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ABSTRACT 
 

Dissimilatory metal reducing bacteria (DMRB) are probably one of the most respiratory versatile 

microorganisms on earth. Their ability to use metals as terminal electron acceptor allows them to 

survive in severe environments (e.g. radionuclide contaminated soil). In addition to metals, many other 

organic and inorganic substrates can be utilized as electron acceptors for DMRB respiration, including 

fumarate, nitrate, oxygen, etc. Genome information for many DMRB species is available, which reveals 

large numbers of c-type cytochrome encoding genes present in their genomes. For example, the 

genomes of three DMRBs, Anaeromyxobacter dehalogenans strain 2CP-C, Shewanella oneidensis strain 

MR-1, and Geobacter daltonii strain FRC-32, contain 69, 40, and 72 putative c-type cytochrome genes, 

respectively. Although mutagenesis techniques have determined the respiratory roles of several c-type 

cytochromes, gene disruption for majorities of the putative c-type cytochromes does not generate 

visible phenotypical alterations, and is not able to functionally link them to specific respirational 

activities. Thus, comprehensive proteome characterization for DMRBs is needed to elucidate the 

molecular mechanisms underlying their respirational versatilities. In this dissertation, a mass 

spectrometry-based proteomics approach was used to interrogate the proteomes of A. dehalogenans 

strain 2CP-C, S. oneidensis strain MR-1, and G. daltonii strain FRC-32. The proteomic responses of 

DMRBs to a wide range of electron acceptors were tested in this dissertation, including soluble and 

insoluble ferric iron, manganese oxide, fumarate, nitrate, oxygen, and nitrous oxide. The in-depth 

proteomic characterizations comparatively revealed the c-type cytochrome profiles of DMRBs, providing 

evidence for the identities and expressions of putative c-type cytochromes, and established the linkage 

between specific electron acceptor and individual c-type cytochromes. The entire proteome 

complements of DMRBs were also characterized, generating metabolic maps reflecting pathway-level 

activities responding to various electron acceptors. The results identified the core proteome carrying out 

the essential cellular machineries for each tested DMRB, and demonstrated clearly elevated energy 



v 
 

metabolism for A. dehalogenans strain 2CP-C during respiration of metal electron acceptors. 

Comparative proteomics analysis between tested DMRB strains revealed the commonalities and 

differences of proteomic phenotypes displayed by different strains, and shed light into deeper 

understandings for DMRB metabolic activities. 
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Chapter 1 

Introduction to MS-based Proteomics and Its Application to Environmental 

Microbiology 

1.1 The “Omics” Tetralogy and Systems Biology 

For centuries, research in biochemical, molecular, and cellular biology focused on the 

analysis of subsets of biomolecules and biochemical reactions in a given organism at a time, 

which achieved tremendous success in understanding cellular processes that reflect various 

aspects of living organisms. Life science research was revolutionized by the discovery of DNA 

(deoxyribonucleic acid) and its recognition as the carrier for genetic information [1-3]. 

Following the introduction of the double-helix structure of DNA, the genetic code embedded in 

the DNA sequence was deciphered, leading to the establishment of central dogma for 

molecular biology which describes a framework in which genetic information is transcribed 

from DNA to RNA (ribonucleic acid) and translated to proteins [4, 5]. Obtaining comprehensive 

genome sequences became desirable in that the whole genome sequence presents a blueprint 

of all potential functional activities of an organism. Ever since the completion of the first whole 

genome sequences of the bacterium Haemophilus influenza [6], the field of genomics has 

exploded, expanding our knowledge about life science in general, and has revolutionized how 

biological research is conducted. In particular, biological research embraced large-scale 

analyses through emerging ‘transcriptomics’, ‘proteomics’, and ‘metabolomics’ studies. While 

transcriptomics measures RNA expression in a given organism, proteomics characterizes the 

protein complement in a given biological system, and metabolomics captures the related 
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metabolites resulting from all cellular metabolic reactions. The burst of ‘omics’ studies compose 

a tetralogy which enabled the holistic view of biological systems such as a single living organism, 

a symbiotic system, or a microbial community. The system-level information offered by the 

“omics” studies was unachievable previously, giving rise to the discipline of “systems biology” 

(Figure 1.1).  

Genomics is the very first chapter of the “omics” tetralogy, serving the basis for 

transcriptomics and proteomics. In the late 1970s, a powerful method (Sanger sequencing) for 

DNA sequencing was developed [7-9], providing a basis for enabling sequence-driven research. 

Continual technical refinement and improvement greatly reduced the cost and increased the 

speed and throughput for genome sequencing, allowing the whole genomes of more and more 

organisms being sequenced with high quality. The success of the first draft of human genome 

sequence [10, 11] is one of the greatest achievements in the 21st century, which 

unprecedentedly broadened the horizon toward the understanding of human being. Biomedical 

research tremendously benefited from this rich information-set, in that the genotyping of 

human health and diseases shed light into the underlying molecular mechanism for human 

disease (e.g. Huntington’s disease is caused by genetic disorder [12]). Nowadays, complete 

genome sequence is widely available for numerous organisms ranging from Prokaryote to 

Eukaryote. Genomics not only provides insight into the genetic makeup for single organisms, 

but also reveals the genetic diversity, evolution, and metabolic potential for microbial 

communities (metagenomics) [13]. The success of direct extraction and analysis of the 

collective genomic information for microbial communities expanded the scope of microbiology 

by providing insight into uncultured microorganisms which could not be characterized  
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Figure 1.1. The “omics” tetralogy. The system-level information achieved by different 
levels of the “omics” sciences enable the comprehensive understanding of biological 
systems. Genomics describes the complete genetic makeup of a cell. Transcriptomics 
measures the complement of RNA transcripts expressed under certain conditions. 
Proteomics characterizes the entire repertoire of proteins present in the biological 
system. Metabolomics measures the suite of small molecules. Taken together, our 
understanding toward systems biology is enhanced through the “omics” tetralogy. 
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previously [14]. Metagenomics studies allow in situ characterization of the genomic elements in 

microbial consortia residing in diverse environmental settings such as ocean, soil, deep sea 

sediment, human gut, human oral cavity, etc. [15-19], and many of which cannot be cultured in 

the lab. Genome cataloguing describes all functional potentials of the biological system under 

study. Information contained in the genetic content must be utilized through the expression of 

genes, generating transcripts and proteins for functional activities at the cellular level. Thus, in 

the post-genomic era, great efforts are put into the study of all the transcripts (transcriptome) 

and proteins (proteome) present in a biological system. 

 Transcriptomics emerged as an endeavor to reveal the functional dynamics of the 

genome, since gene expression directly leads to RNA transcription. While the genome of an 

organism is always constant, gene activity is dynamic, and only subsets of the genome get 

transcribed for subsequent functional roles.  Comprehensive interrogation of the identity and 

quantity for the complete set of transcripts in a cell directly reflects the activation of functional 

elements in the genome in a certain developmental state or physiological condition. Two 

different approaches are available for transcriptomics profiling, one is based on hybridization 

(e.g. microarray) and the other is based on sequencing techniques (e.g. RNA-seq). The 

hybridization-based approach is high-throughput and generally low-cost, is widely used for 

transcriptomics studies, and successfully profiled gene expression for various biological systems 

[20-22]. Development of next-generation sequencing made it feasible to achieve deep 

sequencing of the transcriptome with high resolution, providing the benefit of larger dynamic 

range, independence from existing genome information, and clear determination of 

transcription boundaries [23]. Transcriptomics provides direct measurement for gene activity, 
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but does not necessarily represent the functional aspect of gene expression, because the final 

product of gene expression is protein, not transcript. In addition, the constitutive expression 

and post-translational modifications of proteins, and proteins resulting from post-

transcriptional modifications (e.g. alternative RNA splicing) could not be addressed by 

transcripts. In this regard, proteomics, generating the collective view of all the proteins, 

represents perhaps the most informative level of functional activities at the cellular level. 

Proteomics developments started in late 20th century. In the early stage, the complete 

set of proteins in an organism is collected and separated by two-dimensional gel 

electrophoresis (2DE) [24, 25] which presents a proteome map containing spots of proteins 

with various charges and sizes. The identification of protein spots was resolved through the 

estimation of amino acid composition by matching the pI (isoelectric point) and molecular 

weight against the chemical properties of proteins in an existing database for a certain 

organism [26]. Quantification of protein spots could be achieved by various staining methods, 

as represented by staining intensities. When mass spectrometry (MS) was implemented for 

protein analysis, protein identification from gel spots became much more confident and reliable, 

owing to the determination of highly accurate protein mass by MS. The introduction of protein 

ionization methods, electrospray ionization (ESI) [27] and matrix assisted laser 

desorption/ionization (MALDI) [28], were the major driving forces for MS-based protein analysis. 

MS protein identification following 2DE has been a popular approach for proteomics studies, 

and was widely used for proteomic interrogation in many biological settings [29]. The utilization 

of liquid chromatography (LC) for protein and peptide separation outperforms 2DE in that 

separation time is no longer limited, the dynamic range of measurable proteins is tremendously 
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improved, and LC can directly connect in-line with MS [30]. The coupling of LC with MS ( termed 

LC-MS) enabled proteomic characterization of complex samples (e.g. peptide mixture from 

tryptic digests of plant proteome [31]). Nowadays, LC-MS is the preferred method for MS-based 

proteomics analysis, providing an unparalleled platform for comprehensive characterization for 

protein sequence identification and quantification. With the continual improvement of MS 

instrumentation, proteome measurement can be achieved with higher speed, resolution, 

accuracy, and dynamic range. The successful application of LC-MS for proteomics analysis 

presents the protein-level functional view for metabolic activities in various biological systems, 

from single bacteria isolate, to higher order eukaryotes, and to complex microbial communities 

[32-37]. Greater details for MS-based proteomics will be discussed in section 1.2. 

Metabolomics characterizes the complement of metabolites in a given biological system. 

Metabolites are small molecules being transformed during metabolism, which generally are the 

substrates, inhibitors, or products of biological catalytic reactions driven by proteins [38]. The 

information provided by metabolomics is the readout of biochemical activities at the molecular 

level, and offers a different perspective for the systematic functional overview for biological 

research. Characterization of metabolome, similarly to proteomics, heavily relies on mass 

spectrometry. Out of the four “omics” sciences described in this chapter, metabolomics is the 

one that does not directly tie to the genome information. Although still in its infancy, 

metabolomic studies have provided deep fundamental molecular insight for biological systems 

such as human, microbial communities, etc. [39, 40]. Together with proteomics, metabolomics 

presents informative details for the metabolic activities responsible for cellular functions. 
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The “omics” tetralogy provides different layers of information for systems biology: 

genomics for the total genetic potential, transcriptomics for gene activity elucidation, 

proteomics for functional representation, and metabolomics for direct signatures of metabolic 

reaction. Each field is under rapid development and enhancement, and is generating 

tremendous information assets for biological research. Although mechanics for the integration 

of the “omics” tetralogy remains elusive at present, the information output gathered from all 

aspects of “omics” research will propel our understanding about life science.  

 

1.2 Proteomics - the Apogee of the “Omics” Science 

As mentioned above, proteomics is best suited for the functional representation and 

physiological characterization of metabolic activities at the cellular level, as it directly measures 

proteins – the final gene functional product.  Only through direct proteome characterization 

can we understand the identities, quantities, and modifications of gene functional carriers 

(proteins) accounting for the major metabolic units for cellular activities. 

The LC-MS-based proteomics is the current state-of-the-art technique for 

comprehensive proteome characterization, and can be divided into two different types: top-

down and bottom-up (Figure 1.2). In the top-down approach, proteins are analyzed in the intact 

form, giving the opportunity to study protein structure (e.g. post-translational modification 

(PTM)), protein-protein interaction (e.g. polymerization), and protein diversity (e.g. splice 

variants).  In a typical LC-MS-based top-down proteomics measurement, the mixture of whole 

proteins are separated based on hydrophobicity and/or charge in the mobile phase of LC. The  
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Figure 1.2. The top-down and bottom-up proteomics strategies.  The top-down approach 

directly investigates intact proteins. The bottom-up approach measures digested proteins, 

and protein identification is achieved through identified peptide sequences.  
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precise m/z value (mass to charge ratio) of the intact proteins is measured by a MS instrument 

generally of high-resolution, such as Fourier Transform Iron Resonance (FTICR) or LTQ Orbitrap 

(Thermo Scientific, Inc.). The intact proteins could be fragmented inside the mass spectrometer, 

and the m/z values for the fragment ions could be measured, generating tandem mass (MS/MS) 

spectra. The exact mass of the intact protein, along with the fragmentation pattern presented 

in the MS/MS spectra, provides information for protein sequence identification. The accurate 

mass of the intact protein is also useful to distinguish very precise mass differences of protein 

variations (e.g. protein isoforms). Several limitations still exist for the application of top-down 

approach in large-scale deep proteomics interrogation. First of all, the mass range of proteins 

present in a biological system is large – the mass difference of the largest and the smallest 

protein in a proteome could be over several hundreds of kilo Daltons (kDa). Large protein 

molecules, such as those with a molecular mass greater than 50 kDa, propose difficulties for LC 

separation, ionization and MS detection [41]. Secondly, various protein modifications, such as 

PTMs and single nucleotide polymorphisms (SNPs), could induce changes to the molecular mass 

of intact proteins and challenge protein identification through top-down approach.  

The bottom-up approach, also termed the “shotgun” approach, is more favorable for 

deep proteomic measurement at the present time. The concept of shotgun proteomics is very 

similar to that of shotgun genome sequencing, in which long DNA strands are divided into short 

segments, and the segment strands are sequenced individually and reassembled to present the 

complete DNA sequence. In shotgun proteomics, proteins are digested into peptides prior to 

separation and detection, and detected peptide sequences are used for protein identifications. 

The peptide mixture generated from proteome digestion greatly reduced the sample mass, 
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which is beneficial for ionization and subsequent MS analysis. For example, an average tryptic 

peptide contains 10 amino acids, which is about 1 kDa in molecular mass. The increased 

complexity of peptide mixture could be a nightmare for gel electrophoresis separation, but can 

be easily resolved through chromatographic separation. The m/z values for the separated and 

ionized peptides (parent/precursor mass) are measured by MS, and the precursor ions can be 

fragmented and analyzed to obtain MS/MS spectra. For peptide identification, a protein 

database derived from the corresponding genome database is exploited. Proteins in the 

database are in silico digested to generate predicted peptides which are subsequently 

fragmented in silico to obtain predicted fragmentation pattern. The experimental precursor 

mass could be used to search for predicted peptides, and the experimentally generated MS/MS 

spectra can be matched to predicted fragmentation patterns to determine peptide sequences. 

Once the peptide sequences are determined, they are traced back to the originating proteins. 

Many computational software algorithms have been developed to automate the peptide 

sequence determination and protein inference for bottom-up proteomics, such as SEQUEST, 

MyriMatch, DTASelect, IDPicker, etc. [42-45]. The bottom-up strategy is routinely performed for 

many large-scale proteomics studies, although it does contain a limitation incurred by its 

peptide-centric nature. For higher order eukaryotes (e.g. human, plant) whose genome 

contains many redundancies, sequence homologies among different proteins is very common. 

Proteolytic digestion of the homologous proteins could lead to redundant, homologous, or 

isobaric peptide species, making it difficult to identify and quantify the originating proteins. 

Despite this issue with the higher order eukaryotes, the bottom-up strategy is currently the 
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method of choice for large-scale proteomics studies and has achieved great success for 

proteomic characterizations for many biological systems [34, 36, 46-48].  

In this dissertation, proteomic characterizations for microbial isolates were achieved 

using the bottom-up strategy, for which technical details will be provided in Chapter 2. 

 

1.3 MS-based Proteomics Provides Insight into Environmental Microbiology 

Microorganisms comprise the largest population on earth, accounting for 60% of the 

global biomass [49], and ubiquitously occupies every imaginable environment from soil, water, 

air to environments with extreme conditions (e.g. extreme pH, salinity, temperature, etc.) [50, 

51], and to human bodies (e.g. microbial species present in human gut, oral cavity, skin surface, 

etc.) [52]. The activities of environmental microorganisms are very important for many 

ecological processes (e.g. the biogeochemical cycling of elements) as well as human health (e.g. 

pathogenic microbes cause disease conditions to human beings). Environmental microbiology, 

the study of environmental microorganisms, was pioneered by Beijerinck who developed the 

selective enrichment techniques which allowed cultivation of bacteria with specialized 

functions (e.g. nitrogen-fixation). The discovery of microbial biotransformation of nitrogen, 

carbon, sulfur, iron, and manganese by Beijerinck and Winogradsky initiated the field of 

environmental microbiology, and spurred research on environmental microorganisms [53, 54]. 

Nowadays, there are essentially two ways to study environmental microorganisms. One 

is to isolate microbial species of interest from the environment, and study various aspects of 
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the isolate under laboratory conditions to explore the physiological properties, metabolic 

activities, or the molecular mechanisms for specialized functions. In addition to studying single 

microbial species isolate, the laboratory-based strategy also includes the investigation of 

artificial mixtures of microbial isolates. In contrast, the other approach for environmental 

microbiological research is field-based, which investigates microorganisms (either isolates or 

communities) in their natural habitats, in an effort to unravel the microbial diversities in the 

ecological system, interactions and communications between microorganisms or with the 

environment, and the microbial functional contributions to the biosphere. For either strategy, 

laboratory-based or field-based, proteomics has played pivotal role in providing massive 

information to deepen our understandings about environmental microbiology. 

The vast majority of environmental microbial proteomics studies are laboratory-based, 

focusing on model microorganisms with specialized properties of interest. Many microbial 

species are of interest due to their detoxification abilities, tolerance to extreme environmental 

conditions, respiratory versatilities, etc. Studies of their metabolic activities could lead to new 

biological discoveries (e.g. novel enzymes), or beneficial applications to the environment (e.g. 

bioremediation).  Since next-generation sequencing made it quick and easy to achieve complete 

genome sequencing for numerous microbial isolate species, the available genome information 

made it straightforward to perform MS-based proteomics studies on microbial isolates. By 

investigating the repertoire of proteins expressed by microorganisms under monitored 

laboratory conditions, overall microbial physiological activities could be revealed, and could be 

exploited by comparative studies to uncover differential molecular processes responding to 

specific environmental perturbations. For example, the comparative proteomic analysis of 
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Shewanella oneidensis revealed proteins essential for the regulation of chromate 

transformation [55, 56].  Proteomics has been used to interrogate various microbial isolates 

and to characterize the molecular machineries for their unique traits, including the flexible 

metabolism of Pseudomonas, the methanogenesis property of Methylococcus capsulatus, the 

denitrification ability of Paracoccus denitrificans, etc [57-59]. The proteomic information 

achieved for numerous microbial isolates not only profiles the protein repertoire under 

laboratory conditions, but also provides detail for strategic design of subsequent biological and 

environmental studies and applications (e.g. gene knockout experiments, environmental 

manipulations) [49, 60]. 

Since microorganisms do not live in isolation, and their natural environmental 

conditions are almost impossible to emulate in laboratory, the study of microbial communities 

in their natural habitat became desirable. MS-based proteomic characterization for 

environmental microbial communities not only provides an in situ protein-level overview for 

the microbial community, but also allows investigation into the uncultivable microbial species 

which could not be achieved under laboratory conditions. Information about microbial 

community structure, diversity, functional activities can be achieved by metaproteomic 

characterization, and are of tremendous importance for the understanding of microbial 

interactions, adaptations, and ecological functions in the environment. The metaproteomic 

characterization of the acid mine drainage microbial biofilm community is a landmark for 

environmental community proteomics [46]. With more metagenomics studies providing 

genome information for environmental microbial communities, more and more 

metaproteomics studies have been conducted on microbial consortia in various environments 
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(e.g. water, soil) providing insight into many important research areas, such as wastewater 

treatment, bioremediation, global warming [61-63]. 

Despite the success applications of MS-based proteomics on environmental microbial 

communities, technical limitations impede the wide feasibility of field-based proteomics. Unlike 

microbial isolates whose genomes are widely available, metagenome information is limited and 

the quality may not be optimal, which directly affects the performance of metaproteomics 

identification. And strain-level differentiations are very difficult to achieve both at the 

metagenome and metaproteome level, due to the high complexity and unpredictability of 

environmental microbial communities. In addition, protein extraction from environmental 

samples is more difficult than from laboratory cultures because of interferences (e.g. humic 

acid in soil). In contrast, proteomic characterization for microbial isolates under laboratory 

conditions is a mature technique, and is routinely conducted in many research institutes. In this 

dissertation, the advantage of using MS-based proteomics on microbial isolates in laboratory 

conditions is exploited to provide insight into the metabolic activities of respirational versatile 

environmental microbial isolates.  

 

1.4 Dissimilatory Metal Reducing Bacteria and Their Environmental Impact 

Dissimilatory metal reducing bacteria (DMRB) are able to couple the dissimilatory 

reduction of metals with the oxidation of organic substrates or H2, and the electron flow during 

this redox process directly relates to energy production [64]. The use of metal as terminal 

electron acceptor has been observed in microorganisms with diverse phylogeny, ranging from 



15 
 

Bacteria to Archaea domain. Most of the early identified DMRBs are within the delta 

subdivision of Proteobacteria such as Geobacter, Desulfuromonas, and Pelobacter, and later 

studies on microbial dissimilatory metal reduction extended DMRBs to the gamma and epsilon 

subdivisions of Proteobacteria (e.g. Shewanella, Geospirillum) as well as Acidobacteria (e.g. 

Geothrix) [65]. To date, more and more DMRBs are identified and their phylogeny spreads even 

broader throughout the Bacteria domain [66].  

The diversity and ubiquity of DMRBs greatly impact the global biogeochemical 

distribution of metal elements. The valence transitions of metal elements can be abiotic or 

biotic, and the biotic enzymatic redox is considered the prevailing form of environmental metal 

transformation [67].  A large variety of metal elements could be respired by bacteria, including 

Fe(III), Mn(IV), U(VI), Se, Cr(VI) Hg(II), Tc(VII), V(V), Mo(VI), Cu(II), etc. [67], among which, 

dissimilatory reduction of Fe(III) is the most predominant, in that iron is the fourth most 

abundant element in earth crust [66]. The abundance of iron on early earth, as well as the 

prediction of ancestry iron-reducing microorganisms, suggests that microbial iron respiration 

may be one of the first forms of metabolic activities for life origin [68-71]. Most Fe(III) reducing 

bacteria are also able to reduce Mn(IV), and the environmental Mn(IV) reduction is readily 

accompanied with Fe(III) reduction [72, 73]. Thus, extensive research interests have been 

focused on the naturally occurring bacterial dissimilatory Fe(III) and Mn(IV) reduction and the 

environmental impacts [74]. Bacteria that utilize U(VI), Se(VI), Cr(VI), and Hg(II) as terminal 

electron accepter for respiration are also of great significance. Although not as widely 

distributed as iron, contamination with these elements proposes hazardous threats to 

environments due to their radiation or toxicity. And microbial reduction of these metal 
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elements could be exploited as a remediation strategy. For example, several Geobacter spp. are 

able to reduce U(VI) in contaminated soil and ground water, resulting in the immobilization of 

uranium which is amenable for subsequent removal and clean-up [75].  

In addition to metal electron acceptors, many organic and inorganic compounds (e.g. 

fumarate, nitrate) could be utilized for respiration by DMRBs due to their respiratory 

versatilities. A range of electron donors could also be used as electron source for respiration, 

such as lactate, hydrogen, succinate, acetate, etc. The oxidation of organic matter coupled to 

dissimilatory reduction of metals is a very important mechanism for organic matter degradation 

in a variety of environments including aquatic sediments, submerged soils, and aquifers. The 

redox of various elements by DMRBs tremendously influences the geochemistry of metal and 

nutrient in the environment. As a result, water quality as well as soil composition could be 

interfered by microbial activities of DMRBs. In turn, plant growth and human food resource is 

also mediated by microorganisms. The ecological impacts of DMRBs are profound, in that their 

diverse respiratory activities significantly affect nutrient cycling, organic matter degradation, 

mineral dissolution, and weathering [66].  

Many species within the Geobacter genus are identified as DMRBs such as G. 

sulfurreducens and G. metallireducens. Geobacter species are often used as model organisms 

for research on dissimilatory metal reduction because they are generally the most common and 

most abundant Fe(III) reducing bacteria in many soils and sediments where active iron 

reduction processes occur. In addition to Fe(III), the range of electron acceptors that could be 

respired by Geobacter species include Mn(IV), U(VI), Co(III), V(V), etc [76]. The electron donors 



17 
 

available for Geobacter respiration is also diverse, including acetate, hydrogen, humics, Fe(II), 

U(IV), aromatic compounds, and other fatty acids [76]. Due to the predominant Fe(III) reduction 

in natural occurrence, the physiological aspects about Fe(III) reduction by Geobacter spp. are 

the most studied. Fe(III) is highly insoluble at the circumneutral pH in most natural 

environments, and generally present in various oxide forms (e.g. goethite, hematite). In order 

to reduce environmental Fe(III) which is not readily accessible to the cell, Geobacter spp. must 

develop a special strategy to transport electrons to extracellular solid-phase Fe(III). Studies on 

the mechanism for extracellular electron transfer were mostly done for G. sulfurreducens. It is 

clear that G. sulfurreducens, and presumably other Geobacter species, produce electrically 

conductive pili structure, which is essential for Fe(III) reduction [77, 78]. The concept of 

metallic-like conductive pili responsible for long range electron transfer is still under 

investigation, but it has been proven that the pilin protein PilA is the essential structural protein 

required for extracellular Fe(III) reduction [79]. Reduction of Mn(IV) by Geobacter species is 

studied in less detail. But it is proposed that a generalized electron transfer mechanism, rather 

than specific and specialized energy conservation strategies, is developed by Geobacter spp. for 

the reduction of different metal ions [76].  

Although much focus has been directed to G. sulfurreducens for the extracellular 

electron transfer mechanism of Geobacter, different species, and even different strains, have 

their unique physiological properties. For example, the G. sulfurreducens strain KN400 produces 

more current and reduces Fe(III) oxides at a faster rate than strain DL-1[80]. Thus, other species 

and strains of Geobacter need more extensive research to elucidate their individual functional 

roles in their natural environment. G. daltonii strain FRC-32 was isolated from the subsurface 
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sediments with mixed waste of heavy metal, radionuclides and hydrocarbon contamination. Its 

high abundance in the contaminated site, together with the ability to reduce metal electron 

acceptors such as U(VI) and Fe(III), attracted research interests to understand its contribution 

to the in-site metal reducing activities and contaminant remediation. In order to provide insight 

into the metabolic activities and molecular machineries of G. daltonii strain FRC-32, proteomic 

characterization of this strain is achieved in this dissertation and will be presented in Chapter 3 

and 6. 

