 200 ˚C at 10 ˚C/min, then increased at a rate of 2.5 
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˚C/min up to 230 ˚C. The injection temperature was set at 250 ˚C and the transfer line 
was at 280 ˚C. 

Results 

In Silico SMARTCyp Predictions 

 PCB-30 is predicted by SMARTCyp to have several reactive sites that can be 
oxidized by CYP2D6 and CYP3A4 (Table 2.1.1). Carbon atom C.4 (see atom 
numbering on Figure 2.1.1) is predicted to be the most reactive (i.e., lower energy 
values in Table 2.1.1) and most accessible in both P450 cases. In the CYP2D6 case, 
the atoms C.2 and C.3' are predicted to be more reactive than the C.3 atom. However, 
the C.2 and C.3' atoms are also predicted to be less accessible than the C.3, resulting 
in a lower overall predicted rank (i.e., a lower score in Table 2.1.1) for C.2 and C.3' than 
for C.3. In the CYP3A4 case, atom C.3 is predicted to have a lower rank than it does in 
the CYP2D6 case because of a less favorable accessibility. These results suggest that 
C.4 atom on PCB-30 is the most likely site of hydroxylation by both CYP2D6 and 
CYP3A4. However, SMARTCyp predicted the next possible oxidation site of PCB 
differently for the two P450s: atom C.3 in the case of CYP2D6, and atom C.2 in the 
case of CYP3A4.  

In Silico P450 Docking Predictions 

 Molecular docking was used as a better method than SMARTCyp to determine 
accessibility of ligand atoms to the reactive oxygen atom which is bonded to the heme-
iron atom. Flexible ligand and protein docking simulations were carried out and the 
distance of ligand atoms to the reactive oxygen atom of specific P450 enzymes are 
reported in Table 2.1.2. Binding mode depictions for PCB-30 docked in each P450 can 
be viewed in Supplemental Figures 2.1.S2-2.1.S6. During initial placement of ligand 
atoms, 660 unique ligand poses were returned for CYP2D6 and 1021 unique poses 
were returned for CYP3A4. The C.4 and C.3 atoms for PCB-30 are both equally 
positioned near the reactive oxygen atom (3.0 Å and 3.0 Å, respectively) in CYP2D6 
and (3.4 Å and 3.8 Å, respectively) in CYP3A4. The other two carbon atoms, C.2 and 
C.3', were found to be ~4-5 Å from the reactive oxygen for both P450s, in contrast with 
the non-structure-based SMARTCyp results. These docking results suggest that the 3- 
and 4-hydroxy species of PCB-30 are the most likely metabolites for these two specific 
P450s investigated here.  

In Silico Estrogen Receptor Docking Predictions  

 Docking of the predicted 4-, 3-, and 3'-hydroxy metabolites for PCB-30 was 
carried out with the crystal structure of hER-α in the agonist state (1L2I). PCB-30 has 
previously been shown as only weakly active toward the hER-α protein but increasing in 
activity after being metabolized into hydroxylated forms[22,23]. The hER-α docking results 
predict that all of the hydroxylated metabolites of PCB-30 bind more strongly (i.e., 
lowest predicted binding free energy) to the hormone receptor than the non-
hydroxylated PCB-30 parent compound (Table 2.1.3). The 4-hydroxy metabolite exhibits 
the most favorable binding energy (-11.0 kcal/mol) followed by the 3-hydroxy and 3'-
hydroxy metabolites (-8.0 kcal/mol and -8.2 kcal/mol, respectively). It is interesting to 

A 
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note that the 3'-hydroxy species is predicted to bind slightly better to the estrogen 
receptor than the 3-hydroxy species (-8.2 kcal/mol vs. -8.0 kcal/mol). In principle, this 
would suggest that the 3'-hydroxy metabolite is more estrogenic, or at least as 
estrogenic, than the 3-hydroxy species. However the docking results given in Table 
2.1.2 indicate that the 3'-hydroxy metabolite is unlikely to be formed by P450 3A4 and 
2D6 metabolism.   
 
 Structural examination of the binding pocket interactions (Figure 2.1.2) showed 
that docking reproduced important protein-ligand interactions at GLU 353 and the 
adjacent water molecule (water 10).[61] The ortho- and para-hydroxyl groups of 3-
hydroxy-PCB-30 and 4-hydroxy-PCB-30 are found to be involved in a H-bond network 
at these locations. Establishing these H-bonds is thought to contribute to the commonly 
observed increase in estrogenic activity for hydroxylated molecules.[34,35,61] Additional 
conserved interactions are H-bonds at ARG 394 and HIS 524 and arene-H bonds 
between PHE 404, LEU 387, LEU 384 (accepting electrons) and the nearest ligand 
phenol (donating electrons)[61,62] as  shown in Figure 2.1.2. 
 
 
 

Table 2.1.1. SMARTCyp: Reactive Atom Sites. 

A. CYP2D6    

Rank
α
 Atom

θ
 Score

β
 Energy

γ
 S2End

 ε
 

1 C.4 80.8 80.8 0 

2 C.3 93 86.3 1 

3 C.2 94.2 80.8 2 

4 C.3' 97.5 84.1 2 

B. CYP3A4     

Rank
α
  Atom

θ
  Score

β
  Energy

γ
  Accessibility

δ
 

1  C.4  72.8  80.8  1  

2  C.2  74.8  80.8  0.75  

3  C.3'  78.1  84.1  0.75  

4  C.3 79.3  86.3  0.88  

 

SMARTCyp reactivity (energy) and accessibility (S2End or Accessibility) of 
carbon atoms in PCB-30 for CYP2D6 (Panel A) and CYP3A4 (Panel B). Carbon 
atomθ labels refer to the atom types provided at the top of Figure 2.1.1. The rankα 
is based on the scoreβ which is calculated with a formula[28] combining both 
reactivity and accessibility. Energy

γ
 is determined by calculating the transition 

states for each atom with the lowest value being the most favorable. In the 
CYP3A4 case, atom accessibilityδ is determined with highest “Accessibility” 
values (up to a maximum value of 1) indicating better accessibilities. In the 
CYP2D6 case, lowest “S2End” values indicate better atomic accessibilities. 
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Table 2.1.2.  P450 Docking (2D6 and 3A4): Atom Accessibility. 

 
Carbon 
Atom 

CYP2D6 
Distance 
(angstroms) 

CYP3A4 
Distance 
(angstroms) 

C.4 
C.3 
C.2 
C.3' 

3.0 
3.0 
4.0 
4.0 

3.4 
3.8 
5.2 
4.7 

 

Distance between the CYP450 reactive oxygen atom and the carbon atoms of 
PCB-30 after docking. Carbon atom numbers refer to the labels provided at the 
top of Figure 2.1.1 

 
 
 

Table 2.1.3. Docking (hER-α): Binding Predictions for PCB-30 and Metabolites. 

Ligands Structure 
London dG 
Score(kcal/mol) 

4-hydroxy-PCB-30 

 

-11.0 

3'-hydroxy-PCB-30 

 

-8.2 

3-hydroxy-PCB-30 

 

-8.0 

PCB-30 

 

-7.2 

 

Ligand Names, structures and London dG binding scores for each compound 
docked in hER-α.  
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Figure 2.1.2. Docking (hER-α): Atom Interactions. Protein-ligand interactions for 
PCB-30 and its metabolites docked in hER-α.  Only interacting residues are 
shown. Hydrogen and backbone atoms are hidden. The dotted lines represent 
noncovalent interactions. A: (4-hydroxy-PCB-30). B: (3'-hydroxy-PCB-30). C: (3-
hydroxy-PCB-30). D: (PCB-30). 

 
 
 

In Vitro P450 Exposure and Bioassays  

 S. cerevisiae BLYES and BLYR were incubated with PCB-30 and 4-hydroxy-
PCB-30, yielding EC50 values of 4.2x10-5 M and 3.4x10-8 M, indicating that addition of 
the hydroxyl group at position C.4 on PCB-30 resulted in an approximately 1000x 
increase in estrogenic response (Figure 2.1.3). To explore whether cytochrome P450 
metabolism also resulted in increased activity, PCB-30 was incubated with total liver 
microsomes, enriched CYP2D6 extract, and enriched CYP3A4 extract. Incubation for 24 
hours with any of the microsomal or enriched P450 extracts resulted in an 800,000-
1,000,000 fold increase in hER-α activity, indicating that liver P450s were capable of 
hydroxylating PCB-30 into a more estrogenic form (Figure 2.1.4).  
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Gas Chromatography/Mass Spectrometry  

 GC/MS was used in order to validate that 3- and 4-hydroxy metabolites were 
produced in each of the respective MRMs (Figure 2.1.5). The retention times for 3-
hydroxy-PCB-30 and 4-hydroxy-PCB-30 standards were 9.083 and 9.406 min, 
respectively.  Peaks at both of these retention times were detected in the 3A4 and 2D6 
MRMs. The ratio based on peak areas between 3-hydroxy- and 4-hydroxy-PCB-30 was 
approximately 1:19 with the 4-hydroxy metabolite being more abundant than the 3-
hydroxy metabolite.  
 
 
 
 

 

 

Figure 2.1.3. Bioassay: Response to Standards (PCB-30 and 4-hydroxy-PCB-30). 
Dose-response curves for standards (PCB-30 and 4-OH-PCB-30). Estrogenic 
response (bioluminescence) was measured in the BLYES and BLYR assays. 
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Figure 2.1.4. Bioassay: Response to PCB-30 Metabolites (MRMs). Response to 
PCB-30 Metabolites (MRMs). Shown is the estrogenic response 
(bioluminescence) of PCB-30 MRMs that were generated in either CYP2D6, 
CYP3A4, total liver microsome, or a solvent control.  
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Figure 2.1.5. GC/MS: Characterization of PCB-30 Metabolites (MRMs). GC/MS 
Characterization of PCB-30 Metabolites (MRMs). Dotted black line: peak retention 
times for the two standards (3-hydroxy-PCB-30 and 4-hydroxy-PCB-30). The 3-
hydroxy peak is approximately 9.1 min and the 4-hydroxy peak is approximately 
9.4 min. Solid black lines: peak retention times for PCB-30 metabolites formed 
during incubation with CYP3A4 (Top Panel) and CYP2D6 (Lower Panel).  

