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Abstract

Conservation science acknowledges that economic cost and ecological benefit informa-

tion is important for effective biodiversity conservation decision making. Obtaining

this information for protected areas has proven difficult, however. This dissertation

explores various aspects of obtaining information on the costs and benefits of protected

areas in an effort to support applied conservation. Here I present a set of studies

that 1) examine the threat and cost of plant invasion on protected areas, both for

cumulative invasion and 2) across species that differ in their management priority, 3)

provide a method for measuring the benefit of forest conservation, and 4) describe the

conservation benefit implications from multiple conservation organizations working

in the same region. The first two studies show that while conservation needs and

prior costs can be estimated, there is no evidence that past expenditures relate to

future budget requirements. This result is the impetus for the next study, where

I develop a method to estimate the conservation benefit of forest protection using

satellite imagery so that conservation professionals can better assess the relationship

between conservation actions and outcomes. The final study reveals that competition

for limited funding affects how conservation organizations allocate their resources,

resulting in variation in benefit that depends on the organizations’ priority alignment.

Overall, my dissertation reinforces the importance of properly accounting for costs

and benefits in conservation planning and provides insight and tools to help achieve

that outcome.
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Chapter 1

Introduction
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A primary goal of conservation science is to counteract human imposed ecological

impacts and allow species and communities to persist into the future. Establishment

of protected areas is the primary strategy that has been used to counteract ecological

degradation, but it has yet to stem the tide of biodiversity loss (Gaston et al., 2008).

Systematic conservation planning has promise for increasing the effectiveness of

protected area establishment (Margules and Pressey, 2000), however, cost and benefit

information is instrumental to the approach (Underwood et al., 2008). The problem

is that both cost (Armsworth, 2014) and benefit (Maron et al., 2013) information is

difficult to obtain. This dissertation approaches this problem by examining some of

the details of obtaining economic cost and ecological benefit information that relate

to protected areas for biodiversity conservation.

Ecological communities are assemblages of interacting species whose identity and

function are influenced by their dynamic environment. Ecologists have long been

interested in the interactions and processes that shape these communities, but have

often failed to account for the activities of a species with tremendous recent impact.

Human activities have affected every ecosystem on the planet (Sanderson et al.,

2002), driven many species extinct (Barnosky et al., 2011), and disrupted important

regulatory processes such as climate (IPCC, 2007), fire regime (Bowman et al., 2011),

and hydrology (Fernald and Purdum, 1998). This has resulted in a global biodiversity

crisis.

The number of protected areas worldwide has drastically increased in the past

100 years as we attempt to counteract the human impacts on biodiversity (Naughton-

Treves et al., 2005). However, the protection level is still not adequate (Gaston et al.,

2008). This could be because protected area establishment was often opportunistic

(Pressey, 1994), and in many cases ended up protecting marginal lands that were not

ideal for biodiversity conservation (Scott et al., 2001; Groves et al., 2000).
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Systematic conservation planning is an attempt to resolve the problems that

arose from opportunism by using quantitative methods to target protected areas

to the places where the species that need protecting actually reside (Margules and

Pressey, 2000; Moilanen et al., 2009). Modern methods suggest that the threat of

habitat conversion or species loss must also be incorporated into the planning process

(Margules and Pressey, 2000; Newburn et al., 2005; Carwardine et al., 2012). In

addition, a consideration of the costs of establishing (Ando et al., 1998; Wilson et al.,

2006) and/or maintaining (James et al., 1999; Naidoo et al., 2006) protected areas is

important for cost effective conservation (Withey et al., 2012).

Spatial optimization techniques allow for the maximization of expected conserva-

tion benefits when there is a cost constraint (Moilanen et al., 2009). The solutions

to these optimizations suggest rules-of-thumb for ranking potential protected areas

for effective conservation (Wilson et al., 2006). The ranked projects can then be

prioritized for funding and protection. An example of a ranking metric follows

(adapted from Newburn et al., 2005):

Avoided threat * Benefit

Cost

Here the relative conservation importance of a protected area within a network

can be assessed by quantifying the biodiversity benefit and threat reduction that it

provides. This value is then divided by the cost of acquiring those benefits to allow for

equivalent comparisons across protected areas. Ranking conservation projects using

this approach has been applied in conservation initiatives such as the Investment

Framework for Environmental Resources in Western Australia (Pannell et al., 2012)

and the Project Prioritization Protocol as applied in New Zealand (Joseph et al.,

2009). The problem is that estimates of the cost, benefit, and threat values that

should be entered into the ranking are not easy to obtain (Pannell et al., 2013).
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For this dissertation, I designed a suite of studies to examine various understudied

aspects of protected area costs, benefits and threats. I chose two areas of specific focus:

1) how to predict the threat and costs of invasive species treatment on protected areas,

and 2) how to measure the benefit of conservation spending on protected areas.

Invasive exotic species can disrupt ecological processes in their introduced range

(Gordon, 1998). They have been responsible for species extinctions throughout

the world (Simberloff, 2005) and are widely considered to be a primary threat to

biodiversity conservation. Most protected areas face biological invasion, and a major

focus of land management is to control the impacts of these species (Tempel et al.,

2004). In chapter 2, I develop a method for predicting the threat of invadedness

(relative proportional cover) across protected areas by using features of the protected

areas themselves. I then use ten years worth of invasive plant management data

to examine whether funding allocation can be predicted from site level features and

if it covaries with invadedness. I show that the size of a protected area and the

surrounding household density can predict variation in both invadedness and funding

allocation. However, I also find that cumulative treatment funding does not relate

to current invadedness across the study sites. Based on these results I suggest that

estimates of management need can be related to protected area features, but that

past funding levels cannot provide an indication of future costs.

I expand my invadedness model in chapter 3, to examine how predictions of both

presence and invadedness vary across species. In particular, I am interested in whether

site level predictive features of presence and invadedness differ between species that

are prioritized for management versus those that are not. I find that predictors of

presence and invadedness differ both across and within species. Predictors of presence

are not necessarily the same as those that predict cover, which has implications for

management planning. Meanwhile, there are no clear predictors of either presence

or invadedness that relate to management priority. However, several predictors are
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common to multiple species suggesting that general predictions of invasion can be

appropriate.

I then move on to two studies that examined the benefit of conservation spending.

Planners need to know the outcomes of spending in order to maximize the value

of conservation expenditures (Parrish et al., 2003). However, there is some worry

that conservation spend is not being allocated as efficiently as possible (Ferraro and

Pattanayak, 2006). This could be because the benefit of conservation spending is

difficult to assess. When the desired outcome of conservation spending is biodiversity

protection, a measure of benefit needs to examine the direct outcomes of spending and

compare them to outcomes where no spending occurred (Gaston et al., 2008). This

approach has been hindered in practice because it is difficult to quantify outcome

(Geldmann et al., 2013), data on the counterfactual is usually unavailable (Maron

et al., 2013), and the measurement of benefit in general has not been a priority for

conservation science (Naughton-Treves et al., 2005)

In chapter 4, I test a set of models to estimate attributes of forest structure and

composition that would be important for assessing the benefit of management on a

PA. I show that some forest attributes are able to be explained using remote sensing

imagery. I find that about half of the variation in both tree size and the proportion

of pine trees can be explained by my approach, and lesser amounts of variation in

several other forest attributes is also explained by my models. I then use two of the

models to explore example applications that examine the relationship between PA

size and forest change over time as a demonstration of how these models could be

used by conservation professionals. Example applications that examine predictions of

dbh at acquisition and changes in pine species density over time do not suggest that

these attributes were related to PA size on my study sites.

5



Chapter 5 uses a theoretical framework to analyze the impact on biodiversity

benefit of strategic interactions between multiple conservation organizations. In my

other work on quantifying costs and benefits, I noticed a discrepancy between the

academic writing on these concepts and what actually occurred in the real-world.

The literature almost exclusively considers cost and benefit accounting from the

perspective of a single organization, but my work with practitioners demonstrated

that multiple organizations were involved in almost every conservation project. This

chapter is an examination of how current conservation theory is not appropriately

accounting for benfit by ignoring interactions between organizations. Here I show

that measurements of the benefit of conservation spend need to consider the strategic

actions of other organizations in the region. Depending on the amount of priority

alignment across organizations, conservation funders can actually do much better

or worse than their expected returns if they do not consider the actions of other

organizations.

Overall, this dissertation explores some of the many aspects of the costs and

benefits of protected areas. It provides a method for quantifying an avoided

threat, some insight into obtaining a specific management cost, and a method and

consideration for measuring benefit. Although there is much work left to be done,

these studies provide results that can be used by conservation professionals to enhance

the conservation planning process.
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Chapter 2

Predicting the invadedness of

protected areas
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The following section is a slightly modified version of a paper published in the

journal Diversity and Distributions. It is reproduced here under permission from

Wiley and Sons, license number 3411980201544

Iacona, G.D, Price, F., and P.R. Armsworth. 2014. Predicting the invadedness of

protected areas. Diversity and Distributions. 20: 430-439

The use of “we” in this chapter refers to me and my co-authors. As the lead author

of this article I was responsible for this paper. G.D.I, F.P, and P.R.A. designed the

research, G.D.I and P.R.A wrote the paper.

Abstract

Invasive species management is an expensive priority on many protected areas but the

magnitude of invasion can vary drastically from site to site. Conservation planners

must consider this variability when they plan for treatment across multiple protected

areas. We examine the scope for predicting site invadedness and management costs

from common protected area characteristics, a method that could be used to estimate

the future management needs of a protected area network. We use data on invasive

plant cover and protected area features from 365 protected areas across the state

of Florida, USA to predict invadedness and invasive species management funding

allocation in a multiple regression framework. We then examine the relationship

between invadedness and funding on a subset of 46 of the protected areas. We

find that invadedness (the relative proportion of a protected area that is covered

by invasive plants) was related to the size of a protected area and the number of

surrounding households. However, the explained variation (8 - 50%) depended on

the type of species occurrence data used; with models using approximated data on

the area infested able to explain more of the variation than those that included data

with GIS calculated area infested. Cumulative funding investment at a protected

8



area was also predicted by the number of surrounding households and protected area

size. Yet, funding and invadedness were not correlated with one another. Our results

suggest that basing predictions of future costs on current funding may not accurately

represent budgetary needs.

2.1 Introduction

Managers of protected areas (PAs) face the difficult exercise of how to plan for

treatment of invasive species infestations within budget limitations. Invasive species

inhabit protected areas worldwide (Usher, 1988; Allen et al., 2009), and there is both

social and ecological justification for their removal if conservation goals are to be met

(Gordon, 1998; Simberloff, 2005). Planning for regional treatment and management

costs requires an understanding of relative invasion across PA, but available data

on invasive species presence and cover is often incomplete. One solution is to use

site-level features to predict trends in relative invasive cover (invadedness) across a

network of PAs.

Invasive species presence at a PA may respond to features that regulate the native

community’s resistance to invasion (Myers and Ewel, 1990; Hobbs and Humphries,

1995), or to features that influence whether invasive plant propagules can reach the

PA and become established (Simberloff, 2009; Kuhman et al., 2010). Protected area

features that influence plant community composition include those such as PA size,

elevation, and temperature, that drive landscape level processes (Pys̆ek et al., 2002a).

Meanwhile, PA features that influence propagule availability and establishment often

are directly related to human activities, with human proximity often considered a

primary driver of invasion (Stohlgren et al., 2006; Marini et al., 2009). Such activities

could include transportation of propagules into PAs, disturbance that allows for

invasive species establishment, or provision of source populations.
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Invasive species treatment is expensive (Pimentel et al., 2005), and invasive

species management on PAs is no exception (Frazee et al., 2003; Green et al.,

2012). Estimates of potential costs vary widely and factors such as infestation levels,

species present, and treatment technique all influence the estimate (Usher, 1988). In

addition, potential costs depend on whether the management objective is eradication,

reduction, or containment. However, to provide an idea of the magnitude of cost that

we are considering, in Florida it costs about 6 000$/HA for the initial treatment

of cogon grass (Imperata cylindrica) (Jubinsky, G., Personal communication) and

this grass infests about 1 500 HA of PAs in our dataset (Table 2.2). Similarly, expert

estimates of initial and upkeep treatment costs for individual species of weeds affecting

biodiversity conservation in the 30 million HA Kimberly region of Australia are in

the millions of dollars (AU) over a five year period (Carwardine et al., 2011).

Invasive species management can account for a large proportion of the PA

management budget (Frazee et al., 2003). Because the management budget of a

PA is a significant cost that is of interest to conservation planners (Armsworth et al.,

2011), being able to predict relative invasive species extent across a network of PAs

would be a useful first step towards efficient conservation resource allocation (Buchan

and Padilla, 2000; Keller et al., 2008). These predictions need to provide results

that conservation planners can use to make funding allocation decisions that involve

site-scale comparisons across hundreds of PAs (eg. for allocating regional funding or

evaluating tradeoffs with regard to future PA locations). In addition, they need to

be based on readily available data that does not require intensive, in person, survey

work. We explore the prediction of invadedness as a representation of infestation that

could be used for this purpose. We define invadedness as relative proportional cover

by invasive species at a PA. Because it measures the current invasion at a PA, it

differs conceptually from other indices such as invasibility (potential for invasion) or

level of invasion (species richness of the invaders) (Richardson, 2011; Catford et al.,
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2012).

Here we develop a model to predict invadedness from PA features, and then use

management expenditures to examine the relationship between treatment funding and

invadedness. First we ask 1) what features of a PA are associated with invadedness?

We use coarse-grain data for the predictive features in this analysis to correspond

with the grain at which planners use data to make site-level decisions (eg. planning

for funding needs across hundreds of PAs). We then use subsets of the data to ask

2) Does data structure (estimated invaded area vs. calculated invaded area) affect

the explanatory power of our model? This question affects land managers because

recording invasive species occurrence data is often a trade-off between mapping ease

and utility. Some data types may be quicker to collect with basic equipment (e.g.,

point centroids with estimated area for an infestation) while others require more

involved mapping but are useful for issuing contracts for invasive species treatment

(e.g., polygons with delineated spatial extent of infestations). Finally, to explore the

expected cost of treating an invasion, we ask 3) can PA features predict invasive plant

management funding allocation, and is funding related to invadedness? This analysis

aims to provide an estimate of relative variation in future management expenditures

across a network of PAs, rather than a cost estimate for an individual PA.

2.2 Methods

Study system

We used data from publicly-owned PAs in the state of Florida, USA. Florida has more

than 1800 publicly-owned PAs that range across temperate to tropical climates, urban

to rural locations, and small to large sites (Median = 78 HA, 5th and 95th percentile =

2 and 7100 HA). Florida is heavily impacted by invasion and 146 invasive plant species
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are tracked by the Florida Exotic Pest Plant Council (FLEPPC) because of their

documented harm to ecosystems or recent increases in abundance (2009 FLEPPC

list). The state spent over $100 million dollars to manage invasive plants on all PAs

between 1999 and 2010 (Cleary, R. unpublished work).

Invasive plant distribution

We obtained invasive plant distribution data from the FLInv geodatabase which

contains occurrence records for FLEPPC-listed species on all of the public PAs

in Florida. This database was commissioned by the Florida Fish and Wildlife

Conservation Commission (FWC) to improve their prioritization of invasive species

management funds and is maintained by the Florida Natural Areas Inventory (FNAI).

We chose data that met the following criteria. 1) We used data for only the 28

most prevalent species (each found on more than 100 PAs throughout the state)

to increase reliability of identification. 2) We chose PAs where all records were

single species occurrences with either estimated invaded area (stored as points in

dataset) or calculated invaded area (stored as polygons). Generally points were

used to record information on small infestations and polygons were used to improve

treatment utility and to map larger infested areas (Price, 2009). All records included

data on observation date, percent cover (binned for analysis into 2.5%, 15%, 38%,

63%, 88%), and area infested (estimated acreage recorded by surveyor for points,

acreage calculated by spatial analysis software for polygons). 3) We chose records

from PAs where all occurrence data were collected by FNAI botanists between the

years of 2008 and 2010 to enhance conformity with data collection protocols.

The final dataset includes 365 PAs across Florida. While a subset of the whole

network of PAs, it was still a large sample spanning gradients of protected areas

features (Table 2.1) albeit slightly skewed towards smaller protected areas. The

limitations of this sample must be balanced against the desirability of having all
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surveys conducted by one agency (FNAI) with standardized reporting protocols.

For each PA, we calculated “invadedness” as a measure of relative variation in the

extent of invasion across PAs. To construct our metric we first calculated the area

of invasive cover for each occurrence record by multiplying the acreage infested by

the percent cover bin. We then summed the area covered by focal species at a PA to

calculate the proportion of the PA infested (sum of area of 28 species/ area of PA,

Figure 2.1). This value indicates the proportion of the PA that would be infested

by invasive plants if they were all clumped into one area with their leaves touching.

Because the area is summed from individual occurrence records there is the possibility

of double counting area where trees and understory both consist of invasive species.

However, because removal effort is likely to be higher in such cases, the relative degree

of invasion is represented accurately. For this study we are interested in identifying

the PAs that are likely to be most invaded, regardless of species.

We were also interested in the question of “does data structure (estimated invaded

area vs. GIS calculated invaded area) affect explanatory power of our model?”

For this analysis, we only used data from PAs where the invadedness was entirely

described by estimated data (GIS points only) or entirely described by calculated

data (GIS polygons only).

Protected area features

When seeking to predict invadedness from PA features, we chose predictors that

tested specific a priori hypotheses motivated from past studies (Table 2.1).We first

examined factors that could relate to ecological function and community composition

at a PA. Protected area size information was obtained from the Florida Managed

Areas GIS layer of PAs managed for conservation within the state (maintained by

FNAI). We derived PA average elevation from USGS NED 1/3 arc second data layers
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at 1 m resolution. Minimum winter PA temperature was obtained from WorldClim

climate data, December-March values (1950-2000) at 1 km resolution.

Then we assessed factors that could relate to anthropogenic disturbance at a

PA. We estimated the number of nearby households by weighting the number of

households in nearby year 2000 census-tracts by their overlap with a 25 km buffer

around the PA. We also used roads as a proxy of onsite disturbance. For this predictor

variable, we divided area of roads by PA area for all roads that intersected or were

adjacent to the PA, using an average road width of 10 m (USGS 24000:1 roads layer).

Funding for invasive plant management

To address the question “how is invasive plant management funding allocated across

a subset of PA, and is it related to invadedness?” we used data on state-allocated

funding for terrestrial invasive plant management for 46 protected areas in our

primary dataset. Specifically we examined funding allocation, by the FWC Invasive

Plant Management Section, of legislature-mandated funding for invasive plant

treatment on public PAs within the state (Cleary, 2007). Invasive plant management

funding on our 46 PAs totalled almost $50 million dollars and was allocated under

the Upland Invasive Exotic Plant Management Program. This constitutes about half

of the total program spend over the previous ten year period. For 42 of the protected

areas, this funding was awarded prior to the PA being surveyed for invasive plants.

Funding proposals are permitted for any FLEPPC-listed invasive species, but often

projects involving target species or re-treatment projects are prioritized for funding

by FWC. Target species include Lygodium microphyllum, Lygodium japonica, and

I. cylindrica (Jubinsky, G., Personal communication). In addition, larger projects

tend to be funded over smaller projects. For each protected area we summed all

state-provided funding and cooperative project funding reported by the PAs from
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1999 to 2009. We used consumer price index history tables for June of each year to

correct dollar values for inflation to 2009 amounts (http://www.bls.gov/cpi/#tables,

accessed Jan, 2012).

Analysis

Invadedness

We used a multiple regression framework with AIC model selection in SAS (ver-

sion 9.2) to test for statistical associations between PA features (Table 2.1) and

invadedness. For each analysis, we Box-Cox transformed (λ = 0.12) the response

variable (invadedness) and log-transformed all predictor variables, except minimum

temperature, to meet assumptions of normality of errors (e.g. model average residuals

of the response variable: Kolmogorov-Smirnov D = 0.03, p > 0.2). We did not

include interaction terms because we had no a priori reason to prioritize some

interactions for examination from among the large number of possible interactions

of the variables in Table 2.1. Tolerance-testing indicated that no predictor variable

was too dependent on variation in other predictor variables (more than 20%) ensuring

that collinearity requirements were adequate to proceed. For the model using all data,

and the data structure models, we constructed all possible model combinations and

then identified the set of parsimonious models with AIC values within 2 points of

the minimum AIC value observed. We then calculated a multimodel average across

this parsimonious set using model weights. We tested for spatial autocorrelation

in model average residuals by calculating Moran’s I statistics for protected area

centroids using Euclidean distances across 5 distance classes (Arc Map, version 9.3).

Because we found a small but significant amount of spatial autocorrelation across all

distance classes (max Moran’s I was 0.188 at 10 km lag), we generated simultaneous

autoregressive (SAR) versions of each of the AIC +2 models to examine the impact of

explicitly accounting for spatially correlated errors within the model. SAR analyses
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were performed in the SAM package (version 4.0 Rangel et al., 2010).

Funding

To explore patterns of funding allocation for invasive control on PAs we performed

three analyses. First we used multiple regression, as above, to examine the

relationship between site-level factors and log-transformed funding investment. We

did this to see if factors that might predict invadedness also predict treatment spend.

For this analysis, there was no significant spatial signal so we present only the

non-spatial model results (Moran’s I < 0.04 for all lags). Then, we calculated the

correlation between log-transformed total funding and observed invadedness. Finally,

we used partial correlation to examine the relationship between log-transformed

total funding and invadedness while controlling for site-level predictor variables.

We performed these correlations to see if current spending was associated with

invadedness across the network.

2.3 Results

Invadedness

Overall, 23 455 hectares were infested across the 365 study PAs (total area of study

PAs = 466 623 HA). S. terebinthifolius (all species per Wunderlin and Hansen, 2003)

was found on about 1% of the total area and six other species were also found on more

than 1 000 HA of PA each (L. microphyllum, Urena lobata, I. cylindrica, Colocasia

esculenta, L. japonicum, and Solanum viarum, Table 2.2). The number of PAs that

each of the 28 species occurred on ranged from 211 with S. terebinthifolius to 25 with

Ardisia crenata (Table 2.2). Invadedness of individual PAs varied widely (Table 2.3)

as measured by the sum of cover by all 28 species divided by PA size (relationship

between invadedness and species richness, R2 = 0.03, p < 0.01; Iacona, unpublished
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data). But, in general, the PAs had low invasive plant cover; 67% of PAs had

invadedness proportions less than 0.05.

The model using all data (points and polygons, Table 2.4) suggests that

invadedness of a PA decreases as site size increases and as the number of surrounding

houses decreases (Figure 2.2). Both of these factors were included in all models

in the AIC +2 set and the confidence limits on the coefficients did not span zero

(Table 2.5). Comparison of the partial r2 values suggested that the majority of

explained variation in invadedness was determined by PA size and nearby household

density (Table 2.6). Because transformation of variables makes interpretation of

our model coefficients less intuitive, we illustrate the predicted relationships using

a hypothetical situation where we examine the variation in modelled invadedness

when all predictor variables are set to their median value. If we then double PA

size (from 60 HA to 120 HA), back-transformed invaded area only increases by 60%.

Similarly, if only the number of surrounding households is doubled from the median,

invaded area increases by 61%. However, this model had relatively low explanatory

power (R2 = 0.20). There was no relationship between road cover, elevation, or

temperature and invadedness. Accounting for spatial effects with the SAR model

produced similar predictions with regards to magnitude and direction of coefficient

values for the PA size effect (Table 2.7). Meanwhile, the coefficient value for the

nearby households effect decreased and the model explanatory power increased (R2

increased by about 30% if space is included in the model). The coefficient values

suggest greater variation in the effect of households than that of area when space is

accounted for. This suggests that a spatial effect that drives household density, such

as coastal clustering, may be impacting the non-spatial regression results.

Protected areas where invaded area was calculated by GIS (polygons) were more

invaded than PAs where invaded area was estimated by surveyor (points) (point

PAs median invadedness = 0.0003%, interquartile range 0.0000 - 0.0090, polygon
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PAs median invadedness = 0.03%, interquartile range 0.00 - 0.018, Table 2.4). At

PAs where invasive plant cover was estimated by the surveyor (point data only), the

relationship between invadedness and PA size and surrounding household density were

similar to the model with all data but the explanatory power was much greater (R2 =

0.50, n = 94, Table 2.4, Table 2.8). For PAs where invaded area was calculated by GIS

(polygon data only), the predictions were also the same as the model with all data, but

with greatly decreased explanatory power (R2 = 0.08, n = 73, Table 2.4, Table 2.10).