The Shewanella genus is another group of intensively studied facultative bacteria for its 

versatile dissimilatory metal reducing capability. First isolated in 1931 from rotten butter, 

Shewanella were initially characterized as Acromobacter, but soon reclassified as Pseudomonas 

and then Alteromonas based on its phenotypic traits. The genus Shewanella was not 

established until 1985, when molecular taxonomical analysis based on 5S rRNA sequence were 

performed [81]. Our knowledge on Shewanella metal reducing capability started with the 

isolation of Shewanella oneidensis strain MR-1 from Lake Oneida, NY in 1988, where 

researchers found reduced form of manganese present in the aquatic environment in contrast 

to the commonly found oxidized form [82]. Lab cultural experiments in this study proved the 

direct link between manganese reduction and S. oneidensis anaerobic respiration. This finding 

triggered many following studies on the anaerobic respiration of S. oneidensis MR-1, especially 

on other possible external electron acceptors. Many other species of Shewanella were also 

isolated and identified from a variety of geographical locations, mostly aquatic habitats in 

marine and sedimentary environment [83]. In these studies Shewanella spp. demonstrated 

remarkable versatility on utilizing a broad range of electron acceptors including metals such as 
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Fe(III), U(VI), Cr(VI) as well as organic compound such as sulfite, thiosulfate, arsenate, fumarate 

etc. [83]. As a bacteria capable of growing with insoluble mineral oxide, S. oneidensis exhibits 

great potential for applications in bioremediation of heavy metal and radionuclide pollution 

sites as well as the development of microbial fuel cells. Studies with S. oneidensis strain MR-1 

have revealed three possible routes that mediate the transfer of electrons to extracellular non-

soluble mineral oxide (electron acceptors). Outer-membrane cytochromes MtrC and OmcA 

were initially attributed with the capability of electron export via direct contact with 

extracellular solid surfaces [84]. S.oneidensis strain MR-1 also secretes soluble riboflavins to 

serve as “electron shuttles” to enable electron exchange to external surfaces without direct 

interaction [85]. Besides, S. oneidensis MR-1 is also capable of producing electronically 

conductive nanowires to connect cells as well to biofilm attached surfaces. The electron 

conductivity, however is lost upon the mutating of out-membrane cytochrome MtrC and OmcA 

genes [86]. Overall these findings suggested that Shewanella species possess sophisticated 

metabolic systems to harness diverse sources of external electron acceptors and hence 

empower the organism to survive in different harsh environments.  

Anaeromyxobacter dehalogenans strain 2CP-C is recent addition to the DMRB family. 

Isolated from the Cameroon rain forest soil [87], A.dehalogenans strain 2CP-C has shown to be 

able to use a wide range of respiratory substrates including Fe(III), Mn(IV), fumarate, nitrate, 

oxygen, U(VI), ortho-substituted chlorophenols, etc. [87-89]. Anaeromyxobacter populations 

are also major participants in the U(VI), Fe(III), and chlorophenol reduction processes carried 

out in contaminated sites [90-92]. The chlororespiring activity of strain 2CP-C can be paralleled 

with constitutive Fe(III) reduction [87], and U(VI) reduction can be affected by the respiration of 
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nitrate, nitrite, and Fe(III) [88], suggesting the presence of competitive interactions between 

different terminal electron-accepting processes in the environment. Thus, A.dehalogenans 

strain 2CP-C is an excellent model organism for research on the interference of competing 

respiratory substrates. In addition, the potential utilization and manipulation of A.dehalogenans 

strain 2CP-C for in situ bioremediation of radionuclides and chlorophenols provides a promising 

strategy for soil and water quality improvement. The studies on A.dehalogenans strain 2CP-C 

mostly focused on its phylogeny and physiology, and there is a knowledge gap for molecular 

mechanisms contributing to its respiratory versatility. Further molecular-level exploration is 

needed to reveal whether A.dehalogenans strain 2CP-C has a unique electron transfer system, 

or a similar strategy is developed as with Geobacter (pili strategy) or Shewanella (cytochrome 

strategy). This dissertation provides insight into the proteomic compositions of A.dehalogenans 

strain 2CP-C in Chapter 3 and 4. 

 

1.5 c-Type Cytochromes Plays Important Role in Respiratory Versatilities of 

DMRBs 

 One common characteristic of most DMRBs is the large number of c-type cytochrome 

encoding genes present in their genomes. For example, in G. sulfurreducens genome, 111 genes 

potentially encode putative c-type cytochrome proteins [93], which is the highest number 

reported by far. Although detailed mechanisms for metal reduction is under investigation, the 

wealth of c-type cytochromes in DMRB is thought to be involved in the reduction of electron 

acceptors. 
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 c-Type cytochromes are proteins characterized by the covalent attachment of c-type 

heme on the conserved heme-binding motif CXXCH in the protein sequence. Heme is a very 

common biological cofactor, typically existing as the prosthetic group for a protein. The heme 

molecule is essentially protoporphyrin IX with iron; and the two vinyl groups of the c-type heme 

molecule are linked to the two cysteine residues in the CXXCH motif via thioether bonds (Figure 

1.3) [94]. In prokaryotes, many c-type cytochromes contain multiple c-type hemes in a single 

protein, each attaching to a distinct CXXCH motif. The c-type heme is thought to contribute to 

the stabilization of the protein as well as constructing “hardwires” for electron flow between 

molecules [95-98]. 

c-Type cytochromes play very important roles in various bacterial respiration pathways 

[98]. They participate in the electron transfer chain, which typically generates electron flow and 

the proton gradient across the cell membrane, which can be used for ATP synthesis, providing 

energy for various cell activities. Energy generation through metal respiration is a key feature 

for DMRBs as mentioned in the previous chapter. The functional roles of DMRB c-type 

cytochromes during electron transfer and terminal metal reduction for energy conservation is 

the question that many studies are trying to answer. 

The functional roles of many c-type cytochromes in Shewanella species have been 

extensively studied, and the molecular basis involving multiple c-type cytochromes has been 

proposed for the extracellular electron transfer process [99]. CymA (a teraheme c-type 

cytochrome) oxidizes menaquinol in the inner membrane and transfers electrons to the 

periplasm [100-102]. MtrA and MtrB form a porin-cytochrome complex on the outer  
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Figure 1.3. The molecular structure of c-type heme covalently binding to the 
conserved CXXCH motif on a polypeptide chain [94].  
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membrane that passes electrons from the inside of the outer membrane to the outside [102]. 

The solid extracellular electron acceptor (e.g. Fe(III) oxide) is then reduced, most likely by 

receiving electrons from extracellular multi-heme cytochromes MtrC, MtrF, and OmcA [102]. As 

mentioned in the previous section (1.4), S. oneidensis strain MR-1 could produce conductive pili 

structured “nanowire” possibly relating to metal reduction. And the cytochrome MrtC and 

OmcA is essential for the conductivity of the “nanowire” [103]. 

As for Geobacter species, the c-type cytochrome OmcC was shown to play important 

role for Fe(III) reduction[104]. Three outer membrane c-type cytochromes OmcS, OmcT, and 

OmcE are important elements for metal oxide reduction but not essential for the respiration of 

chelated metal species [105]. And the cytochrome OmpJ are required for the reduction of Fe(III) 

and Mn(IV) [106]. Unlike S. oneidensis strain MR-1, studies on the involvement of c-type 

cytochromes to the conductive pili structure of G. sulfurreducens showed that electron transfer 

alongside pili is not mediated by c-type cytochromes [77, 78]. Instead of aiding the pili 

conductivity, cytochrome OmcS is proposed to facilitate the electron transfer from pili to Fe(III) 

oxide [107]. Multiheme c-type cytochromes of Geobacter species are hypothesized to function 

as capacitors which are able to temporarily store electrons when extracellular electron 

acceptors are not readily available [108, 109]. 

The specific electron transfer processes for DMRBs are still elusive, but taken together 

all the studies on various c-type cytochromes in different DMRB organisms, it is obvious that 

the high abundance of diverse c-type cytochromes present in all DMRBs is reflecting the highly 

branched respiratory systems. In this dissertation, the three DMRBs under investigation (A. 
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dehalogenans strain 2CP-C, G. daltonii strain FRC-32, and S. oneidensis strain MR-1) all have 

high c-type cytochrome gene content in their genome based on genome sequence analysis. And 

majority of the predicted c-type cytochromes contain very high numbers of heme-binding 

motifs per protein [110, 111]. However, many of the putative c-type cytochromes, especially for 

A. dehalogenans strain 2CP-C and G. daltonii strain FRC-32, are not validated for their 

expression, interaction, and specific function. In order to gain insight into the utilization of c-

type cytochromes during respiration, the comprehensive proteomic profiling of their c-type 

cytochrome repertoires is conducted and presented in Chapter 3. 

 

1.6 MS-based Proteomics Offers Insight into DMRB Studies Unachievable by 

Other Techniques 

 The studies about DMRBs mainly have been focused on the ecological and physiological 

properties, such as their population diversities and abundances in field samples, efficiency in 

metal reduction, current production, utilization of different electron acceptors and donors, etc. 

The environmental relevance of metal reduction processes by DMRBs is profound, and a 

significant number of bacterial species have been recovered and enriched in laboratories from 

various important environments (e.g. G. sulfurreducens and S. oneidensis as mentioned earlier). 

The isolation of DMRBs has led to deeper understanding of bacterial utilization and competition 

for different electron donors and acceptors, and revealed metabolic processes of individual 

species contributing to the environmental ecology.  
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While our knowledge about the physiological and ecological aspects of DMRBs is 

advanced, more effort needs to be directed toward the elucidation of precise mechanisms 

involved. With the advent of high throughput next-generation sequencing leading to the bloom 

of microbial whole genome sequencing, the complete genetic makeup for many isolated 

DMRBs are easily accessible. Functional predictions for DMRB genes were made through 

comparative genome analysis, and revealed many unprecedented potential metabolic features. 

For example, the genome of G. sulfurreducens and A. dehalogenans suggested motility function 

and aerobic metabolism, both of which were subsequently validated experimentally [93, 111, 

112]. Among all the identified DMRBs, the complete genomes for S. oneidensis and G. 

sulfurreducens were the earliest available [93, 113]. Thus, the understanding about the 

molecular basis for respiratory activities of S. oneidensis and G. sulfurreducens are the most 

extensive due to well-constructed genetic systems [114, 115]. With the available genetic 

systems, progress has been made in identifying specific genes that are essential for selected 

biological processes using gene manipulation strategies, and many genes responsible for 

specific cellular functions were characterized. For example, some c-type cytochromes are 

essential for metal reduction, as mentioned in the previous section. However, mutant strain 

generation is technically difficult and time consuming. In addition, disruption of a particular 

gene often does not provide discernable phenotype, as exemplified by the mutagenesis studies 

on S. oneidensis and G. sulfurreducens [116, 117]. The metal respiration ability of S. oneidensis 

and G. sulfurreducens is only hampered and not eliminated by the disruption of a few c-type 

cytochrome genes [116, 117]. More comprehensive interrogations to the DMRB cellular 

activities and the detailed mechanisms are needed. 
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In the post-genomics era, transcriptomics and proteomics enable the functional 

overview of gene expression. Several transcriptomics and proteomics studies have been done 

on S. oneidensis and G. sulfurreducens [118]. The microarray analysis on S. oneidensis mRNAs 

identified 121 genes showing differential expression changes growing with different electron 

acceptors [119]. The gene fur of S. oneidensis, a homolog to the iron uptake regulator in E. coli, 

was identified to be an important element in the regulation of energy metabolism and iron 

assimilation through transcriptomics and gel-based proteomics analysis [120, 121]. As discussed 

in section 1.1 and 1.2, transcriptomics is one step away from the final gene product – proteins, 

and comprehensive proteomics interrogation could provide the direct systematic functional 

overview for cellular activities. The unfractionated MS-based proteomic studies on S. oneidensis 

explored the proteome expression, and provided experimental evidence for the expression of a 

significant proportion of the uncharacterized hypothetical proteins [122-124]. Proteomics 

characterization also provided insight into the global cellular activities of S. oneidensis and G. 

sulfurreducens toward different growth environments, stress conditions, etc. [125-128]. In all, 

characterization of the molecular metabolic activities provided by proteomics analysis could not 

be achieved through any other techniques. While S. oneidensis and G. sulfurreducens have been 

extensively explored, many other DMRBs with significant environmental influences should also 

be interrogated. The MS-based proteomics analysis in this dissertation provided the metabolic 

overview for A. dehalogenans strain 2CP-C, G. daltonii strain FRC-32, and S. oneidensis strain 

MR-1, and comparative analysis revealed differential proteome expression profiles as well as 

differential c-type cytochrome utilizations. 
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1.7 Overview of This Dissertation 

This dissertation is focused on the development and application of a high-performance 

MS-based proteomics technique to enhance the understanding of environmental microbiology. 

The particular focus of the research presented in this dissertation is to comprehensively 

characterize the proteomes of three different species of DMRBs in an effort to reveal the 

molecular mechanisms underlying the cellular metabolic activities in relation to their 

respiratory versatilities. 

Chapter 2 will provide the in-depth proteomics experimental design for achieving 

comprehensive DMRB proteome characterizations, including details related to cell culture, 

proteome sample preparation methods, mass spectrometry instrumentation and experimental 

setup, protein identification strategy, and data normalization. Chapter 3 will demonstrate deep 

protein expression profiling for the putative c-type cytochromes in A. dehalogenans strain 2CP-

C, G. daltonii strain FRC-32, and S. oneidensis strain MR-1, providing the accurate details about 

the utilization of different sets of c-type cytochromes in response to different electron 

acceptors. The systematic proteome characterizations for A. dehalogenans strain 2CP-C will be 

presented in Chapter 4, which compares the regulation of different metabolic pathways toward 

the respiration of different electron acceptors. Chapter 5 focuses on the comprehensive 

proteomics characterization for G. daltonii strain FRC-32 and S. oneidensis strain MR-1 under 

different electron-accepting conditions. And the proteome expression and represented 

metabolic pathways of G. daltonii strain FRC-32 and S. oneidensis strain MR-1 is compared and 

contrasted to the proteome detection of A. dehalogenans strain 2CP-C. Chapter 6 will conclude 
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the scientific achievements throughout this dissertation and the contributions made to the 

environmental microbiology field. The current status and on-going development of 

environmental microbiology through MS-based proteomics will also be discussed in Chapter 6.   
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Chapter 2 

Experimental Design, Instrumentation and Data Analysis 

2.1 Experimental Overview 

 The shotgun proteomics approach was employed for studies presented throughout this 

dissertation (Figure 2.1). Since the focus of this dissertation was on the proteomic response of 

DMRBs to the utilization of different electron acceptors, the overall workflow of the shotgun 

proteomics approach started with sample collection which obtained cells grown under various 

electron-accepting conditions. The next step was to effectively extract the proteome from the 

collected cell pellets, which is crucial to present the comprehensive repertoire of proteins for 

the following mass spectrometry measurement. In order to achieve efficient cell lysis and whole 

proteome preservation and extraction, unfractionated sample preparation methods employing 

detergent or chaotropic agent were chosen. Next, extracted proteins were enzymatically 

digested into peptides using trypsin, and the tryptic peptide mixtures were separated using 

multidimensional high performance liquid chromatography (HPLC), which was directly 

interfaced with a mass spectrometer. The separated peptides were brought into gas-phase 

through ionization by electrospray, and the mass to charge values (m/z) and relative intensities 

of the peptide ions were measured in the mass analyzer and detector, generating full spectra 

(MS1). Peptide ions representing the most abundant peaks in the full spectra were selected for 

fragmentation by collision induced dissociation (CID), and the fragmented ions where measured 

for their m/z values and relative intensities, generating the tandem mass spectrum (MS/MS). 

Peptide sequences were determined using the spectrum matching algorithm  
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Figure 2.1. Shotgun proteomics workflow. 
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SEQUEST, which utilized predicted peptide MS/MS spectra to infer the measured peptide 

sequences. Protein identification was achieved by matching the identified peptide sequences to 

the corresponding protein sequences, and spectral counts were used as the measure for 

protein abundances. Using the shotgun proteomics approach outlined above, the proteomes of 

tested DMRBs were characterized and quantified. The overall experimental design and specific 

techniques used for each experimental step were chosen with careful considerations. Technical 

details for each step are provided in the following section. 

 

2.2 Sample Collection 

Three dissimilatory metal reducing bacterial strains were tested throughout this 

dissertation, including Anaeromyxobacter dehalogenans strain 2CP-C (ATCC BAA-259), 

Geobacter daltonii strain FRC-32 (DSM 22248), and Shewanella oneidensis strain MR-1 (ATCC 

BAA-1096). Cell culture growth and collection was conducted by our collaborator in Dr. Frank 

Löffler’s lab in The University of Tennessee, Knoxville. For shotgun LC-MS/MS experiments on 

microbial isolates, typically >1mg cell pellets contain sufficient protein amounts for accurate 

detection. To minimize biological variations, the tested strains were grown in triplicates, which 

also provided the convenience to perform statistical analysis after experimental measurements. 

Generally, technical replications are achieved by repetitive MS measurements for the same 

sample, which counteracts the technical variations introduced by separate experiments. Due to 

the large sample set tested in this dissertation, technical replications were performed on 

several samples and demonstrated high qualities of replication.  
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Each bacterial strain was cultured independently in biological triplicates in 160 ml glass 

serum bottles containing 100 ml reduced bicarbonate-buffered mineral salts medium with a 

N2/CO2 headspace (80:20, vol/vol) as described previously [129, 130]. The mineral salts in the 

synthetic medium are as following (per liter): NaCl, 1g; MgCl2·6H2O, 0.5g; KH2PO4, 0.2g, NH4Cl; 

0.3g, KCl, 0.3g; CaCl2·2H2O, 0.015g; resazurin, 1mg; trace element solution A, 1ml; trace 

element solution B, 1 ml; Na2S·9H2O, 0.048g; L-cysteine, 0.035 g; NaHCO3, 2.52 g; vitamin 

solution [131], 10 ml; pyruvate, 20 mM; and 3 Cl-4-HBA,1mM. Trace element solution A 

contained the following (per liter): HCl (25% [wt/wt] solution), 10 ml; FeCl2·4H2O, 1.5 g; 

CoCl2·6H2O, 0.19 g; MnCl2·4H2O, 0.1 g; ZnCl2, 70 mg; H3BO3, 6 mg; Na2MoO4·2H2O, 36 mg; 

NiCl2·6H2O, 24 mg; and CuCl2·2H2O, 2 mg. Trace element solution B contained (per liter): 

Na2SeO3, 6mg; Na2WO4·2H2O, 8 mg; and NaOH, 0.5 g. The serum bottles were closed with butyl 

rubber stoppers (Geo-Microbiol Technologies, Inc., Ochelata, OK) and crimped with aluminum 

seals (Wheaton, Millville, NJ). Different growth conditions for each bacterial strain were 

generated by adding different electron donors and acceptors into the growth medium, details 

of which are provided below. 

A total of eight different growth conditions with various electron acceptors were tried 

for each bacterial strain, designated as “FeOOH”, “Fe citrate”, “MnO2”, “fumarate”, “nitrate”, 

“tryptic soy broth”, “oxygen”, and “N2O” (Figure 2.2). Cell growth of strain 2CP-C was achieved 

with all eight culture conditions, whereas seven conditions were tested for strain MR-1, and 

strain FRC-32 could only grow under four tested conditions (Figure 2.2). Acetate (5 mM) or 

lactate (5 mM) was provided as electron donors for all conditions except “tryptic soy broth”. 

For the “FeOOH”, “Fe citrate”, “MnO2”, “fumarate”, and “nitrate” conditions, the following  
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Figure 2.2. Cell growth conditions tested for A. dehalogenan 2CP-C, S. oneideisns MR-1, 
and G. daltonii FRC-32. 
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electron acceptors were added, respectively: ferric oxyhydroxide (20 mM, nominal), ferric 

citrate (50 mM), manganese oxide (20 mM, nominal), fumarate (10 mM), and nitrate (2 mM). 

For the “tryptic soy broth” condition, 1/10 diluted tryptic soy broth medium was used in place 

of the mineral salt medium, providing undefined electron donor(s), and fumarate (10 mM) was 

added as the electron acceptor. When oxygen was used as electron acceptor for the “oxygen” 

condition, the medium volume was reduced to 50 ml, and 3% (vol/vol) oxygen was added in the 

headspace as electron donor, by injecting the appropriate volume of filter-sterilized air into the 

serum bottles. As shown in Figure 2.1, the “N2O” growth condition was achieved only for strain 

2CP-C. In the “N2O” condition, strain 2CP-C was grown in the synthetic medium with Na2S 

omitted, acetate (5mM) provided as electron donor, and 2ml of 99% N2O gas (Aldrich) provided 

as electron acceptor by sterile filtering the gas into the serum bottle. Consecutive spikes with 

N2O gas were carried out a total of 10 times. The consumption of N2O was determined by 

measuring the headspace of the cultures with a 3000A MicroGC gas analyzer (Agilent 

Technologies; Column: Plot Q; Carrier gas: He).  Briefly, a 1 ml headspace sample was taken 

under sterile and anoxic condition and manually injected into the 3000A MicroGC. 

In each culture, cells were grown at 30°C, shaken at 90 rpm until mid to late exponential 

phase, as determined by OD (optical density) and qPCR (for fumarate growth) metrics, and the 

entire volume was harvested by centrifugation (4,700 x g for 20 min at 4°C). Cell pellets were 

instantly frozen and stored at -80°C. 
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2.3 Cell Lysis and Proteome Extraction 

Once bacterial cells are collected, the next step is to lyse the cells and extract all the 

proteins to prepare proteome samples for mass spectrometry interrogation. Two types of 

proteome preparation methods were used throughout this dissertation: 1) SDS-TCA method, 

and 2) Guanidine-HCl method (Figure 2.3). Both methods are effective in cell lysis and total 

proteome extraction. 

2.3.1 The SDS-TCA Method 

The SDS-TCA method was originally developed for improved proteome extraction from 

complex environmental soil microbes [132]. The use of the strong detergent sodium dodecyl 

sulfate (SDS), together with heat, was proven to be efficient in cell lysis and provides effective 

recovery of highly hydrophobic proteins such as proteins located in the cell membrane [32, 133, 

134]. Since a major focus of DMRB research is on the c-type cytochrome proteins, most of 

which are predicted to be membrane-associated or periplasmic, the SDS-TCA method was 

chosen to provide effective proteome extraction including the c-type cytochrome proteins. 

For cells grown with Fe citrate, MnO2, fumarate, nitrate, tryptic soy broth, oxygen, and 

N2O, the SDS-TCA method was applied (Figure 2.3). The cell pellet collected was re-suspended 

in 1.5 ml cell lysis buffer (5% (w/v) SDS, 50 mM Tris-HCI, pH 8.5; 0.15 M NaCl; 0.1 mM 

ethylenediaminetetraacetic acid (EDTA); 1 mM MgCl2; 50 mM dithiothretiol (DTT)), and 

subjected to a boiling water bath for 10 min to achieve cellular lysis. Cell lysate was collected 

after centrifugation (21,000 x g for 15 min) and chilled 100% trichloroacetic acid (TCA) was 

added to a final concentration of 25% (v/v) and samples were incubated overnight at -10°C.  
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Figure 2.3. Cell lysis and proteome extraction methods. The SDS-TCA method (left) uses 

detergent SDS for cell lysis and protein denaturation, which provides effective extraction 

for hydrophobic proteins. The Guanidine-HCl method (right) directly use guanidine-HCl 

solution for cell lysis and protein denaturation, and contains less preparation steps which 

reduce the chance of sample loss. 
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Proteins were precipitated by centrifugation at 21,000 x g for 20 min, and the supernatant was 

discarded. Cell pellet were washed thrice with chilled acetone and centrifuged at 21,000 x g for 

10 min after each acetone wash. Protein pellets obtained, were air-dried and solubilized in 

guanidine/DTT buffer (6 M guanidine HCl, 10 mM DTT in Tris CaCl2 buffer (50 mM Tris, 10 mM 

CaCl2, pH 7.6)) and incubated at 40°C for 4 hrs prior to proteolytic digestion. 

Attempt to use the SDS-TCA method for FeOOH grown cultures were made, but did not 

yield effective proteome extraction. We suspect that after cell lysis and protein denaturation by 

SDS and heat, proteins adsorbed onto the FeOOH solid particles and did not present in the cell 

lysate collected through centrifugation. Thus, the Guanidine-HCl method described below was 

applied on cells grown with FeOOH. 

2.3.2 The Guanidine-HCl Method 

The Guanidine-HCl method has been the traditional approach for microbial isolate 

proteome sample preparation, which has achieved many successes for the comprehensive 

microbial proteome characterizations [35, 57, 135]. As mentioned above, in this dissertation, 

the Guanidine-HCl was used for the proteome extraction of FeOOH grown cells. 

In this approach, cell lysis and protein denaturation and reduction was achieved 

simultaneously by re-suspending collected cell pellets in 2 ml guanidine/DTT buffer (6 M 

guanidine HCl, 10 mM DTT in Tris CaCl2 buffer (50 mM Tris, 10 mM CaCl2, pH 7.6)) with vigorous 

vortex. Cell lysate was incubated at 40°C for 4 hrs prior to direct proteolytic digestion. 
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Comparing to the SDS-TCA method, the Guanidine-HCl method contains fewer steps, 

and does not involve centrifugation process, which greatly reduces the chance of protein loss 

during sample preparation steps. For the FeOOH grown cultures, effective proteome recovery 

was achieved though the Guanidine-HCl as shown by the results in Chapter 3, 4, and 5. 

 

2.4 Protein Digestion 

 Following protein extraction using either the SDS-TCA or Guanidine-HCl methods 

(described above), the protein solution was diluted 6-fold using Tris CaCl2 buffer, pH 7.6 in 

order to reduce the guanidine concentration, and proteolytic digestion was performed using 

sequencing-grade trypsin (Promega, Madison, WI), which enzymatically cleaves at the C-

terminal side of lysine and arginine residues unless followed by a proline residue. Generally the 

spacing of lysine and arginine in the majority of proteins could generate tryptic peptides with 

amenable length for MS analysis. Tryptic peptides generally carry a positive charge on both the 

N- and C-terminals, could be separated by liquid chromatography, and are able to get ionized 

efficiently by electrospray. Prior to trypsin addition, the total concentration of proteins was 

quantified using the bichinchoninic acid (BCA) assay [136]. And optimal amount of trypsin was 

used according to the obtained protein amount (trypsin:protein = 1:100 (w/w)). To ensure 

effective tryptic digestion, half of the optimal amount of trypsin was added with overnight 

incubation at 37°C, followed by a second addition of the remaining amount of trypsin and 

incubation at 37°C for 4 hrs. 
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 After proteins are enzymatically digested into peptides, the peptide solution was 

desalted using C-18 solid-phase extraction (SepPak, Waters, Milford, MA), and was 

concentrated and solvent exchanged into acidified water (0.1% formic acid in HPLC grade water; 

v/v) by vacuum centrifugation using a Savant SpeedVac instrument (ThermoFisher Scientific, 

Waltham, MA). All peptide samples were filtered by Durapore PVDF filters, 0.45 µm (Millipore) 

and stored at -80 °C before analysis by mass spectrometry. 

 

2.5 Liquid Chromatography 

After trypsin digestion, the sample complexity is significantly increased, in that each 

extracted proteins are digested into multiple peptides. To resolve the highly complex peptide 

mixture, high-performance liquid chromatography (HPLC) was employed to separate numerous 

peptide species before interrogation by mass spectrometer. The separation strategy is critical 

for good quality mass spectrometry proteomics characterization. For complex mixture of cell 

proteome, multidimensional HPLC that employs orthogonal separations are needed to provide 

strong resolving power [137, 138].  In order to improve peptide separation power, the 

multidimensional protein identification technology (MudPIT) was applied to all proteome 

samples in this dissertation [139].  

