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Abstract

This dissertation consists of four integral parts with a unified objective of developing

efficient numerical methods for high frequency time-harmonic wave equations defined

on both homogeneous and random media. The first part investigates the generalized

weak coercivity of the acoustic Helmholtz, elastic Helmholtz, and time-harmonic

Maxwell wave operators. We prove that such a weak coercivity holds for these wave

operators on a class of more general domains called generalized star-shape domains.

As a by-product, solution estimates for the corresponding Helmholtz-type problems

are obtained.

The second part of the dissertation develops an absolutely stable (i.e. stable in

all mesh regimes) interior penalty discontinuous Galerkin (IP-DG) method for the

elastic Helmholtz equations. A special mesh-dependent sesquilinear form is proposed

and is shown to be weakly coercive in all mesh regimes. We prove that the proposed

IP-DG method converges with optimal rate with respect to the mesh size. Numerical

experiments are carried out to demonstrate the theoretical results and compare this

method to the standard finite element method.

The third part of the dissertation develops a Monte Carlo interior penalty

discontinuous Galerkin (MCIP-DG) method for the acoustic Helmholtz equation

defined on weakly random media. We prove that the solution to the random

Helmholtz problem has a multi-modes expansion (i.e., a power series in a medium-

related small parameter). Using this multi-modes expansion an efficient and accurate

numerical method for computing moments of the solution to the random Helmholtz

v



problem is proposed. The proposed method is also shown to converge optimally.

Numerical experiments are carried out to compare the new multi-modes MCIP-DG

method to a classical Monte Carlo method.

The last part of the dissertation develops a theoretical framework for Schwarz pre-

conditioning methods for general nonsymmetric and indefinite variational problems

which are discretized by Galerkin-type discretization methods. Such a framework has

been missing in the literature and is of great theoretical and practical importance for

solving convection-diffusion equations and Helmholtz-type wave equations. Condition

number estimates for the additive and hybrid Schwarz preconditioners are established

under some structure assumptions. Numerical experiments are carried out to test the

new framework.

vi



Table of Contents

1 Introduction 1

1.1 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Summary of this Dissertation . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Generalized Weak Coercivity of Reduced Wave Operators 9

2.1 Introduction to Generalized Weak Coercivity and Generalized Star-

Shape Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Scalar Helmholtz Operator . . . . . . . . . . . . . . . . . . . . . 11

2.3 The Elastic Helmholtz Operator . . . . . . . . . . . . . . . . . . . . . 18

2.4 The Time-Harmonic Maxwell Operator . . . . . . . . . . . . . . . . . 29

2.5 Applications to Stability Estimates . . . . . . . . . . . . . . . . . . . 39

3 Absolutely Stable Discontinuous Galerkin Methods for the Elastic

Helmholtz Equations 48

3.1 Formulation of the IP-DG Method . . . . . . . . . . . . . . . . . . . 50

3.1.1 Some Properties of the IP-DG Method . . . . . . . . . . . . . 54

3.2 Asymptotic Error Estimates . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Elliptic Projection and its Error Estimates . . . . . . . . . . . 63

3.2.2 Asymptotic Error Estimates Via Schatz Argument . . . . . . . 69

3.3 Pre-asymptotic Error Estimates . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Stability Estimates in the Pre-Asymptotic Mesh Regime . . . 75

vii



3.3.2 Error Estimates for the IP-DG Method . . . . . . . . . . . . . 77

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.3 IP-DG vs. FEM . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 A Multi-modes Monte Carlo Interior Penalty Discontinuous Galerkin

Method for Acoustic Wave Scattering in Random Media 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 PDE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.2 Wave-number Explicit Solution Estimates . . . . . . . . . . . 92

4.3 Multi-modes Representation of the Solution and its Finite Modes

Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Monte Carlo Discontinuous Galerkin Approximation of the Truncated

Multi-modes Expansion U ε
N . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 DG Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 IP-DG Method for Deterministic Helmholtz Problem . . . . . 111

4.4.3 MCIP-DG Method for Approximating E(Uε
n) . . . . . . . . . 115

4.5 The Overall Numerical Procedure . . . . . . . . . . . . . . . . . . . . 126

4.5.1 The Numerical Algorithm, Linear Solver and Computational

Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 131

4.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6.1 MCIP-DG with Multi-modes Expansion Compared to Classical

MCIP-DG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.6.2 More Numerical Tests . . . . . . . . . . . . . . . . . . . . . . 134

5 Schwarz Space Decomposition Methods for Nonsymmetric and

Indefinite Problems 140

viii



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Functional Setting and Statement of Problems . . . . . . . . . . . . . 143

5.2.1 Variational Problem . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.2 Discrete Problem . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.3 Main Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3 An Abstract Schwarz Framework for Nonsymmetric and Indefinite

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.1 Main Assumptions and Main Idea . . . . . . . . . . . . . . . . 150

5.3.2 Space Decomposition and Local Solvers . . . . . . . . . . . . . 152

5.3.3 Additive Schwarz Method . . . . . . . . . . . . . . . . . . . . 155

5.3.4 Multiplicative Schwarz Method . . . . . . . . . . . . . . . . . 158

5.3.5 A Hybrid Schwarz Method . . . . . . . . . . . . . . . . . . . . 160

5.4 An Abstract Schwarz Preconditioner Theory for Nonsymmetric and

Indefinite Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.4.1 Structure Assumptions . . . . . . . . . . . . . . . . . . . . . . 161

5.4.2 Condition Number Estimate for Pad . . . . . . . . . . . . . . . 163

5.4.3 Condition Number Estimate for Phy . . . . . . . . . . . . . . . 171

5.5 Application to DG Discretizations for Convection-diffusion Problems 175

5.5.1 Discontinuous Galerkin Approximations . . . . . . . . . . . . 177

5.5.2 Partial Analysis of the 1-D Convection Diffusion Problem . . . 179

5.5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 187

6 Future Directions 197

Bibliography 199

Vita 210

ix



List of Tables

4.1 CPU times required to compute the multi-modes MCIP-DG approxi-

mation Ψh
N and the classical MCIP-DG approximation Ψ̃h. . . . . . . 135

4.2 Relative error in the L2-norm between the multi-modes MCIP-DG

approximation Ψh
3 and the classical MCIP-DG approximation Ψ̃h. . . 136

4.3 Relative error in the L2-norm between the multi-modes MCIP-DG

approximation Ψh
N and the classical MCIP-DG approximation Ψ̃h. . 136

5.1 Performance of three Schwarz methods on Test 1 . . . . . . . . . . . 190

5.2 Performance of three Schwarz methods on Test 2 . . . . . . . . . . . 191

5.3 Performance of three Schwarz methods on Test 3 . . . . . . . . . . . 192

5.4 Performance of three Schwarz methods on Test 4 . . . . . . . . . . . 193

x



List of Figures

2.1 An example of a domain Ω of interest. . . . . . . . . . . . . . . . . . 12

3.1 Example of the triangulation T1/10. . . . . . . . . . . . . . . . . . . . 80

3.2 Plot of ‖Re
(
uh
)
‖2 for ω = 50 and h = 1/70. Both a top down view

(left) and a side view (right) are shown. . . . . . . . . . . . . . . . . 81

3.3 Plot of ‖Re
(
uh
)
‖2 for ω = 100 and h = 1/120. Both a top down view

(left) and a side view (right) are shown. . . . . . . . . . . . . . . . . 81

3.4 Plots of ‖uh‖1,h and ‖uFEMh ‖1,h. . . . . . . . . . . . . . . . . . . . . 82

3.5 Log-log plot of the relative error for the IP-DG approximation

measured in the H1-seminorm for different values of ω. . . . . . . . . 83

3.6 Relative error of the IP-DG approximation measured in the H1

seminorm computed for different values of ω and h is chosen to satisfy

the given constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 The left plot is of ‖Re(uh)‖2 (solid red line) vs. ‖Re(u)‖2 (dashed

blue line) for h = 1/50. The right plot is of ‖Re(uFEMh )‖2 (solid red

line) vs. ‖Re(u)‖2 (dashed blue line) for h = 1/50. . . . . . . . . . . 85

3.8 The left plot is of ‖Re(uh)‖2 (solid red line) vs. ‖Re(u)‖2 (dashed

blue line) for h = 1/120. The right plot is of ‖Re(uFEMh )‖2 (solid red

line) vs. ‖Re(u)‖2 (dashed blue line) for h = 1/120. . . . . . . . . . 85

3.9 The left plot is of ‖Re(uh)‖2 (solid red line) vs. ‖Re(u)‖2 (dashed

blue line) for h = 1/200. The right plot is of ‖Re(uFEMh )‖2 (solid red

line) vs. ‖Re(u)‖2 (dashed blue line) for h = 1/200. . . . . . . . . . 86

xi



4.1 Triangulation T1/10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2 Discrete average media 1
M

∑M
j=1 α(ωj, ·) (left) and a sample media

α(ω, ·) (right) computed for h = 1/20, ε = 0.1, η(·, x) ∼ U [−1, 1],

and M = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 (left) Relative error in the L2-norm between Ψh
N computed using the

multi-modes MCIP-DG method and Ψ̃h computed using the classical

MCIP-DG method. (right) εN vs. N for N = 1, 2, · · · , 5. . . . . . . . 134

4.4 Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100,

ε = 0.02, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . . . . . . . . . 137

4.5 Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k =

50, h = 1/100, ε = 0.02, η(·, x) ∼ U [−1, 1], and M = 1000, over the

line y = x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6 Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100,

ε = 0.1, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . . . . . . . . . 137

4.7 Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k =

50, h = 1/100, ε = 0.1, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . 138

4.8 Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100,

ε = 0.5, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . . . . . . . . . 138

4.9 Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k =

50, h = 1/100, ε = 0.5, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . 138

4.10 Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100,

ε = 0.8, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . . . . . . . . . 139

4.11 Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k =

50, h = 1/100, ε = 0.8, η(·, x) ∼ U [−1, 1], and M = 1000. . . . . . . . 139

5.1 Dependence of κA(Pad) and κA(Phy) on J in Test 2 . . . . . . . . . . 194

5.2 Spectrum plots from Test 2 . . . . . . . . . . . . . . . . . . . . . . 195

5.3 Spectrum plots from Test 4 . . . . . . . . . . . . . . . . . . . . . . 196

xii



Chapter 1

Introduction

As a fundamental mechanism for energy transmission, wave phenomena are ubiqui-

tous in our world. Waves are determined by their sources and the media in which

they propagate. Wave scattering describes the physical phenomena in which wave

propagation is changed due to some non-uniformity in the medium in which the

wave is traveling. Wave scattering problems have applications in many scientific

fields including communications, defense, aviation, geoscience, medical science,

manufacturing, etc.

The goal of this dissertation is to develop efficient numerical methods for high

frequency time-harmonic wave equations defined on both homogeneous and random

media. Specifically, it focuses on three basic mathematical models of wave scattering

and propagation. These are the acoustic Helmholtz, elastic Helmholtz, and time-

harmonic Maxwell’s equations.

The first wave scattering problem we will consider is the acoustic/scalar Helmholtz

problem given by

−∆u− k2u = f in Ω, (1.1)

∂u

∂n+

+ iku = g on ∂Ω+, (1.2)

u = 0 on ∂Ω−. (1.3)

1



Here, Ω ⊂ Rd (d = 1, 2, 3) is a domain that consists of some acoustic medium and

u : Ω → C is the pressure of the medium. k is the wave number, defined by k := ω
c
,

where ω, c > 0 are the angular frequency and speed of the wave in Ω, respectively.

f is the external source. ∂Ω is decomposed into two pieces ∂Ω+ and ∂Ω−. n+,n−

denotes the unit outward normal vectors on ∂Ω+ and ∂Ω−, respectively. Typically,

wave propagation problems are posed on large or unbounded domains complemented

with a far-field radiation condition. For computational purposes, we choose to utilize

a truncated domain. ∂Ω+ represents the boundary from this truncation. When g = 0,

(1.2) is a first order absorbing boundary condition [35], which is an artificial boundary

condition that absorbs incoming waves at the boundary. ∂Ω− is the scattering portion

of the domain boundary. (1.3) ensures that the scattering boundary ∂Ω− is sound

soft.

The acoustic Helmholtz problem comes from seeking time-harmonic solutions or

applying Fourier transforms (in t) to the well-known acoustic wave problem

1

c2
Utt −∆U = F in Ω× (0,∞),

1

c
Ut +

∂U

∂n+

= G on ∂Ω+ × (0,∞),

U = 0 on ∂Ω− × (0,∞),

U = Ut = 0 in Ω× {t = 0}.

Here u, f, g from (1.1)–(1.3) take the form

u(x) =

∫ ∞
−∞

eiωtU(x, t)dt,

f(x) =

∫ ∞
−∞

eiωtF (x, t)dt,

g(x) =

∫ ∞
−∞

eiωtG(x, t)dt.

2



Computing solutions to (1.1)–(1.3) is known as the frequency domain treatment for

wave problems [29, 30]. This approach is favorable, because for a set of chosen

frequencies one can compute time-harmonic solutions in parallel by solving a set of

independent acoustic Helmholtz problems. Also, the use of frequency specific time-

harmonic waves often arise from many applications.

The second problem that we will consider is the elastic Helmholtz problem given

by

−ω2ρu− div (σ(u)) = f in Ω, (1.4)

iωAu + σ(u)n = g on ∂Ω. (1.5)

Similar to the acoustic Helmholtz problem, (1.4)–(1.5) arise from seeking time-

harmonic solutions to the well-known linear elastic wave equations. Ω ⊂ R (d =

1, 2, 3) is a domain that consists of some elastic medium and u : Ω → Cd is the

displacement vector of that medium. ω, ρ are the angular frequency of the elastic

wave and the density of the elastic medium, respectively. For the elastic Helmholtz

equation, the wave number is given by k =
√
ρω. σ(u) denotes the stress tensor

defined by

σ(u) := 2µε(u) + λdiv uI, ε(u) :=
1

2

(
∇u +∇uT

)
.

Here, µ, λ > 0 are the Lamé constants for the elastic medium Ω and ε(u) is called the

strain tensor. We do not consider a scattering portion of the boundary in (1.4)–(1.5)

for simplicity. Similar to (1.2), when g = 0, (1.5) is a first order absorbing boundary

condition [35]. A is a d× d symmetric positive-definite constant matrix.

Lastly, we consider the time-harmonic Maxwell’s equations given by

curl curl E− k2E = f in Ω, (1.6)

curl E× n− iλET = g on ∂Ω. (1.7)

3



(1.6)–(1.7) arise from seeking time-harmonic solutions to the well-known Maxwell’s

equations (c.f. [25]). Ω ⊂ R3 and E : Ω → C3 is the electrical field of Ω. ET =

(n×E)×n is the tangential part of E. The wave number k is defined as k = ω
√
µ0ε0,

where ω > 0 is the angular frequency of the wave, ε0 > 0 is the electrical permittivity

of the medium, and µ0 > 0 is the magnetic permeability of the medium. Similar

to the elastic Helmholtz problem, we will not consider a scattering portion of the

boundary for simplicity. (1.7) is the standard impedance boundary condition, with

λ > 0 called the impedance constant.

Because the acoustic Helmholtz, elastic Helmholtz, and time-harmonic Maxwell’s

problems all arise by seeking time-harmonic solutions to wave problems and thus

have similar characteristics, these three problems will be referred to as Helmholtz-

type problems in this dissertation.

1.1 The State of the Art

Many numerical methods have been developed for the three Helmholtz-type problems

in homogeneous media, i.e. for constant wave number k. These include finite

difference (FD), finite volume (FV), finite element (FE), and discontinuous Galerkin

(DG) methods [1, 2, 3, 6, 7, 10, 13, 19, 20, 23, 26, 29, 30, 32, 36, 38, 48, 51, 52, 54,

53, 59, 60, 61, 64, 67, 70, 75, 76]. This section will discuss some of the challenges that

arise from solving the three Helmholtz-type problems numerically.

Recall that Helmholtz-type problems are wave problems. Solutions to these

problems are oscillatory with wave length ` = 2π/k. Enough grid points must be used

in the spacial domain to resolve the wave. The widely accepted rule-of-thumb is to

use 6–12 mesh/grid points per wavelength. This rule-of-thumb was proved rigorously

for the linear FE method for the 1-D acoustic Helmholtz problem [54, 53]. This

yields a mesh constraint of kh = O(1), where h is the mesh size. Meshes satisfying

this mesh constraint make up the so-called pre-asymptotic mesh regime. Therefore,

4



in the high frequency case, discretizing the Helmholtz-type problems yields a large

system of linear equations that must be solved.

In the case of linear FE method for the 1-D acoustic Helmholtz problem, the

authors of [54] showed that the H1 error bound for the FE solution contains a term

of order k3h2. This term is called the pollution term and an increase in error as

one increases the wave number k under the constraint kh = O(1) is called the

pollution effect. The authors of [13, 29, 54] showed that the pollution effect is

inherent in Helmholtz-type problems and also leads to a loss of stability of standard

discretization techniques. To eliminate the pollution effect, a more stringent mesh

constraint k2h = O(1), called the asymptotic mesh constraint, is used. It is under

this constraint that stability is proved for standard discretization techniques applied

to Helmholtz-type problems. Shen and Wang obtained an absolutely stable (i.e.

stable for all k, h > 0) spectral Galerkin discretization for the radially symmetric

acoustic Helmholtz equation in [73]. Feng and Wu obtained absolutely stable interior

penalty discontinuous Galerkin (IP-DG) discretizations for the acoustic Helmholtz

and time-harmonic Maxwell’s equations in [42, 43, 44]. Feng and Xing obtained

an absolutely stable local discontinuous Galerkin (LDG) method for the acoustic

Helmholtz equation in [45].

As noted previously, for k large one must solve a large linear system of equations

in order to solve Helmholtz-type problems. From (1.1),(1.4), and (1.6) we see

that for k (or ω) large the Helmholtz-type PDE operators are indefinite. Thus,

any discretization method applied to Helmholtz-type PDEs yield indefinite, and ill-

conditioned linear systems. It is known that standard iterative methods do not work

well when applied to Helmholtz-type problems. In fact, many are not convergent (c.f.

[37]). There is no framework in place to analyze multi-level solvers/preconditioners,

such as multi-grid and Schwarz domain decomposition methods, for indefinite

problems like the Helmholtz-type problems. Also, if one must adhere to the stringent

mesh constraint k2h = O(1) in the high frequency case, practical coarse mesh spaces

for multi-level solvers cannot be implemented.
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1.2 Summary of this Dissertation

This dissertation contains five additional chapters. In Chapter 2, we study the

three Helmholtz-type problems at the PDE level. In particular, we show that all

three Helmholtz-type PDEs satisfy a generalized weak coercivity property. This

generalized weak coercivity property was proved to hold for the time-harmonic

Maxwell’s equations in [43]. The techniques used to prove these generalized weak

coercivity properties were first used in [27] and rely on Rellich identities for the

Helmholtz-type operators as well as a star-shape condition on the domain Ω. Because

a star-shape condition can be viewed as restrictive, the analysis in Chapter 2 is

carried out on generalized star-shape domains. As a corollary of the generalized weak

coercivity property, solution estimates are proved in energy norms for each Helmholtz-

type problem.

Chapter 3 develops an absolutely stable interior penalty discontinuous Galerkin

(IP-DG) method for the elastic Helmholtz problem. Recall that this was already

done for the acoustic Helmholtz and time-harmonic Maxwell’s problem [42, 43, 44].

This chapter uses new techniques, introduced in [42, 43, 44], to obtain stability and

optimal (in h) error estimates in the pre-asymptotic mesh regime. Analysis in the

asymptotic mesh regime is also carried out using the standard Schatz argument.

Numerical experiments are provided to demonstrate the theoretical results presented

in this chapter.

In Chapter 4, we develop a Monte Carlo interior penalty discontinuous Galerkin

(MCIP-DG) method for the acoustic Helmholtz problem in random media. The

random media is characterized by use of a random wave number in the acoustic

Helmholtz problem. In this chapter, we show that when this random wave number

is a random perturbation of some constant wave number, the solution takes the

form of a power series expansion in the perturbation parameter. We call this series

expansion the multi-modes expansion. Using this multi-modes expansion, an efficient

and accurate MCIP-DG method is obtained. Numerical experiments presented to
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show that the multi-mode MCIP-DG method is accurate compared to the classical

MCIP-DG method and much more efficient.

There is no general framework to study Schwarz preconditioners for general

non-Hermitian and indefinite variational problems. This includes Helmholtz-type

problems. As a first step to meet this challenge, in Chapter 5, we develop a

general framework to analyze Schwarz preconditioners for real-valued non-symmetric

and indefinite variational problems. In this chapter the theoretical framework is

introduced and different Schwarz preconditioners are developed and analyzed. This

new framework is designed as a generalization of the existing Schwarz framework given

in [77]. Extensive numerical experiments are also conducted to demonstrate some

properties of Schwarz preconditioners applied to a non-symmetric problem. Though

this framework does not apply directly to the three Helmholtz-type problems, it is

our hope that this initial step will lead to a generalization that also applies to these

Helmholtz-type problems.

Lastly, Chapter 6 discusses a number of future research directions that come from

this dissertation.

1.3 Notation

This dissertation adopts many standard notation conventions. Much of the notation

is explained when it is introduced, but we define some standard notations here that

will be used throughout.

Hβ(Ω) will be used to denote the standard Sobolev space W β,2(Ω). For any S ⊂ Ω

and Σ ⊂ ∂Ω, let (·, ·)S and 〈·, ·〉Σ denote the standard L2-inner products defined by

(u, v)S :=

∫
S

u · v dx, 〈u, v〉Σ :=

∫
S

u · v dS,

for all u, v ∈ L2(S) and u, v ∈ L2(Σ), respectively.
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A bold-face font will be used to emphasize a vector or vector valued function,

such as x ∈ Rd or u : S → Cd. With this in mind, we use the following bold-face

convention for identifying vector-valued function spaces:

Lp(S) :=
{

v : S → Cd
∣∣∣ vi ∈ Lp(S) for all i = 1, 2, · · · , d

}
,

Hβ(S) :=
{

v : S → Cd
∣∣∣ vi ∈ Hβ(S) for i = 1, 2, · · · , d

}
.
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Chapter 2

Generalized Weak Coercivity of

Reduced Wave Operators

2.1 Introduction to Generalized Weak Coercivity

and Generalized Star-Shape Domains

This section introduces two new concepts; namely, generalized weak coercivity and

generalized star-shape domains. As was already discussed, the Helmholtz-type

operators are indefinite. Thus, one cannot expect the sesquilinear forms used to define

the weak formulation of the Helmholtz-type operators to be coercive. In fact, in the

case of Helmholtz-type operators one cannot even expect a weak coercivity property.

Instead, for Helmholtz-type operators a generalized weak coercivity property of the

form

sup
v∈V

| Im a(u, v)|
‖v‖V

+ sup
v∈W

|Re a(u, v)|
‖v‖W

≥ C‖u‖E ∀u ∈ E (2.1)

takes the place of standard weak coercivity. Such a generalized weak coercivity

property can be used to obtain a-priori wave-number explicit estimates for solutions

of the three Helmholtz-type PDEs.
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Generalized weak coercivity is also valuable in the development of novel discretiza-

tion methods and linear solvers that are tailored to these Helmholtz-type problems.

Specifically, the techniques employed in the proofs of the generalized weak coercivity

properties can be useful in the development of absolutely stable discretization methods

for Helmholtz-type problems (c.f. [42, 43, 44, 50]). That is, methods that are stable

regardless of the mesh size h. Such an absolutely stable method for the elastic

Helmholtz equation is developed and analyzed in Chapter 3. Absolutely stable

methods are necessary to provide practical coarse mesh spaces, a key component

for any multi-level method such as multi-grid or multi-level domain decomposition

methods.

With multi-level methods in mind, the analysis of two-level domain decomposition

for non-symmetric and indefinite linear problems in real valued Banach spaces is

the focus of Chapter 5. The analysis in this chapter is based on a weak coercivity

condition. It is believed that for non-symmetric and indefinite linear problems in

complex valued Banach spaces the existing framework can be extended to include

problems that satisfy a generalized weak coercivity condition in lieu of the standard

weak coercivity condition. This is yet another motivation to study such generalized

weak coercivity conditions.

The techniques used to obtain generalized weak coercivity properties of the

Helmholtz-type operators are adapted from the techniques in [27, 43, 50]. The analysis

found in these sources relies on a star-shape condition on the domain Ω ⊂ Rd. That

is, for Ω there exists x0 ∈ Ω and a positive constant c = c(Ω) such that for α = x−x0

the following condition holds:

α · n ≥ c on ∂Ω.

Practically, this constraint on the domain Ω is adequate when a scattering object is

not present. In this case Ω is usually a truncation of a large or unbounded domain

and can be chosen to meet this requirement. On the other hand, for a scattering
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problem, a condition like this can be restrictive. This is due to the fact that portions

of the boundary can be attributed to the scattering object.

With this in mind, this chapter is used to establish less restrictive generalized

star-shape conditions on Ω for each Helmholtz-type operator. In particular, these new

generalized star-shape conditions allow the existing analysis to hold while admitting

more exotic geometry. These generalized star-shape domains are designed for each

Helmholtz-type operator, separately. This idea does away with the “one-size fits all”

nature of the standard star-shape condition and replaces it with “operator friendly”

domain constraints.

This chapter is organized as follows: Sections 2.2–2.4 are used to tailor a

generalized star-shape condition for each Helmholtz-type operator and prove a

generalized weak coercivity condition for each operator. Section 2.5 applies the results

of the previous sections to obtain stability estimates for each Helmholtz-type problem.

2.2 The Scalar Helmholtz Operator

First, a generalized star-shape domain for the scalar Helmholtz operator is defined.

We consider an acoustic domain Ω = Ω+ \ Ω−. Here, Ω+ is the truncation of some

unbounded acoustic medium and Ω− ⊂ Ω+ is some scattering object in the medium.

For the existing analysis to hold using a classic star-shape condition one requires that

Ω+ and Ω− are both star-shape domains with respect to the same point x0 ∈ Ω−. An

example of such a domain is given in Figure 2.1.
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Figure 2.1: An example of a domain Ω of interest.

To generalize this idea, it is required that Ω is a domain such that there exists a

vector field α ∈ C1(Ω) that satisfies the following conditions:

αj = αj(xj), (2.2)

α · n+ ≥ c+ > 0 on ∂Ω+, (2.3)

−α · n− ≥ c− > 0 on ∂Ω−, (2.4)

|α| ≤ R in Ω, (2.5)

c1 ≤ div (α) ≤ c2 in Ω, (2.6)

min

{
∂αi
∂xi

}
≥ c3 > 0 in Ω and i = 1, 2 . . . d, (2.7)

c1 − c2 + 2c3 ≥ c4 > 0 in Ω, (2.8)

where ∂Ω = ∂Ω+ ∪ ∂Ω− and n+, n− are the outward normal vectors to ∂Ω+ and

∂Ω−, respectively. A domain Ω that admits a vector field α as described above will

be called a generalized star-shape domain for the scalar Helmholtz equation.

Remark 2.2.1. (a) This is a true generalization of the concept of a star-shape

domain in the sense that any star-shape domain does satisfy the above properties.

This includes the case discussed above (c.f. Figure 2.1).
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(b) The motivation for all of the generalized star-shape conditions introduced in

this chapter comes from the use of Rellich identities for these specific Helmholtz-type

operators. These identities are key in the techniques used to prove the generalized

weak coercivity properties for each Helmholtz-type operator.

(c) It is conjectured that this generalization allows room for interesting computa-

tional domains that are not star-shape domains in the classical sense. At this point,

no such examples are known, and this will be an item explored in future research.

For the rest of this section, Ω is assumed to be a generalized star-shape domain for

the scalar Helmholtz equation. Recall that the generalized weak coercivity property

is a property of the weak form of Helmholtz-type PDEs. Therefore, the weak form

of (1.1)–(1.3) will need to be given. For the sake of completeness, the weak form

is derived in the preceding lines. Begin by multiplying (1.1) by v ∈ C∞(Ω) and

integrating over all Ω. To this, integration by parts and (1.2) are applied. These

steps yield the following sequence of identities:

−(∆u, v)Ω − k2(u, v)Ω = (f, v)Ω,

(∇u,∇v)Ω −
〈
∂u

∂n
, v

〉
∂Ω

− k2(u, v)Ω = (f, v)Ω,

(∇u,∇v)Ω −
〈
∂u

∂n+

, v

〉
∂Ω+

−
〈
∂u

∂n−
, v

〉
∂Ω−

− k2(u, v)Ω = (f, v)Ω,

(∇u,∇v)Ω + ik〈u, v〉∂Ω+ −
〈
∂u

∂n−
, v

〉
∂Ω−

− k2(u, v)Ω = (f, v)Ω + 〈g, v〉∂Ω+ .

From the above identity, we observe that an appropriate solution space for the

weak formulation of (1.1)–(1.3) is given by

V :=
{
u ∈ H1(Ω)

∣∣∣u = 0 on ∂Ω− and ∇u ∈ L2(∂Ω)
}
.
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Now the weak form of (1.1)–(1.3) is defined in the following way: Find u ∈ V such

that

a(u, v) = (f, v)Ω + 〈g, v〉∂Ω+ ∀v ∈ H1(Ω), (2.9)

where a(·, ·) is a sesquilinear form defined on V ×H1(Ω) given by

a(u, v) := (∇u,∇v)Ω − k2(u, v)Ω + ik〈u, v〉∂Ω+ −
〈
∂u

∂n−
, v

〉
∂Ω−

. (2.10)

The goal of this subsection is to prove a generalized weak coercivity condition (c.f.

(2.1)) for the above sesquilinear form a(·, ·). To accomplish this goal we rely on the

following Rellich identities quoted from [27]:

Lemma 2.2.2. Let u ∈ H2(Ω) and α ∈ C1(Ω). Then the following identity holds:

−Re(u, (∇u) ·α)Ω =
1

2

(
div (α), |u|2

)
Ω
− 1

2

〈
α · n+, |u|2

〉
∂Ω
.

Lemma 2.2.3. Let u ∈ H2(Ω) and α ∈ C1(Ω). Then the following identity holds:

Re(∇u,∇((∇u) ·α))Ω = −1

2

(
div (α), |∇u|2

)
Ω

+
1

2

〈
α · n+, |∇u|2

〉
∂Ω

+
d∑
i=1

d∑
j=1

(
∂u

∂xi
,
∂αj
∂xi

∂u

∂xj

)
Ω

.

With these Rellich identities in hand, the following generalized weak coercivity

property for the scalar Helmholtz operator is obtained:

Theorem 2.2.4. Let Ω ⊂ Rd be a generalized star-shape domain with α ∈ C1(Ω)

satisfying (2.2)–(2.8). Then for any u ∈ V the following generalized weak coercivity
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property holds for the sesquilinear form a(·, ·):

sup
v∈V

| Im a(u, v)|
‖v‖E

+ sup
v∈H1(Ω)

|Re a(u, v)|
|||v|||L2(Ω)

≥ 1

γ
‖u‖E,

where

γ := max
{[

2(2c2 − 4c3 + c4)2 + 16(k2 + 1)R2
] 1

2 ,M
}
,

M := 2

(
kR +

kR2

c+

+
c+

k

)
,

|||u|||L2(Ω) :=
(
k2c4‖u‖2

L2(Ω) + c+‖u‖2
L2(∂Ω+)

) 1
2
,

‖u‖E :=
(
k2c4‖u‖2

L2(Ω) + c4‖∇u‖2
L2(Ω) + c+‖u‖2

L2(∂Ω+) + c+‖∇u‖2
L2(∂Ω+)

+ c−‖∇u‖2
L2(∂Ω−)

) 1
2
.

Proof. In this proof, we assume that u ∈ H2(Ω) ∩ V . This is possible because u ∈ V

can be approximated by a sequence of smooth functions that converge to u in ‖ · ‖E.

Once the result is obtained for u ∈ H2(Ω) a limit can be applied to obtain the result

for u ∈ V . For the sake of brevity, these details are suppressed in the steps to follow.

Begin by setting v = u in (2.10) and taking the real and imaginary part separately.

This yields the following identities:

Re a(u, u) = ‖∇u‖2
L2(Ω) − k2‖u‖2

L2(Ω), (2.11)

Im a(u, u) = k‖u‖2
L2(∂Ω+). (2.12)

As will be a common theme for the analysis of all three Helmholtz-type problems,

the indefiniteness of the scalar Helmholtz operator shows up here in an adverse way.

That is, the signs of the terms on the right hand side of (2.11) are different. Thus

the use of this one test function is not sufficient. For this reason, we employ a second

test function v = ∇u · α, motivated by the above Rellich identities. Using this test
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function in (2.10) yields

Re a(u, v) = Re(∇u,∇v)Ω − k2 Re(u, v)Ω − k Im〈u, v〉∂Ω+ − Re

〈
∂u

∂n−
, v

〉
∂Ω−

.

(2.13)

We substitute the Rellich identities from Lemma 2.2.2 and Lemma 2.2.3 into (2.13)

and rearrange the terms to get

k2

2

(
div (α), |u|2

)
Ω
− 1

2

(
div (α), |∇u|2

)
Ω

+
3∑
i=1

(
∂αi
∂xi

,

∣∣∣∣∂ui∂xi

∣∣∣∣2
)

Ω

=
k2

2

〈
α · n+, |u|2

〉
∂Ω+
− 1

2

〈
α · n+, |∇u|2

〉
∂Ω+
− 1

2

〈
α · n−, |∇u|2

〉
∂Ω−

+ Re

〈
∂u

∂n−
, v

〉
∂Ω−

+ k Im〈u, v〉∂Ω+ + Re a(u, v)

=
k2

2

〈
α · n+, |u|2

〉
∂Ω+
− 1

2

〈
α · n+, |∇u|2

〉
∂Ω+

+
1

2

〈
α · n−, |∇u|2

〉
∂Ω−

+ k Im〈u, v〉∂Ω+ + Re a(u, v).

Notice that the first line above uses (2.2) and we get the last equality because ∇u =

∂u
∂n−

n− on ∂Ω− since u = 0 on ∂Ω−.

Using the conditions on α that are found in (2.3)–(2.6) and multiplying the

previous inequality through by 2 produces the following inequality:

k2c1‖u‖2
L2(Ω) − c2‖∇u‖2

L2(Ω) + 2c3‖∇u‖2
L2(Ω)

≤ k2〈α · n+, |u|2〉∂Ω+ − c+‖∇u‖L2(∂Ω−) − c−‖∇u‖L2(∂Ω−)

+ 2k Im〈u, v〉∂Ω+ + 2 Re a(u, v).
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Adding c2 − 2c3 times (2.11) and c+
k

times (2.12) to the above inequality yields

k2(c1 − c2 + 2c3)‖u‖2
L2(Ω) + c+‖u‖2

L2(∂Ω+)

≤ k2〈α · n+, |u|2〉∂Ω+ − c+‖∇u‖L2(∂Ω−) − c−‖∇u‖L2(∂Ω−) + 2k Im〈u, v〉∂Ω+

+ Re a (u, 2v + (c2 − 2c3)u) +
c+

k
Im a(u, u).

Applying (2.8) and adding c4
2

times (2.11) gives

k2c4

2
‖u‖2

L2(Ω) +
c4

2
‖∇u‖2

L2(Ω) + c+‖u‖2
L2(∂Ω+)

≤ k2〈α · n+, |u|2〉∂Ω+ − c+‖∇u‖L2(∂Ω−) − c−‖∇u‖L2(∂Ω−) + 2k Im〈u, v〉∂Ω+

+ Re a
(
u, 2v +

(
c2 − 2c3 +

c4

2

)
u
)

+
c+

k
Im a(u, u).

At this point, we apply Cauchy-Schwarz and Young’s inequalities in conjunction

with (2.12) to the previous inequality to obtain the following:

k2c4

2
‖u‖2

L2(Ω) +
c4

2
‖∇u‖2

L2(Ω) + c+‖u‖2
L2(∂Ω+)

≤ k2R‖u‖2
L2(∂Ω+) − c+‖∇u‖2

L2(∂Ω+) − c−‖∇u‖2
L2(∂Ω−) +

c+

k
Im a(u, u)

+ Re a
(
u, 2v +

(
c2 − 2c3 +

c4

2

)
u
)

+ 2kR‖u‖L2(∂Ω+)‖∇u‖L2(∂Ω+)

≤ k2R‖u‖2
L2(∂Ω+) − c+‖∇u‖2

L2(∂Ω+) − c−‖∇u‖2
L2(∂Ω−) +

c+

k
Im a(u, u)

+ Re a
(
u, 2v +

(
c2 − 2c3 +

c4

2

)
u
)

+
k2R2

c+

‖u‖2
L2(∂Ω+) +

c+

2
‖∇u‖2

L2(∂Ω+)

= −c+

2
‖∇u‖2

L2(∂Ω+) − c−‖∇u‖2
L2(∂Ω−) +

(
kR +

kR2

c+

+
c+

k

)
Im a(u, u)

+ Re a
(
u, 2v +

(
c2 − 2c3 +

c4

2

)
u
)
.

Consequently,

‖u‖2
E ≤M

∣∣ Im a(u, u)
∣∣+
∣∣Re a (u, 4v + (4 + 2c2 − 4c3 + c4)u)

∣∣. (2.14)
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Let v̂ = 4v+ (4 + 2c2− 4c3 + c4)u. Putting this test function into ||| · |||L2(Ω) yields

|||v̂|||2L2(Ω) ≤ (2c2 − 4c3 + c4)2
[
k2c4‖u‖2

L2(Ω) + c+‖u‖2
L2(∂Ω+)

]
+ 16R2

[
k2c4‖∇u‖2

L2(Ω) + c+‖∇u‖2
L2(∂Ω+)

]
≤
[
2(2c2 − 4c3 + c4)2 + 16(k2 + 1)R2

]
‖u‖2

E.

Finally, this inequality along with (2.14) implies that

sup
v∈V

| Im a(u, v)|
‖v‖E

+ sup
v∈H1(Ω)

|Re a(u, v)|
|||v|||L2(Ω)

≥ | Im a(u, u)|
‖u‖E

+
|Re a(u, v̂)|
|||v̂|||L2(Ω)

≥ | Im a(u, u)|
‖u‖E

+
|Re a(u, v̂)|

[2(2c2 − 4c3 + c4)2 + 16(k2 + 1)R2]
1
2 ‖u‖E

≥ 1

γ

M | Im a(u, u)|+ |Re a(u, v̂)|
‖u‖E

≥ 1

γ
‖u‖E.

Hence the generalized weak coercivity condition holds.

2.3 The Elastic Helmholtz Operator

In this section, the focus is turned to the elastic Helmholtz operator. This operator is

similar to the scalar Helmholtz operator. Due to this similarity, the analysis for the

elastic Helmholtz operator should follow that of the scalar Helmholtz operator. This

section is restricted to the case in which ∂Ω− = ∅ and thus, ∂Ω = ∂Ω+, where Ω is

the elastic medium. Such a restriction is made to compensate for the added difficulty

in working with vector-valued functions. Ω is defined to be a generalized star-shape
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domain for which there exists α ∈ C1(Ω) such that the following properties hold:

αj = αj(xj), (2.15)

α · n ≥ c+ > 0 on ∂Ω, (2.16)

|α| ≤ R in Ω, (2.17)

∂αi
∂xi

= c1 > 0 in Ω and i = 1, 2 . . . d. (2.18)

As was the case in Section 2.2, the analysis of this section relies on Rellich identities

for the elastic Helmholtz operator. These Rellich identities are the reason behind

the constraints placed on the domain. Unfortunately, the Rellich identities for the

elastic Helmholtz operator do not yield as much as those for the scalar Helmholtz

operator. This is mainly a result of the increase in complexity when moving from

scalar-valued functions to vector-valued functions. For this reason the generalized

star-shape domain criterion for the elastic Helmholtz operator is more restrictive than

that of the scalar Helmholtz operator. A less restrictive domain might be possible, but

different techniques will be needed to attain a generalized weak coercivity condition.

Now with a generalized star-shape domain defined for the elastic Helmholtz

operator, a weak formulation of (1.4)–(1.5) will be derived. To begin, multiply (1.4)

with a smooth function v ∈ C∞(Ω) and integrate over Ω to obtain

−ω2ρ(u,v)Ω − (div (σ(u)),v)Ω = (f ,v)Ω. (2.19)

Since σ(u) is symmetric the following product rule for the divergence holds:

div (σ(u)v) = div (σ(u))v + σ(u) : ∇v.
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This identity together with the divergence theorem yields

−(div (σ(u)),v)Ω = −
∫

Ω

div (σ(u)v)dx + (σ(u),∇v)Ω

= −〈σ(u)n,v〉∂Ω + (σ(u),∇v)Ω. (2.20)

From Lemma 3 of [27] one obtains the following useful identity:

σ(u) : ∇v = λdiv udiv v + 2µε(u) : ε(v).

