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ABSTRACT 

Cardiovascular disease is the number one killer in the U.S. Cardiovascular tissue 

engineering holds enormous potential by providing synthetic materials as vessel replacements. 

This dissertation focused on the development of novel biodegradable and photo-crosslinkable 

polymers with controlled surface chemistry, stiffness, and topographical features in regulating 

smooth muscle cell (SMC) adhesion, proliferation and phenotypic conversion for 

cardiovascular tissue engineering applications. Chapter II presents a facile synthesis route to 

obtain a series of photocrosslinkable poly(epsilon-caprolactone) triacrylates (PCLTA) with 

varied mechanical properties and further demonstrated tunable cell responses using these 

polymer system. Chapter III demonstrates a model polymer network from PCLTA that can 

gradually stiffen in 24 h through impeded crystallization at body temperature (37 ºC) and 

distinct SMC attachment, proliferation and spreading are found. Chapter IV presents the 

fabrication of a series of PCLTA networks with defined gradients in stiffness for regulation of 

SMCs behaviors. Chapter V fabricates cylindrical pillars with three different heights of 3.4, 7.4, 

and 15.1 micrometers by photo-crosslinking PCLTA in silicon molds with predesigned 

micropatterns. Chapter VI prepared photo-crosslinked PCLTA nanowire arrays with diameters 

of 20, 100 and 200 nanometers using inorganic nanoporous aluminum oxide (AAO) templates. 

Chapter VII reports a series of novel poly(L-lactic acid) triacrylates (PLLATAs) networks with 

same chemical composition but different crystallinity and surface roughness achieved by 

increasing the annealing time from 0 to 5, 7, 10, and 20 h at 70 ºC. Chapter VIII presents a 

method for tuning surface chemistry by grafting hydrophilic photocrosslinkable mPEGA chains 

into the hydrophobic PCLTA at various compositions and reports the smooth muscle cell 

responses. Chapter IX incorporates poly(L-lysine) (PLL) dangling chains into PCLTA networks 

at different PLL compositions of 0.5%, 1.0%, 1.5%, and 3%. The surface morphology, 

hydrophilicity and serum protein adsorption of all these polymer networks were characterized. 

Primary rat SMCs were cultured on these polymer networks and their attachment, spreading, 

proliferation, focal adhesions, expression of four contractile gene markers (SM-MHC, 

smoothlin, transgelin, and calponin) and contractile proteins were characterized systematically. 

Chapter X makes a summary of these separate investigations and draws general conclusions 

from the results obtained in these studies.   
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1.1 Background  

 

According to the American Heart Association, cardiovascular diseases are the biggest cause 

of death in the U.S. and they accounted for 32.3% or one third of all 2.4 million deaths and an 

estimated cost of $312.6 billion in 2009 [1]. The number of inpatient cardiovascular operations 

and procedures is still increasing, with the data of from 5.9 million in 2000 to 7.5 million in 

2010. The current applicable treatments are either transplanting a donor heart or using assisting 

devices. Unfortunately, donor hearts are limited or may not be available timely at the moment 

when severe heart attack happens. Assisting devices, on the other hand, are not affordable for 

most patients [2]. Thus the high demands from patients suffering from cardiovascular diseases 

push the searching of other promising approaches.  

Cardiovascular tissue engineering is a complex approach that combines multi-disciplinary 

efforts in engineering, material science, life science, and medical technologies. The ultimate 

goal of this approach is to create new autologous living substitutes with structures and functions 

similar to those of native human organs. Cardiovascular tissue-engineering techniques include 

injectable biomaterials, cell therapies, and artificial organ fabrication by in vitro culturing cells 

with supporting scaffolds [3,4]. The underlying substrates made from biomaterials affect cell 

adhesion, spreading, proliferation, migration, phenotype, and gene/protein expression. A 

variety of cell types and polymeric biomaterials have been studied to understand cell-material 

interactions with the goal of improving materials design strategies for different clinical 

purposes.  

Materials for cardiovascular tissue-engineering applications need to satisfy the following 

requirements: good biocompatibility, suitable mechanical properties, good processability, and 

biodegradability [5,6]. Compared with metals and ceramics, polymers have advantages such as 

tailorability in chemical structures and physical properties. Because the stabilities of different 

chemical bonds, e.g., ester bonds, glycosidic bonds, and peptide bonds, are different, polymers 

composed of these bonds have adjustable degradation kinetics. Polymers can also be readily 

molded into desirable shapes and structures. Biodegradable polymers widely used in 

cardiovascular tissue-engineering applications include poly(glycolic acid) (PGA), poly(lactic 

acid) (PLA), poly(-caprolactone) (PCL), poly(ethylene glycol) (PEG), polyhydroxyalkanoate 
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(PHA), and their copolymers[6].  

Here I supply an overview of recent progress in investigating cellular responses to 

biodegradable polymers for cardiovascular tissue-engineering applications. The review is 

presented in terms of different cell types related to the diseases, different polymers, and 

different surface characteristics in regulating cellular behavior.  

 

1.2 Cell-material interface in cardiovascular tissue engineering 

 

1.2.1 Components at the interface and cellular sensors 

To create neo-tissue, e.g., blood vessel or heart valve, materials are required to contact the 

surrounding biological elements in implantation. After a material is immersed in body fluid or 

culture medium, protein adhesion occurs first and then cells start adhering to the surface, 

followed by a series of external sensing or internal signal transductions.  

 

Figure 1.1 Scheme of the factors involved at the cell-material interface. 

 

Many components are involved at the cell-material interface, including cells, underlying 

materials, and surrounding culture media (Fig. 1.1). Cell types used in the fundamental studies 

of cardiovascular tissue engineering include SMCs, endothelial cells (ECs), myocytes, skeletal 

myoblasts, and stem cells. All these cell types are anchorage-dependent, with their growth and 

function closely related to the underlying matrix. Cells have an extraordinary capacity in 
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responding to multiple environmental signals [7]. Transmembrane focal adhesions (FAs) tightly 

connect the cells with the underlying substrate and are critical in cellular recognition processes. 

FAs are dynamic protein complexes consisting of a wide range of proteins with functional 

diversity through which the internal cytoskeleton anchors the extra-cellular matrix (ECM).   

Integrins are a large family of receptors across through the cell membrane and link 

cytoskeleton with ECM proteins. Integrins play primary roles at the early stage of cell sensing 

of the external environment [8]. Integrins are heterodimers composed of an  subunit and a 

subunit, and they can link to adapter proteins such as talin, α-actinin, filamin and vinculin 

[9,10]. The complex of integrin-adapter protein-cytoskeleton is the basis of an FA. Integrin 

engagement at the cell-material interface passes signals to the cell through signaling enzymes 

and adaptors, e.g., focal adhesion kinase (FAK). FAK is an FA-associated protein kinase that 

can be phosphorylated in response to integrin engagement. The phosphorylation of FAK further 

induces stronger stress fibers and activates GTPase proteins like Ras homolog gene family 

member A (RhoA), and affects cell proliferation, motility, and differentiation [11-14]. 

 

1.2.2 Crosstalk between cells and the underlying substrate 

Cellular responses to the underlying substrate can be regulated by the surface characteristics 

of the substrate. Cells can sense the substrate through a combination of biochemical and 

biophysical signals given by the substrate material with different mechanical, chemical, 

topographical and biological properties [15,16]. These surface cues sensed by the cells also 

affect cell fate collectively [17,18]. The changes in cell behavior are caused by triggering 

specific membrane molecular recognitions such as FAs, integrins, and other cellular sensors at 

the cell-material interface [19,20]. Different cues may have similar effects on cellular behavior 

while distinct cellular responses can be induced by one cue [21-23].  

Despite the efforts in the past decades, the understanding on cell-material interactions is 

still far from satisfactory as the studies were limited by modest signal strength, rough spatial 

arrangement, and short time scale [22]. With the growing advancements in nanotechnology, 

biotechnology, and materials science, new findings have been reported by exerting new defined 

signals or unprecedented signal strengths [19]. In particular, dynamic mechanical cues, 

nanoscale topographies, and sophisticated chemical/biological molecules have been developed 
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for studying cell-material interactions [15]. Polymers used as substrates in these studies are 

summarized and discussed in the following section.  

 

1.3 Biodegradable polymers for regulating cell behavior in cardiovascular tissue 

engineering 

 

1.3.1 Natural polymers  

Biodegradable natural polymers exist in plants and animals, and the cost of using them is 

affordable. These polymers normally have a large number of repeating units with functional 

groups along the backbone, which serve as sites for further modification. Excellent candidates 

in this category are polysaccharides, proteins, and bacterial polyesters. These natural polymers 

are discussed below and listed in Table 1.1 with their chemical structures and the results for 

regulating cells.  

 

1.3.1.1 Polysaccharides  

The typical examples of natural polysaccharides include cellulose, starch, alginic acid, 

hyaluronic acid, and chitosan. These polysaccharides have high molecular weights.  

 

Cellulose. Natural cellulose is an excellent candidate material for making vascular grafts 

because of its unique characteristics such as high mechanical modulus, low hydrophobicity, and 

good cellular guidance from its nanofibril structures [24]. The mechanical modulus of the 

cellulose obtained from bacteria is similar to that of carotid artery in human body and cellulose 

nanofibers support human SMC adhesion and guide SMC migration [25]. -unsaturated 

aldehydes from cigarette smoke can reduce the viability, adhesion, and proliferation of human 

umbilical vein endothelial cells (HUVECs) on cellulose, suggesting the risk of applying 

cellulose grafts to cigarette-smoking cardiovascular disease patients [26]. Cellulose modified 

with adhesive peptide Arg-Gly-Asp (RGD) or Gly-Arg-Gly-Asp-Tyr (GRGDY) significantly 

increases the attachment of human microvascular ECs (HMECs) [27]. Cellulose modified using 

nitrogen plasma enhances HMEC adhesion because of increased porosity and concentration of 

functional groups [28]. 
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Hyaluronic acid (HA). Natural HA is a polysaccharide found in connective tissues and 

synovial fluids. The repeating structure of HA is composed of D-glucuronic acid and 2-

acetamido-2-deoxy-D-glucose monosaccharide unit. HA and its derivatives are mostly water 

soluble and can be shaped into membranes, sponges, and microspheres [29,30]. In cell-

biomaterial interface studies, HA is often used as an additive to other polymers to improve cell 

attachment and proliferation. For example, rat aortic ECs are stimulated to proliferate better by 

HA-oligomer additives, and platelet adhesion and activation on the EC layer are attenuated by 

HA additives [31]. Doping HA to conductive polypyrrole (PPy) increases rabbit vascular SMC 

proliferation and promote the expression of contractile phenotype proteins (smooth muscle -

actin and smooth muscle myosin heavy chain) [32]. Synthetic tunable HA hydrogels with 

modified adhesion and degradation parameters can enable human endothelial colony-forming 

cells to form efficient vascular networks [33].  

 

Chitosan. Natural chitosan is an odorless, semi-crystalline polysaccharide consisting of β-

1,4-linked 2-amino-2-deoxy-D-glucopyranose residues and randomly distributed N-acetyl 

glucosamine groups in the linear backbone [34,35]. The solubility of chitosan is highly related 

to the pH value of the solution: it is insoluble at 7.0 and above while soluble at 6.0 and lower 

[34,35]. Chitosan undergoes in vivo biodegradation to nontoxic products through enzymatic 

hydrolysis. For tissue-engineering applications, chitosan and its derivatives are often grafted or 

coated onto substrate surfaces for enhancing cytocompatibility and cell recognition [35]. For 

example, immobilization of O-carboxymethyl chitosan on the surface of poly(ethylene 

terephthalate) (PET) film can improve  the biocompatibility of PET and enhance proliferation 

of rat SMCs [36]. Photo-initiated grafting of N-maleic acyl-chitosan to PLA was also reported 

to improve hemocompatibility by enhancing HUVEC adhesion, proliferation, and function [37]. 

Chemical modification of chitosan is also an effective way to enhance biocompatibility and cell 

proliferation. A phosphorylcholine-modified chitosan can increase survival, differentiation, and 

amplification of endothelial progenitor cells (EPCs) [38]. Phthalization of chitosan also 

enhances mouse fibroblast compatibility, processibility, and antithrombogenic properties, and 

it may have a potential application in small-diameter vascular engineering because it can be 

readily fabricated into selective permeable tubular constructs of varying sizes, morphology, and 
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properties [39]. Neutralization of chitosan surface in NaOH solutions and ethanol affect the 

surface chemistry, nanotopography, and mechanical properties as the treated films enhance the 

spreading, adhesion and proliferation of HMECs, with retention of the endothelial phenotype 

and function [40].  

 

1.3.1.2 Proteins 

Proteins are a category of high-molecular-weight polymers that have one or more chains of 

amino acid residues. Proteins are abundant in nature and have excellent compatibility with cells 

and tissue environment, thus they have been extensively studied for many applications such as 

sutures, haemostatic agents, and tissue-engineering scaffolds.  

 

Collagen. Collagen is one of the most familiar natural proteins used in cardiovascular tissue 

engineering. The basic unit of collagen is a polypeptide with glycine, proline, and 

hydroxyproline as the basic repeating sequence and this polypeptide combines with 12 others 

to form a left-handed triple helix structure [41]. At least 22 collagen types were discovered 

from human tissues such as skin, cartilage, and blood vessels, among which types I, II, III, and 

IV are the most frequently studied ones [41]. Soluble collagen is a cell-adhesive protein that 

can influence cell motility, proliferation, state of differentiation, and predisposition to apoptosis 

[42]. In studying cell-material interactions, collagen is used to enhance vascular cell 

compatibility and proliferation on materials [43-45]. The amount and structure of collagen 

adsorbed on a polymer substrate are determined by the surface chemistry. In one study, collagen 

is adsorbed onto surfaces with varied chemical functional groups, and only the one on 

hydrophobic surfaces collagen films has structure and morphology similar to those of fibrillar 

collagen gels [46]. Collagen can be stable and sustainable when it is covalently immobilized to 

polymer surfaces. For example, collagen is immobilized onto PLA with a density gradient to 

regulate human umbilical cord vein EC motilities toward specific directions, providing 

implication for controlling angiogenesis of implantable constructs through surface chemical 

stimuli [47]. Covalently immobilized collagen onto PCL via surface-initiated atom transfer 

radical polymerization significantly improves HUVEC affinity and growth [48].  
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Collagen can be crosslinked with carbodiimide as cardiovascular tissue-engineering 

substrates [49]. Crosslinked collagen films are stiffer and smoother but the crosslinking process 

reduces the available mouse myoblast cell binding sites and consequently the capacity to 

support cell activity is lower [49]. On fully hydrated collagen fibrils, rat aortic SMCs have poor 

spreading and non-proliferative phenotypes [50]. Dehydrated thin films of collagen fibrils have 

a topology similar to that of the fully hydrated collagen fibrils, but they are stiffer and can allow 

rat aortic vascular SMCs to exert more mechanical tension on the matrix and consequently to 

exhibit proliferative phenotypes [51]. Collagen-incorporated polyacrylamide (PAAm) gel 

polymerized in microfluidic devices via photo-initiation produces a substrate with a modulus 

gradient of 1-4 kPa/100 m and absolute moduli of 1-80 kPa [52]. Bovine aortic vascular SMC 

spreading, polarization, and motility are all higher on the stiffer side of the gel; moreover, both 

cell durotaxis (the tactic index for a biased persistent random walk) and cell orientation with 

respect to the stiffer side increase with increasing magnitude of stiffness gradient [52]. 

 

Gelatin. After denaturation, collagen can be further developed into gelatin, which is another 

peptide consisting of a limited number of amino acids. Like collagen, gelatin exhibits a 

haemostatic effect and is widely studied for applications such as biological glue and hydrogel. 

After it is blended into a hydrogel or bonded onto a surface, gelatin enhances the adhesion, 

spreading, and proliferation of bovine arterial ECs and human umbilical artery SMCs [53,54]. 

For example, protein adsorption and bovine arterial EC proliferation are improved on polyvinyl 

alcohol (PVA) hydrogels blended with gelatin [53]. Dextran hydrogel bonded with gelatin has 

a higher compressive modulus of 51.9 ± 0.1 kPa than the original value of 15.4 ± 3.0 kPa and 

promotes human vascular EC adhesion and vascular SMC spreading and proliferation [54]. 

Crosslinked gelatin/PAAm gels with varied mechanical properties are used as substrates to 

study the morphologies of HUVECs and the less rigid ones support more cells to switch to a 

tube-like pattern, suggesting that a reduced tension between HUVECs and the ECM can trigger 

an intracellular signaling cascade leading to tubulogenesis, which is an event that mimics one 

of the last steps of angiogenesis [55]. 
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1.3.1.3 Bacterial polyesters 

In nature, microorganisms produce non-toxic and biodegradable bacterial polyesters [56]. 

These polyesters with varied mechanical and physical properties can be used as biodegradable 

adhesives and elastomers in tissue engineering [56]. As one group of this kind, PHAs are 

synthesized by various bacteria and have a common β-hydroxy fatty acid unit, as shown in 

Table 1.1 [57]. Most PHAs in nature have a very high molecular weight and are highly 

crystalline and insoluble in water [57]. PHAs have high structural diversity because of the 

variance in R group in the alkyl side chain -[RCHCH2COOH]n- shown in Table 1.1. As one of 

PHAs, poly(3-hydroxy butyrate) (PHB, R = CH3) is the most investigated bacterial polyester 

[57]. Electrospun fiber mesh made of PHB and its copolymer poly(3-hydroxybutyrate-co-3-

hydroxyvalerate) (PHB-HV) promotes the human adipose tissue-derived stem cell 

differentiation into the endothelial lineage, thus it is a potential material in improving 

vascularization in cardiovascular tissue engineering [58]. Vascular-related cellular affinity and 

HUVEC proliferation can be enhanced through surface modification using ammonia plasma 

and fibronectin coating of 3-hydroxybutyrate and 3-hydroxyhexanoate copolyester PHBHHx; 

however, rabbit aorta SMC proliferation is not improved [59]. Binding PHAs with PHA 

repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) oligopeptide (PhaR-

KQAGDV) enhances human vascular SMC adhesion and proliferation [60].  
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Table 1.1 Natural polymers in the cell-material interface studies for cardiovascular tissue engineering. 

Material Chemical structure Substrate characteristics Cell types Effects on cellular behavior References 

Cellulose 
OH

O

OH

OH
OH

OH
OH

O
n

 

 

Nanofibrils and desirable mechanical properties; 

,-unsaturated aldehyde; 

Functionalized with RGD; 

Porous surface after nitrogen plasma treatment. 

Human SMC; 

HUVEC; 

HMEC. 

Good SMC adhesion, proliferation, and migration; 

Aldehyde treatment reduces HUVEC adhesion, viability, and growth; 

RGD and nitrogen plasma treatment enhance HMEC adhesion. 

 

[25-28] 

HA  
OO

O

OH

O

O

OH

O

NH

O

OH

OH

n
 

 

Culture with HA-oligomers; 

Doping HAs to conducting PPy; 

HA hydrogels with tunable adhesion and 

degradation parameters. 

Rat aortic EC; 

Rabbit vascular SMC; 

Human endothelial colony-

forming cells. 

HA-oligomers stimulate better EC proliferation and tube formation; 

Doping with HA increases SMC proliferation and promotes contractile 

phenotype protein expression;  

Tunable HA hydrogels enable ECs to form efficient vascular networks. 

[31-33] 

Chitosan  
O

OH

O

OH
NH

2

n
 

 

 

Immobilize chitosan and O-carboxymethyl 

chitosan onto PET; 

Graft chitosan to PLA surface;  

Phosphorylcholine-modified chitosan; 

Chemical phthalization of chitosan; 

Neutralization of chitosan surfaces. 

Rat thoracic aortic SMC; 

HUVEC; 

Mouse EPC derived from 

bone marrow; 

Mouse NIH3T3 fibroblasts; 

HMEC. 

Chitosan modified PET improves SMC proliferation;  

Grafting chitosan improves hemocompatibility potential of PLA; 

Phosphorylcholine-modified chitosan supports ECs survival/differentiation; 

Phthalized chitosan has better anti-thrombogenic properties; 

Neutralizing solution-treated chitosan surfaces have better adhesion and 

proliferation of HMECs. 

[36-40] 

Collagen  Immobilize collagen onto PDLLA with a 

density gradient; 

Covalently immobilize collagen onto PCL; 

Crosslinked collagen with different stiffnesses;  

Dehydrate collagen films with higher rigidities; 

Collagen-incorporated PAAm gel with a 

stiffness gradient. 

HUVEC;  

Mouse myoblast; 

Rat aortic vascular SMCs; 

Bovine aortic vascular 

SMCs. 

HUVEC motility is regulated by the collagen gradient; 

HUVEC affinity and growth are significantly better on collagen-

immobilized PCL substrates; 

Crosslinking reduces capacity to support cell activity and limit the 

effectiveness of collagen scaffolds; 

Dehydrate collagen fibrils increase its nanoscale rigidity and lead rat 

vascular SMCs to exhibit proliferative phenotypes; 

Increasing stiffness gradient increased cell orientation to the stiffer side. 

[47-52] 

Gelatin  Blend gelatin with PVA hydrogels;  

Gelatin-bonded dextran hydrogel; 

Crosslink gelatin with PAAm gels of varied 

mechanical properties. 

Bovine arterial EC; 

Human umbilical artery 

SMC and EC; 

HUVEC. 

Gelatin enhances EC proliferation on the hydrogels;  

Gelatin gel promotes EC 2D adhesion and SMC 3D spreading/proliferation; 

Less rigid gelatin-PAAm gels support more ECs to switch to a tube-like 

pattern. 

[53-55] 
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Table 1.1 Natural polymers in the cell-material interface studies for cardiovascular tissue engineering. Continued.  

Material Chemical structure Substrate characteristics Cell types Effects on cellular behavior References 

PHA 
O

OR

n

 

 
PHB/PHB-HV electrospun fiber mesh; 

Ammonia plasma-treated and fibronectin-coated 

surface of PHBHHx; 

Bind a fusion protein of PhaR and KQAGDV to 

PHA. 

Human adipose tissue-

derived stem cell; 

HUVEC; 

Rabbit aorta SMC; 

Human vascular SMC. 

Fiber mesh promotes stem cell differentiation into the endothelial lineage; 

Plasma-treated surface stimulates HUVEC proliferation, but not for SMCs; 

Oligopeptide enhances SMC adhesion and proliferation. 

[58-60] 
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1.3.2 Synthetic polymers 

Natural polymers have limited availability in structures and physicochemical properties for 

applications in cardiovascular tissue engineering. Synthetic biodegradable polymers provide 

tailorability in molecular weight, chemical structures, functional groups, mechanical properties, 

and degradation kinetics for different applications. In addition, synthetic biodegradable 

polymers are normally easier to be dissolved in common solvents and fabricated into structures 

with pre-designed topographical features for supporting cell functions and tissue in-growth. 

Typical synthetic polymers are discussed below and listed in Table 1.2 with their chemical 

structures and the results for regulating cells.  

 

1.3.2.1 Polyesters 

Polyesters can be synthesized via ring-opening polymerization (ROP) of cyclic diesters, 

glycolides, lactides and lactones, polycondensation of diacids and diols, or self 

polycondensation of hydroxyacids. The most widely used monomers for polyester synthesis in 

cardiovascular tissue-engineering applications include glycolide, lactide, and -caprolactone. 

 

PGA. PGA is one of the earliest biodegradable synthetic polyesters for tissue-engineering 

applications. High-molecular-weight PGA can be synthesized through ROP of glycolide or 

polycondensation of glycolic acid [61]. The melting point of PGA is higher than 200 C and 

the glass transition temperature is higher than 30 C [62]. Therefore, PGA is stiff at room or 

body temperature and it is hard to be dissolved in organic solvents. PGA degrades through 

hydrolysis of the ester bonds into non-toxic glycolic acids, which are further metabolized by 

enzymes into water and carbon dioxide. Thus PGA is not sustainable in vivo as it loses strength 

and completely disappears several months after implantation. PGA is normally used as 

temporary support substrates or scaffolds in cardiovascular tissue engineering. Surface 

hydrolysis of PGA in NaOH solution can transform surface ester groups into carboxylic acid 

and hydroxyl groups to improve bovine thoracic aorta SMC attachment [63]. Introduction of 

chemically synthesized hetero-bifunctional peptide linkers to PGA surface can enhance 

interactions between PGA and HUVEC integrin receptors and thus promote binding and 

spreading of these ECs [64]. 
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Table 1.2 Synthetic polymers in the cell-material interface studies for cardiovascular tissue engineering. 

Material 
Chemical 

structure 

Substrate Characteristics Cell types Effects on cellular behavior References 

PGA O

O

n

 

 

Surface hydrolysis by NaOH;  

Introducing hetero-bifunctional peptide linkers to 

PGA surface. 

Bovine thoracic aorta SMC; 

HUVEC. 

Surface hydrolysis improves SMC attachment; 

Peptide linkers promote EC binding and spreading. 

[63,64] 

PLGA 
OH

O

O

O

O
H

x
 

y
 

 

PLGA surface treated with NaOH ; 

PS nanospheres with various diameters on PLGA 

surface; 

Surface Immobilization of sulfated silk fibroin. 

Rat aortic SMC; 

Rat aortic EC; 

Ovine bladder SMC; 

Porcine thoracic aorta EC. 

NaOH treatment enhances SMC adhesion and proliferation but 

inhibits EC adhesion/proliferation; 

Surface nanostructure promotes SMC and EC adhesion; 

Surface fibroin reduces platelet adhesion and accelerates EC 

endothelialization. 

[66-69] 

PLLA O
n

 

O

 

PLLA nanofiber mesh scaffold; 

Aligned PLLA nanofibrous scaffolds; 

P(LLA-CL) nanofibrous scaffolds; 

Aligned P(LLA-CL) nanofibrous structure; 

Blending lecithin with PLLA;  

PLLA/PVP microfibrous scaffolds;  

PVAA deposition or fibronectin conjugation to 

PLLA surface. 

Bovine aortic EC; 

Rabbit outgrowth EC; 

Human aortic SMC; 

Human coronary artery EC; 

Human coronary artery SMC; 

Rat thoracic aorta SMC; 

MSC isolated from rat bone 

marrow; 

Vascular SMC; 

Pig aorta EC. 

PLLA nanofibers increase EC adherence and proliferation.  

Lecithin significantly enhances the proliferation and viability of 

SMCs and MSCs; 

PVAA deposition enhances EC endothelialization on PLLA; 

Aligned PLLA fibers promote proliferation of ECs; 

Both ECs and SMCs show good adhesion and proliferation on 

P(LLA-CL) fibers; 

SMCs adhere with cytoskeleton parallel to nanofibers, migrate along 

aligned nanofibers with a higher proliferation rate on nanofibers; 

Porous nanofibrous PLLA preferentially supports contractile 

phenotype of SMCs. 

[71,73,74, 

76-81] 
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Table 1.2 Synthetic polymers in the cell-material interface studies for cardiovascular tissue engineering. Continued.  

Material 
Chemical 

structure 

Substrate Characteristics Cell types Effects on cellular behavior References 

PCL 

O

O
n

 

 

 

Surface functionalized with RGD; 

PCL-heparin conjugate loaded with FGF2; 

PCL-heparin conjugate loaded with VEGF; 

Immobilization of ASA and VEGF;  

Deposition of chitosan/heparin multilayer; 

Immobilization of anti-CD31 antibody; 

Nanometer roughness through etching; 

Blend and photo-crosslink with PPF. 

Human EC; 

Mouse fibroblast; 

HUVEC;  

Ovine bladder SMCs; 

Rat aortic SMC. 

 

Grafting RGD or deposition of chitosan/heparin improves 

hemocompatibility;  

Heparin and FGF2 improve vascular cell density and morphology; 

ASA and VEGF enhance the biofunctionalization; 

Angiogenic response of PCL can be tuned by modulating the dose of 

VEGF; 

Nanometer range surface features enhance SMC adhesion; 

SMC responses are distinct in the presence or absence of crosslinks 

and stiffer substrates support better SMC adhesion and proliferation. 

[83-90,96] 

PEG O x

 

 

Conjugate ephrinA1; 

Immobilize RGDS and VEGF; 

Incorporation of VGVAPG; 

Porous PEG hydrogel modified with VEGF and 

RGD; 

Incorporate PEG-GRGDS into photo-crosslinked 

elastomers; 

RGD-modified heparin-releasing PEGDA gel; 

Incorporate RGD, fibronectin, and laminin; 

Positive charges from agmatine; 

Copolymerize with ethylene glycol; 

Incorporate PEG-GRGDSP into PAAm gels to 

make substrates with tunable mechanics. 

HUVEC; 

Bovine aortic EC; 

Human coronary artery SMC; 

Human aortic SMC. 

 

PEG-ephrinA1 induces robust vascular response and higher vessel 

density; 

RGDS-modification increases EC motility on PEG hydrogels. 

VEGF modified porous hydrogel has superior angiogenic potential in 

stimulating new vessel formation; 

GRGDS incorporation enhances SMC proliferation; 

Heparin on PEG hydrogel upregulates expression of contractile 

phenotype markers in SMCs; 

SMCs cultured on PEG hydrogels with immobilized RGD, 

fibronectin and laminin can redifferentiate to the contractile 

phenotype; 

Agmatine improves the adsorption of serum components onto PPF-

PEG hydrogel and enhances SMC adhesion. 

Copolymerize with PEG changes hydrophobicity of PPF and 

enhances SMC adhesion; 

PEG-GRGDSP in stiffer PAAm gels enhances SMC proliferation. 

[103-113] 
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Table 1.2 Synthetic polymers in the cell-material interface studies for cardiovascular tissue engineering. Continued.  

Material 
Chemical 

structure 

Substrate Characteristics Cell types Effects on cellular behavior References 

PU 
N

R
N O

R'
O

O O

n

 

 

PU grafted with electrospun PLGA fibers treated 

with argon plasma; 

Conjugation of fibronectin onto porous PCU 

scaffolds;  

Surface crosslinking of ELP4; 

Modification with GRGDSP peptide; 

Electrospun PEGMA/PU crosslinked hybrid 

scaffolds; 

Porous 3D PU scaffolds, compared with 2D 

topography; 

Polar hydrophobic ionic PU porous scaffolds;  

Porous 3D waterborne PU scaffolds with 

controllable pore size and porosity. 

HUVEC; 

Human coronary artery SMC; 

HUV-SMC; 

SMC derived from thoracic 

aorta of embryonic rats. 

 

Plasma treatment increases EC attachment and proliferation; 

Fibronectin improves SMC attachment and infiltration depth into PCU 

scaffolds; 

ELP4 enhances SMC adhesion, density, and contractile phenotype 

marker expression;  

GRGDSP enhances EC adhesion and proliferation on 3D PU 

scaffolds;  

Crosslinking PU with PEGMA triggers better EC morphology and 

proliferation on the scaffolds; 

PU scaffolds with 3D porous topography induce the synthetic 

phenotype of SMC and their ability to produce elastin; 

Polar hydrophobic ionic polyurethane porous scaffolds support good 

adhesion and growth of SMCs;  

HUVEC adhesion and proliferation are better in 3D waterborne PU 

scaffolds with smaller pores and a lower porosity. 

[115-122] 
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Poly(lactic-co-glycolic acid) (PLGA). PLGA with various compositions can be 

synthesized via ring-opening copolymerization of lactide and glycolide. Because of its tunable 

degradation rate and mechanical properties, biocompatibility and solubility in common organic 

solvents, PLGA is widely used to fabricate tissue-engineering scaffolds and drug delivery 

carriers [65]. PLGA is also well studied for understanding cell-material interactions in 

cardiovascular tissue engineering. Surface treatment of PLGA using NaOH solutions can 

improve rat aortic SMC adhesion and proliferation but cannot for rat aortic ECs [66]. In another 

study, NaOH-etched PLGA has nanoscale topographical features to enhance ovine bladder 

SMC adhesion [67]. Polystyrene (PS) spheres with diameters of 500, 200, or 100 nm are used 

as templates to fabricate PLGA films with spherical features to enhance adhesion for both rat 

aortic SMCs and ECs because they promote fibronectin spreading [68]. Covalently grafting 

sulfated silk fibroin on the surface of PLGA scaffolds using γ irradiation can reduce platelet 

adhesion, prolong porcine EC adhesion time, and upregulate protein expression of EC-specific 

markers [69].  

 

PLA. PLA is synthesized through ROP of lactide. PLA has a backbone similar to that of 

PGA but with one extra methyl group. Because of this methyl group, PLA is much more 

hydrophobic and has a lower degradation rate than PGA [70]. Because lactide exists in two 

different forms, D-lactide and L-lactide, PLA has three isomeric forms, poly(D-lactic acid) 

(PDLA), poly(L-lactic acid) (PLLA), and poly(D,L-lactic acid) (PDLLA), among which PLLA 

is most studied in cardiovascular tissue-engineering applications. Scaffolds made of air-spun 

PLLA nanofibers enable bovine aortic ECs to proliferate in a monolayer at a high rate [71,72]. 

Aligned PLLA nanofibers are compatible with outgrowth ECs originally isolated from rabbit 

peripheral blood, and can promote and guide their sustained proliferation [73]. PLLA scaffolds 

modified using porous nanofibers on the surface can preferentially support the contractile 

phenotype of human aortic SMCs, as evidenced by upregulated expression of contractile gene 

markers of myocardin, smoothelin, and smooth muscle myosin heavy chain [74]. All these 

results support that vascular cells are influenced by topographical features of the underlying 

substrates in addition to chemical cues. Synthetic nanostructures are very important in dictating 

vascular cell adhesion, proliferation, migration, and gene expression [75].  
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In addition to PLLA, PLLA-related copolymers are also used to fabricate vascular tissue 

scaffolds with topographical patterns, for example, electrospun poly(L-lactide-co-caprolactone) 

(PLLA-CL, 75:25) nanofibers with diameters of 0.5-1.5 m for supporting good adhesion and 

proliferation of human coronary artery ECs and SMCs [76]. Aligned electrospun P(LLA-CL) 

nanofibers with a diameter of ~0.5 m are used to mimic the topography of circumferentially 

oriented cells and fibrils in the medial layer of a native artery [77]. Human coronary artery 

SMCs on these aligned fibers adhere with cytoskeleton parallel to direction of nanofibers and 

migrate along the axis of the aligned nanofibers, with significantly faster proliferation and better 

functional contractile phenotype compared with the synthetic phenotype with fewer 

myofilaments on the flat polymer films [77].  

One limitation of PLLA to be used in cardiovascular tissue engineering is its relatively low 

cytocompatibility. Blending PLLA with lecithin (3-7 wt%), a mixture of phospholipids and 

neutral lipids that can serve as a linker between cell membrane and ECM, remarkably improves 

the cytocompatibility of PLLA as the proliferation and viability of both rat aorta vascular SMC 

and mesenchymal stem cells (MSCs) isolated from rat bone marrow are significantly enhanced 

[78,79]. Blending PLLA with polyvinyl pyrrolidone (PVP) can also induce better morphology 

and proliferation of vascular SMCs [80]. Other surface modification to PLLA using 

poly(vinylacetic acid) (PVAA) deposition, fibronectin conjugation, and surface delivery of 

vascular endothelial growth factor can also enhance pig aorta EC endothelialization [81]. 

 

PCL. As one of the most widely used biodegradable polymer in cardiovascular tissue 

engineering, PCL is synthesized via ROP of cyclic ε-caprolactone in the presence of an initiator 

such as alcohol and a catalyst such as stannous octoate [82]. PCL has excellent elasticity and 

toughness, and relatively long degradation time of 2-3 years [6]. To improve the interactions 

between cells and PCL, the surface of PCL can be functionalized with chemicals that favor cell 

adhesion [83-86]. For example, RGD peptide, heparin, fibroblast growth factor 2 (FGF2), 

acetylsalicylic acid (ASA), and vascular endothelial growth factor (VEGF) can be immobilized 

onto PCL surface to improve its hemocompatibility and induce better vascular cell adhesion, 

density, and morphology [83-86]. In vivo VEGF-mediated angiogenesis on PCL is enhanced 

after heparin is crosslinked onto the surface [87]. Layer-by-layer deposition of chitosan/heparin 
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onto PCL surface is effective in improving hemocompatibility [88]. Immobilization of anti-

cellular transmembrane adhesion molecules, e.g., anti-CD31 antibody, on PCL surface, 

significantly enhances the specific adhesion of mouse embryonic vascular NIH3T3 cells [89]. 

PCL treated with 0.1 M NaOH can reduce the polymer surface features from conventional 

microns to biologically inspired nanometer dimensions, which enhance ovine bladder SMC 

adhesion [90]. 

Poly(propylene fumarate) (PPF) is crosslinkable, biodegradable polyester synthesized via 

polycondensation of diethyl fumarate and propylene glycol [91,92]. Because of the carbon-

carbon double bonds in the backbone, PPF can be cured into a network with a stable shape and 

a high mechanical strength [93]. Enzymatic degradation of PPF results in two non-toxic 

monomers, which are fumaric acid, a naturally existing substance in human body, and 1,2-

propane diol, a commonly used diluent solvent [94,95]. In our research group, PCL is blended 

with PPF as substrates for SMCs and cell behavior is distinct when PPF is photo-crosslinked 

or uncrosslinked as the result of the differences in physicochemical characteristics, in particular, 

stiffness [96].  

I have also developed a series of photo-crosslinked PCL triacrylate substrates with 

controllable stiffness by varying the crosslinking density and crystallinity [97]. SMCs cultured 

on stiffer semi-crystalline PCLTA networks have stronger FAs, better spreading, faster growth 

and motility, and better conversion from the synthetic phenotype to the more functional 

contractile phenotype [97]. The high hydrophobicity of PCLTA networks can be relieved by 

photo-crosslinking with hydrophilic methoxy PEG monoacrylate (mPEGA) [98]. After grafting 

a small amount (5 wt%) of mPEGA chains to the PCLTA network, it becomes less hydrophobic 

and can result in better SMC attachment, spreading, proliferation, and contractile gene/protein 

expression [98].  

 

1.3.2.2 Biodegradable polyethers 

Polyethers are synthesized by polymerizing monomers through ether links, with typical 

examples as PEG, polyetherketoneketone, polypropylene glycol, polyoxymethylene, 

polyphenyl ether, and polytetrahydrofuran. Not all the polyethers are biodegradable, and only 

some of them are being used as tissue-engineering biomaterials. For cardiovascular studies, the 
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most studied polyethers are PEG and its derivatives. PEG is a liquid at low molecular weights 

and waxy at high molecular weights. PEG has a low surface free energy with water and is inert 

to protein adsorption and cell adhesion because of its high chain mobility and repulsion. 

Because of this unique property, PEG chains have been introduced to hydrophobic polymer 

surfaces through blending, copolymerizing, or covalent linking to improve surface 

hydrophilicity [98-101]. Good endothelialization without platelet adhesion is crucial for blood-

contacting implants. For this purpose, PEG has been applied to modify other polymers to 

prevent platelet adhesion and immunogenic activities. For example, introducing a peptide-PEG 

segment into polyurethane (PU) significantly enhances bovine aortic EC adhesion, spreading, 

and migration while prohibits platelet adhesion [102].  

PEG-based hydrogels have been studied for cardiovascular tissue-engineering applications, 

especially when they are modified by incorporating peptides such as RGD, heparin, growth 

factors, fibronectin, and laminin [103-107]. Arg-Gly-Asp-Ser (RGDS) increases HUVEC 

motility while VEGF increases the tubulogenesis of ECs [103]. A peptide containing the Gly-

Arg-Gly-Asp-Ser (GRGDS) sequence enhances proliferation of bovine coronary artery SMCs 

[104]. Human coronary artery SMCs cultured on PEG hydrogels modified with RGD, 

fibronectin, and laminin can redifferentiate to the contractile phenotype [105]. Heparin 

upregulates the expression of contractile gene markers in human coronary artery SMCs [106]. 