Two-dimensional liquid chromatography is utilized in the MudPIT method, through 

which, peptides are separated by charge and hydrophobicity. Using this approach, strong 

cation-exchange (SCX) resins and reverse-phase resins are integrated in a microcapillary 

chromatographic column. While peptides are separated by charge during SCX chromatography, 
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reserve-phase offers peptides separation by hydrophobicity. As illustrated in Figure 2.4, a “back 

column” is built by packing a fused silica microcapillary column (150 µm inner-diameter and 360 

µm outer-diameter; Polymicro Technologies; Phonex, AZ) with ~5 cm SCX resins (Luna 5µm 

particle size; 100 Å pore size; Phenomenex, Torrance, CA). Peptide samples were loaded onto 

the “back column” using a pressure pump. After pressure-loading, peptides were bond to the 

SCX resins through ionic interaction, and the “back column” was subject to an offline-wash by 

connecting to a quaternary HPLC pump (Ultimate 3000 HPLC, Dionex, Sunnyvale, CA) which 

flow through the “back column” with a 15 min gradient from low to high organic (100% solvent 

A to 50% solvent B) to remove any lingering salt and SDS. Solvent A contained 95% H2O, 5% 

acetonitrile, and 0.1% formic acid (vol/vol). Solvent B was highly organic, which contained 30% 

H2O, 70% acetonitrile, 0.1% formic acid (vol/vol). Then the “back column” was equilibrated 

using a 5 min gradient from 50% solvent B to 100% solvent A, followed by another 5 min flow of 

100% solvent A. 

After the offline wash and equilibration, the peptides-loaded “back column” was 

interfaced to a “front column” via a PEEK union and a 0.5 µm inline filter (Upchurch Scientific, 

Oak Harbor, WA). The “front column” contained a pointy tip serving as the nanospray emitter 

(15±1 µm tip diameter, 100 ID, New Objective, Woburn, MA), and was packed with 12-15 cm C-

18 reverse-phase resins (Aqua 5 µm particle size; 125 Å pore size; Phenomenex, Torrance, CA) 

using a pressure pump (Figure 2.4). 

In this dissertation, each peptide sample was subject for an eleven-step 

chromatographic separation strategy, with each step lasting for around two hours. During each  
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Figure 2.4. Schematic diagram of a MudPIT experiment setup. A back column is 

constructed by packing a fused silica microcapillary tube with strong cation exchange 

(SCX) material. The front column contains a pointy tip which functions as the 

electrospray emitter. The C-18 reserve-phase material is packed into the front column. 

The front and back columns are connected by filter and union. 
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of the first ten steps, the ionic interaction between the SCX resins and the binding peptides was 

challenged by a short (typically 5 min) salt pulse (solvent C: 500 mM ammonium acetate in 

solvent A), causing a proportion of the bonded peptides eluting from the SCX section of the 

“back column” into the C-18 resins in the “front column”. A long gradient (roughly 100 min) 

from 100% solvent A to 50% solvent B was applied after the salt disruption to further separate 

peptides in the reserve-phase by hydrophobicity. The salt pulse concentration was increased 

through each incremental step, resulting in peptides with different charge states separated 

during each step. From step one to ten the following concentration of solvent C was applied 

respectively: 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%. In the eleventh step, no salt 

pulse was introduced, and the gradient started from 100% solvent A to 100% solvent B. The 

HPLC separation was directly coupled online with the following electrospray and mass 

spectrometry analysis. As peptides eluting off the “front column” over the course of the 

chromatographic separation, the separated peptides were subsequently ionized and introduced 

into the mass spectrometer.  

 

2.6 Ionization 

Ionization techniques made it feasible to bring large, non-volatile biological molecules 

into gas-phase for mass spectrometer measurement. Two types of “soft ionization” methods 

were most used for proteomics analysis: matrix-assisted laser desorption ionization (MALDI) 

[140] and electrospray ionization (ESI) [27]. For MALDI ionization, the analyte (peptides or 

proteins) are fixed in a substrate or “matrix”, and a laser beam is used to trigger desorption of 
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the analyte leading to ionization. And the ions generated through MALDI are generally singly 

charged. In contrast, ESI is performed by applying a strong electric field to an aqueous solution 

flowing through a capillary needle, and the proteins or peptides in the liquid are directly ionized 

through protonation. Thus, liquid chromatography separation could be readily interfaced with 

ESI, and the real-time separation, ionization and MS measurement could be integrated for 

peptides solution analysis. The ions generated by ESI are generally multiply charged, allowing 

the m/z (mass to charge ratio) of large molecules to be accommodated by the mass range (the 

highest and lowest m/z that could be measured) of the mass analyzer. Thus, ESI was chosen for 

peptide ionization in this dissertation. 

During ESI, the flow rate of sample solution is kept low (generally below 10 µl/min). 

Currently, the most common ESI is the nano-electrospray (nano-ESI) which has a typical flow 

rate of 20-50 nl/min, and generates droplets less than 200 nm in diameter [141]. The 

advantages of nano-ESI, compared to conventional ESI, include less sample consumption, 

longer stable signal for accurate measurement, better ion desolvation, and higher tolerance to 

high aqueous solvents and salt contamination [142-144]. In this dissertation, nano-ESI is 

employed for all MS experiments. 

During the nano-ESI process, the sample solution slowly flowing through the capillary 

tube is sprayed out from the needle emitter under the strong electric field. And the following 

process through which peptides are transferred from the liquid phase to the gas phase is 

considered to have three steps: 1) generation of charged droplets from the high-voltage 

electrospray emitter; 2) evaporation of solvent in the charged droplet and disintegration of 
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large droplets into smaller droplets; 3) gas-phase ion forming from the small droplets (Figure 

2.5). As the liquid eluting out from the tip of the emitter, a cone-shaped spray (termed: Taylor 

cone) is formed due to surface tension and electric force [145]. Subsequently, the Taylor cone is 

dispersed into a plume of charged droplets under the influence of the strong electric field. The 

charged droplets could each contain tens of thousands of charged ions with like charges 

distributing on the surface of the droplet [146]. While surface tension tries to maintain the 

spherical shape of the droplets, the like charges on the droplet surface cause Coulomb force of 

repulsion which tries to break down the spherical shape [146-149]. As charged droplets move in 

the electric field toward the heated capillary, the solvent starts to evaporate from heating, and 

the size of the droplets shrink. Eventually, the surface tension of the shrinking droplet could no 

longer combat the Coulomb force of repulsion, reaching the “Rayleigh limit” [150], and leading 

to the “Coulomb fission” where large droplets break down into smaller charged droplets. The 

solvent evaporation and Coulomb fission repeatedly occur, which generate more and more 

small offspring droplets with reduced size. In the end, ions are brought into gas-phase from the 

droplet.  The exact mechanism for gas-phase ion formation is under debate. Two prevailing 

hypothesis are the “charge residue model” and the “ion evaporation model”. The charge 

residue model proses that the solvent evaporation and Coulomb fission repeatedly occur until 

only one ion is present in the droplet, and the ion is released by droplet desolvation [151-153]. 

On the contrary, the ion evaporation model suggests that direct ion emission occur under the 

electric field when the droplet diameter is below 10 nm [154, 155]. 
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Figure 2.5. Illustration of the electrospray ionization process.  
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2.7 Mass Analyzer and Detector 

There are three major components in a mass spectrometer instrument: the ion source 

(discussed above in 2.6), mass analyzer, and detector. After ions are brought into the gas-phase 

in the ion source, the mass analyzer resolves the m/z (mass to charge ratio) values of the ions, 

and detector measures the signal intensity. There are various types of mass analyzer and 

detector developed, and each has its unique figures of merit: 1) mass accuracy: the m/z 

measurement error divided by the expected m/z value, usually measured in parts-per-million 

(ppm); 2) resolving power: the ability to distinguish two peaks of close m/z values, typically 

measured in FWHM (full width of the peak at half its maximum height); 3) dynamic range: the 

signal ratio of the most abundant and least abundant detections; 4) mass range: the range 

between the highest and lowest m/z values that could be measured; 5) sensitivity: the ability to 

detect the increase/decrease of signal intensity from the increase/decrease of the analyte 

concentration; 6) speed: reflected by the number of collected spectra in a given time frame. 

The analytical figures of merit are very important features for mass spectrometer instruments, 

and should be carefully considered when choosing the appropriate instrument for desired 

experiments.  For example, comprehensive characterization of proteomes requires instrument 

with high speed and sensitivity, such as that of an ion trap mass spectrometer. In contrast, high 

resolution is more important for intact protein measurement, which requires protein isotopes 

resolution achieved by the chosen instrument (e.g. FR-ICR). 

The mass spectrometer instrument used in this dissertation is a two-dimensional linear 

ion trap quadrupole, LTQ-XL (Thermo Scientific, Inc.) [156]. The linear ion trap consists an array 
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of four hyperbolic metal rods. Two types of RF (radio frequency) voltages are applied on the 

metal rods: DC (direct current) and AC (alternating current). By adjusting the DC and AC 

voltages, ion movements could be manipulated in an axial fashion in the center space between 

the rods. The linear ion trap could selectively isolate ions with desired m/z, and can eject ions to 

the detectors placed on the sides of the ion trap. The ion trapping volume, high sensitivity, and 

fast speed of LTQ-XL made it widely used as the optimal platform for the proteomics 

characterization for microbial isolates. 

Another type of mass analyzer is the orbitrap [157], which could be combined with 

linear ion trap for improved mass accuracy and resolution. In contrast to the utilization of RF 

voltages for ion confinement, the orbitrap uses a central spindle-shaped electrode and an outer 

barrel-shaped electrode to trap ions in between. The trapped ions orbit the central electrode, 

and the m/z values are measured through the oscillation frequencies [158]. The LTQ-Orbitrap-

XL (Thermo Scientific, Inc.) is a hybrid mass spectrometer which contains a LTQ mass analyzer 

and an orbitrap analyzer (Figure 2.6). The analytical figures of merit for LTQ-XL and LTQ-

Orbitrap-XL are presented in Table 2.1. When performing tandem MS measurement 

(introduced below in 2.7), the full scan is typically generated through the orbitrap which 

resolves highly complex peptide ion mixtures, and the tandem scan for peptide fragments with 

lower complexity is generally performed in the linear ion trap with high scan speed. 
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Figure 2.6. Schematic of the hybrid mass spectrometer LTQ-Orbitrap-XL. Two mass 
analyzers, the LTQ linear ion trap and the orbitrap, are combined for advanced 
resolution, accuracy, sensitivity and scan speed. Image obtained from 
www.thermoscientific.com.   

http://www.thermoscientific.com/


49 
 

 

 

  
Mass 

Accuracy 
Resolution 

(FWHM) 
Mass Range (m/z) MS/MS Sensitivity 

LTQ-XL 0.1 Da 1000-2000 
15-200;  

50-2000;  
200-4000 

femtomole 

LTQ-Orbitrap-XL <1 ppm 
7500-over 100,000  

at m/z 400 
50-2000;  
200-4000 

attomole - 
femtomole 

  

Table 2.1. Analytical figures of merit comparison for LTQ-XL and LTX-Orbitrap-XL.  
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2.8 Tandem Mass Spectrometry 

In this dissertation, the tandem mass spectrometry (MS/MS) technique is used for 

proteomics identification. When the peptides are separated and ionized, their m/z values (mass 

to charge ratio) and intensities could be measured by the mass spectrometer, generating the 

full scan mass spectrum (MS1 spectrum). The measured peptide ions could be selected for gas-

phase fragmentation inside the mass spectrometer, and m/z values and intensities of the 

resulting fragments could be measured, providing information for the peptide sequence. The 

ions selected for fragmentation are called the parent ions or precursor ions, and the spectra 

corresponding to the fragmented ions are the tandem spectra (called MS/MS or MS2 spectra). 

Many fragmentation strategies are available for peptide analysis, such as collision 

induced dissociation (CID) [159], electron capture dissociation (ECD) [160], electron transfer 

dissociation (ETD) [161], heated capillary dissociation (HCD) [162], multi-stage activation (MSA) 

[163], pulsed-Q dissociation (PQD) [164], etc. For large scale peptide sequencing, the CID 

approach is most commonly used. During CID, the selected precursor ion is accelerated and 

collided with neutral inert gas molecules (e.g. helium, nitrogen, or argon), and the kinetic 

energy gained is redistributed as internal vibrational energy within the molecule causing its 

dissociation [165]. The fragmentation primarily occurs along the peptide backbone, and three 

types of the bonds are generally cleaved: the NH-CH, CH-CO, and CO-NH bonds. The charge of 

the parent ion could be retained on either the C-terminus or N-terminus. Depending on the 

cleavage position and charge retention, fragmented ions are classified into a-, b-, c-, x-, y-, z-
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types (Figure 2.7). The polypeptide chain fragmented by CID could break at any of the amide 

peptide bonds,  and generally b- and y- ions are the most observed fragment ion types [166]. 

Since the full scan measures thousands of ions with different m/z values at different 

intensities, it is time-consuming to fragment all the ions present in MS1. Thus, only the most 

abundant peaks in the MS1 are generally selected for fragmentation. To avoid repeatedly 

sampling the same abundant ions with high intensities in consecutive MS1 scans, the dynamic 

exclusion is applied, which prohibits the fragmentation of a measured parent ion within a time 

period. For proteomics measurement of complex protein or peptide mixtures, the dynamic 

exclusion allows the high abundance and low abundance analytes to be measured. 

 

2.9 Informatics 

Once the experimental MS spectra are collected, peptide sequence identification could 

be achieved by searching a proteome database using computational algorithms. Several search 

algorithms have been developed, such as SEQEUST [42], Myrimatch [44], DBDigger [167], etc. In 

this dissertation, all protein identifications were done by the spectrum-matching approach 

(Figure 2.8) achieved by database searching using the SEQUEST algorithm.  

During the SEQUEST search, all the collected MS/MS spectra are processed to remove 

the low abundant signals and noise. Only peaks with the top two hundred relative abundances 

are retained, in order to ensure overall high quality of the spectra for better search accuracy. 

On the other hand, SEQUEST performs in silico trypsin digestion to all the proteins contained in  
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Figure 2.7. Schematic of the peptide ion fragmentation. Different types of fragment 
ions are generated depending on the charge retention. When charge is retained on 
the N-terminus, a-, b-, and c- types of ions are generated. And when charge is 
retained on the C-terminus, x-, y-, and z- type ions are generated. The fragment 
ions are named numerically from N-terminus to C-terminus for a-, b-, and c-type 
ions, and numerically reversed for x-, y-, and z- type ions. 
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  Figure 2.8. Peptide identification through spectrum matching. In a shotgun proteomics 
analysis, protein mixtures are enzymatically digested into peptides. Then the generated 
small peptides are sent to liquid chromatography (LC) for separation. Peptides are 
separated by hydrophobicity and electric charge. Separated peptides are measured by 
tandem mass spectrometry (MS/MS) generating spectrum providing information of mass 
to charge ratio and abundance about the peptides. Genome information is utilized to 
predict all the possible proteins that could be measured. And computationally digested 
peptides and their theoretical fragmentation spectra are generated. Peptide sequence 
identification is achieved by matching the experimental results to theoretical spectra. 
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the predicted proteome database, and computationally generates theoretical fragmentation 

patterns for predicted tryptic peptides (theoretical MS/MS spectra). Predicted peptides having 

a molecular mass approximate to the measured parent ion (within a user defined mass window) 

are selected as candidates for the following spectrum matching.  The theoretical MS/MS 

spectra of the candidate peptides are serving as barcodes to match to the processed 

experimental MS/MS spectrum corresponding to the parent ion. The quality of the peptide 

spectra matching (PSM) is determined by a correlation score, XCorr. The XCorr is weighed by 

the total intensity of matched ions, the continuity of the fragment sequences, and the number 

of measured ions relative to the predicted number of fragments. Additionally, another score, 

DeltaCN, is calculated as the difference between the XCorr scores for the best and the second 

best matched spectrum. The DeltaCN and XCorr scores together indicate the confidence of the 

peptide spectrum matching. 

After the peptide sequences are identified by SEQUEST, the DTASelect software [43] was 

used for protein inference. DTASelect evaluates all the PSMs scores achieved through SEQUEST, 

filters the scores with user defined criteria, and match all the filtered PSMs to the 

corresponding proteins. In this dissertation, standard criteria were applied which required the 

XCorr scores to be above 1.8, 2.5, and 3.5 for +1, +2, and +3 charged peptide ions, respectively 

[168]. And the DeltCN filter was set at 0.08. In addition, for each identified protein, at least two 

peptide sequences much be identified. The DeltCN output lists all identified proteins and their 

corresponding measured peptides, together with the scoring matrices (Figure 2.9). 
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Figure 2.9. An example of the DTASelect output. DTASelect output file lists all the detected 
proteins (highlighted in red) and their corresponding peptides (highlighted in blue). All 
scoring matrices for peptide identification and protein inference are presented. 
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2.10 Label-free Quantification and Data Normalization 

 For label-free mass spectrometry analysis, protein abundances are measured by spectral 

count [169, 170], which is the number of times all the corresponding peptides are detected 

during a MS experiment. The more abundant proteins and peptides have higher chance to be 

detected in mass spectrometry measurement, thus spectral count is a semi-quantitative 

indicator for the relative abundances of proteins and peptides in the sample. Proteins with 

longer length potentially generate more peptides after proteolysis, which could lead to 

increased spectral counts. In order to consider the spectral count bias toward longer proteins, 

the normalized spectra abundance factor (NSAF) [171] is generally used for data normalization. 

With NSAF normalization, the measured spectral count (SpC) is divided by the length of the 

protein (L), and the normalized spectral count is calculated by dividing the SpC/L of an 

identified protein by the sum of SpC/L for all identified proteins in a MS experiment. The NSAF 

normalization also corrects the experimental variability to a certain degree, in that the total 

normalized spectral counts is constant for all experiments. Thus, normalized spectral counts of 

proteins identifications from different MS measurements (e.g. cell growth under different 

conditions, measurements done in different dates) could be compared. 
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Chapter 3 

Mass Spectrometry-based Proteomic Profiling Reveals Core and Electron 

Acceptor Specific c-Type Cytochromes in Dissimilatory Metal Reducing Bacteria 

A version of this chapter is submitted for publication as the following journal article: 

Xiaoxin Liu, Silke Nissen, Karuna Chourey, Frank Löffler, Robert Hettich. “Core and 
Electron Acceptor-specific c-Type Cytochromes in Metabolically Versatile Metal-
Reducing Bacteria”. Submitting to The ISME Journal 2014. 

Xiaoxin Liu contributed to the proteome sample preparation, mass spectrometry experiments 
performing, biological data analysis and visualizations, and manuscript writing. 

 

3.1 Introduction 

Shewanella spp., Geobacter spp. and Anaeromyxobacter dehalogenans, are renowned 

for having well established respiratory chains that allow them to function under many different 

environmental conditions by utilizing a variety of electron acceptors and donors to sustain 

energy production. This is exemplified in studies of the microbial diversity in the uranium 

contaminated aquifer at the Integrated Field Research Challenge site at Oak Ridge, TN, which 

revealed that Anaeromyxobacter sp., Shewanella spp. and Geobacter spp. are key players for 

the in-situ bioremediation of uranium [172]. In addition to soluble electron acceptors like U(VI), 

these microbes are also able to reduce solid metals, such as iron oxide and manganese 

oxide[105, 173, 174]. In cases where the electron acceptor is insoluble, or soluble but not able 

to permeate into the cell (e.g. Fe citrate), the bacteria needs to have an extended electron 
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transfer chain to transmit electrons from the inner membrane through the periplasm to the 

outer membrane or even to the outside of the cell [175].  

DNA sequencing has revealed that the genomes of these genera harbor many c-type 

cytochrome genes.  c-Type cytochromes are electron transfer proteins and are characterized by 

the presence of c-type hemes, which are covalently attached in specific binding motifs. The 

most common c-type heme-binding motifs are CXXCH, CXXXCH, and CXXXXCH [176].  

Shewanella oneidensis strain MR-1 has a genome encoding for a total of 42 c-type cytochromes 

[110], and Geobacter sulfurreducens has a repertoire of over one hundred c-type cytochromes 

[93]. The structures and functions of selected c-type cytochromes of S. oneidensis strain MR-1 

have been characterized by a variety of studies.   For example, CymA transfers electrons from 

the inner membrane of S. oneidensis to the periplasm [100, 101, 177]. MtrA and MtrB form a 

porin-cytochrome complex on the outer membrane that passes electrons from the inner face of 

the outer membrane to the outside [102]. The solid extracellular electron acceptor is reduced, 

possibly by receiving electrons from extracellular multi-heme cytochromes MtrC, MtrF, and 

OmcA [102].  While there is limited information on c-type cytochromes in Geobacter daltonii 

strain FRC-32, another member of the Geobacter genus, Geobacter sulfurreducens strain PCA, 

has been extensively studied. There are 111 c-type cytochromes encoded by G. sulfurreducens, 

one of which contains 27 heme-binding motifs [93]. A current model of extracellular metal ion 

reduction by G. sulfurreducens highlights the type IV pili structure, which is electrically 

conductive [107]. It is believed that the pili receive electrons from the OmcE and OmcS complex 

and transport electrons directly to the electron acceptor [99]; however, a detailed 

characterization of this process has not been conducted. Although there are large numbers of 
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putative c-type cytochrome genes present in the genomes of S. oneidensis and G. 

sulfurreducens, only a few have been validated and functionally characterized (as mentioned 

above). There are 68 c-type cytochrome encoding genes in lesser characterized 

Anaeromyxobacter dehalogenans strain 2CP-C, one of which contains as many as 40 heme 

motifs [111]. The expression and function of these c-type cytochromes of A. dehalogenans are 

virtually unknown. This suggests a critical need to better characterize factors influencing 

expression of the c-type cytochromes of A. dehalogenans and then compare and contrast them 

with the c-type cytochromes of S. oneidensis and G. daltonii. 

To date, most studies on c-type cytochromes have focused on the analysis of the 

function and structures of a few specific types. The specificity of a c-type cytochrome for a 

certain electron acceptor is usually determined by mutant studies/gene-knockout experiments 

in which the knock-out mutants are examined for a discernible phenotype [117, 178]. However, 

eliminating a particular c-type cytochrome often does not provide a phenotype marker, which 

may indicate a large functional overlap between different c-type cytochromes in which the role 

of a specifically knocked-out cytochrome may be substituted by another one, resulting in no 

appearance of a phenotype marker.  Thus, it is essential to study the complete repertoire of 

c-type cytochromes in order to obtain a more accurate and comprehensive overview. A few 

large-scale studies inspected c-type cytochrome gene expression at the transcriptome level for 

Shewanella and Geobacter [179-181]. These studies discovered that a few c-type cytochrome 

gene transcripts were elevated under metal-reducing conditions. However, c-type cytochrome 

proteins, not genes or transcripts, are the final functional units which directly constitute the 

electron transfer chain and carry out bacterial respirational ability. It is imperative to study the 
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cytochrome proteins to characterize their expression and functional differences. Mass 

spectrometry is currently the method of choice to characterize protein expression in a high 

throughput and accurate manner.  For example, a number of studies illustrated how mass 

spectrometry can be employed to characterize proteome expression profiles of a range of 

organisms, such as Pseudomonas, Ignicoccus, Populus [36, 37, 182]. Several proteomic studies 

have been conducted on S. oneidensis MR-1, but all of which only tested a few growth 

conditions and did not focus on the c-type cytochrome proteins [123, 126, 183]. 

In this study, we used high performance liquid chromatography coupled with tandem 

mass spectrometry to characterize the c-type cytochrome identities, abundance changes, and 

differential expression profiles of Anaeromyxobacter dehalogenans strain 2CP-C, Shewanella 

oneidensis strain MR-1, and Geobacter daltonii strain FRC-32 grown with a wide variety of 

different electron acceptors. In particular, this study is designed to be a global c-type 

cytochrome characterization for the aforementioned three strains with a focus on A. 

dehalogenans strain 2CP-C. The results reveal that the microbes adjust their c-type cytochrome 

expressions in response to the available electron acceptor. A number of “core” c-type 

cytochromes were identified that are expressed under all tested growth conditions, regardless 

of the electron acceptor provided and are likely essential for general ‘housekeeping’ activities. 

Additionally, “unique” c-type cytochromes were only detected in response to certain electron 

acceptors. These cytochromes may be used as specific biomarkers, which are required for the 

utilization of specific electron acceptors. 
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3.2 Material and Methods 

Bacterial Strains and Culture Conditions. In this chapter, Anaeromyxobacter 

dehalogenans strain 2CP-C, Geobacter daltonii strain FRC-32, and Shewanella oneidensis strain 

MR-1 were grown in the following conditions as described in Chapter 2: FeOOH, Fe citrate, 

fumarate, MnO2, nitrate, tryptic soy broth, oxygen. Please refer to Chapter 2 for detailed 

methods. 

 Cell Lysis and Protein Extraction. The SDS-TCA method and Guanidine-HCl method was 

used for cell lysis and protein extraction according to the growth conditions. Details about the 

procedures are provided in Chapter 2. 

Peptide Analysis by LC-MS/MS.  Peptides were analyzed by two-dimensional liquid 

chromatography (Ultimate HPLC System, LC Packings, a division of Dionex, San Francisco, CA) 

coupled online with a linear ion trap mass spectrometer (LTQ XL, ThermoFisher Scientific, San 

Jose, CA ). A total of 53 runs were collected, which provided biological triplicates for all 

population. Peptides samples were loaded onto 5 cm Strong Cation Exchange (SCX) resins 

(Phenomenex, Torrance, CA) packed column, followed by offline wash to remove any lingering 

salt and contaminant and then connected online to a front column (PicoTip emitter, New 

Objective, Woburn, MA) packed with ~12 cm Reverse-Phase (RP) resins (Phenomenex, Torrance, 

CA). A 12-step 24-h Multidimensional Protein Identification Technology (MudPIT) was used to 

analyze peptides as previously described [139]. Briefly, a total of 11 incremental salt pulses 

were applied to separate peptides by charge.  At each step, a gradient of solvent A (95% H2O, 5% 

acetonitrile, 0.1% formic acid (v/v)) to solvent B (30% H2O, 70% acetonitrile, 0.1% formic acid 

(v/v)) further separates peptides based on their hydrophobicity. LTQ XL was operated in a data 
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dependent mode and one full MS scan was followed by five MS/MS scans. The m/z isolation 

width was set to 3 m/z. Dynamic exclusion repeat was set at 1 with a duration time of 60 sec. 

Database Searching and Data Normalization.  Experimental MS/MS spectra collected 

for A. dehalogenans strain 2CP-C, S. oneidensis strain MR-1, and G. daltonii strain FRC-32 were 

searched against FASTA protein databases specific to the respective bacteria. The FASTA 

protein database for each strain consists of corresponding predicted proteome database 

obtained from Joint Genome Institute (JGI, http://genome.jgi.doe.gov/, downloaded in July, 

2011) and common contaminants such as trypsin, keratin, etc. A decoy database consisting of 

reversed sequences from corresponding proteome database was also appended to the FASTA 

protein database in order to calculate False Discovery Rate (FDR) at the protein level. The 

SEQUEST search algorithm was used for peptide identification. Identified peptides were filtered 

and assembled into proteins by DTASelect [43]. The DeltCN filter was set to 0.08. The cross-

correlation score filtering process started with conservative criteria as following: XCorr: +1 = 1.8, 

+2 = 2.5, +3 = 3.5. The XCorr criteria were slightly altered to adjust FDR to ~1% for each sample. 