With this identity (2.20) becomes

−(div (σ(u)),v)Ω = λ(div u, div v)Ω + 2µ(ε(u), ε(v))Ω − 〈σ(u)n,v〉∂Ω . (2.21)

Applying this integration by parts formula along with (1.5) to (2.19) gives

λ(div u, div v)Ω + 2µ(ε(u), ε(v))Ω − ω2ρ(u,v)Ω + iω〈Au,v〉∂Ω = (f ,v)Ω + 〈g,v〉∂Ω.

Thus, a weak formulation of the elastic Helmholtz equations (1.4) - (1.5) is given

by: find u ∈ H1(Ω) such that

a(u,v) = (f ,v)Ω + 〈g,v〉∂Ω ∀v ∈ H1(Ω), (2.22)

where a(·, ·) is defined on H1(Ω)×H1(Ω) by

a(u,v) := λ(div u, div v)Ω + 2µ(ε(u), ε(v))Ω − ω2ρ(u,v)Ω + iω〈Au,v〉∂Ω. (2.23)

Now that the weak formulation is established on a generalized star-shape domain,

the focus of this section shifts to obtaining a generalized weak coercivity property for

a(·, ·). As stated previously, this will require the use of some Rellich identities for the
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elastic Helmholtz operator. These Rellich identities were established in [27] and are

quoted below as the following two lemmas.

Lemma 2.3.1. For u ∈ H2(Ω) and α ∈ C1(Ω), the following identity holds:

λ〈α · n, |div u|2〉∂Ω + 2µ〈α · n, |ε(u)|2〉∂Ω

= λ(divα, |div u|2)Ω + 2µ(divα, |ε(u)|2)Ω

+ 2λRe
(
div u, div ((∇v)α)

)
Ω

+ 4µRe
(
ε(u), ε((∇v)α))Ω

− 2λRe
d∑
i=1

d∑
j=1

(
div u,

∂αj
∂xi

∂ui
∂xj

)
Ω

− 2µRe
d∑
i=1

d∑
j=1

d∑
k=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂αk
∂xj

∂ui
∂xk

)
Ω

.

Lemma 2.3.2. For u ∈ H2(Ω) and α ∈ C1(Ω), the following identity holds:

(divα, |u|2)Ω = 〈α · n, |u|2〉∂Ω − 2 Re(u, (∇u)α)Ω.

Similar to other analysis involving the stress tensor σ(·), it is necessary to use

the well-known Korn’s inequality to obtain the desired generalized weak coercivity

property. It is stated here as a lemma. For a proof, see [63].

Lemma 2.3.3. There exists a positive constant K such that for any v ∈ H1(Ω) the

following inequality holds:

‖v‖H1(Ω) ≤ K
[
‖ε(u)‖L2(Ω) + ‖v‖L2(Ω)

]
.

As was the case in Section 2.2, the analysis used in this section will follow closely

to that in [27]. In [27] the authors found it necessary to use a Korn-type inequality

on the boundary ∂Ω to obtain estimates that are optimal in terms of the frequency ω.

This Korn-type inequality still remains a conjecture. As stated in [27], this conjecture
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is believed to hold for the solution of the elastic Helmholtz problem since a similar

result is shown in [28] for the solution of the Lamé systems of elastostatics.

Conjecture 2.3.4. There exists a positive constant K̃ such that for any u ∈ H2(Ω)

the following Korn-type inequality holds:

‖∇u‖2
L2(∂Ω) ≤ K̃

[
‖u‖2

L2(∂Ω) + ‖ε(u)‖2
L2(∂Ω)

]
. (2.24)

With these technical lemmas in hand, we have all the tools necessary to prove a

generalized weak coercivity property on a(·, ·). This will be done in two steps. First,

we prove a preliminary result that does not make use of Conjecture 2.3.4. Next, we

prove a generalized weak coercivity property for u in a more restrictive function space

(i.e. the space on which Conjecture 2.3.4 holds).

Lemma 2.3.5. Let Ω be a generalized star-shape domain such that there exists α ∈

C1(Ω) satisfying (2.15)–(2.18). Then for all u ∈ H2(Ω) and ε > 0 there holds

‖u‖2
E ≤ ε‖∇u‖2

L2(∂Ω) −
(
c+µ‖u‖2

L2(∂Ω) + c+µ‖ε(u)‖2
L2(∂Ω)

)
+ Re a(u, 2(∇u)α+ (1− d)c1u) +

1

cA

(
Rωρ+

R2ωCA
ε

+ 2

)
Im a(u, u),

where ‖ · ‖E is defined by

‖u‖2
E := c1ω

2ρ‖u‖2
L2(Ω) + c1λ‖div u‖2

L2(Ω) + 2c1µ‖ε(u)‖2
L2(Ω)

+ c+µ‖u‖L2(∂Ω) + c+λ
∥∥div u‖2

L2(∂Ω) + c+µ‖ε(u)‖2
L2(∂Ω).

Proof. In a manner similar to the proof of Theorem 2.2.4, setting v = u in (2.23) and

taking both real and imaginary parts separately we get

Re a(u,u) = λ‖div u‖2
L2(Ω) + 2µ‖ε(u)‖2

L2(Ω) − ω2ρ‖u‖2
L2(Ω), (2.25)

Im a(u,u) = ω〈Au,u〉∂Ω. (2.26)
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Again, it is clear that this first test function alone cannot yield the desired result

because of the sign difference in (2.25). For this reason, a second test function,

motivated by our Rellich identities, will be selected. Let v = (∇u)α for the rest of

this proof. Substituting this test function into (2.23) and multiplying through by 2

gives

2 Re a(u,v) = 2λ(div u, div v)Ω + 4µ(ε(u), ε(v))Ω − 2 Reω2ρ(u,v)Ω

− 2ω Im〈Au,v〉∂Ω.

By the Rellich identities for the elastic Helmholtz operator (i.e. Lemmas 2.3.1

and 2.3.2), we get

2 Re a(u,v) = λ
〈
α · n, |div u|2

〉
∂Ω

+ 2µ
〈
α · n, |ε(u)|2

〉
∂Ω
− λ
(
divα, |div u|2

)
Ω

− 2µ
(
divα, |ε(u)|2

)
Ω

+ 2λRe
d∑
i=1

d∑
j=1

(
div u,

∂αj
∂xi

∂ui
∂xj

)
Ω

+ 2µRe
d∑
i=1

d∑
j=1

d∑
k=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂αk
∂xj

∂ui
∂xk

)
Ω

− ω2ρ
〈
α · n, |u|2

〉
Ω

+ ω2ρ
(
divα, |u|2

)
Ω
− 2ω Im〈Au,v〉∂Ω.

Equivalently,

ω2ρ
(
divα, |u|2

)
Ω
− λ
(
divα, |div u|2

)
Ω
− 2µ

(
divα, |ε(u)|2

)
Ω

+ 2λRe
d∑
i=1

d∑
j=1

(
div u,

∂αj
∂xi

∂ui
∂xj

)
Ω

+ 2µRe
d∑
i=1

d∑
j=1

d∑
k=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂αk
∂xj

∂ui
∂xk

)
Ω

= ω2ρ
〈
α · n, |u|2

〉
∂Ω
− λ
〈
α · n, |div u|2

〉
∂Ω
− 2µ

〈
α · n, |ε(u)|2

〉
∂Ω

+ 2ω Im〈Au,v〉∂Ω + 2 Re a(u,v).
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Applying the properties of α from (2.15)–(2.18) to the above identity produces

dc1ω
2ρ‖u‖2

L2(Ω) − dc1λ‖div u‖2
L2(Ω) − 2dc1µ‖ε(u)‖2

L2(Ω)

+ 2c1λRe
d∑
i=1

(
div u,

∂ui
∂xi

)
Ω

+ 2c1µRe
d∑
i=1

d∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂ui
∂xj

)
Ω

≤ Rω2ρ
∥∥u‖2

L2(∂Ω) − c+λ
∥∥div u‖2

L2(∂Ω) − 2c+µ
∥∥ε(u)‖2

L2(∂Ω)

+ 2ω Im〈Au,v〉∂Ω + 2 Re a(u,v). (2.27)

At this stage, we appeal to the following simplifications:

2c1λRe
d∑
i=1

(
div u,

∂ui
∂xi

)
Ω

= 2c1λRe

(
div u,

d∑
i=1

∂ui
∂xi

)
Ω

= 2c1λ‖div u‖2
L2(Ω),

and

2c1µRe
d∑
i=1

d∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂ui
∂xj

)
Ω

= c1µRe

[
d∑
i=1

d∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂ui
∂xj

)
Ω

+
d∑
i=1

d∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂uj
∂xi

)
Ω

]

= c1µRe
d∑
i=1

d∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

,
∂ui
∂xj

+
∂uj
∂xi

)
Ω

= 4c1µ‖ε(u)‖2
L2(Ω).

We apply these simplifications to (2.27) to get

dc1ω
2ρ‖u‖2

L2(Ω) + (2− d)c1λ‖div u‖2
L2(Ω) + 2(2− d)c1µ‖ε(u)‖2

L2(Ω)

≤ Rω2ρ
∥∥u‖2

L2(∂Ω) − c+λ
∥∥div u‖2

L2(∂Ω) − 2c+µ
∥∥ε(u)‖2

L2(∂Ω)

+ 2ω Im〈Au,v〉∂Ω + 2 Re a(u,v).
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Note, for d > 2, the terms with coefficient (2−d) are negative. To eliminate these

terms from the left hand side (LHS), add (d− 2)c1 times (2.25) to the above identity

to obtain the following:

2c1ω
2ρ‖u‖2

L2(Ω) ≤ Rω2ρ
∥∥u‖2

L2(∂Ω) − c+λ
∥∥div u‖2

L2(∂Ω) − 2c+µ
∥∥ε(u)‖2

L2(∂Ω)

+ 2ω Im〈Au,v〉∂Ω + Re a(u, 2v + (2− d)c1u).

We notice that (2.26) allows us control over the terms on the right hand side (RHS)

involving ‖u‖L2(∂Ω). With this in mind, we apply the Cauchy-Schwarz inequality along

with Young’s inequality to 2ω Im〈Au,v〉∂Ω to obtain

2c1ω
2ρ‖u‖2

L2(Ω)

≤ Rω2ρ
∥∥u‖2

L2(∂Ω) − c+λ
∥∥div u‖2

L2(∂Ω) − 2c+µ
∥∥ε(u)‖2

L2(∂Ω)

+ 2ω‖Au‖L2(∂Ω)‖v‖L2(∂Ω) + Re a(u, 2v + (2− d)c1u)

≤ Rω2ρ‖u‖2
L2(∂Ω) − c+λ‖div u‖2

L2(∂Ω) − 2c+µ
∥∥ε(u)‖2

L2(∂Ω)

+ 2Rω‖Au‖L2(∂Ω)‖∇u‖L2(∂Ω) + Re a(u, 2v + (2− d)c1u)

≤ Rω2ρ‖u‖2
L2(∂Ω) − c+λ‖div u‖2

L2(∂Ω) − 2c+µ‖ε(u)‖2
L2(∂Ω)

+
R2ω2CA

ε
‖u‖2

L2(∂Ω) + ε‖∇u‖2
L2(∂Ω) + Re a(u, 2v + (2− d)c1u).

The term ε‖∇u‖L2(∂Ω) will be controlled later using the boundary Korn-type

inequality (c.f. Conjecture 2.3.4). With this in mind, we add and subtract
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2c+µ‖u‖2
L2(∂Ω) and apply (2.26) to yield

2c1ω
2ρ‖u‖2

L2(Ω) + c+µ‖u‖2
L2(∂Ω) ≤ −c+λ

∥∥div u‖2
L2(∂Ω) − c+µ‖ε(u)‖2

L2(∂Ω)

+ ε‖∇u‖2
L2(∂Ω) −

(
c+µ‖u‖2

∂Ω + c+µ‖ε(u)‖2
∂Ω

)
+ Re a(u, 2v + (2− d)c1u) +

(
Rω2ρ+

R2ω2CA
ε

+ 2c+µ

)
‖u‖2

L2(∂Ω)

≤ −c+λ
∥∥div u‖2

L2(∂Ω) − c+µ‖ε(u)‖2
L2(∂Ω)

+ ε‖∇u‖2
L2(∂Ω) −

(
c+µ‖u‖2

∂Ω + c+µ‖ε(u)‖2
∂Ω

)
+ Re a(u, 2v + (2− d)c1u) +

1

cA

(
Rωρ+

R2ωCA
ε

+
2c+µ

ω

)
Im a(u,u).

To obtain a norm on H1(Ω) on the LHS, we subtract (2.25) from the above

inequality, and move some terms to the LHS to get

c1ω
2ρ‖u‖2

L2(Ω) + c1λ‖div u‖2
L2(Ω) + 2c1µ‖ε(u)‖2

L2(Ω)

+ c+µ‖u‖2
L2(∂Ω) + c+λ

∥∥div u‖2
L2(∂Ω) + c+µ‖ε(u)‖2

L2(∂Ω)

≤ ε‖∇u‖2
L2(∂Ω) −

(
c+µ‖u‖2

∂Ω + c+µ‖ε(u)‖2
∂Ω

)
+ Re a(u, 2v + (1− d)c1u) +

1

cA

(
Rωρ+

R2ωCA
ε

+
2c+µ

ω

)
Im a(u,u).

Therefore, the assertion holds.

In order to prove a generalized weak coercivity property on a(·, ·), an estimate to

control the term ε‖∇u‖2
L2(∂Ω) on the RHS of the inequality in Lemma 2.3.5 needs

to be established. This is where a Korn-type inequality on the boundary would be

helpful. With this in mind, we introduce the special function spaces

V :=
{

v ∈ H1(Ω)
∣∣∣ ε(v) ∈ L2(∂Ω)

}
,

VK̃ :=
{

u ∈ V
∣∣∣ ‖∇u‖2

L2(∂Ω) ≤ K̃
[
‖u‖2

L2(∂Ω) + ‖ε(u)‖2
L2(∂Ω)

]}
,
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where K̃ is a positive constant. With the help of these spaces, the following

generalized weak coercivity property holds.

Theorem 2.3.6. Let Ω be a domain for which there exists α ∈ C1(Ω) satisfying

(2.15)–(2.18). Then for any K̃ > 0 and u ∈ VK̃ the following inequality holds:

sup
v∈V

| Im a(u,v)|
‖v‖E

+ sup
v∈H1(Ω)

|Re a(u,v)|
|||v|||L2(Ω)

≥ 1

γ
‖u‖E,

where

γ := max

{[
4R2K

(
1 +

ω2ρ

2µ

)
+ 4R2K̃ + (1− d)2c2

1

] 1
2

,M

}
,

M :=
1

cA

(
Rωρ+

R2ωCAK̃

c+µ
+

2c+µ

ω

)
,

‖u‖2
E := c1ω

2ρ‖u‖2
L2(Ω) + c1λ‖div u‖2

L2(Ω) + 2c1µ‖ε(u)‖2
L2(Ω)

+ c+µ‖u‖L2(∂Ω) + c+λ
∥∥div u‖2

L2(∂Ω) + c+µ‖ε(u)‖2
L2(∂Ω)

|||u|||2L2(Ω) := c1ω
2ρ‖u‖2

L2(Ω) + c+µ‖u‖2
L2(∂Ω).

Proof. As was the case in the proof of Theorem 2.2.4, we only give a proof for u ∈

VK̃ ∩H2(Ω). After we prove the result for this more restrictive case, we can use a

limiting process to yield the result for u ∈ VK̃ .

By Lemma 2.3.5 with ε = c+µ

K̃
we obtain

‖u‖2
E ≤

c+µ

K̃
‖∇u‖2

L2(∂Ω) −
(
c+µ‖u‖2

L2(∂Ω) + c+µ‖ε(u)‖2
L2(∂Ω)

)
+ Re a(u, v̂) +

1

cA

(
Rωρ+

R2ωCAK̃

c+µ
+

2c+µ

ω

)
Im a(u, u),
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where v̂ := (2(∇u)α+ (1− d)c1u). With this choice of ε, there holds

c+µ

K̃
‖∇u‖2

L2(∂Ω) −
(
c+µ‖u‖2

L2(∂Ω) + c+µ‖ε(u)‖2
L2(∂Ω)

)
≤ c+µ

(
‖u‖2

L2(∂Ω) + ‖ε(u)‖2
L2(∂Ω)

)
−
(
c+µ‖u‖2

∂Ω + c+µ‖ε(u)‖2
L2(∂Ω)

)
≤ 0.

Thus,

‖u‖2
E ≤

∣∣Re a(u, v̂)
∣∣+M

∣∣ Im a(u,u)
∣∣. (2.28)

Next, by the definitions of ‖ · ‖E and ||| · |||L2(Ω) we get

|||v̂|||2L2(Ω) = c1ω
2ρ‖v̂‖2

L2(Ω) + c+µ‖v̂‖2
L2(∂Ω) (2.29)

≤ 4c1R
2ω2ρ‖∇u‖L2(Ω) + 4R2c+µ‖∇u‖2

L2(∂Ω)

+ (1− d)2c3
1ω

2ρ‖u‖L2(Ω) + (1− d)2c2
1c+µ‖u‖2

L2(∂Ω)

≤
[
4R2K

(
1 +

ω2ρ

2µ

)
+ 4R2K̃ + (1− d)2c2

1

]
‖u‖2

E

≤ γ2‖u‖2
E.

It follows from (2.28) and (2.29) that

sup
v∈V

| Im a(u,v)|
‖v‖E

+ sup
vH1(Ω)

|Re a(u,v)|
|||v|||L2(Ω)

≥ | Im a(u,u)|
‖u‖E

+
|Re a(u, v̂)|
|||v̂|||L2(Ω)

≥ M | Im a(u,u)|
M‖u‖E

+
|Re a(u, v̂)|
γ‖u‖E

≥ M | Im a(u,u)|+ |Re a(u, v̂)|
γ‖u‖E

≥ 1

γ
‖u‖E.

Thus, the desired generalized weak coercivity property holds.
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2.4 The Time-Harmonic Maxwell Operator

As was the case in Sections 2.2 and 2.3, we begin this section by defining a generalized

star-shape domain that is specially suited to the time-harmonic Maxwell operator.

In this section, the restriction that d = 3 ( i.e. Ω ⊂ R3) is assumed. Similar to

section 2.3, the domain Ω is also restricted to the case where a scattering portion

of the boundary is not present. That is, ∂Ω− = ∅ and thus ∂Ω+ = ∂Ω. Lastly, in

this section, Ω is defined to be a generalized star-shape domain such that there exists

α ∈ C1(Ω) satisfying the following properties:

αi = αi(xi) in Ω and for i = 1, 2, 3, (2.30)

|α| ≤ R in Ω, (2.31)

α · n ≥ c+ > 0 on ∂Ω, (2.32)

divα− 2 max
i=1,2,3

{
∂αi
∂xi

}
≥ c1 > 0 in Ω. (2.33)

Maxwell’s equations are defined using the curl operator. For this reason, some

special function spaces need to be defined on Ω before a weak formulation can be

defined.

H(curl ,Ω) :=
{

v ∈ L2(Ω)
∣∣∣ curl v ∈ L2(Ω)

}
,

H(div ,Ω) :=
{

v ∈ L2(Ω)
∣∣∣ div v ∈ L2(Ω)

}
,

H(div 0,Ω) :=
{

v ∈ L2(Ω)
∣∣∣ div v = 0

}
,

V :=
{

v ∈ H(curl ,Ω)
∣∣∣v ∈ L2(Ω)

}
,

V̂ :=
{

v ∈ H(curl ,Ω)
∣∣∣ curl v ∈ H(curl ,Ω) and v ∈ H(curl , ∂Ω)

}
.

Following the example set forth in Sections 2.2 and 2.3, the weak formulation of

(1.6)–(1.7) is derived below. Multiplying (1.6) with a smooth test function v ∈ C∞(Ω)
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and integrating over the domain Ω gives

(curl curl E,v)Ω − k2(E,v)Ω = (f ,v)Ω. (2.34)

In order to derive the appropriate integration by parts formula, we start with the

following identity:

div (curl E× v) = curl curl E · v − curl E · curl v. (2.35)

This identity is easily obtained from the well-known vector calculus identity:

div (a× b) = b · curl a− a · (curl b). (2.36)

(2.35) along with the divergence theorem yields the following integration by parts

identity:

(curl curl E,v)Ω = (curl E, curl v)Ω +

∫
Ω

div (curl E× v)dx (2.37)

= (curl E, curl v)Ω +
〈
curl E× v,n

〉
∂Ω

= (curl E, curl v)Ω −
〈
curl E× n,v

〉
∂Ω

= (curl E, curl v)Ω −
〈
curl E× n,vT

〉
∂Ω
.

Here, the identities a · (b × c) = c · (a × b) and a × b = −b × a along with the

decomposition v = vT + (v · n)n and the fact (a× n) · n = 0 have been used.

By the boundary conditions (1.7) we get

(curl curl E,v)Ω = (curl E, curl v)Ω − iλ
〈
ET ,vT

〉
∂Ω
−
〈
g,vT

〉
∂Ω
.
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Applying the above identity to (2.34) yields the following weak formulation of the

time-harmonic Maxwell’s equations: find E ∈ V such that

a(E,v) = (f ,v)Ω + 〈g,vT 〉∂Ω ∀v ∈ V , (2.38)

where the sesquilinear form a(·, ·) on V × V is defined by

a(u,v) := (curl u, curl v)Ω − k2(u,v)Ω − iλ〈uT ,vT 〉∂Ω. (2.39)

After having derived the above weak formulation for the time-harmonic Maxwell’s

equations, the focus of this section shifts to the goal of obtaining a generalized weak

coercivity property for the sesquilinear form a(·, ·). Again, Rellich identities will be

used to achieve this goal. These Rellich identities are generalizations of those that can

be found in [39]. Similar identities are derived and used to achieve stability estimates

for the time-harmonic Maxwell’s equations when Ω is a star-shape domain (c.f. [50]).

Since the general case of α being a C1(Ω) function was not considered, detailed proofs

for these Rellich identities are given below. The following notation will be used in

the Rellich identities:

∇ab := (a · ∇)b.

Lemma 2.4.1. Suppose u ∈ H2(Ω) and α ∈ C1(Ω). Then the following identity

holds:

(
divα, |curl u|2

)
Ω

+
〈
α · n, |curl u|2

〉
∂Ω

= 2 Re (curl u, curl (curl u×α))Ω + 2 Re
(
curl u,∇curl u

α
)

Ω
.

Proof. To prove this lemma two additional differential identities along with the

divergence theorem are used. Set v = curl u × α. To derive the first identity,
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we recall the following well-known identity involving the curl operator:

curl v = curl (curl u×α)

= div (α)curl u−αdiv (curl u) +∇αcurl u−∇curl u
α.

Using the fact that div (curl u) = 0, the above identity gives the first sought-after

identity:

curl v = div (α)curl u +∇αcurl u−∇curl u
α. (2.40)

To derive the second sought-after identity, expanding div (a|b|2) using the product

rule for the divergence and gradient yields

div
(
a|b|2

)
= div (a)|b|2 + a · ∇(b · b) (2.41)

= div (a)|b|2 + b · ∇ab + b · ∇ab

= div (a)|b|2 + 2 Re b · ∇ab.

(2.41) immediately gives the second sought-after identity

div
(
α|curl u|2

)
= divα|curl u|2 + 2 Re curl u · ∇αcurl u. (2.42)

Taking the complex conjugate of (2.40), applying the dot product with 2curl u,

and taking the real part gives

2 Re curl u · curl v = 2div (α)|curl u|2 + 2 Re curl u · ∇αcurl u

− 2 Re curl u · ∇curl u
α,
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which together with (2.42) gives

2 Re curl u · curl v = 2div (α)|curl u|2 − div (α)|curl u|2 + div
(
α|curl u|2

)
− 2 Re curl u · ∇curl u

α

= div (α)|curl u|2 + div
(
α|curl u|2

)
− 2 Re curl u · ∇curl u

α.

Integrating the above identity over Ω and using the divergence theorem yields

2 Re(curl u, curl v)Ω =
(
div (α), |curl u|2

)
Ω

+

∫
Ω

div
(
α|curl u|2

)
dx

− 2 Re
(
curl u,∇curl u

α
)

=
(
div (α), |curl u|2

)
Ω

+
〈
α · n, |curl u|2

〉
∂Ω

− 2 Re
(
curl u,∇curl u

α
)

Ω
.

By rearranging terms and recalling v = curl u × α, the desired Rellich identity is

obtained.

Lemma 2.4.2. Suppose u ∈ H1(Ω) and α ∈ C1(Ω). Then the following identity

holds:

Re(u, curl u×α)Ω +
1

2

(
divα, |u|2

)
Ω

+
1

2

〈
α · n, |u|2

〉
∂Ω

= Re(αdiv u,u)Ω + Re (u,∇uα)Ω − Re〈α× u,u× n〉∂Ω.

Proof. Like the proof of Lemma 2.4.1, this proof relies on two differential identities

along with integration by parts. The first differential identity is the following identity

involving the curl operator:

curl (α× u) = αdiv u− udivα+∇uα−∇αu. (2.43)
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The next identity follows from (2.41) and reads as

div
(
α|u|2

)
= div (α)|u|2 + 2 Re u∇αu. (2.44)

By (2.36) and the divergence theorem we get

(curl u,v)Ω = (u, curl v)Ω +

∫
Ω

div (u× v)dx (2.45)

= (u, curl v)Ω + 〈u× v,n〉∂Ω.

It follows from the identities a · (b × c) = b · (c × a), (2.45), (2.43), and (2.44)

that

Re(u, curl u×α)Ω = Re(curl u,α× u)

= Re〈u×α× u,n〉∂Ω + Re(u, curl (α× u))Ω

= −Re〈α× u,u× n〉∂Ω + Re(u,αdiv u)Ω −
(
divα, |u|2

)
Ω

+ Re (u,∇uα)Ω − Re (u,∇αu)Ω

= −Re〈α× u,u× n〉∂Ω + Re(u,αdiv u)Ω −
(
divα, |u|2

)
Ω

+ Re (u,∇uα)Ω −
1

2

〈
α · n, |u|2

〉
∂Ω

+
1

2

(
divα, |u|2

)
Ω

= −Re〈α× u,u× n〉∂Ω + Re(u,αdiv u)Ω −
1

2

(
divα, |u|2

)
Ω

+ Re (u,∇uα)Ω −
1

2

〈
α · n, |u|2

〉
∂Ω
.

Thus, the desired Rellich identity is obtained by rearranging the terms above.

The above Rellich identities can be used to establish a generalized weak coercivity

property for a(·, ·). Note that a generalized weak coercivity property for a(·, ·) was

already established in [43] for a star-shape domain and what is below is an extension

of that result to a generalized star-shape domain.
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Theorem 2.4.3. Let Ω be a generalized star-shape domain such that there exists

α ∈ C1(Ω) satisfying (2.30)–(2.33). Then for any u ∈ V ∩H(div 0,Ω) the following

generalized weak coercivity property holds on a(·, ·):

sup
v∈V̂

| Im a(u,v)|
‖v‖E

+ sup
v∈V

|Re a(u,v)|
|||v|||L2(Ω)

≥ 1

γ
‖u‖E,

where

γ := 4kR +M, M :=
2Rc+ + 2R2k2 + 2R2λ2

λc+

,

|||u|||L2(Ω) :=
(
c1k

2‖u‖2
L2(Ω) + c+k

2‖u‖2
L2(∂Ω)

) 1
2
,

‖u‖E :=
(
c1k

2‖u‖2
L2(Ω) + c1‖curl u‖2

L2(Ω) + c+k
2‖u‖2

L2(∂Ω) + c+‖curl u‖2
L2(∂Ω)

) 1
2
.

Proof. Similar to the proof of Theorems 2.2.4 and 2.3.6, this proof makes use of two

specific test functions. The first is v = u. Using this test function in (2.39) and

taking the real and imaginary parts separately yield

Re a(u,u) = ‖curl u‖2
L2(Ω) − k2‖u‖2

L2(Ω), (2.46)

Im a(u,u) = −λ‖uT‖2
L2(∂Ω). (2.47)

The second test function is v = curl u × α motivated by the Rellich identities.

Recall that α is the vector field defined by the generalized star-shape condition on

Ω. Using Lemmas 2.4.1 and 2.4.2 gives

2 Re a(u,v) = 2 Re(curl u, curl v)Ω − 2k2 Re(u,v)Ω + 2λ Im〈uT ,vT 〉∂Ω (2.48)

=
(
divα, |curl u|2

)
Ω
− 2 Re(curl u,∇curl u

α)Ω +
〈
α · n, |curl u|2

〉
∂Ω

+ k2
(
divα, |u|2

)
Ω
− 2k2 Re(u,∇uα)Ω + k2

〈
α · n, |u|2

〉
∂Ω

+ 2k2 Re〈α× u,u× n〉∂Ω + 2λRe〈uT ,vT 〉∂Ω.

Here the fact that div u = 0 has been used.
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By using (2.30) we get

u · ∇uα =
3∑
i=1

ui(u · ∇)αi =
3∑
i=1

3∑
j=1

ui

(
uj

∂

∂xj

)
αi =

3∑
i=1

3∑
j=1

|ui|2
∂αi
∂xi

(2.49)

≤ |u|2 max
i=1,2,3

{
∂αi
∂xi

}
.

Similarly,

curl u · ∇curl u
α ≤ |curl u|2 max

i=1,2,3

{
∂αi
∂xi

}
. (2.50)

Combining (2.49) and (2.50) with (2.33) gives

k2
(
divα, |u|2

)
Ω
− 2k2 Re(u,∇uα)Ω ≥ k2

(
divα− max

i=1,2,3

{
∂αi
∂xi

}
, |u|2

)
Ω

≥ c1k
2‖u‖2

L2(Ω)

and

(
divα, |curl u|2

)
Ω
− 2 Re(curl u,∇curl u

α)Ω ≥ c1‖curl u‖2
L2(Ω).

Rearranging the terms in (2.48) and substituting the above inequalities yield

c1k
2‖u‖2

L2(Ω) + c1‖curl u‖2
L2(Ω)

≤ −k2
〈
α · n, |u|2

〉
∂Ω
−
〈
α · n, |curl u|2

〉
∂Ω

+ 2k2〈α× u,u× n〉∂Ω − 2λ〈uT ,vT 〉∂Ω + 2 Re a(u,v). (2.51)
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To bound the term 2k2〈α×u,u×n〉∂Ω, by the decomposition α = αT + (α ·n)α

and the identity (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) we get

− 2k2〈α× u,u× n〉∂Ω

= −2k2〈αT × u,u× n〉∂Ω − 2k2〈(α · n)n× u,u× n〉∂Ω

= −2k2〈αT · u,u · n〉∂Ω + 2k2〈αT · n, |u|2〉∂Ω + 2k2〈α · n, |u× n|2〉∂Ω

= −2k2〈αT · uT ,u · n〉∂Ω + 2k2〈α · n, |u× n|2〉∂Ω.

This identity allows us to rewrite (2.51) as

c1k
2‖u‖2

L2(Ω) + c1‖curl u‖2
L2(Ω) (2.52)

≤ −k2
〈
α · n, |u|2

〉
∂Ω
−
〈
α · n, |curl u|2

〉
∂Ω

+ 2k2 Re
〈
α · n, |u× n|2

〉
∂Ω

− 2k2 Re〈u · n,αT · uT 〉∂Ω − 2λRe〈uT ,vT 〉∂Ω + 2 Re a(u,v).

Noting that

|uT |2 = |(n× u)× n|2 = |u× n|2 −
(
(u× n) · n

)2
= |u× n|2 on ∂Ω.
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We use this identity along with (2.31), (2.32), Cauchy Schwarz and Young’s

inequality in (2.52) to get

c1k
2‖u‖2

L2(Ω) + c1‖curl u‖2
L2(Ω)

≤ −c+k
2‖u‖2

L2(∂Ω) − c+‖curl u‖L2(∂Ω) + 2Rk2‖uT‖2
L2(∂Ω)

+ 2Rk2‖u‖L2(∂Ω)‖uT‖L2(∂Ω) + 2Rλ‖uT‖L2(∂Ω)‖curl u‖L2(∂Ω)

+ 2 Re a(u,v)

≤ −c+k
2‖u‖2

L2(∂Ω) − c+‖curl u‖L2(∂Ω) + 2Rk2‖uT‖2
L2(∂Ω)

+
c+k

2

2
‖u‖2

L2(∂Ω) +
2R2k2

c+

‖uT‖2
L2(∂Ω)

+
2R2λ2

c+

‖uT‖2
L2(∂Ω) +

c+

2
‖curl u‖2

L2(∂Ω)

+ 2 Re a(u,v)

≤ −c+

2
k2‖u‖2

L2(∂Ω) −
c+

2
‖curl u‖L2(∂Ω) + 2 Re a(u,v)

+
2Rc+ + 2R2k2 + 2R2λ2

c+

‖uT‖2
L2(∂Ω).

Multiplying the above inequality by 2 and making use of (2.47) yield

2c1k
2‖u‖2

L2(Ω) + 2c1‖curl u‖2
L2(Ω) + c+k

2‖u‖2
L2(∂Ω)

+ c+‖curl u‖2
L2(∂Ω) + 4c+k

2‖uT‖2
L2(∂Ω)

≤ 2Rc+ + 2R2k2 + 2R2λ2

λc+

λ‖uT‖2
L2(∂Ω) + Re a(u, 4v).

≤M | Im a(u,u)|+ |Re a(u, 4v)|.

Thus,

‖u‖2
E ≤M

∣∣ Im a(u,u)
∣∣+
∣∣Re a(u, 4v)

∣∣. (2.53)
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By the definitions of v, ‖ · ‖E, and ||| · |||L2(Ω) we have

|||v|||L2(Ω) =
(
c1k

2‖curl u×α‖2
L2(Ω) + c+k

2‖curl u×α‖2
L2(∂Ω)

) 1
2

≤
(
c1R

2k2‖curl u‖2
L2(Ω) + c+R

2k2‖curl u‖2
L2(∂Ω)

) 1
2

≤ kR‖u‖E. (2.54)

It follows from (2.53) and (2.54) that

sup
v∈H2(Ω)

| Im a(u,v)|
‖v‖E

+ sup
v∈H1(Ω)

|Re a(u,v)|
|||v|||L2(Ω)

≥ | Im a(u,u)|
‖u‖E

+
|Re a(u,v)|

|||4(curl u×α)|||L2(Ω)

≥ M | Im a(u,u)|
M‖u‖E

+
|Re a(u,v)|
γ‖u‖E

≥ 1

γ
· M | Im a(u,u)|+ |Re a(u,v)|

‖u‖E

≥ 1

γ
‖u‖E,

which yields the desired generalized weak coercivity property.

2.5 Applications to Stability Estimates

In Sections 2.2, 2.3, and 2.4, it was demonstrated that each Helmholtz-type problem

satisfies a generalized weak coercivity property. The goal of this section is to give

one application of the generalized weak coercivity properties. Namely, we apply

the generalized weak coercivity properties to derive wave-number explicit solution

estimates for each Helmholtz-type problem. These solution estimates are stated in

the following three theorems.

Theorem 2.5.1. Let Ω ⊂ Rd be a generalized star-shape domain with α ∈ C1(Ω)

satisfying (2.2)–(2.8). Suppose u ∈ V solves (2.9) with f ∈ L2(Ω) and g ∈ L2(∂Ω+).
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Then the following estimate holds:

‖u‖E ≤ 2γβ
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω+)

)
,

where

γ := max
{[

2(2c2 − 4c3 + c4)2 + 16(k2 + 1)R2
] 1

2 ,M
}
,

M := 2

(
kR +

kR2

c+

+
c+

k

)
,

β :=
1
√
c4k

+
1
√
c+

,

|||u|||L2(Ω) :=
(
k2c4‖u‖2

L2(Ω) + c+‖u‖2
L2(∂Ω+)

) 1
2
,

‖u‖E :=
(
k2c4‖u‖2

L2(Ω) + c4‖∇u‖2
L2(Ω) + c+‖u‖2

L2(∂Ω+) + c+‖∇u‖2
L2(∂Ω+)

+ c−‖∇u‖2
L2(∂Ω−)

) 1
2
.

Proof. Let v ∈ H1(Ω). The Cauchy-Schwarz inequality yields the following series of

inequalities:

|a(u, v)| = |(f, v)Ω + 〈g, v〉∂Ω+ |

≤ ‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(∂Ω+)‖v‖L2(∂Ω+)

≤
(
‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω+)

) 1
2
(
‖v‖2

L2(Ω) + ‖v‖2
L2(∂Ω+)

) 1
2

≤
(

1
√
c4k

+
1
√
c+

)(
‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω+)

) 1
2 |||v|||L2(Ω).

Similarly, for v ∈ V we have

|a(u, v)| = |(f, v)Ω + 〈g, v〉∂Ω+ |

≤
(

1
√
c4k

+
1
√
c+

)(
‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω)

) 1
2 ‖v‖E.
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Thus,

1

γ
‖u‖E ≤ sup

v∈H2(Ω)

| Im a(u, v)|
‖v‖E

+ sup
v∈H1(Ω)

|Re a(u, v)|
|||v|||L2(Ω)

≤ sup
v∈H2(Ω)

|a(u, v)|
‖v‖E

+ sup
v∈H1(Ω)

|a(u, v)|
|||v|||L2(Ω)

≤
(

1
√
c4k

+
1
√
c+

)(
‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω)

) 1
2

+

(
1
√
c4k

+
1
√
c+

)(
‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω+)

) 1
2

≤ 2β
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω+)

)
.

The proof is complete.

Theorem 2.5.2. Let Ω ⊂ Rd be a generalized star-shape domain such that there

exists α ∈ C1(Ω) satisfying (2.15)–(2.18). Suppose that there exists some positive

constant K̃ such that u ∈ VK̃ solves (2.22) for f ∈ L2(Ω) and g ∈ L2(∂Ω). Then the

following stability estimate holds:

‖u‖E ≤ 2γ

(
1

ω
√
c1

+
1
√
c+µ

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

where

γ := max

{[
4R2K

(
1 +

ω2ρ

2µ

)
+ 4R2K̃ + (1− d)2c2

1

] 1
2

,M

}
,

M :=
1

cA

(
Rωρ+

R2ωCAK̃

c+µ
+

2c+µ

ω

)
,

‖u‖2
E := c1ω

2ρ‖u‖2
L2(Ω) + c1λ‖div u‖2

L2(Ω) + 2c1µ‖ε(u)‖2
L2(Ω)

+ c+µ‖u‖2
L2(∂Ω) + c+λ

∥∥div u‖2
L2(∂Ω) + c+µ‖ε(u)‖2

L2(∂Ω),

|||u|||2L2(Ω) := c1ω
2ρ‖u‖2

L2(Ω) + c+µ‖u‖2
L2(∂Ω).

Proof. This proof is very similar to that of Theorem 2.5.1. We begin with finding an

upper bound on |a(u,v)| for some v ∈ H1(Ω). By the Cauchy-Schwarz inequality,
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we get

|a(u,v)| = |(f ,v)Ω + 〈g,v〉∂Ω|

≤ ‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(∂Ω)‖v‖L2(∂Ω)

≤
(
‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω)

) 1
2
(
‖v‖2

L2(Ω) + ‖v‖2
L2(∂Ω)

) 1
2

≤
(

1

c1ω2
+

1

c+µ

) 1
2 (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)(
c1ω

2‖v‖2
L2(Ω) + c+µ‖v‖2

L2(∂Ω)

) 1
2
.

Therefore, for v ∈ H1(Ω),

|a(u,v)| ≤
(

1

c1ω2
+

1

c+µ

) 1
2 (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
|||v|||L2(Ω). (2.55)

By noting that, |||v|||L2(Ω) ≤ ‖v‖E, we find

|a(u,v)| ≤
(

1

c1ω2
+

1

c+µ

) 1
2 (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
‖v‖E. (2.56)

These bounds on |a(·, ·)| in conjunction with Theorem 2.3.6 imply that

1

γ
‖u‖E ≤ sup

v∈H2(Ω)

∣∣ Im a(u,v)
∣∣

‖v‖E
+ sup

v∈H1(Ω)

∣∣Re a(u,v)
∣∣

|||v|||E

≤ sup
v∈H2(Ω)

|a(u,v)|
‖v‖E

+ sup
v∈H1(Ω)

|a(u,v)|
|||v|||E

≤ 2

(
1

c1ω2
+

1

c+µ

) 1
2 (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

Hence the stability estimate holds.

Theorem 2.5.3. Let Ω ⊂ R3 be a generalized star-shape domain with α ∈ C1(Ω)

satisfying (2.30)–(2.33). Suppose E ∈ V̂ solves (2.38) for f ∈ H(div ,Ω), g ∈ L2(∂Ω).
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Then the following solution estimate on E holds:

‖E‖E ≤
4γ

k

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+

(c1 +R)
1
2

k
‖f‖Ω +

R
1
2

k
‖div f‖L2(Ω)

where

γ := 4kR +M, M :=
2Rc+ + 2R2k2 + 2R2λ2

λc+

,

|||u|||L2(Ω) :=
(
c1k

2‖u‖2
L2(Ω) + c+k

2‖u‖2
L2(∂Ω)

) 1
2
,

‖u‖E :=
(
c1k

2‖u‖2
L2(Ω) + c1‖curl u‖2

L2(Ω) + c+k
2‖u‖2

L2(∂Ω) + c+‖curl u‖2
L2(∂Ω)

) 1
2
.