 
 
 

Discussion 

 
 The reactivity scoring obtained by SMARTCyp calculations predicts that the 4-, 3-
, 3'-, and 2-carbon atoms are reactive and could potentially become hydroxylated. 
Inclusion of SMARTCyp‘s 2-dimensional accessibility metrics predicts the top two sites 
of metabolism as C.4 and C.3 for CYP2D6 and C.4 and C.2 for CYP3A4. However, 
docking predicts the C.4 and C.3 atoms as the most accessible and likely oxidation sites 
for both P450s. GC/MS results have only two peaks with matching retention times to the 
4- and 3-hydroxy-PCB-30 standards which confirms that the docking predictions are 
more accurate than SMARTCyp when factoring in atom accessibility. The bimodal 
GC/MS spectrum suggests that there were no more than two metabolites, unless 3- and 
3'-hydroxy-PCB-30 share the same retention time. However, there is no mention of 3'-
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hydroxy-PCB-30 as a known EDC in the literature which suggests that it may only be a 
theoretical derivative of PCB-30 and unlikely to naturally occur.  
 
 It is interesting to note that the predictive methods from this model were able to 
aid in the strategic selection of reference spectra for validating the metabolites being 
produced by these two specific P450s. The model's predictions suggested that PCB-30 
metabolites in CYP2D6 and CYP3A4 were likely the 3- and 4-hydroxy species. We used 
this information to rationalize using 3- and 4-hydroxy-PCB-30 compounds as standards 
for producing reference spectra during the GC/MS analysis.  Otherwise, selection of 
standards for GC/MS would have been a challenge requiring the referencing of many 
more spectra. This was not an intended application for the model but it is an interesting 
benefit of this technology. 
 
 Hydroxylation of PCB-30 has previously been shown to lead to an increased 
estrogenic response and that 4-hydroxy-PCBs are a major P450 metabolite class of 
PCBs.[15,22,23] The present study expands upon these previous findings by identifying 
CYP2D6 and CYP3A4 as specific P450s involved in the ortho- or para- hydroxylation of 
PCB-30 into its more estrogenic forms. The present results do not exclude the 
involvement of other CYP450s in estrogenizing PCB-30 and only test estrogenic activity 
with hER-α in an agonist state. The estrogen receptor also exists in the antagonist state 
and there are at least two other estrogen receptor isotypes (beta and gamma).[65] These 
additional forms of hER-α would eventually be important to consider for more complex 
screening of EDC activity. Also to consider are other cytochrome P450 isoforms that 
may metabolize EDCs.[30,33,12] The reliance of this model on virtual docking means that 
only protein structures are required to include these additional proteins, which many 
already exist or can be homology modeled. Also, SMARTCyp has recently been 
expanded to include reactivity predictions for several additional CYP450s (1A2, 2A6, 
2B6, 2C8, 2C19 and 2E1). 

Conclusion 

 This work established that CYP3A4 and CYP2D6 produce PCB-30 metabolites 
with higher estrogenic activity than their parent structure. Two specific metabolites were 
produced that had been modified to contain a hydroxyl group at either the C.4 or C.3 
atoms with 4-hydroxy-PCB-30 being the primary product and the most estrogenic of 
observed metabolites. All of these results were able to be predicted using a combined 
reactivity-based (SMARTCyp) and multi-structure-based approach (multi-protein 
docking). This integrated model uses techniques which were individually developed to 
provide less costly and more efficient compound characterizations toward specific 
proteins, and integration of these techniques allows for robustly predicting compounds 
involved in both P450 metabolism and estrogen activity. Based on the scalability and 
adaptability of this combined approach, it is conceivable that this method can be further 
developed and used to robustly predict the P450 metabolism and estrogenic effects of 
many more environmental and pharmaceutically important compounds. This work may 
also serve as an example for future attempts at modeling the metabolism and bioactivity 
of other compound and protein classes through increasingly complex multi-protein 
pathways. 
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Microsomal Reaction Mixture; hER-α, Human Estrogen Receptor Alpha; EDC, 
Endocrine Disrupting Chemical; QSAR, Quantitative Structure Activity Relationship; 
BLYES, Bioluminescent Yeast Estrogen Strain; PAHs, Polynuclear Aromatic 
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Supplemental Figures 

 

Figure 2.1.S1. Computational Prioritization of the DUD-ER Database. This graph 
displays the docking results for the Directory of Useful Decoy (DUD) database. 
There are 67 known active molecules and 2569 known decoys in this database. 
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Figure 2.S2. Docking Pose for PCB-30 Atoms C.4, C.3, C.2 in CYP3A4. Shown 
is the docking pose of PCB-30 with atoms C.4, C.3, and C.2 closest (most 
accessible) to the reactive oxygen atom on the CYP3A4 heme group. Dotted 
green lines and green text show distance in angstroms from respective PCB-
30 atoms to the heme oxygen atom. Sidechain atoms within 4.5 Å of PCB-30 
are made visible and labeled to depict the binding pocket. 
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Figure 2.1.S3. Docking Pose for PCB-30 Atoms C.3’ in CYP3A4. Shown is the 
docking pose of PCB-30 with atom C.3’ closest (most accessible) to the reactive 
oxygen atom on the CYP3A4 heme group. Dotted green lines and green text show 
distance in angstroms from respective PCB-30 atoms to the heme oxygen atom. 
Sidechain atoms within 4.5 Å of PCB-30 are made visible and labeled to depict the 
binding pocket. 
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Figure 2.1.S4. Docking Pose for PCB-30 Atoms C.4 and C.3 in CYP2D6. Shown is 
the docking pose of PCB-30 with atoms C.4 and C.3 closest (most accessible) to 
the reactive oxygen atom on the CYP2D6 heme group. Dotted green lines and 
green text show distance in angstroms from respective PCB-30 atoms to the 
heme oxygen atom. Sidechain atoms within 4.5 Å of PCB-30 are made visible and 
labeled to depict the binding pocket. 

 



 56 
 

 

Figure 2.1.S5. Docking Pose for PCB-30 Atom C.2 in CYP2D6. Shown is the 
docking pose of PCB-30 with atom C.2 closest (most accessible) to the reactive 
oxygen atom on the CYP2D6 heme group. Dotted green lines and green text show 
distance in angstroms from respective PCB-30 atoms to the heme oxygen atom. 
Sidechain atoms within 4.5 Å of PCB-30 are made visible and labeled to depict the 
binding pocket. 
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Figure 2.1.S6. Docking Pose for PCB-30 Atom C.3’ in CYP2D6. Shown is the 
docking pose of PCB-30 with atom C.3’ closest (most accessible) to the reactive 
oxygen atom on the CYP2D6 heme group. Dotted green lines and green text show 
distance in angstroms from respective PCB-30 atoms to the heme oxygen atom. 
Sidechain atoms within 4.5 Å of PCB-30 are made visible and labeled to depict the 
binding pocket. 
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CHAPTER 3.1. A SURVEY OF ASPARTATE-PHENYLALANINE AND 
GLUTAMATE-PHENYLALANINE INTERACTIONS IN THE PROTEIN 

DATA BANK: SEARCHING FOR ANION-Π PAIRS 
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Abstract 

 Protein structures are stabilized using non-covalent interactions. In addition to 
the traditional non-covalent interactions, newer types of interactions are suggested to be 

present in proteins.  One such interaction, an anion- pair, has been previously 
proposed where the positively charged edge of an aromatic ring interacts with an anion, 
forming a favorable anion-quadrupole interaction (Jackson et al., J Phys Chem B 2007, 

111, 8242-8249).  To study the role of anion- interactions in stabilizing protein 
structure, pairwise interactions between phenylalanine (Phe) with the anionic amino 
acids, aspartate (Asp) or glutamate (Glu), were analyzed.  Particular emphasis was 
focused on identification of Phe and Asp or Glu pairs separated by less than 7Å in the 
high resolution, non-redundant Protein Data Bank.  Simplifying Phe to benzene and Asp 
or Glu to formate molecules facilitated in silico analysis of the pairs.  Kitaura-Morokuma 
energy calculations were performed on roughly 19,000 benzene-formate pairs and the 
resulting energies analyzed as a function of distance and angle.  Edgewise interactions 
typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while 
interactions involving the ring face resulted in weakly stabilizing to repulsive interaction 
energies.  The strongest, most stabilizing interactions were identified as preferentially 

occurring in buried residues.  Anion- pairs are found throughout protein structures, in 

helices as well as -strands.  Numerous pairs also had nearby cation- interactions as 

well as potential - stacking.  While over a thousand structures did not contain an 

anion- pair, the remaining 3134 structures contained approximately 2.6 anion- pairs 
per protein, suggesting it is a reasonably common motif that could contribute to overall 
structural stability of a protein.  

Introduction 

 Analysis of protein structure and ligand binding has been traditionally understood 
based on hydrogen bonds, van der Waals interactions, hydrophobic interactions, and 
ion pairs. However, other types of non-bonded interactions have been suggested to play 
a role in the stabilization of protein structures and of protein-ligand interactions.  For 

example, hydrogen bonds involving CH as a donor group and  systems as acceptor 
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groups have been described, including formation of CH- pairs1,2 as well as CH to O 
pairs3,4, where the aliphatic hydrogen forms weak bonds with nearby aromatic and 

carbonyl groups respectively.  Other groups have proposed S- bonds between 
cysteine and aromatic amino acids5. 
 

 An additional type of non-bonded interaction includes the cation- pair between 
aromatic sidechains (e.g. phenylalanine, tyrosine and tryptophan) and positively 

charged sidechains (lysine and arginine), where the cation interacts with the  electron 

cloud on the face of the aromatic ring.  These cation- pairs have been proposed to 

stabilize protein structures by ~3 ± 1.5 kcal/mol6,7  Recently, an n to * interaction8 has 
been proposed to exist whereby a delocalized, lone pair of electrons from a backbone 
carbonyl atom interacts with the antibonding orbital of the next carbonyl oxygen. This 
interaction is predicted to provide up to 0.5-1.3 kcal/mol of stability to helices when it 

occurs in protein structures.  Additional calculations suggest that - stacking is likely 
important9-11.  While all these interactions are weak, numerous such occurrences can 
produce a substantial stabilizing effect on protein structure.  
 

 Lastly, we have proposed that an anion- interaction exists which can contribute 
energetically to protein stabilization, ligand binding or protein-protein association12.  In 

this present work, we focus on the prevalence of anion- interactions in protein 
structures where negatively charged amino acids (aspartate or glutamate) can form 
energetically favorable pairs utilizing the positively charged ring edge of aromatic 
groups.  The positive charge on the aromatic ring edge arises from the quadrupole 

moment of the sidechain, leading to the anion-quadrupole or anion- name. As the 

description suggests, this interaction is related to the cation- pair; however anion- 
pairs facilitate an interaction between an anion and the aromatic ring edge rather than a 

cation with the ring face.  Other groups have studied anion- interactions in small 

molecules and have focused on electron-deficient  rings by incorporating strong 
electron-withdrawing substituents such as fluorobenzene derivatives, fluoro-s-triazine, 
and tetrafluoroethene as well as other aromatic molecules13-25.  Experimental evidence 

for the existence of anion- interactions in small molecules includes spectroscopic, 
NMR and crystallographic data of anion binding sites in electron deficient aromatics and 
host-guest molecular complexes, as well as other compounds found by screening the 
Cambridge Structural Database26-30. 
 

