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Abstract

As the human population continues to grow, there is a need for better management of

our natural resources in order for our planet to be able to produce enough to sustain us.

One important resource we must consider is marine fish populations. We use the tool of

optimal control to investigate harvesting strategies for maximizing yield of a fish population

in a heterogeneous, finite domain. We determine whether these solutions include no-take

marine reserves as part of the optimal solution. The fishery stock is modeled using a

nonlinear, parabolic partial differential equation with logistic growth, movement by diffusion

and advection, and with Robin boundary conditions. The objective for the problem is to

find the harvest rate that maximizes the discounted yield. Optimal harvesting strategies are

found numerically.

Infectious diseases are another area of concern for the human population. Recently,

questions have been raised as to the importance of spatial features on disease spread and

how movement patterns affect management strategies. The role of spatial arrangements

in a metapopulation on the spread and management strategies of a cholera epidemic is

investigated. We consider how the movement of individuals and water affects the optimal

vaccination strategy. For each metapopulation, the model has an Susceptible-Infected-

Recovered (SIR) system of differential equations coupled with an equation modeling the

concentration of Vibrio cholerae in an aquatic reservoir. The model is used to compare

spatial arrangements and varying scenarios to draw conclusions on how to effectively manage

outbreaks. The work is motivated by the recent cholera outbreak in Haiti.
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Chapter 1

Introduction

Mathematical models help us understand the dynamics of biological systems. The role of

spatial features are important when building and analyzing models [61, 44, 45]. The motility

of a species or pathogen could affect population dynamics and potentially alter management

strategies. Spatial features can be introduced in mathematical models in varying ways.

This dissertation includes metapopulation modeling using a system of ordinary differential

equations (ODEs) in discrete space and a partial differential equation (PDE) to describe

population dynamics in continuous space.

Within both systems, methods of management are modeled as control functions whose

values affect the state differential equations. We formulate goals we hope to achieve that

depend on the controls and corresponding states. We then use mathematical analyses and

numerical simulations to find the optimal control that achieves the desired goals. We here

introduce the two problems considered in this dissertation, the management of a natural

resource and optimal intervention strategies in controlling a waterborne disease. Later, we

provide a brief background on optimal control theory and its application to ordinary and

partial differential equations.
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1.1 Mathematical Models for Resource Management

As the human population continues to grow, there is need for better management of our

natural resources in order for our planet to be able to produce enough to sustain us.

One important resource we must consider is marine fish populations. Fisheries provide an

important source of food to people across the world. However, many marine populations

are severely overfished [29]. The overexploitation of fisheries has called for an improved

understanding of spatiotemporal dynamics of resource stocks as well as their harvesters.

We investigate a nonlinear, parabolic partial differential equation (PDE) that models fish

stock on a heterogeneous spatial domain. We extend previous work by Joshi et al. [31] by

incorporating an alternative boundary condition to represent a more realistic habitat. The

fishery stock is modeled on a multidimensional, smooth, bounded domain Q = Ω × (0, T )

with Robin boundary conditions:

ut =
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑
i=1

bi(x, t)uxi + f(u)− h(x, t)u Ω× (0, T ) (1.1)

∂u

∂ν
(x, t) + qu(x, t) = 0 ∂Ω× (0, T ) (1.2)

and initial condition:

u(x, 0) = u0(x) x ∈ Ω (1.3)

where u(x, t) is the fish stock density. The conormal derivative is given by ∂u
∂ν

= ∇xu · ν

with ν = (ν1, ...νn) and νi =
∑n

j=1 aij(x, t)ηj, with ηj being the outward normal unit vector.

The nonlinear growth term is given by f(u) and h(x, t) is the harvest rate. The diffusion

and advection coefficients are heterogenous functions of space and time, aij(x, t) and bi(x, t),

respectively.

We investigate yield maximizing strategies and whether these solutions contain no-take

marine reserves, or areas that prohibit fishing effort. We investigate how the boundary
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condition, together with the advection and diffusion coefficients, affect optimal harvesting

strategies.

1.2 Metapopulaton Model for Waterborne Diseases

Infectious diseases create a terrible burden on society, which can be devastating both in

terms of deaths and cost. Waterborne diseases are a major concern worldwide [50]. For

the purpose of this project, we classify a waterborne disease as one where transmission by

water is possible. Although there are many known waterborne diseases, we focus our study

on cholera, which is caused by infection of the intestine with the aquatic bacterium, Vibrio

cholerae.

Human movement has influenced the spread of infectious disease by bringing more people

into contact with the pathogen. Waterborne diseases are a bigger threat since both human

and water movement contribute to disease spread. When an outbreak occurs, there is a

need to find intervention strategies that control the disease while also optimizing resources

available. This strategy needs to consider the effect of population and pathogen movement.

We seek to answer the question of how the spatial arrangement of populations, waterway

connectivity, and movement patterns affect dynamics and intervention strategies in disease

outbreaks.

We extend the Susceptible-Infected-Recovered-Water (SIRW) ordinary differential equa-

tion model of Tien and Earn [59], to a metapopulation with both human and pathogen

mobility. We use connectivity matrices to account for movement. Also, because of the

potential for high mortality rates, we include a death due to disease term. There are varying

intervention strategies to consider in attempts to control waterborne disease outbreaks. For

cholera, three common approaches are vaccination, sanitation, and the provision of clean

water [46]. For this project, we consider vaccination as the only intervention. There

are several reasons for this including the short timeframe of an epidemic and the cost of

vaccination compared to the other options.
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We investigate the following SIRW model, for patches i = 1, . . . , n, with vaccination terms

vi(t)Si moving susceptible individuals immediately to the recovered class:

dSi
dt

= µiNi − βiISiIi − βiWSiwi − µiSi + dS

n∑
k=1

(MikSk −MkiSi)− vi(t)Si (1.4)

dIi
dt

= βiISiIi + βiWSiwi − (γi + µi + δi)Ii + dI

n∑
k=1

(MikIk −MkiIi) (1.5)

dRi

dt
= γiIi − µiRi + dR

n∑
k=1

(MikRk −MkiRi) + vi(t)Si (1.6)

dWi

dt
= ξi[Ii −Wi] + dW

n∑
k=1

(HikWk −HkiWi)− φiWi (1.7)

with some initial conditions and on a finite time interval. The model includes compartments

for pathogen in the aquatic reservoir. The model also includes two modes of transmission

of the disease: transmission from person-person contact and from contact with the water

compartment. They are referred to as direct (fast) and indirect (slow) transmission. The

structure of the connectivity matrices, M = {Mij} and H = {Hij}, representing human and

water movement, respectively, determines the spatial arrangements of the model. The goal

of the project is to characterize the control that minimizes the number of infected individuals

in the network and the cost of the intervention strategy over some finite time period.

1.3 Optimal Control Theory

Optimal control theory is an approach to solving dynamic optimization problems. An optimal

control problem consists of an objective that is constrained by a system of state equations,

whose dynamics are captured by variables influenced by control functions. The state system

can have deterministic or stochastic dynamics of various types. The control variables can be

adjusted in the system to achieve the desired objective. See [39] for a detailed introduction

to optimal control theory, especially with application to biological problems. We will discuss

the theory when applied to ordinary differential equations and partial differential equations.
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1.3.1 Optimal Control Theory of Ordinary Differential Equations

Along with the state system, we have an objective functional, which is typically an integral

expression formulated in terms of the state and control variable. We seek to find the optimal

control, with corresponding states, that achieve the maximum/minimum of the objective

functional. When the dynamics of the system are modeled by ordinary differential equations

(ODEs), we will use Pontryagin’s Maximum Principle [52] to find the necessary conditions

for the optimal control problem. Pontryagin and his collaborators developed the theory for

ordinary differential equations around 1950. They developed the idea of introducing adjoint

functions, which attach the differential equations to the objective functional. We assume our

controls are in a subset of Lebesgue measurable functions.

Pontryagin’s Maximum Principle (PMP) converts the problem of maximizing (or

minimizing) the objective functional subject to the state ODEs with initial conditions to

the problem of maximizing (or minimizing) the Hamiltonian pointwise with respect to the

controls. To use PMP, the existence of an optimal control and corresponding states must be

proven.

The characterization of the control will be in terms of the optimal states and adjoint

functions. In many biological applications, there will be bounds on the controls [1, 34]. The

optimality system for the problem includes the state equations, adjoint equations, and control

characterization. Often, solutions to the optimality system cannot be be solved explicitly so

numerical approximations are used. Numerical methods for approximating solutions are

discussed in Section 1.4.

1.3.2 Optimal Control Theory of Partial Differential Equations

Although a full generalization of Pontryagin’s Maximum Principle does not exist for problems

of infinite dimensions, there are aspects of the techniques used in the principle that can be

applied to systems of partial differential equations. The book by Li and Yong [41] gives

results on PMP for specific types of second order partial differential equations (PDEs).
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Starting with a state PDE with initial conditions, boundary conditions, and control terms,

we choose an appropriate weak solution space and control set. An objective functional is

chosen depending on the goal desired. After formulating the weak solution to our state

PDE, the existence and uniqueness of the solution to the state equations, given a control, are

proven. In our work, the existence and boundedness of a state solution is obtained through

an iteration scheme.

For our work on a parabolic PDE, we use a maximizing sequence argument, continuous

dependence of the state on the control, and a priori estimates on state solutions to prove the

existence of an optimal control. To obtain the necessary conditions for the optimal control,

the objective functional is differentiated with respect to the control. Since the objective

functional usually contains the state variable, the state must first be differentiated with

respect to the control. We call this derivative the sensitivity function, which solves the

linearized version of the state equation.

We use the sensitivity PDE with its initial and boundary conditions to find the adjoint

PDE and final time condition. The right-hand side of the adjoint equation is found from the

derivative of the integrand of the objective functional with respect to the state variable.

Lastly, the characterization of the control is formulated by differentiating the objective

functional with respect to the control and using the relationship between the sensitivity

and adjoint equations. As in the ODE case, the optimality system consists of the state

equation, adjoint equation, and the control characterization. The uniqueness of the solution

to the optimality system, which gives uniqueness of the optimal control, can be shown for

sufficiently small time. Exact solutions to the optimality system usually cannot be solved

explicitly, so numerical approximation to solutions are found to illustrate various scenarios.

Details on the numerical methods used are found in Section 1.4.
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1.4 Numerical Approximations to Solutions

Approximate solutions to the optimality system are obtained using numerical methods. The

optimality system, with initial conditions for the state equations and final time conditions

for the adjoint equations, is solved using an iteration method. Due to the structure of the

optimality system, a forward-backward sweep method is used to solve the systems. See

Hackbusch for convergence of this method [26]. For systems of ODEs, we use a fourth-order

Runge Kutta method to solve the state and adjoint systems. For systems of PDEs, we use

an explicit finite difference method with appropriate unwinding schemes for first order time

derivatives. An Euler method is used for the time derivative while a first order upwind

scheme is used for first spacial derivatives. The methods and schemes used are described in

detail in [30] and in Appendix A.

An iterative forward-backward sweep method [39] is described below:

1. Initiate a guess for the control variable.

2. The state system, given the initial conditions, is solved forward in time, using either

the Runge Kutta method or finite-difference method.

3. The state solutions found, as well as the final time conditions, are used to solve the

adjoint system backward in time, again using either a Runge Kuta or finite-difference

method.

4. The control variable is then updated using a convex combination of the previous value

and the new value determined using the control characterization.

5. Steps 1-4 are repeated until successive values of all states, adjoints, and control(s) are

sufficiently close, i.e. there is convergence of the optimality system.

Convergence is checked using the relative errors of the optimality system, shown in the

relation:
||v− vold||
||v||

≤ ε
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where ε is the accepted tolerance, v is the vector of current state, adjoint, or control values,

vold is the vector of values from the previous iteration, and || · || is the sum of the absolute

values of the components of the vector.
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Chapter 2

Optimal fish harvesting for a

population modeled by a nonlinear

parabolic partial differential equation

2.1 Background

There is growing concern over natural resource management and how best to use resources

to sustain the world’s growing population. An important resource to consider is fisheries,

which are a source of food for people across the globe. However, many marine populations

are severely overfished [29].

In addition to the overexploitation of fish stock, there are threats of habitat degradation

and destruction, pollution, and climate change impacts affecting the world’s oceans [47, 29].

Researchers must understand what is necessary for assuring a stable supply of fish under

environmental stressors of various kinds, while also considering the impact of human behavior

on the environment [31]. This is a difficult task given the large variability associated with

fishery ecosystems yet there is continual pressure to find methods for optimally solving these

management problems.
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There has been work investigating various ways to help restore fish populations and

protect marine ecosystems, such as time-area closures, limiting the fishing season, as well

as the implementation of catch quotas. Another way to help protect fish populations from

overexploitation is the inclusion of no-take marine reserves. These reserves are categorized

as areas of the ocean completely protected: removal or destruction of natural resources is

prohibited [29]. They offer protection for both marine fish populations and the ecosystems

of which they are a part.

The establishment of no-take reserves is beginning to receive more attention on the global

scale. The total amount of ocean set as marine protected areas (MPAs) has risen by over

150% since 2003. However, only 1.17% of the marine area of the world is protected as MPAs

and only a small portion of MPA coverage is designated as fully protected, no-take areas

[62]. This may be because marine reserves are a controversial fishery management tool.

Some believe that no-take marine reserves actually reduce the yield [14, 66].

The spatial structure of a renewable natural resource is important to consider when

determining management strategies. Spatial heterogeneity and dynamics can affect manage-

ment outcomes. When spatial dynamics of a resource are ignored, management strategies

generally produce suboptimal results [28]. There have been many approaches to modeling

spatial dynamics. Early harvesting models involving bioeconomics and optimal yield were

done using ordinary differential equations. Clark’s work provided a foundation for using

optimal control theory as a tool in fishery management [15, 16].

Metapopulation models are a common spatial modeling approach, which divides the

environment into a collection of patches. Tuck and Possingham used coupled spatially-explicit

difference equations to model a single-species, two-patch metapopulation. They considered

the problem of optimally exploiting the single species local population that is connected by

dispersing larvae to an unharvested second population [63]. They showed that the closed

areas had positive net benefits in terms of both stock abundance and economic rents.

Sanchirico and Wilen studied a series of differential equation metapopulation models with

logistic growth and density-dependent dispersal between patches coupled with a spatially

10



explicit harvesting model [56, 55]. They investigated different scenarios, exploring the

impacts of a reserve on biomass and effort distribution. Results showed that, under certain

conditions, reserves increase both stock abundance and harvest effort [55]. Brown and

Roughgarden formulated an optimal control problem for maximizing the discounted profit,

using a metapopulation ODE model (continuous in time, discrete in space) for an age-

structured fish stock. Their results demonstrate that closed patches can be part of the

optimal solution [11].

There have been studies that sought yield maximizing strategies without imposing no-take

reserves in the model. Neubert investigated the steady-states of a fish stock in a spatially

explicit harvesting model, ignoring the dependence of the stock on time [47]. His model is a

second order ODE in space. The benefits of using a spatially explicit model include a more

realistic marine reserve in a fixed area of space through which fish move, rather than a fixed

harvesting rate across the domain. His objective functional sought to find the fishing effort

that maximizes the yield. His model did not incorporate reserves into the model yet they

were shown to be part of the resulting optimal harvesting strategy (depending on the length

of domain). Neubert also found “chattering” in the optimal control in some cases, which are

infinite sequences of reserves alternating with areas of intense fishing.

Ding and Lenhart [19] extended Neubert’s work to a multidimensional spatial domain,

considering different types of objective functionals. They sought to find an optimal fishery

harvesting strategy with fish stock modeled by a semilinear elliptic partial differential

equation with Dirichlet boundary conditions. One of their objective functionals was similar

to that of Neubert but considered the difference between the yield and a nonlinear cost.

Ding and Lenhart [19] also included the minimization of the variation in the control (with

H1 controls) to avoid “chattering.” Both functionals result in a reserve as part of the optimal

harvesting strategy.

DeLeenheer also investigated a steady-state, parabolic PDE model, rewritten as a system

of two first-order ODEs, to address the problem of where exactly to establish marine protected

areas (MPA) [36]. His objective involved maximizing fishing yield as well as fish densities.
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His results concluded that the location of the MPA was determined by the length of spatial

domain and average fish density. This work also did not investigate the role of time in the

model.

To include time-varying scenarios, Joshi et al. [31] built a nonlinear parabolic PDE model

for the growth, movement and harvesting of a renewable resource. This work considered yield

maximizing solutions, but in a dynamic fishery system, investigating the spatiotemporal

distribution of harvesting effort and the existence of no-take marine reserves that arose as

part of the harvesting strategy. Their non-steady state equation also included an advection

term. This work was concerned not only with the existence of reserves, but the time of their

establishment and the evolution of its size over time.

The PDE models of Joshi et al., Ding and Lenhart, and Neubert [31, 19, 47] for optimal

fish harvesting had Dirichlet boundary conditions, representing a lethal domain boundary.

This would occur if you had a habitat imbedded into a larger, uninhabitable region. Although

many fisheries are not found in such conditions, the impact of alternative boundary conditions

was not addressed. Most fisheries occur on open ocean where these artificial boundaries do

not exist. The implementation of an alternative type of boundary condition, Robin boundary

conditions, deemed more favorable to the fish stock by acting as a resource constraint, could

produce an alternative optimal harvesting strategy.

Optimal control of parabolic PDEs with Robin boundary conditions has been successfully

used for other applications. Previous work on these boundary conditions was done by Lenhart

and Wilson [38] in investigating optimal control of a heat transfer equation with a convective

boundary condition. There has also been work done with these boundary conditions in

biological applications. Lenhart and collaborators [37] considered boundary habitat hostile

in a parabolic system of interacting species, using Robin boundary conditions. We extend

the application to fisheries.

Ocean environments are subject to varying currents throughout space and time. In

numerical simulations with constant advection, Joshi et al. [31] concluded that the location
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of reserves shifted in the opposite direction of advection of the fish stock. We will include

non-constant advection terms in our numerical simulations to compare results.

Modeling these dynamic systems can help predict the impact of fishing regulations. A

heterogenous, spatiotemporal domain with more realistic boundary conditions will help to

model the habitat and the fish movement and gain important insights on optimal harvesting

strategies. These models provide guidance that could help make decisions to improve our

marine resources without compromising the economic yield.

In the next section, we formulate the problem in an appropriate weak solution space

and describe the spatiotemporal model for the fish stock and assumptions. We then

prove existence and uniqueness of our state solution using an iteration scheme and a

priori estimates. The proof for the existence of an optimal control is given. Next,

we derive the optimality system consisting of the state system coupled with the adjoint

system and an optimal control characterization. We prove the uniqueness of the optimality

system, guaranteeing the uniqueness of the optimal control solution. Finally, we illustrate

some examples by approximating our solutions using numerical methods, and give some

conclusions.

2.2 Problem Formulation

The focus of the project is on optimal harvesting strategies of a fish population in a

heterogeneous, finite domain. We develop resource management strategies, specifically yield-

maximizing solutions, and determine whether these solutions include no-take marine reserves

as part of the optimal solution.

The fishery stock is modeled using a nonlinear, parabolic partial differential equation with

both diffusion and advection on a multidimensional, smooth, bounded domain Q = Ω×(0, T )
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with Robin boundary conditions:

ut =
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑
i=1

bi(x, t)uxi + f(u)− h(x, t)u Ω× (0, T ) (2.1)

∂u

∂ν
(x, t) + qu(x, t) = 0 ∂Ω× (0, T ) (2.2)

and initial condition:

u(x, 0) = u0(x) x ∈ Ω (2.3)

where u(x, t) is the fish stock density. The conormal derivative is given by ∂u
∂ν

= ∇xu ·

ν with ν = (ν1, ...νn) and νi =
∑n

j=1 aij(x, t)ηj, with ηj being the outward normal unit

vector. The nonlinear growth term is given by f(u) and h(x, t) is the harvest rate. The

diffusion and advection coefficients are heterogenous functions and given by aij(x, t) and

bi(x, t), respectively. Also, the initial population u0(x) ∈ L∞(Ω) is nonnegative. For this

application, our spatial domain Ω is a smooth, bounded open set in Rn, n = 1, 2, or 3,

although the theorems are true for multidimensional domains for any integer n ≥ 1. The

Robin boundary condition constant, q, is nonnegative.

Movement of the fish stock is modeled using diffusion and advection. Diffusion forces

the stock to not congregate to one centralized area, while advection accounts for currents

and drifts in the domain. Robin boundary conditions, where the flux at the boundary is

proportional to the stock density at the boundary, are more favorable to the fish stock

than Dirichlet boundary conditions, which represent a lethal domain surrounding our spatial

domain. We investigate population dynamics with logistic growth. The goal for our problem

will be to find the harvest rate, h(x, t), that maximizes the discounted yield. Let P be the

price constant, which we will set to P = 1, and think of the J as money. The objective

functional is:

J(h) =

∫ T

0

∫
Ω

Pe−µthu dxdt, (2.4)
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which is maximized over the set of admissible controls:

H = {h ∈ L∞(Q) : 0 ≤ h(x, t) ≤ hmax}.

Given h ∈ H, we denote by u = u(h), the corresponding state solution, with the state u

satisfying (2.1)-(2.3). We make the following assumptions:

1. Uniform ellipticity on the diffusion coefficient:

There exists θ > 0 such that

θ
n∑
i=1

ξ2
i ≤

n∑
i,j=1

aij(x, t)ξiξj for all (x, t) ∈ Q, ξ ∈ Rn.

2. Symmetry in the diffusion coefficients:

aij = aji for i, j = 1, . . . , n.

3. Bounded coefficients:

aij, bi ∈ C1(Q̄) for all i, j = 1, . . . , n.

4. The growth term can be written as f(u) = ug(u) where g ∈ C1(R) for all u ≥ 0.

5. There exists r > 0 such that r ≥ g(u) for all u ≥ 0.

6. For M > 0, there exists C1 > 0 such that for 0 ≤ u ≤M , g(u) ≥ −C1

7. For 0 ≤ u ≤M , there exists C2 such that f ′(u) ≥ −C2.

8. The Robin boundary condition constant, q, is nonnegative.

9. The discount factor, µ, is a nonnegative constant.
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10. The initial condition u0(x) ∈ L∞ and is nonnegative.

Remark 2.0.1. Two examples of f(u) functions that satisfy the above assumptions are

f(u) = ru
(

1− u

K

)
,

where r ≥ 0 is the growth rate and K ≥ 0 is the carrying capacity of the population, and

f(u) = ru(1− u)(u− a),

with 0 < a < 1.

2.3 Existence of an Optimal Control

The underlying solution space for our state system is given by V = L2((0, T );H1(Ω)) and

the dual space for the time derivative of the solution is given by V ∗ = L2((0, T );H1(Ω)∗).

Definition 2.0.1. The function u ∈ V with ut ∈ V ∗ is a weak solution to our problem

(2.1)-(2.3) if:

∫ T

0

〈ut, φ〉 dt =

∫
Q

(f(u)− hu)φ dxdt−
∫
Q

n∑
i,j=1

aij(x, t)uxiφxj dxdt (2.5)

−
∫
∂Ω×(0,T )

quφ dsdt+

∫
Q

n∑
i=1

bi(x, t)uxiφ dxdt

for all test functions φ ∈ V , where 〈 , 〉 is the duality between (H1(Ω))∗ and H1(Ω) and

u(x, 0) = u0(x) for x ∈ Ω.

Remark 2.0.2. Since u ∈ V and ut ∈ V ∗, due to the results of Evans [22],

u ∈ C([0, T ];L2(Ω)),
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and the initial condition makes sense in L2(Ω).