Proof. This proof follows the proof of Theorem 2.3 from [43] with changes in some

details dealing with the generalized star-shape condition imposed on the domain Ω.

Now since E ∈ V̂ solves (2.38) then E satisfies (1.6) a.e. in Ω and we find

−k2div E = div
(
curl curl E− k2E

)
= div f a.e. in Ω.

This implies div E = −k−2div f a.e. in Ω.

To apply Theorem 2.4.3 we need a vector field u ∈ H2(Ω)∩H(div 0,Ω). Therefore,

unlike the proofs of Theorems 2.5.1 and 2.5.2, we cannot directly apply Theorem 2.4.3

to E. To overcome this difficulty, consider an auxiliary vector field F = ∇φ, where

φ ∈ H1
0 (Ω) solves the following Poisson equation:

∆φ = k−2div f a.e. in Ω. (2.57)

By definition, div F = k−2div f a.e. in Ω. Also, the definition of F ensures curl F = 0

so F ∈ V̂ . Thus for u := E + F, u ∈ V̂ ∩ H(div 0,Ω). With this in mind, the

estimate on E will be obtained by estimating F and u separately. Estimates on F

43



can be obtained based on its definition and estimates on u can be obtained from the

generalized weak coercivity property for the time-harmonic Maxwell operator.

To derive estimates for F, we test (2.57) with φ and integrate by parts to obtain

‖∇φ‖2
L2(Ω) = k−2(f ,∇φ)Ω ≤ k−2‖f‖L2(Ω)‖∇φ‖L2(Ω).

Hence,

‖F‖L2(Ω) = ‖∇φ‖L2(Ω) ≤ k−2‖f‖L2(Ω). (2.58)

Next, testing (2.57) by the test function ∇φ ·α = F ·α and applying integration

by parts and Lemma 2.2.3 we obtain

2 Re(∆φ,∇φ ·α)Ω = 2 Re(∆φ,∇φ ·α)Ω

= −2 Re
(
∇φ,∇(∇φ ·α)

)
Ω

+ 2 Re

〈
∂φ

∂n
,∇φ ·α

〉
∂Ω

=
(
divα, |φ|2

)
Ω
− 2 Re

3∑
i=1

3∑
j=1

(
∂φ

∂xi
,
∂αj
∂xi

∂φ

∂xj

)
Ω

−
〈
α · n, |∇φ|2

〉
∂Ω

+ 2 Re

〈
∂φ

∂n
,∇φ ·α

〉
∂Ω

.

Now FT = (∇φ)T = 0 on ∂Ω since φ ∈ H1
0 (Ω). Using this fact along with (2.30),

(2.32), and (2.33) in the above inequality gives

2 Re(∆φ,∇φ ·α)Ω =
(
divα, |φ|2

)
Ω
− 2 Re

3∑
i=1

(
∂αj
∂xi

,

∣∣∣∣ ∂φ∂xj
∣∣∣∣2
)

Ω

−
〈
α · n, |∇φ|2

〉
∂Ω

+ 2 Re

〈
∂φ

∂n
,

(
(∇φ)T +

∂φ

∂n
n

)
·α
〉
∂Ω

≥
(

divα− 2 max
i=1,2,3

{
∂αi
∂xi

}
, |∇φ|2

)
Ω

+
〈
α · n, |∇φ|2

〉
∂Ω

≥ c1‖F‖2
L2(Ω) + c+‖F‖2

∂Ω.
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Therefore, it follows from (2.57), (2.58), (2.31), and the Cauchy-Schwarz inequality

that

c+‖F‖2
L2(∂Ω) = c+‖∇φ‖2

L2(∂Ω) ≤ 2k−2 Re(div f ,F ·α)Ω

≤ 2Rk−2‖div f‖L2(Ω)‖F‖L2(Ω)

≤ 2Rk−4‖div f‖L2(Ω)‖f‖L2(Ω)

≤ Rk−4‖div f‖2
L2(Ω) +Rk−4‖f‖2

L2(Ω). (2.59)

Since curl F = 0 in Ω, (2.58) and (2.59) yield the following estimate for ‖F‖E:

‖F‖2
E = c1k

2‖F‖L2(Ω) + c+k
2‖F‖2

L2(∂Ω)

≤ c1k
−2‖f‖2

Ω +Rk−2‖div f‖2
L2(Ω) +Rk−2‖f‖2

L2(Ω)

=
c1 +R

k2
‖f‖2

Ω +
R

k2
‖div f‖2

L2(Ω). (2.60)

Next, we derive estimates for u. Note that since φ ∈ H1
0 (Ω) and F = ∇φ, FT = 0

on ∂Ω and curl F = 0 in Ω. These two facts imply that u satisfies the following weak

form of the time-harmonic Maxwell’s equations:

a(u,v) =
(
f − k−2F,v

)
Ω

+ 〈g,vT 〉L2(∂Ω) ∀v ∈ V . (2.61)
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where a(·, ·) is the sesquilinear form defined in (2.39). Thus, by the Cauchy-Schwarz

inequality, (2.58), and (2.61) we get

|a(u,v)| = |(f − k2F,v)Ω + 〈g,vT 〉∂Ω|

≤ |(f ,v)Ω|+ k2|(F,v)Ω|+ |〈g,vT 〉∂Ω|

≤ ‖f‖L2(Ω)‖v‖L2(Ω) + k2‖F‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(∂Ω)‖vT‖L2(∂Ω)

= 2‖f‖L2(Ω)‖v‖L2(Ω) + ‖g‖L2(∂Ω)‖vT‖L2(∂Ω)

≤
(

4‖f‖2
L2(Ω) + ‖g‖2

L2(Ω)

) 1
2
(
‖v‖2

L2(Ω) + ‖vT‖2
L2(∂Ω)

) 1
2

≤ 2k−1

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)(
c1k

2‖v‖2
L2(Ω) + c+k

2‖v‖2
L2(∂Ω)

) 1
2

= 2k−1

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
|||v|||L2(Ω).

Thus for v ∈ H1(Ω),

|a(u,v)| ≤ 2k−1

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
|||v|||L2(Ω). (2.62)

Note for v ∈ V̂ , |||v|||L2(Ω) ≤ ‖v‖E. Hence,

|a(u,v)| ≤ 2k−1

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
‖v‖E. (2.63)

Substituting (2.62) and (2.63) into the generalized weak coercivity condition given

in Theorem 2.4.3 gives

1

γ
‖u‖E ≤ sup

v∈H2(Ω)

∣∣ Im a(u,v)
∣∣

‖v‖E
+ sup

v∈H1(Ω)

∣∣Re a(u,v)
∣∣

|||v|||E

≤ sup
v∈H2(Ω)

|a(u,v)|
‖v‖E

+ sup
v∈H1(Ω)

|a(u,v)|
|||v|||E

≤ 4k−1

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.
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Thus,

‖u‖E ≤
4γ

k

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
. (2.64)

Recall E = u− F. Thus (2.60) and (2.64) yield

‖E‖E ≤
4γ

k

(
1

c1

+
1

c+

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+

(c1 +R)
1
2

k
‖f‖Ω +

R
1
2

k
‖div f‖L2(Ω).

Remark 2.5.4. (a) The above solution estimates ensure uniqueness of the solution

to each Helmholtz-type problem in their respective solution spaces.

(b)The adjoint problem for each Helmholtz-type problem differs only in the sign of

the boundary integral terms. For this reason, all of the results of this chapter also hold

for these adjoint problems. In particular, the uniqueness results. By the Fredholm

Alternative Principle this ensures existence of the solutions to the Helmholtz-type

problems in their respective solution spaces.
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Chapter 3

Absolutely Stable Discontinuous

Galerkin Methods for the Elastic

Helmholtz Equations

As is the case for the scalar Helmholtz equation, the angular frequency ω plays a key

role in the analysis and implementation of any numerical method used to solve the

elastic Helmholtz equations. It is a well-known fact that in order to resolve the wave

numerically one must use some minimum number of grid points in each wave length

` = 2π/ω in every coordinate direction. This yields the minimum mesh constraint

ωh = O(1), where h is the mesh size parameter. In fact, the widely held “rule of

thumb” is to use 6–12 grid points per wave length. In [54], Babǔska et al proved the

necessity of this “rule of thumb” in the 1-dimensional case for the scalar Helmholtz

equation. In [54], it was also shown that the H1 error bound for the finite element

solution contains a pollution term that contributes to the loss of stability for this

method in the case of a large ω. The pollution term also causes the error to increase

as ω increases under the mesh constraint ωh = O(1). This forces one to adopt a

more stringent mesh condition to guarantee an accurate numerical solution for high

frequency waves.
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The loss of stability of the standard finite element method applied to Helmholtz-

type problems is an important issue to address and a fundamental limitation to

overcome. Specifically, in [6, 29, 30], a strict mesh condition of ω2h = O(1) (called the

asymptotic mesh constraint) was required to obtain optimal and quasi-optimal error

estimates for finite element approximations applied to the scalar Helmholtz equation.

In [26], this same mesh condition was used to obtain error estimates for the elastic

Helmholtz equations. Requiring such a stringent mesh constraint makes the use of a

practical coarse mesh space impossible in the case that ω is large. This is a hurdle

that must be overcome if one wishes to use multi-level algebraic solvers, such as the

multi-grid method or multi-level domain decomposition method.

Thus, it is the goal of this chapter to develop and analyze an interior penalty

discontinuous Galerkin (IP-DG) method that will be absolutely stable for the elastic

Helmholtz equations. In other words, a method in which a-priori solution estimates

can be obtained for any ω, h > 0. This chapter follows the example of [42, 79, 43]

which give similar methods for the scalar Helmholtz equation and the time-harmonic

Maxwell’s equations.

Section 3.1 introduces standard notation required to formulate a discontinuous

Galerkin method and presents the IP-DG method. Also, in this section, some key

properties of the proposed method are demonstrated. In Section 3.2, error estimates

are obtained for the asymptotic mesh regime (i.e. when ω2h ≤ C). To accomplish this,

we define and analyze a specific elliptic projection operator for the elastic Helmholtz

equations. With this projection operator, Schatz argument is carried out to obtain

the optimal error estimates. Section 3.3 is devoted to establishing stability and

error estimates for the pre-asymptotic mesh regime (i.e. when ω2h > C). This is

an important feature of the IP-DG method proposed in this chapter since it has

not been shown that previous discretization techniques yield stability in this mesh

regime. Section 3.4 is devoted to numerical experiments that validate properties of

the proposed IP-DG method and compare it to the standard finite element method.
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3.1 Formulation of the IP-DG Method

In this section, an interior penalty discontinuous Galerkin (IP-DG) method for the

elastic Helmholtz equations is formulated. This formulation will follow those in [42,

44]. The methods referenced in the previous papers are absolutely stable, (i.e. stable

for all ω, h > 0) a trait sought in the discretization methods for Helmholtz-type

problems.

First, some standard IP-DG notation needs to be introduced. Let Th be a shape

regular partition of the domain Ω, such that for each cell K ∈ Th, hK := diam(K).

Also, for each edge/face e of a cell K, define he := diam(e). Th is called shape regular

if there exist positive constants m1,m2 such that for any K ∈ Th and e an edge/face

of K the following inequality holds:

m1he ≤ hK ≤ m2he.

The partition Th is parameterized by h, which denotes the maximum spatial cell size,

i.e. h := maxK∈Th{hK}. We note that the discontinuous Galerkin (DG) methodology

allows greater flexibility in terms of meshing the domain Ω. In particular, one can

use any polyhedral elements in the partition. In some cases, the partition is made of

elements with curved boundaries.

Let

EIh := set of all interior edges/faces of Th,

EBh := set of all boundary edges/faces of Th on ∂Ω.
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For any edge e ∈ EIh , let Ke, K
′
e ∈ Th such that e = ∂Ke ∩ ∂K ′e. For such an edge

e, we define the following jump and average operators:

[v]|e :=

v|Ke − v|K′e , if the global labeling number of Ke is greater than that of K ′e,

v|K′e − v|Ke , if the global labeling number of K ′e is greater than that of Ke,

and

{v}|e :=
1

2

(
v|Ke + v|K′e

)
.

For e ∈ EBh , we use the convention [v]|e = {v}|e := v|e. Also keeping in mind the

idea of cell by cell integration by parts, the outward normal vector ne to e ∈ EIh will

need to be defined. Let ne be the unit outward normal vector to Ke on e, where

e = ∂Ke ∩ ∂K ′e and Ke has a bigger global labeling number than that of K ′e.

Define the DG energy space E as

E :=
∏
K∈Th

H2(K).

Note that unlike a conforming finite element method, this energy space can be

discontinuous across cell boundaries. Multiplying (1.4) by some v ∈ E and integrating
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by parts piecewisely we get

(f ,v)Ω = −(div (σ(u)),v)Ω − ω2ρ(u,v)Ω

= −
∑
K∈Th

(div (σ(u)),v)K − ω2ρ(u,v)Ω

=
∑
K∈Th

(
λ(div u, div v)K + 2µ(ε(u), ε(v))K

)
− ω2ρ(u,v)Ω

−
∑
K∈Th

〈σ(u)nK ,v〉∂K

=
∑
K∈Th

(
λ(div u, div v)K + 2µ(ε(u), ε(v))K

)
− ω2ρ(u,v)Ω

−
∑
e∈EIh

∫
e

[σ(u)ne · v]dS −
∑
e∈EBh

〈σ(u)ne,v〉e .

To the above identity we apply (1.5) along with a well-known identity concerning the

jump of a product, i.e. [a · b] = {a} · [b] + [a] · {b}, and get

(f ,v)Ω + 〈g,v〉∂Ω =
∑
K∈Th

(
λ(div u, div v)K + 2µ(ε(u), ε(v))K

)
− ω2ρ(u,v)Ω

−
∑
e∈EIh

(
〈{σ(u)ne}, [v]〉e + 〈[σ(u)ne], {v}〉e

)
+ iω 〈Au,v〉e .

Now assuming that the solution u of (1.4)–(1.5) is smooth enough, we find

[σ(u)ne] = [u] = 0 on all e ∈ EIh . Thus the above identity is equivalent to

(f ,v)Ω + 〈g,v〉∂Ω =
∑
K∈Th

(
λ(div u, div v)K + 2µ(ε(u), ε(v))K

)
− ω2ρ(u,v)Ω (3.1)

−
∑
e∈EIh

(
〈{σ(u)ne}, [v]〉e + η 〈[u], {σ(v)ne}〉e

)
+ iω 〈Au,v〉∂Ω .

(3.2)

The term η 〈[u], {σ(v)ne}〉e is introduced as a possible avenue toward symmetriz-

ing the RHS. Thus, η is called a symmetrization parameter. It is standard for one
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to consider three possible values for η. These values are η = 1 for a symmetric

formulation, η = 0, and η = −1 for an anti-symmetric formulation. In this chapter,

we only focus on the symmetric case with η = 1. Here it is left as a variable parameter

to offer different formulations of this method.

An important aspect of the IP-DG methods is the use of penalty terms to ensure

the coercivity of the sesquilinear forms involved in the formulation. To this end, we

introduce two penalty sesquilinear forms J0(·, ·) and J1(·, ·). They are defined for

w,v ∈ E as

J0(w,v) :=
∑
e∈EIh

γ0,e

he

〈
[w], [v]

〉
e
,

J1(w,v) :=
∑
e∈EIh

γ1,ehe
〈

[σ(w)ne] , [σ(v)ne]
〉
e
,

where γ0,e, γ1,e > 0 are called the penalty parameters for e ∈ EIh . Note that by the

smoothness of the solution u we have J0(u,v) = J1(u,v) = 0. Thus, (3.2) can be

rewritten as

(f ,v)Ω + 〈g,v〉∂Ω =
∑
K∈Th

(
λ(div u, div v)K + 2µ(ε(u), ε(v))K

)
− ω2ρ(u,v)Ω

−
∑
e∈EIh

(
〈{σ(u)ne}, [v]〉e + η 〈[u], {σ(v)ne}〉e

)
+ i
(
J0(u,v) + J1(u,v)

)
+ iω 〈Au,v〉∂Ω .

Therefore, u satisfies

Ah(u,v) = (f ,v)Ω + 〈g,v〉∂Ω ∀v ∈ E, (3.3)
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where Ah(·, ·) is defined on E× E as

Ah(w,v) := ah(w,v)− ω2ρ(w,v)Ω + iω〈Aw,v〉∂Ω, (3.4)

ah(w,v) :=
∑
K∈Th

(
λ
(
div w, div v

)
K

+ 2µ
(
ε(w), ε(v)

)
K

)
−
∑
e∈EIh

(〈
{σ(w)ne} , [v]

〉
e

+ η
〈
[w], {σ(v)ne}

〉
e

)
+ i
(
J0(w,v) + J1(w,v)

)
. (3.5)

With the DG sesquilinear form Ah(·, ·) in hand, a discrete function space is needed

to formulate the IP-DG method. For this chapter, only piecewise linear polynomial

functions over the partition Th will be considered. Thus the IP-DG approximation

space Vh is defined as

Vh :=
∏
K∈Th

P1(K).

With all the building blocks in place, our IP-DG method is defined by seeking

uh ∈ Vh such that

Ah(uh,vh) =
(
f ,vh

)
Ω

+
〈
g,vh

〉
∂Ω

∀vh ∈ Vh. (3.6)

3.1.1 Some Properties of the IP-DG Method

In this subsection, some useful properties of the above IP-DG method (3.6) are

established. From this point on, we only consider the case η = 1 for simplicity.

Also, we assume there exists a positive constant C such that

hK ≤ h ≤ ChK ∀K ∈ Th,

γ0,e ≤ γ0 ≤ Cγ0,e ∀e ∈ EIh ,

γ1,e ≤ γ1 ≤ Cγ1,e ∀e ∈ EIh .
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The above constraints are not necessary for the analysis of this chapter, but rather

are in place to make the constants in the inequalities more tractable.

In order to analyze the proposed IP-DG method, we introduce the following semi-

norms:

|v|1,h :=

( ∑
K∈Th

λ‖div v‖2
L2(K) + 2µ‖ε(v)‖2

L2(K)

) 1
2

,

‖v‖1,h :=

(
|v|21,h + J0(v,v) + J1(v,v)

) 1
2

,

|||v|||1,h :=

(
‖v‖2

1,h +
∑
e∈EIh

he
γ0,e

‖{σ(v)ne}‖2
L2(e)

) 1
2

.

Note on Vh, the semi-norms ‖ · ‖1,h and ||| · |||1,h are equivalent. This is trivial since

Vh is a finite dimensional vector space. On the other hand, it can be shown that this

equivalence is independent of the dimension of Vh. This result is non-trivial, and

thus it is proved in a lemma below.

To prove the equivalence, we need two inequalities which hold for polynomial

functions. Namely, the inverse and trace inequalities as given below:

‖vh‖L2(e) ≤ Ch
− 1

2
e ‖vh‖L2(K) ∀vh ∈ Vh, (3.7)

‖σ(vh)ne‖L2(e) ≤ Ch
− 1

2
e ‖σ(vh)‖L2(K) ∀vh ∈ Vh, (3.8)

where K ∈ Th and e is an edge/face of K. These inequalities will be used throughout

the rest of this chapter.

Lemma 3.1.1. For any vh ∈ Vh, there holds

‖vh‖1,h ≤ |||vh|||1,h ≤ Cξ
1
2‖vh‖1,h,

where ξ :=
(

1 + 1
γ0

)
and C is a positive constant independent of ω, h, γ0, γ1.
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Proof. Note that the first inequality is trivial. To show the second inequality we use

(3.8) as follows:

|||vh|||21,h = ‖v‖2
1,h +

∑
e∈EIh

he
γ0,e

‖{σ(v)ne}‖2
L2(e)

≤ ‖vh‖2
1,h + C

∑
e∈EIh

he
γ0,e

· 1

he

(
‖σ(v)‖2

L2(Ke) + ‖σ(v)‖2
L2(K′e)

)
≤ ‖vh‖2

1,h +
C(λ+ 2µ)

γ0

∑
K∈Th

(
λ‖div vh‖2

K + 2µ‖ε(vh)‖2
L2(K)

)
≤ C

(
1 +

λ+ 2µ

γ0

)
‖vh‖2

1,h.

In order to show that (3.6) is well posed, we need to verify that Ah(·, ·) is both

continuous and weakly coercive on Vh. Weak coercivity in this case relies on the fact

that Vh is made up of piecewise linear polynomials. This fact infers the following

lemma.

Lemma 3.1.2. For any 0 < δ < 1 and vh ∈ Vh,

|vh|21,h ≤ δω2ρ‖vh‖2
L2(Ω) +

Cδ(λ+ 2µ)

ωh
ω‖vh‖2

L2(∂Ω)

+
Cδ(λ+ 2µ)

γ0

J0(vh,vh) +
Cδ

ω2ρh2γ1

J1(vh,vh). (3.9)

Proof. Note that vh|K ∈ P1(K) for all K ∈ Th and thus div
(
σ(vh)

)
|K = 0. For any

wh,vh ∈ Vh and K ∈ Th, integrating by parts yields

0 =
(
div σ(vh),wh

)
K

= −
〈
σ(vh)nK ,wh

〉
∂K

+ λ
(
div vh, div wh

)
K

+ 2µ
(
ε(vh), ε(wh)

)
K
.
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Thus,

λ
(
div vh, div wh

)
K

+ 2µ
(
ε(vh), ε(wh)

)
K

=
〈
σ(vh)nK ,wh

〉
∂K
.

Setting wh = vh and summing over all K ∈ Th gives

|vh|21,h =
∑
K∈Th

〈
σ(vh)nK ,vh

〉
∂K

=
∑
e∈EIh

(〈
{σ(vh)ne}, [vh]

〉
e

+
〈
[σ(vh)ne], {vh}

〉
e

)
+
∑
e∈EBh

〈
σ(vh)ne,vh

〉
e

≤
∑
e∈EIh

(
‖{σ(vh)ne}‖L2(e)‖[vh]‖L2(e) + ‖[σ(vh)ne]‖L2(e)‖{vh}‖L2(e)

)
+
∑
e∈EBh

‖σ(vh)ne‖L2(e)‖vh‖L2(e).

By the trace and inverse inequalities (3.7) and (3.8) along with the Cauchy-Schwarz

inequality we obtain

|vh|21,h ≤ C
∑
e∈EBh

h
− 1

2
e ‖σ(vh)‖L2(Ke)‖vh‖L2(e)

+ C
∑
e∈EIh

h
− 1

2
e ‖[vh]‖L2(e)

(
‖σ(vh)‖L2(Ke) + ‖σ(vh)‖L2(K′e)

)
+ C

∑
e∈EIh

h
− 1

2
e ‖[σ(vh)ne]‖L2(e)

(
‖vh‖L2(Ke) + ‖vh‖L2(K′e)

)
.
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Finally, it follows from the discrete Cauchy-Schwarz inequality along with Young’s

inequality that

|vh|21,h ≤ Ch−
1
2

(∑
K∈Th

‖σ(vh)‖L2(K)

) 1
2

‖vh‖L2(∂Ω)

+ Cγ
− 1

2
0

(∑
e∈EIh

γ0,e

he
‖[vh]‖2

L2(e)

) 1
2
( ∑
K∈Th

‖σ(vh)‖2
L2(K)

) 1
2

+ Cγ
− 1

2
1 h−1

(∑
e∈EIh

γ1,ehe‖[σ(vh)ne]‖2
L2(e)

) 1
2‖vh‖L2(Ω)

≤ δ|vh|21,h +
C(λ+ 2µ)

δωh
ω‖vh‖2

L2(∂Ω) +
δ

2
|vh|21,h +

C(λ+ 2µ)

δγ0

J0(vh,vh)

+ δ(1− δ)ω2ρ‖vh‖2
L2(Ω) +

C

δ(1− δ)ω2ρh2γ1

J1(vh,vh).

Thus (3.9) holds.

With this lemma in place, the following theorem establishes the continuity and

weak coercivity of Ah(·, ·). We note that since A is a constant symmetric positive

definite (SPD) matrix that there exists positive constants cA, CA such that

cA‖v‖2
L2(∂Ω) ≤ 〈Av,v〉∂Ω ≤ CA‖v‖2

L2(∂Ω) ∀v ∈ E. (3.10)

Theorem 3.1.3. The sesquilinear form Ah(·, ·) is continuous on the space E and

weakly coercive on the space Vh. That is, there exist positive constants M,C

independent ω,h,γ0,γ1 such that

|Ah(w,v)| ≤M
(
|||w|||21,h + ω2ρ‖w‖2

L2(Ω)

) 1
2
(
|||v|||21,h + ω2ρ‖v‖2

L2(Ω)

) 1
2

(3.11)

for all w,v ∈ E and

|Ah(vh,vh)| ≥ C
(
ξ +

1

ωh
+

1

ω2h2γ1

)−1(
|vh|21,h + ω2ρ‖vh‖2

L2(Ω)

)
, (3.12)

|Ah(vh,vh)| ≥ J0(vh,vh) + J1(vh,vh) + ω
〈
Avh,vh

〉
∂Ω
. (3.13)
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for all vh ∈ Vh. Here ξ = 1 + 1
γ0

.

Proof. To show (3.11), we appeal to the Cauchy-Schwarz and triangle inequalities.

Thus, for any w,v ∈ E, we find

|Ah(w,v)| ≤ |ah(w,v)|+ ω2ρ‖w‖L2(Ω)‖v‖L2(Ω)

≤ ‖w‖1,h‖v‖1,h +
∑
e∈EIh

‖{σ(w)ne}‖L2(e)‖[v]‖L2(e)

+
∑
e∈EIh

‖[w]‖L2(e)‖{σ(v)ne}‖L2(e) + ω2ρ‖w‖L2(Ω)‖v‖L2(Ω)

≤ ‖w‖1,h‖v‖1,h + ω2ρ‖w‖L2(Ω)‖v‖L2(Ω)

+
∑
e∈EIh

((
he
γ0,e

) 1
2

‖{σ(w)ne}‖L2(e)

(
γ0,e

he

) 1
2

‖[v]‖L2(e)

)

+
∑
e∈EIh

((
γ0,e

he

) 1
2

‖[w]‖L2(e)

(
he
γ0,e

) 1
2

‖{σ(v)ne}‖L2(e)

)

≤ ‖w‖1,h‖v‖1,h + +ω2ρ‖w‖L2(Ω)‖v‖L2(Ω)

+

∑
e∈EIh

he
γ0,e

‖{σ(w)ne}‖2
L2(e)

 1
2

J0(v,v)
1
2

+ J0(w,w)

∑
e∈EIh

he
γ0,e

‖{σ(v)ne}‖2
L2(e)

 1
2

≤

‖w‖2
1,h + J0(w,w) +

∑
e∈EIh

he
γ0,e

‖{σ(w)ne}‖2
L2(e) + ω2ρ‖w‖2

L2(Ω)

 1
2

·

‖v‖2
1,h + J0(v,v) +

∑
e∈EIh

he
γ0,e

‖{σ(v)ne}‖2
L2(e) + ω2ρ‖v‖2

L2(Ω)

 1
2

≤M
(
|||w|||21,h + ω2ρ‖w‖2

L2(Ω)

) 1
2
(
|||v|||21,h + ω2ρ‖v‖2

L2(Ω)

) 1
2
.
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To verify weak coercivity, for any vh ∈ Vh, taking the real and imaginary parts

of Ah(vh,vh) yields

ReAh(vh,vh) = |vh|21,h − ω2ρ‖vh‖2
L2(Ω) + 2 Re

∑
e∈EIh

〈
{σ(vh)ne}, [vh]

〉
e
, (3.14)

ImAh(vh,vh) = J0(vh,vh) + J1(vh,vh) + ω
〈
Avh,vh

〉
∂Ω
. (3.15)

Then (3.13) follows directly from (3.15).

To verify (3.12), we need to bound the term
∑

e∈EIh

〈
{σ(vh)ne}, [vh]

〉
e
. This step

involves using the trace and inverse inequality and was already carried out in previous

calculations (c.f. Lemma 3.1.2). Thus,

ReAh(vh,vh) ≤ |vh|21,h − ω2ρ‖vh‖2
L2(Ω) + Cγ

− 1
2

0

(∑
e∈EIh

γ0

he
‖[vh]‖2

L2(Ω)

) 1
2 |vh|1,h

≤ 3

2
|vh|21,h − ω2ρ‖vh‖2

L2(Ω) +
C

γ0

J0(vh,vh).

Combining the above inequality with (3.9) and using δ = 1
4

we get

1

2
|vh|21,h + ω2ρ‖vh‖2

L2(Ω) ≤ −ReAh(vh,vh) + 2|vh|21,h +
C

γ0

J0(vh,vh)

≤ −ReAh(vh,vh) +
1

2
ω2ρ‖vh‖2

L2(Ω) +
C

ωhcA
ωcA‖vh‖2

L2(∂Ω)

+
C

γ0

J0(vh,vh) +
C

ω2ρh2γ1

J1(vh,vh).

Thus, subtracting both sides of the above inequality by 1
2
ω2ρ‖vh‖2

L2(Ω) and using both

(3.10) and (3.15) yield

|vh|21,h + ω2ρ‖vh‖2
L2(Ω) ≤ −2 ReAh(vh,vh) + C

( 1

γ0

+
1

ωhcA
+

1

ω2ρh2γ1

)
ImAh(vh,vh)

≤ C
(

1 +
1

γ0

+
1

ωhcA
+

1

ω2ρh2γ1

)
|Ah(vh,vh)|.

Hence, (3.12) is verified.
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Remark 3.1.4. (3.12)–(3.13) is called weak coercivity because of the complex

magnitude used in the left-hand side of these inequalities.

Theorem 3.1.5. For every choice of ω, h, γ0, γ1 > 0, f ∈ L2(Ω), and g ∈ L2(∂Ω)

there exists a unique solution uh of (3.6).

Proof. This is an immediate consequence of Theorem 3.1.3 and the well-known Lax-

Milgram-Babuška theorem [8, 9].

We note that the weak coercivity of Ah(·, ·) in (3.12) depends in an adverse way

on the mesh parameter h. For this reason, this weak coercivity cannot be used to

obtain optimal error estimates in the case that h is allowed to be arbitrarily small.

In the case of small h, which belongs to the asymptotic mesh regime, we instead rely

on a Gärding’s inequality for Ah(·, ·) to derive more robust estimates. This Gärding’s

inequality is proved in the following theorem:

Theorem 3.1.6. For vh ∈ Vh the following Gärding’s inequality for Ah(·, ·) holds:

1

2
‖vh‖2

1,h − ω2ρ‖vh‖2
L2(Ω) ≤ Cξ|Ah(vh,vh)|, (3.16)

where ξ :=
(

1 + 1
γ0

)
and C is independent of ω, h, γ0, γ1.

Proof. Similar to the proof of the weak coercivity inequalities in Theorem 3.1.3, we

begin by taking the real and imaginary part of Ah(·, ·) separately (c.f. (3.14)–(3.15)).

Also, in a similar fashion as was done in the proofs of Theorem 3.1.2 and 3.1.3, the

Cauchy-Schwarz and Young’s inequality along with (3.7) and (3.8) are used to bound

the term
∑

e∈EIh

〈
{σ(vh)ne}, [vh]

〉
e
. Thus the following sequence of inequalities are
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obtained:

ReAh(vh,vh) = |vh|21,h − ω2ρ‖v‖2
L2(Ω) + 2 Re

∑
e∈EIh

〈
{σ(vh)ne}, [vh]

〉
e

≥ |vh|21,h − ω2ρ‖vh‖2
L2(Ω) −

1

2
|vh|21,h −

C(λ+ 2µ)

γ0

J0(vh,vh)

≥ 1

2
|vh|21,h − ω2ρ‖vh‖2

L2(Ω) −
C(λ+ 2µ)

γ0

ImAh(vh,vh).

Rearranging the above inequality and adding 1
2

times (3.15) yield

1

2
‖vh‖2

1,h − ω2ρ‖vh‖2
L2(Ω) ≤ C ReAh(vh,vh) + C

(
1 +

λ+ 2µ

γ0

)
ImAh(vh,vh)

≤ C

(
1 +

λ+ 2µ

γ0

)
|Ah(vh,vh)|.

Hence, (3.16) holds.

3.2 Asymptotic Error Estimates

Recall that Theorem 3.1.3 guarantees both continuity and weak coercivity of Ah(·, ·)

for any positive values of ω, h, γ0, γ1. Unfortunately, as is observed in Theorem 3.1.3,

the weak coercivity inequality degrades as h becomes small. For this reason, weak

coercivity of Ah(·, ·) cannot be used to obtain optimal order error estimates in the

asymptotic mesh regime, i.e. ω2h = O(1).

Instead, a standard argument called Schatz argument (c.f. [71]) is often used to

obtain error estimates in the asymptotic mesh regime. Schatz argument is useful for

deriving error estimates for consistent discretizations of indefinite problems that are

characterized by sesquilinear forms that satisfy a Gärding’s inequality. This method

has been used in the past to prove optimal order error estimates for finite element

approximations of Helmholtz-type problems. For references of Schatz argument

applied to finite element formulations of the scalar Helmholtz equation, see [6, 29, 30].

For an example of Schatz argument applied to a finite element approximation of the
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elastic Helmholtz equation, see [26]. For a general reference of Schatz argument

applied to the finite element approximations of general second order PDEs satisfying

Gärding’s inequality, see [16].

The consistency of (3.6) immediately infers Galerkin orthogonality on Vh.

Namely,

Ah(u− uh,vh) = 0 ∀vh ∈ Vh, (3.17)

where u solves (1.4)–(1.5) and uh solves (3.6).

We also quote frequency-explicit a priori estimates for the PDE solution u. These

are taken from [27]. Note that the estimates in [27] were only carried out in the

case in which g = 0 but these estimates should hold as well for any g ∈ L2(∂Ω).

This extension can be expected because the analysis in Theorem 2.5.2 holds when

g ∈ L2(∂Ω) and this analysis is based on that of [27]. The estimate that will be used

in the analysis of the proposed IP-DG method is quoted below.

Theorem 3.2.1. Suppose that Ω is a convex polygonal domain or Ω is a smooth

domain. Further suppose that u ∈ H2(Ω) solves (1.4)–(1.5). Then u satisfies the

following regularity estimate:

‖u‖H2(Ω) ≤ C

(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.18)

where α = 1 if u ∈ VK̃ for some positive constant K̃ as defined in Chapter 2 and

otherwise α = 2.

3.2.1 Elliptic Projection and its Error Estimates

The primary goal of this section is to estimate the error u − uh in the asymptotic

mesh regime. This will be done based on the error decomposition u−uh = (u− ũh)+

(ũh − uh) with some ũh ∈ Vh which is sufficiently close to u, such as a projection

of u. To this end, for any w ∈ E, we define its elliptic projection w̃h ∈ Vh as the
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solution to the following problem:

ah(w̃h,vh) + iω
〈
Aw̃h,vh

〉
∂Ω

= ah(w,vh) + iω
〈
Aw,vh

〉
∂Ω

∀vh ∈ Vh. (3.19)

Since the elliptic projection is defined using the bilinear form ah(·, ·), it would be

prudent to prove some properties of ah(·, ·). The following theorem is given with this

in mind.

Theorem 3.2.2. For any v,w ∈ E there exists a positive constant C independent of

ω, h, γ0, γ1 such that

|ah(v,w)| ≤ C|||v|||1,h|||w|||1,h. (3.20)

Also for any 0 < δ < 1 and vh ∈ Vh there holds

Re ah(vh,vh) +

(
1− δ +

Cδ
γ0

)
Im ah(vh,vh) ≥ (1− δ)‖vh‖2

1,h. (3.21)

Proof. Note that (3.20) is easy to prove with the techniques used to prove continuity

of Ah(·, ·) and thus we omit it. By using Cauchy-Schwarz, trace, inverse, and Young’s

inequalities we get

Re ah(vh,vh) ≥ |vh|21,h + 2 Re
∑
e∈EIh

〈
[vh], {σ(vh)ne}

〉
e

≥ |vh|21,h − 2
∑
e∈EIh

‖[vh]‖L2(e)‖{σ(vh)ne}‖L2(e)

≥ |vh|21,h −
∑
e∈EIh

C

γ
1
2
0

γ
1
2
0

h
1
2
e

‖[vh]‖L2(e)

(
‖σ(vh)‖L2(Ke) + ‖σ(vh)‖L2(K′e)

)
≥ (1− δ)|vh|21,h −

Cδ
γ0

J0(vh,vh).
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Also,

Im ah(vh,vh) = J0(vh,vh) + J1(vh,vh).

Combining these two results yields (3.21).

Using this theorem, it is easy to check that the bilinear form ah(·, ·) + iω〈A·, ·〉∂Ω

is both continuous and coercive when γ0 is large enough. Hence, by the Lax-Milgram

theorem, the above elliptic projection is well-defined.

Trivially, the following Galerkin orthogonality holds.

Lemma 3.2.3. Suppose that w ∈ E and w̃h ∈ Vh is its elliptic projection then

ah(w − w̃h,vh) + iω
〈
A(w − w̃h),vh

〉
= 0 ∀vh ∈ Vh. (3.22)

Theorem 3.2.4. Let u ∈ H2(Ω) solve (1.4)–(1.5) and let ũh ∈ Vh be its elliptic

projection defined in (3.19). Then the following estimates hold:

|||u− ũh|||1,h + ω
1
2 ξ‖u− ũh‖L2(∂Ω) (3.23)

≤ Cξ2h
(
ξ + γ1 + ωh

) 1
2

(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.24)

and

‖u− ũh‖L2(Ω) ≤ Cξ2h2
(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.25)

where ξ = 1 + γ−1
0 , α is defined in Theorem 3.2.1, and C is a positive constant

independent of ω, h, γ0, γ1.

Proof. Let ûh ∈ Vh denote the P1 conforming finite element interpolant of u on Th.

Then the following estimates are well-known (c.f. [16, 24]):

‖u− ûh‖L2(Ω) ≤ Ch2|u|H2(Ω) and ‖∇(u− ûh)‖L2(Ω) ≤ Ch|u|H2(Ω). (3.26)
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Applying the trace and inverse inequalities to these estimates yields

|||u− ûh|||1,h ≤ C(ξ + γ1)
1
2h|u|H2(Ω), (3.27)

and

‖u− ûh‖L2(∂Ω) ≤ Ch
3
2 |u|H2(Ω). (3.28)

Set ψh := ũh− ûh. By Galerkin orthogonality along with the fact that ψh+u− ũh =

u− ûh we get

ah(ψh,ψh) + iω
〈
Aψh,ψh

〉
∂Ω

= ah(u− ûh,ψh) + iω
〈
A(u− ûh),ψh

〉
∂Ω
.
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Next, it follows from Theorem 3.2.2 with δ = 1
2

and Lemma 3.1.1 that

1

2
|||ψh|||21,h ≤ Cξ‖ψh‖2

1,h

≤ CξRe ah(ψh,ψh) + Cξ

(
1

2
+
C 1

2

γ0

)
Im ah(ψh,ψh)

= CξRe
(
ah(ψh,ψh) + iω

〈
Aψh,ψh

〉
∂Ω

)
− Cξω

(
1

2
+
C 1

2

γ0

)〈
Aψh,ψh

〉
∂Ω

+ Cξ

(
1

2
+
C 1

2

γ0

)
Im
(
ah(ψh,ψh) + iω

〈
Aψh,ψh

〉
∂Ω

)
= CξRe

(
ah(u− ûh,ψh) + iω

〈
A(u− ûh),ψh

〉
∂Ω

)
+ Cξ

(
1

2
+
C 1

2

γ0

)
Im
(
ah(u− ûh,ψh) + iω

〈
A(u− ûh),ψh

〉
∂Ω

)
− Cξω

(
1

2
+
C 1

2

γ0

)〈
Aψh,ψh

〉
∂Ω

≤ Cξ|||ψh|||1,h|||u− û|||1,h + Cωξ‖ψh‖L2(∂Ω)‖u− û‖L2(∂Ω) − Cωξ2‖ψh‖2
L2(∂Ω)

+ Cξ2
(
|||ψh|||1,h|||u− û|||1,h + ω‖ψh‖L2(∂Ω)‖u− û‖L2(∂Ω)

)
≤ Cξ2|||ψh|||1,h|||u− û|||1,h + 2Cωξ2‖u− ûh‖2

L2(∂Ω) −
C

4
ωξ2‖ψh‖L2(∂Ω)

≤ Cξ4|||u− ûh|||21,h +
1

4
|||ψh|||21,h −

C

4
ωξ2‖ψh‖2

L2(∂Ω) + 2Cωξ2‖u− ûh‖2
L2(∂Ω).