Porous PEG hydrogels with VEGF releasing ability have better angiogenic potential in 

stimulating new vessel formation from HUVECs [107]. Incorporation of elastin mimetic 

peptide that contains Val-Gly-Val-Ala-Pro-Gly (VGVAPG) sequence supports stronger human 

aortic SMC adhesion and elastin deposition on the PEG hydrogels [108]. EphrinA1, a factor 

expressed in ECs, is of interest for promoting vascularization on vascular grafts and conjugation 

of ephrinA1 to PEG hydrogels can induce a more robust vascular response [109].  

PPF-co-PEG synthesized through copolymerization of PPF and PEG can be used to prepare 

hydrogels to relieve the strong hydropobicity of crosslinked PPF and enhance human aortic 

SMC adhesion [110]. Further introduction of positive charges from agmatine into PPF-co-PEG 

hydrogels promotes the surface adsorption of serum components and then benefits human aortic 

SMC adhesion [111,112]. Incorporating PEG-Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) into 

PAAm gels produces substrates with tunable mechanical properties for exploring the effect of 



20 

 

tissue stiffness on Platelet Derived Growth Factor (PDGF) signaling in primary bovine vascular 

SMCs [113]. Substrate stiffness significantly enhances PDGF receptor activity and vascular 

SMC proliferation, implying that stiffening of the vessel wall can increase vascular SMC 

growth and survival by enhancing PDGF receptor signaling and thus facilitate pathogenesis of 

vascular diseases [113]. 

 

1.3.2.3 Biodegradable polyurethanes 

PUs are series of synthetic polymers containing carbamate (urethane) links formed by 

reaction between isocyanate and polyol. PUs normally have good mechanical strength, 

excellent biocompatibility, and relatively long durability, thus they can be used to fabricate 

long-term implants such as vascular grafts. Biodegradable PUs can also be synthesized for 

fabricating temporary tissue-engineering scaffolds and grafts by incorporating degradable 

chemical linkages [114]. Current modification methods for improving the cellular interactions 

with PUs include plasma treatment, conjugation of cell-adhesive proteins such as fibronectin, 

recombinant elastin-like polypeptide-4 (ELP4), and GRGDSP peptide, and fabrication of 3D 

porous structures [115-122]. HUVECs and SMCs are used to study their interactions with 

biodegradable PUs [115-122]. Surface treatment using microwave-induced argon plasma 

increases HUVEC adhesion and growth on PUs grafted with electrospun PLGA fiber [115]. 

Introducing fibronectin into a highly porous 3D poly(carbonate urethane) (PCU) scaffold 

improves human coronary artery SMC adherence and infiltration into the scaffold [116]. ELP4 

crosslinked on PCU surface enhances human umbilical vein SMC (HUV-SMC) attachment, 

growth, and contractile phenotypic conversion [117]. Surface grafting of GRGDSP peptide 

improves HUVEC adhesion and proliferation on non-toxic biodegradable waterborne PU 

scaffolds [118]. Photo-crosslinking PEG methacrylate (PEGMA) into PU electrospun 

nanofibrous scaffolds with average fiber diameters of 622 ± 110 and 547 ± 77 nm not only 

improves the mechanical properties and fiber morphology, but also enhances HUVEC adhesion, 

viability, and proliferation [119]. PCU scaffolds with 3D porous topography induce the 

synthetic phenotype of human coronary artery SMCs and enable these cells to produce elastin, 

compared with 2D topography [120]. Degradable hydrophobic ionic PU porous scaffolds 

containing a lysine-based polycarbonate divinyl oligomer support good adhesion and growth 
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of SMCs that are derived from thoracic aorta of embryonic rats [121]. Among a series of 3D 

interconnected porous scaffolds with various pore diameters (3-229 m) and porosities (80-

92%) fabricated by freeze-drying with waterborne PU emulsions, HUVEC adhesion and 

proliferation are better when the pores are smaller and the porosity is lower [122].  

 

1.4 Conclusions and Perspectives 

 

As reviewed above, numerous biodegradable polymers that include both natural and 

synthetic ones have been used to regulate cells that are related to cardiovascular tissue-

engineering applications. Chemical modification is the major means to improve the 

cytocompatibility of these polymers. The results in these studies offer valuable information to 

improve the material design strategies for the clinical goals. Incorporation of different surface 

characteristics such as stiffness, topography, and structural features with the intrinsic polymer 

chemical properties is critical in development of novel advanced biomaterials. 
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Chapter II. Regulation of Smooth Muscle Cell Behavior on Biodegradable 

Network Substrates with Controllable Stiffness 
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Abstract 

 

    Substrates with controllable stiffness have emerged as important models in investigating 

cell-biomaterial interactions. Most substrates in the literature studies are hydrogels with a 

limited range of stiffness. Here, I developed a series of biodegradable photo-crosslinked PCLTA 

substrates with controllable stiffness by simultaneously varying the crosslinking density and 

crystallinity. I further evaluated the surface characteristics of these polymer substrates, 

including roughness, hydrophilicity, and capability of adsorbing proteins from cell culture 

media, and correlated these factors with regulation of primary rat SMC behavior. I found that 

stiffer substrates of semi-crystalline PCLTA networks induced stronger stress fibers, larger 

spread area, faster growth, higher motility, better conversion from the synthetic phenotype to 

the more functional contractile phenotype, and stronger focal adhesions of SMCs. Gene and 

protein expression was also performed to confirm that SMCs had higher expression levels of 

contractile gene markers and integrin subunits on the stiffer substrates of semi-crystalline 

PCLTA networks. As well as serving as model systems for regulating cell fate, these PCLTA 

networks with excellent tailorability of physicochemical properties have great potential for 

diverse tissue-engineering applications.  
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2.1 Introduction 

 

    Tissue engineering aims to develop substitutes for restoring normal functions of deficient 

organs and calls for cooperation of multi-disciplinary principles including materials science, 

engineering, medicine, and molecular cell biology. In tissue-engineered blood vessel research, 

it is crucial to develop suitable materials with desired properties for supplying a permissive 

environment for SMC functions. At the internal cellular level, genes must be activated in a 

correct order for expression of the proteins needed for cell proliferation, differentiation, and 

functional development. Meanwhile, extrinsic signals to cells from the surrounding 

extracellular matrix (ECM) are essential in guiding them through distinct development stages. 

External signals from the underlying biomaterial substrates are mainly chemical, topological, 

or mechanical [1]. Among these surface characteristics, substrate stiffness has been reported to 

create different magnitudes of static tension to cells, which can affect the growth, morphology, 

and functions of mechanosensitive cells [2,3], such as endothelial cells [4], fibroblasts [5], and 

SMCs [6-8]. Although many polymeric systems [9-13] have been employed to investigate the 

role of surface stiffness in regulating cell behaviors, they have limited elastic moduli (< 1 MPa) 

and thus it is still desirable to achieve model polymers with a wider range of mechanical 

properties without variance in surface chemistry and morphology. 

Unlike weaker hydrogels, biodegradable hydrophobic polymer networks with controllable 

mechanical properties have been developed from multi-block copolymers of poly(propylene 

fumarate) (PPF) and poly(-caprolactone) (PCL) [14], PCL fumarate (PCLF) [15], PCL 

diacrylate (PCLDA), and their blends with PPF [16]. Distinct cell behaviors have been found 

in response to substrate stiffness, although other surface characteristics might also be involved 

[16-19]. In this study, I synthesized a series of photo-crosslinkable PCL triacrylates (PCLTAs) 

with six molecular weights from 2,000 to 20,000 g/mol (Fig. 2.1a) and crosslinked them into 

networks with high gel fractions and efficiently tunable mechanical properties through 

simultaneously controlling the crosslinking density and crystallinity. These PCLTAs can be 

molded into any desired shape and cured via UV initiation for diverse tissue engineering 

applications [20,21].   

Cardiovascular disease is the number one killer in the U.S. [22]. Vascular tissue engineering 
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holds enormous potential by providing synthetic materials as vessel replacements. When SMCs 

are isolated and cultured out of a healthy body, they quickly revert from the contractile 

phenotype to the synthetic phenotype [23]. This transition is influenced in culture by ECM 

composition, soluble factors, and mechanical stress. Contractile SMCs in normal blood vessels 

are spindle-shaped with a prominent centrally located nucleus and proliferate at an extremely 

low rate but are suitable for contraction [23]. In contrast, SMCs with the synthetic phenotype 

do not have the contractile function and assume a morphology similar to fibroblasts, but they 

are more mobile and proliferative. It has been reported that the proliferation was faster, the 

projecting area was larger, and the focal adhesions (FAs) and stress fibers were more prominent 

for SMCs cultured on stiffer polymer substrates [6,24]. Here, I focus on the role of crystallite-

strengthened substrate stiffness in influencing rat aortic SMC adhesion, spreading, migration, 

proliferation, and genetic and protein levels of the phenotypic marker expression using photo-

crosslinked PCLTAs with a wide range of higher tensile moduli (E) from1.6 to 194 MPa, which 

demonstrated a non-monotonic dependence on the molecular weight of PCLTA.   

 

2.2 Materials and Methods 

 

2.2.1 Synthesis of PCLTAs and characterization  

    PCL triols were synthesized via the ring-opening polymerization of -caprolactone in the 

presence of initiator, trimethylolpropane (TMP), and catalyst, Sn(Oct)2. To synthesize PCLTA, 

PCL triol, acryloyl chloride, and K2CO3 were measured at a molar ratio of 1:3:3. Acryloyl 

chloride dissolved in methylene chloride (1:10 v/v) was added dropwise into the slurry of PCL 

triol/K2CO3 in methylene chloride. After reaction at room temperature under nitrogen for 24 h, 

the mixture was filtered to remove the solids and then precipitated in diethyl ether. The 

molecular weights of PCL triols and PCLTAs were determined using Gel Permeation 

Chromatography (GPC; PL-GPC 20, Polymer Laboratories) at room temperature. 

Tetrahydrofuran (THF) was used as the eluent and standard monodisperse polystyrene samples 

(Polymer Laboratories) were used for calibration. Differential Scanning Calorimetric (DSC) 

measurements were performed by heating the polymer samples from room temperature to 

100 °C, cooling to 80 °C then heating from 80 to 100 °C at a rate of 10 °C min-1.  
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2.2.2 Photo-crosslinking and characterization  

Photo-initiator, phenyl bis(2,4,6-trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE 819, 

Ciba Specialty Chemicals, Tarrytown, NY) was used in photo-crosslinking. Homogeneous 

PCLTA/BAPO/CH2Cl2 mixture was transferred into a Teflon mold composed of two glass 

plates and a Teflon spacer, and then placed under a high-intensity long-wave UV lamp (SB-

100P, = 365 nm, Intensity: 4800 w/cm2) for 20 min. Crosslinked PCLTA sheets (10 × 0.5 

mm, diameter × thickness) were soaked in acetone for two days to remove the residue of BAPO 

and the sol fraction, dried in vacuum, compressed between two glass plates to smoothen the 

semi-crystalline samples. Then the samples were sterilized in 70% alcohol solution and dried 

completely in vacuum. The gel fraction and swelling ratio of crosslinked PCLTA disks were 

determined in CH2Cl2
 [11,17]. Linear viscoelastic properties of uncrosslinked and crosslinked 

PCLTAs were measured on a strain-controlled rheometer (RDS-2, Rheometric Scientific) at 37 

and 60 °C. The tensile properties of crosslinked PCLTAs (0.5 × 2.0 × 10 mm, thickness × width 

× length) were implemented using a dynamic mechanical analyzer (DMTA-5, Rheometric 

Scientific) at 37 °C. Surface morphology of crosslinked PCLTA disks was characterized using 

a multimode atomic force microscopy (AFM) and the root-mean-square (rms) roughness was 

calculated from the height images. Water contact angles were determined at 37 °C using a 

Ramé-Hart NRC C. A. goniometer (Model 100-00-230, Mountain Lakes, NJ). Protein 

adsorption was determined using a micro-plate reader (SpectraMax Plus 384, Molecular 

Devices, Sunnyvale, CA) and MicroBCA protein assay kit (Pierce, Rockford, IL). 

 

2.2.3 In vitro cell attachment and proliferation  

Primary SMCs isolated from rat aorta were seeded onto crosslinked PCLTA disks (10 × 0.5 mm, 

diameter × thickness) at a density of 2 × 104 cells per cm2 using TCPS as the positive control. 

SMC numbers at 4 h, days 1, 2, and 4 post-seeding were calculated based on the absorption 

values of MTS assay (CellTiter 96 Aqueous One Solution, Promega, Madison, WI) and a 

standard curve constructed using five known cell numbers of 5, 10, 15, 20, and 25  103 per 

well at 4 h post-seeding. The proliferation index (PI) of SMCs was calculated by dividing the 

cell number at day 4 by the initial number of attached cells at day 1. The growth rate and 

doubling time of SMCs were calculated using ln(PI)/3 and ln2/growth rate, respectively. 
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Attached SMCs on crosslinked PCLTA substrates were fixed in 4% paraformaldehyde (PFA) 

solution, permeabilised with 0.2% Triton X-100, and then stained using rhodamine-phalloidin 

for 1 h at 37 °C and DAPI at room temperature for photographing on an Axiovert 25 light 

microscope (Carl Zeiss, Germany). Using ImageJ software (National Institutes of Health, 

Bethesda, MD), cell area was determined and averaged on 20 non-overlapping cells at day 1.  

 

2.2.4 Characterization of focal adhesions  

SMCs cultured for 24 h were washed in PBS, fixed in 4% PFA solution, and permeabilised with 

0.2% Triton X-100 for 5 min at room temperature. To reduce the background signal, samples 

were incubated in 1% BSA/PBS at 37 °C for 30 min then in monoclonal mouse antibody against 

vinculin (1:1000 in 1% BSA/PBS; Sigma) at room temperature for 1 h, and washed with PBS 

three times for 5 min each. Then the samples were cultured with goat anti-mouse IgG secondary 

antibody (1:200 in 1% BSA/PBS; Sigma) at room temperature for 1 h. Filaments of SMCs were 

stained using rhodamine-phalloidin for 1 h at 37 °C before photographing on a Leica DM6000B 

fluorescent confocal microscope. The area, density, and circularity of focal adhesions were 

determined and averaged on 20 non-overlapping cells using ImageJ. 

 

2.2.5 Single cell motility and cell invasion migration assay  

SMCs were incubated with fluorescent Calcein dye (Calcein AM, Invitrogen) at a concentration 

of 4 M for 30 min and then transferred into transparent wells in a flow chamber at 37 °C. Cell 

migration was monitored by tracking cells at the same location every 20 min using a camera 

and the velocity of cell migration was analyzed using ImageJ. The migration vector of the cell 

generated from two subsequent images was presented as a dot in an XY-diagram and 

characterized by its migration direction and distance. In cell monolayer migration study, cell 

seeding density on PCLTAs was adjusted by their attachment rates to ensure the same number 

of SMCs attached on each sample. A Teflon tip was placed gently onto the disk surface. After 

SMCs attached and proliferated for 24 h to form a monolayer, the Teflon tip was removed to 

allow cell migration into the blank area for one day before SMCs were fixed and stained with 

hematoxylin and eosin (Sigma-Aldrich, St. Louis, MO). For each image, the maximal migration 

distance was determined and averaged at five locations.  
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2.2.6 Gene expression analysis of phenotypic markers and integrins  

Total RNA was isolated from SMCs cultured for 3 days using RNeasy Mini Kit (Qiagen, 

Valencia, CA) and then cDNA was obtained using DyNAmo cDNA synthesis kit (Thermo 

Scientific). Real-time PCR primers (Table 2.2) were designed using the Oligoperfect software 

(Invitrogen) and the reaction was conducted in 25 L of a PCR mixture of cDNA samples and 

Power SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad, CA). An appropriate 

amplification PCR protocol was set to 5 min at 95 C followed by the same steps of 30 s at 95 

C, 30 s at 55 C, and 30 s at 72 C using the thermal cycler with fluorescence detection systems 

(PTC-200, MJ Research, Watham, MA). The expression of target genes was normalized to that 

of the house-keeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RT-PCR 

amplification was performed on a Peltier Thermo cycler (PTC-200, MJ Research) using 

specific RT-PCR primers (Table 2.3). The same thermal condition mentioned above was applied 

but the cycles for different genes varied according to their expression levels. Upon completion 

of the reaction, DNA products were electrophoresed in 1.5% agarose gel containing Gelgreen 

(Biotium, Hayward, CA) and visualized using an EpiChemi II darkroom imaging system (UVP, 

Upland, CA). For integrin expression, mRNA was isolated from SMCs cultured for 1 day and 

the real-time PCR procedure was similar to described above using integrin specific primers 

(Table 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

Table 2.1 Molecular weight and thermal properties of uncrosslinked and crosslinked PCLTAs 

Polymer 
M

n 
 

(g mol
-1

) 

M
w 

 

(g mol
-1

) 
DPI 

Thermal Properties 

T
m
 (

o

C) 
H

m 

(J/g) 

χ
c
 (%) 

PCLTA2k 2220 2990 1.3   21.3 21.2 15.7  

PCLTA5k 5600 6520 1.2  27.2 38.1 61.6 45.6  

PCLTA7k 6680 8490 1.3  34.8 43.4 66.2  49.0  

PCLTA8k 8456 9983 1.2 45.2 49.5 65.0  48.1  

PCLTA10k 9750 12310 1.3  45.1 50.9 66.8  49.5  

PCLTA20k 20020 22670 1.1  52.4 54.6 65.4 48.4  

Crosslinked PCLTA2k     0 0.0  

Crosslinked PCLTA5k    13.8 3.3 2.4  

Crosslinked PCLTA7k    22.9 24.6  18.3  

Crosslinked PCLTA8k    40.08 39.0  28.9  

Crosslinked PCLTA10k    44.7 44.5  32.9  

Crosslinked PCLTA20k    50.4 56.7 42.0  
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Table 2.2 Primers for phenotypic makers in real-time PCR analysis 

Gene Primer sequence (5 to 3) Length 
% GC 

content 

Tm 

(C) 

Product 

Size 

NM-MHC  
Forward  GGATTGGCAGGTCTCTCTATCAG 

Reverse  ATTGGGATCCTGGATATTGCT 

23 52.2 64.6 

220 

21 42.9 58.7 

Calponin 
Forward  AGTCTACTCTCTTGGCTCTGGCC 

Reverse  CCTGCCTTCTCTCAGCTTCTCAGG 

23 56.52 57.3 

122 

24 58.33 58.5 

SM-M HC 
Forward  AAGCAGCTCAAGAGGCAG 

Reverse  AAGGAACAAATGAAGCCTCGTT 

18 55.6 59.9 

178 

22 40.9 58.9 

Transgelin 

( SM-22) 

Forward  GGCAGCTGAGGATTATGGAGTCACG 

Reverse  TGGGATCTCCACGGTAGTGTCCA 

25 56.00 59.2 

152 

23 56.52 58.6 

Smoothelin 
Forward  TCGGAGTGCTGGTGAATAC 

Reverse  CCCTGTTTCTCTTCCTCTGG 

19 52.6 60.2 

197 

20 55 62.4 

GAPDH 
Forward  TCTTCACCACCATGGAGAA 

Reverse  ACTGTGGTCATGAGCCCTT 

19 47.4 58 

232 

19 52.6 60.2 
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Table 2.3 Reverse Transcription PCR primers for phenotypic markers 

Gene Primer sequence (5 to 3) Length 
% GC 

content 

Tm 

(C) 

Product 

Size 

NM-MHC  
Forward  GGATTGGCAGGTCTCTCTATCAG 

Reverse  ATTGGGATCCTGGATATTGCT 

23 52.2 64.6 

220 

21 42.9 58.7 

Calponin 
Forward  ACAAAAGGAAACAAAGTCAAT 

Reverse  GGGCAGCCCATACACCGTCAT 

21 28.6 52.8 

375 

21 61.9 66.5 

SM-M HC 
Forward  AAGCAGCTCAAGAGGCAG 

Reverse  AAGGAACAAATGAAGCCTCGTT 

18 55.6 59.9 

178 

22 40.9 58.9 

Transgelin 

( SM-22) 

Forward  TGTTCCAGACTGTTGACCTC 

Reverse  GTGATACCTCAAAGCTGTCC 

20 50 60.4 

368 

20 50 60.4 

smoothelin 
Forward  TCGGAGTGCTGGTGAATAC 

Reverse  CCCTGTTTCTCTTCCTCTGG 

19 52.6 60.2 

197 

20 55 62.4 

GAPDH 
Forward  TCTTCACCACCATGGAGAA 

Reverse  ACTGTGGTCATGAGCCCTT 

19 47.4 58 

232 

19 52.6 60.2 

 

Table 2.4 Real-time PCR primers for integrins 

Integrin  Forward primer Reverse primer 

Integrin-av  5’-AAGACGCCCGAAAAGAATGAC-3’  5’-ATCCCGCTTGGTGATGAGAT-3’ 

Integrin-a1  5’-TCTGCCAAACTCAGTCCACGA-3’ 5’-TGACGATCAGCAGGCTCTTTT-3’  

Integrin-a5 5-’CCTTCCTTCATTGGCATGGA-3’ 5-’TCTGCATCCTGTCAGCAATCC-3’ 

Integrin-b1 5’-AGAGTGCCGTGACAACTGTG-3’ 5’-GAGCCCCAAAGCTACCCTAC-3’ 

Integrin-b2 5’-AGTCCCAGTGGAACAACGAC-3’ 5’-AGCACTGGGGCTAGCTGTAA-3’ 

Integrin-b3  5’-GACCCGCTTCAATGACGAA-3’ 5’-TCACAGACTGTAGCCTGCATGA-3’ 

 

2.2.6 Western blot  

Total cellular proteins were obtained from SMCs cultured for 3 days on crosslinked PCLTA 

substrates. Briefly, proteins were extracted from the cell lysates in an ice-cold Radio-

Immunoprecipitation Assay (RIPA) buffer that contained protease inhibitors. The same amount 

of protein for each sample was separated by sodium dodecyl sulfate polyacrylamide gel 
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electrophoresis (SDS-PAGE), and transferred to a polyvinylidene fluoride (PVDF) membrane 

(Immobilon-P, Millipore). Calponin and GAPDH protein were identified by using anti-calponin 

and anti-GAPDH primary antibodies (final concentration, 2 g mL-1; Santa Cruz) followed by 

a peroxidase-labeled anti-mouse secondary antibody (final concentration, 0.08 g mL-1). 

Specific protein bands were visualized using ECL-Plus (GE Healthcare, Piscataway, NJ) by 

exposure for 1 to 3 min with enhanced chemiluminescence.  

 

2.3 Results and Discussion 

 

2.3.1 Photo-crosslinked PCLTA with controllable stiffness  

PCLTAs with number-average molecular weights (Mns) of 2220, 5600, 6680, 8460, 9750, and 

20020 g mol-1 were named as PCLTA2k, 5k, 7k, 8k, 10k, and 20k, respectively (Table 2.1). As 

illustrated in Fig. 2.1b, the stiffness of crosslinked PCLTA can be controlled efficiently through 

the molecular weight, which determines both the crosslinking density and crystallinity. In 

methylene chloride, crosslinked PCLTAs showed increasing swelling ratio from 2.2 ±0.3 to 

12.9 ±0.3 when Mn increased from 2k to 20k. While in water or PBS, the original shape of all 

the six crosslinked PCLTAs remained, assuring their potential applications as polymer scaffolds 

in in vivo implantation. The gel fractions of all the samples were ~0.9 to ensure sample integrity 

with smooth surfaces after the sol fraction was removed through purification in acetone. As 

demonstrated in the DSC curves (Fig. 2.1c; Table 2.1), the six PCLTA samples were all semi-

crystalline with Tm values of 33.7, 38.1, 43.4, 45.2, 50.9, and 52.4 °C, respectively.  
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Figure 2.1 Photo-crosslinkable PCLTA with controllable thermal and mechanical properties. a, 

Chemical structure of PCLTA. b, Schematic change in crystallinity and stiffness of crosslinked 

PCLTA when the molecular weight increases. c, DSC curves of uncrosslinked and crosslinked 

PCLTAs. d, Tensile strain-stress curves of crosslinked PCLTAs at 37 °C. e, The elastic moduli 

and shear moduli of the crosslinked PCLTAs at 37 °C. f, AFM images of crosslinked PCLTAs 

in a scanning scope of 5  5 m.  

 

Because the crosslinks in PCL networks strongly restricted the crystallization of PCL 

segments15, crosslinked PCLTAs had significantly suppressed crystallinity and Tm. PCLTA2k 

with the lowest crystallinity and Tm even became completely amorphous after crosslinking. 

Crosslinked PCLTA5k, 7k, 8k, 10k, and 20k showed decreased Tm values of 13.8, 22.9, 40.1, 

44.7 and 50.4 C (Fig. 2.1c; Table 2.1), indicating that the former two were amorphous while 

the latter three were still semi-crystalline at body temperature. The large, controllable 

differences in crystallinity and Tm in these polymer networks resulted in their distinct 

mechanical properties at 37 C, as shown in the stress-strain curves in Fig. 2.1d. The three 

amorphous PCLTA networks that were not enhanced by the crystallites were weak and broke at 

a low stress and a low strain while the three semi-crystalline PCLTA networks were strong and 
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tough, showing yielding and necking phenomenon before they broke at a high stress and a high 

strain. The modulus for amorphous PCLTA networks was inversely proportional to the 

molecular weight Mc between two neighboring crosslinks. Given the same architecture for 

PCLTAs, Mc was proportional to Mn. Thus E decreased from 11.2± 2.2 to 4.0 ± 0.2 and 1.6 

±0.5 MPa and the shear modulus (G) decreased from 1.72 to 1.42 and 0.65 MPa when the Mn 

of PCLTA increased from 2k to 5k and 7k, respectively (Fig. 2.1e). Similar to previous findings 

on crosslinked PCLF and PCLDA [16,17], crystallites formed a physical network to strengthen 

the chemical network in crosslinked PCLTA8k, 10k, and 20k. This effect was more prominent 

when the crystallinity was higher for a higher PCLTA molecular weight although the 

crosslinking density was lower (Fig. 2.1b). Among all the six samples, the most crystalline 

crosslinked PCLTA20k had the highest E and G values of 194 ± 16 and 41.1 MPa, respectively 

(Fig. 2.1e). For the three amorphous crosslinked PCLTAs, the strains at break increased from 

7.5 ± 3.0% for crosslinked PCLTA 2k to 51.3 ± 4.5% for crosslinked PCLTA 7k and 97.4 ± 

13.3% for crosslinked PCLTA 8k. In contrast, the values for semi-crystalline crosslinked 

PCLTAs were much higher and decreased from 275.7 ± 14.7% for crosslinked PCLTA 8k to 

176.8 ± 55.0% for crosslinked PCLTA 10k and 169.7 ±103.2% for crosslinked PCLTA 20k. 

Crosslinked PCLTA disks were compressed to achieve smooth surfaces before I 

characterized their surface morphology, hydrophilicity, and protein adsorption. AFM images in 

Fig. 2.1f showed no obvious differences in surface morphology and root-mean-square 

roughness (Rrms) was less than 10 nm for all these samples. The water contact angles on the 

three amorphous crosslinked PCLTAs were similar (~62.5 ± 1.0) while they were higher on 

the three semi-crystalline crosslinked PCLTAs with values of 69.2 ±1.5, 77.7 ±0.8, and 77.8 

±0.8 for 8k, 10k, and 20k, respectively. The result that a more crystalline polymer network 

had a higher hydrophobicity was in agreement with earlier reports on crosslinked PCLFs and 

PCLDAs with different crystallinities [17]. Compared with semi-crystalline crosslinked 

PCLTAs, less hydrophobic amorphous crosslinked PCLTAs adsorbed more serum proteins and 

fibronectin [25]. 
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2.3.2 Regulation of SMC adhesion, spreading, and proliferation 

Consistent with previous studies on different cell types [2,5,26-28], stiffer substrates of 

crosslinked PCLTAs better supported attachment of SMCs without showing cytotoxicity in the 

culture period. Stronger stress fibers and larger spread areas were observed for SMCs cultured 

on stiffer substrates of crosslinked PCLTAs for 8 and 24 h, as demonstrated in cell images (Fig. 

2.2b). The dependence of the normalized number of attached SMCs at 4 h and the cell area at 

day 1 on the Mn of PCLTA followed the same trend as that in modulus, i.e., they decreased 

slightly on the amorphous substrates while increased significantly on the semi-crystalline ones 

when the Mn of PCLTA increased (Fig. 2.2c,d). The SMC numbers at days 1, 2, and 4 

determined using the MTS assay (Fig. 2.2e) are consistent with the cell images by showing the 

same dependence on the substrate stiffness. The proliferation index (PI) of SMCs (Fig. 2.2f) 

increased from 2.4 ± 0.3 on the amorphous substrates to 2.7 ± 0.3 on the semi-crystalline ones 

while the corresponding doubling time decreased from 2.4 to 2.1 days. 
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Figure 2.2 SMC behaviors on crosslinked PCLTAs. a, Fluorescent images of SMCs on 

crosslinked PCLTAs at days 1 and 4 post-seeding. Stained with rodamine-phalloidin (red) and 

DAPI (blue). b, Fluorescent images of SMCs to show filaments density and magnitude. The 

arrows point to the typical filaments in SMCs on stiff crosslinked PCLTAs. c, SMC had better 

attachment on stiffer substrates. d, SMC had significant larger projecting cell area (p < 0.001) 

on crosslinked PCLTA10k and 20k (E > 100 MPa) comparing to amorphous crosslinked 

PCLTA2k, 5k and 7k. For 7k and 8k, obvious difference also can be seen in cell area (p < 0.01). 

e, SMC number at days 1, 2, and 4 post-seeding using TCPS as positive control. The cell 

number pattern was quite consistent with the substrate stiffness trend. f, Proliferation Index of 

SMCs on crosslinked PCLTAs. +,^,* p < 0.05 between any two samples.  
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2.3.3 Distinct focal adhesion and integrin expression  

Focal adhesions (FAs) are complicated, dynamic protein complexes consisting of >100 proteins 

through which the internal cytoskeleton of a cell connects to the ECM. FAs with functional 

diversity serve as the anchorage of a cell and signal carriers to report the ECM condition to cell 

nucleus and the feedback in turn affects the cell behavior. I characterized FAs of SMCs on three 

representative substrates of crosslinked PCLTA2k, 7k, and 20k at day 1 using confocal 

microscopy (Fig. 2.3a,b). The FA area on crosslinked PCLTA2k was larger than that on softer 

crosslinked PCLTA7k but lower than that on stiffer crosslinked PCLTA20k. The elongation of 

FAs, which is the inverse of circularity [6], was also significantly higher on crosslinked 

PCLTA20k compared with the softest crosslinked PCLTA7k. SMCs on crosslinked PCLTA20k 

also showed the highest FA number per cell, i.e., FA density, while those on crosslinked 

PCLTA7k showed the lowest. Because FAs are the direct contactors between ECM and cell 

body, they were the primary component in sensing ECM stiffness and transducing signals to 

cells through internal signal pathways. 
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Figure 2.3 Focal adhesion characterization and integrin expression analysis. a, Confocal 

microscope images of SMC filaments and vinculin antibody stained focal adhesions. 

Comparing to soft crosslinked PCLTA7k, SMCs on stiffer crosslinked PCLTA20k have larger 

cell area, more focal adhesions per cell and larger average size for focal adhesions (the arrow 

points to the typical focal adhesions for SMC on each PCLTA). b, SMCs on crosslinked 

PCLTA20k have statistically higher value (p < 0.01) than crosslinked PCLTA7k in FA area, 

elongation and density. c, The relative expression of integrin  and  subunits using GAPDH 

as reference. There are significant higher expressions for the six  and  subunits in SMCs on 

stiffer crosslinked PCLTA20k than soft 7k (p < 0.013, 0.010, 0.017, 0.043, 0.020, and 0.040 for 

intergin v, 1, 5, 1, 2,and 3,respectively). Differences also displayed between crosslinked 

PCLTA2k and 7k for v, 1, 5, and 2 subunits (p = 0.025, 0.047, 0.002, and 0.041, 

respectively). * p < 0.05 between any two samples. 
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The interactions between FAs and ECM involve integrins, which are heterodimers of  and 

subunits. Integrins cross through cell membrane and bind cytoskeleton with different ECM 

proteins such as talin, -actinin, filamin and vinculin using their external end. This integrin-

adapter protein-cytoskeleton complex is the basis of FA. I analyzed the integrin expression 

levels of SMCs on crosslinked PCLTAs at day 1 using real-time polymerase chain reaction 

(PCR) (Fig. 2.3c). Significantly higher expression (p < 0.05) levels of v, 1, 5, and 2 subunits 

were found on crosslinked PCLTA2k and 20k relative to those on the softest crosslinked 

PCLTA7k. Higher expression (p < 0.05) levels of 1 and 3 subunits were observed on the 

stiffest crosslinked PCLTA20k compared to the softest crosslinked PCLTA7k by factors of 1.36 

±0.03 and 1.43 ±0.03, respectively. The combinations of these six integrin subunits, such as 

v3, 11, 13, 51, are of high importance in cell signaling, proliferation, spreading, and 

motility. The dependence of the integrin expression levels on the molecular weight of PCLTA 

was consistent with that of substrate stiffness, suggesting that integrins play an indispensable 

role in SMC mechanotransduction.  

 

2.3.4 Promoted SMC migration on stiff PCLTA substrates 

The mechanism for cell migration is closely related to the forces generated by FAs on the 

substrate [29]. For a steadily moving cell, the adhesion force is correlated to the cell-substrate 

viscous interaction, which is assumed to increase linearly with substrate rigidity [30]. In this 

study, single cell migration on six crosslinked PCLTAs showed a positive correlation between 

the speed of cell motility and the stiffness of the underlying substrate (Fig. 2.4a). The highest 

migration speed of 0.28 ± 0.11 m min-1 was observed on the stiffest crosslinked PCLTA20k 

and the lowest speed of 0.17 ± 0.09 m min-1 was on the softest crosslinked PCLTA7k (Fig. 

2.4b). In agreement with the single cell motility, after scratch formation, the migration distance 

of SMC invasion (Fig. 2.4c,d) at day 1 reached the highest value of 267.4 ± 5.3 m on 

crosslinked PCLTA20k. This value was more than two folds of the lowest value of 110.4 ± 8.2 

m on crosslinked PCLTA7k. The parabolic dependence of SMC migration on the PCLTA 

molecular weight suggested that SMC migration favored stiffer substrates in the studied 

stiffness range.  
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Figure 2.4 SMC migration on crosslinked PCLTAs. a, Single SMC motility pattern in an 

interval of 20 min. The migration vector, i.e., directionand length, of the cells was expressed 

as a dot in the XY-diagram. b, Cell migration speed obtained from (a) on crosslinked PCLTAs. 

Higher single cell motility (p < 0.001) speed is found on stiffer crosslinked PCLTA10k and 20k 

substrate (E > 100 MPa). c, Wound healing of SMC migration images at day 1 after scratch 

formation. d, Average migration distance measured from (c) on crosslinked PCLTAs. SMC 

layer invasion distances on crosslinked PCLTA7k were significant smaller than the other stiffer 

substrates (p < 0.01). SMCs on stiffest crosslinked PCLTA20k show the highest migration 

distance during the 1 day interval. * p < 0.05 between any two samples.  
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2.3.5 Controllable SMC conversion to functional contractile phenotype 

    I performed real-time PCR study on SMCs cultured on crosslinked PCLTA sheets for 3 

days and analyzed the mRNA expression level of Non-muscle Myosin Heavy Chain (NM-

MHC), a typical synthetic marker gene for SMCs. The expression level of NM-MHC was lower 

on stiffer substrates no matter in the amorphous or semi-crystalline groups (Fig. 2.5a,b), 

consistent with a previous study on phenotype modulation of SMCs on polyelectrolyte layers 

with different stiffnesses [31]. Contrary to the trend in the stiffness of crosslinked PCLTA when 

its Mn increased from 2k to 20k, the NM-MHC expression level first increased and then 

decreased. There was a larger portion of synthetic SMCs on the softer crosslinked PCLTAs 

compared with the stiffer ones, implying that conversion from the proliferative synthetic 

phenotype to the functional contractile phenotype was better supported by stiffer substrates. 

The expression level of NM-MHC on the semi-crystalline substrate was slightly higher than 

that on the amorphous one with a similar stiffness. This trend agreed with the SMC proliferation 

discussed above as fast growth of SMCs is related to elevated expression of the synthetic gene 

marker, which occurs during vascular development and involves a function of actin-myosin 

force generation [23].  
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Figure 2.5 Gene and protein expression of SMCs on crosslinked PCLTAs. a, Real-time PCR 

gene expression of synthetic marker NM-MHC and contractile markers SM-MHC, smoothlin, 

trangelin and calponin using GAPDH as the reference and normalized to the expression in 

SMCs on crosslinked PCLTA7k, the softest substrates among all crosslinked PCLTAs. b, RT-

PCR results also demonstrated significant higher contractile marker expression on stiff 

crystalline substrates. c, Western Blot showed there are much more calponin protein content in 

SMCs on stiffer crosslinked PCLTA 20k than 10k revealed by the band intensity. No obvious 

calponin protein content is for the soft PCLTAs (E < 20Mpa).* p < 0.05 between any two 

samples.  

 

For four typical contractile gene markers, i.e., Smooth-muscle Myosin Heavy Chain (SM-

MHC), smoothlin, transgelin, and calponin, their expression levels were substantially higher on 

semi-crystalline crosslinked PCLTA10k and 20k with E larger than 100 MPa, in contrast to the 

other four substrates with E lower than 20 MPa (Fig. 2.5a,b). To examine whether such 

upregulation of contractile gene expression was caused by the crystalline characteristics instead 

of solely surface stiffness, I compared the contractile marker expression of SMCs on semi-

crystalline crosslinked PCLTA8k (E = 15.4 MPa) and amorphous crosslinked PCLTA2k (E = 
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11.2 MPa). Except in SM-MHC, no significant differences were found in the major markers on 

the different substrates with a similar stiffness. The expression levels of these four contractile 

markers were not significantly different among the substrates of crosslinked PCLTA2-8k with 

E in a narrow range of 1-20 MPa. When E increased to 106 MPa for crosslinked PCLTA10k, 

significantly higher (p < 0.05) expression levels were observed. The expression levels reached 

maxima for SM-MHC, transgelin, and calponin on crosslinked PCLTA20k (E = 194 MPa), 

which were 9.98, 2.20, and 2.77 times as much as those on the softest substrate of crosslinked 

PCLTA7k (E = 1.6 MPa). Consistent with real-time PCR analysis, reverse transcriptase-PCR 

(RT-PCR) results (Fig. 2.5b) further confirmed that larger contents of contractile markers, 

indicated by the higher band intensities, in SMCs cultured on the stiffer substrates of semi-

crystalline crosslinked PCLTA10k and 20k. These results indicated that stiffer substrates could 

support a larger portion of functional contractile phenotype and conversion from the 

proliferative synthetic phenotype.  