To find the weak solution format to our system, we formally begin by multiplying the

state equation by a test function φ ∈ V and integrating over the domain, Q:

∫ T

0

〈ut, φ〉 dt =

∫
Q

(f(u)− hu)φ dxdt+

∫
Q

n∑
i,j=1

(aij(x, t)uxi)xjφ dxdt+

∫
Q

n∑
i=1

bi(x, t)uxiφ dxdt

for all test functions φ ∈ V . Integration by parts gives,

∫
Q

n∑
i,j=1

(aij(x, t)uxi)xj φ dxdt = −
∫
Q

n∑
i,j=1

aij(x, t)uxiφxj dxdt

+

∫
∂Ω×(0,T )

n∑
i=1

(
n∑
j=1

aij(x, t)ηj

)
uxiφ dsdt

= −
∫
Q

n∑
i,j=1

aij(x, t)uxiφxj dxdt+

∫
∂Ω×(0,T )

∂u

∂ν
φ dsdt

= −
∫
Q

n∑
i,j=1

aij(x, t)uxiφxj dxdt−
∫
∂Ω×(0,T )

quφ dsdt

using the Robin boundary conditions. When we show existence of weak solutions, we will

verify that the terms,
∫
Q
f(u)φ dxdt,

∫
Q
huφ dxdt, are finite.

2.3.1 A Priori Estimates

We first show a priori estimates that will be used in the proofs of theorems for existence and

positivity of the state solution.

Theorem 2.1. Suppose u ∈ V with ut ∈ V ∗ is a weak solution of (2.1)-(2.3) corresponding

to control h ∈ H, and u ≥ 0 a.e. in Q. Then there exists positive constants, K1,K2, and K3,
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such that ∀h ∈ H,

||u(h)||V ≤ K1 (2.6)

||(u(h))t||V ∗ ≤ K2 (2.7)∫
∂Ω×(0,T )

u2 dsdt ≤ K3. (2.8)

Proof. Using u as the test function in the weak formulation on Qs = Ω× (0, s):

∫
(0,s)

〈ut, u〉 dt+

∫
Qs

n∑
i,j=1

aij(x, t)uxiuxj dxdt+

∫
∂Ω×(0,s)

qu2 dsdt (2.9)

=

∫
Qs

(f(u)− hu)u dxdt+

∫
Qs

n∑
i=1

bi(x, t)uxiu dxdt.

Using hu2 ≥ 0, we get the inequality:

∫
(0,s)

〈ut, u〉 dt+

∫
Qs

n∑
i,j=1

aij(x, t)uxiuxj dxdt+

∫
∂Ω×(0,s)

qu2 dsdt

≤
∫
Qs

f(u)u dxdt+

∫
Qs

n∑
i=1

bi(x, t)uxiu dxdt.

By uniform ellipticity on the diffusion coefficients, we have the following:

∫
(0,s)

〈ut, u〉 dt+ θ

∫
Qs

n∑
i=1

(uxi)
2 dxdt+

∫
∂Ω×(0,s)

qu2 dsdt

≤
∫
Qs

f(u)u dxdt+

∫
Qs

n∑
i=1

bi(x, t)uxiu dxdt.

We can rewrite the time derivative term

∫
(0,s)

〈ut, u〉 dt =
1

2

∫
Qs

d

dt
u2 dxdt
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which gives:

1

2

∫
Qs

d

dt
u2 dxdt =

1

2

∫
Ω×{s}

u2(x, s) dx− 1

2

∫
Ω×{0}

u2(x, 0) dx.

Then we have the following, using our initial conditions:

1

2

∫
Ω×{s}

u2(x, s) dx+ θ

∫
Qs

n∑
i=1

(uxi)
2 dxdt+

∫
∂Ω×(0,s)

qu2 dsdt

≤
∫
Qs

f(u)u dxdt+

∫
Qs

n∑
i=1

bi(x, t)uxiu dxdt+
1

2

∫
Ω

u2
0(x) dx.

Using Cauchy’s Inequality, we can rewrite the inequality:

1

2

∫
Ω×{s}

u2(x, s) dx+ θ

∫
Qs

n∑
i=1

(uxi)
2 dxdt+

∫
∂Ω×(0,s)

qu2 dsdt

≤
∫
Qs

f(u)u dxdt+ Cθ,b

∫
Qs

u2 dxdt+
θ

2

∫
Qs

n∑
i=1

(uxi)
2 dxdt+

1

2

∫
Ω

u2
0(x) dx

where Cθ,b depends on θ and the advection coefficients. The structure assumption on f(u)

gives us:

∫
Ω×{s}

u2(x, s) dx+ θ

∫
Qs

n∑
i=1

(uxi)
2 dxdt+ 2

∫
∂Ω×(0,s)

qu2 dsdt

≤ 2

∫
Qs

g(u)u2 dxdt+ 2Cθ,b

∫
Qs

u2 dxdt+

∫
Ω

u2
0(x) dx.

After rewriting and using assumption (5),

∫
Ω×{s}

u2(x, s) dx+ θ

∫
Qs

n∑
i=1

(uxi)
2 dxdt+ 2

∫
∂Ω×(0,T )

qu2 dsdt (2.10)

≤ 2(Cg + Cθ,b)

∫
Qs

u2 dxdt+

∫
Ω

u2
0(x) dx.
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Using q ≥ 0, we have:

∫
Ω×{s}

u2(x, s) dx ≤ 2(Cg + Cε,b)

∫
Qs

u2 dxdt+

∫
Ω

u2
0(x) dx.

Let ξ(s) =
∫

Ω×{s} u
2(x, s) dx and we obtain:

ξ(s) ≤ G1

∫ s

0

ξ(τ)dτ +G2

where G1 = 2(Cg+Cθ,b) and G2 =
∫

Ω
u2

0(x)dx = ||u0||2L2(Ω), which is bounded by assumptions.

Then by Gronwall’s Inequality,

ξ(s) ≤ ||u0||2L2(Ω)(1 +G1e
G1ss).

Taking the maximum over time, we obtain the following:

max
0≤t≤T

||u(·, t)||L2(Ω) ≤ ||u0||2L2(Ω)(1 +G1e
G1TT ). (2.11)

Using Ĝ = ||u0||2L2(Ω)(1 +G1e
G1TT ) in (2.10), we have:

θ

∫
Q

n∑
i=1

(uxi)
2 dxdt+ 2

∫
∂Ω×(0,T )

qu2 dsdt

≤ 2T (Cg + Cθ,b)Ĝ+

∫
Ω

u2
0(x) dx (2.12)

Combining (2.11) and (2.12) gives the estimate of ||u(h)||V . This estimate gives estimate

(2.8) by a trace result in the spatial derivatives.

For the time-derivative estimate, we start with the PDE:

ut = f(u)− hu+
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑
i=1

bi(x, t)uxi
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By the previous estimate, the right-hand-side of the PDE is bounded in L2((0, T );H1(Ω)∗).

Given our assumptions on f(u), every term on the right hand side is in L2 or is the derivative

of an L2 function. Thus we have the right hand side of the PDE bounded in the dual space,

which implies

||ut||V ∗ ≤ K2.

2.3.2 Existence and Positivity of the State Solution

To carefully formulate our problem, we first must prove the existence of a state solution,

i.e. given a control, h, there exists a state solution u = u(h), showing the dependence on

h. Also, we need to prove that there exists a C such that 0 ≤ u(h) ≤ C, for all h ∈ H.

Since the controls are bounded above and below, we are able to get corresponding bounds in

our solution space for our state, u. We will prove existence and obtain bounds for our state

solution using an iteration scheme.

Theorem 2.2. There exists a supersolution, U , being the solution of the problem:

Ut −
n∑

i,j=1

(aij(x, t)Uxi)xj −
n∑
i=1

bi(x, t)Uxi = rU Ω× (0, T ) (2.13)

∂U

∂ν
(x, t) + qU(x, t) = 0 ∂Ω× (0, T ) (2.14)

U(x, 0) = u0(x) x ∈ Ω (2.15)

such that

0 ≤ U(x, t) ≤ ||u0||L∞eλt (2.16)

for all (x, t) ∈ Q, where λ is a constant such that λ > r.
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Proof. Let λ > r > 0. By Evans [22], there exists a classical solution U to (2.13)-(2.15). Let

v = Ue−λt. Then, we can rewrite the PDE in terms of v:

vt −
n∑

i,j=1

(aij(x, t)vxi)xj −
n∑
i=1

bi(x, t)vxi + (λ− r)v = 0 Ω× (0, T )

∂v

∂ν
(x, t) + qv(x, t) = 0 ∂Ω× (0, T )

v(x, 0) = u0(x) x ∈ Ω

Claim 2.2.1. The solution v satisfies

0 ≤ v ≤ ||u0||L∞ .

1. Suppose there exists a positive maximum of v at (x1, t1) ∈ Q̄.

Case 1: (x1, t1) ∈ Q

Since 0 < t1 < T and v is maximized at (x1, t1), vt = 0 and vxi = 0 at that point. We

can rewrite the term,
∑

i,j(aijvxi)xj , using a product rule:

∑
i,j

(aijvxi)xj =
∑
i,j

aijvxixj +
∑
i,j

(aij)xjvxi .

Through a linear change in spatial variables, the matrix (ai,j) can be diagonalized with

positive entries on diagonal at the point (x1, t1), which give the non-positivity of the

first term. The second term at (x1, t1) is zero due to the first derivative terms. Thus

−
∑

(aijvxi)xj ≥ 0 at (x1, t1). Since (λ − r) > 0 and v(x1, t1) > 0, by assumptions on

λ, we have:

vt −
n∑

i,j=1

(aij(x, t)vxi)xj −
n∑
i=1

bi(x, t)vxi + (λ− r)v > 0 at (x1, t1)
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which leads to a contradiction of the PDE.

Case 2: (x1, t1) ∈ Ω× {t = 0}

Then the maximum would occur at the initial condition, i.e.

v(x1, 0) = u0(x1) ≤ ||u0||L∞

Case 3: (x1, t1) ∈ Ω× {t = T}

From Protter and Wienberger [53], if the maximum occurred at the final time, then in

order to have:

vt −
n∑

i,j=1

(aij(x, t)vxi)xj −
n∑
i=1

bi(x, t)vxi + (λ− r)v = 0

we need vt < 0, since a similar argument as in Case 1 can show that the sum of the

other three terms is positive. That would mean that the function v is strictly decreasing

in time, so the maximum could not occur at the final time. Thus, the case fails.

Case 4: (x1, t1) ∈ ∂Ω× (0, T )

Using
∂v

∂ν
(x, t) + qv(x, t) = 0 ∂Ω× (0, T )

and that ∂v
∂ν

(x, t) ≥ 0 at a maximum on the boundary, we have qv ≤ 0 there. Since

q > 0 and v > 0 at (x1, t1), we have a contradiction.

Thus, we have an upper bound on v, i.e.

v(x, t) ≤ ||u0||L∞
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2. Suppose there exists a negative minimum of v at (x1, t1) ∈ Q̄. We can rewrite our

equation using (−v):

(−v)t −
n∑

i,j=1

(aij(x, t)(−v)xi)xj −
n∑
i=1

bi(x, t)(−v)xi + (λ− r)(−v) = 0,

with initial condition and boundary condition:

−v(x, 0) = −u0(x) and
∂(−v)

∂η
+ q(−v) = 0.

Using a similar approach as before, we can show that a positive maximum of (−v)

satisfies

max(−v) ≤ max(−u0, 0) = 0.

Thus we have a lower bound on v, i.e.

v ≥ 0

The bounds on v,

0 ≤ v ≤ ||u0||L∞ ,

give bounds on the supersolution:

0 ≤ U(x, t) ≤ ||u0||L∞eλt.

Next, to obtain the existence of the state solution, we use an iteration method.

Theorem 2.3. Given a control h ∈ H, there exists a unique, weak solution u to (2.1)-(2.3)

satisfying

0 ≤ u(x, t) ≤ U(x, t)
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a.e. on Q, where U is the supersolution from Theorem 2.1

Proof. From Theorem 2.1, we have bounds on the supersolution, found from maximum

principle arguments:

0 ≤ U(x, t) ≤ ||u0||L∞eλt.

We initiate an iteration scheme, letting u1 = U , and then use a PDE linear in ui at each

step. Then building the iteration scheme [22, 42], there exists a weak solution ui for i =

2,3,... such that

uit −
n∑

i,j=1

(aij(x, t)u
i
xi

)xj −
n∑
i=1

bi(x, t)u
i
xi

+Rui = G(ui−1)

with the boundary and initial conditions (2.2)-(2.3),

∂ui

∂ν
+ qui = 0

ui(x, 0) = u0(x),

where R > hmax +C1 +C2, where C1, C2 are the bounds from our assumptions, g(u) ≥ −C1

for u ≥ 0, f ′(u) ≥ −C2, and G(ui−1) = Rui−1 + f(ui−1)− hui−1.

Claim 2.3.1. For i=1,2,3...,

0 ≤ ui ≤ U.

We show the claim by induction, and for i=1,

0 ≤ u1 = U ≤ U.

Assume 0 ≤ uj ≤ U , 1 ≤ j ≤ i− 1 for some i > 1.
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By choice of R, we have R ≥ h− g(ui−1). Thus, for ui,

uit −
n∑

i,j=1

(aij(x, t)u
i
xi

)xj −
n∑
i=1

bi(x, t)u
i
xi

+Rui = G(ui−1)

= Rui−1 + g(ui−1)ui−1 − hui−1

= ui−1(R + g(ui−1)− h)

≥ 0.

Thus, by induction and the parabolic maximum principle for weak solutions [35]

ui ≥ 0 for all i.

We then need to show the upper bound on ui, i.e. ui ≤ U . We do so again by induction.

First, we must show u2 ≤ u1. We use the equations:

u2
t −

n∑
i,j=1

(aij(x, t)u
2
xi

)xj −
n∑
i=1

bi(x, t)u
2
xi

+Ru2 = Ru1 + f(u1)− hu1

u1
t −

n∑
i,j=1

(aij(x, t)u
1
xi

)xj −
n∑
i=1

bi(x, t)u
1
xi

+Ru1 = Ru1 + ru1

where u1 = U , the supersolution. Forming the difference between the equations and by the

assumptions on g(u) and the fact that u1, h ≥ 0, we have

(u1
t − u2

t )−
n∑

i,j=1

(aij(x, t)(u
1
xi
− u2

xi
))xj −

n∑
i=1

bi(x, t)(u
1
xi
− u2

xi
) +R(u1 − u2)

= u1(r − g(u1)) + hu1 ≥ 0,

giving u1 ≥ u2 on Q.
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Now, we assume uj ≤ U for all 1 ≤ j ≤ i− 1 for some i > 1. Then we must show ui ≤ U .

Again, we consider the equations,

uit −
n∑

i,j=1

(aij(x, t)u
i
xi

)xj −
n∑
i=1

bi(x, t)u
i
xi

+Rui = Rui−1 + f(ui−1)− hui−1

u1
t −

n∑
i,j=1

(aij(x, t)u
1
xi

)xj −
n∑
i=1

bi(x, t)u
1
xi

+Ru1 = Ru1 + ru1

where u1 = U , the supersolution. Using the difference:

(u1
t − uit)−

n∑
i,j=1

(aij(x, t)(u
1
xi
− uixi))xj −

n∑
i=1

bi(x, t)(u
1
xi
− uixi) +R(u1 − ui)

= R(u1 − ui−1) + ru1 − g(ui−1)ui−1 + hui−1,

and again using assumption (5), we have

R(u1 − ui−1) + ru1 − g(ui−1)ui−1 + h(ui−1)

≥ R(u1 − ui−1) + r(u1 − ui−1) + hui−1.

By assumptions, we have u1 − ui−1 ≥ 0 as well as R, h, r ≥ 0 and ui−1 ≥ 0, which gives

(u1
t − uit)−

n∑
i,j=1

(aij(x, t)(u
1
xi
− uixi))xj −

n∑
i=1

bi(x, t)(u
1
xi
− uixi) +R(u1 − ui)

= R(u1 − ui−1) + ru1 − g(ui−1)ui−1 + hui−1

≥ 0.

Thus, by the maximum principle, we have:

u1 − ui ≥ 0,
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which implies

0 ≤ ui ≤ U ≤ ||u0||L∞eλt.

Claim 2.3.2. By our choice of R, for i = 1, 2, ..., G(ui−1) is monotone increasing in ui−1.

We have chosen R such that,

∂G

∂ui−1
= R + f ′(ui−1)− h

≥ R− C2 − h

> 0.

We now must show that for any i = 1, 2, ..., we have ui+1 ≤ ui.

Claim 2.3.3. The state sequence has a monotone property, i.e. ui+1 ≤ ui.

We have already shown above that u2 ≤ u1. Again, we use induction as well as the fact

that G(ui−1) is monotone increasing in ui−1 to prove this claim.

Our hypothesis is that ui ≤ ui−1. We then use the equations:

uit −
n∑

i,j=1

(aij(x, t)u
i
xi

)xj −
n∑
i=1

bi(x, t)u
i
xi

+Rui = G(ui−1)

ui+1
t −

n∑
i,j=1

(aij(x, t)u
i+1
xi

)xj −
n∑
i=1

bi(x, t)u
i+1
xi

+Rui+1 = G(ui) .

Forming the difference, we have

(uit − ui+1
t )−

n∑
i,j=1

(aij(x, t)(u
i
xi
− ui+1

xi
)xj −

n∑
i=1

bi(x, t)(u
i
xi
− ui+1

xi
) +R(ui − ui+1)

= G(ui−1)−G(ui) ≥ 0
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since G(ui) is a monotone increasing function. By induction, ui+1 ≤ ui.

Lastly, using the a priori bounds from Theorem 2.1 on ui,

||ui||V ≤ K1 and ||uit||∗V ≤ K2,

and the monotone property, we have weak convergence on the sequences (not just on

subsequences):

un ⇀ u in L2(Q) (2.17)

unt ⇀ ut in L2(Q). (2.18)

By trace results [22],

ui ⇀ u in L2(∂Ω× (0, T )). (2.19)

This weak convergence gives

lim
i→∞

∫
Q

huiφ dxdt =

∫
Q

huφ dxdt,

since hφ ∈ L2(Q) since h is bounded and φ ∈ L2(Q). Using the result of Simon [58] and the

monotone property of u, we obtain the strong convergence,

ui → u in L2(Q) (2.20)

on the sequence, which gives

lim
i→∞

∫
Q

f(ui)φ dxdt =

∫
Q

f(u)φ dxdt
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since f is continuous and ui → u pointwise a.e. Lastly, by (2.19), we have

lim
i→∞

∫
∂Ω×(0,T )

quiφ dsdt =

∫
∂Ω×(0,T )

quφ dsdt.

Then, passing the limit in the weak formulation of the PDE, we obtain:

∫ T

0

〈ut, φ〉 dt =

∫
Q

(f(u)− hu)φ dxdt+

∫
Q

n∑
i,j=1

(aij(x, t)uxi)xjφ dxdt

−
∫
∂Ω×(0,T )

quφ dsdt+

∫
Q

n∑
i=1

bi(x, t)uxiφ dxdt.

We conclude that u is a weak solution of (2.1)-(2.3).

To show that the state solution is unique, let u, ū be solutions to the weak formulation,

(2.5), with initial conditions:

u(x, 0) = ū(x, 0) = u0(x).

Multiplying each formulation by the test function, u − ū, then taking the difference, we

have

∫ s

0

〈ut − ūt, u− ū〉 dt +

∫
Ω×(0,s)

n∑
i,j=1

aij(x, t) (u− ū)xi (u− ū)xj dxdt

+

∫
∂Ω×(0,s)

q(u− ū)2 dsdt

=

∫
Ω×(0,s)

f(u− ū)(u− ū) dxdt−
∫

Ω×(0,s)

h(u− ū)2 dxdt

+

∫
Ω×(0,s)

n∑
i=1

bi(x, t) (u− ū)xi (u− ū) dxdt.

Using a similar method as in the a priori estimates of Theorem 2.1, and rearranging terms,

we have:
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1

2

∫
Ω×{s}

(u− ū)2 dx +

∫
Ω×(0,s)

n∑
i,j=1

aij(x, t) (u− ū)xi (u− ū)xj dxdt

+

∫
∂Ω×(0,s)

q(u− ū)2 dsdt

=

∫
Ω×(0,s)

f(u− ū)(u− ū) dxdt−
∫

Ω×(0,s)

h(u− ū)2 dxdt

+

∫
Ω×(0,s)

n∑
i=1

bi(x, t) (u− ū)xi (u− ū) dxdt.

By assumption (1), we have:

1

2

∫
Ω×{s}

(u− ū)2 dx+ θ

∫
Ω×(0,s)

n∑
i=1

(u− ū)2
xi
dxdt+

∫
∂Ω×(0,s)

q(u− ū)2 dsdt

≤
∫

Ω×(0,s)

f(u− ū)(u− ū) dxdt+

∫
Ω×(0,s)

n∑
i=1

bi(x, t) (u− ū)xi (u− ū) dxdt.

Using Cauchy’s inequality, we have:

1

2

∫
Ω×{s}

(u− ū)2 dx+ θ

∫
Ω×(0,s)

n∑
i=1

(u− ū)2
xi
dxdt+

∫
∂Ω×(0,s)

q(u− ū)2 dsdt

≤
∫

Ω×(0,s)

f(u− ū)(u− ū) dxdt+ Cθ,b

∫
Ω×(0,s)

(u− ū)2 dxdt+
θ

2

∫
Ω×(0,s)

n∑
i=1

(u− ū)2
xi
dxdt.

Using assumptions (4) and (5), rearranging terms and multiplying the entire equation by a

value of 2, gives:

∫
Ω×{s}

(u− ū)2 dx+ θ

∫
Ω×(0,s)

n∑
i=1

(u− ū)2
xi
dxdt+ 2

∫
∂Ω×(0,s)

q(u− ū)2 dsdt

≤
∫

Ω×(0,s)

2 (Cg + Cθ,b) (u− ū)2 dxdt.
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In Gronwall’s Inequality, let ξ(s) =
∫

Ω×{s} (u− ū)2 (x, s) dx and we obtain:

ξ(s) ≤ G1

∫ s

0

ξ(τ)dτ

where G1 = 2(Cg + Cθ,b). Then

ξ(s) ≤ G1e
G1s||u0 − u0||2L2(Ω) = 0.

Taking the maximum over time, we obtain:

max
0≤t≤T

||(u− ū)(·, t)||L2(Ω) ≤ 0, (2.21)

which implies u(x, t) = ū(x, t).

Now, having existence, uniqueness, and estimates for our state solution, we will now prove

the existence of an optimal control for our problem.

Theorem 2.4. There exists an optimal control, h∗ ∈ H, satisfying

J(h∗) = sup
h∈H

J(h).

Proof. Note, from estimates (2.6)-(2.7), suph∈H J(h) is finite. We can choose a maximizing

sequence, {hn} in H such that

lim
n→∞

J(hn) = sup
h∈H

J(h).
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By the a priori estimates (2.6)-(2.8), there also exists functions h∗ ∈ H and u∗ ∈ V such

that, on a subsequence:

hn ⇀ h∗ weakly in L2(Q) (2.22)

un ⇀ u∗ weakly in V = L2((0, T );H1(Ω)) (2.23)

un ⇀ u∗ weakly in L2((0, T ), L2(∂Ω)) (2.24)

unt ⇀ u∗t weakly in V ∗ = L2((0, T );H1(Ω)∗). (2.25)

By a result of Simon [58]:

un → u∗ strongly in L2(Q). (2.26)

We now need to show that u∗ = u(h∗), such that,

u∗t = f(u∗)− h∗(x, t)u∗ +
n∑

i,j=1

(aij(x, t)u
∗
xi

)xj +
n∑
i=1

bi(x, t)u
∗
xi
. (2.27)

We will use the fact that we have L∞ bounds on the controls and corresponding states. We

have the PDE (2.1) for the subsequence, un:

unt = f(un)− hn(x, t)un +
n∑

i,j=1

(aij(x, t)u
n
xi

)xj +
n∑
i=1

bi(x, t)u
n
xi
. (2.28)

We will show that each term in the PDE for un and hn converges to the corresponding

term with u∗ and h∗.