Substituting (3.27) and (3.28) into the above estimate gives

|||ψh|||21,h + ωξ2‖ψh‖2
L2(∂Ω) ≤ C

(
ξ4|||u− ûh|||21,h + ωξ2‖u− ûh‖2

L2(∂Ω)

)
≤ C

(
ξ4(ξ + γ1)h2|u|2H2(Ω) + ωξ2h3|u|2H2(Ω)

)
= Cξ4h2

(
ξ + γ1 + ωh

)
|u|2H2(Ω)

≤ Cξ4h2
(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)2 (
‖f‖2

L2(Ω) + ‖g‖L2(∂Ω)

)
.
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Thus,

|||ψh|||1,h + ω
1
2 ξ‖ψh‖L2(∂Ω)

≤ Cξ2h
(
ξ + γ1 + ωh

) 1
2

(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

Recall that u− ũh = u− ûh −ψh. By the triangle inequality we get

|||u− ũh|||1,h + ω
1
2 ξ‖u− ũh‖L2(∂Ω)

≤ |||u− ûh|||1,h + ω
1
2 ξ‖u− ûh‖L2(∂Ω) + |||ψh|||1,h + ω

1
2 ξ‖ψh‖L2(∂Ω)

≤ Cξ2h
(
ξ + γ1 + ωh

) 1
2

(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

Therefore, (3.24) holds.

To obtain (3.25), we appeal to the duality argument by considering the following

auxiliary PDE problem:

−div (σ(w)) = u− ũh in Ω,

σ(w)n− iωAw = 0 on ∂Ω.

It can be shown that there exists a unique solution w ∈ H2(Ω) such that

‖w‖H2(Ω) ≤ C‖u− ũh‖L2(Ω). (3.29)
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Let ŵh ∈ Vh be the P1 conforming finite element interpolant of w. Testing the

above auxiliary problem with u− ũh yields

‖u− ũh‖2
L2(Ω) = −

(
u− ũh,div σ(w)

)
Ω

= ah(u− ũh,w) + iω
〈
A(u− ũh),w

〉
∂Ω

= ah(u− ũh,w − ŵh) + iω
〈
A(u− ũh),w − ŵh

〉
∂Ω

≤ C
(
|||u− ũh|||1,h|||w − ŵh|||1,h + ω‖u− ũh‖L2(∂Ω)‖w − ŵh‖L2(Ω)

)
≤ C

(
(ξ + γ1)

1
2h|w|H2(Ω)|||u− ũh|||1,h + ωh

3
2 |w|H2(Ω)‖u− ũh‖L2(∂Ω)

)
≤ C

(
(ξ + γ1)

1
2h‖u− ũh‖L2(Ω)|||u− ũh|||1,h

+ ωh
3
2‖u− ũh‖L2(Ω)‖u− ũh‖L2(∂Ω)

)
.

Hence,

‖u− ũh‖L2(Ω) ≤ Ch(ξ + γ1 + ωh)
1
2

(
|||u− ũh|||1,h + ω

1
2 ξ‖u− ũh‖L2(Ω)

)
≤ Cξ2h2(ξ + γ1 + ωh)

(
ωα +

1

ω2

)(
‖f‖L2(ω) + ‖g‖L2(∂Ω)

)
.

Thus, (3.25) holds.

With estimates for the elliptic projection in hand, all of the components are in

place to complete Schatz argument and obtain asymptotic error estimates. The next

subsection is devoted to carrying this out.

3.2.2 Asymptotic Error Estimates Via Schatz Argument

In this subsection, error estimates for the proposed IP-DG method are proved in the

asymptotic mesh regime (i.e. when ω2h = O(1)). This will be carried out using the

well-known Schatz argument (c.f. [6, 29, 30, 26, 16]).
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To carry out Schatz argument, we introduce the error decomposition

eh := u− uh = ψ + φh,

where ψ := u − ũh, φh := ũh − uh, and ũh is the elliptic projection of u as defined

in (3.19). Recall that estimates on ψ have already been established (c.f. Theorem

3.2.4). Thus it is left to bound φh.

The next step relates the semi-norm ‖φh‖1,h to norms on ψ and a lower order norm

‖φh‖L2(Ω). This step relies on the Gärding’s inequality for Ah(·, ·) and the continuity

of Ah(·, ·). After this is complete, the next step is to relate the norm ‖eh‖L2(Ω) to

the semi-norm h|||eh|||1,h using a duality argument. The final step is to put all of the

previous steps together with h chosen to be small enough to obtain the desired error

estimates.

The following lemmas carry out the intermediate steps leading to error estimates

in the asymptotic mesh regime.

Lemma 3.2.5. Suppose that u ∈ H2(Ω) solves (1.4)–(1.5), uh is its IP-DG

approximation, and ũh is its elliptic projection. Then for φh = ũh − uh

‖φh‖2
1,h ≤ C

(
ξ3|||ψ|||21,h + ξ3ω2ρ‖ψ‖2

L2(Ω) + ω2ρ‖φh‖2
L2(Ω)

)
, (3.30)

where ψ = u− ũh, ξ = 1 + 1
γ0

and C is a positive constant independent of ω, h, γ0, γ1.

Proof. By Gärding’s inequality (c.f. Theorem 3.1.6), the continuity of Ah(·, ·),

Galerkin orthogonality, the Cauchy-Schwarz and Young’s inequalities we have

1

2
‖φh‖2

1,h − ω2ρ‖φh‖2
L2(Ω) ≤ Cξ|Ah(φh,φh)|

= Cξ|Ah(ψ,φh)|

≤ Cξ
(
|||ψ|||21,h + ω2ρ‖ψ‖2

L2(Ω)

) 1
2
(
ξ‖φh‖2

1,h + ω2ρ‖φh‖2
L2(Ω)

) 1
2

≤ C

(
ξ3|||ψ|||21,h + ξ3ω2ρ‖ψ‖2

L2(Ω) +
ω2ρ

ξ
‖φh‖2

L2(Ω)

)
+

1

4
‖φh‖2

1,h.
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Thus, rearranging the terms and using the fact that 1 + 1
ξ
≤ 2 yields the desired

inequality (3.30).

Lemma 3.2.6. Suppose that u ∈ H2(Ω) solves (1.4)–(1.5) and uh is its IP-DG

approximation. There exists a positive constant C1 independent of ω, h, γ0, γ1 such

that for

h ≤ min

{
1

ω
,

(
2C1ξ

2ω(ξ + γ1)

(
ωα +

1

ω2

))−1
}
,

there holds

‖u− uh‖2
L2(Ω) ≤ Cξ2h (ξ + γ1)

(
ωα +

1

ω2

)
|||u− uh|||1,h, (3.31)

where ξ = 1 + 1
γ0

and C is a positive constant independent of ω, h, γ0, γ1.

Proof. Let w be the solution to the following problem:

Ah(v,w) = (v, eh)Ω ∀v ∈ E.

Let w̃h be the elliptic projection of w defined by (3.19). Using the continuity of

Ah(·, ·) and Galerkin orthogonality we get

‖eh‖2
L2(Ω) = (eh, eh)L2(Ω)

= Ah(eh,w)

= Ah(eh,w − w̃h)

≤ C
(
|||eh|||1,h + ω2‖eh‖2

L2(Ω)

) 1
2
(
|||w − w̃h|||1,h + ω2‖w − w̃h‖2

L2(Ω)

) 1
2
.
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Applying Theorem 3.2.4 and using the fact that h ≤ 1
ω

yield

‖eh‖2
L2(Ω) ≤ C

(
|||eh|||1,h + ω2‖eh‖2

L2(Ω)

) 1
2

· ξ2(ξ + γ1 + ωh)h(1 + ωh)

(
ωα +

1

ω2

)
‖eh‖L2(Ω)

≤ C1

(
|||eh|||1,h + ω2‖eh‖2

L2(Ω)

) 1
2

· ξ2h(ξ + γ1)

(
ωα +

1

ω2

)
‖eh‖L2(Ω).

Dividing both sides of this inequality by ‖eh‖L2(Ω) and using the fact that h ≤(
2C1ξ

2ω(ξ + γ1)
(
ωα + 1

ω2

))−1
gives

‖eh‖L2(Ω) ≤ C1ξ
2h(ξ + γ1)

(
ωα +

1

ω2

)
|||eh|||1,h

+ C1ξ
2ωh(ξ + γ1)

(
ωα +

1

ω2

)
‖eh‖L2(Ω)

≤ C1ξ
2h(ξ + γ1)

(
ωα +

1

ω2

)
|||eh|||1,h +

1

2
‖eh‖L2(Ω).

Subtracting 1
2
‖eh‖L2(Ω) from both sides of the above inequality yields the desired

result.

Lemma 3.2.5 and lemma 3.2.6 are now put together to derive optimal order error

estimates for h small.

Theorem 3.2.7. Let eh = u− uh where u ∈ H2(Ω) solves (1.4)–(1.5) and uh is its

IP-DG approximation. There exists a positive constant C̃, independent of ω, h, γ0, γ1,

such that for h ≤ h0 := min

{
1
ω
,
(

2C̃ξ
5
2ω(ξ + γ1)

(
ωα + 1

ω2

))−1
}

the following error
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estimates hold:

|||eh|||1,h ≤ Cξ4(ξ + γ1)

(
ωα +

1

ω2

)(
h+ ωh2

) (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.32)

‖eh‖L2(Ω) ≤ Cξ6(ξ + γ1)2

(
ωα +

1

ω2

)2 (
h2 + ωh3

) (
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.33)

where ξ = 1 + 1
γ0

, α is defined as in Theorem 3.2.1, and C is a positive constant

independent of ω, h, γ0, γ1.

Proof. Let ũh be the elliptic projection of u. Then eh = ψ + φh, where ψ = u− ũh

and φh = ũh − uh. By Lemma 3.2.5 we get

|||eh|||21,h ≤ C
(
|||ψ|||21,h + |||φh|||21,h

)
≤ C

(
|||ψ|||21,h + ξ‖φh‖2

1,h

)
≤ C

(
ξ4|||ψ|||21,h + ξ4ω2‖ψ‖2

L2(Ω) + ξω2‖φh‖2
L2(Ω)

)
. (3.34)

Note that φh = −ψ + eh, and the triangle inequality implies that

‖φh‖2
L2(Ω) ≤ C

(
‖ψ‖2

L2(Ω) + ‖eh‖2
L2(Ω)

)
.

Substituting the above inequality into (3.34) and using Lemma 3.2.6 (at this point

we assume that C̃ ≥ C1 and thus h is small enough to satisfy the condition of Lemma

3.2.6), we have

|||eh|||21,h ≤ C
(
ξ4|||ψ|||21,h + ξ4ω2‖ψ‖2

L2(Ω) + ξω2‖eh‖2
L2(Ω)

)
≤ C

(
ξ4|||ψ|||21,h + ξ4ω2‖ψ‖2

L2(Ω)

)
+ C̃ξ5ω2h2(ξ + γ1)2

(
ωα +

1

ω2

)2

|||eh|||21,h.
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Now the fact that h ≤ h0 implies

|||eh|||21,h ≤ C
(
ξ4|||ψ|||21,h + ξ4ω2‖ψ‖2

1,h

)
+

1

4
|||eh|||21,h.

Thus,

|||eh|||1,h ≤ C
(
ξ2|||ψ|||1,h + ξ2ω‖ψ‖L2(Ω)

)
,

which together with Theorem 3.2.4 infers (3.32).

(3.33) follows from applying Lemma 3.2.6 to (3.32).

We note that a mesh constraint of the form ωα+1h = O(1) must be used to

ensure an optimal order error estimate when using Schatz argument. If a Korn’s

inequality holds on the boundary (c.f. Conjecture 2.3.4) then α = 1 and the

constraint becomes ω2h = O(1). This is consistent with the mesh constraint used

to characterize the asymptotic mesh regime for discretization methods applied to

the other Helmholtz-type problems. Stability in the asymptotic mesh regime can be

derived as a consequence of the error estimates above. For standard discretization

methods applied to the elastic Helmholtz problem, stability has only been proved in

the asymptotic mesh regime. In the next section, we will carry out a stability and

convergence analysis for our IP-DG method in the pre-asymptotic mesh regime, i.e.

for ωα+1h > C.

3.3 Pre-asymptotic Error Estimates

In the previous section, optimal error estimates were obtained in the asymptotic mesh

regime, i.e. when ωα+1h ≤ C, where α is defined in Theorem 3.2.1 and C is some

positive constant independent of ω. In this section, stability estimates for our IP-

DG approximation will be established in the pre-asymptotic mesh regime, i.e. when

ωα+1h > C. These stability estimates will then be used to establish optimal order
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error estimates in the pre-asymptotic regime. Thus, Section 3.2 together with this

section ensure that the proposed IP-DG method is absolutely stable. This property

makes the proposed IP-DG method especially well suited to approximate the elastic

Helmholtz equations.

3.3.1 Stability Estimates in the Pre-Asymptotic Mesh Regime

In this subsection, stability estimates for the proposed IP-DG method are established.

Specifically, these estimates are established in the pre-asymptotic mesh regime, i.e.

when ωα+1h > C. It turns out that stability in this case is just a consequence

of Theorem 3.1.3 which proves a weak coercivity property of Ah(·, ·). As stated

previously, the coercivity constant from this theorem is adversely dependent on h for

small values of h. In the case that h is bounded away from zero, this constant can

be replaced with one that is not dependent on h. Thus, stability estimates for the

pre-asymptotic mesh regime are obtained as a consequence of the weak coercivity of

Ah(·, ·). The stability of the IP-DG method in the pre-asymptotic mesh regime is

given by the next theorem.

Theorem 3.3.1. Suppose that uh ∈ Vh solves the IP-DG method given by (3.6).

Then the following inequalities hold:

|uh|21,h + ω2ρ‖uh‖2
L2(Ω) ≤ C

(
C2

sta‖f‖2
L2(Ω) + Csta‖g‖2

L2(∂Ω)

)
, (3.35)

J0(uh,uh) + J1(uh,uh) +
〈
Auh,uh

〉
∂Ω
≤ C

ω

(
Csta‖f‖2

L2(Ω) + ‖g‖2
L2(∂Ω)

)
, (3.36)

where Csta =
(
ξ
ω

+ 1
ω2h

+ 1
ω3h2γ1

)
, ξ = 1+ 1

γ0
, and C is a positive constant independent

of ω, h, γ0, γ1.
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Proof. By (3.12) and (3.13) we get

|uh|21,h + ω2ρ‖uh‖2
L2(Ω) + ω

(
1 +

1

γ0

+
1

ωh
+

1

ω2ρh2γ1

)〈
Auh,uh

〉
∂Ω

≤ C
(

1 +
1

γ0

+
1

ωh
+

1

ω2ρh2γ1

)
|Ah(uh,uh)|

≤ C
(

1 +
1

γ0

+
1

ωh
+

1

ω2ρh2γ1

)(
‖f‖L2(Ω)‖uh‖L2(Ω) + ‖g‖L2(∂Ω)‖uh‖L2(∂Ω)

)
≤ C

ω2ρ

(
1 +

1

γ0

+
1

ωh
+

1

ω2ρh2γ1

)2

‖f‖2
L2(Ω) +

ω2ρ

2
‖uh‖2

L2(Ω)

+
C

ωcA

(
1 +

1

γ0

+
1

ωh
+

1

ω2ρh2γ1

)
‖g‖2

L2(∂Ω)

+ ωcA

(
1 +

1

γ0

+
1

ωh
+

1

ω2ρh2γ1

)
‖uh‖2

L2(∂Ω).

Substituting (3.10) into the above inequality infers (3.35).

Now, combining (3.13) with (3.35) yields

J0(uh,uh) + J1(uh,uh) + ω
〈
Auh,uh

〉
∂Ω

≤ |Ah(uh,uh)|

≤ ‖f‖L2(Ω)‖uh‖L2(Ω) + ‖g‖L2(∂Ω)‖uh‖L2(∂Ω)

≤ C

ωρ
1
2

‖f‖L2(Ω)

(
1

ρ
C2

sta‖f‖2
L2(Ω) +

1

cA
Csta‖g‖2

L2(∂Ω)

) 1
2

+
C

ωcA
‖g‖2

L2(∂Ω) +
ωcA

2
‖uh‖2

L2(∂Ω)

≤ C

ωρ
Csta‖f‖2

L2(Ω) +
C

ωcA
‖g‖2

L2(∂Ω) +
ωcA

2
‖uh‖2

L2(∂Ω).

Using (3.10) in the above inequality infers (3.36).

Remark 3.3.2. When ωα+1h > C

Csta < C
( ξ
ω

+ ωα−1 +
ω2α−1

γ1

)
. (3.37)

Thus, the constant in the above stability estimate is independent of h in the pre-

asymptotic mesh regime.
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3.3.2 Error Estimates for the IP-DG Method

In this subsection, the stability estimates established in Subsection 3.3.1 are utilized

to obtain optimal order error estimates for the proposed IP-DG method in the pre-

asymptotic mesh regime (i.e. ωα+1h > C). These estimates are obtained with the help

of the elliptic projection defined in Subsection 3.2.1, the stability estimates established

in Subsection 3.3.1, and Galerkin orthogonality for the sesquilinear form Ah(·, ·).

Let u ∈ H2(Ω) solve (1.4)–(1.5) and uh ∈ Vh be its IP-DG approximation defined

in (3.6). As before, the error eh is defined by eh := u − uh. Subtracting (3.6) from

(3.3) immediately yields the following Galerkin orthogonality property for Ah(·, ·):

ah(eh,vh)− ω2ρ
(
eh,vh

)
Ω

+ iω
〈
Aeh,vh

〉
∂Ω

= 0 ∀vh ∈ Vh. (3.38)

Let ũh ∈ Vh denote the elliptic projection of u as defined in (3.19). In the same

fashion as was done in subsection 3.2.2, the error eh can be decomposed as eh = ψ+φh

where ψ = u − ũh and φh = ũh − uh. Again, estimates on eh will be established

from estimates on ψ and φh that are obtained separately. By Galerkin orthogonality

given in (3.17) and (3.38) we have the following identity:

ah(φh,vh)− ω2ρ
(
φh,vh

)
Ω

+ iω
〈
Aφh,vh

〉
∂Ω

(3.39)

= −ah(ψ,vh) + ω2ρ
(
ψ,vh

)
Ω
− iω

〈
Aψ,vh

〉
∂Ω

= ω2ρ
(
ψ,vh

)
Ω

∀vh ∈ Vh.

In other words, φh ∈ Vh solves (3.6) with f = ω2ρψ and g ≡ 0. This allows us

to establish estimates on φh by using the stability estimates from Theorem 3.3.1.

Specifically, we have the next lemma.
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Lemma 3.3.3. Let u ∈ H2(Ω) solve (1.4)–(1.5), uh be its IP-DG approximation,

and ũh be its elliptic projection. Then φh = ũh−uh satisfies the following inequality:

‖φh‖1,h + ωρ
1
2‖φh‖L2(Ω)

≤ Cξ2ω2h2Csta

(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
, (3.40)

where Csta =
(
ξ
ω

+ 1
ω2h

+ 1
ω3h2γ1

)
, ξ = 1+ 1

γ0
, and C is a positive constant independent

of ω, h, γ0, γ1.

Proof. (3.39) implies that φh solves (3.6) with f = ω2ρψ and g ≡ 0. Thus, an

application of Theorem 3.3.1 yields

‖φh‖1,h + ωρ
1
2‖φh‖L2(Ω) ≤

C

ρ
1
2

Csta‖ω2ρψ‖L2(Ω)

≤ Cω2ρ
1
2Csta‖ψ‖L2(Ω),

which along with Theorem 3.2.4 infers (3.40).

We are now ready to derive error estimates for our IP-DG method in the pre-

asymptotic mesh regime. The next theorem is a consequence of combining Theorem

3.2.4 and Lemma 3.3.3.

Theorem 3.3.4. Let u ∈ H2(Ω) solve (1.4)–(1.5) and uh be its IP-DG approxima-

tion. Then eh = u− uh satisfies the following inequality:

‖eh‖1,h + ωρ
1
2‖eh‖L2(Ω) (3.41)

≤ Cξ2h
(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ Cξ2ωh2

(
1 + ωCsta

)(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,

‖eh‖L2(Ω) (3.42)

≤ Cξ2h2
(
1 + ωCsta

)(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
,
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where Csta =
(
ξ
ω

+ 1
ω2h

+ 1
ω3h2γ1

)
, ξ = 1+ 1

γ0
, and C is a positive constant independent

of ω, h, γ0, γ1.

Proof. Recall that estimates for ψ and φh have already been established in Theorem

3.2.4 and Lemma 3.3.3, respectively. These estimates are combined in the following

steps to obtain (3.41):

‖eh‖1,h + ωρ
1
2‖eh‖L2(Ω)

≤ |||ψ|||1,h + ωρ
1
2‖ψ‖L2(Ω) + ‖φh‖1,h + ωρ

1
2‖φh‖L2(Ω)

≤ Cξ2h
(
ξ + γ1 + ωh

) 1
2

(
ωα +

1

ω2

) 1
2
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ Cξ2ωh2

(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ Cξ2ω2h2Csta

(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
≤ Cξ2h

(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
+ Cξ2ωh2

(
1 + ωCsta

)(
ξ + γ1 + ωh

)(
ωα +

1

ω2

)(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
.

Similarly, (3.42) is obtained by combining Theorem 3.2.4 and Lemma 3.3.3.

Remark 3.3.5. When ωα+1h > C

Csta < C
( ξ
ω

+ ωα−1 +
ω2α−1

γ1

)
.

Therefore, the above error estimates are optimal in h in the pre-asymptotic mesh

regime.

3.4 Numerical Experiments

In this section, numerical tests are carried out in order to demonstrate key features of

the proposed IP-DG method. We choose Ω = (−0.5, 0.5)2 ⊂ R2 (i.e. the unit square

in R2 centered at the origin), along with the material constants ρ = µ = λ = 1,
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and penalty constants γ0 = 10 and γ1 = 0.1. For the sake of testing the exact error,

f and g are chosen so that the exact solution to the elastic Helmholtz equations is

u = 1
ω2r

[eiωr − 1, e−iωr − 1]T , where r = ‖x‖2. This simple problem along with the

subsequent numerical tests are chosen to mirror those for the IP-DG method proposed

in [42] for the scalar Helmholtz problem. Some example plots are given in Figures 3.2

and 3.3. These plots demonstrate how well the proposed IP-DG method can capture

an example with large wave frequency when using a relatively coarse mesh.

To partition the domain Ω, a uniform triangulation Th is used. For a positive

integer n, define T1/n to be a triangulation of 2n2 congruent isosceles triangles with

side lengths 1/n, 1/n, and
√

2/n. Figure 4.1 shows a sample triangulation T1/10.

The numerical tests in this section intend to demonstrate the following:

• absolute stability of our IP-DG method,

• error of our IP-DG solution,

• pollution effect on the error when ωh = O(1),

• absence of the pollution effect when ω3h2 = O(1),

• comparisons between standard FE and our IP-DG method for this problem.

Figure 3.1: Example of the triangulation T1/10.
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Figure 3.2: Plot of ‖Re
(
uh
)
‖2 for ω = 50 and h = 1/70. Both a top down view (left)

and a side view (right) are shown.

Figure 3.3: Plot of ‖Re
(
uh
)
‖2 for ω = 100 and h = 1/120. Both a top down view

(left) and a side view (right) are shown.

3.4.1 Stability

In this subsection, the stability of both the proposed IP-DG method and the P1-

conforming finite element method will be discussed. Let uFEMh denote the P1-

conforming finite element approximation of u. Recall that the proposed IP-DG

approximation is absolutely stable, i.e. it is stable for all ω, h, γ0, γ1 > 0. This

has not been established for the P1-conforming finite element approximation. In fact,

the stability of the P1-conforming finite element approximation is known to hold only

when h satisfies ω2h ≤ C.
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Figure 3.4 plots both ‖uh‖1,h and ‖uFEM‖1,h for h = 0.05, 0.01 and ω =

1, 2, ..., 200. We observe that ‖uh‖1,h decreases in a smooth fashion as ω increases.

This smooth behavior of ‖uh‖1,h is indicative of the absolute stability of the IP-DG

approximation. On the other hand, we observe oscillations in ‖uFEMh ‖1,h that occur

when we vary ω. This oscillation is indicative of the instability of the P1-conforming

finite element method when h is too large.

Figure 3.4: Plots of ‖uh‖1,h and ‖uFEMh ‖1,h.

3.4.2 Error

In this subsection, the optimal order of convergence for the proposed IP-DG method

will be demonstrated. The pollution effect will also be demonstrated. From Theorems

3.3.4 and 3.2.7 we expect the error in ‖ · ‖1,h to decrease at an optimal order in both

the pre-asymptotic and asymptotic mesh regimes. In other words, ‖u−uh‖1,h = O(h)

is expected. Figure 3.5 is a log-log plot of the relative error ‖u−uh‖1,h/‖u‖1,h against

the value 1/h for frequencies ω = 5, 10, 20, 30. From this plot, it is observed that the

relative error decreases at the same rate as h, thus displaying the optimal order of

convergence in the relative semi-norm. Also displayed in Figure 3.5 is the error when

ω varies according to the constraint ωh = 0.25. From this figure it is observed that

the error increases as ω increases under this constraint. This is due to the pollution

effect on the error for the elastic Helmholtz equations.
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Figure 3.5: Log-log plot of the relative error for the IP-DG approximation measured
in the H1-seminorm for different values of ω.

The pollution effect for Helmholtz-type problems is characterized by the increase

in error as ω is increased under the constraint ωh = O(1). This effect is intrinsic to

Helmholtz-type problems (c.f. [54]). It is well-known that the pollution effect can

be eliminated if h is chosen to fulfill the more stringent constraint ω3h2 = O(1). In

Figure 3.6 the relative error is plotted against ω as h is chosen to satisfy different

constraints. Under the constraints ωh = 1 and ωh = 0.5, the pollution effect is

present and the relative error increases as ω is increased. On the other hand, when

ω3h2 = 1 is used to choose the the mesh size h, the pollution effect is eliminated.

Figure 3.6: Relative error of the IP-DG approximation measured in the H1 seminorm
computed for different values of ω and h is chosen to satisfy the given constraints.
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3.4.3 IP-DG vs. FEM

In this subsection, the proposed IP-DG solution is compared to the P1-conforming

finite element solution. As stated previously, the proposed IP-DG method is

absolutely stable while the P1-conforming finite element method is only shown to

be stable when h satisfies ω2h = O(1). With this in mind, one can anticipate that in

the case that the frequency ω is allowed to be large, the IP-DG method becomes a

better method.

In Figures 3.7–3.9, ‖Re(uh)‖2 and ‖Re(uFEMh )‖2 are plotted for ω = 100 and

h = 1/50, 1/120, 1/200 on a cross-section over the line y = x. In addition, ‖Re(u)‖2 is

plotted to measure how well the respective approximations capture the true solution.

In Figure 3.7, it is observed that uh already captures the phase of u with h = 1/50

while not fully capturing the large changes in magnitude. On the other hand, for

h = 1/50, uFEMh has spurious oscillations. In this case, uFEMh also fails to capture

the changes in the magnitude of the wave. In Figure 3.8, we see that for h = 1/120,

uh captures the phase and changes in magnitude of the wave very well while uFEMh

still displays spurious oscillations. In Figure 3.9, we see for h = 1/200, both methods

capture the wave well. However, the IP-DG method captures the wave slightly better.

These examples demonstrate that the IP-DG method approximates high frequency

waves better than the standard finite element when a coarse mesh is employed. This

is of great importance when memory is limited or one wishes to employ a multi-level

solver such as multigrid or multi-level Schwarz space/domain decomposition methods.
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Figure 3.7: The left plot is of ‖Re(uh)‖2 (solid red line) vs. ‖Re(u)‖2 (dashed blue
line) for h = 1/50. The right plot is of ‖Re(uFEMh )‖2 (solid red line) vs. ‖Re(u)‖2

(dashed blue line) for h = 1/50.

Figure 3.8: The left plot is of ‖Re(uh)‖2 (solid red line) vs. ‖Re(u)‖2 (dashed blue
line) for h = 1/120. The right plot is of ‖Re(uFEMh )‖2 (solid red line) vs. ‖Re(u)‖2

(dashed blue line) for h = 1/120.
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Figure 3.9: The left plot is of ‖Re(uh)‖2 (solid red line) vs. ‖Re(u)‖2 (dashed blue
line) for h = 1/200. The right plot is of ‖Re(uFEMh )‖2 (solid red line) vs. ‖Re(u)‖2

(dashed blue line) for h = 1/200.
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Chapter 4

A Multi-modes Monte Carlo

Interior Penalty Discontinuous

Galerkin Method for Acoustic

Wave Scattering in Random Media

4.1 Introduction

Partial differential equations with random coefficients arise naturally in the modeling

of many physical phenomena. This is due to the fact that some level of uncertainty is

usually involved if the knowledge of the physical behavior or when noise is present in

the experimental measurements. In recent years, substantial progress has been made

in the numerical approximation of such PDEs due to the significant development in

computational resources. We refer to [11, 12, 21, 68, 80] and the references therein

for more details.

In this chapter, we consider the propagation of acoustic waves in a medium where

the wave velocity is characterized by a random process. More precisely, we study the
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approximation of the solution to the following Helmholtz problem:

−∆u(ω, ·)− k2α(ω, ·)2u(ω, ·) = f(ω, ·) in D, (4.1)

∂νu(ω, ·) + ikα(ω, ·)u(ω, ·) = 0 on ∂D, (4.2)

where k is the wave number, and D ⊂ Rd (d = 1, 2, 3) is a convex bounded polygonal

domain with boundary ∂D. Let (Ω,F , P ) be a probability space with sample space Ω,

σ−algebra F and probability measure P . For each fixed x ∈ D, the refractive index

α(·, x) is a real-valued random variable defined over Ω. We assume that the medium

is a small random perturbation of a uniform background medium in the sense that

α(ω, ·) := 1 + εη(ω, ·). (4.3)

Here ε represents the magnitude of the random fluctuation, and η ∈ L2(Ω, L∞(D)) is

some random process satisfying

P
{
ω ∈ Ω; ‖η(ω, ·)‖L∞(D) ≤ 1

}
= 1.

For notational brevity, we only consider the case that η is real-valued. However,

we note that the results of this chapter are also valid for complex-valued η. On

the boundary ∂D, an absorbing boundary condition is imposed to absorb incoming

waves [35]. Here ν denotes the unit outward normal to ∂D, and ∂νu stands for

the normal derivative of u. The boundary value problem (4.1)–(4.2) arises in the

modeling of wave propagation in complex environments, such as composite materials,

oil reservoirs and geological basins [46, 55]. In such instances, it is of practical

interest to characterize the uncertainty of the wave energy transport when the medium

contains some randomness. In particular, we are interested in the computation of

some statistics of the wave field, e.g. the expected value of the solution u.

To solve stochastic (or random) partial differential equations (SPDEs) numerically,

the simplest and most natural approach is to use the Monte Carlo method, where
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a set of independent identically distributed (i.i.d.) solutions are obtained by

sampling the PDE coefficients, and the expected value of the solution is calculated

via a statistical average over all the sampling in the probability space [21]. An

alternative is the stochastic Galerkin method, where the SPDE is reduced to a high

dimensional deterministic equation by expanding the random field in the equation

using the Karhunen-Loève or Wiener Chaos expansions. We refer the reader to

[11, 12, 33, 68, 80] for detailed discussions. However, it is known that a brute-

force Monte Carlo or stochastic Galerkin method applied directly to the Helmholtz

equation with random coefficients is computationally prohibitive even for a moderate

wave number k, since a large number of degrees of freedom is involved in the

spatial discretization. It is apparent that in such cases, the Monte Carlo method

requires solving a PDE with many sampled coefficients, while the high dimensional

deterministic equation associated with the stochastic Galerkin method will be too

expensive to be solved.

In this chapter, we propose an efficient numerical method for solving the Helmholtz

problem (4.1)–(4.2) when the medium is weakly random defined by (4.3). A multi-

modes representation of the solution is derived, where each mode is governed by

a Helmholtz equation with deterministic coefficients and a random source. We

develop a Monte Carlo interior penalty discontinuous Galerkin (MCIP-DG) method

for approximating the mode functions. In particular, we take advantage of the fact

that the coefficients of the Helmholtz equation for all the modes are identical; hence,

the associated discretized equations share the same constant coefficient matrix. Using

this crucial fact, it is observed that an LU direct solver for the discretized equations

leads to a tremendous saving in the computational costs, since the LU decomposition

matrices can be used repeatedly. Thus, all of the solutions for all modes and

all samples can be obtained in an efficient way by performing simple forward and

backward substitutions. Indeed, it turns out that the computational complexity of

the proposed algorithm is comparable to that of solving a few deterministic Helmholtz

problems using the LU direct solver.
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The rest of the chapter is organized as follows. A wave-number explicit estimate

for the solution of the random Helmholtz equation is established in Section 4.2.

In Section 4.3, we introduce the multi-modes expansion of the solution as a power

series of ε and analyze the error estimation for its finite-modes approximation. The

Monte Carlo interior penalty discontinuous Galerkin method is presented in Section

4.4, where the error estimates for the approximation of each mode function is also

obtained. In Section 4.5, a numerical procedure for solving (4.1)–(4.2) is described

and its computational complexity is analyzed in detail. In addition, we derive optimal

order error estimates for the proposed procedure. Several numerical experiments are

provided in Section 6 to demonstrate the efficiency of the method and to validate the

theoretical results.

4.2 PDE Analysis

The focus of this section will be to derive a priori solution estimates for the random

Helmholtz problem introduced in (4.1)–(4.2). These a priori estimates will be used

to prove existence and uniqueness of the solution to the random Helmholtz problem.

The techniques in this chapter will mirror those carried out for the deterministic

scalar Helmholtz problem (1.1)–(1.2) (c.f. Chapter 2 and [27]).

4.2.1 Preliminaries

Similar to Chapter 2, analysis in this section will be carried out using the following

special function spaces:

H1
+(D) :=

{
v ∈ H1(D); |∇v|

∣∣
Γ
∈ L2(∂D)

}
, (4.4)

V :=
{
v ∈ H1(D); ∆v ∈ L2(D)

}
. (4.5)

Without loss of generality, we assume that the domain D ⊂ BR(0). Throughout

this chapter we also assume that D is a star-shaped domain with respect to the origin
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in the sense that there exists a positive constant c0 such that

x · ν ≥ c0 on ∂D,

Recall that the analysis in Chapter 2 also relied on a star-shape condition on the

domain.

Let (Ω,F , P ) be a probability space on which all the random variables of this

chapter are defined. E(·) denotes the expectation operator on this probability space.

The abbreviation a.s. stands for almost surely.

As it will be needed in the late sections of this chapter, in this section we analyze

the boundary value problem for the Helmholtz equation (4.1) with the following

slightly more general nonhomogeneous boundary condition:

∂νu(ω, ·) + ikα(ω, ·)u(ω, ·) = g(ω, ·). (4.6)

As in Chapter 2, analysis of the random Helmholtz problem (4.1),(4.6) will be

carried out on its weak formulation. With this in mind, we introduce the following

definition.

Definition 4.2.1. Let f ∈ L2(Ω, L2(D)) and g ∈ L2(Ω, L2(∂D)). A function

u ∈ L2(Ω, H1(D)) is called a weak solution to problem (4.1),(4.6) if it satisfies the

following identity:

∫
Ω

a(u, v) dP =

∫
Ω

(
(f, v)D + 〈g, v〉∂D

)
dP ∀v ∈ L2(Ω, H1(D)), (4.7)

where

a(w, v) :=
(
∇w,∇v

)
D
− k2

(
α2w, v

)
D

+ ik 〈αw, v〉∂D . (4.8)

Remark 4.2.2. Using (4.10) below, it is easy to show that any solution u of

(4.1),(4.6) satisfies u ∈ L2(Ω, H1
+(D) ∩ V ).
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4.2.2 Wave-number Explicit Solution Estimates

In this subsection, we shall derive stability estimates for the solution of problem

(4.1),(4.6) which is defined in Definition 4.2.1. Similar to Chapter 2, our focus is to

obtain explicit dependence of the stability constants on the wave number k. Such

wave-number explicit stability estimates will play a vital role in our convergence

analysis in the later sections. We note that wave-number explicit stability estimates

also play a pivotal role in the development of numerical methods, such as finite element

and discontinuous Galerkin methods, for deterministic reduced wave equations (cf.

Chapter 3 and [42, 44]). As a byproduct of the stability estimates, the existence and

uniqueness of solutions to problem (4.1),(4.6) will be conveniently established.

Lemma 4.2.3. Let u ∈ L2(Ω, H1(D)) be a solution of (4.1),(4.6), then for any

δ1, δ2 > 0 and ε < 1 there hold

E(‖∇u‖2
L2(D)) ≤

(
k2(1 + ε)2 + δ1

)
E(‖u‖2

L2(D)) (4.9)

+

(
δ1

2k2(1− ε)2
+

1

2δ1

)(
E(‖f‖2

L2(D)) + E(‖g‖2
L2(∂D))

)
,

E(‖u‖2
L2(∂D)) ≤

δ2

k(1− ε)
E(‖u‖2

L2(D)) +
1

δ2k(1− ε)
E(‖f‖2

L2(D)) (4.10)

+
1

k2(1− ε)2
E(‖g‖2

L2(∂D)).

Proof. Setting v = u in (4.7) yields

∫
Ω

a(u, u) dP =

∫
Ω

(
(f, u)D + 〈g, v〉∂D

)
dP.

Taking the real and imaginary parts and using the definition of a(·, ·), we get

∫
Ω

(
‖∇u‖2

L2(D) − k2‖(1 + εη)u‖2
L2(D)

)
dP = Re

∫
Ω

(
(f, u)D + 〈g, v〉∂D

)
dP, (4.11)

k

∫
Ω

〈1 + εη, |u|2〉∂D dP = Im

∫
Ω

(
(f, u)D + 〈g, v〉∂D

)
dP. (4.12)
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Applying the Cauchy-Schwarz inequality to (4.12) produces

k(1− ε)E(‖u‖2
L2(∂D)) ≤

δ2

2
E(‖u‖2

L2(D)) +
1

2δ2

E(‖f‖2
L2(D))

+
k(1− ε)

2
E(‖u‖2

L2(∂D)) +
1

2k(1− ε)
E(‖g‖2

L2(∂D)).

Thus, (4.10) holds. Applying Cauchy-Schwarz to (4.11) yields

E(‖∇u‖2
L2(D)) ≤

(
k2(1 + ε)2 +

δ1

2

)
E(‖u‖2

L2(D)) +
1

2δ1

E(‖f‖2
L2(D))

+
δ1

2
E(‖u‖2

L2(∂D)) +
1

2δ1

E(‖g‖2
L2(∂D)),

which together with (4.10) (using δ2 = k(1− ε)) infers (4.9). The proof is complete.

From Lemma 4.2.3, We observe that the test function v = u is not enough to obtain

solution estimates for the weak solution of (4.1), (4.6). Recall that this was also the

case for the deterministic scalar Helmholtz equation. To overcome this difficulty, in

Chapter 2 and [27] we made use of Rellich identities for the Laplacian operator. With

this in mind, we prove the following lemma.

Lemma 4.2.4. Let u ∈ L2(Ω, H2(D)), then

Re

∫
Ω

(
u, x · ∇u

)
D
dP = −d

2

∫
Ω

‖u‖2
L2(D) dP +

1

2

∫
Ω

〈x · ν, |u|2〉∂D dP, (4.13)

Re

∫
Ω

(
∇u,∇(x · ∇u)

)
D
dP =

2− d
2

∫
Ω

‖∇u‖2
L2(D) dP (4.14)

+
1

2

∫
Ω

〈
x · ν, |∇u|2

〉
∂D

dP.

Proof. To obtain the above result, we apply Lemmas 2.2.2 and 2.2.3 with α = x and

integrate the subsequent identities over the probability space (Ω,F , P ).

Remark 4.2.5. (4.14) could be called a stochastic Rellich identity for the Laplacian.
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We are now ready to state and prove our wave-number explicit estimate for

solutions of problem (4.1), (4.6) defined in Definition 4.2.1.

Theorem 4.2.6. Let u ∈ L2(Ω, H1
+(D)) be a solution of (4.1)–(4.6) and R be

the smallest number such that BR(0) contains the domain D. Then there hold the

following estimates:

E
(
‖u‖2

L2(D) + ‖u‖2
L2(∂D) + c0 ‖∇u‖2

L2(∂D)

)
≤ C0

(1

k
+

1

k2

)2

M(f, g), (4.15)

E(‖u‖2
H1(D)) ≤ C0

(
1 +

1

k2

)2

M(f, g), (4.16)

provided that ε(2 + ε) < γ0 := min
{

1, 13−2d
2(4d−7)+25kR

}
. Where C0 is some positive

constant independent of k and u, and

M(f, g) := E
(
‖f‖2

L2(D) + ‖g‖2
L2(∂D)

)
. (4.17)

Moreover, if g ∈ L2(Ω, H
1
2 (D)) and u ∈ L2(Ω, H2(D)), there also holds

E(‖u‖2
H2(D)) ≤ C

(
k +

1

k2

)2

E
(
‖f‖2

L2(D) + ‖g‖2

H
1
2 (∂D)

)
. (4.18)

Proof. To avoid some technicalities, below we only give a proof for the case u ∈

L2(Ω, H2(D)). For the general case, u needs be replaced by its mollification uρ at the

beginning of the proof and followed by taking the limit ρ→ 0 after the integration by

parts is done. A similar strategy was adopted in the proofs of the generalized weak

coercivity properties in Chapter 2.