 Early examples of anion- interactions in biology appear to have been noticed, 
but not identified as such.  For example, oxygen atoms and cysteines display a high 
propensity to occur at the ring edge of aromatic amino acids31-34.  Additionally, the Atlas 
of Protein Sidechain Interactions indicates a statistical preference for an edgewise 
interaction between aromatic amino acids and Asp or Glu residues35.  Studies by 

Kallenbach et al.36-38 using short -helical peptides with glutamate-phenylalanine pairs 
positioned at i and i+4 spacing indicate this pairwise interaction provides ~ 0.5 kcal/mol 
additional stability to the helix.  For intermolecular binding interactions, Jouglin et al. 
found that tryptophan and tyrosine (as well as histidine and arginine) residues show the 
most enrichment at phosphoresidue binding sites 39.  Soga et al. propose aromatic 
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residues are ―binding site-philic‖ as phenylalanine, histidine and tryptophan are most 
commonly found in binding of druglike molecules 40.  Most recently, studies of a limited 
four amino acid code employed at antibody binding sites find tyrosine as the dominant 
residue which provides tight binding to a host of antigens 41-43.  For the latter two 
examples, aromatic groups can play many roles during binding as they are amphipathic, 

can provide cation- and anion- interactions and the tyrosine and tryptophan 

sidechains can provide H-bonds.  The relevance of the anion- interaction is further 
recognized as important in more recent experimental as well as theoretical studies11,44-49 

and references therein. 
 
 Our present statistical analysis expands our previous theoretical study by 

searching for anion- pairs in a nonredundant, high resolution subset of the Protein 
Data Bank (PDB).  We focus on contributions involving phenylalanine as the aromatic 
partner and either aspartate or glutamate as the anion.  First, angles and distances are 
calculated between these partners identified from the PDB screening. Then, using 
simplified models for each chemical group, interaction energies are obtained. We find a 

substantial number of such anion- pairs to be present in the PDB with stabilizing 
energetics (more negative than -2 kcal/mol). 

Materials and Methods 

 This section describes the steps taken to calculate energies associated with 

potential anion- interactions in proteins.  Only interactions between phenylalanine, 
simplified to a benzene ring, and aspartic acid or glutamic acid, simplified to formate, 
were studied.  While tyrosine and tryptophan are aromatic amino acids which can be 
simplified to phenol and indole, both molecules contain dipole moments and can 
participate in hydrogen bond formation.  Therefore, it is difficult to parse out the role of 

the anion- interaction in their energetics, and they were not analyzed. Figure 3.1.1 

shows a general flowchart of the steps in our analysis of biological anion- interactions.  
The first step used a C++ program named STAAR (STatistical Analysis of Aromatic 
Rings)12 to analyze the Hobohm and  Sander subset50,51 of the PDB, which includes 
non-redundant, high resolution structures.  In our approach, only crystal structures with 

a resolution of  2 Å were analyzed; this corresponded to 4491 entries (March 2006 
release).  STAAR locates phenylalanine rings and determines their centers of mass 
(CM).  For each aromatic ring, STAAR then calculates the distance r between the ring‘s 
center of mass and the nearest oxygen atom in a Glu or Asp carboxylate group, as well 

as the angle  between the plane of the ring and the vector connecting the ring center of 
mass with this oxygen atom.  We adopted the cutoff criteria of Gallivan and Dougherty7, 
i.e. those pairs possessing a distance of r ≤ 7 Å were chosen for analysis to eliminate 
cases in which a water molecule could fit between the two residues and diminish the 
interaction energy.  While STAAR can identify intermolecular pairs, in this study, we 
focus only on intramolecular pairs. 
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Figure 3.1.1  A flowchart of the calculations.  CC describes the center of charge of 
the formate and CM describes the center of mass of the benzene molecule. 

 
 
 
 The next steps in our analysis simplified the Phe and Asp or Glu pairs to 
benzene -formate (BF) pairs.  This was followed by addition of hydrogens to the BF 
pairs using ProDrg2 at http://davapc1.bioch.dundee.ac.uk/prodrg/52.  Since the pKa 
values for Asp and Glu are low (i.e., 3.5-4.5,)53, we assume Asp and Glu are always 
ionized.  The resulting file was converted from PDB coordinates to an xyz format using 
BABELwin54.  PC GAMESS (June 1999 version) 55 was used to calculate the pairwise 
energies.  Perl scripts and Excel spreadsheets were used to sort through the data.  
Later calculations used a Perl script to calculate the center of charge (CC) for formate.  

This allowed us to redefine r and  as the distance and angle between the formate 
center of charge and the benzene center of mass.   
 

 An important step in our study of anion- interactions was to identify a tractable, 
but energetically accurate calculation.  Using Gaussian 0356, we previously performed 
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quantum chemical calculations, corrected for basis set superposition error (BSSE), for 
optimized benzene-formate pairs BF1-BF4 (see Figure 3.1.2) at both the Hartree-Fock 
(HF) and second order Møller-Plesset (MP2) levels of theory12. To screen a large 
number of pairs, we hoped to identify an approach that would be more rapid than these 
first-principles quantum chemical calculations.  We therefore looked for a linear 
correlation between the HF energies of the BF1-4 pairs with energies calculated using 
several semi-empirical approaches.  Although Gallivan and Dougherty found the OPLS 

(optimized potentials for liquid simulations) forcefield worked well for identifying cation- 
interactions7, we did not observe a linear correlation between OPLS and HF energies.  
While reasonable correlations were observed using AM1 and PM3 forcefields, we 
ultimately used PC GAMESS running a Kitaura-Morokuma (KM) energy decomposition 
analysis57-60.  Using the optimized BF1-BF4 pairs, a reasonably linear correlation (slope 

= 0.92, 2 = 0.988) was observed when the HF and KM energies were compared.  To 
compare these two treatments for benzene-formate pairs derived from actual Phe with 
Asp or Glu residues that occur in the PDB, we calculated both KM and HF energies for 
322 different pairs, as shown in Figure 3.1.3.  The aug-cc-pVTZ atom-centered basis 
set was employed in all calculations61,62; spherical Gaussians were used except where 
otherwise indicated.  Interaction energy calculations were performed with the benzene 
center of mass held at the origin of the spherical coordinate system and the benzene 
molecule stationed in the (x, y) plane, with CH bonds oriented along the positive and 
negative y axes.  The counterpoise method63 was used to correct for basis set 
superposition error in all HF benzene-formate calculations.   
  
 CHARMM22 Calculations  140 pairs from the PDB that were found to exhibit 

negative (i.e. attractive) anion- ab initio interaction energies, were chosen to be 
analyzed by the CHARMM22 force field64 implemented in the program MOE version 
2009.10 (Chemical Computing Group, Ltd. Montréal, Canada).  Calculations were 
performed in the gas phase with no cutoff value for non-bonded interactions.  For each 
of the 140 pairs, the residues were isolated from their protein context and backbone 

atoms were deleted with the exception of the -carbon, i.e. only side-chain and -
carbon atoms were considered. Hydrogen atoms were added and an energy 
minimization was performed on the hydrogen atoms only (heavy atoms were held fixed).  
Interaction energies were calculated by subtracting the sum of the CHARMM22 
potential energies of the two individual amino acids from the CHARMM22 potential 
energy of the amino acid pair.  The van der Waals and electrostatic contributions to the 
non-bonded interaction energies were also recorded.  In another set of calculations, 
sidechain atoms were deleted from the models until only the functional groups 
remained.  The potential interaction energy between these functional groups was 

calculated as described for the side chains for all the 140 anion- pairs. Correlation 
coefficients were calculated between the energies derived from CHARMM22 and those 
interaction energies obtained from HF, MP2 and KM calculations for both side chain and 
functional groups.  
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Figure 3.1.2. Benzene-formate pairs.  Right: Four different coplanar dimers of 
benzene and formate were constructed and labeled BF1-412.  Left: The dihedral 

angle  (between the planes containing the benzene and formate monomers) of 

the BF1 pair was varied between 0 to 90 by 30 increments.  The center-of-mass 
position for benzene is shown in purple while the center-of-charge for formate is 
yellow.  The atoms are colored as follows: carbon (green), oxygen (red), and 
hydrogen (blue). 

 
 
 

Results 

 Screening the PDB  A C++ program, STAAR12, was used to identify Phe, Asp 
and Glu residues and to calculate the distance and angle between the aromatic ring and 
the carboxylate moiety.  This was the first step in investigating the energetics 
associated with aromatic-anionic pair formation.  Our approach follows the general 

procedure of Gallivan and Dougherty, who examined cation- interactions in the PDB7.  
Their rationale for including an energy calculation step was based on both the complex 
electrostatic potential surfaces of aromatic residues as well as the inability of geometric 
criteria to differentiate between attractive and repulsive interactions.   
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Figure 3.1.3. Correlation between Hartree-Fock (HF) and Kitaura-Morokuma 
energies.  From over 4000 PDB files, greater than 19,000 phenylalanine with Asp 
or Glu pairs were identified and simplified to benzene-formate pairs.  PC GAMESS 
was used to calculate interaction energies using a Kitaura-Morokuma (KM) 
energy decomposition approach.  The pairs were sorted according to their 
interaction energies and approximately every fiftieth pair was selected for HF and 
MP2 energy calculations using a BSSE correction error63.  The HF and KM 
energies from these 322 pairs are shown.   

 
 
 
 The high resolution, non-redundant Hobohm and Sander subset of the PDB 
(March 2006 release) was screened using the program STAAR50,51.  A distance filter 

was employed to identify those aromatic-carboxylate pairs which were separated by  7 
Å.  An initial search found approximately 40,000 pairs that satisfied this distance 
criterion; however, because STAAR recognizes identical pairs from different, but 
symmetrical subunits, subsets of the identified pairs were redundant.  For those PDB 
files that contained information regarding monomer identity (A,B,C, etc), a Perl script 
identified and removed the duplicates, retaining the pairs from only non-redundant 
monomers.  After this step, approximately 22,000 pairs between Phe and either Asp or 
Glu in 3995 PDB files remained.   
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 Next, the amino acid sidechains were simplified to benzene and formate; 
hydrogens were added using ProDrg252.  As PC GAMESS requires an xyz file format, 
the PDB coordinates were reformatted using BABELwin65.  PC GAMESS55 was then 
used to calculate the energies associated with pair formation using the Kitaura-
Morokuma energy decomposition analysis57-60.  We previously found this treatment 
provided good estimates of the interaction energy at low angles between the plane of 
the ring and the carboxylate, but did not accurately reflect  the energetic contributions at 

higher angles, particularly at  = 90o.   
 