1. By assumption, the diffusion coefficients, aij(x, t), are bounded and since φ ∈ V , its first

spatial derivatives exist and are in L2(Q). From a priori estimates above, unxi ⇀ u∗xi

weakly in L2(Q), giving

−
∫
Q

n∑
i,j=1

aij(x, t)(u
n
xi
− u∗xi)φxj dxdt→ 0.

33



2. Similarly, with assumptions on the boundedness of the advection coefficients, bi(x, t),

and φ ∈ V , we have ∫
Q

n∑
i=1

bi(x, t)(u
n
xi
− u∗xi)φ dxdt→ 0.

3. By (2.26), we know un converges pointwise a.e. Since f is continuous, we have f(un)→

f(u∗) pointwise. Thus, ∫
Q

(f(un)− f(u∗))φ dxdt→ 0.

4. Using the weak convergence, (2.24), with qφ ∈ L2(∂Ω× (0, T )),∣∣∣∣∫
∂Ω×(0,T )

q(un − u∗)φ dsdt
∣∣∣∣→ 0.

5. By assumptions, we know the hn sequence and u∗ are bounded in L∞. By adding and

subtracting terms, we have the following:∣∣∣∣∫
Q

(hnunφ− h∗u∗φ) dxdt

∣∣∣∣ =

∣∣∣∣∫
Q

(hnunφ+ hnu∗φ− hnu∗φ− h∗u∗φ dxdt
∣∣∣∣ (2.29)

≤
∣∣∣∣∫
Q

(hn(un − u∗)φ dxdt
∣∣∣∣+

∣∣∣∣∫
Q

(hn − h∗)u∗φ dxdt
∣∣∣∣

≤
∫
Q

|hn||un − u∗||φ| dxdt+

∣∣∣∣∫
Q

(hn − h∗)u∗φ dxdt
∣∣∣∣→ 0.

For the first term in (2.29), the convergence (2.26) and Cauchy’s Inequality give

∫
Q

|hn||un − u∗||φ| dxdt ≤ C

(∫
Q

|un − u∗|2 dxdt
)1/2(∫

Q

φ2 dxdt

)1/2

→ 0.

For the second term, since u∗ is bounded in L∞ by results above and φ ∈ V ⊂ L2(Q),

the product u∗φ ∈ L2(Q). The weak convergence of {hn} gives∣∣∣∣∫
Q

(hn − h∗)u∗φ dxdt
∣∣∣∣→ 0.
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Using the above results, we conclude that

u∗ = u(h∗).

Now, looking at the objective functional (2.4), by our choice of maximizing sequence, we

have:

sup
h
J(h) = lim

n→∞
J(hn) = lim

n→∞

∫ T

0

∫
Ω

e−µthnun dxdt.

From convergences (2.22) and (2.26), we have

lim
n→∞

∫ T

0

∫
Ω

e−µthnun dxdt =

∫ T

0

∫
Ω

e−µth∗u∗ dxdt = J(h∗),

and hence h∗ is an optimal control.

2.4 Derivation of the Optimality System

We want to derive the optimality system which consists of the state system coupled with

the adjoint system and an optimal control characterization. We will need to differentiate the

map h → J(h) to obtain our control characterization. Since u is involved in J(h), we first

differentiate the map h→ u.

Theorem 2.5. Let h∗ be an optimal control with corresponding state, u∗, and hε = h∗ + εl

be another control, where ε > 0 and l ∈ L∞(Q) is a variation function. The mapping

h→ u(h) ∈ V is weakly differentiable in the directional derivative sense:

∃ ψ ∈ V and ψt ∈ V ∗ such that

lim
ε→0+

u(h∗ + εl)− u(h∗)

ε
= ψ(x, t)
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weakly in V for any h ∈ H. Then the sensitivity function ψ corresponding to the control

satisfies:

ψt = f ′(u∗)ψ − h∗ψ +
n∑

i,j=1

(aij(x, t)ψxi)xj +
n∑
i=1

bi(x, t)ψxi − lu∗ Ω× (0, T ) (2.30)

∂ψ

∂ν
+ qψ = 0 ∂Ω× (0, T ) (2.31)

ψ(x, 0) = 0 Ω× {t = 0}. (2.32)

Proof. Let uε = u(hε) where hε = h∗ + εl and u∗ = u(h∗) where h∗ is an optimal control,

with the corresponding PDEs

uεt = f(uε)− (h∗ + εl)uε +
n∑

i,j=1

(aij(x, t)u
ε
xi

)xj +
n∑
i=1

bi(x, t)u
ε
xi

(2.33)

u∗t = f(u∗)− h∗u∗ +
n∑

i,j=1

(aij(x, t)u
∗
xi

)xj +
n∑
i=1

bi(x, t)u
∗
xi
. (2.34)

Subtracting equations (2.33)-(2.34) and dividing by ε, we get:

uεt − u∗t
ε

=
f(uε)− f(u∗)

ε
− h

(
uε − u∗

ε

)
+

n∑
i,j=1

(
aij(x, t)

(
uεxi − u

∗
xi

ε

))
xj

+
n∑
i=1

bi(x, t)

(
uεxi − u

∗
xi

ε

)
− εluε

ε
.

By the techniques of Theorem 2.1 applied to the difference quotient in Theorem 2.5,

we have boundedness of the difference quotients, the existence of ψ, and the corresponding

convergence of difference quotients. For the nonlinear term, we see that, as ε→ 0,

f(uε)− f(u∗)

ε
=
f(uε)− f(u∗)

uε − u∗
uε − u∗

ε
→ f ′(u∗)ψ
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using the result that uε → u∗ in L2(Q). Thus, with the convergence of each of the above

difference quotients, the sensitivity ψ satisfies in the weak sense:

ψt = f ′(u∗)ψ − h∗ψ +
n∑

i,j=1

(aij(x, t)ψxi)xj +
n∑
i=1

bi(x, t)ψxi − lu∗ Ω× (0, T )

a
∂ψ

∂η
+ qψ = 0 ∂Ω× (0, T )

ψ(x, 0) = 0 Ω× {t = 0}.

The sensitivity PDE has the same initial and boundary conditions as the original PDE.

Next, we use our adjoint function to characterize our optimal control. We rewrite the

sensitivity PDE (2.30) as:

Lψ = −lu∗,

where L is the operator:

Lψ = ψt − f ′(u∗)ψ −
n∑

i,j=1

(aij(x, t)ψxi)xj −
n∑
i=1

bi(x, t)ψxi + h∗ψ.

The adjoint operator L∗ is related to the operator L by the following L2 operator duality:

< λ,Lψ >=< L∗λ, ψ > .

To use Lψ to get an expression for L∗λ, the adjoint operator, formally we write

∫ T

0

∫
Ω

e−µth∗ψ dxdt =

∫ T

0

∫
Ω

e−µtL∗λψ dxdt =

∫ T

0

∫
Ω

e−µtλLψ dxdt.

We introduce the transversality condition for the adjoint function:

λ(x, T ) = 0 on Ω× {t = T}. (2.35)
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Formally, we consider

∫
Q

e−µtλLψ dxdt =

∫
Q

e−µtλ

(
ψt − f ′(u∗)ψ −

n∑
i,j=1

(aij(x, t)ψxi)xj (2.36)

−
n∑
i=1

bi(x, t)ψxi + h∗ψ

)
dxdt

=

∫
Q

e−µtλψt dxdt−
∫
Q

e−µtf ′(u∗)ψλ dxdt

−
∫
Q

e−µt
n∑

i,j=1

(aij(x, t)ψxi)xjλ dxdt−
∫
Q

e−µt
n∑
i=1

bi(x, t)ψxiλ dxdt

+

∫
Q

e−µthψλ dxdt.

To find the weak form, we use integration by parts on several terms in (2.36). Throwing a

time derivative gives:

∫
Q

e−µtλψt dxdt = −
∫
Q

e−µtψλt dxdt+

∫
Ω×T

e−µtλψ dx−
∫

Ω×0

e−µtλψ dx

+

∫
Q

µe−µtλψ dxdt.

By the initial conditions on the sensitivity (2.32) and transversality conditions on the

adjoint (2.35), the terms at the boundary drop out and we are left with:

∫
Q

e−µtλψt dxdt = −
∫
Q

e−µtψλt dxdt+

∫
Q

µe−µtλψ dxdt.

Integration by parts on the diffusion term gives:

−
∫
Q

e−µt
n∑

i,j=1

(aij(x, t)ψxi)xjλ dxdt =

∫
Q

e−µt
n∑

i,j=1

aij(x, t)ψxiλxjdxdt

−
∫
∂Ω×(0,T )

e−µt
n∑
i=1

ψxiνiλ dsdt.
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Throwing a second derivative gives:

= −
∫
Q

e−µt
n∑

i,j=1

(
aij(x, t)λxj

)
xi
ψ dxdt+

∫
∂Ω×(0,T )

e−µt
n∑
j=1

λxjνjψ dsdt

−
∫
∂Ω×(0,T )

e−µt
n∑
i=1

ψxiνiλ dsdt

where νi =
∑n

j=1 aijηj, is the conormal derivative.

Throwing derivatives in the advection terms gives:

−
∫
Q

e−µt
n∑
i=1

bi(x, t)ψxiλdxdt =

∫
Q

e−µt
n∑
i=1

(bi(x, t)λ)xiψ dxdt

−
∫
∂Ω×(0,T )

e−µt
n∑
i=1

bi(x, t)ψληi dsdt.

Substituting these into (2.36) yields

∫
Q

e−µtλLψdxdt = −
∫
Q

e−µtψλtdxdt+

∫
Q

µe−µtλψdxdt−
∫
Q

e−µtf ′(u∗)ψλ dxdt

+

∫
Q

e−µthψλdxdt−
∫
Q

e−µt
n∑

i,j=1

(
aij(x, t)λxj

)
xi
ψ dxdt

+

∫
Q

e−µt
n∑
i=1

(bi(x, t)λ)xiψ dxdt+

∫
∂Ω×(0,T )

e−µt
n∑
j=1

νjλxjψ dsdt

−
∫
∂Ω×(0,T )

e−µt
n∑
i=1

νiψxiλ dsdt−
∫
∂Ω×(0,T )

e−µt
n∑
i=1

bi(x, t)ψληi dsdt.

After combining terms, we formally have:
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∫
Q

e−µtλLψdxdt =

∫
Q

e−µtψ

[
− λt + µλ− f ′(u∗)λ+ hλ

−
n∑

i,j=1

(
aij(x, t)λxj

)
xi

+
n∑
i=1

(bi(x, t)λ)xi

]
dxdt

+

∫
∂Ω×(0,T )

e−µt

[
n∑
j=1

νjλxjψ −
n∑
i=1

νiψxiλ−
n∑
i=1

bi(x, t)ψηiλ

]
dsdt.

We choose the following boundary conditions for ψ and λ:

n∑
j=1

νjλxj + qλ−
n∑
i=1

bi(x, t)ηiλ = 0 ∂Ω× (0, T )

n∑
i=1

νiψxi + qψ = 0 ∂Ω× (0, T ),

where
∑n

j=1 aijηj = νi, is the conormal derivative. Doing so, the integrals on the boundary

drop out:

∫
∂Ω×(0,T )

e−µt

[
n∑
j=1

νjλxjψ −
n∑
i=1

νiψxiλ−
n∑
i=1

bi(x, t)ψληi

]
dsdt

=

∫
∂Ω×(0,T )

e−µt

[
ψ

(
−qλ+

n∑
i=1

bi(x, t)ληi

)
+ λ (qψ)−

n∑
i=1

bi(x, t)ψληi

]
dsdt = 0.
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Equation (2.36) formally becomes:

∫
Q

e−µtλLψ dxdt =

∫
Q

e−µtλ

[
ψt − f(u∗)ψ −

n∑
i,j=1

(aij(x, t)ψxi)xj −
n∑
i=1

bi(x, t)ψxi + h∗ψ

]
dxdt

=

∫
Q

e−µtψ

[
−λt + µλ− f ′(u∗)λ+ hλ−

n∑
i,j=1

(
aij(x, t)λxj

)
xi

+
n∑
i=1

(bi(x, t)λ)xi

]
dxdt

=

∫
Q

e−µt (L∗λ+ µλ)ψ dxdt.

The adjoint operator L∗ and the adjoint PDE, with initial and boundary conditions, are:

L∗λ = −λt − f ′(u∗)λ+ hλ−
n∑

i,j=1

(
aij(x, t)λxj

)
xi

+
n∑
i=1

(bi(x, t)λ)xi

L∗λ+ µλ = h∗ Ω× (0, T )

∂λ

∂ν
+ qλ−

∑
i=1

bi(x, t)ηiλ = 0 ∂Ω× (0, T )

λ = 0 Ω× {t = T}

where the non-homogeneous term h∗ in the adjoint PDE comes from:

∂(integrand of J)

∂(state)
=
∂(hu)

∂u
= h∗.

Using the sensitivity, ψ, as the test function, have the weak form of the adjoint:
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Definition 2.5.1. The function λ ∈ V with λt ∈ V ∗ is a weak solution to our problem

(2.38)-(2.40) if:

∫
Q

−λtφ dxdt+

∫
Q

µλφ dxdt−
∫
Q

(f(u∗)− h∗u)λφ dxdt+

∫
Q

n∑
i,j=1

aij(x, t)λxjφxi dxdt

−
∫
Q

n∑
i=1

bi(x, t)λφxi dxdt+

∫
∂Ω×(0,T )

qλφ dsdt =

∫
Q

h∗φ dxdt

(2.37)

for all φ ∈ V and with λ(x, T ) = 0 for x ∈ Ω.

Since the adjoint PDE problem is linear in λ, by [22], an adjoint solution exists.

Theorem 2.6. Given an optimal control h∗ and the corresponding solution, u∗, there exists

weak solution λ ∈ V satisfying the adjoint system:

L∗λ = −λt − f ′(u∗)λ+ hλ−
n∑

i,j=1

(
aij(x, t)λxj

)
xi

+
n∑
i=1

(bi(x, t)λ)xi

L∗λ+ µλ = h∗ Ω× (0, T ) (2.38)

∂λ

∂ν
+ qλ−

∑
i=1

bi(x, t)ηiλ = 0 ∂Ω× (0, T ) (2.39)

λ = 0 Ω× {t = T}. (2.40)

Furthermore, we have the optimality conditions:

h∗(x, t) =


hmax : λ(x, t) < 1

hsingular : λ(x, t) = 1

0 : λ(x, t) > 1,

(2.41)

where hsingular can be found from the u∗ PDE.
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Proof. We will find the control characterization by differentiating the map, h → J(h), and

using the sensitivity and the adjoint functions. If h∗ is optimal, then the difference quotient

will be non-positive since J(h∗) would be the maximum value. So, using the sensitivities we

have:

0 ≥ lim
ε→0+

J(h∗ + εl)− J(h∗)

ε

= lim
ε→0+

∫
Q

e−µt
1

ε
[(h∗ + εl)uε − h∗u∗] dxdt

= lim
ε→0+

∫
Q

e−µt
[
h∗
(
uε − u∗

ε

)
+ luε

]
dxdt

=

∫
Q

e−µt [h∗ψ + lu∗] dxdt.

Using the weak formulations for the adjoint and the sensitivity functions, we obtain:

0 ≥
∫
Q

e−µt

[
(−λt + µλ− f ′(u∗)λ+ h∗λ)ψ +

n∑
i,j=1

aij(x, t)λxjψxi

−
n∑
i=1

bi(x, t)λψxi + lu∗

]
dxdt+

∫
∂Ω×(0,T )

e−µtqλψ dsdt

=

∫
Q

e−µt

[
λ (ψt − f ′(u∗)ψ + h∗ψ) +

n∑
i,j=1

aij(x, t)λxjψxi

−
n∑
i=1

bi(x, t)λψxi + lu∗

]
dxdt+

∫
∂Ω×(0,T )

e−µtqλψ dsdt

=

∫
Q

e−µt[−λlu∗ + lu∗] dxdt

=

∫
Q

e−µt [lu∗(1− λ)] dxdt.

Our problem is linear in the control, h, and the switching function is u∗(1 − λ). Since

u∗ ≥ 0 in Q, we investigate the sign of (1− λ). There are three cases:
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1. On the set {(x, t)|h∗(x, t) = hmax}, any variation, with support on this set, satisfies

l ≤ 0. Then

0 ≥
∫
Q

e−µt l(u∗(1− λ)) dxdt

implies λ ≤ 1 on this set.

2. On the set {(x, t)|h∗(x, t) = 0}, any variation, with support on this set, satisfies l ≥ 0.

Then

0 ≥
∫
Q

e−µt l(u∗(1− λ)) dxdt

implies λ ≥ 1 on this set.

3. On the set {(x, t)|0 < h∗(x, t) < hmax}, any variation function, l, with support on this

set, can have arbitrary sign. The inequality (2.42) implies (1 − λ) = 0 on this set.

When λ = 1 on a set of positive measure, then λt = 0 and λxi = 0 for i = 1, . . . , n.

Thus our adjoint PDE becomes:

−f ′(u∗) + h+ µ+
n∑
i=1

(bi(x, t))xi = h.

Using a similar approach as [31], we solve for u∗:

u∗(x, t) = (f ′)−1(µ+
n∑
i=1

(bi(x, t))xi).

We then can solve the state PDE for h∗ to find the singular case, hsingular. We need

(µ+
∑n

i=1(bi(x, t))xi) to be in the range of (f ′). If not, then the singular case would

not occur. If this set has measure 0, then we do not need to consider this case. Thus,

these three conditions give us our optimality conditions:

h∗(x, t) =


hmax : λ(x, t) < 1

hsingular : λ(x, t) = 1

0 : λ(x, t) > 1

(2.42)
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Remark 2.6.1. When
∑n

i=1(bi(x, t))xi = C, where C is a constant, then we have the

expression for hsingular at λ = 1:

0 = f(u)− hu = u(g(u)− h)

which can be solved for h∗:

h∗ = g((f ′)−1(µ+ C)).

Numerical simulations are run to determine approximate solutions to the optimality

system (2.1)-(2.3),(2.38)-(2.40),(2.42). Results are shown in the next section.

2.5 Numerical Simulations

For our illustrative examples, we consider the model for fish stock density on a one-

dimensional spatial domain of length, L, with Robin boundary conditions,

ut = (a(x, t)ux)x + b(x, t)ux + f(u)− h(x, t)u, (2.43)

∂u

∂ν
(x, t) + qu(x, t) = 0, (2.44)

where the diffusion and advection coefficients, a(x, t) and b(x, t), respectively, are positive and

can be heterogeneous functions in space and time. We assume the logistic growth function,

f(u) = u(1− u), where u is the stock density in proportion to the carrying capacity, K.

The corresponding adjoint equation and optimal control characterization are

−λt − (1− 2u∗)λ+ hλ− (a(x, t)λx)x + (b(x, t)λ)x + µλ = h∗ (2.45)

∂λ

∂ν
+ qλ− b(x, t)ηλ = 0 (2.46)
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and

h∗(x, t) =


hmax : λ(x, t) < 1

hsingular : λ(x, t) = 1

0 : λ(x, t) > 1,

(2.47)

where h∗ is the optimal harvest, u∗ is the corresponding optimal state.

The forward-backward iterative technique [39] was used to solve the optimality system,

which consists of 2.43-2.44, 2.45-2.46, and 2.47. To solve the PDEs, we use an explicit finite

difference method with appropriate unwinding schemes for first order time derivatives. An

Euler method is used for the time derivative while a first order upwind scheme is used for

first spatial derivatives. See Appendix A and the introductory chapter for more details.

We chose an initial condition (IC) for our fish stock that satisfied both Robin and Dirichlet

boundary conditions. The function was chosen so that the stock of fish would have a bell-

shaped curve where most of the stock is concentrated on the middle of the domain:

u(x, 0) =
1

24
x2(x− L)2. (2.48)

Parameter values for simulations are listed in Table 2.1. We consider a spatial domain

in terms of kilometers and time in terms of years. Our time scale was chosen such that the

population would reach the steady state approximately halfway through the simulation. We

set our diffusion coefficient and varied the value of the advection coefficient. The values for

our advection coefficient will be chosen in the interval [0, 1]. In our numerical simulations,

the singular control case never occurred. There was also no evidence of non-uniqueness in

the optimal control.

An illustration of the stock density at the initial time with the IC, (2.48), is given in Figure

2.1, which we will use to compare results with Dirichlet and Robin boundary conditions.

When comparing scenarios with Robin boundary conditions, we will use the steady states for

the model, with varying levels of exploited initial stock densities. Those steady states were

46



Table 2.1: Parameter Description, Values, and Units

Parameters Value Description Units

L 4 habitat length kilometers (km)
T 4 final time years (yrs)
µ 0.2 discount term 1/yrs
q 1 boundary coefficient 1/km

a(x, t) 1 diffusion coefficient km2/yrs
b(x, t) varied advection coefficient km/yrs

found using different levels of constant harvest on the system. They are visually represented

in Figure 2.2.

Figure 2.1: Initial Stock Density used in Dirichlet and Robin Boundary Condition
Comparisons
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Figure 2.2: Steady States For Varying Levels of Constant Harvest

2.5.1 Comparison of Boundary Conditions

Given the initial condition, (2.48), we simulated the model without harvest and without

advection to investigate the dynamics of the fish stock. Robin boundary conditions allow

for the flux across the boundary to be proportional to the stock at the boundary. Dirichlet

boundary conditions are lethal to the fish stock at the boundary while Neumann boundary

conditions represent a no-flux boundary where the stock cannot leave the boundary. The

three cases are shown in the Figure 2.3.

We compare results with Robin boundary conditions with previous work with Dirichlet

boundary conditions [31], using the IC (2.48). We first compare results without advection

(b(x, t) = 0). The results are shown in Figure 2.4.

With Robin boundary conditions, fish stock diffusing to the boundary has less threat of

dying as in the Dirichlet boundary case with its lethal boundary. We see in Figure 2.4a that

a reserve exists in the Dirichlet boundary case but is smaller due to the higher chance of

the stock reaching the boundary, dying, and no longer being of any value to the stockholder.

Due to the conditions of the habitat at the Dirichlet boundary, the projected yield value of
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(a) Dirichlet (b) Robin (c) Neumann

Figure 2.3: Comparison of Fish Stock Dynamics with Three Different Boundary Conditions
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the stock is higher, thus the stock is harvested at maximum strength in a larger amount of

the habitat than in the Robin boundary case.

In the Robin boundary condition case, Figure 2.4b, more of the habitat is kept as a

reserve, and for longer time, than in the Dirichlet boundary case since there is less threat

of losing stock at the boundary. There are also more fish present in the habitat longer in

time as seen in the states in Figure 2.4. When comparing the objective functional values

for both cases, found in Table 2.2, notice that, even with the larger reserve, the value of

the objective functional in the Robin boundary condition case is higher. As expected, the

objective functional values for the optimal strategy are higher than cases where the domain

is harvested at the maximum level for the entire time.

Table 2.2: Objective Functional Values for Dirichlet and Robin Boundary Condition Cases
without Advection

Boundary Condition Optimal Objective Functional Value Max Harvest for All Time

Dirichlet 1.3624 1.3551
Robin 1.9770 1.9143

We now investigate scenarios with advection to compare results between Robin and

Dirichlet boundary conditions. Advection acts by pulling the stock in a certain direction

and represents currents in the environment. We investigate constant advection throughout

space and time, as well as several heterogeneous advection terms. First, in Figure 2.5,

we illustrate a constant advection coefficient, (b(x, t) = 0.5). We then compare results

with heterogeneous advection function coefficients varying in space. Two advection function

coefficients, (b(x) = sin
(
πx
4

)
) and (b(x) = e−0.5x), are illustrated in Figure 2.6. Lastly, we

investigate one scenario where the advection function varies in space and time. The spatial

domain tries to account for regions of high and low currents that shift over time. We consider

the function, (b(x, t) = 1
2

(sin(πx+ t) + 1)), illustrated in Figure 2.9.