Smooth muscle basic calponin is a calcium-binding protein with a molecular weight of 

32,000-36,000 g mol-1 to regulate the myosin ATPase activity in smooth muscle, also a 

signaling scaffold protein for ERK and PKC pathways [32]. In SMCs, calponin is also involved 

in force generation in the process of muscle fiber preparation and cell movement [33,34]. In 

this study, little calponin was detected in the SMCs cultured on the more compliant crosslinked 

PCLTAs (E < 20 MPa) but the expression level increased greatly when the substrates were 

crosslinked PCLTA10k and 20k. In the western blot result (Fig. 2.5c), calponin was not detected 

in SMCs on crosslinked PCLTA substrates with E < 20 MPa, although the exposure time was 

extended to 2 h. In contrast, there were obvious calponin contents in the cells on crosslinked 

PCLTA10k and 20k, and moreover, the band intensity was significantly higher on crosslinked 

PCLTA20k. The upregulated expression of contractile markers on the stiffer substrates at the 

both levels of mRNA and protein indicated that crystallite-strengthened polymer substrates 

could be more favorable for contractile phenotype and functions of SMCs.  
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2.3.6 Molecular mechanism model of stiffness on SMC behavior 

    I propose a molecular mechanism model (Fig. 2.6) for interpreting the observed better 

SMC adhesion, proliferation, migration and higher contractile marker expression on the stiffer 

substrates of semi-crystalline crosslinked PCLTAs. SMCs on stiffer substrates were reported to 

have higher focal adhesion kinase (FAK) phosphorylation, which further induces stronger stress 

fibers through the merlin and ezrin/radixin/moezin (MERM) family of cytoskeletal linkers 

[35,36]. Large amount and robust reorganization activity of F-actin facilitate formation of FAs 

and migration of SMCs. Increased assembly of F-actin stress fibers and FAs with increasing 

substrate stiffness found here could be correlated to complicated biological signal transductions 

[36]. The mechanical properties of ECM govern SMC migration speed mainly through 

regulating the activity of Ras homolog gene family, member A (RhoA) [8,37], which is a small 

GTPase protein known to regulate the signal transduction pathway linking membrane receptors 

to the assembly of FAs and actin stress fibers.  

Cells interact with the substrate through FAs, where integrins cluster and bind to the matrix. 

SMCs could sense the substrate stiffness through the response to the integrin activity and 

density on the membrane [38]. Integrin activation and engagement enhanced by higher 

substrate stiffness are essential for the formation and stabilization of organized lipid membrane 

microdomains, which promote the efficiency of platelet-derived growth factor- (PDGFR-) 

signals [24]. PDGFR- has links to cytoskeleton and FAs through the adapter Na+/H+ exchanger 

regulatory factor (NHERF), MERM, and FAK [36]. For SMCs attached to a soft substrate, there 

lacks sufficient force to generate high-level integrin activation and organize membrane domain 

lipid rafts, consequently PDGFR activation is weak. In contrast, PDGFR- signaling is stronger 

on stiffer substrates as more activated PDGFRs and their downstream effectors are recruited to 

the membrane domain lipid rafts [24]. 
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Figure 2.6 Proposed mechanisms model of mechanotransduction in SMCs. Cells cultured on 

rigid substrates presumably possess larger integrin activity, which promotes the formation of 

robust actin stress fibers and FAs via RhoA activity and MERM phosphorylation. High level 

integrin activity also leads to strong PDGFR- activation and further triggers several signaling 

pathways like Ras-MAPK, PI3K and Akt, which are known to be involved in multiple cellular 

and developmental responses. PI3K pathway activation promotes actin reorganization, cell 

movements, cell growth, and inhibits cell apoptosis. Meanwhile, PDGFR-activation can 

regulate the binding activity of SRF to CArG box via the PI3K/Akt/p70S6K pathway, therefore 

further modulate the transcriptional activation of the contractile marker proteins including SM-

MHC, smoothlin, trangelin and calponin investigated in this study. 

 

Activated PDGFR- signaling triggers downstream signaling moleculessuch as G-protein 

Ras, GTPase Rho, Ras-mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-

kinase (PI3K). These molecules are involved in multiple cellular and developmental responses 

[36]. MAPK signaling can activate gene transcription, leading to stimulation of cell growth, 

differentiation, and migration [39]. PI3K is a family of enzymes phosphorylating 
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phosphoinositides and the PI3K signaling pathway connects to enormous downstream effectors 

including serine/threonine kinases such as Akt/PKB [40,41], p70S6 kinase [42], and small 

GTPases of the Rho family [43]. Activation of the PI3K pathway by PDGFRs was reported to 

promote actin reorganization, direct cell movements, stimulate cell growth, and inhibit cell 

apoptosis [36]. PDGFR- activation can also modulate the transcriptional activation of the 

contractile marker proteins via the PI3K/Akt/ p70S6 kinase (p70S6K) pathway [44], which has 

been found to promote both proliferation and, paradoxically, differentiation of SMCs [45,46]. 

Signaling transduction from PDGFR-to p70S6K can enhance the binding ability of 

transcription factors especially serum response factor (SRF) to the CC[A/T]6GG (CArG) box, 

which is one of the DNA elements required for muscle-specific gene transcription and plays an 

indispensable role in the expression of almost all contractile gene markers of SMCs [47].   

 

2.4 Conclusions 

 

A series of biodegradable photo-crosslinked PCLTA substrates were developed with 

controllable stiffness achieved by simultaneously varying the crosslinking density and 

crystallinity. Surface characteristics of these polymer substrates were evaluated, including 

roughness, hydrophilicity, and capability of adsorbing proteins from cell culture media. Cell 

studies demonstrated stiffer semi-crystalline PCLTA networks induced stronger stress fibers, 

larger spread area, faster growth, higher motility, better conversion from the synthetic 

phenotype to the more functional contractile phenotype, and stronger focal adhesions of SMCs. 

Further gene and protein expression analysis showed higher expression levels of contractile 

gene markers and integrin subunits in SMCs on the stiffer substrates of semi-crystalline PCLTA 

networks. These biodegradable PCLTA networks with controllable stiffness can be used for 

diverse applications and regulation of different cell types, and various2D patterns and 3D 

structures can be readily fabricated using methods such as replica molding and 

stereolithography. The double bonds in PCLTA supply feasibility of being incorporated with 

other functional, bioactive components such as polyethylene glycol and poly(L-lysine) 

dangling chains to improve the biocompatibility. 
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Chapter III. Dynamic Substrates with Increasing Stiffness for Regulation of 

Smooth Muscle Cells 
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Abstract 

 

Cardiovascular tissues bear constant blood shear and dynamic hardening under diseased 

conditions, which causes the tissue stiffness varies all the time. To mimic the dynamic changing 

environment in the vessel tissues and investigate the influence of dynamically changing 

substrate mechanical properties on the cell behaviors, I fabricated a model polymer network 

from poly(-caprolactone) triacrylate that can gradually stiffen in 24 h through impeded 

crystallization at body temperature (37 ºC). Rat primary SMCs were cultured on both static and 

dynamic substrates and distinct SMC attachment, proliferation and spreading were found. 

Quantification of contractile gene expression and protein content showed that the dynamic 

substrates could facilitate the contractile conversion process of SMCs. The analysis of focal 

adhesions and integrin expression indicated that the cellular abilities to sensing and adhering to 

the substrate surface were enhanced by the dynamic stiffening stimulation. These results extend 

the knowledge about SMC mechanosensing to dynamic substrates with increasing stiffness, 

and demonstrate a new method of regulating SMC adhesion, growth, and functional conversion 

on substrates.  
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3.1 Introduction 

 

Substrate stiffness has been reported to initiate varied strength of static tension to cells, 

which can affect the attachment, growth, and morphology of mechanosensitive cells, for 

example, fibroblasts [1], endothelial cells [2], and SMCs [3-5]. In previous studies, SMCs were 

found to favor stiffer substrates by showing increased adhesion, spreading, and proliferation [6-

10]. These findings suggest that SMC behavior could be affected by increasing the vessel 

stiffness resulted from the hardening of vascular tissue in disease development. However, most 

of the work was performed on static substrates with preset stiffness. In contrast, in real 

physiological conditions, SMCs are subjected to dynamic environment with changing 

mechanical stimulation from either blood shear or vascular hardening. Therefore, appropriate 

dynamic substrates with increasing stiffness are highly desired in cardiovascular tissue 

engineering studies.  

There exist a limited number of dynamic substrates. Free DNA was crosslinked to be time-

dependent stiffening hydrogels [11-13]. There are disadvantages of using this system such as 

slow reaction (1 day) [14,15], unfavorable negative charges from free DNA [15,16], long-term 

instability (>1 week), and potential dangerous mutations caused by DNA integration into 

cellular genomes [14,17]. In collagen-alginate composite hydrogels, the mechanical properties 

can be modified by introducing divalent cations but the external calcium ions may also alter 

cellular signaling [18]. UV-crosslinkable hyaluronic acid hydrogels modified with methacrylate 

groups were used as dynamic hydrogels [19-23]. The disadvantages are the requirements of 

addition of gelation reagent dithiothreitol (DTT), photoinitiator (Irgacure 2959) and exposure 

to UV light [20,21].  

I have developed biodegradable and photo-crosslinkable poly(-caprolactone) triacrylates 

(PCLTAs) that can be photo-crosslinked into networks with high gel fractions and controllable 

thermal and mechanical properties [24,25]. Elastic modulus ranging from 1 to 200 MPa was 

achieved by modulating the crosslinking density and crystallinity through the nominal 

molecular weight (Mn) of the polymer [25]. When the molecular weight increases from 2000 to 

20000 g/mol, the PCL network changes from an amorphous, compliant elastomer to a semi-

crystalline, stiff material with a crystallinity of 42%. For the semi-crystalline PCLTA networks, 
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the melting temperature (Tm) of the substrate increased from 13.8 ºC for Mn of 5000 g/mol to 

50.4 ºC for Mn of 20000 g/mol. Because of the constraints of the crosslinks, polymer 

crystallization in a network is suppressed and impeded, as demonstrated by reduced 

crystallinity and slower crystallization. By controlling the Tm of the PCLTA network to be 

slightly above 37 ºC, PCL segments in the network crystallized very slowly at 37 ºC and the 

substrate stiffness increased gradually with the increase in crystallinity over a time period of 24 

h, as schematically demonstrated in Fig. 3.1.   

 

 

Figure 3.1 Scheme of PCLTA photocrosslinking and crystallization process at 37 °C. 

 

Based on this unique mechanism of impeded polymer crystallization in PCLTA networks, I 

explore to apply this spontaneously increasing substrate stiffness to regulate SMCs when they 

are seeded on the substrates and cell attachment occurs at the same time. To study the effect of 

the gradually increasing substrate stiffness on SMC adhesion, spreading, proliferation, and 

phenotypic conversion, I prepared a series of PCLTA networks, melted and crystallized at 37 

ºC for 0, 4, 8, or 24 h.   

 

3.2 Materials and methods 

 

3.2.1 Synthesis and photo-crosslinking PCLTA polymers 

The PCLTA samples used in this study were synthesized in our lab using the method 

reported previously. The molecular weights of polymers were determined by using Gel 

Permeation Chromatography (GPC; PL-GPC 20, Polymer Laboratories, Inc.) with 

tetrahydrofuran (THF) as the solvent and monodisperse polystyrene samples (Polymer 

Laboratories) as the standard references. The PCLTA synthesized in this study had number-
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average molecular weight of 7985 g/ mol, weight-average molecular weight of 9626 g/mol, and 

polymer molecular weight distribution of 1.206, as determined by GPC analysis. Thermal 

properties were determined by Differential Scanning Calorimetric (DSC) measurements, in 

which the samples were first heated from room temperature to 100 °C, then cooled down to 

80 °C, followed by heated again to 100 °C at a rate of 10 °C/min.  

 

3.2.2 Photo-crosslinking and characterization 

UV light generated from a high-intensity long-wave UV lamp (SB-100P, = 365 nm, 

Intensity: 4800 w/cm2) was used to facilitate photo-crosslinking of PCLTA. Phenyl bis(2,4,6-

trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE 819, Ciba Specialty Chemicals, 

Tarrytown, NY) was used as the photo-initiator. Homogeneous PCLTA/BAPO/CH2Cl2 mixture 

was transferred into a silicon mold consisting of two glass plates and a silicon spacer then 

placed under UV light for 20 min. In order to remove the residue of BAPO and sol fraction, the 

round crosslinked PCLTA disks (10 × 0.5 mm, diameter × thickness) were soaked in acetone 

for two days and washed with new acetone 3 times. Then the samples were dried in vacuum, 

compressed to remove the variance in surface roughness, sterilized in 70% alcohol solution, 

and dried completely in vacuum.  

 

3.2.3 Crystallization process determination 

Grazing incidence X-ray diffraction (GIXRD) was performed at an X-ray energy of 16.0 

KeV using the beamline X6B of National Synchrotron Light Source in Brookhaven National 

Laboratory. Sample disks were placed on a thermal stage at 37 C. The focused beam of 0.3 

mm (vertical) × 0.3 mm (horizontal) was incident on the disks at an angle of 0.1° and the 

diffraction pattern was collected using a CCD detector (Princeton Instruments). Crystallinity 

was calculated from the area of crystalline peaks divided by the total area of crystalline peaks 

and amorphous halo. Crystallite size () was calculated using the Scherrer equation  = 

0.89/cos2 [26], whereis the x-ray wavelength and  is the line broadening at half the 

maximum intensity (FWHM) in radians. 
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3.2.4 Mechanical and rheological characterizations 

The crystallization of PCLTA networks was monitored using elastic modulus (G) a strain-

controlled parallel-plate (8 mm) rheometer (RDS-2, Rheometric Scientific) at 37 °C. The 

frequency was 1 Hz and the stress was 75 Pa in the measurements. The tensile properties of the 

crosslinked PCLTA specimens (0.5 × 2.0 × 10 mm, thickness × width × length) at a strain rate 

of 0.005/s were measured using a dynamic mechanical thermal analyzer (DMTA-5, Rheometric 

Scientific) at 37 ºC. The surface morphology of the crosslinked PCLTA disks was characterized 

using multimode atomic force microscopy (AFM) and the root mean square (RMS) roughness 

values were obtained from the height images. The hydrophilicity of the crosslinked PCLTA 

disks represented by the water contact angle was determined using a Ramé-Hart NRC C. A. 

goniometer (Model 100-00-230, Mountain Lakes, NJ) at 37 °C. The amounts of serum proteins 

adsorbed on the disks from the culture media were determined on a micro-plate reader 

(SpectraMax Plus 384, Molecular Devices, Sunnyvale, CA) with assistance of a MicroBCA 

protein assay kit (Pierce, Rockford, IL), as described in our previous reports [27]. 

 

3.2.5 In vitro cell behaviors  

Before cell studies, photo-crosslinked PCLTA disks were sterilized in 70% alcohol solution 

for 2 h and fully dried in vacuum. For cell attachment and proliferation, sterilized PCLTA disks 

were rinsed in PBS three times and seeded with SMCs at a density of ~15000 cells/cm2 using 

TCPS as the positive control. UV absorbance at 496 nm was determined on the incubated MTS 

assay solution (CellTiter 96 Aqueous One Solution, Promega, Madison, WI) at 4 h, days 1, 2, 

and 4 post-seeding using the micro-plate reader described in Section 2.4. SMC numbers on 

these points were calculated using the standard curve constructed using known cell numbers. 

For observing the attached cells on the disks, SMCs were fixed in 4% paraformaldehyde (PFA) 

solution for 10 min and washed with PBS three times. Cell skeletons and nuclei were stained 

with rhodamine-phalloidin and 4',6-diamidino-2-phenylindole (DAPI), respectively. Cell 

images were taken using an Axiovert 25 light microscope (Carl Zeiss, Germany) and cell area 

was quantified from 20 non-overlapping cells in these images using ImageJ software.  
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3.2.6 Focal adhesion characterization 

After 1 day culture on crosslinked PCLTA disks, SMCs were fixed with 4% PFA solution 

and cell membrane was permeabilised with 0.2% Triton X-100. Bovine Serum Albumin (BSA) 

in PBS (1%) was used to block SMCs at 37 °C for 1 h. The treated SMCs were incubated in 

monoclonal vinculin primary antibody (1:1000 in PBS; Sigma) for 1 h with gentle shaking at 

room temperature and washed three times by PBS to remove unconjugated antibodies. Then 

SMCs were further incubated in goat anti-mouse IgG secondary antibody (1:200 in PBS; Sigma) 

solution at 37 °C for 1 h. After vinculin staining, cells were further stained by rhodamine-

phalloidin for 1 h at 37 ºC for observing specific -actins. Leica DM6000B confocal fluorescent 

microscope was used for photographing the stained cells. Quantification of focal adhesions 

(FAs) including the area of an FA and densities, i.e., the number of FAs per cell, was performed 

on 5 non-overlapping cells using ImageJ. The elongation of focal adhesion was calculated from 

the inverse of the circularity, a parameter defined by the equation of 4π ×area/perimeter2 to 

indicate how close an object is to a perfect circle [28].  

 

3.2.7 Gene expression of contractile phenotypic markers and integrin subunits  

Primers for gene expression using real-time polymerase chain reaction (PCR) were 

designed using Oligoperfect software, as listed in Table 3.1. After three days culture on the 

crosslinked PCLTA disks, SMCs were trypsinized and centrifuge collected at 1000 rpm for 2 

min. The total RNA of SMCs was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA) 

and the total cDNA was obtained by reverse transcription using DyNAmo cDNA synthesis kit 

(Thermo Scientific) following the manufacturer’s protocols. To make a comparable analysis, 

all the cDNAs were diluted to the same concentration of 1 ng/L and the exact 5L of total 

cDNA were added as template to the real-time PCR reaction system. Power SYBR Green PCR 

Master Mix (Applied Biosystems, Warrington, UK) was used as PCR reaction solution and 

mixed with template cDNA to make a total 20L reaction volume. The PCR amplification 

process was conducted on a PTC-200 Peltier Thermal Cycler fluorescence detection system 

(MJ Research, Watham, MA). The reaction procedure was set as 5 min at 94 ºC followed by 

cyclic steps of 94 ºC for 30 s, 55 ºC for 30 s, and 72 ºC for 30 s. The relative gene expression 

levels were normalized to that of housekeeping gene glyceraldehyde-3-phosphate 
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dehydrogenase (GAPDH). Reverse transcription PCR (RT-PCR) amplification was performed 

on the Thermo cycler mentioned earlier using the same primers except Calponin and Transgelin 

listed in Table 3.2. The same thermal cycle steps were applied with varied cycle numbers for 

different genes according to their expression levels. After the reaction was completed, gene 

products were separated via electrophoresis in 1.0% agarose gels with Gelgreen (Biotium, 

Hayward, CA). An EpiChemi II darkroom imaging system (UVP, Upland, CA) was used for 

visualization of DNA bands. For expression of integrin subunits, mRNA was isolated from 

SMCs at day 1 post-seeding and the expression was analyzed by the same real-time PCR 

procedure described earlier for phenotypic gene markers, except using integrin specific primers 

listed in Table 3.3. 

 

Table 3.1 Real-time PCR primers for phenotypic markers 

Gene Primer sequence (5 to 3) Length (bp) 
Product Size 

(bp) 

NM-MHC 
Forward  GGATTGGCAGGTCTCTCTATCAG 23 

220 
Reverse  ATTGGGATCCTGGATATTGCT 21 

Calponin 
Forward  AGTCTACTCTCTTGGCTCTGGCC 23 

122 
Reverse  CCTGCCTTCTCTCAGCTTCTCAGG 24 

SM-M HC 
Forward  AAGCAGCTCAAGAGGCAG 18 

178 
Reverse  AAGGAACAAATGAAGCCTCGTT 22 

Transgelin 

( SM-22) 

Forward  GGCAGCTGAGGATTATGGAGTCACG 25 
152 

Reverse  TGGGATCTCCACGGTAGTGTCCA 23 

Smoothlin 
Forward  TCGGAGTGCTGGTGAATAC 19 

197 
Reverse  CCCTGTTTCTCTTCCTCTGG 20 

GAPDH 
Forward  TCTTCACCACCATGGAGAA 19 

232 
Reverse  ACTGTGGTCATGAGCCCTT 19 

 

Table 3.2 RT-PCR primers for phenotypic markers 

Gene Primer sequence (5 to 3) Length (bp) 
Product Size 

(bp) 

Calponin 
Forward  ACAAAAGGAAACAAAGTCAAT 21 

375 
Reverse  GGGCAGCCCATACACCGTCAT 21 

Transgelin 

( SM-22) 

Forward  TGTTCCAGACTGTTGACCTC 20 
368 

Reverse  GTGATACCTCAAAGCTGTCC  20 
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Table 3.3 Real-time PCR primers for integrin subunits 

Gene Forward primer Reverse primer 

Integrin-v  5'-AAGACGCCCGAAAAGAATGAC-3' 5'-ATCCCGCTTGGTGATGAGAT-3' 

Integrin-1 5'-TCTGCCAAACTCAGTCCACGA-3' 5'-TGACGATCAGCAGGCTCTTTT-3' 

Integrin-5  5'-CCTTCCTTCATTGGCATGGA-3' 5'-TCTGCATCCTGTCAGCAATCC-3' 

Integrin-1  5'-AGAGTGCCGTGACAACTGTG-3' 5'-GAGCCCCAAAGCTACCCTAC-3' 

Integrin-2 5'-AGTCCCAGTGGAACAACGAC-3' 5'-AGCACTGGGGCTAGCTGTAA-3' 

Integrin-3  5'-GACCCGCTTCAATGACGAA-3' 5'-TCACAGACTGTAGCCTGCATGA-3' 

GAPDH 5'-TCTTCACCACCATGGAGAA-3' 5'-ACTGTGGTCATGAGCCCTT-3' 

 

3.2.8 Statistical analysis 

All statistical calculations were performed using one way analysis of variance (ANOVA) 

followed by Tukey post-test if needed. Any two samples with a p-value lower than 0.05 were 

considered to be significantly different.  

 

3.3 Results 

 

3.3.1 Impeded crystallization in PCLTA networks 

The gel fraction of crosslinked PCLTA was high as 0.92 ± 0.02 and the swelling ratio was 

7.0 ± 0.01 in methyl chloride. As shown in the DSC curves in Fig. 3.2a, there existed one 

crystallization temperature (Tc) of 11.3 ºC in the cooling curve and two melting peaks (Tm) of 

42.0 and 49.8 ºC in the heating curve for uncrosslinked PCLDA, whereas the crystallization 

peak shifted to a lower temperature at -1.05 ºC and there was only one melting peak at 41.34 

ºC for the network. GIXRD patterns obtained at a penetration depth of 5 nm in Fig. 3.2b 

demonstrated that the crystallinity of crosslinked PCLTA increased progressively within a time 

scale of 30 h at 37 ºC.  
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Figure 3.2 a). Thermal properties of uncrosslinked and crosslinked PCLTA. b). The chain 

segment crystallization processes in crosslinked PCLTA networks as monitored by the grazing 

incidence X-ray diffraction at the penetration depth of 5 nm and time scale of 30 h.  

 

The crystallinities and crystallite sizes of crosslinked PCLTA at different penetration depths 

of 5 nm, 30 nm, and 15 mm were obtained from the GIXRD patterns, as shown in Fig. 3.3. 

Gradual increases in both crystallinity and crystallite size were found over a period of 30 h at 

37 °C. Both parameters increased with increasing the penetration depth, indicating that the bulk 

properties were distinct from the surface properties.  

 

 

Figure 3.3 The a) crystallinities and b) crystallite sizes as tested by X-ray diffraction at varied 

penetration depths of 5 nm, 30 nm and 15 m from the network surface at different incubation 

time. 
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3.3.2 Dynamic mechanical, rheological and surface properties   

The shear modulus (G) of crosslinked PCLTA increased gradually with time when it 

crystallized at 37 °C (Fig. 3.4a). The strain-stress curves in Fig. 3.4b from tensile tests at 37 ºC 

also displayed the same trend. At time zero, crosslinked PCLTA was amorphous and 

elastomeric with low modulus and low stress/strain at break of 0.7 MPa/60%. Upon 

crystallization, the sample became stiffer with gradually increased modulus and stress/strain at 

break. When the sample crystallized for 24 h, it was a typical semi-crystalline polymer showing 

tough characteristics. After crystallization, the elastic region in the curves became much steeper 

and thus the tensile modulus calculated from the curves increased from 2.1 ± 0.9 for 

amorphous networks to 6.2 ± 0.6, 9.9 ± 0.7, and 15.1 ± 0.6 MPa after crystallized at 37 ºC for 

4, 8, and 24 h, respectively. Meanwhile, the strain at break increased to 122%, 191%, and 226% 

and the stress at break increased to 2.9, 4.4, and 6.0 MPa, respectively. 

 

 

Figure 3.4 a). The elastic modulus (G) of the PCLTA networks as monitored by rheometer with 

a constant temperature set at 37 ºC. b). The strain-stress curves for four melted amorphous 

PCLTA networks pretreated under 37 ºC for 0, 4, 8 and 24 h, respectively. c). Tensile modulus 

of these networks at 37 ºC as calculated from the strain-stress curves.  
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Crosslinked PCLTA disks were compressed to flatten the surfaces. AFM was used to 

characterize the surface morphology in crystallization. As shown the AFM images in Fig. 3.5, 

there were no obvious differences in surface morphology with a similar roughness of ~10 nm 

for crosslinked PCLTA disks crystallized for different time periods at 37 ºC. A slight increase 

was found in water contact angle on these disks when the crystallization time was prolonged, 

indicated by the values of 66.0 ± 1.6°, 66.8 ± 1.9°, 69.6 ± 2.3° and 69.8 ± 2.3° for 0, 4, 8 and 

24 h, respectively. In contrast, the protein adsorption decreased slightly from 4.1 ± 0.2 to 3.7 ± 

0.2 and 3.4 ± 0.2 g/cm2 for disks crystallized for 0 or 4 to 8 and 24 h, respectively.  

 

 

Figure 3.5 The surface features and roughness determined by AFM for four crosslinked PCLTA 

networks with pretreated time of 0, 4, 8 and 24 h, respectively. 

 

3.3.3 SMC attachment, spreading, and proliferation on the substrates 

At 4 h post-seeding, the highest cell attachment rate was found on the static substrate with 

the highest stiffness in the absence of dynamic stiffening stimulation. As shown in Fig. 3.6b, 

cells on the dynamic substrates, i.e., crosslinked PCLTA disks crystallized for 0 h, 4 h, and 8 h 

from their amorphous state, have smaller projected areas than on the stiffer static substrates at 

day 0.5 and day 1 post-seeding while the values were larger on the substrates crystallized for 

longer time.   
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Figure 3.6 a). The SMC attachment rate on the dynamic and static networks at 4 h post-seeding, 

as normalized to that of TCPS positive control. b). The cell spread area calculated at 0.5 day 

(12 h) and 1 day post-seeding on these substrates. c). The cell numbers at 0.5, 1, 2 and 4 days 

post-seeding on the dynamic and static samples using TCPS as positive control. *: p < 0.05 to 

the 24 h static sample. $: p < 0.05 to the 0 h dynamic sample. 

 

These differences may be attributed to the stiffness variance in these substrates. In the 

period of 24 h, dynamic substrates were more compliant than the static one because of their 

lower crystallinities, although they gradually stiffened with crystallization. In the stage of cell 

adhesion within a short period of 4 h, dynamic substrates were more compliant than the static 
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substrate, which enhanced SMC adhesion, as found in our previous study [25].   

After crystallization for 24 h, the dynamic substrates reached the same stiffness as that for 

the static ones. Cells on the dynamic substrates experienced crystallization-induced stiffening 

stimulation while not on the static substrate. At 12 h and day 1, cell numbers on the dynamic 

substrates were still lower than that on the static substrate. Nevertheless, after two day culture, 

SMCs that experienced stiffening stimulation on the dynamic substrates had a higher growth 

rate than those on the static substrate. At day 2, the cell population on dynamic substrates made 

from crosslinked PCLTA that had crystallized for 4 and 8 h was similar to that on the static 

substrate.  Cell images with filaments and nuclei stained further exhibited a similar trend in 

cell population (Fig. 3.6d). 

 

 

Figure 3.7 a). The separate proliferation index (PI), growth rate (fold per day) and doubling 

time (days) of the SMCs on the dynamic and static networks at different time period of 0.5 to 

1 day, 1 day to 2 day, and 2 day to 4 day, respectively. b). Circularities of the cells on dynamic 

substrates were determined from cell images at varied post-seeding time points. 

 

The proliferation index (PI) of SMCs was calculated by dividing the cell number by the 

initial number, as shown in Fig. 3.7a. From 12 h to 1 day, the PI value was lower for SMCs on 

the dynamic substrates compared with that on the static substrate. After 1 day, the PI was higher 

on the dynamic substrates instead, suggesting that stiffening mechanical stimulus could trigger 

stronger cellular activities in terms of growth and division. Cell growth rate was calculated by 

dividing the slope of ln(PI) by the time. The trend in cell growth rate was consistent with that 
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in the PI on these substrates (Fig. 3.7a). Cell doubling time, i.e., the time for cells to double 

their number decreased in the first day but increased later when the substrate varied from 

crosslinked PCLTA that crystallized for 0 to 4, 8, and 24 h. This trend reversion indicated that 

cells had faster division on the stiffer static substrates temporarily within 1 day whereas cells 

on the dynamic substrates receiving stiffening stimulation could gain a stronger ability in the 

long run. At day 4, cell numbers on the dynamic substrates were similar to that on the static 

substrate without distinguishable difference among the groups.  

Besides cell area, the circularity calculated from the cell images quantifies cell roundness 

by equation 4π*area/perimeter2. The circularity decreased when the substrates were crystallized 

from 0 to 4, 8, and 24 h. As displayed in Fig. 3.7, three SMC cellular morphologies of round, 

triangle and spindle shape were found at the circularity values of  0.7,  0.5 and  0.5, 

respectively. SMCs with the contractile phenotype spread well and exhibit the spindle shape 

(low circularities) while the synthetic phenotype divide frequently with a round shape (high 

circularities). From Fig. 3.7, in the period for substrate stiffening, i.e., within 1 day, SMCs on 

the dynamic substrates has higher circularity than that on the static substrate, showing that the 

higher stiffness of the static substrate resulted better cell adhesion relative to the softer dynamic 

substrates with stiffening stimulation. After 1 day, all the substrates crystallized fully and 

reached a similar stable stiffness and the S value of the cells that received dynamic mechanical 

stimulation decreased faster than that on the static substrate. At day 4, circularities on the 

dynamic substrates were even lower than that on the static substrate.   

 

3.3.4 Focal adhesions and integrins of SMCs on the substrates 

Focal adhesions are dynamic anchoring protein (e.g., paxillin, talin, and vinculin) 

complexes mostly located at the cell periphery to provide a structural connection between the 

internal cytoskeleton and the extracellular substrates [29]. Upon receiving mechanical 

stimulation, focal adhesions adjust their morphology and size to form various adhesion 

subtypes and simultaneously trigger signal transductions that relate to cell growth, spreading, 

and migration [30,31]. The focal adhesions in SMCs were stained green using 

immunofluorescent monoclonal vinculin primary antibody , as shown in the confocal images 

in Fig. 3.8a. Again, SMCs on the dynamic substrate spread less at day 1 relative to the static 
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substrate. However, the focal adhesions were denser in cells on the dynamic substrate than on 

the static one. In the protrusions, represented by the circled areas, cells on both dynamic and 

static substrates showed a high extent of vinculin proteins. Focal adhesions rarely developed in 

the cell body on the static substrate while cells on dynamic substrates demonstrated substantial 

focal adhesions similar to those in protrusions. Further quantification and statistical analysis in 

Fig. 3.8b-d indicated that the focal adhesions of the cells on dynamic substrates had 

significantly larger area, better elongation, and higher density.  

 

 

Figure 3.8 a). Immunostaining images of cytoskeleton actins (red) and focal adhesion vinculins 

(green). The arrows point to the typical focal adhesion sites and the dotted circles emphasize 

the protrusion in cell membrane. b-d). The focal adhesion area, elongation rate and density as 

calculated from the immunostaining images. 

 

Integrins are heterodimers formed by two  and  subunits and different integrins bind to 

different extracellular matrix (ECM) proteins, though which cells sense the surface 

characteristics of the underlying substrates [32-36]. Integrin clusters activate the focal adhesion 
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kinase, induce the assembly of multicomponent signaling complexes, and trigger focal adhesion 

signal transduction, thus they play a critical role in cellular sensing process [29]. Consistent 

with the significant variance in focal adhesions, integrin 1, v, 5, 1, 2, and 3 subunits were 

triggered to increase their expression levels by 1.2 to 2 folds in SMCs on dynamic substrates 

of crosslinked PCLTA that crystallized for 0 or 4 h from those on the static substrate, as shown 

in Fig. 3.9. The results on integrin expression indicated that the integrin subunits can be 

triggered by substrate stiffening stimulation and consequently determined focal adhesions and 

adhesion-mediated cell behavior.  

 

 

Figure 3.9 Gene expression of three integrin subunits v, 1, 5, 1, 2 and 3, as normalized to 

that of the house keeping gene GAPDH. 

 

3.3.5 Gene and protein expression 

SMCs seeded onto scaffolds or substrates have the proliferative synthetic phenotype, which 

lacks functionality. After certain stage of growth and division, the synthetic phenotype convert 

to the contractile phenotype, which does not favor proliferation but mainly functionalized as 

extensible, elastic and contractible muscle unit [37-39]. Modulation of this phenotypic 

conversion is of critical importance for SMCs in blood vessel tissue engineering. 

Smooth muscle myosin heavy chain (SM-MHC), smoothlin, transgelin and calponin are 

four representative gene markers for contractile SMCs [40,41]. As shown in Fig. 3.10a-e, real-
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time PCR analysis on SMCs cultured for 1 day showed that the contractile markers have higher 

(approximately two folds) expression levels on the dynamic substrates of crosslinked PCLTA 

crystallized for 0 h than those of the static one. The gene expression levels of these contractile 

markers were higher for SMCs cultured for one more day and the values were again higher on 

the dynamic substrates than the static one. RT-PCR analysis in Fig. 3.10f also showed stronger 

band intensities for these markers on the dynamic substrates at both days 1 and 2, suggesting 

that dynamic mechanical stimulation facilitated SMC phenotypic conversion. 

 

 

Figure 3.10 a-e). The real-time quantitative gene expressions of one synthetic phenotypic 

marker NM-MHC, and four contractile phenotypic markers SM-MHC, smoothlin, transgelin 

and calponin, as normalized to GAPDH. f). The RT-PCR band intensities of these makers.  

 

To further substantiate the gene analysis, calponin protein expression was analyzed using 

immuostaining. As shown in Fig. 3.11, the nuclei and calponin in SMCs were stained blue and 

green, respectively. Consistent with cell proliferation discussed above, there were more cells 

on the static substrate. However, a larger portion of cells expressed calponin and protein 

expression in single cells was higher on dynamic substrates at both days 1 and 2, as indicated 

by stronger immunoflorescence intensity.    
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Figure 3.11 Expression of SMC contractile phenotypic marker proteins in SMCs on the 

dynamic, semi-dynamic and static networks examined at 1 day and 2 days post-seeding. Cells 

were subject to immunofluorescence staining with antibodies against calponin (green) and 

DAPI against nuclei (blue). Two red arrows were used to point out the calponin expressed cell 

examples in each image. 

 

3.4 Discussion 

 

Extensive studies have been performed using various cell types to reveal the instructive role 

of substrate stiffness in regulating cellular behaviors including adhesion, spreading, growth, 

differentiation, and gene/protein expression [28,42]. For example, in differentiation of multi-

nucleated skeletal muscle myotubes, focal adhesion strength was enhanced monotonically by 

substrate stiffness from 1 kPa soft gel to stiff glass [43]. Vascular SMCs were also found to 

respond to substrate stiffness in their adhesion and proliferation processes [3-5,8]. Nevertheless, 

much of the evidence for these cellular responses to substrate stiffness was obtained from 

studies using static substrates with preset and invariant stiffness. In this study, our dynamic 

polymer substrates with gradually increasing stiffness provide an opportunity for investigating 

cell responses to dynamic mechanical stimulation. Using these unique dynamic substrates, I 

sought to mimic the hardening of cardiovascular tissue and investigated cellular responses 

under stiffening stimulation. 

There exist several studies on cellular responses to substrates with gradually changing 



83 

 

mechanical properties. For example, in the in situ mechanosensing study of cells responding to 

external stimuli, myoblast cells exhibited pronounced stress fiber formation and flattening on 

dynamic pH-sensitive hydrogels made from an ABA triblock copolymer gelator when the 

hydrogel elasticity increased [44]. On DNA-crosslinked hydrogels with increasing stiffness to 

mimic the mechanical variations in the physiological conditions,, fibroblasts could adjust their 

cell projection area and polarity according to the magnitude and range of stiffness change [12]. 

In contrast, neuronal cells on hydrogels with gradually decreasing stiffness were found to have 

increased cellular population, focal adhesion kinase expression, and neurite outgrowth [17]. 

Human mesenchymal stem cells (hMSCs) were also found to adjust their live cellular functions 

including morphology, migration, integrin expression and differentiation on dynamic 

environment with real-time controlled mechanics [24].  

In our previous studies using crosslinked PCLTA substrates with controllable E of 1-200 

MPa, SMCs preferred stiffer ones by exhibiting larger and denser focal adhesions, larger spread 

area, stronger cytoskeleton actins, faster proliferation, and better expression of contractile 

phenotypic markers [25]. Based on the mechanism of crystallization-induced strengthening, I 

further investigated the effect of dynamic mechanical stimulation on SMC behaviors in this 

study. The initial stiffness of the substrates was critical for determining SMC adhesion and 

spreading, despite the stiffening, verifying the previous conclusion on the role of substrate 

stiffness.  After the completion of crystallization in 1 day, both dynamic and static substrates 

reached similar stiffness and SMCs that experienced dynamic stiffening stimulation 

proliferated significantly faster, adjusted their cell shape faster, and converted to contractile 

phenotype better than those on the static substrate.  

To understand why SMCs responded to the dynamic stimulation, I further revealed that the 

focal adhesions, which function as cell-biomaterial mechanosensors, were triggered to be larger, 

denser, and more elongated. Focal adhesions were a critical component in sensing substrate 

stiffness and transducing the corresponding intracellular signals for cell spreading and 

proliferation [45-47]. Focal adhesions in SMCs were found to be stronger and more elongated 

on stiffer substrates [4]. Here I found unique enhancement of focal adhesions in SMCs on 

substrates with lower initial stiffnesses but dynamic mechanical stimulation. This is the first 

time to report that SMC focal adhesions change in a dynamic environment, which is valuable 
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in understanding cellular mechanosensing in hardening tissues, e.g., blood vessels undergoing 

arteriosclerosis. Focal adhesions are two terminal molecules across cell membrane with the 

intracellular end linking to F-actin [43,48,49]. SMCs on more compliant static substrates had 

weaker F-actin [4,25]. In this study, the F-actin in SMCs on the dynamic substrates with low 

initial stiffness was not as weaker than that on the stiffer static substrate, suggesting that F-actin 

in cytoskeleton could be enhanced by the dynamic stiffening stimulation.   

Integrins in cell membrane intermediate focal adhesions in sensing the mechanics of the 

underlying substrate [1]. Expression of integrin subunits in SMCs on the dynamic substrates 

was upregulated relative to that on the static substrate, showing that dynamic mechanical 

stimulation influences cell behavior through integrins. As proposed in a study using dynamic 

hydrogels, fibroblast cells probe the hydrogel stiffness by applying traction forces mainly 

through integrin linkage in focal adhesions [12]. When the external stiffness changes, cellular 

traction forces intensifies and feedback signals are transduced to cell body through integrin 

linkage and other biochemical pathways [12]. Upon receiving the environmental signals, cells 

respond by adjusting their spreading, proliferation and other related properties [12]. Our present 

results were consistent with the above literature discussion.  

Enhanced focal adhesions and integrins further promoted cell proliferation and upreguated 

contractile gene expression. There may also exist other ECM sensing components in focal 

adhesions, e.g., paxillin and talin, or sensor proteins in cell membrane, e.g., additional integrin 

types involved in the environmental sensing and responsible intracellular biochemical activities. 

Further studies are under investigated for elucidating these concerns and achieving better 

understanding on cellular responses to dynamic mechanical stimulation. In addition, these 

model dynamic systems based on polymer crystallization can be extended to more novel one 

and modified to precisely tune their stiffness at time periods for other physiological processes 

and related cellular responses will also be conducted.  