Setting v = x · ∇u in (4.7) yields

∫
Ω

(
(∇u,∇v)D−k2(α2u, v)D+ ik〈αu, v〉∂D

)
dP =

∫
Ω

((f, v)D + 〈g, v〉∂D) dP. (4.19)

94



Using (4.13) and (4.14) after taking the real part of (4.19) and regrouping we get

dk2

2

∫
Ω

‖u‖2
L2(D) dP =

∫
Ω

(d− 2

2
‖∇u‖2

L2(D) + k2εRe
(
η(2 + εη), v

)
D

)
dP

−
∫

Ω

(
kIm〈(1 + εη)u, v〉∂D +

1

2

〈
x · ν, |∇u|2

〉
∂D
− k2

2

〈
x · ν, |u|2

〉
∂D

)
dP

+

∫
Ω

(Re(f, v)D + Re〈g, v〉∂D) dP.

It then follows from the Cauchy-Schwarz inequality, the star-shape condition, and the

facts that |x| ≤ R for x ∈ D and ‖η‖L∞(D) ≤ 1 a.s. that

dk2

2
E(‖u‖2

L2(D)) ≤ k2εR(2 + ε)
( 1

2δ1

E(‖u‖2
L2(D)) +

δ1

2
E(‖∇u‖2

L2(D))
)

+
d− 2

2
E(‖∇u‖2

L2(D)) +
R

2δ2

E(‖f‖2
L2(D)) +

Rδ2

2
E(‖∇u‖2

L2(D))

+
R

2δ3

E(‖g‖2
L2(∂D)) +

Rδ3

2
E(‖∇u‖2

L2(∂D))

+
kR

δ4

E(‖u‖2
L2(∂D)) + kRδ4E(‖∇u‖2

L2(∂D))

− c0

2
E
(
‖∇u‖2

L2(∂D)

)
+
k2R

2
E
(
‖u‖2

L2(∂D)

)
.

At this point, we note that ε(2 + ε) ≤ 1 implies ε ≤ 1
2
. Setting δ3 = c0

4R
, δ4 = c0

8kR
,

denoting γ = ε(2 + ε), and using Lemma 4.2.3 we can bound right-hand side as
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follows:

dk2

2
E(‖u‖2

L2(D)) ≤
(d− 2

2
+
k2Rγδ1

2
+
Rδ2

2

)
E(‖∇u‖2

L2(D)) +
k2Rγ

2δ1

E(‖u‖2
L2(D))

+
(8k2R2

c0

+
k2R

2

)
E(‖u‖2

L2(∂D))−
c0

4
E
(
‖∇u‖2

L2(∂D)

)
+

R

2δ2

E(‖f‖2
L2(D)) +

2R2

c0

E(‖g‖2
L2(∂D))

≤
(d− 2

2
+
k2Rγδ1

2
+
Rδ2

2

) (
k2(1 + γ) + δ5

)
E(‖u‖2

L2(D))

+
(d− 2

2
+
k2Rγδ1

2
+
Rδ2

2

)(2δ5

k2
+

1

2δ5

)(
E(‖f‖2

L2(D)) + E(‖g‖2
L2(∂D))

)
+
(8k2R2

c0

+
k2R

2

)(
2δ6E(‖u‖2

L2(D)) +
2

k2δ6

E(‖f‖2
L2(D)) +

4

k2
E(‖g‖2

L2(∂D))
)

+
k2Rγ

2δ1

E(‖u‖2
L2(D)) +

R

2δ2

E(‖f‖2
L2(D)) +

2R2

c0

E(‖g‖2
L2(∂D))

− c0

4
E
(
‖∇u‖2

L2(∂D)

)
,

which is equivalent to

c1E(‖u‖2
L2(D)) +

c0

4
E(‖∇u‖2

L2(∂D)) ≤ c2E(‖f‖2
L2(D)), (4.20)

where

c1 := k2 − d− 2

2

(
k2γ + δ5

)
−
(k2Rγδ1

2
+
Rδ2

2

)(
k2(1 + γ) + δ5

)
−
(16k2R2

c0

+ k2R
)
δ6 −

k2Rγ

2δ1

,

c2 :=
(d− 2

2
+
k2Rγδ1

2
+
Rδ2

2

)(2δ5

k2
+

1

2δ5

)
+
(32k2R2

c0

+ 2k2R
)( 2

k2δ6

+
4

k2

)
+

R

2δ2

+
2R2

c0

.
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Let δ1 = 1
2k

, δ2 = 1
4R

, δ5 = k2

4
, and δ6 = 1

4
(

16R2

c0
+R
) , then

c1 = k2
[27− 4d

32
−
(4d− 7

8
+

(21 + 4γ)Rk

16

)
γ
]
,

c2 =
(d− 2

2
+
kRγ

4
+

1

8

)(1

2
+

1

8k2

)
+ 2R2(1 + c0)

+ 8
(16R2

c0

+R
)(16R2

c0

+R + 1
)
.

If γ < γ0, it is easy to check that c1 ≥ k2

32
. Thus, (4.20) infers that

E(‖u‖2
0,D) + c0E(‖∇u‖2

L2(∂D)) ≤
C

k2

(
1 +

1

k2

)(
E(‖f‖2

L2(D)) + E(‖g‖2
L2(∂D))

)
(4.21)

for some constant C > 0 independent of k and u. We combine this result with (4.10)

(using δ2 = k) to obtain (4.15).

By (4.9) (using δ1 = k2) and (4.21) we get

E(‖u‖2
H1(D)) = E(‖u‖2

L2(D)) + E(‖∇u‖2
L2(D))

≤ C

k2

(
1 +

1

k2

)(
E(‖f‖2

L2(D)) + E(‖g‖2
L2(∂D))

)
+
(
k2(1 + ε)4 + k2

)
E(‖u‖2

L2(D))

+
(

1 +
1

2k2

)(
E(‖f‖2

L2(D)) + E(‖g‖2
L2(∂D))

)
≤ C

(
1 +

1

k2

)2(
E(‖f‖2

L2(D)) + E(‖g‖2
L2(∂D))

)
.

Hence, (4.16) holds.
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Finally, it follows from the standard elliptic regularity theory for the Poisson

equation and the trace inequality (cf. [47]) that

E(‖u‖2
H2(D)) ≤ C

(
E(
∥∥k2u

∥∥2

L2(D)
) + E(‖f‖2

L2(D)) + E(‖g‖2

H
1
2 (∂D)

)

+ E(‖ku‖2

H
1
2 (∂D)

+ E(‖u‖2
L2(D))

)
≤ CE

(
k4 ‖u‖2

L2(D) + ‖f‖2
L2(D) + ‖g‖2

H
1
2 (∂D)

)
+ CE

(
k2 ‖∇u‖2

L2(D) + ‖u‖2
L2(D)

)
≤ C

(
k +

1

k2

)2

E
(
‖f‖2

L2(D) + ‖g‖2

H
1
2 (∂D)

)
.

Hence (4.18) holds. The proof is complete.

Remark 4.2.7. By the definition of γ0, we see that γ0 = O
(

1
kR

)
. In practice, this

is not a restrictive condition because R is often taken to be proportional to the wave

length. Hence, kR = O(1).

As a non-trivial byproduct, the above stability estimates can be used conveniently

to establish the existence and uniqueness of solutions to problem (4.1),(4.6) as defined

in Definition 4.2.1. This strategy was mentioned at the end of Chapter 2 and is carried

out explicitly in the following theorem.

Theorem 4.2.8. Let f ∈ L2(Ω, L2(D)) and g ∈ L2(Ω, L2(∂D). For each fixed pair

of positive numbers k and ε such that ε(2 + ε) < γ0, there exists a unique solution

u ∈ L2(Ω, H1
+(D) ∩ V ) to problem (4.1),(4.6).

Proof. The proof is based on the well-known Fredholm Alternative Principle (cf.

[47]). First, it is easy to check that the sesquilinear form on the right-hand side of

(4.7) satisfies a Gärding’s inequality on the space L2(Ω, H1(D)). Second, to apply the

Fredholm Alternative Principle we need to prove that solutions to the adjoint problem

of (4.7)–(4.8) is unique. It is easy to verify that the adjoint problem is associated
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with the sesquilinear form

â(w, v) :=
(
∇w,∇v

)
D
− k2

(
α2w, v

)
D
− ik 〈αw, v〉∂D ,

which differs from a(·, ·) only in the sign of the last term. As a result, all the

stability estimates for problem (4.7)–(4.8) still hold for its adjoint problem. Since

the adjoint problem is a linear problem (so is problem (4.7)–(4.8)), the stability

estimates immediately infer uniqueness. Finally, the Fredholm Alternative Principle

then implies that problem (4.7)–(4.8) has a unique solution u ∈ L2(Ω, H1(D)). The

proof is complete.

Remark 4.2.9. The uniqueness of the adjoint problem can also be shown using the

classical unique continuation argument (cf. [57]).

4.3 Multi-modes Representation of the Solution

and its Finite Modes Approximations

The first goal of this section is to develop a multi-modes representation for the solution

to problem (4.1)–(4.2) in terms of powers of the parameter ε. We first postulate such a

representation and then prove its validity by establishing some energy estimates for all

the mode functions. The second goal of this section is to establish an error estimate for

finite modes approximations of the solution. Both the multi-modes representation and

its finite modes approximations play a pivotal role in our overall solution procedure

for solving problem (4.1)–(4.2) as they provide the theoretical foundation for the

solution procedure. Throughout this section, we use uε to denote the solution to

problem (4.1)–(4.2) which is proved in Theorem 4.2.8.

We start by postulating that the solution uε has the following multi-modes

expansion:

uε =
∞∑
n=0

εnun, (4.22)
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whose validity will be justified later. Without loss of generality, we assume that k ≥ 1

and D ⊂ B1(0). Otherwise, the problem can be rescaled to this regime by a suitable

change of variable. We note that the normalization D ⊂ B1(0) implies that R = 1.

Substituting the above expansion into the Helmholtz equation (4.1) we get

f = −∆uε − k2α2uε

=
∞∑
n=0

εn
(
−∆un − k2

(
1 + 2εη + ε2η2

)
un

)
=
∞∑
n=0

(
εn
(
−∆un − k2un

)
− 2εn+1ηk2un − εn+2k2η2un

)
= −∆u0 − k2u0 − ε

(
−∆u1 − k2u1 − 2k2ηu0

)
+
∞∑
n=2

εn
(
−∆un − k2un − 2k2ηun−1 − k2η2un−2

)
.

Matching the coefficients of εn order terms for n = 0, 1, 2, · · · , we obtain

u−1 :≡ 0, (4.23)

−∆u0 − k2u0 = f, (4.24)

−∆un − k2un = 2k2ηun−1 + k2η2un−2 for n ≥ 1. (4.25)

Similarly, the boundary condition (4.2) gives

0 =
∂uε

∂ν
+ ik(1 + εη)uε

=
∞∑
n=0

(
εn
∂un
∂ν

+ εnikun + εn+1ikηun

)
=
∂u0

∂ν
+ iku0 +

∞∑
n=1

εn
(∂un
∂ν

+ ikun + ikηun−1

)
.

This translates to each mode function un as follows:

∂νun + ikun = −ikηun−1 for n ≥ 0. (4.26)
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We note that the non-zero right hand side term in (4.26) was the motivation to study

the random Helmholtz equation with non-homogeneous boundary data given by (4.1),

(4.6) in Section 4.2.

A remarkable feature of the above multi-modes expansion is that all the mode

functions satisfy the same type (nearly deterministic) Helmholtz equation and the

same boundary condition. The only difference is that the Helmholtz equations have

different right-hand side source terms, and each pair of consecutive mode functions

supply the source term for the Helmholtz equation satisfied by the next mode function.

This remarkable feature will be crucially utilized in Section 4.5 to construct our overall

numerical methodology for solving problem (4.1)–(4.2).

Next, we address the existence and uniqueness of each mode function un.

Theorem 4.3.1. Let f ∈ L2(Ω, L2(D)). Then for each n ≥ 0, there exists a unique

solution un ∈ L2(Ω, H1(D)) (understood in the sense of Definition 4.2.1) to problem

(4.24),(4.26) for n = 0 and problem (4.25),(4.26) for n ≥ 1. Moreover, for n ≥ 0, un

satisfies

E
(
‖un‖2

L2(D) + ‖un‖2
L2(∂D) + c0 ‖∇un‖2

L2(∂D)

)
(4.27)

≤
(1

k
+

1

k2

)2

C(n, k)E(‖f‖2
L2(D)),

E
(
‖un‖2

H1(D)

)
≤
(

1 +
1

k2

)2

C(n, k)E(‖f‖2
L2(D)), (4.28)

where

C(0, k) := C0, C(n, k) := 42n−1Cn+1
0 (1 + k)2n for n ≥ 1. (4.29)

Furthermore, if un ∈ L2(Ω, H2(D)), there also holds

E(‖un‖2
H2(D)) ≤

1

c0

(
k +

1

k2

)2

C(n, k)E(‖f‖2
L2(D)), (4.30)

where c0 := min{1, kc0}.

101



Proof. For each n ≥ 0, the PDE problem associated with un is the same type

Helmholtz problem as the original problem (4.1)–(4.2) (with ε = 0 in the left-hand

side of the PDE). Hence, all a priori estimates of Theorem 4.2.6 hold for each un

(with its respective right-hand source side function). First, we have

E
(
‖u0‖2

L2(D) + ‖u0‖2
L2(∂D) + c0 ‖∇u0‖2

L2(∂D)

)
(4.31)

≤ C0

(1

k
+

1

k2

)2

E(‖f‖2
L2(D)),

E(‖u0‖2
H1(D)) ≤ C0

(
1 +

1

k2

)2

E(‖f‖2
L2(D)). (4.32)

Thus, (4.27) and (4.28) hold for n = 0. Without loss of generality we assume that

C0 ≥ 1.

Next, we use induction to prove that (4.27) and (4.28) hold for all n > 0. Assume

that (4.27) and (4.28) hold for all 0 ≤ n ≤ `− 1, then

E
(
‖u`‖2

L2(D) + ‖u`‖2
L2(∂D) + c0 ‖∇u`‖2

L2(∂D)

)
≤ 2C0

(1

k
+

1

k2

)2

E
(∥∥2k2ηu`−1

∥∥2

L2(D)
+ δ1`

∥∥k2η2u`−2

∥∥2

L2(D)
+ ‖kηu`−1‖2

L2(∂D)

)
≤ 2C0

(1

k
+

1

k2

)2

(1 + k)2
(

4C(`− 1, k) + C(`− 2, k)
)
E(‖f‖2

L2(D))

≤
(1

k
+

1

k2

)2

8C0(1 + k)2C(`− 1, k)

(
1 +

C(`− 2, k)

C(`− 1, k)

)
E(‖f‖2

L2(D))

≤
(1

k
+

1

k2

)2

C(`, k)E(‖f‖2
L2(D)),

102



where δ1` = 1− δ1` and δ1` denotes the Kronecker delta. To obtain the above result,

we note that k, C0 ≥ 1 yield the following inequality:

8C0(1 + k)2C(`− 1, k)

(
1 +

C(`− 2, k)

C(`− 1, k)

)
= 8C0(1 + k)2C(`− 1, k)

(
1 +

42(`−2)−1C`−1
0 (1 + k)2(`−2)

42(`−1)−1C`
0(1 + k)2(`−1)

)
= 8C0(1 + k)2C(`− 1, k)

(
1 +

1

42C0(1 + k)2

)
≤ 42C0(1 + k)2C(`− 1, k)

= C(`, k)

for ` ≥ 2.

Similarly,

E
(
‖u`‖2

H1(D)

)
≤ 2C0

(
1 +

1

k2

)2

E
(∥∥2k2ηu`−1

∥∥2

L2(D)
+ δ1`

∥∥k2η2u`−2

∥∥2

L2(D)
+ ‖kηu`−1‖2

L2(∂D)

)
≤ 2C0

(
1 +

1

k2

)2

(1 + k)2
(

4C(`− 1, k) + C(`− 2, k)
)
E
(
‖f‖2

L2(D)

)
≤
(

1 +
1

k2

)2

C(`, k)E
(
‖f‖2

L2(D)

)
.

Hence, (4.27) and (4.28) hold for n = `. So the induction argument is complete.
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We now use (4.27) and the elliptic theory for Poisson problems directly to verify

estimate (4.30).

E
(
‖un‖2

H2(∂D)

)
≤ 2C0

(
k +

1

k2

)2

E
(∥∥2k2ηun−1

∥∥2

L2(D)
+
∥∥k2η2un−2

∥∥2

L2(D)
+ ‖kηun−1‖2

H
1
2 (∂D)

)
≤ 2C0

(
k +

1

k2

)2

k2E
(

4 ‖un−1‖2
L2(D) + ‖un−2‖2

L2(D) +
c0

kc0

‖∇un−1‖2
L2(∂D)

)
≤ 2

c0

C0

(
k +

1

k2

)2

(1 + k)2
(

4C(n− 1, k) + C(n− 2, k)
)
E
(
‖f‖2

L2(D)

)
≤ 1

c0

(
k +

1

k2

)2

C(n, k)E
(
‖f‖2

L2(D)

)
.

Hence, (4.30) holds for all n ≥ 0.

With a priori estimates (4.27) and (4.28) in hand, the proof of existence and

uniqueness of each un follows verbatim the proof of Theorem 4.2.8. The proof is

complete.

Now we are ready to justify the multi-modes representation (4.22) for the solution

uε of problem (4.1)–(4.2). To carry this step out we define the partial multi-modes

expansion U ε
N as

U ε
N :=

N∑
n=0

εnun,

where N is some positive integer. U ε
N will also play a key role in our overall numerical

approximation method. Since the full series uε cannot be computed, we approximate

uε by its truncation U ε
N .

Theorem 4.3.2. Let {un} be the same as in Theorem 4.3.1. Then (4.22) is valid in

L2(Ω, H1(D)) provided that σ := 4εC
1
2
0 (1 + k) < 1.

Proof. The proof consists of two parts: (i) the infinite series on the right-hand side

of (4.22) converges in L2(Ω, H1(D)); (ii) the limit coincides with the solution uε. To
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prove (i), note for any fixed positive integer p we have

U ε
N+p − U ε

N =

N+p−1∑
n=N

εnun.

It follows from the Cauchy-Schwarz inequality and (4.27) that for j = 0, 1

E
(
‖U ε

N+p − U ε
N‖2

Hj(D)

)
≤ p

N+p−1∑
n=N

ε2nE(‖un‖2
Hj(D))

≤ p
(
kj−1 +

1

k2

)2

E(‖f‖2
L2(D))

N+p−1∑
n=N

ε2nC(n, k)

≤ C0p
(
kj−1 +

1

k2

)2

E(‖f‖2
L2(D))

N+p−1∑
n=N

σ2n

≤ C0p
(
kj−1 +

1

k2

)2

E(‖f‖2
L2(D)) ·

σ2N
(
1− σ2p

)
1− σ2

.

Thus, if σ < 1 we have

lim
N→∞

E
(
‖U ε

N+p − U ε
N‖2

H1(D)

)
= 0.

Therefore, {U ε
N} is a Cauchy sequence in L2(Ω, H1(D)). Since L2(Ω, H1(D)) is a

Banach space, then there exists a function U ε ∈ L2(Ω, H1(D)) such that

lim
N→∞

U ε
N = U ε in L2(Ω, H1(D)).
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To show (ii), we first notice that by the definitions of un and U ε
N ,

a(U ε
N , v)

=
N−1∑
n=0

∫
Ω

εn
(

(∇un,∇v)D − k2(α2un, v)D + ik〈un, v〉∂D
)
dP

=
N−1∑
n=0

∫
Ω

εn
(

(∇un,∇v)D − k2(un, v)D + ik〈un, v〉∂D
)
dP

−
N−1∑
n=0

∫
Ω

εn
(
k2
(
(2εη + ε2η2)un, v

)
D
− ik〈εηun, v〉∂D

)
dP

=

∫
Ω

(f, v)D dP +
N−1∑
n=1

∫
Ω

εn
((

2k2ηun−1 + k2η2un−2, v
)
D
− ik〈ηun−1, v〉∂D

)
dP

−
N−1∑
n=0

∫
Ω

εn
(
k2
(
(2εη + ε2η2)un, v

)
D
− ik〈εηun, v〉∂D

)
dP

=

∫
Ω

(f, v)D dP − k2εN
∫

Ω

(
η(2 + εη)uN−1 + η2uN−2, v

)
D
dP

+ ikεN
∫

Ω

〈ηuN−1, v〉∂D dP,

Thus, U ε
N satisfies

∫
Ω

((
∇U ε

N ,∇v
)
D
− k2

(
α2U ε

N , v
)
D

+ ik 〈αU ε
N , v〉∂D

)
dP (4.33)

=

∫
Ω

(f, v)D dP − k2εN
∫

Ω

(
η(2 + εη)uN−1 + η2uN−2, v

)
D
dP

+ ikεN
∫

Ω

〈ηuN−1, v〉∂D dP

for all v ∈ L2(Ω, H1(D)). Where α = 1 + εη. In other words, U ε
N solves the following

Helmholtz problem:

−∆U ε
N − k2α2U ε

N = f − k2εN
(
η(2 + εη)uN−1 + η2uN−2

)
in D,

∂νU
ε
N + ikαU ε

N = −ikεNηuN−1 on ∂D.
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By (4.27) and the Cauchy-Schwarz inequality we have

k2εN
∣∣∣∣∫

Ω

(
η(2 + εη)uN−1 + η2uN−2, v

)
D
dP

∣∣∣∣
≤ 3k2εN

((
E(‖uN−1‖2

L2(D))
) 1

2 +
(
E(‖uN−2‖2

L2(D))
) 1

2

)(
E(‖v‖2

L2(D))
) 1

2

≤ 6k2εN
(1

k
+

1

k2

)
C(N − 1, k)

1
2

(
E(‖f‖2

L2(D))
) 1

2
(
E(‖v‖2

L2(D))
) 1

2

≤ 3ε(k + 1)C
1
2
0 σ

N−1
(
E(‖f‖2

L2(D))
) 1

2
(
E(‖v‖2

L2(D))
) 1

2

−→ 0 as N →∞ provided that σ < 1.

Similarly, we get

kεN
∣∣∣∣∫

Ω

〈ηuN−1, v〉∂D dP
∣∣∣∣

≤ kεN
(
E(‖uN−1‖2

L2(∂D))
) 1

2
(
E(‖v‖2

L2(∂D))
) 1

2

≤ kεN
(1

k
+

1

k2

)
C(N − 1, k)

(
E(‖f‖2

L2(D))
) 1

2
(
E(‖v‖2

L2(∂D))
) 1

2

≤ ε

2

(
1 +

1

k

)
C

1
2
0 σ

N−1
(
E(‖f‖2

L2(D))
) 1

2
(
E(‖v‖2

L2(∂D))
) 1

2

−→ 0 as N →∞ provided that σ < 1.

Setting N →∞ in (4.33) immediately yields

∫
Ω

((
∇U ε,∇v

)
D
− k2

(
α2U ε, v

)
D

+ ik 〈αU ε, v〉∂D
)
dP =

∫
Ω

(f, v)D dP, (4.34)

for all v ∈ L2(Ω, H1(D)). Thus, U ε is a solution to problem (4.1)–(4.2). By the

uniqueness of the solution, we conclude that U ε = uε. Therefore, (4.22) holds in

L2(Ω, H1(D)). The proof is complete.

The above proof also infers an upper bound for the error uε−U ε
N as stated in the

next theorem.
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Theorem 4.3.3. Let U ε
N be the same as above and uε denote the solution to problem

(4.1)–(4.2) and σ := 4εC
1
2
0 (1 + k). Then there holds for ε(2ε+ 1) < γ0

E(‖uε − U ε
N‖

2
Hj(D)) ≤

9C0σ
2N

32(1 + k)2

(
kj +

1

k

)4

E(‖f‖2
L2(D)), j = 0, 1, (4.35)

provided that σ < 1. Where C0 is a positive constant independent of k and ε.

Proof. Let Eε
N := uε − U ε

N , subtracting (4.33) from (4.34) we get

∫
Ω

((
∇Eε

N ,∇v
)
D
− k2

(
α2Eε

N , v
)
D

+ ik 〈αEε
N , v〉∂D

)
dP (4.36)

= k2εN
∫

Ω

(
η(2 + εη)uN−1 + η2uN−2, v

)
D
dP − ikεN

∫
Ω

〈ηuN−1, v〉∂D dP,

for all v ∈ L2(Ω, H1(D)). In other words, Eε
N solves the following Helmholtz problem:

−∆Eε
N − k2α2Eε

N = k2εN
(
η(2 + εη)uN−1 + η2uN−2

)
in D,

∂νE
ε
N + ikαEε

N = −ikεNηuN−1 on ∂D.

By Theorem 4.2.6 and (4.27) we obtain for j = 0, 1

E(‖Eε
N‖2

Hj(D)) ≤ 18C0

(
kj−1 +

1

k2

)2 [
k4ε2N

(
E(‖uN−1‖2

L2(D)) + E(‖uN−2‖2
L2(D))

)
+ k2ε2NE(‖uN−1‖2

L2(∂D))
]

≤ 18C0k
4ε2N

(
kj−1 +

1

k2

)4

C(N − 1, k)E(‖f‖2
L2(D))

≤ 18C0σ
2N

64(1 + k)2

(
kj +

1

k

)4

E(‖f‖2
L2(D)).

The proof is complete.

Remark 4.3.4. Theorem 4.3.3 shows that the error introduced by truncating the

multi-modes expansion is on the order of εN where N is the number of modes in the

truncated multi-modes expansion. Since ε is small, U ε
N can be used to approximate uε

using only a few mode functions, i.e. N is relatively small.
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4.4 Monte Carlo Discontinuous Galerkin Approx-

imation of the Truncated Multi-modes Expan-

sion U ε
N

In the previous section, we present a multi-modes representation of the solution uε

and a convergence rate estimate for its truncated multi-modes approximation. These

results will serve as the theoretical foundation for our overall numerical methodology

for approximating the solution uε of problem (4.1)–(4.2).

As stated previously, we start by approximating uε through its truncated multi-

modes expansion U ε
N . Note that the linear nature of the expectation operator, along

with the definition of U ε
N yields the following expansion:

E(U ε
N) =

N−1∑
n=0

εnE(un).

Hence, to gain an accurate approximation of E(U ε
N) one only needs to seek an accurate

approximation of E(un) for each mode function un. Observe that we can apply the

expectation operator to (4.24) and (4.26) to find

−∆E(u0)− k2E(u0) = E(f), in Ω, (4.37)

∂

∂ν
E(u0) + ikE(u0) = 0, on ∂Ω. (4.38)

Therefore, for E(f) known, E(u0) can be computed directly by solving a deterministic

Helmholtz equation. On the other hand, for n ≥ 1, we apply the same reasoning to

(4.25) and (4.26) to find the following:

−∆E(un)− k2E(un) = 2k2E(ηun−1) + k2E(η2un−2), in Ω,

∂

∂ν
E(un) + ikE(un) = −ikE(ηun−1), on ∂Ω.
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We note the terms E(ηun−1) and E(η2un−2) cannot be further broken apart due to the

multiplicative nature of these terms and the fact that η and un are not independent.

Thus for n ≥ 1, E(un) cannot be computed directly in the same manner as E(u0).

The goal of this section is to develop a Monte Carlo interior penalty discontinuous

Galerkin (MCIP-DG) method for the above mentioned Helmholtz problem. Our

MCIP-DG method is the direct generalization of the deterministic IP-DG method

proposed in [42, 44] for the related deterministic Helmholtz problem. It should

be noted that although various numerical methods (such as finite difference, finite

element and spectral methods) can be used for the job, the IP-DG method presented

below is the only general purpose discretization method which is absolutely stable (i.e.,

stable without mesh constraint) and optimally convergent. This is indeed the primary

reason why we choose this IP-DG method as our spatial discretization method.

4.4.1 DG Notations

To define the IP-DG method used in this chapter, we must introduce some standard

DG notation. This notation was first introduced in Chapter 3. Let Th be a quasi-

uniform partition of D such that D =
⋃
K∈Th K. Let hK denote the diameter of

K ∈ Th and h := max{hK ;K ∈ Th}. Hs(Th) denotes the standard broken Sobolev

space and V h
r denotes the DG finite element space which are defined as

Hs(Th) :=
∏
K∈Th

Hs(K), V h
r :=

∏
K∈Th

Pr(K),

where Pr(K) is the set of all polynomials whose degrees do not exceed a given positive

integer r. Let EI denote the set of all interior faces/edges of Th, EB denote the set of

all boundary faces/edges of Th, and E := EI ∪EB. The L2-inner product for piecewise

functions over the mesh Th is naturally defined by

(v, w)Th :=
∑
K∈Th

∫
K

v · w dx,
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and for any set Sh ⊂ E , the L2-inner product over Sh is defined by

〈v, w〉Sh :=
∑
e∈Sh

∫
e

v · w dS.

Let K,K ′ ∈ Th and e = ∂K ∩ ∂K ′ and assume global labeling number of K is

bigger than that of K ′. We choose ne := nK |e = −nK′|e as the unit normal on e

outward to K and define the following standard jump and average notations across

the face/edge e:

[v] := v|K − v|K′ on e ∈ EI , [v] := v on e ∈ EB,

{v} :=
1

2

(
v|K + v|K′

)
on e ∈ EI , {v} := v on e ∈ EB

for v ∈ V h
r . We also define the following semi-norms on Hs(Th):

|v|1,h,D := ‖∇v‖L2(Th) ,

‖v‖1,h,D :=

|v|21,h,D +
∑
e∈EIh

(
γ0,e r

he
‖[v]‖2

L2(e) +
d−1∑
`=1

β1,er

he

∥∥[∂τ`ev]
∥∥2

L2(e)

)

+
r∑
j=1

∑
e∈EIh

γj,e

(he
r

)2j−1 ∥∥[∂jne
v]
∥∥2

L2(e)

 1
2

,

|||v|||1,h,D :=

‖v‖2
1,h,D +

∑
e∈EIh

he
γ0,er

‖{∂nev}‖
2
L2(e)

 1
2

.

4.4.2 IP-DG Method for Deterministic Helmholtz Problem

In this subsection, we consider following deterministic Helmholtz problem and its

IP-DG approximations proposed in [42, 44].

−∆Φ0 − k2Φ0 = F0 in D, (4.39)

∂νΦ0 + ikΦ0 = G0 on ∂D. (4.40)
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Recall that Φ0 = E(u0) satisfies the above equations with F0 = E(f) and G0 = 0. As

an interesting byproduct, all the results to be presented in this subsection apply to

E(u0).

The IP-DG weak formulation for (4.39)–(4.40) is defined by (cf. [42, 44]) seeking

Φ0 ∈ H1(D) ∩Hr+1
loc (D) such that

ah(Φ0, ψ) = (F0, ψ)D + 〈G0, ψ〉∂D ∀ψ ∈ H1(D) ∩Hr+1(Th), (4.41)

where

ah(φ, ψ) := bh(φ, ψ)− k2(φ, ψ)Th + ik〈φ, ψ〉EBh + i
(
L1(φ, ψ) +

r∑
j=0

Jj(φ, ψ)
)
, (4.42)

bh(φ, ψ) := (∇φ,∇ψ)Th −
(
〈{∂nφ}, [ψ]〉EIh + 〈[φ], {∂nψ}〉EIh

)
,

L1(φ, ψ) :=
∑
e∈EIh

d−1∑
`=1

β1,ehe
−1 〈[∂τ`φ], [∂τ`ψ]〉e ,

Jj(φ, ψ) :=
∑
e∈EIh

γj,eh
2j−1
e

〈
[∂jnφ], [∂jnψ]

〉
e
, j = 0, 1, · · · , r.

{β1,e} and {γj,e} are piecewise constant nonnegative functions defined on EIh . {τ `}d−1
`=1

denotes an orthonormal basis of the edge and ∂τ` denotes the tangential derivative in

the direction of τ `.

Remark 4.4.1. L1 and {Jj} terms are called interior penalty terms, {β1,e} and {γj,e}

are called penalty parameters. The two distinct features of the DG sesquilinear form

ah(·, ·) are: (i) it penalizes not only the jumps of the function values but also penalizes

the jumps of the tangential derivatives as well the jumps of all normal derivatives up to

rth order; (ii) the penalty parameters are purely imaginary numbers with nonnegative

imaginary parts.
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Following [42, 44] and based on the DG weak formulation (4.41), our IP-DG

method for problem (4.39)–(4.40) is defined by seeking Φh
0 ∈ V h

r such that

ah(Φ
h
0 , ψ

h) = (F0, ψ
h)D + 〈G0, ψ

h〉∂D ∀ψh ∈ V h
r . (4.43)

For the above IP-DG method, it was proved in [42, 44] that the method

is absolutely stable and its solutions satisfy some wave-number explicit stability

estimates. Its solutions also satisfy optimal order (in h) error estimates, which are

described below.

Theorem 4.4.2. Let Φh
0 ∈ V h

r be a solution to scheme (4.43), then there hold

(i) For all h, k > 0, there exists a positive constant Ĉ0 independent of k and h

such that

‖Φh
0‖L2(D) +

1

k

∥∥Φh
0

∥∥
1,h,D

+ ‖Φh
0‖L2(∂D) ≤ Ĉ0Cs M̂(F0, G0), (4.44)

where

Cs :=
d− 2

k
+

1

k2
+

1

k2
max
e∈EIh

( r k2h2
e + r5

γ0,e h2
e

+
r

he
max

0≤j≤r−1

√
γj,e
γj+1,e

(4.45)

+
r2

he
+
r3

h2
e

√
β1,e

γ1,e

)
,

M̂(F0, G0) := ‖F0‖L2(D) + ‖G0‖L2(∂D). (4.46)

(ii) If k3h2r−2 = O(1), then there exists a positive constant Ĉ0 independent of k

and h such that

‖Φh
0‖L2(D) + ‖Φh

0‖L2(∂D) +
1

k
‖Φh

0‖1,h,D ≤ Ĉ0

(1

k
+

1

k2

)
M̂(F0, G0). (4.47)
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An immediate consequence of (4.44) is the following unconditional solvability and

uniqueness result.

Corollary 4.4.3. There exists a unique solution to scheme (4.43) for all k, h > 0.

Theorem 4.4.4. Let Φh
0 ∈ V h solve (4.43), Φ0 ∈ Hs(Ω) be the solution of (4.39)–

(4.40), and µ = min{r + 1, s}. Suppose γj,e, β1,e > 0. Let γj = maxe∈EI γj,e and

λ = 1 + 1
γ0

.

(i) For all h, k > 0, there exists a positive constant C̃0 independent of k and h

such that

‖Φ0 − Φh
0‖1,h,D ≤ C̃0

(
Cr +

k3h

r
CsĈr

) hµ−1

rs−1
‖Φ0‖Hs(D), (4.48)

‖Φ0 − Φh
0‖L2(D) + ‖Φ0 − Φh

0‖L2(∂D) ≤ C̃0Ĉr

(
1 + k2Cs

) hµ
rs
‖Φ0‖Hs(D), (4.49)

where

Cr := λ
(

1 +
r

γ0

+
r∑
j=1

r2j−1γj +
kh

λr

) 1
2
,

Ĉr :=
(

1 +
r

γ0

+ r γ1 +
r∑
j=2

r2j−2γj +
kh

λr

) 1
2
Cr.

(ii) If k3h2r−2 = O(1), then there exists a positive constant C̃0 independent of k

and h such that

∥∥Φ0 − Φh
0

∥∥
1,h,D

≤ C̃0(r + k2h)hµ−1

rs
‖Φ0‖Hs(D) , (4.50)∥∥Φ0 − Φh

0

∥∥
L2(D)

+
∥∥Φ0 − Φh

0

∥∥
L2(∂D)

≤ C̃0kh
µ

rs
‖Φ0‖Hs(D) . (4.51)

Remark 4.4.5. It was proved in [27] (also by Theorem 4.2.6 with ε = 0) that

‖Φ0‖Hs(D) ≤ C̃0

(
ks−1 +

1

k

)
M̂(F0, G0), s = 0, 1, 2.
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It is expected that the following higher order norm estimates also hold (cf. [42] for an

explanation):

‖Φ0‖Hs(D) ≤ C̃0

(
ks−1 +

1

k

)(
‖F0‖Hs−2(D) + ‖G0‖Hs− 5

2 (∂D))

)
, s ≥ 3 (4.52)

provided that F0, G0 and D are sufficiently smooth. In such a case, ‖Φ0‖Hs(D) in

(4.48)–(4.51) can be replaced by the above bound so explicit constants can be obtained

in these estimates.

Theorems 4.4.2 and 4.4.4 give stability and optimal error estimates (in h) for

the IP-DG method in both the pre-asymptotic and asymptotic regime. Here the

asymptotic regime is characterized as k, h, r chosen to satisfy the constraint k3h2r−2 =

O(1). In the remainder of this chapter we only consider the asymptotic regime of

k3h2r−2 = O(1). This choice was made because the constants for the asymptotic

regime in both Theorem 4.4.2 and 4.4.4 are more tractable.

4.4.3 MCIP-DG Method for Approximating E(Uε
n)

We recall that each mode function un satisfies the following Helmholtz problem:

−∆un − k2un = Sn in D, (4.53)

∂νun + ikun = Qn on ∂D, (4.54)

where u−1 := 0 and

S0 :=f, Q0 := 0, (4.55)

Sn :=2k2ηun−1 + k2η2un−2, Qn := −ikηun−1, (4.56)

for n ≥ 1. Clearly, Sn(·, x) and Qn(·, x) are random variables for a.e. x ∈ D,

Sn ∈ L2(Ω, L2(D)) and Qn ∈ L2(Ω, L2(∂D)). We remark again that due to its

multiplicative structure E(Sn) and E(Qn) can not be computed directly for n ≥ 1.
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Otherwise, (4.53) and (4.54) would be easily converted into deterministic equations

for E(un), as we did early for E(u0). In other words, (4.53)–(4.54) is a genuine

random PDE problem. On the other hand, since all the coefficients of the equations

are constants, then the problem is nearly deterministic. Such a remarkable property

will be fully exploited in our overall numerical methodology which will be described

in the next section.

Several numerical methodologies are well known in the literature for discretizing

random PDEs, Monte Carlo Galerkin and stochastic Galerkin (or polynomial chaos)

methods and stochastic collocation methods are three of well-known methods (cf.

[12, 11] and the references therein). Due to the nearly deterministic structure of

(4.53)–(4.54), we propose to discretize it using the Monte Carlo IP-DG approach

which combines the classical Monte Carlo method for stochastic variable and the IP-

DG method, which is presented in the proceeding subsection, for the spatial variable.

Following the standard formulation of the Monte Carlo method (cf. [12]), let M

be a (large) positive integer which will be used to denote the number of realizations

and V h
r be the DG space defined in Section 4.4.1. For each j = 1, 2, · · · ,M , we sample

i.i.d. realizations of the source term f(ωj, ·) and random medium coefficient η(ωj, ·),

and recursively find corresponding approximation uhn(ωj, ·) ∈ V h
r such that

ah
(
uhn(ωj, ·), ψh

)
=
(
Shn(ωj, ·), ψh

)
D

+ 〈Qh
n(ωj, ·), ψh〉∂D ∀ψh ∈ V h

r (4.57)

for n = 0, 1, 2, · · · , N − 1. Where

Sh0 (ωj, ·) := f(ωj, ·), Qh
0 := 0, (4.58)

uh−1(ωj, ·) := 0, (4.59)

Shn(ωj, ·) := 2k2ηuhn−1(ωj, ·) + k2η2uhn−2(ωj, ·), n = 1, 2, · · · , N − 1, (4.60)

Qh
n(ωj, ·) := −ikηuhn−1(ωj, ·), n = 1, 2, · · · , N − 1. (4.61)
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We point out that in order for uhn to be computable, Shn and Qh
n, not Sn and Qn, are

used on the right-hand side of (4.57). This (small) perturbation on the right-hand

side will result in an additional discretization error which must be accounted for later.

We approximate E(un) by the following sample average

Φh
n :=

1

M

M∑
j=1

uhn(ωj, ·). (4.62)

Thus, E(U ε
N) can be approximated by

Ψh
N =

N−1∑
n=0

εnΦh
n. (4.63)

The rest of this section is used to analyze the error generated by this MCIP-DG

method. This will be carried out in the following two steps: (i) We estimate the

error from the IP-DG approximation, i.e. U ε
N −Uh

N , where Uh
N =

∑N−1
n=0 ε

nuhn. (ii) We

estimate the error from the Monte Carlo method, i.e. E(Uh
N)−Ψh

N .

We begin by obtaining stability estimates for each uhn.