At least two peptides were required per protein identification, and at least one peptide had to 

be unique to that protein. Raw spectral counts were normalized by protein lengths and the 

total spectral counts using Normalized Spectral Abundance Factor (NSAF) as previously 

described [184]. Normalized spectral counts are then uniformly multiplied by a factor of 

100,000 for better readability and comparability to raw spectral counts. Adjusted normalized 

spectral count is denoted as nSpC throughout this paper. The nSpCs for biological triplicates 

were averaged for each growth condition. 

http://genome.jgi.doe.gov/
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c-Type Cytochrome Prediction.  Putative c-type cytochromes of A. dehalogenans strain 

2CP-C, S. oneidensis strain MR-1 and G. daltonii strain FRC-32 were predicted by searching their 

respective protein databases followed by BLASTp against NCBI database. This process was 

automated using a customized perl script. Two criteria were used by the script to predict c-type 

cytochromes: 1) the protein sequence must contain at least one of the following common c-

type cytochrome motifs: CXXCH, CXXXCH and CXXXXCH; 2) BLASTp result of this protein must 

contain at least one annotated c-type cytochrome. 

Cellular Localization Prediction. Cellular localizations of the putative c-type 

cytochromes were predicted based on their protein sequences using Psortb.3.0 [185] 

 

3.3 Results 

3.3.1 c-Type Cytochrome Identification 

A total of 69, 40, and 72 putative c-type cytochromes were predicted for A. 

dehalogenans strain 2CP-C, S. oneidensis strain MR-1, and G. daltonii strain FRC-32, respectively 

(Table 3.1). With results pooled across all growth conditions, the LC-MS/MS approach detected 

53, 25, and 38 c-type cytochromes for strain 2CP-C, strain MR-1, and strain FRC-32, respectively 

(Table 3.1). Strain 2CP-C and strain MR-1 grown with nitrate as electron acceptor yielded the 

highest number of identified c-type cytochromes (37 and 20, respectively), while most c-type 

cytochromes (35) for strain FRC-32 were detected with fumarate provided as electron acceptor 

(Table 3.1). Cells grown with FeOOH yielded the least number of measureable c-type  
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A. dehalogenans 2CP-C S. oneidensis MR-1 G. daltonii FRC-32 

Number of predicted c-type 

cytochromes 
69 40 72 

Number of total detected c-

type cytochromes 
53 25 38 

Growth conditions Number of detected c-type cytochromes under different conditions 

FeOOH 11 8 8 

Fe citrate 27 19 10 

MnO2 25 20 21 

Nitrate 37 20 N/A 

Tryptic Soy Broth 29 16 N/A 

Fumarate 33 18 35 

Oxygen 30 19 N/A 

Table 3.1. c-Type cytochrome identification for A. dehalogenans 2CP-C, S. oneidensis MR-1 
and G. daltonii FRC-32 grown under various redox conditions. 

N/A: Geobacter growth could not be achieved under these conditions. 
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cytochromes for all three bacteria (Table 3.1), which may due to the slow growth resulting in 

less variety of proteins expressed by the microbes under FeOOH amendment conditions. 

A hierarchical clustering of the c-type cytochrome abundance patterns in strain 2CP-C 

cultures in response to different growth conditions revealed a remarkable level of expression 

differentiation (Figure 3.1). The c-type cytochrome abundance patterns of the three metal 

electron acceptor conditions (FeOOH, MnO2, Fe citrate; the three left-most columns) clustered 

together, while oxic growth (far right column) was the most distant from all anoxic conditions 

(Figure 3.1). Heat maps were also generated for c-type cytochromes in strain MR-1 and FRC-32 

(Figure 3.2 and 3.3), and also revealed fined-tuned expression patterns that were somewhat 

distinct from strain 2CP-C. Although only four conditions were tested for strain FRC-32, the 

three conditions with metal electron acceptors clustered together, showing distinct c-type 

cytochrome expression patterns to growth with fumarate (Figure 3.3). For strain MR-1, the 

cytochrome expression patterns under metal electron acceptor conditions did not show similar 

trends, and were not clustered together as with strain 2CP-C and FRC-32 (Figure 3.2). All 

hierarchical clustering approaches reveal that the expression profiles of c-type cytochromes can 

be grouped into three categories: “core” (present in all conditions), “unique” (represented in 

only one condition), and non-detected. 

 

3.3.2 “Core” c-Type Cytochromes 

Proteomic measurements revealed several c-type cytochromes that were constitutively 

expressed under all growth conditions, suggesting that these constitute the “core” cytochromes 

that are required under all growth conditions. Six “core” cytochromes were detected in strain  
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Figure 3.1. Hierarchical clustering of detected c-type cytochromes in A. dehalogenans 2CP-C 
cultures grown under various electron-accepting conditions. Hierarchical clustering and the 
heatmap of protein abundances were generated using JMP genomics 6.0 (SAS, Cary, NC). 
Hierarchical clustering was conducted using Ward algorithm. Each row was scaled so that the 
variance of each row is 1. The green-black-red scale on the top-right indicates scaled nSpCs 
(normalized spectral counts) for all c-type cytochromes. 



67 
 

 

  

Figure 3.2. Hierarchical clustering of detected c-type cytochromes in S.oneidensis MR-1 
cultures grown under various electron-accepting conditions. Hierarchical clustering and the 
heatmap of protein abundances were generated using JMP genomics 6.0 (SAS, Cary, NC). 
Hierarchical clustering was conducted using Ward algorithm. Each row was scaled so that the 
variance of each row is 1. The green-black-red scale on the top-right indicates scaled nSpCs 
(normalized spectral counts) for all c-type cytochromes. 
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Figure 3.3 Hierarchical clustering of detected c-type cytochromes in G.daltonii FRC-32 
cultures grown under various electron-accepting conditions. Hierarchical clustering and the 
heatmap of protein abundances were generated using JMP genomics 6.0 (SAS, Cary, NC). 
Hierarchical clustering was conducted using Ward algorithm. Each row was scaled so that the 
variance of each row is 1. The green-black-red scale on the top-right indicates scaled nSpCs 
(normalized spectral counts) for all c-type cytochromes. 
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2CP-C cultures: Adeh_0409, Adeh_0656, Adeh_1172 (CcoO), Adeh_2902 (NrfA), Adeh_2907, 

and Adeh_2963 (Table 3.2, Figure3.1). Strain MR-1 had seven “core” c-type cytochromes: 

SO_0264 (ScyA), SO_0970 (FccA), SO_1778 (MtrC/OmcB), SO_1779 (OmcA), SO_2178 (CcpA), 

SO_3980 (NrfA), and SO_4666 (CytcB) (Table 3.2, Figure 3.2), among which, the abundance of 

FccA (SO_0970) is 10-100 fold higher in magnitude than the other “core” cytochromes under all 

the growth conditions tested (Table 3.2). Three cytochrome c family proteins (Geob_0309, 

Geob_2704, and Geob_3347) and two hypothetical proteins (Geob_1432, and Geob_1682) 

were identified as “core” cytochromes in strain FRC-32 cultures (Table 3.2, Figure 3.3).   

In strain 2CP-C, the “core” cytochrome Adeh_2902 encodes a pentaheme cytochrome c 

nitrite reductase (NrfA), which is the enzyme that directly reduces nitrite to ammonia. Although 

it is unclear whether NrfA contributes to the electron transfer chain, interestingly, in the other 

Proteobacteria such as Wolinella succinogenes and Desulfovibrio vulgaris, NrfA is involved in 

electron transfer from menaquinones to nitrite [186, 187]. The NrfA in strain MR-1 (SO_3980) is 

also detected under all growth conditions (Table 3.2). SO_3980 is predicted to contain four 

CXXCH heme-binding motifs, but a fifth atypical motif (CXXCK) has been identified [188], 

suggesting that both Adeh_2902 and SO_3980 contain five heme-binding motifs. Under nitrate 

amended growth condition, SO_3980 of strain MR-1 shows a very high abundance of detection 

compared to the other conditions (Table 3.2). However, the abundance of Adeh_2902 of strain 

2CP-C in nitrate grown cells is the lowest among all the growth conditions tested (Table 3.2).  

The c-type cytochrome Adeh_2963 of strain 2CP-C shares extremely high sequence 

similarity to the c-type cytochrome sulfite reductase SirA of strain MR-1 (encoded by SO_0479), 

based on Blastp search result (e-value: 0; bitscore: 645). SirA, previously designated MccA,  
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Gene ID GenBank annotation 

Number of c-type 

cytochrome motifs 

predicted 

Cellular localization 

predicted by Psort 

Growth conditions 

FeOOH Fe citrate MnO2 Nitrate 
Tryptic 

Soy Broth 
Fumarate Oxygen 

Anaeromyxobacter dehalogenans strain 2CP-C 

Adeh_0409 hypothetical protein  10 motifs Extracellular 63 102 33 3 6 24 10 

Adeh_0656 hypothetical protein  2 motifs Extracellular 36 41 11 6 6 45 5 

Adeh_1172 

bifunctional cbb3-type 

cytochrome c oxidase subunit 

II/cytochrome c 

2 motifs Unknown 6 68 90 72 50 49 30 

Adeh_2902 respiratory nitrite reductase 5 motifs Periplasmic 344 117 67 20 41 45 31 

Adeh_2907 hypothetical protein  10 motifs Unknown 34 165 114 18 194 288 34 

Adeh_2963 cytochrome c 7 motifs Periplasmic 147 269 18 9 10 189 18 

Shewanella oneidensis strain MR-1 

SO_0264 scyA, cytochrome c  1 motifs Periplasmic 879 24 20 99 25 56 22 

SO_0970 
FccA, fumarate reductase 

flavoprotein subunit precursor  
4 motifs Periplasmic 5373 170 2175 505 843 1818 1088 

SO_1778 
omcB/mtrC, decaheme 

cytochrome c  
10 motifs Unknown 119 45 158 39 66 15 73 

SO_1779 omcA, decaheme cytochrome c  10 motifs Unknown 126 81 291 79 167 40 114 

SO_2178 
ccpA, cytochrome c551 

peroxidase  
2 motifs Periplasmic 175 62 48 67 69 131 18 

 

Table 3.2. The ‘core’ c-Type cytochromes of A. dehalogenans 2CP-C, S. oneidensis MR-1 and G. daltonii FRC-32. 
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Table 3.2. Continued 

Gene ID GenBank annotation 

Number of c-type 

cytochrome motifs 

predicted 

Cellular localization 

predicted by Psort 

Growth conditions 

FeOOH Fe citrate MnO2 Nitrate 
Tryptic 

Soy Broth 
Fumarate Oxygen 

SO_3980 
nrfA, cytochrome c552 nitrite 

reductase  
4 motifs Periplasmic 406 11 101 542 92 96 234 

SO_4666 cytcB, cytochrome c  2 motifs Periplasmic 95 60 79 92 93 87 47 

Geobacter daltonii strain FRC-32 

Geob_3347 cytochrome c family protein 21 motifs Unknown 116 16 52 N/A N/A 69 N/A 

Geob_2704 cytochrome c family protein 21 motifs Unknown 45 2 13 N/A N/A 8 N/A 

Geob_1682 hypothetical protein 9 motifs Unknown 164 1 33 N/A N/A 59 N/A 

Geob_1432 hypothetical protein 4 motifs Unknown 57 366 410 N/A N/A 1140 N/A 

Geob_0309 cytochrome c family protein 5 motifs Unknown 8 7 15 N/A N/A 101 N/A 
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catalyzes dissimilatory sulfite reduction in strain MR-1 [189]. SirA (SO_0479) is an octaheme c-

type cytochrome containing seven CXXCH motifs and one atypical heme-binding motif CX15CH 

[190]. Our prediction suggests that there are seven CXXCH motifs in Adeh_2963. But similar to 

SO_0479, an atypical motif CX15CH is also present in Adeh_2963, which makes Adeh_2963 an 

octaheme c-type cytochrome. The protein sequences of both Adeh_2963 and SO_0479 contain 

an iron-binding motif (CXXCG) similar to rubredoxin, which is also an bacterial electron transfer 

component [191]. SO_0479 is only detected when MnO2, nitrate, or oxygen is provided as 

electron acceptor (Table 3.3). However, Adeh_2963 is detected under all growth conditions in 

strain 2CP-C cells and its abundance is very low in MnO2, nitrate, or oxygen amended growth 

conditions compared to that in Fe Citrate, fumarate, or FeOOH conditions (Table 3.2). 

Adeh_2963 may be required for iron reduction.  

Three “core” c-type cytochromes of strain 2CP-C, Adeh_0409, Adeh_0656, and 

Adeh_2907, are annotated as “hypothetical proteins” in GenBank (Table 3.2). These proteins 

are consistently expressed in 2CP-C cells grown under all conditions, albeit detected at different 

abundances, suggesting that these putative c-type cytochromes are important for the electron 

transfer machinery of strain 2CP-C. Adeh_0409 and Adeh_2907 are both decaheme c-type 

cytochromes. Blastp results showed that Adeh_2907 shares very high sequence similarity with 

Adeh_0409 with 0 e-value, 1013 bitscore, and 68% sequence identity. Adeh_0409 is predicted 

to be an extracellular c-type cytochrome (Table 3.4). Both Adeh_2907 and Adeh_0409 share 

sequence similarity with many hypothetical proteins in other organisms such as other 

Anaeromyxobacter spp., Denitrovibrio acetiphilus, other Geobacter spp., other Shewanella spp., 

and Rhodoferax ferrireducens, which suggests that Adeh_2907 and  
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Table 3.3. c-type cytochrome identification for Shewanalla oneidensis MR-1 grown with various electron acceptors. 
 

Locus Annotation Gene Name Motif COG Localization_psort FeOOH Fe Citrate MnO2 Nitrate TSB fumarate Oxygen 

SO_0264 cytochrome c scyA 1 C Periplasmic 879.5 24.0 20.0 99.1 24.8 56.1 21.5 

SO_0479 cytochrome c, putative SO_0479 7 - Periplasmic - - 20.9 14.7 - - 5.4 

SO_0610 
ubiquinol-cytochrome c reductase, 
cytochrome c1 

petC 1 C 
Cytoplasmic 
Membrane 

- 34.8 29.3 28.9 39.0 17.8 75.0 

SO_0714 monoheme cytochrome c SO_0714 1 C Periplasmic - - - - - - - 

SO_0716 monoheme cytochrome c, putative SO_0716 1 - Unknown - - - - - - - 

SO_0717 monoheme cytochrome c SO_0717 1 C Periplasmic - - - - - - - 

SO_0845 cytochrome c-type protein NapB napB 2 C Periplasmic - - 15.2 102.2 - 21.7 - 

SO_0939 cytochrome c, putative SO_0939 2 - Unknown 68.9 10.2 104.5 3.7 - - 12.6 

SO_0970 
fumarate reductase flavoprotein 
subunit precursor 

FccA 4 C Periplasmic 5372.5 170.0 2174.6 505.4 842.7 1818.4 1088.0 

SO_1233 tetraheme cytochrome c torC 5 C 
Cytoplasmic 
Membrane 

- - - - - - - 

SO_1413 tetraheme cytochrome c, putative SO_1413 4 - Periplasmic - - - - - - - 

SO_1421 
fumarate reductase flavoprotein 
subunit 

ifcA-1 4 C Periplasmic - - - 4.2 - 6.8 - 

SO_1427 decaheme cytochrome c SO_1427 10 - Periplasmic - 10.2 - - - - - 

SO_1659 decaheme cytochrome c SO_1659 10 - Periplasmic - 4.0 5.0 - 13.6 0.9 2.2 

SO_1777 decaheme cytochrome c MtrA mtrA 10 - Unknown - 4.3 19.0 10.5 19.3 - 7.7 

SO_1778 decaheme cytochrome c omcB/mtrC 10 - Unknown 119.1 44.7 158.2 39.2 65.6 14.8 72.5 

SO_1779 decaheme cytochrome c omcA 10 - Unknown 125.9 81.0 290.8 79.3 167.4 39.7 114.3 

SO_1780 decaheme cytochrome c MtrF mtrF 10 - Unknown - - - - - - - 

SO_1782 decaheme cytochrome c MtrD mtrD 10 - Periplasmic - - - - - - - 

SO_2178 cytochrome c551 peroxidase ccpA 2 P Periplasmic 175.2 61.7 48.1 66.7 69.4 130.6 18.5 

SO_2361 
cytochrome c oxidase, cbb3-type, 
subunit III 

ccoP 2 C 
Cytoplasmic 
Membrane 

- 26.0 50.3 27.6 58.8 14.0 79.9 

SO_2363 
cytochrome c oxidase, cbb3-type, 
subunit II 

ccoO 1 C Cytoplasmic - 25.8 85.9 15.7 24.6 14.4 61.4 

SO_2727 cytochrome c3 cctA 4 - Periplasmic - - - 16.7 - 25.5 - 
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Table 3.3. Continued 
 

Locus Annotation Gene Name Motif COG Localization_psort FeOOH Fe Citrate MnO2 Nitrate TSB fumarate Oxygen 

SO_3056 tetraheme cytochrome c SO_3056 4 - Periplasmic - - - - - - - 

SO_3300 cytochrome c SO_3300 4 - Unknown - - - - - - - 

SO_3420 cytochrome c' SO_3420 1 C Periplasmic - 113.1 189.0 215.8 70.5 510.1 115.1 

SO_3623 tetraheme cytochrome c SO_3623 4 - Periplasmic - - - - - - - 

SO_3980 cytochrome c552 nitrite reductase nrfA 4 P Periplasmic 405.6 11.0 101.4 541.6 91.7 95.8 233.7 

SO_4047 cytochrome c family protein SO_4047 2 C Periplasmic - 6.2 23.1 23.6 54.8 42.8 59.5 

SO_4048 cytochrome c family protein SO_4048 2 C Periplasmic - 53.5 7.1 21.9 28.2 29.7 28.0 

SO_4142 cytochrome c family protein SO_4142 1 - Unknown - - - - - - - 

SO_4144 cytochrome c, putative SO_4144 8 - Periplasmic - - - - - - - 

SO_4360 decaheme cytochrome c SO_4360 10 - Periplasmic - - - - - - - 

SO_4484 cytochrome c-type protein Shp SO_4484 1 - Unknown - - - - - - - 

SO_4485 diheme cytochrome c SO_4485 2 - Unknown - - 17.9 - - - - 

SO_4570 hypothetical protein SO_4570 1 - Unknown - 24.0 - - - - - 

SO_4572 cytochrome c, putative SO_4572 3 - Unknown - - - - - - - 

SO_4591 tetraheme cytochrome c cymA 4 C 
Cytoplasmic 
Membrane 

- 21.1 45.2 46.8 25.4 15.5 35.8 

SO_4606 cytochrome c oxidase, subunit II SO_4606 2 C 
Cytoplasmic 
Membrane 

- - - - - - 2.6 

SO_4666 cytochrome c cytcB 2 C Periplasmic 95.3 59.5 79.5 91.9 93.3 86.6 47.1 

 

 

 

 

 

Cellualr localizations are predicted by Psort 3.0 

Numbers in cells are normalized spectral counts (nSpC). 

Red: Core c-type cytochromes 

Yellow: Undetected c-type cytochromes 

Orange: Detected under all but FeOOH 

Green: Unique c-type cytochromes 

Purple: Detected under two conditions 

Blue: Detected under all but one condition 
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Table 3.4. c-type cytochrome identification for Anaeromyxobacter dehalogenans 2CP-C grown with various electron acceptors. 
 

Chromosome 
Locus ID 

GenBank Annotation 
Predicted C-type 

cytochrome 
motifs 

Cellular 
Localization 

COG FeOOH Fe Citrate MnO2 Nitrate TSB Fumarate Oxygen 

Adeh_0029 Fibronectin, type III  9 motifs Unknown none - 14.5 4.5 0.4 3.3 0.3 - 

Adeh_0108 hypothetical protein  12 motifs Periplasmic none - - - - - - - 

Adeh_0109 hypothetical protein  10 motifs 
Cytoplasmic 
Membrane C 

- 0.4 - 2.5 4.3 - 4.0 

Adeh_0215 Multihaem cytochrome  7 motifs Periplasmic none - - - - - - - 

Adeh_0318 split soret cytochrome c precursor  2 motifs Periplasmic none 78.0 116.6 10.9 3.0 3.3 25.7 - 

Adeh_0409 hypothetical protein  10 motifs Extracellular none 62.9 102.2 32.7 3.2 5.5 23.9 10.3 

Adeh_0656 hypothetical protein  2 motifs Extracellular none 36.0 40.9 10.9 5.7 5.7 44.6 5.1 

Adeh_0728 hypothetical protein  3 motifs Periplasmic S - - - 3.0 6.7 4.8 - 

Adeh_0795 
quinol:cytochrome c oxidoreductase 
pentaheme cytochrome subunit  5 motifs Unknown none 

- - - - - - 3.8 

Adeh_0799 
quinol:cytochrome c oxidoreductase 
monoheme COG2010, CccA   1 motif Periplasmic none 

- - - - - - 34.3 

Adeh_0803 
cytochrome c oxidase, subunit II  1 
motif 1 motif 

Cytoplasmic 
Membrane C 

- - - 6.9 8.8 - 94.8 

Adeh_0909 hypothetical protein  4 motifs Periplasmic none - - - 10.0 - - - 

Adeh_0910 
NrfA Nitrite reductase (cytochrome; 
ammonia-forming)  5 motifs Periplasmic P 

- - - 3.0 - - - 

Adeh_0911 NrfH cytochrome c-type protein  4 motifs Unknown C - - - - - - - 

Adeh_0918 hypothetical protein  1 motif Periplasmic none - - - - 5.1 23.8 - 

Adeh_0972 cytochrome c family protein  8 motifs  Periplasmic none - 14.1 55.3 5.7 - - 6.5 

Adeh_1172 
cytochrome C oxidase, mono-heme 
subunit/FixO  2 motifs Unknown C 

6.3 68.2 90.0 71.8 49.9 49.3 30.0 

Adeh_1278 cytochrome c, class I  3 motifs Periplasmic C - - 74.5 - - - - 

Adeh_1422 hypothetical protein  4 motifs Unknown none - - - 18.7 21.9 16.6 - 

Adeh_1425 cytochrome c, class I  1 motif Periplasmic C - 6.3 14.5 322.6 262.6 209.6 106.2 

            

Adeh_1504 
hypothetical protein putative cyt. c 
peroxidase precursor  3 motifs Unknown none 

- - - - - - - 
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Table 3.4. Continued 
 

Chromosome 
Locus ID 

GenBank Annotation 
Predicted C-type 

cytochrome 
motifs 

Cellular 
Localization 

COG FeOOH Fe Citrate MnO2 Nitrate TSB Fumarate Oxygen 

Adeh_1659 cytochrome c family protein  6 motifs 
Cytoplasmic 
Membrane none 

- 6.5 - - - 4.8 - 

Adeh_1696 cytochrome c3  3 motifs Periplasmic none - - - 15.7 - - - 

Adeh_1697 cytochrome c, class III   3 motifs Unknown none - - - 30.8 98.3 285.4 - 

Adeh_1719 hypothetical protein  1 motif Unknown none - 10.4 31.7 6.6 11.3 9.4 12.6 

Adeh_1764 hypothetical protein  8 motifs Periplasmic none - 1.1 3.2 150.1 1.2 20.3 13.6 

Adeh_1891 hypothetical protein  3 motifs Unknown none - - - 2.9 - 5.5 - 

Adeh_2002 cytochrome c family protein  9 motifs Periplasmic none - 8.6 - 1.8 16.4 22.5 - 

Adeh_2004 hypothetical protein  3 motifs Periplasmic none - 9.4 - - - 8.4 - 

Adeh_2097 hypothetical protein  7 motifs Periplasmic none - - - - - - - 

Adeh_2169 
hypothetical protein preceeds Nitrate 
reductase alpha subunit  1 motifs Unknown none 

- - 7.0 8.7 - 3.1 - 

Adeh_2216 hypothetical protein  10 motifs Extracellular none - 62.2 57.8 68.4 42.8 15.6 45.4 

Adeh_2269 hypothetical protein  3 motifs Unknown none - - - - - - - 

Adeh_2275 cyt c oxidase, subunitII  1 motif 
Cytoplasmic 
Membrane C 

- 1.5 - 12.3 12.6 9.8 31.6 

Adeh_2277 cytochrome c, class I  1 motif Periplasmic none - - - 55.4 29.3 - 164.1 

Adeh_2280 
monoheme cytochrome SoxX (sulfur 
oxidation)  1 motifs Unknown none 

10.1 - 21.5 59.0 77.4 51.1 285.3 

Adeh_2281 
diheme cytochrome SoxA (sulfur 
oxidation)  1 motifs Unknown none 

- - - 25.9 31.6 16.9 141.4 

Adeh_2285 
sulfur dehydrogenase subunit SoxD 
cytochrome c, class I  2 motifs Periplasmic C 

- - - 11.1 13.0 8.3 76.9 

Adeh_2403 
hypothetical protein preceeds Nitrous 
oxide reductase  5 motifs Cytoplasmic none 

55.1 17.4 14.7 - - 4.1 - 

Adeh_2603 hypothetical protein  10 motifs Unknown none - 5.6 6.5 1.3 4.7 - 6.2 

Adeh_2621 hypothetical protein  2 motifs Unknown none - - - - - - 4.3 

Adeh_2664 hypothetical protein  9 motifs Periplasmic none - - - - - - - 

Adeh_2665 cytochrome c family protein  10 motifs Periplasmic none - - - - - - - 



77 
 

Table 3.4. Continued 
 

Chromosome 
Locus ID 

GenBank Annotation 
Predicted C-type 

cytochrome 
motifs 

Cellular 
Localization 

COG FeOOH Fe Citrate MnO2 Nitrate TSB Fumarate Oxygen 

Adeh_2666 hypothetical protein  20 motifs Periplasmic none - - - - - - - 

Adeh_2682 
hypothetical protein cytochrome c-
554 homolog  4 motifs Unknown none 

- - - 3.6 - 1.4 3.0 

Adeh_2757 hypothetical protein  4 motifs Unknown C - - - - - - 10.2 

Adeh_2815 cytochrome c like protein  13 motifs Unknown none - - 5.0 0.9 3.0 9.7 1.4 

Adeh_2816 cytochrome c like protein  14 motifs Periplasmic none - 5.1 10.7 6.9 4.3 6.0 0.4 

Adeh_2902 
NrfA Nitrite reductase (cytochrome; 
ammonia-forming) EC:1.7.2.2  5 motifs Periplasmic P 

344.0 117.0 67.0 19.8 41.4 45.0 30.6 

Adeh_2903 NrfH cytochrome c-type protein  4 motifs Unknown C - - - - - - - 

Adeh_2907 hypothetical protein  10 motifs Unknown none 34.0 164.9 113.7 17.6 194.3 288.3 34.4 

Adeh_2927 

hypothetical protein cytochrome c553 
family protein in Methylococcus 
capsulatus  9 motifs Unknown none 

6.4 2.9 18.3 6.9 - - 1.6 

Adeh_2940 
hypothetical protein putative di-heme 
cytochrome c peroxidase  2 motifs Unknown P 

- - - - - - - 

Adeh_2963 cytochrome c, putative  7 motifs Periplasmic none 146.6 268.9 17.9 9.0 10.3 189.0 18.2 

Adeh_2966 hypothetical protein  2 motifs Unknown none - - - 2.7 - - 70.1 

Adeh_2967 putative lipoprotein  1 motif Periplasmic none - - - - - - 75.9 

Adeh_2989 hypothetical protein  4 motifs Periplasmic none - 46.0 69.2 66.0 74.5 87.5 - 

Adeh_3065 cytochrome c family protein  6 motifs Unknown none - 1.2 - - - - - 

Adeh_3067 cytochrome c family protein   16 motifs Periplasmic none - - - - - 0.6 - 

Adeh_3068 cytochrome c family protein   26 motifs Periplasmic none - - - - - - - 

Adeh_3074 cytochrome c family protein  6 motifs Extracellular none - - - - - - - 

Adeh_3077 Multihaem cytochrome  40 motifs Unknown none - 1.9 1.6 0.4 0.6 2.6 - 

Adeh_3086 cytochrome c family protein  4 motifs Unknown none - - - - - - - 

Adeh_3090 hypothetical protein  8 motifs Periplasmic none - 7.6 33.6 - - - - 

Adeh_3151 putative lipoprotein  2 motifs Unknown P - - - - - - - 

Adeh_3163 hypothetical protein  10 motifs Extracellular none 18.4 4.8 - - - - - 
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Table 3.4. Continued 
 

Chromosome 
Locus ID 

GenBank Annotation 
Predicted C-type 

cytochrome 
motifs 

Cellular 
Localization 

COG FeOOH Fe Citrate MnO2 Nitrate TSB Fumarate Oxygen 

Adeh_3200 hypothetical protein  10 motifs Unknown none - - - - - - - 

Adeh_3392 hypothetical protein  12 motifs Periplasmic none - - 2.4 - - 3.2 - 

Adeh_3775 cytochrome c family protein  9 motifs Periplasmic none - - - - - - 1.4 

 

 

 

 

  

Cellualr localizations are predicted by Psort 3.0 

Numbers in cells are normalized spectral counts (nSpC). 