 

3.5 Conclusions 

 

Dynamic mechanical stiffness stimulation plays an important role in influencing cell-

biomaterial interactions. Photo-crosslinked PCLTA was employed as dynamic substrates as 
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impeded crystallization  of PCL segments in the network resulted in a gradual increase in 

substrate stiffness. The advantage of using this unique polymer system is its free of external 

electrical, chemical, or photo stimulus, thus additional factors for influencing cellular behaviors 

could be excluded. SMCs receiving dynamic stiffening stimulation had stronger focal adhesions 

and higher expression of environmental sensing integrin subunits. SMC attachment, spreading, 

proliferation, and expression of contractile gene markers and calponin protein were all 

promoted upon receiving the dynamic mechanical stimulation. This study successfully outlines 

an approach to biomimic the mechanical variant environment for SMCs in the physiological 

conditions, and provides guidelines to regulate SMC behaviors through substrate stiffness, 

aiming for understanding related physiological processed in cardiovascular tissue engineering 

applications.   
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Chapter IV. Guidance of Smooth Muscle Cell Migration on Photo-Crosslinked 

Polymer Substrates with Stiffness Gradient 
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Abstract 

 

I present the fabrication of a series of photo-crosslinked PCLTA substrates with defined 

gradients in stiffness and regulation of primary rat SMCs on them. The gradient strength was 

calculated to be 3.4, 13.4, 26.1 and 48.0 kPa/m increasing along the direction from the soft 

end to the stiff end of the substrates. SMC migration was directed on the substrates from the 

soft end to the stiff end and faster cell migration emerged on the substrates with stronger 

gradient strengths.  
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4.1 Introduction 

 

The in vivo environments for SMCs are complexes of biophysical and biochemical signals 

[1,2]. When vascular injury or tumor occurs, numerous signaling gradients created in the blood 

vessel walls (e.g., stiffness gradient) could influence SMC behaviors [3,4]. The mimic of SMC 

microenvironment thus is critical for better understanding of cell-materials interactions in 

cardiovascular tissue engineering [5-7]. In the past decades, many studies have reported that 

stiffness properties of extracellular microenvironment could influence SMC adhesion, growth, 

differentiation and migration [8-17].  

Although there are extensive studies on how substrates stiffness affects cell behavior, 

fabrication of substrates with gradually changing stiffness and use of them to guide cell 

migration are still rather limited, especially for the stiffness higher than 1.0 MPa [18]. To 

explore, I fabricated a series of photo-crosslinked polymer substrates with stiffness gradient 

along the longitudinal direction [19-22]. Poly(-caprolactone) triacrylates (PCLTAs) developed 

in our research group can be photo-crosslinked into biodegradable polymer networks with high 

gel fractions and controllable thermal and mechanical properties (elastic modulus E in the range 

of 2-200 MPa) through varying the molecular weight of PCLTA [23,24]. The melting 

temperature (Tm) of semi-crystalline PCLTA network increased from 22.9 ºC for the number-

average molecular weight (Mn) of 7000 g/mol (PCLTA7k) to 50.4 ºC for Mn of 20000 g/mol 

(PCLTA20k), and thus at 37 ºC the former is an amorphous, compliant elastomer while the 

latter is a semi-crystalline, stiff polymer network with a substantial crystallinity of 42% [24].   

Here I fabricated a series of photo-crosslinked PCLTA substrates with varied mechanical 

gradient strengths and evaluated primary rat vascular SMC migration on them. SMCs were able 

to detect and respond to the substrate stiffness, as indicated by the different spread areas along 

the continuously increasing stiffness in the gradient substrates. Moreover, SMC agglomerates 

were observed in the stiff regions of the substrate, whereas sparse cells were found in the soft 

regions. Further quantification of SMC motilities on these substrates demonstrated that a large 

fraction of the cells migrated distinctly toward the stiff region of the substrate, whereas cells on 

the uniform control substrates exhibited only random walks. All these findings suggest that 

cells could sense the mechanical differences of the underlying substrates and make 
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corresponding migration to the region with more favorable properties. 

 

4.2 Materials and methods 

 

4.2.1 PCLTA samples and other chemicals 

Six PCLTAs with different number-average molecular weights (Mn) of 7050, 7790, 8570, 

9230, 9760 and 19600 g mol-1 were synthesized in our research group as reported previously 

and were named as PCLTA7k, 8k, 8.6k, 9k, 10k, and 20k, respectively [23,24]. All other 

chemicals were purchased from Sigma-Aldrich (Milwaukee, WI) unless noted otherwise. 

Photo-initiator, phenyl bis(2,4,6-trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE 

819), was a gift from Ciba Specialty Chemicals (Tarrytown, NY). 

 

4.2.2 Photo-crosslinking of PCLTA and mechanical characterization 

Photo-crosslinking of PCLTA was facilitated under a high-intensity long-wave UV lamp 

(SB-100P, Spectroline) with a wavelength of 365 nm and intensity of 4800 w/cm2.  

PCLTA/BAPO/CH2Cl2 solution (100 g: 1 g: 50 ml) was transferred into a silicon mold 

consisting of two glass plates and a silicon spacer then placed under UV light for 20 min. 

Crosslinked PCLTA samples were soaked in acetone for two days and washed with new acetone 

3 times to remove the residue of BAPO and sol fraction, followed by complete drying in 

vacuum. The tensile properties of three crosslinked PCLTA specimens (0.5 mm × 2.0 mm × 10 

mm, thickness × width × length) were measured at 37 ºC using a dynamic mechanical thermal 

analyzer (DMTA-5, Rheometric Scientific) at a strain rate of 0.005/s. 

 

4.2.3 Fabrication and characterization of gradient substrates 

As demonstrated in Fig. 4.1, PCLTA binary blends with compositional gradient were 

prepared by increasing the composition of the high-molecular-weight PCLTA, which was 

PCLTA8k, 8.6k, 10k, or 20k, in the low-molecular-weight PCLTA7k from one end to the other, 

prior to photo-crosslinking to cure the blends into substrates with stiffness gradients. A series 

of homogeneous PCLTA/BAPO/CH2Cl2 solutions was prepared with the composition of a 

higher-molecular-weight PCLTA in the blend with a lower-molecular-weight PCLTA ranging 

from 0 to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100%. These polymer solutions of varied 
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concentrations were transferred using micropipette at a fixed volume of 4 l into a silicon mold 

(4 mm × 10 mm × 1 mm, width × length × thickness) between two glass plates. After a stable 

time of 10 second, another layer of different soft/stiff polymer composition was added. After 

all the polymer concentration layers were added, then the mold with polymers was kept stable 

for 5 minutes in order for the polymers to diffuse between boundaries. Then the silicon mold 

filled with polymer blends were placed under UV light and photo-crosslinked for 20 min. The 

tensile properties at varied gradient positions were tested at 37 ºC using crosslinked PCLTA 

specimens (1.0 mm × 0.5 mm × 10 mm, thickness × width × length) at a strain rate of 0.005/s.  

 

 

Figure 4.1 Fabrication of stiffness-gradient substrates by photo-crosslinking PCLTA binary 

homo-blends with compositional gradient along the longitudinal direction (darker color means 

stiffer region). 

 

4.2.4 In vitro cell studies  

Prior to cell studies, photo-crosslinked PCLTA disks were dried in vacuum, compressed 

between two glass plates to remove surface variance, sterilized in 70% alcohol solution, and 

dried completely in vacuum. Primary SMCs isolated from rat aorta were cultured in Dulbecco's 

modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) in a 37 °C incubator with 

5% CO2 and 95% relative humidity prior to seeding. Sterilized photo-crosslinked PCLTA disks 

were seeded with SMCs at a density of ~15000 cells/cm2 using TCPS as the positive control 

and empty wells without cells as the negative control. At days 1 post-seeding, SMCs were fixed 

with 4% paraformaldehyde (PFA) solution and then washed with PBS three times and 

permeabilised with 0.2% Triton X-100 at room temperature. Cytoplasm (F-actin) and cell 

nuclei were stained using rhodamine-phalloidin (RP, Cytoskeleton Inc) and 4',6-diamidino-2-

phenylindole (DAPI, Sigma), respectively. Then the cells were photographed using an Eclipse 

Ti inverted microscope (Nikon, Japan). Cell density were calculated and averaged on 3 different 
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cell images. Cell area was quantified from 20 non-overlapping cells in these images using 

ImageJ software (National Institutes of Health, Bethesda, MD).   

 

4.2.5 Analysis of cell motility 

SMCs were incubated with fluorescent Calcein dye (Calcein AM, Invitrogen) at a 

concentration of 4 M for 30 min to receive live staining and then transferred into transparent 

wells in a flow chamber at 37 °C. Cell migration was monitored real-time by tracking the same 

cells every 10 min using an Axiovert 25 light microscope (Carl Zeiss, Germany). The direction 

of cell migration was analyzed from two subsequent images using ImageJ, according to a 

literature report [25,26]. To determine whether a ‘live migration’ existed or not on the gradient 

substrates in this study, I used real-time tracking method to record cell migration direction and 

migration path over a relatively long time period of 110 min. The migration path of a cell 

including both migration direction and displacement was generated from a series of continuous 

cell images and presented in an XY-diagram [19,27].   

 

4.2.6 Statistical analysis  

Statistical analysis was conducted using one-way analysis of variance (ANOVA). A p-

value smaller than 0.05 indicated significant difference.  

 

4.3 Results and Discussion 

 

4.3.1 Photo-crosslinked PCLTA with controllable stiffness  

Similar to previous findings on crosslinked PCLF and PCLDA [23,28-30], PCL crystallites 

formed a physical network to dramatically enhance the stiffness of the chemical network of 

PCLTA. As schematically demonstrated in Fig. 4.1, PCLTAs with different molecular weights 

had different crystallinities and different crosslinking densities after photo-crosslinking. When 

the PCLTA molecular weight was higher, the crystallinity was higher and thus the enhancing 

effect was more prominent although the crosslinking density was lower (Fig. 4.2b). Distinct 

mechanical properties were achieved by controlling both crystallinity and crosslinking density 

of the PCLTA networks simultaneously through the molecular weight, as shown in the stress-

strain curves in Fig. 4.2b. Among all the six PCLTA samples, PCLTA7k with the smallest 
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molecular weight and the lowest crystallinity had the smallest E of 2.7 ± 1.0 MPa (Fig. 4.2c). 

With increasing the molecular weight of PCLTA, E increased to 19.9 ± 5.6, 34.4 ± 9.1, 56.8 ± 

12.7, and 194.7 ± 13.4 MPa for PCLTA8k, 8.6k, 10k, and 20k, respectively.   

 

 

Figure 4.2 (a) Photo-crosslinking of PCLTA samples with different molecular weights from 7k 

to 20k g/mol, forming polymer networks with different crystallinties and mechanical properties. 

(b) Stress-strain curves of the PCLTA networks. (c) Tensile moduli of the PCLTA networks. 

 

4.3.2 Gradient substrates of photo-crosslinked PCLTA  

All the photo-crosslinked PCLTA substrates with stiffness gradients started from the soft 

end of crosslinked PCLTA7k to different stiff ends made from crosslinked PCLTA8k, 8.6k, 9k, 

10k, and 20k. These gradient substrates also demonstrated gradients in transmission, i.e., 

gradual changes from the transparent, amorphous end to the opaque, crystalline ends, as can be 

seen from the optical images in Fig. 4.3a. The stiffness gradient strengths were calculated based 

on the differences in the E values on the two ends over a length of 4 mm to be 4.3, 7.9, 13.5, 

25.4, and 48.0 kPa/m when the stiff end was photo-crosslinked PCLTA8k, 8.6k, 9k, 10k, and 
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20k, respectively. Gradual increases in E along the soft end to the stiff end were demonstrated 

in Fig. 4.3b. It should be noted that the stiffness at the same position varied for different gradient 

substrates with different gradient strengths. 

 

 

Figure 4.3 (a) Optical images of the gradient substrates from the transparent, amorphous soft 

end made from PCLTA7k network to the opaque, semi-crystalline stiff end made from 

PCLTA8k or PCLTA20k networks. (b) Tensile moduli of the samples at different positions 

along the longitudinal direction of the substrates.  

 

4.3.3 SMC adhesion and proliferation on the gradient substrates  

As demonstrated in the full-scale fluorescent images in Fig. 4.4, SMCs cultured for 1 day 

gathered on the stiff end with dense cell colonies while there was little cell attachment at the 

soft end. To observe the cell phenotype more clearly, enlarged cell images were taken in the 

four regions of 0-0.4 mm, 1.2-1.6 mm, 2.4-2.8 mm, and 3.6-4.0 mm starting from the soft end 

as zero along the longitudinal direction of the gradient substrates, as demonstrated in Fig. 4.5a. 

Again more SMCs were found to distribute on the stiffer regions on the gradient substrates. The 

cell densities (cell number per unit area) calculated from the cell images at day 1 in different 

regions of the gradient substrates are shown in Fig. 4.5b. The cell density increased 

continuously on all the five types of the gradient substrates when the studied area was shifted 

from left to right, i.e., from the region of 0-0.4 mm to 3.6-4.0 mm. Because these five substrates 

had different gradient strengths, the cell density in the same area was always higher when the 

gradient strength was higher. Cell spreading on the different areas of the gradient substrates at 

day 1, quantified as projected cell area in Fig. 4.5c, showed a trend similar in the cell density 
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as a larger cell area appeared on the area closer to the stiff end.  

 

 

Figure 4.4 Full-scale fluorescent images of SMCs attached on the gradient substrates with 

different stiffness gradient strengths after 1 day culture.  
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Figure 4.5 Fluorescent images (a), densities (b), and spread areas (c) of SMCs attached in four 

different regions (0-0.4 mm, 1.2-1.6 mm, 2.4-2.8 mm, and 3.6-4.0 mm) on the gradient 

substrates with different stiffness gradient strengths at day 1 post-seeding. *: p < 0.05 relative 

to cell numbers in other gel position on the same sample.  

 

4.3.4 SMC migration on the gradient substrates 

To monitor real-time SMC migration on these gradient substrates, live cells stained with 

fluorescent Calcein dye were photographed at the same location continuously with an interval 

time of 10 min. The migration of cells were marked with arrows to show the direction. As 

shown in Fig. 4.6a, almost all the cells migrated in the given time period of 10 min. The 

migration directions of multiple cells were complicated, especially for a large cell population. 

To address this issue, all the vectors were placed together into one XY diagram, as displayed in 

Fig. 4.6b. On the substrates with higher gradient strengths, there were more cells, as represented 

by denser vectors in the diagram. This trend was consistent with the cell adhesion discussed 

above [24]. Note that more vectors (> 70%) pointed to the stiff end of the gradient substrates 

than to the soft end, indicating that more cells migrated toward the stiff end. For comparison, 

SMC migration on homogenous substrate of photo-crosslinked PCLTA20k showed no 

preference in direction.  
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Figure 4.6 (a) Fluorescent images of live SMCs stained with Calcein dye migrating on the 

gradient substrates with different stiffness strengths and homogeneous crosslinked PCLTA20k 

substrate as the control. (b) SMC migration directions determined from two subsequent cell 

images. 

 

To assess the generality of the finding in Fig. 4.6, I further examined the continuous 

migration paths of individual cells over a longer time period of 100 min in Fig. 4.7. Cell motility 

tended to follow principal stress orientation, as exemplified by the migration path toward the 

direction of increasing stiffness. As demonstrated in Fig. 4.7a-e, the direction of single cell 

migration was influenced by the gradient strength of the substrate. For the substrate with a low 

gradient strength of 4.3 kPa/m, five cells migrated toward the stiff end with the longer 

migration distance whereas five cells migrated toward the soft end (Fig. 4.7a). For different 

stiffness gradient strengths, the profiles of cell migration varied dramatically. When the 

gradient strength was higher, more cells migrated toward the stiff end than to the soft end (Fig. 

4.7b-e). For example, 7 cells migrated toward the stiff end whereas 3 migrated toward the soft 

end at the strongest gradient strength of 48 kPa/m. On the control group of homogeneous 
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crosslinked PCLTA20k substrate, the cells did not show preference in their migration directions 

(Fig. 4.7f).  

 

 

Figure 4.7 Two-dimensional paths of 10 individual SMCs on the gradient substrates with 

different stiffness gradient strengths from a-e) 4.3 to 48 kPa/m and f) homogeneous photo-

crosslinked PCLTA20k substrate as the control over 10*10 min. Cell paths were created by 

tracking cells every 10 min for ten continuous time points.   

 

4.4 Discussion 

 

The entire SMC population preferentially accumulated on the stiffer regions on the gradient 

substrates in this study, for all the groups with different absolute value of stiffness. SMCs could 

attach more and proliferate faster on the stiffer regions and they also have tendency to migrate 

to the stiffer regions, as our previous work demonstrated that SMCs could attach and proliferate 

better on stiffer substrates made from more crystalline PCLTA networks [24].   

Similar migration trend to the stiff end after their attachment have been reported in several 

previous studies [27,31,32]. For example, bovine vascular SMCs on the gradient 

polyacrylamide substrates with a narrower range of lower Young’s modulus of 2-12 kPa and a 

lower stiffness gradient strength of 0.001 kPa/ m  directly migrated from the soft region to 
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the stiff region and accumulated in the stiffer regions after 1 day culture [27]. In another study, 

bovine aortic vascular SMCs on the polyacrylamide gradient hydrogels withYoung’s moduli of 

1-80 kPa and stiffness gradient strengths of 0-0.04 kPa/m also demonstrated a tendency to 

migrate toward the stiffer side of the substrates, which was terms as “durataxis” [31]. The 

morphology of the cells varied on different positions of the substrates with different moduli by 

showing increased spreading on stiffer gel positions [31]. The durotaxis quantified for a random 

walk was independent of the substrate modulus but increased with increasing the stiffness 

gradient strength [31]. Patterned silicone stiffness gradient substrates with a uniform soft PDMS 

membrane on the top were reported to modulate the motility of various cell types (NIH 3T3, 

hTERT fibroblasts, and C2C12 mouse myoblast cell line) and enable cellular patterning on the 

substrates through precise cell migration to the stiffer regions [32].   

The mechanism for cell motility, however, is closely related to the internal forces generated 

by the focal adhesions (FAs) formed between cells and the substrate [33]. When cells proceed 

steady movement, the adhesion force is closely correlated to the cell-substrate viscous 

interactions, which are proposed to increase linearly with substrate stiffness [34]. Results in our 

study demonstrated that SMC migration occurred throughout the cell proliferation and was 

independent of local substrate stiffness, showing that cells favored to migrate towards the stiffer 

region regardless of which positions they attached and started. In contrast, the stiffness gradient 

strength of the gradient substrate was more critical and affected cell migration directly. This 

observation was consistent with the previous studies, despite much higher substrate stiffnesses 

and wider ranges of stiffness and gradient strengths here [27,31,32,35]. The correlation between 

the stiffness gradients in the substrates and SMC responses rendered in this study is helpful for 

fundamental understanding of cell-material interactions in stiffened vascular regions in vivo 

and the gradient substrates generated here can also serve as a platform for studying the effect 

of stiffness gradient strength on other cell types.  

 

4.5 Conclusions  

 

I developed a series of stiffness-gradient substrates along the longitudinal direction by 

photo-crosslinking PCLTA binary homo-blends made from two samples with different 
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molecular weights and crystallinities. These gradient substrates with the stiffness range of 2-

200 MPa and gradient strengths of 4.3-48.0 kPa/m were used to exam primary rat vascular 

SMC adhesion, spreading, and migration on them. The findings indicated that the stiffness 

gradient patterns of the underlying substrates were important for SMC adhesion, spreading, and 

accumulation. SMCs exhibited different spreading areas at different locations along the 

gradient on the substrates and they accumulated in the stiff regions of the substrates. Real-time 

observation of SMC motility showed that a large portion of cells migrated distinctly toward the 

stiff region of the substrate, especially when the gradient strength was higher.  
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Chapter V. Photo-Cured Polymer Micro-Pillar Arrays to Control Smooth 

Muscle Cells 
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Abstract 

 

Vascular SMCs are sensitive to the topographical features of the extracellular matrix (ECM) 

through the sensing molecules in cell membrane. The desirable landscape of ECM at the micron, 

submicron, or even nanometer scales attracts vascular cell adhesion to the surface, promotes 

cell proliferation and differentiation, and supports formation of functional blood vessels. Here 

I fabricated cylindrical pillars with three different heights of 3.4, 7.4, and 15.1 m by photo-

crosslinking PCLTA in silicon molds with predesigned micropatterns. Then I studied SMC 

adhesion, spreading, elongation, proliferation, and differentiation on these substrates with 

micro-pillar arrays. The micro-pillars were found to facilitate the cellular attachment and 

elongation whereas they inhibited cellular spreading and proliferation. Cell nuclei were smaller 

on the micro-pillar arrays than those on the flat substrates. Immuno-fluorescence imaging 

demonstrated that cellular filaments and punctate focal adhesions were intensely distributed 

around the micro-pillars. SMCs on the micro-pillar arrays had higher contractile marker 

expression levels, implying that the topography facilitated the phenotypic conversion from the 

proliferating synthetic one to the more functional contractile one.  
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5.1 Introduction 

 

Cardiovascular diseases are No.1 killer in the U.S. [1]. Vascular tissue engineering is a 

promising solution for these diseases through developing synthetic vessel grafts. These 

materials should have biocompatibility, physical and chemical signal transferring abilities at 

the surfaces to contact biological components directly [2]. The physicochemical and 

geometrical properties of the substrate surface influence cellular behaviors through integrins, 

focal adhesions (FAs) and intracellular mechanotransduction pathways [3].  Geometric 

patterns at the micron and sub-micron scales of the underlying substrates and scaffolds affect 

the organization of cell adhesion molecular receptors and consequently cell morphology, 

migration, and differentiation [4-9]. 

Numerous novel biodegradable polymers have been developed as scaffold materials for 

promoting tissue formation in vascular tissue engineering [10-13]. Photo-crosslinkable poly(-

caprolactone) triacrylates (PCLTAs) developed in our group are easy to synthesize, injectable, 

shapeable using stereolithography, and biodegradable through hydrolysis [14]. The mechanical 

properties and hydrophilicity of crosslinked PCLTA can be well modulated through controlling 

the crosslinking density and grafting with poly(ethylene glycol) (PEG) chains, respectively [14-

16]. In our earlier study, crosslinked PCLTAs with varied crystallinities and stiffnesses were 

applied to regulate vascular SMC proliferation, migration, and differentiation [15]. As a widely 

used cell type in blood-vessel tissue engineering, SMCs are characteristic of phenotypic 

plasticity [17]. When there are sufficient nutrients and space in in vivo condition, SMCs adopt 

the proliferative synthetic phenotype [18]. When there is spatial limitation or nutrient shortage, 

the less-proliferative contractile phenotype dominates and it is essential for vascular formation 

and functioning. The growth and phenotypic conversion of SMCs is largely influenced by the 

mechanical, chemical and topographical properties of the underlying substrate [19].  

In this study, I fabricated micro-pillar arrays with three pillar heights of 3.4, 7.4, and 15.1 

m by photo-crosslinking PCLTAs on different silicon molds. The morphology, hydrophilicity, 

and serum proteins adsorption abilities of these micro-pillar arrays and flat control samples 

were characterized. I further evaluated the attachment, spreading, proliferation, cytoplasm and 



111 

 

nuclei deformation, and phenotypic differentiation of SMCs on these substrates to achieve a 

better understanding of the roles of micro-pillar morphology in regulating SMC responses.  

 

5.2 Materials and Methods 

 

5.2.1 Polymer synthesis and fabrication of micro-pillar arrays 

Ring-opening polymerization of -caprolactone into PCL triols was initiated by 1,1,1-

tris(hydroxymethyl) propane (TMP) in the presence of Sn(Oct)2 as the catalyst. Crosslinkable 

PCLTAs were further synthesized through acrylation of PCL triol in the presence of potassium 

carbonate (K2CO3) as the proton scavenger and purified according to our previous reports 

[14,15,20]. Phenyl bis(2,4,6-trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE819, 

Ciba Specialty Chemicals, Tarrytown, NY) was used as the photo-initiator in crosslinking of 

PCLTAs. The solution of 1.5 g PCLTA in 500 L CH2Cl2 was mixed with 75 L of 

BAPO/CH2Cl2 (300 mg/1.5 mL) solution as the resin for crosslinking. As demonstrated in Fig. 

5.1, the silicon molds with micro-pillar heights of 3.4, 7.4, and 15.1 m were fabricated by 

using a standard micro-fabrication procedure including photo-lithography, physical vapor 

deposition, lift-off, and dry plasma etching processes [6]. Then the PCLTA/BAPO/CH2Cl2 

mixture were poured onto the silicon molds and photo-crosslinked for 30 min under a UV lamp 

(SB-100P, Spectroline; wavelength = 365 nm, intensity = 4800w/cm2), as described in our 

previous studies [14,15,20].  

 

 

Figure 5.1 Fabrication of photo-crosslinked PCLTA substrates with micro-pillar arrays using 

silicon molds. 
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5.2.2 Characterization of polymer properties  

Gel Permeation Chromatography (GPC; PL-GPC 20, Polymer Laboratories) was used to 

determine the molecular weights of PCLTAs with tetrahydrofuran (THF) as the eluent and 

standard monodisperse polystyrene samples (Polymer Laboratories) as the reference. Photo-

crosslinked PCLTA micro-pillar arrays were soaked in an acetone/water (20:80) mixture for 2 

days before complete drying in vacuum. The water contact angles on the substrates were 

determined using a Ramé-Hart NRC C.A. goniometer (Model 100-00-230, Mountain Lakes, 

NJ) at 37 ºC and read and averaged over 4 droplets (20 L for each) using ImageJ software 

(National Institutes of Health, Bethesda). To analyze serum protein adsorption on the surfaces, 

crosslinked PCLTA substrates were soaked in Dulbecco's modified eagle medium (DMEM) for 

2 h. Then the substrates were washed with 1% sodium dodecyl sulfate (SDS) three times to 

collect the adsorbed proteins. The protein concentrations were detected on a micro-plate reader 

(SpectraMax Plus 384, Molecular Devices, Sunnyvale, CA) using MicroBCA protein assay kit 

(Pierce, Rockford, IL) [14]. The micro-pillar arrays on the substrates were characterized using 

scanning electron microscopy (SEM; S-3500, Hitachi Instruments, Tokyo, Japan) at a voltage 

of 2 kV. To obtain the edge view of the micro-pillar arrays, the substrates were frozen in liquid 

nitrogen for 10 min and then broken using a tweezer.  

 

5.2.3 In vitro cell studies  

Primary SMCs isolated from rat aorta were cultured in DMEM with 10% fetal bovine serum 

(FBS) on regular tissue culture flasks in a 5% CO2 incubator with 95% relative humidity at 

37 °C [21]. For the cell studies, crosslinked PCLTA substrates were cut into round disks (10 

mm × 0.5 mm, diameter × thickness), sterilized in 70% alcohol solution and completely dried 

in vacuum. Prior to the cell studies, the substrates were attached onto the bottom of 48-well 

tissue culture polystyrene (TCPS) plates using autoclave-sterilized inert silicon-based grease 

(Dow Corning, Midland, MI). After SMCs were confluent on culture flasks, they were 

trypsinized, centrifuged, re-suspended in the culture media, and seeded onto the substrates at a 

density of 1.5 × 104 cells/cm2. TCPS wells seeded cells at the same density in the absence of 

samples were used as the positive control whereas empty wells were the negative control. Then 

the substrates seeded with cells were incubated for 4 h and 1, 2, 4 days before the cell numbers 
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were determined using the MTS assay (CellTiter 96 Aqueous One Solution, Promega, Madison, 

WI) and the same micro-plate reader in Section 2.2 at 490 nm. For fluorescence imaging, cells 

on the substrates were washed twice with phosphate buffered saline (PBS) and then fixed in 4% 

paraformaldehyde (PFA) solution. Cellular membrane was permeabilised with 0.2% Triton X-

100 for 10-20 min. To stain the filaments in cytoplasm, the fixed cells were incubated with 

rhodamine-phalloidin (RP) at 37 °C for 1 h. After that, cells were further incubated with 4',6-

diamidino-2-phenylindole (DAPI) at room temperature for 10 min to stain cell nuclei. SMC 

images were visualized with an Axiovert 25 light microscope (Carl Zeiss, Germany). From 

these fluorescence cell images, cell area was determined using ImageJ and averaged over 

twenty single cells. 

 

5.2.4 Characterization of focal adhesions  

To characterize the focal adhesions, SMCs on the substrates were fixed and permeabilised 

at day 1 post-seeding, as described in Section 2.2. In order to block the unspecific antibody 

binding sites, cells were incubated in PBS with 1% Bovine Serum Albumin (BSA) at 37 °C for 

1 h, as described in a previous report [22]. Then the cells were washed three times in PBS to 

remove BSA and incubated in monoclonal vinculin primary antibody (1:1000 in PBS; Sigma) 

at room temperature with gentle shaking for 2 h. After another three-time wash in PBS to 

remove unconjugated primary antibody, the cells were incubated in goat anti-mouse IgG 

secondary antibody (1:200 in PBS; Sigma) solution at room temperature for 1 h. For visualizing 

SMC F-actin, the cells were further stained using RP for an extra hour. The cells were then 

photographed on a Leica DM6000B confocal fluorescent microscope.  

 

5.2.5 Gene expression of contractile phenotypic markers and integrins 

For gene expression, SMCs were cultured on the substrates at the same density and 

proliferated at the same condition as described in Section 2.3. At day 1 post-seeding, the cells 

were trypsinized and centrifuged at 1000 rpm for 3 min. RNeasy Mini Kit (Qiagen, Valencia, 

CA) was used to extract the total RNA from these cells. DyNAmo cDNA synthesis kit (Thermo 

Scientific) was used to reverse transcript the unstable RNA into stable cDNA by following the 

manufacturer’s instructions. The primers used in the real-time analysis process are listed as 
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follows: transgelin (SM-22): forward 5'-GGCAGCTGAGGATTATGGAGTCACG-3', reverse 

5'-TGGGATCTCCACGGTAGTGTCCA-3'; smooth muscle myosin heavy chain (SM-MHC): 

forward 5'-AAGCAGCTCAAGAGGCAG-3', reverse 5'-

AAGGAACAAATGAAGCCTCGTT-3'; calponin: forward 5'-

AGTCTACTCTCTCTTGGCTCTGGCC-3', reverse 5'-

CCTGCCTTCTCTCAGCTTCTCAGG-3'; smoothlin:  forward 5'-

TCGGAGTGCTGGTGAATAC-3', reverse  5'-CCCTGTTTCTCTTCCTCTGG-3'; and 

house-keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH): forward 5'-

TCTTCACCACCATGGAGAA-3', reverse 5'-ACTGTGGTCATGAGCCCTT-3'. The real-time 

PCR reaction solution were prepared by mixing 2.5L of total cDNA at the same concentration 

of 5 ng/L with power SYBR Green PCR Master Mix (Applied Biosystems, Warrington, UK) 

to make a total volume of 20L. A Peltier thermal cycler fluorescence detection system (MJ 

Research PTC-200 Thermo Cycler) was used for amplification and detecting process. The 

procedure for amplification was set as 5 min at 94 ºC followed by cyclic steps of 30 s at 94 ºC, 

30 s at 55 ºC, and 30 s at 72 ºC for 30 times. 

 

5.2.6 Calponin protein immunofluorescence staining 

To substantiate the gene expression results, calponin, which is a typical SMC contractile 

marker, was stained for immunofluorescence imaging, as described in a previous study [23]. 

SMCs cultured for 4 days on the polymer substrates were fixed with 4% PFA and then stained 

using anti-rat calponin primary antibody produced in rabbit (sc-16604-R, Santa Cruz; 1:100 

diluted in PBS) for 1 h at room temperature, followed by three-time wash with PBS. Fluorescein 

isothiocyanate (FITC) conjugated anti-rabbit secondary IgG antibody produced in goat (F0382; 

Sigma) was applied as the secondary antibody for visualization. Anti-calponin antibodies were 

localized in the solution of secondary antibody in PBS (1:80). The following steps were the 

same as described in Section 2.3, SMC nuclei were stained with DAPI for 10 min at room 

temperature and then imaged using an Axiovert 25 light microscope (Carl Zeiss, Germany). 

The protein expression levels of calponin in SMCs cultured on the polymer substrates were 

quantified by immunofluorescence intensity using ImageJ. The average intensity of SMCs on 

each sample was obtained by mean gray value 20 individual cells and then normalized to the 
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value on the flat PCLTA7k substrate. 

 

5.2.7 Statistical analysis  

All the statistical analysis was performed using one-way analysis of variance (ANOVA) in 

OriginLab software. A p value lower than 0.05 was considered as statistically different between 

two groups. 

 

5.3 Results  

 

5.3.1 Surface structure, hydrophilicity and protein adsorption  

The surface patterns of the substrates with micro-pillar arrays were characterized using 

SEM, as demonstrated in Fig. 5.2. For all the three heights, the micro-pillar diameter and the 

inter-pillar distance were determined to be 3.7-3.8 and 2.0 m, respectively (Fig. 5.2a-c). The 

tilted views of fractured substrates were also shown in Fig. 5.2d-f.  

 

 

Figure 5.2 (a-c) Top-view and (d-f) edge-view SEM images of the crosslinked PCLTA 

substrates with micro-pillar arrays of different pillar heights of 3.4, 7.4, and 15.1 m.  

 

Substrate hydrophilicity was characterized using the water contact angles with the 

corresponding images of water droplets on different substrates shown in Fig. 5.3a and the water 

contact angles shown in Fig. 5.3b. The water contact angles on crystalline crosslinked 

PCLTA10k substrates were always higher than those on amorphous crosslinked PCLTA7k 
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substrates when the topography was the same. The water contact angles were higher when there 

were micro-pillar arrays on the substrates for both crosslinked PCLTA7k and PCLTA10k. For 

the same substrate material, increasing the pillar height could increase hydrophobicity, as 

indicated by higher water contact angles (Fig. 5.3b). These observations were consistent with 

several previous reports on the proportional relationship between micro-pillar height and 

surface hydrophobicity [24-26]. This phenomenon can be well explained by the Cassie and 

Baxter’s model [27], with the essential equation listed in Eq. 1: 

cos θ = ƒsolid cos θs-l + (1- ƒsolid) cos θa-l                    (1) 

where θ is the overall contact angle presented on micro-pillar surfaces, θs-l is the solid-liquid 

contact angle on the material (crosslinked PCLTA) with a smooth surface, θa-l is the air-liquid 

contact angle. In a two-component system, ƒsolid is the fraction of the solid-liquid interface and 

(1- ƒsolid) is thus the air-liquid interface. At the condition when one component is air and the 

liquid used is pure water, θa-l is 180 with cos180° = -1. Thus Eq. 1 is simplified to:  

cos θ = ƒsolid cos θs-l - (1- ƒsolid)                      (2) 

With increasing the pillar height, the surface roughness increases and thus the fraction of 

the air-liquid interface is larger, as also explained previously [25,26,28]. The increased fraction 

of air-liquid interface results in a larger value of (1- ƒsolid) in the Eq. (2), rendering a higher 

water contact angle (θ) on the micro-pillar arrays with taller pillars. 
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Figure 5.3 (a) Images of water droplets and (b) water contact angles on the crosslinked 

PCLTA7k and PCLTA10k substrates with flat surfaces or micro-pillar arrays at 37 C.   

 

 

The amounts of serum proteins adsorbed on the substrates are shown in Fig. 5.4. The values 

were higher on the substrates with micro-pillar arrays than that on the flat surfaces, especially 

when the micro-pillars were longer. When the topography was the same, substrates made from 

amorphous crosslinked PCLTA7k adsorbed more serum proteins than crosslinked PCLTA10k, 

in agreement with our previous studies [15].  

 

 



118 

 

 

Figure 5.4 Adsorption of serum proteins from the culture media on the crosslinked PCLTA 

substrates with flat surfaces or micro-pillar arrays.  

 

5.3.2 SMC behaviors on the micro-pillar substrates 

At 4 h post-seeding, SMC attachment to the substrates normalized to the value on TCPS 

was determined, as shown in Fig. 5.5a. SMC attachment increased from 0.28 ± 0.02 on flat 

amorphous crosslinked PCLTA7k substrate to 0.42 ± 0.04, 0.48 ± 0.07, and 0.58 ± 0.05 for the 

substrates with 3.4, 7.4, and 15.1 m micro-pillars, respectively. For crystalline crosslinked 

PCLTA10k, the value increased from 0.47 ± 0.03 to 0.62 ± 0.04, 0.74 ± 0.05, and 0.86 ± 0.07, 

respectively. In contrast to cell attachment, SMC spreading represented by the cell spread area 

in Fig. 5.5b was inhibited by the micro-pillars. This inhibition was more evident when the 

micro-pillars were longer for both crosslinked PCLTA7k and 10k, although the values were 

always higher on the later.   
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Figure 5.5 (a) SMC attachment rates on the crosslinked PCLTA substrates with flat surfaces and 

micro-pillar arrays relative to TCPS, the positive control. (b) SMC spread areas on the 

crosslinked PCLTA substrates with flat surfaces and micro-pillar arrays. *: p < 0.05 relative to 

the flat substrates; #: p < 0.05 relative to 3.4 m micro-pillar substrates; $: p < 0.05 relative to 

7.4 m micro-pillar substrates.  

 

To characterize the stretching effect of micro-pillar arrays on the cells, I calculated the 

circularity and major/minor axis ratio of SMCs on the substrates by using the equation of 4π × 

area/perimeter2 and dividing the cell length by the width, respectively. For flat substrates, the 

major/minor axis ratio was 2.1 ± 0.8 and 2.4 ± 0.9 for crosslinked PCLTA7k and PCLTA10k, 

respectively. The major/minor axis ratio increased with increasing the pillar height (Fig. 5.6a). 

Unlike the major/minor axis ratio, the circularity of the SMCs decreased with increasing the 

micro-pillar height from the high values of 0.71 ± 0.12 and 0.66 ± 0.14 on flat substrates of 

crosslinked PCLTA7k and PCLTA10k, respectively (Fig. 5.6b). Both the major/minor axis ratio 

and circularity discussed above showed that SMCs were deformed by the underlying micro-

pillar arrays, especially by the longer micro-pillars.  
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Figure 5.6 (a) Major/minor axis ratio and (b) circularity of the SMCs on the crosslinked PCLTA 

substrates with flat surfaces and micro-pillar arrays. *: p < 0.05 relative to the flat substrates; #: 

p < 0.05 relative to 3.4 m micro-pillar substrates; $: p < 0.05 relative to 7.4 m micro-pillar 

substrates.  

 

Compared with the enhanced attachment by the micro-pillars, SMC proliferation however 

was inhibited. Although the cell numbers at day 1 on the micro-pillar arrays were higher than 

that on the flat substrates of crosslinked PCLTA7k (Fig. 5.7a), the proliferation index (PI) of 

SMCs calculated by dividing the cell number at day 1 by that at 4 h decreased (Fig. 5.7b). The 

SMC number on the flat substrate was similar to that on the micro-pillar arrays at day 2 and it 

became even higher at day 4 (Fig. 5.7a). The PI values based on the cell numbers at days 1, 2, 

and 4 were lower on micro-pillar arrays than on the flat substrates (Fig. 5.7b). SMC growth rate 

calculated by dividing ln(PI) by the time showed the same trend as the PI (Fig. 5.7b). The 

doubling time of the SMCs, i.e., the time needed for the cells to double their number, increased 

with increasing the micro-pillar length at all the time points (Fig. 5.7b). Cell images in Fig. 5.7c 

were consistent with the cell proliferation. On the flat substrate, cell number evidently increased 

from day 1 to day 4 but this trend was much weaker on the micro-pillar arrays.   
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Figure 5.7 (a) SMC numbers at days 1, 2, and 4 post-seeding on the crosslinked PCLTA7k 

substrates with flat surfaces and micro-pillar arrays. (b) The proliferation index (PI), growth 

rate (GR) and doubling time (DT) of SMCs on these substrates. (c) Fluorescence images of 

SMCs on these substrates. *: p < 0.05 relative to the flat substrate (higher); #: p < 0.05 relative 

to the flat substrate (lower).  