This result indicates that the answer to our question “does data structure affect

explanatory power of the model?” is yes, but perhaps not in the way one might have

anticipated. Comparison of the partial r2 values suggested that in both cases PA size

explained the largest proportion of variation in invadedness (Table 2.9, Table 2.11).

Funding

Funding for invasive plant treatment over a ten-year period varied greatly ($1 600

- >$1 million). Protected area features explained 31% of the variation in funding

invested in invasive species control across PAs (Table 2.4, Table 2.12). Larger PAs

were allocated more treatment dollars in the ten-year period, as would be expected;

however, the coefficient on PA size was less than 1, suggesting an economy of

scale, an issue we return to in the discussion (Table 2.13). More money was also

spent at PAs with higher surrounding household density. If we examine changes in

predictor and response variables using a hypothetical situation as above, spending

on invasive species management only increases by 19% when PA size is doubled.

Meanwhile, if the number of surrounding households doubles, spending on invasive

species management increases by 66%. There was no relationship between funding

investment and invadedness (Figure 2.3), either alone or when controlling for site-level

predictor variables.
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2.4 Discussion

We show that readily available site-level features are related to PA invadedness

(explaining 8 - 50% of the variation). This is an important result because the amount

of invasive cover impacts the conservation value of a PA (Martin and Blossey, 2012)

and likely the ultimate cost of management. However, studies of invasion of PAs have

tended to focus on species richness of invaders instead of cover (McKinney, 2002;

Pys̆ek et al., 2002a). Our study also illustrates that the allocation of funding for

management of invasive species can be predicted by PA features, but is not clearly

related to invasion across the network. At least in Florida, management investment

does not appear to track PA invadedness. Thus, predictions of long-term costs based

on current spending patterns may be inaccurate.

Site-level predictors of invadedness

Protected area size and the number of nearby households were the most important

predictors of invadedness of the factors that we tested. This result is similar to

previous work (Catford et al., 2011; Polce et al., 2011), and illustrates how factors

that influence propagule pressure or site disturbance drive invasion at a PA. The

effect of nearby households could be as a seed source as recent studies have shown

that propagule pressure is one of the primary drivers of invasion at a site (Von Holle

and Simberloff, 2005; Simberloff, 2009). Household density may influence direct

disturbance by human visitors such as foot traffic (Mack and Lonsdale, 2001).

Meanwhile the relationship of invadedness with PA size may indicate the importance

of ecological processes, such as fire or flooding, that maintain native community

structure and limit invasion success (Hobbs and Humphries, 1995). These processes

may be more likely to occur on large PAs than on small PAs. Protected area size

could also influence invadedness if invasive plants move onto the site from populations

around the edge (Morgan, 1998; Yates et al., 2004; Alston and Richardson, 2006).

Larger PAs tend to have lower edge-to-area ratios than smaller PAs and therefore
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could have lower levels of invadedness. However, sensitivity tests that added edge-

to-area ratio as a predictor variable in the models found that edge effects are an

unimportant aspect of the relationship with PA size (with edge-to-area ratio included,

the model average R2 = 0.21; partial r2 = 0.001, Table 2.16, Table 2.17).

Several site-level predictors had no relation to invadedness contrary to our

expectations. We expected minimum winter temperature to be important because

latitudinal gradients drive patterns of invasion on a worldwide scale (Pys̆ek and

Richardson, 2006). The observed lack of relationship may be due to the continuous

nature of the variable versus the more binary biological response to sub-freezing

temperatures. To test this possibility we ran a sensitivity analysis using a dummy

variable that indicated 3 or more frost days per year. This test suggested that PAs in

south Florida may be more invaded because 3 or fewer frost days per year was as good

a predictor variable as PA size and number of surrounding households (Table 2.14,

Table 2.15). We were also surprised that road cover did not relate to invadedness

as it is often assumed that roads are an indicator of disturbance and a vector for

propagule movement (Von Der Lippe and Kowarik, 2007). This may have been due

to our road cover variable not accurately measuring those impacts. Some of the larger

PAs in rural regions of the state have extensive networks of old logging roads yet are

relatively invasion-free.

The relatively low predictive power (R2 ≈ 0.20) of the model with all the data

may result from our aggregation of multiple species for the invadedness metric. We

wanted to predict the total invaded area because it is relevant to land managers and

conservation planners (Kuebbing et al., 2013), but models of single species invadedness

suggest enhanced predictive ability for individual species (chapter 3, this dissertation).

The utility of these levels of predictive ability depends on what the predictions

are to be used for. If management of invasive plant infestations at a small scale is the
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objective, then much more detailed knowledge of the location and extent of invasion

is necessary. In such a case, the inference supplied by a model such as this would

not be at the scale of interest and site-level surveys would be necessary. However,

if the model predictions are intended for conservation decision making at a regional

scale (e.g. if assessing the possible consequences of pursuing agency-wide policies on

minimum reserve sizes), it is more important to understand the variation in network

wide trends of invadedness. In such cases, a model such as this that uses easily

obtainable coarse grain data to cheaply describe expected variation in invadedness

across large scales would be appropriate.

Data structure

The increase in predictive capacity of models for PAs where invaded area was

estimated by surveyors (point data) indicates that our site-level predictive factors may

best describe invasion at small PAs or low densities. This is because, in practice, the

invasive plant occurrences on a PA may be represented as point data, polygon data, or

both types, depending on surveyor preference and the needs of the managing agency.

Generally, a surveyor uses point data when estimation of the size of a hypothetical

circle is adequate to represent an infestation such as for small PAs or PAs where

invasive plant occurrences are widely scattered clumps. Meanwhile, collection of

polygon data allow for the GIS calculation of invaded acreage within more realistic

infestation shapes, which is useful for large or heavily infested PAs. Polygon data

may be preferred by managing agencies because it better represents the area that

needs to be treated. Our result suggests that model inference depends on the type of

data collected.

Funding model

Funding allocation increased with surrounding household density, similar to pre-

dictions of invadedness. In addition, total funding allocation increased with PA
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size. Because the model was constructed as a log transformed response to a log

transformed predictor, the coefficient value can provide an indication of economies

of scale (Armsworth et al., 2011). When back-transformed, these models examine

a power law relationship between area and invadedness. If the coefficient on PA

size was 1 there would be a linear relationship between back-transformed funding

allocation and PA size. However, our modelled coefficient is much less than one

(0.25), suggesting a possible invasive plant management economy of scale where less

is spent to manage an additional hectare if it is added to a large PA than if it is

added to a small PA. If previous spend is an accurate indicator of need, these results

suggest that larger PAs in rural areas would be cheaper to manage over the long term

and that small PAs in high population density regions would be the most expensive

per relative area.

The previous result suggests that funding may be allocated in a manner that tracks

invadedness. However, we found no relationship between invadedness and funding,

either overall or after controlling for the effects of PA features. If total funding

were to scale with PA features (as it seems to), and if spending on management

decreased invasive cover, we would expect variation in funding to relate to variation in

invadedness. There are two scenarios that would produce an observable relationship.

If management funding was adequate to meet treatment needs, and the management

objective was to eliminate infestations (as opposed to merely preventing an increase),

we would expect to have seen a negative relationship between invadedness and funding

allocation. Meanwhile, if funding was spent in accordance to PA invadedness but had

no effect in reducing the extent of existing infestations, we would expect to have seen

a positive relationship between invadedness and funding allocation.

We did not observe either of these patterns, but there are many potential

explanations for a lack of relationship. For instance, if both of these scenarios were

in effect they could cancel each other out. Alternatively the lack of relationship
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could result from inadequate resources to change invadedness on a PA. However,

opportunistic allocation of treatment dollars by the state could also result in the

observed patterns, and the current allocation strategy provides funding only to PAs

that apply for it (Cleary, 2007). Our results suggest that these applications for

funding may not relate to onsite invasive cover. Finally, this may be an effect of

other unaccounted for treatment funding. For instance, maintenance efforts that

are not specifically for invasive species treatment, such as burning, etc., can reduce

invasive cover and are not included in this analysis. Also, cost sharing can influence

prioritization of funds and our dataset may not represent all funding for invasive

treatment at a PA if local agencies engage in projects without FWC assistance.

It is tempting to draw conclusions about effectiveness (or the lack thereof) of

management treatment funding from our results. However, to do so, we would have

to examine changes in invasive species cover over time as management funds are

invested. This is not possible with our dataset because it is based on a single visit

survey. FNAI aims to perform follow up invasive species cover surveys on selected

PAs with the objective of assessing effectiveness of treatment spend. Such a study

would provide insight into small scale changes within a subset of these PAs and

the habitats they contain. In the meantime, we present this analysis as a first step

towards examining the patterns of invasive species management funding allocation

at a larger scale; one that is useful to conservation planners at a state-wide level. In

addition, we calculate the covariance between invadedness and funding as a logical

complement that explores whether existing data are appropriate for predicting future

costs. We conclude that state-wide patterns of treatment funding allocation suggest

that current funding is not a meaningful predictor of future need.
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Conclusions and implications for conservation

Fragmentation and human density surrounding PAs are both likely to increase in the

future. Although conservation planning has long considered PA size and location to

be important for connectivity and species persistence (Simberloff and Abele, 1982),

we show that these features also impact invadedness. Larger PAs are less invaded than

small ones, and there is a positive correlation between nearby housing density and

invadedness. In addition, more treatment funding is allocated to PAs with higher

nearby housing density and larger PAs, in a manner consistent with economies of

scale. This suggests that more invaded PAs cost more to manage over time than less

invaded PAs, or they would if the management funding were allocated optimally

(Lee et al., 2009). Because we found no relationship between current funding

allocation and invadedness, it is possible that current funding allocations do not

fully represent management needs. Thus, estimates of future funding requirements

for PA management should be made with caution.

Acknowledgements

This research was supported by the Department of Ecology and Evolutionary Biology

at the University of Tennessee. Data was provided by the Florida Fish and Wildlife

Conservation Commission and Florida Natural Areas Inventory. Thanks to members

of the Armsworth lab, S. Kuebbing, E. Larson, N. Sanders, R. Cleary, D. Simberloff,

L. Gross, and several anonymous reviewers for providing comments that greatly

improved this document.

24



2.5 Appendix: Figures

Figure 2.1: Invadedness study sites: 365 public protected areas in Florida were used
in the analysis. Inset map illustrates the set of invasive plant occurrences (points and
polygons) at one protected area (Alafia River Corridor). The sum of the area*percent
cover of each occurrence is aggregated into the invadedness metric for a protected area.
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Figure 2.2: Plot of invadedness (proportional cover of aggregate invasive plant
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Figure 2.3: Plot of cumulative spend on invasive plant management (log
transformed) at each protected area over a ten year period versus invadedness
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2.6 Appendix: Tables
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Table 2.1: Protected area features and the hypotheses that led them to be incorporated into the model as predictor
variables

Protected area feature Hypotheses Variable

Size We expect smaller protected areas to be more invaded
than larger protected areas (Pys̆ek et al., 2002a;
Lonsdale, 1999; McKinney, 2002) because ecological
processes that may minimize invasion are more likely
in large areas (burning, flooding, population stability)

totalHA

Elevation We expect lower (wetter) protected areas to be more
invaded than higher (drier)protected areas(Pys̆ek et al.,
2002a; Chytrý et al., 2008)(eg: wet flatwoods vs.
scrub). However, the very wettest may be less invaded
(floodplain forest)

Average height of protected
area(m above sea level)

Household density We expect that protected areas with more households
within 25 km are more invaded (Pys̆ek et al., 2002a;
Catford et al., 2011; Gasso et al., 2012; Pys̆ek et al.,
2010; Stohlgren et al., 2006) because urban intensity
likely increases dispersal vectors, seed sources and
anthropogenic disturbance on site

Number of households
within 25 km of protected
area

Average low temperature We expect tropical protected areas to be more
invaded than northern protected areas because lower
temperature bounds probably limit the range of many
species and there is an increase in species richness with
declining latitude.

Minimum average monthly
low winter (Nov-Mar) temp

Roads on protected area We expect the area of interior and adjacent roads to
serve as a proxy for protected area disturbance and thus
would increase with invadededness.

Road cover (m2/m2) per
protected area
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Table 2.2: Distribution of dominant invasive species across study protected areas

Plant name HA cover Number of
protected areas

Schinus terebinthifolius 4644 211
Ludwigia peruviana 2754 101
Lygodium microphyllum 2204 41
Urena lobata 2102 154
Imperata cylindrica 1518 120
Colocasia esculenta 1362 56
Lygodium japonicum 1099 77
Solanum viarum 1034 28
Panicum repens 876 94
Melaleuca quinquenervia 787 52
Casuarina equisetifolia 687 60
Leucaena leucocephala 642 56
Urochloa mutica 526 53
Dioscorea bulbifera 406 96
Panicum maximum 377 98
Rhynchelytrum repens 310 64
Cinnamomum camphora 305 87
Ricinus communis 291 44
Nephrolepis cordifolia 263 90
Sphagneticola trilobata 245 72
Sapium sebiferum 240 92
Lantana camara 236 97
Abrus precatorius 235 72
Melia azedarach 223 79
Syngonium podophyllum 52 48
Ardisia crenata 31 25
Lonicera japonica 7 34
Albizia julibrissin 1 51
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Table 2.3: Descriptive statistics of variables

Variable 5th percentile Median 95th percentile

Invadedness (all data) 8 E-06 0.02 0.38
Invadedness (points, n = 94) 9 E-07 0.0003 0.18
Invadedness (polygons, n = 73) 2 E-05 0.03 0.56
Total HA 2 60 8 600
Households within 25 km 10 000 104 000 679 000
Winter Min Temperature (C) 4 7 11
Road Length (m) 45 2 000 82 000
Mean Elevation (m) 1 4 32
Funding ($, n=46) 2 500 44 000 582 000
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Table 2.4: Parameter estimates, standard errors and partial r2 for the model average across the AIC +2 set of parsimonious
models for predicting invadedness of protected areas (Box-Cox transformed) for all of the data, and subsets including only
points (n=94), only polygons (n = 73), and funding data (log transformed, n=42).

Model average Intercept log HA log house log road log elevation min. R2

density cover temperature

All Coefficient±1 s.e. -7.89±0.90 -0.15±0.03 0.43±0.07 0.00±0.00 -0.02±0.03 0.02±0.02 0.20
Partial r2 0.11 0.09 0.00 0.00 0.00

Points Coefficient±1 s.e. -6.75±1.37 -0.38±0.06 0.32±0.11 -0.01±0.01 0.00±0.03 0.00±0.02 0.49
Partial r2 0.44 0.05 0.00 0.00 0.00

Polygons Coefficient±1 s.e. -2.62±0.94 -0.20±0.08 0.03±0.04 0.01±0.01 -0.02±0.03 0.01±0.09 0.09
Partial r2 0.08 0.00 0.00 0.00 0.00

Funding Coefficient±1 s.e. 0.06±3.03 0.25±0.10 0.73±0.21 0.06±0.06 -0.01±0.04 0.00±0.03 0.31
Partial r2 0.10 0.21 0.00 0.00 0. 00
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Table 2.5: Regression coefficients and standard errors for the AIC +2 set of parsimonious models and the model average
predicting invadedness (Box-Cox transformed)from all data on 365 protected areas .

MODEL Intercept log HA log house density log road cover log elevation min. temperature

1 -7.89±0.86 -0.15±0.03 0.44±0.07 0.00±0.00 0.00±0.00 0.00±0.00
2 -8.10±0.88 -0.15±0.03 0.42±0.07 0.00±0.00 0.00±0.00 0.05±0.04
3 -7.69±0.91 -0.15±0.03 0.43±0.07 0.00±0.00 -0.05±0.07 0.00±0.00
4 -7.91±0.92 -0.15±0.03 0.41±0.07 0.00±0.00 -0.05±0.07 0.05±0.04
5 -7.84±0.93 -0.15±0.03 0.44±0.07 0.00±0.02 0.00±0.00 0.00±0.00

model average -7.89±0.90 -0.15±0.03 0.43±0.07 0.00±0.00 -0.02±0.03 0.02±0.02

Table 2.6: R2, AIC, and partial r2 for AIC +2 set of parsimonious models and the model average predicting invadedness
(Box-Cox transformed) from all data on 365 protected areas.

MODEL R2 AIC Akaike log HA log house density log road cover log elevation Min temp.
Weight partial r2 partial r2 partial r2 partial r2 partial r2

1 0.20 316.85 0.32 0.11 0.09 0.00 0.00 0.00
2 0.20 317.06 0.28 0.11 0.09 0.00 0.00 0.00
3 0.20 318.32 0.15 0.11 0.09 0.00 0.00 0.00
4 0.20 318.59 0.13 0.11 0.09 0.00 0.00 0.00
5 0.20 318.83 0.12 0.11 0.09 0.00 0.00 0.00

model average 0.20 0.11 0.09 0.00 0.00 0.00
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Table 2.7: Regression coefficients, standard errors, and coefficients of determination (R2) of multiple regression models
predicting invadedness on public protected areas in Florida (Box-Cox transformed). Values from AIC +2 parsimonious
models (OLS details in Table A2) and SAR models. Significant values at α = 0.05 are bold font.

MODEL Intercept log HA log house density log road cover log elevation min. temperature R2

1 OLS -7.89±0.86 -0.15±0.03 0.44±0.07 0±0 0±0 0±0 0.20
SAR -6.36±1.06 -0.11±0.04 0.24±0.10 0±0 0±0 0±0 0.28

2 OLS -8.10±0.88 -0.15±0.03 0.42±0.07 0±0 0±0 0.05±0.04 0.20
SAR -6.48±1.09 -0.11±0.04 0.23±0.10 0±0 0±0 0.02±0.04 0.28

3 OLS -7.69±0.91 -0.15±0.03 0.43±0.07 0±0 -0.05±0.07 0±0 0.20
SAR -6.70±1.09 -0.11±0.04 0.25±0.10 0±0 0.11±0.08 0±0 0.28

4 OLS -7.91±0.92 -0.15±0.03 0.41±0.07 0±0 -0.05±0.07 0.05±0.04 0.20
SAR -6.83±1.12 -0.11±0.04 0.25±0.10 0±0 0.11±0.08 0.02±0.04 0.28

5 OLS -7.84±0.93 -0.15±0.03 0.44±0.07 -0.00±0.02 0±0 0±0 0.20
SAR -6.53±1.11 -0.11±0.04 0.24±0.10 0.01±0.02 0±0 0±0 0.28
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Table 2.8: Regression coefficients and standard errors for the AIC +2 set of parsimonious models and the model average
predicting invadedness (Box-Cox transformed) from point data on 94 protected areas.

MODEL Intercept log HA log house density log road cover log elevation min. temperature

1 -7.00±1.31 -0.37±0.06 0.32±0.10 0.00±0.00 0.00±0.00 0.00±0.00
2 -6.03±1.49 -0.39±0.06 0.31±0.10 -0.05±0.04 0.00±0.00 0.00±0.00
3 -6.98±1.34 -0.37±0.06 0.33±0.11 0.00±0.00 0.00±0.00 -0.01±0.07
4 -7.00±1.34 -0.37±0.06 0.32±0.11 0.00±0.00 0.00±0.13 0.00±0.00

model average -6.75±1.37 -0.38±0.06 0.32±0.11 -0.01±0.01 0.00±0.03 0.00±0.02

Table 2.9: R2, AIC, and partial r2 for AIC +2 set of parsimonious models and the model average predicting invadedness
(Box-Cox transformed) from point data on 94 protected areas.

MODEL R2 AIC Akaike log HA log house density log road cover log elevation min. temp.
Weight partial r2 partial r2 partial r2 partial r2 partial r2

1 0.49 36.01 0.38 0.44 0.05 0.00 0.00 0.00
2 0.50 36.17 0.35 0.44 0.05 0.01 0.00 0.00
3 0.49 37.99 0.14 0.44 0.05 0.00 0.00 0.00
4 0.49 38.01 0.14 0.44 0.05 0.00 0.00 0.00

model average 0.49 0.44 0.05 0.00 0.00 0.00
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Table 2.10: Regression coefficients and standard errors for the AIC +2 set of parsimonious models and the model average
predicting invadedness (Box-Cox transformed) from polygon data on 73 protected areas.

MODEL Intercept log HA log house density log road cover log elevation min. temperature

1 -2.05±0.42 -0.21±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
2 -2.53±0.62 -0.22±0.08 0.00±0.00 0.04±0.04 0.00±0.00 0.00±0.00
3 -3.96±2.36 -0.19±0.09 0.16±0.19 0.00±0.00 0.00±0.00 0.00±0.00
4 -2.61±0.88 -0.20±0.08 0.00±0.00 0.00±0.00 0.00±0.00 0.07±0.47
5 -1.96±0.44 -0.20±0.08 0.00±0.00 0.00±0.00 -0.11±0.17 0.00±0.00

model average -2.62±0.94 -0.20±0.08 0.03±0.04 0.01±0.01 -0.02±0.03 0.01±0.09

Table 2.11: R2, AIC, and partial r2 for AIC +2 set of parsimonious models and the model average predicting invadedness
(Box-Cox transformed) from polygon data on 73 protected areas.

MODEL R2 AIC Akaike log HA log house density log road cover log elevation min. temp.
Weight partial r2 partial r2 partial r2 partial r2 partial r2

1 0.08 78.49 0.32 0.08 0.00 0.00 0.00 0.00
2 0.10 79.39 0.21 0.08 0.00 0.01 0.00 0.00
3 0.09 79.79 0.17 0.08 0.01 0.00 0.00 0.00
4 0.09 79.94 0.16 0.08 0.00 0.00 0.00 0.01
5 0.09 80.07 0.15 0.08 0.00 0.00 0.01 0.00

model average 0.09 0.08 0.00 0.00 0.00 0.00
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Table 2.12: Regression coefficients and standard errors for the AIC +2 set of parsimonious models and the model average
predicting funding on 46 protected areas (Log transformed).

MODEL Intercept log HA log house density log road cover log elevation min. temperature

1 0.96±2.40 0.24±0.10 0.73±0.20 0.00±0.00 0.00±0.00 0.00±0.00
2 -2.67±4.65 0.29±0.11 0.74±0.21 0.22±0.24 0.00±0.00 0.00±0.00
3 1.01±2.46 0.24±0.10 0.72±0.21 0.00±0.00 -0.02±0.14 0.00±0.00
4 0.93±2.60 0.24±0.10 0.73±0.21 0.00±0.00 0.00±0.00 0.00±0.13

model average 0.06±3.03 0.25±0.10 0.73±0.21 0.06±0.06 -0.01±0.04 0.00±0.03

Table 2.13: R2, AIC, and partial r2 for AIC +2 set of parsimonious models and the model average predicting funding
on 46 protected areas (Log transformed).

MODEL R2 AIC Akaike log HA log house density log road cover log elevation min. temp.
Weight partial r2 partial r2 partial r2 partial r2 partial r2

1 0.30 33.23 0.43 0.10 0.21 0.00 0.00 0.00
2 0.32 34.33 0.25 0.10 0.21 0.01 0.00 0.00
3 0.30 35.21 0.16 0.10 0.21 0.00 0.00 0.00
4 0.30 35.23 0.16 0.10 0.21 0.00 0.00 0.00

model average 0.31 0.10 0.21 0.00 0.00 0.00
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Table 2.14: Regression coefficients and standard errors for the AIC +2 set of parsimonious models and the model average
predicting invadedness (Box-Cox transformed) from all data on 365 protected areas when frost-bin is used as a predictor
instead of minimum temperature. Frost-bin is a binary predictor with a value of 1 for protected areas that have three or
less frost days per year and 0 if more than 3.