Red: Core c-type cytochromes 

Yellow: Undetected c-type cytochromes 

Orange: Detected under all but FeOOH 

Green: Unique c-type cytochromes 

Purple: Detected under two conditions 

Blue: Detected under all but one condition 
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Adeh_0409 may belong to a conserved uncharacterized protein family. Adeh_0656 shares 

sequence similarity with split-soret cytochrome c proteins in other organisms such as 

Desulfovibrio desulfuricans, Archaeoglobus veneficus, Thermodesulfovibrio yellowstonii, 

Thermincola potens, Melioribacter roseus, etc. These cytochromes are characteristic of 

possessing an unusual split at the Soret band in their visible absorption spectrum [192]. While 

the function of split-soret proteins is unclear, da Silva et al. proposed that the split-soret 

protein of D. desulfuricans is the electron input point for the electron transfer chain in the 

reduction of nitrate [193]. However, our prediction shows that Adeh_0656 is an extracellular c-

type cytochrome, which is more likely a terminal reductase than an electron input point. 

Adeh_1172 is annotated as the subunit II of the bifunctional cbb3-type cytochrome c 

oxidase, which belongs to the heme-copper oxidase (HCO) superfamily. In many organisms, the 

protein complex of cbb3-type cytochrome c oxidase is encoded by the ccoNOPQ operon [194, 

195]. The genes encoding for the subunit II and III (or subunit O and P) are named ccoO and 

ccoP. Typically, CcoO and CcoP contain one and two heme-binding sites, respectively. However, 

Adeh_1172 (CcoO) contains two CXXCH motifs. There is no other protein of A. dehalogenans 

annotated as other subunit of cbb3-type HCO (e.g. CcoN, CcoP, etc.). However, the monoheme 

cytochrome Adeh_0799 contains a cbb3 subunit III (CcoP) domain, and was only detected under 

oxygen amended condition (Figure 3.1, Table 3.4). We speculate that under low oxygen 

conditions, Adeh_1172 and Adeh_0799 form a protein complex which functions similarly as a 

cbb3-type HCO for oxygen reduction and proton pumping, while under anoxic condition, 

Adeh_1172 works as electron transfer intermediate which receives and/or delivers electrons 

from/to other cytochromes in the electron transfer chain. In strain MR-1, we have also 
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detected the expression of the ccoNOPQ operon. The CcoO (SO_2363) and CcoP (SO_2361) in 

strain MR-1 were expressed under all growth conditions except for FeOOH (Table 3.3). We 

suspect its absence is due to the poor overall cellular growth in FeOOH amended culture. CcoN 

(SO_2364) was only detected under oxygen-amended condition (data not shown).  

 

3.3.3 Unique c-Type Cytochromes 

In contrast to the “core” c-type cytochromes, some c-type cytochromes were only 

detected under one or a few growth conditions. Twenty c-type cytochromes of strain 2CP-C 

were identified as unique cytochromes (Table 3.5, Figure 3.1). Adeh_0909, Adeh_0910 (NrfA), 

and Adeh_1696 were unique to nitrate grown cultures (Table 3.5, Figure 3.1). Six c-type 

cytochromes of strain 2CP-C were unique to growth under oxic conditions, among which, 

Adeh_0799 and Adeh_2967 (lipoprotein) were detected at a normalized spectral count (nSpC) 

of 34 and 76, respectively, which were very high levels compared to other unique c-type 

cytochromes (Table 3.5, Figure 3.1). Adeh_1278 was only expressed when MnO2 was provided 

as electron acceptor (nSpC: 74) (Table 3.5, Figure 1). Likewise, unique c-type cytochromes were 

also revealed for strain MR-1 and FRC-32 with various expression levels (Table 3.3 and 3.6, 

Figure 3.2 and 3.3). 

Adeh_0909 and Adeh_0910 are both predicted c-type cytochromes that were detected 

only in nitrate-grown A. dehalogenans cells (Table 3.5, Figure 3.1). Adeh_0909 is a protein with 

unknown function, while Adeh_0910 encodes for nitrite reductase (NrfA). Adeh_0910 is not 

identical to the other copy of NrfA encoded by Adeh_2902 (44% sequence identity), which was 

detected as a “core” cytochrome. The observation of Adeh_0910 only in nitrate grown cells  
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Gene ID GeneBank Annotation Motifs Cellular Localization COG Electron Acceptor nSpC 

Adeh_0795 hypothetical protein 5 motifs Unknown none oxygen 4 

Adeh_0799 hypothetical protein 1 motif Periplasmic none oxygen 34 

Adeh_0909 hypothetical protein 4 motifs Periplasmic none nitrate 10 

Adeh_0910 respiratory nitrite reductase 5 motifs Periplasmic P nitrate 3 

Adeh_1278 cytochrome c, class I 3 motifs Periplasmic C MnO2 74 

Adeh_1696 cytochrome c3 3 motifs Periplasmic none nitrate 16 

Adeh_2621 hypothetical protein 2 motifs Unknown none oxygen 4 

Adeh_2757 hypothetical protein 4 motifs Unknown C oxygen 10 

Adeh_2967 lipoprotein 1 motif Periplasmic none oxygen 76 

Adeh_3065 NHL repeat-containing protein 6 motifs Unknown none Fe citrate 1 

Adeh_3067 cytochrome c family protein 16 motifs Periplasmic none fumarate 1 

Adeh_3775 cytochrome c family protein 9 motifs Periplasmic none oxygen 1 

Table 3.5. The unique c-type cytochromes of A. dehalogenans 2CP-C expressed only in one growth condition 

nSpC: normalized spectral counts.  
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Gene ID GenBank Annotation Motifs 
Cellular Localization 
Predicted by Psort 

Electron Acceptor nSpC 

Geob_3176 hypothetical protein 7 Unknown Fe citrate 1 
Geob_1834 cytochrome c family protein 37 Unknown MnO

2 1 
Geob_3741 cytochrome c family protein 44 Unknown fumarate 1 
Geob_3740 cytochrome c family protein 35 Unknown fumarate 2 
Geob_3739 cytochrome c family protein 53 Unknown fumarate 1 
Geob_3132 cytochrome c family protein 36 Unknown fumarate 0.46 
Geob_2641 multiheme cytochrome 8 Unknown fumarate 13 
Geob_2640 hypothetical protein 2 Unknown fumarate 7 
Geob_1885 hypothetical protein 6 Unknown fumarate 5 
Geob_1862 hypothetical protein 10 Unknown fumarate 5 
Geob_1686 hypothetical protein 11 Unknown fumarate 14 
Geob_1681 hypothetical protein 8 Periplasmic fumarate 7 
Geob_1513 cytochrome c family protein 36 Unknown fumarate 1 
Geob_1430 cytochrome c family protein 8 Periplasmic fumarate 7 
Geob_0830 hypothetical protein 12 Periplasmic fumarate 25 
Geob_0764 hypothetical protein 6 Unknown fumarate 4 
Geob_0763 hypothetical protein 6 Unknown fumarate 19 
 

Table 3.6. The unique c-type cytochromes of G. daltonii FRC-32 expressed only in one growth condition 

nSpC: normalized spectral counts.  



83 
 

suggests a role as a terminal nitrite reductase rather than a member of a more extensive 

electron transfer chain. Adeh_0909 and Adeh_0910 are located on the same operon, together 

with three other genes: Adeh_0907 (hypothetical protein), Adeh_0908 (NapA), and Adeh_0911 

(NrfH). Adeh_0907 was also only detected in cells grown with nitrate (data not shown), 

Adeh_0908 was detected when grown with nitrate, ferric iron (FeOOH, Fe citrate), or MnO2 

(data not shown), and Adeh_0911 was not detected under any growth condition (Table 3.5). It 

is likely that Adeh_0907- 0910 are co-expressed when nitrate is the sole electron acceptor and 

are all involved in nitrite reduction to ammonium. When the electron acceptor is a metal, such 

as Fe(III) and Mn(IV), only NapA (Adeh_0908) was expressed. 

Adeh_1278 contains three heme-binding motifs and is detected only when MnO2 is the 

electron acceptor. This cytochrome c shares sequence similarity (e-value of 4e-39) to SO_4047, 

a SoxA-like diheme cytochrome c. Previous work indicated that SO_4047 is important for 

aerobic growth and Cr(VI) reduction [196]. Proteomic measurements showed that SO_4047 was 

expressed under all but FeOOH condition, and its expression level was highest under the low 

oxic condition (Table 3.3). SO_4047 is located in the same operon as SO_4048, which is also 

expressed under all but FeOOH condition (Table 3.3). This agrees with previous finding that the 

expression of SO_4047 and SO_4048 are not impacted by different environmental electron 

acceptors [179], although the specific functions of SO_4047 and SO_4048 remain unknown. 

There are two other predicted c-type cytochromes of strain 2CP-C annotated as SoxA 

(Adeh_2281) and SoxX (Adeh_2280). SoxA is detected under all growth conditions except metal 

growth conditions (Fe citrate, FeOOH, MnO2) and SoxX is detected under all but Fe Citrate 

condition (Figure 3.1, Table 3.4). SoxA and  
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SoxX are postulated to form a complex for the binding of substrate to another carrier protein 

during sulfur oxidation [197]. Our result suggests that SoxA and SoxX of strain 2CP-C may also 

be involved in electron transfer in an independent manner, since they are not always co-

expressed. 

 

3.3.4 Non-detected c-Type Cytochromes 

In strain 2CP-C cells, the 16 undetected c-type cytochromes include eight proteins 

annotated as hypothetical proteins, five annotated as cytochrome c, one as lipoprotein, and 

two as NrfH nitrite reductases (Figure 3.1, Table 3.7). The protein sequences of all 16 

undetected c-type cytochromes of A. dehalogenans were inspected for their detectability by 

mass spectrometry. All of the undetected c-type cytochromes should yield tryptic peptides 

upon proteolysis with appropriate length and hydrophobicity for mass spectrometry detection. 

Thus, if these were expressed, they should have been detectable under our experimental 

conditions; however, we did not detect these proteins under any of the seven growth 

conditions (in any of the triplicates). Possible reasons could be that the expression levels of 

these proteins were too low for detection, or the proteins were not expressed under these 

growth conditions or in planktonic cells. For example, we did not detect MtrD and MtrF in S. 

oneidensis cells (Table 3.3), which agrees with previous findings that the expression of MtrD 

and MtrF is more favorable in cells forming biofilms rather than planktonic cells [198]. It is 

possible that some of the undetected c-type cytochromes have unique functions in biofilm cells 

and thus were not detected in our experiments. Another possible reason could be that the 

expression of some undetected proteins is growth phase dependent. Since all the cells were  
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Locus ID Annotation Motif Cellular 
Localization COG 

Adeh_0108 hypothetical protein 12 motifs Periplasmic none 

Adeh_0215 multiheme cytochrome 7 motifs Periplasmic none 

Adeh_0911 respiratory nitrite reductase specific menaquinol--
cytochrome-c reductase (NrfH) 4 motifs Unknown C 

Adeh_1504 hypothetical protein 3 motifs Unknown none 

Adeh_2097 hypothetical protein 7 motifs Periplasmic none 

Adeh_2269 hypothetical protein 3 motifs Unknown none 

Adeh_2664 hypothetical protein 9 motifs Periplasmic none 

Adeh_2665 cytochrome c family protein 10 motifs Periplasmic none 

Adeh_2666 hypothetical protein 20 motifs Periplasmic none 

Adeh_2903 respiratory nitrite reductase specific menaquinol--
cytochrome-c reductase (NrfH) 4 motifs Unknown C 

Adeh_2940 hypothetical protein 2 motifs Unknown P 

Adeh_3068 cytochrome c family protein 26 motifs Periplasmic none 

Adeh_3074 cytochrome c family protein 6 motifs Extracellular none 

Adeh_3086 cytochrome c family protein 4 motifs Unknown none 

Adeh_3151 lipoprotein 2 motifs Unknown P 

Adeh_3200 hypothetical protein 10 motifs Unknown none 
  

Table 3.7. The undetected c-Type cytochromes for A. dehalogenans 2CP-C 
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harvested in late exponential / early stationary phase in our experiments, some c-type 

cytochromes may have been expressed earlier on and have been degraded by the time cells 

reached harvest time. Additionally, only seven growth conditions were tested in this study, 

which does not include all possible electron acceptor conditions these organisms can 

experience. 

NrfH is believed to interact with NrfA during electron transfer. It is unclear why both 

copies of NrfH (Adeh_0911 and Adeh_2903) are not detected (Table 3.7), considering both 

copies of NrfA are detected. However, NrfH is not present in the genome of S. oneidensis; 

instead, the ‘NrfA function’ is replaced by CymA (SO_4591) [196]. It is likely that strain 2CP-C 

also possesses an atypical Nrf system similar to that of strain MR-1. Thus, both copies of NrfH in 

strain 2CP-C may not be expressed, and other proteins may replace their function.  

 

3.3.5 Heme-binding Motifs of c-Type Cytochromes 

Most of the predicted c-type cytochromes contained more than one heme-binding motif 

per protein (Figure 3.4). c-Type cytochromes of strain 2CP-C and FRC-32 were predicted to 

contain as many as 40 and 53 motifs, respectively, whereas in S. oneidensis, the highest number 

of heme-binding motifs for a c-type cytochrome was 10 (Figure 3.4).  On average, the 

cytochromes in strain 2CP-C, MR-1, and FRC-32 contain 6, 4, and 12 CXXCH motifs (Figure 3.4d). 

Monoheme c-type cytochromes constituted 25% of all the predicted c-type cytochromes 

of strain MR-1, which was the highest percentage among all strains (Figure 3.4). However, the 

measured abundances of monoheme c-type cytochromes of strain MR-1 culture were not as  
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Figure 3.4. Heme-binding motifs of predicted c-type cytochromes of Anaeromyxobacter dehalogenans 2CP-C (a), Shewanella 
oneidensis MR-1 (b), and Geobacter daltonii FRC-32 (c). Average number of motifs in predicted c-type cytochromes (d) were 
calculated by multiply the number of motif with its corresponding percentage, and sum all the multiplications for each 
organism. 
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high as their counterparts in strain 2CP-C culture, especially in the oxygen grown cells (Figure 

3.5). In strain 2CP-C cells grown with ferric iron (FeOOH, Fe Citrate) or MnO2, monoheme c-type 

cytochromes were less abundant compared to other growth conditions (nitrate, TSB, or 

fumarate) (Figure 3.5). This abundance difference of monoheme c-type cytochromes in metal 

and non-metal growth conditions was not observed for strain MR-1 and FRC-32 (Figure 3.5). 

Among all the predicted multiple heme-containing c-type cytochromes, tetraheme 

cytochromes were the largest proportion in strain MR-1 (23%), while in strain 2CP-C and MR-1, 

only 12% and 7% of the predicted c-type cytochromes had four predicted heme-binding motifs, 

respectively (Figure 3.4). However, the percentage of tetraheme c-type cytochromes expression 

in strain FRC-32 was similar to strain MR-1, as shown by cumulative normalized spectral counts 

(nSpC) (Figure 3.5). Both strain MR-1 and FRC-32 cultures were dominated by tetraheme c-type 

cytochromes under all growth conditions, while in strain 2CP-C tetraheme c-type cytochromes 

were only measured in low abundances under a few growth conditions (e.g. FeOOH, Fe Citrate, 

and oxygen) (Figure 3.5, Table 3.4).  

In strain MR-1, only 28% predicted c-type cytochromes contained more than 4 heme-

binding motifs, whereas 49% and 67% predicted c-type cytochromes with more than 4 heme-

binding motifs were identified in strain 2CP-C and FRC-32, respectively (Figure 3.4). Even 

though the percentage/distribution of predicted >4 heme-containing c-type cytochromes in 

strain 2CP-C was not the highest among all three populations, their detection level was the 

most abundant among all organisms, as shown by the cumulative nSpC under all growth 

conditions (Figure 3.5). Under the metal conditions (FeOOH, Fe Citrate, and MnO2), about 50 – 

80% of the cumulative nSpC of the detected c-type cytochromes contained more than 4 heme- 
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Figure 3.5. Abundances of detected c-type cytochromes grouped by the number of heme-binding motifs for (a.) A. 
dehalogenans 2CP-C, (b.) S. oneidensis MR-1 and (c.) G. daltonii FRC-32. Abundances are represented by cumulative 
nSpC of detected c-type cytochromes. nSpc: normalized spectral count. 
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binding motifs (Figure 3.5). Cytochromes with 5-6 heme-binding motifs were not detected 

under any growth condition for strain MR-1; however, their expression was detected in FeOOH 

and Fe Citrate grown strain 2CP-C cells (Figure 3.5). We detected 7-10 heme-containing 

cytochromes at high abundances in all the growth conditions of strain 2CP-C but at very low 

abundances in strain MR-1 and FRC-32 (Figure 3.5). c-Type cytochromes of high heme content 

(>10) were only present in strain 2CP-C and FRC-32 cells (Figure 3.4). Cytochromes with 11-26 

heme-binding motifs were detected in very low abundance in strain 2CP-C cells but were 

significantly more abundant in fumarate grown FRC-32 (Figure 3.5).   

Both strain 2CP-C and FRC-32 have c-type cytochromes with more than 25 heme-binding 

sites based on computational predictions (Figure 3.4). For example, the highest number of 

hemes per cytochrome in strain 2CP-C was predicted to be 40 (Adeh_3077), and in strain FRC-

32 was 53 (Geob_3739). The LC-MS/MS measurement yielded definitive identification of the 

expression of Adeh_3077 under all but FeOOH and oxygen conditions (Figure 3.1, Figure 3.5), 

whereas Geob_3739 was only detected in fumarate grown culture (Table 3.6). There were 10 c-

type cytochromes in strain FRC-32 containing more than 26 heme-binding motifs, only 1 of 

which was not detected (Geob_2170). The remaining 9 were detected under various conditions 

(Figure 3.5, Table 3.8).  

 

3.3.6 Cellular Localization of c-Type Cytochromes 

Computational prediction of cellular localization revealed that most of the putative c-

type cytochromes of strain 2CP-C (45%), MR-1 (55%), and FRC-32 (26%) were periplasmic 

(Figure 3.6 left). While the c-type cytochromes of strain FRC-32 were predicted to localize at all  
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Table 3.8. c-type cytochrome identification for Geobacter daltonii FRC-32 grown with various electron acceptors. 
 

Gene Locus Annotation Heme-binding sites Cellular Localization COG FeOOH FeCitrate MnO2 Fumarate 

Geob_3741 cytochrome C family protein 44 Unknown - - - - 0.9 

Geob_3740 cytochrome C family protein 35 Unknown - - - - 2.1 

Geob_3739 cytochrome C family protein 53 Unknown - - - - 1.3 

Geob_3686 hypothetical protein 9 Cytoplasmic Membrane - - - 1.0 11.5 

Geob_3403 multiheme cytochrome 7 Unknown - - - - - 

Geob_3347 cytochrome C family protein 21 Unknown - 116.5 16.3 52.4 69.4 

Geob_3176 hypothetical protein 7 Unknown - - 0.9 - - 

Geob_3166 hypothetical protein 6 Extracellular - - - - - 

Geob_3160 cytochrome C family protein 26 Periplasmic - - - - - 

Geob_3159 cytochrome C family protein 16 Periplasmic - - - - - 

Geob_3155 hypothetical protein 6 Unknown - - - - - 

Geob_3132 cytochrome C family protein 36 Unknown - - - - 0.5 

Geob_3111 
formate-dependent nitrite reductase 

periplasmic cytochrome c552 subunit-like 
protein 

7 Periplasmic P - - 8.3 93.0 

Geob_2912 cytochrome C family protein 10 Periplasmic - - - - - 

Geob_2704 cytochrome C family protein 21 Unknown - 45.2 2.1 13.1 7.8 

Geob_2641 multiheme cytochrome 8 Unknown - - - - 13.0 

Geob_2640 hypothetical protein 2 Unknown - - - - 7.1 

Geob_2579 Di-heme cytochrome c peroxidase 2 Periplasmic P - - 1.3 155.2 

Geob_2568 hypothetical protein 1 Unknown - - - 12.0 35.3 

Geob_2379 hypothetical protein 12 Unknown - - - 1.8 26.9 

Geob_2338 hypothetical protein 2 Unknown - - - - - 

Geob_2235 cytochrome c peroxidase 2 Periplasmic P - 1.2 - 57.1 

Geob_2175 hypothetical protein 8 Unknown - - 2.1 6.7 - 

Geob_2170 hypothetical protein 27 Periplasmic - - - - - 

Geob_1966 hypothetical protein 3 Unknown - - - - - 

Geob_1885 hypothetical protein 6 Unknown - - - - 4.8 
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Table 3.8. Continued 
 

Gene Locus Annotation Heme-binding sites Cellular Localization COG FeOOH FeCitrate MnO2 Fumarate 

Geob_1862 hypothetical protein 10 Unknown - - - - 4.7 

Geob_1861 hypothetical protein 10 Extracellular - - - 1.9 4.3 

Geob_1834 cytochrome C family protein 37 Unknown - - - 0.9 - 

Geob_1813 cytochrome c3 3 Unknown - - - - - 

Geob_1740 hypothetical protein 4 Periplasmic - - - - - 

Geob_1737 hypothetical protein 7 Extracellular - - - - - 

Geob_1735 PKD domain-containing protein 7 Extracellular - - - - - 

Geob_1724 cytochrome c family protein 9 Periplasmic - - - 1.0 2.9 

Geob_1686 hypothetical protein 11 Unknown - - - - 14.3 

Geob_1685 hypothetical protein 9 Unknown - - - - - 

Geob_1682 hypothetical protein 9 Unknown - 163.6 1.1 33.1 59.1 

Geob_1681 hypothetical protein 8 Periplasmic - - - - 6.7 

Geob_1594 hypothetical protein 5 Periplasmic - - - - - 

Geob_1591 hypothetical protein 9 Unknown - - - - - 

Geob_1513 cytochrome C family protein 36 Unknown - - - - 1.4 

Geob_1432 hypothetical protein 4 Unknown - 56.8 365.7 410.5 1139.8 

Geob_1430 cytochrome C family protein 8 Periplasmic - - - - 7.1 

Geob_1429 cytochrome C family protein 11 Periplasmic - - - - - 

Geob_1426 hypothetical protein 3 Periplasmic - - - - - 

Geob_1401 hypothetical protein 3 Unknown - - - - - 

Geob_1374 cytochrome C family protein 45 Unknown - 2.3 - 6.0 9.0 

Geob_1373 cytochrome C family protein 27 Unknown - 8.9 - 2.9 7.3 

Geob_1359 hypothetical protein 2 Unknown - - - - - 

Geob_1348 hypothetical protein 4 Unknown - - - - - 

Geob_1344 hypothetical protein 10 Periplasmic - - - - - 

Geob_1343 hypothetical protein 12 Cytoplasmic - - - - - 

Geob_1340 hypothetical protein 5 Unknown - - - 2.8 4.2 
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Table 3.8. Continued 
 

Gene Locus Annotation Heme-binding sites Cellular Localization COG FeOOH FeCitrate MnO2 Fumarate 

Geob_1067 hypothetical protein 2 Unknown - - 13.7 6.8 39.2 

Geob_1050 cytochrome C family protein 44 Outer Membrane - 1.8 - 1.3 8.7 

Geob_1015 hypothetical protein 4 Unknown - - - - - 

Geob_1014 hypothetical protein 7 Cytoplasmic Membrane - - 11.2 45.0 20.5 

Geob_0874 hypothetical protein 1 Cytoplasmic Membrane - - - - - 

Geob_0870 
cytochrome C oxidase mono-heme 

subunit/FixO 
2 Unknown C - - - - 

Geob_0868 hypothetical protein 5 Cytoplasmic Membrane - - - - - 

Geob_0830 hypothetical protein 12 Periplasmic - - - - 24.8 

Geob_0764 hypothetical protein 6 Unknown - - - - 4.4 

Geob_0763 hypothetical protein 6 Unknown - - - - 19.1 

Geob_0619 hypothetical protein 3 Periplasmic - - - - - 

Geob_0616 hypothetical protein 3 Periplasmic - - - - - 

Geob_0517 hypothetical protein 8 Unknown - - - - - 

Geob_0311 cytochrome c3 3 Unknown - - - - - 

Geob_0309 cytochrome c family protein 5 Unknown - 7.6 7.0 14.9 100.7 

Geob_0301 hypothetical protein 1 Unknown - - - - - 

Geob_0122 cytochrome c class I 4 Periplasmic - - - - - 

Geob_0121 hypothetical protein 1 Unknown - - - - - 

Geob_0053 cytochrome C family protein 26 Outer Membrane - - - 0.6 1.0 

 

 

 

 

Cellualr localizations are predicted by Psort 3.0 

Numbers in cells are normalized spectral counts (nSpC). 

Red: Core c-type cytochromes 

Yellow: Undetected c-type cytochromes 

Orange: Detected under all but FeOOH 

Green: Unique c-type cytochromes 

Purple: Detected under two conditions 

Blue: Detected under all but one condition 
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Figure 3.6. Cellular localization distribution for predicted and detected c-
type cytochromes in A. dehalogenans 2CP-C, S. oneidensis MR-1 and G. 
daltonii FRC-32. Cellular localizations were predicted using Psortb v3.0. 
The left panel shows predicted localizations for all predicted and 
detected putative c-type cytochromes for all strains. The right panel 
shows the abundance of all the detected c-type cytochromes of all 
localizations. nSpC: normalized spectral count. 
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cellular localizations, no outer membrane c-type cytochrome were predicted for either strain 

2CP-C or MR-1, and no extracellular c-type cytochrome were predicted for strain MR-1 (Figure 

3.6 left). Among all the detected c-type cytochromes of all three cultures, the majority was 

predicted to be either periplasmic or with an unknown location (Figure 3.6 right).  