 

The SMCs on stiffer substrates of crosslinked PCLTA10k exhibited a similar proliferation 

ability, which was also inhibited by the micro-pillars in a stronger manner, as indicated by the 

lower PI, lower growth rate, and longer doubling time (Fig. 5.8a,b). The cell images in Fig. 5.8c 

were consistent with the data in Fig. 5.8a,b and also showed that the cells were highly stretched 

by the micro-pillar arrays while those on the flat substrate were well spread with a larger cell 

area.  
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Figure 5.8 (a) SMC numbers at days 1, 2, and 4 post-seeding on the crosslinked PCLTA10k 

substrates with flat surfaces and micro-pillar arrays. (b) The proliferation index (PI), growth 

rate (GR) and doubling time (DT) of SMCs on these substrates. (c) Fluorescence images of 

SMCs on these substrates. *: p < 0.05 relative to the flat substrate (higher); #: p < 0.05 relative 

to the flat substrate (lower). 

 

5.3.3 Cell and nuclei morphologies on the micro-pillar substrates 

The SEM images of individual SMCs on the substrates in Fig. 5.9 were consistent with the 

fluorescence images discussed in Section 3.2. SMCs on flat crosslinked PCLTA7k were better 

spread than those on the micro-pillar arrays, especially when the micro-pillars were longer. 

Evidently the cells on flat stiffer crosslinked PCLTA10k were better spread than on flat 

crosslinked PCLTA7k. In contrast, SMCs were stretched and protruded their cytoplasm on the 

micro-pillar arrays as the inter-pillar gaps inhibited cell spreading and guided cytoplasm 
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extension and migration.     

 

 

Figure 5.9 SEM images of SMCs on the (a-d) crosslinked PCLTA7k and (e-f) crosslinked 

PCLTA10k substrates with flat surfaces and micro-pillar arrays.  

 

Filament development was visualized and quantified in RP-stained SMCs on the micro-

pillar arrays in Fig. 5.10. SMCs on flat crosslinked PCLTA7k had regular distribution of 

filaments (Fig. 5.10a), as reported in our previous studies [Liu X 6 PCLTAs]. Meanwhile, the 

cells on the micro-pillar arrays showed bright dots around micro-pillars (Fig. 5.10b-d, green 

arrows) and dark dots on the micro-pillar points (Fig. 5.10b-d, white arrows). This phenomenon 

was more prominent for the cells on stiffer substrates of crosslinked PCLTA10k. For example, 

SMCs on crosslinked PCLTA10k 15.1-m-high micro-pillar arrays were highly stretched with 

intensive bright fluorescence circles around the micro-pillars and weak dark fluorescence dots 

on the top of the pillars. This result indicated that cytoplasm was largely developed in the inter-

pillar spaces with a small portion on the pillar top. To better illustrate the scenarios, schemes 

are shown in Fig. 5.10i-l. The cytoplasm of SMCs was uniformly supported by the flat substrate 

but it was mainly supported by the pillars and trapped in the inter-pillar spaces on the micro-

pillar arrays. The situation was worse when the micro-pillars were longer because more 

cytoplasm was trapped between the pillars. The trapped cytoplasm resulted intensive bright 

fluorescence around the pillars.  
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Figure 5.10 Fluorescence images of SMCs on the (a-d) crosslinked PCLTA7k and (e-f) 

crosslinked PCLTA10k with flat surfaces and micro-pillar arrays. The bottom schemes (i-l) 

demonstrate possible cell morphologies on the polymer substrates with flat surfaces or micro-pillar 

arrays of different pillar heights. 

 

SMC nuclei at day 1 were also imaged and characterized on the substrates. As shown in 

Fig. 5.11a, cell nuclei on the flat substrates were round with a high fluorescence intensity. In 

contrast, cell nuclei on the micro-pillar substrates were smaller with weaker fluorescence and 

the nuclear size decreased with increasing the micro-pillar height (Fig. 5.11b). The circularities 

of cell nuclei, however, were similar among all the substrates except that the value on the 15.1-

m micro-pillar arrays was significantly lower, in both cases of crosslinked PCLTA7k and 10k  

(Fig. 5.11c).    



125 

 

 

Figure 5.11 (a) Fluorescence images, (b) Size, and (c) circularity of SMC nuclei on the 

crosslinked PCLTA7k and PCLTA10k substrates with flat surfaces and micro-pillar arrays. *: p 

< 0.05 relative to flat substrates.  

 

5.3.4 Focal adhesions in SMCs 

Mammalian cells use focal adhesions, which are dynamic macromolecular assemblies 

composed of focal adhesion kinases, paxillins, vinculins and other adapter proteins, to help 

themselves adhere on the underlying substrate and sense the surrounding environment [29]. 

Strong focal adhesions normally develop on the cell periphery and have the abilities in 

responding to intracellular signals and adjusting their size and morphology correspondingly 

[30]. The changes in focal adhesions give further responsive signals to the intracellular 

signaling pathways, which ultimately influence cellular behavior vie mechanotransduction [31]. 

Here in this study, SMCs cultured on the flat substrate developed large, well-elongated focal 

adhesions, as shown in Fig. 5.12a. In contrast, SMCs cultured on the micro-pillar substrates 

were only able to develop weaker, irregular focal adhesions (Fig. 5.12b-d). The enlarged images 

showed clear focal adhesion dots on the flat substrate in Fig. 5.12e but weak dots on the micro-
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pillar ones in Fig. 5.12f-h, which might be a reason for the slower proliferation on the micro-

pillar substrates discussed in Section 3.2.  

 

 

Figure 5.12 (a-d) Images of focal adhesions in SMCs on the crosslinked PCLTA10k substrates 

with flat surfaces and micro-pillar arrays, as visualized using vinclulin (green) and filaments 

(red). (e-f) Enlarged focal adhesion dots (green) in SMCs from the dotted rectangular areas in 

the corresponding images above them.  

 

5.3.4 Phenotypic conversion abilities of SMCs 

SMCs in proliferation have the ability in modulating their synthetic and contractile 

phenotypes by responding to changes in environmental conditions [32]. A commonly used 

method to define SMC phenotypes is characterization the levels of contractile phenotypic 

markers in the cells, which include α-smooth muscle actin (α-SMA), SM-MHC, smoothlin, 

SM22 and calponin [33]. These proteins are important in SMC contraction, either as structural 

components for contractile apparatus or as regulators in the contracting process. When one 

phenotype is converted to the other, SMCs express different levels of these phenotypic marker 

proteins. Therefore, the gene/protein expression levels of these markers in SMCs on different 

substrates can be used to determine their phenotypic conversion abilities.  

The real-time PCR analysis of the expression of four typical contractile markers (SM-MHC, 

smoothlin, trangelin and calponin) using GAPDH as the reference is shown in Fig. 5.13. The 

expression levels of these four markers were all higher on 7.4 and 15.1 m micro-pillar 
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substrates compared with those of the flat and 3.4 m micro-pillar substrates (Fig. 5.13a-d), in 

both cases of crosslinked PCLTA7k and 10k, suggesting that micro-pillars could be used for 

phenotypic conversion. Together with the inhibited SMC proliferation in Section 3.2, these 

results suggested that long micro-pillars inhibited proliferative SMC spreading and 

proliferation, but facilitated their conversion into the functional contractile phenotype.  

 

 

Figure 5.13 Relative gene expression levels of four contractile gene markers: (a) SM-MHC, (b) 

smoothlin, (c) transgelin, and (d) calponin using real-time PCR analysis. *: p < 0.05 relative to 

the flat substrates. #: p < 0.05 relative to 3.4 m micro-pillar substrates.  

 

The levels of calponin, an essential contractile phenotypic marker, in SMCs on the 

substrates were analyzed using fluorescence immunostaining. As shown in Fig. 5.14a,b, the 

calponin and cell nuclei in SMCs were visualized using green and blue fluorescence markers, 

respectively. The images showed consistent trends in SMC proliferation and spreading with 

those of Figs. 5.7c and 5.8c in Section 3.2, i.e., the cell numbers were lower and the cell spread 

areas were smaller on the micro-pillar substrates than on the flat substrates, for both crosslinked 
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PCLTA7k (Fig. 5.14a) and PCLTA10k (Fig. 5.14a). However, a larger fraction of SMCs showed 

contractile protein fluorescence on the micro-pillar substrates than on the flat substrates (Fig. 

5.14c). In addition, the average immunofluorescence intensities were significantly stronger in 

SMCs cultured on the micro-pillar substrates with pillar heights of 7.4 and 15.1 m than on the 

flat substrates (Fig. 5.14d). These results confirmed the conclusion from gene expression data 

in Fig. 5.13 that the micro-pillar substrates could support better conversion from the synthetic 

phenotype to the contractile one. 

 

 

Figure 5.14 Immunostaining of contractile marker calponin protein (green) and nuclei (blue) in 

SMCs on the substrates of (a) crosslinked PCLTA7k and (b) crosslinked PCLTA10k with flat 

surfaces and micro-pillar arrays. (c) Percentage of contractile phenotypic SMCs at day 4 post-

seeding determined from immunofluorescence images in (a) and (b). (d) Immunoflucorescence 

intensities of calponin protein stains in SMCs on the substrates, normalized by the value in 

SMCs on the flat substrate of cross-linked PCLTA7k. *: p < 0.05 relative to the flat substrates. 
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5.4 Discussion 

 

As stated in an earlier report, micro-pillar arrays made from the same material but with 

different pillar lengths can be used to distinguish the role of substrate stiffness in regulating cell 

behavior from other material properties [34]. Initially I attempted to use the current micro-pillar 

arrays made from crosslinked PCLTA for the same purpose for SMCs. However, I found 

different results because of the larger inter-pillar space. The initial SMC attachment onto the 

micro-pillar substrates was significantly higher than that on a flat substrate, which can be 

interpreted as the micro-pillars could provide more contacting sites on the side walls [35]. 

Therefore, cells have better interactions with substrates and attach more strongly [36]. In 

contrast, SMC proliferation and spreading on the substrates with longer pillars were lower than 

those on the flat one. This phenomenon was also observed in previous studies [37-39]. Well 

spread cells on a large substrate area were reported to proliferate better than those poorly 

extended cells confined in a limited area and cell shape was tightly coupled to DNA synthesis 

and growth in cells [40], which was substantiated by further studies [41-44].  

Cells grow and divide through regular cell-division cycle, including phases of G1, S, G2, 

and mitosis, which are influenced by types of factors, including cell adhesion, tension and shape 

changes [41,43]. Cell spreading was found to influence the cell-cycle as that 85% of the cells 

with a spread area larger than 300 m2 entered S-phase, whereas only 10% of those with an 

area smaller than 100 m2 did so in the same environment [45]. The above correlation between 

cell shape and cell cycle was also found in this study. SMCs cultured on the flat substrates were 

well spread and proliferated faster, whereas those on the substrates with long micro-pillars did 

not spread sufficiently. The nuclei of SMCs in this study were also deformed on the substrates 

with 15.1 m pillars, in agreement with previous finding that microstructured surfaces cause 

severe deformation of cell nuclei [46,47]. The inhibited cell spreading could discourage the 

cells from entering the S-phase and decreased the proliferation rate of SMCs.  

 SMCs in this study exhibited different morphologies on the different substrates as that 

long micro-pillars (7.4 and 15.1 m) guided SMCs to protrude in certain directions and aligned 

the cell body. In a previous study, SMCs also exhibited linear shapes by orienting along the 

lines on both poly(methyl methacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) 



130 

 

substrates with nanopatterned gratings (350 nm for linewidth, 700 nm for pitch, and 350 nm for 

depth) [48]. When the mico-pillars were shorter (3.4 m), cell stretching and deformation were 

less significant and cell proliferation and spreading were better than those longer micro-pillars. 

Similar observation was reported on fibroblasts cultured on silicon substrates with pillars of 1, 

5, and 10 m high [39].  

In addition, the distribution of filaments and focal adhesions in SMCs were influenced 

remarkably by the micro-pillar arrays as they were intensively anchored at the periphery of the 

pillar and the inter-pillar spaces, especially when the micro-pillars were longer. These 

observations were consistent with early studies on cell focal adhesions and mechanical 

behaviors on silicon elastomer substrates with deformable micro-pillars (1-2 m, diameter; 1.6-

6 m, height) [49]. This phenomenon was called as topographical compensation because flat 

surfaces could not provide this effect in changing cell deformation and mechanical responses 

while micron-scale surface features can influence microfilaments, focal adhesions, and 

microtubules in cells [50-53]. A theoretical “tensegrity” model was proposed to summarize and 

explain mechanochemical transduction and morphogenetic regulation changes inside a cell 

when responding to external signals [54]. Cytoskeleton is dynamic and actin 

polymerization/depolymerization occurs all the time. External signals including environmental 

chemistry and structures are transduced to the focal adhesions and actin filaments in cells [55]. 

In this study, substrates with longer micro-pillars cause more severe topographical influences 

on the cells than the flat ones and thus the cell architecture on the micro-pillar arrays was 

rearranged to adapt the discontinuities.  

The present study provides an insight into the understanding about the internal mechanisms 

in how topography can be used to regulate vascular cells, in particular, SMCs. It also serves in 

improving the strategies for designing and fabricating vascular grafts or scaffolds by using a 

convenient photo-crosslinkable and biodegradable polymer system with mechanical properties 

that can be modulated over a wide range of 1-200 MPa [15]. In future studies, the inter-pillar 

space can be reduced to ensure that SMCs are not trapped inside the spaces to experience the 

same topographical effect of the micro-pillar tops but different mechanical signals as different 

pillar heights result in different stiffness/compliance.   
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5.5 Conclusions   

 

This study supplied a facial replica molding method to fabricate biodegradable photo-

crosslinked PCLTA substrates with micro-pillar arrays and used them to regulate SMCs. The 

micro-pillar arrays significantly influenced surface hydrophilicity, protein adsorption, and 

SMCs on these substrates. The effects were highly related to the pillar height as the substrates 

with longer micro-pillars adsorbed more serum proteins and supported better SMC attachment 

than the others. However, the higher pillars inhibited both SMC spreading and proliferation, 

and deformed cell cytoplasm and nucleus more severely. Immunofluorescence and SEM images 

indicated that SMCs cultured on the high pillar arrays were positioned on the top of the pillars, 

aligned and stretched to a linear, narrow morphology. Focal adhesions in SMCs were formed 

around the periphery of the pillars where high tension exists. Gene and protein analysis of four 

phenotypic contractile markers, i.e., SM-MHC, smoothlin, transgelin, and calponin, showed 

that SMCs on the higher-pillar substrates converted more effectively into the functional 

contractile phenotype, in contrast with the cells undergoing fast growth on the flat and shorter-

pillar ones.   
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Chapter VI. Photo-Crosslinked Polymer Nanowire Arrays for Regulating 

Smooth Muscle Cells 
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Abstract 

 

Photo-crosslinked PCLTA nanowire arrays with diameters of 20, 100 and 200 nm were 

prepared using inorganic nanoporous aluminum oxide (AAO) templates. The lengths and 

morphologies of the nanowires can be controlled by adjusting the PCLTA solution 

concentration. The surface morphology, hydrophilicity and serum protein adsorption of 

crosslinked PCLTA nanowire arrays were characterized. I investigated SMC attachment, 

proliferation, spreading and differentiation as well as cellular sensing components as focal 

adhesions and integrins on these nanowire arrays. Nanowire arrays could adsorb more proteins 

and support SMC attachment, proliferation, spreading, and differentiation better than the 

smooth crosslinked PCLTA substrate, especially on nanowires with smaller diameters. Further 

analysis of cellular sensing components indicated that smaller nanowires triggered stronger 

focal adhesion dots and higher expression of integrins subunits.   
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6.1 Introduction 

 

Cell morphology, cytoskeletal structure, and functionality are strongly influenced by the 

architectures of extracellular matrix (ECM) [1]. Cellular sensing of the structural cues in ECM 

or underlying substrates can be at the micron and nanometer levels [2]. Nanoscale topography 

of the substrates can be sensed by integrins and focal adhesions (FAs) on cell membrane and 

the signals are further passed onto cell nuleus through intracellular mechanotransduction 

pathways [3] and eventually induce corresponding alterations in cellular attachment, 

proliferation, and differentiation, as reported in many previous studies [4-8]. Therefore, 

substrates with architectures with different topographical features can serve as excellent 

platforms for studying cell-materials interactions.  

Biomaterials with different nanostructures have been achieved by using a variety of 

methods [9,10]. Template-based approaches, including electro-chemical or electro-phoretic 

deposition, chemical conversion, and capillary force driven template filling, are effective in 

preparing arrays of nanorods, nanotubes and nanowires [11]. For polymers, direct template 

filling of a polymer melt or solution is the most straightforward method for preparing nanoscale 

arrays. Nanoporous aluminum oxide (AAO) membranes containing straight cylindrical 

nanopores with controllable, uniform sizes, have been used as templates to fabricate organic 

nanowires as they can be easily removed by exposure to sodium hydroxide or CuCl2 solution 

[12-15]. When polymer melts or solutions were casted onto AAO membranes, they infiltrate 

into the nanopores via capillary action [16,17]. Using this method, the ultimate nanowire length 

can be modulated by the infiltration time, pore size, and melt/solution viscosity [18].  

To regulate cellular behavior, substrates with well-controlled topographical features 

ranging from nanometer to micron scale have been fabricated to respond to micron-sized cells. 

In the nanometer range, strict requirements are needed for material properties to obtain and 

maintain stable desired patterns at such a tiny scale. Poly(dimethyl siloxane) (PDMS) is a 

widely used material for micro- and nano-fabrication; however, low elastic modulus PDMS (~2 

MPa) is easy to deform or collapse and difficult to obtain high-aspect-ratio features below 100 

nm [19,20]. Biodegradable poly(D,L-lactide) (PDLLA) was also used in fabrication of aligned 

nanorods with a diameter as small as 180 nm [21]. Poly(lactic acid)s (PLAs) are commonly 
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acknowledged as stiff materials for their high strength and tensile modulus (> 3 GPa); however, 

PLAs have deficits of easy brittleness for nanofabrication [22]. In nanoarray fabrication using 

poly(D,L-lactide-co-glycolide) (PLGA) and poly(-caprolactone) (PCL), PCL exhibited 

excellent outcomes by providing clear and stable morphological properties [23]. PCL nanowire 

patterns were also prepared for bone and neuron tissue-engineering applications [24,25]. In our 

research group, photo-crosslinkable and biodegradable PCL triacrylates (PCLTAs) have been 

prepared via condensation of acryloyl chloride and PCL diols with different molecular weights 

and can be molded into any desired shapes after photo-curing [26,27]. Through controlling the 

crosslinking density or grafting with hydrophilic chains, the mechanical properties and surface 

energy of photo-crosslinked PCLTA networks can also be well modulated [26-28]. These 

PCLTA networks with controllable elastic moduli of 1-200 MPa have been used to demonstrate 

the role of surface stiffness in regulating adhesion, spreading, proliferation, migration, and 

differentiation of vascular SMCs [27]. 

In the present study, I placed insights into the cell-matrix interactions by regulating 3D 

topographies of biodegradable PCLTA networks. All of these PCLTA networks have identical 

chemical compositions to minimize possible interference from the chemical properties of 

underlying substrates in regulation of cell behavior. AAO templates with different pore sizes 

were used to produce photo-crosslinked PCLTA nanowire arrays of wire diameters of 20, 100, 

and 200 nm. The topography, surface hydrophilicity, and protein adsorption abilities of these 

nanowire arrays were evaluated. SMC responses to these nanowire arrays were studied 

extensively, including adhesion, spreading, proliferation, morphologies of cytoplasm and nuclei, 

and phenotypic conversion.  

 

6.2 Materials and Methods 

 

6.2.1 Polymers and chemicals 

The synthesis of PCLTA was reported by our research group previously [26,27,29].  The 

molecular weights of the synthesized PCLTAs (Mn = 9564 g mol-1) were determined by Gel 

Permeation Chromatography (GPC; PL-GPC 20, Polymer Laboratories). Tetrahydrofuran 

(THF) was used as eluent and standard monodisperse polystyrene samples (Polymer 



141 

 

Laboratories) were used as the reference system. Three types of inorganic AAO templates (with 

varied pore diameters of 200, 100 and 20 nm were purchased from Anodisc, Whatman. All 

other chemicals used in this study were purchased from Sigma-Aldrich if not noted otherwise. 

The photo-initiator for polymer crosslinking, phenyl bis(2,4,6-trimethyl benzoyl) phosphine 

oxide (BAPO, IRGACURE819), was a gift from Ciba Specialty Chemicals (Tarrytown, NY). 

 

6.2.2 Nanowire fabrication and characterization 

Before photo-crosslinking, 1 g PCLTA was dissolved in 0.5 mL CH2Cl2.  300 mg BAPO 

was dissolved in 1.5 mL CH2Cl2. Prior to photo-crosslinking, 50 L of BAPO/CH2Cl2 solution 

was added to the PCLTA/CH2Cl2 solution that contained 1 g of PCLTA. A layer (~100 m) of 

PCLTA/BAPO/CH2Cl2 mixture was placed on glass slides (25.4 × 76.2 × 1.0 mm, width × 

length × thickness). The three types of inorganic AAO templates were placed onto the polymer 

layers. Then the templates with the polymers were placed under a UV lamp (SB-100P, 

Spectroline, wavelength = 365 nm, intensity = 4800w/cm2) for 30 min to photo-crosslink, as 

described in our previous reports [26,27,29]. After photo-crosslinking, the templates together 

with the PCLTA films were immersed in 1 mol/L NaOH solution and stirred for 40 min to 

dissolve the AAO templates, as reported previously [30]. The as-obtained crosslinked PCLTA 

nanowire arrays were washed 10 times (30 min each) with distilled water. The nanowire arrays 

were further soaked in 1 L distilled water for 2 days to fully remove the residual NaOH, then 

dried in vacuum and stored in a desiccator prior to use. For simplicity, “crosslinked” is omitted 

in later discussion on “crosslinked PCLTA”. 
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Figure 6.1 Scheme of the fabrication process of photo-crosslinked PCLTA nanowire arrays 

using Al2O3 templates.  

 

6.2.3 Water contact angle and protein adsorption  

These PCLTA nanowire arrays were characterized using scanning electron microscopy 

(SEM; S-3500, Hitachi Instruments, Tokyo, Japan) at a voltage of 2 kV. The water contact 

angles on the nanowire arrays were determined using a Ramé-Hart NRC C. A. goniometer 

(Model 100-00-230, Mountain Lakes, NJ) at 37 ºC. The contact angle values were calculated 

from the images of four water droplets (20 l) using ImageJ software (National Institutes of 

Health, Bethesda). To determine the adsorption capabilities of serum proteins and fibronectin, 

PCLTA nanowire arrays were soaked in Dulbecco's modified eagle medium (DMEM) and 

fibronectin solution (40 g/mL) for 2 h. Then the arrays were immersed in 1% sodium dodecyl 

sulfate (SDS) three times (1 h each time) with gentle shaking to collect the adsorbed proteins. 

The protein concentrations in the collected solutions were detected using a MicroBCA protein 

assay kit (Pierce, Rockford, IL) and the data were obtained by calibrating to the values of eight 

known concentrations on a micro-plate reader (SpectraMax Plus 384, Molecular Devices, 

Sunnyvale, CA) [26].  
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6.2.4 In vitro cell studies  

Prior to cell studies, the nanowire arrays were sterilized in 70% alcohol solution and then 

completely dried in vacuum. To avoid swaying or even floating during the cell culture, these 

substrates were glued onto the bottom of 24-well tissue-culture polystyrene (TCPS) plates using 

autoclave-sterilized inert silicon-based grease (Dow Corning, Midland, MI) before cell seeding. 

Primary SMCs isolated from rat aorta were cultured in DMEM with 10% fetal bovine serum 

(FBS) in a 37 °C incubator with 5% CO2 and 95% relative humidity prior to seeding [31]. When 

cells grew to approximately 70% confluency, they were seeded onto the nanowire arrays at a 

density of 1.5 × 104 cells per cm2. TCPS wells seeded with cells at the same density but in 

absence of the arrays were used as positive controls and empty wells were negative controls in 

all the following process. After seeding, cells were cultured in the incubator. At 4 h and days 1, 

2, and 4, cell numbers were accessed from the MTS assay solutions (CellTiter 96 Aqueous One 

Solution, Promega, Madison, WI) using the micro-plate reader mentioned in Section 2.3 at the 

wavelength of 490 nm, according to the manufacturer’s instruction. For fluorescence 

visualization, SMCs cultured on the nanowire arrays were washed twice with phosphate 

buffered saline (PBS), fixed in 4% paraformaldehyde (PFA) solution, and permeabilised with 

0.2% Triton X-100, followed by incubation with rhodamine-phalloidin (RP) for 1 h at 37 °C to 

stain cytoplasm and with 4',6-diamidino-2-phenylindole (DAPI) solution at room temperature 

for 10 min to stain cell nuclei. Then the cells were photographed using an Axiovert 25 light 

microscope (Carl Zeiss, Germany) and cell areas were calculated from the fluorescence images 

using ImageJ and averaged on 20 non-overlapping cells. 

 

6.2.5 Characterization of focal adhesions  

To characterize FAs, SMCs cultured for 1 day on the nanowire arrays were fixed and 

permeabilised, as described in Section 2.4. The cells were then incubated with 1% Bovine 

Serum Albumin (BSA) in PBS for 1 h at 37 °C to block unspecific antibody binding sites [32]. 

To remove BSA residue, cells were washed three times in PBS. Monoclonal vinculin primary 

antibody (1:1000 in PBS; Sigma) solution was then added and incubated with the cells for 2 h 

at room temperature, followed by three-time wash using PBS to remove unconjugated primary 

antibody. Goat anti-mouse IgG secondary antibody with green fluorescence (1:200 in PBS; 
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Sigma) solution was then applied to the cells at room temperature for 1 h. The cells were further 

stained using RP for 1 h to visualize F-actin with vinculin. Photographing was conducted using 

a Leica DM6000B confocal fluorescent microscope. 

 

6.2.6 Gene expression of contractile phenotypic markers and integrins 

To detect the expression levels of target gene markers in the cells, SMCs cultured for 4 days 

on the flat substrates and nanowire arrays were detached using trypsin-EDTA solution (Gibco) 

and collected using centrifuge at 1000 rpm for 3 min. Total RNAs were extracted from these 

cells using an RNeasy Mini Kit (Qiagen, Valencia, CA) according to the manufacturer’s 

instruction. Stable cDNA was reverse-transcripted using a DyNAmo cDNA synthesis kit 

(Thermo Scientific) following the manufacturer’s instruction. For real-time polymerase chain 

reaction (PCR) analysis, primers were designed using Oligoperfect software (Invitrogen) and 

their sequences are listed as follows. Calponin: forward 5'-

AGTCTACTCTCTCTTGGCTCTGGCC-3', reverse 5'-

CCTGCCTTCTCTCAGCTTCTCAGG-3'; smooth muscle myosin heavy chain (SM-MHC): 

forward 5'-AAGCAGCTCAAGAGGCAG-3', reverse 5'-

AAGGAACAAATGAAGCCTCGTT-3'; smoothlin:  forward 5'-

TCGGAGTGCTGGTGAATAC-3', reverse  5'-CCCTGTTTCTCTTCCTCTGG-3'; and 

house-keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH): forward 5'-

TCTTCACCACCATGGAGAA-3', reverse 5'-ACTGTGGTCATGAGCCCTT-3'; transgelin 

(SM-22): forward 5'-GGCAGCTGAGGATTATGGAGTCACG-3', reverse 5'-

TGGGATCTCCACGGTAGTGTCCA-3'. A total reaction volume of 20L was prepared by 

mixing 2.5L of total cDNA at the same concentration of 5.0 ng/L with power SYBR Green 

PCR Master Mix (Applied Biosystems, Warrington, UK). The amplification and detecting 

process in real-time PCR detection process were conducted on a Peltier Thermal Cycler 

fluorescence detection system (MJ Research PTC-200 Thermo Cycler). The running 

procedures for the amplification process were programmed as 94 ºC for 5 min to denaturize 

DNA double strains, then 30 cyclic steps of 94 ºC for 30 s, 55 ºC for 30 s, and 72 ºC for 30 s. 

The expression levels of the target gene markers were normalized by the value of GAPDH. 
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6.2.7 Statistical analysis  

Statistical analysis was performed using the one-way analysis of variance (ANOVA) 

method contained in OriginLab software. Groups that have p-values lower than 0.05 were 

considered statistically different. 

 

6.3 Results and Discussion 

 

6.3.1 Surface structure, hydrophilicity and protein adsorption  

The photo-crosslinked PCLTA nanowire arrays were observed using SEM (Fig. 6.1). As 

shown in Fig. 6.1a-c, different morphological patterns were created using AAO templates with 

varied pore sizes. From the edge-view SEM images of the nanowire arrays, the heights for the 

PCLTA nanowires with diameters of 200, 100 and 20 nm were determined to be 0.8, 1.0, and 

0.7 m, respectively. These results demonstrated that the AAO templates were effective in 

generating photo-crosslinked PCLTA nanowire arrays. When the AAO membranes were placed 

on the PCLTA solution layer, the solution penetrated into these membranes via the capillary 

effect [16,17]. The infiltration speed of polymer solution into the cylindrical nanopores was 

proportional to the pore diameter and surface tension (γ) but inversely propotional to solution 

viscosity (η) , as demonstrated in the equation 
dℎ

d𝑡
=

𝑅𝛾 cos𝜃

4𝜂ℎ
 , 

where h is the height or length of the polymer wires drawn into the AAO nanopores, t is 

penetration time, R is the hydraulic radius of nanopores (the ratio between the volume of the 

liquid in the capillary section and the area of the solid and liquid interface), and  is the contact 

angle of liquid on the model wall [18,34]. Therefore, the length of the photo-crosslinked PCLTA 

nanowires could be well controlled through modulating the parameters in the equation.  
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Figure 6.2 Top-view (a-c) and edge-view (d-f) SEM images of photo-crosslinked PCLTA 

nanowire arrays with three different wire diameters of 200, 100, and 20 nm.  

 

Surface wettability is an important characfactor in developing biomaterials for tissue-

engineering applications. Because the nanowire arrays were prepared by dissolving AAO 

templates in NaOH solution, flat substrates of photo-crosslinked PCLTA were treated in the 

same NaOH solution for comparison. The water contact angle on the flat substrate of photo-

crosslinked PCLTA was higher than on the NaOH-treated counterpart, as indicated by the 

images of water droplets on these substrates in Fig. 6.3a. When there were nanowires on the 

surfaces, the water contact angles were higher than on the flat control (Fig. 6.3a). The smaller 

was the nanowire diameter, the larger the water contact angle, as displayed in the data in Fig. 

6.3b.  
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Figure 6.3 Water droplets (a) and water contact angles (b) on the original and NaOH-treated 

flat substrates and nanowire arrays of photo-crosslinked PCLTA at 37 C.   

 

 

 

Figure 6.4 Adsorption of (a) serum proteins and (b) fibronectin on the original and NaOH-

treated flat substrates and nanowire arrays of photo-crosslinked PCLTA.  

 

For synthetic matrices without cell binding ligands on the surface, they need to adsorb 

external proteins to mediate cellular recognition and adhesion to the substrate surface [35]. 

Therefore, the protein absorption ability is important for evaluating biocompatibility and 

bioactivity of biomaterials. The amounts of serum proteins adsorbed on all the photo-

crosslinked PCLTA substrates from cell culture media were determined, as shown in Fig. 6.4a. 

The amounts of adsorbed proteins on the nanowire arrays were apparently higher than those on 

the flat surfaces. In addition, protein adsorption was highly related to the nanowire size. When 

the nanowire diameter was smaller, a larger amount of proteins was adsorbed on the arrays with 

the same projected surface area. Fibronectin adsorption on these substrates were also evaluated 
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and demonstrated the same profile, as shown in Fig. 6.3b. The results here were consistent with 

a previous study, in which PCL nanowire arrays were found to adsorb more bovine serum 

albumin (BSA) and fibrinogen proteins compared with the flat surface samples [30].  

 

6.3.2 SMC adhesion and proliferation on the nanowire arrays 

 

 

Figure 6.5 SMC attachment on the original and NaOH-treated flat substrates and nanowire 

arrays of photo-crosslinked PCLTA normalized to that on TCPS, the positive control. *: p < 

0.05 relative to the others; #: p < 0.05. 

 

SMC attachment to the photo-crosslinked PCLTA substrates with flat topography or 

nanowire arrays was evaluated at 4 h and normalized to that on TCPS. As shown in Fig. 6.5, 

the nanowire arrays had better SMC attachment than the flat substrates and the NaOH-treated 

surface was better than the original one. When the nanowire diameter was smaller, SMC 

attachment was higher. These results indicated that the nanowire structure provided a more 

preferable environment than the smooth surface for SMC attachment.  
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Figure 6.6 (a) Fluorescence images, (b) numbers and (c) PI and Growth Rate of SMCs on the 

original and NaOH-treated flat substrates and nanowire arrays of photo-crosslinked PCLTA at 

days 1, 2, and 4 post-seeding. *: p < 0.05 relative to the others; $: p < 0.05 relative to NaOH-

treated flat substrates; %: p < 0.05 relative to 200 nm nanowire arrays. 

 

SMC proliferation over 4 days in Fig. 6.6 showed the same trend as the attachment. The 

fluorescence images of SMCs on the substrates taken at days 1, 2, and 4 are demonstrated in 

Fig. 6.6a. Clear increases in SMC number occurred to all the substrates, while they were 

stronger on the nanowire arrays. The cell numbers on the NaOH-treated flat substrate and three 

nanowire arrays were significantly higher than that on the flat substrate while the cell numbers 

on the three nanowire arrays were higher than the NaOH-treated flat substrate. SMCs cultured 

on the nanowire arrays with the smallest diameter of 20 nm were significantly more than those 

on the nanowire arrays with the largest diameter of 200 nm. To quantify SMC proliferation, the 

proliferation index (PI) was obtained by dividing the cell number at day 2 by the number at 4 
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h. The PIs of SMCs on the original and NaOH-treated flat substrates of photo-crosslinked 

PCLTA were 8.67 and 9.14, respectively. It increased to 9.49, 9.36, and 9.64 on the nanowire 

arrays with diameters of 200, 100, and 20 nm, respectively.   

 

6.3.3 Cell spreading and morphology of cytoplasm and cell nuclei  

 

 

Figure 6.7 (a) SMC spread area and (b) circularity on the original and NaOH-treated flat 

substrates and nanowire arrays of photo-crosslinked PCLTA. *: p < 0.05 relative to the others; 

$: p < 0.05 relative to NaOH-treated flat substrate; %: p < 0.05 relative to 200 nm. 

 

Cell spreading is closely  related to cell division and proliferation on substrates [36,37]. 

As shown in Fig. 6.7a, cell area determined from the cell images at day 1 was the smallest on 

the original flat substrate of photo-crosslinked PCLTA and increased on the NaOH-treated flat 

substrate. Cell area was significantly higher on the nanowire arrays and the value increased 

with decreasing the wire diameter. As defined by the equation of 4 × area/perimeter2, cell 

circularity, was quantified to indicate how close a cell was to being perfectly round with a 

measure of 1 for a perfect circle and the closer to 0 the less circular. As shown in Fig. 6.7b, cell 

circularity gradually decreased when the original flat substrate was changed to NaOH-treated 

one and nanowire arrays, especially when the nanowires were thinner, indicating that SMCs 

were stretched and deformed more strongly than those on the flat substrates.  
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Figure 6.8 SEM images of SMCs on the original and NaOH-treated flat substrates and nanowire 

arrays of photo-crosslinked PCLTA.  

 

To substantiate the conclusions from the cell images, I further conducted SEM imaging of 

dehydrated SMCs on the substrates and found that the SEM images in Fig. 6.8 were consistent 

with the fluorescence images in Fig. 6.6a. On the NaOH-treated substrate, SMCs spread better 

than on the original one. On the nanowire arrays, thinner nanowires could trigger better SMC 

adhesion and spreading as there were more nanowires in unit projected area. As demonstrated 

in Fig. 6.8, the best spreading and the largest cytoplasm appeared on the nanowire arrays with 

the smallest diameter of 20 nm.  

I further characterized the nuclei of SMCs cultured for 1 day on these substrates. As shown 

in Fig. 6.9a, cell nuclei on the flat substrates were mainly round. Compared with those on the 

flat substrates, cell nuclei on the nanowire arrays were larger and brighter. Quantification of 

cell nuclei in Fig. 6.9b also indicated significantly larger nuclei on the NaOH-treated substrate 

and nanowire arrays than on the original flat substrate and the thinnest nanowires triggered 

largest nuclei. The average circularity of SMC nuclei was close to each other (~0.87) on the 

substrates except the 20 nm nanowire array, which showed a significantly lower value of 0.83.  

 

 

 

 

 

 

 



152 

 

 

Figure 6.9 (a) Fluorescent images of SMC nuclei stained with DAPI on the original and NaOH-

treated flat substrates and nanowire arrays of photo-crosslinked PCLTA at day 1 post-seeding. 

(b) Average area and (c) circularity of SMC nuclei on these substrates. *: p < 0.05 relative to 

the others; $: p < 0.05 relative to the NaOH-treated flat substrate; %: p < 0.05 relative to the 20 

nm nanowire array. 

 

6.3.4 Focal adhesions in SMCs 

FAs in cells are macromolecular assemblies of multiple components including focal 

adhesion kinases, paxillins, and vinculins, and play key roles during the cellular adhesion and 

later proliferation process by holding cells on the underlying substrates and at the same time 

sensing the surrounding environments. [38]. Here in this study, SMCs developed evident FAs 

on all the substrates of photo-crosslinked PCLTA, as shown in Fig. 6.10a. In contrast with weak 

FAs on the flat substrates, the clear and punctate FA dots on the nanowire arrays were also more, 

showing stronger cell adhesion. Quantification of focal adhesions from the images in terms of 

FA average area, elongation (inverse of circularity), and densities (number per cell) confirmed 

that FAs on the NaOH-treated flat substrate were larger, more elongated, and denser than on 

the original one and those on the nanowire arrays were even better environments for FA 

development, especially when the nanofiber diamater was 20 nm, as shown in Fig. 6.10b-d.  
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Figure 6.10 Characterizations of FAs in SMCs cultured for 1 day on the original and NaOH-

treated flat substrates and nanowire arrays of photo-crosslinked PCLTA. (a) 

Immunofluorescence images of FAs in the cells with vinculin stained green, F-actin stained red, 

and nuclei stained blue. The images in the bottom row are enlarged ones of their corresponding 

images in the top row. Scale bars of 50 and 20 m are applicable for the images in the top and 

bottom rows, respectively. Quantification of FAs in terms of (b) FA area (c) FA elongation, and 

(d) FA density from the images in (a). *: p < 0.05 relative to the others; $: p < 0.05 relative to 

the othersNaOH treated flat samples; %: p < 0.05 relative to the nanowire array with a diameter 

of 20 nm. 

 

6.3.5 Gene expression 

SMCs adopts two  phenotypes: synthetic and contractile whose conversion can be 

modulated in the proliferation through responding to external mechanical, chemical, and 

topographical signals from ECM or the underlying substrate [39]. There are corresponding gene 

makers for these two phenotypes. For the contractile phenotype, gene markers that are most 

relevant to contractile SMC functions include α-smooth muscle actin, SM-MHC, smoothlin, 

transgelin, and calponin [40]. Thus evaluation the expression levels of contractile phenotypic 
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gene markers in SMCs is crucial to characterize their content of phenotype and functionality 

[40].  

