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ABSTRACT 

 

This dissertation is comprised of three papers in the field of microeconomics. The first 

examines bidder’s choice auctions using both field and laboratory experiments. The field 

experiments demonstrate that traditional bidder’s choice auction theory does not always hold; the 

laboratory experiments subsequently isolate several characteristics of this auction format to 

explain why. We find that while price revelation does not impact the revenue superiority of the 

auction mechanism, multi-good demand significantly reduces the revenue premium. Intuitively, 

risk aversion plays less of a role when bidders have the opportunity to win multiple goods. The 

second chapter is theoretical and presents a dynamic Markov labor market tournament in which 

the manager does not have the ability to incentivize agents using money. Instead, the manager 

can use task assignment to reward and punish agents who are in and out of favor with him. This 

situation frequently characterizes public organizations such as schools and government agencies. 

The prize of the tournament is the difference between groups in the present value of the agent’s 

expected utility. We show that when the manager must delegate a certain number of tasks and 

when agents’ cost of contractible effort is a convex function, the manager can incentivize 

optimal non-contractible effort by agents. However, the total cost to the manager is higher than if 

the manager was able to use monetary incentives. The third chapter is an experimental paper that 

elicits consumer willingness to pay for food products labelled “natural”. The “natural” label is 

not regulated in the United States; however, several manufacturers are currently under lawsuit 

for selling “natural”-labelled food that contains genetically modified ingredients. This study uses 

an incentive-compatible mechanism and a survey to connect consumers’ beliefs to the premium 

that they associate with the “natural” label. Primarily, we find that consumers who believe 

“natural” means “no genetically modified organisms” (42% of our sample) are willing to pay a 

premium for “natural” food, whereas consumers who do not have this belief actually exhibit a 

negative premium. The overall effect is near zero, although the identified heterogeneity suggests 

that “natural” labels are potentially misleading.  
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INTRODUCTION 

 

This dissertation is comprised of three papers in the field of microeconomics. The auction 

mechanism examined in the first chapter has been used in a variety of settings including the sale 

of real estate, antiques and customized phone numbers. The paper focuses on the design of the 

mechanism: when it theoretically raises higher revenue than other mechanisms and under what 

conditions the theory predicts behavior in reality. The second chapter also focuses on mechanism 

design. A dynamic tournament is applied to a labor market setting that is commonly found in 

public organizations. The theoretical results describe conditions under which a manager can 

achieve optimal effort from his employees. Finally, the third chapter answers a pressing 

empirical question regarding consumer willingness to pay for a “natural” label on food. Several 

pending lawsuits partially motivate the paper. Although the three chapters are not directly related 

and each represents a separate, stand-alone paper, the tools used throughout this dissertation are 

similar. For instance, laboratory experiments are used in both the first and third chapters, and 

microeconomic theory is used in both the first and second chapters. This introduction will 

provide an overview of each chapter including its motivation, the methods used, and the primary 

result(s).  

Bidder’s choice (or “right-to-choose”) auctions are of particular interest to parties who 

wish to sell multiple similar goods. Economic theory has shown that this type of auction, where 

the high bidder wins the right to choose one good from among the available goods, results in 

higher revenue under risk aversion than traditional good-by-good auctions. Most theoretical and 

experimental work focuses on bidder’s choice auctions where bidders have value for only one of 

the available goods. Chapter 1 presents a field experiment and a lab experiment that allow for 

price revelation and multi-good demand, which are typically found in bidder’s choice auctions 

used for the sale of condos, antiques, customized telephone numbers and other groups of similar 

goods. We find that while price revelation does not have a significant effect on revenue, multi-

good demand mutes the theoretical revenue superiority the bidder’s choice mechanism. This is 

consistent with the notion that the perceived risk of losing one’s most preferred good is softened 

when there is a chance to win multiple goods. This result implies that bidder’s choice auctions 
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are preferred in settings where each bidder is likely to strongly prefer one good over the others, 

though this need not be the same good for every bidder. Further, this work demonstrates the 

complementarities of the field and laboratory settings to answer questions which are not clearly 

resolved using only one setting.  

In the second chapter, my coauthors and I develop a dynamic Markov model to capture 

the incentives in indefinitely-repeated tournaments in labor market settings where agents 

compete both to “move up” as well as to avoid a “move down”. Such settings naturally arise 

regardless of whether explicit performance incentives or an organizational hierarchy exist. We 

show that when monetary incentives are available, the dynamic tournament approaches the first-

best outcome, but we also allow for the possibility that the principal’s only available incentive 

mechanism is the assignment of undesirable tasks to agents who are out-of-favor. Inability to 

change salaries or demote workers is common for public organizations, such as government 

agencies and schools. For instance, a school principal may not be able to monetarily reward or 

sanction teachers based on performance, but typically has discretion within the labor contract to 

vary class assignments and resources such as teacher’s aides. We model agents as being either in 

or out of favor with the principal in any given period; those who are out of favor are assigned 

more undesirable tasks. The prize of the tournament is the difference between groups (in favor 

and out of favor) in the present value of the agent’s expected utility. We assume that agents’ 

effort cost of completing contractible tasks is such that these costs are minimized by assigning 

equally burdensome tasks to all agents. Therefore the principal can motivate non-contractible 

effort through differential task assignment, but this entails an efficiency cost. The model 

demonstrates that employers may seek flexibility to vary task assignments in labor contracts not 

only to adapt to changing circumstances, but also to enable them to motivate non-contractible 

effort when agents’ compensation in fixed.  

Food labeling has been widely studied, especially in the context of consumer willingness 

to pay for features that are considered healthy, such as organic content. Additionally, labels are 

highly regulated by the government; for instance, the phrase “low fat” cannot be used for foods 

with more than 3 grams of fat per serving. Especially for labels indicating low environmental 

impact, most of the theoretical literature acknowledges that there is some level of fraud in the 
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market for regulated labels, but the effects of an unregulated phrase on consumer demand are 

unclear empirically. In Chapter 3, an incentive-compatible approach is used to elicit willingness 

to pay (WTP) for grocery items with and without “natural” labels, several of which have 

genetically modified ingredients. Several pending lawsuits regarding genetically modified 

ingredients in food labeled as “natural” partially motivate our paper. Primarily, we find that 

consumers who believe “natural” means “no genetically modified organisms” (42% of our 

sample) are willing to pay a premium for “natural” food, whereas consumers who do not have 

this belief actually exhibit a negative premium. The overall effect is near zero, although the 

identified heterogeneity suggests that “natural” labels are potentially misleading and further that 

there is potential for firms to exploit uninformed consumers. 
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CHAPTER 1 

Multi-Good Demand in Bidder’s Choice Auctions 

  



5 
 

Abstract 

 

Bidder’s choice (or “right-to-choose”) auctions are of particular interest to parties who wish to 

sell multiple similar goods. Economic theory has shown that, under risk aversion, this type of 

auction, where the high bidder wins the right to choose one good from among the available 

goods, results in higher revenue than traditional good-by-good auctions. Most theoretical and 

experimental work focuses on bidder’s choice auctions where bidders have value for only one of 

the available goods. This paper presents a field experiment and a lab experiment that allow for 

price revelation and multi-good demand, which are typically found in bidder’s choice auctions 

used for the sale of condos, antiques, customized telephone numbers and other groups of similar 

goods. We find that while revealing winning prices does not have a significant effect on revenue, 

multi-good demand mutes the theoretical revenue superiority the bidder’s choice mechanism. 

This is consistent with the notion that the perceived risk of losing one’s most preferred good is 

softened when there is a chance to win multiple goods. This result implies that bidder’s choice 

auctions are preferred in settings where each bidder is likely to strongly prefer one good over the 

others, though this need not be the same good for every bidder. Further, this work demonstrates 

the complementarities of the field and laboratory to answer questions which are not clearly 

resolved using only one setting. 
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I. Introduction 

 

In a study of condominium sales, Ashenfelter and Genesove (1992) reported results that 

they argued “should surprise most economists”: they found that the prices of condominium units 

in New Jersey varied significantly depending on the way they were sold. Units sold at auction 

were valued more highly than those sold through bilateral negotiation. The specific auction 

institution in use was a “bidder’s choice” (also known as a “right-to-choose”) auction in which 

the winner, rather than receiving a specific condominium, earned the right to choose their 

preferred unit from among those remaining
1
. Bidder’s choice auctions are also commonly used in 

the sale of customized telephone numbers, antiques, bank branches following mergers, and other 

sequential sales of multiple similar goods. Theorists and experimentalists have explored the issue 

raised by Ashenfelter and Genesove (1992) considering more generally the allocation of multiple 

heterogeneous goods to a pool of bidders. The research has typically studied sequential or good-

by-good auctions rather than bilateral bargaining in order to create a clean counterfactual to 

understand the performance of the bidder’s choice institution (Burguet 2007; Goeree, Plott and 

Wooders 2004; Eliaz, Offerman and Schotter 2008).   

Importantly, Burguet (2007) demonstrates that in theory, the bidder’s choice auction 

raises higher revenue than a simple sequential auction when bidders are risk averse. The 

mechanism can “thicken markets” by creating competition across goods that are evaluated 

independently of each other in the sequential setting
2
. Existing studies generally provide support 

for Burguet’s theory, though the role of risk aversion is somewhat unclear (Goeree, Plott and 

Wooders 2004; Eliaz, Offerman and Schotter 2008). Further, these studies only allow each 

                                                           
1
 According to the National Association of Realtors, a “bidder’s choice” auction is: “a method of sale whereby the 

successful high bidder wins the right to choose a property from a grouping of similar or like-kind properties. After 
the high bidder’s selection, the property is deleted from the group, and the second round of bidding commences, 
with the high bidder in round two choosing a property, which is then deleted from the group…” This process 
continues until all goods have been sold.  
2
 Intuitively, the possibility that one’s preferred good will be chosen early makes the value of the later auctions less 

certain. Risk-averse buyers therefore are willing to pay a premium to secure their favored good in an early round. 
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bidder to have positive value for one good (single-good demand)
3
. Our study makes novel 

contributions by studying the bidder’s choice auction in field settings, where Ashenfelter and 

Genesove’s questions arose, while retaining the controls introduced by laboratory studies. 

Specifically, we address several previously unexplored characteristics of this auction format, 

including multiple values per bidder, as described below.  

First, we compare bidder’s choice and sequential auctions with a variety of consumer 

goods using a diverse pool of subjects in Reno, Nevada. The research design is that of a “framed 

field experiment” that incorporates relevant elements of traditional field studies in economics, 

including real goods and a diverse population of consumers, with appropriate experimental 

controls (Harrison and List 2004). The field setting differs from the laboratory environment in 

several ways, most critically in that an individual’s bids are based on “homegrown” values for 

actual goods rather than induced values. We find that the bidder’s choice mechanism fails in this 

environment, in contrast with theory and previous experimental work. Consequently, the second 

part of our research uses a lab experiment to focus on two elements of bidder’s choice auctions 

(multi-good demand and price revelation) that are not yet fully understood. We find that while 

price revelation does not have any significant effect, multi-good demand significantly mutes of 

revenue superiority of the bidder’s choice mechanism, which explains the results of the field 

experiment relative to other studies.  

Multi-good demand in the bidder’s choice setting has many applications. For instance, 

winning condominium bidders frequently choose a condo that they plan to rent out and continue 

bidding for the remaining condos, demonstrating that they have values for multiple units. 

Harstad (2009) presents anecdotal evidence of winning bidders in art auctions choosing an 

artwork and remaining to bid for further rights to choose. He also discovered that mergers or 

acquisitions in the banking industry, where branches are sold via bidder’s choice auctions, result 

                                                           
3
 For example, Eliaz et al. (2008) perform an experimental test of the theory where the high bidder drops out after 

he has won in the first phase of the auction, and the remaining bidders place bids for the right to choose from 
among the remaining goods. However, there are many instances in the field where it is the norm for winning 
bidders to remain in the auction. 
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in more branches sold than the number of purchasers. This indicates that some purchasers must 

attempt to purchase several branches in different locations, implying multi-good demand
4
. 

The U.S. Bureau of Land Management considered using bidder’s choice auctions to sell 

wild horses in 2009, which originally inspired our field experiment. In this experiment, bidders 

presumably had positive values for all three of the goods (an iPod package, a hiking equipment 

package, and a wine package), bidders continued to bid in all phases of the auction, and most 

bidders were risk averse. In addition, the winning price in each phase was revealed, similar to 

sales in real estate or antiques via bidder’s choice auction. The results indicate that the theoretical 

revenue superiority of the bidder’s choice mechanism under risk aversion may be overstated. 

However, since personal values for the objects were private, it is impossible to know for sure 

how the bidders updated their beliefs regarding values in each round. Further, it is possible that 

the effects of risk aversion may not be as pronounced when bidders have a chance of obtaining 

surplus from multiple goods than when they only have positive value for one good.  

Therefore, the next stage of our research, the lab experiment, aims to bridge the gap 

between theory and the field. We are able to isolate the effects of multi-good demand and price 

revelation. Specifically, in one set of treatments, the participants are notified of the winning bid 

after each phase, while in other treatments, they are only told who won and which object was 

selected. Further, the level of competition is also varied: in one set of treatments, all participants 

bid in every round regardless of whether they have already won, and in another set of treatments, 

only two participants have a positive value for each good. 

As previously stated, behavior in bidder’s choice auctions is of particular interest to 

parties who need to sell several similar objects, and could also be applied in natural resource 

settings where rights to land, greenhouse gas emissions, etc., need to be allocated efficiently. 

Developing an understanding of how bidders behave under different conditions is important in 

designing auctions settings, and this research aims to aid this development. We find that price 

revelation does not have an effect on revenues, but the revenue premium is significantly higher 

                                                           
4
 Additionally, it is easy to imagine that a firm may have positive value for more than one phone number or web 

address. For instance, Comcast owns both 1-800-COMCAST and 1-800-XFINITY. Google owns various misspellings 
of “google.com” to ensure users can reach their search engine, even if they are typing too quickly. 
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under single-good demand than multi-good demand
5
. This is consistent with the notion that the 

perceived risk of losing one’s most preferred good is muted when there is a chance to win 

multiple goods. Further, this result implies that bidder’s choice auctions should be used in 

settings where each bidder is likely to strongly prefer one of the goods over the others, though 

this need not be the same good for every bidder.  

The paper proceeds as follows. Section II provides a detailed review of the literature and 

emphasizes the contribution of this research. Section III outlines the theoretical background. 

Sections IV and V detail the field experiment and the laboratory experiment, respectively, 

including design choices and results. Finally, a discussion is provided in Section VI. References 

follow. 

 

II. Literature Review 

 

2.1 Theoretical Research 

Ashenfelter and Genesove (1992) inspired much of the work on pooled auctions and 

bidder’s choice auctions when they observed declining prices in successive rounds of 

condominium sales
6
. The authors hypothesized that bidders who were aware that waiting may 

lead to a lower price were risk averse; the bidders did not want to shade their bids as theory 

would predict because they were afraid of losing the condo. Shortly after, Gale and Hausch 

                                                           
5
 The revenue premium is calculated as the revenue from a bidder’s choice auction minus the revenue from a 

corresponding standard good-by-good auction.   
6
 While this paper focuses on bidder’s choice auctions, research on similar pooled auctions are worthy of 

mentioning. Menezes and Monteiro (1998) show that a simultaneous pooled auction also yields the same revenue 
as a standard sequential auction, though their model uses a first-price rather than a second-price standard auction 
(in contrast to the related literature). Salmon and Iachini (2007) provide an experimental analysis of pooled 
auctions and find that pooled auctions yield substantially higher revenues than ascending auctions. They find that 
this increase in revenue is not due risk or loss aversion, and they instead provide an attentional bias hypothesis 
where bidders overweight the surplus from winning their most preferred good as opposed to a lesser preferred 
good. These pooled auctions, while similar to bidder’s choice auctions, are different in that bidders are not aware 
of the “remaining” goods when they place their bids; the second-highest bidder wins the second right-to-choose, 
but he is not aware of this outcome when he places his bid. 
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(1994) compared the theoretical revenue of a bidder’s choice auction to that of a standard 

sequential auction and found that the former is larger. However, their model is limited to a two-

bidder, two-good case. 

Burguet (2005 and 2007) formalized the theory of behavior for the bidder’s choice 

auction most frequently used today as a basis for lab and field experiments. He uses a simple 

illustration with two bidders and then extends the model to include any number of additional 

bidders
7
. The results clearly show that the bidder’s choice auction should raise more revenue 

than the standard sequential good-by-good auction when bidders are risk averse. Burguet also 

shows that bidder’s choice auctions are efficient and concealing information as to which goods 

have been selected allows the seller to achieve higher revenue.  

Interestingly, Burguet touches briefly on the topic of taste diversity (less than perfect 

substitutability among the goods). This is analogous to what is later referred to as non-persistent 

competition (single-good demand) in the literature; the extreme case is having positive value for 

only one good and zero values for the other goods. He shows that greater taste diversity may 

increase seller revenues even if it reduces buyers’ willingness to pay for some objects. While this 

is not one of Burguet’s main conclusions, our research confirms this result. To our knowledge, 

this dimension of taste diversity has not previously been tested in a lab or field setting and this 

constitutes one of the main contributions of our paper. The variance of values over goods for 

each bidder has been overlooked in much of the literature, yet this dimension is an important gap 

between the theory and the field, as described in the introduction.   

Harstad (2010) points out that persistent competition (multi-good demand) is the norm in 

many instances of bidder’s choice auctions. He builds a theoretical model where bidders have 

positive values for multiple goods and demonstrates that, under risk neutrality, the distribution of 

equilibrium revenue from a standard good-by-good auction is a mean-preserving spread of the 

distribution of revenue from a bidder’s choice auction. His discussion comments on the risk 

averse seller’s preference for a bidder’s choice auction, but does not comment on the risk 

preferences of the bidders in the base model. Harstad extends the model to include cases where 

                                                           
7
 See Section III for more detail.  
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bidders may believe that one good is valued over the other goods by the majority; he refers to 

this good as “the usual favorite”. This modification may lead a winning bidder to choose a good 

other than his most preferred in order to reduce competition in future rounds. While we do not 

model this specifically (values in our design are drawn randomly), a few of our bidders do 

choose goods that are not their most preferred. This may indicate some gravitation toward a 

“usual favorite” belief, or may simply be a mistake by these bidders.  

 

2.2 Experimental Research in the Laboratory 

Experimental work on bidder’s choice auctions is a little sparse, though several recent 

papers have reported successful results. Goeree et al. (2004) find that bidder’s choice auctions 

raise more revenue than standard sequential ascending auctions under risk aversion. The authors 

are able to compare observed bids with theoretically predicted bids to estimate a common risk 

aversion parameter: on average, their bidders have the utility function:  ( )       . Goeree et 

al. recognize the value of testing multi-good demand, though they phrase the idea in a slightly 

different way in their concluding remarks: “One extension is to consider bidders who value more 

than one item. It is an open question whether the revenue superiority of the ascending bidder’s 

choice auction extends to richer valuation structures where the simultaneous ascending auction 

has proven to perform well.” This paper aims to fill this gap in the existing literature.  

Our experimental design closely follows that of Eliaz et al. (2008), who demonstrate that 

bidder’s choice auctions raise higher revenue that the theoretically optimal auction and show 

how withholding some information or restricting quantity can benefit sellers. However, they 

argue that risk aversion may not be the only factor contributing to aggressive bidding in bidder’s 

choice auctions. They incorporate a “no information” treatment where bidders do not know 

which good has been selected as they bid in each phase (similar to a pooled auction)
8
. In this 

treatment, risk averse bidders are expected to bid below the risk-neutral bid (instead of above the 

risk-neutral bid as predicted in a regular bidder’s choice treatment) due to the fact that they 

                                                           
8
 This “no information” treatment is not to be confused with the “no information” treatment in our experiment; 

Eliaz et al. refer to no information on goods selected, whereas we refer to no information on prices.  
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essentially face a lottery over which good they will win. The authors find that bidders in the “no 

information” treatment nonetheless raise their bids, implying that a different behavioral 

phenomenon may be at work. By calculating the equilibrium bids for many different hypothetical 

numbers of participants, the authors are able to show that bidders behave as if they are 

competing with many subjects. The intuition is that bidders perceive the competition to be bigger 

than it actually is; they distort the probability their good will be taken in each phase and do not 

realize that they only need to compete with the one other person who values their same good.  

This interesting result may also explain our results in part; however, we would expect this 

behavior to be extremely muted, if not non-existent, in our experiment. In our multi-good 

demand treatments, bidders are, in fact, in competition with every other bidder in their group (all 

bidders have values for every good). Therefore, for this bias to hold, bidders would have to 

believe that they are in competition with people who do not exist, which seems unlikely. Further, 

if this bias was solely responsible for the revenue superiority of the bidder’s choice mechanism, 

we would not expect a significant difference between the bidder’s choice auctions and the 

benchmark auctions for multi-good demand. However, we do find that the revenue premium is 

significant, even though it is diminished greatly from the single-good demand case. This paper, 

however, abstracts from analyzing this in detail and rather focuses on establishing the differences 

in revenue between single and multi-good demand
9
. The other main finding of Eliaz et al. – that 

quantity restriction may increase seller surplus by allowing the seller to keep one good without 

losing revenue – presumably would hold for our multi-good treatments as well, though we do not 

test this explicitly.  

  

                                                           
9
 All of the treatments conducted by Eliaz et al. assume bidders only have positive value for one good. Bidders drop 

out of the auction if they have already won or if their good has already been selected.  
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2.3 Experimental Research in the Field 

To our knowledge, there exists only one prior field study on bidder’s choice auctions
10

. 

Alevy et al. (2010) find support for the Burguet’s original theory by using water volumes that 

differed by reservoir source and time of availability as goods. Farmers in Chile bid for the water 

volumes in two treatments: a standard sequential auction and a bidder’s choice auction. 

Arguably, the farmers had strong preferences for specific goods (volumes of water at a specific 

time and place) – the authors state, “bids decline substantially for the less preferred goods in both 

auction institutions, reinforcing the finding of heterogeneity in preferences” – suggesting that the 

model more closely resembles a single-good demand situation than multi-good demand.  

In this study, on the other hand, the three goods auctioned in the field experiment (an 

iPod, hiking equipment, and fine wine) presumably have some substantial value to every bidder. 

In fact, the three goods had almost exactly the same retail value so it is reasonable to assume that 

the bidders had similar values for the three goods (or that at least that the variance of values was 

less than the variance of values in the Alevy 2010 field work). Our field experiment thus 

resembles a situation where competition persists more so than previous work. This, coupled by 

the fact that we do not find support for the original theory in the field (despite clearly risk averse 

participants)
11

, suggests that the revenue superiority of bidder’s choice auctions does not hold (or 

is muted) by multi-good demand. Our subsequent lab experiment, therefore, seeks to further 

develop and provide evidence toward this hypothesis. 

 

  

                                                           
10

 By field study, we are referring to experiments that did not occur in an experimental laboratory. In the field 
study discussed here, participants’ values for the goods were private and homegrown (i.e. the values were not 
induced) and participants bid and paid with their own money.  
11

 In our field experiment, bidder’s choice auctions and standard good-by-good auctions yield approximately the 
same revenue. 
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III. Theoretical Background  

 

3.1 Single-good Demand 

Burguet (2007) illustrates the intuition of the revenue superiority of the bidder’s choice 

auction with this simple example. Two bidders each have unit demand for one of two goods. 

Each bidder is equally likely to prefer either good – the bidders prefer the same good with 

probability one half and prefer different goods with probability one half. The payoff to each 

bidder for winning their preferred good is one (1) minus the price and the payoff for winning the 

non-preferred good is zero (0) minus the price. The price paid is equal to the second-highest bid. 

The goods are auctioned off in two phases where both bidders place bids for the right to choose 

their preferred good in phase one. The bidder who wins in the first phase of the auction does not 

participate in phase two. In the second phase, the remaining bidder has a fifty percent chance of 

“winning” her preferred good and a fifty percent chance that the remaining good is her non-

preferred good. Expected utility in the second phase is given by the right-hand side of the 

following equation.  

 (   )  
 

 
 ( )  

 

 
 ( ) 

In the first phase, bidders will not be willing to pay more than  , which will make them 

indifferent between the two phases. Normalizing  ( )    and  ( )    allows one to easily 

see that     ⁄  for a risk neutral bidder and     ⁄  for a risk averse bidder with a concave 

utility function. This bid of     ⁄  represents the seller’s revenue for a bidder’s choice auction 

with risk averse bidders. A standard second-price good-by-good sequential auction, on the other 

hand, would yield revenue equal to one half regardless of the bidders’ risk preferences; if both 

bidders prefer the same good, the seller gets one (1), and if the bidders prefer different goods, the 

seller gets zero (0). Therefore, under risk aversion, the bidder’s choice auction raises more 

revenue than the standard good-by-good auction. Intuitively, a bidder in a bidder’s choice 

auction faces a tradeoff between paying more and greater risk that her preferred good is not still 
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available in the second phase. A risk averse bidder is willing to bid higher in the first phase to 

avoid the risk of losing her preferred good.  

Eliaz et al. (2008) extend this theory to account for infinite bidders and infinite goods. As 

previously stated, they also add a dimension of quantity restriction. However, the bid function 

that these authors derive applies only when each bidder values exactly one good (single-good 

demand)
12

. Since our experiments involve both single-good and multiple-good demand, we 

continue with Burguet’s example by modifying it to account for bidders with values for multiple 

goods.  

 

3.2 Multi-good Demand 

Now we turn to cases involving multi-good demand, where bidders do not drop out 

because they have positive values for multiple goods. Now, both bidders have positive value for 

both goods: one (1) for the preferred good and   for the less-preferred good where      . 

Again, there is a fifty percent chance that the two bidders prefer the same good and a fifty 

percent chance that they prefer different goods. Expected utility in the second phase is now 

represented by the right-hand side of the following equation.  