With a constant advection, seen in Figure 2.5, the location of the reserve shifts in the

opposite direction of where advection pulls the stock in both cases. This is because the

location farthest from where the stock is moving has the least biomass value. Stock in this
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(a) Dirichlet

(b) Robin

Figure 2.4: Comparison of Stock Dynamics and Optimal Harvesting Strategies for Dirichlet
and Robin Boundary Conditions without Advection, b(x, t) = 0
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area has less of a chance of being lost at the boundary. In the Dirichlet boundary case, Figure

2.5a, since stock is being strongly pulled towards a lethal boundary, the reserve is shifted in

the opposite direction and the reserve is smaller than in the cases without advection. This

is due to advection raising the risk of stock dying on one side of the boundary. In the Robin

boundary case, Figure 2.12a, since the boundary is not necessary lethal, it is not as valuable

to harvest at maximum strength in as large of an area as the Dirichlet boundary case. A

larger reserve exists and opens sooner because there is a smaller chance that stock in that

area of the habitat will be lost.

Results on how advection function coefficients affect the harvest strategy are found in

Figures 2.7 and 2.8. Tables 2.3 and 2.4 compare the objective functional values for the

Dirichlet and Robin boundary condition cases. Despite larger reserves forming, the objective

functional values for the Robin boundary condition cases are always higher than the Dirichlet

boundary cases.

In the cases where the advection coefficient is heterogeneous across the spatial domain,

we see similar results as in the constant advection cases. The reserve is still shifted in the

direction opposite from where the stock is being pulled, however, the shape and length of the

reserves vary, especially seen in Figure 2.7. In this case, there is a strong advection term in

the center of the habitat, where the fish stock is initially concentrated. The reserve begins

much earlier and is shifted further than other cases. Since advection is strong in the center

of the domain, there is a larger risk of stock being pulled to the boundary and lost so it

becomes more profitable to harvest. Again, we see the reserve opening earlier and persisting

longer in the Robin boundary case because the stock is less valuable to harvest since there

is less chance of being pulled to the boundary and lost.

In Figure 2.8, the result is more similar to the constant advection case from Figure 2.5.

In this case, the advection is strongest on one side of the habitat. The reserve in the Robin

boundary case is wider, opens earlier, and shifted more than in Dirichlet boundary case. This

is due to areas where advection is highest being the most valuable to harvest because of the

chance for stock to be lost at the boundary. The stock in other parts of the domain, where
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the current is less strong, is less valuable to harvest, which is a reason why the reserve forms

here and is larger. Another thing to note is that the reserve does not hit either edge of the

habitat in any of the cases. Although the advection is strongly pulling the stock to one side

of the habitat, there is still diffusion distributing the stock across the domain and there is

still stock moving to both ends of the habitat. Thus, it is advantageous to harvest in all

areas closest to the boundary.

Figure 2.10 illustrates when the advection coefficient changes in both space and time.

Notice, for both cases, the similar shift in the direction the reserve forms that is dependent

on the direction the current moves. Again, as previously seen, a larger reserve is formed in

the Robin boundary condition case than in Dirichlet boundary case. When comparing the

harvesting strategies with the advection function, b(x, t), seen in Figure 2.9, it is interesting

to note where the reserve forms. The reserve in both cases forms next to an area of the

domain with the highest advection values, always on the side opposite of where stock is

being pulled.

Table 2.3: Objective Functional Values for Dirichlet and Robin Boundary Condition Cases
with Varying Advection Coefficients

Boundary Condition [b(x) = 0.5] J(h) [b(x) = sin
(
πx
4

)
] J(h) [b(x) = e−0.5x] J(h)

Dirichlet 1.3148 1.2587 1.4756
Robin 1.9337 1.9855 2.1501

Table 2.4: Objective Functional Values for Dirichlet and Robin Boundary Condition Cases
with Advection Coefficient Varying in Space and Time

Boundary Condition [b(x, t) = 1
2

(sin(πx+ t) + 1)] J(h)

Dirichlet 1.3468
Robin 2.0034
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2.5.2 Comparison of Varying Scenarios with Robin Boundary

Conditions

As we saw in the previous subsection, there is a definite difference when the domain

incorporates Dirichlet or Robin boundary conditions. Although reserves were always part of

the optimal harvesting strategy, the size, shape, and timing are affected by both the boundary

conditions and varying advection function coefficients. In this section, we will investigate

more closely the domain with Robin boundary conditions and how different scenarios affect

the optimal harvesting strategies. We begin with results for constant advection coefficients,

b(x), with varying constant values on the interval [0, 1]. The optimal harvesting result for this

case is found in Figure 2.11. We then compare the optimal harvesting results with advection

coefficients that are heterogenous in space or time, bounded on the interval [0, 1]. In these

scenarios, we use the steady state of unexploited fish stock without harvest as our initial

condition (see Figure 2.2). The results are shown in Figure 2.12.

In Figure 2.11, as the constant advection coefficient increases, we see an increase in the

shift of the reserve in the opposite direction of the pull. We also see in Figure 2.11d that

once the advection coefficient is strong enough, the reserve will move to the boundary on one

side. It becomes more advantageous to not harvest fish on one side of the habitat, despite

the effects of diffusion, due to the stronger pull of advection in the opposite direction.

In the cases with a heterogenous advection coefficient, Figure 2.12, there is more variation

in the shape of the reserve. In Figure 2.12c, when advection is strongest in the center of the

domain, the reserve opens much earlier and lasts longer than previous cases. The location of

strong currents in a domain affects harvest strategies. Stronger currents through the center

of a domain affect a larger portion of the stock than if only concentrated on one side of the

domain or constant throughout, thus altering where and when reserves develop and their

size.

When the advection function varies in time, seen in Figure 2.12d, a reserve forms to the

right of the areas with the highest advection. As advection changes in time, the reserve

follows, forming on a diagonal. An understanding of ocean currents within a fishery, as
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well as their variation in time, appears necessary in determining where reserves should be

implemented.

2.5.3 Optimal Harvesting Strategy Results for an Initially Unex-

ploited and Exploited Stock

In previous results, simulations were run using the steady state of an unexploited fish stock.

Due to current fishing practices, many stocks are either exploited or overexploited. In this

subsection, we investigate optimal harvesting strategies with different levels of fish stock at

the initial time. We compare results when maximizing yield of fish stock when the stock

is initially unexploited, exploited, or overexploited. Figure 2.2 shows the steady states

considered, with varying harvest values. Figure 2.13 shows varying results with different

levels of stock at the initial time.

With an initially overexploited fish stock, there is a need for an initial reserve to exist to

rebuild the stock. Once the stock recovers, the reserve decreases in size, eventually closing,

and maximum harvest persists for the remaining time. This makes sense in cases when

trying to maximize yield. It is important for stock to grow before depleting the stock

again. The practicality of its implementation is debatable since, depending on the level

of overexploitation, large portions of the habitat would be closed to fishing. The effect on

the fishing industry would be drastic in the short term.

2.5.4 Approximations of Optimal Harvesting Strategy Results

In the implementation of a harvesting strategy, there is debate on the feasibility of adjusting

the effort through space and time. In this section, we compare the optimal harvesting strategy

results from the previous sections with an approximation of the harvesting strategy that is

either constant in space or in both space and time. When implementing a harvesting strategy,

how realistic it is to adjust the harvesting effort through space and time is debatable. We
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compare the objective functional values for both to determine how close the approximation

is to the optimal result.

In the previous section, we found the optimal harvesting strategies for Robin boundary

conditions given certain scenarios. We investigate the scenario without advection and then

two with advection coefficients. The results for the case without advection are found in Figure

2.14 and Table 2.5. We investigate the constant advection coefficient of (b(x) = 0.75) and

the heterogeneous advection coefficient, (b(x) = sin
(
πx
4

)
). The results are shown in Figures

2.15 and 2.16, and Tables 2.6 and 2.7, respectively.

In each of the cases, harvest approximations can be found that are close to the optimal

harvest strategies found through the simulations. In all the cases, as seen by the objective

functional values in Tables 2.5, 2.6, and 2.7, the approximations are obviously less than the

optimal but there is evidence to believe that if you approximated the harvest, the resulting

objective functional would be very close. The largest difference between the approximate

and actual optimal objective functional values is less than 0.5%. The approximations may

be more realistic in regards to actual implementation of reserves because it is easier to form

reserves that are constant in space and open/close in time.

Another option to consider is when the harvest does not vary in time. In Figures 2.17-2.18,

with Table 2.8, we compare the results with the optimal harvesting strategy in the dynamic

harvest case with no advection. We also include the objective functional values for the case

with maximum harvest on the entire domain in Table 2.8 for comparison. When the domain

is harvested at the maximum for the entire time, we see suboptimal results as expected, with

an objective functional value lower than in the optimal harvest case (approx. 1% lower).

When considering a harvest not varying in time, the objective functional value is still lower

than in the optimal case, seen in Table 2.8. In this approximate case, there are higher stock

levels at the final time, seen in Figure 2.18. However, when trying to maximize yield only,

it is not as close to optimal as other approximations (approx. 5% lower). This points to

evidence that time managed reserves are important when considering reserves. More work

needs to be done in this area, such as investigating harvest dependent only on space or time
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and determining the optimal harvesting strategies associated with them, rather than just

using these approximations of the optimal.

Table 2.5: Objective Functional Values for the Optimal Harvest Strategy and an
Approximation to that Harvesting Strategy, without Advection, b(x, t) = 0

Harvest Objective Functional Value

Optimal Harvest 2.8522
Harvest Approximation 2.8504

2.6 Conclusions

A more realistic boundary condition produces different harvesting results than previous

results with Dirichlet boundary conditions. When considering open ocean fisheries, the

implementation of a non-lethal boundary, using Robin boundary conditions, produced results

with larger yield values as well as reserve sizes. Our work highlights the importance

of appropriate boundary conditions, corresponding to specific fishing scenarios, in finding

harvest management strategies.

We further investigated how the interplay between Robin boundary conditions and

advection within the domain affected harvesting strategies. Similar to previous work of

Joshi et al. [31], a reserve opens and is shifted in the opposite direction from that towards

which the stock is being pulled. However, the reserves are larger than in previous work.

When we investigated advection functions that varied in space or time, there was even more

disparity among the size and shape of reserves. When the advection shifted in time, a reserve

forms that followed a similar directional pattern as the advection.

Table 2.6: Objective Functional Values for the Optimal Harvest Strategy and an
Approximation to that Harvesting Strategy, with Constant Advection, b(x, t) = 0.75

Harvest Objective Functional Value

Optimal Harvest 2.7414
Harvest Approximation 2.7399
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Table 2.7: Objective Functional Values for the Optimal Harvest Strategy and an
Approximation to that Harvesting Strategy, with Advection Function Coefficient, b(x) =
sin
(
πx
4

)
Harvest Objective Functional Value

Optimal Harvest 2.8400
Harvest Approximation 2.8387

Table 2.8: Objective Functional Values for the Optimal Harvest Strategy, an Approximation
to that Harvesting Strategy, and Maximum Harvest on Entire Domain, and Not Varying in
Time and without Advection

Harvest Objective Functional Value

Optimal Harvest 2.8522
Harvest Approximation 2.7259

Maximum Harvest 2.8310

We also compared harvesting strategies for scenarios when the stock size is initially

unexploited, exploited, and overexploited. We saw that when the stock is initially

overexploited, reserves are opened immediately and cover most of the domain. Once the

stock has time to recover, the reserve closes and the domain is harvested at maximum levels

the rest of the time.

When considering the implementation of these reserves, we decided to approximate the

optimal harvest strategies using reserves that, once open, do not vary in space. We saw that

approximate reserves produced suboptimal objective values but the values were relatively

close (less than 0.5% difference). In the case where we compared the optimal harvest

strategy with an approximate harvest strategy with reserves not varying in time, there was

a significant difference in objective values and the stock levels at the final time (objective

values approximately 5% less). Using spatial boundaries that are constant in time (reserve

is rectangular in space and time) and restricting the length of time to impose a reserve are

realistic and can achieve near optimal results.
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2.7 Future Work

We saw that currents varying through space and time affected harvesting strategies. There is

evidence that a better understanding of ocean currents within a habitat and how they vary

through time is important when determining the location and time of a reserve, as well as

its size. With the added complexity to the domain, we believe harvesting strategies will also

be affected.

There are several directions to take this work in the future. This work models a single

population of fish in a heterogeneous spatial domain. The mathematical results are on a

multidimensional domain, so completing simulations in 2 and 3 spatial dimensions would be

an interesting extension. The effect of advection in these dimensions may be quite interesting.

There is also interest in varying the time horizon to determine if the fraction of domain

considered no-take reserve is constant as the final time varies.

There is also interest in looking at a multipopulation model, whether multiple species

or an age-structured fishery model. An age-structured model would investigate the harvest

strategies when dealing with both juvenile and adult classes of fish (or more refined age

classes). One question to consider is which population brings in more yield. Multiple

species models would investigate harvesting strategies with competition and investigate how

harvesting of one species population affects the dynamics in the other species population.

This is a relevant problem due to fishery by-catches, as well as overexploited fish stock being

harvested with non-fully exploited stocks. Harvesting strategies that maximize yield under

these scenarios is an important question.

Another question to consider is: What is the best strategy when trying to save juveniles

and/or adults? In our results, the population at the final time is quite small. One way

to save the stock is the addition of a salvage term,
∫

Ω
u(x, T )dx, or

∫
Ω
u(x, t) dxdt to the

objective functional. In most situations, there is a desire to keep the fish stock at a certain

level and a salvage term allows for maximizing the yield while maintaining a certain level of

the population at the final time, which will produce different results.
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Another extension to investigate is how harvesting negatively affects the habitat. Ocean

pollution from harvesting could negatively impact fish stock, reduce their food source and

harm marine habitats. Moeller and Neubert [43] have recently done work on maximizing

harvest at the population steady state while incorporating the negative effects of harvesting

on the environment. An alternative objective of the problem could be to look at minimizing

negative effects to the habitat due to fishing while still trying to maximize yield with spatial-

temporal fish dynamics. Modeling these dynamic systems can help predict the impact of

fishing regulations.
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(a) Dirichlet

(b) Robin

Figure 2.5: Comparison of Stock Dynamics and Optimal Harvesting Strategies for Dirichlet
and Robin Boundary Conditions with Constant Advection, b(x, t) = 0.5
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(a) Advection b(x) = sin
(
πx
4

)
(b) Advection b(x) = e−0.5x

Figure 2.6: Comparison of Function Advection Coefficients, b(x, t), on the Domain
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(a) Dirichlet

(b) Robin

Figure 2.7: Comparison of Stock Dynamics and Optimal Harvesting Strategies for Dirichlet
and Robin Boundary Conditions with Advection, b(x) = sin

(
πx
4

)
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(a) Dirichlet

(b) Robin

Figure 2.8: Comparison of Stock Dynamics and Optimal Harvesting Strategies for Dirichlet
and Robin Boundary Conditions with Advection, b(x) = e−0.5x
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Figure 2.9: Function Advection Coefficient, b(x, t), Varying in Space and Time on the
Domain
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(a) Dirichlet

(b) Robin

Figure 2.10: Comparison of Stock Dynamics and Optimal Harvesting Strategies for
Dirichlet and Robin Boundary Conditions with Advection, b(x) = 1

2
(sin(πx+ t) + 1)
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(a) b = 0 (b) b = 0.25 (c) b = 0.5 (d) b = 0.75

Figure 2.11: Comparison of Optimal Harvesting Strategies for Robin Boundary Conditions
with Varying Constant Advection Coefficients

(a) b(x) = 0.5 (b) b(x) = e−0.5x (c) b(x) = sin
(
πx
4

)
(d) b(x) =
1
2 (sin(πx+ t) + 1)

Figure 2.12: Comparison of Optimal Harvesting Strategies for Robin Boundary Conditions
with Varying Advection Function Coefficients
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(a) SS h(x, t) = 0 (b) SS h(x, t) = 0.5 (c) SS h(x, t) = 0.75

Figure 2.13: Comparison of Optimal Harvesting Strategies for Robin Boundary Conditions
with Various Exploited Initial Stock Densities

Figure 2.14: Comparison of Optimal Harvesting Strategy for Robin Boundary Conditions
and an Approximation of that Harvesting Strategy, Without Advection
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Figure 2.15: Comparison of Optimal Harvesting Strategy for Robin Boundary Conditions
and an Approximation of that Harvesting Strategy, with Constant Advection, b(x, t) = 0.75

Figure 2.16: Comparison of Optimal Harvesting Strategy for Robin Boundary Conditions
and an Approximation of that Harvesting Strategy, with Advection Function Coefficient,
b(x) = sin

(
πx
4

)
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Figure 2.17: Comparison of Optimal Harvesting Strategy for Robin Boundary Conditions
and an Approximation of that Harvesting Strategy, Not Varying in Time, without Advection

Figure 2.18: Comparison of the Corresponding State Solution for the Optimal Harvesting
Strategy and the Approximation to that Harvesting Strategy, Not Varying in Time, without
Advection
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Chapter 3

The impact of spatial arrangements

on intervention strategies in epidemic

models

3.1 Introduction

Questions have arisen regarding the importance of spatial features for disease spread and

how movement patterns affect management strategies. Recently, the spatial arrangements of

departments in Haiti, as well as human and water movement, had an impact on the spread

of a cholera outbreak [64, 51, 20]. There is a need to find intervention strategies that could

help control the disease while also optimizing the use of available resourcesc In addition, this

strategy needs to consider the patterns of mobility of the population. The situation in Haiti

raised an interesting question: How do metapopulation spatial arrangements affect disease

management strategy?

Cholera is a infectious disease caused by the infection of the intestine with the aquatic

bacterium, Vibrio cholerae. In recent years, there have been several cholera epidemics

throughout the world. The disease is also endemic in several areas of Asia and Africa. There

are an estimated 3-5 million cholera cases and 100,000-120,000 deaths due to cholera every
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year [49]. The disease causes rapid dehydration and electrolyte imbalances. Without prompt

treatment, a person with cholera may die of dehydration within a few hours of infection [17].

Cholera is a waterborne disease with multiple modes of infection, both direct and indirect

transmission. Waterborne diseases are characterized by the capability for the disease to

persist outside human hosts and transmission through water is possible [49]. Cholera is

transmitted directly from an aquatic reservoir to human hosts or through the ingestion of

contaminated food or water. Infected individuals shed pathogen into the water and new

infections arise both from indirect exposure to contaminated water as well as person-to-

person transmission [59].

Previous work found evidence that the aquatic reservoir played an important role in

the transmission of the disease [17, 7, 8, 64]. How the pathogen can spread to other

communities could greatly affect disease dynamics. The movement of both humans and

pathogen in aquatic reservoirs has been suggested to influence the spatial spread of the

disease in Haiti. Bertuzzo et al. [7, 8], studied the role of river networks in the transportation

and redistribution of V. cholera between communities. The model included local epidemic

dynamics within a patch as well as the transportation of the bacteria between patches. They

modeled bacteria movement both inward and outward of each node, or patch, with biased

movement in the direction of water flow. They concluded that the role of waterways and

river networks play an important role in the spread of the disease throughout a network of

communities.

Later work of Bertuzzo et al. [9] studied the epidemic in Haiti using a gravity model,

where the spread of the pathogen is a function of both distance between communities as well

as community size. This is done to capture the transport mechanisms of the disease, namely,

water contamination and human mobility. Rinaldo et al. [54] extended that work to model

human and water movement separately and their effect on disease spread.

Tien and Earn [59] introduced a model using ordinary differential equations (ODEs) for

multiple transmission pathways of a waterborne pathogen. They extended the traditional
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Susceptible-Infected-Recovered compartmental model framework by adding a water compart-

ment, tracking pathogen concentration in an aquatic reservoir. They introduced two modes

of transmission, both direct transmission and indirect transmission. Their model allowed for

infection through exposure to contaminated water as well as the classical person-to-person

contact. Tuite et al. [64] applied a multiple transmission model to a recent outbreak in

Haiti. They investigated the spread of cholera in Haiti due to water contamination and

human mobility by a gravity model, where pathogen levelwas modeled as a function of both

distance between communities as well as community size. Their model incorporated both

fast and slow transmission but ignored water movement.

The use of multi-patch metapopulation models is another effective way to model the

spread of a disease through a system of patches. There has been a large body of work

in ecology using this modeling strategy [40, 27]. The use of metapopulations has become

popular in infectious disease modeling. One illustration is from Castillo-Chavez and Yakubu

[12], who built an epidemic model for the dispersal of susceptible and infected individuals

among patches in order to answer questions about the role of population dynamics on disease

dynamics. Arino and his collaborators have also done work on epidemic models with spatial

dynamics. Arino and van den Driessche [4] introduced a multi-city epidemic model that

incorporated travel between the cities using directed graphs. Later work investigated multi-

species models within a patchy environment with movement [2]. For a survey of other

epidemic metapopulation models, see [3, 5, 32].

There have been several extensions to the model of Tien and Earn [59] to include spatial

dynamics. Eisenberg et al. [21] extended this model to incorporate a multi-patch structure

with both water and human movement. They investigated the dependence of the basic

reproduction number, R0, on connectivity and water movement. Tien et al. [60] similarly

built a patch network model with water and human movement where disease invasibility was

determined by the basic reproduction number on the domain. They use rooted spanning

trees to average the basic reproduction number across the network in a manner that respects

network structure [60]. Based on their results, they determined that control efforts should be
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highest in communities with the greatest network risk, which is determined by the weighted

contribution of a patch to the network basic reproduction number.

There are several intervention strategies to limit cholera outbreaks. Miller Neilan et

al. [46] used optimal control theory to study the effect of three control efforts on cholera

outbreaks in a system of ODEs: vaccination, sanitation, and the provision of clean water.

Although improved water and sanitation infrastructure would be valuable in preventing the

spread of the disease, in many developing countries, this is not a viable short-term option.

One short-term intervention strategy is the use of vaccinations. Vaccinations are currently

being used as an intervention strategy to control cholera, specifically in Haiti [33]. In work by

Chao et al. [13], an individual-based stochastic model for cholera transmission was analyzed,

comparing preemptive vaccination strategies to response strategies.

There are two oral vaccines that are being used in the prevention of cholera, Dukoral and

Shanchol. These oral vaccines are easier to administer, more acceptable to recipients, and

have reduced risk of transmitting blood-borne infections than those administered through

injection [57]. Dukoral is a killed whole-cell vaccine and is administered to persons over 2

years of age. It requires a liquid buffer for intake, which requires clean water. This can be a

dilemma in areas where clean water is unavailable. Shanchol is a killed whole-cell vaccine as

well, which can be administered to persons over 1 year of age, and does not require a liquid

buffer for intake. The costs of each of these vaccines differ. Dukoral is more costly, around

$5.25 per dose, while Shanocol is significantly cheaper at $0.75 per dose. The protection

provided by the vaccines also vary. Dukoral lasts about two years while Shanchol protects

greater than three years in some cases [57, 48].

To study the use of vaccinations to manage this disease effectively, we use optimal control

together with models that incorporate varying spatial arrangements. We investigate how

the spatial arrangement of patches and corresponding connections can affect intervention

strategies for disease outbreaks or endemic cases. We use an extension of a model for multiple

transmission pathways of a waterborne pathogen, first developed by Tien and Earn [59]. We

plan to investigate optimal intervention strategies for a cholera outbreak in a metapopulation
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with movement among the patches. We sought answers to the question of where control

efforts should be focused depending on spatial structure and path dynamics. We will start

an investigation of certain spatial features and intervention strategies in epidemic models,

motivated by the cholera outbreak in Haiti. We will then compare our optimal intervention

strategies with the disease control strategies of Tien, Eisenberg, and their collaborators that

were based on the network reproduction numbers and disease invasibility [60, 21].

We will investigate both population and water movement. Incorporating water movement

along hydrological connections is one way to model the spread of pathogen in aquatic

reservoirs. By including both water and population movement, we can decide how to apply

control measures for a system of interconnected communities. We investigate the importance

of spatial connectivity of communities since the pathogen in one aquatic reservoir could

spread to surrounding susceptible communities through these shared water sources.