Lemma 4.4.6. Assume k3h2r−2 = O(1). Then for each n ≥ 0 the following stability

estimate holds:

E
(
‖uhn‖2

L2(D) + ‖uhn‖2
L2(∂D)

)
≤
(1

k
+

1

k2

)2

Ĉ(n, k)E(‖f‖2
L2(D)), (4.64)

E(‖uhn‖2
1,h,D) ≤

(
1 +

1

k

)2

Ĉ(n, k)E(‖f‖2
L2(D)), (4.65)

where

Ĉ(0, k) := Ĉ2
0 , Ĉ(n, k) := 42n−1Ĉ2n+2

0 (1 + k)2n for n ≥ 1. (4.66)
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Proof. Using estimate (4.47) one immediately obtains

E
(
‖uh0‖2

L2(D) + ‖uh0‖2
L2(∂D)

)
≤ Ĉ2

0

(1

k
+

1

k2

)2

E(‖Sh0 ‖2
L2(D)) ≤ Ĉ2

0

(1

k
+

1

k2

)2

E(‖f‖2
L2(D)),

E
(
‖uh0‖2

1,h,D

)
≤ Ĉ2

0

(
1 +

1

k

)2

E(‖Sh0 ‖2
L2(D)) ≤ Ĉ2

0

(
1 +

1

k

)2

E(‖f‖2
L2(D)),

which verifies (4.64) and (4.65) for n = 0. Suppose (4.64) and (4.65) hold for all

n = 0, 1, 2, · · · , `− 1. It remains to show (4.64) and (4.65) hold for n = `.

Using (4.64) with n = ` − 1 and steps that were used previously in the proof of

Theorem 4.3.1 one obtains the following:

E
(
‖uh` ‖2

L2(D) + ‖uh` ‖2
L2(∂D)

)
≤ Ĉ2

0

(1

k
+

1

k2

)2

E
(
‖Sh` ‖2

L2(D) + ‖Qh
n‖2

L2(∂D)

)
≤ 2Ĉ2

0

(1

k
+

1

k2

)2

k4E
(

4‖uh`−1‖2
L2(D) + ‖uh`−2‖2

L2(D) +
1

k2
‖uh`−1‖2

L2(∂D)

)
≤ 2Ĉ2

0

(1

k
+

1

k2

)2

(1 + k)2
(

4Ĉ(`− 1, k) + Ĉ(`− 2, k)
)
E(‖f‖2

L2(D))

≤ 8Ĉ2
0

(1

k
+

1

k2

)2

(1 + k)2Ĉ(`− 1, k)

(
1 +

Ĉ(`− 2, k)

4Ĉ(`− 1, k)

)
E(‖f‖2

L2(D))

≤
(1

k
+

1

k2

)2

Ĉ(`, k)E(‖f‖2
L2(D)).

Here we have used the fact that

8Ĉ2
0(1 + k)2Ĉ(`− 1, k)

(
1 +

Ĉ(`− 2, k)

4Ĉ(`− 1, k)

)
≤ Ĉ(`, k).

Thus (4.64) is proved for n = `.
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Using (4.65) along with a similar argument the following is found:

E(‖uh` ‖2
1,h,D) ≤ Ĉ2

0

(
1 +

1

k

)2

E
(
‖Sh` ‖2

L2(D) + ‖Qh
n‖2

L2(∂D)

)
≤ 2Ĉ2

0

(
1 +

1

k

)2

k4E
(

4‖uh`−1‖2
L2(D) + E(‖uh`−2‖2

L2(D) +
1

k2
‖uh`−1‖2

L2(∂D)

)
≤ 2Ĉ2

0

(
1 +

1

k

)2

(1 + k)2
(

4Ĉ(`− 1, k) + Ĉ(`− 2, k)
)
E(‖f‖2

L2(D))

≤
(

1 +
1

k

)2

Ĉ(`, k)E(‖f‖2
L2(D)).

Hence (4.65) holds for n = `. Therefore, the induction argument is complete.

To complete step (i), we need a set of auxiliary mode functions
{
ũhn
}
n≥0

. For

fixed realizations η(ωj, ·) and f(ωj, ·), we define ũhn(ωj, ·) ∈ V h
r as the solution to the

following problem:

ah
(
ũ(ωj, ·)hn, ψh

)
=
(
Sn(ωj, ·), ψh

)
D

+ 〈Qn(ωj, ·), ψh〉∂D ∀ψh ∈ V h
r . (4.67)

Sn(ωj, ·) and Qn(ωj, ·) were defined in (4.55) and (4.56) and are different from Shn and

Qh
n that are used in the definition of uhn.

We also need the following lemma.

Lemma 4.4.7. Let γ, β > 0 be two real numbers, {cn}n≥0 and {αn}n≥0 be two

sequences of nonnegative numbers such that

c0 ≤ γα0, cn ≤ βcn−1 + γαn for n ≥ 1. (4.68)

Then there holds

cn ≤ γ
n∑
j=0

βn−jαj for n ≥ 1. (4.69)

The proof to this lemma is trivial and thus is omitted.

Now, we are ready to estimate the error un − uhn.
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Lemma 4.4.8. Suppose k3h2r−2 = O(1). Then the following error estimates hold:

E
(
‖un − uhn‖L2(D) + ‖un − uhn‖L2(∂D)

)
(4.70)

≤ C̃0kh
µ

rs

n∑
j=0

[
C̃0(2k + 3)

]n−jE(‖uj‖Hs(D)

)
,

E
(
‖un − uhn‖1,h,D

)
≤ CC̃2

0k(1 + k)hµ−1

rs

n∑
j=0

[
C̃0(2k + 3)

]n−jE(‖uj‖Hs(D)

)
, (4.71)

where µ = min{r + 1, s}.

Proof. To begin, we introduce the following error decomposition:

un − uhn =
(
un − ũhn

)
+
(
ũhn − uhn

)
.

Thus, we get estimates on the error un − uhn by first estimating un − ũhn and then

estimating ũhn − uhn. As an immediate consequence of Theorem 4.4.4 part (ii), for

k3h2r−2 = O(1) the following estimates hold:

E
(∥∥un − ũhn∥∥1,h,D

)
≤ C̃0(r + k2h)hµ−1

rs
E
(
‖un‖Hs(D)

)
, (4.72)

E
(∥∥un − ũhn∥∥L2(D)

+
∥∥un − ũhn∥∥L2(∂D)

)
≤ C̃0kh

µ

rs
E
(
‖un‖Hs(D)

)
. (4.73)

To bound ũhn − uhn, we observe that subtracting (4.57) from (4.67) yields

ah
(
ũhn − uhn, ψh

)
=
(
Sn − Shn, ψh

)
D

+ 〈Qn −Qh
n, ψ

h〉∂D ∀ψh ∈ V h
r , a.s.
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We apply Theorem 4.4.2 (ii) to obtain the following estimate:

E
(
k‖ũhn − uhn‖L2(D) + k‖ũhn − uhn‖L2(∂D) + ‖ũhn − uhn‖1,h,D

)
(4.74)

≤ Ĉ0

(
1 +

1

k

)
E
(
‖Sn − Shn‖L2(D) + ‖Qn −Qh

n‖L2(∂D)

)
≤ 2C̃0k(k + 1)E

(
‖un−1 − uhn−1‖L2(D) + ‖un−2 − uhn−2‖L2(D)

+ ‖un−1 − uhn−1‖L2(∂D)

)
.

Combining (4.73) and (4.74) and applying the triangle inequality, we get

E
(
‖un − uhn‖L2(D) + ‖un − uhn‖L2(∂D)

)
(4.75)

≤ E
(
‖ũhn − uhn‖L2(D) + ‖ũhn − uhn‖L2(∂D) + ‖un − ũhn‖L2(D)

+ ‖un − ũhn‖L2(∂D)

)
≤ 2C̃0(k + 1)E

(
‖un−1 − uhn−1‖L2(D) + ‖un−2 − uhn−2‖L2(D)

+ ‖un−1 − uhn−1‖L2(∂D)

)
+
C̃0kh

µ

rs
E
(
‖un‖Hs(D)

)
.

To estimate the error in ‖ · ‖1,h,D, we apply an inverse inequality along with (4.73),

(4.74), and the triangle inequality to get

E
(
‖un − uhn‖1,h,D

)
≤ E

(
‖ũhn − uhn‖1,h,D + ‖un − ũhn‖1,h,D

)
(4.76)

≤ Ch−1E
(
‖ũhn − uhn‖L2(D)

)
+ E

(
‖un − ũhn‖1,h,D

)
≤ CC̃0h

−1(k + 1)E
(

2‖un−1 − uhn−1‖L2(D) + ‖un−2 − uhn−2‖L2(D)

+
1

k
‖un−1 − uhn−1‖L2(∂D)

)
+
C̃0(r + k2h)hµ−1

rs
E
(
‖un‖Hs(D)

)
.
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Thus, (4.75) and (4.76) give recursive estimates for the error un − uhn. Next, we

note the following estimates:

E
(
‖u−1 − uh−1‖L2(D)

)
= E

(
‖u−1 − uh−1‖1,h,D

)
= 0, (4.77)

E
(
‖u0 − uh0‖L2(D) + ‖u0 − uh0‖L2(∂D)

)
≤ C̃0kh

µ

rs
E
(
‖u0‖Hs(D)

)
, (4.78)

E
(
‖u0 − uh0‖1,h,D

)
≤ C̃0(r + k2h)hµ−1

rs
E
(
‖u0‖Hs(D)

)
, (4.79)

and define

u−2 = u−1 = uh−2 = uh−1 = 0,

cn : = E
(
‖un − uhn‖L2(D) + ‖un−1 − uhn−1‖L2(D)

)
+ E

(
‖un − uhn‖L2(∂D) + ‖un−1 − uhn−1‖L2(∂D)

)
,

β : = C̃0(2k + 3), γ :=
C̃0kh

µ

rs
, αn := E

(
‖un‖Hs(D)

)
.

Then by (4.76) these defined quantities meet the assumptions in Lemma 4.4.7.

Applying Lemma 4.4.7 yields (4.70). Now (4.76) and (4.70) can be combined to

produce (4.71).

Now Lemma 4.4.8 can be used to bound the error due to IP-DG discretization,

i.e. U ε
N − Uh

N .

Theorem 4.4.9. Assume that un ∈ L2(Ω, Hs(D)) for n ≥ 0. Then the spatial error

U ε
N − Uh

N satisfies the following estimates:

E
(
‖U ε

N − Uh
N‖L2(D)

)
≤ C̃0kh

µ

rs

N−1∑
n=0

n∑
j=0

εn
[
C̃0(2k + 3)

]n−jE(‖uj‖Hs(D)

)
. (4.80)

E
(
‖U ε

N − Uh
N‖1,h,D

)
(4.81)

≤ CC̃2
0k(1 + k)hµ−1

rs

N−1∑
n=0

n∑
j=0

εn
[
C̃0(2k + 3)

]n−jE(‖uj‖Hs(D)

)
.
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To simplify the above spatial error estimates, bounds for E(‖un‖Hs(D)) in terms

of higher order norms of f are necessary. Only the case s = 2 is considered below for

simplicity. When s = 2, the required estimates have been obtained in (4.30). These

estimates in conjunction with Theorem 4.4.9 yield the following results:

Theorem 4.4.10. Assume that un ∈ L2(Ω, H2(D)) for n ≥ 0. Then the following

estimates hold:

E
(
‖U ε

N − Uh
N‖L2(D)

)
≤ C3(N, k, ε)h2‖f‖L2(Ω,L2(D)), (4.82)

E
(
‖U ε

N − Uh
N‖1,h,D

)
≤ C4(N, k, ε)h‖f‖L2(Ω,L2(D)), (4.83)

where

C3(N, k, ε) :=
C̃0k

r2
· C0(k3 + 1)

k2(2
√
C0 − 1)

·
1−

(
2C̃0

√
C0(2k + 3)ε

)N
1− 2C̃0

√
C0(2k + 3)ε

, (4.84)

C4(N, k, ε) :=
CC̃2

0k(1 + k)

r2
· C0(k3 + 1)

k2(2
√
C0 − 1)

·
1−

(
2C̃0

√
C0(2k + 3)ε

)N
1− 2C̃0

√
C0(2k + 3)ε

. (4.85)

Proof. To obtain the above result, we need to estimate the double sum

N−1∑
n=0

n∑
j=0

εn
[
C̃0(2k + 3)

]n−jE(‖uj‖H2(D)

)
,
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which is in Theorem 4.4.9. Applying (4.30) to estimate ‖uj‖H2(D) and exploiting some

geometric series properties of the sum we get

N−1∑
n=0

n∑
j=0

εn
[
C̃0(2k + 3)

]n−jE(‖uj‖Hs(D)

)
≤
(
k +

1

k2

)
‖f‖L2(Ω,L2(D))

N−1∑
n=0

n∑
j=0

εn
[
C̃0(2k + 3)

]n−j
C(j, k)

1
2

=
C

1
2
0 (k3 + 1)

2k2
‖f‖L2(Ω,L2(D))

N−1∑
n=0

n∑
j=0

εn4jC
j
2
0 (1 + k)j

[
C̃0(2k + 3)

]n−j
≤ C

1
2
0 (k3 + 1)

2k2
‖f‖L2(Ω,L2(D))

N−1∑
n=0

εn
[
C̃0(2k + 3)

]n n∑
j=0

2jC
j
2
0

≤ C0(k3 + 1)

k2(2
√
C0 − 1)

‖f‖L2(Ω,L2(D))

N−1∑
n=0

[
2εC̃0

√
C0(2k + 3)

]n
≤ C0(k3 + 1)

k2(2
√
C0 − 1)

·
1−

(
2C̃0

√
C0(2k + 3)ε

)N
1− 2C̃0

√
C0(2k + 3)ε

‖f‖L2(Ω,L2(D)).

We get (4.82) and (4.83) by applying the above inequality to (4.80) and (4.81)

respectively.

Remark 4.4.11. Theorem 4.4.10, shows that the error generated by the proposed

IP-DG method is optimal in the mesh size h.

With (i) complete, we turn our attention to (ii), i.e. estimating the error generated

by using the Monte Carlo method. The following lemma is well known (cf. [12, 58]).

Lemma 4.4.12. For n ≥ 0 the following estimates hold:

E
(
‖E(uhn)− Φh

n‖2
L2(D)

)
≤ 1

M
E(‖uhn‖2

L2(D)), (4.86)

E
(
‖E(uhn)− Φh

n‖2
1,h,D

)
≤ 1

M
E(‖uhn‖2

1,h,D). (4.87)

Combining Lemmas 4.4.12 and 4.4.6, we get the following error estimate theorem.
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Theorem 4.4.13. Under the constraint k3h2r−2 = O(1) the following estimates hold:

E
(
‖E(uhn)− Φh

n‖2
L2(D)

)
≤ 1

M

(1

k
+

1

k2

)2

Ĉ(n, k)E(‖f‖2
L2(D)), (4.88)

E
(
‖E(uhn)− Φh

n‖2
1,h,D

)
≤ 1

M

(
1 +

1

k

)2

Ĉ(n, k)E(‖f‖2
L2(D)), (4.89)

Remark 4.4.14. Estimates (4.88) and (4.89) show that for each fixed n ≥ 0 the

statistical error due to sampling is controlled by the number of realizations of uhn.

Indeed, it can be easily proved by using Markov’s inequality and Borel-Cantelli lemma

that the statistical error converges to zero as M tends to infinity, see [12, Proposition

4.1] and [58, Theorem 3.2].

The above estimates on E(uhN)−Φh
n are now used to obtain the following theorem.

Theorem 4.4.15. Suppose k3h2r−2 = O(1) and σ̂ := 4εĈ0(1 + k) < 1. Then the

following estimates hold:

E
(∥∥E(Uh

N)−Ψh
N

∥∥
L2(D)

)
≤ Ĉ0

2
√
M

(1

k
+

1

k2

)
‖f‖L2(Ω,L2(D) ·

1

1− σ̂
, (4.90)

E
(∥∥E(Uh

N)−Ψh
N

∥∥
1,h,D

)
≤ Ĉ0

2
√
M

(
1 +

1

k

)
‖f‖L2(Ω,L2(D) ·

1

1− σ̂
. (4.91)

Proof. First, note that

Uh
N −Ψh

N =
N−1∑
n=0

εn
(
uhn − Φh

n

)
.
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By (4.88) we get

E
(∥∥E(Uh

N)−Ψh
N

∥∥
L2(D)

)
≤

N−1∑
n=0

εnE
(
‖E(uhn)− Φh

n‖L2(D)

)
≤ 1√

M

(1

k
+

1

k2

)
‖f‖L2(Ω,L2(D)

N−1∑
n=0

εnĈ(n, k)
1
2

≤ Ĉ0

2
√
M

(1

k
+

1

k2

)
‖f‖L2(Ω,L2(D)

N−1∑
n=0

4nεnĈn
0 (1 + k)n

≤ Ĉ0

2
√
M

(1

k
+

1

k2

)
‖f‖L2(Ω,L2(D) ·

1

1− σ̂
,

where σ̂ := 4εĈ0(1 + k) < 1.

Similarly, by (4.89)

E
(∥∥E(Uh

N)−Ψh
N

∥∥
1,h,D

)
≤

N−1∑
n=0

εnE
(
‖E(uhn)− Φh

n‖1,h,D

)
≤ Ĉ0

2
√
M

(
1 +

1

k

)
‖f‖L2(Ω,L2(D) ·

1

1− σ̂
.

The proof is complete.

Remark 4.4.16. Theorem 4.4.15 shows that the error generated by using the Monte

Carlo method is on the order of O(M− 1
2 ). Thus, for an accurate approximation a

large number of realizations M must be taken.

4.5 The Overall Numerical Procedure

This section is devoted to defining and analyzing the overall efficient MCIP-DG

algorithm for computing uε. The key to efficiency is the exploitation of the

special structure inherent in the multi-modes expansion. In Subsection 4.5.1, the

efficient MCIP-DG algorithm is defined and its computational complexity is analyzed.

Subsection 4.5.2 summarizes all of the error estimates given in the previous sections

126



to obtain an estimate of the total error produced by using the multi-modes MCIP-DG

method.

4.5.1 The Numerical Algorithm, Linear Solver and Compu-

tational Complexity

The goal of this subsection is to introduce an efficient MCIP-DG method to

approximate the expectation of the solution to the random Helmholtz problem (4.1)–

(4.2). The key to this method is the exploitation of the special structure of the

multi-modes expansion of the solution described in Section 4.3. In order to judge

the efficiency of this method, we must establish a reliable standard upon which to

compare and contrast our method. For this standard, we use the classical MCIP-DG

method that does not utilize the multi-modes expansion of the solution. In order to

define such a method, we need to introduce a new IP-DG formulation. Given a sample

realization of the coefficient η(ωj, ·) and source data f(ωj, ·) define ûh(ωj, ·) ∈ V r
h as

the solution to

âhj (û
h(ωj, ·), vh) = (f(ωj, ·), vh)D, ∀vh ∈ V r

h , (4.92)

where

âhj (φ, ψ) := bh(φ, ψ)− k2
(
(1 + εη(ωj, ·))2φ, ψ

)
Th

+ ik〈(1 + εη(ωj, ·))φ, ψ〉EBh

+ i
(
L1(φ, ψ) +

r∑
m=0

Jm(φ, ψ)
)
.

Here bh(·, ·), L1(·, ·), and Jm(·, ·) are defined previously in Subsection 4.4.2. Notice

that the main difference between (4.92) and (4.57) which was used to define uhn is

that the sesquilinear form âhj (·, ·) depends on the realization η(ωj, ·). This is the

key observation that makes the use of the multi-modes expansion worth-while when

seeking an efficient MCIP-DG method.
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Based on (4.92) the classical MCIP-DG method for solving the random Helmholtz

problem is defined by the following algorithm:

Algorithm 1 (Classical MCIP-DG)

Inputs: f, η, ε, k, h,M.

Set Ψ̃h(·) = 0 (initializing).

For j = 1, 2, · · · ,M

Obtain realizations η(ωj, ·) and f(ωj, ·).

Solve for ûh(ωj, ·) ∈ V h
r such that

âhj
(
ûh(ωj, ·), vh

)
=
(
f(ωj, ·), vh

)
D

∀vh ∈ V h
r .

Set Ψ̃h(·)← Ψ̃h(·) + 1
M
ûh(ωj, ·).

Endfor

Output Ψ̃h(·).

This algorithm is very expensive for M large, because at each step of the loop a

deterministic Helmholtz equation must be solved. This requires one to solve a large

(especially for k large), ill-conditioned, indefinite linear system. It is well-known that

no standard iterative method works well for such a system [37]. For this reason,

Gaussian elimination is considered for each solve in the loop. Since the Gaussian

elimination step is the most costly portion of the loop, the computational complexity

is estimated in terms of Gaussian elimination steps.

Let h be the mesh size of a quasi-uniform partition Th of the domain D. Then each

coefficient matrix that appeared in the for-loop of Algorithm 1 has approximate size

O(Ld × Ld), where L = 1
h
. Each Gaussian elimination solve will have computational

complexity O
(

3L3d

2

)
. Thus, the overall computational complexity of Algorithm 1 is

O
(

3L3dM
2

)
. Recall that the Monte Carlo method converges at a rate of O(M− 1

2 ).
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Thus, M must be chosen sufficiently large in order to gain sufficient error reduction.

Therefore, a computational complexity of O
(

3L3dM
2

)
is quite costly, and this makes

Algorithm 1 not practical.

For this reason, the following algorithm is introduced.

Algorithm 2 (Multi-Modes MCIP-DG)

Inputs: f, η, ε, k, h,M,N

Set Ψh
N(·) = 0 (initializing).

Generate the coefficient matrix A associated to the sesquilinear form ah(·, ·) over

V h
r × V h

r .

Compute and store the LU decomposition of A.

For j = 1, 2, · · · ,M

Obtain realizations η(ωj, ·) and f(ωj, ·).

Set Sh0 (ωj, ·) = f(ωj, ·).

Set Qh
0(ωj, ·) = 0.

Set uh−1(ωj, ·) = 0.

Set Uh
N(ωj, ·) = 0 (initializing).

For n = 0, 1, · · · , N − 1

Solve for uhn(ωj, ·) ∈ V h
r such that

ah
(
uhn(ωj, ·), vh

)
=
(
Shn(ωj, ·), vh

)
D

+
〈
Qh
n(ωj, ·), vh

〉
∂D

∀vh ∈ V h
r ,

using the LU decomposition and forward and backward substitution.

Set Uh
N(ωj, ·)← Uh

N(ωj, ·) + εnuhn(ωj, ·).

Set Shn+1(ωj, ·) = 2k2η(ωj, ·)uhn(ωj, ·) + k2η(ωj, ·)2uhn−1(ωj, ·).

Set Qh
n+1(ωj, ·) = −ikη(ωj, ·)uhn(ωj, ·).
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Endfor

Set Ψh
N(·)← Ψh

N(·) + 1
M
Uh
N(ωj, ·).

Endfor

Output Ψh
N(·).

The key difference between Algorithm 1 and Algorithm 2 is the fact that the

bilinear form ah(·, ·) used in the “nearly deterministic” Helmholtz equation in the

inner for loop of Algorithm 2 does not depend on the current mode number n or the

current realization number j. Thus, only one stiffness matrix A must be computed

and its LU decomposition can be reused when seeking a solution to the equation in

the inner loop. This results in a great savings in terms of computational time required

by the algorithm.

To analyze Algorithm 2, again the coefficient matrix A will have approximate

size O(Ld × Ld). Thus, Gaussian elimination used to produce the LU decomposition

has order O(3L3d

2
). After this LU decomposition is computed, solving the system

using forward and backward substitution has complexity order O(L2d). Thus, the

computational complexity for Algorithm 2 is on the order O
(

3L3d

2
+MNL2d

)
. M

will be chosen large (c.f. Remark 4.4.16). On the other hand, N will be chosen to

be a small positive integer (c.f. Remark 4.3.4). With the intent of choosing M large,

using M = Ld for Algorithm 2 yields a computational complexity O
(

3L3d

2
+NL3d

)
.

This is on the same order as a few Gaussian elimination solves.

The Monte Carlo method is naturally parallelizable and it is in this setting that

Algorithm 1 should be implemented. The structure of Algorithm 2 also allows parallel

implementation. This being said, unless one uses computational resources in which

all Gaussian elimination solves in Algorithm 1 can be carried out at the same time,

Algorithm 2 should be more efficient in terms of computation time.
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4.5.2 Convergence Analysis

The goal of this subsection is to analyze the error of the multi-modes MCIP-DG

approximation produced by Algorithm 2. Recall that Algorithm 2 uses the following

three sequential approximations:

• Approximation of uε with a partial multi-modes expansion U ε
N

• Approximation of U ε
N with its IP-DG approximation Uh

N

• Approximation of E(Uh
N) with its Monte Carlo approximation Ψh

N

Thus, the error E(uε) − Ψh
N associated with Algorithm 2 can be decomposed in the

following manner:

E(uε)−Ψh
N =

(
E(uε)− E(U ε

N)
)

+
(
E(U ε

N)− E(Uh
N)
)

+
(
E(Uh

N)−Ψh
N

)
.

Each piece of this error decomposition has already been estimated in the previous

sections of this chapter. The following theorem puts these results together to obtain

estimates for the total error of Algorithm 2:

Theorem 4.5.1. Under the assumptions that un ∈ L2(Ω, H2(D)) for n ≥ 0,

k3h2r−2 = O(1) and σ, σ̂ < 1 (i.e. ε = O(k−1)), the following error estimates hold:

E
(
‖E(uε)−Ψh

N‖L2(D)) ≤ C1ε
N + C2h

2 + C3M
− 1

2 , (4.93)

E
(
‖E(uε)−Ψh

N‖H1(D)) ≤ C4ε
N + C5h+ C6M

− 1
2 , (4.94)

where Cj = Cj(C0, Ĉ0, k, ε) are positive constants for j = 1, 2, · · · , 6.

Proof. To begin, we apply the triangle inequality to the error decomposition given

above. Then each term can be estimated separately using Theorems 4.3.3, 4.4.9, and

4.4.15. Note that Theorem 4.3.3 cannot be used directly; instead, the Cauchy-Schwarz
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inequality must be used in the following manner:

E
(
‖uε − U ε

N‖Hj(D)

)2 ≤ E
(
12
)
E
(
‖uε − U ε

N‖2
Hj(D)

)
≤ 9C0σ

2N

32(1 + k)2

(
kj +

1

k

)4

E
(
‖f‖2

L2(D)

)
.

Thus, taking the square root on both sides and applying the definition of σ yields the

first term in (4.93) and (4.94). With this result and those listed above, the desired

inequalities follow.

4.6 Numerical Experiments

In this section we present a series of numerical experiments in order to accomplish

the following:

• compare our MCIP-DG method using the multi-modes expansion to a classical

MCIP-DG method

• illustrate examples using our MCIP-DG method in which the perturbation

parameter ε satisfies the constraint required by the convergence theory

• illustrate examples using our MCIP-DG method in which the perturbation

parameter constraint is violated

In all our numerical experiments we use the spatial domain D = (−0.5, 0.5)2. To

partition D we use a uniform triangulation Th. For a positive integer n, T1/n denotes

the triangulation of D consisting of 2n2 congruent isosceles triangles with side lengths

1/n, 1/n, and
√

2/n. Figure 4.1 gives the sample triangulation T1/10.

To implement the random noise η, we note that η only appears in the integration

component of our computations. Therefore, we made the choice to implement η

only at quadrature points of the triangulation. To simulate the random media, we

let η(·, x̂) be an independent random number chosen from a uniform distribution on
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Figure 4.1: Triangulation T1/10.

some closed interval at each quadrature point x̂. Figure 4.2 shows an example of such

random media.

Figure 4.2: Discrete average media 1
M

∑M
j=1 α(ωj, ·) (left) and a sample media α(ω, ·)

(right) computed for h = 1/20, ε = 0.1, η(·, x) ∼ U [−1, 1], and M = 1000.

4.6.1 MCIP-DG with Multi-modes Expansion Compared to

Classical MCIP-DG

The goal of this subsection is to verify the accuracy and efficiency of the proposed

multi-modes MCIP-DG method. As a benchmark we compare this method to the

classical MCIP-DG (i.e. produced using Algorithm 1). Throughout this section Ψ̃h

is used to denote the computed approximation to E(u) using the classical MCIP-DG.

In this subsection, we set f = 1, k = 5, 1/h = 50, M = 1000, and ε = 1/(k + 1).

Here ε is chosen with the intent of satisfying the constraint set by the convergence
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theory in the preceding section. η is sampled as described above from a uniform

distribution on the interval [0, 1]. Ψh
N is computed for N = 1, 2, 3, 4, 5.

In our first test, we compute ‖Ψh
N − Ψ̃h‖L2(D). The results are displayed in Figure

4.3. As expected, we find that the difference between Ψh
N and Ψ̃h is very small. We

also observe that we are benefited more by the first couple modes while the help from

the later modes is relatively small. From this experiment, we see the error decrease

is similar to εN . This is expected from Theorem 4.4.15.

To test the efficiency of our MCIP-DG method with multi-modes expansion, we

compare the CPU time for computing Ψh
N and Ψ̃h. Both methods are implemented

on the same computer using Matlab. Matlab’s built-in LU factorization is called to

solve the linear systems. The results of this test are shown in Table 4.1. As expected,

we find that the use of the multi-modes expansion improves the CPU time for the

computation considerably. In fact, the table shows that this improvement is an order

of magnitude. Also, as expected, as the number of modes used is increased the CPU

time increases in a linear fashion.

Figure 4.3: (left) Relative error in the L2-norm between Ψh
N computed using the multi-

modes MCIP-DG method and Ψ̃h computed using the classical MCIP-DG method.
(right) εN vs. N for N = 1, 2, · · · , 5.

4.6.2 More Numerical Tests

The goal of this subsection is to demonstrate the approximations obtained by our

multi-modes MCIP-DG method using different magnitudes of parameter ε. We only

consider the case 0 < ε < 1 in order to legitimize the series expansion uε. Our
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Table 4.1: CPU times required to compute the multi-modes MCIP-DG
approximation Ψh

N and the classical MCIP-DG approximation Ψ̃h.

Approximation CPU Time (s)

Ψ̃h 3.4954× 105

Ψh
1 1.0198× 104

Ψh
2 2.0307× 104

Ψh
3 3.0037× 104

Ψh
4 3.9589× 104

Ψh
5 4.9011× 104

hope is that ε = O(k−1) required by the convergence theory (c.f. Theorem 4.4.15) is

not sharp in practice, and thus our multi-modes MCIP-DG method produces good

approximations for larger values of ε. Similar to the numerical experiments from [42],

we choose the function f = sin
(
kα(ω, ·)r

)
/r, where r is the radial distance from the

origin and α(ω, ·) is implemented as described in the beginning of this section. Since

our intention is to observe what happens as we vary ε, we fix k = 50, h = 1/100, and

M = 1000.

In Figures 4.4 and 4.5, we set ε = 0.02 and |η| ≤ 1. In Figure 4.4 we present plots

of the magnitude of the computed mean Re
(
Ψh

3

)
and a computed sample Re

(
Uh

3

)
,

respectively, over the whole domain D. Figure 4.5 gives the plots of a cross section

of the computed mean Re
(
Ψh

3

)
and a computed sample Re

(
Uh

3

)
, respectively, over

the line y = x. In this first example, we observe that the computed sample does not

differ greatly from the computed mean because ε is very small.

In Figures 4.6–4.11, we fix |η| ≤ 1 and increase ε past the constraint established

in the preceding convergence theory. As expected, we see that as ε increases the

computed sample differs more from the computed mean. We also observe that as ε

increases the phase of the wave remains relatively intact but the magnitude of the

wave becomes more uniform.

In Table 4.2, the relative error (measured in the L2-norm) between the multi-

modes approximation Ψh
N and the classical Monte Carlo approximation Ψh is given

for ε = 0.02, 0.1, 0.5, 0.8. In this table only three modes (i.e., N = 3) are used. Recall
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that the convergence theory in this case only holds for ε on the order of the first value

0.02. That being said, we observe that the approximations corresponding to ε = 0.1

and ε = 0.5 are relatively close to those obtained using the classical Monte Carlo

method. Another observation that can be made from Table 4.2 is that as ε increases

the relative error increases. This is expected from the convergence theory.

Recall that the error predicted in the convergence theory can be bounded by a term

with the factor εN . Thus for ε relatively large, one must use more modes to decrease

the error. Keeping this in mind, Table 4.3 records the relative error (measured in the

L2-norm) between the multi-modes approximation Ψh
N and the classical Monte Carlo

approximation Ψ̃h for ε = 0.5, 0.8 and N = 4, 5, 6, 7. We observe that the relative

error decreases as N increases when ε = 0.5. On the other hand, the relative error

increases asN increases when ε = 0.8. From Tables 4.2 and 4.3, we observe that multi-

modes approximation Ψh
N is relatively accurate (measured against an approximation

from the classical Monte Carlo method) even in cases when ε does not satisfy the

constraint set forth in the convergence theory. We also observe that when ε becomes

too large, the multi-modes approximation no longer agrees with the classical Monte

Carlo method.

Table 4.2: Relative error in the L2-norm between the multi-modes MCIP-DG
approximation Ψh

3 and the classical MCIP-DG approximation Ψ̃h.

ε 0.02 0.1 0.5 0.8
Relative L2 Error 3.0125× 10−4 6.0073× 10−4 0.2865 1.6979

Table 4.3: Relative error in the L2-norm between the multi-modes MCIP-DG
approximation Ψh

N and the classical MCIP-DG approximation Ψ̃h.

ε N = 4 N = 5 N = 6 N = 7

0.5 0.2866 0.1125 0.1137 0.0554
0.8 1.7036 1.6713 1.6839 1.7887
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Figure 4.4: Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100, ε = 0.02,

η(·, x) ∼ U [−1, 1], and M = 1000.

Figure 4.5: Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50,

h = 1/100, ε = 0.02, η(·, x) ∼ U [−1, 1], and M = 1000, over the line y = x.

Figure 4.6: Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100, ε = 0.1,

η(·, x) ∼ U [−1, 1], and M = 1000.
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Figure 4.7: Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50,

h = 1/100, ε = 0.1, η(·, x) ∼ U [−1, 1], and M = 1000.

Figure 4.8: Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100, ε = 0.5,

η(·, x) ∼ U [−1, 1], and M = 1000.

Figure 4.9: Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50,

h = 1/100, ε = 0.5, η(·, x) ∼ U [−1, 1], and M = 1000.
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Figure 4.10: Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50, h = 1/100,

ε = 0.8, η(·, x) ∼ U [−1, 1], and M = 1000.

Figure 4.11: Cross sections of Re
(
Ψh

3

)
(left) and Re

(
Uh

3

)
(right) computed for k = 50,

h = 1/100, ε = 0.8, η(·, x) ∼ U [−1, 1], and M = 1000.
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Chapter 5

Schwarz Space Decomposition

Methods for Nonsymmetric and

Indefinite Problems

5.1 Introduction

The original Schwarz method, proposed and analyzed by Hermann Schwarz in 1870

[72], is an iterative method to find the solution of a partial differential equation (PDE)

on a complicated domain which is the union of two overlapping simpler subdomains.

The method solves the equation on each of the two subdomains by using the latest

values of the approximate solution as the boundary conditions on the parts of the

subdomain boundaries which are inside of the given domain. The idea of splitting

a given problem posed on a large (and possibly complicated) domain into several

subproblems posed on smaller subdomains and then solving the subdomain problems

either sequentially or in parallel is a very appealing idea. Such a “divide-and-conquer”

idea is at the heart of every domain decomposition or Schwarz method.

It is well-known that [77] the domain decomposition strategy can be introduced at

the following three different levels: the continuous level for PDE analysis as proposed
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and analyzed by Hermann Schwarz in 1870, the discretization level for constructing

(hybrid and composite) discretization methods, and the algebraic level for solving

algebraic systems arising from the numerical approximations of PDE problems. These

three levels are often interconnected, and each of them has its own merit to be

studied. Most of the recent efforts and attentions have been focused on the algebraic

level. The field of domain decomposition methods has blossomed and undergone

intensive and phenomenal development during the last thirty years (cf. [74, 65, 77]

and the references therein). The phenomenal development has largely been driven by

the ever-increasing demands for fast solvers for solving important and complicated

scientific, engineering, and industrial application problems which are often governed

mathematically by a PDE or a system of PDEs. It has also been infused and facilitated

by the rapid advances in computer hardware and the emergence of parallel computing

technologies.

At the algebraic level, domain decomposition methods or Schwarz methods have

been well developed and studied for various numerical approximations (discretiza-

tions) of many types of PDE problems including finite element methods (cf. [31, 81]),

mixed finite element methods and spectral methods (cf. [77]), and discontinuous

Galerkin methods (cf. [40, 56, 41, 4]). A general abstract framework, backed by

an elegant convergence theory, was well established many years ago for symmetric

and positive definite (SPD) PDE problems and their numerical approximations (cf.

[31, 81, 74, 65, 77, 83] and the references therein).

Despite the tremendous advances in domain decomposition (Schwarz) methods

over the past thirty years, the current framework and convergence theory are

mainly confined to SPD problems in Hilbert spaces. Because the framework and

especially the convergence theory indispensably rely on the SPD properties of the

underlying problem and the Hilbert space structures, they do not apply to genuinely

nonsymmetric and/or indefinite problems. As a result, the SPD framework and theory

leave many important and interesting problems uncovered as pointed out in [77, page

311].
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This chapter attempts to address this important issue in Schwarz methods. The

goal of this chapter is to introduce a new Schwarz framework and theory, based on

the well-known idea of space decomposition as in the SPD case, for nonsymmetric

and indefinite linear systems arising from continuous and discontinuous Galerkin

approximations of general nonsymmetric and indefinite elliptic partial differential

equations under some “minimum” structure assumptions. Unlike the SPD framework

and theory, our new framework and theory are presented in a variational setting in

Banach spaces instead of Hilbert spaces. Such a general framework allows broader

applications of Schwarz methods. Additive, multiplicative, and hybrid Schwarz

methods are developed. A comprehensive Schwarz preconditioner theory is provided

which includes condition number estimates for the additive Schwarz preconditioners

and hybrid Schwarz preconditioners. The main idea of our nonsymmetric and

indefinite Schwarz framework and theory is to use weak coercivity (satisfied by the

nonsymmetric and indefinite bilinear form) induced norms to replace the standard

bilinear form induced norm in the SPD Schwarz framework and theory (see Sections

5.2–5.4 for a detailed exposition). As expected, working with such weak coercivity

induced norms and nonsymmetric and indefinite bilinear forms is quite delicate. It

requires new and different technical tools in order to establish our preconditioner

theory.

The remainder of this chapter is organized in the following way. In Section

5.2, we introduce notation, the functional setting, and the variational problems

which we aim to solve. Section 5.2 also contains some further discussions on

the main idea of the chapter. Section 5.3 is devoted to establishing an abstract

additive Schwarz, multiplicative Schwarz, and hybrid Schwarz framework for general

nonsymmetric and indefinite algebraic problems in a variational setting in general

Banach spaces. In Section 5.4, we present an abstract preconditioner theory for

the additive and hybrid Schwarz methods proposed in Section 5.3. In Section

5.5, we present some applications of the proposed nonsymmetric and indefinite

Schwarz framework to discontinuous Galerkin approximations of convection-diffusion
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(in particular, convection-dominated) problems. We also provide extensive 1-D

numerical experiments to gauge the performance of the proposed nonsymmetric and

indefinite Schwarz methods.

5.2 Functional Setting and Statement of Problems

5.2.1 Variational Problem

Let X be a real Hilbert space with the inner product (·, ·)X and the induced norm

‖ · ‖X . Let V,W ⊂ X be two reflexive Banach spaces endowed with the norms ‖ · ‖V
and ‖·‖W respectively. Let A(·, ·) be a real bilinear form defined on the product space

V ×W and F be a real linear functional defined on W . We consider the following

variational problem: Find u ∈ V such that

A(u,w) = F(w) ∀w ∈ W. (5.1)

The well-posedness of the above variational problem has been extensively studied.

One such result is summarized in the following theorem:

Theorem 5.2.1. (cf. [9]) Suppose that F is a bounded linear functional on W .

Assume that A(·, ·) is continuous and weakly coercive in the sense that there exist

constants CA, γA > 0 such that

|A(v, w)| ≤ CA‖v‖V ‖w‖W ∀v ∈ V, w ∈ W, (5.2)

sup
w∈W

A(v, w)

‖w‖W
≥ γA‖v‖V ∀v ∈ V, (5.3)

sup
v∈V
A(v, w) > 0 ∀ 0 6= w ∈ W. (5.4)

Then problem (5.1) has a unique solution u ∈ V . Moreover,

‖u‖V ≤
‖F‖
γA

. (5.5)
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Remark 5.2.2. (a) Theorem 5.2.1 is called Lax-Milgram-Babuška theorem in the

literature (cf. [69]). It was first introduced to the finite element context in [8] (also

see [9]). An earlier version of the theorem can also be found in [62].