 The resulting pairs were analyzed by various criteria.  The KM calculation 
deconvolutes the total energy into electrostatic (ES), polarization (PL), charge transfer 
(CT), exchange repulsion (EX) and mix terms.  The ―mix‖ term balances any differences 
that arise between the sum of the ES, PL, EX and CT terms with the total interaction 
energy.  Supplemental Figure 3.1.S1 plots the total energy versus the ―mix‖ value.  As 
the bulk of ―mix‖ values occur between -0.25 and 0.25 kcal/mol, approximately 500 
outliers with mix values > |0.25| kcal/mol were removed from further analysis.  This step 
was performed because when the mix term is large in magnitude, it is difficult to 
interpret the physical significance of the other energy terms. 
 
 The distance r calculated using STAAR is the distance from the center of mass of 
benzene to the closest oxygen in the carboxylate group.  Using a Perl script, the 
position for the formate center of charge (CC) was calculated, allowing recalculation of 
the r value as the distance between the formate CC and the benzene center of mass.  
After this step, another distance filter step allowed removal of approximately 5000 pairs 
with r > 7Å.  A final Perl script counted the number of BF pairs per PDB file.  Three files 

(1A9X, 1E6Y and 1K8K) exhibited >50 occurrences of anion- pairs.  Upon inspection 
of the PDB file, symmetry- related monomers were found to be present in 1A9X and 
1E6Y, although not specified by a chain ID.  These were manually removed, leaving 
17,042 pairs for analysis.   
 
 Angle and Distance Analysis From our previous QM calculations on optimized BF 
pairs12, we found that the strongest interaction energies were associated with edgewise 
interactions.  This pattern arises from the positive electrostatic potential at the ring edge 

compared to a negative electrostatic potential at the ring face associated with the  
electron clouds.  The coplanar or edgewise interaction trend continues to be observed 
in crystal structures from the PDB, as shown in Figure 3.1.4 where a stacked bar plot 
displays the number of intramolecular BF pairs compared to the total interaction energy 

for increasing values of  in 10o increments. The total number of pairs is noted for each 

bin of  values.  Supplemental Figure 3.1.S2 compares the fraction of pairs residing in a 
particular 10-degree bin with the fraction that would be observed for a random, uniform 

distribution of BF separation vectors.  We see that the number of pairs increases as  

decreases, and that more pairs are observed at small  values (and fewer pairs at large 

 values) than would be expected from a uniform distribution.  Similar trends were 
observed in our earlier study

12
 of a smaller ensemble of proteins from the PDB.  
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Figure 4.  A histogram analysis of the interaction energies as a function of 
angle. Interaction energies for the BF pairs derived from the PDB were binned 

according to their dihedral angle  and plotted.  As the angle increases, the 
number of pairs decreases as does the energy.  
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 To focus on those pairs with stabilizing interaction energies from -8 to -2 
kcal/mol, the data were yet again filtered, leaving 8260 pairs in 3134 PDB files. Only 6 
pairs were identified with energies more negative than -7 kcal/mol.  The strongest 
attractive interaction (-7.27 kcal/mol) arises for the Phe97-Asp23 pair in the lignin 
peroxidase structure (1LLP).  Most pairs with energies more negative than -7 kcal/mol 

resemble the BF1 configuration, with slight variations in the distance and angle, .  The 

energies calculated for many of the anion- interactions are substantially stabilizing, 

with roughly 39% of this 8260 pair subset having predicted interaction energies of  -4.0 
kcal/mol.  
 
 As the radius of a sphere increases, so does the volume.  Assuming a random 
distribution, one would expect increasing numbers of pairs to be found as the radius 
between the benzene center of mass and the carboxylate center of charge 
increases7,35.  This is seen in Figure 3.1.5 (black bars) for the 17,042 BF pairs 
encompassing the -8 to +5.6 kcal/mol energy range. However, when the 8260 pairs with 
energies between  -8 and -2 kcal/mol are analyzed, there are fewer pairs at longer 
distances (gray bars in Figure 3.1.5), consistent with closer contact correlating with 
more negative interaction energies.   
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1.5.  Distance relationships of the BF pairs.  The gray bars describe the 
number of pairs possessing interaction energies from -8 to -2 kcal/mol as a 
function of distance.  The black bars provide a count of the number of total pairs 
for these distances for all the BF pairs in the -8 to +2 kcal/mol energy range.   

 
 



 75 
 

 The strongest attractive interactions for the BF1 and BF2 pairs occurred with an 
approximately 4Å separation distance (see Figure 2 of reference (12))12 while the 
optimal energies for the BF3 and BF4 pairs occurred at  roughly 5.5 Å.  When the 
separation distances between the Phe and Asp or Glu pairs identified in this study are 
considered (Figure 3.1.5), the largest number of pairs occurs between 5-6 Å.  This 
suggests that either the pairs found in nature mimic the BF3 and BF4 pairs or that the 
protein context plays a role in residue positioning, allowing other configurations of 
benzene and formate.   To determine if a large population of BF3-BF4 pairs are present 
in the dataset, we noted that the distance between oxygen atom 1 (oxy1) of formate and 
the benzene CM should be similar to the distance between the oxygen atom 2 (oxy2) of 
formate and the benzene CM for the BF1 and BF2 pairs.  In contrast, the difference in 
these distances for the BF3 and 4 pairs should be larger.  Therefore we calculated the 
absolute value of the difference of these distances and plotted these values as a 
function of energy.  We did not observe a bimodal distribution as might be expected if 
the pairs segregated into BF1-BF2 like and BF3-BF4-like groups; rather the pairs 
sample a large range of sequence space (see supplemental Figure 3.1.S3). This 
analysis indicates proteins show more structural variation than the optimized BF pairs 
initially considered.  
 

 Structural Analysis Figure 3.1.6A indicates most anion- pairs are widely 
separated in the primary sequence of their respective proteins.  However, 8% of the 
total pairs occur next to each other with an i and i+1 spacing.  Additionally, 11% show 

an i and i+2 spacing, consistent with -sheet interactions.  Finally, 14% show an i and 
i+3 or an i and i+4 pairing, consistent with residues interacting in an α-helix. 
 

 The secondary structure information of the proteins exhibiting anion-  pairs was 
extracted for a subset of 6934 pairs using a Perl script.  Figure 3.1.6B shows 
interactions involving an undesignated structure are most common, followed by helix-
helix interactions.  Strand-strand and helix-strand interactions also occur.  As Phe, Glu 
and Asp have strong propensities to be in helices66,67, these results are not surprising.  

Additionally, we note Phe has a strong propensity to be found in a -sheet, however 
Asp and Glu do not68-70.   
 
 Since the periodicity of a β-strand is 2, it was surprising to observe β-strands in 
the i and i+1 as well as i and i+3 categories.  For the i and i+1 pairs, the residues often 
occur on the surface of the protein and near the end of a strand.  The sidechain of the 
anionic residue folds back on top of the Phe residue.  Figure 3.1.6C shows an example 
of one such pair in 1VRM.  This could potentially be of importance in ―edge protection 
strategies‖ preventing amyloid formation71.   
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Figure 3.1.6. Structural analysis of 8260 BF pairs possessing energies from -8 to -
2 kcal/mol.  In panel A, the primary sequence separation of Phe and Asp or Glu 
residues in the BF pair is shown.  A separation of greater than 4 amino acids is 
preferred.  Separations of i and i+2 may indicate placement of the BF pair in a β-
strand, while separations of i and i+3 or i+4 may indicate the BF pair occurs in an 
α-helix.  We were able to extract the secondary structure designation from a 
subset of 6934 pairs.  Fractional preferences for these BF pairs are presented in 

panel B. Black denotes -helix--helix interactions, green describes -strand--

strand interactions, red depicts -helix--strand interactions while yellow 
indicates one or both of the structural elements is not designated.  Panel C 

shows the structure of one -strand--strand i and i+1 interaction occurring in 
1VRM between D50 and F51.  The distance between the CD and OD1 atoms is 4.06 
Å.  Strands are shown in yellow, helices in red, turns in blue and undesignated 
structure in white.   

C 
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 The PSAIA program was used to address the question of whether the BF pairs 
are buried or whether they occur on the surface of the protein.  This program calculates 
the average residue depth, defined as the distance in Å from the closest solvent 
accessible atom72.  A value of 0 describes a fully accessible atom, while values greater 
than 0 describe buried atoms, with larger values describing more deeply buried atoms.  
Use of PSAIA allows automation of these calculations73.  The average residue depths 
for each member of the pair were added and plotted against the total KM interaction 
energy, as shown in Supplemental Figure 3.1.S4.  The points are randomly scattered 
and do not show a trend between depth of the roughly 17,000 BF pairs and their 
interaction energy.  However as shown in Figure 3.1.7, a plot of the average residue 
depths for those 100 BF pairs possessing the most negative energies does show a 
preference for partial burial of the residues.  As an electrostatic component of the anion-

 interaction exists, burial of the pair would minimize potential disruption of the anion- 
geometry by water

74
.  Protection from solvent appears important as a recent 

computational analysis of cation- interactions indicates weaker energies in the 
presence of water75.  In addition, some site directed mutagenesis studies of surface 

cation- interactions in four different proteins indicate that cation- interactions are ―at 
best weakly stabilizing and in some cases are clearly destabilizing‖ at room 
temperature76.  
 
  
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.1.7.  Depth of the top 100 BF protein pairs calculated by the PSAIAA 
program72,73.  BF pairs were sorted according to their energies and the top 100 are 
presented, with pair number 1 having the most negative energy (-7.27 kcal/mol).  
The calculated energy for the 100th pair is -6.27 kcal/mol.  The average residue 
depths for the Phe and Asp or Glu residues were summed and the sum plotted. 
An additional plot for the sum of the average residue depth for Phe and Asp or 
Glu for the entire data set of roughly 17,000 pairs was constructed and is shown 
in Supplemental Figure 3.1.S4.  No pattern was observed in the larger dataset.   
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 No apparent preference for Glu or Asp exists in their interaction with 

phenylalanine.  The ratio of Asp to Glu involved in anion- pairs is very close to the ratio 
of Asp to Glu residues observed in our entire protein structure sample.  
 
 How often do BF pairs occur?   We did not identify energetically significant pairs 
(-8 to -2 kcal/mol range) in 1357 PDB files.  For the remaining 3134 PDB files, 8260 BF 
pairs were found, corresponding to approximately 2.6 pairs per structure. For 
comparison, Gallivan and Dougherty found an average of 1 energetically significant 

cation- interaction per 77 residues in a protein7. 
 