MODEL Intercept log HA log house density log road cover log elevation frost-bin

1 -6.70±0.86 -0.12±0.03 0.23±0.07 0.00±0.00 0.16±0.07 1.43±0.19
2 -6.58±0.90 -0.12±0.03 0.23±0.07 -0.01±0.02 0.17±0.08 1.44±0.19

model average -6.64±0.88 -0.12±0.03 0.23±0.07 -0.01±0.01 0.17±0.07 1.43±0.19

Table 2.15: R2, AIC, and partial r2 for AIC +2 set of parsimonious models and the model average predicting predicting
invadedness (Box-Cox transformed) from all data on 365 protected areas when frost-bin is used as a predictor instead of
minimum temperature. Frost-bin is a binary predictor with a value of 1 for protected areas that have three or less frost
days per year and 0 if more than 3.

MODEL R2 AIC Akaike log HA log house density log road cover log elevation frost-bin
Weight partial r2 partial r2 partial r2 partial r2 partial r2

1 0.31 266.60 0.71 0.11 0.09 0.00 0.00 0.11
2 0.31 268.40 0.29 0.11 0.09 0.00 0.00 0.11

model average 0.31 0.11 0.09 0.00 0.00 0.11
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Table 2.16: Regression coefficients and standard errors for the AIC +2 set of parsimonious models and the model average
predicting invadedness (Box-Cox transformed) from all data on 365 protected areas when the ratio of protected area
edge-per-area is included as a predictor.

MODEL Intercept log HA log house density log road cover log elevation frost bin log(edge/area)

1 -8.07±0.89 -0.16±0.04 0.46±0.07 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
2 -8.28±0.90 -0.16±0.04 0.44±0.07 0.00±0.00 0.00±0.00 0.05±0.04 0.00±0.00
3 -7.88±0.93 -0.16±0.04 0.45±0.07 0.00±0.00 -0.05±0.07 0.00±0.00 0.00±0.00
4 -8.40±1.11 -0.20±0.07 0.46±0.07 0.00±0.00 0.00±0.00 0.00±0.00 -0.09±0.18
5 -7.99±0.95 -0.16±0.04 0.46±0.07 -0.01±0.03 0.00±0.00 0.00±0.00 0.00±0.00
6 -8.10±0.95 -0.16±0.04 0.43±0.07 0.00±0.00 -0.05±0.07 0.05±0.04 0.00±0.00

model avg. -8.12±0.96 -0.17±0.04 0.45±0.07 0.00±0.00 -0.02±0.02 0.02±0.01 -0.02±0.03

Table 2.17: R2, AIC, and partial r2 for AIC +2 set of parsimonious models and the model average predicting invadedness
(Box-Cox transformed)from all data on 365 protected areas when the ratio of protected area edge-per-area is included as
a predictor

MODEL R2 AIC Akaike log HA log house density log road cover log elev. frost bin edge/area
Weight partial r2 partial r2 partial r2 partial r2 partial r2 partial r2

1 0.20 337.07 0.29 0.11 0.09 0.00 0.00 0.00 0.00
2 0.21 337.44 0.24 0.11 0.09 0.00 0.00 0.00 0.00
3 0.21 338.63 0.13 0.11 0.09 0.00 0.00 0.00 0.00
4 0.21 338.82 0.12 0.11 0.09 0.00 0.00 0.00 0.00
5 0.20 339.02 0.11 0.11 0.09 0.00 0.00 0.00 0.00
6 0.21 339.06 0.11 0.11 0.09 0.00 0.00 0.00 0.00

model avg. 0.21 0.11 0.09 0.00 0.00 0.00 0.00
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2.7.1 Appendix S2: List of study protected areas (from 2010

FLMA GIS layer, FNAI)

1. Alafia River Corridor

2. Alafia Scrub Preserve

3. Allen David Broussard Catfish
Creek Preserve State Park

4. Allen’s Creek Management Area

5. Alligator Creek Conservation Area

6. Alligator Lake Management Area

7. Anclote Gulf Park

8. Anclote Islands Management Area

9. Annutteliga Hammock

10. Ansin Tract

11. Apalachicola River Water Manage-
ment Area

12. Apalachicola River Wildlife and
Environmental Area

13. Atlantic Ridge Parcels

14. Austin Cary Memorial Forest

15. Bay Bluffs Park

16. Baycliff Preserve

17. Bear Creek Nature Trail

18. Big Hickory Island Preserve

19. Bivens Arm Nature Park

20. Black Hammock Trail Head

21. Black Hammock Wilderness Area

22. Blackburn Point Park and Addition

23. Blackwater Hammock

24. Blue Cypress Conservation Area

25. Bocilla Preserve

26. Bowditch Point Park

27. Boyd Hill Nature Park

28. Brohard Beach and Paw Park

29. Brooker Creek Buffer Preserve

30. Brooker Creek Headwaters

31. Brooker Creek Preserve

32. Brooksville Plant Materials Center

33. Buck Lake Conservation Area

34. Bull Creek Wildlife Management
Area

35. Bulow Creek State Park
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36. Cabbage Key Management Area

37. Caloosahatchee Regional Park

38. Cameron Preserve

39. Canaveral Marshes Conservation
Area

40. Captain Forster Hammock Preserve

41. Carlton Village Park

42. Carver Preserve

43. Cayo Pelau Preserve

44. Cecil Field Conservation Corridor

45. Cedar Point

46. Chain of Lakes Stormwater Park

47. Charles Lee Property

48. Charlie’s Marsh Preserve

49. Chassahowitzka National Wildlife
Refuge

50. Chinsegut Hill Conference Center

51. Chipola River Greenway

52. Choctawhatchee River Water
Management Area

53. Clam Bayou

54. Clear Springs

55. Colt Creek State Park

56. Columbus G. MacLeod Preserve

57. Cone Ranch

58. Coontie Hatchee Landing

59. Cooper’s Point

60. County Line Scrub

61. Cow Branch Management Area

62. Crandon Park

63. Crews Lake Wilderness Park

64. Cross Bayou North

65. Crystal River Preserve State Park

66. Curry Island

67. Cutler Wetlands

68. Cypress Creek Sand Pine Preserve

69. Cypress Lakes Preserve

70. Cypress Point Park

71. Daniels Preserve at Spanish Creek

72. De Leon Springs State Park

73. Dead Lakes Park

74. Deep Creek Conservation Area
(SRWMD)

75. Deer Lake State Park

76. Devil’s Hammock
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77. Dicerandra Scrub Sanctuary

78. Dupuis Reserve

79. Eagle Lake Preserve

80. Eagle Point Park

81. East 417 Property

82. East Lake Management Area

83. Easterlin Regional Park

84. Econ River Wilderness Area

85. Econfina River State Park

86. Eden Gardens State Park

87. Edward Ball Wakulla Springs State
Park

88. Edwards Bottomland

89. Elinor Klapp-Phipps Park

90. Escambia Bay Bluffs

91. Estero Marsh Preserve

92. Falling Creek Park

93. Fanning Springs State Park

94. Faver-Dykes State Park

95. Fellsmere Water Management Area

96. Fern Prairie Preserve

97. Ferndale Preserve

98. Fickett Hammock Preserve

99. Flat Island Preserve

100. Flatwoods Conservation Area

101. Flinn Tract Conservation Area

102. Flint Pen Strand

103. Fort Desoto Park

104. Fort Matanzas National Monument

105. Four Mile Cove Ecological Preserve

106. Fowlers Bluff Conservation Area

107. Fox Creek

108. Fox Lake Sanctuary

109. Frog Pond/L-31 N Transition Lands

110. Gamble Place

111. Garcon Point Water Management
Area

112. Golden Aster Preserve

113. Golden Sands Park

114. Gopher Tortoise Preserve (Broward
County)

115. Goulds Pineland and Addition

116. Graham Swamp Conservation Area

117. Grassy Point Preserve
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118. Grassy Waters Preserve

119. Grayton Beach State Park

120. Green Salt Marsh

121. Greenbriar Swamp Preserve

122. Grissom Parkway

123. Gulf Islands National Seashore

124. Gum Root Park

125. Hackberry Hammock

126. Half Moon Island Preserve

127. Hallandale City Beach

128. Hallstrom Farmstead

129. Hamilton Reserve

130. Harden Hammock

131. Harmony Oaks Conservation Area

132. Hathaway Park

133. Haw Creek Preserve

134. Haw Creek Preserve State Park

135. Haynes Creek Park

136. Headwaters at Duette Park

137. Helwig (456)

138. Herman and Dorothy Shooster
Preserve

139. Hidden Lake Project

140. Highland Scrub Natural Area

141. Hillsboro Pineland Natural Area

142. Hixtown Swamp Conservation Area

143. Hogtown Creek Headwaters Nature
Park

144. Holland Park

145. Hollywood North Beach Regional
Park

146. Holton Creek Conservation Area

147. Homeland

148. Honey Creek Research Natural Area

149. Imperial River Preserve

150. Indian River Lagoon Preserve State
Park

151. Ingram Pineland

152. Inland Groves

153. Jack Creek

154. James E. Grey Preserve

155. Jerry Lake

156. Jim Wingate Park

157. Joe’s Creek Management Area

158. Joe’s River Park
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159. John David Patton Wildlife Park

160. John Mahon Park

161. John Williams Park

162. Kendall Indian Hammocks Park

163. Key Vista Nature Park

164. King Islands Management Area

165. Kissimmee Chain of Lakes

166. Kissimmee Prairie Preserve State
Park

167. Kissimmee River

168. Lake Griffin State Park

169. Lake Harney Wilderness Area

170. Lake Jackson Mounds Archaeologi-
cal State Park

171. Lake Jesup Conservation Area

172. Lake Lotus Park

173. Lake Runnymede Conservation
Area

174. Lake Seminole Management Area

175. Lake Stone Fish Management Area

176. Lake Talquin State Park

177. Lake Tarpon Management Area

178. Lake Tarpon West Management
Area

179. Lake Thomas Cove Park

180. Lake Woodruff National Wildlife
Refuge

181. Lakes Regional Park

182. Lathrop Bayou Tract

183. Letchworth-Love Mounds Archaeo-
logical State Park

184. Little Manatee River

185. Little Manatee River (SWFWMD)

186. Lochloosa Wildlife Conservation
Area

187. Lonesome Camp Ranch Conserva-
tion Area

188. Long Branch Management Area

189. Lost Tree Islands Conservation
Area

190. Lower Alapaha Conservation Area

191. Lower Escambia River Water
Management Area

192. Lower Peace River Corridor

193. Lower Wekiva River Preserve State
Park

194. Lucas Tract
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195. Lucille Hammock

196. Ludlam Pineland

197. Lyonia Preserve

198. Madison Blue Spring

199. Mallory Heights Park #3

200. Manatee Park

201. Mangrove Preserve

202. Marianna Greenway

203. Mariner’s Point Management Area

204. Marjorie Kinnan Rawlings Historic
State Park

205. Marsh Park and Boat Ramp

206. Mashes Sands Park

207. Matanzas Pass Preserve

208. Matheson Hammock Park

209. Mikes Donation

210. Military Trail Natural Area

211. Mills Pond Park

212. Miramar Pineland Natural Area

213. Mobbly Bayou Preserve

214. Model Lands Basin

215. Morningstar Parcel

216. Morsani Conservation Easement

217. Morsani Ranch

218. Mullock Creek Preserve

219. Murdock Point Cayo Costa

220. Natural Bridge Battlefield Historic
State Park

221. Navarre Beach Park

222. New Tampa Nature Park

223. North Buck Lake Scrub Sanctuary

224. North Fork Riverwalk

225. North Peninsula State Park

226. North Sebastian Conservation Area

227. North/Walk-in-Water Creek

228. Northwest 39th Avenue Park

229. Oak Hammock Park

230. Oak Island Nature Preserve

231. Ollie’s Pond Park

232. Olustee Experimental Forest

233. Orange River Parcel

234. Orange River Preserve

235. Ordway-Swisher Biological Station

236. Oslo Riverfront Conservation Area
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237. Overlook Park

238. Oyster Bar Salt Marsh

239. Ozona Management Area

240. Palatka-Lake Butler State Trail

241. Palatlakaha Environmental and
Agricultural Reserve Park

242. Palatlakaha River Park

243. Palmetto Estuary Preservation
Project

244. Pasco Palms Preserve

245. Paynes Prairie Preserve State Park

246. Peck Sink Preserve

247. Pendarvis Cove Park

248. Pepper Ranch Preserve

249. Pine Glades Natural Area

250. Pine Island Conservation Area

251. Pine Island Preserve

252. Pine Island Ridge Natural Area

253. Ponce de Leon Springs State Park

254. Pond Apple Slough

255. Prairie Creek Preserve (Charlotte
County)

256. Prairie/Shell Creek

257. Prange Islands Conservation Area

258. Price Park

259. Princess Place Preserve

260. Punta Rassa Preserve

261. Ravine Gardens State Park

262. Reddie Point Preserve

263. Ribault River Preserve

264. River City Nature Park

265. River Lakes Conservation Area

266. River Tower Restoration Site

267. Robert K. Rees Memorial Park

268. Rodney Kroegel Homestead

269. Rotunda Community Park and
Preserve

270. Round Island South Conservation
Area

271. Russell Grove

272. Ryall Parcel

273. Sailboat Bend Preserve

274. Sal Taylor Creek Preserve

275. Salinas Park

276. San Carlos Bay - Bunche Beach
Preserve
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277. San Felasco Hammock Preserve
State Park

278. Sand Hill Trailhead

279. Santa Fe Swamp Conservation Area

280. Saw Palmetto Natural Area

281. Sea Oats Park

282. Sebastian Harbor Preserve

283. Sebastian Inlet State Park

284. Sebastian Scrub Conservation Area

285. Secret Woods Buffer and Nature
Center

286. Seminole Ranch Conservation Area

287. Seminole Wayside Park

288. Shadowbrook Tract

289. Shell Bluff

290. Shell Creek Preserve

291. Shell Key Preserve

292. Sheridan Oak Forest

293. Shoreline Park South

294. Silver Palm Hammock

295. Six Mile Cypress Slough Preserve

296. Snipe Island Unit

297. South Lake Jesup Property

298. South Marianna Trail and Canoe
Launch

299. Southern Glades

300. Spessard Holland North Beach Park

301. Spessard Holland South Beach Park

302. St. James Creek Preserve

303. St. Marks Headwaters

304. St. Marks River State Park

305. St. Sebastian River Preserve State
Park

306. St. Vincent National Wildlife
Refuge

307. Subtropical Agricultural Research
Station

308. T. H. Stone Memorial St. Joseph
Peninsula State Park

309. T. M. Goodwin Waterfowl
Management Area

310. Tall Cypress Natural Area

311. Tampa Bay Estuarine Ecosystem -
TECO Tract and Fulkerson Road
Shell Pit

312. Tampa Bay Estuarine Ecosystem -
Terra Ceia
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313. Tate’s Hell Wildlife Management
Area

314. Temple Terrace Riverfront Park

315. Tenoroc Fish Management Area

316. The Hammock

317. Thomas Creek Preserve

318. Timer Powers Park Conservation
Area

319. Tippecanoe Environmental Park

320. Tivoli Sand Pine Park

321. Tomoka State Park

322. Tradewinds Regional Park

323. Trailhead Park

324. Travatine Island Management Area

325. Turkey Creek Sanctuary

326. Twin Rivers 2 Preserve

327. Tyndall Air Force Base

328. University of Central Florida East
Parcel

329. University of Central Florida
McKay Tract

330. University of Central Florida Pond
Pine

331. University of Central Florida
Riparian Area

332. Upper Alapaha Conservation Area

333. Upper Aucilla Conservation Area

334. Upper Chipola River Water
Management Area

335. Upper Little Manatee River

336. Upper Pithlachascotee River
Preserve

337. Valkaria Expansion

338. Valkaria Scrub Sanctuary

339. Varn Parcel

340. Verdie Forest

341. Vilano Oceanfront Park

342. Vinkemulder LAPC

343. Wabasso Scrub Conservation Area

344. Wacissa Conservation Area

345. Walsingham Park

346. Warbler Wetland Natural Area

347. Ward Creek West

348. Washington Oaks Gardens State
Park

349. Watson Island Parcel
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350. Weedon Island Preserve

351. West Creek Pineland Natural Area

352. West Marsh Preserve

353. Westmoreland

354. Whispering Pines Hammock
Preserve

355. Wild Turkey Strand Preserve

356. Wildcat Cove

357. William J. Kelly Rookery

358. Wilson’s Landing

359. Windmiller Parcel

360. Windswept Acres Park

361. Withlacoochee State Trail

362. Woodmont Natural Area

363. Yellow Jacket Conservation Area

364. Yellow River Water Management
Area

365. Yellow River Wildlife Management
Area - Escribano Point
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Chapter 3

Predicting invadedness of invasive

plant species of management

concern
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A version of this chapter will be submitted for publication after modification

during internal and external review.

Iacona, G.D, and P.R. Armsworth (XXXX). Predicting invadedness of invasive

plant species of management concern. Biological Conservation

The use of “we” in this chapter refers to me and my co-author. As the lead author

of this article I was responsible for developing the ideas for this paper, conducting the

analysis, and writing the manuscript. P.R.A. is a co-author of this work and he was

responsible for feedback at early stages of the research and editing the manuscript.

Abstract

Predictions of invasive plant infestation are important when conservation managers

are budgeting for protected area acquisition and future management efforts. However,

many plant species are invasive and different species are often not prioritized equally

for management. In addition, many studies predict the presence of invasive species,

but they rarely predict cover, which is more relevant to management. Here we

examined how predictors of invasive plant presence and cover differ across species that

vary in their prioritization for management. To do so we used data on management

effort and cover of invasive plant species on Florida protected areas to select three

study species that are prioritized for management and three that are not. Using a

zero-inflated multiple regression framework, we showed that protected area features

can predict the presence and cover of the focal species, but the same features rarely

explain both. There were several predictors of either presence or cover that were

important across multiple species. Protected areas with three days of frost per year or
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fewer were more likely to have occurrences of five of the six focal species. Meanwhile,

larger protected areas were related to decreased invadedness (proportional cover) for

all of our focal species, and an increase in the number of nearby households was

related to invadedness for four of our six focal species. None of the predictive features

were clearly related to management priority. These results suggest that while some

protected area features are related to invadedness across species, predictors of cover

and presence differ and do not covary with management priority.

3.1 Introduction

Invasive plant control causes a significant management cost on many protected areas

(PAs) worldwide (Frazee et al., 2003; Goodman, 2003; Reinhardt et al., 2003; Pimentel

et al., 2005; Pfennigwerth and Kuebbing, 2012; Cleary, 2013). Predictions of the

relative cover of invasive plant species across PAs are necessary if conservation

managers must plan for the costs of both protected area acquisition and future

management efforts (Martin and Blossey, 2012). Yet, many of the current predictive

models continue to focus primarily on species presence without considering cover

(Pys̆ek et al., 2002a,b; Foxcroft et al., 2011). Additionally, many invasive plant

species may co-occur on protected areas (Allen et al., 2009; Kuebbing et al., 2013), but

they may not all be management priorities. If conservation planners want to predict

variation in invasion so they can estimate management needs, they need predictions

of presence and cover that are robust across species of management priority while

being cost effective to develop and parameterize.

Predictions of invasive plant cover are necessary for managers to estimate impact

and costs of treatment, yet most current research focuses only on presence (Higgins
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et al., 1999; McKinney, 2002; Spear et al., 2013, and many others). Presence

and cover of invasive species on PAs are both relevant to conservation planning.

Predictions of presence are most useful for identifying possible invaders and planning

for monitoring (Catford et al., 2012) and are less helpful for estimating management

costs. Meanwhile, predictions of cover provide an indication of the relative effort

required to manage invasion, either through eradication or reduction to proportional

cover. However, in the few studies that consider cover (Alston and Richardson,

2006; Catford et al., 2011; Polce et al., 2011; Seabloom et al., 2013), there is little

consideration of how predictions of presence relate to cover (but see Kuhman et al.,

2010). This critical shortage in the literature hinders the applicability to management

of existing studies that examine the prediction of invasion.

The desired scale of prediction is likely to matter for both cover and presence.

If predictions are intended for conservation decision making at a regional scale (e.g.

if assessing the possible consequences of pursuing agency-wide policies on minimum

reserve sizes), it is more important to understand the variation in network wide trends

of invadedness. In such cases, a model such as this that uses cheap, easily obtainable

coarse grain data to describe expected variation in cover at the scale of a PA would

be appropriate. Similarly, predictions of presence at the scale of a PA are relevant

for decisions regarding identification and eradication of early invaders. Meanwhile,

if the desired inference is of treatment needs at finer scales, the spatial distribution

of species on the ground would be a more important consideration. For example,

location of invasive plants within a PA can affect treatment cost on large PAs, such

as the 64,000 HA Everglades National Park (Committee on independent scientific

review of Everglades restoration progress, 2014).
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Another issue with current predictions of invasion is that all invasive species

cannot be considered equivalent when planning for treatment. Managers tend to

prioritize species management effort towards certain focal species (Abella, 2014), even

if non-focal species are present that have similar threat rankings (e.g., Florida Exotic

Pest Plant Council (FLEPPC) ranking). There are several reasons that managers

may focus treatment effort on only certain species. Cost constraints can limit the

total management effort available to a PA (D’Antonio et al., 2004; Tempel et al.,

2004). Managers may thus choose to focus on treatments they know are effective.

For instance, they could focus on species that respond better to treatment or focus

on small areas that are limited enough for feasible control. Alternatively, managers

could aim to minimize invasive species impact and prioritize treatment of species

that are negatively affecting species or communities of conservation interest. Finally,

managers may prioritize species that have historically been treated at the PA or whose

management is specifically mandated in management plans (Pullin and Knight, 2005).

The potential variation across predictors of presence and cover and the need to

predict species that are a management priority suggest that comparisons of predictors

of invasion across species must consider three potential contrasts (Figure 3.1). The

first contrast is an examination of predictor variables across species. The second

contrast is the difference between predictors of presence and cover for a single species.

The final is a comparison of shared predictors for species that are a high management

priority (those that are likely to be treated) with shared predictors of species that

are low management priority. We are interested in this last comparison because

predictions that include species that are less likely to be treated (see Chapter 2)

could potentially result in overestimates of management cost.
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In Chapter 2 of this dissertation, we described a model that relates aggregate

invasive species invadedness to features of the PAs on which they are found. This

model was developed using plant distribution data from the Florida Natural Areas

Inventory (FNAI) FLInv Geodatabase. It included predictors of invasion that describe

ecological attributes of the PA that can influence invasibility, as well as predictors

chosen because they relate to human disturbance on the PA. The features that best

predicted how invaded a PA was likely to be were PA area and the number of

surrounding households (other variables tested include minimum temperature, road

density, and elevation).

We now expand this model to examine how PA-level predictive features vary

when describing both presence and invadedness of individual species that differ in

how they are prioritized for management. We expect variation in PA-level predictors

of invadedness because species have different life histories and distributions. However,

we are seeking common predictors across species of management concern so that we

can understand how generalizable predictions of invasion are.

We expect there might be differences in PA features that predict the presence of

a species versus those that predict cover. For instance, we expect the probability of

presence of a species could increase with PA area because of species area effects

(McKinney, 2002), with surrounding households because of human introductions

(Gavier-Pizarro et al., 2010), and with road density because of transport (Von

Der Lippe and Kowarik, 2007). We also expect that presence may be more likely

in southern PAs with less frost (Marini et al., 2009). Finally, in our models, elevation

is a proxy for habitat type, which could potentially influence presence (Chytrý et al.,

2008). In contrast, based on previous work we expect proportional cover to decrease
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with PA area, increase with household density, and potentially vary with winter

temperature (Chapter 2, this dissertation).

We also expect that some predictive features may be more similar for species that

are management priorities than for those that are not. For instance, PA area is a

predictor that could relate to management priority if species that are more likely to

be found on small PAs, because of disrupted ecological processes, are also more likely

to be managed because they are large, obvious, or noxious. Alternatively, species that

are introduced as ornamentals may be more likely to be invaders in natural areas than

species that are agricultural pests (Richardson, 2011; Zenni, 2014); thus species of

management priority may be more likely on PAs close to human development. We

do not expect a difference in predictive ability of winter temperature that relates to

management priority because FWC allocates funding statewide.

Here we develop models that concurrently predict presence and cover for six species

that differ in management priority. We ask:

1. Are predictors of presence and cover similar for a species?

2. Do predictors of invasion vary across species, and does it matter whether they

are prioritized for management?