We first consider optimal vaccination in an endemic waterborne disease scenario,

comparing a linear spatial arrangement of connected patches with a hub arrangement with

connecting smaller patches. The use of data [64] will help to analyze the effectiveness

of our model and we use data related to Haiti and its recent cholera outbreak. We will

investigate how the disease spreads through the population with and without the application

of intervention strategies. We apply a single control, vaccination, as an intervention

strategy. We will determine how the optimal vaccination strategies depend on chosen spatial

arrangements.

After a brief background on the model by Tien and Earn [59], we introduce and describe

our metapopulation model, as well as the parameters, for our problem in Section 3.2. In

Section 3.3, we explain the role of connectivity and the associated spatial arrangements we

will consider. The model is analyzed by computing the basic reproduction number in Section

3.4. We formulate the optimal control problem and corresponding state system of equations

in Section 3.5. We also prove the existence and uniqueness of the optimal control. In Section

3.6, we use numerical simulations to illustrate solutions to the problem for varying spatial

arrangements and scenarios. The chapter ends with a conclusion section.
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Table 3.1: Description of Compartments with Units for Tien and Earn Model

Variables Description Units

S susceptible individual density individuals km−2

I infected individual density individuals km−2

R recovered/removed individual density individuals km−2

W pathogen concentration in water reservoir cells ml−3

Table 3.2: Description of Parameters with Units for Tien and Earn Model

Parameters Description Units

µ birth and death (non-disease related) day−1

bI person-person contact rate km2 individuals−1 day−1

bW reservoir-person contact rate ml3 cells−1 day−1

γ duration of infectiousness of the disease day−1

α person-reservoir contact rate (“shedding”) cells ml−3 day−1 km2 individuals−1

ξ mean survival of pathogen in water day−1

3.1.1 Background

The model for multiple transmission pathways of a waterborne pathogen, first developed

by Tien and Earn [59, 64], is a compartmental ODE model extending the classical SIR

framework by adding a water compartment to track pathogen concentration in an aquatic

reservoir. Their model, for a single population, is given by:

dS

dt
= µN − bWSW − bISI − µS (3.1)

dI

dt
= bWSW + bISI − γI − µI (3.2)

dR

dt
= γI − µR (3.3)

dW

dt
= αI − ξW (3.4)

with the total population: N = S + I + R. The compartment variables and the other

parameters are defined in Tables 3.1 and 3.2.
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The model allows for infection through exposure to contaminated water as well as the

classical person-to-person contact. Susceptibles infected with cholera move to the infected

class. There is a mean infectious period, 1
γ
, after which the infectious move to the recovered

class. Those in the infected class contribute to the pathogen concentration at a shedding

rate, α. The pathogen in the aquatic reservoir also has a natural decay rate, ξ. There is

also a natural birth/death rate, µ, in which individuals enter the susceptible class and are

removed proportionally in each compartment. They analyzed the nondimensional version of

the system, eliminating the recovered/removed class. They also did not include deaths due

to disease.

3.2 Description of Model

We will extend the model (3.1)-(3.4) to include spatial movement among patches in a

metapopulation setting, with both person and water movement. We also include a death due

to disease term. We investigate the cholera model with a scaled pathogen concentration in the

water compartment. We consider a multi-patch system, with each patch having four ordinary

differential equations. The model accounts for both direct person-to-person transmission and

indirect transmission from reservoir to person. Infected individuals contribute the pathogen

to the aquatic reservoir. The pathogen then infects individuals within that community or

could be transported to surrounding communities, infecting their aquatic reservoirs, which

could lead to further transmission of the disease.

The model incorporates both population movement as well as the hydrological links

between communities that spread the disease. The dynamics for human movement and

pathogen movement in water will be investigated. Both interconnections are modeled using

connectivity matrices. Pathogen spreads both upstream and downstream with upstream

movement at a lower rate than downstream (similar to work by Bertuzzo [7, 8, 10]).

Using connectivity matrices, we create metapopulations in which pathogen is spread

through patches. We investigate various spatial arrangements of populations including linear
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and hub arrangements. The idea of a hub allows the model to account for patches of

larger populations with higher human connectivity to surrounding patches. Also, using a

connectivity matrices, we are able to implement strong and weak connections among patches.

The pathogen levels contributed to the water compartment from the infected population

is known to be highly variable, depending on the individual. Due to the high variability in the

“shedding” rate, α, we scale the water compartment to eliminate the term from our model.

Following a similar approach as in Tien and Earn [59], we make the following substitution

into the system of equations (3.1)-(3.4) to scale the water compartment:

w =
ξ

α
W and βW = bW

α

ξ
and βI = bI .

We extend (3.1)-(3.4) as a metapopulation model with a scaled water compartment, and

with disease-related mortality.

dSi
dt

= µiNi − βiISiIi − βiWSiwi − µiSi + dS

n∑
k=1

(MikSk −MkiSi) (3.5)

dIi
dt

= βiISiIi + βiWSiwi − (γi + µi + δi)Ii + dI

n∑
k=1

(MikIk −MkiIi) (3.6)

dRi

dt
= γiIi − µiRi + dR

n∑
k=1

(MikRk −MkiRi) (3.7)

dwi
dt

= ξi[Ii − wi] + dW

n∑
k=1

(Hikwk −Hkiwi) (3.8)

subject to initial conditions:

Si(0) = Si0 , Ii(0) = Ii0 , Ri(0) = Ri0 , wi(0) = Wi0 . (3.9)

We let Mi,j, Hi,j be the connectivity of human and pathogen movement from Patch j to

Patch i, respectively. We assume the travel rates of individuals and pathogen from patch i

to patch j, are nonnegative, Mi,j ≥ 0, Hi,j ≥ 0, respectively, and we give specific structure
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Table 3.3: Description of Compartments with Units for Metapopulation Model

Parameters Description Units

Si susceptible individual density ind. km−2

Ii infected individual density ind. km−2

Ri immune due to vaccination or recovery ind. km−2

Ni total population density ind. km−2

Wi scaled pathogen concentration in water reservoir ind. km−2

Table 3.4: Description of Parameters with Units for Metapopulation Model

Parameters Description Units

µi birth and death (non-disease related) day−1

βiI person-person contact rate km2 ind.−1 day−1

βiW reservoir-person contact rate km2 ind.−1 day−1

γi duration of infectiousness of the disease day−1

δi death due to disease day−1

ξi mean survival of pathogen in water day−1

dS diffusion coefficient (for all susceptibles) day−1

dR diffusion coefficient (for all recovered) day−1

dI diffusion coefficient (for infecteds) day−1

dW diffusion coefficient (for pathogen) day−1
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later. The parameters µ and ξ are positive while the parameters γ and δ are nonnegative.

We also assume the transmission rates, βI and βW , are nonnegative.

In order to appropriately model the pathogen movement in water through the system

of patches, we incorporate a term that removes pathogen from the system. This term only

removes a proportion of pathogen from the system. There is no import of pathogen, after

the initial time, from outside the system.

Assume the patches of the system are located along a river and that the patches are

positioned such that one patch is located at the uppermost part of the river and another at the

farthest downstream. Just as pathogen moves among the patches through the hydrological

connections, there is a proportion of the pathogen that leaves the system at the bottom of

the river and a smaller proportion leaving at the top. The patches located in the positions at

the top and bottom of the river will be referred to as the water source and terminal patches,

respectively.

For simplicity, we will use the notation for the pathogen in water, W , when referring to

the scaled water compartment, w, and now equation (3.8) becomes:

dWi

dt
= ξi[Ii −Wi] + dW

n∑
k=1

(HikWk −HkiWi)− φiWi (3.10)

where the coefficient φi is defined as the following:

φi =


ρu if Patch i is the water source patch

ρd if Patch i is the water terminal patch

0 otherwise

(3.11)

where ρu, ρd are the coefficients for pathogen moving outside the system in the upstream and

downstream directions, respectively.
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Figure 3.1: Visual Description of a 5-Patch Linear Spatial Arrangement

3.3 Role of Connectivity and Metapopulations

We consider several spatial arrangements, each representing how interconnected populations

interact along with their corresponding water sources. The arrangements are weighted

directional graphs involving both water and population movement. We specifically investigate

spatial arrangements by varying their connectivities, rates of movement, parameter values,

and population sizes. The connectivity patterns of linear and hub arrangements can be

visually represented in Figures 3.1 and 3.2.

3.3.1 Linear Spatial Arrangement

Our first scenario is a sequence of patches along a river. There is travel between nearest

neighbors only.
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The connectivity matrix for population movement in the n-patch linear spatial arrange-

ment:

M =



0 M12 0 . . . 0

M21 0 M23
. . .

...

0 M32 0
. . . 0

...
. . . . . . . . . Mn−1,n

0 . . . 0 Mn,n−1 0


.

We assume that individuals are bidirectional, moving both to and from a patch, at identical

rates. As an example, Mj,i is the coefficient for human movement to Patch j from Patch i

and Mi,j is the coefficient for human movement to Patch i from Patch j. In the linear spatial

arrangements, we assume the coefficients are equal in both directions, Mi,j = Mj,i for all i, j.

The connectivity for water movement in the n-patch linear spatial arrangement:

H =



0 H12 0 . . . 0

H21 0 H23
. . .

...

0 H32 0
. . . 0

...
. . . . . . . . . Hn−1,n

0 . . . 0 Hn,n−1 0


.

We assume that pathogen moves in both the up and downstream direction, however due

to the directional flow of the river, the movement rate downstream will be larger than

upstream. This natural occurrence is incorporated into the model through the coefficients of

the connectivity matrix. The coefficients for downstream movement will be larger than the

those for upstream movement. Thus, Hi,j (downstream) > Hj,i (upstream) for i > j.

Similar to the connectivity matrix for population movement, Hj,i is the coefficient for

pathogen movement to Patch j from Patch i, which is a downstream movement. The value of

this coefficient will be larger than the value of the coefficient, Hi,j, representing the movement
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Figure 3.2: Visual Description of a 5-Patch Hub Spatial Arrangement

of pathogen upstream to Patch i from Patch j. This relationship is determined based on the

spatial arrangement considered.

3.3.2 Hub Spatial Arrangement

We compare the linear spatial arrangement with a scenario which incorporates a hub patch,

representing a large, populous area with higher human movement to and from each of the

other patches in the system. The movement coefficients to and from the hub will be larger

than movement between all other patches. In the connectivity matrix below, assuming Patch

1 is the hub, the coefficients M1j and Mi1 for i, j = 1, . . . , n, represent movement to and

from the hub patch, with the following inequality conditions, M1j > Mi,j for all i, j 6= 1 and

Mi,1 > Mi,j for all j, i 6= 1.

We still have the patches located along a linear river arrangement and assume movement

of the population in non-hub patches is to the hub and its nearest neighbors. Just as in the

linear spatial arrangement case, we assume up and downstream movement of pathogen in

the water, with upstream at a smaller rate.
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The connectivity matrix for population movement in an n-patch hub arrangement, with

Patch 1 as hub:

M =



0 M12 M13 . . . . . . M1,n

M21 0 M23 0 . . . 0

M31 M32
. . . . . . . . .

...
... 0

. . . . . . . . . 0
...

...
. . . . . . . . . Mn−1,n

Mn,1 0 . . . 0 Mn,n−1 0


.

The connectivity for water movement in an n-patch hub arrangement is the same as in

the linear spatial arrangement:

H =



0 H12 0 . . . 0

H21 0 H23
. . .

...

0 H32 0
. . . 0

...
. . . . . . . . . Hn−1,n

0 . . . 0 Hn,n−1 0


.

3.4 Basic Reproduction Number

We begin by finding the basic reproduction number for our model. We use the next-

generation approach, introduced by Dieckmann and Heesterback [18] and Watmough and

van den Driessche [65]. We arrange our system of equations into the form x̄′ = F − V ,

with F containing new infected terms and V containing transition terms, with the order of

components being (Ii, . . . ,Wi, . . . , Si, . . . , Ri), for i = 1, . . . , n. The equations of our system

that correspond to infected compartments are:

For i = 1, . . . , n

 Ii

Wi

′ =
 βiISiIi + βiWSiWi

0

−
 (γi + µi + δi)Ii − dI

∑n
k=1[MikIk −MkiIi]

−ξi(Ii −Wi)− dW
∑n

k=1[HikWk −HkiWi] + φiWi

 .
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The unique disease-free equilibrium (DFE) is found by setting Ii = Wi = 0 for i = 1, ..., n.

The DFE exists since removing the infected population and pathogen leaves a fully susceptible

population that will remain disease-free,

DFE = (S1, . . . , Sn, I1, . . . , In, R1, . . . , Rn,W1, . . . ,Wn) = (N1, . . . , Nn, 0, . . . , 0).

By taking the Jacobian of the submatrix of the F matrix with respect to each of the infected

and water compartments, and then evaluating at the DFE, we get the following 2n × 2n

matrix, F :

F =

 F11 F12

0 0


where F11 = diag(βiINi) and F12 = diag(βiWNi), n × n matrices. Similarly, taking the

Jacobian of the submatrix of V with respect to the infected and water compartments, then

evaluating at the DFE, we get the 2n× 2n matrix, V :

V =

 V11 0

−V21 V22


where V21 = diag(ξi), an n× n matrix,

V11 = 
A1 −dIM12 . . . −dIM1n

−dIM21
. . . . . .

...
...

. . . . . . −dIMn−1n

−dIMn1 . . . −dIMnn−1 An

 ,
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V22 = 
B1 −dWH12 . . . −dWH1n

−dWH21
. . . . . .

...
...

. . . . . . −dWHn−1n

−dWHn1 . . . −dWHnn−1 Bn

 ,

and

Ai = (γi + µi + δi) + dI

n∑
k=1

Mki

Bi = ξi + dW

n∑
k=1

Hki − φi.

We use an approach by Arino [3] which incorporates block matrices to compute the basic

reproduction number. The matrices V11 and V22 are both non-positive on the off-diagonal

and satisfy the definition of non-singular M-Matrices, meaning that they can be written in

the form, A = sI−B, where s > 0 and B ≥ 0, and s > ρ(B), the spectral radius of B. Since

both matrices, V11 and V22, are nonsingular M-Matrices, they have positive inverses and are

both irreducible [6]. We have

V −1 =

 V −1
11 0

V −1
22 V21V

−1
11 V −1

22

 .
We form the next generation matrix, FV −1:

FV −1 =

 F11V
−1

11 + F12V
−1

22 V21V
−1

11 F12V
−1

22

0 0

 .
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The spectral radius for FV −1 is the same as the spectral radius of the matrix in the upper

left block of FV −1,

R0 = ρ(FV −1) = ρ(F11V
−1

11 + F12V
−1

22 V21V
−1

11 ),

which is dependent on which spatial arrangement and the corresponding connectivity

matrices, M and H. In the case of a single patch, R0 simplifies to the following:

R0 =
(βI + βW )N1

γ + µ+ δ
.

From [65], we obtain our stability result:

Theorem 3.1. When R0 < 1, the disease-free equilibrium is locally asymptotically stable but

if R0 > 1, the equilibrium will be unstable.

3.5 Optimal Control Formulation and Analysis

3.5.1 Formulation

To investigate how the management of vaccination strategies depend on the spatial

arrangement of patches, we include a vaccination term in the system (3.5)-(3.7),(3.10).

The vaccination rates, vi(t), represent the rate of vaccination effort transferring susceptibles

directly to the recovered class within patch i. It is a combined coefficient, ησi(t) where η

represents the efficacy of the vaccination distribution and σi is the rate of vaccine distribution.
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When including a vaccination term, with rate vi in the patch i, our model takes the form:

dSi
dt

= µiNi − βiISiIi − βiWSiWi − µiSi + dS

n∑
k=1

(MikSk −MkiSi)− vi(t)Si (3.12)

dIi
dt

= βiISiIi + βiWSiWi − (γi + µi + δi)Ii + dI

n∑
k=1

(MikIk −MkiIi) (3.13)

dRi

dt
= γiIi − µiRi + dR

n∑
k=1

(MikRk −MkiRi) + vi(t)Si (3.14)

dWi

dt
= ξi[Ii −Wi] + dW

n∑
k=1

(HikWk −HkiWi)− φiWi (3.15)

with initial conditions (3.9).

We seek to find an optimal vaccination strategy that minimizes the number of infected

in the network while minimizing some nonlinear cost involved with the vaccination program.

The cost involved with the vaccination strategy includes two terms. We have a nonlinear

cost associated with vaccination which incorporates the cost of housing distribution centers,

employing individuals to administer the vaccines, and other large costs for implementing a

vaccination campaign. The linear part represents the total number of susceptibles vaccinated,

including the cost of vaccination for each individual. See [25] for some justification for

including such a nonlinearity in the cost with vaccination control. The objective functional

is given by:

J(v) =

∫ T

0

n∑
i=1

AiIi +
n∑
i=1

Biv
2
i +

n∑
i=1

CiviSi dv (3.16)

over the control set:

V = {v = (v1, . . . , vn) | vi : [0, T ]→ R, 0 ≤ vi(t) ≤ vmax, vi Lebesgue measurable}.
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The positive constants, Ai, Bi, Ci are constants to weight the relative importance of each of

the terms in the objective functional. The optimal control problem is stated as:

Find v∗ ∈ V such that

J(v∗) = inf
v∈V

J(v)

subject to state equations (3.12)-(3.15) and initial conditions (3.9).

3.5.2 Boundedness and Positivity of State Solutions

Now that we have formulated the optimal control problem, we need to prove that a

nonnegative, bounded state solution exists to the problem.

Theorem 3.2. Given a vector of controls, v = (v1, . . . , vn) ∈ V , there exists a nonnegative,

bounded solution, x = (S1, I1, R1,W1, . . . , Sn, In, Rn,Wn), to the initial value problem defined

by (3.12)-(3.15) with initial conditions (3.9).

Proof. To prove nonnegativity of solutions, we will use similar approach as in [60] to prove

the system is positively invariant. By our assumptions on the model, we ensure that the

solutions of the system, starting with nonnegative initial conditions, stays nonnegative for

all t > 0, i.e. Si(t) ≥ 0,Ii(t) ≥ 0,Ri(t) ≥ 0,Wi(t) ≥ 0, for i = 1, . . . , n.

In proving the boundedness of the solutions, we follow a similar approach as [21] and use

the following notation. Let N̄ =
∑n

i=1 Ni, where Ni = Si + Ii + Ri. By adding the state

equations for individuals, Si, Ii, Ri, we have the following:

dN̄

dt
= −(δ1I1 + . . .+ δnIn).

Since δiIi ≥ 0 for all i = 1, . . . , n, we can conclude that:

dN̄

dt
≤ 0.
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Thus, the population is bounded by the initial condition,

N̄(t) ≤ N̄0,

where N̄0 = N̄(0). We still need an upper bound on the compartment for pathogen in water.

Again, we use the notation, W̄ =
∑n

i=1Wi and ξ̄ = max{ξi|i = 1, . . . , n}. By summing the

water compartments, we have:

dW̄

dt
= ξ1(I1 −W1) + . . .+ ξn(In −Wn).

The bounds on:
dW̄

dt
≤

n∑
i=1

ξiIi ≤ ξ̄
n∑
i=1

Ii ≤ ξ̄N̄ ≤ ξ̄N̄0,

gives the upper bound:

W̄ (t) ≤ ξ̄N̄0T + W̄0,

where T is the final time and W̄0 = W̄ (0).

Therefore the feasible region for our state system is:

Γ = {(S1, I1, R1,W1, . . . , Sn, In, Rn,Wn) ∈ R4n
+ |

N̄ =
n∑
i=1

(Si + Ii +Ri) ≤ N̄0, W̄ =
n∑
i=1

Wi ≤ ξ̄N̄0T + W̄0}.

3.5.3 Existence of the Optimal Control

In order to use Pontryagin’s Maximum Principle (PMP) [52], the existence of an optimal

control must be proven.
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Theorem 3.3. There exists an optimal control vector, v∗ = (v∗1, . . . , v
∗
n) ∈ V with

corresponding states x∗ = (S∗1 , I
∗
1 , R

∗
1,W

∗
1 , . . . , S

∗
n, I

∗
n, R

∗
n,W

∗
n), that minimizes the objective

functional J(v) defined by (3.16).

Proof. Since our controls are Lebesgue measurable in the set V and both the controls and

states are positive,

0 ≤ J(v) ∀v ∈ V.

Thus, the infv∈V J(v) exists and is finite. There exists a minimizing sequence of controls,

vk = (vk1, . . . , v
k
n), in V such that

lim
k→∞

J(vk) = inf
v∈V

J(v).

By [24], since ||vk||L∞ ≤ C1, there exists v∗ ∈ (L2([0, T ]))n such that on a subsequence, for

each i,

vki ⇀ v∗i weakly in L2([0, T ]) as k →∞.

Given that the controls are uniformly bounded and by Theorem 3.2, the state sequence

corresponding to the sequence of minimizing controls is also uniformly bounded, i.e., there

exists C2 such that, for k = 1, . . . and i = 1, . . . , n,

|xki (t)| ≤ C2 ∀t ∈ [0, T ].

By the structure of the system and the fact that the state sequence is uniformly bounded,

we have uniformly bounded derivatives, for k = 1, . . . and i = 1, . . . , n,

|(xki (t))′| ≤ C3 ∀t ∈ [0, T ].
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Given that the state sequence is uniformly Lipschitz, the state solution sequence {xk} is

equicontinuous. By the Ascoli-Azela Theorem, there exists v∗ ∈ V and x∗ such that

vk ⇀ v∗ weakly in L2(0, T ) and xk → x∗ uniformly on [0, T ].

This uniform convergence is needed to get convergence of terms like viSi in our system.

By passing the limit in the system of differential equations, we can show x∗ is the state

corresponding to the control v∗. Using lower semicontinuity of L2 norms with respect to L2

weak convergence and the convergences above, we have

inf
v
J(v) = lim

k→∞
J(vk)

=

∫ T

0

n∑
i=1

(
AiI

∗
i +

n∑
i=1

Civ
∗
iS
∗
i

)
dv + lim

k→∞

∫ T

0

n∑
i=1

Bi(v
k
i )

2 dv

≥
∫ T

0

n∑
i=1

(
AiI

∗
i +

n∑
i=1

Civ
∗
iS
∗
i

)
dv +

∫ T

0

n∑
i=1

Bi(v
∗
i )

2 dv

= J(v∗).

Thus, v∗ is an optimal control.
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3.5.4 Optimality System

Having obtained the existence of an optimal control, we can now apply PMP, forming the

Hamiltonian, H:

H =
n∑
i=1

[
AiIi +Biv

2
i + CiviSi

]
+

n∑
i=1

λSi

[
µiNi − βiISiIi − βiWSiwi − µiSi + dS

n∑
k=1

(MikSk −MkiSi)− vi(t)Si

]

+
n∑
i=1

λIi

[
βiISiIi + βiWSiwi − (γi + µi + δi)Ii + dI

n∑
k=1

(MikIk −MkiIi)

]
(3.17)

+
n∑
i=1

λRi

[
γiIi − µRi + dR

n∑
k=1

(MikRk −MkiRi) + vi(t)Si

]

+
n∑
i=1

λwi

[
ξi(Ii − wi) + dW

n∑
k=1

(Hikwk −Hkiwi)− φiwi

]

where the adjoint variables (λj), corresponding to their respective states, attach the right

hand side of the state equations to the objective functional. Since an optimal solution exists,

we can obtain the necessary conditions for optimality using Pontryagin’s Maximum Principle.
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Theorem 3.4. Given an optimal control vector v∗ ∈ V , and corresponding states x∗, there

exist adjoint functions satisfying

dλSi

dt
= −

(
Civi(t) + λSi

[
−βiIIi − βiWwi − dS

n∑
k=1

Mki − vi(t)

]
(3.18)

+λIi
[
βiIIi + βiWwi

]
+ λRi

vi(t) + dS

n∑
k=1

(λSk
Mki)

)
dλIi
dt

= −

(
Ai + λSi

(
µi − βiISi

)
+ λIi

[
βiISi − (γi + µi + δi)− dI

n∑
k=1

Mki

]
(3.19)

+λRi
γi + λWi

ξi + dI

n∑
k=1

(λIkMki)

)
dλRi

dt
= −

(
λSi

µi − λRi

(
µi + dR

n∑
k=1

Mki

)
+ dR

n∑
k=1

(λRk
Mki)

)
(3.20)

dλWi

dt
= −

(
−λSi

βiWSi + λIiβ
i
WSi − λWi

(
ξi + dW

n∑
k=1

Hki + φi

)

+dW

n∑
k=1

(λWk
Hki)

)
(3.21)

for i = 1, . . . , n with the following transversality conditions at the final time, T ,

λSi
(T ) = λIi(T ) = λRi

(T ) = λWi
(T ) = 0. (3.22)

This optimal control is characterized by

v∗i = max

(
min

(
vmax,

λSi
Si − λRi

Si − CiSi
2Bi

)
, 0

)
. (3.23)

Proof. The differential equations for the adjoint are standard results of Pontryagin’s

Maximum Principle [52]. The right hand sides of the differential equations are easily
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computed by:

dλSi

dt
= −∂H

∂Si
,

dλIi
dt

= −∂H
∂Ii

,

dλRi

dt
= − ∂H

∂Ri

,

dλWi

dt
= − ∂H

∂Wi

.