 

 

Figure 6.11 Expression levels for gene contractile markers of (a) SM-MHC, (b) transgelin, (c) 

smoothlin, and (d) calponin in SMCs cultured for 4 days on the original and NaOH-treated flat 

substrates and nanowire arrays of photo-crosslinked PCLTA, relative to that of GAPDH using 

real-time PCR. *: p < 0.05.  

 

I performed real-time PCR analysis of four typical contractile markers of SM-MHC, 

smoothlin, transgelin and calponin to characterize their expression levels in SMCs cultured for 

4 days on the substrates. The relative expression levels of these gene markers using GAPDH as 

the reference are shown in Fig. 6.11. All these four typical contractile markers had higher 

expression levels in SMCs on the nanowire arrays than on the flat substrates, except that 

smoothlin expression was similar on the NaOH-treated flat substrate, suggesting that nanowires 

could promote phenotypic conversion from the proliferative synthetic phenotype to the more 

functional contractile phenotype. For transgelin and calponin markers, their expression levels 
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were significantly higher when the nanowire diameter was the smallest (20 nm) than on the 

other substrates.  

 

6.3.6 Integrin expression  

Integrins are a category of heterodimers composed of two distinct chains named as  and 

 subunits [41]. Integrins normally form across the lipid bilayer membranes in active cells and 

function as linkage to various ECM proteins, thus playing critical roles in FA signal transduction 

[41].  

 

 

Figure 6.12 Relative expression levels of v, 1, 1, and 3 integrin subunits normalized to that 

of GAPDH in SMCs cultured for 1 day on the original and NaOH-treated flat substrates and 

nanowire arrays of photo-crosslinked PCLTA. *: p < 0.05 relative to the original flat substrate; 

$: p < 0.05 relative to NaOH-treated flat substrate; %: p < 0.05 relative to the nanowire array 

with a diameter of 200 nm. 
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To understand better distinct FAs in SMCs when they were cultured on the different 

substrates, I further analyzed the expression level of four major integrin subunits (v, 1, 1, 

and 3) in SMCs at day 1 using real-time PCR. I found that integrin expression in SMCs was 

greatly altered by the surface chemistry and topographical feature of the substrates. As shown 

in Fig. 6.12, the expression levels of the two  subunits were significantly higher on the 

nanowire arrays than on the original flat substrates and also higher on the NaOH-treated flat 

substrate than on the original flat one. Expression of the two  subunits could be further 

promoted by the smallest nanowire diameter of 20 nm. For 1 subunit, its expression levels 

were significantly higher on the NaOH-treated flat substrate and the nanowire arrays than on 

the original flat one, and the expression level was the highest when the nanowire diameter was 

smallest (20 nm). For 3 subunit, the expression levels on the nanowire arrays with diameters 

of 100 and 20 nm were significantly higher than on the flat substrates, whereas the value on the 

nanowire array with the diameter of 200 nm was only significantly higher than on the original 

flat substrate. Upregulated expression of these integrin subunits in SMCs on the nanowire 

arrays allowed them to form more and stronger integrin combinations such as v1, 11, v3, 

and 13, which play pivotal roles in signal transduction and modulating cellular behavior [42].  

 

6.4 Discussion 

 

Understating how ECM or underlying substrate properties influence cell survival, growth, 

and function is critical for biomaterial design and tissue-engineering applications [43-46]. 

Previous studies in our lab demonstrated the topographical features on extracellular substrates, 

e.g., microgrooves and honeycomb structures, could exert large influences on behaviors of bone 

cells and nerves cells [5,47-50]. For cardiovascular tissue engineering, morphological 

architectures of the underlying substrates provide necessary contact guidance for better vascular 

cell functions. Here in this study, the material was identical for all the nanowire arrays although 

it was indeed more hydrophilic than the original flat substrate after the NaOH treatment. The 

differences in surface hydrophilicity among the nanowire arrays and NaOH-treated flat 

substrate should be attributed to the effect of nanofibrous topography. The dominant factor in 

these nanowire arrays to affect SMC behavior was the topography and nanowire diameter. 
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Compared with the flat substrates, the nanowire arrays with the same projected area adsorbed 

three-fold higher amounts of serum proteins or fibronectin because of much higher surface 

areas, which could support cell adhesion to the substrate.   

SMC behavior and function were greatly influenced by the presence of the nanowires. The 

initial attachment rates of SMCs were already higher and their spread areas were also larger on 

the nanowire arrays because of higher amounts of adsorbed protein and again the nanofibrous 

topography with a larger surface area, which were more evident when the nanowire diameter 

was smaller. It is known that well-spread cells could proliferate better than those poorly 

extended cells [36]. The underlying mechanism for this phenomenon was proposed as that cell 

shape was tightly coupled to nuclear acid synthesis and thus cell division for proliferation 

[36,37,51-53].  In the same external environment, cells with different spread areas were found 

to have remarkably different cell cycle progression [54]. Our present results also substantiated 

the above mechanism as better SMC spreading and faster proliferation appeared simultaneously 

on the nanowire arrays, in particular, when the nanowire diameter was smaller In addition, SMC 

nuclei were larger on the nanowire arrays than on the flat substrates as the result of better cell 

spreading and this nuclear expansion was similar to alignment of nuclei because deformation 

of cell nuclei is correlated with gene expression.   

Adherent cells develop FAs with high alignment and strength to mechanically hold onto 

the underlying substrate so that other cell functions can proceed in a stable environment. On 

the other hand, FAs are also important ECM sensing components with the ability to adjust their 

size and morphology in responding to extracellular signals [55]. Signals that detected by FA 

complexes were further transduced to the intracellular signaling pathways, which ultimately 

altered cell behavior through multiple mechanotransduction pathways [56]. In this study, larger 

and more elongated FAs with denser distribution in SMCs were observed on the nanowire 

arrays, especially when the nanowire diameter was smaller. The correlation between FA profiles 

and cell spreading indicated that strong FAs appeared in the cells receiving intensified 

stretching tension. Several previous studies using topographical factors to regulate cell behavior 

also reported similar phenomenon that micron and submicron features can influence 

microfilaments, FA dots, and microtubules [57-59]. This unique effect was also called as 

topographical compensation because these surface architectures altered substrate properties and 
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then induced cell deformation [60].  

Sensing of ECM through FAs was recognized to involve components including vinculin, 

talin, paxillin, focal adhesion kinase, and integrins [61]. For integrins, with variance in  and 

subunits, they can form different types that are capable of binding to different ECM proteins. 

In SMCs, 21 and 51 generate important cellular receptors to help cells adhere to collagen 

and fibronectin in ECM while v5 and v3 are responsible for recognizing and helping cells 

link to vitronectin and osteopontin in ECM [62]. In this study, the two  and two subunits 

analyzed are components for combinations of v3, 11, and 13, which play critical roles in 

signal transduction in regulating cell adhesion, spreading, and proliferation [42]. The 

upregulated expression of these integrin subunits in SMCs on the nanowire arrays can be 

correlated with stronger FAs and better cell spreading, attachment, and proliferations.  

 

6.5 Conclusions   

 

Photo-crosslinked PCLTA nanowire arrays with three different nanowire diameters of 200, 

100, and 20 nm were fabricated using nanoporous aluminum oxide templates, which was an 

efficient approach for preparing polymeric nanowire architectures for cardiovascular tissue-

engineering applications. These nanowires increased the surface hydrophobicity of substrates 

and induced higher protein absorption capacity than both original and NaOH-treated flat 

substrates. Better SMC affinity, growth, spreading, and phenotypic conversion were observed 

on the nanowire arrays than on the flat substrates, especially when the nanowire diameter was 

the smallest, 20 nm. Stronger development of sensing components such as FAs and integrins 

emerged in SMCs with high cytoplasm tensions on the nanowire arrays.  
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Chapter VII. Controllable Crystallinity of Poly(L-lactide acid) Networks for 

Regulation of Smooth Muscle Cells 
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Abstract 

 

Polymer crystallinity influences the morphological and mechanical properties, thus it is 

of interest to use it as a factor to regulate cell behavior in tissue engineering applications of 

semi-crystalline polymers. Here we report a series of novel photo-crosslinkable poly(L-lactic 

acid) triacrylates (PLLATAs) that were synthesized and photo-crosslinked under UV light into 

network substrates. With increasing the annealing time from 0 to 5, 7, 10, and 20 h at 70 ºC, 

both crystallinity and surface roughness increased for PLLATA networks without variance in 

chemical composition. Both water contact angle and the capability of adsorbing serum proteins 

from the culture media on the crystallized PLLATA networks were lower than on the 

amorphous one. Primary rat smooth muscle cells (SMCs) were found to respond to the substrate 

crystallinity by exhibiting reduced attachment, proliferation, and differentiation on the 

crystalline, rough surfaces of the PLLATA networks than on the amorphous, smooth one. 

Down-regulated integrin expression and weakened focal adhesions (FAs) in terms of size, 

elongation, and density in SMCs were also observed on the crystalline PLLATA networks. 

After removal of surface roughness through compression, SMCs exhibited little variance 

among compressed PLLATA networks regardless of the difference in bulk crystallinity.   
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7.1 Introduction 

 

Cardiovascular diseases, for example, heart disease and stroke, are major causes of death 

in the U.S. [1]. Cardiovascular tissue engineering holds critical importance by providing vessel 

replacements or supportive tissue scaffolds made from natural or synthetic biomaterials. Widely 

studied cardiovascular tissue engineering polymers include polyethylene [2], poly(glycolic acid) 

(PGA) [3], poly(ethylene glycol) (PEG) [5,6], poly(-caprolactone) (PCL) [6-8], and poly(L-

lactic acid) (PLLA) [9]. PLLA and its copolymers have favorable chemical properties such as 

biodegradability through hydrolysis, physical properties such as high stiffness, and good 

efficiency in supporting vascularization [10-12]. In 2000, PLLA-based stents were used in 

human coronary arteries without showing inflammatory reactions in 6 months [13]. Based on 

this finding, researchers conducted continuous clinical trials on PLLA-based stents, which 

paved the way to using PLLA for further vascular tissue engineering applications [14,15].   

The processing methods for PLLA determine the properties of the final products and 

consequently influence cellular responses to them when used for tissue engineering applications 

such as implants. As a semi-crystalline polymer, PLLA undergoes crystallization in the bulk 

and its surface can be roughened by the spherulites formed in crystallization. PLLA has been 

studied in terms of crystallization-induced surface characteristics and their effects on cell 

behavior [16-18]. Because the glass transition temperature (Tg) for PLLA is higher than 37 °C, 

amorphous PLLA substrates can be prepared by quenching the melt at a temperature well below 

its Tg. The crystallinity of PLLA can be tuned when it is crystallized isothermally at a 

crystallization temperature (Tc) between its Tg and melting temperature (Tm) [16]. Hepatocyte 

spheroid formation was faster on crystalline PLLA substrates while 3T3 fibroblasts proliferated 

better on amorphous PLLA ones [16]. A gradient of polymer crystallinity was also achieved on 

PLLA films by using different annealing temperatures (or Tc) from 45 to 100 °C and a gradient 

of root-mean-square surface roughness (Rrms) from 0.5 to 13 nm was formed on the substrate 

[17]. The proliferation rate of MC3T3-E1 cells was found to be monotonically dependent on 

Rrms: it was greater on the smooth area of the PLLA film than on the rough one [17]. Despite 

these results, the origin and mechanism of distinct cell responses to crystallization-induced 

surface characteristics compared with amorphous, smooth polymer substrates are still unclear 
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and these results for cell adhesion and proliferation are not always consistent, especially among 

different semi-crystalline polymers.  

In this study, novel photo-crosslinkable PLLA triacrylates (PLLATAs) with different 

molecular weights (Table 7.1) were synthesized and photo-crosslinked under UV light to 

achieve network substrates. When the number-average molecular weight (Mn) of PLLATA was 

28,010 g/mol, the crystallinity of the obtained PLLATA28k network was modulated by varying 

the annealing time at Tc of 70 ºC, which is slightly higher than its Tg. After being annealed for 

increased length of time from 0 to 5, 7, 10, and 20 h, PLLATA networks with the same chemical 

composition had increased crystallinity and surface roughness. Surface properties including 

hydrophilicity, surface energies, and protein adsorption were determined. Primary rat smooth 

muscle cells (SMCs) were cultured on these PLLATA networks and their attachment, 

proliferation, spreading, focal adhesions (FAs), expression of integrin subunits and phenotypic 

gene markers were evaluated.  

 

Table 7.1 The synthesized PLLATA with varied molecular weights and thermal properties 

before and after photocrosslinking.  

Polymer Mn  

(g mol-1) 

Mw  

(g mol-1) 

DPI Tm 

(ºC) 

Hm  

(J/g) 

c  

(%) 

PLLATA 9k 9,320 10,090 1.1  137.5  32.9  35.1  

PLLATA 11k 11,360 12,420 1.1  142.1  46.5  49.7  

PLLATA 13k 13,280 15,910 1.2  152.6  55.5  59.3  

PLLATA 28k 28,010 34,640 1.2  163.7  57.0  60.9  

PLLATA 55k 55,020 76,500 1.4  170.0  55.2 59.0  

Crosslinked PLLATA 9k      -   -   - 

Crosslinked PLLATA 11k    139.2  33.7  36.0  

Crosslinked PLLATA 13k     149.1  37.0  39.6  

Crosslinked PLLATA 28k    160.1  42.3  45.2  

Crosslinked PLLATA 55k    168.8  41.1 43.9 

 

7.2 Materials and methods 

 

7.2.1 Synthesis and photo-crosslinking of PLLATA 

PLLA triols were synthesized via the ring-opening polymerization of L-lactide initiated by 

1,1,1-tris(hydroxymethyl) propane (TMP), in the presence of Sn(Oct)2 as the catalyst (Figure 



169 

 

1). Five different molecular weights (see Table 7.1) were achieved by using different ratios of 

L-lactide and TMP. Then PLLA triol was reacted with acryloyl chloride (AC) at room 

temperature for 24 h under nitrogen protection in the presence of K2CO3 as the proton scavenger 

at a molar ratio of 1:3:3 (PLLA triol:AC:K2CO3) in methylene chloride with ratio of 50 ml per 

10 g polymer to synthesize PLLATA. After the reaction, the mixture was centrifuged at 3000 

rpm for 3 min to remove inorganic solids (KCl, KHCO3, and unreacted K2CO3) followed by 

precipitation in diethyl ether and complete drying in vacuum. PLLATA networks were formed 

by photo-crosslinking PLLATAs in methylene chloride under a UV lamp (SB-100P, 

Spectroline; wavelength: 365 nm, Intensity: 4800w/cm2) for 20 min. Phenyl bis(2,4,6-

trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE 819; Ciba Specialty Chemicals, 

Tarrytown, NY) was used as the photo-initiator with a ratio of 100 g : 50 ml : 1 g for PLLATA, 

CH2Cl2, and BAPO. The crystallinities of PLLATA28k networks were modulated by varying 

the annealing time from 0 to 5, 7, 10, or 20 h at 70 ºC. 

 

 

Figure 7.1 Synthesis of PLLA triol and PLLA triacrylate.  

 

7.2.2 Characterization of polymer properties  

The chemical structures of PLLATAs were analyzed by 1H Nuclear Magnetic Resonance 

(NMR) on a Varian Mercury 300 spectrometer using CDCl3 solutions containing 

tetramethylsilane (TMS). Their molecular weights were determined using Gel Permeation 

Chromatography (GPC) with tetrahydrofuran as the eluent and standard monodisperse 

polystyrene samples as the references. The swelling ratios and gel fractions of crosslinked 

PLLATA networks were obtained in CH2Cl2 according to the method reported previously by 

our research group [19]. Thermal properties were measured using Differential Scanning 

Calorimetry (DSC) by heating the samples to 200 ºC, then cooling to 0 ºC, and reheating to 200 
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ºC at a rate of 10 ºC/min. For crystallinity determinations in annealed crosslinked PLLATAs, 

the samples were heated from 0 to 200 ºC at a rate of 10 ºC/min using the same DSC. Surface 

morphology of crosslinked PLLATA substrates was characterized using atomic force 

microscopy (AFM; Veeco Instruments, Santa Barbara, CA) and Rrms was calculated from a 10 

m × 10 m area. Surface free energy was calculated from the water contact angle determined 

at 37 °C using a Ramé-Hart NRC C. A. goniometer (Model 100-00-230, Mountain Lakes, NJ) 

[19]. Total serum proteins adsorbed on the sample surface from the cell culture media were 

collected using a MicroBCA protein assay kit (Pierce, Rockford, IL) and detected using a 

micro-plate reader using the method reported previously by our research group [19].  

 

7.2.3 In vitro cell behaviors  

Crosslinked PLLATA thin films were prepared through spin-coating PLLATA/CH2Cl2 

/BAPO solution (100 g : 50 ml : 1 g) using WS-400-6NPP Spin Coater (Laurell Technologies, 

North Wales, PA) on microscope slides (Fisher Scientifi c, Pittsburgh, PA) at 2000 rpm for 6 s. 

Then the samples were photo-crosslinking under UV light for 20 min immediately after spin-

coating. Crosslinked PLLATA thin films were sterilized in 70% alcohol solution overnight and 

dried completely in vacuum prior to cell studies. Primary SMCs isolated from rat aorta were 

cultured using the method reported by our research group previously [20]. Sterile polymer films 

were seeded with SMCs at a density of 15000 cells/cm2, with tissue-culture polystyrene (TCPS) 

as the positive control. Cell numbers at 4 h, days 1, 2, and 4 post-seeding were determined using 

the MTS method reported previously by our research group [21]. The cells attached on the 

polymer films were fixed with 4% paraformaldehyde (PFA) solution for 10 min, washed twice 

in phosphate buffered saline (PBS), and permeabilized in 0.2% Triton X-100 solution for 10 

min, all at room temperature. Then their cytoplasm and cell nuclei were stained using 

rhodamine-phalloidin (RP) and 4',6-diamidino-2-phenylindole (DAPI), respectively, before 

photo-graphing using an Axiovert 25 light microscope (Carl Zeiss, Germany). From the 

fluorescence cell images, cell area was determined and averaged on 20 non-overlapping cells 

using ImageJ software (National Institutes of Health, Bethesda, MA). 
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7.2.4 Characterization of FAs in SMCs on crosslinked PLLATA 

SMCs cultured for 1 day on the PLLATA films were fixed and permeabilized, as described 

in Section 2.3, before they were incubated with 1% Bovine Serum Albumin (BSA) in PBS for 

1 h at 37 °C to block unspecific binding cites. Monoclonal vinculin primary antibody (1:1000 

in PBS; Sigma) was then used to target FA vinculin by incubating the cells at room temperature 

with gentle shaking for 1 h. After that, unconjugated primary antibody was washed away using 

PBS three times, followed by further incubation with goat anti-mouse IgG secondary antibody 

(1:200 in PBS; Sigma) solution in dark at room temperature for 2 h. After vinculin staining, 

SMC specific filaments were also stained using RP for 1 h at 37 ºC. The cells were observed 

using a Leica DM6000B confocal fluorescent microscope. Quantification of FAs such as FA 

area, FA density (number of FAs per cell), and FA elongation defined as the inverse of 

circularity, i.e., perimeter2/(4π × area), were performed and averaged on five non-overlapping 

cells using ImageJ according to a previous report [4]. 

 

7.2.5 Gene expression analysis of contractile phenotypic markers and integrins  

Polymerase Chain Reaction (PCR) was used to quantify the expression levels of contractile 

phenotypic markers, smooth muscle myosin heavy chain (SM-MHC), calponin, and transgelin 

in SMCs cultured for 4 days on these polymer substrates. Total RNA was isolated using the 

RNeasy Mini Kit (Qiagen, Valencia, CA) following the manufacturer’s instruction. cDNA was 

obtained by reverse transcription using DyNAmo cDNA synthesis kit (Thermo Scientific, 

Waltham, MA). The primers for different gene markers were designed using Oligoperfect 

software, as listed in Table 7.2. For each PCR well, 2.5 µL of total cDNA with the same 

concentration (1 ng/L) was added as the template to make a mixture with Power SYBR Green 

PCR Master Mix (Applied Biosystems, Warrington, UK) for a total 20 µL reaction system. For 

each sample, this step was done in triplicates. The amplification and detection process was 

performed on a Peltier Thermal Cycler fluorescence detection system (MJ Research PTC-200). 

The software procedure were set as 94 ºC for 5 min followed by the cyclic steps of 94 ºC for 

30 s, 55 ºC for 30 s, and 72 ºC for 1 min. The expression levels of target gene markers were 

normalized to that of the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH). 
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Table 7.2 Primers for different gene markers used in the real-time PCR analysis. 

Gene markers Forward primer Reverse primer 

Calponin 5'-AGTCTACTCTCTCTTGGCTCTGGCC-3' 5'-CCTGCCTTCTCTCAGCTTCTCAGG-3' 

SM-MHC  5'-AAGCAGCTCAAGAGGCAG-3' 5'-AAGGAACAAATGAA GCCTCGTT-3' 

Transgelin  5'-GGCAGCTGAGGATTATGGAGTCACG-3'  5'-TGGGATCTCCACGGTAGTGTCCA-3'; 

Integrin-v  5'-AAGACGCCCGAAAAGAATGAC-3' 5'-ATCCCGCTTGGTGATGAGAT-3' 

Integrin-1 5'-TCTGCCAAACTCAGTCCACGA-3' 5'-TGACGATCAGCAGGCTCTTTT-3' 

Integrin-5  5'-CCTTCCTTCATTGGCATGGA-3' 5'-TCTGCATCCTGTCAGCAATCC-3' 

Integrin-1  5'-AGAGTGCCGTGACAACTGTG-3' 5'-GAGCCCCAAAGCTACCCTAC-3' 

Integrin-3  5'-GACCCGCTTCAATGACGAA-3' 5'-TCACAGACTGTAGCCTGCATGA-3' 

GAPDH 5'-TCTTCACCACCATGGAGAA-3' 5'-ACTGTGGTCATGAGCCCTT-3' 

 

7.2.6 Statistical analysis  

All statistical computations were performed by one-way analysis of variance (ANOVA) in 

Origin8 software and followed by Tukey post-test if necessary. The values were considered 

significantly different if the p-value calculated between them was lower than 0.05. 

  

7.3 Results 

 

7.3.1 Structure characterization and photocrosslinking 

The chemical structures of PLLATAs were determined using 1H NMR spectra, as displayed 

in Fig. 7.2.All the chemical shifts in the 1H NMR spectra could be well assigned to 

corresponding protons, as marked in the polymer structures. As demonstrated in Fig. 7.2a, 

PLLA triols showed no vinyl groups in (-CH=CH-) in the chemical shift at 5.7-6.5 ppm. 

However, after acrylation, PLLATA showed an apparent chemical shift at 5.7-6.5 ppm, 

indicating successful addition of vinyl groups in the ends. PLLATA samples with Mns of 9320, 

11360, 13280, 28010, and 55020 g/mol were named as PLLATA9k, 11k, 13k, 28k, and 55k, 

respectively. After photo-crosslinking, all the PLLATA networks had high gel fractions of 

~90%, as shown in Fig. 7.3a. Meanwhile, the swelling ratio of PLLATA network in methylene 

chloride increased evidently with increasing the molecular weight of PLLATA (Fig. 7.3b). 
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Figure 7.2 1H NMR spectra of (a) PLLA triol and (b) PLLATA. Solvent: CDCl3. 

 

 

Figure 7.3 (a) Swelling ratios and (b) gel fractions of photo-crosslinked networks of PLLATAs 

with different molecular weights from 9320 to 55020 g/mol.  

 

7.3.2 Thermal properties, surface hydrophilicities and protein adsorption 

Figure 4 shows the DSC curves of PLLATAs before and after crosslinking obtained in the 

heating run from 0 to 200 °C. Their thermal properties including Tm, heat of fusion (Hm), and 

degree of crystallinity (c) obtained from these DSC curves are listed in Table 7.1. Tm was the 

highest peak temperature in all the exothermal peaks. Crystallinity (c) was estimated using the 

equation of c = [Hm/PLAH0] × 100%, where H0 was the heat of fusion for fully crystalline 

PLLA with a value of 93.6 J/g [22] and PLLA was the PLLA fraction in PLLATA, which was 

approximately 100%. These five PLLATAs with different molecular weights were all semi-

crystalline with different values in Tm and crystallinity. Tm increased gradually from 137.5 to 

142.1, 152.6, 163.7, and 170.0 °C when the molecular weight increased from 9k to 11k, 13k, 

28k, and 55k, respectively. After crosslinking, both Tm and crystallinity decreased significantly 
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because the crystallization process of PLLA chain segments was strongly prohibited by the 

crosslinks [23]. As demonstrated in Fig. 7.4, crosslinked PLLATA9k became fully amorphous. 

Meanwhile, crosslinked PLLATA11k, 13k, 28k, and 55k were still semi-crystalline and had 

reduced Tm values of 139.2, 149.1, 160.1, and 168.8 °C, respectively.  

 

 

Figure 7.4 DSC curves of the PLLATAs with different molecular weights before and after 

photo-crosslinking.  

 

7.3.3 Crystallinity differences achieved by varying crystallization time  

Photo-crosslinked PLLATA28k networks were melted at 200 ºC then annealed at 70 ºC for 

0, 5, 7, 10, and 20 h to achieve samples with different crystallinities. As shown in the DSC 

curves in Fig. 7.5a, the crystallization peak gradually diminished with increasing the annealing 

time. The calculated c increased from 3.5% to 18.7%, 29.0%, 41.3%, 49.0%, and 49.3% when 

the annealing time increased from 0 to 5, 7, 10, 20, and 40 h, respectively.  
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Figure 7.5 (a) DSC curves and (b) crystallinities of PLLATA28K networks annealed for 

different time at 70 C.  

 

The surface of amorphous PLLATA was homogeneous with dominant amorphous regions. 

When it was annealed, crystals nucleated and grew larger. The crystalline microstructures of 

PLLATA spherulites resulted in surface roughness. As demonstrated in Fig. 7.6a, the surface 

of crosslinked PLLATA gradually became rougher when the annealing time was longer. Rrms 

increased from 20.8 ± 1.3 nm to 22.9 ± 3.9, 28.4 ± 2.8 and 48.1 ± 3.4 nm when the annealing 

time increased from 5 to 7, 10, and 20 h, respectively. In comparison, the samples after 

compression had lower Rrms values of 14.1 ± 1.1, 17.2 ± 0.9, 17.7 ± 0.7, and 15.8 ± 1.2 nm when 

the annealing time was 5, 7, 10, and 20 h (Fig. 7.6b), respectively. To determine whether cell 

culture media affected the surface structures of PLLATA networks, PLLATA network annealed 

at 70 °C for 20 h was placed in the culture medium used for SMCs here at 37 C for 24 h. The 

sample had a similar Rrms value of 46.3 ± 2.8 nm, as displayed in Fig. 7.6c. Amorphous 

PLLATA network was the smoothest with the lowest Rrms of 3.1 ± 1.0 nm, as shown in Fig. 

7.6d.  
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Figure 7.6 AFM images of (a) original and (b) compressed PLLATA network surfaces annealed 

for 0, 5, 7, 10, and 20 h at 70 ºC, (c) PLLATA network crystallized for 20 h and rinsed in DMEM 

for 1 day, and (d) amorphous PLLATA network (crystallized for 0 h).   

 

Surface roughness can affect hydrophilicity [24]. As shown in Fig. 7.7a, a lower water 

contact angle was observed on the fully crystallized samples than the PLLATA networks 

annealed for shorter time periods. However, no obvious differences were observed in the water 

contact angle among all the smooth samples that were compressed. When methylene iodide 

was used to evaluate its interaction with the PLLATA networks, no significant differences were 

observed in the contact angles.  

The total surface energy () and the dispersive (d) and polar (p) components of the surface 

tension were calculated using the Owens-Wendt equation, as reported in literature [25-27]. As 

shown in Fig. 7.7b, the surface energy only increased slightly when the annealing time for 

crosslinked PLLATA increased because of the increase in c. Meanwhile, the amount of serum 

proteins adsorbed on the PLLTA networks was significantly lower when the annealing time 

was 10 or 20 h than on those annealed for short time periods (Fig. 7.7c). The variance in serum 

protein adsorption was not seen for the compressed samples. The differences in surface energy 

and protein adsorption were attributed to the submicron surface morphologies in polymer 

crystallization, which also influenced SMC responses to these PLLATA networks.  
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Figure 7.7 (a) Contact angles of water and CH2I2 on the original and compressed  PLLATA 

networks annealed for different time periods. (b) Surface energies calculated from the contact 

angles on these PLLATA networks. (c) Protein adsorption on these PLLATA networks.  

 

7.3.4 Cellular response to crystallinity differences  

The SMC attachment rates determined at 4 h post-seeding on these crosslinked PLLATA 

films are shown in Fig. 7.8a. For the original films having surfaces from free crystallization 

without being compressed, SMC attachment decreased from 0.93 ± 0.05 on amorphous 

PLLATA network to 0.90 ± 0.02, 0.88 ± 0.02, 0.84 ± 0.03, and 0.73 ± 0.04 when the annealing 

time increased to 5, 7, 10, and 20 h, respectively. On the compressed substrates with similar 

Rrms values, little difference was seen in SMC attachment. To clarify whether the PLLATA 

surface structure diminished in the culture media, we also compared SMC attachment on the 

original and pre-wetted PLLATA network films. As shown in Fig. 7.8b, SMC attachment rates 

were similar on either original or pre-wetted substrates. 
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Figure 7.8 (a) SMC attachment rates on original and compressed PLLATA networks crystallized 

for different time, normalized by the positive control (TCPS) value at 4 h post-seeding. (b) 

SMC attachment rates on original PLLATA networks and the ones that were pre-wetted in cell 

culture media for two days, with TCPS as the positive control.  

 

After adhesion onto a substrate, cells start to spread and cell spreading is important for 

subsequent events such as proliferation and migration [28]. SMC spread areas determined at 

day 1 on original and compressed PLLTA networks are shown in Fig. 7.9. For the original 

PLLATA network films, SMC spreading was altered dramatically by the textured surfaces 

formed in crystallization. When the annealing time was 7 h or longer, significant lower cell 

spread areas of ~3460, ~3040, and ~2870 m2 were found than the amorphous group and the 

samples annealed for a shorter period (Fig. 7.9a). In contrast, little variance was found for SMC 

spreading on the compressed substrates of PLLATA networks, indicated by similar cell spread 

areas of ~4000 m2 (Fig. 7.9b). 
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Figure 7.9 SMC spread area at day 1 post-seeding on (a) original and (b) compressed PLLATA 

networks crystallized for different time.   

 

In agreement with cell attachment, SMC proliferation over 4 days on the PLLATA 

networks decreased substantially when the annealing time was 10 or 20 h (Fig. 7.10a). Again, 

the numbers of SMCs on the compressed films were all similar, regardless of the annealing 

time and culture time. The fluorescence cell images at days 1, 2, and 4 in Fig. 7.10b were 

consistent with the data of cell densities in Fig. 7.10a. When the PLLTA network films were 

not compressed, the highest cell density and the fast cell proliferation appeared on the 

amorphous one whereas cell proliferation was inhibited on the crystallized ones, especially 

when the annealing time was longer. On the other hand, the compressed films with similar Rrms 

values showed similar SMC densities and proliferation rates (Fig. 7.9b).  

 



180 

 

 

Figure 7.10 (a) SMC numbers and (b) fluorescence images of SMCs stained with RP and DAPI 

on original and compressed PLLATA networks crystallized for different time periods of 0, 5, 7, 

10, and 20 h at days 1, 2, and 4 post-seeding, with TCPS as the positive control. *: p < 0.05 

relative to amorphous PLLATA network (crystallized for 0 h). 

 

7.3.5 FAs in SMCs on the substrates 

FAs are a series of dynamic anchoring protein complexes composed of multiple 

components including paxillin, talin, and vinculin [29]. FAs are mostly located at the cell 

periphery to functionalize as structural connectors between internal cytoskeleton and 

extracellular matrix (ECM) [29]. FAs are able to respond to external mechanical signals and 

adjust their own properties and simultaneously trigger mechanotransductions for further 
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regulation of cell growth, spreading, and differentiation [30,31]. As demonstrated in Fig. 7.11a, 

FAs in SMCs on both original and compressed PLLATA network films were labeled as green 

dots, which were similar in their intensities. The cells on the original PLLATA network film 

annealed for 20 h exhibited weaker fluorescence intensities, suggesting that FA development 

was inhibited. As shown in Fig. 7.11b-d, FA area, elongation, and density quantified from the 

images in Fig. 7.11a were consistent in the trend.  
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Figure 7.11 (a) Immunofluorescence images of FA vinculin (green) and cytoskeleton actin (red) 

in SMCs cultured on the original and compressed PLLATA networks crystallized for 0 and 20 

h at day 1 post-seeding.  (b) Area, (c) elongation, and (d) density of FAs in the fluorescence 

images in (a). *: p < 0.05 relative to all the other groups. 

 

 



183 

 

7.3.6 Gene expressions of phenotypic markers and integrin expression 

After seeding, SMCs first adopt the proliferative synthetic phenotype that favors growth 

but lacks contractile functionality. When SMCs reach confluency, they tend to convert from 

the synthetic phenotype into the contractile phenotype, which develop functionality as elastic 

muscle units [32-34]. Regulation of this phenotypic conversion process is of critical importance 

for SMCs in cardiovascular tissue engineering. Here we chose three typical contractile gene 

markers, calponin, and transgelin, to evaluate phyenotypic conversion in SMCs [35,36]. As 

shown in Fig. 7.12a-c, all the three contractile gene markers had lower expression levels in 

SMCs on the original PLLATA network films. Meanwhile, the expression levels were similar 

on the amorphous and compressed films with Rrms values below 20 nm. The above gene 

expression results suggested that the surface pattern and roughness formed in crystallization 

resulted in different phenotypic conversion in SMCs.  

 

 

Figure 7.12 Gene expression levels of three contractile phenotypic markers, (a) smoothlin, (b) 

SM-MHC, and (c) calponin, in SMCs cultured for 4 days on the PLLATA substrates, as 

normalized to that of GAPDH, determined using real-time PCR. *: p < 0.05 relative to the other 

groups. 

 

Integrins in cell membrane are a category of heterodimers consisted of a  subunit and a  

subunit. Different integrins could bind to different ECM proteins and thus play a critical role in 

cell sensing [37-41]. Upon receiving stimulation from the external environment, integrin 

clusters are able to medicate intracellular signal transduction, e.g., activating FA kinase and 
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triggering FA signal transduction [29]. In this study the expression levels of integrin subunits 

were consistent with the characterizations of FAs. As demonstrated in Fig. 7.13a,b, the 

expression levels of two  integrin subunits ( and 5) and two  subunits (2 and 3) were 

lower in the SMCs cultured on original PLLATA network films annealed for 20 h, compared 

with the amorphous one and the compressed one. These results indicated that the integrin 

subunits were also influenced by the surface roughness and thus different integrin expression 

further determined the differences in adhesion-mediated cellular behaviors. 

 

 

Figure 7.13 Expression levels of (a) two alpha integrin subunits , 5 and (b) two beta subunits 

2 and 3, as normalized by that of GAPDH, determined using real-time PCR. *: p < 0.05 

relative to the other groups. 

 

7.4 Discussion 

 

Cells can sense the structural components at the nanometer scale in the blood vessel wall 

[42,43]. There have been many reports on how the nano-scale features in the ECM influence 

vascular cell behaviors, including those of SMCs [42,43]. Decreased cell adhesion and 

proliferation and altered orientation were reported on crystalline PLLA substrates with rough 

surfaces, in comparison with on amorphous, smooth PLLA substrates [16,18]. Here we 

prepared photo-crosslinked PLLATA networks and achieved surface variance by controlling 

the anneal time and crystallinity. Different SMC adhesion, spreading, proliferation, and 

phenotypic conversion were observed on the PLLA network films with different crystallinities 

and roughnesses, whereas the chemical composition was identical. The differences in SMC 
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behaviors were associated with the different rough surfaces formed in crystallization.  

Both enhancing and inhibiting effects of polymer roughness on cell functions have been 

reported [16,17,42-45]. For example, human umbilical vein endothelial cell adhesion and 

growth were better on polyurethane-PEG surfaces with higher nano-scale surface roughness 

[44]. In another study, bladder SMC adhesion was enhanced on poly(lactic-co-glycolic acid) 

(PLGA) and poly(ether urethane) (PU) film surfaces with higher roughnesses [42,43]. In clear 

contrast, lower cell adhesion and proliferation were found when surface roughness was higher 

on PLLA-related polymers, for example, the growth rate of 3T3 fibroblasts was lower on 

crystalline PLLA substrates than on the amorphous counterparts [16]. Pre-osteoblastic MC3T3-

E1 cell proliferation on the smooth PLLA films was found to be significantly higher than that 

on the rough ones and such variation was a monotonic function of roughness [17]. Meanwhile, 

human vascular endothelial cell function was found to be improved on smooth solvent-cast 

PLLA films than electrospun ones with rough surfaces [45]. 

The distinct cell responses to smooth and rough surfaces may be attributed to several 

reasons. Surface energy is believed to be one important factor in affecting cell behaviors [46-

50]. In the present study, no obvious differences in total surface energy were detected on 

PLLATA networks, implying that surface energy might not be a major reason for the 

differences in cellular responses. When a biomaterial surface contacts cell culture medium in 

vitro or blood in vivo, it adsorbs proteins onto the surfaces immediately before attracting cells 

to attach [51-54]. The adsorbed protein layer helps the recognition and adhesion of surrounding 

cells onto the biomaterial surface [55]. Thus the ability of a material surface to adsorb serum 

proteins from the cell culture media is also critical in affecting cell adhesion and other behaviors 

[56-59]. As discussed in Section 3.3, a decrease in protein adsorption was found on the 

PLLATA films annealed for a longer period. Therefore, the difference in the ability of 

adsorbing serum proteins, which was resulted from the different surface roughnesses and 

patterns in crystallization, might account for the distinct cell-material interactions.  

Responding to the proteins adsorbed on the surfaces, cells express a family of receptors 

named integrins for the recognition and binding to a specific category of proteins, followed by 

formation of FAs, subcellular microstructures that connect the cells and the substrate surface 

[60-63]. FAs are further associated with intracellular cytoskeletons, thus the information in FA 
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activities can be transduced to cell nuclei for controlling cell proliferation, spreading, 

differentiation, and gene/protein expression [64,65]. In this study, upregulated integrin 

expression was found on amorphous, smooth PLLATA network films compared with the 

crystalline, rough ones. Characterizations of FAs again demonstrated a larger average size, 

better elongation, and a higher density on the amorphous, smooth films. Taken together, the 

enhanced protein adsorption, integrin expression, and FAs on smooth PLLATA network films 

implied a straightforward signal transduction route for regulating cellular behaviors. The 

extracellular recognition signals from these sensing components are thus believed to account 

for the distinct SMC responses to the surface topography developed in crystallization. 

 

7.5 Conclusions 

 

Novel photo-crosslinkable PLLATAs with different molecular weights from 9k to 55k were 

synthesized and photo-crosslinked under UV light to achieve network substrates. The 

PLLATA28k networks annealed at 70 ºC for varied time periods of 0, 5, 7, 10, and 20 h had 

the same chemical composition but increased crystallinity and surface roughness. Primary rat 

SMCs responded to the substrate crystallinity by exhibiting reduced SMC attachment, 

proliferation, and differentiation on the crystalline PLLATA networks compared with the 

amorphous ones. FA size, elongation, and density, and integrin expression in SMCs were also 

weakened on the crystalline PLLATA networks with rough surfaces compared with the 

amorphous smooth ones. After removal of the difference in surface roughness through 

compression during crystallization, SMC adhesion, proliferation, and differentiation on the 

PLLA network films varied little regardless of the different bulk crystallinities. Surface 

hydrophilicity and free energy were similar among all the PLLA network films while the ability 

to adsorb serum proteins was lower on the PLLATA network films with higher crystallinity 

and surface roughness. 
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Abstract 

 

PCLTA is a promising photo-crosslinkable polymeric biomaterial as crosslinked PCLTA 

has excellent biocompatibility, biodegradability and readily controlled physical properties. 