3.2 Methods

Study system

As in chapter 2, we used data from 365 publicly-owned PAs in the state of Florida,

USA, to address these questions. Florida is heavily impacted by invasive plant species,
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and there are 146 species on the Florida Exotic Pest Plant Council (FLEPPC) list

that are ranked as either Category I (documented ecological damage) or Category II

(increasing in abundance or frequency but no demonstrated ecological damage) for

prioritization purposes (FLEPPC list 2009). The more than 1800 publicly-owned PAs

within the state range from temperate to tropical climates, urban to rural locations,

and small to large area (FNAI, Florida Managed Areas database). In addition, the

state spend more than 100 million dollars to manage invasive plants on publicly-owned

PAs between 1999 and 2010 (Cleary, R. unpublished data).

Management effort across species

To select focal species that differed in their priority for management, we examined

the distribution of management effort across the FLEPPC listed species using an

operations database from the Florida Fish and Wildlife Conservation Commission

(FWC) upland habitat management program (Cleary, 2007). This database included

information on the acreage and numbers of individuals for 96 different FLEPPC-

listed species that were treated on PAs throughout the state over ten years (Cleary,

R., unpublished data). We calculated the proportion of effort applied to each species

(by acreage or by number of individuals treated, depending on PA) to rank the

FLEPPC listed species by treatment effort (Supplementary Table 3.5). We then

compared effort with data from the FLInv Geodatabase on the statewide distribution

of the 28 most common species on our 365 study PAs (see Chapter 2 for species

selection details). Figure 3.2 shows how effort relates to cover (Panel 3.2a) and

occurrences (Panel 3.2b) across our PAs. Management effort was highly skewed in its

distribution across species with 70% of the total management effort focused on only

ten species and 24% of total effort on Schinus terebinthifolius (Brazilian pepper) alone

(Table 3.1). S. terebinthifolius is also the most widespread (found on the most PAs)
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and the most abundant (most area invaded) of all of the species in the occurrence

dataset (Table 3.1). Other abundant species that received considerable management

effort were Imperata cylindrica (cogon grass) and Lygodium microphyllum (Old World

climbing fern). However, several notably widespread and abundant species were not

prioritized for management. For instance, Ludwigia peruviana (Peruvian primrose-

willow) and Urena lobata (Caesar’s weed) were the second and fourth most abundant

species in our dataset, while Panicum maximum (Guinea grass) was the fifth most

common invasive species in the state in terms of the number of PAs it occupies.

However, these species received 1% or less of the total management effort in the

state.

Predicting invadedness of individual species

We used the effort and cover data distributions to choose six study species as

highlighted in Figure 3.2. Three of our test species were chosen because they are

targeted by state effort and funding for treatment (S. terebinthifolius, I. cylindrica,

and L. microphyllum), and three species were chosen because they are widely

prevalent on public conservation lands but are a lower management priority (L.

peruviana, U. lobata, and P. maximum). Data on the cover of invasive plants at

each PA were used to calculate invadedness for species of management concern for

the 365 study PAs (see Chapter 2 for details on PA choice). Invadedness is a metric we

developed to compare relative cover of invasive species across PAs, and is calculated

as the area of a PA invaded by the invasive species divided by the area of the PA. For

each species, we chose PAs for analysis where all records for that species were GPS

point data with surveyor-estimated area of coverage (see Chapter 2 for justification,

Figure 3.3).
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Because each species was present on only some of the PAs in our dataset, many

observed records were zeros. This required us to model both the probability of

occurrence of a species at a PA and its abundance if it was present. To model the

two processes concurrently, we used a zero-inflated negative binomial model (Zeileis

et al., 2008) to predict expected invadedness at a PA in relation to PA features. We

used a negative binomial model because our observed variance in invasive plant cover

was greater than the mean (overdispersion) and because AIC comparisons across

additional models tested during the model-fitting process indicated that this error

structure was the most appropriate.

Our modeling strategy considers the entire dataset to be binary data and models

the probability of the species presence at a given PA, assuming a binomial distribution

( probability of presence = πi = 1 − ( eα+β1X1i+...βnXni

(1+eα+β1X1i+...βnXni
)).Our model also uses the

observed cover measurements and some of the zero cover records to relate the probable

mean cover of a species at a PA to site-level features, assuming a negative binomial

distribution ( mean cover if present = µi = eα+β1X1i+...βnXni). We could then calculate

the expected value of the mean cover at a PA while accounting for the zero-inflated

process ( mean cover = E(Yi) = µi ∗ πi). This prediction of cover at a PA estimates

expected cover weighted by the probability of the species being present.

To construct our response variable, we binned invadedness for each species into

thousandth of a percent bins to meet model assumptions of a discrete data distribution

(Table 3.2). Predictive factors tested were PA area, number of surrounding

households, elevation, onsite road density, and a binary variable (frost-bin) indicating

three days of frost per year or not (see Chapter 2 for details on predictor variable

choice). We constructed separate models for each of the six species using the pscl
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package in R (Zeileis et al., 2008; R Development Core Team, 2010; Jackman, 2012).

In all cases, we used a log link function for modeling the underlying invadedness

distribution, and a logit link function for modeling the excess zeros. We log

transformed all the predictor variables except frost-bin. Tolerance testing indicated

that none of the predictor variables were more than 20% dependent on variation in

other predictor variables, ensuring that collinearity requirements were adequate to

proceed (Quinn and Keough, 2001). Finally, examination of semivariance plots of

residuals from each model indicated that spatial autocorrelation was not a concern

in this dataset.

3.3 Results

We assessed predicted invadedness for each focal species using a zero-inflated modeling

technique that considered records of zero cover for that species as being one of two

types. If a species was not present, it could be due to characteristics of the PA

that precluded that species being there in the first place (i.e., outside its range of

temperature tolerance), or it could be due to characteristics of the PA that are related

to low amounts of cover (i.e., low propagule pressure minimizing establishment). For

these reasons, we present the results in two sections even though they were produced

in a single modeling process. The first section describes the predictive features that

relate to the probability that the species of interest is present at the PA. The second

section describes the predictive features that relate to the expected cover of the species

if it is present. For a prediction of total expected invasive plant cover for a species at a

PA, multiply the estimated mean cover (predictions from Table 3.3) by the probability

of the PA having more than zero cover present (predictions from Table 3.4).
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The presence of four of our six focal species could be predicted with PA-level

features, although the significant predictors varied across species (Table 3.3). Features

that relate to geographic range of a species or its habitat preferences appeared to

be most important for predicting species presence. For instance, PAs with three

days or fewer of frost per year (frost-bin binary variable) were more likely to have

occurrences of S. terebinthifolius, L. peruviana, I. cylindrica, and L. microphyllum.

The only species that was not more likely to be present if there were fewer than

three frost days per year was P. maximum. In addition, the probability that I.

cyclindrica, L. peruviana, and L. microphyllum were present increased as PA mean

elevation increased. Meanwhile, PA features that relate to human disturbances were

less important in predicting the presence of a species. Although I. cylindrica and L.

microphyllum were more likely to be present as the PA area increased, households

and roads were not significant predictors of presence for any tested species. Finally,

no PA features predicted P. maximum or U. lobata presence.

Predictions of cover also varied across species, but in contrast to predictors

of presence alone, the important PA-level predictive features included both those

that related to ecological processes and those that related to human disturbance

(Table 3.4). All six species decreased in invadedness as PA area increased. However,

the species differed in their relationship to household density. S. terebinthifolius

and I. cylindrica decreased in cover as the number of nearby households decreased.

Meanwhile, P. maximum and L. microphyllum invadedness decreased as PA area

increased but was not related to household density. Finally, L. peruviana decreased in

invadedness as surrounding household density increased. Invadedness of some species

also was related to PA-level predictive features other than area and surrounding

households. Frost-bin was a significant predictor of invadedness for S. terebinthifolius

62



and P. maximum, with higher cover at PAs with three or fewer frost days per year.

Road density was related to increased invadedness for I. cylindrica and decreased

invadedness for L. microphyllum.

Outliers were present in the models of each species, but we determined that

the information provided by these highly invaded PAs was meaningful (very low

invadedness outliers were absorbed by the zero-inflated process). Therefore we present

the results with all data included in the model.

3.4 Discussion

The objective of this study is to examine the implications of species identity when

estimating invasive plant management needs for PAs. We find that predictive features

differ for presence and cover within and across species. These results suggest that

predictions of presence and cover are not interchangeable. In addition, although we

identify predictors that are important across multiple species, no predictors related

to management priority species specifically.

There are many possible metrics of invasion, but we have chosen to focus on cover

and presence because of their management implications. Predictors of the presence

of a species were often quite different than predictors of cover. For instance, in

several models, the probability of presence of a species increased with PA area, but

the amount of cover decreased. This result suggests that the two predictions are not

interchangeable and reinforces the call for predictions of cover as well as presence

for management applications (Catford et al., 2012; Bradley, 2013; Seabloom et al.,

2013). The conservation implications of this discrepancy is relevant for management
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priorities in Florida because some species (e.g. early detection and response of

species such as L. microphyllum on the invasion front, Hutchinson et al. (2006))

are managed to minimize presence on PAs and others (e.g. Melaleuca quinquenervia

in the Florida Everglades, Committee on independent scientific review of Everglades

restoration progress (2014)) are managed to minimize cover. Notably, predictors

of presence tended to be those PA features related to potential underlying ecological

characteristics and processes. This suggests that if a PA is within the geographic range

of a species and has the appropriate habitats, invasive species are prevalent enough

in Florida that they will likely occur on the PA. In contrast, the invadedness (cover)

of the species was more likely to relate to predictive features that indicated human

disturbance on a PA. This is an important management implication, suggesting that,

even if a species is present, the impact of the invasion may not be severe unless human

disturbances promote their spread.

These differences in PA-level predictors of presence and cover across species are

important if a land manager or conservation planner aims to produce management

recommendations for a particular species. However, several predictive features were

common across many of our species, and we suggest that models including those

predictors are appropriate for predictions of likely invadedness of a PA regardless of

species. For estimates of cover, these factors were PA size and the number of houses

within 25 km of the protected area. Meanwhile, the most important predictor of

presence was simply whether there were three or fewer frost days per year at the PA.

These predictors are the same as those suggested by our previous model on aggregate

invadedness (Chapter 2, this dissertation).
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Finally, we show that invasion by species of high management priority in general

is not predictable by different features of protected areas than those that are low

management priority. Instead, both presence and cover of all six of the species were

related to slightly different predictive factors. These predictions made sense based

on the physiology and life history of the individual species, but there were no clear

grouping factors related to management prioritization within the state.

Species specific results

Schinus terebinthifolius is the highest priority invasive species in Florida regardless of

which metric is used. It is a documented statewide management priority (Cuda et al.,

2006). It is found on the most PAs throughout the state, covers the most area, and

is allocated the most effort and funding (Table 3.1). Its presence at a PA is almost

entirely related to frost free days. If present, the invadedness of S. terebinthifolius

decreased as PA area increased and as household density decreased. Invadedness of S.

terebinthifolius is also sensitive to frost bin. These relationships are similar to those

described by our aggregate model of species invadedness in chapter 2 and may be

driving those predictions.

Imperata cylindrica is also a very high priority species for management in Florida.

Our model suggests that the invadedness of this species is correlated with road density.

This is not surprising because I. cylindrica is a perennial rhizomatous grass that is

thought to be primarily dispersed by vegetative means (Dozier et al., 1998). The

species is common along roadsides, as the rhizomes are often transported in road fill

and by grading equipment (Jose et al., 2002). In addition, the positive relationship

between the presence of I. cylindrica and elevation is possible because this species

is able to tolerate hot, dry conditions and is one of the few species that will invade

65



upland pine (Yager et al., 2010) and scrub communities.

The presence of Lygodium microphyllum was also positively related to elevation.

This may be similarly related to prevalence on large inland protected areas (Ferriter

and Pernas, 2006). Its invadedness also decreases with increased road cover. This

may be due to the fact that it is a statewide management priority (Hutchinson et al.,

2006) and, as such, is more likely to be intensively treated in easy-to-access areas.

However, this species was present on only 18 PAs in our study, so these results should

be interpreted with care.

The predictions for Ludwigia peruviana were less intuitive. Our model suggests

that the invadedness of this species decreases with proximity to human households.

This wetland species is prevalent in the types of large, shallow wetlands that result

from water control projects in south Florida (Toth, 2010). These types of projects

may be less common in high density developed areas. In addition, the probability of

presence of L. peruviana is positively related to elevation. This seems counterintuitive

for a wetland species, but if it prefers the types of wetlands that are present in the

interior of the state, where there is higher elevation and greater distance from the

human development along the coast, both of these patterns would hold.

Finally, the presence of both Panicum maximum and Urena lobata was not

strongly related to specific PA features. In addition, the cover of neither of these

species was particularly well explained by the density of surrounding households,

although they both did decrease in cover as PA area increased. This is probably

due to their both being common ruderal species often found on roadsides, trails, and
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old field areas, resulting in their near ubiquitous presence on PAs statewide (Austin,

1999).

Caveats

Here we used an FWC operations database to estimate the relative management

effort allocated to invasive plant species in the state of FL. This operations database

describes the actions enacted with state-allocated funding between 1999 and 2009.

However, this does not describe all management actions on state PAs during that

time, because managing agencies also perform treatment actions without FWC

assistance. Despite these limitations, this database describes the largest single source

of management activity within the state, and allocation by FWC is likely to be related

to allocation within managing agencies.

Conclusions

Invasive plant species management is often a priority for biodiversity conservation,

and we confirm that all species cannot be considered equal from a planning

perspective. This is important because conservation funding is limited, and invasive

species are present on protected areas worldwide (Usher, 1988; De Poorter et al., 2007;

Foxcroft et al., 2013). Until species can be ranked by treatment priority based on

ecological impact (Hulme et al., 2013), or on the costs and benefits of outcomes,

the most likely source of cost estimation is current species rankings. Our work

suggests that certain PA features robustly predict invadedness across species, at least

in Florida. However, if the desire is estimates of invadedness for only those species

that are management priorities, then species-specific models may be necessary.

67



Acknowledgements

We would like to R. Cleary at FWC and F. Price at FNAI for data, T. Martin for

statistical assistance, and NIMBIOS and UTK EEB for funding. We are also grateful

to members of the Armsworth lab, S. Wiggers, D. Simberloff, and D. Hodges for

helpful comments on earlier versions of this manuscript.

68



3.5 Appendix: Figures

Schinus terebinthifolius 

Imperata cylindrica 

Lygodium microphyllum 

Ludwigia peruviana 

Urena lobata 

Panicum maximum 
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priority 

PA area          elevation         no frost 

             + 
+ + + 
+ + + 

+ +          + 
 
 

PA area   households   roads   no frost 

-      +             + 
-      +      + 
-                - 

-       -              
-                    
-                      + 

Figure 3.1: Diagram outlining study design and results. We examine the site-level
features that predict the presence and cover of six different invasive plant species
in Florida. These species were chosen based on their abundance and management
priority. The sign in the table indicates the relationship described by significant
predictors in the multiple regression models relating invasive presence and cover to
site-level features. The relevant site-level features are listed along the top of the table.
See Table 3.3 for model coefficient values.
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Figure 3.2: Variation in effort and cover across the 28 species in our occurrence database. For this study we chose six
focal species (filled circles) that differ in the amount of effort that is allocated to their treatment on PAs across Florida.
This figure displays effort for each species in relation to (a) cover on our 365 PAs and effort in relation to (b) the number
of PAs it occurs on. Schinus terebinthifolius, Lygodium microphyllum and Imperata cylindrica are high priority species for
management and also have high levels of cover across the state. Ludwigia peruviana, Urena lobata and Panicum maximum
are low priority for management but have high cover. Panicum maximum is a low priority for management and has
relatively low cover but is present on many PAs
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Distribution of study species across sample protected areas. Circles indicate a protected area with the focal
species present. Size of the circle corresponds with area of the protected area (HA).
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3.6 Appendix: Tables
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Table 3.1: Species which we have occurrence records for, the total cover of those
species across the 365 study protected areas, and the relative effort expended on
treating each species. Species in bold font were case study species used for predicting
cover.

Plant name HA cover Number of Proportion
protected areas effort

Schinus terebinthifolius 4644 211 0.2446
Ludwigia peruviana 2754 101 0.0004
Lygodium microphyllum 2204 41 0.0800
Urena lobata 2102 154 0.0140
Imperata cylindrica 1518 120 0.0944
Colocasia esculenta 1362 56 0.0051
Lygodium japonicum 1099 77 0.0539
Solanum viarum 1034 28 0.0126
Panicum repens 876 94 0.0064
Melaleuca quinquenervia 787 52 0.0605
Casuarina equisetifolia 687 60 0.0571
Leucaena leucocephala 642 56 0.0155
Urochloa mutica 526 53 0.0035
Dioscorea bulbifera 406 96 0.0427
Panicum maximum 377 98 0.0061
Rhynchelytrum repens 310 64 0.0009
Cinnamomum camphora 305 87 0.0160
Ricinus communis 291 44 0.0080
Nephrolepis cordifolia 263 90 0.0000
Sphagneticola trilobata 245 72 0.0018
Sapium sebiferum 240 92 0.0466
Lantana camara 236 97 0.0101
Abrus precatorius 235 72 0.0085
Melia azedarach 223 79 0.0174
Syngonium podophyllum 52 48 0.0022
Ardisia crenata 31 25 0.0269
Lonicera japonica 7 34 0.0054
Albizia julibrissin 1 51 0.0136
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Table 3.2: Descriptive statistics

Variable Invadedness n HA invaded Proportion effort

5th percentile Mean 95th percentile

Schinus terebinthifolius 0 7.42E-03 1.57E-02 207 4644 0.25
Imperata cylindrica 0 1.16E-04 3.94E-04 312 1518 0.09
Lygodium microphyllum 0 3.88E-05 1.00E-07 342 2204 0.08
Ludwigia peruviana 0 4.94E-05 1.57E-04 326 2754 0.00
Urena lobata 0 2.96E-04 6.25E-04 277 2102 0.01
Panicum maximum 0 1.69E-04 4.58E-04 311 377 0.01

Total HA 2 62 8,600 365
Households within 25 km 9,900 104,000 679,000 365
Frost bin NA NA NA 365
Road Length (M) 45 2,139 81,800 365
Mean Elevation (M) 1 4 32 365
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Table 3.3: Parameter estimates and standard errors (Coefficient ± 1 SE) for the model component that predicts the
presence of an invasive species on a protected area (P(Y=0)). The probability that a species is present at a protected area
is calculated as (1 - the logit of the linear combination of these coefficients) multiplied by the predictor variable values for
that protected area. See text for the equation. Values in bold font are statistically significant at p ≤ 0.05.

Intercept log HA log house density log road cover log elevation frost-bin

Schinus terebinthifolius -11.65±8.52 -0.06±0.25 1.15±0.68 -0.18±0.11 0.76±0.58 -2.69±1.17
Imperata cylindrica -4.29±5.75 -0.70±0.19 0.26±0.28 0.45±0.29 -0.86±0.28 -1.46±0.65
Ludwigia peruviana 12.34±4.71 -0.68±0.17 -0.55±0.35 -0.05±0.07 -0.94±0.33 -1.60±0.72
Lygodium microphyllum 13.72±6.32 -1.13±0.33 0.00±0.43 0.10±0.09 -1.42±0.58 -7.25±2.75
Panicum maximum 6.33±4.54 -0.56±0.31 0.06±0.36 -0.32±0.21 0.69±0.39 -0.98±0.94
Urena lobata -14.51±48.45 -1.29±0.78 0.89±0.72 -1.10±1.00 -3.85±1.97 26.49±50.29
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Table 3.4: Parameter estimates and standard errors (Coefficient ± 1 SE) for the model component that predicts
invadedness of an invasive species at a protected area if the species is present (P(Y>0)). The mean invadedness at a
protected area follows a binomial distribution and thus is calculated as e to the linear combination of these coefficients
multiplied by the predictor variable values for that protected area. See text for the equation. Values in bold font are
statistically significant at p ≤ 0.05.

Intercept log HA log house density log road cover log elevation frost-bin dispersion

Schinus terebinthifolius -5.16±3.26 -0.58±0.21 0.71±0.26 -0.11±0.08 0.00±0.44 4.68±0.97 5.34±1.17
Imperata cylindrica -11.17±3.67 -0.33±0.09 0.40±0.20 0.60±0.18 -0.07±0.16 0.42±0.38 1.26±0.41
Ludwigia peruviana 11.51±5.38 -0.51±0.10 -0.56±0.29 -0.19±0.19 -0.15±0.19 0.70±0.47 2.08±0.71
Lygodium microphyllum 10.77±5.66 -0.69±0.20 -0.22±0.41 -0.22±0.06 -0.48±0.37 -0.90±2.80 0.52±0.63
Panicum maximum 8.60±4.67 -0.73±0.17 -0.41±0.35 -0.15±0.29 0.28±0.46 2.32±0.86 3.75±2.36
Urena lobata -1.86±2.82 -0.46±0.09 0.41±0.21 -0.09±0.08 0.22±0.21 0.95±0.56 6.41±1.21
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3.7 Appendix: Supplementary Information

Table 3.5: The effort values are sums of proportional effort per protected area (PA).
For instance, if all of the treatment effort at a PA was focused on a single species it
would receive a value of 1 for that PA. We summed these proportions of effort per
species across all PAs. If only one species was managed across all PAs it would receive
an effort ranking of 365. In our dataset, Schinus terebinthifolius has an effort ranking
of 225 which would be equivalent to Schinus terebinthifolius being the only species
treated on 225 of our 365 PAs. Case study species are in bold font. Florida Exotic
Pest Plant Council (FLEPPC) category I species are those documented as impacting
native plant communities. FLEPPC category II species have been observed to have
increased in abundance or frequency in natural areas.

Effort Prop. Common name Scientific name Cat.

1 224.99 0.24 Brazilian pepper Schinus terebinthifolius I
2 86.84 0.09 cogon grass Imperata cylindrica I
3 73.57 0.08 Old World climbing fern Lygodium microphyllum I
4 55.68 0.06 melaleuca, paper bark Melaleuca quinquenervia I
5 52.49 0.06 Australian pine Casuarina species I
6 49.60 0.05 Japanese climbing fern Lygodium japonicum I
7 42.89 0.05 Chinese tallow, popcorn tree Triadica sebifera I
8 39.31 0.04 air-potato Dioscorea bulbifera I
9 31.14 0.03 Unidentified species NA NA
10 24.76 0.03 coral ardisia Ardisia crenata I
11 16.03 0.02 Chinaberry Melia azedarach I
12 15.15 0.02 skunk vine Paederia foetida I
13 14.71 0.02 camphor tree Cinnamomum camphora I
14 14.27 0.02 lead tree Leucaena leucocephala II
15 13.94 0.02 Bay Biscayne creeping-oxeye Sphagneticola trilobata II
16 12.91 0.01 Caesar’s weed Urena lobata II
17 12.54 0.01 mimosa, silk tree Albizia julibrissin I
18 11.58 0.01 tropical soda apple Solanum viarum I
19 9.29 0.01 lantana, shrub verbena Lantana camara I
20 8.80 0.01 bowstring hemp Sansevieria hyacinthoides II
21 7.85 0.01 rosary pea Abrus precatorius I
22 6.61 0.01 shoebutton ardisia Ardisia elliptica I
23 5.85 0.01 torpedo grass Panicum repens I
24 5.63 0.01 Guinea grass Panicum maximum II
25 5.11 0.01 lather leaf Colubrina asiatica I
26 4.98 0.01 Japanese honeysuckle Lonicera japonica I
27 4.87 0.01 downy rose-myrtle Rhodomyrtus tomentosa I
28 4.74 0.01 wild taro Colocasia esculenta I
29 4.64 0.01 seaside mahoe Thespesia populnea I
30 4.03 0 guava Psidium guajava I
31 3.88 0 scaevola, beach naupaka Scaevola sericea I
32 3.88 0 aquatic soda apple Solanum tampicense I
33 3.84 0 paper mulberry Broussonetia papyrifera II
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Table 3.5: (continued)

Effort Prop. Common name Scientific name Cat.