 (   )  
 

 
 (   )  

 

 
 ( ) 

To elucidate, let us refer to the winning bidder in the first phase as “Bidder A” and the 

other bidder as “Bidder B”. If the bidders prefer different goods, Bidder A chooses her preferred 

good in the first phase and bids up to   in the second phase. Bidder B bids up to 1 in the second 

phase since her preferred good is still available, but pays a price of   (the second-highest bid). If 

the bidders prefer the same good, both bidders have values of   for the remaining good in the 

second phase. Since the second phase is essentially a second-price good-by-good auction for the 

                                                           
12

 The theoretical bid function derived by Eliaz et al. (2008) also assumes risk-neutrality of the bidders. Therefore, 
the bids that we observe are higher than what would be predicted by their theory. In their experiment, the authors 
use a benchmark treatment (a second-price sealed-bid good-by-good auction), where risk preferences have no 
effect, as a comparison for the bidder’s choice mechanism. We follow suit and use this same benchmark in our 
experiments as well.  
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remaining good, both bidders will bid up to their value. Consequently, Bidder B receives a 

payoff of zero: either she doesn’t win or she wins and pays the second-highest bid ( )13. 

In the first phase, a bidder will bid   which makes her indifferent between winning in the 

first phase and facing the lottery in the second phase. This is represented in the left-hand side of 

the above equation. As in Burguet’s example,   will be larger under risk aversion than risk 

neutrality; the bidder will be willing to give up some surplus in order to secure her preferred 

good in the first phase and avoid the lottery. In comparing   in this example to   from Burguet’s 

original model of single-good demand, it is clear that    ; a bidder will bid higher in the first 

phase under multi-good demand in this model. However, this is simply the result of increasing 

demand for the goods (the good that had zero value to each bidder in the single-good demand 

case has positive value in the multi-good demand case)14.  

The more interesting result answers the question, “which case (single versus multi-good 

demand) raises more revenue above the benchmark?”15 First, we will show that the bidder’s 

choice mechanism raises the same revenue (in expectation) as the benchmark good-by-good 

auction under risk neutrality for multi-good demand16. (Recall that under non-persistent 

competition, Burguet showed that risk neutrality yields expected revenue equal to   ⁄  in both 

the bidder’s choice auction and the benchmark.) Under multi-good demand, risk neutrality leads 

to an expected revenue equal to     in both auction formats.  

In the benchmark, the seller’s revenue is equal to     if the two bidders prefer the same 

good and     if the two bidders prefer different goods. Therefore, expected revenue is: 

                                                           
13

 Assume, here, that there exists a tie-breaking rule given that the bidders are completely identical.  
14

 Note that both of these simple models use one (1) as the value of the preferred good. Since this value is constant 
and the value for the non-preferred good has increased, demand has increased. We choose to model the values in 
this way for simplicity of comparison. Similarly, the values for both single and multi-good demand treatments are 
drawn from the same support in our experiment. This reflects the choice that a seller may face when choosing an 
auction mechanism: given fixed bidder values, is it better to use the bidder’s choice auction when competition 
persists or does not persist? Or, similarly, should I use a bidder’s choice auction or a standard good-by-good 
auction when I believe that bidders have low variance in their values? What about when they have high variance? 
15

 This is what we refer to as the revenue premium of the right-to-choose mechanism: the right-to-choose revenue 
minus the good-by-good revenue. We are essentially asking which of the following is greater: (the risk averse R – 
the risk neutral R), or (the risk averse X – the risk neutral X)?  
16

 Recall that this result was shown more formally by Harstad (2010).  
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            (  )  
 

 
(   )  

 

 
(   )  

 

 
 
 

 
   

In the bidder’s choice format, the seller’s revenue is equal to the price paid in the first phase plus 

the price paid in the second phase:    . Since we are considering a risk-neutral bidder, we can 

normalize  ( )    so that the bidder’s first phase bid function becomes the following equation. 

    
 

 
(   )  

 

 
( ) 

Solving this for   yields   (   )  (   )   Adding   for the price paid in the second phase 

provides the expected seller’s revenue for the bidder’s choice format. 

            (  )  
 

 
 
 

 
    

 

 
 
 

 
   

Now we show that the revenue premium of the bidder’s choice format is higher under 

multi-good demand than single-good demand simply by comparing the variance of the second-

phase lotteries. Risk aversion should cause a bidder to be willing to give up some surplus in the 

first phase to avoid facing a lottery in the second phase. Given a particular level of risk aversion, 

should a bidder raise her first-phase bid (over the risk neutral bid) more under single or multi-

good demand? It is simple to show that the variance of the second-phase lottery (the right-hand 

side of the bid function) under single-good demand is   ⁄  and the variance of the second-phase 

lottery under multi-good demand is (  ⁄ )  (  ⁄ )   (  ⁄ )   Since      , the former 

variance must be larger than the latter17. Intuitively, a bidder is more afraid of losing her most 

preferred good in the first phase when she does not have a chance at positive surplus in later 

rounds.  

 

PROPOSITION 1: The risk averse bidder should raise her first-phase bid higher (over the 

corresponding risk-neutral bid) under single-good demand than multi-good demand because the 

variance of the alternative lottery in the second phase is greater.  

                                                           
17

 For a formal proof, please see Appendix A. 
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We predict, therefore, that the revenue premium will be higher in single-good demand 

treatments than multi-good demand treatments. This result would be consistent with Burguet’s 

aforementioned theory of increased seller revenue with increased taste diversity. Further, we 

predict that bidding behavior will reflect risk preferences; a more risk averse bidder will bid 

higher, given their value. Finally, we predict that a greater variance in values for a bidder in a 

multi-good demand treatment will lead to that bidder submitting a higher bid, given that the 

bidder is risk averse.  

We realize, however, that risk aversion may not be the only force driving possible results. 

Recall one of the secondary results of Eliaz et al. (2008) mentioned earlier. The authors calculate 

equilibrium bids for different numbers of hypothetical competitors given the random value draws 

in their experiment. They find that bidders behave as if they are competing with five other 

bidders, when in reality, they are only competing with the one other bidder who values the same 

good. This bias could conceivably affect behavior in multi-good demand auctions as well. 

However, bidders would have to perceive that the competition encompasses more participants 

than were actually participating (for the bias to work in the same direction). Under multi-good 

demand, bidders do compete with all five other participants in their group; in order for this bias 

to cause raised bids, bidders would have to believe they were competing with more than five 

other people, even though there are only six people in each group.  

It could be the case that the bias exists under single-good demand, but does not exist 

under multi-good demand – i.e. the bias is the reason for the revenue superiority of the bidder’s 

choice format when bidders only value one good, but multi-good demand eliminates this bias 

because bidders do compete with everyone in their group. If this is the case, we would expect 

that revenue under multi-good demand would be the same for both the bidder’s choice auction 

and the benchmark. Our aim is to provide explanations for varying field results and this 

behavioral bias could very well be at work in the field.  

Another seemingly feasible behavioral bias could result from bidders only using their 

highest value (value for their most preferred good) to determine their bid in multi-good demand 

treatments as long as their most preferred good is still available. Previous literature has shown 
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that experimental subjects in pooled auctions may weight their most preferred outcome more 

heavily than less-preferred outcomes due to an attentional bias (Salmon and Iachini 2007)18. If 

this is the case, we would predict that single and multi-good demand treatments would yield the 

same or very similar revenue premiums19.  

 

3.3 Information 

The results of two field experiments, ours and Alevy et al. (2010), vary in their support of 

theory: our field experiment does not support the revenue superiority of the bidder’s choice 

mechanism while the 2010 field work does. We can identify two major differences between 

these field experiments and previous laboratory experiments: information revelation and single 

versus multi-good demand20. In order to attempt to explain the contradictory results, we must 

vary each of these attributes individually and simultaneously, which results in a 2x2x2 design. 

Our lab experimental design is explained further in the following section.  

Price information may allow bidders to update their beliefs regarding the bounds of the 

value distribution. The distribution is always uniform over the support [1, 100], but public prices 

will allow some expectation of the realization of these values. This, in turn, may alter a bidder’s 

expectation of the probability of winning in subsequent phases based on the updated order 

statistic. We predict that treatments where prices are revealed after each phase may exhibit 

different results in the second and third phases than treatments where information is withheld 

(the first phase should be unaffected since prices are not revealed until after the first phase is 

complete).  

                                                           
18

 See literature review. 
19

 If the attentional bias was complete (i.e. the bidders only used their most preferred good in determining their 
bid), then we would expect the revenue premium to be exactly the same for single and multi-good demand (given 
identical values for the most preferred good). If the attentional bias only caused bidders to underweight outcomes 
associated with their less preferred goods by some proportion, we would expect the revenue premium to be larger 
than in the absence of the bias. This is due to the fact that the existence of less-preferred outcomes in our design 
actually decreases the revenue premium (bids are not raised as high above the risk-neutral bid).  
20

 Recall that the variance in bidders’ values (which can also be thought of as the persistence of competition, the 
level of taste diversity, or the level of heterogeneity in preferences) presumably differed between the two field 
experiments.  
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As a preview, our field results indicate that in some cases, bidders who placed the 

second-highest bid in the first phase actually decreased their bid in the second phase. These 

bidders probably thought that they would win in the second phase after finding out that their bid 

set the price in the first phase. They decreased their bid in attempt to gain extra surplus, but did 

not take into account that it is theoretically optimal for every bidder to raise their bid in each 

subsequent phase (given that their most preferred good is still available) until submitting a bid 

equal to their value in the final phase21. We predict that this behavior of decreased bids in the 

second phase may occur in our lab experiment as well. To test this, we execute additional 

experimental sessions so that each of our other four treatments (bidder’s choice and standard 

good-by-good, for each single and multi-good demand) are executed both with and without 

information revelation. 

 

IV. Field Experiment  

 

4.1 Experimental Design 

To study the bidder’s choice institution in the field, we conducted 30 auction markets in 

the spring and fall of 2008. Subjects were randomly assigned to 16 markets in which the bidder’s 

choice (hereafter “BC”) institution was implemented and 14 markets in which the standard 

sequential good-by-good auction (hereafter “GBG”) institution was implemented, using a 

between-subjects design. A total of 155 subjects participated in the study. With the exception of 

three BC and two GBG markets which had six bidders, the markets contained five bidders each.  

Subjects were recruited broadly from the Reno population with outreach to the 

community taking place through flyers and announcements in local stores and through 

community organizations. Subjects were also recruited from existing databases of non-students 

who had participated in previous field experiments, and from University of Nevada Reno staff. 

                                                           
21

 This optimal path of shading bids less and less in each phase is supported by the bid function derived by Eliaz et 
al. (2008).  
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Sessions were held on both the north and south side of Reno in accessible locations as well as on 

the University of Nevada Reno campus. Statistical tests indicate that participants do not 

significantly differ across the BC and GBG treatments in demographic characteristics that 

include gender, age, education, and income, or in personality traits. 

To cleanly observe the impact of the auction institution, the goods for sale in the BC and 

GBG auction settings were identical. The goods, or more appropriately bundles, consisted of (i) 

hiking equipment that included a backpack, water filtration device, and first aid kit, (ii) an Apple 

iPod and speaker system, and (iii) three bottles of high quality wines. Each bundle had a retail 

value of approximately $250. Within each market the goods were sold in three auction phases. In 

each phase, a single good was allocated to the highest bidder using a second-price rule. In the BC 

institution, the good sold was the right to choose from the remaining bundles, which varied with 

the auction phase and market history. In the GBG institution, the good for sale was announced 

prior to the auction. The order in which goods were sold in the GBG auctions was determined 

randomly prior to the first auction phase.   

The auctions were hand-run, with bidding cards for three phases distributed to 

participants at the start of the session. In all sessions, treatment specific instructions on the 

bidding process were distributed to participants and read aloud by the experimenters. An 

example of allocation through the second-price rule was discussed in detail. After reading the 

instructions, but before submitting bids, subjects had the opportunity to visually inspect the 

goods
22

.  

In addition to the auction, each session included a risk elicitation exercise, and a short 

survey. The risk elicitation closely followed the protocol developed by Holt and Laury (2002) 

and consisted of a series of 10 binary choices, each between a safe and risky lottery. The payoffs 

were $200 and $160 for the safe lottery, and $385 and $10 for the risky lottery. The probability 

of gaining the higher payout increased from 10% to 100% across the ten choices as is standard 

with this protocol. In this implementation subjects were paid with a one-third probability, with 

the outcome determined independently across subjects after the questionnaire was completed. To 

                                                           
22

 The full instructions are available upon request. 
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determine payoffs, experimental monitors would (i) roll a 10-sided die to pick one of the 

questions for potential payment and (ii) roll a 6-sided die to determine if subjects were paid 

based on their response to the selected question. Subjects were paid the outcome of their choice 

if a 1 or 2 resulted from the die roll and received nothing otherwise.  

The final element of each session was the completion of a survey which included (i) the 

collection of demographic data, (ii) the elicitation of personality traits, and (iii) the cognitive 

reflection test (CRT), which contains three questions intended to measure impulsivity and 

intelligence (Frederick 2005). Subjects received $2 for each of the CRT questions answered 

correctly. A series of 40 questions contained in the International Personality Item Pool (IPIP) 

were used to measure the traits of assertiveness, sociability, performance motivation, risk-taking, 

confidence, beliefs about intelligence, and efficacy. The personality items were measured using a 

five-point Likert scale. 

 

4.2 Field Results 

Figure 1.1
23

 illustrates that most of our participants are risk averse; it shows the 

proportion of participants in each risk preference group. T-tests show that the proportions are 

statistically different between auction types for the risk-loving group (p-value = 0.04), but not for 

the risk-neutral or risk averse groups (p-values = 0.87 and 0.15 respectively). Since risk posture 

is irrelevant for GBG auctions and BC participants are highly risk averse, we expect BC theory 

to hold. 

Each participant was asked to rank the 3 goods from “Most Preferred” (a ranking of 1) to 

“Least Preferred” (a ranking of 3). Figure 1.2 demonstrates that while the IPod package was 

preferred over the wine and hiking packages, the preferences are very similar between BC and 

GBG auctions. However, we do find a significant difference in preferences between treatments 

for the hiking and IPod packages (p-values = 0.02 and 0.01 respectively). The wine package 

preferences are not statistically different between treatments (p-value = 0.81). Since revenues are 
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 All figures are in Appendix C. 



23 
 

driven by those who have the highest values for each good, we also examine the proportions of 

participants who ranked each good as their most preferred (illustrated in Figure 1.3). The 

proportions are not statistically different between treatments for the hiking or wine packages (p-

values = 0.09 and 0.11 respectively), but are statistically different for the IPod package (p-value 

= 0.00). Again, however, we do find that the ordering of the goods is the same across treatments. 

We acknowledge that a difference in preferences could affect our results in part; however, we 

show later in the section that it is not the primary cause for our main findings. 

Since the majority of our auction participants are risk averse, BC theory tells us to expect 

higher revenues from the BC auctions than the GBG auctions. However, we do not find a 

significant difference in revenues between the two types of auctions (t-test p-value= 0.61). Table 

1.1
24

 includes average revenues for each phase and average market revenues. The average 

revenues in the GBG markets are not statistically different between phases, ruling out any order 

or wealth effects.  

In case a lack of variation in preferences is driving the result, we temporarily eliminate 

any markets where all participants’ most preferred good was the same. One GBG auction and 

four BC auctions meet this condition. The remaining markets’ revenues are reflected in Table 

1.2. BC auctions yield higher revenue than GBG auctions, but the difference is not significant (p-

value = 0.78). Although this result is more in line with theory, we expected BC revenues to be 

significantly higher than GBG revenues. 

 

RESULT 1: In contrast to theoretical prediction, the bidder’s choice auction does not raise 

higher revenue than the good-by-good auction in the field experiment. 

 

To further explore why our results are not in line with theory, we examine bidding 

behavior. We would expect that the third phase of BC auctions would have the same result as 

GBG auctions since both are second-price auctions for one good. The average bids for GBG 
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 All tables are in Appendix B. 
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auctions and Phase 3 of BC auctions are compared in Table 1.3. The IPod package never made it 

to the third phase in the BC auctions. We cannot reject that the average bid in GBG auctions is 

different from the average bid in the 3
rd

 phase of BC auctions for wine (t-test p-value= 0.17, 

Mann-Whitney p-value= 0.30). However, we do reject the null for hiking at the 5% level: the 

average bid in GBG auctions is significantly higher than the average bid in the 3
rd

 phase of BC 

auctions (t-test p-value= 0.01, Mann-Whitney p-value= 0.06). What might have happened during 

the course of the BC auctions to cause bidders to bid less in the 3
rd

 phase than in GBG auctions 

for the same good? One major difference in the format of BC auctions relative to GBG auctions 

is that 1
st
 and 2

nd
 placed bidders in BC auctions get feedback.  

We hypothesize that bidders in BC auctions may have changed their values for the goods 

over time. Past lab experiments have shown that BC auctions result in higher revenues, but the 

authors assume that the value a participant has for a good at the start of the auction remains the 

same throughout; participants are assigned a value and this cannot change during the experiment. 

It is easily possible, however, that participants in our field experiment update their values based 

on others’ bids. A participant may see the winner in the first or second phase choose a good other 

than the one they believed was most valuable. Since all participants are aware of the second-

highest bid (the amount the winner pays), the participant may believe he made a mistake judging 

the value of the good.  

In addition to the monetary values of the goods, the participant may update his belief on 

the relative values of the goods. For instance, if a participant sees the IPod and the wine 

packages get chosen in the first and second phases, he may update his belief on the popularity of 

hiking relative to listening to music and drinking wine. If he finds that hiking is not as popular an 

activity as he originally believed, he may not bid as high for the good. Finally, a participant may 

get discouraged in an BC auction by watching others winning over him and choosing their 

favorite goods. In a GBG market, on the other hand, a participant may not be discouraged by 

losing in an auction for his least favorite good; he knows he was not really trying to compete 

with the other participants for that good.  
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We also analyze the revenues in GBG auctions versus the last phase of BC auctions and 

the findings are in line with the comparison of the bids (see Table 1.4). We cannot reject the null 

hypothesis that there is a difference in revenues for wine (t-test p-value= 0.88, Mann-Whitney p-

value= 0.93). We can reject the null for hiking, but only at the 10% significance level when using 

a t-test (t-test p-value= 0.08, Mann-Whitney p-value= 0.04). We further investigate behavior by 

analyzing bids in more detail. 

Next, we examine the first phase of BC auctions in comparison with GBG auctions. We 

would expect that bidders would shade their bids in the first phase of BC auctions and, in fact, 

they do (see Table 1.5). Bids are compared between GBG and Phase 1 of BC by declared most 

preferred good. In other words, the first column includes the average bid in Phase 1 of BC for 

participants who preferred the hiking package and the average bid in GBG “Hiking” auctions for 

participants who preferred the hiking package. The average bid for the most preferred good in 

GBG auctions is not significantly higher than in the first phase of BC auctions for the wine and 

hiking packages. We cannot reject the null in t-tests or Mann-Whitney tests at the 5% or 10% 

levels. However, the difference is significant for the IPod at the 10% level (t-test p-value= 0.08, 

Mann-Whitney p-value= 0.08). Note that current theory does not specify how much bidders will 

shade during the first phase of an BC auction, but just that they will decrease their bid from their 

true value. This is what we observe. 

 

RESULT 2: Although some anomalies exist, bidding behavior is generally in line with theory 

when comparing 1
st
 and 3

rd
 phase bids between BC and GBG in the field experiment.  

 

We further analyze bidding behavior by calculating the change in bids for each 

participant over time in BC auctions. Table 1.6 displays the change in bids for individuals whose 

most preferred good is still available in the next phase. For instance, the first cell displays the 

average change in bids between Phase 1 and Phase 2 for participants whose most preferred good 

is the hiking package if the hiking package is still available (the hiking package was not chosen 
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by the first winner). We find mixed support for the theory here; some bidders decreased their 

bids and some increased. We would have expected all bidders to increase their bids if their 

preferred good was still available.  

To delve deeper, we examine how bidders change their bids by initial rank. Table 1.7 

summarizes the results. Each bidder was ranked from highest bid (rank=1) to lowest bid (rank=5 

or 6 depending on number of participants in the market) in each phase. We find that bidders who 

were ranked 2
nd

 lower their bids on average for the next phase. Bidders who were ranked 2
nd

 

knew their rank because the price paid by the winner was announced. Bidders who were ranked 

greater than 2
nd

 did not know their rank, but did know that they were not ranked first or second. 

It turns out that bidders who were ranked 2
nd

 were responsible for drops in bids; bidders ranked 

3, 4 or 5 increased their bids on average.  

This contradicts the traditional theory; bids should continue to increase in each phase 

when the bidder’s most preferred good is still available. In phases prior to the last phase, bidders 

should shade their bids just enough so that they are indifferent between winning and facing the 

lottery that occurs in the last phase. As phases progress, this shading should become less and 

less, assuming the most preferred good is still available. (In the last phase, which is essentially a 

good-by-good auction for the remaining good, bidders should bid their value.) This result leads 

to speculation over whether bidders may have updated their expectations of the goods’ values as 

new information, such as the first good selected, was revealed. For instance, one subject may 

believe that the Wine package would be the most popular (and therefore possibly easier to 

resell), but is surprised when the winner in the first phase chooses the iPod. The subject now 

lowers his private value for the Wine, even though his bid should theoretically increase in the 

second phase. This updating cannot be controlled in the field setting since we do not observe 

private values. Consequently, it is difficult to conclude why exactly the BC institution did not 

raise higher revenues than GBG auctions. This difficulty motivates the second portion of this 

research, the laboratory experiment, which will be discussed in later sections. 

 



27 
 

RESULT 3: Bidders who are ranked 2
nd

 in the BC auction in Phase 1 decrease their bids in 

Phase 2; this is definitely a contradiction of theory.  

 

Next, we explore how demographics and personality measures affect bidding behavior 

using regression analysis. We find that when a bidder’s most preferred good or second most 

preferred good is still available in an BC auction, he increases his bid, as expected. Bidders also 

increase their bids significantly in GBG auctions for their most preferred goods. Table 1.8 

provides these regression results. In addition, we find that sociability
25

 is a significant negative 

predictor of BC bids whereas confidence has a significantly positive impact on GBG bids.  

As expected, an indicator for a risk-averse individual is significant in predicting BC bids 

but not GBG bids. However, the direction of impact is not in line with theory; risk-averse 

individuals should bid more than risk neutral or risk seeking individuals because they do not 

want to risk losing their preferred good. Instead, we find that risk-averse individuals bid less. 

Rather than having aversion to losing their preferred good, our bidders are averse to paying too 

much for a good. According to theory, BC auctions produce higher revenues only if bidders are 

risk averse. The negative coefficient on our risk aversion indicator could partially explain why 

we see equivalent revenues between the two auction types.  

We also examine how bidders behave in comparison with theory by constructing an 

indicator for circumstances where bids should have increased in BC auctions. If a participant’s 

most preferred good is still available, they should always increase their bid in the next phase. 

They should also increase their bid if their least favorite of the remaining goods gets chosen. For 

instance, if the order (by preference) of goods taken for a participant is “1, 3, 2” (most preferred 

good taken in 1
st
 phase, least preferred good taken in 2

nd
 phase, 2

nd
 most preferred good taken in 

3
rd

 phase), the participant should increase his bid from the 2
nd

 phase to the 3
rd

 phase. If the 

preference order of goods taken is “2 1 3”, the participant should increase his bid from the 1
st
 

phase to the 2
nd

 phase, but theory is silent on what he should do from the 2
nd

 phase to the 3
rd

 

                                                           
25

 Sociability and confidence are personality measures derived from the International Personality Item Pool (IPIP) 
questions mentioned previously. 



28 
 

phase (it depends on how much he has been shading and the difference in value to him of the 

goods).  

We find that in more than half of cases (54%) where theory predicts a bid increase in BC 

auctions, participants actually decrease their bids or leave their bids unchanged. This result alone 

demonstrates that the theoretical BC bidding strategy is not followed in the field, regardless of 

where BC versus GBG preferences or revenues stand. One could argue that participants do not 

understand the optimal BC bidding strategy. However, we already saw that BC bidders are, in 

fact, shading their bids across the board (for all goods) during the first phase. It seems quite 

unlikely that this could be a coincidence; instead, participants probably underestimated how 

much other bidders would shade or made emotional decisions based on the outcomes of each 

phase. This caused theory to break down during the second and third phases.  

Table 1.8 reports the effects of demographics and personality measures on an indicator of 

whether a participant increased their bid. A Probit model is used and the sample is restricted to 

instances where theory says the participants’ bids should have increased. An indicator for above-

average education is significant but in the opposite direction from what one might expect; 

participants are less likely to increase their bid when they should if they are educated. This may 

be due to over-analyzing the bidding strategy. The results of an IQ quiz are more intuitive; 

smarter participants are more likely to increase their bids when they should. Confidence, efficacy 

and sociability are also significant predictors of how likely a participant is to follow theory. 

Notice that our indicator for risk aversion still has a negative coefficient, though not significant 

here. 

As previously discussed, it is difficult to determine exactly why theory broke down in 

this field study. As is the nature of field studies, private values are unknown; further, any 

updating of private values are also unknown. Contradictory to theory, risk aversion does not 

appear to play a role, as it is insignificant in our econometric analysis regardless of how the 

parameter is defined.
26

 Further, we observe bidding paths that are illogical, unless participants’ 
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 Using the results of our Holt and Laury style risk elicitation, we tried defining the risk parameter in several 
different ways, including an indicator for very risk averse subjects, an indicator for mildly or very risk averse 
subjects, a numeric variable which reports how many “safe” choices the subject chose, an indicator for subjects 
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private values changed throughout the auction. These inconsistencies motivate the second stage 

of our research: the laboratory experiment. In the lab, we are able to control values by inducing 

them. Further, we can isolate possible confounding points which have not yet been explicitly 

tested in the literature. Specifically, we isolate price revelation (providing information on the 

prices of winning goods, which may have led to some of the aforementioned behavioral biases), 

and persistent competition (subjects having value for multiple goods). As discussed in the second 

section, previous work has focused on bidder’s choice auctions where participants dropped out 

after their only preferred good had been chosen. In our field study, however, it is quite plausible 

that participants had values for all three packages. In the next section, we illustrate theoretically 

why this may cause the bidder’s choice mechanism to be less superior than previously thought. 

 

V. Lab Experiment  

 

5.1 Experimental Design 

Our experimental approach closely follows Eliaz et al. (2008), though our dimensions of 

variation differ to focus on the effects of information and multi-good demand. In one set of 

treatments, bidders are informed of the winning price (the second-highest bid) in each phase 

(referred to as “I” treatments), whereas other treatments do not provide this information (referred 

to as “NI” treatments). In another set of treatments, bidders draw random values for three goods 

in each round (multi-good demand – “MG”), while in single-good demand treatments (“SG”), 

bidders only draw a random value for one good in each round. All of these treatments are tested 

using a bidder’s choice, or right-to-choose, auction (“BC”) and a standard sequential good-by-

good auction (“GBG”). This 2x2x2 design yields a total of eight treatments.  