There was one cytochrome for each bacteria predicted to be cytoplasmic (Figure 3.6 left, 

Table 3.3, 3.4 and 3.9), although previous study suggests that cytochromes mature outside of 

the cytoplasm [199, 200]. The one cytoplasmic cytochrome of strain MR-1, SO_2363 (CcoO), 

was detected under all growth conditions except for FeOOH, whereas the one of strain FRC-32, 

Geob_1343, was not detected under any growth condition (Table 3.3, 3.9). In strain 2CP-C cells, 

the cytoplasmic cytochrome Adeh_2403 was detected when FeOOH, Fe citrate, MnO2, or 

fumarate was the electron acceptor, and its expression level under FeOOH condition (nSpC: 55) 

was about 3 to 11 fold of that under the other three conditions (Table 3.4).  

The c-type cytochromes predicted to be associated with the cytoplasmic membrane 

were detected under almost all growth conditions for all three cultures (Figure 3.6). However, 

their abundances were very low, with the exception of oxygen grown strain 2CP-C cells, as 

shown by cumulative nSpC (Figure 3.6 right).  

Strain 2CP-C and FRC-32 have similar numbers of detected extracellular cytochrome c 

(Figure 3.6 left). Only one extracellular c-type cytochrome of strain FRC-32 was found under 

MnO2 and fumarate growth conditions at very low abundances with nSpC of 1.9 and 4.3, 

respectively (Figure 3.6 right, Table 3.8). In contrast, the extracellular c-type cytochromes of 

strain 2CP-C were detected at a relatively higher level with nSpCs ranging from 3.2 to 102.2 

(Figure 3.6 right, Table 3.4).  
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3.3.7 Clusters of Orthologous Groups (COG) Functional Categories of c-Type Cytochromes 

Most of the predicted c-type cytochromes of these bacteria could not be grouped into 

any functional category (none) (Figure 3.7 left). The detection of these c-type cytochromes 

dominated the cumulative nSpC of all c-type cytochromes in strain 2CP-C and FRC-32 cultures 

under all growth conditions (Figure 3.7 right). However, their abundance level in strain MR-1 

was not as dominant (Figure 3.7 right).  

The remainder of the c-type cytochromes of all three strains mainly fell into two COG 

functional categories: energy production and conversion (C), and inorganic ion transport and 

metabolism (P) (Figure 3.7). More “C” category c-type cytochromes were predicted and 

detected for S. oneidensis with higher abundances compared to that of strain 2CP-C and FRC-32 

across all growth conditions (Figure 3.7). A few c-type cytochromes of each strain were grouped 

into the inorganic ion transport and metabolism category (P) (Figure 3.7 left). Overall, their 

expression levels were not as high as that of the “C” category c-type cytochromes or the “none” 

category c-type cytochromes. However, the “P” category c-type cytochromes are detected at 

high abundance in strain 2CP-C cells grown with FeOOH and strain FRC-32 cells grown with 

MnO2 (Figure 3.7 right). One c-type cytochrome (Adeh_0728) of strain 2CP-C was grouped into 

the unknown function category (S) (Figure 3.7 left, Table 3.4). The “S” category means proteins 

are clustered into an orthologous group but the function for that group is poorly characterized.  
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Figure 3.7. COG functional category distribution of predicted and detected c-
type cytochromes in A. dehalogenans 2CP-C, S. oneidensis MR-1 and G. daltonii 
FRC-32 under various growth conditions. The left panel shows the COG 
functional categories of all predicted and detected c-type cytochromes. The 
right panel shows the abundance of detected c-type cytochromes in each COG 
category. Each alphabet represents one COG functional category. c (Energy 
production and conversion ), p (Inorganic ion transport and metabolism ), s 
(Unknown Function). nSpC: normalized spectral count.  
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3.4 Discussion 

The current models of electron transfer in S. oneidensis and G. sulfurreducens are 

constructed from information obtained from deletion mutants and heterologous expression 

studies under selective growth conditions [99, 102, 107]. In this study, cytochrome expression 

evaluated a wide range of additional electron acceptors, including solid metals (FeOOH, MnO2), 

soluble metal (Fe citrate), and non-metal substrates (fumarate, nitrate, oxygen). In S. oneidensis, 

all the electron transfer models propose the inner membrane c-type cytochrome CymA as the 

initial electron carrier in the electron transfer chain, which receives electrons from the quinone 

pool and transfers them to periplasmic cytochromes [99]. During ferric iron reduction, the 

outer membrane protein complex containing c-type cytochrome OmcA and OmcB delivers 

electron to ferric iron [102, 201]. OmcA and OmcB were both core cytochromes expressed 

under all growth conditions tested, and CymA could tentatively be classified as a “core” c-type 

cytochrome since it was detected under all growth condition except in FeOOH-grown cultures 

(Table 3.3). Our results not only confirmed the role of OmcA, OmcA, and CymA in ferric iron 

reduction (Fe citrate), but also indicated their roles in electron transfer to other electron 

acceptors including nitrate, fumarate, oxygen, and manganese oxide. In strain MR-1, many 

other “core” c-type cytochromes (e.g. FccA, NrfA, etc.) were identified, but were not examined 

in detail in the scope of this study.  

Based on the c-type cytochrome identification and cellular localizations predicted by 

PSORT, a special grouping of the c-type cytochromes network was constructed for strain 2CP-C 

(Table 3.9), which spatially segregates c-type cytochromes into cellular localizations. Clear 

commonalities and differences between growth conditions can be easily delineated by 
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highlighting the cytochromes detected (nitrate and fumarate growth shown as examples in 

Table 3.9 (a) and (b), respectively). With this table, one can begin to draw connections between 

c-type cytochromes and relate them to different electron acceptors. Future research could take 

this diagram as a starting point to build the electron transfer model for strain 2CP-C. Caution 

must be exercised with PSORT predictions because, in a few cases, the predictions did not agree 

with previously reported findings. For example, PSORT was unable to determine the localization 

of OmcA and OmcB which are outer membrane proteins [102, 110]. Experimental validation of 

cellular localization for most c-type cytochromes has not been accomplished, demonstrating 

the need for detailed protein characterization. Despite the minor imperfection, PSORT provides 

a generalized overview of all the predicted cellular localizations for all c-type cytochromes, 

which is useful for global c-type cytochrome proteomics analysis. 

The majority of the predicted c-type cytochromes of strain 2CP-C and strain FRC-32 

were annotated as “hypothetical proteins” in GenBank (Table 3.4 and 3.8).  Although these 

proteins have conserved motifs or domains that permit them to be classified as c-type 

cytochromes, detailed functional information has been lacking.  The unambiguous detection, 

identification, and abundance measurements with the MS approach verified that the 

“hypothetical proteins” were expressed and functional. Furthermore, many of these detected 

“hypothetical” putative c-type cytochromes were linked to specific growth conditions.  Thus, in 

addition to information about the identities and relative abundances of these c-type 

cytochromes, this MS proteomic approach also provides information about under what 

experimental conditions these proteins appear.  Obviously, further research needs to be 

conducted to more fully explore their roles in electron transfer and detail their contributions for  
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Table 3.9. Putative c-type cytochromes of A. dehalogenans 2CP-C grouped by cellular 
localizations predicted by Psort. Detected proteins in fumarate and nitrate cultures are 
highlighted in purple and blue, respectively, in table (a) and (b). 
 

(a) 

Cellular Localization Putative c-Type Cytochrome 

Extracellular Adeh_0409 Adeh_0656 Adeh_2216 Adeh_3074 Adeh_3163 

Outer Membrane      

Periplasm 

Adeh_0108 Adeh_0215 Adeh_0318 Adeh_0728 Adeh_0799 

Adeh_0909 Adeh_0910 Adeh_0918 Adeh_0972 Adeh_1278 

Adeh_1425 Adeh_1696 Adeh_1764 Adeh_2002 Adeh_2004 

Adeh_2097 Adeh_2277 Adeh_2285 Adeh_2664 Adeh_2665 

Adeh_2666 Adeh_2816 Adeh_2902 Adeh_2963 Adeh_2967 

Adeh_2989 Adeh_3067 Adeh_3068 Adeh_3090 Adeh_3392 

Adeh_3775 
    

Cytoplasmic Membrane Adeh_0109 Adeh_0803 Adeh_1659 Adeh_2275 
 

Cytoplasm Adeh_2403 
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Table 3.9. Continued 

(b) 

Cellular 
Localization 

Putative c-Type Cytochrome 

Extracellular Adeh_0409 Adeh_0656 Adeh_2216 Adeh_3074 Adeh_3163 

Outer Membrane 
    

Periplasm 

Adeh_0108 Adeh_0215 Adeh_0318 Adeh_0728 Adeh_0799 

Adeh_0909 Adeh_0910 Adeh_0918 Adeh_0972 Adeh_1278 

Adeh_1425 Adeh_1696 Adeh_1764 Adeh_2002 Adeh_2004 

Adeh_2097 Adeh_2277 Adeh_2285 Adeh_2664 Adeh_2665 

Adeh_2666 Adeh_2816 Adeh_2902 Adeh_2963 Adeh_2967 

Adeh_2989 Adeh_3067 Adeh_3068 Adeh_3090 Adeh_3392 

Adeh_3775 
    

Cytoplasmic 
Membrane 

Adeh_0109 Adeh_0803 Adeh_1659 Adeh_2275 
 

Cytoplasm Adeh_2403 

  Cellualr localizations are predicted by Psort 3.0 

Red: Core c-type cytochromes 

Green: Undetected c-type cytochromes 

Orange: Detected under all but FeOOH condition 

Purple: Detected with fumarate growth 

Blue: Detected with nitrate growth 
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respiration of certain electron acceptors. An attempt to determine the orthologous c-type 

cytochromes in strain 2CP-C and FRC-32 was made by reciprocal Blastp search, which only 

identified a few orthologs. For example, SO_0479 in strain MR-1 and Adeh_2963 in strain 2CP-C 

were matched during reciprocal Blast with an e-value of 0. No orthologous proteins were found 

for the majority of putative c-type cytochromes in strain MR-1 and 2CP-C.  

Of particular interest is the high number of heme motifs in some of the c-type 

cytochromes because such cytochromes in Geobacter species are hypothesized as ‘iron lungs’  

[108, 109]. The iron lung theory proposes that the hemes in the periplasmic and outer-

membrane c-type cytochromes provide a repertoire of heme groups with electron storage 

capacity [107-109], which is essential for the bacteria when there are limited electron acceptors 

in the environment. In this study, detected c-type cytochromes in FeOOH-grown FRC-32 cells 

contained more heme-binding motifs on average than grown with Fe citrate, MnO2, or 

fumarate (Figure 3.5, Figure 3.8), supporting the ‘iron lung’ hypothesis.  Higher electron storage 

capacity may be needed due to the low accessibility of the solid FeOOH, hence, c-type 

cytochromes with higher heme-content were expressed to provide electron-accepting capacity 

to temporarily store electrons before the FRC-32 cells can contact the solid electron acceptor. It 

is unclear why MnO2, being another solid electron acceptor, did not show similar effect on the 

c-type cytochrome expression as FeOOH, but this might indicate a more amenable electron 

transfer environment.   

In this study, the expression profile of c-type cytochrome proteins for each strain was 

significantly different among growth with various electron acceptors (Figure 3.1-3.3). The 

presence of a c-type cytochrome and its relative abundance could be associated with the  
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Figure 3.8. Average number of heme-binding motif for c-type cytochromes detected under 
various growth conditions. Average number of heme-binding motif expressed under certain 
growth condition was calculated based on the percentage of cumulative normalized spectral 
count, P(nSpC). The motif number was multiplied to its corresponding P(nSpC). The sum of all 
the multiplications for all motif numbers was the average number of heme-binding motif for 
cytochromes detected under this growth condition. 
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available electron acceptor in the environment, and unique c-type cytochromes were only 

observed when certain electron acceptors were provided. Such unique c-type cytochromes 

should be informative as biomarkers to reflect the environmental redox conditions and 

responsive biological processes carried out by the microbes.  

Although there are at least 40 or more predicted c-type cytochromes in the three 

bacterial strains discussed above, only a handful of these proteins had been functionally 

characterized and assigned specific roles in the electron transfer process.  The proteomics  

approach outlined here provides a means of profiling large-scale c-type cytochrome expression 

simultaneously, providing both qualitative and abundance information about their expression 

changes in response to different growth conditions. The identification of specific cytochromes 

detected only under certain growth conditions suggests that these microbes have the ability to 

adjust their cytochrome expression for specific electron acceptors.  Thus, the information 

provided here should enable the application of specific cytochromes as biomarkers of specific 

electron acceptor conditions in the growth environment. Due to the significant impact of 

microbes on the biogeochemistry of metals and minerals, c-type cytochrome biomarkers might 

provide a powerful toolset that can be used to assess and amend microbial activities in-situ.  

The results obtained in this large scale characterization study provide detailed information 

which would be difficult if not impossible to acquire elsewhere about which annotated or 

“functionally unknown” c-type cytochromes would be the best candidates to track in 

environmental microbiology studies. 
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3.5 Conclusions 

The differential proteome expression of Anaeromyxobacter dehalogenans strain 2CP-C, 

Geobacter daltonii strain FRC-32, and Shewanella oneidensis strain MR-1 were characterized 

using a mass spectrometry - based proteomic approach. The analyses revealed a set of core c-

type cytochromes expressed under all growth conditions tested, as well as c-type cytochromes 

unique to specific growth conditions, suggesting their potential utility as biomarkers to assess 

terminal electron-accepting processes (TEAPs). Many c-type cytochromes with multiple heme-

binding motifs were detected, in particular for G. daltonii FRC-32 grown with the solid metal 

electron acceptor ferric oxyhydroxide, which supports the hypothesis that high heme content c-

type cytochromes act as capacitors when electron acceptors are not readily available. A basic 

model for A. dehalogenans 2CP-C c-type cytochrome network was constructed to link 

cytochrome detection with corresponding TEAP. These findings suggest that a MS-based 

proteome approach is powerful for linking c-type cytochrome expression profiles with specific 

TEAPs, and provides significant insight into the fine-tunable control of bacterial electron 

transfer processes for different electron acceptors. 
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Chapter 4 

MS-based Proteomic Characterization of Anaeromyxobacter dehalogenans 

Strain 2CP-C Reveals Elevated Energy Metabolism in Growth with Metal Electron 

Acceptors 

The text and figures presented in this chapter will be published as the following journal article: 

Xiaoxin Liu, Silke Nissen, Karuna Chourey, Frank Löffler, Robert Hettich. “MS-Based 
Proteomic Characterization of Anaeromyxobacter dehalogenans 2CP-C Reveals Elevated 
Energy Metabolism in Growth with Metal Electron Acceptors”. Submitting to Journal of 
Proteome Research 2014. 

Xiaoxin Liu contributed to the proteome sample preparation, mass spectrometry experiments 
performing, biological data analysis and visualizations, and manuscript writing. 

 

4.1 Introduction 

Anaeromyxobacter dehalogenans strain 2CP-C is a facultative gram-negative 

Myxobacteria isolated from soil [87]. Unlike other members in the Myxobacteria family which 

are considered obligate aerobes, A. dehalogenans is capable of survival in anaerobic and 

microaerophilic environments [87, 202]. Studies of anaerobic growth of strain 2CP-C revealed 

tremendous respiration versatility, as evidenced by the ability to utilize a vast range of electron 

donors (e.g. acetate, hydrogen, pyruvate, lactate, succinate, formate) and electron acceptors 

(e.g. nitrate, fumarate, halogenated phenols, ferric iron, etc.) [87, 173, 203]. In particular, the 

dissimilatory metabolic reduction of metals and radionuclides by 2CP-C raised interest in 

implementing Anaeromyxobacter species for in situ bioremediation for soil and sediments with 
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heavy metal or radionuclide contamination [88, 204, 205]. Indeed, field studies of uranium 

contaminated sites confirmed the bioremediation contribution of A. dehalogenans populations 

[90, 91, 172, 206, 207]. The increase of Anaeromyxobacter abundance in uranium reduction 

sediment after oxygen intrusion distinguished Anaeromyxobacter from other in situ 

dissimilatory uranium reducing bacteria (e.g. Geobacter), and suggested the need for persistent 

presence to maintain  the stability of immobilized uranium by competing with uranium 

reoxidation [208].  

Despite the respiration versatility and profound environmental impact of A. 

dehalogenans strain 2CP-C, the physiology and metabolic basis that account for the electron 

donor/acceptor utilization is largely unknown. Complete genome sequencing of strain 2CP-C 

revealed genes responsible for a wide metabolism range [111]. For example, the identification 

of 68 c-type cytochrome coding genes reflected the respiration versatility, and the aerobic 

growth ability was supported by genetic evidence of oxygen-respiration and detoxification 

system. The genome provided metabolic potential information which is carried out by 

functional units – proteins. In order to understand how 2CP-C utilizes its genetic content for 

functional activities during growth under various redox conditions, proteomic characterization 

is desirable, in that proteins are the actual metabolic units that support the overall cellular-level 

activities. Thus, global proteome profiling is in need to provide insight into the functional 

machineries for bacterial physiology.  

For comprehensive proteomic characterizations, mass spectrometry (MS) is currently 

the state-of-the-art technic and has achieve tremendous success for the proteomics studies on 
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numerous biological systems [35, 183]. A previous study has characterized the proteome of 

strain 2CP-C using two-dimensional gel electrophoresis (2DE) and MALDI-TOF mass 

spectrometry [209]. Growth with two electron acceptors (fumarate and ferric citrate) were 

compared in this study, and the results identified around 13% of predicted proteins in the strain 

2CP-C proteome. Although 2DE coupled with MALDI-TOF has been a widely used technique for 

proteomics interrogation, the resolution and accuracy are not sufficient to resolve the 

complexity of a microbial proteome. In order to obtain more comprehensive and deeper 

proteome measurement for strain 2CP-C, liquid chromatography coupled with tandem mass 

spectrometry (LC-MS/MS) in this study. In addition, a wide range of electron acceptors are 

tested ranging from different forms of metals to non-metal organic and inorganic compounds.  

 

4.2 Experimental Section 

Bacterial Strains and Culture Conditions. In this chapter, a total of eight growth 

conditions were tested for Anaeromyxobacter dehalogenans strain 2CP-C, including FeOOH, Fe 

citrate, MnO2, fumarate, nitrate, tryptic soy broth, oxygen, and N2O. Detailed methods are 

provided in Chapter 2. 

Cell Lysis and Protein Extraction. The cell lysis and protein extraction methods are 

described in Chapter 2. 

LC-MS/MS.  Peptides were analyzed by two-dimensional liquid chromatography 

(Ultimate HPLC System, LC Packings, a division of Dionex, San Francisco, CA) coupled online 
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with a linear ion trap mass spectrometer (LTQ XL, ThermoFisher Scientific, San Jose, CA ), 

according to established protocol[132]. A total of 53 runs were collected, which comprised 

biological triplicates for all conditions tested. A 12-step 24-h Multidimensional Protein 

Identification Technology (MuDPIT) was used to analyze peptides as described [132, 139]. The 

LTQ XL was operated in a data dependent mode and one full MS scan was followed by five 

MS/MS scans. The m/z isolation width was set to 3 m/z and the dynamic exclusion repeat was 

set at 1 with a duration time of 60 sec. 

Database Searching and Data Normalization.  Experimental MS/MS spectra were 

searched against FASTA protein databases containing all predicted open reading frames of A. 

dehalogenans 2CP-C obtained from Joint Genome Institute (JGI, http://genome.jgi.doe.gov/, 

downloaded in July, 2011) and common contaminants such as trypsin, keratin, etc. A decoy 

database consisting of reversed sequences from the corresponding proteome database was 

also appended to the FASTA protein database in order to calculate False Discovery Rate (FDR) at 

the protein level. The SEQUEST search algorithm was used for peptide identification. Identified 

peptides were filtered and assembled into proteins by DTASelect [43]. The DeltCN filter was set 

to 0.08. The cross-correlation score filtering process started with conservative criteria as 

following: XCorr: +1 = 1.8, +2 = 2.5, +3 = 3.5. The XCorr criteria were slightly altered to adjust 

FDR to ~1% for each sample. At least two peptides were required per protein identification, and 

at least one peptide had to be unique to that protein. Raw spectral counts were normalized by 

protein lengths and the total spectral counts using Normalized Spectral Abundance Factor 

(NSAF) as previously described [184]. Normalized spectral counts are then uniformly multiplied 

by a factor of 100,000 for better readability and comparability to raw spectral counts. Adjusted 

http://genome.jgi.doe.gov/
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normalized spectral count is denoted as nSpC throughout this paper. The nSpCs for biological 

triplicates were averaged for each growth condition. The nSpCs reflect abundances of detected 

proteins. Larger nSpC value represents higher abundance, and vice versa. 

Hierarchical clustering and ANOVA analysis: In order to achieve quantifiable proteins 

for statistical analysis, a prevalence value (PV) was determined for each detected protein as 

previously described [210]. Since the PVs are derived from nSpCs of detected proteins, they 

reflect the abundances as well as reproducibility for detected protein. The PV for each protein 

was ranked from the largest to smallest. Substantive proteins representing top 95% of the total 

PVs were retained for statistical analysis. After proteins are filtered by their PVs, normalized 

data was log10-transformed for hierarchical clustering and ANOVA analysis. Hierarchical 

clustering was performed by JMP genomics v.6.0 (SAS Institute) using Ward clustering algorithm. 

The following settings: “scale row”, “center row” were applied to make the variance of each 

row to be 1, and center the mean of each row to 0. Each row contains transformed abundances 

for one protein in different growth conditions. ANOVA was conducted in JMP Genomics v.6.0 

(SAS Institute), to compare protein abundances across all conditions with Benjamini & 

Hochberg FDR correction (alpha = 0.05). 

  Pathway analysis: Metabolic maps were generated by KEGG pathway mapping 

software iPATH 2.0 [211].  

  Cellular Localization Prediction: Cellular localizations were predicted based on protein 

sequences using PSORTb.3.0 [185]. 
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4.3 Results and Discussion 

4.3.1 Characterization of the Pan-proteome of A. dehalogenans 2CP-C 

Mass spectrometry-based proteomics measurements were obtained for biological 

triplicates of A. dehalogenans 2CP-C cells grown with different electron acceptors. 

Approximately 2,000 proteins were identified for most of the growth conditions (Fe citrate, 

MnO2, nitrate, tryptic soy broth, fumarate, and oxygen - Figure 4.1).  When FeOOH was 

provided as the sole electron acceptor, the 2CP-C cell growth was significantly slower than all 

other tested growth conditions, as evidenced by the longer time to reach late exponential 

phase for harvesting. The recalcitrant growth with FeOOH as electron acceptor appeared to 

yield fewer proteins being expressed and a lower complexity protein mixture, which yielded the 

least protein identifications (Figure 4.1). Although a different protein extraction strategy was 

applied on FeOOH grown cultures, the detected proteins were found to be distributed among 

all cellular localizations and clusters of orthologous group (COG) categories with highly 

comparable percentages among different growth conditions (Figure 4.2, 4.3), suggesting 

comprehensive sampling coverage and adequate proteome measurement of that sample.  

In total, 2,846 proteins were identified across all growth conditions, representing the 

pan-proteome, which corresponded to 65% of all the predicted open reading frames in 2CP-C  
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Figure 4.1. Proteome identifications for A. dehalogenans 2CP-C grown 
under various conditions. Total identified protein numbers are pooled for 
biological triplicates of each growth condition. 
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  Figure 4.2. Cellular localization distribution of A. dehalogenans 2CP-C proteome under 
growth under different conditions.  
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Figure 4.3. COG functional category distribution of A. dehalogenans 2CP-C proteome under growth under 
different conditions.  
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genome. Compared to the number of proteins identified in each growth conditions (around 

2,000, as mentioned above), the pan-proteome exhibited only a slight increase in protein 

numbers, indicating a substantial overlap in the protein inventory between different growth 

conditions. The identified proteins distributed between all cellular localizations based on 

computational prediction (Figure 4.4). About 80% of the predicted cytoplasmic, periplasmic, 

outer membrane, and extracellular proteins were detected, whereas fewer predicted 

cytoplasmic membrane proteins (40%) and proteins with unknown localization (60%) were 

detected (Figure 4.4). Detected proteins belonged to all functional categories in the clusters of 

orthologous groups (COGs) classification database, with roughly even distributions (Figure 4.5). 

Proteins involved in energy metabolism, amino acid metabolism, translation, and transcription 

were readily identified, as might be expected since these are representatives of the core 

metabolism.  Proteins that could not be classified into any COG functional categories (“none” 

category) were mostly annotated as “hypothetical proteins” in GenBank, and occupied the 

highest percentage of detected proteome (Figure 4.5). The “hypothetical protein” annotations 

were inferred from genome sequence analysis [212], but no experimental evidence was 

available for the expression of “hypothetical protein”. The non-targeted LC-MS/MS proteome 

characterization provided evidence for the actual expression, identities, abundances, and 

growth condition dependence of many of these “hypothetical proteins”.  
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Figure 4.4. Cellular localization distribution of predicted (red) and detected 
(blue) proteomes of A. dehalogenans 2CP-C. Detected proteome is represented 
by pooled protein identifications of all replicates and all growth conditions. 
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Figure 4.5. COG functional category distribution of detected proteome of A. dehalogenans 2CP-C. Detected 
proteome is represented by pooled protein identifications of all replicates and all growth conditions. 
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4.3.2 The “Core” Proteome of Strain 2CP-C 

Combining proteome measurements for all 2CP-C cultures revealed the “core” 

proteome, which consisted of 710 proteins shared among growth with all tested electron 

acceptors. The abundances of the core proteome represented a vast range as indicated by the 

normalized spectral counts (nSpCs) (scaling from 10e-1 to 10e4). When sorted by the COG 

functional categories, the core proteome distributed almost all COG classifications with 

consistent abundances in each category across different growth conditions (Figure 4.6). Roughly 

35-50% of the core proteome represent functions related to protein translation and 

metabolism, and energy production (Figure 4.6), which is probably not surprising in that the 

core proteome is essential to sustain the basic operational metabolism for cell survival. 

To generate a more specific functional overview of the core proteome, iPath2.0 was 

used to map all the core proteins onto predicted metabolic pathways in the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) database (Figure 4.7). The functional annotation provided by 

KEGG is not complete; only 1806 out of 4361 proteins in the entire predicted 2CP-C proteome 

have been assigned functions in KEGG database. Nonetheless, KEGG provides a more high-

resolution functional view as compared to the broad COG functional classifications. Out of the 

1806 proteins whose KEGG functional annotations were available, 1383 were detected across 

various growth conditions, and were mapped to metabolic pathways using iPath2.0 (Figure 

4.7a).  In the core proteome, 441 of the 710 proteins have assigned functions in the KEGG 

database, and were mapped to metabolic pathways involved in the metabolism of lipid, 

carbohydrate, amino acid, nucleotides, etc. (Figure 4.7b). Although the core proteome is only  
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Figure 4.6. Quantitative distribution of A. dehalogenans 2CP-C core proteome by COG functional categories.  
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Figure 4.7. Metabolic pathways of detected A. dehalogenans 2CP-C proteome. The 
pan-proteome of 2CP-C represents all the detected proteins pooled across all 
growth conditions and all replicates. The core proteome represents proteins 
detected under all growth conditions. (a)The pan-proteome is mapped onto KEGG 
metabolic pathways and highlighted blue. (b)The core proteome represented 
pathways are highlighted in red. 
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16% of the predicted proteome of 2CP-C, it contains well annotated proteins participating in 

almost all metabolic processes. The most readily represented pathways by the core proteome 

participate in energy metabolism, and lipid metabolism (Figure 4.7b). The conservation of most 

metabolic pathways by the core proteome among tested growth conditions further reinforce 

the essentiality of the core proteome, and suggests that different electron acceptors or donors, 

by in large, do not affect the overall cellular processes.  