34 3.78 0 nandina, heavenly bamboo Nandina domestica I
35 3.55 0 kudzu Pueraria montana I
36 3.20 0 Par grass Urochloa mutica I
37 2.75 0 Burma reed, cane grass Neyraudia reynaudiana I
38 2.00 0 arrowhead vine Syngonium podophyllum I
39 1.93 0 tung oil tree Aleurites fordii II
40 1.91 0 white-flowered wandering Jew Tradescantia fluminensis I
41 1.72 0 cat’s claw vine Macfadyena unguis-cati I
42 1.64 0 wedelia Wedelia trilobata II
43 1.49 0 Chinese brake fern Pteris vittata II
44 1.48 0 mahoe, sea hibiscus Hibiscus tiliaceus II
45 1.48 0 strawberry guava Psidium cattleianum I
46 1.25 0 bischofia Bischofia javanica I
47 1.24 0 life plant Kalanchoe pinnata II
48 1.09 0 sapodilla Manilkara zapota I
49 1.06 0 purple sesban, rattlebox Sesbania punicea II
50 0.90 0 carrotwood Cupaniopsis anacardioides I
51 0.80 0 Natal grass Rhynchelytrum repens II
52 0.76 0 woman’s tongue Albizia lebbeck I
53 0.76 0 Chinese or hedge privet Ligustrum sinense I
54 0.76 0 castor bean Ricinus communis II
55 0.75 0 winged yam Dioscorea alata I
56 0.71 0 confederate jasmine Trachelospermum jasminoides NA
57 0.51 0 sweet autumn virginsbower Clematis terniflora NA
58 0.48 0 thorny eleagnus Elaeagnus pungens II
59 0.46 0 twin-flowered passion vine Passiflora biflora II
60 0.44 0 earleaf acacia Acacia auriculiformis I
61 0.42 0 West Indian marsh grass Hymenachne amplexicaulis I
62 0.41 0 Peruvian primrose-willow Ludwigia peruviana I
63 0.38 0 arrow bamboo Pseudosasa japonica NA
64 0.34 0 schefflera, umbrella tree Schefflera actinophylla I
65 0.29 0 oyster plant Tradescantia spathacea I
66 0.25 0 flamegold tree Koelreuteria elegans II
67 0.24 0 Surinam cherry Eugenia uniflora I
68 0.24 0 pothos Epipremnum pinnatum II
69 0.20 0 malanga, elephant ear Xanthosoma sagittifolium II
70 0.19 0 rose Natal grass Melinis repens I
71 0.18 0 climbing or Christmas cassia Senna pendula I
72 0.14 0 alligator weed Alternanthera philoxeroides II
73 0.13 0 coconut palm Cocos nucifera NA
74 0.13 0 flamevine Pyrostegia venusta NA
75 0.12 0 rubber vine Cryptostegia madagascariensis II
76 0.09 0 bush morning-glory Ipomoea fistulosa II
77 0.08 0 common asparagus fern Asparagus setaceus NA
78 0.07 0 umbrella plant Cyperus involucratus II
79 0.07 0 glossy privet Ligustrum lucidum I
80 0.06 0 Senegal date palm Phoenix reclinata II
81 0.05 0 Napier grass Pennisetum purpureum I
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Table 3.5: (continued)

Effort Prop. Common name Scientific name Cat.

82 0.05 0 sisal hemp Agave sisalana II
83 0.04 0 rose-apple Syzygium jambos II
84 0.04 0 Egyptian grass Dactyloctenium aegyptium NA
85 0.04 0 Mexican petunia Ruellia brittoniana I
86 0.04 0 tropical almond Terminalia catappa II
87 0.04 0 coral vine Antigonon leptopus II
88 0.04 0 red sandalwood Adenanthera pavonina II
89 0.03 0 jambolan, Java plum Syzygium cumini I
90 0.03 0 solitary palm Ptychosperma elegans II
91 0.03 0 orchid tree Bauhinia variegata I
92 0.03 0 Taiwanese cheesewood Pittosporum pentandrum II
93 0.02 0 Puerto Rico silver palm Coccothrinax barbadensis NA
94 0.02 0 queen palm Syagrus romanzoffiana II
95 0.01 0 Arabian jasmine Jasminum sambac II
96 0.01 0 laurel fig Ficus microcarpa I
97 0.01 0 asparagus-fern Asparagus densiflorus I
98 0.01 0 limpo grass Hemarthria altissima II
99 0.00 0 Washington fan palm Washingtonia robusta II
100 0.00 0 puncture vine, bur-nut Tribulus cistoides II
101 0.00 0 santa maria, mast wood Calophyllum antillanum I
102 0.00 0 white cypress-pine Callitris glaucophylla NA
103 0.00 0 Indian rosewood, sissoo Dalbergia sissoo II
104 0.00 0 governor’s plum Flacourtia indica II
105 0.00 0 wood-rose Merremia tuberose II
106 0.00 0 susumber, turkey berry Solanum torvum II
107 0.00 0 simpleleaf chastetree Vitex trifolia II
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A version of this chapter will be submitted for publication after modification

during internal and external review.

Iacona, G.D, E.R. Larson, M.J. Hughes, D.Hayes and P.R. Armsworth (XXXX).

Assessing changes in forest structure and composition over time to estimate the benefit

of protected areas. Biological Conservation.

The use of “we” in this chapter refers to me and my co-authors. As the lead author

of this article, I was responsible for developing the ideas for this paper, conducting

the analysis, and writing the manuscript. P.R.A. and E.R.L are co-authors of this

work and they were responsible for feedback at early stages of the research and for

helping to edit the manuscript. M.J.H and D.H. provided the spectral imagery data.

Abstract

Conservation planners and land managers are searching for a cost-effective method

to assess the variation in benefit across different types of protected areas (small vs.

large, urban vs. rural, managed vs. not managed, etc.). Because measures of benefit

must describe specific protected areas over many years, in many cases the only feasible

method for obtaining the relevant data in a timely and cost effective manner is to use

remotely sensed spectral imagery. Spectral imagery has been used in assessing the

benefits of terrestrial protected areas, but primarily to gauge rates of deforestation

and recovery. Here we evaluate whether a similar approach can be used to examine

more resolved aspects of the benefit of forest protection. We aim to identify a method

to determine a baseline of forest attributes from a time prior to the conservation action

and to recreate the history of how the forest has varied over the time since protection.
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To do so, we examine our ability to relate six different measures of forest structure and

composition on existing protected areas to freely available Landsat satellite imagery.

We show that the forest attributes differ in the amount of variation that is able to be

detected remotely, with some models outperforming others in predictive capacity. We

then illustrate the utility of our forest structure and composition models by examining

two relationships between modeled forest growth and protected areas of different sizes.

4.1 Introduction

Conservation scientists and practitioners have been calling for cost effective and

efficient methods to measure the benefits of protected area (PA) establishment and

management (Naughton-Treves et al., 2005; Ferraro and Pattanayak, 2006; Sutherland

et al., 2009). Protected area establishment is the most common biodiversity

conservation strategy, but the ability of individual PAs to provide a benefit over

time may vary. It is important to quantify this variation in order to assess the benefit

of individual PAs and to determine if some types of PAs (differing by area, location,

level of protection, type of management, etc.) provide more benefits than others.

An assessment of PA benefits should compare the relevant attributes from before

establishment with the same attributes up to the present. This is because the benefit

a PA provides has many aspects, but in general it describes the effect of establishing

and managing a PA on some objective (Gaston et al., 2008). When biodiversity

conservation is the objective, the most important function of a PA is to counteract

threats and allow focal species and communities to persist over time (Pressey et al.,

2007). Ideally, we would know the history of how indicators of these species and

communities have changed over time and would thus be able to identify the influence
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of PA establishment and presence.

The problem is that change over time data are difficult to obtain. Information on

PA attributes prior to protected area acquisition is the most problematic. On-the-

ground ecological sampling efforts tend to occur only over short time periods, and

many locations that are current or potential protected areas were never sampled in

the past (Timko and Innes, 2009). Establishing long term monitoring studies can

counteract this limitation for future applications, but the cost of such effort can be

prohibitive and it would be decades before meaningful temporal information could

accrue. This difficulty in acquiring appropriate data suggests that strategies using

remotely sensed spectral imagery, even if imperfectly, may offer the greatest promise

to examine the changes over time (Wiens et al., 2009).

Methods that use satellite imagery to remotely sense changes over time have

become more accessible for application by practitioners. Landsat data have recently

become freely available via the United States Geological Survey, providing decades

worth of spectral imagery across the globe (Wulder et al., 2012). Recent advances in

computing and pre-processing have made it feasible for conservation professionals

to use these data (Wiens et al., 2009). These data sources have been used in

recent analyses that examine the effectiveness of protected area establishment in

counteracting deforestation in the Brazilian Amazon and elsewhere (Andam et al.,

2008, 2013). In addition, researchers have used remote sensing techniques to assist in

PA management and conservation efforts as varied as assessing rare species habitat

extent (Stabach et al., 2012), monitoring PA effectiveness in remote areas (Ayebare

et al., 2012), and quantifying surrounding land use encroachment (Wang, 2012).

Although The Nature Conservancy (TNC) has used this spectral imagery to monitor
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forest re-growth after PA acquisition (Sutter et al., 2009), conservation practitioners

have not yet used these data to their full capacity for assessing the benefit of PAs.

The benefit of terrestrial protected areas is often related to their ability to protect

forests. In virgin forests, where logging is the greatest threat to species persistence,

estimates of changes in forest cover are an appropriate measure of benefit (Andam

et al., 2008; Joppa and Pfaff, 2010, 2011; Blackman, 2013). In regions like the eastern

US, however, the vast majority of PAs occur on forest lands that have already been

harvested at least once (Pan et al., 2011). Thus, PAs contain forests that are in

various stages of regrowth and that may be managed for certain tree species (e.g.

valuable hardwoods selectively harvested, pines planted for pulp, invasive species

removed). Consequently, the benefit of PA establishment is more than the simple

retention of forest cover, and instead depends on the persistence and recovery of

mature individuals of species that are characteristic of desired forest communities.

A small amount of prior research has attempted to quantify forest growth and re-

growth but has primarily used proportional cover as a proxy for forest dynamics

(Triantakonstantis et al., 2006; Andam et al., 2013; Htun et al., 2013). However, these

proxies do not provide sufficiently resolved information to inform forest management.

For instance, in forests in the Appalachian mountains of the eastern USA, a high-

benefit protected area could be one that contains widely spaced mature individuals

of the many tree species present in forest types such as Appalachian Cove Forest,

Cumberland Dry Oak Forest, or Appalachian Montane Pine Forest (all forest types

per NatureServe, 2011; Anderson et al., 1999). To understand changing benefit

over time for PAs that protect Appalachian mountain forests, land managers must

understand how the forest structure (e.g. tree age, size, density, etc.) is changing as
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well as the identity and distribution of dominant species.

In this study we have two objectives. First, we test a method to relate field

measured forest structure and composition to contemporary spectral imagery. We

are particularly interested in assessing the utility of remote sensing imagery for

applications that require more resolved aspects of forest conservation than the

variation in forest cover that has already been embraced by conservation professionals.

Specifically, we examine how simple models describing the forest features that could

relate to TNC’s conservation objective of “forest intactness” differ in their explanatory

power. We then illustrate how these model results can be projected back in time

to evaluate forest conditions prior to PA establishment that would otherwise be

impossible to study. Such models could be applied to answer many questions of

relevance to conservation professionals. Accordingly, our second objective is to

demonstrate their utility with two illustrative examples (tree size and fire-tolerant

pine species as a function of PA area). We approach these objectives by addressing

the following questions:

1. How well do attributes of forest structure and composition that could proxy for

conservation benefit relate to spectral imagery?

2. How do predicted changes in benefit (forest structure and composition) differ

on large versus small protected areas?

As discussed above, benefit has many meanings and must be defined for use,

but, in the context of Appalachian forest conservation, benefit could be quantified

with metrics that describe forest structure and composition change in relation to

the desired future condition of the site. For instance, a hypothetical desired future

condition for a PA could aim for forest that had 10% cover of fire-maintained
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species(pine), that was an uneven aged stand with many mature trees (dbh >40

cm), and had high species richness (5-6 species per 10 trees). For such a conservation

objective, PAs where the forest structure and composition change to be more similare

to the desired future condition can be considered to provide a greater benefit than

those that do not (assuming that the desired future condition is appropriately chosen

and similar for both PAs). In this example the comparative metric would be a sum

of three forest attribute estimates at a point in time.

Estimates of changes in benefit are useful for relating to PA attributes, such

as area, to enhance conservation planning decisions. For instance, the relationship

between PA area and biodiversity conservation effectiveness is a classic and organizing

question in conservation planning (Simberloff and Abele, 1982). The widely accepted

answer is “it depends,” and conservation organizations have been grappling with ways

to prioritize funding across possible acquisitions. In our study region, it is possible

that there are fundamental differences in the forest structure and composition of

fragments of different sizes and these differences should be considered during the

planning process. For instance, occasional high quality tracts of remnant old trees

and rare community types are still present, but they may be more prevalent on small

privately owned tracts that were possibly never commercially timbered. Meanwhile,

large forested tracts also occasionally become available for purchase as the forest

products industry continues to divest of its assets in the region (Wear and Greis,

2013). These large tracts can provide cornerstone preserves for regional conservation

landscapes and possibly garner strong political and donor base support, but may have

been more recently harvested.
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Protected area characteristics, such as area, could also be associated with

species composition. For instance, contemporary Appalachian forests are primarily

dominated by deciduous hardwoods. There is evidence, however, that this dominance

is a recent occurrence that has developed as a result of the extensive logging in this

area about 150 years ago and the subsequent fire suppression policies (Nowacki and

Abrams, 2008). Prior to European settlement, indigenous residents and lightning

would have ignited frequent fires on the ridges and dry slopes of the region. Under

these environmental conditions, fire adapted forest types dominated by pine (Pinus)

species and thick barked oaks such as chestnut oak (Quercus montana) and white oak

(Quercus alba) were abundant (Brose et al., 2001). Fire scar analyses (Flatley et al.,

2013), soil carbon dating (Fesenmyer and Christensen, 2010), historical accounts, and

the presence of pyrogenic understory species (Hoss et al., 2008) have convinced many

land managers that the restoration of these communities is a valid conservation goal

for the region (Southern Appalachian Man and the Biosphere, 1996b; The Nature

Conservancy, 2000, 2003).

4.2 Methods

Study sites and region

To examine variation in current forest structure and composition across PAs, we

sampled forest attributes on 27 PAs that were recently acquired by TNC. These

PAs were a subset of a Conservation Lands System (CLS) database query from 2010,

which called for all TNC land transactions that occurred between 2000 and 2009 in the

Central Appalachian Forest (The Nature Conservancy, 2001), Southern Blue Ridge

(The Nature Conservancy, 2000), and Cumberland and Southern Ridge and Valley
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(The Nature Conservancy, 2003) ecoregions of the Eastern USA. These ecoregions

constitute the Appalachian Mountains of the Eastern United States, an ancient

mountain chain with rough topography, high deciduous tree diversity, and typically

low human population densities (Southern Appalachian Man and the Biosphere,

1996a). In some cases, land transactions resulted in stand-alone PAs, but in other

cases the transactions are tracts that were additions to larger PAs. From here on,

we call these land transactions PAs regardless of whether the transaction included

the entire current PA extent; a choice we revisit in the discussion. We selected PAs

to visit for field sampling based on 1) a stated TNC conservation objective for forest

protection or “intactness” from internal documents (“deal abstracts”) completed in

advance of the land transactions, 2) size large enough to accommodate our sampling

protocol (PAs larger than ≈ 8 HA; see below), and 3) fee simple acquisition. All

PAs were owned by TNC at the time of the CLS query, but six had been transferred

to government agencies (e.g., North Carolina State Parks, Maryland State Forest,

Thomas Jefferson National Forest) by the survey date. The 27 PAs that were sampled

ranged in area from 8 to 885 HA, and were distributed across 10 US states (Figure 4.1,

Table 4.4).

Field sampling for forest structure and composition

We recorded forest structure and composition information at 20 random sample points

per PA. We chose to sample the same number of points per PA because we wanted to

obtain inference at the scale of a PA. The sampling locations were determined using

Geographic Information System (GIS) software prior to site visits (ArcMap version

10.1, ESRI, Redlands, CA, USA). Sample point locations at a PA were stratified so

that half of the points were edge points located within 100 m of a PA boundary, and
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half of the points were interior. No random points were allowed to fall within 30 m

of another random point, consistent with the grain size (30 x 30 m) of pixels from

Landsat spectral imagery (see below). Due to this constraint, the smallest PA where

we could sample 20 random points was roughly 8 HA in size (see above).

At each sampling point, we recorded canopy openness using a hand held

densiometer, identified the 10 closest trees to species, measured the distance to each

from the sampling point, and recorded the diameter-at-breast-height (dbh) of each of

the ten trees. We considered trees to be any woody shrub with a dbh greater than

10 cm. We made an exception to the 10 cm dbh minimum for scrub oak (Quercus

illicifolia) because it is a dominant species in the scrub oak-heath community that

is a conservation priority at some of our PAs (The Nature Conservancy, 1998), and

it rarely exceeds 10 cm dbh. All tree species nomenclature follow Kirkman et al.

(2007), except for species we found only in the states of Pennsylvania and West

Virginia which follow Elias (1987). All Crataegus and Amelanchier were identified to

genus only. Field surveys were performed between May and September of 2013.

Remote sensed predictor variables

We used 2011 imagery from the Landsat 5 thematic mapper (TM) sensor to fit models

of forest structure and composition and imagery from 1985 to 2010 for the example

applications. Cloud-free summertime means were generated from multiple TM scenes

and path/rows for each year using SPARCS (Hughes and Hayes, 2014) for imagery

covering each of our plot locations. We then used the tasseled cap transformation to

convert the six chanels of spectral imagery into three minimally correlated predictor

variables (Crist and Cicone, 1984). Several bands of Landsat channel data are highly

correlated, but data in the six dimensional Landsat band space can be described
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in terms of three uncorrolated dimensions on a rotated axis (Kauth and Thomas,

1976). The tasselled cap transformation extracts these three orthogonal components

from the correlated data. The coefficients from the tasseled cap axis rotation can

then be linearly combined with the Landsat channel data to provide three metrics

that relate to vegetation reflectance (brightness), chlorophill content (greenness), and

moisture (wetness) (Kauth and Thomas, 1976). We calculated brightness, greenness,

and wetness values from the imagery for the 30x30 m pixel containing each random

point. Three sample points were discarded due to data processing errors. The final

dataset contained casseled cap values for 537 plot locations describing the spectral

properties of the forest plot. We scaled the relationship to correct for shadows due to

time of day and aspect by dividing the value for each Landsat band by the summed

value of all bands.

We also included several abiotic covariates in the model to account for underlying

environmental effects or gradients that could influence the forest attributes of interest.

For each sampling point we obtained data on elevation, northness, slope, and latitude.

Elevation data were from the NASA National shuttle radar topography mission

(Version 2.1, Rodriquez et al., 2006). Using this dataset, we calculated northness

and slope using spatial analyst tools in Arc Map (version 10.1). Northness scales

from north (1) to south (-1) and is the cosine of aspect in radians. Latitude was

recorded at the point by handheld GPS (Garmin E-Trex 20).
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Analysis

Model specification

We developed models for six different forest attributes: mean dbh, % canopy openness,

tree density (mean distance from random point), species richness, pine density, and

red maple (Acer rubrum) density. These response variables were chosen because

they represent measures of forest structure and composition that are aligned with

conservation objectives common to this region (see introduction and discussion). The

first four variables are measures of forest structure. Changes in tree size (dbh) over

time can be a proxy for tree age within a forest, and also loosely relate to time

since harvest within a stand. Canopy openness is related to how large and close

together trees are. This variable must be interpreted with care because some forest

types (eg. pine dominated savannas, dry oak forests, scrub oak bald, cedar glades)

are characterized by widely spaced trees, so increases in conservation benefit do not

necessarily correlate with canopy closure. Tree density was calculated as the mean

distance to the ten closest trees from each random point. The expectation is that

more mature (and thus greater conservation benefit) forests have large, widely spaced

trees, although this depends on community type.

The other three response variables are indicators of forest community composition.

We first model species richness of the ten trees at a point. Appalachian forests contain

very high tree species diversity, and although the absolute diversity differs across

community types, maintaining species richness in general is a common conservation

objective. We model the proportion of pines, out of the ten at a point, as a proxy for

the presence of the fire maintained community types that are a current conservation

focus for many management agencies in the region. Finally, we model the proportion
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of red maple because it is a species that has recently become dominant in the eastern

deciduous forests (Abrams, 1998; Hanberry, 2013) and land managers are concerned

about how it is replacing the prior oak (Quercus species) dominants.

We used linear mixed models and generalized linear mixed models to relate current

forest condition to remote sensing predictors. This approach is appropriate because

it allows us to specify modeled distributions as suggested by the data. In addition,

it allows us to account for an error structure that includes error due to model

specification as well as error due to similarities in forest condition measurements

that are related to protected area identity. We illustrate the model specifications

below using canopy openness as an example response variable.

% canopy openness = α+β1(greenness)+β2(wetness)+β3(brightness)+βXCovariates+εsite+εpixel

Our approach, relating forest attributes to spectral imagery, is conceptually similar

to calculations of indices like NDVI that have been widely employed to quantify

change in vegetation structure and status at large scales (e.g. Kennedy et al., 2012).

We are, however, harnessing the technique to predict more customized differences in

forest condition at the scale of a protected area or regional protected area network.

We fit linear models with random effects using restricted maximum likelihood

(package nlme in R, Pinheiro et al., 2009), a choice justified by the design of the

data collection and this model framework outperforming simpler models in AIC

competition. For modeling % canopy openness, log transformation of the response

variable improved model fit and compliance with model assumptions. Meanwhile, we

used a generalized linear model with a binomial distribution and a logit link (Bates
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et al., 2011, package lme4 in R,) for pine and red maple. In all cases, tolerance testing

indicated that no predictor variable was more than 20 % dependent on variation in

other predictor variables ensuring that collinearity requirements were adequate to

proceed (Quinn and Keough, 2001). We specified the full model in all cases for model

portability and comparability across measures.

Example applications

These models of forest structure and composition were developed for applications that

need predictions of change over time to understand the benefit of attributes of the PAs

and their establishment. We illustrate their use with two example applications that

examine forest change over time and its relationship to PA area on our Appalachian

study sites.

Our first example application uses one of our models to recreate historical

conditions. We examine whether the average size of trees in the forest at acquisition

differs across PA sizes, using our dbh model. We would expect to see larger trees on

smaller tracts as hypothesized above. We calculate the estimated dbh at acquisition

by using the coefficients from our dbh model and Landsat channel data for the year

of acquisition of each PA. We then regress these predictions of mean dbh per PA at

acquisition against PA area (HA). The relationship between PA area and predicted

tree size at acquisition would then be represented by the value and significance of the

β1 parameter in the model specified below.

Predicted dbh at acquisition = α+ β1(log(PA area)) + ε

Using this model, we can explore the predicted variation in a measurement that

is unavailable: how big the trees were when each PA was acquired. Records from a
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consistently implemented field survey on each PA would clearly be better, but they

are not available for any of our study sites. This is a situation we anticipate being

quite common in conservation practice.

In the next example, we develop estimates of forest condition prior to acquisition.

We are interested in whether there has been a change in pine density over time across

PAs and if the change varied with PA area. Only two of our study sites (Floyd,

GA, and Blair, PA) have enacted a fire reintroduction program so far, but we are

curious about whether trends in the density and extent of remnant fire maintained

community types differ with land parcel area across our study PAs. We might expect

a difference with area if larger PAs were more likely to retain natural processes such

as lightning ignited fire movement through the landscape. To examine changes in fire

maintained communities over time on our PAs, we paired the coefficients from our

pine density model with Landsat channel data from our sample points for every year

since 1985 (the earliest year of Landsat 5 availability, Wulder et al., 2012). We then

regressed predicted pine density against time, PA area, and the interaction between

time and PA area to assess the relative importance of PA area on pine density. To

do so, we used a mixed modeling approach that allowed the intercept of pine density

change over time to vary for each PA. Eg:

Predicted pine density = α+ β1(PA area) + β2(year) + β3(year * PA area) + εsite + εpixel

Here we are most interested in the significance of the β3 parameter which indicates

whether the slope of the relationship between pine density and time varies for PAs of

different sizes.
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4.3 Results

Our field-collected forest structure and composition data described a range of forest

conditions across the Appalachian mountains. The forests in general had small trees

with a mean dbh across our sample sites of 22.71 cm; although mean dbh ranged from

0.50 cm at PAs with scrub oaks to 62.30 cm at a PA with large oaks and hickories

(Carya species; Table 4.1). There was also a generally high level of canopy closure

with a distribution of % openness measures that was skewed towards low values and

had a mean value of 18.84 % open. Our sampled Appalachian forests were dense with

a mean distance to the ten closest trees of 5.5 m. There was high species richness

across the study region with a mean of 4.1 species per 10 trees sampled, 19.3 species

per PA, and 95 total species of trees recorded. Finally, the proportions of pine and

red maple were both skewed towards zero, with both having a mean value of less than

1 of the 10 trees per sample point (0.85 for pines and 0.99 for red maple).