However, the high hydrophobicity of semi-crystalline crosslinked PCLTA may limit its tissue 

engineering applications. Here I report that the hydrophobic nature of crosslinked PCLTA can 

be greatly relieved when PCLTA was photo-crosslinked with hydrophilic methoxy 

poly(ethylene glycol) monoacrylate (mPEGA). To further clarify the role of mPEGA in 

modification of crosslinked PCLTA, I utilized a series of photo-crosslinked mPEGA/PCLTA 

samples with various m of 0-50% and different mPEGA number-average molecular weights 

of 350, 2000, and 10000 g/mol. Material properties including surface hydrophilicity, friction 

coefficient, roughness, thermal and mechanical properties were characterized. Crosslinked 

mPEGA/PCLTA samples with modified surface physicochemical characteristics were used to 

modulate primary rat SMC attachment, spreading, proliferation, and gene/protein expression. 

With increasing m, SMC attachment on PCLTA networks grafted with short chains of 

mPEGA350 or mPEGA2000 showed a non-monotonic trend with a maximum at m of 5% or 

2%, respectively. When m was higher, SMC attachment and proliferation decreased sharply. 

For the longest chain mPEGA10000 used in this study, SMC attachment decreased 

monotonically with m to zero at m of 7%. Sparsely tethered short PEG chains were found to 

significantly enhance SMC attachment, proliferation, and gene/protein expression by reducing 

the substrate hydrophobicity, while densely tethered short PEG chains or long PEG chains 

diminished SMC attachment and proliferation because of their strong repulsion to proteins and 

cells.  
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8.1 Introduction 

 

Cardiovascular disease is the number one killer in the U.S. and vascular tissue engineering 

holds enormous potential by fabricating synthetic materials into vessel replacements [1]. 

Understanding cell-biomaterial interactions is critical in tissue engineering because biomaterial 

surface interacts with the biological environment directly [2]. The surface physicochemical 

properties and geometrical features of the underlying biomaterial substrates affect cells through 

integrins, focal adhesions (FAs), and various pathways [3]. In the past decades, novel 

degradable polymeric biomaterials have been developed to achieve desirable physical 

properties, biocompatibility, and degradability [4-8]. To ensure successful implantation, it is 

important to understand how candidate biomaterials can be used to tune cell behavior and tissue 

growth [2,9]. 

Among these candidates, photo-crosslinkable polymers are injectable and can be 

manufactured into biomimetic structures using stereolithography [10-18]. Photo-crosslinkable, 

biodegradable poly(-caprolactone) triacrylates (PCLTAs) synthesized in our group were 

fabricated into substrates and scaffolds with well-controlled mechanical properties by 

simultaneously regulating the crosslinking density and network crystallinity through the 

molecular weight of PCLTA [13,18]. When crosslinked PCLTA is semi-crystalline, its 

hydrophobicity may limit the potential tissue engineering applications. Thus it is desirable to 

modify PCLTA networks with hydrophilic polymer chains, for example, polyethylene glycol 

(PEG). PEG has been well applied in improving surface hydrophilicity/wettability, reducing 

protein adsorption and platelet adhesion, and inhibiting immunogenic activities, which are 

crucial for the blood compatibility of a material [19-25]. PEG can be copolymerized, blended, 

grafted, or covalently linked to surfaces mediated by proteins and other functional groups [26-

29]. For example, incorporation of peptide-PEG segment into polyurethaneureas significantly 

enhances the adhesion, spreading, and migration of endothelial cells on the substrates but 

prohibits platelet adhesion [30]. For PCL, in vitro hemocompatibility experiments indicated 

chitosan-g-PCL-b-PEG/heparin-modified PCL resisted platelet adhesion effectively and 

showed good potential for use in vascular tissue engineering [31].   
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SMC is a cell type that is extensively used for blood-vessel engineering with a specific 

feature of phenotypic plasticity [32]. When SMCs are removed from a healthy body or 

encounter a large space for growth, they convert from the functional contractile phenotype to 

the proliferative synthetic one and start fast growth and division [33]. When SMCs are confluent, 

they revert into the contractile phenotype for vascular formation or other functional 

development. Both processes are essential in vascular engineering and the transition between 

the two phenotypes is affected by soluble factors in the culture medium, mechanical properties 

of the substrates, and characteristics of extracellular matrix (ECM) [33,34].  

In this study, I photo-crosslinked PCLTA with three different methoxy PEG acrylates 

(mPEGAs) that were prepared from mPEG precursors with number-average molecular weights 

of 350, 2000 and 10000 g/mol with the compositions of mPEGA (m) of 0-50%. After I 

characterized the mechanical, thermal, and surface properties of photo-crosslinked 

PCLTA/mPEGAs, including tensile modulus, melting temperature (Tm), crystallinity (c), 

surface friction coefficient, water contact angle, and protein adsorption, I used these photo-

crosslinked mPEGA/PCLTAs with well-controlled surface characteristics to modulate SMC 

adhesion, integrin expression, proliferation, and gene expression of contractile phenotypic 

markers. The goal of this study was to evaluate the potential of these photo-crosslinked 

polymers as cardiovascular tissue engineering materials and achieving a better understanding 

about regulating SMCs using polymer substrates.  

 

8.2 Materials and methods  

 

8.2.1 Polymer synthesis and photo-crosslinking 

PCL triol precursor (Fig. 8.1) was synthesized via the ring-opening polymerization of -

caprolactone, initiated by 1,1,1-tris(hydroxymethyl) propane (TMP) in the presence of Sn(Oct)2 

as the catalyst. PCLTA and mPEGA were synthesized through acrylation of PCL triol and 

methoxy PEG (mPEG; Sigma) in the presence of K2CO3, as reported by us [13,18,35]. Three 

mPEGAs, i.e., mPEGA350, mPEGA2000 and mPEGA10000, were named after the nominal 

molecular weights of their mPEG precursors. mPEGA/PCLTA blends with m of 0, 2, 5, 7, 10, 

20, 30, and 50% were dissolved in CH2Cl2 and fully mixed. Phenyl bis(2,4,6-trimethyl benzoyl) 
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phosphine oxide (BAPO, IRGACURE819, Ciba Specialty Chemicals, Tarrytown, NY) was 

used as the photo-initiator. Before crosslinking, 75 L of BAPO/CH2Cl2 (300 mg/1.5 mL) was 

mixed with the solution of 1.5 g mPEGA/PCLTA in 500 L CH2Cl2. Homogenous 

mPEGA/PCLTA blends were crosslinked in a mold, which was composed of two glass plates 

with a silicon spacer, under UV light (SB-100P, Spectroline, wavelength = 365 nm, intensity = 

4800w/cm2) for 20 min, as described previously [35].  
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Figure 8.1 Photo-crosslinking of PCLTA and mPEGA. 

 

8.2.2 Characterization of polymer properties  

Determined using Gel Permeation Chromatography (GPC; PL-GPC 20, Polymer 

Laboratories) with tetrahydrofuran as the eluent and standard monodisperse polystyrene 

samples (Polymer Laboratories) as references, the PCLTA, mPEGA350, mPEGA2000 and 

mPEGA10000 used here had number-average molecular weights of 11350, 320, 2950 and 

13390 g/mol, respectively. Crosslinked mPEGA/PCLTA disks (10 mm × 0.5 mm, diameter × 

thickness) were soaked in acetone for 2 days to remove the sol fraction and unreacted BAPO, 

followed by complete drying in vacuum. Then the dried polymer disks were compressed at 60 

ºC and recrystallized at 37 ºC between two glass plates to flatten their surfaces. The swelling 

ratio and gel fraction of crosslinked mPEGA/PCLTA were obtained in CH2Cl2 using the method 

reported by our research group previously [12,33]. The surface morphology of the polymer 

disks was characterized using atomic force microscopy (AFM) and surface roughness was 

computed. Frictional forces between a stainless steel plate and hydrated polymer disks were 

determined using the rheological method reported previously [35]. The water contact angles on 

the polymer disks were determined at 37 ºC using a Ramé-Hart NRC C. A. goniometer (Model 
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100-00-230, Mountain Lakes, NJ). Serum proteins from cell culture media adsorbed on the 

polymer disks were collected using MicroBCA protein assay kit (Pierce, Rockford, IL) and 

detected on a microplate reader [35]. Thermal properties of the polymer samples were 

characterized using Differential Scanning Calorimetric (DSC) measurements, in which the 

samples were first heated to 100 ºC, then cooled to -80 ºC, and reheated to 80 ºC at a rate of 10 

ºC/min. Tensile strain-stress curves of the polymer samples (0.5 × 2.0 × 10 mm, thickness × 

width × length) were obtained using a dynamic mechanical analyzer (DMTA-5, Rheometric 

Scientific) at a strain rate of 0.01/s at 37 ºC. Rheological properties of the polymer samples at 

both 37 and 60 ºC were determined on a strain-controlled parallel-plate (diameter = 8 mm, gap 

= ~1 mm) rheometer (RDS-2, Rheometric Scientific) in the frequency range of 0.1-100 rad/s. 

 

8.2.3 In vitro cell studies  

Crosslinked mPEGA/PCLTA disks were sterilized in 70% alcohol solution and completely 

dried in vacuum prior to cell studies. Primary SMCs isolated from rat aorta were used to 

evaluate the cellular behaviors on these polymer disks. Cells were cultured with Dulbecco's 

modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) on regular tissue culture 

flasks in the 37 °C incubator prior to seeding [16]. Sterilized polymer disks were rinsed in PBS 

and seeded with SMCs at a density of ~20000 cells/cm2. Tissue culture polystyrene (TCPS) 

was used as the positive control. SMC number was calculated at 4 h, days 1, 2, and 4 post-

seeding. Attached cells on the polymer disks were washed twice in PBS and fixed in 4% 

paraformaldehyde (PFA) solution with cell membrane permeabilised for 10 min using 0.2% 

Triton X-100. Then the cells were incubated with rhodamine-phalloidin (RP) for 1 h at 37 °C 

and 4',6-diamidino-2-phenylindole (DAPI) for 5 min at room temperature to stain cytoplasm 

and nuclei, respectively. Then fluorescent cell images were obtained on an Axiovert 25 light 

microscope (Carl Zeiss, Germany). From these images, cell area was determined using ImageJ 

software (National Institutes of Health, Bethesda) and averaged on 20 non-overlapping cells. 
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8.2.4 Characterization of focal adhesions  

As described in Section 2.3, SMCs cultured on the polymer disks for 1 day were fixed and 

permeabilised. Then the cells were blocked with 1% Bovine Serum Albumin (BSA) in PBS at 

37 °C for 1 h, followed by incubation in monoclonal vinculin primary antibody (1:1000 in PBS; 

Sigma) for 1 h with gentle shaking at room temperature. Then the cells were washed three times 

with PBS to remove unconjugated primary antibody, followed by incubation in goat anti-mouse 

IgG secondary antibody (1:200 in PBS; Sigma) solution for 1 h at room temperature. To 

examine SMC specific filaments, the cells were further stained using RP at 37 ºC for 1 h after 

vinculin staining and photographed on a Leica DM6000B confocal fluorescent microscope. FA 

area and perimeter were measured using ImageJ and averaged on 20 individual FAs from 5 

representative cells. FA elongation was calculated using the inverse of the circularity, which 

was defined by the equation of 4π × area/perimeter2 [36]. FA density, i.e., the number of FAs 

per cell, was also obtained using ImageJ on 5 non-overlapping cells. 

 

8.2.5 Gene expression of contractile phenotypic markers and integrins 

For gene expression of phenotypic markers, primers listed below were designed using 

Oligoperfect software. Calponin: Forward 5'-AGTCTACTCTCTCTTGGCTCTGGCC-3', 

Reverse 5'-CCTGCCTTCTCTCAGCTTCTCAGG-3'; smooth muscle myosin heavy chain 

(SM-MHC): Forward 5'-AAGCAGCTCAAGAGGCAG-3', Reverse 5'-

AAGGAACAAATGAAGCCTCGTT-3'; Transgelin (SM-22): Forward 5'-

GGCAGCTGAGGATTATGGAGTCACG-3', Reverse 5'-

TGGGATCTCCACGGTAGTGTCCA-3'; and house-keeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH): Forward 5'-TCTTCACCACCATGGAGAA-3', Reverse 

5'-ACTGTGGTCATGAGCCCTT-3'. Total RNA was isolated using the RNeasy Mini Kit 

(Qiagen, Valencia, CA) from SMCs that were cultured for 2 days and the total cDNA was 

reverse transcripted using the DyNAmo cDNA synthesis kit (Thermo Scientific) according to 

the manufacturer’s instructions. For each sample, 2.5L of the total cDNA at the same 

concentration of 5 ng/L was added as the template to prepare the mixture with Power SYBR 

Green Polymerase Chain Reaction (PCR) Master Mix (Applied Biosystems, Warrington, UK) 

for a total 20L reaction system. Real-time PCR amplification was conducted on a Peltier 
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Thermal Cycler fluorescence detection system (MJ Research PTC-200 Thermo Cycler) with a 

procedure set as 5 min at 94 ºC followed by the cyclic steps of 30 s at 94 ºC, 30 s at 55 ºC, and 

30 s at 72 ºC. The expression levels of contractile phenotypic markers were normalized to that 

of GAPDH. For integrin expression analysis, the designed primers are listed below. Integrin-

v: Forward 5'-AAGACGCCCGAAAAGAATGAC-3', Reverse 5'-

ATCCCGCTTGGTGATGAGAT-3'; Integrin-1: Forward 5'-

TCTGCCAAACTCAGTCCACGA-3', Reverse 5'-TGACGATCAGCAGGCTCTTTT-3'; 

Integrin-5: Forward 5'-CCTTCCTTCATTGGCATGGA-3', Reverse 5'-

TCTGCATCCTGTCAGCAATCC-3'; Integrin-1: Forward 5'-

AGAGTGCCGTGACAACTGTG-3', Reverse 5'-GAGCCCCAAAGCTACCCTAC-3'; and 

Integrin-3: Forward 5'-GACCCGCTTCAATGACGAA-3', Reverse 5'-

TCACAGACTGTAGCCTGCATGA-3'. The GAPDH primers in integrin expression were the 

same as those used in the expression of phenotypic markers. Total RNA was isolated from 

SMCs cultured for one day and integrin expression was analyzed using the same real-time PCR 

procedure as in phenotypic marker expression. 

 

8.2.6 Calponin protein immunofluorescence staining 

To further substantiate the gene results, immunofluorescence was performed on 4% PFA-

fixed cells using anti-rat calponin primary antibody produced in rabbit (sc-16604-R; Santa 

Cruz). The reaction with primary antibody (1:100 diluted in PBS) was kept at room temperature 

for 60 min before cells were washed with PBS three times. Fluorescein isothiocyanate (FITC) 

conjugated anti-rabbit secondary IgG antibody produced in goat (F0382; Sigma) was used to 

detect the localization of anti-calponin antibodies with a dilution of 1:80 in PBS. Cell nuclei 

were stained with DAPI before photographing on the Axiovert 25 light microscope. 

 

8.2.7 Statistical analysis  

Statistical analysis was performed using one-way analysis of variance (ANOVA) followed 

by Tukey post-test. Any two samples with a p-value lower than 0.05 were considered to have a 

significant difference. 
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8.3 Results  

 

8.3.1 Structural characterization  

The gel fractions of all the polymer networks were larger than 90%, similar to that for 

crosslinked PCLTA, suggesting that mPEGAs were efficiently incorporated into the networks 

(Table 8.1). The swelling ratio of crosslinked mPEGA/PCLTA in CH2Cl2 increased with 

increasing m or the molecular weight of mPEGA (Fig. 8.2a). The value of ~8.4 for crosslinked 

PCLTA increased to 9.3, 9.7, and 9.1 when 50% mPEGA350, 20% mPEGA2000, and 7% 

mPEGA10000 were tethered in the networks. No swelling was seen for all the disks in PBS, 

different from hydrogels made from polymers containing PEG blocks in the backbone [4].  
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Figure 8.2 Swelling ratio of PCLTA and mPEGA/PCLTA networks in CH2Cl2.  
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Table 8.1 Thermal, mechanical, and surface roughness of PCLTA and mPEGA/PCLTA 

networks. 

  m m C 
Gel Fraction 

(%) 
Tm Hm χc E (MPa) Rrms (nm) 

Crosslinked PCLTA 0% 0 0 93.9 ± 4.8 41.7 45.7 33.8 107 ± 4 8.9 ± 0.5 

mPEGA350/PCLTA 2% 0.40 0.04 93.6 ± 0.2 40.9 44.5 32.9 102 ± 5 8.9 ± 0.9 

  5% 0.63 0.09 91.7 ± 0.4 41.8 45.9 34.0 99 ± 4 8.7 ± 0.7 

  7% 0.71 0.12 91.5 ± 1.4 40.5 43.5 32.2 84 ± 5 8.3 ± 1.1 

  10% 0.78 0.17 93.3 ± 1.6 40.6 43.1 31.9 70 ± 2 9.1 ± 0.6 

  20% 0.89 0.32 92.1 ± 0.7 39.2 34.1 25.3 50 ± 6 9.4 ± 0.4 

  30% 0.93 0.45 93.2 ± 1.3 36.9 28.5 21.1 41 ± 9 8.7 ± 1.1 

  50% 0.97 0.65 92.5 ± 0.5 35.0 20.8 15.4 19 ± 5 9.1 ± 0.7 

mPEGA2000/PCLTA 2% 0.90 0.09 95.1 ± 5.0 41.0 45.6 33.8 88 ± 7 8.4 ± 1.0 

  5% 0.77 0.20 94.0 ± 2.6 40.6 45.1 33.4 66 ± 8 9.1 ± 0.6 

  7% 0.70 0.26 93.9 ± 2.9 40.0 42.2 31.2 52 ±6 8.9 ± 0.6 

  10% 0.61 0.35 91.9 ± 4.3 39.0 32.1 23.8 40 ± 8 9.0 ± 0.8 

  20% 0.41 0.54 95.9 ± 4.3 37.2 26.3 19.5 24 ± 4 8.7 ± 0.6 

mPEGA10000/PCLTA 2% 0.02 0.11 98.1 ± 0.3 39.7 44.0 32.6 71 ± 5 9.2 ± 1.0 

  5% 0.06 0.24 92.1 ± 7.8 39.6 42.9 31.8 51 ± 3 8.6 ± 1.2 

  7% 0.08 0.31 90.7 ± 2.3 39.5 40.2 29.8 36 ± 2 9.1 ± 0.8 

 

 

The chemical structures of mPEGAs and mPEGA/PCLTA networks were confirmed using 

the FTIR spectra in Fig. 8.3. The absorption bands at 2900, 1740, and 1635 cm-1 were ascribed 

to the C-H bond, ester carbonyl (C=O) group, and vinyl (-C=C-) groups, respectively [10,16]. 

For crosslinked PCLTA, the carbonyl (C=O) peak was obvious while the vinyl (-C=C-) group 

did not appear, suggesting that the double bonds were consumed in photo-crosslinking. mPEGA 

had apparent C=O and -C=C-, and C-O absorption bands at ~1100 cm-1. With increasing the 

molecular weight of mPEGA, the C=O and -C=C- bands significantly weakened for 

mPEGA2000 because the density of the acrylate end groups was lower for a longer chain. For 

mPEGA10000, the -C=C- and C=O bands were indiscernible. After mPEGA was crosslinked 

with PCLTA, the absorption peaks for crosslinked PCLTA were dominant and the absorption 

peak at 1635 cm-1 no longer existed, indicating that they were fully consumed to ensure that 

mPEGA chains were well grafted into the network. This result was consistent with our previous 

study on grafting mPEGA into PPF networks [35]. 
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Figure 8.3 FTIR spectra of mPEGAs and networks of PCLTA and mPEGA/PCLTA. 
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8.3.2 Surface properties 

AFM images of the surfaces of all these compressed crosslinked mPEGA/PCLTA disks are 

shown in Fig. 8.4a and the root-mean-square roughness (Rrms) values calculated from the images 

were less than 10 nm for all these compressed mPEGA/PCLTA networks (Table 8.1) without 

obvious differences in surface morphology among these samples. Therefore, the role of surface 

roughness in influencing SMC behavior was negligible in the discussion on cell-biomaterial 

interactions. 

 

Figure 8.4 AFM images of mPEGA/PCLTA networks.  

 

The tethered PEG chains in the networks formed coils to cover part of the exposed surface 

and the coverage was highly determined by m and PEG chain length [35,37]. An approximate 

estimation of the coverage ratio of PEG chains in the networks was conducted to achieve a 

better understanding about the surface chemistry. The mean-square radii of gyration Rg
2 for 

both mPEGA and PCLTA chains were calculated using eq. 1. Based on the Kuhn length b of 

0.7 nm for both PEG and PCL [35,38,39] and the number of repeating units N in the polymer 

chain, Rg
2 values were calculated to be 15.2, 0.9, 12.7, and 78.0 nm2 for PCLTA, mPEGA350, 

mPEGA2000 and mPEGA10000, respectively. The molar compositions of mPEGA (m) in the 

mPEGA/PCLTA networks were converted from m. The approximate coverage (C) of mPEGA 

chains on the network surface was calculated using eq. 2. Both m and C are listed in Table 8.1. 

At the same composition, a shorter mPEGA resulted in a lower C. For example, at m of 2%, C 

increased from 0.04 for mPEGA350 to 0.09 and 0.11 for mPEGA2000 and mPEGA10000, 

respectively. When m was 7%, the longer chain mPEGA10000 had a higher C value of 0.31 

while mPEGA350 and mPEGA2000 had C values of 0.12 and 0.26, respectively. These 
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calculated Rg
2 and C values indicated that longer mPEGA chains formed larger coils and 

covered a larger portion of the polymer surface area. 
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The hydrophilicity of PCLTA networks was greatly improved by tethering PEG chains, as 

indicated by a sharp decrease in the water contact angle from 79 ± 2° on crosslinked PCLTA to 

39 ± 4°, 5 ± 2°, and 14 ± 2° on PCLTA/mPEGA networks with 50% mPEGA350, 20% 

mPEGA2000, and 7% mPEGA10000, respectively (Fig. 8.5a). The improved hydrophilicity, 

which was more prominent at higher m, indicated that hydrophilic PEG chains indeed appeared 

on the network surfaces efficiently. At the same m, the surface grafted with longer PEG chains 

was more hydrophilic. For example, at m of 7%, the water contact angles were 65 ± 2°, 21 ± 

3°, and 14 ± 2° for the networks grafted with mPEGA350, mPEGA2000, and mPEGA10000, 

respectively. Meanwhile, the ability of adsorbing serum proteins from the culture media 

decreased continuously with increasing m for all three series of PCLTA/mPEGA networks 

because of the repulsive effect of grafted PEG chains, especially for the longer ones [37].  
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Figure 8.5 Surface wettability and protein adsorption capability. (a) Water contact angle. (b) 

Total serum protein adsorption from cell culture medium.   

 

 

Surface lubrication to reduce friction can minimize inflammation and toxicity from wear 

debris, facilitate easy insertion and removal of biomedical devices, and improve the 

machinability of the materials [28]. Grafting PEG chains to surfaces is a widely used method 

to create low-friction surfaces [28,40,41]. For crosslinked mPEGA/PCLTA disks, a linear 

relationship between the frictional force F and the normal force W is shown in Fig. 8.6a based 

on Amonton’s law F = μW [40,41]. The frictional coefficient μ was obtained from the slope of 

the fitted line [35]. As shown in Fig. 8.6b, μ was 0.82 ± 0.02 for crosslinked PCLTA and it 

decreased continuously after PEG was tethered into the networks. The μ values for 50% 

mPEGA350, 20% mPEGA2000 and 7% mPEGA10000 were 0.18 ± 0.01, 0.12 ± 0.01 and 0.22 

± 0.03, respectively. The reduced friction coefficients confirmed that PEG chains appeared on 

the network surface, similar to the finding in PPF/mPEGA networks reported previously by our 

research group [35]. Moreover, the ability of longer tethered PEG chains in reducing friction 
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was higher, as demonstrated in Fig. 8.6b. At the same m of 5%, the  values were 0.54 ± 0.04, 

0.34 ± 0.03, and 0.31 ± 0.02 for networks grafted with mPEGA350, mPEGA2000, and 

mPEGA10000, respectively.  
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Figure 8.6 Surface lubrication characterization. (a) Normal force and Friction force curves 

between a stainless steel plate and disk of mPEGA/PCLTA networks. (b) Frictional coefficient 

calculated from the slope of these curves. 

 

8.3.3 Thermal, mechanical, and rheological properties 

DSC curves in Fig. 8.7 were used to characterize the thermal properties of mPEGA/PCLTA 

networks. Tm, heat of fusion (Hm), and χc obtained from the DSC curves are listed in Table 

8.1. With increasing m, a small decrease in Tm was seen because that the tethered mPEGA 

chains in the networks interrupted the crystallization process of PCL segments. For the 

networks with m lower than 10%, the decrease in Tm was almost negligible. When m was 

greater than 10%, the Tm of the network decreased to 39.2, 36.9, and 35.0 ºC for 20%, 30%, 

50% mPEGA350, and to 37.2 ºC for 20% mPEGA2000, respectively.  
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Figure 8.7 DSC curves of the samples.  

 

Representative stress-strain curves of mPEGA/PCLTA networks obtained at 37 ºC are 

shown in Fig. 8.8a-c. The networks gradually became weaker at higher m and the strain at 

break (εb) generally increased with increasing m, indicating that mPEGA/PCLTA networks 

were more elastomeric than stiffer and stronger crosslinked PCLTA. Tensile moduli (E) 

calculated from the curves decreased significantly with increasing m in the networks (Fig. 

8.8d). The reason was that mPEGA with only one acrylate group lowered both crystallinity and 

crosslinking density. At the same m, longer PEG chains reduced the tensile modulus of the 

PCLTA network more, as also observed in mPEGA/PPF networks [35]. The rheological 

properties of PCLTA/mPEGA networks at both 37 and 60 ºC are demonstrated in Figs. 9a-f. 

The storage modulus (G') decreased continuously with increasing m at 37 ºC, indicating that 
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both crystallinity and crosslinking density were reduced after incorporation with mPEGA (Fig. 

8.9a-c). At 60 ºC, mPEGA/PCLTA networks were amorphous. In this scenario, G' was only 

determined by the crosslinking density and decreased by increasing m (Fig. 8.9d-f). At the 

same m, G' decreased gradually when mPEGA was shorter because its number of double bonds 

was more to be graft points to cause imperfect networks. 
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Figure 8.8 Strain-stress curves for crosslinked (a) mPEGA350/PCLTA, (b) 

mPEGA2000/PCLTA and (c) mPEGA10000/PCLTA networks at 37 ºC. (d) Tensile moduli.  
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Figure 8.9 G' and  vs. frequency of the crosslinked mPEGA/PCLTA networks measured at (a-

c) 37 ºC and (d-f) 60 ºC.  

 

8.3.4 SMC behavior on the polymer disks 

SMC attachment on the polymer disks at 4 h post-seeding normalized by the positive control 

value is shown in Fig. 8.10a. For the networks grafted with mPEGA350 and mPEGA2000, 

SMC attachment showed a non-monotonic trend with increasing m. For crosslinked 

mPEGA350/PCLTA, SMC attachment increased 0.48 ± 0.07 to 0.55 ± 0.05 and 0.60 ± 0.02 

when m increased from 0% to 2% and 5%, respectively. Beyond 5%, SMC attachment 

decreased sharply to almost zero at m of 50%. Crosslinked mPEGA2000/PCLTA had a similar 



211 

 

trend with a lower m of 2% to show the maximal attachment and also a lower m of 20% to 

show almost zero attachment because of the stronger repellent effect of the densely grafted PEG 

chains on the network surface. For crosslinked mPEGA10000/PCLTA, SMC attachment was 

reduced dramatically and monotonically in a narrow composition range of 2-7%. The effect of 

the length of tethered PEG chains on SMC attachment was evident and can be exemplified 

using m of 5%, at which the value decreased from 0.60 ± 0.02 for mPEGA350 to 0.45 ± 0.04 

and 0.11 ± 0.05 for mPEGA2000 and mPEGA10000, respectively.   

Cell spreading is critical for cell migration and proliferation [42]. It can be quantified using 

cell area after 1 day culture. As demonstrated in Fig. 8.10b, cell area followed the same trend 

as in cell attachment in terms of dependence on both m and the length of tethered PEG chains. 

These data indicated that a small fraction of tethered PEG short chains lowered the surface 

hydrophobicity of crosslinked PCLTA and SMC attachment was therefore improved. In contrast, 

mPEGA10000 with a longer length dramatically decreased the water contact angle to values 

lower than 50° and generated a strong repulsion to protein adsorption and SMC attachment 

even at m of 2%. When m was 5%, mPEGA2000 also showed repulsion to SMCs, as their 

attachment and spread area were reduced to 0.45 ± 0.04 and 4100 ± 570 m2, respectively. At 

this m, mPEGA10000 resulted in even lower SMC attachment of 0.11 ± 0.05 and spread area 

of 1870 ± 460 m2 while mPEGA350 resulted in higher values of 0.60 ± 0.02 and 4960 ± 840 

m2. mPEGA350 did not show cell adhesion inhibition effect until when m was 7%, at which 

SMC attachment and spread area were reduced to 0.48 ± 0.05 and 4190 ± 730 m2, respectively. 

In contrast, SMC adhesion was fully prohibited on the substrates grafted with 7% 

mPEGA10000. As found in attachment, SMC proliferation over 4 days on the networks of 

mPEGA350/PCLTA and mPEGA2000/PCLTA also demonstrated non-monotonic dependence 

on m by showing a peak at m of 5% and 2% before sharp decrease to almost zero at m of 50% 

and 20%, respectively. SMC proliferation on mPEGA10000/PCLTA networks was reduced 

substantially and continuously as expected.  
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Figure 8.10 SMC attachment and spread area. (a) SMC attachment at 4 h post-seeding on 

crosslinked mPEGA/PCLTA networks. (b) SMC area after 1 day culture on these networks. **: 

significant difference (p < 0.05) between mPEGA350/PCLTA (m = 5%) and PCLTA (m = 0%). 

*: significant difference (p < 0.05) between mPEGA2000/PCLTA (m = 2%) and PCLTA (m = 

0%).  

 

The images of SMCs stained with both RP and DAPI at different time points are 

demonstrated in Fig. 8.11b and the cell numbers were consistent with those in Fig. 8.11a. The 

best spread-out cell phenotype and the fastest cell proliferation were found on crosslinked 

PCLTA/mPEGA350 with m of 5% and crosslinked PCLTA/mPEGA2000 with m of 2%. On 

the networks tethered with either short PEG chains at high m or long PEG chains at any m, 

SMCs were small and round in morphology and slow in proliferation. SMCs cultured on 

crosslinked PCLTA/mPEGA10000 for several days still showed a sparsely distributed pattern 

because of the strong repulsive effect of the tethered PEG chains [19,23,24,26,28].   
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Figure 8.11 SMC proliferation and images. (a) SMC number at days 1, 2, and 4 post-seeding 

using TCPS as positive control. (b) Cells on these networks stained by RP and DAPI at days 1, 

2, and 4 post-seeding. *: significant higher (p < 0.05) than corresponding value on crosslinked 

PCLTA (m = 0%) network. 

 

SMCs are not terminally differentiated and have the potential to modulate their phenotype 

as the response to changes in environmental conditions including substrate stiffness, growth 

factors, surface proteins, and ECM chemical properties [43]. Based on that fact that SMC 

attachment and proliferation were improved on PCLTA networks tethered with a small portion 

of short PEG chains, I further analyzed the expression levels of representative contractile 
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markers on these substrates using real-time PCR. Among the contractile markers analyzed in 

this study, smoothlin, calponin, and SM-MHC showed significant differences in SMCs cultured 

on PCLTA/mPEGA350 networks with three representative m of 0%, 5%, and 10%. After 

normalization to the value on crosslinked PCLTA, the expression level of smoothlin was 

significantly higher (p < 0.05) at m of 5% compared with the value at m of 10% (Fig. 8.12a). 

The expression levels of calponin and SM-MHC at m of 5% were significantly higher than the 

values at the other two m (Fig. 8.12b-c).  

 

 

Figure 8.12 Normalized relative expression level of contractile marker (a) smoothlin, (b) 

calponin and (c) SM-MHC in SMCs on mPEGA350/PCLTA networks with different m at day 

2 post-seeding. (d) The immunofluorescence staining of a contractile marker protein, calponin, 

in SMCs on mPEGA350/PCLTA networks with different m at day 2 post-seeding. *: p < 0.05; 

**: p < 0.05 relative to the other samples. 

 

The content of calponin, a critical contractile phenotypic marker, was analyzed using 

fluorescence immunostaining. As shown in Fig. 8.12d, the nuclei and calponin in SMCs were 

stained blue and green, respectively. Consistent with SMC proliferation discussed in Section 

3.4, more cells appeared on the network grafted with 5% mPEGA compared with crosslinked 
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PCLTA and 10% mPEGA. As indicated by stronger immunofluorescence intensity, a larger 

fraction of SMCs expressing calponin and more calponin in each cell were found on the network 

grafted with 5% mPEGA. The result that SMCs on PCLTA/mPEGA350 networks with m of 

5% had upregulated expression of contractile markers indicated that modification of PCLTA 

networks with a small fraction of short PEG chains better supported phenotypic conversion 

from synthetic to contractile SMCs as well as SMC attachment and proliferation. 

 

8.3.5 Focal adhesions of SMCs 

FAs are dynamic anchoring protein complexes that connect the internal cell cytoskeleton to 

the ECM [44]. Elongated FAs are mostly located at the cell periphery and contain a set of 

different proteins, in particular, paxillin and vinculin [44]. FAs can respond to different 

intracellular tensions and adjust their elongation and size to form super-mature adhesion 

subtypes [45]. Changes in formation of adhesion complexes give responsive signals to the 

pathways of intracellular signaling and cytoskeletal transduction, and ultimately affect cellular 

behaviors [46].  

Stronger, denser, and larger FAs were observed in SMCs cultured on PCLTA/mPEGA (m 

= 5%) networks for 1 day compared with m of 0 and 10%, shown as bright green punctate 

spots in Fig. 8.13a. Quantification of FAs is shown in Fig. 8.13b-d. At m of 10%, the FAs in 

SMCs were the smallest and their density was also the lowest. In Fig. 8.13c, elongation of FAs 

quantified using the inverse of FA circularity was significantly higher at m of 5% than that at 

10%. The FA density, defined as the number of FAs per cell, was significantly higher at m of 

5% than the values at m of 0 and 10% (Fig. 8.13d). All these significant differences in the 

characteristics of FAs in SMCs on substrates with different PEG grafting densities confirmed 

that FAs can sense the substrate properties and adjust themselves accordingly. PCLTA networks 

grafted with short chain mPEGA350 at m of 5% could trigger stronger FAs and facilitate SMCs 

to attach onto the substrate surface than m of 0 or 10%.   
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Figure 8.13 Characterizations of focal adhesions. (a) Confocal microscope images of SMC 

filaments and focal adhesions stained using RP and vinculin antibodies at day 1 post-seeding. 

(b) Focal adhesion area, (c) elongation in SMCs, and (d) density on crosslinked 

mPEGA350/PCLTA substrates. *: p < 0.05 relative to the other samples; **: p < 0.05 relative 

to crosslinked PCLTA. 

 

8.3.6 Integrin expression  

The sensing process of FAs in cells to the ECM was recognized to involve different subunits 

in FA complexes. More than 20 functional sub-components have been identified in FA 

complexes, including vinculin, talin, paxillin, focal adhesion kinase (FAK), and integrins [47]. 

Integrins are a series of heterodimers formed by two distinct chains named as  and  subunits 

[48]. Integrins located across the cell membrane can link to different ECM proteins with the 

external end and to intracellular molecules via adapter proteins, thus they play critical roles in 

signal transduction in FAs [48]. Various combinations of integrin subunits are capable of 

binding to different proteins, for example, 21 and 51 are important cellular receptors for 

SMC adhesion to collagen and fibronectin while v5 and v3 are for vitronectin and 
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osteopontin [49].  

To understand why distinct FAs appeared in SMCs cultured on the networks grafted with 

different m, I further analyzed expression levels of several major integrin subunits in SMCs at 

day 1 using real-time PCR. Three  subunits (v, 1, and 5) and two  subunits (1 and 3 all 

had significantly different expression levels (p < 0.05) on the three selected 

PCLTA/mPEGA350 networks with m of 0, 5, and 10% (Fig. 8.14). For integrin subunits v, 

5, and 3, their expression levels were significantly higher (p < 0.03) when m was 5% than 

those on crosslinked PCLTA. For integrin subunits 1 and 1, there were no significant 

differences between crosslinked PCLTA and the network with m of 5%. In contrast, the 

expression levels of 1 and 1 were significantly lower at m of 10% compared with those at m 

of 5%. Upregulated expression of these integrin subunits in SMCs on PCLTA/mPEGA350 

networks with m of 5% was well correlated with the results on FAs, cell spreading, attachment, 

and proliferation as these integrin subunits are capable of forming different integrin 

combinations such as v3, 13, 11, 51, which play critical roles in signal transduction 

regulating cellular adhesion, spreading, and proliferation [50].  
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Figure 8.14 The integrin alpha subunit (a) and beta subunit (b) gene expression level in SMCs 

on PCLTA networks with 0, 5, and 10% of mPEGA350 at day 1 post-seeding. The expression 

was normalized to the house keeping gene GAPDH. *: p < 0.05. 
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8.4 Discussion 

 

In order to improve surface hydrophilicity, hydrophobic polymer substrates are often 

modified by grafting PEG chains on the surface through a variety of methods [51,52]. For 

example, PEG chains were immobilized on the surface through atmospheric pressure glow 

discharge treatment to improve biocompatibility of hydrophobic intraocular lens and repellency 

of the attachment, spreading and growth of platelets, macrophages and lens epithelial cells was 

observed on the PEG-modified lens [51]. In another study, anti-fouling and blood compatibility 

were highly improved by esterifying PEG chains on the surface of poly(acrylonitrile-co-maleic 

acid) membranes [52]. The effectiveness of surface modification was influenced by the PEG 

chain length and the best performance was achieved when the molecular weight of PEG was 

400 g mol-1 [52]. Unlike the above surface grafting methods, the PCLTA networks grafted with 

PEG chains in this study were homogeneous not only on the surface but also in the bulk, even 

after degradation. In addition, the density of grafted PEG chains can be readily controlled by 

adjusting the mPEGA/PCLTA blend composition and consequently their surface and bulk 

material properties were all tuned in a monotonic manner. Tethered PEG chains in the networks 

reduced the crosslinking density and inhibited the crystallization process of PCL segments. 

Therefore, with the increase of m, evidently decreased Tm, c, and tensile modulus were found. 

In our previous reports, crosslinked PCL acrylate substrates with lower c and stiffness are 

believed to less support pre-osteoblastic MC3T3-E1 cell and SMC adhesion and proliferation 

[13,18]. The surface morphology of the underlying substrate can also influence cell responses; 

however, this effect was ruled out because all the samples were compressed to achieve a similar 

surface roughness. After more PEG chains were grafted into the networks, the original 

hydrophobic surface became more hydrophilic continuously. When the water contact angle was 

~50°, surface energy and hydrophilicity were reported to be the most appropriate for cell 

attachment and proliferation [34,42].    

The protein adsorption ability of a polymer surface is often related to its hydrophilicity [2]. 