Values were drawn from a uniform distribution over the support [1, 100]. For SG 

treatments, three sets of preferred goods (values) were drawn ex ante and used repeatedly for 

                                                                                                                                                                                           
who chose more safe choices than average, an indicator for subjects who reported consistent risk preferences (did 
not switch back and forth between the risky choices and the safe choices), etc.  
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different groups. For MG treatments, we varied the order of the sets of values for different 

groups to control for ordering effects. Consistent with Eliaz et al. (2008), we did this to ensure 

that differences in revenue are attributable to differences in behavior rather than differences in 

the vectors of random variables generated. 

Eight sessions (one for each treatment) were executed at the University of Tennessee, 

Knoxville (UTK) and eight sessions (one for each treatment) were executed at the University of 

Alaska, Anchorage (UAA) in April 2012. The experimental laboratories at the two universities 

have similar recruiting procedures, attracting undergraduate students from a variety of 

disciplines. Four groups of six bidders each occupied the laboratory for each of the sessions held 

in Tennessee. Due to capacity constraints, two or three groups of six bidders participated in each 

of the eight treatments in Alaska. There were a total of 324 participants. The sessions lasted 

about 70 minutes and most participants earned between 15 and 40 U.S. dollars in total27. Table 

1.9 displays the experimental design. 

The experimental sessions proceeded as follows. First, the subjects were asked to 

participate in a risk elicitation similar to the one popularized by Holt and Laury (2002). 

Instructions for the risk elicitation were read aloud while subjects followed along with on-screen 

instructions. The computer program then allowed the subjects to make 10 risk decisions, one of 

which would be selected at random and paid out at the end of the session28. Next, the subjects 

were given hard copies of the auction instructions and asked to read along while the instructions 

were read aloud29. The subjects were encouraged to ask clarifying questions before the 

experiment began. The subjects were randomly assigned into groups of 6 and were unaware of 

the identities of the other 5 participants in their group.  

The experiment consisted of a practice round, followed by 10 paid rounds. In each round, 

there were 3 phases. In BC treatments, each phase was an auction for a right to choose30. In GBG 

                                                           
27

 This total includes earnings from all 10 auction rounds plus earnings from a risk elicitation.  
28

 We elicited the risk preferences of the subjects prior to the experiment to ensure that their responses were not 
affected by their experiences of wins and losses during the experiment. We did not reveal the results of the risk 
elicitation until the end of the session to avoid any endowment effects.  
29

 The instructions and screen shots from the experiment are available upon request.  
30

 Note, however, that the last phase was identical to a good-by-good auction for the remaining good.  
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treatments, each phase was a standard auction for one of the goods (the goods were labeled “A”, 

“B” and “C”). Bidders were instructed to submit bids ranging from zero to their value. In GBG 

auctions, the highest possible bid was a subject’s value for the good being auctioned. In BC 

treatments, the highest possible bid was a subject’s highest value (in SG treatments, the subject’s 

highest value was also their only value). We did not allow the subjects to overbid in order to 

decrease the effect of cognitive mistakes. While learning effects have been the focus of other 

experimental work, we are focused on cleanly identifying the effects of multi-good demand and 

information. This arrangement also minimized bankruptcy. A small percentage of subjects in BC 

treatments did still go bankrupt due to choosing the wrong good31. In these cases, if the subject 

did not recover from the loss, we paid the subject a show-up fee. Eliminating these subjects from 

the data does not significantly change the results.  

After each phase, all bidders were informed whether they won. In BC treatments, all 

bidders were also informed of the good that was chosen by the winner in their group. In “I” 

(information) treatments, all bidders were informed of the price of the good sold in their group 

(the second-highest bid). No subject was ever told the name or ID number of any other subjects 

in their group so they could not infer that one particular person won more or less often. In SG 

treatments, subjects whose preferred good sold in phase 1 or 2 “dropped out” of the auction; they 

faced a screen that read, “Please wait while the other members of your group bid in Phase …”. In 

the GBG SG treatments (good-by-good auctions where bidders only have positive value for one 

good), subjects only bid in phases when their preferred good was auctioned. For instance, a 

subject who preferred good B faced a screen in the first phase that said, “Please wait while good 

A is auctioned.” In MG treatments, all subjects participated in every phase.  
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 For example, suppose a subject’s values are 80, 60 and 40, the subject bids 51 and wins. For simplicity, further 
suppose that the second-highest bid (price) is 50. If he chooses the good that he values at 40, he receives negative 
10 tokens. If he chooses the good that he values at 60, he receives positive 10 tokens, but this is inferior to 
choosing the good that he values at 80, which yields positive 30 tokens. Choosing any good other than the most 
preferred is illogical given our experimental design. However, as mentioned earlier, Harstad (2010) theorizes that a 
bidder may choose a good that is not his most preferred if he believes the good is a “usual favorite”. The bidder’s 
motive is to eliminate the most popular good in hopes of obtaining his most preferred good in a later round for a 
low price. In our experiment, all values are drawn randomly from a uniform distribution so there is not a “usual 
favorite”. However, it is possible that a few subjects misunderstood the implications of random drawings and 
wanted to test Harstad’s theory as a potential strategy. As stated, this behavior only occurred in a few cases and 
does not appear to affect our overall results.  
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Earnings consisted of the subject’s value (randomly drawn) minus the price they paid for 

the good (the second-highest bid). All values and prices were expressed in tokens. In SG 

treatments, each 8 tokens equaled one dollar; in MG treatments, each 4 tokens was equal to a 

dollar. The different exchange rates were based on the fact that equilibrium earnings must be less 

in MG treatments32. Earnings were totaled over the 10 rounds. In the final stage of the 

experiment, the risk elicitation results were revealed and each subject’s total earnings were 

calculated. Subjects were paid in cash and in private.  

 

5.2 Laboratory Results 

First, we simply compare the average revenues (sum of prices paid) for each BC 

treatment to its GBG counterpart. These values are displayed in Table 1.10. BC revenues are 

significantly higher than GBG revenues, as expected. T-tests reveal no significant revenue 

differences between any information treatment and its “no information” (“NI”) counterpart (i.e. 

no significant difference between BC – I – SG and BC – NI – SG or between GBG – I – MG and 

GBG – NI – MG, etc.). Hence, for the following comparisons, we pool information conditions. 

The difference between single and multi-good demand is significant, as expected (t-test p-values 

are 0.000). This result is a consequence of the fact that more values in MG treatments than SG 

treatments necessarily decreases the gap between the highest and second-highest values in any 

phase, thereby raising prices. This also decreases bidder surplus and is the reason for the 

differing exchange rates between the two treatment groups. 

The interesting result lies in the difference in the differences between BC and GBG 

revenues by type of demand. Put differently, the revenue premium of the bidder’s choice 

mechanism (compared to the benchmark GBG auction) is larger when bidders only have demand 
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 In SG treatments, there were 6 random values drawn per group per round. In MG treatments, there were 18 
random values drawn per group per round. Due to the increased number of draws, the spread between the 
highest and second-highest values at any given time in MG treatments was, on average, much less than in an SG 
treatment. (Recall from the theory that the revenue in MG auctions must be higher than SG auctions, given that 
the same value for the preferred good. The idea is the same here: values were drawn from the same support for 
both MG and SG auctions, but since more values were drawn in MG auctions, the demand for each good is 
essentially higher.) The specific exchange rates of 8 and 4 tokens per dollar were determined based on earnings in 
a pilot session held prior to the experiment. 
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for one good. We compare the BC—GBG difference in the top two rows in Table 10 (SG 

treatments) to the BC—GBG difference in the bottom two rows (MG treatments). While the BC 

revenue premium is statistically significant in both cases (p-values = 0.000), the difference is 

significantly larger for SG treatments. To see this visually, refer to Figure 1.4. The difference in 

the differences is statistically significant (48.28, (SE = 4.22) for SG and 18.29 (SE = 2.53) for 

MG). This is consistent with our theoretical prediction that risk averse bidders do not raise their 

bids as high (over the risk-neutral bid) under multi-good demand as under single-good demand. 

The risk elicitation demonstrates that the majority of participants are risk averse; the 

results are displayed in Figure 1.5. A risk neutral subject would have switched from the lottery to 

the certainty equivalent at either Row 8 or Row 9 (the two darker shaded columns in the figure). 

However, we see many subjects choosing the certainty equivalent prior to Row 8, indicating risk 

aversion
33

.  

 

RESULT 4: While there is no treatment effect associated with the information treatment, there 

is a significant consequence of multi-good demand. There is a revenue premium for the bidder’s 

choice mechanism regardless of single-good or multi-good demand, but the premium for multi-

good demand is significantly smaller. This is consistent with theory. 

 

Due to the fact that bids in multi-good demand treatments are necessarily higher than bids 

in single-good demand treatments (a result of the larger number of values drawn), we can only 

compare bidding behavior between the two treatments by using the benchmark GBG auction as a 

baseline for each treatment, as we have done to analyze revenues. Table 1.11 compares the first 

phase BC bid for each type of competition alongside the GBG bid for the subject’s most 

preferred good (i.e. if the subject’s most preferred good is “A”, then this is his first phase bid; if 

the subject’s most preferred good is “B”, then this is his second phase bid, etc.). This comparison 

allows us to analyze each bidder’s bid based on his highest value. The first phase BC bids are 
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 The complete instructions for the risk elicitation and screen shots displaying the ten choices faced by 
participants are available upon request. 
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significantly less than the GBG benchmark for both single and multi-good demand (p-values are 

0.047 and 0.001 respectively). This demonstrates that the general bidder’s choice model holds 

for our experiment: bidders shade their bids from their values in the first phase. 

The difference in the BC and GBG bids is larger for multi-good demand (3.18) than 

single-good demand (2.75), though the difference in the differences is not significant. Recall that 

the theoretical risk neutral bid is higher for MG than SG given the same value for the most-

preferred good (from the theoretical section:    ). On the other hand, risk aversion causes less 

of an upward force on bids in MG than SG. Hence, we cannot draw any conclusions from this 

difference and difference comparison.  

Table 1.12 provides the BC bids for single and multi-good demand. The data used 

includes bids where a subject’s most preferred good is still available. When bidders only have 

value for one good (SG treatments), this includes all bids until a bidder drops out34. This allows 

us to see how the bidding path for the most preferred good progresses. Notice that the average 

highest value decreases from Phase 1 to Phase 2 and again from Phase 2 to Phase 3. This reflects 

the fact that some bidders drop out of the auction because they either win or their most preferred 

good is taken by another bidder. 

The progression of bids (as a percentage of value) in multi-good demand treatments is 

significantly flatter than in single-good demand treatments (Phase 1 p-value = 0.00, Phase 2 p-

value = 0.04, Phase 3 p-value = 0.04). Again, there are two effects at work: the theoretical bid as 

a proportion of value is higher (than SG), but the effects of risk aversion should be muted. 

Overall, we observe that subjects bid very high percentages of their values in multi-good 

demand; as we have already seen, this ultimately leads to higher revenue than the multi-good 

benchmark. Thus, subjects must be bidding higher than the risk neutral bid. Average bids in the 

third phase are slightly below average values for both SG and MG treatments. We find that this 

is the case in the benchmark GBG auctions as well; we turn to this analysis next.  
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 In SG treatments, a bidder drops out when his most preferred good is no longer available. In MG treatments, a 
bidder continues to bid when his most preferred good is no longer available; at this point, his bid cannot be higher 
than his second-highest value. For comparison’s sake, we limit the MG observations to bidders whose most 
preferred good is available in the phase of interest.   
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RESULT 5: Bidding behavior in the lab experiment is generally in line with theory. The bid 

paths (calculated as bid/value for subjects whose most preferred good is still available) 

significantly differ between single and multi-good demand.  

 

Table 1.13 provides the theoretical bids for the benchmark treatments (which are the 

values) alongside the actual bids. Subjects consistently bid a few tokens below their values in the 

benchmark treatments. Interestingly, this shading is more pronounced under single-good demand 

than multi-good demand. The average percentage of value that was bid is significantly higher in 

MG treatments than SG treatments in each phase (p-value = 0.000 for Phase 1, p-value = 0.000 

for Phase 2, p-value = 0.004 for Phase 3)35. Multi-good demand has an effect on bidding in the 

benchmark treatments as well as the bidder’s choice treatments. However, this effect is purely 

behavioral; there is no theoretical foundation for bidding less than value in a second-price good-

by-good auction. 

In light of this behavioral discovery, we retest revenues to reflect optimal behavior in the 

benchmark treatments. That is, we compare bidder’s choice revenues to the theoretical 

benchmark revenue; if bidders had behaved according to theory in GBG auctions, would our 

main result hold? Figure 1.6 displays this new information. We find that our revenue result is, in 

fact, robust to GBG behavioral biases. The difference between the bidder’s choice (BC) revenue 

and the benchmark (GBG) revenue is significant for both single and multi-good demand. 

Additionally, the difference in these differences is also significant; the revenue premium is 

significantly reduced when bidders value more than one good. 

In the final part of our analysis, we use econometric methods to demonstrate how risk 

preferences, variance over values and individual characteristics affect bidding behavior. Our 

model focuses on the first and second phase BC bids where a subject’s most preferred good is 

available and GBG bids for the most preferred good, allowing us to compare outcomes between 
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 The actual difference in tokens between PC and NPC is also statistically significant for the first two phases (3.72 
is a significantly larger difference than 1.31, etc.). We tend to focus on percentage differences, however, because 
the risk neutral theoretical predictions provide bids in terms of proportion of value. 
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persistent and non-persistent competition. We know that no subject has a value of zero for their 

most preferred good, so a bid of zero is never optimal in our model; we do not need to control for 

left-hand censoring. It is also never optimal for a subject to bid more than 100% of his value so 

the fact that the bids are capped at 100% should not cause a bias. Therefore, we use simple linear 

models with errors clustered at the individual bidder level to analyze bidding behavior. Alevy et 

al. (2010) use a Tobit model to allow for corner solutions where a subject’s optimal bid is zero. 

In their model, however, they incorporate bids for all available goods, which include goods that 

may have no value to the bidder. Our use of induced values in a laboratory experiment, on the 

other hand, allows us to focus on Phase 1 bids (  and   from the theory section), which drive 

revenues.  

Table 1.14 presents the OLS estimates. The baseline for the model is the benchmark 

GBG auction. We use subjects’ bids as a percentage of subjects’ highest values as the dependent 

variable. Since theory predicts a bidder’s BC bid should be a fraction of their value, this 

approach allows us to explore how various characteristics affect bidding behavior. We find that 

the bidder’s choice mechanism lowers bids as compared to the benchmark by about 12% of the 

subject’s value for single-good demand and about 13% for multi-good demand (during the first 

phase).  

We also find that subjects increase their bids significantly as the experiment progresses, 

but at a decreasing rate (the coefficient on “Round” is positive and significant, while the 

coefficient on “Round
2
” is negative and significant). As expected (though contrary to the field 

study), subjects raise their bids in the second phase if their preferred good is still available; the 

interaction term for the BC treatment and the second phase has a positive, significant coefficient 

for single-good demand36. This interaction term is not significant for multi-good demand. This is 

probably due to the fact that the optimal bidding path is flatter for multi-good demand than 

single-good demand (as long as the most preferred good is available), as seen in Table 1.12. 

Thus, the effect is more subtle. 
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 We do not analyze phase differences for the benchmark because: (i) theoretically, drawing the highest value for 
good “B” versus good “A” or good “C” should not affect bids and (ii) we see from Table 5 that, in fact, bids in each 
benchmark treatment are not significantly different between phases. 
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Additionally, we find that grade point average has a positive and slightly significant 

effect on the percentage of value bid under multi-good demand. Contrary to expectation, an 

indicator for the variance of a subject’s values in multi-good demand is not significant. This 

suggests that subjects may exhibit a threshold bias. It may be the case that bidders perceive any 

positive values for their lesser preferred goods to be the same (versus zero values in SG 

treatments); i.e. the subject considers that he has a chance to earn surplus in later rounds, but 

does not consider what that surplus may be. If this is the case, the effects of risk aversion would 

be muted. 

Finally, we also control for risk preferences. We do not expect that risk preference should 

have an effect in the benchmark, so the fact that this variable is not statistically significant is not 

a surprise. However, we also interact risk preference with BC; this variable is not significant as 

well, contrary to expectation. It is possible that the risk elicitation we used was too coarse of a 

measure to pick up on the differences in risk preference which might affect bidding behavior. 

The other possibility is that the behavioral bias proposed by Eliaz et al. (2008) could 

theoretically bias bids, though we argue in the discussion that this is extremely unlikely
37

. 

 

VI. Discussion 

 

Bidder’s choice auctions have been shown to yield higher revenue than simple good-by-

good auctions. Theoretically, this is a result of risk aversion, but Eliaz et al. (2008) find evidence 

to support the bidder’s choice premium is partially the result of a behavioral bias, causing 

subjects to believe they are competing with more people than they actually are. In SG scenarios, 

this bias is plausible and could theoretically be responsible for the BC revenue premium. 

However, this bias almost certainly would not affect bidding behavior in MG scenarios because 

bidders would need to believe that they were competing with people that do not actually exist. 
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 We also test for endogeneity of risk preference and find that it is not endogenous. 
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Since we do find a revenue premium in our MG treatments, we conclude that the premium is the 

result of risk aversion, not a behavioral bias.  

While the field experiment did not reveal a revenue premium, the laboratory experiment 

results show that the revenue premium of the bidder’s choice mechanism is significantly greater 

under single-good than multi-good demand. Bidding behavior is generally consistent with the 

theory and we find that price revelation does not have a significant effect. This suggests that 

multi-good demand, not information, is probably the reason that our field study finds results that 

are at odds with previous work.   

In conclusion, we find that multi-good demand mutes the revenue superiority of the 

bidder’s choice institution, consistent with the notion that the perceived risk of losing one’s most 

preferred good is softened when there is a chance to win multiple goods. This result implies that 

bidder’s choice auctions should be used in settings where each bidder is likely to strongly prefer 

one of the goods over the others, though this need not be the same good for every bidder. This 

conclusion is consistent with Burguet’s (2005) result that greater taste diversity leads to greater 

revenue. In addition, the results explain why our field experiment finds contrasting results to a 

previous field study conducted by Alevy et al (2010): our field environment is arguably a case of 

multi-good demand, which mutes the revenue superiority of the mechanism, while the greater 

taste diversity (closer to single-good demand) that characterizes Alevy et al. 2010 leads the 

authors to find substantial support for theory.  

Future work may include additional field or lab experiments to cleanly distinguish 

behavioral biases from risk aversion; a more finely tuned and detailed risk elicitation than is 

typically used may be helpful since the differences in bids may be very small. Interdependent 

preferences for goods may also be an interesting extension. For example, a prospective landlord 

who wins an auction for a condo on the seventh floor of a building may subsequently increase 

his value for another condo on the same floor (i.e. the landlord’s preferences for goods depend 

on the good(s) he has already acquired). This type of preference structure has implications for 

broadcast spectrum auctions and plausibly many other applications. 
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Appendix A 

Theoretical Work 

 

Proof of Proposition 1: 

Here, we show that the variance of the second-phase lottery faced by bidders in the simple 2-

bidder, 2-good case is larger under single-good demand than multi-good demand.  

We use the following formula for the variance of a lottery, where A and B are payoffs and Pr(A) 

is the probability that outcome A occurs and Pr(B) is the probability that outcome B occurs.   
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Appendix B 

Tables 

 

Table 1.1: Average Revenues 

 Phase 1 Phase 2 Phase 3 Market 

BC 78.55 

(23.08) 

64.69 

(26.12) 

50.16 

(18.30) 

193.40 

(53.49) 

GBG 74.07 

(29.96) 

55.51 

(29.66) 

75.27 

(40.19) 

204.85 

(67.96) 

 

Table 1.2: Average Revenues (Using Only Markets with Variation in Most Preferred Good) 

 Phase 1 Phase 2 Phase 3 Market 

BC 82.67 

(23.93) 

71.59 

(26.62) 

51.26 

(11.29) 

205.52 

(53.87) 

GBG 71.69 

(29.78) 

49.77 

(21.33) 

77.21 

(41.14) 

198.68 

(66.53) 

 

Table 1.3: Average Bids in GBG Auctions and 3
rd

 Phase of BC Auctions 

 Hiking Wine 

BC (3
rd

 Phase) 34.46 

(20.62) 

36.18 

(23.47) 

GBG 50.75 

(41.40) 

48.08 

(40.65) 

 

Table 1.4: Average Revenues in GBG Auctions and 3
rd

 Phase of BC Auctions 

 Hiking Wine 

BC (3
rd

 Phase) 45.92 

(11.13) 

59.49 

(28.07) 

GBG 58.93 

(21.64) 

62.84 

(43.97) 
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Table 1.5: Average Bids for Most Preferred Good in GBG and Phase 1 of BC 

 Hiking Wine IPod 

BC (in phase 1 by 1
st
 

preferred good) 

54.22 

(38.85) 

72.06 

(38.24) 

63.65 

(49.27) 

GBG (for 1
st
 preferred) 82.67 

(53.45) 

80.72 

(49.77) 

85.00 

(61.86) 

 

Table 1.6: Change in Bids for BC Auctions when Most Preferred Still Available in Next Phase 

 Hiking Wine IPod All 

Change from Phase 1 

to Phase 2 

5.84 

(10.21) 

2.38 

(17.44) 

2.96 

(19.30) 

3.29 

(17.45) 

Change from Phase 2 

to Phase 3 

2.83 

(3.71) 

-23.50 

(21.76) 

(.) 

(.) 

-7.70 

(18.72) 

Both Phase Changes 4.33 

(7.49) 

-6.25 

(22.03) 

2.96 

(19.30) 

1.00 

(18.09) 

  

Table 1.7: Change in Bids for BC when Most Preferred Still Available by Rank in Initial Period 

 Rank = 2 Rank = 3 Rank = 4 Rank = 5 

Change from Phase 1 

to Phase 2 

-8.53 

(22.60) 

5.73 

(13.77) 

13.20 

(25.95) 

5.13 

(10.63) 

Change from Phase 2 

to Phase 3 

-4.00 

(12.73) 

2.00 

(5.20) 

-31.00 

(.) 

2.00 

(2.65) 

Both Phase Changes -7.63 

(20.47) 

5.07 

(12.63) 

5.84 

(29.40) 

4.27 

(9.09) 
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Table 1.8: Effect of Demographics and Personality Measures on Bids 

 Dep. Var = BC Bids Dep. Var = GBG Bids Dep. Var = Indicator 

for Increased Bid 

Most Preferred Wine 41.03** 

(8.73) 

49.49** 

(9.75) 

-- 

Most Preferred Hike 42.73** 

(14.55) 

53.28** 

(15.29) 

-- 

Most Preferred Ipod 36.76** 

(7.03) 

49.72** 

(10.44) 

-- 

Second Preferred Wine 14.71** 

(6.39) 

6.49 

(8.78) 

-- 

Second Preferred Hike 14.12** 

(5.84) 

17.80** 

(8.19) 

-- 

Second Preferred Ipod 5.35 

(14.03) 

31.83** 

(9.16) 

-- 

Wine 3.82 

(8.03) 

-4.11 

(7.13) 

-- 

Ipod (omitted) 

 

14.61** 

(7.66) 

-- 

Risk -13.64** 

(6.48) 

-7.91 

(9.12) 

-0.30 

(0.52) 

Educ Above Average 3.22 

(6.78) 

7.64 

(7.48) 

-1.69** 

(0.50) 

Income Above Average 6.45 

(6.56) 

-3.27 

(9.25) 

0.74 

(0.45) 

Iq Quiz 4.05 

(3.87) 

1.11 

(3.37) 

0.58** 

(0.25) 

Assert 2.76 

(1.89) 

-2.39 

(1.64) 

-0.01 

(0.09) 

Motivation 0.07 

(1.21) 

-1.42 

(1.56) 

0.07 

(0.07) 

Confidence -1.29 

(1.51) 

4.41** 

(1.99) 

-0.23** 

(0.11) 

Efficacy 0.59 

(1.74) 

-1.95 

(1.77) 

-0.17* 

(0.09) 

Social -1.95* 

(1.14) 

-0.88 

(1.17) 

0.15** 

(0.07) 

constant 25.91** 

(11.40) 

35.95** 

(12.83) 

0.99 

(0.79) 

 

One asterisk (*) indicates statistical significance at the 10% level and two asterisks (**) indicates 

significance at the 5% level. Standard errors are in parentheses. Robust standard errors are reported for 

regressions in the 1st and 2nd columns. The last column reports the results of a Probit model where the 

dependent variable indicates an increased bid from the prior period. The sample for this model is 

restricted to instances where theory suggests bids should increase. 
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Table 1.9: Experimental Design (Laboratory) 

Treatment Number of UTK 

groups 

Number of UAA 

groups 

Subjects per 

group 

Total subjects 

BC – NI – SG  4 3 6 42 

BC – I – SG  4 2 6 36 

BC – NI – MG 4 3 6 42 

BC – I – MG  4 3 6 42 

GBG – NI – SG  4 2 6 36 

GBG – I – SG  4 3 6 42 

GBG – NI – MG  4 3 6 42 

GBG – I – MG  4 3 6 42 

Total 32 22 -- 324 

 

Table 1.10: Average Revenues 

BC Treatment Average Revenue 

(Std. Dev.) 

GBG Treatment Average Revenue 

(Std. Dev.) 

BC – NI – SG 
152.41 

(36.63) 
GBG – NI – SG 

105.68 

(27.52) 

BC – I – SG 
146.03 

(37.15) 
GBG – I – SG 

97.34 

(33.18) 

BC – NI – MG 
229.96 

(20.22) 
GBG – NI – MG 

211.37 

(22.64) 

BC – I – MG 
232.20 

(19.14) 
GBG – I – MG 

214.20 

(22.60) 

 

Table 1.11: Average Bids by Treatment 

 BC – 1
st
 Phase 

(Std. Err.) 

GBG – Most Preferred 

(Std. Err.) 

Difference 

(Std. Err.) 

Single-good Demand 
48.94 

(0.96) 

51.69 

(0.99) 

2.75 

(1.38) 

Multi-good Demand 
71.06  

(0.73) 

74.24 

(0.64) 

3.18 

(0.97) 
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Table 1.12: BC Auctions: Average Values and Bids 

 Average Highest Value 

(Std. Dev.) 