Forest structure and composition models

Forest structure attributes varied in how well they were explained by our modeling

approach and in some cases were not related to the spectral imagery as well as they

were related to the covariates (Table 4.2, Table 4.3). Variation in the size of the

trees (mean dbh) across the 537 sample points was the forest structure attribute

that was best explained by our models (pseudo R2 = 0.48). This variation was

significantly related to the tasseled cap wetness band. Meanwhile, the openness of

the forest canopy was explained by wetness and increased with slope (pseudo R2

= 0.34). Finally, tree density decreased slightly with elevation and could not be
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discerned using spectral imagery alone (pseudo R2 = 0.26).

Forest composition attributes were also predictable to some extent, but they were

more strongly related to covariates than spectral attributes (Table 4.2,Table 4.3).

Species richness was not related to the spectral bands but it decreased with latitude,

northness, and elevation (pseudo R2 = 0.36). The proportion of the ten nearest

trees that were a pine species was related to brightness, greenness and wetness bands

and also decreased with latitude (pseudo R2 = 0.49). Meanwhile, very little of the

variation in the proportion of red maple out of ten trees was predicted by our model

(pseudo R2 = 0.10), but the proportion predicted did increase with latitude.

Example applications

The results of our example applications suggest that the forest structure and

composition of our study PAs has not changed drastically in the decade or so since

protection or in the 28 years of Landsat data availability. The dbh predictive model

suggests that tree size at acquisition does not differ across site sizes for our study

PAs. A plot of the predicted values against PA area might suggest a decreasing trend

in dbh as PAs increase in area, but the relationship was not significant (Figure 4.2,

Table 4.5). There were several outliers at low predicted dbh values that appear to be

influencing the relationship, however.

In the second illustrative example, we tested whether PA area relates to variation

in pine density over time. We found no relationship between pine density at a sample

point and either time or PA area for our 27 study sites (Table 4.5).
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4.4 Discussion

The primary objective of this research was to explore the feasibility of using

remote sensing data to model attributes of forest structure and composition that

are important for biodiversity conservation management objectives. Conservation

professionals have embraced the use of remote sensing data for assessment of changes

in forest cover (e.g. Sutter et al., 2009), but here we examine the application of these

data to measure more resolved aspects of forest conservation benefit. We show that it

is possible to describe the variation in several forest attributes that can provide more

insight into conservation benefit than forest cover alone. In particular, reasonably

large amounts of the variation in dbh and pine density can be explained by the

spectral imagery in our models, suggesting that these might be useful proxies for

PA benefit calculations in our ecoregions, whereas other responses like red maple

density could not be effectively modeled from spectral imagery. Researchers in other

regions/ecoregions may similarly need to evaluate which measures of forest structure

and composition can be effectively represented by spectral imagery, but our results

suggest this approach provides a feasible method to evaluate additional PA benefits

affordably and rapidly over large spatial scales and through historic time periods.

We also used two of our models to demonstrate the application of spectral imagery

to questions of potential conservation effectiveness over time. We did not see clear

differences in tree size that were consistently related to land parcel area at time of

purchase, contrary to our hypothesis. We also found that the prevalence of potential

fire maintained community types (e.g. those containing pine trees) is not related to

PA area and does not appear to have systematically changed over the past 28 years.

In both cases, however, the time frame of our comparison may have been limiting.
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For example, Landsat data are only available back to 1985, but pine (or other fire

maintained community) declines may have greatly preceded this imagery by as much

as a century (Nowacki and Abrams, 2008).

Our models were able to explain moderate amounts of variation in some of the

forest structure and composition attributes that we examined. This is encouraging

for conservation managers because it suggests that it is relatively straightforward to

model meaningful variation in forest attributes of conservation interest over large

scales using freely available satellite data. However, the variation in some attributes

was better described than in others. Tree size (dbh) and proportion pine were the

two variables that were best explained by our models with about half the variation

explained for each of them. In contrast, the proportion of red maple explained by

spectral attributes and covariates was minimal (pseudo R2 = 0.10). These results

illustrate that attributes of interest must be chosen carefully and it is probably wise

to test the explanatory capacity of several forest attributes when attempting to assess

benefit.

Finally, our example applications demonstrate that these types of models can

provide meaningful information that relates to conservation planning. Although there

was no significant difference in dbh at acquisition, our model suggests that there

might be a trend towards larger trees on smaller sites, potentially reflecting a history

of variation in management. We would expect to see the hypothesized difference,

given the patterns of land tenure and forest harvest in this region. The differences

across PAs, however, would not be something as clear as saplings vs. old growth.

Instead, it is probably on the order of a decade or two of extra growth on some of the

smaller parcels. This region has been highly impacted by logging (Yarnell, 1998), and
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across the 27 PAs we encountered few trees that displayed old growth characteristics.

Meanwhile, the lack of change in predicted pine density across PAs of different sizes

or over time is disappointing but not particularly surprising. In some landscapes

(e.g. the Southeastern coastal plain of the USA), larger sites have been historically

less impacted by fire suppression because of their natural flammability and frequent

lighting strikes. We did not observe this pattern in Appalachia. It appears that pine

density is similar on PAs regardless of area and that it has not changed consistently

in the 28 years of Landsat data availability. This could be because fire suppression

in this region is a century rather than decades old and the declines in pine occurred

long before 1984 (Nowacki and Abrams, 2008). Our pine change over time model

is still useful for land managers, however, because many of these PAs aim to begin

reintroducing prescribed fire in the future. Our model could be used to assess the

benefit or effectiveness of these management efforts from the perspective of mesic tree

suppression and pine species promotion into the future.

Assumptions and caveats

Our models were developed using field data collected on TNC preserves across

Appalachia that had a stated objective for forest protection. One consequence

of this approach was that our three northernmost sites were dominated by scrub

oak. This species is a large shrub that is the dominant tree species in the scrub

oak summit (scrub oak-heath) community that was a conservation priority of the

northernmost preserves (The Nature Conservancy, 1998, 2001). It is also found in

smaller patches on other preserves throughout the region. This means that, in some

cases, the explanatory ability of latitude and potentially some of the spectral sensors

is responding to this species alone. Inspection of model residuals suggested that the

mixed modeling approach corrected for much of the effect of these outliers, but we
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also performed a sensitivity test by re-fitting the above models while excluding data

from sampling locations that were dominated by scrub oak. To do so, we removed

36 data points describing sampling locations where the trees had a mean dbh of less

than 10 cm. The resulting sensitivity test models displayed fitted coefficients that

were similar in significance, magnitude and direction to the models using the full

dataset (Supplementary Table 4.6). However, removing the scrub oak dominated

data points resulted in a change in explained variation that ranged from a 43%

decrease in explanatory capacity for forest density measurements (Pseudo R2 changed

from 0.26 to 0.15) to a 110% increase in explanatory capacity for red maple density

measurements (Pseudo R2 changed from 0.10 to 0.22). These sensitivity test results

suggest that the explained model fit can be influenced by the spatial organization

of one species, although the magnitude of the effect varies across the modeled forest

attributes. We chose to keep these data in our analysis because the scrub oak heath

community is an important community type that is a conservation priority in the

region.

For this analysis, we used individual conservation land transactions as the unit of

replication as opposed to jurisdictional PA boundaries. This is because the individual

deal is the grain at which conservation decisions are usually made, and thus is the

relevant scale for purchase benefit assessment. In many of our study cases, the

deal is an in-holding or addition to an existing PA. Because of this, many of the

classic predictions of the conservation impacts of PA area (e.g. increased edge effects,

extinction vs colonization) may not hold for our study sites. Nevertheless, this paper

illustrates a method that can be used to directly test whether these types of impacts

do actually differ when we consider deals as opposed to entire PAs.
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There are also situations where back-casting with a parameterization based on

current forest attributes, such as we perform here with our reconstruction of historic

forest attributes, may be impossible. Such would be the case if the historic forest

attributes were no longer present across any of the current field sites. For instance,

100 years ago, these forests would have been dominated by the American chestnut

(Castanea americana). Due to widespread extermination by a blight, that species

is almost never present in contemporary forests and if it is, it rarely attains canopy

height (Stephenson, 1986). Our current day parameterized models have no equivalent

combination of signature and covariates that could explain the signature of dominance

by that species. We are not suggesting that American chestnut is likely to hinder our

historic reconstructions, but, we acknowledge that our method cannot explain all

possible forest characteristics.

Application recommendations and conclusions

The scale of decision making is an important consideration when designing tools for

benefit measurement. In this case, we consider variation in forest attributes that can

be measured at the level of a PA. For instance, average tree size (dbh) on a PA, or

average species richness across a PA. Thus our models provide inference about relative

variation in forest attributes across different PAs and are appropriate for supporting

decisions at the PA scale (e.g. what types of PAs should be established or managed

to provide the desired benefit). However, our models were not designed to provide

information at finer scales (e.g. how much additional timber does a forest hold).

For this study, we model forest structure and composition attributes that are

potential measures of conservation benefit in the Appalachian mountains of the US.

Our model coefficients are appropriate for conservation professionals to use directly

if they want to model attributes of forested PAs in this region. With appropriate
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processed Landsat imagery (Hughes and Hayes, 2014) and covariate data (NASA

Shuttle Radar Imagery) for the location and time frame of interest, the desired forest

attribute estimates can be estimated with a linear combination of the appropriate

model covariates. For general use within the Appalachian region, the model intercept

value should be calculated as the sum of the random effects (intercept and residual

in Table 4.2) and the provided model intercept. This method of presenting model

coefficients is due to our mixed modeling approach whereby each study PA has

a tailored intercept (random effect). For model application to the PAs where we

obtained field data, the average random effects can be disregarded and replaced with

the specific random intercept values we provide in the supplementary information

(Table 4.8).

Protected area effectiveness is a critical question in conservation science. We

develop models of different attributes of forest structure and composition to explore

methods of quantifying protected area benefit that are more resolved than simply

cover. Our aim is to produce tools that expand the utility of data sources that land

managers and conservation practitioners are already using and to providing benefit

estimates that can enhance conservation practice. This study is a step towards being

able to cost effectively and efficiently estimate the relative benefit of protected areas.
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4.5 Appendix: Figures

Figure 4.1: Forest structure and composition data were collected from 27 protected
areas established by The Nature Conservancy across the Appalachian ecoregions,
USA.
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Figure 4.2: Predicted mean tree diameter at breast height (dbh) at the time when
each of the 27 protected areas (PA) was acquired. The relationship between dbh and
PA area is not statistically significant.
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4.6 Appendix: Tables

Table 4.1: Field collected forest structure and composition data descriptive
statistics. These descriptive are for the average value of ten trees at each point
except for % openness which is a single measurement at the sampling point.

Min Mean Max.

DBH (cm) 0.50 22.71 62.30
Openness (%) 0.00 18.84 99.84
Distance (m) 0.200 5.469 17.060
Spp. Richness 1.00 4.132 8.00
Pines (proportion of 10) 0.00 0.8454 10.00
Red maple (proportion of 10) 0.00 0.99 10.00
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Table 4.2: Regression coefficients models relating forest structure and composition to spectral imagery and covariates.
Each forest structure measurement was fit separately using mixed effects multiple regression models fit by REML. The
full model is reported in each case for comparability across models. Site level influences were modeled as a random effect.
Significant fixed effects indicated by bold font (p <0.05).

Fixed Effects
(Intercept) Brightness Greenness Wetness Latitude Northness Elevation Slope

DBH -93.39±98.05 357.26±251.66 -91.95±70.28 56.71±23.62 -0.60±0.42 0.57±0.46 -0.4E-03±2.7E-03 0.04±0.05
Log(%open +1) 13.93±10.68 -32.78±27.68 7.99±7.79 -8.27±2.58 0.04±0.03 -0.01±0.05 -1.8E-04±2.3E-04 0.01±0.01
Density -7.08±24.39 50.19±63.23 -17.09±17.80 1.72±5.89 -0.13±0.08 -0.02±0.12 -1.0E-03±5.4E-04 0.02±0.01
Spp. Richness -6.67±18.50 46.10±48.09 -11.28±13.58 2.84±4.47 -0.18±0.05 -0.22±0.10 -1.4E-03±3.8E-04 0.02±0.01
Pine 110.7±51.22 -266.5±135.6 77.9±39.6 -25.3±12.53 -0.37±0.13 -0.38±0.29 -7.9E-04±1.0E-03 -0.03±0.03
Red maple -38.43±35.81 77.38±93.23 -22.42±26.86 8.26±9.08 0.20±0.08 -0.00±0.02 -3.1E-04±6.0E-04 -0.01±0.02

Random Effect
(Intercept) Residual

DBH 5.12 6.19
Log(%open +1) 0.37 0.74
Density 0.84 1.69
Spp. Richness 0.57 1.33
Pine 1.09 1.05
Red maple 0.05 0.23
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Table 4.3: AIC and pseudo R2 for models relating forest structure and composition to spectral imagery and covariates

AIC logLik Efron’s pseudo R2 Link Distribution

DBH 3551 -1765 0.48 identity Gaussian
Log(% openness +1) 1279 -630 0.34 identity Gaussian
Density 2157 -1068 0.26 identity Gaussian
Spp. Richness 1896 -938 0.36 identity Gaussian
Pine 157 -70 0.49 Logit Binomial
Red maple 143 -63 0.10 Logit Binomial
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Table 4.4: Features of protected areas where forest structure and composition data were collected

State Area
(HA)

Ecoregion Conservation priority

1 Alabama 885 Cumberlands and Southern Ridge & Valley Riparian and continuous forests
2 Alabama 8 Cumberlands and Southern Ridge & Valley Dry mixed pine-hardwood forest
3 Alabama 130 Cumberlands and Southern Ridge & Valley bottomland hardwood and forest, riparian
4 Georgia 28 Cumberlands and Southern Ridge & Valley Mesic slope forest, dry pine/oak woodland and

limestone cliffs and bluffs.
5 Kentucky 134 Cumberlands and Southern Ridge & Valley Riparian hardwood forest
6 Maryland 86 Central Appalachian Forest Riparian Forest
7 Maryland 9 Central Appalachian Forest Riparian forest
8 North Carolina 319 Southern Blue Ridge Woodlands
9 North Carolina 30 Southern Blue Ridge Hardwood forest
10 North Carolina 189 Southern Blue Ridge Broadleaf and mixed forest, headwater

streams
11 Pennsylvania 27 Central Appalachian Forest Riparian forest
12 Pennsylvania 121 Central Appalachian Forest Forest
13 Pennsylvania 18 Central Appalachian Forest Forest
14 Pennsylvania 490 Central Appalachian Forest Forest
15 Pennsylvania 259 Central Appalachian Forest Forest
16 Pennsylvania 302 Central Appalachian Forest Forest
17 South Carolina 18 Southern Blue Ridge Forest
18 South Carolina 227 Southern Blue Ridge Forest/rock outcrop
19 Tennessee 186 Cumberlands and Southern Ridge & Valley upland hardwoods
20 Tennessee 410 Cumberlands and Southern Ridge & Valley limestone karst terrain, forested headwaters
21 Virginia 565 Central Appalachian Forest montane pine barren, eastern hemlock forest
22 Virginia 308 Central Appalachian Forest hardwood forests
23 Virginia 66 Cumberlands and Southern Ridge & Valley aquatic site, limestone/dolomite barren com-

munities, old growth forest communities
24 Virginia 90 Central Appalachian Forest montane pine barren, eastern hemlock forest
25 Virginia 18 Cumberlands and Southern Ridge & Valley hibernaculum for indiana bat, mesic forest

community
26 West Virginia 40 Central Appalachian Forest Red spruce forest
27 West Virginia 129 Central Appalachian Forest Grass bald, red pine forest, sandstone cliff and

ledge
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4.7 Appendix: Supplementary Information
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Table 4.5: Model coefficients and pseudo R2 for two example applications. Significant fixed effects indicated by bold font
(p <0.05).

Model intercept log(PA area) year year*PA area random effect R2

dbh at acquisition 146.13±18.78 -4.69±3.96 N/A N/A N/A 0.05
Pine density over time 0.01±0.03 -0.00±0.01 -0.00±0.00 -0.00±0.00 1.4E-3±4.4E-3 0.09
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Table 4.6: Regression coefficients for models relating forest structure and composition to spectral imagery and covariates
for sensitivity test when sample points dominated by scrub oak (Quercus illicifolia) are removed from the analysis. The
full model is reported in each case for comparability across models. Site level influences were modeled as a random effect.
Significant fixed effects indicated by bold font (p <0.05).

Fixed Effects
(Intercept) Brightness Greenness Wetness Latitude Northness Elevation Slope

DBH -72.26±92.14 257.15±239.26 -65.08±67.72 44.02±22.14 -0.10±0.31 0.66±0.45 -0.1E-03±2.1E-03 0.04±0.04
Log(%open +1) 14.09±9.93 -28.51±25.92 6.93±7.39 -7.96±2.38 0.01±0.03 -0.03±0.05 -2.3E-04±2.0E-04 0.01±0.00
Density -5.99±22.27 40.92±58.40 -16.49±16.77 0.86±5.31 -0.03±0.06 0.06±0.12 -1.1E-03±4.0E-04 0.01±0.01
Spp. Richness -13.80±18.43 60.98±48.25 -16.39±13.81 3.31±4.40 -0.13±0.05 -0.20±0.10 -1.3E-03±3.4E-04 0.02±0.01
Pine 108.3±52.00 -260.3±137.6 75.9±40.2 -25.4±12.6 -0.37±0.14 -0.41±0.30 -7.6E-04±1.0E-03 -0.03±0.03
Red maple -40.99±38.79 83.11±101.6 -25.90±29.49 8.82±9.56 0.24±0.08 0.00±0.23 -4.43E-04±6.0E-04 -0.02±0.02

Random Effect
(Intercept) Residual

DBH 3.56 5.96
Log(%open +1) 0.30 0.69
Density 0.54 1.66
Spp. Richness 0.49 1.33
Pine 1.14 1.07
Red maple 0.14 0.38
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Table 4.7: AIC and pseudo R2 for models relating forest structure and composition to spectral imagery and covariates
when we perform a sensitivity test that drops 36 data points for which scrub oak is the dominant species (the mean field
measured dbh is less than 10 cm)

AIC logLik Efron’s pseudo R2 Link Distribution Change in explained variation

DBH 3263 -1622 0.28 identity Gaussian 40% decrease
Log(% openness +1) 1122 -551 0.27 identity Gaussian 27% decrease
Density 1983 -982 0.15 identity Gaussian 43% decrease
Spp. Richness 1769 -875 0.28 identity Gaussian 23% decrease
Pine 153 -67 0.50 Logit Binomial 0%
Red maple 130 -56 0.22 Logit Binomial 100% increase
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Table 4.8: Random effects (model intercept) for each forest attribute and study
protected area. To reconstruct a predictive model for a study protected areas, add
the random effect to the desired forest attribute model intercept from Table 4.2

Protected area dbh %openness distance species pine red maple
richness

Allegany 4.74 -0.10 0.86 0.64 -0.13 -0.07
Bath1 -0.96 -0.14 -0.21 -0.04 1.58 -0.01
Bath2 -0.73 -0.01 0.49 0.16 1.31 -0.04
Blair 7.32 -0.30 0.98 0.04 0.05 0.21
Cherokee -3.76 0.43 -0.77 -1.14 1.80 0.03
Clinton1 -9.05 0.51 -1.62 -0.60 -0.14 -0.02
Clinton2 8.71 -0.17 0.76 0.19 1.17 -0.06
Floyd -3.49 0.08 -1.01 -0.25 0.37 -0.02
FortunesCove 1.79 0.32 0.50 0.09 -0.43 -0.05
Franklin -3.09 0.48 0.19 0.44 -0.45 -0.06
Greenville 1.69 0.11 0.15 0.16 0.03 0.08
Jackson 0.85 0.20 0.55 -0.92 -1.13 -0.04
Laurel 2.98 -0.64 0.21 0.08 -0.84 -0.02
LittleYellowMtn 0.98 0.02 0.75 0.31 -0.58 -0.03
Moosic1 -9.88 0.56 -1.38 -0.74 0.09 -0.02
Moosic2 -7.43 0.18 -1.13 -0.37 -0.07 0.03
Moosic3 -2.68 0.46 0.30 -0.38 -0.19 0.02
MtPorteCrayon -1.36 -0.61 -0.03 -0.19 -0.24 -0.07
Pickens -0.96 -0.16 -0.26 0.10 0.39 0.02
Pickett -3.26 0.06 -0.01 0.06 0.28 0.11
PikeKnob 2.43 -0.18 -0.11 0.53 0.76 0.08
RumblingBald1 -2.91 -0.20 -0.57 0.50 0.37 0.00
RumblingBald3 1.63 -0.02 -0.57 -0.23 0.27 0.09
Russell 1.01 -0.11 0.87 0.75 -0.52 -0.04
StClair 1.52 -0.05 -0.33 -0.19 -0.06 0.00
Washington 8.60 -0.48 0.62 0.50 -0.48 -0.05
Wise 5.29 -0.24 0.74 0.49 -0.52 -0.04
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Chapter 5

Strategic interactions between

multiple conservation players can

hinder the effectiveness of

biodiversity conservation
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A version of this chapter will be submitted for publication after modification

during internal and external review.

Iacona, G.D, Bode, M., and P.R. Armsworth.(XXXX). Strategic interactions

between multiple conservation players can hinder the effectiveness of biodiversity

conservation. Conservation Biology

The use of “we” in this chapter refers to me and my co-authors. As the lead author

of this article I was responsible for developing the ideas for this paper, building the

models, and writing the manuscript. M.B, and P.R.A. helped designed the research

and edit the paper.

Abstract

Biodiversity conservation organizations often spend money to acquire or manage

protected areas that contain species of interest to their organization. Conservation

science aims to improve the cost-effectiveness of how this money is spent, but usually

assumes that a single entity is making the decision to buy or manage. In practice,

multiple conservation organizations can be acting in the same region, often pursuing

similar or identical objectives. As a result, organizational strategy is a balance

between the desire to secure their own objectives and their need to outcompete

rival organizations for funding. Conservation investment strategy can therefore be

considered a game, where each actor maximizes their own objective while considering

the strategy of the others.
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We developed a game theoretic framework to examine the biodiversity conser-

vation outcomes of different funding strategies in a multiplayer context with three

organizations. Our model system uses a funding source and two local land trusts

to examine how biodiversity outcomes are influenced by the strategic decisions

made by the players regarding their own spending and their interactions with other

conservation organizations. In our model, the objectives of a local land trust overlap

to some extent (but not completely) with those of the other local land trust, and

those of the funder. This modeling framework is a contribution that allows for the

exploration of new questions and issues in conservation science. As a first step, we

use the framework to explore the simplified scenario in which institutional objectives

are constant. Our results show that when institutional adaptation is constrained, the

funder is unable to incentivize its desired conservation outcome by offering additional

funding. Instead, the biodiversity outcomes are dependent on the priority alignment

across the organizations. We find that strategic interactions result in improved

biodiversity conservation outcomes when priorities are well aligned, but they decrease

conservation benefit when priorities are misaligned. Contractually targeted funding

and cost-share mechanisms can counteract these inefficiencies to some extent. Our

results also illustrate how strategic interactions between conservation organizations

change both the decisions and the overall benefits of each individual organization.

This suggests that estimates of conservation outcomes that ignore these interactions

may be incorrect.