Neither too hydrophilic nor too hydrophobic surfaces favor cells attachment because of low 

protein or non-adhesive protein adsorption [2]. In molecular models in Fig. 8.15, the PEG layer 

grafted on a polymer substrate provides an interfacial barrier to prevent the serum proteins from 
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reacting with the substrate [53,54]. Proteins approach to the substrate surface by diffusion and 

this step is influenced by the hydrophobic interaction free energies, van der Waals attraction, 

and steric repulsion between the surface and proteins [53,54]. Closer approaching of proteins 

to the surface compresses the PEG grafted chains and induces a steric repulsion effect while 

the van der Waals component with the substrate weakens with increasing the grafting density 

and the PEG chain length [53-55]. These models can well explain that serum protein adsorption 

by the networks studied here was not significantly changed when a small amount of short PEG 

chains was grafted onto the network but it was reduced significantly when the PEG grafted 

chains were more or longer.  

The effect of PEG grafted chain density on SMC behavior was well demonstrated by a non-

monotonic trend of SMC adhesion and proliferation, gene expression of integrin subunits and 

contractile phenotypic markers on mPEGA350/PCLTA networks. Hydrophobic surfaces can 

adsorb non-adhesive proteins and denature adhesive proteins [2]. Sparsely grafted short PEG 

chains on the surface could relieve the hydrophobic property to a favorable extent and thus 

increase the wettability and adsorption of adhesive proteins, which consequently facilitated 

SMCs to attach and proliferate better (Fig. 8.15a). However, the hydrophilicity and antifouling 

ability increased with increasing the density of PEG grafted chains [56]. The gathering of 

crowded PEG chains on the surface repel serum proteins and cells [23,24,57]. The repulsion 

originates from the steric stabilization force and chain mobility effect of the grafted PEG chains 

[58]. Proteins, blood components, or cells have to be in contact with the foreign surface longer 

than certain time to reach stable adhesion while rapid movements of the densely hydrated chains 

on the substrate prevent the stagnation on the surface, shorten the contact time, and then inhibit 

adhesion [58].  
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Figure 8.15 Scheme of grafted PEG chain coils on the surface of crosslinked PCLTA networks. 

Three different lengths PEG chains of (a) PEG350, (b) PEG2000 and (c) PEG 10000 form 

varied chain coverage on the surface, hence differed protein repelling effects resulted by 

covering PEG chains motilities.  

 

As discussed in Results, longer PEG chains formed larger coils to cover a larger fraction of 

the surface at the same m (Fig. 8.15b-c). Thus the critical m for mPEGA10000 to exhibit 

strong repulsion was much lower than that for mPEGA350. Cell attachment, spreading and 

proliferation increased for the networks grafted with mPEGA350 and mPEGA2000 when m 

was sufficient low. The same surface coverage of 0.09 was achieved when 5% mPEGA350 or 

2% mPEGA2000 was grafted into the PCLTA network. mPEGA10000 had stronger ability in 

reducing surface hydrophobicity, larger volume restriction, and higher chain mobility (Fig. 

8.15c). To reach the same surface coverage of 0.09, m for mPEGA10000 should be only 1.4%, 

lower than the lowest value of 2% tested in this study. Therefore, mPEGA10000 prohibited 

SMC attachment and proliferation even throughout the composition range, in agreement with 

previous reports on stronger protein repellence and cell adhesion elimination for longer PEG 

graft chains [37,59]. This protein/cell repellency from the tethered PEG chains in polymer 

networks was also reported by us to be effective for MC3T3-E1 cells and nerve cells [35,60]. 

The effective repellency of proteins and cells together with reduced surface friction at high m 

while promoted cell behavior and improved surface wettability at low m suggest the high 

potential of crosslinked mPEGA/PCLTA used as candidate materials in fabricating biomedical 

devices. Based on the current findings on tuning surface properties and cell behavior, I will 

further investigate better design and modification strategies for biomaterials and scaffolds for 

cardiovascular tissue engineering applications.  
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8.5 Conclusions   

 

A series of photo-crosslinked mPEGA/PCLTA networks with various m and three mPEGA 

molecular weights was developed to modulate bulk and surface properties and then to regulate 

SMC behavior. The PEG chains grafted on the surface of crosslinked PCLTA networks 

significantly reduced surface hydrophobicity, frictional coefficient, and serum protein 

adsorption. Longer PEG chains had a more prominent effect in modifying these surface 

properties. Unlike the continuous change in surface properties, rat primary SMC adhesion and 

proliferation exhibited non-monotonic dependence on m and maximized at ~5% for the 

networks grafted with mPEGA350 and ~2% for those with mPEGA2000. The expression levels 

of three contractile gene markers for SMCs cultured on crosslinked mPEGA350/PCLTA 

substrates also demonstrated a similar trend by having maxima at m of 5%. For mPEGA10000 

with the longest chain length, a sharp, monotonic decrease was found in both SMC attachment 

and proliferation. This study clearly demonstrated that grafting a small fraction of short PEG 

chains to PCLTA networks promoted the behaviors of SMCs cultured on them by reducing 

surface hydrophobicity. In contrast, a high fraction or long PEG tethered chains could 

significantly prohibit SMC adhesion and proliferation via strong repulsion to cells and cell-

adhesive proteins.    
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Chapter IX. Poly(-Caprolactone) Networks Tethered with Dangling Poly(L-

Lysine) Chains for Promoting Smooth Muscle Cell Functions 
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Abstract 

 

Extracellular microenvironments are critical for cell adhesion, phenotype, proliferation, 

differentiation, and gene/protein expression. The majority of the components in the 

microenvironments, such as adhesive proteins, growth factors, and cytokines, have diversified 

electronic properties. Poly(L-lysine) (PLL) is a type of cationic polypeptide often used for 

enhancing cell adhesion by providing positive charges. Here I developed a series of polymer 

networks with PLL dangling chains through photo-crosslinking PCLTA with a number-average 

molecular weight (Mw) of 7,020 g/mol with a photo-polymerizable PLL at different PLL 

compositions of 0.5%, 1.0%, 1.5%, and 3%. PCLTA networked grafted with dangling PLL 

chains were more hydrophilic and can adsorb more serum proteins from the cell culture media. 

Primary rat smooth muscle cells were cultured on these polymer networks and their attachment, 

spreading, proliferation, focal adhesions, expression of four contractile gene markers (SM-

MHC, smoothlin, transgelin, and calponin) and one contractile protein, calponin, were 

characterized systematically. An optimal composition of PLL at 1% in the polymer networks 

was found to exist to promote the SMC performance best.   
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9.1 Introduction  

 

Cardiovascular disease is the largest health threat in the United States, causing over 1 

million deaths annually and accounting for tremendous health care costs [1]. Tissue engineering 

is a promising approach for cardiovascular disease treatment through developing biocompatible 

constructs that can support damaged cardiac tissue and supplement some functions for injured 

extracellular matrix (ECM) [2-6]. Biodegradable polymers are a popular category of 

biomaterials used in tissue engineering because of their tunable physicochemical and 

topographical properties and feasibility of being fabricated into numerous structures [7-19]. 

Inspired by the ECM components, numerous synthetic polymers have been developed for 

promoting cell adhesion, proliferation, and differentiation [20-22].  

Surface characteristics such as chemical, mechanical and topographical properties of 

biomaterials are known factors in regulating cellular responses and tissue interactions when 

they are used in tissue engineering applications [12,23,24]. Among many chemical factors 

positive charges on the biomaterial surface can significantly influence cellular activities [25-

29]. Cationic poly(L-lysine) (PLL) is a polypeptide that can provide positive charges to 

facilitate cell adhesion and strengthen cell functions through electrostatic interactions with 

anion sites on cytoplasmic membrane [29-32]. The typical methods used to incorporate PLL 

chains always involve the functionalization of amino groups, which causes a loss of charges 

due to less dissociation for secondary amine groups [30-32].  

To address this issue, photo-polymerizable PLL (Fig. 9.1) was synthesized in our research 

laboratory through ring-opening polymerization of carbobenzyloxy-L-lysine-N-

carboxyanhydride (Z-L-Lys NCA) using allylamine as the initiator [33,34]. The yielded PLL is 

end-capped with reactive an allyl group that has a double bond and thus can be covalently linked 

into polymeric networks, for example, hydrogels based on polyethylene glycol diacrylate 

(PEGDA) for promoting nerve cell functions [33,34]. Poly(-caprolactone acrylates) (PCLTAs, 

Fig. 9.1) are a series of photo-crosslinkable and biodegradable polymers also developed in our 

research laboratory and have been fabricated into different substrates and structures for 

regulating nerve cells, bone cells, and SMCs [11,35-39]. In particular, PCL acrylate networks 

were grafted with PEG chains to achieve better wettability, which improves adhesion and 
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proliferation of nerve cells and SMCs [39,40]. Here I incorporated PLL dangling chains into 

PCLTA networks (Fig. 9.1) to explore the influence of positive charges on SMC attachment, 

proliferation, and gene expression of phenotypic markers. . Four weight compositions of PLL 

(PLL) of 0.5, 1, 1.5, and 3% in PCLTA networks were studied and compared with the neutral 

PCLTA network.   

 

 

Figure 9.1 Photo-crosslinking of PCLTA with photo-polymerizable PLL. 

 

9.2 Materials and methods 

 

9.2.1 Photo-crosslinking of PCLTA/PLL and characterizations 

PCLTA with a number-average molecular weight (Mn) of 7,020 g/mol and weight-average 

molecular weight (Mw) of 8130 g/mol and photo-polymerizable PLL (Mn = 1,990 g/mol, Mw = 

2,120 g/mol) were synthesized according to previous reports from our laboratory [11,33,34]. 

All the other chemicals used in this study were purchased from Sigma-Aldrich (Milwaukee, 

WI) unless noted otherwise. PCLTA and PLL with desired weight ratios were dissolved in DMF 

at polymer:solvent weight ratios of 1:2. A high-intensity long-wave UV lamp (SB-100P, 

wavelength= 365 nm, Intensity = 4800 w/cm2) was used to photo-crosslink the blends of 

PCLTA and PLL. Phenyl bis(2,4,6-trimethyl benzoyl) phosphine oxide (BAPO, IRGACURE 

819, Ciba Specialty Chemicals, Tarrytown, NY) was the photo-initiator (0.2 g BAPO for 1 ml 

PCLTA/PLL/BAPO/DMF solution). Homogeneous PCLTA/PLL/BAPO/DMF solution was 

filled in a silicon mold with round holes (10 mm × 0.5 mm, diameter × thickness) between two 

glass plates and crosslinked under the UV light for 20 min. The crosslinked polymer disks were 

dried completely in vacuum and then soaked in acetone for two days to remove BAPO and sol 
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fraction, followed by rinse with new acetone three times and complete drying in vacuum. Water 

contact angles on these polymer disks were determined using a Ramé-Hart NRC C. A. 

goniometer (Model 100-00-230, Mountain Lakes, NJ)  with 20 l droplets at 37 °C and 

repeated for 4 times. The amounts of serum proteins adsorbed on the polymer disks from the 

cell culture media (see Section 2.2) were analyzed using a MicroBCA protein assay kit (Pierce, 

Rockford, IL) and a micro-plate reader (SpectraMax Plus 384, Molecular Devices, Sunnyvale, 

CA), using the procedures reported by us previously [41].  

 

9.2.2 In vitro cell studies  

Prior to cell studies, the polymer disks were sterilized in 70% alcohol solution and dried in 

vacuum. Primary SMCs isolated from rat aorta stored in a liquid nitrogen tank were thawed and 

cultured in Dulbecco's modified eagle medium (DMEM) with 10% fetal bovine serum (FBS) 

in tissue culture polystyrene (TCPS) flasks. Cell culture was proceeded in an incubator with 5% 

CO2 and saturated humidity (>90%) at 37 °C [42]. When SMCs were confluence, they were 

detached using trypsin-EDTA solution (Gibco) and collected using centrifuge at 1000 rpm for 

3 min. SMCs were seeded onto the sterilized polymer disks at a density of ~20000 cells/cm2 in 

a 48 well TCPS plates, using empty TCPS wells without samples as the positive control. The 

numbers of SMCs on the polymer disks and control sample at 4 h and days 1, 2, and 4 post-

seeding were measured using MTS assay solutions (CellTiter 96 Aqueous One Solution, 

Promega, Madison, WI) and a micro-plate reader (SpectraMax Plus 384, Molecular Devices, 

Sunnyvale, CA) at the wavelength of 490 nm. For fluorescence imaging on an Axiovert 25 

fluorescence microscope (Carl Zeiss, Germany), the cells on the polymer disks at 4 h and days 

1, 2, and 4 post-seeding were fixed in 4% paraformaldehyde (PFA) solution for 10 min after 

washed twice in phosphate buffered saline (PBS) solution. Then SMCs were permeabilized in 

0.2% Triton X-100 solution for 10 min at room temperature before incubation in rhodamine-

phalloidin (RP) solution for 1 h at 37 °C and 4',6-diamidino-2-phenylindole (DAPI) for 5 min 

at room temperature to stain cytoplasm and cell nuclei, respectively. Cell area was determined 

and averaged from the fluorescence images of 20 non-overlapping cells using ImageJ software 

(National Institutes of Health, Bethesda). 
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9.2.3 Characterization of focal adhesions in the SMCs  

SMCs at day 1 post-seeding were fixed and permeabilized using the same procedures 

described in Section 2.2. To block unspecific binding sites, the cells were incubated 1 h with 

1% Bovine Serum Albumin (BSA) in PBS at 37 °C, then washed three times to remove extra 

BSA from the cell membrane. Monoclonal vinculin primary antibody solution (1:1000 in PBS; 

Sigma) was used to target specific vinculin binding sites. After incubation with the primary 

antibody solution for 1 h at room temperature, the cells were further washed in PBS to remove 

unconjugated antibody. Goat anti-mouse IgG secondary antibody (1:200 in PBS; Sigma) 

solution was used to conjugate fluorescence groups onto the vinculin primary antibody to stain 

the focal adhesions (FAs) in the cells for 1 h at room temperature. Using the same procedures 

described in Section 2.2, SMCs were further stained with RP and DAPI to visualize cytoplasm 

and cell nulei, respectively. FAs were observed and photographed using a Leica DM6000B 

confocal fluorescent microscope. The density of FAs or the average number of FAs per cell was 

obtained as from five individual cells in the images. The average area of FAs was measured 

over 20 individual FAs using ImageJ. Based on the area and perimeter of a FA, its elongation 

was characterized using the inverse of its circularity calculated using the equation of 4π × 

area/perimeter2 [43].  

 

9.2.4 Gene expression analysis of contractile phenotypic markers  

To characterize phenotypic conversion of SMCs on the polymer disks, the expression levels 

of typical contractile gene markers were analyzed. Primers used in gene analysis were designed 

using Oligoperfect software: smooth muscle myosin heavy chain (SM-MHC): forward 5'-

AAGCAGCTCAAGAGGCAG-3', reverse 5'-AAGGAACAAATGAAGCCTCGTT-3'; 

calponin: forward 5'-AGTCTACTCTCTCTTGGCTCTGGCC-3', reverse 5'-

CCTGCCTTCTCTCAGCTTCTCAGG-3'; transgelin (SM-22): forward 5'-

GGCAGCTGAGGATTATGGAGTCACG-3', reverse 5'-

TGGGATCTCCACGGTAGTGTCCA-3'; and house-keeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH): forward 5'-TCTTCACCACCATGGAGAA-3', reverse 5'-

ACTGTGGTCATGAGCCCTT-3'. SMCs cultured for three days on the polymer disks were 

collected for obtaining total RNA using an RNeasy Mini Kit (Qiagen, Valencia, CA). Total 
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cDNA was then reverse-transcripted from the RNA using a DyNAmo cDNA synthesis kit 

(Thermo Scientific) according to the manufacturer’s instructions. For each sample, 20 L 

reaction system was made by mixing 2.5 L of total cDNA (5 ng/L), 1 L forward primer 

solution, 1 L reverse primer solution, 5.5 L DI water, and 10 L of 2 × Power SYBR Green 

Polymerase Chain Reaction (PCR) Master Mix (Applied Biosystems, Warrington, UK). Real-

time PCR amplification was performed on a Peltier Thermal Cycler fluorescence detection 

system (MJ Research PTC-200 Thermo Cycler), through a procedure set as 94 ºC for 5 min and 

40 cyclic steps of 94 ºC for 30 s, 55 ºC for 30 s, and 72 ºC for 30 s. The relative expression 

levels of contractile gene markers were normalized to that of GAPDH. Reverse transcription 

PCR (RT-PCR) amplification was performed using the same primers except calponin and 

transgelin: calponin: forward 5'-ACAAAAGGAAACAAAGTCAAT-3', reverse 5'-

GGGCAGCCCATACACCGTCAT-3'; transgelin (SM-22): forward 5'-

TGTTCCAGACTGTTGACCTC-3', reverse 5'-GTGATACCTCAAAGCTGTCC-3'. The same 

thermal cycle steps were applied in the amplification process. After amplification, the products 

were stained with Gelgreen (Biotium, Hayward, CA) and proceeded for electrophoresis in 1.0% 

agarose gels. DNA bands were visualized and photographed using EpiChemi II darkroom 

imaging system (UVP, Upland, CA).  

 

9.2.5 Calponin protein immunofluorescence staining 

The expression level of key contractile marker calponin was analyzed to confirm the trend 

in gene expression. SMCs cultured on the polymer disks for two days were fixed with PFA and 

then stained at room temperature for 1 h with anti-rat calponin primary antibody produced in 

rabbit (sc-16604-R; Santa Cruz; 1;100 in PBS). After the cells were washed with PBS three 

times, they were incubated with anti-rabbit secondary IgG antibody produced in goat (F0382, 

Sigma; 1:80 in PBS) conjugated with fluorescein isothiocyanate (FITC). The same fluorescence 

microscope was used for photographing the fluorescence images of the cells. 

 

9.2.6 Statistical analysis 

Statistical analysis was performed using one-way analysis of variance (ANOVA). A p-value 

lower than 0.05 indicated significant difference. 
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9.3 Results 

 

9.3.1 Hydrophilicity and protein adsorption of photo-crosslinked PCLTA/PLL networks 

After hydrophilic PLL chains were tethered into the hydrophobic PCLTA networks, their 

hydrophilicity were improved and the improvement was more prominent when PLL was higher, 

suggesting that PLL chains indeed appeared on the crosslinked PCLTA network surfaces. As 

indicated in Fig. 9.2a, the water contact angle decreased from 64.5 ± 2.1° on crosslinked PCLTA 

to 63.8 ± 1.3°, 59.5 ± 2.4°, 55.8 ± 2.5°, and 53.5 ± 2.1° for the networks grafted with 0.5%, 1%, 

1.5%, and 3% PLL, respectively. Similar phenomena were observed PCLTA networks grafted 

with short mPEGA chains at m of 0-20 %, as reported in our previous study [39]. Surface 

energy and the length of hydrophilic grafted chains can influence protein adsorption [44-48]. 

In contrast with the continuous decreased amount of adsorbed serum proteins in PCLTA 

networks grafted with PEG chains when the graft composition increased, the amount of 

adsorbed serum proteins increased continuously with increasing LL in the PCLTA networks, as 

shown in Fig. 9.2b.  These differences were believed to originate from nature essential of PEG 

chains and PLL chains. PEG chains were widely acknowledged as cell and protein repulsive 

thus frequently applied for construction of protein resistant surfaces [49,50]. Nevertheless, 

poly(L-lysine) (PLL) with positive charges were reported to facilitate protein attraction and cell 

adhesion through electrostatic interactions with anion sites on peptides or cytoplasmic 

membrane [29-32]. 

 

Figure 9.2 (a) Water contact angles on the PCLTA/PLL networks with PLL of 0-3%. (b) Amount 

of serum proteins adsorbed on the PCLTA/PLL networks from cell culture media.  
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9.3.2 SMC attachment, spreading, and proliferation on the PCLTA/PLL networks  

SMC attachment on PCLTA networks was achieved by normalizing the cell number to the 

value on TCPS at 4 h post-seeding. As shown in Fig. 9.3a, SMC attachment exhibited an 

asymptotic trend with increasing LL. SMC attachment increased significantly from 0.30 ± 0.11 

to 0.53 ± 0.10 and 0.60 ± 0.10 when PLL increased from 0 to 0.5% and 1%, respectively. 

However, with further increasing PLL to 1.5% and 3%, SMC attachment varied little. 

Previously our research group reported there was an optimal composition of PLL grafted in 

PEG-hydrogels for neural progenitor cell attachment, proliferation, and differentiation because 

dense PLL chains with free amine groups could have cytotoxic effects and inhibit cell adhesion 

[30-34].  

After attachment onto the polymer disks, SMCs started to spread. The capability of cell 

spreading is critical for later stages such as migration and proliferation [51]. To characterize 

SMC spreading, their spread areas on the polymer disks were quantified at day 1, as shown in 

Fig. 9.3b. The trend was similar to that in cell attachment. The average spread area of SMCs 

increased from ~2700 m2 on PCLTA network to ~3700 m2 for the PCLTA/PLL network with 

PLL of 0.5% and further to ~4200 m2 asymptotically for PLL of 1-3%.   

 

Figure 9.3 (a) SMC attachment at 4 h post-seeding on the PCLTA/PLL- networks normalized 

to the value on TCPS. (b) SMC spread area at day 1 post-seeding on the PCLTA/PLL networks. 

*: p < 0.05 relative to the PCLTA network (PLL = 0). 

 

Although no apparent inhibition effect was observed in SMC attachment at 4 h and 

spreading at day 1, it was evident when the culture time was longer, i.e., 4 days for SMC 

proliferation. SMC numbers on the polymer disks at days 1, 2, and 4 are shown in Fig. 9.4a and 
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a non-monotonic dependence on PLL was seen. The maximum cell number appeared at PLL of 

1% PLL before it decreased at PLL of 1.5% and 3% for days 1, 2, and 4. The proliferation index 

(PI) of SMCs were calculated by dividing the cell number at 1 day by that at 4 h or the cell 

number at day 2 by that at day 1, or the number at day 4 by that at day 2. As shown in Fig. 9.4b, 

the PI of SMCs decreased with increasing PLL. The growth rate (GR) of the SMCs on the 

polymer disks, determined by dividing ln(PI) by the time for calculating the PI, showed the 

same trend (Fig. 9.4b). The fluorescence images of SMCs on the polymer disks (Fig. 9.4c) 

showed consistent cell densities with those obtained using the MTS method in Fig. 9.4a. SMCs 

proliferated well on all the disks over a period of 4 days and the largest cell population with the 

best spreading was seen on the PCLTA/PLL network with PLL of 1%.  
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Figure 9.4 (a) SMC densities at days 1, 2, and 4 post-seeding on the PCLTA/PLL networks with 

TCPS as the positive control. (b) Proliferation indices and growth rates of SMCs on the 

PCLTA/PLL networks. (c) Fluorescence images of SMCs stained with RP and DAPI on the 

PCLTA/PLL networks at day 1, 2, and 4 post-seeding. *: significant higher (p < 0.05) than 

corresponding value on crosslinked PCLTA (m = 0%) network. #: significant difference (p < 

0.05) with PLL-PCLTAs (m = 1%).  

 

9.3.3 FAs in SMCs on the PCLTA/PLL substrates 

FAs are dynamic complexes in cell membrane that can anchor ECM proteins and give 

responsive signals to the pathways of intracellular signaling [52,53]. FAs are composed of 

subunit proteins, e.g., paxillin and vinculin, and are able to adjust their size and elongation to 

form super-mature adhesion subtypes by responding to intracellular tension [53,54]. As 

demonstrated in Fig. 9.5a as green punctate spots, stronger FAs were observed in the SMCs 

cultured for 1 day on PCLTA/PLL networks with LL of 5%than those with PLL of 0 or 3%. 

Quantification of FAs in SMCs on the polymer disks in Fig. 9.5b,c showed that the largest 
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average FA area and the highest FA density appeared when PLL was 1%, among all the samples. 

Elongation of FAs was significantly higher when PLL was 1% than when PLL was 0 or 3%, 

indicating the strength of FAs was higher (Fig. 9.5c). The differences in the FAs of SMCs on 

the different polymer disks substantiated that FAs are able to sense external substrate properties 

and adjust their own characteristics accordingly.  

 

 

Figure 9.5 (a) Immunofluorescence images (b) average area, (c) density, and (d) elongation of 

FAs, cytoplasm, and nuclei in SMCs and on the networks of PCLTA, PCLTA/PLL (PLL = 1%), 

and PCLTA/PLL (PLL = 3%) at day 1 post-seeding. *: p < 0.05 relative to the PCLTA network. 
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9.3.4 SMC phenotypic expression on the PCLTA/PLL substrates  

SMC has unique phenotypic conversion between the synthetic phenotype and the 

contractile phenotype and this conversion process is influenced by ECM properties including 

stiffness, surface proteins, growth factors, and chemical properties [55]. To evaluate the fraction 

of SMCs with the contractile phenotype, I analyzed the expression levels of four critical 

contractile gene markers in SMCs. As determined using real-time PCR and demonstrated in 

Fig. 9.6a, the expression levels of SM-MHC, smoothlin, transgelin and calponin normalized by 

the level of GAPDH were significantly higher in SMCs on the polymer disks with PLL of 1% 

and 3% than those on the PCLTA network, suggesting that PLL dangling chains in the PCLTA 

networks could benefit the contractile phenotype. To confirm the results in Fig. 9.6a, I further 

analyzed the expression levels of these gene markers using semi-quantitative RT-PCR. As 

shown in Fig. 9.6b, brighter bands were observed for the four contractile markers in SMCs on 

the polymer disks with PLL of 1% and 3% than those on the PCLTA network.  

 

 

Figure 9.6 (a) Normalized expression levels of contractile gene markers, SM-MHC, smoothlin, 

transgelin, and calponin in SMCs on the PCLTA/PLL networks at day 3 post-seeding using real-

time PCR. (b) Expression of the four gene markers analyzed using RT-PCR. (c) 

Immunofluorescence images of calponin, an important contractile marker protein, in SMCs on 

the PCLTA/PLL networks at day 2 post-seeding. *: p < 0.05 relative to the PCLTA network. 
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To demonstrate the correlation between gene expression and protein expression, I also 

characterized the level of an essential contractile phenotypic marker, calponin, using 

immunofluorescence staining. As shown in Fig. 9.6c, both the nuclei and calponin in SMCs at 

day 3 were stained using blue and green fluorescence, respectively. More cell nuclei were 

observed on the polymer disks containing PLL dangling chains than on the PCLTA network, 

consistent with the result on SMC proliferation in Section 3.2. As shown in Fig. 9.6c, stronger 

immunofluorescence indicated that a larger portion (>30%) of SMCs expressed calponin on the 

polymer disks with PLL of 1% and 3% than on the PCLTA network. These results indicated that 

SMCs on the PCLTA/PLL networks with small PLL of 1% and 3% upregulated the expression 

of contractile markers at both gene and protein levels. Therefore, modifying the PCLTA network 

with sparsely dangling cationic PLL chains is effective in facilitating SMC phenotypic 

conversion from proliferative synthetic phenotype to more functional contractile one. 

 

9.4 Discussion 

 

The PLL layer on a hyaluronic acid biomaterial surface was reported to be able to facilitate 

cell adhesion [56]. In this study, PLL chains were grafted into PCLTA networks as dangling 

chains to investigate the effect of the positive charges on SMC adhesion, proliferation and 

differentiation. The overall results demonstrated that the best cell performance occurred when 

the polymer networks contained 1% PLL dangling chains whereas higher PLL could inhibit, 

suggesting that an optimal density of positive charges in the substrate existed for promoting 

SMCs.    

Besides this study, there exist extensive reports that different cell types are affected by the 

amount of amine groups on the substrates, which is determined by the chain length and 

composition of PLL chains [57-60]. For example, red blood cells could adjust their spreading 

on substrates coated with PLL of different concentrations and molecular weights as the best cell 

spreading appeared when the concentration of PLL was 100, 10, and 0.1 mg/mL for when the  

molecular weight of PLL was 500, 3800, and 72000 g/mol, respectively [58]. Neither too low 

nor too high concentrations of PLL could result in better cell adhesion [58].  

In addition, a series of poly(D-lysine) samples with molecular weights of 1000-4000 g/mol 
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were reported to improve foetal mouse cortical cells at an optimal composition of 0.5% when 

they were immobilized onto chitosan, whereas higher compositions inhibited neuronal 

proliferation and neurite lengths [59]. In another study, enhanced attachment, proliferation and 

chondrogenic differentiation of human mesenchymal stem cells (hMSCs) were observed when 

PLL samples with a series of molecular weights (Mn = 70000-150000 g/mol) were coated onto 

TCPS at a low concentration of 1 μg/mL [60]. When the concentration of coated PLL to 10 

μg/mL, hMSCs were observed to detach from the substrates [60]. Adhesion of embryonic brain 

cells was also reported to be promoted on glass surfaces coated with 5 μg/mL of PLL (Mn ~ 

400000 g/mol) [61]. The above results from previous studies were consistent with the present 

one by showing that PLL chains were beneficial for cell functions at an optimal density of PLL 

chains on the substrate surface, regardless of different cell types. 

Although the coating methods of PLL mentioned above can be applied to improve cell 

adhesion, the coated layer is easy to detach from the substrates, causing inaccuracy for 

evaluation of surface density of PLL for regulating cell functions. Our present method by 

covalently incorporating PLL chains to polymer networks through photo-crosslinking has 

evident advantages for surface stability. In particular, the covalently tethered PLL chains inside 

polymer networks will appear continuously even after surface biodegradation and remain 

effective to supply positive charges in long run. Beside direct attraction with the negative 

charges on cell membrane, the cationic amine groups in PLL chains could attract cell adhesive 

peptides and in turn further facilitate cell attachment [62]. Our results provided guidance for 

enhancing vascular cell adhesion, proliferation, and differentiation on biodegradable substrates, 

aiming for cardiovascular tissue engineering applications. The enhanced cell proliferation and 

contractile conversion by grafting PLL into PCLTA networks can lead to better angiogenesis in 

vivo when the materials are used as blood vessel grafts.  

 

9.5 Conclusions   

 

I modified PCLTA networks by photo-crosslinking PCLTA withphoto-polymerizable 

poly(L-lysine) at PLL of 0.5%, 1%, 1.5% and 3% . PCLTA networks modified with dangling 

PLL chains showed better surface hydrophilicity and capability in adsorbing serum proteins 
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from the cell culture media, especially when PLL was higher. These PLL-modified PCLTA 

networks were also found to support better primary rat SMC attachment at 4 h post-seeding, 

spreading at day 1, proliferation over 4 days, and expression levels of four contractile gene 

markers, i.e., SM-MHC, smoothlin, transgelin, and calponin, and protein expression of calponin. 

Stronger, more elongated FAs with a larger average area and a higher density were observed on 

the PCLTA/PLL networks compared with the PCLTA network. Among all the studied 

compositions of 0.5-3%, PCLTA/PLL networks with PLL of 1% could support best SMC 

performance whereas higher PLL inhibited. All these properties are highly desirable in 

designing  favorable replaceable grafts used in cardiovascular tissue engineering.   
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Chapter X. Conclusion 
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Substrates with controllable stiffness have emerged as important models in investigating 

cell-biomaterial interactions. Most substrates studied are hydrogels with a limited range of 

stiffness. Here in this thesis, I developed a series of biodegradable substrates using photo-

crosslinked poly(ɛ-caprolactone) triacrylates (PCLTAs) with controllable stiffness by varying 

the crosslinking density and crystallinity, simultaneously. Further, I evaluated the surface 

characteristics of these crosslinked PCLTAs including roughness, hydrophilicity, and capability 

of adsorbing proteins from cell culture media for regulation of primary rat SMC behavior.  

I found that stiffer crystalline crosslinked PCLTAs induced stronger stress fibers, larger 

spreading area, faster growth and motility, better supported conversion from synthetic 

phenotype to functional contractile phenotype and stronger focal adhesion both in size and 

density. Gene and protein expression has been performed to confirm that SMCs had higher 

levels of contractile gene markers and integrin subunits on semi-crystalline substrates of 

crosslinked PCLTA. Because of the controllability of physicochemical properties and 

possibility of being modified with other functional moieties, the crosslinked PCLTAs have great 

potentials for regulating cell behaviors and diverse tissue-engineering applications. 

    Cardiovascular tissues bear constant blood shear and dynamic hardening under diseased 

conditions, which causes the tissue stiffness varies all the time. To mimic the dynamic changing 

environment in the vessel tissues and investigate the influence of dynamically changing 

substrate mechanical properties on the cell behaviors, I fabricated a model polymer network 

from poly(ɛ-caprolactone) triacrylate that can gradually stiffen in 24 h through impeded 

crystallization at body temperature (37 ºC). Rat primary SMCs were cultured on both static and 

dynamic substrates and distinct SMC attachment, proliferation and spreading were found. 

Quantification of contractile gene expression and protein content showed that the dynamic 

substrates could facilitate the contractile conversion process of SMCs. The analysis of focal 

adhesions and integrin expression indicated that the cellular abilities to sensing and adhering to 

the substrate surface were enhanced by the dynamic stiffening stimulation. These results extend 

the knowledge about SMC mechanosensing to dynamic substrates with increasing stiffness, 

and demonstrate a new method of regulating SMC adhesion, growth, and functional conversion 

on substrates.  

To evaluate the influence of stiffness in SMCs migration, a series of stiffness-gradient 
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substrates along the longitudinal direction by photo-crosslinking PCLTA binary homo-blends 

made from two samples with different molecular weights and crystallinities were developed. 

These gradient substrates with the stiffness range of 2-200 MPa and gradient strengths of 4.3-

48.0 kPa/m were used to exam primary rat vascular SMC adhesion, spreading, and migration 

on them. The findings indicated that the stiffness gradient patterns of the underlying substrates 

were important for SMC adhesion, spreading, and accumulation. SMCs exhibited different 

spreading areas at different locations along the gradient on the substrates and they accumulated 

in the stiff regions of the substrates. Real-time observation of SMC motility showed that a large 

portion of cells migrated distinctly toward the stiff region of the substrate, especially when the 

gradient strength was higher.  

Vascular SMCs are sensitive to the topographical features of the extracellular matrix 

(ECM) through the sensing molecules in cell membrane. The desirable landscape of ECM at 

the micron, submicron, or even nanometer scales attracts vascular cell adhesion to the surface, 

promotes cell proliferation and differentiation, and supports formation of functional blood 

vessels. Here I fabricated cylindrical pillars with three different heights of 3.4, 7.4, and 15.1 

m by photo-crosslinking PCLTA in silicon molds with predesigned micropatterns. Then I 

studied SMC adhesion, spreading, elongation, proliferation, and differentiation on these 

substrates with micro-pillar arrays. The micro-pillars were found to facilitate the cellular 

attachment and elongation whereas they inhibited cellular spreading and proliferation. Cell 

nuclei were smaller on the micro-pillar arrays than those on the flat substrates. Immuno-

fluorescence imaging demonstrated that cellular filaments and punctate focal adhesions were 

intensely distributed around the micro-pillars. SMCs on the micro-pillar arrays had higher 

contractile marker expression levels, implying that the topography facilitated the phenotypic 

conversion from the proliferating synthetic one to the more functional contractile one.  

Based on these findings on micro-scale topography, I further investigated the SMCs 

responses to nanoscale features by fabricating photo-crosslinked PCLTA nanowire arrays with 

diameters of 20, 100 and 200 nm were prepared using inorganic nanoporous aluminum oxide 

(AAO) templates. The lengths and morphologies of the nanowires can be controlled by 

adjusting the PCLTA solution concentration. The surface morphology, hydrophilicity and serum 

protein adsorption of crosslinked PCLTA nanowire arrays were characterized. I investigated 
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SMC attachment, proliferation, spreading and differentiation as well as cellular sensing 

components as focal adhesions and integrins on these nanowire arrays. Nanowire arrays could 

adsorb more proteins and support SMC attachment, proliferation, spreading, and differentiation 

better than the smooth crosslinked PCLTA substrate, especially on nanowires with smaller 

diameters. Further analysis of cellular sensing components indicated that smaller nanowires 

triggered stronger focal adhesion dots and higher expression of integrins subunits.   

Polymer crystallinity influences the morphological and mechanical properties, thus it is of 

interest to use it as a factor to regulate cell behavior in tissue engineering applications of semi-

crystalline polymers. Here I reported a series of novel photo-crosslinkable poly(L-lactic acid) 

triacrylates (PLLATAs) that were synthesized and photo-crosslinked under UV light to achieve 

network substrates. With increasing the annealing time from 0 to 5, 7, 10, and 20 h at 70 ºC, 

both crystallinity and surface roughness increased for PLLATA networks without variance in 

chemical composition. Both water contact angle and the capability of adsorbing serum proteins 

from the culture media on the crystallized PLLATA networks were lower compared with the 

amorphous one. Primary rat smooth muscle cells (SMC) were found to respond to the substrate 

crystallinity by exhibiting reduced attachment, proliferation, and differentiation on the 

crystalline, rough surfaces of the PLLATA networks than on the amorphous, and smooth one. 

Down-regulated integrin expression and weakened focal adhesions (FAs) in terms of size, 

elongation, and density in SMCs were also observed on the crystalline networks. After removal 

of surface roughness through compression, SMCs exhibited no differences among compressed 

PLLATA networks regardless of the difference in bulk crystallinity. 

For semi-crystalline crosslinked PCLTA, the high surface hydrophobicity may limit its 

potential tissue engineering applications. I found that the hydrophobic nature of crosslinked 

PCLTA can be greatly relieved when PCLTA was photo-crosslinked with hydrophilic methoxy 

poly(ethylene glycol) monoacrylate (mPEGA). To further clarify the role of mPEGA in 

modification of crosslinked PCLTA, I utilized a series of photo-crosslinked mPEGA/PCLTA 

samples with various m of 0 to 50% and different mPEGA number-average molecular weights 

of 350, 2000, and 10000 g/mol. Material properties such as surface hydrophilicity, friction 

coefficient, roughness, thermal and mechanical properties were characterized. Crosslinked 

mPEGA/PCLTA samples with modified surface physicochemical characteristics were further 
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used to modulate primary rat SMC attachment, spreading, proliferation, and gene/protein 

expression. Our results showed that sparsely tethered short PEG chains were found to 

significantly enhance SMC attachment, proliferation, and gene/protein expression by reducing 

the substrate hydrophobicity. Nevertheless, densely tethered PEG chains diminished SMC 

attachment and proliferation due to their strong repulsion to proteins and cells.  

Extracellular microenvironments are critical for cell adhesion, phenotype, proliferation, 

differentiation, and gene/protein expression. The majority of the components in the 

microenvironments, such as adhesive proteins, growth factors, and cytokines, have diversified 

electronic properties. Poly(L-lysine) (PLL) is a type of cationic polypeptide often used for 

enhancing cell adhesion by providing positive charges. Here I developed a series of polymer 

networks with PLL dangling chains through photo-crosslinking PCLTA with a weight-average 

molecular weight (Mw) of 7020 g/mol with a photo-polymerizable PLL at different PLL 

compositions of 0.5%, 1.0%, 1.5%, and 3%. PCLTA networked grafted with dangling PLL 

chains were more hydrophilic and can adsorb more serum proteins from the cell culture media. 

Primary rat smooth muscle cells were cultured on these polymer networks and their attachment, 

spreading, proliferation, focal adhesions, expression of four contractile gene markers (SM-

MHC, smoothlin, transgelin, and calponin) and one contractile protein, calponin, were 

characterized systematically. An optimal composition of PLL at 1% in the polymer networks 

was found to exist to promote the SMC performance best. 

    In summary, I developed a series of biodegradable and photocurable polymer networks 

with tunable mechanical, chemical and topographical features. The influences of these 

properties were well correlated with cell behavior in terms of adhesion, proliferation and 

differentiation. Optimized groups of materials were demonstrated that could be served as 

candidate materials to fabricate injectable supports for cardiovascular tissue engineering 

applications. Further, these polymer networks owns great potential to find applications in 

various tissue engineering by achieving advanced functions or more complicated structures.  
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