 Interesting Clusters  Clusters of non-bonded interactions (involving greater than 

one anion- pair) were found in the protein structures.  Figure 3.1.8 shows several 
potentially interesting arrangements.  For example, panels A and B show the presence 
of several aromatic groups surrounding one anion.  This configuration was reasonably 
common as 365 clusters were identified with two phenylalanines interacting with one 
Glu or Asp.  Panel B gives an example where π - π stacking may occur between 2 
phenylalanines interacting with 1 Asp.  Panel C shows an example of a cation-π 

interaction occurring concurrently with an anion- interaction and panel D shows a 
potential network of 4 BF pairs in 1EP0.  Panel F shows that often several anions may 

cluster around an aromatic group.  Since anion- pairs utilize polarization as an 
important component of their interaction energy, the stabilizing mechanism involved in 
this type of cluster is not clear, however it may be that nearby carboxylates have altered 
pKa values such that some of these residues are protonated.  We identified 620 BF 
pairs that contain one phenylalanine and two Glu or Asp residues.  Panel G shows a 
histidine near a BF pair.  While histidine is aromatic and could engage in stacking 

interactions, it also has the possibility of being protonated and participating in a cation- 
interaction.  The number of possible interactions expands if nearby Lys, Arg, His 

residues are considered.  As support for the context of the anion- interaction in the 
protein structure affecting the energetics of the system, we note recent quantum 
mechanical and crystallography studies of small molecules find synergistic effects 

between anion- interactions and H-bonding networks, lone pair- CH-, cation- and -

 stacking interactions77-80.  The interplay between these various elements appears to 
alter the overall energetics, often in a synergistic manner.   
 
 
 

Table 3.1.1.  Correlation coefficients between calculated interaction energies with 
various quantum mechanical treatments and CHARMM22. 

 HF MP2 KM 

Functional groups  0.73 0.82 0.75 

Side chains 
a
 0.61 0.68 0.65 

HF  0.97 0.99 

MP2   0.99 
a. after deletion of two pairs of residues out of the initial 140 pairs,  as described in 
results.  
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Figure 3.1.8.  Interesting arrangements of anion- pairs.  Panel A shows a series 
of interactions between D145, F217, F218, and E274 residues in the 1AYX PDB 
file.  In particular, E274 interacts with both phenylalanines.  Panel B, interactions 
between D145, F254, and F283 in 1XSZ.  Here, ring stacking between the 
phenylalanines appears to be occurring.  Panel C shows the juxtapositioning of 

R42 near the F7 and E58 anion- pair in 2FGQ.  The R42 residue engages in a 

cation- interaction with F7, as per the web-based Capture program 

(http://capture.caltech.edu/), which predicts potential cation- interactions7.  

Polarization is predicted to contribute strongly to both anion- and cation- 
interactions, suggesting each type of interaction could enhance the other7,12.  

Panel D shows a long series of anion- interactions in 1EP0, involving F4, F38, 
D84, E111, F112 and F122.  Panel E depicts a cluster of three phenylalanines (F58, 
F62, and F297) interacting with D293 in 1VFL.  Panel F illustrates the interactions 
between F173, D168, D113 and E161 in 1CPO.  The rationale for the interaction of 
several carboxylates with one Phe is not as clear.  It may be that a subset of the 
Asp or Glu residues are protonated.  The atoms are colored as follows: carbon 
(gray), oxygen (red), and nitrogen (blue).  Panel G shows the juxtapositioning of 
H399 near F708 and E749 in the 1T3T pdb file.  Depending on its ionization state, 

H399 could potentially either engage in ring stacking with F708 or form a cation- 
interaction with F708. 

  

http://capture.caltech.edu/
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Figure 3.1.8 continued 
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 CHARMM22 Calculations  Figure 3.1.9 plots the CHARMM22 interaction 
energies for the BF functional groups vs. the energies for the MP2 calculations. The 
correlations between CHARMM22 and ab initio functional group interaction energies 
range from 0.73 to 0.82, depending on the level of theory considered. The correlation 
coefficients between empirical and ab initio interaction energies are given in Table 
3.1.1. The highest correlation (0.82) is obtained when comparing force field calculations 
with the MP2 level of theory, suggesting that the attractive van der Waals interactions 
(implicitly included in force field parameterization, but not well represented in HF and 
MK calculations) significantly contribute to the correlation between classical and 
quantum-chemical models. As found previously12, CHARMM22 interactions were under-
evaluated when compared to MP2 interaction energies. No correlation was found 
between the angle and distance geometrical parameters between the interacting 
residues and the difference between MP2 and CHARMM22 interaction energies. This 
suggests that the difference between CHARMM22 and MP2 energies is systematic and 

independent of the geometry of the anion- pairs.  
 
 
 
   
 
 
 
 
 
  
 
 
 
 

 

 

 

 

 

 

 

Figure 3.1.9.  MP2 vs. CHARMM22 interaction energies, for functional groups. A 
subset of data from Figure 3.1.2 in the -8 to -2 kcal/mol energy range (138 BF 
pairs) were analyzed in CHARMM. A linear fit with a correlation coefficient of 0.82 
was observed. The slope of the line is 0.47, indicating CHARMM can capture 
close to 50% of the MP2 interaction energy. 
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 Correlation coefficients between ab initio and CHARMM interaction energies 
calculated for the entire side chains and alpha carbons are significantly lower than those 
for the functional groups only. The sidechain interaction energies range from 0.61 to 
0.68, the highest correlation being between the empirical force field and MP2 level 
interaction energies. This was after the exclusion of two of the 140 pairs (Phe 337/Glu 
295, from structure 1HLE; and Phe 388/Glu 285, from structure 1TQ4) that exhibited 
high repulsive interaction energies even after energy minimization of the hydrogen 
atoms.  The highest correlation coefficient of 0.82 found here in the case of functional 
groups is close to the value of 0.89 obtained81 when comparing CHARMM22 and MP2 

interaction energies for 315 cation- pairs identified from the Protein Data Bank82. It is 
not known whether the slightly lower correlation coefficient obtained in the present study 
originates from intrinsic parameterization differences that would surface when 

comparing cation- or anion- interactions by the CHARMM forcefield, or if it is only an 
effect of the lower number of pairs considered here. The correlation between CHARMM 
and ab initio interaction energies obtained from the entire side chain calculations (0.61 

to 0.68), however, are significantly lower than that obtained in a cation- study81, which 
exhibited a correlation coefficient of 0.89 between CHARMM and MP2 interaction 
energies.  

Discussion 

 The proposal that anion- interactions exist may seem unexpected; because, at 
first consideration, this idea predicts an interaction between an electron-donating anion 

and an aromatic  cloud.  However the quadrupole moment associated with aromatic 
groups results in points near the ring edge possessing a positive electrostatic potential, 
while points above and below the ring display a negative electrostatic potential.  Anions 
can thus favorably interact with the ring edge12.   
 

Biological Relevance of the Anion- Interaction Our present study identifies anion- 
interactions between Phe and Asp or Glu as reasonably common in protein structures.  
Approximately two energetically favorable Phe-Asp or Phe-Glu pairs, with energies in 
the -8 to -2 kcal/mol range as calculated by the KM energy decomposition analysis, 
occur per PDB file.  As shown in Figure 3.1.4, to achieve these interaction energies, an 
angle dependence is required, with a strong preference for edgewise interactions.  
Although favorable stacking interactions are possible when the Asp or Glu residue is 
positioned above the aromatic ring of the Phe residue11, Supplemental Figure 3.1.S2 

shows that in our database of structures, these geometries (with large  values) are less 
common than would be expected from a uniform distribution. 
 
 The predicted energies describe gas-phase calculations.  In vivo, water and other 
protein atoms will be present, which might be expected to screen the overall interaction 
energy.  However a significant number of Phe-Asp or Phe-Glu pairs appear to be 
buried, as calculated by the PSAIA program (Figure 3.1.7 and Supplemental Figure 

3.1.S4), which would minimize the screening of anion- interactions for direct disruption 

of the anion- pairs by water molecules. 
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  The overall interaction energies may potentially be modulated by the 
environment of the Phe-Asp or Phe-Glu pair in the protein.  For example, while we focus 
on Phe-Asp and Phe-Glu pairs, nearby tyrosines, tryptophans and neutral histidines 
could provide additional polarization, stacking effects, and/or H-bonds.  Nearby 

arginines, lysines and protonated histidines could provide cation- interactions that 

could enhance the anion- interaction.  Finally, other nearby anions and/or anion- pairs 
could either perturb pKa values or form a network of interactions (see ―interesting 

clusters‖ in Figure 3.1.8).  While the anion- interaction may be weak, it is still 
significantly above kBT (i.e., ~0.6 kcal/mol at 300K) and can occur frequently, rendering 
its overall effect on protein structure significant.  Also, when a large network of 
interactions is considered, cooperativity could result, either enhancing or diminishing the 
overall effect.   
 

 How do the energetics of the anion- and cation- interactions compare?  We 

might predict that the edgewise nature of the anion- interaction, and the anisotropy of 
the polarizability tensor of aromatic rings, would favor the polarization term compared to 

that in the cation- interaction. In addition, both the electrostatic and polarization effects 

in the anion- interaction are most favorable for edgewise approach of the ion.  In 
contrast, for cation-
favorable for perpendicular geometries while the polarization component of the 
interaction is most favorable for edgewise approaches of the ion. These two elements 

suggest the energetics of anion- interactions should be at least similar in scope to 

those of cation- pairs.  Using an OPLS forcefield, Gallivan and Dougherty found the 

average strength of a cation- interaction involving Lys was -3.3  1.5 kcal/mol and was 

-2.9  1.4 kcal/mol when involving Arg7.  Additionally, in studying the cation- interaction 
with a simplified benzene-ammonium pair, Aschi et al. predicted an energy of -4.4 
kcal/mol using a KM energy decomposition analysis.  These values are clearly within 

the predicted range of the anion- interaction shown in Figure 3.1.4.   
 

 We can expand our thinking about anion- interactions to include protein-ligand 
binding.  For example, numerous biologically relevant anions exist, such as DNA, RNA, 
phosphorylated proteins, ATP, NADPH, membrane bilayers, etc.  If binding involves ion 
pair formation, binding specificity becomes an issue as other ions can compete.  In 
contrast, neutral residues can provide both contacts, steric constraints and potentially 

greater ion selectivity by use of polarization during binding83.  Both cation- and anion- 
interactions could participate in this fashion to facilitate both affinity and selectivity in 

binding of ions.  Also of note, the desolvation penalty for anion- and cation- pair 
formation should not be as large as for ion pairs84,85. It will be interesting to extend the 

present study to protein-ligand complexes, and identify potential anion- interactions 
between protein receptors and their ligands.  
 