 

4.3.3 The Unique Proteins of Strain 2CP-C 

The proteins uniquely detected under specific electron acceptor growth conditions are 

likely responsible for specific /specialized biological processes related to the utilization of 

corresponding electron acceptor. When 2CP-C cells were grown with FeOOH or N2O, relatively 

few unique proteins were identified (12 and 16, respectively). Oxygen and Fe citrate-growth 

yielded the most unique proteins (77 and 57, respectively), while growth under the remaining 

conditions yielded around 40 unique proteins each. The unique proteins of each condition were 

grouped by their COG functional classifications according to their abundances (Figure 4.8). 

Under all growth conditions, proteins that could not be classified into any category (“none 

category”) had the highest representation. The MnO2 grown cells generated the most abundant 

“energy production and conversion” protein detection. Proteins in the “post translational 

modification and protein turnover chaperones” category were most abundant in Fe citrate and 

tryptic soy broth grown cells. Unique proteins belonging to “inorganic ion transport and 

metabolism” and “signal transduction mechanisms” categories were both most abundant with 
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growth in tryptic soy broth. The “cell wall membrane and envelope biogenesis” proteins are 

most abundant with oxygen-growth (Figure 4.8).  

In a few cases, proteins unique to different growth conditions shared the same 

functional annotation (Table 4.1), suggesting that these functions can be carried out by multiple 

different proteins, and that different environmental factors require specific proteins performing 

similar functions. The unique proteins under each growth condition were mapped to KEGG 

pathways using iPath2.0 to visualize the represented pathways in the metabolic network 

(Figure 4.9). Due to limited KEGG annotations, a total of 98 out of all unique proteins in all 

growth conditions had available KEGG information, and were mapped to 27 (redundant) 

metabolic pathways. For example, the pathways unique to MnO2 belonged to nucleotide 

metabolism, and a few amino acid metabolic pathways were represented by unique proteins in 

tryptic soy broth grown cells (Figure 4.9). Proteins unique to nitrate growth did not match any 

metabolic pathways, but were involved in regulatory pathways for cell motility and signal 

transduction (data not shown). In addition to the overlapping functional annotations between 

unique proteins, the same functional annotations could also be shared with the core proteins or 

other non-unique proteins. Thus, in most cases, the unique proteins represented pathways 

were not exclusive to the corresponding growth condition. As a result, the pathways 

highlighted by unique proteins could also be represented in the core metabolic network (Figure 

4.7 and 4.9). Only fumarate resulted in the expression of fatty acid biosynthesis and terpenoid 

backbone biosynthesis pathways that were not represented by proteins detected under other 

growth conditions (Figure 4.9).  
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Figure 4.8. Quantitative distribution of detected A. dehalogenans 2CP-C proteins unique to certain growth conditions.  
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Unique Proteins Growth with KEGG Annotation GenBank Annotation 

Adeh_2542 FeOOH 
K00773 queuine tRNA-ribosyltransferase  

Adeh_1428 nitrate 
Adeh_0466 Fe citrate 

K03088 sigma-24 (FecI-like)  
Adeh_2378 MnO

2 
Adeh_1747 nitrate 
Adeh_0557 tryptic soy broth 
Adeh_2734 nitrate 

K03408 CheW protein  
Adeh_0602 oxygen 
Adeh_2057 tryptic soy broth 

K06131 phospholipase D/Transphosphatidylase  
Adeh_4242 N

2
O 

Adeh_3016 Fe citrate 
K07216 Hemerythrin-like, metal-binding protein  

Adeh_0219 fumarate 
  

Table 4.1. Unique proteins from different growth conditions share overlapping functional 
annotations.  
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Figure 4.9. KEGG pathways represented by detected proteins of A. dehalogenans 2CP-C unique to certain growth condition. 
Pathways represented by unique proteins are highlighted in different colors by growth conditions. The proteins unique to nitrate 
do not map onto any of the metabolic pathways. The pathway in the dashed box is mapped by both unique proteins to tryptic 
soy broth and N

2
O. 
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4.3.4 Quantitative Comparison of 2CP-C Proteome Expression Patterns 

In order to quantitatively compare the proteomes of 2CP-C grown under different 

conditions, the proteomic data was filtered to remove low abundance proteins whose 

quantification is less robust due to the nature of peptide sampling [169]. The data was filtered 

by 95% prevalence value (PV) (see Experimental Section), resulting in 1554 quantifiable proteins 

representing ~55% of the total detection. The filtered data was analyzed using hierarchical 

clustering for overall quantitative distribution of protein expression across all tested growth 

conditions (Figure 4.10). The hierarchical clustering analysis generated a total of 10 protein 

clusters based on protein abundance patterns across growth conditions.  The number of 

proteins within each cluster ranged from 59 (cluster 2) to 278 (cluster 3).  

The protein clusters were dissected to reveal the quantitative contributions of each 

growth conditions (Figure 4.11a). The cumulative nSpC of each protein cluster was calculated 

for each growth condition, and the relative percentages reflected the growth condition 

representations in each cluster. Several protein clusters were most abundant in certain 

conditions. In particular, the protein abundances of cluster 1 and 10 had the highest 

contribution (~35%) by growth with FeOOH and oxygen, respectively (Figure 4.11a). Growth 

with Fe citrate, MnO2, and N2O contributed over 25% to the total protein abundances in cluster 

4, 5, and 8, respectively (Figure 4.11a). Since each cluster contains detected proteins with 

similar abundance patterns across growth conditions, and many clusters (e.g. cluster 1, 10) 

represents proteins predominantly detected under certain condition, the functional attribute of 

proteins within each cluster could be linked to specific electron acceptors. To functionally  
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  Figure 4.10. Hierarchical clustering of A. dehalogenans 2CP-C proteins and growth 
conditions. Quantifiable proteins were analyzed by hierarchical clustering to reveal the 
differential global proteome profiles. Protein abundances (nSpCs) were scaled so that the 
variance of each row is 1, and the mean of each row is centered to 0.  The scaled and 
centered abundances ranged from -2.399 to +2.4749. Each hierarchical cluster contains 
detected proteins having similar abundance patterns across growth conditions. A total of 
10 hierarchical clusters were generated, and denoted by different colors. From top to 
bottom are clusters 1 – 10. Different growth conditions were also clustered (bottom) 
based on the similarities of global proteome abundance patterns. 
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Figure 4.11. Quantitative distribution of A. dehalogenans 2CP-C protein hierarchical 
clusters by COG functional categories. (a)The quantitative contribution of proteins 
detected under each growth condition was determined for each hierarchical cluster. 
The quantitative contribution of each growth condition is represented by the percent 
share of the total nSpC in each protein cluster. The cells are color-coded 
(red:green::high:low) to visualize the degree of quantitative contributions. (b) Each 
hierarchical cluster contains detected proteins having similar abundance patterns 
across growth conditions. Proteins in each cluster (z axis) were classified into 
respective COG functional categories (x axis). The y axis represented sum of nSpCs of 
contributing proteins in each COG category in different clusters. 
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analyze the hierarchical clusters, the protein complement in each cluster was examined for 

their representing COG functional categories (Figure 4.11b). Each protein cluster demonstrated 

different abundance distributions across COG categories. For example, proteins predominantly 

detected with MnO2 growth (cluster 4) mostly represented “energy production and conversion” 

and “translation of ribosomal structure and biogenesis”; whereas, for proteins most abundant 

with FeOOH growth (cluster 1), the highest functional representations were “replication, 

recombination and repair”, “translation of ribosomal structure and biogenesis”, and “none”. 

The “none” category refers to proteins that could not be classified into any COG functional 

category, and was abundant with FeOOH and MnO2 growth (cluster 1 and 4, respectively) 

(Figure 4.11b). There were 52 and 22 proteins in the “none” category for cluster 1 and 4, 

respectively, most of which were annotated as “hypothetical protein” (40 and 17, respectively). 

Proteins are annotated as “hypothetical protein” because their corresponding genes do not 

have homologs with known functions [212]. Although caution needs to be exercised, a 

biological role could be inferred if the protein sequence contains conserved domains or have 

similarity to proteins with known function. In order to delineate the functions of detected 

“hypothetical proteins”, the protein sequences were queried against Pfam database for 

associated protein families [213]. Unfortunately, the most abundant hypothetical proteins in 

the “none” category of cluster 1 and 4 did not associate with any protein family in Pfam 

database and their function remained unclear. 

In the hierarchical clustering, different growth conditions were also clustered based on 

the global protein abundance patterns (Figure 4.10). All the non-metal electron acceptors 

clustered away from the metal conditions, suggesting that the 2CP-C proteome responded to 
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metal and non-metal electron acceptors by controlling the protein expression profiles. Among 

the tested non-metal electron acceptors, nitrate and fumarate resulted in the most similar 

proteome abundance patterns which clustered closely together. N2O was the most distant non-

metal electron acceptor in the hierarchical clustering, growth with which generated the most 

distinct protein abundances pattern. To our surprise, the global protein abundance pattern with 

oxygen growth did not show significant distinction to the other anaerobic growth. This suggests 

that the oxygen in microaerophilic condition tested do not cause toxicity (e.g. reactive oxygen 

species (ROS)) to the cell, and the cell could utilize low concentration of oxygen as electron 

acceptor without additional biological processes (e.g. detoxification of ROS). The soluble metal 

Fe citrate and solid metal MnO2 were grouped together, suggesting that the overall protein 

expression pattern of 2CP-C is similar in response to different forms of metal electron acceptors. 

However, growth with another solid metal FeOOH resulted in a protein abundance pattern 

distinct from all other tested growth conditions, which could be attributed by the recalcitrant 

growth with FeOOH as electron acceptor.  

 

4.3.5 Quantitative Differential Analysis of 2CP-C Proteome Responding to Different Electron 

Acceptors 

To further delineate the detailed differentiations of proteome expression between 

different growth conditions, the semi-quantitation power of label-free shotgun proteomics was 

exploited through statistical analysis. Quantifiable detected proteins passing the 95% PV filter, 

as mentioned above, were analyzed by one-way ANOVA test, which generated a total of 28 
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pairwise comparisons for all eight tested growth conditions. Out of the 1554 analyzed proteins, 

the abundances of 1100 displayed significant differential change across various growth 

conditions. The number of significantly changed proteins in each pairwise comparison ranged 

from 54 (between fumarate and N2O) to 658 (between FeOOH and oxygen) (Figure 4.12). In 

general, most proteins (450 - 658) demonstrated significant abundance change when growth 

with FeOOH is compared to growth with another electron acceptor, consistent with the 

distinction of FeOOH in the hierarchical clustering result (see above).  

Three growth conditions analyzed included different forms of metal electron acceptors 

(FeOOH, Fe citrate, and MnO2), and five conditions with non-metal electron acceptors (nitrate, 

fumarate, tryptic soy broth, oxygen, and N2O). The ANOVA analysis revealed 166 proteins 

whose abundance change is significant only when comparison is made between growth with 

metal and non-metal electron acceptors (see attachment “Supplementary Table 4.1”). In other 

words, these 166 proteins did not show significant abundance change in comparisons within 

the three metal electron acceptors, or within the five non-metal electron acceptors. 

Interestingly, out of the 166 differentially abundant proteins, 62 were consistently up-regulated 

in all metal electron accepter-growth, and 104 were consistently up-regulated in all non-metal 

electron acceptor-growth (see attachment “Supplementary Table 4.1”), suggesting that the 

effect of metal and non-metal electron acceptors on protein abundance is distinct and 

directional. The 62 proteins significantly more abundant with metal electron acceptor-growth 

mainly belong to the “energy production and conversion” and “amino acid transport and 

metabolism” functional categories in the COG database (Figure 4.13). The 104 proteins whose  



138 
 

 

  
Figure 4.12. The number of differentially abundant proteins revealed by ANOVA 
test. The ANOVA test generated a total 28 pairwise comparisons (y axis) for all 
tested growth conditions. The number of proteins showing significant abundance 
differences (x axis) as determined by ANOVA test are plotted for each comparison. 
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Figure 4.13. COG functional category distribution for differentially 
abundant proteins. Proteins with differential abundances between 
metal and non-metal electron acceptor-growth are highlighted in red 
(more abundant with metal) or blue (more abundant with non-
metal), and are plotted by the COG functional categories (x axis). The 
y axis represents the relative percentage of protein numbers in each 
functional category. 
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abundances are significantly higher with non-metal electron acceptor-growth all showed more 

than 10 fold change (lg(metal)-lg(non-metal)<-1) (see attachment “Supplementary Table 4.1”), 

and “none” and “translation of ribosomal structure and biogenesis” were the highest 

represented functional categories (Figure 4.13). 

To better visualize the functional differences of proteins significantly changed between 

growth with metal and non-metal electron acceptors, differentially abundant proteins were 

mapped to metabolic pathways in KEGG database using iPath 2.0. Out of the 166 proteins with 

differential changes between metal and non-metal electron acceptor-growths, 92 were 

annotated in the KEGG database and 42 of which were mapped to 60 (redundant) metabolic 

pathways (Figure 4.14). The metabolic pathways represented by proteins up-regulated in metal 

electron acceptor growth were highlighted in red, and no overlap was observed with pathways 

represented by proteins up-regulated in non-metal electron acceptor growth (highlighted in 

green) (Figure 4.12). Proteins up-regulated in metal electron acceptor-growth mapped to 

metabolic pathways participating in TCA cycle, metabolism of amino acid, nucleotide and 

carbohydrate (Figure 4.12), whereas proteins up-regulated in non-metal electron acceptor 

growth mostly involved in regulatory pathways for translation and cell motility. 

Metabolic pathways mapping clearly indicated elevated expression of energy 

production pathways in growth with metal electron acceptors. As shown in Figure 4.14, major 

components in TCA cycle (KEGG pathway KO00020) were significantly up-regulated, 

contributed by increased abundances of 2-oxoglutarate ferredoxin oxidoreductase subunit beta 

[EC:1.2.7.3], malate dehydrogenase [EC:1.1.1.37], and citrate synthase [EC:2.3.3.1]. In addition,  
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Figure 4.14. Metabolic pathways represented by differentially 
expressed proteins with metal and non-metal electron acceptor-
growth. Proteins exhibiting significant abundance change determined 
by ANOVA analysis are mapped onto KEGG metabolic pathways. The 
pathways corresponding to up-regulated proteins in metal electron 
acceptor-growth are highlighted in red, and up-regulated pathways in 
non-metal electron acceptors are highlighted in green. 
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other ATP producing processes, glycolysis (KEGG pathway KO00630) and oxidative 

phosphorylation (KEGG pathway KO00190), also exhibited significant up-regulation with metal 

electron acceptor-growth. Due to the up-regulation of many energy producing pathways, it was 

not surprising that porphyrin metabolism (KEGG pathway KO00860), a pathway related to 

heme production, was up-regulated in metal electron acceptor-growth as represented by 

increased abundance of glutamate-1-semialdehyde 2,1-aminomutase [EC:5.4.3.8]. Heme is an 

electron carrier component in many proteins involved in the electron transfer chain (e.g. 

cytochrome), which inextricably relates to energy production. The increased expression of 

proteins involved in energy-producing pathways either reflects an overall higher energy 

production, or indicates that the cells grown with metal electron acceptors underwent stress 

condition and were making efforts to produce more energy. 

Amino acid and nucleotide metabolism also demonstrated up-regulation in metal 

electron acceptor-growth (Figure 4.12). Specifically, the following proteins responsible for 

amino acid synthesis all showed higher abundances with metal electron acceptor-growth: 

branched-chain amino acid aminotransferase [EC:2.6.1.42], shikimate dehydrogenase 

[EC:1.1.1.25], aspartate-semialdehyde dehydrogenase [EC:1.2.1.11], 3-deoxy-7-

phosphoheptulonate synthase [EC:2.5.1.54], argininosuccinate synthase [EC:6.3.4.5], 

carbamoyl-phosphate synthase large subunit [EC:6.3.5.5], 4-hydroxy-tetrahydrodipicolinate 

reductase [EC:1.17.1.8], and aspartyl-tRNA(Asn)/glutamyl-tRNA(Gln) amidotransferase subunit 

A [EC:6.3.5.6 6.3.5.7]. For biosynthesis of purine and pyrimidine, increased abundances of 

purine-nucleoside phosphorylase [EC:2.4.2.1], ribonucleoside-diphosphate reductase alpha 

chain [EC:1.17.4.1], and phosphoribosylaminoimidazole-succinocarboxamide synthase 
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[EC:6.3.2.6] in metal electron acceptor-growth was determined significant by ANOVA analysis 

and contributed to the elevation of nucleotide metabolism. The increased synthesis of amino 

acids and nucleotides could be a result of overall higher expression of energy-generating 

pathways in cells grown with metal electron acceptor. 

The significantly increased proteins with non-metal electron acceptor-growth, on the 

other hand, only mapped to a few metabolic pathways for amino acid and nucleotide 

biosynthesis (e.g. KEGG pathway KO00400, KO00240), lipid metabolism (KEGG pathway 

KO00564), etc. However, most abundant proteins in non-metal electron acceptor-growth were 

ribosomal proteins involved in regulatory pathways for translation (KEGG pathway KO03010). 

Protein CheW was significantly more abundant in non-metal electron acceptor-growth, and was 

mapped to 10 elements in the regulatory pathways for chemotaxis (KO02030) and two-

component system (KO02020).  

 

4.4 Conclusions 

Using the LC-MS/MS approach, deep measurement comprehensively characterized the 

proteome of the DMRB A. dehalogenans strain 2CP-C, and provided a global survey of the 

proteome-wide responses of 2CP-C to seven different electron acceptors. High proteome 

coverage was achieved, as represented by the pan-proteome. The results also revealed a core 

proteome sustaining major metabolic processes regardless of different electron-accepting 

environments. Quantitative analysis revealed that metal and non-metal electron acceptors 

have distinct effect on the proteome profiles of 2CP-C. Growth with metal electron acceptor 
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resulted in the expression of more protein participating in energy production compared to non-

metal electron acceptor-growth.  
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Chapter 5 

Proteome Characterizations for Shewanella oneidensis Strain MR-1 and 

Geobacter daltonii Strain FRC-32 

5.1 Introduction to Shewanella oneidensis MR-1 and Geobacter daltonii FRC-32 

Many species within the Shewanella, Geobacter, and Anaeromyxobacter genera are 

dissimilatory metal reducing bacteria (DMRB) with versatile respiratory abilities, as mentioned 

in Chapter 1. All three genera have been found to be the intrinsic microbial colonizers in many 

environments where metal reduction is a major biogeochemical process taking place. In an in 

situ sediment cap study, all three genera were abundant in relation to the total Bacteria 

population, with Geobacter spp. being the most dominant [214]. Anaeromyxobacter and 

Shewanella spp. displayed higher abundances in upper zones compared to the rest of the 

sediment cap possibly due to oxygen utilization [214]. In other field studies of uranium 

contaminated sediments, Anaeromyxobacter spp. and Geobacter spp. were proven to be most 

predominant microorganisms related to in situ uranium bioremediation [90, 172]. Despite their 

co-presence in the environment and commonalities of respiratory versatility, the similarities or 

differences of the overall metabolic activities of Shewanella spp., Geobacter spp., and 

Anaeromyxobacter spp. are largely unknown. In order to gain insight into the molecular level 

functional activities of Shewanella, Geobacter, and Anaeromyxobacter, the proteome 

characterizations for Shewanella oneidensis strain MR-1 and Geobacter daltonii strain FRC-32 

are detailed in this chapter, and are compared to the proteome of Anaeromyxobacter 
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dehalogenans  strain 2CP-C (presented in Chapter 4) to reveal the similarities or differences 

between these three DMRBs. 

As briefly introduced in Chapter 1, S. oneidensis strain MR-1 and G. daltonii strain FRC-

32 are both important DMRBs. While S. oneidensis strain MR-1 belongs to the gamma 

subdivision of Proteobacteria, G. daltonii strain FRC-32 is phylogenetically closer related to A. 

dehalogenans strain 2CP-C, both of which are members in the delta subdivision of 

Proteobacteria. Strain FRC-32 is an obligate anaerobe, and strain MR-1 and 2CP-C are 

microaerophiles able to grow in environment with low level of oxygen. All three bacterial 

strains have demonstrated versatile respiratory capabilities for the reduction of ferric iron, 

manganese, uranium, etc. based on physiological characterizations [87, 88, 215-217]. Using 

mass spectrometry-based proteomics approach, details about the proteome expression and 

representing metabolic pathways in response to different electron acceptors are presented and 

contrasted for S. oneidensis strain MR-1, G. daltonii strain FRC-32, and A. dehalogenans strain 

2CP-C. 

 

5.2 Experimental Section 

Bacterial culture growth, sample collection, protein extraction and digestion, peptide 

separation through two-dimensional liquid chromatography, and following protein 

identification using tandem mass spectrometry on a linear ion trap (Thermo Scientific, Inc.) are 

described in detail in Chapter 2 and 3. 



149 
 

5.3 Results and Discussion 

5.3.1 Characterization of the Pan-proteomes of S. oneidensis MR-1 and G. daltonii FRC-32 

The proteomic characterization for S. oneidensis strain MR-1 was achieved for growth 

with seven conditions, including FeOOH, Fe citrate, MnO2, nitrate, tryptic soy broth, fumarate, 

and oxygen. G. daltonii strain FRC-32 is an obligate anaerobe, and could only grow with FeOOH, 

Fe citrate, MnO2, and fumarate, out the seven tested growth conditions. The total number of 

proteins identified under most growth conditions for strain MR-1 was around 1,600 (Fe citrate, 

MnO2, nitrate, fumarate, and oxygen – Figure 5.1). With tryptic soy broth-growth (fumarate 

provided as electron acceptor), strain MR-1 yielded slightly lower number of protein 

identification (1270) (Figure 5.1). Compared to the minimum salt medium, the tryptic soy broth 

medium contains a complex mixture of undefined nutrients, which may be directly utilized by 

the cells to support growth without initiating nutrient-synthesizing pathways that are necessary 

to grow with minimal-nutrients. For strain FRC-32, growth with fumarate generated the highest 

number (1543) of total protein identification among all tested growth conditions (Figure 5.2). 

The least number of total protein identification was achieved when FeOOH was used as 

electron acceptor for both strain MR-1 and FRC-32, 296 and 773, respectively, which represent 

approximately 19% and 50% of proteins identified in other conditions, respectively (Figure 5.1 

and 5.2). Similar to A. dehalogenans strain 2CP-C (discussed in Chapter 4), growth of strain MR-

1 and FRC-32 was slowest with FeOOH supplied as the sole electron acceptor, which led to less 

variation of proteins being expressed and measured. The protein extraction method used for 

FeOOH-grown cultures was different from other growth conditions; however, it should not  
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Figure 5.1. Proteome identifications for S. oneidensis MR-1 grown under 
various conditions. Total identified protein numbers are pooled for 
biological triplicates of each growth condition. 
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Figure 5.2. Proteome identifications for G. daltonii FRC-32 grown under 
various conditions. Total identified protein numbers are pooled for 
biological triplicates of each growth condition. 
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affect the total proteome identification, as discussed in Chapter 2 and 3. In addition, if the 

proteome expression with FeOOH-growth was comparable to other conditions, sample 

preparation bias would have resulted in similar protein identification impairments to both 

strain MR-1 and FRC-32 (unlike the observation of respective 19% and 50% of protein 

identifications in FeOOH-growth compared to other conditions). Thus, the protein identification 

results of strain MR-1 and FRC-32 further testify that the low protein identification numbers 

with FeOOH growth was not due to the different performance of proteome extraction methods. 

The pan-proteome for each strain represents the all identified proteins pooled across all 

growth conditions. Combining the proteome identifications from all tested growth conditions, 

strain MR-1 yielded 2256 non-redundant proteins (the pan-proteome), representing 50% of the 

total predicted open reading frames (ORFs) in strain MR-1 proteome. Similarly, the identified 

pan-proteome of strain FRC-32 had 1931 non-redundant proteins, also corresponding to 50% of 

all possible ORFs in the predicted proteome database. Similar to A. dehalogenans strain 2CP-C 

(shown in Chapter 4), the pan-proteomes of strain MR-1 and FRC-32 both have only a slight 

increase in protein numbers, as compared to proteomes identified in most individual growth 

conditions. The substantial proteome overlap between different growth conditions suggest that 

the entire proteomes of strain MR-1 and FRC-32 are not significantly distinct when grown with 

different electron acceptors. 

The pan-proteomes of strain MR-1 and FRC-32 spanned all cellular localizations 

predicted by PSORTb.3.0 [185]. About 60-75% of the predicted cytoplasmic, periplasmic, outer 

membrane, and extracellular proteins were detected for both strain MR-1 and FRC-32, whereas 



153 
 

fewer percentages (roughly 30-40%) of predicted outer membrane proteins and proteins with 

unknown cellular localizations were detected (Figure 5.3 and 5.4). The cellular localization 

distributions for proteins identified under each growth conditions also showed complete 

coverage of proteins localized in all cellular compartments (Figure 5.5 and 5.6). For strain MR-1 

grown with FeOOH, even though the total detected proteome is only 19% of that in other 

growth conditions (Figure 5.1), the percentages of detected proteins in each cellular 

localizations were highly comparable to all other growth conditions (Figure 5.5). And similar 

localization distribution for strain FRC-32 proteome was also observed for all tested growth 

conditions (Figure 5.6), suggesting comprehensive protein samplings as well as adequate 

proteome coverages were achieved for both strains grown with all tested electron acceptors. 

Detected proteins comprised almost all functional classifications in the clusters of 

orthologous groups (COG) database [218] (Figure 5.7 and 5.8), except a histone deacetylase 

super family protein of strain MR-1 (SO_1815) classified as “chromatin structure and dynamics”, 

and an RNA 3’-phosphate cyclase protein of strain FRC-32 (Geob_0963) belonging to the “RNA 

processing and modification” category, were not detected under any growth condition. For 

both strain MR-1 and FRC-32, most detected proteins (17% and 20%, respectively) in the pan-

proteomes could not be classified into any functional categories and were designated as “none” 

in the COG database (Figure 5.7 and 5.8). Compared to A. dehalogenans strain 2CP-C (Chapter 4) 

whose pan-proteome contained 22% “none” category proteins, the MR-1 proteome is slightly 

more completely functionally classified and annotated. Typically, most proteins in the “none” 

categories are annotated as hypothetical proteins because of the lack of conserved domain or  
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Figure 5.3. Cellular localization distribution of predicted (red) and detected 
(blue) proteome of S. oneidensis MR-1. Detected proteome is represented by 
pooled protein identifications of all replicates and all growth conditions. 
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Figure 5.4. Cellular localization distribution of predicted (red) and detected 
(blue) proteome of G. daltonii FRC-32. Detected proteome is represented by 
pooled protein identifications of all replicates and all growth conditions. 
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Figure 5.5. Cellular localization distribution of S. oneidensis MR-1 proteome 
under growth under different conditions.  
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  Figure 5.6. Cellular localization distribution of G. daltonii FRC-32 proteome 
under growth under different conditions.  
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Figure 5.7. COG functional category distribution of detected proteome of S. oneidensis MR-1. Detected proteome is 
represented by pooled protein identifications of all replicates and all growth conditions. 
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Figure 5.8. COG functional category distribution of detected proteome of G. daltonii FRC-32. Detected proteome is 
represented by pooled protein identifications of all replicates and all growth conditions. 
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motif and limited sequence similarity to functionally characterized proteins in the database. 