Average Actual Bid 

(Std. Dev.) 

Average  

Bid / Value 

(Std. Dev.) 

SG:  

Phase 1 

54.78  

(27.59) 

48.94 

(26.85) 

0.892 

(0.20) 

SG:  

Phase 2 

50.78 

(26.62) 

46.29 

(25.38) 

0.916 

(0.17) 

SG:  

Phase 3 

42.35 

(25.96) 

39.42 

(24.54) 

0.934 

(0.14) 

MG:  

Phase 1 

75.83 

(17.40) 

71.06 

(21.17) 

0.935 

(0.17) 

MG:  

Phase 2 

72.96 

(17.29) 

68.49 

(20.87) 

0.938 

(0.18) 

MG:  

Phase 3 

69.53 

(16.76) 

66.55 

(18.26) 

0.959 

(0.13) 

 

The Average Highest Value column provides the average highest value remaining in the phase in 

question; i.e. the value for subjects whose most preferred good is still available.  
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Table 1.13: Good-by-Good (Benchmark) Auctions: Average Values and Bids 

 Average Value for 

Most Preferred 

(Std. Dev.) 

Average Bid for 

Most Preferred  

(Std. Dev.) 

Average 

Value – Bid 

(Std. Dev.) 

Average  

Bid / Value 

(Std. Dev.) 

SG:  

Phase 1 

54.82 

(30.15) 

51.10 

(30.24) 

3.72 

(11.20) 

0.927 

(0.19) 

SG:  

Phase 2 

54.38 

(22.56) 

51.55 

(23.09) 

2.83 

(6.81) 

0.932 

(0.17) 

SG:  

Phase 3 

55.14 

(29.50) 

52.42 

(29.46) 

2.72 

(7.38) 

0.933 

(0.17) 

MG:  

Phase 1 

79.65 

(14.60) 

78.34 

(15.02) 

1.31 

(4.57) 

0.984 

(0.06) 

MG:  

Phase 2 

70.38 

(19.50) 

69.09 

(20.50) 

1.30 

(6.82) 

0.980 

(0.10) 

MG:  

Phase 3 

77.84 

(16.18) 

75.62 

(18.63) 

2.22 

(9.93) 

0.972 

(0.13) 

 

The Average Value for Most Preferred is the mean value for the most preferred good. Since 

Phase 1 was always an auction for good “A” in the benchmark treatments, the first cell in this 

table provides the average value for subjects who preferred good “A” in SG treatments. The 

fourth row down in the first column provides the average highest value for subjects whose most 

preferred good was “A”. This table does not include bids for lesser preferred goods in MG (for 

purposes of a clean comparison between SG and MG). Note that average values are also average 

theoretical bids in the GBG auctions. 
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Table 1.14: Estimates of Bidding Behavior 

 Model 1: 

Single-good Demand 

Model 2: 

Multi-good Demand 

 Dependent Variable = Bid / Value 

BC -.119** 

(.055) 

-.130** 

(.053) 

Round .024***  

(.006) 

.014*** 

(.004) 

Round
2
 -.001*** 

(.000) 

-.001*** 

(.000) 

BC x Phase 2 .024*** 

(.008) 

.002 

(.009) 

Risk Preference -.004 

(.005) 

-.006 

(.005) 

BC x Risk .012 

(.008) 

.013 

(.008) 

Variance Indicator -- .004 

(.010) 

Age .001 

(.001) 

-.002 

(.001) 

GPA .012 

(.009) 

.017* 

(.009) 

Gender .004 

(.018) 

-.004 

(.014) 

Constant .808*** 

(.060) 

.950*** 

(.043) 

N 

F 

R
2 

2080 

6.20 

.036 

2220 

4.52 

.047 
 

This table includes bids for the first phase of BC auctions and the second phase of BC auctions 

when the subject’s most preferred good is still available. The table includes bids for GBG 

auctions for each subject’s most preferred good. One asterisk, two asterisks, and three asterisks 

indicate significance at the 10%, 5%, and 1% levels, respectively. 
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Appendix C 

Figures 

 

 

Figure 1.1: Proportions of Participants in Each Risk Preference Group 

 

 

Figure 1.2: Average Rankings for Each Good in Each Auction Format (1 = Most Preferred) 
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Figure 1.3: Proportions of Participants Who Ranked Each Good as Their Most Preferred 

 

 

Figure 1.4: Average Revenues 

The standard errors for SG treatments are: 2.71 for GBG and 3.23 for BC; the standard error for 

the difference is 4.22. The standard errors for MG are: 1.91 for GBG and 1.66 for BC; the 

standard error for the difference is 2.53. 
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Figure 1.5: Risk Elicitation Results 

 

 

Figure 1.6: Average Revenues Including Theoretical GBG Revenues 

The standard errors for SG treatments are: 2.50 for Theoretical GBG and 3.23 for BC; the 

standard error for the difference is 2.66. The standard errors for MG are: 1.87 for Theoretical 

GBG and 1.66 for BC; the standard error for the difference is 1.57. 
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Appendix D 

Instructions 

 

This appendix includes the field instructions for the Bidder’s choice Auction and the laboratory 

instructions for the Bidder’s choice Auction with Single-good Demand and Full Information. 

Instructions for other treatments are available upon request.  

 

Field Instructions 

Welcome to Jonesie’s Auctions.  You have the opportunity today to bid in an auction where we 

will be selling the three bundles of goods displayed on the table in front of you.  We will provide 

you an opportunity to examine each of the items before the bidding begins.  We ask that you do 

not talk with any of the other participants during the session.  If you have a question at any time 

during the session, please raise your hand and a monitor will come to your seat and answer it in 

private.  

 

Description of the available goods 

Good 1:  I-Pod and Speakers 

 2 GB I-Pod Nano with 500 song capacity 

 JBL On Stage Micro portable music dock for I-Pod 

 

Good 2:  Hiking Equipment and Backpack 

 REI Ridgeline backpack  

 REI Hiker First Aid Kit 

 Katadyn Hiker Microfilter 

 

Good 3:  Riedel Wine Glasses and Wine  

 Set of 4 Riedel Chardonnay Glasses 

 One bottle of 2006 Laird Family Estate Carneros Chardonnay 

 Set of 4 Riedel Pinot Noir Glasses 

 One bottle of DuNah Vineyards Russian River Valley Pinot Noir 

 Set of 4 Riedel Cabernet/Merlot Glasses 

 One bottle of 2004 Chappallet Napa Valley Cabernet Sauvignon 
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There are five bidders in this auction which will consist of three phases.  Rather than sell the 

goods one by one, we will sell ‘rights to choose’ one by one.  If in any phase you win one of the 

rights to choose, you will be able to choose which of the goods remaining at that time you want.  

To be more precise, in each phase a ‘right to choose’ is sold to the highest bidder.  In the first 

phase, all five bidders will submit a bid for the first right to choose.  The highest of these five 

bidders wins the first right to choose and selects the good that he or she prefers.  At the end of 

the first phase, every bidder will be informed whether they won the first right to choose and 

which good was selected by the winning bidder. 

Once the winning bidder from the first phase has selected their preferred item, the second phase 

starts.  In the second phase all bidders will submit a new bid for the second right to choose.  The 

highest of these bids wins the second right to choose and selects the good that he or she prefers 

from amongst the two remaining items.  At the end of the second phase, every bidder will be 

informed whether they won the second right to choose and which good was selected by the 

winning bidder.  In the third and final phase, all bidders will submit a new bid for the remaining 

item.  The highest bidder in the third phase will win the final item.   

 

Auction Rules: 

In each phase, you are asked to submit a bid indicating the maximum amount you are willing to 

pay to acquire the ‘right to choose’ your most preferred item from the set of available items.  

Bids may be submitted in intervals as fine as one cent although there is no restriction on the 

amounts that you can bid.  If you do not place a bid, it will be counted as a bid of zero dollars.  

Once I have received bids from all five bidders, I will order them from highest to lowest to 

determine the winner in that phase.  The price that the winner in each phase pays depends on the 

bids of the other participants in the market.  To be precise, in each phase the individual that 

submits the highest bid will be awarded the “right to choose” their preferred item for a price 

equal to the second highest bid submitted for that phase.  If you do not submit the highest bid, 

you will not win the ‘right to choose’ in that phase and will not be asked to pay anything.   

If two (or more) individuals submit the same high bid, then one of these bidders will be 

randomly selected and awarded the “right to choose” for that phase.  In such an instance, the 

winner pays a price equal to their own bid amount. 
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Example  

If the bids in the first phase are ranked highest to lowest as follows:   

$A (bid from bidder A) 

$D (bid from bidder D) 

$E (bid from bidder E) 

$B (bid from bidder B) 

$C (bid from bidder C) 

Bidder A would win the ‘right to choose’ his most preferred item from the set of three available 

items and would pay a price equal the amount of the bid submitted by bidder D.   

After Bidder A selected his most preferred item, the bidding process would be repeated with 

everyone submitting a bid for the ‘right to choose’ their most preferred of the remaining two 

items.  If the bids in the second phase are ranked highest to lowest as follows: 

$E (bid from bidder E) 

$C (bid from bidder C) 

$F (bid from bidder F) 

$B (bid from bidder B) 

$A (bid from bidder A) 

Bidder E would win the ‘right to choose’ his most preferred item from the set of two available 

items and would pay a price equal the amount of the bid submitted by bidder C.   

Once Bidder E selected her most preferred good, the bidding process would be repeated one final 

time with bidders submitting a bid for the final item.   
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Example  

Before you submit your actual bids, I would like you to work through an example.  Consider an 

auction where the following bids were submitted in the first phase.  We want you to determine 

who will win the auction and how much they will pay to obtain the good.   

 Bidder 1’s First Bid = 1103¥ 

 Bidder 2’s First Bid = 850¥ 

 Bidder 3’s First Bid =1200¥ 

 Bidder 4’s First Bid = 250¥  

 Bidder 5’s First Bid = 475¥ 

 

Take the two highest bids and order them from highest to lowest: 

 Highest Bid _______________ 2
nd

 Highest Bid ________________ 

Now, determine which bidder has won the first ‘right to choose’ and the amount that he or she 

will have to pay.  Fill in those numbers here. 

 Winning Bidder ____________ Amount Paid __________________ 

To assure that you understand how this auction mechanism operates, I will check your work after 

you complete this example.  Please raise your hand once you have completed the example.   

 

Final Transaction: 

The winners in each phase will be required to pay me (cash or check) for the items that they have 

selected at the end of the session.  Once I have received payment, the respective item will be 

awarded to the winning bidder.   

I understand that you may not have anticipated the need to bring cash or your checkbook with 

you for this experiment.  In the case that you do not have the necessary cash (or a check) to pay 

for the items, we will provide you with a stamped envelope in which to mail the payment.  Upon 

receipt of your cash or check, I will send you the items that you won.  All postage will be paid by 

Jonesie’s Auctions for items mailed to the winners.   
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Note that while this is a real auction for the items displayed on the table in front of you, I plan to 

use data on the bids in this auction for economic research.  I guarantee to sell all three of the 

items to the winners of this five-bidder auction, whatever the final auction prices turn out to be.  

Your bids represent binding commitments to purchase the items you win at the prices specified 

by the auction outcomes.   

Good luck – we now invite you to spend a few minutes examining the goods on the table at the 

front of the room.  Once you have examined the items, please return to your seats.  Once 

everyone has been seated, we will ask you to write your bid for the first phase on the sheet 

provided. 

 

 

Lab Instructions  

Welcome to this experiment on economic decision-making! This experiment consists of 10 

rounds plus 1 practice round. At the start of the session, you will be randomly assigned to a 

group of 6 people and you will remain in this same group for all ten rounds. Importantly, you 

will not know the identity of the other five participants in your group and the other participants 

in your group will not know your identity.  You will earn tokens in the experiment by purchasing 

a good you value in a market. At the end of the experiment your tokens will be exchanged for 

dollars. Each 8 tokens is equal to 1 dollar. Your total earnings in the experiment will equal the 

sum of your earnings in all 10 rounds.  

 

Values of the Goods 

In each group, 3 goods will be available for sale in each round: good A, good B, and good C. 

Each participant will have a positive value for only one of the goods in each round. Values for 

this good are randomly determined and will lie between 1 and 100 tokens. That is each number 

between 1 and 100 is equally likely to be assigned as your value. The other goods have no value 

(=0 tokens) to the participant. Each participant will receive a different value for his or her 

preferred good. The value of this good for each participant does not depend on the values of the 

preferred goods for the other participants.  You will have the opportunity to earn money by 

purchasing your preferred good at a price less than your assigned value.    

At the start of each round, you will be informed of which good you prefer and how much you 

value it. You will not know the preferred goods or the values of the other participants and the 

other participants will not know your preferred good or value. Among the 5 other participants in 
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your group, there will be one other participant who prefers the same good as you do and his or 

her value is also determined randomly from the interval between 1 and 100.  

Which good a participant prefers changes (randomly) from round to round. This implies that the 

person who prefers the same good as you will also change from round to round. Each participant 

will receive a new value for the preferred good in each round. The value for a preferred good in 

one round does not depend on the value for the preferred good in any other round.  

 

Sale of the Goods 

Rather than sell the goods one by one, the market will sell “rights to choose” one by one. If in 

any phase you win one of the rights to choose, you will be able to choose which of remaining 

goods you wish to purchase. To be more precise, in each phase a right to choose is sold to the 

highest bidder. In the first phase, all six bidders will submit a bid for the first right to choose. The 

highest of these six bidders wins the first right to choose and selects the good that he or she 

prefers. At the end of the first phase, every bidder will be informed whether they won the first 

right to choose and which good was selected by the winning bidder. 

Once the winning bidder from the first phase has selected their preferred item, the second phase 

starts.  In the second phase the remaining bidders (whose preferred goods are still unsold) will 

submit new bids for the second right to choose. The highest bidder wins the second right to 

choose and selects the good that he or she prefers from amongst the two remaining goods. At the 

end of the second phase, every bidder will be informed whether they won the second right to 

choose and which good was selected by the winning bidder. In the third and final phase, the 

remaining bidders (whose preferred good is still unsold) will submit new bids for the remaining 

good. The highest bidder in the third phase will win the final good. This process will be repeated 

in each of the ten rounds. 

 

Prices of the Goods 

In each phase, you will be asked to submit a bid indicating the maximum amount you are willing 

to pay to acquire the “right to choose” your most preferred good from the set of available goods. 

You may submit any number up to your value for your most preferred good. The price that the 

winner in each phase pays depends on the bids of the other participants in the market. To be 

precise, in each phase, the individual that submits the highest bid will be awarded the right to 

choose their preferred good for a price equal to the second-highest bid submitted for that phase. 

The profit to the bidder from winning will be equal to his or her value minus the price he or she 

pays, so profit = (value – price). At the end of each phase, the price paid by the winning bidder 



57 
 

will be announced to all six members of the group. If you do not submit the highest bid, you will 

not win the right to choose in that phase and you will not pay anything.   

If two (or more) individuals submit the same high bid, then one of these bidders will be 

randomly selected and awarded the right to choose for that phase. In such an instance, the winner 

pays a price equal to their own bid amount. 

 

Example   

Suppose the bids in the first phase are ranked highest to lowest as follows:   

$A (bid from bidder A) 

$D (bid from bidder D) 

$E (bid from bidder E) 

$B (bid from bidder B) 

$C (bid from bidder C) 

$F (bid from bidder F) 

Bidder A would win the right to choose his most preferred good from the set of three available 

goods and would pay a price equal the amount of the bid submitted by bidder D. After Bidder A 

selects his most preferred good, the bidding process would be repeated with the remaining 

bidders (whose preferred goods are still unsold) submitting a bid for the right to choose their 

most preferred of the remaining two items.  

 

Final Payout 

At the end of the experiment, your total tokens earned will be displayed on your screen. You will 

be asked to fill out a short, anonymous survey and then you will be paid in private. If you have 

any questions at any time, please raise your hand. 
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CHAPTER 2 

A Dynamic Markov Tournament Model of Task Assignment and  

Up-and-Down Competition for Status   



59 
 

Abstract 

 

We develop a dynamic Markov model to capture the incentives in indefinitely-repeated 

tournaments in labor market settings where agents compete both to “move up” as well as to 

avoid a “move down”. Such settings naturally arise regardless of whether explicit performance 

incentives or an organizational hierarchy exist. We show that when monetary incentives are 

available the dynamic tournament approaches the first-best outcome, but we also allow for the 

possibility that the principal’s only available incentive mechanism is the assignment of 

undesirable tasks to agents who are out-of-favor. Inability to change salaries or demote workers 

is common for public organizations, such as government agencies and schools. For instance, a 

school principal may not be able to monetarily reward or sanction teachers based on 

performance, but typically has discretion within the labor contract to vary class assignments and 

resources such as teacher’s aides. We model agents as being either in or out of favor with the 

principal in any given period; those who are out of favor are assigned more undesirable tasks. 

The prize of the tournament is the difference between groups (in favor and out of favor) in the 

present value of the agent’s expected utility. We assume that agents’ effort cost of completing 

contractible tasks is such that these costs are minimized by assigning equally burdensome tasks 

to all agents. Therefore the principal can motivate non-contractible effort through differential 

task assignment, but this entails an efficiency cost. The model demonstrates that employers may 

seek flexibility to vary task assignments in labor contracts not only to adapt to changing 

circumstances, but also to enable them to motivate non-contractible effort when agents’ 

compensation in fixed. 
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I. Introduction 

 

Many situations are characterized by agents that compete for rank or status in an ongoing, 

indefinite contest. Agents who outperform their peers may “move up”, while those who 

underperform “move down”. The advantages of moving up as well as avoiding a move down 

engender competition. In the workplace employees may work hard not only to compete for 

promotions but also to avoid demotion, just as many sports leagues worldwide, such as the 

English football league, employ a system of promotion and relegation in which a fixed number 

of the lowest performing teams in the top league are demoted at the end of a season while the 

highest performing teams in the second-tier league are promoted. Even in a fairly “flat” (i.e. non-

hierarchical) organization such as a school, which may have little room for inducing effort or 

performance through competition for rank or financial rewards, there nevertheless can be 

significant consequences associated with being in or out of favor with the principal, such as class 

assignments and the allocation of such scarce resources as teacher aides. 

We develop an indefinite dynamic Markov tournament model with competition for status 

within the organization. An agent’s utility payoff each period depends on his status, and each 

period a fixed number of agents will be moved up and moved down in the organization. We 

explicitly model the possibility that high status may be rewarded non-monetarily through the 

principal’s discretion of task assignment. For example, in a school, teachers who are in favor 

with the principal may be assigned more desirable classes to teach or provided additional 

resources such as teacher’s aides. We show that when high status can be rewarded monetarily 

and discounting is negligible this type of infinitely repeated dynamic tournament can function as 

an efficient mechanism, inducing non-contractible effort without paying rents to agents, so that 

first-best effort is obtained. We then show how differential assignment of contractible tasks can 

similarly be employed to motivate non-contractible effort. However, if the agents’ cost of 

contractible effort is a convex function, employing differential task assignment entails an 

efficiency cost. The outcome is therefore second-best as the principal faces a tradeoff between 
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implementing incentives to induce optimal non-contractible effort and obtaining completion of 

necessary contractible tasks at least cost.  

By demonstrating how competition for status which determines task assignments within 

an organization can be employed as an incentive mechanism, our model offers a new perspective 

on the value to an employer of flexibility over job assignments within labor contracts. Of course 

a firm or other principal/employer is likely to value such flexibility for many reasons, such as 

being better able to adapt to changing technology or market conditions. But our model illustrates 

that contractual flexibility that gives a manager significant discretion over employees’ task 

assignments yields an important motivational tool that can elicit greater effort for a workforce. In 

this context, it is not surprising that unions may resist such flexibility, or demand compensation 

for it, in labor negotiations
1
. Workers will recognize that if they accept a contract that permits 

greater discretion in their assignments, this can compel them to exert more costly effort in the 

competition for status that will be ongoing within the organization. Indeed, such negotiations 

have occurred between UPS and the Teamsters union; a clause in one of their contracts reads: 

“Job reassignments will be on an as-needed basis only, due to reduction or transfer of the work. 

Seniority will be recognized in all job reassignments” (Teamster Local 150: UPS Contract 

Updates). Further, the union states that one of their goals is “stronger language that strengthens 

the rights of… workers to bid on overtime and job assignments” (Teamsters for a Democratic 

Union: UPS Contract Scorecard).  

Our theory represents a departure from existing dynamic models in the tournament 

literature which, beginning with Rosen’s (1986) seminal work, have focused on elimination 

tournaments in which competition is “up or out” and the game has a finite number of periods 

                                                           
1
 Anecdotal evidence supports this: “Unions typically direct their job-description efforts toward setting defined 

boundaries for positions, usually wanting to define the work that employees can perform within specific job 
classifications” (Joinson 2001). It is also possible to think of task assignment in a broader sense that includes 
schedule flexibility; a particularly undesirable task could be one that needs to be completed at night or on a 
holiday (e.g. teaching an evening class). Zeytinolgu (2005) states, “… traditional union preference [includes] 
regularity of work and/or skepticism regarding flexible scheduling, which they tend to view as a risk for losing 
control to employers.” Further, a recent contract negotiated by the teacher’s union in New York highlights how the 
city hopes to achieve higher quality in education by providing flexibility to schools in terms of work rules and 
length of school day (New York Times Editorial Board 2014). This could be explained in part by the principals’ 
ability to incentivize more effort from teachers when they have more control.  
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(because a hierarchy is inherently finite)
2
. Additionally, the present work significantly 

complements work on public organizations (e.g. Gersbach and Keil, 2005; Heinrich and 

Marschke, 2010; Perry and Porter, 1982), which emphasize that a manager’s ability to use 

monetary incentives in a public organization (such as a government agency or school) is limited. 

One potential non-monetary incentive is public recognition. According to Heinrich and 

Marschke, there is some evidence that employees in the public sector may be particularly 

motivated by public recognition relative to monetary compensation. Our model can be applied to 

this context in that certain tasks or projects may be more likely to result in public recognition and 

are therefore more desirable. To the best of our knowledge this literature has not considered how 

a manager’s use of task assignments can be employed to generate competition for status and 

thereby motivate performance and this is therefore one of our primary contributions
3
.  

The relevance of our model for government agencies is potentially quite large. Several 

pertinent aspects of government culture are characterized by Wilson (1989) in his text on 

bureaucracy. First, he makes clear that managers in government have very limited ability to alter 

pay or give promotions, but managers can "give people attractive or miserable job assignments" 

(p. 156) as an alternative. Further, government job descriptions are so abstract that it is very 

difficult for managers to justify bonuses even in the few circumstances when they do have the 

ability to use money
4
. Wilson also points out that in certain branches, including military, the goal 

is not only to use job assignment as a reward mechanism, but also to provide equal opportunities 

                                                           
2
 To the best of our knowledge, with the exception of work by Liu and Neilson (2009) and Gilpatric, Vossler and Liu 

(2013), both the indefiniteness of the game as well as the nature of the movement of players (i.e. both up and 
down) has not been considered in previous tournament models. An important feature of our model relative to Liu 
and Neilson (2009) is that we assume agents compete in separate tournaments according to their organizational 
level, rather than in a single tournament. This simplifies the model dramatically (importantly, there is an analytical 
solution), and significantly increases the amount of effort induced by competition. Just as crucial, given that 
inducements for effort generally differ across levels, the single-tournament becomes a competition that only those 
at a particular level are likely to win. This characterization does not appear to fit the settings we endeavor to 
model very adequately. 
3
 Gersbach and Keil (2005) characterize a public organization where the principal does not have direct monetary 

means to incentivize agents, similar to the current paper. However, the model developed by Gersbach and Keil 
focuses on incentivizing agents to reveal unproductive tasks in their departments, not put forth effort per se. 
4
 Although fairly rare, sometimes managers in government are allowed to allocate a pot of bonus money among 

their employees. Wilson cites an example from a report by the Weatherhead School of Management, where 
“agency heads often gave small bonuses to many people rather than large ones to a few”, partially due to the fact 
that they were unable to justify bonuses in organizations with “vague and complex goals”.  
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to all officers by rotating them, even though it is disadvantageous in terms of having experts in a 

particular area. This demonstrates that task assignments are not static in many agencies; 

organizations may have reasons outside our model to want to keep task assignments in flux. This 

could suggest that the efficiency cost of using our mechanism may not be too great. Finally, 

government agencies “are often prepared to accept less money with greater control than more 

money with less control,” according to Wilson (p. 179). “This is because of the high priority they 

attach to autonomy, or turf.
5
” This mentality favors incentive mechanisms which rely on 

operational control, like task assignments, instead of money.  

On the other hand, our model is also potentially useful for corporations. If an 

organization transitions from a period of rapid growth to being more “mature” and stable in size, 

it may move from having lots of opportunity for promotion (and thus more traditional 

tournament rewards) to having a much larger role played by task assignments. Similarly, an 

organization that has money for bonuses or raises during good times may institute a pay freeze or 

eliminate the bonus pool during a downturn, thus forcing the organization to rely on non-

monetary incentives. It is important to note that the model presented in this paper is not meant to 

be an alternative to other tournament schemes, but rather, we model a distinct setting which 

commonly arises in public organizations and may arise in other organizations as well.  

The model developed here builds on the framework of Gilpatric, Vossler and Liu (2013), 

which uses a dynamic Markov tournament to show that regulators benefit from placing firms in a 

tournament where they compete to avoid being targeted for future audits. The theory and 

supporting laboratory experiment demonstrate that the tournament setup achieves significant 

leverage over a simple random audit mechanism
6
. The dynamic tournament model that the 

                                                           
5
 Wilson states that political support is key for government bureaus and “ideally, a government bureau would like 

to be the only organization in town curing cancer and would like to have no limitations on how it goes about 
achieving that cure. The typical bureau is in a much less happy state of affairs… it must [operate] under the 
watchful and critical eyes of countless subcommittees, interest groups, and journalists… all else being equal, big 
budgets are better than small. But all else is not equal.” He goes on to cite many instances of government agencies 
which have chosen smaller budgets and less responsibilities to maintain control over how to operate.  
6
 The authors’ theory involves firms bring placed in two groups: a high-probability audit group and a low-

probability audit group. Those in the targeted group compete to be transitioned to the non-targeted group, and 
those in the non-targeted group compete to avoid being moved to the targeted group via an indefinite Markov 
chain model. The regulator incorporates both peer-evaluation and the firm’s own compliance history to shape 
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authors use is derived from the indefinite Markov chain models employed in the dynamic 

regulatory enforcement literature (e.g. Landsberger and Meilijson, 1982; Greensberg, 1984; 

Harrington, 1988; Harford and Harrington, 1991). We use a similar tournament framework, but 

apply it to the labor market setting which has key differences, such as the need to satisfy agents’ 

participation constraint.   