(b) As pointed out in [9, page 117], condition (5.4) can be replaced by the following

more restrictive condition: There exists a constant βA > 0 such that

sup
v∈V

A(v, w)

‖v‖V
≥ βA‖w‖W ∀w ∈ W. (5.6)

The above condition can be viewed as a weak coercivity condition for the adjoint

bilinear form A∗(·, ·) of A(·, ·).

(c) Weak coercivity condition (5.3) is often called the inf-sup or Babuška–Brezzi

condition in the finite element literature [16, 24] for a different reason. It appears

and plays a vital role for saddle point problems and their (mixed) finite element

approximations (cf. [17, 18]).

(d) Theorem 5.2.1 is certainly valid when V = W . Since condition (5.3) is

weaker than strong coercivity, Theorem 5.2.1 is a stronger result than the classical

Lax-Milgram Theorem for the case V = W . Indeed, for most convection-dominated

convection-diffusion problems, V = W . However, there are situations where condition

(5.3) holds but strong coercivity fails (c.f. Section 5.5).

(e) There are also situations where one prefers to use different norms for the trial

space V and the test space W even if V = W (c.f. the generalize weak coercivity

properties in Chapter 2). Theorem 5.2.1 also provides a convenient framework to

handle such a situation.

5.2.2 Discrete Problem

As problem (5.1) is posed on infinite dimensional spaces V and W , to solve it

numerically, one must approximate V and W by some finite dimensional spaces

Vn,Wn ⊂ X. Here n = dim(Vn) = dim(Wn) is a positive integer which denotes

the dimension of Vn and Wn. If one of (or both) Vn and Wn is not a subspace
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of its corresponding infinite dimensional space, then one also needs to provide an

approximate bilinear form a(·, ·) for A(·, ·) so that a(·, ·) is well defined on Vn ×Wn.

In addition, if Wn is not a subspace of W one also needs to provide an approximate

linear functional f for F so that f is well defined on Wn.

Once Vn,Wn, a and f are constructed, the Galerkin method for problem (5.1) is

defined as seeking un ∈ Vn such that

a(un, wn) = f(wn) ∀wn ∈ Wn. (5.7)

Pick a basis {φ(j)}nj=1 of Vn and a basis {ψ(j)}nj=1 of Wn. It is trivial to check that

the discrete variational problem (5.7) can be rewritten as the following linear system

of equations:

Au = f , (5.8)

where u = [u(j)]nj=1 is the coefficient vector of the representation of un in terms of the

basis {φ(j)}nj=1 and

A =
[
aij
]n
i,j=1

, aij = a(φ(j), ψ(i)), (5.9)

f =
[
f (i)
]n
i=1
, f (i) = f(ψ(i)). (5.10)

The properties of matrix A (called a stiffness matrix) are obviously determined

by the properties of the discrete bilinear form a(·, ·) and the approximate spaces Vn

and Wn. When Vn = Wn it is well known that [49] A is symmetric if and only if

a(·, ·) is symmetric and A is positive definite provided that a(·, ·) is strongly coercive

on Vn × Vn. In general, A is just an n × n nonsymmetric real matrix if a(·, ·) is not

symmetric. A also can be indefinite (i.e., A has at least one negative and one positive

eigenvalue) if a(·, ·) fails to be coercive.

As (5.8) is a square linear system, by a well-known algebraic fact we know that

(5.8) has a unique solution u provided that the stiffness matrix A is nonsingular.
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This nonsingular condition on A becomes necessary if one wants (5.8) to be uniquely

solvable for arbitrary vector f . For most application problems (such as boundary

value problems for elliptic PDEs), one needs to consider various choices of the “load”

functional F , so the vector f is practically “arbitrary” in (5.8). Hence, besides some

deeper mathematical and algorithmic considerations, asking for the stiffness matrix

A to be nonsingular is a “minimum” requirement for the discretization method (5.7)

to be practically useful.

Sufficient conditions on the discrete bilinear form a(·, ·) and the approximate

spaces Vn and Wn which infer the unique solvability of the linear system (5.8) have

been well studied and understood in the past thirty years. In particular, for the

SPD type (algebraic) problems arising from various discretizations of boundary value

problems for elliptic PDEs [8, 9, 24, 16, 14, 66]. In the following, we shall quote some

of these well-known results in a theorem which is a counterpart of Theorem 5.2.1.

Theorem 5.2.3. (cf. [8, 9]) Suppose that f is a bounded linear functional on Wn.

Assume that a(·, ·) is continuous and weakly coercive in the sense that there exist

constants Ca, γa, βa > 0 such that

|a(v, w)| ≤ Ca‖v‖Vn‖w‖Wn ∀v ∈ Vn, w ∈ Wn, (5.11)

sup
w∈Wn

a(v, w)

‖w‖Wn

≥ γa‖v‖Vn ∀v ∈ Vn, (5.12)

sup
v∈Vn

a(v, w)

‖v‖Vn
≥ βa‖w‖Wn ∀w ∈ Wn. (5.13)

Then problem (5.7) has a unique solution un ∈ Vn. Moreover,

‖un‖Vn ≤
‖f‖
γa

. (5.14)

A few remarks are in order about the above well-posedness theorem.

Remark 5.2.4. (a) The constants Ca, γa, and βa do not need to be independent

of n for Theorem 5.2.3 to hold. From a practical perspective, if these constants are
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dependent on n then the numerical discretization method characterized by (5.7) may

not be convergent. Since the convergence of the numerical discretization method is

not the focus of this chapter, this independence is not necessary.

(b) Condition (5.13) is equivalent to requiring that the adjoint a∗(·, ·) of a(·, ·) is

weakly coercive.

(c) Conditions (5.11)–(5.13) are analogies of their continuous counterparts (5.2)–

(5.4). The discrete weak coercivity condition (5.12) is often called the inf-sup or

Babuška–Brezzi condition in the finite element literature [16, 24] for a different

reason. It is the most important one in a set of sufficient conditions for a mixed

finite element to be stable (cf. [17, 18]).

(d) A numerical method which fulfills conditions (5.11)–(5.13) is guaranteed to be

uniquely solvable and stable. Hence, these conditions can be used as a test stone to

determine whether a numerical method is a “good” method. For this reason, we shall

call the numerical method (5.7) an inf-sup preserving method or a weak coercivity

preserving method if it satisfies (5.11)–(5.13).

(e) Theorem 5.2.3 focuses on the unique solvability and the stability of the

numerical method (5.7) not on the accuracy of the method. We like to note that

method (5.7) indeed is an accurate numerical method provided that approximate spaces

Vn and Wn are accurate approximations of V and W (cf. [9]).

5.2.3 Main Objective

As we briefly explained above, approximating the variational problem (5.1) by a

Galerkin method certainly results in solving the linear system (5.8). It is well known

that the common dimension n of the approximation spaces Vn and Wn has to be

sufficiently large in order for the Galerkin method to be accurate. As a result, the

size of the linear system (i.e., the size of the matrix A) is expected to be very large in

applications. Moreover, if (5.1) is a variational formulation of some elliptic boundary

value problem, then the stiffness matrix A is certainly ill-conditioned in the sense
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that the condition number κ(A) := ‖A‖‖A−1‖ is very large. Here ‖A‖ denotes a

matrix norm of A. For example, in the case of second and fourth order elliptic

boundary value problems, κ(A) = O(n
2
d ) and κ(A) = O(n

4
d ), respectively, where d

is the spatial dimension of the domain (cf. [16, 77]). Consequently, it is not efficient

to solve linear system (5.8) directly using classical iterative methods even if they

converge. Furthermore, unlike in the SPD case, classical iterative methods often do

not converge for general nonsymmetric and indefinite linear system (5.8) (cf. [49, 77]).

As a first step toward developing better iterative solvers for nonsymmetric and

indefinite linear system (5.8), it is natural to design a “good” preconditioner (i.e., an

n×n real matrix B) such that BA is well-conditioned (i.e., κ(BA) is relatively small,

say, significantly smaller than κ(A)). Then one can try classical iterative methods.

In particular, the Generalized Minimal Residual (GMRES) method can be used on

the preconditioned system

BAx = Bb. (5.15)

One can also develop some new (and hopefully better) iterative methods if classical

iterative methods still do not work as well on (5.15) as one had hoped.

As was already mentioned in Section 5.1, the focus of this chapter is exactly what

is described above. Our goal is to develop a new Schwarz framework and theory,

based on the well-known idea of space decomposition, for solving nonsymmetric and

indefinite linear system (5.8) which arises from the Galerkin method (5.7) as an

approximation of the variational problem (5.1). As expected, our nonsymmetric and

indefinite Schwarz framework and theory are natural extensions of the well-known

SPD Schwarz framework and theory which were nicely described in [31, 81, 74, 65, 77].
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5.3 An Abstract Schwarz Framework for Nonsym-

metric and Indefinite Problems

For the sake of notational brevity, throughout the remainder of this chapter we shall

suppress the sub-index n in the discrete spaces Vn and Wn and in discrete functions

un, vn and wn. In other words, V and W are used to denote Vn and Wn, and u, v

and w are used to denote un, vn and wn. In addition, we shall make an effort below

to use the same or similar terminologies, as well as space and norm notation as those

in [77] for the symmetric and positive definite (SPD) Schwarz framework and theory.

We shall also make comments about notation and terminologies which have no SPD

counterparts and try to make links between the well known SPD Schwarz framework

and theory and our nonsymmetric and indefinite Schwarz framework and theory.

To motivate, we recall that in the SPD Schwarz framework and theory [31, 81, 74,

65, 77], since V = W and the discrete bilinear form a(·, ·) is symmetric and strongly

coercive,
√
a(v, v) defines a convenient norm (which is also equivalent to the ‖ · ‖V -

norm) on the space V (as well as on its subspaces). This bilinear form induced norm

plays a vital role in the SPD Schwarz framework and theory.

Unfortunately, without the symmetry and strong coercivity assumptions on a(·, ·),√
a(v, v) is not a norm anymore when V = W . It is not even well defined if V 6=

W . To overcome this difficulty, the existing nonsymmetric and indefinite Schwarz

framework and theory (cf. [22, 77, 82]), which only deal with the case V = W , assume

that a(·, ·) has a decomposition a(·, ·) = a0(·, ·) + a1(·, ·), where a0(·, ·) is assumed to

be symmetric and strongly coercive (i.e., it is SPD) and a1(·, ·) is a perturbation of

a0(·, ·). In this setting, a0(·, ·) then induces an equivalent (to ‖ · ‖V ) norm
√
a0(v, v)

and one then works with this norm as in the SPD case. Unfortunately, such a setting

requires that a1(·, ·) is a small perturbation of a0(·, ·), which is why the existing

nonsymmetric and indefinite Schwarz framework and theory only apply to “nearly”

SPD problems. Hence, it leaves more interesting and more difficult nonsymmetric

and indefinite problems unresolved.
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5.3.1 Main Assumptions and Main Idea

To develop a new Schwarz framework and theory for general nonsymmetric and

indefinite problems, our only assumptions on the discrete problem (5.7) are those

stated in the well-posedness Theorem 5.2.3. We now restate those assumptions on

the discrete bilinear form a(·, ·) and its adjoint a∗(·, ·) using the new function and

space notation (i.e., after suppressing the sub-index n) as follows:

Main Assumptions

(MA1) Continuity There exists a positive constant Ca such that

|a(v, w)| ≤ Ca‖v‖V ‖w‖W ∀v ∈ V, w ∈ W. (5.16)

(MA2) Weak coercivity There exists positive constants γa, βa such that

sup
w∈W

a(v, w)

‖w‖W
≥ γa‖v‖V ∀v ∈ V, (5.17)

sup
v∈V

a(v, w)

‖v‖V
≥ βa‖w‖W ∀w ∈ W. (5.18)

Remark 5.3.1. (a) Since a∗(w, v) = a(v, w), then the continuity condition (5.16) is

equivalent to

|a∗(w, v)| ≤ Ca‖w‖W‖v‖V ∀w ∈ W, v ∈ V, (5.19)

and (5.18) is equivalent to

sup
v∈V

a∗(w, v)

‖v‖V
≥ βa‖w‖W ∀w ∈ W. (5.20)

(b) Assumptions (MA1) and (MA2) impose some restrictions on the underlying

Galerkin method (5.7). But as we noted in Remark 5.2.4, these are some “minimum”
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conditions for the Galerkin method to be practically useful. From that point of view,

(MA1) and (MA2) are not restrictions at all.

As it was pointed out in the previous subsection, for a general nonsymmetric and

indefinite problem, since the discrete bilinear form a(·, ·) is not strongly coercive, then

a(v, v) is not a norm anymore. In fact, a(v, v) may not even be defined if V 6= W . So

a crucial question is what norms (if any) would a(·, ·) induce on V and W which are

equivalent to ‖ · ‖V and ‖ · ‖W . It turns out that a(·, ·) does induce equivalent norms

on both V and W , and these norms are hidden in the weak coercivity conditions

(5.17) and (5.18). This key observation leads to the main idea of this chapter; that

is, we define the following weak coercivity induced norms:

‖v‖a := sup
w∈W

a(v, w)

‖w‖W
∀v ∈ V, (5.21)

‖w‖a∗ := sup
v∈V

a∗(w, v)

‖v‖V
∀w ∈ W. (5.22)

Assumptions (MA1) and (MA2) immediately infer the following norm equivalence

result. Since its proof is trivial, we omit it.

Lemma 5.3.2. The following inequalities hold:

γa‖v‖V ≤ ‖v‖a ≤ Ca‖v‖V ∀v ∈ V, (5.23)

βa‖w‖W ≤ ‖w‖a∗ ≤ Ca‖w‖W ∀w ∈ W. (5.24)

We conclude this subsection by noting that the variational setting laid out so far

is a Banach space setting. No Hilbert space structure is required for the spaces V

and W . This is not only mathematically interesting but also practically valuable

because for some PDE application problems it is imperative to work in a Banach

space setting. We also note that if V = W and a(·, ·) is SPD (i.e., it is symmetric and

strongly coercive), then ‖v‖a = ‖v‖a∗ =
√
a(v, v). Hence, we recover the standard

bilinear form induced norm.
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5.3.2 Space Decomposition and Local Solvers

It is well known [31, 81, 74, 83, 77] that Schwarz domain decomposition methods

can be presented abstractly in the framework of the space decomposition method. In

particular, the physical domain decomposition provides a practical and effective way

to construct the required space decomposition and local solvers in the method. To

some extent, the space decomposition method to the Schwarz domain decomposition

method is what the LU factorization is to the classical Gaussian elimination method.

Like in the SPD Schwarz framework (cf. [77]), there are two essential ingredients

in our nonsymmetric and indefinite Schwarz framework, namely, (i) construction of

a pair of “compatible” space decompositions for V and W and (ii) construction of a

local solver (or local discrete bilinear form) on each pair of local spaces. However,

there is an obvious and crucial difference between the SPD Schwarz framework

and our nonsymmetric and indefinite Schwarz framework. When V 6= W , our

framework requires space decompositions for both spaces V and W , and these two

space decompositions must be chosen compatibly in the sense to be described below.

Let

Vj ⊂ X, Wj ⊂ X for j = 0, 1, 2, · · · , J,

be two sets of reflexive Banach spaces with norms ‖ · ‖Vj
and ‖ · ‖Wj

respectively. We

note that V0 and W0 are used to denote the so-called coarse spaces in the domain

decomposition context. For j = 0, 1, 2, · · · , J , let

R†j : Vj → V, S†j : Wj → W

denote some prolongation operators.

Remark 5.3.3. In the Schwarz method literature (cf. [77, 74, 81]), RT
j is often used

to denote both the prolongation operator from Vj to V and its matrix representation.

Such a choice of notation is due to the fact that the matrix representation of the

not-explicitly-defined restriction operator Rj from V to Vj is always chosen to be the
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transpose of the matrix representation of the prolongation operator. As expected, such

a dual role notation may be confusing to some readers. To avoid such a potential

confusion we use different notations for operators and their matrix representations

throughout this chapter.

We also like to note that in the construction of all Schwarz methods the

restriction operators/matrices are not “primary” operators/matrices but “derivative”

operators/matrices in the sense that they are not chosen independently. Instead, they

are determined by the prolongation operators/matrices. One often first defines the

matrix representation of the (desired) restriction operator as the transpose of the the

matrix representation of the prolongation operator and then defines the restriction

operator to be the unique linear operator which has the chosen matrix representation

(under the same bases in which the prolongation matrix is obtained). This will

also be the approach adopted in this chapter for defining our restriction operators

(see Definition 5.3.6). Clearly, such a definition of the restriction operators is not

only abstract but also depends on the choices of the bases of the underlying function

spaces. However, its simplicity and convenience at the matrix level make the definition

appealing.

Suppose that the following relations hold:

R†jVj ( V, S†jWj ( W for j = 0, 1, 2, · · · , J, (5.25)

V =
J∑
j=0

R†jVj, W =
J∑
j=0

S†jWj, (5.26)

where R†jVj and S†jWj stand for the ranges of the linear operators R†j and S†j
respectively.

Associated with each pair of local spaces (Vj,Wj) for j = 0, 1, 2 · · · , J , we

introduce a local discrete bilinear form aj(·, ·) defined on Vj × Wj, which can be

taken either as the restriction of global discrete bilinear form a(·, ·) on Vj ×Wj or as

some approximation of the restriction of a(·, ·) on Vj ×Wj. We call these two choices
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of local discrete bilinear form aj(·, ·) an exact local solver and an inexact local solver,

respectively. After the local discrete bilinear forms are chosen, we can define what

constitutes as a compatible space decomposition.

Definition 5.3.4. (i) A pair of spaces Vj and Wj are said to be compatible with

respect to aj(·, ·) if they satisfy the following conditions:

(LA1) Local continuity. There exists a positive constant Caj such that

|aj(v, w)| ≤ Caj‖v‖Vj
‖w‖Wj

∀v ∈ Vj, w ∈ Wj. (5.27)

(LA2) Local weak coercivity. There exist positive constants γaj and βaj such that

sup
w∈Wj

aj(v, w)

‖w‖Wj

≥ γaj‖v‖Vj
∀v ∈ Vj, (5.28)

sup
v∈Vj

aj(v, w)

‖v‖Vj

≥ βaj‖w‖Wj
∀w ∈ Wj. (5.29)

(ii) A pair of space decompositions {Vj}Jj=0 and {Wj}Jj=0 of V and W satisfying

(5.25)–(5.26) are said to be compatible if each pair of Vj and Wj is compatible with

respect to aj(·, ·) for j = 0, 1, 2, · · · , J .

Obviously conditions (LA1) and (LA2) on aj(·, ·) are the analogies of (MA1) and

(MA2) on a(·, ·). By Theorem 5.2.3, these conditions guarantee that the local problem

of seeking uj ∈ Vj such that

aj(uj, wj) = fj(wj) ∀ wj ∈ Wj, (5.30)

is uniquely solvable for any given bounded linear functional fj on Wj. Moreover,

(LA1) and (LA2) are “minimum” conditions for achieving such a guaranteed unique

solvability (cf. Remark 5.2.4). Furthermore, like its global counterpart, the local

weak coercivity condition (LA2) induces the following two equivalent norms on Vj
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and Wj:

‖v‖aj := sup
w∈Wj

aj(v, w)

‖w‖Wj

∀v ∈ Vj, (5.31)

‖w‖a∗j := sup
v∈Vj

a∗j(w, v)

‖v‖Vj

∀w ∈ Wj, (5.32)

where a∗j(w, v) := aj(v, w) for any (v, w) ∈ Vj ×Wj.

Trivially, we have

Lemma 5.3.5. Suppose that Vj and Wj are compatible with respect to aj(·, ·). Then

the following inequalities hold:

γaj‖v‖Vj
≤ ‖v‖aj ≤ Caj‖v‖Vj

∀v ∈ Vj, (5.33)

βaj‖w‖Wj
≤ ‖w‖a∗j ≤ Caj‖w‖Wj

∀w ∈ Wj. (5.34)

5.3.3 Additive Schwarz Method

Throughout this section, we assume that we are given a global discrete problem (5.7),

and the global discrete bilinear form a(·, ·) fulfills the main assumptions (MA1) and

(MA2) so that problem (5.7) has a unique solution u ∈ V . In addition, we assume

we are given a pair of space decompositions {Vj}Jj=0 and {Wj}Jj=0 of V and W , the

prolongation operators {R†j}Jj=0 and {S†j}Jj=0, and the local discrete bilinear forms

{aj(·, ·)}Jj=0 such that the given space decompositions are compatible with respect to

the given local discrete bilinear forms in the sense of Definition 5.3.4. Our goal in

this subsection is to construct the additive Schwarz method for problem (5.7) using

the given information.

To continue, we now introduce two sets of projection-like operators P̃j : V → Vj

and Q̃j : W → Wj for j = 0, 1, 2, · · · , J . These projection-like-operators will serve

as the building blocks for the constructions of both our additive and multiplicative

Schwarz methods. For any fixed v ∈ V and w ∈ W , define P̃jv ∈ Vj and Q̃jw ∈ Wj
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by

aj
(
P̃jv, wj

)
:= a

(
v,S†jwj

)
∀wj ∈ Wj, (5.35)

a∗j
(
Q̃jw, vj

)
:= a∗

(
w,R†jvj

)
∀vj ∈ Vj. (5.36)

We recall that a∗j(wj, vj) = aj(vj, wj) for all vj ∈ Vj and wj ∈ Wj. We also note that

since Vj and Wj are assumed to be compatible, Theorem 5.2.3 then ensures both P̃j
and Q̃j are well defined for j = 0, 1, · · · , J .

Since Vj and Wj may not be subspaces of V and W , P̃jv and Q̃jw may not belong

to V and W . To pull them back to the global discrete spaces V and W , we appeal

to the prolongation operators R†j and S†j for help. Define the composite operators

Pj := R†j ◦ P̃j, Qj := S†j ◦ Q̃j for j = 0, 1, 2, · · · , J. (5.37)

Trivially, we have Pj : V → V and Qj : W → W for j = 0, 1, 2, · · · , J .

We now are ready to define the following additive Schwarz operators. Following

[31, 81, 74, 77] we define

Pad := P0 + P1 + P2 + · · ·+ PJ , (5.38)

Qad := Q0 +Q1 +Q2 + · · ·+QJ . (5.39)

The matrix interpretation of the additive operator Pad is similar to but slightly

more complicated than the one in the SPD Schwarz framework. In particular, the

additive operator Qad does not exist in the the SPD framework. For the reader’s

convenience, we give below a brief matrix interpretation for both Pad and Qad.

Fixing a basis for each of V,W, Vj and Wj, let A and Aj denote respectively

the global and local stiffness matrices of the bilinear forms a(·, ·) and aj(·, ·) with

respect to the given bases. Let R†j, S
†
j , P̃j, Q̃j, Pj, Qj, Pad and Qad denote the matrix

representations of the linear operators R†j,S
†
j , P̃j, Q̃j,Pj,Qj,Pad and Qad with respect
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to the given bases. Lastly, let AT , ATj , R
†T
j and S†Tj denote the matrix transposes of

A,Aj, R
†
j and S†j .

Using the above notation and the well-known fact that composite linear operators

are represented by matrix multiplications, we obtain from (5.35) and (5.36) that

AjP̃jv := S†Tj Av ∀v ∈ Rn, (5.40)

ATj Q̃jw := R†Tj A
Tw ∀w ∈ Rn. (5.41)

Thus,

P̃j = A−1
j S†Tj A, Pj = R†jA

−1
j S†Tj A, (5.42)

Q̃j = A−Tj R†Tj A
T , Qj = S†jA

−T
j R†Tj A

T , (5.43)

where A−1
j and A−Tj denote the inverse matrices of Aj and ATj , respectively. We also

note that the compatibility assumptions (LA1) and (LA2) imply that A−1
j and A−Tj

do exist.

Finally, it follows from (5.38), (5.39), (5.42) and (5.43) that

Pad = R†0A
−1
0 S†T0 A+

J∑
j=1

R†jA
−1
j S†Tj A, (5.44)

Qad = S†0A
−T
0 R†T0 AT +

J∑
j=1

S†jA
−T
j R†Tj A

T . (5.45)

From the above expressions, we obtain the following two additive Schwarz

preconditioners for both A and its transpose AT :

B := R†0A
−1
0 S†T0 +

J∑
j=1

R†jA
−1
j S†Tj , (5.46)

B† := S†0A
−T
0 R†T0 +

J∑
j=1

S†jA
−T
j R†Tj . (5.47)
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It is interesting to note that B† = BT which means that the nonsymmetric Schwarz

preconditioner B can be used to precondition both the linear system (5.7) and its

adjoint system without any additional cost.

As it was already alluded to in Remark 5.3.3, we now formally define our restriction

operators {Rj} and {Sj}.

Definition 5.3.6. For j = 0, 1, 2, · · · , J , let Rj : V → Vj (resp. Sj : W → Wj) be

the unique linear operator whose matrix representation is given by S†Tj (resp. R†Tj )

under the same bases of V,W, Vj and Wj in which R†Tj and S†Tj are obtained.

By the design, the matrix representations Rj and Sj of Rj and Sj satisfy Rj = S†Tj

and Sj = R†Tj .

5.3.4 Multiplicative Schwarz Method

The multiplicative Schwarz methods for solving problem (5.7) refer to various

generalizations of the original Schwarz alternating iterative method (cf. [15, 81]).

However, they also can be formulated as linear iterations on some preconditioned

systems (cf. [77]). In this chapter we, adopt the latter point of view to present our

nonsymmetric and indefinite multiplicative Schwarz methods. We shall use the same

notation as in Subsection 5.3.3.

We first introduce the following two so-called error propagation operators:

Emu := (I − PJ) ◦ (I − PJ−1) ◦ · · · ◦ (I − P0), (5.48)

Esy := (I − P0) ◦ (I − P1) ◦ · · · ◦ (I − PJ) ◦ (I − PJ) ◦ · · · ◦ (I − P0). (5.49)

where I denotes the identity operator on V or on W . We then define the following

two “preconditioned” operators:

Pmu := I − Emu, Psy := I − Esy. (5.50)
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It is easy to check that the algebraic matrix representations of the above operators

are, respectively,

Emu := (I − PJ)(I − PJ−1) · · · (I − P0), (5.51)

Esy := (I − P0)(I − P1) · · · (I − PJ)(I − PJ) · · · (I − P1)(I − P0), (5.52)

Pmu := I − Emu, (5.53)

Psy := I − Esy. (5.54)

Then our multiplicative Schwarz iterative methods are defined as

u(k+1) = (I − C)u(k) + g = Eu(k) + g, k ≥ 0 (5.55)

where (C,E) are either (Pmu, Emu) or (Psy, Esy), and g takes either gmu ∈ Rn or

gsy ∈ Rn which are easily computable from f in (5.8).

Remark 5.3.7. (a) Clearly, the case with the triple (Pmu, Emu,gmu) corresponds to the

classical multiplicative Schwarz method for (5.8) (cf. [15]).

(b) The case with the triple (Psy, Esy,gsy) can be regarded as a “symmetrized”

multiplicative Schwarz method for nonsymmetric and indefinite problems. However,

we note that the operator Esy and matrix Esy are not symmetric in general because

{Pj} and {Pj} may not be symmetric.

(c) Unlike in the SPD case, the norm ‖Emu‖a could be larger than 1 for convection-

dominant problems as shown by the numerical tests given in Section 5.5, although

the multiplicative Schwarz method appears to be convergent in all those tests.

Consequently, the convergent behavior of the multiplicative Schwarz method presented

above is more complicated than its SPD counterpart.
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5.3.5 A Hybrid Schwarz Method

In this subsection, we consider a hybrid Schwarz method which combines the additive

Schwarz idea (between subdomains) and the multiplicative Schwarz idea (between

levels). The hybrid method is expected to take advantage of both additive and

multiplicative Schwarz methods.

The iteration operator of our hybrid Schwarz method is given by

Ehy := (I − αP0)(I − P̂), where P̂ :=
∑J

j=1Pj, (5.56)

Ghy := (I − αQ0)(I − Q̂), where Q̂ :=
∑J

j=1Qj. (5.57)

Thus, the “preconditioned” hybrid Schwarz operator has the following form:

Phy := I − Ehy = αP0 + (I − αP0)P̂ , (5.58)

Qhy := I − Ghy = αQ0 + (I − αQ0)Q̂, (5.59)

where α, called a relaxation parameter, is an undetermined positive constant.

Since the corresponding matrix representations of Ehy,Phy,Ghy, and Qhy are easy

to write down, we omit them to save space.

5.4 An Abstract Schwarz Preconditioner Theory

for Nonsymmetric and Indefinite Problems

In this section, we shall first establish condition number estimates for additive Schwarz

operator Pad and for its matrix representation Pad. We then present a condition

number estimate for the hybrid operator Phy.
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5.4.1 Structure Assumptions

Our preconditioner theory rests on the following structure assumptions. The validity

of these structure assumptions is dependent on the numerical discretization method

that is being implemented along with the choice of space decomposition, local solvers,

and prolongation operators that are made. These choices must be made carefully in

order to ensure a good Schwarz preconditioner is obtained.

(SA0) Compatibility assumption. Assume that {(Vj,Wj)}Jj=0 is a compatible decom-

position of (V,W ) in the sense of Definition 5.3.4.

(SA1) Energy stable decomposition assumption. There exist positive constants CV and

CW such that every pair (v, w) ∈ V ×W admits a decomposition

v =
J∑
j=0

R†jvj, w =
J∑
j=0

S†jwj,

with vj ∈ Vj and wj ∈ Wj such that

J∑
j=0

‖vj‖aj ≤ CV‖v‖a, (5.60)

J∑
j=0

‖wj‖Wj
≤ CW‖w‖W. (5.61)

(SA2) Strengthened generalized Cauchy-Schwarz inequality assumption. There exist

constants θij ∈ [0, 1] for i, j = 0, 1, 2, · · · , J such that

a(R†ivi,S
†
jwj) ≤ θij‖R†ivi‖a‖S

†
jwj‖W ∀vi ∈ Vi, wj ∈ Wj. (5.62)
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(SA3) Local stability assumption. There exist positive constants ωV and ωW such that

for j = 0, 1, 2, · · · , J

‖R†jvj‖a ≤ ωV‖vj‖aj ∀vj ∈ Vj, (5.63)

‖S†jwj‖W ≤ ωW‖wj‖Wj
∀wj ∈ Wj. (5.64)

(SA4) Approximability assumption. There exist (small) positive constants δV, δ̂V, δW

and δ̂W such that for i = 0, 1, 2, · · · , J and j = 1, 2, · · · , J

‖v − P0v‖a ≤ δV‖v‖a ∀v ∈ V, (5.65)

‖v − P̂v‖a ≤ δ̂V‖v‖a ∀v ∈ V, (5.66)

‖w −Q0w‖W0
≤ δW‖w‖W ∀w ∈ W, (5.67)

‖w − Q̂w‖W0
≤ δ̂W‖w‖W ∀w ∈ W, (5.68)

where P̂ :=
∑J

i=1Pi and Q̂ :=
∑J

i=1Qi.

We now explain the rationale and motivation of each assumption listed above.

Remark 5.4.1. (a) We note that ‖ · ‖a and ‖ · ‖a∗ are defined in (5.21) and (5.22),

and ‖ · ‖aj and ‖ · ‖a∗j are defined in (5.31) and (5.32).

(b) For a given compatible pair of space decompositions {(Vj,Wj)}Jj=0, decom-

positions of each function v ∈ V and w ∈ W may not be unique. Assumption

(SA1) assumes that there exists at least one decomposition which is energy stable for

every function in V and W . It imposes a constraint on both the choice of the space

decompositions {(Vj,Wj)}Jj=0 and on the choice of the local bilinear forms {aj(·, ·)}Jj=0.

(c) We note that different norms are used for two functions on the right-hand side

of (5.62), and θij is defined for i, j = 0, 1, 2, · · · , J . We set Θ = [θij]
J
i,j=0 and note

that Θ is a (J + 1)× (J + 1) matrix. We shall also use the submatrix Θ̂ := [θij]
J
i,j=1 in

our analysis to be given in Section 5.4. Since the bilinear form a(·, ·) is not an inner

product, the standard Cauchy-Schwarz inequality does not hold in general. But it does
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hold in this generalized sense with θij = 1, see Lemma 5.4.2. Moreover, we expect

that each pair (Vj,Wj) for 1 ≤ i, j ≤ J only interacts with very few remaining pairs

in the space decomposition {(Vj,Wj)}Jj=1. Hence, the matrix Θ̂, which is symmetric,

is expected to be sparse and nearly diagonal in most applications. On the other hand,

we expect that θ0j = θi0 = 1 for i, j = 1, 2, · · · , J .

(d) Local stability assumption (SA3) imposes a condition on the choice of the

prolongation operators R†j and S†j . It requires that these operators are bounded

operators.

(e) Assumption (SA4), which does not appear in the SPD theory, imposes

a local approximation condition on the projection-like operators {P̃j} and {Q̃j}.

Consequently it imposes conditions on the prolongation operators {R†j}, {S
†
j} and the

local solvers aj(·, ·).

(f) Because of the norm equivalence properties (5.23), (5.24), (5.33) and (5.34),

one can easily replace the weak coercivity induced norms by their equivalent underlying

space norms or vice versa in all assumptions (SA1)–(SA4). However, one must track

all the constants resulting from the changes. The main reason for using the current

forms of the assumptions is that they allow us to give a cleaner presentation of our

nonsymmetric and indefinite Schwarz preconditioner theory to be described below.

5.4.2 Condition Number Estimate for Pad

First, we state the following simple lemma.

Lemma 5.4.2. The following generalized Cauchy-Schwarz inequalities hold:

a(v, w) ≤ ‖v‖a‖w‖W ∀v ∈ V, w ∈ W, (5.69)

a(v, w) ≤ ‖v‖V‖w‖a∗ ∀v ∈ V, w ∈ W, (5.70)

aj(vj, wj) ≤ ‖vj‖aj‖w‖Wj
∀vj ∈ Vj, wj ∈ Wj, j = 0, 1, · · · , J, (5.71)

aj(vj, wj) ≤ ‖v‖Vj
‖wj‖a∗j ∀vj ∈ Vj, wj ∈ Wj, j = 0, 1, · · · , J. (5.72)
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Proof. (5.69)–(5.72) are immediate consequences of the definitions of the norms

‖ · ‖a, ‖ · ‖a∗ , ‖ · ‖aj and ‖ · ‖a∗j .

Lemma 5.4.3. Under assumptions (SA0) and (SA3), the following estimates hold:

‖P̃jv‖aj ≤ ωW‖v‖a ∀v ∈ V, j = 0, 1, · · · , J, (5.73)

‖Pjv‖a ≤ ωVωW‖v‖a ∀v ∈ V, j = 0, 1, · · · , J, (5.74)

‖Q̃jw‖a∗j ≤ ωVCajβ
−1
a ‖w‖a∗ ∀w ∈ W, j = 0, 1, · · · , J, (5.75)

‖Qjw‖a∗ ≤ ωVωWCaCajβ
−1
a β−1

aj
‖w‖a∗ ∀w ∈ W, j = 0, 1, · · · , J, (5.76)

‖Pjv‖V ≤ ωVωWCaγ
−1
a ‖v‖V ∀v ∈ V, j = 0, 1, · · · , J, (5.77)

‖Qjw‖W ≤ ωVωWCajβ
−1
aj
‖w‖W ∀w ∈ W, j = 0, 1, · · · , J. (5.78)

Proof. For any v ∈ V , by assumption (SA3) and Lemma 5.4.2 we get for j =

0, 1, · · · , J ,

‖P̃jv‖aj = sup
wj∈Wj

aj(P̃jv, wj)
‖wj‖Wj

(5.79)

= sup
wj∈Wj

a(v,S†jwj)
‖wj‖Wj

(by (5.35))

≤ sup
wj∈Wj

‖v‖a ‖S†jwj‖W
‖wj‖Wj

(by (5.69))

≤ ωW‖v‖a. (by (5.64))
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Hence, (5.73) holds. (5.74) follows immediately from (5.73) and (5.63). By

assumption (SA3) and Lemma 5.4.2 we obtain

‖Q̃w‖a∗j = sup
vj∈Vj

aj(vj, Q̃w)

‖vj‖Vj

= sup
vj∈Vj

a(R†jvj, w)

‖vj‖Vj

(by (5.36))

≤ sup
vj∈Vj

‖R†jvj‖a‖w‖W
‖vj‖Vj

(by (5.69))

≤ sup
vj∈Vj

ωV‖vj‖aj‖w‖W
‖vj‖Vj

(by (5.63))

≤ ωVCaj‖w‖W (by (5.33))

≤ ωVCajβ
−1
a ‖w‖a∗ . (by (5.24))

Hence, (5.75) holds. (5.76) follows from (5.75), (5.23), (5.64), and (5.34). From the

proof for (5.75) we can obtain ‖Q̃jw‖a∗j ≤ ωVCaj‖w‖W . This result along with (5.64)

and (5.34) yields (5.78). The proof is complete.

We now are ready to give an upper bound estimate for the additive Schwarz

operator Pad.

Proposition 5.4.4. Under assumptions (SA0)–(SA3) the following estimate holds:

‖Padv‖a ≤ ωVωW

[
1 + ωWCWN(Θ)

]
‖v‖a ∀v ∈ V, (5.80)

where Θ = [θij]
J
i,j=0, N(Θ) = max{Nj(Θ); 0 ≤ j ≤ J} and Nj(Θ) denotes the number

of nonzero entries in the vector Θj := [θij]
J
i=0, i.e., the number of nonzero entries of

the jth column of the matrix Θ.

Proof. For any w ∈ W , let {wj} be an energy stable decomposition of w as defined

in (SA1). By the definition of Pad, (5.69), (5.62), (5.74), (5.64), and (5.61) we get for
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any v ∈ V

a(Padv, w) = a(P0v, w) +
J∑
i=1

a(Piv, w) (5.81)

= a(P0v, w) +
J∑
i=1

J∑
j=0

a(R†i P̃iv,S
†
jwj)

≤ ‖P0v‖a‖w‖W +
J∑
i=1

J∑
j=0

θij‖Piv‖a‖S†jwj‖W

≤ ωVωW‖v‖a
{
‖w‖W +

J∑
j=0

Nj(Θ)‖S†jwj‖W
}

≤ ωVωW‖v‖a
{
‖w‖W + ωWN(Θ)

J∑
j=0

‖wj‖Wj

}
≤ ωVωW‖v‖a

{
‖w‖W + ωWN(Θ)CW‖w‖W

}
= ωVωW

[
1 + ωWCWN(Θ)

]
‖v‖a‖w‖W.

Hence, (5.80) holds. The proof is complete.

As expected, it is harder to get a lower bound estimate for the additive Schwarz

operator Pad. Such a bound then readily provides an upper bound for P−1
ad . To this

end, we first establish the following key lemma.

Lemma 5.4.5. (i) Suppose that for every v ∈ V , {P̃jv; j = 0, 1, 2, · · · , J} forms a

stable decomposition of Padv. Then under assumptions (SA0) and (SA1) the following

inequality holds:

J∑
j=0

‖P̃jv‖aj ≤ CV‖Padv‖a ∀v ∈ V. (5.82)
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(ii) If the condition of (i) does not hold, then under assumptions (SA0)–(SA4) we

have

J∑
j=0

‖P̃jv‖aj ≤
ωW

2

(
J + 1

)[
‖Padv‖a +

(
δV + δ̂V

)
‖v‖a

]
. (5.83)

Proof. (i) For any v ∈ V , let u = Padv, uj = P̃jv for j = 0, 1, 2, · · · , J . Since

u = Padv =
J∑
j=0

Pjv =
J∑
j=0

R†j ◦ P̃jv =
J∑
j=0

R†juj,

{uj} is indeed a decomposition of u which is assumed to be stable. By assumption

(SA1) we conclude that (5.60) holds for u, which gives (5.82).

(ii) Let u be same as in part (i). Recall that P̂ =
∑J

j=1Pj. Using the identity

P̃jv =
1

2

[
P̃ju+ P̃j(v − P0v) + P̃j(v − P̂v)

]
for j = 0, 1, · · · , J,

the triangle inequality, (SA4) and (5.73) we get

‖P̃jv‖aj ≤
1

2

[
‖P̃ju‖aj + ‖P̃j

(
v − P0v

)
‖aj + ‖P̃j

(
v − P̂v)‖aj

]
≤ ωW

2

[
‖u‖a +

(
δV + δ̂V

)
‖v‖a

]
for j = 0, 1, · · · , J.

Then summing the above inequality we obtain

J∑
j=0

‖P̃jv‖aj ≤
ωW

2

(
J + 1

)[
‖u‖a +

(
δV + δ̂V

)
‖v‖a

]
.

Hence, (5.83) holds. The proof is complete.