The final time conditions are the transversality conditions. Because there is no salvage

term in the objective functional, the final time conditions are zero. The adjoint differential

equations are linear in the adjoint function, and thus a unique adjoint solution exists.

We consider three cases when characterizing the controls, v∗ = (v∗1, . . . , v
∗
n). We use that

the fact that v∗ minimizes H with respect to v at t, x(t), and λ(t).

1. On the interior of the control set, {t | 0 < v∗i (t) < vmax}, we have, for i = 1, . . . , n,

0 =
∂H

∂vi
= 2Bivi(t) + CiSi − λSi

Si + λRi
Si.

Solving for the controls, we have

v∗i (t) =
(λSi
− λRi

− Ci)Si
2Bi

.

2. On the set {t | v∗i (t) = 0}, we have

0 ≤ ∂H

∂vi
= 2Biv

∗
i + CiSi − λSi

Si + λRi
Si.
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Since 2Bi > 0, we have:

(λSi
− λRi

− Ci)Si
2Bi

≤ 0.

3. On the set {t | v∗i (t) = vmax}, we have

0 ≥ ∂H

∂vi
= 2Biv

∗
max + CiSi − λSi

Si + λRi
Si.

Again, since 2Bi > 0, we have:

(λSi
− λRi

− Ci)Si
2Bi

≥ v∗max.

Given the three cases above, we have a characterization for this optimal control:

v∗i = max

(
min

(
vmax,

(λSi
− λRi

− Ci)Si
2Bi

)
, 0

)
.

Also note, ∂
2H
∂v2

i
= 2Bi > 0 confirming that our optimal control minimizes the Hamiltonian.

The optimality system for our problem consists of the state equations (3.12)-(3.15), the

adjoint equations (3.18)-(3.21), and the control characterization (3.23).

3.5.5 Uniqueness of the Optimality System

We now must prove that our optimal control is unique. We do this by proving the uniqueness

of our optimality system, since the optimal control together with its states and adjoints solve

the optimality system.

Theorem 3.5. For t1 sufficiently small, the optimal control is unique.

Proof. Our state solutions are bounded by Theorem 3.2. Since our adjoint system is linear

and both our controls and state solutions are bounded, we have a bounded adjoint system.
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Suppose, for n patches,

(S1, I1, R1,W1, . . . , Sn, In, Rn,Wn, λS1 , λI1 , λR1 , λW1 , . . . , λSn , , λIn , λRn , λWn)

and

(Ŝ1, Î1, R̂1, Ŵ1, . . . , Ŝn, În, R̂n, Ŵn, λ̂S1 , λ̂I1 , λ̂R1 , λ̂W1 , . . . , λ̂Sn , λ̂In , λ̂Rn , λ̂Wn)

are two solutions with identical initial conditions. Let v = (v1, . . . , vn) and v̂ = (v̂1, . . . , v̂n)

by the corresponding controls from the characterization. We use a similar approach as Fister

[23] to prove uniqueness.

For δ > 0 to be chosen below, let Si = eδtxi, Ii = eδtyi, Ri = eδtzi, Wi = eδtwi,

λSi
= e−δtpi, λIi = e−δtai, λRi

= e−δtbi, and λWi
= e−δtdi. Similarly, for Ŝi, . . . , λ̂Wi

We can substitute these change of variables into each of the differential equations for our

states and adjoints. For example, in dSi

dt
:

eδtx′i + δeδtxi = µ(yi + zi)e
δt − βIxiyie2δt − βWxiwie2δt + dS

n∑
k=1

(Mikxk −Mkixi)e
δt − vixie

δt,

which can be rewritten as:

x′i + δxi = µ(yi + zi)− βIxiyieδt − βWxiwieδt + dS

n∑
k=1

(Mikxk −Mkixi)− vixi.

A similar approach could be used for each of the state differential equations. We also illustrate

the change of variables for the adjoint equations. Using
dλSi

dt
as an example,

− [p′i − δpi] = Cie
δtvi − eδt(pi − ai)(βiIyi + βiWwi)− pidS

n∑
k=1

Mki + dS

n∑
k=1

pkMki − vi(pi − bi).
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We then form the differences of equations for Si − Ŝi, Ii − Îi,. . ., λRi
− λ̂Ri

, λWi
− λ̂Wi

.

Again, for illustration, the difference of equations for Si − Ŝi is

(xi − x̂i)′ + δ(xi − x̂i) = µ(zi − ẑi + yi − ŷi)− βI(xiyi − x̂iŷi)eδt − βW (xiwi − x̂iŵi)eδt

+dS

n∑
k=1

(Mik(xk − x̂k)−Mki(xi − x̂i))− (vixi − v̂ix̂i).

We then multiply each of the differential equations by the appropriate difference, integrate

from t0 to t1, and use initial conditions:

1

2
(xi − x̂i)2(t1) + δ

∫ t1

t0

(xi − x̂i)2 dt

= µi

∫ t1

t0

[(zi − ẑ)i + (yi − ŷi)](xi − x̂i) dt

−βI
∫ t1

t0

eδt(xiyi − x̂iŷi)(xi − x̂i) dt

−βW
∫ t1

t0

eδt(xiwi − x̂iŵi)(xi − x̂i) dt

+

∫ t1

t0

dS

n∑
k=1

(Mik(xk − x̂k)−Mki(xi − x̂i))(xi − x̂i) dt

−
∫ t1

t0

(vixi − v̂ix̂i)(xi − x̂i) dt.

A similar process could be done for the other state differential equations, for i = 1, . . . , n,

and for the adjoint differential equations (using the transversality conditions). Take note

of the sign on the time derivative term gives the correct sign on the right hand side of the
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equation. As an example,

1

2
(pi − p̂i)2(t0) + δ

∫ t1

t0

(pi − p̂i)2 dt

= Ci

∫ t1

t0

eδt(vi − v̂i)(pi − p̂i) dt

−
∫ t1

t0

eδt(βI(piyi − p̂iŷi) + βW (piwi − p̂iŵi)(pi − p̂i) dt

−
∫ t1

t0

dS

n∑
k=1

(Mki(pi − p̂i)2 dt−
∫ t1

t0

(vipi − v̂ip̂i)(pi − p̂i) dt

+

∫ t1

t0

eδt[βI(aiyi − âiŷi) + βW (aiwi − âiŵi)](pi − p̂i) dt

+

∫ t1

t0

(bivi − b̂iv̂i)(pi − p̂i) dt

+

∫ t1

t0

dS

n∑
k=1

(Mki(pk − p̂k))(pi − p̂i) dt.

We use the fact that we have two sets of controls, v = (v1, . . . , vn) and v̂ = (v̂1, . . . , v̂n),

where

vi = max

(
min

(
vmax,

(λSi
− λRi

− Ci)Si
2Bi

)
, 0

)
and

v̂i = max

(
min

(
vmax,

(λ̂Si
− λ̂Ri

− Ci)Ŝi
2Bi

)
, 0

)
.

Forming the difference, taking absolute values, and using the change of variables we have:

|vi − v̂i| =

∣∣∣∣∣(pi − bi − Cieδt)xi2Bi

− (p̂i − b̂i − Cieδt)x̂i
2Bi

∣∣∣∣∣
≤ 1

2Bi

∣∣∣(pixi − p̂ix̂i)− (bixi − b̂ix̂i)− Cieδt(xi − x̂i)
∣∣∣

≤ 1

2Bi

(
|pixi − p̂ix̂i|+

∣∣∣bixi − b̂ix̂i∣∣∣+
∣∣Cieδt(xi − x̂i)∣∣) .
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Our state and adjoint solutions are bounded, as well as our coefficients. Using the bound on

|vi − v̂i|, as well as adding and subtracting terms, we have the following state inequalities,

wherever the control vi is found. For example,

δ

∫ t1

t0

(xi − x̂i)2 dt ≤ K1

∫ t1

t0

(|zi − ẑi|+ |yi − ŷi|) |xi − x̂i| dt

+K2

∫ t1

t0

eδt (|xiyi − x̂iŷi|+ |xiwi − x̂iŵi|) |xi − x̂i| dt

+K3

∫ t1

t0

n∑
k=1

(Mik|xk − x̂k|)|xi − x̂i| dt+K4

∫ t1

t0

(xi − x̂i)2 dt

+K5

∫ t1

t0

(
|pixi − p̂ix̂i|+

∣∣∣bixi − b̂ix̂i∣∣∣) |xi − x̂i| dt
+K6

∫ t1

t0

eδt(xi − x̂i)2 dt

and similarly for an adjoint inequality:

δ

∫ t1

t0

(pi − p̂i)2 dt ≤ D1

∫ t1

t0

eδt
(
|pixi − p̂ix̂i|+

∣∣∣bixi − b̂ix̂i∣∣∣) |pi − p̂i| dt
+D2

∫ t1

t0

(
|pixi − p̂ix̂i|+

∣∣∣bixi − b̂ix̂i∣∣∣) |pi − p̂i| dt
+D3

∫ t1

t0

eδt|xi − x̂i||pi − p̂i| dt+D4

∫ t1

t0

|bi − b̂i||pi − p̂i| dt

+K2

∫ t1

t0

eδt(|piyi − p̂iŷi|+ |piwi − p̂iŵi|)|pi − p̂i| dt

+K2

∫ t1

t0

eδt (|aiyi − âiŷi|+ |aiwi − âiŵi|) |pi − p̂i| dt

+K3

∫ t1

t0

n∑
k=1

(Mki|pk − p̂k|)|pi − p̂i| dt+K4

∫ t1

t0

(pi − p̂i)2 dt,

where Di, Ki depend on the values of |µi|, |βI |, |βW |, |Ci|, |Bi|,
∑n

k=1 |Mki|, and

maxi{|x̂i|, |p̂i|, |bi|, |v̂i|, |vi|}. We now use the Cauchy Inequality,
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ab ≤ a2

2
+
b2

2

with a, b > 0, to simplify the above inequalities. We also will add and subtract terms. For

simplification purposes, we let x̄i = |xi − x̄i|, ȳi = |yi − ȳi|, and so on. Using the first state

inequality as an example,

δ

∫ t1

t0

x̄2
i ≤ K̂i

1

∫ t1

t0

(
x̄2
i + z̄2

i + ȳ2
i + p̄2

i + b̄2
i +

∑
k 6=i

x̄2
k

)

+K̂i
2

∫ t1

t0

eδT
(
ȳ2
i + w̄2

i + x̄2
i

)
where K̂i

1, K̂i
2 depend on the maximum of all the Ki values, the number of patches n, and

the bounds on the states and adjoints.

A similar approach can be done for each of the inequalities. The collection of state and

adjoint inequalities can then be added together and we can take the maximum of all the

constants collected. We let K1 = maxi K̂
i
1 and K2 = maxi K̂

i
2. The result is the inequality:

(
δ −K1 −K2e

δT
) ∫ t1

t0

n∑
i=1

(
x̄2
i + . . .+ w̄2

i + p̄2
i + . . .+ d̄2

i

)
dt ≤ 0.

We need to choose δ then T such that:

(
δ −K1 −K2e

δT
)
≥ 0.

We choose δ such that:

δ −K1 −K2 > 0.

We then choose T such that:

T <
1

δ
ln

∣∣∣∣δ −K1

K2

∣∣∣∣ .
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This guarantees δ −K1 −K2e
δT > 0 and

∫ t1

t0

n∑
i=1

(
x̄2
i + . . .+ w̄2

i + p̄2
i + . . .+ d̄2

i

)
dt = 0.

Thus, the two solutions to the optimality system are equal and thus there is a unique optimal

control.

3.6 Numerical Simulations

The stability and control analysis were completed for any finite number of patches. For

numerical purposes, we consider five patches of varying connectivities. We will consider linear

and hub arrangements. Initially, we assume identical patch dynamics. We later investigate

the role of “hot spots”, or patches with higher infectivity. We will also investigate the role

that hub size plays on intervention strategies.

The forward-backward iterative technique [39] was used to solve the optimality system,

which consists of 3.12-3.15, 3.18-3.21, and 3.23. To solve the ODE systems, we use a fourth-

order Runge Kutta method. See the introductory chapter for more details.

3.6.1 Linear Spatial Arrangement

We first investigate disease dynamics within a system of identical patches with a linear spatial

arrangement. We assume a series of patches in a straight line along a river. We assume

both human and population movement to nearest neighbor only. We want to find optimal

vaccination strategies when the disease begins in patches along the river arrangement. The

parameter values chosen are found in Table 3.5. Parameter values were chosen from the work

of Tuite et al. [64] based on the outbreak in Haiti. The model is subject to initial conditions

that depend on which patch the outbreak occurs. The weight coefficients in J were chosen

to be Ai = 1, Bi = 300, 000, and Ci = 3.25. The quadratic terms are thought to be the
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Table 3.5: Parameter Values for Numerical Simulations with Identical Patches

Parameters Description Value

µi birth and death (non-disease related) 1.00E − 4
βiI person-person contact rate 2.64E − 5
βiW reservoir-person contact rate 1.21E − 4
γi duration of infectiousness of the disease 0.25
δi death due to disease 5.0E − 4
ξi mean survival of pathogen in water 7.56E − 3
dS diffusion coefficient (for all susceptibles) 5.00E − 3
dR diffusion coefficient (for all recovered) 5.00E − 3
dI diffusion coefficient (for infecteds) 1.00E − 3
dW diffusion coefficient (for pathogen) 3.00E − 5
ρd coefficient for pathogen leaving network downstream 3.00E − 5
ρu coefficient for pathogen leaving network upstream 3.00E − 6

vmax max vaccination 0.015
T final time (days) 200
Ai cost to minimize infecteds 1
Bi quadratic cost of vaccination 300, 000
Ci linear cost of susceptibles vaccinated 3.25

distribution costs of the vaccination while the linear terms are the per-person cost of vaccine

and its administration.

We begin with the five-patch spatial arrangement illustrated in Figure 3.1. Since

movement is only to nearest neighbor, the connectivity matrices for both human and pathogen

movement are identical. The connectivity matrix for population movement in the five-patch

linear spatial arrangement is

M =



0 M12 0 0 0

M21 0 M23 0 0

0 M32 0 M34 0

0 0 M43 0 M45

0 0 0 M54 0


.

We assume the values of the non-zero Mij are identical and equal to one. The connectivity

for water movement in the linear spatial arrangement is
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Table 3.6: Initial Conditions for Model with Linear Spatial Arrangement and Outbreak in
Patch i

Class Patch i Patches j 6= i

S 9,700 10,000
I 300 0
R 0 0
W 300 0

H =



0 H12 0 0 0

H21 0 H23 0 0

0 H32 0 H34 0

0 0 H43 0 H45

0 0 0 H54 0


.

The value for the non-zero downstream connectivity movements, Hij where i > j, is equal to

one while for the non-zero upstream connectivity movements, Hij for j > i, is equal to 0.1,

or one-tenth the rate of the downstream movement. This is due to a stronger movement of

pathogen downstream than upstream, which is consistent with the direction of river flow.

We first compare population dynamics and vaccination strategies for the arrangements

for outbreaks occurring in each patch along the river system. For all simulations, we begin

an outbreak with 300 infected individuals. This was chosen to simulate an epidemic, where a

significant number of infected would need to be present in a community before a large scale

intervention strategy would be implemented. The initial conditions for individuals and water

in the system, assuming an outbreak begins in Patch i, are shown in Table 3.6.

Without vaccination, the dynamics of the infected population for an outbreak occurring

in each of the five patches is given in Figure 3.3. Notice the patterns that form as the disease

travels to nearest neighbor throughout the metapopulation. We also see the disease spreading

to patches downstream at a faster rate than those upstream.
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(a) Outbreak in Patch 1 (b) Outbreak in Patch 2

(c) Outbreak in Patch 3 (d) Outbreak in Patch 4

(e) Outbreak in Patch 5

Figure 3.3: Linear Arrangement: Infected population dynamics when outbreak occurs in
each of the five patches (without vaccination)

105



Table 3.7: Linear Arrangement: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 161,080
2 175,200
3 170,470
4 152,540
5 114,390

Table 3.8: Linear Arrangement: Total number of infected individuals in metapopulation,
with and without vaccine

Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 194,986 79,802
Outbreak 2 196,379 93,493
Outbreak 3 195,205 92,928
Outbreak 4 191,206 84,338
Outbreak 5 181,049 56,780

Due to each patch having identical dynamics within the patch, the basic reproduction

number for each patch and for the entire metapopulation are the same,

R0 = Ri
0 = 5.8819,

where R0 is the basic reproduction of the network and Ri
0 is the basic reproduction of Patch

i for i = 1, ...5.

The optimal vaccination results for several outbreak cases are illustrated. For each

scenario, the objective functional values, the total infected with and without vaccination,

and the total vaccinated in each patch and metapopulation are listed in Tables 3.7, 3.8, and

3.9, respectively. For the remainder of the chapter, we refer to vaccination effort as the

control level and vaccination rate as the number of individuals vaccinated per time.

We now consider specific linear arrangement scenarios to illustrate how the optimal

intervention strategies depend on where outbreaks occur. We report the control effort applied

to each patch, the total number of susceptible individuals vaccinated in each patch at each

time, and how the control strategy affected the infected population. We compare when the

106



Table 3.9: Linear Arrangement: Total individuals vaccinated in each patch for each scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 1,180 4,522 6,319 6,122 3,448 21,591
Outbreak 2 4,612 1,308 4,502 6,258 4,975 21,655
Outbreak 3 4,193 5,295 1,328 4,345 5,473 20,634
Outbreak 4 2,785 5,245 5,372 1,306 3,751 18,459
Outbreak 5 1,469 3,177 4,715 5,226 1,238 15,825

outbreak occurs in three distinct areas of the metapopulation, at the uppermost, lowest, and

central patches, Patches 1,3, and 5, respectively.

We first investigate when the outbreak occurs at the top of the river, in Patch 1. Results

for this case are shown in Figures 3.4-3.5. When an outbreak occurs in the middle of the

river, in Patch 3, results are shown in Figures 3.7, 3.8, and B.1. Lastly, with an outbreak at

the bottom of the river, in Patch 5, results are shown in Figures 3.9, 3.10, and B.2.

For linear arrangement scenarios, where pathogen, as well as people, movement are

following the same connectivity, we can draw several conclusions. It is evident that the

control strategies do change depending on where outbreaks occur. Effort is always more

focused on patches neighboring the outbreak patch, whether direct neighbor or one-removed

neighbor, depending on the location of the outbreak. If an outbreak is upstream, the effort is

higher in the one-removed downstream neighbor while in an outbreak downstream, the effort

is highest in nearest upstream neighbor.

When outbreaks occur at the upper and lowermost patches of the metapopulation, the

vaccination strategy has the greatest effect in lowering the number of infected individuals.

However, more vaccinations are administered when outbreaks occur in upstream patches

rather than those at the bottom. The role of pathogen movement in water is important

because the difference in rates of movement upstream and downstream. These rates are

the reason effort is focused on multiple patches downstream when outbreak occurs upstream

versus being focused on nearest upstream patches with outbreaks occurring downstream.

When an outbreak occurs in upstream patches, patches below the outbreak receive

the highest effort. Due to the movement of the pathogen, more vaccinations are given in
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Figure 3.4: Linear Arrangement: Vaccination rates of patches with outbreak in Patch 1
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(a) Vaccination

Figure 3.5: Linear Arrangement: Vaccination effort of patches with outbreak in Patch 1

patches located two downstream from where the outbreak occurs rather than on the nearest

downstream neighbor. This is due to the outbreak spreading too quickly to prevent the

outbreak affecting the patch directly downstream so more effort is spent on the one below

that to prevent the spread farther downstream.

Similarly when the outbreak begins in the center of the arrangement. Again, the highest

number of vaccinations are given two patches downstream of the outbreak. An important

difference is the high number of vaccinations administered in the nearest upstream neighbor

of the outbreak patch. The ability to prevent the disease from reaching patches upstream of

the outbreak is more manageable due to the lower rate of pathogen movement upstream.

When the outbreak occurs in the bottom half of the arrangement, the strategy shifts to

protect the patches immediately upstream. This is a result of more susceptible patches

upstream of the outbreak and the slower rate of pathogen movement upstream than

downstream. Unlike the other scenarios where the outbreak spread too quick to protect the
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Figure 3.6: Linear Arrangement: Infected population dynamics comparison with and
without vaccination with outbreak in Patch 1
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(a) Vaccination

Figure 3.7: Linear Arrangement: Vaccination effort of patches with outbreak in Patch 3

nearest downstream neighbor, the ability to prevent upstream spread is more manageable so

more effort is spent immediately upstream.

In all the scenarios, vaccine effort is applied for the longest time in the outbreak patch.

After an initial high effort in the outbreak patch, it then persists at low levels for a longer

time than outlying patches. Also, in all cases, we saw significant decreases in the number

of infecteds in all patches outside of the outbreak patch. This is due to the difficulty of

controlling a patch by vaccination that is already invaded by the disease. It is evident that

outbreaks occurring in a central location, compared to at the top and bottom of the patch

network, are more complicated to control effectively.

3.6.2 Hub Spatial Arrangements

We now introduce patches known as hubs. A hub is a patch with a higher population than

the surrounding patches with more connectivity between itself and each surrounding patch.
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Figure 3.8: Linear Arrangement: Infected population dynamics comparison with and
without vaccination with outbreak in Patch 3

Hubs have connectivity to every other patch in the metapopulation with higher movement

coefficients. The surrounding patches continue to have nearest neighbor connectivity similar

to the linear arrangements. The water connectivity of the patches remains the same as in

the model with a linear arrangement. We consider a five-patch hub spatial arrangement

illustrated in Figure 3.2, although we vary the location of the hub patch. We first assume

Patch 1 is the hub but we investigate other options later. The connectivity matrix for

population movement in the five-patch hub arrangement:
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(a) Vaccination

Figure 3.9: Linear Arrangement: Vaccination effort of patches with outbreak in Patch 5

M =



0 M12 M13 M14 M15

M21 0 M23 0 0

M31 M32 0 M34 0

M41 0 M43 0 M45

M51 0 0 M54 0


,

where the connectivities to the hub are 25% greater than other connectivities. For example,

assuming Patch 1 is the hub, M1,j,Mk,1 = 1.25 for j, k 6= 1, while the other non-zero Mi,j

coefficients are equal to one.
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Figure 3.10: Linear Arrangement: Infected population dynamics comparison with and
without vaccination with outbreak in Patch 5

The connectivity for water movement is the same as the linear arrangement:

H =



0 H12 0 0 0

H21 0 H23 0 0

0 H32 0 H34 0

0 0 H43 0 H45

0 0 0 H54 0


.