In our model, agents are either in favor or out of favor with the principal in any given 

period. The organization is limited to two groups: the high group (in favor) and the low group 

(out of favor). A tournament occurs within each group in each period. Agents are required to 

complete contractible tasks and choose effort that increases output or performance in a non-

contractible dimension. Non-contractible effort is unobservable to the principal. The agent(s) 

with the highest output or performance in the low group in each period are subsequently 

promoted to the high group, and the agent(s) with the lowest output in the high group in each 

period are subsequently demoted to be in the low group. Agents are paid a fixed fee in each 

period. The effort cost of completing assigned tasks in the contractible dimension is higher for 

those agents in the low group if differential task assignment is employed as an incentive. The 

prize of the tournament is the difference between groups in the present value of the agent’s 

expected utility. Unlike other tournament models, in our model strong incentives arise from 

competition for status within an organization without a significant hierarchy.  

An important characteristic of our model employing differential task assignment to 

reward high status is that in this setting more intense competition is desirable because it reduces 

the difference in task assignments required to motivate any level of effort.  Therefore an increase 

in the variance of the random shocks that impact agents’ performance (which dulls the 

competitive incentive) is costly to the principal. This finding lies in contrast to the standard 

Lazear and Rosen (1981) tournament framework where greater variance in random shocks can 

be offset by an increased prize spread to maintain the effort incentive at no cost to the principal 

(assuming agents are risk neutral).   

                                                                                                                                                                                           
enforcement effort. Laboratory experiments broadly confirm the theoretical comparative statics: targeting leads to 
significant enforcement leverage and the dynamic tournament exhibits strong audit cost, audit probability and 
transition effects. 
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The paper proceeds as follows. First, we present a dynamic Markov tournament model 

with task incentives. Next, we compare this model to a general model of a dynamic Markov 

tournament, demonstrating the inefficiency that results from the task model. Several propositions 

follow. A discussion section concludes.  

 

II. A Dynamic Markov Tournament with Task Incentives 

 

Our model consists of a firm or other organization whose objective is to maximize the 

value of expected output net of labor costs. There are two dimensions of labor effort, one which 

is contractible and one which is non-contractible. The contractible labor consists of tasks like 

administrative work, classes which must be taught, or spots which must be filled in an assembly 

line. The completion of these tasks is observable by the manager and verifiable by a third party 

and, therefore, employees who do not fulfill the task requirements can be denied compensation. 

Every period there are a certain number of contractible tasks that must be completed. On the 

other hand, non-contractible effort cannot be directly observed by the manager or verified by a 

third party. This effort contributes to the production of a valuable output, but just as in a standard 

tournament model, the output is subject to random shocks. For example, a school principal must 

ensure all classes are taught each semester. Simply being present and meeting certain basic 

requirements of teaching is a contractible task. However, the output (student learning) also 

depends on teacher effort in a manner that is non-contractible and the principal will therefore 

desire to motivate this non-contractible effort. We model how the principal can use a dynamic 

tournament to induce non-contractible effort from agents even if all agents receive equal 

payment every period.  

While the manager or principal seeks to maximize net benefit, he faces three constraints. 

The first is that all of the contractible tasks must be completed, as mentioned above. Second, the 

agents must agree to enter into the contract and thus participate in the tournament. Agents are 

assumed to have an outside option and the present value of their expected utility from the 
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tournament must be greater than their reservation utility. Third, it must be incentive compatible 

for the agents to provide the level of non-contractible effort the principal seeks, which in our 

context requires that the desired effort is the symmetric Nash equilibrium of the dynamic 

tournament. In this section we will demonstrate that the manager can achieve this result when 

high status can be rewarded with less required contractible effort. However, we will see later that 

this method of incentivizing agents is costly and thus, the manager chooses to incentivize less 

than optimal effort from agents.  

Our framework consists of   risk-neutral
7
 agents who are sorted into two groups:    and 

  . The agents are better off when they are in favor with the manager (group   ). The game is 

infinite with discount factor  . In each period, each agent chooses non-contractible effort   at 

cost     , where     ,      . The agent’s output from non-contractible effort is given by  , 

which is the sum of effort and a random component:       (the random component is an 

i.i.d. draw from the distribution   across agents and periods). Further, we utilize the following 

additional notation: 

       fixed payment to an agent in a period, conditional on group assignment 

        number of agents in    and    

       number of agents in    and    selected for tournament (i.e. agents for 

whom  the manager will review their work in a given period) 

       probability of being selected for tournament (i.e. probability that the 

agent’s work will be reviewed by the manager in a given period) for 

agents in    and    

   number of agents in each period transitioned from    to    and vice versa 

    value of output   (common to both groups) 

        contractible effort required of each agent in    and    in each period 

   total contractible effort required to complete all necessary tasks in each 

period such that             

                                                           
7
 Both Lazear and Rosen (1981) and Nalebuff and Stiglitz (1983) discuss risk averse contestants. As with other 

incentive mechanisms, risk aversion among agents implies only a second-best outcome can be achieved with a 
tournament because motivating effort is traded-off against agents’ exposure to risk. This result applies in the 
present context as well.  
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       cost of contractible effort for the agents, where     ,       

 

In each period, a separate tournament occurs in each group. Specifically,       agents 

from    (in-favor group) are selected for tournament (i.e. the manager reviews their work; this 

allows for the possibility that the manager may not be able to inspect the work of every agent in 

every period) and the   agents with the lowest output are placed in    the following period, 

while the other agents remain in   . Similarly,       agents from    (out-of-favor group) are 

selected for tournament and the   agents with the highest output are placed in    the following 

period, while the other agents remain in    (     and     ). Agents choose non-

contractible effort before being selected for the tournament.   

The manager can motivate agents using a spread of undesirable tasks between the high 

(in favor) group and the low (out of favor) group. In this section, we assume that         

and      . The manager must pay all agents the same fixed wage each period, but the manager 

can assign tasks such that the prize of the tournament is the assignment of less contractible tasks. 

Therefore, the payoff to an agent in    (in-favor group) in the task differentiation model is 

                    , and analogously for an agent in   . Thus, the payoff to agents in    

is higher than the payoff to agents in   . Let the probability that an agent in    who is selected 

for the tournament ranks among the bottom   agents (and therefore gets transitioned to   ) be 

represented by            and the probability that an agent in    who is selected for tournament 

ranks among the top   agents (and therefore gets transitioned to   ) be represented by 

          . In each period, two tournaments take place; they differ in that the contest in the high 

group is a competition to avoid ranking at the bottom while the contest in the low group is a 

competition to rank at the top, but this is not consequential because the two tournaments are 

otherwise completely symmetric. Both tournaments are standard symmetric rank-order 

tournaments as developed by Lazear and Rosen (1981) and Nalebuff and Stiglitz (1983).  

Applying a result from Nalebuff and Stiglitz, the probability that an agent in    who 

chooses effort    when the other agents in    choose     ranks in exactly the kth position up 

from the bottom (e.g. k=1 denotes ranking last) is the following. 



68 
 

            ∫
       

             
     (            )

   
( 

             )
    

    

The probability that i ranks among the bottom   is then            ∑            
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For identifying the symmetric equilibrium of the tournament, we require the marginal effect of 

effort on the probability of ranking among the bottom   be evaluated when       . The 

marginal effect on the probability of ranking in position k is given below. 
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The effect of effort in symmetric equilibrium on the probability of ranking among the bottom   is 

then: 
           

   
       

 ∑
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 The    tournament is directly analogous except that effort increases the probability of an 

agent’s ranking among the top   in the group. Because the random component of output is drawn 

from the same distribution H regardless of group, it follows that  
           

   
       

 

 
   (      )

   
       

 if      .  

Agents are assumed to be risk neutral and maximize the expected present value of their 

utility. The dynamic game follows a Markov chain process with a transition matrix representing 

the probabilities for an agent to transition (or not transition) out of his current group. The matrix 

is given in Table 2.1 in Appendix B. For example, the bottom middle cell represents the 

probability that agent who is in    in period   will transition to    in period    .  

Let     be the expected present value to an agent of being in group 1 at time   (and 

analogously for group 2). Then we have: 
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                        (        )       

The expected present value of utility is the sum of utility in the current period and the discounted 

expected present value of utility starting from the next period, accounting for the probabilities 

associated with the two possible states the agent may experience in the following period. The 

agents maximize these expected present value utilities at any given point in time. Applying the 

ergodic theorem for Markov chains, the optimal strategy for an agent is stationary, i.e. 

conditioned only on an agent’s current state (group), not on the period in the game (Kohlas, 

1982; Harrington, 1988). Stationarity allows us to drop the time subscript and we impose 

symmetric behavior on all agents. Thus, we obtain the following first order conditions. 

    
   

   
           

   

   
       

              

    
   

   
            

   

   
       

             

where: 
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This set of three equations implicitly defines the equilibrium of the dynamic game 

entailing symmetric behavior by agents (all agents follow identical strategies conditional on their 

group)
8
. Note than an agent maximizing his stage-game payoff would exert no effort in this 

model. The equations above show the incentive arising from the dynamic game which depends 

on the value of        . This difference is the prize at stake in both tournaments (among the 

agents in    and among the agents in   ), and the magnitude of the difference depends on two 

things: the difference in contractible effort required, z          ; and the equilibrium 

                                                           
8
 The existence of pure strategy equilibrium in any rank order tournament requires sufficient variance of the 

random component of agents’ output. This is required to make the equilibrium effort satisfy general incentive 
compatibility such that the effort identified by the marginal optimality conditions is not dominated by “opting out” 
of competition and choosing zero effort. Nalebuff and Stiglitz (1983) discuss this detail. As is standard, we assume 
this condition is met.  
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transition probabilities, which determine the “stickiness” of the states (in or out of favor)
9
. The 

lower the transition probabilities, the more valuable it is to be in    (in-favor group) rather than 

  . This result was identified by Gilpatric, Vossler and Liu (2013).  

Recall that the principal does not have monetary prizes or other means of rewarding the 

agents in the “in-favor” group with the exception of task assignment. This situation is common in 

public organizations such as schools or government agencies. Additionally, managers in other 

sectors may have limitations on their ability to reward employees monetarily due to civil service 

rules, union contracts, or other constraints. Nevertheless, most managers do have some sort of 

discretion over how to allocate assignments among employees. In fact, task delegation is 

commonly an important aspect of the manager’s responsibility. In our framework, the monetary 

compensation is fixed and contractible task effort is allowed to vary between groups. The 

manager can reward agents with high status by assigning them less undesirable tasks. We will 

show that the manager or principal is able to induce non-contractible effort from agents using 

contractible task assignment. Consequently, labor contracts that provide the manager flexibility 

in contractible task assignments serve the purpose of motivating non-contractible effort in 

addition to other benefits that flexibility may provide (e.g. the ability to adjust to a changing 

environment). However, the use of task assignment as a motivational tool does cause an 

efficiency loss compared to the general model. 

 

2.1 Optimizing the Dynamic Tournament Labor Contract 

The manager’s problem is to maximize profit from the agents’ effort subject to the 

constraints; specifically, the profit is equal to the value of expected output minus total cost each 

period. Recall that the incentive compatibility constraint is satisfied if the desired effort is 

incentivized by the tournament. Further, the participation constraint will be slack for agents in 

                                                           
9
 The first order conditions defining effort in each group (equations 1 and 2) show that effort is increasing in  

       , which is effectively the prize spread. Also, we have                      [       (  )]; 

therefore, by looking at equation 3, we can see         increases with z          . The denominator of the 
r.h.s. of (3) is clearly increasing with the number of players transitioned each period,  , which therefore decreases 
the prize spread         and reduces equilibrium effort. 
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the high group when it holds for agents in the low group. We assume the outside option for an 

agent yields constant utility per period of   . Then the relevant constraint is    
 

   
, that is, the 

present value of the equilibrium payoff stream for an agent in    (out-of-favor group) equals the 

present value of the utility stream from opting out of the tournament. Therefore, the manager’s 

problem is as follows. 

   
 

                                      
 

   
 

The optimal non-contractible effort level, denoted   , is defined by         . Given 

this, it is optimal to equate the effort incentive across groups which can be achieved by setting 

      and      , which also implies      . Optimal effort for agents in    will occur if   

   

   
           , and analogously for agents in   . Using equation 2, this is also:      

     
   

   
       

  . Rearranging, we get: 

        
 

   

   

   
       

              

When agents in both groups choose a common effort level (here we are showing they both 

choose the optimal effort), then                    . We can now solve for the required 

contractible effort spread that achieves optimal effort by substituting equation 3 into equation 4 

and noting that   (
 

  
)  (

 

  
)    

  

 
  when      . 

            
     

   

   

   
       

(   (  
  

 
))              

 Now, we solve for the participation constraint, which will be slack for agents in the high 

group when it holds for agents in the low group. The participation constraint is: 
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This constraint shows that ensuring agents do not opt out of the tournament when they are out of 

favor requires that the per-period fixed payment,  , be sufficient to compensate them for 

foregoing their outside option and for the cost of contractible and non-contractible effort, less the 

present value of expected future rents that the agent expects to obtain from future periods of 

being in favor.  

Finally, the total cost
10

 of compensation in each period is       . We can substitute 

equation 6 into total cost to get: 
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We can rearrange equation 5 to get an expression for the last term in 7: 
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Substituting this into the cost function, we have: 
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In the limit, as discounting becomes negligible, we find that 

   
   

      {       
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10

 Note that the “T” subscript on total cost is for “Task Model”; this is needed to differentiate from total cost in the 
general model presented in the next section. 
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The principal chooses a non-contractible effort level to induce,  ̂, and maximizes the 

expected difference between total benefit and total cost. (Recall that output,  , is the sum of non-

contractible effort,  , and an error term,  ; in expectation,   is simply  .) The principal’s 

maximization problem is: 

   
 ̂

           ̂   {       
           

 
} 

The first order condition yields: 

      ̂  
 [

           
 ]

  ̂
 

 

Note that the average cost of contractible effort assigned increases as non-contractible effort 

increases. That is:  [
           

 
]  ⁄  ̂   . (In order to induce higher non-contractible effort from 

agents, the principal must increase the spread between    and   .) This causes the average cost of 

completing these tasks to increase because      . Thus,       ̂ . 

 

III. Comparison to a General Dynamic Markov Tournament 

 

In this section, we present a general model of a dynamic Markov tournament for 

comparison purposes. In the general model, the manager can use monetary incentives to motivate 

agents. We now assume that      . Further, we make the assumption that the manager evenly 

distributes the contractible tasks among all   agents (i.e.         ⁄ ). Note that the least-

cost way for the manager to get all   contractible tasks completed is to distribute them evenly 

due to      . Therefore, the payoff to an agent in    (in-favor group) in the general model is 

                    ⁄  , and analogously for an agent in   . 
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When agents in both groups choose a common effort level, then                . 

For a given non-contractible effort level,  , that the firm wishes to motivate, equation 5 from the 

task model now becomes: 

        
     

   

   

   
       

(   (  
  

 
))               

This is the fixed payoff spread that achieves optimal effort. Similarly, the participation constraint 

for this model is also a function of contractible effort. 
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This constraint shows that ensuring agents do not opt out of the tournament when they are out of 

favor requires that the per-period fixed payoff    be sufficient to compensate them for forgoing 

their outside option and for the cost of contractible and non-contractible effort, less the present 

value of expected future rents that the agent expects to obtain from future periods of being in 

favor.  

Finally, we can find the total cost of compensation paid each period
11

, which is     

                       . Substituting in equations 5b and 6b, we get: 
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In the limit, as discounting becomes negligible, we find that 

                                                           
11

 Note that the “G” subscript on total cost is for “General Model”; this is needed to differentiate from total cost in 
the task model. 
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      {         (
 

 
)} 

The principal chooses a non-contractible effort level to induce,  ̂, and maximizes the expected 

difference between total benefit and total cost
12

. (Recall that output,  , is the sum of non-

contractible effort,  , and an error term,  ; in expectation,   is simply  .) In the general model, 

we will show that the principal chooses to induce   .  

   
 ̂

           ̂   {     ̂   (
 

 
)} 

The first order condition can be solved to show     ̂   ; therefore,  ̂    . 

 

PROPOSITION 1: As discounting becomes negligible (  approaches 1) the general dynamic 

tournament yields optimal effort,   , such that         . 

 

3.1 Comparison of Models 

Finally, we can compare the total cost from the general model to the total cost from the 

task model. Due to      , [           ]  ⁄    [        ⁄ ]. Recall that       

   ⁄    and            . Thus,  [        ⁄ ]   [  ⁄ ] and: 

           

 
  (

 

 
) 

                                                           
12

 This could be approached in different ways; for instance, by considering a dynamic Markov tournament 
employed by competitive firms, analogous to the analysis of Lazear and Rosen (1981). In that case, competition for 
labor bids up agents’ payoffs until the value of expected output equals costs each period. Note that in this case the 
participation constraint does not bind; rather, the fixed payments must maximize agents’ present value expected 
utility subject to the zero profit constraint. Of course the expected utility of agents differs depending on their 
group, but as δ approaches 1 the solutions converge. Alternatively, we can suppose that the first-period fixed 
payoff to agents randomly placed in G1 is            in order to equate the expected utility of agents across 
groups at the start of the game. In this case the same   ,    pair maximize both    and the present value of 
expected utility for agents in G1 at the start of the game. In any case, the result is the same.  
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Therefore,        . Intuitively, the manager in the task differentiation model faces a tradeoff 

between implementing the appropriate incentives to induce optimal non-contractible effort and 

obtaining completion of the contractible tasks at least cost.  

 Recall that the principal chooses a non-contractible effort level to induce,  ̂, and 

maximizes the expected difference between total benefit and total cost. Further recall from the 

general model that the principal chooses to induce   . The principal maximizes: 

   
 ̂

           ̂   {     ̂   (
 

 
)} 

The first order condition can be solved to show     ̂   ; therefore,  ̂    . In the task 

differentiation model, on the other hand, the principal’s maximization problem is: 

   
 ̂

           ̂   {     ̂  
           

 
} 

The first order condition yields: 

      ̂  
 [

           
 ]

  ̂
 

Note that the average cost of contractible effort assigned increases as non-contractible effort 

increases, that is,  [
           

 
]  ⁄  ̂   . In order to induce higher non-contractible effort from 

agents, the principal must increase the spread between    and   . This causes the average cost of 

completing these tasks to increase because      . We can conclude that  ̂   ̂ , or     ̂ . 

Constrained by the lack of monetary incentives, the principal chooses to induce less non-

contractible effort in the task differentiation model because he faces an additional cost of 

increasing the payoff spread.  
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PROPOSITION 2: When monetary incentives are not available, the manager can use the 

assignment of tasks to motivate optimal effort. However, an inefficiency is created: non-

contractible effort will be less than   , i.e. the effort incentivized is “second-best”.   

 

IV. Extensions 

 

4.1 Error Variance 

An important result of Lazear and Rosen (1981) is that the prize spread required for a 

given effort level,  ̂, increases with the error variance. In the Lazear and Rosen (1981) 

framework, and in the general dynamic tournament model presented here, increasing the spread 

of payoffs is not costly (i.e. the tournament manager does not need to pay extra compensation to 

agents as a result of increasing        , holding total payment,        , constant). However, 

in the task differentiation model, increasing the spread between       and       is costly due to 

the convexity of the cost of contractible effort function and causes inefficiency. O’Keeffe, 

Viscusi and Zeckhauser (1984) argue that the error variance in a tournament can reflect a variety 

of phenomena such as uncertainty in environmental factors or the precision with which a 

principal monitors his agents. If it is the case that monitoring precision partially explains the 

error, then in the task differentiation model, the manager’s ability to precisely evaluate his 

employees is important for efficiency
13

. This result is in contrast to the standard tournament 

literature.  

 

                                                           
13

 Note that the existence of pure strategy equilibrium in any rank order tournament requires sufficient variance of 
the random component of agents’ output. This is required to make the equilibrium effort satisfy general incentive 
compatibility such that the effort identified by the marginal optimality conditions is not dominated by “opting out” 
of competition and choosing zero effort. Nalebuff and Stiglitz (1983) discuss this detail. As is standard, we assume 
this condition is met. 
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PROPOSITION 3: In the task differentiation model, an increase in the variance of   increases 

the  spread of payoffs,            , required to motivate any effort level. This is costly for the 

principal and decreases the elicited effort,   ̂.  

 

The task model we present suggests that constraining managers to use non-monetary 

incentives is sub-optimal. Thus, an inefficiency is created in many public organizations, such as 

government agencies and schools. However, this inefficiency may not be as bad as it seems. 

Inefficiency in tournament settings is common in other circumstances as well. A different line of 

literature which examines “limited liability” in tournaments (e.g. Krakel and Schottner, 2012) 

has a similar effect in terms of error variance, but for a different reason. Under limited liability, 

increasing the prize spread is costly because workers cannot earn negative payoffs; consequently, 

the prize for the loser is bounded at zero. Increasing the prize spread beyond this point causes the 

total prize payout to increase. Thus, an increase in the error variance – which requires an increase 

in the prize spread to maintain a given effort level – results in inefficiency. As previously stated, 

this result parallels our findings, but the source of the inefficiency differs. In our model, prizes 

are not bounded, but the cost of contractible effort is a convex function. Therefore, the 

inefficiency results from not assigning the contractible tasks evenly among the employees. 

 

4.2 Transition Probability 

Similarly to the error variance, the number of agents transitioned between groups in each 

period,  , also has an effect on the manager’s cost. Recall equation 3: 

        
       

   (  (
 
  

)  (
 
  

))

              

It is easy to see that increasing   decreases the spread in the present value of utility,        , 

ceteris paribus, and thus decreases equilibrium effort. In order to maintain a given effort level,  ̂, 

the manager will have to increase the spread of the fixed payoffs,         (or            ). 
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In the general base model, increasing the spread of payoffs has no consequence in terms of the 

cost to the manager. In the task differentiation model, however, increasing             is 

costly and increases the inefficiency of the model. Therefore, it is optimal for the manager to 

keep the number of agents transitioned as small as possible.  

 

PROPOSITION 4: In the task differentiation model, the optimal number of agents transitioned 

from    to    and vice versa is    .  

 

V. Conclusion 

 

Tournaments are frequently used to model labor market settings due to the hierarchal 

nature of employment; typically, there is a clear potential for promotion and, sometimes, 

demotion. We demonstrate that a tournament can also be used in non-hierarchal situations where 

many employees are at a similar rank, promotion does not play a significant role in employees’ 

motivation, and immediate monetary incentives are not readily available (e.g. employees in a 

government agency, teachers in a public school or associate professors in a university). While the 

manager in such an organization may not be able to set up a monetary incentive program, he can 

still induce optimal non-contractible effort by appropriately assigning contractible tasks. The 

payoff spread is determined by the difference in contractible tasks for in-favor employees and 

out-of-favor employees. Thus, the prize spread is the difference (between the in-favor group and 

the out-of-favor group) in the present value of the employees’ expected utility. However, it is 

more costly to the manager to induce optimal effort in this framework compared to a tournament 

with monetary incentives. Therefore, suboptimal effort results and the solution is “second-best”.  

Since increasing the payoff spread is costly in this task differentiation model, an increase 

in the error variance or an increase in the number of agents transitioned between groups 

contributes to the inefficiency. In both cases, the incentives underlying the tournament are 
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dulled, requiring the manager to increase the payoff spread to maintain a given effort level. A 

different line of literature which examines “limited liability” in tournaments (e.g. Krakel and 

Schottner, 2012) has a similar effect in terms of error variance, but for a different reason. As 

previously stated, this puts our model’s inefficiency into context; inefficiencies can arise for 

other reasons and thus, the task delegation setup we present is not necessarily a worse situation 

than using monetary incentives.  

A possible extension involves different values of output between the two groups. For 

example, a principal may value non-contractible effort from teachers more highly in honors 

classes (a possible task “reward” for the in-favor group) because the parents of honors students 

are more demanding, or he may value non-contractible effort more highly in lower-level classes 

(a possible task “punishment” for the out-of-favor group) due minimum standard testing that the 

school must pass
14

. Regardless of which output is valued more highly (that of the in-favor agents 

or the out-of-favor agents), the model can be solved to show that the manager will induce 

different levels of non-contractible effort to reflect the difference in output values. In the general 

model, the manager will induce effort exactly such that the marginal cost of effort in each group 

is equal to the value of output for each group. In the task model, on the other hand, the non-

contractible effort induced will depend on several factors, including the proportion of agents who 

are selected for tournament in each period. This suggests that the manager can influence the 

effort induced to appropriately reflect output values by varying the intensity with which he 

evaluates agents in each group. This extension is plausible in that it reflects a problem that 

managers are likely to face and further work in this area could lead to interesting results.   

Our framework has important roots in the literature on public organizations. Several 

papers have noted that monetary incentives are rarely used in the public sector in comparison to 

the private sector. This may be partially due to the fact that there are insufficient funds for large 

bonuses and partially due to the unpopularity of rewarding employees in public service with cash 

payments (Heinrich and Marschke 2010). Further, it is often the nature of public service, 

                                                           
14

 Similarly, in a government organization, the manager could place a high value on non-contractible effort put into 
a report that gets publicized even if this report is tedious to produce and is therefore the task “punishment” for 
the out-of-favor group. 
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especially in the case of education, that the hierarchy of the organization is fairly flat, at least for 

certain groups of employees. This does not mean, however, that managers have no opportunities 

to incentivize employees using a tournament. On the contrary, managers are frequently 

responsible for assigning courses, administrative tasks and other contractible responsibilities. 

While some programs may be very transparent, such as an “employee of the month” scheme, 

most of the managers’ decisions are probably based on which employees are “in favor” and 

which employees are “out of favor” in the current time period. Further, employees are likely to 

fall out of favor, or be “promoted” to being in favor, with the manager from time to time based 

on past performance. A dynamic Markov tournament is therefore a mechanism that may enable 

an organization without explicit performance incentives or hierarchy to achieve efficient labor 

outcomes. 