5.1 Introduction

Because conservation funding is limited, conservation science aims to identify projects

that cost-effectively provide biodiversity protection (Murdoch et al., 2010; Cullen,
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2013). However, most of these studies assume that a single organization makes

a decision to spend and then undertakes a conservation project according to its

objectives (Ando et al., 1998; Blom, 2004; Polasky et al., 2008; Frazee et al., 2003,

and many others). This is a critical shortcoming in conservation theory because

conservation projects usually involve many organizations, and strategic interactions

among them may affect the expected biodiversity outcomes.

In reality, most biodiversity conservation outcomes result from the coordinated

effort of many different organizations aligning their actions to enact a conservation

project. Multiple organizations interact in the landscape and they coordinate actions,

compete for funding, or collaborate on strategy to produce conservation outcomes

that promote both individual and shared conservation priorities (Kark et al., 2009;

Labich et al., 2013; Macdonald, 2002, etc.). To provide a concrete example, one

such project is the Greater Cumberlands deal in east Tennessee, USA. This 130,

000 acre project was completed in 2007. State and federal government agencies and

two private conservation forestry companies partnered with The Nature Conservancy

(TNC), bringing together a complicated set of funding sources to produce a patchwork

of conservation outcomes. This example is characteristic of the direction of modern

conservation projects and demonstrates that the assumption of a single decision

making entity is not very realistic.

In this study we examine the outcomes when multiple agents are working

to produce on the ground biodiversity conservation. We ask “how do strategic

interactions between a given configuration of pre-existing organizations influence the

biodiversity outcomes of a funder’s investment?” We ask this question from the

perspective of a regional conservation organization that acts by providing funding

118



to local land trusts that perform on-the-ground conservation. To do so, we use

a game-theoretic modeling framework to examine scenarios that represent common

configurations of funding and action.

This type of research is necessary because there will always be multiple conser-

vation organizations interacting in the real world. Economic theory suggests that

the number of conservation organizations is a balance between the vast number that

would be present if there were no transaction costs and conservation organizations

specialized in every different conservation need, and the reduced number that results

from coordination among agencies for cost effectiveness (Economides and Rose-

Ackerman, 1993; Albers and Ando, 2003). As they work towards fulfilling their

individual objectives, these conservation organizations interact with each other to

an extent that ranges from not at all (they do not even know the others exist) to

merging to pursue the same objectives (Bates, 2005). Here we focus on the non-profit

sector; however similar principles would also likely apply to governmental agencies.

Environment-focused charities are one of the fastest growing sectors of the non-profit

world (Blackwood et al. 2012), and the focus of these organizations overlaps in many

aspects (Armsworth et al., 2012).

The small amount of research that has considered conservation outcomes when

there are multiple organizations working on biodiversity conservation in a region

suggests that the measured benefit can be very different when strategic interactions

are accounted for (Albers et al., 2008; Bode et al., 2011; Punt et al., 2012; Gordon

et al., 2013). However, this research has so far only considered strategic interactions

between two organizations and has primarily looked at the conservation benefit

of cooperation under situations for which conservation organizations pooled their
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resources. In contrast, we are interested in how strategic interactions influence

the conservation outcomes when multiple organizations are acting in their own best

interest. We particularly focus on the biodiversity outcomes that can be gained from

the perspective of a funding organization investing in a region where conservation

organizations are strategically pursuing their priorities while considering the other

organizations’ actions. The assumption that real-world organizations would act in

their own best interest is valid because they each pursue objectives that are likely to

be slightly different while they compete for limited pools of conservation funding. We

also examine the utility of contracting mechanisms such as cost sharing, that aim to

align biodiversity outcomes with the funding organization’s priorities.

5.2 Modeling Approach

One way to approach this problem is to use game theory. Game theory is a branch

of mathematics that studies strategic behavior in complex systems for which the

actions of each entity affects the outcomes of the other entities (Von Neumann and

Morgenstern, 1944; Morris, 1994). A game can be viewed as a set of players (in this

case local land trusts and a conservation funder), each of whom has an available set

of actions (here the proportion of a budget that is spent on conservation in a region).

The combination of all the players’ actions result in a payoff to each player (in this

case, the protection of species that they care about). The equilibrium solution to the

game is the set of actions that produce the likely payoff for each player once they

all make their choices. Such solutions are known as the Nash equilibria, and they

describe the set of choices under which no individual player can unilaterally increase
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their payoff by adopting a different strategy (Nash, 1950).

To model the type of interactions that could be present in a conservation deal,

we use a simple system of a regional conservation organization (Funder) that acts

by providing additional funding to two local land trusts (Figure 5.1, Box 1). This

configuration represents a common scenario in land trust financing, as we discuss

below, and also could represent other conservation situations in which funding entities

work with on-the-ground agencies. In our model, the two local land trusts have

conservation priorities that are related, to some extent, to the priorities of the funder

and each other. Land Trust 1 (LT1) has a set of priority species that it aims to protect.

For instance, it could specifically target protection of bird species that are found in a

tributary watershed in its region. Land Trust 2 (LT2) also has a set of priority species

and, for instance, they could target general wildlife protection in a different watershed.

These types of differing objectives are common across land trusts within a region (Foti

and Jacbos, 1989; Chang, 2011). Meanwhile, the Funder has yet a different set of

priority species that it is focused on protecting. For instance, it could target species

that provide ecosystem services in the downstream river valley system that these

two watersheds feed. Each land trust works to protect their species of interest in

their individual priority regions (A and C). They can also invest in projects in the

downstream region (B) that is a protection priority of the Funder, and by doing so they

may protect some of their priority species but may also attract additional investment

from the Funder. Each land trust decides what proportion (ε) of their total budget

(β) to allocate toward Funder priorities with the remainder allocated to its own

priority region. The Funder decides how to proportionally (p) allocate its budget(α)

across the two land trusts. Therefore, the total budget available to a land trust is its

unsupplemented budget (γ) plus the amount it receives from the Funder. A number
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of species (S) are protected from each priority region’s species list in accordance

with the species area relationship and funding allocated to the region, but there is

some amount of species overlap across regions (ΓAB,ΓBC ,ΓAC , see Supplementary

Information for details). We use this overlap in species sets to represent how the

conservation priorities of the different organizations are aligned. Here we use species

protection as the benefit of interest, but this modeling framework could be easily

adapted to quantify other potential benefits. For instance, it could be used to examine

the implications of priority overlap and competition between organizations that focus

on ecosystem services as compared to those that focus on biodiversity conservation

(e.g. Goldman et al., 2008). However, to do so, an appropriate functional relationship

between benefit and cost would have to be specified, and we would have to understand

the relevant priority overlap across organizations. In this study, we chose to focus on

species protection because there are accepted relationships between species and cost,

and the priority overlap was straightforward to conceptualize.

Our model provides a framework for examining the understudied implications

of interactions between multiple conservation organizations. The described config-

uration of organizations, their choices, and their underlying priorities, provides the

flexibility to examine many aspects of these interactions. As a first step, this chapter

describes a set of scenarios where we adjust only the priority overlap parameter.

Although this approach does not allow for institutional adaptation to be considered

(a choice we revisit in the discussion), it provides insight into the measurement of

the conservation benefit of spend in the most basic situation in which organizations

operate under known, set objectives.
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5.3 Illustrative Examples

We examine possible outcomes of multiplayer interactions among conservation

organizations by developing scenarios that illustrate common real-world strategies.

First we use two opposing scenarios to study how the overlap in conservation priorities

among the organizations influence the benefit the Funder obtains from its spending.

Then we expand the model to explore two scenarios where contracting mechanisms

are used to counteract reductions in benefit that occur when there is low priority

overlap.

Scenario 1: Regional conservation funder supplements the budgets of land

trusts according to conservation priority alignment

In this scenario, we study the response of land trusts to the offer of grant support

from the Funder. In our model, the land trusts understand that the choice of how

much money the Funder is willing to provide to them is based on the proportion of

their total budget that will be spent on Funder priorities.

We examine two extremes of this scenario: in the first, the priorities of the Funder

and the land trusts are strongly aligned. In the second, there is minimal alignment.

1a) Priority alignment

When priorities are well aligned across conservation organizations, funding allocation

is seemingly straightforward. In such a case, external funders (such as a foundation)

often promote biodiversity protection by providing grants to local conservation

organizations (Emerton et al., 2006; McBryde and Stein, 2011; Gunter, 2004). This

funding model is especially common for organizations such as land trusts that aim

to protect land from urban development (Hopper and Cook, 2004; McQueen and
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McMahon, 2003). One example of this situation is the re-granting strategy of the

New York state, USA, based Open Space Institute (OSI). This regional conservation

organization provides funding to local land trusts in the Appalachian and Cumberland

regions of the USA through their Southern Cumberland Land Protection Fund (David

Ray, personal communication). The fund was developed with endowments from

three different foundations as well as OSI’s own funds. It is targeted towards land

conservation through fee simple acquisition or easement purchases within focal areas

that had been previously identified in their “Southern Appalachians Assessment.”

Local land trusts in the focal regions apply for funding matches for projects that meet

predetermined conservation criteria. Current recipients include the Land Trust for

Tennessee, The Tennessee River Gorge Trust, The Land Trust of Northern Alabama,

Georgia Department of Natural Resources, and The Nature Conservancy of Tennessee.

In our model of a scenario that is similar to the real world example above, the

conservation objectives of the local land trusts are well aligned with the conservation

objectives of the Funder but their priorities, while similar, do not completely overlap

with each other. The Funder can potentially double the budget of one land trust,

although it may choose to allocate the money across both land trusts.

To illustrate how dynamics might play out for such a situation, we consider the

case for which each organization (Funder, LT1 and LT2) has a budget that could

protect 10% of their region of interest (α = γ1 = γ2 = 0.1). We also set the priority

alignment to 50% to represent organizations that focus a large proportion of their

effort towards similar objectives ( ΓAB = ΓBC = ΓAC = 0.5)
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Our modeling strategy generates benefit estimates for every combination of

choices that the three organizations can make. As a strategy for identifying choice

combinations that the organizations would be justified in taking, we focus on the Nash

equilibrium (See Box 2 for details). These equilibrium solutions describe the choices

that rational players are likely to take, in situations where they all have perfect

information, because no one organization can improve its outcome by unilaterally

changing its strategy. The Nash equilibrium choices for the three organizations

indicate that, because of the large amount of priority overlap, both LT1 and LT2 will

do best if a little more than the smallest increment from one of their budgets is spent

on Funder priorities. The Funder will give its entire budget to the LT that spends on

its priorities (Three player Nash equilibria (ε1, ε2, p) = (0.1, 0, 1) or (0, 0.1, 0).

The Funder would obtain the greatest benefit if it gave all of its money to a land

trust that was willing to spend its entire budget on the Funder’s priorities. However,

that is counter to either land trust’s best strategy so they will continue to spend

primarily on their own priorities and only spend on Funder priorities in relation to

gain due to overlap. Because of the 50% overlap in objectives, all of the organizations

do better than they would if there were no other conservation organizations working

in the region. The land trust that spends on the Funder priorities but also obtains

the additional budget is able to protect 80% of their species of interest, while the one

that does not get the additional funding still is able to protect 76% of their species

(Figure 5.2). The Funder is able to protect 70% of their species of interest. This is

about a 25% greater benefit from giving money to the land trusts than it would get

if it engaged in an on-the-ground conservation activity by itself (where it would get

56% of its species protected). Meanwhile, 75% of the total species in the region are

protected (Figure 5.3).
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1b) Reduced priority alignment

We next examined the case where the priorities of the Funder and the land trusts

were not well aligned. Minimal overlap in organizational priorities is not uncommon in

conservation deals. This is because priorities can cover a broad spectrum, even under

the heading of biodiversity conservation, and in some cases, conservation projects have

unlikely partners. For instance, In 2010, TNC Australia orchestrated The Fish River

Station conservation project in the Northern Territory, near Darwin (Fitzsimons and

Looker, 2012, James Fitzsimmons, personal comment). This 180,000 HA project

was completed because TNC was able to provide additional funding and enable

the Indigenous Land Corporation (ILC) to buy the site for eventual transfer to an

indigenous group. ILC is a local non-government organization (NGO) whose objective

is to assist indigenous people in acquiring land. This project took advantage of the

Australian government’s Caring for Our Country program which provided 2/3 of the

necessary funding. TNC then provided 1/6, and the remainder was supposed to

come from ILC. ILC had secured the promise of a grant from the Pew Environment

Group, but the deal almost fell apart because Pew could not give to a government

agency (which ILC is). TNC convinced Greening Australia to step in as a partner

and receive the money from Pew and put it into the project. In this example, TNC

brokered a large land conservation project by working with an NGO that does not have

a biodiversity conservation objective. Thus, significant biodiversity outcomes were

a result of coordinated efforts by organizations with minimal institutional priority

alignment.

We now model a scenario where the objectives of the conservation organizations

are minimally aligned by changing the amount of objective overlap between the

Funder and the local land trusts, while holding all other model parameters as above.
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Here, each organization (Funder, LT1 and LT2) still has a budget that could protect

10% of their region of interest (α = γ1 = γ2 = 0.1). However, we reduce the amount

of priority alignment to 10% to represent organizations with mismatched objectives

( ΓAB = ΓBC = ΓAC = 0.1)

The Nash equilibrium choices for the three organizations indicate that LT1 and

LT2 will now do best if one of them spends only the smallest proportion of its budget

that it can on Funder priorities. Both LTs obtain the greatest benefit when one of

them spends a small amount on Funder priorities, regardless of what the Funder does.

However, the Funder will give its entire budget to the LT that makes the choice to

spend in its region. The LT that does not receive the extra funding does not secure

as large a benefit as the LT that does. However, it still is able to protect more species

than it would be able to by acting alone because of spend by the other LT on Funder

priorities. (Three player Nash equilibria (ε1, ε2, p) = (0.05, 0, 1) and (0, 0.05, 0)).

Despite minimal alignment of priorities, LT1 and LT2 have an incentive to spend

a small amount on the Funder’s objectives due to overlap, but the Funder cannot

coerce the LTs to spend more on its priorities by providing additional funding. The

Funder is able to obtain some benefit (40% of its species of interest are protected)

from the money it spends, although it does worse than if it engaged in an on-the-

ground project of its own where it would get 56% of its priority species protected

(Figure 5.2). The land trust that receives the funding (LT2 in Figure 5.2) doubles

its budget and is able to obtain a greater benefit than it would have been able to on

its own by protecting 69% of its species of interest. Meanwhile, the land trust that

receives no additional funding (LT1 in Figure 5.2) still obtains a small improvement

in benefit over simply considering its own investment (60% of species protected) due
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to species gains from the small overlap in priority species with the Funder. Finally,

53% of the total number of species in the region are protected.

The scenarios modeled above show how the effectiveness of conservation spending

by the Funder is highly dependent on the amount of priority alignment between it

and the land trusts. The Funder’s investment cannot incentivize either of the land

trusts to spend more on its priorities because they cannot compete with each other

for additional funding by offering to increase their spend on Funder priorities. This

is because the other land trust can always offer more. Only the amount of priority

overlap determines the benefit that the Funder recieves. However, priority alignment

is difficult to gauge in reality, and foundations often struggle with this task (Gronbjerg

et al., 2000). We next examine two common strategies the Funder can take to reduce

benefit inefficiencies that are due to priority misalignment.

Scenario 2: Regional conservation funder supplements the

budgets of land trusts, but the funding is contractually

targeted

In the next two cases, we examine the effectiveness of the Funder’s contractual

targeting of funds when there is misalignment in priorities such that there is only

a 10% overlap in conservation priorities between the Funder and either local land

trust (ΓAB = ΓBC = ΓAC = 0.1).
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2a) Funder allocates money that is targeted at overlapping priorities

This model parameterization is similar to the common funding mechanism for which

the Funder allocates money that is targeted to very specific priorities. For example,

this strategy is used by the National Fish and Wildlife Foundation (NFWF) when

allocating their funding for management and restoration projects. Their Cumberland

Plateau Stewardship Fund was developed under consultation from OSI, to allocate

money from the International Paper Forestlands Stewards Initiative (David Ray,

personal comment). This funding is targeted towards using working forests as

conservation tools, and a 2014 funding cycle requested proposals calling for short

leaf pine (Pinus echinata) forest restoration projects and riparian projects. This

call for proposals aims to fund conservation non-profits, government agencies, and/or

academic institutions and is particularly interested in projects that propose work on

private lands.

In such a scenario, land trusts submit proposals with a cost estimate to do the

project, and then the Funder selects among the projects and funds them in line with

its conservation goals. The land trusts have to consider their own mission as they

select these projects and apply for funding opportunities that forward their own goals.

We now model such a case for which LT1 and LT2 still each have a budget that

could protect 10% of their region of interest (α = γ1 = γ2 = 0.1) and there is priority

misalignment (Γ = 0.1). However, we set the LT budgets so that although they

can choose to spend a proportion of their internal budget on Funder priorities, any

money obtained from from the Funder must be spent on Funder priorities. Because

the Funder now always has all of its money spent on its priorities, the method of

displaying results that we used in the previous scenarios would not be meaningful.
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Instead, we compare the Funder’s benefit between the case in which it spends no

money in the region (α = 0) and the case in which it spends the same amount as the

LTs (α = 0.1)

Baseline condition where there is no spending by the Funder

When LT1 and LT2 do not have the possibility of supplemental funding (α = 0),

one or the other will allocate the smallest increment of its budget that it can to the

Funder’s priorities (ε1, or ε2 = 0.05). This is because there are diminishing returns

for obtaining benefit under the species area relationship. The Funder will obtain

protection of 35% of its species of interest even if it does not invest in the region,

due to this spending choice by the LTs and priority species list overlap. The LT

that spends a proportion of its budget on the Funder priorities will obtain protection

of 59% of its species of interest. The other LT will obtain protection of 60% of its

species. Only 48% of all species will be protected.

Compare with benefit when there is spend by Funder

Meanwhile, if the Funder’s budget is available and is spent on Funder priorities

(α = 0.1), neither of the LTs will choose to allocate anything toward Funder priorities.

This is because the rapid gains in species accumulation have already been secured and

there is no additional benefit to allocating more budget towards Funder priorities. In

this case, the Funder and each of the LTs all obtain protection of 61% of their species.

In addition 57% of the total species are protected.
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Despite the fact that the Funder dollars are only spent on Funder priorities, the

LTs are able to obtain a greater benefit when there is Funder investment into the

system. This is partially due to additional species gain from overlap (1.2% more

species) and partially due to a crowding out effect in which the LT shifted what it

previously spent on the Funder’s priorities towards its own priorities instead (0.7%

more species). Crowding out is a theoretically justified response of conservation

players to additional investment although it is usually considered only in the case

for which private land trusts under-invest in regions where governmental acquisition

is occurring (Albers et al., 2008).

This small gain that a LT obtains by shifting its spend corresponds with a loss for

the Funder. We calculate the Funder’s loss to crowding out as the difference between

the expected Funder’s species protected and the actual Funder’s species protected.

Expected species protected is the proportion that would be protected with the original

spending by the local land trust, plus the species protected by the new money (details

in Supplementary Information). In our case, this leads to an expectation of 61.70% of

Funder species protected. However, when crowding out shifts the previous spending

away from the Funder’s priorities, the actual Funder species protected is 61.07%. This

corresponds with a loss due to crowding out of approximately 1% of potential Funder

species protected.

2b) Funder requires cost-matching

Cost-matching can potentially counteract crowding out effects for any Funder

allocated money by requiring the LT to dedicate some additional budget to the

matching priorities if they are to be funded. This is a common requirement of

most foundation provided grants. For instance, the international branch of TNC
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pursues its conservation objectives in Australia solely through partnerships with

local conservation groups. The high profile “David Thomas Challenge” was a

ten million dollar conservation initiative that took the form of a challenge grant

(James Fitzsimmons, personal communication). Local organizations (primarily the

land trusts; Bush Heritage, Australian Wildlife Conservancy, Trust for Nature, and

Greening Australia) could apply for up to a 50% match from TNC for projects that

met certain criteria. One of the more unique criteria that TNC stipulated was that

the funding that the local organizations brought in must have been obtained from

new donors in increments of at least $ 10,000 AU. This requirement was because

one of the objectives of TNC was to enhance the fund-raising capacity of the local

conservation non-profits.

Here we model such a cost sharing strategy. In this scenario, the baseline

budgets of each local land trust is again enough to protect 10% of their conservation

priorities. The Funder has enough money available to potentially double their budget

(α = γ1 = γ2 = 0.1) and targets the funding to the overlapping priorities using a

contracting mechanism as above. However, we now explore the case in which the

LT has to match some level of the Funder’s offer in order to receive the funding.

To do so, we add a cost share parameter (CS) which indicates that any additional

funding (p) will be only supplied in increments of existing spend (formulation details

in Supplementary Information). We examine the effectiveness of the Funder’s cost

share requirement when there is misalignment in priorities such that there is only a

10% overlap in conservation priorities between the Funder and either local land trust

(ΓAB = ΓBC = ΓAC = 0.1).
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A cost share requirement can incrementally improve the Funder’s benefit but in

our model can only counteract the crowding out effect if they offer a 20.1:1 match

(Table 5.2). However, that amount is slightly more than the available Funder budget

(α = 0.1). The best the Funder can do is offer at 20:1 match which will protect a tenth

of a percent less priority species than in the scenario above that includes crowding

out (Figure 5.4). In this case, the amount necessary to counteract the crowding out is

essentially just replacing the shifted funding, and the cost share does not incentivize

different behavior from the land trusts. This is because the 10% overlap in objectives

means that ten times the funding must be spent on the Funder’s priorities for LT1

or LT2 to get the same amount of benefit as spending on their own priorities. The

saturating species accumulation relationship counteracts this effect but only once the

benefit of spending less money in the local land trusts’ regions is equal to the benefit

of spending more money on the Funder’s priorities. In the scenarios that we examine,

because the budget of all the organizations is relatively small, priority species are still

accumulating quickly from local land trust spend in their own regions. There is never

a cost share amount that is large enough to provide a benefit that induces the land

trusts to change their allocation behavior.

Synthesis

The Funder has the greatest benefit when there are multiple players and there is high

priority overlap, as compared to if it spent the money itself and did not consider

other players in the system. In the high priority overlap scenario, the Funder obtains

a greater benefit than any other scenario even though the LTs do not spend extra

on the Funder’s priorities. In addition, both LT1 and LT2 obtain a greater benefit

when there is high priority overlap. Meanwhile, if the Funder is faced with priority

misalignment between itself and potential grantees, the Funder recieves less benefit
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than if it had spent the money itself. This situation can be partially resolved by

contractual targeting of funds, but the benefit can be less than expected due to

crowding out. Cost sharing can counteract this effect but it is inefficient in scenarios

with low priority alignment. Finally, the local land trusts always receive a greater

benefit with multiple players because they gain from overlap and Funder spend.

5.4 Discussion

In this study we asked how strategic interactions between a given configuration of

pre-existing organizations influence the biodiversity conservation outcomes of their

spend. We develop a modeling framework that allows for the exploration of these

types of questions in conservation science. As a first step, we use the framework to

explore the simplified scenario in which institutional objectives are constant. We show

that the ability of a conservation funder to obtain the biodiversity protection outcome

it is interested in is dependent on the strategic interactions between multiple players.

These interactions shape outcomes in several ways. First, they prevent the Funder

from being able to incentivize local land trust spend on Funder priorities. Second,

the presence of multiple players can provide both positive and negative benefit for

the Funder but the outcome is due to underlying priority overlap and not strategic

choices. Finally, contracting mechanisms can improve Funder benefit but they vary

in effect. Overall, we find that multiplayer interactions can drastically change the

effectiveness of spend and thus should not be ignored by conservation scientists.

Our observation that the conservation Funder cannot incentivize local land trust

behavior was surprising because we expected that competition between local land

trusts for funding would provide increased benefit for the Funder. This effect would be
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observed if there were multiple on the ground organizations working on the Funder’s

objectives such that they were willing to compete for funding by adjusting their

allocation towards Funder priorities. In our model, because there are two Local

Land Trusts with similar budgets, neither Land Trust is able to outbid the other in

competing for the Funder’s investment, so they are as well off just pursuing their own

objectives. They never have an incentive to spend more on the Funder’s priorities

than the amount that corresponds with their personal gain due to objective overlap,

so no amount of budget incentive can increase the Funder’s gain. Our work suggests

that when neither local organization can ultimately offer more to the Funder than the

other organization, they both refrain from cooperating with the Funder and essentially

force it to give one, or both, of them funding for “free.”