 Computational Prediction Status The correlation between CHARMM22 and ab 
initio interaction energies (using the entire side chain) was 0.61-0.68, as shown in 

Figure 3.1.9.  This result suggests that ab initio anion- interaction energies are 
reproduced correctly by the CHARMM empirical force field for basic functional groups, 
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albeit with a magnitude that underestimates the ab initio results. Since ab initio or semi-

empirical calculations have not been performed for the entire side chains for the anion- 
pairs studied here, it is not possible to definitively quantify how well force field 
parameterization reproduces anion-quadrupole interactions for molecules larger than 
functional groups. However, these preliminary results suggest that the force field 
calculations are able to correctly assign a global ranking of the relative interaction 

energies between different pairs, but they underestimate the ab initio anion- interaction 
energies.  
 

 While cation-, anion-, CH- as well as other interactions appear important to 
protein structure formation, stability and dynamics, the impact of incorporating the 
present results on protein structure prediction remains unclear, in particular as to their 
potential influence on proteins‘ backbone structure and protein folding.  Our previous 
theoretical studies of simplified phenylalanine and Glu or Asp pairs found the charge-
quadrupole term contributes between 30 to 45% of the total MP2 energy, and the rest of 
the interaction energy arises mostly from polarization contributions12. However, most 
force-fields do not include explicit, ―on-the-fly‖ polarization and multipole terms in the 
calculation of potential energies. While the global effect of polarization on the structure 
is included in the force field parameterization process, recent studies have either 
proposed or added polarization terms to forcefields86,87.  These new force fields are 
expected to improve the agreement between empirical force field and ab initio results 

for anion- interactions. It will be particularly interesting to see if an improved force-field 

treatment of the anion- interactions will amplify the improving trend of protein structure 
predictions observed in the Critical Assessment of protein Structure Prediction (CASP) 
experiments88 and references therein. 
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Supplemental Figures 

 Four supplemental figures are included.  The first plots the KM mix term versus 

the total energy.  The second figure plots the observed fractional occurrence of 

benzene-formate pairs in the PDB as a function of the angle  compared to the 

expected occurrence calculated from volume.  The third figure plots distance differences 

vs. total interaction energy where the distance describes the difference between oxygen 

1 (oxy1) and the benzene center of mass (CM) subtracted from the distance between 

oxygen 2 (oxy2) and the benzene CM and plotted as an absolute value.  A final figure 

describes the average residue depth of the BF pairs in the protein structures calculated 

using the PSAIAA program versus the interaction energy.  This material is available free 

of charge via the Internet at http://pubs.acs.org.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.1.S1.  Plot of total interaction energies vs. “mix” term values.  The KM 
energy calculations include a “mix” term which describes the difference between 
the total interaction energy and the electrostatic, polarization, charge transfer and 
exchange repulsion terms.  Dashed lines denote boundaries where mix terms 
outside the -0.25 to 0.25 kcal/mol range occur.  480 outliers were removed based 
on this analysis.  

  

http://pubs.acs.org/
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Figure 3.1.S2.  The fractional occurrence of BF pairs as a function of .  Theta was 
varied from 0-10o, 10.0001-20 o, etc and the number of interacting pairs in the PDB 
Select determined using STAAR.  The fraction of pairs that occurs in each 10o 

increment of  was then calculated; these are circle points.  The line describes 
the fractional number of pairs expected based on statistical considerations, 
specifically these values were calculated by computing the volume of the sector 
(above and below the spherical bisector) divided by the total spherical volume.   
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Figure 3.1.S3.  Plot of distance differences vs. total interaction energy.  The 
distance between oxygen 1 (oxy1) and the benzene center of mass (CM) was 
subtracted from the distance between oxygen 2 (oxy2) and the benzene CM and 
plotted as an absolute value.  This distance difference should be small for BF1 
and BF2 pairs (see Figure 3.1.2 in the main manuscript) and larger for the BF3-
BF4 pairs.  The data subset containing ~8200 pairs from -2 to -8 kcal/mol was 
analyzed.  
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Figure 3.1.S4. Depth of BF pairs in the protein structures.  The average residue 
depth was calculated using the PSAIAA program (18-19).  The values for each 
member of the BF pair were summed and plotted vs. the Kitaura-Morokuma 
interaction energy.  No overall pattern for the roughly 17,000 pairs was observed.   
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Abstract 

 The STAAR (Statistical Analysis of Aromatic Rings) program allows for an 
automated search for anion-π interactions between phenylalanine residues and 
carboxylic acid moieties of neighboring aspartic acid or glutamic acid residues in Protein 
Data Bank (PDB) structures. The program is written in C++ and is available both as a 
standalone code and through a web implementation that allows users to upload and 
analyze biomolecular structures in PDB format. The program outputs lists of Phe/Glu or 
Phe/Asp pairs involved in potential anion-π interactions, together with geometrical 
(distance and angle between the Phe‘s center of mass and Glu or Asp‘s center of 
charge) and energetic (quantum mechanical Kitaura-Morokuma interaction energy 
between the residues) descriptions of each anion-π interaction. Application of the 
program on the latest content of the PDB shows that anion-π interactions are present in 
thousands of protein structures and can possess strong energies, as low as -8.72 
kcal/mol.  

Introduction 

 Anion-π interactions, in which negatively charged species interact with the 
positively charged edge of resonant groups, represent a common but unrecognized and 
poorly characterized type of non-bonded interaction in chemistry that can exhibit 
quantum mechanical energies as strong as -23.5 kcal/mol.1-7 There is a sustained 
interest in data-mining known databases of chemical structures to identify and 
characterize anion-π interactions.  Several searches have found such interactions in the 
Cambridge Structural Database (CSD).2–8 The potential importance of such interactions 
in biomolecules has stimulated searches in  the Protein Data Bank (PDB) for pairs 
involving aromatic side chains and isolated ionic species (Cl-, PO4

-3, NO3
-, Br-, F- and 

ClO4
-).9-10  Using a program specifically written for that purpose, it was found that 

potentially strong (as extrapolated from geometrical criteria) and functionally important 
11 anion-π interactions are found in the PDB but only in small numbers in protein 
structures, largely because of the relatively low numbers of ‗isolated ions‘ in the PDB10. 
Our previous work has, on the contrary, identified roughly 19,000 potential anion-π 
interactions involving residue/residue interactions in the PDB, between the neutral 
resonant ring of phenylalanine (Phe) and carboxylic acid moieties of aspartic acid (Asp) 
or glutamic acid (Glu) side chains.12 The quantum mechanical interaction energies of 
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simplified models of these pairs (in which Phe was represented as benzene and Glu or 
Asp was represented as formate anion) were calculated to be as strong as -7.27 
kcal/mol, suggesting that anion-π interactions in proteins can be common and relatively 
strong.12  While their local protein environment and solvation may weaken these 
interaction energies, such common and strong side-chain/side-chain anion-π 
interactions in biomolecules may contribute both to the overall stability of biomolecular 
structures and complexes and to their function through substrate binding and protein-
protein interactions. This makes the search for, and characterization of, anion-π 
interactions in biomolecules of great interest to the structural biology community. The 
present work describes the STAAR (Statistical Analysis of Aromatic Rings) program and 
our implementation of the program for the entire PDB, allowing a systematic search for 
Phe/Asp or Phe/Glu anion-π side chain interactions, followed by the quantum 
mechanical calculation of the corresponding benzene/formate interaction energies. The 
program is applied to the latest content of the PDB and the results demonstrate the 
efficiency of this computational program.  The STAAR program is available free of 
charge from the website, http://staar.bio.utk.edu. 

Methodology 

Process 

 The flow chart of the STAAR program is given in Figure 3.2.1.  This program will 
read PDB entries into memory using a specially developed C++ parser.9,13  If the 
resolution of a given PDB structure is coarser than a specified threshold, set to 3Å in the 
case of the analysis reported here, the structure is not processed. Otherwise, the 
structure will be further processed.  PDB entries that contain multiple models, such as 
NMR structures, are split up into different entries and analyzed individually.  Within a 
PDB entry, all chains are treated individually, which allows inter- and intra-chain 
interactions to be analyzed.  In each of the entries and each of the chains, the 
phenylalanine (Phe), and aspartic acid (Asp) or glutamic acid (Glu) amino acid pairs are 
identified as described below.  
 
 First, the PDB file is parsed for the each of the three residues, and they are 
stored into a vector of AminoAcid objects.   Secondly, the potential anion-π pairs (Phe-
Asp and Phe-Glu) are then identified as follows:  for each of the pairs, the side chains of 
Phe and Asp/Glu are simplified to benzene and formate, respectively.  The center of 
mass of a benzene moiety is calculated as the average of the coordinates of its atoms 
as shown in equation 1, where ci is the coordinate vector for the i

th
 carbon. 

 
 

 
 

(1) 

  

http://staar.bio.utk.edu/
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Figure 3.2.1. Flowchart of the STAAR program. 
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 The program calculates the distance from the benzene center of mass to each of 
the oxygen atoms of the formate, and identifies the shorter of the two distances.  If this 
distance is greater than a specified distance threshold, (7Å in the case of the analysis 
reported here), no anion-π interaction is defined and the analysis continues with the 
next potential pair. If this distance is less than or equal to this threshold, empty valences 
are filled with hydrogen atoms using the OpenBabel library.14   The center of charge of 
the formate is then calculated using equation 2: 
 

 
 

(2) 

 

where  and  are the x,y,z coordinates of the carbon and hydrogen atoms in the 

formate,  is the center of charge, and  is the distance between the carbon atom and 
the formate center of charge, which was assigned a value of  0.632469 Å.15  The 
distance and angle between the (benzene) center of mass and the (formate) center of 
charge are calculated from the x,y,z coordinates obtained by formula 1 and 2 above.  
After this point, STAAR outputs the GAMESS command files needed for quantum 
mechanical (QM) calculations (Table 3.2.1) and a comma separated file in csv format 
containing the amino acid information (residue names, locations, chain IDs, model 
number PDB ID) distances, and angles.  The analysis is repeated with the next anion-π 
potential pair until the end of the PDB file and the process continues with the next 
structure. 
 
 
 

Table 3.2.1. GAMESS input parameters. 

 
 
 
 
 
 After all of the anion-π pairs are identified, quantum mechanical (QM) 
calculations are performed by GAMESS16,17 to calculate the Kitaura-Morokuma18 energy 
decomposition (KM) of each pair using the triple-zeta TZV basis set supplied with the 
GAMESS program. This is done using an embarrassingly parallel approach where each 
job performs the KM calculations for a single pair.  The QM results are parsed out and 
combined with the STAAR csv file for analysis. The KM energy decomposition has been 
shown to highly correlate with HF and MP2 ab initio calculations of the interaction 
energies (slope= 0.92, χ2 = 0.988 for correlation with HF calculations)12. At the same 
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time, KM energy decomposition calculations are much faster than ab initio HF or MP2 
calculations and hence can be used to process the large number of pairs identified 
here.  