Further, our model offers a new perspective on the value to managers of flexibility over 

job assignments. Of course flexibility is important for a firm or any organization in that it allows 

adaptation to changing technology or market conditions without having to re-negotiate labor 

contracts
15

. However, we show that there may be an additional advantage of flexibility in that it 

can be used as an incentive mechanism. A manager who can use contractible task assignments to 

reward agents in favor and punish those out of favor has the opportunity to motivate non-

contractible effort by engaging employees in a competitive tournament for status.   

 

  

                                                           
15

 Wright and Snell (1998) note that flexibility in workforce can be important for a firm’s ability to meet the needs 
of a dynamic environment. 
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Appendix A 

Theoretical Work 

 

Proof of Proposition 1: 

The optimization problem is given in (8’)  
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The first order condition for a maximum is  
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As   approaches 1 this becomes 
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Which simplifies to 
  

   
[       ]   . 

 

Proof of Proposition 2: 

The firm’s optimization problem is: 
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The first order condition yields: 
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In order to induce higher non-contractible effort from agents, the principal must increase the 

spread between    and   ; this causes the average cost of contractible effort to increase because 

     . Thus,  [
           

 
]  ⁄  ̂    and     ̂   .  

 

Proof of Proposition 3: 

Recall that            is the probability that an agent in    who is selected for tournament ranks 

among the top   agents and therefore gets transitioned to   . This probability is a function of the 

error term,  , as is 
   (      )

   
. An increase in non-contractible effort increases the probability of 

ranking in the top   agents; thus, 
   (      )

   
  . 

    (      )
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{     (       )             }      if       

When the error variance increases, then 
   (      )

   
 decreases. Recall equation 5: 
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As the denominator of this equation decreases, the prize spread,            , required to 

achieve any effort level increases.  

 

Proof of Proposition 4: 

The difference in expected utilities,        , is the effective prize spread of the tournament. 

Recall equation 3: 

        
       

   (  (
 
  

)  (
 
  

))

 

Clearly,          ⁄    . An increase in the prize spread required for a given effort level 

further requires an increase in the payoff spread,            . Recall the total cost in the task 

differentiation model: 
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Clearly,      [           ]⁄   .  

Thus,       ⁄    and the manager is best off minimizing  .  
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Appendix B 

Tables 

 

Table 2.1: Transition Probabilities 

From Group ↓           To Group → G1 G2 

G1             

G2             
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CHAPTER 3 

Willingness to Pay for Goods with Unregulated and Potentially 

Misleading Labels: the Case of “Natural”-Labelled Groceries 
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Abstract 

 

Food labeling has been widely studied, especially in the context of consumer willingness to pay 

for features that are considered healthy, such as organic content. In this study, we provide insight 

to the demand effects for an unregulated phrase found on many labels: “natural”. A plethora of 

currently pending lawsuits regarding this phrase demonstrates that research is needed to better 

understand consumer misconceptions. In an experimental setting, we use an incentive-

compatible approach to elicit the willingness to pay of grocery shoppers for “natural”-labelled 

food products, several of which contain genetically modified organisms (GMOs). We find, on 

average, that there is an overall null effect of the “natural” label. However, when the sample is 

segregated based on the belief that “natural” means GMO-free, there is a positive “natural” 

premium for those who hold the belief and a negative premium for those who do not hold the 

belief. Additionally, we find evidence of framing effects which suggest that between-subject 

analysis is more reliable for this type of research than within-subject analysis. Our results have 

implications in both the public policy and legal arenas.   
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I. Introduction 

 

The phrases “all natural”, “natural”, “100% natural”, etc. have been under fire recently. 

Consumers claim that the phrases are misleading when the associated products contain artificial 

ingredients, preservatives, and/or genetically modified organisms (GMOs). Many lawsuits have 

been considered and several are currently pending
1
. These lawsuits have included popular 

products such as Wesson cooking oil, Campbell’s soup, Kix cereal, Truvia sweetener, SunChips, 

Tostitos chips, Goldfish crackers, Ben and Jerry’s ice cream, Naked juice and many others. 

Although several judges have asked the U.S. Food and Drug Administration to officially define 

and regulate the phrases (Frankel 2013), the FDA has prioritized other projects, leaving the 

decision of whether to award damages to the courts. In a recent email to USA Today, the FDA 

stated, “Defining ‘natural’ represents additional challenges when food has been processed and is 

no longer the product of the earth. Additionally, there are differing perspectives on how specific 

such a label should be” (Weise 2014). The FDA initially decided not to define the phrase in the 

1990s; since then, manufacturers have been able to use the phrase free of any regulation
2
. 

However, recent turmoil has caused some manufacturers to remove the “natural” label from their 

products
3
. In particular, the issue of GMOs in food labelled as “natural” has received intense 

                                                           
1
 Several lawsuits have been dismissed by judges and others have been settled out of court; so far, none have gone 

to trial, but there are still many cases waiting “in the pipeline” (Smith 2014). In addition to lawsuits specifically 
regarding the “natural” label (see Allen et al. 2013, Frankel 2013, and Smith 2014), there are a plethora of GMO 
labelling lawsuits, some of which also address “natural”; as of July 2013, 37 GMO labeling cases had been 
introduced in 21 U.S. states and several legislators had introduced a new potential federal law called the 
“Genetically Engineered Food Right to Know Act”, which, if passed, would require the labeling of all GM foods (see 
the Center for Food Safety and Cummins 2014). 
2
 Although the “natural” term is not actively regulated, the FDA has occasionally sent warning letters to 

manufacturers who used a clearly synthetic ingredient in their “natural” product. However, these letters often go 
ignored according to a report by The Center for Science in the Public Interest (Silverglade and Heller 2010). The 
same report explicitly points out many natural claims that may be considered “deceptive” but have been allowed 
to remain the marketplace.  
3
 In 2009, 30% of food products and 45% of beverages introduced in the U.S. were reportedly labelled “natural”; in 

2013, only 22% of food products and 34% of beverages held the label (Smith 2014).  
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media coverage as the U.S. remains one of the only developed countries to not specifically 

require GMO labelling
4
.  

To help inform the legal and policy debates, this study uses economics experiments with 

seasoned grocery shopper participants to determine whether and why there are demand effects 

generated by the use of “natural” labels. Using an incentive-compatible approach to elicit 

willingness to pay (WTP) for several grocery items with and without “natural” labels, we find 

that consumers who believe “natural” means “no genetically modified organisms” (42% of our 

sample) are willing to pay a premium for “natural” food, whereas consumers who do not have 

this belief actually exhibit a negative premium. The overall effect is near zero, although the 

identified heterogeneity suggests that “natural” labels are potentially misleading and further that 

there is potential for firms to exploit uninformed consumers.  

Food labeling has been widely studied, especially in the context of consumer WTP for 

features that are considered healthy, such as organic certification. Additionally, most labels are 

highly regulated by the government; for instance, the phrase “low fat” cannot be used for foods 

with more than 3 grams of fat per serving (serving sizes are also regulated). Especially for labels 

indicating low environmental impact, most of the theoretical literature acknowledges that there is 

some level of fraud in the market for regulated labels, but the effects of an unregulated phrase on 

consumer demand are unclear empirically. Importantly, food labeling has increasingly become 

an environmental issue rather than simply a consumer health preference issue, especially in the 

case of genetically modified ingredients. 

Due to pressure from activists and the media, many European retailers have decided not 

to carry GMO-containing foods. Conversely, GMOs are widely used in the U.S. One estimate by 

the Center for Food Safety indicated that possibly more than 70% of processed foods in U.S. 

supermarkets contain GMOs – specifically 85% of corn and 91% of soybeans, which are both 

very common ingredients in processed foods. While some consumers and organizations are 

concerned about GMOs in food, others are more optimistic. GM foods have the potential to 

reduce costs and reduce the need for chemical pesticides. Cost reductions could allow a 

                                                           
4
 According the Center for Food Safety, 64 countries have mandatory labeling of GM foods; the U.S. is one of the 

few remaining developed countries without GM label regulations. 
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considerable increase in food production, helping poor countries to address hunger concerns. 

Further, genetic enhancement technology for plants and animals may be able to create healthier 

versions of food with added vitamins and less saturated fat. The U.S. FDA states that GM foods 

are, in general, just “as nutritious as foods from comparable traditionally bred plants”. On the 

other hand, the Center for Food Safety (a non-profit organization) advocates for GM food 

labeling laws. In addition, the environmental effects of GMOs are largely unknown. Introduction 

of these new species into existing ecosystems could potentially cause irreversible damage. 

Regulating the location and spread of these species could be very costly, if not impossible.   

As awareness and demand for GMO-free products begins to heat up the U.S., research is 

needed to determine how U.S. consumers respond to GM ingredients. In particular, research 

regarding GMOs and the “natural” label is, to our knowledge, non-existent; yet, the plethora of 

pending lawsuits demonstrates that the issue requires attention. The Center for Science in the 

Public Interest urged the FDA and USDA to define “natural” and strictly enforce standards, 

while others feel that the natural label should be eliminated altogether, especially since the term 

“organic” is highly regulated and already serves the purpose of signaling fresh, non-GMO 

products to consumers (Plumer 2014). Existing literature largely focuses on the European Union, 

where the debate over GM food started more than a decade ago. Prior work has also focused 

specifically on willingness to pay for food with GM-specific labels
5
. This paper differs in several 

important ways.  

We present an experimental elicitation of willingness to pay for food with and without 

“natural” labels. Our hybrid approach answers two main questions: a survey addresses consumer 

beliefs surrounding the phrase “natural” (e.g. Do consumers believe that the foods labeled as 

“natural” contain GM ingredients?) and an auction-style experiment elicits willingness to pay for 

“natural” food. Further, we explore other dimensions, such as beliefs surrounding health and 
                                                           
5
 Lusk et al. (2005) provide a useful meta-analysis of 25 GM food valuation studies that report a total of 57 

valuations for GM food. They find that, on average, consumers place a 23% premium on non-GM food. Notably, 
European consumers placed a significantly higher premium on GM food than U.S. consumers, and studies that 
used student samples yielded similar estimates to those that used non-students. The authors also found that 
hypothetical surveys yielded higher premiums that non-hypothetical studies, studies using a willingness to accept 
measure had higher premiums than those using a willingness to pay measure, and GM oil products were more 
acceptable to consumers than GM meat products. Further, GM products that provided enhanced nutrition 
compared to their non-GM counterparts significantly decreased the premiums associated with non-GM food. 
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environmental risks associated with GMOs. The proper counterfactual for the natural label is 

unclear given the current literature so we additionally include two baseline treatments. Finally, 

we explore how the WTP for the “natural” label differs on several dimensions, including whether 

the product is used in cooking or is consumed as is, whether the product is edible or simply used 

as a toiletry (e.g. toothpaste), and whether the product is typically given to children. In total, we 

use six product pairs, where one product in the pair is “natural” and the other product in the pair 

is not advertised as such.  

Our procedures closely follow Huffman et al. (2003)
6
. Adults (age 18 and older) were 

paid to participate in a survey (including questions on demographics, beliefs regarding “natural” 

label regulation, and opinions of GMOs) and an incentive-compatible purchase procedure for 

several food items. Each “natural”-labelled food item had a “non-natural” counterpart. Although 

the brands were different, the products were almost identical; therefore, the generic labels 

presented to the participants were identical except for the “natural” indication. The Becker-

DeGroot-Marschak (BDM) mechanism (Becker et al., 1964) was used to elicit WTP for each 

variety
7
. Additional details on recruiting and procedures are provided later.  

This design allowed us to explore how factors such as natural flavors and colors, GMO 

content, and the mere existence of the “meaningless” label, can be attributed to a potential price 

premium for “natural” food. It is possible that some consumers are aware that the phrase 

“natural” is not regulated, but are still willing to pay a premium for foods with “natural” labels 

because the label signals a higher likelihood of attempted health or environmental safety concern 

by the manufacturer. This last point is documented in the eco-label literature by Cason and 

Gangadharan (2002). These authors show that, in a laboratory setting, “cheap talk” by 

                                                           
6
 Several papers by Huffman et al. (Huffman 2003; Huffman, Rousu, Shogren, and Tegene 2003; Huffman and 

Tegene 2002) used an experiment to elicit willingness to pay for GM foods under various information conditions. 
Participants bid on three food items: vegetable oil, tortilla chips and russet potatoes. The food labels were generic 
and only included information on the weight of the package, the expiration date, and the GM content depending 
on treatment. Participants were also given information on GM foods (including general information and scientific, 
human, financial and environmental impacts) from a variety of sources. As expected, the authors find that the anti-
GM perspective increases the WTP gap between GM and non-GM foods, the pro-GM perspective decreases the 
WTP gap between GM and non-GM foods, and the third-party information acts as a moderator when provided in 
addition to the other sources. Overall, WTP for GM-labeled food was 14% less than food with a plain label. 
7
 Huffman et al. actually use an nth-price auction to elicit WTP rather than the BDM mechanism. The techniques 

are similar and the BDM approach is used by Noussair et al. (2004). The details are discussed in design section.  
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manufacturers regarding product quality is not enough to maintain an efficient outcome, but it is 

enough for the manufacturers to command a price premium for their inferior, fraudulently-

labeled products. This is due to the fact that the majority of the quality claims in the market are 

true; thus, consumers are willing to pay a premium even under uncertainty.  

Noussair et al. (2004) conducted a similar study regarding GMOs. These authors allowed 

participants in France to taste-test several varieties of biscuits before sequentially revealing 

information regarding GM content, information on GMOs in general, and finally, the brand 

names of the biscuits. The authors used a thorough training process to explain the purchase 

procedure: they allowed subjects to discuss the optimal bidding strategy and transitioned subjects 

to the purchase procedure using both induced value and real-product training rounds
8
. The results 

indicated that many participants were willing to purchase the GM varieties if the prices were 

sufficiently low. This is a surprise given that French surveys indicated an overwhelming 

opposition to GM foods; at the time, opposition to GM foods was very high in European 

countries
9
.  

Our study differs in that it focuses on a potentially misleading label, not GM content per 

se. In the U.S., the lack of regulation regarding informative labels is the emphasis of recent 

lawsuits. Therefore, we are analyzing consumer knowledge and perception of foods and labels as 

well as price premiums that may be associated with different interpretations of the phrase 

“natural”. Primarily, we find that consumers who believe that “natural” means “no genetically 

modified organisms” are willing to pay a premium for “natural” food, whereas consumers who 

do not explicitly report this belief actually exhibit a negative premium. This result holds for a 

variety of different products. Further, explicitly pointing out the lack of a “natural” label for 

standard products significantly affects the premium; transparency could be important from a 

marketing standpoint. Finally, we find evidence of framing effects which suggest that between-

                                                           
8
 We use the same incentive-compatible purchase procedure and use similar training exercises. 

9
 Further, the 1% GM content threshold was treated differently than the 0.1% threshold, and the 0.1% threshold 

was treated differently from GM-free. The information revelation raised the price of the GM-free product; it also 
raised the prices of some of the GM-containing products, but not enough to overcome the drop in price from when 
GM content was revealed. Finally, revealing the brand names of the products raised prices for most of the 
products. 
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subject analysis is more reliable for this type of research than within-subject analysis. Section II 

outlines our experimental design, Section III presents the results and Section IV concludes.  

 

II. Experimental Design 

 

The design includes two equally important parts: a purchase procedure and a survey. We 

used the Becker-DeGroot-Marschak (BDM) mechanism (Becker et al., 1964) to sell 12 grocery 

products (6 product pairs) to 164 adult grocery shoppers in Knoxville, TN. Each product pair 

included a “natural”-labelled version and a standard version (a product that does not say 

“natural” on the label). The two versions were not the same brand, but were otherwise very 

similar. We used an eclectic variety of products to broaden the scope of our results: potato chips, 

peanut butter, crackers, cooking oil, cereal and toothpaste. Subjects viewed generic labels of the 

products and placed bids. The generic labels were identical except the natural version said 

“natural”, “all-natural”, or “100% natural”, depending on how the actual natural product was 

advertised. Prior to bidding, subjects participated in several training exercises to familiarize them 

with the BDM. After bidding, the subjects filled out a survey which elicited demographic 

information and beliefs and opinions regarding the “natural” label and GMOs. Table 3.1 depicts 

the sequence of events for each session. In total, 8 sessions were conducted at the University of 

Tennessee, Knoxville Experimental Laboratory in June 2014.  

Our treatments varied on two dimensions. First and foremost, we (randomly) assigned 

subjects to see either the natural labels or the standard labels first. Subjects bid in two blocks: 

Part 1 and Part 2. Half the subjects saw natural labels in Part 1 and standard labels in Part 2, and 

the other half saw standard labels in Part 1 and natural labels in Part 2. We also randomized the 

order of the six products within each Part. Secondly, we varied whether we explicitly told 

subjects that the standard products were not advertised as natural. This provided two baselines: 

standard labels without any explanation and (the same) standard labels, accompanied by a 

statement that indicated the associated products do not say “natural” on the labels. The existing 
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literature does not provide clear guidance on which baseline is appropriate for our situation, 

which is why we include both. We discuss this in detail later.  

 

2.1 Purchase Procedure 

The purchase procedure we used was the Becker-DeGroot-Marschak (BDM) mechanism 

(Becker et al., 1964). Similar to a second-price auction, the dominant strategy for subjects is to 

bid their maximum willingness to pay for the item being sold, regardless of risk preference. 

Unlike an auction, however, there can be multiple winners, thus decreasing the potential for non-

demand revealing bids due to competition considerations
10

. In short, subjects place a bid for the 

item for sale. Next, a random price is determined by rolling dice. The distribution of prices is 

uniform over a predetermined interval
11

. For instance, we used an interval of $0.00 - $5.99 for 

our main experiment; to achieve any price within the interval with equal probability, we asked a 

volunteer to roll a six-sided die with numbers 0-5 for the dollars, and then roll a ten-sided die 

with numbers 0-9 twice (once for each cents place)
12

. 

Participants were not aware of the interval when placing their bids. Instead, they were 

told that the interval would be capped at the maximum expected willingness to pay based on 

previous research. We pre-determined the intervals based on the retail prices of the products and 

the results from our pilot session. Finally, the participants’ bids were compared to the random 

price. If a participant’s bid was higher than or equal to the random price, they purchased the item 

                                                           
10

 Noussair et al. (2004) also use this procedure. All participants have a positive probability of winning; thus, the 
frequency of insincere bidding is reduced. 
11

 We considered programming our experiment using zTree software, as is typical for many experiments. However, 
we decided to use a traditional pen-and-paper setting, rather than a computerized mechanism. Participants were 
instructed to simply write their bids on paper. We asked for a volunteer to determine the sale prices by rolling 
dice. Given that the subjects were not college students, and therefore unfamiliar with the computerized laboratory 
setting, we believe that the transparency of the randomization process was important. While this pen-and-paper 
setting required additional data input time, the experiment was simple enough that the benefits of transparency 
outweighed the costs of data entry. 
12

 For the training rounds, we used different intervals (e.g. $1.00 - $4.99 for a training round where the good for 
sale was $3.00). We used a polyhedral dice set (which includes dice with a variety of sides and numbers) to achieve 
the intervals we needed. Participants were told that the intervals would not all be the same. Further, they were 
made aware of the interval used for the round only after they placed their bids for the round.  
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and paid the random price. If a participant’s bid was lower than the random price, they did not 

purchase the item and did not pay anything.   

 

2.2 Training 

Subjects participated in several training exercises prior to the actual experiment. The 

purpose of the training was to ensure that subjects understood the best bidding strategy for the 

BDM. Prior work has differed on how to train subjects; some experimenters tell subjects the best 

strategy and explain it using examples (e.g. Plott and Zeiler 2005), while others provide a series 

of induced value rounds and let subjects figure out and discuss the strategy on their own (e.g. 

Noussair et al. 2004). We used a hybrid approach. First, we described the purchase procedure to 

the subjects and had them answer a set of practice example problems, assuming that the item for 

sale is a $5.00 bill (e.g. “Suppose you bid $3.20 and the random price determined by the 

volunteer is $4.50. Would you purchase the $5.00 bill? If so, what price would you pay?”). They 

were paid for correct answers. Subsequently, we discussed the optimal strategy with the 

participants and allowed them to ask questions.  

Next, we implemented two training rounds where the item for sale was an amount of 

money ($7.00 and $3.00). For each of these training rounds, subjects placed a bid and then we 

played out the purchase procedure (rolling the dice and determining earnings) several times to 

allow for learning situations (random prices above and below the value of the sale item) and to 

allow the subjects to earn cash. For instance, if a subject bid $6.90 in the first training round and 

the random price for the first trial was $5.60, then the subject earned $1.40 for that trial ($7.00 - 

$5.60). Rarely, subjects earned negative money for a trial if they bid higher than the value of the 

item. Most subjects bid exactly $3.00 (the optimal bid) or within 10% of $3.00 by the time we 

got to the second training round
13

.  

                                                           
13

 As further proof (although possibly biased proof) that subjects understood the instructions, more than 90% of 
subjects responded “4” or “5” to the question, “Did you understand the instructions for the experiment today? 
Please rate your understanding on a scale from 1 to 5” where “5” was “I understood very well”.  
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Finally, as the last part of the training, we sold an actual grocery item. The purpose of this 

training round was to allow subjects to see that they actually receive the items they purchase (we 

physically handed them the item if they purchased it) and to allow them to see that the optimal 

strategy is the same, regardless of whether the item for sale is an amount of money or a grocery 

product. There is precedent for the importance of this type of training in the literature: Noussair 

et al. (2004) use both induced value rounds and a training round with an actual product. In our 

experiment, we instructed the subjects to choose beforehand whether they would like to bid on a 

Snickers bar or a granola bar
14

. They placed their bids and then a random price was determined 

by rolling dice from a predetermined price interval. We immediately distributed the items to the 

subjects who purchased. Subjects were told ahead of time that any purchases they made would 

be subtracted from their earnings. We have no interest in the bids for this round in terms of our 

research question; this round was used purely as a training exercise.   

 

2.3 Procedures, Products and Labels 

After the training, we proceeded to the actual experiment where subjects placed bids on 

the grocery items. We used a total of 12 grocery items: a natural-labelled variety and a standard 

variety (without a natural label) for each of six products: canola cooking oil, kettle-cooked potato 

chips, creamy peanut butter, frosted bite-size wheat cereal, wheat crackers, and mint-flavored 

toothpaste. We used an eclectic set of products for several reasons. First, we wanted to use a 

product that is currently under lawsuit for using the “natural” label; Wesson cooking oil fits this 

requirement. Additionally, several varieties of chips have been involved in lawsuits in the past. 

Second, we wanted to use a non-edible product and the toothpaste fits this requirement.  

Third, we wanted to include a product that is typically given to children; both the peanut 

butter and the frosted bite-size wheat cereal could fall under this condition. According to a report 

by The Center for Science in the Public Interest (Silverglade and Heller 2010), “products 

claiming to be natural, particularly those aimed at parents of young children, have a competitive 

                                                           
14

 The granola bars were gluten-free and nut free. This provided an option for participants with popular dietary 
restrictions.  
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edge in the marketplace”. We hypothesize that the natural premium for products typically given 

to children may be different from the premium for other products – we also asked about the 

number of children in the household in our survey. Fourth, we thought it was important to have 

products that could be consumed immediately or soon after the experiment concluded (as 

opposed to products that are used in cooking, like cooking oil). The potato chips and the wheat 

crackers fit this need.  

Fifth, and possibly most importantly, it was necessary to have some products that 

typically contain genetically modified organisms (GMOs). Although the subjects did not know 

whether the particular product in our experiment contained GMOs, they may have had some 

knowledge regarding whether the type of product has been associated with GMOs. Major brands 

of cooking oil, potato chips and wheat crackers have all been publicly associated with GMOs. 

For instance, several organizations publish lists to guide consumers on how to eat “non-GMO”. 

Lays potato chips (all varieties), Ruffles potato chips (all varieties), and Ritz crackers are some 

of the brand names on the “do not buy” list.  

Subjects placed bids in two Parts: a “natural” Part and a “standard” Part
15

. We 

randomized which Part came first. Also, the order of products was randomized within each Part. 

This design allows us to examine both between- and within-subject effects. For the initial 

between-subject analyses, we only use the Part 1 bids (for half of the subjects, this is the natural 

products and for the other half this is the standard products). Subjects were informed that one 

round would be randomly chosen from each Part to be binding, but that the binding rounds 

would not be determined until after all bids had been placed. A volunteer rolled a six-sided die to 

determine the binding rounds at the end of the experiment. The random prices were then 

determined (also via a volunteer rolling dice) only for the binding rounds. After filling out the 

survey, subjects were paid in cash (in private) and were given the goods (if any) that they 

purchased. The bid packets and surveys were matched only by ID number to preserve 

anonymity.  

                                                           
15

 We did not use these “natural” and “standard” names in the experiment, but we use them here to refer to labels 
with “natural” and labels without “natural”.  
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The labels for the products were generic and included information such as the type of 

product, the size, the flavor, etc. We chose pairs of products that were almost identical except for 

the natural label. For instance, both the natural and standard versions of the peanut butter were 

“creamy”, were 16 ounce containers, and had 0 grams trans-fat per serving. Both the natural and 

standard versions of the toothpaste were “clean mint” flavor, were American Dental Association 

Accepted, contained fluoride, were labelled “whitening”, and were approximately 4 ounce 

tubes
16

. The generic labels for both products in each pair were identical with the exception of the 

natural version saying “natural”. In other words, if there was a slight difference on the labels of 

the two products, we did not include that difference on the generic label
17

. Please refer to Figures 

3.1 and 3.2 in Appendix B for examples of our labels and pictures of the actual products used. 

(Note that participants only viewed the generic labels when bidding, not the actual products.) 

Participants were informed that all of the information on the generic labels was completely 

accurate to the actual product label.  

Finally, we also included potential brand names on our labels (this was identical for both 

the natural and standard labels). We did this to help the subjects to understand which type of 

product was for sale (e.g. a “wheat cracker” could take various forms, but most people know 

what type of product to picture when they are informed that the product is similar to a Ritz 

cracker). The brands listed were not necessarily the brands of the actual products, but all of the 

actual products were major brands (not store brands).  

It is unclear what the proper counterfactual is for the “natural” label. To the best of our 

knowledge, there are no existing products that say “Unnatural” or “Not Natural” on their labels. 