Meanwhile, our model suggests that the effectiveness of a Funder’s spend is highly

dependent on its priority alignment with LT1 and LT2. When there is high priority

alignment, the biodiversity outcome of funding is greater when multiple players are

acting strategically. However, when there is low priority alignment, the funding

organization’s spend is much less effective when there are strategic interactions

between multiple players. This is unfortunate from the Funder’s perspective, because

it is difficult to gauge priority alignment in the real world. Philanthropic organizations

aim to fund projects that further their own objectives, yet often there may not be

well aligned local organizations that can receive the funding. If the Funder can not

incentivize LT1 and LT2 to align their spending with its own priorities through offers

of budget increase (at any level of local spending on the Funder’s priorities) then

its hands are tied with regards to increasing spending effectiveness through market

forces alone.

135



Alternative mechanisms such as contracts, can increase the funding effectiveness,

but the outcomes vary. Our model suggests that agreements that closely target new

funding to shared priorities are effective, but that cost sharing may not be efficient

at promoting Funder outcomes. Because priority alignment is the sole influence

on what outcome the Funder gets for its spend, conservation organizations in the

real-world can minimize funding inefficiencies by focusing on a very tight mission.

For instance, Island Conservation International (ICI) is an NGO which tends to

get funding that is targeted expressly towards its objective, because its objective

is one which other NGOs and governments are willing to pay for (Daniel Simberloff,

personal communication). ICI’s mission is “protecting biodiversity by eradicating

invasive vertebrates on islands.” The staff are primarily operational and the majority

of organizational budget supports dropping people off on islands with the materials

they need to eradicate the pest species. Because of this highly targeted mission, as

well as the effectiveness of their approach, much of ICI’s funding comes from contracts

with governments of the USA and elsewhere, and other NGOs.

Caveats and Assumptions

A primary simplifying assumption of our model is that each organization is a static

entity with a known conservation objective that does not change over time. Under this

assumption, we interpret the results in the context of a worldview where conservation

organizations pursue funding if it forwards their stated objective. An alternative

formulation could include the ability for organizations to shift their priorities to better

position themselves for funding as they pursue conservation goals by increasing their

capacity. These two alternatives represent competing theories of goal maximization

versus budget maximization. The approach of non-profit organizations in the real
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world likely includes a mix of both (Steinberg, 1986; Hewitt and Brown, 2000; Brooks,

2005). However, for the purposes of this study, we are taking the viewpoint that

conservation organizations are solely pursuing their existing objectives and these

objectives do not change.

The Funder’s inability to incentivize land trust behavior could also potentially be

due to the Funder being constrained to spend its budget to one land trust or the

other. In the model, the Funder is not given the ability to choose to allocate zero

dollars to both LTs and essentially walk away from the conservation priority region.

The modeled scenario is not an unreasonable assumption for real world conservation

funders. However, we performed a sensitivity test that examined the robustness of

these results when the Funder has the option of limiting how much it spends according

to a benefit to cost ratio criteria. Figure 5.6 shows possible increments of Funder

spend, up to the budgetary levels we tested, plotted against a ratio of the benefit

that the Funder obtains versus the cost of the action. This figure illustrates that,

for the budget range we examine the Funder always obtains a benefit from additional

spending, but the benefit is reduced as the Funder’s spending in the system increases.

It also demonstrates that the Funder’s willingness to spend its entire budget in the

system depends on what level of benefit to cost it is willing to accept. In our models

we examine the scenario where the Funder is willing to spend if it obtains any benefit

for the money it spends. At this budget level (α = 0.1) the Funder will always spend

all of its money in the system unless it insists on having a benefit to cost ratio of

return of 3.1 or above.

It is also important to note that the effectiveness of conservation spend is a

concept that is perspective dependent. For the purposes of this study, we have
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examined scenarios from the perspective of a conservation funder who is working

towards a conservation outcome that it perceives to be important. However, the

relative effectiveness of different strategies varies if you consider the outcome from the

perspective of other organizations. We can also step back and examine the outcomes

of the scenarios in terms of total species protection. This could be interpreted as total

biodiversity protected by all of the conservation organizations working in a region.

Our results show that total species protection does not necessarily covary with species

of interest to the Funder.

Conservation Implications

Because this study demonstrates that strategic interactions between conservation

organizations can influence the effectiveness of spend, it suggests that conservation

professionals need to consider the influence of those interactions on biodiversity

outcomes. In the real world, this means acknowledging the potential effects of

cooperation or competition between local organizations on funding outcomes and

designing conservation planning projects appropriately. In practice, conservation

organizations operate with professional respect for other organizations that they are

aware of, but they do acknowledge that competition for funding is a driving force (Alex

Wyss, personal communication). In particular,our results show that the possibility

of competition for funding among local organizations can reduce a Funder’s abililty

to use financial incentives to obtain its desired outcome.
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5.5 Box 1: Model Formulation

The Funder’s goal is to protect the maximum number of species from the list of species that

provide ecosystem services in region B, by choosing a proportional distribution(p) of its total

budget (α).

max
p

SB(p, ε1, ε2)

Land Trust 1 aims to maximize the number of protected bird species from region A. It does so

by choosing an amount (ε1) of its total budget to allocate towards the Funder’s priority region

to receive additional funding. It must consider the competing amount the other Land Trust is

willing to allocate towards the Funder’s priority region, and the amount the Funder is willing

to commit.

max
ε1
SA(p, ε1, ε2)

Similarly, Land Trust 2 aims to maximize the number of protected wildlife species from priority

region C by choosing an amount of its total budget (ε2) to allocate towards the Funder’s

protected region.

max
ε2

SC(p, ε1, ε2)

In all regions, the conservation benefit is estimated as the number of species protected in the

amount of area that there is funding to protect, assuming a standard species area relationship.

S = cAz

For each organization, total benefit is the sum of the estimated number of priority species

protected by spending on land conservation in their own region plus the number of species

protected by any organization’s spending in regions where there is priority (species list) overlap.

We subtract out double counted species from all regions We use z = 0.25 as a species area

relationship scaling constant. Here, c is a scaling constant that drops out in all calculations.

We also calculate the total number of species protected across all regions.
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5.6 Box 2: Solution methods

The three species maximization functions in Box 1 describe the benefit that each player

will receive from each choice of budget allocation, given the choices of the other players.

Simultaneously solving the three functions for the three unknown variables p, ε1 and ε2

provides p*, ε1* , and ε2*; the location(s) where the benefit functions intersect. This solution

describes the Nash equilibrium condition where no player can increase protection of species

from their region of interest by unilaterally changing their funding allocation strategy. The

Nash equilibrium gives us the long run set of choices that each of the three players will make

assuming rational behavior. This is because any player is unable to improve its benefit by

making a different choice and we assume that each player is working to maximize its own

benefit. We chose to focus on the Nash equilibrium because it is commonly used to study

strategic decisions (Morris, 1994), and it allows us to select a manageable set of study choices

from the more than 9000 possible choices generated by our model.

We can visualize this approach by considering the species maximization functions as

reaction surfaces that describe the best choices that each organization could take given the

other organizations’ choices (Figure 5.5). In this figure, the Funder’s budget allocation choice

(p) is plotted on the vertical axis and every point on the surface corresponds with the budget

allocation choice that maximizes the Funder’s benefit (Figure 5.5a). All three choice surfaces

are plotted in each panel, but two are transparent for ease of interpretation. The color of the

surface corresponds with the benefit that is obtained by making that budget allocation choice,

with white being the most species protected and black being the least. The red and blue

lines illustrate where surfaces intersect. For ease of interpretation we display a scenario with

minimal overlap (Γ = 0.01)).
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Box 2 continued: Solution methods

In Figure 5.5a, the Funder chooses to give its entire budget to one local land trust or the other

according to their choices, but attains a larger benefit if they choose to spend more on its

priorities. If they both choose to spend close to the same amount, the Funder will split the

budget across them. The Funder is quick to give its entire budget to one or the other because

of the small amount of priority overlap (0.01). Meanwhile, the choices of the two local land

trusts are plotted as surfaces on the horizontal axes (Figure 5.5b and 5.5c). The local land

trusts have no incentive to spend anywhere other than in their own regions, yet their benefit

will increase if the Funder supplements their budget.

For this study, we used a discrete set of 21 choices of proportional budget allocation to

generate reaction surfaces for each player (see supplemental information for details). Using

these reaction surfaces, we could identify the Nash equilibrium conditions by identifying the

intersection of the three surfaces for a given scenario. To do so, we used a relaxation algorithm

(Krawczyk and Uryasev 2000; Conteras et al. 2004) based on the Nikaido-Isoda function

(Nikaido and Isoda 1955) and implemented in Matlab to iteratively identify the Nash equilibria.

This process starts with an initial guess for the Nash equilibrium and then the funding allocation

choice that provides the greatest biodiversity conservation benefit for one player is identified

(i.e., identify the surface coordinates along that player’s axis) while the choices of the other

two are held at the value from the previous iteration. The process is repeated while cycling

through the players until we arrive at the set of three choices where none of the players can

improve their outcomes by making a different choice given what the other players have chosen

(Convergence to Nash equilibrium occurred 82-95 % of the runs depending on Γ choice and first

mover choice). The benefit (ie. number of species protected) that can be obtained by each

player at the Nash equilibrium set of choices, is the expected solution of the multiplayer game.

The Nash equilibrium is noted in the figure by a large black circle.

142



5.7 Appendix: Figures

Priority region A  

Priority region B 

Priority region C  

Regional  
Conservation  
Organization 

Local Land Trust 
1 

Local Land Trust 
2 

 Objective 
Funding 

γ1 γ 2 
p*α (1-p)*α 

ε 1*β1 
 

 ε2*β2 
 

(1- ε2)*β2 
 

(1- ε1)*β1 
 

SA SB 
SC 

ΓAB ΓBC 

Figure 5.1: Conceptual model of multiplayer system. The regional conservation
organization has an objective to protect species in region B but does not have any
on-the-ground operations of its own. It obtains a conservation benefit by funding local
land trusts that work in the region. These local land trusts decide what proportion of
their budget (ε) to allocate toward funder priorities in order to incentivize the regional
conservation organization’s decision of how to proportionally allocate its budget (p).
Species (S) are protected according to the spending in each region, but there is some
overlap (Γ) across the different organization’s priority species.
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Figure 5.2: Nash equilibrium benefit per organization when there is objective
misalignment (black bars) or alignment (white bars). The grey bar indicates the
benefit the funder would obtain from this budget if it spent the money itself
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Figure 5.3: The proportion of total species that would be protected by the action
of all of the players under the different scenarios. G = 0.5 is the priority alignment
scenario. G = 0.1 is the misalignment scenario. “Request for Proposals” (RFP) shows
the total benefit when the Funder targets all of its spend towards its own priorities.
The two cost share (CS) scenarios illustrate total benefit under Funder investment
strategies of 10 and 20 times local land trust investment
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Figure 5.4: Funder benefit across different investment strategies. None is when the
Funder does not invest at all. “Request for Proposals” (RFP) is the Funder’s benefit
when it targets all of its spend towards its own priorities. The two cost share (CS)
scenarios illustrate Funder benefit under investment strategies of 10 and 20 times
local land trust investment.
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(a) (b) (c)

Figure 5.5: Three dimensional visualization of the choices that (a)the Funder, (b)local land trust 1 (LT1), and (c)local
land trust 2 (LT2) will make to maximize their own benefit, given the choices of the other players. The location of each
solid surface represents a budget allocation choice, and the color of the surface illustrates the benefit that the player will
receive from making that choice with white being the greatest benefit and black the least. The colored lines show the
intersection between surfaces and the black circle marks the Nash equilibrium location.
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Figure 5.6: Funder benefit to cost ratio plotted versus Funder investment (α) into
region
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5.8 Appendix: Tables
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Table 5.1: Model variables and parameters

variables units

p = Funder budget allocation decision % of budget
ε1 = Local Land Trust 1 budget allocation decision % of budget
ε2 = Local Land Trust 2 budget allocation decision % of budget

parameters units

α = Funder budget $
γ1 = Local Land Trust 1 budget without Funder grant $
γ2 = Local Land Trust 2 budget without Funder grant $

ΓAB = Objective overlap between Funder and Local Land Trust 1 % of species
ΓBC = Objective overlap between Funder and Local Land Trust 2 % of species
ΓAC = Objective overlap between Local Land Trust 1 and Local Land Trust 2 % of species

150150150



Table 5.2: Funder benefit from cost share

CS Funder species protected

0(no funder $) 35.0%
1 39.1%
2 42.1%
3 44.4%
10 54.0%
20 61.6%
20.1 61.7%
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5.9 Appendix: Supplementary Information

Solution Details

This multiplayer model has 7 different parameters that can be adjusted, so a complete

description of system dynamics is outside the scope of this paper. Instead, as a first

look at what can be understood using this framework, we chose a few sets of parameter

choices to examine based on real-world scenarios and ease of computation.

We used a numerical approach to examine system dynamics and to identify

equilibrium solutions in a three dimensional, discrete, choice space. To do so, we

set the number of budget increments for the possible budget allocation choices that

each player (Funder, LT1, LT2) could make. Here we use 21 choice increments (in

equal increments from 0 to 100 percent of the budget) to balance adequate insight

into system dynamics with computational speed.

For every combination of possible choices, we calculated the payoff to each player

using the benefit functions provided below and the stated parameter choices. The

budget parameters (α, γ1, γ2) were set to 0.1 (enough to purchase 10% of each

organization’s priority region) because this was a reasonable representation of the

resources of a midsize conservation organization. We examine scenarios with variation

in priority overlap, but we constrain the maximum overlap to 0.5. This maximum

level of overlap seems representative of real-world organizations, but also because

priority overlap greater than 0.5 resulted in additional Nash equilibria (identified by

mapping response surfaces in preliminary exploration of the system dynamics).
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There are many ways to examine system dynamics once we obtain this set of

benefit calculations. In this study we have chosen to focus on the benefit obtained

by each player at the Nash equilibrium set of choices. We used an iterative process

(detailed in Box 2) to step through the three dimensional choice space and identify the

Nash equilibrium solutions in which no player could improve their benefit by making

a different choice. The iterative process requires a set starting point in choice space

and then alternates through the players’ choices, stepping through the choice space if

an increased benefit is possible. Because this is a symmetrical model, in most cases

there are two Nash equilibrium solutions. For the parameter choices that we present

here, we ran 1000 randomly assigned initial condition choices for each first mover

choice and found that convergence to the Nash equilibrium occurred more than 82 %

of the time (Table 5.3). The nonconverging runs appeared to result from random seed

values that were very close to the upper boundary (1) and may have been unable to

converge due to flatness of the benefit surface in those regions. In addition, there are

parameter choices not discussed in this paper(eg Γ = 0.3) for which certain starting

points lead to nonconvergence because alternating maximum benefit value choices

result in the solver getting stuck in a loop. We identify and discuss all the stable

equilibria for our parameter choices. Although unstable equilibria may be present in

some scenarios, we do not identify them because they are less relevant for informing

conservation organization behavior.

Table 5.3: Convergence diagnostics for 1000 randomly assigned starting positions
of the choice maximization process and Nash equilibrium iterative solver

Γ Funder plays first LT1 plays first LT2 plays first

0.5 0.82 0.85 0.82
0.1 0.93 0.95 0.93
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Basic priority overlap (Scenarios 1a and 1b)

Each player has a total available budget that they can spend. Choice variables are

ε1, ε2, and p. Refer to Figure 5.1 for the identity of the parameters (γ1, γ2, α):

Total Budget LT1 = βA = (1 − ε1)(γ1 + pα)

Total Budget Funder = βB = ε1(γ1 + pα) + ε2(γ2 + (1 − p)α)

Total Budget LT2 = βC = (1 − ε2)(γ2 + (1 − p)α)

Species lists from each region and total species are protected according to the

species area relationship. We scale budget (β) between 0 and 1, such that a budget of

1 could protect all of the area (Area), and then calculate the proportion of the area

protected. In this formulation, area cancels out and the possible species protected

are calculated from the budget alone.

S = c(
β ∗ Area
Area

)z = cβz

In all instances cA = cB = cC = 1 so they are omitted from the statements below and

z = 0.25. In this study, we chose to emphasize the role of Γ and hence ignored cost

heterogeneity. However, this framework could accomodate variation in costs and it

would be interesting to explore in future work.

ΓAB is the priority species that overlap between LT1 and the Funder, ΓBC is the

species overlap between LT2 and Funder, ΓAC is the priority species that overlap

between LT1 and LT2.
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The conservation benefit of each organization’s actions is the number of species

that obtain protection. Protection of species of interest to LT1 is calculated by

summing their species protected by spend in region A, their species protected by

spend in region B that are not protected in A, and their species protected by spend

in C that are not protected by spend in A. We then subtract out the double count of

A species that are protected in both B and C but not A.

LT1 Species = SA =βzA

+ΓABβ
z
B(1 − βzA)

+ΓACβ
z
C(1 − βzA)

−ΓABΓACβ
z
Bβ

z
C(1 − βzA)

We use the same formulation for calculating protected species of interest to the

Funder, except now we consider species present in region B.

Funder Species = SB =βzB

+ΓABβ
z
A(1 − βzB)

+ΓACβ
z
C(1 − βzB)

−ΓABΓBCβ
z
Aβ

z
C(1 − βzB)

For LT2 we consider species in region C.

LT2 Species = SC =βzC

+ΓBCβ
z
B(1 − βzC)

+ΓACβ
z
A(1 − βzC)

−ΓBCΓACβ
z
Bβ

z
A(1 − βzC)
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Finally, to calculate total species protected, we sum the species protected by spend

in each region and then subtract out the overlap between regions. Then we add the

overlapping species they all care about back in because they had been deleted with

the overlap.

Total Species = SS =βzA + βzB + βzC

−ΓABβ
z
Bβ

z
A

−ΓBCβ
z
Bβ

z
C

−ΓACβ
z
Aβ

z
C

+ΓABΓBCβ
z
Bβ

z
Aβ

z
C

Targeted funding: request for proposals

We modify the budget equations for the targeted funding scenarios as follows:

In the request for proposals case (Scenario 2a), funder money is contractually

obligated to be spent on funder priorities.

Total Budget LT1 = βA = (1 − ε1)γ1

Total Budget Funder = βB = ε1γ1 + pα + ε2γ2 + (1 − p)α

Total Budget LT2 = βC = (1 − ε2)γ2

Priority species of interest to each player are protected according to the benefit

functions described above.
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The total species of interest that can be protected by the funder (SBactual) are less

than expected due to crowding out (as LTs move spend to their own regions).

Crowding out is calculated as

SBpotential − SBactual

where SBpotential is SB with a budget that includes the money from the ε choice

that each LT would make if the funder did not spend any money in the system.

The Funder’s expected species to be protected if they invest in a region and the

LTs continue to spend as they had previously = (current budget spend in the region

+ new budget)z + overlapping Funder species from existing spend in other regions -

double counted overlapping species.

Targeted funding: request for proposals + cost share

We examined the potential for the Funder to capture benefit lost to leakage by using

cost sharing mechanisms in their contract with the LTs. To do so, we added a

cost share parameter (CS) which added budget to be spent on Funder priorities in

increments of what the LT was already spending (assumption that cost sharing is

possible for both LTs). Now:

Total Budget LT1 = βA = (1 − ε1)γ1

Total Budget Funder = βB = ε1γ1 + CS ∗ ε1γ1 + ε2γ2 + CS ∗ ε2γ2

Total Budget LT2 = βC = (1 − ε2)γ2
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Priority species for each organization are once again protected according to the

benefit functions above.

We then calculate the funder’s benefit for different values of the cost share

parameter to find the match that would recapture the loss due to crowding out.
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Chapter 6

Conclusions
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Conservation science has acknowledged that estimates of the costs and benefits

of protected areas (PAs) are necessary for efficient biodiversity conservation. In this

dissertation I examined two aspects of this large topic. I first provided some insight

into the management needs and costs of PAs by focusing on the single topic of invasive

plant management. I found that I could use the features of PAs to predict invasive

plant presence and cover, as well as the allocation of existing funding. However, I

also suggest that past funding is not a good indication of future management need.

I then tackled the measurement of conservation benefit from two perspectives. In

one study, I develop a method that conservation practitioners can use to remotely

assess changes over time in forest attributes that relate to conservation benefit. I find

that some forest attributes are well suited to remote assessment and I demonstrate

potential applications of these models. Then, I use a theoretical model to show how

the benefit of conservation spending is dependent on strategic interactions between

conservation organizations, and suggest that these interactions need to be considered

by conservation planners.

Several overarching conclusions can be drawn from the synthesis of these four

studies. 1) This work suggests that cost and benefit measurements that are aggregated

to the level of a PA are both feasible and meaningful for conservation practice. Many

ecological studies are performed at scales that are much smaller than that of a PA (i.e.

quadrat based plant sampling, etc.). In contrast, I study both cost allocation and

ecological features (plant occurrences and forest attributes) at the scale of a PA and

find meaningful variation that can enhance conservation decision making. 2) In the

threat avoided * benefit
cost conceptual framework of systematic conservation planning

(Newburn et al., 2005), valid estimates of cost may actually be the most difficult to

obtain. My work with invasive species management data suggested that the actual
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costs of effective management were not easily estimated from existing funding. This

is likely a result of insufficient spending on invasive species management across the

PAs, but it demonstrates that even with access to the best existing datasets, the true

costs demanded by the above equation are elusive. Finally, 3) conservation practice

does not happen in a vacuum and therefore organization interactions and perspective

is important when interpreting results. This consideration is particularly apparent

when considering cost and benefit accounting for invasive species managment. For

instance, the invadedness models in Chapters 2 and 3 provide estimates of costs and

averted threats, but those values are from the perspective of the organizations that

manage the individual PAs. Meanwhile the prioritization of funding towards certain

species illustrates that the funding organization values slightly different outcomes.

These studies are a valuable contribution to conservation science, but there is still

much work to be done. The two studies presented here provide a first step towards

estimating invadedness for conservation planning purposes. However, prior land use

history or disturbance at a PA is a potential driver of invasion that we were unable to

test for due to data limitations. A valuable future line of study would be to examine

the improvements in prediction of invadedness that could be obtained by estimating

historic disturbances at the PA using our method from chapter 4.

In chapter 2, I provide a first look at how management costs relate to PA features

and covary with invasive plant cover. More resolved aspects of how invasive plant

funding is allocated remains to be examined. I suggest that a logical next step

would be to estimate the implications of aggregating costs across species by using the

operations database in chapter 3 to quantify the variation in how funding is allocated
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across species.

In addition, there has been almost no work on the temporal variation in

management costs and most studies assume that costs are constant over time. It

would be interesting to investigate how management investment at a PA varies over

time and whether actual funding levels ever display the constant levels that suggest

maintenance treatment levels have been attained. The invasive plant management

cost dataset could provide a first look at this question with its 10 years of detailed

funding information across hundreds of PAs.

Our work on measuring the benefit of conservation spending is important and a

good first step, but there is much more work that can be done to improve this aspect

of conservation practice. The remote sensing data benefit models provide estimates

of changes over time in forest structure and composition on a PA. The obvious next

step is to examine the out of sample predictive capacity of the model so that it can

be used to compare changes on PAs versus off PAs to see if there are differences in

forest attributes that relate to being protected.

Meanwhile, the multiplayer model is used in this dissertation to examine the

outcomes of spending from the funder’s perspective. However, it also is just a first

pass at the many questions that can be asked of this system. An important next

step would be to examine the implications of asymmetrical distribution of budgets

and priorities across the players. We studied the dependence of funder outcomes on

priority overlap, but the expansion where overlap can differ across players needs to

be examined.
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There are still many unanswered questions regarding how to incorporate the costs

of preserves into the conservation planning process. However, this dissertation is

a step in the direction of understanding allocation of invasive plant management

funding and begins to develop tools to help determine the outcomes of funding.

These contributions are useful to practitioners and will improve our understanding of

protected area management and impact.
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