Web Service 

 The process described above has been performed on the entire PDB database 
(81,369 PDB entries as of May 9, 2012) and the results are stored in a web-based, 
freely available and searchable database: http://staar.bio.utk.edu/. The user can search 
for the anion-π pairs identified for a specified structure by searching the database using 
its PDB code. The results are viewable in tables separated by model (if applicable) and 
ordered by ascending interaction energies.  Each PDB page consists of tables 
containing the residue pair information (location, chain ID, distance, angle, and total 
energy) and links to export the results to a csv or tsv (tab separated file).  The site 
includes the ability for a user to write their own script to copy PDB results to their own 
system in the form of a csv or tsv file.  An example script is provided on 
http://staar.bio.utk.edu/search.php.  Results can be browsed and sorted by PDB ID, 
resolution, number of pairs, and minimum energy and filtered by structure resolution.   
 
 Users can additionally submit their own PDB files to the STARR program (Figure 
3.2.2).  The user input is limited to uploading the structure and downloading the results. 
The search page contains a form requesting an email address and a path to a PDB file 
that can be uploaded using either an ASCII or a gzipped (.gz) version. When the job is 
complete, the webserver will email the user with a link to download results.  Results are 
usually available within 10-30 minutes of submission.  A Perl script on the search page 
is provided for the user to submit a file to the server without the web interface. 
 
 
 

 

Figure 3.2.2. Web implementation of STAAR. 

http://staar.bio.utk.edu/
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Code 

 The code is entirely written in C++ and is freely downloadable as open source.  It 
is available for download, compilation, and installation on a Unix machine.  The code 
has been successfully tested using the GNU GCC g++ compiler version 4.1.2 on 
various Linux versions and Intel‘s icpc compiler version 11.1 on Red Hat Enterprise 
Linux. To perform KM energy calculations, OpenBabel and GAMESS (downloaded 
separately) will need to be installed on the user‘s side.14,16,17  Installation instructions 
and an example of how to run the STAAR program are available on the website. 

Results 

 The code was run on the May 9, 2012 version of the Protein Data Bank, which 
consists of 81,369 entries. Running through the STAAR C++ code to identify potential 
anion-π pairs in all of the PDBs, restricting the search to resolutions of 3Å or finer, took 
approximately 1 minute by submitting 200 single core jobs to the Newton High 
Performance Computing system (https://newton.utk.edu/) to parse through the files in 
parallel.  STAAR identified 818,066 pairs with a distance between the benzene center of 
mass and the center of charge in formate within a threshold of 7Å that were then 
processed by GAMESS to perform the KM energy decomposition.  Each GAMESS run 
takes around 1 minute to complete, resulting in a complete processing of all identified 
anion-π pairs in 2.5 days.  This was achieved by running the QM calculations in parallel, 
submitting single core jobs to the cluster, each job containing 10 GAMESS runs, and 
corresponds to a 227 fold speedup over serial calculations.  Out of these 818,066 
potential AQ pairs identified and processed by GAMESS, a total of 637 calculations did 
not converge.  In addition, values computed for 42,800 pairs were not included as those 
calculations gave in a high order coupling mix energy with a magnitude greater than 
0.25 kcal/mol, indicating a QM result that cannot be readily interpreted in terms of the 
KM energy decomposition.  An additional 181 GAMESS runs did not yield results due to 
OpenBabel adding improperly hydrogen atoms to the molecules.  This leads to usable 
data for 774,448 pairs in 65,452 PDB entries, representing 226,046 protein structure 
‗models‘ (one PDB ID can have several protein chains due to oligomerization and/or 
several copies of the same protein chain).  This yields an average of ~3.4 anion-π pairs 
per protein structure, that fulfill the geometrical and calculation convergence criteria and 
are listed on the website.  The entire PDB database contains over 8,000 NMR protein 
structures, each containing several models, and entries that contain multiple chains and 
copies of the same protein chain.  Processing only the 4,272 non-redundant protein 
structures obtained by X-ray crystallography in the PDBselect database leads to 10,390 
pairs in 4,277 protein structures, i.e. 2.43 pairs per protein.19 The benzene-formate 
angles were distributed between all angles (0° to 90° range), with a preference for lower 
angle values. The shortest distance was 3.22 Å, as shown in Figure 3.2.3. The 
distribution of distances shows a nearly linear increase in the number of pairs as a 
function of distance. Figure 3.2.4 shows the number and distribution of KM energies for 
these pairs. The calculated energies range between -8.72 and +4.17 kcal/mol, with a 
most populated bin at -1.8 kcal/mol. About 81% of the anion-π pairs are calculated to 
have negative energies, i.e., are a priori stabilizing the corresponding protein structures. 

  

https://newton.utk.edu/
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Figure 3.2.3. Angle and distance distributions for STAAR-identified 
anion-p pairs in the PDB. The gray bars for the angle plot describe 
the expected number of pairs based on statistical considerations. 
Here, the number of pairs is predicted based on two times the 
spherical sector volumes swept out by the designated angle divided 
by the total spherical volume. 
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Figure 3.2.4. Distribution of KM energies for STAAR-identified anion-π pairs in the 
PDB. 

 
 
 

Conclusion 

 The STAAR program can identify anion-π interactions in a large structural 
database of biomolecules.  The program is freely available for download through our 
web interface, http://staar.bio.utk.edu.  Applying the program on the most recent content 
of the PDB demonstrates the high prevalence and relatively strong anion-π energies 
involving side-chain/side-chain interactions in biomolecules. Future development of the 
program will involve extension of the code to include tryptophan and tyrosine residues.  
These aromatic groups will be used to calculate pairwise interaction energies with Asp 
and Glu as anions as well as the possible contribution of charge-dipole effects.  Other 
future projects will investigate anion-π interaction in protein/ligand complexes, and the 
importance of hydration in the energetics of anion-π interactions.  
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CHAPTER 3.3. ANION-PI GEOMETRIES BETWEEN PROTEIN AND 
LIGAND STRUCTURES 
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Abstract 

 Anion-pi interactions are emerging as an important noncovalent interaction in the 
stability and function of biological structures. Our previous work in Jackson et al., 2007, 
Philip et al., 2011 and Jenkins et al., 2013 established that energetically favorable 
anion-pi interactions occur between PHE and GLU/ASP sidechains for most structures 
represented in the Protein Data Bank (PDB) and also that favorable energies are 
associated for anions at nearly co-planar angles to aromatic rings. A new study of the 
PDB is now presented which establishes that approximately 74% of all co-crystallized 
ligands with a benzene-like (6-carbon) aromatic ring appear to be in energetically 
favorable anion-pi geometries relative to nearby GLU/ASP protein sidechains. These 
recent results along with our previous findings suggest that anion-pi interactions have a 
stabilizing role in both protein structure and ligand binding.  

Introduction 

 Anion-pi, also referred to as anion-quadrupole, interactions are theorized to form 
between aromatic groups and anions. Aromatic functional groups are planar and ringed 
structures with delocalized pi electrons. The delocalization of electrons in an aromatic 
molecule create an electron density above and below the plane of the ring which can be 
described as a quadrupole (i.e., two opposite dipoles). The direction of the quadrupole 
creates a positive potential along the plane of an aromatic ring and this allows for 
favorable interactions with nearly co-planar anions. The basic principles of an anion-pi 
interaction are shown in Figure 3.3.1 between a benzene and a formate molecule. 
 
  Anion-pi interactions have been thought to exist for many years1, and recently 
there has been a great interest in determining their role within biological structures2,3. 
This interest is largely due to the success of understanding the biological role of a 
closely related interaction called cation-pi. Cation-pi interactions occur between the 
negative pi clouds of aromatic rings and nearby cations, and they can stabilize protein 
structures by ~3 ± 1.5 kcal/mol4,5. The anion-pi interaction has been calculated to have 
energies as favorable as -8.72 kcal/mol6. 
 
 The sidechains of protein amino acids contain polar, hydrophobic, aromatic, 
cationic, or anionic functional groups which contribute to protein structure and function. 
Stabilizing interactions between these groups in protein structure can be studied 
statistically from the many experimental structures existing in the Protein Data Bank 
(PDB). The STAAR (STatistical Analysis of Aromatic Rings) program has been used in 
previous iterations of our work to look at the distribution of aromatic phenylalanine and 
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anionic glutamate/aspartate amino acid sidechains in both the entire PDB6and a non-
redundant subset of the PDB7. Our previous work also suspected a preference of edge-
wise interactions8, with respect to the plane of aromatic rings, which was confirmed in 
Philip et al., 2011 and Jenkins et al., 2013. Those works also identified a substantial 
presence for these interactions in protein structures, and these are listed at the STAAR 
website (http://staar.bio.utk.edu). 
 
 
 

 

Figure 3.3.1. Principles of Anion-pi Interaction between benzene and formate. 

 
 
 
 Other studies that follow our work have lead to characterizing new roles for 
anion-pi interactions. Evidence for anion-pi interactions in nucleic acid structures was 
presented in Chakravartya et al., 20129. The use of an anion-pi interaction to stabilize 
the position of amino acids for a catalytic site was presented by the Herschlag group in 
Schwans et al., 201310. Robertazzi et al., 201111 presented work to investigate anion-pi 
interactions between free negatively charged ions and aromatic amino acids. There is 
still much work left at uncovering the role and significance of anion-pi interactions. 
 
 Noncovalent interactions are understood to be fundamental in ligand binding, and 
the significance of anion-pi interactions in protein structure has lead to studies aimed at 
understanding the role of this interaction in protein-ligand structure. The 2011 anion-pi 
study by Robertazzi with free ionic species (Cl-, PO4

-3, NO3
-, Br-, F- and ClO4

-) 
determined that a low number of negative ions were distributed near aromatic amino 
acid sidechains; however, the conclusions were weak due to not finding many free ionic 
species in the PDB. In order to provide a more robust study of anion-pi interactions 
between protein and ligands, the STAAR code has now been expanded to search for 
six-carbon aromatic groups on ligand structures. This allowed searching for anion-pi 
interactions between anionic formate groups from amino acid sidechains (GLU/ASP) 
and benzene-like aromatic groups (6-carbon rings) from ligand molecules. We now 

http://staar.bio.utk.edu/
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present  data to show that a large number of potentially favorable anion-pi interactions 
exist between protein-ligand structures of this type in the PDB. 