The value for the non-zero downstream connectivity movements, Hi,j where i > j, is equal

to one while the non-zero upstream connectivity movements, Hi,j for j > i, is equal to 0.1,
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Table 3.10: Initial Conditions for Model with Hub Spatial Arrangement with Outbreak
Outside Hub

Class Hub Patch Patch i Patch j 6= i

S 30,000 4,700 5,000
I 0 300 0
R 0 0 0
W 0 300 0

Table 3.11: Initial Conditions for Model with Hub Spatial Arrangement with Outbreak in
Hub

Class Hub Patch i Patch j 6= i

S 29,700 5,000
I 300 0
R 0 0
W 300 0

or one-tenth the rate of the downstream movement. This is due to a stronger movement of

pathogen downstream than upstream, which is consistent with the direction of river currents.

We consider scenarios when an outbreak occurs in the hub as well as when in surrounding

patches. We compare results with alternative hub patches in the metapopulation. Again,

using patches at the uppermost, lowest, and centralized locations of the metapopulation, we

investigate three systems with a hub in Patches 1, 3, or 5, respectively. In cases where the

outbreak begins in Patch i, outside of the hub, the initial conditions are found in Table 3.10.

When Patch i is a hub, the initial conditions are in Table 3.11.

We assume that all patches outside the hub are identical. The hub has a higher

initial population and population movement rates entering and leaving the patch. Without

vaccination, the dynamics of the infected population with outbreaks occurring in each of the

five patches is given in Figure 3.11. Results with Patches 3 or 5 as hubs can be found in the

Appendix B at the end of this dissertation.

The basic reproduction number of the network and for each patch with Patch 1 as the hub

are recorded in Table 3.12. The reproduction number is independent of where the outbreak

begins.
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Table 3.12: Hub Patch 1 Arrangement: Basic reproduction number of network and for each
patch

Network R0 Patch 1 (Hub) Patch 2 Patch 3 Patch 4 Patch 5

13.3669 17.6457 2.9409 2.9409 2.9409 2.9409

(a) Outbreak in Patch 1 (b) Outbreak in Patch 2

(c) Outbreak in Patch 3 (d) Outbreak in Patch 4

(e) Outbreak in Patch 5

Figure 3.11: Hub Patch 1 Arrangement: Infected population dynamics when outbreak
occurs in each of the five patches (without vaccination), where plot on left is the hub only,
plot on right is surrounding patches
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Table 3.13: Hub Patch 1 Arrangement: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 187,660
2 183,380
3 187,890
4 187,860
5 181,720

Table 3.14: Hub Patch 1 Arrangement: Total number of infected individuals in
metapopulation, with and without vaccine

Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 190,170 156,984
Outbreak 2 193,592 122,813
Outbreak 3 196,879 123,543
Outbreak 4 197,245 123,247
Outbreak 5 194,052 115,372

The optimal vaccination results for several outbreak cases are illustrated. We assume

Patch 1, the uppermost patch of the system, is the hub. For each scenario, the objective

functional values, the total infected with and without vaccination, and the total vaccinated

in each patch and metapopulation are listed in Tables 3.13, 3.14, and 3.15. Results for when

the outbreak occurs in the hub patch are shown in Figure 3.13. Results for when the outbreak

occurs outside the hub, in Patches 3 or 5, are shown in Figures 3.16 and B.4. Figure B.4 is

found in Appendix B at the end of the dissertation.

Table 3.15: Hub Patch 1 Arrangement: Total individuals vaccinated in each patch for each
scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 (Hub) 1,961 1,630 1,838 1,548 1,298 8,275
Outbreak 2 7,634 723 2,793 2,984 2,359 16,492
Outbreak 3 8,226 2,825 811 2,816 2,821 17,498
Outbreak 4 8,237 3,187 2,837 815 2,506 17,581
Outbreak 5 8,334 3,391 2,835 2,745 767 18,073
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We draw several conclusions from hub arrangements. First, notice the basic reproduction

number of the hub is much higher than in surrounding patches. The network R0 more than

doubles from the linear spatial arrangement. The location of the hub also matters as we

notice the highest network R0 value in hubs located farthest downstream (see Table B.5).

However, we do not see the lowest network R0 value at the top of the network, differing from

the results of Tien et al. [60], where they concluded that the network reproduction number

would increase as it moves down a linear water network. One reason for the difference is that

they investigated water movement only while we now include a more complicated movement

structure, also allowing hubs and population movement among the patches.

The vaccination strategy in the hub does depend on where an outbreak occurs. Wherever

the hub is located in the metapopulation, an outbreak occurring in the hub is always hardest

to contain, as it is difficult to prevent the disease from spreading to the surrounding patches

through the hub. Although the total number of infecteds in this scenario, without vaccination,

is smallest when outbreak is in the hub, the total number vaccinated is also smallest and has

the least impact on decreasing the total number of infecteds.

When an outbreak occurs outside of the hub, a much different strategy is implemented.

First, the maximum vaccination effort is sustained longer in the hub. Also, the vaccination

strategy drastically decreases the number of infecteds in the hub, however there is only a slight

decrease within the outbreak patch. This is similar to the linear spatial arrangement cases.

This points to the fact that it is usually too late to contain the outbreak once it has already

invaded a patch and more effort should be focused on surrounding patches. Lastly, note that

vaccination effort does continue in the outbreak patch for the longest time at a lower level.

Although the effort does little to decrease the number of infecteds in the outbreak patch,

to help minimize the number of infecteds in the metapopulation, low levels of vaccination

continue to be administered in the patch.

In every non-hub outbreak scenario, the number of vaccinations in the hub is significantly

higher than in the surrounding patches. Due to the high connectivities with the hub, in

whichever patch the outbreak occurs, the disease spreads to the hub quickly and then to the
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surrounding patches. The strategy suggests using high levels of effort to prevent, or lessen,

the spread in the hub in order to limit its spread to the other patches. By limiting the

number of infecteds in the hub, it will ultimately help limit the outbreak in other patches.

Outside the hub and outbreak patches, the number of vaccinations is almost uniform

among the other patches and the effort spent in these patches follows similar patterns as in

the linear arrangement cases. An outbreak in the upper patches of the water arrangement,

after the hub, results in more vaccinations in patches two downstream from the outbreak.

An outbreak in the center of the metapopulation again results in high effort downstream but

now more effort spent immediately upstream from the outbreak.

An interesting result occurs with an outbreak in the lower portion of the metapopulation.

Unlike the linear arrangement cases, the highest number of vaccinations, apart from the hub,

does not necessarily occur in patches immediately upstream of the outbreak. Depending

on the location of the hub, the second highest number of vaccinations occur either directly

downstream the hub, directly above the hub, or above the outbreak. Since any outbreak will

almost immediately invade the hub and then progress downstream the network, protecting

patches immediately downstream the hub would be important. This is especially true when

you take into account the higher movement of pathogen downstream rather than upstream

the water arrangement.
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Figure 3.12: Hub Patch 1 Arrangement: Vaccination rates of patches with outbreak in
hub, Patch 1
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(a) Vaccination

Figure 3.13: Hub Patch 1 Arrangement: Vaccination effort of patches with outbreak in
hub, Patch 1
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Figure 3.14: Hub Patch 1 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in hub, Patch 1
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Figure 3.15: Hub Patch 1 Arrangement: Vaccination rates of patches with outbreak in
Patch 3
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(a) Vaccination

Figure 3.16: Hub Patch 1 Arrangement: Vaccination effort of patches with outbreak in
Patch 3
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Figure 3.17: Hub Patch 1 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in Patch 3
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Table 3.16: Comparison of Basic Reproduction Numbers for Varying Hub Sizes and
Location

Hub Size Hub Patch 1 Hub Patch 3 Hub Patch 5

40,000 17.8713 17.6877 22.6644
60,000 26.7339 26.3883 33.9123
80,000 35.6143 35.1237 45.1757

Table 3.17: Hub Patch 1: Objective functional values for metapopulations of each hub size

Outbreak Patch J(v) (Hub 40, 000) J(v) (Hub 60, 000) J(v) (Hub 80, 000)

1 396,521 397,598 397,273
2 392,770 394,081 394,362
3 393,558 395,169 396,098
4 393,602 395,548 397,083
5 392,701 394,359 395,794

3.6.3 Hub Size Comparisons

The size of hubs and their proportion to the outlying patches is investigated in this section.

We now consider a metapopulation with a larger population, N = 100, 000 individuals. We

compare three sizes of hubs and the optimal vaccination strategy associated with both. The

sizes we consider are hubs of 40, 000, 60, 000, and 80, 000 individuals. We investigate how

the population size of the hub in relation to the population size of the other patches might

affect the vaccination strategy.

The basic reproduction numbers for each arrangement with hubs in Patches 1, 3, or

5, respectively, are given in Table 3.16. The objective functional values for each outbreak

scenario, with Patch 1 as a hub and population sizes of 40, 000, 60, 000, and 80, 000 individuals

is given in Table 3.17. The total infected, with and without vaccination, for each of

the arrangements is given in Tables 3.18-3.20. The total vaccinated in each patch of the

metapopulation is given in Tables 3.21-3.23.

We compare the results when the total population is N = 100, 000 individuals with hubs

varying in population size. We compare the optimal harvesting strategies when the hub

contains 40, 000, 60, 000, and 80, 000 individuals as well as the vaccination effort in each
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Table 3.18: Hub Patch 1 (with 40, 000 Individuals): Total infected individuals in
metapopulation, with and without vaccine

40,000 Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 404,375 326,704
Outbreak 2 404,361 296,307
Outbreak 3 404,433 304,639
Outbreak 4 404,434 305,876
Outbreak 5 404,298 295,892

Table 3.19: Hub Patch 1 (with 60, 000 Individuals): Total infected individuals in
metapopulation, with and without vaccine

60,000 Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 403,437 335,408
Outbreak 2 403,935 311,332
Outbreak 3 404,198 316,378
Outbreak 4 404,262 318,370
Outbreak 5 404,019 310,577

Table 3.20: Hub Patch 1 (with 80, 000 Individuals): Total infected individuals in
metapopulation, with and without vaccine

80,000 Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 399,687 364,447
Outbreak 2 401,828 335,238
Outbreak 3 403,035 338,125
Outbreak 4 403,590 339,789
Outbreak 5 402,806 335,878

Table 3.21: Hub Patch 1 (with 40, 000 Individuals): Total number of vaccinated in each
patch

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 2,064 3,791 4,399 4,538 4,619 19,412
Outbreak 2 6,862 1,364 4,304 7,062 7,403 26,995
Outbreak 3 7,090 5,326 1,317 4,293 6,987 25,012
Outbreak 4 7,085 6,513 5,383 1,307 4,416 24,705
Outbreak 5 6,426 6,455 7,331 5,562 1,343 27,117
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Table 3.22: Hub Patch 1 (with 60, 000 Individuals): Total number of vaccinated in each
patch

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 2,270 2,701 3,833 4,019 3,917 16,739
Outbreak 2 7,208 1,077 4,009 5,268 5,302 22,865
Outbreak 3 7,534 4,019 1,112 4,041 5,211 21,917
Outbreak 4 7,531 4,257 4,779 1,116 3,827 21,509
Outbreak 5 7,542 4,316 5,341 4,892 1,119 23,210

Table 3.23: Hub Patch 1 (with 80, 000 Individuals): Total number of vaccinated in each
patch

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 2,425 1,233 1,828 1,782 1,599 8,868
Outbreak 2 7,521 665 2,457 2,956 2,801 16,398
Outbreak 3 7,917 2,124 752 2,538 2,863 16,194
Outbreak 4 7,914 2,241 2,747 762 2,353 16,017
Outbreak 5 7,921 2,273 2,997 2,769 723 16,683

patch of the metapopulation for each hub size. We illustrate results for when the outbreak

begins in Patches 1, 3, or 5 in Figures 3.21, 3.22 and B.29. The comparisons between the

infected populations, with and without vaccine, for the hub sizes, are given in Figures 3.18,

3.19, and 3.20. The individual vaccination rates for each patch with hubs of the three sizes

are given in Figures B.26-B.28, which can be found in Appendix B.

The size of hubs in relation to the surrounding patches does play a role in the

vaccination strategy. Unlike previous results, there are cases where the hub patch does

not necessarily have the highest number of vaccinations in the metapopulation. When

the hub and surrounding patch population sizes are similar, there are higher numbers of

vaccinations administered to surrounding patches than in cases where the hubs are very

large in comparison. For example, in the case with a hub of 40, 000 individuals, the most

vaccinated patch is either the farthest downstream patch, the hub, or in the center, depending

on where outbreak begins. As the hub size increases, we see similar results as in subsection

3.6.2, where the hub always had the highest number of vaccinations.
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Figure 3.18: Hub Patch 1 Arrangement (with 40, 000 Individuals): Infected population
dynamics comparison when outbreak occurs in hub, Patch 1
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Figure 3.19: Hub Patch 1 Arrangement (with 60, 000 Individuals): Infected population
dynamics comparison when outbreak occurs in hub, Patch 1
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Figure 3.20: Hub Patch 1 Arrangement (with 80, 000 Individuals): Infected population
dynamics comparison when outbreak occurs in hub, Patch 1
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(a) Hub Patch 1 - Hub 40,000 - Vaccine

(b) Hub Patch 1 - Hub 60,000 - Vaccine

(c) Hub Patch 1 - Hub 80,000 - Vaccine

Figure 3.21: Hub Patch 1 Arrangement: Comparison of vaccination effort of
metapopulation with varying hub sizes with outbreak in hub, Patch 1
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(a) Hub Patch 1 - Hub 40,000 - Vaccine

(b) Hub Patch 1 - Hub 60,000 - Vaccine

(c) Hub Patch 1 - Hub 80,000 - Vaccine

Figure 3.22: Hub Patch 1 Arrangement: Comparison of vaccination effort of
metapopulation with varying hub sizes with outbreak in Patch 3
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In all cases, there is always an emphasis on vaccinating the hub due to its high connectivity.

However the effort to protect surrounding patches increases as their population sizes increase

in comparison with the hub. This also depends upon where the outbreak occurs. One

clear example of this occurs when the outbreak begins in Patch 5, with a hub of 40, 000

individuals in Patch 1. The number of vaccinations is higher in patches centrally located in

the metapopulation rather than in the hub. The population size of the hub does not dominate

over the importance of the surrounding patches so effort is more evenly spread throughout

the metapopulation. However, it is evident that as the hub size increases and outlying patch

population sizes decrease, effort in surrounding patches also decreases.

Similar to previous results, it always is hardest to contain an outbreak beginning in the

hub. The total infecteds in each patch does decrease as a result of the vaccination, with

the largest decrease in the total number occurring in cases with hub size 40, 000 individuals.

However, the total number of infected individuals in the metapopulation, after vaccination, is

always highest when the outbreak begins in hub. As the size of a hub increases, the outbreak

becomes harder to contain. This is an important result when developing a vaccination

program in areas with large cities in relation to their surrounding communities.

3.6.4 Linear Spatial Arrangement with a Hot Spot

Motivated by the work of Tien, Eisenberg, and their collaborators [60, 21], we consider

scenarios where, although population sizes are similar, certain regions may possess a higher

risk of infectivity. Two potential reasons could be worse sanitation or lower availability of

clean water. Areas that have a higher risk of infectivity will be referred to as “hot spots.” The

idea of a hot spot with accompanying scenarios and R0, is discussed in [60]. We investigate

hot spots in the linear arrangement with the same patch connectivity as previously considered

to determine their effect on the optimal vaccination strategies.

The parameter values chosen for the hot spot patch are described in Table 3.24. We

investigate when a hot spot is located at the uppermost patch, Patch 1, and compare with

scenarios when the hot spot is in middle, Patch 3. Additionally, we include several results
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Table 3.24: Parameter Values for Infectivity in Hot Spot and Surrounding Patches

Parameter Description Value in Hot Spot Value Elsewhere

βI person-person contact rate 3.96E−5 2.64E−5

βW reservoir-person contact rate 1.82E−4 1.21E−4

Table 3.25: Hot Spot Patch 1: Basic reproduction number for network and for each patch

Network R0 Patch 1 (HS) Patch 2 Patch 3 Patch 4 Patch 5

6.8677 8.8428 5.8819 5.8819 5.8819 5.8819

for when the hot spot is located in Patch 5 farthest downstream. We use the same initial

conditions as in the previous linear arrangement simulations.

The basic reproduction numbers of the network and for each patch with Patches 1, 3, or

5 as the hot spot for infection are recorded in Tables 3.25, 3.29, and B.9, respectively. The

objective functional values for the cases are recorded in Tables 3.26, 3.30, and B.10. The

total number infected for each scenario is given in Tables 3.27, 3.31, and B.11, and the total

vaccinated is given in Tables 3.28, 3.32, and B.12. The tables for the spatial arrangement

with Patch 5 as the hot spot can be found in Appendix B.

We illustrate the optimal vaccination strategies for hot spot scenarios when the outbreak

begins in Patches 1, 3, or 5. We compare when the hot spot is upstream in Patch 1, in the

center, in Patch 3, and when it is downstream in Patch 5. Results for the for the outbreak

occurring in the hot spot (Patch 1) of a linear arrangement are shown in Figures 3.24, 3.25,

and 3.26. Results for when the outbreak begins in Patch 3, outside the hot spot patch,

Table 3.26: Hot Spot Patch 1: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 161,751
2 179,901
3 179,439
4 156,052
5 125,560
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(a) Outbreak in Patch 1 (b) Outbreak in Patch 2

(c) Outbreak in Patch 3 (d) Outbreak in Patch 4

(e) Outbreak in Patch 5

Figure 3.23: Hot Spot Patch 1 Arrangement: Infected Dynamics (without vaccination) of
the system with outbreak in each of the patches
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Table 3.27: Hot Spot Patch 1: Total number of infected individuals in metapopulation,
with and without vaccine

Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 195,255 82,833
Outbreak 2 198,104 103,555
Outbreak 3 198,803 92,921
Outbreak 4 197,085 81,635
Outbreak 5 192,327 57,455

Table 3.28: Hot Spot Patch 1: Total individuals vaccinated in each patch for each scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 (HS) 698 4,382 6,309 6,152 3,459 20,999
Outbreak 2 3,393 1,193 4,487 6,253 4,974 20,300
Outbreak 3 6,526 5,064 1,302 4,338 5,469 22,700
Outbreak 4 5,434 4,288 5,178 1,294 3,745 19,939
Outbreak 5 4,928 2,722 4,612 5,269 1,236 18,767

are shown in Figures 3.27-3.29. Results for when the outbreak occurs in Patch 5, Figures

B.30-B.32, are found in Appendix B.

Results for the outbreak occurring in the hot spot (Patch 3) of a linear arrangement are

shown in Figures 3.34-3.36 and results for when the outbreak occurs outside the hub patch

are shown in Figures 3.31-B.35. Results for when the outbreak occurs in Patch 5 are found

in Appendix B.
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Figure 3.24: Hot Spot Patch 1 Arrangement: Vaccination rates for patches in linear
arrangement with outbreak in Patch 1

Table 3.29: Hot Spot Patch 3: Basic reproduction number for network and for each patch

Network R0 Patch 1 Patch 2 Patch 3 (HS) Patch 4 Patch 5

6.8250 5.8819 5.8819 8.8428 5.8819 5.8819

Previous results of Tien et al. [60] stated that the farther downstream a hot spot is located,

the higher the network R0. They concluded that the greatest inflow to a patch was more of

a factor than the greatest outflow. Our results did confirm the network reproduction number

was highest when the hot spot was located at the bottom of the river network, however, the

patch furthest upstream did not have the lowest. A potential reason for this result could

be the addition of movement by infected individuals not addressed in [60]. Another factor

could be that our model incorporated pathogen leaving the system both at the upper and

lowermost patches in the water arrangement. This eliminates the water compartment in the
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(a) Vaccination

Figure 3.25: Hot Spot Patch 1 Arrangement: Vaccination effort for linear arrangement
with outbreak in Patch 1

Table 3.30: Hot Spot Patch 3: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 170,255
2 179,248
3 172,257
4 163,731
5 134,654

Table 3.31: Hot Spot Patch 3: Total number of infected individuals in metapopulation,
with and without vaccine

Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

Outbreak 1 197,120 87,708
Outbreak 2 197,106 103,234
Outbreak 3 195,595 98,021
Outbreak 4 193,700 95,565
Outbreak 5 189,167 61,441
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Figure 3.26: Hot Spot Patch 1 Arrangement: Infected population dynamics comparison
with and without vaccination with outbreak in Patch 1

Table 3.32: Hot Spot Patch 3: Total individuals vaccinated in each patch for each scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 1,096 4,351 6,140 6,451 3,797 21,835
Outbreak 2 4,585 1,226 3,231 6,009 5,142 20,193

Outbreak 3 (HS) 4,230 5,138 771 4,180 5,452 19,771
Outbreak 4 3,215 5,664 4,572 1,164 3,700 18,315
Outbreak 5 945 4,389 7,566 5,214 1,212 19,325
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Figure 3.27: Hot Spot Patch 1 Arrangement: Vaccination rates for patches in linear
arrangement with outbreak in Patch 3
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(a) Vaccination

Figure 3.28: Hot Spot Patch 1 Arrangement: Vaccination effort for linear arrangement
with outbreak in Patch 3
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Figure 3.29: Hot Spot Patch 1 Arrangement: Infected population dynamics comparison
with and without vaccination with outbreak in Patch 3
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(a) Outbreak in Patch 1 (b) Outbreak in Patch 2

(c) Outbreak in Patch 3 (d) Outbreak in Patch 4

(e) Outbreak in Patch 5

Figure 3.30: Hot Spot Patch 3: Infected Dynamics (without vaccination) of the system
with outbreak in each of the patches
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Figure 3.31: Hot Spot Patch 3 Arrangement: Vaccination rates for patches in linear
arrangement with outbreak in Patch 1
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(a) Vaccination

Figure 3.32: Hot Spot Patch 3 Arrangement: Vaccination effort for linear arrangement
with outbreak in Patch 1
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Figure 3.33: Hot Spot Patch 3 Arrangement: Infected population dynamics comparison
with and without vaccination with outbreak in Patch 1
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Figure 3.34: Hot Spot Patch 3 Arrangement: Vaccination rates for patches in linear
arrangement with outbreak in Patch 3

148



(a) Vaccination

Figure 3.35: Hot Spot Patch 3 Arrangement: Vaccination effort for linear arrangement
with outbreak in Patch 3
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Figure 3.36: Hot Spot Patch 3 Arrangement: Infected population dynamics comparison
with and without vaccination with outbreak in Patch 3
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upper and lowermost patches from differing much from other patches in the linear spatial

arrangement, in terms of pathogen in the aquatic reservoir. Unlike [60], the best case for

a hot spot, based on network R0 values, would be in the center or upstream of the spatial

arrangement, but not necessarily at the top.

As seen in our results, disease control efforts are not always highest in patches considered

to have the highest network risk. Although hot spots have higher R0 values, depending on

where they are located and where an outbreak begins, the control effort for each patch varies,

with the hot spot not always receiving the most vaccinations.

When the hot spot is located at the top of the network, Figures 3.24-3.29, we see similar

results to the previous linear arrangement scenarios. Both population and pathogen only

move to nearest neighbor so if the outbreak occurs in this hot spot, the effort is focused on

protecting all downstream patches, seen in Figures 3.24-3.26.

When the outbreak occurs elsewhere in the metapopulation, we see similar effort levels in

the outbreak patch as in previous scenarios but higher levels in the hot spot and for longer

time, seen in Figures 3.27-3.29 and Figures B.30-B.32 in Appendix B. This is comparable to

the hub arrangements when the outbreak occurred outside the hub. There is high effort in

nearest neighbor patches but the hot spot is the priority with its high potential for invasion.

When there is no direct connection between the hot spot and outbreak patch, increasing the

effort in the hot spot almost eradicates the outbreak from this patch.