Therefore, our standard labels simply did not say anything about natural. However, this does not 

necessarily mean that the product is not “natural” in the sense that it may or may not reflect the 

                                                           
16

 We were able to find some of the product pairs in the exact same size containers. However, if the containers 
were similar, but not exactly the same, we included approximate sizes on the generic label. We always used an 
approximate size that was smaller than or equal to the size of the actual product. This way, participants would 
never pay more than they intended for a product, given its size.  
17

 For instance, the natural crackers said “Entertainment” on the actual product label, but the standard variety did 
not say “Entertainment”; even though the two products are extremely similar, the brand we chose for the 
standard variety did not advertise their product as a party cracker, or a cracker typically used “for entertaining”. 
Thus, we simply did not include this detail on our generic labels; our labels were identical with the exception of 
“natural” on the natural variety.   
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beliefs that subjects have regarding the natural label. For instance, a product that is not labelled 

“natural” doesn’t necessarily contain artificial flavors or colors. (Many of our subjects indicated 

in the survey that they believe “natural” means “no artificial flavors” and “no artificial colors”). 

Therefore, we included additional treatments in which we explicitly informed subjects that the 

products included in a particular Part do not say “natural” on their labels
18

.  

The literature does not provide clear guidance on this issue. Huffman et al. (2003) 

examine labels which indicate that a product does or does not contain GMOs (i.e. “This product 

contains GMOs” or “This product does not contain GMOs” or no statement regarding GMOs.). 

However, regulations regarding this type of labelling (“This product contains GMOs”) exist in 

Europe and are under consideration in some states in the U.S. Conversely, it seems highly 

unlikely that a regulation will ever exist which requires manufacturers to state “This product is 

not natural”, especially since the label is completely unregulated now
19

. Therefore, we 

implement what we call “explicit” and “implied” treatments so that we can use both 

counterfactuals. In the “explicit” treatments, a piece of paper with subject-specific instructions 

informed subjects that the products which followed did not say “natural” on the actual labels. In 

the “implied” treatments, the subjects just viewed the standard labels without any indication of 

whether or not the actual products were “natural”.  

This allowed us to vary the transparency that subjects face. In reality, this level of 

transparency varies at grocery stores. For instance, in the case of cooking oil, both the “natural”-

labeled variety and the variety without a “natural” label literally sit adjacent to one another on 

the shelf in most major grocery stores – it is very obvious that a “natural” variety exists. On the 

other hand, we had to go to two different stores to find “natural” and standard varieties of the 

wheat crackers which were otherwise identical. The likelihood that consumers notice whether a 

product says “natural” (and therefore have the opportunity to pay a premium for the natural 

variety) may depend on how obvious it is that the “natural” alternative exists.    

                                                           
18

 Since different subjects saw the standard labels at different times (some saw the natural labels first and some 
saw the standard labels first), we did not state this verbally. Instead, we included a piece of paper following the 
main instructions for the Part that had information specific to the subject. Subjects were told to read this page 
silently before bidding.  
19

 We expect that if the FDA does define the term “natural”, it will probably be defined similarly to phrases like 
“low fat”; the label is not required, but if the manufacturer does use it, their product must meet certain conditions.  
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2.4 Survey 

The survey included questions regarding demographic information, general questions 

about grocery shopping behavior, and questions eliciting knowledge and beliefs about “natural” 

foods and foods containing GMOs. For instance, one important question read: “What do you 

think the phrases ‘natural’ or ‘all natural’ actually mean when printed on a food label? (Please 

check all that apply.)” with options such as “No artificial flavors”, “No artificial colors”, “No 

pesticides”, “No dyes”, “Limited processing”, “Environmentally-friendly”, “No genetically 

modified ingredients”, and “Organic”. Of course, in actuality, “natural” is not regulated and 

therefore has no real meaning, but many participants checked at least a few options from our list 

of 10 options. Other participants checked “None of the above” and still others wrote in things 

like, “Only a few ingredients”.  

Other questions asked participants to rate their agreement with various statements such as 

“I am concerned that food products containing genetically modified organisms (GMOs) pose a 

health risk”, “I am concerned that the production of products containing genetically modified 

organisms (GMOs) poses an environmental risk”, and “Foods labelled ‘natural’ or ‘all natural’ 

are healthier than foods without a ‘natural’ or ‘all natural’ label.” For these questions, subjects 

rated their agreement on a scale from 1 to 5.  

 

2.5 Participants  

In total, 164 non-student grocery shoppers living in the Knoxville, TN area participated 

in the experiment. In an effort to match the demographics of U.S. grocery shoppers, we use a 

disproportionate number of females and people who indicated that they shop on a regular basis 

for multiple-person households. Katsaras et al. (2001) report that 76% of grocery shoppers are 

women; our sample is 78% women. A survey by the Time Use Institute
20

 reported that the 

average age of grocery shoppers is 47 and the median income is $50,525; the average age of our 

                                                           
20

 The Time Use Institute: “Grocery Shopping: Who, Where and When” 2008. The data used is from The American 
Time Use Survey, sponsored by the U.S. Dept. of Labor and fielded by the U.S. Census Bureau. 
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sample is 46.8 and the median household income is within the range of $40,000-$60,000 

(subjects only reported their household income range).  

While many experiments use college students as participants, this demographic group is 

not entirely appropriate for our purposes. As Huffman et al. (2003) point out, the share of 

college-age grocery shoppers is below the share of college-age individuals in the population. We 

pre-screened members of the Knoxville community based on demographics; the vast majority of 

our participants are employed full-time. We paid our recruits $10 for showing up, $15 for 

completing the survey, and additional money from the practice calculations and training rounds. 

Subjects earned about $35 on average
21

 to come to the University of Tennessee to participate 

(about 90% of subjects earned between $30 and $40). Each session lasted about 70 minutes.   

 

III. Results 

 

3.1 Between-Subject Analysis Using Part 1 Bids 

The experimental design allows for identification of labelling effects using multiple 

comparisons
22

. First, we analyze only the Part 1 bids in order to achieve a clean, between-subject 

comparison. Approximately half of our subjects bid on products with natural labels first and the 

other half bid on products with standard labels first, allowing such a comparison. The results 

(displayed in Table 3.3) indicate that there is a statistically significant overall impact of the 

natural label for those who believed that “natural” means “no genetically modified organisms”. 

We further break this down by product and see that the effect is significant for cereal, crackers 

and oil, weakly significant for peanut butter, and insignificant for chips and toothpaste. The 

willingness to pay for peanut butter could be affected by the fact that some “natural”-labelled 

peanut butters have separation of oils, requiring them to be stirred; some subjects could be 

                                                           
21

 The average earnings before the subjects had the opportunity to purchase grocery items was about $35. 
Presumably, subjects only purchased goods at prices that were favorable to them, so the actual average benefit to 
a participant was probably higher than $35.  
22

 Table 3.2 provides variable descriptions and means. 
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willing to pay more for varieties with additives, which keep the peanut butter spreadable. It is 

also plausible that “natural” doesn’t have as strong an effect for non-edible items, such as 

toothpaste. Further, it could be the case that when people purchase chips, their aim is not to be 

healthy. Chips are generally snack foods and some buyers’ first priority with snacks could be 

taste; the “natural” label may lead them to believe that these “healthier” versions are less tasty.  

Table 3.4 displays several treatment effects of interest based on the model in Table 3.3. 

We see that the “natural” premium for subjects who believe that “natural” means no GMOs is 

significant for the “explicit” treatment, but not for the “implicit” treatment. This suggests that 

when the lack of a “natural” label is specifically pointed out, subjects are willing to pay less for 

the standard products. Thus, it was worthwhile to include both baselines in our design. While the 

experimental setting is not necessarily representative of typical shopping experiences, this result 

implies that when consumers are more readily confronted by the difference in labels (e.g. when 

the two products sit adjacent to one another on the shelf), they are more likely to pay a premium 

for the “natural” product. During our research, we noticed several products for which this is the 

case: the “natural”-labelled and standard varieties of cooking oil, toothpaste, ice cream, mustard, 

hamburger seasoning and chips are all located next to one another in the grocery store. For other 

products, such as crackers, juice and cereal, shoppers have to visit either the “natural” foods 

section or another store to find “natural” varieties. For the “explicit” treatment, the significant 

premiums for subjects who believe “natural” means no GMOs range from $0.47 (chips) to $0.87 

(cooking oil). The products had retail prices in the range of $2.00 to $5.00 so these premiums are 

substantial
23

.  

Interestingly, the “natural” label itself (for subjects who did not believe that “natural” 

means no GMOs) actually had a negative premium for most products, though this is only 

statistically significant for the “implied” treatment
24

. Again, we hypothesize that some subjects 

                                                           
23

 The approximate retail prices are as follows (retail prices varied slightly from store to store depending on sales 
and promotions): peanut butter, $3 - $4; crackers, $3 - $4; cereal, $4 - $4.75; cooking oil, $3 - $3.50; potato chips, 
$2.50 - $3.50; toothpaste, $2.50 - $4. 
24

 The “explicit” treatment raised the premium enough that it is not significant, but it is still negative. 
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may have believed that “natural” means “healthier” and that healthy products are less tasty
25

. 

The last two rows in Table 3.4 provide the weighted effect for the “explicit” and “implicit” 

treatments. Approximately 42% of our sample believed that “natural” means no GMOs; thus, the 

no GMO effect is weighted by this percentage. These weighted effects are insignificant for most 

products so we conclude that there is a null overall effect of the “natural” label. However, clearly 

the subgroup who held the belief behaved quite differently. This could imply that manufacturers 

may benefit from holding a portfolio of products to capture rents from different segments of the 

market.  

Although we do not report the results here, we also execute this model with additional 

demographic and shopping behavior variables. However, these variables are not very 

consequential and we justify removing them with statistical tests. The only statistically 

significant factors are gender and the number of trips taken each week to purchase groceries. 

Subjects who take one additional trip each week are, on average, willing to pay $0.13 more in the 

“All Goods” model. Perhaps this is because these subjects are more familiar with the retail prices 

of different types of products and are thus less uncertain about how much they are willing to pay. 

We also explore the effects of other beliefs regarding “natural”, such as “no artificial content” 

and vague claims such as “limited processing” or “environmentally-friendly”, but do not find 

significant effects. Instead, it appears that “no genetically modified organisms” is the most 

important factor contributing to the “natural” premium among our variables of interest
26

.   

 

  

                                                           
25

 In fact, we do ask about “natural” and “healthy” in our survey. Some subjects did indicate that they believe 
“foods labelled natural are healthier than foods without a natural label.” However, we cannot prove that subjects 
believed healthier foods are less tasty; we simply observe a negative premium and suggest this as a possibility.  
26

 Responses to our Likert-scale survey questions are also explored as possible determinants of the “natural” 
premium in a within-subject analysis. For instance, we include subjects’ Likert scale responses to questions like, 
“Please rate your agreement with the following statement on a scale from 1 to 5. ‘I am concerned that the 
production of products containing genetically modified organisms (GMOs) poses an environmental risk’”, where 5 
represents “I completely agree”. However, the results are mostly insignificant. Further, the within-subject analysis 
is possibly compromised due to framing effects biasing the Part 2 bids. Details are discussed later.  
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3.2 Part 2 Bids and Framing Effects 

 Next, we turn to the Part 2 bids. Note that this analysis is not as clean as using Part 1 

bids. When the subjects placed bids in Part 2, they were probably aware of our research question 

– i.e. if they saw the standard labels first and natural labels second, or vice versa, they could infer 

by Part 2 that we were testing their willingness to pay for the natural label. Indeed, we do find 

quite a difference between Part 1 and Part 2. We replicated the model used in the Part 1 analysis 

but restricted it to Part 2 bids. The associated treatment effects are displayed in Table 3.5. 

Contrary to the Part 1 analysis, there is no longer preference heterogeneity conditional on beliefs 

that “natural” means GMO-free. However, there is a significant positive effect of the natural 

label itself. It is more pronounced in the “explicit” treatment, but is also statistically significant 

in the “implied” treatment for cereal and toothpaste.  

 We hypothesize that framing or experimenter effects play a large role in Part 2. At this 

point, subjects probably realized that the study was focused on the natural label. Further, subjects 

may have felt that the experimenters were looking for a “natural” premium (e.g. “the labels have 

changed between Part 1 and Part 2; the experimenters must be expecting me to behave 

differently”). This framing or experimenter effect could have outweighed the effect of the 

subjects’ own beliefs regarding the label; thus, the premium cannot be attributed to the “no 

GMO” belief. This finding has important design implications for future work. Experiments and 

surveys should be designed so that a clean, between-subject analysis can be extracted. While 

within-subject calculations may be illustrative in some cases, researchers should exercise caution 

when interpreting data.    

 

3.3 Beliefs Regarding “Natural” 

It is apparent from Table 3.2 that the majority of our subjects do believe that “natural” 

has some meaning; in addition to the means for the specific beliefs, which range from 15% of the 

sample to 70% of the sample, the average number of characteristics reported as beliefs was 4.24. 

This is consistent with a recent article published in USA Today, which reports that “two-thirds of 
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Americans think the word “natural” on the label of a packaged or processed food means it 

contains no artificial ingredients, pesticides or genetically engineered organisms… under federal 

labeling rules, the word natural means absolutely nothing
27

” (Weise 2014).  

 We examine beliefs a little further to determine how they differ based on demographics. 

Not surprisingly, subjects who are more highly educated and subjects with young children report 

knowing significantly more about GMOs. Older subjects are more likely to believe that GMOs 

pose risks to human health or the environment; they are also more likely to believe foods labelled 

“natural” are healthier than foods without a natural label. Higher income, a higher level of 

educational attainment and being female all reduce the probability that subjects believe “natural” 

labels indicate a vague claim such as “limited processing” or “environmentally-friendly”. From a 

marketing standpoint, the heterogeneity in beliefs could mean that manufacturers might benefit 

from holding portfolios of products containing both “natural” and standard versions. However, 

demographics cannot predict the likelihood of believing “natural” means no GMOs, which is the 

belief that actually leads to a premium.  

We conclude that, on average, there is a null effect of the “natural” label. However, when 

the sample is segregated based on the belief that “natural” means no GMOs, there is a positive 

“natural” premium for those who hold the belief and a negative premium for those who do not 

hold the belief. A policy to regulate phrases containing the word “natural” could possibly be 

welfare-enhancing for both those who believe “natural” means GMO-free as well as those 

without this belief for whom the phrase “natural” fosters negative associations.  

 

IV. Conclusion 

 

To our knowledge, this study is the first to examine the commonly used “natural” food 

label, which is currently unregulated. We execute an experiment to examine consumer response 

                                                           
27

 The article reports the results of a recently released survey by the magazine, Consumer Reports. 
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to the label using a variety of grocery products. A hybrid approach is used to both elicit 

willingness to pay (WTP) for foods with and without the label and elicit subjects’ knowledge and 

beliefs surrounding the label and genetically modified organisms (GMOs). An incentive-

compatible procedure is used to sell 12 products (6 product pairs). Each product pair consists of 

a “natural”-labeled variety and a variety without a “natural” label. A survey is used to better 

understand subjects’ beliefs regarding the meaning of the label and issues related to GMOs, 

including health and environmental risks.  

We find that the premium associated with the “natural” label is highly sensitive to the 

belief of the buyer regarding GMO content. Buyers who believe that “natural” means “no 

genetically modified organisms” are willing to pay a premium for a “natural” product, while 

buyers without the belief instead have a negative premium. We break this down by product in 

our between-subject analysis and find that the effect is significant for most products used in our 

experiment. Further, we find that explicitly pointing out the lack of a “natural” label on standard 

products decreases WTP relative to only plain labels. Finally, framing effects significantly 

change the results for the Part 2 labels, which suggests that future work should not rely solely on 

within-subject analysis.  

Several pending lawsuits regarding GMOs in foods labeled as “natural” partially 

motivate our paper. The “natural” label is not regulated in the U.S. Further, labelling of GMOs in 

food products is not required in the U.S., even though it is required in almost every other 

developed country. Thus, the pending lawsuits will set an important precedent. The results of this 

study suggest that there is some merit to the plaintiffs’ complaints; many of our subjects believed 

that the “natural” label has some meaning. Since the label is unregulated, “natural” could be a 

misleading claim. However, only the “no GMO” belief for the “natural” label is actually 

associated with a WTP premium. Forty-two percent of our sample held this belief, and, on 

average for the sample, the effect is zero. Further, subjects arrived at our laboratory with 

homegrown beliefs and we cannot necessarily rule out that there could be unobservable effects 

correlated with the “no GMO” belief. It could be case that consumers who believe “natural” 

means “no GMOs” are also those who exhibit a positive premium due to unobserved factors 

correlated with this belief. We can say that there is a correlation between those who believe 



109 
 

“natural” means “no GMOs” and those who are willing to pay a premium for a product labelled 

as “natural”. Regulation of the “natural” label could help to resolve the information asymmetry.  

If policymakers do decide to regulate the “natural” label, there are several directions in 

which policy could move forward. One option is to define the “natural” label, requiring 

manufacturers to meet certain conditions before using the label on their products. According to 

our study, the conditions could include: no genetically modified material, no artificial flavors or 

colorings, no pesticides and no dyes, as many of our subjects believed that this is what “natural” 

indicates to them. Another option is to get rid of the “natural” label, banning it from food 

products. The “organic” label is regulated and already conveys many of the characteristics that 

consumers look for in the “natural” label. The final option, and possibly the most politically 

feasible option, is to require disclosure of GMO content on food labels. Non-profit organizations, 

such as the Center for Food Safety, have been advocating for GMO labelling for years. 

Additionally, most other developed countries have GMO labelling laws. Although this option 

would leave the “natural” label ambiguous, it would clarify the issue for consumers who may 

currently believe that “natural” means “no genetically modified organisms”. Since we find a 

premium for subjects with this belief, the policy would be welfare-enhancing.  

Future work could include a wider range of products to determine whether these results 

hold for different characteristics; for instance, shampoo or soap (many of which are labelled 

“natural”) could be used. Additionally, one could compare the premiums associated with a “non-

GMO” label (or an “organic” label) to the “natural” label by using these different labelling 

schemes in a controlled experiment. Finally, as lawsuits involving “natural” and regulations 

involving GMO labelling are currently evolving in the United States, one could take advantage 

of future policy changes as natural experiments to determine whether and under what 

circumstances consumers are willing to pay premiums for health and environmental-related 

labels.  
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Appendix A 

Tables 

 

Table 3.1: Session Schedule 

Step 1 Introduction and read training instructions 

Step 2 
Allow subjects to answer practice calculations; moderators grade calculations as subjects 

finish, and record earning on the Record Sheet 

Step 3 
Present answers to practice calculations to the group, discuss optimal bidding strategy, and 

answer questions 

Step 4 

Training Round 1: Read instructions, allow subjects to place bids on the item ($7), determine 

random prices by having volunteers roll dice (4 trials), and allow subjects to calculate their 

earnings 

Step 5 

Training Round 2: Read instructions, allow subjects to place bids on the item ($3), determine 

random prices by having volunteers roll dice (4 trials), and allow subjects to calculate their 

earnings 

Step 6 

Training Round 3: Read instructions, allow subjects to choose to bid on the granola bar or the 

candy bar (display both), allow subjects to place bids, determine a random price by having a 

volunteer roll dice, allow subjects to record costs on Record Sheet if they made a purchase, 

and give items to subjects who made purchases 

Step 7 Main Experiment, Part 1: Read instructions, allow subjects to place bids 

Step 8 Main Experiment, Part 2: Read instructions, allow subjects to place bids 

Step 9 

Determine one binding round from each Part by having a volunteer roll a 6-sided die, 

determine random prices for each binding round by having a volunteer roll dice, and allow 

subjects to record costs on Record Sheet if they made a purchase(s) 

Step 10 Allow subjects to fill out survey 

Step 11 Pay subjects and give them grocery products if they made a purchase(s) 

 

  



113 
 

Table 3.2: Variable Definitions and Means 

Variable Name Definition Mean 

Age = subject’s age 46.75 

Female = 1 if subject is female 0.78 

Primary = 1 if subject is the primary grocery shopper for the household 0.88 

Trips = number of trips subject takes to the grocery store each week 1.86 

Natural = 1 if bid was for a natural-labelled product; = 0 for standard product  

Standard = 1 if bid was for a standard product; = 0 for natural product  

Explicit 
= 1 if subject was explicitly informed that the product was not 

labelled natural 
 

Natural First = 1 if the subject bid on the natural products first  

Belief: No Art Flavor 

= 1 if subject reported that he believed “natural” meant “no artificial 

flavors”, “limited processing”, etc.; 0 otherwise 

0.70 

Belief: No Art Color 0.68 

Belief: No Art 

Preservatives 
0.68 

Belief: No GMO 0.42 

Belief: No Pesticides 0.41 

Belief: No Dyes 0.38 

Belief: Limited 

Processing 
0.33 

Belief: Higher 

Quality 
0.25 

Belief: Environment-

Friendly 
0.16 

Belief: Organic 0.15 

Total Beliefs 
= total number of characteristics that the subject reported as his 

beliefs regarding the “natural” label (min = 0, max = 10) 
4.24 

Healthy = the number subject indicated on a Likert scale from 1-5 to indicate 

agreement  with these statements: “Foods labelled natural are 

healthier than foods without a natural label”, “I am concerned that 

food products containing GMOs pose a health risk”, “I am 

concerned that we as a society do not fully understand the impacts of 

GMOs”, etc. Please see survey questions 22, 24, 25, 26 and 28 for 

exact wording. 

3.18 

GMO Know 2.71 

GMO Health Risk 3.58 

GMO Env Risk 3.55 

GMO Concern 4.16 

GMO Pay 
= 1 if subject indicated that he is willing to pay extra for food that 

does not contain GMOs; 0 otherwise 
0.62 
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Table 3.3: Between-Subject Analysis Using Part 1 Bids 

Dependent variable: Bid, in $ 

 

Variable 
All 

Goods 

Peanut 

Butter 

Cereal Crackers Chips Oil Tooth-

paste 

Natural ×  

Belief: No GMO 

0.54** 

(0.19) 

0.43* 

(0.25) 

0.80** 

(0.25) 

0.58** 

(0.20) 

0.29 

(0.21) 

0.89** 

(0.27) 

0.29 

(0.21) 

Natural 
-0.43** 

(0.19) 

-0.01 

(0.28) 

-0.47* 

(0.25) 

-0.54** 

(0.20) 

-0.60** 

(0.22) 

-0.50* 

(0.27) 

-0.47** 

(0.22) 

Standard ×  

Belief: No GMO 

-0.18 

(0.21) 

0.08 

(0.29) 

-0.08 

(0.28) 

-0.18 

(0.21) 

-0.34 

(0.24) 

-0.26 

(0.28) 

-0.29 

(0.22) 

Standard × Explicit 
-0.25 

(0.21) 

-0.02 

(0.29) 

-0.15 

(0.27) 

-0.33 

(0.21) 

-0.44* 

(0.24) 

-0.21 

(0.27) 

-0.36 

(0.22) 

Female 
0.31** 

(0.15) 

0.22 

(0.21) 

0.12 

(0.21) 

0.31* 

(0.16) 

0.38** 

(0.17) 

0.62** 

(0.22) 

0.23 

(0.17) 

Trips per Week 
0.13** 

(0.06) 

0.07 

(0.07) 

0.17** 

(0.07) 

0.09 

(0.06) 

0.17** 

(0.06) 

0.19** 

(0.08) 

0.11* 

(0.06) 

constant 
1.70** 

(0.23) 

1.90** 

(0.36) 

1.91** 

(0.28) 

1.63** 

(0.24) 

1.52** 

(0.25) 

1.59** 

(0.30) 

1.61** 

(0.24) 

N 

R
2 

971 

0.08 

164 

0.03 

162 

0.10 

157 

0.11 

163 

0.12 

162 

0.15 

163 

0.07 

 

Notes: * and ** denote coefficient is statistically different from zero at the 10% and 5% 

significance levels, respectively. Cluster-robust standard errors in parentheses. 
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Table 3.4: Treatment Effects Using Part 1 Data 

Hypothesis 
All 

Goods 

Peanut 

Butter 

Cereal Crackers Chips Oil Tooth-

paste 

Natural No GMO = 

Standard No GMO 

(Explicit) 

0.55** 

(0.24) 

0.36 

(0.35) 

0.57* 

(0.32) 

0.55** 

(0.26) 

0.47* 

(0.28) 

0.87** 

(0.33) 

0.47* 

(0.26) 

Natural No GMO = 

Standard No GMO 

(Implied) 

0.29 

(0.26) 

0.34 

(0.32) 

0.42 

(0.34) 

0.21 

(0.24) 

0.03 

(0.30) 

0.65* 

(0.36) 

0.12 

(0.27) 

Natural w/o Belief = 

Standard w/o Belief 

(Explicit) 

-0.17 

(0.20) 

0.01 

(0.29) 

-0.31 

(0.28) 

-0.21 

(0.21) 

-0.16 

(0.22) 

-0.29 

(0.27) 

-0.11 

(0.24) 

Natural w/o Belief = 

Standard w/o Belief 

(Implied) 

-0.43** 

(0.19) 

-0.01 

(0.28) 

-0.47* 

(0.25) 

-0.54** 

(0.20) 

-0.60** 

(0.22) 

-0.50* 

(0.27) 

-0.47** 

(0.22) 

Natural Weighted = 

Standard Weighted 

(Explicit) 

0.13 

(0.16) 

0.16 

(0.25) 

0.06 

(0.23) 

0.11 

(0.18) 

0.10 

(0.19) 

0.20 

(0.22) 

0.14 

(0.19) 

Natural Weighted = 

Standard Weighted 

(Implied)
 

-0.12 

(0.17) 

0.14 

(0.23) 

-0.09 

(0.22) 

-0.22 

(0.17) 

-0.34* 

(0.20) 

-0.01 

(0.24) 

-0.23 

(0.19) 

 

Notes: * and ** denote statistical significance  at the 10% and 5% levels, respectively.  
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Table 3.5: Treatment Effects Using Part 2 Data 

Hypothesis 
All 

Goods 

Peanut 

Butter 

Cereal Crackers Chips Oil Tooth-

paste 

Natural No GMO = 

Standard No GMO 

(Explicit) 

0.24 

(0.26) 

0.50 

(0.31) 

0.32 

(0.31) 

0.38 

(0.26) 

0.37 

(0.30) 

-0.22 

(0.43) 

0.12 

(0.24) 

Natural No GMO = 

Standard No GMO 

(Implied) 

-0.33 

(0.26) 

-0.16 

(0.33) 

-0.34 

(0.34) 

-0.30 

(0.26) 

-0.19 

(0.31) 

-0.71* 

(0.37) 

-0.27 

(0.26) 

Natural w/o Belief = 

Standard w/o Belief 

(Explicit) 

0.94** 

(0.22) 

1.00** 

(0.31) 

1.21** 

(0.28) 

0.92** 

(0.24) 

0.89** 

(0.22) 

0.77** 

(0.32) 

0.88** 

(0.23) 

Natural w/o Belief = 

Standard w/o Belief 

(Implied) 

0.37** 

(0.18) 

0.33 

(0.26) 

0.55** 

(0.25) 

0.24 

(0.19) 

0.32 

(0.21) 

0.28 

(0.28) 

0.49** 

(0.21) 

Natural Weighted = 

Standard Weighted 

(Explicit) 

0.65** 

(0.18) 

0.79** 

(0.24) 

0.83** 

(0.22) 

0.69** 

(0.19) 

0.67** 

(0.20) 

0.36 

(0.30) 

0.56** 

(0.18) 

Natural Weighted = 

Standard Weighted 

(Implied)
 

0.07 

(0.16) 

0.12 

(0.22) 

0.17 

(0.22) 

0.01 

(0.16) 

0.10 

(0.19) 

-0.14 

(0.24) 

0.17 

(0.18) 

 

Notes: * and ** denote statistical significance  at the 10% and 5% levels, respectively.  