We now are ready to establish a lower bound estimate for the additive Schwarz

operator Pad.
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Proposition 5.4.6. (i) Under the assumptions of (i) of Lemma 5.4.5, the following

estimate holds:

‖Padv‖a ≥ (CVCW)−1‖v‖a ∀v ∈ V. (5.84)

(ii) Under the assumptions of (ii) of Lemma 5.4.5, the following estimate holds:

‖Padv‖a ≥ K−1
0 ‖v‖a ∀v ∈ V, (5.85)

provided that CW
(
J + 1

)(
δV + δ̂V

)
< 1 where

K0 :=
ωWCW

2− 2CW

(
J + 1

)(
δV + δ̂V

) . (5.86)

Consequently, operator Pad is invertible.

Proof. For any w ∈ W , let {wj} be an energy stable decomposition of w, that is,

w =
J∑
j=0

S†jwj,

and (5.61) holds. Then we have

a(v, w) =
J∑
j=0

a(v,S†jwj) (5.87)

=
J∑
j=0

aj(P̃jv, wj) (by (5.35))

≤
J∑
j=0

‖P̃jv‖aj‖wj‖Wj
(by (5.71))

≤
J∑
j=0

‖P̃jv‖aj
J∑
j=0

‖wj‖Wj
(by discrete Schwarz inequality)

≤ CW‖w‖W
J∑
j=0

‖P̃jv‖aj . (by (5.61))
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The desired estimates (5.84) and (5.85) follow from substituting (5.82) and (5.83)

into (5.87), respectively. The proof is complete.

Remark 5.4.7. We note that the argument used in the proof of lower bound estimate

(5.85) is in the spirit of the so-called Schatz argument (cf. [16]) which is often used to

derive finite element error estimates for nonsymmetric and indefinite problems. It is

interesting to see that a similar argument also plays an important role in our Schwarz

preconditioner theory.

Combining Propositions 5.4.4 and 5.4.6 we obtain our first main theorem of this

chapter.

Theorem 5.4.8. (i) If for every v ∈ V , {P̃jv; j = 0, 1, 2, · · · , J} forms a stable

decomposition of Padv, then under assumptions (SA0)–(SA3) the following condition

number estimate holds:

κa(Pad) ≤ ωVωWCVCW

[
1 + ωWCWN(Θ)

]
. (5.88)

(ii) If the condition of (i) does not hold, then under assumptions (SA0)–(SA4) the

following condition number estimate holds:

κa(Pad) ≤ ωVωW

[
1 + ωWCWN(Θ)

]
K0. (5.89)

Where

κa(Pad) := ‖Pad‖a‖P−1
ad ‖a, (5.90)

‖Pad‖a := sup
06=v∈V

‖Padv‖a
‖v‖a

. (5.91)

The above condition number estimates for the operator Pad also translates to its

matrix representation.
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Theorem 5.4.9. (i) Under assumptions of (i) of Theorem 5.4.8 the following

condition number estimate holds:

κA(Pad) ≤ ωVωWCVCW

[
1 + ωWCWN(Θ)

]
. (5.92)

(ii) Under assumptions of (ii) of Theorem 5.4.8 the following condition number

estimate holds:

κA(Pad) ≤ ωVωW

[
1 + ωWCWN(Θ)

]
K0, (5.93)

where

κA(Pad) := ‖Pad‖A‖P−1
ad ‖A, (5.94)

‖Pad‖A := sup
06=v∈Rd

‖Padv‖A
‖v‖A

, (5.95)

‖v‖A :=
√
Av · Av =

√
ATAv · v. (5.96)

Proof. Given bases for the spaces V and W , we can write v ∈ V and w ∈ W with

vector representations v ∈ Rn and w ∈ Rn, respectively. Also there exists A ∈ Rn×n

such that a(v, w) = wTAv. If ‖w‖W = ‖w‖2 then we get

‖v‖a = sup
w∈Rn

wTAv

‖w‖2

≤ sup
w∈Rn

‖w‖2‖Av‖2

‖w‖2

= ‖Av‖2 = ‖v‖A,

and

‖v‖a = sup
w∈Rn

wTAv

‖w‖2

≥ (Av)TAv

‖Av‖2

= ‖v‖A

for v 6= 0. Thus, for ‖w‖W = ‖w‖2, (5.92) and (5.93) are immediate consequences of

(5.88) and (5.89), respectively.
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5.4.3 Condition Number Estimate for Phy

As in the case of SPD problems [77, section 2.5.2], we replace the structure assumption

(SA1) by the following one:

(S̃A1) Energy stable decomposition assumption. There exist positive constants C̃V and

C̃W such that every pair (ϕ, ψ) ∈ range(I − αP0) × range(I − αQ0) admits a

decomposition

ϕ =
J∑
j=1

R†jϕj, ψ =
J∑
j=1

S†jψj,

with ϕj ∈ Vj and ψj ∈ Wj such that

J∑
j=1

‖ϕj‖aj ≤ C̃V‖ϕ‖a, (5.97)

J∑
j=1

‖ψj‖Wj
≤ C̃W‖ψ‖W. (5.98)

We remark that the new energy stable decomposition assumption (S̃A1) implies that

any pair (v, w) ∈ V ×W has a stable decomposition (in the sense of (SA1)) of the

following form:

v = αP0v +
J∑
j=1

R†jϕj, w = αQ0w +
J∑
j=1

S†jψj,

where {(ϕj, ψj)}Jj=1 is a stable decomposition (in the sense of (S̃A1)) for
(
(I −

αP0)v, (I − αQ0)w
)
.

Next lemma shows that Pj (resp. Pad) and Qj (resp. Qad) are mutually conjugate

with respect to the bilinear form a(·, ·).
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Lemma 5.4.10. The following identities hold:

a(Pjv, w) = a(v,Qjw) ∀(v, w) ∈ V ×W, j = 0, 1, 2, · · · , J, (5.99)

a(Padv, w) = a(v,Qadw) ∀(v, w) ∈ V ×W. (5.100)

Since the proof is trivial, we omit it to save space.

The following proposition is the analogue to Proposition 5.4.4 for the hybrid

operator Phy.

Proposition 5.4.11. Under assumptions (SA0), (S̃A1), (SA2) and (SA3) the

following estimate holds:

‖Phyv‖a ≤ ωVωW

[
α + ωWC̃WN(Θ̂)

(
1 + αωVωWCajβ

−1
aj

)]
‖v‖a, (5.101)

for all v ∈ V . Where Θ̂ = [θij]
J
i,j=1.

Proof. Let P̂ :=
∑J

j=1Pj and Q̂ :=
∑J

j=1Qj. For any v ∈ V and w ∈ W , let

ϕ := (I − αP0)v and ψ := (I − αQ0)w. Obviously, ϕ ∈ range(I − αP0) and ψ ∈

range(I − Q0). By assumption (S̃A1), (ϕ, ψ) admits an energy stable decomposition
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{(ϕj, ψj)}Jj=1. Thus,

a((I − αP0)P̂v, w) = a(P̂v, (I − αQ0)w) (5.102)

= a(P̂v, ψ)

=
J∑
i=1

J∑
j=1

a(R†i P̃iv,S
†
jψj)

≤
J∑
i=1

J∑
j=1

θij‖Piv‖a‖S†jψj‖W

≤ ωVωW‖v‖a
J∑
j=1

Nj(Θ̂)‖S†jψj‖W

≤ ωVω
2
WN(Θ̂)‖v‖a

J∑
j=1

‖ψj‖Wj

≤ ωVω
2
WC̃WN(Θ̂)‖v‖a‖ψ‖W

≤ ωVω
2
WC̃WN(Θ̂)

(
1 + αωVωWCajβ

−1
aj

)
‖v‖a‖w‖W,

where we have used (5.78) to obtain the last inequality. The above inequality in turn

implies that

‖(I − αP0)P̂v‖a ≤ ωVω
2
WC̃WN(Θ̂)

(
1 + αωVωWCajβ

−1
aj

)
‖v‖a,

and

‖Phyv‖a ≤ α‖P0v‖a + ‖(I − αP0)P̂v‖a

≤ αωVωW + ωVω
2
WC̃WN(Θ̂)

(
1 + αωVωWCajβ

−1
aj

)
‖v‖a.

Hence, (5.101) holds and the proof is complete.

Next, we derive a lower bound estimate for ‖Phy‖a. The following proposition is

an analogue of Proposition 5.4.6.
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Proposition 5.4.12. Under assumptions (SA0), (S̃A1), (SA2)–(SA4), along with the

assumption range
(
I − αQ0

)
= W the following estimate holds:

‖Phyv‖a ≥ K−1
1 ‖v‖a ∀v ∈ V, (5.103)

provided that δ̂V
(
C̃WωW + αωVωW

)
< 1. Where

K1 :=
1

1− δ̂V
(
C̃WωW + αωVωW

) . (5.104)

Consequently, operator Phy is invertible.

Proof. For any v ∈ V and w ∈ W . Let ψ := (I − αQ0), w ∈ range(I − αQ0) and

u := Phyv. Assumption (S̃A1) ensures that ψ has an energy stable decompositions

{ψj}Jj=1 with ψj ∈ Wj, that is,

ψ =
J∑
j=1

S†jψj and
J∑
j=1

‖ψj‖Wj
≤ C̃W‖ψ‖W. (5.105)

Using the following identity

v = u+
(
v − P̂v

)
+ αP0

(
P̂v − v

)
,
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(SA4), (5.63), (5.73) and (5.105) we get

a(v, ψ) = a(u, ψ) + a
(
v − P̂v, ψ

)
+ αa

(
P0

(
P̂v − v

)
, ψ
)

≤ ‖u‖a‖ψ‖W +
J∑
j=1

a
(
v − P̂v,S†jψj

)
+ α

∥∥P0

(
P̂v − v

)∥∥
a
‖ψ‖W

≤ ‖u‖a‖ψ‖W +
J∑
j=1

aj
(
P̃j
(
v − P̂v

)
, ψj
)

+ αωV

∥∥P̃0

(
P̂v − v

)∥∥
a0
‖ψ‖W

≤ ‖u‖a‖ψ‖W +
J∑
j=1

ωWδ̂V‖v‖a‖ψj‖Wj
+ αωVωWδ̂V‖v‖a‖ψ‖W

≤ ‖u‖a‖ψ‖W + δ̂V
(
C̃WωW + αωVωW

)
‖v‖a‖ψ‖W

The desired estimate follows from the assumption range(I − αQ0) = W .

Remark 5.4.13. We note that the assumption range (I−αQ0) = W is equivalent to

asking I − αQ0 to be invertible, which holds for sufficiently small or large relaxation

parameter α.

Combining Propositions 5.4.11 and 5.4.12 we obtain our third main theorem of

this chapter.

Theorem 5.4.14. Under assumptions (SA0), (S̃A1), (SA2)–(SA4) and range
(
I −

αQ0

)
= W the following condition number estimate holds:

κa(Phy) ≤ ωVωW

[
α + ωWC̃WN(Θ̂)

(
1 + αωVωWCajβ

−1
aj

)]
K1. (5.106)

5.5 Application to DG Discretizations for Convection-

diffusion Problems

In this section, we shall use our abstract framework and the abstract preconditioner

theory developed in Sections 5.3 and 5.4 to construct three types of Schwarz
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methods for discontinuous Galerkin approximations of the following general diffusion-

convection problem:

Lu := −div(σ(u)) + γ(x)u = f in Ω, (5.107)

u = 0 on ∂Ω, (5.108)

where Ω ⊂ Rd (d = 1, 2, 3) is a bounded domain with Lipschitz continuous boundary

∂Ω and σ(u) := −D(x)∇u + b(x)u. D(x) ∈ Rd×d satisfies λ|ξ|2 ≤ D(x)ξ · ξ ≤ Λ|ξ|2

∀ξ ∈ Rd for some positive constants λ and Λ. So (5.107) is uniformly elliptic in Ω [47,

Chapter 8]. Assume that b ∈ H(div, Ω) or b ∈ [C0(Ω)]d, γ ∈ L∞(Ω) and f ∈ L2(Ω).

Let V = W = H1
0 (Ω), then the variational formulation of (5.107)–(5.108) is defined

as [9, 47]

A(u,w) = F(w) ∀w ∈ W, (5.109)

where

A(u,w) :=

∫
Ω

(
D(x)∇u · ∇w + b(x)u · ∇w + γ(x)uw

)
dx, (5.110)

F(w) :=

∫
Ω

fw dx. (5.111)

Clearly, when b(x) 6≡ 0, the bilinear form A(·, ·) is nonsymmetric. The problem

can be further classified as follows:

(i) Positive definite case: If b and γ satisfies

γ(x) +
1

2
divb(x) ≥ 0 in Ω. (5.112)

(ii) Indefinite case: If b and c satisfies

γ(x) +
1

2
divb(x) < 0 in Ω. (5.113)
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It is easy to check that all the conditions of the classical Lax-Milgram Theorem

hold in the positive definite case. It also can be shown [9] that in the indefinite case all

the conditions of Theorem 5.2.1 are satisfied provided that problem (5.107)–(5.108)

and its adjoint problem are uniquely solvable for arbitrary source terms. It is also well

known [9, 47] that in indefinite case the bilinear form A(·, ·) satisfies a Gärding-type

inequality instead of strong coercivity.

5.5.1 Discontinuous Galerkin Approximations

Consider a special case of (5.107) where D(x) = ε > 0 and b ∈ [W 1,∞(Ω)]d.

To discretize this problem, we shall use an interior penalty discontinuous Galerkin

(IPDG) scheme developed in [5]. For this scheme we require a shape-regular

triangulation Th of the domain Ω. The scheme can then be written in the form

(5.7) where

V = W :=
{
v ∈ L2(Ω) such that v|K ∈ Pr(K) ∀K ∈ Th

}
, (5.114)

a(u,w) :=
∑
K∈Th

∫
K

(γuw + (ε∇u− bu) · ∇w) dx+
∑
e/∈Γ+

ce
ε

|e|

∫
e

[u] · [w] ds (5.115)

+
∑
e∈E◦h

∫
e

{bu}upw · [w] ds−
∑
e/∈Γ+

∫
e

{ε∇hu} · [w] ds+
∑
e∈Γ+

∫
e

b · nuw ds,

f(w) :=
∑
K∈Th

∫
K

fw dx. (5.116)

Where r ≥ 1,Γ = ∂Ω, n is the unit outward normal vector to Γ, and Γ+ indicates

the outflow portion of Γ defined as

Γ+ = {x ∈ Γ such that b(x) · n(x) ≥ 0} .

E◦h is the set of interior edges associated to the partition Th. [·] and {·} are the

standard jump and average operators, respectively, and {·}upw is the upwind flux. To

define this flux, we consider a vector valued function τ defined on two neighboring
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elements K1 and K2 of Th with common edge e. Suppose that τ i = τ |Ki
for i = 1, 2.

Then {τ}upw is defined on the edge e as follows:

{τ}upw =
1

2
(sign(b · n1) + 1)τ 1 +

1

2
(sign(b · n2) + 1)τ 2,

where ni is the unit outward normal vector of Ki on e for i = 1, 2. The choice of

this scheme was made because it was shown [5] that in the positive definite case (i.e.

when (5.112) holds) this scheme satisfies (MA1) and (MA2) (cf. Section 5.3.1).

Once a discretization scheme is chosen we can begin to develop our space

decomposition and local solvers. In this example, we will obtain the space

decomposition by using a nonoverlapping domain decomposition. Let TH be a coarse

mesh of Ω and Ts a nonoverlapping partition {Ωj}Jj=1 of Ω such that Ts ⊆ TH ⊆ Th.

Then we define

V0 = W0 :=
{
v ∈ L2(Ω) such that v|K ∈ Pr ∀K ∈ TH

}
, (5.117)

Vj = Wj :=
{
v ∈ L2(Ωj) such that v|K ∈ Pr ∀K ∈ Th with K ⊆ Ωj

}
(5.118)

for j = 1, 2, . . . , J and r ≥ 1. For the prolongation operator R†0 = S†0 we use the

polynomial interpolation on each element K ∈ Th.

R†0u0|K = the interpolant of u0 in Pr(K) (5.119)

for each u0 ∈ V0 and K ∈ Th. For the prolongation operators R†j = S†j , when

j = 1, 2, · · · , J , we use the following natural injection into V :

R†juj =

 uj in Ωj

0 in Ω \ Ωj.
(5.120)
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For the local bilinear forms aj(·, ·) we use the exact local solvers defined by

aj(uj, wj) := a(R†juj,R
†
jwj) ∀ uj, wj ∈ Vj, (5.121)

and j = 0, 1, . . . , J . Note that in this example we only have one set of subspaces

{Vj}Jj=0 and one set of prolongation operators {R†j}Jj=0 so we shall only have one

set of projection-like operators {Pj}Jj=0 defined in (5.35) and (5.37). Using these

projection-like operators we can then build the Schwarz operators Pad, Pmu, and Phy
defined in (5.38), (5.50), and (5.58), respectively.

5.5.2 Partial Analysis of the 1-D Convection Diffusion Prob-

lem

In this subsection, we only consider a special 1-D case of (5.107)–(5.108) where

Ω = (0, 1), D(x) ≡ 1, γ(x) ≡ 1, and b(x) is a positive constant. Here, the

goal is to demonstrate techniques used to prove some of the necessary structure

assumptions presented in Subsection 5.4.1, namely assumptions (SA0) and (SA1).

Structure assumptions (SA2) and (SA3) should be easy to verify and we leave these

to the reader. (SA4) will be more challenging to prove and requires the correct choices

of prolongation operators and local solvers to be made. It is our intention to explore

(SA4) in more depth in subsequent works.

Let {x`}n`=0 be a uniform partition of [0, 1] with step size h. Then define Th :=

{K`}n`=1 where K` = (x`, x`−1). Let

V = W :=
{
v ∈ L2(Ω)

∣∣∣ v|K`
∈ Pr(K`), ∀K` ∈ Th

}
.
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We will take a uniform penalty parameter ce = c0. In this special case, a(u, v) in

(5.114) is given by

a(u, v) =
n∑
`=1

(
(u′, v′)K`

− (bu, v′)K`
+ (u, v)K`

)
+

n∑
`=0

(c0

h
[u(x`)][v(x`)]− {u′(x`)}[v(x`)]

)
+

n∑
`=1

bu−(x`)[v(x`)],

for any u, v ∈ V . Here, [u(x`)] and {u(x`)} are the jump and average operators

defined as

[u(x`)] := u−(x`)− u+(x`) {u(x`)} :=
1

2

(
u−(x`) + u+(x`)

)
,

[u(x0)] = −{u(x0)} = −u+(x0) [u(xn)] = {u(xn)} := u−(xn),

where ` = 1, 2, · · · , n− 1 and

u−(y) := lim
x→y−

u(x) and u+(y) := lim
x→y+

u(x).

Let
{
x

(0)
i

}n0

i=0
⊆ {x`}n`=0 be a coarse partition of [0, 1] with uniform step size

H > h and TH :=
{
K

(0)
i

}n0

i=1
, where K

(0)
i =

(
x

(0)
i , x

(0)
i−1

)
for i = 1, 2, · · · , n0. Define an

even coarser partition
{
x

(j)
0

}J
j=1
∪
{
x

(J)
nJ } ⊆

{
x

(0)
i

}n0

i=0
and subdomain decomposition

TS := {Ωj}Jj=1, where Ωj =
(
x

(j)
0 , x

(j−1)
0

)
for j = 1, · · · , J − 1 and ΩJ =

(
x

(J)
0 , x

(J)
nJ

)
.

These choices ensure that

Th ⊇ TH ⊇ TS.
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Also, there exists n1, n2, · · · , nJ and subsequences
{
x

(j)
i

}nj

i=0
⊆ {x`}n`=0 for j =

1, 2, · · · , J such that

J∑
j=1

nj = n and {x`}n`=0 =
J⋃
j=1

{
x

(j)
i

}nj

i=0
.

Thus,

Ωj =

nj⋃
i=1

K
(j)
i ,

for j = 1, 2, · · · , J , and K
(j)
i is defined as K

(j)
i = (x

(j)
i , x

(j)
i−1) for i = 1, 2, · · · , nj.

Define the subspaces Vj and local solvers aj(·, ·) by

V0 = W0 :=
{
v ∈ L2(Ω)

∣∣∣ v|
K

(0)
i
∈ Pr

(
K

(0)
i

)
for i = 1, 2, · · · , n0

}
,

Vj = Wj :=
{
v ∈ L2(Ωj)

∣∣∣ v|
K

(j)
i
∈ Pr

(
K

(j)
i

)
for i = 1, 2, · · · , nj

}
,

for j = 1, 2, · · · , J and

aj(u, v) := a(R†ju,R
†
jv),

for u, v ∈ Vj and j = 0, 1, · · · , J . Here R†j is taken to be the prolongation operators

described in Subsection 5.5.1.

Define the norm ||| · ||| on V in the following way:

|||v|||2 := |||v|||2 + |||v|||2rc

|||v|||2d := |v|21,h +
n∑
`=0

1

h
[v(x`)]

2,

|||v|||2rc := (1 + b)‖v‖2
L2(Ω) +

n∑
`=0

b[v(x`)]
2.
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Using this norm, Ayuso and Marini proved that there exists h0 = h0(b) and γa =

γa(b,Ω) such that

sup
v∈V h

a(u, v)

|||v|||
≥ γa|||u|||,

for all u ∈ V when h ≤ h0 (c.f. [5]).

From the above definitions, we see that the local solvers take the following form

aj(u, v) =

nj∑
i=1

(
(u′, v′)

K
(j)
i
− (bu, v′)

K
(j)
i

+ (u, v)
K

(j)
i

)
+

nj−1∑
i=1

(c0

h
[u(x

(j)
i )][v(x

(j)
i )]− {u′(x(j)

i )}[v(x
(j)
i )] + bu−(x

(j)
i )[v(x

(j)
i )]
)

+
c0

h

(
u−(x(j)

nj
)v−(x(j)

nj
) + u+(x

(j)
0 )v+(x

(j)
0 )
)

+ bu−(x(j)
nj

)v−(x(j)
nj

)

+
1

2
(δj,0 + δj,1 + 1)u′+(x

(j)
0 )v+(x

(j)
0 )− 1

2
(δj,0 + δj,J + 1)u′−(x(j)

nj
)v−(x(j)

nj
),

for all u, v ∈ Vj and j = 0, 1, 2, · · · , J . Here δ`,m denotes the Kronecker delta symbol.

We note that the local solvers take the a similar form as the DG bilinear form a(·, ·),

noting that the penalty parameter for the coarse local solver a0(·, ·) should be thought

of as c0H
h

to gain the correct scaling. This immediately implies that there exists

γaj = γaj(b,Ωj) for j = 1, 2, · · · , J such that

sup
vj∈Vj

aj(uj, vj)

|||vj|||
≥ γaj |||uj|||,

for all uj ∈ Vj and h < h0. This also holds for j = 0 when the coarse mesh size

satisfies H < h0. Therefore, (SA0) is satisfied.
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Let I(·, ·) denote an interface bilinear form on V × V defined as

I(u, v) :=
J−1∑
j=1

(
− c0

h

(
u−(x(j)

nj
)v+(x(j)

nj
) + u+(x(j)

nj
)v−(x(j)

nj
)
)
− bu−(x(j)

nj
)v+(x(j)

nj
)
)

+
J−1∑
j=1

1

2

(
u′−(x(j)

nj
)v+(x(j)

nj
)− u′+(x(j)

nj
)v−(x(j)

nj
)
)
.

Similarly, define the interface functional 〈·〉I on V by

〈u〉I := −2
(1

h
+ b
) J−1∑
j=1

u+(x(j)
nj

)u−(x(j)
nj

).

For the rest of this subsection we aim to prove (SA1), i.e. prove the existence of

an energy stable decomposition of every v ∈ V . To do this, we need to establish a

series of technical lemmas. Using the definitions of I(·, ·) and 〈·〉I , we immediately

obtain the following lemma.

Lemma 5.5.1. For all u, v ∈ V there exist unique decompositions u =
∑J

j=1R
†
juj

and v =
∑J

j=1R
†
jvj, where uj, vj ∈ Vj for j = 1, 2, · · · , J . Moreover,

a(u, v) =
J∑
j=1

aj(uj, vj) + I(u, v),

|||u|||2 =
J∑
j=1

|||uj|||2 + 〈u〉I .

From [40] we obtain the following two technical lemmas.

Lemma 5.5.2. For any u ∈ V , there holds the trace inequality

|u|2
∂K

(0)
i

≤ c
(
H−1‖u‖2

L2(K
(0)
i )

+H|u|2
1,h,K

(0)
i

)
for i = 1, 2, · · · , n0,
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where

|u|2
1,h,K

(0)
i

:=
∑

K`∈K
(0)
i

‖u′‖L2(K`) +
∑

x`∈K
(0)
i

1

h
[u(x`)]

2.

Lemma 5.5.3. For any u ∈ V , let u0 ∈ V0 be defined by

u0|K(0)
i

=
1

meas(K
(0)
i )

∫
K

(0)
i

udx for i = 1, 2, · · · , n0,

then

‖u− u0‖L2(K
(0)
i )
≤ cH|u|

1,h,K
(0)
i
.

The following lemma verifies (SA1).

Lemma 5.5.4 (Energy Stable Decomposition). For every u ∈ V , there exists uj ∈ Vj
for j = 0, 1, · · · , J such that

J∑
j=0

‖u‖aj ≤ CV ‖u‖a,

where

CV = C
(
JCaγa

(1

h
+ b
)(
H2 +H

)) 1
2
.

Proof. Let u ∈ V and define u0 ∈ V0 by

u0|K(0)
i

=
1

meas(K
(0)
i )

∫
K

(0)
i

udx for i = 1, 2, · · · , n0.
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Then let uj ∈ Vj, for j = 1, 2, · · · , J , be defined uniquely by u−u0 = u1+u2+· · ·+uJ .

From Lemma 5.5.1 we get

|||u− u0|||2 =
J∑
j=1

|||uj|||2 + 〈u− u0〉I .

Thus,

J∑
j=0

|||uj|||2 = |||u− u0|||2 + |||u0|||2 − 〈u− u0〉I (5.122)

≤ 2|||u|||2 + 3|||u0|||2 +
∣∣∣〈u− u0〉I

∣∣∣.
We will estimate |||u0||| and 〈u − u0〉I separately. Using Lemmas 5.5.2 and 5.5.3

we find

|||u0|||2 = (1 + b)‖u0‖L2(Ω) +
(1

h
+ b
) n0∑
i=0

[u0(x
(0)
i )]2

≤ C(1 + b)
( n0∑
i=1

‖u− u0‖2

L2(K
(0)
i )

+ ‖u‖2
L2(Ω)

)
+ C

(1

h
+ b
)( n0∑

i=0

[u(x
(0)
i )− u0(x

(0)
i )]2 +

∑
`=0

n[u(x`)]
2
)

≤ C|||u|||2 + C
(1

h
+ b
) n0∑
i=1

H2|u|2
1,h,K

(0)
i

+ C
(1

h
+ b
) n0−1∑

i=0

((
u−(x

(0)
i )− u−0 (x

(0)
i )
)2

+
(
u+(x

(0)
i+1)− u+

0 (x
(0)
i+1)
)2
)

≤ C|||u|||2 + C
(1

h
+ b
) n0∑
i=1

(
H2|u|2

1,h,K
(0)
i

+H|u|2
1,h,K

(0)
i

)
≤ C

(1

h
+ b
)(
H2 +H

)
|||u|||2.
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Above, we used the facts |u−u0|1,h,K(0)
i

= |u|
1,h,K

(0)
i

for i = 1, 2, · · · , n0 and Hh−1 ≥ 1.

Using Lemmas 5.5.2 and 5.5.3, we find

∣∣∣〈u− u0〉I
∣∣∣ = 2

(1

h
+ b
)∣∣∣ J−1∑

j=1

(
u+(x(j)

nj
)− u+

0 (x(j)
nj

)
)(
u−(x(j)

nj
)− u−0 (x(j)

nj
)
)∣∣∣

≤ 2
(1

h
+ b
)( J−1∑

j=1

(
u+(x(j)

nj
)− u+

0 (x(j)
nj

)
)2
) 1

2
( J−1∑
j=1

(
u−(x(j)

nj
)− u−0 (x(j)

nj
)
)2
) 1

2

≤ 2
(1

h
+ b
) n0−1∑

i=0

((
u−(x

(0)
i )− u−0 (x

(0)
i )
)2

+
(
u+(x

(0)
i+1)− u+

0 (x
(0)
i+1)
)2
)

≤ C
(1

h
+ b
) n0∑
i=1

(
H−1‖u− u0‖2

L2(K
(0)
i )

+H|u− u0|2L2(K
(0)
i )

)
≤ C

(1

h
+ b
) n0∑
i=1

(
H|u|2

L2(K
(0)
i )

)
≤ C

(1

h
+ b
)
H|||u|||2.

We apply these two estimates to (5.122) and get

J∑
j=0

|||uj|||2 ≤ C
(1

h
+ b
)(
H2 +H

)
|||u|||2.

Now using this result along with the norm equivalence results, we find

J∑
j=0

‖uj‖2
aj
≤ Ca

J∑
j=1

|||uj|||2

≤ CCa(
1

h
+ b)(H2 +H)|||u|||2

≤ CCaγa

(1

h
+ b
)(
H2 +H

)
‖u‖2

a.

We obtain the desired result by applying the equivalence of ‖ · ‖1 and ‖ · ‖2 to the

above inequality.

Remark 5.5.5. We note that in [40], CV = C (Hh−1) but here for H ≤ 1 we find

CV = CH (b+ h−1).
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5.5.3 Numerical Experiments

In this section, we present several 1-D numerical experiments to gauge the theoretical

results proved in the previous section. For these experiments we concentrated on

equation (5.107) in the domain Ω = (0, 1) with the following choices of constant

coefficient:

Test 1. D(x) = 1, b(x) = 1, 000, and γ(x) = 1.

Test 2. D(x) = 1, b(x) = 2, 000, and γ(x) = 1.

Test 3. D(x) = 1, b(x) = 10, 000, and γ(x) = 1.

Test 4. D(x) = 1, b(x) = 100, 000, and γ(x) = 1.

Note that these choices of coefficients put us in the convection dominated regime

and fit the criteria of the positive definite case characterized by (5.112). For this

reason we are able to use the discretization scheme and domain decomposition

techniques described in Section 5.5.1. In these experiments, we use a uniform fine

mesh size h = 1/256 and a uniform coarse mesh size H = 1/64. The equations are

solved numerically using standard GMRES, GMRES after using Pad preconditioning,

the multiplicative Schwarz iterative method (5.55), and GMRES after using Phy
preconditioning, all with a stopping tolerance of 10−6. To verify the dependence

of κa(Pad) and κa(Phy), we use a varying number of subdomains J = 4, 8, 16, 32, 64.

Our first goal in these experiments is to compare the performance of the Schwarz

methods to that of standard GMRES in order to verify the usefulness of such methods.

We would like to verify numerically that the estimates given in previous sections are

tight. In particular, we would like to find an example that shows that κA(Pad) does in

fact depend linearly on the number of subdomains J as predicted in Theorem 5.4.9.

For multiplicative Schwarz iteration we would like to estimate ‖Emu‖A, noting that

if this norm is less than 1 it guarantees convergence of the method. If not, we shall

need to rely on the spectral radius ρ(Emu) to guarantee this convergence.

Tables 5.1–5.4 collect the test results on the additive, multiplicative, and hybrid

Schwarz methods proposed in Section 5.3. Where J = NA represents the original
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system with no preconditioning. From these numerical results we can make the

following observations:

(a) Any of these methods offers an improvement in terms of the CPU time needed to

solve the system when compared to solving the system using standard GMRES.

(b) GMRES after using Pad or Phy for preconditioning performs better when the

number of subdomains J is not too large.

(c) In all of these tests, κA(Pad) and κA(Phy) depend on the number of subdomains

J . Particularly in Test 2, we see an example that exhibits approximate linear

dependence. See figure 5.1.

(d) For ‖Emu‖A we do not observe such a strong dependence on the number of

subdomains J .

(e) In these tests ‖Emu‖A is greater than 1; thus, we cannot rely upon this as an

indicator for convergence of the multiplicative Schwarz iterative method.

(f) κA is not a unique metric in judging the convergence of GMRES after

preconditioning with Pad and Phy. For instance, in Test 4 κA(Pad) decreases

while the number of iterations necessary for GMRES increases as J increases.

This is opposite of the behavior that is observed in the previous tests.

Our numerical experiments verify that κA is not a unique metric for the

convergence of GMRES. Therefore, we must rely on other metrics to predict the

convergence behavior of GMRES. A result that could be of help in this area is the

following theorem (cf. [78]).

Theorem 5.5.6. Consider the linear system Ax = b where A ∈ Rd×d and x,b ∈ Rd.

Further suppose that A is diagonalizable. Then after k steps of GMRES, the residual
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rk := b− Ax(k) satisfies

‖rk‖2

‖b‖2

≤ κ2(V ) inf
p∈Pk
p(0)=1

sup
λ∈σ(A)

|p(λ)|,

where V is a nonsingular matrix of eigenvectors of A and σ(A) denotes the spectrum

of A.

The above theorem says that the spread of the spectrum is a metric to judge the

performance of GMRES with GMRES performing better when the spectrum of A is

clustered. With this theorem in mind, let us examine the spectrum of the matrix A

and Pad for J = 4, 8, 16, 32, 64 obtained in Test 2 and Test 4.

Note that in Figure 5.2(a) and Figure 5.3(a) the spectrum has a large spread

which is consistent with the fact that GMRES performed poorly on the original

system without preconditioning. We also see that after preconditioning, the spectrum

of Pad is clustered which corresponds to improved performance of GMRES after

preconditioning with Pad. Lastly, we note that as the number of subdomains J

increases, the spread of the spectrum of Pad increases. This corresponds to a decreased

performance in GMRES after preconditioning with Pad as J increases.

This result leads us to believe that to accurately judge the behavior of GMRES

after preconditioning one needs to analyze the spectrum of the preconditioned system.

Similarly, we find that to accurately predict the performance of the multiplicative

Schwarz iterative method one needs to analyze the spectral radius of Emu.

189



Table 5.1: Performance of three Schwarz methods on Test 1

(a) GMRES after preconditioning with Pad and Phy

J Iteration # CPU Time κA
of GMRES

NA 552 14.3760 3.3893× 104

Pad Phy Pad Phy Pad Phy
4 7 2 1.3638 1.1922 460.5713 397.3567
8 7 3 1.3343 1.2367 436.7967 398.2544
16 11 5 1.6873 1.4040 438.2207 412.1700
32 17 8 2.6431 1.9066 521.3530 478.9537
64 30 15 6.2315 3.7889 774.7091 619.3973

(b) Multiplicative Schwarz Iteration

J Iterations # of CPU Time ‖Emu‖A ρ(Emu)
Mult. Schwartz

4 2 1.1060 19.8830 4.4793× 10−6

8 2 1.1016 19.8889 0.0029
16 3 1.1352 19.8469 0.0725
32 5 1.2768 19.7658 0.3179
64 8 1.7129 19.7176 0.5926
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Table 5.2: Performance of three Schwarz methods on Test 2

(a) GMRES after preconditioning with Pad and Phy

J Iteration # CPU Time κA
of GMRES

NA 550 14.4971 1.7388× 104

Pad Phy Pad Phy Pad Phy
4 8 3 1.3249 1.2069 741.9511 699.5729
8 10 5 1.4463 1.2835 749.0976 713.3674
16 17 8 1.9924 1.5557 847.4815 800.9121
32 27 14 5.5602 2.4255 1.1221× 103 1.0029× 103

64 44 24 8.7063 5.3089 1.6247× 103 1.2918× 103

(b) Multiplicative Schwarz Iteration

J Iterations # of CPU Time ‖Emu‖A ρ(Emu)
Mult. Schwartz

4 2 1.1010 26.4005 0.0011
8 3 1.1131 26.3187 0.0451
16 4 1.1679 26.1222 0.2529
32 6 1.3214 25.9832 0.5277
64 10 1.8713 25.9270 0.7167
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Table 5.3: Performance of three Schwarz methods on Test 3

(a) GMRES after preconditioning with Pad and Phy

J Iteration # CPU Time κA
of GMRES

NA 554 14.3919 4.0782× 103

Pad Phy Pad Phy Pad Phy
4 8 3 1.3422 1.1772 647.6787 615.1005
8 12 5 1.4953 1.2517 658.7462 627.0064
16 18 9 2.0216 1.5588 726.3005 690.1682
32 27 15 3.5402 2.4623 854.1450 788.5277
64 35 23 7.1266 4.9327 939.5190 816.1892

(b) Multiplicative Schwarz Iteration

J Iteration # of CPU Time ‖Emu‖A ρ(Emu)
Mult. Schwartz

4 2 1.1067 24.7399 0.0021
8 2 1.0982 24.6200 0.0526
16 3 1.1394 24.4247 0.2350
32 5 1.2778 24.2986 0.4369
64 7 1.6321 24.2524 0.5302
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Table 5.4: Performance of three Schwarz methods on Test 4

(a) GMRES after preconditioning with Pad and Phy

J Iteration # CPU Time κA
of GMRES

NA 468 9.4276 1.0769× 103

Pad Phy Pad Phy Pad Phy
4 8 2 1.3305 1.2039 103.5739 31.7538
8 11 2 1.4551 1.2558 75.7527 31.6954
16 14 3 1.8217 1.3019 56.6486 31.6803
32 13 5 2.2940 1.6227 46.4141 31.8710
64 15 8 3.7025 2.5950 44.1292 32.2846

(b) Multiplicative Schwarz Iteration

J Iteration # of CPU Time ‖Emu‖A ρ(Emu)
Mult. Schwartz

4 2 1.0996 5.4574 85394× 10−9

8 2 1.0984 5.4575 1.0873× 10−6

16 2 1.1157 5.4575 6.6472× 10−4

32 2 1.1566 5.4560 0.0158
64 2 1.2399 5.4540 0.0678
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(a) Plot of J vs. κA(Pad) (b) Plot of J vs. κA(Phy)

Figure 5.1: Dependence of κA(Pad) and κA(Phy) on J in Test 2
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(a) Plot of σ(A) (b) Plot of σ(Pad) with J = 4

(c) Plot of σ(Pad) with J = 8 (d) Plot of σ(Pad) with J = 16

(e) Plot of σ(Pad) with J = 32 (f) Plot of σ(Pad) with J = 64

Figure 5.2: Spectrum plots from Test 2
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(a) Plot of σ(A) (b) Plot of σ(Pad) with J = 4

(c) Plot of σ(Pad) with J = 8 (d) Plot of σ(Pad) with J = 16

(e) Plot of σ(Pad) with J = 32 (f) Plot of σ(Pad) with J = 64

Figure 5.3: Spectrum plots from Test 4
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Chapter 6

Future Directions

The goal of this chapter is to list a few future research directions that come directly

from the work in the previous chapters of this dissertation.

• Give examples of domains that satisfy a generalized star-shape condition but not

a classical star-shape condition

Generalized star-shape domain conditions were introduced in Chapter

2 to replace the more restrictive star-shape condition. Novel examples

that satisfy the generalized star-shape condition but not the classical

star-shape condition need to be obtained to justify this generalization.

• Prove the Korn-type inequality on the boundary of a domain for solutions of the

elastic Helmholtz equations, i.e. prove Conjecture 2.3.4

This conjecture is important to obtain the results for the elastic

Helmholtz equations in Chapter 2 as well as to obtain optimal stability

estimates in the wave frequency ω in [27].

• Continue to develop new absolutely stable discretization methods for the elastic

Helmholtz problem
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In particular, the IP-DG method given in Chapter 3 should be

extended to an hp method using higher order polynomials. Other

discretization methods can be considered as well, such as the local

discontinuous Galerkin (LDG) method [45].

• Develop multi-modes MCIP-DG methods for the other Helmholtz-type problems

The method and analysis demonstrated in Chapter 4 can be extended

to the other Helmholtz-type problems in random media. This is

worthwhile since these problems have the same numerical challenges

as the acoustic Helmholtz problem.

• Develop multi-modes MCIP-DG methods for other PDEs

In particular, this approach can be extended to general elliptic PDEs

with random coefficients. For a problem like the Poisson problem

where fast solvers are available, is this approach worthwhile? This is

a question that should be explored.

• Continue to develop the Schwarz framework to include Helmholtz-type problems

The new Schwarz framework should extend easily to the case of

complex non-Hermitian and indefinite problems that satisfy a weak

coercivity property. To generalize it to the Helmholtz-type problems,

we need to extend the framework to include problems that only satisfy

a generalized weak coercivity property.

• Apply the nonsymmetric and indefinite Schwarz framework to various PDE

problems

Many problems do not fit the classical SPD Schwarz framework. The

new Schwarz framework given in Chapter 5 should be applied to these

problems. An example would be the Navier-Stokes equations.
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[69] I. Rosca. On the Babuška Lax Milgram theorem. In An. Univ. Bucuresti,

XXXVIII, volume 3, pages 61 – 65, 1989. 144

[70] O. Runborg. Mathematical models and numerical methods for high frequency

waves. Commun. Comput. Phys., 2(5):827 – 880, 2007. 4

[71] A.H. Schatz. An observation concerning Ritz-Galerkin methods with indefinite

bilinear forms. Math. Comp., 28:959 – 962, 1974. 62

207
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