Another interesting result is in the number of vaccinations per patch. In comparing Table

3.28, the most vaccinations do not always occur in the hot spot patch. The most vaccinations

are given to the hot spot only for outbreaks beginning close to the patch. When the outbreak

occurs in the hot spot, more vaccinations are given in patches downstream of outbreak and

for outbreaks beginning farther downstream, less vaccinations are spent in the hot spot and

more are given to patches immediately upstream.

When the hot spot is centrally located in the metapopulation, there are additional

differences in the vaccination strategy. From Table 3.32 and Figure 3.32, we see that when

the outbreak begins upstream, effort is focused on patches downstream but not necessarily
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nearest neighbor. There are more vaccinations administered in the patch below the hot spot.

With an outbreak in the hot spot, seen in Figures 3.34-3.36, effort is spent longer on nearest

upstream neighbor rather than downstream patches. The most vaccinations are administered

in the farthest downstream patch as well as nearest upstream neighbor, seen in Table 3.32.

This is similar to the previous linear arrangements. When the outbreak begins below the

hot spot, the most vaccinations are administered in patches immediately upstream of the

outbreak, whether a hot spot or not.

In comparing results of the linear arrangements, with and without hot spots, Tables 3.28

and 3.9 reveal the vaccination strategies differ most when a hot spot is located in upstream

patches and an outbreak occurs downstream. With the addition of a hot spot, there is a

large increase of vaccinations in the patch designated as a hot spot compared to the strictly

linear arrangement case. This is similar to when the hot spot is centrally located, comparing

Tables 3.32 and 3.9. There is a significant decrease in the number of vaccinations in the

uppermost patch and a large increase of vaccinations at the hot spot.

3.7 Conclusions

After developing and analyzing an optimal control problem for a waterborne disease

metapopulation model, we used numerical simulations to approximate solutions. We

considered multiple scenarios and found the optimal vaccination strategies. We investigated

a linear spatial arrangement with strictly nearest neighbor movement among the patches, hub

spatial arrangements where one patch in the metapopulation had a larger population, higher

connectivity among the patches, and higher movement rates, and linear spatial arrangements

with patches of higher infectivity known as “hot spots.” We sought answers to the question

of where control efforts should be focused depending on metapopulation structure and path

dynamics.

Vaccination strategies for the linear spatial arrangements were dependent on where

the outbreak occurs. Vaccinations when outbreaks began at the top and bottom of the
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arrangement had greater effect in lowering the number of infecteds in the metapopulation

than when the outbreak was centrally located. The movement of the pathogen in the aquatic

reservoir had a significant impact as well. When the outbreak occurred upstream, it was

more important to protect patches farther downstream, whereas when the outbreak was

downstream, the strategy shifts to protecting patches immediately upstream.

With the added connectivity of the hub spatial arrangements, the vaccination strategy

and its impact is affected. The added connectivity of the hub makes the outbreak much

harder to contain because it travels to every patch in the metapopulation shortly after it

begins. When the outbreak occurs within a hub, vaccination effort is spent evenly among

surrounding patches but its affect in preventing the disease is minimal. However, when the

outbreak occurs outside the hub, there is a large effort spent protecting the hub due to its

potential to spread the outbreak to all patches of the metapopulation.

We also compared sizes of hubs in relation to the outlying patches. The larger the hub,

compared to the surrounding patches, the more vaccination effort is focused on the hub.

When the hub and surrounding patches are more even in population size, effort is more

evenly spread to the outlying patches. This is important to consider when investigating

regions with large cities and how population sizes of the region matter when developing

intervention strategies.

We compared our results with those of Tien, Eisenberg, and their collaborators [60, 21],

by considering a linear spatial arrangement that includes “hot spot” patches. There

were several differences between our results as well as differences from the identical patch

linear arrangement scenarios. Wherever a hot spot is located in the arrangement, the

vaccination strategy changes most when the outbreak begins in downstream patches of the

metapopulation. There is a large increase in vaccinations in the hot spot patch compared to

scenarios when the outbreak is in, or near, the hot spot. There is evidence that an increase

in vaccination effort to the hot spot is only appropriate if an outbreak occurs far enough

away from the patch, specifically when farther downstream. Otherwise, a similar vaccination

strategy to the identical linear arrangement is appropriate.
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Our work shows convincingly that spatial arrangements and heterogeneity in features (like

hot spots, sizes, and connectivity) are important to management strategies. These features

can have a significant impact on intervention decisions. These optimal control tools, applied

to the varying scenarios, can give guiding “rule of thumb” strategies for the management of

disease epidemics when concerned about spatial features of a landscape.

Guiding Strategies for Spatial Arrangement Scenarios

• It is too hard to contain a patch once invaded with the disease so the least effort is

always in outbreak patch.

• Due to the directional flow of rivers affecting pathogen movement, more vaccinations

are needed when outbreaks occur upstream rather than downstream.

• With more populations downstream, vaccine effort should be focused on (not necessarily

nearest) patches downstream of outbreak.

• If the outbreak is centrally located, the optimal strategy is to contain outbreak with

vaccines in patches above and below outbreak with higher effort downstream.

• With more populations upstream, vaccine effort focused immediately upstream since

the pathogen has a harder time traveling upstream.

• With outbreaks in surrounding patches, the focus of vaccinations should be in the hub.

• Outbreaks are hardest to contain when starting in a hub, which implies that preemptive

prevention of disease invasions in hubs is highly important.

• With a hub upstream, regardless of where outbreak occurs, it is important to vaccinate

the patch immediately downstream of the hub to prevent the spread in the patch

network.

• Depending on the size of hub, effort spent in the hub compared to the surrounding

patches will change. The larger the hub patch, the higher the vaccination will be in

that patch.
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• Even if an area of higher risk of invasion (“hot spot”), if these areas are not located in

close proximity to the outbreak location, it is more important to contain outbreak in

surrounding patches than the hot spot itself.

3.8 Future Work

Many of the simulations investigated identical patches within a metapopulation. There is

now a need to investigate a more heterogenous set of patches in the metapopulation (varying

contact rates, recovery rates, movements, etc.) and investigate outbreak scenarios. We also

want to compare our results with an actual spatial arrangement of communities, such as the

departments of Haiti.

The spatial arrangement project for cholera has branched out to current work on a multi-

dose vaccine model for the disease to depict a more accurate vaccine program. I am interested

in investigating waning immunity in response to dose intakes. I have been developing this

model which includes an exponential waning immunity term, as well as an extension using a

gamma chain distribution, to investigate the effect of immunity on disease dynamics, the role

of waning immunity from the disease and vaccination, and to find an optimal intervention

strategy for its implementation.

In addition, further investigation should include the restriction to a limited number of

vaccinations. There is currently interest in the creation of a vaccine stockpile so results

with a finite number of vaccinations available would be significant. This work could also be

applied to other diseases as well as alternative intervention strategies besides, or in addition

to, vaccination.
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Appendix A

Numerical Scheme Explanation

For numerical simulations, we consider the one-dimensional fish stock density model:

ut = (a(x, t)ux)x + b(x, t)ux + f(u)− h(x, t)u Ω× (0, T ) (A.1)

∂u

∂ν
(x, t) + qu(x, t) = 0 ∂Ω× (0, T ) (A.2)

where Ω = (0, L).

We assume the initial condition:

u(x, 0) = u0(x) x ∈ (0, L).

The diffusion and advection coefficients, a(x, t) and b(x, t), can be heterogeneous functions.

We will solve the state PDE forward in time using the initial conditions.

The adjoint operator L∗ and the adjoint PDE for the problem:

L∗λ = −λt − (1− 2u∗)λ+ hλ− (a(x, t)λx)x + (b(x, t)λ)x (A.3)
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where

L∗λ+ µλ = h∗ Ω× (0, T ) (A.4)

∂λ

∂ν
+ qλ− b(x, t)ηλ = 0 ∂Ω× (0, T ), (A.5)

and

λ(x, T ) = 0.

Since we only numerically consider one-dimensional in space, the value of the normal, η, will

be 1 or −1 depending on the side of the domain. Also, note that q > bη in our cases. We

used finite difference schemes to discretize the system of equations.

For the diffusion term, since we consider a(x, t) to be a heterogenous function, we used a

scheme described in [30]:

(
a(i, j)

∂u

∂x

)
x

(i, j) =

a(i+ 1
2
, j)u(i+ 1, j)−

(
a(i+ 1

2
, j) + a(i− 1

2
, j)
)
u(i, j) + a(i− 1

2
, j)u(i− 1, j)

(dx)2
.

For the advection term, we used an upwind scheme. The scheme is dependent on the sign of

the advection coefficient, b(x, t), in the following way:

If b(x, t) > 0, then:
du

dx
(i, j) =

u(i+ 1, j)− u(i, j)

dx
.

If b(x, t) < 0, then
du

dx
(i, j) =

u(i, j)− u(i− 1, j)

dx
.

Additionally, for the term in the adjoint, (b(x, t)λ)x:

If b(x, t) > 0, then:

(b(i, j)λ)x (i, j) =
b(i+ 1, j)λ(i+ 1, j)− b(i, j)λ(i, j)

dx
.
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If b(x, t) < 0, then

(b(i, j)λ)x (i, j) =
b(i, j)λ(i, j)− b(i− 1, j)λ(i− 1, j)

dx
.

We used an Euler method for the time derivative discretization:

du

dt
(i, j) =

u(i, j + 1)− u(i, j)

dt
.

Using the above three schemes, we discretized the state system and solved forward in

time using the initial condition. The scheme is written (if b > 0):

u(i, j + 1)− u(i, j)

(dt)
= u(i, j) (1− u(i, j))

+
1

(dx)2

(
a(i+

1

2
, j)u(i+ 1, j) + a(i− 1

2
, j)u(i− 1, j)

)
− 1

(dx)2

(
a(i+

1

2
, j) + a(i− 1

2
, j)

)
u(i, j)

− h(i, j)u(i, j) + b(i, j)

[
u(i+ 1, j)− u(i, j)

(dx)

]
.

After some rewriting, solving for u(i, j + 1):

u(i, j + 1) = u(i, j) + u(i, j) (1− u(i, j)) dt

+
dt

(dx)2

(
a(i+

1

2
, j)

)
(u(i+ 1, j)− u(i, j))

+
dt

(dx)2

(
a(i− 1

2
, j)

)
(u(i− 1, j)− u(i, j))

− h(i, j)u(i, j)dt+ b(i, j) [u(i+ 1, j)− u(i, j)]
dt

dx
.

For the terms at the boundary, x = 1 and x = L:

du

dν
(1, j) + qu(1, j) = 0⇒

[
u(2, j)− u(0, j)

2dx

]
ν + qu(1, j) = 0
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and
du

dν
(L, j) + qu(L, j) = 0⇒

[
u(L+ 1, j)− u(L− 1, j)

2(dx)

]
ν + qu(L, j) = 0.

We used positions close to the boundary to get the following:

du

dν
(2, j) + qu(2, j) = 0⇒

[
u(3, j)− u(1, j)

2dx

]
ν + qu(2, j) = 0

and

du

dν
(L− 1, j) + qu(L− 1, j) = 0⇒

[
u(L, j)− u(L− 2, j)

2(dx)

]
ν + qu(L− 1, j) = 0.

We then solved for the terms on the boundary (with ν = −1 at x = 1 and ν = 1 at x = L):

u(1, j) = u(3, j)− 2qu(2, j)dx

and

u(L, j) = u(L− 2, j)− 2qu(L− 1, j)dx.

We discretized the adjoint system and solved the system backward in time using the

transversality condition. The scheme is written (if b > 0):

−
(
λ(i, j)− λ(i, j − 1)

dt

)
− (1− 2u(i, j − 1))λ(i, j)

− 1

(dx)2

(
a(i+

1

2
, j)λ(i+ 1, j) + a(i− 1

2
, j)λ(i− 1, j)

)
+

1

(dx)2

(
a(i+

1

2
, j) + a(i− 1

2
, j)

)
λ(i, j)

+

[
b(i, j)λ(i, j)− b(i− 1, j)λ(i− 1, j)

dx

]
+µλ(i, j) + (λ(i, j)− 1)h(i, j − 1) = 0.
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After some rewriting, the code for λ(i, j − 1) is:

λ(i, j − 1) = λ(i, j) + (1− 2u(i, j − 1))λ(i, j)dt

− µλ(i, j)dt+ h(i, j − 1) (1− λ(i, j)) dt

+
dt

(dx)2

(
a(i+

1

2
, j)

)
(λ(i+ 1, j)− λ(i, j))

+
dt

(dx)2

(
a(i− 1

2
, j)

)
(λ(i− 1, j)− λ(i, j))

− dt

dx
[b(i, j)λ(i, j)− b(i− 1, j)λ(i− 1, j)] .

For the terms at the boundary, x = 1 and x = L:

∂λ

∂ν
(1, j),+qλ(1, j)− b(1, j)ηλ(1, j) = 0

⇒
[
λ(2, j)− λ(0, j)

2dx

]
ν + qλ(1, j)− b(1, j)ηλ(1, j) = 0

and

∂λ

∂ν
(L, j),+qλ(L, j)− b(L, j)ηλ(L, j) = 0

⇒
[
λ(L+ 1, j)− λ(L− 1, j)

2dx

]
ν + qλ(L, j)− b(L, j)ηλ(L, j) = 0.

Again, we used positions close to the boundary to get the following:

[
λ(3, j)− λ(1, j)

2dx

]
ν + qλ(2, j)− b(2, j)ηλ(2, j) = 0

and [
λ(L, j)− λ(L− 2, j)

2dx

]
ν + qλ(L− 1, j)− b(L− 1, j)ηλ(L− 1, j) = 0.
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We then solved for the terms on the boundary:

λ(1, j) = λ(3, j)− 2 (q + b(2, j))λ(2, j)dx

λ(L, j) = λ(L− 2, j)− 2 (q − b(L− 1, j))λ(L− 1, j)dx.

We then characterized the control as described in (2.42). We set the control as hmax, 0,

or hsingular depending on the value of the adjoint. The hsingular case did not occur in our

simulations.

170



Appendix B

Cholera Simulations

We include several additional plots for the simulations of a cholera outbreak and optimal

vaccination strategies.

B.1 Additional Linear Spatial Arrangement Results

The vaccination rates for each patch with an outbreak in Patch 3 or 5 are given in Figures

B.1 and B.2.

B.2 Additional Hub Patch 1 Spatial Arrangement

Results

Results for when an outbreak begins in Patch 5 are given in Figures B.3-B.5.
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Figure B.1: Linear Arrangement: Vaccination rates of patches with outbreak in Patch 3
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Figure B.2: Linear Arrangement: Vaccination rates of patches with outbreak in Patch 5

173



Figure B.3: Hub Patch 1 Arrangement: Vaccination rates of patches with outbreak in
Patch 5
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(a) Vaccination

Figure B.4: Hub Patch 1 Arrangement: Vaccination effort of patches with outbreak in
Patch 5
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Figure B.5: Hub Patch 1 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in Patch 5
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Table B.1: Hub Patch 3 Arrangement: The basic reproduction number for network and for
each patch

Network R0 Patch 1 Patch 2 Patch 3 (Hub) Patch 4 Patch 5

13.1942 2.9409 2.9409 17.6457 2.9409 2.9409

Table B.2: Hub Patch 3 Arrangement: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 185,725
2 187,217
3 188,461
4 179,717
5 176,902

B.3 Hub Patch 3 Spatial Arrangement Results

We now consider the hub in the center of the river arrangement in Patch 3 and find optimal

vaccination results for the cases when the outbreak occurs in the either Patch 1, 3, or 5

of the metapopulation. The basic reproduction number of each patch in each of the five

scenarios with Patch 3 as the hub are recorded in Table B.1. For each scenario, the objective

functional values, the total infected with and without vaccination, and the total vaccinated

in each patch and metapopulation are listed in Tables B.2, B.3, and B.4. Results for when

the outbreak occurs within the hub patch are shown in Figure B.8. Results for when the

outbreak occurs outside the hub patch are shown in Figures B.11 and B.14.

Table B.3: Hub Patch 3 Arrangement: Total number of infected individuals in
metapopulation, with and without vaccine

Outbreak Patch Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

1 196,666 121,298
2 194,466 135,631
3 190,856 158,215
4 191,729 122,275
5 191,485 114,260
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(a) Outbreak in Patch 1 (b) Outbreak in Patch 2

(c) Outbreak in Patch 3 (d) Outbreak in Patch 4

(e) Outbreak in Patch 5

Figure B.6: Hub Patch 3 Arrangement: Infected population dynamics when outbreak
occurs in each of the five patches (without vaccination), where plot on left is the hub only,
plot on right is surrounding patches
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Table B.4: Hub Patch 3 Arrangement: Total individuals vaccinated in each patch for each
scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 714 2,530 8,240 3,380 2,700 17,564
Outbreak 2 2,071 682 6,097 2,809 2,460 14,120

Outbreak 3 (Hub) 1,336 1,555 1,960 1,597 1,751 8,198
Outbreak 4 2,394 2,612 7,666 698 2,437 15,806
Outbreak 5 2,506 2,729 8,359 2,875 736 17,206

Figure B.7: Hub Patch 3 Arrangement: Vaccination rates of patches with outbreak in hub,
Patch 3
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(a) Vaccination

Figure B.8: Hub Patch 3 Arrangement: Vaccination efforts of patches with outbreak in
hub, Patch 3
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Figure B.9: Hub Patch 3 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in hub, Patch 3
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Figure B.10: Hub Patch 3 Arrangement: Vaccination rates of patches with outbreak in
Patch 1
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(a) Vaccination

Figure B.11: Hub Patch 3 Arrangement: Vaccination efforts of patches with outbreak in
Patch 1

183



Figure B.12: Hub Patch 3 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in Patch 1
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Figure B.13: Hub Patch 3 Arrangement: Vaccination rates of patches with outbreak in
Patch 5
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(a) Vaccination

Figure B.14: Hub Patch 3 Arrangement: Vaccination efforts of patches with outbreak in
Patch 5
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Figure B.15: Hub Patch 3 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in Patch 5
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Table B.5: Hub Patch 5 Arrangement: The basic reproduction number for network and for
each patch

Network R0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 (Hub)

16.9561 2.9409 2.9409 2.9409 2.9409 17.6457

Table B.6: Hub Patch 5 Arrangement: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 183,062
2 185,465
3 181,259
4 178,730
5 180,139

B.4 Hub Patch 5 Spatial Arrangement Results

We now consider the hub at the bottom of the river arrangement in Patch 5. Again, we find

the optimal vaccination results for when the outbreak occurs in Patches 1, 3, or 5 of the

metapopulation. The basic reproduction number of each patch in each of the five scenarios

with Patch 5 as the hub are recorded in Table B.5. For each scenario, the objective functional

values, the total infected with and without vaccination, and the total vaccinated in each patch

and metapopulation are listed in Tables B.6, B.7, and B.8. Results for when the outbreak

occurs within the hub patch are shown in Figure B.18. Results for when the outbreak occurs

outside the hub patch are shown in Figures B.21 and B.24.

Table B.7: Hub Patch 5 Arrangement: Total number of infected individuals in
metapopulation, with and without vaccine

Outbreak Patch Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

1 194,093 117,927
2 194,486 122,223
3 191,824 121,276
4 187,749 130,151
5 182,855 151,731
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(a) Outbreak in Patch 1 (b) Outbreak in Patch 2

(c) Outbreak in Patch 3 (d) Outbreak in Patch 4

(e) Outbreak in Patch 5

Figure B.16: Hub Patch 5 Arrangement: Infected population dynamics when outbreak
occurs in each of the five patches (without vaccination), where plot on left is the hub only,
plot on right is surrounding patches
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Table B.8: Hub Patch 5 Arrangement: Total individuals vaccinated in each patch for each
scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 765 2,891 3,116 2,699 8,249 17,719
Outbreak 2 2,483 855 2,804 2,932 8,186 17,259
Outbreak 3 2,252 2,691 842 2,535 8,153 16,472
Outbreak 4 2,105 2,194 2,287 705 6,115 13,406

Outbreak 5 (Hub) 1,313 1,437 1,477 1,578 1,998 7,804

Figure B.17: Hub Patch 5 Arrangement: Vaccination rates of patches with outbreak in
hub, Patch 5
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(a) Vaccination

Figure B.18: Hub Patch 5 Arrangement: Vaccination efforts of patches with outbreak in
hub, Patch 5
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Figure B.19: Hub Patch 5 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in hub, Patch 5
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Figure B.20: Hub Patch 5 Arrangement: Vaccination rates of patches with outbreak in
Patch 1
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(a) Vaccination

Figure B.21: Hub Patch 5 Arrangement: Vaccination efforts of patches with outbreak in
Patch 1
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Figure B.22: Hub Patch 5 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in Patch 1
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Figure B.23: Hub Patch 5 Arrangement: Vaccination rates of patches with outbreak in
Patch 3

196



(a) Vaccination

Figure B.24: Hub Patch 5 Arrangement: Vaccination efforts of patches with outbreak in
Patch 3
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Figure B.25: Hub Patch 5 Arrangement: Infected population dynamics comparison with
and without vaccination with outbreak in Patch 3
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B.5 Additional Hub Size Comparison Results

Figure B.26: Hub Patch 1 Arrangement (with 40, 000 Individuals): Vaccination rates for
patches when outbreak occurs in hub, Patch 1
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Figure B.27: Hub Patch 1 Arrangement (with 60, 000 Individuals): Vaccination rates for
patches when outbreak occurs in hub, Patch 1
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Figure B.28: Hub Patch 1 Arrangement (with 80, 000 Individuals): Vaccination rates for
patches when outbreak occurs in hub, Patch 1

201



(a) Hub Patch 1 - Hub 40,000 - Vaccine

(b) Hub Patch 1 - Hub 60,000 - Vaccine

(c) Hub Patch 1 - Hub 80,000 - Vaccine

Figure B.29: Hub Patch 1 Arrangement: Comparison of vaccination effort of
metapopulation with varying hub sizes with outbreak in Patch 5
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Table B.9: Hot Spot Patch 5: Basic reproduction number for network and for each patch

Network R0 Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 (HS)

8.6854 5.8819 5.8819 5.8819 5.8819 8.8428

B.6 Additional Linear Spatial Arrangements with Hot

Spot Results

Figure B.30: Hot Spot Patch 1 Arrangement: Vaccination rates for patches in linear
arrangement with outbreak in Patch 5
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(a) Vaccination

Figure B.31: Hot Spot Patch 1 Arrangement: Vaccination effort for linear arrangement
with outbreak in Patch 5

Table B.10: Hot Spot Patch 5: Objective functional values for each scenario

Outbreak Patch J(v) (w Vaccine)

1 169,002
2 181,531
3 174,277
4 153,425
5 124,971

Table B.11: Hot Spot Patch 5: Total number of infected individuals in metapopulation,
with and without vaccine

Outbreak Patch Total Infecteds (w/o Vaccine) Total Infecteds (with Vaccine)

1 197,920 77,938
2 198,261 93,233
3 196,316 101,437
4 191,601 92,260
5 181,883 64,590
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Figure B.32: Hot Spot Patch 1 Arrangement: Infected population dynamics comparison
with and without vaccination with outbreak in Patch 5

Table B.12: Hot Spot Patch 5: Total individuals vaccinated in each patch for each scenario

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Total Vaccinated

Outbreak 1 1,178 4,513 6,260 5,764 6,282 23,997
Outbreak 2 4,609 1,293 4,434 6,030 6,749 23,114
Outbreak 3 4,194 5,287 1,283 3,989 4,744 19,497
Outbreak 4 2,781 5,237 5,351 1,262 2,016 16,646

Outbreak 5 (HS) 1,298 4,004 5,341 5,170 745 16,557
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Figure B.33: Hot Spot Patch 3 Arrangement: Vaccination rates for patches in linear
arrangement with outbreak in Patch 5
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(a) Vaccination

Figure B.34: Hot Spot Patch 3 Arrangement: Vaccination effort for linear arrangement
with outbreak in Patch 5
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Figure B.35: Hot Spot Patch 3 Arrangement: Infected population dynamics comparison
with and without vaccination with outbreak in Patch 5
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