  



117 
 

Appendix B 

Figures 

 

 

Figure 3.1: Potato Chip Pictures and Labels 
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Figure 3.2: Toothpaste Pictures and Labels 
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Appendix C 

Instructions 

 

The training instructions and the Main Experiment Part 1 “explicit” instructions where the 

standard products came first are presented here. Other versions of the instructions are available 

upon request.  

 

Introduction and Training 

Welcome to the University of Tennessee Experimental Economics Laboratory. Your 

participation in today’s study is appreciated. If you have a question at any time, please raise your 

hand. Please refrain from verbally reacting to events that occur during the experiment. This is 

very important. Your decisions in today’s study are private to you. We ask that you do not 

communicate with other study participants. We also ask that, after the session, you do not discuss 

details with others who have registered to potentially participate in a future session of this study.  

 

The decisions you make (including your answers to survey questions) will be linked only with 

your station ID, which was (randomly) chosen by you when you entered the lab. Your decisions 

will not be associated with your name or other identifying information. Your name will not be 

linked in any way to the results of the study. For accounting purposes, we will ask you to fill out 

a receipt at the end of the session. We do not keep the receipts; they are submitted to the UT 

Treasurer’s office. 

 

In the main parts of the experiment, you will be asked to place bids to buy common grocery 

items. Although you will not earn money in these parts, you will have the opportunity to actually 

buy some of these items and take them home with you today. The purchase procedure will be 

new to you. We will first go through a series of training materials that will familiarize you with 

the purchase procedure. The good news is that you will have the opportunity to earn cash money 

during this training.    

 

You will be paid in cash and in private at the end of the session. You will receive a show-up fee 

of $10 for participating, an additional $15 for completing a survey, and additional money from 

the training rounds. If you purchase one or more grocery items, the amount you pay for the 

product(s) will be subtracted from your earnings. We will proceed through the written 

materials together. Please do not flip forward until instructed.   
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General Procedures 

 

In each decision “round” of this study, the moderator will offer an item for sale. In the initial 

training rounds, the item for sale will be an amount of money. In the other rounds, the item for 

sale will be a grocery product. In each round you place a bid to buy the item for sale.     

 

We will use the following purchase procedure in all rounds: 

1. You will place a bid on the item. You will not know the price prior to bidding. 

2. The price of the item will be randomly drawn. A volunteer will be asked to roll dice to 

determine this price. The random price will be the same for all participants. 

3. If your bid is equal to or higher than the random price, you buy the item and pay 

the random price (not your bid!). If your bid is lower than the random price, you do 

not buy the item. 

 

Here are some possible scenarios based on the purchase procedure:  

 You bid $2. The random price is drawn to be $1.50. Since your bid is equal to or higher 

than the random price, you buy the item at a price of $1.50.  

 You bid $5. The random price is drawn to be $5. Since your bid is equal to or higher than 

the random price, you buy the item at a price of $5. 

 You bid $3. The random price is drawn to be $3.50. Since your bid is lower than the 

random price, you do not buy the item. 

 

It is important to point out some aspects of the procedure. First, different from auctions, you are 

not bidding against other players. The bids of other players do not impact whether you buy an 

item. We have large quantities of each item. If, for example, everyone bids an amount higher 

than the random price, each person will pay the random price and each person will receive the 

item. Second, different from some auctions, if you buy something, the price is not equal to your 

bid. Instead, you pay the randomly selected price.  

 

Third, your bid sets the highest price for which you agree to buy the good.  For example, if 

you bid $6.25, this means that you agree to buy the item as long as the price is something less 

than or equal to $6.25. Your bid of $6.25 guarantees that you do not buy the item at prices above 

$6.25.  

 

Before bidding you should ask yourself “what is the highest price I am willing to pay for 

the item?” It is in your best interest to place a bid equal to this highest price.    
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“What If” Scenarios 

To help you understand the procedures, we ask that you consider a number of “what if” 

scenarios. Here is the good news: you will be paid $1 for each scenario you answer correctly. 

There is a bonus question, and you will be paid $2 for a correct answer to this.   

The item for sale in these scenarios is a $5 bill. Remember: If your bid is equal to or higher 

than the random price, you buy the item and pay the random price (not your bid!). If your bid is 

lower than the random price, you do not buy. 

1. Suppose you bid $2.50. Then, a volunteer draws a random price of $4.00.  

Based on the procedure we described would you purchase the $5 bill?  Yes No 

If you answered “Yes”, what price would you pay?     $  _____________  

 

2. Suppose you bid $3.12. Then, a volunteer draws a random price of $6.37.  

Based on the procedure we described would you purchase the $5 bill?  Yes No 

If you answered “Yes”, what price would you pay?     $  _____________ 

 

3. Suppose you bid $5.00. Then, a volunteer draws a random price of $4.25.  

Based on the procedure we described would you purchase the $5 bill?  Yes No 

If you answered “Yes”, what price would you pay?     $  _____________ 

 

4. Suppose you bid $5.00. Then, a volunteer draws a random price of $6.56.  

Based on the procedure we described would you purchase the $5 bill?  Yes No 

If you answered “Yes”, what price would you pay?     $  _____________ 

 

5. Suppose you bid $7.16. Then, a volunteer draws a random price of $4.12.  

Based on the procedure we described would you purchase the $5 bill?  Yes No 

If you answered “Yes”, what price would you pay?     $  _____________ 

 

6. Suppose you bid $8.00. Then, a volunteer draws a random price of $6.50.  

Based on the procedure we described would you purchase the $5 bill?  Yes No 

If you answered “Yes”, what price would you pay?     $  _____________ 

 

Bonus question. Given the purchase procedure, how much should you bid for the $5 bill? Keep 

in mind that it is in your best interest to place a bid equal to the highest price you’re willing to 

pay.       You should bid: $ _________ . _________ 

Please raise your hand when you are ready to have your calculations checked.  
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Training Round 1 

In this training round you will have the opportunity to earn money. 

The item for sale is $7.  

Your task in this round is to place a bid to buy the $7. 

After everyone has indicated their bid, a volunteer will roll dice to determine the random price. 

Although you will not know the price range before you bid, know that three dice will be rolled. 

The first will determine the dollars and the other two will determine the cents. 

If your bid is equal to or higher than the random price, you will receive the $7 and pay the 

random price. You will thus earn an amount equal to: $7 minus the random price. If you make a 

purchase at a price that is higher than $7, you will in fact have negative earnings (lose money). 

If your bid is less than the random price, you will not receive the $7. You will not pay the 

random price. You will earn $0. 

For training purposes, we will play out the purchase procedure (rolling the dice and calculating 

earnings) several times. However, you will only bid once. You will not be able to change your 

bid after the random prices are determined. 

Please determine your bid at this time and write it here: $ _________ . _________  

 

Trial 1 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $7.  

 Your earnings are equal to: $7 – ________________ = $ _________ . _________ 

            (random price) 

 No.  You did not buy the $7. Your earning are for this trial are $0.  

Record your earnings on your Record Sheet.  
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Training Round 1—Continued 

 

Trial 2 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $7.  

 Your earnings are equal to: $7 – ________________ = $ _________ . _________ 

            (random price) 

 No.  You did not buy the $7. Your earning are for this trial are $0.  

Record your earnings on your Record Sheet.  

 

Trial 3 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $7.  

 Your earnings are equal to: $7 – ________________ = $ _________ . _________ 

            (random price) 

 No.  You did not buy the $7. Your earning are for this trial are $0.  

Record your earnings on your Record Sheet.  

 

Trial 4 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $7.  

 Your earnings are equal to: $7 – ________________ = $ _________ . _________ 

            (random price) 

 No.  You did not buy the $7. Your earning are for this trial are $0.  

Record your earnings on your Record Sheet.  
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Training Round 2 

The item for sale is $3. Your task in this round is to place a bid to buy the $3. 

After everyone has indicated their bid, a volunteer will roll dice to determine the random price. 

Although you will not know the price range before you bid, know that three dice will be rolled. 

The first will determine the dollars and the other two will determine the cents. 

If your bid is equal to or higher than the random price, you will receive the $3 and pay the 

random price. You will thus earn an amount equal to: $3 minus the random price. If you make a 

purchase at a price that is higher than $3, you will in fact have negative earnings (lose money). If 

your bid is less than the random price, you will not receive the $3. You will not pay the random 

price. You will earn $0. 

Please determine your bid at this time and write it here: $ _________ . _________  

Trial 1 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $3. Your earnings are: $3 – random price = $ ________ . ________ 

 No.  You did not buy the $3. Your earning are for this trial are $0.  

 

Trial 2 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $3. Your earnings are: $3 – random price = $ ________ . ________ 

 No.  You did not buy the $3. Your earning are for this trial are $0.  

 

Trial 3 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $3. Your earnings are: $3 – random price = $ ________ . ________ 

 No.  You did not buy the $3. Your earning are for this trial are $0.  

 

Trial 4 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You bought the $3. Your earnings are: $3 – random price = $ ________ . ________ 

 No.  You did not buy the $3. Your earning are for this trial are $0.  
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Training Round 3 

You will not have the ability to earn money in this round. Instead, you will have the opportunity 

to buy a real grocery product. If you buy something, you will pay for it out of your earnings.  

As before, if your bid is equal to or higher than the random price, you will buy the item and pay 

the random price. Otherwise, you will not buy the item. 

The previous training rounds emphasize that it is in your best interest to place a bid equal to the 

highest price you are willing to pay for the item. By doing so, you will only purchase the item at 

prices you are willing to pay. You will not purchase the item at prices you are not willing to pay.   

If you instead bid lower than this highest price you are willing to pay, you risk not purchasing 

the item at prices favorable to you. 

If you instead bid more than this highest price you are willing to pay, you risk purchasing the 

item at prices that are not favorable to you. 

The moderator will now show you two items to choose from: a candy bar and a granola bar. 

Please choose which item you would like to bid on and check the appropriate box below: 

     Candy Bar         Granola Bar  

The random price will be an amount between $0.00 and the maximum expected bid (based on 

previous research). A volunteer will roll dice to determine the price, and each price within the 

range will be equally likely.   

Please determine your bid at this time. You will not be able to change your bid after the 

random price is determined. 

Your bid: $_________ . _________ 

 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price?  (check the box below) 

 Yes.  You will receive the item you bid on. The price will be subtracted from your 

earnings as a cost.    

 No.  You did not buy anything. No money will be subtracted from your earnings.  

Record your cost for this round on your Record Sheet. 
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Main Experiment – Part 1 

As in the last training round, you will not have the ability to earn money in the following 

decision rounds. Instead, you will have the opportunity to buy real grocery products. If you buy 

something, you will pay for it out of your earnings. 

In this Part of the experiment, you will place bids for a variety of grocery items. You will not see 

the actual items, but you will be provided with an information label that describes the main 

characteristics of the item such as the type of item, and its size, flavor, etc. The information on 

the labels is accurate: the actual label on the real grocery item does reflect the information that 

you see in information label. In this Part, you will be asked to place bids for 6 different grocery 

items.   

We have all of the grocery items in the lab today. All of the items have been recently purchased 

from popular grocery stores in Knoxville.  

The procedure for purchasing items is the same as before. Your bid will be compared to a 

random price. You will purchase the good only if your bid is equal to or higher than the price. 

The random price will be a randomly drawn number between $0.00 and the maximum expected 

bid (based on previous research). A volunteer will role dice to determine the price, and each 

price within the range will be equally likely. The range of prices will not be the same as in the 

last training round.  

As before, it is in your best interest to place a bid equal to the highest price you are willing to pay 

for the item. By doing so, you will only purchase the item at prices you are willing to pay. You 

will not purchase the item at prices you are not willing to pay.   

If you instead bid lower than the highest price you are willing to pay, you risk not purchasing the 

item at prices favorable to you. If you instead bid more than this highest price you are willing to 

pay, you risk purchasing the item at prices that are not favorable to you. 

Only one round from this Part will be implemented for real. We will have a volunteer roll a six-

sided die to determine which round this is. Since you will not know which round will be selected 

prior to making any decisions, it is in your best interest to take each decision seriously as if it 

will determine an actual purchase.  

On the next page you will see important information that is specific to you. Please read this 

information, and then proceed to place your bids. You have six minutes to do so. 
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Please Read: 

The grocery items in this section are not advertised as “Natural”, “All Natural”, or “100% 

Natural” on their labels.  

Please proceed to the labels now.  
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Part 1, Round 1 

 

Please read the label carefully before determining your bid. Since the purchase procedure is the 

same as before, remember that it will be in your best interest to place a bid equal to the highest 

price you are willing to pay for the item.  

Your bid (in dollars): $_________ . _________ 

 

The volunteer will now determine the random price. Please write the random price here: 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price? (Circle one.) Yes No 

If “Yes”, you bought the item (and will receive it at the end of the session) 

 Your cost is the random price, which is: $ _________ . _________ 

If “No”, you did not buy the item. Your cost is $0.00.  

On your record sheet, please indicate whether you made a purchase. If so, please record the cost 

of the item as well as indicate what you bought. Otherwise, simply record a cost of $0. 

  



129 
 

Part 1, Round 2 

 

Please read the label carefully before determining your bid. Since the purchase procedure is the 

same as before, remember that it will be in your best interest to place a bid equal to the highest 

price you are willing to pay for the item.  

Your bid (in dollars): $_________ . _________ 

 

The volunteer will now determine the random price. Please write the random price here: 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price? (Circle one.) Yes No 

If “Yes”, you bought the item (and will receive it at the end of the session) 

 Your cost is the random price, which is: $ _________ . _________ 

If “No”, you did not buy the item. Your cost is $0.00.  

On your record sheet, please indicate whether you made a purchase. If so, please record the cost 

of the item as well as indicate what you bought. Otherwise, simply record a cost of $0.  
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Part 1, Round 3 

 

Please read the label carefully before determining your bid. Since the purchase procedure is the 

same as before, remember that it will be in your best interest to place a bid equal to the highest 

price you are willing to pay for the item.  

Your bid (in dollars): $_________ . _________ 

 

The volunteer will now determine the random price. Please write the random price here: 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price? (Circle one.) Yes No 

If “Yes”, you bought the item (and will receive it at the end of the session) 

 Your cost is the random price, which is: $ _________ . _________ 

If “No”, you did not buy the item. Your cost is $0.00.  

On your record sheet, please indicate whether you made a purchase. If so, please record the cost 

of the item as well as indicate what you bought. Otherwise, simply record a cost of $0.  
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Part 1, Round 4 

 

Please read the label carefully before determining your bid. Since the purchase procedure is the 

same as before, remember that it will be in your best interest to place a bid equal to the highest 

price you are willing to pay for the item.  

Your bid (in dollars): $_________ . _________ 

 

The volunteer will now determine the random price. Please write the random price here: 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price? (Circle one.) Yes No 

If “Yes”, you bought the item (and will receive it at the end of the session) 

 Your cost is the random price, which is: $ _________ . _________ 

If “No”, you did not buy the item. Your cost is $0.00.  

On your record sheet, please indicate whether you made a purchase. If so, please record the cost 

of the item as well as indicate what you bought. Otherwise, simply record a cost of $0.  
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Part 1, Round 5 

 

Please read the label carefully before determining your bid. Since the purchase procedure is the 

same as before, remember that it will be in your best interest to place a bid equal to the highest 

price you are willing to pay for the item.  

Your bid (in dollars): $_________ . _________ 

 

The volunteer will now determine the random price. Please write the random price here: 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price? (Circle one.) Yes No 

If “Yes”, you bought the item (and will receive it at the end of the session) 

 Your cost is the random price, which is: $ _________ . _________ 

If “No”, you did not buy the item. Your cost is $0.00.  

On your record sheet, please indicate whether you made a purchase. If so, please record the cost 

of the item as well as indicate what you bought. Otherwise, simply record a cost of $0.  
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Part 1, Round 6 

 

Please read the label carefully before determining your bid. Since the purchase procedure is the 

same as before, remember that it will be in your best interest to place a bid equal to the highest 

price you are willing to pay for the item.  

Your bid (in dollars): $_________ . _________ 

 

The volunteer will now determine the random price. Please write the random price here: 

Random price: $_________ . _________ 

Is your bid equal to or higher than the random price? (Circle one.) Yes No 

If “Yes”, you bought the item (and will receive it at the end of the session) 

 Your cost is the random price, which is: $ _________ . _________ 

If “No”, you did not buy the item. Your cost is $0.00.  

On your record sheet, please indicate whether you made a purchase. If so, please record the cost 

of the item as well as indicate what you bought. Otherwise, simply record a cost of $0. 
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Appendix D 

Survey 

 

Please answer the following questions. Please write/check clearly. Your responses will not be 

connected to your name or other identifying information.  

 

1. What is your age? ________ 

 

2. What is your gender? (Please check one.) 

 Male 

 Female 

 

3. What is the highest level of education you have attained? (Please check one.) 

 High School Diploma 

 Associate’s Degree 

 Bachelor’s Degree 

 Master’s Degree 

 Ph.D. Degree 

 Other Advanced Certification/Professional Studies 

 

4. Were you a student during the 2013-2014 academic year? (Please check one.) 

 Yes, full-time 

 Yes, part-time 

 No 

 

5. Which of the following best describes your current employment status? (Please check 

one.) 

 Employed, full-time 

 Employed, part-time 

 Self-employed 

 Unemployed or retired 

 

6. What is your marital status? (Please check one.) 

 Single 

 Married 

 Widowed 

 Divorced 
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7. Are you the primary grocery shopper in your household? (Please check one.) 

 Yes 

 No 

 

8. In 2013, what was your annual household income, before taxes? (Please check one.) 

 $5,000 or less 

 $5,000 - $10,000 

 $10,001 - $20,000 

 $20,001 - $40,000 

 $40,001 - $60,000 

 $60,001 - $80,000 

 $80,001 - $100,000 

 $100,001 - $120,000 

 $120,001 - $140,000 

 More than $140,000 

 

9. How many adults live in your household? _______ 

 

10. How many children live in your household? ________ 

 

11. Do you have any children living in your household under the age of 10? (Please check 

one.) 

 Yes 

 No 

 

12. How much does your household typically spend each week on groceries? (Please check 

one.) 

 $30 or less 

 $31 - $50 

 $51 - $100 

 $101 - $150 

 $151 - $200 

 $201 - $250 

 $251 - $300 

 $301 - $350 

 More than $350 
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13. How many trips do you typically take to buy groceries each week? (Please check one.) 

 Less than 1 

 1 

 2 

 3 

 4 

 5 

 More than 5 

 

14. Where have you shopped for groceries during the last month? (Please check all that 

apply.) 

 Kroger 

 Food City 

 Ingles 

 Publix 

 Earth Fare 

 Fresh Market 

 Target 

 Walmart 

 Sam’s Club 

 Costco 

 CVS / Walgreens / other convenience store 

 Local farmer’s markets 

 Amazon or other online grocery retailer 

 Other: ________________________________________________ 

 

15. How many meals do you typically eat out (at a restaurant or fast food establishment) per 

week? (Please check one.) 

 0 

 1-5 

 6-10 

 11-15 

 More than 15 
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16. When grocery shopping, do you specifically look for products that meet certain dietary 

restrictions? (If yes, please check all that apply. If no, please leave blank.) 

 Gluten-free 

 Lactose-free 

 Vegetarian 

 Vegan 

 Low carb 

 Low fat 

 No nuts 

 No soy 

 No fish 

 Other: ________________________________________________ 

 

17. How important are each of the following to you when you purchase food? (Please check 

one box per row.) 

 

 

 

Not 

Important 

Somewhat 

Important 

Very 

Important 

Nutrition Information    

Ingredients    

Country where food was 

produced 

   

Brand    

Package size    

Price     

Health-related labelling such as  

“gluten-free” 

   

Environmental-related labelling 

such as “Rainforest Alliance 

Certified” 

   

Other:      

 

18. When grocery shopping, how often do you notice labels that say “natural” or “all 

natural”? (Please check one.) 

 Almost always or always 

 Frequently 

 Occasionally 

 Almost never or never 
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19. When grocery shopping and when such an option is available, how often do you purchase 

foods that are labelled “natural” or “all natural”? (Please check one.) 

 Almost always or always 

 Frequently 

 Occasionally 

 Almost never or never 

 

20. What do you think the phrases “natural” or “all natural” actually mean when printed 

on a food label? (Please check all that apply.) 

 No artificial flavors 

 No artificial colors 

 No artificial preservatives 

 No genetically modified ingredients 

 No pesticides 

 No dyes 

 Limited processing 

 Higher quality ingredients 

 Environmentally-friendly 

 Organic 

 Other: _______________________________________________ 

 None of these 

 

21. What do you think the phrases “natural” or “all natural” should mean when printed on 

a food label? (Please check all that apply.) 

 No artificial flavors 

 No artificial colors 

 No artificial preservatives 

 No genetically modified ingredients 

 No pesticides 

 No dyes 

 Limited processing 

 Higher quality ingredients 

 Environmentally-friendly 

 Organic 

 Other: _______________________________________________ 

 None of these 
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22. Please rate your agreement with the following statement on a scale from 1 to 5. (Circle 

one number.)  

 

“Foods labelled “natural” or “all natural” are healthier than foods without a “natural” 

or “all natural” label.” 

 
I completely 

disagree 

 

   I completely  

agree 

1 2 3 4 5 

     

 

23. When you see a food label that says “organic”, do you trust that the product is truly 

organic? Please rate your level of trust on a scale from 1 to 5. (Circle one number.)  

 
I do not trust 

the label at all 

 

   I completely  

trust the label 

1 2 3 4 5 

 

 

24. Please rate your knowledge of genetically modified organisms (GMOs) on a scale from 

1 to 5. (Circle one number.) If you had never heard of GMOs prior to this question, 

please circle “1”. 

 
I know 

nothing about 

GMOs 

 

   I know a lot 

about GMOs 

1 2 3 4 5 
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25. Please rate your agreement with the following statement on a scale from 1 to 5. (Circle 

one number.)  

 

“I am concerned that food products containing genetically modified organisms (GMOs) 

pose a health risk.” 

 
I completely 

disagree 

 

   I completely  

agree 

1 2 3 4 5 

     

 

26. Please rate your agreement with the following statement on a scale from 1 to 5. (Circle 

one number.)  

 

“I am concerned that the production of products containing genetically modified 

organisms (GMOs) poses an environmental risk.” 

 
I completely 

disagree 

 

   I completely  

agree 

1 2 3 4 5 

     

 

27. When you see a food label that says “Non-GMO” or “Non-GMO Project Verified”, do 

you trust that the product is free of genetically modified organisms (GMOs)? Please 

rate your level of trust on a scale from 1 to 5. (Circle one number.)  

 
I do not trust 

the label at all 

 

   I completely  

trust the label 

1 2 3 4 5 
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28. Please rate your agreement with the following statement on a scale from 1 to 5. (Circle 

one number.)  

 

“I am concerned that we as a society do not fully understand the impacts of genetically 

modified organisms (GMOs).” 

 
I completely 

disagree 

 

   I completely  

agree 

1 2 3 4 5 

 

 

29. Are you willing to pay extra for a food item that does not contain genetically modified 

organisms (GMOs)? (Please check one.) 

 Yes 

 No 

 

30. Did you feel that you were well-compensated for your participation in this experiment? 

Please rate your satisfaction with the compensation on a scale from 1 to 5. (Circle one 

number.) 

 
I was 

compensated 

very poorly  

 

   I was 

compensated 

very well 

1 2 3 4 5 

     

 

31. Did you understand the instructions for the experiment today? Please rate your 

understanding on a scale from 1 to 5. (Circle one number.) 

 
I understood 

very poorly  

 

   I understood 

very well 

1 2 3 4 5 
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CONCLUSION 

 

This dissertation entitled, “Essays in Resource Allocation Efficiency and Behavior,” is 

comprised of three papers. The first examines bidder’s choice auctions using a field experiment 

and a laboratory experiment. Auctions are frequently used to allocate resources efficiently. 

However, we show that the bidder’s choice mechanism, which is sensitive to the effects of risk 

aversion, does not command as high of a premium as previously predicted by the literature under 

certain circumstances. Thus, sellers should evaluate their bidders and situation to determine 

whether the bidder’s choice format is likely to be helpful.  

In the second chapter, theoretical modelling is used to show that managers in public 

organizations can use task incentives to motivate agents when pecuniary methods are 

unavailable. Managers in schools and government agencies are frequently faced with this 

constraint. Tournaments have long been used to model competition in the labor market. This 

paper illustrates how agents can be motivated to put forth optimal effort in a distinct setting 

characterized by task assignment, though inefficiency is created.  

Finally, inefficiency in the market for “natural” food is highlighted in Chapter 3. 

Although the phrase “natural” is unregulated in the United States, most consumers do believe 

that the label indicates at least one characteristic such as “no artificial colors” or “no genetically 

modified ingredients”. This study is comprised of both a survey where beliefs are elicited and an 

incentive-compatible purchase procedure where consumers are motivated to reveal their 

willingness to pay for food items with “natural” and standard labels. The results indicate that a 

policy which regulated or defined the “natural” phrase would be welfare-enhancing.  
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