Methods 

General Methodology 

 The previous STAAR program only supported searching for anion-pi interactions 
between the functional groups of amino acid sidechains. PDB formatting guidelines for 
amino acids allowed for easy identification of protein sidechain atoms in the previous 
STAAR code; however, no formatting exists for easily identifying functional groups of 
interest in ligand structures. To overcome this issue, a set of geometrical rules were 
developed that allow STAAR to find benzene-like aromatic groups in ligand structures. 
This was coded in C++ and inserted as a search module in the existing STAAR 
program. The new STAAR program was used to search for GLU/ASP sidechains 
interacting with benzene-like aromatic rings in ligand structures, and this search was 
carried out on structures from the April 15th, 2013 version of the PDB.  

Algorithm for Identifying 6-Carbon Aromatic Rings in Ligand Structures 

 Geometric rules were used to parse the heteroatoms (HET) atoms in the PDB 
and identify aromatic carbons in six-membered rings.  Distances between a HET 
residues‘ carbon atoms were calculated and flagged when found within an approximate 
distance of 2.8 Å from each other, corresponding to the distance of opposite carbons in 
an benzene ring. The midpoints for each set of flagged carbon-carbon (C-C) pairs were 
then compared and C-C pairs having the same midpoint were defined as members a 
unique aromatic ring. 

STAAR Program 

 Methods describing the overall STAAR program can be found in Philip et al. 2011 
and Jenkins et al., 2013. Briefly, anion-pi pairs are parsed from PDB structure files 

using a distance cutoff of 7 Å. Anion-pi pairs are defined as benzene-like functional 
groups from protein (PHE) and ligand molecules and formate-like groups from protein 
molecules (ASP/GLU). Angles are calculated for each pair relative to the plane of the 
aromatic ring. Distances are calculated from the center of mass for the aromatic ring to 
the center of charge for the formate molecule. 

Results 

 A search for anion-pi interactions in the PDB has been performed using an 
updated version of the STAAR program. This search has found 18,015 potential anion-
pi interactions between protein-ligand complexes, defined by GLU/ASP amino acid 
sidehchains near 6-carbon aromatic rings on ligands. These results are significant since 
only 18,330 ligands were found to contain an aromatic ring, and also there were only 
25,617 total aromatic rings. The average number of pairs found per aromatic ring was 
0.70, and the average number of pairs found per ligand with at least 1 aromatic ring was 
0.98. This statistical information is summarized in Table 3.3.1. 
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Table 3.3.1. Summary of Anion-pi Statistics. 

Field Description Statistic 

A. PDB Structures with an Aromatic Ligand 6808 

B. Total interactions 18015 

C. Total Ligands with an Aromatic Ring 18330 

D. Total Aromatic Rings 25617 

E. Rate of Interactions/Aromatic Ring 0.70 

F. Rate of Interactions/Ligand with Aromatic Ring 0.98 

G. Total Favorable Interactions (Angle < 40°) 13477 or 75% of Total 

I. Rate of Favorable Interactions/Aromatic Ring 0.52 (75% of field E) 

H. Rate of Favorable Interactions/Ligand with Aromatic ring 0.74 (75% of field F) 

  
  
 
  
 Figure 3.3.1 shows the distribution of total interactions for ligands with a varying 
number of aromatic rings. For ligands with just a single aromatic ring, there was 
approximately a 9:12 (0.78) ratio of pairs to rings. The figure shows that this ratio 
becomes inverted for ligands with more than 1 aromatic ring whereby there is a higher 
rate of potential anion-pi interactions when ligands have multiple rings. This may 
suggest that proteins which bind compounds with multiple aromatic rings are adapted to 
take advantage of anion-pi interactions more frequently.  
 
 Our previous results in Philip et al., 2011 and Jenkins et al., 2013 provided a 
robust number of geometries for benzene-formate anion-pi pairs and their calculated 
QM energies. In those results, favorable energies were found for all pairs with an angle 
of less than 40 degrees. The distribution of angles for the current results are shown in 
Figure 3.3.3. Considering the number of anion-pi interactions that fall within a geometry 
of 40 degrees, we conclude that 13,477 favorable anion-pi pairs may exist out of the 
18,015 total interactions evaluated (75% of Total). Based on 75% of geometries being 
considered favorable, it can also be estimated that 74% of all ligands, containing at 
least 1 aromatic ring, are also in favorable geometries (adjusting 0.98 by 75%). 
Likewise, ~52% of benzene-like rings (on ligands) are potentially involved in an anion-
quadrupole interaction with GLU/ASP sidechains (on proteins). This information is 
summarized in Table 3.3.1. 
 
 Figure 3.3.4. shows the distribution of angles and distances for the 18,015 anion-
pi pairs. In combination with Figure 3.3.3. it can be determined that a higher frequency 
of pairs are found for anion-pi pairs at low angles. This is expected to be the case if 
energies are more favorable between benzene-formate groups at low angles. Figure 
3.3.4 also shows the average angles and distances for each binned group of pairs in 10 
degree increments. Average pair distances vary for each bin, and favorable geometries 
(< 40 degrees) have greater average distances than less favorable geometries (> 40 

degrees). The two outlier distances (< 1 Å) are the result of improperly formatted PDB 
entries. Most pairs fall within the range of 4 Å to 7 Å. 
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Figure 3.3.2. Anion-pi Pairs Involving Ligands with 1 to 6 Rings. 

 
 
 
 

 

Figure 3.3.3. Anion-pi Pair Frequencies by Angle (10° increments). 
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Figure 3.3.4. Anion-pi Distance and Angle Distribution. Pairs found in each angle 

grouping (binned in 10° increments) are colored the same. • A black circle 

represents the average distance and angle for each bin. 

 
 
 

Discussion 

 The current analysis of the PDB included an upgrade to the STAAR program that 
allowed searching for benzene-like aromatic rings in ligand molecules which interact 
with formate-like groups in GLU/ASP sidechains. This analysis extends the description 
of potential anion-pi interactions to protein-ligand structures, and the results show a 
significant number of potentially favorable geometries for the two anion-pi functional 
groups (benzene and formate) currently under investigation. The results also confirm a 
preference for low angles between anion-pi pairs. 
 
 It is important to point out that the aromatic rings on ligand structure are often 
substituted with other functional groups which may contribute to some of the observed 
geometries investigated in this study. A post-processing of the 18,015 total interactions 
revealed that 1333 do not have any nearby charged groups within 2 bond distances of 
the aromatic ring. These simpler systems are not discussed in the scope of this study, 
but this may be useful to keep in mind for future studies that evaluate the reproducibility 
(e.g., molecular dynamics and docking) or experimental stability (e.g., mutagenesis) of 
these geometries. 
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 Recent results from searching the PDB for anion-pi interactions suggest an 
important role for benzene-formate pairs in stabilizing biological structures. The current 
protein-ligand description of anion-pi pairs represents an important new functional role 
for this motif. This leads to further questions about the role of this interaction in 
modeling protein-ligand binding, and its implications in the fields of drug discovery and 
toxicology. Many drug-like compounds contain aromatic rings and bind to protein 
structures. It is expected that these questions will be evaluated in finer detail with case 
studies from interactions identified from this recent work. We plan to publish the 
updated STAAR code and a searchable list of all potential anion-pi pairs at the STAAR 
website (http:staar.bio.utk.edu). 
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CONCLUSION 
 All biological functions can in theory be understood by molecular interactions 

within and between chemical and biological molecules. Proteins and ligands are 

especially important classes of molecules that are important to structurally study in 

order to understand disease and toxicity at the molecular level. The work in this 

dissertation presented specific biological applications in drug discovery and toxicology 

where new and meaningful biological information about specific protein-ligand 

interactions was gained. Throughout this work, integrated methods were used to deal 

with several current challenges in molecular modeling that need to be resolved in order 

to increase the overall number and complexity of structures that can be understood at a 

systems-level by their molecular interactions. 

 

 In Chapter 1,  a traditional small molecule discovery application for a single 

protein target was presented. The disease state under investigation was alpha-1-

antitrypsin deficiency. Creating a structure-based predictive model of this system was 

challenging due to the desired structure being a theoretical intermediate state. This 

challenge was overcome through the integration of homology modeling, singe-protein 

docking, and an in vitro binding assay which allowed for a model of the intermediate 

state to be generated and then validated on a set of 80 compounds. The model was 

shown to have predictive abilities for rationalizing the binding of a newly found lead 

compound, and a larger virtual screen was then conducted to prioritize the future 

experimental testing of 16 putative compounds able to treat alpha-1-antrypsin 

deficiency.  

  

 Additional work related to Chapter 1 should include re-docking all validated 

compounds to variations of the intermediate state model. These conformations can be 

generated through either homology modeling or molecular dynamics, and they may 

offer better correlation with experiments as new screening results become available. 

Mutagenesis studies are also needed in order to further rationalize the predicted site(s) 

for polymerization inhibitors to bind. This information can be used to improve the 

accuracy of the predictive screening model and lead to its larger-scaled use. Also, 

sampling intermediate state structures through hybrid homology modeling of stable 

state structures should also be further evaluated since it may be a useful technique in 

expanding the number of biological structures that can be predictively modeled through 

molecular modeling. 

 

 In Chapter 2, a computational toxicology application was presented that modeled 

the multi-protein binding and metabolism of a small molecule. It was shown that the fate 

of a compound, PCB-30, could be predicted in a more cellular context by first modeling 

the compounds structural changes as it interacts with metabolic P450 enzymes and 
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then how modeling these structural changes effects its interactions with another protein, 

the human estrogen receptor. The presented work used multi-protein docking and in 

vitro experiments to model and validate the specific P450 metabolism and estrogenic 

activity of PCB-30's metabolites.  

  

 The work in Chapter 2 serves as a proof-of-concept and example for using 

molecular docking in future multi-protein and metabolism modeling efforts. Next-step 

studies should include expanding the number and diversity of ligands to be used as 

prototype molecules in this docking scheme. Additional protein targets such as other 

nuclear hormone receptors and cytochrome P450 enzymes should also eventually be 

considered.  

 

 In Chapter 3, biological roles and physical characteristics for an unconventional 

molecular interaction, anion-pi, were computationally examined. This involved data 

mining experimental protein structures deposited in the PDB for molecular groups 

associated with this interaction. This work uncovered significant biological roles for 

anion-pi interactions which include stabilizing protein and protein-ligand structures when 

found in edge-wise geometries.  

  

 These new functional descriptions of anion-pi interactions are expected to have 

an impact on improving the energetic calculations for future molecular modeling studies 

of proteins and ligands. Future work in this areas should involve exploring the 

contribution of this interaction on the stability and function in other classes of biological 

molecules. Experimental work should include mutagenesis studies, crystallization, and 

equilibrium unfolding analyses to understand the net energetic and structural effects of 

anion-pi interactions on molecular structure. 
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