With the comprehensive proteome measurements, the expression of “none” category proteins 

were validated, and could be linked to certain tested growth conditions (Figure 5.9 and 5.10). 

The COG functional category distributions of proteins detected under each growth conditions 

have comparable patterns for strain MR-1, except with FeOOH-growth (Figure 5.9) which had 

higher percentages of proteins in the “energy production and conversion” and “translation of 

ribosomal structure and biogenesis” categories. For strain FRC-32, the COG distributions are 

variable among all tested growth conditions (Figure 5.10), suggesting that each tested electron 

acceptor has distinct impact on expressed proteins in each functional classification. Overall, the 

percent share of total detected proteins in each COG category is roughly consistent between 

different organisms (strain MR-1, FRC-32, and 2CP-C) (Figure 5.9 and 5.10, and Chapter 4). 

To achieve a more in-depth functional representation of the pan-proteomes of strain 

MR-1 and FRC-32, all detected proteins across all biological replicates under all tested growth 

conditions were pooled and mapped onto metabolic pathways in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database [219] using the pathway mapping tool iPath2.0 [211] 

(Figure 5.11 and 5.12). Due to incomplete annotations, only 1478 proteins out of the detected 

pan-proteome (2256 proteins) of strain MR-1, and 1075 proteins out of the pan-proteome 

(1931 proteins) of strain FRC-32 were functionally annotated by KEGG. For those detected 

protein with available functional information, their representing metabolic pathways were 

highlighted in blue in Figure 5.11 and 5.12 for strain MR-1 and FRC-32, respectively. Both pan-

proteomes showed high coverage of almost all the explored pathways for each organism, 

ranging from energy metabolism, metabolism of amino acid, nucleotide, lipid, to the 



161 
 

 

  

Figure 5.9. COG functional category distribution of S. oneidensis MR-1 proteome under growth under different 
conditions.  
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Figure 5.10. COG functional category distribution of G. daltonii FRC-32 proteome under growth under different 
conditions.  
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  Figure 5.11. Metabolic pathways of detected S. oneidensis MR-1 pan-proteome. The pan-proteome of MR-1 consists 
detected proteins pooled across all growth conditions and all replicates, and is mapped onto KEGG metabolic pathways and 
highlighted blue.  
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  Figure 5.12. Metabolic pathways of detected G. daltonii FRC-32 pan-proteome. The pan-proteome of FRC-32 consists 
detected proteins pooled across all growth conditions and all replicates, and is mapped onto KEGG metabolic pathways and 
highlighted blue. 
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biosynthesis of secondary metabolites (Figure 5.11 and 5.12). The metabolic maps of the pan-

proteomes reflect the cellular activities that are required for cell growth. 

 

5.3.2 The “Common” and “Core” Proteomes of S. oneidensis MR-1 and G. daltonii FRC-32 

The “common” proteome represents proteins detected under all tested growth 

conditions for each organism. For strain MR-1, a measured overlapping proteome of 260 

proteins was shared across all tested electron acceptors. In comparison, the measured common 

proteome for strain FRC-32 contained 594 proteins, representing 31% of the pan-proteome. 

The relatively larger common proteome in strain FRC-32 is probably due to the fewer growth 

conditions tested, resulting in a larger overlap between detected proteomes under each 

condition, and more protein identifications with FeOOH growth. The common proteome of 

strain MR-1 appears to be the smallest among all three bacterial strains, but it is likely to be 

heavily skewed by the low protein identification with FeOOH growth. Thus, in order to 

represent the true biological core proteome, FeOOH condition should be omitted. The “core” 

proteome represents all the proteins detected under all tested growth conditions with FeOOH 

condition omitted. When FeOOH condition is omitted from the analysis here, the detected core 

proteomes of strains MR-1 and FRC-32 contain around 922 and 1,022 proteins, respectively, 

representing 41% and 53% of the pan-proteomes, respectively.  

In order to probe the functional perspective of the common and core proteomes of 

strain MR-1 and FRC-32, the quantitative distributions by COG functional categories of common 

and core proteomes in each growth conditions are presented in Figure 5.13 and 5.14,  
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Figure 5.13. Quantitative distribution of S. oneidensis MR-1 common proteome 
and core proteome by COG functional categories. (a) The common proteome 
contains identified proteins overlapping all tested growth conditions. (b) The 
core proteome represents detected proteins overlapping all conditions with 
FeOOH condition omitted. 
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Figure 5.14. Quantitative distribution of G. daltonii FRC-32 common proteome 
and core proteome by COG functional categories. (a) The common proteome 
contains identified proteins overlapping all tested growth conditions. (b) The 
core proteome represents detected proteins overlapping all conditions with 
FeOOH condition omitted. 
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respectively. In general, the abundances of common and core proteins in each functional 

category are roughly consistent between different growth conditions, with proteins in the 

“translation, ribosomal structure and biogenesis” category having the highest abundances for 

both organisms (Figure 5.13 and 5.14). For MR-1 grown with FeOOH, proteins related to energy 

production and conversion is roughly twice as abundant as with other growth conditions 

(Figure 5.13a), which could be either a skewed result from the overall low protein identification, 

or that the cells are attempting to generate more energy with FeOOH growth. In contrast to 

strains MR-1 and 2CP-C (Chapter 4), the common proteome of strain FRC-32 grown with FeOOH 

had the most distinct quantitative COG distribution, in which proteins related to replication, 

recombination and repair were the most abundant, suggesting more active cell proliferation or 

repair with FeOOH growth for strain FRC-32 (Figure 5.14a). The second highest abundant 

protein functional category of FeOOH grown FRC-32 core proteome was “cell motility” (Figure 

5.14a), which is in agreement with previous studies showing that Geobacter spp. could 

generate type IV pili structure during electron transfer to solid-phase iron electron acceptor [78, 

174, 220]. The cell motility proteins did not show elevated abundance during growth with MnO2 

(Figure 5.14), another solid metal electron acceptor, suggesting that electron transfer through 

pili may be unique to solid-phase iron. 

A more detailed and specific functional overview of the core proteomes was generated 

by mapping detected common and core proteins onto metabolic pathways in KEGG database 

using iPath2.0 (Figure 5.15 and 5.16). For strain MR-1 and FRC-32, functional annotations were 

available for 213 and 404 proteins in the common proteomes, respectively, and for 745 and 676  
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Figure 5.15. Metabolic pathways of detected S. oneidensis MR-1 common 
and core proteomes. (a) Proteins detected under all growth conditions 
contribute to the common proteome, and the representing metabolic 
pathways are highlighted in red. All detected non-common proteins are 
highlighted in blue. (b) When FeOOH condition is omitted, the detected 
core proteome mapped to more metabolic pathways than the common 
proteome did, and are highlighted in red. All detected non-core proteins are 
highlighted in blue. 
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Figure 5.16. Metabolic pathways of detected G. daltonii FRC-32 common 
and core proteomes. (a) Proteins detected under all growth conditions 
contribute to the common proteome, and the representing metabolic 
pathways are highlighted in red. All detected non-common proteins are 
highlighted in blue. (b) When FeOOH condition is omitted, the detected 
core proteome mapped to more metabolic pathways than the common 
proteome did, and are highlighted in red. All detected non-core proteins are 
highlighted in blue. 
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proteins in the core proteomes, respectively. For strain MR-1, the common proteome 

represented pathways spread across all the functional modules, such as energy metabolism, 

lipid metabolism, etc. (Figure 5.15a). The majority of the pan-proteome covered pathways were 

not represented by the common proteome of strain MR-1 (Figure 5.15a). However, when 

FeOOH was omitted, the detected core proteome mapped onto almost all metabolic pathways 

and represented high coverage to the pan-proteome (Figure 5.15b). For strain FRC-32, the 

common proteome had much more overlap to almost all metabolic pathways represented by 

the pan-proteome (Figure 5.16a), which is similar to the common pathways of A. dehalogenans 

strain 2CP-C (shown in Chapter 4). The differences between the core and common proteomes 

of strain FRC-32 is not as big as that of strain MR-1. For strain FRC-32, both the core and 

common proteomes represented high coverage to the pan-proteome (Figure 5.16 a and b). 

Taken together, the core proteomes of strain MR-1 and FRC-32 conserve most of the metabolic 

pathways, which suggested that different electron acceptors did not impact the type of 

metabolic activities carried out in the living cell. In contrast, the common proteome of strain 

MR-1 represent much fewer metabolic pathways, which may due to the slow growth rate in 

FeOOH condition. 

 

5.3.3 The Unique Proteins of S. oneidensis MR-1 and G. daltonii FRC-32 

For both strains, many proteins were detected only under a specific growth condition. 

Such uniquely detected proteins could be functionally related to specialized biological activities 

corresponding to the utilization of certain electron acceptor. For strain MR-1, the number of 
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identified unique proteins was highest with MnO2-growth, and lowest with FeOOH-growth (95 

and 2, respectively). The other growth conditions (Fe citrate, nitrate, tryptic soy broth, 

fumarate, and oxygen) each resulted in the identification of approximately 60 unique proteins. 

For strain FRC-32, the unique proteins detected for growth with FeOOH, Fe citrate, MnO2, and 

fumarate are 68, 94, 115, and 192, respectively. Overall, each tested electron acceptor 

stimulated the expression of unique set of proteins for each organism, and strain FRC-32 

generated highest number of uniquely detected proteins under each condition, comparing to 

strain MR-1 and 2CP-C (shown in Chapter 4). 

To functionally and quantitatively analyze the unique proteins, the abundance of unique 

proteins (represented by cumulative nSpC) detected in each growth condition was plotted 

against COG functional classifications (Figure 5.17 and 5.18 for strain MR-1 and FRC-32, 

respectively). For strain MR-1, the most abundant unique proteins detected with MnO2-growth 

belonged to “inorganic ion transport and metabolism” (Figure 5.17), which suggest that MnO2 

reduction possibly requires a unique set of proteins participating in the electron transfer 

process. When grown with FeOOH, the most abundant unique proteins belonged to “lipid 

transport and metabolism” category for strain MR-1 (Figure 5.17), and belonged to “cell 

motility” category for strain FRC-32 (Figure 5.18). There were 26 unique proteins of strain FRC-

32 in the “cell motility” category, among which, Geob_0503 was the most abundant (nSpC: 

1555). The protein corresponding to Geob_0502 is annotated as “hypothetical protein” in the 

NCBI database, but the protein sequence matched to the “Flg_bb_rod” protein family in the 

Pfam database which corresponds to flagella basal body rod protein. Although Geob_0502 is 

currently uncharacterized, our results specifically linked this protein to growth with FeOOH,  
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Figure 5.17. Quantitative distribution of detected S. oneidensis MR-1 proteins unique to certain growth conditions.  
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Figure 5.18. Quantitative distribution of detected G. daltonii FRC-32 proteins unique to certain growth conditions.  
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together with the Pfam information, suggesting that this protein plays important role in the 

conductive pili structure (mentioned above) during electron transfer to FeOOH.  For both strain 

MR-1 and FRC-32, the abundances of functionally unclassified (“none” category) unique 

proteins are high in most growth condition (e.g. Fe citrate, fumarate for strain MR-1, and 

fumarate for strain FRC-32). The functional activities of these uncharacterized unique proteins 

could be important for the respiration of corresponding electron acceptors, and their unique 

detections are calling for further biochemical characterizations to reveal their biological 

functions. 

5.4 Conclusions 

In conclusion, mass spectrometry-based proteomics provided deep and comprehensive 

characterizations to the proteomes of S. oneidensis strain MR-1 and G. daltonii strain FRC-32 

responding to a wide range of electron acceptors. The detected pan-proteome for each 

organism reflected almost all explored metabolic pathways. Comparing to A. dehalogenans 

strain 2CP-C, the common proteome of strain FRC-32 had comparable size and metabolic 

pathway representations, whereas for strain MR-1, poor growth with FeOOH as electron 

acceptor greatly distorted the direct comparison. When FeOOH condition is omitted, the core 

proteome for each strain contains around 1,000 proteins, covering almost all metabolic 

pathways represented by their corresponding pan-proteomes. Unique proteins were detected 

for each tested organisms, and their expression and possible functionalities were linked to 

specific growth conditions through proteomics measurements. For strain FRC-32 grown with 

FeOOH, both the core proteome and uniquely detected proteins reflected highly abundant 
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proteins relating to cell motility, which supports previous observations about conductive pili 

structure used for electron transfer to solid-phase iron. Taken together, our results provided 

systematic overview of the metabolic activities of different DMRB organisms, and revealed their 

proteomic reactions corresponding to the utilization of different electron acceptors. 
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Chapter 6 

Concluding Remarks and Perspectives 

6.1 Overview 

The work presented in this dissertation demonstrated the use of a mass spectrometry-

based proteomics approach to deepen our understanding of environmental microbiology. 

Dissimilatory metal reducing bacteria (DMRB) are a group of environmentally and ecologically 

important bacteria, whose functional activities greatly impact the planet earth. In the past, 

research efforts on DMRB has led to the complete genome sequencing of many individual 

strains, providing a great foundation for proteomics research to directly uncover the protein 

machineries. Relying on the available genome information, this dissertation achieved detailed 

proteomic characterizations for three dissimilatory metal reducing bacterial strains, 

Anaeromyxobacter dehalogenans strain 2CP-C, Shewanella oneidensis strain MR-1, and 

Geobacter daltonii strain FRC-32. Through high-performance proteomics measurement, this 

dissertation revealed the molecular-level phenotypes of DMRBs represented by protein 

signatures corresponding to the utilization of various electron acceptors for bacterial 

respiration. The metabolic activates of individual DMRB strains tested, in addition to the 

proteomic comparisons between different strains, provided insights into the overall 

understanding of DMRB molecular functions. 
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6.2 Conclusions for c-Type Cytochrome Study 

When the research in this dissertation started about five years ago, our understanding 

about dissimilatory metal reducing bacteria was mainly limited to a broad and somewhat vague 

knowledge of their ability to use metal electron acceptors for energy preservation and survival. 

The efficiency of respiring different forms of metal compounds by various isolated DMRB 

strains, their preferences for different environmental electron acceptors, and their growth rates 

under different electron-accepting conditions were investigated previously, with the interest to 

characterize the microbial physiology and metal reducing properties. Although the available 

genomes of many DMRB strains have revealed their genetic makeup and functional potentials, 

there was still a knowledge gap for the metabolic activities and molecular mechanisms 

underlying the microbial activities of DMRBs. As mentioned in Chapter 1, for a few DMRB 

strains, such as G. sulfurreducens strain PCA and S. oneidensis strain MR-1, several specific 

genes encoding for c-type cytochromes had been extensively studied and had been linked to 

the respiration of certain electron acceptors through mutagenesis studies. However, the 

detailed molecular network that contributes to DMRB respiration was still unknown.  

In Chapter 3, mass spectrometry-based proteomics profiled the expression of proteins 

responsible for the versatile respirational activities, revealing the members of c-type 

cytochrome proteins participating in the cellular metabolism under different growth conditions. 

This is the first time the entire repertoires of c-type cytochrome proteins for three different 

DMRB strains were monitored in detail. Instead of narrowing the research focus on a few 

specific proteins, the proteomics profiling broadened our view on the expression of all putative 
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c-type cytochromes in a global perspective. Previously, the majority of the putative c-type 

cytochromes were predicted based on genome information, but their actual expressions were 

not validated. Through mass spectrometry measurements, not only evidence for the actual 

expression of putative c-type cytochrome proteins was provided, but also a wide range of 

electron acceptors were linked to the presences and abundances of different sets of c-type 

cytochromes. The mass spectrometry detection, together with the localization prediction for 

putative c-type cytochromes, allowed us to propose a model for the electron transfer network 

of DMRBs. As demonstrated in Chapter 3, the spatial connections between detected c-type 

cytochromes under each individual growth conditions could be constructed, and the model for 

fumarate and nitrate grown A. dehalogenan strain 2CP-C were shown as examples. With the 

same approach, the c-type cytochrome networks for S. oneidensis strain MR-1, and G. daltonii 

strain FRC-32 could also be demonstrated in the same fashion.  

Having large numbers of c-type cytochrome encoding genes is a common characteristic 

for all DMRBs, but it was not clear whether different c-type cytochrome in different strains have 

same or similar functional roles for microbial respiration. This dissertation compared the 

expression of different c-type cytochromes from different strains having protein sequence 

similarities. Although the majority of the c-type cytochromes in the three tested DMRB strains 

did not show sequence homology, extremely high sequence correlations between a few c-type 

cytochromes were discovered as shown in Chapter 3, calling for deeper investigations on the 

functions of conserved c-type cytochrome sequences. The expression patterns of homologous 

c-type cytochromes from different strains did not demonstrate similar response to different 

electron acceptors, which suggested different functional roles playing in different strains.  
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Although microbial organisms are microscopic, each organism is a fully developed 

biological system, and the c-type cytochrome profiling and comparisons between different 

DMRB strains demonstrated highly complex and controlled molecular networks for their 

respiratory activities. This dissertation demonstrated how to move the field of microbial c-type 

cytochrome research from the study of individual genes or proteins toward the global analysis 

of the all c-type cytochromes. This is by no means to say the studies on specific c-type 

cytochromes are unimportant; rather, the proteomics study serves as the groundwork for 

experimental design of future research to reveal the specific functions and interactions of 

individual c-type cytochromes. The complementary information on defined protein subsets and 

global proteome should enhance our knowledge about the molecular mechanisms for DMRB 

respiration. 

 

6.3 Perspectives on c-Type Cytochrome Research 

The expression of many predicted c-type cytochromes of three DMRB strains were 

characterized in this dissertation, but their presences and detected abundances under a specific 

electron-accepting condition are not sufficient to reveal their actual functions. Whether the 

detected c-type cytochrome participate in microbial electron transfer, and in what way they 

contribute to microbial respiration, are questions need to be answered through further 

investigations beyond the scope of this dissertation. 

As mentioned, the few functionally or structurally characterized c-type cytochromes 

were only for a few extensively studied DMRB strains. Clearly, different bacterial genera, and 
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species are significantly different in terms of the composition of c-type cytochrome proteins, 

and the expression profiles corresponding to different growth conditions (as demonstrated in 

this dissertation). Knowing the mechanism of electron transfer process for a particular DMRB 

strain is not sufficient to infer the molecular mechanisms used in another strain. Due to the vast 

range of DMRB members, and their different specialties for respiring different electron 

acceptors, the c-type cytochromes of more bacterial species and strains in the DMRB family 

need to be studied with greater detail in order to understand their unique molecular basis for 

their respiratory activities. And more comparative studies between different c-type 

cytochromes from different DMRBs should provide deeper insight into the functionalities, 

utilizations, and evolution of c-type cytochrome proteins. 

Another important discovery revealed by c-type cytochrome protein sequences is the 

presence of multiple heme-binding motifs in a single cytochrome protein. As shown in this 

dissertation, the highest number of heme-binding motifs per c-type cytochrome for A. 

dehalogenan strain 2CP-C is 40. Such c-type cytochromes with multiple heme-binding motifs 

could have large number of attached heme groups. But the actual occupancy of heme-binding 

motifs in these multi-heme proteins has not been validated to date. Although the proteomic 

measurements performed in this dissertation detected peptides belonging to c-type 

cytochromes with multiple heme-binding motifs, the detected peptides used for protein 

inference did not contain motifs. This was due to the proteome database reliance of the current 

peptide sequencing techniques. The peptide spectrum matching approach could only detect 

peptide sequences present in the in silico digested protein database. Peptides having the heme 

attachment would cause a mass shift to the parent peptide ion, and the fragmentation pattern 
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will also be altered because of the two covalent bonds formed between the heme-group and 

the two cysteine residues on the peptide. The current peptide sequence identification 

algorithms are able to search the protein database for known post-translational modifications 

on single amino acid residues, such as phosphorylation, acetylation, etc. Since heme-group 

attachment modifies two non-adjacent residues, the current informatics algorithms are unable 

to generate predicted fragmentation patterns for such peptides for spectrum matching. The 

fact that peptides with unoccupied heme-binding motif were not detected suggests the 

possibility that all motifs could be attached with hemes, and could be captured by mass 

spectrometer. There is a great need for improved search algorithms to identify heme-attached 

peptides in the MS measurement. 

 

6.4 Conclusions on DMRB Proteome Study 

Previous investigations on gene functional expression for microbial respiration were 

mostly focused on the transcript level. As mentioned in Chapter 1, gene activities of several 

DMRB strains represented by transcriptional products (mRNA) were monitored using 

microarray or RNA-seq techniques. Several proteomics studies have also been performed on a 

few DMRB strains, mostly using gel-based separation for proteome fractionation and mapping. 

This dissertation developed an unfractionated and untargeted mass spectrometry-based 

proteomics approach, which demonstrated protein identification with higher throughput, 

resolution, and accuracy, and achieved high proteome coverage compared to the 2DE-based 

approach. From sample preparation, protein digestion, peptide separation, to peptide 
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sequencing and proteome identification, careful considerations were taken to generate deep, 

comprehensive, and unbiased proteomic measurements for DMRBs.  

In Chapter 4, the proteome characterization for the DMRB A. dehalogenan strain 2CP-C 

was conducted using the developed mass spectrometry workflow, and a wide range of electron 

acceptors were tested for their influence on the proteomic expression of strain 2CP-C. The 

direct comparisons between different forms of metal electron acceptors and non-metal 

electron acceptors are breakthroughs in the study of microbial respiration. With the proteomics 

characterization of strain 2CP-C under such a wide range of different electron-accepting 

conditions, the similarities and differences of microbial proteome expression and pathway 

expression toward the utilization of different electron acceptors for bacterial respiration were 

revealed. In this dissertation, the proteomics characterization suggested differential activities 

for energy metabolism in strain 2CP-C with metal electron acceptor-growth and non-metal 

electron acceptor-growth. This phenomenon was never demonstrated before through the 

physiological characterizations or transcriptomics analysis for strain 2CP-C. 

The results in Chapter 4 revealed the core proteomes of strain 2CP-C, which represented 

essential proteins participating in all metabolic activities. Identifying proteins in the core 

proteome is important to understand the basic microbial protein machineries for survival, and 

provides detailed information for organism manipulations. In addition, uniquely expressed 

proteins were also detected by mass spectrometry. Through functional comparisons between 

unique proteins under different growth conditions, it was clear that the reduction of specific 

electron acceptor would require the activities of proteins with specific or specialized functions. 
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The linkage between unique proteins and their corresponding electron acceptor provides 

promising establishment of biomarker indicators for specific pathway activities, which could be 

exploited for microbial activities representation. 

The developed mass spectrometry-based proteomics approach is widely applicable for 

various microbial organisms, and successful proteome characterization using this approach was 

demonstrated on two other DMRBs in Chapter 5. This provides the opportunity for complete 

proteome characterizations for more DMRB species, which is beneficial for the enhancement of 

existing knowledge about microbial molecular activities. 

Through systematic comparisons of detected proteomes between different DMRB 

strains, this dissertation demonstrated the unique features for individual strains, such as the 

confirmation of conductive pili structure in G. daltonii strain FRC-32 when grown with solid iron 

electron acceptor. Previously, it was unclear whether the pili electron transfer mechanism is 

universal to the respiration of all solid metal electron acceptors. Our results provided evidence 

for the uniqueness of pili generation for solid iron-growth. Whether other DMRB species use 

similar electron transfer mechanisms via pili structure was also under debate. The proteomics 

characterization and comparisons for different DMRB made it clear that Geobacter was the only 

genus with the unique pili electron transfer mechanism out of the three tested organisms. 

Direct proteome comparisons of different DMRB strains also revealed the similarities 

and differences of the essentiality of core proteomes. As shown in Chapter 5, the core 

proteome of A. dehalogenan strain 2CP-C,  S. oneidensis strain MR-1 and G. daltonii strain FRC-

32 represents almost all metabolic pathways to sustain energy conservation and growth. The 
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mass spectrometry analysis of DMRBs clearly showed that different strains have similar overall 

metabolic pathways, and in the same time, are unique in their own proteome activities to 

maintain individual lifestyles. 

 

6.5 Perspectives on DMRB Proteomics Research 

Over the course of this dissertation, mass spectrometry technology has improved 

rapidly. With many new instrumentations developed, such as LTQ-Orbitrap-Velos introduced in 

2009, and LTQ-Orbitrap-Elite introduced in 2012, mass spectrometers with enhanced analytical 

figures of merit provide better qualities of proteome identification and quantification. The 

increased performances of newly developed instruments could be exploited for DMRB 

proteome characterizations with even higher coverage, better accuracy and resolution, higher 

throughput, and deeper measurements. 

The instrumentation improvement also provides the capabilities of analyzing biological 

systems with higher complexities, such as environmental microbial communities. Since DMRB 

organisms naturally occur in various environmental settings from water, sediments, to soil, the 

proteomics characterization of the in situ DMRB metabolic activities are of tremendous 

importance to understand their functional roles in the ecosystem. To achieve accurate 

metaproteomics analysis on environmental DMRBs, the direct metagenome information for the 

same field sample would be highly desirable. Although artificially constructed genome database 

with concatenation of proteins from known DMRB species could provide information for 

metaproteomics analysis, the accuracy of protein identification, spectrum assignment and 
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protein quantification are confounded by the increased bacterial species, unpredictable 

abundances, uncharacterized and uncultivated strains, unknown organisms, and the interaction 

and communications between indigenous organisms. Currently, species differentiation and 

strain differentiation are tremendous challenges for metagenome studies, which also hinder 

the detailed differentiation of metaproteomics analysis. Ideally, strain-level information could 

be achieved through metagenomics and metaproteomics for environmental microbial 

communities, and the in situ metaproteomics results could be compared and contrasted to 

existing knowledge on individual strains obtained in laboratory conditions such as the results 

provided in this dissertation.  

For field-based metaproteomics studies, protein extraction methods should be carefully 

chosen to maximize the protein recovery with unbiased efficiencies for different organisms 

present in the environmental sample. The main sample preparation used in this dissertation 

(SDS-TCA method) was developed for soil microbial proteome extraction, and have 

demonstrated success utilities for environmental samples. Metaproteomics studies using the 

SDS-TCA method described in Chapter 2 could be conveniently compared to results presented 

in this dissertation. However, cautions need to be exerted, in that the SDS-TCA approach was 

proven to be interfered by the presence of FeOOH in this dissertation. While FeOOH is a very 

common form of ferric iron mineral present in the environment, it is likely that the field sample 

containing FeOOH would be problematic for achieving comprehensive metaproteome 

extraction. Thus, continuous improvement for proteomics sample preparation should be 

conducted, in order to gain deeper insight and more complete information to the proteome 

analysis on either microbial isolates or environmental communities. 
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Overall, mass spectrometry-based proteomics is a fast developing field that is providing 

continuous proteomic understandings to environmental microbiology. With better 

technological improvements applied on more environmental microorganisms, the proteomics 

information will present groundbreaking insights into our knowledge for microbiology and life 

sciences. 
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